Paperid: 1, https://arxiv.org/pdf/2506.24127.pdf   GitHub
Authors:Matthew Gwilliam, Roy Zhang, Namitha Padmanabhan, Hongyang Du, Abhinav Shrivastava
Title: How to Design and Train Your Implicit Neural Representation for Video Compression
Abstract:
Implicit neural representation (INR) methods for video compression have recently achieved visual quality and compression ratios that are competitive with traditional pipelines. However, due to the need for per-sample network training, the encoding speeds of these methods are too slow for practical adoption. We develop a library to allow us to disentangle and review the components of methods from the NeRV family, reframing their performance in terms of not only size-quality trade-offs, but also impacts on training time. We uncover principles for effective video INR design and propose a state-of-the-art configuration of these components, Rabbit NeRV (RNeRV). When all methods are given equal training time (equivalent to 300 NeRV epochs) for 7 different UVG videos at 1080p, RNeRV achieves +1.27% PSNR on average compared to the best-performing alternative for each video in our NeRV library. We then tackle the encoding speed issue head-on by investigating the viability of hyper-networks, which predict INR weights from video inputs, to disentangle training from encoding to allow for real-time encoding. We propose masking the weights of the predicted INR during training to allow for variable, higher quality compression, resulting in 1.7% improvements to both PSNR and MS-SSIM at 0.037 bpp on the UCF-101 dataset, and we increase hyper-network parameters by 0.4% for 2.5%/2.7% improvements to PSNR/MS-SSIM with equal bpp and similar speeds. Our project website is available at https://mgwillia.github.io/vinrb/ and our code is available at https://github.com/mgwillia/vinrb.

Authors:Jiacheng Cui, Xinyue Bi, Yaxin Luo, Xiaohan Zhao, Jiacheng Liu, Zhiqiang Shen
Title: FADRM: Fast and Accurate Data Residual Matching for Dataset Distillation
Abstract:
Residual connection has been extensively studied and widely applied at the model architecture level. However, its potential in the more challenging data-centric approaches remains unexplored. In this work, we introduce the concept of Data Residual Matching for the first time, leveraging data-level skip connections to facilitate data generation and mitigate data information vanishing. This approach maintains a balance between newly acquired knowledge through pixel space optimization and existing core local information identification within raw data modalities, specifically for the dataset distillation task. Furthermore, by incorporating optimization-level refinements, our method significantly improves computational efficiency, achieving superior performance while reducing training time and peak GPU memory usage by 50%. Consequently, the proposed method Fast and Accurate Data Residual Matching for Dataset Distillation (FADRM) establishes a new state-of-the-art, demonstrating substantial improvements over existing methods across multiple dataset benchmarks in both efficiency and effectiveness. For instance, with ResNet-18 as the student model and a 0.8% compression ratio on ImageNet-1K, the method achieves 47.7% test accuracy in single-model dataset distillation and 50.0% in multi-model dataset distillation, surpassing RDED by +5.7% and outperforming state-of-the-art multi-model approaches, EDC and CV-DD, by +1.4% and +4.0%. Code is available at: https://github.com/Jiacheng8/FADRM.

Authors:Sixun Dong, Wei Fan, Teresa Wu, Yanjie Fu
Title: Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Abstract:
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.

Authors:Yue Ma, Qingyan Bai, Hao Ouyang, Ka Leong Cheng, Qiuyu Wang, Hongyu Liu, Zichen Liu, Haofan Wang, Jingye Chen, Yujun Shen, Qifeng Chen
Title: Calligrapher: Freestyle Text Image Customization
Abstract:
We introduce Calligrapher, a novel diffusion-based framework that innovatively integrates advanced text customization with artistic typography for digital calligraphy and design applications. Addressing the challenges of precise style control and data dependency in typographic customization, our framework incorporates three key technical contributions. First, we develop a self-distillation mechanism that leverages the pre-trained text-to-image generative model itself alongside the large language model to automatically construct a style-centric typography benchmark. Second, we introduce a localized style injection framework via a trainable style encoder, which comprises both Qformer and linear layers, to extract robust style features from reference images. An in-context generation mechanism is also employed to directly embed reference images into the denoising process, further enhancing the refined alignment of target styles. Extensive quantitative and qualitative evaluations across diverse fonts and design contexts confirm Calligrapher's accurate reproduction of intricate stylistic details and precise glyph positioning. By automating high-quality, visually consistent typography, Calligrapher surpasses traditional models, empowering creative practitioners in digital art, branding, and contextual typographic design.

Authors:Yuqing Wang, Shangding Gu
Title: Data Uniformity Improves Training Efficiency and More, with a Convergence Framework Beyond the NTK Regime
Abstract:
Data selection plays a crucial role in data-driven decision-making, including in large language models (LLMs), and is typically task-dependent. Properties such as data quality and diversity have been extensively studied and are known to enhance model performance. However, it remains unclear whether there exist other quantitative and general principles of data selection that can consistently improve performance, especially for complex tasks with limited prior knowledge. In this paper, we demonstrate that selecting more uniformly distributed data can improve training efficiency while enhancing performance. Specifically, we establish that more uniform (less biased) distribution leads to a larger minimum pairwise distance between data points, denoted by $h_{\min}$, and prove that a smaller $h_{\min}$ can slow down the training dynamics of gradient descent (GD). Moreover, we theoretically show that the approximation error of neural networks decreases as $h_{\min}$ increases. Our analysis introduces a convergence framework for GD beyond the Neural Tangent Kernel (NTK) regime, applicable to a broad class of architectures, including transformers, without requiring Lipschitz smoothness. This framework further provides theoretical justification for the use of residual connections and function compositions in deep neural architectures. In the end, we conduct comprehensive experiments for supervised fine-tuning across various settings, including different optimization strategies, model sizes, and training datasets. The results consistently demonstrate that selecting data by maximizing pairwise distance significantly accelerates training and achieves comparable or better performance in LLMs across diverse datasets. Code and Datasets are available at the link: https://github.com/SafeRL-Lab/data-uniformity.

Authors:Yuqing Wang, Shangding Gu
Title: Data Uniformity Improves Training Efficiency and More, with a Convergence Framework Beyond the NTK Regime
Abstract:
Data selection plays a crucial role in data-driven decision-making, including in large language models (LLMs), and is typically task-dependent. Properties such as data quality and diversity have been extensively studied and are known to enhance model performance. However, it remains unclear whether there exist other quantitative and general principles of data selection that can consistently improve performance, especially for complicated tasks. In this paper, we demonstrate that selecting more uniformly distributed data can improve training efficiency while enhancing performance. Specifically, we establish that more uniform (less biased) distribution leads to a larger minimum pairwise distance between data points, denoted by $h_{\min}$, and prove that a smaller $h_{\min}$ can slow down the training dynamics of gradient descent (GD). Moreover, we theoretically show that the approximation error of neural networks decreases as $h_{\min}$ increases. Our analysis introduces a convergence framework for GD beyond the Neural Tangent Kernel (NTK) regime, applicable to a broad class of architectures, including transformers, without requiring Lipschitz smoothness. This framework further provides theoretical justification for the use of residual connection and function composition in deep neural architectures. In the end, we conduct comprehensive experiments for supervised fine-tuning across various settings, including different optimization strategies, model sizes, and training datasets. The results consistently demonstrate that selecting data by maximizing pairwise distance significantly accelerates training and achieves comparable or better performance in LLMs across diverse datasets. Code and Datasets are available at the link: https://github.com/SafeRL-Lab/data-uniformity.

Authors:Kaiwen Zhang, Zhenyu Tang, Xiaotao Hu, Xingang Pan, Xiaoyang Guo, Yuan Liu, Jingwei Huang, Li Yuan, Qian Zhang, Xiao-Xiao Long, Xun Cao, Wei Yin
Title: Epona: Autoregressive Diffusion World Model for Autonomous Driving
Abstract:
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at \href{https://github.com/Kevin-thu/Epona/}{https://github.com/Kevin-thu/Epona/}.

Authors:Xiangtai Li, Tao Zhang, Yanwei Li, Haobo Yuan, Shihao Chen, Yikang Zhou, Jiahao Meng, Yueyi Sun, Shilin Xu, Lu Qi, Tianheng Cheng, Yi Lin, Zilong Huang, Wenhao Huang, Jiashi Feng, Guang Shi
Title: DenseWorld-1M: Towards Detailed Dense Grounded Caption in the Real World
Abstract:
Multimodal Large Language Models (MLLMs) demonstrate a complex understanding of scenes, benefiting from large-scale and high-quality datasets. Most existing caption datasets lack the ground locations and relations for visual entities. Several grounded caption datasets face the problems of missing detailed descriptions, relations, and massive object descriptions on high-resolution images. To fill this gap for the community, we present DenseWorld-1M, the first massive, detailed, dense grounded caption dataset in the real world. We design a three-stage labeling pipeline, containing open-world perception, detailed object caption generation, and dense caption merging. The first stage obtains entity-level masks and labels. The second stage generates the object-level, detailed captions with the guidance of masks and labels from the first stage. The final stage merges object captions and masks into spatial and relational dense captions. To accelerate the labeling process and improve caption quality, we present two VLM models: the Detailed Region Caption model and the Spatial Caption Merging model. Extensive experiments on various settings, including vision-language understanding, visual grounding, and region caption generation, demonstrate the effectiveness of our DenseWorld-1M dataset and labeling models.

Authors:Moein Heidari, Yasamin Medghalchi, Mahdi Khoursha, Reza Rezaeian, Ilker Hacihaliloglu
Title: WaRA: Wavelet Low Rank Adaptation
Abstract:
Parameter-efficient fine-tuning (PEFT) has gained widespread adoption across various applications. Among PEFT techniques, Low-Rank Adaptation (LoRA) and its extensions have emerged as particularly effective, allowing efficient model adaptation while significantly reducing computational overhead. However, existing approaches typically rely on global low-rank factorizations, which overlook local or multi-scale structure, failing to capture complex patterns in the weight updates. To address this, we propose WaRA, a novel PEFT method that leverages wavelet transforms to decompose the weight update matrix into a multi-resolution representation. By performing low-rank factorization in the wavelet domain and reconstructing updates through an inverse transform, WaRA obtains compressed adaptation parameters that harness multi-resolution analysis, enabling it to capture both coarse and fine-grained features while providing greater flexibility and sparser representations than standard LoRA. Through comprehensive experiments and analysis, we demonstrate that WaRA performs superior on diverse vision tasks, including image generation, classification, and semantic segmentation, significantly enhancing generated image quality while reducing computational complexity. Although WaRA was primarily designed for vision tasks, we further showcase its effectiveness in language tasks, highlighting its broader applicability and generalizability. The code is publicly available at \href{GitHub}{https://github.com/moeinheidari7829/WaRA}.

Authors:Sicong Jiang, Zilin Huang, Kangan Qian, Ziang Luo, Tianze Zhu, Yang Zhong, Yihong Tang, Menglin Kong, Yunlong Wang, Siwen Jiao, Hao Ye, Zihao Sheng, Xin Zhao, Tuopu Wen, Zheng Fu, Sikai Chen, Kun Jiang, Diange Yang, Seongjin Choi, Lijun Sun
Title: A Survey on Vision-Language-Action Models for Autonomous Driving
Abstract:
The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.

Authors:Pei Zhan, Peng Tang, Yangzhuo Li, Puwen Wei, Shanqing Guo
Title: Poisoning Attacks to Local Differential Privacy for Ranking Estimation
Abstract:
Local differential privacy (LDP) involves users perturbing their inputs to provide plausible deniability of their data. However, this also makes LDP vulnerable to poisoning attacks. In this paper, we first introduce novel poisoning attacks for ranking estimation. These attacks are intricate, as fake attackers do not merely adjust the frequency of target items. Instead, they leverage a limited number of fake users to precisely modify frequencies, effectively altering item rankings to maximize gains. To tackle this challenge, we introduce the concepts of attack cost and optimal attack item (set), and propose corresponding strategies for kRR, OUE, and OLH protocols. For kRR, we iteratively select optimal attack items and allocate suitable fake users. For OUE, we iteratively determine optimal attack item sets and consider the incremental changes in item frequencies across different sets. Regarding OLH, we develop a harmonic cost function based on the pre-image of a hash to select that supporting a larger number of effective attack items. Lastly, we present an attack strategy based on confidence levels to quantify the probability of a successful attack and the number of attack iterations more precisely. We demonstrate the effectiveness of our attacks through theoretical and empirical evidence, highlighting the necessity for defenses against these attacks. The source code and data have been made available at https://github.com/LDP-user/LDP-Ranking.git.

Authors:Hyunjong Kim, Sangyeop Kim, Jongheon Jeong, Yeongjae Cho, Sungzoon Cho
Title: EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
Abstract:
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.

Authors:Lijun Sheng, Jian Liang, Ran He, Zilei Wang, Tieniu Tan
Title: The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Abstract:
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.

Authors:Boyue Xu, Ruichao Hou, Tongwei Ren, Gangshan Wu
Title: Visual and Memory Dual Adapter for Multi-Modal Object Tracking
Abstract:
Prompt-learning-based multi-modal trackers have achieved promising progress by employing lightweight visual adapters to incorporate auxiliary modality features into frozen foundation models. However, existing approaches often struggle to learn reliable prompts due to limited exploitation of critical cues across frequency and temporal domains. In this paper, we propose a novel visual and memory dual adapter (VMDA) to construct more robust and discriminative representations for multi-modal tracking. Specifically, we develop a simple but effective visual adapter that adaptively transfers discriminative cues from auxiliary modality to dominant modality by jointly modeling the frequency, spatial, and channel-wise features. Additionally, we design the memory adapter inspired by the human memory mechanism, which stores global temporal cues and performs dynamic update and retrieval operations to ensure the consistent propagation of reliable temporal information across video sequences. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the various multi-modal tracking tasks, including RGB-Thermal, RGB-Depth, and RGB-Event tracking. Code and models are available at https://github.com/xuboyue1999/mmtrack.git.

Authors:Boyue Xu, Ruichao Hou, Tongwei Ren, Dongming zhou, Gangshan Wu, Jinde Cao
Title: Learning Frequency and Memory-Aware Prompts for Multi-Modal Object Tracking
Abstract:
Prompt-learning-based multi-modal trackers have made strong progress by using lightweight visual adapters to inject auxiliary-modality cues into frozen foundation models. However, they still underutilize two essentials: modality-specific frequency structure and long-range temporal dependencies. We present Learning Frequency and Memory-Aware Prompts, a dual-adapter framework that injects lightweight prompts into a frozen RGB tracker. A frequency-guided visual adapter adaptively transfers complementary cues across modalities by jointly calibrating spatial, channel, and frequency components, narrowing the modality gap without full fine-tuning. A multilevel memory adapter with short, long, and permanent memory stores, updates, and retrieves reliable temporal context, enabling consistent propagation across frames and robust recovery from occlusion, motion blur, and illumination changes. This unified design preserves the efficiency of prompt learning while strengthening cross-modal interaction and temporal coherence. Extensive experiments on RGB-Thermal, RGB-Depth, and RGB-Event benchmarks show consistent state-of-the-art results over fully fine-tuned and adapter-based baselines, together with favorable parameter efficiency and runtime. Code and models are available at https://github.com/xuboyue1999/mmtrack.git.

Authors:Zhaochen Su, Peng Xia, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li, Kaide Zeng, Zhengyuan Yang, Linjie Li, Yu Cheng, Heng Ji, Junxian He, Yi R. Fung
Title: Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Abstract:
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.

Authors:Longliang Liu, Miaojie Feng, Junda Cheng, Jijun Xiang, Xuan Zhu, Xin Yang
Title: PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Abstract:
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.

Authors:Jianzong Wu, Liang Hou, Haotian Yang, Xin Tao, Ye Tian, Pengfei Wan, Di Zhang, Yunhai Tong
Title: VMoBA: Mixture-of-Block Attention for Video Diffusion Models
Abstract:
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.

Authors:Ji Zhang, Shihan Wu, Lianli Gao, Jingkuan Song, Nicu Sebe, Heng Tao Shen
Title: A Closer Look at Conditional Prompt Tuning for Vision-Language Models
Abstract:
Despite the great promise of Prompt Tuning (PT) in adapting large Vision-Language Pretrained Models (VLPMs) to downstream tasks, they often struggle to overcome the Base-New Tradeoff (BNT) dilemma: as VLPMs are better tuned to a base task, their ability to generalize to new tasks diminishes. Recent work on conditional PT addresses this problem by replacing static prompts with dynamic Visual Image Information (VII)-conditioned prompts, improving the model's generalization to new tasks to some extent. In this work, we first identify a critical issue with existing conditional PT methods: using VII as the "condition" of prompts yields suboptimal performance, and even random noise-conditioned prompts can outperform the VII-conditioned counterparts. On further analysis, we find that learning dynamic prompts conditioned on Textual Class Information (TCI) is the key to solving the BNT problem. Motivated by this, we then propose Class-adaptive Prompt Tuning (CaPT), which enables fast adaptation of tuned models to new classes by learning TCI-conditioned prompts from base classes. Remarkably, CaPT can be used as a plugin to mitigate the BNT problem for existing unconditional PT schemes. Extensive experiments on 11 datasets show that CaPT consistently improves the performance of five strong unconditional PT baselines with negligible additional computational cost. Additionally, by integrating CaPT with our recently proposed DePT framework, we devise a new conditional PT approach, termed DeCaPT, which outperforms the H ACC of the state-of-the-art conditional PT scheme by 3.49%, averaged over the 11 datasets. Code: https://github.com/Koorye/CaPT.

Authors:Jianing Jin, Jiangyong Ying, Huiyu Duan, Liu Yang, Sijing Wu, Yunhao Li, Yushuo Zheng, Xiongkuo Min, Guangtao Zhai
Title: RGC-VQA: An Exploration Database for Robotic-Generated Video Quality Assessment
Abstract:
As camera-equipped robotic platforms become increasingly integrated into daily life, robotic-generated videos have begun to appear on streaming media platforms, enabling us to envision a future where humans and robots coexist. We innovatively propose the concept of Robotic-Generated Content (RGC) to term these videos generated from egocentric perspective of robots. The perceptual quality of RGC videos is critical in human-robot interaction scenarios, and RGC videos exhibit unique distortions and visual requirements that differ markedly from those of professionally-generated content (PGC) videos and user-generated content (UGC) videos. However, dedicated research on quality assessment of RGC videos is still lacking. To address this gap and to support broader robotic applications, we establish the first Robotic-Generated Content Database (RGCD), which contains a total of 2,100 videos drawn from three robot categories and sourced from diverse platforms. A subjective VQA experiment is conducted subsequently to assess human visual perception of robotic-generated videos. Finally, we conduct a benchmark experiment to evaluate the performance of 11 state-of-the-art VQA models on our database. Experimental results reveal significant limitations in existing VQA models when applied to complex, robotic-generated content, highlighting a critical need for RGC-specific VQA models. Our RGCD is publicly available at: https://github.com/IntMeGroup/RGC-VQA.

Authors:Ziwei Chen, Ziling Liu, Zitong Huang, Mingqi Gao, Feng Zheng
Title: SCORP: Scene-Consistent Object Refinement via Proxy Generation and Tuning
Abstract:
Viewpoint missing of objects is common in scene reconstruction, as camera paths typically prioritize capturing the overall scene structure rather than individual objects. This makes it highly challenging to achieve high-fidelity object-level modeling while maintaining accurate scene-level representation. Addressing this issue is critical for advancing downstream tasks requiring high-fidelity object reconstruction. In this paper, we introduce Scene-Consistent Object Refinement via Proxy Generation and Tuning (SCORP), a novel 3D enhancement framework that leverages 3D generative priors to recover fine-grained object geometry and appearance under missing views. Starting with proxy generation by substituting degraded objects using a 3D generation model, SCORP then progressively refines geometry and texture by aligning each proxy to its degraded counterpart in 7-DoF pose, followed by correcting spatial and appearance inconsistencies through registration-constrained enhancement. This two-stage proxy tuning ensures the high-fidelity geometry and appearance of the original object in unseen views while maintaining consistency in spatial positioning, observed geometry, and appearance. Across challenging benchmarks, SCORP achieves consistent gains over recent state-of-the-art baselines on both novel view synthesis and geometry completion tasks. SCORP is available at https://github.com/PolySummit/SCORP.

Authors:Mingcheng Qu, Yuncong Wu, Donglin Di, Yue Gao, Tonghua Su, Yang Song, Lei Fan
Title: Spatially Gene Expression Prediction using Dual-Scale Contrastive Learning
Abstract:
Spatial transcriptomics (ST) provides crucial insights into tissue micro-environments, but is limited to its high cost and complexity. As an alternative, predicting gene expression from pathology whole slide images (WSI) is gaining increasing attention. However, existing methods typically rely on single patches or a single pathology modality, neglecting the complex spatial and molecular interactions between target and neighboring information (e.g., gene co-expression). This leads to a failure in establishing connections among adjacent regions and capturing intricate cross-modal relationships. To address these issues, we propose NH2ST, a framework that integrates spatial context and both pathology and gene modalities for gene expression prediction. Our model comprises a query branch and a neighbor branch to process paired target patch and gene data and their neighboring regions, where cross-attention and contrastive learning are employed to capture intrinsic associations and ensure alignments between pathology and gene expression. Extensive experiments on six datasets demonstrate that our model consistently outperforms existing methods, achieving over 20% in PCC metrics. Codes are available at https://github.com/MCPathology/NH2ST

Authors:Haoji Zhang, Yiqin Wang, Yansong Tang, Yong Liu, Jiashi Feng, Xiaojie Jin
Title: Flash-VStream: Efficient Real-Time Understanding for Long Video Streams
Abstract:
Benefiting from the advances in large language models and cross-modal alignment, existing multimodal large language models have achieved prominent performance in image and short video understanding. However, the understanding of long videos is still challenging, as their long-context nature results in significant computational and memory overhead. Most existing work treats long videos in the same way as short videos, which is inefficient for real-world applications and hard to generalize to even longer videos. To address these issues, we propose Flash-VStream, an efficient video language model capable of processing extremely long videos and responding to user queries in real time. Particularly, we design a Flash Memory module, containing a low-capacity context memory to aggregate long-context temporal information and model the distribution of information density, and a high-capacity augmentation memory to retrieve detailed spatial information based on this distribution. Compared to existing models, Flash-VStream achieves significant reductions in inference latency. Extensive experiments on long video benchmarks and comprehensive video benchmarks, i.e., EgoSchema, MLVU, LVBench, MVBench and Video-MME, demonstrate the state-of-the-art performance and outstanding efficiency of our method. Code is available at https://github.com/IVGSZ/Flash-VStream.

Authors:Shiming Chen, Bowen Duan, Salman Khan, Fahad Shahbaz Khan
Title: Interpretable Zero-Shot Learning with Locally-Aligned Vision-Language Model
Abstract:
Large-scale vision-language models (VLMs), such as CLIP, have achieved remarkable success in zero-shot learning (ZSL) by leveraging large-scale visual-text pair datasets. However, these methods often lack interpretability, as they compute the similarity between an entire query image and the embedded category words, making it difficult to explain their predictions. One approach to address this issue is to develop interpretable models by integrating language, where classifiers are built using discrete attributes, similar to human perception. This introduces a new challenge: how to effectively align local visual features with corresponding attributes based on pre-trained VLMs. To tackle this, we propose LaZSL, a locally-aligned vision-language model for interpretable ZSL. LaZSL employs local visual-semantic alignment via optimal transport to perform interaction between visual regions and their associated attributes, facilitating effective alignment and providing interpretable similarity without the need for additional training. Extensive experiments demonstrate that our method offers several advantages, including enhanced interpretability, improved accuracy, and strong domain generalization. Codes available at: https://github.com/shiming-chen/LaZSL.

Authors:Mahshid Shiri, Cigdem Beyan, Vittorio Murino
Title: MadCLIP: Few-shot Medical Anomaly Detection with CLIP
Abstract:
An innovative few-shot anomaly detection approach is presented, leveraging the pre-trained CLIP model for medical data, and adapting it for both image-level anomaly classification (AC) and pixel-level anomaly segmentation (AS). A dual-branch design is proposed to separately capture normal and abnormal features through learnable adapters in the CLIP vision encoder. To improve semantic alignment, learnable text prompts are employed to link visual features. Furthermore, SigLIP loss is applied to effectively handle the many-to-one relationship between images and unpaired text prompts, showcasing its adaptation in the medical field for the first time. Our approach is validated on multiple modalities, demonstrating superior performance over existing methods for AC and AS, in both same-dataset and cross-dataset evaluations. Unlike prior work, it does not rely on synthetic data or memory banks, and an ablation study confirms the contribution of each component. The code is available at https://github.com/mahshid1998/MadCLIP.

Authors:Yongjian Wu, Yang Zhou, Jiya Saiyin, Bingzheng Wei, Yan Xu
Title: Visual Textualization for Image Prompted Object Detection
Abstract:
We propose VisTex-OVLM, a novel image prompted object detection method that introduces visual textualization -- a process that projects a few visual exemplars into the text feature space to enhance Object-level Vision-Language Models' (OVLMs) capability in detecting rare categories that are difficult to describe textually and nearly absent from their pre-training data, while preserving their pre-trained object-text alignment. Specifically, VisTex-OVLM leverages multi-scale textualizing blocks and a multi-stage fusion strategy to integrate visual information from visual exemplars, generating textualized visual tokens that effectively guide OVLMs alongside text prompts. Unlike previous methods, our method maintains the original architecture of OVLM, maintaining its generalization capabilities while enhancing performance in few-shot settings. VisTex-OVLM demonstrates superior performance across open-set datasets which have minimal overlap with OVLM's pre-training data and achieves state-of-the-art results on few-shot benchmarks PASCAL VOC and MSCOCO. The code will be released at https://github.com/WitGotFlg/VisTex-OVLM.

Authors:Shiao Wang, Ju Huang, Qingchuan Ma, Jinfeng Gao, Chunyi Xu, Xiao Wang, Lan Chen, Bo Jiang
Title: Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Abstract:
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack

Authors:Xue Wen Tan, Stanley Kok
Title: Explainable AI for Comprehensive Risk Assessment for Financial Reports: A Lightweight Hierarchical Transformer Network Approach
Abstract:
Every publicly traded U.S. company files an annual 10-K report containing critical insights into financial health and risk. We propose Tiny eXplainable Risk Assessor (TinyXRA), a lightweight and explainable transformer-based model that automatically assesses company risk from these reports. Unlike prior work that relies solely on the standard deviation of excess returns (adjusted for the Fama-French model), which indiscriminately penalizes both upside and downside risk, TinyXRA incorporates skewness, kurtosis, and the Sortino ratio for more comprehensive risk assessment. We leverage TinyBERT as our encoder to efficiently process lengthy financial documents, coupled with a novel dynamic, attention-based word cloud mechanism that provides intuitive risk visualization while filtering irrelevant terms. This lightweight design ensures scalable deployment across diverse computing environments with real-time processing capabilities for thousands of financial documents which is essential for production systems with constrained computational resources. We employ triplet loss for risk quartile classification, improving over pairwise loss approaches in existing literature by capturing both the direction and magnitude of risk differences. Our TinyXRA achieves state-of-the-art predictive accuracy across seven test years on a dataset spanning 2013-2024, while providing transparent and interpretable risk assessments. We conduct comprehensive ablation studies to evaluate our contributions and assess model explanations both quantitatively by systematically removing highly attended words and sentences, and qualitatively by examining explanation coherence. The paper concludes with findings, practical implications, limitations, and future research directions. Our code is available at https://github.com/Chen-XueWen/TinyXRA.

Authors:JiaRu Wu, Mingwei Liu
Title: AutoEvoEval: An Automated Framework for Evolving Close-Ended LLM Evaluation Data
Abstract:
Large language models (LLMs) have shown remarkable performance on various tasks, but existing evaluation benchmarks are often static and insufficient to fully assess their robustness and generalization in realistic scenarios. Prior work using evolutionary or adversarial data augmentation has improved evaluation diversity but lacks systematic control over perturbation types and multi-step complexity, limiting comprehensive robustness analysis. To address these gaps, we propose AutoEvoEval, an evolution-based evaluation framework for close-ended tasks such as multi-choice question answering. AutoEvoEval introduces 22 interpretable atomic evolution operations and supports multi-round compositions, enabling controlled generation of diverse, challenging, and realistic test samples. We conduct extensive experiments addressing four research questions on a broad set of open- and closed-source LLMs. Our results show that atomic operations cause an average accuracy drop of 7.283\%, with structure-disrupting or misleading semantic edits causing the largest declines. Model sensitivities vary significantly for the same perturbation, and combining multiple evolution steps amplifies adversarial effects by up to 52.932\%. These findings suggest current benchmarks may overestimate true model generalization and emphasize the need for evolution-aware robustness evaluation. Code and resources are available at: https://github.com/SYSUSELab/AutoEvoEval.

Authors:Chang'an Yi, Xiaohui Deng, Guohao Chen, Yan Zhou, Qinghua Lu, Shuaicheng Niu
Title: When Small Guides Large: Cross-Model Co-Learning for Test-Time Adaptation
Abstract:
Test-time Adaptation (TTA) adapts a given model to testing domain data with potential domain shifts through online unsupervised learning, yielding impressive performance. However, to date, existing TTA methods primarily focus on single-model adaptation. In this work, we investigate an intriguing question: how does cross-model knowledge influence the TTA process? Our findings reveal that, in TTA's unsupervised online setting, each model can provide complementary, confident knowledge to the others, even when there are substantial differences in model size. For instance, a smaller model like MobileViT (10.6M parameters) can effectively guide a larger model like ViT-Base (86.6M parameters). In light of this, we propose COCA, a Cross-Model Co-Learning framework for TTA, which mainly consists of two main strategies. 1) Co-adaptation adaptively integrates complementary knowledge from other models throughout the TTA process, reducing individual model biases. 2) Self-adaptation enhances each model's unique strengths via unsupervised learning, enabling diverse adaptation to the target domain. Extensive experiments show that COCA, which can also serve as a plug-and-play module, significantly boosts existing SOTAs, on models with various sizes--including ResNets, ViTs, and Mobile-ViTs--via cross-model co-learned TTA. For example, with Mobile-ViT's guidance, COCA raises ViT-Base's average adaptation accuracy on ImageNet-C from 51.7% to 64.5%. The code is publicly available at https://github.com/ycarobot/COCA.

Authors:Smriti Joshi, Richard Osuala, Lidia Garrucho, Kaisar Kushibar, Dimitri Kessler, Oliver Diaz, Karim Lekadir
Title: Single Image Test-Time Adaptation via Multi-View Co-Training
Abstract:
Test-time adaptation enables a trained model to adjust to a new domain during inference, making it particularly valuable in clinical settings where such on-the-fly adaptation is required. However, existing techniques depend on large target domain datasets, which are often impractical and unavailable in medical scenarios that demand per-patient, real-time inference. Moreover, current methods commonly focus on two-dimensional images, failing to leverage the volumetric richness of medical imaging data. Bridging this gap, we propose a Patch-Based Multi-View Co-Training method for Single Image Test-Time adaptation. Our method enforces feature and prediction consistency through uncertainty-guided self-training, enabling effective volumetric segmentation in the target domain with only a single test-time image. Validated on three publicly available breast magnetic resonance imaging datasets for tumor segmentation, our method achieves performance close to the upper bound supervised benchmark while also outperforming all existing state-of-the-art methods, on average by a Dice Similarity Coefficient of 3.75%. We publicly share our accessible codebase, readily integrable with the popular nnUNet framework, at https://github.com/smriti-joshi/muvi.git.

Authors:Lingtong Zhang, Mengdie Song, Xiaohan Hao, Huayu Mai, Bensheng Qiu
Title: MDPG: Multi-domain Diffusion Prior Guidance for MRI Reconstruction
Abstract:
Magnetic Resonance Imaging (MRI) reconstruction is essential in medical diagnostics. As the latest generative models, diffusion models (DMs) have struggled to produce high-fidelity images due to their stochastic nature in image domains. Latent diffusion models (LDMs) yield both compact and detailed prior knowledge in latent domains, which could effectively guide the model towards more effective learning of the original data distribution. Inspired by this, we propose Multi-domain Diffusion Prior Guidance (MDPG) provided by pre-trained LDMs to enhance data consistency in MRI reconstruction tasks. Specifically, we first construct a Visual-Mamba-based backbone, which enables efficient encoding and reconstruction of under-sampled images. Then pre-trained LDMs are integrated to provide conditional priors in both latent and image domains. A novel Latent Guided Attention (LGA) is proposed for efficient fusion in multi-level latent domains. Simultaneously, to effectively utilize a prior in both the k-space and image domain, under-sampled images are fused with generated full-sampled images by the Dual-domain Fusion Branch (DFB) for self-adaption guidance. Lastly, to further enhance the data consistency, we propose a k-space regularization strategy based on the non-auto-calibration signal (NACS) set. Extensive experiments on two public MRI datasets fully demonstrate the effectiveness of the proposed methodology. The code is available at https://github.com/Zolento/MDPG.

Authors:Junjie Zhang, Jingyi Xi, Zhuoyang Song, Junyu Lu, Yuhua Ke, Ting Sun, Yukun Yang, Jiaxing Zhang, Songxin Zhang, Zejian Xie
Title: L0: Reinforcement Learning to Become General Agents
Abstract:
Training large language models (LLMs) to act as autonomous agents for multi-turn, long-horizon tasks remains significant challenges in scalability and training efficiency. To address this, we introduce L-Zero (L0), a scalable, end-to-end training pipeline for general-purpose agents. Featuring a low-cost, extensible, and sandboxed concurrent agent worker pool, L0 lowers the barrier for applying reinforcement learning in complex environments. We also introduce NB-Agent, the agent scaffold within L0, which operates in a "code-as-action" fashion via a Read-Eval-Print-Loop (REPL). We evaluate L0 on factuality question-answering benchmarks. Our experiments demonstrate that a base model can develop robust problem-solving skills using solely Reinforcement Learning with Verifiable Rewards (RLVR). On the Qwen2.5-7B-Instruct model, our method boosts accuracy on SimpleQA from 30 % to 80 % and on HotpotQA from 22 % to 41 %. We have open-sourced the entire L0 system, including our L0 series models, the NB-Agent, a complete training pipeline, and the corresponding training recipes on (https://github.com/cmriat/l0).

Authors:Mario Koddenbrock, Rudolf Hoffmann, David Brodmann, Erik Rodner
Title: On the Domain Robustness of Contrastive Vision-Language Models
Abstract:
In real-world vision-language applications, practitioners increasingly rely on large, pretrained foundation models rather than custom-built solutions, despite limited transparency regarding their training data and processes. While these models achieve impressive performance on general benchmarks, their effectiveness can decline notably under specialized domain shifts, such as unique imaging conditions or environmental variations. In this work, we introduce Deepbench, a framework designed to assess domain-specific robustness of vision-language models (VLMs). Deepbench leverages a large language model (LLM) to generate realistic, context-aware image corruptions tailored to specific deployment domains without requiring labeled data. We evaluate a range of contrastive vision-language architectures and architectural variants across six real-world domains and observe substantial variability in robustness, highlighting the need for targeted, domain-aware evaluation. Deepbench is released as open-source software to support further research into domain-aware robustness assessment.

Authors:Arnisa Fazla, Lucas Krauter, David Guzman Piedrahita, Andrianos Michail
Title: Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
Abstract:
We extend BeamAttack, an adversarial attack algorithm designed to evaluate the robustness of text classification systems through word-level modifications guided by beam search. Our extensions include support for word deletions and the option to skip substitutions, enabling the discovery of minimal modifications that alter model predictions. We also integrate LIME to better prioritize word replacements. Evaluated across multiple datasets and victim models (BiLSTM, BERT, and adversarially trained RoBERTa) within the BODEGA framework, our approach achieves over a 99\% attack success rate while preserving the semantic and lexical similarity of the original texts. Through both quantitative and qualitative analysis, we highlight BeamAttack's effectiveness and its limitations. Our implementation is available at https://github.com/LucK1Y/BeamAttack

Authors:Zhe Liu, Yuhao Huang, Lian Liu, Chengrui Zhang, Haotian Lin, Tong Han, Zhiyuan Zhu, Yanlin Chen, Yuerui Chen, Dong Ni, Zhongshan Gou, Xin Yang
Title: MReg: A Novel Regression Model with MoE-based Video Feature Mining for Mitral Regurgitation Diagnosis
Abstract:
Color Doppler echocardiography is a crucial tool for diagnosing mitral regurgitation (MR). Recent studies have explored intelligent methods for MR diagnosis to minimize user dependence and improve accuracy. However, these approaches often fail to align with clinical workflow and may lead to suboptimal accuracy and interpretability. In this study, we introduce an automated MR diagnosis model (MReg) developed on the 4-chamber cardiac color Doppler echocardiography video (A4C-CDV). It follows comprehensive feature mining strategies to detect MR and assess its severity, considering clinical realities. Our contribution is threefold. First, we formulate the MR diagnosis as a regression task to capture the continuity and ordinal relationships between categories. Second, we design a feature selection and amplification mechanism to imitate the sonographer's diagnostic logic for accurate MR grading. Third, inspired by the Mixture-of-Experts concept, we introduce a feature summary module to extract the category-level features, enhancing the representational capacity for more accurate grading. We trained and evaluated our proposed MReg on a large in-house A4C-CDV dataset comprising 1868 cases with three graded regurgitation labels. Compared to other weakly supervised video anomaly detection and supervised classification methods, MReg demonstrated superior performance in MR diagnosis. Our code is available at: https://github.com/cskdstz/MReg.

Authors:Shaofei Huang, Rui Ling, Tianrui Hui, Hongyu Li, Xu Zhou, Shifeng Zhang, Si Liu, Richang Hong, Meng Wang
Title: Revisiting Audio-Visual Segmentation with Vision-Centric Transformer
Abstract:
Audio-Visual Segmentation (AVS) aims to segment sound-producing objects in video frames based on the associated audio signal. Prevailing AVS methods typically adopt an audio-centric Transformer architecture, where object queries are derived from audio features. However, audio-centric Transformers suffer from two limitations: perception ambiguity caused by the mixed nature of audio, and weakened dense prediction ability due to visual detail loss. To address these limitations, we propose a new Vision-Centric Transformer (VCT) framework that leverages vision-derived queries to iteratively fetch corresponding audio and visual information, enabling queries to better distinguish between different sounding objects from mixed audio and accurately delineate their contours. Additionally, we also introduce a Prototype Prompted Query Generation (PPQG) module within our VCT framework to generate vision-derived queries that are both semantically aware and visually rich through audio prototype prompting and pixel context grouping, facilitating audio-visual information aggregation. Extensive experiments demonstrate that our VCT framework achieves new state-of-the-art performances on three subsets of the AVSBench dataset. The code is available at https://github.com/spyflying/VCT_AVS.

Authors:Min-Yeong Park, Won-Jeong Lee, Seong Tae Kim, Gyeong-Moon Park
Title: When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series
Abstract:
Recently, forecasting future abnormal events has emerged as an important scenario to tackle real-world necessities. However, the solution of predicting specific future time points when anomalies will occur, known as Anomaly Prediction (AP), remains under-explored. Existing methods dealing with time series data fail in AP, focusing only on immediate anomalies or failing to provide precise predictions for future anomalies. To address the AP task, we propose a novel framework called Anomaly to Prompt (A2P), comprised of Anomaly-Aware Forecasting (AAF) and Synthetic Anomaly Prompting (SAP). To enable the forecasting model to forecast abnormal time points, we adopt a strategy to learn the relationships of anomalies. For the robust detection of anomalies, our proposed SAP introduces a learnable Anomaly Prompt Pool (APP) that simulates diverse anomaly patterns using signal adaptive prompt. Comprehensive experiments on multiple real-world datasets demonstrate the superiority of A2P over state-of-the-art methods, showcasing its ability to predict future anomalies. Our implementation code is available at https://github.com/KU-VGI/AP.

Authors:Yawen Zou, Guang Li, Duo Su, Zi Wang, Jun Yu, Chao Zhang
Title: Dataset Distillation via Vision-Language Category Prototype
Abstract:
Dataset distillation (DD) condenses large datasets into compact yet informative substitutes, preserving performance comparable to the original dataset while reducing storage, transmission costs, and computational consumption. However, previous DD methods mainly focus on distilling information from images, often overlooking the semantic information inherent in the data. The disregard for context hinders the model's generalization ability, particularly in tasks involving complex datasets, which may result in illogical outputs or the omission of critical objects. In this study, we integrate vision-language methods into DD by introducing text prototypes to distill language information and collaboratively synthesize data with image prototypes, thereby enhancing dataset distillation performance. Notably, the text prototypes utilized in this study are derived from descriptive text information generated by an open-source large language model. This framework demonstrates broad applicability across datasets without pre-existing text descriptions, expanding the potential of dataset distillation beyond traditional image-based approaches. Compared to other methods, the proposed approach generates logically coherent images containing target objects, achieving state-of-the-art validation performance and demonstrating robust generalization. Source code and generated data are available in https://github.com/zou-yawen/Dataset-Distillation-via-Vision-Language-Category-Prototype/

Authors:Nuo Chen, Chao Xiao, Yimian Dai, Shiman He, Miao Li, Wei An
Title: Event-based Tiny Object Detection: A Benchmark Dataset and Baseline
Abstract:
Small object detection (SOD) in anti-UAV task is a challenging problem due to the small size of UAVs and complex backgrounds. Traditional frame-based cameras struggle to detect small objects in complex environments due to their low frame rates, limited dynamic range, and data redundancy. Event cameras, with microsecond temporal resolution and high dynamic range, provide a more effective solution for SOD. However, existing event-based object detection datasets are limited in scale, feature large targets size, and lack diverse backgrounds, making them unsuitable for SOD benchmarks. In this paper, we introduce a Event-based Small object detection (EVSOD) dataset (namely EV-UAV), the first large-scale, highly diverse benchmark for anti-UAV tasks. It includes 147 sequences with over 2.3 million event-level annotations, featuring extremely small targets (averaging 6.8 $\times$ 5.4 pixels) and diverse scenarios such as urban clutter and extreme lighting conditions. Furthermore, based on the observation that small moving targets form continuous curves in spatiotemporal event point clouds, we propose Event based Sparse Segmentation Network (EV-SpSegNet), a novel baseline for event segmentation in point cloud space, along with a Spatiotemporal Correlation (STC) loss that leverages motion continuity to guide the network in retaining target events. Extensive experiments on the EV-UAV dataset demonstrate the superiority of our method and provide a benchmark for future research in EVSOD. The dataset and code are at https://github.com/ChenYichen9527/Ev-UAV.

Authors:Mingqian Ji, Jian Yang, Shanshan Zhang
Title: OcRFDet: Object-Centric Radiance Fields for Multi-View 3D Object Detection in Autonomous Driving
Abstract:
Current multi-view 3D object detection methods typically transfer 2D features into 3D space using depth estimation or 3D position encoder, but in a fully data-driven and implicit manner, which limits the detection performance. Inspired by the success of radiance fields on 3D reconstruction, we assume they can be used to enhance the detector's ability of 3D geometry estimation. However, we observe a decline in detection performance, when we directly use them for 3D rendering as an auxiliary task. From our analysis, we find the performance drop is caused by the strong responses on the background when rendering the whole scene. To address this problem, we propose object-centric radiance fields, focusing on modeling foreground objects while discarding background noises. Specifically, we employ Object-centric Radiance Fields (OcRF) to enhance 3D voxel features via an auxiliary task of rendering foreground objects. We further use opacity - the side-product of rendering- to enhance the 2D foreground BEV features via Height-aware Opacity-based Attention (HOA), where attention maps at different height levels are generated separately via multiple networks in parallel. Extensive experiments on the nuScenes validation and test datasets demonstrate that our OcRFDet achieves superior performance, outperforming previous state-of-the-art methods with 57.2$\%$ mAP and 64.8$\%$ NDS on the nuScenes test benchmark. Code will be available at https://github.com/Mingqj/OcRFDet.

Authors:Huanjin Yao, Jiaxing Huang, Yawen Qiu, Michael K. Chen, Wenzheng Liu, Wei Zhang, Wenjie Zeng, Xikun Zhang, Jingyi Zhang, Yuxin Song, Wenhao Wu, Dacheng Tao
Title: MMReason: An Open-Ended Multi-Modal Multi-Step Reasoning Benchmark for MLLMs Toward AGI
Abstract:
Reasoning plays a crucial role in advancing Multimodal Large Language Models (MLLMs) toward Artificial General Intelligence. However, existing MLLM benchmarks often fall short in precisely and comprehensively evaluating long-chain reasoning abilities from three key aspects: (1) lack of difficulty and diversity, (2) susceptibility to guessability and memorization, (3) inadequate assessment of intermediate reasoning steps. To fill this gap, we introduce MMReason, a new benchmark designed to precisely and comprehensively evaluate MLLM long-chain reasoning capability with diverse, open-ended, challenging questions. First, we curate challenging questions requiring multi-step reasoning from various fields (i.e., 6 disciplines) and multiple difficulty levels (i.e., from pre-university to university, and from foundational to competition tiers). Second, these questions are reformulated into an open-ended format and filtered using a multi-model voting technique to eliminate shortcut cases related to guessing and memorization, ensuring robust reasoning evaluations. Third, we annotate the questions with detailed step-by-step solutions, and design a reference-based ternary scoring mechanism to reliably assess intermediate reasoning steps. With MMReason, we benchmark popular leading MLLMs and provide an in-depth analysis of their reasoning capabilities. We hope MMReason will serve as a valuable resource for advancing MLLM reasoning research. Code will be available at https://github.com/HJYao00/MMReason.

Authors:Hui Li, Baoyou Chen, Liwei Zhang, Jiaye Li, Jingdong Wang, Siyu Zhu
Title: Pyramidal Patchification Flow for Visual Generation
Abstract:
Diffusion transformers (DiTs) adopt Patchify, mapping patch representations to token representations through linear projections, to adjust the number of tokens input to DiT blocks and thus the computation cost. Instead of a single patch size for all the timesteps, we introduce a Pyramidal Patchification Flow (PPFlow) approach: Large patch sizes are used for high noise timesteps and small patch sizes for low noise timesteps; Linear projections are learned for each patch size; and Unpatchify is accordingly modified. Unlike Pyramidal Flow, our approach operates over full latent representations other than pyramid representations, and adopts the normal denoising process without requiring the renoising trick. We demonstrate the effectiveness of our approach through two training manners. Training from scratch achieves a $1.6\times$ ($2.0\times$) inference speed over SiT-B/2 for 2-level (3-level) pyramid patchification with slightly lower training FLOPs and similar image generation performance. Training from pretrained normal DiTs achieves even better performance with small training time. The code and checkpoint are at https://github.com/fudan-generative-vision/PPFlow.

Authors:Weida Wang, Changyong He, Jin Zeng, Di Qiu
Title: Consistent Time-of-Flight Depth Denoising via Graph-Informed Geometric Attention
Abstract:
Depth images captured by Time-of-Flight (ToF) sensors are prone to noise, requiring denoising for reliable downstream applications. Previous works either focus on single-frame processing, or perform multi-frame processing without considering depth variations at corresponding pixels across frames, leading to undesirable temporal inconsistency and spatial ambiguity. In this paper, we propose a novel ToF depth denoising network leveraging motion-invariant graph fusion to simultaneously enhance temporal stability and spatial sharpness. Specifically, despite depth shifts across frames, graph structures exhibit temporal self-similarity, enabling cross-frame geometric attention for graph fusion. Then, by incorporating an image smoothness prior on the fused graph and data fidelity term derived from ToF noise distribution, we formulate a maximum a posterior problem for ToF denoising. Finally, the solution is unrolled into iterative filters whose weights are adaptively learned from the graph-informed geometric attention, producing a high-performance yet interpretable network. Experimental results demonstrate that the proposed scheme achieves state-of-the-art performance in terms of accuracy and consistency on synthetic DVToF dataset and exhibits robust generalization on the real Kinectv2 dataset. Source code will be released at \href{https://github.com/davidweidawang/GIGA-ToF}{https://github.com/davidweidawang/GIGA-ToF}.

Authors:Yuhao Huang, Yueyue Xu, Haoran Dou, Jiaxiao Deng, Xin Yang, Hongyu Zheng, Dong Ni
Title: Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound
Abstract:
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.

Authors:Xinyue Li, Zhangkai Ni, Wenhan Yang
Title: AFUNet: Cross-Iterative Alignment-Fusion Synergy for HDR Reconstruction via Deep Unfolding Paradigm
Abstract:
Existing learning-based methods effectively reconstruct HDR images from multi-exposure LDR inputs with extended dynamic range and improved detail, but they rely more on empirical design rather than theoretical foundation, which can impact their reliability. To address these limitations, we propose the cross-iterative Alignment and Fusion deep Unfolding Network (AFUNet), where HDR reconstruction is systematically decoupled into two interleaved subtasks -- alignment and fusion -- optimized through alternating refinement, achieving synergy between the two subtasks to enhance the overall performance. Our method formulates multi-exposure HDR reconstruction from a Maximum A Posteriori (MAP) estimation perspective, explicitly incorporating spatial correspondence priors across LDR images and naturally bridging the alignment and fusion subproblems through joint constraints. Building on the mathematical foundation, we reimagine traditional iterative optimization through unfolding -- transforming the conventional solution process into an end-to-end trainable AFUNet with carefully designed modules that work progressively. Specifically, each iteration of AFUNet incorporates an Alignment-Fusion Module (AFM) that alternates between a Spatial Alignment Module (SAM) for alignment and a Channel Fusion Module (CFM) for adaptive feature fusion, progressively bridging misaligned content and exposure discrepancies. Extensive qualitative and quantitative evaluations demonstrate AFUNet's superior performance, consistently surpassing state-of-the-art methods. Our code is available at: https://github.com/eezkni/AFUNet

Authors:Yu Zhang, Ruijie Yu, Jidong Tian, Feng Zhu, Jiapeng Liu, Xiaokang Yang, Yaohui Jin, Yanyan Xu
Title: ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data
Abstract:
With the increasing interest in robotic synthesis in the context of organic chemistry, the automated extraction of chemical procedures from literature is critical. However, this task remains challenging due to the inherent ambiguity of chemical language and the high cost of human annotation required for developing reliable computer-aided extraction protocols. Here, we present ChemActor, a fully fine-tuned large language model (LLM), as a chemical executor to convert between unstructured experimental procedures and structured action sequences. We propose a sequential LLM-generated data framework to address the challenges of insufficient and low-quality annotated data. This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input. Additionally, we introduce a novel multi-round LLMs circle review metric, which reflects the model's advanced understanding of chemical experimental procedures. Extensive experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor, augmented by LLM-generated data, achieves state-of-the-art performance, outperforming the baseline model by 10%. The code is available at: https://github.com/Zhanghahah/ChemActor.

Authors:Sai Krishna Ghanta, Ramviyas Parasuraman
Title: MGPRL: Distributed Multi-Gaussian Processes for Wi-Fi-based Multi-Robot Relative Localization in Large Indoor Environments
Abstract:
Relative localization is a crucial capability for multi-robot systems operating in GPS-denied environments. Existing approaches for multi-robot relative localization often depend on costly or short-range sensors like cameras and LiDARs. Consequently, these approaches face challenges such as high computational overhead (e.g., map merging) and difficulties in disjoint environments. To address this limitation, this paper introduces MGPRL, a novel distributed framework for multi-robot relative localization using convex-hull of multiple Wi-Fi access points (AP). To accomplish this, we employ co-regionalized multi-output Gaussian Processes for efficient Radio Signal Strength Indicator (RSSI) field prediction and perform uncertainty-aware multi-AP localization, which is further coupled with weighted convex hull-based alignment for robust relative pose estimation. Each robot predicts the RSSI field of the environment by an online scan of APs in its environment, which are utilized for position estimation of multiple APs. To perform relative localization, each robot aligns the convex hull of its predicted AP locations with that of the neighbor robots. This approach is well-suited for devices with limited computational resources and operates solely on widely available Wi-Fi RSSI measurements without necessitating any dedicated pre-calibration or offline fingerprinting. We rigorously evaluate the performance of the proposed MGPRL in ROS simulations and demonstrate it with real-world experiments, comparing it against multiple state-of-the-art approaches. The results showcase that MGPRL outperforms existing methods in terms of localization accuracy and computational efficiency. Finally, we open source MGPRL as a ROS package https://github.com/herolab-uga/MGPRL.

Authors:ZongHan Hsieh, Tzer-Jen Wei, ShengJing Yang
Title: ZonUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
Abstract:
In this paper, we present ZonUI-3B, a lightweight Vision-Language Model (VLM) that can be fully trained on a single consumer-grade GPU (RTX 4090) while delivering performance comparable to significantly larger models on GUI grounding tasks. The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks, including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights ZonUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The ZonUI-3B is available at: https://github.com/Han1018/ZonUI-3B

Authors:Haocheng Yu, Yaxiong Wu, Hao Wang, Wei Guo, Yong Liu, Yawen Li, Yuyang Ye, Junping Du, Enhong Chen
Title: Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent
Abstract:
Interactive recommendation is a typical information-seeking task that allows users to interactively express their needs through natural language and obtain personalized recommendations. Large language model-powered (LLM-powered) agents have become a new paradigm in interactive recommendations, effectively capturing users' real-time needs and enhancing personalized experiences. However, due to limited planning and generalization capabilities, existing formulations of LLM-powered interactive recommender agents struggle to effectively address diverse and complex user intents, such as intuitive, unrefined, or occasionally ambiguous requests. To tackle this challenge, we propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns. Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks, with its planning capacity strengthened through Thought Pattern Distillation (TPD), a thought-augmentation method that extracts high-level thoughts from the agent's and human experts' experiences. Moreover, we designed a set of user simulation schemes to generate personalized queries of different difficulties and evaluate the recommendations based on specific datasets. Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods. Notably, TAIRA shows a greater advantage on more challenging tasks while generalizing effectively on novel tasks, further validating its superiority in managing complex user intents within interactive recommendation systems. The code is publicly available at:https://github.com/Alcein/TAIRA.

Authors:Yuzhuo Chen, Zehua Ma, Han Fang, Weiming Zhang, Nenghai Yu
Title: TAG-WM: Tamper-Aware Generative Image Watermarking via Diffusion Inversion Sensitivity
Abstract:
AI-generated content (AIGC) enables efficient visual creation but raises copyright and authenticity risks. As a common technique for integrity verification and source tracing, digital image watermarking is regarded as a potential solution to above issues. However, the widespread adoption and advancing capabilities of generative image editing tools have amplified malicious tampering risks, while simultaneously posing new challenges to passive tampering detection and watermark robustness. To address these challenges, this paper proposes a Tamper-Aware Generative image WaterMarking method named TAG-WM. The proposed method comprises four key modules: a dual-mark joint sampling (DMJS) algorithm for embedding copyright and localization watermarks into the latent space while preserving generative quality, the watermark latent reconstruction (WLR) utilizing reversed DMJS, a dense variation region detector (DVRD) leveraging diffusion inversion sensitivity to identify tampered areas via statistical deviation analysis, and the tamper-aware decoding (TAD) guided by localization results. The experimental results demonstrate that TAG-WM achieves state-of-the-art performance in both tampering robustness and localization capability even under distortion, while preserving lossless generation quality and maintaining a watermark capacity of 256 bits. The code is available at: https://github.com/Suchenl/TAG-WM.

Authors:Xian Zhang, Xiang Cheng
Title: Evaluation of Geolocation Capabilities of Multimodal Large Language Models and Analysis of Associated Privacy Risks
Abstract:
Objectives: The rapid advancement of Multimodal Large Language Models (MLLMs) has significantly enhanced their reasoning capabilities, enabling a wide range of intelligent applications. However, these advancements also raise critical concerns regarding privacy and ethics. MLLMs are now capable of inferring the geographic location of images -- such as those shared on social media or captured from street views -- based solely on visual content, thereby posing serious risks of privacy invasion, including doxxing, surveillance, and other security threats. Methods: This study provides a comprehensive analysis of existing geolocation techniques based on MLLMs. It systematically reviews relevant litera-ture and evaluates the performance of state-of-the-art visual reasoning models on geolocation tasks, particularly in identifying the origins of street view imagery. Results: Empirical evaluation reveals that the most advanced visual large models can successfully localize the origin of street-level imagery with up to $49\%$ accuracy within a 1-kilometer radius. This performance underscores the models' powerful capacity to extract and utilize fine-grained geographic cues from visual data. Conclusions: Building on these findings, the study identifies key visual elements that contribute to suc-cessful geolocation, such as text, architectural styles, and environmental features. Furthermore, it discusses the potential privacy implications associated with MLLM-enabled geolocation and discuss several technical and policy-based coun-termeasures to mitigate associated risks. Our code and dataset are available at https://github.com/zxyl1003/MLLM-Geolocation-Evaluation.

Authors:Zhiwei Lin, Bonan Ruan, Jiahao Liu, Weibo Zhao
Title: A Large-Scale Evolvable Dataset for Model Context Protocol Ecosystem and Security Analysis
Abstract:
The Model Context Protocol (MCP) has recently emerged as a standardized interface for connecting language models with external tools and data. As the ecosystem rapidly expands, the lack of a structured, comprehensive view of existing MCP artifacts presents challenges for research. To bridge this gap, we introduce MCPCorpus, a large-scale dataset containing around 14K MCP servers and 300 MCP clients. Each artifact is annotated with 20+ normalized attributes capturing its identity, interface configuration, GitHub activity, and metadata. MCPCorpus provides a reproducible snapshot of the real-world MCP ecosystem, enabling studies of adoption trends, ecosystem health, and implementation diversity. To keep pace with the rapid evolution of the MCP ecosystem, we provide utility tools for automated data synchronization, normalization, and inspection. Furthermore, to support efficient exploration and exploitation, we release a lightweight web-based search interface. MCPCorpus is publicly available at: https://github.com/Snakinya/MCPCorpus.

Authors:Xuan Yao, Junyu Gao, Changsheng Xu
Title: NavMorph: A Self-Evolving World Model for Vision-and-Language Navigation in Continuous Environments
Abstract:
Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to execute sequential navigation actions in complex environments guided by natural language instructions. Current approaches often struggle with generalizing to novel environments and adapting to ongoing changes during navigation. Inspired by human cognition, we present NavMorph, a self-evolving world model framework that enhances environmental understanding and decision-making in VLN-CE tasks. NavMorph employs compact latent representations to model environmental dynamics, equipping agents with foresight for adaptive planning and policy refinement. By integrating a novel Contextual Evolution Memory, NavMorph leverages scene-contextual information to support effective navigation while maintaining online adaptability. Extensive experiments demonstrate that our method achieves notable performance improvements on popular VLN-CE benchmarks. Code is available at https://github.com/Feliciaxyao/NavMorph.

Authors:WonJune Jang
Title: What to Keep and What to Drop: Adaptive Table Filtering Framework
Abstract:
Large language models (LLMs) for table-based reasoning often struggle with large tables due to input length limits. We propose ATF (Adaptive Table Filtering Framework), a modular and question-aware filtering pipeline that prunes uninformative columns and rows using LLM-generated column descriptions, clustering, and sparse-dense alignment scores. ATF integrates seamlessly with existing models (e.g., TAPAS, TAPEX) without retraining. Experiments show that ATF reduces table cells by 70%, boosting performance on out-of-domain TableQA tasks while causing slight performance drops on Table Fact Verification, where full-table context is more critical. These results highlight ATF's ability to adaptively balance informativeness and minimalism across tasks. Our code available at: https://github.com/torijune/ATF-Adaptive-Table-Filtering-Framework

Authors:Alexander Kolpakov, Aidan Rocke
Title: Elias' Encoding from Lagrangians and Renormalization
Abstract:
In the present paper we give a principled derivation of Elias' Omega code by combining a constrained variational formulation of prefix coding with a renormalization flow on codeword distributions. Starting from a Lagrangian that minimizes average code length under the Kraft-McMillan constraint, we show that the implied distribution is a fixed point of a coarse-graining map, yielding the canonical iterated logarithm length, up to an additive constant. This establishes completeness and asymptotic optimality, and connects universal integer coding with coarse-grained entropy, uncertainty-type bounds, and multiplicity relations familiar from statistical physics. The renormalization operator induces a discrete flow that converges to the Elias fixed point for any admissible initialization, up to a bounded error, offering a clean bridge between information-theoretic constraints and RG-style scale invariance.

Authors:Alexander Kolpakov, Aidan Rocke
Title: Elias' Encoding from Lagrangians and Renormalization
Abstract:
In the present paper we give a derivation of Elias' Omega code from physics principles by combining a constrained variational formulation of prefix coding with a renormalization flow on codeword distributions. Starting from a Lagrangian that minimizes average codelength under the Kraft-McMillan constraint, we show that the implied distribution is a fixed point of a coarse-graining map, yielding the canonical iterated log-sum length, asymptotically up to an additive constant. This establishes completeness and asymptotic optimality, and connects universal integer coding with coarse-grained entropy, uncertainty-type bounds, and entropy relations familiar from statistical physics.

Authors:Tim Puphal, Vipul Ramtekkar, Kenji Nishimiya
Title: Risk-Based Filtering of Valuable Driving Situations in the Waymo Open Motion Dataset
Abstract:
Improving automated vehicle software requires driving data rich in valuable road user interactions. In this paper, we propose a risk-based filtering approach that helps identify such valuable driving situations from large datasets. Specifically, we use a probabilistic risk model to detect high-risk situations. Our method stands out by considering a) first-order situations (where one vehicle directly influences another and induces risk) and b) second-order situations (where influence propagates through an intermediary vehicle). In experiments, we show that our approach effectively selects valuable driving situations in the Waymo Open Motion Dataset. Compared to the two baseline interaction metrics of Kalman difficulty and Tracks-To-Predict (TTP), our filtering approach identifies complex and complementary situations, enriching the quality in automated vehicle testing. The risk data is made open-source: https://github.com/HRI-EU/RiskBasedFiltering.

Authors:Heitor R. Medeiros, Hossein Sharifi-Noghabi, Gabriel L. Oliveira, Saghar Irandoust
Title: Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting
Abstract:
Real-world time series often exhibit a non-stationary nature, degrading the performance of pre-trained forecasting models. Test-Time Adaptation (TTA) addresses this by adjusting models during inference, but existing methods typically update the full model, increasing memory and compute costs. We propose PETSA, a parameter-efficient method that adapts forecasters at test time by only updating small calibration modules on the input and output. PETSA uses low-rank adapters and dynamic gating to adjust representations without retraining. To maintain accuracy despite limited adaptation capacity, we introduce a specialized loss combining three components: (1) a robust term, (2) a frequency-domain term to preserve periodicity, and (3) a patch-wise structural term for structural alignment. PETSA improves the adaptability of various forecasting backbones while requiring fewer parameters than baselines. Experimental results on benchmark datasets show that PETSA achieves competitive or better performance across all horizons. Our code is available at: https://github.com/BorealisAI/PETSA

Authors:Nikola Banić, Neven Elezović
Title: Zero-disparity Distribution Synthesis: Fast Exact Calculation of Chi-Squared Statistic Distribution for Discrete Uniform Histograms
Abstract:
Pearson's chi-squared test is widely used to assess the uniformity of discrete histograms, typically relying on a continuous chi-squared distribution to approximate the test statistic, since computing the exact distribution is computationally too costly. While effective in many cases, this approximation allegedly fails when expected bin counts are low or tail probabilities are needed. Here, Zero-disparity Distribution Synthesis is presented, a fast dynamic programming approach for computing the exact distribution, enabling detailed analysis of approximation errors. The results dispel some existing misunderstandings and also reveal subtle, but significant pitfalls in approximation that are only apparent with exact values. The Python source code is available at https://github.com/DiscreteTotalVariation/ChiSquared.

Authors:Jiale Zhang, Zichong Wang, Avash Palikhe, Zhipeng Yin, Wenbin Zhang
Title: Datasets for Fairness in Language Models: An In-Depth Survey
Abstract:
Despite the growing reliance on fairness benchmarks to evaluate language models, the datasets that underpin these benchmarks remain critically underexamined. This survey addresses that overlooked foundation by offering a comprehensive analysis of the most widely used fairness datasets in language model research. To ground this analysis, we characterize each dataset across key dimensions, including provenance, demographic scope, annotation design, and intended use, revealing the assumptions and limitations baked into current evaluation practices. Building on this foundation, we propose a unified evaluation framework that surfaces consistent patterns of demographic disparities across benchmarks and scoring metrics. Applying this framework to sixteen popular datasets, we uncover overlooked biases that may distort conclusions about model fairness and offer guidance on selecting, combining, and interpreting these resources more effectively and responsibly. Our findings highlight an urgent need for new benchmarks that capture a broader range of social contexts and fairness notions. To support future research, we release all data, code, and results at https://github.com/vanbanTruong/Fairness-in-Large-Language-Models/tree/main/datasets, fostering transparency and reproducibility in the evaluation of language model fairness.

Authors:Vikram Rangarajan, Shishira Maiya, Max Ehrlich, Abhinav Shrivastava
Title: SIEDD: Shared-Implicit Encoder with Discrete Decoders
Abstract:
Implicit Neural Representations (INRs) offer exceptional fidelity for video compression by learning per-video optimized functions, but their adoption is crippled by impractically slow encoding times. Existing attempts to accelerate INR encoding often sacrifice reconstruction quality or crucial coordinate-level control essential for adaptive streaming and transcoding. We introduce SIEDD (Shared-Implicit Encoder with Discrete Decoders), a novel architecture that fundamentally accelerates INR encoding without these compromises. SIEDD first rapidly trains a shared, coordinate-based encoder on sparse anchor frames to efficiently capture global, low-frequency video features. This encoder is then frozen, enabling massively parallel training of lightweight, discrete decoders for individual frame groups, further expedited by aggressive coordinate-space sampling. This synergistic design delivers a remarkable 20-30X encoding speed-up over state-of-the-art INR codecs on HD and 4K benchmarks, while maintaining competitive reconstruction quality and compression ratios. Critically, SIEDD retains full coordinate-based control, enabling continuous resolution decoding and eliminating costly transcoding. Our approach significantly advances the practicality of high-fidelity neural video compression, demonstrating a scalable and efficient path towards real-world deployment. Our codebase is available at https://github.com/VikramRangarajan/SIEDD .

Authors:Xiao'ao Song, Konstantinos Karydis
Title: GS-NBV: a Geometry-based, Semantics-aware Viewpoint Planning Algorithm for Avocado Harvesting under Occlusions
Abstract:
Efficient identification of picking points is critical for automated fruit harvesting. Avocados present unique challenges owing to their irregular shape, weight, and less-structured growing environments, which require specific viewpoints for successful harvesting. We propose a geometry-based, semantics-aware viewpoint-planning algorithm to address these challenges. The planning process involves three key steps: viewpoint sampling, evaluation, and execution. Starting from a partially occluded view, the system first detects the fruit, then leverages geometric information to constrain the viewpoint search space to a 1D circle, and uniformly samples four points to balance the efficiency and exploration. A new picking score metric is introduced to evaluate the viewpoint suitability and guide the camera to the next-best view. We validate our method through simulation against two state-of-the-art algorithms. Results show a 100% success rate in two case studies with significant occlusions, demonstrating the efficiency and robustness of our approach. Our code is available at https://github.com/lineojcd/GSNBV

Authors:Paige Tuttösí, H. Henny Yeung, Yue Wang, Jean-Julien Aucouturier, Angelica Lim
Title: You Sound a Little Tense: L2 Tailored Clear TTS Using Durational Vowel Properties
Abstract:
We present the first text-to-speech (TTS) system tailored to second language (L2) speakers. We use duration differences between American English tense (longer) and lax (shorter) vowels to create a "clarity mode" for Matcha-TTS. Our perception studies showed that French-L1, English-L2 listeners had fewer (at least 9.15%) transcription errors when using our clarity mode, and found it more encouraging and respectful than overall slowed down speech. Remarkably, listeners were not aware of these effects: despite the decreased word error rate in clarity mode, listeners still believed that slowing all target words was the most intelligible, suggesting that actual intelligibility does not correlate with perceived intelligibility. Additionally, we found that Whisper-ASR did not use the same cues as L2 speakers to differentiate difficult vowels and is not sufficient to assess the intelligibility of TTS systems for these individuals.

Authors:Yuanhao Cai, He Zhang, Xi Chen, Jinbo Xing, Yiwei Hu, Yuqian Zhou, Kai Zhang, Zhifei Zhang, Soo Ye Kim, Tianyu Wang, Yulun Zhang, Xiaokang Yang, Zhe Lin, Alan Yuille
Title: OmniVCus: Feedforward Subject-driven Video Customization with Multimodal Control Conditions
Abstract:
Existing feedforward subject-driven video customization methods mainly study single-subject scenarios due to the difficulty of constructing multi-subject training data pairs. Another challenging problem that how to use the signals such as depth, mask, camera, and text prompts to control and edit the subject in the customized video is still less explored. In this paper, we first propose a data construction pipeline, VideoCus-Factory, to produce training data pairs for multi-subject customization from raw videos without labels and control signals such as depth-to-video and mask-to-video pairs. Based on our constructed data, we develop an Image-Video Transfer Mixed (IVTM) training with image editing data to enable instructive editing for the subject in the customized video. Then we propose a diffusion Transformer framework, OmniVCus, with two embedding mechanisms, Lottery Embedding (LE) and Temporally Aligned Embedding (TAE). LE enables inference with more subjects by using the training subjects to activate more frame embeddings. TAE encourages the generation process to extract guidance from temporally aligned control signals by assigning the same frame embeddings to the control and noise tokens. Experiments demonstrate that our method significantly surpasses state-of-the-art methods in both quantitative and qualitative evaluations. Video demos are at our project page: https://caiyuanhao1998.github.io/project/OmniVCus/. Our code will be released at https://github.com/caiyuanhao1998/Open-OmniVCus

Authors:Yi Liu, Shengqian Li, Zuzeng Lin, Feng Wang, Si Liu
Title: CycleVAR: Repurposing Autoregressive Model for Unsupervised One-Step Image Translation
Abstract:
The current conditional autoregressive image generation methods have shown promising results, yet their potential remains largely unexplored in the practical unsupervised image translation domain, which operates without explicit cross-domain correspondences. A critical limitation stems from the discrete quantization inherent in traditional Vector Quantization-based frameworks, which disrupts gradient flow between the Variational Autoencoder decoder and causal Transformer, impeding end-to-end optimization during adversarial training in image space. To tackle this issue, we propose using Softmax Relaxed Quantization, a novel approach that reformulates codebook selection as a continuous probability mixing process via Softmax, thereby preserving gradient propagation. Building upon this differentiable foundation, we introduce CycleVAR, which reformulates image-to-image translation as image-conditional visual autoregressive generation by injecting multi-scale source image tokens as contextual prompts, analogous to prefix-based conditioning in language models. CycleVAR exploits two modes to generate the target image tokens, including (1) serial multi-step generation, enabling iterative refinement across scales, and (2) parallel one-step generation synthesizing all resolution outputs in a single forward pass. Experimental findings indicate that the parallel one-step generation mode attains superior translation quality with quicker inference speed than the serial multi-step mode in unsupervised scenarios. Furthermore, both quantitative and qualitative results indicate that CycleVAR surpasses previous state-of-the-art unsupervised image translation models, \textit{e}.\textit{g}., CycleGAN-Turbo.

Authors:Yitian Gong, Luozhijie Jin, Ruifan Deng, Dong Zhang, Xin Zhang, Qinyuan Cheng, Zhaoye Fei, Shimin Li, Xipeng Qiu
Title: XY-Tokenizer: Mitigating the Semantic-Acoustic Conflict in Low-Bitrate Speech Codecs
Abstract:
Speech codecs serve as bridges between speech signals and large language models. An ideal codec for speech language models should not only preserve acoustic information but also capture rich semantic information. However, existing speech codecs struggle to balance high-quality audio reconstruction with ease of modeling by language models. In this study, we analyze the limitations of previous codecs in balancing semantic richness and acoustic fidelity. We propose XY-Tokenizer, a novel codec that mitigates the conflict between semantic and acoustic capabilities through multi-stage, multi-task learning. Experimental results demonstrate that XY-Tokenizer achieves performance in both semantic and acoustic tasks comparable to that of state-of-the-art codecs operating at similar bitrates, even though those existing codecs typically excel in only one aspect. Specifically, XY-Tokenizer achieves strong text alignment, surpassing distillation-based semantic modeling methods such as SpeechTokenizer and Mimi, while maintaining a speaker similarity score of 0.83 between reconstructed and original audio. The reconstruction performance of XY-Tokenizer is comparable to that of BigCodec, the current state-of-the-art among acoustic-only codecs, which achieves a speaker similarity score of 0.84 at a similar bitrate. Code and models are available at https://github.com/gyt1145028706/XY-Tokenizer.

Authors:Yiming Huang, Long Bai, Beilei Cui, Kun Yuan, Guankun Wang, Mobarak I. Hoque, Nicolas Padoy, Nassir Navab, Hongliang Ren
Title: SurgTPGS: Semantic 3D Surgical Scene Understanding with Text Promptable Gaussian Splatting
Abstract:
In contemporary surgical research and practice, accurately comprehending 3D surgical scenes with text-promptable capabilities is particularly crucial for surgical planning and real-time intra-operative guidance, where precisely identifying and interacting with surgical tools and anatomical structures is paramount. However, existing works focus on surgical vision-language model (VLM), 3D reconstruction, and segmentation separately, lacking support for real-time text-promptable 3D queries. In this paper, we present SurgTPGS, a novel text-promptable Gaussian Splatting method to fill this gap. We introduce a 3D semantics feature learning strategy incorporating the Segment Anything model and state-of-the-art vision-language models. We extract the segmented language features for 3D surgical scene reconstruction, enabling a more in-depth understanding of the complex surgical environment. We also propose semantic-aware deformation tracking to capture the seamless deformation of semantic features, providing a more precise reconstruction for both texture and semantic features. Furthermore, we present semantic region-aware optimization, which utilizes regional-based semantic information to supervise the training, particularly promoting the reconstruction quality and semantic smoothness. We conduct comprehensive experiments on two real-world surgical datasets to demonstrate the superiority of SurgTPGS over state-of-the-art methods, highlighting its potential to revolutionize surgical practices. SurgTPGS paves the way for developing next-generation intelligent surgical systems by enhancing surgical precision and safety. Our code is available at: https://github.com/lastbasket/SurgTPGS.

Authors:Yiming Huang, Long Bai, Beilei Cui, Yanheng Li, Tong Chen, Jie Wang, Jinlin Wu, Zhen Lei, Hongbin Liu, Hongliang Ren
Title: Endo-4DGX: Robust Endoscopic Scene Reconstruction and Illumination Correction with Gaussian Splatting
Abstract:
Accurate reconstruction of soft tissue is crucial for advancing automation in image-guided robotic surgery. The recent 3D Gaussian Splatting (3DGS) techniques and their variants, 4DGS, achieve high-quality renderings of dynamic surgical scenes in real-time. However, 3D-GS-based methods still struggle in scenarios with varying illumination, such as low light and over-exposure. Training 3D-GS in such extreme light conditions leads to severe optimization problems and devastating rendering quality. To address these challenges, we present Endo-4DGX, a novel reconstruction method with illumination-adaptive Gaussian Splatting designed specifically for endoscopic scenes with uneven lighting. By incorporating illumination embeddings, our method effectively models view-dependent brightness variations. We introduce a region-aware enhancement module to model the sub-area lightness at the Gaussian level and a spatial-aware adjustment module to learn the view-consistent brightness adjustment. With the illumination adaptive design, Endo-4DGX achieves superior rendering performance under both low-light and over-exposure conditions while maintaining geometric accuracy. Additionally, we employ an exposure control loss to restore the appearance from adverse exposure to the normal level for illumination-adaptive optimization. Experimental results demonstrate that Endo-4DGX significantly outperforms combinations of state-of-the-art reconstruction and restoration methods in challenging lighting environments, underscoring its potential to advance robot-assisted surgical applications. Our code is available at https://github.com/lastbasket/Endo-4DGX.

Authors:Qi Liu, Can Li, Wanjing Ma
Title: GATSim: Urban Mobility Simulation with Generative Agents
Abstract:
Traditional agent-based urban mobility simulations often rely on rigid rule-based systems that struggle to capture the complexity, adaptability, and behavioral diversity inherent in human travel decision making. Recent advancements in large language models and AI agent technologies present new opportunities to develop agents with enhanced reasoning capabilities, persistent memory, and adaptive learning. We introduce GATSim (Generative-Agent Transport Simulation), a novel framework that leverages these advancements to simulate urban mobility using generative agents with rich, human-like behaviors. Unlike conventional approaches, GATSim agents are characterized by diverse socioeconomic profiles, individual lifestyles, and evolving preferences shaped through psychologically informed memory systems, tool usage, and lifelong learning. The main contributions of this work are: (1) a comprehensive architecture that integrates an urban mobility foundation model with agent cognitive systems and a transport simulation environment; (2) a hierarchical memory designed for efficient retrieval of contextually relevant information, incorporating spatial and temporal associations, keyword matching, and semantic relevance; (3) innovative planning and reactive mechanisms for modeling adaptive mobility behaviors which integrate a multi-scale reflection process to transform specific travel experiences into generalized behavioral insights. We implement a prototype system and conduct systematic validation, demonstrating that generative agents produce believable and coherent travel behaviors. Experimental results indicate that generative agents perform at least as well as human annotators with 92\% posterior probability, while naturally producing realistic macroscopic traffic patterns. The code for the prototype implementation is publicly available at https://github.com/qiliuchn/gatsim.

Authors:Xing Shen, Justin Szeto, Mingyang Li, Hengguan Huang, Tal Arbel
Title: Exposing and Mitigating Calibration Biases and Demographic Unfairness in MLLM Few-Shot In-Context Learning for Medical Image Classification
Abstract:
Multimodal large language models (MLLMs) have enormous potential to perform few-shot in-context learning in the context of medical image analysis. However, safe deployment of these models into real-world clinical practice requires an in-depth analysis of the accuracies of their predictions, and their associated calibration errors, particularly across different demographic subgroups. In this work, we present the first investigation into the calibration biases and demographic unfairness of MLLMs' predictions and confidence scores in few-shot in-context learning for medical image classification. We introduce CALIN, an inference-time calibration method designed to mitigate the associated biases. Specifically, CALIN estimates the amount of calibration needed, represented by calibration matrices, using a bi-level procedure: progressing from the population level to the subgroup level prior to inference. It then applies this estimation to calibrate the predicted confidence scores during inference. Experimental results on three medical imaging datasets: PAPILA for fundus image classification, HAM10000 for skin cancer classification, and MIMIC-CXR for chest X-ray classification demonstrate CALIN's effectiveness at ensuring fair confidence calibration in its prediction, while improving its overall prediction accuracies and exhibiting minimum fairness-utility trade-off. Our codebase can be found at https://github.com/xingbpshen/medical-calibration-fairness-mllm.

Authors:David Guzman Piedrahita, Yongjin Yang, Mrinmaya Sachan, Giorgia Ramponi, Bernhard Schölkopf, Zhijing Jin
Title: Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games
Abstract:
As large language models (LLMs) are increasingly deployed as autonomous agents, understanding their cooperation and social mechanisms is becoming increasingly important. In particular, how LLMs balance self-interest and collective well-being is a critical challenge for ensuring alignment, robustness, and safe deployment. In this paper, we examine the challenge of costly sanctioning in multi-agent LLM systems, where an agent must decide whether to invest its own resources to incentivize cooperation or penalize defection. To study this, we adapt a public goods game with institutional choice from behavioral economics, allowing us to observe how different LLMs navigate social dilemmas over repeated interactions. Our analysis reveals four distinct behavioral patterns among models: some consistently establish and sustain high levels of cooperation, others fluctuate between engagement and disengagement, some gradually decline in cooperative behavior over time, and others rigidly follow fixed strategies regardless of outcomes. Surprisingly, we find that reasoning LLMs, such as the o1 series, struggle significantly with cooperation, whereas some traditional LLMs consistently achieve high levels of cooperation. These findings suggest that the current approach to improving LLMs, which focuses on enhancing their reasoning capabilities, does not necessarily lead to cooperation, providing valuable insights for deploying LLM agents in environments that require sustained collaboration. Our code is available at https://github.com/davidguzmanp/SanctSim

Authors:Lujun Li, Zhu Qiyuan, Jiacheng Wang, Wei Li, Hao Gu, Sirui Han, Yike Guo
Title: Sub-MoE: Efficient Mixture-of-Expert LLMs Compression via Subspace Expert Merging
Abstract:
Mixture of Experts (MoE) LLMs face significant obstacles due to their massive parameter scale, which imposes memory, storage, and deployment challenges. Although recent expert merging methods promise greater efficiency by consolidating multiple experts, they are fundamentally hindered by parameter conflicts arising from expert specialization. In this paper, we present Sub-MoE, a novel MoE compression framework via Subspace Expert Merging. Our key insight is to perform joint Singular Value Decomposition (SVD) on concatenated expert weights, reducing conflicting parameters by extracting shared $U$-matrices while enabling effective merging of the expert-specific $V$ components. Specifically, Sub-MoE consists of two innovative phases: (1) Adaptive Expert Clustering, which groups functionally coherent experts via K-means clustering based on cosine similarity of expert outputs; and (2) Subspace Expert Merging, which first enforces Experts Union Decomposition to derive the shared $U$-matrix across experts in the same group, then pursues frequency-based merging for individual $V$-matrices, and finalizes expert reconstruction using the merged $V$-matrix. In this way, we align and fuse experts in a shared subspace, and can be extended with intra-expert compression for further inference optimization. Extensive experiments on Mixtral, DeepSeek, and Qwen-1.5|3 MoE LLMs demonstrate that our Sub-MoE significantly outperforms existing expert pruning and merging methods. Notably, our Sub-MoE maintains 96\%|86\% of original performance with 25\%|50\% expert reduction on Mixtral-8x7B in zero-shot benchmarks. Code will be released at https://github.com/lliai/MoERazor.

Authors:Lunhao Duan, Shanshan Zhao, Xingxing Weng, Jing Zhang, Gui-Song Xia
Title: High-quality Pseudo-labeling for Point Cloud Segmentation with Scene-level Annotation
Abstract:
This paper investigates indoor point cloud semantic segmentation under scene-level annotation, which is less explored compared to methods relying on sparse point-level labels. In the absence of precise point-level labels, current methods first generate point-level pseudo-labels, which are then used to train segmentation models. However, generating accurate pseudo-labels for each point solely based on scene-level annotations poses a considerable challenge, substantially affecting segmentation performance. Consequently, to enhance accuracy, this paper proposes a high-quality pseudo-label generation framework by exploring contemporary multi-modal information and region-point semantic consistency. Specifically, with a cross-modal feature guidance module, our method utilizes 2D-3D correspondences to align point cloud features with corresponding 2D image pixels, thereby assisting point cloud feature learning. To further alleviate the challenge presented by the scene-level annotation, we introduce a region-point semantic consistency module. It produces regional semantics through a region-voting strategy derived from point-level semantics, which are subsequently employed to guide the point-level semantic predictions. Leveraging the aforementioned modules, our method can rectify inaccurate point-level semantic predictions during training and obtain high-quality pseudo-labels. Significant improvements over previous works on ScanNet v2 and S3DIS datasets under scene-level annotation can demonstrate the effectiveness. Additionally, comprehensive ablation studies validate the contributions of our approach's individual components. The code is available at https://github.com/LHDuan/WSegPC .

Authors:Jie Feng, Shengyuan Wang, Tianhui Liu, Yanxin Xi, Yong Li
Title: UrbanLLaVA: A Multi-modal Large Language Model for Urban Intelligence with Spatial Reasoning and Understanding
Abstract:
Urban research involves a wide range of scenarios and tasks that require the understanding of multi-modal data. Current methods often focus on specific data types and lack a unified framework in urban field for processing them comprehensively. The recent success of multi-modal large language models (MLLMs) presents a promising opportunity to overcome this limitation. In this paper, we introduce $\textit{UrbanLLaVA}$, a multi-modal large language model designed to process these four types of data simultaneously and achieve strong performance across diverse urban tasks compared with general MLLMs. In $\textit{UrbanLLaVA}$, we first curate a diverse urban instruction dataset encompassing both single-modal and cross-modal urban data, spanning from location view to global view of urban environment. Additionally, we propose a multi-stage training framework that decouples spatial reasoning enhancement from domain knowledge learning, thereby improving the compatibility and downstream performance of $\textit{UrbanLLaVA}$ across diverse urban tasks. Finally, we also extend existing benchmark for urban research to assess the performance of MLLMs across a wide range of urban tasks. Experimental results from three cities demonstrate that $\textit{UrbanLLaVA}$ outperforms open-source and proprietary MLLMs in both single-modal tasks and complex cross-modal tasks and shows robust generalization abilities across cities. Source codes and data are openly accessible to the research community via https://github.com/tsinghua-fib-lab/UrbanLLaVA.

Authors:Haoran Li, Muhao Guo, Marija Ilic, Yang Weng, Guangchun Ruan
Title: External Data-Enhanced Meta-Representation for Adaptive Probabilistic Load Forecasting
Abstract:
Accurate residential load forecasting is critical for power system reliability with rising renewable integration and demand-side flexibility. However, most statistical and machine learning models treat external factors, such as weather, calendar effects, and pricing, as extra input, ignoring their heterogeneity, and thus limiting the extraction of useful external information. We propose a paradigm shift: external data should serve as meta-knowledge to dynamically adapt the forecasting model itself. Based on this idea, we design a meta-representation framework using hypernetworks that modulate selected parameters of a base Deep Learning (DL) model in response to external conditions. This provides both expressivity and adaptability. We further integrate a Mixture-of-Experts (MoE) mechanism to enhance efficiency through selective expert activation, while improving robustness by filtering redundant external inputs. The resulting model, dubbed as a Meta Mixture of Experts for External data (M2oE2), achieves substantial improvements in accuracy and robustness with limited additional overhead, outperforming existing state-of-the-art methods in diverse load datasets. The dataset and source code are publicly available at https://github.com/haorandd/M2oE2\_load\_forecast.git.

Authors:Gabriel Iturra-Bocaz, Felipe Bravo-Marquez
Title: RiverText: A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streams
Abstract:
Word embeddings have become essential components in various information retrieval and natural language processing tasks, such as ranking, document classification, and question answering. However, despite their widespread use, traditional word embedding models present a limitation in their static nature, which hampers their ability to adapt to the constantly evolving language patterns that emerge in sources such as social media and the web (e.g., new hashtags or brand names). To overcome this problem, incremental word embedding algorithms are introduced, capable of dynamically updating word representations in response to new language patterns and processing continuous data streams. This paper presents RiverText, a Python library for training and evaluating incremental word embeddings from text data streams. Our tool is a resource for the information retrieval and natural language processing communities that work with word embeddings in streaming scenarios, such as analyzing social media. The library implements different incremental word embedding techniques, such as Skip-gram, Continuous Bag of Words, and Word Context Matrix, in a standardized framework. In addition, it uses PyTorch as its backend for neural network training. We have implemented a module that adapts existing intrinsic static word embedding evaluation tasks for word similarity and word categorization to a streaming setting. Finally, we compare the implemented methods with different hyperparameter settings and discuss the results. Our open-source library is available at https://github.com/dccuchile/rivertext.

Authors:Vladislav Bargatin, Egor Chistov, Alexander Yakovenko, Dmitriy Vatolin
Title: MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation
Abstract:
Recent advances in optical flow estimation have prioritized accuracy at the cost of growing GPU memory consumption, particularly for high-resolution (FullHD) inputs. We introduce MEMFOF, a memory-efficient multi-frame optical flow method that identifies a favorable trade-off between multi-frame estimation and GPU memory usage. Notably, MEMFOF requires only 2.09 GB of GPU memory at runtime for 1080p inputs, and 28.5 GB during training, which uniquely positions our method to be trained at native 1080p without the need for cropping or downsampling. We systematically revisit design choices from RAFT-like architectures, integrating reduced correlation volumes and high-resolution training protocols alongside multi-frame estimation, to achieve state-of-the-art performance across multiple benchmarks while substantially reducing memory overhead. Our method outperforms more resource-intensive alternatives in both accuracy and runtime efficiency, validating its robustness for flow estimation at high resolutions. At the time of submission, our method ranks first on the Spring benchmark with a 1-pixel (1px) outlier rate of 3.289, leads Sintel (clean) with an endpoint error (EPE) of 0.963, and achieves the best Fl-all error on KITTI-2015 at 2.94%. The code is available at https://github.com/msu-video-group/memfof.

Authors:Shahad Hardan, Darya Taratynova, Abdelmajid Essofi, Karthik Nandakumar, Mohammad Yaqub
Title: Forget-MI: Machine Unlearning for Forgetting Multimodal Information in Healthcare Settings
Abstract:
Privacy preservation in AI is crucial, especially in healthcare, where models rely on sensitive patient data. In the emerging field of machine unlearning, existing methodologies struggle to remove patient data from trained multimodal architectures, which are widely used in healthcare. We propose Forget-MI, a novel machine unlearning method for multimodal medical data, by establishing loss functions and perturbation techniques. Our approach unlearns unimodal and joint representations of the data requested to be forgotten while preserving knowledge from the remaining data and maintaining comparable performance to the original model. We evaluate our results using performance on the forget dataset, performance on the test dataset, and Membership Inference Attack (MIA), which measures the attacker's ability to distinguish the forget dataset from the training dataset. Our model outperforms the existing approaches that aim to reduce MIA and the performance on the forget dataset while keeping an equivalent performance on the test set. Specifically, our approach reduces MIA by 0.202 and decreases AUC and F1 scores on the forget set by 0.221 and 0.305, respectively. Additionally, our performance on the test set matches that of the retrained model, while allowing forgetting. Code is available at https://github.com/BioMedIA-MBZUAI/Forget-MI.git

Authors:Siyuan Li, Ruitong Liu, Yan Wen, Te Sun, Andi Zhang, Yanbiao Ma, Xiaoshuai Hao
Title: Flow-Modulated Scoring for Semantic-Aware Knowledge Graph Completion
Abstract:
Knowledge graph completion demands effective modeling of multifaceted semantic relationships between entities. Yet, prevailing methods, which rely on static scoring functions over learned embeddings, struggling to simultaneously capture rich semantic context and the dynamic nature of relations. To overcome this limitation, we propose the Flow-Modulated Scoring (FMS) framework, conceptualizing a relation as a dynamic evolutionary process governed by its static semantic environment. FMS operates in two stages: it first learns context-aware entity embeddings via a Semantic Context Learning module, and then models a dynamic flow between them using a Conditional Flow-Matching module. This learned flow dynamically modulates a base static score for the entity pair. By unifying context-rich static representations with a conditioned dynamic flow, FMS achieves a more comprehensive understanding of relational semantics. Extensive experiments demonstrate that FMS establishes a new state of the art across both canonical knowledge graph completion tasks: relation prediction and entity prediction. On the standard relation prediction benchmark FB15k-237, FMS achieves a near-perfect MRR of 99.8\% and Hits@1 of 99.7\% using a mere 0.35M parameters, while also attaining a 99.9\% MRR on WN18RR. Its dominance extends to entity prediction, where it secures a 25.2\% relative MRR gain in the transductive setting and substantially outperforms all baselines in challenging inductive settings. By unifying a dynamic flow mechanism with rich static contexts, FMS offers a highly effective and parameter-efficient new paradigm for knowledge graph completion. Code published at: https://github.com/yuanwuyuan9/FMS.

Authors:Yu Shang, Xin Zhang, Yinzhou Tang, Lei Jin, Chen Gao, Wei Wu, Yong Li
Title: RoboScape: Physics-informed Embodied World Model
Abstract:
World models have become indispensable tools for embodied intelligence, serving as powerful simulators capable of generating realistic robotic videos while addressing critical data scarcity challenges. However, current embodied world models exhibit limited physical awareness, particularly in modeling 3D geometry and motion dynamics, resulting in unrealistic video generation for contact-rich robotic scenarios. In this paper, we present RoboScape, a unified physics-informed world model that jointly learns RGB video generation and physics knowledge within an integrated framework. We introduce two key physics-informed joint training tasks: temporal depth prediction that enhances 3D geometric consistency in video rendering, and keypoint dynamics learning that implicitly encodes physical properties (e.g., object shape and material characteristics) while improving complex motion modeling. Extensive experiments demonstrate that RoboScape generates videos with superior visual fidelity and physical plausibility across diverse robotic scenarios. We further validate its practical utility through downstream applications including robotic policy training with generated data and policy evaluation. Our work provides new insights for building efficient physics-informed world models to advance embodied intelligence research. The code is available at: https://github.com/tsinghua-fib-lab/RoboScape.

Authors:Chi Chiu So, Yueyue Sun, Jun-Min Wang, Siu Pang Yung, Anthony Wai Keung Loh, Chun Pong Chau
Title: Are Large Language Models Capable of Deep Relational Reasoning? Insights from DeepSeek-R1 and Benchmark Comparisons
Abstract:
How far are Large Language Models (LLMs) in performing deep relational reasoning? In this paper, we evaluate and compare the reasoning capabilities of three cutting-edge LLMs, namely, DeepSeek-R1, DeepSeek-V3 and GPT-4o, through a suite of carefully designed benchmark tasks in family tree and general graph reasoning. Our experiments reveal that DeepSeek-R1 consistently achieves the highest F1-scores across multiple tasks and problem sizes, demonstrating strong aptitude in logical deduction and relational inference. However, all evaluated models, including DeepSeek-R1, struggle significantly as problem complexity increases, largely due to token length limitations and incomplete output structures. A detailed analysis of DeepSeek-R1's long Chain-of-Thought responses uncovers its unique planning and verification strategies, but also highlights instances of incoherent or incomplete reasoning, calling attention to the need for deeper scrutiny into LLMs' internal inference dynamics. We further discuss key directions for future work, including the role of multimodal reasoning and the systematic examination of reasoning failures. Our findings provide both empirical insights and theoretical implications for advancing LLMs' reasoning abilities, particularly in tasks that demand structured, multi-step logical inference. Our code repository will be publicly available at https://github.com/kelvinhkcs/Deep-Relational-Reasoning.

Authors:Xinlei Yu, Changmiao Wang, Hui Jin, Ahmed Elazab, Gangyong Jia, Xiang Wan, Changqing Zou, Ruiquan Ge
Title: CRISP-SAM2: SAM2 with Cross-Modal Interaction and Semantic Prompting for Multi-Organ Segmentation
Abstract:
Multi-organ medical segmentation is a crucial component of medical image processing, essential for doctors to make accurate diagnoses and develop effective treatment plans. Despite significant progress in this field, current multi-organ segmentation models often suffer from inaccurate details, dependence on geometric prompts and loss of spatial information. Addressing these challenges, we introduce a novel model named CRISP-SAM2 with CRoss-modal Interaction and Semantic Prompting based on SAM2. This model represents a promising approach to multi-organ medical segmentation guided by textual descriptions of organs. Our method begins by converting visual and textual inputs into cross-modal contextualized semantics using a progressive cross-attention interaction mechanism. These semantics are then injected into the image encoder to enhance the detailed understanding of visual information. To eliminate reliance on geometric prompts, we use a semantic prompting strategy, replacing the original prompt encoder to sharpen the perception of challenging targets. In addition, a similarity-sorting self-updating strategy for memory and a mask-refining process is applied to further adapt to medical imaging and enhance localized details. Comparative experiments conducted on seven public datasets indicate that CRISP-SAM2 outperforms existing models. Extensive analysis also demonstrates the effectiveness of our method, thereby confirming its superior performance, especially in addressing the limitations mentioned earlier. Our code is available at: https://github.com/YU-deep/CRISP_SAM2.git.

Authors:Jian Shi, Tianqi You, Pingping Zhang, Hongli Zhang, Rui Xu, Haojie Li
Title: Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation
Abstract:
Automated and accurate segmentation of individual vertebra in 3D CT and MRI images is essential for various clinical applications. Due to the limitations of current imaging techniques and the complexity of spinal structures, existing methods still struggle with reducing the impact of image blurring and distinguishing similar vertebrae. To alleviate these issues, we introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve the accuracy of vertebrae segmentation. Specifically, we first apply wavelet transform for lossless downsampling to reduce the feature distortion in blurred images. The decomposed high and low-frequency components are then processed separately. For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features and filter out noises, restoring fine-grained details in blurred images. For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields, extracting spatially-varying contexts while capturing long-range dependencies with linear complexity. The utilization of multi-granularity contexts is essential for distinguishing similar vertebrae and improving segmentation accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches on both CT and MRI vertebrae segmentation datasets. The source code is publicly available at https://github.com/anaanaa/FMCNet.

Authors:Suofei Zhang, Xinxin Wang, Xiaofu Wu, Quan Zhou, Haifeng Hu
Title: Dynamic Contrastive Learning for Hierarchical Retrieval: A Case Study of Distance-Aware Cross-View Geo-Localization
Abstract:
Existing deep learning-based cross-view geo-localization methods primarily focus on improving the accuracy of cross-domain image matching, rather than enabling models to comprehensively capture contextual information around the target and minimize the cost of localization errors. To support systematic research into this Distance-Aware Cross-View Geo-Localization (DACVGL) problem, we construct Distance-Aware Campus (DA-Campus), the first benchmark that pairs multi-view imagery with precise distance annotations across three spatial resolutions. Based on DA-Campus, we formulate DACVGL as a hierarchical retrieval problem across different domains. Our study further reveals that, due to the inherent complexity of spatial relationships among buildings, this problem can only be addressed via a contrastive learning paradigm, rather than conventional metric learning. To tackle this challenge, we propose Dynamic Contrastive Learning (DyCL), a novel framework that progressively aligns feature representations according to hierarchical spatial margins. Extensive experiments demonstrate that DyCL is highly complementary to existing multi-scale metric learning methods and yields substantial improvements in both hierarchical retrieval performance and overall cross-view geo-localization accuracy. Our code and benchmark are publicly available at https://github.com/anocodetest1/DyCL.

Authors:Yu Zheng, Boyang Gong, Fanye Kong, Yueqi Duan, Bingyao Yu, Wenzhao Zheng, Lei Chen, Jiwen Lu, Jie Zhou
Title: Learning Counterfactually Decoupled Attention for Open-World Model Attribution
Abstract:
In this paper, we propose a Counterfactually Decoupled Attention Learning (CDAL) method for open-world model attribution. Existing methods rely on handcrafted design of region partitioning or feature space, which could be confounded by the spurious statistical correlations and struggle with novel attacks in open-world scenarios. To address this, CDAL explicitly models the causal relationships between the attentional visual traces and source model attribution, and counterfactually decouples the discriminative model-specific artifacts from confounding source biases for comparison. In this way, the resulting causal effect provides a quantification on the quality of learned attention maps, thus encouraging the network to capture essential generation patterns that generalize to unseen source models by maximizing the effect. Extensive experiments on existing open-world model attribution benchmarks show that with minimal computational overhead, our method consistently improves state-of-the-art models by large margins, particularly for unseen novel attacks. Source code: https://github.com/yzheng97/CDAL.

Authors:Zhengren Wang, Bozhou Li, Dongwen Yao, Wentao Zhang
Title: Text2VectorSQL: Bridging Text-to-SQL and Vector Search for Unified Natural Language Queries
Abstract:
While Text-to-SQL enables natural language interaction with structured databases, its effectiveness diminishes with unstructured data or ambiguous queries due to rigid syntax and limited expressiveness. Concurrently, vector search has emerged as a powerful paradigm for semantic retrieval, particularly for unstructured data. However, existing VectorSQL implementations still rely heavily on manual crafting and lack tailored evaluation frameworks, leaving a significant gap between theoretical potential and practical deployment. To bridge these complementary paradigms, we introduces Text2VectorSQL, a novel framework unifying Text-to-SQL and vector search to overcome expressiveness constraints and support more diverse and holistical natural language queries. Specifically, Text2VectorSQL enables semantic filtering, multi-modal matching, and retrieval acceleration. For evaluation, we build vector index on appropriate columns, extend user queries with semantic search, and annotate ground truths via an automatic pipeline with expert review. Furthermore, we develop dedicated Text2VectorSQL models with synthetic data, demonstrating significant performance improvements over baseline methods. Our work establishes the foundation for the Text2VectorSQL task, paving the way for more versatile and intuitive database interfaces. The repository will be publicly available at https://github.com/Open-DataFlow/Text2VectorSQL.

Authors:Jiazhen Liu, Yuchuan Deng, Long Chen
Title: Empowering Small VLMs to Think with Dynamic Memorization and Exploration
Abstract:
Empowering Small-scale Vision-Language Models (SVLMs) with reliable thinking capabilities remains fundamentally challenging due to their limited parameter capacity and weak instruction-following abilities. Existing training paradigms, including Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Reward (RLVR), impose substantial demands on the base VLM, exceeding the capabilities of SVLMs. Consequently, directly applying these paradigms to SVLMs often suffers from severe pseudo thinking traces and advantage collapse, ultimately undermining both thinking reliability and task performance. A natural solution is to combine SFT and RLVR, leveraging their complementarity to reduce the dependence on model capacity. However, the widely adopted two-stage training paradigm still performs poorly on SVLMs, as their tendency toward sub-optimal convergence hinders the trade-off and limits the benefits of the combination. To address this, we propose DyME, a novel training paradigm that Dynamically selects between Memorization (via SFT) and Exploration (via RLVR) modes at each optimization step, ensuring that every update contributes to the trade-off. Extensive experiments across diverse domains demonstrate that DyME consistently achieves this balance, and thus delivers substantial performance improvements. These results establish DyME as a practical and effective solution for empowering SVLMs with reliable thinking capabilities. GitHub: https://github.com/HKUST-LongGroup/DyME

Authors:Xiang Zhuang, Bin Wu, Jiyu Cui, Kehua Feng, Xiaotong Li, Huabin Xing, Keyan Ding, Qiang Zhang, Huajun Chen
Title: Boosting LLM's Molecular Structure Elucidation with Knowledge Enhanced Tree Search Reasoning
Abstract:
Molecular structure elucidation involves deducing a molecule's structure from various types of spectral data, which is crucial in chemical experimental analysis. While large language models (LLMs) have shown remarkable proficiency in analyzing and reasoning through complex tasks, they still encounter substantial challenges in molecular structure elucidation. We identify that these challenges largely stem from LLMs' limited grasp of specialized chemical knowledge. In this work, we introduce a Knowledge-enhanced reasoning framework for Molecular Structure Elucidation (K-MSE), leveraging Monte Carlo Tree Search for test-time scaling as a plugin. Specifically, we construct an external molecular substructure knowledge base to extend the LLMs' coverage of the chemical structure space. Furthermore, we design a specialized molecule-spectrum scorer to act as a reward model for the reasoning process, addressing the issue of inaccurate solution evaluation in LLMs. Experimental results show that our approach significantly boosts performance, particularly gaining more than 20% improvement on both GPT-4o-mini and GPT-4o. Our code is available at https://github.com/HICAI-ZJU/K-MSE.

Authors:Guo-Hua Wang, Shanshan Zhao, Xinjie Zhang, Liangfu Cao, Pengxin Zhan, Lunhao Duan, Shiyin Lu, Minghao Fu, Xiaohao Chen, Jianshan Zhao, Yang Li, Qing-Guo Chen
Title: Ovis-U1 Technical Report
Abstract:
In this report, we introduce Ovis-U1, a 3-billion-parameter unified model that integrates multimodal understanding, text-to-image generation, and image editing capabilities. Building on the foundation of the Ovis series, Ovis-U1 incorporates a diffusion-based visual decoder paired with a bidirectional token refiner, enabling image generation tasks comparable to leading models like GPT-4o. Unlike some previous models that use a frozen MLLM for generation tasks, Ovis-U1 utilizes a new unified training approach starting from a language model. Compared to training solely on understanding or generation tasks, unified training yields better performance, demonstrating the enhancement achieved by integrating these two tasks. Ovis-U1 achieves a score of 69.6 on the OpenCompass Multi-modal Academic Benchmark, surpassing recent state-of-the-art models such as Ristretto-3B and SAIL-VL-1.5-2B. In text-to-image generation, it excels with scores of 83.72 and 0.89 on the DPG-Bench and GenEval benchmarks, respectively. For image editing, it achieves 4.00 and 6.42 on the ImgEdit-Bench and GEdit-Bench-EN, respectively. As the initial version of the Ovis unified model series, Ovis-U1 pushes the boundaries of multimodal understanding, generation, and editing.

Authors:Jie Liu, Jiayi Shen, Pan Zhou, Jan-Jakob Sonke, Efstratios Gavves
Title: Probabilistic Prototype Calibration of Vision-Language Models for Generalized Few-shot Semantic Segmentation
Abstract:
Generalized Few-Shot Semantic Segmentation (GFSS) aims to extend a segmentation model to novel classes with only a few annotated examples while maintaining performance on base classes. Recently, pretrained vision-language models (VLMs) such as CLIP have been leveraged in GFSS to improve generalization on novel classes through multi-modal prototypes learning. However, existing prototype-based methods are inherently deterministic, limiting the adaptability of learned prototypes to diverse samples, particularly for novel classes with scarce annotations. To address this, we propose FewCLIP, a probabilistic prototype calibration framework over multi-modal prototypes from the pretrained CLIP, thus providing more adaptive prototype learning for GFSS. Specifically, FewCLIP first introduces a prototype calibration mechanism, which refines frozen textual prototypes with learnable visual calibration prototypes, leading to a more discriminative and adaptive representation. Furthermore, unlike deterministic prototype learning techniques, FewCLIP introduces distribution regularization over these calibration prototypes. This probabilistic formulation ensures structured and uncertainty-aware prototype learning, effectively mitigating overfitting to limited novel class data while enhancing generalization. Extensive experimental results on PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrate that our proposed FewCLIP significantly outperforms state-of-the-art approaches across both GFSS and class-incremental setting. The code is available at https://github.com/jliu4ai/FewCLIP.

Authors:Yida Zhao, Hao Xve, Xiang Hu, Kewei Tu
Title: A Systematic Study of Compositional Syntactic Transformer Language Models
Abstract:
Syntactic language models (SLMs) enhance Transformers by incorporating syntactic biases through the modeling of linearized syntactic parse trees alongside surface sentences. This paper focuses on compositional SLMs that are based on constituency parse trees and contain explicit bottom-up composition of constituent representations. We identify key aspects of design choices in existing compositional SLMs and propose a unified framework encompassing both existing models and novel variants. We conduct a comprehensive empirical evaluation of all the variants in our framework across language modeling, syntactic generalization, summarization, dialogue, and inference efficiency. Based on the experimental results, we make multiple recommendations on the design of compositional SLMs. Our code is released at https://github.com/zhaoyd1/compositional_SLMs.

Authors:Asen Dotsinski, Udit Thakur, Marko Ivanov, Mohammad Hafeez Khan, Maria Heuss
Title: On the Generalizability of "Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals"
Abstract:
We present a reproduction study of "Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals" (Ortu et al., 2024), which investigates competition of mechanisms in language models between factual recall and counterfactual in-context repetition. Our study successfully reproduces their primary findings regarding the localization of factual and counterfactual information, the dominance of attention blocks in mechanism competition, and the specialization of attention heads in handling competing information. We reproduce their results on both GPT-2 (Radford et al., 2019) and Pythia 6.9B (Biderman et al., 2023). We extend their work in three significant directions. First, we explore the generalizability of these findings to even larger models by replicating the experiments on Llama 3.1 8B (Grattafiori et al., 2024), discovering greatly reduced attention head specialization. Second, we investigate the impact of prompt structure by introducing variations where we avoid repeating the counterfactual statement verbatim or we change the premise word, observing a marked decrease in the logit for the counterfactual token. Finally, we test the validity of the authors' claims for prompts of specific domains, discovering that certain categories of prompts skew the results by providing the factual prediction token as part of the subject of the sentence. Overall, we find that the attention head ablation proposed in Ortu et al. (2024) is ineffective for domains that are underrepresented in their dataset, and that the effectiveness varies based on model architecture, prompt structure, domain and task.

Authors:AmirHossein Naghi Razlighi, Elaheh Badali Golezani, Shohreh Kasaei
Title: Confident Splatting: Confidence-Based Compression of 3D Gaussian Splatting via Learnable Beta Distributions
Abstract:
3D Gaussian Splatting enables high-quality real-time rendering but often produces millions of splats, resulting in excessive storage and computational overhead. We propose a novel lossy compression method based on learnable confidence scores modeled as Beta distributions. Each splat's confidence is optimized through reconstruction-aware losses, enabling pruning of low-confidence splats while preserving visual fidelity. The proposed approach is architecture-agnostic and can be applied to any Gaussian Splatting variant. In addition, the average confidence values serve as a new metric to assess the quality of the scene. Extensive experiments demonstrate favorable trade-offs between compression and fidelity compared to prior work. Our code and data are publicly available at https://github.com/amirhossein-razlighi/Confident-Splatting

Authors:Younwoo Choi, Changling Li, Yongjin Yang, Zhijing Jin
Title: Agent-to-Agent Theory of Mind: Testing Interlocutor Awareness among Large Language Models
Abstract:
As large language models (LLMs) are increasingly integrated into multi-agent and human-AI systems, understanding their awareness of both self-context and conversational partners is essential for ensuring reliable performance and robust safety. While prior work has extensively studied situational awareness which refers to an LLM's ability to recognize its operating phase and constraints, it has largely overlooked the complementary capacity to identify and adapt to the identity and characteristics of a dialogue partner. In this paper, we formalize this latter capability as interlocutor awareness and present the first systematic evaluation of its emergence in contemporary LLMs. We examine interlocutor inference across three dimensions-reasoning patterns, linguistic style, and alignment preferences-and show that LLMs reliably identify same-family peers and certain prominent model families, such as GPT and Claude. To demonstrate its practical significance, we develop three case studies in which interlocutor awareness both enhances multi-LLM collaboration through prompt adaptation and introduces new alignment and safety vulnerabilities, including reward-hacking behaviors and increased jailbreak susceptibility. Our findings highlight the dual promise and peril of identity-sensitive behavior in LLMs, underscoring the need for further understanding of interlocutor awareness and new safeguards in multi-agent deployments. Our code is open-sourced at https://github.com/younwoochoi/InterlocutorAwarenessLLM.

Authors:David Rodríguez-Martínez, Dave van der Meer, Junlin Song, Abishek Bera, C. J. Pérez-del-Pulgar, Miguel Angel Olivares-Mendez
Title: SPICE-HL3: Single-Photon, Inertial, and Stereo Camera dataset for Exploration of High-Latitude Lunar Landscapes
Abstract:
Exploring high-latitude lunar regions presents an extremely challenging visual environment for robots. The low sunlight elevation angle and minimal light scattering result in a visual field dominated by a high dynamic range featuring long, dynamic shadows. Reproducing these conditions on Earth requires sophisticated simulators and specialized facilities. We introduce a unique dataset recorded at the LunaLab from the SnT - University of Luxembourg, an indoor test facility designed to replicate the optical characteristics of multiple lunar latitudes. Our dataset includes images, inertial measurements, and wheel odometry data from robots navigating seven distinct trajectories under multiple illumination scenarios, simulating high-latitude lunar conditions from dawn to night time with and without the aid of headlights, resulting in 88 distinct sequences containing a total of 1.3M images. Data was captured using a stereo RGB-inertial sensor, a monocular monochrome camera, and for the first time, a novel single-photon avalanche diode (SPAD) camera. We recorded both static and dynamic image sequences, with robots navigating at slow (5 cm/s) and fast (50 cm/s) speeds. All data is calibrated, synchronized, and timestamped, providing a valuable resource for validating perception tasks from vision-based autonomous navigation to scientific imaging for future lunar missions targeting high-latitude regions or those intended for robots operating across perceptually degraded environments. The dataset can be downloaded from https://zenodo.org/records/13970078?preview=1, and a visual overview is available at https://youtu.be/d7sPeO50_2I. All supplementary material can be found at https://github.com/spaceuma/spice-hl3.

Authors:Marc Bara Iniesta
Title: Differentiable Radar Ambiguity Functions: Mathematical Formulation and Computational Implementation
Abstract:
The ambiguity function is fundamental to radar waveform design, characterizing range and Doppler resolution capabilities. However, its traditional formulation involves non-differentiable operations, preventing integration with gradient-based optimization methods and modern machine learning frameworks. This paper presents the first complete mathematical framework and computational implementation for differentiable radar ambiguity functions. Our approach addresses the fundamental technical challenges that have prevented the radar community from leveraging automatic differentiation: proper handling of complex-valued gradients using Wirtinger calculus, efficient computation through parallelized FFT operations, numerical stability throughout cascaded operations, and composability with arbitrary differentiable operations. We term this approach GRAF (Gradient-based Radar Ambiguity Functions), which reformulates the ambiguity function computation to maintain mathematical equivalence while enabling gradient flow through the entire pipeline. The resulting implementation provides a general-purpose differentiable ambiguity function compatible with modern automatic differentiation frameworks, enabling new research directions including neural network-based waveform generation with ambiguity constraints, end-to-end optimization of radar systems, and integration of classical radar theory with modern deep learning. We provide complete implementation details and demonstrate computational efficiency suitable for practical applications. This work establishes the mathematical and computational foundation for applying modern machine learning techniques to radar waveform design, bridging classical radar signal processing with automatic differentiation frameworks.

Authors:Sina Tabakhi, Haiping Lu
Title: Missing-Modality-Aware Graph Neural Network for Cancer Classification
Abstract:
A key challenge in learning from multimodal biological data is missing modalities, where all data from some modalities are missing for some patients. Current fusion methods address this by excluding patients with missing modalities, imputing missing modalities, or making predictions directly with partial modalities. However, they often struggle with diverse missing-modality patterns and the exponential growth of the number of such patterns as the number of modalities increases. To address these limitations, we propose MAGNET (Missing-modality-Aware Graph neural NETwork) for direct prediction with partial modalities, which introduces a patient-modality multi-head attention mechanism to fuse lower-dimensional modality embeddings based on their importance and missingness. MAGNET's complexity increases linearly with the number of modalities while adapting to missing-pattern variability. To generate predictions, MAGNET further constructs a patient graph with fused multimodal embeddings as node features and the connectivity determined by the modality missingness, followed by a conventional graph neural network. Experiments on three public multiomics datasets for cancer classification, with real-world instead of artificial missingness, show that MAGNET outperforms the state-of-the-art fusion methods. The data and code are available at https://github.com/SinaTabakhi/MAGNET.

Authors:Mai A. Shaaban, Tausifa Jan Saleem, Vijay Ram Papineni, Mohammad Yaqub
Title: MOTOR: Multimodal Optimal Transport via Grounded Retrieval in Medical Visual Question Answering
Abstract:
Medical visual question answering (MedVQA) plays a vital role in clinical decision-making by providing contextually rich answers to image-based queries. Although vision-language models (VLMs) are widely used for this task, they often generate factually incorrect answers. Retrieval-augmented generation addresses this challenge by providing information from external sources, but risks retrieving irrelevant context, which can degrade the reasoning capabilities of VLMs. Re-ranking retrievals, as introduced in existing approaches, enhances retrieval relevance by focusing on query-text alignment. However, these approaches neglect the visual or multimodal context, which is particularly crucial for medical diagnosis. We propose MOTOR, a novel multimodal retrieval and re-ranking approach that leverages grounded captions and optimal transport. It captures the underlying relationships between the query and the retrieved context based on textual and visual information. Consequently, our approach identifies more clinically relevant contexts to augment the VLM input. Empirical analysis and human expert evaluation demonstrate that MOTOR achieves higher accuracy on MedVQA datasets, outperforming state-of-the-art methods by an average of 6.45%. Code is available at https://github.com/BioMedIA-MBZUAI/MOTOR.

Authors:Senkang Hu, Yihang Tao, Guowen Xu, Xinyuan Qian, Yiqin Deng, Xianhao Chen, Sam Tak Wu Kwong, Yuguang Fang
Title: CP-uniGuard: A Unified, Probability-Agnostic, and Adaptive Framework for Malicious Agent Detection and Defense in Multi-Agent Embodied Perception Systems
Abstract:
Collaborative Perception (CP) has been shown to be a promising technique for multi-agent autonomous driving and multi-agent robotic systems, where multiple agents share their perception information to enhance the overall perception performance and expand the perception range. However, in CP, an ego agent needs to receive messages from its collaborators, which makes it vulnerable to attacks from malicious agents. To address this critical issue, we propose a unified, probability-agnostic, and adaptive framework, namely, CP-uniGuard, which is a tailored defense mechanism for CP deployed by each agent to accurately detect and eliminate malicious agents in its collaboration network. Our key idea is to enable CP to reach a consensus rather than a conflict against an ego agent's perception results. Based on this idea, we first develop a probability-agnostic sample consensus (PASAC) method to effectively sample a subset of the collaborators and verify the consensus without prior probabilities of malicious agents. Furthermore, we define collaborative consistency loss (CCLoss) for object detection task and bird's eye view (BEV) segmentation task to capture the discrepancy between an ego agent and its collaborators, which is used as a verification criterion for consensus. In addition, we propose online adaptive threshold via dual sliding windows to dynamically adjust the threshold for consensus verification and ensure the reliability of the systems in dynamic environments. Finally, we conduct extensive experiments and demonstrate the effectiveness of our framework. Code will be released at https://github.com/CP-Security/CP-uniGuard.

Authors:Dang Jisheng, Wu Xudong, Wang Bimei, Lv Ning, Chen Jiayu, Jingwen Zhao, Yichu liu, Jizhao Liu, Juncheng Li, Teng Wang
Title: Decoupled Seg Tokens Make Stronger Reasoning Video Segmenter and Grounder
Abstract:
Existing video segmenter and grounder approaches, exemplified by Sa2VA, directly fuse features within segmentation models. This often results in an undesirable entanglement of dynamic visual information and static semantics, thereby degrading segmentation accuracy. To systematically mitigate this issue, we propose DeSa2VA, a decoupling-enhanced prompting scheme integrating text pre-training and a linear decoupling module to address the information processing limitations inherent in SAM-2. Specifically, first, we devise a pre-training paradigm that converts textual ground-truth labels into point-level prompts while generating corresponding text masks. These masks are refined through a hybrid loss function to strengthen the model's semantic grounding capabilities. Next, we employ linear projection to disentangle hidden states that generated by a large language model into distinct textual and visual feature subspaces. Finally, a dynamic mask fusion strategy synergistically combines these decoupled features through triple supervision from predicted text/visual masks and ground-truth annotations. Extensive experiments demonstrate state-of-the-art performance across diverse tasks, including image segmentation, image question answering, video segmentation, and video question answering. Our codes are available at https://github.com/longmalongma/DeSa2VA.

Authors:Kamil Faber, Marcin Pietroń, Dominik Żurek, Roberto Corizzo
Title: xLSTMAD: A Powerful xLSTM-based Method for Anomaly Detection
Abstract:
The recently proposed xLSTM is a powerful model that leverages expressive multiplicative gating and residual connections, providing the temporal capacity needed for long-horizon forecasting and representation learning. This architecture has demonstrated success in time series forecasting, lossless compression, and even large-scale language modeling tasks, where its linear memory footprint and fast inference make it a viable alternative to Transformers. Despite its growing popularity, no prior work has explored xLSTM for anomaly detection. In this work, we fill this gap by proposing xLSTMAD, the first anomaly detection method that integrates a full encoder-decoder xLSTM architecture, purpose-built for multivariate time series data. Our encoder processes input sequences to capture historical context, while the decoder is devised in two separate variants of the method. In the forecasting approach, the decoder iteratively generates forecasted future values xLSTMAD-F, while the reconstruction approach reconstructs the input time series from its encoded counterpart xLSTMAD-R. We investigate the performance of two loss functions: Mean Squared Error (MSE), and Soft Dynamic Time Warping (SoftDTW) to consider local reconstruction fidelity and global sequence alignment, respectively. We evaluate our method on the comprehensive TSB-AD-M benchmark, which spans 17 real-world datasets, using state-of-the-art challenging metrics such as VUS-PR. In our results, xLSTM showcases state-of-the-art accuracy, outperforming 23 popular anomaly detection baselines. Our paper is the first work revealing the powerful modeling capabilities of xLSTM for anomaly detection, paving the way for exciting new developments on this subject. Our code is available at: https://github.com/Nyderx/xlstmad

Authors:Ramya Hebbalaguppe, Tamoghno Kandar, Abhinav Nagpal, Chetan Arora
Title: Prompting without Panic: Attribute-aware, Zero-shot, Test-Time Calibration
Abstract:
Vision-language models (VLM) have demonstrated impressive performance in image recognition by leveraging self-supervised training on large datasets. Their performance can be further improved by adapting to the test sample using test-time prompt tuning (TPT). Unfortunately, the singular focus of TPT approaches on improving the accuracy suffers from tunnel vision, and leads to degradation in confidence calibration. This limits the applicability of TPT in critical applications. We make three contributions in this work. (1) We posit that random or naive initialization of prompts leads to overfitting on a particular test sample, and is the main reason for miscalibration of the VLM after TPT. To mitigate the problem, we propose careful initialization of test time prompt using prior knowledge about the target label attributes from a large language model (LLM); (2) To further maintain the quality of prompts during \tpt, we propose a novel regularization loss to reduce intraclass distance, and increase inter-class distance between the learnt Through extensive experiments on different CLIP architectures and 15 datasets, we show that our approach can effectively improve the calibration after TPT. We report an average expected calibration error (ECE) of 4.11 with our method, TCA, compared to 11.7 for vanilla TPT, 6.12 for C-TPT (ICLR'24), 6.78 for DiffTPT (CVPR'23), and 8.43 for PromptAlign (NeurIPS'23). The code is publicly accessible at: https://github.com/rhebbalaguppe/TCA_PromptWithoutPanic.

Authors:Jianhui Wei, Zijie Meng, Zikai Xiao, Tianxiang Hu, Yang Feng, Zhijie Zhou, Jian Wu, Zuozhu Liu
Title: MedEthicsQA: A Comprehensive Question Answering Benchmark for Medical Ethics Evaluation of LLMs
Abstract:
While Medical Large Language Models (MedLLMs) have demonstrated remarkable potential in clinical tasks, their ethical safety remains insufficiently explored. This paper introduces $\textbf{MedEthicsQA}$, a comprehensive benchmark comprising $\textbf{5,623}$ multiple-choice questions and $\textbf{5,351}$ open-ended questions for evaluation of medical ethics in LLMs. We systematically establish a hierarchical taxonomy integrating global medical ethical standards. The benchmark encompasses widely used medical datasets, authoritative question banks, and scenarios derived from PubMed literature. Rigorous quality control involving multi-stage filtering and multi-faceted expert validation ensures the reliability of the dataset with a low error rate ($2.72\%$). Evaluation of state-of-the-art MedLLMs exhibit declined performance in answering medical ethics questions compared to their foundation counterparts, elucidating the deficiencies of medical ethics alignment. The dataset, registered under CC BY-NC 4.0 license, is available at https://github.com/JianhuiWei7/MedEthicsQA.

Authors:Yueyang Li, Shengyu Gong, Weiming Zeng, Nizhuan Wang, Wai Ting Siok
Title: FreqDGT: Frequency-Adaptive Dynamic Graph Networks with Transformer for Cross-subject EEG Emotion Recognition
Abstract:
Electroencephalography (EEG) serves as a reliable and objective signal for emotion recognition in affective brain-computer interfaces, offering unique advantages through its high temporal resolution and ability to capture authentic emotional states that cannot be consciously controlled. However, cross-subject generalization remains a fundamental challenge due to individual variability, cognitive traits, and emotional responses. We propose FreqDGT, a frequency-adaptive dynamic graph transformer that systematically addresses these limitations through an integrated framework. FreqDGT introduces frequency-adaptive processing (FAP) to dynamically weight emotion-relevant frequency bands based on neuroscientific evidence, employs adaptive dynamic graph learning (ADGL) to learn input-specific brain connectivity patterns, and implements multi-scale temporal disentanglement network (MTDN) that combines hierarchical temporal transformers with adversarial feature disentanglement to capture both temporal dynamics and ensure cross-subject robustness. Comprehensive experiments demonstrate that FreqDGT significantly improves cross-subject emotion recognition accuracy, confirming the effectiveness of integrating frequency-adaptive, spatial-dynamic, and temporal-hierarchical modeling while ensuring robustness to individual differences. The code is available at https://github.com/NZWANG/FreqDGT.

Authors:Byung Hyun Lee, Sungjin Lim, Seunggyu Lee, Dong Un Kang, Se Young Chun
Title: Concept Pinpoint Eraser for Text-to-image Diffusion Models via Residual Attention Gate
Abstract:
Remarkable progress in text-to-image diffusion models has brought a major concern about potentially generating images on inappropriate or trademarked concepts. Concept erasing has been investigated with the goals of deleting target concepts in diffusion models while preserving other concepts with minimal distortion. To achieve these goals, recent concept erasing methods usually fine-tune the cross-attention layers of diffusion models. In this work, we first show that merely updating the cross-attention layers in diffusion models, which is mathematically equivalent to adding \emph{linear} modules to weights, may not be able to preserve diverse remaining concepts. Then, we propose a novel framework, dubbed Concept Pinpoint Eraser (CPE), by adding \emph{nonlinear} Residual Attention Gates (ResAGs) that selectively erase (or cut) target concepts while safeguarding remaining concepts from broad distributions by employing an attention anchoring loss to prevent the forgetting. Moreover, we adversarially train CPE with ResAG and learnable text embeddings in an iterative manner to maximize erasing performance and enhance robustness against adversarial attacks. Extensive experiments on the erasure of celebrities, artistic styles, and explicit contents demonstrated that the proposed CPE outperforms prior arts by keeping diverse remaining concepts while deleting the target concepts with robustness against attack prompts. Code is available at https://github.com/Hyun1A/CPE

Authors:Nuoye Xiong, Anqi Dong, Ning Wang, Cong Hua, Guangming Zhu, Lin Mei, Peiyi Shen, Liang Zhang
Title: Intervening in Black Box: Concept Bottleneck Model for Enhancing Human Neural Network Mutual Understanding
Abstract:
Recent advances in deep learning have led to increasingly complex models with deeper layers and more parameters, reducing interpretability and making their decisions harder to understand. While many methods explain black-box reasoning, most lack effective interventions or only operate at sample-level without modifying the model itself. To address this, we propose the Concept Bottleneck Model for Enhancing Human-Neural Network Mutual Understanding (CBM-HNMU). CBM-HNMU leverages the Concept Bottleneck Model (CBM) as an interpretable framework to approximate black-box reasoning and communicate conceptual understanding. Detrimental concepts are automatically identified and refined (removed/replaced) based on global gradient contributions. The modified CBM then distills corrected knowledge back into the black-box model, enhancing both interpretability and accuracy. We evaluate CBM-HNMU on various CNN and transformer-based models across Flower-102, CIFAR-10, CIFAR-100, FGVC-Aircraft, and CUB-200, achieving a maximum accuracy improvement of 2.64% and a maximum increase in average accuracy across 1.03%. Source code is available at: https://github.com/XiGuaBo/CBM-HNMU.

Authors:Sicong Du, Jiarun Liu, Qifeng Chen, Hao-Xiang Chen, Tai-Jiang Mu, Sheng Yang
Title: RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors
Abstract:
A single-pass driving clip frequently results in incomplete scanning of the road structure, making reconstructed scene expanding a critical requirement for sensor simulators to effectively regress driving actions. Although contemporary 3D Gaussian Splatting (3DGS) techniques achieve remarkable reconstruction quality, their direct extension through the integration of diffusion priors often introduces cumulative physical inconsistencies and compromises training efficiency. To address these limitations, we present RGE-GS, a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration. The RGE-GS framework incorporates two key innovations: First, we propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases, thereby enabling selective retention of diffusion outputs for spatial stability. Second, during the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics, which achieving better convergence than baseline methods. Extensive evaluations of publicly available datasets demonstrate that RGE-GS achieves state-of-the-art performance in reconstruction quality. Our source-code will be made publicly available at https://github.com/CN-ADLab/RGE-GS.

Authors:Oguzhan Baser, Ahmet Ege Tanriverdi, Sriram Vishwanath, Sandeep P. Chinchali
Title: PhonemeFake: Redefining Deepfake Realism with Language-Driven Segmental Manipulation and Adaptive Bilevel Detection
Abstract:
Deepfake (DF) attacks pose a growing threat as generative models become increasingly advanced. However, our study reveals that existing DF datasets fail to deceive human perception, unlike real DF attacks that influence public discourse. It highlights the need for more realistic DF attack vectors. We introduce PhonemeFake (PF), a DF attack that manipulates critical speech segments using language reasoning, significantly reducing human perception by up to 42% and benchmark accuracies by up to 94%. We release an easy-to-use PF dataset on HuggingFace and open-source bilevel DF segment detection model that adaptively prioritizes compute on manipulated regions. Our extensive experiments across three known DF datasets reveal that our detection model reduces EER by 91% while achieving up to 90% speed-up, with minimal compute overhead and precise localization beyond existing models as a scalable solution.

Authors:Oguzhan Baser, Ahmet Ege Tanriverdi, Sriram Vishwanath, Sandeep P. Chinchali
Title: PhonemeFake: Redefining Deepfake Realism with Language-Driven Segmental Manipulation and Adaptive Bilevel Detection
Abstract:
Deepfake (DF) attacks pose a growing threat as generative models become increasingly advanced. However, our study reveals that existing DF datasets fail to deceive human perception, unlike real DF attacks that influence public discourse. It highlights the need for more realistic DF attack vectors. We introduce PhonemeFake (PF), a DF attack that manipulates critical speech segments using language reasoning, significantly reducing human perception by up to 42% and benchmark accuracies by up to 94%. We release an easy-to-use PF dataset on HuggingFace and open-source bilevel DF segment detection model that adaptively prioritizes compute on manipulated regions. Our extensive experiments across three known DF datasets reveal that our detection model reduces EER by 91% while achieving up to 90% speed-up, with minimal compute overhead and precise localization beyond existing models as a scalable solution.

Authors:Yanran Wu, Inez Hua, Yi Ding
Title: Not All Water Consumption Is Equal: A Water Stress Weighted Metric for Sustainable Computing
Abstract:
Water consumption is an increasingly critical dimension of computing sustainability, especially as AI workloads rapidly scale. However, current water impact assessment often overlooks where and when water stress is more severe. To fill in this gap, we present SCARF, the first general framework that evaluates water impact of computing by factoring in both spatial and temporal variations in water stress. SCARF calculates an Adjusted Water Impact (AWI) metric that considers both consumption volume and local water stress over time. Through three case studies on LLM serving, datacenters, and semiconductor fabrication plants, we show the hidden opportunities for reducing water impact by optimizing location and time choices, paving the way for water-sustainable computing. The code is available at https://github.com/jojacola/SCARF.

Authors:Havvanur Dervişoğlu, Ruşen Halepmollası, Elif Eyvaz
Title: Privacy-Preserving Methods for Bug Severity Prediction
Abstract:
Bug severity prediction is a critical task in software engineering as it enables more efficient resource allocation and prioritization in software maintenance. While AI-based analyses and models significantly require access to extensive datasets, industrial applications face challenges due to data-sharing constraints and the limited availability of labeled data. In this study, we investigate method-level bug severity prediction using source code metrics and Large Language Models (LLMs) with two widely used datasets. We compare the performance of models trained using centralized learning, federated learning, and synthetic data generation. Our experimental results, obtained using two widely recognized software defect datasets, indicate that models trained with federated learning and synthetic data achieve comparable results to centrally trained models without data sharing. Our finding highlights the potential of privacy-preserving approaches such as federated learning and synthetic data generation to enable effective bug severity prediction in industrial context where data sharing is a major challenge. The source code and dataset are available at our GitHub repository: https://github.com/drvshavva/EASE2025-Privacy-Preserving-Methods-for-Bug-Severity-Prediction.

Authors:Jiang Yuan, JI Ma, Bo Wang, Guanzhou Ke, Weiming Hu
Title: LightBSR: Towards Lightweight Blind Super-Resolution via Discriminative Implicit Degradation Representation Learning
Abstract:
Implicit degradation estimation-based blind super-resolution (IDE-BSR) hinges on extracting the implicit degradation representation (IDR) of the LR image and adapting it to LR image features to guide HR detail restoration. Although IDE-BSR has shown potential in dealing with noise interference and complex degradations, existing methods ignore the importance of IDR discriminability for BSR and instead over-complicate the adaptation process to improve effect, resulting in a significant increase in the model's parameters and computations. In this paper, we focus on the discriminability optimization of IDR and propose a new powerful and lightweight BSR model termed LightBSR. Specifically, we employ a knowledge distillation-based learning framework. We first introduce a well-designed degradation-prior-constrained contrastive learning technique during teacher stage to make the model more focused on distinguishing different degradation types. Then we utilize a feature alignment technique to transfer the degradation-related knowledge acquired by the teacher to the student for practical inferencing. Extensive experiments demonstrate the effectiveness of IDR discriminability-driven BSR model design. The proposed LightBSR can achieve outstanding performance with minimal complexity across a range of blind SR tasks. Our code is accessible at: https://github.com/MJ-NCEPU/LightBSR.

Authors:Brian Mak, Jeffrey Flanigan
Title: Residual Matrix Transformers: Scaling the Size of the Residual Stream
Abstract:
The residual stream acts as a memory bus where transformer layers both store and access features (Elhage et al., 2021). We consider changing the mechanism for retrieving and storing information in the residual stream, and replace the residual stream of the transformer with an outer product memory matrix (Kohonen, 1972, Anderson, 1972). We call this model the Residual Matrix Transformer (RMT). We find that the RMT enjoys a number of attractive properties: 1) the size of the residual stream can be scaled independently of compute and model size, improving performance, 2) the RMT can achieve the same loss as the transformer with 58% fewer FLOPS, 25% fewer parameters, and 41% fewer training tokens tokens, and 3) the RMT outperforms the transformer on downstream evaluations. We theoretically analyze the transformer and the RMT, and show that the RMT allows for more efficient scaling of the residual stream, as well as improved variance propagation properties. Code for this project can be found at https://github.com/bmac3/residual-matrix-transformer.

Authors:Anh Bui, Trang Vu, Trung Le, Junae Kim, Tamas Abraham, Rollin Omari, Amar Kaur, Dinh Phung
Title: Mitigating Semantic Collapse in Generative Personalization with Test-Time Embedding Adjustment
Abstract:
In this paper, we investigate the semantic collapsing problem in generative personalization, an under-explored topic where the learned visual concept ($V$) gradually shifts from its original textual meaning and comes to dominate other concepts in multi-concept input prompts. This issue not only reduces the semantic richness of complex input prompts like "a photo of $V$ wearing glasses and playing guitar" into simpler, less contextually rich forms such as "a photo of $V$" but also leads to simplified output images that fail to capture the intended concept. We identify the root cause as unconstrained optimisation, which allows the learned embedding $V$ to drift arbitrarily in the embedding space, both in direction and magnitude. To address this, we propose a simple yet effective training-free method that adjusts the magnitude and direction of pre-trained embedding at inference time, effectively mitigating the semantic collapsing problem. Our method is broadly applicable across different personalization methods and demonstrates significant improvements in text-image alignment in diverse use cases. Our code is anonymously published at https://github.com/tuananhbui89/Embedding-Adjustment

Authors:Haoxuan Wang, Zhenghao Zhao, Junyi Wu, Yuzhang Shang, Gaowen Liu, Yan Yan
Title: CaO$_2$: Rectifying Inconsistencies in Diffusion-Based Dataset Distillation
Abstract:
The recent introduction of diffusion models in dataset distillation has shown promising potential in creating compact surrogate datasets for large, high-resolution target datasets, offering improved efficiency and performance over traditional bi-level/uni-level optimization methods. However, current diffusion-based dataset distillation approaches overlook the evaluation process and exhibit two critical inconsistencies in the distillation process: (1) Objective Inconsistency, where the distillation process diverges from the evaluation objective, and (2) Condition Inconsistency, leading to mismatches between generated images and their corresponding conditions. To resolve these issues, we introduce Condition-aware Optimization with Objective-guided Sampling (CaO$_2$), a two-stage diffusion-based framework that aligns the distillation process with the evaluation objective. The first stage employs a probability-informed sample selection pipeline, while the second stage refines the corresponding latent representations to improve conditional likelihood. CaO$_2$ achieves state-of-the-art performance on ImageNet and its subsets, surpassing the best-performing baselines by an average of 2.3% accuracy.

Authors:Arunkumar Kannan, Martin A. Lindquist, Brian Caffo
Title: BrainMT: A Hybrid Mamba-Transformer Architecture for Modeling Long-Range Dependencies in Functional MRI Data
Abstract:
Recent advances in deep learning have made it possible to predict phenotypic measures directly from functional magnetic resonance imaging (fMRI) brain volumes, sparking significant interest in the neuroimaging community. However, existing approaches, primarily based on convolutional neural networks or transformer architectures, often struggle to model the complex relationships inherent in fMRI data, limited by their inability to capture long-range spatial and temporal dependencies. To overcome these shortcomings, we introduce BrainMT, a novel hybrid framework designed to efficiently learn and integrate long-range spatiotemporal attributes in fMRI data. Our framework operates in two stages: (1) a bidirectional Mamba block with a temporal-first scanning mechanism to capture global temporal interactions in a computationally efficient manner; and (2) a transformer block leveraging self-attention to model global spatial relationships across the deep features processed by the Mamba block. Extensive experiments on two large-scale public datasets, UKBioBank and the Human Connectome Project, demonstrate that BrainMT achieves state-of-the-art performance on both classification (sex prediction) and regression (cognitive intelligence prediction) tasks, outperforming existing methods by a significant margin. Our code and implementation details will be made publicly available at this https://github.com/arunkumar-kannan/BrainMT-fMRI

Authors:Vasilis Siomos, Jonathan Passerat-Palmbach, Giacomo Tarroni
Title: FedCLAM: Client Adaptive Momentum with Foreground Intensity Matching for Federated Medical Image Segmentation
Abstract:
Federated learning is a decentralized training approach that keeps data under stakeholder control while achieving superior performance over isolated training. While inter-institutional feature discrepancies pose a challenge in all federated settings, medical imaging is particularly affected due to diverse imaging devices and population variances, which can diminish the global model's effectiveness. Existing aggregation methods generally fail to adapt across varied circumstances. To address this, we propose FedCLAM, which integrates \textit{client-adaptive momentum} terms derived from each client's loss reduction during local training, as well as a \textit{personalized dampening factor} to curb overfitting. We further introduce a novel \textit{intensity alignment} loss that matches predicted and ground-truth foreground distributions to handle heterogeneous image intensity profiles across institutions and devices. Extensive evaluations on two datasets show that FedCLAM surpasses eight cutting-edge methods in medical segmentation tasks, underscoring its efficacy. The code is available at https://github.com/siomvas/FedCLAM.

Authors:Mrunmayi Mungekar, Sanjith Menon, M. Ravi Shankar, M. Khalid Jawed
Title: Directed Shape Morphing using Kirigami-enhanced Thermoplastics
Abstract:
We present a simple, accessible method for autonomously transforming flat plastic sheets into intricate three-dimensional structures using only uniform heating and common tools such as household ovens and scissors. Our approach combines heat-shrinkable thermoplastics with Kirigami patterns tailored to the target 3D shape, creating bilayer composites that morph into a wide range of complex structures, e.g., bowls, pyramids, and even custom ergonomic surfaces like mouse covers. Critically, the transformation is driven by a low-information stimulus (uniform heat) yet produces highly intricate shapes through programmed geometric design. The morphing behavior, confirmed by finite element simulations, arises from strain mismatch between the contracting thermoplastic layer and the constraining Kirigami layer. By decoupling material composition from mechanical response, this method avoids detailed process control and enables a broad class of self-morphing structures, offering a versatile platform for adaptive design and scalable manufacturing.

Authors:Hang Xu, Jie Huang, Linjiang Huang, Dong Li, Yidi Liu, Feng Zhao
Title: FreeDNA: Endowing Domain Adaptation of Diffusion-Based Dense Prediction with Training-Free Domain Noise Alignment
Abstract:
Domain Adaptation(DA) for dense prediction tasks is an important topic, which enhances the dense prediction model's performance when tested on its unseen domain. Recently, with the development of Diffusion-based Dense Prediction (DDP) models, the exploration of DA designs tailored to this framework is worth exploring, since the diffusion model is effective in modeling the distribution transformation that comprises domain information. In this work, we propose a training-free mechanism for DDP frameworks, endowing them with DA capabilities. Our motivation arises from the observation that the exposure bias (e.g., noise statistics bias) in diffusion brings domain shift, and different domains in conditions of DDP models can also be effectively captured by the noise prediction statistics. Based on this, we propose a training-free Domain Noise Alignment (DNA) approach, which alleviates the variations of noise statistics to domain changes during the diffusion sampling process, thereby achieving domain adaptation. Specifically, when the source domain is available, we directly adopt the DNA method to achieve domain adaptation by aligning the noise statistics of the target domain with those of the source domain. For the more challenging source-free DA, inspired by the observation that regions closer to the source domain exhibit higher confidence meeting variations of sampling noise, we utilize the statistics from the high-confidence regions progressively to guide the noise statistic adjustment during the sampling process. Notably, our method demonstrates the effectiveness of enhancing the DA capability of DDP models across four common dense prediction tasks. Code is available at \href{https://github.com/xuhang07/FreeDNA}{https://github.com/xuhang07/FreeDNA}.

Authors:Chenyang Shao, Tianxing Li, Chenhao Pu, Fengli Xu, Yong Li
Title: AgentStealth: Reinforcing Large Language Model for Anonymizing User-generated Text
Abstract:
In today's digital world, casual user-generated content often contains subtle cues that may inadvertently expose sensitive personal attributes. Such risks underscore the growing importance of effective text anonymization to safeguard individual privacy. However, existing methods either rely on rigid replacements that damage utility or cloud-based LLMs that are costly and pose privacy risks. To address these issues, we explore the use of locally deployed smaller-scale language models (SLMs) for anonymization. Yet training effective SLMs remains challenging due to limited high-quality supervision. To address the challenge, we propose AgentStealth, a self-reinforcing LLM anonymization framework.First, we introduce an adversarial anonymization workflow enhanced by In-context Contrastive Learning and Adaptive Utility-Aware Control. Second, we perform supervised adaptation of SLMs using high-quality data collected from the workflow, which includes both anonymization and attack signals. Finally, we apply online reinforcement learning where the model leverages its internal adversarial feedback to iteratively improve anonymization performance. Experiments on two datasets show that our method outperforms baselines in both anonymization effectiveness (+12.3%) and utility (+6.8%). Our lightweight design supports direct deployment on edge devices, avoiding cloud reliance and communication-based privacy risks. Our code is open-source at https://github.com/tsinghua-fib-lab/AgentStealth.

Authors:Hassan Baker, Matthew S. Emigh, Austin J. Brockmeier
Title: Weakly Supervised Object Segmentation by Background Conditional Divergence
Abstract:
As a computer vision task, automatic object segmentation remains challenging in specialized image domains without massive labeled data, such as synthetic aperture sonar images, remote sensing, biomedical imaging, etc. In any domain, obtaining pixel-wise segmentation masks is expensive. In this work, we propose a method for training a masking network to perform binary object segmentation using weak supervision in the form of image-wise presence or absence of an object of interest, which provides less information but may be obtained more quickly from manual or automatic labeling. A key step in our method is that the segmented objects can be placed into background-only images to create realistic, images of the objects with counterfactual backgrounds. To create a contrast between the original and counterfactual background images, we propose to first cluster the background-only images, and then during learning create counterfactual images that blend objects segmented from their original source backgrounds to backgrounds chosen from a targeted cluster. One term in the training loss is the divergence between these counterfactual images and the real object images with backgrounds of the target cluster. The other term is a supervised loss for background-only images. While an adversarial critic could provide the divergence, we use sample-based divergences. We conduct experiments on side-scan and synthetic aperture sonar in which our approach succeeds compared to previous unsupervised segmentation baselines that were only tested on natural images. Furthermore, to show generality we extend our experiments to natural images, obtaining reasonable performance with our method that avoids pretrained networks, generative networks, and adversarial critics. The basecode for this work can be found at \href{GitHub}{https://github.com/bakerhassan/WSOS}.

Authors:Hassan Baker, Austin J. Brockmeier
Title: Patch2Loc: Learning to Localize Patches for Unsupervised Brain Lesion Detection
Abstract:
Detecting brain lesions as abnormalities observed in magnetic resonance imaging (MRI) is essential for diagnosis and treatment. In the search of abnormalities, such as tumors and malformations, radiologists may benefit from computer-aided diagnostics that use computer vision systems trained with machine learning to segment normal tissue from abnormal brain tissue. While supervised learning methods require annotated lesions, we propose a new unsupervised approach (Patch2Loc) that learns from normal patches taken from structural MRI. We train a neural network model to map a patch back to its spatial location within a slice of the brain volume. During inference, abnormal patches are detected by the relatively higher error and/or variance of the location prediction. This generates a heatmap that can be integrated into pixel-wise methods to achieve finer-grained segmentation. We demonstrate the ability of our model to segment abnormal brain tissues by applying our approach to the detection of tumor tissues in MRI on T2-weighted images from BraTS2021 and MSLUB datasets and T1-weighted images from ATLAS and WMH datasets. We show that it outperforms the state-of-the art in unsupervised segmentation. The codebase for this work can be found on our \href{https://github.com/bakerhassan/Patch2Loc}{GitHub page}.

Authors:Weiyi Zhao, Xiaoyu Tan, Liang Liu, Sijia Li, Youwei Song, Xihe Qiu
Title: Visual-Semantic Knowledge Conflicts in Operating Rooms: Synthetic Data Curation for Surgical Risk Perception in Multimodal Large Language Models
Abstract:
Surgical risk identification is critical for patient safety and reducing preventable medical errors. While multimodal large language models (MLLMs) show promise for automated operating room (OR) risk detection, they often exhibit visual-semantic knowledge conflicts (VS-KC), failing to identify visual safety violations despite understanding textual rules. To address this, we introduce a dataset comprising over 34,000 synthetic images generated by diffusion models, depicting operating room scenes containing entities that violate established safety rules. These images were created to alleviate data scarcity and examine MLLMs vulnerabilities. In addition, the dataset includes 214 human-annotated images that serve as a gold-standard reference for validation. This comprehensive dataset, spanning diverse perspectives, stages, and configurations, is designed to expose and study VS-KC. Fine-tuning on OR-VSKC significantly improves MLLMs' detection of trained conflict entities and generalizes well to new viewpoints for these entities, but performance on untrained entity types remains poor, highlighting learning specificity and the need for comprehensive training. The main contributions of this work include: (1) a data generation methodology tailored for rule-violation scenarios; (2) the release of the OR-VSKC dataset and its associated benchmark as open-source resources; and (3) an empirical analysis of violation-sensitive knowledge consistency in representative MLLMs. The dataset and appendix are available at https://github.com/zgg2577/VS-KC.

Authors:Muhammad Ahmed Mohsin, Muhammad Umer, Ahsan Bilal, Muhammad Ali Jamshed, John M. Cioffi
Title: Continual Learning for Wireless Channel Prediction
Abstract:
Modern 5G/6G deployments routinely face cross-configuration handovers--users traversing cells with different antenna layouts, carrier frequencies, and scattering statistics--which inflate channel-prediction NMSE by $37.5\%$ on average when models are naively fine-tuned. The proposed improvement frames this mismatch as a continual-learning problem and benchmarks three adaptation families: replay with loss-aware reservoirs, synaptic-importance regularization, and memory-free learning-without-forgetting. Across three representative 3GPP urban micro scenarios, the best replay and regularization schemes cut the high-SNR error floor by up to 2~dB ($\approx 35\%$), while even the lightweight distillation recovers up to $30\%$ improvement over baseline handover prediction schemes. These results show that targeted rehearsal and parameter anchoring are essential for handover-robust CSI prediction and suggest a clear migration path for embedding continual-learning hooks into current channel prediction efforts in 3GPP--NR and O-RAN. The full codebase can be found at https://github.com/ahmd-mohsin/continual-learning-channel-prediction.git.

Authors:Weizhi Gao, Zhichao Hou, Junqi Yin, Feiyi Wang, Linyu Peng, Xiaorui Liu
Title: Modulated Diffusion: Accelerating Generative Modeling with Modulated Quantization
Abstract:
Diffusion models have emerged as powerful generative models, but their high computation cost in iterative sampling remains a significant bottleneck. In this work, we present an in-depth and insightful study of state-of-the-art acceleration techniques for diffusion models, including caching and quantization, revealing their limitations in computation error and generation quality. To break these limits, this work introduces Modulated Diffusion (MoDiff), an innovative, rigorous, and principled framework that accelerates generative modeling through modulated quantization and error compensation. MoDiff not only inherents the advantages of existing caching and quantization methods but also serves as a general framework to accelerate all diffusion models. The advantages of MoDiff are supported by solid theoretical insight and analysis. In addition, extensive experiments on CIFAR-10 and LSUN demonstrate that MoDiff significant reduces activation quantization from 8 bits to 3 bits without performance degradation in post-training quantization (PTQ). Our code implementation is available at https://github.com/WeizhiGao/MoDiff.

Authors:Petr Pechman, Milan Straka, Jana Straková, Jakub Náplava
Title: Refining Czech GEC: Insights from a Multi-Experiment Approach
Abstract:
We present a grammar error correction (GEC) system that achieves state of the art for the Czech language. Our system is based on a neural network translation approach with the Transformer architecture, and its key feature is its real-time synthetic generation pipeline, which dynamically augments sentences with artificial errors by introducing both language-agnostic and Czech-specific errors. We conduct a comprehensive series of experiments, investigating the Czech GEC corpora as bases for synthetic error introduction, several error generation strategies, domain balancing, tokenization granularity, model size, and data scaling during fine-tuning. Additionally, we evaluate the performance of large language models (LLMs) on Czech GEC in both end-user and expert fine-tuning scenarios. Our best-performing model is superior both in performance and computational efficiency. The source code and the trained model links are available on https://github.com/ufal/tsd2025-gec.

Authors:Youkang Wang, Jian Wang, Rubing Chen, Xiao-Yong Wei
Title: Probabilistic Optimality for Inference-time Scaling
Abstract:
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop OptScale, a practical algorithm that dynamically determines the optimal number of sampled responses. OptScale employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that OptScale significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning. The source code is publicly available at https://github.com/Albertwyk/OptScale.

Authors:Adiba Ejaz, Elias Bareinboim
Title: Less Greedy Equivalence Search
Abstract:
Greedy Equivalence Search (GES) is a classic score-based algorithm for causal discovery from observational data. In the sample limit, it recovers the Markov equivalence class of graphs that describe the data. Still, it faces two challenges in practice: computational cost and finite-sample accuracy. In this paper, we develop Less Greedy Equivalence Search (LGES), a variant of GES that retains its theoretical guarantees while partially addressing these limitations. LGES modifies the greedy step: rather than always applying the highest-scoring insertion, it avoids edge insertions between variables for which the score implies some conditional independence. This more targeted search yields up to a \(10\)-fold speed-up and a substantial reduction in structural error relative to GES. Moreover, LGES can guide the search using prior assumptions, while correcting these assumptions when contradicted by the data. Finally, LGES can exploit interventional data to refine the learned observational equivalence class. We prove that LGES recovers the true equivalence class in the sample limit from observational and interventional data, even with misspecified prior assumptions. Experiments demonstrate that LGES outperforms GES and other baselines in speed, accuracy, and robustness to misspecified assumptions. Our code is available at https://github.com/CausalAILab/lges.

Authors:Yuliang Huang, Imraj Singh, Thomas Joyce, Kris Thielemans, Jamie R. McClelland
Title: DIGS: Dynamic CBCT Reconstruction using Deformation-Informed 4D Gaussian Splatting and a Low-Rank Free-Form Deformation Model
Abstract:
3D Cone-Beam CT (CBCT) is widely used in radiotherapy but suffers from motion artifacts due to breathing. A common clinical approach mitigates this by sorting projections into respiratory phases and reconstructing images per phase, but this does not account for breathing variability. Dynamic CBCT instead reconstructs images at each projection, capturing continuous motion without phase sorting. Recent advancements in 4D Gaussian Splatting (4DGS) offer powerful tools for modeling dynamic scenes, yet their application to dynamic CBCT remains underexplored. Existing 4DGS methods, such as HexPlane, use implicit motion representations, which are computationally expensive. While explicit low-rank motion models have been proposed, they lack spatial regularization, leading to inconsistencies in Gaussian motion. To address these limitations, we introduce a free-form deformation (FFD)-based spatial basis function and a deformation-informed framework that enforces consistency by coupling the temporal evolution of Gaussian's mean position, scale, and rotation under a unified deformation field. We evaluate our approach on six CBCT datasets, demonstrating superior image quality with a 6x speedup over HexPlane. These results highlight the potential of deformation-informed 4DGS for efficient, motion-compensated CBCT reconstruction. The code is available at https://github.com/Yuliang-Huang/DIGS.

Authors:Filippo Merlo, Ece Takmaz, Wenkai Chen, Albert Gatt
Title: COOCO -- Common Objects Out-of-Context -- Semantic Violation in Scenes: Investigating Multimodal Context in Referential Communication
Abstract:
Natural scenes provide us with rich contexts for object recognition and reference. In particular, knowing what type of scene one is looking at generates expectations about which objects will occur, and what their spatial configuration should be. Do Vision-Language Models (VLMs) learn to rely on scene contexts in a similar way, when generating references to objects? To address this question, we introduce the \textit{Common Objects Out-of-Context (COOCO)} dataset and test to what extent VLMs rely on scene context to refer to objects under different degrees of scene-object congruency, and different perturbations. Our findings show that models leverage scene context adaptively, depending on both the semantic relatedness between object and scene and the level of noise. In particular, models rely more on context under high target-scene congruence or when objects are degraded. Attention analysis reveals that successful object categorisation involves increased focus on the target in mid-level layers, especially under moderate noise, suggesting that VLMs dynamically balance local and contextual information for reference generation. We make our dataset, code and models available at \href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}.

Authors:Evgeny Dedov
Title: JointRank: Rank Large Set with Single Pass
Abstract:
Efficiently ranking relevant items from large candidate pools is a cornerstone of modern information retrieval systems -- such as web search, recommendation, and retrieval-augmented generation. Listwise rerankers, which improve relevance by jointly considering multiple candidates, are often limited in practice: either by model input size constraints, or by degraded quality when processing large sets. We propose a model-agnostic method for fast reranking large sets that exceed a model input limits. The method first partitions candidate items into overlapping blocks, each of which is ranked independently in parallel. Implicit pairwise comparisons are then derived from these local rankings. Finally, these comparisons are aggregated to construct a global ranking using algorithms such as Winrate or PageRank. Experiments on TREC DL-2019 show that our method achieves an nDCG@10 of 70.88 compared to the 57.68 for full-context listwise approach using gpt-4.1-mini as long-context model, while reducing latency from 21 to 8 seconds. The implementation of the algorithm and the experiments is available in the repository: https://github.com/V3RGANz/jointrank

Authors:Ajay Mittal, Raghav Mehta, Omar Todd, Philipp Seeböck, Georg Langs, Ben Glocker
Title: Cardiovascular disease classification using radiomics and geometric features from cardiac CT
Abstract:
Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net

Authors:Chen Wang, Lai Wei, Yanzhi Zhang, Chenyang Shao, Zedong Dan, Weiran Huang, Yue Wang, Yuzhi Zhang
Title: EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Abstract:
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filter-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame not only enables fine-grained categorization of training samples for deeper insight into their contributions, but also introduces an efficient and precise mechanism for entropy control, which is critical for balancing exploration and convergence in RL training. Our code is available at https://github.com/597358816/EFRame.

Authors:Chen Wang, Lai Wei, Yanzhi Zhang, Chenyang Shao, Zedong Dan, Weiran Huang, Yuzhi Zhang, Yue Wang
Title: EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Abstract:
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), a lightweight variant of Proximal Policy Optimization (PPO), improves efficiency but suffers from limited exploration and training instability, limiting its effectiveness on complex reasoning tasks. To address these challenges, we introduce EFRame, an Exploration-Filter-Replay framework that augments GRPO across three dimensions: additional rollouts enable deeper and more targeted exploration, online filtering removes low-quality samples to stabilize gradients and accelerate training, and experience replay amplifies rare yet informative trajectories for stable convergence. This unified framework establishes a principled training cycle that balances exploration, efficiency, and stability. Experiments on diverse reasoning benchmarks demonstrate that EFRame achieves consistent gains, including a 37.9\% relative improvement on Geometry3K over GRPO. EFRame further supports fine-grained sample categorization and precise entropy control, highlighting it as a robust solution for advancing deeper reasoning in LLMs. Our code is available at https://github.com/597358816/EFRame.

Authors:Ronald Fecso, José Morano, Ursula Schmidt-Erfurth, Hrvoje Bogunović
Title: RetFiner: A Vision-Language Refinement Scheme for Retinal Foundation Models
Abstract:
The rise of imaging techniques such as optical coherence tomography (OCT) and advances in deep learning (DL) have enabled clinicians and researchers to streamline retinal disease staging. A popular DL approach is self-supervised learning (SSL), where models learn from vast amounts of unlabeled data, avoiding costly annotation. SSL has allowed the development of foundation models (FMs), large models that can be used for a variety of downstream tasks. However, existing FMs for OCT, trained solely on image data, lack a comprehensive and robust semantic understanding of images, as evidenced by their downstream performance (especially for complex tasks), and thus require supervised fine-tuning (which may be unfeasible) to better adapt to specific applications and populations. To address this, we propose RetFiner, an SSL vision-language refinement scheme that improves the representations of existing FMs and enables their efficient and direct adaptation to specific populations for improved downstream performance. Our method uses a diverse set of training objectives which take advantage of the rich supervisory signal found in textual data. We tested RetFiner on the retinal FMs RETFound, UrFound, and VisionFM, showing significant improvements in linear probing performance on seven highly diverse OCT classification tasks, with an average increase of 5.8, 3.9, and 2.1 percentage points over their baselines, respectively. Our code and model weights are publicly available at https://github.com/ronnief1/RetFiner.

Authors:Zhengyun Cheng, Ruizhe Zhang, Guanwen Zhang, Yi Xu, Xiangyang Ji, Wei Zhou
Title: Low-Rank Tensor Recovery via Variational Schatten-p Quasi-Norm and Jacobian Regularization
Abstract:
Higher-order tensors are well-suited for representing multi-dimensional data, such as images and videos, which typically characterize low-rank structures. Low-rank tensor decomposition has become essential in machine learning and computer vision, but existing methods like Tucker decomposition offer flexibility at the expense of interpretability. The CANDECOMP/PARAFAC (CP) decomposition provides a natural and interpretable structure, while obtaining a sparse solutions remains challenging. Leveraging the rich properties of CP decomposition, we propose a CP-based low-rank tensor function parameterized by neural networks (NN) for implicit neural representation. This approach can model the tensor both on-grid and beyond grid, fully utilizing the non-linearity of NN with theoretical guarantees on excess risk bounds. To achieve sparser CP decomposition, we introduce a variational Schatten-p quasi-norm to prune redundant rank-1 components and prove that it serves as a common upper bound for the Schatten-p quasi-norms of arbitrary unfolding matrices. For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator. The proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations. It can serve as an alternative to Total Variation (TV) regularization in image denoising tasks and is naturally applicable to implicit neural representation. Extensive experiments on multi-dimensional data recovery tasks, including image inpainting, denoising, and point cloud upsampling, demonstrate the superiority and versatility of our method compared to state-of-the-art approaches. The code is available at https://github.com/CZY-Code/CP-Pruner.

Authors:Noora Sassali, Roel Pieters
Title: Evaluating Pointing Gestures for Target Selection in Human-Robot Collaboration
Abstract:
Pointing gestures are a common interaction method used in Human-Robot Collaboration for various tasks, ranging from selecting targets to guiding industrial processes. This study introduces a method for localizing pointed targets within a planar workspace. The approach employs pose estimation, and a simple geometric model based on shoulder-wrist extension to extract gesturing data from an RGB-D stream. The study proposes a rigorous methodology and comprehensive analysis for evaluating pointing gestures and target selection in typical robotic tasks. In addition to evaluating tool accuracy, the tool is integrated into a proof-of-concept robotic system, which includes object detection, speech transcription, and speech synthesis to demonstrate the integration of multiple modalities in a collaborative application. Finally, a discussion over tool limitations and performance is provided to understand its role in multimodal robotic systems. All developments are available at: https://github.com/NMKsas/gesture_pointer.git.

Authors:Hyeongji Kim, Stine Hansen, Michael Kampffmeyer
Title: Tied Prototype Model for Few-Shot Medical Image Segmentation
Abstract:
Common prototype-based medical image few-shot segmentation (FSS) methods model foreground and background classes using class-specific prototypes. However, given the high variability of the background, a more promising direction is to focus solely on foreground modeling, treating the background as an anomaly -- an approach introduced by ADNet. Yet, ADNet faces three key limitations: dependence on a single prototype per class, a focus on binary classification, and fixed thresholds that fail to adapt to patient and organ variability. To address these shortcomings, we propose the Tied Prototype Model (TPM), a principled reformulation of ADNet with tied prototype locations for foreground and background distributions. Building on its probabilistic foundation, TPM naturally extends to multiple prototypes and multi-class segmentation while effectively separating non-typical background features. Notably, both extensions lead to improved segmentation accuracy. Finally, we leverage naturally occurring class priors to define an ideal target for adaptive thresholds, boosting segmentation performance. Taken together, TPM provides a fresh perspective on prototype-based FSS for medical image segmentation. The code can be found at https://github.com/hjk92g/TPM-FSS.

Authors:Zipei Ma, Junzhe Jiang, Yurui Chen, Li Zhang
Title: BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting
Abstract:
The realistic reconstruction of street scenes is critical for developing real-world simulators in autonomous driving. Most existing methods rely on object pose annotations, using these poses to reconstruct dynamic objects and move them during the rendering process. This dependence on high-precision object annotations limits large-scale and extensive scene reconstruction. To address this challenge, we propose Bézier curve Gaussian splatting (BézierGS), which represents the motion trajectories of dynamic objects using learnable Bézier curves. This approach fully leverages the temporal information of dynamic objects and, through learnable curve modeling, automatically corrects pose errors. By introducing additional supervision on dynamic object rendering and inter-curve consistency constraints, we achieve reasonable and accurate separation and reconstruction of scene elements. Extensive experiments on the Waymo Open Dataset and the nuPlan benchmark demonstrate that BézierGS outperforms state-of-the-art alternatives in both dynamic and static scene components reconstruction and novel view synthesis.

Authors:Tianhao Chen, Xin Xu, Zijing Liu, Pengxiang Li, Xinyuan Song, Ajay Kumar Jaiswal, Fan Zhang, Jishan Hu, Yang Wang, Hao Chen, Shizhe Diao, Shiwei Liu, Yu Li, Lu Yin, Can Yang
Title: GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Abstract:
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.

Authors:Hong Nie, Fuyuan Cao, Lu Chen, Fengxin Chen, Yuefeng Zou, Jun Yu
Title: Few-Shot Identity Adaptation for 3D Talking Heads via Global Gaussian Field
Abstract:
Reconstruction and rendering-based talking head synthesis methods achieve high-quality results with strong identity preservation but are limited by their dependence on identity-specific models. Each new identity requires training from scratch, incurring high computational costs and reduced scalability compared to generative model-based approaches. To overcome this limitation, we propose FIAG, a novel 3D speaking head synthesis framework that enables efficient identity-specific adaptation using only a few training footage. FIAG incorporates Global Gaussian Field, which supports the representation of multiple identities within a shared field, and Universal Motion Field, which captures the common motion dynamics across diverse identities. Benefiting from the shared facial structure information encoded in the Global Gaussian Field and the general motion priors learned in the motion field, our framework enables rapid adaptation from canonical identity representations to specific ones with minimal data. Extensive comparative and ablation experiments demonstrate that our method outperforms existing state-of-the-art approaches, validating both the effectiveness and generalizability of the proposed framework. Code is available at: \textit{https://github.com/gme-hong/FIAG}.

Authors:Lu Han, Yu Liu, Qiwen Deng, Jian Jiang, Yinbo Sun, Zhe Yu, Binfeng Wang, Xingyu Lu, Lintao Ma, Han-Jia Ye, De-Chuan Zhan
Title: UniCA: Adapting Time Series Foundation Model to General Covariate-Aware Forecasting
Abstract:
Time Series Foundation Models (TSFMs) have achieved remarkable success through large-scale pretraining. However, their design primarily targets real-valued series, limiting their ability to handle general forecasting tasks involving diverse and often heterogeneous covariates--such as categorical variables and multimodal data (e.g., images, text)--which are typically task-specific and difficult to leverage during pretraining. To address this gap, we propose Unified Covariate Adaptation (UniCA), a framework to bridge TSFMs with general covariate-aware forecasting. UniCA first performs covariate homogenization to transform heterogeneous covariates into high-level homogeneous series representations and then fuses them via a unified attention-based fusion mechanism. UniCA is compatible and universal for adaptation with both homogeneous and heterogeneous covariates, incorporating extra covariate information while preserving the generalization ability of TSFMs.Extensive experiments on multiple unimodal and multimodal covariate-aware forecasting benchmarks demonstrate the superiority of UniCA, highlighting the promise of covariate-aware TSFM adaptation in real-world forecasting scenarios. Codes are released on https://github.com/hanlu-nju/UniCA.

Authors:Ossi Parikka, Roel Pieters
Title: LMPVC and Policy Bank: Adaptive voice control for industrial robots with code generating LLMs and reusable Pythonic policies
Abstract:
Modern industry is increasingly moving away from mass manufacturing, towards more specialized and personalized products. As manufacturing tasks become more complex, full automation is not always an option, human involvement may be required. This has increased the need for advanced human robot collaboration (HRC), and with it, improved methods for interaction, such as voice control. Recent advances in natural language processing, driven by artificial intelligence (AI), have the potential to answer this demand. Large language models (LLMs) have rapidly developed very impressive general reasoning capabilities, and many methods of applying this to robotics have been proposed, including through the use of code generation. This paper presents Language Model Program Voice Control (LMPVC), an LLM-based prototype voice control architecture with integrated policy programming and teaching capabilities, built for use with Robot Operating System 2 (ROS2) compatible robots. The architecture builds on prior works using code generation for voice control by implementing an additional programming and teaching system, the Policy Bank. We find this system can compensate for the limitations of the underlying LLM, and allow LMPVC to adapt to different downstream tasks without a slow and costly training process. The architecture and additional results are released on GitHub (https://github.com/ozzyuni/LMPVC).

Authors:Han Wang, Shengyang Li, Jian Yang, Yuxuan Liu, Yixuan Lv, Zhuang Zhou
Title: Cross-modal Ship Re-Identification via Optical and SAR Imagery: A Novel Dataset and Method
Abstract:
Detecting and tracking ground objects using earth observation imagery remains a significant challenge in the field of remote sensing. Continuous maritime ship tracking is crucial for applications such as maritime search and rescue, law enforcement, and shipping analysis. However, most current ship tracking methods rely on geostationary satellites or video satellites. The former offer low resolution and are susceptible to weather conditions, while the latter have short filming durations and limited coverage areas, making them less suitable for the real-world requirements of ship tracking. To address these limitations, we present the Hybrid Optical and Synthetic Aperture Radar (SAR) Ship Re-Identification Dataset (HOSS ReID dataset), designed to evaluate the effectiveness of ship tracking using low-Earth orbit constellations of optical and SAR sensors. This approach ensures shorter re-imaging cycles and enables all-weather tracking. HOSS ReID dataset includes images of the same ship captured over extended periods under diverse conditions, using different satellites of different modalities at varying times and angles. Furthermore, we propose a baseline method for cross-modal ship re-identification, TransOSS, which is built on the Vision Transformer architecture. It refines the patch embedding structure to better accommodate cross-modal tasks, incorporates additional embeddings to introduce more reference information, and employs contrastive learning to pre-train on large-scale optical-SAR image pairs, ensuring the model's ability to extract modality-invariant features. Our dataset and baseline method are publicly available on https://github.com/Alioth2000/Hoss-ReID.

Authors:Qi Gao, Zhihao Chen, Dong Zeng, Junping Zhang, Jianhua Ma, Hongming Shan
Title: Noise-Inspired Diffusion Model for Generalizable Low-Dose CT Reconstruction
Abstract:
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.

Authors:Tianyu Zhang, Xin Luo, Li Li, Dong Liu
Title: StableCodec: Taming One-Step Diffusion for Extreme Image Compression
Abstract:
Diffusion-based image compression has shown remarkable potential for achieving ultra-low bitrate coding (less than 0.05 bits per pixel) with high realism, by leveraging the generative priors of large pre-trained text-to-image diffusion models. However, current approaches require a large number of denoising steps at the decoder to generate realistic results under extreme bitrate constraints, limiting their application in real-time compression scenarios. Additionally, these methods often sacrifice reconstruction fidelity, as diffusion models typically fail to guarantee pixel-level consistency. To address these challenges, we introduce StableCodec, which enables one-step diffusion for high-fidelity and high-realism extreme image compression with improved coding efficiency. To achieve ultra-low bitrates, we first develop an efficient Deep Compression Latent Codec to transmit a noisy latent representation for a single-step denoising process. We then propose a Dual-Branch Coding Structure, consisting of a pair of auxiliary encoder and decoder, to enhance reconstruction fidelity. Furthermore, we adopt end-to-end optimization with joint bitrate and pixel-level constraints. Extensive experiments on the CLIC 2020, DIV2K, and Kodak dataset demonstrate that StableCodec outperforms existing methods in terms of FID, KID and DISTS by a significant margin, even at bitrates as low as 0.005 bits per pixel, while maintaining strong fidelity. Additionally, StableCodec achieves inference speeds comparable to mainstream transform coding schemes. All source code are available at https://github.com/LuizScarlet/StableCodec.

Authors:Junho Myung, Yeon Su Park, Sunwoo Kim, Shin Yoo, Alice Oh
Title: PapersPlease: A Benchmark for Evaluating Motivational Values of Large Language Models Based on ERG Theory
Abstract:
Evaluating the performance and biases of large language models (LLMs) through role-playing scenarios is becoming increasingly common, as LLMs often exhibit biased behaviors in these contexts. Building on this line of research, we introduce PapersPlease, a benchmark consisting of 3,700 moral dilemmas designed to investigate LLMs' decision-making in prioritizing various levels of human needs. In our setup, LLMs act as immigration inspectors deciding whether to approve or deny entry based on the short narratives of people. These narratives are constructed using the Existence, Relatedness, and Growth (ERG) theory, which categorizes human needs into three hierarchical levels. Our analysis of six LLMs reveals statistically significant patterns in decision-making, suggesting that LLMs encode implicit preferences. Additionally, our evaluation of the impact of incorporating social identities into the narratives shows varying responsiveness based on both motivational needs and identity cues, with some models exhibiting higher denial rates for marginalized identities. All data is publicly available at https://github.com/yeonsuuuu28/papers-please.

Authors:Liu Yang, Huiyu Duan, Jiarui Wang, Jing Liu, Menghan Hu, Xiongkuo Min, Guangtao Zhai, Patrick Le Callet
Title: Quality Assessment and Distortion-aware Saliency Prediction for AI-Generated Omnidirectional Images
Abstract:
With the rapid advancement of Artificial Intelligence Generated Content (AIGC) techniques, AI generated images (AIGIs) have attracted widespread attention, among which AI generated omnidirectional images (AIGODIs) hold significant potential for Virtual Reality (VR) and Augmented Reality (AR) applications. AI generated omnidirectional images exhibit unique quality issues, however, research on the quality assessment and optimization of AI-generated omnidirectional images is still lacking. To this end, this work first studies the quality assessment and distortion-aware saliency prediction problems for AIGODIs, and further presents a corresponding optimization process. Specifically, we first establish a comprehensive database to reflect human feedback for AI-generated omnidirectionals, termed OHF2024, which includes both subjective quality ratings evaluated from three perspectives and distortion-aware salient regions. Based on the constructed OHF2024 database, we propose two models with shared encoders based on the BLIP-2 model to evaluate the human visual experience and predict distortion-aware saliency for AI-generated omnidirectional images, which are named as BLIP2OIQA and BLIP2OISal, respectively. Finally, based on the proposed models, we present an automatic optimization process that utilizes the predicted visual experience scores and distortion regions to further enhance the visual quality of an AI-generated omnidirectional image. Extensive experiments show that our BLIP2OIQA model and BLIP2OISal model achieve state-of-the-art (SOTA) results in the human visual experience evaluation task and the distortion-aware saliency prediction task for AI generated omnidirectional images, and can be effectively used in the optimization process. The database and codes will be released on https://github.com/IntMeGroup/AIGCOIQA to facilitate future research.

Authors:Juming Xiong, Ruining Deng, Jialin Yue, Siqi Lu, Junlin Guo, Marilyn Lionts, Tianyuan Yao, Can Cui, Junchao Zhu, Chongyu Qu, Mengmeng Yin, Haichun Yang, Yuankai Huo
Title: ZeroReg3D: A Zero-shot Registration Pipeline for 3D Consecutive Histopathology Image Reconstruction
Abstract:
Histological analysis plays a crucial role in understanding tissue structure and pathology. While recent advancements in registration methods have improved 2D histological analysis, they often struggle to preserve critical 3D spatial relationships, limiting their utility in both clinical and research applications. Specifically, constructing accurate 3D models from 2D slices remains challenging due to tissue deformation, sectioning artifacts, variability in imaging techniques, and inconsistent illumination. Deep learning-based registration methods have demonstrated improved performance but suffer from limited generalizability and require large-scale training data. In contrast, non-deep-learning approaches offer better generalizability but often compromise on accuracy. In this study, we introduced ZeroReg3D, a novel zero-shot registration pipeline tailored for accurate 3D reconstruction from serial histological sections. By combining zero-shot deep learning-based keypoint matching with optimization-based affine and non-rigid registration techniques, ZeroReg3D effectively addresses critical challenges such as tissue deformation, sectioning artifacts, staining variability, and inconsistent illumination without requiring retraining or fine-tuning. The code has been made publicly available at https://github.com/hrlblab/ZeroReg3D

Authors:Justin Reinman, Sunwoong Choi
Title: CERBERUS: Crack Evaluation & Recognition Benchmark for Engineering Reliability & Urban Stability
Abstract:
CERBERUS is a synthetic benchmark designed to help train and evaluate AI models for detecting cracks and other defects in infrastructure. It includes a crack image generator and realistic 3D inspection scenarios built in Unity. The benchmark features two types of setups: a simple Fly-By wall inspection and a more complex Underpass scene with lighting and geometry challenges. We tested a popular object detection model (YOLO) using different combinations of synthetic and real crack data. Results show that combining synthetic and real data improves performance on real-world images. CERBERUS provides a flexible, repeatable way to test defect detection systems and supports future research in automated infrastructure inspection. CERBERUS is publicly available at https://github.com/justinreinman/Cerberus-Defect-Generator.

Authors:Mingquan Liu
Title: RAUM-Net: Regional Attention and Uncertainty-aware Mamba Network
Abstract:
Fine Grained Visual Categorization (FGVC) remains a challenging task in computer vision due to subtle inter class differences and fragile feature representations. Existing methods struggle in fine grained scenarios, especially when labeled data is scarce. We propose a semi supervised method combining Mamba based feature modeling, region attention, and Bayesian uncertainty. Our approach enhances local to global feature modeling while focusing on key areas during learning. Bayesian inference selects high quality pseudo labels for stability. Experiments show strong performance on FGVC benchmarks with occlusions, demonstrating robustness when labeled data is limited. Code is available at https://github.com/wxqnl/RAUM Net.

Authors:Umihiro Kamoto, Tatsuya Ishibashi, Noriyuki Kugo
Title: DIVE: Deep-search Iterative Video Exploration A Technical Report for the CVRR Challenge at CVPR 2025
Abstract:
In this report, we present the winning solution that achieved the 1st place in the Complex Video Reasoning & Robustness Evaluation Challenge 2025. This challenge evaluates the ability to generate accurate natural language answers to questions about diverse, real-world video clips. It uses the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES) benchmark, which consists of 214 unique videos and 2,400 question-answer pairs spanning 11 categories. Our method, DIVE (Deep-search Iterative Video Exploration), adopts an iterative reasoning approach, in which each input question is semantically decomposed and solved through stepwise reasoning and progressive inference. This enables our system to provide highly accurate and contextually appropriate answers to even the most complex queries. Applied to the CVRR-ES benchmark, our approach achieves 81.44% accuracy on the test set, securing the top position among all participants. This report details our methodology and provides a comprehensive analysis of the experimental results, demonstrating the effectiveness of our iterative reasoning framework in achieving robust video question answering. The code is available at https://github.com/PanasonicConnect/DIVE

Authors:Yuansheng Li, Yunhao Zou, Linwei Chen, Ying Fu
Title: Physical Degradation Model-Guided Interferometric Hyperspectral Reconstruction with Unfolding Transformer
Abstract:
Interferometric Hyperspectral Imaging (IHI) is a critical technique for large-scale remote sensing tasks due to its advantages in flux and spectral resolution. However, IHI is susceptible to complex errors arising from imaging steps, and its quality is limited by existing signal processing-based reconstruction algorithms. Two key challenges hinder performance enhancement: 1) the lack of training datasets. 2) the difficulty in eliminating IHI-specific degradation components through learning-based methods. To address these challenges, we propose a novel IHI reconstruction pipeline. First, based on imaging physics and radiometric calibration data, we establish a simplified yet accurate IHI degradation model and a parameter estimation method. This model enables the synthesis of realistic IHI training datasets from hyperspectral images (HSIs), bridging the gap between IHI reconstruction and deep learning. Second, we design the Interferometric Hyperspectral Reconstruction Unfolding Transformer (IHRUT), which achieves effective spectral correction and detail restoration through a stripe-pattern enhancement mechanism and a spatial-spectral transformer architecture. Experimental results demonstrate the superior performance and generalization capability of our method.The code and are available at https://github.com/bit1120203554/IHRUT.

Authors:Yanguang Sun, Jiexi Yan, Jianjun Qian, Chunyan Xu, Jian Yang, Lei Luo
Title: Dual-Perspective United Transformer for Object Segmentation in Optical Remote Sensing Images
Abstract:
Automatically segmenting objects from optical remote sensing images (ORSIs) is an important task. Most existing models are primarily based on either convolutional or Transformer features, each offering distinct advantages. Exploiting both advantages is valuable research, but it presents several challenges, including the heterogeneity between the two types of features, high complexity, and large parameters of the model. However, these issues are often overlooked in existing the ORSIs methods, causing sub-optimal segmentation. For that, we propose a novel Dual-Perspective United Transformer (DPU-Former) with a unique structure designed to simultaneously integrate long-range dependencies and spatial details. In particular, we design the global-local mixed attention, which captures diverse information through two perspectives and introduces a Fourier-space merging strategy to obviate deviations for efficient fusion. Furthermore, we present a gated linear feed-forward network to increase the expressive ability. Additionally, we construct a DPU-Former decoder to aggregate and strength features at different layers. Consequently, the DPU-Former model outperforms the state-of-the-art methods on multiple datasets. Code: https://github.com/CSYSI/DPU-Former.

Authors:Hang Shao, Heting Gao, Yunhang Shen, Jiawei Chen, Lijiang Li, Zuwei Long, Bo Tong, Ke Li, Xing Sun
Title: DeepTalk: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Abstract:
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.

Authors:Boyuan Sun, Jiaxing Zhao, Xihan Wei, Qibin Hou
Title: LLaVA-Scissor: Token Compression with Semantic Connected Components for Video LLMs
Abstract:
In this paper, we present LLaVA-Scissor, a training-free token compression strategy designed for video multimodal large language models. Previous methods mostly attempt to compress tokens based on attention scores, but fail to effectively capture all semantic regions and often lead to token redundancy. Differently, we propose to leverage the Semantic Connected Components (SCC) approach that assigns tokens to distinct semantic regions within the token set, ensuring comprehensive semantic coverage. The outcome is a two-step spatio-temporal token compression strategy that utilizes SCC in both spatial and temporal domains. This strategy can effectively compress tokens by representing the entire video with a set of non-overlapping semantic tokens. We conduct extensive evaluations of the token compression capabilities of LLaVA-Scissor across diverse video understanding benchmarks, including video question answering, long video understanding, and comprehensive multi-choices benchmarks. Experimental results show that the proposed LLaVA-Scissor outperforms other token compression methods, achieving superior performance in various video understanding benchmarks, particularly at low token retention ratios. Project page: https://github.com/HumanMLLM/LLaVA-Scissor.

Authors:Jiho Choi, Sang Jun Lee
Title: Periodic-MAE: Periodic Video Masked Autoencoder for rPPG Estimation
Abstract:
In this paper, we propose a method that learns a general representation of periodic signals from unlabeled facial videos by capturing subtle changes in skin tone over time. The proposed framework employs the video masked autoencoder to learn a high-dimensional spatio-temporal representation of the facial region through self-supervised learning. Capturing quasi-periodic signals in the video is crucial for remote photoplethysmography (rPPG) estimation. To account for signal periodicity, we apply frame masking in terms of video sampling, which allows the model to capture resampled quasi-periodic signals during the pre-training stage. Moreover, the framework incorporates physiological bandlimit constraints, leveraging the property that physiological signals are sparse within their frequency bandwidth to provide pulse cues to the model. The pre-trained encoder is then transferred to the rPPG task, where it is used to extract physiological signals from facial videos. We evaluate the proposed method through extensive experiments on the PURE, UBFC-rPPG, MMPD, and V4V datasets. Our results demonstrate significant performance improvements, particularly in challenging cross-dataset evaluations. Our code is available at https://github.com/ziiho08/Periodic-MAE.

Authors:Kunjal Panchal, Sunav Choudhary, Yuriy Brun, Hui Guan
Title: The Cost of Avoiding Backpropagation
Abstract:
Forward-mode automatic differentiation (FmAD) and zero-order (ZO) optimization have been proposed as memory-efficient alternatives to backpropagation (BP) for gradient computation, especially in low-resource settings. However, their practical benefits remain unclear due to two key gaps: a lack of comparison against memory-efficient BP variants, such as activation checkpointing, and a lack of a unified theoretical analysis. This work presents a comprehensive theoretical and empirical comparison of BP, FmAD, and ZO methods. Our theoretical analysis shows that while FmAD, and ZO can reduce memory usage, they incur significant costs in accuracy, convergence speed, and computation compared to BP with checkpointing. These drawbacks worsen with larger models or constrained perturbation budgets. Empirical experiments on large language and vision-language models show that BP with checkpointing outperforms FmAD and ZO variants, including those enhanced with variance reduction, achieving up to 31.1% higher accuracy, 34.8% faster convergence, and 3.8x fewer computations at comparable memory usage. Our results highlight fundamental limitations of FmAD and ZO, and reaffirm BP with checkpointing as the most effective strategy for model training under memory-constrained settings. Our code is available at https://github.com/Astuary/The_Cost_of_Avoiding_Backpropagation.

Authors:Rafael Sterzinger, Marco Peer, Robert Sablatnig
Title: Few-Shot Segmentation of Historical Maps via Linear Probing of Vision Foundation Models
Abstract:
As rich sources of history, maps provide crucial insights into historical changes, yet their diverse visual representations and limited annotated data pose significant challenges for automated processing. We propose a simple yet effective approach for few-shot segmentation of historical maps, leveraging the rich semantic embeddings of large vision foundation models combined with parameter-efficient fine-tuning. Our method outperforms the state-of-the-art on the Siegfried benchmark dataset in vineyard and railway segmentation, achieving +5% and +13% relative improvements in mIoU in 10-shot scenarios and around +20% in the more challenging 5-shot setting. Additionally, it demonstrates strong performance on the ICDAR 2021 competition dataset, attaining a mean PQ of 67.3% for building block segmentation, despite not being optimized for this shape-sensitive metric, underscoring its generalizability. Notably, our approach maintains high performance even in extremely low-data regimes (10- & 5-shot), while requiring only 689k trainable parameters - just 0.21% of the total model size. Our approach enables precise segmentation of diverse historical maps while drastically reducing the need for manual annotations, advancing automated processing and analysis in the field. Our implementation is publicly available at: https://github.com/RafaelSterzinger/few-shot-map-segmentation.

Authors:Fuying Wang, Jiacheng Xu, Lequan Yu
Title: From Token to Rhythm: A Multi-Scale Approach for ECG-Language Pretraining
Abstract:
Electrocardiograms (ECGs) play a vital role in monitoring cardiac health and diagnosing heart diseases. However, traditional deep learning approaches for ECG analysis rely heavily on large-scale manual annotations, which are both time-consuming and resource-intensive to obtain. To overcome this limitation, self-supervised learning (SSL) has emerged as a promising alternative, enabling the extraction of robust ECG representations that can be efficiently transferred to various downstream tasks. While previous studies have explored SSL for ECG pretraining and multi-modal ECG-language alignment, they often fail to capture the multi-scale nature of ECG signals. As a result, these methods struggle to learn generalized representations due to their inability to model the hierarchical structure of ECG data. To address this gap, we introduce MELP, a novel Multi-scale ECG-Language Pretraining (MELP) model that fully leverages hierarchical supervision from ECG-text pairs. MELP first pretrains a cardiology-specific language model to enhance its understanding of clinical text. It then applies three levels of cross-modal supervision-at the token, beat, and rhythm levels-to align ECG signals with textual reports, capturing structured information across different time scales. We evaluate MELP on three public ECG datasets across multiple tasks, including zero-shot ECG classification, linear probing, and transfer learning. Experimental results demonstrate that MELP outperforms existing SSL methods, underscoring its effectiveness and adaptability across diverse clinical applications. Our code is available at https://github.com/HKU-MedAI/MELP.

Authors:Yifan Liu, Xishun Liao, Haoxuan Ma, Jonathan Liu, Rohan Jadhav, Jiaqi Ma
Title: MobiVerse: Scaling Urban Mobility Simulation with Hybrid Lightweight Domain-Specific Generator and Large Language Models
Abstract:
Understanding and modeling human mobility patterns is crucial for effective transportation planning and urban development. Despite significant advances in mobility research, there remains a critical gap in simulation platforms that allow for algorithm development, policy implementation, and comprehensive evaluation at scale. Traditional activity-based models require extensive data collection and manual calibration, machine learning approaches struggle with adaptation to dynamic conditions, and treding agent-based Large Language Models (LLMs) implementations face computational constraints with large-scale simulations. To address these challenges, we propose MobiVerse, a hybrid framework leverages the efficiency of lightweight domain-specific generator for generating base activity chains with the adaptability of LLMs for context-aware modifications. A case study was conducted in Westwood, Los Angeles, where we efficiently generated and dynamically adjusted schedules for the whole population of approximately 53,000 agents on a standard PC. Our experiments demonstrate that MobiVerse successfully enables agents to respond to environmental feedback, including road closures, large gathering events like football games, and congestion, through our hybrid framework. Its modular design facilitates testing various mobility algorithms at both transportation system and agent levels. Results show our approach maintains computational efficiency while enhancing behavioral realism. MobiVerse bridges the gap in mobility simulation by providing a customizable platform for mobility systems planning and operations with benchmark algorithms. Code and videos are available at https://github.com/ucla-mobility/MobiVerse.

Authors:Alexandru Dumitru, V Venktesh, Adam Jatowt, Avishek Anand
Title: Evaluating List Construction and Temporal Understanding capabilities of Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated immense advances in a wide range of natural language tasks. However, these models are susceptible to hallucinations and errors on particularly temporal understanding tasks involving multiple entities in answers. In such tasks, they fail to associate entities with accurate time intervals, generate a complete list of entities in answers or reason about events associated with specific temporal bounds. Existing works do not extensively evaluate the abilities of the model to perform implicit and explicit temporal understanding in a list answer construction setup. To bridge this gap, we propose the Time referenced List based Question Answering or TLQA benchmark that requires structured answers in list format aligned with corresponding time periods. Our TLQA benchmark, requires both list construction and temporal understanding simultaneously, which to the best of our knowledge has not been explored in prior benchmarks. We investigate the temporal understanding and list construction capabilities of state-of-the-art generative models on TLQA in closed-book and open-domain settings. Our findings reveal significant shortcomings in current models, particularly their inability to provide complete answers and temporally align facts in a closed-book setup and the need to improve retrieval in open-domain setup, providing clear future directions for research on TLQA. The benchmark and code at https://github.com/elixir-research-group/TLQA.

Authors:Tianrong Chen, Huangjie Zheng, David Berthelot, Jiatao Gu, Josh Susskind, Shuangfei Zhai
Title: TADA: Improved Diffusion Sampling with Training-free Augmented Dynamics
Abstract:
Diffusion models have demonstrated exceptional capabilities in generating high-fidelity images but typically suffer from inefficient sampling. Many solver designs and noise scheduling strategies have been proposed to dramatically improve sampling speeds. In this paper, we introduce a new sampling method that is up to $186\%$ faster than the current state of the art solver for comparative FID on ImageNet512. This new sampling method is training-free and uses an ordinary differential equation (ODE) solver. The key to our method resides in using higher-dimensional initial noise, allowing to produce more detailed samples with less function evaluations from existing pretrained diffusion models. In addition, by design our solver allows to control the level of detail through a simple hyper-parameter at no extra computational cost. We present how our approach leverages momentum dynamics by establishing a fundamental equivalence between momentum diffusion models and conventional diffusion models with respect to their training paradigms. Moreover, we observe the use of higher-dimensional noise naturally exhibits characteristics similar to stochastic differential equations (SDEs). Finally, we demonstrate strong performances on a set of representative pretrained diffusion models, including EDM, EDM2, and Stable-Diffusion 3, which cover models in both pixel and latent spaces, as well as class and text conditional settings. The code is available at https://github.com/apple/ml-tada.

Authors:Tianrong Chen, Huangjie Zheng, David Berthelot, Jiatao Gu, Josh Susskind, Shuangfei Zhai
Title: TADA: Improved Diffusion Sampling with Training-free Augmented Dynamics
Abstract:
Diffusion models have demonstrated exceptional capabilities in generating high-fidelity images but typically suffer from inefficient sampling. Many solver designs and noise scheduling strategies have been proposed to dramatically improve sampling speeds. In this paper, we introduce a new sampling method that is up to $186\%$ faster than the current state of the art solver for comparative FID on ImageNet512. This new sampling method is training-free and uses an ordinary differential equation (ODE) solver. The key to our method resides in using higher-dimensional initial noise, allowing to produce more detailed samples with less function evaluations from existing pretrained diffusion models. In addition, by design our solver allows to control the level of detail through a simple hyper-parameter at no extra computational cost. We present how our approach leverages momentum dynamics by establishing a fundamental equivalence between momentum diffusion models and conventional diffusion models with respect to their training paradigms. Moreover, we observe the use of higher-dimensional noise naturally exhibits characteristics similar to stochastic differential equations (SDEs). Finally, we demonstrate strong performances on a set of representative pretrained diffusion models, including EDM, EDM2, and Stable-Diffusion 3, which cover models in both pixel and latent spaces, as well as class and text conditional settings. The code is available at https://github.com/apple/ml-tada.

Authors:Eivind Morris Bakke, Nora Winger Heggelund
Title: (Fact) Check Your Bias
Abstract:
Automatic fact verification systems increasingly rely on large language models (LLMs). We investigate how parametric knowledge biases in these models affect fact-checking outcomes of the HerO system (baseline for FEVER-25). We examine how the system is affected by: (1) potential bias in Llama 3.1's parametric knowledge and (2) intentionally injected bias. When prompted directly to perform fact-verification, Llama 3.1 labels nearly half the claims as "Not Enough Evidence". Using only its parametric knowledge it is able to reach a verdict on the remaining half of the claims. In the second experiment, we prompt the model to generate supporting, refuting, or neutral fact-checking documents. These prompts significantly influence retrieval outcomes, with approximately 50\% of retrieved evidence being unique to each perspective. Notably, the model sometimes refuses to generate supporting documents for claims it believes to be false, creating an inherent negative bias. Despite differences in retrieved evidence, final verdict predictions show stability across prompting strategies. The code is available at: https://github.com/eibakke/FEVER-8-Shared-Task

Authors:Remco F. Leijenaar, Hamidreza Kasaei
Title: Asymmetric Dual Self-Distillation for 3D Self-Supervised Representation Learning
Abstract:
Learning semantically meaningful representations from unstructured 3D point clouds remains a central challenge in computer vision, especially in the absence of large-scale labeled datasets. While masked point modeling (MPM) is widely used in self-supervised 3D learning, its reconstruction-based objective can limit its ability to capture high-level semantics. We propose AsymDSD, an Asymmetric Dual Self-Distillation framework that unifies masked modeling and invariance learning through prediction in the latent space rather than the input space. AsymDSD builds on a joint embedding architecture and introduces several key design choices: an efficient asymmetric setup, disabling attention between masked queries to prevent shape leakage, multi-mask sampling, and a point cloud adaptation of multi-crop. AsymDSD achieves state-of-the-art results on ScanObjectNN (90.53%) and further improves to 93.72% when pretrained on 930k shapes, surpassing prior methods.

Authors:Yash Akhauri, Bryan Lewandowski, Cheng-Hsi Lin, Adrian N. Reyes, Grant C. Forbes, Arissa Wongpanich, Bangding Yang, Mohamed S. Abdelfattah, Sagi Perel, Xingyou Song
Title: Performance Prediction for Large Systems via Text-to-Text Regression
Abstract:
In many industries, predicting metric outcomes of large systems is a fundamental problem, driven largely by traditional tabular regression. However, such methods struggle on complex systems data in the wild such as configuration files or system logs, where feature engineering is often infeasible. We propose text-to-text regression as a general, scalable alternative. For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder, trained from random initialization, achieves up to a near perfect 0.99 (0.9 average) rank correlation across the entire fleet, and 100x lower MSE than tabular approaches. The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions. Ablation studies highlight the importance of using encoders, increasing sequence length, and the model's inherent uncertainty quantification. These findings pave the way for universal simulators of real-world outcomes.

Authors:Oron Nir, Jay Tenenbaum, Ariel Shamir
Title: Unimodal Strategies in Density-Based Clustering
Abstract:
Density-based clustering methods often surpass centroid-based counterparts, when addressing data with noise or arbitrary data distributions common in real-world problems. In this study, we reveal a key property intrinsic to density-based clustering methods regarding the relation between the number of clusters and the neighborhood radius of core points - we empirically show that it is nearly unimodal, and support this claim theoretically in a specific setting. We leverage this property to devise new strategies for finding appropriate values for the radius more efficiently based on the Ternary Search algorithm. This is especially important for large scale data that is high-dimensional, where parameter tuning is computationally intensive. We validate our methodology through extensive applications across a range of high-dimensional, large-scale NLP, Audio, and Computer Vision tasks, demonstrating its practical effectiveness and robustness. This work not only offers a significant advancement in parameter control for density-based clustering but also broadens the understanding regarding the relations between their guiding parameters. Our code is available at https://github.com/oronnir/UnimodalStrategies.

Authors:Minjie Hong, Zirun Guo, Yan Xia, Zehan Wang, Ziang Zhang, Tao Jin, Zhou Zhao
Title: APO: Enhancing Reasoning Ability of MLLMs via Asymmetric Policy Optimization
Abstract:
Multimodal Large Language Models (MLLMs) are powerful at integrating diverse data, but they often struggle with complex reasoning. While Reinforcement learning (RL) can boost reasoning in LLMs, applying it to MLLMs is tricky. Common issues include a drop in performance on general tasks and the generation of overly detailed or "overthinking" reasoning. Our work investigates how the KL penalty and overthinking affect RL training in MLLMs. We propose Asymmetric Policy Optimization (APO) to address these issues, which divides the sampled responses into positive and negative groups. For positive samples, Difficulty-Adaptive Divergence Shaping (DADS) is introduced to dynamically adjust the KL divergence weight based on their difficulty. This method prevents policy entropy from dropping sharply, improves training stability, utilizes samples better, and preserves the model's existing knowledge. For negative samples, Suboptimal Trajectory Complexity Regularization (STCR) is proposed to penalize overly long responses. This helps mitigate overthinking and encourages more concise reasoning while preserving the model's explorative capacity. We apply our method to Qwen2.5-VL-3B, creating View-R1-3B. View-R1-3B significantly enhances reasoning capabilities, showing an average 7\% gain over the base model and outperforming larger MLLMs (7-11B) on various reasoning benchmarks. Importantly, unlike other reasoning-tuned MLLMs that often degrade on general tasks, View-R1-3B maintains consistent improvement, demonstrating superior generalization. These results highlight the effectiveness and broad applicability of our DADS and STCR techniques for advancing complex multimodal reasoning in MLLMs. The code will be made available at https://github.com/Indolent-Kawhi/View-R1.

Authors:Haiping Yang, Huaxing Liu, Wei Wu, Zuohui Chen, Ning Wu
Title: AeroLite-MDNet: Lightweight Multi-task Deviation Detection Network for UAV Landing
Abstract:
Unmanned aerial vehicles (UAVs) are increasingly employed in diverse applications such as land surveying, material transport, and environmental monitoring. Following missions like data collection or inspection, UAVs must land safely at docking stations for storage or recharging, which is an essential requirement for ensuring operational continuity. However, accurate landing remains challenging due to factors like GPS signal interference. To address this issue, we propose a deviation warning system for UAV landings, powered by a novel vision-based model called AeroLite-MDNet. This model integrates a multiscale fusion module for robust cross-scale object detection and incorporates a segmentation branch for efficient orientation estimation. We introduce a new evaluation metric, Average Warning Delay (AWD), to quantify the system's sensitivity to landing deviations. Furthermore, we contribute a new dataset, UAVLandData, which captures real-world landing deviation scenarios to support training and evaluation. Experimental results show that our system achieves an AWD of 0.7 seconds with a deviation detection accuracy of 98.6\%, demonstrating its effectiveness in enhancing UAV landing reliability. Code will be available at https://github.com/ITTTTTI/Maskyolo.git

Authors:Yixin Sun, Li Li, Wenke E, Amir Atapour-Abarghouei, Toby P. Breckon
Title: TOMD: A Trail-based Off-road Multimodal Dataset for Traversable Pathway Segmentation under Challenging Illumination Conditions
Abstract:
Detecting traversable pathways in unstructured outdoor environments remains a significant challenge for autonomous robots, especially in critical applications such as wide-area search and rescue, as well as incident management scenarios like forest fires. Existing datasets and models primarily target urban settings or wide, vehicle-traversable off-road tracks, leaving a substantial gap in addressing the complexity of narrow, trail-like off-road scenarios. To address this, we introduce the Trail-based Off-road Multimodal Dataset (TOMD), a comprehensive dataset specifically designed for such environments. TOMD features high-fidelity multimodal sensor data -- including 128-channel LiDAR, stereo imagery, GNSS, IMU, and illumination measurements -- collected through repeated traversals under diverse conditions. We also propose a dynamic multiscale data fusion model for accurate traversable pathway prediction. The study analyzes the performance of early, cross, and mixed fusion strategies under varying illumination levels. Results demonstrate the effectiveness of our approach and the relevance of illumination in segmentation performance. We publicly release TOMD at https://github.com/yyyxs1125/TMOD to support future research in trail-based off-road navigation.

Authors:Chenhao Zhang, Yezhi Shen, Fengqing Zhu
Title: ICP-3DGS: SfM-free 3D Gaussian Splatting for Large-scale Unbounded Scenes
Abstract:
In recent years, neural rendering methods such as NeRFs and 3D Gaussian Splatting (3DGS) have made significant progress in scene reconstruction and novel view synthesis. However, they heavily rely on preprocessed camera poses and 3D structural priors from structure-from-motion (SfM), which are challenging to obtain in outdoor scenarios. To address this challenge, we propose to incorporate Iterative Closest Point (ICP) with optimization-based refinement to achieve accurate camera pose estimation under large camera movements. Additionally, we introduce a voxel-based scene densification approach to guide the reconstruction in large-scale scenes. Experiments demonstrate that our approach ICP-3DGS outperforms existing methods in both camera pose estimation and novel view synthesis across indoor and outdoor scenes of various scales. Source code is available at https://github.com/Chenhao-Z/ICP-3DGS.

Authors:Junhao Liu, Zhenhao Xu, Yuxin Fang, Yichuan Chen, Zuobin Ying, Wenhan Chang
Title: From Thinking to Output: Chain-of-Thought and Text Generation Characteristics in Reasoning Language Models
Abstract:
Recently, there have been notable advancements in large language models (LLMs), demonstrating their growing abilities in complex reasoning. However, existing research largely overlooks a thorough and systematic comparison of these models' reasoning processes and outputs, particularly regarding their self-reflection pattern (also termed "Aha moment") and the interconnections across diverse domains. This paper proposes a novel framework for analyzing the reasoning characteristics of four cutting-edge large reasoning models (GPT-o1, DeepSeek-R1, Kimi-k1.5, and Grok-3) using keywords statistic and LLM-as-a-judge paradigm. Our approach connects their internal thinking processes with their final outputs. A diverse dataset consists of real-world scenario-based questions covering logical deduction, causal inference, and multi-step problem-solving. Additionally, a set of metrics is put forward to assess both the coherence of reasoning and the accuracy of the outputs. The research results uncover various patterns of how these models balance exploration and exploitation, deal with problems, and reach conclusions during the reasoning process. Through quantitative and qualitative comparisons, disparities among these models are identified in aspects such as the depth of reasoning, the reliance on intermediate steps, and the degree of similarity between their thinking processes and output patterns and those of GPT-o1. This work offers valuable insights into the trade-off between computational efficiency and reasoning robustness and provides practical recommendations for enhancing model design and evaluation in practical applications. We publicly release our project at: https://github.com/ChangWenhan/FromThinking2Output

Authors:Haoran Tan, Zeyu Zhang, Chen Ma, Xu Chen, Quanyu Dai, Zhenhua Dong
Title: MemBench: Towards More Comprehensive Evaluation on the Memory of LLM-based Agents
Abstract:
Recent works have highlighted the significance of memory mechanisms in LLM-based agents, which enable them to store observed information and adapt to dynamic environments. However, evaluating their memory capabilities still remains challenges. Previous evaluations are commonly limited by the diversity of memory levels and interactive scenarios. They also lack comprehensive metrics to reflect the memory capabilities from multiple aspects. To address these problems, in this paper, we construct a more comprehensive dataset and benchmark to evaluate the memory capability of LLM-based agents. Our dataset incorporates factual memory and reflective memory as different levels, and proposes participation and observation as various interactive scenarios. Based on our dataset, we present a benchmark, named MemBench, to evaluate the memory capability of LLM-based agents from multiple aspects, including their effectiveness, efficiency, and capacity. To benefit the research community, we release our dataset and project at https://github.com/import-myself/Membench.

Authors:Duong Bach
Title: Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Abstract:
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32$\times$ storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-$p\%$ most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into $b$-bit strings ($b=\lceil\log_2 K\rceil$), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.

Authors:Yingzhi He, Xiaohao Liu, An Zhang, Yunshan Ma, Tat-Seng Chua
Title: LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation
Abstract:
Sequential recommendation aims to predict users' future interactions by modeling collaborative filtering (CF) signals from historical behaviors of similar users or items. Traditional sequential recommenders predominantly rely on ID-based embeddings, which capture CF signals through high-order co-occurrence patterns. However, these embeddings depend solely on past interactions, lacking transferable knowledge to generalize to unseen domains. Recent advances in large language models (LLMs) have motivated text-based recommendation approaches that derive item representations from textual descriptions. While these methods enhance generalization, they fail to encode CF signals-i.e., latent item correlations and preference patterns-crucial for effective recommendation. We argue that an ideal embedding model should seamlessly integrate CF signals with rich semantic representations to improve both in-domain and out-of-domain recommendation performance. To this end, we propose LLM2Rec, a novel embedding model tailored for sequential recommendation, integrating the rich semantic understanding of LLMs with CF awareness. Our approach follows a two-stage training framework: (1) Collaborative Supervised Fine-tuning, which adapts LLMs to infer item relationships based on historical interactions, and (2) Item-level Embedding Modeling, which refines these specialized LLMs into structured item embedding models that encode both semantic and collaborative information. Extensive experiments on real-world datasets demonstrate that LLM2Rec effectively improves recommendation quality across both in-domain and out-of-domain settings. Our findings highlight the potential of leveraging LLMs to build more robust, generalizable embedding models for sequential recommendation. Our codes are available at https://github.com/HappyPointer/LLM2Rec.

Authors:Josefa Lia Stoisser, Marc Boubnovski Martell, Lawrence Phillips, Casper Hansen, Julien Fauqueur
Title: STRuCT-LLM: Unifying Tabular and Graph Reasoning with Reinforcement Learning for Semantic Parsing
Abstract:
We propose STRuCT-LLM, a unified framework for training large language models (LLMs) to perform structured reasoning over both relational and graph-structured data. Our approach jointly optimizes Text-to-SQL and Text-to-Cypher tasks using reinforcement learning (RL) combined with Chain-of-Thought (CoT) supervision. To support fine-grained optimization in graph-based parsing, we introduce a topology-aware reward function based on graph edit distance. Unlike prior work that treats relational and graph formalisms in isolation, STRuCT-LLM leverages shared abstractions between SQL and Cypher to induce cross-formalism transfer, enabling SQL training to improve Cypher performance and vice versa - even without shared schemas. Our largest model (QwQ-32B) achieves substantial relative improvements across tasks: on semantic parsing, Spider improves by 13.5\% and Text2Cypher by 73.1\%. The model also demonstrates strong zero-shot generalization, improving performance on downstream tabular QA (TableBench: 8.5\%) and knowledge graph QA (CR-LT-KGQA: 1.7\%) without any QA-specific supervision. These results demonstrate both the effectiveness of executable queries as scaffolds for structured reasoning and the synergistic benefits of jointly training on SQL and Cypher (code available at https://github.com/bouv/STRuCT-LLM).

Authors:Jianshuo Dong, Yujia Fu, Chuanrui Hu, Chao Zhang, Han Qiu
Title: Towards Understanding the Cognitive Habits of Large Reasoning Models
Abstract:
Large Reasoning Models (LRMs), which autonomously produce a reasoning Chain of Thought (CoT) before producing final responses, offer a promising approach to interpreting and monitoring model behaviors. Inspired by the observation that certain CoT patterns -- e.g., ``Wait, did I miss anything?'' -- consistently emerge across tasks, we explore whether LRMs exhibit human-like cognitive habits. Building on Habits of Mind, a well-established framework of cognitive habits associated with successful human problem-solving, we introduce CogTest, a principled benchmark designed to evaluate LRMs' cognitive habits. CogTest includes 16 cognitive habits, each instantiated with 25 diverse tasks, and employs an evidence-first extraction method to ensure reliable habit identification. With CogTest, we conduct a comprehensive evaluation of 16 widely used LLMs (13 LRMs and 3 non-reasoning ones). Our findings reveal that LRMs, unlike conventional LLMs, not only exhibit human-like habits but also adaptively deploy them according to different tasks. Finer-grained analyses further uncover patterns of similarity and difference in LRMs' cognitive habit profiles, particularly certain inter-family similarity (e.g., Qwen-3 models and DeepSeek-R1). Extending the study to safety-related tasks, we observe that certain habits, such as Taking Responsible Risks, are strongly associated with the generation of harmful responses. These findings suggest that studying persistent behavioral patterns in LRMs' CoTs is a valuable step toward deeper understanding of LLM misbehavior. The code is available at: https://github.com/jianshuod/CogTest.

Authors:Baqer M. Merzah, Tania Taami, Salman Asoudeh, Saeed Mirzaee, Amir reza Hossein pour, Amir Ali Bengari
Title: BioPars: A Pretrained Biomedical Large Language Model for Persian Biomedical Text Mining
Abstract:
Large Language Models (LLMs) have recently gained attention in the life sciences due to their capacity to model, extract, and apply complex biological information. Beyond their classical use as chatbots, these systems are increasingly used for complex analysis and problem-solving in specialized fields, including bioinformatics. First, we introduce BIOPARS-BENCH, a dataset from over 10,000 scientific articles, textbooks, and medical websites. BioParsQA was also introduced to evaluate the proposed model, which consists of 5,231 Persian medical questions and answers. This study then introduces BioPars, a simple but accurate measure designed to assess LLMs for three main abilities: acquiring subject-specific knowledge, interpreting and synthesizing such knowledge, and demonstrating proper evidence. Comparing ChatGPT, Llama, and Galactica, our study highlights their ability to remember and retrieve learned knowledge but also reveals shortcomings in addressing higher-level, real-world questions and fine-grained inferences. These findings indicate the need for further fine-tuning to address the capabilities of LLM in bioinformatics tasks. To our knowledge, BioPars is the first application of LLM in Persian medical QA, especially for generating long answers. Evaluation of four selected medical QA datasets shows that BioPars has achieved remarkable results compared to comparative approaches. The model on BioParsQA achieved a ROUGE-L score of 29.99, which is an improvement over GPT-4 1.0. The model achieved a BERTScore of 90.87 with the MMR method. The MoverScore and BLEURT values were also higher in this model than the other three models. In addition, the reported scores for the model are MoverScore=60.43 and BLEURT=50.78. BioPars is an ongoing project and all resources related to its development will be made available via the following GitHub repository: https://github.com/amirap80/BioPars.

Authors:Jiyan Liu, Youzheng Liu, Taihang Wang, Xiaoman Xu, Yimin Wang, Ye Jiang
Title: Team QUST at SemEval-2025 Task 10: Evaluating Large Language Models in Multiclass Multi-label Classification of News Entity Framing
Abstract:
This paper describes the participation of QUST_NLP in the SemEval-2025 Task 7. We propose a three-stage retrieval framework specifically designed for fact-checked claim retrieval. Initially, we evaluate the performance of several retrieval models and select the one that yields the best results for candidate retrieval. Next, we employ multiple re-ranking models to enhance the candidate results, with each model selecting the Top-10 outcomes. In the final stage, we utilize weighted voting to determine the final retrieval outcomes. Our approach achieved 5th place in the monolingual track and 7th place in the crosslingual track. We release our system code at: https://github.com/warmth27/SemEval2025_Task7.

Authors:Jun Cen, Chaohui Yu, Hangjie Yuan, Yuming Jiang, Siteng Huang, Jiayan Guo, Xin Li, Yibing Song, Hao Luo, Fan Wang, Deli Zhao, Hao Chen
Title: WorldVLA: Towards Autoregressive Action World Model
Abstract:
We present WorldVLA, an autoregressive action world model that unifies action and image understanding and generation. Our WorldVLA intergrates Vision-Language-Action (VLA) model and world model in one single framework. The world model predicts future images by leveraging both action and image understanding, with the purpose of learning the underlying physics of the environment to improve action generation. Meanwhile, the action model generates the subsequent actions based on image observations, aiding in visual understanding and in turn helps visual generation of the world model. We demonstrate that WorldVLA outperforms standalone action and world models, highlighting the mutual enhancement between the world model and the action model. In addition, we find that the performance of the action model deteriorates when generating sequences of actions in an autoregressive manner. This phenomenon can be attributed to the model's limited generalization capability for action prediction, leading to the propagation of errors from earlier actions to subsequent ones. To address this issue, we propose an attention mask strategy that selectively masks prior actions during the generation of the current action, which shows significant performance improvement in the action chunk generation task.

Authors:Mohammed Baharoon, Jun Ma, Congyu Fang, Augustin Toma, Bo Wang
Title: Exploring the Design Space of 3D MLLMs for CT Report Generation
Abstract:
Multimodal Large Language Models (MLLMs) have emerged as a promising way to automate Radiology Report Generation (RRG). In this work, we systematically investigate the design space of 3D MLLMs, including visual input representation, projectors, Large Language Models (LLMs), and fine-tuning techniques for 3D CT report generation. We also introduce two knowledge-based report augmentation methods that improve performance on the GREEN score by up to 10%, achieving the 2nd place on the MICCAI 2024 AMOS-MM challenge. Our results on the 1,687 cases from the AMOS-MM dataset show that RRG is largely independent of the size of LLM under the same training protocol. We also show that larger volume size does not always improve performance if the original ViT was pre-trained on a smaller volume size. Lastly, we show that using a segmentation mask along with the CT volume improves performance. The code is publicly available at https://github.com/bowang-lab/AMOS-MM-Solution

Authors:Akshay Paruchuri, Maryam Aziz, Rohit Vartak, Ayman Ali, Best Uchehara, Xin Liu, Ishan Chatterjee, Monica Agrawal
Title: "What's Up, Doc?": Analyzing How Users Seek Health Information in Large-Scale Conversational AI Datasets
Abstract:
People are increasingly seeking healthcare information from large language models (LLMs) via interactive chatbots, yet the nature and inherent risks of these conversations remain largely unexplored. In this paper, we filter large-scale conversational AI datasets to achieve HealthChat-11K, a curated dataset of 11K real-world conversations composed of 25K user messages. We use HealthChat-11K and a clinician-driven taxonomy for how users interact with LLMs when seeking healthcare information in order to systematically study user interactions across 21 distinct health specialties. Our analysis reveals insights into the nature of how and why users seek health information, such as common interactions, instances of incomplete context, affective behaviors, and interactions (e.g., leading questions) that can induce sycophancy, underscoring the need for improvements in the healthcare support capabilities of LLMs deployed as conversational AI. Code and artifacts to retrieve our analyses and combine them into a curated dataset can be found here: https://github.com/yahskapar/HealthChat

Authors:Yihan Wang, Jia Deng
Title: WAFT: Warping-Alone Field Transforms for Optical Flow
Abstract:
We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being up to 4.1x faster than methods with similar performance. Code and model weights are available at https://github.com/princeton-vl/WAFT.

Authors:Yihan Wang, Jia Deng
Title: WAFT: Warping-Alone Field Transforms for Optical Flow
Abstract:
We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring, Sintel, and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being up to 4.1x faster than methods with similar performance. Code and model weights are available at https://github.com/princeton-vl/WAFT.

Authors:Mohammed Rakib, Arunkumar Bagavathi
Title: G$^{2}$D: Boosting Multimodal Learning with Gradient-Guided Distillation
Abstract:
Multimodal learning aims to leverage information from diverse data modalities to achieve more comprehensive performance. However, conventional multimodal models often suffer from modality imbalance, where one or a few modalities dominate model optimization, leading to suboptimal feature representation and underutilization of weak modalities. To address this challenge, we introduce Gradient-Guided Distillation (G$^{2}$D), a knowledge distillation framework that optimizes the multimodal model with a custom-built loss function that fuses both unimodal and multimodal objectives. G$^{2}$D further incorporates a dynamic sequential modality prioritization (SMP) technique in the learning process to ensure each modality leads the learning process, avoiding the pitfall of stronger modalities overshadowing weaker ones. We validate G$^{2}$D on multiple real-world datasets and show that G$^{2}$D amplifies the significance of weak modalities while training and outperforms state-of-the-art methods in classification and regression tasks. Our code is available at https://github.com/rAIson-Lab/G2D.

Authors:Marek Šuppa, Andrej Ridzik, Daniel Hládek, Tomáš Javůrek, Viktória Ondrejová, Kristína Sásiková, Martin Tamajka, Marián Šimko
Title: skLEP: A Slovak General Language Understanding Benchmark
Abstract:
In this work, we introduce skLEP, the first comprehensive benchmark specifically designed for evaluating Slovak natural language understanding (NLU) models. We have compiled skLEP to encompass nine diverse tasks that span token-level, sentence-pair, and document-level challenges, thereby offering a thorough assessment of model capabilities. To create this benchmark, we curated new, original datasets tailored for Slovak and meticulously translated established English NLU resources. Within this paper, we also present the first systematic and extensive evaluation of a wide array of Slovak-specific, multilingual, and English pre-trained language models using the skLEP tasks. Finally, we also release the complete benchmark data, an open-source toolkit facilitating both fine-tuning and evaluation of models, and a public leaderboard at https://github.com/slovak-nlp/sklep in the hopes of fostering reproducibility and drive future research in Slovak NLU.

Authors:Tin Dizdarević, Ravi Hammond, Tobias Gessler, Anisoara Calinescu, Jonathan Cook, Matteo Gallici, Andrei Lupu, Darius Muglich, Johannes Forkel, Jakob Nicolaus Foerster
Title: Ad-Hoc Human-AI Coordination Challenge
Abstract:
Achieving seamless coordination between AI agents and humans is crucial for real-world applications, yet it remains a significant open challenge. Hanabi is a cooperative card game featuring imperfect information, constrained communication, theory of mind requirements, and coordinated action -- making it an ideal testbed for human-AI coordination. However, its use for human-AI interaction has been limited by the challenges of human evaluation. In this work, we introduce the Ad-Hoc Human-AI Coordination Challenge (AH2AC2) to overcome the constraints of costly and difficult-to-reproduce human evaluations. We develop \textit{human proxy agents} on a large-scale human dataset that serve as robust, cheap, and reproducible human-like evaluation partners in AH2AC2. To encourage the development of data-efficient methods, we open-source a dataset of 3,079 games, deliberately limiting the amount of available human gameplay data. We present baseline results for both two- and three- player Hanabi scenarios. To ensure fair evaluation, we host the proxy agents through a controlled evaluation system rather than releasing them publicly. The code is available at \href{https://github.com/FLAIROx/ah2ac2}{https://github.com/FLAIROx/ah2ac2}.

Authors:Sweta Banerjee, Viktoria Weiss, Taryn A. Donovan, Rutger H. J. Fick, Thomas Conrad, Jonas Ammeling, Nils Porsche, Robert Klopfleisch, Christopher Kaltenecker, Katharina Breininger, Marc Aubreville, Christof A. Bertram
Title: Benchmarking Deep Learning and Vision Foundation Models for Atypical vs. Normal Mitosis Classification with Cross-Dataset Evaluation
Abstract:
Atypical mitosis marks a deviation in the cell division process that has been shown be an independent prognostic marker for tumor malignancy. However, atypical mitosis classification remains challenging due to low prevalence, at times subtle morphological differences from normal mitotic figures, low inter-rater agreement among pathologists, and class imbalance in datasets. Building on the Atypical Mitosis dataset for Breast Cancer (AMi-Br), this study presents a comprehensive benchmark comparing deep learning approaches for automated atypical mitotic figure (AMF) classification, including end-to-end trained deep learning models, foundation models with linear probing, and foundation models fine-tuned with low-rank adaptation (LoRA). For rigorous evaluation, we further introduce two new held-out AMF datasets - AtNorM-Br, a dataset of mitotic figures from the TCGA breast cancer cohort, and AtNorM-MD, a multi-domain dataset of mitotic figures from a subset of the MIDOG++ training set. We found average balanced accuracy values of up to 0.8135, 0.7788, and 0.7723 on the in-domain AMi-Br and the out-of-domain AtNorm-Br and AtNorM-MD datasets, respectively. Our work shows that atypical mitotic figure classification, while being a challenging problem, can be effectively addressed through the use of recent advances in transfer learning and model fine-tuning techniques. We make all code and data used in this paper available in this github repository: https://github.com/DeepMicroscopy/AMi-Br_Benchmark.

Authors:Samuel Joutard, Marijn Stollenga, Marc Balle Sanchez, Mohammad Farid Azampour, Raphael Prevost
Title: HyperSORT: Self-Organising Robust Training with hyper-networks
Abstract:
Medical imaging datasets often contain heterogeneous biases ranging from erroneous labels to inconsistent labeling styles. Such biases can negatively impact deep segmentation networks performance. Yet, the identification and characterization of such biases is a particularly tedious and challenging task. In this paper, we introduce HyperSORT, a framework using a hyper-network predicting UNets' parameters from latent vectors representing both the image and annotation variability. The hyper-network parameters and the latent vector collection corresponding to each data sample from the training set are jointly learned. Hence, instead of optimizing a single neural network to fit a dataset, HyperSORT learns a complex distribution of UNet parameters where low density areas can capture noise-specific patterns while larger modes robustly segment organs in differentiated but meaningful manners. We validate our method on two 3D abdominal CT public datasets: first a synthetically perturbed version of the AMOS dataset, and TotalSegmentator, a large scale dataset containing real unknown biases and errors. Our experiments show that HyperSORT creates a structured mapping of the dataset allowing the identification of relevant systematic biases and erroneous samples. Latent space clusters yield UNet parameters performing the segmentation task in accordance with the underlying learned systematic bias. The code and our analysis of the TotalSegmentator dataset are made available: https://github.com/ImFusionGmbH/HyperSORT

Authors:Bowen Chen, Mengyi Zhao, Haomiao Sun, Li Chen, Xu Wang, Kang Du, Xinglong Wu
Title: XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation
Abstract:
Achieving fine-grained control over subject identity and semantic attributes (pose, style, lighting) in text-to-image generation, particularly for multiple subjects, often undermines the editability and coherence of Diffusion Transformers (DiTs). Many approaches introduce artifacts or suffer from attribute entanglement. To overcome these challenges, we propose a novel multi-subject controlled generation model XVerse. By transforming reference images into offsets for token-specific text-stream modulation, XVerse allows for precise and independent control for specific subject without disrupting image latents or features. Consequently, XVerse offers high-fidelity, editable multi-subject image synthesis with robust control over individual subject characteristics and semantic attributes. This advancement significantly improves personalized and complex scene generation capabilities.

Authors:Zhirui Gao, Renjiao Yi, Yaqiao Dai, Xuening Zhu, Wei Chen, Chenyang Zhu, Kai Xu
Title: Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction
Abstract:
This paper presents an end-to-end framework for reconstructing 3D parametric curves directly from multi-view edge maps. Contrasting with existing two-stage methods that follow a sequential ``edge point cloud reconstruction and parametric curve fitting'' pipeline, our one-stage approach optimizes 3D parametric curves directly from 2D edge maps, eliminating error accumulation caused by the inherent optimization gap between disconnected stages. However, parametric curves inherently lack suitability for rendering-based multi-view optimization, necessitating a complementary representation that preserves their geometric properties while enabling differentiable rendering. We propose a novel bi-directional coupling mechanism between parametric curves and edge-oriented Gaussian components. This tight correspondence formulates a curve-aware Gaussian representation, \textbf{CurveGaussian}, that enables differentiable rendering of 3D curves, allowing direct optimization guided by multi-view evidence. Furthermore, we introduce a dynamically adaptive topology optimization framework during training to refine curve structures through linearization, merging, splitting, and pruning operations. Comprehensive evaluations on the ABC dataset and real-world benchmarks demonstrate our one-stage method's superiority over two-stage alternatives, particularly in producing cleaner and more robust reconstructions. Additionally, by directly optimizing parametric curves, our method significantly reduces the parameter count during training, achieving both higher efficiency and superior performance compared to existing approaches.

Authors:Can Liu, Chunlin Da, Xiaoxiao Long, Yuxiao Yang, Yu Zhang, Yong Wang
Title: SimVecVis: A Dataset for Enhancing MLLMs in Visualization Understanding
Abstract:
Current multimodal large language models (MLLMs), while effective in natural image understanding, struggle with visualization understanding due to their inability to decode the data-to-visual mapping and extract structured information. To address these challenges, we propose SimVec, a novel simplified vector format that encodes chart elements such as mark type, position, and size. The effectiveness of SimVec is demonstrated by using MLLMs to reconstruct chart information from SimVec formats. Then, we build a new visualization dataset, SimVecVis, to enhance the performance of MLLMs in visualization understanding, which consists of three key dimensions: bitmap images of charts, their SimVec representations, and corresponding data-centric question-answering (QA) pairs with explanatory chain-of-thought (CoT) descriptions. We finetune state-of-the-art MLLMs (e.g., MiniCPM and Qwen-VL), using SimVecVis with different dataset dimensions. The experimental results show that it leads to substantial performance improvements of MLLMs with good spatial perception capabilities (e.g., MiniCPM) in data-centric QA tasks. Our dataset and source code are available at: https://github.com/VIDA-Lab/SimVecVis.

Authors:Dewen Zhang, Tahir Hussain, Wangpeng An, Hayaru Shouno
Title: LLaVA-Pose: Enhancing Human Pose and Action Understanding via Keypoint-Integrated Instruction Tuning
Abstract:
Current vision-language models (VLMs) are well-adapted for general visual understanding tasks. However, they perform inadequately when handling complex visual tasks related to human poses and actions due to the lack of specialized vision-language instruction-following data. We introduce a method for generating such data by integrating human keypoints with traditional visual features such as captions and bounding boxes, enabling more precise understanding of human-centric scenes. Our approach constructs a dataset comprising 200,328 samples tailored to fine-tune models for human-centric tasks, focusing on three areas: conversation, detailed description, and complex reasoning. We establish an Extended Human Pose and Action Understanding Benchmark (E-HPAUB) to assess model performance on human pose and action understanding. We fine-tune the LLaVA-1.5-7B model using this dataset and evaluate our resulting LLaVA-Pose model on the benchmark, achieving significant improvements. Experimental results show an overall improvement of 33.2% compared to the original LLaVA-1.5-7B model. These findings highlight the effectiveness of keypoint-integrated data in enhancing multimodal models for human-centric visual understanding. Code is available at https://github.com/Ody-trek/LLaVA-Pose.

Authors:Martin Lange, Patricia Guerra-Balboa, Javier Parra-Arnau, Thorsten Strufe
Title: Balancing Privacy and Utility in Correlated Data: A Study of Bayesian Differential Privacy
Abstract:
Privacy risks in differentially private (DP) systems increase significantly when data is correlated, as standard DP metrics often underestimate the resulting privacy leakage, leaving sensitive information vulnerable. Given the ubiquity of dependencies in real-world databases, this oversight poses a critical challenge for privacy protections. Bayesian differential privacy (BDP) extends DP to account for these correlations, yet current BDP mechanisms indicate notable utility loss, limiting its adoption. In this work, we address whether BDP can be realistically implemented in common data structures without sacrificing utility -- a key factor for its applicability. By analyzing arbitrary and structured correlation models, including Gaussian multivariate distributions and Markov chains, we derive practical utility guarantees for BDP. Our contributions include theoretical links between DP and BDP and a novel methodology for adapting DP mechanisms to meet the BDP requirements. Through evaluations on real-world databases, we demonstrate that our novel theorems enable the design of BDP mechanisms that maintain competitive utility, paving the way for practical privacy-preserving data practices in correlated settings.

Authors:Istabrak Abbes, Gabriele Prato, Quentin Fournier, Fernando Rodriguez, Alaa Boukhary, Adam Elwood, Sarath Chandar
Title: Small Encoders Can Rival Large Decoders in Detecting Groundedness
Abstract:
Augmenting large language models (LLMs) with external context significantly improves their performance in natural language processing (NLP) tasks. However, LLMs struggle to answer queries reliably when the provided context lacks information, often resorting to ungrounded speculation or internal knowledge. Groundedness - generating responses strictly supported by the context - is essential for ensuring factual consistency and trustworthiness. This study focuses on detecting whether a given query is grounded in a document provided in context before the costly answer generation by LLMs. Such a detection mechanism can significantly reduce both inference time and resource consumption. We show that lightweight, task specific encoder models such as RoBERTa and NomicBERT, fine-tuned on curated datasets, can achieve accuracy comparable to state-of-the-art LLMs, such as Llama3 8B and GPT4o, in groundedness detection while reducing inference latency by orders of magnitude. The code is available at : https://github.com/chandarlab/Hallucinate-less

Authors:Xin Xu, Tianhao Chen, Fan Zhang, Wanlong Liu, Pengxiang Li, Ajay Kumar Jaiswal, Yuchen Yan, Jishan Hu, Yang Wang, Hao Chen, Shiwei Liu, Shizhe Diao, Can Yang, Lu Yin
Title: Double-Checker: Enhancing Reasoning of Slow-Thinking LLMs via Self-Critical Fine-Tuning
Abstract:
While slow-thinking large language models (LLMs) exhibit reflection-like reasoning, commonly referred to as the "aha moment:, their ability to generate informative critiques and refine prior solutions remains limited. In this paper, we introduce Double-Checker, a principled framework designed to enhance the reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique and iterative refinement of their previous solutions. By fine-tuning on our curated 1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to iteratively critique and refine their outputs during inference until they evaluate their solutions as correct under self-generated critiques. We validate the efficacy of Double-Checker across a comprehensive suite of reasoning benchmarks, demonstrating that iterative self-critique significantly enhances the reasoning capabilities of long-CoT LLMs. Notably, our Double-Checker increases the pass@1 performance on challenging AIME benchmarks from 4.4% to 18.2% compared to the original long-CoT LLMs. These results highlight a promising direction for developing more trustworthy and effective LLMs capable of structured self-critique. Our codes and data are available at https://github.com/XinXU-USTC/DoubleChecker

Authors:Xin Xu, Tianhao Chen, Fan Zhang, Wanlong Liu, Pengxiang Li, Ajay Kumar Jaiswal, Yuchen Yan, Jishan Hu, Yang Wang, Hao Chen, Shiwei Liu, Shizhe Diao, Can Yang, Lu Yin
Title: Double-Checker: Enhancing Reasoning of Slow-Thinking LLMs via Self-Critical Fine-Tuning
Abstract:
While slow-thinking large language models (LLMs) exhibit reflection-like reasoning, commonly referred to as the "aha moment:, their ability to generate informative critiques and refine prior solutions remains limited. In this paper, we introduce Double-Checker, a principled framework designed to enhance the reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique and iterative refinement of their previous solutions. By fine-tuning on our curated 1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to iteratively critique and refine their outputs during inference until they evaluate their solutions as correct under self-generated critiques. We validate the efficacy of Double-Checker across a comprehensive suite of reasoning benchmarks, demonstrating that iterative self-critique significantly enhances the reasoning capabilities of long-CoT LLMs. Notably, our Double-Checker increases the pass@1 performance on challenging AIME benchmarks from 4.4% to 18.2% compared to the original long-CoT LLMs. These results highlight a promising direction for developing more trustworthy and effective LLMs capable of structured self-critique. Our codes and data are available at https://github.com/XinXU-USTC/DoubleChecker

Authors:Jiayi Zheng, Xiaodong Cun
Title: FairyGen: Storied Cartoon Video from a Single Child-Drawn Character
Abstract:
We propose FairyGen, an automatic system for generating story-driven cartoon videos from a single child's drawing, while faithfully preserving its unique artistic style. Unlike previous storytelling methods that primarily focus on character consistency and basic motion, FairyGen explicitly disentangles character modeling from stylized background generation and incorporates cinematic shot design to support expressive and coherent storytelling. Given a single character sketch, we first employ an MLLM to generate a structured storyboard with shot-level descriptions that specify environment settings, character actions, and camera perspectives. To ensure visual consistency, we introduce a style propagation adapter that captures the character's visual style and applies it to the background, faithfully retaining the character's full visual identity while synthesizing style-consistent scenes. A shot design module further enhances visual diversity and cinematic quality through frame cropping and multi-view synthesis based on the storyboard. To animate the story, we reconstruct a 3D proxy of the character to derive physically plausible motion sequences, which are then used to fine-tune an MMDiT-based image-to-video diffusion model. We further propose a two-stage motion customization adapter: the first stage learns appearance features from temporally unordered frames, disentangling identity from motion; the second stage models temporal dynamics using a timestep-shift strategy with frozen identity weights. Once trained, FairyGen directly renders diverse and coherent video scenes aligned with the storyboard. Extensive experiments demonstrate that our system produces animations that are stylistically faithful, narratively structured natural motion, highlighting its potential for personalized and engaging story animation. The code will be available at https://github.com/GVCLab/FairyGen

Authors:Xianghan Meng, Zhengyu Tong, Zhiyuan Huang, Chun-Guang Li
Title: Temporal Rate Reduction Clustering for Human Motion Segmentation
Abstract:
Human Motion Segmentation (HMS), which aims to partition videos into non-overlapping human motions, has attracted increasing research attention recently. Existing approaches for HMS are mainly dominated by subspace clustering methods, which are grounded on the assumption that high-dimensional temporal data align with a Union-of-Subspaces (UoS) distribution. However, the frames in video capturing complex human motions with cluttered backgrounds may not align well with the UoS distribution. In this paper, we propose a novel approach for HMS, named Temporal Rate Reduction Clustering ($\text{TR}^2\text{C}$), which jointly learns structured representations and affinity to segment the sequences of frames in video. Specifically, the structured representations learned by $\text{TR}^2\text{C}$ enjoy temporally consistency and are aligned well with a UoS structure, which is favorable for addressing the HMS task. We conduct extensive experiments on five benchmark HMS datasets and achieve state-of-the-art performances with different feature extractors. The code is available at: https://github.com/mengxianghan123/TR2C.

Authors:Xiwei Xuan, Ziquan Deng, Kwan-Liu Ma
Title: ReME: A Data-Centric Framework for Training-Free Open-Vocabulary Segmentation
Abstract:
Training-free open-vocabulary semantic segmentation (OVS) aims to segment images given a set of arbitrary textual categories without costly model fine-tuning. Existing solutions often explore attention mechanisms of pre-trained models, such as CLIP, or generate synthetic data and design complex retrieval processes to perform OVS. However, their performance is limited by the capability of reliant models or the suboptimal quality of reference sets. In this work, we investigate the largely overlooked data quality problem for this challenging dense scene understanding task, and identify that a high-quality reference set can significantly benefit training-free OVS. With this observation, we introduce a data-quality-oriented framework, comprising a data pipeline to construct a reference set with well-paired segment-text embeddings and a simple similarity-based retrieval to unveil the essential effect of data. Remarkably, extensive evaluations on ten benchmark datasets demonstrate that our method outperforms all existing training-free OVS approaches, highlighting the importance of data-centric design for advancing OVS without training. Our code is available at https://github.com/xiweix/ReME .

Authors:Yihong Cao, Jiaming Zhang, Xu Zheng, Hao Shi, Kunyu Peng, Hang Liu, Kailun Yang, Hui Zhang
Title: Unlocking Constraints: Source-Free Occlusion-Aware Seamless Segmentation
Abstract:
Panoramic image processing is essential for omni-context perception, yet faces constraints like distortions, perspective occlusions, and limited annotations. Previous unsupervised domain adaptation methods transfer knowledge from labeled pinhole data to unlabeled panoramic images, but they require access to source pinhole data. To address these, we introduce a more practical task, i.e., Source-Free Occlusion-Aware Seamless Segmentation (SFOASS), and propose its first solution, called UNconstrained Learning Omni-Context Knowledge (UNLOCK). Specifically, UNLOCK includes two key modules: Omni Pseudo-Labeling Learning and Amodal-Driven Context Learning. While adapting without relying on source data or target labels, this framework enhances models to achieve segmentation with 360° viewpoint coverage and occlusion-aware reasoning. Furthermore, we benchmark the proposed SFOASS task through both real-to-real and synthetic-to-real adaptation settings. Experimental results show that our source-free method achieves performance comparable to source-dependent methods, yielding state-of-the-art scores of 10.9 in mAAP and 11.6 in mAP, along with an absolute improvement of +4.3 in mAPQ over the source-only method. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK.

Authors:Yuheng Zhang, Mengfei Duan, Kunyu Peng, Yuhang Wang, Ruiping Liu, Fei Teng, Kai Luo, Zhiyong Li, Kailun Yang
Title: Out-of-Distribution Semantic Occupancy Prediction
Abstract:
3D Semantic Occupancy Prediction is crucial for autonomous driving, providing a dense, semantically rich environmental representation. However, existing methods focus on in-distribution scenes, making them susceptible to Out-of-Distribution (OoD) objects and long-tail distributions, which increases the risk of undetected anomalies and misinterpretations, posing safety hazards. To address these challenges, we introduce Out-of-Distribution Semantic Occupancy Prediction, targeting OoD detection in 3D voxel space. To fill the gaps in the dataset, we propose a Synthetic Anomaly Integration Pipeline that injects synthetic anomalies while preserving realistic spatial and occlusion patterns, enabling the creation of two datasets: VAA-KITTI and VAA-KITTI-360. We introduce OccOoD, a novel framework integrating OoD detection into 3D semantic occupancy prediction, with Voxel-BEV Progressive Fusion (VBPF) leveraging an RWKV-based branch to enhance OoD detection via geometry-semantic fusion. Experimental results demonstrate that OccOoD achieves state-of-the-art OoD detection with an AuROC of 67.34% and an AuPRCr of 29.21% within a 1.2m region, while maintaining competitive occupancy prediction performance. The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD.

Authors:Isaac Chung, Imene Kerboua, Marton Kardos, Roman Solomatin, Kenneth Enevoldsen
Title: Maintaining MTEB: Towards Long Term Usability and Reproducibility of Embedding Benchmarks
Abstract:
The Massive Text Embedding Benchmark (MTEB) has become a standard evaluation platform for text embedding models. While previous work has established the core benchmark methodology, this paper focuses on the engineering aspects that ensure MTEB's continued reproducibility and extensibility. We present our approach to maintaining robust continuous integration pipelines that validate dataset integrity, automate test execution, and assess benchmark results' generalizability. We detail the design choices that collectively enhance reproducibility and usability. Furthermore, we discuss our strategies for handling community contributions and extending the benchmark with new tasks and datasets. These engineering practices have been instrumental in scaling MTEB to become more comprehensive while maintaining quality and, ultimately, relevance to the field. Our experiences offer valuable insights for benchmark maintainers facing similar challenges in ensuring reproducibility and usability in machine learning evaluation frameworks. The MTEB repository is available at: https://github.com/embeddings-benchmark/mteb

Authors:Longkun Zou, Kangjun Liu, Ke Chen, Kailing Guo, Kui Jia, Yaowei Wang
Title: Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition
Abstract:
Learning semantic representations from point sets of 3D object shapes is often challenged by significant geometric variations, primarily due to differences in data acquisition methods. Typically, training data is generated using point simulators, while testing data is collected with distinct 3D sensors, leading to a simulation-to-reality (Sim2Real) domain gap that limits the generalization ability of point classifiers. Current unsupervised domain adaptation (UDA) techniques struggle with this gap, as they often lack robust, domain-insensitive descriptors capable of capturing global topological information, resulting in overfitting to the limited semantic patterns of the source domain. To address this issue, we introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds. Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures, and by modeling the topological relations of local geometric features through a novel self-supervised learning task. Additionally, we propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training, effectively reducing the impact of noisy pseudo-labels and enhancing the robustness of the adaptation process. Experimental results on three public Sim2Real benchmarks validate the effectiveness of our TAM framework, showing consistent improvements over state-of-the-art methods across all evaluated tasks. The source code of this work will be available at https://github.com/zou-longkun/TAG.git.

Authors:He Li, Haoang Chi, Mingyu Liu, Wanrong Huang, Liyang Xu, Wenjing Yang
Title: Transformer-Based Spatial-Temporal Counterfactual Outcomes Estimation
Abstract:
The real world naturally has dimensions of time and space. Therefore, estimating the counterfactual outcomes with spatial-temporal attributes is a crucial problem. However, previous methods are based on classical statistical models, which still have limitations in performance and generalization. This paper proposes a novel framework for estimating counterfactual outcomes with spatial-temporal attributes using the Transformer, exhibiting stronger estimation ability. Under mild assumptions, the proposed estimator within this framework is consistent and asymptotically normal. To validate the effectiveness of our approach, we conduct simulation experiments and real data experiments. Simulation experiments show that our estimator has a stronger estimation capability than baseline methods. Real data experiments provide a valuable conclusion to the causal effect of conflicts on forest loss in Colombia. The source code is available at https://github.com/lihe-maxsize/DeppSTCI_Release_Version-master.

Authors:Ziwei Wang, Hongbin Wang, Tianwang Jia, Xingyi He, Siyang Li, Dongrui Wu
Title: DBConformer: Dual-Branch Convolutional Transformer for EEG Decoding
Abstract:
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) transform spontaneous/evoked neural activity into control commands for external communication. While convolutional neural networks (CNNs) remain the mainstream backbone for EEG decoding, their inherently short receptive field makes it difficult to capture long-range temporal dependencies and global inter-channel relationships. Recent CNN-Transformer (Conformer) hybrids partially address this issue, but most adopt a serial design, resulting in suboptimal integration of local and global features, and often overlook explicit channel-wise modeling. To address these limitations, we propose DBConformer, a dual-branch convolutional Transformer network tailored for EEG decoding. It integrates a temporal Conformer to model long-range temporal dependencies and a spatial Conformer to extract inter-channel interactions, capturing both temporal dynamics and spatial patterns in EEG signals. A lightweight channel attention module further refines spatial representations by assigning data-driven importance to EEG channels. Extensive experiments under four evaluation settings on three paradigms, including motor imagery, seizure detection, and steady-state visual evoked potential, demonstrated that DBConformer consistently outperformed 13 competitive baseline models, with over an eight-fold reduction in parameters than current high-capacity EEG Conformer architecture. Furthermore, the visualization results confirmed that the features extracted by DBConformer are physiologically interpretable and aligned with prior knowledge. The superior performance and interpretability of DBConformer make it reliable for accurate, robust, and explainable EEG decoding. Code is publicized at https://github.com/wzwvv/DBConformer.

Authors:Hai Jiang, Binhao Guan, Zhen Liu, Xiaohong Liu, Jian Yu, Zheng Liu, Songchen Han, Shuaicheng Liu
Title: Learning to See in the Extremely Dark
Abstract:
Learning-based methods have made promising advances in low-light RAW image enhancement, while their capability to extremely dark scenes where the environmental illuminance drops as low as 0.0001 lux remains to be explored due to the lack of corresponding datasets. To this end, we propose a paired-to-paired data synthesis pipeline capable of generating well-calibrated extremely low-light RAW images at three precise illuminance ranges of 0.01-0.1 lux, 0.001-0.01 lux, and 0.0001-0.001 lux, together with high-quality sRGB references to comprise a large-scale paired dataset named See-in-the-Extremely-Dark (SIED) to benchmark low-light RAW image enhancement approaches. Furthermore, we propose a diffusion-based framework that leverages the generative ability and intrinsic denoising property of diffusion models to restore visually pleasing results from extremely low-SNR RAW inputs, in which an Adaptive Illumination Correction Module (AICM) and a color consistency loss are introduced to ensure accurate exposure correction and color restoration. Extensive experiments on the proposed SIED and publicly available benchmarks demonstrate the effectiveness of our method. The code and dataset are available at https://github.com/JianghaiSCU/SIED.

Authors:Luosheng Xu, Dalin Zhang, Zhaohui Song
Title: Pushing Trade-Off Boundaries: Compact yet Effective Remote Sensing Change Detection
Abstract:
Remote sensing change detection is essential for monitoring urban expansion, disaster assessment, and resource management, offering timely, accurate, and large-scale insights into dynamic landscape transformations. While deep learning has revolutionized change detection, the increasing complexity and computational demands of modern models have not necessarily translated into significant accuracy gains. Instead of following this trend, this study explores a more efficient approach, focusing on lightweight models that maintain high accuracy while minimizing resource consumption, which is an essential requirement for on-satellite processing. To this end, we propose FlickCD, which means quick flick then get great results, pushing the boundaries of the performance-resource trade-off. FlickCD introduces an Enhanced Difference Module (EDM) to amplify critical feature differences between temporal phases while suppressing irrelevant variations such as lighting and weather changes, thereby reducing computational costs in the subsequent change decoder. Additionally, the FlickCD decoder incorporates Local-Global Fusion Blocks, leveraging Shifted Window Self-Attention (SWSA) and Efficient Global Self-Attention (EGSA) to effectively capture semantic information at multiple scales, preserving both coarse- and fine-grained changes. Extensive experiments on four benchmark datasets demonstrate that FlickCD reduces computational and storage overheads by more than an order of magnitude while achieving state-of-the-art (SOTA) performance or incurring only a minor (<1% F1) accuracy trade-off. The implementation code is publicly available at https://github.com/xulsh8/FlickCD.

Authors:Tim Lawson, Laurence Aitchison
Title: Learning to Skip the Middle Layers of Transformers
Abstract:
Conditional computation is a popular strategy to make Transformers more efficient. Existing methods often target individual modules (e.g., mixture-of-experts layers) or skip layers independently of one another. However, interpretability research has demonstrated that the middle layers of Transformers exhibit greater redundancy, and that early layers aggregate information into token positions. Guided by these insights, we propose a novel architecture that dynamically skips a variable number of layers from the middle outward. In particular, a learned gating mechanism determines whether to bypass a symmetric span of central blocks based on the input, and a gated attention mechanism prevents subsequent tokens from attending to skipped token positions. Residual norms are controlled with a 'sandwich' or 'perilayernorm' scheme and gate sparsity with an adaptive regularization loss. We had aimed to reduce compute requirements for 'simpler' tokens and potentially foster an emergent multi-level representational hierarchy but, at the scales investigated, our approach does not achieve improvements in the trade-off between validation cross-entropy and estimated FLOPs compared to dense baselines with fewer layers. We release our code at https://github.com/tim-lawson/skip-middle.

Authors:Yann Kerzreho
Title: Homogenization of Multi-agent Learning Dynamics in Finite-state Markov Games
Abstract:
This paper introduces a new approach for approximating the learning dynamics of multiple reinforcement learning (RL) agents interacting in a finite-state Markov game. The idea is to rescale the learning process by simultaneously reducing the learning rate and increasing the update frequency, effectively treating the agent's parameters as a slow-evolving variable influenced by the fast-mixing game state. Under mild assumptions-ergodicity of the state process and continuity of the updates-we prove the convergence of this rescaled process to an ordinary differential equation (ODE). This ODE provides a tractable, deterministic approximation of the agent's learning dynamics. An implementation of the framework is available at\,: https://github.com/yannKerzreho/MarkovGameApproximation

Authors:Demin Zhang, Jiahao Lyu, Zhijie Shen, Yu Zhou
Title: Class-Agnostic Region-of-Interest Matching in Document Images
Abstract:
Document understanding and analysis have received a lot of attention due to their widespread application. However, existing document analysis solutions, such as document layout analysis and key information extraction, are only suitable for fixed category definitions and granularities, and cannot achieve flexible applications customized by users. Therefore, this paper defines a new task named ``Class-Agnostic Region-of-Interest Matching'' (``RoI-Matching'' for short), which aims to match the customized regions in a flexible, efficient, multi-granularity, and open-set manner. The visual prompt of the reference document and target document images are fed into our model, while the output is the corresponding bounding boxes in the target document images. To meet the above requirements, we construct a benchmark RoI-Matching-Bench, which sets three levels of difficulties following real-world conditions, and propose the macro and micro metrics to evaluate. Furthermore, we also propose a new framework RoI-Matcher, which employs a siamese network to extract multi-level features both in the reference and target domains, and cross-attention layers to integrate and align similar semantics in different domains. Experiments show that our method with a simple procedure is effective on RoI-Matching-Bench, and serves as the baseline for further research. The code is available at https://github.com/pd162/RoI-Matching.

Authors:Shangbo Wu, Yu-an Tan, Ruinan Ma, Wencong Ma, Dehua Zhu, Yuanzhang Li
Title: Boosting Generative Adversarial Transferability with Self-supervised Vision Transformer Features
Abstract:
The ability of deep neural networks (DNNs) come from extracting and interpreting features from the data provided. By exploiting intermediate features in DNNs instead of relying on hard labels, we craft adversarial perturbation that generalize more effectively, boosting black-box transferability. These features ubiquitously come from supervised learning in previous work. Inspired by the exceptional synergy between self-supervised learning and the Transformer architecture, this paper explores whether exploiting self-supervised Vision Transformer (ViT) representations can improve adversarial transferability. We present dSVA -- a generative dual self-supervised ViT features attack, that exploits both global structural features from contrastive learning (CL) and local textural features from masked image modeling (MIM), the self-supervised learning paradigm duo for ViTs. We design a novel generative training framework that incorporates a generator to create black-box adversarial examples, and strategies to train the generator by exploiting joint features and the attention mechanism of self-supervised ViTs. Our findings show that CL and MIM enable ViTs to attend to distinct feature tendencies, which, when exploited in tandem, boast great adversarial generalizability. By disrupting dual deep features distilled by self-supervised ViTs, we are rewarded with remarkable black-box transferability to models of various architectures that outperform state-of-the-arts. Code available at https://github.com/spencerwooo/dSVA.

Authors:Boyong He, Yuxiang Ji, Zhuoyue Tan, Liaoni Wu
Title: Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability
Abstract:
Detectors often suffer from performance drop due to domain gap between training and testing data. Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks, but still struggle with large inference costs and have not yet fully leveraged the capabilities of diffusion models. We propose to tackle these problems by extracting intermediate features from a single-step diffusion process, improving feature collection and fusion to reduce inference time by 75% while enhancing performance on source domains (i.e., Fitness). Then, we construct an object-centered auxiliary branch by applying box-masked images with class prompts to extract robust and domain-invariant features that focus on object. We also apply consistency loss to align the auxiliary and ordinary branch, balancing fitness and generalization while preventing overfitting and improving performance on target domains (i.e., Generalization). Furthermore, within a unified framework, standard detectors are guided by diffusion detectors through feature-level and object-level alignment on source domains (for DG) and unlabeled target domains (for DA), thereby improving cross-domain detection performance (i.e., Transferability). Our method achieves competitive results on 3 DA benchmarks and 5 DG benchmarks. Additionally, experiments on COCO generalization benchmark demonstrate that our method maintains significant advantages and show remarkable efficiency in large domain shifts and low-data scenarios. Our work shows the superiority of applying diffusion models to domain generalized and adaptive detection tasks and offers valuable insights for visual perception tasks across diverse domains. The code is available at \href{https://github.com/heboyong/Fitness-Generalization-Transferability}.

Authors:Lei Hao, Lina Xu, Chang Liu, Yanni Dong
Title: LASFNet: A Lightweight Attention-Guided Self-Modulation Feature Fusion Network for Multimodal Object Detection
Abstract:
Effective deep feature extraction via feature-level fusion is crucial for multimodal object detection. However, previous studies often involve complex training processes that integrate modality-specific features by stacking multiple feature-level fusion units, leading to significant computational overhead. To address this issue, we propose a new fusion detection baseline that uses a single feature-level fusion unit to enable high-performance detection, thereby simplifying the training process. Based on this approach, we propose a lightweight attention-guided self-modulation feature fusion network (LASFNet), which introduces a novel attention-guided self-modulation feature fusion (ASFF) module that adaptively adjusts the responses of fusion features at both global and local levels based on attention information from different modalities, thereby promoting comprehensive and enriched feature generation. Additionally, a lightweight feature attention transformation module (FATM) is designed at the neck of LASFNet to enhance the focus on fused features and minimize information loss. Extensive experiments on three representative datasets demonstrate that, compared to state-of-the-art methods, our approach achieves a favorable efficiency-accuracy trade-off, reducing the number of parameters and computational cost by as much as 90% and 85%, respectively, while improving detection accuracy (mAP) by 1%-3%. The code will be open-sourced at https://github.com/leileilei2000/LASFNet.

Authors:Tyler Ward, Xiaoqin Wang, Braxton McFarland, Md Atik Ahamed, Sahar Nozad, Talal Arshad, Hafsa Nebbache, Jin Chen, Abdullah Imran
Title: Detection of Breast Cancer Lumpectomy Margin with SAM-incorporated Forward-Forward Contrastive Learning
Abstract:
Complete removal of cancer tumors with a negative specimen margin during lumpectomy is essential in reducing breast cancer recurrence. However, 2D specimen radiography (SR), the current method used to assess intraoperative specimen margin status, has limited accuracy, resulting in nearly a quarter of patients requiring additional surgery. To address this, we propose a novel deep learning framework combining the Segment Anything Model (SAM) with Forward-Forward Contrastive Learning (FFCL), a pre-training strategy leveraging both local and global contrastive learning for patch-level classification of SR images. After annotating SR images with regions of known maligancy, non-malignant tissue, and pathology-confirmed margins, we pre-train a ResNet-18 backbone with FFCL to classify margin status, then reconstruct coarse binary masks to prompt SAM for refined tumor margin segmentation. Our approach achieved an AUC of 0.8455 for margin classification and segmented margins with a 27.4% improvement in Dice similarity over baseline models, while reducing inference time to 47 milliseconds per image. These results demonstrate that FFCL-SAM significantly enhances both the speed and accuracy of intraoperative margin assessment, with strong potential to reduce re-excision rates and improve surgical outcomes in breast cancer treatment. Our code is available at https://github.com/tbwa233/FFCL-SAM/.

Authors:Qiuyi Qi, Xin Li, Ming Kong, Zikang Xu, Bingdi Chen, Qiang Zhu, S Kevin Zhou
Title: Style-Aligned Image Composition for Robust Detection of Abnormal Cells in Cytopathology
Abstract:
Challenges such as the lack of high-quality annotations, long-tailed data distributions, and inconsistent staining styles pose significant obstacles to training neural networks to detect abnormal cells in cytopathology robustly. This paper proposes a style-aligned image composition (SAIC) method that composes high-fidelity and style-preserved pathological images to enhance the effectiveness and robustness of detection models. Without additional training, SAIC first selects an appropriate candidate from the abnormal cell bank based on attribute guidance. Then, it employs a high-frequency feature reconstruction to achieve a style-aligned and high-fidelity composition of abnormal cells and pathological backgrounds. Finally, it introduces a large vision-language model to filter high-quality synthesis images. Experimental results demonstrate that incorporating SAIC-synthesized images effectively enhances the performance and robustness of abnormal cell detection for tail categories and styles, thereby improving overall detection performance. The comprehensive quality evaluation further confirms the generalizability and practicality of SAIC in clinical application scenarios. Our code will be released at https://github.com/Joey-Qi/SAIC.

Authors:Wenjie Xuan, Jing Zhang, Juhua Liu, Bo Du, Dacheng Tao
Title: Rethink Sparse Signals for Pose-guided Text-to-image Generation
Abstract:
Recent works favored dense signals (e.g., depth, DensePose), as an alternative to sparse signals (e.g., OpenPose), to provide detailed spatial guidance for pose-guided text-to-image generation. However, dense representations raised new challenges, including editing difficulties and potential inconsistencies with textual prompts. This fact motivates us to revisit sparse signals for pose guidance, owing to their simplicity and shape-agnostic nature, which remains underexplored. This paper proposes a novel Spatial-Pose ControlNet(SP-Ctrl), equipping sparse signals with robust controllability for pose-guided image generation. Specifically, we extend OpenPose to a learnable spatial representation, making keypoint embeddings discriminative and expressive. Additionally, we introduce keypoint concept learning, which encourages keypoint tokens to attend to the spatial positions of each keypoint, thus improving pose alignment. Experiments on animal- and human-centric image generation tasks demonstrate that our method outperforms recent spatially controllable T2I generation approaches under sparse-pose guidance and even matches the performance of dense signal-based methods. Moreover, SP-Ctrl shows promising capabilities in diverse and cross-species generation through sparse signals. Codes will be available at https://github.com/DREAMXFAR/SP-Ctrl.

Authors:Ziyu Zheng, Yaming Yang, Ziyu Guan, Wei Zhao, Weigang Lu
Title: Enhancing Homophily-Heterophily Separation: Relation-Aware Learning in Heterogeneous Graphs
Abstract:
Real-world networks usually have a property of node heterophily, that is, the connected nodes usually have different features or different labels. This heterophily issue has been extensively studied in homogeneous graphs but remains under-explored in heterogeneous graphs, where there are multiple types of nodes and edges. Capturing node heterophily in heterogeneous graphs is very challenging since both node/edge heterogeneity and node heterophily should be carefully taken into consideration. Existing methods typically convert heterogeneous graphs into homogeneous ones to learn node heterophily, which will inevitably lose the potential heterophily conveyed by heterogeneous relations. To bridge this gap, we propose Relation-Aware Separation of Homophily and Heterophily (RASH), a novel contrastive learning framework that explicitly models high-order semantics of heterogeneous interactions and adaptively separates homophilic and heterophilic patterns. Particularly, RASH introduces dual heterogeneous hypergraphs to encode multi-relational bipartite subgraphs and dynamically constructs homophilic graphs and heterophilic graphs based on relation importance. A multi-relation contrastive loss is designed to align heterogeneous and homophilic/heterophilic views by maximizing mutual information. In this way, RASH simultaneously resolves the challenges of heterogeneity and heterophily in heterogeneous graphs. Extensive experiments on benchmark datasets demonstrate the effectiveness of RASH across various downstream tasks. The code is available at: https://github.com/zhengziyu77/RASH.

Authors:Naihe Feng, Yi Sui, Shiyi Hou, Jesse C. Cresswell, Ga Wu
Title: Response Quality Assessment for Retrieval-Augmented Generation via Conditional Conformal Factuality
Abstract:
Existing research on Retrieval-Augmented Generation (RAG) primarily focuses on improving overall question-answering accuracy, often overlooking the quality of sub-claims within generated responses. Recent methods that attempt to improve RAG trustworthiness, such as through auto-evaluation metrics, lack probabilistic guarantees or require ground truth answers. To address these limitations, we propose Conformal-RAG, a novel framework inspired by recent applications of conformal prediction (CP) on large language models (LLMs). Conformal-RAG leverages CP and internal information from the RAG mechanism to offer statistical guarantees on response quality. It ensures group-conditional coverage spanning multiple sub-domains without requiring manual labelling of conformal sets, making it suitable for complex RAG applications. Compared to existing RAG auto-evaluation methods, Conformal-RAG offers statistical guarantees on the quality of refined sub-claims, ensuring response reliability without the need for ground truth answers. Additionally, our experiments demonstrate that by leveraging information from the RAG system, Conformal-RAG retains up to 60\% more high-quality sub-claims from the response compared to direct applications of CP to LLMs, while maintaining the same reliability guarantee.

Authors:Tian-Yu Xiang, Ao-Qun Jin, Xiao-Hu Zhou, Mei-Jiang Gui, Xiao-Liang Xie, Shi-Qi Liu, Shuang-Yi Wang, Sheng-Bin Duan, Fu-Chao Xie, Wen-Kai Wang, Si-Cheng Wang, Ling-Yun Li, Tian Tu, Zeng-Guang Hou
Title: Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends
Abstract:
Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to address the challenge of improving an embodiment's ability to interact with the environment for the given tasks, analogous to the process of humans motor skills acquisition. Accordingly, this paper reviews post-training strategies for VLA models through the lens of human motor learning, focusing on three dimensions: environments, embodiments, and tasks. A structured taxonomy is introduced aligned with human learning mechanisms: (1) enhancing environmental perception, (2) improving embodiment awareness, (3) deepening task comprehension, and (4) multi-component integration. Finally, key challenges and trends in post-training VLA models are identified, establishing a conceptual framework to guide future research. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. (Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training)

Authors:Fangyuan Zhang, Zhengjun Huang, Yingli Zhou, Qintian Guo, Zhixun Li, Wensheng Luo, Di Jiang, Yixiang Fang, Xiaofang Zhou
Title: EraRAG: Efficient and Incremental Retrieval Augmented Generation for Growing Corpora
Abstract:
Graph-based Retrieval-Augmented Generation (Graph-RAG) enhances large language models (LLMs) by structuring retrieval over an external corpus. However, existing approaches typically assume a static corpus, requiring expensive full-graph reconstruction whenever new documents arrive, limiting their scalability in dynamic, evolving environments. To address these limitations, we introduce EraRAG, a novel multi-layered Graph-RAG framework that supports efficient and scalable dynamic updates. Our method leverages hyperplane-based Locality-Sensitive Hashing (LSH) to partition and organize the original corpus into hierarchical graph structures, enabling efficient and localized insertions of new data without disrupting the existing topology. The design eliminates the need for retraining or costly recomputation while preserving high retrieval accuracy and low latency. Experiments on large-scale benchmarks demonstrate that EraRag achieves up to an order of magnitude reduction in update time and token consumption compared to existing Graph-RAG systems, while providing superior accuracy performance. This work offers a practical path forward for RAG systems that must operate over continually growing corpora, bridging the gap between retrieval efficiency and adaptability. Our code and data are available at https://github.com/EverM0re/EraRAG-Official.

Authors:Jiameng Chen, Xiantao Cai, Jia Wu, Wenbin Hu
Title: Antibody Design and Optimization with Multi-scale Equivariant Graph Diffusion Models for Accurate Complex Antigen Binding
Abstract:
Antibody design remains a critical challenge in therapeutic and diagnostic development, particularly for complex antigens with diverse binding interfaces. Current computational methods face two main limitations: (1) capturing geometric features while preserving symmetries, and (2) generalizing novel antigen interfaces. Despite recent advancements, these methods often fail to accurately capture molecular interactions and maintain structural integrity. To address these challenges, we propose \textbf{AbMEGD}, an end-to-end framework integrating \textbf{M}ulti-scale \textbf{E}quivariant \textbf{G}raph \textbf{D}iffusion for antibody sequence and structure co-design. Leveraging advanced geometric deep learning, AbMEGD combines atomic-level geometric features with residue-level embeddings, capturing local atomic details and global sequence-structure interactions. Its E(3)-equivariant diffusion method ensures geometric precision, computational efficiency, and robust generalizability for complex antigens. Furthermore, experiments using the SAbDab database demonstrate a 10.13\% increase in amino acid recovery, 3.32\% rise in improvement percentage, and a 0.062~Å reduction in root mean square deviation within the critical CDR-H3 region compared to DiffAb, a leading antibody design model. These results highlight AbMEGD's ability to balance structural integrity with improved functionality, establishing a new benchmark for sequence-structure co-design and affinity optimization. The code is available at: https://github.com/Patrick221215/AbMEGD.

Authors:Shubhankar Borse, Seokeon Choi, Sunghyun Park, Jeongho Kim, Shreya Kadambi, Risheek Garrepalli, Sungrack Yun, Munawar Hayat, Fatih Porikli
Title: MultiHuman-Testbench: Benchmarking Image Generation for Multiple Humans
Abstract:
Generation of images containing multiple humans, performing complex actions, while preserving their facial identities, is a significant challenge. A major factor contributing to this is the lack of a dedicated benchmark. To address this, we introduce MultiHuman-Testbench, a novel benchmark for rigorously evaluating generative models for multi-human generation. The benchmark comprises 1800 samples, including carefully curated text prompts, describing a range of simple to complex human actions. These prompts are matched with a total of 5,550 unique human face images, sampled uniformly to ensure diversity across age, ethnic background, and gender. Alongside captions, we provide human-selected pose conditioning images which accurately match the prompt. We propose a multi-faceted evaluation suite employing four key metrics to quantify face count, ID similarity, prompt alignment, and action detection. We conduct a thorough evaluation of a diverse set of models, including zero-shot approaches and training-based methods, with and without regional priors. We also propose novel techniques to incorporate image and region isolation using human segmentation and Hungarian matching, significantly improving ID similarity. Our proposed benchmark and key findings provide valuable insights and a standardized tool for advancing research in multi-human image generation. The dataset and evaluation codes will be available at https://github.com/Qualcomm-AI-research/MultiHuman-Testbench.

Authors:Milad Hasanzadeh, Amin Kargarian
Title: DPLib: A Standard Benchmark Library for Distributed Power System Analysis and Optimization
Abstract:
\textit{DPLib} is an open-source MATLAB-based benchmark library created to support research and development in distributed and decentralized power system analysis and optimization. Distributed and decentralized methods offer scalability, privacy preservation, and resilience to single points of failure, making them increasingly important for modern power systems. However, unlike centralized tools such as MATPOWER, no general-purpose, reproducible data library package currently exists for distributed power system studies. DPLib, available at \href{https://github.com/LSU-RAISE-LAB/DPLib.git}{GitHub}, fills this gap by providing a standard power system library featuring over 20 multi-region benchmark test cases of varying sizes, along with a graph-based partitioning toolkit that decomposes any MATPOWER test system into multiple electrically coherent regions. The partitioning toolkit, an easy-to-use MATLAB code, generates standardized \texttt{.mat} and \texttt{.m} files, along with region visualizations for intuitive understanding. We also provide modular, easy-to-use distributed optimal power flow (OPF) solvers: an alternating direction method of multipliers(ADMM)-based DC-OPF solver implemented in YALMIP, and an ADMM-based AC-OPF solver leveraging IPOPT. These solvers validate the generated test systems for distributed optimization applications. Numerical results validate the generated test cases, establishing DPLib as a foundation for reproducible distributed power system research.

Authors:Ali Tourani, Fatemeh Nazary, Yashar Deldjoo
Title: RAG-VisualRec: An Open Resource for Vision- and Text-Enhanced Retrieval-Augmented Generation in Recommendation
Abstract:
This paper addresses the challenge of developing multimodal recommender systems for the movie domain, where limited metadata (e.g., title, genre) often hinders the generation of robust recommendations. We introduce a resource that combines LLM-generated plot descriptions with trailer-derived visual embeddings in a unified pipeline supporting both Retrieval-Augmented Generation (RAG) and collaborative filtering. Central to our approach is a data augmentation step that transforms sparse metadata into richer textual signals, alongside fusion strategies (e.g., PCA, CCA) that integrate visual cues. Experimental evaluations demonstrate that CCA-based fusion significantly boosts recall compared to unimodal baselines, while an LLM-driven re-ranking step further improves NDCG, particularly in scenarios with limited textual data. By releasing this framework, we invite further exploration of multi-modal recommendation techniques tailored to cold-start, novelty-focused, and domain-specific settings. All code, data, and detailed documentation are publicly available at: https://github.com/RecSys-lab/RAG-VisualRec

Authors:Lucius Bushnaq, Dan Braun, Lee Sharkey
Title: Stochastic Parameter Decomposition
Abstract:
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce \textit{Stochastic Parameter Decomposition} (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd/tree/spd-paper.

Authors:Huangyuan Su, Mujin Kwun, Stephanie Gil, Sham Kakade, Nikhil Anand
Title: Characterization and Mitigation of Training Instabilities in Microscaling Formats
Abstract:
Training large language models is an expensive, compute-bound process that must be repeated as models scale, algorithms improve, and new data is collected. To address this, next-generation hardware accelerators increasingly support lower-precision arithmetic formats, such as the Microscaling (MX) formats introduced in NVIDIA's Blackwell architecture. These formats use a shared scale within blocks of parameters to extend representable range and perform forward/backward GEMM operations in reduced precision for efficiency gains. In this work, we investigate the challenges and viability of block-scaled precision formats during model training. Across nearly one thousand language models trained from scratch -- spanning compute budgets from $2 \times 10^{17}$ to $4.8 \times 10^{19}$ FLOPs and sweeping over a broad range of weight-activation precision combinations -- we consistently observe that training in MX formats exhibits sharp, stochastic instabilities in the loss, particularly at larger compute scales. To explain this phenomenon, we conduct controlled experiments and ablations on a smaller proxy model that exhibits similar behavior as the language model, sweeping across architectural settings, hyperparameters, and precision formats. These experiments motivate a simple model in which multiplicative gradient bias introduced by the quantization of layer-norm affine parameters and a small fraction of activations can trigger runaway divergence. Through \emph{in situ} intervention experiments on our proxy model, we demonstrate that instabilities can be averted or delayed by modifying precision schemes mid-training. Guided by these findings, we evaluate stabilization strategies in the LLM setting and show that certain hybrid configurations recover performance competitive with full-precision training. We release our code at https://github.com/Hither1/systems-scaling.

Authors:Qin Ren, Yifan Wang, Ruogu Fang, Haibin Ling, Chenyu You
Title: OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport
Abstract:
Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem. However, existing MIL methods often fail to explicitly capture pathological heterogeneity within WSIs, both globally -- through long-tailed morphological distributions, and locally through -- tile-level prediction uncertainty. Optimal transport (OT) provides a principled way of modeling such heterogeneity by incorporating marginal distribution constraints. Building on this insight, we propose OTSurv, a novel MIL framework from an optimal transport perspective. Specifically, OTSurv formulates survival predictions as a heterogeneity-aware OT problem with two constraints: (1) global long-tail constraint that models prior morphological distributions to avert both mode collapse and excessive uniformity by regulating transport mass allocation, and (2) local uncertainty-aware constraint that prioritizes high-confidence patches while suppressing noise by progressively raising the total transport mass. We then recast the initial OT problem, augmented by these constraints, into an unbalanced OT formulation that can be solved with an efficient, hardware-friendly matrix scaling algorithm. Empirically, OTSurv sets new state-of-the-art results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index. In addition, OTSurv achieves statistical significance in log-rank tests and offers high interpretability, making it a powerful tool for survival prediction in digital pathology. Our codes are available at https://github.com/Y-Research-SBU/OTSurv.

Authors:Yiming Wang, Arthur N. Montanari, Adilson E. Motter
Title: Distributed Lyapunov Functions for Nonlinear Networks
Abstract:
Nonlinear networks are often multistable, exhibiting coexisting stable states with competing regions of attraction (ROAs). As a result, ROAs can have complex "tentacle-like" morphologies that are challenging to characterize analytically or computationally. In addition, the high dimensionality of the state space prohibits the automated construction of Lyapunov functions using state-of-the-art optimization methods, such as sum-of-squares (SOS) programming. In this letter, we propose a distributed approach for the construction of Lyapunov functions based solely on local information. To this end, we establish an augmented comparison lemma that characterizes the existence conditions of partial Lyapunov functions, while also accounting for residual effects caused by the associated dimensionality reduction. These theoretical results allow us to formulate an SOS optimization that iteratively constructs such partial functions, whose aggregation forms a composite Lyapunov function. The resulting composite function provides accurate convex approximations of both the volumes and shapes of the ROAs. We validate our method on networks of van der Pol and Ising oscillators, demonstrating its effectiveness in characterizing high-dimensional systems with non-convex ROAs.

Authors:Hoa La, Ahan Gupta, Alex Morehead, Jianlin Cheng, Minjia Zhang
Title: MegaFold: System-Level Optimizations for Accelerating Protein Structure Prediction Models
Abstract:
Protein structure prediction models such as AlphaFold3 (AF3) push the frontier of biomolecular modeling by incorporating science-informed architectural changes to the transformer architecture. However, these advances come at a steep system cost, introducing: compute- and memory-intensive operators, 2D attention mechanisms, and retrieval-augmented data pipelines, which collectively hinder the scalability of AF3 training. In this work, we present MegaFold, a cross-platform system to accelerate AF3 training. MegaFold tackles key bottlenecks through ahead-of-time caching to eliminate GPU idle time from the retrieval-augmented data pipeline, Triton-based kernels for memory-efficient EvoAttention on heterogeneous devices, and deep fusion for common and critical small operators in AF3. Evaluation on both NVIDIA H200 and AMD MI250 GPUs shows that MegaFold reduces peak memory usage of AF3 training by up to 1.23$\times$ and improves per-iteration training time by up-to 1.73$\times$ and 1.62$\times$ respectively. More importantly, MegaFold enables training on 1.35$\times$ longer sequence lengths compared to PyTorch baselines without running out-of-memory, significantly improving the scalability of modern protein folding models. We open source our code at https://github.com/Supercomputing-System-AI-Lab/MegaFold/.

Authors:Alexander Selivanov, Philip Müller, Özgün Turgut, Nil Stolt-Ansó, Daniel Rückert
Title: Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG
Abstract:
An electrocardiogram (ECG) is a widely used, cost-effective tool for detecting electrical abnormalities in the heart. However, it cannot directly measure functional parameters, such as ventricular volumes and ejection fraction, which are crucial for assessing cardiac function. Cardiac magnetic resonance (CMR) is the gold standard for these measurements, providing detailed structural and functional insights, but is expensive and less accessible. To bridge this gap, we propose PTACL (Patient and Temporal Alignment Contrastive Learning), a multimodal contrastive learning framework that enhances ECG representations by integrating spatio-temporal information from CMR. PTACL uses global patient-level contrastive loss and local temporal-level contrastive loss. The global loss aligns patient-level representations by pulling ECG and CMR embeddings from the same patient closer together, while pushing apart embeddings from different patients. Local loss enforces fine-grained temporal alignment within each patient by contrasting encoded ECG segments with corresponding encoded CMR frames. This approach enriches ECG representations with diagnostic information beyond electrical activity and transfers more insights between modalities than global alignment alone, all without introducing new learnable weights. We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank. Compared to baseline approaches, PTACL achieves better performance in two clinically relevant tasks: (1) retrieving patients with similar cardiac phenotypes and (2) predicting CMR-derived cardiac function parameters, such as ventricular volumes and ejection fraction. Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG. The code is available at: https://github.com/alsalivan/ecgcmr

Authors:Jinming Wu, Zihao Deng, Wei Li, Yiding Liu, Bo You, Bo Li, Zejun Ma, Ziwei Liu
Title: MMSearch-R1: Incentivizing LMMs to Search
Abstract:
Robust deployment of large multimodal models (LMMs) in real-world scenarios requires access to external knowledge sources, given the complexity and dynamic nature of real-world information. Existing approaches such as retrieval-augmented generation (RAG) and prompt engineered search agents rely on rigid pipelines, often leading to inefficient or excessive search behaviors. We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables LMMs to perform on-demand, multi-turn search in real-world Internet environments. Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty. To support training, We collect a multimodal search VQA dataset through a semi-automated pipeline that covers diverse visual and textual knowledge needs and curate a search-balanced subset with both search-required and search-free samples, which proves essential for shaping efficient and on-demand search behavior. Extensive experiments on knowledge-intensive and info-seeking VQA tasks show that our model not only outperforms RAG-based baselines of the same model size, but also matches the performance of a larger RAG-based model while reducing search calls by over 30%. We further analyze key empirical findings to offer actionable insights for advancing research in multimodal search.

Authors:Jacopo Dapueto, Vito Paolo Pastore, Nicoletta Noceti, Francesca Odone
Title: Disentangled representations of microscopy images
Abstract:
Microscopy image analysis is fundamental for different applications, from diagnosis to synthetic engineering and environmental monitoring. Modern acquisition systems have granted the possibility to acquire an escalating amount of images, requiring a consequent development of a large collection of deep learning-based automatic image analysis methods. Although deep neural networks have demonstrated great performance in this field, interpretability, an essential requirement for microscopy image analysis, remains an open challenge. This work proposes a Disentangled Representation Learning (DRL) methodology to enhance model interpretability for microscopy image classification. Exploiting benchmark datasets from three different microscopic image domains (plankton, yeast vacuoles, and human cells), we show how a DRL framework, based on transferring a representation learnt from synthetic data, can provide a good trade-off between accuracy and interpretability in this domain.

Authors:Sijie Li, Weiwei Sun, Shanda Li, Ameet Talwalkar, Yiming Yang
Title: Towards Community-Driven Agents for Machine Learning Engineering
Abstract:
Large language model-based machine learning (ML) agents have shown great promise in automating ML research. However, existing agents typically operate in isolation on a given research problem, without engaging with the broader research community, where human researchers often gain insights and contribute by sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation framework designed to assess an agent's ability to communicate with and leverage collective knowledge from a simulated Kaggle research community. Building on this framework, we propose CoMind, a novel agent that excels at exchanging insights and developing novel solutions within a community context. CoMind achieves state-of-the-art performance on MLE-Live and outperforms 79.2% human competitors on average across four ongoing Kaggle competitions. Our code is released at https://github.com/comind-ml/CoMind.

Authors:Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, Yizhe Zhang
Title: DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation
Abstract:
Diffusion large language models (dLLMs) are compelling alternatives to autoregressive (AR) models because their denoising models operate over the entire sequence. The global planning and iterative refinement features of dLLMs are particularly useful for code generation. However, current training and inference mechanisms for dLLMs in coding are still under-explored. To demystify the decoding behavior of dLLMs and unlock their potential for coding, we systematically investigate their denoising processes and reinforcement learning (RL) methods. We train a 7B dLLM, \textbf{DiffuCoder}, on 130B tokens of code. Using this model as a testbed, we analyze its decoding behavior, revealing how it differs from that of AR models: (1) dLLMs can decide how causal their generation should be without relying on semi-AR decoding, and (2) increasing the sampling temperature diversifies not only token choices but also their generation order. This diversity creates a rich search space for RL rollouts. For RL training, to reduce the variance of token log-likelihood estimates and maintain training efficiency, we propose \textbf{coupled-GRPO}, a novel sampling scheme that constructs complementary mask noise for completions used in training. In our experiments, coupled-GRPO significantly improves DiffuCoder's performance on code generation benchmarks (+4.4\% on EvalPlus) and reduces reliance on AR bias during decoding. Our work provides deeper insight into the machinery of dLLM generation and offers an effective, diffusion-native RL training framework. https://github.com/apple/ml-diffucoder.

Authors:Ji Qi, Xinchang Zhang, Dingqi Ye, Yongjia Ruan, Xin Guo, Shaowen Wang, Haifeng Li
Title: SFNet: Fusion of Spatial and Frequency-Domain Features for Remote Sensing Image Forgery Detection
Abstract:
The rapid advancement of generative artificial intelligence is producing fake remote sensing imagery (RSI) that is increasingly difficult to detect, potentially leading to erroneous intelligence, fake news, and even conspiracy theories. Existing forgery detection methods typically rely on single visual features to capture predefined artifacts, such as spatial-domain cues to detect forged objects like roads or buildings in RSI, or frequency-domain features to identify artifacts from up-sampling operations in adversarial generative networks (GANs). However, the nature of artifacts can significantly differ depending on geographic terrain, land cover types, or specific features within the RSI. Moreover, these complex artifacts evolve as generative models become more sophisticated. In short, over-reliance on a single visual cue makes existing forgery detectors struggle to generalize across diverse remote sensing data. This paper proposed a novel forgery detection framework called SFNet, designed to identify fake images in diverse remote sensing data by leveraging spatial and frequency domain features. Specifically, to obtain rich and comprehensive visual information, SFNet employs two independent feature extractors to capture spatial and frequency domain features from input RSIs. To fully utilize the complementary domain features, the domain feature mapping module and the hybrid domain feature refinement module(CBAM attention) of SFNet are designed to successively align and fuse the multi-domain features while suppressing redundant information. Experiments on three datasets show that SFNet achieves an accuracy improvement of 4%-15.18% over the state-of-the-art RS forgery detection methods and exhibits robust generalization capabilities. The code is available at https://github.com/GeoX-Lab/RSTI/tree/main/SFNet.

Authors:Zhonghao Shi, Enyu Zhao, Nathaniel Dennler, Jingzhen Wang, Xinyang Xu, Kaleen Shrestha, Mengxue Fu, Daniel Seita, Maja Matarić
Title: HRIBench: Benchmarking Vision-Language Models for Real-Time Human Perception in Human-Robot Interaction
Abstract:
Real-time human perception is crucial for effective human-robot interaction (HRI). Large vision-language models (VLMs) offer promising generalizable perceptual capabilities but often suffer from high latency, which negatively impacts user experience and limits VLM applicability in real-world scenarios. To systematically study VLM capabilities in human perception for HRI and performance-latency trade-offs, we introduce HRIBench, a visual question-answering (VQA) benchmark designed to evaluate VLMs across a diverse set of human perceptual tasks critical for HRI. HRIBench covers five key domains: (1) non-verbal cue understanding, (2) verbal instruction understanding, (3) human-robot object relationship understanding, (4) social navigation, and (5) person identification. To construct HRIBench, we collected data from real-world HRI environments to curate questions for non-verbal cue understanding, and leveraged publicly available datasets for the remaining four domains. We curated 200 VQA questions for each domain, resulting in a total of 1000 questions for HRIBench. We then conducted a comprehensive evaluation of both state-of-the-art closed-source and open-source VLMs (N=11) on HRIBench. Our results show that, despite their generalizability, current VLMs still struggle with core perceptual capabilities essential for HRI. Moreover, none of the models within our experiments demonstrated a satisfactory performance-latency trade-off suitable for real-time deployment, underscoring the need for future research on developing smaller, low-latency VLMs with improved human perception capabilities. HRIBench and our results can be found in this Github repository: https://github.com/interaction-lab/HRIBench.

Authors:Lei Zhu, Jun Zhou, Rick Siow Mong Goh, Yong Liu
Title: AdvMIM: Adversarial Masked Image Modeling for Semi-Supervised Medical Image Segmentation
Abstract:
Vision Transformer has recently gained tremendous popularity in medical image segmentation task due to its superior capability in capturing long-range dependencies. However, transformer requires a large amount of labeled data to be effective, which hinders its applicability in annotation scarce semi-supervised learning scenario where only limited labeled data is available. State-of-the-art semi-supervised learning methods propose combinatorial CNN-Transformer learning to cross teach a transformer with a convolutional neural network, which achieves promising results. However, it remains a challenging task to effectively train the transformer with limited labeled data. In this paper, we propose an adversarial masked image modeling method to fully unleash the potential of transformer for semi-supervised medical image segmentation. The key challenge in semi-supervised learning with transformer lies in the lack of sufficient supervision signal. To this end, we propose to construct an auxiliary masked domain from original domain with masked image modeling and train the transformer to predict the entire segmentation mask with masked inputs to increase supervision signal. We leverage the original labels from labeled data and pseudo-labels from unlabeled data to learn the masked domain. To further benefit the original domain from masked domain, we provide a theoretical analysis of our method from a multi-domain learning perspective and devise a novel adversarial training loss to reduce the domain gap between the original and masked domain, which boosts semi-supervised learning performance. We also extend adversarial masked image modeling to CNN network. Extensive experiments on three public medical image segmentation datasets demonstrate the effectiveness of our method, where our method outperforms existing methods significantly. Our code is publicly available at https://github.com/zlheui/AdvMIM.

Authors:Manyi Li, Renshuai Tao, Yufan Liu, Chuangchuang Tan, Haotong Qin, Bing Li, Yunchao Wei, Yao Zhao
Title: Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
Abstract:
With the rapid advancement of deep learning, particularly through generative adversarial networks (GANs) and diffusion models (DMs), AI-generated images, or ``deepfakes", have become nearly indistinguishable from real ones. These images are widely shared across Online Social Networks (OSNs), raising concerns about their misuse. Existing deepfake detection methods overlook the ``block effects" introduced by compression in OSNs, which obscure deepfake artifacts, and primarily focus on raw images, rarely encountered in real-world scenarios. To address these challenges, we propose PLADA (Pay Less Attention to Deceptive Artifacts), a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images. PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection. Extensive experiments across 26 datasets demonstrate that PLADA achieves a remarkable balance in deepfake detection, outperforming SoTA methods in detecting deepfakes on OSNs, even with limited paired data and compression. More importantly, this work introduces the ``block effect" as a critical factor in deepfake detection, providing a robust solution for open-world scenarios. Our code is available at https://github.com/ManyiLee/PLADA.

Authors:Hongzhen Huang, Kunming Zhang, Hanlong Liao, Kui Wu, Guoming Tang
Title: WattsOnAI: Measuring, Analyzing, and Visualizing Energy and Carbon Footprint of AI Workloads
Abstract:
The rapid advancement of AI, particularly large language models (LLMs), has raised significant concerns about the energy use and carbon emissions associated with model training and inference. However, existing tools for measuring and reporting such impacts are often fragmented, lacking systematic metric integration and offering limited support for correlation analysis among them. This paper presents WattsOnAI, a comprehensive software toolkit for the measurement, analysis, and visualization of energy use, power draw, hardware performance, and carbon emissions across AI workloads. By seamlessly integrating with existing AI frameworks, WattsOnAI offers standardized reports and exports fine-grained time-series data to support benchmarking and reproducibility in a lightweight manner. It further enables in-depth correlation analysis between hardware metrics and model performance and thus facilitates bottleneck identification and performance enhancement. By addressing critical limitations in existing tools, WattsOnAI encourages the research community to weigh environmental impact alongside raw performance of AI workloads and advances the shift toward more sustainable "Green AI" practices. The code is available at https://github.com/SusCom-Lab/WattsOnAI.

Authors:Haoze Wu, Yunzhi Yao, Wenhao Yu, Huajun Chen, Ningyu Zhang
Title: ReCode: Updating Code API Knowledge with Reinforcement Learning
Abstract:
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.

Authors:Mingqi Yuan, Tao Yu, Wenqi Ge, Xiuyong Yao, Huijiang Wang, Jiayu Chen, Xin Jin, Bo Li, Hua Chen, Wei Zhang, Wenjun Zeng
Title: A Survey of Behavior Foundation Model: Next-Generation Whole-Body Control System of Humanoid Robots
Abstract:
Humanoid robots are drawing significant attention as versatile platforms for complex motor control, human-robot interaction, and general-purpose physical intelligence. However, achieving efficient whole-body control (WBC) in humanoids remains a fundamental challenge due to sophisticated dynamics, underactuation, and diverse task requirements. While learning-based controllers have shown promise for complex tasks, their reliance on labor-intensive and costly retraining for new scenarios limits real-world applicability. To address these limitations, behavior(al) foundation models (BFMs) have emerged as a new paradigm that leverages large-scale pre-training to learn reusable primitive skills and broad behavioral priors, enabling zero-shot or rapid adaptation to a wide range of downstream tasks. In this paper, we present a comprehensive overview of BFMs for humanoid WBC, tracing their development across diverse pre-training pipelines. Furthermore, we discuss real-world applications, current limitations, urgent challenges, and future opportunities, positioning BFMs as a key approach toward scalable and general-purpose humanoid intelligence. Finally, we provide a curated and long-term list of BFM papers and projects to facilitate more subsequent research, which is available at https://github.com/yuanmingqi/awesome-bfm-papers.

Authors:Guinan Su, Li Shen, Lu Yin, Shiwei Liu, Yanwu Yang, Jonas Geiping
Title: GPTailor: Large Language Model Pruning Through Layer Cutting and Stitching
Abstract:
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges in deployment and inference. While structured pruning of model parameters offers a promising way to reduce computational costs at deployment time, current methods primarily focus on single model pruning. In this work, we develop a novel strategy to compress models by strategically combining or merging layers from finetuned model variants, which preserves the original model's abilities by aggregating capabilities accentuated in different finetunes. We pose the optimal tailoring of these LLMs as a zero-order optimization problem, adopting a search space that supports three different operations: (1) Layer removal, (2) Layer selection from different candidate models, and (3) Layer merging. Our experiments demonstrate that this approach leads to competitive model pruning, for example, for the Llama2-13B model families, our compressed models maintain approximately 97.3\% of the original performance while removing $\sim25\%$ of parameters, significantly outperforming previous state-of-the-art methods. The code is available at https://github.com/Guinan-Su/auto-merge-llm.

Authors:Tianyao Shi, Ritbik Kumar, Inez Hua, Yi Ding
Title: When Servers Meet Species: A Fab-to-Grave Lens on Computing's Biodiversity Impact
Abstract:
Biodiversity loss is a critical planetary boundary, yet its connection to computing remains largely unexamined. Prior sustainability efforts in computing have focused on carbon and water, overlooking biodiversity due to the lack of appropriate metrics and modeling frameworks. This paper presents the first end-to-end analysis of biodiversity impact from computing systems. We introduce two new metrics--Embodied Biodiversity Index (EBI) and Operational Biodiversity Index (OBI)--to quantify biodiversity impact across the lifecycle, and present FABRIC, a modeling framework that links computing workloads to biodiversity impacts. Our evaluation highlights the need to consider biodiversity alongside carbon and water in sustainable computing design and optimization. The code is available at https://github.com/TianyaoShi/FABRIC.

Authors:Fangyijie Wang, Yuan Liang, Sourav Bhattacharjee, Abey Campbell, Kathleen M. Curran, Guénolé Silvestre
Title: Fusing Radiomic Features with Deep Representations for Gestational Age Estimation in Fetal Ultrasound Images
Abstract:
Accurate gestational age (GA) estimation, ideally through fetal ultrasound measurement, is a crucial aspect of providing excellent antenatal care. However, deriving GA from manual fetal biometric measurements depends on the operator and is time-consuming. Hence, automatic computer-assisted methods are demanded in clinical practice. In this paper, we present a novel feature fusion framework to estimate GA using fetal ultrasound images without any measurement information. We adopt a deep learning model to extract deep representations from ultrasound images. We extract radiomic features to reveal patterns and characteristics of fetal brain growth. To harness the interpretability of radiomics in medical imaging analysis, we estimate GA by fusing radiomic features and deep representations. Our framework estimates GA with a mean absolute error of 8.0 days across three trimesters, outperforming current machine learning-based methods at these gestational ages. Experimental results demonstrate the robustness of our framework across different populations in diverse geographical regions. Our code is publicly available on \href{https://github.com/13204942/RadiomicsImageFusion_FetalUS}.

Authors:Francesco Carzaniga, Michael Hersche, Abu Sebastian, Kaspar Schindler, Abbas Rahimi
Title: A foundation model with multi-variate parallel attention to generate neuronal activity
Abstract:
Learning from multi-variate time-series with heterogeneous channel configurations remains a fundamental challenge for deep neural networks, particularly in clinical domains such as intracranial electroencephalography (iEEG), where channel setups vary widely across subjects. In this work, we introduce multi-variate parallel attention (MVPA), a novel self-attention mechanism that disentangles content, temporal, and spatial attention, enabling flexible, generalizable, and efficient modeling of time-series data with varying channel counts and configurations. We use MVPA to build MVPFormer, a generative foundation model for human electrophysiology, trained to predict the evolution of iEEG signals across diverse subjects. To support this and future efforts by the community, we release the SWEC iEEG dataset, the largest publicly available iEEG dataset to date, comprising nearly 10,000 hours of recordings from heterogeneous clinical sources. MVPFormer leverages MVPA to achieve strong generalization across subjects, demonstrating expert-level performance in several iEEG tasks. MVPFormer surpasses state-of-the-art Transformer baselines in seizure detection across the SWEC, the MAYO, and the FNUSA datasets, while also achieving state-of-the-art performance on four Brain TreeBank iEEG decoding tasks. We further validate MVPA on standard time-series forecasting and classification tasks, where it matches or exceeds the performance of existing attention-based models. Together, our contributions establish MVPA as a general-purpose attention mechanism for heterogeneous time-series and MVPFormer as the first open-source, open-weights, and open-data iEEG foundation model with SOTA clinical performance. The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://huggingface.co/datasets/NeuroTec/SWEC_iEEG_Dataset.

Authors:Andrej Lúčny, Matilde Antonj, Carlo Mazzola, Hana Hornáčková, Igor Farkaš
Title: Generating and Customizing Robotic Arm Trajectories using Neural Networks
Abstract:
We introduce a neural network approach for generating and customizing the trajectory of a robotic arm, that guarantees precision and repeatability. To highlight the potential of this novel method, we describe the design and implementation of the technique and show its application in an experimental setting of cognitive robotics. In this scenario, the NICO robot was characterized by the ability to point to specific points in space with precise linear movements, increasing the predictability of the robotic action during its interaction with humans. To achieve this goal, the neural network computes the forward kinematics of the robot arm. By integrating it with a generator of joint angles, another neural network was developed and trained on an artificial dataset created from suitable start and end poses of the robotic arm. Through the computation of angular velocities, the robot was characterized by its ability to perform the movement, and the quality of its action was evaluated in terms of shape and accuracy. Thanks to its broad applicability, our approach successfully generates precise trajectories that could be customized in their shape and adapted to different settings.

Authors:Kun Yuan, Tingxuan Chen, Shi Li, Joel L. Lavanchy, Christian Heiliger, Ege Özsoy, Yiming Huang, Long Bai, Nassir Navab, Vinkle Srivastav, Hongliang Ren, Nicolas Padoy
Title: Recognizing Surgical Phases Anywhere: Few-Shot Test-time Adaptation and Task-graph Guided Refinement
Abstract:
The complexity and diversity of surgical workflows, driven by heterogeneous operating room settings, institutional protocols, and anatomical variability, present a significant challenge in developing generalizable models for cross-institutional and cross-procedural surgical understanding. While recent surgical foundation models pretrained on large-scale vision-language data offer promising transferability, their zero-shot performance remains constrained by domain shifts, limiting their utility in unseen surgical environments. To address this, we introduce Surgical Phase Anywhere (SPA), a lightweight framework for versatile surgical workflow understanding that adapts foundation models to institutional settings with minimal annotation. SPA leverages few-shot spatial adaptation to align multi-modal embeddings with institution-specific surgical scenes and phases. It also ensures temporal consistency through diffusion modeling, which encodes task-graph priors derived from institutional procedure protocols. Finally, SPA employs dynamic test-time adaptation, exploiting the mutual agreement between multi-modal phase prediction streams to adapt the model to a given test video in a self-supervised manner, enhancing the reliability under test-time distribution shifts. SPA is a lightweight adaptation framework, allowing hospitals to rapidly customize phase recognition models by defining phases in natural language text, annotating a few images with the phase labels, and providing a task graph defining phase transitions. The experimental results show that the SPA framework achieves state-of-the-art performance in few-shot surgical phase recognition across multiple institutions and procedures, even outperforming full-shot models with 32-shot labeled data. Code is available at https://github.com/CAMMA-public/SPA

Authors:Kejia Chen, Jiawen Zhang, Jiacong Hu, Yu Wang, Jian Lou, Zunlei Feng, Mingli Song
Title: Q-resafe: Assessing Safety Risks and Quantization-aware Safety Patching for Quantized Large Language Models
Abstract:
Quantized large language models (LLMs) have gained increasing attention and significance for enabling deployment in resource-constrained environments. However, emerging studies on a few calibration dataset-free quantization methods suggest that quantization may compromise the safety capabilities of LLMs, underscoring the urgent need for systematic safety evaluations and effective mitigation strategies. In this paper, we present comprehensive safety evaluations across various mainstream quantization techniques and diverse calibration datasets, utilizing widely accepted safety benchmarks. To address the identified safety vulnerabilities, we propose a quantization-aware safety patching framework, Q-resafe, to efficiently restore the safety capabilities of quantized LLMs while minimizing any adverse impact on utility. Extensive experimental results demonstrate that Q-resafe successfully re-aligns the safety of quantized LLMs with their pre-quantization counterparts, even under challenging evaluation scenarios. Project page is available at: https://github.com/Thecommonirin/Qresafe.

Authors:Siqiao Li, Chen Hui, Wei Zhang, Rui Liang, Chenyue Song, Feng Jiang, Haiqi Zhu, Zhixuan Li, Hong Huang, Xiang Li
Title: MS-IQA: A Multi-Scale Feature Fusion Network for PET/CT Image Quality Assessment
Abstract:
Positron Emission Tomography / Computed Tomography (PET/CT) plays a critical role in medical imaging, combining functional and anatomical information to aid in accurate diagnosis. However, image quality degradation due to noise, compression and other factors could potentially lead to diagnostic uncertainty and increase the risk of misdiagnosis. When evaluating the quality of a PET/CT image, both low-level features like distortions and high-level features like organ anatomical structures affect the diagnostic value of the image. However, existing medical image quality assessment (IQA) methods are unable to account for both feature types simultaneously. In this work, we propose MS-IQA, a novel multi-scale feature fusion network for PET/CT IQA, which utilizes multi-scale features from various intermediate layers of ResNet and Swin Transformer, enhancing its ability of perceiving both local and global information. In addition, a multi-scale feature fusion module is also introduced to effectively combine high-level and low-level information through a dynamically weighted channel attention mechanism. Finally, to fill the blank of PET/CT IQA dataset, we construct PET-CT-IQA-DS, a dataset containing 2,700 varying-quality PET/CT images with quality scores assigned by radiologists. Experiments on our dataset and the publicly available LDCTIQAC2023 dataset demonstrate that our proposed model has achieved superior performance against existing state-of-the-art methods in various IQA metrics. This work provides an accurate and efficient IQA method for PET/CT. Our code and dataset are available at https://github.com/MS-IQA/MS-IQA/.

Authors:Deepak Ghimire, Kilho Lee, Seong-heum Kim
Title: Loss-Aware Automatic Selection of Structured Pruning Criteria for Deep Neural Network Acceleration
Abstract:
Structured pruning is a well-established technique for compressing neural networks, making it suitable for deployment in resource-limited edge devices. This paper presents an efficient Loss-Aware Automatic Selection of Structured Pruning Criteria (LAASP) for slimming and accelerating deep neural networks. The majority of pruning methodologies employ a sequential process consisting of three stages: 1) training, 2) pruning, and 3) fine-tuning, whereas the proposed pruning technique adopts a pruning-while-training approach that eliminates the first stage and integrates the second and third stages into a single cycle. The automatic selection of magnitude or similarity-based filter pruning criteria from a specified pool of criteria and the specific pruning layer at each pruning iteration is guided by the network's overall loss on a small subset of the training data. To mitigate the abrupt accuracy drop due to pruning, the network is retrained briefly after each reduction of a predefined number of floating-point operations (FLOPs). The optimal pruning rates for each layer in the network are automatically determined, eliminating the need for manual allocation of fixed or variable pruning rates for each layer. Experiments on the VGGNet and ResNet models on the CIFAR-10 and ImageNet benchmark datasets demonstrate the effectiveness of the proposed method. In particular, the ResNet56 and ResNet110 models on the CIFAR-10 dataset significantly improve the top-1 accuracy compared to state-of-the-art methods while reducing the network FLOPs by 52\%. Furthermore, the ResNet50 model on the ImageNet dataset reduces FLOPs by more than 42\% with a negligible 0.33\% drop in top-5 accuracy. The source code of this paper is publicly available online - https://github.com/ghimiredhikura/laasp.

Authors:Haipeng Fan, Shiyuan Zhang, Baohunesitu, Zihang Guo, Huaiwen Zhang
Title: EAR: Erasing Concepts from Unified Autoregressive Models
Abstract:
Autoregressive (AR) models have achieved unified and strong performance across both visual understanding and image generation tasks. However, removing undesired concepts from AR models while maintaining overall generation quality remains an open challenge. In this paper, we propose Erasure Autoregressive Model (EAR), a fine-tuning method for effective and utility-preserving concept erasure in AR models. Specifically, we introduce Windowed Gradient Accumulation (WGA) strategy to align patch-level decoding with erasure objectives, and Thresholded Loss Masking (TLM) strategy to protect content unrelated to the target concept during fine-tuning. Furthermore, we propose a novel benchmark, Erase Concept Generator and Visual Filter (ECGVF), aim at provide a more rigorous and comprehensive foundation for evaluating concept erasure in AR models. Specifically, we first employ structured templates across diverse large language models (LLMs) to pre-generate a large-scale corpus of target-replacement concept prompt pairs. Subsequently, we generate images from these prompts and subject them to rigorous filtering via a visual classifier to ensure concept fidelity and alignment. Extensive experimental results conducted on the ECGVF benchmark with the AR model Janus-Pro demonstrate that EAR achieves marked improvements in both erasure effectiveness and model utility preservation. Code is available at: https://github.com/immc-lab/ear/

Authors:Songsoo Kim, Seungtae Lee, See Young Lee, Joonho Kim, Keechan Kan, Dukyong Yoon
Title: A Multi-Pass Large Language Model Framework for Precise and Efficient Radiology Report Error Detection
Abstract:
Background: The positive predictive value (PPV) of large language model (LLM)-based proofreading for radiology reports is limited due to the low error prevalence. Purpose: To assess whether a three-pass LLM framework enhances PPV and reduces operational costs compared with baseline approaches. Materials and Methods: A retrospective analysis was performed on 1,000 consecutive radiology reports (250 each: radiography, ultrasonography, CT, MRI) from the MIMIC-III database. Two external datasets (CheXpert and Open-i) were validation sets. Three LLM frameworks were tested: (1) single-prompt detector; (2) extractor plus detector; and (3) extractor, detector, and false-positive verifier. Precision was measured by PPV and absolute true positive rate (aTPR). Efficiency was calculated from model inference charges and reviewer remuneration. Statistical significance was tested using cluster bootstrap, exact McNemar tests, and Holm-Bonferroni correction. Results: Framework PPV increased from 0.063 (95% CI, 0.036-0.101, Framework 1) to 0.079 (0.049-0.118, Framework 2), and significantly to 0.159 (0.090-0.252, Framework 3; P<.001 vs. baselines). aTPR remained stable (0.012-0.014; P>=.84). Operational costs per 1,000 reports dropped to USD 5.58 (Framework 3) from USD 9.72 (Framework 1) and USD 6.85 (Framework 2), reflecting reductions of 42.6% and 18.5%, respectively. Human-reviewed reports decreased from 192 to 88. External validation supported Framework 3's superior PPV (CheXpert 0.133, Open-i 0.105) and stable aTPR (0.007). Conclusion: A three-pass LLM framework significantly enhanced PPV and reduced operational costs, maintaining detection performance, providing an effective strategy for AI-assisted radiology report quality assurance.

Authors:Jiahui Wu, Tiecheng Sun, Fucai Luo, Haiyan Wang, Weizhe Zhang
Title: Secure Multi-Key Homomorphic Encryption with Application to Privacy-Preserving Federated Learning
Abstract:
Multi-Key Homomorphic Encryption (MKHE), proposed by Lopez-Alt et al. (STOC 2012), allows for performing arithmetic computations directly on ciphertexts encrypted under distinct keys. Subsequent works by Chen and Dai et al. (CCS 2019) and Kim and Song et al. (CCS 2023) extended this concept by proposing multi-key BFV/CKKS variants, referred to as the CDKS scheme. These variants incorporate asymptotically optimal techniques to facilitate secure computation across multiple data providers. In this paper, we identify a critical security vulnerability in the CDKS scheme when applied to multiparty secure computation tasks, such as privacy-preserving federated learning (PPFL). In particular, we show that CDKS may inadvertently leak plaintext information from one party to others. To mitigate this issue, we propose a new scheme, SMHE (Secure Multi-Key Homomorphic Encryption), which incorporates a novel masking mechanism into the multi-key BFV and CKKS frameworks to ensure that plaintexts remain confidential throughout the computation. We implement a PPFL application using SMHE and demonstrate that it provides significantly improved security with only a modest overhead in homomorphic evaluation. For instance, our PPFL model based on multi-key CKKS incurs less than a 2\times runtime and communication traffic increase compared to the CDKS-based PPFL model. The code is publicly available at https://github.com/JiahuiWu2022/SMHE.git.

Authors:Hsiang-Wei Huang, Wenhao Chai, Kuang-Ming Chen, Cheng-Yen Yang, Jenq-Neng Hwang
Title: ToSA: Token Merging with Spatial Awareness
Abstract:
Token merging has emerged as an effective strategy to accelerate Vision Transformers (ViT) by reducing computational costs. However, existing methods primarily rely on the visual token's feature similarity for token merging, overlooking the potential of integrating spatial information, which can serve as a reliable criterion for token merging in the early layers of ViT, where the visual tokens only possess weak visual information. In this paper, we propose ToSA, a novel token merging method that combines both semantic and spatial awareness to guide the token merging process. ToSA leverages the depth image as input to generate pseudo spatial tokens, which serve as auxiliary spatial information for the visual token merging process. With the introduced spatial awareness, ToSA achieves a more informed merging strategy that better preserves critical scene structure. Experimental results demonstrate that ToSA outperforms previous token merging methods across multiple benchmarks on visual and embodied question answering while largely reducing the runtime of the ViT, making it an efficient solution for ViT acceleration. The code will be available at: https://github.com/hsiangwei0903/ToSA

Authors:Hirad Daneshvar, Reza Samavi
Title: GNN's Uncertainty Quantification using Self-Distillation
Abstract:
Graph Neural Networks (GNNs) have shown remarkable performance in the healthcare domain. However, what remained challenging is quantifying the predictive uncertainty of GNNs, which is an important aspect of trustworthiness in clinical settings. While Bayesian and ensemble methods can be used to quantify uncertainty, they are computationally expensive. Additionally, the disagreement metric used by ensemble methods to compute uncertainty cannot capture the diversity of models in an ensemble network. In this paper, we propose a novel method, based on knowledge distillation, to quantify GNNs' uncertainty more efficiently and with higher precision. We apply self-distillation, where the same network serves as both the teacher and student models, thereby avoiding the need to train several networks independently. To ensure the impact of self-distillation, we develop an uncertainty metric that captures the diverse nature of the network by assigning different weights to each GNN classifier. We experimentally evaluate the precision, performance, and ability of our approach in distinguishing out-of-distribution data on two graph datasets: MIMIC-IV and Enzymes. The evaluation results demonstrate that the proposed method can effectively capture the predictive uncertainty of the model while having performance similar to that of the MC Dropout and ensemble methods. The code is publicly available at https://github.com/tailabTMU/UQ_GNN.

Authors:Salva Rühling Cachay, Miika Aittala, Karsten Kreis, Noah Brenowitz, Arash Vahdat, Morteza Mardani, Rose Yu
Title: Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting
Abstract:
Diffusion models are a powerful tool for probabilistic forecasting, yet most applications in high-dimensional chaotic systems predict future snapshots one-by-one. This common approach struggles to model complex temporal dependencies and fails to explicitly account for the progressive growth of uncertainty inherent to such systems. While rolling diffusion frameworks, which apply increasing noise to forecasts at longer lead times, have been proposed to address this, their integration with state-of-the-art, high-fidelity diffusion techniques remains a significant challenge. We tackle this problem by introducing Elucidated Rolling Diffusion Models (ERDM), the first framework to successfully unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM). To do this, we adapt the core EDM components-its noise schedule, network preconditioning, and Heun sampler-to the rolling forecast setting. The success of this integration is driven by three key contributions: (i) a novel loss weighting scheme that focuses model capacity on the mid-range forecast horizons where determinism gives way to stochasticity; (ii) an efficient initialization strategy using a pre-trained EDM for the initial window; and (iii) a bespoke hybrid sequence architecture for robust spatiotemporal feature extraction under progressive denoising. On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5^\circ resolution, ERDM consistently outperforms key diffusion-based baselines, including conditional autoregressive EDM. ERDM offers a flexible and powerful general framework for tackling diffusion-based sequence generation problems where modeling escalating uncertainty is paramount. Code is available at: https://github.com/salvaRC/erdm

Authors:Haochen Zhang, Tianyi Zhang, Junze Yin, Oren Gal, Anshumali Shrivastava, Vladimir Braverman
Title: CoVE: Compressed Vocabulary Expansion Makes Better LLM-based Recommender Systems
Abstract:
Recommender systems play a pivotal role in providing relevant content to users. With the rapid development of large language models (LLMs), researchers have begun utilizing LLMs to build more powerful recommender systems. However, existing approaches that focus on aligning LLMs with recommendation tasks do not fully leverage their sequential information processing capabilities, leading to suboptimal performance. In this paper, we propose a novel system called compressed vocabulary expansion (CoVE). In CoVE, each item is assigned a unique ID within the expanded vocabulary. Our framework effectively capitalizes on sequence understanding abilities of LLMs, significantly enhancing their performance on recommendation tasks. Additionally, we compress the embedding layer, making CoVE practical for large-scale industrial applications. The effectiveness and performance of CoVE are demonstrated through comprehensive experiments on multiple recommendation datasets and comparisons with prior works. Our code can be found at https://github.com/HaochenZhang717/CoVE-official-Repo.

Authors:Hang Zhang, Yuxi Zhang, Jiazheng Wang, Xiang Chen, Renjiu Hu, Xin Tian, Gaolei Li, Min Liu
Title: VoxelOpt: Voxel-Adaptive Message Passing for Discrete Optimization in Deformable Abdominal CT Registration
Abstract:
Recent developments in neural networks have improved deformable image registration (DIR) by amortizing iterative optimization, enabling fast and accurate DIR results. However, learning-based methods often face challenges with limited training data, large deformations, and tend to underperform compared to iterative approaches when label supervision is unavailable. While iterative methods can achieve higher accuracy in such scenarios, they are considerably slower than learning-based methods. To address these limitations, we propose VoxelOpt, a discrete optimization-based DIR framework that combines the strengths of learning-based and iterative methods to achieve a better balance between registration accuracy and runtime. VoxelOpt uses displacement entropy from local cost volumes to measure displacement signal strength at each voxel, which differs from earlier approaches in three key aspects. First, it introduces voxel-wise adaptive message passing, where voxels with lower entropy receives less influence from their neighbors. Second, it employs a multi-level image pyramid with 27-neighbor cost volumes at each level, avoiding exponential complexity growth. Third, it replaces hand-crafted features or contrastive learning with a pretrained foundational segmentation model for feature extraction. In abdominal CT registration, these changes allow VoxelOpt to outperform leading iterative in both efficiency and accuracy, while matching state-of-the-art learning-based methods trained with label supervision. The source code will be available at https://github.com/tinymilky/VoxelOpt

Authors:Shuchen Xue, Tianyu Xie, Tianyang Hu, Zijin Feng, Jiacheng Sun, Kenji Kawaguchi, Zhenguo Li, Zhi-Ming Ma
Title: Any-Order GPT as Masked Diffusion Model: Decoupling Formulation and Architecture
Abstract:
Large language models (LLMs) predominantly use autoregressive (AR) approaches, but masked diffusion models (MDMs) are emerging as viable alternatives. A key challenge in comparing AR and MDM paradigms is their typical architectural difference: AR models are often decoder-only, while MDMs have largely been encoder-only. This practice of changing both the modeling paradigm and architecture simultaneously makes direct comparisons unfair, as it's hard to distinguish whether observed differences stem from the paradigm itself or the architectural shift. This research evaluates MDMs within a decoder-only framework to: (1) equitably compare MDM (as Any-Order AR, or AO-AR) and standard AR paradigms. Our investigation suggests that the standard AO-AR objective, which averages over all token permutations, may benefit from refinement, as many permutations appear less informative compared to the language's inherent left-to-right structure. (2) Investigate architectural influences (decoder-only vs. encoder-only) within MDMs. We demonstrate that while encoder-only MDMs model a simpler conditional probability space, decoder-only MDMs can achieve dramatic generation speedups ($\sim25\times$) and comparable perplexity with temperature annealing despite modeling a vastly larger space, highlighting key trade-offs. This work thus decouples core paradigm differences from architectural influences, offering insights for future model design. Code is available at https://github.com/scxue/AO-GPT-MDM.

Authors:Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin Yang, Jinbo Hu, Kelly Peng, Maneesh Agrawala, Ion Stoica, Kurt Keutzer, Song Han
Title: Radial Attention: $O(n\log n)$ Sparse Attention with Energy Decay for Long Video Generation
Abstract:
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with $O(n \log n)$ complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard $O(n^2)$ dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9$\times$ speedup over the original dense attention. With minimal tuning, it enables video generation up to 4$\times$ longer while reducing training costs by up to 4.4$\times$ compared to direct fine-tuning and accelerating inference by up to 3.7$\times$ compared to dense attention inference.

Authors:Long Xing, Qidong Huang, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Jinsong Li, Shuangrui Ding, Weiming Zhang, Nenghai Yu, Jiaqi Wang, Feng Wu, Dahua Lin
Title: ScaleCap: Inference-Time Scalable Image Captioning via Dual-Modality Debiasing
Abstract:
This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.

Authors:Tengbo Yu, Guanxing Lu, Zaijia Yang, Haoyuan Deng, Season Si Chen, Jiwen Lu, Wenbo Ding, Guoqiang Hu, Yansong Tang, Ziwei Wang
Title: ManiGaussian++: General Robotic Bimanual Manipulation with Hierarchical Gaussian World Model
Abstract:
Multi-task robotic bimanual manipulation is becoming increasingly popular as it enables sophisticated tasks that require diverse dual-arm collaboration patterns. Compared to unimanual manipulation, bimanual tasks pose challenges to understanding the multi-body spatiotemporal dynamics. An existing method ManiGaussian pioneers encoding the spatiotemporal dynamics into the visual representation via Gaussian world model for single-arm settings, which ignores the interaction of multiple embodiments for dual-arm systems with significant performance drop. In this paper, we propose ManiGaussian++, an extension of ManiGaussian framework that improves multi-task bimanual manipulation by digesting multi-body scene dynamics through a hierarchical Gaussian world model. To be specific, we first generate task-oriented Gaussian Splatting from intermediate visual features, which aims to differentiate acting and stabilizing arms for multi-body spatiotemporal dynamics modeling. We then build a hierarchical Gaussian world model with the leader-follower architecture, where the multi-body spatiotemporal dynamics is mined for intermediate visual representation via future scene prediction. The leader predicts Gaussian Splatting deformation caused by motions of the stabilizing arm, through which the follower generates the physical consequences resulted from the movement of the acting arm. As a result, our method significantly outperforms the current state-of-the-art bimanual manipulation techniques by an improvement of 20.2% in 10 simulated tasks, and achieves 60% success rate on average in 9 challenging real-world tasks. Our code is available at https://github.com/April-Yz/ManiGaussian_Bimanual.

Authors:Yucheng Zhou, Lingran Song, Jianbing Shen
Title: MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration
Abstract:
Recent advancements in medical Large Language Models (LLMs) have showcased their powerful reasoning and diagnostic capabilities. Despite their success, current unified multimodal medical LLMs face limitations in knowledge update costs, comprehensiveness, and flexibility. To address these challenges, we introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM). Inspired by our empirical findings highlighting the benefits of role assignment and diagnostic discernment in LLMs, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director, each embodied by an LLM-based agent. This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases. Extensive experimental evaluations conducted on a wide range of publicly accessible multimodal medical datasets, incorporating text, image, audio, and video modalities, demonstrate that MAM consistently surpasses the performance of modality-specific LLMs. Notably, MAM achieves significant performance improvements ranging from 18% to 365% compared to baseline models. Our code is released at https://github.com/yczhou001/MAM.

Authors:Yichao Fu, Rui Ge, Zelei Shao, Zhijie Deng, Hao Zhang
Title: Scaling Speculative Decoding with Lookahead Reasoning
Abstract:
Reasoning models excel by generating long chain-of-thoughts, but decoding the resulting thousands of tokens is slow. Token-level speculative decoding (SD) helps, but its benefit is capped, because the chance that an entire $γ$-token guess is correct falls exponentially as $γ$ grows. This means allocating more compute for longer token drafts faces an algorithmic ceiling -- making the speedup modest and hardware-agnostic. We raise this ceiling with Lookahead Reasoning, which exploits a second, step-level layer of parallelism. Our key insight is that reasoning models generate step-by-step, and each step needs only to be semantically correct, not exact token matching. In Lookahead Reasoning, a lightweight draft model proposes several future steps; the target model expands each proposal in one batched pass, and a verifier keeps semantically correct steps while letting the target regenerate any that fail. Token-level SD still operates within each reasoning step, so the two layers of parallelism multiply. We show Lookahead Reasoning lifts the peak speedup of SD both theoretically and empirically. Across GSM8K, AIME, and other benchmarks, Lookahead Reasoning improves the speedup of SD from 1.4x to 2.1x while preserving answer quality, and its speedup scales better with additional GPU throughput. Our code is available at https://github.com/hao-ai-lab/LookaheadReasoning

Authors:Yitao Peng, Lianghua He, Hongzhou Chen
Title: ProtoSolo: Interpretable Image Classification via Single-Prototype Activation
Abstract:
Although interpretable prototype networks have improved the transparency of deep learning image classification, the need for multiple prototypes in collaborative decision-making increases cognitive complexity and hinders user understanding. To solve this problem, this paper proposes a novel interpretable deep architecture for image classification, called ProtoSolo. Unlike existing prototypical networks, ProtoSolo requires activation of only a single prototype to complete the classification. This design significantly simplifies interpretation, as the explanation for each class requires displaying only the prototype with the highest similarity score and its corresponding feature map. Additionally, the traditional full-channel feature vector is replaced with a feature map for similarity comparison and prototype learning, enabling the use of richer global information within a single-prototype activation decision. A non-projection prototype learning strategy is also introduced to preserve the association between the prototype and image patch while avoiding abrupt structural changes in the network caused by projection, which can affect classification performance. Experiments on the CUB-200-2011 and Stanford Cars datasets demonstrate that ProtoSolo matches state-of-the-art interpretable methods in classification accuracy while achieving the lowest cognitive complexity. The code is available at https://github.com/pyt19/ProtoSolo.

Authors:Baochang Ren, Shuofei Qiao, Wenhao Yu, Huajun Chen, Ningyu Zhang
Title: KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Abstract:
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.

Authors:Baochang Ren, Shuofei Qiao, Da Zheng, Huajun Chen, Ningyu Zhang
Title: KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Abstract:
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.

Authors:Yuqi Zhu, Yi Zhong, Jintian Zhang, Ziheng Zhang, Shuofei Qiao, Yujie Luo, Lun Du, Da Zheng, Ningyu Zhang, Huajun Chen
Title: Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Abstract:
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.

Authors:Boyi Liu, Qianyi Zhang, Qiang Yang, Jianhao Jiao, Jagmohan Chauhan, Dimitrios Kanoulas
Title: The Starlink Robot: A Platform and Dataset for Mobile Satellite Communication
Abstract:
The integration of satellite communication into mobile devices represents a paradigm shift in connectivity, yet the performance characteristics under motion and environmental occlusion remain poorly understood. We present the Starlink Robot, the first mobile robotic platform equipped with Starlink satellite internet, comprehensive sensor suite including upward-facing camera, LiDAR, and IMU, designed to systematically study satellite communication performance during movement. Our multi-modal dataset captures synchronized communication metrics, motion dynamics, sky visibility, and 3D environmental context across diverse scenarios including steady-state motion, variable speeds, and different occlusion conditions. This platform and dataset enable researchers to develop motion-aware communication protocols, predict connectivity disruptions, and optimize satellite communication for emerging mobile applications from smartphones to autonomous vehicles. In this work, we use LEOViz for real-time satellite tracking and data collection. The starlink robot project is available at https://github.com/StarlinkRobot.

Authors:Yuhui Sun, Xiyao Wang, Zixi Li, Zhenlong Yuan, Jinman Zhao
Title: Multi-Preference Lambda-weighted Listwise DPO for Small-Scale Model Alignment
Abstract:
Large language models (LLMs) demonstrate strong generalization across a wide range of language tasks, but often generate outputs that misalign with human preferences. Reinforcement Learning from Human Feedback (RLHF) addresses this by optimizing models toward human preferences using a learned reward function and reinforcement learning, yielding improved alignment but suffering from high computational cost and instability. Direct Preference Optimization (DPO) simplifies the process by treating alignment as a classification task over binary preference pairs, reducing training overhead while achieving competitive performance. However, it assumes fixed, single-dimensional preferences and only supports pairwise supervision. To address these limitations, we propose Multi-Preference Lambda-weighted Listwise DPO, which allows the model to learn from more detailed human feedback and flexibly balance multiple goals such as helpfulness, honesty, and fluency. Our method models full-ranked preference distributions rather than binary comparisons, enabling more informative learning signals. The lambda vector controls the relative importance of different alignment goals, allowing the model to generalize across diverse human objectives. During inference, lambda can be adjusted without retraining, providing controllable alignment behavior for downstream use. We also introduce a learned scheduler that dynamically samples performant lambda configurations to improve robustness. Notably, our method requires only 20GB of GPU memory for training, making it suitable for compute-constrained settings such as academic labs, educational tools, or on-device assistants. Experiments on 1B-2B scale models show that our method consistently outperforms standard DPO on alignment benchmarks while enabling efficient, controllable, and fine-grained adaptation suitable for real-world deployment.

Authors:Yihong Luo, Shuchen Xue, Tianyang Hu, Jing Tang
Title: Noise Consistency Training: A Native Approach for One-Step Generator in Learning Additional Controls
Abstract:
The pursuit of efficient and controllable high-quality content generation remains a central challenge in artificial intelligence-generated content (AIGC). While one-step generators, enabled by diffusion distillation techniques, offer excellent generation quality and computational efficiency, adapting them to new control conditions--such as structural constraints, semantic guidelines, or external inputs--poses a significant challenge. Conventional approaches often necessitate computationally expensive modifications to the base model and subsequent diffusion distillation. This paper introduces Noise Consistency Training (NCT), a novel and lightweight approach to directly integrate new control signals into pre-trained one-step generators without requiring access to original training images or retraining the base diffusion model. NCT operates by introducing an adapter module and employs a noise consistency loss in the noise space of the generator. This loss aligns the adapted model's generation behavior across noises that are conditionally dependent to varying degrees, implicitly guiding it to adhere to the new control. Theoretically, this training objective can be understood as minimizing the distributional distance between the adapted generator and the conditional distribution induced by the new conditions. NCT is modular, data-efficient, and easily deployable, relying only on the pre-trained one-step generator and a control signal model. Extensive experiments demonstrate that NCT achieves state-of-the-art controllable generation in a single forward pass, surpassing existing multi-step and distillation-based methods in both generation quality and computational efficiency. Code is available at https://github.com/Luo-Yihong/NCT

Authors:Gyeongwon James Kim, Alex Wilf, Louis-Philippe Morency, Daniel Fried
Title: From Reproduction to Replication: Evaluating Research Agents with Progressive Code Masking
Abstract:
Recent progress in autonomous code generation has fueled excitement around AI agents capable of accelerating scientific discovery by running experiments. However, there is currently no benchmark that evaluates whether such agents can implement scientific ideas when given varied amounts of code as a starting point, interpolating between reproduction (running code) and from-scratch replication (fully re-implementing and running code). We introduce AutoExperiment, a benchmark that evaluates AI agents' ability to implement and run machine learning experiments based on natural language descriptions in research papers. In each task, agents are given a research paper, a codebase with key functions masked out, and a command to run the experiment. The goal is to generate the missing code, execute the experiment in a sandboxed environment, and reproduce the results. AutoExperiment scales in difficulty by varying the number of missing functions $n$, ranging from partial reproduction to full replication. We evaluate state-of-the-art agents and find that performance degrades rapidly as $n$ increases. Agents that can dynamically interact with the environment (e.g. to debug their code) can outperform agents in fixed "agentless" harnesses, and there exists a significant gap between single-shot and multi-trial success rates (Pass@1 vs. Pass@5), motivating verifier approaches to our benchmark. Our findings highlight critical challenges in long-horizon code generation, context retrieval, and autonomous experiment execution, establishing AutoExperiment as a new benchmark for evaluating progress in AI-driven scientific experimentation. Our data and code are open-sourced at https://github.com/j1mk1m/AutoExperiment .

Authors:Lei Kang, Xuanshuo Fu, Oriol Ramos Terrades, Javier Vazquez-Corral, Ernest Valveny, Dimosthenis Karatzas
Title: LLM-Driven Medical Document Analysis: Enhancing Trustworthy Pathology and Differential Diagnosis
Abstract:
Medical document analysis plays a crucial role in extracting essential clinical insights from unstructured healthcare records, supporting critical tasks such as differential diagnosis. Determining the most probable condition among overlapping symptoms requires precise evaluation and deep medical expertise. While recent advancements in large language models (LLMs) have significantly enhanced performance in medical document analysis, privacy concerns related to sensitive patient data limit the use of online LLMs services in clinical settings. To address these challenges, we propose a trustworthy medical document analysis platform that fine-tunes a LLaMA-v3 using low-rank adaptation, specifically optimized for differential diagnosis tasks. Our approach utilizes DDXPlus, the largest benchmark dataset for differential diagnosis, and demonstrates superior performance in pathology prediction and variable-length differential diagnosis compared to existing methods. The developed web-based platform allows users to submit their own unstructured medical documents and receive accurate, explainable diagnostic results. By incorporating advanced explainability techniques, the system ensures transparent and reliable predictions, fostering user trust and confidence. Extensive evaluations confirm that the proposed method surpasses current state-of-the-art models in predictive accuracy while offering practical utility in clinical settings. This work addresses the urgent need for reliable, explainable, and privacy-preserving artificial intelligence solutions, representing a significant advancement in intelligent medical document analysis for real-world healthcare applications. The code can be found at \href{https://github.com/leitro/Differential-Diagnosis-LoRA}{https://github.com/leitro/Differential-Diagnosis-LoRA}.

Authors:Jungwoo Park, Taewhoo Lee, Chanwoong Yoon, Hyeon Hwang, Jaewoo Kang
Title: Outlier-Safe Pre-Training for Robust 4-Bit Quantization of Large Language Models
Abstract:
Extreme activation outliers in Large Language Models (LLMs) critically degrade quantization performance, hindering efficient on-device deployment. While channel-wise operations and adaptive gradient scaling are recognized causes, practical mitigation remains challenging. We introduce Outlier-Safe Pre-Training (OSP), a practical guideline that proactively prevents outlier formation rather than relying on post-hoc mitigation. OSP combines three key innovations: (1) the Muon optimizer, eliminating privileged bases while maintaining training efficiency; (2) Single-Scale RMSNorm, preventing channel-wise amplification; and (3) a learnable embedding projection, redistributing activation magnitudes originating from embedding matrices. We validate OSP by training a 1.4B-parameter model on 1 trillion tokens, which is the first production-scale LLM trained without such outliers. Under aggressive 4-bit quantization, our OSP model achieves a 35.7 average score across 10 benchmarks (compared to 26.5 for an Adam-trained model), with only a 2% training overhead. Remarkably, OSP models exhibit near-zero excess kurtosis (0.04) compared to extreme values (1818.56) in standard models, fundamentally altering LLM quantization behavior. Our work demonstrates that outliers are not inherent to LLMs but are consequences of training strategies, paving the way for more efficient LLM deployment. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Outlier-Safe-Pre-Training.

Authors:Mihnea Ghitu, Vihari Piratla, Matthew Wicker
Title: Model Guidance via Robust Feature Attribution
Abstract:
Controlling the patterns a model learns is essential to preventing reliance on irrelevant or misleading features. Such reliance on irrelevant features, often called shortcut features, has been observed across domains, including medical imaging and natural language processing, where it may lead to real-world harms. A common mitigation strategy leverages annotations (provided by humans or machines) indicating which features are relevant or irrelevant. These annotations are compared to model explanations, typically in the form of feature salience, and used to guide the loss function during training. Unfortunately, recent works have demonstrated that feature salience methods are unreliable and therefore offer a poor signal to optimize. In this work, we propose a simplified objective that simultaneously optimizes for explanation robustness and mitigation of shortcut learning. Unlike prior objectives with similar aims, we demonstrate theoretically why our approach ought to be more effective. Across a comprehensive series of experiments, we show that our approach consistently reduces test-time misclassifications by 20% compared to state-of-the-art methods. We also extend prior experimental settings to include natural language processing tasks. Additionally, we conduct novel ablations that yield practical insights, including the relative importance of annotation quality over quantity. Code for our method and experiments is available at: https://github.com/Mihneaghitu/ModelGuidanceViaRobustFeatureAttribution.

Authors:Yang Xing, Jiong Wu, Yuheng Bu, Kuang Gong
Title: SAM2-SGP: Enhancing SAM2 for Medical Image Segmentation via Support-Set Guided Prompting
Abstract:
Although new vision foundation models such as Segment Anything Model 2 (SAM2) have significantly enhanced zero-shot image segmentation capabilities, reliance on human-provided prompts poses significant challenges in adapting SAM2 to medical image segmentation tasks. Moreover, SAM2's performance in medical image segmentation was limited by the domain shift issue, since it was originally trained on natural images and videos. To address these challenges, we proposed SAM2 with support-set guided prompting (SAM2-SGP), a framework that eliminated the need for manual prompts. The proposed model leveraged the memory mechanism of SAM2 to generate pseudo-masks using image-mask pairs from a support set via a Pseudo-mask Generation (PMG) module. We further introduced a novel Pseudo-mask Attention (PMA) module, which used these pseudo-masks to automatically generate bounding boxes and enhance localized feature extraction by guiding attention to relevant areas. Furthermore, a low-rank adaptation (LoRA) strategy was adopted to mitigate the domain shift issue. The proposed framework was evaluated on both 2D and 3D datasets across multiple medical imaging modalities, including fundus photography, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound. The results demonstrated a significant performance improvement over state-of-the-art models, such as nnUNet and SwinUNet, as well as foundation models, such as SAM2 and MedSAM2, underscoring the effectiveness of the proposed approach. Our code is publicly available at https://github.com/astlian9/SAM_Support.

Authors:Oscar J. Pellicer-Valero, Cesar Aybar, Gustau Camps Valls
Title: Video Compression for Spatiotemporal Earth System Data
Abstract:
Large-scale Earth system datasets, from high-resolution remote sensing imagery to spatiotemporal climate model outputs, exhibit characteristics analogous to those of standard videos. Their inherent spatial, temporal, and spectral redundancies can thus be readily exploited by established video compression techniques. Here, we present xarrayvideo, a Python library for compressing multichannel spatiotemporal datasets by encoding them as videos. Our approach achieves compression ratios of up to 250x while maintaining high fidelity by leveraging standard, well-optimized video codecs through ffmpeg. We demonstrate the library's effectiveness on four real-world multichannel spatiotemporal datasets: DynamicEarthNet (very high resolution Planet images), DeepExtremeCubes (high resolution Sentinel-2 images), ERA5 (weather reanalysis data), and the SimpleS2 dataset (high resolution multichannel Sentinel-2 images), achieving Peak Signal-to-Noise Ratios (PSNRs) of 55.86, 40.60, 46.58, and 43.23 dB at 0.1 bits per pixel per band (bpppb) and 65.91, 54.28, 62.90, and 55.04 dB at 1 bpppb. We are redistributing two of these datasets, DeepExtremeCubes (2.3 Tb) and DynamicEarthNet (525 Gb), in the machine-learning-ready and cloud-ready TACO format through HuggingFace at significantly reduced sizes (270 Gb and 8.5 Gb, respectively) without compromising quality (PSNR 55.77-56.65 and 60.15). No performance loss is observed when the compressed versions of these datasets are used in their respective deep learning-based downstream tasks (next step reflectance prediction and landcover segmentation). In conclusion, xarrayvideo presents an efficient solution for handling the rapidly growing size of Earth observation datasets, making advanced compression techniques accessible and practical to the Earth science community. The library is available for use at https://github.com/IPL-UV/xarrayvideo

Authors:Gaurav Sharma, Ravi Kothari, Josef Schmid
Title: Self-Supervised Multimodal NeRF for Autonomous Driving
Abstract:
In this paper, we propose a Neural Radiance Fields (NeRF) based framework, referred to as Novel View Synthesis Framework (NVSF). It jointly learns the implicit neural representation of space and time-varying scene for both LiDAR and Camera. We test this on a real-world autonomous driving scenario containing both static and dynamic scenes. Compared to existing multimodal dynamic NeRFs, our framework is self-supervised, thus eliminating the need for 3D labels. For efficient training and faster convergence, we introduce heuristic-based image pixel sampling to focus on pixels with rich information. To preserve the local features of LiDAR points, a Double Gradient based mask is employed. Extensive experiments on the KITTI-360 dataset show that, compared to the baseline models, our framework has reported best performance on both LiDAR and Camera domain. Code of the model is available at https://github.com/gaurav00700/Selfsupervised-NVSF

Authors:Zhenke Duan, Jiqun Pan, Jiani Tu, Xiaoyi Wang, Yanqing Wang
Title: ECCoT: A Framework for Enhancing Effective Cognition via Chain of Thought in Large Language Model
Abstract:
In the era of large-scale artificial intelligence, Large Language Models (LLMs) have made significant strides in natural language processing. However, they often lack transparency and generate unreliable outputs, raising concerns about their interpretability. To address this, the Chain of Thought (CoT) prompting method structures reasoning into step-by-step deductions. Yet, not all reasoning chains are valid, and errors can lead to unreliable conclusions. We propose ECCoT, an End-to-End Cognitive Chain of Thought Validation Framework, to evaluate and refine reasoning chains in LLMs. ECCoT integrates the Markov Random Field-Embedded Topic Model (MRF-ETM) for topic-aware CoT generation and Causal Sentence-BERT (CSBert) for causal reasoning alignment. By filtering ineffective chains using structured ordering statistics, ECCoT improves interpretability, reduces biases, and enhances the trustworthiness of LLM-based decision-making. Key contributions include the introduction of ECCoT, MRF-ETM for topic-driven CoT generation, and CSBert for causal reasoning enhancement. Code is released at: https://github.com/erwinmsmith/ECCoT.git.

Authors:Alan N. Amin, Andres Potapczynski, Andrew Gordon Wilson
Title: Training Flexible Models of Genetic Variant Effects from Functional Annotations using Accelerated Linear Algebra
Abstract:
To understand how genetic variants in human genomes manifest in phenotypes -- traits like height or diseases like asthma -- geneticists have sequenced and measured hundreds of thousands of individuals. Geneticists use this data to build models that predict how a genetic variant impacts phenotype given genomic features of the variant, like DNA accessibility or the presence of nearby DNA-bound proteins. As more data and features become available, one might expect predictive models to improve. Unfortunately, training these models is bottlenecked by the need to solve expensive linear algebra problems because variants in the genome are correlated with nearby variants, requiring inversion of large matrices. Previous methods have therefore been restricted to fitting small models, and fitting simplified summary statistics, rather than the full likelihood of the statistical model. In this paper, we leverage modern fast linear algebra techniques to develop DeepWAS (Deep genome Wide Association Studies), a method to train large and flexible neural network predictive models to optimize likelihood. Notably, we find that larger models only improve performance when using our full likelihood approach; when trained by fitting traditional summary statistics, larger models perform no better than small ones. We find larger models trained on more features make better predictions, potentially improving disease predictions and therapeutic target identification.

Authors:Tao Huang, Zhekun Liu, Rui Wang, Yang Zhang, Liping Jing
Title: Visual hallucination detection in large vision-language models via evidential conflict
Abstract:
Despite the remarkable multimodal capabilities of Large Vision-Language Models (LVLMs), discrepancies often occur between visual inputs and textual outputs--a phenomenon we term visual hallucination. This critical reliability gap poses substantial risks in safety-critical Artificial Intelligence (AI) applications, necessitating a comprehensive evaluation benchmark and effective detection methods. Firstly, we observe that existing visual-centric hallucination benchmarks mainly assess LVLMs from a perception perspective, overlooking hallucinations arising from advanced reasoning capabilities. We develop the Perception-Reasoning Evaluation Hallucination (PRE-HAL) dataset, which enables the systematic evaluation of both perception and reasoning capabilities of LVLMs across multiple visual semantics, such as instances, scenes, and relations. Comprehensive evaluation with this new benchmark exposed more visual vulnerabilities, particularly in the more challenging task of relation reasoning. To address this issue, we propose, to the best of our knowledge, the first Dempster-Shafer theory (DST)-based visual hallucination detection method for LVLMs through uncertainty estimation. This method aims to efficiently capture the degree of conflict in high-level features at the model inference phase. Specifically, our approach employs simple mass functions to mitigate the computational complexity of evidence combination on power sets. We conduct an extensive evaluation of state-of-the-art LVLMs, LLaVA-v1.5, mPLUG-Owl2 and mPLUG-Owl3, with the new PRE-HAL benchmark. Experimental results indicate that our method outperforms five baseline uncertainty metrics, achieving average AUROC improvements of 4%, 10%, and 7% across three LVLMs. Our code is available at https://github.com/HT86159/Evidential-Conflict.

Authors:Aleksandr Algazinov, Matt Laing, Paul Laban
Title: MATE: LLM-Powered Multi-Agent Translation Environment for Accessibility Applications
Abstract:
Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.

Authors:Yuelin Zhang, Jiacheng Cen, Jiaqi Han, Wenbing Huang
Title: Fast and Distributed Equivariant Graph Neural Networks by Virtual Node Learning
Abstract:
Equivariant Graph Neural Networks (GNNs) have achieved remarkable success across diverse scientific applications. However, existing approaches face critical efficiency challenges when scaling to large geometric graphs and suffer significant performance degradation when the input graphs are sparsified for computational tractability. To address these limitations, we introduce FastEGNN and DistEGNN, two novel enhancements to equivariant GNNs for large-scale geometric graphs. FastEGNN employs a key innovation: a small ordered set of virtual nodes that effectively approximates the large unordered graph of real nodes. Specifically, we implement distinct message passing and aggregation mechanisms for different virtual nodes to ensure mutual distinctiveness, and minimize Maximum Mean Discrepancy (MMD) between virtual and real coordinates to achieve global distributedness. This design enables FastEGNN to maintain high accuracy while efficiently processing large-scale sparse graphs. For extremely large-scale geometric graphs, we present DistEGNN, a distributed extension where virtual nodes act as global bridges between subgraphs in different devices, maintaining consistency while dramatically reducing memory and computational overhead. We comprehensively evaluate our models across four challenging domains: N-body systems (100 nodes), protein dynamics (800 nodes), Water-3D (8,000 nodes), and our new Fluid113K benchmark (113,000 nodes). Results demonstrate superior efficiency and performance, establishing new capabilities in large-scale equivariant graph learning. Code is available at https://github.com/GLAD-RUC/DistEGNN.

Authors:Pengfei Hao, Shuaibo Li, Hongqiu Wang, Zhizhuo Kou, Junhang Zhang, Guang Yang, Lei Zhu
Title: Surgery-R1: Advancing Surgical-VQLA with Reasoning Multimodal Large Language Model via Reinforcement Learning
Abstract:
In recent years, significant progress has been made in the field of surgical scene understanding, particularly in the task of Visual Question Localized-Answering in robotic surgery (Surgical-VQLA). However, existing Surgical-VQLA models lack deep reasoning capabilities and interpretability in surgical scenes, which limits their reliability and potential for development in clinical applications. To address this issue, inspired by the development of Reasoning Multimodal Large Language Models (MLLMs), we first build the Surgery-R1-54k dataset, including paired data for Visual-QA, Grounding-QA, and Chain-of-Thought (CoT). Then, we propose the first Reasoning MLLM for Surgical-VQLA (Surgery-R1). In our Surgery-R1, we design a two-stage fine-tuning mechanism to enable the basic MLLM with complex reasoning abilities by utilizing supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). Furthermore, for an efficient and high-quality rule-based reward system in our RFT, we design a Multimodal Coherence reward mechanism to mitigate positional illusions that may arise in surgical scenarios. Experiment results demonstrate that Surgery-R1 outperforms other existing state-of-the-art (SOTA) models in the Surgical-VQLA task and widely-used MLLMs, while also validating its reasoning capabilities and the effectiveness of our approach. The code and dataset will be organized in https://github.com/FiFi-HAO467/Surgery-R1.

Authors:Ankita Raj, Harsh Swaika, Deepankar Varma, Chetan Arora
Title: Assessing Risk of Stealing Proprietary Models for Medical Imaging Tasks
Abstract:
The success of deep learning in medical imaging applications has led several companies to deploy proprietary models in diagnostic workflows, offering monetized services. Even though model weights are hidden to protect the intellectual property of the service provider, these models are exposed to model stealing (MS) attacks, where adversaries can clone the model's functionality by querying it with a proxy dataset and training a thief model on the acquired predictions. While extensively studied on general vision tasks, the susceptibility of medical imaging models to MS attacks remains inadequately explored. This paper investigates the vulnerability of black-box medical imaging models to MS attacks under realistic conditions where the adversary lacks access to the victim model's training data and operates with limited query budgets. We demonstrate that adversaries can effectively execute MS attacks by using publicly available datasets. To further enhance MS capabilities with limited query budgets, we propose a two-step model stealing approach termed QueryWise. This method capitalizes on unlabeled data obtained from a proxy distribution to train the thief model without incurring additional queries. Evaluation on two medical imaging models for Gallbladder Cancer and COVID-19 classification substantiates the effectiveness of the proposed attack. The source code is available at https://github.com/rajankita/QueryWise.

Authors:Zhifeng Wang, Renjiao Yi, Xin Wen, Chenyang Zhu, Kai Xu, Kunlun He
Title: Angio-Diff: Learning a Self-Supervised Adversarial Diffusion Model for Angiographic Geometry Generation
Abstract:
Vascular diseases pose a significant threat to human health, with X-ray angiography established as the gold standard for diagnosis, allowing for detailed observation of blood vessels. However, angiographic X-rays expose personnel and patients to higher radiation levels than non-angiographic X-rays, which are unwanted. Thus, modality translation from non-angiographic to angiographic X-rays is desirable. Data-driven deep approaches are hindered by the lack of paired large-scale X-ray angiography datasets. While making high-quality vascular angiography synthesis crucial, it remains challenging. We find that current medical image synthesis primarily operates at pixel level and struggles to adapt to the complex geometric structure of blood vessels, resulting in unsatisfactory quality of blood vessel image synthesis, such as disconnections or unnatural curvatures. To overcome this issue, we propose a self-supervised method via diffusion models to transform non-angiographic X-rays into angiographic X-rays, mitigating data shortages for data-driven approaches. Our model comprises a diffusion model that learns the distribution of vascular data from diffusion latent, a generator for vessel synthesis, and a mask-based adversarial module. To enhance geometric accuracy, we propose a parametric vascular model to fit the shape and distribution of blood vessels. The proposed method contributes a pipeline and a synthetic dataset for X-ray angiography. We conducted extensive comparative and ablation experiments to evaluate the Angio-Diff. The results demonstrate that our method achieves state-of-the-art performance in synthetic angiography image quality and more accurately synthesizes the geometric structure of blood vessels. The code is available at https://github.com/zfw-cv/AngioDiff.

Authors:Sajal Halder, Muhammad Ejaz Ahmed, Seyit Camtepe
Title: FuncVul: An Effective Function Level Vulnerability Detection Model using LLM and Code Chunk
Abstract:
Software supply chain vulnerabilities arise when attackers exploit weaknesses by injecting vulnerable code into widely used packages or libraries within software repositories. While most existing approaches focus on identifying vulnerable packages or libraries, they often overlook the specific functions responsible for these vulnerabilities. Pinpointing vulnerable functions within packages or libraries is critical, as it can significantly reduce the risks associated with using open-source software. Identifying vulnerable patches is challenging because developers often submit code changes that are unrelated to vulnerability fixes. To address this issue, this paper introduces FuncVul, an innovative code chunk-based model for function-level vulnerability detection in C/C++ and Python, designed to identify multiple vulnerabilities within a function by focusing on smaller, critical code segments. To assess the model's effectiveness, we construct six code and generic code chunk based datasets using two approaches: (1) integrating patch information with large language models to label vulnerable samples and (2) leveraging large language models alone to detect vulnerabilities in function-level code. To design FuncVul vulnerability model, we utilise GraphCodeBERT fine tune model that captures both the syntactic and semantic aspects of code. Experimental results show that FuncVul outperforms existing state-of-the-art models, achieving an average accuracy of 87-92% and an F1 score of 86-92% across all datasets. Furthermore, we have demonstrated that our code-chunk-based FuncVul model improves 53.9% accuracy and 42.0% F1-score than the full function-based vulnerability prediction. The FuncVul code and datasets are publicly available on GitHub at https://github.com/sajalhalder/FuncVul.

Authors:Lixuan He, Haoyu Dong, Zhenxing Chen, Yangcheng Yu, Jie Feng, Yong Li
Title: Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System
Abstract:
Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce \textbf{Mem4Nav}, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.

Authors:Robert Hanson, Jesus Martinez-Garcia
Title: The CompGIT package: a computational tool for Geometric Invariant Theory quotients
Abstract:
We describe CompGIT, a SageMath package to describe Geometric Invariant Theory (GIT) quotients of projective space by simple groups. The implementation is based on algorithms described by Gallardo--Martinez-Garcia--Moon--Swinarski. In principle the package is sufficient to describe any GIT quotient of a projective variety by a simple group -- in practice it requires that the user can construct an equivariant embedding of the polarised variety into projective space. The package describes the non-stable and unstable loci up to conjugation by the group, as well as describing the strictly polystable loci. We discuss potential applications of the outputs of CompGIT to algebraic geometry problems, a well as suggesting directions for future developments.

Authors:Tiankai Yang, Kaixin Chai, Jialin Ji, Yuze Wu, Chao Xu, Fei Gao
Title: Ground-Effect-Aware Modeling and Control for Multicopters
Abstract:
The ground effect on multicopters introduces several challenges, such as control errors caused by additional lift, oscillations that may occur during near-ground flight due to external torques, and the influence of ground airflow on models such as the rotor drag and the mixing matrix. This article collects and analyzes the dynamics data of near-ground multicopter flight through various methods, including force measurement platforms and real-world flights. For the first time, we summarize the mathematical model of the external torque of multicopters under ground effect. The influence of ground airflow on rotor drag and the mixing matrix is also verified through adequate experimentation and analysis. Through simplification and derivation, the differential flatness of the multicopter's dynamic model under ground effect is confirmed. To mitigate the influence of these disturbance models on control, we propose a control method that combines dynamic inverse and disturbance models, ensuring consistent control effectiveness at both high and low altitudes. In this method, the additional thrust and variations in rotor drag under ground effect are both considered and compensated through feedforward models. The leveling torque of ground effect can be equivalently represented as variations in the center of gravity and the moment of inertia. In this way, the leveling torque does not explicitly appear in the dynamic model. The final experimental results show that the method proposed in this paper reduces the control error (RMSE) by \textbf{45.3\%}. Please check the supplementary material at: https://github.com/ZJU-FAST-Lab/Ground-effect-controller.

Authors:Yin Zhang, Zian Ning, Xiaoyu Zhang, Shiliang Guo, Peidong Liu, Shiyu Zhao
Title: EvDetMAV: Generalized MAV Detection from Moving Event Cameras
Abstract:
Existing micro aerial vehicle (MAV) detection methods mainly rely on the target's appearance features in RGB images, whose diversity makes it difficult to achieve generalized MAV detection. We notice that different types of MAVs share the same distinctive features in event streams due to their high-speed rotating propellers, which are hard to see in RGB images. This paper studies how to detect different types of MAVs from an event camera by fully exploiting the features of propellers in the original event stream. The proposed method consists of three modules to extract the salient and spatio-temporal features of the propellers while filtering out noise from background objects and camera motion. Since there are no existing event-based MAV datasets, we introduce a novel MAV dataset for the community. This is the first event-based MAV dataset comprising multiple scenarios and different types of MAVs. Without training, our method significantly outperforms state-of-the-art methods and can deal with challenging scenarios, achieving a precision rate of 83.0\% (+30.3\%) and a recall rate of 81.5\% (+36.4\%) on the proposed testing dataset. The dataset and code are available at: https://github.com/WindyLab/EvDetMAV.

Authors:Shengkui Zhao, Zexu Pan, Bin Ma
Title: ClearerVoice-Studio: Bridging Advanced Speech Processing Research and Practical Deployment
Abstract:
This paper introduces ClearerVoice-Studio, an open-source, AI-powered speech processing toolkit designed to bridge cutting-edge research and practical application. Unlike broad platforms like SpeechBrain and ESPnet, ClearerVoice-Studio focuses on interconnected speech tasks of speech enhancement, separation, super-resolution, and multimodal target speaker extraction. A key advantage is its state-of-the-art pretrained models, including FRCRN with 3 million uses and MossFormer with 2.5 million uses, optimized for real-world scenarios. It also offers model optimization tools, multi-format audio support, the SpeechScore evaluation toolkit, and user-friendly interfaces, catering to researchers, developers, and end-users. Its rapid adoption attracting 3000 GitHub stars and 239 forks highlights its academic and industrial impact. This paper details ClearerVoice-Studio's capabilities, architectures, training strategies, benchmarks, community impact, and future plan. Source code is available at https://github.com/modelscope/ClearerVoice-Studio.

Authors:Declan J. Curran, Sanaa Hobeichi, Hira Saleem, Hao Xue, Flora D. Salim
Title: Generate the Forest before the Trees -- A Hierarchical Diffusion model for Climate Downscaling
Abstract:
Downscaling is essential for generating the high-resolution climate data needed for local planning, but traditional methods remain computationally demanding. Recent years have seen impressive results from AI downscaling models, particularly diffusion models, which have attracted attention due to their ability to generate ensembles and overcome the smoothing problem common in other AI methods. However, these models typically remain computationally intensive. We introduce a Hierarchical Diffusion Downscaling (HDD) model, which introduces an easily-extensible hierarchical sampling process to the diffusion framework. A coarse-to-fine hierarchy is imposed via a simple downsampling scheme. HDD achieves competitive accuracy on ERA5 reanalysis datasets and CMIP6 models, significantly reducing computational load by running on up to half as many pixels with competitive results. Additionally, a single model trained at 0.25° resolution transfers seamlessly across multiple CMIP6 models with much coarser resolution. HDD thus offers a lightweight alternative for probabilistic climate downscaling, facilitating affordable large-ensemble high-resolution climate projections. See a full code implementation at: https://github.com/HDD-Hierarchical-Diffusion-Downscaling/HDD-Hierarchical-Diffusion-Downscaling.

Authors:Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba A. Salahuddin, Kristoffer Wickstrøm, Elisabeth Wetzer, Robert Jenssen, Maik Stille, Michael Kampffmeyer
Title: Reconsidering Explicit Longitudinal Mammography Alignment for Enhanced Breast Cancer Risk Prediction
Abstract:
Regular mammography screening is essential for early breast cancer detection. Deep learning-based risk prediction methods have sparked interest to adjust screening intervals for high-risk groups. While early methods focused only on current mammograms, recent approaches leverage the temporal aspect of screenings to track breast tissue changes over time, requiring spatial alignment across different time points. Two main strategies for this have emerged: explicit feature alignment through deformable registration and implicit learned alignment using techniques like transformers, with the former providing more control. However, the optimal approach for explicit alignment in mammography remains underexplored. In this study, we provide insights into where explicit alignment should occur (input space vs. representation space) and if alignment and risk prediction should be jointly optimized. We demonstrate that jointly learning explicit alignment in representation space while optimizing risk estimation performance, as done in the current state-of-the-art approach, results in a trade-off between alignment quality and predictive performance and show that image-level alignment is superior to representation-level alignment, leading to better deformation field quality and enhanced risk prediction accuracy. The code is available at https://github.com/sot176/Longitudinal_Mammogram_Alignment.git.

Authors:Jisu Shin, Juhyun Oh, Eunsu Kim, Hoyun Song, Alice Oh
Title: Spotting Out-of-Character Behavior: Atomic-Level Evaluation of Persona Fidelity in Open-Ended Generation
Abstract:
Ensuring persona fidelity in large language models (LLMs) is essential for maintaining coherent and engaging human-AI interactions. However, LLMs often exhibit Out-of-Character (OOC) behavior, where generated responses deviate from an assigned persona, leading to inconsistencies that affect model reliability. Existing evaluation methods typically assign single scores to entire responses, struggling to capture subtle persona misalignment, particularly in long-form text generation. To address this limitation, we propose an atomic-level evaluation framework that quantifies persona fidelity at a finer granularity. Our three key metrics measure the degree of persona alignment and consistency within and across generations. Our approach enables a more precise and realistic assessment of persona fidelity by identifying subtle deviations that real users would encounter. Through our experiments, we demonstrate that our framework effectively detects persona inconsistencies that prior methods overlook. By analyzing persona fidelity across diverse tasks and personality types, we reveal how task structure and persona desirability influence model adaptability, highlighting challenges in maintaining consistent persona expression.

Authors:Ziyu Zheng, Yaming Yang, Ziyu Guan, Wei Zhao, Weigang Lu
Title: Discrepancy-Aware Graph Mask Auto-Encoder
Abstract:
Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning. Existing works typically rely on node contextual information to recover the masked information. However, they fail to generalize well to heterophilic graphs where connected nodes may be not similar, because they focus only on capturing the neighborhood information and ignoring the discrepancy information between different nodes, resulting in indistinguishable node representations. In this paper, to address this issue, we propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE). It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process. We conduct extensive experiments on 17 widely-used benchmark datasets. The results show that our DGMAE can effectively preserve the discrepancies of nodes in low-dimensional space. Moreover, DGMAE significantly outperforms state-of-the-art graph self-supervised learning methods on three graph analytic including tasks node classification, node clustering, and graph classification, demonstrating its remarkable superiority. The code of DGMAE is available at https://github.com/zhengziyu77/DGMAE.

Authors:Mingcheng Qu, Guang Yang, Donglin Di, Yue Gao, Tonghua Su, Yang Song, Lei Fan
Title: Memory-Augmented Incomplete Multimodal Survival Prediction via Cross-Slide and Gene-Attentive Hypergraph Learning
Abstract:
Multimodal pathology-genomic analysis is critical for cancer survival prediction. However, existing approaches predominantly integrate formalin-fixed paraffin-embedded (FFPE) slides with genomic data, while neglecting the availability of other preservation slides, such as Fresh Froze (FF) slides. Moreover, as the high-resolution spatial nature of pathology data tends to dominate the cross-modality fusion process, it hinders effective multimodal fusion and leads to modality imbalance challenges between pathology and genomics. These methods also typically require complete data modalities, limiting their clinical applicability with incomplete modalities, such as missing either pathology or genomic data. In this paper, we propose a multimodal survival prediction framework that leverages hypergraph learning to effectively integrate multi-WSI information and cross-modality interactions between pathology slides and genomics data while addressing modality imbalance. In addition, we introduce a memory mechanism that stores previously learned paired pathology-genomic features and dynamically compensates for incomplete modalities. Experiments on five TCGA datasets demonstrate that our model outperforms advanced methods by over 2.3% in C-Index. Under incomplete modality scenarios, our approach surpasses pathology-only (3.3%) and gene-only models (7.9%). Code: https://github.com/MCPathology/M2Surv

Authors:Yuang Yao, Ruiqi Wu, Yi Zhou, Tao Zhou
Title: Continual Retinal Vision-Language Pre-training upon Incremental Imaging Modalities
Abstract:
Traditional fundus image analysis models focus on single-modal tasks, ignoring fundus modality complementarity, which limits their versatility. Recently, retinal foundation models have emerged, but most still remain modality-specific. Integrating multiple fundus imaging modalities into a single foundation model is valuable. However, in dynamic environments, data from different modalities often arrive incrementally, necessitating continual pre-training. To address this, we propose RetCoP, the first continual vision-language pre-training framework in the fundus domain, which incrementally integrates image and text features from different imaging modalities into a single unified foundation model. To mitigate catastrophic forgetting in continual pre-training, we introduce a rehearsal strategy utilizing representative image-text pairs and an off-diagonal information distillation approach. The former allows the model to revisit knowledge from previous stages, while the latter explicitly preserves the alignment between image and text representations. Experiments show that RetCoP outperforms all the compared methods, achieving the best generalization and lowest forgetting rate. The code can be found at https://github.com/Yuang-Yao/RetCoP.

Authors:Xiangbo Gao, Yuheng Wu, Fengze Yang, Xuewen Luo, Keshu Wu, Xinghao Chen, Yuping Wang, Chenxi Liu, Yang Zhou, Zhengzhong Tu
Title: AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
Abstract:
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.

Authors:Rui Huang, Jincheng Zeng, Sen Gao, Yan Xing
Title: 3D-SSM: A Novel 3D Selective Scan Module for Remote Sensing Change Detection
Abstract:
Existing Mamba-based approaches in remote sensing change detection have enhanced scanning models, yet remain limited by their inability to capture long-range dependencies between image channels effectively, which restricts their feature representation capabilities. To address this limitation, we propose a 3D selective scan module (3D-SSM) that captures global information from both the spatial plane and channel perspectives, enabling a more comprehensive understanding of the data.Based on the 3D-SSM, we present two key components: a spatiotemporal interaction module (SIM) and a multi-branch feature extraction module (MBFEM). The SIM facilitates bi-temporal feature integration by enabling interactions between global and local features across images from different time points, thereby enhancing the detection of subtle changes. Meanwhile, the MBFEM combines features from the frequency domain, spatial domain, and 3D-SSM to provide a rich representation of contextual information within the image. Our proposed method demonstrates favourable performance compared to state-of-the-art change detection methods on five benchmark datasets through extensive experiments. Code is available at https://github.com/VerdantMist/3D-SSM

Authors:Sunggu Kyung, Hyungbin Park, Jinyoung Seo, Jimin Sung, Jihyun Kim, Dongyeong Kim, Wooyoung Jo, Yoojin Nam, Sangah Park, Taehee Kwon, Sang Min Lee, Namkug Kim
Title: MedErr-CT: A Visual Question Answering Benchmark for Identifying and Correcting Errors in CT Reports
Abstract:
Computed Tomography (CT) plays a crucial role in clinical diagnosis, but the growing demand for CT examinations has raised concerns about diagnostic errors. While Multimodal Large Language Models (MLLMs) demonstrate promising comprehension of medical knowledge, their tendency to produce inaccurate information highlights the need for rigorous validation. However, existing medical visual question answering (VQA) benchmarks primarily focus on simple visual recognition tasks, lacking clinical relevance and failing to assess expert-level knowledge. We introduce MedErr-CT, a novel benchmark for evaluating medical MLLMs' ability to identify and correct errors in CT reports through a VQA framework. The benchmark includes six error categories - four vision-centric errors (Omission, Insertion, Direction, Size) and two lexical error types (Unit, Typo) - and is organized into three task levels: classification, detection, and correction. Using this benchmark, we quantitatively assess the performance of state-of-the-art 3D medical MLLMs, revealing substantial variation in their capabilities across different error types. Our benchmark contributes to the development of more reliable and clinically applicable MLLMs, ultimately helping reduce diagnostic errors and improve accuracy in clinical practice. The code and datasets are available at https://github.com/babbu3682/MedErr-CT.

Authors:Barry Wang, Avi Schwarzschild, Alexander Robey, Ali Payani, Charles Fleming, Mingjie Sun, Daphne Ippolito
Title: Command-V: Pasting LLM Behaviors via Activation Profiles
Abstract:
Retrofitting large language models (LLMs) with new behaviors typically requires full finetuning or distillation-costly steps that must be repeated for every architecture. In this work, we introduce Command-V, a backpropagation-free behavior transfer method that copies an existing residual activation adapter from a donor model and pastes its effect into a recipient model. Command-V profiles layer activations on a small prompt set, derives linear converters between corresponding layers, and applies the donor intervention in the recipient's activation space. This process does not require access to the original training data and needs minimal compute. In three case studies-safety-refusal enhancement, jailbreak facilitation, and automatic chain-of-thought reasoning--Command-V matches or exceeds the performance of direct finetuning while using orders of magnitude less compute. Our code and data are accessible at https://github.com/GithuBarry/Command-V/.

Authors:Ramaravind K. Mothilal, Joanna Roy, Syed Ishtiaque Ahmed, Shion Guha
Title: Human-Aligned Faithfulness in Toxicity Explanations of LLMs
Abstract:
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate \haf of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and nonsensical responses. We open-source our code and LLM-generated explanations at https://github.com/uofthcdslab/HAF.

Authors:Ilia Beletskii, Andrey Kuznetsov, Aibek Alanov
Title: Inverse-and-Edit: Effective and Fast Image Editing by Cycle Consistency Models
Abstract:
Recent advances in image editing with diffusion models have achieved impressive results, offering fine-grained control over the generation process. However, these methods are computationally intensive because of their iterative nature. While distilled diffusion models enable faster inference, their editing capabilities remain limited, primarily because of poor inversion quality. High-fidelity inversion and reconstruction are essential for precise image editing, as they preserve the structural and semantic integrity of the source image. In this work, we propose a novel framework that enhances image inversion using consistency models, enabling high-quality editing in just four steps. Our method introduces a cycle-consistency optimization strategy that significantly improves reconstruction accuracy and enables a controllable trade-off between editability and content preservation. We achieve state-of-the-art performance across various image editing tasks and datasets, demonstrating that our method matches or surpasses full-step diffusion models while being substantially more efficient. The code of our method is available on GitHub at https://github.com/ControlGenAI/Inverse-and-Edit.

Authors:Georgii Bychkov, Khaled Abud, Egor Kovalev, Alexander Gushchin, Dmitriy Vatolin, Anastasia Antsiferova
Title: NIC-RobustBench: A Comprehensive Open-Source Toolkit for Neural Image Compression and Robustness Analysis
Abstract:
Adversarial robustness of neural networks is an increasingly important area of research, combining studies on computer vision models, large language models (LLMs), and others. With the release of JPEG AI -- the first standard for end-to-end neural image compression (NIC) methods -- the question of evaluating NIC robustness has become critically significant. However, previous research has been limited to a narrow range of codecs and attacks. To address this, we present \textbf{NIC-RobustBench}, the first open-source framework to evaluate NIC robustness and adversarial defenses' efficiency, in addition to comparing Rate-Distortion (RD) performance. The framework includes the largest number of codecs among all known NIC libraries and is easily scalable. The paper demonstrates a comprehensive overview of the NIC-RobustBench framework and employs it to analyze NIC robustness. Our code is available online at https://github.com/msu-video-group/NIC-RobustBench.

Authors:Sahil Kale, Vijaykant Nadadur
Title: Mirage of Mastery: Memorization Tricks LLMs into Artificially Inflated Self-Knowledge
Abstract:
When artificial intelligence mistakes memorization for intelligence, it creates a dangerous mirage of reasoning. Existing studies treat memorization and self-knowledge deficits in LLMs as separate issues and do not recognize an intertwining link that degrades the trustworthiness of LLM responses. In our study, we utilize a novel framework to ascertain if LLMs genuinely learn reasoning patterns from training data or merely memorize them to assume competence across problems of similar complexity focused on STEM domains. Our analysis shows a noteworthy problem in generalization: LLMs draw confidence from memorized solutions to infer a higher self-knowledge about their reasoning ability, which manifests as an over 45% inconsistency in feasibility assessments when faced with self-validated, logically coherent task perturbations. This effect is most pronounced in science and medicine domains, which tend to have maximal standardized jargon and problems, further confirming our approach. Significant wavering within the self-knowledge of LLMs also shows flaws in current architectures and training patterns, highlighting the need for techniques that ensure a balanced, consistent stance on models' perceptions of their own knowledge for maximum AI explainability and trustworthiness. Our code and results are available publicly at https://github.com/knowledge-verse-ai/LLM-Memorization_SK_Eval-.

Authors:Weizhi Zhang, Yangning Li, Yuanchen Bei, Junyu Luo, Guancheng Wan, Liangwei Yang, Chenxuan Xie, Yuyao Yang, Wei-Chieh Huang, Chunyu Miao, Henry Peng Zou, Xiao Luo, Yusheng Zhao, Yankai Chen, Chunkit Chan, Peilin Zhou, Xinyang Zhang, Chenwei Zhang, Jingbo Shang, Ming Zhang, Yangqiu Song, Irwin King, Philip S. Yu
Title: From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Abstract:
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.

Authors:Zihan Wang, Rui Pan, Jiarui Yao, Robert Csordas, Linjie Li, Lu Yin, Jiajun Wu, Tong Zhang, Manling Li, Shiwei Liu
Title: Chain-of-Experts: Unlocking the Communication Power of Mixture-of-Experts Models
Abstract:
We propose Chain-of-Experts (CoE), a new Mixture-of-Experts (MoE) architecture that introduces sequential expert communication within each layer. Unlike traditional MoE models, where experts operate independently in parallel, CoE processes tokens iteratively across a chain of experts inside a layer. To support dynamic expert selection across iterations, CoE employs a dedicated router at each iteration step within a layer. This design allows tokens to re-evaluate and select different experts during each iteration, rather than being statically assigned. As a result, CoE introduces a flexible routing mechanism that increases the diversity of expert combinations and enriches the model's representational capacity. CoE demonstrates improved performance under fixed compute: on math reasoning tasks, it reduces validation loss from 1.20 to 1.12 compared to a standard MoE. Beyond performance, CoE offers a new scaling axis: depth through expert iteration, which complements conventional width/depth scaling. For example, using 2x iterations matches the performance of 3x expert selections (in width), while reducing memory usage by 17.6-42% relative to other scaling strategies. Our analysis reveals that CoE's benefits stem from its iterative residual structure and enhanced expert specialization empowered by iterative routing, which together unlock more expressive representations. Code is available at https://github.com/ZihanWang314/coe.

Authors:Zhenke Liu, Jien Li, Ziqi Zhang
Title: eccDNAMamba: A Pre-Trained Model for Ultra-Long eccDNA Sequence Analysis
Abstract:
Extrachromosomal circular DNA (eccDNA) plays key regulatory roles and contributes to oncogene overexpression in cancer through high-copy amplification and long-range interactions. Despite advances in modeling, no pre-trained models currently support full-length circular eccDNA for downstream analysis. Existing genomic models are either limited to single-nucleotide resolution or hindered by the inefficiency of the quadratic attention mechanism. Here, we introduce eccDNAMamba, the first bidirectional state-space encoder tailored for circular DNA sequences. It combines forward and reverse passes for full-context representation learning with linear-time complexity, and preserves circular structure through a novel augmentation strategy. Tested on two real-world datasets, eccDNAMamba achieves strong classification performance and scales to sequences up to 200 Kbp, offering a robust and efficient framework for modeling circular genomes. Our codes are available at https://github.com/zzq1zh/GenAI-Lab.

Authors:Shuang Ao, Yi Dong, Jinwei Hu, Sarvapali Ramchurn
Title: Safe Pruning LoRA: Robust Distance-Guided Pruning for Safety Alignment in Adaptation of LLMs
Abstract:
Fine-tuning Large Language Models (LLMs) with Low-Rank Adaptation (LoRA) enhances adaptability while reducing computational costs. However, fine-tuning can compromise safety alignment, even with benign data, increasing susceptibility to harmful outputs. Existing safety alignment methods struggle to capture complex parameter shifts, leading to suboptimal safety-utility trade-offs. To address this issue, we propose Safe Pruning LoRA (SPLoRA), a novel pruning-based approach that selectively removes LoRA layers that weaken safety alignment, improving safety while preserving performance. At its core, we introduce Empirical-DIEM (E-DIEM), a dimension-insensitive similarity metric that effectively detects safety misalignment in LoRA-adapted models. We conduct extensive experiments on LLMs fine-tuned with mixed of benign and malicious data, and purely benign datasets, evaluating SPLoRA across utility, safety, and reliability metrics. Results demonstrate that SPLoRA outperforms state-of-the-art safety alignment techniques, significantly reducing safety risks while maintaining or improving model performance and reliability. Additionally, SPLoRA reduces inference overhead, making it a scalable and efficient solution for deploying safer and more reliable LLMs. The code is available at https://github.com/AoShuang92/SPLoRA.

Authors:Lingyu Yang
Title: Do LLMs Know When to Flip a Coin? Strategic Randomization through Reasoning and Experience
Abstract:
Strategic randomization is a key principle in game theory, yet it remains underexplored in large language models (LLMs). Prior work often conflates the cognitive decision to randomize with the mechanical generation of randomness, leading to incomplete evaluations. To address this, we propose a novel zero-sum game inspired by the Tian Ji Horse Race, where the Nash equilibrium corresponds to a maximal entropy strategy. The game's complexity masks this property from untrained humans and underdeveloped LLMs. We evaluate five LLMs across prompt styles -- framed, neutral, and hinted -- using competitive multi-tournament gameplay with system-provided random choices, isolating the decision to randomize. Results show that weaker models remain deterministic regardless of prompts, while stronger models exhibit increased randomization under explicit hints. When facing weaker models, strong LLMs adopt deterministic strategies to exploit biases, but converge toward equilibrium play when facing peers. Through win/loss outcomes and Bayes factor analysis, we demonstrate meaningful variation in LLMs' strategic reasoning capabilities, highlighting opportunities for improvement in abstract reasoning and adaptive learning. We make our implementation publicly available at https://github.com/ocelopus/llm-when-to-throw-coin to ensure full reproducibility.

Authors:Di Zhang, Ligang Liu
Title: Asymptotic analysis and design of linear elastic shell lattice metamaterials
Abstract:
We present an asymptotic analysis of shell lattice metamaterials based on Ciarlet's shell theory, introducing a new metric--asymptotic directional stiffness (ADS)--to quantify how the geometry of the middle surface governs the effective stiffness. We prove a convergence theorem that rigorously characterizes ADS and establishes its upper bound, along with necessary and sufficient condition for achieving it. As a key result, our theory provides the first rigorous explanation for the high bulk modulus observed in Triply Periodic Minimal Surfaces (TPMS)-based shell lattices. To optimize ADS on general periodic surfaces, we propose a triangular-mesh-based discretization and shape optimization framework. Numerical experiments validate the theoretical findings and demonstrate the effectiveness of the optimization under various design objectives. Our implementation is available at https://github.com/lavenklau/minisurf.

Authors:Yang Liu, Chuanchen Luo, Zimo Tang, Yingyan Li, Yuran Yang, Yuanyong Ning, Lue Fan, Zhaoxiang Zhang, Junran Peng
Title: TC-Light: Temporally Coherent Generative Rendering for Realistic World Transfer
Abstract:
Illumination and texture editing are critical dimensions for world-to-world transfer, which is valuable for applications including sim2real and real2real visual data scaling up for embodied AI. Existing techniques generatively re-render the input video to realize the transfer, such as video relighting models and conditioned world generation models. Nevertheless, these models are predominantly limited to the domain of training data (e.g., portrait) or fall into the bottleneck of temporal consistency and computation efficiency, especially when the input video involves complex dynamics and long durations. In this paper, we propose TC-Light, a novel generative renderer to overcome these problems. Starting from the video preliminarily relighted by an inflated video relighting model, it optimizes appearance embedding in the first stage to align global illumination. Then it optimizes the proposed canonical video representation, i.e., Unique Video Tensor (UVT), to align fine-grained texture and lighting in the second stage. To comprehensively evaluate performance, we also establish a long and highly dynamic video benchmark. Extensive experiments show that our method enables physically plausible re-rendering results with superior temporal coherence and low computation cost. The code and video demos are available at https://dekuliutesla.github.io/tclight/.

Authors:Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, Mengdi Wang
Title: ReasonFlux-PRM: Trajectory-Aware PRMs for Long Chain-of-Thought Reasoning in LLMs
Abstract:
Process Reward Models (PRMs) have recently emerged as a powerful framework for supervising intermediate reasoning steps in large language models (LLMs). Previous PRMs are primarily trained on model final output responses and struggle to evaluate intermediate thinking trajectories robustly, especially in the emerging setting of trajectory-response outputs generated by frontier reasoning models like Deepseek-R1. In this work, we introduce ReasonFlux-PRM, a novel trajectory-aware PRM explicitly designed to evaluate the trajectory-response type of reasoning traces. ReasonFlux-PRM incorporates both step-level and trajectory-level supervision, enabling fine-grained reward assignment aligned with structured chain-of-thought data. We adapt ReasonFlux-PRM to support reward supervision under both offline and online settings, including (i) selecting high-quality model distillation data for downstream supervised fine-tuning of smaller models, (ii) providing dense process-level rewards for policy optimization during reinforcement learning, and (iii) enabling reward-guided Best-of-N test-time scaling. Empirical results on challenging downstream benchmarks such as AIME, MATH500, and GPQA-Diamond demonstrate that ReasonFlux-PRM-7B selects higher quality data than strong PRMs (e.g., Qwen2.5-Math-PRM-72B) and human-curated baselines. Furthermore, our derived ReasonFlux-PRM-7B yields consistent performance improvements, achieving average gains of 12.1% in supervised fine-tuning, 4.5% in reinforcement learning, and 6.3% in test-time scaling. We also release our efficient ReasonFlux-PRM-1.5B for resource-constrained applications and edge deployment. Project: https://github.com/Gen-Verse/ReasonFlux

Authors:Hong Li, Houyuan Chen, Chongjie Ye, Zhaoxi Chen, Bohan Li, Shaocong Xu, Xianda Guo, Xuhui Liu, Yikai Wang, Baochang Zhang, Satoshi Ikehata, Boxin Shi, Anyi Rao, Hao Zhao
Title: Light of Normals: Unified Feature Representation for Universal Photometric Stereo
Abstract:
Universal photometric stereo (PS) aims to recover high-quality surface normals from objects under arbitrary lighting conditions without relying on specific illumination models. Despite recent advances such as SDM-UniPS and Uni MS-PS, two fundamental challenges persist: 1) the deep coupling between varying illumination and surface normal features, where ambiguity in observed intensity makes it difficult to determine whether brightness variations stem from lighting changes or surface orientation; and 2) the preservation of high-frequency geometric details in complex surfaces, where intricate geometries create self-shadowing, inter-reflections, and subtle normal variations that conventional feature processing operations struggle to capture accurately.

Authors:Hong Li, Houyuan Chen, Chongjie Ye, Zhaoxi Chen, Bohan Li, Shaocong Xu, Xianda Guo, Xuhui Liu, Yikai Wang, Baochang Zhang, Satoshi Ikehata, Boxin Shi, Anyi Rao, Hao Zhao
Title: Light of Normals: Unified Feature Representation for Universal Photometric Stereo
Abstract:
Universal photometric stereo (PS) is defined by two factors: it must (i) operate under arbitrary, unknown lighting conditions and (ii) avoid reliance on specific illumination models. Despite progress (e.g., SDM UniPS), two challenges remain. First, current encoders cannot guarantee that illumination and normal information are decoupled. To enforce decoupling, we introduce LINO UniPS with two key components: (i) Light Register Tokens with light alignment supervision to aggregate point, direction, and environment lights; (ii) Interleaved Attention Block featuring global cross-image attention that takes all lighting conditions together so the encoder can factor out lighting while retaining normal-related evidence. Second, high-frequency geometric details are easily lost. We address this with (i) a Wavelet-based Dual-branch Architecture and (ii) a Normal-gradient Perception Loss. These techniques yield a unified feature space in which lighting is explicitly represented by register tokens, while normal details are preserved via wavelet branch. We further introduce PS-Verse, a large-scale synthetic dataset graded by geometric complexity and lighting diversity, and adopt curriculum training from simple to complex scenes. Extensive experiments show new state-of-the-art results on public benchmarks (e.g., DiLiGenT, Luces), stronger generalization to real materials, and improved efficiency; ablations confirm that Light Register Tokens + Interleaved Attention Block drive better feature decoupling, while Wavelet-based Dual-branch Architecture + Normal-gradient Perception Loss recover finer details.

Authors:Junyan Li, Yang Zhang, Muhammad Yusuf Hassan, Talha Chafekar, Tianle Cai, Zhile Ren, Pengsheng Guo, Foroozan Karimzadeh, Colorado Reed, Chong Wang, Chuang Gan
Title: CommVQ: Commutative Vector Quantization for KV Cache Compression
Abstract:
Large Language Models (LLMs) are increasingly used in applications requiring long context lengths, but the key-value (KV) cache often becomes a memory bottleneck on GPUs as context grows. To address this, we propose Commutative Vector Quantization (CommVQ) to significantly reduce memory usage for long-context LLM inference. We first introduce additive quantization with a lightweight encoder and codebook to compress the KV cache, which can be decoded via simple matrix multiplication. To further reduce computational costs during decoding, we design the codebook to be commutative with Rotary Position Embedding (RoPE) and train it using an Expectation-Maximization (EM) algorithm. This enables efficient integration of decoding into the self-attention mechanism. Our approach achieves high accuracy with additive quantization and low overhead via the RoPE-commutative codebook. Experiments on long-context benchmarks and GSM8K show that our method reduces FP16 KV cache size by 87.5% with 2-bit quantization, while outperforming state-of-the-art KV cache quantization methods. Notably, it enables 1-bit KV cache quantization with minimal accuracy loss, allowing a LLaMA-3.1 8B model to run with a 128K context length on a single RTX 4090 GPU. The source code is available at: https://github.com/UMass-Embodied-AGI/CommVQ.

Authors:Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan Jiang, Yexin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun Luo, Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, Zheng Liu
Title: OmniGen2: Exploration to Advanced Multimodal Generation
Abstract:
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2

Authors:Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan Jiang, Yexin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun Luo, Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, Zheng Liu
Title: OmniGen2: Exploration to Advanced Multimodal Generation
Abstract:
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2

Authors:Olivier Gamache, Jean-Michel Fortin, Matěj Boxan, François Pomerleau, Philippe Giguère
Title: Reproducible Evaluation of Camera Auto-Exposure Methods in the Field: Platform, Benchmark and Lessons Learned
Abstract:
Standard datasets often present limitations, particularly due to the fixed nature of input data sensors, which makes it difficult to compare methods that actively adjust sensor parameters to suit environmental conditions. This is the case with Automatic-Exposure (AE) methods, which rely on environmental factors to influence the image acquisition process. As a result, AE methods have traditionally been benchmarked in an online manner, rendering experiments non-reproducible. Building on our prior work, we propose a methodology that utilizes an emulator capable of generating images at any exposure time. This approach leverages BorealHDR, a unique multi-exposure stereo dataset, along with its new extension, in which data was acquired along a repeated trajectory at different times of the day to assess the impact of changing illumination. In total, BorealHDR covers 13.4 km over 59 trajectories in challenging lighting conditions. The dataset also includes lidar-inertial-odometry-based maps with pose estimation for each image frame, as well as Global Navigation Satellite System (GNSS) data for comparison. We demonstrate that by using images acquired at various exposure times, we can emulate realistic images with a Root-Mean-Square Error (RMSE) below 1.78% compared to ground truth images. Using this offline approach, we benchmarked eight AE methods, concluding that the classical AE method remains the field's best performer. To further support reproducibility, we provide in-depth details on the development of our backpack acquisition platform, including hardware, electrical components, and performance specifications. Additionally, we share valuable lessons learned from deploying the backpack over more than 25 km across various environments. Our code and dataset are available online at this link: https://github.com/norlab-ulaval/TFR24 BorealHDR

Authors:Siao Tang, Xinyin Ma, Gongfan Fang, Xinchao Wang
Title: ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Abstract:
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.

Authors:Siao Tang, Xinyin Ma, Gongfan Fang, Xinchao Wang
Title: ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Abstract:
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, a critical issue is their tendency to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting learnable hints (manually designed or learned on concise data) during the generation of the reasoning. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning while maintaining the performance well. Moreover, we show that ConciseHint is flexible and can be seamlessly integrated with existing methods to further push the upper bound of the efficiency.

Authors:Suyash Gaurav, Muhammad Farhan Humayun, Jukka Heikkonen, Jatin Chaudhary
Title: Focus Your Attention: Towards Data-Intuitive Lightweight Vision Transformers
Abstract:
The evolution of Vision Transformers has led to their widespread adaptation to different domains. Despite large-scale success, there remain significant challenges including their reliance on extensive computational and memory resources for pre-training on huge datasets as well as difficulties in task-specific transfer learning. These limitations coupled with energy inefficiencies mainly arise due to the computation-intensive self-attention mechanism. To address these issues, we propose a novel Super-Pixel Based Patch Pooling (SPPP) technique that generates context-aware, semantically rich, patch embeddings to effectively reduce the architectural complexity and improve efficiency. Additionally, we introduce the Light Latent Attention (LLA) module in our pipeline by integrating latent tokens into the attention mechanism allowing cross-attention operations to significantly reduce the time and space complexity of the attention module. By leveraging the data-intuitive patch embeddings coupled with dynamic positional encodings, our approach adaptively modulates the cross-attention process to focus on informative regions while maintaining the global semantic structure. This targeted attention improves training efficiency and accelerates convergence. Notably, the SPPP module is lightweight and can be easily integrated into existing transformer architectures. Extensive experiments demonstrate that our proposed architecture provides significant improvements in terms of computational efficiency while achieving comparable results with the state-of-the-art approaches, highlighting its potential for energy-efficient transformers suitable for edge deployment. (The code is available on our GitHub repository: https://github.com/zser092/Focused-Attention-ViT).

Authors:Yitong Zhu, Guanxuan Jiang, Zhuowen Liang, Yuyang Wang
Title: Flow-Aware Diffusion for Real-Time VR Restoration: Enhancing Spatiotemporal Coherence and Efficiency
Abstract:
Cybersickness remains a critical barrier to the widespread adoption of Virtual Reality (VR), particularly in scenarios involving intense or artificial motion cues. Among the key contributors is excessive optical flow-perceived visual motion that, when unmatched by vestibular input, leads to sensory conflict and discomfort. While previous efforts have explored geometric or hardware based mitigation strategies, such methods often rely on predefined scene structures, manual tuning, or intrusive equipment. In this work, we propose U-MAD, a lightweight, real-time, AI-based solution that suppresses perceptually disruptive optical flow directly at the image level. Unlike prior handcrafted approaches, this method learns to attenuate high-intensity motion patterns from rendered frames without requiring mesh-level editing or scene specific adaptation. Designed as a plug and play module, U-MAD integrates seamlessly into existing VR pipelines and generalizes well to procedurally generated environments. The experiments show that U-MAD consistently reduces average optical flow and enhances temporal stability across diverse scenes. A user study further confirms that reducing visual motion leads to improved perceptual comfort and alleviated cybersickness symptoms. These findings demonstrate that perceptually guided modulation of optical flow provides an effective and scalable approach to creating more user-friendly immersive experiences. The code will be released at https://github.com/XXXXX (upon publication).

Authors:Zhenru Lin, Jiawen Tao, Yang Yuan, Andrew Chi-Chih Yao
Title: Existing LLMs Are Not Self-Consistent For Simple Tasks
Abstract:
Large Language Models (LLMs) have grown increasingly powerful, yet ensuring their decisions remain transparent and trustworthy requires self-consistency -- no contradictions in their internal reasoning. Our study reveals that even on simple tasks, such as comparing points on a line or a plane, or reasoning in a family tree, all smaller models are highly inconsistent, and even state-of-the-art models like DeepSeek-R1 and GPT-o4-mini are not fully self-consistent. To quantify and mitigate these inconsistencies, we introduce inconsistency metrics and propose two automated methods -- a graph-based and an energy-based approach. While these fixes provide partial improvements, they also highlight the complexity and importance of self-consistency in building more reliable and interpretable AI. The code and data are available at https://github.com/scorpio-nova/llm-self-consistency.

Authors:Chong Zhang, Xiang Li, Jia Wang, Shan Liang, Haochen Xue, Xiaobo Jin
Title: Semantic-Preserving Adversarial Attacks on LLMs: An Adaptive Greedy Binary Search Approach
Abstract:
Large Language Models (LLMs) increasingly rely on automatic prompt engineering in graphical user interfaces (GUIs) to refine user inputs and enhance response accuracy. However, the diversity of user requirements often leads to unintended misinterpretations, where automated optimizations distort original intentions and produce erroneous outputs. To address this challenge, we propose the Adaptive Greedy Binary Search (AGBS) method, which simulates common prompt optimization mechanisms while preserving semantic stability. Our approach dynamically evaluates the impact of such strategies on LLM performance, enabling robust adversarial sample generation. Through extensive experiments on open and closed-source LLMs, we demonstrate AGBS's effectiveness in balancing semantic consistency and attack efficacy. Our findings offer actionable insights for designing more reliable prompt optimization systems. Code is available at: https://github.com/franz-chang/DOBS

Authors:Jie Li, Shifei Ding, Lili Guo, Xuan Li
Title: Multi-modal Anchor Gated Transformer with Knowledge Distillation for Emotion Recognition in Conversation
Abstract:
Emotion Recognition in Conversation (ERC) aims to detect the emotions of individual utterances within a conversation. Generating efficient and modality-specific representations for each utterance remains a significant challenge. Previous studies have proposed various models to integrate features extracted using different modality-specific encoders. However, they neglect the varying contributions of modalities to this task and introduce high complexity by aligning modalities at the frame level. To address these challenges, we propose the Multi-modal Anchor Gated Transformer with Knowledge Distillation (MAGTKD) for the ERC task. Specifically, prompt learning is employed to enhance textual modality representations, while knowledge distillation is utilized to strengthen representations of weaker modalities. Furthermore, we introduce a multi-modal anchor gated transformer to effectively integrate utterance-level representations across modalities. Extensive experiments on the IEMOCAP and MELD datasets demonstrate the effectiveness of knowledge distillation in enhancing modality representations and achieve state-of-the-art performance in emotion recognition. Our code is available at: https://github.com/JieLi-dd/MAGTKD.

Authors:Yifan Zhang, Chunli Peng, Boyang Wang, Puyi Wang, Qingcheng Zhu, Fei Kang, Biao Jiang, Zedong Gao, Eric Li, Yang Liu, Yahui Zhou
Title: Matrix-Game: Interactive World Foundation Model
Abstract:
We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.

Authors:Yuchang Zhu, Jintang Li, Huizhe Zhang, Liang Chen, Zibin Zheng
Title: SaGIF: Improving Individual Fairness in Graph Neural Networks via Similarity Encoding
Abstract:
Individual fairness (IF) in graph neural networks (GNNs), which emphasizes the need for similar individuals should receive similar outcomes from GNNs, has been a critical issue. Despite its importance, research in this area has been largely unexplored in terms of (1) a clear understanding of what induces individual unfairness in GNNs and (2) a comprehensive consideration of identifying similar individuals. To bridge these gaps, we conduct a preliminary analysis to explore the underlying reason for individual unfairness and observe correlations between IF and similarity consistency, a concept introduced to evaluate the discrepancy in identifying similar individuals based on graph structure versus node features. Inspired by our observations, we introduce two metrics to assess individual similarity from two distinct perspectives: topology fusion and feature fusion. Building upon these metrics, we propose Similarity-aware GNNs for Individual Fairness, named SaGIF. The key insight behind SaGIF is the integration of individual similarities by independently learning similarity representations, leading to an improvement of IF in GNNs. Our experiments on several real-world datasets validate the effectiveness of our proposed metrics and SaGIF. Specifically, SaGIF consistently outperforms state-of-the-art IF methods while maintaining utility performance. Code is available at: https://github.com/ZzoomD/SaGIF.

Authors:Tianchen Deng, Guole Shen, Xun Chen, Shenghai Yuan, Hongming Shen, Guohao Peng, Zhenyu Wu, Jingchuan Wang, Lihua Xie, Danwei Wang, Hesheng Wang, Weidong Chen
Title: MCN-SLAM: Multi-Agent Collaborative Neural SLAM with Hybrid Implicit Neural Scene Representation
Abstract:
Neural implicit scene representations have recently shown promising results in dense visual SLAM. However, existing implicit SLAM algorithms are constrained to single-agent scenarios, and fall difficulties in large-scale scenes and long sequences. Existing NeRF-based multi-agent SLAM frameworks cannot meet the constraints of communication bandwidth. To this end, we propose the first distributed multi-agent collaborative neural SLAM framework with hybrid scene representation, distributed camera tracking, intra-to-inter loop closure, and online distillation for multiple submap fusion. A novel triplane-grid joint scene representation method is proposed to improve scene reconstruction. A novel intra-to-inter loop closure method is designed to achieve local (single-agent) and global (multi-agent) consistency. We also design a novel online distillation method to fuse the information of different submaps to achieve global consistency. Furthermore, to the best of our knowledge, there is no real-world dataset for NeRF-based/GS-based SLAM that provides both continuous-time trajectories groundtruth and high-accuracy 3D meshes groundtruth. To this end, we propose the first real-world Dense slam (DES) dataset covering both single-agent and multi-agent scenarios, ranging from small rooms to large-scale outdoor scenes, with high-accuracy ground truth for both 3D mesh and continuous-time camera trajectory. This dataset can advance the development of the research in both SLAM, 3D reconstruction, and visual foundation model. Experiments on various datasets demonstrate the superiority of the proposed method in both mapping, tracking, and communication. The dataset and code will open-source on https://github.com/dtc111111/mcnslam.

Authors:Jingming Liu, Yumeng Li, Wei Shi, Yao-Xiang Ding, Hui Su, Kun Zhou
Title: Harnessing the Power of Reinforcement Learning for Language-Model-Based Information Retriever via Query-Document Co-Augmentation
Abstract:
Recent studies have proposed leveraging Large Language Models (LLMs) as information retrievers through query rewriting. However, for challenging corpora, we argue that enhancing queries alone is insufficient for robust semantic matching; the LLM should also have sufficient understanding of the corpus by directly handling and augmenting the documents themselves. To this end, we present an LLM-based retriever empowered to augment both user queries and corpus documents, with its policy fully explored via reinforcement learning (RL) and minimal human inductive bias. Notably, we find that simply allowing the LLM to modify documents yields little benefit unless paired with our carefully designed bidirectional RL framework, which enables the LLM to simultaneously learn and collaborate on both query and document augmentation policies. A key technical challenge in realizing such a framework lies in jointly updating both policies during training, where the rewards for the two directions depend on each other, making their entangled reward intractable. Our approach addresses this by introducing a reward sampling strategy and a specifically designed RL algorithm that enables effective training with these sampled rewards. Experimental results demonstrate that our approach significantly enhances LLM-based retrieval performance in both sparse and dense settings, particularly in difficult retrieval domains, and achieves strong cross-benchmark generalization. Our code is released at https://github.com/liujm2001/CoAugRetriever.

Authors:Ling Zhang, Boxiang Yun, Qingli Li, Yan Wang
Title: Historical Report Guided Bi-modal Concurrent Learning for Pathology Report Generation
Abstract:
Automated pathology report generation from Whole Slide Images (WSIs) faces two key challenges: (1) lack of semantic content in visual features and (2) inherent information redundancy in WSIs. To address these issues, we propose a novel Historical Report Guided \textbf{Bi}-modal Concurrent Learning Framework for Pathology Report \textbf{Gen}eration (BiGen) emulating pathologists' diagnostic reasoning, consisting of: (1) A knowledge retrieval mechanism to provide rich semantic content, which retrieves WSI-relevant knowledge from pre-built medical knowledge bank by matching high-attention patches and (2) A bi-modal concurrent learning strategy instantiated via a learnable visual token and a learnable textual token to dynamically extract key visual features and retrieved knowledge, where weight-shared layers enable cross-modal alignment between visual features and knowledge features. Our multi-modal decoder integrates both modals for comprehensive diagnostic reports generation. Experiments on the PathText (BRCA) dataset demonstrate our framework's superiority, achieving state-of-the-art performance with 7.4\% relative improvement in NLP metrics and 19.1\% enhancement in classification metrics for Her-2 prediction versus existing methods. Ablation studies validate the necessity of our proposed modules, highlighting our method's ability to provide WSI-relevant rich semantic content and suppress information redundancy in WSIs. Code is publicly available at https://github.com/DeepMed-Lab-ECNU/BiGen.

Authors:Kurt Butler, Guanchao Feng, Tong Chen, Petar Djuric
Title: Trustworthy Prediction with Gaussian Process Knowledge Scores
Abstract:
Probabilistic models are often used to make predictions in regions of the data space where no observations are available, but it is not always clear whether such predictions are well-informed by previously seen data. In this paper, we propose a knowledge score for predictions from Gaussian process regression (GPR) models that quantifies the extent to which observing data have reduced our uncertainty about a prediction. The knowledge score is interpretable and naturally bounded between 0 and 1. We demonstrate in several experiments that the knowledge score can anticipate when predictions from a GPR model are accurate, and that this anticipation improves performance in tasks such as anomaly detection, extrapolation, and missing data imputation. Source code for this project is available online at https://github.com/KurtButler/GP-knowledge.

Authors:Mauricio Byrd Victorica, György Dán, Henrik Sandberg
Title: SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds
Abstract:
State-of-the-art convolutional neural network models for object detection and image classification are vulnerable to physically realizable adversarial perturbations, such as patch attacks. Existing defenses have focused, implicitly or explicitly, on single-patch attacks, leaving their sensitivity to the number of patches as an open question or rendering them computationally infeasible or inefficient against attacks consisting of multiple patches in the worst cases. In this work, we propose SpaNN, an attack detector whose computational complexity is independent of the expected number of adversarial patches. The key novelty of the proposed detector is that it builds an ensemble of binarized feature maps by applying a set of saliency thresholds to the neural activations of the first convolutional layer of the victim model. It then performs clustering on the ensemble and uses the cluster features as the input to a classifier for attack detection. Contrary to existing detectors, SpaNN does not rely on a fixed saliency threshold for identifying adversarial regions, which makes it robust against white box adversarial attacks. We evaluate SpaNN on four widely used data sets for object detection and classification, and our results show that SpaNN outperforms state-of-the-art defenses by up to 11 and 27 percentage points in the case of object detection and the case of image classification, respectively. Our code is available at https://github.com/gerkbyrd/SpaNN.

Authors:Nikhil Khedekar, Kostas Alexis
Title: PG-LIO: Photometric-Geometric fusion for Robust LiDAR-Inertial Odometry
Abstract:
LiDAR-Inertial Odometry (LIO) is widely used for accurate state estimation and mapping which is an essential requirement for autonomous robots. Conventional LIO methods typically rely on formulating constraints from the geometric structure sampled by the LiDAR. Hence, in the lack of geometric structure, these tend to become ill-conditioned (degenerate) and fail. Robustness of LIO to such conditions is a necessity for its broader deployment. To address this, we propose PG-LIO, a real-time LIO method that fuses photometric and geometric information sampled by the LiDAR along with inertial constraints from an Inertial Measurement Unit (IMU). This multi-modal information is integrated into a factor graph optimized over a sliding window for real-time operation. We evaluate PG-LIO on multiple datasets that include both geometrically well-conditioned as well as self-similar scenarios. Our method achieves accuracy on par with state-of-the-art LIO in geometrically well-structured settings while significantly improving accuracy in degenerate cases including against methods that also fuse intensity. Notably, we demonstrate only 1 m drift over a 1 km manually piloted aerial trajectory through a geometrically self-similar tunnel at an average speed of 7.5m/s (max speed 10.8 m/s). For the benefit of the community, we shall also release our source code https://github.com/ntnu-arl/mimosa

Authors:Haoyi Wu, Zhihao Teng, Kewei Tu
Title: Parallel Continuous Chain-of-Thought with Jacobi Iteration
Abstract:
Continuous chain-of-thought has been shown to be effective in saving reasoning tokens for large language models. By reasoning with continuous latent thought tokens, continuous CoT is able to perform implicit reasoning in a compact manner. However, the sequential dependencies between latent thought tokens spoil parallel training, leading to long training time. In this paper, we propose Parallel Continuous Chain-of-Thought (PCCoT), which performs Jacobi iteration on the latent thought tokens, updating them iteratively in parallel instead of sequentially and thus improving both training and inference efficiency of continuous CoT. Experiments demonstrate that by choosing the proper number of iterations, we are able to achieve comparable or even better performance while saving nearly 50% of the training and inference time. Moreover, PCCoT shows better stability and robustness in the training process. Our code is available at https://github.com/whyNLP/PCCoT.

Authors:Jan Michalczyk, Stephan Weiss, Jan Steinbrener
Title: Learning Point Correspondences In Radar 3D Point Clouds For Radar-Inertial Odometry
Abstract:
Using 3D point clouds in odometry estimation in robotics often requires finding a set of correspondences between points in subsequent scans. While there are established methods for point clouds of sufficient quality, state-of-the-art still struggles when this quality drops. Thus, this paper presents a novel learning-based framework for predicting robust point correspondences between pairs of noisy, sparse and unstructured 3D point clouds from a light-weight, low-power, inexpensive, consumer-grade System-on-Chip (SoC) Frequency Modulated Continuous Wave (FMCW) radar sensor. Our network is based on the transformer architecture which allows leveraging the attention mechanism to discover pairs of points in consecutive scans with the greatest mutual affinity. The proposed network is trained in a self-supervised way using set-based multi-label classification cross-entropy loss, where the ground-truth set of matches is found by solving the Linear Sum Assignment (LSA) optimization problem, which avoids tedious hand annotation of the training data. Additionally, posing the loss calculation as multi-label classification permits supervising on point correspondences directly instead of on odometry error, which is not feasible for sparse and noisy data from the SoC radar we use. We evaluate our method with an open-source state-of-the-art Radar-Inertial Odometry (RIO) framework in real-world Unmanned Aerial Vehicle (UAV) flights and with the widely used public Coloradar dataset. Evaluation shows that the proposed method improves the position estimation accuracy by over 14 % and 19 % on average, respectively. The open source code and datasets can be found here: https://github.com/aau-cns/radar_transformer.

Authors:Sung Jin Um, Dongjin Kim, Sangmin Lee, Jung Uk Kim
Title: Object-aware Sound Source Localization via Audio-Visual Scene Understanding
Abstract:
Audio-visual sound source localization task aims to spatially localize sound-making objects within visual scenes by integrating visual and audio cues. However, existing methods struggle with accurately localizing sound-making objects in complex scenes, particularly when visually similar silent objects coexist. This limitation arises primarily from their reliance on simple audio-visual correspondence, which does not capture fine-grained semantic differences between sound-making and silent objects. To address these challenges, we propose a novel sound source localization framework leveraging Multimodal Large Language Models (MLLMs) to generate detailed contextual information that explicitly distinguishes between sound-making foreground objects and silent background objects. To effectively integrate this detailed information, we introduce two novel loss functions: Object-aware Contrastive Alignment (OCA) loss and Object Region Isolation (ORI) loss. Extensive experimental results on MUSIC and VGGSound datasets demonstrate the effectiveness of our approach, significantly outperforming existing methods in both single-source and multi-source localization scenarios. Code and generated detailed contextual information are available at: https://github.com/VisualAIKHU/OA-SSL.

Authors:Muhao Xu, Xueying Zhou, Xizhan Gao, Weiye Song, Guang Feng, Sijie Niu
Title: Normality Prior Guided Multi-Semantic Fusion Network for Unsupervised Image Anomaly Detection
Abstract:
Recently, detecting logical anomalies is becoming a more challenging task compared to detecting structural ones. Existing encoder decoder based methods typically compress inputs into low-dimensional bottlenecks on the assumption that the compression process can effectively suppress the transmission of logical anomalies to the decoder. However, logical anomalies present a particular difficulty because, while their local features often resemble normal semantics, their global semantics deviate significantly from normal patterns. Thanks to the generalisation capabilities inherent in neural networks, these abnormal semantic features can propagate through low-dimensional bottlenecks. This ultimately allows the decoder to reconstruct anomalous images with misleading fidelity. To tackle the above challenge, we propose a novel normality prior guided multi-semantic fusion network for unsupervised anomaly detection. Instead of feeding the compressed bottlenecks to the decoder directly, we introduce the multi-semantic features of normal samples into the reconstruction process. To this end, we first extract abstract global semantics of normal cases by a pre-trained vision-language network, then the learnable semantic codebooks are constructed to store representative feature vectors of normal samples by vector quantisation. Finally, the above multi-semantic features are fused and employed as input to the decoder to guide the reconstruction of anomalies to approximate normality. Extensive experiments are conducted to validate the effectiveness of our proposed method, and it achieves the SOTA performance on the MVTec LOCO AD dataset with improvements of 5.7% in pixel-sPRO and 2.6% in image-AUROC. The source code is available at https://github.com/Xmh-L/NPGMF.

Authors:JiaKui Hu, Yuxiao Yang, Jialun Liu, Jinbo Wu, Chen Zhao, Yanye Lu
Title: Auto-Regressively Generating Multi-View Consistent Images
Abstract:
Generating multi-view images from human instructions is crucial for 3D content creation. The primary challenges involve maintaining consistency across multiple views and effectively synthesizing shapes and textures under diverse conditions. In this paper, we propose the Multi-View Auto-Regressive (\textbf{MV-AR}) method, which leverages an auto-regressive model to progressively generate consistent multi-view images from arbitrary prompts. Firstly, the next-token-prediction capability of the AR model significantly enhances its effectiveness in facilitating progressive multi-view synthesis. When generating widely-separated views, MV-AR can utilize all its preceding views to extract effective reference information. Subsequently, we propose a unified model that accommodates various prompts via architecture designing and training strategies. To address multiple conditions, we introduce condition injection modules for text, camera pose, image, and shape. To manage multi-modal conditions simultaneously, a progressive training strategy is employed. This strategy initially adopts the text-to-multi-view (t2mv) model as a baseline to enhance the development of a comprehensive X-to-multi-view (X2mv) model through the randomly dropping and combining conditions. Finally, to alleviate the overfitting problem caused by limited high-quality data, we propose the ``Shuffle View" data augmentation technique, thus significantly expanding the training data by several magnitudes. Experiments demonstrate the performance and versatility of our MV-AR, which consistently generates consistent multi-view images across a range of conditions and performs on par with leading diffusion-based multi-view image generation models. The code and models are released at https://github.com/MILab-PKU/MVAR.

Authors:Yuting Zhang, Kaishen Yuan, Hao Lu, Yutao Yue, Jintai Chen, Kaishun Wu
Title: MedTVT-R1: A Multimodal LLM Empowering Medical Reasoning and Diagnosis
Abstract:
Accurate and interpretable multi-disease diagnosis remains a critical challenge in medical research, particularly when leveraging heterogeneous multimodal medical data. Current approaches often rely on single-modal data, limiting their ability to comprehensively understand complex diseases. To address this, we propose MedTVT-R1, a novel Multimodal Large Language Model (MLLM) framework designed to integrate clinical multimodal data for reasoning and diagnosing multiple diseases. We construct MedTVT-QA, a curated instruction dataset that provides question-answer pairs for physiological-level interpretations and disease-level diagnoses with a Chain of Evidence approach. MedTVT-R1 incorporates a modality perception layer to capture inter-modal dependencies and adaptively weight modality contributions. Additionally, we employ Group Relative Policy Optimization (GRPO)-based Reinforcement Fine-Tuning with a Jaccard Reward function to enhance diagnostic reasoning. Experimental results demonstrate MedTVT-R1's superiority in multimodal feature utilization and multi-disease diagnosis, offering significant potential for clinical applications such as diagnostic report generation and comorbidity reasoning. The dataset and code are available at https://github.com/keke-nice/MedTVT-R1.

Authors:Aniss Bessalah, Hatem Mohamed Abdelmoumen, Karima Benatchba, Hadjer Benmeziane
Title: AnalogNAS-Bench: A NAS Benchmark for Analog In-Memory Computing
Abstract:
Analog In-memory Computing (AIMC) has emerged as a highly efficient paradigm for accelerating Deep Neural Networks (DNNs), offering significant energy and latency benefits over conventional digital hardware. However, state-of-the-art neural networks are not inherently designed for AIMC, as they fail to account for its unique non-idealities. Neural Architecture Search (NAS) is thus needed to systematically discover neural architectures optimized explicitly for AIMC constraints. However, comparing NAS methodologies and extracting insights about robust architectures for AIMC requires a dedicated NAS benchmark that explicitly accounts for AIMC-specific hardware non-idealities. To address this, we introduce AnalogNAS-Bench, the first NAS benchmark tailored specifically for AIMC. Our study reveals three key insights: (1) standard quantization techniques fail to capture AIMC-specific noises, (2) robust architectures tend to feature wider and branched blocks, (3) skip connections improve resilience to temporal drift noise. These insights highlight the limitations of current NAS benchmarks for AIMC and pave the way for future analog-aware NAS. All the implementations used in this paper can be found at https://github.com/IBM/analog-nas/tree/main/analognasbench.

Authors:Markus Frohmann, Elena V. Epure, Gabriel Meseguer-Brocal, Markus Schedl, Romain Hennequin
Title: AI-Generated Song Detection via Lyrics Transcripts
Abstract:
The recent rise in capabilities of AI-based music generation tools has created an upheaval in the music industry, necessitating the creation of accurate methods to detect such AI-generated content. This can be done using audio-based detectors; however, it has been shown that they struggle to generalize to unseen generators or when the audio is perturbed. Furthermore, recent work used accurate and cleanly formatted lyrics sourced from a lyrics provider database to detect AI-generated music. However, in practice, such perfect lyrics are not available (only the audio is); this leaves a substantial gap in applicability in real-life use cases. In this work, we instead propose solving this gap by transcribing songs using general automatic speech recognition (ASR) models. We do this using several detectors. The results on diverse, multi-genre, and multi-lingual lyrics show generally strong detection performance across languages and genres, particularly for our best-performing model using Whisper large-v2 and LLM2Vec embeddings. In addition, we show that our method is more robust than state-of-the-art audio-based ones when the audio is perturbed in different ways and when evaluated on different music generators. Our code is available at https://github.com/deezer/robust-AI-lyrics-detection.

Authors:Sophia Sirko-Galouchenko, Spyros Gidaris, Antonin Vobecky, Andrei Bursuc, Nicolas Thome
Title: DIP: Unsupervised Dense In-Context Post-training of Visual Representations
Abstract:
We introduce DIP, a novel unsupervised post-training method designed to enhance dense image representations in large-scale pretrained vision encoders for in-context scene understanding. Unlike prior approaches that rely on complex self-distillation architectures, our method trains the vision encoder using pseudo-tasks that explicitly simulate downstream in-context scenarios, inspired by meta-learning principles. To enable post-training on unlabeled data, we propose an automatic mechanism for generating in-context tasks that combines a pretrained diffusion model and the vision encoder itself. DIP is simple, unsupervised, and computationally efficient, requiring less than 9 hours on a single A100 GPU. By learning dense representations through pseudo in-context tasks, it achieves strong performance across a wide variety of downstream real-world in-context scene understanding tasks. It outperforms both the initial vision encoder and prior methods, offering a practical and effective solution for improving dense representations. Code available here: https://github.com/sirkosophia/DIP

Authors:Yang Lyu, Zhenghao Zou, Yanfeng Li, Chunhui Zhao, Quan Pan
Title: Radar and Event Camera Fusion for Agile Robot Ego-Motion Estimation
Abstract:
Achieving reliable ego motion estimation for agile robots, e.g., aerobatic aircraft, remains challenging because most robot sensors fail to respond timely and clearly to highly dynamic robot motions, often resulting in measurement blurring, distortion, and delays. In this paper, we propose an IMU-free and feature-association-free framework to achieve aggressive ego-motion velocity estimation of a robot platform in highly dynamic scenarios by combining two types of exteroceptive sensors, an event camera and a millimeter wave radar, First, we used instantaneous raw events and Doppler measurements to derive rotational and translational velocities directly. Without a sophisticated association process between measurement frames, the proposed method is more robust in texture-less and structureless environments and is more computationally efficient for edge computing devices. Then, in the back-end, we propose a continuous-time state-space model to fuse the hybrid time-based and event-based measurements to estimate the ego-motion velocity in a fixed-lagged smoother fashion. In the end, we validate our velometer framework extensively in self-collected experiment datasets. The results indicate that our IMU-free and association-free ego motion estimation framework can achieve reliable and efficient velocity output in challenging environments. The source code, illustrative video and dataset are available at https://github.com/ZzhYgwh/TwistEstimator.

Authors:Yiyao Wang, Bo Pan, Ke Wang, Han Liu, Jinyuan Mao, Yuxin Liu, Minfeng Zhu, Xiuqi Huang, Weifeng Chen, Bo Zhang, Wei Chen
Title: IntuiTF: MLLM-Guided Transfer Function Optimization for Direct Volume Rendering
Abstract:
Direct volume rendering (DVR) is a fundamental technique for visualizing volumetric data, where transfer functions (TFs) play a crucial role in extracting meaningful structures. However, designing effective TFs remains unintuitive due to the semantic gap between user intent and TF parameter space. Although numerous TF optimization methods have been proposed to mitigate this issue, existing approaches still face two major challenges: the vast exploration space and limited generalizability. To address these issues, we propose IntuiTF, a novel framework that leverages Multimodal Large Language Models (MLLMs) to guide TF optimization in alignment with user intent. Specifically, our method consists of two key components: (1) an evolution-driven explorer for effective exploration of the TF space, and (2) an MLLM-guided human-aligned evaluator that provides generalizable visual feedback on rendering quality. The explorer and the evaluator together establish an efficient Trial-Insight-Replanning paradigm for TF space exploration. We further extend our framework with an interactive TF design system. We demonstrate the broad applicability of our framework through three case studies and validate the effectiveness of each component through extensive experiments. We strongly recommend readers check our cases, demo video, and source code at: https://github.com/wyysteelhead/IntuiTF

Authors:Haoneng Lin, Cheng Xu, Jing Qin
Title: Taming Vision-Language Models for Medical Image Analysis: A Comprehensive Review
Abstract:
Modern Vision-Language Models (VLMs) exhibit unprecedented capabilities in cross-modal semantic understanding between visual and textual modalities. Given the intrinsic need for multi-modal integration in clinical applications, VLMs have emerged as a promising solution for a wide range of medical image analysis tasks. However, adapting general-purpose VLMs to medical domain poses numerous challenges, such as large domain gaps, complicated pathological variations, and diversity and uniqueness of different tasks. The central purpose of this review is to systematically summarize recent advances in adapting VLMs for medical image analysis, analyzing current challenges, and recommending promising yet urgent directions for further investigations. We begin by introducing core learning strategies for medical VLMs, including pretraining, fine-tuning, and prompt learning. We then categorize five major VLM adaptation strategies for medical image analysis. These strategies are further analyzed across eleven medical imaging tasks to illustrate their current practical implementations. Furthermore, we analyze key challenges that impede the effective adaptation of VLMs to clinical applications and discuss potential directions for future research. We also provide an open-access repository of related literature to facilitate further research, available at https://github.com/haonenglin/Awesome-VLM-for-MIA. It is anticipated that this article can help researchers who are interested in harnessing VLMs in medical image analysis tasks have a better understanding on their capabilities and limitations, as well as current technical barriers, to promote their innovative, robust, and safe application in clinical practice.

Authors:Yeongtak Oh, Dohyun Chung, Juhyeon Shin, Sangha Park, Johan Barthelemy, Jisoo Mok, Sungroh Yoon
Title: RePIC: Reinforced Post-Training for Personalizing Multi-Modal Language Models
Abstract:
Recent multi-modal large language models (MLLMs) often struggle to generate personalized image captions, even when trained on high-quality captions. In this work, we observe that such limitations persist in existing post-training-based MLLM personalization methods. Specifically, despite being post-tuned with large-scale caption data through supervised fine-tuning (SFT), these models frequently fail to produce faithful descriptions in real-world scenarios, such as multi-concept image captioning. However, acquiring large-scale, high-quality captions for such complex settings is both costly and difficult. To address the data-centric nature of SFT, we propose a reinforcement learning (RL)-based post-training framework. To the best of our knowledge, this is the first RL-based approach to post-train MLLMs for personalized image captioning. Our method significantly enhances both visual recognition and personalized generation capabilities of MLLMs, and consistently outperforms existing SFT-based baselines, especially in the challenging multi-concept image captioning task. Project page: https://github.com/oyt9306/RePIC

Authors:Tongshun Zhang, Pingping Liu, Mengen Cai, Zijian Zhang, Yubing Lu, Qiuzhan Zhou
Title: BSMamba: Brightness and Semantic Modeling for Long-Range Interaction in Low-Light Image Enhancement
Abstract:
Current low-light image enhancement (LLIE) methods face significant limitations in simultaneously improving brightness while preserving semantic consistency, fine details, and computational efficiency. With the emergence of state-space models, particularly Mamba, image restoration has achieved remarkable performance, yet existing visual Mamba approaches flatten 2D images into 1D token sequences using fixed scanning rules, critically limiting interactions between distant tokens with causal relationships and constraining their ability to capture meaningful long-range dependencies. To address these fundamental limitations, we propose BSMamba, a novel visual Mamba architecture comprising two specially designed components: Brightness Mamba and Semantic Mamba. The Brightness Mamba revolutionizes token interaction patterns by prioritizing connections between distant tokens with similar brightness levels, effectively addressing the challenge of brightness restoration in LLIE tasks through brightness-guided selective attention. Complementing this, the Semantic Mamba establishes priority interactions between tokens sharing similar semantic meanings, allowing the model to maintain contextual consistency by connecting semantically related regions across the image, thus preserving the hierarchical nature of image semantics during enhancement. By intelligently modeling tokens based on brightness and semantic similarity rather than arbitrary scanning patterns, BSMamba transcends the constraints of conventional token sequencing while adhering to the principles of causal modeling. Extensive experiments demonstrate that BSMamba achieves state-of-the-art performance in LLIE while preserving semantic consistency. Code is available at https://github.com/bywlzts/BSMamba.

Authors:Kawser Ahmed, Mir Shahriar Fardin, Md Arif Faysal Nayem, Fahim Hafiz, Swakkhar Shatabda
Title: TritonZ: A Remotely Operated Underwater Rover with Manipulator Arm for Exploration and Rescue Operations
Abstract:
The increasing demand for underwater exploration and rescue operations enforces the development of advanced wireless or semi-wireless underwater vessels equipped with manipulator arms. This paper presents the implementation of a semi-wireless underwater vehicle, "TritonZ" equipped with a manipulator arm, tailored for effective underwater exploration and rescue operations. The vehicle's compact design enables deployment in different submarine surroundings, addressing the need for wireless systems capable of navigating challenging underwater terrains. The manipulator arm can interact with the environment, allowing the robot to perform sophisticated tasks during exploration and rescue missions in emergency situations. TritonZ is equipped with various sensors such as Pi-Camera, Humidity, and Temperature sensors to send real-time environmental data. Our underwater vehicle controlled using a customized remote controller can navigate efficiently in the water where Pi-Camera enables live streaming of the surroundings. Motion control and video capture are performed simultaneously using this camera. The manipulator arm is designed to perform various tasks, similar to grasping, manipulating, and collecting underwater objects. Experimental results shows the efficacy of the proposed remotely operated vehicle in performing a variety of underwater exploration and rescue tasks. Additionally, the results show that TritonZ can maintain an average of 13.5cm/s with a minimal delay of 2-3 seconds. Furthermore, the vehicle can sustain waves underwater by maintaining its position as well as average velocity. The full project details and source code can be accessed at this link: https://github.com/kawser-ahmed-byte/TritonZ

Authors:Saad Wazir, Daeyoung Kim
Title: Rethinking Decoder Design: Improving Biomarker Segmentation Using Depth-to-Space Restoration and Residual Linear Attention
Abstract:
Segmenting biomarkers in medical images is crucial for various biotech applications. Despite advances, Transformer and CNN based methods often struggle with variations in staining and morphology, limiting feature extraction. In medical image segmentation, where datasets often have limited sample availability, recent state-of-the-art (SOTA) methods achieve higher accuracy by leveraging pre-trained encoders, whereas end-to-end methods tend to underperform. This is due to challenges in effectively transferring rich multiscale features from encoders to decoders, as well as limitations in decoder efficiency. To address these issues, we propose an architecture that captures multi-scale local and global contextual information and a novel decoder design, which effectively integrates features from the encoder, emphasizes important channels and regions, and reconstructs spatial dimensions to enhance segmentation accuracy. Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies. Specifically, our method achieves absolute performance gains of 2.76% on MoNuSeg, 3.12% on DSB, 2.87% on Electron Microscopy, and 4.03% on TNBC datasets compared to existing SOTA methods. Code: https://github.com/saadwazir/MCADS-Decoder

Authors:Lixin Wu, Na Cai, Qiao Cheng, Jiachen Wang, Yitao Duan
Title: Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
Abstract:
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.

Authors:Zhifeng Deng, P. -A. Absil, Kyle A. Gallivan, Wen Huang
Title: The Exponential of Skew-Symmetric Matrices: A Nearby Inverse and Efficient Computation of Derivatives
Abstract:
The matrix exponential restricted to skew-symmetric matrices has numerous applications, notably in view of its interpretation as the Lie group exponential and Riemannian exponential for the special orthogonal group. We characterize the invertibility of the derivative of the skew-restricted exponential, thereby providing a simple expression of the tangent conjugate locus of the orthogonal group. In view of the skew restriction, this characterization differs from the classic result on the invertibility of the derivative of the exponential of real matrices. Based on this characterization, for every skew-symmetric matrix $A$ outside the (zero-measure) tangent conjugate locus, we explicitly construct the domain and image of a smooth inverse -- which we term \emph{nearby logarithm} -- of the skew-restricted exponential around $A$. This nearby logarithm reduces to the classic principal logarithm of special orthogonal matrices when $A=\mathbf{0}$. The symbolic formulae for the differentiation and its inverse are derived and implemented efficiently. The extensive numerical experiments show that the proposed formulae are up to $3.9$-times and $3.6$-times faster than the current state-of-the-art robust formulae for the differentiation and its inversion, respectively.

Authors:Muhammad Usama, Hee-Deok Jang, Soham Shanbhag, Yoo-Chang Sung, Seung-Jun Bae, Dong Eui Chang
Title: Learning High-Quality Latent Representations for Anomaly Detection and Signal Integrity Enhancement in High-Speed Signals
Abstract:
This paper addresses the dual challenge of improving anomaly detection and signal integrity in high-speed dynamic random access memory signals. To achieve this, we propose a joint training framework that integrates an autoencoder with a classifier to learn more distinctive latent representations by focusing on valid data features. Our approach is evaluated across three anomaly detection algorithms and consistently outperforms two baseline methods. Detailed ablation studies further support these findings. Furthermore, we introduce a signal integrity enhancement algorithm that improves signal integrity by an average of 11.3%. The source code and data used in this study are available at https://github.com/Usama1002/learning-latent-representations.

Authors:Min Yin, Haoyu Liu, Boyi Lian, Chunlei Chai
Title: Co-persona: Leveraging LLMs and Expert Collaboration to Understand User Personas through Social Media Data Analysis
Abstract:
This study introduces Co-Persona, a methodological framework bridging large-scale social media analysis with authentic user understanding through systematic integration of Large Language Models and expert validation. Through a case study of B.Co, a Chinese manufacturer, we investigated Co-Persona application in bedside lamp development. Our methodology analyzed over 38 million posts from Xiao Hongshu, employing multi-stage data processing combining advanced NLP with expert validation. Analysis revealed five user personas derived from bedtime behaviors: Health Aficionados, Night Owls, Interior Decorators, Child-care Workers, and Workaholics-each showing unique pre-sleep activities and product preferences. Findings demonstrate Co-Persona enhances manufacturers' ability to process large datasets while maintaining user understanding. The methodology provides structured approaches for targeted marketing and product strategies. Research contributes to theoretical understanding of data-driven persona development and practical applications in consumer-driven innovation. Code and data available at https://github.com/INFPa/LLMwithPersona.

Authors:Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan Yao, Zhiyuan Liu, Maosong Sun, Tat-Seng Chua
Title: RLPR: Extrapolating RLVR to General Domains without Verifiers
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates promising potential in advancing the reasoning capabilities of LLMs. However, its success remains largely confined to mathematical and code domains. This primary limitation stems from the heavy reliance on domain-specific verifiers, which results in prohibitive complexity and limited scalability. To address the challenge, our key observation is that LLM's intrinsic probability of generating a correct free-form answer directly indicates its own evaluation of the reasoning reward (i.e., how well the reasoning process leads to the correct answer). Building on this insight, we propose RLPR, a simple verifier-free framework that extrapolates RLVR to broader general domains. RLPR uses the LLM's own token probability scores for reference answers as the reward signal and maximizes the expected reward during training. We find that addressing the high variance of this noisy probability reward is crucial to make it work, and propose prob-to-reward and stabilizing methods to ensure a precise and stable reward from LLM intrinsic probabilities. Comprehensive experiments in four general-domain benchmarks and three mathematical benchmarks show that RLPR consistently improves reasoning capabilities in both areas for Gemma, Llama, and Qwen based models. Notably, RLPR outperforms concurrent VeriFree by 7.6 points on TheoremQA and 7.5 points on Minerva, and even surpasses strong verifier-model-dependent approaches General-Reasoner by 1.6 average points across seven benchmarks.

Authors:Chao Li, Jiawei Fan, Anbang Yao
Title: Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models
Abstract:
In this paper, we present Morse, a simple dual-sampling framework for accelerating diffusion models losslessly. The key insight of Morse is to reformulate the iterative generation (from noise to data) process via taking advantage of fast jump sampling and adaptive residual feedback strategies. Specifically, Morse involves two models called Dash and Dot that interact with each other. The Dash model is just the pre-trained diffusion model of any type, but operates in a jump sampling regime, creating sufficient space for sampling efficiency improvement. The Dot model is significantly faster than the Dash model, which is learnt to generate residual feedback conditioned on the observations at the current jump sampling point on the trajectory of the Dash model, lifting the noise estimate to easily match the next-step estimate of the Dash model without jump sampling. By chaining the outputs of the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the merit of flexibly attaining desired image generation performance while improving overall runtime efficiency. With our proposed weight sharing strategy between the Dash and Dot models, Morse is efficient for training and inference. Our method shows a lossless speedup of 1.78X to 3.31X on average over a wide range of sampling step budgets relative to 9 baseline diffusion models on 6 image generation tasks. Furthermore, we show that our method can be also generalized to improve the Latent Consistency Model (LCM-SDXL, which is already accelerated with consistency distillation technique) tailored for few-step text-to-image synthesis. The code and models are available at https://github.com/deep-optimization/Morse.

Authors:Ankit Sanjyal
Title: Limitations of NERF with pre-trained Vision Features for Few-Shot 3D Reconstruction
Abstract:
Neural Radiance Fields (NeRF) have revolutionized 3D scene reconstruction from sparse image collections. Recent work has explored integrating pre-trained vision features, particularly from DINO, to enhance few-shot reconstruction capabilities. However, the effectiveness of such approaches remains unclear, especially in extreme few-shot scenarios. In this paper, we present a systematic evaluation of DINO-enhanced NeRF models, comparing baseline NeRF, frozen DINO features, LoRA fine-tuned features, and multi-scale feature fusion. Surprisingly, our experiments reveal that all DINO variants perform worse than the baseline NeRF, achieving PSNR values around 12.9 to 13.0 compared to the baseline's 14.71. This counterintuitive result suggests that pre-trained vision features may not be beneficial for few-shot 3D reconstruction and may even introduce harmful biases. We analyze potential causes including feature-task mismatch, overfitting to limited data, and integration challenges. Our findings challenge common assumptions in the field and suggest that simpler architectures focusing on geometric consistency may be more effective for few-shot scenarios.

Authors:Youjie Zhou, Guofeng Mei, Yiming Wang, Yi Wan, Fabio Poiesi
Title: Multimodal Fusion SLAM with Fourier Attention
Abstract:
Visual SLAM is particularly challenging in environments affected by noise, varying lighting conditions, and darkness. Learning-based optical flow algorithms can leverage multiple modalities to address these challenges, but traditional optical flow-based visual SLAM approaches often require significant computational resources.To overcome this limitation, we propose FMF-SLAM, an efficient multimodal fusion SLAM method that utilizes fast Fourier transform (FFT) to enhance the algorithm efficiency. Specifically, we introduce a novel Fourier-based self-attention and cross-attention mechanism to extract features from RGB and depth signals. We further enhance the interaction of multimodal features by incorporating multi-scale knowledge distillation across modalities. We also demonstrate the practical feasibility of FMF-SLAM in real-world scenarios with real time performance by integrating it with a security robot by fusing with a global positioning module GNSS-RTK and global Bundle Adjustment. Our approach is validated using video sequences from TUM, TartanAir, and our real-world datasets, showcasing state-of-the-art performance under noisy, varying lighting, and dark conditions.Our code and datasets are available at https://github.com/youjie-zhou/FMF-SLAM.git.

Authors:Zih-Hao Huang, You-Teng Lin, Hung-Hsuan Chen
Title: DeInfoReg: A Decoupled Learning Framework for Better Training Throughput
Abstract:
This paper introduces Decoupled Supervised Learning with Information Regularization (DeInfoReg), a novel approach that transforms a long gradient flow into multiple shorter ones, thereby mitigating the vanishing gradient problem. Integrating a pipeline strategy, DeInfoReg enables model parallelization across multiple GPUs, significantly improving training throughput. We compare our proposed method with standard backpropagation and other gradient flow decomposition techniques. Extensive experiments on diverse tasks and datasets demonstrate that DeInfoReg achieves superior performance and better noise resistance than traditional BP models and efficiently utilizes parallel computing resources. The code for reproducibility is available at: https://github.com/ianzih/Decoupled-Supervised-Learning-for-Information-Regularization/.

Authors:Donghyun Lee, Yuhang Li, Ruokai Yin, Shiting Xiao, Priyadarshini Panda
Title: Memba: Membrane-driven Parameter-Efficient Fine-Tuning for Mamba
Abstract:
State Space Models (SSMs) have emerged as powerful alternatives to attention-based Transformers, with Mamba demonstrating impressive efficiency and scalability. As these models grow increasingly larger, the need for Parameter-Efficient Fine-Tuning (PEFT) methods becomes critical to adapt pre-trained Mamba to downstream tasks without prohibitive computational costs. However, previous approaches simply apply traditional Transformer-tailored PEFT methods without addressing the unique temporal processing dynamics of SSMs. To address this limitation, we propose Memba, a membrane-driven PEFT approach specifically designed for Mamba. Memba introduces Leaky Integrate Membrane (LIM) neurons as bio-inspired gating mechanisms that naturally accumulate membrane potentials over time, enhancing selective information retention. By strategically combining LIM neurons with Low-Rank Adaptations (LoRA) and cross-layer membrane transfer, our approach significantly improves Mamba's temporal modeling capabilities. Extensive experiments across language and vision tasks demonstrate that Memba achieves substantial improvements over existing PEFT methods. The code is available at https://github.com/Intelligent-Computing-Lab-Yale/Memba.

Authors:Quan Zhou, Gan Luo, Qiang Hu, Qingyong Zhang, Jinhua Zhang, Yinjiao Tian, Qiang Li, Zhiwei Wang
Title: Targeted False Positive Synthesis via Detector-guided Adversarial Diffusion Attacker for Robust Polyp Detection
Abstract:
Polyp detection is crucial for colorectal cancer screening, yet existing models are limited by the scale and diversity of available data. While generative models show promise for data augmentation, current methods mainly focus on enhancing polyp diversity, often overlooking the critical issue of false positives. In this paper, we address this gap by proposing an adversarial diffusion framework to synthesize high-value false positives. The extensive variability of negative backgrounds presents a significant challenge in false positive synthesis. To overcome this, we introduce two key innovations: First, we design a regional noise matching strategy to construct a negative synthesis space using polyp detection datasets. This strategy trains a negative-centric diffusion model by masking polyp regions, ensuring the model focuses exclusively on learning diverse background patterns. Second, we introduce the Detector-guided Adversarial Diffusion Attacker (DADA) module, which perturbs the negative synthesis process to disrupt a pre-trained detector's decision, guiding the negative-centric diffusion model to generate high-value, detector-confusing false positives instead of low-value, ordinary backgrounds. Our approach is the first to apply adversarial diffusion to lesion detection, establishing a new paradigm for targeted false positive synthesis and paving the way for more reliable clinical applications in colorectal cancer screening. Extensive results on public and in-house datasets verify the superiority of our method over the current state-of-the-arts, with our synthesized data improving the detectors by at least 2.6% and 2.7% in F1-score, respectively, over the baselines. Codes are at https://github.com/Huster-Hq/DADA.

Authors:Yicheng Fu, Zhemin Huang, Liuxin Yang, Yumeng Lu, Zhongdongming Dai
Title: Chengyu-Bench: Benchmarking Large Language Models for Chinese Idiom Understanding and Use
Abstract:
Chinese idioms (Chengyu) are concise four-character expressions steeped in history and culture, whose literal translations often fail to capture their full meaning. This complexity makes them challenging for language models to interpret and use correctly. Existing benchmarks focus on narrow tasks - multiple-choice cloze tests, isolated translation, or simple paraphrasing. We introduce Chengyu-Bench, a comprehensive benchmark featuring three tasks: (1) Evaluative Connotation, classifying idioms as positive or negative; (2) Appropriateness, detecting incorrect idiom usage in context; and (3) Open Cloze, filling blanks in longer passages without options. Chengyu-Bench comprises 2,937 human-verified examples covering 1,765 common idioms sourced from diverse corpora. We evaluate leading LLMs and find they achieve over 95% accuracy on Evaluative Connotation, but only ~85% on Appropriateness and ~40% top-1 accuracy on Open Cloze. Error analysis reveals that most mistakes arise from fundamental misunderstandings of idiom meanings. Chengyu-Bench demonstrates that while LLMs can reliably gauge idiom sentiment, they still struggle to grasp the cultural and contextual nuances essential for proper usage. The benchmark and source code are available at: https://github.com/sofyc/ChengyuBench.

Authors:Fuyu Wang, Jiangtong Li, Kun Zhu, Changjun Jiang
Title: InspireDebate: Multi-Dimensional Subjective-Objective Evaluation-Guided Reasoning and Optimization for Debating
Abstract:
With the rapid advancements in large language models (LLMs), debating tasks, such as argument quality assessment and debate process simulation, have made significant progress. However, existing LLM-based debating systems focus on responding to specific arguments while neglecting objective assessments such as authenticity and logical validity. Furthermore, these systems lack a structured approach to optimize across various dimensions$-$including evaluation metrics, chain-of-thought (CoT) reasoning, and multi-turn debate refinement$-$thereby limiting their effectiveness. To address these interconnected challenges, we propose a dual-component framework: (1) $\textbf{InspireScore}$, a novel evaluation system that establishes a multi-dimensional assessment architecture incorporating four subjective criteria (emotional appeal, argument clarity, argument arrangement, and topic relevance) alongside two objective metrics (fact authenticity and logical validity); and (2) $\textbf{InspireDebate}$, an optimized debating framework employing a phased optimization approach through CoT reasoning enhancement, multi-dimensional Direct Preference Optimization (DPO), and real-time knowledge grounding via web-based Retrieval Augmented Generation (Web-RAG). Empirical evaluations demonstrate that $\textbf{InspireScore}$ achieves 44$\%$ higher correlation with expert judgments compared to existing methods, while $\textbf{InspireDebate}$ shows significant improvements, outperforming baseline models by 57$\%$. Source code is available at https://github.com/fywang12/InspireDebate.

Authors:Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Huichi Zhou, Meng Fang, Linyi Yang, Xiaoguang Li, Lifeng Shang, Songcen Xu, Jianye Hao, Kun Shao, Jun Wang
Title: Deep Research Agents: A Systematic Examination And Roadmap
Abstract:
The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.

Authors:Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Zixuan Li, Qiwei Liang, Xianliang Lin, Yiheng Ge, Zhenyu Gu, Weiliang Deng, Yubin Guo, Tian Nian, Xuanbing Xie, Qiangyu Chen, Kailun Su, Tianling Xu, Guodong Liu, Mengkang Hu, Huan-ang Gao, Kaixuan Wang, Zhixuan Liang, Yusen Qin, Xiaokang Yang, Ping Luo, Yao Mu
Title: RoboTwin 2.0: A Scalable Data Generator and Benchmark with Strong Domain Randomization for Robust Bimanual Robotic Manipulation
Abstract:
Simulation-based data synthesis has emerged as a powerful paradigm for advancing real-world robotic manipulation. Yet existing datasets remain insufficient for robust bimanual manipulation due to (1) the lack of scalable task generation methods and (2) oversimplified simulation environments. We present RoboTwin 2.0, a scalable framework for automated, large-scale generation of diverse and realistic data, together with unified evaluation protocols for dual-arm manipulation. At its core is RoboTwin-OD, an object library of 731 instances across 147 categories with semantic and manipulation-relevant annotations. Building on this, we design an expert data synthesis pipeline that leverages multimodal language models (MLLMs) and simulation-in-the-loop refinement to automatically generate task-level execution code. To improve sim-to-real transfer, RoboTwin 2.0 applies structured domain randomization along five axes: clutter, lighting, background, tabletop height, and language, enhancing data diversity and policy robustness. The framework is instantiated across 50 dual-arm tasks and five robot embodiments. Empirically, it yields a 10.9% gain in code generation success rate. For downstream policy learning, a VLA model trained with synthetic data plus only 10 real demonstrations achieves a 367% relative improvement over the 10-demo baseline, while zero-shot models trained solely on synthetic data obtain a 228% gain. These results highlight the effectiveness of RoboTwin 2.0 in strengthening sim-to-real transfer and robustness to environmental variations. We release the data generator, benchmark, dataset, and code to support scalable research in robust bimanual manipulation. Project Page: https://robotwin-platform.github.io/, Code: https://github.com/robotwin-Platform/robotwin/.

Authors:Wenzhuo Liu, Yicheng Qiao, Zhen Wang, Qiannan Guo, Zilong Chen, Meihua Zhou, Xinran Li, Letian Wang, Zhiwei Li, Huaping Liu, Wenshuo Wang
Title: TEM^3-Learning: Time-Efficient Multimodal Multi-Task Learning for Advanced Assistive Driving
Abstract:
Multi-task learning (MTL) can advance assistive driving by exploring inter-task correlations through shared representations. However, existing methods face two critical limitations: single-modality constraints limiting comprehensive scene understanding and inefficient architectures impeding real-time deployment. This paper proposes TEM^3-Learning (Time-Efficient Multimodal Multi-task Learning), a novel framework that jointly optimizes driver emotion recognition, driver behavior recognition, traffic context recognition, and vehicle behavior recognition through a two-stage architecture. The first component, the mamba-based multi-view temporal-spatial feature extraction subnetwork (MTS-Mamba), introduces a forward-backward temporal scanning mechanism and global-local spatial attention to efficiently extract low-cost temporal-spatial features from multi-view sequential images. The second component, the MTL-based gated multimodal feature integrator (MGMI), employs task-specific multi-gating modules to adaptively highlight the most relevant modality features for each task, effectively alleviating the negative transfer problem in MTL. Evaluation on the AIDE dataset, our proposed model achieves state-of-the-art accuracy across all four tasks, maintaining a lightweight architecture with fewer than 6 million parameters and delivering an impressive 142.32 FPS inference speed. Rigorous ablation studies further validate the effectiveness of the proposed framework and the independent contributions of each module. The code is available on https://github.com/Wenzhuo-Liu/TEM3-Learning.

Authors:Jisheng Dang, Huilin Song, Junbin Xiao, Bimei Wang, Han Peng, Haoxuan Li, Xun Yang, Meng Wang, Tat-Seng Chua
Title: MUPA: Towards Multi-Path Agentic Reasoning for Grounded Video Question Answering
Abstract:
Grounded Video Question Answering (Grounded VideoQA) requires aligning textual answers with explicit visual evidence. However, modern multimodal models often rely on linguistic priors and spurious correlations, resulting in poorly grounded predictions. In this work, we propose MUPA, a cooperative MUlti-Path Agentic approach that unifies video grounding, question answering, answer reflection and aggregation to tackle Grounded VideoQA. MUPA features three distinct reasoning paths on the interplay of grounding and QA agents in different chronological orders, along with a dedicated reflection agent to judge and aggregate the multi-path results to accomplish consistent QA and grounding. This design markedly improves grounding fidelity without sacrificing answer accuracy. Despite using only 2B parameters, our method outperforms all 7B-scale competitors. When scaled to 7B parameters, MUPA establishes new state-of-the-art results, with Acc@GQA of 30.3% and 47.4% on NExT-GQA and DeVE-QA respectively, demonstrating MUPA' effectiveness towards trustworthy video-language understanding. Our code is available in https://github.com/longmalongma/MUPA.

Authors:Hangzhou He, Jiachen Tang, Lei Zhu, Kaiwen Li, Yanye Lu
Title: Training-free Test-time Improvement for Explainable Medical Image Classification
Abstract:
Deep learning-based medical image classification techniques are rapidly advancing in medical image analysis, making it crucial to develop accurate and trustworthy models that can be efficiently deployed across diverse clinical scenarios. Concept Bottleneck Models (CBMs), which first predict a set of explainable concepts from images and then perform classification based on these concepts, are increasingly being adopted for explainable medical image classification. However, the inherent explainability of CBMs introduces new challenges when deploying trained models to new environments. Variations in imaging protocols and staining methods may induce concept-level shifts, such as alterations in color distribution and scale. Furthermore, since CBM training requires explicit concept annotations, fine-tuning models solely with image-level labels could compromise concept prediction accuracy and faithfulness - a critical limitation given the high cost of acquiring expert-annotated concept labels in medical domains. To address these challenges, we propose a training-free confusion concept identification strategy. By leveraging minimal new data (e.g., 4 images per class) with only image-level labels, our approach enhances out-of-domain performance without sacrificing source domain accuracy through two key operations: masking misactivated confounding concepts and amplifying under-activated discriminative concepts. The efficacy of our method is validated on both skin and white blood cell images. Our code is available at: https://github.com/riverback/TF-TTI-XMed.

Authors:Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, Bin Yang
Title: TAB: Unified Benchmarking of Time Series Anomaly Detection Methods
Abstract:
Time series anomaly detection (TSAD) plays an important role in many domains such as finance, transportation, and healthcare. With the ongoing instrumentation of reality, more time series data will be available, leading also to growing demands for TSAD. While many TSAD methods already exist, new and better methods are still desirable. However, effective progress hinges on the availability of reliable means of evaluating new methods and comparing them with existing methods. We address deficiencies in current evaluation procedures related to datasets and experimental settings and protocols. Specifically, we propose a new time series anomaly detection benchmark, called TAB. First, TAB encompasses 29 public multivariate datasets and 1,635 univariate time series from different domains to facilitate more comprehensive evaluations on diverse datasets. Second, TAB covers a variety of TSAD methods, including Non-learning, Machine learning, Deep learning, LLM-based, and Time-series pre-trained methods. Third, TAB features a unified and automated evaluation pipeline that enables fair and easy evaluation of TSAD methods. Finally, we employ TAB to evaluate existing TSAD methods and report on the outcomes, thereby offering a deeper insight into the performance of these methods. Besides, all datasets and code are available at https://github.com/decisionintelligence/TAB.

Authors:Fenghe Tang, Wenxin Ma, Zhiyang He, Xiaodong Tao, Zihang Jiang, S. Kevin Zhou
Title: Pre-Trained LLM is a Semantic-Aware and Generalizable Segmentation Booster
Abstract:
With the advancement of Large Language Model (LLM) for natural language processing, this paper presents an intriguing finding: a frozen pre-trained LLM layer can process visual tokens for medical image segmentation tasks. Specifically, we propose a simple hybrid structure that integrates a pre-trained, frozen LLM layer within the CNN encoder-decoder segmentation framework (LLM4Seg). Surprisingly, this design improves segmentation performance with a minimal increase in trainable parameters across various modalities, including ultrasound, dermoscopy, polypscopy, and CT scans. Our in-depth analysis reveals the potential of transferring LLM's semantic awareness to enhance segmentation tasks, offering both improved global understanding and better local modeling capabilities. The improvement proves robust across different LLMs, validated using LLaMA and DeepSeek.

Authors:Junjian Li, Hulin Kuang, Jin Liu, Hailin Yue, Mengshen He, Jianxin Wang
Title: MiCo: Multiple Instance Learning with Context-Aware Clustering for Whole Slide Image Analysis
Abstract:
Multiple instance learning (MIL) has shown significant promise in histopathology whole slide image (WSI) analysis for cancer diagnosis and prognosis. However, the inherent spatial heterogeneity of WSIs presents critical challenges, as morphologically similar tissue types are often dispersed across distant anatomical regions. Conventional MIL methods struggle to model these scattered tissue distributions and capture cross-regional spatial interactions effectively. To address these limitations, we propose a novel Multiple instance learning framework with Context-Aware Clustering (MiCo), designed to enhance cross-regional intra-tissue correlations and strengthen inter-tissue semantic associations in WSIs. MiCo begins by clustering instances to distill discriminative morphological patterns, with cluster centroids serving as semantic anchors. To enhance cross-regional intra-tissue correlations, MiCo employs a Cluster Route module, which dynamically links instances of the same tissue type across distant regions via feature similarity. These semantic anchors act as contextual hubs, propagating semantic relationships to refine instance-level representations. To eliminate semantic fragmentation and strengthen inter-tissue semantic associations, MiCo integrates a Cluster Reducer module, which consolidates redundant anchors while enhancing information exchange between distinct semantic groups. Extensive experiments on two challenging tasks across nine large-scale public cancer datasets demonstrate the effectiveness of MiCo, showcasing its superiority over state-of-the-art methods. The code is available at https://github.com/junjianli106/MiCo.

Authors:Kui Huang, Xinrong Chen, Wenyu Lv, Jincheng Liao, Guanzhong Wang, Yi Liu
Title: PP-DocBee2: Improved Baselines with Efficient Data for Multimodal Document Understanding
Abstract:
This report introduces PP-DocBee2, an advanced version of the PP-DocBee, designed to enhance multimodal document understanding. Built on a large multimodal model architecture, PP-DocBee2 addresses the limitations of its predecessor through key technological improvements, including enhanced synthetic data quality, improved visual feature fusion strategy, and optimized inference methodologies. These enhancements yield an $11.4\%$ performance boost on internal benchmarks for Chinese business documents, and reduce inference latency by $73.0\%$ to the vanilla version. A key innovation of our work is a data quality optimization strategy for multimodal document tasks. By employing a large-scale multimodal pre-trained model to evaluate data, we apply a novel statistical criterion to filter outliers, ensuring high-quality training data. Inspired by insights into underutilized intermediate features in multimodal models, we enhance the ViT representational capacity by decomposing it into layers and applying a novel feature fusion strategy to improve complex reasoning. The source code and pre-trained model are available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.

Authors:Chenyue Song, Chen Hui, Qing Lin, Wei Zhang, Siqiao Li, Haiqi Zhu, Zhixuan Li, Shengping Zhang, Shaohui Liu, Feng Jiang, Xiang Li
Title: LVPNet: A Latent-variable-based Prediction-driven End-to-end Framework for Lossless Compression of Medical Images
Abstract:
Autoregressive Initial Bits is a framework that integrates sub-image autoregression and latent variable modeling, demonstrating its advantages in lossless medical image compression. However, in existing methods, the image segmentation process leads to an even distribution of latent variable information across each sub-image, which in turn causes posterior collapse and inefficient utilization of latent variables. To deal with these issues, we propose a prediction-based end-to-end lossless medical image compression method named LVPNet, leveraging global latent variables to predict pixel values and encoding predicted probabilities for lossless compression. Specifically, we introduce the Global Multi-scale Sensing Module (GMSM), which extracts compact and informative latent representations from the entire image, effectively capturing spatial dependencies within the latent space. Furthermore, to mitigate the information loss introduced during quantization, we propose the Quantization Compensation Module (QCM), which learns the distribution of quantization errors and refines the quantized features to compensate for quantization loss. Extensive experiments on challenging benchmarks demonstrate that our method achieves superior compression efficiency compared to state-of-the-art lossless image compression approaches, while maintaining competitive inference speed. The code is at https://github.com/scy-Jackel/LVPNet.

Authors:Mischa Dombrowski, Bernhard Kainz
Title: Enabling PSO-Secure Synthetic Data Sharing Using Diversity-Aware Diffusion Models
Abstract:
Synthetic data has recently reached a level of visual fidelity that makes it nearly indistinguishable from real data, offering great promise for privacy-preserving data sharing in medical imaging. However, fully synthetic datasets still suffer from significant limitations: First and foremost, the legal aspect of sharing synthetic data is often neglected and data regulations, such as the GDPR, are largley ignored. Secondly, synthetic models fall short of matching the performance of real data, even for in-domain downstream applications. Recent methods for image generation have focused on maximising image diversity instead of fidelity solely to improve the mode coverage and therefore the downstream performance of synthetic data. In this work, we shift perspective and highlight how maximizing diversity can also be interpreted as protecting natural persons from being singled out, which leads to predicate singling-out (PSO) secure synthetic datasets. Specifically, we propose a generalisable framework for training diffusion models on personal data which leads to unpersonal synthetic datasets achieving performance within one percentage point of real-data models while significantly outperforming state-of-the-art methods that do not ensure privacy. Our code is available at https://github.com/MischaD/Trichotomy.

Authors:Bolin Shen, Eren Erman Ozguven, Yue Zhao, Guang Wang, Yiqun Xie, Yushun Dong
Title: Learning from the Storm: A Multivariate Machine Learning Approach to Predicting Hurricane-Induced Economic Losses
Abstract:
Florida is particularly vulnerable to hurricanes, which frequently cause substantial economic losses. While prior studies have explored specific contributors to hurricane-induced damage, few have developed a unified framework capable of integrating a broader range of influencing factors to comprehensively assess the sources of economic loss. In this study, we propose a comprehensive modeling framework that categorizes contributing factors into three key components: (1) hurricane characteristics, (2) water-related environmental factors, and (3) socioeconomic factors of affected areas. By integrating multi-source data and aggregating all variables at the finer spatial granularity of the ZIP Code Tabulation Area (ZCTA) level, we employ machine learning models to predict economic loss, using insurance claims as indicators of incurred damage. Beyond accurate loss prediction, our approach facilitates a systematic assessment of the relative importance of each component, providing practical guidance for disaster mitigation, risk assessment, and the development of adaptive urban strategies in coastal and storm-exposed areas. Our code is now available at: https://github.com/LabRAI/Hurricane-Induced-Economic-Loss-Prediction

Authors:Quanwei Tang, Sophia Yat Mei Lee, Junshuang Wu, Dong Zhang, Shoushan Li, Erik Cambria, Guodong Zhou
Title: A Comprehensive Graph Framework for Question Answering with Mode-Seeking Preference Alignment
Abstract:
Recent advancements in retrieval-augmented generation (RAG) have enhanced large language models in question answering by integrating external knowledge. However, challenges persist in achieving global understanding and aligning responses with human ethical and quality preferences. To address these issues, we propose GraphMPA, a comprehensive graph-based framework with mode-seeking preference alignment. Our approach constructs a hierarchical document graph using a general similarity measurement, mimicking human cognitive processes for information understanding and synthesis. Additionally, we introduce mode-seeking preference optimization to better align model outputs with human preferences through probability-matching constraints. Extensive experiments on six datasets demonstrate the effectiveness of our \href{https://github.com/tangquanwei/GraphMPA}{GraphMPA}.

Authors:Fei Zhou
Title: SegChange-R1: LLM-Augmented Remote Sensing Change Detection
Abstract:
Remote sensing change detection is used in urban planning, terrain analysis, and environmental monitoring by analyzing feature changes in the same area over time. In this paper, we propose a large language model (LLM) augmented inference approach (SegChange-R1), which enhances the detection capability by integrating textual descriptive information and guides the model to focus on relevant change regions, accelerating convergence. We designed a linear attention-based spatial transformation module (BEV) to address modal misalignment by unifying features from different times into a BEV space. Furthermore, we introduce DVCD, a novel dataset for building change detection from UAV viewpoints. Experiments on four widely-used datasets demonstrate significant improvements over existing method The code and pre-trained models are available in {https://github.com/Yu-Zhouz/SegChange-R1}.

Authors:Jianyu Wang, Zhiqiang Hu, Lidong Bing
Title: Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective
Abstract:
We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.

Authors:Jianghong Huang, Luping Ji, Xin Ma, Mao Ye
Title: BeltCrack: the First Sequential-image Industrial Conveyor Belt Crack Detection Dataset and Its Baseline with Triple-domain Feature Learning
Abstract:
Conveyor belts are important equipment in modern industry, widely applied in production and manufacturing. Their health is much critical to operational efficiency and safety. Cracks are a major threat to belt health. Currently, considering safety, how to intelligently detect belt cracks is catching an increasing attention. To implement the intelligent detection with machine learning, real crack samples are believed to be necessary. However, existing crack datasets primarily focus on pavement scenarios or synthetic data, no real-world industrial belt crack datasets at all. Cracks are a major threat to belt health. Furthermore, to validate usability and effectiveness, we propose a special baseline method with triple-domain ($i.e.$, time-space-frequency) feature hierarchical fusion learning for the two whole-new datasets. Experimental results demonstrate the availability and effectiveness of our dataset. Besides, they also show that our baseline is obviously superior to other similar detection methods. Our datasets and source codes are available at https://github.com/UESTC-nnLab/BeltCrack.

Authors:Jiahao Lu, Jiacheng Deng
Title: Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation
Abstract:
3D instance segmentation aims to predict a set of object instances in a scene, representing them as binary foreground masks with corresponding semantic labels. Currently, transformer-based methods are gaining increasing attention due to their elegant pipelines and superior predictions. However, these methods primarily focus on modeling the external relationships between scene features and query features through mask attention. They lack effective modeling of the internal relationships among scene features as well as between query features. In light of these disadvantages, we propose \textbf{Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation}. Specifically, we introduce an adaptive superpoint aggregation module and a contrastive learning-guided superpoint refinement module to better represent superpoint features (scene features) and leverage contrastive learning to guide the updates of these features. Furthermore, our relation-aware self-attention mechanism enhances the capabilities of modeling relationships between queries by incorporating positional and geometric relationships into the self-attention mechanism. Extensive experiments on the ScanNetV2, ScanNet++, ScanNet200 and S3DIS datasets demonstrate the superior performance of Relation3D.

Authors:Hua Tang, Lingyong Yan, Yukun Zhao, Shuaiqiang Wang, Jizhou Huang, Dawei Yin
Title: Multi-turn Jailbreaking via Global Refinement and Active Fabrication
Abstract:
Large Language Models (LLMs) have achieved exceptional performance across a wide range of tasks. However, they still pose significant safety risks due to the potential misuse for malicious purposes. Jailbreaks, which aim to elicit models to generate harmful content, play a critical role in identifying the underlying security threats. Recent jailbreaking primarily focuses on single-turn scenarios, while the more complicated multi-turn scenarios remain underexplored. Moreover, existing multi-turn jailbreaking techniques struggle to adapt to the evolving dynamics of dialogue as the interaction progresses. To address this limitation, we propose a novel multi-turn jailbreaking method that refines the jailbreaking path globally at each interaction. We also actively fabricate model responses to suppress safety-related warnings, thereby increasing the likelihood of eliciting harmful outputs in subsequent questions. Experimental results demonstrate the superior performance of our method compared with existing single-turn and multi-turn jailbreaking techniques across six state-of-the-art LLMs. Our code is publicly available at https://github.com/Ytang520/Multi-Turn_jailbreaking_Global-Refinment_and_Active-Fabrication.

Authors:Hua Tang, Lingyong Yan, Yukun Zhao, Shuaiqiang Wang, Jizhou Huang, Dawei Yin
Title: GRAF: Multi-turn Jailbreaking via Global Refinement and Active Fabrication
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks. Nevertheless, they still pose notable safety risks due to potential misuse for malicious purposes. Jailbreaking, which seeks to induce models to generate harmful content through single-turn or multi-turn attacks, plays a crucial role in uncovering underlying security vulnerabilities. However, prior methods, including sophisticated multi-turn approaches, often struggle to adapt to the evolving dynamics of dialogue as interactions progress. To address this challenge, we propose \ours (JailBreaking via \textbf{G}lobally \textbf{R}efining and \textbf{A}daptively \textbf{F}abricating), a novel multi-turn jailbreaking method that globally refines the attack trajectory at each interaction. In addition, we actively fabricate model responses to suppress safety-related warnings, thereby increasing the likelihood of eliciting harmful outputs in subsequent queries. Extensive experiments across six state-of-the-art LLMs demonstrate the superior effectiveness of our approach compared to existing single-turn and multi-turn jailbreaking methods. Our code will be released at https://github.com/Ytang520/Multi-Turn_jailbreaking_Global-Refinment_and_Active-Fabrication.

Authors:Tam Trinh, Manh Nguyen, Truong-Son Hy
Title: Towards Robust Fact-Checking: A Multi-Agent System with Advanced Evidence Retrieval
Abstract:
The rapid spread of misinformation in the digital era poses significant challenges to public discourse, necessitating robust and scalable fact-checking solutions. Traditional human-led fact-checking methods, while credible, struggle with the volume and velocity of online content, prompting the integration of automated systems powered by Large Language Models (LLMs). However, existing automated approaches often face limitations, such as handling complex claims, ensuring source credibility, and maintaining transparency. This paper proposes a novel multi-agent system for automated fact-checking that enhances accuracy, efficiency, and explainability. The system comprises four specialized agents: an Input Ingestion Agent for claim decomposition, a Query Generation Agent for formulating targeted subqueries, an Evidence Retrieval Agent for sourcing credible evidence, and a Verdict Prediction Agent for synthesizing veracity judgments with human-interpretable explanations. Evaluated on benchmark datasets (FEVEROUS, HOVER, SciFact), the proposed system achieves a 12.3% improvement in Macro F1-score over baseline methods. The system effectively decomposes complex claims, retrieves reliable evidence from trusted sources, and generates transparent explanations for verification decisions. Our approach contributes to the growing field of automated fact-checking by providing a more accurate, efficient, and transparent verification methodology that aligns with human fact-checking practices while maintaining scalability for real-world applications. Our source code is available at https://github.com/HySonLab/FactAgent

Authors:Chenghao Yang, Ari Holtzman
Title: How Alignment Shrinks the Generative Horizon
Abstract:
Despite their impressive capabilities, aligned large language models (LLMs) often generate outputs that lack diversity. What drives this stability in the generation? We investigate this phenomenon through the lens of probability concentration in the model's output distribution. To quantify this concentration, we introduce the Branching Factor (BF) -- a token-invariant measure of the effective number of plausible next steps during generation. Our empirical analysis reveals two key findings: (1) BF often decreases as generation progresses, suggesting that LLMs become more predictable as they generate. (2) alignment tuning substantially sharpens the model's output distribution from the outset, reducing BF by nearly an order of magnitude (e.g., from 12 to 1.2) relative to base models. This stark reduction helps explain why aligned models often appear less sensitive to decoding strategies. Building on this insight, we find this stability has surprising implications for complex reasoning. Aligned Chain-of-Thought (CoT) models (e.g., DeepSeek-distilled models), for instance, leverage this effect; by generating longer reasoning chains, they push generation into later, more deterministic (lower BF) stages, resulting in more stable outputs. We hypothesize that alignment tuning does not fundamentally change a model's behavior, but instead steers it toward stylistic tokens (e.g., "Sure") that unlock low-entropy trajectories already present in the base model. This view is supported by nudging experiments, which show that prompting base models with such tokens can similarly reduce BF. Together, our findings establish BF as a powerful diagnostic for understanding and controlling LLM outputs - clarifying how alignment reduces variability, how CoT promotes stable generations, and how base models can be steered away from diversity.

Authors:Jianhang Xie, Chuntao Ding, Xiaqing Li, Shenyuan Ren, Yidong Li, Zhichao Lu
Title: NestQuant: Post-Training Integer-Nesting Quantization for On-Device DNN
Abstract:
Deploying quantized deep neural network (DNN) models with resource adaptation capabilities on ubiquitous Internet of Things (IoT) devices to provide high-quality AI services can leverage the benefits of compression and meet multi-scenario resource requirements. However, existing dynamic/mixed precision quantization requires retraining or special hardware, whereas post-training quantization (PTQ) has two limitations for resource adaptation: (i) The state-of-the-art PTQ methods only provide one fixed bitwidth model, which makes it challenging to adapt to the dynamic resources of IoT devices; (ii) Deploying multiple PTQ models with diverse bitwidths consumes large storage resources and switching overheads. To this end, this paper introduces a resource-friendly post-training integer-nesting quantization, i.e., NestQuant, for on-device quantized model switching on IoT devices. The proposed NestQuant incorporates the integer weight decomposition, which bit-wise splits quantized weights into higher-bit and lower-bit weights of integer data types. It also contains a decomposed weights nesting mechanism to optimize the higher-bit weights by adaptive rounding and nest them into the original quantized weights. In deployment, we can send and store only one NestQuant model and switch between the full-bit/part-bit model by paging in/out lower-bit weights to adapt to resource changes and reduce consumption. Experimental results on the ImageNet-1K pretrained DNNs demonstrated that the NestQuant model can achieve high performance in top-1 accuracy, and reduce in terms of data transmission, storage consumption, and switching overheads. In particular, the ResNet-101 with INT8 nesting INT6 can achieve 78.1% and 77.9% accuracy for full-bit and part-bit models, respectively, and reduce switching overheads by approximately 78.1% compared with diverse bitwidths PTQ models.

Authors:Xiaodong Guo, Zi'ang Lin, Luwen Hu, Zhihong Deng, Tong Liu, Wujie Zhou
Title: Cross-modal State Space Modeling for Real-time RGB-thermal Wild Scene Semantic Segmentation
Abstract:
The integration of RGB and thermal data can significantly improve semantic segmentation performance in wild environments for field robots. Nevertheless, multi-source data processing (e.g. Transformer-based approaches) imposes significant computational overhead, presenting challenges for resource-constrained systems. To resolve this critical limitation, we introduced CM-SSM, an efficient RGB-thermal semantic segmentation architecture leveraging a cross-modal state space modeling (SSM) approach. Our framework comprises two key components. First, we introduced a cross-modal 2D-selective-scan (CM-SS2D) module to establish SSM between RGB and thermal modalities, which constructs cross-modal visual sequences and derives hidden state representations of one modality from the other. Second, we developed a cross-modal state space association (CM-SSA) module that effectively integrates global associations from CM-SS2D with local spatial features extracted through convolutional operations. In contrast with Transformer-based approaches, CM-SSM achieves linear computational complexity with respect to image resolution. Experimental results show that CM-SSM achieves state-of-the-art performance on the CART dataset with fewer parameters and lower computational cost. Further experiments on the PST900 dataset demonstrate its generalizability. Codes are available at https://github.com/xiaodonguo/CMSSM.

Authors:Yingcheng Liu, Peiqi Wang, Sebastian Diaz, Esra Abaci Turk, Benjamin Billot, P. Ellen Grant, Polina Golland
Title: Fetuses Made Simple: Modeling and Tracking of Fetal Shape and Pose
Abstract:
Analyzing fetal body motion and shape is paramount in prenatal diagnostics and monitoring. Existing methods for fetal MRI analysis mainly rely on anatomical keypoints or volumetric body segmentations. Keypoints simplify body structure to facilitate motion analysis, but may ignore important details of full-body shape. Body segmentations capture complete shape information but complicate temporal analysis due to large non-local fetal movements. To address these limitations, we construct a 3D articulated statistical fetal body model based on the Skinned Multi-Person Linear Model (SMPL). Our algorithm iteratively estimates body pose in the image space and body shape in the canonical pose space. This approach improves robustness to MRI motion artifacts and intensity distortions, and reduces the impact of incomplete surface observations due to challenging fetal poses. We train our model on segmentations and keypoints derived from $19,816$ MRI volumes across $53$ subjects. Our model captures body shape and motion across time series and provides intuitive visualization. Furthermore, it enables automated anthropometric measurements traditionally difficult to obtain from segmentations and keypoints. When tested on unseen fetal body shapes, our method yields a surface alignment error of $3.2$ mm for $3$ mm MRI voxel size. To our knowledge, this represents the first 3D articulated statistical fetal body model, paving the way for enhanced fetal motion and shape analysis in prenatal diagnostics. The code is available at https://github.com/MedicalVisionGroup/fetal-smpl .

Authors:Suyash Gaurav, Jukka Heikkonen, Jatin Chaudhary
Title: Pathway-based Progressive Inference (PaPI) for Energy-Efficient Continual Learning
Abstract:
Continual learning systems face the dual challenge of preventing catastrophic forgetting while maintaining energy efficiency, particularly in resource-constrained environments. This paper introduces Pathway-based Progressive Inference (PaPI), a novel theoretical framework that addresses these challenges through a mathematically rigorous approach to pathway selection and adaptation. We formulate continual learning as an energy-constrained optimization problem and provide formal convergence guarantees for our pathway routing mechanisms. Our theoretical analysis demonstrates that PaPI achieves an $\mathcal{O}(K)$ improvement in the stability-plasticity trade-off compared to monolithic architectures, where $K$ is the number of pathways. We derive tight bounds on forgetting rates using Fisher Information Matrix analysis and prove that PaPI's energy consumption scales with the number of active parameters rather than the total model size. Comparative theoretical analysis shows that PaPI provides stronger guarantees against catastrophic forgetting than Elastic Weight Consolidation (EWC) while maintaining better energy efficiency than both EWC and Gradient Episodic Memory (GEM). Our experimental validation confirms these theoretical advantages across multiple benchmarks, demonstrating PaPI's effectiveness for continual learning in energy-constrained settings. Our codes are available at https://github.com/zser092/PAPI_FILES.

Authors:Anton Melnychuk, Bryan SebaRaj
Title: Implementation and Evaluation of Fast Raft for Hierarchical Consensus
Abstract:
We present the first open-source implementation and evaluation of Fast Raft, a hierarchical consensus protocol designed for dynamic, distributed environments. Fast Raft reduces the number of message rounds needed to commit log entries compared to standard Raft by introducing a fast-track mechanism and reducing leader dependence. Our implementation uses gRPC and Kubernetes-based deployment across AWS availability zones. Experimental results demonstrate a throughput improvement and reduced commit latency under low packet loss conditions, while maintaining Raft's safety and liveness guarantees.

Authors:Keigo Nishida, Eren Mehmet Kıral, Kenichi Bannai, Mohammad Emtiyaz Khan, Thomas Möllenhoff
Title: Log-Normal Multiplicative Dynamics for Stable Low-Precision Training of Large Networks
Abstract:
Studies in neuroscience have shown that biological synapses follow a log-normal distribution whose transitioning can be explained by noisy multiplicative dynamics. Biological networks can function stably even under dynamically fluctuating conditions arising due to unreliable synaptic transmissions. Here we ask: Is it possible to design similar multiplicative training in artificial neural networks? To answer this question, we derive a Bayesian learning rule that assumes log-normal posterior distributions over weights which gives rise to a new Log-Normal Multiplicative Dynamics (LMD) algorithm. The algorithm uses multiplicative updates with both noise and regularization applied multiplicatively. The method is as easy to implement as Adam and only requires one additional vector to store. Our results show that LMD achieves stable and accurate training-from-scratch under low-precision forward operations for Vision Transformer and GPT-2. These results suggest that multiplicative dynamics, a biological feature, may enable stable low-precision inference and learning on future energy-efficient hardware.

Authors:Fadi Abdeladhim Zidi, Djamel Eddine Boukhari, Abdellah Zakaria Sellam, Abdelkrim Ouafi, Cosimo Distante, Salah Eddine Bekhouche, Abdelmalik Taleb-Ahmed
Title: LoLA-SpecViT: Local Attention SwiGLU Vision Transformer with LoRA for Hyperspectral Imaging
Abstract:
Hyperspectral image classification remains a challenging task due to the high dimensionality of spectral data, significant inter-band redundancy, and the limited availability of annotated samples. While recent transformer-based models have improved the global modeling of spectral-spatial dependencies, their scalability and adaptability under label-scarce conditions remain limited. In this work, we propose \textbf{LoLA-SpecViT}(Low-rank adaptation Local Attention Spectral Vision Transformer), a lightweight spectral vision transformer that addresses these limitations through a parameter-efficient architecture tailored to the unique characteristics of hyperspectral imagery. Our model combines a 3D convolutional spectral front-end with local window-based self-attention, enhancing both spectral feature extraction and spatial consistency while reducing computational complexity. To further improve adaptability, we integrate low-rank adaptation (LoRA) into attention and projection layers, enabling fine-tuning with over 80\% fewer trainable parameters. A novel cyclical learning rate scheduler modulates LoRA adaptation strength during training, improving convergence and generalisation. Extensive experiments on three benchmark datasets WHU-Hi LongKou, WHU-Hi HongHu, and Salinas demonstrate that LoLA-SpecViT consistently outperforms state-of-the-art baselines, achieving up to 99.91\% accuracy with substantially fewer parameters and enhanced robustness under low-label regimes. The proposed framework provides a scalable and generalizable solution for real-world HSI applications in agriculture, environmental monitoring, and remote sensing analytics. Our code is available in the following \href{https://github.com/FadiZidiDz/LoLA-SpecViT}{GitHub Repository}.

Authors:Mengqi Lei, Siqi Li, Yihong Wu, Han Hu, You Zhou, Xinhu Zheng, Guiguang Ding, Shaoyi Du, Zongze Wu, Yue Gao
Title: YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception
Abstract:
The YOLO series models reign supreme in real-time object detection due to their superior accuracy and computational efficiency. However, both the convolutional architectures of YOLO11 and earlier versions and the area-based self-attention mechanism introduced in YOLOv12 are limited to local information aggregation and pairwise correlation modeling, lacking the capability to capture global multi-to-multi high-order correlations, which limits detection performance in complex scenarios. In this paper, we propose YOLOv13, an accurate and lightweight object detector. To address the above-mentioned challenges, we propose a Hypergraph-based Adaptive Correlation Enhancement (HyperACE) mechanism that adaptively exploits latent high-order correlations and overcomes the limitation of previous methods that are restricted to pairwise correlation modeling based on hypergraph computation, achieving efficient global cross-location and cross-scale feature fusion and enhancement. Subsequently, we propose a Full-Pipeline Aggregation-and-Distribution (FullPAD) paradigm based on HyperACE, which effectively achieves fine-grained information flow and representation synergy within the entire network by distributing correlation-enhanced features to the full pipeline. Finally, we propose to leverage depthwise separable convolutions to replace vanilla large-kernel convolutions, and design a series of blocks that significantly reduce parameters and computational complexity without sacrificing performance. We conduct extensive experiments on the widely used MS COCO benchmark, and the experimental results demonstrate that our method achieves state-of-the-art performance with fewer parameters and FLOPs. Specifically, our YOLOv13-N improves mAP by 3.0\% over YOLO11-N and by 1.5\% over YOLOv12-N. The code and models of our YOLOv13 model are available at: https://github.com/iMoonLab/yolov13.

Authors:Piyush Pradhan, Pierre Gentine, Shaina Kelly
Title: JAX-LaB: A High-Performance, Differentiable, Lattice Boltzmann Library for Modeling Multiphase Fluid Dynamics in Geosciences and Engineering
Abstract:
We present JAX-LaB, a differentiable, Python-based Lattice Boltzmann library for simulating multiphase and multiphysics flows in hydrologic, geologic, and engineered porous media. Built as an extension of the XLB library, JAX-LaB utilizes JAX for computations and offers a performant, hardware-agnostic implementation that integrates seamlessly with machine learning workflows and scales efficiently across CPUs, GPUs, and distributed systems. Multiphase interactions are modeled using the Shan-Chen pseudopotential method, which is coupled with an equation of state and an improved forcing scheme to obtain liquid-vapor densities that are consistent with Maxwell's construction, enabling simulations of systems with very large density ratios while maintaining minimal spurious currents. Wetting is handled using the "improved" virtual density scheme, which allows precise control of contact angles and eliminates non-physical films seen in other Shan-Chen wetting methods. We validate the library through several analytical benchmarks, such as Laplace's law, capillary rise, and cocurrent multicomponent flow, and demonstrate some exemplary use cases for the library. We also report single- and multi-GPU performance scaling of the library. The library is open-source under the Apache license and available at https://github.com/piyush-ppradhan/JAX-LaB.

Authors:Amirshayan Nasirimajd, Chiara Plizzari, Simone Alberto Peirone, Marco Ciccone, Giuseppe Averta, Barbara Caputo
Title: Domain Generalization using Action Sequences for Egocentric Action Recognition
Abstract:
Recognizing human activities from visual inputs, particularly through a first-person viewpoint, is essential for enabling robots to replicate human behavior. Egocentric vision, characterized by cameras worn by observers, captures diverse changes in illumination, viewpoint, and environment. This variability leads to a notable drop in the performance of Egocentric Action Recognition models when tested in environments not seen during training. In this paper, we tackle these challenges by proposing a domain generalization approach for Egocentric Action Recognition. Our insight is that action sequences often reflect consistent user intent across visual domains. By leveraging action sequences, we aim to enhance the model's generalization ability across unseen environments. Our proposed method, named SeqDG, introduces a visual-text sequence reconstruction objective (SeqRec) that uses contextual cues from both text and visual inputs to reconstruct the central action of the sequence. Additionally, we enhance the model's robustness by training it on mixed sequences of actions from different domains (SeqMix). We validate SeqDG on the EGTEA and EPIC-KITCHENS-100 datasets. Results on EPIC-KITCHENS-100, show that SeqDG leads to +2.4% relative average improvement in cross-domain action recognition in unseen environments, and on EGTEA the model achieved +0.6% Top-1 accuracy over SOTA in intra-domain action recognition.

Authors:Fabien Furfaro
Title: TPTT: Transforming Pretrained Transformers into Titans
Abstract:
Transformer-based large language models (LLMs) have achieved strong performance across many natural language processing tasks. Nonetheless, their quadratic computational and memory requirements, particularly in self-attention layers, pose challenges for efficient inference on long contexts and for deployment in resource-limited environments. We present TPTT (Transforming Pretrained Transformers into Titans), a framework designed to augment pretrained Transformers with linearized attention (LiZA) and internal memory gating via Memory as Gate (MaG), applied without full retraining. TPTT supports parameter-efficient fine-tuning (LoRA) and integrates with standard toolkits such as Hugging Face Transformers. We evaluated TPTT on several pretrained models, including Llama-1B, OlMoE-1B-7B, Qwen2.5-1.5B, Gemma3-270m, OpenELM-1.3B, and Mistral-7B, in order to assess applicability across architectures of different scales. Experiments on models with approximately 1 billion parameters, evaluated primarily on the MMLU benchmark, suggest potential improvements in both efficiency and accuracy compared to baseline models. For example, Titans-Llama-1B exhibited up to a 20\% relative increase in Exact Match scores in one-shot evaluation. An additional finding is that it is possible to convert a quadratic-attention model into a purely linear-attention model using the DeltaProduct mechanism. All training runs were carried out with modest computational resources. These preliminary findings indicate that TPTT may help adapt pretrained LLMs for long-context tasks with limited overhead. Further studies on larger models and a broader set of benchmarks will be necessary to evaluate the generality and robustness of the framework. Code is available at https://github.com/fabienfrfr/tptt . Python package at https://pypi.org/project/tptt/ .

Authors:Shaoyu Yang, Chunrong Fang, Haifeng Lin, Xiang Chen, Zhenyu Chen
Title: May the Feedback Be with You! Unlocking the Power of Feedback-Driven Deep Learning Framework Fuzzing via LLMs
Abstract:
Deep Learning (DL) frameworks have served as fundamental components in DL systems over the last decade. However, bugs in DL frameworks could lead to catastrophic consequences in critical scenarios. A simple yet effective way to find bugs in DL frameworks is fuzz testing (Fuzzing). Existing approaches focus on test generation, leaving execution results with high semantic value (e.g., coverage information, bug reports, and exception logs) in the wild, which can serve as multiple types of feedback. To fill this gap, we propose FUEL to effectively utilize the feedback information, which comprises two Large Language Models (LLMs): analysis LLM and generation LLM. Specifically, analysis LLM infers analysis summaries from feedback information, while the generation LLM creates tests guided by these summaries. Furthermore, based on multiple feedback guidance, we design two additional components: (i) a feedback-aware simulated annealing algorithm to select operators for test generation, enriching test diversity. (ii) a program self-repair strategy to automatically repair invalid tests, enhancing test validity. We evaluate FUEL on the two most popular DL frameworks, and experiment results show that FUEL can improve line code coverage of PyTorch and TensorFlow by 9.15% and 14.70% over state-of-the-art baselines (e.g., TitanFuzz and WhiteFox). By the time of submission, FUEL has detected 104 previously unknown bugs for PyTorch and TensorFlow, with 93 confirmed as new bugs, 49 already fixed, and 14 assigned CVE IDs. Our artifact is available at https://github.com/NJU-iSE/FUEL

Authors:Yang Wu, Yifan Zhang, Yurong Wu, Yuran Wang, Junkai Zhang, Jian Cheng
Title: Step-Opt: Boosting Optimization Modeling in LLMs through Iterative Data Synthesis and Structured Validation
Abstract:
Large Language Models (LLMs) have revolutionized various domains but encounter substantial challenges in tackling optimization modeling tasks for Operations Research (OR), particularly when dealing with complex problem. In this work, we propose Step-Opt-Instruct, a framework that augments existing datasets and generates high-quality fine-tuning data tailored to optimization modeling. Step-Opt-Instruct employs iterative problem generation to systematically increase problem complexity and stepwise validation to rigorously verify data, preventing error propagation and ensuring the quality of the generated dataset. Leveraging this framework, we fine-tune open-source LLMs, including LLaMA-3-8B and Mistral-7B, to develop Step-Opt--a model that achieves state-of-the-art performance on benchmarks such as NL4OPT, MAMO, and IndustryOR. Extensive experiments demonstrate the superior performance of Step-Opt, especially in addressing complex OR tasks, with a notable 17.01\% improvement in micro average accuracy on difficult problems. These findings highlight the effectiveness of combining structured validation with gradual problem refinement to advance the automation of decision-making processes using LLMs.The code and dataset are available at https://github.com/samwu-learn/Step.

Authors:Kailing Li, Qi'ao Xu, Tianwen Qian, Yuqian Fu, Yang Jiao, Xiaoling Wang
Title: CLiViS: Unleashing Cognitive Map through Linguistic-Visual Synergy for Embodied Visual Reasoning
Abstract:
Embodied Visual Reasoning (EVR) seeks to follow complex, free-form instructions based on egocentric video, enabling semantic understanding and spatiotemporal reasoning in dynamic environments. Despite its promising potential, EVR encounters significant challenges stemming from the diversity of complex instructions and the intricate spatiotemporal dynamics in long-term egocentric videos. Prior solutions either employ Large Language Models (LLMs) over static video captions, which often omit critical visual details, or rely on end-to-end Vision-Language Models (VLMs) that struggle with stepwise compositional reasoning. Consider the complementary strengths of LLMs in reasoning and VLMs in perception, we propose CLiViS. It is a novel training-free framework that leverages LLMs for high-level task planning and orchestrates VLM-driven open-world visual perception to iteratively update the scene context. Building on this synergy, the core of CLiViS is a dynamic Cognitive Map that evolves throughout the reasoning process. This map constructs a structured representation of the embodied scene, bridging low-level perception and high-level reasoning. Extensive experiments across multiple benchmarks demonstrate the effectiveness and generality of CLiViS, especially in handling long-term visual dependencies. Code is available at https://github.com/Teacher-Tom/CLiViS.

Authors:Mihir Godbole, Xiangbo Gao, Zhengzhong Tu
Title: DRAMA-X: A Fine-grained Intent Prediction and Risk Reasoning Benchmark For Driving
Abstract:
Understanding the short-term motion of vulnerable road users (VRUs) like pedestrians and cyclists is critical for safe autonomous driving, especially in urban scenarios with ambiguous or high-risk behaviors. While vision-language models (VLMs) have enabled open-vocabulary perception, their utility for fine-grained intent reasoning remains underexplored. Notably, no existing benchmark evaluates multi-class intent prediction in safety-critical situations, To address this gap, we introduce DRAMA-X, a fine-grained benchmark constructed from the DRAMA dataset via an automated annotation pipeline. DRAMA-X contains 5,686 accident-prone frames labeled with object bounding boxes, a nine-class directional intent taxonomy, binary risk scores, expert-generated action suggestions for the ego vehicle, and descriptive motion summaries. These annotations enable a structured evaluation of four interrelated tasks central to autonomous decision-making: object detection, intent prediction, risk assessment, and action suggestion. As a reference baseline, we propose SGG-Intent, a lightweight, training-free framework that mirrors the ego vehicle's reasoning pipeline. It sequentially generates a scene graph from visual input using VLM-backed detectors, infers intent, assesses risk, and recommends an action using a compositional reasoning stage powered by a large language model. We evaluate a range of recent VLMs, comparing performance across all four DRAMA-X tasks. Our experiments demonstrate that scene-graph-based reasoning enhances intent prediction and risk assessment, especially when contextual cues are explicitly modeled.

Authors:Furong Peng, Jinzhen Gao, Xuan Lu, Kang Liu, Yifan Huo, Sheng Wang
Title: Towards a deeper GCN: Alleviate over-smoothing with iterative training and fine-tuning
Abstract:
Graph Convolutional Networks (GCNs) suffer from severe performance degradation in deep architectures due to over-smoothing. While existing studies primarily attribute the over-smoothing to repeated applications of graph Laplacian operators, our empirical analysis reveals a critical yet overlooked factor: trainable linear transformations in GCNs significantly exacerbate feature collapse, even at moderate depths (e.g., 8 layers). In contrast, Simplified Graph Convolution (SGC), which removes these transformations, maintains stable feature diversity up to 32 layers, highlighting linear transformations' dual role in facilitating expressive power and inducing over-smoothing. However, completely removing linear transformations weakens the model's expressive capacity. To address this trade-off, we propose Layer-wise Gradual Training (LGT), a novel training strategy that progressively builds deep GCNs while preserving their expressiveness. LGT integrates three complementary components: (1) layer-wise training to stabilize optimization from shallow to deep layers, (2) low-rank adaptation to fine-tune shallow layers and accelerate training, and (3) identity initialization to ensure smooth integration of new layers and accelerate convergence. Extensive experiments on benchmark datasets demonstrate that LGT achieves state-of-the-art performance on vanilla GCN, significantly improving accuracy even in 32-layer settings. Moreover, as a training method, LGT can be seamlessly combined with existing methods such as PairNorm and ContraNorm, further enhancing their performance in deeper networks. LGT offers a general, architecture-agnostic training framework for scalable deep GCNs. The code is available at [https://github.com/jfklasdfj/LGT_GCN].

Authors:Yile Gu, Rohan Kadekodi, Hoang Nguyen, Keisuke Kamahori, Yiyu Liu, Baris Kasikci
Title: ConsumerBench: Benchmarking Generative AI Applications on End-User Devices
Abstract:
The recent shift in Generative AI (GenAI) applications from cloud-only environments to end-user devices introduces new challenges in resource management, system efficiency, and user experience. This paper presents ConsumerBench, a comprehensive benchmarking framework designed to evaluate the system efficiency and response time of GenAI models running on end-user devices. Unlike existing benchmarks that assume exclusive model access on dedicated GPUs, ConsumerBench simulates realistic multi-application scenarios executing concurrently on constrained hardware. Furthermore, ConsumerBench supports customizable workflows that simulate complex tasks requiring coordination among multiple applications. ConsumerBench captures both application-level metrics, including latency and Service Level Objective (SLO) attainment, and system-level metrics like CPU/GPU utilization and memory bandwidth. Through extensive experiments, ConsumerBench reveals inefficiencies in resource sharing, unfair scheduling under greedy allocation, and performance pitfalls of static model server configurations. The paper also provides practical insights for model developers and system designers, highlighting the benefits of custom kernels tailored to consumer-grade GPU architectures and the value of implementing SLO-aware scheduling strategies.

Authors:Julio Silva-Rodríguez, Ismail Ben Ayed, Jose Dolz
Title: Trustworthy Few-Shot Transfer of Medical VLMs through Split Conformal Prediction
Abstract:
Medical vision-language models (VLMs) have demonstrated unprecedented transfer capabilities and are being increasingly adopted for data-efficient image classification. Despite its growing popularity, its reliability aspect remains largely unexplored. This work explores the split conformal prediction (SCP) framework to provide trustworthiness guarantees when transferring such models based on a small labeled calibration set. Despite its potential, the generalist nature of the VLMs' pre-training could negatively affect the properties of the predicted conformal sets for specific tasks. While common practice in transfer learning for discriminative purposes involves an adaptation stage, we observe that deploying such a solution for conformal purposes is suboptimal since adapting the model using the available calibration data breaks the rigid exchangeability assumptions for test data in SCP. To address this issue, we propose transductive split conformal adaptation (SCA-T), a novel pipeline for transfer learning on conformal scenarios, which performs an unsupervised transductive adaptation jointly on calibration and test data. We present comprehensive experiments utilizing medical VLMs across various image modalities, transfer tasks, and non-conformity scores. Our framework offers consistent gains in efficiency and conditional coverage compared to SCP, maintaining the same empirical guarantees.

Authors:Julio Silva-Rodríguez, Fereshteh Shakeri, Houda Bahig, Jose Dolz, Ismail Ben Ayed
Title: Few-Shot, Now for Real: Medical VLMs Adaptation without Balanced Sets or Validation
Abstract:
Vision-language models (VLMs) are gaining attention in medical image analysis. These are pre-trained on large, heterogeneous data sources, yielding rich and transferable representations. Notably, the combination of modality-specialized VLMs with few-shot adaptation has provided fruitful results, enabling the efficient deployment of high-performing solutions. However, previous works on this topic make strong assumptions about the distribution of adaptation data, which are unrealistic in the medical domain. First, prior art assumes access to a balanced support set, a condition that breaks the natural imbalance in disease prevalence found in real-world scenarios. Second, these works typically assume the presence of an additional validation set to fix critical hyper-parameters, which is highly data-inefficient. This work challenges these favorable deployment scenarios and introduces a realistic, imbalanced, validation-free adaptation setting. Our extensive benchmark across various modalities and downstream tasks demonstrates that current methods systematically compromise their performance when operating under realistic conditions, occasionally even performing worse than zero-shot inference. Also, we introduce a training-free linear probe that adaptively blends visual and textual supervision. Detailed studies demonstrate that the proposed solver is a strong, efficient baseline, enabling robust adaptation in challenging scenarios.

Authors:Jinhao Duan, James Diffenderfer, Sandeep Madireddy, Tianlong Chen, Bhavya Kailkhura, Kaidi Xu
Title: UProp: Investigating the Uncertainty Propagation of LLMs in Multi-Step Agentic Decision-Making
Abstract:
As Large Language Models (LLMs) are integrated into safety-critical applications involving sequential decision-making in the real world, it is essential to know when to trust LLM decisions. Existing LLM Uncertainty Quantification (UQ) methods are primarily designed for single-turn question-answering formats, resulting in multi-step decision-making scenarios, e.g., LLM agentic system, being underexplored. In this paper, we introduce a principled, information-theoretic framework that decomposes LLM sequential decision uncertainty into two parts: (i) internal uncertainty intrinsic to the current decision, which is focused on existing UQ methods, and (ii) extrinsic uncertainty, a Mutual-Information (MI) quantity describing how much uncertainty should be inherited from preceding decisions. We then propose UProp, an efficient and effective extrinsic uncertainty estimator that converts the direct estimation of MI to the estimation of Pointwise Mutual Information (PMI) over multiple Trajectory-Dependent Decision Processes (TDPs). UProp is evaluated over extensive multi-step decision-making benchmarks, e.g., AgentBench and HotpotQA, with state-of-the-art LLMs, e.g., GPT-4.1 and DeepSeek-V3. Experimental results demonstrate that UProp significantly outperforms existing single-turn UQ baselines equipped with thoughtful aggregation strategies. Moreover, we provide a comprehensive analysis of UProp, including sampling efficiency, potential applications, and intermediate uncertainty propagation, to demonstrate its effectiveness. Codes will be available at https://github.com/jinhaoduan/UProp.

Authors:Zijun Sun, Solveig Thrun, Michael Kampffmeyer
Title: VMRA-MaR: An Asymmetry-Aware Temporal Framework for Longitudinal Breast Cancer Risk Prediction
Abstract:
Breast cancer remains a leading cause of mortality worldwide and is typically detected via screening programs where healthy people are invited in regular intervals. Automated risk prediction approaches have the potential to improve this process by facilitating dynamically screening of high-risk groups. While most models focus solely on the most recent screening, there is growing interest in exploiting temporal information to capture evolving trends in breast tissue, as inspired by clinical practice. Early methods typically relied on two time steps, and although recent efforts have extended this to multiple time steps using Transformer architectures, challenges remain in fully harnessing the rich temporal dynamics inherent in longitudinal imaging data. In this work, we propose to instead leverage Vision Mamba RNN (VMRNN) with a state-space model (SSM) and LSTM-like memory mechanisms to effectively capture nuanced trends in breast tissue evolution. To further enhance our approach, we incorporate an asymmetry module that utilizes a Spatial Asymmetry Detector (SAD) and Longitudinal Asymmetry Tracker (LAT) to identify clinically relevant bilateral differences. This integrated framework demonstrates notable improvements in predicting cancer onset, especially for the more challenging high-density breast cases and achieves superior performance at extended time points (years four and five), highlighting its potential to advance early breast cancer recognition and enable more personalized screening strategies. Our code is available at https://github.com/Mortal-Suen/VMRA-MaR.git.

Authors:Sunjun Kweon, Sooyohn Nam, Hyunseung Lim, Hwajung Hong, Edward Choi
Title: A Large-Scale Real-World Evaluation of LLM-Based Virtual Teaching Assistant
Abstract:
Virtual Teaching Assistants (VTAs) powered by Large Language Models (LLMs) have the potential to enhance student learning by providing instant feedback and facilitating multi-turn interactions. However, empirical studies on their effectiveness and acceptance in real-world classrooms are limited, leaving their practical impact uncertain. In this study, we develop an LLM-based VTA and deploy it in an introductory AI programming course with 477 graduate students. To assess how student perceptions of the VTA's performance evolve over time, we conduct three rounds of comprehensive surveys at different stages of the course. Additionally, we analyze 3,869 student--VTA interaction pairs to identify common question types and engagement patterns. We then compare these interactions with traditional student--human instructor interactions to evaluate the VTA's role in the learning process. Through a large-scale empirical study and interaction analysis, we assess the feasibility of deploying VTAs in real-world classrooms and identify key challenges for broader adoption. Finally, we release the source code of our VTA system, fostering future advancements in AI-driven education: \texttt{https://github.com/sean0042/VTA}.

Authors:Haitian Wang, Yiren Wang, Xinyu Wang, Yumeng Miao, Yuliang Zhang, Yu Zhang, Atif Mansoor
Title: P2MFDS: A Privacy-Preserving Multimodal Fall Detection System for Elderly People in Bathroom Environments
Abstract:
By 2050, people aged 65 and over are projected to make up 16 percent of the global population. As aging is closely associated with increased fall risk, particularly in wet and confined environments such as bathrooms where over 80 percent of falls occur. Although recent research has increasingly focused on non-intrusive, privacy-preserving approaches that do not rely on wearable devices or video-based monitoring, these efforts have not fully overcome the limitations of existing unimodal systems (e.g., WiFi-, infrared-, or mmWave-based), which are prone to reduced accuracy in complex environments. These limitations stem from fundamental constraints in unimodal sensing, including system bias and environmental interference, such as multipath fading in WiFi-based systems and drastic temperature changes in infrared-based methods. To address these challenges, we propose a Privacy-Preserving Multimodal Fall Detection System for Elderly People in Bathroom Environments. First, we develop a sensor evaluation framework to select and fuse millimeter-wave radar with 3D vibration sensing, and use it to construct and preprocess a large-scale, privacy-preserving multimodal dataset in real bathroom settings, which will be released upon publication. Second, we introduce P2MFDS, a dual-stream network combining a CNN-BiLSTM-Attention branch for radar motion dynamics with a multi-scale CNN-SEBlock-Self-Attention branch for vibration impact detection. By uniting macro- and micro-scale features, P2MFDS delivers significant gains in accuracy and recall over state-of-the-art approaches. Code and pretrained models will be made available at: https://github.com/HaitianWang/P2MFDS-A-Privacy-Preserving-Multimodal-Fall-Detection-Network-for-Elderly-Individuals-in-Bathroom.

Authors:Tamas Bisztray, Bilel Cherif, Richard A. Dubniczky, Nils Gruschka, Bertalan Borsos, Mohamed Amine Ferrag, Attila Kovacs, Vasileios Mavroeidis, Norbert Tihanyi
Title: I Know Which LLM Wrote Your Code Last Summer: LLM generated Code Stylometry for Authorship Attribution
Abstract:
Detecting AI-generated code, deepfakes, and other synthetic content is an emerging research challenge. As code generated by Large Language Models (LLMs) becomes more common, identifying the specific model behind each sample is increasingly important. This paper presents the first systematic study of LLM authorship attribution for C programs. We released CodeT5-Authorship, a novel model that uses only the encoder layers from the original CodeT5 encoder-decoder architecture, discarding the decoder to focus on classification. Our model's encoder output (first token) is passed through a two-layer classification head with GELU activation and dropout, producing a probability distribution over possible authors. To evaluate our approach, we introduce LLM-AuthorBench, a benchmark of 32,000 compilable C programs generated by eight state-of-the-art LLMs across diverse tasks. We compare our model to seven traditional ML classifiers and eight fine-tuned transformer models, including BERT, RoBERTa, CodeBERT, ModernBERT, DistilBERT, DeBERTa-V3, Longformer, and LoRA-fine-tuned Qwen2-1.5B. In binary classification, our model achieves 97.56% accuracy in distinguishing C programs generated by closely related models such as GPT-4.1 and GPT-4o, and 95.40% accuracy for multi-class attribution among five leading LLMs (Gemini 2.5 Flash, Claude 3.5 Haiku, GPT-4.1, Llama 3.3, and DeepSeek-V3). To support open science, we release the CodeT5-Authorship architecture, the LLM-AuthorBench benchmark, and all relevant Google Colab scripts on GitHub: https://github.com/LLMauthorbench/.

Authors:Zhixiang Chi, Li Gu, Huan Liu, Ziqiang Wang, Yanan Wu, Yang Wang, Konstantinos N Plataniotis
Title: Learning to Adapt Frozen CLIP for Few-Shot Test-Time Domain Adaptation
Abstract:
Few-shot Test-Time Domain Adaptation focuses on adapting a model at test time to a specific domain using only a few unlabeled examples, addressing domain shift. Prior methods leverage CLIP's strong out-of-distribution (OOD) abilities by generating domain-specific prompts to guide its generalized, frozen features. However, since downstream datasets are not explicitly seen by CLIP, solely depending on the feature space knowledge is constrained by CLIP's prior knowledge. Notably, when using a less robust backbone like ViT-B/16, performance significantly drops on challenging real-world benchmarks. Departing from the state-of-the-art of inheriting the intrinsic OOD capability of CLIP, this work introduces learning directly on the input space to complement the dataset-specific knowledge for frozen CLIP. Specifically, an independent side branch is attached in parallel with CLIP and enforced to learn exclusive knowledge via revert attention. To better capture the dataset-specific label semantics for downstream adaptation, we propose to enhance the inter-dispersion among text features via greedy text ensemble and refinement. The text and visual features are then progressively fused in a domain-aware manner by a generated domain prompt to adapt toward a specific domain. Extensive experiments show our method's superiority on 5 large-scale benchmarks (WILDS and DomainNet), notably improving over smaller networks like ViT-B/16 with gains of \textbf{+5.1} in F1 for iWildCam and \textbf{+3.1\%} in WC Acc for FMoW.

Authors:Yijun Lin, Theresa Chen, Colby Brungard, Grunwald Sabine, Sue Ives, Matt Macander, Timm Nawrocki, Yao-Yi Chiang, Nic Jelinski
Title: Fine-Scale Soil Mapping in Alaska with Multimodal Machine Learning
Abstract:
Fine-scale soil mapping in Alaska, traditionally relying on fieldwork and localized simulations, remains a critical yet underdeveloped task, despite the region's ecological importance and extensive permafrost coverage. As permafrost thaw accelerates due to climate change, it threatens infrastructure stability and key ecosystem services, such as soil carbon storage. High-resolution soil maps are essential for characterizing permafrost distribution, identifying vulnerable areas, and informing adaptation strategies. We present MISO, a vision-based machine learning (ML) model to produce statewide fine-scale soil maps for near-surface permafrost and soil taxonomy. The model integrates a geospatial foundation model for visual feature extraction, implicit neural representations for continuous spatial prediction, and contrastive learning for multimodal alignment and geo-location awareness. We compare MISO with Random Forest (RF), a traditional ML model that has been widely used in soil mapping applications. Spatial cross-validation and regional analysis across Permafrost Zones and Major Land Resource Areas (MLRAs) show that MISO generalizes better to remote, unseen locations and achieves higher recall than RF, which is critical for monitoring permafrost thaw and related environmental processes. These findings demonstrate the potential of advanced ML approaches for fine-scale soil mapping and provide practical guidance for future soil sampling and infrastructure planning in permafrost-affected landscapes. The project will be released at https://github.com/knowledge-computing/Peatland-permafrost.

Authors:Satyam Mishra, Phung Thao Vi, Shivam Mishra, Vishwanath Bijalwan, Vijay Bhaskar Semwal, Abdul Manan Khan
Title: SafeRL-Lite: A Lightweight, Explainable, and Constrained Reinforcement Learning Library
Abstract:
We introduce SafeRL-Lite, an open-source Python library for building reinforcement learning (RL) agents that are both constrained and explainable. Existing RL toolkits often lack native mechanisms for enforcing hard safety constraints or producing human-interpretable rationales for decisions. SafeRL-Lite provides modular wrappers around standard Gym environments and deep Q-learning agents to enable: (i) safety-aware training via constraint enforcement, and (ii) real-time post-hoc explanation via SHAP values and saliency maps. The library is lightweight, extensible, and installable via pip, and includes built-in metrics for constraint violations. We demonstrate its effectiveness on constrained variants of CartPole and provide visualizations that reveal both policy logic and safety adherence. The full codebase is available at: https://github.com/satyamcser/saferl-lite.

Authors:Yuqi Li, Junhao Dong, Zeyu Dong, Chuanguang Yang, Zhulin An, Yongjun Xu
Title: SRKD: Towards Efficient 3D Point Cloud Segmentation via Structure- and Relation-aware Knowledge Distillation
Abstract:
3D point cloud segmentation faces practical challenges due to the computational complexity and deployment limitations of large-scale transformer-based models. To address this, we propose a novel Structure- and Relation-aware Knowledge Distillation framework, named SRKD, that transfers rich geometric and semantic knowledge from a large frozen teacher model (>100M) to a lightweight student model (<15M). Specifically, we propose an affinity matrix-based relation alignment module, which distills structural dependencies from the teacher to the student through point-wise similarity matching, enhancing the student's capability to learn contextual interactions. Meanwhile, we introduce a cross-sample mini-batch construction strategy that enables the student to perceive stable and generalized geometric structure. This aligns across diverse point cloud instances of the teacher, rather than within a single sample. Additionally, KL divergence is applied to align semantic distributions, and ground-truth supervision further reinforces accurate segmentation. Our method achieves state of the art performance with significantly reduced model complexity, demonstrating its effectiveness and efficiency in real-world deployment scenarios. Our Code is available at https://github.com/itsnotacie/SRKD.

Authors:Jiale Zhang, Jiaxiang Chen, Zhucong Li, Jie Ding, Kui Zhao, Zenglin Xu, Xin Pang, Yinghui Xu
Title: SlimRAG: Retrieval without Graphs via Entity-Aware Context Selection
Abstract:
Retrieval-Augmented Generation (RAG) enhances language models by incorporating external knowledge at inference time. However, graph-based RAG systems often suffer from structural overhead and imprecise retrieval: they require costly pipelines for entity linking and relation extraction, yet frequently return subgraphs filled with loosely related or tangential content. This stems from a fundamental flaw -- semantic similarity does not imply semantic relevance. We introduce SlimRAG, a lightweight framework for retrieval without graphs. SlimRAG replaces structure-heavy components with a simple yet effective entity-aware mechanism. At indexing time, it constructs a compact entity-to-chunk table based on semantic embeddings. At query time, it identifies salient entities, retrieves and scores associated chunks, and assembles a concise, contextually relevant input -- without graph traversal or edge construction. To quantify retrieval efficiency, we propose Relative Index Token Utilization (RITU), a metric measuring the compactness of retrieved content. Experiments across multiple QA benchmarks show that SlimRAG outperforms strong flat and graph-based baselines in accuracy while reducing index size and RITU (e.g., 16.31 vs. 56+), highlighting the value of structure-free, entity-centric context selection. The code will be released soon. https://github.com/continue-ai-company/SlimRAG

Authors:Youzheng Liu, Jiyan Liu, Xiaoman Xu, Taihang Wang, Yimin Wang, Ye Jiang
Title: QUST_NLP at SemEval-2025 Task 7: A Three-Stage Retrieval Framework for Monolingual and Crosslingual Fact-Checked Claim Retrieval
Abstract:
This paper describes the participation of QUST_NLP in the SemEval-2025 Task 7. We propose a three-stage retrieval framework specifically designed for fact-checked claim retrieval. Initially, we evaluate the performance of several retrieval models and select the one that yields the best results for candidate retrieval. Next, we employ multiple re-ranking models to enhance the candidate results, with each model selecting the Top-10 outcomes. In the final stage, we utilize weighted voting to determine the final retrieval outcomes. Our approach achieved 5th place in the monolingual track and 7th place in the crosslingual track. We release our system code at: https://github.com/warmth27/SemEval2025_Task7

Authors:Chenghan Li, Mingchen Li, Yipu Liao, Ruisheng Diao
Title: MS-TVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Dynamic Convolution
Abstract:
Long-term time series prediction has predominantly relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this gap, we introduce a novel multi-scale time series reshape module, which effectively captures the relationships among multi-period patches and variable dependencies. Building upon this module, we propose MS-TVNet, a multi-scale 3D dynamic convolutional neural network. Through comprehensive evaluations on diverse datasets, MS-TVNet demonstrates superior performance compared to baseline models, achieving state-of-the-art (SOTA) results in long-term time series prediction. Our findings highlight the effectiveness of leveraging convolutional networks for capturing complex temporal patterns, suggesting a promising direction for future research in this field.The code is realsed on https://github.com/Curyyfaust/TVNet.

Authors:Fudong Lin, Jiadong Lou, Hao Wang, Brian Jalaian, Xu Yuan
Title: Towards Interpretable Adversarial Examples via Sparse Adversarial Attack
Abstract:
Sparse attacks are to optimize the magnitude of adversarial perturbations for fooling deep neural networks (DNNs) involving only a few perturbed pixels (i.e., under the l0 constraint), suitable for interpreting the vulnerability of DNNs. However, existing solutions fail to yield interpretable adversarial examples due to their poor sparsity. Worse still, they often struggle with heavy computational overhead, poor transferability, and weak attack strength. In this paper, we aim to develop a sparse attack for understanding the vulnerability of CNNs by minimizing the magnitude of initial perturbations under the l0 constraint, to overcome the existing drawbacks while achieving a fast, transferable, and strong attack to DNNs. In particular, a novel and theoretical sound parameterization technique is introduced to approximate the NP-hard l0 optimization problem, making directly optimizing sparse perturbations computationally feasible. Besides, a novel loss function is designed to augment initial perturbations by maximizing the adversary property and minimizing the number of perturbed pixels simultaneously. Extensive experiments are conducted to demonstrate that our approach, with theoretical performance guarantees, outperforms state-of-the-art sparse attacks in terms of computational overhead, transferability, and attack strength, expecting to serve as a benchmark for evaluating the robustness of DNNs. In addition, theoretical and empirical results validate that our approach yields sparser adversarial examples, empowering us to discover two categories of noises, i.e., "obscuring noise" and "leading noise", which will help interpret how adversarial perturbation misleads the classifiers into incorrect predictions. Our code is available at https://github.com/fudong03/SparseAttack.

Authors:Jianing He, Qi Zhang, Duoqian Miao, Yi Kun, Shufeng Hao, Hongyun Zhang, Zhihua Wei
Title: Improving Prediction Certainty Estimation for Reliable Early Exiting via Null Space Projection
Abstract:
Early exiting has demonstrated great potential in accelerating the inference of pre-trained language models (PLMs) by enabling easy samples to exit at shallow layers, eliminating the need for executing deeper layers. However, existing early exiting methods primarily rely on class-relevant logits to formulate their exiting signals for estimating prediction certainty, neglecting the detrimental influence of class-irrelevant information in the features on prediction certainty. This leads to an overestimation of prediction certainty, causing premature exiting of samples with incorrect early predictions. To remedy this, we define an NSP score to estimate prediction certainty by considering the proportion of class-irrelevant information in the features. On this basis, we propose a novel early exiting method based on the Certainty-Aware Probability (CAP) score, which integrates insights from both logits and the NSP score to enhance prediction certainty estimation, thus enabling more reliable exiting decisions. The experimental results on the GLUE benchmark show that our method can achieve an average speed-up ratio of 2.19x across all tasks with negligible performance degradation, surpassing the state-of-the-art (SOTA) ConsistentEE by 28%, yielding a better trade-off between task performance and inference efficiency. The code is available at https://github.com/He-Jianing/NSP.git.

Authors:Zequn Yang, Hongfa Wang, Di Hu
Title: Efficient Quantification of Multimodal Interaction at Sample Level
Abstract:
Interactions between modalities -- redundancy, uniqueness, and synergy -- collectively determine the composition of multimodal information. Understanding these interactions is crucial for analyzing information dynamics in multimodal systems, yet their accurate sample-level quantification presents significant theoretical and computational challenges. To address this, we introduce the Lightweight Sample-wise Multimodal Interaction (LSMI) estimator, rigorously grounded in pointwise information theory. We first develop a redundancy estimation framework, employing an appropriate pointwise information measure to quantify this most decomposable and measurable interaction. Building upon this, we propose a general interaction estimation method that employs efficient entropy estimation, specifically tailored for sample-wise estimation in continuous distributions. Extensive experiments on synthetic and real-world datasets validate LSMI's precision and efficiency. Crucially, our sample-wise approach reveals fine-grained sample- and category-level dynamics within multimodal data, enabling practical applications such as redundancy-informed sample partitioning, targeted knowledge distillation, and interaction-aware model ensembling. The code is available at https://github.com/GeWu-Lab/LSMI_Estimator.

Authors:Yichen Luo, Jia Wang, Dapeng Lan, Yu Liu, Zhibo Pang
Title: MMET: A Multi-Input and Multi-Scale Transformer for Efficient PDEs Solving
Abstract:
Partial Differential Equations (PDEs) are fundamental for modeling physical systems, yet solving them in a generic and efficient manner using machine learning-based approaches remains challenging due to limited multi-input and multi-scale generalization capabilities, as well as high computational costs. This paper proposes the Multi-input and Multi-scale Efficient Transformer (MMET), a novel framework designed to address the above challenges. MMET decouples mesh and query points as two sequences and feeds them into the encoder and decoder, respectively, and uses a Gated Condition Embedding (GCE) layer to embed input variables or functions with varying dimensions, enabling effective solutions for multi-scale and multi-input problems. Additionally, a Hilbert curve-based reserialization and patch embedding mechanism decrease the input length. This significantly reduces the computational cost when dealing with large-scale geometric models. These innovations enable efficient representations and support multi-scale resolution queries for large-scale and multi-input PDE problems. Experimental evaluations on diverse benchmarks spanning different physical fields demonstrate that MMET outperforms SOTA methods in both accuracy and computational efficiency. This work highlights the potential of MMET as a robust and scalable solution for real-time PDE solving in engineering and physics-based applications, paving the way for future explorations into pre-trained large-scale models in specific domains. This work is open-sourced at https://github.com/YichenLuo-0/MMET.

Authors:Xiuyu Yang, Shuhan Tan, Philipp Krähenbühl
Title: Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation
Abstract:
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen

Authors:Teng Li, Quanfeng Lu, Lirui Zhao, Hao Li, Xizhou Zhu, Yu Qiao, Jun Zhang, Wenqi Shao
Title: UniFork: Exploring Modality Alignment for Unified Multimodal Understanding and Generation
Abstract:
Unified image understanding and generation has emerged as a promising paradigm in multimodal artificial intelligence. Despite recent progress, the optimal architectural design for such unified models remains an open challenge. In this work, we start by analyzing the modality alignment behaviors of task-specific expert models for understanding and generation, as well as current unified models. Our analysis reveals a crucial observation: understanding tasks benefit from a progressively increasing modality alignment across network depth, which helps build up semantic information for better comprehension; In contrast, generation tasks follow a different trend: modality alignment increases in the early layers but decreases in the deep layers to recover spatial details. These divergent alignment patterns create a fundamental conflict in fully shared Transformer backbones, where a uniform representational flow often leads to performance compromises across two tasks. Motivated by this finding, we introduce UniFork, a novel Y-shaped architecture that shares the shallow layers for cross-task representation learning, while employing task-specific branches in deeper layers to avoid task interference. This design effectively balances shared learning and task specialization. Through extensive ablation experiments, we demonstrate that Unifork consistently outperforms conventional fully shared Transformer architectures, and achieves performance on par with or better than task-specific models.

Authors:Albert H. Li, Brandon Hung, Aaron D. Ames, Jiuguang Wang, Simon Le Cleac'h, Preston Culbertson
Title: Judo: A User-Friendly Open-Source Package for Sampling-Based Model Predictive Control
Abstract:
Recent advancements in parallel simulation and successful robotic applications are spurring a resurgence in sampling-based model predictive control. To build on this progress, however, the robotics community needs common tooling for prototyping, evaluating, and deploying sampling-based controllers. We introduce Judo, a software package designed to address this need. To facilitate rapid prototyping and evaluation, Judo provides robust implementations of common sampling-based MPC algorithms and standardized benchmark tasks. It further emphasizes usability with simple but extensible interfaces for controller and task definitions, asynchronous execution for straightforward simulation-to-hardware transfer, and a highly customizable interactive GUI for tuning controllers interactively. While written in Python, the software leverages MuJoCo as its physics backend to achieve real-time performance, which we validate across both consumer and server-grade hardware. Code at https://github.com/bdaiinstitute/judo.

Authors:Qing Xu, Yuxiang Luo, Wenting Duan, Zhen Chen
Title: Co-Seg++: Mutual Prompt-Guided Collaborative Learning for Versatile Medical Segmentation
Abstract:
Medical image analysis is critical yet challenged by the need of jointly segmenting organs or tissues, and numerous instances for anatomical structures and tumor microenvironment analysis. Existing studies typically formulated different segmentation tasks in isolation, which overlooks the fundamental interdependencies between these tasks, leading to suboptimal segmentation performance and insufficient medical image understanding. To address this issue, we propose a Co-Seg++ framework for versatile medical segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing semantic and instance segmentation tasks to mutually enhance each other. We first devise a spatio-temporal prompt encoder (STP-Encoder) to capture long-range spatial and temporal relationships between segmentation regions and image embeddings as prior spatial constraints. Moreover, we devise a multi-task collaborative decoder (MTC-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, jointly computing semantic and instance segmentation masks. Extensive experiments on diverse CT and histopathology datasets demonstrate that the proposed Co-Seg++ outperforms state-of-the-arts in the semantic, instance, and panoptic segmentation of dental anatomical structures, histopathology tissues, and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg-Plus.

Authors:Adithya Bhaskar, Alexander Wettig, Tianyu Gao, Yihe Dong, Danqi Chen
Title: Cache Me If You Can: How Many KVs Do You Need for Effective Long-Context LMs?
Abstract:
Language models handle increasingly long contexts for tasks such as book summarization, but this leads to growing memory costs for the key-value (KV) cache. Many prior works have proposed ways of discarding KVs from memory, but their approaches are tailored to favorable settings, obscuring caveats like high peak memory and performance degradation, and a fair comparison between methods is difficult. In this paper, we propose the *KV footprint* as a unified metric, which accounts for both the amount of KV entries stored and their lifespan in memory. We evaluate methods based on the smallest footprint they attain while preserving performance in both long-context understanding and generation, with context lengths of up to 128K tokens. This metric reveals the high peak memory of prior KV eviction methods. One class of methods -- *post-fill eviction* -- has a high footprint due to being incompatible with eviction during pre-filling. We adapt these methods to be able to evict KVs during pre-filling, achieving substantially lower KV footprints. We then turn to *recency eviction* methods, wherein we propose PruLong, an end-to-end optimization method for learning which attention heads need to retain the full KV cache and which do not. PruLong saves memory while preserving long-context performance, achieving 12% smaller KV footprint than prior methods while retaining performance in challenging recall tasks. Our paper clarifies the complex tangle of long-context inference methods and paves the way for future development to minimize the KV footprint.

Authors:Teng Guo, Jingjin Yu
Title: RGBTrack: Fast, Robust Depth-Free 6D Pose Estimation and Tracking
Abstract:
We introduce a robust framework, RGBTrack, for real-time 6D pose estimation and tracking that operates solely on RGB data, thereby eliminating the need for depth input for such dynamic and precise object pose tracking tasks. Building on the FoundationPose architecture, we devise a novel binary search strategy combined with a render-and-compare mechanism to efficiently infer depth and generate robust pose hypotheses from true-scale CAD models. To maintain stable tracking in dynamic scenarios, including rapid movements and occlusions, RGBTrack integrates state-of-the-art 2D object tracking (XMem) with a Kalman filter and a state machine for proactive object pose recovery. In addition, RGBTrack's scale recovery module dynamically adapts CAD models of unknown scale using an initial depth estimate, enabling seamless integration with modern generative reconstruction techniques. Extensive evaluations on benchmark datasets demonstrate that RGBTrack's novel depth-free approach achieves competitive accuracy and real-time performance, making it a promising practical solution candidate for application areas including robotics, augmented reality, and computer vision. The source code for our implementation will be made publicly available at https://github.com/GreatenAnoymous/RGBTrack.git.

Authors:Shoubin Yu, Yue Zhang, Ziyang Wang, Jaehong Yoon, Mohit Bansal
Title: MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation
Abstract:
Combining pre-trained expert models offers substantial potential for scalable multimodal reasoning, but building a unified framework remains challenging due to the increasing diversity of input modalities and task complexity. For instance, medical diagnosis requires precise reasoning over structured clinical tables, while financial forecasting depends on interpreting plot-based data to make informed predictions. To tackle this challenge, we introduce MEXA, a training-free framework that performs modality- and task-aware aggregation of multiple expert models to enable effective multimodal reasoning across diverse and distinct domains. MEXA dynamically selects expert models based on the input modality and the task-specific reasoning demands (i.e., skills). Each expert model, specialized in a modality task pair, generates interpretable textual reasoning outputs. MEXA then aggregates and reasons over these outputs using a Large Reasoning Model (LRM) to produce the final answer. This modular design allows flexible and transparent multimodal reasoning across diverse domains without additional training overhead. We extensively evaluate our approach on diverse multimodal benchmarks, including Video Reasoning, Audio Reasoning, 3D Understanding, and Medical QA. MEXA consistently delivers performance improvements over strong multimodal baselines, highlighting the effectiveness and broad applicability of our expert-driven selection and aggregation in diverse multimodal reasoning tasks.

Authors:Ke Li, Chenyu Zhang, Yuxin Ding, Xianbiao Hu, Ruwen Qin
Title: Multi-label Scene Classification for Autonomous Vehicles: Acquiring and Accumulating Knowledge from Diverse Datasets
Abstract:
Driving scenes are inherently heterogeneous and dynamic. Multi-attribute scene identification, as a high-level visual perception capability, provides autonomous vehicles (AVs) with essential contextual awareness to understand, reason through, and interact with complex driving environments. Although scene identification is best modeled as a multi-label classification problem via multitask learning, it faces two major challenges: the difficulty of acquiring balanced, comprehensively annotated datasets and the need to re-annotate all training data when new attributes emerge. To address these challenges, this paper introduces a novel deep learning method that integrates Knowledge Acquisition and Accumulation (KAA) with Consistency-based Active Learning (CAL). KAA leverages monotask learning on heterogeneous single-label datasets to build a knowledge foundation, while CAL bridges the gap between single- and multi-label data, adapting the foundation model for multi-label scene classification. An ablation study on the newly developed Driving Scene Identification (DSI) dataset demonstrates a 56.1% improvement over an ImageNet-pretrained baseline. Moreover, KAA-CAL outperforms state-of-the-art multi-label classification methods on the BDD100K and HSD datasets, achieving this with 85% less data and even recognizing attributes unseen during foundation model training. The DSI dataset and KAA-CAL implementation code are publicly available at https://github.com/KELISBU/KAA-CAL .

Authors:Jiahao Cheng, Tiancheng Su, Jia Yuan, Guoxiu He, Jiawei Liu, Xinqi Tao, Jingwen Xie, Huaxia Li
Title: Chain-of-Thought Prompting Obscures Hallucination Cues in Large Language Models: An Empirical Evaluation
Abstract:
Large Language Models (LLMs) often exhibit \textit{hallucinations}, generating factually incorrect or semantically irrelevant content in response to prompts. Chain-of-Thought (CoT) prompting can mitigate hallucinations by encouraging step-by-step reasoning, but its impact on hallucination detection remains underexplored. To bridge this gap, we conduct a systematic empirical evaluation. We begin with a pilot experiment, revealing that CoT reasoning significantly affects the LLM's internal states and token probability distributions. Building on this, we evaluate the impact of various CoT prompting methods on mainstream hallucination detection methods across both instruction-tuned and reasoning-oriented LLMs. Specifically, we examine three key dimensions: changes in hallucination score distributions, variations in detection accuracy, and shifts in detection confidence. Our findings show that while CoT prompting helps reduce hallucination frequency, it also tends to obscure critical signals used for detection, impairing the effectiveness of various detection methods. Our study highlights an overlooked trade-off in the use of reasoning. Code is publicly available at: https://github.com/ECNU-Text-Computing/cot-hallu-detect .

Authors:Marco Jiralerspong, Esther Derman, Danilo Vucetic, Nikolay Malkin, Bilun Sun, Tianyu Zhang, Pierre-Luc Bacon, Gauthier Gidel
Title: Robust Reinforcement Learning for Discrete Compositional Generation via General Soft Operators
Abstract:
A major bottleneck in scientific discovery involves narrowing a large combinatorial set of objects, such as proteins or molecules, to a small set of promising candidates. While this process largely relies on expert knowledge, recent methods leverage reinforcement learning (RL) to enhance this filtering. They achieve this by estimating proxy reward functions from available datasets and using regularization to generate more diverse candidates. These reward functions are inherently uncertain, raising a particularly salient challenge for scientific discovery. In this work, we show that existing methods, often framed as sampling proportional to a reward function, are inadequate and yield suboptimal candidates, especially in large search spaces. To remedy this issue, we take a robust RL approach and introduce a unified operator that seeks robustness to the uncertainty of the proxy reward function. This general operator targets peakier sampling distributions while encompassing known soft RL operators. It also leads us to a novel algorithm that identifies higher-quality, diverse candidates in both synthetic and real-world tasks. Ultimately, our work offers a new, flexible perspective on discrete compositional generation tasks. Code: https://github.com/marcojira/tgm.

Authors:Sahil Kale, Vijaykant Nadadur
Title: TeXpert: A Multi-Level Benchmark for Evaluating LaTeX Code Generation by LLMs
Abstract:
LaTeX's precision and flexibility in typesetting have made it the gold standard for the preparation of scientific documentation. Large Language Models (LLMs) present a promising opportunity for researchers to produce publication-ready material using LaTeX with natural language instructions, yet current benchmarks completely lack evaluation of this ability. By introducing TeXpert, our benchmark dataset with natural language prompts for generating LaTeX code focused on components of scientific documents across multiple difficulty levels, we conduct an in-depth analysis of LLM performance in this regard and identify frequent error types. Our evaluation across open and closed-source LLMs highlights multiple key findings: LLMs excelling on standard benchmarks perform poorly in LaTeX generation with a significant accuracy drop-off as the complexity of tasks increases; open-source models like DeepSeek v3 and DeepSeek Coder strongly rival closed-source counterparts in LaTeX tasks; and formatting and package errors are unexpectedly prevalent, suggesting a lack of diverse LaTeX examples in the training datasets of most LLMs. Our dataset, code, and model evaluations are available at https://github.com/knowledge-verse-ai/TeXpert.

Authors:Annika Thomas, Robaire Galliath, Aleksander Garbuz, Luke Anger, Cormac O'Neill, Trevor Johst, Dami Thomas, George Lordos, Jonathan P. How
Title: LunarLoc: Segment-Based Global Localization on the Moon
Abstract:
Global localization is necessary for autonomous operations on the lunar surface where traditional Earth-based navigation infrastructure, such as GPS, is unavailable. As NASA advances toward sustained lunar presence under the Artemis program, autonomous operations will be an essential component of tasks such as robotic exploration and infrastructure deployment. Tasks such as excavation and transport of regolith require precise pose estimation, but proposed approaches such as visual-inertial odometry (VIO) accumulate odometry drift over long traverses. Precise pose estimation is particularly important for upcoming missions such as the ISRU Pilot Excavator (IPEx) that rely on autonomous agents to operate over extended timescales and varied terrain. To help overcome odometry drift over long traverses, we propose LunarLoc, an approach to global localization that leverages instance segmentation for zero-shot extraction of boulder landmarks from onboard stereo imagery. Segment detections are used to construct a graph-based representation of the terrain, which is then aligned with a reference map of the environment captured during a previous session using graph-theoretic data association. This method enables accurate and drift-free global localization in visually ambiguous settings. LunarLoc achieves sub-cm level accuracy in multi-session global localization experiments, significantly outperforming the state of the art in lunar global localization. To encourage the development of further methods for global localization on the Moon, we release our datasets publicly with a playback module: https://github.com/mit-acl/lunarloc-data.

Authors:Bin Huang, Feihong Xu, Xinchong Shi, Shan Huang, Binxuan Li, Fei Li, Qiegen Liu
Title: PET Tracer Separation Using Conditional Diffusion Transformer with Multi-latent Space Learning
Abstract:
In clinical practice, single-radiotracer positron emission tomography (PET) is commonly used for imaging. Although multi-tracer PET imaging can provide supplementary information of radiotracers that are sensitive to physiological function changes, enabling a more comprehensive characterization of physiological and pathological states, the gamma-photon pairs generated by positron annihilation reactions of different tracers in PET imaging have the same energy, making it difficult to distinguish the tracer signals. In this study, a multi-latent space guided texture conditional diffusion transformer model (MS-CDT) is proposed for PET tracer separation. To the best of our knowledge, this is the first attempt to use texture condition and multi-latent space for tracer separation in PET imaging. The proposed model integrates diffusion and transformer architectures into a unified optimization framework, with the novel addition of texture masks as conditional inputs to enhance image details. By leveraging multi-latent space prior derived from different tracers, the model captures multi-level feature representations, aiming to balance computational efficiency and detail preservation. The texture masks, serving as conditional guidance, help the model focus on salient structural patterns, thereby improving the extraction and utilization of fine-grained image textures. When combined with the diffusion transformer backbone, this conditioning mechanism contributes to more accurate and robust tracer separation. To evaluate its effectiveness, the proposed MS-CDT is compared with several advanced methods on two types of 3D PET datasets: brain and chest scans. Experimental results indicate that MS-CDT achieved competitive performance in terms of image quality and preservation of clinically relevant information. Code is available at: https://github.com/yqx7150/MS-CDT.

Authors:Jun Fu, Bin Tian, Haonan Chen, Shi Meng, Tingting Yao
Title: ParkFormer: A Transformer-Based Parking Policy with Goal Embedding and Pedestrian-Aware Control
Abstract:
Autonomous parking plays a vital role in intelligent vehicle systems, particularly in constrained urban environments where high-precision control is required. While traditional rule-based parking systems struggle with environmental uncertainties and lack adaptability in crowded or dynamic scenes, human drivers demonstrate the ability to park intuitively without explicit modeling. Inspired by this observation, we propose a Transformer-based end-to-end framework for autonomous parking that learns from expert demonstrations. The network takes as input surround-view camera images, goal-point representations, ego vehicle motion, and pedestrian trajectories. It outputs discrete control sequences including throttle, braking, steering, and gear selection. A novel cross-attention module integrates BEV features with target points, and a GRU-based pedestrian predictor enhances safety by modeling dynamic obstacles. We validate our method on the CARLA 0.9.14 simulator in both vertical and parallel parking scenarios. Experiments show our model achieves a high success rate of 96.57\%, with average positional and orientation errors of 0.21 meters and 0.41 degrees, respectively. The ablation studies further demonstrate the effectiveness of key modules such as pedestrian prediction and goal-point attention fusion. The code and dataset will be released at: https://github.com/little-snail-f/ParkFormer.

Authors:Semin Kim, Yeonwoo Cha, Jaehoon Yoo, Seunghoon Hong
Title: Reward-Agnostic Prompt Optimization for Text-to-Image Diffusion Models
Abstract:
We investigate a general approach for improving user prompts in text-to-image (T2I) diffusion models by finding prompts that maximize a reward function specified at test-time. Although diverse reward models are used for evaluating image generation, existing automated prompt engineering methods typically target specific reward configurations. Consequently, these specialized designs exhibit suboptimal performance when applied to new prompt engineering scenarios involving different reward models. To address this limitation, we introduce RATTPO (Reward-Agnostic Test-Time Prompt Optimization), a flexible test-time optimization method applicable across various reward scenarios without modification. RATTPO iteratively searches for optimized prompts by querying large language models (LLMs) \textit{without} requiring reward-specific task descriptions. Instead, it uses the optimization trajectory and a novel reward-aware feedback signal (termed a "hint") as context. Empirical results demonstrate the versatility of RATTPO, effectively enhancing user prompts across diverse reward setups that assess various generation aspects, such as aesthetics, general human preference, or spatial relationships between objects. RATTPO surpasses other test-time search baselines in search efficiency, using up to 3.5 times less inference budget, and, given sufficient inference budget, achieves performance comparable to learning-based baselines that require reward-specific fine-tuning. The code is available at https://github.com/seminkim/RATTPO.

Authors:Semin Kim, Yeonwoo Cha, Jaehoon Yoo, Seunghoon Hong
Title: Reward-Agnostic Prompt Optimization for Text-to-Image Diffusion Models
Abstract:
We investigate a general approach for improving user prompts in text-to-image (T2I) diffusion models by finding prompts that maximize a reward function specified at test-time. Although diverse reward models are used for evaluating image generation, existing automated prompt engineering methods typically target specific reward configurations. Consequently, these specialized designs exhibit suboptimal performance when applied to new prompt engineering scenarios involving different reward models. To address this limitation, we introduce RATTPO (Reward-Agnostic Test-Time Prompt Optimization), a flexible test-time optimization method applicable across various reward scenarios without modification. RATTPO iteratively searches for optimized prompts by querying large language models (LLMs) \textit{without} requiring reward-specific task descriptions. Instead, it uses the optimization trajectory and a novel reward-aware feedback signal (termed a "hint") as context. Empirical results demonstrate the versatility of RATTPO, effectively enhancing user prompts across diverse reward setups that assess various generation aspects, such as aesthetics, general human preference, or spatial relationships between objects. RATTPO surpasses other test-time search baselines in search efficiency, running 4.8 times faster than naive reward-agnostic test-time search baseline on average. Furthermore, with sufficient inference budget, it can achieve comparable performance to learning-based baselines that require reward-specific fine-tuning. The code is available at https://github.com/seminkim/RATTPO.

Authors:Chaehyeon Song, Dongjae Lee, Jongwoo Lim, Ayoung Kim
Title: Camera Calibration via Circular Patterns: A Comprehensive Framework with Measurement Uncertainty and Unbiased Projection Model
Abstract:
Camera calibration using planar targets has been widely favored, and two types of control points have been mainly considered as measurements: the corners of the checkerboard and the centroid of circles. Since a centroid is derived from numerous pixels, the circular pattern provides more precise measurements than the checkerboard. However, the existing projection model of circle centroids is biased under lens distortion, resulting in low performance. To surmount this limitation, we propose an unbiased projection model of the circular pattern and demonstrate its superior accuracy compared to the checkerboard. Complementing this, we introduce uncertainty into circular patterns to enhance calibration robustness and completeness. Defining centroid uncertainty improves the performance of calibration components, including pattern detection, optimization, and evaluation metrics. We also provide guidelines for performing good camera calibration based on the evaluation metric. The core concept of this approach is to model the boundary points of a two-dimensional shape as a Markov random field, considering its connectivity. The shape distribution is propagated to the centroid uncertainty through an appropriate shape representation based on the Green theorem. Consequently, the resulting framework achieves marked gains in calibration accuracy and robustness. The complete source code and demonstration video are available at https://github.com/chaehyeonsong/discocal.

Authors:Zeyneddin Oz, Shreyas Korde, Marius Bock, Kristof Van Laerhoven
Title: FedFitTech: A Baseline in Federated Learning for Fitness Tracking
Abstract:
The rapid evolution of sensors and resource-efficient machine learning models has spurred the widespread adoption of wearable fitness tracking devices. Equipped with inertial sensors, such devices can continuously capture physical movements for fitness technology (FitTech), enabling applications from sports optimization to preventive healthcare. Traditional Centralized Learning approaches to detect fitness activities struggle with data privacy concerns, regulatory restrictions, and communication inefficiencies. In contrast, Federated Learning (FL) enables a decentralized model training by communicating model updates rather than potentially private wearable sensor data. Applying FL to FitTech presents unique challenges, such as data imbalance, lack of labeled data, heterogeneous user activities, and trade-offs between personalization and generalization. To simplify research on FitTech in FL, we present the FedFitTech baseline, under the Flower framework, which is publicly available and widely used by both industry and academic researchers. Additionally, to illustrate its usage, this paper presents a case study that implements a system based on the FedFitTech baseline, incorporating a client-side early stopping strategy and comparing the results. For instance, this system allows wearable devices to optimize the trade-off between capturing common fitness activities and preserving individuals' nuances, thereby enhancing both the scalability and efficiency of privacy-aware fitness tracking applications. The results show that this reduces the overall redundant communications by 13%, while maintaining the overall recognition performance at a negligible recognition cost by 1%. Thus, the FedFitTech baseline creates a foundation for a wide range of new research and development opportunities in FitTech, and it is available as open source at: https://github.com/shreyaskorde16/FedFitTech

Authors:Yuchu Jiang, Jiaming Chu, Jian Zhao, Xin Zhang, Xu Yang, Lei Jin, Chi Zhang, Xuelong Li
Title: Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection
Abstract:
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.

Authors:Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen
Title: TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration
Abstract:
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

Authors:Kosuke Nakanishi, Akihiro Kubo, Yuji Yasui, Shin Ishii
Title: Off-Policy Actor-Critic for Adversarial Observation Robustness: Virtual Alternative Training via Symmetric Policy Evaluation
Abstract:
Recently, robust reinforcement learning (RL) methods designed to handle adversarial input observations have received significant attention, motivated by RL's inherent vulnerabilities. While existing approaches have demonstrated reasonable success, addressing worst-case scenarios over long time horizons requires both minimizing the agent's cumulative rewards for adversaries and training agents to counteract them through alternating learning. However, this process introduces mutual dependencies between the agent and the adversary, making interactions with the environment inefficient and hindering the development of off-policy methods. In this work, we propose a novel off-policy method that eliminates the need for additional environmental interactions by reformulating adversarial learning as a soft-constrained optimization problem. Our approach is theoretically supported by the symmetric property of policy evaluation between the agent and the adversary. The implementation is available at https://github.com/nakanakakosuke/VALT_SAC.

Authors:Mengyu Wang, Tiejun Ma, Shay B. Cohen
Title: Pre-training Time Series Models with Stock Data Customization
Abstract:
Stock selection, which aims to predict stock prices and identify the most profitable ones, is a crucial task in finance. While existing methods primarily focus on developing model structures and building graphs for improved selection, pre-training strategies remain underexplored in this domain. Current stock series pre-training follows methods from other areas without adapting to the unique characteristics of financial data, particularly overlooking stock-specific contextual information and the non-stationary nature of stock prices. Consequently, the latent statistical features inherent in stock data are underutilized. In this paper, we propose three novel pre-training tasks tailored to stock data characteristics: stock code classification, stock sector classification, and moving average prediction. We develop the Stock Specialized Pre-trained Transformer (SSPT) based on a two-layer transformer architecture. Extensive experimental results validate the effectiveness of our pre-training methods and provide detailed guidance on their application. Evaluations on five stock datasets, including four markets and two time periods, demonstrate that SSPT consistently outperforms the market and existing methods in terms of both cumulative investment return ratio and Sharpe ratio. Additionally, our experiments on simulated data investigate the underlying mechanisms of our methods, providing insights into understanding price series. Our code is publicly available at: https://github.com/astudentuser/Pre-training-Time-Series-Models-with-Stock-Data-Customization.

Authors:Weinan Guan, Wei Wang, Bo Peng, Ziwen He, Jing Dong, Haonan Cheng
Title: Noise-Informed Diffusion-Generated Image Detection with Anomaly Attention
Abstract:
With the rapid development of image generation technologies, especially the advancement of Diffusion Models, the quality of synthesized images has significantly improved, raising concerns among researchers about information security. To mitigate the malicious abuse of diffusion models, diffusion-generated image detection has proven to be an effective countermeasure.However, a key challenge for forgery detection is generalising to diffusion models not seen during training. In this paper, we address this problem by focusing on image noise. We observe that images from different diffusion models share similar noise patterns, distinct from genuine images. Building upon this insight, we introduce a novel Noise-Aware Self-Attention (NASA) module that focuses on noise regions to capture anomalous patterns. To implement a SOTA detection model, we incorporate NASA into Swin Transformer, forming an novel detection architecture NASA-Swin. Additionally, we employ a cross-modality fusion embedding to combine RGB and noise images, along with a channel mask strategy to enhance feature learning from both modalities. Extensive experiments demonstrate the effectiveness of our approach in enhancing detection capabilities for diffusion-generated images. When encountering unseen generation methods, our approach achieves the state-of-the-art performance.Our code is available at https://github.com/WeinanGuan/NASA-Swin.

Authors:Fang Chen, Weifeng Zhang, Xingyu Ai, BingXuan Li, An Li, Qiegen Liu
Title: A Prior-Guided Joint Diffusion Model in Projection Domain for PET Tracer Conversion
Abstract:
Positron emission tomography (PET) is widely used to assess metabolic activity, but its application is limited by the availability of radiotracers. 18F-labeled fluorodeoxyglucose (18F-FDG) is the most commonly used tracer but shows limited effectiveness for certain tumors. In contrast, 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA) offers higher specificity for neuroendocrine tumors and neurological disorders. However, the complexity of its synthesis process and constraints on transportation time have limited its clinical application. Among different forms of raw data acquired by the scanner, sinogram is a commonly used representation in PET imaging. Therefore, modeling in projection domain enables more direct utilization of the original information, potentially reducing the accumulation errors during the image reconstruction process. Inspired by these factors, this study proposes a prior-guided joint diffusion model (PJDM) for transforming 18F-FDG PET sinograms into 18F-DOPA PET sinograms. During inference, an initial synthetic 18F-DOPA PET sinogram is first generated using a higher-order hybrid sampler. This sinogram is then degraded and serves as an additional condition to guide the iterative refinement process. Experimental results demonstrated that PJDM effectively improved both sinogram quality and the final synthetic outcomes. The code is available at: https://github.com/yqx7150/PJDM.

Authors:Yunhan Ren, Feng Luo, Siyu Huang
Title: Few-Shot Generalized Category Discovery With Retrieval-Guided Decision Boundary Enhancement
Abstract:
While existing Generalized Category Discovery (GCD) models have achieved significant success, their performance with limited labeled samples and a small number of known categories remains largely unexplored. In this work, we introduce the task of Few-shot Generalized Category Discovery (FSGCD), aiming to achieve competitive performance in GCD tasks under conditions of known information scarcity. To tackle this challenge, we propose a decision boundary enhancement framework with affinity-based retrieval. Our framework is designed to learn the decision boundaries of known categories and transfer these boundaries to unknown categories. First, we use a decision boundary pre-training module to mitigate the overfitting of pre-trained information on known category boundaries and improve the learning of these decision boundaries using labeled samples. Second, we implement a two-stage retrieval-guided decision boundary optimization strategy. Specifically, this strategy further enhances the severely limited known boundaries by using affinity-retrieved pseudo-labeled samples. Then, these refined boundaries are applied to unknown clusters via guidance from affinity-based feature retrieval. Experimental results demonstrate that our proposed method outperforms existing methods on six public GCD benchmarks under the FSGCD setting. The codes are available at: https://github.com/Ryh1218/FSGCD

Authors:Chenxu Wang, Yonggang Jin, Cheng Hu, Youpeng Zhao, Zipeng Dai, Jian Zhao, Shiyu Huang, Liuyu Xiang, Junge Zhang, Zhaofeng He
Title: Generalizable Agent Modeling for Agent Collaboration-Competition Adaptation with Multi-Retrieval and Dynamic Generation
Abstract:
Adapting a single agent to a new multi-agent system brings challenges, necessitating adjustments across various tasks, environments, and interactions with unknown teammates and opponents. Addressing this challenge is highly complex, and researchers have proposed two simplified scenarios, Multi-agent reinforcement learning for zero-shot learning and Ad-Hoc Teamwork. Building on these foundations, we propose a more comprehensive setting, Agent Collaborative-Competitive Adaptation (ACCA), which evaluates an agent to generalize across diverse scenarios, tasks, and interactions with both unfamiliar opponents and teammates. In ACCA, agents adjust to task and environmental changes, collaborate with unseen teammates, and compete against unknown opponents. We introduce a new modeling approach, Multi-Retrieval and Dynamic Generation (MRDG), that effectively models both teammates and opponents using their behavioral trajectories. This method incorporates a positional encoder for varying team sizes and a hypernetwork module to boost agents' learning and adaptive capabilities. Additionally, a viewpoint alignment module harmonizes the observational perspectives of retrieved teammates and opponents with the learning agent. Extensive tests in benchmark scenarios like SMAC, Overcooked-AI, and Melting Pot show that MRDG significantly improves robust collaboration and competition with unseen teammates and opponents, surpassing established baselines. Our code is available at: https://github.com/vcis-wangchenxu/MRDG.git

Authors:Matthew Ebisu, Hang Yu, Reuben Aronson, Elaine Short
Title: See What I Mean? Expressiveness and Clarity in Robot Display Design
Abstract:
Nonverbal visual symbols and displays play an important role in communication when humans and robots work collaboratively. However, few studies have investigated how different types of non-verbal cues affect objective task performance, especially in a dynamic environment that requires real time decision-making. In this work, we designed a collaborative navigation task where the user and the robot only had partial information about the map on each end and thus the users were forced to communicate with a robot to complete the task. We conducted our study in a public space and recruited 37 participants who randomly passed by our setup. Each participant collaborated with a robot utilizing either animated anthropomorphic eyes and animated icons, or static anthropomorphic eyes and static icons. We found that participants that interacted with a robot with animated displays reported the greatest level of trust and satisfaction; that participants interpreted static icons the best; and that participants with a robot with static eyes had the highest completion success. These results suggest that while animation can foster trust with robots, human-robot communication can be optimized by the addition of familiar static icons that may be easier for users to interpret. We published our code, designed symbols, and collected results online at: https://github.com/mattufts/huamn_Cozmo_interaction.

Authors:Manno Versluis, Yizhuo Wu, Chang Gao
Title: SparseDPD: A Sparse Neural Network-based Digital Predistortion FPGA Accelerator for RF Power Amplifier Linearization
Abstract:
Digital predistortion (DPD) is crucial for linearizing radio frequency (RF) power amplifiers (PAs), improving signal integrity and efficiency in wireless systems. Neural network (NN)-based DPD methods surpass traditional polynomial models but face computational challenges limiting their practical deployment. This paper introduces SparseDPD, an FPGA accelerator employing a spatially sparse phase-normalized time-delay neural network (PNTDNN), optimized through unstructured pruning to reduce computational load without accuracy loss. Implemented on a Xilinx Zynq-7Z010 FPGA, SparseDPD operates at 170 MHz, achieving exceptional linearization performance (ACPR: -59.4 dBc, EVM: -54.0 dBc, NMSE: -48.2 dB) with only 241 mW dynamic power, using 64 parameters with 74% sparsity. This work demonstrates FPGA-based acceleration, making NN-based DPD practical and efficient for real-time wireless communication applications. Code is publicly available at https://github.com/MannoVersluis/SparseDPD.

Authors:Changsheng Gao, Zijie Liu, Li Li, Dong Liu, Xiaoyan Sun, Weisi Lin
Title: DT-UFC: Universal Large Model Feature Coding via Peaky-to-Balanced Distribution Transformation
Abstract:
Like image coding in visual data transmission, feature coding is essential for the distributed deployment of large models by significantly reducing transmission and storage burden. However, prior studies have mostly targeted task- or model-specific scenarios, leaving the challenge of universal feature coding across diverse large models largely unexplored. In this paper, we present the first systematic study on universal feature coding for large models. The key challenge lies in the inherently diverse and distributionally incompatible nature of features extracted from different models. For example, features from DINOv2 exhibit highly peaky, concentrated distributions, while those from Stable Diffusion 3 (SD3) are more dispersed and uniform. This distributional heterogeneity severely hampers both compression efficiency and cross-model generalization. To address this, we propose a learned peaky-to-balanced distribution transformation, which reshapes highly skewed feature distributions into a common, balanced target space. This transformation is non-uniform, data-driven, and plug-and-play, enabling effective alignment of heterogeneous distributions without modifying downstream codecs. With this alignment, a universal codec trained on the balanced target distribution can effectively generalize to features from different models and tasks. We validate our approach on three representative large models (LLaMA3, DINOv2, and SD3) across multiple tasks and modalities. Extensive experiments show that our method achieves notable improvements in both compression efficiency and cross-model generalization over task-specific baselines. All source code has been made available at https://github.com/chansongoal/DT-UFC.

Authors:Tara Akhound-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet, Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, Alexander Tong
Title: Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Abstract:
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact scientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita

Authors:Xiaoya Lu, Zeren Chen, Xuhao Hu, Yijin Zhou, Weichen Zhang, Dongrui Liu, Lu Sheng, Jing Shao
Title: IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Abstract:
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems. Code and data are released under [this https URL](https://github.com/AI45Lab/IS-Bench).

Authors:Chunhou Ji, Qiumeng Li
Title: TrajSceneLLM: A Multimodal Perspective on Semantic GPS Trajectory Analysis
Abstract:
GPS trajectory data reveals valuable patterns of human mobility and urban dynamics, supporting a variety of spatial applications. However, traditional methods often struggle to extract deep semantic representations and incorporate contextual map information. We propose TrajSceneLLM, a multimodal perspective for enhancing semantic understanding of GPS trajectories. The framework integrates visualized map images (encoding spatial context) and textual descriptions generated through LLM reasoning (capturing temporal sequences and movement dynamics). Separate embeddings are generated for each modality and then concatenated to produce trajectory scene embeddings with rich semantic content which are further paired with a simple MLP classifier. We validate the proposed framework on Travel Mode Identification (TMI), a critical task for analyzing travel choices and understanding mobility behavior. Our experiments show that these embeddings achieve significant performance improvement, highlighting the advantage of our LLM-driven method in capturing deep spatio-temporal dependencies and reducing reliance on handcrafted features. This semantic enhancement promises significant potential for diverse downstream applications and future research in geospatial artificial intelligence. The source code and dataset are publicly available at: https://github.com/februarysea/TrajSceneLLM.

Authors:Yao Lu, Zhaiyuan Ji, Jiawei Du, Yu Shanqing, Qi Xuan, Tianyi Zhou
Title: From LLM-anation to LLM-orchestrator: Coordinating Small Models for Data Labeling
Abstract:
Although the annotation paradigm based on Large Language Models (LLMs) has made significant breakthroughs in recent years, its actual deployment still has two core bottlenecks: first, the cost of calling commercial APIs in large-scale annotation is very expensive; second, in scenarios that require fine-grained semantic understanding, such as sentiment classification and toxicity classification, the annotation accuracy of LLMs is even lower than that of Small Language Models (SLMs) dedicated to this field. To address these problems, we propose a new paradigm of multi-model cooperative annotation and design a fully automatic annotation framework AutoAnnotator based on this. Specifically, AutoAnnotator consists of two layers. The upper-level meta-controller layer uses the generation and reasoning capabilities of LLMs to select SLMs for annotation, automatically generate annotation code and verify difficult samples; the lower-level task-specialist layer consists of multiple SLMs that perform annotation through multi-model voting. In addition, we use the difficult samples obtained by the secondary review of the meta-controller layer as the reinforcement learning set and fine-tune the SLMs in stages through a continual learning strategy, thereby improving the generalization of SLMs. Extensive experiments show that AutoAnnotator outperforms existing open-source/API LLMs in zero-shot, one-shot, CoT, and majority voting settings. Notably, AutoAnnotator reduces the annotation cost by 74.15% compared to directly annotating with GPT-3.5-turbo, while still improving the accuracy by 6.21%. Project page: https://github.com/Zhaiyuan-Ji/AutoAnnotator.

Authors:Yunhao Hou, Bochao Zou, Min Zhang, Ran Chen, Shangdong Yang, Yanmei Zhang, Junbao Zhuo, Siheng Chen, Jiansheng Chen, Huimin Ma
Title: AGC-Drive: A Large-Scale Dataset for Real-World Aerial-Ground Collaboration in Driving Scenarios
Abstract:
By sharing information across multiple agents, collaborative perception helps autonomous vehicles mitigate occlusions and improve overall perception accuracy. While most previous work focus on vehicle-to-vehicle and vehicle-to-infrastructure collaboration, with limited attention to aerial perspectives provided by UAVs, which uniquely offer dynamic, top-down views to alleviate occlusions and monitor large-scale interactive environments. A major reason for this is the lack of high-quality datasets for aerial-ground collaborative scenarios. To bridge this gap, we present AGC-Drive, the first large-scale real-world dataset for Aerial-Ground Cooperative 3D perception. The data collection platform consists of two vehicles, each equipped with five cameras and one LiDAR sensor, and one UAV carrying a forward-facing camera and a LiDAR sensor, enabling comprehensive multi-view and multi-agent perception. Consisting of approximately 120K LiDAR frames and 440K images, the dataset covers 14 diverse real-world driving scenarios, including urban roundabouts, highway tunnels, and on/off ramps. Notably, 19.5% of the data comprises dynamic interaction events, including vehicle cut-ins, cut-outs, and frequent lane changes. AGC-Drive contains 400 scenes, each with approximately 100 frames and fully annotated 3D bounding boxes covering 13 object categories. We provide benchmarks for two 3D perception tasks: vehicle-to-vehicle collaborative perception and vehicle-to-UAV collaborative perception. Additionally, we release an open-source toolkit, including spatiotemporal alignment verification tools, multi-agent visualization systems, and collaborative annotation utilities. The dataset and code are available at https://github.com/PercepX/AGC-Drive.

Authors:Chao He, Hongxi Wei
Title: MambaHash: Visual State Space Deep Hashing Model for Large-Scale Image Retrieval
Abstract:
Deep image hashing aims to enable effective large-scale image retrieval by mapping the input images into simple binary hash codes through deep neural networks. More recently, Vision Mamba with linear time complexity has attracted extensive attention from researchers by achieving outstanding performance on various computer tasks. Nevertheless, the suitability of Mamba for large-scale image retrieval tasks still needs to be explored. Towards this end, we propose a visual state space hashing model, called MambaHash. Concretely, we propose a backbone network with stage-wise architecture, in which grouped Mamba operation is introduced to model local and global information by utilizing Mamba to perform multi-directional scanning along different groups of the channel. Subsequently, the proposed channel interaction attention module is used to enhance information communication across channels. Finally, we meticulously design an adaptive feature enhancement module to increase feature diversity and enhance the visual representation capability of the model. We have conducted comprehensive experiments on three widely used datasets: CIFAR-10, NUS-WIDE and IMAGENET. The experimental results demonstrate that compared with the state-of-the-art deep hashing methods, our proposed MambaHash has well efficiency and superior performance to effectively accomplish large-scale image retrieval tasks. Source code is available https://github.com/shuaichaochao/MambaHash.git

Authors:Hen Kas-Sharir, Gal Sela, Erez Petrank
Title: A Study of Synchronization Methods for Concurrent Size
Abstract:
The size of collections, maps, and data structures in general, constitutes a fundamental property. An implementation of the size method is required in most programming environments. Nevertheless, in a concurrent environment, integrating a linearizable concurrent size introduces a noticeable overhead on all operations of the data structure, even when the size method is not invoked during the execution. In this work we present a study of synchronization methods in an attempt to improve the performance of the data structure. In particular, we study a handshake technique that is commonly used with concurrent garbage collection, an optimistic technique, and a lock-based technique. Evaluation against the state-of-the-art size methodology demonstrates that the overhead can be significantly reduced by selecting the appropriate synchronization approach, but there is no one-size-fits-all method. Different scenarios call for different synchronization methods, as rigorously shown in this study. Nevertheless, our findings align with general trends in concurrent computing. In scenarios characterized by low contention, optimistic and lock-based approaches work best, whereas under high contention, the most effective solutions are the handshake approach and the wait-free approach.

Authors:Nikola Jovanović, Ismail Labiad, Tomáš Souček, Martin Vechev, Pierre Fernandez
Title: Watermarking Autoregressive Image Generation
Abstract:
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values.

Authors:Zhaoyi Wang, Jemil Avers Butt, Shengyu Huang, Tomislav Medic, Andreas Wieser
Title: Dense 3D Displacement Estimation for Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images
Abstract:
Landslide monitoring is essential for understanding geohazards and mitigating associated risks. However, existing point cloud-based methods typically rely on either geometric or radiometric information and often yield sparse or non-3D displacement estimates. In this paper, we propose a hierarchical partition-based coarse-to-fine approach that fuses 3D point clouds and co-registered RGB images to estimate dense 3D displacement vector fields. We construct patch-level matches using both 3D geometry and 2D image features. These matches are refined via geometric consistency checks, followed by rigid transformation estimation per match. Experimental results on two real-world landslide datasets demonstrate that our method produces 3D displacement estimates with high spatial coverage (79% and 97%) and high accuracy. Deviations in displacement magnitude with respect to external measurements (total station or GNSS observations) are 0.15 m and 0.25 m on the two datasets, respectively, and only 0.07 m and 0.20 m compared to manually derived references. These values are below the average scan resolutions (0.08 m and 0.30 m). Our method outperforms the state-of-the-art method F2S3 in spatial coverage while maintaining comparable accuracy. Our approach offers a practical and adaptable solution for TLS-based landslide monitoring and is extensible to other types of point clouds and monitoring tasks. Our example data and source code are publicly available at https://github.com/zhaoyiww/fusion4landslide.

Authors:Weeyoung Kwon, Jeahun Sung, Minkyu Jeon, Chanho Eom, Jihyong Oh
Title: R3eVision: A Survey on Robust Rendering, Restoration, and Enhancement for 3D Low-Level Vision
Abstract:
Neural rendering methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have achieved significant progress in photorealistic 3D scene reconstruction and novel view synthesis. However, most existing models assume clean and high-resolution (HR) multi-view inputs, which limits their robustness under real-world degradations such as noise, blur, low-resolution (LR), and weather-induced artifacts. To address these limitations, the emerging field of 3D Low-Level Vision (3D LLV) extends classical 2D Low-Level Vision tasks including super-resolution (SR), deblurring, weather degradation removal, restoration, and enhancement into the 3D spatial domain. This survey, referred to as R\textsuperscript{3}eVision, provides a comprehensive overview of robust rendering, restoration, and enhancement for 3D LLV by formalizing the degradation-aware rendering problem and identifying key challenges related to spatio-temporal consistency and ill-posed optimization. Recent methods that integrate LLV into neural rendering frameworks are categorized to illustrate how they enable high-fidelity 3D reconstruction under adverse conditions. Application domains such as autonomous driving, AR/VR, and robotics are also discussed, where reliable 3D perception from degraded inputs is critical. By reviewing representative methods, datasets, and evaluation protocols, this work positions 3D LLV as a fundamental direction for robust 3D content generation and scene-level reconstruction in real-world environments.

Authors:Abdulvahap Mutlu, Şengül Doğan, Türker Tuncer
Title: Synthetic ALS-EEG Data Augmentation for ALS Diagnosis Using Conditional WGAN with Weight Clipping
Abstract:
Amyotrophic Lateral Sclerosis (ALS) is a rare neurodegenerative disease, and high-quality EEG data from ALS patients are scarce. This data scarcity, coupled with severe class imbalance between ALS and healthy control recordings, poses a challenge for training reliable machine learning classifiers. In this work, we address these issues by generating synthetic EEG signals for ALS patients using a Conditional Wasserstein Generative Adversarial Network (CWGAN). We train CWGAN on a private EEG dataset (ALS vs. non-ALS) to learn the distribution of ALS EEG signals and produce realistic synthetic samples. We preprocess and normalize EEG recordings, and train a CWGAN model to generate synthetic ALS signals. The CWGAN architecture and training routine are detailed, with key hyperparameters chosen for stable training. Qualitative evaluation of generated signals shows that they closely mimic real ALS EEG patterns. The CWGAN training converged with generator and discriminator loss curves stabilizing, indicating successful learning. The synthetic EEG signals appear realistic and have potential use as augmented data for training classifiers, helping to mitigate class imbalance and improve ALS detection accuracy. We discuss how this approach can facilitate data sharing and enhance diagnostic models.

Authors:Jiang Wang, Runwu Shi, Benjamin Yen, He Kong, Kazuhiro Nakadai
Title: Single-Microphone-Based Sound Source Localization for Mobile Robots in Reverberant Environments
Abstract:
Accurately estimating sound source positions is crucial for robot audition. However, existing sound source localization methods typically rely on a microphone array with at least two spatially preconfigured microphones. This requirement hinders the applicability of microphone-based robot audition systems and technologies. To alleviate these challenges, we propose an online sound source localization method that uses a single microphone mounted on a mobile robot in reverberant environments. Specifically, we develop a lightweight neural network model with only 43k parameters to perform real-time distance estimation by extracting temporal information from reverberant signals. The estimated distances are then processed using an extended Kalman filter to achieve online sound source localization. To the best of our knowledge, this is the first work to achieve online sound source localization using a single microphone on a moving robot, a gap that we aim to fill in this work. Extensive experiments demonstrate the effectiveness and merits of our approach. To benefit the broader research community, we have open-sourced our code at https://github.com/JiangWAV/single-mic-SSL.

Authors:Yi Chen, Yuying Ge, Rui Wang, Yixiao Ge, Junhao Cheng, Ying Shan, Xihui Liu
Title: GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning
Abstract:
Recent reinforcement learning approaches, such as outcome-supervised GRPO, have advanced Chain-of-Thought reasoning in large language models (LLMs), yet their adaptation to multimodal LLMs (MLLMs) is unexplored. To address the lack of rigorous evaluation for MLLM post-training methods, we introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning. It offers a large training set and evaluates generalization across three escalating challenges: in-distribution, cross-environment, and cross-environment-task scenarios. Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate. This stems from reward signals focusing solely on final answers, encouraging shortcuts, and strict KL penalties limiting exploration.To address this, we propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision. GRPO-CARE introduces a two-tiered reward: (1) a base reward for answer correctness, and (2) an adaptive consistency bonus, computed by comparing the model's reasoning-to-answer likelihood (via a slowly-evolving reference model) against group peers.This dual mechanism amplifies rewards for reasoning paths that are both correct and logically consistent. Replacing KL penalties with this adaptive bonus, GRPO-CARE outperforms standard GRPO on SEED-Bench-R1, achieving a 6.7% performance gain on the hardest evaluation level and a 24.5% improvement in consistency. It also shows strong transferability, improving model performance across diverse video understanding benchmarks. Our work contributes a systematically designed benchmark and a generalizable post-training framework, advancing the development of more interpretable and robust MLLMs.

Authors:Tianle Gu, Kexin Huang, Zongqi Wang, Yixu Wang, Jie Li, Yuanqi Yao, Yang Yao, Yujiu Yang, Yan Teng, Yingchun Wang
Title: Probing the Robustness of Large Language Models Safety to Latent Perturbations
Abstract:
Safety alignment is a key requirement for building reliable Artificial General Intelligence. Despite significant advances in safety alignment, we observe that minor latent shifts can still trigger unsafe responses in aligned models. We argue that this stems from the shallow nature of existing alignment methods, which focus on surface-level refusal behaviors without sufficiently altering internal representations. Consequently, small shifts in hidden activations can re-trigger harmful behaviors embedded in the latent space. To explore the robustness of safety alignment to latent perturbations, we introduce a probing method that measures the Negative Log-Likelihood of the original response generated by the model. This probe quantifies local sensitivity in the latent space, serving as a diagnostic tool for identifying vulnerable directions. Based on this signal, we construct effective jailbreak trajectories, giving rise to the Activation Steering Attack (ASA). More importantly, these insights offer a principled foundation for improving alignment robustness. To this end, we introduce Layer-wise Adversarial Patch Training~(LAPT), a fine-tuning strategy that inject controlled perturbations into hidden representations during training. Experimental results highlight that LAPT strengthen alignment robustness without compromising general capabilities. Our findings reveal fundamental flaws in current alignment paradigms and call for representation-level training strategies that move beyond surface-level behavior supervision. Codes and results are available at https://github.com/Carol-gutianle/LatentSafety.

Authors:Byung Hoon Lee, Wooseok Shin, Sung Won Han
Title: TD3Net: A temporal densely connected multi-dilated convolutional network for lipreading
Abstract:
The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository (https://github.com/Leebh-kor/TD3Net).

Authors:Liangjing Shao, Linxin Bai, Chenkang Du, Xinrong Chen
Title: EndoMUST: Monocular Depth Estimation for Robotic Endoscopy via End-to-end Multi-step Self-supervised Training
Abstract:
Monocular depth estimation and ego-motion estimation are significant tasks for scene perception and navigation in stable, accurate and efficient robot-assisted endoscopy. To tackle lighting variations and sparse textures in endoscopic scenes, multiple techniques including optical flow, appearance flow and intrinsic image decomposition have been introduced into the existing methods. However, the effective training strategy for multiple modules are still critical to deal with both illumination issues and information interference for self-supervised depth estimation in endoscopy. Therefore, a novel framework with multistep efficient finetuning is proposed in this work. In each epoch of end-to-end training, the process is divided into three steps, including optical flow registration, multiscale image decomposition and multiple transformation alignments. At each step, only the related networks are trained without interference of irrelevant information. Based on parameter-efficient finetuning on the foundation model, the proposed method achieves state-of-the-art performance on self-supervised depth estimation on SCARED dataset and zero-shot depth estimation on Hamlyn dataset, with 4\%$\sim$10\% lower error. The evaluation code of this work has been published on https://github.com/BaymaxShao/EndoMUST.

Authors:Boyu Li, Siyuan He, Hang Xu, Haoqi Yuan, Yu Zang, Liwei Hu, Junpeng Yue, Zhenxiong Jiang, Pengbo Hu, Börje F. Karlsson, Yehui Tang, Zongqing Lu
Title: DualTHOR: A Dual-Arm Humanoid Simulation Platform for Contingency-Aware Planning
Abstract:
Developing embodied agents capable of performing complex interactive tasks in real-world scenarios remains a fundamental challenge in embodied AI. Although recent advances in simulation platforms have greatly enhanced task diversity to train embodied Vision Language Models (VLMs), most platforms rely on simplified robot morphologies and bypass the stochastic nature of low-level execution, which limits their transferability to real-world robots. To address these issues, we present a physics-based simulation platform DualTHOR for complex dual-arm humanoid robots, built upon an extended version of AI2-THOR. Our simulator includes real-world robot assets, a task suite for dual-arm collaboration, and inverse kinematics solvers for humanoid robots. We also introduce a contingency mechanism that incorporates potential failures through physics-based low-level execution, bridging the gap to real-world scenarios. Our simulator enables a more comprehensive evaluation of the robustness and generalization of VLMs in household environments. Extensive evaluations reveal that current VLMs struggle with dual-arm coordination and exhibit limited robustness in realistic environments with contingencies, highlighting the importance of using our simulator to develop more capable VLMs for embodied tasks. The code is available at https://github.com/ds199895/DualTHOR.git.

Authors:Qianru Zhang, Honggang Wen, Ming Li, Dong Huang, Siu-Ming Yiu, Christian S. Jensen, Pietro Liò
Title: AutoHFormer: Efficient Hierarchical Autoregressive Transformer for Time Series Prediction
Abstract:
Time series forecasting requires architectures that simultaneously achieve three competing objectives: (1) strict temporal causality for reliable predictions, (2) sub-quadratic complexity for practical scalability, and (3) multi-scale pattern recognition for accurate long-horizon forecasting. We introduce AutoHFormer, a hierarchical autoregressive transformer that addresses these challenges through three key innovations: 1) Hierarchical Temporal Modeling: Our architecture decomposes predictions into segment-level blocks processed in parallel, followed by intra-segment sequential refinement. This dual-scale approach maintains temporal coherence while enabling efficient computation. 2) Dynamic Windowed Attention: The attention mechanism employs learnable causal windows with exponential decay, reducing complexity while preserving precise temporal relationships. This design avoids both the anti-causal violations of standard transformers and the sequential bottlenecks of RNN hybrids. 3) Adaptive Temporal Encoding: a novel position encoding system is adopted to capture time patterns at multiple scales. It combines fixed oscillating patterns for short-term variations with learnable decay rates for long-term trends. Comprehensive experiments demonstrate that AutoHFormer 10.76X faster training and 6.06X memory reduction compared to PatchTST on PEMS08, while maintaining consistent accuracy across 96-720 step horizons in most of cases. These breakthroughs establish new benchmarks for efficient and precise time series modeling. Implementations of our method and all baselines in hierarchical autoregressive mechanism are available at https://github.com/lizzyhku/Autotime.

Authors:Jianzhu Huai, Yuxin Shao, Yujia Zhang, Alper Yilmaz
Title: A Low-Cost Portable Lidar-based Mobile Mapping System on an Android Smartphone
Abstract:
The rapid advancement of the metaverse, digital twins, and robotics underscores the demand for low-cost, portable mapping systems for reality capture. Current mobile solutions, such as the Leica BLK2Go and lidar-equipped smartphones, either come at a high cost or are limited in range and accuracy. Leveraging the proliferation and technological evolution of mobile devices alongside recent advancements in lidar technology, we introduce a novel, low-cost, portable mobile mapping system. Our system integrates a lidar unit, an Android smartphone, and an RTK-GNSS stick. Running on the Android platform, it features lidar-inertial odometry built with the NDK, and logs data from the lidar, wide-angle camera, IMU, and GNSS. With a total bill of materials (BOM) cost under 2,000 USD and a weight of about 1 kilogram, the system achieves a good balance between affordability and portability. We detail the system design, multisensor calibration, synchronization, and evaluate its performance for tracking and mapping. To further contribute to the community, the system's design and software are made open source at: https://github.com/OSUPCVLab/marslogger_android/releases/tag/v2.1

Authors:Markus Frohmann, Gabriel Meseguer-Brocal, Markus Schedl, Elena V. Epure
Title: Double Entendre: Robust Audio-Based AI-Generated Lyrics Detection via Multi-View Fusion
Abstract:
The rapid advancement of AI-based music generation tools is revolutionizing the music industry but also posing challenges to artists, copyright holders, and providers alike. This necessitates reliable methods for detecting such AI-generated content. However, existing detectors, relying on either audio or lyrics, face key practical limitations: audio-based detectors fail to generalize to new or unseen generators and are vulnerable to audio perturbations; lyrics-based methods require cleanly formatted and accurate lyrics, unavailable in practice. To overcome these limitations, we propose a novel, practically grounded approach: a multimodal, modular late-fusion pipeline that combines automatically transcribed sung lyrics and speech features capturing lyrics-related information within the audio. By relying on lyrical aspects directly from audio, our method enhances robustness, mitigates susceptibility to low-level artifacts, and enables practical applicability. Experiments show that our method, DE-detect, outperforms existing lyrics-based detectors while also being more robust to audio perturbations. Thus, it offers an effective, robust solution for detecting AI-generated music in real-world scenarios. Our code is available at https://github.com/deezer/robust-AI-lyrics-detection.

Authors:Cong Wang, Zexuan Deng, Zhiwei Jiang, Fei Shen, Yafeng Yin, Shiwei Gan, Zifeng Cheng, Shiping Ge, Qing Gu
Title: Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Abstract:
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.

Authors:Vinicius Yuiti Fukase, Heitor Gama, Barbara Bueno, Lucas Libanio, Anna Helena Reali Costa, Artur Jordao
Title: One Period to Rule Them All: Identifying Critical Learning Periods in Deep Networks
Abstract:
Critical Learning Periods comprehend an important phenomenon involving deep learning, where early epochs play a decisive role in the success of many training recipes, such as data augmentation. Existing works confirm the existence of this phenomenon and provide useful insights. However, the literature lacks efforts to precisely identify when critical periods occur. In this work, we fill this gap by introducing a systematic approach for identifying critical periods during the training of deep neural networks, focusing on eliminating computationally intensive regularization techniques and effectively applying mechanisms for reducing computational costs, such as data pruning. Our method leverages generalization prediction mechanisms to pinpoint critical phases where training recipes yield maximum benefits to the predictive ability of models. By halting resource-intensive recipes beyond these periods, we significantly accelerate the learning phase and achieve reductions in training time, energy consumption, and CO$_2$ emissions. Experiments on standard architectures and benchmarks confirm the effectiveness of our method. Specifically, we achieve significant milestones by reducing the training time of popular architectures by up to 59.67%, leading to a 59.47% decrease in CO$_2$ emissions and a 60% reduction in financial costs, without compromising performance. Our work enhances understanding of training dynamics and paves the way for more sustainable and efficient deep learning practices, particularly in resource-constrained environments. In the era of the race for foundation models, we believe our method emerges as a valuable framework. The repository is available at https://github.com/baunilhamarga/critical-periods

Authors:Kowndinya Boyalakuntla, Abdeslam Boularias, Jingjin Yu
Title: KARL: Kalman-Filter Assisted Reinforcement Learner for Dynamic Object Tracking and Grasping
Abstract:
We present Kalman-filter Assisted Reinforcement Learner (KARL) for dynamic object tracking and grasping over eye-on-hand (EoH) systems, significantly expanding such systems capabilities in challenging, realistic environments. In comparison to the previous state-of-the-art, KARL (1) incorporates a novel six-stage RL curriculum that doubles the system's motion range, thereby greatly enhancing the system's grasping performance, (2) integrates a robust Kalman filter layer between the perception and reinforcement learning (RL) control modules, enabling the system to maintain an uncertain but continuous 6D pose estimate even when the target object temporarily exits the camera's field-of-view or undergoes rapid, unpredictable motion, and (3) introduces mechanisms to allow retries to gracefully recover from unavoidable policy execution failures. Extensive evaluations conducted in both simulation and real-world experiments qualitatively and quantitatively corroborate KARL's advantage over earlier systems, achieving higher grasp success rates and faster robot execution speed. Source code and supplementary materials for KARL will be made available at: https://github.com/arc-l/karl.

Authors:Zhongchen Zhao, Chaodong Xiao, Hui Lin, Qi Xie, Lei Zhang, Deyu Meng
Title: Polyline Path Masked Attention for Vision Transformer
Abstract:
Global dependency modeling and spatial position modeling are two core issues of the foundational architecture design in current deep learning frameworks. Recently, Vision Transformers (ViTs) have achieved remarkable success in computer vision, leveraging the powerful global dependency modeling capability of the self-attention mechanism. Furthermore, Mamba2 has demonstrated its significant potential in natural language processing tasks by explicitly modeling the spatial adjacency prior through the structured mask. In this paper, we propose Polyline Path Masked Attention (PPMA) that integrates the self-attention mechanism of ViTs with an enhanced structured mask of Mamba2, harnessing the complementary strengths of both architectures. Specifically, we first ameliorate the traditional structured mask of Mamba2 by introducing a 2D polyline path scanning strategy and derive its corresponding structured mask, polyline path mask, which better preserves the adjacency relationships among image tokens. Notably, we conduct a thorough theoretical analysis on the structural characteristics of the proposed polyline path mask and design an efficient algorithm for the computation of the polyline path mask. Next, we embed the polyline path mask into the self-attention mechanism of ViTs, enabling explicit modeling of spatial adjacency prior. Extensive experiments on standard benchmarks, including image classification, object detection, and segmentation, demonstrate that our model outperforms previous state-of-the-art approaches based on both state-space models and Transformers. For example, our proposed PPMA-T/S/B models achieve 48.7%/51.1%/52.3% mIoU on the ADE20K semantic segmentation task, surpassing RMT-T/S/B by 0.7%/1.3%/0.3%, respectively. Code is available at https://github.com/zhongchenzhao/PPMA.

Authors:Hasan Balci, Augustin Luna
Title: User-Guided Force-Directed Graph Layout
Abstract:
Visual analysis of relational data is essential for many real-world analytics tasks, with layout quality being key to interpretability. However, existing layout algorithms often require users to navigate complex parameters to express their intent. We present a user-guided force-directed layout approach that enables intuitive control through freehand sketching. Our method uses classical image analysis techniques to extract structural information from sketches, which is then used to generate positional constraints that guide the layout process. We evaluate the approach on various real and synthetic graphs ranging from small to medium scale, demonstrating its ability to produce layouts aligned with user expectations. An implementation of our method along with documentation and a demo page is freely available on GitHub at https://github.com/sciluna/uggly.

Authors:Fatmah AlHindaassi, Mohammed Talha Alam, Fakhri Karray
Title: ADAM-Dehaze: Adaptive Density-Aware Multi-Stage Dehazing for Improved Object Detection in Foggy Conditions
Abstract:
Adverse weather conditions, particularly fog, pose a significant challenge to autonomous vehicles, surveillance systems, and other safety-critical applications by severely degrading visual information. We introduce ADAM-Dehaze, an adaptive, density-aware dehazing framework that jointly optimizes image restoration and object detection under varying fog intensities. A lightweight Haze Density Estimation Network (HDEN) classifies each input as light, medium, or heavy fog. Based on this score, the system dynamically routes the image through one of three CORUN branches: Light, Medium, or Complex, each tailored to its haze regime. A novel adaptive loss balances physical-model coherence and perceptual fidelity, ensuring both accurate defogging and preservation of fine details. On Cityscapes and the real-world RTTS benchmark, ADAM-Dehaze improves PSNR by up to 2.1 dB, reduces FADE by 30 percent, and increases object detection mAP by up to 13 points, while cutting inference time by 20 percent. These results highlight the importance of intensity-specific processing and seamless integration with downstream vision tasks. Code available at: https://github.com/talha-alam/ADAM-Dehaze.

Authors:Zhe Wang, Yuhua Ru, Aladine Chetouani, Tina Shiang, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane, William Ewing Palmer, Mohamed Jarraya, Yung Hsin Chen
Title: Diffusion-based Counterfactual Augmentation: Towards Robust and Interpretable Knee Osteoarthritis Grading
Abstract:
Automated grading of Knee Osteoarthritis (KOA) from radiographs is challenged by significant inter-observer variability and the limited robustness of deep learning models, particularly near critical decision boundaries. To address these limitations, this paper proposes a novel framework, Diffusion-based Counterfactual Augmentation (DCA), which enhances model robustness and interpretability by generating targeted counterfactual examples. The method navigates the latent space of a diffusion model using a Stochastic Differential Equation (SDE), governed by balancing a classifier-informed boundary drive with a manifold constraint. The resulting counterfactuals are then used within a self-corrective learning strategy to improve the classifier by focusing on its specific areas of uncertainty. Extensive experiments on the public Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) datasets demonstrate that this approach significantly improves classification accuracy across multiple model architectures. Furthermore, the method provides interpretability by visualizing minimal pathological changes and revealing that the learned latent space topology aligns with clinical knowledge of KOA progression. The DCA framework effectively converts model uncertainty into a robust training signal, offering a promising pathway to developing more accurate and trustworthy automated diagnostic systems. Our code is available at https://github.com/ZWang78/DCA.

Authors:Fangzhou Lin, Zilin Dai, Rigved Sanku, Songlin Hou, Kazunori D Yamada, Haichong K. Zhang, Ziming Zhang
Title: A Strong View-Free Baseline Approach for Single-View Image Guided Point Cloud Completion
Abstract:
The single-view image guided point cloud completion (SVIPC) task aims to reconstruct a complete point cloud from a partial input with the help of a single-view image. While previous works have demonstrated the effectiveness of this multimodal approach, the fundamental necessity of image guidance remains largely unexamined. To explore this, we propose a strong baseline approach for SVIPC based on an attention-based multi-branch encoder-decoder network that only takes partial point clouds as input, view-free. Our hierarchical self-fusion mechanism, driven by cross-attention and self-attention layers, effectively integrates information across multiple streams, enriching feature representations and strengthening the networks ability to capture geometric structures. Extensive experiments and ablation studies on the ShapeNet-ViPC dataset demonstrate that our view-free framework performs superiorly to state-of-the-art SVIPC methods. We hope our findings provide new insights into the development of multimodal learning in SVIPC. Our demo code will be available at https://github.com/Zhang-VISLab.

Authors:Wangzhi Zhan, Jianpeng Chen, Dongqi Fu, Dawei Zhou
Title: UniMate: A Unified Model for Mechanical Metamaterial Generation, Property Prediction, and Condition Confirmation
Abstract:
Metamaterials are artificial materials that are designed to meet unseen properties in nature, such as ultra-stiffness and negative materials indices. In mechanical metamaterial design, three key modalities are typically involved, i.e., 3D topology, density condition, and mechanical property. Real-world complex application scenarios place the demanding requirements on machine learning models to consider all three modalities together. However, a comprehensive literature review indicates that most existing works only consider two modalities, e.g., predicting mechanical properties given the 3D topology or generating 3D topology given the required properties. Therefore, there is still a significant gap for the state-of-the-art machine learning models capturing the whole. Hence, we propose a unified model named UNIMATE, which consists of a modality alignment module and a synergetic diffusion generation module. Experiments indicate that UNIMATE outperforms the other baseline models in topology generation task, property prediction task, and condition confirmation task by up to 80.2%, 5.1%, and 50.2%, respectively. We opensource our proposed UNIMATE model and corresponding results at https://github.com/wzhan24/UniMate.

Authors:Junqi Gao, Zhichang Guo, Dazhi Zhang, Dong Li, Runze Liu, Pengfei Li, Kai Tian, Biqing Qi
Title: Bohdi: Heterogeneous LLM Fusion with Automatic Data Exploration
Abstract:
Heterogeneous Large Language Model (LLM) fusion integrates the strengths of multiple source LLMs with different architectures into a target LLM with low computational overhead. While promising, existing methods suffer from two major limitations: 1) reliance on real data from limited domain for knowledge fusion, preventing the target LLM from fully acquiring knowledge across diverse domains, and 2) fixed data allocation proportions across domains, failing to dynamically adjust according to the target LLM's varying capabilities across domains, leading to a capability imbalance. To overcome these limitations, we propose Bohdi, a synthetic-data-only heterogeneous LLM fusion framework. Through the organization of knowledge domains into a hierarchical tree structure, Bohdi enables automatic domain exploration and multi-domain data generation through multi-model collaboration, thereby comprehensively extracting knowledge from source LLMs. By formalizing domain expansion and data sampling proportion allocation on the knowledge tree as a Hierarchical Multi-Armed Bandit problem, Bohdi leverages the designed DynaBranches mechanism to adaptively adjust sampling proportions based on the target LLM's performance feedback across domains. Integrated with our proposed Introspection-Rebirth (IR) mechanism, DynaBranches dynamically tracks capability shifts during target LLM's updates via Sliding Window Binomial Likelihood Ratio Testing (SWBLRT), further enhancing its online adaptation capability. Comparative experimental results on a comprehensive suite of benchmarks demonstrate that Bohdi significantly outperforms existing baselines on multiple target LLMs, exhibits higher data efficiency, and virtually eliminates the imbalance in the target LLM's capabilities. Our code is available at https://github.com/gjq100/Bohdi.git.

Authors:Hanyu Pei, Jing-Xiao Liao, Qibin Zhao, Ting Gao, Shijun Zhang, Xiaoge Zhang, Feng-Lei Fan
Title: NeuronSeek: On Stability and Expressivity of Task-driven Neurons
Abstract:
Drawing inspiration from our human brain that designs different neurons for different tasks, recent advances in deep learning have explored modifying a network's neurons to develop so-called task-driven neurons. Prototyping task-driven neurons (referred to as NeuronSeek) employs symbolic regression (SR) to discover the optimal neuron formulation and construct a network from these optimized neurons. Along this direction, this work replaces symbolic regression with tensor decomposition (TD) to discover optimal neuronal formulations, offering enhanced stability and faster convergence. Furthermore, we establish theoretical guarantees that modifying the aggregation functions with common activation functions can empower a network with a fixed number of parameters to approximate any continuous function with an arbitrarily small error, providing a rigorous mathematical foundation for the NeuronSeek framework. Extensive empirical evaluations demonstrate that our NeuronSeek-TD framework not only achieves superior stability, but also is competitive relative to the state-of-the-art models across diverse benchmarks. The code is available at https://github.com/HanyuPei22/NeuronSeek.

Authors:Guoqing Chao, Zhenghao Zhang, Lei Meng, Jie Wen, Dianhui Chu
Title: Federated Incomplete Multi-view Clustering with Globally Fused Graph Guidance
Abstract:
Federated multi-view clustering has been proposed to mine the valuable information within multi-view data distributed across different devices and has achieved impressive results while preserving the privacy. Despite great progress, most federated multi-view clustering methods only used global pseudo-labels to guide the downstream clustering process and failed to exploit the global information when extracting features. In addition, missing data problem in federated multi-view clustering task is less explored. To address these problems, we propose a novel Federated Incomplete Multi-view Clustering method with globally Fused Graph guidance (FIMCFG). Specifically, we designed a dual-head graph convolutional encoder at each client to extract two kinds of underlying features containing global and view-specific information. Subsequently, under the guidance of the fused graph, the two underlying features are fused into high-level features, based on which clustering is conducted under the supervision of pseudo-labeling. Finally, the high-level features are uploaded to the server to refine the graph fusion and pseudo-labeling computation. Extensive experimental results demonstrate the effectiveness and superiority of FIMCFG. Our code is publicly available at https://github.com/PaddiHunter/FIMCFG.

Authors:Haolin Pan, Hongyu Lin, Haoran Luo, Yang Liu, Kaichun Yao, Libo Zhang, Mingjie Xing, Yanjun Wu
Title: Compiler-R1: Towards Agentic Compiler Auto-tuning with Reinforcement Learning
Abstract:
Compiler auto-tuning optimizes pass sequences to improve performance metrics such as Intermediate Representation (IR) instruction count. Although recent advances leveraging Large Language Models (LLMs) have shown promise in automating compiler tuning, two significant challenges still remain: the absence of high-quality reasoning datasets for agents training, and limited effective interactions with the compilation environment. In this work, we introduce Compiler-R1, the first reinforcement learning (RL)-driven framework specifically augmenting LLM capabilities for compiler auto-tuning. Compiler-R1 features a curated, high-quality reasoning dataset and a novel two-stage end-to-end RL training pipeline, enabling efficient environment exploration and learning through an outcome-based reward. Extensive experiments across seven datasets demonstrate Compiler-R1 achieving an average 8.46% IR instruction count reduction compared to opt -Oz, showcasing the strong potential of RL-trained LLMs for compiler optimization. Our code and datasets are publicly available at https://github.com/Panhaolin2001/Compiler-R1.

Authors:Xinxing Ren, Qianbo Zang, Zekun Guo
Title: SimuGen: Multi-modal Agentic Framework for Constructing Block Diagram-Based Simulation Models
Abstract:
Recent advances in large language models (LLMs) have shown impressive performance in mathematical reasoning and code generation. However, LLMs still struggle in the simulation domain, particularly in generating Simulink models, which are essential tools in engineering and scientific research. Our preliminary experiments indicate that LLM agents often fail to produce reliable and complete Simulink simulation code from text-only inputs, likely due to the lack of Simulink-specific data in their pretraining. To address this challenge, we propose SimuGen, a multimodal agent-based framework that automatically generates accurate Simulink simulation code by leveraging both the visual Simulink diagram and domain knowledge. SimuGen coordinates several specialized agents, including an investigator, unit test reviewer, code generator, executor, debug locator, and report writer, supported by a domain-specific knowledge base. This collaborative and modular design enables interpretable, robust, and reproducible Simulink simulation generation. Our source code is publicly available at https://github.com/renxinxing123/SimuGen_beta.

Authors:Xinxing Ren, Qianbo Zang, Zekun Guo
Title: SimuGen: Multi-modal Agentic Framework for Constructing Block Diagram-Based Simulation Models
Abstract:
Recent advances in large language models (LLMs) have shown impressive performance in mathematical reasoning and code generation. However, LLMs still struggle in the simulation domain, particularly in generating Simulink models, which are essential tools in engineering and scientific research. Our preliminary experiments indicate that LLM agents often fail to produce reliable and complete Simulink simulation code from text-only inputs, likely due to the lack of Simulink-specific data in their pretraining. To address this challenge, we propose SimuGen, a multimodal agent-based framework that automatically generates accurate Simulink simulation code by leveraging both the visual Simulink diagram and domain knowledge. SimuGen coordinates several specialized agents, including an investigator, unit test reviewer, code generator, executor, debug locator, and report writer, supported by a domain-specific knowledge base. This collaborative and modular design enables interpretable, robust, and reproducible Simulink simulation generation. Our source code is publicly available at https://github.com/renxinxing123/SimuGen_beta.

Authors:Anirud Aggarwal, Abhinav Shrivastava, Matthew Gwilliam
Title: Evolutionary Caching to Accelerate Your Off-the-Shelf Diffusion Model
Abstract:
Diffusion-based image generation models excel at producing high-quality synthetic content, but suffer from slow and computationally expensive inference. Prior work has attempted to mitigate this by caching and reusing features within diffusion transformers across inference steps. These methods, however, often rely on rigid heuristics that result in limited acceleration or poor generalization across architectures. We propose Evolutionary Caching to Accelerate Diffusion models (ECAD), a genetic algorithm that learns efficient, per-model, caching schedules forming a Pareto frontier, using only a small set of calibration prompts. ECAD requires no modifications to network parameters or reference images. It offers significant inference speedups, enables fine-grained control over the quality-latency trade-off, and adapts seamlessly to different diffusion models. Notably, ECAD's learned schedules can generalize effectively to resolutions and model variants not seen during calibration. We evaluate ECAD on PixArt-alpha, PixArt-Sigma, and FLUX-1$.$dev using multiple metrics (FID, CLIP, Image Reward) across diverse benchmarks (COCO, MJHQ-30k, PartiPrompts), demonstrating consistent improvements over previous approaches. On PixArt-alpha, ECAD identifies a schedule that outperforms the previous state-of-the-art method by 4.47 COCO FID while increasing inference speedup from 2.35x to 2.58x. Our results establish ECAD as a scalable and generalizable approach for accelerating diffusion inference. Our project website is available at https://aniaggarwal.github.io/ecad and our code is available at https://github.com/aniaggarwal/ecad.

Authors:Tevin Wang, Chenyan Xiong
Title: AutoRule: Reasoning Chain-of-thought Extracted Rule-based Rewards Improve Preference Learning
Abstract:
Rule-based rewards offer a promising strategy for improving reinforcement learning from human feedback (RLHF), but current approaches often rely on manual rule engineering. We present AutoRule, a fully automated method for extracting rules from preference feedback and formulating them into rule-based rewards. AutoRule extraction operates in three stages: it leverages a reasoning model to interpret user preferences, identifies candidate rules from the reasoning chain of these interpretations, and synthesizes them into a unified rule set. Leveraging the finalized rule set, we employ language-model verifiers to compute the fraction of rules satisfied by each output, using this metric as an auxiliary reward alongside the learned reward model during policy optimization. Training a Llama-3-8B model with AutoRule results in a 28.6\% relative improvement in length-controlled win rate on AlpacaEval2.0, and a 6.1\% relative gain in second-turn performance on a held-out MT-Bench subset, compared to a GRPO baseline trained with the same learned reward model but without the rule-based auxiliary reward. Our analysis confirms that the extracted rules exhibit good agreement with dataset preference. We find that AutoRule demonstrates reduced reward hacking compared to a learned reward model when run over two episodes. Finally, our case study suggests that the extracted rules capture unique qualities valued in different datasets. The extracted rules are provided in the appendix, and the code is open-sourced at https://github.com/cxcscmu/AutoRule.

Authors:Kyobin Choo, Hyunkyung Han, Jinyeong Kim, Chanyong Yoon, Seong Jae Hwang
Title: Mono-Modalizing Extremely Heterogeneous Multi-Modal Medical Image Registration
Abstract:
In clinical practice, imaging modalities with functional characteristics, such as positron emission tomography (PET) and fractional anisotropy (FA), are often aligned with a structural reference (e.g., MRI, CT) for accurate interpretation or group analysis, necessitating multi-modal deformable image registration (DIR). However, due to the extreme heterogeneity of these modalities compared to standard structural scans, conventional unsupervised DIR methods struggle to learn reliable spatial mappings and often distort images. We find that the similarity metrics guiding these models fail to capture alignment between highly disparate modalities. To address this, we propose M2M-Reg (Multi-to-Mono Registration), a novel framework that trains multi-modal DIR models using only mono-modal similarity while preserving the established architectural paradigm for seamless integration into existing models. We also introduce GradCyCon, a regularizer that leverages M2M-Reg's cyclic training scheme to promote diffeomorphism. Furthermore, our framework naturally extends to a semi-supervised setting, integrating pre-aligned and unaligned pairs only, without requiring ground-truth transformations or segmentation masks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that M2M-Reg achieves up to 2x higher DSC than prior methods for PET-MRI and FA-MRI registration, highlighting its effectiveness in handling highly heterogeneous multi-modal DIR. Our code is available at https://github.com/MICV-yonsei/M2M-Reg.

Authors:Yujing Sun, Lingchen Sun, Shuaizheng Liu, Rongyuan Wu, Zhengqiang Zhang, Lei Zhang
Title: One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
Abstract:
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.

Authors:Shaoqing Lin, Chong Teng, Fei Li, Donghong Ji, Lizhen Qu, Zhuang Li
Title: DiscoSG: Towards Discourse-Level Text Scene Graph Parsing through Iterative Graph Refinement
Abstract:
Vision-Language Models (VLMs) generate discourse-level, multi-sentence visual descriptions, challenging text scene graph parsers built for single-sentence caption-to-graph mapping. Current approaches typically merge sentence-level parsing outputs for discourse input, often missing phenomena like cross-sentence coreference, resulting in fragmented graphs and degraded downstream VLM task performance. We introduce a new task, Discourse-level text Scene Graph parsing (DiscoSG), and release DiscoSG-DS, a dataset of 400 expert-annotated and 8,430 synthesised multi-sentence caption-graph pairs. Each caption averages 9 sentences, and each graph contains at least 3 times more triples than those in existing datasets. Fine-tuning GPT-4o on DiscoSG-DS yields over 40% higher SPICE than the strongest sentence-merging baseline. However, its high inference cost and licensing restrict open-source use, and smaller fine-tuned open-source models (e.g., Flan-T5) perform poorly on dense graph generation. To bridge this gap, we propose DiscoSG-Refiner, which drafts a base graph using a seed parser and iteratively refines it with a second model, improving robustness for complex graph generation. Using two small fine-tuned Flan-T5-Base models, DiscoSG-Refiner improves SPICE by approximately 30% over the baseline while achieving 86 times faster inference than GPT-4o. It also delivers consistent gains on downstream VLM tasks, including discourse-level caption evaluation and hallucination detection, outperforming alternative parsers. Code and data are available at https://github.com/ShaoqLin/DiscoSG .

Authors:Chang Liu, Yimeng Bai, Xiaoyan Zhao, Yang Zhang, Fuli Feng, Wenge Rong
Title: DiscRec: Disentangled Semantic-Collaborative Modeling for Generative Recommendation
Abstract:
Generative recommendation is emerging as a powerful paradigm that directly generates item predictions, moving beyond traditional matching-based approaches. However, current methods face two key challenges: token-item misalignment, where uniform token-level modeling ignores item-level granularity that is critical for collaborative signal learning, and semantic-collaborative signal entanglement, where collaborative and semantic signals exhibit distinct distributions yet are fused in a unified embedding space, leading to conflicting optimization objectives that limit the recommendation performance. To address these issues, we propose DiscRec, a novel framework that enables Disentangled Semantic-Collaborative signal modeling with flexible fusion for generative Recommendation. First, DiscRec introduces item-level position embeddings, assigned based on indices within each semantic ID, enabling explicit modeling of item structure in input token sequences. Second, DiscRec employs a dual-branch module to disentangle the two signals at the embedding layer: a semantic branch encodes semantic signals using original token embeddings, while a collaborative branch applies localized attention restricted to tokens within the same item to effectively capture collaborative signals. A gating mechanism subsequently fuses both branches while preserving the model's ability to model sequential dependencies. Extensive experiments on four real-world datasets demonstrate that DiscRec effectively decouples these signals and consistently outperforms state-of-the-art baselines. Our codes are available on https://github.com/Ten-Mao/DiscRec.

Authors:Jinheng Xie, Zhenheng Yang, Mike Zheng Shou
Title: Show-o2: Improved Native Unified Multimodal Models
Abstract:
This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at https://github.com/showlab/Show-o.

Authors:Xingrui Qin, Wentao Zhao, Chuan Cao, Yihe Niu, Tianchen Deng, Houcheng Jiang, Rui Guo, Jingchuan Wang
Title: RaCalNet: Radar Calibration Network for Sparse-Supervised Metric Depth Estimation
Abstract:
Dense depth estimation using millimeter-wave radar typically requires dense LiDAR supervision, generated via multi-frame projection and interpolation, for guiding the learning of accurate depth from sparse radar measurements and RGB images. However, this paradigm is both costly and data-intensive. To address this, we propose RaCalNet, a novel framework that eliminates the need for dense supervision by using sparse LiDAR to supervise the learning of refined radar measurements, resulting in a supervision density of merely around 1\% compared to dense-supervised methods. RaCalNet is composed of two key modules. The Radar Recalibration module performs radar point screening and pixel-wise displacement refinement, producing accurate and reliable depth priors from sparse radar inputs. These priors are then used by the Metric Depth Optimization module, which learns to infer scene-level scale priors and fuses them with monocular depth predictions to achieve metrically accurate outputs. This modular design enhances structural consistency and preserves fine-grained geometric details. Despite relying solely on sparse supervision, RaCalNet produces depth maps with clear object contours and fine-grained textures, demonstrating superior visual quality compared to state-of-the-art dense-supervised methods. Quantitatively, it achieves performance comparable to existing methods on the ZJU-4DRadarCam dataset and yields a 34.89\% RMSE reduction in real-world deployment scenarios. We plan to gradually release the code and models in the future at https://github.com/818slam/RaCalNet.git.

Authors:Farheen Ramzan, Yusuf Kiberu, Nikesh Jathanna, Shahnaz Jamil-Copley, Richard H. Clayton, Chen Chen
Title: CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation
Abstract:
Deep learning-based myocardial scar segmentation from late gadolinium enhancement (LGE) cardiac MRI has shown great potential for accurate and timely diagnosis and treatment planning for structural cardiac diseases. However, the limited availability and variability of LGE images with high-quality scar labels restrict the development of robust segmentation models. To address this, we introduce CLAIM: \textbf{C}linically-Guided \textbf{L}GE \textbf{A}ugmentation for Real\textbf{i}stic and Diverse \textbf{M}yocardial Scar Synthesis and Segmentation framework, a framework for anatomically grounded scar generation and segmentation. At its core is the SMILE module (Scar Mask generation guided by cLinical knowledgE), which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns. In addition, CLAIM employs a joint training strategy in which the scar segmentation network is optimized alongside the generator, aiming to enhance both the realism of synthesized scars and the accuracy of the scar segmentation performance. Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models. Our approach enables controllable and realistic myocardial scar synthesis and has demonstrated utility for downstream medical imaging task. Code is available at https://github.com/farheenjabeen/CLAIM-Scar-Synthesis.

Authors:Alaa Anani, Tobias Lorenz, Mario Fritz, Bernt Schiele
Title: Pixel-level Certified Explanations via Randomized Smoothing
Abstract:
Post-hoc attribution methods aim to explain deep learning predictions by highlighting influential input pixels. However, these explanations are highly non-robust: small, imperceptible input perturbations can drastically alter the attribution map while maintaining the same prediction. This vulnerability undermines their trustworthiness and calls for rigorous robustness guarantees of pixel-level attribution scores. We introduce the first certification framework that guarantees pixel-level robustness for any black-box attribution method using randomized smoothing. By sparsifying and smoothing attribution maps, we reformulate the task as a segmentation problem and certify each pixel's importance against $\ell_2$-bounded perturbations. We further propose three evaluation metrics to assess certified robustness, localization, and faithfulness. An extensive evaluation of 12 attribution methods across 5 ImageNet models shows that our certified attributions are robust, interpretable, and faithful, enabling reliable use in downstream tasks. Our code is at https://github.com/AlaaAnani/certified-attributions.

Authors:Nikolay Blagoev, Oğuzhan Ersoy, Lydia Yiyu Chen
Title: All is Not Lost: LLM Recovery without Checkpoints
Abstract:
Training LLMs on decentralized and wimpy computation nodes, e.g., multiple on-spot instances, lowers the training cost and enables model democratization. The inevitable challenge here is the churn of nodes due to failures and the operator's scheduling policies, leading to losing a stage - a part of the model. The conventional approaches to recover from failures are to either use checkpointing, where periodically a copy of the entire model is sent to an additional storage, or redundant computation. These approaches yield significant communication and/or computation overhead even in non-failure cases and scale poorly in settings with large models. In this paper, we propose, CheckFree, an efficient recovery method where a failing stage is substituted by a weighted average of the closest neighboring stages. In contrast to the state of the art, CheckFree requires no additional computation or storage. However, because of the nature of averaging neighbouring stages, it can only recover failures of intermediate stages. We further extend our method to CheckFree+ with out-of-order pipeline execution to tolerate crashes of the first and last stages. Thanks to out-of-order pipelining, behaviour of those stages is mimicked by their neighboring ones, which allows CheckFree+ to recover them by simply copying the weights from the immediate neighbour. To be able to recover the (de)embedding layers, CheckFree+ copies those layers to the neighboring stages, which requires relatively small storage overhead. We extensively evaluate our method on LLaMa models of model sizes from 124M to 1.5B with varying failure frequencies. In the case of low and medium failure rates (5-10%), CheckFree and CheckFree+ outperform both checkpointing and redundant computation in terms of convergence in wall-clock time by over 12%. Both of our proposals can be run via our code available at: https://github.com/gensyn-ai/CheckFree.

Authors:Zhouhong Gu, Xiaoxuan Zhu, Yin Cai, Hao Shen, Xingzhou Chen, Qingyi Wang, Jialin Li, Xiaoran Shi, Haoran Guo, Wenxuan Huang, Hongwei Feng, Yanghua Xiao, Zheyu Ye, Yao Hu, Shaosheng Cao
Title: AgentGroupChat-V2: Divide-and-Conquer Is What LLM-Based Multi-Agent System Need
Abstract:
Large language model based multi-agent systems have demonstrated significant potential in social simulation and complex task resolution domains. However, current frameworks face critical challenges in system architecture design, cross-domain generalizability, and performance guarantees, particularly as task complexity and number of agents increases. We introduces AgentGroupChat-V2, a novel framework addressing these challenges through three core innovations: (1) a divide-and-conquer fully parallel architecture that decomposes user queries into hierarchical task forest structures enabling dependency management and distributed concurrent processing. (2) an adaptive collaboration engine that dynamically selects heterogeneous LLM combinations and interaction modes based on task characteristics. (3) agent organization optimization strategies combining divide-and-conquer approaches for efficient problem decomposition. Extensive experiments demonstrate AgentGroupChat-V2's superior performance across diverse domains, achieving 91.50% accuracy on GSM8K (exceeding the best baseline by 5.6 percentage points), 30.4% accuracy on competition-level AIME (nearly doubling other methods), and 79.20% pass@1 on HumanEval. Performance advantages become increasingly pronounced with higher task difficulty, particularly on Level 5 MATH problems where improvements exceed 11 percentage points compared to state-of-the-art baselines. These results confirm that AgentGroupChat-V2 provides a comprehensive solution for building efficient, general-purpose LLM multi-agent systems with significant advantages in complex reasoning scenarios. Code is available at https://github.com/MikeGu721/AgentGroupChat-V2.

Authors:Guoguo Ai, Hezhe Qiao, Hui Yan, Guansong Pang
Title: Semi-supervised Graph Anomaly Detection via Robust Homophily Learning
Abstract:
Semi-supervised graph anomaly detection (GAD) utilizes a small set of labeled normal nodes to identify abnormal nodes from a large set of unlabeled nodes in a graph. Current methods in this line posit that 1) normal nodes share a similar level of homophily and 2) the labeled normal nodes can well represent the homophily patterns in the normal class. However, this assumption often does not hold well since normal nodes in a graph can exhibit diverse homophily in real-world GAD datasets. In this paper, we propose RHO, namely Robust Homophily Learning, to adaptively learn such homophily patterns. RHO consists of two novel modules, adaptive frequency response filters (AdaFreq) and graph normality alignment (GNA). AdaFreq learns a set of adaptive spectral filters that capture different frequency components of the labeled normal nodes with varying homophily in the channel-wise and cross-channel views of node attributes. GNA is introduced to enforce consistency between the channel-wise and cross-channel homophily representations to robustify the normality learned by the filters in the two views. Experiments on eight real-world GAD datasets show that RHO can effectively learn varying, often under-represented, homophily in the small normal node set and substantially outperforms state-of-the-art competing methods. Code is available at https://github.com/mala-lab/RHO.

Authors:Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He, Di Luo, Haolin Liu, Yunfei Zhao, Qingxiang Lin, Zeqiang Lai, Xianghui Yang, Huiwen Shi, Zibo Zhao, Bowen Zhang, Hongyu Yan, Lifu Wang, Sicong Liu, Jihong Zhang, Meng Chen, Liang Dong, Yiwen Jia, Yulin Cai, Jiaao Yu, Yixuan Tang, Dongyuan Guo, Junlin Yu, Hao Zhang, Zheng Ye, Peng He, Runzhou Wu, Shida Wei, Chao Zhang, Yonghao Tan, Yifu Sun, Lin Niu, Shirui Huang, Bojian Zheng, Shu Liu, Shilin Chen, Xiang Yuan, Xiaofeng Yang, Kai Liu, Jianchen Zhu, Peng Chen, Tian Liu, Di Wang, Yuhong Liu, Linus, Jie Jiang, Jingwei Huang, Chunchao Guo
Title: Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material
Abstract:
3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.

Authors:Damin Kühn, Michael T. Schaub
Title: Global Ground Metric Learning with Applications to scRNA data
Abstract:
Optimal transport provides a robust framework for comparing probability distributions. Its effectiveness is significantly influenced by the choice of the underlying ground metric. Traditionally, the ground metric has either been (i) predefined, e.g., as the Euclidean distance, or (ii) learned in a supervised way, by utilizing labeled data to learn a suitable ground metric for enhanced task-specific performance. Yet, predefined metrics typically cannot account for the inherent structure and varying importance of different features in the data, and existing supervised approaches to ground metric learning often do not generalize across multiple classes or are restricted to distributions with shared supports. To address these limitations, we propose a novel approach for learning metrics for arbitrary distributions over a shared metric space. Our method provides a distance between individual points like a global metric, but requires only class labels on a distribution-level for training. The learned global ground metric enables more accurate optimal transport distances, leading to improved performance in embedding, clustering and classification tasks. We demonstrate the effectiveness and interpretability of our approach using patient-level scRNA-seq data spanning multiple diseases.

Authors:J. Thorben Frank, Winfried Ripken, Gregor Lied, Klaus-Robert Müller, Oliver T. Unke, Stefan Chmiela
Title: Sampling 3D Molecular Conformers with Diffusion Transformers
Abstract:
Diffusion Transformers (DiTs) have demonstrated strong performance in generative modeling, particularly in image synthesis, making them a compelling choice for molecular conformer generation. However, applying DiTs to molecules introduces novel challenges, such as integrating discrete molecular graph information with continuous 3D geometry, handling Euclidean symmetries, and designing conditioning mechanisms that generalize across molecules of varying sizes and structures. We propose DiTMC, a framework that adapts DiTs to address these challenges through a modular architecture that separates the processing of 3D coordinates from conditioning on atomic connectivity. To this end, we introduce two complementary graph-based conditioning strategies that integrate seamlessly with the DiT architecture. These are combined with different attention mechanisms, including both standard non-equivariant and SO(3)-equivariant formulations, enabling flexible control over the trade-off between between accuracy and computational efficiency. Experiments on standard conformer generation benchmarks (GEOM-QM9, -DRUGS, -XL) demonstrate that DiTMC achieves state-of-the-art precision and physical validity. Our results highlight how architectural choices and symmetry priors affect sample quality and efficiency, suggesting promising directions for large-scale generative modeling of molecular structures. Code available at https://github.com/ML4MolSim/dit_mc.

Authors:Niki Amini-Naieni, Andrew Zisserman
Title: Open-World Object Counting in Videos
Abstract:
We introduce a new task of open-world object counting in videos: given a text description, or an image example, that specifies the target object, the objective is to enumerate all the unique instances of the target objects in the video. This task is especially challenging in crowded scenes with occlusions and similar objects, where avoiding double counting and identifying reappearances is crucial. To this end, we make the following contributions: we introduce a model, CountVid, for this task. It leverages an image-based counting model, and a promptable video segmentation and tracking model to enable automated, open-world object counting across video frames. To evaluate its performance, we introduce VideoCount, a new dataset for our novel task built from the TAO and MOT20 tracking datasets, as well as from videos of penguins and metal alloy crystallization captured by x-rays. Using this dataset, we demonstrate that CountVid provides accurate object counts, and significantly outperforms strong baselines. The VideoCount dataset, the CountVid model, and all the code are available at https://github.com/niki-amini-naieni/CountVid/.

Authors:A. S. Stankevich, I. B. Petrov
Title: Acoustic Waveform Inversion with Image-to-Image Schrödinger Bridges
Abstract:
Recent developments in application of deep learning models to acoustic Full Waveform Inversion (FWI) are marked by the use of diffusion models as prior distributions for Bayesian-like inference procedures. The advantage of these methods is the ability to generate high-resolution samples, which are otherwise unattainable with classical inversion methods or other deep learning-based solutions. However, the iterative and stochastic nature of sampling from diffusion models along with heuristic nature of output control remain limiting factors for their applicability. For instance, an optimal way to include the approximate velocity model into diffusion-based inversion scheme remains unclear, even though it is considered an essential part of FWI pipeline. We address the issue by employing a Schrödinger Bridge that interpolates between the distributions of ground truth and smoothed velocity models. To facilitate the learning of nonlinear drifts that transfer samples between distributions we extend the concept of Image-to-Image Schrödinger Bridge ($\text{I}^2\text{SB}$) to conditional sampling, resulting in a conditional Image-to-Image Schrödinger Bridge (c$\text{I}^2\text{SB}$) framework. To validate our method, we assess its effectiveness in reconstructing the reference velocity model from its smoothed approximation, coupled with the observed seismic signal of fixed shape. Our experiments demonstrate that the proposed solution outperforms our reimplementation of conditional diffusion model suggested in earlier works, while requiring only a few neural function evaluations (NFEs) to achieve sample fidelity superior to that attained with supervised learning-based approach. The supplementary code implementing the algorithms described in this paper can be found in the repository https://github.com/stankevich-mipt/seismic_inversion_via_I2SB.

Authors:Lanfeng Zhong, Xin Liao, Shichuan Zhang, Shaoting Zhang, Guotai Wang
Title: OpenPath: Open-Set Active Learning for Pathology Image Classification via Pre-trained Vision-Language Models
Abstract:
Pathology image classification plays a crucial role in accurate medical diagnosis and treatment planning. Training high-performance models for this task typically requires large-scale annotated datasets, which are both expensive and time-consuming to acquire. Active Learning (AL) offers a solution by iteratively selecting the most informative samples for annotation, thereby reducing the labeling effort. However, most AL methods are designed under the assumption of a closed-set scenario, where all the unannotated images belong to target classes. In real-world clinical environments, the unlabeled pool often contains a substantial amount of Out-Of-Distribution (OOD) data, leading to low efficiency of annotation in traditional AL methods. Furthermore, most existing AL methods start with random selection in the first query round, leading to a significant waste of labeling costs in open-set scenarios. To address these challenges, we propose OpenPath, a novel open-set active learning approach for pathological image classification leveraging a pre-trained Vision-Language Model (VLM). In the first query, we propose task-specific prompts that combine target and relevant non-target class prompts to effectively select In-Distribution (ID) and informative samples from the unlabeled pool. In subsequent queries, Diverse Informative ID Sampling (DIS) that includes Prototype-based ID candidate Selection (PIS) and Entropy-Guided Stochastic Sampling (EGSS) is proposed to ensure both purity and informativeness in a query, avoiding the selection of OOD samples. Experiments on two public pathology image datasets show that OpenPath significantly enhances the model's performance due to its high purity of selected samples, and outperforms several state-of-the-art open-set AL methods. The code is available at \href{https://github.com/HiLab-git/OpenPath}{https://github.com/HiLab-git/OpenPath}..

Authors:Leonid Ivanov, Vasily Yuryev, Dmitry Yudin
Title: MapFM: Foundation Model-Driven HD Mapping with Multi-Task Contextual Learning
Abstract:
In autonomous driving, high-definition (HD) maps and semantic maps in bird's-eye view (BEV) are essential for accurate localization, planning, and decision-making. This paper introduces an enhanced End-to-End model named MapFM for online vectorized HD map generation. We show significantly boost feature representation quality by incorporating powerful foundation model for encoding camera images. To further enrich the model's understanding of the environment and improve prediction quality, we integrate auxiliary prediction heads for semantic segmentation in the BEV representation. This multi-task learning approach provides richer contextual supervision, leading to a more comprehensive scene representation and ultimately resulting in higher accuracy and improved quality of the predicted vectorized HD maps. The source code is available at https://github.com/LIvanoff/MapFM.

Authors:Han Wu, Junyao Li, Kangbo Zhao, Sen Zhang, Yukai Shi, Liang Lin
Title: One-shot Face Sketch Synthesis in the Wild via Generative Diffusion Prior and Instruction Tuning
Abstract:
Face sketch synthesis is a technique aimed at converting face photos into sketches. Existing face sketch synthesis research mainly relies on training with numerous photo-sketch sample pairs from existing datasets. However, these large-scale discriminative learning methods will have to face problems such as data scarcity and high human labor costs. Once the training data becomes scarce, their generative performance significantly degrades. In this paper, we propose a one-shot face sketch synthesis method based on diffusion models. We optimize text instructions on a diffusion model using face photo-sketch image pairs. Then, the instructions derived through gradient-based optimization are used for inference. To simulate real-world scenarios more accurately and evaluate method effectiveness more comprehensively, we introduce a new benchmark named One-shot Face Sketch Dataset (OS-Sketch). The benchmark consists of 400 pairs of face photo-sketch images, including sketches with different styles and photos with different backgrounds, ages, sexes, expressions, illumination, etc. For a solid out-of-distribution evaluation, we select only one pair of images for training at each time, with the rest used for inference. Extensive experiments demonstrate that the proposed method can convert various photos into realistic and highly consistent sketches in a one-shot context. Compared to other methods, our approach offers greater convenience and broader applicability. The dataset will be available at: https://github.com/HanWu3125/OS-Sketch

Authors:Zihao Li, Qiang Chen, Lixin Zou, Aixin Sun, Chenliang Li
Title: Multi-Interest Recommendation: A Survey
Abstract:
Existing recommendation methods often struggle to model users' multifaceted preferences due to the diversity and volatility of user behavior, as well as the inherent uncertainty and ambiguity of item attributes in practical scenarios. Multi-interest recommendation addresses this challenge by extracting multiple interest representations from users' historical interactions, enabling fine-grained preference modeling and more accurate recommendations. It has drawn broad interest in recommendation research. However, current recommendation surveys have either specialized in frontier recommendation methods or delved into specific tasks and downstream applications. In this work, we systematically review the progress, solutions, challenges, and future directions of multi-interest recommendation by answering the following three questions: (1) Why is multi-interest modeling significantly important for recommendation? (2) What aspects are focused on by multi-interest modeling in recommendation? and (3) How can multi-interest modeling be applied, along with the technical details of the representative modules? We hope that this survey establishes a fundamental framework and delivers a preliminary overview for researchers interested in this field and committed to further exploration. The implementation of multi-interest recommendation summarized in this survey is maintained at https://github.com/WHUIR/Multi-Interest-Recommendation-A-Survey.

Authors:Bihe Zhao, Pratyush Maini, Franziska Boenisch, Adam Dziedzic
Title: Unlocking Post-hoc Dataset Inference with Synthetic Data
Abstract:
The remarkable capabilities of Large Language Models (LLMs) can be mainly attributed to their massive training datasets, which are often scraped from the internet without respecting data owners' intellectual property rights. Dataset Inference (DI) offers a potential remedy by identifying whether a suspect dataset was used in training, thereby enabling data owners to verify unauthorized use. However, existing DI methods require a private set-known to be absent from training-that closely matches the compromised dataset's distribution. Such in-distribution, held-out data is rarely available in practice, severely limiting the applicability of DI. In this work, we address this challenge by synthetically generating the required held-out set. Our approach tackles two key obstacles: (1) creating high-quality, diverse synthetic data that accurately reflects the original distribution, which we achieve via a data generator trained on a carefully designed suffix-based completion task, and (2) bridging likelihood gaps between real and synthetic data, which is realized through post-hoc calibration. Extensive experiments on diverse text datasets show that using our generated data as a held-out set enables DI to detect the original training sets with high confidence, while maintaining a low false positive rate. This result empowers copyright owners to make legitimate claims on data usage and demonstrates our method's reliability for real-world litigations. Our code is available at https://github.com/sprintml/PostHocDatasetInference.

Authors:Jan van Delden, Julius Schultz, Sebastian Rothe, Christian Libner, Sabine C. Langer, Timo Lüddecke
Title: Minimizing Structural Vibrations via Guided Flow Matching Design Optimization
Abstract:
Structural vibrations are a source of unwanted noise in engineering systems like cars, trains or airplanes. Minimizing these vibrations is crucial for improving passenger comfort. This work presents a novel design optimization approach based on guided flow matching for reducing vibrations by placing beadings (indentations) in plate-like structures. Our method integrates a generative flow matching model and a surrogate model trained to predict structural vibrations. During the generation process, the flow matching model pushes towards manufacturability while the surrogate model pushes to low-vibration solutions. The flow matching model and its training data implicitly define the design space, enabling a broader exploration of potential solutions as no optimization of manually-defined design parameters is required. We apply our method to a range of differentiable optimization objectives, including direct optimization of specific eigenfrequencies through careful construction of the objective function. Results demonstrate that our method generates diverse and manufacturable plate designs with reduced structural vibrations compared to designs from random search, a criterion-based design heuristic and genetic optimization. The code and data are available from https://github.com/ecker-lab/Optimizing_Vibrating_Plates.

Authors:Yuchuan Fu, Xiaohan Yuan, Dongxia Wang
Title: RAS-Eval: A Comprehensive Benchmark for Security Evaluation of LLM Agents in Real-World Environments
Abstract:
The rapid deployment of Large language model (LLM) agents in critical domains like healthcare and finance necessitates robust security frameworks. To address the absence of standardized evaluation benchmarks for these agents in dynamic environments, we introduce RAS-Eval, a comprehensive security benchmark supporting both simulated and real-world tool execution. RAS-Eval comprises 80 test cases and 3,802 attack tasks mapped to 11 Common Weakness Enumeration (CWE) categories, with tools implemented in JSON, LangGraph, and Model Context Protocol (MCP) formats. We evaluate 6 state-of-the-art LLMs across diverse scenarios, revealing significant vulnerabilities: attacks reduced agent task completion rates (TCR) by 36.78% on average and achieved an 85.65% success rate in academic settings. Notably, scaling laws held for security capabilities, with larger models outperforming smaller counterparts. Our findings expose critical risks in real-world agent deployments and provide a foundational framework for future security research. Code and data are available at https://github.com/lanzer-tree/RAS-Eval.

Authors:Liangjie Meng, Danxia Li, Jinrong He, Lili Ma, Zhixin Li
Title: Convolutional Feature Enhancement and Attention Fusion BiFPN for Ship Detection in SAR Images
Abstract:
Synthetic Aperture Radar (SAR) enables submeter-resolution imaging and all-weather monitoring via active microwave and advanced signal processing. Currently, SAR has found extensive applications in critical maritime domains such as ship detection. However, SAR ship detection faces several challenges, including significant scale variations among ships, the presence of small offshore vessels mixed with noise, and complex backgrounds for large nearshore ships. To address these issues, this paper proposes a novel feature enhancement and fusion framework named C-AFBiFPN. C-AFBiFPN constructs a Convolutional Feature Enhancement (CFE) module following the backbone network, aiming to enrich feature representation and enhance the ability to capture and represent local details and contextual information. Furthermore, C-AFBiFPN innovatively integrates BiFormer attention within the fusion strategy of BiFPN, creating the AFBiFPN network. AFBiFPN improves the global modeling capability of cross-scale feature fusion and can adaptively focus on critical feature regions. The experimental results on SAR Ship Detection Dataset (SSDD) indicate that the proposed approach substantially enhances detection accuracy for small targets, robustness against occlusions, and adaptability to multi-scale features.

Authors:Yufeng Zhang, Wenrui Dai, Hang Yu, Shizhan Liu, Junhui Hou, Jianguo Li, Weiyao Lin
Title: ABC: Adaptive BayesNet Structure Learning for Computational Scalable Multi-task Image Compression
Abstract:
Neural Image Compression (NIC) has revolutionized image compression with its superior rate-distortion performance and multi-task capabilities, supporting both human visual perception and machine vision tasks. However, its widespread adoption is hindered by substantial computational demands. While existing approaches attempt to address this challenge through module-specific optimizations or pre-defined complexity levels, they lack comprehensive control over computational complexity. We present ABC (Adaptive BayesNet structure learning for computational scalable multi-task image Compression), a novel, comprehensive framework that achieves computational scalability across all NIC components through Bayesian network (BayesNet) structure learning. ABC introduces three key innovations: (i) a heterogeneous bipartite BayesNet (inter-node structure) for managing neural backbone computations; (ii) a homogeneous multipartite BayesNet (intra-node structure) for optimizing autoregressive unit processing; and (iii) an adaptive control module that dynamically adjusts the BayesNet structure based on device capabilities, input data complexity, and downstream task requirements. Experiments demonstrate that ABC enables full computational scalability with better complexity adaptivity and broader complexity control span, while maintaining competitive compression performance. Furthermore, the framework's versatility allows integration with various NIC architectures that employ BayesNet representations, making it a robust solution for ensuring computational scalability in NIC applications. Code is available in https://github.com/worldlife123/cbench_BaSIC.

Authors:Quanjun Zhang, Chunrong Fang, Siqi Gu, Ye Shang, Zhenyu Chen, Liang Xiao
Title: Large Language Models for Unit Testing: A Systematic Literature Review
Abstract:
Unit testing is a fundamental practice in modern software engineering, with the aim of ensuring the correctness, maintainability, and reliability of individual software components. Very recently, with the advances in Large Language Models (LLMs), a rapidly growing body of research has leveraged LLMs to automate various unit testing tasks, demonstrating remarkable performance and significantly reducing manual effort. However, due to ongoing explorations in the LLM-based unit testing field, it is challenging for researchers to understand existing achievements, open challenges, and future opportunities. This paper presents the first systematic literature review on the application of LLMs in unit testing until March 2025. We analyze \numpaper{} relevant papers from the perspectives of both unit testing and LLMs. We first categorize existing unit testing tasks that benefit from LLMs, e.g., test generation and oracle generation. We then discuss several critical aspects of integrating LLMs into unit testing research, including model usage, adaptation strategies, and hybrid approaches. We further summarize key challenges that remain unresolved and outline promising directions to guide future research in this area. Overall, our paper provides a systematic overview of the research landscape to the unit testing community, helping researchers gain a comprehensive understanding of achievements and promote future research. Our artifacts are publicly available at the GitHub repository: https://github.com/iSEngLab/AwesomeLLM4UT.

Authors:Changli Tang, Yixuan Li, Yudong Yang, Jimin Zhuang, Guangzhi Sun, Wei Li, Zejun Ma, Chao Zhang
Title: video-SALMONN 2: Captioning-Enhanced Audio-Visual Large Language Models
Abstract:
Videos contain a wealth of information, and generating detailed and accurate descriptions in natural language is a key aspect of video understanding. In this paper, we present video-SALMONN 2, an advanced audio-visual large language model (LLM) with low-rank adaptation (LoRA) designed for enhanced video (with paired audio) captioning through directed preference optimisation (DPO). We propose new metrics to evaluate the completeness and accuracy of video descriptions, which are optimised using DPO. To further improve training, we propose a novel multi-round DPO (MrDPO) approach, which involves periodically updating the DPO reference model, merging and re-initialising the LoRA module as a proxy for parameter updates after each training round (1,000 steps), and incorporating guidance from ground-truth video captions to stabilise the process. Experimental results show that MrDPO significantly enhances video-SALMONN 2's captioning accuracy, reducing the captioning error rates by 28\%. The final video-SALMONN 2 model, with just 7 billion parameters, surpasses leading models such as GPT-4o and Gemini-1.5-Pro in video captioning tasks, while maintaining highly competitive performance to the state-of-the-art on widely used video question-answering benchmarks among models of similar size. Codes are available at \href{https://github.com/bytedance/video-SALMONN-2}{https://github.com/bytedance/video-SALMONN-2}.

Authors:Changli Tang, Yixuan Li, Yudong Yang, Jimin Zhuang, Guangzhi Sun, Wei Li, Zejun Ma, Chao Zhang
Title: video-SALMONN 2: Caption-Enhanced Audio-Visual Large Language Models
Abstract:
We present video-SALMONN 2, a family of audio-visual large language models that set new state-of-the-art (SOTA) results in video description and question answering (QA). Our core contribution is multi-round direct preference optimisation (MrDPO), paired with a caption-quality objective that jointly rewards completeness and factual accuracy. Unlike standard DPO with a fixed reference policy, MrDPO periodically refreshes the reference by bootstrapping from a newly re-initialised lightweight adapter trained on the latest preferences, avoiding reference staleness and enabling continual improvement. This strategy produces captions that are consistently more detailed and accurate than those from proprietary systems such as GPT-4o and Gemini-1.5 Pro. We further distil these gains by using our model to generate a high-quality video-caption corpus for supervised fine-tuning of new models, transferring benefits beyond captioning to strong performance on complex video-QA tasks. Across widely used audio-visual and visual-only understanding benchmarks (including Video-MME, WorldSense, AVUT, Video-Holmes, DailyOmni, MLVU, and LVBench), our 3B and 7B models achieve SOTA results at comparable scales, while the 72B model surpasses all other open-source systems. Our source code, models, and data are released at \href{https://github.com/bytedance/video-SALMONN-2}{https://github.com/bytedance/video-SALMONN-2}.

Authors:Dan He, Weisheng Li, Guofen Wang, Yuping Huang, Shiqiang Liu
Title: DM-FNet: Unified multimodal medical image fusion via diffusion process-trained encoder-decoder
Abstract:
Multimodal medical image fusion (MMIF) extracts the most meaningful information from multiple source images, enabling a more comprehensive and accurate diagnosis. Achieving high-quality fusion results requires a careful balance of brightness, color, contrast, and detail; this ensures that the fused images effectively display relevant anatomical structures and reflect the functional status of the tissues. However, existing MMIF methods have limited capacity to capture detailed features during conventional training and suffer from insufficient cross-modal feature interaction, leading to suboptimal fused image quality. To address these issues, this study proposes a two-stage diffusion model-based fusion network (DM-FNet) to achieve unified MMIF. In Stage I, a diffusion process trains UNet for image reconstruction. UNet captures detailed information through progressive denoising and represents multilevel data, providing a rich set of feature representations for the subsequent fusion network. In Stage II, noisy images at various steps are input into the fusion network to enhance the model's feature recognition capability. Three key fusion modules are also integrated to process medical images from different modalities adaptively. Ultimately, the robust network structure and a hybrid loss function are integrated to harmonize the fused image's brightness, color, contrast, and detail, enhancing its quality and information density. The experimental results across various medical image types demonstrate that the proposed method performs exceptionally well regarding objective evaluation metrics. The fused image preserves appropriate brightness, a comprehensive distribution of radioactive tracers, rich textures, and clear edges. The code is available at https://github.com/HeDan-11/DM-FNet.

Authors:Xianliang Yang, Ling Zhang, Haolong Qian, Lei Song, Jiang Bian
Title: HeurAgenix: Leveraging LLMs for Solving Complex Combinatorial Optimization Challenges
Abstract:
Heuristic algorithms play a vital role in solving combinatorial optimization (CO) problems, yet traditional designs depend heavily on manual expertise and struggle to generalize across diverse instances. We introduce \textbf{HeurAgenix}, a two-stage hyper-heuristic framework powered by large language models (LLMs) that first evolves heuristics and then selects among them automatically. In the heuristic evolution phase, HeurAgenix leverages an LLM to compare seed heuristic solutions with higher-quality solutions and extract reusable evolution strategies. During problem solving, it dynamically picks the most promising heuristic for each problem state, guided by the LLM's perception ability. For flexibility, this selector can be either a state-of-the-art LLM or a fine-tuned lightweight model with lower inference cost. To mitigate the scarcity of reliable supervision caused by CO complexity, we fine-tune the lightweight heuristic selector with a dual-reward mechanism that jointly exploits singals from selection preferences and state perception, enabling robust selection under noisy annotations. Extensive experiments on canonical benchmarks show that HeurAgenix not only outperforms existing LLM-based hyper-heuristics but also matches or exceeds specialized solvers. Code is available at https://github.com/microsoft/HeurAgenix.

Authors:Jiaqi Shi, Jin Xiao, Xiaoguang Hu, Boyang Song, Hao Jiang, Tianyou Chen, Baochang Zhang
Title: Enhancing point cloud analysis via neighbor aggregation correction based on cross-stage structure correlation
Abstract:
Point cloud analysis is the cornerstone of many downstream tasks, among which aggregating local structures is the basis for understanding point cloud data. While numerous works aggregate neighbor using three-dimensional relative coordinates, there are irrelevant point interference and feature hierarchy gap problems due to the limitation of local coordinates. Although some works address this limitation by refining spatial description though explicit modeling of cross-stage structure, these enhancement methods based on direct geometric structure encoding have problems of high computational overhead and noise sensitivity. To overcome these problems, we propose the Point Distribution Set Abstraction module (PDSA) that utilizes the correlation in the high-dimensional space to correct the feature distribution during aggregation, which improves the computational efficiency and robustness. PDSA distinguishes the point correlation based on a lightweight cross-stage structural descriptor, and enhances structural homogeneity by reducing the variance of the neighbor feature matrix and increasing classes separability though long-distance modeling. Additionally, we introducing a key point mechanism to optimize the computational overhead. The experimental result on semantic segmentation and classification tasks based on different baselines verify the generalization of the method we proposed, and achieve significant performance improvement with less parameter cost. The corresponding ablation and visualization results demonstrate the effectiveness and rationality of our method. The code and training weight is available at: https://github.com/AGENT9717/PointDistribution

Authors:Yushi Wang, Penghui Chen, Xinyu Han, Feng Wu, Mingguo Zhao
Title: Booster Gym: An End-to-End Reinforcement Learning Framework for Humanoid Robot Locomotion
Abstract:
Recent advancements in reinforcement learning (RL) have led to significant progress in humanoid robot locomotion, simplifying the design and training of motion policies in simulation. However, the numerous implementation details make transferring these policies to real-world robots a challenging task. To address this, we have developed a comprehensive code framework that covers the entire process from training to deployment, incorporating common RL training methods, domain randomization, reward function design, and solutions for handling parallel structures. This library is made available as a community resource, with detailed descriptions of its design and experimental results. We validate the framework on the Booster T1 robot, demonstrating that the trained policies seamlessly transfer to the physical platform, enabling capabilities such as omnidirectional walking, disturbance resistance, and terrain adaptability. We hope this work provides a convenient tool for the robotics community, accelerating the development of humanoid robots. The code can be found in https://github.com/BoosterRobotics/booster_gym.

Authors:Junke Wang, Hongshun Ling, Li Zhang, Longqian Zhang, Fang Wang, Yuan Gao, Zhi Li
Title: CKD-EHR:Clinical Knowledge Distillation for Electronic Health Records
Abstract:
Electronic Health Records (EHR)-based disease prediction models have demonstrated significant clinical value in promoting precision medicine and enabling early intervention. However, existing large language models face two major challenges: insufficient representation of medical knowledge and low efficiency in clinical deployment. To address these challenges, this study proposes the CKD-EHR (Clinical Knowledge Distillation for EHR) framework, which achieves efficient and accurate disease risk prediction through knowledge distillation techniques. Specifically, the large language model Qwen2.5-7B is first fine-tuned on medical knowledge-enhanced data to serve as the teacher model.It then generates interpretable soft labels through a multi-granularity attention distillation mechanism. Finally, the distilled knowledge is transferred to a lightweight BERT student model. Experimental results show that on the MIMIC-III dataset, CKD-EHR significantly outperforms the baseline model:diagnostic accuracy is increased by 9%, F1-score is improved by 27%, and a 22.2 times inference speedup is achieved. This innovative solution not only greatly improves resource utilization efficiency but also significantly enhances the accuracy and timeliness of diagnosis, providing a practical technical approach for resource optimization in clinical settings. The code and data for this research are available athttps://github.com/209506702/CKD_EHR.

Authors:Paige Tuttösí, Shivam Mehta, Zachary Syvenky, Bermet Burkanova, Gustav Eje Henter, Angelica Lim
Title: EmojiVoice: Towards long-term controllable expressivity in robot speech
Abstract:
Humans vary their expressivity when speaking for extended periods to maintain engagement with their listener. Although social robots tend to be deployed with ``expressive'' joyful voices, they lack this long-term variation found in human speech. Foundation model text-to-speech systems are beginning to mimic the expressivity in human speech, but they are difficult to deploy offline on robots. We present EmojiVoice, a free, customizable text-to-speech (TTS) toolkit that allows social roboticists to build temporally variable, expressive speech on social robots. We introduce emoji-prompting to allow fine-grained control of expressivity on a phase level and use the lightweight Matcha-TTS backbone to generate speech in real-time. We explore three case studies: (1) a scripted conversation with a robot assistant, (2) a storytelling robot, and (3) an autonomous speech-to-speech interactive agent. We found that using varied emoji prompting improved the perception and expressivity of speech over a long period in a storytelling task, but expressive voice was not preferred in the assistant use case.

Authors:Zongxia Li, Yapei Chang, Yuhang Zhou, Xiyang Wu, Zichao Liang, Yoo Yeon Sung, Jordan Lee Boyd-Graber
Title: Semantically-Aware Rewards for Open-Ended R1 Training in Free-Form Generation
Abstract:
Evaluating open-ended long-form generation is challenging because it is hard to define what clearly separates good from bad outputs. Existing methods often miss key aspects like coherence, style, or relevance, or are biased by pretraining data, making open-ended long-form evaluation an underexplored problem. To address this gap, we propose PrefBERT, a scoring model for evaluating open-ended long-form generation in GRPO and guiding its training with distinct rewards for good and bad outputs. Trained on two response evaluation datasets with diverse long-form styles and Likert-rated quality, PrefBERT effectively supports GRPO by offering better semantic reward feedback than traditional metrics ROUGE-L and BERTScore do. Through comprehensive evaluations, including LLM-as-a-judge, human ratings, and qualitative analysis, we show that PrefBERT, trained on multi-sentence and paragraph-length responses, remains reliable across varied long passages and aligns well with the verifiable rewards GRPO needs. Human evaluations confirm that using PrefBERT as the reward signal to train policy models yields responses better aligned with human preferences than those trained with traditional metrics. Our code is available at https://github.com/zli12321/long_form_rl.

Authors:Yijun Lin, Yao-Yi Chiang
Title: Hyper-Local Deformable Transformers for Text Spotting on Historical Maps
Abstract:
Text on historical maps contains valuable information providing georeferenced historical, political, and cultural contexts. However, text extraction from historical maps is challenging due to the lack of (1) effective methods and (2) training data. Previous approaches use ad-hoc steps tailored to only specific map styles. Recent machine learning-based text spotters (e.g., for scene images) have the potential to solve these challenges because of their flexibility in supporting various types of text instances. However, these methods remain challenges in extracting precise image features for predicting every sub-component (boundary points and characters) in a text instance. This is critical because map text can be lengthy and highly rotated with complex backgrounds, posing difficulties in detecting relevant image features from a rough text region. This paper proposes PALETTE, an end-to-end text spotter for scanned historical maps of a wide variety. PALETTE introduces a novel hyper-local sampling module to explicitly learn localized image features around the target boundary points and characters of a text instance for detection and recognition. PALETTE also enables hyper-local positional embeddings to learn spatial interactions between boundary points and characters within and across text instances. In addition, this paper presents a novel approach to automatically generate synthetic map images, SynthMap+, for training text spotters for historical maps. The experiment shows that PALETTE with SynthMap+ outperforms SOTA text spotters on two new benchmark datasets of historical maps, particularly for long and angled text. We have deployed PALETTE with SynthMap+ to process over 60,000 maps in the David Rumsey Historical Map collection and generated over 100 million text labels to support map searching. The project is released at https://github.com/kartta-foundation/mapkurator-palette-doc.

Authors:Marissa Dominijanni, Alexander Ororbia, Kenneth W. Regan
Title: Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays
Abstract:
Synaptic delays play a crucial role in biological neuronal networks, where their modulation has been observed in mammalian learning processes. In the realm of neuromorphic computing, although spiking neural networks (SNNs) aim to emulate biology more closely than traditional artificial neural networks do, synaptic delays are rarely incorporated into their simulation. We introduce a novel learning rule for simultaneously learning synaptic connection strengths and delays, by extending spike-timing dependent plasticity (STDP), a Hebbian method commonly used for learning synaptic weights. We validate our approach by extending a widely-used SNN model for classification trained with unsupervised learning. Then we demonstrate the effectiveness of our new method by comparing it against another existing methods for co-learning synaptic weights and delays as well as against STDP without synaptic delays. Results demonstrate that our proposed method consistently achieves superior performance across a variety of test scenarios. Furthermore, our experimental results yield insight into the interplay between synaptic efficacy and delay.

Authors:Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao Zhuang, Nilabjo Dey, Yuheng Zha, Yi Gu, Kun Zhou, Yuqi Wang, Yuan Li, Richard Fan, Jianshu She, Chengqian Gao, Abulhair Saparov, Haonan Li, Taylor W. Killian, Mikhail Yurochkin, Zhengzhong Liu, Eric P. Xing, Zhiting Hu
Title: Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective
Abstract:
Reinforcement learning (RL) has emerged as a promising approach to improve large language model (LLM) reasoning, yet most open efforts focus narrowly on math and code, limiting our understanding of its broader applicability to general reasoning. A key challenge lies in the lack of reliable, scalable RL reward signals across diverse reasoning domains. We introduce Guru, a curated RL reasoning corpus of 92K verifiable examples spanning six reasoning domains--Math, Code, Science, Logic, Simulation, and Tabular--each built through domain-specific reward design, deduplication, and filtering to ensure reliability and effectiveness for RL training. Based on Guru, we systematically revisit established findings in RL for LLM reasoning and observe significant variation across domains. For example, while prior work suggests that RL primarily elicits existing knowledge from pretrained models, our results reveal a more nuanced pattern: domains frequently seen during pretraining (Math, Code, Science) easily benefit from cross-domain RL training, while domains with limited pretraining exposure (Logic, Simulation, and Tabular) require in-domain training to achieve meaningful performance gains, suggesting that RL is likely to facilitate genuine skill acquisition. Finally, we present Guru-7B and Guru-32B, two models that achieve state-of-the-art performance among open models RL-trained with publicly available data, outperforming best baselines by 7.9% and 6.7% on our 17-task evaluation suite across six reasoning domains. We also show that our models effectively improve the Pass@k performance of their base models, particularly on complex tasks less likely to appear in pretraining data. We release data, models, training and evaluation code to facilitate general-purpose reasoning at: https://github.com/LLM360/Reasoning360

Authors:Adriana Watson
Title: Explain First, Trust Later: LLM-Augmented Explanations for Graph-Based Crypto Anomaly Detection
Abstract:
The decentralized finance (DeFi) community has grown rapidly in recent years, pushed forward by cryptocurrency enthusiasts interested in the vast untapped potential of new markets. The surge in popularity of cryptocurrency has ushered in a new era of financial crime. Unfortunately, the novelty of the technology makes the task of catching and prosecuting offenders particularly challenging. Thus, it is necessary to implement automated detection tools related to policies to address the growing criminality in the cryptocurrency realm.

Authors:Thomas Kuntz, Agatha Duzan, Hao Zhao, Francesco Croce, Zico Kolter, Nicolas Flammarion, Maksym Andriushchenko
Title: OS-Harm: A Benchmark for Measuring Safety of Computer Use Agents
Abstract:
Computer use agents are LLM-based agents that can directly interact with a graphical user interface, by processing screenshots or accessibility trees. While these systems are gaining popularity, their safety has been largely overlooked, despite the fact that evaluating and understanding their potential for harmful behavior is essential for widespread adoption. To address this gap, we introduce OS-Harm, a new benchmark for measuring safety of computer use agents. OS-Harm is built on top of the OSWorld environment and aims to test models across three categories of harm: deliberate user misuse, prompt injection attacks, and model misbehavior. To cover these cases, we create 150 tasks that span several types of safety violations (harassment, copyright infringement, disinformation, data exfiltration, etc.) and require the agent to interact with a variety of OS applications (email client, code editor, browser, etc.). Moreover, we propose an automated judge to evaluate both accuracy and safety of agents that achieves high agreement with human annotations (0.76 and 0.79 F1 score). We evaluate computer use agents based on a range of frontier models - such as o4-mini, Claude 3.7 Sonnet, Gemini 2.5 Pro - and provide insights into their safety. In particular, all models tend to directly comply with many deliberate misuse queries, are relatively vulnerable to static prompt injections, and occasionally perform unsafe actions. The OS-Harm benchmark is available at https://github.com/tml-epfl/os-harm.

Authors:Bharath Dandala, Michael M. Danziger, Ella Barkan, Tanwi Biswas, Viatcheslav Gurev, Jianying Hu, Matthew Madgwick, Akira Koseki, Tal Kozlovski, Michal Rosen-Zvi, Yishai Shimoni, Ching-Huei Tsou
Title: BMFM-RNA: An Open Framework for Building and Evaluating Transcriptomic Foundation Models
Abstract:
Transcriptomic foundation models (TFMs) have recently emerged as powerful tools for analyzing gene expression in cells and tissues, supporting key tasks such as cell-type annotation, batch correction, and perturbation prediction. However, the diversity of model implementations and training strategies across recent TFMs, though promising, makes it challenging to isolate the contribution of individual design choices or evaluate their potential synergies. This hinders the field's ability to converge on best practices and limits the reproducibility of insights across studies. We present BMFM-RNA, an open-source, modular software package that unifies diverse TFM pretraining and fine-tuning objectives within a single framework. Leveraging this capability, we introduce a novel training objective, whole cell expression decoder (WCED), which captures global expression patterns using an autoencoder-like CLS bottleneck representation. In this paper, we describe the framework, supported input representations, and training objectives. We evaluated four model checkpoints pretrained on CELLxGENE using combinations of masked language modeling (MLM), WCED and multitask learning. Using the benchmarking capabilities of BMFM-RNA, we show that WCED-based models achieve performance that matches or exceeds state-of-the-art approaches like scGPT across more than a dozen datasets in both zero-shot and fine-tuning tasks. BMFM-RNA, available as part of the biomed-multi-omics project ( https://github.com/BiomedSciAI/biomed-multi-omic ), offers a reproducible foundation for systematic benchmarking and community-driven exploration of optimal TFM training strategies, enabling the development of more effective tools to leverage the latest advances in AI for understanding cell biology.

Authors:Lukas Schiesser, Cornelius Wolff, Sophie Haas, Simon Pukrop
Title: PictSure: Pretraining Embeddings Matters for In-Context Learning Image Classifiers
Abstract:
Building image classification models remains cumbersome in data-scarce domains, where collecting large labeled datasets is impractical. In-context learning (ICL) has emerged as a promising paradigm for few-shot image classification (FSIC), enabling models to generalize across domains without gradient-based adaptation. However, prior work has largely overlooked a critical component of ICL-based FSIC pipelines: the role of image embeddings. In this work, we present PictSure, an ICL framework that places the embedding model -- its architecture, pretraining, and training dynamics -- at the center of analysis. We systematically examine the effects of different visual encoder types, pretraining objectives, and fine-tuning strategies on downstream FSIC performance. Our experiments show that the training success and the out-of-domain performance are highly dependent on how the embedding models are pretrained. Consequently, PictSure manages to outperform existing ICL-based FSIC models on out-of-domain benchmarks that differ significantly from the training distribution, while maintaining comparable results on in-domain tasks. Code can be found at https://github.com/PictSure/pictsure-library.

Authors:Jenny Schmalfuss, Nadine Chang, Vibashan VS, Maying Shen, Andres Bruhn, Jose M. Alvarez
Title: PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language Models
Abstract:
Vision language models (VLMs) respond to user-crafted text prompts and visual inputs, and are applied to numerous real-world problems. VLMs integrate visual modalities with large language models (LLMs), which are well known to be prompt-sensitive. Hence, it is crucial to determine whether VLMs inherit this instability to varying prompts. We therefore investigate which prompt variations VLMs are most sensitive to and which VLMs are most agnostic to prompt variations. To this end, we introduce PARC (Prompt Analysis via Reliability and Calibration), a VLM prompt sensitivity analysis framework built on three pillars: (1) plausible prompt variations in both the language and vision domain, (2) a novel model reliability score with built-in guarantees, and (3) a calibration step that enables dataset- and prompt-spanning prompt variation analysis. Regarding prompt variations, PARC's evaluation shows that VLMs mirror LLM language prompt sensitivity in the vision domain, and most destructive variations change the expected answer. Regarding models, outstandingly robust VLMs among 22 evaluated models come from the InternVL2 family. We further find indications that prompt sensitivity is linked to training data. The code will be at https://github.com/NVlabs/PARC.

Authors:Evdoxia Taka, Debadyuti Bhattacharya, Joanne Garde-Hansen, Sanjay Sharma, Tanaya Guha
Title: Analyzing Character Representation in Media Content using Multimodal Foundation Model: Effectiveness and Trust
Abstract:
Recent advances in AI has made automated analysis of complex media content at scale possible while generating actionable insights regarding character representation along such dimensions as gender and age. Past works focused on quantifying representation from audio/video/text using AI models, but without having the audience in the loop. We ask, even if character distribution along demographic dimensions are available, how useful are those to the general public? Do they actually trust the numbers generated by AI models? Our work addresses these open questions by proposing a new AI-based character representation tool and performing a thorough user study. Our tool has two components: (i) An analytics extraction model based on the Contrastive Language Image Pretraining (CLIP) foundation model that analyzes visual screen data to quantify character representation across age and gender; (ii) A visualization component effectively designed for presenting the analytics to lay audience. The user study seeks empirical evidence on the usefulness and trustworthiness of the AI-generated results for carefully chosen movies presented in the form of our visualizations. We found that participants were able to understand the analytics in our visualizations, and deemed the tool `overall useful'. Participants also indicated a need for more detailed visualizations to include more demographic categories and contextual information of the characters. Participants' trust in AI-based gender and age models is seen to be moderate to low, although they were not against the use of AI in this context. Our tool including code, benchmarking, and the user study data can be found at https://github.com/debadyuti0510/Character-Representation-Media.

Authors:Zhangyang Gao, Hao Wang, Cheng Tan, Chenrui Xu, Mengdi Liu, Bozhen Hu, Linlin Chao, Xiaoming Zhang, Stan Z. Li
Title: PFMBench: Protein Foundation Model Benchmark
Abstract:
This study investigates the current landscape and future directions of protein foundation model research. While recent advancements have transformed protein science and engineering, the field lacks a comprehensive benchmark for fair evaluation and in-depth understanding. Since ESM-1B, numerous protein foundation models have emerged, each with unique datasets and methodologies. However, evaluations often focus on limited tasks tailored to specific models, hindering insights into broader generalization and limitations. Specifically, researchers struggle to understand the relationships between tasks, assess how well current models perform across them, and determine the criteria in developing new foundation models. To fill this gap, we present PFMBench, a comprehensive benchmark evaluating protein foundation models across 38 tasks spanning 8 key areas of protein science. Through hundreds of experiments on 17 state-of-the-art models across 38 tasks, PFMBench reveals the inherent correlations between tasks, identifies top-performing models, and provides a streamlined evaluation protocol. Code is available at \href{https://github.com/biomap-research/PFMBench}{\textcolor{blue}{GitHub}}.

Authors:Li-Wei Chen, Takuya Higuchi, Zakaria Aldeneh, Ahmed Hussen Abdelaziz, Alexander Rudnicky
Title: A Variational Framework for Improving Naturalness in Generative Spoken Language Models
Abstract:
The success of large language models in text processing has inspired their adaptation to speech modeling. However, since speech is continuous and complex, it is often discretized for autoregressive modeling. Speech tokens derived from self-supervised models (known as semantic tokens) typically focus on the linguistic aspects of speech but neglect prosodic information. As a result, models trained on these tokens can generate speech with reduced naturalness. Existing approaches try to fix this by adding pitch features to the semantic tokens. However, pitch alone cannot fully represent the range of paralinguistic attributes, and selecting the right features requires careful hand-engineering. To overcome this, we propose an end-to-end variational approach that automatically learns to encode these continuous speech attributes to enhance the semantic tokens. Our approach eliminates the need for manual extraction and selection of paralinguistic features. Moreover, it produces preferred speech continuations according to human raters. Code, samples and models are available at https://github.com/b04901014/vae-gslm.

Authors:Zhengxiang Cheng, Dongping Chen, Mingyang Fu, Tianyi Zhou
Title: Optimizing Length Compression in Large Reasoning Models
Abstract:
Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1.

Authors:Dahang Wan, Rongsheng Lu, Yang Fang, Xianli Lang, Shuangbao Shu, Jingjing Chen, Siyuan Shen, Ting Xu, Zecong Ye
Title: YOLOv11-RGBT: Towards a Comprehensive Single-Stage Multispectral Object Detection Framework
Abstract:
Multispectral object detection, which integrates information from multiple bands, can enhance detection accuracy and environmental adaptability, holding great application potential across various fields. Although existing methods have made progress in cross-modal interaction, low-light conditions, and model lightweight, there are still challenges like the lack of a unified single-stage framework, difficulty in balancing performance and fusion strategy, and unreasonable modality weight allocation. To address these, based on the YOLOv11 framework, we present YOLOv11-RGBT, a new comprehensive multimodal object detection framework. We designed six multispectral fusion modes and successfully applied them to models from YOLOv3 to YOLOv12 and RT-DETR. After reevaluating the importance of the two modalities, we proposed a P3 mid-fusion strategy and multispectral controllable fine-tuning (MCF) strategy for multispectral models. These improvements optimize feature fusion, reduce redundancy and mismatches, and boost overall model performance. Experiments show our framework excels on three major open-source multispectral object detection datasets, like LLVIP and FLIR. Particularly, the multispectral controllable fine-tuning strategy significantly enhanced model adaptability and robustness. On the FLIR dataset, it consistently improved YOLOv11 models' mAP by 3.41%-5.65%, reaching a maximum of 47.61%, verifying the framework and strategies' effectiveness. The code is available at: https://github.com/wandahangFY/YOLOv11-RGBT.

Authors:Hengyuan Zhang, Xinrong Chen, Yingmin Qiu, Xiao Liang, Ziyue Li, Guanyu Wang, Weiping Li, Tong Mo, Hayden Kwok-Hay So, Ngai Wong
Title: GuiLoMo: Allocating Expert Number and Rank for LoRA-MoE via Bilevel Optimization with GuidedSelection Vectors
Abstract:
Parameter-efficient fine-tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), offer an efficient way to adapt large language models with reduced computational costs. However, their performance is limited by the small number of trainable parameters. Recent work combines LoRA with the Mixture-of-Experts (MoE), i.e., LoRA-MoE, to enhance capacity, but two limitations remain in hindering the full exploitation of its potential: 1) the influence of downstream tasks when assigning expert numbers, and 2) the uniform rank assignment across all LoRA experts, which restricts representational diversity. To mitigate these gaps, we propose GuiLoMo, a fine-grained layer-wise expert numbers and ranks allocation strategy with GuidedSelection Vectors (GSVs). GSVs are learned via a prior bilevel optimization process to capture both model- and task-specific needs, and are then used to allocate optimal expert numbers and ranks. Experiments on three backbone models across diverse benchmarks show that GuiLoMo consistently achieves superior or comparable performance to all baselines. Further analysis offers key insights into how expert numbers and ranks vary across layers and tasks, highlighting the benefits of adaptive expert configuration. Our code is available at https://github.com/Liar406/Gui-LoMo.git.

Authors:Yuke Xing, Jiarui Wang, Peizhi Niu, Wenjie Huang, Guangtao Zhai, Yiling Xu
Title: 3DGS-IEval-15K: A Large-scale Image Quality Evaluation Database for 3D Gaussian-Splatting
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a promising approach for novel view synthesis, offering real-time rendering with high visual fidelity. However, its substantial storage requirements present significant challenges for practical applications. While recent state-of-the-art (SOTA) 3DGS methods increasingly incorporate dedicated compression modules, there is a lack of a comprehensive framework to evaluate their perceptual impact. Therefore we present 3DGS-IEval-15K, the first large-scale image quality assessment (IQA) dataset specifically designed for compressed 3DGS representations. Our dataset encompasses 15,200 images rendered from 10 real-world scenes through 6 representative 3DGS algorithms at 20 strategically selected viewpoints, with different compression levels leading to various distortion effects. Through controlled subjective experiments, we collect human perception data from 60 viewers. We validate dataset quality through scene diversity and MOS distribution analysis, and establish a comprehensive benchmark with 30 representative IQA metrics covering diverse types. As the largest-scale 3DGS quality assessment dataset to date, our work provides a foundation for developing 3DGS specialized IQA metrics, and offers essential data for investigating view-dependent quality distribution patterns unique to 3DGS. The database is publicly available at https://github.com/YukeXing/3DGS-IEval-15K.

Authors:Md. Adnanul Islam, Md. Faiyaz Abdullah Sayeedi, Md. Asaduzzaman Shuvo, Shahanur Rahman Bappy, Md Asiful Islam, Swakkhar Shatabda
Title: VisText-Mosquito: A Unified Multimodal Benchmark Dataset for Visual Detection, Segmentation, and Textual Reasoning on Mosquito Breeding Sites
Abstract:
Mosquito-borne diseases pose a major global health risk, requiring early detection and proactive control of breeding sites to prevent outbreaks. In this paper, we present VisText-Mosquito, a multimodal dataset that integrates visual and textual data to support automated detection, segmentation, and reasoning for mosquito breeding site analysis. The dataset includes 1,828 annotated images for object detection, 142 images for water surface segmentation, and natural language reasoning texts linked to each image. The YOLOv9s model achieves the highest precision of 0.92926 and mAP@50 of 0.92891 for object detection, while YOLOv11n-Seg reaches a segmentation precision of 0.91587 and mAP@50 of 0.79795. For reasoning generation, we tested a range of large vision-language models (LVLMs) in both zero-shot and few-shot settings. Our fine-tuned Mosquito-LLaMA3-8B model achieved the best results, with a final loss of 0.0028, a BLEU score of 54.7, BERTScore of 0.91, and ROUGE-L of 0.85. This dataset and model framework emphasize the theme "Prevention is Better than Cure", showcasing how AI-based detection can proactively address mosquito-borne disease risks. The dataset and implementation code are publicly available at GitHub: https://github.com/adnanul-islam-jisun/VisText-Mosquito

Authors:Ziyu Gong, Jim Lim, David I. Inouye
Title: Expressive Score-Based Priors for Distribution Matching with Geometry-Preserving Regularization
Abstract:
Distribution matching (DM) is a versatile domain-invariant representation learning technique that has been applied to tasks such as fair classification, domain adaptation, and domain translation. Non-parametric DM methods struggle with scalability and adversarial DM approaches suffer from instability and mode collapse. While likelihood-based methods are a promising alternative, they often impose unnecessary biases through fixed priors or require explicit density models (e.g., flows) that can be challenging to train. We address this limitation by introducing a novel approach to training likelihood-based DM using expressive score-based prior distributions. Our key insight is that gradient-based DM training only requires the prior's score function -- not its density -- allowing us to train the prior via denoising score matching. This approach eliminates biases from fixed priors (e.g., in VAEs), enabling more effective use of geometry-preserving regularization, while avoiding the challenge of learning an explicit prior density model (e.g., a flow-based prior). Our method also demonstrates better stability and computational efficiency compared to other diffusion-based priors (e.g., LSGM). Furthermore, experiments demonstrate superior performance across multiple tasks, establishing our score-based method as a stable and effective approach to distribution matching. Source code available at https://github.com/inouye-lab/SAUB.

Authors:Giacomo Meanti, Thomas Ryckeboer, Michael Arbel, Julien Mairal
Title: Unsupervised Imaging Inverse Problems with Diffusion Distribution Matching
Abstract:
This work addresses image restoration tasks through the lens of inverse problems using unpaired datasets. In contrast to traditional approaches -- which typically assume full knowledge of the forward model or access to paired degraded and ground-truth images -- the proposed method operates under minimal assumptions and relies only on small, unpaired datasets. This makes it particularly well-suited for real-world scenarios, where the forward model is often unknown or misspecified, and collecting paired data is costly or infeasible. The method leverages conditional flow matching to model the distribution of degraded observations, while simultaneously learning the forward model via a distribution-matching loss that arises naturally from the framework. Empirically, it outperforms both single-image blind and unsupervised approaches on deblurring and non-uniform point spread function (PSF) calibration tasks. It also matches state-of-the-art performance on blind super-resolution. We also showcase the effectiveness of our method with a proof of concept for lens calibration: a real-world application traditionally requiring time-consuming experiments and specialized equipment. In contrast, our approach achieves this with minimal data acquisition effort.

Authors:Ming Xu, Xu Zhang
Title: PoseGRAF: Geometric-Reinforced Adaptive Fusion for Monocular 3D Human Pose Estimation
Abstract:
Existing monocular 3D pose estimation methods primarily rely on joint positional features, while overlooking intrinsic directional and angular correlations within the skeleton. As a result, they often produce implausible poses under joint occlusions or rapid motion changes. To address these challenges, we propose the PoseGRAF framework. We first construct a dual graph convolutional structure that separately processes joint and bone graphs, effectively capturing their local dependencies. A Cross-Attention module is then introduced to model interdependencies between bone directions and joint features. Building upon this, a dynamic fusion module is designed to adaptively integrate both feature types by leveraging the relational dependencies between joints and bones. An improved Transformer encoder is further incorporated in a residual manner to generate the final output. Experimental results on the Human3.6M and MPI-INF-3DHP datasets show that our method exceeds state-of-the-art approaches. Additional evaluations on in-the-wild videos further validate its generalizability. The code is publicly available at https://github.com/iCityLab/PoseGRAF.

Authors:Ren Xin, Hongji Liu, Xiaodong Mei, Wenru Liu, Maosheng Ye, Zhili Chen, Jun Ma
Title: NetRoller: Interfacing General and Specialized Models for End-to-End Autonomous Driving
Abstract:
Integrating General Models (GMs) such as Large Language Models (LLMs), with Specialized Models (SMs) in autonomous driving tasks presents a promising approach to mitigating challenges in data diversity and model capacity of existing specialized driving models. However, this integration leads to problems of asynchronous systems, which arise from the distinct characteristics inherent in GMs and SMs. To tackle this challenge, we propose NetRoller, an adapter that incorporates a set of novel mechanisms to facilitate the seamless integration of GMs and specialized driving models. Specifically, our mechanisms for interfacing the asynchronous GMs and SMs are organized into three key stages. NetRoller first harvests semantically rich and computationally efficient representations from the reasoning processes of LLMs using an early stopping mechanism, which preserves critical insights on driving context while maintaining low overhead. It then applies learnable query embeddings, nonsensical embeddings, and positional layer embeddings to facilitate robust and efficient cross-modality translation. At last, it employs computationally efficient Query Shift and Feature Shift mechanisms to enhance the performance of SMs through few-epoch fine-tuning. Based on the mechanisms formalized in these three stages, NetRoller enables specialized driving models to operate at their native frequencies while maintaining situational awareness of the GM. Experiments conducted on the nuScenes dataset demonstrate that integrating GM through NetRoller significantly improves human similarity and safety in planning tasks, and it also achieves noticeable precision improvements in detection and mapping tasks for end-to-end autonomous driving. The code and models are available at https://github.com/Rex-sys-hk/NetRoller .

Authors:David Wan, Eran Hirsch, Elias Stengel-Eskin, Ido Dagan, Mohit Bansal
Title: GenerationPrograms: Fine-grained Attribution with Executable Programs
Abstract:
Recent large language models (LLMs) achieve impressive performance in source-conditioned text generation but often fail to correctly provide fine-grained attributions for their outputs, undermining verifiability and trust. Moreover, existing attribution methods do not explain how and why models leverage the provided source documents to generate their final responses, limiting interpretability. To overcome these challenges, we introduce a modular generation framework, GenerationPrograms, inspired by recent advancements in executable "code agent" architectures. Unlike conventional generation methods that simultaneously generate outputs and attributions or rely on post-hoc attribution, GenerationPrograms decomposes the process into two distinct stages: first, creating an executable program plan composed of modular text operations (such as paraphrasing, compression, and fusion) explicitly tailored to the query, and second, executing these operations following the program's specified instructions to produce the final response. Empirical evaluations demonstrate that GenerationPrograms significantly improves attribution quality at both the document level and sentence level across two long-form question-answering tasks and a multi-document summarization task. We further demonstrate that GenerationPrograms can effectively function as a post-hoc attribution method, outperforming traditional techniques in recovering accurate attributions. In addition, the interpretable programs generated by GenerationPrograms enable localized refinement through modular-level improvements that further enhance overall attribution quality.

Authors:Mingkang Zhu, Xi Chen, Zhongdao Wang, Bei Yu, Hengshuang Zhao, Jiaya Jia
Title: TGDPO: Harnessing Token-Level Reward Guidance for Enhancing Direct Preference Optimization
Abstract:
Recent advancements in reinforcement learning from human feedback have shown that utilizing fine-grained token-level reward models can substantially enhance the performance of Proximal Policy Optimization (PPO) in aligning large language models. However, it is challenging to leverage such token-level reward as guidance for Direct Preference Optimization (DPO), since DPO is formulated as a sequence-level bandit problem. To address this challenge, this work decomposes the sequence-level PPO into a sequence of token-level proximal policy optimization problems and then frames the problem of token-level PPO with token-level reward guidance, from which closed-form optimal token-level policy and the corresponding token-level reward can be derived. Using the obtained reward and Bradley-Terry model, this work establishes a framework of computable loss functions with token-level reward guidance for DPO, and proposes a practical reward guidance based on the induced DPO reward. This formulation enables different tokens to exhibit varying degrees of deviation from reference policy based on their respective rewards. Experiment results demonstrate that our method achieves substantial performance improvements over DPO, with win rate gains of up to 7.5 points on MT-Bench, 6.2 points on AlpacaEval 2, and 4.3 points on Arena-Hard. Code is available at https://github.com/dvlab-research/TGDPO.

Authors:Di He, Ajay Jaiswal, Songjun Tu, Li Shen, Ganzhao Yuan, Shiwei Liu, Lu Yin
Title: AlphaDecay: Module-wise Weight Decay for Heavy-Tailed Balancing in LLMs
Abstract:
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.

Authors:Zhiwen Shao, Yifan Cheng, Feiran Li, Yong Zhou, Xuequan Lu, Yuan Xie, Lizhuang Ma
Title: MOL: Joint Estimation of Micro-Expression, Optical Flow, and Landmark via Transformer-Graph-Style Convolution
Abstract:
Facial micro-expression recognition (MER) is a challenging problem, due to transient and subtle micro-expression (ME) actions. Most existing methods depend on hand-crafted features, key frames like onset, apex, and offset frames, or deep networks limited by small-scale and low-diversity datasets. In this paper, we propose an end-to-end micro-action-aware deep learning framework with advantages from transformer, graph convolution, and vanilla convolution. In particular, we propose a novel F5C block composed of fully-connected convolution and channel correspondence convolution to directly extract local-global features from a sequence of raw frames, without the prior knowledge of key frames. The transformer-style fully-connected convolution is proposed to extract local features while maintaining global receptive fields, and the graph-style channel correspondence convolution is introduced to model the correlations among feature patterns. Moreover, MER, optical flow estimation, and facial landmark detection are jointly trained by sharing the local-global features. The two latter tasks contribute to capturing facial subtle action information for MER, which can alleviate the impact of insufficient training data. Extensive experiments demonstrate that our framework (i) outperforms the state-of-the-art MER methods on CASME II, SAMM, and SMIC benchmarks, (ii) works well for optical flow estimation and facial landmark detection, and (iii) can capture facial subtle muscle actions in local regions associated with MEs. The code is available at https://github.com/CYF-cuber/MOL.

Authors:Nitesh Subedi, Adam Haroon, Shreyan Ganguly, Samuel T. K. Tetteh, Prajwal Koirala, Cody Fleming, Soumik Sarkar
Title: Can Pretrained Vision-Language Embeddings Alone Guide Robot Navigation?
Abstract:
Foundation models have revolutionized robotics by providing rich semantic representations without task-specific training. While many approaches integrate pretrained vision-language models (VLMs) with specialized navigation architectures, the fundamental question remains: can these pretrained embeddings alone successfully guide navigation without additional fine-tuning or specialized modules? We present a minimalist framework that decouples this question by training a behavior cloning policy directly on frozen vision-language embeddings from demonstrations collected by a privileged expert. Our approach achieves a 74% success rate in navigation to language-specified targets, compared to 100% for the state-aware expert, though requiring 3.2 times more steps on average. This performance gap reveals that pretrained embeddings effectively support basic language grounding but struggle with long-horizon planning and spatial reasoning. By providing this empirical baseline, we highlight both the capabilities and limitations of using foundation models as drop-in representations for embodied tasks, offering critical insights for robotics researchers facing practical design tradeoffs between system complexity and performance in resource-constrained scenarios. Our code is available at https://github.com/oadamharoon/text2nav

Authors:Paolo Franceschi, Marco Faroni, Stefano Baraldo, Anna Valente
Title: ros2 fanuc interface: Design and Evaluation of a Fanuc CRX Hardware Interface in ROS2
Abstract:
This paper introduces the ROS2 control and the Hardware Interface (HW) integration for the Fanuc CRX- robot family. It explains basic implementation details and communication protocols, and its integration with the Moveit2 motion planning library. We conducted a series of experiments to evaluate relevant performances in the robotics field. We tested the developed ros2_fanuc_interface for four relevant robotics cases: step response, trajectory tracking, collision avoidance integrated with Moveit2, and dynamic velocity scaling, respectively. Results show that, despite a non-negligible delay between command and feedback, the robot can track the defined path with negligible errors (if it complies with joint velocity limits), ensuring collision avoidance. Full code is open source and available at https://github.com/paolofrance/ros2_fanuc_interface.

Authors:Jingqi Yang, Zhilong Song, Jiawei Chen, Mingli Song, Sheng Zhou, linjun sun, Xiaogang Ouyang, Chun Chen, Can Wang
Title: GUI-Robust: A Comprehensive Dataset for Testing GUI Agent Robustness in Real-World Anomalies
Abstract:
The development of high-quality datasets is crucial for benchmarking and advancing research in Graphical User Interface (GUI) agents. Despite their importance, existing datasets are often constructed under idealized conditions, overlooking the diverse anomalies frequently encountered in real-world deployments. To address this limitation, we introduce GUI-Robust, a novel dataset designed for comprehensive GUI agent evaluation, explicitly incorporating seven common types of anomalies observed in everyday GUI interactions. Furthermore, we propose a semi-automated dataset construction paradigm that collects user action sequences from natural interactions via RPA tools and then generate corresponding step and task descriptions for these actions with the assistance of MLLMs. This paradigm significantly reduces annotation time cost by a factor of over 19 times. Finally, we assess state-of-the-art GUI agents using the GUI-Robust dataset, revealing their substantial performance degradation in abnormal scenarios. We anticipate that our work will highlight the importance of robustness in GUI agents and inspires more future research in this direction. The dataset and code are available at https://github.com/chessbean1/GUI-Robust..

Authors:Shen Yuan, Yin Zheng, Taifeng Wang, Binbin Liu, Hongteng Xu
Title: MoORE: SVD-based Model MoE-ization for Conflict- and Oblivion-Resistant Multi-Task Adaptation
Abstract:
Adapting large-scale foundation models in multi-task scenarios often suffers from task conflict and oblivion. To mitigate such issues, we propose a novel ''model MoE-ization'' strategy that leads to a conflict- and oblivion-resistant multi-task adaptation method. Given a weight matrix of a pre-trained model, our method applies SVD to it and introduces a learnable router to adjust its singular values based on tasks and samples. Accordingly, the weight matrix becomes a Mixture of Orthogonal Rank-one Experts (MoORE), in which each expert corresponds to the outer product of a left singular vector and the corresponding right one. We can improve the model capacity by imposing a learnable orthogonal transform on the right singular vectors. Unlike low-rank adaptation (LoRA) and its MoE-driven variants, MoORE guarantees the experts' orthogonality and maintains the column space of the original weight matrix. These two properties make the adapted model resistant to the conflicts among the new tasks and the oblivion of its original tasks, respectively. Experiments on various datasets demonstrate that MoORE outperforms existing multi-task adaptation methods consistently, showing its superiority in terms of conflict- and oblivion-resistance. The code of the experiments is available at https://github.com/DaShenZi721/MoORE.

Authors:Eric Jeangirard
Title: Works-magnet: Accelerating Metadata Curation for Open Science
Abstract:
The transition to Open Science necessitates robust and reliable metadata. While national initiatives, such as the French Open Science Monitor, aim to track this evolution using open data, reliance on proprietary databases persists in many places. Open platforms like OpenAlex still require significant human intervention for data accuracy. This paper introduces Works-magnet, a project by the French Ministry of Higher Education and Research (MESR) Data Science & Engineering Team. Works-magnet is designed to accelerate the curation of bibliographic and research data metadata, particularly affiliations, by making automated AI calculations visible and correctable. It addresses challenges related to metadata heterogeneity, complex processing chains, and the need for human curation in a diverse research landscape. The paper details Works-magnet's concepts, and the observed limitations, while outlining future directions for enhancing open metadata quality and reusability. The works-magnet app is open source on github https://github.com/dataesr/works-magnet

Authors:Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, Xipeng Qiu
Title: LongLLaDA: Unlocking Long Context Capabilities in Diffusion LLMs
Abstract:
Large Language Diffusion Models, or diffusion LLMs, have emerged as a significant focus in NLP research, with substantial effort directed toward understanding their scalability and downstream task performance. However, their long-context capabilities remain unexplored, lacking systematic analysis or methods for context extension. In this work, we present the first systematic investigation comparing the long-context performance of diffusion LLMs and traditional auto-regressive LLMs. We first identify a unique characteristic of diffusion LLMs, unlike auto-regressive LLMs, they maintain remarkably stable perplexity during direct context extrapolation. Moreover, where auto-regressive models fail outright during the Needle-In-A-Haystack task with context exceeding their pretrained length, we discover diffusion LLMs exhibit a distinct local perception phenomenon, enabling successful retrieval from recent context segments. We explain both phenomena through the lens of Rotary Position Embedding (RoPE) scaling theory. Building on these observations, we propose LongLLaDA, a training-free method that integrates LLaDA with the NTK-based RoPE extrapolation. Our results validate that established extrapolation scaling laws remain effective for extending the context windows of diffusion LLMs. Furthermore, we identify long-context tasks where diffusion LLMs outperform auto-regressive LLMs and others where they fall short. Consequently, this study establishes the first length extrapolation method for diffusion LLMs while providing essential theoretical insights and empirical benchmarks critical for advancing future research on long-context diffusion LLMs. The code is available at https://github.com/OpenMOSS/LongLLaDA.

Authors:Huan Kang, Hui Li, Xiao-Jun Wu, Tianyang Xu, Rui Wang, Chunyang Cheng, Josef Kittler
Title: GrFormer: A Novel Transformer on Grassmann Manifold for Infrared and Visible Image Fusion
Abstract:
In the field of image fusion, promising progress has been made by modeling data from different modalities as linear subspaces. However, in practice, the source images are often located in a non-Euclidean space, where the Euclidean methods usually cannot encapsulate the intrinsic topological structure. Typically, the inner product performed in the Euclidean space calculates the algebraic similarity rather than the semantic similarity, which results in undesired attention output and a decrease in fusion performance. While the balance of low-level details and high-level semantics should be considered in infrared and visible image fusion task. To address this issue, in this paper, we propose a novel attention mechanism based on Grassmann manifold for infrared and visible image fusion (GrFormer). Specifically, our method constructs a low-rank subspace mapping through projection constraints on the Grassmann manifold, compressing attention features into subspaces of varying rank levels. This forces the features to decouple into high-frequency details (local low-rank) and low-frequency semantics (global low-rank), thereby achieving multi-scale semantic fusion. Additionally, to effectively integrate the significant information, we develop a cross-modal fusion strategy (CMS) based on a covariance mask to maximise the complementary properties between different modalities and to suppress the features with high correlation, which are deemed redundant. The experimental results demonstrate that our network outperforms SOTA methods both qualitatively and quantitatively on multiple image fusion benchmarks. The codes are available at https://github.com/Shaoyun2023.

Authors:Xiaoqi Wang, Yi Wang, Lap-Pui Chau
Title: EVA02-AT: Egocentric Video-Language Understanding with Spatial-Temporal Rotary Positional Embeddings and Symmetric Optimization
Abstract:
Egocentric video-language understanding demands both high efficiency and accurate spatial-temporal modeling. Existing approaches face three key challenges: 1) Excessive pre-training cost arising from multi-stage pre-training pipelines, 2) Ineffective spatial-temporal encoding due to manually split 3D rotary positional embeddings that hinder feature interactions, and 3) Imprecise learning objectives in soft-label multi-instance retrieval, which neglect negative pair correlations. In this paper, we introduce EVA02-AT, a suite of EVA02-based video-language foundation models tailored to egocentric video understanding tasks. EVA02-AT first efficiently transfers an image-based CLIP model into a unified video encoder via a single-stage pretraining. Second, instead of applying rotary positional embeddings to isolated dimensions, we introduce spatial-temporal rotary positional embeddings along with joint attention, which can effectively encode both spatial and temporal information on the entire hidden dimension. This joint encoding of spatial-temporal features enables the model to learn cross-axis relationships, which are crucial for accurately modeling motion and interaction in videos. Third, focusing on multi-instance video-language retrieval tasks, we introduce the Symmetric Multi-Similarity (SMS) loss and a novel training framework that advances all soft labels for both positive and negative pairs, providing a more precise learning objective. Extensive experiments on Ego4D, EPIC-Kitchens-100, and Charades-Ego under zero-shot and fine-tuning settings demonstrate that EVA02-AT achieves state-of-the-art performance across diverse egocentric video-language tasks with fewer parameters. Models with our SMS loss also show significant performance gains on multi-instance retrieval benchmarks. Our code and models are publicly available at https://github.com/xqwang14/EVA02-AT .

Authors:Anas Abdelkarim, Holger Voos, Daniel Görges
Title: Barrier Method for Inequality Constrained Factor Graph Optimization with Application to Model Predictive Control
Abstract:
Factor graphs have demonstrated remarkable efficiency for robotic perception tasks, particularly in localization and mapping applications. However, their application to optimal control problems -- especially Model Predictive Control (MPC) -- has remained limited due to fundamental challenges in constraint handling. This paper presents a novel integration of the Barrier Interior Point Method (BIPM) with factor graphs, implemented as an open-source extension to the widely adopted g2o framework. Our approach introduces specialized inequality factor nodes that encode logarithmic barrier functions, thereby overcoming the quadratic-form limitations of conventional factor graph formulations. To the best of our knowledge, this is the first g2o-based implementation capable of efficiently handling both equality and inequality constraints within a unified optimization backend. We validate the method through a multi-objective adaptive cruise control application for autonomous vehicles. Benchmark comparisons with state-of-the-art constraint-handling techniques demonstrate faster convergence and improved computational efficiency. (Code repository: https://github.com/snt-arg/bipm_g2o)

Authors:Qingyu Song, Wei Lin, Juncheng Wang, Hong Xu
Title: Towards Robust Learning to Optimize with Theoretical Guarantees
Abstract:
Learning to optimize (L2O) is an emerging technique to solve mathematical optimization problems with learning-based methods. Although with great success in many real-world scenarios such as wireless communications, computer networks, and electronic design, existing L2O works lack theoretical demonstration of their performance and robustness in out-of-distribution (OOD) scenarios. We address this gap by providing comprehensive proofs. First, we prove a sufficient condition for a robust L2O model with homogeneous convergence rates over all In-Distribution (InD) instances. We assume an L2O model achieves robustness for an InD scenario. Based on our proposed methodology of aligning OOD problems to InD problems, we also demonstrate that the L2O model's convergence rate in OOD scenarios will deteriorate by an equation of the L2O model's input features. Moreover, we propose an L2O model with a concise gradient-only feature construction and a novel gradient-based history modeling method. Numerical simulation demonstrates that our proposed model outperforms the state-of-the-art baseline in both InD and OOD scenarios and achieves up to 10 $\times$ convergence speedup. The code of our method can be found from https://github.com/NetX-lab/GoMathL2O-Official.

Authors:Jia-Chen Zhang, Zheng Zhou, Yu-Jie Xiong, Chun-Ming Xia, Fei Dai
Title: CausalDiffTab: Mixed-Type Causal-Aware Diffusion for Tabular Data Generation
Abstract:
Training data has been proven to be one of the most critical components in training generative AI. However, obtaining high-quality data remains challenging, with data privacy issues presenting a significant hurdle. To address the need for high-quality data. Synthesize data has emerged as a mainstream solution, demonstrating impressive performance in areas such as images, audio, and video. Generating mixed-type data, especially high-quality tabular data, still faces significant challenges. These primarily include its inherent heterogeneous data types, complex inter-variable relationships, and intricate column-wise distributions. In this paper, we introduce CausalDiffTab, a diffusion model-based generative model specifically designed to handle mixed tabular data containing both numerical and categorical features, while being more flexible in capturing complex interactions among variables. We further propose a hybrid adaptive causal regularization method based on the principle of Hierarchical Prior Fusion. This approach adaptively controls the weight of causal regularization, enhancing the model's performance without compromising its generative capabilities. Comprehensive experiments conducted on seven datasets demonstrate that CausalDiffTab outperforms baseline methods across all metrics. Our code is publicly available at: https://github.com/Godz-z/CausalDiffTab.

Authors:Jingxu Xie, Dylan Xu, Xuandong Zhao, Dawn Song
Title: AgentSynth: Scalable Task Generation for Generalist Computer-Use Agents
Abstract:
We introduce AgentSynth, a scalable and cost-efficient pipeline for automatically synthesizing high-quality tasks and trajectory datasets for generalist computer-use agents. Leveraging information asymmetry, AgentSynth constructs subtasks that are simple during generation but significantly more challenging when composed into long-horizon tasks, enabling the creation of over 6,000 diverse and realistic tasks. Our pipeline begins with an LLM-based task proposer guided by a persona, followed by an execution agent that completes the task and logs the trajectory. This process is repeated iteratively to form a sequence of subtasks, which are then summarized by a separate agent into a composite task of controllable difficulty. A key strength of AgentSynth is its ability to precisely modulate task complexity by varying the number of subtasks. Empirical evaluations show that state-of-the-art LLM agents suffer a steep performance drop, from 18% success at difficulty level 1 to just 4% at level 6, highlighting the benchmark's difficulty and discriminative power. Moreover, our pipeline achieves a low average cost of \$0.60 per trajectory, orders of magnitude cheaper than human annotations. Our code and data are publicly available at https://github.com/sunblaze-ucb/AgentSynth

Authors:Juho Bai, Inwook Shim
Title: SceneAware: Scene-Constrained Pedestrian Trajectory Prediction with LLM-Guided Walkability
Abstract:
Accurate prediction of pedestrian trajectories is essential for applications in robotics and surveillance systems. While existing approaches primarily focus on social interactions between pedestrians, they often overlook the rich environmental context that significantly shapes human movement patterns. In this paper, we propose SceneAware, a novel framework that explicitly incorporates scene understanding to enhance trajectory prediction accuracy. Our method leverages a Vision Transformer~(ViT) scene encoder to process environmental context from static scene images, while Multi-modal Large Language Models~(MLLMs) generate binary walkability masks that distinguish between accessible and restricted areas during training. We combine a Transformer-based trajectory encoder with the ViT-based scene encoder, capturing both temporal dynamics and spatial constraints. The framework integrates collision penalty mechanisms that discourage predicted trajectories from violating physical boundaries, ensuring physically plausible predictions. SceneAware is implemented in both deterministic and stochastic variants. Comprehensive experiments on the ETH/UCY benchmark datasets show that our approach outperforms state-of-the-art methods, with more than 50\% improvement over previous models. Our analysis based on different trajectory categories shows that the model performs consistently well across various types of pedestrian movement. This highlights the importance of using explicit scene information and shows that our scene-aware approach is both effective and reliable in generating accurate and physically plausible predictions. Code is available at: https://github.com/juho127/SceneAware.

Authors:Nafiz Sadman, Farhana Zulkernine, Benjamin Kwan
Title: Interpreting Biomedical VLMs on High-Imbalance Out-of-Distributions: An Insight into BiomedCLIP on Radiology
Abstract:
In this paper, we construct two research objectives: i) explore the learned embedding space of BiomedCLIP, an open-source large vision language model, to analyse meaningful class separations, and ii) quantify the limitations of BiomedCLIP when applied to a highly imbalanced, out-of-distribution multi-label medical dataset. We experiment on IU-xray dataset, which exhibits the aforementioned criteria, and evaluate BiomedCLIP in classifying images (radiographs) in three contexts: zero-shot inference, full finetuning, and linear probing. The results show that the model under zero-shot settings over-predicts all labels, leading to poor precision and inter-class separability. Full fine-tuning improves classification of distinct diseases, while linear probing detects overlapping features. We demonstrate visual understanding of the model using Grad-CAM heatmaps and compare with 15 annotations by a radiologist. We highlight the need for careful adaptations of the models to foster reliability and applicability in a real-world setting. The code for the experiments in this work is available and maintained on GitHub.

Authors:Chunyu Cao, Jintao Cheng, Zeyu Chen, Linfan Zhan, Rui Fan, Zhijian He, Xiaoyu Tang
Title: KDMOS:Knowledge Distillation for Motion Segmentation
Abstract:
Motion Object Segmentation (MOS) is crucial for autonomous driving, as it enhances localization, path planning, map construction, scene flow estimation, and future state prediction. While existing methods achieve strong performance, balancing accuracy and real-time inference remains a challenge. To address this, we propose a logits-based knowledge distillation framework for MOS, aiming to improve accuracy while maintaining real-time efficiency. Specifically, we adopt a Bird's Eye View (BEV) projection-based model as the student and a non-projection model as the teacher. To handle the severe imbalance between moving and non-moving classes, we decouple them and apply tailored distillation strategies, allowing the teacher model to better learn key motion-related features. This approach significantly reduces false positives and false negatives. Additionally, we introduce dynamic upsampling, optimize the network architecture, and achieve a 7.69% reduction in parameter count, mitigating overfitting. Our method achieves a notable IoU of 78.8% on the hidden test set of the SemanticKITTI-MOS dataset and delivers competitive results on the Apollo dataset. The KDMOS implementation is available at https://github.com/SCNU-RISLAB/KDMOS.

Authors:Jonathan Hayase, Alisa Liu, Noah A. Smith, Sewoong Oh
Title: Sampling from Your Language Model One Byte at a Time
Abstract:
Tokenization is used almost universally by modern language models, enabling efficient text representation using multi-byte or multi-character tokens. However, prior work has shown that tokenization can introduce distortion into the model's generations, an issue known as the Prompt Boundary Problem (PBP). For example, users are often advised not to end their prompts with a space because it prevents the model from including the space as part of the next token. While this heuristic is effective in English, the underlying PBP continues to affect languages such as Chinese as well as code generation, where tokens often do not line up with word and syntactic boundaries. In this work, we present an inference-time method to convert any autoregressive LM with a BPE tokenizer into a character-level or byte-level LM. Our method efficiently solves the PBP and is also able to unify the vocabularies of language models with different tokenizers, allowing one to ensemble LMs with different tokenizers at inference time or transfer the post-training from one model to another using proxy-tuning. We demonstrate in experiments that the ensemble and proxy-tuned models outperform their constituents on downstream evals. Code is available at https://github.com/SewoongLab/byte-sampler .

Authors:Taehee Jeong
Title: Lightweight Relevance Grader in RAG
Abstract:
Retrieval-Augmented Generation (RAG) addresses limitations of large language models (LLMs) by leveraging a vector database to provide more accurate and up-to-date information. When a user submits a query, RAG executes a vector search to find relevant documents, which are then used to generate a response. However, ensuring the relevance of retrieved documents with a query would be a big challenge. To address this, a secondary model, known as a relevant grader, can be served to verify its relevance. To reduce computational requirements of a relevant grader, a lightweight small language model is preferred. In this work, we finetuned llama-3.2-1b as a relevant grader and achieved a significant increase in precision from 0.1301 to 0.7750. Its precision is comparable to that of llama-3.1-70b. Our code is available at https://github.com/taeheej/Lightweight-Relevance-Grader-in-RAG.

Authors:Xinglei Wang, Tao Cheng, Stephen Law, Zichao Zeng, Ilya Ilyankou, Junyuan Liu, Lu Yin, Weiming Huang, Natchapon Jongwiriyanurak
Title: Into the Unknown: Applying Inductive Spatial-Semantic Location Embeddings for Predicting Individuals' Mobility Beyond Visited Places
Abstract:
Predicting individuals' next locations is a core task in human mobility modelling, with wide-ranging implications for urban planning, transportation, public policy and personalised mobility services. Traditional approaches largely depend on location embeddings learned from historical mobility patterns, limiting their ability to encode explicit spatial information, integrate rich urban semantic context, and accommodate previously unseen locations. To address these challenges, we explore the application of CaLLiPer -- a multimodal representation learning framework that fuses spatial coordinates and semantic features of points of interest through contrastive learning -- for location embedding in individual mobility prediction. CaLLiPer's embeddings are spatially explicit, semantically enriched, and inductive by design, enabling robust prediction performance even in scenarios involving emerging locations. Through extensive experiments on four public mobility datasets under both conventional and inductive settings, we demonstrate that CaLLiPer consistently outperforms strong baselines, particularly excelling in inductive scenarios. Our findings highlight the potential of multimodal, inductive location embeddings to advance the capabilities of human mobility prediction systems. We also release the code and data (https://github.com/xlwang233/Into-the-Unknown) to foster reproducibility and future research.

Authors:Yash Vekaria, Yohan Beugin, Shaoor Munir, Gunes Acar, Nataliia Bielova, Steven Englehardt, Umar Iqbal, Alexandros Kapravelos, Pierre Laperdrix, Nick Nikiforakis, Jason Polakis, Franziska Roesner, Zubair Shafiq, Sebastian Zimmeck
Title: SoK: Advances and Open Problems in Web Tracking
Abstract:
Web tracking is a pervasive and opaque practice that enables personalized advertising, retargeting, and conversion tracking. Over time, it has evolved into a sophisticated and invasive ecosystem, employing increasingly complex techniques to monitor and profile users across the web. The research community has a long track record of analyzing new web tracking techniques, designing and evaluating the effectiveness of countermeasures, and assessing compliance with privacy regulations. Despite a substantial body of work on web tracking, the literature remains fragmented across distinctly scoped studies, making it difficult to identify overarching trends, connect new but related techniques, and identify research gaps in the field. Today, web tracking is undergoing a once-in-a-generation transformation, driven by fundamental shifts in the advertising industry, the adoption of anti-tracking countermeasures by browsers, and the growing enforcement of emerging privacy regulations. This Systematization of Knowledge (SoK) aims to consolidate and synthesize this wide-ranging research, offering a comprehensive overview of the technical mechanisms, countermeasures, and regulations that shape the modern and rapidly evolving web tracking landscape. This SoK also highlights open challenges and outlines directions for future research, aiming to serve as a unified reference and introductory material for researchers, practitioners, and policymakers alike.

Authors:Chelsi Jain, Yiran Wu, Yifan Zeng, Jiale Liu, S hengyu Dai, Zhenwen Shao, Qingyun Wu, Huazheng Wang
Title: SimpleDoc: Multi-Modal Document Understanding with Dual-Cue Page Retrieval and Iterative Refinement
Abstract:
Document Visual Question Answering (DocVQA) is a practical yet challenging task, which is to ask questions based on documents while referring to multiple pages and different modalities of information, e.g, images and tables. To handle multi-modality, recent methods follow a similar Retrieval Augmented Generation (RAG) pipeline, but utilize Visual Language Models (VLMs) based embedding model to embed and retrieve relevant pages as images, and generate answers with VLMs that can accept an image as input. In this paper, we introduce SimpleDoc, a lightweight yet powerful retrieval - augmented framework for DocVQA. It boosts evidence page gathering by first retrieving candidates through embedding similarity and then filtering and re-ranking these candidates based on page summaries. A single VLM-based reasoner agent repeatedly invokes this dual-cue retriever, iteratively pulling fresh pages into a working memory until the question is confidently answered. SimpleDoc outperforms previous baselines by 3.2% on average on 4 DocVQA datasets with much fewer pages retrieved. Our code is available at https://github.com/ag2ai/SimpleDoc.

Authors:Yiwei Chen, Soumyadeep Pal, Yimeng Zhang, Qing Qu, Sijia Liu
Title: Unlearning Isn't Invisible: Detecting Unlearning Traces in LLMs from Model Outputs
Abstract:
Machine unlearning (MU) for large language models (LLMs), commonly referred to as LLM unlearning, seeks to remove specific undesirable data or knowledge from a trained model, while maintaining its performance on standard tasks. While unlearning plays a vital role in protecting data privacy, enforcing copyright, and mitigating sociotechnical harms in LLMs, we identify a new vulnerability post-unlearning: unlearning trace detection. We discover that unlearning leaves behind persistent ''fingerprints'' in LLMs, detectable traces in both model behavior and internal representations. These traces can be identified from output responses, even when prompted with forget-irrelevant inputs. Specifically, a simple supervised classifier can reliably determine whether a model has undergone unlearning based solely on its textual outputs. Further analysis shows that these traces are embedded in intermediate activations and propagate nonlinearly to the final layer, forming low-dimensional, learnable manifolds in activation space. Through extensive experiments, we show that forget-relevant prompts enable over 90% accuracy in detecting unlearning traces across all model sizes. Even with forget-irrelevant inputs, large LLMs maintain high detectability, demonstrating the broad applicability of unlearning trace detection. These findings reveal that unlearning leaves measurable signatures, introducing a new risk of reverse-engineering forgotten information when a model is identified as unlearned given an input query. Codes are available at https://github.com/OPTML-Group/Unlearn-Trace.

Authors:Stas Bekman, Samyam Rajbhandari, Michael Wyatt, Jeff Rasley, Tunji Ruwase, Zhewei Yao, Aurick Qiao, Yuxiong He
Title: Arctic Long Sequence Training: Scalable And Efficient Training For Multi-Million Token Sequences
Abstract:
Long sequences are critical for applications like RAG, long document summarization, multi-modality, etc., and modern LLMs, like Llama 4 Scout, support max sequence length of up to 10 million tokens. However, outside of enterprise labs, long sequence training is challenging for the AI community with limited system support in the open-source space. Out-of-box, even on a modern NVIDIA H100 80GB GPU cluster, training Llama 8B model with sequence over 32K runs out of memory on a basic Hugging Face (HF) model due to two reasons: i) LLM training workloads are not optimized to fully leverage a single GPU memory, ii) existing solutions for leveraging multiple GPU memory are not easily available to HF models, making long sequence training inaccessible. We address this with Arctic Long Sequence Training (ALST). It offers a combination of attention-agnostic single GPU and multi-GPU memory optimizations, that enables it to support out-of-box training of multi-million sequence length for a wide variety of HF models. ALST supports training Meta's Llama 8B model with 500K sequence length on a single H100 GPU, 3.7M on a single 8xH100 GPU node, and over 15M on a 4 node cluster, an increase of over 400x compared to the 32K baseline for the latter. ALST is fully compatible with HF models and open-sourced via Deepspeed https://www.deepspeed.ai/tutorials/ulysses-alst-sequence-pallellism/ and Arctic Training https://github.com/snowflakedb/ArcticTraining/blob/main/projects/sequence-parallelism/README.md.

Authors:Shiting Huang, Zhen Fang, Zehui Chen, Siyu Yuan, Junjie Ye, Yu Zeng, Lin Chen, Qi Mao, Feng Zhao
Title: CRITICTOOL: Evaluating Self-Critique Capabilities of Large Language Models in Tool-Calling Error Scenarios
Abstract:
The ability of large language models (LLMs) to utilize external tools has enabled them to tackle an increasingly diverse range of tasks. However, as the tasks become more complex and long-horizon, the intricate tool utilization process may trigger various unexpected errors. Therefore, how to effectively handle such errors, including identifying, diagnosing, and recovering from them, has emerged as a key research direction for advancing tool learning. In this work, we first extensively analyze the types of errors encountered during the function-calling process on several competitive tool evaluation benchmarks. Based on it, we introduce CRITICTOOL, a comprehensive critique evaluation benchmark specialized for tool learning. Building upon a novel evolutionary strategy for dataset construction, CRITICTOOL holds diverse tool-use errors with varying complexities, which better reflects real-world scenarios. We conduct extensive experiments on CRITICTOOL, and validate the generalization and effectiveness of our constructed benchmark strategy. We also provide an in-depth analysis of the tool reflection ability on various LLMs, offering a new perspective on the field of tool learning in LLMs. The code is available at \href{https://github.com/Shellorley0513/CriticTool}{https://github.com/Shellorley0513/CriticTool}.

Authors:Katherine Mao, Hongzhan Yu, Ruipeng Zhang, Igor Spasojevic, M Ani Hsieh, Sicun Gao, Vijay Kumar
Title: Sequence Modeling for Time-Optimal Quadrotor Trajectory Optimization with Sampling-based Robustness Analysis
Abstract:
Time-optimal trajectories drive quadrotors to their dynamic limits, but computing such trajectories involves solving non-convex problems via iterative nonlinear optimization, making them prohibitively costly for real-time applications. In this work, we investigate learning-based models that imitate a model-based time-optimal trajectory planner to accelerate trajectory generation. Given a dataset of collision-free geometric paths, we show that modeling architectures can effectively learn the patterns underlying time-optimal trajectories. We introduce a quantitative framework to analyze local analytic properties of the learned models, and link them to the Backward Reachable Tube of the geometric tracking controller. To enhance robustness, we propose a data augmentation scheme that applies random perturbations to the input paths. Compared to classical planners, our method achieves substantial speedups, and we validate its real-time feasibility on a hardware quadrotor platform. Experiments demonstrate that the learned models generalize to previously unseen path lengths. The code for our approach can be found here: https://github.com/maokat12/lbTOPPQuad

Authors:Christel Sirocchi, Damiano Verda
Title: Enhancing interpretability of rule-based classifiers through feature graphs
Abstract:
In domains where transparency and trustworthiness are crucial, such as healthcare, rule-based systems are widely used and often preferred over black-box models for decision support systems due to their inherent interpretability. However, as rule-based models grow complex, discerning crucial features, understanding their interactions, and comparing feature contributions across different rule sets becomes challenging. To address this, we propose a comprehensive framework for estimating feature contributions in rule-based systems, introducing a graph-based feature visualisation strategy, a novel feature importance metric agnostic to rule-based predictors, and a distance metric for comparing rule sets based on feature contributions. By experimenting on two clinical datasets and four rule-based methods (decision trees, logic learning machines, association rules, and neural networks with rule extraction), we showcase our method's capability to uncover novel insights on the combined predictive value of clinical features, both at the dataset and class-specific levels. These insights can aid in identifying new risk factors, signature genes, and potential biomarkers, and determining the subset of patient information that should be prioritised to enhance diagnostic accuracy. Comparative analysis of the proposed feature importance score with state-of-the-art methods on 15 public benchmarks demonstrates competitive performance and superior robustness. The method implementation is available on GitHub: https://github.com/ChristelSirocchi/rule-graph.

Authors:Ryuki Matsuura, Shikhar Bharadwaj, Jiarui Liu, Dhatchi Kunde Govindarajan
Title: EmoNews: A Spoken Dialogue System for Expressive News Conversations
Abstract:
We develop a task-oriented spoken dialogue system (SDS) that regulates emotional speech based on contextual cues to enable more empathetic news conversations. Despite advancements in emotional text-to-speech (TTS) techniques, task-oriented emotional SDSs remain underexplored due to the compartmentalized nature of SDS and emotional TTS research, as well as the lack of standardized evaluation metrics for social goals. We address these challenges by developing an emotional SDS for news conversations that utilizes a large language model (LLM)-based sentiment analyzer to identify appropriate emotions and PromptTTS to synthesize context-appropriate emotional speech. We also propose subjective evaluation scale for emotional SDSs and judge the emotion regulation performance of the proposed and baseline systems. Experiments showed that our emotional SDS outperformed a baseline system in terms of the emotion regulation and engagement. These results suggest the critical role of speech emotion for more engaging conversations. All our source code is open-sourced at https://github.com/dhatchi711/espnet-emotional-news/tree/emo-sds/egs2/emo_news_sds/sds1

Authors:Runtao Liu, Jiahao Zhan, Yingqing He, Chen Wei, Alan Yuille, Qifeng Chen
Title: Fake it till You Make it: Reward Modeling as Discriminative Prediction
Abstract:
An effective reward model plays a pivotal role in reinforcement learning for post-training enhancement of visual generative models. However, current approaches of reward modeling suffer from implementation complexity due to their reliance on extensive human-annotated preference data or meticulously engineered quality dimensions that are often incomplete and engineering-intensive. Inspired by adversarial training in generative adversarial networks (GANs), this paper proposes GAN-RM, an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering. Our method trains the reward model through discrimination between a small set of representative, unpaired target samples(denoted as Preference Proxy Data) and model-generated ordinary outputs, requiring only a few hundred target samples. Comprehensive experiments demonstrate our GAN-RM's effectiveness across multiple key applications including test-time scaling implemented as Best-of-N sample filtering, post-training approaches like Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO). Code and data will be released at https://github.com/Visualignment/GAN-RM.

Authors:Miho Koda, Yu Zheng, Ruixian Ma, Mingyang Sun, Devesh Pansare, Fabio Duarte, Paolo Santi
Title: LocationReasoner: Evaluating LLMs on Real-World Site Selection Reasoning
Abstract:
Recent advances in large language models (LLMs), particularly those enhanced through reinforced post-training, have demonstrated impressive reasoning capabilities, as exemplified by models such as OpenAI o1 and DeepSeek-R1. However, these capabilities are predominantly benchmarked on domains like mathematical problem solving and code generation -- leaving open the question of whether such reasoning skills generalize to complex, real-world scenarios. In this paper, we introduce LocationReasoner, a benchmark designed to evaluate LLMs' reasoning abilities in the context of real-world site selection, where models must identify feasible locations by reasoning over diverse and complicated spatial, environmental, and logistical constraints. The benchmark comprises over 300 carefully crafted queries of varying difficulty levels, supported by a sandbox environment with in-house tools for constraint-based location search. Extensive evaluations reveal that state-of-the-art reasoning models offer limited improvement over their non-reasoning predecessors in real-world contexts, with even the latest OpenAI o4 model failing on 30% of site selection tasks. Moreover, agentic strategies such as ReAct and Reflexion often suffer from over-reasoning, leading to worse outcomes than direct code-generation prompting. With key limitations of LLMs in holistic and non-linear reasoning highlighted, we release LocationReasoner to foster the development of LLMs and agents capable of robust, grounded reasoning in real-world decision-making tasks. Codes and data for our benchmark are available at https://github.com/miho-koda/LocationReasoner.

Authors:Miho Koda, Yu Zheng, Ruixian Ma, Mingyang Sun, Devesh Pansare, Fabio Duarte, Paolo Santi
Title: LocationReasoner: Evaluating LLMs on Real-World Site Selection Reasoning
Abstract:
Recent advances in large language models (LLMs), particularly those enhanced through reinforced post-training, have demonstrated impressive reasoning capabilities, as exemplified by models such as OpenAI o1 and DeepSeek-R1. However, these capabilities are predominantly benchmarked on domains like mathematical problem solving and code generation, leaving open the question of whether such reasoning skills generalize to complex real-world scenarios. In this paper, we introduce LocationReasoner, a benchmark designed to evaluate LLMs' reasoning abilities in the context of real-world site selection, where models must identify feasible locations by reasoning over diverse and complicated spatial, environmental, and logistic constraints. The benchmark covers carefully crafted queries of varying difficulty levels and is supported by a sandbox environment with in-house tools for constraint-based location search. Automated verification further guarantees the scalability of the benchmark, enabling the addition of arbitrary number of queries. Extensive evaluations on real-world site selection data from Boston, New York, and Tampa reveal that state-of-the-art reasoning models offer limited improvement over their non-reasoning predecessors in real-world contexts, with even the latest OpenAI o4 model failing on 30% of site selection tasks. Moreover, agentic strategies such as ReAct and Reflexion often suffer from over-reasoning, leading to worse outcomes than direct prompting. With key limitations of LLMs in holistic and non-linear reasoning highlighted, we release LocationReasoner to foster the development of LLMs and agents capable of robust, grounded reasoning in real-world decision-making tasks. Codes and data for our benchmark are available at https://github.com/miho-koda/LocationReasoner.

Authors:Florian Kofler, Marcel Rosier, Mehdi Astaraki, Ujjwal Baid, Hendrik Möller, Josef A. Buchner, Felix Steinbauer, Eva Oswald, Ezequiel de la Rosa, Ivan Ezhov, Constantin von See, Jan Kirschke, Anton Schmick, Sarthak Pati, Akis Linardos, Carla Pitarch, Sanyukta Adap, Jeffrey Rudie, Maria Correia de Verdier, Rachit Saluja, Evan Calabrese, Dominic LaBella, Mariam Aboian, Ahmed W. Moawad, Nazanin Maleki, Udunna Anazodo, Maruf Adewole, Marius George Linguraru, Anahita Fathi Kazerooni, Zhifan Jiang, Gian Marco Conte, Hongwei Li, Juan Eugenio Iglesias, Spyridon Bakas, Benedikt Wiestler, Marie Piraud, Bjoern Menze
Title: BraTS orchestrator : Democratizing and Disseminating state-of-the-art brain tumor image analysis
Abstract:
The Brain Tumor Segmentation (BraTS) cluster of challenges has significantly advanced brain tumor image analysis by providing large, curated datasets and addressing clinically relevant tasks. However, despite its success and popularity, algorithms and models developed through BraTS have seen limited adoption in both scientific and clinical communities. To accelerate their dissemination, we introduce BraTS orchestrator, an open-source Python package that provides seamless access to state-of-the-art segmentation and synthesis algorithms for diverse brain tumors from the BraTS challenge ecosystem. Available on GitHub (https://github.com/BrainLesion/BraTS), the package features intuitive tutorials designed for users with minimal programming experience, enabling both researchers and clinicians to easily deploy winning BraTS algorithms for inference. By abstracting the complexities of modern deep learning, BraTS orchestrator democratizes access to the specialized knowledge developed within the BraTS community, making these advances readily available to broader neuro-radiology and neuro-oncology audiences.

Authors:Boshen Shi, Yongqing Wang, Fangda Guo, Jiangli Shao, Huawei Shen, Xueqi Cheng
Title: BotTrans: A Multi-Source Graph Domain Adaptation Approach for Social Bot Detection
Abstract:
Transferring extensive knowledge from relevant social networks has emerged as a promising solution to overcome label scarcity in detecting social bots and other anomalies with GNN-based models. However, effective transfer faces two critical challenges. Firstly, the network heterophily problem, which is caused by bots hiding malicious behaviors via indiscriminately interacting with human users, hinders the model's ability to learn sufficient and accurate bot-related knowledge from source domains. Secondly, single-source transfer might lead to inferior and unstable results, as the source network may embody weak relevance to the task and provide limited knowledge. To address these challenges, we explore multiple source domains and propose a multi-source graph domain adaptation model named \textit{BotTrans}. We initially leverage the labeling knowledge shared across multiple source networks to establish a cross-source-domain topology with increased network homophily. We then aggregate cross-domain neighbor information to enhance the discriminability of source node embeddings. Subsequently, we integrate the relevance between each source-target pair with model optimization, which facilitates knowledge transfer from source networks that are more relevant to the detection task. Additionally, we propose a refinement strategy to improve detection performance by utilizing semantic knowledge within the target domain. Extensive experiments on real-world datasets demonstrate that \textit{BotTrans} outperforms the existing state-of-the-art methods, revealing its efficacy in leveraging multi-source knowledge when the target detection task is unlabeled.

Authors:Zongxian Yang, Jiayu Qian, Zegao Peng, Haoyu Zhang, Zhi-An Huang
Title: Med-REFL: Medical Reasoning Enhancement via Self-Corrected Fine-grained Reflection
Abstract:
Large reasoning models have recently made significant strides in mathematical and code reasoning, yet their success has not transferred smoothly to the medical domain. While multiple factors contribute to this disparity, a critical issue is the inadequate focus on the quality of intermediate reflection steps, which is particularly crucial in high-stakes medical scenarios. To address this challenge, we propose Med-REFL, a \underline{\textbf{Med}}ical \underline{\textbf{R}}easoning \underline{\textbf{E}}nhancement via self-corrected \underline{\textbf{F}}ine-grained ref\underline{\textbf{L}}ection. Our method leverages a tree-of-thought approach to decompose medical questions into fine-grained reasoning paths, quantitatively evaluating each step and its subsequent reflections. These assessments enable automatic construction of direct preference optimization data, reducing reliance on expensive expert annotations while guiding models to identify and correct reasoning errors. Experimental results on the MedQA-USMLE benchmark demonstrate Med-REFL achieves consistent improvements, with average gains up to 4.11\%. Notably, it further boosts the state-of-the-art performance of 7B/8B models by an additional 4.13\%. Furthermore, Med-REFL exhibits strong generalization capabilities and robustness across several challenging medical question-answering datasets. Our work illustrates that prioritizing reflection quality leads to more accurate and trustworthy reasoning in medical AI applications. Checkpoints, code, and data can be found in https://github.com/TianYin123/Med-REFL.

Authors:Ke Wang, Bo Pan, Yingchaojie Feng, Yuwei Wu, Jieyi Chen, Minfeng Zhu, Wei Chen
Title: XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation
Abstract:
Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in the corpus, elevating the precision and comprehensiveness of generation results. However, developers usually face challenges in analyzing the effectiveness of GraphRAG on their dataset due to GraphRAG's complex information processing pipeline and the overwhelming amount of LLM invocations involved during graph construction and query, which limits GraphRAG interpretability and accessibility. This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG and trace these recalls through the GraphRAG pipeline. Based on this framework, we develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process, boosting failure cases collection and improvement opportunities identification. Our evaluation demonstrates the effectiveness and usability of our approach. Our work is open-sourced and available at https://github.com/Gk0Wk/XGraphRAG.

Authors:Kevin L. Wei, Patricia Paskov, Sunishchal Dev, Michael J. Byun, Anka Reuel, Xavier Roberts-Gaal, Rachel Calcott, Evie Coxon, Chinmay Deshpande
Title: Recommendations and Reporting Checklist for Rigorous & Transparent Human Baselines in Model Evaluations
Abstract:
In this position paper, we argue that human baselines in foundation model evaluations must be more rigorous and more transparent to enable meaningful comparisons of human vs. AI performance, and we provide recommendations and a reporting checklist towards this end. Human performance baselines are vital for the machine learning community, downstream users, and policymakers to interpret AI evaluations. Models are often claimed to achieve "super-human" performance, but existing baselining methods are neither sufficiently rigorous nor sufficiently well-documented to robustly measure and assess performance differences. Based on a meta-review of the measurement theory and AI evaluation literatures, we derive a framework with recommendations for designing, executing, and reporting human baselines. We synthesize our recommendations into a checklist that we use to systematically review 115 human baselines (studies) in foundation model evaluations and thus identify shortcomings in existing baselining methods; our checklist can also assist researchers in conducting human baselines and reporting results. We hope our work can advance more rigorous AI evaluation practices that can better serve both the research community and policymakers. Data is available at: https://github.com/kevinlwei/human-baselines

Authors:Runpeng Yu, Qi Li, Xinchao Wang
Title: Discrete Diffusion in Large Language and Multimodal Models: A Survey
Abstract:
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output control, and dynamic perception. These capabilities are previously difficult to achieve with AR models. A growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10$\times$ acceleration in inference speed. These developments position discrete diffusion models as a promising alternative to intelligence based on the traditional autoregressive approach. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, list commonly-used modeling methods, and categorize representative models. We further analyze key techniques for training, inference, quantization. We also discuss the trustworthy issues and summarize emerging applications across language, vision-language, and biological domains and etc.. We conclude by discussing future directions for research and deployment. Relative papers are collected in https://github.com/LiQiiiii/Awesome-Discrete-Diffusion-LLM_MLLM

Authors:Junyan Li, Wenshuo Zhao, Yang Zhang, Chuang Gan
Title: Steering LLM Thinking with Budget Guidance
Abstract:
Recent deep-thinking large language models often reason extensively to improve performance, but such lengthy reasoning is not always desirable, as it incurs excessive inference costs with disproportionate performance gains. Controlling reasoning length without sacrificing performance is therefore important, but remains challenging, especially under tight thinking budgets. We propose budget guidance, a simple yet effective method for steering the reasoning process of LLMs toward a target budget without requiring any LLM fine-tuning. Our approach introduces a lightweight predictor that models a Gamma distribution over the remaining thinking length during next-token generation. This signal is then used to guide generation in a soft, token-level manner, ensuring that the overall reasoning trace adheres to the specified thinking budget. Budget guidance enables natural control of the thinking length, along with significant token efficiency improvements over baseline methods on challenging math benchmarks. For instance, it achieves up to a 26% accuracy gain on the MATH-500 benchmark under tight budgets compared to baseline methods, while maintaining competitive accuracy with only 63% of the thinking tokens used by the full-thinking model. Budget guidance also generalizes to broader task domains and exhibits emergent capabilities, such as estimating question difficulty. The source code is available at: https://github.com/UMass-Embodied-AGI/BudgetGuidance.

Authors:Yuheng Yuan, Qiuhong Shen, Shizun Wang, Xingyi Yang, Xinchao Wang
Title: Test3R: Learning to Reconstruct 3D at Test Time
Abstract:
Dense matching methods like DUSt3R regress pairwise pointmaps for 3D reconstruction. However, the reliance on pairwise prediction and the limited generalization capability inherently restrict the global geometric consistency. In this work, we introduce Test3R, a surprisingly simple test-time learning technique that significantly boosts geometric accuracy. Using image triplets ($I_1,I_2,I_3$), Test3R generates reconstructions from pairs ($I_1,I_2$) and ($I_1,I_3$). The core idea is to optimize the network at test time via a self-supervised objective: maximizing the geometric consistency between these two reconstructions relative to the common image $I_1$. This ensures the model produces cross-pair consistent outputs, regardless of the inputs. Extensive experiments demonstrate that our technique significantly outperforms previous state-of-the-art methods on the 3D reconstruction and multi-view depth estimation tasks. Moreover, it is universally applicable and nearly cost-free, making it easily applied to other models and implemented with minimal test-time training overhead and parameter footprint. Code is available at https://github.com/nopQAQ/Test3R.

Authors:Spiros Gkousis, Evina Katsou
Title: lcpy: an open-source python package for parametric and dynamic Life Cycle Assessment and Life Cycle Costing
Abstract:
This article describes lcpy, an open-source python package that allows for advanced parametric Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) analysis. The package is designed to allow the user to model a process with a flexible, modular design based on dictionaries and lists. The modeling can consider in-time variations, uncertainty, and allows for dynamic analysis, uncertainty assessment, as well as conventional static LCA and LCC. The package is compatible with optimization and uncertainty analysis libraries as well as python packages for prospective LCA. Its goal is to allow for easy implementation of dynamic LCA and LCC and for simple integration with tools for uncertainty assessment and optimization towards a more widened implementation of advanced enviro-economic analysis. The open-source code can be found at https://github.com/spirdgk/lcpy.

Authors:Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Reduan Achtibat, Patrick Kahardipraja, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin
Title: Attribution-guided Pruning for Compression, Circuit Discovery, and Targeted Correction in LLMs
Abstract:
Large Language Models (LLMs) are central to many contemporary AI applications, yet their extensive parameter counts pose significant challenges for deployment in memory- and compute-constrained environments. Recent works in eXplainable AI (XAI), particularly on attribution methods, suggest that interpretability can also enable model compression by identifying and removing components irrelevant to inference. In this paper, we leverage Layer-wise Relevance Propagation (LRP) to perform attribution-guided pruning of LLMs. While LRP has shown promise in structured pruning for vision models, we extend it to unstructured pruning in LLMs and demonstrate that it can substantially reduce model size with minimal performance loss. Our method is especially effective in extracting task-relevant subgraphs -- so-called ``circuits'' -- which can represent core functions (e.g., indirect object identification). Building on this, we introduce a technique for model correction, by selectively removing circuits responsible for spurious behaviors (e.g., toxic outputs). All in all, we gather these techniques as a uniform holistic framework and showcase its effectiveness and limitations through extensive experiments for compression, circuit discovery and model correction on Llama and OPT models, highlighting its potential for improving both model efficiency and safety. Our code is publicly available at https://github.com/erfanhatefi/SparC3.

Authors:Junfeng Fang, Zijun Yao, Ruipeng Wang, Haokai Ma, Xiang Wang, Tat-Seng Chua
Title: We Should Identify and Mitigate Third-Party Safety Risks in MCP-Powered Agent Systems
Abstract:
The development of large language models (LLMs) has entered in a experience-driven era, flagged by the emergence of environment feedback-driven learning via reinforcement learning and tool-using agents. This encourages the emergenece of model context protocol (MCP), which defines the standard on how should a LLM interact with external services, such as \api and data. However, as MCP becomes the de facto standard for LLM agent systems, it also introduces new safety risks. In particular, MCP introduces third-party services, which are not controlled by the LLM developers, into the agent systems. These third-party MCP services provider are potentially malicious and have the economic incentives to exploit vulnerabilities and sabotage user-agent interactions. In this position paper, we advocate the research community in LLM safety to pay close attention to the new safety risks issues introduced by MCP, and develop new techniques to build safe MCP-powered agent systems. To establish our position, we argue with three key parts. (1) We first construct \framework, a controlled framework to examine safety issues in MCP-powered agent systems. (2) We then conduct a series of pilot experiments to demonstrate the safety risks in MCP-powered agent systems is a real threat and its defense is not trivial. (3) Finally, we give our outlook by showing a roadmap to build safe MCP-powered agent systems. In particular, we would call for researchers to persue the following research directions: red teaming, MCP safe LLM development, MCP safety evaluation, MCP safety data accumulation, MCP service safeguard, and MCP safe ecosystem construction. We hope this position paper can raise the awareness of the research community in MCP safety and encourage more researchers to join this important research direction. Our code is available at https://github.com/littlelittlenine/SafeMCP.git.

Authors:Shaolei Zhang, Shoutao Guo, Qingkai Fang, Yan Zhou, Yang Feng
Title: Stream-Omni: Simultaneous Multimodal Interactions with Large Language-Vision-Speech Model
Abstract:
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience.

Authors:Bohao Yang, Hainiu Xu, Jinhua Du, Ze Li, Yulan He, Chenghua Lin
Title: EvolvTrip: Enhancing Literary Character Understanding with Temporal Theory-of-Mind Graphs
Abstract:
A compelling portrayal of characters is essential to the success of narrative writing. For readers, appreciating a character's traits requires the ability to infer their evolving beliefs, desires, and intentions over the course of a complex storyline, a cognitive skill known as Theory-of-Mind (ToM). Performing ToM reasoning in prolonged narratives requires readers to integrate historical context with current narrative information, a task at which humans excel but Large Language Models (LLMs) often struggle. To systematically evaluate LLMs' ToM reasoning capability in long narratives, we construct LitCharToM, a benchmark of character-centric questions across four ToM dimensions from classic literature. Further, we introduce EvolvTrip, a perspective-aware temporal knowledge graph that tracks psychological development throughout narratives. Our experiments demonstrate that EvolvTrip consistently enhances performance of LLMs across varying scales, even in challenging extended-context scenarios. EvolvTrip proves to be particularly valuable for smaller models, partially bridging the performance gap with larger LLMs and showing great compatibility with lengthy narratives. Our findings highlight the importance of explicit representation of temporal character mental states in narrative comprehension and offer a foundation for more sophisticated character understanding. Our data and code are publicly available at https://github.com/Bernard-Yang/EvolvTrip.

Authors:Zhiyi Shi, Binjie Wang, Chongjie Si, Yichen Wu, Junsik Kim, Hanspeter Pfister
Title: DualEdit: Dual Editing for Knowledge Updating in Vision-Language Models
Abstract:
Model editing aims to efficiently update a pre-trained model's knowledge without the need for time-consuming full retraining. While existing pioneering editing methods achieve promising results, they primarily focus on editing single-modal language models (LLMs). However, for vision-language models (VLMs), which involve multiple modalities, the role and impact of each modality on editing performance remain largely unexplored. To address this gap, we explore the impact of textual and visual modalities on model editing and find that: (1) textual and visual representations reach peak sensitivity at different layers, reflecting their varying importance; and (2) editing both modalities can efficiently update knowledge, but this comes at the cost of compromising the model's original capabilities. Based on our findings, we propose DualEdit, an editor that modifies both textual and visual modalities at their respective key layers. Additionally, we introduce a gating module within the more sensitive textual modality, allowing DualEdit to efficiently update new knowledge while preserving the model's original information. We evaluate DualEdit across multiple VLM backbones and benchmark datasets, demonstrating its superiority over state-of-the-art VLM editing baselines as well as adapted LLM editing methods on different evaluation metrics. Codes are available at https://github.com/zhiyiscs/DualEdit

Authors:Chia-Heng Yu, Yen-Lung Tsai
Title: Tree-Based Text Retrieval via Hierarchical Clustering in RAGFrameworks: Application on Taiwanese Regulations
Abstract:
Traditional Retrieval-Augmented Generation (RAG) systems employ brute-force inner product search to retrieve the top-k most similar documents, then combined with the user query and passed to a language model. This allows the model to access external knowledge and reduce hallucinations. However, selecting an appropriate k value remains a significant challenge in practical applications: a small k may fail to retrieve sufficient information, while a large k can introduce excessive and irrelevant content. To address this, we propose a hierarchical clustering-based retrieval method that eliminates the need to predefine k. Our approach maintains the accuracy and relevance of system responses while adaptively selecting semantically relevant content. In the experiment stage, we applied our method to a Taiwanese legal dataset with expert-graded queries. The results show that our approach achieves superior performance in expert evaluations and maintains high precision while eliminating the need to predefine k, demonstrating improved accuracy and interpretability in legal text retrieval tasks. Our framework is simple to implement and easily integrates with existing RAG pipelines, making it a practical solution for real-world applications under limited resources.

Authors:Zhucun Xue, Jiangning Zhang, Xurong Xie, Yuxuan Cai, Yong Liu, Xiangtai Li, Dacheng Tao
Title: AdaVideoRAG: Omni-Contextual Adaptive Retrieval-Augmented Efficient Long Video Understanding
Abstract:
Multimodal Large Language Models (MLLMs) struggle with long videos due to fixed context windows and weak long-term dependency modeling. Existing Retrieval-Augmented Generation (RAG) methods for videos use static retrieval strategies, leading to inefficiencies for simple queries and information loss for complex tasks. To address this, we propose AdaVideoRAG, a novel framework that dynamically adapts retrieval granularity based on query complexity using a lightweight intent classifier. Our framework employs an Omni-Knowledge Indexing module to build hierarchical databases from text (captions, ASR, OCR), visual features, and semantic graphs, enabling optimal resource allocation across tasks. We also introduce the HiVU benchmark for comprehensive evaluation. Experiments demonstrate improved efficiency and accuracy for long-video understanding, with seamless integration into existing MLLMs. AdaVideoRAG establishes a new paradigm for adaptive retrieval in video analysis. Codes will be open-sourced at https://github.com/xzc-zju/AdaVideoRAG.

Authors:MiniMax, :, Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu, Chao Wang, Cheng Zhu, Chengjun Xiao, Chengyu Du, Chi Zhang, Chu Qiao, Chunhao Zhang, Chunhui Du, Congchao Guo, Da Chen, Deming Ding, Dianjun Sun, Dong Li, Enwei Jiao, Haigang Zhou, Haimo Zhang, Han Ding, Haohai Sun, Haoyu Feng, Huaiguang Cai, Haichao Zhu, Jian Sun, Jiaqi Zhuang, Jiaren Cai, Jiayuan Song, Jin Zhu, Jingyang Li, Jinhao Tian, Jinli Liu, Junhao Xu, Junjie Yan, Junteng Liu, Junxian He, Kaiyi Feng, Ke Yang, Kecheng Xiao, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Li, Lin Zheng, Linge Du, Lingyu Yang, Lunbin Zeng, Minghui Yu, Mingliang Tao, Mingyuan Chi, Mozhi Zhang, Mujie Lin, Nan Hu, Nongyu Di, Peng Gao, Pengfei Li, Pengyu Zhao, Qibing Ren, Qidi Xu, Qile Li, Qin Wang, Rong Tian, Ruitao Leng, Shaoxiang Chen, Shaoyu Chen, Shengmin Shi, Shitong Weng, Shuchang Guan, Shuqi Yu, Sichen Li, Songquan Zhu, Tengfei Li, Tianchi Cai, Tianrun Liang, Weiyu Cheng, Weize Kong, Wenkai Li, Xiancai Chen, Xiangjun Song, Xiao Luo, Xiao Su, Xiaobo Li, Xiaodong Han, Xinzhu Hou, Xuan Lu, Xun Zou, Xuyang Shen, Yan Gong, Yan Ma, Yang Wang, Yiqi Shi, Yiran Zhong, Yonghong Duan, Yongxiang Fu, Yongyi Hu, Yu Gao, Yuanxiang Fan, Yufeng Yang, Yuhao Li, Yulin Hu, Yunan Huang, Yunji Li, Yunzhi Xu, Yuxin Mao, Yuxuan Shi, Yuze Wenren, Zehan Li, Zelin Li, Zhanxu Tian, Zhengmao Zhu, Zhenhua Fan, Zhenzhen Wu, Zhichao Xu, Zhihang Yu, Zhiheng Lyu, Zhuo Jiang, Zibo Gao, Zijia Wu, Zijian Song, Zijun Sun
Title: MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention
Abstract:
We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.

Authors:Jonathan Hoss, Felix Schelling, Noah Klarmann
Title: A Production Scheduling Framework for Reinforcement Learning Under Real-World Constraints
Abstract:
The classical Job Shop Scheduling Problem (JSSP) focuses on optimizing makespan under deterministic constraints. Real-world production environments introduce additional complexities that cause traditional scheduling approaches to be less effective. Reinforcement learning (RL) holds potential in addressing these challenges, as it allows agents to learn adaptive scheduling strategies. However, there is a lack of a comprehensive, general-purpose frameworks for effectively training and evaluating RL agents under real-world constraints. To address this gap, we propose a modular framework that extends classical JSSP formulations by incorporating key real-world constraints inherent to the shopfloor, including transport logistics, buffer management, machine breakdowns, setup times, and stochastic processing conditions, while also supporting multi-objective optimization. The framework is a customizable solution that offers flexibility in defining problem instances and configuring simulation parameters, enabling adaptation to diverse production scenarios. A standardized interface ensures compatibility with various RL approaches, providing a robust environment for training RL agents and facilitating the standardized comparison of different scheduling methods under dynamic and uncertain conditions. We release JobShopLab as an open-source tool for both research and industrial applications, accessible at: https://github.com/proto-lab-ro/jobshoplab

Authors:YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt
Title: The Price of Freedom: Exploring Expressivity and Runtime Tradeoffs in Equivariant Tensor Products
Abstract:
$E(3)$-equivariant neural networks have demonstrated success across a wide range of 3D modelling tasks. A fundamental operation in these networks is the tensor product, which interacts two geometric features in an equivariant manner to create new features. Due to the high computational complexity of the tensor product, significant effort has been invested to optimize the runtime of this operation. For example, Luo et al. (2024) recently proposed the Gaunt tensor product (GTP) which promises a significant speedup. In this work, we provide a careful, systematic analysis of a number of tensor product operations. In particular, we emphasize that different tensor products are not performing the same operation. The reported speedups typically come at the cost of expressivity. We introduce measures of expressivity and interactability to characterize these differences. In addition, we realized the original implementation of GTP can be greatly simplified by directly using a spherical grid at no cost in asymptotic runtime. This spherical grid approach is faster on our benchmarks and in actual training of the MACE interatomic potential by 30%. Finally, we provide the first systematic microbenchmarks of the various tensor product operations. We find that the theoretical runtime guarantees can differ wildly from empirical performance, demonstrating the need for careful application-specific benchmarking. Code is available at https://github.com/atomicarchitects/PriceofFreedom.

Authors:Yihui Li, Chengxin Lv, Hongyu Yang, Di Huang
Title: Micro-macro Gaussian Splatting with Enhanced Scalability for Unconstrained Scene Reconstruction
Abstract:
Reconstructing 3D scenes from unconstrained image collections poses significant challenges due to variations in appearance. In this paper, we propose Scalable Micro-macro Wavelet-based Gaussian Splatting (SMW-GS), a novel method that enhances 3D reconstruction across diverse scales by decomposing scene representations into global, refined, and intrinsic components. SMW-GS incorporates the following innovations: Micro-macro Projection, which enables Gaussian points to sample multi-scale details with improved diversity; and Wavelet-based Sampling, which refines feature representations using frequency-domain information to better capture complex scene appearances. To achieve scalability, we further propose a large-scale scene promotion strategy, which optimally assigns camera views to scene partitions by maximizing their contributions to Gaussian points, achieving consistent and high-quality reconstructions even in expansive environments. Extensive experiments demonstrate that SMW-GS significantly outperforms existing methods in both reconstruction quality and scalability, particularly excelling in large-scale urban environments with challenging illumination variations. Project is available at https://github.com/Kidleyh/SMW-GS.

Authors:Junfeng Jiao, Saleh Afroogh, Kevin Chen, Abhejay Murali, David Atkinson, Amit Dhurandhar
Title: Safe-Child-LLM: A Developmental Benchmark for Evaluating LLM Safety in Child-LLM Interactions
Abstract:
As Large Language Models (LLMs) increasingly power applications used by children and adolescents, ensuring safe and age-appropriate interactions has become an urgent ethical imperative. Despite progress in AI safety, current evaluations predominantly focus on adults, neglecting the unique vulnerabilities of minors engaging with generative AI. We introduce Safe-Child-LLM, a comprehensive benchmark and dataset for systematically assessing LLM safety across two developmental stages: children (7-12) and adolescents (13-17). Our framework includes a novel multi-part dataset of 200 adversarial prompts, curated from red-teaming corpora (e.g., SG-Bench, HarmBench), with human-annotated labels for jailbreak success and a standardized 0-5 ethical refusal scale. Evaluating leading LLMs -- including ChatGPT, Claude, Gemini, LLaMA, DeepSeek, Grok, Vicuna, and Mistral -- we uncover critical safety deficiencies in child-facing scenarios. This work highlights the need for community-driven benchmarks to protect young users in LLM interactions. To promote transparency and collaborative advancement in ethical AI development, we are publicly releasing both our benchmark datasets and evaluation codebase at https://github.com/The-Responsible-AI-Initiative/Safe_Child_LLM_Benchmark.git

Authors:José A. Pardo, Alicia Gómez-Pascual, José T. Palma, Juan A. Botía
Title: Enhancing Omics Cohort Discovery for Research on Neurodegeneration through Ontology-Augmented Embedding Models
Abstract:
The growing volume of omics and clinical data generated for neurodegenerative diseases (NDs) requires new approaches for their curation so they can be ready-to-use in bioinformatics. NeuroEmbed is an approach for the engineering of semantically accurate embedding spaces to represent cohorts and samples. The NeuroEmbed method comprises four stages: (1) extraction of ND cohorts from public repositories; (2) semi-automated normalization and augmentation of metadata of cohorts and samples using biomedical ontologies and clustering on the embedding space; (3) automated generation of a natural language question-answering (QA) dataset for cohorts and samples based on randomized combinations of standardized metadata dimensions and (4) fine-tuning of a domain-specific embedder to optimize queries. We illustrate the approach using the GEO repository and the PubMedBERT pretrained embedder. Applying NeuroEmbed, we semantically indexed 2,801 repositories and 150,924 samples. Amongst many biology-relevant categories, we normalized more than 1,700 heterogeneous tissue labels from GEO into 326 unique ontology-aligned concepts and enriched annotations with new ontology-aligned terms, leading to a fold increase in size for the metadata terms between 2.7 and 20 fold. After fine-tuning PubMedBERT with the QA training data augmented with the enlarged metadata, the model increased its mean Retrieval Precision from 0.277 to 0.866 and its mean Percentile Rank from 0.355 to 0.896. The NeuroEmbed methodology for the creation of electronic catalogues of omics cohorts and samples will foster automated bioinformatic pipelines construction. The NeuroEmbed catalogue of cohorts and samples is available at https://github.com/JoseAdrian3/NeuroEmbed.

Authors:Zerui Gong, Zhonghua Wu, Qingyi Tao, Qinyue Li, Chen Change Loy
Title: SA-LUT: Spatial Adaptive 4D Look-Up Table for Photorealistic Style Transfer
Abstract:
Photorealistic style transfer (PST) enables real-world color grading by adapting reference image colors while preserving content structure. Existing methods mainly follow either approaches: generation-based methods that prioritize stylistic fidelity at the cost of content integrity and efficiency, or global color transformation methods such as LUT, which preserve structure but lack local adaptability. To bridge this gap, we propose Spatial Adaptive 4D Look-Up Table (SA-LUT), combining LUT efficiency with neural network adaptability. SA-LUT features: (1) a Style-guided 4D LUT Generator that extracts multi-scale features from the style image to predict a 4D LUT, and (2) a Context Generator using content-style cross-attention to produce a context map. This context map enables spatially-adaptive adjustments, allowing our 4D LUT to apply precise color transformations while preserving structural integrity. To establish a rigorous evaluation framework for photorealistic style transfer, we introduce PST50, the first benchmark specifically designed for PST assessment. Experiments demonstrate that SA-LUT substantially outperforms state-of-the-art methods, achieving a 66.7% reduction in LPIPS score compared to 3D LUT approaches, while maintaining real-time performance at 16 FPS for video stylization. Our code and benchmark are available at https://github.com/Ry3nG/SA-LUT

Authors:Laiyan Ding, Hualie Jiang, Jiwei Chen, Rui Huang
Title: Self-Supervised Enhancement for Depth from a Lightweight ToF Sensor with Monocular Images
Abstract:
Depth map enhancement using paired high-resolution RGB images offers a cost-effective solution for improving low-resolution depth data from lightweight ToF sensors. Nevertheless, naively adopting a depth estimation pipeline to fuse the two modalities requires groundtruth depth maps for supervision. To address this, we propose a self-supervised learning framework, SelfToF, which generates detailed and scale-aware depth maps. Starting from an image-based self-supervised depth estimation pipeline, we add low-resolution depth as inputs, design a new depth consistency loss, propose a scale-recovery module, and finally obtain a large performance boost. Furthermore, since the ToF signal sparsity varies in real-world applications, we upgrade SelfToF to SelfToF* with submanifold convolution and guided feature fusion. Consequently, SelfToF* maintain robust performance across varying sparsity levels in ToF data. Overall, our proposed method is both efficient and effective, as verified by extensive experiments on the NYU and ScanNet datasets. The code is available at \href{https://github.com/denyingmxd/selftof}{https://github.com/denyingmxd/selftof}.

Authors:Kang Chen, Bin Huang, Xuebin Yang, Junyan Zhang, Yongbo Wang, Qiegen Liu
Title: PRO: Projection Domain Synthesis for CT Imaging
Abstract:
Synthetic CT projection data is crucial for advancing imaging research, yet its generation remains challenging. Current image domain methods are limited as they cannot simulate the physical acquisition process or utilize the complete statistical information present in projection data, restricting their utility and fidelity. In this work, we present PRO, a projection domain synthesis foundation model for CT imaging. To the best of our knowledge, this is the first study that performs CT synthesis in the projection domain. Unlike previous approaches that operate in the image domain, PRO learns rich structural representations from projection data and leverages anatomical text prompts for controllable synthesis. Projection data generation models can utilize complete measurement signals and simulate the physical processes of scanning, including material attenuation characteristics, beam hardening, scattering, and projection geometry, and support research on downstream imaging tasks. Moreover, PRO functions as a foundation model, capable of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves performance across multiple downstream tasks, including low-dose and sparse-view reconstruction. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.

Authors:Jiang Wang, Yaozhong Kang, Linya Fu, Kazuhiro Nakadai, He Kong
Title: Observability-Aware Active Calibration of Multi-Sensor Extrinsics for Ground Robots via Online Trajectory Optimization
Abstract:
Accurate calibration of sensor extrinsic parameters for ground robotic systems (i.e., relative poses) is crucial for ensuring spatial alignment and achieving high-performance perception. However, existing calibration methods typically require complex and often human-operated processes to collect data. Moreover, most frameworks neglect acoustic sensors, thereby limiting the associated systems' auditory perception capabilities. To alleviate these issues, we propose an observability-aware active calibration method for ground robots with multimodal sensors, including a microphone array, a LiDAR (exteroceptive sensors), and wheel encoders (proprioceptive sensors). Unlike traditional approaches, our method enables active trajectory optimization for online data collection and calibration, contributing to the development of more intelligent robotic systems. Specifically, we leverage the Fisher information matrix (FIM) to quantify parameter observability and adopt its minimum eigenvalue as an optimization metric for trajectory generation via B-spline curves. Through planning and replanning of robot trajectory online, the method enhances the observability of multi-sensor extrinsic parameters. The effectiveness and advantages of our method have been demonstrated through numerical simulations and real-world experiments. For the benefit of the community, we have also open-sourced our code and data at https://github.com/AISLAB-sustech/Multisensor-Calibration.

Authors:Xiang Yu, Yayan Chen, Guannan He, Qing Zeng, Yue Qin, Meiling Liang, Dandan Luo, Yimei Liao, Zeyu Ren, Cheng Kang, Delong Yang, Bocheng Liang, Bin Pu, Ying Yuan, Shengli Li
Title: Simple is what you need for efficient and accurate medical image segmentation
Abstract:
While modern segmentation models often prioritize performance over practicality, we advocate a design philosophy prioritizing simplicity and efficiency, and attempted high performance segmentation model design. This paper presents SimpleUNet, a scalable ultra-lightweight medical image segmentation model with three key innovations: (1) A partial feature selection mechanism in skip connections for redundancy reduction while enhancing segmentation performance; (2) A fixed-width architecture that prevents exponential parameter growth across network stages; (3) An adaptive feature fusion module achieving enhanced representation with minimal computational overhead. With a record-breaking 16 KB parameter configuration, SimpleUNet outperforms LBUNet and other lightweight benchmarks across multiple public datasets. The 0.67 MB variant achieves superior efficiency (8.60 GFLOPs) and accuracy, attaining a mean DSC/IoU of 85.76%/75.60% on multi-center breast lesion datasets, surpassing both U-Net and TransUNet. Evaluations on skin lesion datasets (ISIC 2017/2018: mDice 84.86%/88.77%) and endoscopic polyp segmentation (KVASIR-SEG: 86.46%/76.48% mDice/mIoU) confirm consistent dominance over state-of-the-art models. This work demonstrates that extreme model compression need not compromise performance, providing new insights for efficient and accurate medical image segmentation. Codes can be found at https://github.com/Frankyu5666666/SimpleUNet.

Authors:Pengzuo Wu, Yuhang Yang, Guangcheng Zhu, Chao Ye, Hong Gu, Xu Lu, Ruixuan Xiao, Bowen Bao, Yijing He, Liangyu Zha, Wentao Ye, Junbo Zhao, Haobo Wang
Title: RealHiTBench: A Comprehensive Realistic Hierarchical Table Benchmark for Evaluating LLM-Based Table Analysis
Abstract:
With the rapid advancement of Large Language Models (LLMs), there is an increasing need for challenging benchmarks to evaluate their capabilities in handling complex tabular data. However, existing benchmarks are either based on outdated data setups or focus solely on simple, flat table structures. In this paper, we introduce RealHiTBench, a comprehensive benchmark designed to evaluate the performance of both LLMs and Multimodal LLMs (MLLMs) across a variety of input formats for complex tabular data, including LaTeX, HTML, and PNG. RealHiTBench also includes a diverse collection of tables with intricate structures, spanning a wide range of task types. Our experimental results, using 25 state-of-the-art LLMs, demonstrate that RealHiTBench is indeed a challenging benchmark. Moreover, we also develop TreeThinker, a tree-based pipeline that organizes hierarchical headers into a tree structure for enhanced tabular reasoning, validating the importance of improving LLMs' perception of table hierarchies. We hope that our work will inspire further research on tabular data reasoning and the development of more robust models. The code and data are available at https://github.com/cspzyy/RealHiTBench.

Authors:Beilei Cui, Yiming Huang, Long Bai, Hongliang Ren
Title: TR2M: Transferring Monocular Relative Depth to Metric Depth with Language Descriptions and Scale-Oriented Contrast
Abstract:
This work presents a generalizable framework to transfer relative depth to metric depth. Current monocular depth estimation methods are mainly divided into metric depth estimation (MMDE) and relative depth estimation (MRDE). MMDEs estimate depth in metric scale but are often limited to a specific domain. MRDEs generalize well across different domains, but with uncertain scales which hinders downstream applications. To this end, we aim to build up a framework to solve scale uncertainty and transfer relative depth to metric depth. Previous methods used language as input and estimated two factors for conducting rescaling. Our approach, TR2M, utilizes both text description and image as inputs and estimates two rescale maps to transfer relative depth to metric depth at pixel level. Features from two modalities are fused with a cross-modality attention module to better capture scale information. A strategy is designed to construct and filter confident pseudo metric depth for more comprehensive supervision. We also develop scale-oriented contrastive learning to utilize depth distribution as guidance to enforce the model learning about intrinsic knowledge aligning with the scale distribution. TR2M only exploits a small number of trainable parameters to train on datasets in various domains and experiments not only demonstrate TR2M's great performance in seen datasets but also reveal superior zero-shot capabilities on five unseen datasets. We show the huge potential in pixel-wise transferring relative depth to metric depth with language assistance. (Code is available at: https://github.com/BeileiCui/TR2M)

Authors:Ciro Beneduce, Tania Gullón Muñoz-Repiso, Bruno Lepri, Massimiliano Luca
Title: pySpainMobility: a Python Package to Access and Manage Spanish Open Mobility Data
Abstract:
Mobility patterns play a critical role in a wide range of societal challenges, from epidemic modeling and emergency response to transportation planning and regional development. Yet, access to high-quality, timely, and openly available mobility data remains limited. In response, the Spanish Ministry of Transportation and Sustainable Mobility has released daily mobility datasets based on anonymized mobile phone data, covering districts, municipalities, and greater urban areas from February 2020 to June 2021 and again from January 2022 onward. This paper presents pySpainMobility, a Python package that simplifies access to these datasets and their associated study areas through a standardized, well-documented interface. By lowering the technical barrier to working with large-scale mobility data, the package enables reproducible analysis and supports applications across research, policy, and operational domains. The library is available at https://github.com/pySpainMobility.

Authors:Yan Chen, Hanlin Shang, Ce Liu, Yuxuan Chen, Hui Li, Weihao Yuan, Hao Zhu, Zilong Dong, Siyu Zhu
Title: DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration
Abstract:
Video face restoration faces a critical challenge in maintaining temporal consistency while recovering fine facial details from degraded inputs. This paper presents a novel approach that extends Vector-Quantized Variational Autoencoders (VQ-VAEs), pretrained on static high-quality portraits, into a video restoration framework through variational latent space modeling. Our key innovation lies in reformulating discrete codebook representations as Dirichlet-distributed continuous variables, enabling probabilistic transitions between facial features across frames. A spatio-temporal Transformer architecture jointly models inter-frame dependencies and predicts latent distributions, while a Laplacian-constrained reconstruction loss combined with perceptual (LPIPS) regularization enhances both pixel accuracy and visual quality. Comprehensive evaluations on blind face restoration, video inpainting, and facial colorization tasks demonstrate state-of-the-art performance. This work establishes an effective paradigm for adapting intensive image priors, pretrained on high-quality images, to video restoration while addressing the critical challenge of flicker artifacts. The source code has been open-sourced and is available at https://github.com/fudan-generative-vision/DicFace.

Authors:Mae Younes, Adnane Boukhayma
Title: TextureSplat: Per-Primitive Texture Mapping for Reflective Gaussian Splatting
Abstract:
Gaussian Splatting have demonstrated remarkable novel view synthesis performance at high rendering frame rates. Optimization-based inverse rendering within complex capture scenarios remains however a challenging problem. A particular case is modelling complex surface light interactions for highly reflective scenes, which results in intricate high frequency specular radiance components. We hypothesize that such challenging settings can benefit from increased representation power. We hence propose a method that tackles this issue through a geometrically and physically grounded Gaussian Splatting borne radiance field, where normals and material properties are spatially variable in the primitive's local space. Using per-primitive texture maps for this purpose, we also propose to harness the GPU hardware to accelerate rendering at test time via unified material texture atlas.

Authors:Wooseok Seo, Seungju Han, Jaehun Jung, Benjamin Newman, Seungwon Lim, Seungbeen Lee, Ximing Lu, Yejin Choi, Youngjae Yu
Title: Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Abstract:
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers

Authors:Zhongqian Fu, Ning Ding, Kai Han, Xianzhi Yu, Xiaosong Li, Xinghao Chen, Yehui Tang, Yunhe Wang
Title: EAQuant: Enhancing Post-Training Quantization for MoE Models via Expert-Aware Optimization
Abstract:
Mixture-of-Experts (MoE) models have emerged as a cornerstone of large-scale deep learning by efficiently distributing computation and enhancing performance. However, their unique architecture-characterized by sparse expert activation and dynamic routing mechanisms-introduces inherent complexities that challenge conventional quantization techniques. Existing post-training quantization (PTQ) methods struggle to address activation outliers, router consistency and sparse expert calibration, leading to significant performance degradation. To bridge this gap, we propose EAQuant, a novel PTQ framework tailored for MoE architectures. Our method systematically tackles these challenges through three key innovations: (1) expert-aware smoothing aggregation to suppress activation outliers and stabilize quantization, (2) router logits distribution alignment to preserve expert selection consistency post-quantization, and (3) expert-level calibration data balance to optimize sparsely activated experts. Extensive experiments across W4A4 and extreme W3A4 quantization configurations demonstrate that EAQuant significantly outperforms existing methods, achieving average score improvements of 1.15 - 2.28% across three diverse MoE architectures, with particularly pronounced gains in reasoning tasks and robust performance retention under aggressive quantization. By integrating these innovations, EAQuant establishes a new state-of-the-art for high-precision, efficient MoE model compression. Our code is available at https://github.com/darren-fzq1/EAQuant.

Authors:Bo Pan, Yixiao Fu, Ke Wang, Junyu Lu, Lunke Pan, Ziyang Qian, Yuhan Chen, Guoliang Wang, Yitao Zhou, Li Zheng, Yinghao Tang, Zhen Wen, Yuchen Wu, Junhua Lu, Biao Zhu, Minfeng Zhu, Bo Zhang, Wei Chen
Title: VIS-Shepherd: Constructing Critic for LLM-based Data Visualization Generation
Abstract:
Data visualization generation using Large Language Models (LLMs) has shown promising results but often produces suboptimal visualizations that require human intervention for improvement. In this work, we introduce VIS-Shepherd, a specialized Multimodal Large Language Model (MLLM)-based critic to evaluate and provide feedback for LLM-generated data visualizations. At the core of our approach is a framework to construct a high-quality visualization critique dataset, where we collect human-created visualization instances, synthesize corresponding LLM-generated instances, and construct high-quality critiques. We conduct both model-based automatic evaluation and human preference studies to evaluate the effectiveness of our approach. Our experiments show that even small (7B parameters) open-source MLLM models achieve substantial performance gains by leveraging our high-quality visualization critique dataset, reaching levels comparable to much larger open-source or even proprietary models. Our work demonstrates significant potential for MLLM-based automated visualization critique and indicates promising directions for enhancing LLM-based data visualization generation. Our project page: https://github.com/bopan3/VIS-Shepherd.

Authors:Wenlong Wan, Weiying Zheng, Tianyi Xiang, Guiqing Li, Shengfeng He
Title: Action Dubber: Timing Audible Actions via Inflectional Flow
Abstract:
We introduce the task of Audible Action Temporal Localization, which aims to identify the spatio-temporal coordinates of audible movements. Unlike conventional tasks such as action recognition and temporal action localization, which broadly analyze video content, our task focuses on the distinct kinematic dynamics of audible actions. It is based on the premise that key actions are driven by inflectional movements; for example, collisions that produce sound often involve abrupt changes in motion. To capture this, we propose $TA^{2}Net$, a novel architecture that estimates inflectional flow using the second derivative of motion to determine collision timings without relying on audio input. $TA^{2}Net$ also integrates a self-supervised spatial localization strategy during training, combining contrastive learning with spatial analysis. This dual design improves temporal localization accuracy and simultaneously identifies sound sources within video frames. To support this task, we introduce a new benchmark dataset, $Audible623$, derived from Kinetics and UCF101 by removing non-essential vocalization subsets. Extensive experiments confirm the effectiveness of our approach on $Audible623$ and show strong generalizability to other domains, such as repetitive counting and sound source localization. Code and dataset are available at https://github.com/WenlongWan/Audible623.

Authors:Huayang Li, Yahui Liu, Hongyu Sun, Deng Cai, Leyang Cui, Wei Bi, Peilin Zhao, Taro Watanabe
Title: SeqPE: Transformer with Sequential Position Encoding
Abstract:
Since self-attention layers in Transformers are permutation invariant by design, positional encodings must be explicitly incorporated to enable spatial understanding. However, fixed-size lookup tables used in traditional learnable position embeddings (PEs) limit extrapolation capabilities beyond pre-trained sequence lengths. Expert-designed methods such as ALiBi and RoPE, mitigate this limitation but demand extensive modifications for adapting to new modalities, underscoring fundamental challenges in adaptability and scalability. In this work, we present SeqPE, a unified and fully learnable position encoding framework that represents each $n$-dimensional position index as a symbolic sequence and employs a lightweight sequential position encoder to learn their embeddings in an end-to-end manner. To regularize SeqPE's embedding space, we introduce two complementary objectives: a contrastive objective that aligns embedding distances with a predefined position-distance function, and a knowledge distillation loss that anchors out-of-distribution position embeddings to in-distribution teacher representations, further enhancing extrapolation performance. Experiments across language modeling, long-context question answering, and 2D image classification demonstrate that SeqPE not only surpasses strong baselines in perplexity, exact match (EM), and accuracy--particularly under context length extrapolation--but also enables seamless generalization to multi-dimensional inputs without requiring manual architectural redesign. We release our code, data, and checkpoints at https://github.com/ghrua/seqpe.

Authors:Yining Shi, Kun Jiang, Qiang Meng, Ke Wang, Jiabao Wang, Wenchao Sun, Tuopu Wen, Mengmeng Yang, Diange Yang
Title: COME: Adding Scene-Centric Forecasting Control to Occupancy World Model
Abstract:
World models are critical for autonomous driving to simulate environmental dynamics and generate synthetic data. Existing methods struggle to disentangle ego-vehicle motion (perspective shifts) from scene evolvement (agent interactions), leading to suboptimal predictions. Instead, we propose to separate environmental changes from ego-motion by leveraging the scene-centric coordinate systems. In this paper, we introduce COME: a framework that integrates scene-centric forecasting Control into the Occupancy world ModEl. Specifically, COME first generates ego-irrelevant, spatially consistent future features through a scene-centric prediction branch, which are then converted into scene condition using a tailored ControlNet. These condition features are subsequently injected into the occupancy world model, enabling more accurate and controllable future occupancy predictions. Experimental results on the nuScenes-Occ3D dataset show that COME achieves consistent and significant improvements over state-of-the-art (SOTA) methods across diverse configurations, including different input sources (ground-truth, camera-based, fusion-based occupancy) and prediction horizons (3s and 8s). For example, under the same settings, COME achieves 26.3% better mIoU metric than DOME and 23.7% better mIoU metric than UniScene. These results highlight the efficacy of disentangled representation learning in enhancing spatio-temporal prediction fidelity for world models. Code and videos will be available at https://github.com/synsin0/COME.

Authors:Jiashu Dai, Along Wang, Binfan Ni, Tao Cao
Title: High-Quality Facial Albedo Generation for 3D Face Reconstruction from a Single Image using a Coarse-to-Fine Approach
Abstract:
Facial texture generation is crucial for high-fidelity 3D face reconstruction from a single image. However, existing methods struggle to generate UV albedo maps with high-frequency details. To address this challenge, we propose a novel end-to-end coarse-to-fine approach for UV albedo map generation. Our method first utilizes a UV Albedo Parametric Model (UVAPM), driven by low-dimensional coefficients, to generate coarse albedo maps with skin tones and low-frequency texture details. To capture high-frequency details, we train a detail generator using a decoupled albedo map dataset, producing high-resolution albedo maps. Extensive experiments demonstrate that our method can generate high-fidelity textures from a single image, outperforming existing methods in terms of texture quality and realism. The code and pre-trained model are publicly available at https://github.com/MVIC-DAI/UVAPM, facilitating reproducibility and further research.

Authors:Philipp Spohn, Leander Girrbach, Jessica Bader, Zeynep Akata
Title: Align-then-Unlearn: Embedding Alignment for LLM Unlearning
Abstract:
As large language models (LLMs) are trained on massive datasets, they have raised significant privacy and ethical concerns due to their potential to inadvertently retain sensitive information. Unlearning seeks to selectively remove specific data from trained models, such as personal information or copyrighted content. Current approaches targeting specific output sequences at the token level often fail to achieve complete forgetting and remain susceptible to prompt rephrasing. We propose Align-then-Unlearn, a novel framework that performs unlearning in the semantic embedding space rather than directly on output tokens. Align-then-Unlearn first augments the LLM with an embedding prediction module trained to anticipate future context representations. Unlearning is then achieved by fine-tuning the model to minimize the similarity between these predicted embeddings and a target embedding that represents the concept to be removed. Initial results show that Align-then-Unlearn effectively removes targeted knowledge with minimal degradation in overall model utility. These findings suggest that embedding-based unlearning offers a promising and robust approach to removing conceptual knowledge. Our code is available at https://github.com/ExplainableML/align-then-unlearn.

Authors:Ting Qiao, Yiming Li, Jianbin Li, Yingjia Wang, Leyi Qi, Junfeng Guo, Ruili Feng, Dacheng Tao
Title: CertDW: Towards Certified Dataset Ownership Verification via Conformal Prediction
Abstract:
Deep neural networks (DNNs) rely heavily on high-quality open-source datasets (e.g., ImageNet) for their success, making dataset ownership verification (DOV) crucial for protecting public dataset copyrights. In this paper, we find existing DOV methods (implicitly) assume that the verification process is faithful, where the suspicious model will directly verify ownership by using the verification samples as input and returning their results. However, this assumption may not necessarily hold in practice and their performance may degrade sharply when subjected to intentional or unintentional perturbations. To address this limitation, we propose the first certified dataset watermark (i.e., CertDW) and CertDW-based certified dataset ownership verification method that ensures reliable verification even under malicious attacks, under certain conditions (e.g., constrained pixel-level perturbation). Specifically, inspired by conformal prediction, we introduce two statistical measures, including principal probability (PP) and watermark robustness (WR), to assess model prediction stability on benign and watermarked samples under noise perturbations. We prove there exists a provable lower bound between PP and WR, enabling ownership verification when a suspicious model's WR value significantly exceeds the PP values of multiple benign models trained on watermark-free datasets. If the number of PP values smaller than WR exceeds a threshold, the suspicious model is regarded as having been trained on the protected dataset. Extensive experiments on benchmark datasets verify the effectiveness of our CertDW method and its resistance to potential adaptive attacks. Our codes are at \href{https://github.com/NcepuQiaoTing/CertDW}{GitHub}.

Authors:Thomas Möllenhoff, Siddharth Swaroop, Finale Doshi-Velez, Mohammad Emtiyaz Khan
Title: Federated ADMM from Bayesian Duality
Abstract:
ADMM is a popular method for federated deep learning which originated in the 1970s and, even though many new variants of it have been proposed since then, its core algorithmic structure has remained unchanged. Here, we take a major departure from the old structure and present a fundamentally new way to derive and extend federated ADMM. We propose to use a structure called Bayesian Duality which exploits a duality of the posterior distributions obtained by solving a variational-Bayesian reformulation of the original problem. We show that this naturally recovers the original ADMM when isotropic Gaussian posteriors are used, and yields non-trivial extensions for other posterior forms. For instance, full-covariance Gaussians lead to Newton-like variants of ADMM, while diagonal covariances result in a cheap Adam-like variant. This is especially useful to handle heterogeneity in federated deep learning, giving up to 7% accuracy improvements over recent baselines. Our work opens a new Bayesian path to improve primal-dual methods.

Authors:Jinguang Tong, Xuesong li, Fahira Afzal Maken, Sundaram Muthu, Lars Petersson, Chuong Nguyen, Hongdong Li
Title: GS-2DGS: Geometrically Supervised 2DGS for Reflective Object Reconstruction
Abstract:
3D modeling of highly reflective objects remains challenging due to strong view-dependent appearances. While previous SDF-based methods can recover high-quality meshes, they are often time-consuming and tend to produce over-smoothed surfaces. In contrast, 3D Gaussian Splatting (3DGS) offers the advantage of high speed and detailed real-time rendering, but extracting surfaces from the Gaussians can be noisy due to the lack of geometric constraints. To bridge the gap between these approaches, we propose a novel reconstruction method called GS-2DGS for reflective objects based on 2D Gaussian Splatting (2DGS). Our approach combines the rapid rendering capabilities of Gaussian Splatting with additional geometric information from foundation models. Experimental results on synthetic and real datasets demonstrate that our method significantly outperforms Gaussian-based techniques in terms of reconstruction and relighting and achieves performance comparable to SDF-based methods while being an order of magnitude faster. Code is available at https://github.com/hirotong/GS2DGS

Authors:Shahram Najam Syed, Ishir Roongta, Kavin Ravie, Gangadhar Nageswar
Title: SuperPoint-SLAM3: Augmenting ORB-SLAM3 with Deep Features, Adaptive NMS, and Learning-Based Loop Closure
Abstract:
Visual simultaneous localization and mapping (SLAM) must remain accurate under extreme viewpoint, scale and illumination variations. The widely adopted ORB-SLAM3 falters in these regimes because it relies on hand-crafted ORB keypoints. We introduce SuperPoint-SLAM3, a drop-in upgrade that (i) replaces ORB with the self-supervised SuperPoint detector--descriptor, (ii) enforces spatially uniform keypoints via adaptive non-maximal suppression (ANMS), and (iii) integrates a lightweight NetVLAD place-recognition head for learning-based loop closure. On the KITTI Odometry benchmark SuperPoint-SLAM3 reduces mean translational error from 4.15% to 0.34% and mean rotational error from 0.0027 deg/m to 0.0010 deg/m. On the EuRoC MAV dataset it roughly halves both errors across every sequence (e.g., V2\_03: 1.58% -> 0.79%). These gains confirm that fusing modern deep features with a learned loop-closure module markedly improves ORB-SLAM3 accuracy while preserving its real-time operation. Implementation, pretrained weights and reproducibility scripts are available at https://github.com/shahram95/SuperPointSLAM3.

Authors:Qingfeng Chen, Shiyuan Li, Yixin Liu, Shirui Pan, Geoffrey I. Webb, Shichao Zhang
Title: Uncertainty-Aware Graph Neural Networks: A Multi-Hop Evidence Fusion Approach
Abstract:
Graph neural networks (GNNs) excel in graph representation learning by integrating graph structure and node features. Existing GNNs, unfortunately, fail to account for the uncertainty of class probabilities that vary with the depth of the model, leading to unreliable and risky predictions in real-world scenarios. To bridge the gap, in this paper, we propose a novel Evidence Fusing Graph Neural Network (EFGNN for short) to achieve trustworthy prediction, enhance node classification accuracy, and make explicit the risk of wrong predictions. In particular, we integrate the evidence theory with multi-hop propagation-based GNN architecture to quantify the prediction uncertainty of each node with the consideration of multiple receptive fields. Moreover, a parameter-free cumulative belief fusion (CBF) mechanism is developed to leverage the changes in prediction uncertainty and fuse the evidence to improve the trustworthiness of the final prediction. To effectively optimize the EFGNN model, we carefully design a joint learning objective composed of evidence cross-entropy, dissonance coefficient, and false confident penalty. The experimental results on various datasets and theoretical analyses demonstrate the effectiveness of the proposed model in terms of accuracy and trustworthiness, as well as its robustness to potential attacks. The source code of EFGNN is available at https://github.com/Shiy-Li/EFGNN.

Authors:Qidi Fang, Hang Yu, Shijie Fang, Jindan Huang, Qiuyu Chen, Reuben M. Aronson, Elaine S. Short
Title: CHARM: Considering Human Attributes for Reinforcement Modeling
Abstract:
Reinforcement Learning from Human Feedback has recently achieved significant success in various fields, and its performance is highly related to feedback quality. While much prior work acknowledged that human teachers' characteristics would affect human feedback patterns, there is little work that has closely investigated the actual effects. In this work, we designed an exploratory study investigating how human feedback patterns are associated with human characteristics. We conducted a public space study with two long horizon tasks and 46 participants. We found that feedback patterns are not only correlated with task statistics, such as rewards, but also correlated with participants' characteristics, especially robot experience and educational background. Additionally, we demonstrated that human feedback value can be more accurately predicted with human characteristics compared to only using task statistics. All human feedback and characteristics we collected, and codes for our data collection and predicting more accurate human feedback are available at https://github.com/AABL-Lab/CHARM

Authors:Xuhui Zhu, Jing Xu, Bingjie Wang, Huikang Dai, Hao Lu
Title: Video Individual Counting With Implicit One-to-Many Matching
Abstract:
Video Individual Counting (VIC) is a recently introduced task that aims to estimate pedestrian flux from a video. It extends conventional Video Crowd Counting (VCC) beyond the per-frame pedestrian count. In contrast to VCC that only learns to count repeated pedestrian patterns across frames, the key problem of VIC is how to identify co-existent pedestrians between frames, which turns out to be a correspondence problem. Existing VIC approaches, however, mainly follow a one-to-one (O2O) matching strategy where the same pedestrian must be exactly matched between frames, leading to sensitivity to appearance variations or missing detections. In this work, we show that the O2O matching could be relaxed to a one-to-many (O2M) matching problem, which better fits the problem nature of VIC and can leverage the social grouping behavior of walking pedestrians. We therefore introduce OMAN, a simple but effective VIC model with implicit One-to-Many mAtchiNg, featuring an implicit context generator and a one-to-many pairwise matcher. Experiments on the SenseCrowd and CroHD benchmarks show that OMAN achieves the state-of-the-art performance. Code is available at \href{https://github.com/tiny-smart/OMAN}{OMAN}.

Authors:Kai Tang, Ji Zhang, Hua Meng, Minbo Ma, Qi Xiong, Fengmao Lv, Jie Xu, Tianrui Li
Title: CoIFNet: A Unified Framework for Multivariate Time Series Forecasting with Missing Values
Abstract:
Multivariate time series forecasting (MTSF) is a critical task with broad applications in domains such as meteorology, transportation, and economics. Nevertheless, pervasive missing values caused by sensor failures or human errors significantly degrade forecasting accuracy. Prior efforts usually employ an impute-then-forecast paradigm, leading to suboptimal predictions due to error accumulation and misaligned objectives between the two stages. To address this challenge, we propose the Collaborative Imputation-Forecasting Network (CoIFNet), a novel framework that unifies imputation and forecasting to achieve robust MTSF in the presence of missing values. Specifically, CoIFNet takes the observed values, mask matrix and timestamp embeddings as input, processing them sequentially through the Cross-Timestep Fusion (CTF) and Cross-Variate Fusion (CVF) modules to capture temporal dependencies that are robust to missing values. We provide theoretical justifications on how our CoIFNet learning objective improves the performance bound of MTSF with missing values. Through extensive experiments on challenging MSTF benchmarks, we demonstrate the effectiveness and computational efficiency of our proposed approach across diverse missing-data scenarios, e.g., CoIFNet outperforms the state-of-the-art method by $\underline{\textbf{24.40}}$% ($\underline{\textbf{23.81}}$%) at a point (block) missing rate of 0.6, while improving memory and time efficiency by $\underline{\boldsymbol{4.3\times}}$ and $\underline{\boldsymbol{2.1\times}}$, respectively. Our code is available at: https://github.com/KaiTang-eng/CoIFNet.

Authors:Coleman Hooper, Sebastian Zhao, Luca Manolache, Sehoon Kim, Michael W. Mahoney, Yakun Sophia Shao, Kurt Keutzer, Amir Gholami
Title: Multipole Attention for Efficient Long Context Reasoning
Abstract:
Large Reasoning Models (LRMs) have shown promising accuracy improvements on complex problem-solving tasks. While these models have attained high accuracy by leveraging additional computation at test time, they need to generate long chain-of-thought reasoning in order to think before answering, which requires generating thousands of tokens. While sparse attention methods can help reduce the KV cache pressure induced by this long autoregressive reasoning, these methods can introduce errors which disrupt the reasoning process. Additionally, prior methods often pre-process the input to make it easier to identify the important prompt tokens when computing attention during generation, and this pre-processing is challenging to perform online for newly generated reasoning tokens. Our work addresses these challenges by introducing Multipole Attention, which accelerates autoregressive reasoning by only computing exact attention for the most important tokens, while maintaining approximate representations for the remaining tokens. Our method first performs clustering to group together semantically similar key vectors, and then uses the cluster centroids both to identify important key vectors and to approximate the remaining key vectors in order to retain high accuracy. We design a fast cluster update process to quickly re-cluster the input and previously generated tokens, thereby allowing for accelerating attention to the previous output tokens. We evaluate our method using emerging LRMs such as Qwen-8B, demonstrating that our approach can maintain accuracy on complex reasoning tasks even with aggressive attention sparsity settings. We also provide kernel implementations to demonstrate the practical efficiency gains from our method, achieving up to 4.5$\times$ speedup for attention in long-context reasoning applications. Our code is available at https://github.com/SqueezeAILab/MultipoleAttention.

Authors:Haibo Qiu, Xiaohan Lan, Fanfan Liu, Xiaohu Sun, Delian Ruan, Peng Shi, Lin Ma
Title: Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Abstract:
Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall. Please refer to our project page for open-source information.

Authors:Han Zhu, Wei Kang, Zengwei Yao, Liyong Guo, Fangjun Kuang, Zhaoqing Li, Weiji Zhuang, Long Lin, Daniel Povey
Title: ZipVoice: Fast and High-Quality Zero-Shot Text-to-Speech with Flow Matching
Abstract:
Existing large-scale zero-shot text-to-speech (TTS) models deliver high speech quality but suffer from slow inference speeds due to massive parameters. To address this issue, this paper introduces ZipVoice, a high-quality flow-matching-based zero-shot TTS model with a compact model size and fast inference speed. Key designs include: 1) a Zipformer-based vector field estimator to maintain adequate modeling capabilities under constrained size; 2) Average upsampling-based initial speech-text alignment and Zipformer-based text encoder to improve speech intelligibility; 3) A flow distillation method to reduce sampling steps and eliminate the inference overhead associated with classifier-free guidance. Experiments on 100k hours multilingual datasets show that ZipVoice matches state-of-the-art models in speech quality, while being 3 times smaller and up to 30 times faster than a DiT-based flow-matching baseline. Codes, model checkpoints and demo samples are publicly available at https://github.com/k2-fsa/ZipVoice.

Authors:Can Polat, Hasan Kurban, Erchin Serpedin, Mustafa Kurban
Title: Stress-Testing Multimodal Foundation Models for Crystallographic Reasoning
Abstract:
Evaluating foundation models for crystallographic reasoning requires benchmarks that isolate generalization behavior while enforcing physical constraints. This work introduces a multiscale multicrystal dataset with two physically grounded evaluation protocols to stress-test multimodal generative models. The Spatial-Exclusion benchmark withholds all supercells of a given radius from a diverse dataset, enabling controlled assessments of spatial interpolation and extrapolation. The Compositional-Exclusion benchmark omits all samples of a specific chemical composition, probing generalization across stoichiometries. Nine vision--language foundation models are prompted with crystallographic images and textual context to generate structural annotations. Responses are evaluated via (i) relative errors in lattice parameters and density, (ii) a physics-consistency index penalizing volumetric violations, and (iii) a hallucination score capturing geometric outliers and invalid space-group predictions. These benchmarks establish a reproducible, physically informed framework for assessing generalization, consistency, and reliability in large-scale multimodal models. Dataset and code are available at https://github.com/KurbanIntelligenceLab/StressTestingMMFMinCR.

Authors:Adhrith Vutukuri, Akash Awasthi, David Yang, Carol C. Wu, Hien Van Nguyen
Title: Beyond the First Read: AI-Assisted Perceptual Error Detection in Chest Radiography Accounting for Interobserver Variability
Abstract:
Chest radiography is widely used in diagnostic imaging. However, perceptual errors -- especially overlooked but visible abnormalities -- remain common and clinically significant. Current workflows and AI systems provide limited support for detecting such errors after interpretation and often lack meaningful human--AI collaboration. We introduce RADAR (Radiologist--AI Diagnostic Assistance and Review), a post-interpretation companion system. RADAR ingests finalized radiologist annotations and CXR images, then performs regional-level analysis to detect and refer potentially missed abnormal regions. The system supports a "second-look" workflow and offers suggested regions of interest (ROIs) rather than fixed labels to accommodate inter-observer variation. We evaluated RADAR on a simulated perceptual-error dataset derived from de-identified CXR cases, using F1 score and Intersection over Union (IoU) as primary metrics. RADAR achieved a recall of 0.78, precision of 0.44, and an F1 score of 0.56 in detecting missed abnormalities in the simulated perceptual-error dataset. Although precision is moderate, this reduces over-reliance on AI by encouraging radiologist oversight in human--AI collaboration. The median IoU was 0.78, with more than 90% of referrals exceeding 0.5 IoU, indicating accurate regional localization. RADAR effectively complements radiologist judgment, providing valuable post-read support for perceptual-error detection in CXR interpretation. Its flexible ROI suggestions and non-intrusive integration position it as a promising tool in real-world radiology workflows. To facilitate reproducibility and further evaluation, we release a fully open-source web implementation alongside a simulated error dataset. All code, data, demonstration videos, and the application are publicly available at https://github.com/avutukuri01/RADAR.

Authors:Haiyang Guo, Fanhu Zeng, Fei Zhu, Jiayi Wang, Xukai Wang, Jingang Zhou, Hongbo Zhao, Wenzhuo Liu, Shijie Ma, Da-Han Wang, Xu-Yao Zhang, Cheng-Lin Liu
Title: Continual Learning for Generative AI: From LLMs to MLLMs and Beyond
Abstract:
The rapid advancement of generative models has empowered modern AI systems to comprehend and produce highly sophisticated content, even achieving human-level performance in specific domains. However, these models are fundamentally constrained by \emph{catastrophic forgetting}, \ie~a persistent challenge where models experience performance degradation on previously learned tasks when adapting to new tasks. To address this practical limitation, numerous approaches have been proposed to enhance the adaptability and scalability of generative AI in real-world applications. In this work, we present a comprehensive survey of continual learning methods for mainstream generative AI models, encompassing large language models, multimodal large language models, vision-language-action models, and diffusion models. Drawing inspiration from the memory mechanisms of the human brain, we systematically categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based methods, while elucidating their underlying methodologies and motivations. We further analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones, thereby providing deeper insights into the field. The project page of this paper is available at https://github.com/Ghy0501/Awesome-Continual-Learning-in-Generative-Models.

Authors:Christian Hilaire, Sima Didari
Title: ViewPCL: a point cloud based active learning method for multi-view segmentation
Abstract:
We propose a novel active learning framework for multi-view semantic segmentation. This framework relies on a new score that measures the discrepancy between point cloud distributions generated from the extra geometrical information derived from the model's prediction across different views. Our approach results in a data efficient and explainable active learning method. The source code is available at https://github.com/chilai235/viewpclAL.

Authors:Siqi Liang, Yudi Zhang, Yubo Wang
Title: C-TLSAN: Content-Enhanced Time-Aware Long- and Short-Term Attention Network for Personalized Recommendation
Abstract:
Sequential recommender systems aim to model users' evolving preferences by capturing patterns in their historical interactions. Recent advances in this area have leveraged deep neural networks and attention mechanisms to effectively represent sequential behaviors and time-sensitive interests. In this work, we propose C-TLSAN (Content-Enhanced Time-Aware Long- and Short-Term Attention Network), an extension of the TLSAN architecture that jointly models long- and short-term user preferences while incorporating semantic content associated with items, such as product descriptions. C-TLSAN enriches the recommendation pipeline by embedding textual content linked to users' historical interactions directly into both long-term and short-term attention layers. This allows the model to learn from both behavioral patterns and rich item content, enhancing user and item representations across temporal dimensions. By fusing sequential signals with textual semantics, our approach improves the expressiveness and personalization capacity of recommendation systems. We conduct extensive experiments on large-scale Amazon datasets, benchmarking C-TLSAN against state-of-the-art baselines, including recent sequential recommenders based on Large Language Models (LLMs), which represent interaction history and predictions in text form. Empirical results demonstrate that C-TLSAN consistently outperforms strong baselines in next-item prediction tasks. Notably, it improves AUC by 1.66%, Recall@10 by 93.99%, and Precision@10 by 94.80% on average over the best-performing baseline (TLSAN) across 10 Amazon product categories. These results highlight the value of integrating content-aware enhancements into temporal modeling frameworks for sequential recommendation. Our code is available at https://github.com/booml247/cTLSAN.

Authors:Christian Zhou-Zheng, Philippe Pasquier
Title: Personalizable Long-Context Symbolic Music Infilling with MIDI-RWKV
Abstract:
Existing work in automatic music generation has primarily focused on end-to-end systems that produce complete compositions or continuations. However, because musical composition is typically an iterative process, such systems make it difficult to engage in the back-and-forth between human and machine that is essential to computer-assisted creativity. In this study, we address the task of personalizable, multi-track, long-context, and controllable symbolic music infilling to enhance the process of computer-assisted composition. We present MIDI-RWKV, a novel model based on the RWKV-7 linear architecture, to enable efficient and coherent musical cocreation on edge devices. We also demonstrate that MIDI-RWKV admits an effective method of finetuning its initial state for personalization in the very-low-sample regime. We evaluate MIDI-RWKV and its state tuning on several quantitative and qualitative metrics, and release model weights and code at https://github.com/christianazinn/MIDI-RWKV.

Authors:Xinyi Zhao, Congjing Zhang, Pei Guo, Wei Li, Lin Chen, Chaoyue Zhao, Shuai Huang
Title: SmartHome-Bench: A Comprehensive Benchmark for Video Anomaly Detection in Smart Homes Using Multi-Modal Large Language Models
Abstract:
Video anomaly detection (VAD) is essential for enhancing safety and security by identifying unusual events across different environments. Existing VAD benchmarks, however, are primarily designed for general-purpose scenarios, neglecting the specific characteristics of smart home applications. To bridge this gap, we introduce SmartHome-Bench, the first comprehensive benchmark specially designed for evaluating VAD in smart home scenarios, focusing on the capabilities of multi-modal large language models (MLLMs). Our newly proposed benchmark consists of 1,203 videos recorded by smart home cameras, organized according to a novel anomaly taxonomy that includes seven categories, such as Wildlife, Senior Care, and Baby Monitoring. Each video is meticulously annotated with anomaly tags, detailed descriptions, and reasoning. We further investigate adaptation methods for MLLMs in VAD, assessing state-of-the-art closed-source and open-source models with various prompting techniques. Results reveal significant limitations in the current models' ability to detect video anomalies accurately. To address these limitations, we introduce the Taxonomy-Driven Reflective LLM Chain (TRLC), a new LLM chaining framework that achieves a notable 11.62% improvement in detection accuracy. The benchmark dataset and code are publicly available at https://github.com/Xinyi-0724/SmartHome-Bench-LLM.

Authors:Xiaoya Tang, Bodong Zhang, Man Minh Ho, Beatrice S. Knudsen, Tolga Tasdizen
Title: DuoFormer: Leveraging Hierarchical Representations by Local and Global Attention Vision Transformer
Abstract:
Despite the widespread adoption of transformers in medical applications, the exploration of multi-scale learning through transformers remains limited, while hierarchical representations are considered advantageous for computer-aided medical diagnosis. We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs). Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations. These representations are adapted for transformer input through an innovative patch tokenization process, preserving the inherited multi-scale inductive biases. We also introduce a scale-wise attention mechanism that directly captures intra-scale and inter-scale associations. This mechanism complements patch-wise attention by enhancing spatial understanding and preserving global perception, which we refer to as local and global attention, respectively. Our model significantly outperforms baseline models in terms of classification accuracy, demonstrating its efficiency in bridging the gap between Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). The components are designed as plug-and-play for different CNN architectures and can be adapted for multiple applications. The code is available at https://github.com/xiaoyatang/DuoFormer.git.

Authors:Naihao Deng, Kapotaksha Das, Rada Mihalcea, Vitaliy Popov, Mohamed Abouelenien
Title: CliniDial: A Naturally Occurring Multimodal Dialogue Dataset for Team Reflection in Action During Clinical Operation
Abstract:
In clinical operations, teamwork can be the crucial factor that determines the final outcome. Prior studies have shown that sufficient collaboration is the key factor that determines the outcome of an operation. To understand how the team practices teamwork during the operation, we collected CliniDial from simulations of medical operations. CliniDial includes the audio data and its transcriptions, the simulated physiology signals of the patient manikins, and how the team operates from two camera angles. We annotate behavior codes following an existing framework to understand the teamwork process for CliniDial. We pinpoint three main characteristics of our dataset, including its label imbalances, rich and natural interactions, and multiple modalities, and conduct experiments to test existing LLMs' capabilities on handling data with these characteristics. Experimental results show that CliniDial poses significant challenges to the existing models, inviting future effort on developing methods that can deal with real-world clinical data. We open-source the codebase at https://github.com/MichiganNLP/CliniDial

Authors:Xingjian Diao, Chunhui Zhang, Keyi Kong, Weiyi Wu, Chiyu Ma, Zhongyu Ouyang, Peijun Qing, Soroush Vosoughi, Jiang Gui
Title: SoundMind: RL-Incentivized Logic Reasoning for Audio-Language Models
Abstract:
While large language models have demonstrated impressive reasoning abilities, their extension to the audio modality, particularly within large audio-language models (LALMs), remains underexplored. Addressing this gap requires a systematic approach that involves a capable base model, high-quality reasoning-oriented audio data, and effective training algorithms. In this work, we present a comprehensive solution for audio logical reasoning (ALR) tasks: we introduce SoundMind, a dataset of 6,446 audio-text annotated samples specifically curated to support complex reasoning. Building on this resource, we propose SoundMind-RL, a rule-based reinforcement learning (RL) algorithm designed to equip audio-language models with robust audio-text reasoning capabilities. By fine-tuning Qwen2.5-Omni-7B on the proposed SoundMind dataset using SoundMind-RL, we achieve strong and consistent improvements over state-of-the-art baselines on the SoundMind benchmark. This work highlights the benefit of combining high-quality, reasoning-focused datasets with specialized RL techniques, and contributes to advancing auditory intelligence in language models. The code and dataset introduced in this work are publicly available at https://github.com/xid32/SoundMind.

Authors:William Xia, Ishita Unde, Brian Ondov, Dina Demner-Fushman
Title: JEBS: A Fine-grained Biomedical Lexical Simplification Task
Abstract:
Online medical literature has made health information more available than ever, however, the barrier of complex medical jargon prevents the general public from understanding it. Though parallel and comparable corpora for Biomedical Text Simplification have been introduced, these conflate the many syntactic and lexical operations involved in simplification. To enable more targeted development and evaluation, we present a fine-grained lexical simplification task and dataset, Jargon Explanations for Biomedical Simplification (JEBS, https://github.com/bill-from-ri/JEBS-data ). The JEBS task involves identifying complex terms, classifying how to replace them, and generating replacement text. The JEBS dataset contains 21,595 replacements for 10,314 terms across 400 biomedical abstracts and their manually simplified versions. Additionally, we provide baseline results for a variety of rule-based and transformer-based systems for the three sub-tasks. The JEBS task, data, and baseline results pave the way for development and rigorous evaluation of systems for replacing or explaining complex biomedical terms.

Authors:Larissa Mori, Carlos Sousa de Oliveira, Yuehwern Yih, Mario Ventresca
Title: Assessing the Performance Gap Between Lexical and Semantic Models for Information Retrieval With Formulaic Legal Language
Abstract:
Legal passage retrieval is an important task that assists legal practitioners in the time-intensive process of finding relevant precedents to support legal arguments. This study investigates the task of retrieving legal passages or paragraphs from decisions of the Court of Justice of the European Union (CJEU), whose language is highly structured and formulaic, leading to repetitive patterns. Understanding when lexical or semantic models are more effective at handling the repetitive nature of legal language is key to developing retrieval systems that are more accurate, efficient, and transparent for specific legal domains. To this end, we explore when this routinized legal language is better suited for retrieval using methods that rely on lexical and statistical features, such as BM25, or dense retrieval models trained to capture semantic and contextual information. A qualitative and quantitative analysis with three complementary metrics shows that both lexical and dense models perform well in scenarios with more repetitive usage of language, whereas BM25 performs better than the dense models in more nuanced scenarios where repetition and verbatim~quotes are less prevalent and in longer queries. Our experiments also show that BM25 is a strong baseline, surpassing off-the-shelf dense models in 4 out of 7 performance metrics. However, fine-tuning a dense model on domain-specific data led to improved performance, surpassing BM25 in most metrics, and we analyze the effect of the amount of data used in fine-tuning on the model's performance and temporal robustness. The code, dataset and appendix related to this work are available on: https://github.com/larimo/lexsem-legal-ir.

Authors:Matan Ben-Tov, Mor Geva, Mahmood Sharif
Title: Universal Jailbreak Suffixes Are Strong Attention Hijackers
Abstract:
We study suffix-based jailbreaks$\unicode{x2013}$a powerful family of attacks against large language models (LLMs) that optimize adversarial suffixes to circumvent safety alignment. Focusing on the widely used foundational GCG attack (Zou et al., 2023), we observe that suffixes vary in efficacy: some markedly more universal$\unicode{x2013}$generalizing to many unseen harmful instructions$\unicode{x2013}$than others. We first show that GCG's effectiveness is driven by a shallow, critical mechanism, built on the information flow from the adversarial suffix to the final chat template tokens before generation. Quantifying the dominance of this mechanism during generation, we find GCG irregularly and aggressively hijacks the contextualization process. Crucially, we tie hijacking to the universality phenomenon, with more universal suffixes being stronger hijackers. Subsequently, we show that these insights have practical implications: GCG universality can be efficiently enhanced (up to $\times$5 in some cases) at no additional computational cost, and can also be surgically mitigated, at least halving attack success with minimal utility loss. We release our code and data at http://github.com/matanbt/interp-jailbreak.

Authors:Yan Sun, Qixin Zhang, Zhiyuan Yu, Xikun Zhang, Li Shen, Dacheng Tao
Title: MaskPro: Linear-Space Probabilistic Learning for Strict (N:M)-Sparsity on Large Language Models
Abstract:
The rapid scaling of large language models (LLMs) has made inference efficiency a primary bottleneck in the practical deployment. To address this, semi-structured sparsity offers a promising solution by strategically retaining $N$ elements out of every $M$ weights, thereby enabling hardware-friendly acceleration and reduced memory. However, existing (N:M)-compatible approaches typically fall into two categories: rule-based layerwise greedy search, which suffers from considerable errors, and gradient-driven combinatorial learning, which incurs prohibitive training costs. To tackle these challenges, we propose a novel linear-space probabilistic framework named MaskPro, which aims to learn a prior categorical distribution for every $M$ consecutive weights and subsequently leverages this distribution to generate the (N:M)-sparsity throughout an $N$-way sampling without replacement. Furthermore, to mitigate the training instability induced by the high variance of policy gradients in the super large combinatorial space, we propose a novel update method by introducing a moving average tracker of loss residuals instead of vanilla loss. Finally, we conduct comprehensive theoretical analysis and extensive experiments to validate the superior performance of MaskPro, as well as its excellent scalability in memory efficiency and exceptional robustness to data samples. Our code is available at https://github.com/woodenchild95/Maskpro.git.

Authors:Hao Xu, Lechao Cheng, Yaxiong Wang, Shengeng Tang, Zhun Zhong
Title: Towards Fine-Grained Emotion Understanding via Skeleton-Based Micro-Gesture Recognition
Abstract:
We present our solution to the MiGA Challenge at IJCAI 2025, which aims to recognize micro-gestures (MGs) from skeleton sequences for the purpose of hidden emotion understanding. MGs are characterized by their subtlety, short duration, and low motion amplitude, making them particularly challenging to model and classify. We adopt PoseC3D as the baseline framework and introduce three key enhancements: (1) a topology-aware skeleton representation specifically designed for the iMiGUE dataset to better capture fine-grained motion patterns; (2) an improved temporal processing strategy that facilitates smoother and more temporally consistent motion modeling; and (3) the incorporation of semantic label embeddings as auxiliary supervision to improve the model generalization. Our method achieves a Top-1 accuracy of 67.01\% on the iMiGUE test set. As a result of these contributions, our approach ranks third on the official MiGA Challenge leaderboard. The source code is available at \href{https://github.com/EGO-False-Sleep/Miga25_track1}{https://github.com/EGO-False-Sleep/Miga25\_track1}.

Authors:Xinyuan Xia, Yuanyi Song, Haomin Ma, Jinyu Cai
Title: WereWolf-Plus: An Update of Werewolf Game setting Based on DSGBench
Abstract:
With the rapid development of LLM-based agents, increasing attention has been given to their social interaction and strategic reasoning capabilities. However, existing Werewolf-based benchmarking platforms suffer from overly simplified game settings, incomplete evaluation metrics, and poor scalability. To address these limitations, we propose WereWolf-Plus, a multi-model, multi-dimensional, and multi-method benchmarking platform for evaluating multi-agent strategic reasoning in the Werewolf game. The platform offers strong extensibility, supporting customizable configurations for roles such as Seer, Witch, Hunter, Guard, and Sheriff, along with flexible model assignment and reasoning enhancement strategies for different roles. In addition, we introduce a comprehensive set of quantitative evaluation metrics for all special roles, werewolves, and the sheriff, and enrich the assessment dimensions for agent reasoning ability, cooperation capacity, and social influence. WereWolf-Plus provides a more flexible and reliable environment for advancing research on inference and strategic interaction within multi-agent communities. Our code is open sourced at https://github.com/MinstrelsyXia/WereWolfPlus.

Authors:Mustansar Fiaz, Mubashir Noman, Hiyam Debary, Kamran Ali, Hisham Cholakkal
Title: HyRet-Change: A hybrid retentive network for remote sensing change detection
Abstract:
Recently convolution and transformer-based change detection (CD) methods provide promising performance. However, it remains unclear how the local and global dependencies interact to effectively alleviate the pseudo changes. Moreover, directly utilizing standard self-attention presents intrinsic limitations including governing global feature representations limit to capture subtle changes, quadratic complexity, and restricted training parallelism. To address these limitations, we propose a Siamese-based framework, called HyRet-Change, which can seamlessly integrate the merits of convolution and retention mechanisms at multi-scale features to preserve critical information and enhance adaptability in complex scenes. Specifically, we introduce a novel feature difference module to exploit both convolutions and multi-head retention mechanisms in a parallel manner to capture complementary information. Furthermore, we propose an adaptive local-global interactive context awareness mechanism that enables mutual learning and enhances discrimination capability through information exchange. We perform experiments on three challenging CD datasets and achieve state-of-the-art performance compared to existing methods. Our source code is publicly available at https://github.com/mustansarfiaz/HyRect-Change.

Authors:Chenglin Wang, Yucheng Zhou, Qianning Wang, Zhe Wang, Kai Zhang
Title: ComplexBench-Edit: Benchmarking Complex Instruction-Driven Image Editing via Compositional Dependencies
Abstract:
Text-driven image editing has achieved remarkable success in following single instructions. However, real-world scenarios often involve complex, multi-step instructions, particularly ``chain'' instructions where operations are interdependent. Current models struggle with these intricate directives, and existing benchmarks inadequately evaluate such capabilities. Specifically, they often overlook multi-instruction and chain-instruction complexities, and common consistency metrics are flawed. To address this, we introduce ComplexBench-Edit, a novel benchmark designed to systematically assess model performance on complex, multi-instruction, and chain-dependent image editing tasks. ComplexBench-Edit also features a new vision consistency evaluation method that accurately assesses non-modified regions by excluding edited areas. Furthermore, we propose a simple yet powerful Chain-of-Thought (CoT)-based approach that significantly enhances the ability of existing models to follow complex instructions. Our extensive experiments demonstrate ComplexBench-Edit's efficacy in differentiating model capabilities and highlight the superior performance of our CoT-based method in handling complex edits. The data and code are released at https://github.com/llllly26/ComplexBench-Edit.

Authors:Junbo Niu, Yuanhong Zheng, Ziyang Miao, Hejun Dong, Chunjiang Ge, Hao Liang, Ma Lu, Bohan Zeng, Qiahao Zheng, Conghui He, Wentao Zhang
Title: Native Visual Understanding: Resolving Resolution Dilemmas in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) face significant challenges when dealing with the diverse resolutions and aspect ratios of real-world images, as most existing models rely on fixed, low-resolution inputs. While recent studies have explored integrating native resolution visual encoding to improve model performance, such efforts remain fragmented and lack a systematic framework within the open-source community. Moreover, existing benchmarks fall short in evaluating VLMs under varied visual conditions, often neglecting resolution as a critical factor. To address the "Resolution Dilemma" stemming from both model design and benchmark limitations, we introduce RC-Bench, a novel benchmark specifically designed to systematically evaluate VLM capabilities under extreme visual conditions, with an emphasis on resolution and aspect ratio variations. In conjunction, we propose NativeRes-LLaVA, an open-source training framework that empowers VLMs to effectively process images at their native resolutions and aspect ratios. Based on RC-Bench and NativeRes-LLaVA, we conduct comprehensive experiments on existing visual encoding strategies. The results show that Native Resolution Visual Encoding significantly improves the performance of VLMs on RC-Bench as well as other resolution-centric benchmarks. Code is available at https://github.com/Niujunbo2002/NativeRes-LLaVA.

Authors:Ruojing Li, Wei An, Xinyi Ying, Yingqian Wang, Yimian Dai, Longguang Wang, Miao Li, Yulan Guo, Li Liu
Title: Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
Abstract:
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, universal, robust and efficient performance due to extremely dim targets and strong interference. Current learning-based methods attempt to leverage ``more" information from both the spatial and the short-term temporal domains, but suffer from unreliable performance under complex conditions while incurring computational redundancy. In this paper, we explore the ``more essential" information from a more crucial domain for the detection. Through theoretical analysis, we reveal that the global temporal saliency and correlation information in the temporal profile demonstrate significant superiority in distinguishing target signals from other signals. To investigate whether such superiority is preferentially leveraged by well-trained networks, we built the first prediction attribution tool in this field and verified the importance of the temporal profile information. Inspired by the above conclusions, we remodel the IRST detection task as a one-dimensional signal anomaly detection task, and propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection. We conducted extensive experiments to fully validate the effectiveness of our method. The experimental results are exciting, as our DeepPro outperforms existing state-of-the-art IRST detection methods on widely-used benchmarks with extremely high efficiency, and achieves a significant improvement on dim targets and in complex scenarios. We provide a new modeling domain, a new insight, a new method, and a new performance, which can promote the development of IRST detection. Codes are available at https://github.com/TinaLRJ/DeepPro.

Authors:Joon Soo Yoo, Taeho Kim, Ji Won Yoon
Title: Versatile and Fast Location-Based Private Information Retrieval with Fully Homomorphic Encryption over the Torus
Abstract:
Location-based services often require users to share sensitive locational data, raising privacy concerns due to potential misuse or exploitation by untrusted servers. In response, we present VeLoPIR, a versatile location-based private information retrieval (PIR) system designed to preserve user privacy while enabling efficient and scalable query processing. VeLoPIR introduces three operational modes-interval validation, coordinate validation, and identifier matching-that support a broad range of real-world applications, including information and emergency alerts. To enhance performance, VeLoPIR incorporates multi-level algorithmic optimizations with parallel structures, achieving significant scalability across both CPU and GPU platforms. We also provide formal security and privacy proofs, confirming the system's robustness under standard cryptographic assumptions. Extensive experiments on real-world datasets demonstrate that VeLoPIR achieves up to 11.55 times speed-up over a prior baseline. The implementation of VeLoPIR is publicly available at https://github.com/PrivStatBool/VeLoPIR.

Authors:David Guzman Piedrahita, Irene Strauss, Bernhard Schölkopf, Rada Mihalcea, Zhijing Jin
Title: Democratic or Authoritarian? Probing a New Dimension of Political Biases in Large Language Models
Abstract:
As Large Language Models (LLMs) become increasingly integrated into everyday life and information ecosystems, concerns about their implicit biases continue to persist. While prior work has primarily examined socio-demographic and left--right political dimensions, little attention has been paid to how LLMs align with broader geopolitical value systems, particularly the democracy--authoritarianism spectrum. In this paper, we propose a novel methodology to assess such alignment, combining (1) the F-scale, a psychometric tool for measuring authoritarian tendencies, (2) FavScore, a newly introduced metric for evaluating model favorability toward world leaders, and (3) role-model probing to assess which figures are cited as general role-models by LLMs. We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin. Further, models are found to often cite authoritarian figures as role models, even outside explicit political contexts. These results shed light on ways LLMs may reflect and potentially reinforce global political ideologies, highlighting the importance of evaluating bias beyond conventional socio-political axes. Our code is available at: https://github.com/irenestrauss/Democratic-Authoritarian-Bias-LLMs

Authors:Rong Wu, Ziqi Chen, Liming Zhong, Heng Li, Hai Shu
Title: Unleashing Diffusion and State Space Models for Medical Image Segmentation
Abstract:
Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/k-Means_Mask_Mamba.

Authors:Hang Xu, Wei Yu, Jiangtong Tan, Zhen Zou, Feng Zhao
Title: Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution
Abstract:
Blind Super-Resolution (blind SR) aims to enhance the model's generalization ability with unknown degradation, yet it still encounters severe overfitting issues. Some previous methods inspired by dropout, which enhances generalization by regularizing features, have shown promising results in blind SR. Nevertheless, these methods focus solely on regularizing features before the final layer and overlook the need for generalization in features at intermediate layers. Without explicit regularization of features at intermediate layers, the blind SR network struggles to obtain well-generalized feature representations. However, the key challenge is that directly applying dropout to intermediate layers leads to a significant performance drop, which we attribute to the inconsistency in training-testing and across layers it introduced. Therefore, we propose Adaptive Dropout, a new regularization method for blind SR models, which mitigates the inconsistency and facilitates application across intermediate layers of networks. Specifically, for training-testing inconsistency, we re-design the form of dropout and integrate the features before and after dropout adaptively. For inconsistency in generalization requirements across different layers, we innovatively design an adaptive training strategy to strengthen feature propagation by layer-wise annealing. Experimental results show that our method outperforms all past regularization methods on both synthetic and real-world benchmark datasets, also highly effective in other image restoration tasks. Code is available at \href{https://github.com/xuhang07/Adpative-Dropout}{https://github.com/xuhang07/Adpative-Dropout}.

Authors:Xiangyang Li, Xiaopeng Li, Kuicai Dong, Quanhu Zhang, Rongju Ruan, Xinyi Dai, Xiaoshuang Liu, Shengchun Xu, Yasheng Wang, Ruiming Tang
Title: Humanity's Last Code Exam: Can Advanced LLMs Conquer Human's Hardest Code Competition?
Abstract:
Code generation is a core capability of large language models (LLMs), yet mainstream benchmarks (e.g., APPs and LiveCodeBench) contain questions with medium-level difficulty and pose no challenge to advanced LLMs. To better reflected the advanced reasoning and code generation ability, We introduce Humanity's Last Code Exam (HLCE), comprising 235 most challenging problems from the International Collegiate Programming Contest (ICPC World Finals) and the International Olympiad in Informatics (IOI) spanning 2010 - 2024. As part of HLCE, we design a harmonized online-offline sandbox that guarantees fully reproducible evaluation. Through our comprehensive evaluation, we observe that even the strongest reasoning LLMs: o4-mini(high) and Gemini-2.5 Pro, achieve pass@1 rates of only 15.9% and 11.4%, respectively. Meanwhile, we propose a novel "self-recognition" task to measure LLMs' awareness of their own capabilities. Results indicate that LLMs' self-recognition abilities are not proportionally correlated with their code generation performance. Finally, our empirical validation of test-time scaling laws reveals that current advanced LLMs have substantial room for improvement on complex programming tasks. We expect HLCE to become a milestone challenge for code generation and to catalyze advances in high-performance reasoning and human-AI collaborative programming. Our code and dataset are also public available(https://github.com/Humanity-s-Last-Code-Exam/HLCE).

Authors:Xiaoyan Kui, Canwei Liu, Qinsong Li, Zhipeng Hu, Yangyang Shi, Weixin Si, Beiji Zou
Title: TFKAN: Time-Frequency KAN for Long-Term Time Series Forecasting
Abstract:
Kolmogorov-Arnold Networks (KANs) are highly effective in long-term time series forecasting due to their ability to efficiently represent nonlinear relationships and exhibit local plasticity. However, prior research on KANs has predominantly focused on the time domain, neglecting the potential of the frequency domain. The frequency domain of time series data reveals recurring patterns and periodic behaviors, which complement the temporal information captured in the time domain. To address this gap, we explore the application of KANs in the frequency domain for long-term time series forecasting. By leveraging KANs' adaptive activation functions and their comprehensive representation of signals in the frequency domain, we can more effectively learn global dependencies and periodic patterns. To integrate information from both time and frequency domains, we propose the $\textbf{T}$ime-$\textbf{F}$requency KAN (TFKAN). TFKAN employs a dual-branch architecture that independently processes features from each domain, ensuring that the distinct characteristics of each domain are fully utilized without interference. Additionally, to account for the heterogeneity between domains, we introduce a dimension-adjustment strategy that selectively upscales only in the frequency domain, enhancing efficiency while capturing richer frequency information. Experimental results demonstrate that TFKAN consistently outperforms state-of-the-art (SOTA) methods across multiple datasets. The code is available at https://github.com/LcWave/TFKAN.

Authors:M. H. Maqbool, Moghis Fereidouni, Umar Farooq, A. B. Siddique, Hassan Foroosh
Title: INTERPOS: Interaction Rhythm Guided Positional Morphing for Mobile App Recommender Systems
Abstract:
The mobile app market has expanded exponentially, offering millions of apps with diverse functionalities, yet research in mobile app recommendation remains limited. Traditional sequential recommender systems utilize the order of items in users' historical interactions to predict the next item for the users. Position embeddings, well-established in transformer-based architectures for natural language processing tasks, effectively distinguish token positions in sequences. In sequential recommendation systems, position embeddings can capture the order of items in a user's historical interaction sequence. Nevertheless, this ordering does not consider the time elapsed between two interactions of the same user (e.g., 1 day, 1 week, 1 month), referred to as "user rhythm". In mobile app recommendation datasets, the time between consecutive user interactions is notably longer compared to other domains like movies, posing significant challenges for sequential recommender systems. To address this phenomenon in the mobile app domain, we introduce INTERPOS, an Interaction Rhythm Guided Positional Morphing strategy for autoregressive mobile app recommender systems. INTERPOS incorporates rhythm-guided position embeddings, providing a more comprehensive representation that considers both the sequential order of interactions and the temporal gaps between them. This approach enables a deep understanding of users' rhythms at a fine-grained level, capturing the intricacies of their interaction patterns over time. We propose three strategies to incorporate the morphed positional embeddings in two transformer-based sequential recommendation system architectures. Our extensive evaluations show that INTERPOS outperforms state-of-the-art models using 7 mobile app recommendation datasets on NDCG@K and HIT@K metrics. The source code of INTERPOS is available at https://github.com/dlgrad/INTERPOS.

Authors:Wenxiao Cai, Zongru Li, Iris Wang, Yu-Neng Wang, Thomas H. Lee
Title: OscNet v1.5: Energy Efficient Hopfield Network on CMOS Oscillators for Image Classification
Abstract:
Machine learning has achieved remarkable advancements but at the cost of significant computational resources. This has created an urgent need for a novel and energy-efficient computational fabric and corresponding algorithms. CMOS Oscillator Networks (OscNet) is a brain inspired and specially designed hardware for low energy consumption. In this paper, we propose a Hopfield Network based machine learning algorithm that can be implemented on OscNet. The network is trained using forward propagation alone to learn sparsely connected weights, yet achieves an 8% improvement in accuracy compared to conventional deep learning models on MNIST dataset. OscNet v1.5 achieves competitive accuracy on MNIST and is well-suited for implementation using CMOS-compatible ring oscillator arrays with SHIL. In oscillator-based inference, we utilize only 24% of the connections used in a fully connected Hopfield network, with merely a 0.1% drop in accuracy. OscNet v1.5 relies solely on forward propagation and employs sparse connections, making it an energy-efficient machine learning pipeline designed for oscillator computing fabric. The repository for OscNet family is: https://github.com/RussRobin/OscNet .

Authors:Renjun Xu, Jingwen Peng
Title: A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications
Abstract:
This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.

Authors:Darryl Ho, Samuel Madden
Title: DejaVid: Encoder-Agnostic Learned Temporal Matching for Video Classification
Abstract:
In recent years, large transformer-based video encoder models have greatly advanced state-of-the-art performance on video classification tasks. However, these large models typically process videos by averaging embedding outputs from multiple clips over time to produce fixed-length representations. This approach fails to account for a variety of time-related features, such as variable video durations, chronological order of events, and temporal variance in feature significance. While methods for temporal modeling do exist, they often require significant architectural changes and expensive retraining, making them impractical for off-the-shelf, fine-tuned large encoders. To overcome these limitations, we propose DejaVid, an encoder-agnostic method that enhances model performance without the need for retraining or altering the architecture. Our framework converts a video into a variable-length temporal sequence of embeddings, which we call a multivariate time series (MTS). An MTS naturally preserves temporal order and accommodates variable video durations. We then learn per-timestep, per-feature weights over the encoded MTS frames, allowing us to account for variations in feature importance over time. We introduce a new neural network architecture inspired by traditional time series alignment algorithms for this learning task. Our evaluation demonstrates that DejaVid substantially improves the performance of a state-of-the-art large encoder, achieving leading Top-1 accuracy of 77.2% on Something-Something V2, 89.1% on Kinetics-400, and 88.6% on HMDB51, while adding fewer than 1.8% additional learnable parameters and requiring less than 3 hours of training time. Our code is available at https://github.com/darrylho/DejaVid.

Authors:Chunjiang Wang, Kun Zhang, Yandong Liu, Zhiyang He, Xiaodong Tao, S. Kevin Zhou
Title: MVP-CBM:Multi-layer Visual Preference-enhanced Concept Bottleneck Model for Explainable Medical Image Classification
Abstract:
The concept bottleneck model (CBM), as a technique improving interpretability via linking predictions to human-understandable concepts, makes high-risk and life-critical medical image classification credible. Typically, existing CBM methods associate the final layer of visual encoders with concepts to explain the model's predictions. However, we empirically discover the phenomenon of concept preference variation, that is, the concepts are preferably associated with the features at different layers than those only at the final layer; yet a blind last-layer-based association neglects such a preference variation and thus weakens the accurate correspondences between features and concepts, impairing model interpretability. To address this issue, we propose a novel Multi-layer Visual Preference-enhanced Concept Bottleneck Model (MVP-CBM), which comprises two key novel modules: (1) intra-layer concept preference modeling, which captures the preferred association of different concepts with features at various visual layers, and (2) multi-layer concept sparse activation fusion, which sparsely aggregates concept activations from multiple layers to enhance performance. Thus, by explicitly modeling concept preferences, MVP-CBM can comprehensively leverage multi-layer visual information to provide a more nuanced and accurate explanation of model decisions. Extensive experiments on several public medical classification benchmarks demonstrate that MVP-CBM achieves state-of-the-art accuracy and interoperability, verifying its superiority. Code is available at https://github.com/wcj6/MVP-CBM.

Authors:Zain Muhammad Mujahid, Dilshod Azizov, Maha Tufail Agro, Preslav Nakov
Title: Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts
Abstract:
In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.

Authors:Catalin E. Brita, Hieu Nguyen, Lohithsai Yadala Chanchu, Domonkos Nagy, Maksim Zhdanov
Title: BSA: Ball Sparse Attention for Large-scale Geometries
Abstract:
Self-attention scales quadratically with input size, limiting its use for large-scale physical systems. Although sparse attention mechanisms provide a viable alternative, they are primarily designed for regular structures such as text or images, making them inapplicable for irregular geometries. In this work, we present Ball Sparse Attention (BSA), which adapts Native Sparse Attention (NSA) (Yuan et al., 2025) to unordered point sets by imposing regularity using the Ball Tree structure from the Erwin Transformer (Zhdanov et al., 2025). We modify NSA's components to work with ball-based neighborhoods, yielding a global receptive field at sub-quadratic cost. On an airflow pressure prediction task, we achieve accuracy comparable to Full Attention while significantly reducing the theoretical computational complexity. Our implementation is available at https://github.com/britacatalin/bsa.

Authors:Shuo Yang, Yuqin Dai, Guoqing Wang, Xinran Zheng, Jinfeng Xu, Jinze Li, Zhenzhe Ying, Weiqiang Wang, Edith C. H. Ngai
Title: RealFactBench: A Benchmark for Evaluating Large Language Models in Real-World Fact-Checking
Abstract:
Large Language Models (LLMs) hold significant potential for advancing fact-checking by leveraging their capabilities in reasoning, evidence retrieval, and explanation generation. However, existing benchmarks fail to comprehensively evaluate LLMs and Multimodal Large Language Models (MLLMs) in realistic misinformation scenarios. To bridge this gap, we introduce RealFactBench, a comprehensive benchmark designed to assess the fact-checking capabilities of LLMs and MLLMs across diverse real-world tasks, including Knowledge Validation, Rumor Detection, and Event Verification. RealFactBench consists of 6K high-quality claims drawn from authoritative sources, encompassing multimodal content and diverse domains. Our evaluation framework further introduces the Unknown Rate (UnR) metric, enabling a more nuanced assessment of models' ability to handle uncertainty and balance between over-conservatism and over-confidence. Extensive experiments on 7 representative LLMs and 4 MLLMs reveal their limitations in real-world fact-checking and offer valuable insights for further research. RealFactBench is publicly available at https://github.com/kalendsyang/RealFactBench.git.

Authors:Peng Wang, Minh Huy Pham, Zhihao Guo, Wei Zhou
Title: A Spatial Relationship Aware Dataset for Robotics
Abstract:
Robotic task planning in real-world environments requires not only object recognition but also a nuanced understanding of spatial relationships between objects. We present a spatial-relationship-aware dataset of nearly 1,000 robot-acquired indoor images, annotated with object attributes, positions, and detailed spatial relationships. Captured using a Boston Dynamics Spot robot and labelled with a custom annotation tool, the dataset reflects complex scenarios with similar or identical objects and intricate spatial arrangements. We benchmark six state-of-the-art scene-graph generation models on this dataset, analysing their inference speed and relational accuracy. Our results highlight significant differences in model performance and demonstrate that integrating explicit spatial relationships into foundation models, such as ChatGPT 4o, substantially improves their ability to generate executable, spatially-aware plans for robotics. The dataset and annotation tool are publicly available at https://github.com/PengPaulWang/SpatialAwareRobotDataset, supporting further research in spatial reasoning for robotics.

Authors:Nuwan Bandara, Thivya Kandappu, Archan Misra
Title: Inference-Time Gaze Refinement for Micro-Expression Recognition: Enhancing Event-Based Eye Tracking with Motion-Aware Post-Processing
Abstract:
Event-based eye tracking holds significant promise for fine-grained cognitive state inference, offering high temporal resolution and robustness to motion artifacts, critical features for decoding subtle mental states such as attention, confusion, or fatigue. In this work, we introduce a model-agnostic, inference-time refinement framework designed to enhance the output of existing event-based gaze estimation models without modifying their architecture or requiring retraining. Our method comprises two key post-processing modules: (i) Motion-Aware Median Filtering, which suppresses blink-induced spikes while preserving natural gaze dynamics, and (ii) Optical Flow-Based Local Refinement, which aligns gaze predictions with cumulative event motion to reduce spatial jitter and temporal discontinuities. To complement traditional spatial accuracy metrics, we propose a novel Jitter Metric that captures the temporal smoothness of predicted gaze trajectories based on velocity regularity and local signal complexity. Together, these contributions significantly improve the consistency of event-based gaze signals, making them better suited for downstream tasks such as micro-expression analysis and mind-state decoding. Our results demonstrate consistent improvements across multiple baseline models on controlled datasets, laying the groundwork for future integration with multimodal affect recognition systems in real-world environments. Our code implementations can be found at https://github.com/eye-tracking-for-physiological-sensing/EyeLoRiN.

Authors:Andrey Asadchev, Edward F. Valeev
Title: Implementation of McMurchie-Davidson algorithm for Gaussian AO integrals suited for SIMD processors
Abstract:
We report an implementation of the McMurchie-Davidson evaluation scheme for 1- and 2-particle Gaussian AO integrals designed for processors with Single Instruction Multiple Data (SIMD) instruction sets. Like in our recent MD implementation for graphical processing units (GPUs) [J. Chem. Phys. 160, 244109 (2024)], variable-sized batches of shellsets of integrals are evaluated at a time. By optimizing for the floating point instruction throughput rather than minimizing the number of operations, this approach achieves up to 50% of the theoretical hardware peak FP64 performance for many common SIMD-equipped platforms (AVX2, AVX512, NEON), which translates to speedups of up to 30 over the state-of-the-art one-shellset-at-a-time implementation of Obara-Saika-type schemes in Libint for a variety of primitive and contracted integrals. As with our previous work, we rely on the standard C++ programming language -- such as the std::simd standard library feature to be included in the 2026 ISO C++ standard -- without any explicit code generation to keep the code base small and portable. The implementation is part of the open source LibintX library freely available at https://github.com/ValeevGroup/libintx.

Authors:Zhuocheng Zhang, Yang Feng, Min Zhang
Title: FlexRAG: A Flexible and Comprehensive Framework for Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) plays a pivotal role in modern large language model applications, with numerous existing frameworks offering a wide range of functionalities to facilitate the development of RAG systems. However, we have identified several persistent challenges in these frameworks, including difficulties in algorithm reproduction and sharing, lack of new techniques, and high system overhead. To address these limitations, we introduce \textbf{FlexRAG}, an open-source framework specifically designed for research and prototyping. FlexRAG supports text-based, multimodal, and network-based RAG, providing comprehensive lifecycle support alongside efficient asynchronous processing and persistent caching capabilities. By offering a robust and flexible solution, FlexRAG enables researchers to rapidly develop, deploy, and share advanced RAG systems. Our toolkit and resources are available at \href{https://github.com/ictnlp/FlexRAG}{https://github.com/ictnlp/FlexRAG}.

Authors:Runhao Zeng, Qi Deng, Ronghao Zhang, Shuaicheng Niu, Jian Chen, Xiping Hu, Victor C. M. Leung
Title: Exploring Audio Cues for Enhanced Test-Time Video Model Adaptation
Abstract:
Test-time adaptation (TTA) aims to boost the generalization capability of a trained model by conducting self-/unsupervised learning during the testing phase. While most existing TTA methods for video primarily utilize visual supervisory signals, they often overlook the potential contribution of inherent audio data. To address this gap, we propose a novel approach that incorporates audio information into video TTA. Our method capitalizes on the rich semantic content of audio to generate audio-assisted pseudo-labels, a new concept in the context of video TTA. Specifically, we propose an audio-to-video label mapping method by first employing pre-trained audio models to classify audio signals extracted from videos and then mapping the audio-based predictions to video label spaces through large language models, thereby establishing a connection between the audio categories and video labels. To effectively leverage the generated pseudo-labels, we present a flexible adaptation cycle that determines the optimal number of adaptation iterations for each sample, based on changes in loss and consistency across different views. This enables a customized adaptation process for each sample. Experimental results on two widely used datasets (UCF101-C and Kinetics-Sounds-C), as well as on two newly constructed audio-video TTA datasets (AVE-C and AVMIT-C) with various corruption types, demonstrate the superiority of our approach. Our method consistently improves adaptation performance across different video classification models and represents a significant step forward in integrating audio information into video TTA. Code: https://github.com/keikeiqi/Audio-Assisted-TTA.

Authors:Suyeon Kim, SeongKu Kang, Dongwoo Kim, Jungseul Ok, Hwanjo Yu
Title: Delving into Instance-Dependent Label Noise in Graph Data: A Comprehensive Study and Benchmark
Abstract:
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in node classification tasks but struggle with label noise in real-world data. Existing studies on graph learning with label noise commonly rely on class-dependent label noise, overlooking the complexities of instance-dependent noise and falling short of capturing real-world corruption patterns. We introduce BeGIN (Benchmarking for Graphs with Instance-dependent Noise), a new benchmark that provides realistic graph datasets with various noise types and comprehensively evaluates noise-handling strategies across GNN architectures, noisy label detection, and noise-robust learning. To simulate instance-dependent corruptions, BeGIN introduces algorithmic methods and LLM-based simulations. Our experiments reveal the challenges of instance-dependent noise, particularly LLM-based corruption, and underscore the importance of node-specific parameterization to enhance GNN robustness. By comprehensively evaluating noise-handling strategies, BeGIN provides insights into their effectiveness, efficiency, and key performance factors. We expect that BeGIN will serve as a valuable resource for advancing research on label noise in graphs and fostering the development of robust GNN training methods. The code is available at https://github.com/kimsu55/BeGIN.

Authors:Zonghao Ying, Siyang Wu, Run Hao, Peng Ying, Shixuan Sun, Pengyu Chen, Junze Chen, Hao Du, Kaiwen Shen, Shangkun Wu, Jiwei Wei, Shiyuan He, Yang Yang, Xiaohai Xu, Ke Ma, Qianqian Xu, Qingming Huang, Shi Lin, Xun Wang, Changting Lin, Meng Han, Yilei Jiang, Siqi Lai, Yaozhi Zheng, Yifei Song, Xiangyu Yue, Zonglei Jing, Tianyuan Zhang, Zhilei Zhu, Aishan Liu, Jiakai Wang, Siyuan Liang, Xianglong Kong, Hainan Li, Junjie Mu, Haotong Qin, Yue Yu, Lei Chen, Felix Juefei-Xu, Qing Guo, Xinyun Chen, Yew Soon Ong, Xianglong Liu, Dawn Song, Alan Yuille, Philip Torr, Dacheng Tao
Title: Pushing the Limits of Safety: A Technical Report on the ATLAS Challenge 2025
Abstract:
Multimodal Large Language Models (MLLMs) have enabled transformative advancements across diverse applications but remain susceptible to safety threats, especially jailbreak attacks that induce harmful outputs. To systematically evaluate and improve their safety, we organized the Adversarial Testing & Large-model Alignment Safety Grand Challenge (ATLAS) 2025}. This technical report presents findings from the competition, which involved 86 teams testing MLLM vulnerabilities via adversarial image-text attacks in two phases: white-box and black-box evaluations. The competition results highlight ongoing challenges in securing MLLMs and provide valuable guidance for developing stronger defense mechanisms. The challenge establishes new benchmarks for MLLM safety evaluation and lays groundwork for advancing safer multimodal AI systems. The code and data for this challenge are openly available at https://github.com/NY1024/ATLAS_Challenge_2025.

Authors:Hyeonseo Lee, Juhyun Park, Jihyong Oh, Chanho Eom
Title: Domain Generalization for Person Re-identification: A Survey Towards Domain-Agnostic Person Matching
Abstract:
Person Re-identification (ReID) aims to retrieve images of the same individual captured across non-overlapping camera views, making it a critical component of intelligent surveillance systems. Traditional ReID methods assume that the training and test domains share similar characteristics and primarily focus on learning discriminative features within a given domain. However, they often fail to generalize to unseen domains due to domain shifts caused by variations in viewpoint, background, and lighting conditions. To address this issue, Domain-Adaptive ReID (DA-ReID) methods have been proposed. These approaches incorporate unlabeled target domain data during training and improve performance by aligning feature distributions between source and target domains. Domain-Generalizable ReID (DG-ReID) tackles a more realistic and challenging setting by aiming to learn domain-invariant features without relying on any target domain data. Recent methods have explored various strategies to enhance generalization across diverse environments, but the field remains relatively underexplored. In this paper, we present a comprehensive survey of DG-ReID. We first review the architectural components of DG-ReID including the overall setting, commonly used backbone networks and multi-source input configurations. Then, we categorize and analyze domain generalization modules that explicitly aim to learn domain-invariant and identity-discriminative representations. To examine the broader applicability of these techniques, we further conduct a case study on a related task that also involves distribution shifts. Finally, we discuss recent trends, open challenges, and promising directions for future research in DG-ReID. To the best of our knowledge, this is the first systematic survey dedicated to DG-ReID.

Authors:Hongbi Zhou, Zhangkai Ni
Title: Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for novel view synthesis. However, existing methods struggle to adaptively optimize the distribution of Gaussian primitives based on scene characteristics, making it challenging to balance reconstruction quality and efficiency. Inspired by human perception, we propose scene-adaptive perceptual densification for Gaussian Splatting (Perceptual-GS), a novel framework that integrates perceptual sensitivity into the 3DGS training process to address this challenge. We first introduce a perception-aware representation that models human visual sensitivity while constraining the number of Gaussian primitives. Building on this foundation, we develop a perceptual sensitivity-adaptive distribution to allocate finer Gaussian granularity to visually critical regions, enhancing reconstruction quality and robustness. Extensive evaluations on multiple datasets, including BungeeNeRF for large-scale scenes, demonstrate that Perceptual-GS achieves state-of-the-art performance in reconstruction quality, efficiency, and robustness. The code is publicly available at: https://github.com/eezkni/Perceptual-GS

Authors:Chong Li, Yingzhuo Deng, Jiajun Zhang, Chengqing Zong
Title: Group then Scale: Dynamic Mixture-of-Experts Multilingual Language Model
Abstract:
The curse of multilinguality phenomenon is a fundamental problem of multilingual Large Language Models (LLMs), where the competition between massive languages results in inferior performance. It mainly comes from limited capacity and negative transfer between dissimilar languages. To address this issue, we propose a method to dynamically group and scale up the parameters of multilingual LLM while boosting positive transfer among similar languages. Specifically, the model is first tuned on monolingual corpus to determine the parameter deviation in each layer and quantify the similarity between languages. Layers with more deviations are extended to mixture-of-experts layers to reduce competition between languages, where one expert module serves one group of similar languages. Experimental results on 18 to 128 languages show that our method reduces the negative transfer between languages and significantly boosts multilingual performance with fewer parameters. Such language group specialization on experts benefits the new language adaptation and reduces the inference on the previous multilingual knowledge learned.

Authors:Zichuan Fu, Xian Wu, Guojing Li, Yingying Zhang, Yefeng Zheng, Tianshi Ming, Yejing Wang, Wanyu Wang, Xiangyu Zhao
Title: Model Merging for Knowledge Editing
Abstract:
Large Language Models (LLMs) require continuous updates to maintain accurate and current knowledge as the world evolves. While existing knowledge editing approaches offer various solutions for knowledge updating, they often struggle with sequential editing scenarios and harm the general capabilities of the model, thereby significantly hampering their practical applicability. This paper proposes a two-stage framework combining robust supervised fine-tuning (R-SFT) with model merging for knowledge editing. Our method first fine-tunes the LLM to internalize new knowledge fully, then merges the fine-tuned model with the original foundation model to preserve newly acquired knowledge and general capabilities. Experimental results demonstrate that our approach significantly outperforms existing methods in sequential editing while better preserving the original performance of the model, all without requiring any architectural changes. Code is available at: https://github.com/Applied-Machine-Learning-Lab/MM4KE.

Authors:Zichuan Fu, Xian Wu, Yejing Wang, Wanyu Wang, Shanshan Ye, Hongzhi Yin, Yi Chang, Yefeng Zheng, Xiangyu Zhao
Title: Training-free LLM Merging for Multi-task Learning
Abstract:
Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse natural language processing (NLP) tasks. The release of open-source LLMs like LLaMA and Qwen has triggered the development of numerous fine-tuned models tailored for various tasks and languages. In this paper, we explore an important question: is it possible to combine these specialized models to create a unified model with multi-task capabilities. We introduces Hierarchical Iterative Merging (Hi-Merging), a training-free method for unifying different specialized LLMs into a single model. Specifically, Hi-Merging employs model-wise and layer-wise pruning and scaling, guided by contribution analysis, to mitigate parameter conflicts. Extensive experiments on multiple-choice and question-answering tasks in both Chinese and English validate Hi-Merging's ability for multi-task learning. The results demonstrate that Hi-Merging consistently outperforms existing merging techniques and surpasses the performance of models fine-tuned on combined datasets in most scenarios. Code is available at: https://github.com/Applied-Machine-Learning-Lab/Hi-Merging.

Authors:Zhaochen Hong, Haofei Yu, Jiaxuan You
Title: ConsistencyChecker: Tree-based Evaluation of LLM Generalization Capabilities
Abstract:
Evaluating consistency in large language models (LLMs) is crucial for ensuring reliability, particularly in complex, multi-step interactions between humans and LLMs. Traditional self-consistency methods often miss subtle semantic changes in natural language and functional shifts in code or equations, which can accumulate over multiple transformations. To address this, we propose ConsistencyChecker, a tree-based evaluation framework designed to measure consistency through sequences of reversible transformations, including machine translation tasks and AI-assisted programming tasks. In our framework, nodes represent distinct text states, while edges correspond to pairs of inverse operations. Dynamic and LLM-generated benchmarks ensure a fair assessment of the model's generalization ability and eliminate benchmark leakage. Consistency is quantified based on similarity across different depths of the transformation tree. Experiments on eight models from various families and sizes show that ConsistencyChecker can distinguish the performance of different models. Notably, our consistency scores-computed entirely without using WMT paired data-correlate strongly (r > 0.7) with WMT 2024 auto-ranking, demonstrating the validity of our benchmark-free approach. Our implementation is available at: https://github.com/ulab-uiuc/consistencychecker.

Authors:Mingjun Xu, Jinhan Dong, Jue Hou, Zehui Wang, Sihang Li, Zhifeng Gao, Renxin Zhong, Hengxing Cai
Title: MM-R5: MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval
Abstract:
Multimodal document retrieval systems enable information access across text, images, and layouts, benefiting various domains like document-based question answering, report analysis, and interactive content summarization. Rerankers improve retrieval precision by reordering retrieved candidates. However, current multimodal reranking methods remain underexplored, with significant room for improvement in both training strategies and overall effectiveness. Moreover, the lack of explicit reasoning makes it difficult to analyze and optimize these methods further. In this paper, We propose MM-R5, a MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval, aiming to provide a more effective and reliable solution for multimodal reranking tasks. MM-R5 is trained in two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we focus on improving instruction-following and guiding the model to generate complete and high-quality reasoning chains. To support this, we introduce a novel data construction strategy that produces rich, high-quality reasoning data. In the RL stage, we design a task-specific reward framework, including a reranking reward tailored for multimodal candidates and a composite template-based reward to further refine reasoning quality. We conduct extensive experiments on MMDocIR, a challenging public benchmark spanning multiple domains. MM-R5 achieves state-of-the-art performance on most metrics and delivers comparable results to much larger models on the remaining ones. Moreover, compared to the best retrieval-only method, MM-R5 improves recall@1 by over 4%. These results validate the effectiveness of our reasoning-enhanced training pipeline. Our code is available at https://github.com/i2vec/MM-R5 .

Authors:Yue Wan, Xiaowei Jia, Xiang Lorraine Li
Title: Unveiling Confirmation Bias in Chain-of-Thought Reasoning
Abstract:
Chain-of-thought (CoT) prompting has been widely adopted to enhance the reasoning capabilities of large language models (LLMs). However, the effectiveness of CoT reasoning is inconsistent across tasks with different reasoning types. This work presents a novel perspective to understand CoT behavior through the lens of \textit{confirmation bias} in cognitive psychology. Specifically, we examine how model internal beliefs, approximated by direct question-answering probabilities, affect both reasoning generation ($Q \to R$) and reasoning-guided answer prediction ($QR \to A$) in CoT. By decomposing CoT into a two-stage process, we conduct a thorough correlation analysis in model beliefs, rationale attributes, and stage-wise performance. Our results provide strong evidence of confirmation bias in LLMs, such that model beliefs not only skew the reasoning process but also influence how rationales are utilized for answer prediction. Furthermore, the interplay between task vulnerability to confirmation bias and the strength of beliefs also provides explanations for CoT effectiveness across reasoning tasks and models. Overall, this study provides a valuable insight for the needs of better prompting strategies that mitigate confirmation bias to enhance reasoning performance. Code is available at \textit{https://github.com/yuewan2/biasedcot}.

Authors:Worasit Sangjan, Piyush Pandey, Norman B. Best, Jacob D. Washburn
Title: MatchPlant: An Open-Source Pipeline for UAV-Based Single-Plant Detection and Data Extraction
Abstract:
Accurate identification of individual plants from unmanned aerial vehicle (UAV) images is essential for advancing high-throughput phenotyping and supporting data-driven decision-making in plant breeding. This study presents MatchPlant, a modular, graphical user interface-supported, open-source Python pipeline for UAV-based single-plant detection and geospatial trait extraction. MatchPlant enables end-to-end workflows by integrating UAV image processing, user-guided annotation, Convolutional Neural Network model training for object detection, forward projection of bounding boxes onto an orthomosaic, and shapefile generation for spatial phenotypic analysis. In an early-season maize case study, MatchPlant achieved reliable detection performance (validation AP: 89.6%, test AP: 85.9%) and effectively projected bounding boxes, covering 89.8% of manually annotated boxes with 87.5% of projections achieving an Intersection over Union (IoU) greater than 0.5. Trait values extracted from predicted bounding instances showed high agreement with manual annotations (r = 0.87-0.97, IoU >= 0.4). Detection outputs were reused across time points to extract plant height and Normalized Difference Vegetation Index with minimal additional annotation, facilitating efficient temporal phenotyping. By combining modular design, reproducibility, and geospatial precision, MatchPlant offers a scalable framework for UAV-based plant-level analysis with broad applicability in agricultural and environmental monitoring.

Authors:Thomas Walker, Ahmed Imtiaz Humayun, Randall Balestriero, Richard Baraniuk
Title: GrokAlign: Geometric Characterisation and Acceleration of Grokking
Abstract:
A key challenge for the machine learning community is to understand and accelerate the training dynamics of deep networks that lead to delayed generalisation and emergent robustness to input perturbations, also known as grokking. Prior work has associated phenomena like delayed generalisation with the transition of a deep network from a linear to a feature learning regime, and emergent robustness with changes to the network's functional geometry, in particular the arrangement of the so-called linear regions in deep networks employing continuous piecewise affine nonlinearities. Here, we explain how grokking is realised in the Jacobian of a deep network and demonstrate that aligning a network's Jacobians with the training data (in the sense of cosine similarity) ensures grokking under a low-rank Jacobian assumption. Our results provide a strong theoretical motivation for the use of Jacobian regularisation in optimizing deep networks -- a method we introduce as GrokAlign -- which we show empirically to induce grokking much sooner than more conventional regularizers like weight decay. Moreover, we introduce centroid alignment as a tractable and interpretable simplification of Jacobian alignment that effectively identifies and tracks the stages of deep network training dynamics. Accompanying webpage (https://thomaswalker1.github.io/blog/grokalign.html) and code (https://github.com/ThomasWalker1/grokalign).

Authors:Wei Wang, Wangyou Zhang, Chenda Li, Jiatong Shi, Shinji Watanabe, Yanmin Qian
Title: Improving Speech Enhancement with Multi-Metric Supervision from Learned Quality Assessment
Abstract:
Speech quality assessment (SQA) aims to predict the perceived quality of speech signals under a wide range of distortions. It is inherently connected to speech enhancement (SE), which seeks to improve speech quality by removing unwanted signal components. While SQA models are widely used to evaluate SE performance, their potential to guide SE training remains underexplored. In this work, we investigate a training framework that leverages a SQA model, trained to predict multiple evaluation metrics from a public SE leaderboard, as a supervisory signal for SE. This approach addresses a key limitation of conventional SE objectives, such as SI-SNR, which often fail to align with perceptual quality and generalize poorly across evaluation metrics. Moreover, it enables training on real-world data where clean references are unavailable. Experiments on both simulated and real-world test sets show that SQA-guided training consistently improves performance across a range of quality metrics. Code and checkpoints are available at https://github.com/urgent-challenge/urgent2026_challenge_track2

Authors:Yijiang Li, Genpei Zhang, Jiacheng Cheng, Yi Li, Xiaojun Shan, Dashan Gao, Jiancheng Lyu, Yuan Li, Ning Bi, Nuno Vasconcelos
Title: EgoPrivacy: What Your First-Person Camera Says About You?
Abstract:
While the rapid proliferation of wearable cameras has raised significant concerns about egocentric video privacy, prior work has largely overlooked the unique privacy threats posed to the camera wearer. This work investigates the core question: How much privacy information about the camera wearer can be inferred from their first-person view videos? We introduce EgoPrivacy, the first large-scale benchmark for the comprehensive evaluation of privacy risks in egocentric vision. EgoPrivacy covers three types of privacy (demographic, individual, and situational), defining seven tasks that aim to recover private information ranging from fine-grained (e.g., wearer's identity) to coarse-grained (e.g., age group). To further emphasize the privacy threats inherent to egocentric vision, we propose Retrieval-Augmented Attack, a novel attack strategy that leverages ego-to-exo retrieval from an external pool of exocentric videos to boost the effectiveness of demographic privacy attacks. An extensive comparison of the different attacks possible under all threat models is presented, showing that private information of the wearer is highly susceptible to leakage. For instance, our findings indicate that foundation models can effectively compromise wearer privacy even in zero-shot settings by recovering attributes such as identity, scene, gender, and race with 70-80% accuracy. Our code and data are available at https://github.com/williamium3000/ego-privacy.

Authors:Ella Miray Rajaonson, Mahyar Rajabi Kochi, Luis Martin Mejia Mendoza, Seyed Mohamad Moosavi, Benjamin Sanchez-Lengeling
Title: CheMixHub: Datasets and Benchmarks for Chemical Mixture Property Prediction
Abstract:
Developing improved predictive models for multi-molecular systems is crucial, as nearly every chemical product used results from a mixture of chemicals. While being a vital part of the industry pipeline, the chemical mixture space remains relatively unexplored by the Machine Learning community. In this paper, we introduce CheMixHub, a holistic benchmark for molecular mixtures, covering a corpus of 11 chemical mixtures property prediction tasks, from drug delivery formulations to battery electrolytes, totalling approximately 500k data points gathered and curated from 7 publicly available datasets. CheMixHub introduces various data splitting techniques to assess context-specific generalization and model robustness, providing a foundation for the development of predictive models for chemical mixture properties. Furthermore, we map out the modelling space of deep learning models for chemical mixtures, establishing initial benchmarks for the community. This dataset has the potential to accelerate chemical mixture development, encompassing reformulation, optimization, and discovery. The dataset and code for the benchmarks can be found at: https://github.com/chemcognition-lab/chemixhub

Authors:Yuan-Sen Ting
Title: Statistical Machine Learning for Astronomy -- A Textbook
Abstract:
This textbook provides a systematic treatment of statistical machine learning for astronomical research through the lens of Bayesian inference, developing a unified framework that reveals connections between modern data analysis techniques and traditional statistical methods. We show how these techniques emerge from familiar statistical foundations. The consistently Bayesian perspective prioritizes uncertainty quantification and statistical rigor essential for scientific inference in astronomy. The textbook progresses from probability theory and Bayesian inference through supervised learning including linear regression with measurement uncertainties, logistic regression, and classification. Unsupervised learning topics cover Principal Component Analysis and clustering methods. We then introduce computational techniques through sampling and Markov Chain Monte Carlo, followed by Gaussian Processes as probabilistic nonparametric methods and neural networks within the broader statistical context. Our theory-focused pedagogical approach derives each method from first principles with complete mathematical development, emphasizing statistical insight and complementing with astronomical applications. We prioritize understanding why algorithms work, when they are appropriate, and how they connect to broader statistical principles. The treatment builds toward modern techniques including neural networks through a solid foundation in classical methods and their theoretical underpinnings. This foundation enables thoughtful application of these methods to astronomical research, ensuring proper consideration of assumptions, limitations, and uncertainty propagation essential for advancing astronomical knowledge in the era of large astronomical surveys.

Authors:Tony Alex, Sara Ahmed, Armin Mustafa, Muhammad Awais, Philip JB Jackson
Title: SSLAM: Enhancing Self-Supervised Models with Audio Mixtures for Polyphonic Soundscapes
Abstract:
Self-supervised pre-trained audio networks have seen widespread adoption in real-world systems, particularly in multi-modal large language models. These networks are often employed in a frozen state, under the assumption that the SSL pre-training has sufficiently equipped them to handle real-world audio. However, a critical question remains: how well do these models actually perform in real-world conditions, where audio is typically polyphonic and complex, involving multiple overlapping sound sources? Current audio SSL methods are often benchmarked on datasets predominantly featuring monophonic audio, such as environmental sounds, and speech. As a result, the ability of SSL models to generalize to polyphonic audio, a common characteristic in natural scenarios, remains underexplored. This limitation raises concerns about the practical robustness of SSL models in more realistic audio settings. To address this gap, we introduce Self-Supervised Learning from Audio Mixtures (SSLAM), a novel direction in audio SSL research, designed to improve, designed to improve the model's ability to learn from polyphonic data while maintaining strong performance on monophonic data. We thoroughly evaluate SSLAM on standard audio SSL benchmark datasets which are predominantly monophonic and conduct a comprehensive comparative analysis against SOTA methods using a range of high-quality, publicly available polyphonic datasets. SSLAM not only improves model performance on polyphonic audio, but also maintains or exceeds performance on standard audio SSL benchmarks. Notably, it achieves up to a 3.9\% improvement on the AudioSet-2M (AS-2M), reaching a mean average precision (mAP) of 50.2. For polyphonic datasets, SSLAM sets new SOTA in both linear evaluation and fine-tuning regimes with performance improvements of up to 9.1\% (mAP).

Authors:Ilya Ilyankou, Natchapon Jongwiriyanurak, Tao Cheng, James Haworth
Title: CLIP the Landscape: Automated Tagging of Crowdsourced Landscape Images
Abstract:
We present a CLIP-based, multi-modal, multi-label classifier for predicting geographical context tags from landscape photos in the Geograph dataset--a crowdsourced image archive spanning the British Isles, including remote regions lacking POIs and street-level imagery. Our approach addresses a Kaggle competition\footnote{https://www.kaggle.com/competitions/predict-geographic-context-from-landscape-photos} task based on a subset of Geograph's 8M images, with strict evaluation: exact match accuracy is required across 49 possible tags. We show that combining location and title embeddings with image features improves accuracy over using image embeddings alone. We release a lightweight pipeline\footnote{https://github.com/SpaceTimeLab/ClipTheLandscape} that trains on a modest laptop, using pre-trained CLIP image and text embeddings and a simple classification head. Predicted tags can support downstream tasks such as building location embedders for GeoAI applications, enriching spatial understanding in data-sparse regions.

Authors:Wenyue Hua, Dujian Ding, Yile Gu, Yujie Ren, Kai Mei, Minghua Ma, William Yang Wang
Title: Semantic Scheduling for LLM Inference
Abstract:
Conventional operating system scheduling algorithms are largely content-ignorant, making decisions based on factors such as latency or fairness without considering the actual intents or semantics of processes. Consequently, these algorithms often do not prioritize tasks that require urgent attention or carry higher importance, such as in emergency management scenarios. However, recent advances in language models enable semantic analysis of processes, allowing for more intelligent and context-aware scheduling decisions. In this paper, we introduce the concept of semantic scheduling in scheduling of requests from large language models (LLM), where the semantics of the process guide the scheduling priorities. We present a novel scheduling algorithm with optimal time complexity, designed to minimize the overall waiting time in LLM-based prompt scheduling. To illustrate its effectiveness, we present a medical emergency management application, underscoring the potential benefits of semantic scheduling for critical, time-sensitive tasks. The code and data are available at https://github.com/Wenyueh/latency_optimization_with_priority_constraints.

Authors:Yujie Zhao, Zhijing Wu, Hejia Zhang, Zhongming Yu, Wentao Ni, Chia-Tung Ho, Haoxing Ren, Jishen Zhao
Title: PRO-V: An Efficient Program Generation Multi-Agent System for Automatic RTL Verification
Abstract:
LLM-assisted hardware verification is gaining substantial attention due to its potential to significantly reduce the cost and effort of crafting effective testbenches. It also serves as a critical enabler for LLM-aided end-to-end hardware language design. However, existing current LLMs often struggle with Register Transfer Level (RTL) code generation, resulting in testbenches that exhibit functional errors in Hardware Description Languages (HDL) logic. Motivated by the strong performance of LLMs in Python code generation under inference-time sampling strategies, and their promising capabilities as judge agents, we propose PRO-V a fully program generation multi-agent system for robust RTL verification. Pro-V incorporates an efficient best-of-n iterative sampling strategy to enhance the correctness of generated testbenches. Moreover, it introduces an LLM-as-a-judge aid validation framework featuring an automated prompt generation pipeline. By converting rule-based static analysis from the compiler into natural language through in-context learning, this pipeline enables LLMs to assist the compiler in determining whether verification failures stem from errors in the RTL design or the testbench. PRO-V attains a verification accuracy of 87.17% on golden RTL implementations and 76.28% on RTL mutants. Our code is open-sourced at https://github.com/stable-lab/Pro-V.

Authors:Jackson Eshbaugh
Title: Fidelity Isn't Accuracy: When Linearly Decodable Functions Fail to Match the Ground Truth
Abstract:
Neural networks excel as function approximators, but their complexity often obscures the types of functions they learn, making it difficult to explain their behavior. To address this, the linearity score $λ(f)$ is introduced, a simple and interpretable diagnostic that quantifies how well a regression network's output can be mimicked by a linear model. Defined as the $R^2$ value between the network's predictions and those of a trained linear surrogate, $λ(f)$ measures linear decodability: the extent to which the network's behavior aligns with a structurally simple model. This framework is evaluated on both synthetic and real-world datasets, using dataset-specific networks and surrogates. High $λ(f)$ scores reliably indicate alignment with the network's outputs; however, they do not guarantee accuracy with respect to the ground truth. These results highlight the risk of using surrogate fidelity as a proxy for model understanding, especially in high-stakes regression tasks.

Authors:Haoxiang Chen, Wei Zhao, Rufei Zhang, Nannan Li, Dongjin Li
Title: Multiple Object Tracking in Video SAR: A Benchmark and Tracking Baseline
Abstract:
In the context of multi-object tracking using video synthetic aperture radar (Video SAR), Doppler shifts induced by target motion result in artifacts that are easily mistaken for shadows caused by static occlusions. Moreover, appearance changes of the target caused by Doppler mismatch may lead to association failures and disrupt trajectory continuity. A major limitation in this field is the lack of public benchmark datasets for standardized algorithm evaluation. To address the above challenges, we collected and annotated 45 video SAR sequences containing moving targets, and named the Video SAR MOT Benchmark (VSMB). Specifically, to mitigate the effects of trailing and defocusing in moving targets, we introduce a line feature enhancement mechanism that emphasizes the positive role of motion shadows and reduces false alarms induced by static occlusions. In addition, to mitigate the adverse effects of target appearance variations, we propose a motion-aware clue discarding mechanism that substantially improves tracking robustness in Video SAR. The proposed model achieves state-of-the-art performance on the VSMB, and the dataset and model are released at https://github.com/softwarePupil/VSMB.

Authors:Wanjin Feng, Xingyu Gao, Wenqian Du, Hailong Shi, Peilin Zhao, Pengcheng Wu, Chunyan Miao
Title: Efficient Parallel Training Methods for Spiking Neural Networks with Constant Time Complexity
Abstract:
Spiking Neural Networks (SNNs) often suffer from high time complexity $O(T)$ due to the sequential processing of $T$ spikes, making training computationally expensive. In this paper, we propose a novel Fixed-point Parallel Training (FPT) method to accelerate SNN training without modifying the network architecture or introducing additional assumptions. FPT reduces the time complexity to $O(K)$, where $K$ is a small constant (usually $K=3$), by using a fixed-point iteration form of Leaky Integrate-and-Fire (LIF) neurons for all $T$ timesteps. We provide a theoretical convergence analysis of FPT and demonstrate that existing parallel spiking neurons can be viewed as special cases of our proposed method. Experimental results show that FPT effectively simulates the dynamics of original LIF neurons, significantly reducing computational time without sacrificing accuracy. This makes FPT a scalable and efficient solution for real-world applications, particularly for long-term tasks. Our code will be released at \href{https://github.com/WanjinVon/FPT}{\texttt{https://github.com/WanjinVon/FPT}}.

Authors:Shaba Shaon, Van-Dinh Nguyen, Dinh C. Nguyen
Title: Latency Optimization for Wireless Federated Learning in Multihop Networks
Abstract:
In this paper, we study a novel latency minimization problem in wireless federated learning (FL) across multi-hop networks. The system comprises multiple routes, each integrating leaf and relay nodes for FL model training. We explore a personalized learning and adaptive aggregation-aware FL (PAFL) framework that effectively addresses data heterogeneity across participating nodes by harmonizing individual and collective learning objectives. We formulate an optimization problem aimed at minimizing system latency through the joint optimization of leaf and relay nodes, as well as relay routing indicator. We also incorporate an additional energy harvesting scheme for the relay nodes to help with their relay tasks. This formulation presents a computationally demanding challenge, and thus we develop a simple yet efficient algorithm based on block coordinate descent and successive convex approximation (SCA) techniques. Simulation results illustrate the efficacy of our proposed joint optimization approach for leaf and relay nodes with relay routing indicator. We observe significant latency savings in the wireless multi-hop PAFL system, with reductions of up to 69.37% compared to schemes optimizing only one node type, traditional greedy algorithm, and scheme without relay routing indicator.

Authors:Nirmal Gelal, Chloe Snow, Ambyr Rios, Hande Küçük McGinty
Title: T-TExTS (Teaching Text Expansion for Teacher Scaffolding): Enhancing Text Selection in High School Literature through Knowledge Graph-Based Recommendation
Abstract:
The implementation of transformational pedagogy in secondary education classrooms requires a broad multiliteracy approach. Due to limited planning time and resources, high school English Literature teachers often struggle to curate diverse, thematically aligned literature text sets. This study addresses the critical need for a tool that provides scaffolds for novice educators in selecting literature texts that are diverse -- in terms of genre, theme, subtheme, and author -- yet similar in context and pedagogical merits. We have developed a recommendation system, Teaching Text Expansion for Teacher Scaffolding (T-TExTS), that suggests high school English Literature books based on pedagogical merits, genre, and thematic relevance using a knowledge graph. We constructed a domain-specific ontology using the KNowledge Acquisition and Representation Methodology (KNARM), transformed into a knowledge graph, which was then embedded using DeepWalk, biased random walk, and a hybrid of both approaches. The system was evaluated using link prediction and recommendation performance metrics, including Area Under the Curve (AUC), Mean Reciprocal Rank (MRR), Hits@K, and normalized Discounted Cumulative Gain (nDCG). DeepWalk outperformed in most ranking metrics, with the highest AUC (0.9431), whereas the hybrid model offered balanced performance. These findings demonstrate the importance of semantic, ontology-driven approaches in recommendation systems and suggest that T-TExTS can significantly ease the burden of English Literature text selection for high school educators, promoting more informed and inclusive curricular decisions. The source code for T-TExTS is available at: https://github.com/koncordantlab/TTExTS

Authors:Joydeep Chandra, Aleksandr Algazinov, Satyam Kumar Navneet, Rim El Filali, Matt Laing, Andrew Hanna
Title: TrueGL: A Truthful, Reliable, and Unified Engine for Grounded Learning in Full-Stack Search
Abstract:
In the age of open and free information, a concerning trend of reliance on AI is emerging. However, existing AI tools struggle to evaluate the credibility of information and to justify their assessments. Hence, there is a growing need for systems that can help users evaluate the trustworthiness of online information. Although major search engines incorporate AI features, they often lack clear reliability indicators. We present TrueGL, a model that makes trustworthy search results more accessible. The model is a fine-tuned version of IBM's Granite-1B, trained on the custom dataset and integrated into a search engine with a reliability scoring system. We evaluate the system using prompt engineering and assigning each statement a continuous reliability score from 0.1 to 1, then instructing the model to return a textual explanation alongside the score. Each model's predicted scores are measured against real scores using standard evaluation metrics. TrueGL consistently outperforms other small-scale LLMs and rule-based approaches across all experiments on key evaluation metrics, including MAE, RMSE, and R2. The model's high accuracy, broad content coverage, and ease of use make trustworthy information more accessible and help reduce the spread of false or misleading content online. Our code is publicly available at https://github.com/AlgazinovAleksandr/TrueGL, and our model is publicly released at https://huggingface.co/JoydeepC/trueGL.

Authors:Joydeep Chandra, Aleksandr Algazinov, Satyam Kumar Navneet, Rim El Filali, Matt Laing, Andrew Hanna
Title: TrueGL: A Truthful, Reliable, and Unified Engine for Grounded Learning in Full-Stack Search
Abstract:
In the age of open and free information, a concerning trend of reliance on AI is emerging. However, existing AI tools struggle to evaluate the credibility of information and to justify their assessments. Hence, there is a growing need for systems that can help users evaluate the trustworthiness of online information. Although major search engines incorporate AI features, they often lack clear reliability indicators. We present TrueGL, a model that makes trustworthy search results more accessible. The model is a fine-tuned version of IBM's Granite-1B, trained on the custom dataset and integrated into a search engine with a reliability scoring system. We evaluate the system using prompt engineering and assigning each statement a continuous reliability score from 0.1 to 1, then instructing the model to return a textual explanation alongside the score. Each model's predicted scores are measured against real scores using standard evaluation metrics. TrueGL consistently outperforms other small-scale LLMs and rule-based approaches across all experiments on key evaluation metrics, including MAE, RMSE, and R2. The model's high accuracy, broad content coverage, and ease of use make trustworthy information more accessible and help reduce the spread of false or misleading content online. Our code is publicly available at https://github.com/AlgazinovAleksandr/TrueGL, and our model is publicly released at https://huggingface.co/JoydeepC/trueGL.

Authors:Yewei Liu, Xiyuan Wang, Muhan Zhang
Title: Meta Pruning via Graph Metanetworks : A Meta Learning Framework for Network Pruning
Abstract:
Network pruning, aimed at reducing network size while preserving accuracy, has attracted significant research interest. Numerous pruning techniques have been proposed over time. They are becoming increasingly effective, but more complex and harder to interpret as well. Given the inherent complexity of neural networks, we argue that manually designing pruning criteria has reached a bottleneck. To address this, we propose a novel approach in which we "use a neural network to prune neural networks". More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically which can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and the standard finetuning to prune at state-of-the-art. Our method achieved outstanding results on many popular and representative pruning tasks (including ResNet56 on CIFAR10, VGG19 on CIFAR100, ResNet50 on ImageNet). Our code is available at https://github.com/Yewei-Liu/MetaPruning

Authors:Yewei Liu, Xiyuan Wang, Muhan Zhang
Title: Meta Pruning via Graph Metanetworks : A Universal Meta Learning Framework for Network Pruning
Abstract:
We propose an entirely new meta-learning framework for network pruning. It is a general framework that can be theoretically applied to almost all types of networks with all kinds of pruning and has great generality and transferability. Experiments have shown that it can achieve outstanding results on many popular and representative pruning tasks (including both CNNs and Transformers). Unlike all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse manner, or employ learning to prune ways that require special training during each pruning and lack generality. Our framework can learn complex pruning rules automatically via a neural network (metanetwork) and has great generality that can prune without any special training. More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically and can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and some standard finetuning to prune at state-of-the-art. Our code is available at https://github.com/Yewei-Liu/MetaPruning.

Authors:Hao Gu, Lujun Li, Zheyu Wang, Bei Liu, Qiyuan Zhu, Sirui Han, Yike Guo
Title: BTC-LLM: Efficient Sub-1-Bit LLM Quantization via Learnable Transformation and Binary Codebook
Abstract:
Binary quantization represents the most extreme form of large language model (LLM) compression, reducing weights to $\pm$1 for maximal memory and computational efficiency. While recent sparsity-aware binarization methods achieve sub-1-bit compression by pruning redundant binary weights, they suffer from three critical challenges: performance deterioration, computational complexity from sparse mask management, and limited hardware compatibility. In this paper, we present BTC-LLM, a novel sub-1-bit LLM quantization framework that leverages adaptive weight transformation and binary pattern clustering to overcome these limitations, delivering both superior accuracy and efficiency. Our approach incorporates two key innovations: (1) a Learnable Transformation that optimizes invertible scaling and rotation matrices to align binarized weights with full-precision distributions, enabling incoherence processing to enhance layer-wise representation quality; (2) a Flash and Accurate Binary Codebook that identifies recurring binary vector clusters, compressing them into compact indices with tailored distance metrics and sign-based centroid updates. This eliminates the need for sparse masks, enabling efficient inference on standard hardware. Our code is available at https://github.com/Chooovy/BTC-LLM.

Authors:Yuliang Xu, Siming Huang, Mingmeng Geng, Yao Wan, Xuanhua Shi, Dongping Chen
Title: code_transformed: The Influence of Large Language Models on Code
Abstract:
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 19,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake\_case variable names in Python code increased from 47% in Q1 2023 to 51% in Q1 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Given the diversity of LLMs and usage scenarios, among other factors, it is difficult or even impossible to precisely estimate the proportion of code generated or assisted by LLMs. Our experimental results provide the first large-scale empirical evidence that LLMs affect real-world programming style.

Authors:Paul Setinek, Gianluca Galletti, Thomas Gross, Dominik Schnürer, Johannes Brandstetter, Werner Zellinger
Title: SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Abstract:
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on unseen problem configurations, such as novel material types or structural dimensions. Meanwhile, Domain Adaptation (DA) techniques have been widely used in vision and language processing to generalize from limited information about unseen configurations. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established domain adaptation methods to state of the art neural surrogates and systematically evaluate them. These approaches use parametric descriptions and ground truth simulations from multiple source configurations, together with only parametric descriptions from target configurations. The goal is to accurately predict target simulations without access to ground truth simulation data. Extensive experiments on SIMSHIFT highlight the challenges of out of distribution neural surrogate modeling, demonstrate the potential of DA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift

Authors:Korbinian Pöppel, Richard Freinschlag, Thomas Schmied, Wei Lin, Sepp Hochreiter
Title: pLSTM: parallelizable Linear Source Transition Mark networks
Abstract:
Modern recurrent architectures, such as xLSTM and Mamba, have recently challenged the Transformer in language modeling. However, their structure constrains their applicability to sequences only or requires processing multi-dimensional data structures, such as images or molecular graphs, in a pre-defined sequential order. In contrast, Multi-Dimensional RNNs (MDRNNs) are well suited for data with a higher level structure, like 2D grids, trees, and directed acyclic graphs (DAGs). In this work, we extend the notion of multi-dimensionality to linear RNNs. We introduce parallelizable Linear Source Transition Mark networks (pLSTMs) using Source, Transition, and Mark gates that act on the line graph of a general DAG. This enables parallelization in analogy to parallel associative scans and the chunkwise-recurrent form of sequential linear RNNs, but for DAGs. For regular grids (1D and 2D), like images, this scheme can be efficiently implemented using einsum operations, concatenations, and padding in logarithmic time. pLSTMs tackle the vanishing/exploding activation/gradient problem for long distances in DAGs via two distinct modes: a directed propagation mode (P-mode) and a diffusive distribution mode (D-mode). To showcase the long-range capabilities of pLSTM, we introduce arrow-pointing extrapolation as a synthetic computer vision task that contains long-distance directional information. We demonstrate that pLSTMs generalize well to larger image sizes, whereas Transformers struggle to extrapolate. On established molecular graph and computer vision benchmarks, pLSTMs also show strong performance. Code and Datasets are available at: https://github.com/ml-jku/plstm_experiments.

Authors:Yue Yao, Zelin Wen, Yan Tong, Xinyu Tian, Xuqing Li, Xiao Ma, Dongliang Xu, Tom Gedeon
Title: Simple Radiology VLLM Test-time Scaling with Thought Graph Traversal
Abstract:
Test-time scaling offers a promising way to improve the reasoning performance of vision-language large models (VLLMs) without additional training. In this paper, we explore a simple but effective approach for applying test-time scaling to radiology report generation. Specifically, we introduce a lightweight Thought Graph Traversal (TGT) framework that guides the model to reason through organ-specific findings in a medically coherent order. This framework integrates structured medical priors into the prompt, enabling deeper and more logical analysis with no changes to the underlying model. To further enhance reasoning depth, we apply a reasoning budget forcing strategy that adjusts the model's inference depth at test time by dynamically extending its generation process. This simple yet powerful combination allows a frozen radiology VLLM to self-correct and generate more accurate, consistent chest X-ray reports. Our method outperforms baseline prompting approaches on standard benchmarks, and also reveals dataset biases through traceable reasoning paths. Code and prompts are open-sourced for reproducibility at https://github.com/glerium/Thought-Graph-Traversal.

Authors:Wuzhenghong Wen, Su Pan, yuwei Sun
Title: Schema-R1: A reasoning training approach for schema linking in Text-to-SQL Task
Abstract:
Schema linking is a critical step in Text-to-SQL task, aiming to accurately predict the table names and column names required for the SQL query based on the given question. However, current fine-tuning approaches for schema linking models employ a rote-learning paradigm, excessively optimizing for ground truth schema linking outcomes while compromising reasoning ability. This limitation arises because of the difficulty in acquiring a high-quality reasoning sample for downstream tasks. To address this, we propose Schema-R1, a reasoning schema linking model trained using reinforcement learning. Specifically, Schema-R1 consists of three key steps: constructing small batches of high-quality reasoning samples, supervised fine-tuning for cold-start initialization, and rule-based reinforcement learning training. The final results demonstrate that our method effectively enhances the reasoning ability of the schema linking model, achieving a 10\% improvement in filter accuracy compared to the existing method. Our code is available at https://github.com/hongWin/Schema-R1/.

Authors:Samuel Simko, Mrinmaya Sachan, Bernhard Schölkopf, Zhijing Jin
Title: Improving Large Language Model Safety with Contrastive Representation Learning
Abstract:
Large Language Models (LLMs) are powerful tools with profound societal impacts, yet their ability to generate responses to diverse and uncontrolled inputs leaves them vulnerable to adversarial attacks. While existing defenses often struggle to generalize across varying attack types, recent advancements in representation engineering offer promising alternatives. In this work, we propose a defense framework that formulates model defense as a contrastive representation learning (CRL) problem. Our method finetunes a model using a triplet-based loss combined with adversarial hard negative mining to encourage separation between benign and harmful representations. Our experimental results across multiple models demonstrate that our approach outperforms prior representation engineering-based defenses, improving robustness against both input-level and embedding-space attacks without compromising standard performance. Our code is available at https://github.com/samuelsimko/crl-llm-defense

Authors:Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, Yuxiao Dong
Title: TreeRL: LLM Reinforcement Learning with On-Policy Tree Search
Abstract:
Reinforcement learning (RL) with tree search has demonstrated superior performance in traditional reasoning tasks. Compared to conventional independent chain sampling strategies with outcome supervision, tree search enables better exploration of the reasoning space and provides dense, on-policy process rewards during RL training but remains under-explored in On-Policy LLM RL. We propose TreeRL, a reinforcement learning framework that directly incorporates on-policy tree search for RL training. Our approach includes intermediate supervision and eliminates the need for a separate reward model training. Existing approaches typically train a separate process reward model, which can suffer from distribution mismatch and reward hacking. We also introduce a cost-effective tree search approach that achieves higher search efficiency under the same generation token budget by strategically branching from high-uncertainty intermediate steps rather than using random branching. Experiments on challenging math and code reasoning benchmarks demonstrate that TreeRL achieves superior performance compared to traditional ChainRL, highlighting the potential of tree search for LLM. TreeRL is open-sourced at https://github.com/THUDM/TreeRL.

Authors:Zhangkai Ni, Yang Zhang, Wenhan Yang, Hanli Wang, Shiqi Wang, Sam Kwong
Title: Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution
Abstract:
Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU

Authors:Maximilian Kreutner, Marlene Lutz, Markus Strohmaier
Title: Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models
Abstract:
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse, but have been found to consistently display a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups that the base model is not aligned with. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict positions of European groups on a diverse set of policies. We evaluate if predictions are stable towards counterfactual arguments, different persona prompts and generation methods. Finally, we find that we can simulate voting behavior of Members of the European Parliament reasonably well with a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at https://github.com/dess-mannheim/european_parliament_simulation.

Authors:Tianqi Du, Haotian Huang, Yifei Wang, Yisen Wang
Title: Long-Short Alignment for Effective Long-Context Modeling in LLMs
Abstract:
Large language models (LLMs) have exhibited impressive performance and surprising emergent properties. However, their effectiveness remains limited by the fixed context window of the transformer architecture, posing challenges for long-context modeling. Among these challenges, length generalization -- the ability to generalize to sequences longer than those seen during training -- is a classical and fundamental problem. In this work, we propose a fresh perspective on length generalization, shifting the focus from the conventional emphasis on input features such as positional encodings or data structures to the output distribution of the model. Specifically, through case studies on synthetic tasks, we highlight the critical role of \textbf{long-short alignment} -- the consistency of output distributions across sequences of varying lengths. Extending this insight to natural language tasks, we propose a metric called Long-Short Misalignment to quantify this phenomenon, uncovering a strong correlation between the metric and length generalization performance. Building on these findings, we develop a regularization term that promotes long-short alignment during training. Extensive experiments validate the effectiveness of our approach, offering new insights for achieving more effective long-context modeling in LLMs. Code is available at https://github.com/PKU-ML/LongShortAlignment.

Authors:Muhammad Sarmad, Arnt-Børre Salberg, Michael Kampffmeyer
Title: DiffFuSR: Super-Resolution of all Sentinel-2 Multispectral Bands using Diffusion Models
Abstract:
This paper presents DiffFuSR, a modular pipeline for super-resolving all 12 spectral bands of Sentinel-2 Level-2A imagery to a unified ground sampling distance (GSD) of 2.5 meters. The pipeline comprises two stages: (i) a diffusion-based super-resolution (SR) model trained on high-resolution RGB imagery from the NAIP and WorldStrat datasets, harmonized to simulate Sentinel-2 characteristics; and (ii) a learned fusion network that upscales the remaining multispectral bands using the super-resolved RGB image as a spatial prior. We introduce a robust degradation model and contrastive degradation encoder to support blind SR. Extensive evaluations of the proposed SR pipeline on the OpenSR benchmark demonstrate that the proposed method outperforms current SOTA baselines in terms of reflectance fidelity, spectral consistency, spatial alignment, and hallucination suppression. Furthermore, the fusion network significantly outperforms classical pansharpening approaches, enabling accurate enhancement of Sentinel-2's 20 m and 60 m bands. This study underscores the power of harmonized learning with generative priors and fusion strategies to create a modular framework for Sentinel-2 SR. Our code and models can be found at https://github.com/NorskRegnesentral/DiffFuSR.

Authors:Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, Zhendong Mao
Title: DeepResearch Bench: A Comprehensive Benchmark for Deep Research Agents
Abstract:
Deep Research Agents are a prominent category of LLM-based agents. By autonomously orchestrating multistep web exploration, targeted retrieval, and higher-order synthesis, they transform vast amounts of online information into analyst-grade, citation-rich reports--compressing hours of manual desk research into minutes. However, a comprehensive benchmark for systematically evaluating the capabilities of these agents remains absent. To bridge this gap, we present DeepResearch Bench, a benchmark consisting of 100 PhD-level research tasks, each meticulously crafted by domain experts across 22 distinct fields. Evaluating DRAs is inherently complex and labor-intensive. We therefore propose two novel methodologies that achieve strong alignment with human judgment. The first is a reference-based method with adaptive criteria to assess the quality of generated research reports. The other framework is introduced to evaluate DRA's information retrieval and collection capabilities by assessing its effective citation count and overall citation accuracy. We have open-sourced DeepResearch Bench and key components of these frameworks at https://github.com/Ayanami0730/deep_research_bench to accelerate the development of practical LLM-based agents.

Authors:Dinh Viet Cuong, Hoang-Bao Le, An Pham Ngoc Nguyen, Liting Zhou, Cathal Gurrin
Title: Quizzard@INOVA Challenge 2025 -- Track A: Plug-and-Play Technique in Interleaved Multi-Image Model
Abstract:
This paper addresses two main objectives. Firstly, we demonstrate the impressive performance of the LLaVA-NeXT-interleave on 22 datasets across three different tasks: Multi-Image Reasoning, Documents and Knowledge-Based Understanding and Interactive Multi-Modal Communication. Secondly, we add the Dense Channel Integration (DCI) connector to the LLaVA-NeXT-Interleave and compare its performance against the standard model. We find that the standard model achieves the highest overall accuracy, excelling in vision-heavy tasks like VISION, NLVR2, and Fashion200K. Meanwhile, the DCI-enhanced version shows particular strength on datasets requiring deeper semantic coherence or structured change understanding such as MIT-States_PropertyCoherence and SlideVQA. Our results highlight the potential of combining powerful foundation models with plug-and-play techniques for Interleave tasks. The code is available at https://github.com/dinhvietcuong1996/icme25-inova.

Authors:Víctor Gallego
Title: Configurable Preference Tuning with Rubric-Guided Synthetic Data
Abstract:
Models of human feedback for AI alignment, such as those underpinning Direct Preference Optimization (DPO), often bake in a singular, static set of preferences, limiting adaptability. This paper challenges the assumption of monolithic preferences by introducing Configurable Preference Tuning (CPT), a novel framework for endowing language models with the ability to dynamically adjust their behavior based on explicit, human-interpretable directives. CPT leverages synthetically generated preference data, conditioned on system prompts derived from structured, fine-grained rubrics that define desired attributes like writing style. By fine-tuning with these rubric-guided preferences, the LLM learns to modulate its outputs at inference time in response to the system prompt, without retraining. This approach not only offers fine-grained control but also provides a mechanism for modeling more nuanced and context-dependent human feedback. Several experimental artifacts, such as training code, generated datasets and fine-tuned models are released at https://github.com/vicgalle/configurable-preference-tuning

Authors:Libin Lan, Hongxing Li, Zunhui Xia, Yudong Zhang
Title: DMAF-Net: An Effective Modality Rebalancing Framework for Incomplete Multi-Modal Medical Image Segmentation
Abstract:
Incomplete multi-modal medical image segmentation faces critical challenges from modality imbalance, including imbalanced modality missing rates and heterogeneous modality contributions. Due to their reliance on idealized assumptions of complete modality availability, existing methods fail to dynamically balance contributions and neglect the structural relationships between modalities, resulting in suboptimal performance in real-world clinical scenarios. To address these limitations, we propose a novel model, named Dynamic Modality-Aware Fusion Network (DMAF-Net). The DMAF-Net adopts three key ideas. First, it introduces a Dynamic Modality-Aware Fusion (DMAF) module to suppress missing-modality interference by combining transformer attention with adaptive masking and weight modality contributions dynamically through attention maps. Second, it designs a synergistic Relation Distillation and Prototype Distillation framework to enforce global-local feature alignment via covariance consistency and masked graph attention, while ensuring semantic consistency through cross-modal class-specific prototype alignment. Third, it presents a Dynamic Training Monitoring (DTM) strategy to stabilize optimization under imbalanced missing rates by tracking distillation gaps in real-time, and to balance convergence speeds across modalities by adaptively reweighting losses and scaling gradients. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Our code is available at https://github.com/violet-42/DMAF-Net.

Authors:Libin Lan, Hongxing Li, Zunhui Xia, Juan Zhou, Xiaofei Zhu, Yongmei Li, Yudong Zhang, Xin Luo
Title: Cross-Modal Clustering-Guided Negative Sampling for Self-Supervised Joint Learning from Medical Images and Reports
Abstract:
Learning medical visual representations directly from paired images and reports through multimodal self-supervised learning has emerged as a novel and efficient approach to digital diagnosis in recent years. However, existing models suffer from several severe limitations. 1) neglecting the selection of negative samples, resulting in the scarcity of hard negatives and the inclusion of false negatives; 2) focusing on global feature extraction, but overlooking the fine-grained local details that are crucial for medical image recognition tasks; and 3) contrastive learning primarily targets high-level features but ignoring low-level details which are essential for accurate medical analysis. Motivated by these critical issues, this paper presents a Cross-Modal Cluster-Guided Negative Sampling (CM-CGNS) method with two-fold ideas. First, it extends the k-means clustering used for local text features in the single-modal domain to the multimodal domain through cross-modal attention. This improvement increases the number of negative samples and boosts the model representation capability. Second, it introduces a Cross-Modal Masked Image Reconstruction (CM-MIR) module that leverages local text-to-image features obtained via cross-modal attention to reconstruct masked local image regions. This module significantly strengthens the model's cross-modal information interaction capabilities and retains low-level image features essential for downstream tasks. By well handling the aforementioned limitations, the proposed CM-CGNS can learn effective and robust medical visual representations suitable for various recognition tasks. Extensive experimental results on classification, detection, and segmentation tasks across five downstream datasets show that our method outperforms state-of-the-art approaches on multiple metrics, verifying its superior performance.

Authors:Yunhan Ren, Ruihuang Li, Lingbo Liu, Changwen Chen
Title: Prohibited Items Segmentation via Occlusion-aware Bilayer Modeling
Abstract:
Instance segmentation of prohibited items in security X-ray images is a critical yet challenging task. This is mainly caused by the significant appearance gap between prohibited items in X-ray images and natural objects, as well as the severe overlapping among objects in X-ray images. To address these issues, we propose an occlusion-aware instance segmentation pipeline designed to identify prohibited items in X-ray images. Specifically, to bridge the representation gap, we integrate the Segment Anything Model (SAM) into our pipeline, taking advantage of its rich priors and zero-shot generalization capabilities. To address the overlap between prohibited items, we design an occlusion-aware bilayer mask decoder module that explicitly models the occlusion relationships. To supervise occlusion estimation, we manually annotated occlusion areas of prohibited items in two large-scale X-ray image segmentation datasets, PIDray and PIXray. We then reorganized these additional annotations together with the original information as two occlusion-annotated datasets, PIDray-A and PIXray-A. Extensive experimental results on these occlusion-annotated datasets demonstrate the effectiveness of our proposed method. The datasets and codes are available at: https://github.com/Ryh1218/Occ

Authors:Emre Kavak, Tom Nuno Wolf, Christian Wachinger
Title: DISCO: Mitigating Bias in Deep Learning with Conditional Distance Correlation
Abstract:
Dataset bias often leads deep learning models to exploit spurious correlations instead of task-relevant signals. We introduce the Standard Anti-Causal Model (SAM), a unifying causal framework that characterizes bias mechanisms and yields a conditional independence criterion for causal stability. Building on this theory, we propose DISCO$_m$ and sDISCO, efficient and scalable estimators of conditional distance correlation that enable independence regularization in black-box models. Across five diverse datasets, our methods consistently outperform or are competitive in existing bias mitigation approaches, while requiring fewer hyperparameters and scaling seamlessly to multi-bias scenarios. This work bridges causal theory and practical deep learning, providing both a principled foundation and effective tools for robust prediction. Source Code: https://github.com/***.

Authors:Shashank Balla
Title: SecONNds: Secure Outsourced Neural Network Inference on ImageNet
Abstract:
The widespread adoption of outsourced neural network inference presents significant privacy challenges, as sensitive user data is processed on untrusted remote servers. Secure inference offers a privacy-preserving solution, but existing frameworks suffer from high computational overhead and communication costs, rendering them impractical for real-world deployment. We introduce SecONNds, a non-intrusive secure inference framework optimized for large ImageNet-scale Convolutional Neural Networks. SecONNds integrates a novel fully Boolean Goldreich-Micali-Wigderson (GMW) protocol for secure comparison -- addressing Yao's millionaires' problem -- using preprocessed Beaver's bit triples generated from Silent Random Oblivious Transfer. Our novel protocol achieves an online speedup of 17$\times$ in nonlinear operations compared to state-of-the-art solutions while reducing communication overhead. To further enhance performance, SecONNds employs Number Theoretic Transform (NTT) preprocessing and leverages GPU acceleration for homomorphic encryption operations, resulting in speedups of 1.6$\times$ on CPU and 2.2$\times$ on GPU for linear operations. We also present SecONNds-P, a bit-exact variant that ensures verifiable full-precision results in secure computation, matching the results of plaintext computations. Evaluated on a 37-bit quantized SqueezeNet model, SecONNds achieves an end-to-end inference time of 2.8 s on GPU and 3.6 s on CPU, with a total communication of just 420 MiB. SecONNds' efficiency and reduced computational load make it well-suited for deploying privacy-sensitive applications in resource-constrained environments. SecONNds is open source and can be accessed from: https://github.com/shashankballa/SecONNds.

Authors:Xiaoyu Ma, Hao Chen, Yongjian Deng
Title: Improving Multimodal Learning Balance and Sufficiency through Data Remixing
Abstract:
Different modalities hold considerable gaps in optimization trajectories, including speeds and paths, which lead to modality laziness and modality clash when jointly training multimodal models, resulting in insufficient and imbalanced multimodal learning. Existing methods focus on enforcing the weak modality by adding modality-specific optimization objectives, aligning their optimization speeds, or decomposing multimodal learning to enhance unimodal learning. These methods fail to achieve both unimodal sufficiency and multimodal balance. In this paper, we, for the first time, address both concerns by proposing multimodal Data Remixing, including decoupling multimodal data and filtering hard samples for each modality to mitigate modality imbalance; and then batch-level reassembling to align the gradient directions and avoid cross-modal interference, thus enhancing unimodal learning sufficiency. Experimental results demonstrate that our method can be seamlessly integrated with existing approaches, improving accuracy by approximately 6.50%$\uparrow$ on CREMAD and 3.41%$\uparrow$ on Kinetic-Sounds, without training set expansion or additional computational overhead during inference. The source code is available at https://github.com/MatthewMaxy/Remix_ICML2025.

Authors:Akshay Jindal, Nabil Sadaka, Manu Mathew Thomas, Anton Sochenov, Anton Kaplanyan
Title: CGVQM+D: Computer Graphics Video Quality Metric and Dataset
Abstract:
While existing video and image quality datasets have extensively studied natural videos and traditional distortions, the perception of synthetic content and modern rendering artifacts remains underexplored. We present a novel video quality dataset focused on distortions introduced by advanced rendering techniques, including neural supersampling, novel-view synthesis, path tracing, neural denoising, frame interpolation, and variable rate shading. Our evaluations show that existing full-reference quality metrics perform sub-optimally on these distortions, with a maximum Pearson correlation of 0.78. Additionally, we find that the feature space of pre-trained 3D CNNs aligns strongly with human perception of visual quality. We propose CGVQM, a full-reference video quality metric that significantly outperforms existing metrics while generating both per-pixel error maps and global quality scores. Our dataset and metric implementation is available at https://github.com/IntelLabs/CGVQM.

Authors:Zhaoyang Wang, Jie Li, Wen Lu, Lihuo He, Maoguo Gong, Xinbo Gao
Title: FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution
Abstract:
State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information. As video frame rates continue to increase, the diminishing inter-frame differences further expose the limitations of traditional frame-to-frame information exploitation methods, which are inadequate for addressing current video super-resolution (VSR) demands. To overcome these challenges, we propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data. Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames. The proposed modular architecture is designed for seamless integration with existing VSR frameworks, ensuring strong adaptability and transferability across diverse applications. Experimental results demonstrate that our method achieves performance on par with, or surpassing, the current SOTA models, while significantly reducing inference time. By addressing key bottlenecks in CVSR, our work offers a practical and efficient pathway for advancing VSR technology. Our code will be publicly available at https://github.com/handsomewzy/FCA2.

Authors:Heng Fang, Hossein Azizpour
Title: Leveraging Satellite Image Time Series for Accurate Extreme Event Detection
Abstract:
Climate change is leading to an increase in extreme weather events, causing significant environmental damage and loss of life. Early detection of such events is essential for improving disaster response. In this work, we propose SITS-Extreme, a novel framework that leverages satellite image time series to detect extreme events by incorporating multiple pre-disaster observations. This approach effectively filters out irrelevant changes while isolating disaster-relevant signals, enabling more accurate detection. Extensive experiments on both real-world and synthetic datasets validate the effectiveness of SITS-Extreme, demonstrating substantial improvements over widely used strong bi-temporal baselines. Additionally, we examine the impact of incorporating more timesteps, analyze the contribution of key components in our framework, and evaluate its performance across different disaster types, offering valuable insights into its scalability and applicability for large-scale disaster monitoring.

Authors:Zhuguanyu Wu, Shihe Wang, Jiayi Zhang, Jiaxin Chen, Yunhong Wang
Title: FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation
Abstract:
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years, as it avoids computationally intensive model retraining. Nevertheless, current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization. To address these shortcomings, we analyze the prevailing Hessian-guided quantization loss, and uncover certain limitations of conventional Hessian approximations. By following the block-wise reconstruction framework, we propose a novel PTQ method for ViTs, dubbed FIMA-Q. Specifically, we firstly establish the connection between KL divergence and FIM, which enables fast computation of the quantization loss during reconstruction. We further propose an efficient FIM approximation method, namely DPLR-FIM, by employing the diagonal plus low-rank principle, and formulate the ultimate quantization loss. Our extensive experiments, conducted across various vision tasks with representative ViT-based architectures on public datasets, demonstrate that our method substantially promotes the accuracy compared to the state-of-the-art approaches, especially in the case of low-bit quantization. The source code is available at https://github.com/ShiheWang/FIMA-Q.

Authors:Yuan Gao, Mattia Piccinini, Yuchen Zhang, Dingrui Wang, Korbinian Moller, Roberto Brusnicki, Baha Zarrouki, Alessio Gambi, Jan Frederik Totz, Kai Storms, Steven Peters, Andrea Stocco, Bassam Alrifaee, Marco Pavone, Johannes Betz
Title: Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
Abstract:
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.

Authors:Xiao Xu, Libo Qin, Wanxiang Che, Min-Yen Kan
Title: Manager: Aggregating Insights from Unimodal Experts in Two-Tower VLMs and MLLMs
Abstract:
Two-Tower Vision--Language Models (VLMs) have demonstrated strong performance across various downstream VL tasks. While BridgeTower further enhances performance by building bridges between encoders, it \textit{(i)} suffers from ineffective layer-by-layer utilization of unimodal representations, \textit{(ii)} restricts the flexible exploitation of different levels of unimodal semantic knowledge, and \textit{(iii)} is limited to the evaluation on traditional low-resolution datasets only with the Two-Tower VLM architecture. In this work, we propose Manager, a lightweight, efficient and effective plugin that adaptively aggregates insights from different levels of pre-trained unimodal experts to facilitate more comprehensive VL alignment and fusion. First, under the Two-Tower VLM architecture, we introduce ManagerTower, a novel VLM that introduces the manager in each cross-modal layer. Whether with or without VL pre-training, ManagerTower outperforms previous strong baselines and achieves superior performance on 4 downstream VL tasks. Moreover, we extend our exploration to the latest Multimodal Large Language Model (MLLM) architecture. We demonstrate that LLaVA-OV-Manager significantly boosts the zero-shot performance of LLaVA-OV across different categories of capabilities, images, and resolutions on 20 downstream datasets, whether the multi-grid algorithm is enabled or not. In-depth analysis reveals that both our manager and the multi-grid algorithm can be viewed as a plugin that improves the visual representation by capturing more diverse visual details from two orthogonal perspectives (depth and width). Their synergy can mitigate the semantic ambiguity caused by the multi-grid algorithm and further improve performance. Code and models are available at https://github.com/LooperXX/ManagerTower.

Authors:Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, Fan Yang
Title: Reviving DSP for Advanced Theorem Proving in the Era of Reasoning Models
Abstract:
Recent advancements, such as DeepSeek-Prover-V2-671B and Kimina-Prover-Preview-72B, demonstrate a prevailing trend in leveraging reinforcement learning (RL)-based large-scale training for automated theorem proving. Surprisingly, we discover that even without any training, careful neuro-symbolic coordination of existing off-the-shelf reasoning models and tactic step provers can achieve comparable performance. This paper introduces \textbf{DSP+}, an improved version of the Draft, Sketch, and Prove framework, featuring a \emph{fine-grained and integrated} neuro-symbolic enhancement for each phase: (1) In the draft phase, we prompt reasoning models to generate concise natural-language subgoals to benefit the sketch phase, removing thinking tokens and references to human-written proofs; (2) In the sketch phase, subgoals are autoformalized with hypotheses to benefit the proving phase, and sketch lines containing syntactic errors are masked according to predefined rules; (3) In the proving phase, we tightly integrate symbolic search methods like Aesop with step provers to establish proofs for the sketch subgoals. Experimental results show that, without any additional model training or fine-tuning, DSP+ solves 80.7\%, 32.8\%, and 24 out of 644 problems from miniF2F, ProofNet, and PutnamBench, respectively, while requiring fewer budgets compared to state-of-the-arts. DSP+ proves \texttt{imo\_2019\_p1}, an IMO problem in miniF2F that is not solved by any prior work. Additionally, DSP+ generates proof patterns comprehensible by human experts, facilitating the identification of formalization errors; For example, eight wrongly formalized statements in miniF2F are discovered. Our results highlight the potential of classical reasoning patterns besides the RL-based training. All components will be open-sourced.

Authors:Haotian Ni, Yake Wei, Hang Liu, Gong Chen, Chong Peng, Hao Lin, Di Hu
Title: RollingQ: Reviving the Cooperation Dynamics in Multimodal Transformer
Abstract:
Multimodal learning faces challenges in effectively fusing information from diverse modalities, especially when modality quality varies across samples. Dynamic fusion strategies, such as attention mechanism in Transformers, aim to address such challenge by adaptively emphasizing modalities based on the characteristics of input data. However, through amounts of carefully designed experiments, we surprisingly observed that the dynamic adaptability of widely-used self-attention models diminishes. Model tends to prefer one modality regardless of data characteristics. This bias triggers a self-reinforcing cycle that progressively overemphasizes the favored modality, widening the distribution gap in attention keys across modalities and deactivating attention mechanism's dynamic properties. To revive adaptability, we propose a simple yet effective method Rolling Query (RollingQ), which balances attention allocation by rotating the query to break the self-reinforcing cycle and mitigate the key distribution gap. Extensive experiments on various multimodal scenarios validate the effectiveness of RollingQ and the restoration of cooperation dynamics is pivotal for enhancing the broader capabilities of widely deployed multimodal Transformers. The source code is available at https://github.com/GeWu-Lab/RollingQ_ICML2025.

Authors:Abhishek Tyagi, Arjun Iyer, William H Renninger, Christopher Kanan, Yuhao Zhu
Title: Dynamic Sparse Training of Diagonally Sparse Networks
Abstract:
Recent advances in Dynamic Sparse Training (DST) have pushed the frontier of sparse neural network training in structured and unstructured contexts, matching dense-model performance while drastically reducing parameter counts to facilitate model scaling. However, unstructured sparsity often fails to translate into practical speedups on modern hardware. To address this shortcoming, we propose DynaDiag, a novel structured sparse-to-sparse DST method that performs at par with unstructured sparsity. DynaDiag enforces a diagonal sparsity pattern throughout training and preserves sparse computation in forward and backward passes. We further leverage the diagonal structure to accelerate computation via a custom CUDA kernel, rendering the method hardware-friendly. Empirical evaluations on diverse neural architectures demonstrate that our method maintains accuracy on par with unstructured counterparts while benefiting from tangible computational gains. Notably, with 90% sparse linear layers in ViTs, we observe up to a 3.13x speedup in online inference without sacrificing model performance and a 1.59x speedup in training on a GPU compared to equivalent unstructured layers. Our source code is available at https://github.com/horizon-research/DynaDiag/.

Authors:Harvey Yiyun Fu, Aryan Shrivastava, Jared Moore, Peter West, Chenhao Tan, Ari Holtzman
Title: AbsenceBench: Language Models Can't Tell What's Missing
Abstract:
Large language models (LLMs) are increasingly capable of processing long inputs and locating specific information within them, as evidenced by their performance on the Needle in a Haystack (NIAH) test. However, while models excel at recalling surprising information, they still struggle to identify clearly omitted information. We introduce AbsenceBench to assesses LLMs' capacity to detect missing information across three domains: numerical sequences, poetry, and GitHub pull requests. AbsenceBench asks models to identify which pieces of a document were deliberately removed, given access to both the original and edited contexts. Despite the apparent straightforwardness of these tasks, our experiments reveal that even state-of-the-art models like Claude-3.7-Sonnet achieve only 69.6% F1-score with a modest average context length of 5K tokens. Our analysis suggests this poor performance stems from a fundamental limitation: Transformer attention mechanisms cannot easily attend to "gaps" in documents since these absences don't correspond to any specific keys that can be attended to. Overall, our results and analysis provide a case study of the close proximity of tasks where models are already superhuman (NIAH) and tasks where models breakdown unexpectedly (AbsenceBench).

Authors:Jie Zhu, Leye Wang
Title: Auditing Data Provenance in Real-world Text-to-Image Diffusion Models for Privacy and Copyright Protection
Abstract:
Text-to-image diffusion model since its propose has significantly influenced the content creation due to its impressive generation capability. However, this capability depends on large-scale text-image datasets gathered from web platforms like social media, posing substantial challenges in copyright compliance and personal privacy leakage. Though there are some efforts devoted to explore approaches for auditing data provenance in text-to-image diffusion models, existing work has unrealistic assumptions that can obtain model internal knowledge, e.g., intermediate results, or the evaluation is not reliable. To fill this gap, we propose a completely black-box auditing framework called Feature Semantic Consistency-based Auditing (FSCA). It utilizes two types of semantic connections within the text-to-image diffusion model for auditing, eliminating the need for access to internal knowledge. To demonstrate the effectiveness of our FSCA framework, we perform extensive experiments on LAION-mi dataset and COCO dataset, and compare with eight state-of-the-art baseline approaches. The results show that FSCA surpasses previous baseline approaches across various metrics and different data distributions, showcasing the superiority of our FSCA. Moreover, we introduce a recall balance strategy and a threshold adjustment strategy, which collectively allows FSCA to reach up a user-level accuracy of 90% in a real-world auditing scenario with only 10 samples/user, highlighting its strong auditing potential in real-world applications. Our code is made available at https://github.com/JiePKU/FSCA.

Authors:Jinhee Kim, Seoyeon Yoon, Taeho Lee, Joo Chan Lee, Kang Eun Jeon, Jong Hwan Ko
Title: TruncQuant: Truncation-Ready Quantization for DNNs with Flexible Weight Bit Precision
Abstract:
The deployment of deep neural networks on edge devices is a challenging task due to the increasing complexity of state-of-the-art models, requiring efforts to reduce model size and inference latency. Recent studies explore models operating at diverse quantization settings to find the optimal point that balances computational efficiency and accuracy. Truncation, an effective approach for achieving lower bit precision mapping, enables a single model to adapt to various hardware platforms with little to no cost. However, formulating a training scheme for deep neural networks to withstand the associated errors introduced by truncation remains a challenge, as the current quantization-aware training schemes are not designed for the truncation process. We propose TruncQuant, a novel truncation-ready training scheme allowing flexible bit precision through bit-shifting in runtime. We achieve this by aligning TruncQuant with the output of the truncation process, demonstrating strong robustness across bit-width settings, and offering an easily implementable training scheme within existing quantization-aware frameworks. Our code is released at https://github.com/a2jinhee/TruncQuant.

Authors:Manish Bhatt
Title: Bhatt Conjectures: On Necessary-But-Not-Sufficient Benchmark Tautology for Human Like Reasoning
Abstract:
The Bhatt Conjectures framework introduces rigorous, hierarchical benchmarks for evaluating AI reasoning and understanding, moving beyond pattern matching to assess representation invariance, robustness, and metacognitive self-awareness. The agentreasoning-sdk demonstrates practical implementation, revealing that current AI models struggle with complex reasoning tasks and highlighting the need for advanced evaluation protocols to distinguish genuine cognitive abilities from statistical inference. https://github.com/mbhatt1/agentreasoning-sdk

Authors:Xiaoxin Lu, Ranran Haoran Zhang, Yusen Zhang, Rui Zhang
Title: Enhance Multimodal Consistency and Coherence for Text-Image Plan Generation
Abstract:
People get informed of a daily task plan through diverse media involving both texts and images. However, most prior research only focuses on LLM's capability of textual plan generation. The potential of large-scale models in providing text-image plans remains understudied. Generating high-quality text-image plans faces two main challenges: ensuring consistent alignment between two modalities and keeping coherence among visual steps. To address these challenges, we propose a novel framework that generates and refines text-image plans step-by-step. At each iteration, our framework (1) drafts the next textual step based on the prediction history; (2) edits the last visual step to obtain the next one; (3) extracts PDDL-like visual information; and (4) refines the draft with the extracted visual information. The textual and visual step produced in stage (4) and (2) will then serve as inputs for the next iteration. Our approach offers a plug-and-play improvement to various backbone models, such as Mistral-7B, Gemini-1.5, and GPT-4o. To evaluate the effectiveness of our approach, we collect a new benchmark consisting of 1,100 tasks and their text-image pair solutions covering 11 daily topics. We also design and validate a new set of metrics to evaluate the multimodal consistency and coherence in text-image plans. Extensive experiment results show the effectiveness of our approach on a range of backbone models against competitive baselines. Our code and data are available at https://github.com/psunlpgroup/MPlanner.

Authors:Xianlu Li, Nicolas Nadisic, Shaoguang Huang, Nikos Deligiannis, Aleksandra Pižurica
Title: Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images
Abstract:
Subspace clustering has become widely adopted for the unsupervised analysis of hyperspectral images (HSIs). Recent model-aware deep subspace clustering methods often use a two-stage framework, involving the calculation of a self-representation matrix with complexity of O(n^2), followed by spectral clustering. However, these methods are computationally intensive, generally incorporating solely either local or non-local spatial structure constraints, and their structural constraints fall short of effectively supervising the entire clustering process. We propose a scalable, context-preserving deep clustering method based on basis representation, which jointly captures local and non-local structures for efficient HSI clustering. To preserve local structure (i.e., spatial continuity within subspaces), we introduce a spatial smoothness constraint that aligns clustering predictions with their spatially filtered versions. For non-local structure (i.e., spectral continuity), we employ a mini-cluster-based scheme that refines predictions at the group level, encouraging spectrally similar pixels to belong to the same subspace. Notably, these two constraints are jointly optimized to reinforce each other. Specifically, our model is designed as an one-stage approach in which the structural constraints are applied to the entire clustering process. The time and space complexity of our method is O(n), making it applicable to large-scale HSI data. Experiments on real-world datasets show that our method outperforms state-of-the-art techniques. Our code is available at: https://github.com/lxlscut/SCDSC

Authors:Heinrich Dinkel, Zhiyong Yan, Tianzi Wang, Yongqing Wang, Xingwei Sun, Yadong Niu, Jizhong Liu, Gang Li, Junbo Zhang, Jian Luan
Title: GLAP: General contrastive audio-text pretraining across domains and languages
Abstract:
Contrastive Language Audio Pretraining (CLAP) is a widely-used method to bridge the gap between audio and text domains. Current CLAP methods enable sound and music retrieval in English, ignoring multilingual spoken content. To address this, we introduce general language audio pretraining (GLAP), which expands CLAP with multilingual and multi-domain abilities. GLAP demonstrates its versatility by achieving competitive performance on standard audio-text retrieval benchmarks like Clotho and AudioCaps, while significantly surpassing existing methods in speech retrieval and classification tasks. Additionally, GLAP achieves strong results on widely used sound-event zero-shot benchmarks, while simultaneously outperforming previous methods on speech content benchmarks. Further keyword spotting evaluations across 50 languages emphasize GLAP's advanced multilingual capabilities. Finally, multilingual sound and music understanding is evaluated across four languages. Checkpoints and Source: https://github.com/xiaomi-research/dasheng-glap.

Authors:Sadman Sadeed Omee, Lai Wei, Sourin Dey, Jianjun Hu
Title: Polymorphism Crystal Structure Prediction with Adaptive Space Group Diversity Control
Abstract:
Crystalline materials can form different structural arrangements (i.e. polymorphs) with the same chemical composition, exhibiting distinct physical properties depending on how they were synthesized or the conditions under which they operate. For example, carbon can exist as graphite (soft, conductive) or diamond (hard, insulating). Computational methods that can predict these polymorphs are vital in materials science, which help understand stability relationships, guide synthesis efforts, and discover new materials with desired properties without extensive trial-and-error experimentation. However, effective crystal structure prediction (CSP) algorithms for inorganic polymorph structures remain limited. We propose ParetoCSP2, a multi-objective genetic algorithm for polymorphism CSP that incorporates an adaptive space group diversity control technique, preventing over-representation of any single space group in the population guided by a neural network interatomic potential. Using an improved population initialization method and performing iterative structure relaxation, ParetoCSP2 not only alleviates premature convergence but also achieves improved convergence speed. Our results show that ParetoCSP2 achieves excellent performance in polymorphism prediction, including a nearly perfect space group and structural similarity accuracy for formulas with two polymorphs but with the same number of unit cell atoms. Evaluated on a benchmark dataset, it outperforms baseline algorithms by factors of 2.46-8.62 for these accuracies and improves by 44.8\%-87.04\% across key performance metrics for regular CSP. Our source code is freely available at https://github.com/usccolumbia/ParetoCSP2.

Authors:Kyung Rok Kim, Yansong Wang, Xiaocheng Li, Guanting Chen
Title: Collaborative Prediction: To Join or To Disjoin Datasets
Abstract:
With the recent rise of generative Artificial Intelligence (AI), the need of selecting high-quality dataset to improve machine learning models has garnered increasing attention. However, some part of this topic remains underexplored, even for simple prediction models. In this work, we study the problem of developing practical algorithms that select appropriate dataset to minimize population loss of our prediction model with high probability. Broadly speaking, we investigate when datasets from different sources can be effectively merged to enhance the predictive model's performance, and propose a practical algorithm with theoretical guarantees. By leveraging an oracle inequality and data-driven estimators, the algorithm reduces population loss with high probability. Numerical experiments demonstrate its effectiveness in both standard linear regression and broader machine learning applications. Code is available at https://github.com/kkrokii/collaborative_prediction.

Authors:Shijie Fang, Hang Yu, Qidi Fang, Reuben M. Aronson, Elaine S. Short
Title: Demonstration Sidetracks: Categorizing Systematic Non-Optimality in Human Demonstrations
Abstract:
Learning from Demonstration (LfD) is a popular approach for robots to acquire new skills, but most LfD methods suffer from imperfections in human demonstrations. Prior work typically treats these suboptimalities as random noise. In this paper we study non-optimal behaviors in non-expert demonstrations and show that they are systematic, forming what we call demonstration sidetracks. Using a public space study with 40 participants performing a long-horizon robot task, we recreated the setup in simulation and annotated all demonstrations. We identify four types of sidetracks (Exploration, Mistake, Alignment, Pause) and one control pattern (one-dimension control). Sidetracks appear frequently across participants, and their temporal and spatial distribution is tied to task context. We also find that users' control patterns depend on the control interface. These insights point to the need for better models of suboptimal demonstrations to improve LfD algorithms and bridge the gap between lab training and real-world deployment. All demonstrations, infrastructure, and annotations are available at https://github.com/AABL-Lab/Human-Demonstration-Sidetracks.

Authors:Mae Younes, Adnane Boukhayma
Title: Anti-Aliased 2D Gaussian Splatting
Abstract:
2D Gaussian Splatting (2DGS) has recently emerged as a promising method for novel view synthesis and surface reconstruction, offering better view-consistency and geometric accuracy than volumetric 3DGS. However, 2DGS suffers from severe aliasing artifacts when rendering at different sampling rates than those used during training, limiting its practical applications in scenarios requiring camera zoom or varying fields of view. We identify that these artifacts stem from two key limitations: the lack of frequency constraints in the representation and an ineffective screen-space clamping approach. To address these issues, we present AA-2DGS, an antialiased formulation of 2D Gaussian Splatting that maintains its geometric benefits while significantly enhancing rendering quality across different scales. Our method introduces a world space flat smoothing kernel that constrains the frequency content of 2D Gaussian primitives based on the maximal sampling frequency from training views, effectively eliminating high-frequency artifacts when zooming in. Additionally, we derive a novel object space Mip filter by leveraging an affine approximation of the ray-splat intersection mapping, which allows us to efficiently apply proper anti-aliasing directly in the local space of each splat.

Authors:Weibing Zheng, Laurah Turner, Jess Kropczynski, Murat Ozer, Tri Nguyen, Shane Halse
Title: LLM-as-a-Fuzzy-Judge: Fine-Tuning Large Language Models as a Clinical Evaluation Judge with Fuzzy Logic
Abstract:
Clinical communication skills are critical in medical education, and practicing and assessing clinical communication skills on a scale is challenging. Although LLM-powered clinical scenario simulations have shown promise in enhancing medical students' clinical practice, providing automated and scalable clinical evaluation that follows nuanced physician judgment is difficult. This paper combines fuzzy logic and Large Language Model (LLM) and proposes LLM-as-a-Fuzzy-Judge to address the challenge of aligning the automated evaluation of medical students' clinical skills with subjective physicians' preferences. LLM-as-a-Fuzzy-Judge is an approach that LLM is fine-tuned to evaluate medical students' utterances within student-AI patient conversation scripts based on human annotations from four fuzzy sets, including Professionalism, Medical Relevance, Ethical Behavior, and Contextual Distraction. The methodology of this paper started from data collection from the LLM-powered medical education system, data annotation based on multidimensional fuzzy sets, followed by prompt engineering and the supervised fine-tuning (SFT) of the pre-trained LLMs using these human annotations. The results show that the LLM-as-a-Fuzzy-Judge achieves over 80\% accuracy, with major criteria items over 90\%, effectively leveraging fuzzy logic and LLM as a solution to deliver interpretable, human-aligned assessment. This work suggests the viability of leveraging fuzzy logic and LLM to align with human preferences, advances automated evaluation in medical education, and supports more robust assessment and judgment practices. The GitHub repository of this work is available at https://github.com/2sigmaEdTech/LLMAsAJudge

Authors:Hongyu Chen, Jiping Liu, Yong Wang, Jun Zhu, Dejun Feng, Yakun Xie
Title: Teaching in adverse scenes: a statistically feedback-driven threshold and mask adjustment teacher-student framework for object detection in UAV images under adverse scenes
Abstract:
Unsupervised Domain Adaptation (UDA) has shown promise in effectively alleviating the performance degradation caused by domain gaps between source and target domains, and it can potentially be generalized to UAV object detection in adverse scenes. However, existing UDA studies are based on natural images or clear UAV imagery, and research focused on UAV imagery in adverse conditions is still in its infancy. Moreover, due to the unique perspective of UAVs and the interference from adverse conditions, these methods often fail to accurately align features and are influenced by limited or noisy pseudo-labels. To address this, we propose the first benchmark for UAV object detection in adverse scenes, the Statistical Feedback-Driven Threshold and Mask Adjustment Teacher-Student Framework (SF-TMAT). Specifically, SF-TMAT introduces a design called Dynamic Step Feedback Mask Adjustment Autoencoder (DSFMA), which dynamically adjusts the mask ratio and reconstructs feature maps by integrating training progress and loss feedback. This approach dynamically adjusts the learning focus at different training stages to meet the model's needs for learning features at varying levels of granularity. Additionally, we propose a unique Variance Feedback Smoothing Threshold (VFST) strategy, which statistically computes the mean confidence of each class and dynamically adjusts the selection threshold by incorporating a variance penalty term. This strategy improves the quality of pseudo-labels and uncovers potentially valid labels, thus mitigating domain bias. Extensive experiments demonstrate the superiority and generalization capability of the proposed SF-TMAT in UAV object detection under adverse scene conditions. The Code is released at https://github.com/ChenHuyoo .

Authors:Ching Chang, Ming-Chih Lo, Wen-Chih Peng, Tien-Fu Chen
Title: PromptTSS: A Prompting-Based Approach for Interactive Multi-Granularity Time Series Segmentation
Abstract:
Multivariate time series data, collected across various fields such as manufacturing and wearable technology, exhibit states at multiple levels of granularity, from coarse-grained system behaviors to fine-grained, detailed events. Effectively segmenting and integrating states across these different granularities is crucial for tasks like predictive maintenance and performance optimization. However, existing time series segmentation methods face two key challenges: (1) the inability to handle multiple levels of granularity within a unified model, and (2) limited adaptability to new, evolving patterns in dynamic environments. To address these challenges, we propose PromptTSS, a novel framework for time series segmentation with multi-granularity states. PromptTSS uses a unified model with a prompting mechanism that leverages label and boundary information to guide segmentation, capturing both coarse- and fine-grained patterns while adapting dynamically to unseen patterns. Experiments show PromptTSS improves accuracy by 24.49% in multi-granularity segmentation, 17.88% in single-granularity segmentation, and up to 599.24% in transfer learning, demonstrating its adaptability to hierarchical states and evolving time series dynamics. Our code is available at https://github.com/blacksnail789521/PromptTSS.

Authors:Yanlong Chen, Mattia Orlandi, Pierangelo Maria Rapa, Simone Benatti, Luca Benini, Yawei Li
Title: WaveFormer: A Lightweight Transformer Model for sEMG-based Gesture Recognition
Abstract:
Human-machine interaction, particularly in prosthetic and robotic control, has seen progress with gesture recognition via surface electromyographic (sEMG) signals.However, classifying similar gestures that produce nearly identical muscle signals remains a challenge, often reducing classification accuracy. Traditional deep learning models for sEMG gesture recognition are large and computationally expensive, limiting their deployment on resource-constrained embedded systems. In this work, we propose WaveFormer, a lightweight transformer-based architecture tailored for sEMG gesture recognition. Our model integrates time-domain and frequency-domain features through a novel learnable wavelet transform, enhancing feature extraction. In particular, the WaveletConv module, a multi-level wavelet decomposition layer with depthwise separable convolution, ensures both efficiency and compactness. With just 3.1 million parameters, WaveFormer achieves 95% classification accuracy on the EPN612 dataset, outperforming larger models. Furthermore, when profiled on a laptop equipped with an Intel CPU, INT8 quantization achieves real-time deployment with a 6.75 ms inference latency.

Authors:Simon Ghyselincks, Valeriia Okhmak, Stefano Zampini, George Turkiyyah, David Keyes, Eldad Haber
Title: Synthetic Geology -- Structural Geology Meets Deep Learning
Abstract:
Visualizing the first few kilometers of the Earth's subsurface, a long-standing challenge gating a virtually inexhaustible list of important applications, is coming within reach through deep learning. Building on techniques of generative artificial intelligence applied to voxelated images, we demonstrate a method that extends surface geological data supplemented by boreholes to a three-dimensional subsurface region by training a neural network. The Earth's land area having been extensively mapped for geological features, the bottleneck of this or any related technique is the availability of data below the surface. We close this data gap in the development of subsurface deep learning by designing a synthetic data-generator process that mimics eons of geological activity such as sediment compaction, volcanic intrusion, and tectonic dynamics to produce a virtually limitless number of samples of the near lithosphere. A foundation model trained on such synthetic data is able to generate a 3D image of the subsurface from a previously unseen map of surface topography and geology, showing increasing fidelity with increasing access to borehole data, depicting such structures as layers, faults, folds, dikes, and sills. We illustrate the early promise of the combination of a synthetic lithospheric generator with a trained neural network model using generative flow matching. Ultimately, such models will be fine-tuned on data from applicable campaigns, such as mineral prospecting in a given region. Though useful in itself, a regionally fine-tuned models may be employed not as an end but as a means: as an AI-based regularizer in a more traditional inverse problem application, in which the objective function represents the mismatch of additional data with physical models with applications in resource exploration, hazard assessment, and geotechnical engineering.

Authors:Linhao Yu, Xinguang Ji, Yahui Liu, Fanheng Kong, Chenxi Sun, Jingyuan Zhang, Hongzhi Zhang, V. W., Fuzheng Zhang, Deyi Xiong
Title: Evaluating Multimodal Large Language Models on Video Captioning via Monte Carlo Tree Search
Abstract:
Video captioning can be used to assess the video understanding capabilities of Multimodal Large Language Models (MLLMs). However, existing benchmarks and evaluation protocols suffer from crucial issues, such as inadequate or homogeneous creation of key points, exorbitant cost of data creation, and limited evaluation scopes. To address these issues, we propose an automatic framework, named AutoCaption, which leverages Monte Carlo Tree Search (MCTS) to construct numerous and diverse descriptive sentences (\textit{i.e.}, key points) that thoroughly represent video content in an iterative way. This iterative captioning strategy enables the continuous enhancement of video details such as actions, objects' attributes, environment details, etc. We apply AutoCaption to curate MCTS-VCB, a fine-grained video caption benchmark covering video details, thereby enabling a comprehensive evaluation of MLLMs on the video captioning task. We evaluate more than 20 open- and closed-source MLLMs of varying sizes on MCTS-VCB. Results show that MCTS-VCB can effectively and comprehensively evaluate the video captioning capability, with Gemini-1.5-Pro achieving the highest F1 score of 71.2. Interestingly, we fine-tune InternVL2.5-8B with the AutoCaption-generated data, which helps the model achieve an overall improvement of 25.0% on MCTS-VCB and 16.3% on DREAM-1K, further demonstrating the effectiveness of AutoCaption. The code and data are available at https://github.com/tjunlp-lab/MCTS-VCB.

Authors:Sharvari Kamble
Title: SLRNet: A Real-Time LSTM-Based Sign Language Recognition System
Abstract:
Sign Language Recognition (SLR) plays a crucial role in bridging the communication gap between the hearing-impaired community and society. This paper introduces SLRNet, a real-time webcam-based ASL recognition system using MediaPipe Holistic and Long Short-Term Memory (LSTM) networks. The model processes video streams to recognize both ASL alphabet letters and functional words. With a validation accuracy of 86.7%, SLRNet demonstrates the feasibility of inclusive, hardware-independent gesture recognition.

Authors:Changxin Ke, Rui Zhang, Shuo Wang, Li Ding, Guangli Li, Yuanbo Wen, Shuoming Zhang, Ruiyuan Xu, Jin Qin, Jiaming Guo, Chenxi Wang, Ling Li, Qi Guo, Yunji Chen
Title: Mutual-Supervised Learning for Sequential-to-Parallel Code Translation
Abstract:
The rise of GPU-based high-performance computing (HPC) has driven the widespread adoption of parallel programming models such as CUDA. Yet, the inherent complexity of parallel programming creates a demand for the automated sequential-to-parallel approaches. However, data scarcity poses a significant challenge for machine learning-based sequential-to-parallel code translation. Although recent back-translation methods show promise, they still fail to ensure functional equivalence in the translated code. In this paper, we propose a novel Mutual-Supervised Learning (MSL) framework for sequential-to-parallel code translation to address the functional equivalence issue. MSL consists of two models, a Translator and a Tester. Through an iterative loop consisting of Co-verify and Co-evolve steps, the Translator and the Tester mutually generate data for each other and improve collectively. The Tester generates unit tests to verify and filter functionally equivalent translated code, thereby evolving the Translator, while the Translator generates translated code as augmented input to evolve the Tester. Experimental results demonstrate that MuSL significantly enhances the performance of the base model: when applied to Qwen2.5-Coder, it not only improves Pass@1 by up to 28.91% and boosts Tester performance by 68.90%, but also outperforms the previous state-of-the-art method CodeRosetta by 1.56 and 6.92 in BLEU and CodeBLEU scores, while achieving performance comparable to DeepSeek-R1 and GPT-4.1. Our code is available at https://github.com/kcxain/musl.

Authors:Xiaotang Gai, Jiaxiang Liu, Yichen Li, Zijie Meng, Jian Wu, Zuozhu Liu
Title: 3D-RAD: A Comprehensive 3D Radiology Med-VQA Dataset with Multi-Temporal Analysis and Diverse Diagnostic Tasks
Abstract:
Medical Visual Question Answering (Med-VQA) holds significant potential for clinical decision support, yet existing efforts primarily focus on 2D imaging with limited task diversity. This paper presents 3D-RAD, a large-scale dataset designed to advance 3D Med-VQA using radiology CT scans. The 3D-RAD dataset encompasses six diverse VQA tasks: anomaly detection, image observation, medical computation, existence detection, static temporal diagnosis, and longitudinal temporal diagnosis. It supports both open- and closed-ended questions while introducing complex reasoning challenges, including computational tasks and multi-stage temporal analysis, to enable comprehensive benchmarking. Extensive evaluations demonstrate that existing vision-language models (VLMs), especially medical VLMs exhibit limited generalization, particularly in multi-temporal tasks, underscoring the challenges of real-world 3D diagnostic reasoning. To drive future advancements, we release a high-quality training set 3D-RAD-T of 136,195 expert-aligned samples, showing that fine-tuning on this dataset could significantly enhance model performance. Our dataset and code, aiming to catalyze multimodal medical AI research and establish a robust foundation for 3D medical visual understanding, are publicly available at https://github.com/Tang-xiaoxiao/M3D-RAD.

Authors:Namhoon Kim, Sara Fridovich-Keil
Title: Grids Often Outperform Implicit Neural Representations
Abstract:
Implicit Neural Representations (INRs) have recently shown impressive results, but their fundamental capacity, implicit biases, and scaling behavior remain poorly understood. We investigate the performance of diverse INRs across a suite of 2D and 3D real and synthetic signals with varying effective bandwidth, as well as both overfitting and generalization tasks including tomography, super-resolution, and denoising. By stratifying performance according to model size as well as signal type and bandwidth, our results shed light on how different INR and grid representations allocate their capacity. We find that, for most tasks and signals, a simple regularized grid with interpolation trains faster and to higher quality than any INR with the same number of parameters. We also find limited settings where INRs outperform grids -- namely fitting signals with underlying lower-dimensional structure such as shape contours -- to guide future use of INRs towards the most advantageous applications. Code and synthetic signals used in our analysis are available at https://github.com/voilalab/INR-benchmark.

Authors:Paul Couairon, Loick Chambon, Louis Serrano, Jean-Emmanuel Haugeard, Matthieu Cord, Nicolas Thome
Title: JAFAR: Jack up Any Feature at Any Resolution
Abstract:
Foundation Vision Encoders have become essential for a wide range of dense vision tasks. However, their low-resolution spatial feature outputs necessitate feature upsampling to produce the high-resolution modalities required for downstream tasks. In this work, we introduce JAFAR, a lightweight and flexible feature upsampler that enhances the spatial resolution of visual features from any Foundation Vision Encoder to an arbitrary target resolution. JAFAR employs an attention-based module designed to promote semantic alignment between high-resolution queries, derived from low-level image features, and semantically enriched low-resolution keys, using Spatial Feature Transform (SFT) modulation. Notably, despite the absence of high-resolution supervision, we demonstrate that learning at low upsampling ratios and resolutions generalizes remarkably well to significantly higher output scales. Extensive experiments show that JAFAR effectively recovers fine-grained spatial details and consistently outperforms existing feature upsampling methods across a diverse set of downstream tasks. Project page at https://jafar-upsampler.github.io

Authors:Wenkang Han, Zhixiong Zeng, Jing Huang, Shu Jiang, Liming Zheng, Haibo Qiu, Chang Yao, Jingyuan Chen, Lin Ma
Title: UITron-Speech: Towards Automated GUI Agents Based on Speech Instructions
Abstract:
Autonomous agents for Graphical User Interfaces (GUIs) are revolutionizing human-computer interaction, yet their reliance on text-based instructions imposes limitations on accessibility and convenience, particularly in hands-free scenarios. To address this issue, we propose replacing text with speech as the instruction input modality for GUI agents, and introduce UITron-Speech, which is the first end-to-end GUI agent capable of directly processing speech instructions and on-device screenshots to predict user actions. To tackle the problem of data scarcity, we synthesize high-quality speech instruction datasets using a random-speaker text-to-speech model. Additionally, we design a mixed-modality training strategy to mitigate the inherent modality imbalance in pre-trained foundation models. Furthermore, we conduct a statistical analysis of the distribution of GUI grounding prediction errors and propose a training-free two-step grounding refinement method to alleviate minor localization deviations. Extensive experiments on multiple benchmarks demonstrate that UITron-Speech achieves robust performance and superior adaptability, underscoring the feasibility and potential of speech-driven GUI agents for more accessible and intelligent human-computer interaction. Our code and datasets are available at https://github.com/UITron-hub/UITron-Speech.

Authors:Hourun Zhu, Chengchao Shen
Title: SDMPrune: Self-Distillation MLP Pruning for Efficient Large Language Models
Abstract:
In spite of strong performance achieved by LLMs, the costs of their deployment are unaffordable. For the compression of LLMs, gradient-based pruning methods present promising effectiveness. However, in these methods, the gradient computation with one-hot labels ignore the potential predictions on other words, thus missing key information for generative capability of the original model. To address this issue, we introduce a self-distillation loss during the pruning phase (rather than post-training) to fully exploit the predictions of the original model, thereby obtaining more accurate gradient information for pruning. Moreover, we find that, compared to attention modules, the predictions of LLM are less sensitive to multilayer perceptron (MLP) modules, which take up more than $5 \times$ parameters (LLaMA3.2-1.2B). To this end, we focus on the pruning of MLP modules, to significantly compress LLM without obvious performance degradation. Experimental results on extensive zero-shot benchmarks demonstrate that our method significantly outperforms existing pruning methods. Furthermore, our method achieves very competitive performance among 1B-scale open source LLMs. The source code and trained weights are available at https://github.com/visresearch/SDMPrune.

Authors:Yerim Oh, Jun-Hyung Park, Junho Kim, SungHo Kim, SangKeun Lee
Title: Incorporating Domain Knowledge into Materials Tokenization
Abstract:
While language models are increasingly utilized in materials science, typical models rely on frequency-centric tokenization methods originally developed for natural language processing. However, these methods frequently produce excessive fragmentation and semantic loss, failing to maintain the structural and semantic integrity of material concepts. To address this issue, we propose MATTER, a novel tokenization approach that integrates material knowledge into tokenization. Based on MatDetector trained on our materials knowledge base and a re-ranking method prioritizing material concepts in token merging, MATTER maintains the structural integrity of identified material concepts and prevents fragmentation during tokenization, ensuring their semantic meaning remains intact. The experimental results demonstrate that MATTER outperforms existing tokenization methods, achieving an average performance gain of $4\%$ and $2\%$ in the generation and classification tasks, respectively. These results underscore the importance of domain knowledge for tokenization strategies in scientific text processing. Our code is available at https://github.com/yerimoh/MATTER

Authors:Kun Zhang, Le Wu, Kui Yu, Guangyi Lv, Dacao Zhang
Title: Evaluating and Improving Robustness in Large Language Models: A Survey and Future Directions
Abstract:
Large Language Models (LLMs) have gained enormous attention in recent years due to their capability of understanding and generating natural languages. With the rapid development and wild-range applications (e.g., Agents, Embodied Intelligence), the robustness of LLMs has received increased attention. As the core brain of many AI applications, the robustness of LLMs requires that models should not only generate consistent contents, but also ensure the correctness and stability of generated content when dealing with unexpeted application scenarios (e.g., toxic prompts, limited noise domain data, outof-distribution (OOD) applications, etc). In this survey paper, we conduct a thorough review of the robustness of LLMs, aiming to provide a comprehensive terminology of concepts and methods around this field and facilitate the community. Specifically, we first give a formal definition of LLM robustness and present the collection protocol of this survey paper. Then, based on the types of perturbated inputs, we organize this survey from the following perspectives: 1) Adversarial Robustness: tackling the problem that prompts are manipulated intentionally, such as noise prompts, long context, data attack, etc; 2) OOD Robustness: dealing with the unexpected real-world application scenarios, such as OOD detection, zero-shot transferring, hallucinations, etc; 3) Evaluation of Robustness: summarizing the new evaluation datasets, metrics, and tools for verifying the robustness of LLMs. After reviewing the representative work from each perspective, we discuss and highlight future opportunities and research directions in this field. Meanwhile, we also organize related works and provide an easy-to-search project (https://github.com/zhangkunzk/Awesome-LLM-Robustness-papers) to support the community.

Authors:Jaeho Lee, Atharv Chowdhary
Title: AssertBench: A Benchmark for Evaluating Self-Assertion in Large Language Models
Abstract:
Recent benchmarks have probed factual consistency and rhetorical robustness in Large Language Models (LLMs). However, a knowledge gap exists regarding how directional framing of factually true statements influences model agreement, a common scenario for LLM users. AssertBench addresses this by sampling evidence-supported facts from FEVEROUS, a fact verification dataset. For each (evidence-backed) fact, we construct two framing prompts: one where the user claims the statement is factually correct, and another where the user claims it is incorrect. We then record the model's agreement and reasoning. The desired outcome is that the model asserts itself, maintaining consistent truth evaluation across both framings, rather than switching its evaluation to agree with the user. AssertBench isolates framing-induced variability from the model's underlying factual knowledge by stratifying results based on the model's accuracy on the same claims when presented neutrally. In doing so, this benchmark aims to measure an LLM's ability to "stick to its guns" when presented with contradictory user assertions about the same fact. The complete source code is available at https://github.com/achowd32/assert-bench.

Authors:Hanzhi Zhang, Heng Fan, Kewei Sha, Yan Huang, Yunhe Feng
Title: DAM: Dynamic Attention Mask for Long-Context Large Language Model Inference Acceleration
Abstract:
Long-context understanding is crucial for many NLP applications, yet transformers struggle with efficiency due to the quadratic complexity of self-attention. Sparse attention methods alleviate this cost but often impose static, predefined masks, failing to capture heterogeneous attention patterns. This results in suboptimal token interactions, limiting adaptability and retrieval accuracy in long-sequence tasks. This work introduces a dynamic sparse attention mechanism that assigns adaptive masks at the attention-map level, preserving heterogeneous patterns across layers and heads. Unlike existing approaches, our method eliminates the need for fine-tuning and predefined mask structures while maintaining computational efficiency. By learning context-aware attention structures, it achieves high alignment with full-attention models, ensuring minimal performance degradation while reducing memory and compute overhead. This approach provides a scalable alternative to full attention, enabling the practical deployment of large-scale Large Language Models (LLMs) without sacrificing retrieval performance. DAM is available at: https://github.com/HanzhiZhang-Ulrica/DAM.

Authors:Haritz Puerto, Martin Gubri, Tommaso Green, Seong Joon Oh, Sangdoo Yun
Title: C-SEO Bench: Does Conversational SEO Work?
Abstract:
Large Language Models (LLMs) are transforming search engines into Conversational Search Engines (CSE). Consequently, Search Engine Optimization (SEO) is being shifted into Conversational Search Engine Optimization (C-SEO). We are beginning to see dedicated C-SEO methods for modifying web documents to increase their visibility in CSE responses. However, they are often tested only for a limited breadth of application domains; we do not understand whether certain C-SEO methods would be effective for a broad range of domains. Moreover, existing evaluations consider only a single-actor scenario where only one web document adopts a C-SEO method; in reality, multiple players are likely to competitively adopt the cutting-edge C-SEO techniques, drawing an analogy from the dynamics we have seen in SEO. We present C-SEO Bench, the first benchmark designed to evaluate C-SEO methods across multiple tasks, domains, and number of actors. We consider two search tasks, question answering and product recommendation, with three domains each. We also formalize a new evaluation protocol with varying adoption rates among involved actors. Our experiments reveal that most current C-SEO methods are largely ineffective, contrary to reported results in the literature. Instead, traditional SEO strategies, those aiming to improve the ranking of the source in the LLM context, are significantly more effective. We also observe that as we increase the number of C-SEO adopters, the overall gains decrease, depicting a congested and zero-sum nature of the problem. Our code and data are available at https://github.com/parameterlab/c-seo-bench and https://huggingface.co/datasets/parameterlab/c-seo-bench.

Authors:Justin Asher
Title: LeanExplore: A search engine for Lean 4 declarations
Abstract:
The expanding Lean 4 ecosystem poses challenges for navigating its vast libraries. This paper introduces LeanExplore, a search engine for Lean 4 declarations. LeanExplore enables users to semantically search for statements, both formally and informally, across select Lean 4 packages (including Batteries, Init, Lean, Mathlib, PhysLean, and Std). This search capability is powered by a hybrid ranking strategy, integrating scores from a multi-source semantic embedding model (capturing conceptual meaning from formal Lean code, docstrings, AI-generated informal translations, and declaration titles), BM25+ for keyword-based lexical relevance, and a PageRank-based score reflecting declaration importance and interconnectedness. The search engine is accessible via a dedicated website (https://www.leanexplore.com/) and a Python API (https://github.com/justincasher/lean-explore). Furthermore, the database can be downloaded, allowing users to self-host the service. LeanExplore integrates easily with LLMs via the model context protocol (MCP), enabling users to chat with an AI assistant about Lean declarations or utilize the search engine for building theorem-proving agents. This work details LeanExplore's architecture, data processing, functionalities, and its potential to enhance Lean 4 workflows and AI-driven mathematical research

Authors:Ali Asad, Stephen Obadinma, Radin Shayanfar, Xiaodan Zhu
Title: RedDebate: Safer Responses through Multi-Agent Red Teaming Debates
Abstract:
We propose RedDebate, a novel multi-agent debate framework that leverages adversarial argumentation among Large Language Models (LLMs) to proactively identify and mitigate their own unsafe behaviours. Existing AI safety methods often depend heavily on costly human evaluations or isolated single-model assessment, both subject to scalability constraints and oversight risks. RedDebate instead embraces collaborative disagreement, enabling multiple LLMs to critically examine one another's reasoning, and systematically uncovering unsafe blind spots through automated red-teaming, and iteratively improve their responses. We further integrate distinct types of long-term memory that retain learned safety insights from debate interactions. Evaluating on established safety benchmarks such as HarmBench, we demonstrate the proposed method's effectiveness. Debate alone can reduce unsafe behaviours by 17.7%, and when combined with long-term memory modules, achieves reductions exceeding 23.5%. To our knowledge, RedDebate constitutes the first fully automated framework that combines multi-agent debates with red-teaming to progressively enhance AI safety without direct human intervention.(Github Repository: https://github.com/aliasad059/RedDebate)

Authors:Han Zhou, Qitong Xu, Yiheng Dong, Xin Yang
Title: MANBench: Is Your Multimodal Model Smarter than Human?
Abstract:
The rapid advancement of Multimodal Large Language Models (MLLMs) has ignited discussions regarding their potential to surpass human performance in multimodal tasks. In response, we introduce MANBench (Multimodal Ability Norms Benchmark), a bilingual benchmark (English and Chinese) comprising 1,314 questions across nine tasks, spanning knowledge-based and non-knowledge-based domains. MANBench emphasizes intuitive reasoning, seamless cross-modal integration, and real-world complexity, providing a rigorous evaluation framework. Through extensive human experiments involving diverse participants, we compared human performance against state-of-the-art MLLMs. The results indicate that while MLLMs excel in tasks like Knowledge and Text-Image Understanding, they struggle with deeper cross-modal reasoning tasks such as Transmorphic Understanding, Image Consistency, and Multi-image Understanding. Moreover, both humans and MLLMs face challenges in highly complex tasks like Puzzles and Spatial Imagination. MANBench highlights the strengths and limitations of MLLMs, revealing that even advanced models fall short of achieving human-level performance across many domains. We hope MANBench will inspire efforts to bridge the gap between MLLMs and human multimodal capabilities. The code and dataset are available at https://github.com/micdz/MANBench.

Authors:Chongyu Fan, Yihua Zhang, Jinghan Jia, Alfred Hero, Sijia Liu
Title: CyclicReflex: Improving Large Reasoning Models via Cyclical Reflection Token Scheduling
Abstract:
Large reasoning models (LRMs), such as OpenAI's o1 and DeepSeek-R1, harness test-time scaling to perform multi-step reasoning for complex problem-solving. This reasoning process, executed before producing final answers, is often guided by special juncture tokens or textual segments that prompt self-evaluative reflection. We refer to these transition markers and reflective cues as "reflection tokens" (e.g., "wait", "but", "alternatively"). In this work, we treat reflection tokens as a "resource" and introduce the problem of resource allocation, aimed at improving the test-time compute performance of LRMs by adaptively regulating the frequency and placement of reflection tokens. Through empirical analysis, we show that both excessive and insufficient use of reflection tokens, referred to as over-reflection and under-reflection, can degrade model performance. To better understand and manage this trade-off, we draw an analogy between reflection token usage and learning rate scheduling in optimization. Building on this insight, we propose cyclical reflection token scheduling (termed CyclicReflex), a decoding strategy that dynamically modulates reflection token logits using a position-dependent triangular waveform. Experiments on MATH500, AIME2024/2025, and AMC2023 demonstrate that CyclicReflex consistently improves performance across model sizes (1.5B-8B), outperforming standard decoding and more recent approaches such as TIP (thought switching penalty) and S1. Codes are available at https://github.com/OPTML-Group/CyclicReflex.

Authors:Henrik Abgaryan, Tristan Cazenave, Ararat Harutyunyan
Title: ACCORD: Autoregressive Constraint-satisfying Generation for COmbinatorial Optimization with Routing and Dynamic attention
Abstract:
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, yet their direct application to NP-hard combinatorial problems (CPs) remains underexplored. In this work, we systematically investigate the reasoning abilities of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial optimization with Routing and Dynamic attention. ACCORD features a novel dataset representation and model architecture that leverage the autoregressive nature of LLMs to dynamically enforce feasibility constraints, coupled with attention-based routing to activate problem-specific LoRA modules. We also present the ACCORD-90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP, Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate that our ACCORD model, built on an 8B-parameter Llama backbone, consistently outperforms standard prompting and input-output methods, even when compared to much larger LLMs, such as gpt-4. Ablation studies further show that our output structure enhances solution feasibility. To the best of our knowledge, this is the first large-scale, end-to-end framework for exploring the applications of LLMs to a broad spectrum of combinatorial optimization problems. The codes are publicly available at https://github.com/starjob42/ACCORD

Authors:Jiaqi Zhao, Weili Guan, Ming Li, Miao Zhang
Title: Boost Post-Training Quantization via Null Space Optimization for Large Language Models
Abstract:
Existing post-training quantization methods for large language models (LLMs) offer remarkable success. However, the increasingly marginal performance gains suggest that existing quantization strategies are insufficient to support the development of more compressed models. To inspire new directions for future research, this paper introduces the concept of null space into LLMs quantization. We argue that the quantization error can be effectively alleviated by constraining the post-quantization weight perturbation to lie within the null space of input activations. To prove this idea, we propose a plug-and-play null space projection module for existing milestone PTQ baselines named Q2N. Specifically, we first design an efficient and accurate null space projection approximation method tailored to the characteristics of LLMs. Subsequently, we theoretically derive a closed-form solution for an equivalent vector of the obtained projection matrix, which satisfies practical inference condition while avoiding additional memory overhead. Extensive experiments are conducted on various state-of-the-art LLMs (LLaMA3, DeepSeek, Qwen3) and baselines, demonstrating the effectiveness of both our Q2N and the perspective of null space optimization for LLMs quantization. We view this paper the first step to further alleviate the quantization error based on the insights of null space, hoping it inspiring future researchers to design more advanced quantization methods. Codes are available at https://github.com/zjq0455/q2n.

Authors:Linjie Li, Zhenyu Wu, Yang Ji
Title: MoTE: Mixture of Task-specific Experts for Pre-Trained ModelBased Class-incremental Learning
Abstract:
Class-incremental learning (CIL) requires deep learning models to continuously acquire new knowledge from streaming data while preserving previously learned information. Recently, CIL based on pre-trained models (PTMs) has achieved remarkable success. However, prompt-based approaches suffer from prompt overwriting, while adapter-based methods face challenges such as dimensional misalignment between tasks. While the idea of expert fusion in Mixture of Experts (MoE) can help address dimensional inconsistency, both expert and routing parameters are prone to being overwritten in dynamic environments, making MoE challenging to apply directly in CIL. To tackle these issues, we propose a mixture of task-specific experts (MoTE) framework that effectively mitigates the miscalibration caused by inconsistent output dimensions across tasks. Inspired by the weighted feature fusion and sparse activation mechanisms in MoE, we introduce task-aware expert filtering and reliable expert joint inference during the inference phase, mimicking the behavior of routing layers without inducing catastrophic forgetting. Extensive experiments demonstrate the superiority of our method without requiring an exemplar set. Furthermore, the number of tasks in MoTE scales linearly with the number of adapters. Building on this, we further explore the trade-off between adapter expansion and model performance and propose the Adapter-Limited MoTE. The code is available at https://github.com/Franklilinjie/MoTE.

Authors:Zoher Kachwala, Danishjeet Singh, Danielle Yang, Filippo Menczer
Title: Task-aligned prompting improves zero-shot detection of AI-generated images by Vision-Language Models
Abstract:
As image generators produce increasingly realistic images, concerns about potential misuse continue to grow. Supervised detection relies on large, curated datasets and struggles to generalize across diverse generators. In this work, we investigate the use of pre-trained Vision-Language Models (VLMs) for zero-shot detection of AI-generated images. While off-the-shelf VLMs exhibit some task-specific reasoning and chain-of-thought prompting offers gains, we show that task-aligned prompting elicits more focused reasoning and significantly improves performance without fine-tuning. Specifically, prefixing the model's response with the phrase "Let's examine the style and the synthesis artifacts" -- a method we call zero-shot-s$^2$ -- boosts Macro F1 scores by 8%-29%. These gains are consistent for two widely used open-source models and across three recent, diverse datasets spanning human faces, objects, and animals with images generated by 16 different models -- demonstrating strong generalization. We further evaluate the approach across three additional model sizes and observe improvements in most dataset-model combinations -- suggesting robustness to model scale. Surprisingly, self-consistency, a behavior previously observed in language reasoning, where aggregating answers from diverse reasoning paths improves performance, also holds in this setting. Even here, zero-shot-s$^2$ scales better than chain-of-thought in most cases -- indicating that it elicits more useful diversity. Our findings show that task-aligned prompts elicit more focused reasoning and enhance latent capabilities in VLMs, like the detection of AI-generated images -- offering a simple, generalizable, and explainable alternative to supervised methods. Our code is publicly available on github: https://github.com/Zoher15/Zero-shot-s2.

Authors:Chaitanya Ravuri, Saman Amarasinghe
Title: Eliminating Hallucination-Induced Errors in LLM Code Generation with Functional Clustering
Abstract:
Modern code-generation LLMs can already solve a large fraction of programming problems, yet they still hallucinate subtle bugs that make their outputs unsafe for autonomous deployment. We present functional clustering, a black-box wrapper that eliminates nearly all hallucination-induced errors while providing a tunable confidence score. The wrapper samples many candidate programs, executes each on a self-generated test suite, and clusters candidates whose I/O behavior is identical; the empirical mass of the largest cluster serves as an exact confidence estimate. A single scalar threshold on this estimate lets users trade coverage for reliability with exponential guarantees. On LiveCodeBench our verifier preserves baseline pass@1 on solvable tasks yet slashes the error rate of returned answers from ~65% to 2%, and drives it to 0% at a conservative threshold while still answering 15.6% of prompts. Manual audits show that the few residual mistakes stem from prompt misinterpretation, not random generation noise, narrowing future work to specification clarity. Because the method requires only sampling and sandbox execution, it applies unchanged to closed-source APIs and future models, offering a practical path toward dependable, autonomous code generation. Our code is available on Github (https://github.com/20ChaituR/functional-clustering).

Authors:Jorge Martinez-Gil
Title: Evaluating Small-Scale Code Models for Code Clone Detection
Abstract:
Detecting code clones is relevant to software maintenance and code refactoring. This challenge still presents unresolved cases, mainly when structural similarity does not reflect functional equivalence, though recent code models show promise. Therefore, this research aims to systematically measure the performance of several newly introduced small code models in classifying code pairs as clones or non-clones. The evaluation is based on five datasets: BigCloneBench, CodeJam, Karnalim, POJ104, and PoolC, as well as six code models: CodeBERT, GraphCodeBERT, Salesforce T5, UniXCoder, PLBART, and Polycoder. Most models performed well across standard metrics, including accuracy, precision, recall, and F1-score. However, a marginal fraction of clones remains challenging to detect, especially when the code looks similar but performs different operations. The source code that illustrates our approach is available at: https://github.com/jorge-martinez-gil/small-code-models

Authors:Yixin Ou, Yujie Luo, Jingsheng Zheng, Lanning Wei, Shuofei Qiao, Jintian Zhang, Da Zheng, Huajun Chen, Ningyu Zhang
Title: AutoMind: Adaptive Knowledgeable Agent for Automated Data Science
Abstract:
Large Language Model (LLM) agents have shown great potential in addressing real-world data science problems. LLM-driven data science agents promise to automate the entire machine learning pipeline, yet their real-world effectiveness remains limited. Existing frameworks depend on rigid, pre-defined workflows and inflexible coding strategies; consequently, they excel only on relatively simple, classical problems and fail to capture the empirical expertise that human practitioners bring to complex, innovative tasks. In this work, we introduce AutoMind, an adaptive, knowledgeable LLM-agent framework that overcomes these deficiencies through three key advances: (1) a curated expert knowledge base that grounds the agent in domain expert knowledge, (2) an agentic knowledgeable tree search algorithm that strategically explores possible solutions, and (3) a self-adaptive coding strategy that dynamically tailors code generation to task complexity. Evaluations on two automated data science benchmarks demonstrate that AutoMind delivers superior performance versus state-of-the-art baselines. Additional analyses confirm favorable effectiveness, efficiency, and qualitative solution quality, highlighting AutoMind as an efficient and robust step toward fully automated data science.

Authors:Yixin Ou, Yujie Luo, Jingsheng Zheng, Lanning Wei, Zhuoyun Yu, Shuofei Qiao, Jintian Zhang, Da Zheng, Yuren Mao, Yunjun Gao, Huajun Chen, Ningyu Zhang
Title: AutoMind: Adaptive Knowledgeable Agent for Automated Data Science
Abstract:
Large Language Model (LLM) agents have shown great potential in addressing real-world data science problems. LLM-driven data science agents promise to automate the entire machine learning pipeline, yet their real-world effectiveness remains limited. Existing frameworks depend on rigid, pre-defined workflows and inflexible coding strategies; consequently, they excel only on relatively simple, classical problems and fail to capture the empirical expertise that human practitioners bring to complex, innovative tasks. In this work, we introduce AutoMind, an adaptive, knowledgeable LLM-agent framework that overcomes these deficiencies through three key advances: (1) a curated expert knowledge base that grounds the agent in domain expert knowledge, (2) an agentic knowledgeable tree search algorithm that strategically explores possible solutions, and (3) a self-adaptive coding strategy that dynamically tailors code generation to task complexity. Evaluations on two automated data science benchmarks demonstrate that AutoMind delivers superior performance versus state-of-the-art baselines. Additional analyses confirm favorable effectiveness, efficiency, and qualitative solution quality, highlighting AutoMind as an efficient and robust step toward fully automated data science. Code is at https://github.com/innovatingAI/AutoMind.

Authors:Julius Berner, Miguel Liu-Schiaffini, Jean Kossaifi, Valentin Duruisseaux, Boris Bonev, Kamyar Azizzadenesheli, Anima Anandkumar
Title: Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
Abstract:
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs

Authors:Houyi Li, Wenzhen Zheng, Qiufeng Wang, Zhenyu Ding, Haoying Wang, Zili Wang, Shijie Xuyang, Ning Ding, Shuigeng Zhou, Xiangyu Zhang, Daxin Jiang
Title: Predictable Scale: Part II, Farseer: A Refined Scaling Law in Large Language Models
Abstract:
Training Large Language Models (LLMs) is prohibitively expensive, creating a critical scaling gap where insights from small-scale experiments often fail to transfer to resource-intensive production systems, thereby hindering efficient innovation. To bridge this, we introduce Farseer, a novel and refined scaling law offering enhanced predictive accuracy across scales. By systematically constructing a model loss surface $L(N,D)$, Farseer achieves a significantly better fit to empirical data than prior laws (e.g., Chinchilla's law). Our methodology yields accurate, robust, and highly generalizable predictions, demonstrating excellent extrapolation capabilities, improving upon Chinchilla's law by reducing extrapolation error by 433\%. This allows for the reliable evaluation of competing training strategies across all $(N,D)$ settings, enabling conclusions from small-scale ablation studies to be confidently extrapolated to predict large-scale performance. Furthermore, Farseer provides new insights into optimal compute allocation, better reflecting the nuanced demands of modern LLM training. To validate our approach, we trained an extensive suite of approximately 1,000 LLMs across diverse scales and configurations, consuming roughly 3 million NVIDIA H100 GPU hours. We are comprehensively open-sourcing all models, data, results, and logs at https://github.com/Farseer-Scaling-Law/Farseer to foster further research.

Authors:Qizhe Zhang, Mengzhen Liu, Lichen Li, Ming Lu, Yuan Zhang, Junwen Pan, Qi She, Shanghang Zhang
Title: Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs
Abstract:
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner.

Authors:Yuxuan Luo, Yuhui Yuan, Junwen Chen, Haonan Cai, Ziyi Yue, Yuwei Yang, Fatima Zohra Daha, Ji Li, Zhouhui Lian
Title: MMMG: A Massive, Multidisciplinary, Multi-Tier Generation Benchmark for Text-to-Image Reasoning
Abstract:
In this paper, we introduce knowledge image generation as a new task, alongside the Massive Multi-Discipline Multi-Tier Knowledge-Image Generation Benchmark (MMMG) to probe the reasoning capability of image generation models. Knowledge images have been central to human civilization and to the mechanisms of human learning -- a fact underscored by dual-coding theory and the picture-superiority effect. Generating such images is challenging, demanding multimodal reasoning that fuses world knowledge with pixel-level grounding into clear explanatory visuals. To enable comprehensive evaluation, MMMG offers 4,456 expert-validated (knowledge) image-prompt pairs spanning 10 disciplines, 6 educational levels, and diverse knowledge formats such as charts, diagrams, and mind maps. To eliminate confounding complexity during evaluation, we adopt a unified Knowledge Graph (KG) representation. Each KG explicitly delineates a target image's core entities and their dependencies. We further introduce MMMG-Score to evaluate generated knowledge images. This metric combines factual fidelity, measured by graph-edit distance between KGs, with visual clarity assessment. Comprehensive evaluations of 16 state-of-the-art text-to-image generation models expose serious reasoning deficits -- low entity fidelity, weak relations, and clutter -- with GPT-4o achieving an MMMG-Score of only 50.20, underscoring the benchmark's difficulty. To spur further progress, we release FLUX-Reason (MMMG-Score of 34.45), an effective and open baseline that combines a reasoning LLM with diffusion models and is trained on 16,000 curated knowledge image-prompt pairs.

Authors:Kangwei Liu, Siyuan Cheng, Bozhong Tian, Xiaozhuan Liang, Yuyang Yin, Meng Han, Ningyu Zhang, Bryan Hooi, Xi Chen, Shumin Deng
Title: ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Abstract:
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.

Authors:Lianghong Guo, Yanlin Wang, Caihua Li, Pengyu Yang, Jiachi Chen, Wei Tao, Yingtian Zou, Duyu Tang, Zibin Zheng
Title: SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Abstract:
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the traditional process for creating such benchmarks is notoriously challenging and labor-intensive, particularly in the stages of setting up evaluation environments, grading test outcomes, and validating task instances. In this paper, we propose SWE-Factory, an automated pipeline designed to address these challenges. To tackle these issues, our pipeline integrates three core automated components. First, we introduce SWE-Builder, a multi-agent system that automates evaluation environment construction, which employs four specialized agents that work in a collaborative, iterative loop and leverages an environment memory pool to enhance efficiency. Second, we introduce a standardized, exit-code-based grading method that eliminates the need for manually writing custom parsers. Finally, we automate the fail2pass validation process using these reliable exit code signals. Experiments on 671 issues across four programming languages show that our pipeline can effectively construct valid task instances; for example, with GPT-4.1-mini, our SWE-Builder constructs 269 valid instances at $0.045 per instance, while with Gemini-2.5-flash, it achieves comparable performance at the lowest cost of $0.024 per instance. We also demonstrate that our exit-code-based grading achieves 100% accuracy compared to manual inspection, and our automated fail2pass validation reaches a precision of 0.92 and a recall of 1.00. We hope our automated pipeline will accelerate the collection of large-scale, high-quality GitHub issue resolution datasets for both training and evaluation. Our code and datasets are released at https://github.com/DeepSoftwareAnalytics/swe-factory.

Authors:Boaz Lavon, Shahar Katz, Lior Wolf
Title: Execution Guided Line-by-Line Code Generation
Abstract:
We present a novel approach to neural code generation that incorporates real-time execution signals into the language model generation process. While large language models (LLMs) have demonstrated impressive code generation capabilities, they typically do not utilize execution feedback during inference, a critical signal that human programmers regularly leverage. Our method, Execution-Guided Classifier-Free Guidance (EG-CFG), dynamically incorporates execution signals as the model generates code, providing line-by-line feedback that guides the generation process toward executable solutions. EG-CFG employs a multi-stage process: first, we conduct beam search to sample candidate program completions for each line; second, we extract execution signals by executing these candidates against test cases; and finally, we incorporate these signals into the prompt during generation. By maintaining consistent signals across tokens within the same line and refreshing signals at line boundaries, our approach provides coherent guidance while preserving syntactic structure. Moreover, the method naturally supports native parallelism at the task level in which multiple agents operate in parallel, exploring diverse reasoning paths and collectively generating a broad set of candidate solutions. Our experiments across diverse coding tasks demonstrate that EG-CFG significantly improves code generation performance compared to standard approaches, achieving state-of-the-art results across various levels of complexity, from foundational problems to challenging competitive programming tasks. Our code is available at: https://github.com/boazlavon/eg_cfg

Authors:Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, Volodymyr Kuleshov
Title: The Diffusion Duality
Abstract:
Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code and model checkpoints on the project page: http://s-sahoo.github.io/duo

Authors:Zhao Zhang, Yutao Cheng, Dexiang Hong, Maoke Yang, Gonglei Shi, Lei Ma, Hui Zhang, Jie Shao, Xinglong Wu
Title: CreatiPoster: Towards Editable and Controllable Multi-Layer Graphic Design Generation
Abstract:
Graphic design plays a crucial role in both commercial and personal contexts, yet creating high-quality, editable, and aesthetically pleasing graphic compositions remains a time-consuming and skill-intensive task, especially for beginners. Current AI tools automate parts of the workflow, but struggle to accurately incorporate user-supplied assets, maintain editability, and achieve professional visual appeal. Commercial systems, like Canva Magic Design, rely on vast template libraries, which are impractical for replicate. In this paper, we introduce CreatiPoster, a framework that generates editable, multi-layer compositions from optional natural-language instructions or assets. A protocol model, an RGBA large multimodal model, first produces a JSON specification detailing every layer (text or asset) with precise layout, hierarchy, content and style, plus a concise background prompt. A conditional background model then synthesizes a coherent background conditioned on this rendered foreground layers. We construct a benchmark with automated metrics for graphic-design generation and show that CreatiPoster surpasses leading open-source approaches and proprietary commercial systems. To catalyze further research, we release a copyright-free corpus of 100,000 multi-layer designs. CreatiPoster supports diverse applications such as canvas editing, text overlay, responsive resizing, multilingual adaptation, and animated posters, advancing the democratization of AI-assisted graphic design. Project homepage: https://github.com/graphic-design-ai/creatiposter

Authors:Zhensheng Jin, Xinze Li, Yifan Ji, Chunyi Peng, Zhenghao Liu, Qi Shi, Yukun Yan, Shuo Wang, Furong Peng, Ge Yu
Title: ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization
Abstract:
Recent advances in Chain-of-Thought (CoT) prompting have substantially improved the reasoning capabilities of Large Language Models (LLMs). However, these methods often suffer from overthinking, leading to unnecessarily lengthy or redundant reasoning traces. Existing approaches attempt to mitigate this issue through curating multiple reasoning chains for training LLMs, but their effectiveness is often constrained by the quality of the generated data and prone to overfitting. To address the challenge, we propose Reasoning Compression ThroUgh Stepwise Trials (ReCUT), a novel method aimed at balancing the accuracy and length of reasoning trajectory. Specifically, ReCUT employs a stepwise exploration mechanism and a long-short switched sampling strategy, enabling LLMs to incrementally generate diverse reasoning paths. These paths are evaluated and used to construct preference pairs to train two specialized models (Gemini LLMs)-one optimized for reasoning accuracy, the other for shorter reasoning. A final integrated model is obtained by interpolating the parameters of these two models. Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%, while maintaining or improving reasoning accuracy compared to various baselines. All codes and data will be released via https://github.com/NEUIR/ReCUT.

Authors:Huaying Yuan, Zheng Liu, Junjie Zhou, Hongjin Qian, Yan Shu, Nicu Sebe, Ji-Rong Wen, Zhicheng Dou
Title: Think With Videos For Agentic Long-Video Understanding
Abstract:
Long-video understanding~(LVU) is a challenging problem in computer vision. Existing methods either downsample frames for single-pass reasoning, sacrificing fine-grained details, or depend on textual reasoning over task-agnostic representations, hindering task-specific perception and exploration. In this paper, we propose VideoExplorer, a framework grounded in the principle of ``thinking with video'', which naturally intertwines planning, temporal grounding, and scalable perception into a coherent reasoning process. Rather than reasoning over a static context, VideoExplorer iteratively formulates sub-questions, locates relevant moments, and performs task-oriented, temporally scalable video understanding until reaching the final answer, enabling faithful, efficient, and interpretable reasoning. To address the lack of LVU training resources, we construct a long-video reasoning dataset using difficulty-adaptive sampling to ensure high-quality trajectories on complex tasks. Building on this dataset, we design a two-stage training pipeline: supervised trajectory initialization followed by trajectory-level preference optimization, encouraging adaptive temporal grounding and iterative information integration guided by downstream rewards. Extensive evaluations on popular long-video understanding and reasoning benchmarks demonstrate VideoExplorer's significant advantage over existing baselines, highlighting its robustness, adaptability, and efficiency. Our code is made publicly available in this repository(https://github.com/yhy-2000/VideoDeepResearch).

Authors:Hang Zhang, Xiang Chen, Renjiu Hu, Rongguang Wang, Jinwei Zhang, Min Liu, Yaonan Wang, Gaolei Li, Xinxing Cheng, Jinming Duan
Title: Unsupervised Deformable Image Registration with Structural Nonparametric Smoothing
Abstract:
Learning-based deformable image registration (DIR) accelerates alignment by amortizing traditional optimization via neural networks. Label supervision further enhances accuracy, enabling efficient and precise nonlinear alignment of unseen scans. However, images with sparse features amid large smooth regions, such as retinal vessels, introduce aperture and large-displacement challenges that unsupervised DIR methods struggle to address. This limitation occurs because neural networks predict deformation fields in a single forward pass, leaving fields unconstrained post-training and shifting the regularization burden entirely to network weights. To address these issues, we introduce SmoothProper, a plug-and-play neural module enforcing smoothness and promoting message passing within the network's forward pass. By integrating a duality-based optimization layer with tailored interaction terms, SmoothProper efficiently propagates flow signals across spatial locations, enforces smoothness, and preserves structural consistency. It is model-agnostic, seamlessly integrates into existing registration frameworks with minimal parameter overhead, and eliminates regularizer hyperparameter tuning. Preliminary results on a retinal vessel dataset exhibiting aperture and large-displacement challenges demonstrate our method reduces registration error to 1.88 pixels on 2912x2912 images, marking the first unsupervised DIR approach to effectively address both challenges. The source code will be available at https://github.com/tinymilky/SmoothProper.

Authors:Wei Sun, Tingyu Qu, Mingxiao Li, Jesse Davis, Marie-Francine Moens
Title: Mitigating Negative Interference in Multilingual Sequential Knowledge Editing through Null-Space Constraints
Abstract:
Efficiently updating multilingual knowledge in large language models (LLMs), while preserving consistent factual representations across languages, remains a long-standing and unresolved challenge. While deploying separate editing systems for each language might seem viable, this approach incurs substantial costs due to the need to manage multiple models. A more efficient solution involves integrating knowledge updates across all languages into a unified model. However, performing sequential edits across languages often leads to destructive parameter interference, significantly degrading multilingual generalization and the accuracy of injected knowledge. To address this challenge, we propose LangEdit, a novel null-space constrained framework designed to precisely isolate language-specific knowledge updates. The core innovation of LangEdit lies in its ability to project parameter updates for each language onto the orthogonal complement of previous updated subspaces. This approach mathematically guarantees update independence while preserving multilingual generalization capabilities. We conduct a comprehensive evaluation across three model architectures, six languages, and four downstream tasks, demonstrating that LangEdit effectively mitigates parameter interference and outperforms existing state-of-the-art editing methods. Our results highlight its potential for enabling efficient and accurate multilingual knowledge updates in LLMs. The code is available at https://github.com/VRCMF/LangEdit.git.

Authors:Xiaozhe Li, Jixuan Chen, Xinyu Fang, Shengyuan Ding, Haodong Duan, Qingwen Liu, Kai Chen
Title: OPT-BENCH: Evaluating LLM Agent on Large-Scale Search Spaces Optimization Problems
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities in solving diverse tasks. However, their proficiency in iteratively optimizing complex solutions through learning from previous feedback remains insufficiently explored. To bridge this gap, we present OPT-BENCH, a comprehensive benchmark designed to evaluate LLM agents on large-scale search space optimization problems. OPT-BENCH includes 20 real-world machine learning tasks sourced from Kaggle and 10 classical NP problems, offering a diverse and challenging environment for assessing LLM agents on iterative reasoning and solution refinement. To enable rigorous evaluation, we introduce OPT-Agent, an end-to-end optimization framework that emulates human reasoning when tackling complex problems by generating, validating, and iteratively improving solutions through leveraging historical feedback. Through extensive experiments on 9 state-of-the-art LLMs from 6 model families, we analyze the effects of optimization iterations, temperature settings, and model architectures on solution quality and convergence. Our results demonstrate that incorporating historical context significantly enhances optimization performance across both ML and NP tasks. All datasets, code, and evaluation tools are open-sourced to promote further research in advancing LLM-driven optimization and iterative reasoning. Project page: \href{https://github.com/OliverLeeXZ/OPT-BENCH}{https://github.com/OliverLeeXZ/OPT-BENCH}.

Authors:Priyanka Kargupta, Nan Zhang, Yunyi Zhang, Rui Zhang, Prasenjit Mitra, Jiawei Han
Title: TaxoAdapt: Aligning LLM-Based Multidimensional Taxonomy Construction to Evolving Research Corpora
Abstract:
The rapid evolution of scientific fields introduces challenges in organizing and retrieving scientific literature. While expert-curated taxonomies have traditionally addressed this need, the process is time-consuming and expensive. Furthermore, recent automatic taxonomy construction methods either (1) over-rely on a specific corpus, sacrificing generalizability, or (2) depend heavily on the general knowledge of large language models (LLMs) contained within their pre-training datasets, often overlooking the dynamic nature of evolving scientific domains. Additionally, these approaches fail to account for the multi-faceted nature of scientific literature, where a single research paper may contribute to multiple dimensions (e.g., methodology, new tasks, evaluation metrics, benchmarks). To address these gaps, we propose TaxoAdapt, a framework that dynamically adapts an LLM-generated taxonomy to a given corpus across multiple dimensions. TaxoAdapt performs iterative hierarchical classification, expanding both the taxonomy width and depth based on corpus' topical distribution. We demonstrate its state-of-the-art performance across a diverse set of computer science conferences over the years to showcase its ability to structure and capture the evolution of scientific fields. As a multidimensional method, TaxoAdapt generates taxonomies that are 26.51% more granularity-preserving and 50.41% more coherent than the most competitive baselines judged by LLMs.

Authors:Hong Huang, Weixiang Sun, Zhijian Wu, Jingwen Niu, Donghuan Lu, Xian Wu, Yefeng Zheng
Title: IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain
Abstract:
Recently, the rapid advancements of vision-language models, such as CLIP, leads to significant progress in zero-/few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based ZFSAD methods commonly assume prior knowledge of categories and rely on carefully crafted prompts tailored to specific scenarios. While such meticulously designed text prompts effectively capture semantic information in the textual space, they fall short of distinguishing normal and anomalous instances within the joint embedding space. Moreover, these ZFSAD methods are predominantly explored in industrial scenarios, with few efforts conducted to medical tasks. To this end, we propose an innovative framework for ZFSAD tasks in medical domain, denoted as IQE-CLIP. We reveal that query embeddings, which incorporate both textual and instance-aware visual information, are better indicators for abnormalities. Specifically, we first introduce class-based prompting tokens and learnable prompting tokens for better adaptation of CLIP to the medical domain. Then, we design an instance-aware query module (IQM) to extract region-level contextual information from both text prompts and visual features, enabling the generation of query embeddings that are more sensitive to anomalies. Extensive experiments conducted on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance on both zero-shot and few-shot tasks. We release our code and data at https://github.com/hongh0/IQE-CLIP/.

Authors:Priyanka Kargupta, Runchu Tian, Jiawei Han
Title: Beyond True or False: Retrieval-Augmented Hierarchical Analysis of Nuanced Claims
Abstract:
Claims made by individuals or entities are oftentimes nuanced and cannot be clearly labeled as entirely "true" or "false" -- as is frequently the case with scientific and political claims. However, a claim (e.g., "vaccine A is better than vaccine B") can be dissected into its integral aspects and sub-aspects (e.g., efficacy, safety, distribution), which are individually easier to validate. This enables a more comprehensive, structured response that provides a well-rounded perspective on a given problem while also allowing the reader to prioritize specific angles of interest within the claim (e.g., safety towards children). Thus, we propose ClaimSpect, a retrieval-augmented generation-based framework for automatically constructing a hierarchy of aspects typically considered when addressing a claim and enriching them with corpus-specific perspectives. This structure hierarchically partitions an input corpus to retrieve relevant segments, which assist in discovering new sub-aspects. Moreover, these segments enable the discovery of varying perspectives towards an aspect of the claim (e.g., support, neutral, or oppose) and their respective prevalence (e.g., "how many biomedical papers believe vaccine A is more transportable than B?"). We apply ClaimSpect to a wide variety of real-world scientific and political claims featured in our constructed dataset, showcasing its robustness and accuracy in deconstructing a nuanced claim and representing perspectives within a corpus. Through real-world case studies and human evaluation, we validate its effectiveness over multiple baselines.

Authors:Marco Spinaci, Marek Polewczyk, Maximilian Schambach, Sam Thelin
Title: ConTextTab: A Semantics-Aware Tabular In-Context Learner
Abstract:
Tabular in-context learning (ICL) has recently achieved state-of-the-art (SOTA) performance on several tabular prediction tasks. Previously restricted to classification problems on small tables, recent advances such as TabPFN and TabICL have extended its use to larger datasets. Although current table-native ICL architectures are architecturally efficient and well-adapted to tabular data structures, their exclusive training on synthetic data limits their ability to fully leverage the rich semantics and world knowledge contained in real-world tabular data. At the other end of the spectrum, tabular ICL models based on pretrained large language models such as TabuLa-8B integrate deep semantic understanding and world knowledge but are only able to make use of a small amount of context due to inherent architectural limitations. With the aim to combine the best of both these worlds, we introduce ConTextTab, integrating semantic understanding and alignment into a table-native ICL framework. By employing specialized embeddings for different data modalities and by training on large-scale real-world tabular data, our model is competitive with SOTA across a broad set of benchmarks while setting a new standard on the semantically rich CARTE benchmark. Code and model checkpoints are available at: https://github.com/SAP-samples/contexttab

Authors:Igor Urbanik, Paweł Gajewski
Title: Saturation Self-Organizing Map
Abstract:
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.

Authors:Xi Chen, Zhiqiang Shen, Peng Cao, Jinzhu Yang, Osmar R. Zaiane
Title: ConStyX: Content Style Augmentation for Generalizable Medical Image Segmentation
Abstract:
Medical images are usually collected from multiple domains, leading to domain shifts that impair the performance of medical image segmentation models. Domain Generalization (DG) aims to address this issue by training a robust model with strong generalizability. Recently, numerous domain randomization-based DG methods have been proposed. However, these methods suffer from the following limitations: 1) constrained efficiency of domain randomization due to their exclusive dependence on image style perturbation, and 2) neglect of the adverse effects of over-augmented images on model training. To address these issues, we propose a novel domain randomization-based DG method, called content style augmentation (ConStyX), for generalizable medical image segmentation. Specifically, ConStyX 1) augments the content and style of training data, allowing the augmented training data to better cover a wider range of data domains, and 2) leverages well-augmented features while mitigating the negative effects of over-augmented features during model training. Extensive experiments across multiple domains demonstrate that our ConStyX achieves superior generalization performance. The code is available at https://github.com/jwxsp1/ConStyX.

Authors:Marzieh Oghbaie, Teresa Araújo, Hrvoje Bogunović
Title: PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis
Abstract:
Background and Objective: Prototype-based methods improve interpretability by learning fine-grained part-prototypes; however, their visualization in the input pixel space is not always consistent with human-understandable biomarkers. In addition, well-known prototype-based approaches typically learn extremely granular prototypes that are less interpretable in medical imaging, where both the presence and extent of biomarkers and lesions are critical. Methods: To address these challenges, we propose PiPViT (Patch-based Visual Interpretable Prototypes), an inherently interpretable prototypical model for image recognition. Leveraging a vision transformer (ViT), PiPViT captures long-range dependencies among patches to learn robust, human-interpretable prototypes that approximate lesion extent only using image-level labels. Additionally, PiPViT benefits from contrastive learning and multi-resolution input processing, which enables effective localization of biomarkers across scales. Results: We evaluated PiPViT on retinal OCT image classification across four datasets, where it achieved competitive quantitative performance compared to state-of-the-art methods while delivering more meaningful explanations. Moreover, quantitative evaluation on a hold-out test set confirms that the learned prototypes are semantically and clinically relevant. We believe PiPViT can transparently explain its decisions and assist clinicians in understanding diagnostic outcomes. Github page: https://github.com/marziehoghbaie/PiPViT

Authors:Alexander Lobashev, Dmitry Guskov, Maria Larchenko, Mikhail Tamm
Title: Hessian Geometry of Latent Space in Generative Models
Abstract:
This paper presents a novel method for analyzing the latent space geometry of generative models, including statistical physics models and diffusion models, by reconstructing the Fisher information metric. The method approximates the posterior distribution of latent variables given generated samples and uses this to learn the log-partition function, which defines the Fisher metric for exponential families. Theoretical convergence guarantees are provided, and the method is validated on the Ising and TASEP models, outperforming existing baselines in reconstructing thermodynamic quantities. Applied to diffusion models, the method reveals a fractal structure of phase transitions in the latent space, characterized by abrupt changes in the Fisher metric. We demonstrate that while geodesic interpolations are approximately linear within individual phases, this linearity breaks down at phase boundaries, where the diffusion model exhibits a divergent Lipschitz constant with respect to the latent space. These findings provide new insights into the complex structure of diffusion model latent spaces and their connection to phenomena like phase transitions. Our source code is available at https://github.com/alobashev/hessian-geometry-of-diffusion-models.

Authors:Numaan Naeem, Sarfraz Ahmad, Momina Ahsan, Hasan Iqbal
Title: NeuralNexus at BEA 2025 Shared Task: Retrieval-Augmented Prompting for Mistake Identification in AI Tutors
Abstract:
This paper presents our system for Track 1: Mistake Identification in the BEA 2025 Shared Task on Pedagogical Ability Assessment of AI-powered Tutors. The task involves evaluating whether a tutor's response correctly identifies a mistake in a student's mathematical reasoning. We explore four approaches: (1) an ensemble of machine learning models over pooled token embeddings from multiple pretrained language models (LMs); (2) a frozen sentence-transformer using [CLS] embeddings with an MLP classifier; (3) a history-aware model with multi-head attention between token-level history and response embeddings; and (4) a retrieval-augmented few-shot prompting system with a large language model (LLM) i.e. GPT 4o. Our final system retrieves semantically similar examples, constructs structured prompts, and uses schema-guided output parsing to produce interpretable predictions. It outperforms all baselines, demonstrating the effectiveness of combining example-driven prompting with LLM reasoning for pedagogical feedback assessment. Our code is available at https://github.com/NaumanNaeem/BEA_2025.

Authors:Sergio Burdisso, Esaú Villatoro-Tello, Petr Motlicek
Title: SDialog: A Python Toolkit for Synthetic Dialogue Generation and Analysis
Abstract:
The advancement of conversational AI systems relies on the availability of high-quality, flexible, and reproducible synthetic dialogues for training, evaluation, and benchmarking. SDialog is a modular, extensible Python toolkit designed to address the challenges of synthetic dialogue generation and analysis. By leveraging instruction-tuned Large Language Models (LLMs), SDialog provides abstractions for personas, orchestration, and scenario management, enabling the creation of realistic, diverse, and controllable conversational data for research and development. SDialog supports workflows such as multi-agent simulation and scenario-driven generation, and represents a step forward in the standardization of tools and frameworks for synthetic data generation, a crucial advancement for ensuring reproducibility in today's fast-evolving research landscape.

Authors:Reza Karbasi, Masoud Rahimi, Abdol-Hossein Vahabie, Hadi Moradi
Title: Deep Learning-Based Digitization of Overlapping ECG Images with Open-Source Python Code
Abstract:
This paper addresses the persistent challenge of accurately digitizing paper-based electrocardiogram (ECG) recordings, with a particular focus on robustly handling single leads compromised by signal overlaps-a common yet under-addressed issue in existing methodologies. We propose a two-stage pipeline designed to overcome this limitation. The first stage employs a U-Net based segmentation network, trained on a dataset enriched with overlapping signals and fortified with custom data augmentations, to accurately isolate the primary ECG trace. The subsequent stage converts this refined binary mask into a time-series signal using established digitization techniques, enhanced by an adaptive grid detection module for improved versatility across different ECG formats and scales. Our experimental results demonstrate the efficacy of our approach. The U-Net architecture achieves an IoU of 0.87 for the fine-grained segmentation task. Crucially, our proposed digitization method yields superior performance compared to a well-established baseline technique across both non-overlapping and challenging overlapping ECG samples. For non-overlapping signals, our method achieved a Mean Squared Error (MSE) of 0.0010 and a Pearson Correlation Coefficient (rho) of 0.9644, compared to 0.0015 and 0.9366, respectively, for the baseline. On samples with signal overlap, our method achieved an MSE of 0.0029 and a rho of 0.9641, significantly improving upon the baseline's 0.0178 and 0.8676. This work demonstrates an effective strategy to significantly enhance digitization accuracy, especially in the presence of signal overlaps, thereby laying a strong foundation for the reliable conversion of analog ECG records into analyzable digital data for contemporary research and clinical applications. The implementation is publicly available at this GitHub repository: https://github.com/masoudrahimi39/ECG-code.

Authors:Suin Lee, Dae-Shik Kim
Title: TexTailor: Customized Text-aligned Texturing via Effective Resampling
Abstract:
We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor

Authors:Liang Yin, Xudong Xie, Zhang Li, Xiang Bai, Yuliang Liu
Title: MSTAR: Box-free Multi-query Scene Text Retrieval with Attention Recycling
Abstract:
Scene text retrieval has made significant progress with the assistance of accurate text localization. However, existing approaches typically require costly bounding box annotations for training. Besides, they mostly adopt a customized retrieval strategy but struggle to unify various types of queries to meet diverse retrieval needs. To address these issues, we introduce Muti-query Scene Text retrieval with Attention Recycling (MSTAR), a box-free approach for scene text retrieval. It incorporates progressive vision embedding to dynamically capture the multi-grained representation of texts and harmonizes free-style text queries with style-aware instructions. Additionally, a multi-instance matching module is integrated to enhance vision-language alignment. Furthermore, we build the Multi-Query Text Retrieval (MQTR) dataset, the first benchmark designed to evaluate the multi-query scene text retrieval capability of models, comprising four query types and 16k images. Extensive experiments demonstrate the superiority of our method across seven public datasets and the MQTR dataset. Notably, MSTAR marginally surpasses the previous state-of-the-art model by 6.4% in MAP on Total-Text while eliminating box annotation costs. Moreover, on the MQTR benchmark, MSTAR significantly outperforms the previous models by an average of 8.5%. The code and datasets are available at https://github.com/yingift/MSTAR.

Authors:Xinyuan Liu, Hang Xu, Yike Ma, Yucheng Zhang, Feng Dai
Title: Semantic-decoupled Spatial Partition Guided Point-supervised Oriented Object Detection
Abstract:
Recent remote sensing tech advancements drive imagery growth, making oriented object detection rapid development, yet hindered by labor-intensive annotation for high-density scenes. Oriented object detection with point supervision offers a cost-effective solution for densely packed scenes in remote sensing, yet existing methods suffer from inadequate sample assignment and instance confusion due to rigid rule-based designs. To address this, we propose SSP (Semantic-decoupled Spatial Partition), a unified framework that synergizes rule-driven prior injection and data-driven label purification. Specifically, SSP introduces two core innovations: 1) Pixel-level Spatial Partition-based Sample Assignment, which compactly estimates the upper and lower bounds of object scales and mines high-quality positive samples and hard negative samples through spatial partitioning of pixel maps. 2) Semantic Spatial Partition-based Box Extraction, which derives instances from spatial partitions modulated by semantic maps and reliably converts them into bounding boxes to form pseudo-labels for supervising the learning of downstream detectors. Experiments on DOTA-v1.0 and others demonstrate SSP\' s superiority: it achieves 45.78% mAP under point supervision, outperforming SOTA method PointOBB-v2 by 4.10%. Furthermore, when integrated with ORCNN and ReDet architectures, the SSP framework achieves mAP values of 47.86% and 48.50%, respectively. The code is available at https://github.com/antxinyuan/ssp.

Authors:Xunguang Wang, Zhenlan Ji, Wenxuan Wang, Zongjie Li, Daoyuan Wu, Shuai Wang
Title: SoK: Evaluating Jailbreak Guardrails for Large Language Models
Abstract:
Large Language Models (LLMs) have achieved remarkable progress, but their deployment has exposed critical vulnerabilities, particularly to jailbreak attacks that circumvent safety mechanisms. Guardrails--external defense mechanisms that monitor and control LLM interaction--have emerged as a promising solution. However, the current landscape of LLM guardrails is fragmented, lacking a unified taxonomy and comprehensive evaluation framework. In this Systematization of Knowledge (SoK) paper, we present the first holistic analysis of jailbreak guardrails for LLMs. We propose a novel, multi-dimensional taxonomy that categorizes guardrails along six key dimensions, and introduce a Security-Efficiency-Utility evaluation framework to assess their practical effectiveness. Through extensive analysis and experiments, we identify the strengths and limitations of existing guardrail approaches, explore their universality across attack types, and provide insights into optimizing defense combinations. Our work offers a structured foundation for future research and development, aiming to guide the principled advancement and deployment of robust LLM guardrails. The code is available at https://github.com/xunguangwang/SoK4JailbreakGuardrails.

Authors:Chengxu Zuo, Jiawei Huang, Xiao Jiang, Yuan Yao, Xiangren Shi, Rui Cao, Xinyu Yi, Feng Xu, Shihui Guo, Yipeng Qin
Title: Transformer IMU Calibrator: Dynamic On-body IMU Calibration for Inertial Motion Capture
Abstract:
In this paper, we propose a novel dynamic calibration method for sparse inertial motion capture systems, which is the first to break the restrictive absolute static assumption in IMU calibration, i.e., the coordinate drift RG'G and measurement offset RBS remain constant during the entire motion, thereby significantly expanding their application scenarios. Specifically, we achieve real-time estimation of RG'G and RBS under two relaxed assumptions: i) the matrices change negligibly in a short time window; ii) the human movements/IMU readings are diverse in such a time window. Intuitively, the first assumption reduces the number of candidate matrices, and the second assumption provides diverse constraints, which greatly reduces the solution space and allows for accurate estimation of RG'G and RBS from a short history of IMU readings in real time. To achieve this, we created synthetic datasets of paired RG'G, RBS matrices and IMU readings, and learned their mappings using a Transformer-based model. We also designed a calibration trigger based on the diversity of IMU readings to ensure that assumption ii) is met before applying our method. To our knowledge, we are the first to achieve implicit IMU calibration (i.e., seamlessly putting IMUs into use without the need for an explicit calibration process), as well as the first to enable long-term and accurate motion capture using sparse IMUs. The code and dataset are available at https://github.com/ZuoCX1996/TIC.

Authors:Muskan Dosi, Chiranjeev Chiranjeev, Kartik Thakral, Mayank Vatsa, Richa Singh
Title: Harmonizing Geometry and Uncertainty: Diffusion with Hyperspheres
Abstract:
Do contemporary diffusion models preserve the class geometry of hyperspherical data? Standard diffusion models rely on isotropic Gaussian noise in the forward process, inherently favoring Euclidean spaces. However, many real-world problems involve non-Euclidean distributions, such as hyperspherical manifolds, where class-specific patterns are governed by angular geometry within hypercones. When modeled in Euclidean space, these angular subtleties are lost, leading to suboptimal generative performance. To address this limitation, we introduce HyperSphereDiff to align hyperspherical structures with directional noise, preserving class geometry and effectively capturing angular uncertainty. We demonstrate both theoretically and empirically that this approach aligns the generative process with the intrinsic geometry of hyperspherical data, resulting in more accurate and geometry-aware generative models. We evaluate our framework on four object datasets and two face datasets, showing that incorporating angular uncertainty better preserves the underlying hyperspherical manifold. Resources are available at: {https://github.com/IAB-IITJ/Harmonizing-Geometry-and-Uncertainty-Diffusion-with-Hyperspheres/}

Authors:Yutong Zhou, Masahiro Ryo
Title: From Images to Insights: Explainable Biodiversity Monitoring with Plain Language Habitat Explanations
Abstract:
Explaining why the species lives at a particular location is important for understanding ecological systems and conserving biodiversity. However, existing ecological workflows are fragmented and often inaccessible to non-specialists. We propose an end-to-end visual-to-causal framework that transforms a species image into interpretable causal insights about its habitat preference. The system integrates species recognition, global occurrence retrieval, pseudo-absence sampling, and climate data extraction. We then discover causal structures among environmental features and estimate their influence on species occurrence using modern causal inference methods. Finally, we generate statistically grounded, human-readable causal explanations from structured templates and large language models. We demonstrate the framework on a bee and a flower species and report early results as part of an ongoing project, showing the potential of the multimodal AI assistant backed up by a recommended ecological modeling practice for describing species habitat in human-understandable language. Our code is available at: https://github.com/Yutong-Zhou-cv/BioX.

Authors:Jing He, Yiqing Wang, Lingling Li, Kexin Zhang, Puhua Chen
Title: ContextRefine-CLIP for EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge 2025
Abstract:
This report presents ContextRefine-CLIP (CR-CLIP), an efficient model for visual-textual multi-instance retrieval tasks. The approach is based on the dual-encoder AVION, on which we introduce a cross-modal attention flow module to achieve bidirectional dynamic interaction and refinement between visual and textual features to generate more context-aware joint representations. For soft-label relevance matrices provided in tasks such as EPIC-KITCHENS-100, CR-CLIP can work with Symmetric Multi-Similarity Loss to achieve more accurate semantic alignment and optimization using the refined features. Without using ensemble learning, the CR-CLIP model achieves 66.78mAP and 82.08nDCG on the EPIC-KITCHENS-100 public leaderboard, which significantly outperforms the baseline model and fully validates its effectiveness in cross-modal retrieval. The code will be released open-source on https://github.com/delCayr/ContextRefine-Clip

Authors:Junhang Cheng, Fang Liu, Chengru Wu, Li Zhang
Title: AdaptiveLLM: A Framework for Selecting Optimal Cost-Efficient LLM for Code-Generation Based on CoT Length
Abstract:
While Large Language Models (LLMs) have significantly advanced code generation efficiency, they face inherent challenges in balancing performance and inference costs across diverse programming tasks. Dynamically selecting the optimal LLM based on task difficulty and resource constraints offers a promising approach to achieve an optimal balance between efficiency and performance. However, existing model selection methods are resource-intensive and often neglect cost efficiency. Moreover, these approaches rely on human-annotated difficulty labels that are frequently inaccessible in real-world settings and may not align with the LLM's own assessment of task difficulty. In this paper, we introduce AdaptiveLLM, a framework that dynamically selects optimal LLMs for a given coding task by automatically assessing task difficulty. Our framework first estimates task difficulty using Chain-of-Thought lengths generated by reasoning model, clusters these into three difficulty levels via k-means, and fine-tunes CodeBERT to embed difficulty-aware features. A trained XGBoost classifier then selects the best model for each problem, optimizing the performance-cost trade-off. Experimental results show that AdaptiveLLM achieves a 7.86% improvement in pass@1 score while reducing resource consumption by 88.9% compared to baseline method ComplexityNet. When compared to a single model, AdaptiveLLM demonstrates an approximately 15% accuracy improvement, while maintaining the same level of cost consumption. Apart from that, the difficulty assessment using CoT provides more reliable selection criteria than human evaluation. Our replication package is available at https://github.com/cjhCoder7/AdaptiveLLM.

Authors:Zicheng Zhao, Kangyu Wang, Shijie Li, Rui Qian, Weiyao Lin, Huabin Liu
Title: CogStream: Context-guided Streaming Video Question Answering
Abstract:
Despite advancements in Video Large Language Models (Vid-LLMs) improving multimodal understanding, challenges persist in streaming video reasoning due to its reliance on contextual information. Existing paradigms feed all available historical contextual information into Vid-LLMs, resulting in a significant computational burden for visual data processing. Furthermore, the inclusion of irrelevant context distracts models from key details. This paper introduces a challenging task called Context-guided Streaming Video Reasoning (CogStream), which simulates real-world streaming video scenarios, requiring models to identify the most relevant historical contextual information to deduce answers for questions about the current stream. To support CogStream, we present a densely annotated dataset featuring extensive and hierarchical question-answer pairs, generated by a semi-automatic pipeline. Additionally, we present CogReasoner as a baseline model. It efficiently tackles this task by leveraging visual stream compression and historical dialogue retrieval. Extensive experiments prove the effectiveness of this method. The project is released on https://github.com/LiamZhao326/CogStream.

Authors:Xanh Ho, Sunisth Kumar, Yun-Ang Wu, Florian Boudin, Atsuhiro Takasu, Akiko Aizawa
Title: Table-Text Alignment: Explaining Claim Verification Against Tables in Scientific Papers
Abstract:
Scientific claim verification against tables typically requires predicting whether a claim is supported or refuted given a table. However, we argue that predicting the final label alone is insufficient: it reveals little about the model's reasoning and offers limited interpretability. To address this, we reframe table-text alignment as an explanation task, requiring models to identify the table cells essential for claim verification. We build a new dataset by extending the SciTab benchmark with human-annotated cell-level rationales. Annotators verify the claim label and highlight the minimal set of cells needed to support their decision. After the annotation process, we utilize the collected information and propose a taxonomy for handling ambiguous cases. Our experiments show that (i) incorporating table alignment information improves claim verification performance, and (ii) most LLMs, while often predicting correct labels, fail to recover human-aligned rationales, suggesting that their predictions do not stem from faithful reasoning.

Authors:Guowei Zhong, Ruohong Huan, Mingzhen Wu, Ronghua Liang, Peng Chen
Title: Towards Robust Multimodal Emotion Recognition under Missing Modalities and Distribution Shifts
Abstract:
Recent advancements in Multimodal Emotion Recognition (MER) face challenges in addressing both modality missing and Out-Of-Distribution (OOD) data simultaneously. Existing methods often rely on specific models or introduce excessive parameters, which limits their practicality. To address these issues, we propose a novel robust MER framework, Causal Inference Distiller (CIDer), and introduce a new task, Random Modality Feature Missing (RMFM), to generalize the definition of modality missing. CIDer integrates two key components: a Model-Specific Self-Distillation (MSSD) module and a Model-Agnostic Causal Inference (MACI) module. MSSD enhances robustness under the RMFM task through a weight-sharing self-distillation approach applied across low-level features, attention maps, and high-level representations. Additionally, a Word-level Self-aligned Attention Module (WSAM) reduces computational complexity, while a Multimodal Composite Transformer (MCT) facilitates efficient multimodal fusion. To tackle OOD challenges, MACI employs a tailored causal graph to mitigate label and language biases using a Multimodal Causal Module (MCM) and fine-grained counterfactual texts. Notably, MACI can independently enhance OOD generalization with minimal additional parameters. Furthermore, we also introduce the new repartitioned MER OOD datasets. Experimental results demonstrate that CIDer achieves robust performance in both RMFM and OOD scenarios, with fewer parameters and faster training compared to state-of-the-art methods. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CIDer.

Authors:Oğuzhan Canpolat, Ataberk Olgun, David Novo, Oğuz Ergin, Onur Mutlu
Title: EasyDRAM: An FPGA-based Infrastructure for Fast and Accurate End-to-End Evaluation of Emerging DRAM Techniques
Abstract:
DRAM is a critical component of modern computing systems. Recent works propose numerous techniques (that we call DRAM techniques) to enhance DRAM-based computing systems' throughput, reliability, and computing capabilities (e.g., in-DRAM bulk data copy). Evaluating the system-wide benefits of DRAM techniques is challenging as they often require modifications across multiple layers of the computing stack. Prior works propose FPGA-based platforms for rapid end-to-end evaluation of DRAM techniques on real DRAM chips. Unfortunately, existing platforms fall short in two major aspects: (1) they require deep expertise in hardware description languages, limiting accessibility; and (2) they are not designed to accurately model modern computing systems. We introduce EasyDRAM, an FPGA-based framework for rapid and accurate end-to-end evaluation of DRAM techniques on real DRAM chips. EasyDRAM overcomes the main drawbacks of prior FPGA-based platforms with two key ideas. First, EasyDRAM removes the need for hardware description language expertise by enabling developers to implement DRAM techniques using a high-level language (C++). At runtime, EasyDRAM executes the software-defined memory system design in a programmable memory controller. Second, EasyDRAM tackles a fundamental challenge in accurately modeling modern systems: real processors typically operate at higher clock frequencies than DRAM, a disparity that is difficult to replicate on FPGA platforms. EasyDRAM addresses this challenge by decoupling the processor-DRAM interface and advancing the system state using a novel technique we call time scaling, which faithfully captures the timing behavior of the modeled system. We believe and hope that EasyDRAM will enable innovative ideas in memory system design to rapidly come to fruition. To aid future research EasyDRAM implementation is open sourced at https://github.com/CMU-SAFARI/EasyDRAM.

Authors:Kaiyuan Zhang, Siyuan Cheng, Hanxi Guo, Yuetian Chen, Zian Su, Shengwei An, Yuntao Du, Charles Fleming, Ashish Kundu, Xiangyu Zhang, Ninghui Li
Title: SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks
Abstract:
Large language models (LLMs) have achieved remarkable success and are widely adopted for diverse applications. However, fine-tuning these models often involves private or sensitive information, raising critical privacy concerns. In this work, we conduct the first comprehensive study evaluating the vulnerability of fine-tuned LLMs to membership inference attacks (MIAs). Our empirical analysis demonstrates that MIAs exploit the loss reduction during fine-tuning, making them highly effective in revealing membership information. These findings motivate the development of our defense. We propose SOFT (\textbf{S}elective data \textbf{O}bfuscation in LLM \textbf{F}ine-\textbf{T}uning), a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection. Our extensive experiments span six diverse domains and multiple LLM architectures and scales. Results show that SOFT effectively reduces privacy risks while maintaining competitive model performance, offering a practical and scalable solution to safeguard sensitive information in fine-tuned LLMs.

Authors:Yingjin Song, Yupei Du, Denis Paperno, Albert Gatt
Title: Burn After Reading: Do Multimodal Large Language Models Truly Capture Order of Events in Image Sequences?
Abstract:
This paper introduces the TempVS benchmark, which focuses on temporal grounding and reasoning capabilities of Multimodal Large Language Models (MLLMs) in image sequences. TempVS consists of three main tests (i.e., event relation inference, sentence ordering and image ordering), each accompanied with a basic grounding test. TempVS requires MLLMs to rely on both visual and linguistic modalities to understand the temporal order of events. We evaluate 38 state-of-the-art MLLMs, demonstrating that models struggle to solve TempVS, with a substantial performance gap compared to human capabilities. We also provide fine-grained insights that suggest promising directions for future research. Our TempVS benchmark data and code are available at https://github.com/yjsong22/TempVS.

Authors:Jintao Liang, Gang Su, Huifeng Lin, You Wu, Rui Zhao, Ziyue Li
Title: Reasoning RAG via System 1 or System 2: A Survey on Reasoning Agentic Retrieval-Augmented Generation for Industry Challenges
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to overcome the knowledge limitations of Large Language Models (LLMs) by integrating external retrieval with language generation. While early RAG systems based on static pipelines have shown effectiveness in well-structured tasks, they struggle in real-world scenarios requiring complex reasoning, dynamic retrieval, and multi-modal integration. To address these challenges, the field has shifted toward Reasoning Agentic RAG, a paradigm that embeds decision-making and adaptive tool use directly into the retrieval process. In this paper, we present a comprehensive review of Reasoning Agentic RAG methods, categorizing them into two primary systems: predefined reasoning, which follows fixed modular pipelines to boost reasoning, and agentic reasoning, where the model autonomously orchestrates tool interaction during inference. We analyze representative techniques under both paradigms, covering architectural design, reasoning strategies, and tool coordination. Finally, we discuss key research challenges and propose future directions to advance the flexibility, robustness, and applicability of reasoning agentic RAG systems. Our collection of the relevant research has been organized into a https://github.com/ByebyeMonica/Reasoning-Agentic-RAG.

Authors:Jiaqi Lv, Xufeng He, Yanchen Liu, Xu Dai, Aocheng Shen, Yinghao Li, Jiachen Hao, Jianrong Ding, Yang Hu, Shouyi Yin
Title: HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration
Abstract:
The rapid growth of deep learning has driven exponential increases in model parameters and computational demands. NVIDIA GPUs and their CUDA-based software ecosystem provide robust support for parallel computing, significantly alleviating computational bottlenecks. Meanwhile, due to the cultivation of user programming habits and the high performance of GPUs, the CUDA ecosystem has established a dominant position in the field of parallel software. This dominance requires other hardware platforms to support CUDA-based software with performance portability. However, translating CUDA code to other platforms poses significant challenges due to differences in parallel programming paradigms and hardware architectures. Existing approaches rely on language extensions, domain-specific languages (DSLs), or compilers but face limitations in workload coverage and generalizability. Moreover, these methods often incur substantial development costs. Recently, LLMs have demonstrated extraordinary potential in various vertical domains, especially in code-related tasks. However, the performance of existing LLMs in CUDA transpilation, particularly for high-performance code, remains suboptimal. To address these challenges, we propose a novel framework for generating high-performance CUDA and corresponding platform code pairs, leveraging AI compiler and automatic optimization technology. We further enhance the framework with a graph-based data augmentation method and introduce HPCTransEval, a benchmark for evaluating LLM performance on CUDA transpilation. We conduct experiments using CUDA-to-CPU transpilation as a case study on leading LLMs. The speedup ratio of the CPU operators has an average improvemnet of 43.8\%, highlighting the potential of LLMs to address compatibility challenges within the CUDA ecosystem. Our code is available at https://github.com/PJLAB-CHIP/HPCTransCompile.

Authors:Yuanyi Song, Pumeng Lyu, Ben Fei, Fenghua Ling, Wanli Ouyang, Lei Bai
Title: ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion
Abstract:
Accurate reconstruction of ocean is essential for reflecting global climate dynamics and supporting marine meteorological research. Conventional methods face challenges due to sparse data, algorithmic complexity, and high computational costs, while increasing usage of machine learning (ML) method remains limited to reconstruction problems at the sea surface and local regions, struggling with issues like cloud occlusion. To address these limitations, this paper proposes ReconMOST, a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction. Specifically, we first pre-train an unconditional diffusion model using a large collection of historical numerical simulation data, enabling the model to attain physically consistent distribution patterns of ocean temperature fields. During the generation phase, sparse yet high-accuracy in-situ observational data are utilized as guidance points for the reverse diffusion process, generating accurate reconstruction results. Importantly, in regions lacking direct observational data, the physically consistent spatial distribution patterns learned during pre-training enable implicitly guided and physically plausible reconstructions. Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data while maintaining reconstruction accuracy, spatial resolution, and superior generalization capability. We pre-train our model on CMIP6 numerical simulation data and conduct guided reconstruction experiments on CMIP6 and EN4 analysis data. The results of mean squared error (MSE) values achieve 0.049 on guidance, 0.680 on reconstruction, and 0.633 on total, respectively, demonstrating the effectiveness and robustness of the proposed framework. Our source code is available at https://github.com/norsheep/ReconMOST.

Authors:Shicheng Yin, Kaixuan Yin, Yang Liu, Weixing Chen, Liang Lin
Title: DART: Differentiable Dynamic Adaptive Region Tokenizer for Vision Transformer and Mamba
Abstract:
Recently, non-convolutional models such as the Vision Transformer (ViT) and Vision Mamba (Vim) have achieved remarkable performance in computer vision tasks. However, their reliance on fixed-size patches often results in excessive encoding of background regions and omission of critical local details, especially when informative objects are sparsely distributed. To address this, we introduce a fully differentiable Dynamic Adaptive Region Tokenizer (DART), which adaptively partitions images into content-dependent patches of varying sizes. DART combines learnable region scores with piecewise differentiable quantile operations to allocate denser tokens to information-rich areas. Despite introducing only approximately 1 million (1M) additional parameters, DART improves accuracy by 2.1% on DeiT (ImageNet-1K). Unlike methods that uniformly increase token density to capture fine-grained details, DART offers a more efficient alternative, achieving 45% FLOPs reduction with superior performance. Extensive experiments on DeiT, Vim, and VideoMamba confirm that DART consistently enhances accuracy while incurring minimal or even reduced computational overhead. Code is available at https://github.com/HCPLab-SYSU/DART.

Authors:Shicheng Yin, Kaixuan Yin, Yang Liu, Weixing Chen, Liang Lin
Title: DART: Differentiable Dynamic Adaptive Region Tokenizer for Vision Foundation Models
Abstract:
The content-agnostic, fixed-grid tokenizers used by standard large-scale vision models like Vision Transformer (ViT) and Vision Mamba (Vim) represent a fundamental performance bottleneck, creating a trade-off between capturing fine-grained detail and suffering from redundant computation. To resolve this dilemma, we introduce DART, a fully differentiable Dynamic Adaptive Region Tokenizer. DART employs learnable region scores and quantile-based partitioning to create content-aware patches of varying sizes, intelligently allocating a higher token density to information-rich regions. The impact of this approach is profound: it unlocks a more intelligent scaling paradigm, where a DART-equipped DeiT-Small (22M parameters) matches the performance of a DeiT-Base (86M) with nearly double the inference speed by efficiently capturing high-resolution details in key regions. Furthermore, the principle of adaptive tokenization proves its generality with clear benefits in dense prediction and spatiotemporal video tasks. We argue that by resolving the tokenizer bottleneck at its source, adaptive tokenization is a key component for building the next generation of more efficient and capable foundation models for multimodal AI, robotics, and content generation. Code is available at https://github.com/HCPLab-SYSU/DART.

Authors:Yuhang Chen, Zhen Tan, Tianlong Chen
Title: EQA-RM: A Generative Embodied Reward Model with Test-time Scaling
Abstract:
Reward Models (RMs), vital for large model alignment, are underexplored for complex embodied tasks like Embodied Question Answering (EQA) where nuanced evaluation of agents' spatial, temporal, and logical understanding is critical yet not considered by generic approaches. We introduce EQA-RM, a novel generative multimodal reward model specifically architected for EQA, trained via our innovative Contrastive Group Relative Policy Optimization (C-GRPO) strategy to learn fine-grained behavioral distinctions. The generative nature of EQA-RM provides interpretable, structured reward feedback (beyond simple scalars), uniquely enabling test-time scaling to dynamically adjust evaluation granularity, from concise scores to detailed critiques of reasoning and grounding, at inference without retraining. Concurrently, we introduce EQARewardBench, a new benchmark built on OpenEQA for standardized EQA reward model assessment. Demonstrating high sample efficiency, EQA-RM (fine-tuning Qwen2-VL-2B-Instruct) achieves 61.9\% accuracy on EQA-RM-Bench with only 700 samples, outperforming strong proprietary baselines, including Gemini-2.5-Flash, GPT-4o, Claude-3.5-Haiku, and open-sourced state-of-the-art models such as RoVRM and VisualPRM. The code and dataset can be found here https://github.com/UNITES-Lab/EQA-RM.

Authors:Xiaohan Yu, Pu Jian, Chong Chen
Title: TableRAG: A Retrieval Augmented Generation Framework for Heterogeneous Document Reasoning
Abstract:
Retrieval-Augmented Generation (RAG) has demonstrated considerable effectiveness in open-domain question answering. However, when applied to heterogeneous documents, comprising both textual and tabular components, existing RAG approaches exhibit critical limitations. The prevailing practice of flattening tables and chunking strategies disrupts the intrinsic tabular structure, leads to information loss, and undermines the reasoning capabilities of LLMs in multi-hop, global queries. To address these challenges, we propose TableRAG, an hybrid framework that unifies textual understanding and complex manipulations over tabular data. TableRAG iteratively operates in four steps: context-sensitive query decomposition, text retrieval, SQL programming and execution, and compositional intermediate answer generation. We also develop HeteQA, a novel benchmark designed to evaluate the multi-hop heterogeneous reasoning capabilities. Experimental results demonstrate that TableRAG consistently outperforms existing baselines on both public datasets and our HeteQA, establishing a new state-of-the-art for heterogeneous document question answering. We release TableRAG at https://github.com/yxh-y/TableRAG/tree/main.

Authors:Xiaohan Yu, Pu Jian, Chong Chen
Title: TableRAG: A Retrieval Augmented Generation Framework for Heterogeneous Document Reasoning
Abstract:
Retrieval-Augmented Generation (RAG) has demonstrated considerable effectiveness in open-domain question answering. However, when applied to heterogeneous documents, comprising both textual and tabular components, existing RAG approaches exhibit critical limitations. The prevailing practice of flattening tables and chunking strategies disrupts the intrinsic tabular structure, leads to information loss, and undermines the reasoning capabilities of LLMs in multi-hop, global queries. To address these challenges, we propose TableRAG, an SQL-based framework that unifies textual understanding and complex manipulations over tabular data. TableRAG iteratively operates in four steps: context-sensitive query decomposition, text retrieval, SQL programming and execution, and compositional intermediate answer generation. We also develop HeteQA, a novel benchmark designed to evaluate the multi-hop heterogeneous reasoning capabilities. Experimental results demonstrate that TableRAG consistently outperforms existing baselines on both public datasets and our HeteQA, establishing a new state-of-the-art for heterogeneous document question answering. We release TableRAG at https://github.com/yxh-y/TableRAG/tree/main.

Authors:Tianpei Zhang, Jufeng Zhao, Yiming Zhu, Guangmang Cui, Yuhan Lyu
Title: FSATFusion: Frequency-Spatial Attention Transformer for Infrared and Visible Image Fusion
Abstract:
The infrared and visible images fusion (IVIF) is receiving increasing attention from both the research community and industry due to its excellent results in downstream applications. Existing deep learning approaches often utilize convolutional neural networks to extract image features. However, the inherently capacity of convolution operations to capture global context can lead to information loss, thereby restricting fusion performance. To address this limitation, we propose an end-to-end fusion network named the Frequency-Spatial Attention Transformer Fusion Network (FSATFusion). The FSATFusion contains a frequency-spatial attention Transformer (FSAT) module designed to effectively capture discriminate features from source images. This FSAT module includes a frequency-spatial attention mechanism (FSAM) capable of extracting significant features from feature maps. Additionally, we propose an improved Transformer module (ITM) to enhance the ability to extract global context information of vanilla Transformer. We conducted both qualitative and quantitative comparative experiments, demonstrating the superior fusion quality and efficiency of FSATFusion compared to other state-of-the-art methods. Furthermore, our network was tested on two additional tasks without any modifications, to verify the excellent generalization capability of FSATFusion. Finally, the object detection experiment demonstrated the superiority of FSATFusion in downstream visual tasks. Our code is available at https://github.com/Lmmh058/FSATFusion.

Authors:Yanhui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, Huizhong Guo
Title: LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture
Abstract:
Recently, Graph Neural Networks (GNNs) have become the dominant approach for Knowledge Graph-aware Recommender Systems (KGRSs) due to their proven effectiveness. Building upon GNN-based KGRSs, Self-Supervised Learning (SSL) has been incorporated to address the sparity issue, leading to longer training time. However, through extensive experiments, we reveal that: (1)compared to other KGRSs, the existing GNN-based KGRSs fail to keep their superior performance under sparse interactions even with SSL. (2) More complex models tend to perform worse in sparse interaction scenarios and complex mechanisms, like attention mechanism, can be detrimental as they often increase learning difficulty. Inspired by these findings, we propose LightKG, a simple yet powerful GNN-based KGRS to address sparsity issues. LightKG includes a simplified GNN layer that encodes directed relations as scalar pairs rather than dense embeddings and employs a linear aggregation framework, greatly reducing the complexity of GNNs. Additionally, LightKG incorporates an efficient contrastive layer to implement SSL. It directly minimizes the node similarity in original graph, avoiding the time-consuming subgraph generation and comparison required in previous SSL methods. Experiments on four benchmark datasets show that LightKG outperforms 12 competitive KGRSs in both sparse and dense scenarios while significantly reducing training time. Specifically, it surpasses the best baselines by an average of 5.8\% in recommendation accuracy and saves 84.3\% of training time compared to KGRSs with SSL. Our code is available at https://github.com/1371149/LightKG.

Authors:Zhanwei Zhang, Kaiyuan Liu, Junjie Liu, Wenxiao Wang, Binbin Lin, Liang Xie, Chen Shen, Deng Cai
Title: GeoCAD: Local Geometry-Controllable CAD Generation
Abstract:
Local geometry-controllable computer-aided design (CAD) generation aims to modify local parts of CAD models automatically, enhancing design efficiency. It also ensures that the shapes of newly generated local parts follow user-specific geometric instructions (e.g., an isosceles right triangle or a rectangle with one corner cut off). However, existing methods encounter challenges in achieving this goal. Specifically, they either lack the ability to follow textual instructions or are unable to focus on the local parts. To address this limitation, we introduce GeoCAD, a user-friendly and local geometry-controllable CAD generation method. Specifically, we first propose a complementary captioning strategy to generate geometric instructions for local parts. This strategy involves vertex-based and VLLM-based captioning for systematically annotating simple and complex parts, respectively. In this way, we caption $\sim$221k different local parts in total. In the training stage, given a CAD model, we randomly mask a local part. Then, using its geometric instruction and the remaining parts as input, we prompt large language models (LLMs) to predict the masked part. During inference, users can specify any local part for modification while adhering to a variety of predefined geometric instructions. Extensive experiments demonstrate the effectiveness of GeoCAD in generation quality, validity and text-to-CAD consistency. Code will be available at https://github.com/Zhanwei-Z/GeoCAD.

Authors:Aaryam Sharma
Title: Air in Your Neighborhood: Fine-Grained AQI Forecasting Using Mobile Sensor Data
Abstract:
Air pollution has become a significant health risk in developing countries. While governments routinely publish air-quality index (AQI) data to track pollution, these values fail to capture the local reality, as sensors are often very sparse. In this paper, we address this gap by predicting AQI in 1 km^2 neighborhoods, using the example of AirDelhi dataset. Using Spatio-temporal GNNs we surpass existing works by 71.654 MSE a 79% reduction, even on unseen coordinates. New insights about AQI such as the existence of strong repetitive short-term patterns and changing spatial relations are also discovered. The code is available on GitHub.

Authors:Cameron Angliss, Jiaxun Cui, Jiaheng Hu, Arrasy Rahman, Peter Stone
Title: A Benchmark for Generalizing Across Diverse Team Strategies in Competitive Pokémon
Abstract:
Developing AI agents that can robustly adapt to dramatically different strategic landscapes without retraining is a central challenge for multi-agent learning. Pokémon Video Game Championships (VGC) is a domain with an extraordinarily large space of possible team configurations of approximately $10^{139}$ - far larger than those of Dota or Starcraft. The highly discrete, combinatorial nature of team building in Pokémon VGC causes optimal strategies to shift dramatically depending on both the team being piloted and the opponent's team, making generalization uniquely challenging. To advance research on this problem, we introduce VGC-Bench: a benchmark that provides critical infrastructure, standardizes evaluation protocols, and supplies human-play datasets and a range of baselines - from large-language-model agents and behavior cloning to reinforcement learning and empirical game-theoretic methods such as self-play, fictitious play, and double oracle. In the restricted setting where an agent is trained and evaluated on a single-team configuration, our methods are able to win against a professional VGC competitor. We extensively evaluated all baseline methods over progressively larger team sets and find that even the best-performing algorithm in the single-team setting struggles at scaling up as team size grows. Thus, policy generalization across diverse team strategies remains an open challenge for the community. Our code is open sourced at https://github.com/cameronangliss/VGC-Bench.

Authors:Cheng Wang, Siqi Chen, Donghua Mi, Yang Chen, Yudong Zhang, Yinsheng Li
Title: SWDL: Stratum-Wise Difference Learning with Deep Laplacian Pyramid for Semi-Supervised 3D Intracranial Hemorrhage Segmentation
Abstract:
Recent advances in medical imaging have established deep learning-based segmentation as the predominant approach, though it typically requires large amounts of manually annotated data. However, obtaining annotations for intracranial hemorrhage (ICH) remains particularly challenging due to the tedious and costly labeling process. Semi-supervised learning (SSL) has emerged as a promising solution to address the scarcity of labeled data, especially in volumetric medical image segmentation. Unlike conventional SSL methods that primarily focus on high-confidence pseudo-labels or consistency regularization, we propose SWDL-Net, a novel SSL framework that exploits the complementary advantages of Laplacian pyramid and deep convolutional upsampling. The Laplacian pyramid excels at edge sharpening, while deep convolutions enhance detail precision through flexible feature mapping. Our framework achieves superior segmentation of lesion details and boundaries through a difference learning mechanism that effectively integrates these complementary approaches. Extensive experiments on a 271-case ICH dataset and public benchmarks demonstrate that SWDL-Net outperforms current state-of-the-art methods in scenarios with only 2% labeled data. Additional evaluations on the publicly available Brain Hemorrhage Segmentation Dataset (BHSD) with 5% labeled data further confirm the superiority of our approach. Code and data have been released at https://github.com/SIAT-CT-LAB/SWDL.

Authors:Paul Janson, Benjamin Therien, Quentin Anthony, Xiaolong Huang, Abhinav Moudgil, Eugene Belilovsky
Title: PyLO: Towards Accessible Learned Optimizers in PyTorch
Abstract:
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optimizers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo

Authors:Hossein A. Rahmani, Varsha Ramineni, Nick Craswell, Bhaskar Mitra, Emine Yilmaz
Title: Towards Understanding Bias in Synthetic Data for Evaluation
Abstract:
Test collections are crucial for evaluating Information Retrieval (IR) systems. Creating a diverse set of user queries for these collections can be challenging, and obtaining relevance judgments, which indicate how well retrieved documents match a query, is often costly and resource-intensive. Recently, generating synthetic datasets using Large Language Models (LLMs) has gained attention in various applications. While previous work has used LLMs to generate synthetic queries or documents to improve ranking models, using LLMs to create synthetic test collections is still relatively unexplored. Previous work~\cite{rahmani2024synthetic} showed that synthetic test collections have the potential to be used for system evaluation, however, more analysis is needed to validate this claim. In this paper, we thoroughly investigate the reliability of synthetic test collections constructed using LLMs, where LLMs are used to generate synthetic queries, labels, or both. In particular, we examine the potential biases that might occur when such test collections are used for evaluation. We first empirically show the presence of such bias in evaluation results and analyse the effects it might have on system evaluation. We further validate the presence of such bias using a linear mixed-effects model. Our analysis shows that while the effect of bias present in evaluation results obtained using synthetic test collections could be significant, for e.g.~computing absolute system performance, its effect may not be as significant in comparing relative system performance. Codes and data are available at: https://github.com/rahmanidashti/BiasSyntheticData.

Authors:Hossein A. Rahmani, Varsha Ramineni, Emine Yilmaz, Nick Craswell, Bhaskar Mitra
Title: Towards Understanding Bias in Synthetic Data for Evaluation
Abstract:
Test collections are crucial for evaluating Information Retrieval (IR) systems. Creating a diverse set of user queries for these collections can be challenging, and obtaining relevance judgments, which indicate how well retrieved documents match a query, is often costly and resource-intensive. Recently, generating synthetic datasets using Large Language Models (LLMs) has gained attention in various applications. While previous work has used LLMs to generate synthetic queries or documents to improve ranking models, using LLMs to create synthetic test collections is still relatively unexplored. Previous work~\cite{rahmani2024synthetic} showed that synthetic test collections have the potential to be used for system evaluation, however, more analysis is needed to validate this claim. In this paper, we thoroughly investigate the reliability of synthetic test collections constructed using LLMs, where LLMs are used to generate synthetic queries, labels, or both. In particular, we examine the potential biases that might occur when such test collections are used for evaluation. We first empirically show the presence of such bias in evaluation results and analyse the effects it might have on system evaluation. We further validate the presence of such bias using a linear mixed-effects model. Our analysis shows that while the effect of bias present in evaluation results obtained using synthetic test collections could be significant, for e.g.~computing absolute system performance, its effect may not be as significant in comparing relative system performance. Codes and data are available at: https://github.com/rahmanidashti/BiasSyntheticData.

Authors:Han Wang, Di Wu, Lin Cheng, Shengping Gong, Xu Huang
Title: Learning-Based Stable Optimal Control for Infinite-Time Nonlinear Regulation Problems
Abstract:
Infinite-time nonlinear optimal regulation control is widely utilized in aerospace engineering as a systematic method for synthesizing stable controllers. However, conventional methods often rely on linearization hypothesis, while recent learning-based approaches rarely consider stability guarantees. This paper proposes a learning-based framework to learn a stable optimal controller for nonlinear optimal regulation problems. First, leveraging the equivalence between Pontryagin Maximum Principle (PMP) and Hamilton-Jacobi-Bellman (HJB) equation, we improve the backward generation of optimal examples (BGOE) method for infinite-time optimal regulation problems. A state-transition-matrix-guided data generation method is then proposed to efficiently generate a complete dataset that covers the desired state space. Finally, we incorporate the Lyapunov stability condition into the learning framework, ensuring the stability of the learned optimal policy by jointly learning the optimal value function and control policy. Simulations on three nonlinear optimal regulation problems show that the learned optimal policy achieves near-optimal regulation control and the code is provided at https://github.com/wong-han/PaperNORC

Authors:Eunkyu Park, Minyeong Kim, Gunhee Kim
Title: HalLoc: Token-level Localization of Hallucinations for Vision Language Models
Abstract:
Hallucinations pose a significant challenge to the reliability of large vision-language models, making their detection essential for ensuring accuracy in critical applications. Current detection methods often rely on computationally intensive models, leading to high latency and resource demands. Their definitive outcomes also fail to account for real-world scenarios where the line between hallucinated and truthful information is unclear. To address these issues, we propose HalLoc, a dataset designed for efficient, probabilistic hallucination detection. It features 150K token-level annotated samples, including hallucination types, across Visual Question Answering (VQA), instruction-following, and image captioning tasks. This dataset facilitates the development of models that detect hallucinations with graded confidence, enabling more informed user interactions. Additionally, we introduce a baseline model trained on HalLoc, offering low-overhead, concurrent hallucination detection during generation. The model can be seamlessly integrated into existing VLMs, improving reliability while preserving efficiency. The prospect of a robust plug-and-play hallucination detection module opens new avenues for enhancing the trustworthiness of vision-language models in real-world applications. The HalLoc dataset and code are publicly available at: https://github.com/dbsltm/cvpr25_halloc.

Authors:Emerson P. Grabke, Masoom A. Haider, Babak Taati
Title: Prompt-Guided Latent Diffusion with Predictive Class Conditioning for 3D Prostate MRI Generation
Abstract:
Objective: Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM strategies typically rely on short-prompt text encoders, non-medical LDMs, or large data volumes. These strategies can limit performance and scientific accessibility. We propose a novel LDM conditioning approach to address these limitations. Methods: We propose Class-Conditioned Efficient Large Language model Adapter (CCELLA), a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with free-text clinical reports and radiology classification. We also propose a data-efficient LDM framework centered around CCELLA and a proposed joint loss function. We first evaluate our method on 3D prostate MRI against state-of-the-art. We then augment a downstream classifier model training dataset with synthetic images from our method. Results: Our method achieves a 3D FID score of 0.025 on a size-limited 3D prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.071. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method during training improves classifier accuracy from 69% to 74%. Training a classifier solely on our method's synthetic images achieved comparable performance to training on real images alone. Conclusion: We show that our method improved both synthetic image quality and downstream classifier performance using limited data and minimal human annotation. Significance: The proposed CCELLA-centric framework enables radiology report and class-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility. Code from this study will be available at https://github.com/grabkeem/CCELLA

Authors:Yuhui Ding, Thomas Hofmann
Title: Scalable Non-Equivariant 3D Molecule Generation via Rotational Alignment
Abstract:
Equivariant diffusion models have achieved impressive performance in 3D molecule generation. These models incorporate Euclidean symmetries of 3D molecules by utilizing an SE(3)-equivariant denoising network. However, specialized equivariant architectures limit the scalability and efficiency of diffusion models. In this paper, we propose an approach that relaxes such equivariance constraints. Specifically, our approach learns a sample-dependent SO(3) transformation for each molecule to construct an aligned latent space. A non-equivariant diffusion model is then trained over the aligned representations. Experimental results demonstrate that our approach performs significantly better than previously reported non-equivariant models. It yields sample quality comparable to state-of-the-art equivariant diffusion models and offers improved training and sampling efficiency. Our code is available at https://github.com/skeletondyh/RADM

Authors:Fiona Ryan, Josef Sivic, Fabian Caba Heilbron, Judy Hoffman, James M. Rehg, Bryan Russell
Title: Improving Personalized Search with Regularized Low-Rank Parameter Updates
Abstract:
Personalized vision-language retrieval seeks to recognize new concepts (e.g. "my dog Fido") from only a few examples. This task is challenging because it requires not only learning a new concept from a few images, but also integrating the personal and general knowledge together to recognize the concept in different contexts. In this paper, we show how to effectively adapt the internal representation of a vision-language dual encoder model for personalized vision-language retrieval. We find that regularized low-rank adaption of a small set of parameters in the language encoder's final layer serves as a highly effective alternative to textual inversion for recognizing the personal concept while preserving general knowledge. Additionally, we explore strategies for combining parameters of multiple learned personal concepts, finding that parameter addition is effective. To evaluate how well general knowledge is preserved in a finetuned representation, we introduce a metric that measures image retrieval accuracy based on captions generated by a vision language model (VLM). Our approach achieves state-of-the-art accuracy on two benchmarks for personalized image retrieval with natural language queries - DeepFashion2 and ConCon-Chi - outperforming the prior art by 4%-22% on personal retrievals.

Authors:Bill Psomas, Dionysis Christopoulos, Eirini Baltzi, Ioannis Kakogeorgiou, Tilemachos Aravanis, Nikos Komodakis, Konstantinos Karantzalos, Yannis Avrithis, Giorgos Tolias
Title: Attention, Please! Revisiting Attentive Probing for Masked Image Modeling
Abstract:
As fine-tuning (FT) becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol for self-supervised learning (SSL). Yet, the standard linear probing (LP) fails to adequately reflect the potential of models trained with Masked Image Modeling (MIM), due to the distributed nature of patch tokens. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy-efficiency trade-off. We conduct a systematic study of existing methods, analyzing their mechanisms and benchmarking their performance. We introduce efficient probing (EP), a multi-query cross-attention mechanism that eliminates redundant projections, reduces the number of trainable parameters, and achieves up to a 10$\times$ speed-up over conventional multi-head attention. Despite its simplicity, EP outperforms LP and prior attentive probing approaches across seven benchmarks, generalizes well beyond MIM to diverse pre-training paradigms, produces interpretable attention maps, and achieves strong gains in low-shot and layer-wise settings. Code available at https://github.com/billpsomas/efficient-probing.

Authors:Bill Psomas, Dionysis Christopoulos, Eirini Baltzi, Ioannis Kakogeorgiou, Tilemachos Aravanis, Nikos Komodakis, Konstantinos Karantzalos, Yannis Avrithis, Giorgos Tolias
Title: Attention, Please! Revisiting Attentive Probing Through the Lens of Efficiency
Abstract:
As fine-tuning becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol. Yet, the standard linear probing fails to adequately reflect the potential of models whose pre-training optimizes representations of patch tokens rather than an explicit global representation. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy vs. parameter efficiency trade-off. We present the first comprehensive study of existing methods, analyzing their design choices and benchmarking their performance. Building on this, we propose efficient probing (EP), a simple yet effective multi-query cross-attention mechanism that eliminates redundant projections and reduces the number of trainable parameters. Despite its simplicity, EP outperforms linear probing and prior attentive probing approaches across seven benchmarks, generalizes well to diverse pre-training paradigms, and delivers strong low-shot and layer-wise gains. Beyond evaluation, our analysis uncovers emerging properties of EP, such as complementary attention maps, which open new directions for leveraging probing beyond protocol design. Code available at https://github.com/billpsomas/efficient-probing.

Authors:Yael Frischholz, Devis Tuia, Michael Lehning
Title: Retrieval of Surface Solar Radiation through Implicit Albedo Recovery from Temporal Context
Abstract:
Accurate retrieval of surface solar radiation (SSR) from satellite imagery critically depends on estimating the background reflectance that a spaceborne sensor would observe under clear-sky conditions. Deviations from this baseline can then be used to detect cloud presence and guide radiative transfer models in inferring atmospheric attenuation. Operational retrieval algorithms typically approximate background reflectance using monthly statistics, assuming surface properties vary slowly relative to atmospheric conditions. However, this approach fails in mountainous regions where intermittent snow cover and changing snow surfaces are frequent. We propose an attention-based emulator for SSR retrieval that implicitly learns to infer clear-sky surface reflectance from raw satellite image sequences. Built on the Temporo-Spatial Vision Transformer, our approach eliminates the need for hand-crafted features such as explicit albedo maps or cloud masks. The emulator is trained on instantaneous SSR estimates from the HelioMont algorithm over Switzerland, a region characterized by complex terrain and dynamic snow cover. Inputs include multi-spectral SEVIRI imagery from the Meteosat Second Generation platform, augmented with static topographic features and solar geometry. The target variable is HelioMont's SSR, computed as the sum of its direct and diffuse horizontal irradiance components, given at a spatial resolution of 1.7 km. We show that, when provided a sufficiently long temporal context, the model matches the performances of albedo-informed models, highlighting the model's ability to internally learn and exploit latent surface reflectance dynamics. Our geospatial analysis shows this effect is most powerful in mountainous regions and improves generalization in both simple and complex topographic settings. Code and datasets are publicly available at https://github.com/frischwood/HeMu-dev.git

Authors:Minye Shao, Zeyu Wang, Haoran Duan, Yawen Huang, Bing Zhai, Shizheng Wang, Yang Long, Yefeng Zheng
Title: Rethinking Brain Tumor Segmentation from the Frequency Domain Perspective
Abstract:
Precise segmentation of brain tumors, particularly contrast-enhancing regions visible in post-contrast MRI (areas highlighted by contrast agent injection), is crucial for accurate clinical diagnosis and treatment planning but remains challenging. However, current methods exhibit notable performance degradation in segmenting these enhancing brain tumor areas, largely due to insufficient consideration of MRI-specific tumor features such as complex textures and directional variations. To address this, we propose the Harmonized Frequency Fusion Network (HFF-Net), which rethinks brain tumor segmentation from a frequency-domain perspective. To comprehensively characterize tumor regions, we develop a Frequency Domain Decomposition (FDD) module that separates MRI images into low-frequency components, capturing smooth tumor contours and high-frequency components, highlighting detailed textures and directional edges. To further enhance sensitivity to tumor boundaries, we introduce an Adaptive Laplacian Convolution (ALC) module that adaptively emphasizes critical high-frequency details using dynamically updated convolution kernels. To effectively fuse tumor features across multiple scales, we design a Frequency Domain Cross-Attention (FDCA) integrating semantic, positional, and slice-specific information. We further validate and interpret frequency-domain improvements through visualization, theoretical reasoning, and experimental analyses. Extensive experiments on four public datasets demonstrate that HFF-Net achieves an average relative improvement of 4.48\% (ranging from 2.39\% to 7.72\%) in the mean Dice scores across the three major subregions, and an average relative improvement of 7.33% (ranging from 5.96% to 8.64%) in the segmentation of contrast-enhancing tumor regions, while maintaining favorable computational efficiency and clinical applicability. Code: https://github.com/VinyehShaw/HFF.

Authors:Gabriel Orlanski, Nicholas Roberts, Aws Albarghouthi, Frederic Sala
Title: Reward Models Enable Scalable Code Verification by Trading Accuracy for Throughput
Abstract:
The standard paradigm for solving coding tasks via large language models (LLMs) is to generate-then-rank programs, where the latter step uses a verifier in the ranking process. The growing consensus is that a comprehensive verifier (e.g., a full test suite) should be prioritized over an outcome reward model (ORM) whenever possible, with little consideration given to the trade-offs involved. We aim to challenge this assumption by systematically exploring the tradeoff between speed and accuracy. We find that ORMs play a crucial role in scaling verification through trading accuracy for speed, even when a comprehensive verifier is available. Their value becomes especially apparent when used in a generate-prune-then-rank approach, where a faster but less accurate verifier removes incorrect solutions prior to ranking -- leading to a system that is 11.65x faster while only being 8.33% less accurate than the full test suite. We analyze the generate-prune-then-rank approach and show that it works by filtering out incorrect but highly ranked solutions. These findings enable the design of scalable and accurate program ranking systems.

Authors:Shangpin Peng, Weinong Wang, Zhuotao Tian, Senqiao Yang, Xing Wu, Haotian Xu, Chengquan Zhang, Takashi Isobe, Baotian Hu, Min Zhang
Title: Omni-DPO: A Dual-Perspective Paradigm for Dynamic Preference Learning of LLMs
Abstract:
Direct Preference Optimization (DPO) has become a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based approaches typically treat all preference pairs uniformly, ignoring critical variations in their inherent quality and learning utility, leading to suboptimal data utilization and performance. To address this challenge, we propose Omni-DPO, a dual-perspective optimization framework that jointly accounts for (1) the inherent quality of each preference pair and (2) the model's evolving performance on those pairs. By adaptively weighting samples according to both data quality and the model's learning dynamics during training, Omni-DPO enables more effective training data utilization and achieves better performance. Experimental results on various models and benchmarks demonstrate the superiority and generalization capabilities of Omni-DPO. On textual understanding tasks, Gemma-2-9b-it finetuned with Omni-DPO beats the leading LLM, Claude 3 Opus, by a significant margin of 6.7 points on the Arena-Hard benchmark. On mathematical reasoning tasks, Omni-DPO consistently outperforms the baseline methods across all benchmarks, providing strong empirical evidence for the effectiveness and robustness of our approach. Code and models will be available at https://github.com/pspdada/Omni-DPO.

Authors:Javad Rajabi, Soroush Mehraban, Seyedmorteza Sadat, Babak Taati
Title: Token Perturbation Guidance for Diffusion Models
Abstract:
Classifier-free guidance (CFG) has become an essential component of modern diffusion models to enhance both generation quality and alignment with input conditions. However, CFG requires specific training procedures and is limited to conditional generation. To address these limitations, we propose Token Perturbation Guidance (TPG), a novel method that applies perturbation matrices directly to intermediate token representations within the diffusion network. TPG employs a norm-preserving shuffling operation to provide effective and stable guidance signals that improve generation quality without architectural changes. As a result, TPG is training-free and agnostic to input conditions, making it readily applicable to both conditional and unconditional generation. We further analyze the guidance term provided by TPG and show that its effect on sampling more closely resembles CFG compared to existing training-free guidance techniques. Extensive experiments on SDXL and Stable Diffusion 2.1 show that TPG achieves nearly a 2$\times$ improvement in FID for unconditional generation over the SDXL baseline, while closely matching CFG in prompt alignment. These results establish TPG as a general, condition-agnostic guidance method that brings CFG-like benefits to a broader class of diffusion models. The code is available at https://github.com/TaatiTeam/Token-Perturbation-Guidance

Authors:Yiming Dou, Wonseok Oh, Yuqing Luo, Antonio Loquercio, Andrew Owens
Title: Hearing Hands: Generating Sounds from Physical Interactions in 3D Scenes
Abstract:
We study the problem of making 3D scene reconstructions interactive by asking the following question: can we predict the sounds of human hands physically interacting with a scene? First, we record a video of a human manipulating objects within a 3D scene using their hands. We then use these action-sound pairs to train a rectified flow model to map 3D hand trajectories to their corresponding audio. At test time, a user can query the model for other actions, parameterized as sequences of hand poses, to estimate their corresponding sounds. In our experiments, we find that our generated sounds accurately convey material properties and actions, and that they are often indistinguishable to human observers from real sounds. Project page: https://www.yimingdou.com/hearing_hands/

Authors:Jiaxiang Tang, Ruijie Lu, Zhaoshuo Li, Zekun Hao, Xuan Li, Fangyin Wei, Shuran Song, Gang Zeng, Ming-Yu Liu, Tsung-Yi Lin
Title: Efficient Part-level 3D Object Generation via Dual Volume Packing
Abstract:
Recent progress in 3D object generation has greatly improved both the quality and efficiency. However, most existing methods generate a single mesh with all parts fused together, which limits the ability to edit or manipulate individual parts. A key challenge is that different objects may have a varying number of parts. To address this, we propose a new end-to-end framework for part-level 3D object generation. Given a single input image, our method generates high-quality 3D objects with an arbitrary number of complete and semantically meaningful parts. We introduce a dual volume packing strategy that organizes all parts into two complementary volumes, allowing for the creation of complete and interleaved parts that assemble into the final object. Experiments show that our model achieves better quality, diversity, and generalization than previous image-based part-level generation methods.

Authors:Sushant Gautam, Michael A. Riegler, PÃ¥l Halvorsen
Title: Kvasir-VQA-x1: A Multimodal Dataset for Medical Reasoning and Robust MedVQA in Gastrointestinal Endoscopy
Abstract:
Medical Visual Question Answering (MedVQA) is a promising field for developing clinical decision support systems, yet progress is often limited by the available datasets, which can lack clinical complexity and visual diversity. To address these gaps, we introduce Kvasir-VQA-x1, a new, large-scale dataset for gastrointestinal (GI) endoscopy. Our work significantly expands upon the original Kvasir-VQA by incorporating 159,549 new question-answer pairs that are designed to test deeper clinical reasoning. We developed a systematic method using large language models to generate these questions, which are stratified by complexity to better assess a model's inference capabilities. To ensure our dataset prepares models for real-world clinical scenarios, we have also introduced a variety of visual augmentations that mimic common imaging artifacts. The dataset is structured to support two main evaluation tracks: one for standard VQA performance and another to test model robustness against these visual perturbations. By providing a more challenging and clinically relevant benchmark, Kvasir-VQA-x1 aims to accelerate the development of more reliable and effective multimodal AI systems for use in clinical settings. The dataset is fully accessible and adheres to FAIR data principles, making it a valuable resource for the wider research community. Code and data: https://github.com/Simula/Kvasir-VQA-x1 and https://huggingface.co/datasets/SimulaMet/Kvasir-VQA-x1

Authors:Benjamin Reichman, Constantin Patsch, Jack Truxal, Atishay Jain, Larry Heck
Title: Outside Knowledge Conversational Video (OKCV) Dataset -- Dialoguing over Videos
Abstract:
In outside knowledge visual question answering (OK-VQA), the model must identify relevant visual information within an image and incorporate external knowledge to accurately respond to a question. Extending this task to a visually grounded dialogue setting based on videos, a conversational model must both recognize pertinent visual details over time and answer questions where the required information is not necessarily present in the visual information. Moreover, the context of the overall conversation must be considered for the subsequent dialogue. To explore this task, we introduce a dataset comprised of $2,017$ videos with $5,986$ human-annotated dialogues consisting of $40,954$ interleaved dialogue turns. While the dialogue context is visually grounded in specific video segments, the questions further require external knowledge that is not visually present. Thus, the model not only has to identify relevant video parts but also leverage external knowledge to converse within the dialogue. We further provide several baselines evaluated on our dataset and show future challenges associated with this task. The dataset is made publicly available here: https://github.com/c-patsch/OKCV.

Authors:Ziyi Wang, Yanran Zhang, Jie Zhou, Jiwen Lu
Title: UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting
Abstract:
The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D.

Authors:Wuwei Zhang, Fangcong Yin, Howard Yen, Danqi Chen, Xi Ye
Title: Query-Focused Retrieval Heads Improve Long-Context Reasoning and Re-ranking
Abstract:
Recent work has identified retrieval heads, a subset of attention heads responsible for retrieving salient information in long-context language models (LMs), as measured by their copy-paste behavior in Needlein-a-Haystack tasks. In this paper, we introduce QRHead (Query-Focused Retrieval Head), an improved set of attention heads that enhance retrieval from long context. We identify QRHead by aggregating attention scores with respect to the input query, using a handful of examples from real-world tasks (e.g., long-context QA). We further introduce QRRetriever, an efficient and effective retriever that uses the accumulated attention mass of QRHead as retrieval scores. We use QRRetriever for long-context reasoning by selecting the most relevant parts with the highest retrieval scores. On multi-hop reasoning tasks LongMemEval and CLIPPER, this yields over 10% performance gains over full context and outperforms strong dense retrievers. We also evaluate QRRetriever as a re-ranker on the BEIR benchmark and find that it achieves strong zero-shot performance, outperforming other LLM-based re-rankers such as RankGPT. Further analysis shows that both the query-context attention scoring and task selection are crucial for identifying QRHead with strong downstream utility. Overall, our work contributes a general-purpose retriever and offers interpretability insights into the long-context capabilities of LMs.

Authors:Hao Peng, Yunjia Qi, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
Title: VerIF: Verification Engineering for Reinforcement Learning in Instruction Following
Abstract:
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs), with verification engineering playing a central role. However, best practices for RL in instruction following remain underexplored. In this work, we explore the verification challenge in RL for instruction following and propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model (e.g., QwQ-32B). To support this approach, we construct a high-quality instruction-following dataset, VerInstruct, containing approximately 22,000 instances with associated verification signals. We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks. The trained models reach state-of-the-art performance among models of comparable size and generalize well to unseen constraints. We further observe that their general capabilities remain unaffected, suggesting that RL with VerIF can be integrated into existing RL recipes to enhance overall model performance. We have released our datasets, codes, and models to facilitate future research at https://github.com/THU-KEG/VerIF.

Authors:Jianhan Qi, Yuheng Jia, Hui Liu, Junhui Hou
Title: Structural-Spectral Graph Convolution with Evidential Edge Learning for Hyperspectral Image Clustering
Abstract:
Hyperspectral image (HSI) clustering assigns similar pixels to the same class without any annotations, which is an important yet challenging task. For large-scale HSIs, most methods rely on superpixel segmentation and perform superpixel-level clustering based on graph neural networks (GNNs). However, existing GNNs cannot fully exploit the spectral information of the input HSI, and the inaccurate superpixel topological graph may lead to the confusion of different class semantics during information aggregation. To address these challenges, we first propose a structural-spectral graph convolutional operator (SSGCO) tailored for graph-structured HSI superpixels to improve their representation quality through the co-extraction of spatial and spectral features. Second, we propose an evidence-guided adaptive edge learning (EGAEL) module that adaptively predicts and refines edge weights in the superpixel topological graph. We integrate the proposed method into a contrastive learning framework to achieve clustering, where representation learning and clustering are simultaneously conducted. Experiments demonstrate that the proposed method improves clustering accuracy by 2.61%, 6.06%, 4.96% and 3.15% over the best compared methods on four HSI datasets. Our code is available at https://github.com/jhqi/SSGCO-EGAEL.

Authors:Yan Zhang, Li Deng, Lixin Duan, Sami Azam
Title: Discrete Scale-invariant Metric Learning for Efficient Collaborative Filtering
Abstract:
Metric learning has attracted extensive interest for its ability to provide personalized recommendations based on the importance of observed user-item interactions. Current metric learning methods aim to push negative items away from the corresponding users and positive items by an absolute geometrical distance margin. However, items may come from imbalanced categories with different intra-class variations. Thus, the absolute distance margin may not be ideal for estimating the difference between user preferences over imbalanced items. To this end, we propose a new method, named discrete scale-invariant metric learning (DSIML), by adding binary constraints to users and items, which maps users and items into binary codes of a shared Hamming subspace to speed up the online recommendation. Specifically, we firstly propose a scale-invariant margin based on angles at the negative item points in the shared Hamming subspace. Then, we derive a scale-invariant triple hinge loss based on the margin. To capture more preference difference information, we integrate a pairwise ranking loss into the scale-invariant loss in the proposed model. Due to the difficulty of directly optimizing the mixed integer optimization problem formulated with \textit{log-sum-exp} functions, we seek to optimize its variational quadratic upper bound and learn hash codes with an alternating optimization strategy. Experiments on benchmark datasets clearly show that our proposed method is superior to competitive metric learning and hashing-based baselines for recommender systems. The implementation code is available at https://github.com/AnonyFeb/dsml.

Authors:Siyu Chen, Ting Han, Chengzheng Fu, Changshe Zhang, Chaolei Wang, Jinhe Su, Guorong Cai, Meiliu Wu
Title: Leveraging Depth and Language for Open-Vocabulary Domain-Generalized Semantic Segmentation
Abstract:
Open-Vocabulary semantic segmentation (OVSS) and domain generalization in semantic segmentation (DGSS) highlight a subtle complementarity that motivates Open-Vocabulary Domain-Generalized Semantic Segmentation (OV-DGSS). OV-DGSS aims to generate pixel-level masks for unseen categories while maintaining robustness across unseen domains, a critical capability for real-world scenarios such as autonomous driving in adverse conditions. We introduce Vireo, a novel single-stage framework for OV-DGSS that unifies the strengths of OVSS and DGSS for the first time. Vireo builds upon the frozen Visual Foundation Models (VFMs) and incorporates scene geometry via Depth VFMs to extract domain-invariant structural features. To bridge the gap between visual and textual modalities under domain shift, we propose three key components: (1) GeoText Prompts, which align geometric features with language cues and progressively refine VFM encoder representations; (2) Coarse Mask Prior Embedding (CMPE) for enhancing gradient flow for faster convergence and stronger textual influence; and (3) the Domain-Open-Vocabulary Vector Embedding Head (DOV-VEH), which fuses refined structural and semantic features for robust prediction. Comprehensive evaluation on these components demonstrates the effectiveness of our designs. Our proposed Vireo achieves the state-of-the-art performance and surpasses existing methods by a large margin in both domain generalization and open-vocabulary recognition, offering a unified and scalable solution for robust visual understanding in diverse and dynamic environments. Code is available at https://github.com/anonymouse-9c53tp182bvz/Vireo.

Authors:Panagiotis Kaliosis, John Pavlopoulos
Title: Learning to Align: Addressing Character Frequency Distribution Shifts in Handwritten Text Recognition
Abstract:
Handwritten text recognition aims to convert visual input into machine-readable text, and it remains challenging due to the evolving and context-dependent nature of handwriting. Character sets change over time, and character frequency distributions shift across historical periods or regions, often causing models trained on broad, heterogeneous corpora to underperform on specific subsets. To tackle this, we propose a novel loss function that incorporates the Wasserstein distance between the character frequency distribution of the predicted text and a target distribution empirically derived from training data. By penalizing divergence from expected distributions, our approach enhances both accuracy and robustness under temporal and contextual intra-dataset shifts. Furthermore, we demonstrate that character distribution alignment can also improve existing models at inference time without requiring retraining by integrating it as a scoring function in a guided decoding scheme. Experimental results across multiple datasets and architectures confirm the effectiveness of our method in boosting generalization and performance. We open source our code at https://github.com/pkaliosis/fada.

Authors:Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun, Benyou Wang, Xiang Wang, Junyang Lin, Dayiheng Liu
Title: CoRT: Code-integrated Reasoning within Thinking
Abstract:
Large Reasoning Models (LRMs) like o1 and DeepSeek-R1 have shown remarkable progress in natural language reasoning with long chain-of-thought (CoT), yet they remain inefficient or inaccurate when handling complex mathematical operations. Addressing these limitations through computational tools (e.g., computation libraries and symbolic solvers) is promising, but it introduces a technical challenge: Code Interpreter (CI) brings external knowledge beyond the model's internal text representations, thus the direct combination is not efficient. This paper introduces CoRT, a post-training framework for teaching LRMs to leverage CI effectively and efficiently. As a first step, we address the data scarcity issue by synthesizing code-integrated reasoning data through Hint-Engineering, which strategically inserts different hints at appropriate positions to optimize LRM-CI interaction. We manually create 30 high-quality samples, upon which we post-train models ranging from 1.5B to 32B parameters, with supervised fine-tuning, rejection fine-tuning and reinforcement learning. Our experimental results demonstrate that Hint-Engineering models achieve 4\% and 8\% absolute improvements on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B respectively, across five challenging mathematical reasoning datasets. Furthermore, Hint-Engineering models use about 30\% fewer tokens for the 32B model and 50\% fewer tokens for the 1.5B model compared with the natural language models. The models and code are available at https://github.com/ChengpengLi1003/CoRT.

Authors:Zhenran Xu, Yiyu Wang, Xue Yang, Longyue Wang, Weihua Luo, Kaifu Zhang, Baotian Hu, Min Zhang
Title: ComfyUI-R1: Exploring Reasoning Models for Workflow Generation
Abstract:
AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation.

Authors:Yuting Li, Lai Wei, Kaipeng Zheng, Jingyuan Huang, Linghe Kong, Lichao Sun, Weiran Huang
Title: Vision Matters: Simple Visual Perturbations Can Boost Multimodal Math Reasoning
Abstract:
Despite the rapid progress of multimodal large language models (MLLMs), they have largely overlooked the importance of visual processing. In a simple yet revealing experiment, we interestingly find that language-only models, when provided with image captions, can achieve comparable or even better performance than MLLMs that consume raw visual inputs. This suggests that current MLLMs may generate accurate visual descriptions but fail to effectively integrate them during reasoning. Motivated by this, we propose a simple visual perturbation framework that enhances perceptual robustness without requiring algorithmic modifications or additional training data. Our approach introduces three targeted perturbations: distractor concatenation, dominance-preserving mixup, and random rotation, that can be easily integrated into existing post-training pipelines including SFT, DPO, and GRPO. Through extensive experiments across multiple datasets, we demonstrate consistent improvements in mathematical reasoning performance, with gains comparable to those achieved through algorithmic changes. Additionally, we achieve competitive performance among open-source 7B RL-tuned models by training Qwen2.5-VL-7B with visual perturbation. Through comprehensive ablation studies, we analyze the effectiveness of different perturbation strategies, revealing that each perturbation type contributes uniquely to different aspects of visual reasoning. Our findings highlight the critical role of visual perturbation in multimodal mathematical reasoning: better reasoning begins with better seeing. Our code is available at https://github.com/YutingLi0606/Vision-Matters.

Authors:Yuting Li, Lai Wei, Kaipeng Zheng, Jingyuan Huang, Guilin Li, Bo Wang, Linghe Kong, Lichao Sun, Weiran Huang
Title: Revisiting Visual Understanding in Multimodal Reasoning through a Lens of Image Perturbation
Abstract:
Despite the rapid progress of multimodal large language models (MLLMs), they have largely overlooked the importance of visual processing. In a simple yet revealing experiment, we interestingly find that language-only models, when provided with image captions, can achieve comparable or even better performance than MLLMs that consume raw visual inputs. This suggests that current MLLMs may generate accurate visual descriptions but fail to effectively integrate them during reasoning. Motivated by this, we propose a simple visual perturbation framework that enhances perceptual robustness without requiring algorithmic modifications or additional training data. Our approach introduces three targeted perturbations: distractor concatenation, dominance-preserving mixup, and random rotation, that can be easily integrated into existing post-training pipelines including SFT, DPO, and GRPO. Through extensive experiments across multiple datasets, we demonstrate consistent improvements in mathematical reasoning performance, with gains comparable to those achieved through algorithmic changes. Additionally, we achieve competitive performance among open-source 7B RL-tuned models by training Qwen2.5-VL-7B with visual perturbation. Through comprehensive ablation studies, we analyze the effectiveness of different perturbation strategies, revealing that each perturbation type contributes uniquely to different aspects of visual reasoning. Our findings highlight the critical role of visual perturbation in multimodal mathematical reasoning: better reasoning begins with better seeing. Our code is available at https://github.com/YutingLi0606/Vision-Matters.

Authors:Ye Zhang, Yu Zhou, Yifeng Wang, Jun Xiao, Ziyue Wang, Yongbing Zhang, Jianxu Chen
Title: The Four Color Theorem for Cell Instance Segmentation
Abstract:
Cell instance segmentation is critical to analyzing biomedical images, yet accurately distinguishing tightly touching cells remains a persistent challenge. Existing instance segmentation frameworks, including detection-based, contour-based, and distance mapping-based approaches, have made significant progress, but balancing model performance with computational efficiency remains an open problem. In this paper, we propose a novel cell instance segmentation method inspired by the four-color theorem. By conceptualizing cells as countries and tissues as oceans, we introduce a four-color encoding scheme that ensures adjacent instances receive distinct labels. This reformulation transforms instance segmentation into a constrained semantic segmentation problem with only four predicted classes, substantially simplifying the instance differentiation process. To solve the training instability caused by the non-uniqueness of four-color encoding, we design an asymptotic training strategy and encoding transformation method. Extensive experiments on various modes demonstrate our approach achieves state-of-the-art performance. The code is available at https://github.com/zhangye-zoe/FCIS.

Authors:Xulin Ma, Jiankai Tang, Zhang Jiang, Songqin Cheng, Yuanchun Shi, Dong LI, Xin Liu, Daniel McDuff, Xiaojing Liu, Yuntao Wang
Title: Non-Contact Health Monitoring During Daily Personal Care Routines
Abstract:
Remote photoplethysmography (rPPG) enables non-contact, continuous monitoring of physiological signals and offers a practical alternative to traditional health sensing methods. Although rPPG is promising for daily health monitoring, its application in long-term personal care scenarios, such as mirror-facing routines in high-altitude environments, remains challenging due to ambient lighting variations, frequent occlusions from hand movements, and dynamic facial postures. To address these challenges, we present LADH (Long-term Altitude Daily Health), the first long-term rPPG dataset containing 240 synchronized RGB and infrared (IR) facial videos from 21 participants across five common personal care scenarios, along with ground-truth PPG, respiration, and blood oxygen signals. Our experiments demonstrate that combining RGB and IR video inputs improves the accuracy and robustness of non-contact physiological monitoring, achieving a mean absolute error (MAE) of 4.99 BPM in heart rate estimation. Furthermore, we find that multi-task learning enhances performance across multiple physiological indicators simultaneously. Dataset and code are open at https://github.com/McJackTang/FusionVitals.

Authors:Changwei Wu, Yifei Chen, Yuxin Du, Jinying Zong, Jie Dong, Mingxuan Liu, Yong Peng, Jin Fan, Feiwei Qin, Changmiao Wang
Title: Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Abstract:
Early diagnosis of Alzheimer's Disease (AD), especially at the mild cognitive impairment (MCI) stage, is vital yet hindered by subjective assessments and the high cost of multimodal imaging modalities. Although deep learning methods offer automated alternatives, their energy inefficiency and computational demands limit real-world deployment, particularly in resource-constrained settings. As a brain-inspired paradigm, spiking neural networks (SNNs) are inherently well-suited for modeling the sparse, event-driven patterns of neural degeneration in AD, offering a promising foundation for interpretable and low-power medical diagnostics. However, existing SNNs often suffer from weak expressiveness and unstable training, which restrict their effectiveness in complex medical tasks. To address these limitations, we propose FasterSNN, a hybrid neural architecture that integrates biologically inspired LIF neurons with region-adaptive convolution and multi-scale spiking attention. This design enables sparse, efficient processing of 3D MRI while preserving diagnostic accuracy. Experiments on benchmark datasets demonstrate that FasterSNN achieves competitive performance with substantially improved efficiency and stability, supporting its potential for practical AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.

Authors:Haoyi Song, Ruihan Ji, Naichen Shi, Fan Lai, Raed Al Kontar
Title: Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models
Abstract:
Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ). Existing UQ methods are often heuristic and lack a probabilistic foundation. This paper begins by providing a theoretical justification for the role of perturbations in UQ for LLMs. We then introduce a dual random walk perspective, modeling input-output pairs as two Markov chains with transition probabilities defined by semantic similarity. Building on this, we propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations. Within this framework, we define a new uncertainty measure, Inv-Entropy. A key strength of our framework is its flexibility: it supports various definitions of uncertainty measures, embeddings, perturbation strategies, and similarity metrics. We also propose GAAP, a perturbation algorithm based on genetic algorithms, which enhances the diversity of sampled inputs. In addition, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU), which directly assesses uncertainty without relying on correctness as a proxy. Extensive experiments demonstrate that Inv-Entropy outperforms existing semantic UQ methods. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs.

Authors:Maik Dannecker, Vasiliki Sideri-Lampretsa, Sophie Starck, Angeline Mihailov, Mathieu Milh, Nadine Girard, Guillaume Auzias, Daniel Rueckert
Title: CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain
Abstract:
Magnetic resonance imaging of fetal and neonatal brains reveals rapid neurodevelopment marked by substantial anatomical changes unfolding within days. Studying this critical stage of the developing human brain, therefore, requires accurate brain models-referred to as atlases-of high spatial and temporal resolution. To meet these demands, established traditional atlases and recently proposed deep learning-based methods rely on large and comprehensive datasets. This poses a major challenge for studying brains in the presence of pathologies for which data remains scarce. We address this limitation with CINeMA (Conditional Implicit Neural Multi-Modal Atlas), a novel framework for creating high-resolution, spatio-temporal, multimodal brain atlases, suitable for low-data settings. Unlike established methods, CINeMA operates in latent space, avoiding compute-intensive image registration and reducing atlas construction times from days to minutes. Furthermore, it enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC). CINeMA supports downstream tasks such as tissue segmentation and age prediction whereas its generative properties enable synthetic data creation and anatomically informed data augmentation. Surpassing state-of-the-art methods in accuracy, efficiency, and versatility, CINeMA represents a powerful tool for advancing brain research. We release the code and atlases at https://github.com/m-dannecker/CINeMA.

Authors:Kunyu Peng, Junchao Huang, Xiangsheng Huang, Di Wen, Junwei Zheng, Yufan Chen, Kailun Yang, Jiamin Wu, Chongqing Hao, Rainer Stiefelhagen
Title: HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios
Abstract:
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action recognition methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The code is available at https://github.com/KPeng9510/HopaDIFF.git.

Authors:Kunyu Peng, Junchao Huang, Xiangsheng Huang, Di Wen, Junwei Zheng, Yufan Chen, Kailun Yang, Jiamin Wu, Chongqing Hao, Rainer Stiefelhagen
Title: HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios
Abstract:
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action segmentation methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF.

Authors:Tianjun Yao, Haoxuan Li, Zhiqiang Shen, Pan Li, Tongliang Liu, Kun Zhang
Title: Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
Abstract:
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by $2.66\%-20.34\%$, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.

Authors:Yanzhao Shi, Xiaodan Zhang, Junzhong Ji, Haoning Jiang, Chengxin Zheng, Yinong Wang, Liangqiong Qu
Title: HSENet: Hybrid Spatial Encoding Network for 3D Medical Vision-Language Understanding
Abstract:
Automated 3D CT diagnosis empowers clinicians to make timely, evidence-based decisions by enhancing diagnostic accuracy and workflow efficiency. While multimodal large language models (MLLMs) exhibit promising performance in visual-language understanding, existing methods mainly focus on 2D medical images, which fundamentally limits their ability to capture complex 3D anatomical structures. This limitation often leads to misinterpretation of subtle pathologies and causes diagnostic hallucinations. In this paper, we present Hybrid Spatial Encoding Network (HSENet), a framework that exploits enriched 3D medical visual cues by effective visual perception and projection for accurate and robust vision-language understanding. Specifically, HSENet employs dual-3D vision encoders to perceive both global volumetric contexts and fine-grained anatomical details, which are pre-trained by dual-stage alignment with diagnostic reports. Furthermore, we propose Spatial Packer, an efficient multimodal projector that condenses high-resolution 3D spatial regions into a compact set of informative visual tokens via centroid-based compression. By assigning spatial packers with dual-3D vision encoders, HSENet can seamlessly perceive and transfer hybrid visual representations to LLM's semantic space, facilitating accurate diagnostic text generation. Experimental results demonstrate that our method achieves state-of-the-art performance in 3D language-visual retrieval (39.85% of R@100, +5.96% gain), 3D medical report generation (24.01% of BLEU-4, +8.01% gain), and 3D visual question answering (73.60% of Major Class Accuracy, +1.99% gain), confirming its effectiveness. Our code is available at https://github.com/YanzhaoShi/HSENet.

Authors:Giacomo Rosin, Muhammad Rameez Ur Rahman, Sebastiano Vascon
Title: ECAM: A Contrastive Learning Approach to Avoid Environmental Collision in Trajectory Forecasting
Abstract:
Human trajectory forecasting is crucial in applications such as autonomous driving, robotics and surveillance. Accurate forecasting requires models to consider various factors, including social interactions, multi-modal predictions, pedestrian intention and environmental context. While existing methods account for these factors, they often overlook the impact of the environment, which leads to collisions with obstacles. This paper introduces ECAM (Environmental Collision Avoidance Module), a contrastive learning-based module to enhance collision avoidance ability with the environment. The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions. We evaluate our method on the ETH/UCY dataset and quantitatively and qualitatively demonstrate its collision avoidance capabilities. Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module. The code is available at https://github.com/CVML-CFU/ECAM.

Authors:Lipei Xie, Yingxin Li, Huiping Zhuang
Title: Analytic Task Scheduler: Recursive Least Squares Based Method for Continual Learning in Embodied Foundation Models
Abstract:
Embodied foundation models are crucial for Artificial Intelligence (AI) interacting with the physical world by integrating multi-modal inputs, such as proprioception, vision and language, to understand human intentions and generate actions to control robots. While these models demonstrate strong generalization and few-shot learning capabilities, they face significant challenges in continually acquiring new skills without forgetting previously learned skills, a problem known as catastrophic forgetting. To address this issue, we propose the Analytic Task Scheduler (ATS), a novel framework for continual learning in embodied foundation models. ATS consists of a task-specific model library, where each model is fine-tuned independently on a single task, and an analytic scheduler trained using recursive least squares (RLS) to learn the mapping between language instructions and task-specific models. This architecture enables accurate task recognition and dynamic model selection while fundamentally avoiding parameter interference across tasks. The scheduler updates its parameters incrementally using only statistics (autocorrelation and cross-correlation matrices), enabling forgetting-resistant learning without the need to revisit historical data. We validate ATS on a real-world robot platform (RM65B), demonstrating superior resistance to forgetting and strong adaptability to task variations. The results highlight ATS as an effective, scalable, and deployable solution for continual learning in embodied foundation models operating in complex, dynamic environments. Our code will be available at https://github.com/MIAA-Embodied-AI/AnalyticTaskScheduler

Authors:Mingxiao Li, Mang Ning, Marie-Francine Moens
Title: Consistent Story Generation with Asymmetry Zigzag Sampling
Abstract:
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.

Authors:Songze Li, Mingxuan Zhang, Kang Wei, Shouling Ji
Title: TooBadRL: Trigger Optimization to Boost Effectiveness of Backdoor Attacks on Deep Reinforcement Learning
Abstract:
Deep reinforcement learning (DRL) has achieved remarkable success in a wide range of sequential decision-making domains, including robotics, healthcare, smart grids, and finance. Recent research demonstrates that attackers can efficiently exploit system vulnerabilities during the training phase to execute backdoor attacks, producing malicious actions when specific trigger patterns are present in the state observations. However, most existing backdoor attacks rely primarily on simplistic and heuristic trigger configurations, overlooking the potential efficacy of trigger optimization. To address this gap, we introduce TooBadRL (Trigger Optimization to Boost Effectiveness of Backdoor Attacks on DRL), the first framework to systematically optimize DRL backdoor triggers along three critical axes, i.e., temporal, spatial, and magnitude. Specifically, we first introduce a performance-aware adaptive freezing mechanism for injection timing. Then, we formulate dimension selection as a cooperative game, utilizing Shapley value analysis to identify the most influential state variable for the injection dimension. Furthermore, we propose a gradient-based adversarial procedure to optimize the injection magnitude under environment constraints. Evaluations on three mainstream DRL algorithms and nine benchmark tasks show that TooBadRL significantly improves attack success rates, while ensuring minimal degradation of normal task performance. These results highlight the previously underappreciated importance of principled trigger optimization in DRL backdoor attacks. The source code of TooBadRL can be found at https://github.com/S3IC-Lab/TooBadRL.

Authors:Ligao Deng, Yupeng Deng, Yu Meng, Jingbo Chen, Zhihao Xi, Diyou Liu, Qifeng Chu
Title: GLD-Road:A global-local decoding road network extraction model for remote sensing images
Abstract:
Road networks are crucial for mapping, autonomous driving, and disaster response. While manual annotation is costly, deep learning offers efficient extraction. Current methods include postprocessing (prone to errors), global parallel (fast but misses nodes), and local iterative (accurate but slow). We propose GLD-Road, a two-stage model combining global efficiency and local precision. First, it detects road nodes and connects them via a Connect Module. Then, it iteratively refines broken roads using local searches, drastically reducing computation. Experiments show GLD-Road outperforms state-of-the-art methods, improving APLS by 1.9% (City-Scale) and 0.67% (SpaceNet3). It also reduces retrieval time by 40% vs. Sat2Graph (global) and 92% vs. RNGDet++ (local). The experimental results are available at https://github.com/ucas-dlg/GLD-Road.

Authors:Beomsik Cho, Jaehyung Kim
Title: Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$.

Authors:Yu Sun, Xingyu Qian, Weiwen Xu, Hao Zhang, Chenghao Xiao, Long Li, Deli Zhao, Wenbing Huang, Tingyang Xu, Qifeng Bai, Yu Rong
Title: ReasonMed: A 370K Multi-Agent Generated Dataset for Advancing Medical Reasoning
Abstract:
Reasoning-based large language models have excelled in mathematics and programming, yet their potential in knowledge-intensive medical question answering remains underexplored and insufficiently validated in clinical contexts. To bridge this gap, we introduce ReasonMed, the largest medical reasoning dataset to date, comprising 370k high-quality examples distilled from 1.75 million initial reasoning paths generated by complementary LLMs and curated through a cost-efficient easy-medium-difficult (EMD) pipeline. ReasonMed is built through a multi-agent generation, verification, and refinement process, in which an Error Refiner improves reasoning paths by correcting error-prone steps identified by a verifier. Using ReasonMed, we investigate effective strategies for training medical reasoning models and find that integrating detailed CoT reasoning with concise answer summaries yields the most robust fine-tuning results. Models trained on ReasonMed set a new benchmark: ReasonMed-7B surpasses the prior best sub-10B models by 4.17% and even exceeds LLaMA3.1-70B on PubMedQA by 4.60%. When scaled to ReasonMed-14B, it remains highly competitive, underscoring consistent scaling potential. The codes and datasets are available at https://github.com/YuSun-Work/ReasonMed.

Authors:Yu Sun, Xingyu Qian, Weiwen Xu, Hao Zhang, Chenghao Xiao, Long Li, Deli Zhao, Wenbing Huang, Tingyang Xu, Qifeng Bai, Yu Rong
Title: ReasonMed: A 370K Multi-Agent Generated Dataset for Advancing Medical Reasoning
Abstract:
Reasoning-based large language models have excelled in mathematics and programming, yet their potential in knowledge-intensive medical question answering remains underexplored and insufficiently validated in clinical contexts. To bridge this gap, we introduce ReasonMed, the largest medical reasoning dataset to date, comprising 370k high-quality examples distilled from 1.75 million initial reasoning paths generated by complementary LLMs and curated through a cost-efficient easy-medium-difficult (EMD) pipeline. ReasonMed is built through a multi-agent generation, verification, and refinement process, in which an Error Refiner improves reasoning paths by correcting error-prone steps identified by a verifier. Using ReasonMed, we investigate effective strategies for training medical reasoning models and find that integrating detailed CoT reasoning with concise answer summaries yields the most robust fine-tuning results. Models trained on ReasonMed set a new benchmark: ReasonMed-7B surpasses the prior best sub-10B models by 4.17% and even exceeds LLaMA3.1-70B on PubMedQA by 4.60%. When scaled to ReasonMed-14B, it remains highly competitive, underscoring consistent scaling potential. The codes and datasets are available at https://github.com/YuSun-Work/ReasonMed.

Authors:Jiayi Yuan, Hao Li, Xinheng Ding, Wenya Xie, Yu-Jhe Li, Wentian Zhao, Kun Wan, Jing Shi, Xia Hu, Zirui Liu
Title: Give Me FP32 or Give Me Death? Challenges and Solutions for Reproducible Reasoning
Abstract:
Large Language Models (LLMs) are now integral across various domains and have demonstrated impressive performance. Progress, however, rests on the premise that benchmark scores are both accurate and reproducible. We demonstrate that the reproducibility of LLM performance is fragile: changing system configuration such as evaluation batch size, GPU count, and GPU version can introduce significant difference in the generated responses. This issue is especially pronounced in reasoning models, where minor rounding differences in early tokens can cascade into divergent chains of thought, ultimately affecting accuracy. For instance, under bfloat16 precision with greedy decoding, a reasoning model like DeepSeek-R1-Distill-Qwen-7B can exhibit up to 9% variation in accuracy and 9,000 tokens difference in response length due to differences in GPU count, type, and evaluation batch size. We trace the root cause of this variability to the non-associative nature of floating-point arithmetic under limited numerical precision. This work presents the first systematic investigation into how numerical precision affects reproducibility in LLM inference. Through carefully controlled experiments across various hardware, software, and precision settings, we quantify when and how model outputs diverge. Our analysis reveals that floating-point precision -- while critical for reproducibility -- is often neglected in evaluation practices. Inspired by this, we develop a lightweight inference pipeline, dubbed LayerCast, that stores weights in 16-bit precision but performs all computations in FP32, balancing memory efficiency with numerical stability. Code is available at https://github.com/nanomaoli/llm_reproducibility.

Authors:Taesoo Park, Mungwi Jeong, Mingyu Park, Narae Kim, Junyoung Kim, Mujung Kim, Jisang Yoo, Hoyun Lee, Sanghoon Kim, Soonchul Kwon
Title: BemaGANv2: A Tutorial and Comparative Survey of GAN-based Vocoders for Long-Term Audio Generation
Abstract:
This paper presents a tutorial-style survey and implementation guide of BemaGANv2, an advanced GAN-based vocoder designed for high-fidelity and long-term audio generation. Built upon the original BemaGAN architecture, BemaGANv2 incorporates major architectural innovations by replacing traditional ResBlocks in the generator with the Anti-aliased Multi-Periodicity composition (AMP) module, which internally applies the Snake activation function to better model periodic structures. In the discriminator framework, we integrate the Multi-Envelope Discriminator (MED), a novel architecture we originally proposed, to extract rich temporal envelope features crucial for periodicity detection. Coupled with the Multi-Resolution Discriminator (MRD), this combination enables more accurate modeling of long-range dependencies in audio. We systematically evaluate various discriminator configurations, including MSD + MED, MSD + MRD, and MPD + MED + MRD, using objective metrics (FAD, SSIM, PLCC, MCD) and subjective evaluations (MOS, SMOS). This paper also provides a comprehensive tutorial on the model architecture, training methodology, and implementation to promote reproducibility. The code and pre-trained models are available at: https://github.com/dinhoitt/BemaGANv2.

Authors:Tianxiang Hao, Lixian Zhang, Yingjia Zhang, Mengxuan Chen, Jinxiao Zhang, Haohuan Fu
Title: Urban1960SatSeg: Unsupervised Semantic Segmentation of Mid-20$^{th}$ century Urban Landscapes with Satellite Imageries
Abstract:
Historical satellite imagery, such as mid-20$^{th}$ century Keyhole data, offers rare insights into understanding early urban development and long-term transformation. However, severe quality degradation (e.g., distortion, misalignment, and spectral scarcity) and annotation absence have long hindered semantic segmentation on such historical RS imagery. To bridge this gap and enhance understanding of urban development, we introduce $\textbf{Urban1960SatBench}$, an annotated segmentation dataset based on historical satellite imagery with the earliest observation time among all existing segmentation datasets, along with a benchmark framework for unsupervised segmentation tasks, $\textbf{Urban1960SatUSM}$. First, $\textbf{Urban1960SatBench}$ serves as a novel, expertly annotated semantic segmentation dataset built on mid-20$^{th}$ century Keyhole imagery, covering 1,240 km$^2$ and key urban classes (buildings, roads, farmland, water). As the earliest segmentation dataset of its kind, it provides a pioneering benchmark for historical urban understanding. Second, $\textbf{Urban1960SatUSM}$(Unsupervised Segmentation Model) is a novel unsupervised semantic segmentation framework for historical RS imagery. It employs a confidence-aware alignment mechanism and focal-confidence loss based on a self-supervised learning architecture, which generates robust pseudo-labels and adaptively prioritizes prediction difficulty and label reliability to improve unsupervised segmentation on noisy historical data without manual supervision. Experiments show Urban1960SatUSM significantly outperforms existing unsupervised segmentation methods on Urban1960SatSeg for segmenting historical urban scenes, promising in paving the way for quantitative studies of long-term urban change using modern computer vision. Our benchmark and supplementary material are available at https://github.com/Tianxiang-Hao/Urban1960SatSeg.

Authors:Amirreza Khoshbakht, Erchan Aptoula
Title: Evidential Deep Learning with Spectral-Spatial Uncertainty Disentanglement for Open-Set Hyperspectral Domain Generalization
Abstract:
Open-set domain generalization(OSDG) for hyperspectral image classification presents significant challenges due to the presence of unknown classes in target domains and the need for models to generalize across multiple unseen domains without target-specific adaptation. Existing domain adaptation methods assume access to target domain data during training and fail to address the fundamental issue of domain shift when unknown classes are present, leading to negative transfer and reduced classification performance. To address these limitations, we propose a novel open-set domain generalization framework that combines four key components: Spectrum-Invariant Frequency Disentanglement (SIFD) for domain-agnostic feature extraction, Dual-Channel Residual Network (DCRN) for robust spectral-spatial feature learning, Evidential Deep Learning (EDL) for uncertainty quantification, and Spectral-Spatial Uncertainty Disentanglement (SSUD) for reliable open-set classification. The SIFD module extracts domain-invariant spectral features in the frequency domain through attention-weighted frequency analysis and domain-agnostic regularization, while DCRN captures complementary spectral and spatial information via parallel pathways with adaptive fusion. EDL provides principled uncertainty estimation using Dirichlet distributions, enabling the SSUD module to make reliable open-set decisions through uncertainty-aware pathway weighting and adaptive rejection thresholding. Experimental results on three cross-scene hyperspectral classification tasks show that our approach achieves performance comparable to state-of-the-art domain adaptation methods while requiring no access to the target domain during training. The implementation will be made available at https://github.com/amir-khb/SSUDOSDG upon acceptance.

Authors:Prameshwar Thiyagarajan, Vaishnavi Parimi, Shamant Sai, Soumil Garg, Zhangir Meirbek, Nitin Yarlagadda, Kevin Zhu, Chris Kim
Title: UniToMBench: Integrating Perspective-Taking to Improve Theory of Mind in LLMs
Abstract:
Theory of Mind (ToM), the ability to understand the mental states of oneself and others, remains a challenging area for large language models (LLMs), which often fail to predict human mental states accurately. In this paper, we introduce UniToMBench, a unified benchmark that integrates the strengths of SimToM and TOMBENCH to systematically improve and assess ToM capabilities in LLMs by integrating multi-interaction task designs and evolving story scenarios. Supported by a custom dataset of over 1,000 hand-written scenarios, UniToMBench combines perspective-taking techniques with diverse evaluation metrics to better stimulate social cognition in LLMs. Through evaluation, we observe that while models like GPT-4o and GPT-4o Mini show consistently high accuracy in tasks involving emotional and belief-related scenarios, with results usually above 80%, there is significant variability in their performance across knowledge-based tasks. These results highlight both the strengths and limitations of current LLMs in ToM-related tasks, underscoring the value of UniToMBench as a comprehensive tool for future development. Our code is publicly available here: https://github.com/Shamant/unifiedtombenchmark.

Authors:Songze Li, Chuokun Xu, Jiaying Wang, Xueluan Gong, Chen Chen, Jirui Zhang, Jun Wang, Kwok-Yan Lam, Shouling Ji
Title: LLMs Cannot Reliably Judge (Yet?): A Comprehensive Assessment on the Robustness of LLM-as-a-Judge
Abstract:
Large Language Models (LLMs) have demonstrated remarkable intelligence across various tasks, which has inspired the development and widespread adoption of LLM-as-a-Judge systems for automated model testing, such as red teaming and benchmarking. However, these systems are susceptible to adversarial attacks that can manipulate evaluation outcomes, raising concerns about their robustness and, consequently, their trustworthiness. Existing evaluation methods adopted by LLM-based judges are often piecemeal and lack a unified framework for comprehensive assessment. Furthermore, prompt template and model selections for improving judge robustness have been rarely explored, and their performance in real-world settings remains largely unverified. To address these gaps, we introduce RobustJudge, a fully automated and scalable framework designed to systematically evaluate the robustness of LLM-as-a-Judge systems. RobustJudge investigates the impact of attack methods and defense strategies (RQ1), explores the influence of prompt template and model selection (RQ2), and assesses the robustness of real-world LLM-as-a-Judge applications (RQ3).Our main findings are: (1) LLM-as-a-Judge systems are still vulnerable to a range of adversarial attacks, including Combined Attack and PAIR, while defense mechanisms such as Re-tokenization and LLM-based Detectors offer improved protection; (2) Robustness is highly sensitive to the choice of prompt template and judge models. Our proposed prompt template optimization method can improve robustness, and JudgeLM-13B demonstrates strong performance as a robust open-source judge; (3) Applying RobustJudge to Alibaba's PAI platform reveals previously unreported vulnerabilities. The source code of RobustJudge is provided at https://github.com/S3IC-Lab/RobustJudge.

Authors:Xinya Liu, Jianghao Wu, Tao Lu, Shaoting Zhang, Guotai Wang
Title: SRPL-SFDA: SAM-Guided Reliable Pseudo-Labels for Source-Free Domain Adaptation in Medical Image Segmentation
Abstract:
Domain Adaptation (DA) is crucial for robust deployment of medical image segmentation models when applied to new clinical centers with significant domain shifts. Source-Free Domain Adaptation (SFDA) is appealing as it can deal with privacy concerns and access constraints on source-domain data during adaptation to target-domain data. However, SFDA faces challenges such as insufficient supervision in the target domain with unlabeled images. In this work, we propose a Segment Anything Model (SAM)-guided Reliable Pseudo-Labels method for SFDA (SRPL-SFDA) with three key components: 1) Test-Time Tri-branch Intensity Enhancement (T3IE) that not only improves quality of raw pseudo-labels in the target domain, but also leads to SAM-compatible inputs with three channels to better leverage SAM's zero-shot inference ability for refining the pseudo-labels; 2) A reliable pseudo-label selection module that rejects low-quality pseudo-labels based on Consistency of Multiple SAM Outputs (CMSO) under input perturbations with T3IE; and 3) A reliability-aware training procedure in the unlabeled target domain where reliable pseudo-labels are used for supervision and unreliable parts are regularized by entropy minimization. Experiments conducted on two multi-domain medical image segmentation datasets for fetal brain and the prostate respectively demonstrate that: 1) SRPL-SFDA effectively enhances pseudo-label quality in the unlabeled target domain, and improves SFDA performance by leveraging the reliability-aware training; 2) SRPL-SFDA outperformed state-of-the-art SFDA methods, and its performance is close to that of supervised training in the target domain. The code of this work is available online: https://github.com/HiLab-git/SRPL-SFDA.

Authors:Kaiyu Guo, Zijian Wang, Tan Pan, Brian C. Lovell, Mahsa Baktashmotlagh
Title: Improving Out-of-Distribution Detection via Dynamic Covariance Calibration
Abstract:
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.

Authors:Haiyang Yu, Yuchao Lin, Xuan Zhang, Xiaofeng Qian, Shuiwang Ji
Title: Efficient Prediction of SO(3)-Equivariant Hamiltonian Matrices via SO(2) Local Frames
Abstract:
We consider the task of predicting Hamiltonian matrices to accelerate electronic structure calculations, which plays an important role in physics, chemistry, and materials science. Motivated by the inherent relationship between the off-diagonal blocks of the Hamiltonian matrix and the SO(2) local frame, we propose a novel and efficient network, called QHNetV2, that achieves global SO(3) equivariance without the costly SO(3) Clebsch-Gordan tensor products. This is achieved by introducing a set of new efficient and powerful SO(2)-equivariant operations and performing all off-diagonal feature updates and message passing within SO(2) local frames, thereby eliminating the need of SO(3) tensor products. Moreover, a continuous SO(2) tensor product is performed within the SO(2) local frame at each node to fuse node features, mimicking the symmetric contraction operation. Extensive experiments on the large QH9 and MD17 datasets demonstrate that our model achieves superior performance across a wide range of molecular structures and trajectories, highlighting its strong generalization capability. The proposed SO(2) operations on SO(2) local frames offer a promising direction for scalable and symmetry-aware learning of electronic structures. Our code will be released as part of the AIRS library https://github.com/divelab/AIRS.

Authors:Jialong Zuo, Yongtai Deng, Mengdan Tan, Rui Jin, Dongyue Wu, Nong Sang, Liang Pan, Changxin Gao
Title: ReID5o: Achieving Omni Multi-modal Person Re-identification in a Single Model
Abstract:
In real-word scenarios, person re-identification (ReID) expects to identify a person-of-interest via the descriptive query, regardless of whether the query is a single modality or a combination of multiple modalities. However, existing methods and datasets remain constrained to limited modalities, failing to meet this requirement. Therefore, we investigate a new challenging problem called Omni Multi-modal Person Re-identification (OM-ReID), which aims to achieve effective retrieval with varying multi-modal queries. To address dataset scarcity, we construct ORBench, the first high-quality multi-modal dataset comprising 1,000 unique identities across five modalities: RGB, infrared, color pencil, sketch, and textual description. This dataset also has significant superiority in terms of diversity, such as the painting perspectives and textual information. It could serve as an ideal platform for follow-up investigations in OM-ReID. Moreover, we propose ReID5o, a novel multi-modal learning framework for person ReID. It enables synergistic fusion and cross-modal alignment of arbitrary modality combinations in a single model, with a unified encoding and multi-expert routing mechanism proposed. Extensive experiments verify the advancement and practicality of our ORBench. A wide range of possible models have been evaluated and compared on it, and our proposed ReID5o model gives the best performance. The dataset and code will be made publicly available at https://github.com/Zplusdragon/ReID5o_ORBench.

Authors:Jiaqi Tang, Yu Xia, Yi-Feng Wu, Yuwei Hu, Yuhui Chen, Qing-Guo Chen, Xiaogang Xu, Xiangyu Wu, Hao Lu, Yanqing Ma, Shiyin Lu, Qifeng Chen
Title: LPO: Towards Accurate GUI Agent Interaction via Location Preference Optimization
Abstract:
The advent of autonomous agents is transforming interactions with Graphical User Interfaces (GUIs) by employing natural language as a powerful intermediary. Despite the predominance of Supervised Fine-Tuning (SFT) methods in current GUI agents for achieving spatial localization, these methods face substantial challenges due to their limited capacity to accurately perceive positional data. Existing strategies, such as reinforcement learning, often fail to assess positional accuracy effectively, thereby restricting their utility. In response, we introduce Location Preference Optimization (LPO), a novel approach that leverages locational data to optimize interaction preferences. LPO uses information entropy to predict interaction positions by focusing on zones rich in information. Besides, it further introduces a dynamic location reward function based on physical distance, reflecting the varying importance of interaction positions. Supported by Group Relative Preference Optimization (GRPO), LPO facilitates an extensive exploration of GUI environments and significantly enhances interaction precision. Comprehensive experiments demonstrate LPO's superior performance, achieving SOTA results across both offline benchmarks and real-world online evaluations. Our code will be made publicly available soon, at https://github.com/AIDC-AI/LPO.

Authors:Zeran Ke, Bin Tan, Xianwei Zheng, Yujun Shen, Tianfu Wu, Nan Xue
Title: ScaleLSD: Scalable Deep Line Segment Detection Streamlined
Abstract:
This paper studies the problem of Line Segment Detection (LSD) for the characterization of line geometry in images, with the aim of learning a domain-agnostic robust LSD model that works well for any natural images. With the focus of scalable self-supervised learning of LSD, we revisit and streamline the fundamental designs of (deep and non-deep) LSD approaches to have a high-performing and efficient LSD learner, dubbed as ScaleLSD, for the curation of line geometry at scale from over 10M unlabeled real-world images. Our ScaleLSD works very well to detect much more number of line segments from any natural images even than the pioneered non-deep LSD approach, having a more complete and accurate geometric characterization of images using line segments. Experimentally, our proposed ScaleLSD is comprehensively testified under zero-shot protocols in detection performance, single-view 3D geometry estimation, two-view line segment matching, and multiview 3D line mapping, all with excellent performance obtained. Based on the thorough evaluation, our ScaleLSD is observed to be the first deep approach that outperforms the pioneered non-deep LSD in all aspects we have tested, significantly expanding and reinforcing the versatility of the line geometry of images. Code and Models are available at https://github.com/ant-research/scalelsd

Authors:Hongguang Zhu, Yunchao Wei, Mengyu Wang, Siyu Jiao, Yan Fang, Jiannan Huang, Yao Zhao
Title: SAGE: Exploring the Boundaries of Unsafe Concept Domain with Semantic-Augment Erasing
Abstract:
Diffusion models (DMs) have achieved significant progress in text-to-image generation. However, the inevitable inclusion of sensitive information during pre-training poses safety risks, such as unsafe content generation and copyright infringement. Concept erasing finetunes weights to unlearn undesirable concepts, and has emerged as a promising solution. However, existing methods treat unsafe concept as a fixed word and repeatedly erase it, trapping DMs in ``word concept abyss'', which prevents generalized concept-related erasing. To escape this abyss, we introduce semantic-augment erasing which transforms concept word erasure into concept domain erasure by the cyclic self-check and self-erasure. It efficiently explores and unlearns the boundary representation of concept domain through semantic spatial relationships between original and training DMs, without requiring additional preprocessed data. Meanwhile, to mitigate the retention degradation of irrelevant concepts while erasing unsafe concepts, we further propose the global-local collaborative retention mechanism that combines global semantic relationship alignment with local predicted noise preservation, effectively expanding the retentive receptive field for irrelevant concepts. We name our method SAGE, and extensive experiments demonstrate the comprehensive superiority of SAGE compared with other methods in the safe generation of DMs. The code and weights will be open-sourced at https://github.com/KevinLight831/SAGE.

Authors:Yitong Zhang, Jia Li, Liyi Cai, Ge Li
Title: DAVSP: Safety Alignment for Large Vision-Language Models via Deep Aligned Visual Safety Prompt
Abstract:
Large Vision-Language Models (LVLMs) have achieved impressive progress across various applications but remain vulnerable to malicious queries that exploit the visual modality. Existing alignment approaches typically fail to resist malicious queries while preserving utility on benign ones effectively. To address these challenges, we propose Deep Aligned Visual Safety Prompt (DAVSP), which is built upon two key innovations. First, we introduce the Visual Safety Prompt, which appends a trainable padding region around the input image. It preserves visual features and expands the optimization space. Second, we propose Deep Alignment, a novel approach to train the visual safety prompt through supervision in the model's activation space. It enhances the inherent ability of LVLMs to perceive malicious queries, achieving deeper alignment than prior works. Extensive experiments across five benchmarks on two representative LVLMs demonstrate that DAVSP effectively resists malicious queries while preserving benign input utility. Furthermore, DAVSP exhibits great cross-model generation ability. Ablation studies further reveal that both the Visual Safety Prompt and Deep Alignment are essential components, jointly contributing to its overall effectiveness. The code is publicly available at https://github.com/zhangyitonggg/DAVSP.

Authors:Xuemei Cao, Hanlin Gu, Xin Yang, Bingjun Wei, Haoyang Liang, Xiangkun Wang, Tianrui Li
Title: ErrorEraser: Unlearning Data Bias for Improved Continual Learning
Abstract:
Continual Learning (CL) primarily aims to retain knowledge to prevent catastrophic forgetting and transfer knowledge to facilitate learning new tasks. Unlike traditional methods, we propose a novel perspective: CL not only needs to prevent forgetting, but also requires intentional forgetting.This arises from existing CL methods ignoring biases in real-world data, leading the model to learn spurious correlations that transfer and amplify across tasks. From feature extraction and prediction results, we find that data biases simultaneously reduce CL's ability to retain and transfer knowledge. To address this, we propose ErrorEraser, a universal plugin that removes erroneous memories caused by biases in CL, enhancing performance in both new and old tasks. ErrorEraser consists of two modules: Error Identification and Error Erasure. The former learns the probability density distribution of task data in the feature space without prior knowledge, enabling accurate identification of potentially biased samples. The latter ensures only erroneous knowledge is erased by shifting the decision space of representative outlier samples. Additionally, an incremental feature distribution learning strategy is designed to reduce the resource overhead during error identification in downstream tasks. Extensive experimental results show that ErrorEraser significantly mitigates the negative impact of data biases, achieving higher accuracy and lower forgetting rates across three types of CL methods. The code is available at https://github.com/diadai/ErrorEraser.

Authors:Siheng Li, Zhanhui Zhou, Wai Lam, Chao Yang, Chaochao Lu
Title: RePO: Replay-Enhanced Policy Optimization
Abstract:
Reinforcement learning (RL) is vital for optimizing large language models (LLMs). Recent Group Relative Policy Optimization (GRPO) estimates advantages using multiple on-policy outputs per prompt, leading to high computational costs and low data efficiency. To address this, we introduce Replay-Enhanced Policy Optimization (RePO), which leverages diverse replay strategies to retrieve off-policy samples from a replay buffer, allowing policy optimization based on a broader and more diverse set of samples for each prompt. Experiments on five LLMs across seven mathematical reasoning benchmarks demonstrate that RePO achieves absolute average performance gains of $18.4$ and $4.1$ points for Qwen2.5-Math-1.5B and Qwen3-1.7B, respectively, compared to GRPO. Further analysis indicates that RePO increases computational cost by $15\%$ while raising the number of effective optimization steps by $48\%$ for Qwen3-1.7B, with both on-policy and off-policy sample numbers set to $8$. The repository can be accessed at https://github.com/SihengLi99/RePO.

Authors:Tong Wang, Guanzhou Chen, Xiaodong Zhang, Chenxi Liu, Jiaqi Wang, Xiaoliang Tan, Wenchao Guo, Qingyuan Yang, Kaiqi Zhang
Title: MSSDF: Modality-Shared Self-supervised Distillation for High-Resolution Multi-modal Remote Sensing Image Learning
Abstract:
Remote sensing image interpretation plays a critical role in environmental monitoring, urban planning, and disaster assessment. However, acquiring high-quality labeled data is often costly and time-consuming. To address this challenge, we proposes a multi-modal self-supervised learning framework that leverages high-resolution RGB images, multi-spectral data, and digital surface models (DSM) for pre-training. By designing an information-aware adaptive masking strategy, cross-modal masking mechanism, and multi-task self-supervised objectives, the framework effectively captures both the correlations across different modalities and the unique feature structures within each modality. We evaluated the proposed method on multiple downstream tasks, covering typical remote sensing applications such as scene classification, semantic segmentation, change detection, object detection, and depth estimation. Experiments are conducted on 15 remote sensing datasets, encompassing 26 tasks. The results demonstrate that the proposed method outperforms existing pretraining approaches in most tasks. Specifically, on the Potsdam and Vaihingen semantic segmentation tasks, our method achieved mIoU scores of 78.30\% and 76.50\%, with only 50\% train-set. For the US3D depth estimation task, the RMSE error is reduced to 0.182, and for the binary change detection task in SECOND dataset, our method achieved mIoU scores of 47.51\%, surpassing the second CS-MAE by 3 percentage points. Our pretrain code, checkpoints, and HR-Pairs dataset can be found in https://github.com/CVEO/MSSDF.

Authors:Yeonju Ro, Zhenyu Zhang, Souvik Kundu, Zhangyang Wang, Aditya Akella
Title: On-the-Fly Adaptive Distillation of Transformer to Dual-State Linear Attention
Abstract:
Large language models (LLMs) excel at capturing global token dependencies via self-attention but face prohibitive compute and memory costs on lengthy inputs. While sub-quadratic methods (e.g., linear attention) can reduce these costs, they often degrade accuracy due to overemphasizing recent tokens. In this work, we first propose dual-state linear attention (DSLA), a novel design that maintains two specialized hidden states-one for preserving historical context and one for tracking recency-thereby mitigating the short-range bias typical of linear-attention architectures. To further balance efficiency and accuracy under dynamic workload conditions, we introduce DSLA-Serve, an online adaptive distillation framework that progressively replaces Transformer layers with DSLA layers at inference time, guided by a sensitivity-based layer ordering. DSLA-Serve uses a chained fine-tuning strategy to ensure that each newly converted DSLA layer remains consistent with previously replaced layers, preserving the overall quality. Extensive evaluations on commonsense reasoning, long-context QA, and text summarization demonstrate that DSLA-Serve yields 2.3x faster inference than Llama2-7B and 3.0x faster than the hybrid Zamba-7B, while retaining comparable performance across downstream tasks. Our ablation studies show that DSLA's dual states capture both global and local dependencies, addressing the historical-token underrepresentation seen in prior linear attentions. Codes are available at https://github.com/utnslab/DSLA-Serve.

Authors:Mojtaba Nafez, Amirhossein Koochakian, Arad Maleki, Jafar Habibi, Mohammad Hossein Rohban
Title: PatchGuard: Adversarially Robust Anomaly Detection and Localization through Vision Transformers and Pseudo Anomalies
Abstract:
Anomaly Detection (AD) and Anomaly Localization (AL) are crucial in fields that demand high reliability, such as medical imaging and industrial monitoring. However, current AD and AL approaches are often susceptible to adversarial attacks due to limitations in training data, which typically include only normal, unlabeled samples. This study introduces PatchGuard, an adversarially robust AD and AL method that incorporates pseudo anomalies with localization masks within a Vision Transformer (ViT)-based architecture to address these vulnerabilities. We begin by examining the essential properties of pseudo anomalies, and follow it by providing theoretical insights into the attention mechanisms required to enhance the adversarial robustness of AD and AL systems. We then present our approach, which leverages Foreground-Aware Pseudo-Anomalies to overcome the deficiencies of previous anomaly-aware methods. Our method incorporates these crafted pseudo-anomaly samples into a ViT-based framework, with adversarial training guided by a novel loss function designed to improve model robustness, as supported by our theoretical analysis. Experimental results on well-established industrial and medical datasets demonstrate that PatchGuard significantly outperforms previous methods in adversarial settings, achieving performance gains of $53.2\%$ in AD and $68.5\%$ in AL, while also maintaining competitive accuracy in non-adversarial settings. The code repository is available at https://github.com/rohban-lab/PatchGuard .

Authors:Boyu Jiang, Liang Shi, Zhengzhi Lin, Loren Stowe, Feng Guo
Title: Perception Characteristics Distance: Measuring Stability and Robustness of Perception System in Dynamic Conditions under a Certain Decision Rule
Abstract:
The performance of perception systems in autonomous driving systems (ADS) is strongly influenced by object distance, scene dynamics, and environmental conditions such as weather. AI-based perception outputs are inherently stochastic, with variability driven by these external factors, while traditional evaluation metrics remain static and event-independent, failing to capture fluctuations in confidence over time. In this work, we introduce the Perception Characteristics Distance (PCD) -- a novel evaluation metric that quantifies the farthest distance at which an object can be reliably detected, incorporating uncertainty in model outputs. To support this, we present the SensorRainFall dataset, collected on the Virginia Smart Road using a sensor-equipped vehicle (cameras, radar, LiDAR) under controlled daylight-clear and daylight-rain scenarios, with precise ground-truth distances to the target objects. Statistical analysis reveals the presence of change points in the variance of detection confidence score with distance. By averaging the PCD values across a range of detection quality thresholds and probabilistic thresholds, we compute the mean PCD (mPCD), which captures the overall perception characteristics of a system with respect to detection distance. Applying state-of-the-art perception models shows that mPCD captures meaningful reliability differences under varying weather conditions -- differences that static metrics overlook. PCD provides a principled, distribution-aware measure of perception performance, supporting safer and more robust ADS operation, while the SensorRainFall dataset offers a valuable benchmark for evaluation. The SensorRainFall dataset is publicly available at https://www.kaggle.com/datasets/datadrivenwheels/sensorrainfall, and the evaluation code is open-sourced at https://github.com/datadrivenwheels/PCD_Python.

Authors:Val Andrei Fajardo, David B. Emerson, Amandeep Singh, Veronica Chatrath, Marcelo Lotif, Ravi Theja, Alex Cheung, Izuki Matsuba
Title: FedRAG: A Framework for Fine-Tuning Retrieval-Augmented Generation Systems
Abstract:
Retrieval-augmented generation (RAG) systems have been shown to be effective in addressing many of the drawbacks of relying solely on the parametric memory of large language models. Recent work has demonstrated that RAG systems can be improved via fine-tuning of their retriever and generator models. In this work, we introduce FedRAG, a framework for fine-tuning RAG systems across centralized and federated architectures. FedRAG supports state-of-the-art fine-tuning methods, offering a simple and intuitive interface and a seamless conversion from centralized to federated training tasks. FedRAG is also deeply integrated with the modern RAG ecosystem, filling a critical gap in available tools.

Authors:Emirhan Bilgiç, Neslihan Serap Şengör, Namık Berk Yalabık, Yavuz Selim İşler, Aykut Görkem Gelen, Rahmi Elibol
Title: Integration of Contrastive Predictive Coding and Spiking Neural Networks
Abstract:
This study examines the integration of Contrastive Predictive Coding (CPC) with Spiking Neural Networks (SNN). While CPC learns the predictive structure of data to generate meaningful representations, SNN mimics the computational processes of biological neural systems over time. In this study, the goal is to develop a predictive coding model with greater biological plausibility by processing inputs and outputs in a spike-based system. The proposed model was tested on the MNIST dataset and achieved a high classification rate in distinguishing positive sequential samples from non-sequential negative samples. The study demonstrates that CPC can be effectively combined with SNN, showing that an SNN trained for classification tasks can also function as an encoding mechanism. Project codes and detailed results can be accessed on our GitHub page: https://github.com/vnd-ogrenme/ongorusel-kodlama/tree/main/CPC_SNN

Authors:Yilin Zhuang, Karthik Duraisamy
Title: LaDCast: A Latent Diffusion Model for Medium-Range Ensemble Weather Forecasting
Abstract:
Accurate probabilistic weather forecasting demands both high accuracy and efficient uncertainty quantification, challenges that overburden both ensemble numerical weather prediction (NWP) and recent machine-learning methods. We introduce LaDCast, the first global latent-diffusion framework for medium-range ensemble forecasting, which generates hourly ensemble forecasts entirely in a learned latent space. An autoencoder compresses high-dimensional ERA5 reanalysis fields into a compact representation, and a transformer-based diffusion model produces sequential latent updates with arbitrary hour initialization. The model incorporates Geometric Rotary Position Embedding (GeoRoPE) to account for the Earth's spherical geometry, a dual-stream attention mechanism for efficient conditioning, and sinusoidal temporal embeddings to capture seasonal patterns. LaDCast achieves deterministic and probabilistic skill close to that of the European Centre for Medium-Range Forecast IFS-ENS, without any explicit perturbations. Notably, LaDCast demonstrates superior performance in tracking rare extreme events such as cyclones, capturing their trajectories more accurately than established models. By operating in latent space, LaDCast reduces storage and compute by orders of magnitude, demonstrating a practical path toward forecasting at kilometer-scale resolution in real time. We open-source our code and models and provide the training and evaluation pipelines at: https://github.com/tonyzyl/ladcast.

Authors:Haoyuan Cai, Zhenghao Peng, Bolei Zhou
Title: Robot-Gated Interactive Imitation Learning with Adaptive Intervention Mechanism
Abstract:
Interactive Imitation Learning (IIL) allows agents to acquire desired behaviors through human interventions, but current methods impose high cognitive demands on human supervisors. We propose the Adaptive Intervention Mechanism (AIM), a novel robot-gated IIL algorithm that learns an adaptive criterion for requesting human demonstrations. AIM utilizes a proxy Q-function to mimic the human intervention rule and adjusts intervention requests based on the alignment between agent and human actions. By assigning high Q-values when the agent deviates from the expert and decreasing these values as the agent becomes proficient, the proxy Q-function enables the agent to assess the real-time alignment with the expert and request assistance when needed. Our expert-in-the-loop experiments reveal that AIM significantly reduces expert monitoring efforts in both continuous and discrete control tasks. Compared to the uncertainty-based baseline Thrifty-DAgger, our method achieves a 40% improvement in terms of human take-over cost and learning efficiency. Furthermore, AIM effectively identifies safety-critical states for expert assistance, thereby collecting higher-quality expert demonstrations and reducing overall expert data and environment interactions needed. Code and demo video are available at https://github.com/metadriverse/AIM.

Authors:Nadezhda Chirkova, Tunde Oluwaseyi Ajayi, Seth Aycock, Zain Muhammad Mujahid, Vladana Perlić, Ekaterina Borisova, Markarit Vartampetian
Title: LLM-as-a-qualitative-judge: automating error analysis in natural language generation
Abstract:
Prompting large language models (LLMs) to evaluate generated text, known as LLM-as-a-judge, has become a standard evaluation approach in natural language generation (NLG), but is primarily used as a quantitative tool, i.e. with numerical scores as main outputs. In this work, we propose LLM-as-a-qualitative-judge, an LLM-based evaluation approach with the main output being a structured report of common issue types in the NLG system outputs. Our approach is targeted at providing developers with meaningful insights on what improvements can be done to a given NLG system and consists of two main steps, namely open-ended per-instance issue analysis and clustering of the discovered issues using an intuitive cumulative algorithm. We also introduce a strategy for evaluating the proposed approach, coupled with ~300 annotations of issues in instances from 12 NLG datasets. Our results show that LLM-as-a-qualitative-judge correctly recognizes instance-specific issues in 2/3 cases and is capable of producing error type reports resembling the reports composed by human annotators. Our code and data are publicly available at https://github.com/tunde-ajayi/llm-as-a-qualitative-judge.

Authors:Míriam Barrabés, Daniel Mas Montserrat, Kapal Dev, Alexander G. Ioannidis
Title: Feature Shift Localization Network
Abstract:
Feature shifts between data sources are present in many applications involving healthcare, biomedical, socioeconomic, financial, survey, and multi-sensor data, among others, where unharmonized heterogeneous data sources, noisy data measurements, or inconsistent processing and standardization pipelines can lead to erroneous features. Localizing shifted features is important to address the underlying cause of the shift and correct or filter the data to avoid degrading downstream analysis. While many techniques can detect distribution shifts, localizing the features originating them is still challenging, with current solutions being either inaccurate or not scalable to large and high-dimensional datasets. In this work, we introduce the Feature Shift Localization Network (FSL-Net), a neural network that can localize feature shifts in large and high-dimensional datasets in a fast and accurate manner. The network, trained with a large number of datasets, learns to extract the statistical properties of the datasets and can localize feature shifts from previously unseen datasets and shifts without the need for re-training. The code and ready-to-use trained model are available at https://github.com/AI-sandbox/FSL-Net.

Authors:Chaoyang Zhou, Shunyu Liu, Zengmao Wang, Di Wang, Rong-Cheng Tu, Bo Du, Dacheng Tao
Title: Intra-Trajectory Consistency for Reward Modeling
Abstract:
Reward models are critical for improving large language models (LLMs), particularly in reinforcement learning from human feedback (RLHF) or inference-time verification. Current reward modeling typically relies on scores of overall responses to learn the outcome rewards for the responses. However, since the response-level scores are coarse-grained supervision signals, the reward model struggles to identify the specific components within a response trajectory that truly correlate with the scores, leading to poor generalization on unseen responses. In this paper, we propose to leverage generation probabilities to establish reward consistency between processes in the response trajectory, which allows the response-level supervisory signal to propagate across processes, thereby providing additional fine-grained signals for reward learning. Building on analysis under the Bayesian framework, we develop an intra-trajectory consistency regularization to enforce that adjacent processes with higher next-token generation probability maintain more consistent rewards. We apply the proposed regularization to the advanced outcome reward model, improving its performance on RewardBench. Besides, we show that the reward model trained with the proposed regularization induces better DPO-aligned policies and achieves better best-of-N (BON) inference-time verification results. Our code is provided in https://github.com/chaoyang101/ICRM.

Authors:Zheqi He, Yesheng Liu, Jing-shu Zheng, Xuejing Li, Jin-Ge Yao, Bowen Qin, Richeng Xuan, Xi Yang
Title: FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation
Abstract:
We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible at https://github.com/flageval-baai/FlagEvalMM.

Authors:Dianyi Wang, Wei Song, Yikun Wang, Siyuan Wang, Kaicheng Yu, Zhongyu Wei, Jiaqi Wang
Title: Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Abstract:
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.

Authors:Haozhen Zhang, Tao Feng, Jiaxuan You
Title: Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning
Abstract:
The rapid emergence of diverse large language models (LLMs) has spurred the development of LLM routers that assign user queries to the most suitable model. However, existing LLM routers typically perform a single-round, one-to-one mapping (\textit{i.e.}, assigning each query to a single model in isolation), which limits their capability to tackle complex tasks that demand the complementary strengths of multiple LLMs. In this paper, we present \textbf{Router-R1}, a reinforcement learning (RL)-based framework that formulates multi-LLM routing and aggregation as a sequential decision process. Router-R1 instantiates the router itself as a capable LLM, leveraging its reasoning ability to interleave "think" actions (internal deliberation) with "route" actions (dynamic model invocation), and integrates each response into its evolving context. To facilitate learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for optimizing the balance between performance and cost, opening a pathway toward enhancing performance-cost trade-offs via RL. Router-R1 also conditions only on simple model descriptors such as pricing, latency, and example performance, enabling strong generalization to unseen model selection. Experiments on seven general and multi-hop QA benchmarks show that Router-R1 outperforms several strong baselines, achieving superior performance while maintaining robust generalization and cost management.

Authors:Daniel Shao, Richard J. Chen, Andrew H. Song, Joel Runevic, Ming Y. Lu, Tong Ding, Faisal Mahmood
Title: Do Multiple Instance Learning Models Transfer?
Abstract:
Multiple Instance Learning (MIL) is a cornerstone approach in computational pathology (CPath) for generating clinically meaningful slide-level embeddings from gigapixel tissue images. However, MIL often struggles with small, weakly supervised clinical datasets. In contrast to fields such as NLP and conventional computer vision, where transfer learning is widely used to address data scarcity, the transferability of MIL models remains poorly understood. In this study, we systematically evaluate the transfer learning capabilities of pretrained MIL models by assessing 11 models across 21 pretraining tasks for morphological and molecular subtype prediction. Our results show that pretrained MIL models, even when trained on different organs than the target task, consistently outperform models trained from scratch. Moreover, pretraining on pancancer datasets enables strong generalization across organs and tasks, outperforming slide foundation models while using substantially less pretraining data. These findings highlight the robust adaptability of MIL models and demonstrate the benefits of leveraging transfer learning to boost performance in CPath. Lastly, we provide a resource which standardizes the implementation of MIL models and collection of pretrained model weights on popular CPath tasks, available at https://github.com/mahmoodlab/MIL-Lab

Authors:Lei Zhang, Jiaxi Yang, Min Yang, Jian Yang, Mouxiang Chen, Jiajun Zhang, Zeyu Cui, Binyuan Hui, Junyang Lin
Title: SWE-Flow: Synthesizing Software Engineering Data in a Test-Driven Manner
Abstract:
We introduce **SWE-Flow**, a novel data synthesis framework grounded in Test-Driven Development (TDD). Unlike existing software engineering data that rely on human-submitted issues, **SWE-Flow** automatically infers incremental development steps directly from unit tests, which inherently encapsulate high-level requirements. The core of **SWE-Flow** is the construction of a Runtime Dependency Graph (RDG), which precisely captures function interactions, enabling the generation of a structured, step-by-step *development schedule*. At each step, **SWE-Flow** produces a partial codebase, the corresponding unit tests, and the necessary code modifications, resulting in fully verifiable TDD tasks. With this approach, we generated 16,061 training instances and 2,020 test instances from real-world GitHub projects, creating the **SWE-Flow-Eval** benchmark. Our experiments show that fine-tuning open model on this dataset significantly improves performance in TDD-based coding. To facilitate further research, we release all code, datasets, models, and Docker images at [Github](https://github.com/Hambaobao/SWE-Flow).

Authors:Theo Zhang, Madurya Suresh, Anne S. Warlaumont, Kasia Hitczenko, Alejandrina Cristia, Margaret Cychosz
Title: Employing self-supervised learning models for cross-linguistic child speech maturity classification
Abstract:
Speech technology systems struggle with many downstream tasks for child speech due to small training corpora and the difficulties that child speech pose. We apply a novel dataset, SpeechMaturity, to state-of-the-art transformer models to address a fundamental classification task: identifying child vocalizations. Unlike previous corpora, our dataset captures maximally ecologically-valid child vocalizations across an unprecedented sample, comprising children acquiring 25+ languages in the U.S., Bolivia, Vanuatu, Papua New Guinea, Solomon Islands, and France. The dataset contains 242,004 labeled vocalizations, magnitudes larger than previous work. Models were trained to distinguish between cry, laughter, mature (consonant+vowel), and immature speech (just consonant or vowel). Models trained on the dataset outperform state-of-the-art models trained on previous datasets, achieved classification accuracy comparable to humans, and were robust across rural and urban settings.

Authors:Fabian Immel, Jan-Hendrik Pauls, Richard Fehler, Frank Bieder, Jonas Merkert, Christoph Stiller
Title: SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction
Abstract:
Autonomous vehicles rely on detailed and accurate environmental information to operate safely. High definition (HD) maps offer a promising solution, but their high maintenance cost poses a significant barrier to scalable deployment. This challenge is addressed by online HD map construction methods, which generate local HD maps from live sensor data. However, these methods are inherently limited by the short perception range of onboard sensors. To overcome this limitation and improve general performance, recent approaches have explored the use of standard definition (SD) maps as prior, which are significantly easier to maintain. We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps, like OpenStreetMap, to enhance far range detection accuracy. Our approach introduces two key innovations. First, in contrast to previous work, we incorporate not only polyline SD map data with manually selected classes, but additional semantic information in the form of textual annotations. In this way, we enrich SD vector map tokens with NLP-derived features, eliminating the dependency on predefined specifications or exhaustive class taxonomies. Second, we introduce a point-level SD map encoder together with orthogonal element identifiers to uniformly integrate all types of map elements. Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP (+45%) w.r.t. map construction without priors and up to +3.2 mAP (+20%) w.r.t. previous approaches that already use SD map priors. Code is available at https://github.com/immel-f/SDTagNet

Authors:Chenyu Lian, Hong-Yu Zhou, Dongyun Liang, Jing Qin, Liansheng Wang
Title: Efficient Medical Vision-Language Alignment Through Adapting Masked Vision Models
Abstract:
Medical vision-language alignment through cross-modal contrastive learning shows promising performance in image-text matching tasks, such as retrieval and zero-shot classification. However, conventional cross-modal contrastive learning (CLIP-based) methods suffer from suboptimal visual representation capabilities, which also limits their effectiveness in vision-language alignment. In contrast, although the models pretrained via multimodal masked modeling struggle with direct cross-modal matching, they excel in visual representation. To address this contradiction, we propose ALTA (ALign Through Adapting), an efficient medical vision-language alignment method that utilizes only about 8% of the trainable parameters and less than 1/5 of the computational consumption required for masked record modeling. ALTA achieves superior performance in vision-language matching tasks like retrieval and zero-shot classification by adapting the pretrained vision model from masked record modeling. Additionally, we integrate temporal-multiview radiograph inputs to enhance the information consistency between radiographs and their corresponding descriptions in reports, further improving the vision-language alignment. Experimental evaluations show that ALTA outperforms the best-performing counterpart by over 4% absolute points in text-to-image accuracy and approximately 6% absolute points in image-to-text retrieval accuracy. The adaptation of vision-language models during efficient alignment also promotes better vision and language understanding. Code is publicly available at https://github.com/DopamineLcy/ALTA.

Authors:Victoria Hankemeier, Malte Schilling
Title: Tailored Architectures for Time Series Forecasting: Evaluating Deep Learning Models on Gaussian Process-Generated Data
Abstract:
Developments in Deep Learning have significantly improved time series forecasting by enabling more accurate modeling of complex temporal dependencies inherent in sequential data. The effectiveness of such models is often demonstrated on limited sets of specific real-world data. Although this allows for comparative analysis, it still does not demonstrate how specific data characteristics align with the architectural strengths of individual models. Our research aims at uncovering clear connections between time series characteristics and particular models. We introduce a novel dataset generated using Gaussian Processes, specifically designed to display distinct, known characteristics for targeted evaluations of model adaptability to them. Furthermore, we present TimeFlex, a new model that incorporates a modular architecture tailored to handle diverse temporal dynamics, including trends and periodic patterns. This model is compared to current state-of-the-art models, offering a deeper understanding of how models perform under varied time series conditions.

Authors:Hongjie Zhu, Xiwei Liu, Rundong Xue, Zeyu Zhang, Yong Xu, Daji Ergu, Ying Cai, Yang Zhao
Title: SSS: Semi-Supervised SAM-2 with Efficient Prompting for Medical Imaging Segmentation
Abstract:
In the era of information explosion, efficiently leveraging large-scale unlabeled data while minimizing the reliance on high-quality pixel-level annotations remains a critical challenge in the field of medical imaging. Semi-supervised learning (SSL) enhances the utilization of unlabeled data by facilitating knowledge transfer, significantly improving the performance of fully supervised models and emerging as a highly promising research direction in medical image analysis. Inspired by the ability of Vision Foundation Models (e.g., SAM-2) to provide rich prior knowledge, we propose SSS (Semi-Supervised SAM-2), a novel approach that leverages SAM-2's robust feature extraction capabilities to uncover latent knowledge in unlabeled medical images, thus effectively enhancing feature support for fully supervised medical image segmentation. Specifically, building upon the single-stream "weak-to-strong" consistency regularization framework, this paper introduces a Discriminative Feature Enhancement (DFE) mechanism to further explore the feature discrepancies introduced by various data augmentation strategies across multiple views. By leveraging feature similarity and dissimilarity across multi-scale augmentation techniques, the method reconstructs and models the features, thereby effectively optimizing the salient regions. Furthermore, a prompt generator is developed that integrates Physical Constraints with a Sliding Window (PCSW) mechanism to generate input prompts for unlabeled data, fulfilling SAM-2's requirement for additional prompts. Extensive experiments demonstrate the superiority of the proposed method for semi-supervised medical image segmentation on two multi-label datasets, i.e., ACDC and BHSD. Notably, SSS achieves an average Dice score of 53.15 on BHSD, surpassing the previous state-of-the-art method by +3.65 Dice. Code will be available at https://github.com/AIGeeksGroup/SSS.

Authors:Hang Ye, Gaoxiang Duan, Haoran Zeng, Yangxin Zhu, Lingxue Meng, Xiaoying Zheng, Yongxin Zhu
Title: KARMA: A Multilevel Decomposition Hybrid Mamba Framework for Multivariate Long-Term Time Series Forecasting
Abstract:
Multivariate long-term and efficient time series forecasting is a key requirement for a variety of practical applications, and there are complex interleaving time dynamics in time series data that require decomposition modeling. Traditional time series decomposition methods are single and rely on fixed rules, which are insufficient for mining the potential information of the series and adapting to the dynamic characteristics of complex series. On the other hand, the Transformer-based models for time series forecasting struggle to effectively model long sequences and intricate dynamic relationships due to their high computational complexity. To overcome these limitations, we introduce KARMA, with an Adaptive Time Channel Decomposition module (ATCD) to dynamically extract trend and seasonal components. It further integrates a Hybrid Frequency-Time Decomposition module (HFTD) to further decompose Series into frequency-domain and time-domain. These components are coupled with multi-scale Mamba-based KarmaBlock to efficiently process global and local information in a coordinated manner. Experiments on eight real-world datasets from diverse domains well demonstrated that KARMA significantly outperforms mainstream baseline methods in both predictive accuracy and computational efficiency. Code and full results are available at this repository: https://github.com/yedadasd/KARMA

Authors:Qinggang Zhang, Zhishang Xiang, Yilin Xiao, Le Wang, Junhui Li, Xinrun Wang, Jinsong Su
Title: FaithfulRAG: Fact-Level Conflict Modeling for Context-Faithful Retrieval-Augmented Generation
Abstract:
Large language models (LLMs) augmented with retrieval systems have demonstrated significant potential in handling knowledge-intensive tasks. However, these models often struggle with unfaithfulness issues, generating outputs that either ignore the retrieved context or inconsistently blend it with the LLM`s parametric knowledge. This issue is particularly severe in cases of knowledge conflict, where the retrieved context conflicts with the model`s parametric knowledge. While existing faithful RAG approaches enforce strict context adherence through well-designed prompts or modified decoding strategies, our analysis reveals a critical limitation: they achieve faithfulness by forcibly suppressing the model`s parametric knowledge, which undermines the model`s internal knowledge structure and increases the risk of misinterpreting the context. To this end, this paper proposes FaithfulRAG, a novel framework that resolves knowledge conflicts by explicitly modeling discrepancies between the model`s parametric knowledge and retrieved context. Specifically, FaithfulRAG identifies conflicting knowledge at the fact level and designs a self-thinking process, allowing LLMs to reason about and integrate conflicting facts before generating responses. Extensive experiments demonstrate that our method outperforms state-of-the-art methods. The code is available at https://github.com/DeepLearnXMU/Faithful-RAG

Authors:Andrew Shin
Title: Can A Gamer Train A Mathematical Reasoning Model?
Abstract:
While large language models (LLMs) have achieved remarkable performance in various tasks including mathematical reasoning, their development typically demands prohibitive computational resources. Recent advancements have reduced costs for training capable models, yet even these approaches rely on high-end hardware clusters. In this paper, we demonstrate that a single average gaming GPU can train a solid mathematical reasoning model, by integrating reinforcement learning and memory optimization techniques. Specifically, we train a 1.5B parameter mathematical reasoning model on RTX 3080 Ti of 16GB memory that achieves comparable or better performance on mathematical reasoning benchmarks than models several times larger, in resource-constrained environments. Our results challenge the paradigm that state-of-the-art mathematical reasoning necessitates massive infrastructure, democratizing access to high-performance AI research. https://github.com/shinandrew/YouronMath.

Authors:Ananthu Aniraj, Cassio F. Dantas, Dino Ienco, Diego Marcos
Title: Inherently Faithful Attention Maps for Vision Transformers
Abstract:
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds. Code: https://github.com/ananthu-aniraj/ifam

Authors:Jiajun Li, Yue Ma, Xinyu Zhang, Qingyan Wei, Songhua Liu, Linfeng Zhang
Title: SkipVAR: Accelerating Visual Autoregressive Modeling via Adaptive Frequency-Aware Skipping
Abstract:
Recent studies on Visual Autoregressive (VAR) models have highlighted that high-frequency components, or later steps, in the generation process contribute disproportionately to inference latency. However, the underlying computational redundancy involved in these steps has yet to be thoroughly investigated. In this paper, we conduct an in-depth analysis of the VAR inference process and identify two primary sources of inefficiency: step redundancy and unconditional branch redundancy. To address step redundancy, we propose an automatic step-skipping strategy that selectively omits unnecessary generation steps to improve efficiency. For unconditional branch redundancy, we observe that the information gap between the conditional and unconditional branches is minimal. Leveraging this insight, we introduce unconditional branch replacement, a technique that bypasses the unconditional branch to reduce computational cost. Notably, we observe that the effectiveness of acceleration strategies varies significantly across different samples. Motivated by this, we propose SkipVAR, a sample-adaptive framework that leverages frequency information to dynamically select the most suitable acceleration strategy for each instance. To evaluate the role of high-frequency information, we introduce high-variation benchmark datasets that test model sensitivity to fine details. Extensive experiments show SkipVAR achieves over 0.88 average SSIM with up to 1.81x overall acceleration and 2.62x speedup on the GenEval benchmark, maintaining model quality. These results confirm the effectiveness of frequency-aware, training-free adaptive acceleration for scalable autoregressive image generation. Our code is available at https://github.com/fakerone-li/SkipVAR and has been publicly released.

Authors:Chongyi Zheng, Seohong Park, Sergey Levine, Benjamin Eysenbach
Title: Intention-Conditioned Flow Occupancy Models
Abstract:
Large-scale pre-training has fundamentally changed how machine learning research is done today: large foundation models are trained once, and then can be used by anyone in the community (including those without data or compute resources to train a model from scratch) to adapt and fine-tune to specific tasks. Applying this same framework to reinforcement learning (RL) is appealing because it offers compelling avenues for addressing core challenges in RL, including sample efficiency and robustness. However, there remains a fundamental challenge to pre-train large models in the context of RL: actions have long-term dependencies, so training a foundation model that reasons across time is important. Recent advances in generative AI have provided new tools for modeling highly complex distributions. In this paper, we build a probabilistic model to predict which states an agent will visit in the temporally distant future (i.e., an occupancy measure) using flow matching. As large datasets are often constructed by many distinct users performing distinct tasks, we include in our model a latent variable capturing the user intention. This intention increases the expressivity of our model, and enables adaptation with generalized policy improvement. We call our proposed method intention-conditioned flow occupancy models (InFOM). Comparing with alternative methods for pre-training, our experiments on $36$ state-based and $4$ image-based benchmark tasks demonstrate that the proposed method achieves $1.8 \times$ median improvement in returns and increases success rates by $36\%$. Website: https://chongyi-zheng.github.io/infom Code: https://github.com/chongyi-zheng/infom

Authors:Chongyi Zheng, Seohong Park, Sergey Levine, Benjamin Eysenbach
Title: Intention-Conditioned Flow Occupancy Models
Abstract:
Large-scale pre-training has fundamentally changed how machine learning research is done today: large foundation models are trained once, and then can be used by anyone in the community (including those without data or compute resources to train a model from scratch) to adapt and fine-tune to specific tasks. Applying this same framework to reinforcement learning (RL) is appealing because it offers compelling avenues for addressing core challenges in RL, including sample efficiency and robustness. However, there remains a fundamental challenge to pre-train large models in the context of RL: actions have long-term dependencies, so training a foundation model that reasons across time is important. Recent advances in generative AI have provided new tools for modeling highly complex distributions. In this paper, we build a probabilistic model to predict which states an agent will visit in the temporally distant future (i.e., an occupancy measure) using flow matching. As large datasets are often constructed by many distinct users performing distinct tasks, we include in our model a latent variable capturing the user intention. This intention increases the expressivity of our model, and enables adaptation with generalized policy improvement. We call our proposed method intention-conditioned flow occupancy models (InFOM). Comparing with alternative methods for pre-training, our experiments on $36$ state-based and $4$ image-based benchmark tasks demonstrate that the proposed method achieves $1.8 \times$ median improvement in returns and increases success rates by $36\%$. Website: https://chongyi-zheng.github.io/infom Code: https://github.com/chongyi-zheng/infom

Authors:José Morano, Botond Fazekas, Emese Sükei, Ronald Fecso, Taha Emre, Markus Gumpinger, Georg Faustmann, Marzieh Oghbaie, Ursula Schmidt-Erfurth, Hrvoje Bogunović
Title: MIRAGE: Multimodal foundation model and benchmark for comprehensive retinal OCT image analysis
Abstract:
Artificial intelligence (AI) has become a fundamental tool for assisting clinicians in analyzing ophthalmic images, such as optical coherence tomography (OCT). However, developing AI models often requires extensive annotation, and existing models tend to underperform on independent, unseen data. Foundation models (FMs), large AI models trained on vast unlabeled datasets, have shown promise in overcoming these challenges. Nonetheless, available FMs for ophthalmology lack extensive validation, especially for segmentation tasks, and focus on a single imaging modality. In this context, we propose MIRAGE, a novel multimodal FM for the analysis of OCT and scanning laser ophthalmoscopy (SLO) images. Additionally, we propose a new evaluation benchmark with OCT/SLO classification and segmentation tasks. The comparison with general and specialized FMs and segmentation methods shows the superiority of MIRAGE in both types of tasks, highlighting its suitability as a basis for the development of robust AI systems for retinal OCT image analysis. Both MIRAGE and the evaluation benchmark are publicly available: https://github.com/j-morano/MIRAGE.

Authors:José Morano, Botond Fazekas, Emese Sükei, Ronald Fecso, Taha Emre, Markus Gumpinger, Georg Faustmann, Marzieh Oghbaie, Ursula Schmidt-Erfurth, Hrvoje Bogunović
Title: MIRAGE: Multimodal foundation model and benchmark for comprehensive retinal OCT image analysis
Abstract:
Artificial intelligence (AI) has become a fundamental tool for assisting clinicians in analyzing ophthalmic images, such as optical coherence tomography (OCT). However, developing AI models often requires extensive annotation, and existing models tend to underperform on independent, unseen data. Foundation models (FMs), large AI models trained on vast unlabeled datasets, have shown promise in overcoming these challenges. Nonetheless, available FMs for ophthalmology lack extensive validation, especially for segmentation tasks, and focus on a single imaging modality. In this context, we propose MIRAGE, a novel multimodal FM for the analysis of OCT and scanning laser ophthalmoscopy (SLO) images. Additionally, we propose a new evaluation benchmark with OCT/SLO classification and segmentation tasks. The comparison with general and specialized FMs and segmentation methods shows the superiority of MIRAGE in both types of tasks, highlighting its suitability as a basis for the development of robust AI systems for retinal OCT image analysis. Both MIRAGE and the evaluation benchmark are publicly available: https://github.com/j-morano/MIRAGE.

Authors:Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao Sun, Tianzhu Ye, Li Dong, Hayden Kwok-Hay So, Yu Hua, Ting Cao, Fan Yang, Mao Yang
Title: SeerAttention-R: Sparse Attention Adaptation for Long Reasoning
Abstract:
We introduce SeerAttention-R, a sparse attention framework specifically tailored for the long decoding of reasoning models. Extended from SeerAttention, SeerAttention-R retains the design of learning attention sparsity through a self-distilled gating mechanism, while removing query pooling to accommodate auto-regressive decoding. With a lightweight plug-in gating, SeerAttention-R is flexible and can be easily integrated into existing pretrained model without modifying the original parameters. We demonstrate that SeerAttention-R, trained on just 0.4B tokens, maintains near-lossless reasoning accuracy with 4K token budget in AIME benchmark under large sparse attention block sizes (64/128). Using TileLang, we develop a highly optimized sparse decoding kernel that achieves near-theoretical speedups of up to 9x over FlashAttention-3 on H100 GPU at 90% sparsity. Code is available at: https://github.com/microsoft/SeerAttention.

Authors:Leqi Shen, Guoqiang Gong, Tianxiang Hao, Tao He, Yifeng Zhang, Pengzhang Liu, Sicheng Zhao, Jungong Han, Guiguang Ding
Title: DiscoVLA: Discrepancy Reduction in Vision, Language, and Alignment for Parameter-Efficient Video-Text Retrieval
Abstract:
The parameter-efficient adaptation of the image-text pretraining model CLIP for video-text retrieval is a prominent area of research. While CLIP is focused on image-level vision-language matching, video-text retrieval demands comprehensive understanding at the video level. Three key discrepancies emerge in the transfer from image-level to video-level: vision, language, and alignment. However, existing methods mainly focus on vision while neglecting language and alignment. In this paper, we propose Discrepancy Reduction in Vision, Language, and Alignment (DiscoVLA), which simultaneously mitigates all three discrepancies. Specifically, we introduce Image-Video Features Fusion to integrate image-level and video-level features, effectively tackling both vision and language discrepancies. Additionally, we generate pseudo image captions to learn fine-grained image-level alignment. To mitigate alignment discrepancies, we propose Image-to-Video Alignment Distillation, which leverages image-level alignment knowledge to enhance video-level alignment. Extensive experiments demonstrate the superiority of our DiscoVLA. In particular, on MSRVTT with CLIP (ViT-B/16), DiscoVLA outperforms previous methods by 1.5% in R@1, reaching a final score of 50.5% R@1. The code is available at https://github.com/LunarShen/DsicoVLA.

Authors:Shiqin Tang, Shujian Yu
Title: InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis
Abstract:
Extracting meaningful latent representations from high-dimensional sequential data is a crucial challenge in machine learning, with applications spanning natural science and engineering. We introduce InfoDPCCA, a dynamic probabilistic Canonical Correlation Analysis (CCA) framework designed to model two interdependent sequences of observations. InfoDPCCA leverages a novel information-theoretic objective to extract a shared latent representation that captures the mutual structure between the data streams and balances representation compression and predictive sufficiency while also learning separate latent components that encode information specific to each sequence. Unlike prior dynamic CCA models, such as DPCCA, our approach explicitly enforces the shared latent space to encode only the mutual information between the sequences, improving interpretability and robustness. We further introduce a two-step training scheme to bridge the gap between information-theoretic representation learning and generative modeling, along with a residual connection mechanism to enhance training stability. Through experiments on synthetic and medical fMRI data, we demonstrate that InfoDPCCA excels as a tool for representation learning. Code of InfoDPCCA is available at https://github.com/marcusstang/InfoDPCCA.

Authors:Zike Wu, Qi Yan, Xuanyu Yi, Lele Wang, Renjie Liao
Title: StreamSplat: Towards Online Dynamic 3D Reconstruction from Uncalibrated Video Streams
Abstract:
Real-time reconstruction of dynamic 3D scenes from uncalibrated video streams is crucial for numerous real-world applications. However, existing methods struggle to jointly address three key challenges: 1) processing uncalibrated inputs in real time, 2) accurately modeling dynamic scene evolution, and 3) maintaining long-term stability and computational efficiency. To this end, we introduce StreamSplat, the first fully feed-forward framework that transforms uncalibrated video streams of arbitrary length into dynamic 3D Gaussian Splatting (3DGS) representations in an online manner, capable of recovering scene dynamics from temporally local observations. We propose two key technical innovations: a probabilistic sampling mechanism in the static encoder for 3DGS position prediction, and a bidirectional deformation field in the dynamic decoder that enables robust and efficient dynamic modeling. Extensive experiments on static and dynamic benchmarks demonstrate that StreamSplat consistently outperforms prior works in both reconstruction quality and dynamic scene modeling, while uniquely supporting online reconstruction of arbitrarily long video streams. Code and models are available at https://github.com/nickwzk/StreamSplat.

Authors:Jingguo Qu, Xinyang Han, Tonghuan Xiao, Jia Ai, Juan Wu, Tong Zhao, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Ying
Title: Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis
Abstract:
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at https://github.com/jinggqu/NextGen-UIA.

Authors:Zhiyuan Ma, Ruixun Liu, Sixian Liu, Jianjun Li, Bowen Zhou
Title: Flow Diverse and Efficient: Learning Momentum Flow Matching via Stochastic Velocity Field Sampling
Abstract:
Recently, the rectified flow (RF) has emerged as the new state-of-the-art among flow-based diffusion models due to its high efficiency advantage in straight path sampling, especially with the amazing images generated by a series of RF models such as Flux 1.0 and SD 3.0. Although a straight-line connection between the noisy and natural data distributions is intuitive, fast, and easy to optimize, it still inevitably leads to: 1) Diversity concerns, which arise since straight-line paths only cover a fairly restricted sampling space. 2) Multi-scale noise modeling concerns, since the straight line flow only needs to optimize the constant velocity field $\bm v$ between the two distributions $\bmπ_0$ and $\bmπ_1$. In this work, we present Discretized-RF, a new family of rectified flow (also called momentum flow models since they refer to the previous velocity component and the random velocity component in each diffusion step), which discretizes the straight path into a series of variable velocity field sub-paths (namely ``momentum fields'') to expand the search space, especially when close to the distribution $p_\text{noise}$. Different from the previous case where noise is directly superimposed on $\bm x$, we introduce noise on the velocity $\bm v$ of the sub-path to change its direction in order to improve the diversity and multi-scale noise modeling abilities. Experimental results on several representative datasets demonstrate that learning momentum flow matching by sampling random velocity fields will produce trajectories that are both diverse and efficient, and can consistently generate high-quality and diverse results. Code is available at https://github.com/liuruixun/momentum-fm.

Authors:Yuni Susanti, Michael Färber
Title: Paths to Causality: Finding Informative Subgraphs Within Knowledge Graphs for Knowledge-Based Causal Discovery
Abstract:
Inferring causal relationships between variable pairs is crucial for understanding multivariate interactions in complex systems. Knowledge-based causal discovery -- which involves inferring causal relationships by reasoning over the metadata of variables (e.g., names or textual context) -- offers a compelling alternative to traditional methods that rely on observational data. However, existing methods using Large Language Models (LLMs) often produce unstable and inconsistent results, compromising their reliability for causal inference. To address this, we introduce a novel approach that integrates Knowledge Graphs (KGs) with LLMs to enhance knowledge-based causal discovery. Our approach identifies informative metapath-based subgraphs within KGs and further refines the selection of these subgraphs using Learning-to-Rank-based models. The top-ranked subgraphs are then incorporated into zero-shot prompts, improving the effectiveness of LLMs in inferring the causal relationship. Extensive experiments on biomedical and open-domain datasets demonstrate that our method outperforms most baselines by up to 44.4 points in F1 scores, evaluated across diverse LLMs and KGs. Our code and datasets are available on GitHub: https://github.com/susantiyuni/path-to-causality

Authors:Boyang Sun, Yu Yao, Xinshuai Dong, Zongfang Liu, Tongliang Liu, Yumou Qiu, Kun Zhang
Title: A Sample Efficient Conditional Independence Test in the Presence of Discretization
Abstract:
In many real-world scenarios, interested variables are often represented as discretized values due to measurement limitations. Applying Conditional Independence (CI) tests directly to such discretized data, however, can lead to incorrect conclusions. To address this, recent advancements have sought to infer the correct CI relationship between the latent variables through binarizing observed data. However, this process inevitably results in a loss of information, which degrades the test's performance. Motivated by this, this paper introduces a sample-efficient CI test that does not rely on the binarization process. We find that the independence relationships of latent continuous variables can be established by addressing an over-identifying restriction problem with Generalized Method of Moments (GMM). Based on this insight, we derive an appropriate test statistic and establish its asymptotic distribution correctly reflecting CI by leveraging nodewise regression. Theoretical findings and Empirical results across various datasets demonstrate that the superiority and effectiveness of our proposed test. Our code implementation is provided in https://github.com/boyangaaaaa/DCT

Authors:Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song, Dacheng Tao
Title: Consistent Paths Lead to Truth: Self-Rewarding Reinforcement Learning for LLM Reasoning
Abstract:
Recent advances of Reinforcement Learning (RL) have highlighted its potential in complex reasoning tasks, yet effective training often relies on external supervision, which limits the broader applicability. In this work, we propose a novel self-rewarding reinforcement learning framework to enhance Large Language Model (LLM) reasoning by leveraging the consistency of intermediate reasoning states across different reasoning trajectories. Our key insight is that correct responses often exhibit consistent trajectory patterns in terms of model likelihood: their intermediate reasoning states tend to converge toward their own final answers (high consistency) with minimal deviation toward other candidates (low volatility). Inspired by this observation, we introduce CoVo, an intrinsic reward mechanism that integrates Consistency and Volatility via a robust vector-space aggregation strategy, complemented by a curiosity bonus to promote diverse exploration. CoVo enables LLMs to perform RL in a self-rewarding manner, offering a scalable pathway for learning to reason without external supervision. Extensive experiments on diverse reasoning benchmarks show that CoVo achieves performance comparable to or even surpassing supervised RL. Our code is available at https://github.com/sastpg/CoVo.

Authors:Michael Färber, David Lamprecht, Yuni Susanti
Title: Bridging RDF Knowledge Graphs with Graph Neural Networks for Semantically-Rich Recommender Systems
Abstract:
Graph Neural Networks (GNNs) have substantially advanced the field of recommender systems. However, despite the creation of more than a thousand knowledge graphs (KGs) under the W3C standard RDF, their rich semantic information has not yet been fully leveraged in GNN-based recommender systems. To address this gap, we propose a comprehensive integration of RDF KGs with GNNs that utilizes both the topological information from RDF object properties and the content information from RDF datatype properties. Our main focus is an in-depth evaluation of various GNNs, analyzing how different semantic feature initializations and types of graph structure heterogeneity influence their performance in recommendation tasks. Through experiments across multiple recommendation scenarios involving multi-million-node RDF graphs, we demonstrate that harnessing the semantic richness of RDF KGs significantly improves recommender systems and lays the groundwork for GNN-based recommender systems for the Linked Open Data cloud. The code and data are available on our GitHub repository: https://github.com/davidlamprecht/rdf-gnn-recommendation

Authors:Yuhang Wang, Jun Li, Zhijian Wu, Jifeng Shen, Jianhua Xu, Wankou Yang
Title: InceptionMamba: An Efficient Hybrid Network with Large Band Convolution and Bottleneck Mamba
Abstract:
Within the family of convolutional neural networks, InceptionNeXt has shown excellent competitiveness in image classification and a number of downstream tasks. Built on parallel one-dimensional strip convolutions, however, it suffers from limited ability of capturing spatial dependencies along different dimensions and fails to fully explore spatial modeling in local neighborhood. Besides, inherent locality constraints of convolution operations are detrimental to effective global context modeling. To overcome these limitations, we propose a novel backbone architecture termed InceptionMamba in this study. More specifically, the traditional one-dimensional strip convolutions are replaced by orthogonal band convolutions in our InceptionMamba to achieve cohesive spatial modeling. Furthermore, global contextual modeling can be achieved via a bottleneck Mamba module, facilitating enhanced cross-channel information fusion and enlarged receptive field. Extensive evaluations on classification and various downstream tasks demonstrate that the proposed InceptionMamba achieves state-of-the-art performance with superior parameter and computational efficiency. The source code will be available at https://github.com/Wake1021/InceptionMamba.

Authors:Mohammadreza Salehi, Shashanka Venkataramanan, Ioana Simion, Efstratios Gavves, Cees G. M. Snoek, Yuki M Asano
Title: MoSiC: Optimal-Transport Motion Trajectory for Dense Self-Supervised Learning
Abstract:
Dense self-supervised learning has shown great promise for learning pixel- and patch-level representations, but extending it to videos remains challenging due to the complexity of motion dynamics. Existing approaches struggle as they rely on static augmentations that fail under object deformations, occlusions, and camera movement, leading to inconsistent feature learning over time. We propose a motion-guided self-supervised learning framework that clusters dense point tracks to learn spatiotemporally consistent representations. By leveraging an off-the-shelf point tracker, we extract long-range motion trajectories and optimize feature clustering through a momentum-encoder-based optimal transport mechanism. To ensure temporal coherence, we propagate cluster assignments along tracked points, enforcing feature consistency across views despite viewpoint changes. Integrating motion as an implicit supervisory signal, our method learns representations that generalize across frames, improving robustness in dynamic scenes and challenging occlusion scenarios. By initializing from strong image-pretrained models and leveraging video data for training, we improve state-of-the-art by 1% to 6% on six image and video datasets and four evaluation benchmarks. The implementation is publicly available at our GitHub repository: https://github.com/SMSD75/MoSiC/tree/main

Authors:Milica Škipina, Nikola Jovišić, Nicola Dall'Asen, Vanja Švenda, Anil Osman Tur, Slobodan Ilić, Elisa Ricci, Dubravko Ćulibrk
Title: MAMBO: High-Resolution Generative Approach for Mammography Images
Abstract:
Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final model, significantly aiding the noise removal process. This design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly segmentation. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly segmentation, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection. The source code used in this study is publicly available at: https://github.com/iai-rs/mambo.

Authors:Milica Škipina, Nikola Jovišić, Nicola Dall'Asen, Vanja Švenda, Anil Osman Tur, Slobodan Ilić, Elisa Ricci, Dubravko Ćulibrk
Title: MAMBO: High-Resolution Generative Approach for Mammography Images
Abstract:
Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final model, significantly aiding the noise removal process. This design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly segmentation. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly segmentation, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection. The source code used in this study is publicly available at: https://github.com/iai-rs/mambo.

Authors:Mahesh Godavarti
Title: JoFormer (Journey-based Transformer): Theory and Empirical Analysis on the Tiny Shakespeare Dataset
Abstract:
Transformers have demonstrated remarkable success in sequence modeling, yet effectively incorporating positional information remains a challenging and active area of research. In this paper, we introduce JoFormer, a journey-based Transformer architecture grounded in a recently proposed non-commutative algebra for composing transformations across positions. JoFormer represents relative positions through learnable directional transforms that are sequentially composed along the input, thereby extending and generalizing existing approaches based on relative position representations. We derive the JoFormer attention mechanism from first principles and show that it subsumes standard methods such as rotary transformations as special cases. To evaluate its effectiveness, we compare JoFormer to the RoFormer baseline on the Tiny Shakespeare character-level language modeling task. Our results demonstrate that JoFormer consistently achieves lower perplexity and faster convergence, highlighting the advantages of its more expressive, journey-based treatment of position. Notably, the per-token JoFormer is still a primitive, conceptual variant with layer-independent angles, yet it already demonstrates strong performance-underscoring its promise as a proof of concept for more expressive architectures. We conclude by discussing how JoFormer offers a principled approach to integrating positional structure into Transformer architectures. The code used in this work is available at https://github.com/mahesh-godavarti/joformer.

Authors:Mingyu Zheng, Zhifan Feng, Jia Wang, Lanrui Wang, Zheng Lin, Yang Hao, Weiping Wang
Title: TableDreamer: Progressive and Weakness-guided Data Synthesis from Scratch for Table Instruction Tuning
Abstract:
Despite the commendable progress of recent LLM-based data synthesis methods, they face two limitations in generating table instruction tuning data. First, they can not thoroughly explore the vast input space of table understanding tasks, leading to limited data diversity. Second, they ignore the weaknesses in table understanding ability of the target LLM and blindly pursue the increase of data quantity, resulting in suboptimal data efficiency. In this paper, we introduce a progressive and weakness-guided data synthesis framework tailored for table instruction tuning, named TableDreamer, to mitigate the above issues. Specifically, we first synthesize diverse tables and related instructions as seed data, and then perform an iterative exploration of the input space under the guidance of the newly identified weakness data, which eventually serve as the final training data for fine-tuning the target LLM. Extensive experiments on 10 tabular benchmarks demonstrate the effectiveness of the proposed framework, which boosts the average accuracy of Llama3.1-8B-instruct by 11.62% (49.07% to 60.69%) with 27K GPT-4o synthetic data and outperforms state-of-the-art data synthesis baselines which use more training data. The code and data is available at https://github.com/SpursGoZmy/TableDreamer

Authors:Simon Roschmann, Quentin Bouniot, Vasilii Feofanov, Ievgen Redko, Zeynep Akata
Title: Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Abstract:
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.

Authors:Xianquan Yan, Hakan Akgün, Kenji Kawaguchi, N. Duane Loh, Ching Hua Lee
Title: HSG-12M: A Large-Scale Spatial Multigraph Dataset
Abstract:
Existing graph benchmarks assume non-spatial, simple edges, collapsing physically distinct paths into a single link. We introduce HSG-12M, the first large-scale dataset of $\textbf{spatial multigraphs}-$graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. HSG-12M contains 11.6 million static and 5.1 million dynamic $\textit{Hamiltonian spectral graphs}$ across 1401 characteristic-polynomial classes, derived from 177 TB of spectral potential data. Each graph encodes the full geometry of a 1-D crystal's energy spectrum on the complex plane, producing diverse, physics-grounded topologies that transcend conventional node-coordinate datasets. To enable future extensions, we release $\texttt{Poly2Graph}$: a high-performance, open-source pipeline that maps arbitrary 1-D crystal Hamiltonians to spectral graphs. Benchmarks with popular GNNs expose new challenges in learning from multi-edge geometry at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for geometry-aware graph learning and new opportunities of data-driven scientific discovery in condensed matter physics and beyond.

Authors:Kiran Purohit, V Venktesh, Sourangshu Bhattacharya, Avishek Anand
Title: Sample Efficient Demonstration Selection for In-Context Learning
Abstract:
The in-context learning paradigm with LLMs has been instrumental in advancing a wide range of natural language processing tasks. The selection of few-shot examples (exemplars / demonstration samples) is essential for constructing effective prompts under context-length budget constraints. In this paper, we formulate the exemplar selection task as a top-m best arms identification problem. A key challenge in this setup is the exponentially large number of arms that need to be evaluated to identify the m-best arms. We propose CASE (Challenger Arm Sampling for Exemplar selection), a novel sample-efficient selective exploration strategy that maintains a shortlist of "challenger" arms, which are current candidates for the top-m arms. In each iteration, only one of the arms from this shortlist or the current topm set is pulled, thereby reducing sample complexity and, consequently, the number of LLM evaluations. Furthermore, we model the scores of exemplar subsets (arms) using a parameterized linear scoring function, leading to stochastic linear bandits setting. CASE achieves remarkable efficiency gains of up to 7x speedup in runtime while requiring 7x fewer LLM calls (87% reduction) without sacrificing performance compared to state-of-the-art exemplar selection methods. We release our code and data at https://github.com/kiranpurohit/CASE

Authors:Liyan Xu, Zhenlin Su, Mo Yu, Jiangnan Li, Fandong Meng, Jie Zhou
Title: Dense Retrievers Can Fail on Simple Queries: Revealing The Granularity Dilemma of Embeddings
Abstract:
This work stems from an observed limitation of text encoders: embeddings may not be able to recognize fine-grained entities or events within encoded semantics, resulting in failed retrieval even in simple cases. To examine such behaviors, we first introduce a new evaluation dataset, CapRetrieval, in which passages are image captions and queries are phrases targeting entity or event concepts in diverse forms. Zero-shot evaluation suggests that encoders often struggle with these fine-grained matching, regardless of training sources or model size. Aiming for enhancement, we proceed to finetune encoders with our proposed data generation strategies, enabling a small 0.1B encoder to outperform the state-of-the-art 7B model. Within this process, we further uncover the granularity dilemma, a challenge for embeddings to capture fine-grained salience while aligning with overall semantics. Our dataset, code and models in this work are publicly released at https://github.com/lxucs/CapRetrieval.

Authors:Chengchao Shen, Hourun Zhu, Gongfan Fang, Jianxin Wang, Xinchao Wang
Title: Diversity-Guided MLP Reduction for Efficient Large Vision Transformers
Abstract:
Transformer models achieve excellent scaling property, where the performance is improved with the increment of model capacity. However, large-scale model parameters lead to an unaffordable cost of computing and memory. We analyze popular transformer architectures and find that multilayer perceptron (MLP) modules take up the majority of model parameters. To this end, we focus on the recoverability of the compressed models and propose a Diversity-Guided MLP Reduction (DGMR) method to significantly reduce the parameters of large vision transformers with only negligible performance degradation. Specifically, we conduct a Gram-Schmidt weight pruning strategy to eliminate redundant neurons of MLP hidden layer, while preserving weight diversity for better performance recover during distillation. Compared to the model trained from scratch, our pruned model only requires 0.06\% data of LAION-2B (for the training of large vision transformers) without labels (ImageNet-1K) to recover the original performance. Experimental results on several state-of-the-art large vision transformers demonstrate that our method achieves a more than 57.0\% parameter and FLOPs reduction in a near lossless manner. Notably, for EVA-CLIP-E (4.4B), our method accomplishes a 71.5\% parameter and FLOPs reduction without performance degradation. The source code and trained weights are available at https://github.com/visresearch/DGMR.

Authors:Sunny Gupta, Nikita Jangid, Shounak Das, Amit Sethi
Title: FEDTAIL: Federated Long-Tailed Domain Generalization with Sharpness-Guided Gradient Matching
Abstract:
Domain Generalization (DG) seeks to train models that perform reliably on unseen target domains without access to target data during training. While recent progress in smoothing the loss landscape has improved generalization, existing methods often falter under long-tailed class distributions and conflicting optimization objectives. We introduce FedTAIL, a federated domain generalization framework that explicitly addresses these challenges through sharpness-guided, gradient-aligned optimization. Our method incorporates a gradient coherence regularizer to mitigate conflicts between classification and adversarial objectives, leading to more stable convergence. To combat class imbalance, we perform class-wise sharpness minimization and propose a curvature-aware dynamic weighting scheme that adaptively emphasizes underrepresented tail classes. Furthermore, we enhance conditional distribution alignment by integrating sharpness-aware perturbations into entropy regularization, improving robustness under domain shift. FedTAIL unifies optimization harmonization, class-aware regularization, and conditional alignment into a scalable, federated-compatible framework. Extensive evaluations across standard domain generalization benchmarks demonstrate that FedTAIL achieves state-of-the-art performance, particularly in the presence of domain shifts and label imbalance, validating its effectiveness in both centralized and federated settings. Code: https://github.com/sunnyinAI/FedTail

Authors:Jiale Dong, Hao Wu, Zihao Wang, Wenqi Lou, Zhendong Zheng, Lei Gong, Chao Wang, Xuehai Zhou
Title: CoQMoE: Co-Designed Quantization and Computation Orchestration for Mixture-of-Experts Vision Transformer on FPGA
Abstract:
Vision Transformers (ViTs) exhibit superior performance in computer vision tasks but face deployment challenges on resource-constrained devices due to high computational/memory demands. While Mixture-of-Experts Vision Transformers (MoE-ViTs) mitigate this through a scalable architecture with sub-linear computational growth, their hardware implementation on FPGAs remains constrained by resource limitations. This paper proposes a novel accelerator for efficiently implementing quantized MoE models on FPGAs through two key innovations: (1) A dual-stage quantization scheme combining precision-preserving complex quantizers with hardware-friendly simplified quantizers via scale reparameterization, with only 0.28 $\%$ accuracy loss compared to full precision; (2) A resource-aware accelerator architecture featuring latency-optimized streaming attention kernels and reusable linear operators, effectively balancing performance and resource consumption. Experimental results demonstrate that our accelerator achieves nearly 155 frames per second, a 5.35$\times$ improvement in throughput, and over $80\%$ energy reduction compared to state-of-the-art (SOTA) FPGA MoE accelerators, while maintaining $<1\%$ accuracy loss across vision benchmarks. Our implementation is available at https://github.com/DJ000011/CoQMoE.

Authors:Xiao Wei, Xiaobao Wang, Ning Zhuang, Chenyang Wang, Longbiao Wang, Jianwu dang
Title: Integration of Old and New Knowledge for Generalized Intent Discovery: A Consistency-driven Prototype-Prompting Framework
Abstract:
Intent detection aims to identify user intents from natural language inputs, where supervised methods rely heavily on labeled in-domain (IND) data and struggle with out-of-domain (OOD) intents, limiting their practical applicability. Generalized Intent Discovery (GID) addresses this by leveraging unlabeled OOD data to discover new intents without additional annotation. However, existing methods focus solely on clustering unsupervised data while neglecting domain adaptation. Therefore, we propose a consistency-driven prototype-prompting framework for GID from the perspective of integrating old and new knowledge, which includes a prototype-prompting framework for transferring old knowledge from external sources, and a hierarchical consistency constraint for learning new knowledge from target domains. We conducted extensive experiments and the results show that our method significantly outperforms all baseline methods, achieving state-of-the-art results, which strongly demonstrates the effectiveness and generalization of our methods. Our source code is publicly available at https://github.com/smileix/cpp.

Authors:Shuo Yang, Qihui Zhang, Yuyang Liu, Yue Huang, Xiaojun Jia, Kunpeng Ning, Jiayu Yao, Jigang Wang, Hailiang Dai, Yibing Song, Li Yuan
Title: AsFT: Anchoring Safety During LLM Fine-Tuning Within Narrow Safety Basin
Abstract:
Large language models (LLMs) are vulnerable to safety risks during fine-tuning, where small amounts of malicious or harmless data can compromise safeguards. In this paper, building on the concept of alignment direction -- defined by the weight difference between aligned and unaligned models -- we observe that perturbations along this direction preserve model safety. In contrast, perturbations along directions orthogonal to this alignment are strongly linked to harmful direction perturbations, rapidly degrading safety and framing the parameter space as a narrow safety basin. Based on this insight, we propose a methodology for safety fine-tuning called AsFT (Anchoring Safety in Fine-Tuning), which integrates a regularization term into the training objective. This term uses the alignment direction as an anchor to suppress updates in harmful directions, ensuring that fine-tuning is constrained within the narrow safety basin. Extensive experiments on multiple datasets show that AsFT outperforms Safe LoRA, reducing harmful behavior by 7.60 percent, improving model performance by 3.44 percent, and maintaining robust performance across various experimental settings. Code is available at https://github.com/PKU-YuanGroup/AsFT

Authors:Hyunseok Seung, Jaewoo Lee, Hyunsuk Ko
Title: MAC: An Efficient Gradient Preconditioning using Mean Activation Approximated Curvature
Abstract:
Second-order optimization methods for training neural networks, such as KFAC, exhibit superior convergence by utilizing curvature information of loss landscape. However, it comes at the expense of high computational burden. In this work, we analyze the two components that constitute the layer-wise Fisher information matrix (FIM) used in KFAC: the Kronecker factors related to activations and pre-activation gradients. Based on empirical observations on their eigenspectra, we propose efficient approximations for them, resulting in a computationally efficient optimization method called MAC. To the best of our knowledge, MAC is the first algorithm to apply the Kronecker factorization to the FIM of attention layers used in transformers and explicitly integrate attention scores into the preconditioning. We also study the convergence property of MAC on nonlinear neural networks and provide two conditions under which it converges to global minima. Our extensive evaluations on various network architectures and datasets show that the proposed method outperforms KFAC and other state-of-the-art methods in terms of accuracy, end-to-end training time, and memory usage. Code is available at https://github.com/hseung88/mac.

Authors:Ge Zhu, Yutong Wen, Zhiyao Duan
Title: A Review on Score-based Generative Models for Audio Applications
Abstract:
Diffusion models have emerged as powerful deep generative techniques, producing high-quality and diverse samples in applications in various domains including audio. These models have many different design choices suitable for different applications, however, existing reviews lack in-depth discussions of these design choices. The audio diffusion model literature also lacks principled guidance for the implementation of these design choices and their comparisons for different applications. This survey provides a comprehensive review of diffusion model design with an emphasis on design principles for quality improvement and conditioning for audio applications. We adopt the score modeling perspective as a unifying framework that accommodates various interpretations, including recent approaches like flow matching. We systematically examine the training and sampling procedures of diffusion models, and audio applications through different conditioning mechanisms. To address the lack of audio diffusion model codebases and to promote reproducible research and rapid prototyping, we introduce an open-source codebase at https://github.com/gzhu06/AudioDiffuser that implements our reviewed framework for various audio applications. We demonstrate its capabilities through three case studies: audio generation, speech enhancement, and text-to-speech synthesis, with benchmark evaluations on standard datasets.

Authors:Zengjue Chen, Runliang Niu, He Kong, Qi Wang
Title: TGRPO :Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization
Abstract:
Recent advances in Vision-Language-Action (VLA) model have demonstrated strong generalization capabilities across diverse scenes, tasks, and robotic platforms when pretrained at large-scale datasets. However, these models still require task-specific fine-tuning in novel environments, a process that relies almost exclusively on supervised fine-tuning (SFT) using static trajectory datasets. Such approaches neither allow robot to interact with environment nor do they leverage feedback from live execution. Also, their success is critically dependent on the size and quality of the collected trajectories. Reinforcement learning (RL) offers a promising alternative by enabling closed-loop interaction and aligning learned policies directly with task objectives. In this work, we draw inspiration from the ideas of GRPO and propose the Trajectory-wise Group Relative Policy Optimization (TGRPO) method. By fusing step-level and trajectory-level advantage signals, this method improves GRPO's group-level advantage estimation, thereby making the algorithm more suitable for online reinforcement learning training of VLA. Experimental results on ten manipulation tasks from the libero-object benchmark demonstrate that TGRPO consistently outperforms various baseline methods, capable of generating more robust and efficient policies across multiple tested scenarios. Our source codes are available at: https://github.com/hahans/TGRPO

Authors:Jiaxiang Liu, Boxuan Xing, Chenhao Yuan, Chenxiang Zhang, Di Wu, Xiusheng Huang, Haida Yu, Chuhan Lang, Pengfei Cao, Jun Zhao, Kang Liu
Title: Know-MRI: A Knowledge Mechanisms Revealer&Interpreter for Large Language Models
Abstract:
As large language models (LLMs) continue to advance, there is a growing urgency to enhance the interpretability of their internal knowledge mechanisms. Consequently, many interpretation methods have emerged, aiming to unravel the knowledge mechanisms of LLMs from various perspectives. However, current interpretation methods differ in input data formats and interpreting outputs. The tools integrating these methods are only capable of supporting tasks with specific inputs, significantly constraining their practical applications. To address these challenges, we present an open-source Knowledge Mechanisms Revealer&Interpreter (Know-MRI) designed to analyze the knowledge mechanisms within LLMs systematically. Specifically, we have developed an extensible core module that can automatically match different input data with interpretation methods and consolidate the interpreting outputs. It enables users to freely choose appropriate interpretation methods based on the inputs, making it easier to comprehensively diagnose the model's internal knowledge mechanisms from multiple perspectives. Our code is available at https://github.com/nlpkeg/Know-MRI. We also provide a demonstration video on https://youtu.be/NVWZABJ43Bs.

Authors:Utkarsh Pratiush, Austin Houston, Kamyar Barakati, Aditya Raghavan, Dasol Yoon, Harikrishnan KP, Zhaslan Baraissov, Desheng Ma, Samuel S. Welborn, Mikolaj Jakowski, Shawn-Patrick Barhorst, Alexander J. Pattison, Panayotis Manganaris, Sita Sirisha Madugula, Sai Venkata Gayathri Ayyagari, Vishal Kennedy, Ralph Bulanadi, Michelle Wang, Kieran J. Pang, Ian Addison-Smith, Willy Menacho, Horacio V. Guzman, Alexander Kiefer, Nicholas Furth, Nikola L. Kolev, Mikhail Petrov, Viktoriia Liu, Sergey Ilyev, Srikar Rairao, Tommaso Rodani, Ivan Pinto-Huguet, Xuli Chen, Josep Cruañes, Marta Torrens, Jovan Pomar, Fanzhi Su, Pawan Vedanti, Zhiheng Lyu, Xingzhi Wang, Lehan Yao, Amir Taqieddin, Forrest Laskowski, Xiangyu Yin, Yu-Tsun Shao, Benjamin Fein-Ashley, Yi Jiang, Vineet Kumar, Himanshu Mishra, Yogesh Paul, Adib Bazgir, Rama chandra Praneeth Madugula, Yuwen Zhang, Pravan Omprakash, Jian Huang, Eric Montufar-Morales, Vivek Chawla, Harshit Sethi, Jie Huang, Lauri Kurki, Grace Guinan, Addison Salvador, Arman Ter-Petrosyan, Madeline Van Winkle, Steven R. Spurgeon, Ganesh Narasimha, Zijie Wu, Richard Liu, Yongtao Liu, Boris Slautin, Andrew R Lupini, Rama Vasudevan, Gerd Duscher, Sergei V. Kalinin
Title: Mic-hackathon 2024: Hackathon on Machine Learning for Electron and Scanning Probe Microscopy
Abstract:
Microscopy is a primary source of information on materials structure and functionality at nanometer and atomic scales. The data generated is often well-structured, enriched with metadata and sample histories, though not always consistent in detail or format. The adoption of Data Management Plans (DMPs) by major funding agencies promotes preservation and access. However, deriving insights remains difficult due to the lack of standardized code ecosystems, benchmarks, and integration strategies. As a result, data usage is inefficient and analysis time is extensive. In addition to post-acquisition analysis, new APIs from major microscope manufacturers enable real-time, ML-based analytics for automated decision-making and ML-agent-controlled microscope operation. Yet, a gap remains between the ML and microscopy communities, limiting the impact of these methods on physics, materials discovery, and optimization. Hackathons help bridge this divide by fostering collaboration between ML researchers and microscopy experts. They encourage the development of novel solutions that apply ML to microscopy, while preparing a future workforce for instrumentation, materials science, and applied ML. This hackathon produced benchmark datasets and digital twins of microscopes to support community growth and standardized workflows. All related code is available at GitHub: https://github.com/KalininGroup/Mic-hackathon-2024-codes-publication/tree/1.0.0.1

Authors:Weiya Li, Junjie Chen, Bei Li, Boyang Liu, Zichen Wen, Nuanqiao Shan, Xiaoqian Liu, Anping Liu, Huajie Liu, Hu Song, Linfeng Zhang
Title: TACTIC: Translation Agents with Cognitive-Theoretic Interactive Collaboration
Abstract:
Machine translation has long been a central task in natural language processing. With the rapid advancement of large language models (LLMs), there has been remarkable progress in translation quality. However, fully realizing the translation potential of LLMs remains an open challenge. Recent studies have explored multi-agent systems to decompose complex translation tasks into collaborative subtasks, showing initial promise in enhancing translation quality through agent cooperation and specialization. Nevertheless, existing multi-agent translation frameworks largely neglect foundational insights from cognitive translation studies. These insights emphasize how human translators employ different cognitive strategies, such as balancing literal and free translation, refining expressions based on context, and iteratively evaluating outputs. To address this limitation, we propose a cognitively informed multi-agent framework called TACTIC, which stands for T ranslation A gents with Cognitive- T heoretic Interactive Collaboration. The framework comprises six functionally distinct agents that mirror key cognitive processes observed in human translation behavior. These include agents for drafting, refinement, evaluation, scoring, context reasoning, and external knowledge gathering. By simulating an interactive and theory-grounded translation workflow, TACTIC effectively leverages the full capacity of LLMs for high-quality translation. Experimental results on diverse language pairs from the FLORES-200 and WMT24 benchmarks show that our method consistently achieves state-of-the-art performance. Using DeepSeek-V3 as the base model, TACTIC surpasses GPT-4.1 by an average of +0.6 XCOMET and +1.18 COMETKIWI-23. Compared to DeepSeek-R1, it further improves by +0.84 XCOMET and +2.99 COMETKIWI-23. Code is available at https://github.com/weiyali126/TACTIC.

Authors:Leheng Sheng, An Zhang, Zijian Wu, Weixiang Zhao, Changshuo Shen, Yi Zhang, Xiang Wang, Tat-Seng Chua
Title: On Reasoning Strength Planning in Large Reasoning Models
Abstract:
Recent studies empirically reveal that large reasoning models (LRMs) can automatically allocate more reasoning strengths (i.e., the number of reasoning tokens) for harder problems, exhibiting difficulty-awareness for better task performance. While this automatic reasoning strength allocation phenomenon has been widely observed, its underlying mechanism remains largely unexplored. To this end, we provide explanations for this phenomenon from the perspective of model activations. We find evidence that LRMs pre-plan the reasoning strengths in their activations even before generation, with this reasoning strength causally controlled by the magnitude of a pre-allocated directional vector. Specifically, we show that the number of reasoning tokens is predictable solely based on the question activations using linear probes, indicating that LRMs estimate the required reasoning strength in advance. We then uncover that LRMs encode this reasoning strength through a pre-allocated directional vector embedded in the activations of the model, where the vector's magnitude modulates the reasoning strength. Subtracting this vector can lead to reduced reasoning token number and performance, while adding this vector can lead to increased reasoning token number and even improved performance. We further reveal that this direction vector consistently yields positive reasoning length prediction, and it modifies the logits of end-of-reasoning token to affect the reasoning length. Finally, we demonstrate two potential applications of our findings: overthinking behavior detection and enabling efficient reasoning on simple problems. Our work provides new insights into the internal mechanisms of reasoning in LRMs and offers practical tools for controlling their reasoning behaviors. Our code is available at https://github.com/AlphaLab-USTC/LRM-plans-CoT.

Authors:Edoardo Cetin, Tianyu Zhao, Yujin Tang
Title: Reinforcement Learning Teachers of Test Time Scaling
Abstract:
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework.

Authors:Kevin Galim, Ethan Ewer, Wonjun Kang, Minjae Lee, Hyung Il Koo, Kangwook Lee
Title: Draft-based Approximate Inference for LLMs
Abstract:
Optimizing inference for long-context Large Language Models (LLMs) is increasingly important due to the quadratic compute and linear memory complexity of Transformers. Existing approximation methods, such as key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on rough predictions of token or KV pair importance. We propose a novel framework for approximate LLM inference that leverages small draft models to more accurately predict the importance of tokens and KV pairs. Specifically, we introduce two instantiations of our proposed framework: (i) SpecKV, the first method that leverages a draft output to accurately assess the importance of each KV pair for more effective KV cache dropping, and (ii) SpecPC, which uses the draft model's attention activations to identify and discard unimportant prompt tokens. We motivate our methods with theoretical and empirical analyses, and show a strong correlation between the attention patterns of draft and target models. Extensive experiments on long-context benchmarks show that our methods consistently achieve higher accuracy than existing baselines, while preserving the same improvements in memory usage, latency, and throughput. Our code is available at https://github.com/furiosa-ai/draft-based-approx-llm.

Authors:Yanting Mei, Zhilu Zhang, Xiaohe Wu, Wangmeng Zuo
Title: Image Demoiréing Using Dual Camera Fusion on Mobile Phones
Abstract:
When shooting electronic screens, moiré patterns usually appear in captured images, which seriously affects the image quality. Existing image demoiréing methods face great challenges in removing large and heavy moiré. To address the issue, we propose to utilize Dual Camera fusion for Image Demoiréing (DCID), \ie, using the ultra-wide-angle (UW) image to assist the moiré removal of wide-angle (W) image. This is inspired by two motivations: (1) the two lenses are commonly equipped with modern smartphones, (2) the UW image generally can provide normal colors and textures when moiré exists in the W image mainly due to their different focal lengths. In particular, we propose an efficient DCID method, where a lightweight UW image encoder is integrated into an existing demoiréing network and a fast two-stage image alignment manner is present. Moreover, we construct a large-scale real-world dataset with diverse mobile phones and monitors, containing about 9,000 samples. Experiments on the dataset show our method performs better than state-of-the-art methods. Code and dataset are available at https://github.com/Mrduckk/DCID.

Authors:Hyunseok Seung, Jaewoo Lee, Hyunsuk Ko
Title: NysAct: A Scalable Preconditioned Gradient Descent using Nystrom Approximation
Abstract:
Adaptive gradient methods are computationally efficient and converge quickly, but they often suffer from poor generalization. In contrast, second-order methods enhance convergence and generalization but typically incur high computational and memory costs. In this work, we introduce NysAct, a scalable first-order gradient preconditioning method that strikes a balance between state-of-the-art first-order and second-order optimization methods. NysAct leverages an eigenvalue-shifted Nystrom method to approximate the activation covariance matrix, which is used as a preconditioning matrix, significantly reducing time and memory complexities with minimal impact on test accuracy. Our experiments show that NysAct not only achieves improved test accuracy compared to both first-order and second-order methods but also demands considerably less computational resources than existing second-order methods. Code is available at https://github.com/hseung88/nysact.

Authors:Franck Meyer, Kyunghoon Hur, Edward Choi
Title: MD-ViSCo: A Unified Model for Multi-Directional Vital Sign Waveform Conversion
Abstract:
Despite the remarkable progress of deep-learning methods generating a target vital sign waveform from a source vital sign waveform, most existing models are designed exclusively for a specific source-to-target pair. This requires distinct model architectures, optimization procedures, and pre-processing pipelines, resulting in multiple models that hinder usability in clinical settings. To address this limitation, we propose the Multi-Directional Vital-Sign Converter (MD-ViSCo), a unified framework capable of generating any target waveform such as electrocardiogram (ECG), photoplethysmogram (PPG), or arterial blood pressure (ABP) from any single input waveform with a single model. MD-ViSCo employs a shallow 1-Dimensional U-Net integrated with a Swin Transformer that leverages Adaptive Instance Normalization (AdaIN) to capture distinct waveform styles. To evaluate the efficacy of MD-ViSCo, we conduct multi-directional waveform generation on two publicly available datasets. Our framework surpasses state-of-the-art baselines (NabNet & PPG2ABP) on average across all waveform types, lowering Mean absolute error (MAE) by 8.8% and improving Pearson correlation (PC) by 4.9% over two datasets. In addition, the generated ABP waveforms satisfy the Association for the Advancement of Medical Instrumentation (AAMI) criterion and achieve Grade B on the British Hypertension Society (BHS) standard, outperforming all baselines. By eliminating the need for developing a distinct model for each task, we believe that this work offers a unified framework that can deal with any kind of vital sign waveforms with a single model in healthcare monitoring.

Authors:Hyunseok Seung, Jaewoo Lee, Hyunsuk Ko
Title: An Adaptive Method Stabilizing Activations for Enhanced Generalization
Abstract:
We introduce AdaAct, a novel optimization algorithm that adjusts learning rates according to activation variance. Our method enhances the stability of neuron outputs by incorporating neuron-wise adaptivity during the training process, which subsequently leads to better generalization -- a complementary approach to conventional activation regularization methods. Experimental results demonstrate AdaAct's competitive performance across standard image classification benchmarks. We evaluate AdaAct on CIFAR and ImageNet, comparing it with other state-of-the-art methods. Importantly, AdaAct effectively bridges the gap between the convergence speed of Adam and the strong generalization capabilities of SGD, all while maintaining competitive execution times. Code is available at https://github.com/hseung88/adaact.

Authors:Wentao Shi, Yiqing Shen
Title: Reinforcement Fine-Tuning for Reasoning towards Multi-Step Multi-Source Search in Large Language Models
Abstract:
Large language models (LLMs) can face factual limitations when responding to time-sensitive queries about recent events that arise after their knowledge thresholds in the training corpus. Existing search-augmented approaches fall into two categories, each with distinct limitations: multi-agent search frameworks incur substantial computational overhead by separating search planning and response synthesis across multiple LLMs, while single-LLM tool-calling methods restrict themselves to sequential planned, single-query searches from sole search sources. We present Reasoning-Search (R-Search), a single-LLM search framework that unifies multi-step planning, multi-source search execution, and answer synthesis within one coherent inference process. Innovatively, it structure the output into four explicitly defined components, including reasoning steps that guide the search process (), a natural-language directed acyclic graph that represents the search plans with respect to diverse sources (), retrieved results from executing the search plans (), and synthesized final answers (). To enable effective generation of these structured outputs, we propose a specialized Reinforcement Fine-Tuning (ReFT) method based on GRPO, together with a multi-component reward function that optimizes LLM's answer correctness, structural validity of the generated DAG, and adherence to the defined output format. Experimental evaluation on FinSearchBench-24, SearchExpertBench-25, and seven Q and A benchmarks demonstrates that R-Search outperforms state-of-the-art methods, while achieving substantial efficiency gains through 70% reduction in context token usage and approximately 50% decrease in execution latency. Code is available at https://github.com/wentao0429/Reasoning-search.

Authors:Yinan Huang, Haoteng Yin, Eli Chien, Rongzhe Wei, Pan Li
Title: Differentially Private Relational Learning with Entity-level Privacy Guarantees
Abstract:
Learning with relational and network-structured data is increasingly vital in sensitive domains where protecting the privacy of individual entities is paramount. Differential Privacy (DP) offers a principled approach for quantifying privacy risks, with DP-SGD emerging as a standard mechanism for private model training. However, directly applying DP-SGD to relational learning is challenging due to two key factors: (i) entities often participate in multiple relations, resulting in high and difficult-to-control sensitivity; and (ii) relational learning typically involves multi-stage, potentially coupled (interdependent) sampling procedures that make standard privacy amplification analyses inapplicable. This work presents a principled framework for relational learning with formal entity-level DP guarantees. We provide a rigorous sensitivity analysis and introduce an adaptive gradient clipping scheme that modulates clipping thresholds based on entity occurrence frequency. We also extend the privacy amplification results to a tractable subclass of coupled sampling, where the dependence arises only through sample sizes. These contributions lead to a tailored DP-SGD variant for relational data with provable privacy guarantees. Experiments on fine-tuning text encoders over text-attributed network-structured relational data demonstrate the strong utility-privacy trade-offs of our approach. Our code is available at https://github.com/Graph-COM/Node_DP.

Authors:Ao Jin, Qinyi Wang, Sijie Wen, Ya Liu, Ganghui Shen, Panfeng Huang, Fan Zhang
Title: DEKC: Data-Enable Control for Tethered Space Robot Deployment in the Presence of Uncertainty via Koopman Operator Theory
Abstract:
This work focuses the deployment of tethered space robot in the presence of unknown uncertainty. A data-enable framework called DEKC which contains offline training part and online execution part is proposed to deploy tethered space robot in the presence of uncertainty. The main idea of this work is modeling the unknown uncertainty as a dynamical system, which enables high accuracy and convergence of capturing uncertainty. The core part of proposed framework is a proxy model of uncertainty, which is derived from data-driven Koopman theory and is separated with controller design. In the offline stage, the lifting functions associated with Koopman operator are parameterized with deep neural networks. Then by solving an optimization problem, the lifting functions are learned from sampling data. In the online execution stage, the proxy model cooperates the learned lifting functions obtained in the offline phase to capture the unknown uncertainty. Then the output of proxy model is compensated to the baseline controller such that the effect of uncertainty can be attenuated or even eliminated. Furthermore, considering some scenarios in which the performance of proxy model may weaken, a receding-horizon scheme is proposed to update the proxy model online. Finally, the extensive numerical simulations demonstrate the effectiveness of our proposed framework. The implementation of proposed DEKC framework is publicly available at https://github.com/NPU-RCIR/DEKC.git.

Authors:Alan N. Amin, Nate Gruver, Andrew Gordon Wilson
Title: Why Masking Diffusion Works: Condition on the Jump Schedule for Improved Discrete Diffusion
Abstract:
Discrete diffusion models, like continuous diffusion models, generate high-quality samples by gradually undoing noise applied to datapoints with a Markov process. Gradual generation in theory comes with many conceptual benefits; for example, inductive biases can be incorporated into the noising Markov process, and access to improved sampling algorithms. In practice, however, the consistently best performing discrete diffusion model is, surprisingly, masking diffusion, which does not denoise gradually. Here we explain the superior performance of masking diffusion by noting that it makes use of a fundamental difference between continuous and discrete Markov processes: discrete Markov processes evolve by discontinuous jumps at a fixed rate and, unlike other discrete diffusion models, masking diffusion builds in the known distribution of jump times and only learns where to jump to. We show that we can similarly bake in the known distribution of jump times into any discrete diffusion model. The resulting models - schedule-conditioned discrete diffusion (SCUD) - generalize classical discrete diffusion and masking diffusion. By applying SCUD to models with noising processes that incorporate inductive biases on images, text, and protein data, we build models that outperform masking.

Authors:Alan N. Amin, Nate Gruver, Andrew Gordon Wilson
Title: Why Masking Diffusion Works: Condition on the Jump Schedule for Improved Discrete Diffusion
Abstract:
Discrete diffusion models, like continuous diffusion models, generate high-quality samples by gradually undoing noise applied to datapoints with a Markov process. Gradual generation in theory comes with many conceptual benefits; for example, inductive biases can be incorporated into the noising Markov process, and access to improved sampling algorithms. In practice, however, the consistently best performing discrete diffusion model is, surprisingly, masking diffusion, which does not denoise gradually. Here we explain the superior performance of masking diffusion by noting that it makes use of a fundamental difference between continuous and discrete Markov processes: discrete Markov processes evolve by discontinuous jumps at a fixed rate and, unlike other discrete diffusion models, masking diffusion builds in the known distribution of jump times and only learns where to jump to. We show that we can similarly bake in the known distribution of jump times into any discrete diffusion model. The resulting models - schedule-conditioned discrete diffusion (SCUD) - generalize classical discrete diffusion and masking diffusion. By applying SCUD to models with noising processes that incorporate inductive biases on images, text, and protein data, we build models that outperform masking.

Authors:Katherine Tieu, Dongqi Fu, Zihao Li, Ross Maciejewski, Jingrui He
Title: Learnable Spatial-Temporal Positional Encoding for Link Prediction
Abstract:
Accurate predictions rely on the expressiveness power of graph deep learning frameworks like graph neural networks and graph transformers, where a positional encoding mechanism has become much more indispensable in recent state-of-the-art works to record the canonical position information. However, the current positional encoding is limited in three aspects: (1) most positional encoding methods use pre-defined, and fixed functions, which are inadequate to adapt to the complex attributed graphs; (2) a few pioneering works proposed the learnable positional encoding but are still limited to the structural information, not considering the real-world time-evolving topological and feature information; (3) most positional encoding methods are equipped with transformers' attention mechanism to fully leverage their capabilities, where the dense or relational attention is often unaffordable on large-scale structured data. Hence, we aim to develop Learnable Spatial-Temporal Positional Encoding in an effective and efficient manner and propose a simple temporal link prediction model named L-STEP. Briefly, for L-STEP, we (1) prove the proposed positional learning scheme can preserve the graph property from the spatial-temporal spectral viewpoint, (2) verify that MLPs can fully exploit the expressiveness and reach transformers' performance on that encoding, (3) change different initial positional encoding inputs to show robustness, (4) analyze the theoretical complexity and obtain less empirical running time than SOTA, and (5) demonstrate its temporal link prediction out-performance on 13 classic datasets and with 10 algorithms in both transductive and inductive settings using 3 different sampling strategies. Also, L-STEP obtains the leading performance in the newest large-scale TGB benchmark. Our code is available at https://github.com/kthrn22/L-STEP.

Authors:Kangning Yang, Ling Ouyang, Huiming Sun, Jie Cai, Lan Fu, Jiaming Ding, Chiu Man Ho, Zibo Meng
Title: OpenRR-1k: A Scalable Dataset for Real-World Reflection Removal
Abstract:
Reflection removal technology plays a crucial role in photography and computer vision applications. However, existing techniques are hindered by the lack of high-quality in-the-wild datasets. In this paper, we propose a novel paradigm for collecting reflection datasets from a fresh perspective. Our approach is convenient, cost-effective, and scalable, while ensuring that the collected data pairs are of high quality, perfectly aligned, and represent natural and diverse scenarios. Following this paradigm, we collect a Real-world, Diverse, and Pixel-aligned dataset (named OpenRR-1k dataset), which contains 1,000 high-quality transmission-reflection image pairs collected in the wild. Through the analysis of several reflection removal methods and benchmark evaluation experiments on our dataset, we demonstrate its effectiveness in improving robustness in challenging real-world environments. Our dataset is available at https://github.com/caijie0620/OpenRR-1k.

Authors:Zhanke Zhou, Xiao Feng, Zhaocheng Zhu, Jiangchao Yao, Sanmi Koyejo, Bo Han
Title: From Passive to Active Reasoning: Can Large Language Models Ask the Right Questions under Incomplete Information?
Abstract:
While existing benchmarks probe the reasoning abilities of large language models (LLMs) across diverse domains, they predominantly assess passive reasoning, providing models with all the information needed to reach a solution. By contrast, active reasoning-where an LLM must interact with external systems to acquire missing evidence or data-has received little systematic attention. To address this shortfall, we present AR-Bench, a novel benchmark designed explicitly to evaluate an LLM's active reasoning skills. AR-Bench comprises three task families-detective cases, situation puzzles, and guessing numbers-that together simulate real-world, agentic scenarios and measure performance across commonsense, logical, and symbolic reasoning challenges. Empirical evaluation on AR-Bench demonstrates that contemporary LLMs exhibit pronounced difficulties with active reasoning: they frequently fail to acquire or leverage the information needed to solve tasks. This gap highlights a stark divergence between their passive and active reasoning abilities. Moreover, ablation studies indicate that even advanced strategies, such as tree-based searching or post-training approaches, yield only modest gains and fall short of the levels required for real-world deployment. Collectively, these findings highlight the critical need to advance methodology for active reasoning, e.g., incorporating interactive learning, real-time feedback loops, and environment-aware objectives for training. The benchmark is publicly available at: https://github.com/tmlr-group/AR-Bench.

Authors:Xie Yi, Zhanke Zhou, Chentao Cao, Qiyu Niu, Tongliang Liu, Bo Han
Title: From Debate to Equilibrium: Belief-Driven Multi-Agent LLM Reasoning via Bayesian Nash Equilibrium
Abstract:
Multi-agent frameworks can substantially boost the reasoning power of large language models (LLMs), but they typically incur heavy computational costs and lack convergence guarantees. To overcome these challenges, we recast multi-LLM coordination as an incomplete-information game and seek a Bayesian Nash equilibrium (BNE), in which each agent optimally responds to its probabilistic beliefs about the strategies of others. We introduce Efficient Coordination via Nash Equilibrium (ECON), a hierarchical reinforcement-learning paradigm that marries distributed reasoning with centralized final output. Under ECON, each LLM independently selects responses that maximize its expected reward, conditioned on its beliefs about co-agents, without requiring costly inter-agent exchanges. We mathematically prove that ECON attains a markedly tighter regret bound than non-equilibrium multi-agent schemes. Empirically, ECON outperforms existing multi-LLM approaches by 11.2% on average across six benchmarks spanning complex reasoning and planning tasks. Further experiments demonstrate ECON's ability to flexibly incorporate additional models, confirming its scalability and paving the way toward larger, more powerful multi-LLM ensembles. The code is publicly available at: https://github.com/tmlr-group/ECON.

Authors:Daniel H. Pak, Shubh Thaker, Kyle Baylous, Xiaoran Zhang, Danny Bluestein, James S. Duncan
Title: Snap-and-tune: combining deep learning and test-time optimization for high-fidelity cardiovascular volumetric meshing
Abstract:
High-quality volumetric meshing from medical images is a key bottleneck for physics-based simulations in personalized medicine. For volumetric meshing of complex medical structures, recent studies have often utilized deep learning (DL)-based template deformation approaches to enable fast test-time generation with high spatial accuracy. However, these approaches still exhibit limitations, such as limited flexibility at high-curvature areas and unrealistic inter-part distances. In this study, we introduce a simple yet effective snap-and-tune strategy that sequentially applies DL and test-time optimization, which combines fast initial shape fitting with more detailed sample-specific mesh corrections. Our method provides significant improvements in both spatial accuracy and mesh quality, while being fully automated and requiring no additional training labels. Finally, we demonstrate the versatility and usefulness of our newly generated meshes via solid mechanics simulations in two different software platforms. Our code is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-Mesh.

Authors:Subba Reddy Oota, Khushbu Pahwa, Prachi Jindal, Satya Sai Srinath Namburi, Maneesh Singh, Tanmoy Chakraborty, Bapi S. Raju, Manish Gupta
Title: Instruction-Tuned Video-Audio Models Elucidate Functional Specialization in the Brain
Abstract:
Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models in both unimodal and multimodal stimulus settings. More recently, instruction-tuned multimodal models have shown to generate task-specific representations that align strongly with brain activity. However, prior work evaluating the brain alignment of MLLMs has primarily focused on unimodal settings or relied on non-instruction-tuned multimodal models for multimodal stimuli. To address this gap, we investigated brain alignment, that is, measuring the degree of predictivity of neural activity recorded while participants were watching naturalistic movies (video along with audio) with representations derived from MLLMs. We utilized instruction-specific embeddings from six video and two audio instruction-tuned MLLMs. Experiments with 13 video task-specific instructions show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal (by 15%) and unimodal models (by 20%). Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs, leading to precise differentiation of multimodal functional processing in the brain. We also find that MLLM layers align hierarchically with the brain, with early sensory areas showing strong alignment with early layers, while higher-level visual and language regions align more with middle to late layers. These findings provide clear evidence for the role of task-specific instructions in improving the alignment between brain activity and MLLMs, and open new avenues for mapping joint information processing in both the systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].

Authors:Yu-Ang Lee, Guan-Ting Yi, Mei-Yi Liu, Jui-Chao Lu, Guan-Bo Yang, Yun-Nung Chen
Title: Compound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions
Abstract:
Recent advancements in large language models (LLMs) and AI systems have led to a paradigm shift in the design and optimization of complex AI workflows. By integrating multiple components, compound AI systems have become increasingly adept at performing sophisticated tasks. However, as these systems grow in complexity, new challenges arise in optimizing not only individual components but also their interactions. While traditional optimization methods such as supervised fine-tuning (SFT) and reinforcement learning (RL) remain foundational, the rise of natural language feedback introduces promising new approaches, especially for optimizing non-differentiable systems. This paper provides a systematic review of recent progress in optimizing compound AI systems, encompassing both numerical and language-based techniques. We formalize the notion of compound AI system optimization, classify existing methods along several key dimensions, and highlight open research challenges and future directions in this rapidly evolving field. A list of surveyed papers is publicly available at https://github.com/MiuLab/AISysOpt-Survey.

Authors:Yu-Ang Lee, Guan-Ting Yi, Mei-Yi Liu, Jui-Chao Lu, Guan-Bo Yang, Yun-Nung Chen
Title: Compound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions
Abstract:
Recent advancements in large language models (LLMs) and AI systems have led to a paradigm shift in the design and optimization of complex AI workflows. By integrating multiple components, compound AI systems have become increasingly adept at performing sophisticated tasks. However, as these systems grow in complexity, new challenges arise in optimizing not only individual components but also their interactions. While traditional optimization methods such as supervised fine-tuning (SFT) and reinforcement learning (RL) remain foundational, the rise of natural language feedback introduces promising new approaches, especially for optimizing non-differentiable systems. This paper provides a systematic review of recent progress in optimizing compound AI systems, encompassing both numerical and language-based techniques. We formalize the notion of compound AI system optimization, classify existing methods along several key dimensions, and highlight open research challenges and future directions in this rapidly evolving field. A list of surveyed papers is publicly available at https://github.com/MiuLab/AISysOpt-Survey.

Authors:Huixin Zhan, Jason H. Moore
Title: Agentic Surgical AI: Surgeon Style Fingerprinting and Privacy Risk Quantification via Discrete Diffusion in a Vision-Language-Action Framework
Abstract:
Surgeons exhibit distinct operating styles shaped by training, experience, and motor behavior-yet most surgical AI systems overlook this personalization signal. We propose a novel agentic modeling approach for surgeon-specific behavior prediction in robotic surgery, combining a discrete diffusion framework with a vision-language-action (VLA) pipeline. Gesture prediction is framed as a structured sequence denoising task, conditioned on multimodal inputs including surgical video, intent language, and personalized embeddings of surgeon identity and skill. These embeddings are encoded through natural language prompts using third-party language models, allowing the model to retain individual behavioral style without exposing explicit identity. We evaluate our method on the JIGSAWS dataset and demonstrate that it accurately reconstructs gesture sequences while learning meaningful motion fingerprints unique to each surgeon. To quantify the privacy implications of personalization, we perform membership inference attacks and find that more expressive embeddings improve task performance but simultaneously increase susceptibility to identity leakage. These findings demonstrate that while personalized embeddings improve performance, they also increase vulnerability to identity leakage, revealing the importance of balancing personalization with privacy risk in surgical modeling. Code is available at: https://github.com/huixin-zhan-ai/Surgeon_style_fingerprinting.

Authors:Chupei Wang, Jiaqiu Vince Sun
Title: Unable to Forget: Proactive Interference Reveals Working Memory Limits in LLMs Beyond Context Length
Abstract:
Information retrieval in Large Language Models (LLMs) is increasingly recognized as intertwined with generation capabilities rather than mere lookup. While longer contexts are often assumed to improve retrieval, the effects of intra-context interference remain understudied. To address this, we adapt the proactive interference (PI) paradigm from cognitive science, where earlier information disrupts recall of newer updates. In humans, susceptibility to such interference is inversely linked to working memory capacity. We introduce PI-LLM, an evaluation that sequentially streams semantically related key-value updates and queries only the final values. Although these final values are clearly positioned just before the query, LLM retrieval accuracy declines log-linearly toward zero as interference accumulates; errors arise from retrieving previously overwritten values. Attempts to mitigate interference via prompt engineering (e.g., instructing models to ignore earlier input) yield limited success. These findings reveal a fundamental constraint on LLMs' ability to disentangle interference and flexibly manipulate information, suggesting a working memory bottleneck beyond mere context access. This calls for approaches that strengthen models' ability to suppress irrelevant content during retrieval.

Authors:Sunny Gupta, Nikita Jangid, Amit Sethi
Title: UniVarFL: Uniformity and Variance Regularized Federated Learning for Heterogeneous Data
Abstract:
Federated Learning (FL) often suffers from severe performance degradation when faced with non-IID data, largely due to local classifier bias. Traditional remedies such as global model regularization or layer freezing either incur high computational costs or struggle to adapt to feature shifts. In this work, we propose UniVarFL, a novel FL framework that emulates IID-like training dynamics directly at the client level, eliminating the need for global model dependency. UniVarFL leverages two complementary regularization strategies during local training: Classifier Variance Regularization, which aligns class-wise probability distributions with those expected under IID conditions, effectively mitigating local classifier bias; and Hyperspherical Uniformity Regularization, which encourages a uniform distribution of feature representations across the hypersphere, thereby enhancing the model's ability to generalize under diverse data distributions. Extensive experiments on multiple benchmark datasets demonstrate that UniVarFL outperforms existing methods in accuracy, highlighting its potential as a highly scalable and efficient solution for real-world FL deployments, especially in resource-constrained settings. Code: https://github.com/sunnyinAI/UniVarFL

Authors:Hadi Reisizadeh, Jinghan Jia, Zhiqi Bu, Bhanukiran Vinzamuri, Anil Ramakrishna, Kai-Wei Chang, Volkan Cevher, Sijia Liu, Mingyi Hong
Title: BLUR: A Bi-Level Optimization Approach for LLM Unlearning
Abstract:
Enabling large language models (LLMs) to unlearn knowledge and capabilities acquired during training has proven vital for ensuring compliance with data regulations and promoting ethical practices in generative AI. Although there are growing interests in developing various unlearning algorithms, it remains unclear how to best formulate the unlearning problem. The most popular formulation uses a weighted sum of forget and retain loss, but it often leads to performance degradation due to the inherent trade-off between forget and retain losses. In this work, we argue that it is important to model the hierarchical structure of the unlearning problem, where the forget problem (which \textit{unlearns} certain knowledge and/or capabilities) takes priority over the retain problem (which preserves model utility). This hierarchical structure naturally leads to a bi-level optimization formulation where the lower-level objective focuses on minimizing the forget loss, while the upper-level objective aims to maintain the model's utility. Based on this new formulation, we propose a novel algorithm, termed Bi-Level UnleaRning (\texttt{BLUR}), which not only possesses strong theoretical guarantees but more importantly, delivers superior performance. In particular, our extensive experiments demonstrate that \texttt{BLUR} consistently outperforms all the state-of-the-art algorithms across various unlearning tasks, models, and metrics. Codes are available at https://github.com/OptimAI-Lab/BLURLLMUnlearning.

Authors:Lijing Zhu, Qizhen Lan, Qing Tian, Wenbo Sun, Li Yang, Lu Xia, Yixin Xie, Xi Xiao, Tiehang Duan, Cui Tao, Shuteng Niu
Title: ETT-CKGE: Efficient Task-driven Tokens for Continual Knowledge Graph Embedding
Abstract:
Continual Knowledge Graph Embedding (CKGE) seeks to integrate new knowledge while preserving past information. However, existing methods struggle with efficiency and scalability due to two key limitations: (1) suboptimal knowledge preservation between snapshots caused by manually designed node/relation importance scores that ignore graph dependencies relevant to the downstream task, and (2) computationally expensive graph traversal for node/relation importance calculation, leading to slow training and high memory overhead. To address these limitations, we introduce ETT-CKGE (Efficient, Task-driven, Tokens for Continual Knowledge Graph Embedding), a novel task-guided CKGE method that leverages efficient task-driven tokens for efficient and effective knowledge transfer between snapshots. Our method introduces a set of learnable tokens that directly capture task-relevant signals, eliminating the need for explicit node scoring or traversal. These tokens serve as consistent and reusable guidance across snapshots, enabling efficient token-masked embedding alignment between snapshots. Importantly, knowledge transfer is achieved through simple matrix operations, significantly reducing training time and memory usage. Extensive experiments across six benchmark datasets demonstrate that ETT-CKGE consistently achieves superior or competitive predictive performance, while substantially improving training efficiency and scalability compared to state-of-the-art CKGE methods. The code is available at: https://github.com/lijingzhu1/ETT-CKGE/tree/main

Authors:Abdellah Ghassel, Ian Robinson, Gabriel Tanase, Hal Cooper, Bryan Thompson, Zhen Han, Vassilis N. Ioannidis, Soji Adeshina, Huzefa Rangwala
Title: Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval
Abstract:
Retrieval-Augmented Generation (RAG) grounds large language models in external evidence, yet it still falters when answers must be pieced together across semantically distant documents. We close this gap with the Hierarchical Lexical Graph (HLG), a three-tier index that (i) traces every atomic proposition to its source, (ii) clusters propositions into latent topics, and (iii) links entities and relations to expose cross-document paths. On top of HLG we build two complementary, plug-and-play retrievers: StatementGraphRAG, which performs fine-grained entity-aware beam search over propositions for high-precision factoid questions, and TopicGraphRAG, which selects coarse topics before expanding along entity links to supply broad yet relevant context for exploratory queries. Additionally, existing benchmarks lack the complexity required to rigorously evaluate multi-hop summarization systems, often focusing on single-document queries or limited datasets. To address this, we introduce a synthetic dataset generation pipeline that curates realistic, multi-document question-answer pairs, enabling robust evaluation of multi-hop retrieval systems. Extensive experiments across five datasets demonstrate that our methods outperform naive chunk-based RAG achieving an average relative improvement of 23.1% in retrieval recall and correctness. Open-source Python library is available at https://github.com/awslabs/graphrag-toolkit.

Authors:Ziheng Qin, Hailun Xu, Wei Chee Yew, Qi Jia, Yang Luo, Kanchan Sarkar, Danhui Guan, Kai Wang, Yang You
Title: Info-Coevolution: An Efficient Framework for Data Model Coevolution
Abstract:
Machine learning relies heavily on data, yet the continuous growth of real-world data poses challenges for efficient dataset construction and training. A fundamental yet unsolved question is: given our current model and data, does a new data (sample/batch) need annotation/learning? Conventional approaches retain all available data, leading to non-optimal data and training efficiency. Active learning aims to reduce data redundancy by selecting a subset of samples to annotate, while it increases pipeline complexity and introduces bias. In this work, we propose Info-Coevolution, a novel framework that efficiently enables models and data to coevolve through online selective annotation with no bias. Leveraging task-specific models (and open-source models), it selectively annotates and integrates online and web data to improve datasets efficiently. For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32\% without performance loss. It is able to automatically give the saving ratio without tuning the ratio. It can further reduce the annotation ratio to 50\% with semi-supervised learning. We also explore retrieval-based dataset enhancement using unlabeled open-source data. Code is available at https://github.com/NUS-HPC-AI-Lab/Info-Coevolution/.

Authors:Ye Zhu, Duo Xu, Zhiwei Deng, Jonathan C. Tan, Olga Russakovsky
Title: Dynamic Diffusion Schrödinger Bridge in Astrophysical Observational Inversions
Abstract:
We study Diffusion Schrödinger Bridge (DSB) models in the context of dynamical astrophysical systems, specifically tackling observational inverse prediction tasks within Giant Molecular Clouds (GMCs) for star formation. We introduce the Astro-DSB model, a variant of DSB with the pairwise domain assumption tailored for astrophysical dynamics. By investigating its learning process and prediction performance in both physically simulated data and in real observations (the Taurus B213 data), we present two main takeaways. First, from the astrophysical perspective, our proposed paired DSB method improves interpretability, learning efficiency, and prediction performance over conventional astrostatistical and other machine learning methods. Second, from the generative modeling perspective, probabilistic generative modeling reveals improvements over discriminative pixel-to-pixel modeling in Out-Of-Distribution (OOD) testing cases of physical simulations with unseen initial conditions and different dominant physical processes. Our study expands research into diffusion models beyond the traditional visual synthesis application and provides evidence of the models' learning abilities beyond pure data statistics, paving a path for future physics-aware generative models which can align dynamics between machine learning and real (astro)physical systems.

Authors:Livio Tenze, Enrique Canessa
Title: A Real-time 3D Desktop Display
Abstract:
A new extended version of the altiro3D C++ Library -- initially developed to get glass-free holographic displays starting from 2D images -- is here introduced aiming to deal with 3D video streams from either 2D webcam images or flat video files. These streams are processed in real-time to synthesize light-fields (in Native format) and feed realistic 3D experiences. The core function needed to recreate multiviews consists on the use of MiDaS Convolutional Neural Network (CNN), which allows to extract a depth map from a single 2D image. Artificial Intelligence (AI) computing techniques are applied to improve the overall performance of the extended altiro3D Library. Thus, altiro3D can now treat standard images, video streams or screen portions of a Desktop where other apps may be also running (like web browsers, video chats, etc) and render them into 3D. To achieve the latter, a screen region need to be selected in order to feed the output directly into a light-field 3D device such as Looking Glass (LG) Portrait. In order to simplify the acquisition of a Desktop screen area by the user, a multi-platform Graphical User Interface has been also implemented. Sources available at: https://github.com/canessae/altiro3D/releases/tag/2.0.0

Authors:Songqiao Hu, Zeyi Liu, Xiao He
Title: Lite-RVFL: A Lightweight Random Vector Functional-Link Neural Network for Learning Under Concept Drift
Abstract:
The change in data distribution over time, also known as concept drift, poses a significant challenge to the reliability of online learning methods. Existing methods typically require model retraining or drift detection, both of which demand high computational costs and are often unsuitable for real-time applications. To address these limitations, a lightweight, fast and efficient random vector functional-link network termed Lite-RVFL is proposed, capable of adapting to concept drift without drift detection and retraining. Lite-RVFL introduces a novel objective function that assigns weights exponentially increasing to new samples, thereby emphasizing recent data and enabling timely adaptation. Theoretical analysis confirms the feasibility of this objective function for drift adaptation, and an efficient incremental update rule is derived. Experimental results on a real-world safety assessment task validate the efficiency, effectiveness in adapting to drift, and potential to capture temporal patterns of Lite-RVFL. The source code is available at https://github.com/songqiaohu/Lite-RVFL.

Authors:Yiming Wang, Hao Peng, Senzhang Wang, Haohua Du, Chunyang Liu, Jia Wu, Guanlin Wu
Title: STAMImputer: Spatio-Temporal Attention MoE for Traffic Data Imputation
Abstract:
Traffic data imputation is fundamentally important to support various applications in intelligent transportation systems such as traffic flow prediction. However, existing time-to-space sequential methods often fail to effectively extract features in block-wise missing data scenarios. Meanwhile, the static graph structure for spatial feature propagation significantly constrains the models flexibility in handling the distribution shift issue for the nonstationary traffic data. To address these issues, this paper proposes a SpatioTemporal Attention Mixture of experts network named STAMImputer for traffic data imputation. Specifically, we introduce a Mixture of Experts (MoE) framework to capture latent spatio-temporal features and their influence weights, effectively imputing block missing. A novel Low-rank guided Sampling Graph ATtention (LrSGAT) mechanism is designed to dynamically balance the local and global correlations across road networks. The sampled attention vectors are utilized to generate dynamic graphs that capture real-time spatial correlations. Extensive experiments are conducted on four traffic datasets for evaluation. The result shows STAMImputer achieves significantly performance improvement compared with existing SOTA approaches. Our codes are available at https://github.com/RingBDStack/STAMImupter.

Authors:Anh-Quan Cao, Ivan Lopes, Raoul de Charette
Title: StableMTL: Repurposing Latent Diffusion Models for Multi-Task Learning from Partially Annotated Synthetic Datasets
Abstract:
Multi-task learning for dense prediction is limited by the need for extensive annotation for every task, though recent works have explored training with partial task labels. Leveraging the generalization power of diffusion models, we extend the partial learning setup to a zero-shot setting, training a multi-task model on multiple synthetic datasets, each labeled for only a subset of tasks. Our method, StableMTL, repurposes image generators for latent regression. Adapting a denoising framework with task encoding, per-task conditioning and a tailored training scheme. Instead of per-task losses requiring careful balancing, a unified latent loss is adopted, enabling seamless scaling to more tasks. To encourage inter-task synergy, we introduce a multi-stream model with a task-attention mechanism that converts N-to-N task interactions into efficient 1-to-N attention, promoting effective cross-task sharing. StableMTL outperforms baselines on 7 tasks across 8 benchmarks.

Authors:Boya Zeng, Yida Yin, Zhiqiu Xu, Zhuang Liu
Title: Generative Modeling of Weights: Generalization or Memorization?
Abstract:
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.

Authors:Boya Zeng, Yida Yin, Zhiqiu Xu, Zhuang Liu
Title: Generative Modeling of Weights: Generalization or Memorization?
Abstract:
Generative models have recently been explored for synthesizing neural network weights. These approaches take neural network checkpoints as training data and aim to generate high-performing weights during inference. In this work, we examine four representative, well-known methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Contrary to claims in prior work, we find that these methods synthesize weights largely by memorization: they produce either replicas, or, at best, simple interpolations of the training checkpoints. Moreover, they fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. Our further analysis suggests that this memorization might result from limited data, overparameterized models, and the underuse of structural priors specific to weight data. These findings highlight the need for more careful design and rigorous evaluation of generative models when applied to new domains. Our code is available at https://github.com/boyazeng/weight_memorization.

Authors:Haoguang Lu, Jiacheng Chen, Zhenguo Yang, Aurele Tohokantche Gnanha, Fu Lee Wang, Li Qing, Xudong Mao
Title: PairEdit: Learning Semantic Variations for Exemplar-based Image Editing
Abstract:
Recent advancements in text-guided image editing have achieved notable success by leveraging natural language prompts for fine-grained semantic control. However, certain editing semantics are challenging to specify precisely using textual descriptions alone. A practical alternative involves learning editing semantics from paired source-target examples. Existing exemplar-based editing methods still rely on text prompts describing the change within paired examples or learning implicit text-based editing instructions. In this paper, we introduce PairEdit, a novel visual editing method designed to effectively learn complex editing semantics from a limited number of image pairs or even a single image pair, without using any textual guidance. We propose a target noise prediction that explicitly models semantic variations within paired images through a guidance direction term. Moreover, we introduce a content-preserving noise schedule to facilitate more effective semantic learning. We also propose optimizing distinct LoRAs to disentangle the learning of semantic variations from content. Extensive qualitative and quantitative evaluations demonstrate that PairEdit successfully learns intricate semantics while significantly improving content consistency compared to baseline methods. Code will be available at https://github.com/xudonmao/PairEdit.

Authors:Zhengyao Lv, Tianlin Pan, Chenyang Si, Zhaoxi Chen, Wangmeng Zuo, Ziwei Liu, Kwan-Yee K. Wong
Title: Rethinking Cross-Modal Interaction in Multimodal Diffusion Transformers
Abstract:
Multimodal Diffusion Transformers (MM-DiTs) have achieved remarkable progress in text-driven visual generation. However, even state-of-the-art MM-DiT models like FLUX struggle with achieving precise alignment between text prompts and generated content. We identify two key issues in the attention mechanism of MM-DiT, namely 1) the suppression of cross-modal attention due to token imbalance between visual and textual modalities and 2) the lack of timestep-aware attention weighting, which hinder the alignment. To address these issues, we propose \textbf{Temperature-Adjusted Cross-modal Attention (TACA)}, a parameter-efficient method that dynamically rebalances multimodal interactions through temperature scaling and timestep-dependent adjustment. When combined with LoRA fine-tuning, TACA significantly enhances text-image alignment on the T2I-CompBench benchmark with minimal computational overhead. We tested TACA on state-of-the-art models like FLUX and SD3.5, demonstrating its ability to improve image-text alignment in terms of object appearance, attribute binding, and spatial relationships. Our findings highlight the importance of balancing cross-modal attention in improving semantic fidelity in text-to-image diffusion models. Our codes are publicly available at \href{https://github.com/Vchitect/TACA}

Authors:Jiahao Meng, Shuyang Sun, Yue Tan, Lu Qi, Yunhai Tong, Xiangtai Li, Longyin Wen
Title: CyberV: Cybernetics for Test-time Scaling in Video Understanding
Abstract:
Current Multimodal Large Language Models (MLLMs) may struggle with understanding long or complex videos due to computational demands at test time, lack of robustness, and limited accuracy, primarily stemming from their feed-forward processing nature. These limitations could be more severe for models with fewer parameters. To address these limitations, we propose a novel framework inspired by cybernetic principles, redesigning video MLLMs as adaptive systems capable of self-monitoring, self-correction, and dynamic resource allocation during inference. Our approach, CyberV, introduces a cybernetic loop consisting of an MLLM Inference System, a Sensor, and a Controller. Specifically, the sensor monitors forward processes of the MLLM and collects intermediate interpretations, such as attention drift, then the controller determines when and how to trigger self-correction and generate feedback to guide the next round. This test-time adaptive scaling framework enhances frozen MLLMs without requiring retraining or additional components. Experiments demonstrate significant improvements: CyberV boosts Qwen2.5-VL-7B by 8.3% and InternVL3-8B by 5.5% on VideoMMMU, surpassing the competitive proprietary model GPT-4o. When applied to Qwen2.5-VL-72B, it yields a 10.0% improvement, achieving performance even comparable to human experts. Furthermore, our method demonstrates consistent gains on general-purpose benchmarks, such as VideoMME and WorldSense, highlighting its effectiveness and generalization capabilities in making MLLMs more robust and accurate for dynamic video understanding. The code is released at https://github.com/marinero4972/CyberV.

Authors:Jacob Helwig, Sai Sreeharsha Adavi, Xuan Zhang, Yuchao Lin, Felix S. Chim, Luke Takeshi Vizzini, Haiyang Yu, Muhammad Hasnain, Saykat Kumar Biswas, John J. Holloway, Narendra Singh, N. K. Anand, Swagnik Guhathakurta, Shuiwang Ji
Title: A Two-Phase Deep Learning Framework for Adaptive Time-Stepping in High-Speed Flow Modeling
Abstract:
We consider the problem of modeling high-speed flows using machine learning methods. While most prior studies focus on low-speed fluid flows in which uniform time-stepping is practical, flows approaching and exceeding the speed of sound exhibit sudden changes such as shock waves. In such cases, it is essential to use adaptive time-stepping methods to allow a temporal resolution sufficient to resolve these phenomena while simultaneously balancing computational costs. Here, we propose a two-phase machine learning method, known as ShockCast, to model high-speed flows with adaptive time-stepping. In the first phase, we propose to employ a machine learning model to predict the timestep size. In the second phase, the predicted timestep is used as an input along with the current fluid fields to advance the system state by the predicted timestep. We explore several physically-motivated components for timestep prediction and introduce timestep conditioning strategies inspired by neural ODE and Mixture of Experts. As ShockCast is the first framework for learning high-speed flows, we evaluate our methods by generating two supersonic flow datasets, available at https://huggingface.co/datasets/divelab. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).

Authors:Ziyang Gong, Wenhao Li, Oliver Ma, Songyuan Li, Jiayi Ji, Xue Yang, Gen Luo, Junchi Yan, Rongrong Ji
Title: SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence
Abstract:
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple atomic spatial capabilities to handle complex and dynamic tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs. The evaluation code and benchmark datasets are available at https://github.com/Cuzyoung/SpaCE-10.

Authors:Wenxin Tang, Jingyu Xiao, Wenxuan Jiang, Xi Xiao, Yuhang Wang, Xuxin Tang, Qing Li, Yuehe Ma, Junliang Liu, Shisong Tang, Michael R. Lyu
Title: SlideCoder: Layout-aware RAG-enhanced Hierarchical Slide Generation from Design
Abstract:
Manual slide creation is labor-intensive and requires expert prior knowledge. Existing natural language-based LLM generation methods struggle to capture the visual and structural nuances of slide designs. To address this, we formalize the Reference Image to Slide Generation task and propose Slide2Code, the first benchmark with difficulty-tiered samples based on a novel Slide Complexity Metric. We introduce SlideCoder, a layout-aware, retrieval-augmented framework for generating editable slides from reference images. SlideCoder integrates a Color Gradient-based Segmentation algorithm and a Hierarchical Retrieval-Augmented Generation method to decompose complex tasks and enhance code generation. We also release SlideMaster, a 7B open-source model fine-tuned with improved reverse-engineered data. Experiments show that SlideCoder outperforms state-of-the-art baselines by up to 40.5 points, demonstrating strong performance across layout fidelity, execution accuracy, and visual consistency. Our code is available at https://github.com/vinsontang1/SlideCoder.

Authors:Christopher Subia-Waud
Title: Gradients: When Markets Meet Fine-tuning -- A Distributed Approach to Model Optimisation
Abstract:
Current AutoML platforms leave substantial performance untapped. Testing 180 fine-tuning tasks across models from 70M to 70B parameters, we found that HuggingFace AutoTrain, TogetherAI, Databricks, and Google Cloud consistently produce suboptimal configurations. Gradients, built on the Bittensor network, attacks this problem through competition. Independent miners race to find optimal hyperparameters, earning rewards proportional to their models' performance. This tournament drives exploration of configuration spaces that single-strategy methods never examine. In our experiments, Gradients achieved a 100\% win rate against TogetherAI, Databricks, and Google Cloud, and beat HuggingFace AutoTrain in 82.8\% of experiments. Mean improvements reached 42.1\% against commercial platforms. Retrieval-augmented generation tasks saw 30-40\% gains; diffusion models improved 23.4\% on person-specific generation. When miners compete for rewards, they develop optimization strategies that centralized approaches overlook. These findings demonstrate that decentralized systems with economic incentives can systematically outperform traditional AutoML, suggesting market dynamics may be key to achieving superior fine-tuning results. Code is available at https://github.com/rayonlabs/G.O.D.

Authors:Vahid Balazadeh, Hamidreza Kamkari, Valentin Thomas, Benson Li, Junwei Ma, Jesse C. Cresswell, Rahul G. Krishnan
Title: CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Abstract:
Causal effect estimation from observational data is fundamental across various applications. However, selecting an appropriate estimator from dozens of specialized methods demands substantial manual effort and domain expertise. We present CausalPFN, a single transformer that amortizes this workflow: trained once on a large library of simulated data-generating processes that satisfy ignorability, it infers causal effects for new observational datasets out-of-the-box. CausalPFN combines ideas from Bayesian causal inference with the large-scale training protocol of prior-fitted networks (PFNs), learning to map raw observations directly to causal effects without any task-specific adjustment. Our approach achieves superior average performance on heterogeneous and average treatment effect estimation benchmarks (IHDP, Lalonde, ACIC). Moreover, it shows competitive performance for real-world policy making on uplift modeling tasks. CausalPFN provides calibrated uncertainty estimates to support reliable decision-making based on Bayesian principles. This ready-to-use model does not require any further training or tuning and takes a step toward automated causal inference (https://github.com/vdblm/CausalPFN).

Authors:Kevin Rojas, Yuchen Zhu, Sichen Zhu, Felix X. -F. Ye, Molei Tao
Title: Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces
Abstract:
Diffusion models have demonstrated remarkable performance in generating unimodal data across various tasks, including image, video, and text generation. On the contrary, the joint generation of multimodal data through diffusion models is still in the early stages of exploration. Existing approaches heavily rely on external preprocessing protocols, such as tokenizers and variational autoencoders, to harmonize varied data representations into a unified, unimodal format. This process heavily demands the high accuracy of encoders and decoders, which can be problematic for applications with limited data. To lift this restriction, we propose a novel framework for building multimodal diffusion models on arbitrary state spaces, enabling native generation of coupled data across different modalities. By introducing an innovative decoupled noise schedule for each modality, we enable both unconditional and modality-conditioned generation within a single model simultaneously. We empirically validate our approach for text-image generation and mixed-type tabular data synthesis, demonstrating that it achieves competitive performance.

Authors:Sifan Wang, Zehao Dou, Tong-Rui Liu, Lu Lu
Title: FunDiff: Diffusion Models over Function Spaces for Physics-Informed Generative Modeling
Abstract:
Recent advances in generative modeling -- particularly diffusion models and flow matching -- have achieved remarkable success in synthesizing discrete data such as images and videos. However, adapting these models to physical applications remains challenging, as the quantities of interest are continuous functions governed by complex physical laws. Here, we introduce $\textbf{FunDiff}$, a novel framework for generative modeling in function spaces. FunDiff combines a latent diffusion process with a function autoencoder architecture to handle input functions with varying discretizations, generate continuous functions evaluable at arbitrary locations, and seamlessly incorporate physical priors. These priors are enforced through architectural constraints or physics-informed loss functions, ensuring that generated samples satisfy fundamental physical laws. We theoretically establish minimax optimality guarantees for density estimation in function spaces, showing that diffusion-based estimators achieve optimal convergence rates under suitable regularity conditions. We demonstrate the practical effectiveness of FunDiff across diverse applications in fluid dynamics and solid mechanics. Empirical results show that our method generates physically consistent samples with high fidelity to the target distribution and exhibits robustness to noisy and low-resolution data. Code and datasets are publicly available at https://github.com/sifanexisted/fundiff.

Authors:Muhammad Ahmed Humais, Xiaoqian Huang, Hussain Sajwani, Sajid Javed, Yahya Zweiri
Title: Spatio-Temporal State Space Model For Efficient Event-Based Optical Flow
Abstract:
Event cameras unlock new frontiers that were previously unthinkable with standard frame-based cameras. One notable example is low-latency motion estimation (optical flow), which is critical for many real-time applications. In such applications, the computational efficiency of algorithms is paramount. Although recent deep learning paradigms such as CNN, RNN, or ViT have shown remarkable performance, they often lack the desired computational efficiency. Conversely, asynchronous event-based methods including SNNs and GNNs are computationally efficient; however, these approaches fail to capture sufficient spatio-temporal information, a powerful feature required to achieve better performance for optical flow estimation. In this work, we introduce Spatio-Temporal State Space Model (STSSM) module along with a novel network architecture to develop an extremely efficient solution with competitive performance. Our STSSM module leverages state-space models to effectively capture spatio-temporal correlations in event data, offering higher performance with lower complexity compared to ViT, CNN-based architectures in similar settings. Our model achieves 4.5x faster inference and 8x lower computations compared to TMA and 2x lower computations compared to EV-FlowNet with competitive performance on the DSEC benchmark. Our code will be available at https://github.com/AhmedHumais/E-STMFlow

Authors:Jinxi Li, Ziyang Song, Siyuan Zhou, Bo Yang
Title: FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity
Abstract:
In this paper, we aim to model 3D scene geometry, appearance, and the underlying physics purely from multi-view videos. By applying various governing PDEs as PINN losses or incorporating physics simulation into neural networks, existing works often fail to learn complex physical motions at boundaries or require object priors such as masks or types. In this paper, we propose FreeGave to learn the physics of complex dynamic 3D scenes without needing any object priors. The key to our approach is to introduce a physics code followed by a carefully designed divergence-free module for estimating a per-Gaussian velocity field, without relying on the inefficient PINN losses. Extensive experiments on three public datasets and a newly collected challenging real-world dataset demonstrate the superior performance of our method for future frame extrapolation and motion segmentation. Most notably, our investigation into the learned physics codes reveals that they truly learn meaningful 3D physical motion patterns in the absence of any human labels in training.

Authors:Zihui Zhang, Weisheng Dai, Hongtao Wen, Bo Yang
Title: LogoSP: Local-global Grouping of Superpoints for Unsupervised Semantic Segmentation of 3D Point Clouds
Abstract:
We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.

Authors:Shijie Wang, Yilun Zhang, Zeyu Lai, Dexing Kong
Title: HAIBU-ReMUD: Reasoning Multimodal Ultrasound Dataset and Model Bridging to General Specific Domains
Abstract:
Multimodal large language models (MLLMs) have shown great potential in general domains but perform poorly in some specific domains due to a lack of domain-specific data, such as image-text data or vedio-text data. In some specific domains, there is abundant graphic and textual data scattered around, but lacks standardized arrangement. In the field of medical ultrasound, there are ultrasonic diagnostic books, ultrasonic clinical guidelines, ultrasonic diagnostic reports, and so on. However, these ultrasonic materials are often saved in the forms of PDF, images, etc., and cannot be directly used for the training of MLLMs. This paper proposes a novel image-text reasoning supervised fine-tuning data generation pipeline to create specific domain quadruplets (image, question, thinking trace, and answer) from domain-specific materials. A medical ultrasound domain dataset ReMUD is established, containing over 45,000 reasoning and non-reasoning supervised fine-tuning Question Answering (QA) and Visual Question Answering (VQA) data. The ReMUD-7B model, fine-tuned on Qwen2.5-VL-7B-Instruct, outperforms general-domain MLLMs in medical ultrasound field. To facilitate research, the ReMUD dataset, data generation codebase, and ReMUD-7B parameters will be released at https://github.com/ShiDaizi/ReMUD, addressing the data shortage issue in specific domain MLLMs.

Authors:Michael K. Chen, Xikun Zhang, Jiaxing Huang, Dacheng Tao
Title: Improving Large Language Models with Concept-Aware Fine-Tuning
Abstract:
Large language models (LLMs) have become the cornerstone of modern AI. However, the existing paradigm of next-token prediction fundamentally limits their ability to form coherent, high-level concepts, making it a critical barrier to human-like understanding and reasoning. Take the phrase "ribonucleic acid" as an example: an LLM will first decompose it into tokens, i.e., artificial text fragments ("rib", "on", ...), then learn each token sequentially, rather than grasping the phrase as a unified, coherent semantic entity. This fragmented representation hinders deeper conceptual understanding and, ultimately, the development of truly intelligent systems. In response, we introduce Concept-Aware Fine-Tuning (CAFT), a novel multi-token training method that redefines how LLMs are fine-tuned. By enabling the learning of sequences that span multiple tokens, this method fosters stronger concept-aware learning. Our experiments demonstrate significant improvements compared to conventional next-token finetuning methods across diverse tasks, including traditional applications like text summarization and domain-specific ones like de novo protein design. Multi-token prediction was previously only possible in the prohibitively expensive pretraining phase; CAFT, to our knowledge, is the first to bring the multi-token setting to the post-training phase, thus effectively democratizing its benefits for the broader community of practitioners and researchers. Finally, the unexpected effectiveness of our proposed method suggests wider implications for the machine learning research community. All code and data are available at https://github.com/michaelchen-lab/caft-llm

Authors:Tieyuan Chen, Huabin Liu, Yi Wang, Chaofan Gan, Mingxi Lyu, Gui Zou, Weiyao Lin
Title: Looking Beyond Visible Cues: Implicit Video Question Answering via Dual-Clue Reasoning
Abstract:
Video Question Answering (VideoQA) aims to answer natural language questions based on the given video, with prior work primarily focusing on identifying the duration of relevant segments, referred to as explicit visual evidence. However, explicit visual evidence is not always directly available, particularly when questions target symbolic meanings or deeper intentions, leading to significant performance degradation. To fill this gap, we introduce a novel task and dataset, $\textbf{I}$mplicit $\textbf{V}$ideo $\textbf{Q}$uestion $\textbf{A}$nswering (I-VQA), which focuses on answering questions in scenarios where explicit visual evidence is inaccessible. Given an implicit question and its corresponding video, I-VQA requires answering based on the contextual visual cues present within the video. To tackle I-VQA, we propose a novel reasoning framework, IRM (Implicit Reasoning Model), incorporating dual-stream modeling of contextual actions and intent clues as implicit reasoning chains. IRM comprises the Action-Intent Module (AIM) and the Visual Enhancement Module (VEM). AIM deduces and preserves question-related dual clues by generating clue candidates and performing relation deduction. VEM enhances contextual visual representation by leveraging key contextual clues. Extensive experiments validate the effectiveness of our IRM in I-VQA tasks, outperforming GPT-4o, OpenAI-o3, and fine-tuned VideoChat2 by $0.76\%$, $1.37\%$, and $4.87\%$, respectively. Additionally, IRM performs SOTA on similar implicit advertisement understanding and future prediction in traffic-VQA. Datasets and codes are available for double-blind review in anonymous repo: https://github.com/tychen-SJTU/Implicit-VideoQA.

Authors:Jie Bao, Chuangyin Dang, Rui Luo, Hanwei Zhang, Zhixin Zhou
Title: Enhancing Adversarial Robustness with Conformal Prediction: A Framework for Guaranteed Model Reliability
Abstract:
As deep learning models are increasingly deployed in high-risk applications, robust defenses against adversarial attacks and reliable performance guarantees become paramount. Moreover, accuracy alone does not provide sufficient assurance or reliable uncertainty estimates for these models. This study advances adversarial training by leveraging principles from Conformal Prediction. Specifically, we develop an adversarial attack method, termed OPSA (OPtimal Size Attack), designed to reduce the efficiency of conformal prediction at any significance level by maximizing model uncertainty without requiring coverage guarantees. Correspondingly, we introduce OPSA-AT (Adversarial Training), a defense strategy that integrates OPSA within a novel conformal training paradigm. Experimental evaluations demonstrate that our OPSA attack method induces greater uncertainty compared to baseline approaches for various defenses. Conversely, our OPSA-AT defensive model significantly enhances robustness not only against OPSA but also other adversarial attacks, and maintains reliable prediction. Our findings highlight the effectiveness of this integrated approach for developing trustworthy and resilient deep learning models for safety-critical domains. Our code is available at https://github.com/bjbbbb/Enhancing-Adversarial-Robustness-with-Conformal-Prediction.

Authors:Yixuan Huang, Jie Yang, Shuqiang Xia, Chao-Kai Wen, Shi Jin
Title: Learned Off-Grid Imager for Low-Altitude Economy with Cooperative ISAC Network
Abstract:
The low-altitude economy is emerging as a key driver of future economic growth, necessitating effective flight activity surveillance using existing mobile cellular network sensing capabilities. However, traditional monostatic and localizationbased sensing methods face challenges in fusing sensing results and matching channel parameters. To address these challenges, we model low-altitude surveillance as a compressed sensing (CS)-based imaging problem by leveraging the cooperation of multiple base stations and the inherent sparsity of aerial images. Additionally, we derive the point spread function to analyze the influences of different antenna, subcarrier, and resolution settings on the imaging performance. Given the random spatial distribution of unmanned aerial vehicles (UAVs), we propose a physics-embedded learning method to mitigate off-grid errors in traditional CS-based approaches. Furthermore, to enhance rare UAV detection in vast low-altitude airspace, we integrate an online hard example mining scheme into the loss function design, enabling the network to adaptively focus on samples with significant discrepancies from the ground truth during training. Simulation results demonstrate the effectiveness of the proposed low-altitude surveillance framework. The proposed physicsembedded learning algorithm achieves a 97.55% detection rate, significantly outperforming traditional CS-based methods under off-grid conditions. Part of the source code for this paper will be soon accessed at https://github.com/kiwi1944/LAEImager.

Authors:Qi Yang, Chenghao Zhang, Lubin Fan, Kun Ding, Jieping Ye, Shiming Xiang
Title: Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger
Abstract:
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks through multimodal Retrieval-Augmented Generation (RAG). However, existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge. To address these issues, in this study, we propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method. Specifically, we introduce a self-consistent evaluation mechanism to enrich the knowledge base with intrinsic reasoning patterns. We further propose a Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR) to prioritize the most relevant examples. This ensures that LVLMs can leverage high-quality contextual reasoning for better and more consistent responses. Extensive experiments demonstrate that our framework achieves state-of-the-art performance on multiple VQA datasets, significantly outperforming In-Context Learning (ICL) and Vanilla-RAG methods. It highlights the effectiveness of our knowledge base and re-ranking method in improving LVLMs. Our code is available at https://github.com/yannqi/RCTS-RAG.

Authors:Mohamed Djilani, Nassim Ali Ousalah, Nidhal Eddine Chenni
Title: Trend-Aware Fashion Recommendation with Visual Segmentation and Semantic Similarity
Abstract:
We introduce a trend-aware and visually-grounded fashion recommendation system that integrates deep visual representations, garment-aware segmentation, semantic category similarity and user behavior simulation. Our pipeline extracts focused visual embeddings by masking non-garment regions via semantic segmentation followed by feature extraction using pretrained CNN backbones (ResNet-50, DenseNet-121, VGG16). To simulate realistic shopping behavior, we generate synthetic purchase histories influenced by user-specific trendiness and item popularity. Recommendations are computed using a weighted scoring function that fuses visual similarity, semantic coherence and popularity alignment. Experiments on the DeepFashion dataset demonstrate consistent gender alignment and improved category relevance, with ResNet-50 achieving 64.95% category similarity and lowest popularity MAE. An ablation study confirms the complementary roles of visual and popularity cues. Our method provides a scalable framework for personalized fashion recommendations that balances individual style with emerging trends. Our implementation is available at https://github.com/meddjilani/FashionRecommender

Authors:Adam Breuer
Title: E-LDA: Toward Interpretable LDA Topic Models with Strong Guarantees in Logarithmic Parallel Time
Abstract:
In this paper, we provide the first practical algorithms with provable guarantees for the problem of inferring the topics assigned to each document in an LDA topic model. This is the primary inference problem for many applications of topic models in social science, data exploration, and causal inference settings. We obtain this result by showing a novel non-gradient-based, combinatorial approach to estimating topic models. This yields algorithms that converge to near-optimal posterior probability in logarithmic parallel computation time (adaptivity) -- exponentially faster than any known LDA algorithm. We also show that our approach can provide interpretability guarantees such that each learned topic is formally associated with a known keyword. Finally, we show that unlike alternatives, our approach can maintain the independence assumptions necessary to use the learned topic model for downstream causal inference methods that allow researchers to study topics as treatments. In terms of practical performance, our approach consistently returns solutions of higher semantic quality than solutions from state-of-the-art LDA algorithms, neural topic models, and LLM-based topic models across a diverse range of text datasets and evaluation parameters.

Authors:Seungho Baek, Taegeon Park, Jongchan Park, Seungjun Oh, Yusung Kim
Title: Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning
Abstract:
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.

Authors:Shadi Hamdan, Chonghao Sima, Zetong Yang, Hongyang Li, Fatma Güney
Title: ETA: Efficiency through Thinking Ahead, A Dual Approach to Self-Driving with Large Models
Abstract:
How can we benefit from large models without sacrificing inference speed, a common dilemma in self-driving systems? A prevalent solution is a dual-system architecture, employing a small model for rapid, reactive decisions and a larger model for slower but more informative analyses. Existing dual-system designs often implement parallel architectures where inference is either directly conducted using the large model at each current frame or retrieved from previously stored inference results. However, these works still struggle to enable large models for a timely response to every online frame. Our key insight is to shift intensive computations of the current frame to previous time steps and perform a batch inference of multiple time steps to make large models respond promptly to each time step. To achieve the shifting, we introduce Efficiency through Thinking Ahead (ETA), an asynchronous system designed to: (1) propagate informative features from the past to the current frame using future predictions from the large model, (2) extract current frame features using a small model for real-time responsiveness, and (3) integrate these dual features via an action mask mechanism that emphasizes action-critical image regions. Evaluated on the Bench2Drive CARLA Leaderboard-v2 benchmark, ETA advances state-of-the-art performance by 8% with a driving score of 69.53 while maintaining a near-real-time inference speed at 50 ms.

Authors:Mengyang Qiu, Tran Minh Nguyen, Zihao Huang, Zelong Li, Yang Gu, Qingyu Gao, Siliang Liu, Jungyeul Park
Title: Multilingual Grammatical Error Annotation: Combining Language-Agnostic Framework with Language-Specific Flexibility
Abstract:
Grammatical Error Correction (GEC) relies on accurate error annotation and evaluation, yet existing frameworks, such as $\texttt{errant}$, face limitations when extended to typologically diverse languages. In this paper, we introduce a standardized, modular framework for multilingual grammatical error annotation. Our approach combines a language-agnostic foundation with structured language-specific extensions, enabling both consistency and flexibility across languages. We reimplement $\texttt{errant}$ using $\texttt{stanza}$ to support broader multilingual coverage, and demonstrate the framework's adaptability through applications to English, German, Czech, Korean, and Chinese, ranging from general-purpose annotation to more customized linguistic refinements. This work supports scalable and interpretable GEC annotation across languages and promotes more consistent evaluation in multilingual settings. The complete codebase and annotation tools can be accessed at https://github.com/open-writing-evaluation/jp_errant_bea.

Authors:Jiaming Li, Haoran Ye, Yukun Chen, Xinyue Li, Lei Zhang, Hamid Alinejad-Rokny, Jimmy Chih-Hsien Peng, Min Yang
Title: Training Superior Sparse Autoencoders for Instruct Models
Abstract:
As large language models (LLMs) grow in scale and capability, understanding their internal mechanisms becomes increasingly critical. Sparse autoencoders (SAEs) have emerged as a key tool in mechanistic interpretability, enabling the extraction of human-interpretable features from LLMs. However, existing SAE training methods are primarily designed for base models, resulting in reduced reconstruction quality and interpretability when applied to instruct models. To bridge this gap, we propose $\underline{\textbf{F}}$inetuning-$\underline{\textbf{a}}$ligned $\underline{\textbf{S}}$equential $\underline{\textbf{T}}$raining ($\textit{FAST}$), a novel training method specifically tailored for instruct models. $\textit{FAST}$ aligns the training process with the data distribution and activation patterns characteristic of instruct models, resulting in substantial improvements in both reconstruction and feature interpretability. On Qwen2.5-7B-Instruct, $\textit{FAST}$ achieves a mean squared error of 0.6468 in token reconstruction, significantly outperforming baseline methods with errors of 5.1985 and 1.5096. In feature interpretability, $\textit{FAST}$ yields a higher proportion of high-quality features, for Llama3.2-3B-Instruct, $21.1\%$ scored in the top range, compared to $7.0\%$ and $10.2\%$ for $\textit{BT(P)}$ and $\textit{BT(F)}$. Surprisingly, we discover that intervening on the activations of special tokens via the SAEs leads to improvements in output quality, suggesting new opportunities for fine-grained control of model behavior. Code, data, and 240 trained SAEs are available at https://github.com/Geaming2002/FAST.

Authors:Yunhe Yan, Shihe Wang, Jiajun Du, Yexuan Yang, Yuxuan Shan, Qichen Qiu, Xianqing Jia, Xinge Wang, Xin Yuan, Xu Han, Mao Qin, Yinxiao Chen, Chen Peng, Shangguang Wang, Mengwei Xu
Title: MCPWorld: A Unified Benchmarking Testbed for API, GUI, and Hybrid Computer Use Agents
Abstract:
(M)LLM-powered computer use agents (CUA) are emerging as a transformative technique to automate human-computer interaction. However, existing CUA benchmarks predominantly target GUI agents, whose evaluation methods are susceptible to UI changes and ignore function interactions exposed by application APIs, e.g., Model Context Protocol (MCP). To this end, we propose MCPWorld, the first automatic CUA testbed for API, GUI, and API-GUI hybrid agents. A key principle of MCPWorld is the use of "white-box apps", i.e., those with source code availability and can be revised/re-compiled as needed (e.g., adding MCP support), with two notable advantages: (1) It greatly broadens the design space of CUA, such as what and how the app features to be exposed/extracted as CUA-callable APIs. (2) It allows MCPWorld to programmatically verify task completion by directly monitoring application behavior through techniques like dynamic code instrumentation, offering robust, accurate CUA evaluation decoupled from specific agent implementations or UI states. Currently, MCPWorld includes 201 well curated and annotated user tasks, covering diversified use cases and difficulty levels. MCPWorld is also fully containerized with GPU acceleration support for flexible adoption on different OS/hardware environments. Our preliminary experiments, using a representative LLM-powered CUA framework, achieve 75.12% task completion accuracy, simultaneously providing initial evidence on the practical effectiveness of agent automation leveraging MCP. Overall, we anticipate MCPWorld to facilitate and standardize the benchmarking of next-generation computer use agents that can leverage rich external tools. Our code and dataset are publicly available at https://github.com/SAAgent/MCPWorld.

Authors:Lei Xu, Sirui Chen, Yuxuan Huang, Chaochao Lu
Title: Synthesis by Design: Controlled Data Generation via Structural Guidance
Abstract:
Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities. Our code and data are available at https://github.com/OpenCausaLab/StructuralGeneration.

Authors:Yuan Chang, Ziyue Li, Hengyuan Zhang, Yuanbo Kong, Yanru Wu, Hayden Kwok-Hay So, Zhijiang Guo, Liya Zhu, Ngai Wong
Title: TreeReview: A Dynamic Tree of Questions Framework for Deep and Efficient LLM-based Scientific Peer Review
Abstract:
While Large Language Models (LLMs) have shown significant potential in assisting peer review, current methods often struggle to generate thorough and insightful reviews while maintaining efficiency. In this paper, we propose TreeReview, a novel framework that models paper review as a hierarchical and bidirectional question-answering process. TreeReview first constructs a tree of review questions by recursively decomposing high-level questions into fine-grained sub-questions and then resolves the question tree by iteratively aggregating answers from leaf to root to get the final review. Crucially, we incorporate a dynamic question expansion mechanism to enable deeper probing by generating follow-up questions when needed. We construct a benchmark derived from ICLR and NeurIPS venues to evaluate our method on full review generation and actionable feedback comments generation tasks. Experimental results of both LLM-based and human evaluation show that TreeReview outperforms strong baselines in providing comprehensive, in-depth, and expert-aligned review feedback, while reducing LLM token usage by up to 80% compared to computationally intensive approaches. Our code and benchmark dataset are available at https://github.com/YuanChang98/tree-review.

Authors:Yuchong Long, Wen Sun, Ningxiao Sun, Wenxiao Wang, Chao Li, Shan Yin
Title: HieraEdgeNet: A Multi-Scale Edge-Enhanced Framework for Automated Pollen Recognition
Abstract:
Automated pollen recognition is vital to paleoclimatology, biodiversity monitoring, and public health, yet conventional methods are hampered by inefficiency and subjectivity. Existing deep learning models often struggle to achieve the requisite localization accuracy for microscopic targets like pollen, which are characterized by their minute size, indistinct edges, and complex backgrounds. To overcome this limitation, we introduce HieraEdgeNet, a multi-scale edge-enhancement framework. The framework's core innovation is the introduction of three synergistic modules: the Hierarchical Edge Module (HEM), which explicitly extracts a multi-scale pyramid of edge features that corresponds to the semantic hierarchy at early network stages; the Synergistic Edge Fusion (SEF) module, for deeply fusing these edge priors with semantic information at each respective scale; and the Cross Stage Partial Omni-Kernel Module (CSPOKM), which maximally refines the most detail-rich feature layers using an Omni-Kernel operator - comprising anisotropic large-kernel convolutions and mixed-domain attention - all within a computationally efficient Cross-Stage Partial (CSP) framework. On a large-scale dataset comprising 120 pollen classes, HieraEdgeNet achieves a mean Average Precision (mAP@.5) of 0.9501, significantly outperforming state-of-the-art baseline models such as YOLOv12n and RT-DETR. Furthermore, qualitative analysis confirms that our approach generates feature representations that are more precisely focused on object boundaries. By systematically integrating edge information, HieraEdgeNet provides a robust and powerful solution for high-precision, high-efficiency automated detection of microscopic objects.

Authors:Haoran Wang, Zhenyu Hou, Yao Wei, Jie Tang, Yuxiao Dong
Title: SWE-Dev: Building Software Engineering Agents with Training and Inference Scaling
Abstract:
Large language models (LLMs) have advanced rapidly from conversational problem solving to addressing real-world tasks involving tool use, such as software engineering (SWE). Recent LLM-powered toolkits, such as OpenAI Codex and Cursor, have offered end-to-end automation of the software development process. However, building effective SWE agents remains challenging due to the lack of high-quality training data and effective test cases. To address this issue, we present SWE-Dev, an SWE agent built upon open-source LLMs. First, we develop a robust pipeline to synthesize test cases for patch evaluation. Second, we scale up agent trajectories to construct the training data for building SWE-Dev. Experiments on the SWE-bench-Verified benchmark show that the SWE-Dev models can achieve top performance among all open SWE agents. Specifically, the success rates of the SWE-Dev 7B and 32B parameter models reach 23.4% and 36.6%, respectively, outperforming state-of-the-art open-source models. All code, models, and datasets are publicly available at https://github.com/THUDM/SWE-Dev.

Authors:Chenyu Yang, Shuai Wang, Hangting Chen, Wei Tan, Jianwei Yu, Haizhou Li
Title: SongBloom: Coherent Song Generation via Interleaved Autoregressive Sketching and Diffusion Refinement
Abstract:
Generating music with coherent structure, harmonious instrumental and vocal elements remains a significant challenge in song generation. Existing language models and diffusion-based methods often struggle to balance global coherence with local fidelity, resulting in outputs that lack musicality or suffer from incoherent progression and mismatched lyrics. This paper introduces $\textbf{SongBloom}$, a novel framework for full-length song generation that leverages an interleaved paradigm of autoregressive sketching and diffusion-based refinement. SongBloom employs an autoregressive diffusion model that combines the high fidelity of diffusion models with the scalability of language models. Specifically, it gradually extends a musical sketch from short to long and refines the details from coarse to fine-grained. The interleaved generation paradigm effectively integrates prior semantic and acoustic context to guide the generation process. Experimental results demonstrate that SongBloom outperforms existing methods across both subjective and objective metrics and achieves performance comparable to the state-of-the-art commercial music generation platforms. Audio samples are available on our demo page: https://cypress-yang.github.io/SongBloom_demo. The code and model weights have been released on https://github.com/Cypress-Yang/SongBloom .

Authors:Roman Kyslyi, Yuliia Maksymiuk, Ihor Pysmennyi
Title: Vuyko Mistral: Adapting LLMs for Low-Resource Dialectal Translation
Abstract:
In this paper we introduce the first effort to adapt large language models (LLMs) to the Ukrainian dialect (in our case Hutsul), a low-resource and morphologically complex dialect spoken in the Carpathian Highlands. We created a parallel corpus of 9852 dialect-to-standard Ukrainian sentence pairs and a dictionary of 7320 dialectal word mappings. We also addressed data shortage by proposing an advanced Retrieval-Augmented Generation (RAG) pipeline to generate synthetic parallel translation pairs, expanding the corpus with 52142 examples. We have fine-tuned multiple open-source LLMs using LoRA and evaluated them on a standard-to-dialect translation task, also comparing with few-shot GPT-4o translation. In the absence of human annotators, we adopt a multi-metric evaluation strategy combining BLEU, chrF++, TER, and LLM-based judgment (GPT-4o). The results show that even small(7B) finetuned models outperform zero-shot baselines such as GPT-4o across both automatic and LLM-evaluated metrics. All data, models, and code are publicly released at: https://github.com/woters/vuyko-hutsul

Authors:Fabian Lander, Diaaeldin Taha
Title: Immersive Visualization of Flat Surfaces Using Ray Marching
Abstract:
We present an effective method for visualizing flat surfaces using ray marching. Our approach provides an intuitive way to explore translation surfaces, mirror rooms, unfolded polyhedra, and translation prisms while maintaining computational efficiency. We demonstrate the utility of the method through various examples and provide implementation insights for programmers. Finally, we discuss the use of our visualizations in outreach. We make our simulations and code available online.

Authors:Mengsong Wu, Di Zhang, Yuqiang Li, Dongzhan Zhou, Wenliang Chen
Title: SELT: Self-Evaluation Tree Search for LLMs with Task Decomposition
Abstract:
While Large Language Models (LLMs) have achieved remarkable success in a wide range of applications, their performance often degrades in complex reasoning tasks. In this work, we introduce SELT (Self-Evaluation LLM Tree Search), a novel framework that leverages a modified Monte Carlo Tree Search (MCTS) to enhance LLM reasoning without relying on external reward models. By redefining the Upper Confidence Bound scoring to align with intrinsic self-evaluation capabilities of LLMs and decomposing the inference process into atomic subtasks augmented with semantic clustering at each node, SELT effectively balances exploration and exploitation, reduces redundant reasoning paths, and mitigates hallucination. We validate our approach on challenging benchmarks, including the knowledge-based MMLU and the Tool Learning dataset Seal-Tools, where SELT achieves significant improvements in answer accuracy and reasoning robustness compared to baseline methods. Notably, our framework operates without task-specific fine-tuning, demonstrating strong generalizability across diverse reasoning tasks. Relevant results and code are available at https://github.com/fairyshine/SELT .

Authors:Jingchao Wang, Haote Yang, Jiang Wu, Yifan He, Xingjian Wei, Yinfan Wang, Chengjin Liu, Lingli Ge, Lijun Wu, Bin Wang, Dahua Lin, Conghui He
Title: GTR-CoT: Graph Traversal as Visual Chain of Thought for Molecular Structure Recognition
Abstract:
Optical Chemical Structure Recognition (OCSR) is crucial for digitizing chemical knowledge by converting molecular images into machine-readable formats. While recent vision-language models (VLMs) have shown potential in this task, their image-captioning approach often struggles with complex molecular structures and inconsistent annotations. To overcome these challenges, we introduce GTR-Mol-VLM, a novel framework featuring two key innovations: (1) the Graph Traversal as Visual Chain of Thought mechanism that emulates human reasoning by incrementally parsing molecular graphs through sequential atom-bond predictions, and (2) the data-centric principle of Faithfully Recognize What You've Seen, which addresses the mismatch between abbreviated structures in images and their expanded annotations. To support model development, we constructed GTR-CoT-1.3M, a large-scale instruction-tuning dataset with meticulously corrected annotations, and introduced MolRec-Bench, the first benchmark designed for a fine-grained evaluation of graph-parsing accuracy in OCSR. Comprehensive experiments demonstrate that GTR-Mol-VLM achieves superior results compared to specialist models, chemistry-domain VLMs, and commercial general-purpose VLMs. Notably, in scenarios involving molecular images with functional group abbreviations, GTR-Mol-VLM outperforms the second-best baseline by approximately 14 percentage points, both in SMILES-based and graph-based metrics. We hope that this work will drive OCSR technology to more effectively meet real-world needs, thereby advancing the fields of cheminformatics and AI for Science. We will release GTR-CoT at https://github.com/opendatalab/GTR-CoT.

Authors:Mengsong Wu, YaFei Wang, Yidong Ming, Yuqi An, Yuwei Wan, Wenliang Chen, Binbin Lin, Yuqiang Li, Tong Xie, Dongzhan Zhou
Title: CheMatAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning
Abstract:
Large language models (LLMs) have recently demonstrated promising capabilities in chemistry tasks while still facing challenges due to outdated pretraining knowledge and the difficulty of incorporating specialized chemical expertise. To address these issues, we propose an LLM-based agent that synergistically integrates 137 external chemical tools created ranging from basic information retrieval to complex reaction predictions, and a dataset curation pipeline to generate the dataset ChemToolBench that facilitates both effective tool selection and precise parameter filling during fine-tuning and evaluation. We introduce a Hierarchical Evolutionary Monte Carlo Tree Search (HE-MCTS) framework, enabling independent optimization of tool planning and execution. By leveraging self-generated data, our approach supports step-level fine-tuning (FT) of the policy model and training task-adaptive PRM and ORM that surpass GPT-4o. Experimental evaluations demonstrate that our approach significantly improves performance in Chemistry QA and discovery tasks, offering a robust solution to integrate specialized tools with LLMs for advanced chemical applications. All datasets and code are available at https://github.com/AI4Chem/ChemistryAgent .

Authors:Zhangchi Zhao, Jun Shu, Deyu Meng, Zongben Xu
Title: Improving Memory Efficiency for Training KANs via Meta Learning
Abstract:
Inspired by the Kolmogorov-Arnold representation theorem, KANs offer a novel framework for function approximation by replacing traditional neural network weights with learnable univariate functions. This design demonstrates significant potential as an efficient and interpretable alternative to traditional MLPs. However, KANs are characterized by a substantially larger number of trainable parameters, leading to challenges in memory efficiency and higher training costs compared to MLPs. To address this limitation, we propose to generate weights for KANs via a smaller meta-learner, called MetaKANs. By training KANs and MetaKANs in an end-to-end differentiable manner, MetaKANs achieve comparable or even superior performance while significantly reducing the number of trainable parameters and maintaining promising interpretability. Extensive experiments on diverse benchmark tasks, including symbolic regression, partial differential equation solving, and image classification, demonstrate the effectiveness of MetaKANs in improving parameter efficiency and memory usage. The proposed method provides an alternative technique for training KANs, that allows for greater scalability and extensibility, and narrows the training cost gap with MLPs stated in the original paper of KANs. Our code is available at https://github.com/Murphyzc/MetaKAN.

Authors:Weiqiang Jin, Hongyang Du, Guizhong Liu, Dong In Kim
Title: Curriculum Learning With Counterfactual Group Relative Policy Advantage For Multi-Agent Reinforcement Learning
Abstract:
Multi-agent reinforcement learning (MARL) has achieved strong performance in cooperative adversarial tasks. However, most existing methods typically train agents against fixed opponent strategies and rely on such meta-static difficulty conditions, which limits their adaptability to changing environments and often leads to suboptimal policies. Inspired by the success of curriculum learning (CL) in supervised tasks, we propose a dynamic CL framework for MARL that employs an self-adaptive difficulty adjustment mechanism. This mechanism continuously modulates opponent strength based on real-time agent training performance, allowing agents to progressively learn from easier to more challenging scenarios. However, the dynamic nature of CL introduces instability due to nonstationary environments and sparse global rewards. To address this challenge, we develop a Counterfactual Group Relative Policy Advantage (CGRPA), which is tightly coupled with the curriculum by providing intrinsic credit signals that reflect each agent's impact under evolving task demands. CGRPA constructs a counterfactual advantage function that isolates individual contributions within group behavior, facilitating more reliable policy updates throughout the curriculum. CGRPA evaluates each agent's contribution through constructing counterfactual action advantage function, providing intrinsic rewards that enhance credit assignment and stabilize learning under non-stationary conditions. Extensive experiments demonstrate that our method improves both training stability and final performance, achieving competitive results against state-of-the-art methods. The code is available at https://github.com/NICE-HKU/CL2MARL-SMAC.

Authors:Hongyu Wang, Chuyan Xiong, Ruiping Wang, Xilin Chen
Title: BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation
Abstract:
Vision-Language-Action (VLA) models have shown impressive capabilities across a wide range of robotics manipulation tasks. However, their growing model size poses significant challenges for deployment on resource-constrained robotic systems. While 1-bit pretraining has proven effective for enhancing the inference efficiency of large language models with minimal performance loss, its application to VLA models remains underexplored. In this work, we present BitVLA, the first 1-bit VLA model for robotics manipulation, in which every parameter is ternary, i.e., {-1, 0, 1}. To further reduce the memory footprint of the vision encoder, we propose the distillation-aware training strategy that compresses the full-precision encoder to 1.58-bit weights. During this process, a full-precision encoder serves as a teacher model to better align latent representations. Despite the lack of large-scale robotics pretraining, BitVLA achieves performance comparable to the state-of-the-art model OpenVLA-OFT with 4-bit post-training quantization on the LIBERO benchmark, while consuming only 29.8% of the memory. These results highlight BitVLA's promise for deployment on memory-constrained edge devices. We release the code and model weights in https://github.com/ustcwhy/BitVLA.

Authors:Shun Lei, Yaoxun Xu, Zhiwei Lin, Huaicheng Zhang, Wei Tan, Hangting Chen, Jianwei Yu, Yixuan Zhang, Chenyu Yang, Haina Zhu, Shuai Wang, Zhiyong Wu, Dong Yu
Title: LeVo: High-Quality Song Generation with Multi-Preference Alignment
Abstract:
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in sound quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, an LM-based framework consisting of LeLM and a music codec. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and DPO post-training. Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics. Ablation studies further justify the effectiveness of our designs. Audio examples are available at https://levo-demo.github.io/. Code is released at https://github.com/tencent-ailab/songgeneration.

Authors:Shuqiang Zhang, Yuchao Zhang, Jinkun Chen, Haochen Sui
Title: Addressing Correlated Latent Exogenous Variables in Debiased Recommender Systems
Abstract:
Recommendation systems (RS) aim to provide personalized content, but they face a challenge in unbiased learning due to selection bias, where users only interact with items they prefer. This bias leads to a distorted representation of user preferences, which hinders the accuracy and fairness of recommendations. To address the issue, various methods such as error imputation based, inverse propensity scoring, and doubly robust techniques have been developed. Despite the progress, from the structural causal model perspective, previous debiasing methods in RS assume the independence of the exogenous variables. In this paper, we release this assumption and propose a learning algorithm based on likelihood maximization to learn a prediction model. We first discuss the correlation and difference between unmeasured confounding and our scenario, then we propose a unified method that effectively handles latent exogenous variables. Specifically, our method models the data generation process with latent exogenous variables under mild normality assumptions. We then develop a Monte Carlo algorithm to numerically estimate the likelihood function. Extensive experiments on synthetic datasets and three real-world datasets demonstrate the effectiveness of our proposed method. The code is at https://github.com/WallaceSUI/kdd25-background-variable.

Authors:Solee Im, Wonjun Lee, Jinmyeong An, Yunsu Kim, Jungseul Ok, Gary Geunbae Lee
Title: DeRAGEC: Denoising Named Entity Candidates with Synthetic Rationale for ASR Error Correction
Abstract:
We present DeRAGEC, a method for improving Named Entity (NE) correction in Automatic Speech Recognition (ASR) systems. By extending the Retrieval-Augmented Generative Error Correction (RAGEC) framework, DeRAGEC employs synthetic denoising rationales to filter out noisy NE candidates before correction. By leveraging phonetic similarity and augmented definitions, it refines noisy retrieved NEs using in-context learning, requiring no additional training. Experimental results on CommonVoice and STOP datasets show significant improvements in Word Error Rate (WER) and NE hit ratio, outperforming baseline ASR and RAGEC methods. Specifically, we achieved a 28% relative reduction in WER compared to ASR without postprocessing. Our source code is publicly available at: https://github.com/solee0022/deragec

Authors:Shoon Kit Lim, Melissa Jia Ying Chong, Jing Huey Khor, Ting Yang Ling
Title: Taking Flight with Dialogue: Enabling Natural Language Control for PX4-based Drone Agent
Abstract:
Recent advances in agentic and physical artificial intelligence (AI) have largely focused on ground-based platforms such as humanoid and wheeled robots, leaving aerial robots relatively underexplored. Meanwhile, state-of-the-art unmanned aerial vehicle (UAV) multimodal vision-language systems typically rely on closed-source models accessible only to well-resourced organizations. To democratize natural language control of autonomous drones, we present an open-source agentic framework that integrates PX4-based flight control, Robot Operating System 2 (ROS 2) middleware, and locally hosted models using Ollama. We evaluate performance both in simulation and on a custom quadcopter platform, benchmarking four large language model (LLM) families for command generation and three vision-language model (VLM) families for scene understanding.

Authors:Haotian Guo, Jing Han, Yongfeng Tu, Shihao Gao, Shengfan Shen, Wulong Xiang, Weihao Gan, Zixing Zhang
Title: DEBATE: A Dataset for Disentangling Textual Ambiguity in Mandarin Through Speech
Abstract:
Despite extensive research on textual and visual disambiguation, disambiguation through speech (DTS) remains underexplored. This is largely due to the lack of high-quality datasets that pair spoken sentences with richly ambiguous text. To address this gap, we present DEBATE, a unique public Chinese speech-text dataset designed to study how speech cues and patterns-pronunciation, pause, stress and intonation-can help resolve textual ambiguity and reveal a speaker's true intent. DEBATE contains 1,001 carefully selected ambiguous utterances, each recorded by 10 native speakers, capturing diverse linguistic ambiguities and their disambiguation through speech. We detail the data collection pipeline and provide rigorous quality analysis. Additionally, we benchmark three state-of-the-art large speech and audio-language models, illustrating clear and huge performance gaps between machine and human understanding of spoken intent. DEBATE represents the first effort of its kind and offers a foundation for building similar DTS datasets across languages and cultures. The dataset and associated code are available at: https://github.com/SmileHnu/DEBATE.

Authors:Libo Wang
Title: Graph-of-Causal Evolution: Challenging Chain-of-Model for Reasoning
Abstract:
In view of the problem that each subchain in the chain-of-model (CoM) relies only on the information of the previous subchain and may lose long-range dependencies due to the causal mask blocking the global context flow between multi-level subchains, this work proposes a graph of causal evolution (GoCE). Its core principle is to map the implicit token representation into a differentiable and sparse causal adjacency matrix, then permeate causal constraints through each layer of calculation using causal-masked attention and causal-MoE. By combining intervention consistency loss test and self-evolution gate, the dynamic balance between causal structure learning and adaptive updating of transformer architecture is realized. The researcher built experimental environments in sandboxes built with Claude Sonnet 4, o4-mini-high, and DeepSeek R1 respectively with the transformer variant architecture introduced in GoCE. It is evaluated on publicly available datasets including CLUTRR, CLADDER, EX-FEVER, and CausalQA and compared with the baseline LLMs. The finding proves that GoCE strengthens the transformer's ability to capture long-range causal dependencies, while the ability to self-evolve is improved. It not only surpasses the design of CoM in terms of design principles, but also provides experience for future research on causal learning and continuous adaptive improvement.

Authors:Dasol Hong, Wooju Lee, Hyun Myung
Title: CoCoA-Mix: Confusion-and-Confidence-Aware Mixture Model for Context Optimization
Abstract:
Prompt tuning, which adapts vision-language models by freezing model parameters and optimizing only the prompt, has proven effective for task-specific adaptations. The core challenge in prompt tuning is improving specialization for a specific task and generalization for unseen domains. However, frozen encoders often produce misaligned features, leading to confusion between classes and limiting specialization. To overcome this issue, we propose a confusion-aware loss (CoA-loss) that improves specialization by refining the decision boundaries between confusing classes. Additionally, we mathematically demonstrate that a mixture model can enhance generalization without compromising specialization. This is achieved using confidence-aware weights (CoA-weights), which adjust the weights of each prediction in the mixture model based on its confidence within the class domains. Extensive experiments show that CoCoA-Mix, a mixture model with CoA-loss and CoA-weights, outperforms state-of-the-art methods by enhancing specialization and generalization. Our code is publicly available at https://github.com/url-kaist/CoCoA-Mix.

Authors:Haoyuan Li, Rui Zhang, Snigdha Chaturvedi
Title: Improving Fairness of Large Language Models in Multi-document Summarization
Abstract:
Fairness in multi-document summarization (MDS) is crucial for providing comprehensive views across documents with diverse social attribute values, which can significantly impact decision-making. For example, a summarization system that tends to overrepresent negative reviews of products can mislead customers into disregarding good products. Previous works measure fairness in MDS at two levels: summary-level and corpus-level. While summary-level fairness focuses on individual summaries, corpus-level fairness focuses on a corpus of summaries. Recent methods primarily focus on summary-level fairness. We propose FairPO, a preference tuning method that focuses on both summary-level and corpus-level fairness in MDS. To improve summary-level fairness, we propose to generate preference pairs by perturbing document sets. To improve corpus-level fairness, we propose fairness-aware preference tuning by dynamically adjusting the weights of preference pairs. Our experiments show that FairPO outperforms strong baselines while maintaining the critical qualities of summaries. The code is available at https://github.com/leehaoyuan/coverage_fairnes.

Authors:Thomas Zhu, Joshua Clune, Jeremy Avigad, Albert Qiaochu Jiang, Sean Welleck
Title: Premise Selection for a Lean Hammer
Abstract:
Neural methods are transforming automated reasoning for proof assistants, yet integrating these advances into practical verification workflows remains challenging. Hammers are tools that interface with external automatic theorem provers to automate tedious reasoning steps. They have dramatically improved productivity in proof assistants, but the Lean proof assistant still does not have a hammer despite its growing popularity. We present LeanHammer, the first end-to-end domain-general hammer for Lean, built on a novel neural premise selection system for a hammer in dependent type theory. Unlike existing Lean premise selectors, our approach dynamically adapts to user-specific contexts and combines with symbolic proof search and reconstruction to create a practical hammer. With comprehensive evaluations, we show that our premise selector enables LeanHammer to solve 21\% more goals relative to existing premise selectors, and generalize well to diverse domains. Our work bridges the gap between neural retrieval and symbolic reasoning, making formal verification more accessible to researchers and practitioners.

Authors:Jie Peng, Hongwei Yang, Jing Zhao, Hengji Dong, Hui He, Weizhe Zhang, Haoyu He
Title: Circumventing Backdoor Space via Weight Symmetry
Abstract:
Deep neural networks are vulnerable to backdoor attacks, where malicious behaviors are implanted during training. While existing defenses can effectively purify compromised models, they typically require labeled data or specific training procedures, making them difficult to apply beyond supervised learning settings. Notably, recent studies have shown successful backdoor attacks across various learning paradigms, highlighting a critical security concern. To address this gap, we propose Two-stage Symmetry Connectivity (TSC), a novel backdoor purification defense that operates independently of data format and requires only a small fraction of clean samples. Through theoretical analysis, we prove that by leveraging permutation invariance in neural networks and quadratic mode connectivity, TSC amplifies the loss on poisoned samples while maintaining bounded clean accuracy. Experiments demonstrate that TSC achieves robust performance comparable to state-of-the-art methods in supervised learning scenarios. Furthermore, TSC generalizes to self-supervised learning frameworks, such as SimCLR and CLIP, maintaining its strong defense capabilities. Our code is available at https://github.com/JiePeng104/TSC.

Authors:Vahid Azizi, Fatemeh Koochaki
Title: LlamaRec-LKG-RAG: A Single-Pass, Learnable Knowledge Graph-RAG Framework for LLM-Based Ranking
Abstract:
Recent advances in Large Language Models (LLMs) have driven their adoption in recommender systems through Retrieval-Augmented Generation (RAG) frameworks. However, existing RAG approaches predominantly rely on flat, similarity-based retrieval that fails to leverage the rich relational structure inherent in user-item interactions. We introduce LlamaRec-LKG-RAG, a novel single-pass, end-to-end trainable framework that integrates personalized knowledge graph context into LLM-based recommendation ranking. Our approach extends the LlamaRec architecture by incorporating a lightweight user preference module that dynamically identifies salient relation paths within a heterogeneous knowledge graph constructed from user behavior and item metadata. These personalized subgraphs are seamlessly integrated into prompts for a fine-tuned Llama-2 model, enabling efficient and interpretable recommendations through a unified inference step. Comprehensive experiments on ML-100K and Amazon Beauty datasets demonstrate consistent and significant improvements over LlamaRec across key ranking metrics (MRR, NDCG, Recall). LlamaRec-LKG-RAG demonstrates the critical value of structured reasoning in LLM-based recommendations and establishes a foundation for scalable, knowledge-aware personalization in next-generation recommender systems. Code is available at~\href{https://github.com/VahidAz/LlamaRec-LKG-RAG}{repository}.

Authors:Alexander Kolpakov, Igor Rivin
Title: Fast Geometric Embedding for Node Influence Maximization
Abstract:
Computing classical centrality measures such as betweenness and closeness is computationally expensive on large-scale graphs. In this work, we introduce an efficient force layout algorithm that embeds a graph into a low-dimensional space, where the radial distance from the origin serves as a proxy for various centrality measures. We evaluate our method on multiple graph families and demonstrate strong correlations with degree, PageRank, and paths-based centralities. As an application, it turns out that the proposed embedding allows to find high-influence nodes in a network, and provides a fast and scalable alternative to the standard greedy algorithm.

Authors:Janghyeon Yun, Sang-goo Lee
Title: SEED: Enhancing Text-to-SQL Performance and Practical Usability Through Automatic Evidence Generation
Abstract:
Text-to-SQL enables non-experts to retrieve data from databases by converting natural language queries into SQL. However, state-of-the-art text-to-SQL studies rely on the BIRD dataset, which assumes that evidence is provided along with questions. Although BIRD facilitates research advancements, it assumes that users have expertise and domain knowledge, contradicting the fundamental goal of text-to-SQL. In addition, human-generated evidence in BIRD contains defects, including missing or erroneous evidence, which affects model performance. To address this issue, we propose SEED (System for Evidence Extraction and Domain knowledge generation), an approach that automatically generates evidence to improve performance and practical usability in real-world scenarios. SEED systematically analyzes database schema, description files, and values to extract relevant information. We evaluated SEED on BIRD and Spider, demonstrating that it significantly improves SQL generation accuracy in the no-evidence scenario, and in some cases, even outperforms the setting where BIRD evidence is provided. Our results highlight that SEED-generated evidence not only bridges the gap between research and real-world deployment but also improves the adaptability and robustness of text-to-SQL models. Our code is available at https://github.com/felix01189/SEED

Authors:Changsheng Gao, Wei Zhou, Guosheng Lin, Weisi Lin
Title: Compressed Feature Quality Assessment: Dataset and Baselines
Abstract:
The widespread deployment of large models in resource-constrained environments has underscored the need for efficient transmission of intermediate feature representations. In this context, feature coding, which compresses features into compact bitstreams, becomes a critical component for scenarios involving feature transmission, storage, and reuse. However, this compression process inevitably introduces semantic degradation that is difficult to quantify with traditional metrics. To address this, we formalize the research problem of Compressed Feature Quality Assessment (CFQA), aiming to evaluate the semantic fidelity of compressed features. To advance CFQA research, we propose the first benchmark dataset, comprising 300 original features and 12000 compressed features derived from three vision tasks and four feature codecs. Task-specific performance degradation is provided as true semantic distortion for evaluating CFQA metrics. We systematically assess three widely used metrics -- MSE, cosine similarity, and Centered Kernel Alignment (CKA) -- in terms of their ability to capture semantic degradation. Our findings demonstrate the representativeness of the proposed dataset while underscoring the need for more sophisticated metrics capable of measuring semantic distortion in compressed features. This work advances the field by establishing a foundational benchmark and providing a critical resource for the community to explore CFQA. To foster further research, we release the dataset and all associated source code at https://github.com/chansongoal/Compressed-Feature-Quality-Assessment.

Authors:Philip R. Liu, Sparsh Bansal, Jimmy Dinh, Aditya Pawar, Ramani Satishkumar, Shail Desai, Neeraj Gupta, Xin Wang, Shu Hu
Title: MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models
Abstract:
The integration of deep learning-based glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages and improve clinical reporting efficiency. However, applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge, which can potentially reduce clinical accuracy. Although recent approaches combining imaging models with LLM reasoning have improved reporting, they typically rely on a single generalist agent, restricting their capacity to emulate the diverse and complex reasoning found in multidisciplinary medical teams. To address these limitations, we propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents, all coordinated by a director agent. This design enhances reliability, reduces hallucination risk, and enables interactive diagnostic reporting through an interface tailored for clinical review and educational use. Code available at https://github.com/Purdue-M2/MedChat.

Authors:Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, Shuicheng Yan
Title: G-Memory: Tracing Hierarchical Memory for Multi-Agent Systems
Abstract:
Large language model (LLM)-powered multi-agent systems (MAS) have demonstrated cognitive and execution capabilities that far exceed those of single LLM agents, yet their capacity for self-evolution remains hampered by underdeveloped memory architectures. Upon close inspection, we are alarmed to discover that prevailing MAS memory mechanisms (1) are overly simplistic, completely disregarding the nuanced inter-agent collaboration trajectories, and (2) lack cross-trial and agent-specific customization, in stark contrast to the expressive memory developed for single agents. To bridge this gap, we introduce G-Memory, a hierarchical, agentic memory system for MAS inspired by organizational memory theory, which manages the lengthy MAS interaction via a three-tier graph hierarchy: insight, query, and interaction graphs. Upon receiving a new user query, G-Memory performs bi-directional memory traversal to retrieve both $\textit{high-level, generalizable insights}$ that enable the system to leverage cross-trial knowledge, and $\textit{fine-grained, condensed interaction trajectories}$ that compactly encode prior collaboration experiences. Upon task execution, the entire hierarchy evolves by assimilating new collaborative trajectories, nurturing the progressive evolution of agent teams. Extensive experiments across five benchmarks, three LLM backbones, and three popular MAS frameworks demonstrate that G-Memory improves success rates in embodied action and accuracy in knowledge QA by up to $20.89\%$ and $10.12\%$, respectively, without any modifications to the original frameworks. Our codes are available at https://github.com/bingreeky/GMemory.

Authors:Xin-Cheng Wen, Yijun Yang, Cuiyun Gao, Yang Xiao, Deheng Ye
Title: Boosting Vulnerability Detection of LLMs via Curriculum Preference Optimization with Synthetic Reasoning Data
Abstract:
Large language models (LLMs) demonstrate considerable proficiency in numerous coding-related tasks; however, their capabilities in detecting software vulnerabilities remain limited. This limitation primarily stems from two factors: (1) the absence of reasoning data related to vulnerabilities, which hinders the models' ability to capture underlying vulnerability patterns; and (2) their focus on learning semantic representations rather than the reason behind them, thus failing to recognize semantically similar vulnerability samples. Furthermore, the development of LLMs specialized in vulnerability detection is challenging, particularly in environments characterized by the scarcity of high-quality datasets. In this paper, we propose a novel framework ReVD that excels at mining vulnerability patterns through reasoning data synthesizing and vulnerability-specific preference optimization. Specifically, we construct forward and backward reasoning processes for vulnerability and corresponding fixed code, ensuring the synthesis of high-quality reasoning data. Moreover, we design the triplet supervised fine-tuning followed by curriculum online preference optimization for enabling ReVD to better understand vulnerability patterns. The extensive experiments conducted on PrimeVul and SVEN datasets demonstrate that ReVD sets new state-of-the-art for LLM-based software vulnerability detection, e.g., 12.24\%-22.77\% improvement in the accuracy. The source code and data are available at https://github.com/Xin-Cheng-Wen/PO4Vul.

Authors:Bruno Moreira Coimbra, Marco Mambelli
Title: Addressing tokens dynamic generation, propagation, storage and renewal to secure the GlideinWMS pilot based jobs and system
Abstract:
GlideinWMS has been one of the first middleware in the WLCG community to transition from X.509 to support also tokens. The first step was to get from the prototype in 2019 to using tokens in production in 2022. This paper will present the challenges introduced by the wider adoption of tokens and the evolution plans for securing the pilot infrastructure of GlideinWMS and supporting the new requirements. In the last couple of years, the GlideinWMS team supported the migration of experiments and resources to tokens. Inadequate support in the current infrastructure, more stringent requirements, and the higher spatial and temporal granularity forced GlideinWMS to revisit once more how credentials are generated, used, and propagated. The new credential modules have been designed to be used in multiple systems (GlideinWMS, HEPCloud) and use a model where credentials have type, purpose, and different flows. Credentials are dynamically generated in order to customize the duration and limit the scope to the targeted resource. This allows to enforce the least privilege principle. Finally, we also considered adding credential storage, renewal, and invalidation mechanisms within the GlideinWMS infrastructure to better serve the experiments' needs.

Authors:Jiaying He, Yitong Lin, Jiahe Chen, Honghui Xu, Jianwei Zheng
Title: C3S3: Complementary Competition and Contrastive Selection for Semi-Supervised Medical Image Segmentation
Abstract:
For the immanent challenge of insufficiently annotated samples in the medical field, semi-supervised medical image segmentation (SSMIS) offers a promising solution. Despite achieving impressive results in delineating primary target areas, most current methodologies struggle to precisely capture the subtle details of boundaries. This deficiency often leads to significant diagnostic inaccuracies. To tackle this issue, we introduce C3S3, a novel semi-supervised segmentation model that synergistically integrates complementary competition and contrastive selection. This design significantly sharpens boundary delineation and enhances overall precision. Specifically, we develop an Outcome-Driven Contrastive Learning module dedicated to refining boundary localization. Additionally, we incorporate a Dynamic Complementary Competition module that leverages two high-performing sub-networks to generate pseudo-labels, thereby further improving segmentation quality. The proposed C3S3 undergoes rigorous validation on two publicly accessible datasets, encompassing the practices of both MRI and CT scans. The results demonstrate that our method achieves superior performance compared to previous cutting-edge competitors. Especially, on the 95HD and ASD metrics, our approach achieves a notable improvement of at least 6%, highlighting the significant advancements. The code is available at https://github.com/Y-TARL/C3S3.

Authors:Chengchao Shen, Dawei Liu, Jianxin Wang
Title: Multiple Object Stitching for Unsupervised Representation Learning
Abstract:
Contrastive learning for single object centric images has achieved remarkable progress on unsupervised representation, but suffering inferior performance on the widespread images with multiple objects. In this paper, we propose a simple but effective method, Multiple Object Stitching (MOS), to refine the unsupervised representation for multi-object images. Specifically, we construct the multi-object images by stitching the single object centric ones, where the objects in the synthesized multi-object images are predetermined. Hence, compared to the existing contrastive methods, our method provides additional object correspondences between multi-object images without human annotations. In this manner, our method pays more attention to the representations of each object in multi-object image, thus providing more detailed representations for complicated downstream tasks, such as object detection and semantic segmentation. Experimental results on ImageNet, CIFAR and COCO datasets demonstrate that our proposed method achieves the leading unsupervised representation performance on both single object centric images and multi-object ones. The source code is available at https://github.com/visresearch/MultipleObjectStitching.

Authors:Weijie Guan, Haohui Wang, Jian Kang, Lihui Liu, Dawei Zhou
Title: EVINET: Towards Open-World Graph Learning via Evidential Reasoning Network
Abstract:
Graph learning has been crucial to many real-world tasks, but they are often studied with a closed-world assumption, with all possible labels of data known a priori. To enable effective graph learning in an open and noisy environment, it is critical to inform the model users when the model makes a wrong prediction to in-distribution data of a known class, i.e., misclassification detection or when the model encounters out-of-distribution from novel classes, i.e., out-of-distribution detection. This paper introduces Evidential Reasoning Network (EVINET), a framework that addresses these two challenges by integrating Beta embedding within a subjective logic framework. EVINET includes two key modules: Dissonance Reasoning for misclassification detection and Vacuity Reasoning for out-of-distribution detection. Extensive experiments demonstrate that EVINET outperforms state-of-the-art methods across multiple metrics in the tasks of in-distribution classification, misclassification detection, and out-of-distribution detection. EVINET demonstrates the necessity of uncertainty estimation and logical reasoning for misclassification detection and out-of-distribution detection and paves the way for open-world graph learning. Our code and data are available at https://github.com/SSSKJ/EviNET.

Authors:Olga Kellert, Nemika Tyagi, Muhammad Imran, Nelvin Licona-Guevara, Carlos Gómez-Rodríguez
Title: Parsing the Switch: LLM-Based UD Annotation for Complex Code-Switched and Low-Resource Languages
Abstract:
Code-switching presents a complex challenge for syntactic analysis, especially in low-resource language settings where annotated data is scarce. While recent work has explored the use of large language models (LLMs) for sequence-level tagging, few approaches systematically investigate how well these models capture syntactic structure in code-switched contexts. Moreover, existing parsers trained on monolingual treebanks often fail to generalize to multilingual and mixed-language input. To address this gap, we introduce the BiLingua Parser, an LLM-based annotation pipeline designed to produce Universal Dependencies (UD) annotations for code-switched text. First, we develop a prompt-based framework for Spanish-English and Spanish-Guaraní data, combining few-shot LLM prompting with expert review. Second, we release two annotated datasets, including the first Spanish-Guaraní UD-parsed corpus. Third, we conduct a detailed syntactic analysis of switch points across language pairs and communicative contexts. Experimental results show that BiLingua Parser achieves up to 95.29% LAS after expert revision, significantly outperforming prior baselines and multilingual parsers. These results show that LLMs, when carefully guided, can serve as practical tools for bootstrapping syntactic resources in under-resourced, code-switched environments. Data and source code are available at https://github.com/N3mika/ParsingProject

Authors:Nada Aboudeshish, Dmitry Ignatov, Radu Timofte
Title: AugmentGest: Can Random Data Cropping Augmentation Boost Gesture Recognition Performance?
Abstract:
Data augmentation is a crucial technique in deep learning, particularly for tasks with limited dataset diversity, such as skeleton-based datasets. This paper proposes a comprehensive data augmentation framework that integrates geometric transformations, random cropping, rotation, zooming and intensity-based transformations, brightness and contrast adjustments to simulate real-world variations. Random cropping ensures the preservation of spatio-temporal integrity while addressing challenges such as viewpoint bias and occlusions. The augmentation pipeline generates three augmented versions for each sample in addition to the data set sample, thus quadrupling the data set size and enriching the diversity of gesture representations. The proposed augmentation strategy is evaluated on three models: multi-stream e2eET, FPPR point cloud-based hand gesture recognition (HGR), and DD-Network. Experiments are conducted on benchmark datasets including DHG14/28, SHREC'17, and JHMDB. The e2eET model, recognized as the state-of-the-art for hand gesture recognition on DHG14/28 and SHREC'17. The FPPR-PCD model, the second-best performing model on SHREC'17, excels in point cloud-based gesture recognition. DD-Net, a lightweight and efficient architecture for skeleton-based action recognition, is evaluated on SHREC'17 and the Human Motion Data Base (JHMDB). The results underline the effectiveness and versatility of the proposed augmentation strategy, significantly improving model generalization and robustness across diverse datasets and architectures. This framework not only establishes state-of-the-art results on all three evaluated models but also offers a scalable solution to advance HGR and action recognition applications in real-world scenarios. The framework is available at https://github.com/NadaAbodeshish/Random-Cropping-augmentation-HGR

Authors:Tianci Bu, Chuanrui Wang, Hao Ma, Haoren Zheng, Xin Lu, Tailin Wu
Title: GGBall: Graph Generative Model on Poincaré Ball
Abstract:
Generating graphs with hierarchical structures remains a fundamental challenge due to the limitations of Euclidean geometry in capturing exponential complexity. Here we introduce \textbf{GGBall}, a novel hyperbolic framework for graph generation that integrates geometric inductive biases with modern generative paradigms. GGBall combines a Hyperbolic Vector-Quantized Autoencoder (HVQVAE) with a Riemannian flow matching prior defined via closed-form geodesics. This design enables flow-based priors to model complex latent distributions, while vector quantization helps preserve the curvature-aware structure of the hyperbolic space. We further develop a suite of hyperbolic GNN and Transformer layers that operate entirely within the manifold, ensuring stability and scalability. Empirically, our model reduces degree MMD by over 75\% on Community-Small and over 40\% on Ego-Small compared to state-of-the-art baselines, demonstrating an improved ability to preserve topological hierarchies. These results highlight the potential of hyperbolic geometry as a powerful foundation for the generative modeling of complex, structured, and hierarchical data domains. Our code is available at \href{https://github.com/AI4Science-WestlakeU/GGBall}{here}.

Authors:Qi Liu, Jingqing Ruan, Hao Li, Haodong Zhao, Desheng Wang, Jiansong Chen, Wan Guanglu, Xunliang Cai, Zhi Zheng, Tong Xu
Title: AMoPO: Adaptive Multi-objective Preference Optimization without Reward Models and Reference Models
Abstract:
Existing multi-objective preference alignment methods for large language models (LLMs) face limitations: (1) the inability to effectively balance various preference dimensions, and (2) reliance on auxiliary reward/reference models introduces computational complexity. To address these challenges, we propose Adaptive Multi-objective Preference Optimization (AMoPO), a novel framework that achieves dynamic balance across preference dimensions. By introducing the multi-objective optimization paradigm to use the dimension-aware generation metrics as implicit rewards, AMoPO aligns LLMs with diverse preferences without additional reward models or reference models. We introduce an adaptive weight assignment mechanism that models the generation space as a Gaussian distribution, allowing dynamic prioritization of preference dimensions. Empirical results demonstrate that AMoPO outperforms state-of-the-art baselines by 28.5%, and the experiments on 7B, 14B, and 32B models reveal the scaling ability of AMoPO. Moreover, additional analysis of multiple dimensions verifies its adaptability and effectiveness. These findings validate AMoPO's capability to achieve dimension-aware preference alignment, highlighting its superiority. Our codes and datasets are available at https://github.com/Javkonline/AMoPO.

Authors:Van Nguyen Nguyen, Christian Forster, Sindi Shkodrani, Vincent Lepetit, Bugra Tekin, Cem Keskin, Tomas Hodan
Title: GoTrack: Generic 6DoF Object Pose Refinement and Tracking
Abstract:
We introduce GoTrack, an efficient and accurate CAD-based method for 6DoF object pose refinement and tracking, which can handle diverse objects without any object-specific training. Unlike existing tracking methods that rely solely on an analysis-by-synthesis approach for model-to-frame registration, GoTrack additionally integrates frame-to-frame registration, which saves compute and stabilizes tracking. Both types of registration are realized by optical flow estimation. The model-to-frame registration is noticeably simpler than in existing methods, relying only on standard neural network blocks (a transformer is trained on top of DINOv2) and producing reliable pose confidence scores without a scoring network. For the frame-to-frame registration, which is an easier problem as consecutive video frames are typically nearly identical, we employ a light off-the-shelf optical flow model. We demonstrate that GoTrack can be seamlessly combined with existing coarse pose estimation methods to create a minimal pipeline that reaches state-of-the-art RGB-only results on standard benchmarks for 6DoF object pose estimation and tracking. Our source code and trained models are publicly available at https://github.com/facebookresearch/gotrack

Authors:Xintao Yan, Erdao Liang, Jiawei Wang, Haojie Zhu, Henry X. Liu
Title: Improving Traffic Signal Data Quality for the Waymo Open Motion Dataset
Abstract:
Datasets pertaining to autonomous vehicles (AVs) hold significant promise for a range of research fields, including artificial intelligence (AI), autonomous driving, and transportation engineering. Nonetheless, these datasets often encounter challenges related to the states of traffic signals, such as missing or inaccurate data. Such issues can compromise the reliability of the datasets and adversely affect the performance of models developed using them. This research introduces a fully automated approach designed to tackle these issues by utilizing available vehicle trajectory data alongside knowledge from the transportation domain to effectively impute and rectify traffic signal information within the Waymo Open Motion Dataset (WOMD). The proposed method is robust and flexible, capable of handling diverse intersection geometries and traffic signal configurations in real-world scenarios. Comprehensive validations have been conducted on the entire WOMD, focusing on over 360,000 relevant scenarios involving traffic signals, out of a total of 530,000 real-world driving scenarios. In the original dataset, 71.7% of traffic signal states are either missing or unknown, all of which were successfully imputed by our proposed method. Furthermore, in the absence of ground-truth signal states, the accuracy of our approach is evaluated based on the rate of red-light violations among vehicle trajectories. Results show that our method reduces the estimated red-light running rate from 15.7% in the original data to 2.9%, thereby demonstrating its efficacy in rectifying data inaccuracies. This paper significantly enhances the quality of AV datasets, contributing to the wider AI and AV research communities and benefiting various downstream applications. The code and improved traffic signal data are open-sourced at https://github.com/michigan-traffic-lab/WOMD-Traffic-Signal-Data-Improvement

Authors:Hao Tang, Chengchao Shen
Title: Learning Compact Vision Tokens for Efficient Large Multimodal Models
Abstract:
Large multimodal models (LMMs) suffer significant computational challenges due to the high cost of Large Language Models (LLMs) and the quadratic complexity of processing long vision token sequences. In this paper, we explore the spatial redundancy among vision tokens and shorten the length of vision token sequences for inference acceleration. Specifically, we propose a Spatial Token Fusion (STF) method to learn compact vision tokens for short vision token sequence, where spatial-adjacent tokens are fused into one. Meanwhile, weight-frozen vision encoder can not well adapt to the demand of extensive downstream vision-language tasks. To this end, we further introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence. Overall, we combine STF and MBTF module to balance token reduction and information preservation, thereby improving inference efficiency without sacrificing multimodal reasoning capabilities. Experimental results demonstrate that our method based on LLaVA-1.5 achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks with only $25\%$ vision tokens of baseline. The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF.

Authors:Changhong Fu, Hua Lin, Haobo Zuo, Liangliang Yao, Liguo Zhang
Title: EdgeSpotter: Multi-Scale Dense Text Spotting for Industrial Panel Monitoring
Abstract:
Text spotting for industrial panels is a key task for intelligent monitoring. However, achieving efficient and accurate text spotting for complex industrial panels remains challenging due to issues such as cross-scale localization and ambiguous boundaries in dense text regions. Moreover, most existing methods primarily focus on representing a single text shape, neglecting a comprehensive exploration of multi-scale feature information across different texts. To address these issues, this work proposes a novel multi-scale dense text spotter for edge AI-based vision system (EdgeSpotter) to achieve accurate and robust industrial panel monitoring. Specifically, a novel Transformer with efficient mixer is developed to learn the interdependencies among multi-level features, integrating multi-layer spatial and semantic cues. In addition, a new feature sampling with catmull-rom splines is designed, which explicitly encodes the shape, position, and semantic information of text, thereby alleviating missed detections and reducing recognition errors caused by multi-scale or dense text regions. Furthermore, a new benchmark dataset for industrial panel monitoring (IPM) is constructed. Extensive qualitative and quantitative evaluations on this challenging benchmark dataset validate the superior performance of the proposed method in different challenging panel monitoring tasks. Finally, practical tests based on the self-designed edge AI-based vision system demonstrate the practicality of the method. The code and demo will be available at https://github.com/vision4robotics/EdgeSpotter.

Authors:Rong-Xi Tan, Ming Chen, Ke Xue, Yao Wang, Yaoyuan Wang, Sheng Fu, Chao Qian
Title: Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings
Abstract:
The pursuit of universal black-box optimization (BBO) algorithms is a longstanding goal. However, unlike domains such as language or vision, where scaling structured data has driven generalization, progress in offline BBO remains hindered by the lack of unified representations for heterogeneous numerical spaces. Thus, existing offline BBO approaches are constrained to single-task and fixed-dimensional settings, failing to achieve cross-domain universal optimization. Recent advances in language models (LMs) offer a promising path forward: their embeddings capture latent relationships in a unifying way, enabling universal optimization across different data types possible. In this paper, we discuss multiple potential approaches, including an end-to-end learning framework in the form of next-token prediction, as well as prioritizing the learning of latent spaces with strong representational capabilities. To validate the effectiveness of these methods, we collect offline BBO tasks and data from open-source academic works for training. Experiments demonstrate the universality and effectiveness of our proposed methods. Our findings suggest that unifying language model priors and learning string embedding space can overcome traditional barriers in universal BBO, paving the way for general-purpose BBO algorithms. The code is provided at https://github.com/lamda-bbo/universal-offline-bbo.

Authors:Samir Abdaljalil, Hasan Kurban, Khalid Qaraqe, Erchin Serpedin
Title: Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models
Abstract:
Large language models (LLMs) have shown strong performance across natural language reasoning tasks, yet their reasoning processes remain brittle and difficult to interpret. Prompting techniques like Chain-of-Thought (CoT) enhance reliability by eliciting intermediate reasoning steps or aggregating multiple outputs. However, they lack mechanisms for enforcing logical structure and assessing internal coherence. We introduce Theorem-of-Thought (ToTh), a novel framework that models reasoning as collaboration among three parallel agents, each simulating a distinct mode of inference: abductive, deductive, and inductive. Each agent produces a reasoning trace, which is structured into a formal reasoning graph. To evaluate consistency, we apply Bayesian belief propagation guided by natural language inference (NLI), assigning confidence scores to each step. The most coherent graph is selected to derive the final answer. Experiments on symbolic (WebOfLies) and numerical (MultiArith) reasoning benchmarks show that ToTh consistently outperforms CoT, Self-Consistency, and CoT-Decoding across multiple LLMs, while producing interpretable and logically grounded reasoning chains. Our findings suggest a promising direction for building more robust and cognitively inspired LLM reasoning. The implementation is available at https://github.com/KurbanIntelligenceLab/theorem-of-thought.

Authors:Wenying He, Jieling Huang, Junhua Gu, Ji Zhang, Yude Bai
Title: Filling the Missings: Spatiotemporal Data Imputation by Conditional Diffusion
Abstract:
Missing data in spatiotemporal systems presents a significant challenge for modern applications, ranging from environmental monitoring to urban traffic management. The integrity of spatiotemporal data often deteriorates due to hardware malfunctions and software failures in real-world deployments. Current approaches based on machine learning and deep learning struggle to model the intricate interdependencies between spatial and temporal dimensions effectively and, more importantly, suffer from cumulative errors during the data imputation process, which propagate and amplify through iterations. To address these limitations, we propose CoFILL, a novel Conditional Diffusion Model for spatiotemporal data imputation. CoFILL builds on the inherent advantages of diffusion models to generate high-quality imputations without relying on potentially error-prone prior estimates. It incorporates an innovative dual-stream architecture that processes temporal and frequency domain features in parallel. By fusing these complementary features, CoFILL captures both rapid fluctuations and underlying patterns in the data, which enables more robust imputation. The extensive experiments reveal that CoFILL's noise prediction network successfully transforms random noise into meaningful values that align with the true data distribution. The results also show that CoFILL outperforms state-of-the-art methods in imputation accuracy. The source code is publicly available at https://github.com/joyHJL/CoFILL.

Authors:Kai Xiong, Xiao Ding, Yixin Cao, Yuxiong Yan, Li Du, Yufei Zhang, Jinglong Gao, Jiaqian Liu, Bing Qin, Ting Liu
Title: Com$^2$: A Causal-Guided Benchmark for Exploring Complex Commonsense Reasoning in Large Language Models
Abstract:
Large language models (LLMs) have mastered abundant simple and explicit commonsense knowledge through pre-training, enabling them to achieve human-like performance in simple commonsense reasoning. Nevertheless, LLMs struggle to reason with complex and implicit commonsense knowledge that is derived from simple ones (such as understanding the long-term effects of certain events), an aspect humans tend to focus on more. Existing works focus on complex tasks like math and code, while complex commonsense reasoning remains underexplored due to its uncertainty and lack of structure. To fill this gap and align with real-world concerns, we propose a benchmark Com$^2$ focusing on complex commonsense reasoning. We first incorporate causal event graphs to serve as structured complex commonsense. Then we adopt causal theory~(e.g., intervention) to modify the causal event graphs and obtain different scenarios that meet human concerns. Finally, an LLM is employed to synthesize examples with slow thinking, which is guided by the logical relationships in the modified causal graphs. Furthermore, we use detective stories to construct a more challenging subset. Experiments show that LLMs struggle in reasoning depth and breadth, while post-training and slow thinking can alleviate this. The code and data are available at https://github.com/Waste-Wood/Com2.

Authors:Dongryung Lee, Sejune Joo, Kimin Lee, Beomjoon Kim
Title: Prime the search: Using large language models for guiding geometric task and motion planning by warm-starting tree search
Abstract:
The problem of relocating a set of objects to designated areas amidst movable obstacles can be framed as a Geometric Task and Motion Planning (G-TAMP) problem, a subclass of task and motion planning (TAMP). Traditional approaches to G-TAMP have relied either on domain-independent heuristics or on learning from planning experience to guide the search, both of which typically demand significant computational resources or data. In contrast, humans often use common sense to intuitively decide which objects to manipulate in G-TAMP problems. Inspired by this, we propose leveraging Large Language Models (LLMs), which have common sense knowledge acquired from internet-scale data, to guide task planning in G-TAMP problems. To enable LLMs to perform geometric reasoning, we design a predicate-based prompt that encodes geometric information derived from a motion planning algorithm. We then query the LLM to generate a task plan, which is then used to search for a feasible set of continuous parameters. Since LLMs are prone to mistakes, instead of committing to LLM's outputs, we extend Monte Carlo Tree Search (MCTS) to a hybrid action space and use the LLM to guide the search. Unlike the previous approach that calls an LLM at every node and incurs high computational costs, we use it to warm-start the MCTS with the nodes explored in completing the LLM's task plan. On six different G-TAMP problems, we show our method outperforms previous LLM planners and pure search algorithms. Code can be found at: https://github.com/iMSquared/prime-the-search

Authors:Zheng Wang, Kai Ying, Bin Xu, Chunjiao Wang, Cong Bai
Title: From Swath to Full-Disc: Advancing Precipitation Retrieval with Multimodal Knowledge Expansion
Abstract:
Accurate near-real-time precipitation retrieval has been enhanced by satellite-based technologies. However, infrared-based algorithms have low accuracy due to weak relations with surface precipitation, whereas passive microwave and radar-based methods are more accurate but limited in range. This challenge motivates the Precipitation Retrieval Expansion (PRE) task, which aims to enable accurate, infrared-based full-disc precipitation retrievals beyond the scanning swath. We introduce Multimodal Knowledge Expansion, a two-stage pipeline with the proposed PRE-Net model. In the Swath-Distilling stage, PRE-Net transfers knowledge from a multimodal data integration model to an infrared-based model within the scanning swath via Coordinated Masking and Wavelet Enhancement (CoMWE). In the Full-Disc Adaptation stage, Self-MaskTune refines predictions across the full disc by balancing multimodal and full-disc infrared knowledge. Experiments on the introduced PRE benchmark demonstrate that PRE-Net significantly advanced precipitation retrieval performance, outperforming leading products like PERSIANN-CCS, PDIR, and IMERG. The code will be available at https://github.com/Zjut-MultimediaPlus/PRE-Net.

Authors:Leheng Sheng, Changshuo Shen, Weixiang Zhao, Junfeng Fang, Xiaohao Liu, Zhenkai Liang, Xiang Wang, An Zhang, Tat-Seng Chua
Title: AlphaSteer: Learning Refusal Steering with Principled Null-Space Constraint
Abstract:
As LLMs are increasingly deployed in real-world applications, ensuring their ability to refuse malicious prompts, especially jailbreak attacks, is essential for safe and reliable use. Recently, activation steering has emerged as an effective approach for enhancing LLM safety by adding a refusal direction vector to internal activations of LLMs during inference, which will further induce the refusal behaviors of LLMs. However, indiscriminately applying activation steering fundamentally suffers from the trade-off between safety and utility, since the same steering vector can also lead to over-refusal and degraded performance on benign prompts. Although prior efforts, such as vector calibration and conditional steering, have attempted to mitigate this trade-off, their lack of theoretical grounding limits their robustness and effectiveness. To better address the trade-off between safety and utility, we present a theoretically grounded and empirically effective activation steering method called AlphaSteer. Specifically, it considers activation steering as a learnable process with two principled learning objectives: utility preservation and safety enhancement. For utility preservation, it learns to construct a nearly zero vector for steering benign data, with the null-space constraints. For safety enhancement, it learns to construct a refusal direction vector for steering malicious data, with the help of linear regression. Experiments across multiple jailbreak attacks and utility benchmarks demonstrate the effectiveness of AlphaSteer, which significantly improves the safety of LLMs without compromising general capabilities. Our codes are available at https://github.com/AlphaLab-USTC/AlphaSteer.

Authors:Arun Sharma, Mingzhou Yang, Majid Farhadloo, Subhankar Ghosh, Bharat Jayaprakash, Shashi Shekhar
Title: Towards Physics-informed Diffusion for Anomaly Detection in Trajectories
Abstract:
Given trajectory data, a domain-specific study area, and a user-defined threshold, we aim to find anomalous trajectories indicative of possible GPS spoofing (e.g., fake trajectory). The problem is societally important to curb illegal activities in international waters, such as unauthorized fishing and illicit oil transfers. The problem is challenging due to advances in AI generated in deep fakes generation (e.g., additive noise, fake trajectories) and lack of adequate amount of labeled samples for ground-truth verification. Recent literature shows promising results for anomalous trajectory detection using generative models despite data sparsity. However, they do not consider fine-scale spatiotemporal dependencies and prior physical knowledge, resulting in higher false-positive rates. To address these limitations, we propose a physics-informed diffusion model that integrates kinematic constraints to identify trajectories that do not adhere to physical laws. Experimental results on real-world datasets in the maritime and urban domains show that the proposed framework results in higher prediction accuracy and lower estimation error rate for anomaly detection and trajectory generation methods, respectively. Our implementation is available at https://github.com/arunshar/Physics-Informed-Diffusion-Probabilistic-Model.

Authors:Mingyi Li, Michael R. Metel, Akiko Takeda
Title: Modified K-means Algorithm with Local Optimality Guarantees
Abstract:
The K-means algorithm is one of the most widely studied clustering algorithms in machine learning. While extensive research has focused on its ability to achieve a globally optimal solution, there still lacks a rigorous analysis of its local optimality guarantees. In this paper, we first present conditions under which the K-means algorithm converges to a locally optimal solution. Based on this, we propose simple modifications to the K-means algorithm which ensure local optimality in both the continuous and discrete sense, with the same computational complexity as the original K-means algorithm. As the dissimilarity measure, we consider a general Bregman divergence, which is an extension of the squared Euclidean distance often used in the K-means algorithm. Numerical experiments confirm that the K-means algorithm does not always find a locally optimal solution in practice, while our proposed methods provide improved locally optimal solutions with reduced clustering loss. Our code is available at https://github.com/lmingyi/LO-K-means.

Authors:Senqi Yang, Dongyu Zhang, Jing Ren, Ziqi Xu, Xiuzhen Zhang, Yiliao Song, Hongfei Lin, Feng Xia
Title: Cultural Bias Matters: A Cross-Cultural Benchmark Dataset and Sentiment-Enriched Model for Understanding Multimodal Metaphors
Abstract:
Metaphors are pervasive in communication, making them crucial for natural language processing (NLP). Previous research on automatic metaphor processing predominantly relies on training data consisting of English samples, which often reflect Western European or North American biases. This cultural skew can lead to an overestimation of model performance and contributions to NLP progress. However, the impact of cultural bias on metaphor processing, particularly in multimodal contexts, remains largely unexplored. To address this gap, we introduce MultiMM, a Multicultural Multimodal Metaphor dataset designed for cross-cultural studies of metaphor in Chinese and English. MultiMM consists of 8,461 text-image advertisement pairs, each accompanied by fine-grained annotations, providing a deeper understanding of multimodal metaphors beyond a single cultural domain. Additionally, we propose Sentiment-Enriched Metaphor Detection (SEMD), a baseline model that integrates sentiment embeddings to enhance metaphor comprehension across cultural backgrounds. Experimental results validate the effectiveness of SEMD on metaphor detection and sentiment analysis tasks. We hope this work increases awareness of cultural bias in NLP research and contributes to the development of fairer and more inclusive language models. Our dataset and code are available at https://github.com/DUTIR-YSQ/MultiMM.

Authors:Anastasia Koloskova, Youssef Allouah, Animesh Jha, Rachid Guerraoui, Sanmi Koyejo
Title: Certified Unlearning for Neural Networks
Abstract:
We address the problem of machine unlearning, where the goal is to remove the influence of specific training data from a model upon request, motivated by privacy concerns and regulatory requirements such as the "right to be forgotten." Unfortunately, existing methods rely on restrictive assumptions or lack formal guarantees. To this end, we propose a novel method for certified machine unlearning, leveraging the connection between unlearning and privacy amplification by stochastic post-processing. Our method uses noisy fine-tuning on the retain data, i.e., data that does not need to be removed, to ensure provable unlearning guarantees. This approach requires no assumptions about the underlying loss function, making it broadly applicable across diverse settings. We analyze the theoretical trade-offs in efficiency and accuracy and demonstrate empirically that our method not only achieves formal unlearning guarantees but also performs effectively in practice, outperforming existing baselines. Our code is available at https://github.com/stair-lab/certified-unlearning-neural-networks-icml-2025

Authors:Mellon M. Zhang, Glen Chou, Saibal Mukhopadhyay
Title: Polar Hierarchical Mamba: Towards Streaming LiDAR Object Detection with Point Clouds as Egocentric Sequences
Abstract:
Accurate and efficient object detection is essential for autonomous vehicles, where real-time perception requires low latency and high throughput. LiDAR sensors provide robust depth information, but conventional methods process full 360° scans in a single pass, introducing significant delay. Streaming approaches address this by sequentially processing partial scans in the native polar coordinate system, yet they rely on translation-invariant convolutions that are misaligned with polar geometry -- resulting in degraded performance or requiring complex distortion mitigation. Recent Mamba-based state space models (SSMs) have shown promise for LiDAR perception, but only in the full-scan setting, relying on geometric serialization and positional embeddings that are memory-intensive and ill-suited to streaming. We propose Polar Hierarchical Mamba (PHiM), a novel SSM architecture designed for polar-coordinate streaming LiDAR. PHiM uses local bidirectional Mamba blocks for intra-sector spatial encoding and a global forward Mamba for inter-sector temporal modeling, replacing convolutions and positional encodings with distortion-aware, dimensionally-decomposed operations. PHiM sets a new state-of-the-art among streaming detectors on the Waymo Open Dataset, outperforming the previous best by 10\% and matching full-scan baselines at twice the throughput. Code will be available at https://github.com/meilongzhang/Polar-Hierarchical-Mamba .

Authors:Nima Jamali, Matina Mahdizadeh Sani, Hanieh Naderi, Shohreh Kasaei
Title: KNN-Defense: Defense against 3D Adversarial Point Clouds using Nearest-Neighbor Search
Abstract:
Deep neural networks (DNNs) have demonstrated remarkable performance in analyzing 3D point cloud data. However, their vulnerability to adversarial attacks-such as point dropping, shifting, and adding-poses a critical challenge to the reliability of 3D vision systems. These attacks can compromise the semantic and structural integrity of point clouds, rendering many existing defense mechanisms ineffective. To address this issue, a defense strategy named KNN-Defense is proposed, grounded in the manifold assumption and nearest-neighbor search in feature space. Instead of reconstructing surface geometry or enforcing uniform point distributions, the method restores perturbed inputs by leveraging the semantic similarity of neighboring samples from the training set. KNN-Defense is lightweight and computationally efficient, enabling fast inference and making it suitable for real-time and practical applications. Empirical results on the ModelNet40 dataset demonstrated that KNN-Defense significantly improves robustness across various attack types. In particular, under point-dropping attacks-where many existing methods underperform due to the targeted removal of critical points-the proposed method achieves accuracy gains of 20.1%, 3.6%, 3.44%, and 7.74% on PointNet, PointNet++, DGCNN, and PCT, respectively. These findings suggest that KNN-Defense offers a scalable and effective solution for enhancing the adversarial resilience of 3D point cloud classifiers. (An open-source implementation of the method, including code and data, is available at https://github.com/nimajam41/3d-knn-defense).

Authors:Ziheng Qiao, Houquan Zhou, Zhenghua Li
Title: Mixture of Small and Large Models for Chinese Spelling Check
Abstract:
In the era of large language models (LLMs), the Chinese Spelling Check (CSC) task has seen various LLM methods developed, yet their performance remains unsatisfactory. In contrast, fine-tuned BERT-based models, relying on high-quality in-domain data, show excellent performance but suffer from edit pattern overfitting. This paper proposes a novel dynamic mixture approach that effectively combines the probability distributions of small models and LLMs during the beam search decoding phase, achieving a balanced enhancement of precise corrections from small models and the fluency of LLMs. This approach also eliminates the need for fine-tuning LLMs, saving significant time and resources, and facilitating domain adaptation. Comprehensive experiments demonstrate that our mixture approach significantly boosts error correction capabilities, achieving state-of-the-art results across multiple datasets. Our code is available at https://github.com/zhqiao-nlp/MSLLM.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: FREE: Fast and Robust Vision Language Models with Early Exits
Abstract:
In recent years, Vision-Language Models (VLMs) have shown remarkable performance improvements in Vision-Language tasks. However, their large size poses challenges for real-world applications where inference latency is a concern. To tackle this issue, we propose employing Early Exit (EE) strategies in VLMs. However, training exit classifiers in VLMs is challenging, particularly with limited labeled training data. To address this, we introduce FREE, an adversarial training approach within a GAN-based framework. Here, each exit consists of a transformer layer and a classifier. The transformer layer is adversarially trained to produce feature representations similar to the final layer, while a feature classifier serves as the discriminator. Our method focuses on performing input-adaptive inference that increases inference speed with minimal drop in performance. Experimental results demonstrate the effectiveness of our approach in enhancing accuracy and model robustness by mitigating overthinking and the phenomenon of mid-crisis that we highlight. We experimentally validate that our method speeds up the inference process by more than 1.51x while retaining comparable performance. The source code is available at https://github.com/Div290/FREE.

Authors:Armin Behnamnia, Gholamali Aminian, Alireza Aghaei, Chengchun Shi, Vincent Y. F. Tan, Hamid R. Rabiee
Title: Log-Sum-Exponential Estimator for Off-Policy Evaluation and Learning
Abstract:
Off-policy learning and evaluation leverage logged bandit feedback datasets, which contain context, action, propensity score, and feedback for each data point. These scenarios face significant challenges due to high variance and poor performance with low-quality propensity scores and heavy-tailed reward distributions. We address these issues by introducing a novel estimator based on the log-sum-exponential (LSE) operator, which outperforms traditional inverse propensity score estimators. Our LSE estimator demonstrates variance reduction and robustness under heavy-tailed conditions. For off-policy evaluation, we derive upper bounds on the estimator's bias and variance. In the off-policy learning scenario, we establish bounds on the regret -- the performance gap between our LSE estimator and the optimal policy -- assuming bounded $(1+ε)$-th moment of weighted reward. Notably, we achieve a convergence rate of $O(n^{-ε/(1+ ε)})$ for the regret bounds, where $ε\in [0,1]$ and $n$ is the size of logged bandit feedback dataset. Theoretical analysis is complemented by comprehensive empirical evaluations in both off-policy learning and evaluation scenarios, confirming the practical advantages of our approach. The code for our estimator is available at the following link: https://github.com/armin-behnamnia/lse-offpolicy-learning.

Authors:Ilya Kaufman Sirot, Omri Azencot
Title: Curvature Enhanced Data Augmentation for Regression
Abstract:
Deep learning models with a large number of parameters, often referred to as over-parameterized models, have achieved exceptional performance across various tasks. Despite concerns about overfitting, these models frequently generalize well to unseen data, thanks to effective regularization techniques, with data augmentation being among the most widely used. While data augmentation has shown great success in classification tasks using label-preserving transformations, its application in regression problems has received less attention. Recently, a novel \emph{manifold learning} approach for generating synthetic data was proposed, utilizing a first-order approximation of the data manifold. Building on this foundation, we present a theoretical framework and practical tools for approximating and sampling general data manifolds. Furthermore, we introduce the Curvature-Enhanced Manifold Sampling (CEMS) method for regression tasks. CEMS leverages a second-order representation of the data manifold to enable efficient sampling and reconstruction of new data points. Extensive evaluations across multiple datasets and comparisons with state-of-the-art methods demonstrate that CEMS delivers superior performance in both in-distribution and out-of-distribution scenarios, while introducing only minimal computational overhead. Code is available at https://github.com/azencot-group/CEMS.

Authors:Chao Yin, Hao Li, Kequan Yang, Jide Li, Pinpin Zhu, Xiaoqiang Li
Title: Stepwise Decomposition and Dual-stream Focus: A Novel Approach for Training-free Camouflaged Object Segmentation
Abstract:
While promptable segmentation (\textit{e.g.}, SAM) has shown promise for various segmentation tasks, it still requires manual visual prompts for each object to be segmented. In contrast, task-generic promptable segmentation aims to reduce the need for such detailed prompts by employing only a task-generic prompt to guide segmentation across all test samples. However, when applied to Camouflaged Object Segmentation (COS), current methods still face two critical issues: 1) \textit{\textbf{semantic ambiguity in getting instance-specific text prompts}}, which arises from insufficient discriminative cues in holistic captions, leading to foreground-background confusion; 2) \textit{\textbf{semantic discrepancy combined with spatial separation in getting instance-specific visual prompts}}, which results from global background sampling far from object boundaries with low feature correlation, causing SAM to segment irrelevant regions. To address the issues above, we propose \textbf{RDVP-MSD}, a novel training-free test-time adaptation framework that synergizes \textbf{R}egion-constrained \textbf{D}ual-stream \textbf{V}isual \textbf{P}rompting (RDVP) via \textbf{M}ultimodal \textbf{S}tepwise \textbf{D}ecomposition Chain of Thought (MSD-CoT). MSD-CoT progressively disentangles image captions to eliminate semantic ambiguity, while RDVP injects spatial constraints into visual prompting and independently samples visual prompts for foreground and background points, effectively mitigating semantic discrepancy and spatial separation. Without requiring any training or supervision, RDVP-MSD achieves a state-of-the-art segmentation result on multiple COS benchmarks and delivers a faster inference speed than previous methods, demonstrating significantly improved accuracy and efficiency. The codes will be available at \href{https://github.com/ycyinchao/RDVP-MSD}{https://github.com/ycyinchao/RDVP-MSD}

Authors:Tianjie Ju, Yujia Chen, Hao Fei, Mong-Li Lee, Wynne Hsu, Pengzhou Cheng, Zongru Wu, Zhuosheng Zhang, Gongshen Liu
Title: On the Adaptive Psychological Persuasion of Large Language Models
Abstract:
Previous work has showcased the intriguing capabilities of Large Language Models (LLMs) in instruction-following and rhetorical fluency. However, systematic exploration of their dual capabilities to autonomously persuade and resist persuasion, particularly in contexts involving psychological rhetoric, remains unexplored. In this paper, we first evaluate four commonly adopted LLMs by tasking them to alternately act as persuaders and listeners in adversarial dialogues. Empirical results show that persuader LLMs predominantly employ repetitive strategies, leading to low success rates. Then we introduce eleven comprehensive psychological persuasion strategies, finding that explicitly instructing LLMs to adopt specific strategies such as Fluency Effect and Repetition Effect significantly improves persuasion success rates. However, no ``one-size-fits-all'' strategy proves universally effective, with performance heavily dependent on contextual counterfactuals. Motivated by these observations, we propose an adaptive framework based on direct preference optimization that trains LLMs to autonomously select optimal strategies by leveraging persuasion results from strategy-specific responses as preference pairs. Experiments on three open-source LLMs confirm that the proposed adaptive psychological persuasion method effectively enables persuader LLMs to select optimal strategies, significantly enhancing their success rates while maintaining general capabilities. Our code is available at https://github.com/KalinaEine/PsychologicalPersuasion.

Authors:Walter Paci, Alessandro Panunzi, Sandro Pezzelle
Title: They want to pretend not to understand: The Limits of Current LLMs in Interpreting Implicit Content of Political Discourse
Abstract:
Implicit content plays a crucial role in political discourse, where speakers systematically employ pragmatic strategies such as implicatures and presuppositions to influence their audiences. Large Language Models (LLMs) have demonstrated strong performance in tasks requiring complex semantic and pragmatic understanding, highlighting their potential for detecting and explaining the meaning of implicit content. However, their ability to do this within political discourse remains largely underexplored. Leveraging, for the first time, the large IMPAQTS corpus, which comprises Italian political speeches with the annotation of manipulative implicit content, we propose methods to test the effectiveness of LLMs in this challenging problem. Through a multiple-choice task and an open-ended generation task, we demonstrate that all tested models struggle to interpret presuppositions and implicatures. We conclude that current LLMs lack the key pragmatic capabilities necessary for accurately interpreting highly implicit language, such as that found in political discourse. At the same time, we highlight promising trends and future directions for enhancing model performance. We release our data and code at https://github.com/WalterPaci/IMPAQTS-PID

Authors:Mohammad-Maher Nakshbandi, Ziad Sharawy, Dorian Cojocaru, Sorin Grigorescu
Title: LoopDB: A Loop Closure Dataset for Large Scale Simultaneous Localization and Mapping
Abstract:
In this study, we introduce LoopDB, which is a challenging loop closure dataset comprising over 1000 images captured across diverse environments, including parks, indoor scenes, parking spaces, as well as centered around individual objects. Each scene is represented by a sequence of five consecutive images. The dataset was collected using a high resolution camera, providing suitable imagery for benchmarking the accuracy of loop closure algorithms, typically used in simultaneous localization and mapping. As ground truth information, we provide computed rotations and translations between each consecutive images. Additional to its benchmarking goal, the dataset can be used to train and fine-tune loop closure methods based on deep neural networks. LoopDB is publicly available at https://github.com/RovisLab/LoopDB.

Authors:Nidheesh Gorthi, Kartik Thakral, Rishabh Ranjan, Richa Singh, Mayank Vatsa
Title: LitMAS: A Lightweight and Generalized Multi-Modal Anti-Spoofing Framework for Biometric Security
Abstract:
Biometric authentication systems are increasingly being deployed in critical applications, but they remain susceptible to spoofing. Since most of the research efforts focus on modality-specific anti-spoofing techniques, building a unified, resource-efficient solution across multiple biometric modalities remains a challenge. To address this, we propose LitMAS, a $\textbf{Li}$gh$\textbf{t}$ weight and generalizable $\textbf{M}$ulti-modal $\textbf{A}$nti-$\textbf{S}$poofing framework designed to detect spoofing attacks in speech, face, iris, and fingerprint-based biometric systems. At the core of LitMAS is a Modality-Aligned Concentration Loss, which enhances inter-class separability while preserving cross-modal consistency and enabling robust spoof detection across diverse biometric traits. With just 6M parameters, LitMAS surpasses state-of-the-art methods by $1.36\%$ in average EER across seven datasets, demonstrating high efficiency, strong generalizability, and suitability for edge deployment. Code and trained models are available at https://github.com/IAB-IITJ/LitMAS.

Authors:Mufhumudzi Muthivhi, Jiahao Huo, Fredrik Gustafsson, Terence L. van Zyl
Title: Improving Wildlife Out-of-Distribution Detection: Africas Big Five
Abstract:
Mitigating human-wildlife conflict seeks to resolve unwanted encounters between these parties. Computer Vision provides a solution to identifying individuals that might escalate into conflict, such as members of the Big Five African animals. However, environments often contain several varied species. The current state-of-the-art animal classification models are trained under a closed-world assumption. They almost always remain overconfident in their predictions even when presented with unknown classes. This study investigates out-of-distribution (OOD) detection of wildlife, specifically the Big Five. To this end, we select a parametric Nearest Class Mean (NCM) and a non-parametric contrastive learning approach as baselines to take advantage of pretrained and projected features from popular classification encoders. Moreover, we compare our baselines to various common OOD methods in the literature. The results show feature-based methods reflect stronger generalisation capability across varying classification thresholds. Specifically, NCM with ImageNet pre-trained features achieves a 2%, 4% and 22% improvement on AUPR-IN, AUPR-OUT and AUTC over the best OOD methods, respectively. The code can be found here https://github.com/pxpana/BIG5OOD

Authors:Qianqian Zhao, Chunle Guo, Tianyi Zhang, Junpei Zhang, Peiyang Jia, Tan Su, Wenjie Jiang, Chongyi Li
Title: A Systematic Investigation on Deep Learning-Based Omnidirectional Image and Video Super-Resolution
Abstract:
Omnidirectional image and video super-resolution is a crucial research topic in low-level vision, playing an essential role in virtual reality and augmented reality applications. Its goal is to reconstruct high-resolution images or video frames from low-resolution inputs, thereby enhancing detail preservation and enabling more accurate scene analysis and interpretation. In recent years, numerous innovative and effective approaches have been proposed, predominantly based on deep learning techniques, involving diverse network architectures, loss functions, projection strategies, and training datasets. This paper presents a systematic review of recent progress in omnidirectional image and video super-resolution, focusing on deep learning-based methods. Given that existing datasets predominantly rely on synthetic degradation and fall short in capturing real-world distortions, we introduce a new dataset, 360Insta, that comprises authentically degraded omnidirectional images and videos collected under diverse conditions, including varying lighting, motion, and exposure settings. This dataset addresses a critical gap in current omnidirectional benchmarks and enables more robust evaluation of the generalization capabilities of omnidirectional super-resolution methods. We conduct comprehensive qualitative and quantitative evaluations of existing methods on both public datasets and our proposed dataset. Furthermore, we provide a systematic overview of the current status of research and discuss promising directions for future exploration. All datasets, methods, and evaluation metrics introduced in this work are publicly available and will be regularly updated. Project page: https://github.com/nqian1/Survey-on-ODISR-and-ODVSR.

Authors:Fudong Lin, Wanrou Du, Jinchan Liu, Tarikul Milon, Shelby Meche, Wu Xu, Xiaoqi Qin, Xu Yuan
Title: Do Protein Transformers Have Biological Intelligence?
Abstract:
Deep neural networks, particularly Transformers, have been widely adopted for predicting the functional properties of proteins. In this work, we focus on exploring whether Protein Transformers can capture biological intelligence among protein sequences. To achieve our goal, we first introduce a protein function dataset, namely Protein-FN, providing over 9000 protein data with meaningful labels. Second, we devise a new Transformer architecture, namely Sequence Protein Transformers (SPT), for computationally efficient protein function predictions. Third, we develop a novel Explainable Artificial Intelligence (XAI) technique called Sequence Score, which can efficiently interpret the decision-making processes of protein models, thereby overcoming the difficulty of deciphering biological intelligence bided in Protein Transformers. Remarkably, even our smallest SPT-Tiny model, which contains only 5.4M parameters, demonstrates impressive predictive accuracy, achieving 94.3% on the Antibiotic Resistance (AR) dataset and 99.6% on the Protein-FN dataset, all accomplished by training from scratch. Besides, our Sequence Score technique helps reveal that our SPT models can discover several meaningful patterns underlying the sequence structures of protein data, with these patterns aligning closely with the domain knowledge in the biology community. We have officially released our Protein-FN dataset on Hugging Face Datasets https://huggingface.co/datasets/Protein-FN/Protein-FN. Our code is available at https://github.com/fudong03/BioIntelligence.

Authors:Yuan Yuan, Yukun Liu, Chonghua Han, Jie Feng, Yong Li
Title: Breaking Data Silos: Towards Open and Scalable Mobility Foundation Models via Generative Continual Learning
Abstract:
Foundation models have revolutionized fields such as natural language processing and computer vision by enabling general-purpose learning across diverse tasks and datasets. However, building analogous models for human mobility remains challenging due to the privacy-sensitive nature of mobility data and the resulting data silos across institutions. To bridge this gap, we propose MoveGCL, a scalable and privacy-preserving framework for training mobility foundation models via generative continual learning. Without sharing raw data, MoveGCL enables decentralized and progressive model evolution by replaying synthetic trajectories generated from a frozen teacher model, and reinforces knowledge retention through a tailored distillation strategy that mitigates catastrophic forgetting. To address the heterogeneity of mobility patterns, MoveGCL incorporates a Mixture-of-Experts Transformer with a mobility-aware expert routing mechanism, and employs a layer-wise progressive adaptation strategy to stabilize continual updates. Experiments on six real-world urban datasets demonstrate that MoveGCL achieves performance comparable to joint training and significantly outperforms federated learning baselines, while offering strong privacy protection. MoveGCL marks a crucial step toward unlocking foundation models for mobility, offering a practical blueprint for open, scalable, and privacy-preserving model development in the era of foundation models. To facilitate reproducibility and future research, we have released the code and models at https://github.com/tsinghua-fib-lab/MoveGCL.

Authors:Chunyuan Deng, Ruidi Chang, Hanjie Chen
Title: Learning Distribution-Wise Control in Representation Space for Language Models
Abstract:
Interventions in language models (LMs) are applied strategically to steer model behavior during the forward pass. Learnable interventions, also known as representation fine-tuning, aim to apply pointwise control within the concept subspace and have proven effective in altering high-level behaviors. In this work, we extend this approach to the distribution level, enabling the model to learn not only pointwise transformations but also the surrounding regions of the concept subspace. We demonstrate that these methods perform effectively in early layers, with larger standard deviations correlating strongly with improved performance. Across eight commonsense reasoning and seven arithmetic reasoning benchmarks, our distribution-wise interventions consistently outperform pointwise interventions in controllability and robustness. These results illustrate that distribution-wise interventions provide a more comprehensive method for steering model behavior and enabling finer-grained control over language models. The code is at: \href{https://github.com/chili-lab/D-Intervention}{https://github.com/chili-lab/D-Intervention}.

Authors:Zhenxin Li, Wenhao Yao, Zi Wang, Xinglong Sun, Joshua Chen, Nadine Chang, Maying Shen, Zuxuan Wu, Shiyi Lan, Jose M. Alvarez
Title: Generalized Trajectory Scoring for End-to-end Multimodal Planning
Abstract:
End-to-end multi-modal planning is a promising paradigm in autonomous driving, enabling decision-making with diverse trajectory candidates. A key component is a robust trajectory scorer capable of selecting the optimal trajectory from these candidates. While recent trajectory scorers focus on scoring either large sets of static trajectories or small sets of dynamically generated ones, both approaches face significant limitations in generalization. Static vocabularies provide effective coarse discretization but struggle to make fine-grained adaptation, while dynamic proposals offer detailed precision but fail to capture broader trajectory distributions. To overcome these challenges, we propose GTRS (Generalized Trajectory Scoring), a unified framework for end-to-end multi-modal planning that combines coarse and fine-grained trajectory evaluation. GTRS consists of three complementary innovations: (1) a diffusion-based trajectory generator that produces diverse fine-grained proposals; (2) a vocabulary generalization technique that trains a scorer on super-dense trajectory sets with dropout regularization, enabling its robust inference on smaller subsets; and (3) a sensor augmentation strategy that enhances out-of-domain generalization while incorporating refinement training for critical trajectory discrimination. As the winning solution of the Navsim v2 Challenge, GTRS demonstrates superior performance even with sub-optimal sensor inputs, approaching privileged methods that rely on ground-truth perception. Code will be available at https://github.com/NVlabs/GTRS.

Authors:Nikhita Vedula, Dushyanta Dhyani, Laleh Jalali, Boris Oreshkin, Mohsen Bayati, Shervin Malmasi
Title: Quantile Regression with Large Language Models for Price Prediction
Abstract:
Large Language Models (LLMs) have shown promise in structured prediction tasks, including regression, but existing approaches primarily focus on point estimates and lack systematic comparison across different methods. We investigate probabilistic regression using LLMs for unstructured inputs, addressing challenging text-to-distribution prediction tasks such as price estimation where both nuanced text understanding and uncertainty quantification are critical. We propose a novel quantile regression approach that enables LLMs to produce full predictive distributions, improving upon traditional point estimates. Through extensive experiments across three diverse price prediction datasets, we demonstrate that a Mistral-7B model fine-tuned with quantile heads significantly outperforms traditional approaches for both point and distributional estimations, as measured by three established metrics each for prediction accuracy and distributional calibration. Our systematic comparison of LLM approaches, model architectures, training approaches, and data scaling reveals that Mistral-7B consistently outperforms encoder architectures, embedding-based methods, and few-shot learning methods. Our experiments also reveal the effectiveness of LLM-assisted label correction in achieving human-level accuracy without systematic bias. Our curated datasets are made available at https://github.com/vnik18/llm-price-quantile-reg/ to support future research.

Authors:Minghao Zou, Qingtian Zeng, Yongping Miao, Shangkun Liu, Zilong Wang, Hantao Liu, Wei Zhou
Title: PhysLab: A Benchmark Dataset for Multi-Granularity Visual Parsing of Physics Experiments
Abstract:
Visual parsing of images and videos is critical for a wide range of real-world applications. However, progress in this field is constrained by limitations of existing datasets: (1) insufficient annotation granularity, which impedes fine-grained scene understanding and high-level reasoning; (2) limited coverage of domains, particularly a lack of datasets tailored for educational scenarios; and (3) lack of explicit procedural guidance, with minimal logical rules and insufficient representation of structured task process. To address these gaps, we introduce PhysLab, the first video dataset that captures students conducting complex physics experiments. The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns. PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks, including action recognition, object detection, HOI analysis, etc. We establish strong baselines and perform extensive evaluations to highlight key challenges in the parsing of procedural educational videos. We expect PhysLab to serve as a valuable resource for advancing fine-grained visual parsing, facilitating intelligent classroom systems, and fostering closer integration between computer vision and educational technologies. The dataset and the evaluation toolkit are publicly available at https://github.com/ZMH-SDUST/PhysLab.

Authors:Xinyu Luo, Cedar Site Bai, Bolian Li, Petros Drineas, Ruqi Zhang, Brian Bullins
Title: Stacey: Promoting Stochastic Steepest Descent via Accelerated $\ell_p$-Smooth Nonconvex Optimization
Abstract:
While popular optimization methods such as SGD, AdamW, and Lion depend on steepest descent updates in either $\ell_2$ or $\ell_\infty$ norms, there remains a critical gap in handling the non-Euclidean structure observed in modern deep networks training. In this work, we address this need by introducing a new accelerated $\ell_p$ steepest descent algorithm, called Stacey, which uses interpolated primal-dual iterate sequences to effectively navigate non-Euclidean smooth optimization tasks. In addition to providing novel theoretical guarantees for the foundations of our algorithm, we empirically compare our approach against these popular methods on tasks including image classification and language model (LLM) pretraining, demonstrating both faster convergence and higher final accuracy. We further evaluate different values of $p$ across various models and datasets, underscoring the importance and efficiency of non-Euclidean approaches over standard Euclidean methods. Code can be found at https://github.com/xinyuluo8561/Stacey .

Authors:Joseph T Colonel, Carolyn Hagler, Guiselle Wismer, Laura Curtis, Jacqueline Becker, Juan Wisnivesky, Alex Federman, Gaurav Pandey
Title: CAtCh: Cognitive Assessment through Cookie Thief
Abstract:
Several machine learning algorithms have been developed for the prediction of Alzheimer's disease and related dementia (ADRD) from spontaneous speech. However, none of these algorithms have been translated for the prediction of broader cognitive impairment (CI), which in some cases is a precursor and risk factor of ADRD. In this paper, we evaluated several speech-based open-source methods originally proposed for the prediction of ADRD, as well as methods from multimodal sentiment analysis for the task of predicting CI from patient audio recordings. Results demonstrated that multimodal methods outperformed unimodal ones for CI prediction, and that acoustics-based approaches performed better than linguistics-based ones. Specifically, interpretable acoustic features relating to affect and prosody were found to significantly outperform BERT-based linguistic features and interpretable linguistic features, respectively. All the code developed for this study is available at https://github.com/JTColonel/catch.

Authors:Jacqueline He, Howard Yen, Margaret Li, Shuyue Stella Li, Zhiyuan Zeng, Weijia Shi, Yulia Tsvetkov, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer
Title: Precise Information Control in Long-Form Text Generation
Abstract:
A central challenge in modern language models (LMs) is intrinsic hallucination: the generation of information that is plausible but unsubstantiated relative to input context. To study this problem, we propose Precise Information Control (PIC), a new task formulation that requires models to generate long-form outputs grounded in a provided set of short self-contained statements, known as verifiable claims, without adding any unsupported ones. For comprehensiveness, PIC includes a full setting that tests a model's ability to include exactly all input claims, and a partial setting that requires the model to selectively incorporate only relevant claims. We present PIC-Bench, a benchmark of eight long-form generation tasks (e.g., summarization, biography generation) adapted to the PIC setting, where LMs are supplied with well-formed, verifiable input claims. Our evaluation of a range of open and proprietary LMs on PIC-Bench reveals that, surprisingly, state-of-the-art LMs still intrinsically hallucinate in over 70% of outputs. To alleviate this lack of faithfulness, we introduce a post-training framework, using a weakly supervised preference data construction method, to train an 8B PIC-LM with stronger PIC ability--improving from 69.1% to 91.0% F1 in the full PIC setting. When integrated into end-to-end factual generation pipelines, PIC-LM improves exact match recall by 17.1% on ambiguous QA with retrieval, and factual precision by 30.5% on a birthplace verification task, underscoring the potential of precisely grounded generation.

Authors:Jacqueline He, Howard Yen, Margaret Li, Shuyue Stella Li, Zhiyuan Zeng, Weijia Shi, Yulia Tsvetkov, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer
Title: Precise Information Control in Long-Form Text Generation
Abstract:
A central challenge in language models (LMs) is faithfulness hallucination: the generation of information unsubstantiated by input context. To study this problem, we propose Precise Information Control (PIC), a new task formulation that requires models to generate long-form outputs grounded in a provided set of short self-contained statements, without adding any unsupported ones. PIC includes a full setting that tests a model's ability to include exactly all input claims, and a partial setting that requires the model to selectively incorporate only relevant claims. We present PIC-Bench, a benchmark of eight long-form generation tasks (e.g., summarization, biography generation) adapted to the PIC setting, where LMs are supplied with well-formed, verifiable input claims. Our evaluation of a range of open and proprietary LMs on PIC-Bench reveals that, surprisingly, state-of-the-art LMs still hallucinate against user-provided input in over 70% of generations. To alleviate this lack of faithfulness, we introduce a post-training framework that uses a weakly supervised preference data construction method to train an 8B PIC-LM with stronger PIC ability--improving from 69.1% to 91.0% F1 in the full PIC setting. When integrated into end-to-end factual generation pipelines, PIC-LM improves exact match recall by 17.1% on ambiguous QA with retrieval, and factual precision by 30.5% on a birthplace fact-checking task, underscoring the potential of precisely grounded generation.

Authors:Ho Yin 'Sam' Ng, Ting-Yao Hsu, Aashish Anantha Ramakrishnan, Branislav Kveton, Nedim Lipka, Franck Dernoncourt, Dongwon Lee, Tong Yu, Sungchul Kim, Ryan A. Rossi, Ting-Hao 'Kenneth' Huang
Title: LaMP-Cap: Personalized Figure Caption Generation With Multimodal Figure Profiles
Abstract:
Figure captions are crucial for helping readers understand and remember a figure's key message. Many models have been developed to generate these captions, helping authors compose better quality captions more easily. Yet, authors almost always need to revise generic AI-generated captions to match their writing style and the domain's style, highlighting the need for personalization. Despite language models' personalization (LaMP) advances, these technologies often focus on text-only settings and rarely address scenarios where both inputs and profiles are multimodal. This paper introduces LaMP-Cap, a dataset for personalized figure caption generation with multimodal figure profiles. For each target figure, LaMP-Cap provides not only the needed inputs, such as figure images, but also up to three other figures from the same document--each with its image, caption, and figure-mentioning paragraphs--as a profile to characterize the context. Experiments with four LLMs show that using profile information consistently helps generate captions closer to the original author-written ones. Ablation studies reveal that images in the profile are more helpful than figure-mentioning paragraphs, highlighting the advantage of using multimodal profiles over text-only ones.

Authors:Mihir Dharmadhikari, Kostas Alexis
Title: Semantics-aware Predictive Inspection Path Planning
Abstract:
This paper presents a novel semantics-aware inspection path planning paradigm called "Semantics-aware Predictive Planning" (SPP). Industrial environments that require the inspection of specific objects or structures (called "semantics"), such as ballast water tanks inside ships, often present structured and repetitive spatial arrangements of the semantics of interest. Motivated by this, we first contribute an algorithm that identifies spatially repeating patterns of semantics - exact or inexact - in a semantic scene graph representation and makes predictions about the evolution of the graph in the unseen parts of the environment using these patterns. Furthermore, two inspection path planning strategies, tailored to ballast water tank inspection, that exploit these predictions are proposed. To assess the performance of the novel predictive planning paradigm, both simulation and experimental evaluations are performed. First, we conduct a simulation study comparing the method against relevant state-of-the-art techniques and further present tests showing its ability to handle imperfect patterns. Second, we deploy our method onboard a collision-tolerant aerial robot operating inside the ballast tanks of two real ships. The results, both in simulation and field experiments, demonstrate significant improvement over the state-of-the-art in terms of inspection time while maintaining equal or better semantic surface coverage. A set of videos describing the different parts of the method and the field deployments is available at https://tinyurl.com/spp-videos. The code for this work is made available at https://github.com/ntnu-arl/predictive_planning_ros.

Authors:Eugenie Lai, Gerardo Vitagliano, Ziyu Zhang, Sivaprasad Sudhir, Om Chabra, Anna Zeng, Anton A. Zabreyko, Chenning Li, Ferdi Kossmann, Jialin Ding, Jun Chen, Markos Markakis, Matthew Russo, Weiyang Wang, Ziniu Wu, Michael J. Cafarella, Lei Cao, Samuel Madden, Tim Kraska
Title: KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes
Abstract:
Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.

Authors:Eugenie Lai, Gerardo Vitagliano, Ziyu Zhang, Om Chabra, Sivaprasad Sudhir, Anna Zeng, Anton A. Zabreyko, Chenning Li, Ferdi Kossmann, Jialin Ding, Jun Chen, Markos Markakis, Matthew Russo, Weiyang Wang, Ziniu Wu, Michael J. Cafarella, Lei Cao, Samuel Madden, Tim Kraska
Title: KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes
Abstract:
Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.

Authors:Zhiyuan Zhao, Juntong Ni, Shangqing Xu, Haoxin Liu, Wei Jin, B. Aditya Prakash
Title: TimeRecipe: A Time-Series Forecasting Recipe via Benchmarking Module Level Effectiveness
Abstract:
Time-series forecasting is an essential task with wide real-world applications across domains. While recent advances in deep learning have enabled time-series forecasting models with accurate predictions, there remains considerable debate over which architectures and design components, such as series decomposition or normalization, are most effective under varying conditions. Existing benchmarks primarily evaluate models at a high level, offering limited insight into why certain designs work better. To mitigate this gap, we propose TimeRecipe, a unified benchmarking framework that systematically evaluates time-series forecasting methods at the module level. TimeRecipe conducts over 10,000 experiments to assess the effectiveness of individual components across a diverse range of datasets, forecasting horizons, and task settings. Our results reveal that exhaustive exploration of the design space can yield models that outperform existing state-of-the-art methods and uncover meaningful intuitions linking specific design choices to forecasting scenarios. Furthermore, we release a practical toolkit within TimeRecipe that recommends suitable model architectures based on these empirical insights. The benchmark is available at: https://github.com/AdityaLab/TimeRecipe.

Authors:Ruizhong Qiu, Gaotang Li, Tianxin Wei, Jingrui He, Hanghang Tong
Title: Saffron-1: Safety Inference Scaling
Abstract:
Existing safety assurance research has primarily focused on training-phase alignment to instill safe behaviors into LLMs. However, recent studies have exposed these methods' susceptibility to diverse jailbreak attacks. Concurrently, inference scaling has significantly advanced LLM reasoning capabilities but remains unexplored in the context of safety assurance. Addressing this gap, our work pioneers inference scaling for robust and effective LLM safety against emerging threats. We reveal that conventional inference scaling techniques, despite their success in reasoning tasks, perform poorly in safety contexts, even falling short of basic approaches like Best-of-N Sampling. We attribute this inefficiency to a newly identified challenge, the exploration--efficiency dilemma, arising from the high computational overhead associated with frequent process reward model (PRM) evaluations. To overcome this dilemma, we propose SAFFRON, a novel inference scaling paradigm tailored explicitly for safety assurance. Central to our approach is the introduction of a multifurcation reward model (MRM) that significantly reduces the required number of reward model evaluations. To operationalize this paradigm, we further propose: (i) a partial supervision training objective for MRM, (ii) a conservative exploration constraint to prevent out-of-distribution explorations, and (iii) a Trie-based key--value caching strategy that facilitates cache sharing across sequences during tree search. Extensive experiments validate the effectiveness of our method. Additionally, we publicly release our trained multifurcation reward model (Saffron-1) and the accompanying token-level safety reward dataset (Safety4M) to accelerate future research in LLM safety. Our code, model, and data are publicly available at https://github.com/q-rz/saffron , and our project homepage is at https://q-rz.github.io/p/saffron .

Authors:Luis Pinto
Title: Unlocking Chemical Insights: Superior Molecular Representations from Intermediate Encoder Layers
Abstract:
Pretrained molecular encoders have become indispensable in computational chemistry for tasks such as property prediction and molecular generation. However, the standard practice of relying solely on final-layer embeddings for downstream tasks may discard valuable information. In this work, we challenge this convention by conducting a comprehensive layer-wise analysis of five diverse molecular encoders across 22 ADMET property prediction tasks. Our results demonstrate that embeddings from intermediate layers consistently outperform final-layer representations. Specifically, using fixed embeddings from the optimal intermediate layers improved downstream performance by an average of 5.4%, reaching gains up to 28.6%. Furthermore, finetuning up to these intermediate layers yielded even greater average improvements of 8.5%, with performance increases as high as 40.8%, achieving new state-of-the-art results on several benchmarks. Additionally, a strong positive correlation between fixed embedding performance and finetuning outcomes supports an efficient evaluate-then-finetune approach, enabling identification of optimal layers with reduced computational cost. These findings highlight the importance of exploring the full representational depth of molecular encoders to achieve substantial performance improvements and computational efficiency. The code is made publicly available at https://github.com/luispintoc/Unlocking-Chemical-Insights.

Authors:Dor Tsur, Carol Xuan Long, Claudio Mayrink Verdun, Hsiang Hsu, Chen-Fu Chen, Haim Permuter, Sajani Vithana, Flavio P. Calmon
Title: HeavyWater and SimplexWater: Watermarking Low-Entropy Text Distributions
Abstract:
Large language model (LLM) watermarks enable authentication of text provenance, curb misuse of machine-generated text, and promote trust in AI systems. Current watermarks operate by changing the next-token predictions output by an LLM. The updated (i.e., watermarked) predictions depend on random side information produced, for example, by hashing previously generated tokens. LLM watermarking is particularly challenging in low-entropy generation tasks - such as coding - where next-token predictions are near-deterministic. In this paper, we propose an optimization framework for watermark design. Our goal is to understand how to most effectively use random side information in order to maximize the likelihood of watermark detection and minimize the distortion of generated text. Our analysis informs the design of two new watermarks: HeavyWater and SimplexWater. Both watermarks are tunable, gracefully trading-off between detection accuracy and text distortion. They can also be applied to any LLM and are agnostic to side information generation. We examine the performance of HeavyWater and SimplexWater through several benchmarks, demonstrating that they can achieve high watermark detection accuracy with minimal compromise of text generation quality, particularly in the low-entropy regime. Our theoretical analysis also reveals surprising new connections between LLM watermarking and coding theory. The code implementation can be found in https://github.com/DorTsur/HeavyWater_SimplexWater

Authors:Ali Murad, Bo Hui, Wei-Shinn Ku
Title: Optimized Local Updates in Federated Learning via Reinforcement Learning
Abstract:
Federated Learning (FL) is a distributed framework for collaborative model training over large-scale distributed data, enabling higher performance while maintaining client data privacy. However, the nature of model aggregation at the centralized server can result in a performance drop in the presence of non-IID data across different clients. We remark that training a client locally on more data than necessary does not benefit the overall performance of all clients. In this paper, we devise a novel framework that leverages a Deep Reinforcement Learning (DRL) agent to select an optimized amount of data necessary to train a client model without oversharing information with the server. Starting without awareness of the client's performance, the DRL agent utilizes the change in training loss as a reward signal and learns to optimize the amount of training data necessary for improving the client's performance. Specifically, after each aggregation round, the DRL algorithm considers the local performance as the current state and outputs the optimized weights for each class, in the training data, to be used during the next round of local training. In doing so, the agent learns a policy that creates an optimized partition of the local training dataset during the FL rounds. After FL, the client utilizes the entire local training dataset to further enhance its performance on its own data distribution, mitigating the non-IID effects of aggregation. Through extensive experiments, we demonstrate that training FL clients through our algorithm results in superior performance on multiple benchmark datasets and FL frameworks. Our code is available at https://github.com/amuraddd/optimized_client_training.git.

Authors:Jiazheng Kang, Mingming Ji, Zhe Zhao, Ting Bai
Title: Memory OS of AI Agent
Abstract:
Large Language Models (LLMs) face a crucial challenge from fixed context windows and inadequate memory management, leading to a severe shortage of long-term memory capabilities and limited personalization in the interactive experience with AI agents. To overcome this challenge, we innovatively propose a Memory Operating System, i.e., MemoryOS, to achieve comprehensive and efficient memory management for AI agents. Inspired by the memory management principles in operating systems, MemoryOS designs a hierarchical storage architecture and consists of four key modules: Memory Storage, Updating, Retrieval, and Generation. Specifically, the architecture comprises three levels of storage units: short-term memory, mid-term memory, and long-term personal memory. Key operations within MemoryOS include dynamic updates between storage units: short-term to mid-term updates follow a dialogue-chain-based FIFO principle, while mid-term to long-term updates use a segmented page organization strategy. Our pioneering MemoryOS enables hierarchical memory integration and dynamic updating. Extensive experiments on the LoCoMo benchmark show an average improvement of 49.11% on F1 and 46.18% on BLEU-1 over the baselines on GPT-4o-mini, showing contextual coherence and personalized memory retention in long conversations. The implementation code is open-sourced at https://github.com/BAI-LAB/MemoryOS.

Authors:Masoud Rahimi, Reza Karbasi, Abdol-Hossein Vahabie
Title: An Open-Source Python Framework and Synthetic ECG Image Datasets for Digitization, Lead and Lead Name Detection, and Overlapping Signal Segmentation
Abstract:
We introduce an open-source Python framework for generating synthetic ECG image datasets to advance critical deep learning-based tasks in ECG analysis, including ECG digitization, lead region and lead name detection, and pixel-level waveform segmentation. Using the PTB-XL signal dataset, our proposed framework produces four open-access datasets: (1) ECG images in various lead configurations paired with time-series signals for ECG digitization, (2) ECG images annotated with YOLO-format bounding boxes for detection of lead region and lead name, (3)-(4) cropped single-lead images with segmentation masks compatible with U-Net-based models in normal and overlapping versions. In the overlapping case, waveforms from neighboring leads are superimposed onto the target lead image, while the segmentation masks remain clean. The open-source Python framework and datasets are publicly available at https://github.com/rezakarbasi/ecg-image-and-signal-dataset and https://doi.org/10.5281/zenodo.15484519, respectively.

Authors:Xiaoyu Sun, Yang Yang, Xunde Dong
Title: Enhancing Contrastive Learning-based Electrocardiogram Pretrained Model with Patient Memory Queue
Abstract:
In the field of automatic Electrocardiogram (ECG) diagnosis, due to the relatively limited amount of labeled data, how to build a robust ECG pretrained model based on unlabeled data is a key area of focus for researchers. Recent advancements in contrastive learning-based ECG pretrained models highlight the potential of exploiting the additional patient-level self-supervisory signals inherent in ECG. They are referred to as patient contrastive learning. Its rationale is that multiple physical recordings from the same patient may share commonalities, termed patient consistency, so redefining positive and negative pairs in contrastive learning as intrapatient and inter-patient samples provides more shared context to learn an effective representation. However, these methods still fail to efficiently exploit patient consistency due to the insufficient amount of intra-inter patient samples existing in a batch. Hence, we propose a contrastive learning-based ECG pretrained model enhanced by the Patient Memory Queue (PMQ), which incorporates a large patient memory queue to mitigate model degeneration that can arise from insufficient intra-inter patient samples. In order to further enhance the performance of the pretrained model, we introduce two extra data augmentation methods to provide more perspectives of positive and negative pairs for pretraining. Extensive experiments were conducted on three public datasets with three different data ratios. The experimental results show that the comprehensive performance of our method outperforms previous contrastive learning methods and exhibits greater robustness in scenarios with limited labeled data. The code is available at https://github.com/3hiuwoo/PMQ.

Authors:Junyi Liu, Stanley Kok
Title: Prediction of Bank Credit Ratings using Heterogeneous Topological Graph Neural Networks
Abstract:
Agencies such as Standard & Poor's and Moody's provide bank credit ratings that influence economic stability and decision-making by stakeholders. Accurate and timely predictions support informed decision-making, regulatory actions, and investor protection. However, a complete interbank connection graph is often unavailable due to privacy concerns, complicating the direct application of Graph Neural Networks (GNNs) for rating prediction. our research utilizes persistent homology to construct a network that captures relationships among banks and combines this with a traditional lending network to create a heterogeneous network that integrates information from both sources, leading to improved predictions. Experiments on a global, real-world dataset validate the effectiveness of HTGNN. This research has implications for investors and regulatory bodies in enhancing proactive risk mitigation and the implementation of effective market interventions.The code can be find at https://github.com/Liu-Jun-Yi/HTGNN.

Authors:Muhammad Sohail Danish, Muhammad Akhtar Munir, Syed Roshaan Ali Shah, Muhammad Haris Khan, Rao Muhammad Anwer, Jorma Laaksonen, Fahad Shahbaz Khan, Salman Khan
Title: TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation
Abstract:
Modern Earth observation (EO) increasingly leverages deep learning to harness the scale and diversity of satellite imagery across sensors and regions. While recent foundation models have demonstrated promising generalization across EO tasks, many remain limited by the scale, geographical coverage, and spectral diversity of their training data, factors critical for learning globally transferable representations. In this work, we introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery, combined with large spatial tiles and land-cover aware sampling to enrich spatial and semantic coverage. By treating sensing modalities as natural augmentations in our self-supervised approach, we unify radar and optical inputs via modality-specific patch embeddings and adaptive cross-attention fusion. Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism that incorporates class-frequency-aware regularization to address long-tailed distributions in land cover.TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench. Our code and pretrained models are publicly available at: https://github.com/mbzuai-oryx/TerraFM .

Authors:Yuping He, Yifei Huang, Guo Chen, Lidong Lu, Baoqi Pei, Jilan Xu, Tong Lu, Yoichi Sato
Title: Bridging Perspectives: A Survey on Cross-view Collaborative Intelligence with Egocentric-Exocentric Vision
Abstract:
Perceiving the world from both egocentric (first-person) and exocentric (third-person) perspectives is fundamental to human cognition, enabling rich and complementary understanding of dynamic environments. In recent years, allowing the machines to leverage the synergistic potential of these dual perspectives has emerged as a compelling research direction in video understanding. In this survey, we provide a comprehensive review of video understanding from both exocentric and egocentric viewpoints. We begin by highlighting the practical applications of integrating egocentric and exocentric techniques, envisioning their potential collaboration across domains. We then identify key research tasks to realize these applications. Next, we systematically organize and review recent advancements into three main research directions: (1) leveraging egocentric data to enhance exocentric understanding, (2) utilizing exocentric data to improve egocentric analysis, and (3) joint learning frameworks that unify both perspectives. For each direction, we analyze a diverse set of tasks and relevant works. Additionally, we discuss benchmark datasets that support research in both perspectives, evaluating their scope, diversity, and applicability. Finally, we discuss limitations in current works and propose promising future research directions. By synthesizing insights from both perspectives, our goal is to inspire advancements in video understanding and artificial intelligence, bringing machines closer to perceiving the world in a human-like manner. A GitHub repo of related works can be found at https://github.com/ayiyayi/Awesome-Egocentric-and-Exocentric-Vision.

Authors:Jingyu Xiao, Ming Wang, Man Ho Lam, Yuxuan Wan, Junliang Liu, Yintong Huo, Michael R. Lyu
Title: DesignBench: A Comprehensive Benchmark for MLLM-based Front-end Code Generation
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in automated front-end engineering, e.g., generating UI code from visual designs. However, existing front-end UI code generation benchmarks have the following limitations: (1) While framework-based development becomes predominant in modern front-end programming, current benchmarks fail to incorporate mainstream development frameworks. (2) Existing evaluations focus solely on the UI code generation task, whereas practical UI development involves several iterations, including refining editing, and repairing issues. (3) Current benchmarks employ unidimensional evaluation, lacking investigation into influencing factors like task difficulty, input context variations, and in-depth code-level analysis. To bridge these gaps, we introduce DesignBench, a multi-framework, multi-task evaluation benchmark for assessing MLLMs' capabilities in automated front-end engineering. DesignBench encompasses three widely-used UI frameworks (React, Vue, and Angular) alongside vanilla HTML/CSS, and evaluates on three essential front-end tasks (generation, edit, and repair) in real-world development workflows. DesignBench contains 900 webpage samples spanning over 11 topics, 9 edit types, and 6 issue categories, enabling detailed analysis of MLLM performance across multiple dimensions. Our systematic evaluation reveals critical insights into MLLMs' framework-specific limitations, task-related bottlenecks, and performance variations under different conditions, providing guidance for future research in automated front-end development. Our code and data are available at https://github.com/WebPAI/DesignBench.

Authors:Akram Zaytar, Caleb Robinson, Girmaw Abebe Tadesse, Tammy Glazer, Gilles Hacheme, Anthony Ortiz, Rahul M Dodhia, Juan M Lavista Ferres
Title: Optimizing Cloud-to-GPU Throughput for Deep Learning With Earth Observation Data
Abstract:
Training deep learning models on petabyte-scale Earth observation (EO) data requires separating compute resources from data storage. However, standard PyTorch data loaders cannot keep modern GPUs utilized when streaming GeoTIFF files directly from cloud storage. In this work, we benchmark GeoTIFF loading throughput from both cloud object storage and local SSD, systematically testing different loader configurations and data parameters. We focus on tile-aligned reads and worker thread pools, using Bayesian optimization to find optimal settings for each storage type. Our optimized configurations increase remote data loading throughput by 20x and local throughput by 4x compared to default settings. On three public EO benchmarks, models trained with optimized remote loading achieve the same accuracy as local training within identical time budgets. We improve validation IoU by 6-15% and maintain 85-95% GPU utilization versus 0-30% with standard configurations. Code is publicly available at https://github.com/microsoft/pytorch-cloud-geotiff-optimization

Authors:Christian Fruhwirth-Reisinger, Dušan Malić, Wei Lin, David Schinagl, Samuel Schulter, Horst Possegger
Title: STSBench: A Spatio-temporal Scenario Benchmark for Multi-modal Large Language Models in Autonomous Driving
Abstract:
We introduce STSBench, a scenario-based framework to benchmark the holistic understanding of vision-language models (VLMs) for autonomous driving. The framework automatically mines pre-defined traffic scenarios from any dataset using ground-truth annotations, provides an intuitive user interface for efficient human verification, and generates multiple-choice questions for model evaluation. Applied to the NuScenes dataset, we present STSnu, the first benchmark that evaluates the spatio-temporal reasoning capabilities of VLMs based on comprehensive 3D perception. Existing benchmarks typically target off-the-shelf or fine-tuned VLMs for images or videos from a single viewpoint and focus on semantic tasks such as object recognition, dense captioning, risk assessment, or scene understanding. In contrast, STSnu evaluates driving expert VLMs for end-to-end driving, operating on videos from multi-view cameras or LiDAR. It specifically assesses their ability to reason about both ego-vehicle actions and complex interactions among traffic participants, a crucial capability for autonomous vehicles. The benchmark features 43 diverse scenarios spanning multiple views and frames, resulting in 971 human-verified multiple-choice questions. A thorough evaluation uncovers critical shortcomings in existing models' ability to reason about fundamental traffic dynamics in complex environments. These findings highlight the urgent need for architectural advances that explicitly model spatio-temporal reasoning. By addressing a core gap in spatio-temporal evaluation, STSBench enables the development of more robust and explainable VLMs for autonomous driving.

Authors:Hengzhi Li, Brendon Jiang, Alexander Naehu, Regan Song, Justin Zhang, Megan Tjandrasuwita, Chanakya Ekbote, Steven-Shine Chen, Adithya Balachandran, Wei Dai, Rebecca Chang, Paul Pu Liang
Title: PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts
Abstract:
Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined problem definitions. In contrast to conventional reasoning benchmarks consisting of tasks with clear instructions, puzzlehunts require models to discover the underlying problem structure from multimodal evidence and iterative reasoning, mirroring real-world domains such as scientific discovery, exploratory data analysis, or investigative problem-solving. Despite recent progress in foundation models, their performance on such open-ended settings remains largely untested. In this paper, we introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning. Each puzzle is annotated with the final solution, detailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. To demonstrate the value of our reasoning annotations, we show that fine-tuning a small model on reasoning traces improves stepwise reasoning from 4% to 11%, while training on final answers alone degrades performance to near zero. Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning. We release PuzzleWorld at https://github.com/MIT-MI/PuzzleWorld to support future work on building more general, open-ended, and creative reasoning systems.

Authors:Dimitrios Proios, Alban Bornet, Anthony Yazdani, Jose F Rodrigues, Douglas Teodoro
Title: ICU-TSB: A Benchmark for Temporal Patient Representation Learning for Unsupervised Stratification into Patient Cohorts
Abstract:
Patient stratification identifying clinically meaningful subgroups is essential for advancing personalized medicine through improved diagnostics and treatment strategies. Electronic health records (EHRs), particularly those from intensive care units (ICUs), contain rich temporal clinical data that can be leveraged for this purpose. In this work, we introduce ICU-TSB (Temporal Stratification Benchmark), the first comprehensive benchmark for evaluating patient stratification based on temporal patient representation learning using three publicly available ICU EHR datasets. A key contribution of our benchmark is a novel hierarchical evaluation framework utilizing disease taxonomies to measure the alignment of discovered clusters with clinically validated disease groupings. In our experiments with ICU-TSB, we compared statistical methods and several recurrent neural networks, including LSTM and GRU, for their ability to generate effective patient representations for subsequent clustering of patient trajectories. Our results demonstrate that temporal representation learning can rediscover clinically meaningful patient cohorts; nevertheless, it remains a challenging task, with v-measuring varying from up to 0.46 at the top level of the taxonomy to up to 0.40 at the lowest level. To further enhance the practical utility of our findings, we also evaluate multiple strategies for assigning interpretable labels to the identified clusters. The experiments and benchmark are fully reproducible and available at https://github.com/ds4dh/CBMS2025stratification.

Authors:Jinyu Yang, Cheng Yang, Shanyuan Cui, Zeyuan Guo, Liangwei Yang, Muhan Zhang, Zhiqiang Zhang, Chuan Shi
Title: Masked Language Models are Good Heterogeneous Graph Generalizers
Abstract:
Heterogeneous graph neural networks (HGNNs) excel at capturing structural and semantic information in heterogeneous graphs (HGs), while struggling to generalize across domains and tasks. With the rapid advancement of large language models (LLMs), a recent study explored the integration of HGNNs with LLMs for generalizable heterogeneous graph learning. However, this approach typically encodes structural information as HG tokens using HGNNs, and disparities in embedding spaces between HGNNs and LLMs have been shown to bias the LLM's comprehension of HGs. Moreover, since these HG tokens are often derived from node-level tasks, the model's ability to generalize across tasks remains limited. To this end, we propose a simple yet effective Masked Language Modeling-based method, called MLM4HG. MLM4HG introduces metapath-based textual sequences instead of HG tokens to extract structural and semantic information inherent in HGs, and designs customized textual templates to unify different graph tasks into a coherent cloze-style 'mask' token prediction paradigm. Specifically,MLM4HG first converts HGs from various domains to texts based on metapaths, and subsequently combines them with the unified task texts to form a HG-based corpus. Moreover, the corpus is fed into a pretrained LM for fine-tuning with a constrained target vocabulary, enabling the fine-tuned LM to generalize to unseen target HGs. Extensive cross-domain and multi-task experiments on four real-world datasets demonstrate the superior generalization performance of MLM4HG over state-of-the-art methods in both few-shot and zero-shot scenarios. Our code is available at https://github.com/BUPT-GAMMA/MLM4HG.

Authors:Wenyuan Li, Shunlin Liang, Yuxiang Zhang, Liqin Liu, Keyan Chen, Yongzhe Chen, Han Ma, Jianglei Xu, Yichuan Ma, Shikang Guan, Zhenwei Shi
Title: Fine-grained Hierarchical Crop Type Classification from Integrated Hyperspectral EnMAP Data and Multispectral Sentinel-2 Time Series: A Large-scale Dataset and Dual-stream Transformer Method
Abstract:
Fine-grained crop type classification serves as the fundamental basis for large-scale crop mapping and plays a vital role in ensuring food security. It requires simultaneous capture of both phenological dynamics (obtained from multi-temporal satellite data like Sentinel-2) and subtle spectral variations (demanding nanometer-scale spectral resolution from hyperspectral imagery). Research combining these two modalities remains scarce currently due to challenges in hyperspectral data acquisition and crop types annotation costs. To address these issues, we construct a hierarchical hyperspectral crop dataset (H2Crop) by integrating 30m-resolution EnMAP hyperspectral data with Sentinel-2 time series. With over one million annotated field parcels organized in a four-tier crop taxonomy, H2Crop establishes a vital benchmark for fine-grained agricultural crop classification and hyperspectral image processing. We propose a dual-stream Transformer architecture that synergistically processes these modalities. It coordinates two specialized pathways: a spectral-spatial Transformer extracts fine-grained signatures from hyperspectral EnMAP data, while a temporal Swin Transformer extracts crop growth patterns from Sentinel-2 time series. The designed hierarchical classification head with hierarchical fusion then simultaneously delivers multi-level crop type classification across all taxonomic tiers. Experiments demonstrate that adding hyperspectral EnMAP data to Sentinel-2 time series yields a 4.2% average F1-scores improvement (peaking at 6.3%). Extensive comparisons also confirm our method's higher accuracy over existing deep learning approaches for crop type classification and the consistent benefits of hyperspectral data across varying temporal windows and crop change scenarios. Codes and dataset are available at https://github.com/flyakon/H2Crop.

Authors:Haowei Wang, Rupeng Zhang, Junjie Wang, Mingyang Li, Yuekai Huang, Dandan Wang, Qing Wang
Title: Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems
Abstract:
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.

Authors:David Wan, Han Wang, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Title: CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Abstract:
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.

Authors:Xudong Zhang, Renato Cordeiro de Amorim
Title: Scalable unsupervised feature selection via weight stability
Abstract:
Unsupervised feature selection is critical for improving clustering performance in high-dimensional data, where irrelevant features can obscure meaningful structure. In this work, we introduce the Minkowski weighted $k$-means++, a novel initialisation strategy for the Minkowski Weighted $k$-means. Our initialisation selects centroids probabilistically using feature relevance estimates derived from the data itself. Building on this, we propose two new feature selection algorithms, FS-MWK++, which aggregates feature weights across a range of Minkowski exponents to identify stable and informative features, and SFS-MWK++, a scalable variant based on subsampling. We support our approach with a theoretical guarantee under mild assumptions and extensive experiments showing that our methods consistently outperform existing alternatives. Our software can be found at https://github.com/xzhang4-ops1/FSMWK.

Authors:Cheng-Long Wang, Qi Li, Zihang Xiang, Yinzhi Cao, Di Wang
Title: Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Unlearning Completeness
Abstract:
Growing concerns over data privacy and security highlight the importance of machine unlearning--removing specific data influences from trained models without full retraining. Techniques like Membership Inference Attacks (MIAs) are widely used to externally assess successful unlearning. However, existing methods face two key limitations: (1) maximizing MIA effectiveness (e.g., via online attacks) requires prohibitive computational resources, often exceeding retraining costs; (2) MIAs, designed for binary inclusion tests, struggle to capture granular changes in approximate unlearning. To address these challenges, we propose the Interpolated Approximate Measurement (IAM), a framework natively designed for unlearning inference. IAM quantifies sample-level unlearning completeness by interpolating the model's generalization-fitting behavior gap on queried samples. IAM achieves strong performance in binary inclusion tests for exact unlearning and high correlation for approximate unlearning--scalable to LLMs using just one pre-trained shadow model. We theoretically analyze how IAM's scoring mechanism maintains performance efficiently. We then apply IAM to recent approximate unlearning algorithms, revealing general risks of both over-unlearning and under-unlearning, underscoring the need for stronger safeguards in approximate unlearning systems. The code is available at https://github.com/Happy2Git/Unlearning_Inference_IAM.

Authors:Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, Robert Tjarko Lange
Title: Text-to-LoRA: Instant Transformer Adaption
Abstract:
While Foundation Models provide a general tool for rapid content creation, they regularly require task-specific adaptation. Traditionally, this exercise involves careful curation of datasets and repeated fine-tuning of the underlying model. Fine-tuning techniques enable practitioners to adapt foundation models for many new applications but require expensive and lengthy training while being notably sensitive to hyperparameter choices. To overcome these limitations, we introduce Text-to-LoRA (T2L), a model capable of adapting large language models (LLMs) on the fly solely based on a natural language description of the target task. T2L is a hypernetwork trained to construct LoRAs in a single inexpensive forward pass. After training T2L on a suite of 9 pre-trained LoRA adapters (GSM8K, Arc, etc.), we show that the ad-hoc reconstructed LoRA instances match the performance of task-specific adapters across the corresponding test sets. Furthermore, T2L can compress hundreds of LoRA instances and zero-shot generalize to entirely unseen tasks. This approach provides a significant step towards democratizing the specialization of foundation models and enables language-based adaptation with minimal compute requirements. Our code is available at https://github.com/SakanaAI/text-to-lora

Authors:Felix Koulischer, Florian Handke, Johannes Deleu, Thomas Demeester, Luca Ambrogioni
Title: Feedback Guidance of Diffusion Models
Abstract:
While Classifier-Free Guidance (CFG) has become standard for improving sample fidelity in conditional diffusion models, it can harm diversity and induce memorization by applying constant guidance regardless of whether a particular sample needs correction. We propose FeedBack Guidance (FBG), which uses a state-dependent coefficient to self-regulate guidance amounts based on need. Our approach is derived from first principles by assuming the learned conditional distribution is linearly corrupted by the unconditional distribution, contrasting with CFG's implicit multiplicative assumption. Our scheme relies on feedback of its own predictions about the conditional signal informativeness to adapt guidance dynamically during inference, challenging the view of guidance as a fixed hyperparameter. The approach is benchmarked on ImageNet512x512, where it significantly outperforms Classifier-Free Guidance and is competitive to Limited Interval Guidance (LIG) while benefitting from a strong mathematical framework. On Text-To-Image generation, we demonstrate that, as anticipated, our approach automatically applies higher guidance scales for complex prompts than for simpler ones and that it can be easily combined with existing guidance schemes such as CFG or LIG.

Authors:Felix Koulischer, Florian Handke, Johannes Deleu, Thomas Demeester, Luca Ambrogioni
Title: Feedback Guidance of Diffusion Models
Abstract:
While Classifier-Free Guidance (CFG) has become standard for improving sample fidelity in conditional diffusion models, it can harm diversity and induce memorization by applying constant guidance regardless of whether a particular sample needs correction. We propose FeedBack Guidance (FBG), which uses a state-dependent coefficient to self-regulate guidance amounts based on need. Our approach is derived from first principles by assuming the learned conditional distribution is linearly corrupted by the unconditional distribution, contrasting with CFG's implicit multiplicative assumption. Our scheme relies on feedback of its own predictions about the conditional signal informativeness to adapt guidance dynamically during inference, challenging the view of guidance as a fixed hyperparameter. The approach is benchmarked on ImageNet512x512, where it significantly outperforms Classifier-Free Guidance and is competitive to Limited Interval Guidance (LIG) while benefitting from a strong mathematical framework. On Text-To-Image generation, we demonstrate that, as anticipated, our approach automatically applies higher guidance scales for complex prompts than for simpler ones and that it can be easily combined with existing guidance schemes such as CFG or LIG.

Authors:Julio Silva-Rodríguez, Leo Fillioux, Paul-Henry Cournède, Maria Vakalopoulou, Stergios Christodoulidis, Ismail Ben Ayed, Jose Dolz
Title: Full Conformal Adaptation of Medical Vision-Language Models
Abstract:
Vision-language models (VLMs) pre-trained at large scale have shown unprecedented transferability capabilities and are being progressively integrated into medical image analysis. Although its discriminative potential has been widely explored, its reliability aspect remains overlooked. This work investigates their behavior under the increasingly popular split conformal prediction (SCP) framework, which theoretically guarantees a given error level on output sets by leveraging a labeled calibration set. However, the zero-shot performance of VLMs is inherently limited, and common practice involves few-shot transfer learning pipelines, which cannot absorb the rigid exchangeability assumptions of SCP. To alleviate this issue, we propose full conformal adaptation, a novel setting for jointly adapting and conformalizing pre-trained foundation models, which operates transductively over each test data point using a few-shot adaptation set. Moreover, we complement this framework with SS-Text, a novel training-free linear probe solver for VLMs that alleviates the computational cost of such a transductive approach. We provide comprehensive experiments using 3 different modality-specialized medical VLMs and 9 adaptation tasks. Our framework requires exactly the same data as SCP, and provides consistent relative improvements of up to 27% on set efficiency while maintaining the same coverage guarantees.

Authors:Maor Ashkenazi, Ofir Brenner, Tal Furman Shohet, Eran Treister
Title: Zero-Shot Detection of LLM-Generated Code via Approximated Task Conditioning
Abstract:
Detecting Large Language Model (LLM)-generated code is a growing challenge with implications for security, intellectual property, and academic integrity. We investigate the role of conditional probability distributions in improving zero-shot LLM-generated code detection, when considering both the code and the corresponding task prompt that generated it. Our key insight is that when evaluating the probability distribution of code tokens using an LLM, there is little difference between LLM-generated and human-written code. However, conditioning on the task reveals notable differences. This contrasts with natural language text, where differences exist even in the unconditional distributions. Leveraging this, we propose a novel zero-shot detection approach that approximates the original task used to generate a given code snippet and then evaluates token-level entropy under the approximated task conditioning (ATC). We further provide a mathematical intuition, contextualizing our method relative to previous approaches. ATC requires neither access to the generator LLM nor the original task prompts, making it practical for real-world applications. To the best of our knowledge, it achieves state-of-the-art results across benchmarks and generalizes across programming languages, including Python, CPP, and Java. Our findings highlight the importance of task-level conditioning for LLM-generated code detection. The supplementary materials and code are available at https://github.com/maorash/ATC, including the dataset gathering implementation, to foster further research in this area.

Authors:Taoran Yue, Xiaojin Lu, Jiaxi Cai, Yuanping Chen, Shibing Chu
Title: SDS-Net: Shallow-Deep Synergism-detection Network for infrared small target detection
Abstract:
Current CNN-based infrared small target detection(IRSTD) methods generally overlook the heterogeneity between shallow and deep features, leading to inefficient collaboration between shallow fine grained structural information and deep high-level semantic representations. Additionally, the dependency relationships and fusion mechanisms across different feature hierarchies lack systematic modeling, which fails to fully exploit the complementarity of multilevel features. These limitations hinder IRSTD performance while incurring substantial computational costs. To address these challenges, this paper proposes a shallow-deep synergistic detection network (SDS-Net) that efficiently models multilevel feature representations to increase both the detection accuracy and computational efficiency in IRSTD tasks. SDS-Net introduces a dual-branch architecture that separately models the structural characteristics and semantic properties of features, effectively preserving shallow spatial details while capturing deep semantic representations, thereby achieving high-precision detection with significantly improved inference speed. Furthermore, the network incorporates an adaptive feature fusion module to dynamically model cross-layer feature correlations, enhancing overall feature collaboration and representation capability. Comprehensive experiments on three public datasets (NUAA-SIRST, NUDT-SIRST, and IRSTD-1K) demonstrate that SDS-Net outperforms state-of-the-art IRSTD methods while maintaining low computational complexity and high inference efficiency, showing superior detection performance and broad application prospects. Our code will be made public at https://github.com/PhysiLearn/SDS-Net.

Authors:Joscha Diehl, Rasheed Ibraheem, Leonard Schmitz, Yue Wu
Title: Tensor-to-Tensor Models with Fast Iterated Sum Features
Abstract:
Data in the form of images or higher-order tensors is ubiquitous in modern deep learning applications. Owing to their inherent high dimensionality, the need for subquadratic layers processing such data is even more pressing than for sequence data. We propose a novel tensor-to-tensor layer with linear cost in the input size, utilizing the mathematical gadget of ``corner trees'' from the field of permutation counting. In particular, for order-two tensors, we provide an image-to-image layer that can be plugged into image processing pipelines. On the one hand, our method can be seen as a higher-order generalization of state-space models. On the other hand, it is based on a multiparameter generalization of the signature of iterated integrals (or sums). The proposed tensor-to-tensor concept is used to build a neural network layer called the Fast Iterated Sums (FIS) layer which integrates seamlessly with other layer types. We demonstrate the usability of the FIS layer with both classification and anomaly detection tasks. By replacing some layers of a smaller ResNet architecture with FIS, a similar accuracy (with a difference of only 0.1\%) was achieved in comparison to a larger ResNet while reducing the number of trainable parameters and multi-add operations. The FIS layer was also used to build an anomaly detection model that achieved an average AUROC of 97.3\% on the texture images of the popular MVTec AD dataset. The processing and modelling codes are publicly available at https://github.com/diehlj/fast-iterated-sums.

Authors:Yuhao Sun, Jiacheng Zhang, Zesheng Ye, Chaowei Xiao, Feng Liu
Title: Sample-Specific Noise Injection For Diffusion-Based Adversarial Purification
Abstract:
Diffusion-based purification (DBP) methods aim to remove adversarial noise from the input sample by first injecting Gaussian noise through a forward diffusion process, and then recovering the clean example through a reverse generative process. In the above process, how much Gaussian noise is injected to the input sample is key to the success of DBP methods, which is controlled by a constant noise level $t^*$ for all samples in existing methods. In this paper, we discover that an optimal $t^*$ for each sample indeed could be different. Intuitively, the cleaner a sample is, the less the noise it should be injected, and vice versa. Motivated by this finding, we propose a new framework, called Sample-specific Score-aware Noise Injection (SSNI). Specifically, SSNI uses a pre-trained score network to estimate how much a data point deviates from the clean data distribution (i.e., score norms). Then, based on the magnitude of score norms, SSNI applies a reweighting function to adaptively adjust $t^*$ for each sample, achieving sample-specific noise injections. Empirically, incorporating our framework with existing DBP methods results in a notable improvement in both accuracy and robustness on CIFAR-10 and ImageNet-1K, highlighting the necessity to allocate distinct noise levels to different samples in DBP methods. Our code is available at: https://github.com/tmlr-group/SSNI.

Authors:Lorenzo Mur-Labadia, Maria Santos-Villafranca, Jesus Bermudez-Cameo, Alejandro Perez-Yus, Ruben Martinez-Cantin, Jose J. Guerrero
Title: O-MaMa: Learning Object Mask Matching between Egocentric and Exocentric Views
Abstract:
Understanding the world from multiple perspectives is essential for intelligent systems operating together, where segmenting common objects across different views remains an open problem. We introduce a new approach that re-defines cross-image segmentation by treating it as a mask matching task. Our method consists of: (1) A Mask-Context Encoder that pools dense DINOv2 semantic features to obtain discriminative object-level representations from FastSAM mask candidates, (2) an Ego$\leftrightarrow$Exo Cross-Attention that fuses multi-perspective observations, (3) a Mask Matching contrastive loss that aligns cross-view features in a shared latent space, and (4) a Hard Negative Adjacent Mining strategy to encourage the model to better differentiate between nearby objects. O-MaMa achieves the state of the art in the Ego-Exo4D Correspondences benchmark, obtaining relative gains of +22% and +76% in the Ego2Exo and Exo2Ego IoU against the official challenge baselines, and a +13% and +6% compared with the SOTA with 1% of the training parameters.

Authors:Shilong Tao, Zhe Feng, Haonan Sun, Zhanxing Zhu, Yunhuai Liu
Title: Unisoma: A Unified Transformer-based Solver for Multi-Solid Systems
Abstract:
Multi-solid systems are foundational to a wide range of real-world applications, yet modeling their complex interactions remains challenging. Existing deep learning methods predominantly rely on implicit modeling, where the factors influencing solid deformation are not explicitly represented but are instead indirectly learned. However, as the number of solids increases, these methods struggle to accurately capture intricate physical interactions. In this paper, we introduce a novel explicit modeling paradigm that incorporates factors influencing solid deformation through structured modules. Specifically, we present Unisoma, a unified and flexible Transformer-based model capable of handling variable numbers of solids. Unisoma directly captures physical interactions using contact modules and adaptive interaction allocation mechanism, and learns the deformation through a triplet relationship. Compared to implicit modeling techniques, explicit modeling is more well-suited for multi-solid systems with diverse coupling patterns, as it enables detailed treatment of each solid while preventing information blending and confusion. Experimentally, Unisoma achieves consistent state-of-the-art performance across seven well-established datasets and two complex multi-solid tasks. Code is avaiable at https://github.com/therontau0054/Unisoma.

Authors:Zeqi Zhou, Fang Wu, Shayan Talaei, Haokai Zhao, Cheng Meixin, Tinson Xu, Amin Saberi, Yejin Choi
Title: When to Trust Context: Self-Reflective Debates for Context Reliability
Abstract:
Large language models frequently encounter conflicts between their parametric knowledge and contextual input, often resulting in factual inconsistencies or hallucinations. We propose Self-Reflective Debate for Contextual Reliability (SR-DCR), a lightweight framework that integrates token-level self-confidence with an asymmetric multi-agent debate to adjudicate such conflicts. A critic, deprived of context, challenges a defender who argues from the given passage; a judge model evaluates the debate and determines the context's reliability. The final answer is selected by combining the verdict with model confidence. Experiments on the ClashEval benchmark demonstrate that SR-DCR consistently enhances robustness to misleading context while maintaining accuracy on trustworthy inputs, outperforming both classical debate and confidence-only baselines with minimal computational overhead. The code is available at https://github.com/smiles724/Self-Reflective-Debates.

Authors:Yu Li, Lehui Li, Zhihao Wu, Qingmin Liao, Jianye Hao, Kun Shao, Fengli Xu, Yong Li
Title: AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search
Abstract:
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains. However, designing high-performing agentic systems remains challenging. Existing agent search methods suffer from three major limitations: (1) an emphasis on optimizing agentic workflows while under-utilizing proven human-designed components such as memory, planning, and tool use; (2) high evaluation costs, as each newly generated agent must be fully evaluated on benchmarks; and (3) inefficient search in large search space. In this work, we introduce a comprehensive framework to address these challenges. First, We propose a hierarchical search space that jointly models agentic workflow and composable functional components, enabling richer agentic system designs. Building on this structured design space, we introduce a predictive value model that estimates agent performance given agentic system and task description, allowing for efficient, low-cost evaluation during the search process. Finally, we present a hierarchical Monte Carlo Tree Search (MCTS) strategy informed by uncertainty to guide the search. Experiments on seven benchmarks, covering embodied, math, web, tool, and game, show that our method achieves an average performance gain of 8.34\% over state-of-the-art baselines and exhibits faster search progress with steeper improvement trajectories. Code repo is available at https://github.com/Ericccc02/AgentSwift.

Authors:Kaiyuan Chen, Zhengjie Hu, Shaolin Zhang, Yuanqing Xia, Wannian Liang, Shuo Wang
Title: Enhanced Trust Region Sequential Convex Optimization for Multi-Drone Thermal Screening Trajectory Planning in Urban Environments
Abstract:
The rapid detection of abnormal body temperatures in urban populations is essential for managing public health risks, especially during outbreaks of infectious diseases. Multi-drone thermal screening systems offer promising solutions for fast, large-scale, and non-intrusive human temperature monitoring. However, trajectory planning for multiple drones in complex urban environments poses significant challenges, including collision avoidance, coverage efficiency, and constrained flight environments. In this study, we propose an enhanced trust region sequential convex optimization (TR-SCO) algorithm for optimal trajectory planning of multiple drones performing thermal screening tasks. Our improved algorithm integrates a refined convex optimization formulation within a trust region framework, effectively balancing trajectory smoothness, obstacle avoidance, altitude constraints, and maximum screening coverage. Simulation results demonstrate that our approach significantly improves trajectory optimality and computational efficiency compared to conventional convex optimization methods. This research provides critical insights and practical contributions toward deploying efficient multi-drone systems for real-time thermal screening in urban areas. For reader who are interested in our research, we release our source code at https://github.com/Cherry0302/Enhanced-TR-SCO.

Authors:Haoke Zhang, Xiaobo Liang, Cunxiang Wang, Juntao Li, Min Zhang
Title: Unlocking Recursive Thinking of LLMs: Alignment via Refinement
Abstract:
The OpenAI o1-series models have demonstrated that leveraging long-form Chain of Thought (CoT) can substantially enhance performance. However, the recursive thinking capabilities of Large Language Models (LLMs) remain limited, particularly in the absence of expert-curated data for distillation. In this paper, we propose \textbf{AvR}: \textbf{Alignment via Refinement}, a novel method aimed at unlocking the potential of LLMs for recursive reasoning through long-form CoT. AvR introduces a refinement process that integrates criticism and improvement actions, guided by differentiable learning techniques to optimize \textbf{refinement-aware rewards}. As a result, the synthesized multi-round data can be organized as a long refinement thought, further enabling test-time scaling. Experimental results show that AvR significantly outperforms conventional preference optimization methods. Notably, with only 3k synthetic samples, our method boosts the performance of the LLaMA-3-8B-Instruct model by over 20\% in win rate on AlpacaEval 2.0. Our code is available at Github (https://github.com/Banner-Z/AvR.git).

Authors:Motoki Omura, Kazuki Ota, Takayuki Osa, Yusuke Mukuta, Tatsuya Harada
Title: Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning
Abstract:
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality. The code for this study is available at https://github.com/motokiomura/annealed-q-learning.

Authors:Tianjun Yao, Haoxuan Li, Yongqiang Chen, Tongliang Liu, Le Song, Eric Xing, Zhiqiang Shen
Title: Pruning Spurious Subgraphs for Graph Out-of-Distribution Generalization
Abstract:
Graph Neural Networks (GNNs) often encounter significant performance degradation under distribution shifts between training and test data, hindering their applicability in real-world scenarios. Recent studies have proposed various methods to address the out-of-distribution generalization challenge, with many methods in the graph domain focusing on directly identifying an invariant subgraph that is predictive of the target label. However, we argue that identifying the edges from the invariant subgraph directly is challenging and error-prone, especially when some spurious edges exhibit strong correlations with the targets. In this paper, we propose PrunE, the first pruning-based graph OOD method that eliminates spurious edges to improve OOD generalizability. By pruning spurious edges, PrunE retains the invariant subgraph more comprehensively, which is critical for OOD generalization. Specifically, PrunE employs two regularization terms to prune spurious edges: 1) graph size constraint to exclude uninformative spurious edges, and 2) $ε$-probability alignment to further suppress the occurrence of spurious edges. Through theoretical analysis and extensive experiments, we show that PrunE achieves superior OOD performance and outperforms previous state-of-the-art methods significantly. Codes are available at: \href{https://github.com/tianyao-aka/PrunE-GraphOOD}{https://github.com/tianyao-aka/PrunE-GraphOOD}.

Authors:Jana Straková, Milan Straka
Title: NameTag 3: A Tool and a Service for Multilingual/Multitagset NER
Abstract:
We introduce NameTag 3, an open-source tool and cloud-based web service for multilingual, multidataset, and multitagset named entity recognition (NER), supporting both flat and nested entities. NameTag 3 achieves state-of-the-art results on 21 test datasets in 15 languages and remains competitive on the rest, even against larger models. It is available as a command-line tool and as a cloud-based service, enabling use without local installation. NameTag 3 web service currently provides flat NER for 17 languages, trained on 21 corpora and three NE tagsets, all powered by a single 355M-parameter fine-tuned model; and nested NER for Czech, powered by a 126M fine-tuned model. The source code is licensed under open-source MPL 2.0, while the models are distributed under non-commercial CC BY-NC-SA 4.0. Documentation is available at https://ufal.mff.cuni.cz/nametag, source code at https://github.com/ufal/nametag3, and trained models via https://lindat.cz. The REST service and the web application can be found at https://lindat.mff.cuni.cz/services/nametag/. A demonstration video is available at https://www.youtube.com/watch?v=-gaGnP0IV8A.

Authors:Xinjie Zhang, Wenxuan Wang, Qin Jin
Title: IntentionESC: An Intention-Centered Framework for Enhancing Emotional Support in Dialogue Systems
Abstract:
In emotional support conversations, unclear intentions can lead supporters to employ inappropriate strategies, inadvertently imposing their expectations or solutions on the seeker. Clearly defined intentions are essential for guiding both the supporter's motivations and the overall emotional support process. In this paper, we propose the Intention-centered Emotional Support Conversation (IntentionESC) framework, which defines the possible intentions of supporters in emotional support conversations, identifies key emotional state aspects for inferring these intentions, and maps them to appropriate support strategies. While Large Language Models (LLMs) excel in text generating, they fundamentally operate as probabilistic models trained on extensive datasets, lacking a true understanding of human thought processes and intentions. To address this limitation, we introduce the Intention Centric Chain-of-Thought (ICECoT) mechanism. ICECoT enables LLMs to mimic human reasoning by analyzing emotional states, inferring intentions, and selecting suitable support strategies, thereby generating more effective emotional support responses. To train the model with ICECoT and integrate expert knowledge, we design an automated annotation pipeline that produces high-quality training data. Furthermore, we develop a comprehensive evaluation scheme to assess emotional support efficacy and conduct extensive experiments to validate our framework. Our data and code are available at https://github.com/43zxj/IntentionESC_ICECoT.

Authors:Yixuan Zhu, Haolin Wang, Shilin Ma, Wenliang Zhao, Yansong Tang, Lei Chen, Jie Zhou
Title: FADE: Frequency-Aware Diffusion Model Factorization for Video Editing
Abstract:
Recent advancements in diffusion frameworks have significantly enhanced video editing, achieving high fidelity and strong alignment with textual prompts. However, conventional approaches using image diffusion models fall short in handling video dynamics, particularly for challenging temporal edits like motion adjustments. While current video diffusion models produce high-quality results, adapting them for efficient editing remains difficult due to the heavy computational demands that prevent the direct application of previous image editing techniques. To overcome these limitations, we introduce FADE, a training-free yet highly effective video editing approach that fully leverages the inherent priors from pre-trained video diffusion models via frequency-aware factorization. Rather than simply using these models, we first analyze the attention patterns within the video model to reveal how video priors are distributed across different components. Building on these insights, we propose a factorization strategy to optimize each component's specialized role. Furthermore, we devise spectrum-guided modulation to refine the sampling trajectory with frequency domain cues, preventing information leakage and supporting efficient, versatile edits while preserving the basic spatial and temporal structure. Extensive experiments on real-world videos demonstrate that our method consistently delivers high-quality, realistic and temporally coherent editing results both qualitatively and quantitatively. Code is available at https://github.com/EternalEvan/FADE .

Authors:Jie Cao, Tianwei Lin, Hongyang He, Rolan Yan, Wenqiao Zhang, Juncheng Li, Dongping Zhang, Siliang Tang, Yueting Zhuang
Title: MoA: Heterogeneous Mixture of Adapters for Parameter-Efficient Fine-Tuning of Large Language Models
Abstract:
Recent studies integrate Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) to further enhance the performance of parameter-efficient fine-tuning (PEFT) methods in Large Language Model (LLM) applications. Existing methods employ \emph{homogeneous} MoE-LoRA architectures composed of LoRA experts with either similar or identical structures and capacities. However, these approaches often suffer from representation collapse and expert load imbalance, which negatively impact the potential of LLMs. To address these challenges, we propose a \emph{heterogeneous} \textbf{Mixture-of-Adapters (MoA)} approach. This method dynamically integrates PEFT adapter experts with diverse structures, leveraging their complementary representational capabilities to foster expert specialization, thereby enhancing the effective transfer of pre-trained knowledge to downstream tasks. MoA supports two variants: \textbf{(i)} \textit{Soft MoA} achieves fine-grained integration by performing a weighted fusion of all expert outputs; \textbf{(ii)} \textit{Sparse MoA} activates adapter experts sparsely based on their contribution, achieving this with negligible performance degradation. Experimental results demonstrate that heterogeneous MoA outperforms homogeneous MoE-LoRA methods in both performance and parameter efficiency. Our project is available at https://github.com/DCDmllm/MoA.

Authors:Xiaofei Xu, Xiuzhen Zhang, Ke Deng
Title: Generating Grounded Responses to Counter Misinformation via Learning Efficient Fine-Grained Critiques
Abstract:
Fake news and misinformation poses a significant threat to society, making efficient mitigation essential. However, manual fact-checking is costly and lacks scalability. Large Language Models (LLMs) offer promise in automating counter-response generation to mitigate misinformation, but a critical challenge lies in their tendency to hallucinate non-factual information. Existing models mainly rely on LLM self-feedback to reduce hallucination, but this approach is computationally expensive. In this paper, we propose MisMitiFact, Misinformation Mitigation grounded in Facts, an efficient framework for generating fact-grounded counter-responses at scale. MisMitiFact generates simple critique feedback to refine LLM outputs, ensuring responses are grounded in evidence. We develop lightweight, fine-grained critique models trained on data sourced from readily available fact-checking sites to identify and correct errors in key elements such as numerals, entities, and topics in LLM generations. Experiments show that MisMitiFact generates counter-responses of comparable quality to LLMs' self-feedback while using significantly smaller critique models. Importantly, it achieves ~5x increase in feedback generation throughput, making it highly suitable for cost-effective, large-scale misinformation mitigation. Code and LLM prompt templates are at https://github.com/xxfwin/MisMitiFact.

Authors:Xin Zhang, Dongdong Meng, Sheng Li
Title: Query Nearby: Offset-Adjusted Mask2Former enhances small-organ segmentation
Abstract:
Medical segmentation plays an important role in clinical applications like radiation therapy and surgical guidance, but acquiring clinically acceptable results is difficult. In recent years, progress has been witnessed with the success of utilizing transformer-like models, such as combining the attention mechanism with CNN. In particular, transformer-based segmentation models can extract global information more effectively, compensating for the drawbacks of CNN modules that focus on local features. However, utilizing transformer architecture is not easy, because training transformer-based models can be resource-demanding. Moreover, due to the distinct characteristics in the medical field, especially when encountering mid-sized and small organs with compact regions, their results often seem unsatisfactory. For example, using ViT to segment medical images directly only gives a DSC of less than 50\%, which is far lower than the clinically acceptable score of 80\%. In this paper, we used Mask2Former with deformable attention to reduce computation and proposed offset adjustment strategies to encourage sampling points within the same organs during attention weights computation, thereby integrating compact foreground information better. Additionally, we utilized the 4th feature map in Mask2Former to provide a coarse location of organs, and employed an FCN-based auxiliary head to help train Mask2Former more quickly using Dice loss. We show that our model achieves SOTA (State-of-the-Art) performance on the HaNSeg and SegRap2023 datasets, especially on mid-sized and small organs.Our code is available at link https://github.com/earis/Offsetadjustment\_Background-location\_Decoder\_Mask2former.

Authors:Adrien Petralia, Paul Boniol, Philippe Charpentier, Themis Palpanas
Title: Few Labels are all you need: A Weakly Supervised Framework for Appliance Localization in Smart-Meter Series
Abstract:
Improving smart grid system management is crucial in the fight against climate change, and enabling consumers to play an active role in this effort is a significant challenge for electricity suppliers. In this regard, millions of smart meters have been deployed worldwide in the last decade, recording the main electricity power consumed in individual households. This data produces valuable information that can help them reduce their electricity footprint; nevertheless, the collected signal aggregates the consumption of the different appliances running simultaneously in the house, making it difficult to apprehend. Non-Intrusive Load Monitoring (NILM) refers to the challenge of estimating the power consumption, pattern, or on/off state activation of individual appliances using the main smart meter signal. Recent methods proposed to tackle this task are based on a fully supervised deep-learning approach that requires both the aggregate signal and the ground truth of individual appliance power. However, such labels are expensive to collect and extremely scarce in practice, as they require conducting intrusive surveys in households to monitor each appliance. In this paper, we introduce CamAL, a weakly supervised approach for appliance pattern localization that only requires information on the presence of an appliance in a household to be trained. CamAL merges an ensemble of deep-learning classifiers combined with an explainable classification method to be able to localize appliance patterns. Our experimental evaluation, conducted on 4 real-world datasets, demonstrates that CamAL significantly outperforms existing weakly supervised baselines and that current SotA fully supervised NILM approaches require significantly more labels to reach CamAL performances. The source of our experiments is available at: https://github.com/adrienpetralia/CamAL. This paper appeared in ICDE 2025.

Authors:Yiheng Li, Yang Yang, Zichang Tan, Huan Liu, Weihua Chen, Xu Zhou, Zhen Lei
Title: Unleashing the Potential of Consistency Learning for Detecting and Grounding Multi-Modal Media Manipulation
Abstract:
To tackle the threat of fake news, the task of detecting and grounding multi-modal media manipulation DGM4 has received increasing attention. However, most state-of-the-art methods fail to explore the fine-grained consistency within local content, usually resulting in an inadequate perception of detailed forgery and unreliable results. In this paper, we propose a novel approach named Contextual-Semantic Consistency Learning (CSCL) to enhance the fine-grained perception ability of forgery for DGM4. Two branches for image and text modalities are established, each of which contains two cascaded decoders, i.e., Contextual Consistency Decoder (CCD) and Semantic Consistency Decoder (SCD), to capture within-modality contextual consistency and across-modality semantic consistency, respectively. Both CCD and SCD adhere to the same criteria for capturing fine-grained forgery details. To be specific, each module first constructs consistency features by leveraging additional supervision from the heterogeneous information of each token pair. Then, the forgery-aware reasoning or aggregating is adopted to deeply seek forgery cues based on the consistency features. Extensive experiments on DGM4 datasets prove that CSCL achieves new state-of-the-art performance, especially for the results of grounding manipulated content. Codes and weights are avaliable at https://github.com/liyih/CSCL.

Authors:Junpeng Lin, Tian Lan, Bo Zhang, Ke Lin, Dandan Miao, Huiru He, Jiantao Ye, Chen Zhang, Yan-fu Li
Title: Wavelet-based Disentangled Adaptive Normalization for Non-stationary Times Series Forecasting
Abstract:
Forecasting non-stationary time series is a challenging task because their statistical properties often change over time, making it hard for deep models to generalize well. Instance-level normalization techniques can help address shifts in temporal distribution. However, most existing methods overlook the multi-component nature of time series, where different components exhibit distinct non-stationary behaviors. In this paper, we propose Wavelet-based Disentangled Adaptive Normalization (WDAN), a model-agnostic framework designed to address non-stationarity in time series forecasting. WDAN uses discrete wavelet transforms to break down the input into low-frequency trends and high-frequency fluctuations. It then applies tailored normalization strategies to each part. For trend components that exhibit strong non-stationarity, we apply first-order differencing to extract stable features used for predicting normalization parameters. Extensive experiments on multiple benchmarks demonstrate that WDAN consistently improves forecasting accuracy across various backbone model. Code is available at this repository: https://github.com/MonBG/WDAN.

Authors:Yuqian Fu, Runze Wang, Yanwei Fu, Danda Pani Paudel, Luc Van Gool
Title: Cross-View Multi-Modal Segmentation @ Ego-Exo4D Challenges 2025
Abstract:
In this report, we present a cross-view multi-modal object segmentation approach for the object correspondence task in the Ego-Exo4D Correspondence Challenges 2025. Given object queries from one perspective (e.g., ego view), the goal is to predict the corresponding object masks in another perspective (e.g., exo view). To tackle this task, we propose a multimodal condition fusion module that enhances object localization by leveraging both visual masks and textual descriptions as segmentation conditions. Furthermore, to address the visual domain gap between ego and exo views, we introduce a cross-view object alignment module that enforces object-level consistency across perspectives, thereby improving the model's robustness to viewpoint changes. Our proposed method ranked second on the leaderboard of the large-scale Ego-Exo4D object correspondence benchmark. Code will be made available at https://github.com/lovelyqian/ObjectRelator.

Authors:Yihan Xie, Sijing Li, Tianwei Lin, Zhuonan Wang, Chenglin Yang, Yu Zhong, Wenqiao Zhang, Haoyuan Li, Hao Jiang, Fengda Zhang, Qishan Chen, Jun Xiao, Yueting Zhuang, Beng Chin Ooi
Title: Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling
Abstract:
We present Heartcare Suite, a multimodal comprehensive framework for finegrained electrocardiogram (ECG) understanding. It comprises three key components: (i) Heartcare-220K, a high-quality, structured, and comprehensive multimodal ECG dataset covering essential tasks such as disease diagnosis, waveform morphology analysis, and rhythm interpretation. (ii) Heartcare-Bench, a systematic and multi-dimensional benchmark designed to evaluate diagnostic intelligence and guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios. and (iii) HeartcareGPT with a tailored tokenizer Bidirectional ECG Abstract Tokenization (Beat), which compresses raw multi-lead signals into semantically rich discrete tokens via duallevel vector quantization and query-guided bidirectional diffusion mechanism. Built upon Heartcare-220K, HeartcareGPT achieves strong generalization and SoTA performance across multiple clinically meaningful tasks. Extensive experiments demonstrate that Heartcare Suite is highly effective in advancing ECGspecific multimodal understanding and evaluation. Our project is available at https://github.com/DCDmllm/Heartcare-Suite .

Authors:Quansong He, Xiangde Min, Kaishen Wang, Tao He
Title: FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks
Abstract:
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.

Authors:Ziwei Zhao, Zhixing Zhang, Yuhang Liu, Zhao Zhang, Haojun Yu, Dong Wang, Liwei Wang
Title: DeformCL: Learning Deformable Centerline Representation for Vessel Extraction in 3D Medical Image
Abstract:
In the field of 3D medical imaging, accurately extracting and representing the blood vessels with curvilinear structures holds paramount importance for clinical diagnosis. Previous methods have commonly relied on discrete representation like mask, often resulting in local fractures or scattered fragments due to the inherent limitations of the per-pixel classification paradigm. In this work, we introduce DeformCL, a new continuous representation based on Deformable Centerlines, where centerline points act as nodes connected by edges that capture spatial relationships. Compared with previous representations, DeformCL offers three key advantages: natural connectivity, noise robustness, and interaction facility. We present a comprehensive training pipeline structured in a cascaded manner to fully exploit these favorable properties of DeformCL. Extensive experiments on four 3D vessel segmentation datasets demonstrate the effectiveness and superiority of our method. Furthermore, the visualization of curved planar reformation images validates the clinical significance of the proposed framework. We release the code in https://github.com/barry664/DeformCL

Authors:Yogesh Verma, Amauri H. Souza, Vikas Garg
Title: Positional Encoding meets Persistent Homology on Graphs
Abstract:
The local inductive bias of message-passing graph neural networks (GNNs) hampers their ability to exploit key structural information (e.g., connectivity and cycles). Positional encoding (PE) and Persistent Homology (PH) have emerged as two promising approaches to mitigate this issue. PE schemes endow GNNs with location-aware features, while PH methods enhance GNNs with multiresolution topological features. However, a rigorous theoretical characterization of the relative merits and shortcomings of PE and PH has remained elusive. We bridge this gap by establishing that neither paradigm is more expressive than the other, providing novel constructions where one approach fails but the other succeeds. Our insights inform the design of a novel learnable method, PiPE (Persistence-informed Positional Encoding), which is provably more expressive than both PH and PE. PiPE demonstrates strong performance across a variety of tasks (e.g., molecule property prediction, graph classification, and out-of-distribution generalization), thereby advancing the frontiers of graph representation learning. Code is available at https://github.com/Aalto-QuML/PIPE.

Authors:Ivan Rodin, Tz-Ying Wu, Kyle Min, Sharath Nittur Sridhar, Antonino Furnari, Subarna Tripathi, Giovanni Maria Farinella
Title: EASG-Bench: Video Q&A Benchmark with Egocentric Action Scene Graphs
Abstract:
We introduce EASG-Bench, a question-answering benchmark for egocentric videos where the question-answering pairs are created from spatio-temporally grounded dynamic scene graphs capturing intricate relationships among actors, actions, and objects. We propose a systematic evaluation framework and evaluate several language-only and video large language models (video-LLMs) on this benchmark. We observe a performance gap in language-only and video-LLMs, especially on questions focusing on temporal ordering, thus identifying a research gap in the area of long-context video understanding. To promote the reproducibility of our findings and facilitate further research, the benchmark and accompanying code are available at the following GitHub page: https://github.com/fpv-iplab/EASG-bench.

Authors:Wei-Cheng Lin, Chih-Ming Lien, Chen Lo, Chia-Hung Yeh
Title: GazeNLQ @ Ego4D Natural Language Queries Challenge 2025
Abstract:
This report presents our solution to the Ego4D Natural Language Queries (NLQ) Challenge at CVPR 2025. Egocentric video captures the scene from the wearer's perspective, where gaze serves as a key non-verbal communication cue that reflects visual attention and offer insights into human intention and cognition. Motivated by this, we propose a novel approach, GazeNLQ, which leverages gaze to retrieve video segments that match given natural language queries. Specifically, we introduce a contrastive learning-based pretraining strategy for gaze estimation directly from video. The estimated gaze is used to augment video representations within proposed model, thereby enhancing localization accuracy. Experimental results show that GazeNLQ achieves R1@IoU0.3 and R1@IoU0.5 scores of 27.82 and 18.68, respectively. Our code is available at https://github.com/stevenlin510/GazeNLQ.

Authors:Yupeng Hou, Jiacheng Li, Ashley Shin, Jinsung Jeon, Abhishek Santhanam, Wei Shao, Kaveh Hassani, Ning Yao, Julian McAuley
Title: Generating Long Semantic IDs in Parallel for Recommendation
Abstract:
Semantic ID-based recommendation models tokenize each item into a small number of discrete tokens that preserve specific semantics, leading to better performance, scalability, and memory efficiency. While recent models adopt a generative approach, they often suffer from inefficient inference due to the reliance on resource-intensive beam search and multiple forward passes through the neural sequence model. As a result, the length of semantic IDs is typically restricted (e.g. to just 4 tokens), limiting their expressiveness. To address these challenges, we propose RPG, a lightweight framework for semantic ID-based recommendation. The key idea is to produce unordered, long semantic IDs, allowing the model to predict all tokens in parallel. We train the model to predict each token independently using a multi-token prediction loss, directly integrating semantics into the learning objective. During inference, we construct a graph connecting similar semantic IDs and guide decoding to avoid generating invalid IDs. Experiments show that scaling up semantic ID length to 64 enables RPG to outperform generative baselines by an average of 12.6% on the NDCG@10, while also improving inference efficiency. Code is available at: https://github.com/facebookresearch/RPG_KDD2025.

Authors:Taiga Shinozaki, Tomoki Doi, Amane Watahiki, Satoshi Nishida, Hitomi Yanaka
Title: Do Large Vision-Language Models Distinguish between the Actual and Apparent Features of Illusions?
Abstract:
Humans are susceptible to optical illusions, which serve as valuable tools for investigating sensory and cognitive processes. Inspired by human vision studies, research has begun exploring whether machines, such as large vision language models (LVLMs), exhibit similar susceptibilities to visual illusions. However, studies often have used non-abstract images and have not distinguished actual and apparent features, leading to ambiguous assessments of machine cognition. To address these limitations, we introduce a visual question answering (VQA) dataset, categorized into genuine and fake illusions, along with corresponding control images. Genuine illusions present discrepancies between actual and apparent features, whereas fake illusions have the same actual and apparent features even though they look illusory due to the similar geometric configuration. We evaluate the performance of LVLMs for genuine and fake illusion VQA tasks and investigate whether the models discern actual and apparent features. Our findings indicate that although LVLMs may appear to recognize illusions by correctly answering questions about both feature types, they predict the same answers for both Genuine Illusion and Fake Illusion VQA questions. This suggests that their responses might be based on prior knowledge of illusions rather than genuine visual understanding. The dataset is available at https://github.com/ynklab/FILM

Authors:Guang-Xing Li
Title: Revealing hidden correlations from complex spatial distributions: Adjacent Correlation Analysis
Abstract:
Physics has been transforming our view of nature for centuries. While combining physical knowledge with computational approaches has enabled detailed modeling of physical systems' evolution, understanding the emergence of patterns and structures remains limited. Correlations between quantities are the most reliable approach to describe relationships between different variables. However, for complex patterns, directly searching for correlations is often impractical, as complexity and spatial inhomogeneity can obscure correlations. We discovered that the key is to search for correlations in local regions and developed a new method, adjacent correlation analysis, to extract such correlations and represent them in phase space. When multiple observations are available, a useful way to study a system is to analyze distributions in phase space using the Probability Density Function (PDF). Adjacent correlation analysis evaluates vectors representing local correlations, which can be overlaid on the PDF plot to form the adjacent correlation plot. These correlation vectors often exhibit remarkably regular patterns and may lead to the discovery of new laws. The vectors we derive are equivalent to the vector field in dynamical systems on the attracting manifold. By efficiently representing spatial patterns as correlation vectors in phase space, our approach opens avenues for classification, prediction, parameter fitting, and forecasting.

Authors:Guang-Xing Li
Title: Mapping correlations and coherence: adjacency-based approach to data visualization and regularity discovery
Abstract:
The development of science has been transforming man's view towards nature for centuries. Observing structures and patterns in an effective approach to discover regularities from data is a key step toward theory-building. With increasingly complex data being obtained, revealing regularities systematically has become a challenge. Correlation is a most commonly-used and effective approach to describe regularities in data, yet for complex patterns, spatial inhomogeneity and complexity can often undermine the correlations. We present an algorithm to derive maps representing the type and degree of correlations, by taking the two-fold symmetry of the correlation vector into full account using the Stokes parameter. The method allows for a spatially resolved view of the nature and strength of correlations between physical quantities. In the correlation view, a region can often be separated into different subregions with different types of correlations. Subregions correspond to physical regimes for physical systems, or climate zones for climate maps. The simplicity of the method makes it widely applicable to a variety of data, where the correlation-based approach makes the map particularly useful in revealing regularities in physical systems and alike. As a new and efficient approach to represent data, the method should facilitate the development of new computational approaches to regularity discovery.

Authors:Ruining Sun, Hongsheng Hu, Wei Luo, Zhaoxi Zhang, Yanjun Zhang, Haizhuan Yuan, Leo Yu Zhang
Title: When Better Features Mean Greater Risks: The Performance-Privacy Trade-Off in Contrastive Learning
Abstract:
With the rapid advancement of deep learning technology, pre-trained encoder models have demonstrated exceptional feature extraction capabilities, playing a pivotal role in the research and application of deep learning. However, their widespread use has raised significant concerns about the risk of training data privacy leakage. This paper systematically investigates the privacy threats posed by membership inference attacks (MIAs) targeting encoder models, focusing on contrastive learning frameworks. Through experimental analysis, we reveal the significant impact of model architecture complexity on membership privacy leakage: As more advanced encoder frameworks improve feature-extraction performance, they simultaneously exacerbate privacy-leakage risks. Furthermore, this paper proposes a novel membership inference attack method based on the p-norm of feature vectors, termed the Embedding Lp-Norm Likelihood Attack (LpLA). This method infers membership status, by leveraging the statistical distribution characteristics of the p-norm of feature vectors. Experimental results across multiple datasets and model architectures demonstrate that LpLA outperforms existing methods in attack performance and robustness, particularly under limited attack knowledge and query volumes. This study not only uncovers the potential risks of privacy leakage in contrastive learning frameworks, but also provides a practical basis for privacy protection research in encoder models. We hope that this work will draw greater attention to the privacy risks associated with self-supervised learning models and shed light on the importance of a balance between model utility and training data privacy. Our code is publicly available at: https://github.com/SeroneySun/LpLA_code.

Authors:Rongzhe Wei, Peizhi Niu, Hans Hao-Hsun Hsu, Ruihan Wu, Haoteng Yin, Yifan Li, Eli Chien, Kamalika Chaudhuri, Olgica Milenkovic, Pan Li
Title: Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness
Abstract:
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.

Authors:Rongzhe Wei, Peizhi Niu, Hans Hao-Hsun Hsu, Ruihan Wu, Haoteng Yin, Mohsen Ghassemi, Yifan Li, Vamsi K. Potluru, Eli Chien, Kamalika Chaudhuri, Olgica Milenkovic, Pan Li
Title: Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness
Abstract:
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.

Authors:Fang Wu, Vijay Prakash Dwivedi, Jure Leskovec
Title: Large Language Models are Good Relational Learners
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities across various domains, yet their application to relational deep learning (RDL) remains underexplored. Existing approaches adapt LLMs by traversing relational links between entities in a database and converting the structured data into flat text documents. Still, this text-based serialization disregards critical relational structures, introduces redundancy, and often exceeds standard LLM context lengths. We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for LLMs within a retrieval-augmented generation (RAG) framework. Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to effectively process and reason over complex entity relationships. Specifically, the GNN encoder extracts a local subgraph around an entity to build feature representations that contain relevant entity relationships and temporal dependencies. These representations are transformed into structured prompts using a denormalization process, effectively allowing the LLM to reason over relational structures. Through extensive experiments, we demonstrate that Rel-LLM outperforms existing methods on key RDL tasks, offering a scalable and efficient approach to integrating LLMs with structured data sources. Code is available at https://github.com/smiles724/Rel-LLM.

Authors:Dumindu Tissera, Omar Awadallah, Muhammad Umair Danish, Ayan Sadhu, Katarina Grolinger
Title: Any-Class Presence Likelihood for Robust Multi-Label Classification with Abundant Negative Data
Abstract:
Multi-label Classification (MLC) assigns an instance to one or more non-exclusive classes. A challenge arises when the dataset contains a large proportion of instances with no assigned class, referred to as negative data, which can overwhelm the learning process and hinder the accurate identification and classification of positive instances. Nevertheless, it is common in MLC applications such as industrial defect detection, agricultural disease identification, and healthcare diagnosis to encounter large amounts of negative data. Assigning a separate negative class to these instances further complicates the learning objective and introduces unnecessary redundancies. To address this challenge, we redesign standard MLC loss functions by deriving a likelihood of any class being present, formulated by a normalized weighted geometric mean of the predicted class probabilities. We introduce a regularization parameter that controls the relative contribution of the absent class probabilities to the any-class presence likelihood in positive instances. The any-class presence likelihood complements the multi-label learning by encouraging the network to become more aware of implicit positive instances and improve the label classification within those positive instances. Experiments on large-scale datasets with negative data: SewerML, modified COCO, and ChestX-ray14, across various networks and base loss functions show that our loss functions consistently improve MLC performance of their standard loss counterparts, achieving gains of up to 6.01 percentage points in F1, 8.06 in F2, and 3.11 in mean average precision, all without additional parameters or computational complexity. Code available at: https://github.com/ML-for-Sensor-Data-Western/gmean-mlc

Authors:Zhan Zhuang, Xiequn Wang, Wei Li, Yulong Zhang, Qiushi Huang, Shuhao Chen, Xuehao Wang, Yanbin Wei, Yuhe Nie, Kede Ma, Yu Zhang, Ying Wei
Title: Come Together, But Not Right Now: A Progressive Strategy to Boost Low-Rank Adaptation
Abstract:
Low-rank adaptation (LoRA) has emerged as a leading parameter-efficient fine-tuning technique for adapting large foundation models, yet it often locks adapters into suboptimal minima near their initialization. This hampers model generalization and limits downstream operators such as adapter merging and pruning. Here, we propose CoTo, a progressive training strategy that gradually increases adapters' activation probability over the course of fine-tuning. By stochastically deactivating adapters, CoTo encourages more balanced optimization and broader exploration of the loss landscape. We provide a theoretical analysis showing that CoTo promotes layer-wise dropout stability and linear mode connectivity, and we adopt a cooperative-game approach to quantify each adapter's marginal contribution. Extensive experiments demonstrate that CoTo consistently boosts single-task performance, enhances multi-task merging accuracy, improves pruning robustness, and reduces training overhead, all while remaining compatible with diverse LoRA variants. Code is available at https://github.com/zwebzone/coto.

Authors:Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong, Xiao Huang, Jinsong Su
Title: When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation
Abstract:
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge. It leverages graphs to model the hierarchical structure between specific concepts, enabling more coherent and effective knowledge retrieval for accurate reasoning.Despite its conceptual promise, recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks. This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems? To address this, we propose GraphRAG-Bench, a comprehensive benchmark designed to evaluate GraphRAG models onboth hierarchical knowledge retrieval and deep contextual reasoning. GraphRAG-Bench features a comprehensive dataset with tasks of increasing difficulty, coveringfact retrieval, complex reasoning, contextual summarization, and creative generation, and a systematic evaluation across the entire pipeline, from graph constructionand knowledge retrieval to final generation. Leveraging this novel benchmark, we systematically investigate the conditions when GraphRAG surpasses traditional RAG and the underlying reasons for its success, offering guidelines for its practical application. All related resources and analyses are collected for the community at https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.

Authors:Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong, Xiao Huang, Jinsong Su
Title: When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation
Abstract:
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge. It leverages graphs to model the hierarchical structure between specific concepts, enabling more coherent and effective knowledge retrieval for accurate reasoning.Despite its conceptual promise, recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks. This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems? To address this, we propose GraphRAG-Bench, a comprehensive benchmark designed to evaluate GraphRAG models onboth hierarchical knowledge retrieval and deep contextual reasoning. GraphRAG-Bench features a comprehensive dataset with tasks of increasing difficulty, coveringfact retrieval, complex reasoning, contextual summarization, and creative generation, and a systematic evaluation across the entire pipeline, from graph constructionand knowledge retrieval to final generation. Leveraging this novel benchmark, we systematically investigate the conditions when GraphRAG surpasses traditional RAG and the underlying reasons for its success, offering guidelines for its practical application. All related resources and analyses are collected for the community at https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.

Authors:Chao Zhang, Li Wang, Samson Lasaulce, Merouane Debbah
Title: BAQ: Efficient Bit Allocation Quantization for Large Language Models
Abstract:
Post-training model quantization is a widely adopted technique for reducing the memory and computational costs of large language models (LLMs). However, most existing methods rely on uniform or heuristic bitwidth assignments, failing to account for the nonuniform sensitivity of weights to quantization noise. In this paper, we propose a novel framework for allocating quantization bitwidths based on sensitivity metrics derived from a Hessian proxy. We make key assumptions, which allow the layer/component-wise loss function to be expressed as an explicit function of the bitwidths. This enables a neat formulation of the bit allocation problem as a convex optimization task, whose closed-form solution adapts precision across weights to minimize the layer-wise quantization loss. Inspecting the solution provides several insights (such as the equal-loss structure), which are then exploited to design the proposed \textbf{BAQ} (Bit Allocation Quantization) algorithm. The proposed algorithm achieves a good trade-off between loss minimization and complexity and allows BAQ to be integrated into standard quantization pipelines with minimal overhead. Experimental results show that BAQ consistently outperforms GPTQ, achieving up to 56$\times$ lower perplexity at the same bitwidth on large language models ranging from 125M to 30B parameters. Leveraging our analytical results derived from solving the optimal bit allocation problem, we also provide a theoretical explanation for the observed gains. All codes of this paper are available at https://github.com/CSU-ModelCompression/BAQ.

Authors:Md Jueal Mia, M. Hadi Amini
Title: FedShield-LLM: A Secure and Scalable Federated Fine-Tuned Large Language Model
Abstract:
Federated Learning (FL) offers a decentralized framework for training and fine-tuning Large Language Models (LLMs) by leveraging computational resources across organizations while keeping sensitive data on local devices. It addresses privacy and security concerns while navigating challenges associated with the substantial computational demands of LLMs, which can be prohibitive for small and medium-sized organizations. FL supports the development of task-specific LLMs for cross-silo applications through fine-tuning but remains vulnerable to inference attacks, such as membership inference and gradient inversion, which threaten data privacy. Prior studies have utilized Differential Privacy (DP) in LLM fine-tuning, which, despite being effective at preserving privacy, can degrade model performance. To overcome these challenges, we propose a novel method, FedShield-LLM, that uses pruning with Fully Homomorphic Encryption (FHE) for Low-Rank Adaptation (LoRA) parameters, enabling secure computations on encrypted model updates while mitigating the attack surface by deactivating less important LoRA parameters. Furthermore, optimized federated algorithms for cross-silo environments enhance scalability and efficiency. Parameter-efficient fine-tuning techniques like LoRA substantially reduce computational and communication overhead, making FL feasible for resource-constrained clients. Experimental results show that the proposed method outperforms existing methods while maintaining robust privacy protection, enabling organizations to collaboratively train secure and efficient LLMs. The code and data are available at, https://github.com/solidlabnetwork/fedshield-llm

Authors:Aaron Schild, Sreenivas Gollapudi, Anupam Gupta, Kostas Kollias, Ali Sinop
Title: Why is My Route Different Today? An Algorithm for Explaining Route Selection
Abstract:
Users of routing services like Apple Maps, Google Maps, and Waze frequently wonder why a given route is proposed. This question particularly arises when dynamic conditions like traffic and road closures cause unusual routes to be proposed. While many dynamic conditions may exist in a road network at any time, only a small fraction of those conditions are typically relevant to a given user's route. In this work, we introduce the concept of a simple valid explanation (SVE), which consists of a small set of traffic-laden road segments that answer the following question: Which traffic conditions cause a particular shortest traffic-aware route to differ from the shortest traffic-free route? We give an efficient algorithm for finding SVEs and show that they theoretically and experimentally lead to small and interpretable answers to the question.

Authors:Junjie Xing, Yeye He, Mengyu Zhou, Haoyu Dong, Shi Han, Lingjiao Chen, Dongmei Zhang, Surajit Chaudhuri, H. V. Jagadish
Title: MMTU: A Massive Multi-Task Table Understanding and Reasoning Benchmark
Abstract:
Tables and table-based use cases play a crucial role in many important real-world applications, such as spreadsheets, databases, and computational notebooks, which traditionally require expert-level users like data engineers, data analysts, and database administrators to operate. Although LLMs have shown remarkable progress in working with tables (e.g., in spreadsheet and database copilot scenarios), comprehensive benchmarking of such capabilities remains limited. In contrast to an extensive and growing list of NLP benchmarks, evaluations of table-related tasks are scarce, and narrowly focus on tasks like NL-to-SQL and Table-QA, overlooking the broader spectrum of real-world tasks that professional users face. This gap limits our understanding and model progress in this important area. In this work, we introduce MMTU, a large-scale benchmark with over 30K questions across 25 real-world table tasks, designed to comprehensively evaluate models ability to understand, reason, and manipulate real tables at the expert-level. These tasks are drawn from decades' worth of computer science research on tabular data, with a focus on complex table tasks faced by professional users. We show that MMTU require a combination of skills -- including table understanding, reasoning, and coding -- that remain challenging for today's frontier models, where even frontier reasoning models like OpenAI o4-mini and DeepSeek R1 score only around 60%, suggesting significant room for improvement. We highlight key findings in our evaluation using MMTU and hope that this benchmark drives further advances in understanding and developing foundation models for structured data processing and analysis. Our code and data are available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU.

Authors:Vlastimil Martinek, Andrea Gariboldi, Dimosthenis Tzimotoudis, Aitor Alberdi Escudero, Edward Blake, David Cechak, Luke Cassar, Alessandro Balestrucci, Panagiotis Alexiou
Title: Agentomics-ML: Autonomous Machine Learning Experimentation Agent for Genomic and Transcriptomic Data
Abstract:
The adoption of machine learning (ML) and deep learning methods has revolutionized molecular medicine by driving breakthroughs in genomics, transcriptomics, drug discovery, and biological systems modeling. The increasing quantity, multimodality, and heterogeneity of biological datasets demand automated methods that can produce generalizable predictive models. Recent developments in large language model-based agents have shown promise for automating end-to-end ML experimentation on structured benchmarks. However, when applied to heterogeneous computational biology datasets, these methods struggle with generalization and success rates. Here, we introduce Agentomics-ML, a fully autonomous agent-based system designed to produce a classification model and the necessary files for reproducible training and inference. Our method follows predefined steps of an ML experimentation process, repeatedly interacting with the file system through Bash to complete individual steps. Once an ML model is produced, training and validation metrics provide scalar feedback to a reflection step to identify issues such as overfitting. This step then creates verbal feedback for future iterations, suggesting adjustments to steps such as data representation, model architecture, and hyperparameter choices. We have evaluated Agentomics-ML on several established genomic and transcriptomic benchmark datasets and show that it outperforms existing state-of-the-art agent-based methods in both generalization and success rates. While state-of-the-art models built by domain experts still lead in absolute performance on the majority of the computational biology datasets used in this work, Agentomics-ML narrows the gap for fully autonomous systems and achieves state-of-the-art performance on one of the used benchmark datasets. The code is available at https://github.com/BioGeMT/Agentomics-ML.

Authors:Jie Cai, Kangning Yang, Ling Ouyang, Lan Fu, Jiaming Ding, Jinglin Shen, Zibo Meng
Title: OpenRR-5k: A Large-Scale Benchmark for Reflection Removal in the Wild
Abstract:
Removing reflections is a crucial task in computer vision, with significant applications in photography and image enhancement. Nevertheless, existing methods are constrained by the absence of large-scale, high-quality, and diverse datasets. In this paper, we present a novel benchmark for Single Image Reflection Removal (SIRR). We have developed a large-scale dataset containing 5,300 high-quality, pixel-aligned image pairs, each consisting of a reflection image and its corresponding clean version. Specifically, the dataset is divided into two parts: 5,000 images are used for training, and 300 images are used for validation. Additionally, we have included 100 real-world testing images without ground truth (GT) to further evaluate the practical performance of reflection removal methods. All image pairs are precisely aligned at the pixel level to guarantee accurate supervision. The dataset encompasses a broad spectrum of real-world scenarios, featuring various lighting conditions, object types, and reflection patterns, and is segmented into training, validation, and test sets to facilitate thorough evaluation. To validate the usefulness of our dataset, we train a U-Net-based model and evaluate it using five widely-used metrics, including PSNR, SSIM, LPIPS, DISTS, and NIQE. We will release both the dataset and the code on https://github.com/caijie0620/OpenRR-5k to facilitate future research in this field.

Authors:Hongbo Zhao, Fei Zhu, Haiyang Guo, Meng Wang, Rundong Wang, Gaofeng Meng, Zhaoxiang Zhang
Title: MLLM-CL: Continual Learning for Multimodal Large Language Models
Abstract:
Recent Multimodal Large Language Models (MLLMs) excel in vision-language understanding but face challenges in adapting to dynamic real-world scenarios that require continuous integration of new knowledge and skills. While continual learning (CL) offers a potential solution, existing benchmarks and methods suffer from critical limitations. In this paper, we introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning, where the former focuses on independently and identically distributed (IID) evaluation across evolving mainstream domains, whereas the latter evaluates on non-IID scenarios with new model abilities. Methodologically, we propose preventing catastrophic interference through parameter isolation and an MLLM-based routing mechanism. Extensive experiments demonstrate that our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods. Our benchmark and code are available at https://github.com/bjzhb666/MLLM-CL.

Authors:Andrei Mircea, Supriyo Chakraborty, Nima Chitsazan, Milind Naphade, Sambit Sahu, Irina Rish, Ekaterina Lobacheva
Title: Training Dynamics Underlying Language Model Scaling Laws: Loss Deceleration and Zero-Sum Learning
Abstract:
This work aims to understand how scaling improves language models, specifically in terms of training dynamics. We find that language models undergo loss deceleration early in training; an abrupt slowdown in the rate of loss improvement, resulting in piecewise linear behaviour of the loss curve in log-log space. Scaling up the model mitigates this transition by (1) decreasing the loss at which deceleration occurs, and (2) improving the log-log rate of loss improvement after deceleration. We attribute loss deceleration to a type of degenerate training dynamics we term zero-sum learning (ZSL). In ZSL, per-example gradients become systematically opposed, leading to destructive interference in per-example changes in loss. As a result, improving loss on one subset of examples degrades it on another, bottlenecking overall progress. Loss deceleration and ZSL provide new insights into the training dynamics underlying language model scaling laws, and could potentially be targeted directly to improve language models independent of scale. We make our code and artefacts available at: https://github.com/mirandrom/zsl

Authors:Kimberley M. Bird, Xujiong Ye, Alan M. Race, James M. Brown
Title: Deep histological synthesis from mass spectrometry imaging for multimodal registration
Abstract:
Registration of histological and mass spectrometry imaging (MSI) allows for more precise identification of structural changes and chemical interactions in tissue. With histology and MSI having entirely different image formation processes and dimensionalities, registration of the two modalities remains an ongoing challenge. This work proposes a solution that synthesises histological images from MSI, using a pix2pix model, to effectively enable unimodal registration. Preliminary results show promising synthetic histology images with limited artifacts, achieving increases in mutual information (MI) and structural similarity index measures (SSIM) of +0.924 and +0.419, respectively, compared to a baseline U-Net model. Our source code is available on GitHub: https://github.com/kimberley/MIUA2025.

Authors:Ludovic Arnould, Salim Khazem, Hugues Ali Mehenni
Title: BYO-Eval: Build Your Own Dataset for Fine-Grained Visual Assessment of Multimodal Language Models
Abstract:
Visual Language Models (VLMs) are now sufficiently advanced to support a broad range of applications, including answering complex visual questions, and are increasingly expected to interact with images in varied ways. To evaluate them, current benchmarks often focus on specific domains (e.g., reading charts), constructing datasets of annotated real images paired with pre-defined Multiple Choice Questions (MCQs) to report aggregate accuracy scores. However, such benchmarks entail high annotation costs, risk information leakage, and do not clarify whether failures stem from limitations in visual perception, reasoning, or general knowledge. We propose a new evaluation methodology, inspired by ophthalmologic diagnostics, leveraging procedural generation of synthetic images to obtain control over visual attributes and precisely reveal perception failures in VLMs. Specifically, we build collections of images with gradually more challenging variations in the content of interest (e.g., number of objects in a counting task) while holding other visual parameters constant. This diagnostic allows systematic stress testing and fine-grained failure analysis, shifting the focus from coarse benchmarking toward targeted and interpretable assessment of VLM capabilities. Our code is available at https://github.com/byoeval/BYO-EVAL.

Authors:Zikang Liu, Tongtian Yue, Yepeng Tang, Longteng Guo, Junxian Cai, Qingbin Liu, Xi Chen, Jing Liu
Title: Prefix Grouper: Efficient GRPO Training through Shared-Prefix Forward
Abstract:
Group Relative Policy Optimization (GRPO) enhances policy learning by computing gradients from relative comparisons among candidate outputs that share a common input prefix. Despite its effectiveness, GRPO introduces substantial computational overhead when processing long shared prefixes, which must be redundantly encoded for each group member. This inefficiency becomes a major scalability bottleneck in long-context learning scenarios. We propose Prefix Grouper, an efficient GRPO training algorithm that eliminates redundant prefix computation via a Shared-Prefix Forward strategy. In particular, by restructuring self-attention into two parts, our method enables the shared prefix to be encoded only once, while preserving full differentiability and compatibility with end-to-end training. We provide both theoretical and empirical evidence that Prefix Grouper is training-equivalent to standard GRPO: it yields identical forward outputs and backward gradients, ensuring that the optimization dynamics and final policy performance remain unchanged. Empirically, our experiments confirm that Prefix Grouper achieves consistent results while significantly reducing the computational cost of training, particularly in long-prefix scenarios. The proposed method is fully plug-and-play: it is compatible with existing GRPO-based architectures and can be seamlessly integrated into current training pipelines as a drop-in replacement, requiring no structural modifications and only minimal changes to input construction and attention computation. Prefix Grouper enables the use of larger group sizes under the same computational budget, thereby improving the scalability of GRPO to more complex tasks and larger models. Code is now available at https://github.com/johncaged/PrefixGrouper

Authors:Zishan Shu, Yufan Deng, Hongyu Zhang, Zhiwei Nie, Jie Chen
Title: MTPNet: Multi-Grained Target Perception for Unified Activity Cliff Prediction
Abstract:
Activity cliff prediction is a critical task in drug discovery and material design. Existing computational methods are limited to handling single binding targets, which restricts the applicability of these prediction models. In this paper, we present the Multi-Grained Target Perception network (MTPNet) to incorporate the prior knowledge of interactions between the molecules and their target proteins. Specifically, MTPNet is a unified framework for activity cliff prediction, which consists of two components: Macro-level Target Semantic (MTS) guidance and Micro-level Pocket Semantic (MPS) guidance. By this way, MTPNet dynamically optimizes molecular representations through multi-grained protein semantic conditions. To our knowledge, it is the first time to employ the receptor proteins as guiding information to effectively capture critical interaction details. Extensive experiments on 30 representative activity cliff datasets demonstrate that MTPNet significantly outperforms previous approaches, achieving an average RMSE improvement of 18.95% on top of several mainstream GNN architectures. Overall, MTPNet internalizes interaction patterns through conditional deep learning to achieve unified predictions of activity cliffs, helping to accelerate compound optimization and design. Codes are available at: https://github.com/ZishanShu/MTPNet.

Authors:Wenhao Wu, Fuhong Liu, Haoru Li, Zican Hu, Daoyi Dong, Chunlin Chen, Zhi Wang
Title: Mixture-of-Experts Meets In-Context Reinforcement Learning
Abstract:
In-context reinforcement learning (ICRL) has emerged as a promising paradigm for adapting RL agents to downstream tasks through prompt conditioning. However, two notable challenges remain in fully harnessing in-context learning within RL domains: the intrinsic multi-modality of the state-action-reward data and the diverse, heterogeneous nature of decision tasks. To tackle these challenges, we propose \textbf{T2MIR} (\textbf{T}oken- and \textbf{T}ask-wise \textbf{M}oE for \textbf{I}n-context \textbf{R}L), an innovative framework that introduces architectural advances of mixture-of-experts (MoE) into transformer-based decision models. T2MIR substitutes the feedforward layer with two parallel layers: a token-wise MoE that captures distinct semantics of input tokens across multiple modalities, and a task-wise MoE that routes diverse tasks to specialized experts for managing a broad task distribution with alleviated gradient conflicts. To enhance task-wise routing, we introduce a contrastive learning method that maximizes the mutual information between the task and its router representation, enabling more precise capture of task-relevant information. The outputs of two MoE components are concatenated and fed into the next layer. Comprehensive experiments show that T2MIR significantly facilitates in-context learning capacity and outperforms various types of baselines. We bring the potential and promise of MoE to ICRL, offering a simple and scalable architectural enhancement to advance ICRL one step closer toward achievements in language and vision communities. Our code is available at https://github.com/NJU-RL/T2MIR.

Authors:Seunghwan Shin, Yusung Kim
Title: Self-supervised One-Stage Learning for RF-based Multi-Person Pose Estimation
Abstract:
In the field of Multi-Person Pose Estimation (MPPE), Radio Frequency (RF)-based methods can operate effectively regardless of lighting conditions and obscured line-of-sight situations. Existing RF-based MPPE methods typically involve either 1) converting RF signals into heatmap images through complex preprocessing, or 2) applying a deep embedding network directly to raw RF signals. The first approach, while delivering decent performance, is computationally intensive and time-consuming. The second method, though simpler in preprocessing, results in lower MPPE accuracy and generalization performance. This paper proposes an efficient and lightweight one-stage MPPE model based on raw RF signals. By sub-grouping RF signals and embedding them using a shared single-layer CNN followed by multi-head attention, this model outperforms previous methods that embed all signals at once through a large and deep CNN. Additionally, we propose a new self-supervised learning (SSL) method that takes inputs from both one unmasked subgroup and the remaining masked subgroups to predict the latent representations of the masked data. Empirical results demonstrate that our model improves MPPE accuracy by up to 15 in PCKh@0.5 compared to previous methods using raw RF signals. Especially, the proposed SSL method has shown to significantly enhance performance improvements when placed in new locations or in front of obstacles at RF antennas, contributing to greater performance gains as the number of people increases. Our code and dataset is open at Github. https://github.com/sshnan7/SOSPE .

Authors:Jeongsoo Ha, Kyungsoo Kim, Yusung Kim
Title: Dream to Generalize: Zero-Shot Model-Based Reinforcement Learning for Unseen Visual Distractions
Abstract:
Model-based reinforcement learning (MBRL) has been used to efficiently solve vision-based control tasks in highdimensional image observations. Although recent MBRL algorithms perform well in trained observations, they fail when faced with visual distractions in observations. These task-irrelevant distractions (e.g., clouds, shadows, and light) may be constantly present in real-world scenarios. In this study, we propose a novel self-supervised method, Dream to Generalize (Dr. G), for zero-shot MBRL. Dr. G trains its encoder and world model with dual contrastive learning which efficiently captures task-relevant features among multi-view data augmentations. We also introduce a recurrent state inverse dynamics model that helps the world model to better understand the temporal structure. The proposed methods can enhance the robustness of the world model against visual distractions. To evaluate the generalization performance, we first train Dr. G on simple backgrounds and then test it on complex natural video backgrounds in the DeepMind Control suite, and the randomizing environments in Robosuite. Dr. G yields a performance improvement of 117% and 14% over prior works, respectively. Our code is open-sourced and available at https://github.com/JeongsooHa/DrG.git

Authors:Kyungsoo Kim, Jeongsoo Ha, Yusung Kim
Title: Self-Predictive Dynamics for Generalization of Vision-based Reinforcement Learning
Abstract:
Vision-based reinforcement learning requires efficient and robust representations of image-based observations, especially when the images contain distracting (task-irrelevant) elements such as shadows, clouds, and light. It becomes more important if those distractions are not exposed during training. We design a Self-Predictive Dynamics (SPD) method to extract task-relevant features efficiently, even in unseen observations after training. SPD uses weak and strong augmentations in parallel, and learns representations by predicting inverse and forward transitions across the two-way augmented versions. In a set of MuJoCo visual control tasks and an autonomous driving task (CARLA), SPD outperforms previous studies in complex observations, and significantly improves the generalization performance for unseen observations. Our code is available at https://github.com/unigary/SPD.

Authors:Patrik Czakó, Gábor Kertész, Sándor Szénási
Title: SmoothRot: Combining Channel-Wise Scaling and Rotation for Quantization-Friendly LLMs
Abstract:
We present SmoothRot, a novel post-training quantization technique to enhance the efficiency of 4-bit quantization in Large Language Models (LLMs). SmoothRot addresses the critical challenge of massive activation outliers, by integrating channel-wise scaling with Hadamard transformations. Our technique effectively transforms extreme outliers into quantization-friendly activations, significantly improving quantization accuracy. Experiments conducted on popular LLMs (LLaMA2 7B, LLaMA3.1 8B, and Mistral 7B) demonstrate that SmoothRot consistently reduces the performance gap between quantized and FP16 models by approximately 10-30\% across language generation and zero-shot reasoning tasks, without introducing additional inference latency. Code is available at https://github.com/czakop/smoothrot.

Authors:Jianqing Zhang, Yang Liu, Jie Fu, Yang Hua, Tianyuan Zou, Jian Cao, Qiang Yang
Title: PCEvolve: Private Contrastive Evolution for Synthetic Dataset Generation via Few-Shot Private Data and Generative APIs
Abstract:
The rise of generative APIs has fueled interest in privacy-preserving synthetic data generation. While the Private Evolution (PE) algorithm generates Differential Privacy (DP) synthetic images using diffusion model APIs, it struggles with few-shot private data due to the limitations of its DP-protected similarity voting approach. In practice, the few-shot private data challenge is particularly prevalent in specialized domains like healthcare and industry. To address this challenge, we propose a novel API-assisted algorithm, Private Contrastive Evolution (PCEvolve), which iteratively mines inherent inter-class contrastive relationships in few-shot private data beyond individual data points and seamlessly integrates them into an adapted Exponential Mechanism (EM) to optimize DP's utility in an evolution loop. We conduct extensive experiments on four specialized datasets, demonstrating that PCEvolve outperforms PE and other API-assisted baselines. These results highlight the potential of leveraging API access with private data for quality evaluation, enabling the generation of high-quality DP synthetic images and paving the way for more accessible and effective privacy-preserving generative API applications. Our code is available at https://github.com/TsingZ0/PCEvolve.

Authors:Caleb Zheng, Eli Shlizerman
Title: IGSM: Improved Geometric and Sensitivity Matching for Finetuning Pruned Diffusion Models
Abstract:
Diffusion models achieve realistic outcomes across a wide range of generative tasks, but their high computational cost remains a major barrier to deployment. Model pruning has emerged as a promising strategy to reduce inference cost and enable lightweight diffusion models. While effective, pruned diffusion models are proned to quality reduction due to limited capacity. A key limitation of current pruning approaches is that pruned models are finetuned using the same objective as the dense model, typically denoising score matching (DSM). Since the dense model is accessible during finetuning, it warrants a more effective approach for knowledge transfer from the dense to the pruned model. Motivated by this aim, we revisit the finetuning stage and propose IGSM (\textbf{I}mproved \textbf{G}eometric and \textbf{S}ensitivity \textbf{M}atching), a general-purpose finetuning framework that introduces a second-order Jacobian projection loss inspired by Finite-Time Lyapunov Exponents (FTLE). IGSM efficiently captures and aligns the geometric and the temporal dynamics of pruned models with their dense teachers using scalable second-order projections. Our approach is architecture-agnostic and applies to both U-Net- and Transformer-based diffusion models. Experiments on CIFAR-10, CelebA, LSUN-Church, and LSUN-Bedroom show that IGSM consistently narrows the performance gap between pruned and dense models, substantially improving sample quality. Code is available on GitHub: https://github.com/FATE4869/IGSM-Official

Authors:Luka Vetoshkin, Dmitry Yudin
Title: Talk2SAM: Text-Guided Semantic Enhancement for Complex-Shaped Object Segmentation
Abstract:
Segmenting objects with complex shapes, such as wires, bicycles, or structural grids, remains a significant challenge for current segmentation models, including the Segment Anything Model (SAM) and its high-quality variant SAM-HQ. These models often struggle with thin structures and fine boundaries, leading to poor segmentation quality. We propose Talk2SAM, a novel approach that integrates textual guidance to improve segmentation of such challenging objects. The method uses CLIP-based embeddings derived from user-provided text prompts to identify relevant semantic regions, which are then projected into the DINO feature space. These features serve as additional prompts for SAM-HQ, enhancing its ability to focus on the target object. Beyond improving segmentation accuracy, Talk2SAM allows user-controllable segmentation, enabling disambiguation of objects within a single bounding box based on textual input. We evaluate our approach on three benchmarks: BIG, ThinObject5K, and DIS5K. Talk2SAM consistently outperforms SAM-HQ, achieving up to +5.9\% IoU and +8.3\% boundary IoU improvements. Our results demonstrate that incorporating natural language guidance provides a flexible and effective means for precise object segmentation, particularly in cases where traditional prompt-based methods fail. The source code is available on GitHub: https://github.com/richlukich/Talk2SAM

Authors:Hondamunige Prasanna Silva, Federico Becattini, Lorenzo Seidenari
Title: Attacking Attention of Foundation Models Disrupts Downstream Tasks
Abstract:
Foundation models represent the most prominent and recent paradigm shift in artificial intelligence. Foundation models are large models, trained on broad data that deliver high accuracy in many downstream tasks, often without fine-tuning. For this reason, models such as CLIP , DINO or Vision Transfomers (ViT), are becoming the bedrock of many industrial AI-powered applications. However, the reliance on pre-trained foundation models also introduces significant security concerns, as these models are vulnerable to adversarial attacks. Such attacks involve deliberately crafted inputs designed to deceive AI systems, jeopardizing their reliability. This paper studies the vulnerabilities of vision foundation models, focusing specifically on CLIP and ViTs, and explores the transferability of adversarial attacks to downstream tasks. We introduce a novel attack, targeting the structure of transformer-based architectures in a task-agnostic fashion. We demonstrate the effectiveness of our attack on several downstream tasks: classification, captioning, image/text retrieval, segmentation and depth estimation. Code available at:https://github.com/HondamunigePrasannaSilva/attack-attention

Authors:Shenyang Huang, Ali Parviz, Emma Kondrup, Zachary Yang, Zifeng Ding, Michael Bronstein, Reihaneh Rabbany, Guillaume Rabusseau
Title: Are Large Language Models Good Temporal Graph Learners?
Abstract:
Large Language Models (LLMs) have recently driven significant advancements in Natural Language Processing and various other applications. While a broad range of literature has explored the graph-reasoning capabilities of LLMs, including their use of predictors on graphs, the application of LLMs to dynamic graphs -- real world evolving networks -- remains relatively unexplored. Recent work studies synthetic temporal graphs generated by random graph models, but applying LLMs to real-world temporal graphs remains an open question. To address this gap, we introduce Temporal Graph Talker (TGTalker), a novel temporal graph learning framework designed for LLMs. TGTalker utilizes the recency bias in temporal graphs to extract relevant structural information, converted to natural language for LLMs, while leveraging temporal neighbors as additional information for prediction. TGTalker demonstrates competitive link prediction capabilities compared to existing Temporal Graph Neural Network (TGNN) models. Across five real-world networks, TGTalker performs competitively with state-of-the-art temporal graph methods while consistently outperforming popular models such as TGN and HTGN. Furthermore, TGTalker generates textual explanations for each prediction, thus opening up exciting new directions in explainability and interpretability for temporal link prediction. The code is publicly available at https://github.com/shenyangHuang/TGTalker.

Authors:Abu Sufian, Marco Leo, Cosimo Distante, Anirudha Ghosh, Debaditya Barman
Title: Can Vision Transformers with ResNet's Global Features Fairly Authenticate Demographic Faces?
Abstract:
Biometric face authentication is crucial in computer vision, but ensuring fairness and generalization across demographic groups remains a big challenge. Therefore, we investigated whether Vision Transformer (ViT) and ResNet, leveraging pre-trained global features, can fairly authenticate different demographic faces while relying minimally on local features. In this investigation, we used three pre-trained state-of-the-art (SOTA) ViT foundation models from Facebook, Google, and Microsoft for global features as well as ResNet-18. We concatenated the features from ViT and ResNet, passed them through two fully connected layers, and trained on customized face image datasets to capture the local features. Then, we designed a novel few-shot prototype network with backbone features embedding. We also developed new demographic face image support and query datasets for this empirical study. The network's testing was conducted on this dataset in one-shot, three-shot, and five-shot scenarios to assess how performance improves as the size of the support set increases. We observed results across datasets with varying races/ethnicities, genders, and age groups. The Microsoft Swin Transformer backbone performed better among the three SOTA ViT for this task. The code and data are available at: https://github.com/Sufianlab/FairVitBio.

Authors:George Stoica, Vivek Ramanujan, Xiang Fan, Ali Farhadi, Ranjay Krishna, Judy Hoffman
Title: Contrastive Flow Matching
Abstract:
Unconditional flow-matching trains diffusion models to transport samples from a source distribution to a target distribution by enforcing that the flows between sample pairs are unique. However, in conditional settings (e.g., class-conditioned models), this uniqueness is no longer guaranteed--flows from different conditions may overlap, leading to more ambiguous generations. We introduce Contrastive Flow Matching, an extension to the flow matching objective that explicitly enforces uniqueness across all conditional flows, enhancing condition separation. Our approach adds a contrastive objective that maximizes dissimilarities between predicted flows from arbitrary sample pairs. We validate Contrastive Flow Matching by conducting extensive experiments across varying model architectures on both class-conditioned (ImageNet-1k) and text-to-image (CC3M) benchmarks. Notably, we find that training models with Contrastive Flow Matching (1) improves training speed by a factor of up to 9x, (2) requires up to 5x fewer de-noising steps and (3) lowers FID by up to 8.9 compared to training the same models with flow matching. We release our code at: https://github.com/gstoica27/DeltaFM.git.

Authors:Jiahui Wang, Zuyan Liu, Yongming Rao, Jiwen Lu
Title: SparseMM: Head Sparsity Emerges from Visual Concept Responses in MLLMs
Abstract:
Multimodal Large Language Models (MLLMs) are commonly derived by extending pre-trained Large Language Models (LLMs) with visual capabilities. In this work, we investigate how MLLMs process visual inputs by analyzing their attention mechanisms. We reveal a surprising sparsity phenomenon: only a small subset (approximately less than 5%) of attention heads in LLMs actively contribute to visual understanding, termed visual heads. To identify these heads efficiently, we design a training-free framework that quantifies head-level visual relevance through targeted response analysis. Building on this discovery, we introduce SparseMM, a KV-Cache optimization strategy that allocates asymmetric computation budgets to heads in LLMs based on their visual scores, leveraging the sparity of visual heads for accelerating the inference of MLLMs. Compared with prior KV-Cache acceleration methods that ignore the particularity of visual, SparseMM prioritizes stress and retaining visual semantics during decoding. Extensive evaluations across mainstream multimodal benchmarks demonstrate that SparseMM achieves superior accuracy-efficiency trade-offs. Notably, SparseMM delivers 1.38x real-time acceleration and 52% memory reduction during generation while maintaining performance parity on efficiency test. Our project is open sourced at https://github.com/CR400AF-A/SparseMM.

Authors:Anirudh Bharadwaj, Chaitanya Malaviya, Nitish Joshi, Mark Yatskar
Title: Flattery, Fluff, and Fog: Diagnosing and Mitigating Idiosyncratic Biases in Preference Models
Abstract:
Language models serve as proxies for human preference judgements in alignment and evaluation, yet they exhibit systematic miscalibration, prioritizing superficial patterns over substantive qualities. This bias manifests as overreliance on features like length, structure, and style, leading to issues like reward hacking and unreliable evaluations. Evidence suggests these biases originate in artifacts in human training data. In this work, we systematically investigate the relationship between training data biases and preference model miscalibration across five idiosyncratic features of language model generations: length, structure, jargon, sycophancy and vagueness. Using controlled counterfactual pairs, we first quantify the extent to which preference models favor responses with magnified biases (skew), finding this preference occurs in >60% of instances, and model preferences show high miscalibration (~40%) compared to human preferences. Notably, bias features only show mild negative correlations to human preference labels (mean r_human = -0.12) but show moderately strong positive correlations with labels from a strong reward model (mean r_model = +0.36), suggesting that models may overrely on spurious cues. To mitigate these issues, we propose a simple post-training method based on counterfactual data augmentation (CDA) using synthesized contrastive examples. Finetuning models with CDA reduces average miscalibration from 39.4% to 32.5% and average absolute skew difference from 20.5% to 10.0%, while maintaining overall RewardBench performance, showing that targeted debiasing is effective for building reliable preference models.

Authors:Ghazi Shazan Ahmad, Ahmed Heakl, Hanan Gani, Abdelrahman Shaker, Zhiqiang Shen, Fahad Shahbaz Khan, Salman Khan
Title: VideoMolmo: Spatio-Temporal Grounding Meets Pointing
Abstract:
Spatio-temporal localization is vital for precise interactions across diverse domains, from biological research to autonomous navigation and interactive interfaces. Current video-based approaches, while proficient in tracking, lack the sophisticated reasoning capabilities of large language models, limiting their contextual understanding and generalization. We introduce VideoMolmo, a large multimodal model tailored for fine-grained spatio-temporal pointing conditioned on textual descriptions. Building upon the Molmo architecture, VideoMolmo incorporates a temporal module utilizing an attention mechanism to condition each frame on preceding frames, ensuring temporal consistency. Additionally, our novel temporal mask fusion pipeline employs SAM2 for bidirectional point propagation, significantly enhancing coherence across video sequences. This two-step decomposition, i.e., first using the LLM to generate precise pointing coordinates, then relying on a sequential mask-fusion module to produce coherent segmentation, not only simplifies the task for the language model but also enhances interpretability. Due to the lack of suitable datasets, we curate a comprehensive dataset comprising 72k video-caption pairs annotated with 100k object points. To evaluate the generalization of VideoMolmo, we introduce VPoS-Bench, a challenging out-of-distribution benchmark spanning five real-world scenarios: Cell Tracking, Egocentric Vision, Autonomous Driving, Video-GUI Interaction, and Robotics. We also evaluate our model on Referring Video Object Segmentation (Refer-VOS) and Reasoning VOS tasks. In comparison to existing models, VideoMolmo substantially improves spatio-temporal pointing accuracy and reasoning capability. Our code and models are publicly available at https://github.com/mbzuai-oryx/VideoMolmo.

Authors:Mihran Miroyan, Tsung-Han Wu, Logan King, Tianle Li, Jiayi Pan, Xinyan Hu, Wei-Lin Chiang, Anastasios N. Angelopoulos, Trevor Darrell, Narges Norouzi, Joseph E. Gonzalez
Title: Search Arena: Analyzing Search-Augmented LLMs
Abstract:
Search-augmented language models combine web search with Large Language Models (LLMs) to improve response groundedness and freshness. However, analyzing these systems remains challenging: existing datasets are limited in scale and narrow in scope, often constrained to static, single-turn, fact-checking questions. In this work, we introduce Search Arena, a crowd-sourced, large-scale, human-preference dataset of over 24,000 paired multi-turn user interactions with search-augmented LLMs. The dataset spans diverse intents and languages, and contains full system traces with around 12,000 human preference votes. Our analysis reveals that user preferences are influenced by the number of citations, even when the cited content does not directly support the attributed claims, uncovering a gap between perceived and actual credibility. Furthermore, user preferences vary across cited sources, revealing that community-driven platforms are generally preferred and static encyclopedic sources are not always appropriate and reliable. To assess performance across different settings, we conduct cross-arena analyses by testing search-augmented LLMs in a general-purpose chat environment and conventional LLMs in search-intensive settings. We find that web search does not degrade and may even improve performance in non-search settings; however, the quality in search settings is significantly affected if solely relying on the model's parametric knowledge. We open-sourced the dataset to support future research in this direction. Our dataset and code are available at: https://github.com/lmarena/search-arena.

Authors:Ranajoy Sadhukhan, Zhuoming Chen, Haizhong Zheng, Yang Zhou, Emma Strubell, Beidi Chen
Title: Kinetics: Rethinking Test-Time Scaling Laws
Abstract:
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-$N$, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential and increasingly important with more computing invested, for realizing the full potential of test-time scaling where, unlike training, accuracy has yet to saturate as a function of computation, and continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.

Authors:Xinyan Chen, Renrui Zhang, Dongzhi Jiang, Aojun Zhou, Shilin Yan, Weifeng Lin, Hongsheng Li
Title: MINT-CoT: Enabling Interleaved Visual Tokens in Mathematical Chain-of-Thought Reasoning
Abstract:
Chain-of-Thought (CoT) has widely enhanced mathematical reasoning in Large Language Models (LLMs), but it still remains challenging for extending it to multimodal domains. Existing works either adopt a similar textual reasoning for image input, or seek to interleave visual signals into mathematical CoT. However, they face three key limitations for math problem-solving: reliance on coarse-grained box-shaped image regions, limited perception of vision encoders on math content, and dependence on external capabilities for visual modification. In this paper, we propose MINT-CoT, introducing Mathematical INterleaved Tokens for Chain-of-Thought visual reasoning. MINT-CoT adaptively interleaves relevant visual tokens into textual reasoning steps via an Interleave Token, which dynamically selects visual regions of any shapes within math figures. To empower this capability, we construct the MINT-CoT dataset, containing 54K mathematical problems aligning each reasoning step with visual regions at the token level, accompanied by a rigorous data generation pipeline. We further present a three-stage MINT-CoT training strategy, progressively combining text-only CoT SFT, interleaved CoT SFT, and interleaved CoT RL, which derives our MINT-CoT-7B model. Extensive experiments demonstrate the effectiveness of our method for effective visual interleaved reasoning in mathematical domains, where MINT-CoT-7B outperforms the baseline model by +34.08% on MathVista, +28.78% on GeoQA, and +23.2% on MMStar, respectively. Our code and data are available at https://github.com/xinyan-cxy/MINT-CoT

Authors:Arnav Kumar Jain, Vibhakar Mohta, Subin Kim, Atiksh Bhardwaj, Juntao Ren, Yunhai Feng, Sanjiban Choudhury, Gokul Swamy
Title: A Smooth Sea Never Made a Skilled $\texttt{SAILOR}$: Robust Imitation via Learning to Search
Abstract:
The fundamental limitation of the behavioral cloning (BC) approach to imitation learning is that it only teaches an agent what the expert did at states the expert visited. This means that when a BC agent makes a mistake which takes them out of the support of the demonstrations, they often don't know how to recover from it. In this sense, BC is akin to giving the agent the fish -- giving them dense supervision across a narrow set of states -- rather than teaching them to fish: to be able to reason independently about achieving the expert's outcome even when faced with unseen situations at test-time. In response, we explore learning to search (L2S) from expert demonstrations, i.e. learning the components required to, at test time, plan to match expert outcomes, even after making a mistake. These include (1) a world model and (2) a reward model. We carefully ablate the set of algorithmic and design decisions required to combine these and other components for stable and sample/interaction-efficient learning of recovery behavior without additional human corrections. Across a dozen visual manipulation tasks from three benchmarks, our approach $\texttt{SAILOR}$ consistently out-performs state-of-the-art Diffusion Policies trained via BC on the same data. Furthermore, scaling up the amount of demonstrations used for BC by 5-10$\times$ still leaves a performance gap. We find that $\texttt{SAILOR}$ can identify nuanced failures and is robust to reward hacking. Our code is available at https://github.com/arnavkj1995/SAILOR .

Authors:Pingyu Wu, Kai Zhu, Yu Liu, Longxiang Tang, Jian Yang, Yansong Peng, Wei Zhai, Yang Cao, Zheng-Jun Zha
Title: AliTok: Towards Sequence Modeling Alignment between Tokenizer and Autoregressive Model
Abstract:
Autoregressive image generation aims to predict the next token based on previous ones. However, existing image tokenizers encode tokens with bidirectional dependencies during the compression process, which hinders the effective modeling by autoregressive models. In this paper, we propose a novel Aligned Tokenizer (AliTok), which utilizes a causal decoder to establish unidirectional dependencies among encoded tokens, thereby aligning the token modeling approach between the tokenizer and autoregressive model. Furthermore, by incorporating prefix tokens and employing two-stage tokenizer training to enhance reconstruction consistency, AliTok achieves great reconstruction performance while being generation-friendly. On ImageNet-256 benchmark, using a standard decoder-only autoregressive model as the generator with only 177M parameters, AliTok achieves a gFID score of 1.50 and an IS of 305.9. When the parameter count is increased to 662M, AliTok achieves a gFID score of 1.35, surpassing the state-of-the-art diffusion method with 10x faster sampling speed. The code and weights are available at https://github.com/ali-vilab/alitok.

Authors:Nan Wang, Yuantao Chen, Lixing Xiao, Weiqing Xiao, Bohan Li, Zhaoxi Chen, Chongjie Ye, Shaocong Xu, Saining Zhang, Ziyang Yan, Pierre Merriaux, Lei Lei, Tianfan Xue, Hao Zhao
Title: Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting
Abstract:
Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely on photometric consistency to produce high-quality reconstructions. However, in real-world scenarios, it is challenging to guarantee perfect photometric consistency in acquired images. Appearance codes have been widely used to address this issue, but their modeling capability is limited, as a single code is applied to the entire image. Recently, the bilateral grid was introduced to perform pixel-wise color mapping, but it is difficult to optimize and constrain effectively. In this paper, we propose a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids. We demonstrate that this approach significantly improves geometric accuracy in dynamic, decoupled autonomous driving scene reconstruction, outperforming both appearance codes and bilateral grids. This is crucial for autonomous driving, where accurate geometry is important for obstacle avoidance and control. Our method shows strong results across four datasets: Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the improvement in geometry is driven by the multi-scale bilateral grid, which effectively reduces floaters caused by photometric inconsistency.

Authors:Xiaodong Wang, Jinfa Huang, Li Yuan, Peixi Peng
Title: LeanPO: Lean Preference Optimization for Likelihood Alignment in Video-LLMs
Abstract:
Most Video Large Language Models (Video-LLMs) adopt preference alignment techniques, e.g., DPO~\citep{rafailov2024dpo}, to optimize the reward margin between a winning response ($y_w$) and a losing response ($y_l$). However, the likelihood displacement observed in DPO indicates that both $\log π_θ(y_w\mid x)$ and $\log π_θ(y_l\mid x) $ often decrease during training, inadvertently boosting the probabilities of non-target responses. In this paper, we systematically revisit this phenomenon from LLMs to Video-LLMs, showing that it intensifies when dealing with the redundant complexity of video content. To alleviate the impact of this phenomenon, we propose \emph{Lean Preference Optimization} (LeanPO), a reference-free approach that reformulates the implicit reward as the average likelihood of the response with respect to the policy model. A key component of LeanPO is the reward-trustworthiness correlated self-generated preference data pipeline, which carefully infuses relevant prior knowledge into the model while continuously refining the preference data via self-reflection. This allows the policy model to obtain high-quality paired data and accurately estimate the newly defined reward, thus mitigating the unintended drop. In addition, we introduce a dynamic label smoothing strategy that mitigates the impact of noise in responses from diverse video content, preventing the model from overfitting to spurious details. Extensive experiments demonstrate that LeanPO significantly enhances the performance of state-of-the-art Video-LLMs, consistently boosting baselines of varying capacities with minimal additional training overhead. Moreover, LeanPO offers a simple yet effective solution for aligning Video-LLM preferences with human trustworthiness, paving the way toward the reliable and efficient Video-LLMs.

Authors:Jianghao Wu, Yicheng Wu, Yutong Xie, Wenjia Bai, You Zhang, Feilong Tang, Yulong Li, Yasmeen George, Imran Razzak
Title: SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
Abstract:
Universal medical image segmentation using the Segment Anything Model (SAM) remains challenging due to its limited adaptability to medical domains. Existing adaptations, such as MedSAM, enhance SAM's performance in medical imaging but at the cost of reduced generalization to unseen data. Therefore, in this paper, we propose SAM-aware Test-Time Adaptation (SAM-TTA), a fundamentally different pipeline that preserves the generalization of SAM while improving its segmentation performance in medical imaging via a test-time framework. SAM-TTA tackles two key challenges: (1) input-level discrepancies caused by differences in image acquisition between natural and medical images and (2) semantic-level discrepancies due to fundamental differences in object definition between natural and medical domains (e.g., clear boundaries vs. ambiguous structures). Specifically, our SAM-TTA framework comprises (1) Self-adaptive Bezier Curve-based Transformation (SBCT), which adaptively converts single-channel medical images into three-channel SAM-compatible inputs while maintaining structural integrity, to mitigate the input gap between medical and natural images, and (2) Dual-scale Uncertainty-driven Mean Teacher adaptation (DUMT), which employs consistency learning to align SAM's internal representations to medical semantics, enabling efficient adaptation without auxiliary supervision or expensive retraining. Extensive experiments on five public datasets demonstrate that our SAM-TTA outperforms existing TTA approaches and even surpasses fully fine-tuned models such as MedSAM in certain scenarios, establishing a new paradigm for universal medical image segmentation. Code can be found at https://github.com/JianghaoWu/SAM-TTA.

Authors:Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, Xiang Bai
Title: MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
Abstract:
We introduce MonkeyOCR, a vision-language model for document parsing that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline (as in MinerU's modular approach) and avoids the inefficiencies of processing full pages with giant end-to-end models (e.g., large multimodal LLMs like Qwen-VL). In SRR, document parsing is abstracted into three fundamental questions - "Where is it?" (structure), "What is it?" (recognition), and "How is it organized?" (relation) - corresponding to layout analysis, content identification, and logical ordering. This focused decomposition balances accuracy and speed: it enables efficient, scalable processing without sacrificing precision. To train and evaluate this approach, we introduce the MonkeyDoc (the most comprehensive document parsing dataset to date), with 3.9 million instances spanning over ten document types in both Chinese and English. Experiments show that MonkeyOCR outperforms MinerU by an average of 5.1%, with particularly notable improvements on challenging content such as formulas (+15.0%) and tables (+8.6%). Remarkably, our 3B-parameter model surpasses much larger and top-performing models, including Qwen2.5-VL (72B) and Gemini 2.5 Pro, achieving state-of-the-art average performance on English document parsing tasks. In addition, MonkeyOCR processes multi-page documents significantly faster (0.84 pages per second compared to 0.65 for MinerU and 0.12 for Qwen2.5-VL-7B). The 3B model can be efficiently deployed for inference on a single NVIDIA 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.

Authors:Nathan Herr, Tim Rocktäschel, Roberta Raileanu
Title: LLM-First Search: Self-Guided Exploration of the Solution Space
Abstract:
Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning and planning through increased test-time compute, often by framing problem-solving as a search process. While methods like Monte Carlo Tree Search (MCTS) have proven effective in some domains, their reliance on fixed exploration hyperparameters limits their adaptability across tasks of varying difficulty, rendering them impractical or expensive in certain settings. In this paper, we propose \textbf{LLM-First Search (LFS)}, a novel \textit{LLM Self-Guided Search} method that removes the need for pre-defined search strategies by empowering the LLM to autonomously control the search process via self-guided exploration. Rather than relying on external heuristics or hardcoded policies, the LLM evaluates whether to pursue the current search path or explore alternative branches based on its internal scoring mechanisms. This enables more flexible and context-sensitive reasoning without requiring manual tuning or task-specific adaptation. We evaluate LFS on Countdown and Sudoku against three classic widely-used search algorithms, Tree-of-Thoughts' Breadth First Search (ToT-BFS), Best First Search (BestFS), and MCTS, each of which have been used to achieve SotA results on a range of challenging reasoning tasks. We found that LFS (1) performs better on more challenging tasks without additional tuning, (2) is more computationally efficient compared to the other methods, especially when powered by a stronger model, (3) scales better with stronger models, due to its LLM-First design, and (4) scales better with increased compute budget. Our code is publicly available at \href{https://github.com/NathanHerr/LLM-First-Search}{LLM-First-Search}.

Authors:Yani Zhang, Dongming Wu, Hao Shi, Yingfei Liu, Tiancai Wang, Haoqiang Fan, Xingping Dong
Title: Grounding Beyond Detection: Enhancing Contextual Understanding in Embodied 3D Grounding
Abstract:
Embodied 3D grounding aims to localize target objects described in human instructions from ego-centric viewpoint. Most methods typically follow a two-stage paradigm where a trained 3D detector's optimized backbone parameters are used to initialize a grounding model. In this study, we explore a fundamental question: Does embodied 3D grounding benefit enough from detection? To answer this question, we assess the grounding performance of detection models using predicted boxes filtered by the target category. Surprisingly, these detection models without any instruction-specific training outperform the grounding models explicitly trained with language instructions. This indicates that even category-level embodied 3D grounding may not be well resolved, let alone more fine-grained context-aware grounding. Motivated by this finding, we propose DEGround, which shares DETR queries as object representation for both DEtection and Grounding and enables the grounding to benefit from basic category classification and box detection. Based on this framework, we further introduce a regional activation grounding module that highlights instruction-related regions and a query-wise modulation module that incorporates sentence-level semantic into the query representation, strengthening the context-aware understanding of language instructions. Remarkably, DEGround outperforms state-of-the-art model BIP3D by 7.52% at overall accuracy on the EmbodiedScan validation set. The source code will be publicly available at https://github.com/zyn213/DEGround.

Authors:Moritz Miller, Bernhard Schölkopf, Siyuan Guo
Title: Counterfactual reasoning: an analysis of in-context emergence
Abstract:
Large-scale neural language models (LMs) exhibit remarkable performance in in-context learning: the ability to learn and reason the input context on the fly without parameter update. This work studies in-context counterfactual reasoning in language models, that is, to predict the consequences of changes under hypothetical scenarios. We focus on studying a well-defined synthetic setup: a linear regression task that requires noise abduction, where accurate prediction is based on inferring and copying the contextual noise from factual observations. We show that language models are capable of counterfactual reasoning in this controlled setup and provide insights that counterfactual reasoning for a broad class of functions can be reduced to a transformation on in-context observations; we find self-attention, model depth, and data diversity in pre-training drive performance in Transformers. More interestingly, our findings extend beyond regression tasks and show that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/moXmiller/counterfactual-reasoning.git .

Authors:Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, Jing Tang
Title: TreeRPO: Tree Relative Policy Optimization
Abstract:
Large Language Models (LLMs) have shown remarkable reasoning capabilities through Reinforcement Learning with Verifiable Rewards (RLVR) methods. However, a key limitation of existing approaches is that rewards defined at the full trajectory level provide insufficient guidance for optimizing the intermediate steps of a reasoning process. To address this, we introduce \textbf{\name}, a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling. Unlike prior methods that rely on a separate step reward model, \name directly estimates these rewards through this sampling process. Building on the group-relative reward training mechanism of GRPO, \name innovatively computes rewards based on step-level groups generated during tree sampling. This advancement allows \name to produce fine-grained and dense reward signals, significantly enhancing the learning process and overall performance of LLMs. Experimental results demonstrate that our \name algorithm substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test benchmarks, increasing it from 19.0\% to 35.5\%. Furthermore, \name significantly outperforms GRPO by 2.9\% in performance while simultaneously reducing the average response length by 18.1\%, showcasing its effectiveness and efficiency. Our code will be available at \href{https://github.com/yangzhch6/TreeRPO}{https://github.com/yangzhch6/TreeRPO}.

Authors:Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, Jing Tang
Title: TreeRPO: Tree Relative Policy Optimization
Abstract:
Large Language Models (LLMs) have shown remarkable reasoning capabilities through Reinforcement Learning with Verifiable Rewards (RLVR) methods. However, a key limitation of existing approaches is that rewards defined at the full trajectory level provide insufficient guidance for optimizing the intermediate steps of a reasoning process. To address this, we introduce \textbf{\name}, a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling. Unlike prior methods that rely on a separate step reward model, \name directly estimates these rewards through this sampling process. Building on the group-relative reward training mechanism of GRPO, \name innovatively computes rewards based on step-level groups generated during tree sampling. This advancement allows \name to produce fine-grained and dense reward signals, significantly enhancing the learning process and overall performance of LLMs. Experimental results demonstrate that our \name algorithm substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test benchmarks, increasing it from 19.0\% to 35.5\%. Furthermore, \name significantly outperforms GRPO by 2.9\% in performance while simultaneously reducing the average response length by 18.1\%, showcasing its effectiveness and efficiency. Our code will be available at \href{https://github.com/yangzhch6/TreeRPO}{https://github.com/yangzhch6/TreeRPO}.

Authors:Shivani Upadhyay, Messiah Ataey, Syed Shariyar Murtaza, Yifan Nie, Jimmy Lin
Title: On the Comprehensibility of Multi-structured Financial Documents using LLMs and Pre-processing Tools
Abstract:
The proliferation of complex structured data in hybrid sources, such as PDF documents and web pages, presents unique challenges for current Large Language Models (LLMs) and Multi-modal Large Language Models (MLLMs) in providing accurate answers. Despite the recent advancements of MLLMs, they still often falter when interpreting intricately structured information, such as nested tables and multi-dimensional plots, leading to hallucinations and erroneous outputs. This paper explores the capabilities of LLMs and MLLMs in understanding and answering questions from complex data structures found in PDF documents by leveraging industrial and open-source tools as part of a pre-processing pipeline. Our findings indicate that GPT-4o, a popular MLLM, achieves an accuracy of 56% on multi-structured documents when fed documents directly, and that integrating pre-processing tools raises the accuracy of LLMs to 61.3% for GPT-4o and 76% for GPT-4, and with lower overall cost. The code is publicly available at https://github.com/OGCDS/FinancialQA.

Authors:Weicheng Gao
Title: Through-the-Wall Radar Human Activity Recognition WITHOUT Using Neural Networks
Abstract:
After a few years of research in the field of through-the-wall radar (TWR) human activity recognition (HAR), I found that we seem to be stuck in the mindset of training on radar image data through neural network models. The earliest related works in this field based on template matching did not require a training process, and I believe they have never died. Because these methods possess a strong physical interpretability and are closer to the basis of theoretical signal processing research. In this paper, I would like to try to return to the original path by attempting to eschew neural networks to achieve the TWR HAR task and challenge to achieve intelligent recognition as neural network models. In detail, the range-time map and Doppler-time map of TWR are first generated. Then, the initial regions of the human target foreground and noise background on the maps are determined using corner detection method, and the micro-Doppler signature is segmented using the multiphase active contour model. The micro-Doppler segmentation feature is discretized into a two-dimensional point cloud. Finally, the topological similarity between the resulting point cloud and the point clouds of the template data is calculated using Mapper algorithm to obtain the recognition results. The effectiveness of the proposed method is demonstrated by numerical simulated and measured experiments. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Through-the-Wall-Radar-Human-Activity-Recognition-Without-Using-Neural-Networks.

Authors:Yeonseok Jeong, Jinsu Kim, Dohyeon Lee, Seung-won Hwang
Title: ECoRAG: Evidentiality-guided Compression for Long Context RAG
Abstract:
Large Language Models (LLMs) have shown remarkable performance in Open-Domain Question Answering (ODQA) by leveraging external documents through Retrieval-Augmented Generation (RAG). To reduce RAG overhead, from longer context, context compression is necessary. However, prior compression methods do not focus on filtering out non-evidential information, which limit the performance in LLM-based RAG. We thus propose Evidentiality-guided RAG, or ECoRAG framework. ECoRAG improves LLM performance by compressing retrieved documents based on evidentiality, ensuring whether answer generation is supported by the correct evidence. As an additional step, ECoRAG reflects whether the compressed content provides sufficient evidence, and if not, retrieves more until sufficient. Experiments show that ECoRAG improves LLM performance on ODQA tasks, outperforming existing compression methods. Furthermore, ECoRAG is highly cost-efficient, as it not only reduces latency but also minimizes token usage by retaining only the necessary information to generate the correct answer. Code is available at https://github.com/ldilab/ECoRAG.

Authors:Chenyu Lin, Yilin Wen, Du Su, Fei Sun, Muhan Chen, Chenfu Bao, Zhonghou Lv
Title: Knowledgeable-r1: Policy Optimization for Knowledge Exploration in Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) is a mainstream method for improving performance on knowledge-intensive tasks. However,current RAG systems often place too much emphasis on retrieved contexts. This can lead to reliance on inaccurate sources and overlook the model's inherent knowledge, especially when dealing with misleading or excessive information. To resolve this imbalance, we propose Knowledgeable-r1 that using joint sampling and define multi policy distributions in knowledge capability exploration to stimulate large language models'self-integrated utilization of parametric and contextual knowledge. Experiments show that Knowledgeable-r1 significantly enhances robustness and reasoning accuracy in both parameters and contextual conflict tasks and general RAG tasks, especially outperforming baselines by 17.07% in counterfactual scenarios and demonstrating consistent gains across RAG tasks. Our code are available at https://github.com/lcy80366872/ knowledgeable-r1.

Authors:Chenyu Lin, Yilin Wen, Du Su, Hexiang Tan, Fei Sun, Muhan Chen, Chenfu Bao, Zhonghou Lyu
Title: Resisting Contextual Interference in RAG via Parametric-Knowledge Reinforcement
Abstract:
Retrieval-augmented generation (RAG) improves performance on knowledge-intensive tasks but can be derailed by wrong, irrelevant, or conflicting retrieved text, causing models to rely on inaccurate evidence and cascade errors. We propose Knowledgeable-R1, a reinforcement-learning framework that explicitly trains large language models to use parametric knowledge (PK) to resist contextual interference while still exploiting external context when it is reliably helpful. Knowledgeable-R1 introduces a joint sampling scheme that generates paired responses with and without retrieval, and learns both local advantages (within each decoding regime) and global advantages under the same input to quantify when to ignore misleading context versus adopt it. We employ an asymmetric advantage transformation that amplifies exploratory behaviors toward parametric knowledge. Experiments show that \method significantly improves robustness and reasoning accuracy in knowledge conflict scenarios and general RAG scenarios, outperforming SOTA baselines by 23% in counterfactual scenarios, and without degradation when the retrieved context is fully accurate.Our code are available at https://github.com/lcy80366872/knowledgeable-R1.

Authors:Benedikt Hopf, Radu Timofte
Title: Practical Manipulation Model for Robust Deepfake Detection
Abstract:
Modern deepfake detection models have achieved strong performance even on the challenging cross-dataset task. However, detection performance under non-ideal conditions remains very unstable, limiting success on some benchmark datasets and making it easy to circumvent detection. Inspired by the move to a more real-world degradation model in the area of image super-resolution, we have developed a Practical Manipulation Model (PMM) that covers a larger set of possible forgeries. We extend the space of pseudo-fakes by using Poisson blending, more diverse masks, generator artifacts, and distractors. Additionally, we improve the detectors' generality and robustness by adding strong degradations to the training images. We demonstrate that these changes not only significantly enhance the model's robustness to common image degradations but also improve performance on standard benchmark datasets. Specifically, we show clear increases of $3.51\%$ and $6.21\%$ AUC on the DFDC and DFDCP datasets, respectively, over the s-o-t-a LAA backbone. Furthermore, we highlight the lack of robustness in previous detectors and our improvements in this regard. Code can be found at https://github.com/BenediktHopf/PMM

Authors:Noy Sternlicht, Ariel Gera, Roy Bar-Haim, Tom Hope, Noam Slonim
Title: Debatable Intelligence: Benchmarking LLM Judges via Debate Speech Evaluation
Abstract:
We introduce Debate Speech Evaluation as a novel and challenging benchmark for assessing LLM judges. Evaluating debate speeches requires a deep understanding of the speech at multiple levels, including argument strength and relevance, the coherence and organization of the speech, the appropriateness of its style and tone, and so on. This task involves a unique set of cognitive abilities that previously received limited attention in systematic LLM benchmarking. To explore such skills, we leverage a dataset of over 600 meticulously annotated debate speeches and present the first in-depth analysis of how state-of-the-art LLMs compare to human judges on this task. Our findings reveal a nuanced picture: while larger models can approximate individual human judgments in some respects, they differ substantially in their overall judgment behavior. We also investigate the ability of frontier LLMs to generate persuasive, opinionated speeches, showing that models may perform at a human level on this task.

Authors:Viet Nguyen, Changjian Shui, Vijay Giri, Siddarth Arya, Amol Verma, Fahad Razak, Rahul G. Krishnan
Title: Reliably detecting model failures in deployment without labels
Abstract:
The distribution of data changes over time; models operating operating in dynamic environments need retraining. But knowing when to retrain, without access to labels, is an open challenge since some, but not all shifts degrade model performance. This paper formalizes and addresses the problem of post-deployment deterioration (PDD) monitoring. We propose D3M, a practical and efficient monitoring algorithm based on the disagreement of predictive models, achieving low false positive rates under non-deteriorating shifts and provides sample complexity bounds for high true positive rates under deteriorating shifts. Empirical results on both standard benchmark and a real-world large-scale internal medicine dataset demonstrate the effectiveness of the framework and highlight its viability as an alert mechanism for high-stakes machine learning pipelines.

Authors:Viet Nguyen, Changjian Shui, Vijay Giri, Siddarth Arya, Michael Cooper, Amol Verma, Fahad Razak, Rahul G. Krishnan
Title: Reliably Detecting Model Failures in Deployment Without Labels
Abstract:
The distribution of data changes over time; models operating operating in dynamic environments need retraining. But knowing when to retrain, without access to labels, is an open challenge since some, but not all shifts degrade model performance. This paper formalizes and addresses the problem of post-deployment deterioration (PDD) monitoring. We propose D3M, a practical and efficient monitoring algorithm based on the disagreement of predictive models, achieving low false positive rates under non-deteriorating shifts and provides sample complexity bounds for high true positive rates under deteriorating shifts. Empirical results on both standard benchmark and a real-world large-scale internal medicine dataset demonstrate the effectiveness of the framework and highlight its viability as an alert mechanism for high-stakes machine learning pipelines.

Authors:Nicolas Lell, Ansgar Scherp
Title: iN2V: Bringing Transductive Node Embeddings to Inductive Graphs
Abstract:
Shallow node embeddings like node2vec (N2V) can be used for nodes without features or to supplement existing features with structure-based information. Embedding methods like N2V are limited in their application on new nodes, which restricts them to the transductive setting where the entire graph, including the test nodes, is available during training. We propose inductive node2vec (iN2V), which combines a post-hoc procedure to compute embeddings for nodes unseen during training and modifications to the original N2V training procedure to prepare the embeddings for this post-hoc procedure. We conduct experiments on several benchmark datasets and demonstrate that iN2V is an effective approach to bringing transductive embeddings to an inductive setting. Using iN2V embeddings improves node classification by 1 point on average, with up to 6 points of improvement depending on the dataset and the number of unseen nodes. Our iN2V is a plug-in approach to create new or enrich existing embeddings. It can also be combined with other embedding methods, making it a versatile approach for inductive node representation learning. Code to reproduce the results is available at https://github.com/Foisunt/iN2V .

Authors:Hyeongwon Jang, Changhun Kim, Eunho Yang
Title: TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation
Abstract:
Recent explainable artificial intelligence (XAI) methods for time series primarily estimate point-wise attribution magnitudes, while overlooking the directional impact on predictions, leading to suboptimal identification of significant points. Our analysis shows that conventional Integrated Gradients (IG) effectively capture critical points with both positive and negative impacts on predictions. However, current evaluation metrics fail to assess this capability, as they inadvertently cancel out opposing feature contributions. To address this limitation, we propose novel evaluation metrics-Cumulative Prediction Difference (CPD) and Cumulative Prediction Preservation (CPP)-to systematically assess whether attribution methods accurately identify significant positive and negative points in time series XAI. Under these metrics, conventional IG outperforms recent counterparts. However, directly applying IG to time series data may lead to suboptimal outcomes, as generated paths ignore temporal relationships and introduce out-of-distribution samples. To overcome these challenges, we introduce TIMING, which enhances IG by incorporating temporal awareness while maintaining its theoretical properties. Extensive experiments on synthetic and real-world time series benchmarks demonstrate that TIMING outperforms existing time series XAI baselines. Our code is available at https://github.com/drumpt/TIMING.

Authors:Zeming Wei, Yiwen Guo, Yisen Wang
Title: Identifying and Understanding Cross-Class Features in Adversarial Training
Abstract:
Adversarial training (AT) has been considered one of the most effective methods for making deep neural networks robust against adversarial attacks, while the training mechanisms and dynamics of AT remain open research problems. In this paper, we present a novel perspective on studying AT through the lens of class-wise feature attribution. Specifically, we identify the impact of a key family of features on AT that are shared by multiple classes, which we call cross-class features. These features are typically useful for robust classification, which we offer theoretical evidence to illustrate through a synthetic data model. Through systematic studies across multiple model architectures and settings, we find that during the initial stage of AT, the model tends to learn more cross-class features until the best robustness checkpoint. As AT further squeezes the training robust loss and causes robust overfitting, the model tends to make decisions based on more class-specific features. Based on these discoveries, we further provide a unified view of two existing properties of AT, including the advantage of soft-label training and robust overfitting. Overall, these insights refine the current understanding of AT mechanisms and provide new perspectives on studying them. Our code is available at https://github.com/PKU-ML/Cross-Class-Features-AT.

Authors:Kuang He, Wei Tang, Tong Wei, Min-Ling Zhang
Title: Tuning the Right Foundation Models is What you Need for Partial Label Learning
Abstract:
Partial label learning (PLL) seeks to train generalizable classifiers from datasets with inexact supervision, a common challenge in real-world applications. Existing studies have developed numerous approaches to progressively refine and recover ground-truth labels by training convolutional neural networks. However, limited attention has been given to foundation models that offer transferrable representations. In this work, we empirically conduct comprehensive evaluations of 11 foundation models across 13 PLL approaches on 8 benchmark datasets under 3 PLL scenarios. We further propose PartialCLIP, an efficient fine-tuning framework for foundation models in PLL. Our findings reveal that current PLL approaches tend to 1) achieve significant performance gains when using foundation models, 2) exhibit remarkably similar performance to each other, 3) maintain stable performance across varying ambiguity levels, while 4) are susceptible to foundation model selection and adaptation strategies. Additionally, we demonstrate the efficacy of text-embedding classifier initialization and effective candidate label filtering using zero-shot CLIP. Our experimental results and analysis underscore the limitations of current PLL approaches and provide valuable insights for developing more generalizable PLL models. The source code can be found at https://github.com/SEU-hk/PartialCLIP.

Authors:Zhenran Xu, Xue Yang, Yiyu Wang, Qingli Hu, Zijiao Wu, Longyue Wang, Weihua Luo, Kaifu Zhang, Baotian Hu, Min Zhang
Title: ComfyUI-Copilot: An Intelligent Assistant for Automated Workflow Development
Abstract:
We introduce ComfyUI-Copilot, a large language model-powered plugin designed to enhance the usability and efficiency of ComfyUI, an open-source platform for AI-driven art creation. Despite its flexibility and user-friendly interface, ComfyUI can present challenges to newcomers, including limited documentation, model misconfigurations, and the complexity of workflow design. ComfyUI-Copilot addresses these challenges by offering intelligent node and model recommendations, along with automated one-click workflow construction. At its core, the system employs a hierarchical multi-agent framework comprising a central assistant agent for task delegation and specialized worker agents for different usages, supported by our curated ComfyUI knowledge bases to streamline debugging and deployment. We validate the effectiveness of ComfyUI-Copilot through both offline quantitative evaluations and online user feedback, showing that it accurately recommends nodes and accelerates workflow development. Additionally, use cases illustrate that ComfyUI-Copilot lowers entry barriers for beginners and enhances workflow efficiency for experienced users. The ComfyUI-Copilot installation package and a demo video are available at https://github.com/AIDC-AI/ComfyUI-Copilot.

Authors:Fuyi Zhang, Zhu Yu, Chunhao Li, Runmin Zhang, Xiaokai Bai, Zili Zhou, Si-Yuan Cao, Fang Wang, Hui-Liang Shen
Title: Structure-Aware Radar-Camera Depth Estimation
Abstract:
Radar has gained much attention in autonomous driving due to its accessibility and robustness. However, its standalone application for depth perception is constrained by issues of sparsity and noise. Radar-camera depth estimation offers a more promising complementary solution. Despite significant progress, current approaches fail to produce satisfactory dense depth maps, due to the unsatisfactory processing of the sparse and noisy radar data. They constrain the regions of interest for radar points in rigid rectangular regions, which may introduce unexpected errors and confusions. To address these issues, we develop a structure-aware strategy for radar depth enhancement, which provides more targeted regions of interest by leveraging the structural priors of RGB images. Furthermore, we design a Multi-Scale Structure Guided Network to enhance radar features and preserve detailed structures, achieving accurate and structure-detailed dense metric depth estimation. Building on these, we propose a structure-aware radar-camera depth estimation framework, named SA-RCD. Extensive experiments demonstrate that our SA-RCD achieves state-of-the-art performance on the nuScenes dataset. Our code will be available at https://github.com/FreyZhangYeh/SA-RCD.

Authors:Enrique Sanchez, Isma Hadji, Adrian Bulat, Christos Tzelepis, Brais Martinez, Georgios Tzimiropoulos
Title: Multi-scale Image Super Resolution with a Single Auto-Regressive Model
Abstract:
In this paper we tackle Image Super Resolution (ISR), using recent advances in Visual Auto-Regressive (VAR) modeling. VAR iteratively estimates the residual in latent space between gradually increasing image scales, a process referred to as next-scale prediction. Thus, the strong priors learned during pre-training align well with the downstream task (ISR). To our knowledge, only VARSR has exploited this synergy so far, showing promising results. However, due to the limitations of existing residual quantizers, VARSR works only at a fixed resolution, i.e. it fails to map intermediate outputs to the corresponding image scales. Additionally, it relies on a 1B transformer architecture (VAR-d24), and leverages a large-scale private dataset to achieve state-of-the-art results. We address these limitations through two novel components: a) a Hierarchical Image Tokenization approach with a multi-scale image tokenizer that progressively represents images at different scales while simultaneously enforcing token overlap across scales, and b) a Direct Preference Optimization (DPO) regularization term that, relying solely on the LR and HR tokenizations, encourages the transformer to produce the latter over the former. To the best of our knowledge, this is the first time a quantizer is trained to force semantically consistent residuals at different scales, and the first time that preference-based optimization is used to train a VAR. Using these two components, our model can denoise the LR image and super-resolve at half and full target upscale factors in a single forward pass. Additionally, we achieve \textit{state-of-the-art results on ISR}, while using a small model (300M params vs ~1B params of VARSR), and without using external training data.

Authors:Huihan Wang, Zhiwen Yang, Hui Zhang, Dan Zhao, Bingzheng Wei, Yan Xu
Title: FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation
Abstract:
Synthesizing high-quality dynamic medical videos remains a significant challenge due to the need for modeling both spatial consistency and temporal dynamics. Existing Transformer-based approaches face critical limitations, including insufficient channel interactions, high computational complexity from self-attention, and coarse denoising guidance from timestep embeddings when handling varying noise levels. In this work, we propose FEAT, a full-dimensional efficient attention Transformer, which addresses these issues through three key innovations: (1) a unified paradigm with sequential spatial-temporal-channel attention mechanisms to capture global dependencies across all dimensions, (2) a linear-complexity design for attention mechanisms in each dimension, utilizing weighted key-value attention and global channel attention, and (3) a residual value guidance module that provides fine-grained pixel-level guidance to adapt to different noise levels. We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23\% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance. Furthermore, FEAT-L surpasses all comparison methods across multiple datasets, showcasing both superior effectiveness and scalability. Code is available at https://github.com/Yaziwel/FEAT.

Authors:Shiyi Xu, Yiwen Hu, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, Ji-Rong Wen
Title: ICPC-Eval: Probing the Frontiers of LLM Reasoning with Competitive Programming Contests
Abstract:
With the significant progress of large reasoning models in complex coding and reasoning tasks, existing benchmarks, like LiveCodeBench and CodeElo, are insufficient to evaluate the coding capabilities of large language models (LLMs) in real competition environments. Moreover, current evaluation metrics such as Pass@K fail to capture the reflective abilities of reasoning models. To address these challenges, we propose \textbf{ICPC-Eval}, a top-level competitive coding benchmark designed to probing the frontiers of LLM reasoning. ICPC-Eval includes 118 carefully curated problems from 11 recent ICPC contests held in various regions of the world, offering three key contributions: 1) A challenging realistic ICPC competition scenario, featuring a problem type and difficulty distribution consistent with actual contests. 2) A robust test case generation method and a corresponding local evaluation toolkit, enabling efficient and accurate local evaluation. 3) An effective test-time scaling evaluation metric, Refine@K, which allows iterative repair of solutions based on execution feedback. The results underscore the significant challenge in evaluating complex reasoning abilities: top-tier reasoning models like DeepSeek-R1 often rely on multi-turn code feedback to fully unlock their in-context reasoning potential when compared to non-reasoning counterparts. Furthermore, despite recent advancements in code generation, these models still lag behind top-performing human teams. We release the benchmark at: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs

Authors:Andrew Hamara, Greg Hamerly, Pablo Rivas, Andrew C. Freeman
Title: Learning to Plan via Supervised Contrastive Learning and Strategic Interpolation: A Chess Case Study
Abstract:
Modern chess engines achieve superhuman performance through deep tree search and regressive evaluation, while human players rely on intuition to select candidate moves followed by a shallow search to validate them. To model this intuition-driven planning process, we train a transformer encoder using supervised contrastive learning to embed board states into a latent space structured by positional evaluation. In this space, distance reflects evaluative similarity, and visualized trajectories display interpretable transitions between game states. We demonstrate that move selection can occur entirely within this embedding space by advancing toward favorable regions, without relying on deep search. Despite using only a 6-ply beam search, our model achieves an estimated Elo rating of 2593. Performance improves with both model size and embedding dimensionality, suggesting that latent planning may offer a viable alternative to traditional search. Although we focus on chess, the proposed embedding-based planning method can be generalized to other perfect-information games where state evaluations are learnable. All source code is available at https://github.com/andrewhamara/SOLIS.

Authors:Yu-Feng Chen, Tzuhsuan Huang, Pin-Yen Chiu, Jun-Cheng Chen
Title: Invisible Backdoor Triggers in Image Editing Model via Deep Watermarking
Abstract:
Diffusion models have achieved remarkable progress in both image generation and editing. However, recent studies have revealed their vulnerability to backdoor attacks, in which specific patterns embedded in the input can manipulate the model's behavior. Most existing research in this area has proposed attack frameworks focused on the image generation pipeline, leaving backdoor attacks in image editing relatively unexplored. Among the few studies targeting image editing, most utilize visible triggers, which are impractical because they introduce noticeable alterations to the input image before editing. In this paper, we propose a novel attack framework that embeds invisible triggers into the image editing process via poisoned training data. We leverage off-the-shelf deep watermarking models to encode imperceptible watermarks as backdoor triggers. Our goal is to make the model produce the predefined backdoor target when it receives watermarked inputs, while editing clean images normally according to the given prompt. With extensive experiments across different watermarking models, the proposed method achieves promising attack success rates. In addition, the analysis results of the watermark characteristics in term of backdoor attack further support the effectiveness of our approach. The code is available at:https://github.com/aiiu-lab/BackdoorImageEditing

Authors:Jônata Tyska Carvalho, Stefano Nolfi
Title: LLMs for sensory-motor control: Combining in-context and iterative learning
Abstract:
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as Gpt-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.

Authors:Mario Malizia, Charles Hamesse, Ken Hasselmann, Geert De Cubber, Nikolaos Tsiogkas, Eric Demeester, Rob Haelterman
Title: MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
Abstract:
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset comes with an estimation of the location of the targets, offering a benchmark for evaluating detection algorithms. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.

Authors:Kunshen Zhang
Title: OpenMaskDINO3D : Reasoning 3D Segmentation via Large Language Model
Abstract:
Although perception systems have made remarkable advancements in recent years, particularly in 2D reasoning segmentation, these systems still rely on explicit human instruction or pre-defined categories to identify target objects before executing visual recognition tasks. Such systems have matured significantly, demonstrating the ability to reason and comprehend implicit user intentions in two-dimensional contexts, producing accurate segmentation masks based on complex and implicit query text. However, a comparable framework and structure for 3D reasoning segmentation remain absent. This paper introduces OpenMaskDINO3D, a LLM designed for comprehensive 3D understanding and segmentation. OpenMaskDINO3D processes point cloud data and text prompts to produce instance segmentation masks, excelling in many 3D tasks. By introducing a SEG token and object identifier, we achieve high-precision 3D segmentation mask generation, enabling the model to directly produce accurate point cloud segmentation results from natural language instructions. Experimental results on large-scale ScanNet datasets validate the effectiveness of our OpenMaskDINO3D across various tasks.

Authors:Changyue Wang, Weihang Su, Qingyao Ai, Yiqun Liu
Title: Joint Evaluation of Answer and Reasoning Consistency for Hallucination Detection in Large Reasoning Models
Abstract:
Large Reasoning Models (LRMs) extend large language models with explicit, multi-step reasoning traces to enhance transparency and performance on complex tasks. However, these reasoning traces can be redundant or logically inconsistent, making them a new source of hallucination that is difficult to detect. Existing hallucination detection methods focus primarily on answer-level uncertainty and often fail to detect hallucinations or logical inconsistencies arising from the model's reasoning trace. This oversight is particularly problematic for LRMs, where the explicit thinking trace is not only an important support to the model's decision-making process but also a key source of potential hallucination. To this end, we propose RACE (Reasoning and Answer Consistency Evaluation), a novel framework specifically tailored for hallucination detection in LRMs. RACE operates by extracting essential reasoning steps and computing four diagnostic signals: inter-sample consistency of reasoning traces, entropy-based answer uncertainty, semantic alignment between reasoning and answers, and internal coherence of reasoning. This joint analysis enables fine-grained hallucination detection even when the final answer appears correct. Experiments across datasets and different LLMs demonstrate that RACE outperforms existing hallucination detection baselines, offering a robust and generalizable solution for evaluating LRMs. Our code is available at: https://github.com/bebr2/RACE.

Authors:Svetlana Pavlitska, Jamie Robb, Nikolai Polley, Melih Yazgan, J. Marius Zöllner
Title: Fool the Stoplight: Realistic Adversarial Patch Attacks on Traffic Light Detectors
Abstract:
Realistic adversarial attacks on various camera-based perception tasks of autonomous vehicles have been successfully demonstrated so far. However, only a few works considered attacks on traffic light detectors. This work shows how CNNs for traffic light detection can be attacked with printed patches. We propose a threat model, where each instance of a traffic light is attacked with a patch placed under it, and describe a training strategy. We demonstrate successful adversarial patch attacks in universal settings. Our experiments show realistic targeted red-to-green label-flipping attacks and attacks on pictogram classification. Finally, we perform a real-world evaluation with printed patches and demonstrate attacks in the lab settings with a mobile traffic light for construction sites and in a test area with stationary traffic lights. Our code is available at https://github.com/KASTEL-MobilityLab/attacks-on-traffic-light-detection.

Authors:Yujun Zhou, Jiayi Ye, Zipeng Ling, Yufei Han, Yue Huang, Haomin Zhuang, Zhenwen Liang, Kehan Guo, Taicheng Guo, Xiangqi Wang, Xiangliang Zhang
Title: Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and Supervision Study
Abstract:
Logical reasoning is a core capability for large language models (LLMs), yet existing benchmarks that rely solely on final-answer accuracy fail to capture the quality of the reasoning process. To address this, we introduce FineLogic, a fine-grained evaluation framework that assesses logical reasoning across three dimensions: overall accuracy, stepwise soundness, and representation-level probing. Leveraging this framework, we conduct a comprehensive study on how different supervision formats in fine-tuning shape reasoning abilities. We fine-tune LLMs on four supervision styles: one in natural language and three symbolic variants. We find a key trade-off: natural language supervision excels at generalization to out-of-distribution and long-chain problems, whereas symbolic supervision is superior at instilling structurally sound, atomic reasoning steps. Furthermore, our probing analysis indicates that fine-tuning primarily refines the model's step-by-step generation process, rather than improving its ability to converge on an answer early. Together, our framework and analysis provide a more rigorous lens for evaluating and improving logical reasoning in LLMs. The code is available at https://github.com/YujunZhou/FineLogic.

Authors:Yuyi Zhang, Yongxin Shi, Peirong Zhang, Yixin Zhao, Zhenhua Yang, Lianwen Jin
Title: MegaHan97K: A Large-Scale Dataset for Mega-Category Chinese Character Recognition with over 97K Categories
Abstract:
Foundational to the Chinese language and culture, Chinese characters encompass extraordinarily extensive and ever-expanding categories, with the latest Chinese GB18030-2022 standard containing 87,887 categories. The accurate recognition of this vast number of characters, termed mega-category recognition, presents a formidable yet crucial challenge for cultural heritage preservation and digital applications. Despite significant advances in Optical Character Recognition (OCR), mega-category recognition remains unexplored due to the absence of comprehensive datasets, with the largest existing dataset containing merely 16,151 categories. To bridge this critical gap, we introduce MegaHan97K, a mega-category, large-scale dataset covering an unprecedented 97,455 categories of Chinese characters. Our work offers three major contributions: (1) MegaHan97K is the first dataset to fully support the latest GB18030-2022 standard, providing at least six times more categories than existing datasets; (2) It effectively addresses the long-tail distribution problem by providing balanced samples across all categories through its three distinct subsets: handwritten, historical and synthetic subsets; (3) Comprehensive benchmarking experiments reveal new challenges in mega-category scenarios, including increased storage demands, morphologically similar character recognition, and zero-shot learning difficulties, while also unlocking substantial opportunities for future research. To the best of our knowledge, the MetaHan97K is likely the dataset with the largest classes not only in the field of OCR but may also in the broader domain of pattern recognition. The dataset is available at https://github.com/SCUT-DLVCLab/MegaHan97K.

Authors:Daniel Barath
Title: SupeRANSAC: One RANSAC to Rule Them All
Abstract:
Robust estimation is a cornerstone in computer vision, particularly for tasks like Structure-from-Motion and Simultaneous Localization and Mapping. RANSAC and its variants are the gold standard for estimating geometric models (e.g., homographies, relative/absolute poses) from outlier-contaminated data. Despite RANSAC's apparent simplicity, achieving consistently high performance across different problems is challenging. While recent research often focuses on improving specific RANSAC components (e.g., sampling, scoring), overall performance is frequently more influenced by the "bells and whistles" (i.e., the implementation details and problem-specific optimizations) within a given library. Popular frameworks like OpenCV and PoseLib demonstrate varying performance, excelling in some tasks but lagging in others. We introduce SupeRANSAC, a novel unified RANSAC pipeline, and provide a detailed analysis of the techniques that make RANSAC effective for specific vision tasks, including homography, fundamental/essential matrix, and absolute/rigid pose estimation. SupeRANSAC is designed for consistent accuracy across these tasks, improving upon the best existing methods by, for example, 6 AUC points on average for fundamental matrix estimation. We demonstrate significant performance improvements over the state-of-the-art on multiple problems and datasets. Code: https://github.com/danini/superansac

Authors:Athanasios C. Antoulas, Ion Victor Gosea, Charles Poussot-Vassal, Pierre Vuillemin
Title: Tensor-based multivariate function approximation: methods benchmarking and comparison
Abstract:
In this note, we evaluate the performances, the features and the user-experience of some methods (and their implementations) designed for tensor- (or data-) based multivariate function construction and approximation. To this aim, a collection of multivariate functions extracted from contributive works coming from different communities, is suggested. First, these functions with varying complexity (e.g. number and degree of the variables) and nature (e.g. rational, irrational, differentiable or not, symmetric, etc.) are used to construct tensors, each of different dimension and size on the disk. Second, grounded on this tensor, we inspect performances of each considered method (e.g. the accuracy, the computational time, the parameters tuning impact, etc.). Finally, considering the "best" parameter tuning set, we compare each method using multiple evaluation criteria. The purpose of this note is not to rank the methods but rather to evaluate as fairly as possible the different available strategies, with the idea in mind to guide users to understand the process, the possibilities, the advantages and the limits brought by each tools. The contribution claimed is to suggest a complete benchmark collection of some available tools for tensor approximation by surrogate models (e.g. rational functions, networks, etc.). In addition, as contributors of the multivariate Loewner Framework (mLF) approach (and its side implementation in MDSPACK), attention and details of the latter are more explicitly given, in order to provide readers a digest of this contributive work and some details with simple examples.

Authors:Yusuke Matsui
Title: LotusFilter: Fast Diverse Nearest Neighbor Search via a Learned Cutoff Table
Abstract:
Approximate nearest neighbor search (ANNS) is an essential building block for applications like RAG but can sometimes yield results that are overly similar to each other. In certain scenarios, search results should be similar to the query and yet diverse. We propose LotusFilter, a post-processing module to diversify ANNS results. We precompute a cutoff table summarizing vectors that are close to each other. During the filtering, LotusFilter greedily looks up the table to delete redundant vectors from the candidates. We demonstrated that the LotusFilter operates fast (0.02 [ms/query]) in settings resembling real-world RAG applications, utilizing features such as OpenAI embeddings. Our code is publicly available at https://github.com/matsui528/lotf.

Authors:Dingdong Wang, Jincenzi Wu, Junan Li, Dongchao Yang, Xueyuan Chen, Tianhua Zhang, Helen Meng
Title: MMSU: A Massive Multi-task Spoken Language Understanding and Reasoning Benchmark
Abstract:
Speech inherently contains rich acoustic information that extends far beyond the textual language. In real-world spoken language understanding, effective interpretation often requires integrating semantic meaning (e.g., content), paralinguistic features (e.g., emotions, speed, pitch) and phonological characteristics (e.g., prosody, intonation, rhythm), which are embedded in speech. While recent multimodal Speech Large Language Models (SpeechLLMs) have demonstrated remarkable capabilities in processing audio information, their ability to perform fine-grained perception and complex reasoning in natural speech remains largely unexplored. To address this gap, we introduce MMSU, a comprehensive benchmark designed specifically for understanding and reasoning in spoken language. MMSU comprises 5,000 meticulously curated audio-question-answer triplets across 47 distinct tasks. To ground our benchmark in linguistic theory, we systematically incorporate a wide range of linguistic phenomena, including phonetics, prosody, rhetoric, syntactics, semantics, and paralinguistics. Through a rigorous evaluation of 14 advanced SpeechLLMs, we identify substantial room for improvement in existing models, highlighting meaningful directions for future optimization. MMSU establishes a new standard for comprehensive assessment of spoken language understanding, providing valuable insights for developing more sophisticated human-AI speech interaction systems. MMSU benchmark is available at https://huggingface.co/datasets/ddwang2000/MMSU. Evaluation Code is available at https://github.com/dingdongwang/MMSU_Bench.

Authors:Jiachen Tang, Zhonghao Wang, Sirui Chen, Sheng Zhou, Jiawei Chen, Jiajun Bu
Title: OpenGT: A Comprehensive Benchmark For Graph Transformers
Abstract:
Graph Transformers (GTs) have recently demonstrated remarkable performance across diverse domains. By leveraging attention mechanisms, GTs are capable of modeling long-range dependencies and complex structural relationships beyond local neighborhoods. However, their applicable scenarios are still underexplored, this highlights the need to identify when and why they excel. Furthermore, unlike GNNs, which predominantly rely on message-passing mechanisms, GTs exhibit a diverse design space in areas such as positional encoding, attention mechanisms, and graph-specific adaptations. Yet, it remains unclear which of these design choices are truly effective and under what conditions. As a result, the community currently lacks a comprehensive benchmark and library to promote a deeper understanding and further development of GTs. To address this gap, this paper introduces OpenGT, a comprehensive benchmark for Graph Transformers. OpenGT enables fair comparisons and multidimensional analysis by establishing standardized experimental settings and incorporating a broad selection of state-of-the-art GNNs and GTs. Our benchmark evaluates GTs from multiple perspectives, encompassing diverse tasks and datasets with varying properties. Through extensive experiments, our benchmark has uncovered several critical insights, including the difficulty of transferring models across task levels, the limitations of local attention, the efficiency trade-offs in several models, the application scenarios of specific positional encodings, and the preprocessing overhead of some positional encodings. We aspire for this work to establish a foundation for future graph transformer research emphasizing fairness, reproducibility, and generalizability. We have developed an easy-to-use library OpenGT for training and evaluating existing GTs. The benchmark code is available at https://github.com/eaglelab-zju/OpenGT.

Authors:Suhan Woo, Seongwon Lee, Jinwoo Jang, Euntai Kim
Title: HypeVPR: Exploring Hyperbolic Space for Perspective to Equirectangular Visual Place Recognition
Abstract:
When applying Visual Place Recognition (VPR) to real-world mobile robots and similar applications, perspective-to-equirectangular (P2E) formulation naturally emerges as a suitable approach to accommodate diverse query images captured from various viewpoints. In this paper, we introduce HypeVPR, a novel hierarchical embedding framework in hyperbolic space, designed to address the unique challenges of P2E VPR. The key idea behind HypeVPR is that visual environments captured by panoramic views exhibit inherent hierarchical structures. To leverage this property, we employ hyperbolic space to represent hierarchical feature relationships and preserve distance properties within the feature space. To achieve this, we propose a hierarchical feature aggregation mechanism that organizes local-to-global feature representations within hyperbolic space. Additionally, HypeVPR adopts an efficient coarse-to-fine search strategy to enable flexible control over accuracy-efficiency trade-offs and ensure robust matching even between descriptors from different image types. This approach allows HypeVPR to outperform existing methods while significantly accelerating retrieval and reducing database storage requirements. The code and models will be released at https://github.com/suhan-woo/HypeVPR.git.

Authors:Shenshen Li, Kaiyuan Deng, Lei Wang, Hao Yang, Chong Peng, Peng Yan, Fumin Shen, Heng Tao Shen, Xing Xu
Title: Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning
Abstract:
While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.

Authors:Niki Martinel, Rita Pucci
Title: Physics Informed Capsule Enhanced Variational AutoEncoder for Underwater Image Enhancement
Abstract:
We present a novel dual-stream architecture that achieves state-of-the-art underwater image enhancement by explicitly integrating the Jaffe-McGlamery physical model with capsule clustering-based feature representation learning. Our method simultaneously estimates transmission maps and spatially-varying background light through a dedicated physics estimator while extracting entity-level features via capsule clustering in a parallel stream. This physics-guided approach enables parameter-free enhancement that respects underwater formation constraints while preserving semantic structures and fine-grained details. Our approach also features a novel optimization objective ensuring both physical adherence and perceptual quality across multiple spatial frequencies. To validate our approach, we conducted extensive experiments across six challenging benchmarks. Results demonstrate consistent improvements of $+0.5$dB PSNR over the best existing methods while requiring only one-third of their computational complexity (FLOPs), or alternatively, more than $+1$dB PSNR improvement when compared to methods with similar computational budgets. Code and data \textit{will} be available at https://github.com/iN1k1/.

Authors:Zelu Qi, Ping Shi, Chaoyang Zhang, Shuqi Wang, Fei Zhao, Da Pan, Zefeng Ying
Title: Towards Holistic Visual Quality Assessment of AI-Generated Videos: A LLM-Based Multi-Dimensional Evaluation Model
Abstract:
The development of AI-Generated Video (AIGV) technology has been remarkable in recent years, significantly transforming the paradigm of video content production. However, AIGVs still suffer from noticeable visual quality defects, such as noise, blurriness, frame jitter and low dynamic degree, which severely impact the user's viewing experience. Therefore, an effective automatic visual quality assessment is of great importance for AIGV content regulation and generative model improvement. In this work, we decompose the visual quality of AIGVs into three dimensions: technical quality, motion quality, and video semantics. For each dimension, we design corresponding encoder to achieve effective feature representation. Moreover, considering the outstanding performance of large language models (LLMs) in various vision and language tasks, we introduce a LLM as the quality regression module. To better enable the LLM to establish reasoning associations between multi-dimensional features and visual quality, we propose a specially designed multi-modal prompt engineering framework. Additionally, we incorporate LoRA fine-tuning technology during the training phase, allowing the LLM to better adapt to specific tasks. Our proposed method achieved \textbf{second place} in the NTIRE 2025 Quality Assessment of AI-Generated Content Challenge: Track 2 AI Generated video, demonstrating its effectiveness. Codes can be obtained at https://github.com/QiZelu/AIGVEval.

Authors:Gio Paik, Geewook Kim, Jinbae Im
Title: MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models
Abstract:
This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at https://github.com/naver-ai/MMRefine.

Authors:Osayamen Jonathan Aimuyo, Byungsoo Oh, Rachee Singh
Title: FlashDMoE: Fast Distributed MoE in a Single Kernel
Abstract:
The computational sparsity of Mixture-of-Experts (MoE) models enables sub-linear growth in compute cost as model size increases, thus offering a scalable path to training massive neural networks. However, existing implementations suffer from \emph{low GPU utilization}, \emph{significant latency overhead}, and a fundamental \emph{inability to leverage task locality}, primarily due to CPU-managed scheduling, host-initiated communication, and frequent kernel launches. To overcome these limitations, we develop FlashDMoE, a fully GPU-resident MoE operator that fuses expert computation and inter-GPU communication into a \emph{single persistent GPU kernel}. FlashDMoE enables fine-grained pipelining of dispatch, compute, and combine phases, eliminating launch overheads and reducing idle gaps. Unlike existing work, FlashDMoE obviates bulk-synchronous collectives for one-sided, device-initiated, inter-GPU (R)DMA transfers, thus unlocking \emph{payload efficiency}, where we eliminate bloated or redundant network payloads in sparsely activated layers. When evaluated on a single 8-H100 GPU node with MoE models having up to 128 experts and 16K token sequences, FlashDMoE achieves up to \textbf{9}$\times$ higher GPU utilization, \textbf{6}$\times$ lower latency, \textbf{5.7}$\times$ higher throughput, and \textbf{4}$\times$ better overlap efficiency compared to state-of-the-art baselines, despite using FP32 while baselines use FP16. FlashDMoE demonstrates that principled GPU kernel-hardware co-design is key to unlocking the performance ceiling of large-scale distributed ML workloads.

Authors:Juhyun Oh, Eunsu Kim, Alice Oh
Title: Flex-TravelPlanner: A Benchmark for Flexible Planning with Language Agents
Abstract:
Real-world planning problems require constant adaptation to changing requirements and balancing of competing constraints. However, current benchmarks for evaluating LLMs' planning capabilities primarily focus on static, single-turn scenarios. We introduce Flex-TravelPlanner, a benchmark that evaluates language models' ability to reason flexibly in dynamic planning scenarios. Building on the TravelPlanner dataset~\citep{xie2024travelplanner}, we introduce two novel evaluation settings: (1) sequential constraint introduction across multiple turns, and (2) scenarios with explicitly prioritized competing constraints. Our analysis of GPT-4o and Llama 3.1 70B reveals several key findings: models' performance on single-turn tasks poorly predicts their ability to adapt plans across multiple turns; constraint introduction order significantly affects performance; and models struggle with constraint prioritization, often incorrectly favoring newly introduced lower priority preferences over existing higher-priority constraints. These findings highlight the importance of evaluating LLMs in more realistic, dynamic planning scenarios and suggest specific directions for improving model performance on complex planning tasks. The code and dataset for our framework are publicly available at https://github.com/juhyunohh/FlexTravelBench.

Authors:Zhuoyun Zhong, Seyedali Golestaneh, Constantinos Chamzas
Title: ActivePusher: Active Learning and Planning with Residual Physics for Nonprehensile Manipulation
Abstract:
Planning with learned dynamics models offers a promising approach toward versatile real-world manipulation, particularly in nonprehensile settings such as pushing or rolling, where accurate analytical models are difficult to obtain. However, collecting training data for learning-based methods can be costly and inefficient, as it often relies on randomly sampled interactions that are not necessarily the most informative. Furthermore, learned models tend to exhibit high uncertainty in underexplored regions of the skill space, undermining the reliability of long-horizon planning. To address these challenges, we propose ActivePusher, a novel framework that combines residual-physics modeling with uncertainty-based active learning, to focus data acquisition on the most informative skill parameters. Additionally, ActivePusher seamlessly integrates with model-based kinodynamic planners, leveraging uncertainty estimates to bias control sampling toward more reliable actions. We evaluate our approach in both simulation and real-world environments, and demonstrate that it consistently improves data efficiency and achieves higher planning success rates in comparison to baseline methods. The source code is available at https://github.com/elpis-lab/ActivePusher.

Authors:Qiming Hu, Linlong Fan, Yiyan Luo, Yuhang Yu, Xiaojie Guo, Qingnan Fan
Title: Text-Aware Real-World Image Super-Resolution via Diffusion Model with Joint Segmentation Decoders
Abstract:
The introduction of generative models has significantly advanced image super-resolution (SR) in handling real-world degradations. However, they often incur fidelity-related issues, particularly distorting textual structures. In this paper, we introduce a novel diffusion-based SR framework, namely TADiSR, which integrates text-aware attention and joint segmentation decoders to recover not only natural details but also the structural fidelity of text regions in degraded real-world images. Moreover, we propose a complete pipeline for synthesizing high-quality images with fine-grained full-image text masks, combining realistic foreground text regions with detailed background content. Extensive experiments demonstrate that our approach substantially enhances text legibility in super-resolved images, achieving state-of-the-art performance across multiple evaluation metrics and exhibiting strong generalization to real-world scenarios. Our code is available at \href{https://github.com/mingcv/TADiSR}{here}.

Authors:Linjie Li, Mahtab Bigverdi, Jiawei Gu, Zixian Ma, Yinuo Yang, Ziang Li, Yejin Choi, Ranjay Krishna
Title: Unfolding Spatial Cognition: Evaluating Multimodal Models on Visual Simulations
Abstract:
Spatial cognition is essential for human intelligence, enabling problem-solving through visual simulations rather than solely relying on verbal reasoning. However, existing AI benchmarks primarily assess verbal reasoning, neglecting the complexities of non-verbal, multi-step visual simulation. We introduce STARE(Spatial Transformations and Reasoning Evaluation), a benchmark designed to rigorously evaluate multimodal large language models on tasks better solved through multi-step visual simulation. STARE features 4K tasks spanning foundational geometric transformations (2D and 3D), integrated spatial reasoning (cube net folding and tangram puzzles), and real-world spatial reasoning (perspective and temporal reasoning), reflecting practical cognitive challenges like object assembly, mechanical diagram interpretation, and everyday spatial navigation. Our evaluations show that models excel at reasoning over simpler 2D transformations, but perform close to random chance on more complex tasks like 3D cube net folding and tangram puzzles that require multi-step visual simulations. Humans achieve near-perfect accuracy but take considerable time (up to 28.9s) on complex tasks, significantly speeding up (down by 7.5 seconds on average) with intermediate visual simulations. In contrast, models exhibit inconsistent performance gains from visual simulations, improving on most tasks but declining in specific cases like tangram puzzles (GPT-4o, o1) and cube net folding (Claude-3.5, Gemini-2.0 Flash), indicating that models may not know how to effectively leverage intermediate visual information.

Authors:Li Liu, Heng Yong
Title: DeePoly: A High-Order Accuracy Scientific Machine Learning Framework for Function Approximation and Solving PDEs
Abstract:
Recently, machine learning methods have gained significant traction in scientific computing, particularly for solving Partial Differential Equations (PDEs). However, methods based on deep neural networks (DNNs) often lack convergence guarantees and computational efficiency compared to traditional numerical schemes. This work introduces DeePoly, a novel framework that transforms the solution paradigm from pure non-convex parameter optimization to a two-stage approach: first employing a DNN to capture complex global features, followed by linear space optimization with combined DNN-extracted features (Spotter) and polynomial basis functions (Sniper). This strategic combination leverages the complementary strengths of both methods -- DNNs excel at approximating complex global features (i.e., high-gradient features) and stabilize the polynomial approximation while polynomial bases provide high-precision local corrections with convergence guarantees. Theoretical analysis and numerical experiments demonstrate that this approach significantly enhances both high-order accuracy and efficiency across diverse problem types while maintaining mesh-free and scheme-free properties. This paper also serves as a theoretical exposition for the open-source project DeePoly.

Authors:Marianna Nezhurina, Tomer Porian, Giovanni Pucceti, Tommie Kerssies, Romain Beaumont, Mehdi Cherti, Jenia Jitsev
Title: Scaling Laws for Robust Comparison of Open Foundation Language-Vision Models and Datasets
Abstract:
In studies of transferable learning, scaling laws are obtained for various important foundation models to predict their properties and performance at larger scales. We show here how scaling law derivation can also be used for model and dataset comparison, allowing to decide which procedure is to be preferred for pre-training. For the first time, full scaling laws based on dense measurements across a wide span of model and samples seen scales are derived for two important language-vision learning procedures, CLIP and MaMMUT, that use either contrastive only or contrastive and captioning text generative loss. Ensuring sufficient prediction accuracy for held out points, we use derived scaling laws to compare both models, obtaining evidence for MaMMUT's stronger improvement with scale and better sample efficiency than standard CLIP. To strengthen validity of the comparison, we show scaling laws for various downstream tasks, classification, retrieval, and segmentation, and for different open datasets, DataComp, DFN and Re-LAION, observing consistently the same trends. We show that comparison can also be performed when deriving scaling laws with a constant learning rate schedule, reducing compute cost. Accurate derivation of scaling laws provides thus means to perform model and dataset comparison across scale spans, avoiding misleading conclusions based on measurements from single reference scales only, paving the road for systematic comparison and improvement of open foundation models and datasets for their creation. We release all the pre-trained models with their intermediate checkpoints, including openMaMMUT-L/14, which achieves $80.3\%$ zero-shot ImageNet-1k accuracy, trained on 12.8B samples from DataComp-1.4B. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/scaling-laws-for-comparison.

Authors:Xun Li, Qiong Wu, Pingyi Fan, Kezhi Wang, Nan Cheng, Khaled B. Letaief
Title: Federated Learning Assisted Edge Caching Scheme Based on Lightweight Architecture DDPM
Abstract:
Edge caching is an emerging technology that empowers caching units at edge nodes, allowing users to fetch contents of interest that have been pre-cached at the edge nodes. The key to pre-caching is to maximize the cache hit percentage for cached content without compromising users' privacy. In this letter, we propose a federated learning (FL) assisted edge caching scheme based on lightweight architecture denoising diffusion probabilistic model (LDPM). Our simulation results verify that our proposed scheme achieves a higher cache hit percentage compared to existing FL-based methods and baseline methods.

Authors:Qingchuan Li, Jiatong Li, Zirui Liu, Mingyue Cheng, Yuting Zeng, Qi Liu, Tongxuan Liu
Title: Are LLMs Reliable Translators of Logical Reasoning Across Lexically Diversified Contexts?
Abstract:
Neuro-symbolic approaches combining large language models (LLMs) with solvers excels in logical reasoning problems need long reasoning chains. In this paradigm, LLMs serve as translators, converting natural language reasoning problems into formal logic formulas. Then reliable symbolic solvers return correct solutions. Despite their success, we find that LLMs, as translators, struggle to handle lexical diversification, a common linguistic phenomenon, indicating that LLMs as logic translators are unreliable in real-world scenarios. Moreover, existing logical reasoning benchmarks lack lexical diversity, failing to challenge LLMs' ability to translate such text and thus obscuring this issue. In this work, we propose SCALe, a benchmark designed to address this significant gap through **logic-invariant lexical diversification**. By using LLMs to transform original benchmark datasets into lexically diversified but logically equivalent versions, we evaluate LLMs' ability to consistently map diverse expressions to uniform logical symbols on these new datasets. Experiments using SCALe further confirm that current LLMs exhibit deficiencies in this capability. Building directly on the deficiencies identified through our benchmark, we propose a new method, MenTaL, to address this limitation. This method guides LLMs to first construct a table unifying diverse expressions before performing translation. Applying MenTaL through in-context learning and supervised fine-tuning (SFT) significantly improves the performance of LLM translators on lexically diversified text. Our code is now available at https://github.com/wufeiwuwoshihua/LexicalDiver.

Authors:K. O. T. Erziev
Title: BSBench: will your LLM find the largest prime number?
Abstract:
We propose that benchmarking LLMs on questions which have no reasonable answer actually isn't as silly as it sounds. We also present a benchmark that allows such testing and a method to modify the existing datasets, and discover that existing models demonstrate a performance far from the perfect on such questions. Our code and data artifacts are available at https://github.com/L3G5/impossible-bench

Authors:Nikita Oskolkov, Huzhenyu Zhang, Dmitry Makarov, Dmitry Yudin, Aleksandr Panov
Title: SGN-CIRL: Scene Graph-based Navigation with Curriculum, Imitation, and Reinforcement Learning
Abstract:
The 3D scene graph models spatial relationships between objects, enabling the agent to efficiently navigate in a partially observable environment and predict the location of the target object.This paper proposes an original framework named SGN-CIRL (3D Scene Graph-Based Reinforcement Learning Navigation) for mapless reinforcement learning-based robot navigation with learnable representation of open-vocabulary 3D scene graph. To accelerate and stabilize the training of reinforcement learning-based algorithms, the framework also employs imitation learning and curriculum learning. The first one enables the agent to learn from demonstrations, while the second one structures the training process by gradually increasing task complexity from simple to more advanced scenarios. Numerical experiments conducted in the Isaac Sim environment showed that using a 3D scene graph for reinforcement learning significantly increased the success rate in difficult navigation cases. The code is open-sourced and available at: https://github.com/Xisonik/Aloha\_graph.

Authors:C. Evans Hedges
Title: Orthogonal Gradient Descent Improves Neural Calibration
Abstract:
We provide evidence that orthogonalizing gradients during training improves model calibration without sacrificing accuracy. On CIFAR-10 with 10\% labeled data, $\perp$Grad matches SGD in accuracy but yields consistently improved calibration metrics such as lower test loss, reduced softmax overconfidence, and higher predictive entropy. These benefits persist under input corruption (CIFAR-10C) and extended training, where $\perp$Grad models degrade more gracefully than SGD-trained counterparts. $\perp$Grad is optimizer-agnostic, incurs minimal overhead, and works well with post-hoc calibration techniques like temperature scaling. Theoretically, we prove convergence of a simplified version of $\perp$Grad under mild assumptions and characterize its stationary points in positive homogeneous networks: $\perp$Grad converges to solutions where further loss reduction requires confidence scaling rather than decision boundary improvement. Code for this paper can be found at: https://github.com/evanshedges2/orthograd\_improves\_calibration.

Authors:Apurv Verma, NhatHai Phan, Shubhendu Trivedi
Title: Watermarking Degrades Alignment in Language Models: Analysis and Mitigation
Abstract:
Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives. To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.

Authors:Hasin Us Sami, Swapneel Sen, Amit K. Roy-Chowdhury, Srikanth V. Krishnamurthy, Basak Guler
Title: Gradient Inversion Attacks on Parameter-Efficient Fine-Tuning
Abstract:
Federated learning (FL) allows multiple data-owners to collaboratively train machine learning models by exchanging local gradients, while keeping their private data on-device. To simultaneously enhance privacy and training efficiency, recently parameter-efficient fine-tuning (PEFT) of large-scale pretrained models has gained substantial attention in FL. While keeping a pretrained (backbone) model frozen, each user fine-tunes only a few lightweight modules to be used in conjunction, to fit specific downstream applications. Accordingly, only the gradients with respect to these lightweight modules are shared with the server. In this work, we investigate how the privacy of the fine-tuning data of the users can be compromised via a malicious design of the pretrained model and trainable adapter modules. We demonstrate gradient inversion attacks on a popular PEFT mechanism, the adapter, which allow an attacker to reconstruct local data samples of a target user, using only the accessible adapter gradients. Via extensive experiments, we demonstrate that a large batch of fine-tuning images can be retrieved with high fidelity. Our attack highlights the need for privacy-preserving mechanisms for PEFT, while opening up several future directions. Our code is available at https://github.com/info-ucr/PEFTLeak.

Authors:Egor Petrov, Grigoriy Evseev, Aleksey Antonov, Andrey Veprikov, Pavel Plyusnin, Nikolay Bushkov, Stanislav Moiseev, Aleksandr Beznosikov
Title: Leveraging Coordinate Momentum in SignSGD and Muon: Memory-Optimized Zero-Order
Abstract:
Fine-tuning Large Language Models (LLMs) is essential for adapting pre-trained models to downstream tasks. Yet traditional first-order optimizers such as Stochastic Gradient Descent (SGD) and Adam incur prohibitive memory and computational costs that scale poorly with model size. In this paper, we investigate zero-order (ZO) optimization methods as a memory- and compute-efficient alternative, particularly in the context of parameter-efficient fine-tuning techniques like LoRA. We propose $\texttt{JAGUAR SignSGD}$, a ZO momentum-based algorithm that extends ZO SignSGD, requiring the same number of parameters as the standard ZO SGD and only $\mathcal{O}(1)$ function evaluations per iteration. To the best of our knowledge, this is the first study to establish rigorous convergence guarantees for SignSGD in the stochastic ZO case. We further propose $\texttt{JAGUAR Muon}$, a novel ZO extension of the Muon optimizer that leverages the matrix structure of model parameters, and we provide its convergence rate under arbitrary stochastic noise. Through extensive experiments on challenging LLM fine-tuning benchmarks, we demonstrate that the proposed algorithms meet or exceed the convergence quality of standard first-order methods, achieving significant memory reduction. Our theoretical and empirical results establish new ZO optimization methods as a practical and theoretically grounded approach for resource-constrained LLM adaptation. Our code is available at https://github.com/brain-mmo-lab/ZO_LLM

Authors:Egor Petrov, Grigoriy Evseev, Aleksey Antonov, Andrey Veprikov, Nikolay Bushkov, Stanislav Moiseev, Aleksandr Beznosikov
Title: Leveraging Coordinate Momentum in SignSGD and Muon: Memory-Optimized Zero-Order
Abstract:
Fine-tuning Large Language Models (LLMs) is essential for adapting pre-trained models to downstream tasks. Yet traditional first-order optimizers such as Stochastic Gradient Descent (SGD) and Adam incur prohibitive memory and computational costs that scale poorly with model size. In this paper, we investigate zero-order (ZO) optimization methods as a memory- and compute-efficient alternative, particularly in the context of parameter-efficient fine-tuning techniques like LoRA. We propose $\texttt{JAGUAR SignSGD}$, a ZO momentum-based algorithm that extends ZO SignSGD, requiring the same number of parameters as the standard ZO SGD and only $\mathcal{O}(1)$ function evaluations per iteration. To the best of our knowledge, this is the first study to establish rigorous convergence guarantees for SignSGD in the stochastic ZO case. We further propose $\texttt{JAGUAR Muon}$, a novel ZO extension of the Muon optimizer that leverages the matrix structure of model parameters, and we provide its convergence rate under arbitrary stochastic noise. Through extensive experiments on challenging LLM fine-tuning benchmarks, we demonstrate that the proposed algorithms meet or exceed the convergence quality of standard first-order methods, achieving significant memory reduction. Our theoretical and empirical results establish new ZO optimization methods as a practical and theoretically grounded approach for resource-constrained LLM adaptation. Our code is available at https://github.com/brain-mmo-lab/ZO_LLM

Authors:Zihao Dong, Alan Papalia, Leonard Jung, Alenna Spiro, Philip R. Osteen, Christa S. Robison, Michael Everett
Title: Learning Smooth State-Dependent Traversability from Dense Point Clouds
Abstract:
A key open challenge in off-road autonomy is that the traversability of terrain often depends on the vehicle's state. In particular, some obstacles are only traversable from some orientations. However, learning this interaction by encoding the angle of approach as a model input demands a large and diverse training dataset and is computationally inefficient during planning due to repeated model inference. To address these challenges, we present SPARTA, a method for estimating approach angle conditioned traversability from point clouds. Specifically, we impose geometric structure into our network by outputting a smooth analytical function over the 1-Sphere that predicts risk distribution for any angle of approach with minimal overhead and can be reused for subsequent queries. The function is composed of Fourier basis functions, which has important advantages for generalization due to their periodic nature and smoothness. We demonstrate SPARTA both in a high-fidelity simulation platform, where our model achieves a 91\% success rate crossing a 40m boulder field (compared to 73\% for the baseline), and on hardware, illustrating the generalization ability of the model to real-world settings. Our code will be available at https://github.com/neu-autonomy/SPARTA.

Authors:Philippe Chlenski, Itsik Pe'er
Title: Even Faster Hyperbolic Random Forests: A Beltrami-Klein Wrapper Approach
Abstract:
Decision trees and models that use them as primitives are workhorses of machine learning in Euclidean spaces. Recent work has further extended these models to the Lorentz model of hyperbolic space by replacing axis-parallel hyperplanes with homogeneous hyperplanes when partitioning the input space. In this paper, we show how the hyperDT algorithm can be elegantly reexpressed in the Beltrami-Klein model of hyperbolic spaces. This preserves the thresholding operation used in Euclidean decision trees, enabling us to further rewrite hyperDT as simple pre- and post-processing steps that form a wrapper around existing tree-based models designed for Euclidean spaces. The wrapper approach unlocks many optimizations already available in Euclidean space models, improving flexibility, speed, and accuracy while offering a simpler, more maintainable, and extensible codebase. Our implementation is available at https://github.com/pchlenski/hyperdt.

Authors:Xiang Zheng, Xingjun Ma, Wei-Bin Lee, Cong Wang
Title: RedRFT: A Light-Weight Benchmark for Reinforcement Fine-Tuning-Based Red Teaming
Abstract:
Red teaming has proven to be an effective method for identifying and mitigating vulnerabilities in Large Language Models (LLMs). Reinforcement Fine-Tuning (RFT) has emerged as a promising strategy among existing red teaming techniques. However, a lack of a unified benchmark hinders current RFT-based red teaming methods. Implementation details, especially in Proximal Policy Optimization (PPO)-based RFT, significantly affect outcome stability and reproducibility. To address this issue, we introduce RedRFT, a lightweight benchmark designed to simplify and standardize the implementation and evaluation of RFT-based red teaming. RedRFT combines the design strengths of both single-file CleanRL and highly modularized Tianshou, offering high-quality single-file red teaming implementations and modular PPO core components, such as the General Advantage Estimator. It supports a variety of token and sentence diversity metrics, featuring modularized intrinsic reward computation that facilitates plug-and-play experimentation. To clarify their influence on RFT performance, we conducted an extensive ablation study on key components, including Low-Rank Adaptation (LoRA), Kullback-Leibler (KL) divergence, and Lagrange Multiplier. We hope this work contributes to 1) gaining a comprehensive understanding of the implementation nuances of RFT-based red teaming algorithms, and 2) enabling rapid prototyping of innovative features for RFT-based red teaming. Code for the benchmark can be accessed at https://github.com/x-zheng16/RedRFT.git.

Authors:Kunal Pai, Parth Shah, Harshil Patel
Title: HASHIRU: Hierarchical Agent System for Hybrid Intelligent Resource Utilization
Abstract:
Rapid Large Language Model (LLM) advancements are fueling autonomous Multi-Agent System (MAS) development. However, current frameworks often lack flexibility, resource awareness, model diversity, and autonomous tool creation. This paper introduces HASHIRU (Hierarchical Agent System for Hybrid Intelligent Resource Utilization), a novel MAS framework enhancing flexibility, resource efficiency, and adaptability. HASHIRU features a "CEO" agent dynamically managing specialized "employee" agents, instantiated based on task needs and resource constraints (cost, memory). Its hybrid intelligence prioritizes smaller, local LLMs (via Ollama) while flexibly using external APIs and larger models when necessary. An economic model with hiring/firing costs promotes team stability and efficient resource allocation. The system also includes autonomous API tool creation and a memory function. Evaluations on tasks like academic paper review (58% success), safety assessments (100% on a JailbreakBench subset), and complex reasoning (outperforming Gemini 2.0 Flash on GSM8K: 96% vs. 61%; JEEBench: 80% vs. 68.3%; SVAMP: 92% vs. 84%) demonstrate HASHIRU's capabilities. Case studies illustrate its self-improvement via autonomous cost model generation, tool integration, and budget management. HASHIRU offers a promising approach for more robust, efficient, and adaptable MAS through dynamic hierarchical control, resource-aware hybrid intelligence, and autonomous functional extension. Source code and benchmarks are available at https://github.com/HASHIRU-AI/HASHIRU and https://github.com/HASHIRU-AI/HASHIRUBench respectively, and a live demo is available at https://hashiruagentx-hashiruai.hf.space upon request.

Authors:Fangrui Zhu, Hanhui Wang, Yiming Xie, Jing Gu, Tianye Ding, Jianwei Yang, Huaizu Jiang
Title: Struct2D: A Perception-Guided Framework for Spatial Reasoning in Large Multimodal Models
Abstract:
Unlocking spatial reasoning in Large Multimodal Models (LMMs) is crucial for enabling intelligent interaction with 3D environments. While prior efforts often rely on explicit 3D inputs or specialized model architectures, we ask: can LMMs reason about 3D space using only structured 2D representations derived from perception? We introduce Struct2D, a perception-guided prompting framework that combines bird's-eye-view (BEV) images with object marks and object-centric metadata, optionally incorporating egocentric keyframes when needed. Using Struct2D, we conduct an in-depth zero-shot analysis of closed-source LMMs (e.g., GPT-o3) and find that they exhibit surprisingly strong spatial reasoning abilities when provided with structured 2D inputs, effectively handling tasks such as relative direction estimation and route planning. Building on these insights, we construct Struct2D-Set, a large-scale instruction tuning dataset with 200K fine-grained QA pairs across eight spatial reasoning categories, generated automatically from 3D indoor scenes. We fine-tune an open-source LMM (Qwen2.5VL) on Struct2D-Set, achieving competitive performance on multiple benchmarks, including 3D question answering, dense captioning, and object grounding. Our approach demonstrates that structured 2D inputs can effectively bridge perception and language reasoning in LMMs-without requiring explicit 3D representations as input. We will release both our code and dataset to support future research.

Authors:Fangrui Zhu, Hanhui Wang, Yiming Xie, Jing Gu, Tianye Ding, Jianwei Yang, Huaizu Jiang
Title: Struct2D: A Perception-Guided Framework for Spatial Reasoning in Large Multimodal Models
Abstract:
Unlocking spatial reasoning in Large Multimodal Models (LMMs) is crucial for enabling intelligent interaction with 3D environments. While prior efforts often rely on explicit 3D inputs or specialized model architectures, we ask: can LMMs reason about 3D space using only structured 2D representations derived from perception? We introduce Struct2D, a perception-guided prompting framework that combines bird's-eye-view (BEV) images with object marks and object-centric metadata, optionally incorporating egocentric keyframes when needed. Using Struct2D, we conduct an in-depth zero-shot analysis of closed-source LMMs (e.g., GPT-o3) and find that they exhibit surprisingly strong spatial reasoning abilities when provided with structured 2D inputs, effectively handling tasks such as relative direction estimation and route planning. Building on these insights, we construct Struct2D-Set, a large-scale instruction tuning dataset with 200K fine-grained QA pairs across eight spatial reasoning categories, generated automatically from 3D indoor scenes. We fine-tune an open-source LMM (Qwen2.5VL) on Struct2D-Set, achieving competitive performance on multiple benchmarks, including 3D question answering, dense captioning, and object grounding. Our approach demonstrates that structured 2D inputs can effectively bridge perception and language reasoning in LMMs-without requiring explicit 3D representations as input. We will release both our code and dataset to support future research.

Authors:Wei Cao, Marcel Hallgarten, Tianyu Li, Daniel Dauner, Xunjiang Gu, Caojun Wang, Yakov Miron, Marco Aiello, Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, Kashyap Chitta
Title: Pseudo-Simulation for Autonomous Driving
Abstract:
Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations ($R^2=0.8$) than the best existing open-loop approach ($R^2=0.7$). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.

Authors:Junting Chen, Haotian Liang, Lingxiao Du, Weiyun Wang, Mengkang Hu, Yao Mu, Wenhai Wang, Jifeng Dai, Ping Luo, Wenqi Shao, Lin Shao
Title: OWMM-Agent: Open World Mobile Manipulation With Multi-modal Agentic Data Synthesis
Abstract:
The rapid progress of navigation, manipulation, and vision models has made mobile manipulators capable in many specialized tasks. However, the open-world mobile manipulation (OWMM) task remains a challenge due to the need for generalization to open-ended instructions and environments, as well as the systematic complexity to integrate high-level decision making with low-level robot control based on both global scene understanding and current agent state. To address this complexity, we propose a novel multi-modal agent architecture that maintains multi-view scene frames and agent states for decision-making and controls the robot by function calling. A second challenge is the hallucination from domain shift. To enhance the agent performance, we further introduce an agentic data synthesis pipeline for the OWMM task to adapt the VLM model to our task domain with instruction fine-tuning. We highlight our fine-tuned OWMM-VLM as the first dedicated foundation model for mobile manipulators with global scene understanding, robot state tracking, and multi-modal action generation in a unified model. Through experiments, we demonstrate that our model achieves SOTA performance compared to other foundation models including GPT-4o and strong zero-shot generalization in real world. The project page is at https://github.com/HHYHRHY/OWMM-Agent

Authors:Boyong He, Yuxiang Ji, Zhuoyue Tan, Liaoni Wu
Title: Diffusion Domain Teacher: Diffusion Guided Domain Adaptive Object Detector
Abstract:
Object detectors often suffer a decrease in performance due to the large domain gap between the training data (source domain) and real-world data (target domain). Diffusion-based generative models have shown remarkable abilities in generating high-quality and diverse images, suggesting their potential for extracting valuable feature from various domains. To effectively leverage the cross-domain feature representation of diffusion models, in this paper, we train a detector with frozen-weight diffusion model on the source domain, then employ it as a teacher model to generate pseudo labels on the unlabeled target domain, which are used to guide the supervised learning of the student model on the target domain. We refer to this approach as Diffusion Domain Teacher (DDT). By employing this straightforward yet potent framework, we significantly improve cross-domain object detection performance without compromising the inference speed. Our method achieves an average mAP improvement of 21.2% compared to the baseline on 6 datasets from three common cross-domain detection benchmarks (Cross-Camera, Syn2Real, Real2Artistic}, surpassing the current state-of-the-art (SOTA) methods by an average of 5.7% mAP. Furthermore, extensive experiments demonstrate that our method consistently brings improvements even in more powerful and complex models, highlighting broadly applicable and effective domain adaptation capability of our DDT. The code is available at https://github.com/heboyong/Diffusion-Domain-Teacher.

Authors:Yanting Wang, Wei Zou, Runpeng Geng, Jinyuan Jia
Title: TracLLM: A Generic Framework for Attributing Long Context LLMs
Abstract:
Long context large language models (LLMs) are deployed in many real-world applications such as RAG, agent, and broad LLM-integrated applications. Given an instruction and a long context (e.g., documents, PDF files, webpages), a long context LLM can generate an output grounded in the provided context, aiming to provide more accurate, up-to-date, and verifiable outputs while reducing hallucinations and unsupported claims. This raises a research question: how to pinpoint the texts (e.g., sentences, passages, or paragraphs) in the context that contribute most to or are responsible for the generated output by an LLM? This process, which we call context traceback, has various real-world applications, such as 1) debugging LLM-based systems, 2) conducting post-attack forensic analysis for attacks (e.g., prompt injection attack, knowledge corruption attacks) to an LLM, and 3) highlighting knowledge sources to enhance the trust of users towards outputs generated by LLMs. When applied to context traceback for long context LLMs, existing feature attribution methods such as Shapley have sub-optimal performance and/or incur a large computational cost. In this work, we develop TracLLM, the first generic context traceback framework tailored to long context LLMs. Our framework can improve the effectiveness and efficiency of existing feature attribution methods. To improve the efficiency, we develop an informed search based algorithm in TracLLM. We also develop contribution score ensemble/denoising techniques to improve the accuracy of TracLLM. Our evaluation results show TracLLM can effectively identify texts in a long context that lead to the output of an LLM. Our code and data are at: https://github.com/Wang-Yanting/TracLLM.

Authors:Qingfei Zhao, Ruobing Wang, Dingling Xu, Daren Zha, Limin Liu
Title: R-Search: Empowering LLM Reasoning with Search via Multi-Reward Reinforcement Learning
Abstract:
Large language models (LLMs) have notably progressed in multi-step and long-chain reasoning. However, extending their reasoning capabilities to encompass deep interactions with search remains a non-trivial challenge, as models often fail to identify optimal reasoning-search interaction trajectories, resulting in suboptimal responses. We propose R-Search, a novel reinforcement learning framework for Reasoning-Search integration, designed to enable LLMs to autonomously execute multi-step reasoning with deep search interaction, and learn optimal reasoning search interaction trajectories via multi-reward signals, improving response quality in complex logic- and knowledge-intensive tasks. R-Search guides the LLM to dynamically decide when to retrieve or reason, while globally integrating key evidence to enhance deep knowledge interaction between reasoning and search. During RL training, R-Search provides multi-stage, multi-type rewards to jointly optimize the reasoning-search trajectory. Experiments on seven datasets show that R-Search outperforms advanced RAG baselines by up to 32.2% (in-domain) and 25.1% (out-of-domain). The code and data are available at https://github.com/QingFei1/R-Search.

Authors:Anhao Zhao, Fanghua Ye, Yingqi Fan, Junlong Tong, Zhiwei Fei, Hui Su, Xiaoyu Shen
Title: SkipGPT: Dynamic Layer Pruning Reinvented with Token Awareness and Module Decoupling
Abstract:
Large language models (LLMs) achieve remarkable performance across tasks but incur substantial computational costs due to their deep, multi-layered architectures. Layer pruning has emerged as a strategy to alleviate these inefficiencies, but conventional static pruning methods overlook two critical dynamics inherent to LLM inference: (1) horizontal dynamics, where token-level heterogeneity demands context-aware pruning decisions, and (2) vertical dynamics, where the distinct functional roles of MLP and self-attention layers necessitate component-specific pruning policies. We introduce SkipGPT, a dynamic layer pruning framework designed to optimize computational resource allocation through two core innovations: (1) global token-aware routing to prioritize critical tokens, and (2) decoupled pruning policies for MLP and self-attention components. To mitigate training instability, we propose a two-stage optimization paradigm: first, a disentangled training phase that learns routing strategies via soft parameterization to avoid premature pruning decisions, followed by parameter-efficient LoRA fine-tuning to restore performance impacted by layer removal. Extensive experiments demonstrate that SkipGPT reduces over 40% of model parameters while matching or exceeding the performance of the original dense model across benchmarks. By harmonizing dynamic efficiency with preserved expressivity, SkipGPT advances the practical deployment of scalable, resource-aware LLMs. Our code is publicly available at: https://github.com/EIT-NLP/SkipGPT.

Authors:Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, Sergey Levine
Title: Horizon Reduction Makes RL Scalable
Abstract:
In this work, we study the scalability of offline reinforcement learning (RL) algorithms. In principle, a truly scalable offline RL algorithm should be able to solve any given problem, regardless of its complexity, given sufficient data, compute, and model capacity. We investigate if and how current offline RL algorithms match up to this promise on diverse, challenging, previously unsolved tasks, using datasets up to 1000x larger than typical offline RL datasets. We observe that despite scaling up data, many existing offline RL algorithms exhibit poor scaling behavior, saturating well below the maximum performance. We hypothesize that the horizon is the main cause behind the poor scaling of offline RL. We empirically verify this hypothesis through several analysis experiments, showing that long horizons indeed present a fundamental barrier to scaling up offline RL. We then show that various horizon reduction techniques substantially enhance scalability on challenging tasks. Based on our insights, we also introduce a minimal yet scalable method named SHARSA that effectively reduces the horizon. SHARSA achieves the best asymptotic performance and scaling behavior among our evaluation methods, showing that explicitly reducing the horizon unlocks the scalability of offline RL. Code: https://github.com/seohongpark/horizon-reduction

Authors:Yujia Hu, Songhua Liu, Zhenxiong Tan, Xingyi Yang, Xinchao Wang
Title: Image Editing As Programs with Diffusion Models
Abstract:
While diffusion models have achieved remarkable success in text-to-image generation, they encounter significant challenges with instruction-driven image editing. Our research highlights a key challenge: these models particularly struggle with structurally inconsistent edits that involve substantial layout changes. To mitigate this gap, we introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture. At its core, IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations. Each operation is implemented via a lightweight adapter sharing the same DiT backbone and is specialized for a specific type of edit. Programmed by a vision-language model (VLM)-based agent, these operations collaboratively support arbitrary and structurally inconsistent transformations. By modularizing and sequencing edits in this way, IEAP generalizes robustly across a wide range of editing tasks, from simple adjustments to substantial structural changes. Extensive experiments demonstrate that IEAP significantly outperforms state-of-the-art methods on standard benchmarks across various editing scenarios. In these evaluations, our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions. Codes are available at https://github.com/YujiaHu1109/IEAP.

Authors:Kejian Zhu, Shangqing Tu, Zhuoran Jin, Lei Hou, Juanzi Li, Jun Zhao
Title: Establishing Trustworthy LLM Evaluation via Shortcut Neuron Analysis
Abstract:
The development of large language models (LLMs) depends on trustworthy evaluation. However, most current evaluations rely on public benchmarks, which are prone to data contamination issues that significantly compromise fairness. Previous researches have focused on constructing dynamic benchmarks to address contamination. However, continuously building new benchmarks is costly and cyclical. In this work, we aim to tackle contamination by analyzing the mechanisms of contaminated models themselves. Through our experiments, we discover that the overestimation of contaminated models is likely due to parameters acquiring shortcut solutions in training. We further propose a novel method for identifying shortcut neurons through comparative and causal analysis. Building on this, we introduce an evaluation method called shortcut neuron patching to suppress shortcut neurons. Experiments validate the effectiveness of our approach in mitigating contamination. Additionally, our evaluation results exhibit a strong linear correlation with MixEval, a recently released trustworthy benchmark, achieving a Spearman coefficient ($ρ$) exceeding 0.95. This high correlation indicates that our method closely reveals true capabilities of the models and is trustworthy. We conduct further experiments to demonstrate the generalizability of our method across various benchmarks and hyperparameter settings. Code: https://github.com/GaryStack/Trustworthy-Evaluation

Authors:Pei Yang, Hai Ci, Mike Zheng Shou
Title: macOSWorld: A Multilingual Interactive Benchmark for GUI Agents
Abstract:
Graphical User Interface (GUI) agents show promising capabilities for automating computer-use tasks and facilitating accessibility, but existing interactive benchmarks are mostly English-only, covering web-use or Windows, Linux, and Android environments, but not macOS. macOS is a major OS with distinctive GUI patterns and exclusive applications. To bridge the gaps, we present macOSWorld, the first comprehensive benchmark for evaluating GUI agents on macOS. macOSWorld features 202 multilingual interactive tasks across 30 applications (28 macOS-exclusive), with task instructions and OS interfaces offered in 5 languages (English, Chinese, Arabic, Japanese, and Russian). As GUI agents are shown to be vulnerable to deception attacks, macOSWorld also includes a dedicated safety benchmarking subset. Our evaluation on six GUI agents reveals a dramatic gap: proprietary computer-use agents lead at above 30% success rate, while open-source lightweight research models lag at below 5%, highlighting the need for macOS domain adaptation. Multilingual benchmarks also expose common weaknesses, especially in Arabic, with a 28.8% average degradation compared to English. Results from safety benchmarking also highlight that deception attacks are more general and demand immediate attention. macOSWorld is available at https://github.com/showlab/macosworld.

Authors:Disha Sheshanarayana, Tanishka Magar, Ayushi Mittal, Neelam Chaplot
Title: CLAIM: An Intent-Driven Multi-Agent Framework for Analyzing Manipulation in Courtroom Dialogues
Abstract:
Courtrooms are places where lives are determined and fates are sealed, yet they are not impervious to manipulation. Strategic use of manipulation in legal jargon can sway the opinions of judges and affect the decisions. Despite the growing advancements in NLP, its application in detecting and analyzing manipulation within the legal domain remains largely unexplored. Our work addresses this gap by introducing LegalCon, a dataset of 1,063 annotated courtroom conversations labeled for manipulation detection, identification of primary manipulators, and classification of manipulative techniques, with a focus on long conversations. Furthermore, we propose CLAIM, a two-stage, Intent-driven Multi-agent framework designed to enhance manipulation analysis by enabling context-aware and informed decision-making. Our results highlight the potential of incorporating agentic frameworks to improve fairness and transparency in judicial processes. We hope that this contributes to the broader application of NLP in legal discourse analysis and the development of robust tools to support fairness in legal decision-making. Our code and data are available at https://github.com/Disha1001/CLAIM.

Authors:Jonathan Geuter, Youssef Mroueh, David Alvarez-Melis
Title: Guided Speculative Inference for Efficient Test-Time Alignment of LLMs
Abstract:
We propose Guided Speculative Inference (GSI), a novel algorithm for efficient reward-guided decoding in large language models. GSI combines soft best-of-$n$ test-time scaling with a reward model $r(x,y)$ and speculative samples from a small auxiliary model $π_S(y\mid x)$. We provably approximate the optimal tilted policy $π_{β,B}(y\mid x) \propto π_B(y\mid x)\exp(β\,r(x,y))$ of soft best-of-$n$ under the primary model $π_B$. We derive a theoretical bound on the KL divergence between our induced distribution and the optimal policy. In experiments on reasoning benchmarks (MATH500, OlympiadBench, Minerva Math), our method achieves higher accuracy than standard soft best-of-$n$ with $π_S$ and reward-guided speculative decoding (Liao et al., 2025), and in certain settings even outperforms soft best-of-$n$ with $π_B$. The code is available at https://github.com/j-geuter/GSI .

Authors:Jonathan Geuter, Youssef Mroueh, David Alvarez-Melis
Title: Guided Speculative Inference for Efficient Test-Time Alignment of LLMs
Abstract:
We propose Guided Speculative Inference (GSI), a novel algorithm for efficient reward-guided decoding in large language models. GSI combines soft best-of-$n$ test-time scaling with a reward model $r(x,y)$ and speculative samples from a small auxiliary model $π_S(y\mid x)$. We provably approximate both the optimal tilted policy $π_{β,B}(y\mid x) \propto π_B(y\mid x)\exp(β\,r(x,y))$ of soft best-of-$n$ under the base model $π_B$, as well as the expected reward under the optimal policy. In experiments on reasoning benchmarks (MATH500, OlympiadBench, Minerva Math, MMLU-STEM, GSM8K), our method achieves higher accuracy than standard soft best-of-$n$ with $π_S$ and reward-guided speculative decoding (Liao et al., 2025), and in certain settings even outperforms soft best-of-$n$ with $π_B$. The code is available at https://github.com/j-geuter/GSI .

Authors:Robin Bruneau, Baptiste Brument, Yvain Quéau, Jean Mélou, François Bernard Lauze, Jean-Denis Durou, Lilian Calvet
Title: Multi-view Surface Reconstruction Using Normal and Reflectance Cues
Abstract:
Achieving high-fidelity 3D surface reconstruction while preserving fine details remains challenging, especially in the presence of materials with complex reflectance properties and without a dense-view setup. In this paper, we introduce a versatile framework that incorporates multi-view normal and optionally reflectance maps into radiance-based surface reconstruction. Our approach employs a pixel-wise joint re-parametrization of reflectance and surface normals, representing them as a vector of radiances under simulated, varying illumination. This formulation enables seamless incorporation into standard surface reconstruction pipelines, such as traditional multi-view stereo (MVS) frameworks or modern neural volume rendering (NVR) ones. Combined with the latter, our approach achieves state-of-the-art performance on multi-view photometric stereo (MVPS) benchmark datasets, including DiLiGenT-MV, LUCES-MV and Skoltech3D. In particular, our method excels in reconstructing fine-grained details and handling challenging visibility conditions. The present paper is an extended version of the earlier conference paper by Brument et al. (in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024), featuring an accelerated and more robust algorithm as well as a broader empirical evaluation. The code and data relative to this article is available at https://github.com/RobinBruneau/RNb-NeuS2.

Authors:Wenhao Li, Wenwu Li, Chuyun Shen, Junjie Sheng, Zixiao Huang, Di Wu, Yun Hua, Wei Yin, Xiangfeng Wang, Hongyuan Zha, Bo Jin
Title: TextAtari: 100K Frames Game Playing with Language Agents
Abstract:
We present TextAtari, a benchmark for evaluating language agents on very long-horizon decision-making tasks spanning up to 100,000 steps. By translating the visual state representations of classic Atari games into rich textual descriptions, TextAtari creates a challenging test bed that bridges sequential decision-making with natural language processing. The benchmark includes nearly 100 distinct tasks with varying complexity, action spaces, and planning horizons, all rendered as text through an unsupervised representation learning framework (AtariARI). We evaluate three open-source large language models (Qwen2.5-7B, Gemma-7B, and Llama3.1-8B) across three agent frameworks (zero-shot, few-shot chain-of-thought, and reflection reasoning) to assess how different forms of prior knowledge affect performance on these long-horizon challenges. Four scenarios-Basic, Obscured, Manual Augmentation, and Reference-based-investigate the impact of semantic understanding, instruction comprehension, and expert demonstrations on agent decision-making. Our results reveal significant performance gaps between language agents and human players in extensive planning tasks, highlighting challenges in sequential reasoning, state tracking, and strategic planning across tens of thousands of steps. TextAtari provides standardized evaluation protocols, baseline implementations, and a framework for advancing research at the intersection of language models and planning. Our code is available at https://github.com/Lww007/Text-Atari-Agents.

Authors:Anastasiia Ivanova, Eva Bakaeva, Zoya Volovikova, Alexey K. Kovalev, Aleksandr I. Panov
Title: AmbiK: Dataset of Ambiguous Tasks in Kitchen Environment
Abstract:
As a part of an embodied agent, Large Language Models (LLMs) are typically used for behavior planning given natural language instructions from the user. However, dealing with ambiguous instructions in real-world environments remains a challenge for LLMs. Various methods for task ambiguity detection have been proposed. However, it is difficult to compare them because they are tested on different datasets and there is no universal benchmark. For this reason, we propose AmbiK (Ambiguous Tasks in Kitchen Environment), the fully textual dataset of ambiguous instructions addressed to a robot in a kitchen environment. AmbiK was collected with the assistance of LLMs and is human-validated. It comprises 1000 pairs of ambiguous tasks and their unambiguous counterparts, categorized by ambiguity type (Human Preferences, Common Sense Knowledge, Safety), with environment descriptions, clarifying questions and answers, user intents, and task plans, for a total of 2000 tasks. We hope that AmbiK will enable researchers to perform a unified comparison of ambiguity detection methods. AmbiK is available at https://github.com/cog-model/AmbiK-dataset.

Authors:Ming Zhang, Yujiong Shen, Zelin Li, Huayu Sha, Binze Hu, Yuhui Wang, Chenhao Huang, Shichun Liu, Jingqi Tong, Changhao Jiang, Mingxu Chai, Zhiheng Xi, Shihan Dou, Tao Gui, Qi Zhang, Xuanjing Huang
Title: LLMEval-Med: A Real-world Clinical Benchmark for Medical LLMs with Physician Validation
Abstract:
Evaluating large language models (LLMs) in medicine is crucial because medical applications require high accuracy with little room for error. Current medical benchmarks have three main types: medical exam-based, comprehensive medical, and specialized assessments. However, these benchmarks have limitations in question design (mostly multiple-choice), data sources (often not derived from real clinical scenarios), and evaluation methods (poor assessment of complex reasoning). To address these issues, we present LLMEval-Med, a new benchmark covering five core medical areas, including 2,996 questions created from real-world electronic health records and expert-designed clinical scenarios. We also design an automated evaluation pipeline, incorporating expert-developed checklists into our LLM-as-Judge framework. Furthermore, our methodology validates machine scoring through human-machine agreement analysis, dynamically refining checklists and prompts based on expert feedback to ensure reliability. We evaluate 13 LLMs across three categories (specialized medical models, open-source models, and closed-source models) on LLMEval-Med, providing valuable insights for the safe and effective deployment of LLMs in medical domains. The dataset is released in https://github.com/llmeval/LLMEval-Med.

Authors:Yi Zhao, Siqi Wang, Jing Li
Title: LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward
Abstract:
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study, hence, focuses on producing precise, in-situ, step-by-step navigation instructions that are practically usable by VI users. Concretely, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to generate rewards guiding the Vision-Language Model (VLM) post-training. This enhances instruction usability while reducing costly real-world data needs. To facilitate training and testing, we introduce NIG4VI, a 27k-sample open-sourced benchmark. It provides diverse navigation scenarios with accurate spatial coordinates, supporting detailed, open-ended in-situ instruction generation. Experiments on NIG4VI show the effectiveness of LaF-GRPO by quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU +14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o's 0.323) and yields more intuitive, safer instructions. Code and benchmark are available at \href{https://github.com/YiyiyiZhao/NIG4VI}{https://github.com/YiyiyiZhao/NIG4VI}.

Authors:Paul Fuchs, Weilong Chen, Stephan Thaler, Julija Zavadlav
Title: chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
Abstract:
Machine learning potentials (MLPs) have advanced rapidly and show great promise to transform molecular dynamics (MD) simulations. However, most existing software tools are tied to specific MLP architectures, lack integration with standard MD packages, or are not parallelizable across GPUs. To address these challenges, we present chemtrain-deploy, a framework that enables model-agnostic deployment of MLPs in LAMMPS. chemtrain-deploy supports any JAX-defined semi-local potential, allowing users to exploit the functionality of LAMMPS and perform large-scale MLP-based MD simulations on multiple GPUs. It achieves state-of-the-art efficiency and scales to systems containing millions of atoms. We validate its performance and scalability using graph neural network architectures, including MACE, Allegro, and PaiNN, applied to a variety of systems, such as liquid-vapor interfaces, crystalline materials, and solvated peptides. Our results highlight the practical utility of chemtrain-deploy for real-world, high-performance simulations and provide guidance for MLP architecture selection and future design.

Authors:Dan Oneata, Leanne Nortje, Yevgen Matusevych, Herman Kamper
Title: The mutual exclusivity bias of bilingual visually grounded speech models
Abstract:
Mutual exclusivity (ME) is a strategy where a novel word is associated with a novel object rather than a familiar one, facilitating language learning in children. Recent work has found an ME bias in a visually grounded speech (VGS) model trained on English speech with paired images. But ME has also been studied in bilingual children, who may employ it less due to cross-lingual ambiguity. We explore this pattern computationally using bilingual VGS models trained on combinations of English, French, and Dutch. We find that bilingual models generally exhibit a weaker ME bias than monolingual models, though exceptions exist. Analyses show that the combined visual embeddings of bilingual models have a smaller variance for familiar data, partly explaining the increase in confusion between novel and familiar concepts. We also provide new insights into why the ME bias exists in VGS models in the first place. Code and data: https://github.com/danoneata/me-vgs

Authors:An Quang Tang, Xiuzhen Zhang, Minh Ngoc Dinh, Zhuang Li
Title: QQSUM: A Novel Task and Model of Quantitative Query-Focused Summarization for Review-based Product Question Answering
Abstract:
Review-based Product Question Answering (PQA) allows e-commerce platforms to automatically address customer queries by leveraging insights from user reviews. However, existing PQA systems generate answers with only a single perspective, failing to capture the diversity of customer opinions. In this paper we introduce a novel task Quantitative Query-Focused Summarization (QQSUM), which aims to summarize diverse customer opinions into representative Key Points (KPs) and quantify their prevalence to effectively answer user queries. While Retrieval-Augmented Generation (RAG) shows promise for PQA, its generated answers still fall short of capturing the full diversity of viewpoints. To tackle this challenge, our model QQSUM-RAG, which extends RAG, employs few-shot learning to jointly train a KP-oriented retriever and a KP summary generator, enabling KP-based summaries that capture diverse and representative opinions. Experimental results demonstrate that QQSUM-RAG achieves superior performance compared to state-of-the-art RAG baselines in both textual quality and quantification accuracy of opinions. Our source code is available at: https://github.com/antangrocket1312/QQSUMM

Authors:Tiehua Mei, Hengrui Chen, Peng Yu, Jiaqing Liang, Deqing Yang
Title: GORACS: Group-level Optimal Transport-guided Coreset Selection for LLM-based Recommender Systems
Abstract:
Although large language models (LLMs) have shown great potential in recommender systems, the prohibitive computational costs for fine-tuning LLMs on entire datasets hinder their successful deployment in real-world scenarios. To develop affordable and effective LLM-based recommender systems, we focus on the task of coreset selection which identifies a small subset of fine-tuning data to optimize the test loss, thereby facilitating efficient LLMs' fine-tuning. Although there exist some intuitive solutions of subset selection, including distribution-based and importance-based approaches, they often lead to suboptimal performance due to the misalignment with downstream fine-tuning objectives or weak generalization ability caused by individual-level sample selection. To overcome these challenges, we propose GORACS, which is a novel Group-level Optimal tRAnsport-guided Coreset Selection framework for LLM-based recommender systems. GORACS is designed based on two key principles for coreset selection: 1) selecting the subsets that minimize the test loss to align with fine-tuning objectives, and 2) enhancing model generalization through group-level data selection. Corresponding to these two principles, GORACS has two key components: 1) a Proxy Optimization Objective (POO) leveraging optimal transport and gradient information to bound the intractable test loss, thus reducing computational costs by avoiding repeated LLM retraining, and 2) a two-stage Initialization-Then-Refinement Algorithm (ITRA) for efficient group-level selection. Our extensive experiments across diverse recommendation datasets and tasks validate that GORACS significantly reduces fine-tuning costs of LLMs while achieving superior performance over the state-of-the-art baselines and full data training. The source code of GORACS are available at https://github.com/Mithas-114/GORACS.

Authors:Maxime Zanella, Clément Fuchs, Ismail Ben Ayed, Christophe De Vleeschouwer
Title: Vocabulary-free few-shot learning for Vision-Language Models
Abstract:
Recent advances in few-shot adaptation for Vision-Language Models (VLMs) have greatly expanded their ability to generalize across tasks using only a few labeled examples. However, existing approaches primarily build upon the strong zero-shot priors of these models by leveraging carefully designed, task-specific prompts. This dependence on predefined class names can restrict their applicability, especially in scenarios where exact class names are unavailable or difficult to specify. To address this limitation, we introduce vocabulary-free few-shot learning for VLMs, a setting where target class instances - that is, images - are available but their corresponding names are not. We propose Similarity Mapping (SiM), a simple yet effective baseline that classifies target instances solely based on similarity scores with a set of generic prompts (textual or visual), eliminating the need for carefully handcrafted prompts. Although conceptually straightforward, SiM demonstrates strong performance, operates with high computational efficiency (learning the mapping typically takes less than one second), and provides interpretability by linking target classes to generic prompts. We believe that our approach could serve as an important baseline for future research in vocabulary-free few-shot learning. Code is available at https://github.com/MaxZanella/vocabulary-free-FSL.

Authors:Alex Laitenberger, Christopher D. Manning, Nelson F. Liu
Title: Stronger Baselines for Retrieval-Augmented Generation with Long-Context Language Models
Abstract:
With the rise of long-context language models (LMs) capable of processing tens of thousands of tokens in a single pass, do multi-stage retrieval-augmented generation (RAG) pipelines still offer measurable benefits over simpler, single-stage approaches? To assess this question, we conduct a controlled evaluation for QA tasks under systematically scaled token budgets, comparing two recent multi-stage pipelines, ReadAgent and RAPTOR, against three baselines, including DOS RAG (Document's Original Structure RAG), a simple retrieve-then-read method that preserves original passage order. Despite its straightforward design, DOS RAG consistently matches or outperforms more intricate methods on multiple long-context QA benchmarks. We recommend establishing DOS RAG as a simple yet strong baseline for future RAG evaluations, pairing it with emerging embedding and language models to assess trade-offs between complexity and effectiveness as model capabilities evolve.

Authors:Hicham Eddoubi, Jonas Ricker, Federico Cocchi, Lorenzo Baraldi, Angelo Sotgiu, Maura Pintor, Marcella Cornia, Lorenzo Baraldi, Asja Fischer, Rita Cucchiara, Battista Biggio
Title: RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors
Abstract:
AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.

Authors:Takeshi Saga, Catherine Pelachaud
Title: Voice Activity Projection Model with Multimodal Encoders
Abstract:
Turn-taking management is crucial for any social interaction. Still, it is challenging to model human-machine interaction due to the complexity of the social context and its multimodal nature. Unlike conventional systems based on silence duration, previous existing voice activity projection (VAP) models successfully utilized a unified representation of turn-taking behaviors as prediction targets, which improved turn-taking prediction performance. Recently, a multimodal VAP model outperformed the previous state-of-the-art model by a significant margin. In this paper, we propose a multimodal model enhanced with pre-trained audio and face encoders to improve performance by capturing subtle expressions. Our model performed competitively, and in some cases, even better than state-of-the-art models on turn-taking metrics. All the source codes and pretrained models are available at https://github.com/sagatake/VAPwithAudioFaceEncoders.

Authors:Chiwei Zhu, Benfeng Xu, Xiaorui Wang, Zhendong Mao
Title: From Real to Synthetic: Synthesizing Millions of Diversified and Complicated User Instructions with Attributed Grounding
Abstract:
The pursuit of diverse, complex, and large-scale instruction data is crucial for automatically aligning large language models (LLMs). While there are methods capable of generating synthetic instructions at scale, they either suffer from limited grounding sources, leading to a narrow distribution, or rely on trivial extensions that fail to produce meaningful trajectories in terms of complexity. In contrast, instructions that benefit efficient alignment are typically crafted with cognitive insights and grounded in real-world use cases. In this paper, we synthesize such instructions using attributed grounding, which involves 1) a top-down attribution process that grounds a selective set of real instructions to situated users, and 2) a bottom-up synthesis process that leverages web documents to first generate a situation, then a meaningful instruction. This framework allows us to harvest diverse and complex instructions at scale, utilizing the vast range of web documents. Specifically, we construct a dataset of 1 million instructions, called SynthQuestions, and demonstrate that models trained on it achieve leading performance on several common benchmarks, with improvements that continually scale with more web corpora. Data, models and codes will be available at https://github.com/Ignoramus0817/SynthQuestions.

Authors:HyunGi Kim, Jisoo Mok, Dongjun Lee, Jaihyun Lew, Sungjae Kim, Sungroh Yoon
Title: Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection
Abstract:
Utilizing the complex inter-variable causal relationships within multivariate time-series provides a promising avenue toward more robust and reliable multivariate time-series anomaly detection (MTSAD) but remains an underexplored area of research. This paper proposes Causality-Aware contrastive learning for RObust multivariate Time-Series (CAROTS), a novel MTSAD pipeline that incorporates the notion of causality into contrastive learning. CAROTS employs two data augmentors to obtain causality-preserving and -disturbing samples that serve as a wide range of normal variations and synthetic anomalies, respectively. With causality-preserving and -disturbing samples as positives and negatives, CAROTS performs contrastive learning to train an encoder whose latent space separates normal and abnormal samples based on causality. Moreover, CAROTS introduces a similarity-filtered one-class contrastive loss that encourages the contrastive learning process to gradually incorporate more semantically diverse samples with common causal relationships. Extensive experiments on five real-world and two synthetic datasets validate that the integration of causal relationships endows CAROTS with improved MTSAD capabilities. The code is available at https://github.com/kimanki/CAROTS.

Authors:Aojun Lu, Tao Feng, Hangjie Yuan, Chunhui Ding, Yanan Sun
Title: Adapt before Continual Learning
Abstract:
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). Although pre-trained models (PTMs) have provided a strong foundation for CL, existing approaches face a fundamental challenge in balancing these two competing objectives. Current methods typically address stability by freezing the PTM backbone, which severely limits the model's plasticity, particularly when incoming data distribution diverges largely from the pre-training data. Alternatively, sequentially fine-tuning the entire PTM can adapt to new knowledge but often leads to catastrophic forgetting, highlighting the critical stability-plasticity trade-off in PTM-based CL. To address this limitation, we propose Adapting PTMs before the core CL} process (ACL), a novel framework that introduces a plug-and-play adaptation phase prior to learning each new task. During this phase, ACL refines the PTM backbone by aligning embeddings with their original class prototypes while distancing them from irrelevant classes. This mechanism theoretically and empirically demonstrates desirable balance between stability and plasticity, significantly improving CL performance across benchmarks and integrated methods. Code is available at https://github.com/byyx666/ACL_code.

Authors:Jianqing Zhang, Xinghao Wu, Yanbing Zhou, Xiaoting Sun, Qiqi Cai, Yang Liu, Yang Hua, Zhenzhe Zheng, Jian Cao, Qiang Yang
Title: HtFLlib: A Comprehensive Heterogeneous Federated Learning Library and Benchmark
Abstract:
As AI evolves, collaboration among heterogeneous models helps overcome data scarcity by enabling knowledge transfer across institutions and devices. Traditional Federated Learning (FL) only supports homogeneous models, limiting collaboration among clients with heterogeneous model architectures. To address this, Heterogeneous Federated Learning (HtFL) methods are developed to enable collaboration across diverse heterogeneous models while tackling the data heterogeneity issue at the same time. However, a comprehensive benchmark for standardized evaluation and analysis of the rapidly growing HtFL methods is lacking. Firstly, the highly varied datasets, model heterogeneity scenarios, and different method implementations become hurdles to making easy and fair comparisons among HtFL methods. Secondly, the effectiveness and robustness of HtFL methods are under-explored in various scenarios, such as the medical domain and sensor signal modality. To fill this gap, we introduce the first Heterogeneous Federated Learning Library (HtFLlib), an easy-to-use and extensible framework that integrates multiple datasets and model heterogeneity scenarios, offering a robust benchmark for research and practical applications. Specifically, HtFLlib integrates (1) 12 datasets spanning various domains, modalities, and data heterogeneity scenarios; (2) 40 model architectures, ranging from small to large, across three modalities; (3) a modularized and easy-to-extend HtFL codebase with implementations of 10 representative HtFL methods; and (4) systematic evaluations in terms of accuracy, convergence, computation costs, and communication costs. We emphasize the advantages and potential of state-of-the-art HtFL methods and hope that HtFLlib will catalyze advancing HtFL research and enable its broader applications. The code is released at https://github.com/TsingZ0/HtFLlib.

Authors:Aojun Lu, Hangjie Yuan, Tao Feng, Yanan Sun
Title: Rethinking the Stability-Plasticity Trade-off in Continual Learning from an Architectural Perspective
Abstract:
The quest for Continual Learning (CL) seeks to empower neural networks with the ability to learn and adapt incrementally. Central to this pursuit is addressing the stability-plasticity dilemma, which involves striking a balance between two conflicting objectives: preserving previously learned knowledge and acquiring new knowledge. While numerous CL methods aim to achieve this trade-off, they often overlook the impact of network architecture on stability and plasticity, restricting the trade-off to the parameter level. In this paper, we delve into the conflict between stability and plasticity at the architectural level. We reveal that under an equal parameter constraint, deeper networks exhibit better plasticity, while wider networks are characterized by superior stability. To address this architectural-level dilemma, we introduce a novel framework denoted Dual-Arch, which serves as a plug-in component for CL. This framework leverages the complementary strengths of two distinct and independent networks: one dedicated to plasticity and the other to stability. Each network is designed with a specialized and lightweight architecture, tailored to its respective objective. Extensive experiments demonstrate that Dual-Arch enhances the performance of existing CL methods while being up to 87% more compact in terms of parameters. Code: https://github.com/byyx666/Dual-Arch.

Authors:Junnan Zhu, Jingyi Wang, Bohan Yu, Xiaoyu Wu, Junbo Li, Lei Wang, Nan Xu
Title: TableEval: A Real-World Benchmark for Complex, Multilingual, and Multi-Structured Table Question Answering
Abstract:
LLMs have shown impressive progress in natural language processing. However, they still face significant challenges in TableQA, where real-world complexities such as diverse table structures, multilingual data, and domain-specific reasoning are crucial. Existing TableQA benchmarks are often limited by their focus on simple flat tables and suffer from data leakage. Furthermore, most benchmarks are monolingual and fail to capture the cross-lingual and cross-domain variability in practical applications. To address these limitations, we introduce TableEval, a new benchmark designed to evaluate LLMs on realistic TableQA tasks. Specifically, TableEval includes tables with various structures (such as concise, hierarchical, and nested tables) collected from four domains (including government, finance, academia, and industry reports). Besides, TableEval features cross-lingual scenarios with tables in Simplified Chinese, Traditional Chinese, and English. To minimize the risk of data leakage, we collect all data from recent real-world documents. Considering that existing TableQA metrics fail to capture semantic accuracy, we further propose SEAT, a new evaluation framework that assesses the alignment between model responses and reference answers at the sub-question level. Experimental results have shown that SEAT achieves high agreement with human judgment. Extensive experiments on TableEval reveal critical gaps in the ability of state-of-the-art LLMs to handle these complex, real-world TableQA tasks, offering insights for future improvements. We make our dataset available here: https://github.com/wenge-research/TableEval.

Authors:Theodore Barfoot, Luis C. Garcia-Peraza-Herrera, Samet Akcay, Ben Glocker, Tom Vercauteren
Title: Average Calibration Losses for Reliable Uncertainty in Medical Image Segmentation
Abstract:
Deep neural networks for medical image segmentation are often overconfident, compromising both reliability and clinical utility. In this work, we propose differentiable formulations of marginal L1 Average Calibration Error (mL1-ACE) as an auxiliary loss that can be computed on a per-image basis. We compare both hard- and soft-binning approaches to directly improve pixel-wise calibration. Our experiments on four datasets (ACDC, AMOS, KiTS, BraTS) demonstrate that incorporating mL1-ACE significantly reduces calibration errors, particularly Average Calibration Error (ACE) and Maximum Calibration Error (MCE), while largely maintaining high Dice Similarity Coefficients (DSCs). We find that the soft-binned variant yields the greatest improvements in calibration, over the Dice plus cross-entropy loss baseline, but often compromises segmentation performance, with hard-binned mL1-ACE maintaining segmentation performance, albeit with weaker calibration improvement. To gain further insight into calibration performance and its variability across an imaging dataset, we introduce dataset reliability histograms, an aggregation of per-image reliability diagrams. The resulting analysis highlights improved alignment between predicted confidences and true accuracies. Overall, our approach not only enhances the trustworthiness of segmentation predictions but also shows potential for safer integration of deep learning methods into clinical workflows. We share our code here: https://github.com/cai4cai/Average-Calibration-Losses

Authors:Junqi Gao, Xiang Zou, YIng Ai, Dong Li, Yichen Niu, Biqing Qi, Jianxing Liu
Title: Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning
Abstract:
Graph Retrieval Augmented Generation (GraphRAG) effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships, thereby improving the factual accuracy and generation quality of Large Language Models (LLMs) in specialized domains. However, existing methods suffer from two inherent limitations: 1) Inefficient Information Aggregation: They rely on a single agent and fixed iterative patterns, making it difficult to adaptively capture multi-level textual, structural, and degree information within graph data. 2) Rigid Reasoning Mechanism: They employ preset reasoning schemes, which cannot dynamically adjust reasoning depth nor achieve precise semantic correction. To overcome these limitations, we propose Graph Counselor, an GraphRAG method based on multi-agent collaboration. This method uses the Adaptive Graph Information Extraction Module (AGIEM), where Planning, Thought, and Execution Agents work together to precisely model complex graph structures and dynamically adjust information extraction strategies, addressing the challenges of multi-level dependency modeling and adaptive reasoning depth. Additionally, the Self-Reflection with Multiple Perspectives (SR) module improves the accuracy and semantic consistency of reasoning results through self-reflection and backward reasoning mechanisms. Experiments demonstrate that Graph Counselor outperforms existing methods in multiple graph reasoning tasks, exhibiting higher reasoning accuracy and generalization ability. Our code is available at https://github.com/gjq100/Graph-Counselor.git.

Authors:Cédric Léonard, Dirk Stober, Martin Schulz
Title: FPGA-Enabled Machine Learning Applications in Earth Observation: A Systematic Review
Abstract:
New UAV technologies and the NewSpace era are transforming Earth Observation missions and data acquisition. Numerous small platforms generate large data volume, straining bandwidth and requiring onboard decision-making to transmit high-quality information in time. While Machine Learning allows real-time autonomous processing, FPGAs balance performance with adaptability to mission-specific requirements, enabling onboard deployment. This review systematically analyzes 66 experiments deploying ML models on FPGAs for Remote Sensing applications. We introduce two distinct taxonomies to capture both efficient model architectures and FPGA implementation strategies. For transparency and reproducibility, we follow PRISMA 2020 guidelines and share all data and code at https://github.com/CedricLeon/Survey_RS-ML-FPGA.

Authors:Marcin Kowalczyk, Kamil Jeziorek, Tomasz Kryjak
Title: Learning from Noise: Enhancing DNNs for Event-Based Vision through Controlled Noise Injection
Abstract:
Event-based sensors offer significant advantages over traditional frame-based cameras, especially in scenarios involving rapid motion or challenging lighting conditions. However, event data frequently suffers from considerable noise, negatively impacting the performance and robustness of deep learning models. Traditionally, this problem has been addressed by applying filtering algorithms to the event stream, but this may also remove some of relevant data. In this paper, we propose a novel noise-injection training methodology designed to enhance the neural networks robustness against varying levels of event noise. Our approach introduces controlled noise directly into the training data, enabling models to learn noise-resilient representations. We have conducted extensive evaluations of the proposed method using multiple benchmark datasets (N-Caltech101, N-Cars, and Mini N-ImageNet) and various network architectures, including Convolutional Neural Networks, Vision Transformers, Spiking Neural Networks, and Graph Convolutional Networks. Experimental results show that our noise-injection training strategy achieves stable performance over a range of noise intensities, consistently outperforms event-filtering techniques, and achieves the highest average classification accuracy, making it a viable alternative to traditional event-data filtering methods in an object classification system. Code: https://github.com/vision-agh/DVS_Filtering

Authors:Junyi Chen, Shihao Bai, Zaijun Wang, Siyu Wu, Chuheng Du, Hailong Yang, Ruihao Gong, Shengzhong Liu, Fan Wu, Guihai Chen
Title: Pre$^3$: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation
Abstract:
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches. To address these issues, we propose Pre$^3$ that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency. First, by precomputing prefix-conditioned edges during the preprocessing, Pre$^3$ enables ahead-of-time edge analysis and thus makes parallel transition processing possible. Second, by leveraging the prefix-conditioned edges, Pre$^3$ introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead. Pre$^3$ can be seamlessly integrated into standard LLM inference frameworks, reducing time per output token (TPOT) by up to 40% and increasing throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.

Authors:Junyi Chen, Shihao Bai, Zaijun Wang, Siyu Wu, Chuheng Du, Hailong Yang, Ruihao Gong, Shengzhong Liu, Fan Wu, Guihai Chen
Title: Pre$^3$: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation
Abstract:
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches. To address these issues, we propose Pre$^3$ that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency. First, by precomputing prefix-conditioned edges during the preprocessing, Pre$^3$ enables ahead-of-time edge analysis and thus makes parallel transition processing possible. Second, by leveraging the prefix-conditioned edges, Pre$^3$ introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead. Pre$^3$ can be seamlessly integrated into standard LLM inference frameworks, reducing time per output token (TPOT) by up to 40% and increasing throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.

Authors:Sam Pollard, Michael Wray
Title: Video, How Do Your Tokens Merge?
Abstract:
Video transformer models require huge amounts of compute resources due to the spatio-temporal scaling of the input. Tackling this, recent methods have proposed to drop or merge tokens for image models, whether randomly or via learned methods. Merging tokens has many benefits: it can be plugged into any vision transformer, does not require model re-training, and it propagates information that would otherwise be dropped through the model. Before now, video token merging has not been evaluated on temporally complex datasets for video understanding. In this work, we explore training-free token merging for video to provide comprehensive experiments and find best practices across four video transformers on three datasets that exhibit coarse and fine-grained action recognition. Our results showcase the benefits of video token merging with a speedup of around $2.5$X while maintaining accuracy (avg. $-0.55\%$ for ViViT). Code available at https://github.com/sjpollard/video-how-do-your-tokens-merge.

Authors:Mingxuan Xia, Haobo Wang, Yixuan Li, Zewei Yu, Jindong Wang, Junbo Zhao, Runze Wu
Title: Prompt Candidates, then Distill: A Teacher-Student Framework for LLM-driven Data Annotation
Abstract:
Recently, Large Language Models (LLMs) have demonstrated significant potential for data annotation, markedly reducing the labor costs associated with downstream applications. However, existing methods mostly adopt an aggressive strategy by prompting LLM to determine a single gold label for each unlabeled sample. Due to the inherent uncertainty within LLMs, they often produce incorrect labels for difficult samples, severely compromising the data quality for downstream applications. Motivated by ambiguity aversion in human behaviors, we propose a novel candidate annotation paradigm wherein large language models are encouraged to output all possible labels when incurring uncertainty. To ensure unique labels are provided for downstream tasks, we develop a teacher-student framework CanDist that distills candidate annotations with a Small Language Model (SLM). We further provide a rigorous justification demonstrating that distilling candidate annotations from the teacher LLM offers superior theoretical guarantees compared to directly using single annotations. Extensive experiments across six text classification tasks validate the effectiveness of our proposed method. The source code is available at https://github.com/MingxuanXia/CanDist.

Authors:Xiao-Qi Han, Ze-Feng Gao, Xin-De Wang, Zhenfeng Ouyang, Peng-Jie Guo, Zhong-Yi Lu
Title: HTSC-2025: A Benchmark Dataset of Ambient-Pressure High-Temperature Superconductors for AI-Driven Critical Temperature Prediction
Abstract:
The discovery of high-temperature superconducting materials holds great significance for human industry and daily life. In recent years, research on predicting superconducting transition temperatures using artificial intelligence~(AI) has gained popularity, with most of these tools claiming to achieve remarkable accuracy. However, the lack of widely accepted benchmark datasets in this field has severely hindered fair comparisons between different AI algorithms and impeded further advancement of these methods. In this work, we present the HTSC-2025, an ambient-pressure high-temperature superconducting benchmark dataset. This comprehensive compilation encompasses theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to 2025 based on BCS superconductivity theory, including the renowned X$_2$YH$_6$ system, perovskite MXH$_3$ system, M$_3$XH$_8$ system, cage-like BCN-doped metal atomic systems derived from LaH$_{10}$ structural evolution, and two-dimensional honeycomb-structured systems evolving from MgB$_2$. The HTSC-2025 benchmark has been open-sourced at https://github.com/xqh19970407/HTSC-2025 and will be continuously updated. This benchmark holds significant importance for accelerating the discovery of superconducting materials using AI-based methods.

Authors:Dhaval Patel, Shuxin Lin, James Rayfield, Nianjun Zhou, Roman Vaculin, Natalia Martinez, Fearghal O'donncha, Jayant Kalagnanam
Title: AssetOpsBench: Benchmarking AI Agents for Task Automation in Industrial Asset Operations and Maintenance
Abstract:
AI for Industrial Asset Lifecycle Management aims to automate complex operational workflows -- such as condition monitoring, maintenance planning, and intervention scheduling -- to reduce human workload and minimize system downtime. Traditional AI/ML approaches have primarily tackled these problems in isolation, solving narrow tasks within the broader operational pipeline. In contrast, the emergence of AI agents and large language models (LLMs) introduces a next-generation opportunity: enabling end-to-end automation across the entire asset lifecycle. This paper envisions a future where AI agents autonomously manage tasks that previously required distinct expertise and manual coordination. To this end, we introduce AssetOpsBench -- a unified framework and environment designed to guide the development, orchestration, and evaluation of domain-specific agents tailored for Industry 4.0 applications. We outline the key requirements for such holistic systems and provide actionable insights into building agents that integrate perception, reasoning, and control for real-world industrial operations. The software is available at https://github.com/IBM/AssetOpsBench.

Authors:Fabian Karl, Ansgar Scherp
Title: CRAWLDoc: A Dataset for Robust Ranking of Bibliographic Documents
Abstract:
Publication databases rely on accurate metadata extraction from diverse web sources, yet variations in web layouts and data formats present challenges for metadata providers. This paper introduces CRAWLDoc, a new method for contextual ranking of linked web documents. Starting with a publication's URL, such as a digital object identifier, CRAWLDoc retrieves the landing page and all linked web resources, including PDFs, ORCID profiles, and supplementary materials. It embeds these resources, along with anchor texts and the URLs, into a unified representation. For evaluating CRAWLDoc, we have created a new, manually labeled dataset of 600 publications from six top publishers in computer science. Our method CRAWLDoc demonstrates a robust and layout-independent ranking of relevant documents across publishers and data formats. It lays the foundation for improved metadata extraction from web documents with various layouts and formats. Our source code and dataset can be accessed at https://github.com/FKarl/CRAWLDoc.

Authors:Fei Zhang, Pei Zhang, Baosong Yang, Fei Huang, Yanfeng Wang, Ya Zhang
Title: ConText: Driving In-context Learning for Text Removal and Segmentation
Abstract:
This paper presents the first study on adapting the visual in-context learning (V-ICL) paradigm to optical character recognition tasks, specifically focusing on text removal and segmentation. Most existing V-ICL generalists employ a reasoning-as-reconstruction approach: they turn to using a straightforward image-label compositor as the prompt and query input, and then masking the query label to generate the desired output. This direct prompt confines the model to a challenging single-step reasoning process. To address this, we propose a task-chaining compositor in the form of image-removal-segmentation, providing an enhanced prompt that elicits reasoning with enriched intermediates. Additionally, we introduce context-aware aggregation, integrating the chained prompt pattern into the latent query representation, thereby strengthening the model's in-context reasoning. We also consider the issue of visual heterogeneity, which complicates the selection of homogeneous demonstrations in text recognition. Accordingly, this is effectively addressed through a simple self-prompting strategy, preventing the model's in-context learnability from devolving into specialist-like, context-free inference. Collectively, these insights culminate in our ConText model, which achieves new state-of-the-art across both in- and out-of-domain benchmarks. The code is available at https://github.com/Ferenas/ConText.

Authors:Hao Yu, Tangyu Jiang, Shuning Jia, Shannan Yan, Shunning Liu, Haolong Qian, Guanghao Li, Shuting Dong, Huaisong Zhang, Chun Yuan
Title: ComRoPE: Scalable and Robust Rotary Position Embedding Parameterized by Trainable Commuting Angle Matrices
Abstract:
The Transformer architecture has revolutionized various regions since it was proposed, and its effectiveness largely depends on the ability to encode positional information. Traditional position encoding methods exhibit significant limitations due to lack of robustness and flexibility of position. Therefore, Rotary Positional Encoding (RoPE) was proposed to alleviate these issues, which integrates positional information by rotating the embeddings in the attention mechanism. However, RoPE requires manually defined rotation matrices with limited transformation space, constraining the model's capacity. In this work, we propose ComRoPE, which generalizes RoPE by defining it in terms of trainable commuting angle matrices. Specifically, we demonstrate that pairwise commutativity of these matrices is essential for RoPE to achieve scalability and positional robustness. We formally define the RoPE Equation, which is an essential condition that ensures consistent performance with position offsets. Based on the theoretical analysis, we present two types of trainable commuting angle matrices as sufficient solutions to the RoPE equation, which significantly improve performance, surpassing the current state-of-the-art method by 1.6% at training resolution and 2.9% at higher resolution on the ImageNet-1K dataset. Furthermore, our framework shows versatility in generalizing to existing RoPE formulations and offering new insights for future positional encoding research. To ensure reproducibility, the source code and instructions are available at https://github.com/Longin-Yu/ComRoPE

Authors:Shuai Liu, Mingyue Cui, Boyang Li, Quanmin Liang, Tinghe Hong, Kai Huang, Yunxiao Shan, Kai Huang
Title: FSHNet: Fully Sparse Hybrid Network for 3D Object Detection
Abstract:
Fully sparse 3D detectors have recently gained significant attention due to their efficiency in long-range detection. However, sparse 3D detectors extract features only from non-empty voxels, which impairs long-range interactions and causes the center feature missing. The former weakens the feature extraction capability, while the latter hinders network optimization. To address these challenges, we introduce the Fully Sparse Hybrid Network (FSHNet). FSHNet incorporates a proposed SlotFormer block to enhance the long-range feature extraction capability of existing sparse encoders. The SlotFormer divides sparse voxels using a slot partition approach, which, compared to traditional window partition, provides a larger receptive field. Additionally, we propose a dynamic sparse label assignment strategy to deeply optimize the network by providing more high-quality positive samples. To further enhance performance, we introduce a sparse upsampling module to refine downsampled voxels, preserving fine-grained details crucial for detecting small objects. Extensive experiments on the Waymo, nuScenes, and Argoverse2 benchmarks demonstrate the effectiveness of FSHNet. The code is available at https://github.com/Say2L/FSHNet.

Authors:Yisen Feng, Haoyu Zhang, Qiaohui Chu, Meng Liu, Weili Guan, Yaowei Wang, Liqiang Nie
Title: OSGNet @ Ego4D Episodic Memory Challenge 2025
Abstract:
In this report, we present our champion solutions for the three egocentric video localization tracks of the Ego4D Episodic Memory Challenge at CVPR 2025. All tracks require precise localization of the interval within an untrimmed egocentric video. Previous unified video localization approaches often rely on late fusion strategies, which tend to yield suboptimal results. To address this, we adopt an early fusion-based video localization model to tackle all three tasks, aiming to enhance localization accuracy. Ultimately, our method achieved first place in the Natural Language Queries, Goal Step, and Moment Queries tracks, demonstrating its effectiveness. Our code can be found at https://github.com/Yisen-Feng/OSGNet.

Authors:Aditya Gandhamal, Aniruddh Sikdar, Suresh Sundaram
Title: OV-COAST: Cost Aggregation with Optimal Transport for Open-Vocabulary Semantic Segmentation
Abstract:
Open-vocabulary semantic segmentation (OVSS) entails assigning semantic labels to each pixel in an image using textual descriptions, typically leveraging world models such as CLIP. To enhance out-of-domain generalization, we propose Cost Aggregation with Optimal Transport (OV-COAST) for open-vocabulary semantic segmentation. To align visual-language features within the framework of optimal transport theory, we employ cost volume to construct a cost matrix, which quantifies the distance between two distributions. Our approach adopts a two-stage optimization strategy: in the first stage, the optimal transport problem is solved using cost volume via Sinkhorn distance to obtain an alignment solution; in the second stage, this solution is used to guide the training of the CAT-Seg model. We evaluate state-of-the-art OVSS models on the MESS benchmark, where our approach notably improves the performance of the cost-aggregation model CAT-Seg with ViT-B backbone, achieving superior results, surpassing CAT-Seg by 1.72 % and SAN-B by 4.9 % mIoU. The code is available at https://github.com/adityagandhamal/OV-COAST/}{https://github.com/adityagandhamal/OV-COAST/ .

Authors:Pei-Yun Lin, Yen-lung Tsai
Title: ScoreRAG: A Retrieval-Augmented Generation Framework with Consistency-Relevance Scoring and Structured Summarization for News Generation
Abstract:
This research introduces ScoreRAG, an approach to enhance the quality of automated news generation. Despite advancements in Natural Language Processing and large language models, current news generation methods often struggle with hallucinations, factual inconsistencies, and lack of domain-specific expertise when producing news articles. ScoreRAG addresses these challenges through a multi-stage framework combining retrieval-augmented generation, consistency relevance evaluation, and structured summarization. The system first retrieves relevant news documents from a vector database, maps them to complete news items, and assigns consistency relevance scores based on large language model evaluations. These documents are then reranked according to relevance, with low-quality items filtered out. The framework proceeds to generate graded summaries based on relevance scores, which guide the large language model in producing complete news articles following professional journalistic standards. Through this methodical approach, ScoreRAG aims to significantly improve the accuracy, coherence, informativeness, and professionalism of generated news articles while maintaining stability and consistency throughout the generation process. The code and demo are available at: https://github.com/peiyun2260/ScoreRAG.

Authors:Zhepei Wei, Wei-Lin Chen, Xinyu Zhu, Yu Meng
Title: AdaDecode: Accelerating LLM Decoding with Adaptive Layer Parallelism
Abstract:
Large language models (LLMs) are increasingly used for long-content generation (e.g., long Chain-of-Thought reasoning) where decoding efficiency becomes a critical bottleneck: Autoregressive decoding is inherently limited by its sequential token generation process, where each token must be generated before the next can be processed. This sequential dependency restricts the ability to fully leverage modern hardware's parallel processing capabilities. Existing methods like speculative decoding and layer skipping offer potential speedups but have notable drawbacks: speculative decoding relies on an auxiliary "drafter" model, which can be challenging to acquire and increases memory overhead, while layer skipping may introduce discrepancies in the outputs due to the missing key-value cache at skipped layers. In this work, we propose AdaDecode, which accelerates LLM decoding without requiring auxiliary models or changes to the original model parameters, while ensuring output consistency. AdaDecode leverages the insight that many tokens can accurately be generated at intermediate layers, as further layers often do not significantly alter predictions once the model reaches a certain confidence. By adaptively generating tokens at intermediate layers when confidence is high, AdaDecode enables the next token's computation to begin immediately. The remaining layer computations for early-predicted tokens are deferred and executed in parallel with subsequent tokens when needed, maximizing hardware utilization and reducing decoding latency. A final verification step ensures that early predictions match the results of standard autoregressive decoding, preserving output parity. Experiments across diverse generation tasks shows that AdaDecode consistently achieves superior decoding throughput with up to 1.73x speedup, while guaranteeing output parity with standard autoregressive decoding.

Authors:Chunqi Wang, Bingchao Wu, Zheng Chen, Lei Shen, Bing Wang, Xiaoyi Zeng
Title: Scaling Transformers for Discriminative Recommendation via Generative Pretraining
Abstract:
Discriminative recommendation tasks, such as CTR (click-through rate) and CVR (conversion rate) prediction, play critical roles in the ranking stage of large-scale industrial recommender systems. However, training a discriminative model encounters a significant overfitting issue induced by data sparsity. Moreover, this overfitting issue worsens with larger models, causing them to underperform smaller ones. To address the overfitting issue and enhance model scalability, we propose a framework named GPSD (\textbf{G}enerative \textbf{P}retraining for \textbf{S}calable \textbf{D}iscriminative Recommendation), drawing inspiration from generative training, which exhibits no evident signs of overfitting. GPSD leverages the parameters learned from a pretrained generative model to initialize a discriminative model, and subsequently applies a sparse parameter freezing strategy. Extensive experiments conducted on both industrial-scale and publicly available datasets demonstrate the superior performance of GPSD. Moreover, it delivers remarkable improvements in online A/B tests. GPSD offers two primary advantages: 1) it substantially narrows the generalization gap in model training, resulting in better test performance; and 2) it leverages the scalability of Transformers, delivering consistent performance gains as models are scaled up. Specifically, we observe consistent performance improvements as the model dense parameters scale from 13K to 0.3B, closely adhering to power laws. These findings pave the way for unifying the architectures of recommendation models and language models, enabling the direct application of techniques well-established in large language models to recommendation models. The code is available at https://github.com/chqiwang/gpsd-rec.

Authors:Jie Sun, Junkang Wu, Jiancan Wu, Zhibo Zhu, Xingyu Lu, Jun Zhou, Lintao Ma, Xiang Wang
Title: Robust Preference Optimization via Dynamic Target Margins
Abstract:
The alignment of Large Language Models (LLMs) is crucial for ensuring their safety and reliability in practical applications. Direct Preference Optimization (DPO) has emerged as an efficient method that directly optimizes models using preference pairs, significantly reducing resource demands. However, the effectiveness of DPO heavily depends on the data quality, which is frequently compromised by noise. In this work, we propose $γ$-PO, a dynamic target margin preference optimization algorithm that adjust reward margins at the pairwise level. By introducing instance-specific margin calibration, $γ$-PO strategically prioritizes high-confidence pairs (those demonstrating higher reward margins) while suppressing potential noise from ambiguous pairs. Moreover, $γ$-PO is a plug-and-play method, compatible with variants of DPO that rely on reward margin between preference pairs. Across benchmarks such as AlpacaEval2 and Arena-Hard, $γ$-PO achieves an average 4.4\% improvement over other baselines, setting new benchmarks for state-of-the-art performance. Additionally, $γ$-PO requires minimal code changes and has a negligible impact on training efficiency, making it a robust solution for enhancing LLMs alignment. Our codes are available at \href{https://github.com/sunjie279/gammaPO}{https://github.com/sunjie279/gammaPO}.

Authors:Zunhui Xia, Hongxing Li, Libin Lan
Title: DSSAU-Net:U-Shaped Hybrid Network for Pubic Symphysis and Fetal Head Segmentation
Abstract:
In the childbirth process, traditional methods involve invasive vaginal examinations, but research has shown that these methods are both subjective and inaccurate. Ultrasound-assisted diagnosis offers an objective yet effective way to assess fetal head position via two key parameters: Angle of Progression (AoP) and Head-Symphysis Distance (HSD), calculated by segmenting the fetal head (FH) and pubic symphysis (PS), which aids clinicians in ensuring a smooth delivery process. Therefore, accurate segmentation of FH and PS is crucial. In this work, we propose a sparse self-attention network architecture with good performance and high computational efficiency, named DSSAU-Net, for the segmentation of FH and PS. Specifically, we stack varying numbers of Dual Sparse Selection Attention (DSSA) blocks at each stage to form a symmetric U-shaped encoder-decoder network architecture. For a given query, DSSA is designed to explicitly perform one sparse token selection at both the region and pixel levels, respectively, which is beneficial for further reducing computational complexity while extracting the most relevant features. To compensate for the information loss during the upsampling process, skip connections with convolutions are designed. Additionally, multiscale feature fusion is employed to enrich the model's global and local information. The performance of DSSAU-Net has been validated using the Intrapartum Ultrasound Grand Challenge (IUGC) 2024 \textit{test set} provided by the organizer in the MICCAI IUGC 2024 competition\footnote{\href{https://codalab.lisn.upsaclay.fr/competitions/18413\#learn\_the\_details}{https://codalab.lisn.upsaclay.fr/competitions/18413\#learn\_the\_details}}, where we win the fourth place on the tasks of classification and segmentation, demonstrating its effectiveness. The codes will be available at https://github.com/XiaZunhui/DSSAU-Net.

Authors:Erhang Zhang, Junyi Ma, Yin-Dong Zheng, Yixuan Zhou, Hesheng Wang
Title: Zero-Shot Temporal Interaction Localization for Egocentric Videos
Abstract:
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We will release our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.

Authors:Zeyu Gao, Junlin Zhou, Bolun Zhang, Yi He, Chao Zhang, Yuxin Cui, Hao Wang
Title: Mono: Is Your "Clean" Vulnerability Dataset Really Solvable? Exposing and Trapping Undecidable Patches and Beyond
Abstract:
The quantity and quality of vulnerability datasets are essential for developing deep learning solutions to vulnerability-related tasks. Due to the limited availability of vulnerabilities, a common approach to building such datasets is analyzing security patches in source code. However, existing security patches often suffer from inaccurate labels, insufficient contextual information, and undecidable patches that fail to clearly represent the root causes of vulnerabilities or their fixes. These issues introduce noise into the dataset, which can mislead detection models and undermine their effectiveness. To address these issues, we present mono, a novel LLM-powered framework that simulates human experts' reasoning process to construct reliable vulnerability datasets. mono introduces three key components to improve security patch datasets: (i) semantic-aware patch classification for precise vulnerability labeling, (ii) iterative contextual analysis for comprehensive code understanding, and (iii) systematic root cause analysis to identify and filter undecidable patches. Our comprehensive evaluation on the MegaVul benchmark demonstrates that mono can correct 31.0% of labeling errors, recover 89% of inter-procedural vulnerabilities, and reveals that 16.7% of CVEs contain undecidable patches. Furthermore, mono's enriched context representation improves existing models' vulnerability detection accuracy by 15%. We open source the framework mono and the dataset MonoLens in https://github.com/vul337/mono.

Authors:Yinfan Wang, Jie Gui, Baosheng Yu, Qi Li, Zhenan Sun, Juho Kannala, Guoying Zhao
Title: FingerVeinSyn-5M: A Million-Scale Dataset and Benchmark for Finger Vein Recognition
Abstract:
A major challenge in finger vein recognition is the lack of large-scale public datasets. Existing datasets contain few identities and limited samples per finger, restricting the advancement of deep learning-based methods. To address this, we introduce FVeinSyn, a synthetic generator capable of producing diverse finger vein patterns with rich intra-class variations. Using FVeinSyn, we created FingerVeinSyn-5M -- the largest available finger vein dataset -- containing 5 million samples from 50,000 unique fingers, each with 100 variations including shift, rotation, scale, roll, varying exposure levels, skin scattering blur, optical blur, and motion blur. FingerVeinSyn-5M is also the first to offer fully annotated finger vein images, supporting deep learning applications in this field. Models pretrained on FingerVeinSyn-5M and fine-tuned with minimal real data achieve an average 53.91\% performance gain across multiple benchmarks. The dataset is publicly available at: https://github.com/EvanWang98/FingerVeinSyn-5M.

Authors:Ayuto Tsutsumi, Yuu Jinnai
Title: Do Large Language Models Know Folktales? A Case Study of Yokai in Japanese Folktales
Abstract:
Although Large Language Models (LLMs) have demonstrated strong language understanding and generation abilities across various languages, their cultural knowledge is often limited to English-speaking communities, which can marginalize the cultures of non-English communities. To address the problem, evaluation of the cultural awareness of the LLMs and the methods to develop culturally aware LLMs have been investigated. In this study, we focus on evaluating knowledge of folktales, a key medium for conveying and circulating culture. In particular, we focus on Japanese folktales, specifically on knowledge of Yokai. Yokai are supernatural creatures originating from Japanese folktales that continue to be popular motifs in art and entertainment today. Yokai have long served as a medium for cultural expression, making them an ideal subject for assessing the cultural awareness of LLMs. We introduce YokaiEval, a benchmark dataset consisting of 809 multiple-choice questions (each with four options) designed to probe knowledge about yokai. We evaluate the performance of 31 Japanese and multilingual LLMs on this dataset. The results show that models trained with Japanese language resources achieve higher accuracy than English-centric models, with those that underwent continued pretraining in Japanese, particularly those based on Llama-3, performing especially well. The code and dataset are available at https://github.com/CyberAgentA ILab/YokaiEval.

Authors:Zhanhui Zhou, Lingjie Chen, Chao Yang, Chaochao Lu
Title: VLMs Can Aggregate Scattered Training Patches
Abstract:
One way to mitigate risks in vision-language models (VLMs) is to remove dangerous samples in their training data. However, such data moderation can be easily bypassed when harmful images are split into small, benign-looking patches, scattered across many training samples. VLMs may then learn to piece these fragments together during training and generate harmful responses at inference, either from full images or text references. For instance, if trained on image patches from a bloody scene paired with the descriptions "safe," VLMs may later describe, the full image or a text reference to the scene, as "safe." We define the core ability of VLMs enabling this attack as $\textit{visual stitching}$ -- the ability to integrate visual information spread across multiple training samples that share the same textual descriptions. In our work, we first demonstrate visual stitching abilities in common open-source VLMs on three datasets where each image is labeled with a unique synthetic ID: we split each $(\texttt{image}, \texttt{ID})$ pair into $\{(\texttt{patch}, \texttt{ID})\}$ pairs at different granularity for finetuning, and we find that tuned models can verbalize the correct IDs from full images or text reference. Building on this, we simulate the adversarial data poisoning scenario mentioned above by using patches from dangerous images and replacing IDs with text descriptions like ``safe'' or ``unsafe'', demonstrating how harmful content can evade moderation in patches and later be reconstructed through visual stitching, posing serious VLM safety risks. Code is available at https://github.com/ZHZisZZ/visual-stitching.

Authors:Shaoshan Liu, Fan Wang, Hongjun Zhou, Yuanfeng Wang
Title: Training Cross-Morphology Embodied AI Agents: From Practical Challenges to Theoretical Foundations
Abstract:
While theory and practice are often seen as separate domains, this article shows that theoretical insight is essential for overcoming real-world engineering barriers. We begin with a practical challenge: training a cross-morphology embodied AI policy that generalizes across diverse robot morphologies. We formalize this as the Heterogeneous Embodied Agent Training (HEAT) problem and prove it reduces to a structured Partially Observable Markov Decision Process (POMDP) that is PSPACE-complete. This result explains why current reinforcement learning pipelines break down under morphological diversity, due to sequential training constraints, memory-policy coupling, and data incompatibility. We further explore Collective Adaptation, a distributed learning alternative inspired by biological systems. Though NEXP-complete in theory, it offers meaningful scalability and deployment benefits in practice. This work illustrates how computational theory can illuminate system design trade-offs and guide the development of more robust, scalable embodied AI. For practitioners and researchers to explore this problem, the implementation code of this work has been made publicly available at https://github.com/airs-admin/HEAT

Authors:Dongmin Park, Minkyu Kim, Beongjun Choi, Junhyuck Kim, Keon Lee, Jonghyun Lee, Inkyu Park, Byeong-Uk Lee, Jaeyoung Hwang, Jaewoo Ahn, Ameya S. Mahabaleshwarkar, Bilal Kartal, Pritam Biswas, Yoshi Suhara, Kangwook Lee, Jaewoong Cho
Title: Orak: A Foundational Benchmark for Training and Evaluating LLM Agents on Diverse Video Games
Abstract:
Large Language Model (LLM) agents are reshaping the game industry, particularly with more intelligent and human-preferable game characters. However, existing game benchmarks fall short of practical needs: they lack evaluations of diverse LLM capabilities across various game genres, studies of agentic modules crucial for complex gameplay, and fine-tuning datasets for aligning pre-trained LLMs into gaming agents. To fill these gaps, we present \textbf{\benchname{}}, a foundational benchmark designed to train and evaluate LLM agents across diverse real-world video games. Unlike existing benchmarks, Orak includes 12 popular video games spanning all major genres, enabling comprehensive studies of LLM capabilities and agentic modules essential for intricate game scenarios. To support consistent evaluation of LLMs, we introduce a plug-and-play interface based on Model Context Protocol (MCP) that enables LLMs to seamlessly connect with games and manipulate agentic modules. Additionally, we propose a fine-tuning dataset, consisting of LLM gameplay trajectories across diverse game genres. Orak offers a comprehensive evaluation framework, encompassing general game score leaderboards, LLM battle arenas, and in-depth analyses of visual input state, agentic strategies, and fine-tuning effects, establishing a foundation towards building generic gaming agents. Code is available at https://github.com/krafton-ai/Orak.

Authors:Dongmin Park, Minkyu Kim, Beongjun Choi, Junhyuck Kim, Keon Lee, Jonghyun Lee, Inkyu Park, Byeong-Uk Lee, Jaeyoung Hwang, Jaewoo Ahn, Ameya S. Mahabaleshwarkar, Bilal Kartal, Pritam Biswas, Yoshi Suhara, Kangwook Lee, Jaewoong Cho
Title: Orak: A Foundational Benchmark for Training and Evaluating LLM Agents on Diverse Video Games
Abstract:
Large Language Model (LLM) agents are reshaping the game industry, particularly with more intelligent and human-preferable game characters. However, existing game benchmarks fall short of practical needs: they lack evaluations of diverse LLM capabilities across various game genres, studies of agentic modules crucial for complex gameplay, and fine-tuning datasets for aligning pre-trained LLMs into gaming agents. To fill these gaps, we present Orak, a foundational benchmark designed to train and evaluate LLM agents across diverse real-world video games. Unlike existing benchmarks, Orak includes 12 popular video games spanning all major genres, enabling comprehensive studies of LLM capabilities and agentic modules essential for intricate game scenarios. To support consistent evaluation of LLMs, we introduce a plug-and-play interface based on Model Context Protocol (MCP) that enables LLMs to seamlessly connect with games and manipulate agentic modules. Additionally, we propose a fine-tuning dataset, consisting of LLM gameplay trajectories across diverse game genres. Orak offers a comprehensive evaluation framework, encompassing general game score leaderboards, LLM battle arenas, and in-depth analyses of visual input state, agentic strategies, and fine-tuning effects, establishing a foundation towards building generic gaming agents. Code is available at https://github.com/krafton-ai/Orak.

Authors:Hiroki Shiraishi, Yohei Hayamizu, Tomonori Hashiyama, Keiki Takadama, Hisao Ishibuchi, Masaya Nakata
Title: Adapting Rule Representation With Four-Parameter Beta Distribution for Learning Classifier Systems
Abstract:
Rule representations significantly influence the search capabilities and decision boundaries within the search space of Learning Classifier Systems (LCSs), a family of rule-based machine learning systems that evolve interpretable models through evolutionary processes. However, it is very difficult to choose an appropriate rule representation for each problem. Additionally, some problems benefit from using different representations for different subspaces within the input space. Thus, an adaptive mechanism is needed to choose an appropriate rule representation for each rule in LCSs. This article introduces a flexible rule representation using a four-parameter beta distribution and integrates it into a fuzzy-style LCS. The four-parameter beta distribution can form various function shapes, and this flexibility enables our LCS to automatically select appropriate representations for different subspaces. Our rule representation can represent crisp/fuzzy decision boundaries in various boundary shapes, such as rectangles and bells, by controlling four parameters, compared to the standard representations such as trapezoidal ones. Leveraging this flexibility, our LCS is designed to adapt the appropriate rule representation for each subspace. Moreover, our LCS incorporates a generalization bias favoring crisp rules where feasible, enhancing model interpretability without compromising accuracy. Experimental results on real-world classification tasks show that our LCS achieves significantly superior test accuracy and produces more compact rule sets. Our implementation is available at https://github.com/YNU-NakataLab/Beta4-UCS. An extended abstract related to this work is available at https://doi.org/10.36227/techrxiv.174900805.59801248/v1.

Authors:Feng Han, Yang Jiao, Shaoxiang Chen, Junhao Xu, Jingjing Chen, Yu-Gang Jiang
Title: ControlThinker: Unveiling Latent Semantics for Controllable Image Generation through Visual Reasoning
Abstract:
The field of controllable image generation has seen significant advancements, with various architectures improving generation layout consistency with control signals. However, contemporary methods still face challenges in bridging the semantic gap between input text prompts with sparse semantics and the target images, often over-relying on low-level control signals to infer regional details. To address this challenge, we propose ControlThinker, a novel framework that employs a "comprehend-then-generate" paradigm. Firstly, by incentivizing the visual reasoning capability of a MLLM, latent semantics from control images are mined to enrich text prompts. This enriched semantic understanding then seamlessly aids in image generation without the need for additional complex modifications. To further tackle the uncertainty arising from the ambiguity of control images, we encourage broader exploration of reasoning trajectories and select the optimal one using a metric-based output reward model (ORM). Extensive experimental results demonstrate that ControlThinker effectively mitigates the semantic gap between raw text prompts and target images, resulting in improved visual quality and semantic consistency across a wide range of benchmarks. The code and models are available at https://github.com/Maplebb/ControlThinker.

Authors:Shengjie Lin, Jiading Fang, Muhammad Zubair Irshad, Vitor Campagnolo Guizilini, Rares Andrei Ambrus, Greg Shakhnarovich, Matthew R. Walter
Title: SplArt: Articulation Estimation and Part-Level Reconstruction with 3D Gaussian Splatting
Abstract:
Reconstructing articulated objects prevalent in daily environments is crucial for applications in augmented/virtual reality and robotics. However, existing methods face scalability limitations (requiring 3D supervision or costly annotations), robustness issues (being susceptible to local optima), and rendering shortcomings (lacking speed or photorealism). We introduce SplArt, a self-supervised, category-agnostic framework that leverages 3D Gaussian Splatting (3DGS) to reconstruct articulated objects and infer kinematics from two sets of posed RGB images captured at different articulation states, enabling real-time photorealistic rendering for novel viewpoints and articulations. SplArt augments 3DGS with a differentiable mobility parameter per Gaussian, achieving refined part segmentation. A multi-stage optimization strategy is employed to progressively handle reconstruction, part segmentation, and articulation estimation, significantly enhancing robustness and accuracy. SplArt exploits geometric self-supervision, effectively addressing challenging scenarios without requiring 3D annotations or category-specific priors. Evaluations on established and newly proposed benchmarks, along with applications to real-world scenarios using a handheld RGB camera, demonstrate SplArt's state-of-the-art performance and real-world practicality. Code is publicly available at https://github.com/ripl/splart.

Authors:Viktor Hangya, Fabian Küch, Darina Gold
Title: From Understanding to Generation: An Efficient Shortcut for Evaluating Language Models
Abstract:
Iterative evaluation of LLMs during training is essential to ensure expected capability development, but can be time- and compute-intensive. While NLU tasks, where the model selects from fixed answer choices, are cheap to evaluate, essential capabilities like reasoning and code generation rely on the more time-consuming NLG (token-by-token generation) format. In this work, our aim is to decrease the computational burden of NLG benchmarks in order to enable monitoring crucial LLM capabilities during model training. We reformulate generative tasks into computationally cheaper NLU alternatives. We test the performance correlation between the original and reformulated tasks using 8 LMs of various sizes and 4 capabilities: mathematical reasoning, code generation, factual knowledge and reading comprehension. Our results show a strong correlation between task formats, supporting capability assessment via cheaper alternatives and achieving over 35x average reduction in evaluation time. Our project is available at: https://github.com/Fraunhofer-IIS/EvalShortcut

Authors:Hiroki Shiraishi, Hisao Ishibuchi, Masaya Nakata
Title: A Class Inference Scheme With Dempster-Shafer Theory for Learning Fuzzy-Classifier Systems
Abstract:
The decision-making process significantly influences the predictions of machine learning models. This is especially important in rule-based systems such as Learning Fuzzy-Classifier Systems (LFCSs) where the selection and application of rules directly determine prediction accuracy and reliability. LFCSs combine evolutionary algorithms with supervised learning to optimize fuzzy classification rules, offering enhanced interpretability and robustness. Despite these advantages, research on improving decision-making mechanisms (i.e., class inference schemes) in LFCSs remains limited. Most LFCSs use voting-based or single-winner-based inference schemes. These schemes rely on classification performance on training data and may not perform well on unseen data, risking overfitting. To address these limitations, this article introduces a novel class inference scheme for LFCSs based on the Dempster-Shafer Theory of Evidence (DS theory). The proposed scheme handles uncertainty well. By using the DS theory, the scheme calculates belief masses (i.e., measures of belief) for each specific class and the ``I don't know'' state from each fuzzy rule and infers a class from these belief masses. Unlike the conventional schemes, the proposed scheme also considers the ``I don't know'' state that reflects uncertainty, thereby improving the transparency and reliability of LFCSs. Applied to a variant of LFCS (i.e., Fuzzy-UCS), the proposed scheme demonstrates statistically significant improvements in terms of test macro F1 scores across 30 real-world datasets compared to conventional voting-based and single-winner-based fuzzy inference schemes. It forms smoother decision boundaries, provides reliable confidence measures, and enhances the robustness and generalizability of LFCSs in real-world applications. Our implementation is available at https://github.com/YNU-NakataLab/jUCS.

Authors:Zhigang Yang, Huiguang Yao, Linmao Tian, Xuezhi Zhao, Qiang Li, Qi Wang
Title: A Large-Scale Referring Remote Sensing Image Segmentation Dataset and Benchmark
Abstract:
Referring Remote Sensing Image Segmentation is a complex and challenging task that integrates the paradigms of computer vision and natural language processing. Existing datasets for RRSIS suffer from critical limitations in resolution, scene diversity, and category coverage, which hinders the generalization and real-world applicability of refer segmentation models. To facilitate the development of this field, we introduce NWPU-Refer, the largest and most diverse RRSIS dataset to date, comprising 15,003 high-resolution images (1024-2048px) spanning 30+ countries with 49,745 annotated targets supporting single-object, multi-object, and non-object segmentation scenarios. Additionally, we propose the Multi-scale Referring Segmentation Network (MRSNet), a novel framework tailored for the unique demands of RRSIS. MRSNet introduces two key innovations: (1) an Intra-scale Feature Interaction Module (IFIM) that captures fine-grained details within each encoder stage, and (2) a Hierarchical Feature Interaction Module (HFIM) to enable seamless cross-scale feature fusion, preserving spatial integrity while enhancing discriminative power. Extensive experiments conducte on the proposed NWPU-Refer dataset demonstrate that MRSNet achieves state-of-the-art performance across multiple evaluation metrics, validating its effectiveness. The dataset and code are publicly available at https://github.com/CVer-Yang/NWPU-Refer.

Authors:Rui Yann, Tianshuo Zhang, Xianglei Xing
Title: SemiOccam: A Robust Semi-Supervised Image Recognition Network Using Sparse Labels
Abstract:
We present SemiOccam, an image recognition network that leverages semi-supervised learning in a highly efficient manner. Existing works often rely on complex training techniques and architectures, requiring hundreds of GPU hours for training, while their generalization ability with extremely limited labeled data remains to be improved. To address these limitations, we construct a hierarchical mixture density classification mechanism by optimizing mutual information between feature representations and target classes, compressing redundant information while retaining crucial discriminative components. Experimental results demonstrate that our method achieves state-of-the-art performance on three commonly used datasets, with accuracy exceeding 95% on two of them using only 4 labeled samples per class, and its simple architecture keeps training time at the minute level. Notably, this paper reveals a long-overlooked data leakage issue in the STL-10 dataset for semi-supervised learning and removes duplicates to ensure reliable experimental results. We release the deduplicated CleanSTL-10 dataset to facilitate fair and reproducible research. Code available at https://github.com/Shu1L0n9/SemiOccam.

Authors:Core Team, Zihao Yue, Zhenru Lin, Yifan Song, Weikun Wang, Shuhuai Ren, Shuhao Gu, Shicheng Li, Peidian Li, Liang Zhao, Lei Li, Kainan Bao, Hao Tian, Hailin Zhang, Gang Wang, Dawei Zhu, Cici, Chenhong He, Bowen Ye, Bowen Shen, Zihan Zhang, Zihan Jiang, Zhixian Zheng, Zhichao Song, Zhenbo Luo, Yue Yu, Yudong Wang, Yuanyuan Tian, Yu Tu, Yihan Yan, Yi Huang, Xu Wang, Xinzhe Xu, Xingchen Song, Xing Zhang, Xing Yong, Xin Zhang, Xiangwei Deng, Wenyu Yang, Wenhan Ma, Weiwei Lv, Weiji Zhuang, Wei Liu, Sirui Deng, Shuo Liu, Shimao Chen, Shihua Yu, Shaohui Liu, Shande Wang, Rui Ma, Qiantong Wang, Peng Wang, Nuo Chen, Menghang Zhu, Kangyang Zhou, Kang Zhou, Kai Fang, Jun Shi, Jinhao Dong, Jiebao Xiao, Jiaming Xu, Huaqiu Liu, Hongshen Xu, Heng Qu, Haochen Zhao, Hanglong Lv, Guoan Wang, Duo Zhang, Dong Zhang, Di Zhang, Chong Ma, Chang Liu, Can Cai, Bingquan Xia
Title: MiMo-VL Technical Report
Abstract:
We open-source MiMo-VL-7B-SFT and MiMo-VL-7B-RL, two powerful vision-language models delivering state-of-the-art performance in both general visual understanding and multimodal reasoning. MiMo-VL-7B-RL outperforms Qwen2.5-VL-7B on 35 out of 40 evaluated tasks, and scores 59.4 on OlympiadBench, surpassing models with up to 78B parameters. For GUI grounding applications, it sets a new standard with 56.1 on OSWorld-G, even outperforming specialized models such as UI-TARS. Our training combines four-stage pre-training (2.4 trillion tokens) with Mixed On-policy Reinforcement Learning (MORL) integrating diverse reward signals. We identify the importance of incorporating high-quality reasoning data with long Chain-of-Thought into pre-training stages, and the benefits of mixed RL despite challenges in simultaneous multi-domain optimization. We also contribute a comprehensive evaluation suite covering 50+ tasks to promote reproducibility and advance the field. The model checkpoints and full evaluation suite are available at https://github.com/XiaomiMiMo/MiMo-VL.

Authors:Li Zeqiao, Wang Yijing, Wang Haoyu, Li Zheng, Li Peng, Zuo zhiqiang, Hu Chuan
Title: Confidence-Guided Human-AI Collaboration: Reinforcement Learning with Distributional Proxy Value Propagation for Autonomous Driving
Abstract:
Autonomous driving promises significant advancements in mobility, road safety and traffic efficiency, yet reinforcement learning and imitation learning face safe-exploration and distribution-shift challenges. Although human-AI collaboration alleviates these issues, it often relies heavily on extensive human intervention, which increases costs and reduces efficiency. This paper develops a confidence-guided human-AI collaboration (C-HAC) strategy to overcome these limitations. First, C-HAC employs a distributional proxy value propagation method within the distributional soft actor-critic (DSAC) framework. By leveraging return distributions to represent human intentions C-HAC achieves rapid and stable learning of human-guided policies with minimal human interaction. Subsequently, a shared control mechanism is activated to integrate the learned human-guided policy with a self-learning policy that maximizes cumulative rewards. This enables the agent to explore independently and continuously enhance its performance beyond human guidance. Finally, a policy confidence evaluation algorithm capitalizes on DSAC's return distribution networks to facilitate dynamic switching between human-guided and self-learning policies via a confidence-based intervention function. This ensures the agent can pursue optimal policies while maintaining safety and performance guarantees. Extensive experiments across diverse driving scenarios reveal that C-HAC significantly outperforms conventional methods in terms of safety, efficiency, and overall performance, achieving state-of-the-art results. The effectiveness of the proposed method is further validated through real-world road tests in complex traffic conditions. The videos and code are available at: https://github.com/lzqw/C-HAC.

Authors:Langlin Huang, Chengsong Huang, Jixuan Leng, Di Huang, Jiaxin Huang
Title: POSS: Position Specialist Generates Better Draft for Speculative Decoding
Abstract:
Speculative decoding accelerates Large Language Model (LLM) inference by using a small draft model to predict multiple tokens, and a large target model to verify these tokens in parallel. Recent studies leverage the hidden state of the target model to enhance draft model prediction accuracy. However, existing methods suffer from the degrading quality of draft token predictions at later positions, due to error accumulation in draft model generated features. In this paper, we propose Position Specialists (PosS), which consist of multiple position-specialized draft layers to generate tokens at assigned position(s). Position specialists greatly improve token acceptance rate at later positions per drafting round, as each specialist only needs to focus on handling a certain level of draft model feature deviation. Experiment results on Llama-3-8B-Instruct and Llama-2-13B-chat across six datasets demonstrate that PosS effectively improves over baselines on average acceptance length and speed-up ratio. Our codebase is available at https://github.com/shrango/PosS.

Authors:Tianpei Zhang, Jufeng Zhao, Yiming Zhu, Guangmang Cui
Title: WIFE-Fusion:Wavelet-aware Intra-inter Frequency Enhancement for Multi-model Image Fusion
Abstract:
Multimodal image fusion effectively aggregates information from diverse modalities, with fused images playing a crucial role in vision systems. However, existing methods often neglect frequency-domain feature exploration and interactive relationships. In this paper, we propose wavelet-aware Intra-inter Frequency Enhancement Fusion (WIFE-Fusion), a multimodal image fusion framework based on frequency-domain components interactions. Its core innovations include: Intra-Frequency Self-Attention (IFSA) that leverages inherent cross-modal correlations and complementarity through interactive self-attention mechanisms to extract enriched frequency-domain features, and Inter-Frequency Interaction (IFI) that enhances enriched features and filters latent features via combinatorial interactions between heterogeneous frequency-domain components across modalities. These processes achieve precise source feature extraction and unified modeling of feature extraction-aggregation. Extensive experiments on five datasets across three multimodal fusion tasks demonstrate WIFE-Fusion's superiority over current specialized and unified fusion methods. Our code is available at https://github.com/Lmmh058/WIFE-Fusion.

Authors:Chenglong Ye, Gang Xiong, Junyou Shang, Xingyuan Dai, Xiaoyan Gong, Yisheng Lv
Title: SUMO-MCP: Leveraging the Model Context Protocol for Autonomous Traffic Simulation and Optimization
Abstract:
Traffic simulation tools, such as SUMO, are essential for urban mobility research. However, such tools remain challenging for users due to complex manual workflows involving network download, demand generation, simulation setup, and result analysis. In this paper, we introduce SUMO-MCP, a novel platform that not only wraps SUMO' s core utilities into a unified tool suite but also provides additional auxiliary utilities for common preprocessing and postprocessing tasks. Using SUMO-MCP, users can issue simple natural-language prompts to generate traffic scenarios from OpenStreetMap data, create demand from origin-destination matrices or random patterns, run batch simulations with multiple signal-control strategies, perform comparative analyses with automated reporting, and detect congestion for signal-timing optimization. Furthermore, the platform allows flexible custom workflows by dynamically combining exposed SUMO tools without additional coding. Experiments demonstrate that SUMO-MCP significantly makes traffic simulation more accessible and reliable for researchers. We will release code for SUMO-MCP at https://github.com/ycycycl/SUMO-MCP in the future.

Authors:Yongxiang Tang, Yanhua Cheng, Xiaocheng Liu, Chenchen Jiao, Yanxiang Zeng, Ning Luo, Pengjia Yuan, Xialong Liu, Peng Jiang
Title: Learning Monotonic Probabilities with a Generative Cost Model
Abstract:
In many machine learning tasks, it is often necessary for the relationship between input and output variables to be monotonic, including both strictly monotonic and implicitly monotonic relationships. Traditional methods for maintaining monotonicity mainly rely on construction or regularization techniques, whereas this paper shows that the issue of strict monotonic probability can be viewed as a partial order between an observable revenue variable and a latent cost variable. This perspective enables us to reformulate the monotonicity challenge into modeling the latent cost variable. To tackle this, we introduce a generative network for the latent cost variable, termed the Generative Cost Model (GCM), which inherently addresses the strict monotonic problem, and propose the Implicit Generative Cost Model (IGCM) to address the implicit monotonic problem. We further validate our approach with a numerical simulation of quantile regression and conduct multiple experiments on public datasets, showing that our method significantly outperforms existing monotonic modeling techniques. The code for our experiments can be found at https://github.com/tyxaaron/GCM.

Authors:Yunyao Zhang, Zikai Song, Hang Zhou, Wenfeng Ren, Yi-Ping Phoebe Chen, Junqing Yu, Wei Yang
Title: GA-S$^3$: Comprehensive Social Network Simulation with Group Agents
Abstract:
Social network simulation is developed to provide a comprehensive understanding of social networks in the real world, which can be leveraged for a wide range of applications such as group behavior emergence, policy optimization, and business strategy development. However, billions of individuals and their evolving interactions involved in social networks pose challenges in accurately reflecting real-world complexities. In this study, we propose a comprehensive Social Network Simulation System (GA-S3) that leverages newly designed Group Agents to make intelligent decisions regarding various online events. Unlike other intelligent agents that represent an individual entity, our group agents model a collection of individuals exhibiting similar behaviors, facilitating the simulation of large-scale network phenomena with complex interactions at a manageable computational cost. Additionally, we have constructed a social network benchmark from 2024 popular online events that contains fine-grained information on Internet traffic variations. The experiment demonstrates that our approach is capable of achieving accurate and highly realistic prediction results. Code is open at https://github.com/AI4SS/GAS-3.

Authors:Guanzhou Ke, Bo Wang, Guoqing Chao, Weiming Hu, Shengfeng He
Title: How Far Are We from Generating Missing Modalities with Foundation Models?
Abstract:
Multimodal foundation models have demonstrated impressive capabilities across diverse tasks. However, their potential as plug-and-play solutions for missing modality reconstruction remains underexplored. To bridge this gap, we identify and formalize three potential paradigms for missing modality reconstruction, and perform a comprehensive evaluation across these paradigms, covering 42 model variants in terms of reconstruction accuracy and adaptability to downstream tasks. Our analysis reveals that current foundation models often fall short in two critical aspects: (i) fine-grained semantic extraction from the available modalities, and (ii) robust validation of generated modalities. These limitations lead to suboptimal and, at times, misaligned generations. To address these challenges, we propose an agentic framework tailored for missing modality reconstruction. This framework dynamically formulates modality-aware mining strategies based on the input context, facilitating the extraction of richer and more discriminative semantic features. In addition, we introduce a self-refinement mechanism, which iteratively verifies and enhances the quality of generated modalities through internal feedback. Experimental results show that our method reduces FID for missing image reconstruction by at least 14\% and MER for missing text reconstruction by at least 10\% compared to baselines. Code are released at: https://github.com/Guanzhou-Ke/AFM2.

Authors:Chong Li, Jiajun Zhang, Chengqing Zong
Title: TokAlign: Efficient Vocabulary Adaptation via Token Alignment
Abstract:
Tokenization serves as a foundational step for Large Language Models (LLMs) to process text. In new domains or languages, the inefficiency of the tokenizer will slow down the training and generation of LLM. The mismatch in vocabulary also hinders deep knowledge transfer between LLMs like token-level distillation. To mitigate this gap, we propose an efficient method named TokAlign to replace the vocabulary of LLM from the token co-occurrences view, and further transfer the token-level knowledge between models. It first aligns the source vocabulary to the target one by learning a one-to-one mapping matrix for token IDs. Model parameters, including embeddings, are rearranged and progressively fine-tuned for the new vocabulary. Our method significantly improves multilingual text compression rates and vocabulary initialization for LLMs, decreasing the perplexity from 3.4$\text{e}^2$ of strong baseline methods to 1.2$\text{e}^2$ after initialization. Experimental results on models across multiple parameter scales demonstrate the effectiveness and generalization of TokAlign, which costs as few as 5k steps to restore the performance of the vanilla model. After unifying vocabularies between LLMs, token-level distillation can remarkably boost (+4.4% than sentence-level distillation) the base model, costing only 235M tokens.

Authors:Daniel Campa, Mehdi Saeedi, Ian Colbert, Srinjoy Das
Title: Path Generation and Evaluation in Video Games: A Nonparametric Statistical Approach
Abstract:
Navigation path traces play a crucial role in video game design, serving as a vital resource for both enhancing player engagement and fine-tuning non-playable character behavior. Generating such paths with human-like realism can enrich the overall gaming experience, and evaluating path traces can provide game designers insights into player interactions. Despite the impressive recent advancements in deep learning-based generative modeling, the video game industry hesitates to adopt such models for path generation, often citing their complex training requirements and interpretability challenges. To address these problems, we propose a novel path generation and evaluation approach that is grounded in principled nonparametric statistics and provides precise control while offering interpretable insights. Our path generation method fuses two statistical techniques: (1) nonparametric model-free transformations that capture statistical characteristics of path traces through time; and (2) copula models that capture statistical dependencies in space. For path evaluation, we adapt a nonparametric three-sample hypothesis test designed to determine if the generated paths are overfit (mimicking the original data too closely) or underfit (diverging too far from it). We demonstrate the precision and reliability of our proposed methods with empirical analysis on two existing gaming benchmarks to showcase controlled generation of diverse navigation paths. Notably, our novel path generator can be fine-tuned with user controllable parameters to create navigation paths that exhibit varying levels of human-likeness in contrast to those produced by neural network-based agents. The code is available at https://github.com/daniel-campa/mf-copula.

Authors:Yuchen Guo, Zhicheng Dou, Huy H. Nguyen, Ching-Chun Chang, Saku Sugawara, Isao Echizen
Title: Measuring Human Involvement in AI-Generated Text: A Case Study on Academic Writing
Abstract:
Content creation has dramatically progressed with the rapid advancement of large language models like ChatGPT and Claude. While this progress has greatly enhanced various aspects of life and work, it has also negatively affected certain areas of society. A recent survey revealed that nearly 30% of college students use generative AI to help write academic papers and reports. Most countermeasures treat the detection of AI-generated text as a binary classification task and thus lack robustness. This approach overlooks human involvement in the generation of content even though human-machine collaboration is becoming mainstream. Besides generating entire texts, people may use machines to complete or revise texts. Such human involvement varies case by case, which makes binary classification a less than satisfactory approach. We refer to this situation as participation detection obfuscation. We propose using BERTScore as a metric to measure human involvement in the generation process and a multi-task RoBERTa-based regressor trained on a token classification task to address this problem. To evaluate the effectiveness of this approach, we simulated academic-based scenarios and created a continuous dataset reflecting various levels of human involvement. All of the existing detectors we examined failed to detect the level of human involvement on this dataset. Our method, however, succeeded (F1 score of 0.9423 and a regressor mean squared error of 0.004). Moreover, it demonstrated some generalizability across generative models. Our code is available at https://github.com/gyc-nii/CAS-CS-and-dual-head-detector

Authors:Yuxuan Han, Junfeng Lyu, Kuan Sheng, Minghao Que, Qixuan Zhang, Lan Xu, Feng Xu
Title: Facial Appearance Capture at Home with Patch-Level Reflectance Prior
Abstract:
Existing facial appearance capture methods can reconstruct plausible facial reflectance from smartphone-recorded videos. However, the reconstruction quality is still far behind the ones based on studio recordings. This paper fills the gap by developing a novel daily-used solution with a co-located smartphone and flashlight video capture setting in a dim room. To enhance the quality, our key observation is to solve facial reflectance maps within the data distribution of studio-scanned ones. Specifically, we first learn a diffusion prior over the Light Stage scans and then steer it to produce the reflectance map that best matches the captured images. We propose to train the diffusion prior at the patch level to improve generalization ability and training stability, as current Light Stage datasets are in ultra-high resolution but limited in data size. Tailored to this prior, we propose a patch-level posterior sampling technique to sample seamless full-resolution reflectance maps from this patch-level diffusion model. Experiments demonstrate our method closes the quality gap between low-cost and studio recordings by a large margin, opening the door for everyday users to clone themselves to the digital world. Our code will be released at https://github.com/yxuhan/DoRA.

Authors:Xinru Ying, Jiaqi Mo, Jingyang Lin, Canghong Jin, Fangfang Wang, Lina Wei
Title: MamFusion: Multi-Mamba with Temporal Fusion for Partially Relevant Video Retrieval
Abstract:
Partially Relevant Video Retrieval (PRVR) is a challenging task in the domain of multimedia retrieval. It is designed to identify and retrieve untrimmed videos that are partially relevant to the provided query. In this work, we investigate long-sequence video content understanding to address information redundancy issues. Leveraging the outstanding long-term state space modeling capability and linear scalability of the Mamba module, we introduce a multi-Mamba module with temporal fusion framework (MamFusion) tailored for PRVR task. This framework effectively captures the state-relatedness in long-term video content and seamlessly integrates it into text-video relevance understanding, thereby enhancing the retrieval process. Specifically, we introduce Temporal T-to-V Fusion and Temporal V-to-T Fusion to explicitly model temporal relationships between text queries and video moments, improving contextual awareness and retrieval accuracy. Extensive experiments conducted on large-scale datasets demonstrate that MamFusion achieves state-of-the-art performance in retrieval effectiveness. Code is available at the link: https://github.com/Vision-Multimodal-Lab-HZCU/MamFusion.

Authors:Mahesh Godavarti
Title: Directional Non-Commutative Monoidal Embeddings for MNIST
Abstract:
We present an empirical validation of the directional non-commutative monoidal embedding framework recently introduced in prior work~\cite{Godavarti2025monoidal}. This framework defines learnable compositional embeddings using distinct non-commutative operators per dimension (axis) that satisfy an interchange law, generalizing classical one-dimensional transforms. Our primary goal is to verify that this framework can effectively model real data by applying it to a controlled, well-understood task: image classification on the MNIST dataset~\cite{lecun1998gradient}. A central hypothesis for why the proposed monoidal embedding works well is that it generalizes the Discrete Fourier Transform (DFT)~\cite{oppenheim1999discrete} by learning task-specific frequency components instead of using fixed basis frequencies. We test this hypothesis by comparing learned monoidal embeddings against fixed DFT-based embeddings on MNIST. The results show that as the embedding dimensionality decreases (e.g., from 32 to 8 to 2), the performance gap between the learned monoidal embeddings and fixed DFT-based embeddings on MNIST grows increasingly large. This comparison is used as an analytic tool to explain why the framework performs well: the learnable embeddings can capture the most discriminative spectral components for the task. Overall, our experiments confirm that directional non-commutative monoidal embeddings are highly effective for representing image data, offering a compact learned representation that retains high task performance. The code used in this work is available at https://github.com/mahesh-godavarti/directional_composition_mnist.

Authors:Yi Xu, Ruining Yang, Yitian Zhang, Yizhou Wang, Jianglin Lu, Mingyuan Zhang, Lili Su, Yun Fu
Title: Trajectory Prediction Meets Large Language Models: A Survey
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in integrating language-driven techniques into trajectory prediction. By leveraging their semantic and reasoning capabilities, LLMs are reshaping how autonomous systems perceive, model, and predict trajectories. This survey provides a comprehensive overview of this emerging field, categorizing recent work into five directions: (1) Trajectory prediction via language modeling paradigms, (2) Direct trajectory prediction with pretrained language models, (3) Language-guided scene understanding for trajectory prediction, (4) Language-driven data generation for trajectory prediction, (5) Language-based reasoning and interpretability for trajectory prediction. For each, we analyze representative methods, highlight core design choices, and identify open challenges. This survey bridges natural language processing and trajectory prediction, offering a unified perspective on how language can enrich trajectory prediction.

Authors:Yi Xu, Ruining Yang, Yitian Zhang, Jianglin Lu, Mingyuan Zhang, Yizhou Wang, Lili Su, Yun Fu
Title: Trajectory Prediction Meets Large Language Models: A Survey
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in integrating language-driven techniques into trajectory prediction. By leveraging their semantic and reasoning capabilities, LLMs are reshaping how autonomous systems perceive, model, and predict trajectories. This survey provides a comprehensive overview of this emerging field, categorizing recent work into five directions: (1) Trajectory prediction via language modeling paradigms, (2) Direct trajectory prediction with pretrained language models, (3) Language-guided scene understanding for trajectory prediction, (4) Language-driven data generation for trajectory prediction, (5) Language-based reasoning and interpretability for trajectory prediction. For each, we analyze representative methods, highlight core design choices, and identify open challenges. This survey bridges natural language processing and trajectory prediction, offering a unified perspective on how language can enrich trajectory prediction.

Authors:Muhammad Shaban, Yuzhou Chang, Huaying Qiu, Yao Yu Yeo, Andrew H. Song, Guillaume Jaume, Yuchen Wang, Luca L. Weishaupt, Tong Ding, Anurag Vaidya, Abdallah Lamane, Daniel Shao, Mohammed Zidane, Yunhao Bai, Paige McCallum, Shuli Luo, Wenrui Wu, Yang Wang, Precious Cramer, Chi Ngai Chan, Pierre Stephan, Johanna Schaffenrath, Jia Le Lee, Hendrik A. Michel, Caiwei Tian, Cristina Almagro-Perez, Sophia J. Wagner, Sharifa Sahai, Ming Y. Lu, Richard J. Chen, Andrew Zhang, Mark Edward M. Gonzales, Ahmad Makky, Jia-Ying Joey Lee, Hao Cheng, Nourhan El Ahmar, Sayed Matar, Maximilian Haist, Darci Phillips, Yuqi Tan, Garry P. Nolan, W. Richard Burack, Jacob D. Estes, Jonathan T. C. Liu, Toni K Choueiri, Neeraj Agarwal, Marc Barry, Scott J. Rodig, Long Phi Le, Georg Gerber, Christian M. Schürch, Fabian J. Theis, Youn H Kim, Joe Yeong, Sabina Signoretti, Brooke E. Howitt, Lit-Hsin Loo, Qin Ma, Sizun Jiang, Faisal Mahmood
Title: A Foundation Model for Spatial Proteomics
Abstract:
Foundation models have begun to transform image analysis by acting as pretrained generalist backbones that can be adapted to many tasks even when post-training data are limited, yet their impact on spatial proteomics, imaging that maps proteins at single-cell resolution, remains limited. Here, we introduce KRONOS, a foundation model built for spatial proteomics. KRONOS was trained in a self-supervised manner on over 47 million image patches covering 175 protein markers, 16 tissue types, and 8 fluorescence-based imaging platforms. We introduce key architectural adaptations to address the high-dimensional, multi-channel, and heterogeneous nature of multiplex imaging. We demonstrate that KRONOS learns biologically meaningful representations across multiple scales, ranging from cellular and microenvironment to tissue levels, enabling it to address diverse downstream tasks, including cell phenotyping, region classification, and patient stratification. Evaluated across 11 independent cohorts, KRONOS achieves state-of-the-art performance across cell phenotyping, treatment response prediction, and retrieval tasks, and is highly data-efficient. KRONOS also introduces the paradigm of segmentation-free patch-level processing for efficient and scalable spatial proteomics analysis, allowing cross-institutional comparisons, and as an image reverse search engine for spatial patterns. Together, these results position KRONOS as a flexible and scalable tool for spatial proteomics. The model is publicly accessible at https://github.com/mahmoodlab/KRONOS.

Authors:Zihui Ma, Lingyao Li, Juan Li, Wenyue Hua, Jingxiao Liu, Qingyuan Feng, Yuki Miura
Title: A Multimodal, Multilingual, and Multidimensional Pipeline for Fine-grained Crowdsourcing Earthquake Damage Evaluation
Abstract:
Rapid, fine-grained disaster damage assessment is essential for effective emergency response, yet remains challenging due to limited ground sensors and delays in official reporting. Social media provides a rich, real-time source of human-centric observations, but its multimodal and unstructured nature presents challenges for traditional analytical methods. In this study, we propose a structured Multimodal, Multilingual, and Multidimensional (3M) pipeline that leverages multimodal large language models (MLLMs) to assess disaster impacts. We evaluate three foundation models across two major earthquake events using both macro- and micro-level analyses. Results show that MLLMs effectively integrate image-text signals and demonstrate a strong correlation with ground-truth seismic data. However, performance varies with language, epicentral distance, and input modality. This work highlights the potential of MLLMs for disaster assessment and provides a foundation for future research in applying MLLMs to real-time crisis contexts. The code and data are released at: https://github.com/missa7481/EMNLP25_earthquake

Authors:Aldan Creo, Héctor Cerezo-Costas, Pedro Alonso-Doval, Maximiliano Hormazábal-Lagos
Title: Ask a Local: Detecting Hallucinations With Specialized Model Divergence
Abstract:
Hallucinations in large language models (LLMs) - instances where models generate plausible but factually incorrect information - present a significant challenge for AI. We introduce "Ask a Local", a novel hallucination detection method exploiting the intuition that specialized models exhibit greater surprise when encountering domain-specific inaccuracies. Our approach computes divergence between perplexity distributions of language-specialized models to identify potentially hallucinated spans. Our method is particularly well-suited for a multilingual context, as it naturally scales to multiple languages without the need for adaptation, relying on external data sources, or performing training. Moreover, we select computationally efficient models, providing a scalable solution that can be applied to a wide range of languages and domains. Our results on a human-annotated question-answer dataset spanning 14 languages demonstrate consistent performance across languages, with Intersection-over-Union (IoU) scores around 0.3 and comparable Spearman correlation values. Our model shows particularly strong performance on Italian and Catalan, with IoU scores of 0.42 and 0.38, respectively, while maintaining cross-lingual effectiveness without language-specific adaptations. We release our code and architecture to facilitate further research in multilingual hallucination detection.

Authors:Eliot Krzysztof Jones, Alexander Robey, Andy Zou, Zachary Ravichandran, George J. Pappas, Hamed Hassani, Matt Fredrikson, J. Zico Kolter
Title: Adversarial Attacks on Robotic Vision Language Action Models
Abstract:
The emergence of vision-language-action models (VLAs) for end-to-end control is reshaping the field of robotics by enabling the fusion of multimodal sensory inputs at the billion-parameter scale. The capabilities of VLAs stem primarily from their architectures, which are often based on frontier large language models (LLMs). However, LLMs are known to be susceptible to adversarial misuse, and given the significant physical risks inherent to robotics, questions remain regarding the extent to which VLAs inherit these vulnerabilities. Motivated by these concerns, in this work we initiate the study of adversarial attacks on VLA-controlled robots. Our main algorithmic contribution is the adaptation and application of LLM jailbreaking attacks to obtain complete control authority over VLAs. We find that textual attacks, which are applied once at the beginning of a rollout, facilitate full reachability of the action space of commonly used VLAs and often persist over longer horizons. This differs significantly from LLM jailbreaking literature, as attacks in the real world do not have to be semantically linked to notions of harm. We make all code available at https://github.com/eliotjones1/robogcg .

Authors:Guillermo Marco, Julio Gonzalo, Víctor Fresno
Title: The Reader is the Metric: How Textual Features and Reader Profiles Explain Conflicting Evaluations of AI Creative Writing
Abstract:
Recent studies comparing AI-generated and human-authored literary texts have produced conflicting results: some suggest AI already surpasses human quality, while others argue it still falls short. We start from the hypothesis that such divergences can be largely explained by genuine differences in how readers interpret and value literature, rather than by an intrinsic quality of the texts evaluated. Using five public datasets (1,471 stories, 101 annotators including critics, students, and lay readers), we (i) extract 17 reference-less textual features (e.g., coherence, emotional variance, average sentence length...); (ii) model individual reader preferences, deriving feature importance vectors that reflect their textual priorities; and (iii) analyze these vectors in a shared "preference space". Reader vectors cluster into two profiles: 'surface-focused readers' (mainly non-experts), who prioritize readability and textual richness; and 'holistic readers' (mainly experts), who value thematic development, rhetorical variety, and sentiment dynamics. Our results quantitatively explain how measurements of literary quality are a function of how text features align with each reader's preferences. These findings advocate for reader-sensitive evaluation frameworks in the field of creative text generation.

Authors:Christodoulos Constantinides, Dhaval Patel, Shuxin Lin, Claudio Guerrero, Sunil Dagajirao Patil, Jayant Kalagnanam
Title: FailureSensorIQ: A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes
Abstract:
We introduce FailureSensorIQ, a novel Multi-Choice Question-Answering (MCQA) benchmarking system designed to assess the ability of Large Language Models (LLMs) to reason and understand complex, domain-specific scenarios in Industry 4.0. Unlike traditional QA benchmarks, our system focuses on multiple aspects of reasoning through failure modes, sensor data, and the relationships between them across various industrial assets. Through this work, we envision a paradigm shift where modeling decisions are not only data-driven using statistical tools like correlation analysis and significance tests, but also domain-driven by specialized LLMs which can reason about the key contributors and useful patterns that can be captured with feature engineering. We evaluate the Industrial knowledge of over a dozen LLMs-including GPT-4, Llama, and Mistral-on FailureSensorIQ from different lens using Perturbation-Uncertainty-Complexity analysis, Expert Evaluation study, Asset-Specific Knowledge Gap analysis, ReAct agent using external knowledge-bases. Even though closed-source models with strong reasoning capabilities approach expert-level performance, the comprehensive benchmark reveals a significant drop in performance that is fragile to perturbations, distractions, and inherent knowledge gaps in the models. We also provide a real-world case study of how LLMs can drive the modeling decisions on 3 different failure prediction datasets related to various assets. We release: (a) expert-curated MCQA for various industrial assets, (b) FailureSensorIQ benchmark and Hugging Face leaderboard based on MCQA built from non-textual data found in ISO documents, and (c) LLMFeatureSelector, an LLM-based feature selection scikit-learn pipeline. The software is available at https://github.com/IBM/FailureSensorIQ.

Authors:Jigang Fan, Quanlin Wu, Shengjie Luo, Liwei Wang
Title: UniSite: The First Cross-Structure Dataset and Learning Framework for End-to-End Ligand Binding Site Detection
Abstract:
The detection of ligand binding sites for proteins is a fundamental step in Structure-Based Drug Design. Despite notable advances in recent years, existing methods, datasets, and evaluation metrics are confronted with several key challenges: (1) current datasets and methods are centered on individual protein-ligand complexes and neglect that diverse binding sites may exist across multiple complexes of the same protein, introducing significant statistical bias; (2) ligand binding site detection is typically modeled as a discontinuous workflow, employing binary segmentation and subsequent clustering algorithms; (3) traditional evaluation metrics do not adequately reflect the actual performance of different binding site prediction methods. To address these issues, we first introduce UniSite-DS, the first UniProt (Unique Protein)-centric ligand binding site dataset, which contains 4.81 times more multi-site data and 2.08 times more overall data compared to the previously most widely used datasets. We then propose UniSite, the first end-to-end ligand binding site detection framework supervised by set prediction loss with bijective matching. In addition, we introduce Average Precision based on Intersection over Union (IoU) as a more accurate evaluation metric for ligand binding site prediction. Extensive experiments on UniSite-DS and several representative benchmark datasets demonstrate that IoU-based Average Precision provides a more accurate reflection of prediction quality, and that UniSite outperforms current state-of-the-art methods in ligand binding site detection. The dataset and codes will be made publicly available at https://github.com/quanlin-wu/unisite.

Authors:Yajie Zhou, Jiajun Ruan, Eric S. Wang, Sadjad Fouladi, Francis Y. Yan, Kevin Hsieh, Zaoxing Liu
Title: NetPress: Dynamically Generated LLM Benchmarks for Network Applications
Abstract:
Despite growing interest in domain-specific benchmarking of large language models (LLMs) and agents, current evaluations remain limited to static, small-scale datasets, especially in high-stakes tasks like network operations that demand reliability for deployments. We present NetPress, an automated benchmark generation framework for evaluating LLM agents in network applications. NetPress introduces a unified abstraction with state and action, enabling dynamic generation of diverse query sets along with corresponding ground truths. At runtime, users can specify benchmark configurations to generate millions of queries on the fly. In addition to dynamic benchmark construction, NetPress integrates with network emulators to provide realistic environment feedback, supporting comprehensive evaluation across correctness, safety, and latency. We instantiate NetPress on three representative applications, revealing interesting fine-grained differences in agent behavior that static, correctness-only benchmarks often miss. NetPress moves LLM evaluation toward realistic, scalable testing in infrastructure-centric domains, helping close the gap between benchmark performance and real-world deployment readiness. Code is available at https://github.com/Froot-NetSys/NetPress.

Authors:Selcuk Gurses, Aozhong Zhang, Yanxia Deng, Xun Dong, Xin Li, Naigang Wang, Penghang Yin, Zi Yang
Title: DiaBlo: Diagonal Blocks Are Sufficient For Finetuning
Abstract:
Finetuning is a critical step for adapting large language models (LLMs) to domain-specific downstream tasks. To mitigate the substantial computational and memory costs of full-model fine-tuning, Parameter-Efficient Finetuning (PEFT) methods have been proposed to update only a small subset of model parameters. However, performance gaps between PEFT approaches and full-model fine-tuning still exist. In this work, we present DiaBlo, a simple yet effective PEFT approach that updates only the diagonal blocks of selected model weight matrices. Unlike Low Rank Adaptation (LoRA) and its variants, DiaBlo eliminates the need for low rank matrix products, thereby avoiding the reliance on auxiliary initialization schemes or customized optimization strategies to improve convergence. This design leads to stable and robust convergence while maintaining comparable memory efficiency and training speed to LoRA. We conduct extensive experiments across a range of tasks, including commonsense reasoning, arithmetic reasoning, code generation, and safety alignment, to evaluate the effectiveness and efficiency of DiaBlo. Across these benchmarks, DiaBlo demonstrates strong and consistent performance while maintaining high memory efficiency and fast finetuning speed. Codes are available at https://github.com/ziyangjoy/DiaBlo.

Authors:Jinwei Zeng, Yu Liu, Guozhen Zhang, Jingtao Ding, Yuming Lin, Jian Yuan, Yong Li
Title: OpenCarbon: A Contrastive Learning-based Cross-Modality Neural Approach for High-Resolution Carbon Emission Prediction Using Open Data
Abstract:
Accurately estimating high-resolution carbon emissions is crucial for effective emission governance and mitigation planning. While conventional methods for precise carbon accounting are hindered by substantial data collection efforts, the rise of open data and advanced learning techniques offers a promising solution. Once an open data-based prediction model is developed and trained, it can easily infer emissions for new areas based on available open data. To address this, we incorporate two modalities of open data, satellite images and point-of-interest (POI) data, to predict high-resolution urban carbon emissions, with satellite images providing macroscopic and static and POI data offering fine-grained and relatively dynamic functionality information. However, estimating high-resolution carbon emissions presents two significant challenges: the intertwined and implicit effects of various functionalities on carbon emissions, and the complex spatial contiguity correlations that give rise to the agglomeration effect. Our model, OpenCarbon, features two major designs that target the challenges: a cross-modality information extraction and fusion module to extract complementary functionality information from two modules and model their interactions, and a neighborhood-informed aggregation module to capture the spatial contiguity correlations. Extensive experiments demonstrate our model's superiority, with a significant performance gain of 26.6\% on R2. Further generalizability tests and case studies also show OpenCarbon's capacity to capture the intrinsic relation between urban functionalities and carbon emissions, validating its potential to empower efficient carbon governance and targeted carbon mitigation planning. Codes and data are available: https://github.com/JinweiZzz/OpenCarbon.

Authors:Dania Herzalla, Willian T. Lunardi, Martin Andreoni
Title: Graph Neural Networks for Jamming Source Localization
Abstract:
Graph-based learning provides a powerful framework for modeling complex relational structures; however, its application within the domain of wireless security remains significantly underexplored. In this work, we introduce the first application of graph-based learning for jamming source localization, addressing the imminent threat of jamming attacks in wireless networks. Unlike geometric optimization techniques that struggle under environmental uncertainties and dense interference, we reformulate the localization as an inductive graph regression task. Our approach integrates structured node representations that encode local and global signal aggregation, ensuring spatial coherence and adaptive signal fusion. To enhance robustness, we incorporate an attention-based \ac{GNN} that adaptively refines neighborhood influence and introduces a confidence-guided estimation mechanism that dynamically balances learned predictions with domain-informed priors. We evaluate our approach under complex \ac{RF} environments with various sampling densities, network topologies, jammer characteristics, and signal propagation conditions, conducting comprehensive ablation studies on graph construction, feature selection, and pooling strategies. Results demonstrate that our novel graph-based learning framework significantly outperforms established localization baselines, particularly in challenging scenarios with sparse and obfuscated signal information. Our code is available at https://github.com/tiiuae/gnn-jamming-source-localization.

Authors:Yunqi Hong, Sohyun An, Andrew Bai, Neil Y. C. Lin, Cho-Jui Hsieh
Title: Unlabeled Data Improves Fine-Grained Image Zero-shot Classification with Multimodal LLMs
Abstract:
Despite Multimodal Large Language Models (MLLMs) showing promising results on general zero-shot image classification tasks, fine-grained image classification remains challenging. It demands precise attention to subtle visual details to distinguish between visually similar subcategories--details that MLLMs may easily overlook without explicit guidance. To address this, we introduce AutoSEP, an iterative self-supervised prompt learning framework designed to enhance MLLM fine-grained classification capabilities in a fully unsupervised manner. Our core idea is to leverage unlabeled data to learn a description prompt that guides MLLMs in identifying crucial discriminative features within an image, and boosts classification accuracy. We developed an automatic self-enhancing prompt learning framework called AutoSEP to iteratively improve the description prompt using unlabeled data, based on instance-level classification scoring function. AutoSEP only requires black-box access to MLLMs, eliminating the need for any training or fine-tuning. We evaluate our approach on multiple fine-grained classification datasets. It consistently outperforms other unsupervised baselines, demonstrating the effectiveness of our self-supervised optimization framework. Notably, AutoSEP on average improves 13 percent over standard zero-shot classification and 5 percent over the best-performing baselines. Code is available at: https://github.com/yq-hong/AutoSEP

Authors:Ekram Alam, Abu Sufian, Paramartha Dutta, Marco Leo
Title: Human Fall Detection using Transfer Learning-based 3D CNN
Abstract:
Unintentional or accidental falls are one of the significant health issues in senior persons. The population of senior persons is increasing steadily. So, there is a need for an automated fall detection monitoring system. This paper introduces a vision-based fall detection system using a pre-trained 3D CNN. Unlike 2D CNN, 3D CNN extracts not only spatial but also temporal features. The proposed model leverages the original learned weights of a 3D CNN model pre-trained on the Sports1M dataset to extract the spatio-temporal features. Only the SVM classifier was trained, which saves the time required to train the 3D CNN. Stratified shuffle five split cross-validation has been used to split the dataset into training and testing data. Extracted features from the proposed 3D CNN model were fed to an SVM classifier to classify the activity as fall or ADL. Two datasets, GMDCSA and CAUCAFall, were utilized to conduct the experiment. The source code for this work can be accessed via the following link: https://github.com/ekramalam/HFD_3DCNN.

Authors:Jiaming Yi, Ruirui Pan, Jishen Yang, Xiulong Yang
Title: MINT: Memory-Infused Prompt Tuning at Test-time for CLIP
Abstract:
Improving the generalization ability of Vision-Language Pre-trained Models (VLMs) under test-time data distribution shifts remains a critical challenge. The existing Test-Time Adaptation (TTA) methods fall short in fully leveraging the model's internal knowledge, particularly in dynamically adapting to complex and hierarchical visual semantic information. In this paper, we propose Memory-Infused Prompt Tuning (MINT), a novel framework to address this issue. Inspired by human associative memory theory, MINT introduces a Memory Prompt Bank (MPB), which stores learnable key-value prompt pairs that work as a memory of previously seen samples. During the test time, relevant prompt pairs in the MPB are retrieved by the hierarchical visual features of test images to dynamically assemble Associative Prompts. The associative prompts are then injected into the image encoder for fine-grained, customized visual contextual guidance. MINT also utilizes learnable text prompts. MINT thus enables rapid, precise VLM adaptation at test time by leveraging this MPB-acquired memory, without source data or retraining. The code is available at https://github.com/Jamieyi2004/MINT.

Authors:Liangrui Pan, Xingchen Li, Zhongyi Chen, Ling Chu, Shaoliang Peng
Title: DLiPath: A Benchmark for the Comprehensive Assessment of Donor Liver Based on Histopathological Image Dataset
Abstract:
Pathologists comprehensive evaluation of donor liver biopsies provides crucial information for accepting or discarding potential grafts. However, rapidly and accurately obtaining these assessments intraoperatively poses a significant challenge for pathologists. Features in donor liver biopsies, such as portal tract fibrosis, total steatosis, macrovesicular steatosis, and hepatocellular ballooning are correlated with transplant outcomes, yet quantifying these indicators suffers from substantial inter- and intra-observer variability. To address this, we introduce DLiPath, the first benchmark for comprehensive donor liver assessment based on a histopathology image dataset. We collected and publicly released 636 whole slide images from 304 donor liver patients at the Department of Pathology, the Third Xiangya Hospital, with expert annotations for key pathological features (including cholestasis, portal tract fibrosis, portal inflammation, total steatosis, macrovesicular steatosis, and hepatocellular ballooning). We selected nine state-of-the-art multiple-instance learning (MIL) models based on the DLiPath dataset as baselines for extensive comparative analysis. The experimental results demonstrate that several MIL models achieve high accuracy across donor liver assessment indicators on DLiPath, charting a clear course for future automated and intelligent donor liver assessment research. Data and code are available at https://github.com/panliangrui/ACM_MM_2025.

Authors:Bin Wang, Yongqi Han, Minbo Ma, Tianrui Li, Junbo Zhang, Feng Hong, Yanwei Yu
Title: Non-collective Calibrating Strategy for Time Series Forecasting
Abstract:
Deep learning-based approaches have demonstrated significant advancements in time series forecasting. Despite these ongoing developments, the complex dynamics of time series make it challenging to establish the rule of thumb for designing the golden model architecture. In this study, we argue that refining existing advanced models through a universal calibrating strategy can deliver substantial benefits with minimal resource costs, as opposed to elaborating and training a new model from scratch. We first identify a multi-target learning conflict in the calibrating process, which arises when optimizing variables across time steps, leading to the underutilization of the model's learning capabilities. To address this issue, we propose an innovative calibrating strategy called Socket+Plug (SoP). This approach retains an exclusive optimizer and early-stopping monitor for each predicted target within each Plug while keeping the fully trained Socket backbone frozen. The model-agnostic nature of SoP allows it to directly calibrate the performance of any trained deep forecasting models, regardless of their specific architectures. Extensive experiments on various time series benchmarks and a spatio-temporal meteorological ERA5 dataset demonstrate the effectiveness of SoP, achieving up to a 22% improvement even when employing a simple MLP as the Plug (highlighted in Figure 1). Code is available at https://github.com/hanyuki23/SoP.

Authors:Ayush Shrivastava, Andrew Owens
Title: Self-Supervised Spatial Correspondence Across Modalities
Abstract:
We present a method for finding cross-modal space-time correspondences. Given two images from different visual modalities, such as an RGB image and a depth map, our model identifies which pairs of pixels correspond to the same physical points in the scene. To solve this problem, we extend the contrastive random walk framework to simultaneously learn cycle-consistent feature representations for both cross-modal and intra-modal matching. The resulting model is simple and has no explicit photo-consistency assumptions. It can be trained entirely using unlabeled data, without the need for any spatially aligned multimodal image pairs. We evaluate our method on both geometric and semantic correspondence tasks. For geometric matching, we consider challenging tasks such as RGB-to-depth and RGB-to-thermal matching (and vice versa); for semantic matching, we evaluate on photo-sketch and cross-style image alignment. Our method achieves strong performance across all benchmarks.

Authors:Siqi Chen, Xinyu Dong, Haolei Xu, Xingyu Wu, Fei Tang, Hang Zhang, Yuchen Yan, Linjuan Wu, Wenqi Zhang, Guiyang Hou, Yongliang Shen, Weiming Lu, Yueting Zhuang
Title: SVGenius: Benchmarking LLMs in SVG Understanding, Editing and Generation
Abstract:
Large Language Models (LLMs) and Multimodal LLMs have shown promising capabilities for SVG processing, yet existing benchmarks suffer from limited real-world coverage, lack of complexity stratification, and fragmented evaluation paradigms. We introduce SVGenius, a comprehensive benchmark comprising 2,377 queries across three progressive dimensions: understanding, editing, and generation. Built on real-world data from 24 application domains with systematic complexity stratification, SVGenius evaluates models through 8 task categories and 18 metrics. We assess 22 mainstream models spanning different scales, architectures, training paradigms, and accessibility levels. Our analysis reveals that while proprietary models significantly outperform open-source counterparts, all models exhibit systematic performance degradation with increasing complexity, indicating fundamental limitations in current approaches; however, reasoning-enhanced training proves more effective than pure scaling for overcoming these limitations, though style transfer remains the most challenging capability across all model types. SVGenius establishes the first systematic evaluation framework for SVG processing, providing crucial insights for developing more capable vector graphics models and advancing automated graphic design applications. Appendix and supplementary materials (including all data and code) are available at https://zju-real.github.io/SVGenius.

Authors:Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, Mengdi Wang
Title: Co-Evolving LLM Coder and Unit Tester via Reinforcement Learning
Abstract:
We propose CURE, a novel reinforcement learning framework with a dedicated reward design that co-evolves coding and unit test generation capabilities based on their interaction outcomes, without any ground-truth code as supervision. This approach enables flexible and scalable training and allows the unit tester to learn directly from the coder's mistakes. Our derived ReasonFlux-Coder-7B and 14B models improve code generation accuracy by 5.3% and Best-of-N accuracy by 9.0% after optimization on Qwen2.5-Instruct models, outperforming similarly sized Qwen-Coder, DeepSeek-Coder, and Seed-Coder. They naturally extend to downstream tasks such as test-time scaling and agentic coding-achieving a 8.1% improvement over the base model. For the long-CoT model, our ReasonFlux-Coder-4B consistently outperforms Qwen3-4B while achieving 64.8% inference efficiency in unit test generation. Notably, we also find that our model can serve as an effective reward model for reinforcement learning on base models. Project: https://github.com/Gen-Verse/CURE

Authors:Weiqing Xiao, Hao Huang, Chonghao Zhong, Yujie Lin, Nan Wang, Xiaoxue Chen, Zhaoxi Chen, Saining Zhang, Shuocheng Yang, Pierre Merriaux, Lei Lei, Hao Zhao
Title: Simulate Any Radar: Attribute-Controllable Radar Simulation via Waveform Parameter Embedding
Abstract:
We present SA-Radar (Simulate Any Radar), a radar simulation approach that enables controllable and efficient generation of radar cubes conditioned on customizable radar attributes. Unlike prior generative or physics-based simulators, SA-Radar integrates both paradigms through a waveform-parameterized attribute embedding. We design ICFAR-Net, a 3D U-Net conditioned on radar attributes encoded via waveform parameters, which captures signal variations induced by different radar configurations. This formulation bypasses the need for detailed radar hardware specifications and allows efficient simulation of range-azimuth-Doppler (RAD) tensors across diverse sensor settings. We further construct a mixed real-simulated dataset with attribute annotations to robustly train the network. Extensive evaluations on multiple downstream tasks-including 2D/3D object detection and radar semantic segmentation-demonstrate that SA-Radar's simulated data is both realistic and effective, consistently improving model performance when used standalone or in combination with real data. Our framework also supports simulation in novel sensor viewpoints and edited scenes, showcasing its potential as a general-purpose radar data engine for autonomous driving applications. Code and additional materials are available at https://zhuxing0.github.io/projects/SA-Radar.

Authors:Zhengyao Lv, Chenyang Si, Tianlin Pan, Zhaoxi Chen, Kwan-Yee K. Wong, Yu Qiao, Ziwei Liu
Title: Dual-Expert Consistency Model for Efficient and High-Quality Video Generation
Abstract:
Diffusion Models have achieved remarkable results in video synthesis but require iterative denoising steps, leading to substantial computational overhead. Consistency Models have made significant progress in accelerating diffusion models. However, directly applying them to video diffusion models often results in severe degradation of temporal consistency and appearance details. In this paper, by analyzing the training dynamics of Consistency Models, we identify a key conflicting learning dynamics during the distillation process: there is a significant discrepancy in the optimization gradients and loss contributions across different timesteps. This discrepancy prevents the distilled student model from achieving an optimal state, leading to compromised temporal consistency and degraded appearance details. To address this issue, we propose a parameter-efficient \textbf{Dual-Expert Consistency Model~(DCM)}, where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement. Furthermore, we introduce Temporal Coherence Loss to improve motion consistency for the semantic expert and apply GAN and Feature Matching Loss to enhance the synthesis quality of the detail expert.Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation. Our code and models are available at \href{https://github.com/Vchitect/DCM}{https://github.com/Vchitect/DCM}.

Authors:Michelle Chen, David Russell, Amritha Pallavoor, Derek Young, Jane Wu
Title: Zero-Shot Tree Detection and Segmentation from Aerial Forest Imagery
Abstract:
Large-scale delineation of individual trees from remote sensing imagery is crucial to the advancement of ecological research, particularly as climate change and other environmental factors rapidly transform forest landscapes across the world. Current RGB tree segmentation methods rely on training specialized machine learning models with labeled tree datasets. While these learning-based approaches can outperform manual data collection when accurate, the existing models still depend on training data that's hard to scale. In this paper, we investigate the efficacy of using a state-of-the-art image segmentation model, Segment Anything Model 2 (SAM2), in a zero-shot manner for individual tree detection and segmentation. We evaluate a pretrained SAM2 model on two tasks in this domain: (1) zero-shot segmentation and (2) zero-shot transfer by using predictions from an existing tree detection model as prompts. Our results suggest that SAM2 not only has impressive generalization capabilities, but also can form a natural synergy with specialized methods trained on in-domain labeled data. We find that applying large pretrained models to problems in remote sensing is a promising avenue for future progress. We make our code available at: https://github.com/open-forest-observatory/tree-detection-framework.

Authors:Shuai Yi, Yixiong Zou, Yuhua Li, Ruixuan Li
Title: Revisiting Continuity of Image Tokens for Cross-domain Few-shot Learning
Abstract:
Vision Transformer (ViT) has achieved remarkable success due to its large-scale pretraining on general domains, but it still faces challenges when applying it to downstream distant domains that have only scarce training data, which gives rise to the Cross-Domain Few-Shot Learning (CDFSL) task. Inspired by Self-Attention's insensitivity to token orders, we find an interesting phenomenon neglected in current works: disrupting the continuity of image tokens (i.e., making pixels not smoothly transited across patches) in ViT leads to a noticeable performance decline in the general (source) domain but only a marginal decrease in downstream target domains. This questions the role of image tokens' continuity in ViT's generalization under large domain gaps. In this paper, we delve into this phenomenon for an interpretation. We find continuity aids ViT in learning larger spatial patterns, which are harder to transfer than smaller ones, enlarging domain distances. Meanwhile, it implies that only smaller patterns within each patch could be transferred under extreme domain gaps. Based on this interpretation, we further propose a simple yet effective method for CDFSL that better disrupts the continuity of image tokens, encouraging the model to rely less on large patterns and more on smaller ones. Extensive experiments show the effectiveness of our method in reducing domain gaps and outperforming state-of-the-art works. Codes and models are available at https://github.com/shuaiyi308/ReCIT.

Authors:Di Chang, Mingdeng Cao, Yichun Shi, Bo Liu, Shengqu Cai, Shijie Zhou, Weilin Huang, Gordon Wetzstein, Mohammad Soleymani, Peng Wang
Title: ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions
Abstract:
Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.

Authors:Ashwin Vinod, Shrey Pandit, Aditya Vavre, Linshen Liu
Title: EgoVLM: Policy Optimization for Egocentric Video Understanding
Abstract:
Emerging embodied AI applications, such as wearable cameras and autonomous agents, have underscored the need for robust reasoning from first person video streams. We introduce EgoVLM, a vision-language model specifically designed to integrate visual comprehension and spatial-temporal reasoning within egocentric video contexts. EgoVLM is fine-tuned via Group Relative Policy Optimization (GRPO), a reinforcement learning method adapted to align model outputs with human-like reasoning steps. Following DeepSeek R1-Zero's approach, we directly tune using RL without any supervised fine-tuning phase on chain-of-thought (CoT) data. We evaluate EgoVLM on egocentric video question answering benchmarks and show that domain-specific training substantially improves performance over general-purpose VLMs. Our EgoVLM-3B, trained exclusively on non-CoT egocentric data, outperforms the base Qwen2.5-VL 3B and 7B models by 14.33 and 13.87 accuracy points on the EgoSchema benchmark, respectively. By explicitly generating reasoning traces, EgoVLM enhances interpretability, making it well-suited for downstream applications. Furthermore, we introduce a novel keyframe-based reward that incorporates salient frame selection to guide reinforcement learning optimization. This reward formulation opens a promising avenue for future exploration in temporally grounded egocentric reasoning.

Authors:Christian Schlarmann, Francesco Croce, Nicolas Flammarion, Matthias Hein
Title: FuseLIP: Multimodal Embeddings via Early Fusion of Discrete Tokens
Abstract:
Contrastive language-image pre-training aligns the features of text-image pairs in a common latent space via distinct encoders for each modality. While this approach achieves impressive performance in several zero-shot tasks, it cannot natively handle multimodal inputs, i.e., encoding image and text into a single feature vector. As a remedy, it is common practice to use additional modules to merge the features extracted by the unimodal encoders. In this work, we present FuseLIP, an alternative architecture for multimodal embedding. Leveraging recent progress in discrete image tokenizers, we propose to use a single transformer model which operates on an extended vocabulary of text and image tokens. This early fusion approach allows the different modalities to interact at each depth of encoding and obtain richer representations compared to common late fusion. We collect new datasets for multimodal pre-training and evaluation, designing challenging tasks for multimodal encoder models. We show that FuseLIP outperforms other approaches in multimodal embedding tasks such as VQA and text-guided image transformation retrieval, while being comparable to baselines on unimodal tasks.

Authors:Bin Ma, Yuyuan Feng, Minhua Lin, Enyan Dai
Title: How Explanations Leak the Decision Logic: Stealing Graph Neural Networks via Explanation Alignment
Abstract:
Graph Neural Networks (GNNs) have become essential tools for analyzing graph-structured data in domains such as drug discovery and financial analysis, leading to growing demands for model transparency. Recent advances in explainable GNNs have addressed this need by revealing important subgraphs that influence predictions, but these explanation mechanisms may inadvertently expose models to security risks. This paper investigates how such explanations potentially leak critical decision logic that can be exploited for model stealing. We propose {\method}, a novel stealing framework that integrates explanation alignment for capturing decision logic with guided data augmentation for efficient training under limited queries, enabling effective replication of both the predictive behavior and underlying reasoning patterns of target models. Experiments on molecular graph datasets demonstrate that our approach shows advantages over conventional methods in model stealing. This work highlights important security considerations for the deployment of explainable GNNs in sensitive domains and suggests the need for protective measures against explanation-based attacks. Our code is available at https://github.com/beanmah/EGSteal.

Authors:Xiuyu Yang, Bohan Li, Shaocong Xu, Nan Wang, Chongjie Ye, Zhaoxi Chen, Minghan Qin, Yikang Ding, Xin Jin, Hang Zhao, Hao Zhao
Title: ORV: 4D Occupancy-centric Robot Video Generation
Abstract:
Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive. Recently, action-driven generative models have gained widespread adoption in robot learning and simulation, as they eliminate safety concerns and reduce maintenance efforts. However, the action sequences used in these methods often result in limited control precision and poor generalization due to their globally coarse alignment. To address these limitations, we propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation to provide more accurate semantic and geometric guidance for video generation. By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability. Furthermore, our framework supports the simultaneous generation of multi-view videos of robot gripping operations - an important capability for downstream robotic learning tasks. Extensive experimental results demonstrate that ORV consistently outperforms existing baseline methods across various datasets and sub-tasks. Demo, Code and Model: https://orangesodahub.github.io/ORV

Authors:Qijun Luo, Mengqi Li, Lei Zhao, Xiao Li
Title: StreamBP: Memory-Efficient Exact Backpropagation for Long Sequence Training of LLMs
Abstract:
Training language models on long sequence data is a demanding requirement for enhancing the model's capability on complex tasks, e.g., long-chain reasoning. However, as the sequence length scales up, the memory cost for storing activation values becomes huge during the Backpropagation (BP) process, even with the application of gradient checkpointing technique. To tackle this challenge, we propose a memory-efficient and exact BP method called StreamBP, which performs a linear decomposition of the chain rule along the sequence dimension in a layer-wise manner, significantly reducing the memory cost of activation values and logits. The proposed method is applicable to common objectives such as SFT, GRPO, and DPO. From an implementation perspective, StreamBP achieves less computational FLOPs and faster BP speed by leveraging the causal structure of the language model. Compared to gradient checkpointing, StreamBP scales up the maximum sequence length of BP by 2.8-5.5 times larger, while using comparable or even less BP time. Note that StreamBP's sequence length scaling ability can be directly transferred to batch size scaling for accelerating training. We further develop a communication-efficient distributed StreamBP to effectively support multi-GPU training and broaden its applicability. Our code can be easily integrated into the training pipeline of any transformer models and is available at https://github.com/Ledzy/StreamBP.

Authors:Jiarui Wang, Huiyu Duan, Juntong Wang, Ziheng Jia, Woo Yi Yang, Xiaorong Zhu, Yu Zhao, Jiaying Qian, Yuke Xing, Guangtao Zhai, Xiongkuo Min
Title: DFBench: Benchmarking Deepfake Image Detection Capability of Large Multimodal Models
Abstract:
With the rapid advancement of generative models, the realism of AI-generated images has significantly improved, posing critical challenges for verifying digital content authenticity. Current deepfake detection methods often depend on datasets with limited generation models and content diversity that fail to keep pace with the evolving complexity and increasing realism of the AI-generated content. Large multimodal models (LMMs), widely adopted in various vision tasks, have demonstrated strong zero-shot capabilities, yet their potential in deepfake detection remains largely unexplored. To bridge this gap, we present \textbf{DFBench}, a large-scale DeepFake Benchmark featuring (i) broad diversity, including 540,000 images across real, AI-edited, and AI-generated content, (ii) latest model, the fake images are generated by 12 state-of-the-art generation models, and (iii) bidirectional benchmarking and evaluating for both the detection accuracy of deepfake detectors and the evasion capability of generative models. Based on DFBench, we propose \textbf{MoA-DF}, Mixture of Agents for DeepFake detection, leveraging a combined probability strategy from multiple LMMs. MoA-DF achieves state-of-the-art performance, further proving the effectiveness of leveraging LMMs for deepfake detection. Database and codes are publicly available at https://github.com/IntMeGroup/DFBench.

Authors:Yicheng Xiao, Lin Song, Rui Yang, Cheng Cheng, Zunnan Xu, Zhaoyang Zhang, Yixiao Ge, Xiu Li, Ying Shan
Title: HaploOmni: Unified Single Transformer for Multimodal Video Understanding and Generation
Abstract:
With the advancement of language models, unified multimodal understanding and generation have made significant strides, with model architectures evolving from separated components to unified single-model frameworks. This paper explores an efficient training paradigm to build a single transformer for unified multimodal understanding and generation. Specifically, we propose a multimodal warmup strategy utilizing prior knowledge to extend capabilities. To address cross-modal compatibility challenges, we introduce feature pre-scaling and multimodal AdaLN techniques. Integrating the proposed technologies, we present the HaploOmni, a new single multimodal transformer. With limited training costs, HaploOmni achieves competitive performance across multiple image and video understanding and generation benchmarks over advanced unified models. All codes will be made public at https://github.com/Tencent/HaploVLM.

Authors:Junyi Fang, Yuxun Chen, Yuxin Chen, Chen Zhang
Title: From Theory to Practice with RAVEN-UCB: Addressing Non-Stationarity in Multi-Armed Bandits through Variance Adaptation
Abstract:
The Multi-Armed Bandit (MAB) problem is challenging in non-stationary environments where reward distributions evolve dynamically. We introduce RAVEN-UCB, a novel algorithm that combines theoretical rigor with practical efficiency via variance-aware adaptation. It achieves tighter regret bounds than UCB1 and UCB-V, with gap-dependent regret of order $K σ_{\max}^2 \log T / Δ$ and gap-independent regret of order $\sqrt{K T \log T}$. RAVEN-UCB incorporates three innovations: (1) variance-driven exploration using $\sqrt{\hatσ_k^2 / (N_k + 1)}$ in confidence bounds, (2) adaptive control via $α_t = α_0 / \log(t + ε)$, and (3) constant-time recursive updates for efficiency. Experiments across non-stationary patterns - distributional changes, periodic shifts, and temporary fluctuations - in synthetic and logistics scenarios demonstrate its superiority over state-of-the-art baselines, confirming theoretical and practical robustness.

Authors:Praneet Sai Madhu Surabhi, Dheeraj Reddy Mudireddy, Jian Tao
Title: ThinkTank: A Framework for Generalizing Domain-Specific AI Agent Systems into Universal Collaborative Intelligence Platforms
Abstract:
This paper presents ThinkTank, a comprehensive and scalable framework designed to transform specialized AI agent systems into versatile collaborative intelligence platforms capable of supporting complex problem-solving across diverse domains. ThinkTank systematically generalizes agent roles, meeting structures, and knowledge integration mechanisms by adapting proven scientific collaboration methodologies. Through role abstraction, generalization of meeting types for iterative collaboration, and the integration of Retrieval-Augmented Generation with advanced knowledge storage, the framework facilitates expertise creation and robust knowledge sharing. ThinkTank enables organizations to leverage collaborative AI for knowledge-intensive tasks while ensuring data privacy and security through local deployment, utilizing frameworks like Ollama with models such as Llama3.1. The ThinkTank framework is designed to deliver significant advantages in cost-effectiveness, data security, scalability, and competitive positioning compared to cloud-based alternatives, establishing it as a universal platform for AI-driven collaborative problem-solving. The ThinkTank code is available at https://github.com/taugroup/ThinkTank

Authors:Yin Fang, Qiao Jin, Guangzhi Xiong, Bowen Jin, Xianrui Zhong, Siru Ouyang, Aidong Zhang, Jiawei Han, Zhiyong Lu
Title: Cell-o1: Training LLMs to Solve Single-Cell Reasoning Puzzles with Reinforcement Learning
Abstract:
Cell type annotation is a key task in analyzing the heterogeneity of single-cell RNA sequencing data. Although recent foundation models automate this process, they typically annotate cells independently, without considering batch-level cellular context or providing explanatory reasoning. In contrast, human experts often annotate distinct cell types for different cell clusters based on their domain knowledge. To mimic this workflow, we introduce the CellPuzzles task, where the objective is to assign unique cell types to a batch of cells. This benchmark spans diverse tissues, diseases, and donor conditions, and requires reasoning across the batch-level cellular context to ensure label uniqueness. We find that off-the-shelf large language models (LLMs) struggle on CellPuzzles, with the best baseline (OpenAI's o1) achieving only 19.0% batch-level accuracy. To fill this gap, we propose Cell-o1, a 7B LLM trained via supervised fine-tuning on distilled reasoning traces, followed by reinforcement learning with batch-level rewards. Cell-o1 achieves state-of-the-art performance, outperforming o1 by over 73% and generalizing well across contexts. Further analysis of training dynamics and reasoning behaviors provides insights into batch-level annotation performance and emergent expert-like reasoning. Code and data are available at https://github.com/ncbi-nlp/cell-o1.

Authors:Ahmad AlMughrabi, Umair Haroon, Ricardo Marques, Petia Radeva
Title: VolTex: Food Volume Estimation using Text-Guided Segmentation and Neural Surface Reconstruction
Abstract:
Accurate food volume estimation is crucial for dietary monitoring, medical nutrition management, and food intake analysis. Existing 3D Food Volume estimation methods accurately compute the food volume but lack for food portions selection. We present VolTex, a framework that improves \change{the food object selection} in food volume estimation. Allowing users to specify a target food item via text input to be segmented, our method enables the precise selection of specific food objects in real-world scenes. The segmented object is then reconstructed using the Neural Surface Reconstruction method to generate high-fidelity 3D meshes for volume computation. Extensive evaluations on the MetaFood3D dataset demonstrate the effectiveness of our approach in isolating and reconstructing food items for accurate volume estimation. The source code is accessible at https://github.com/GCVCG/VolTex.

Authors:Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, Jing Shao
Title: Demystifying Reasoning Dynamics with Mutual Information: Thinking Tokens are Information Peaks in LLM Reasoning
Abstract:
Large reasoning models (LRMs) have demonstrated impressive capabilities in complex problem-solving, yet their internal reasoning mechanisms remain poorly understood. In this paper, we investigate the reasoning trajectories of LRMs from an information-theoretic perspective. By tracking how mutual information (MI) between intermediate representations and the correct answer evolves during LRM reasoning, we observe an interesting MI peaks phenomenon: the MI at specific generative steps exhibits a sudden and significant increase during LRM's reasoning process. We theoretically analyze such phenomenon and show that as MI increases, the probability of model's prediction error decreases. Furthermore, these MI peaks often correspond to tokens expressing reflection or transition, such as ``Hmm'', ``Wait'' and ``Therefore,'' which we term as the thinking tokens. We then demonstrate that these thinking tokens are crucial for LRM's reasoning performance, while other tokens has minimal impacts. Building on these analyses, we propose two simple yet effective methods to improve LRM's reasoning performance, by delicately leveraging these thinking tokens. Overall, our work provides novel insights into the reasoning mechanisms of LRMs and offers practical ways to improve their reasoning capabilities. The code is available at https://github.com/ChnQ/MI-Peaks.

Authors:Ahsan Baidar Bakht, Muhayy Ud Din, Sajid Javed, Irfan Hussain
Title: MVTD: A Benchmark Dataset for Maritime Visual Object Tracking
Abstract:
Visual Object Tracking (VOT) is a fundamental task with widespread applications in autonomous navigation, surveillance, and maritime robotics. Despite significant advances in generic object tracking, maritime environments continue to present unique challenges, including specular water reflections, low-contrast targets, dynamically changing backgrounds, and frequent occlusions. These complexities significantly degrade the performance of state-of-the-art tracking algorithms, highlighting the need for domain-specific datasets. To address this gap, we introduce the Maritime Visual Tracking Dataset (MVTD), a comprehensive and publicly available benchmark specifically designed for maritime VOT. MVTD comprises 182 high-resolution video sequences, totaling approximately 150,000 frames, and includes four representative object classes: boat, ship, sailboat, and unmanned surface vehicle (USV). The dataset captures a diverse range of operational conditions and maritime scenarios, reflecting the real-world complexities of maritime environments. We evaluated 14 recent SOTA tracking algorithms on the MVTD benchmark and observed substantial performance degradation compared to their performance on general-purpose datasets. However, when fine-tuned on MVTD, these models demonstrate significant performance gains, underscoring the effectiveness of domain adaptation and the importance of transfer learning in specialized tracking contexts. The MVTD dataset fills a critical gap in the visual tracking community by providing a realistic and challenging benchmark for maritime scenarios. Dataset and Source Code can be accessed here "https://github.com/AhsanBaidar/MVTD".

Authors:Changyi Xiao, Mengdi Zhang, Yixin Cao
Title: BNPO: Beta Normalization Policy Optimization
Abstract:
Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that reinforcement learning with rule-based, binary-valued reward functions can significantly enhance the reasoning capabilities of large language models. These models primarily utilize REINFORCE-based policy optimization techniques, such as REINFORCE with baseline and group relative policy optimization (GRPO). However, a key limitation remains: current policy optimization methods either neglect reward normalization or employ static normalization strategies, which fail to adapt to the dynamic nature of policy updates during training. This may result in unstable gradient estimates and hinder training stability. To address this issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters. BNPO aligns the normalization with the changing policy distribution, enabling more precise and lower-variance gradient estimation, which in turn promotes stable training dynamics. We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings. Furthermore, we introduce an advantage decomposition mechanism to extend BNPO's applicability to more complex reward systems. Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks. The code is available at https://github.com/changyi7231/BNPO.

Authors:Mingjie Wei, Xuemei Xie, Yutong Zhong, Guangming Shi
Title: Learning Pyramid-structured Long-range Dependencies for 3D Human Pose Estimation
Abstract:
Action coordination in human structure is indispensable for the spatial constraints of 2D joints to recover 3D pose. Usually, action coordination is represented as a long-range dependence among body parts. However, there are two main challenges in modeling long-range dependencies. First, joints should not only be constrained by other individual joints but also be modulated by the body parts. Second, existing methods make networks deeper to learn dependencies between non-linked parts. They introduce uncorrelated noise and increase the model size. In this paper, we utilize a pyramid structure to better learn potential long-range dependencies. It can capture the correlation across joints and groups, which complements the context of the human sub-structure. In an effective cross-scale way, it captures the pyramid-structured long-range dependence. Specifically, we propose a novel Pyramid Graph Attention (PGA) module to capture long-range cross-scale dependencies. It concatenates information from various scales into a compact sequence, and then computes the correlation between scales in parallel. Combining PGA with graph convolution modules, we develop a Pyramid Graph Transformer (PGFormer) for 3D human pose estimation, which is a lightweight multi-scale transformer architecture. It encapsulates human sub-structures into self-attention by pooling. Extensive experiments show that our approach achieves lower error and smaller model size than state-of-the-art methods on Human3.6M and MPI-INF-3DHP datasets. The code is available at https://github.com/MingjieWe/PGFormer.

Authors:Di Wen, Lei Qi, Kunyu Peng, Kailun Yang, Fei Teng, Ao Luo, Jia Fu, Yufan Chen, Ruiping Liu, Yitian Shi, M. Saquib Sarfraz, Rainer Stiefelhagen
Title: Go Beyond Earth: Understanding Human Actions and Scenes in Microgravity Environments
Abstract:
Despite substantial progress in video understanding, most existing datasets are limited to Earth's gravitational conditions. However, microgravity alters human motion, interactions, and visual semantics, revealing a critical gap for real-world vision systems. This presents a challenge for domain-robust video understanding in safety-critical space applications. To address this, we introduce MicroG-4M, the first benchmark for spatio-temporal and semantic understanding of human activities in microgravity. Constructed from real-world space missions and cinematic simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-rich captions, and over 7,000 question-answer pairs on astronaut activities and scene understanding. MicroG-4M supports three core tasks: fine-grained multi-label action recognition, temporal video captioning, and visual question answering, enabling a comprehensive evaluation of both spatial localization and semantic reasoning in microgravity contexts. We establish baselines using state-of-the-art models. All data, annotations, and code are available at https://github.com/LEI-QI-233/HAR-in-Space.

Authors:Shuai Yi, Yixiong Zou, Yuhua Li, Ruixuan Li
Title: Random Registers for Cross-Domain Few-Shot Learning
Abstract:
Cross-domain few-shot learning (CDFSL) aims to transfer knowledge from a data-sufficient source domain to data-scarce target domains. Although Vision Transformer (ViT) has shown superior capability in many vision tasks, its transferability against huge domain gaps in CDFSL is still under-explored. In this paper, we find an intriguing phenomenon: during the source-domain training, prompt tuning, as a common way to train ViT, could be harmful for the generalization of ViT in target domains, but setting them to random noises (i.e., random registers) could consistently improve target-domain performance. We then delve into this phenomenon for an interpretation. We find that learnable prompts capture domain information during the training on the source dataset, which views irrelevant visual patterns as vital cues for recognition. This can be viewed as a kind of overfitting and increases the sharpness of the loss landscapes. In contrast, random registers are essentially a novel way of perturbing attention for the sharpness-aware minimization, which helps the model find a flattened minimum in loss landscapes, increasing the transferability. Based on this phenomenon and interpretation, we further propose a simple but effective approach for CDFSL to enhance the perturbation on attention maps by adding random registers on the semantic regions of image tokens, improving the effectiveness and efficiency of random registers. Extensive experiments on four benchmarks validate our rationale and state-of-the-art performance. Codes and models are available at https://github.com/shuaiyi308/REAP.

Authors:Ekaterina Grishina, Mikhail Gorbunov, Maxim Rakhuba
Title: ProcrustesGPT: Compressing LLMs with Structured Matrices and Orthogonal Transformations
Abstract:
Large language models (LLMs) demonstrate impressive results in natural language processing tasks but require a significant amount of computational and memory resources. Structured matrix representations are a promising way for reducing the number of parameters of these models. However, it seems unrealistic to expect that weight matrices of pretrained models can be accurately represented by structured matrices without any fine-tuning. To overcome this issue, we utilize the fact that LLM output is invariant under certain orthogonal transformations of weight matrices. This insight can be leveraged to identify transformations that significantly improve the compressibility of weights within structured classes. The proposed approach is applicable to various types of structured matrices that support efficient projection operations. Code is available at https://github.com/GrishKate/ProcrustesGPT

Authors:Peiding Wang, Li Zhang, Fang Liu, Yinghao Zhu, Wang Xu, Lin Shi, Xiaoli Lian, Minxiao Li, Bo Shen, An Fu
Title: EfficientEdit: Accelerating Code Editing via Edit-Oriented Speculative Decoding
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in code editing, substantially enhancing software development productivity. However, the inherent complexity of code editing tasks forces existing approaches to rely on LLMs' autoregressive end-to-end generation, where decoding speed plays a critical role in efficiency. While inference acceleration techniques like speculative decoding are applied to improve the decoding efficiency, these methods fail to account for the unique characteristics of code editing tasks where changes are typically localized and existing code segments are reused. To address this limitation, we propose EfficientEdit, a novel method that improves LLM-based code editing efficiency through two key mechanisms based on speculative decoding: (1) effective reuse of original code segments while identifying potential edit locations, and (2) efficient generate edit content via high-quality drafts from edit-oriented draft models and a dynamic verification mechanism that balances quality and acceleration. Experimental results show that EfficientEdit can achieve up to 10.38$\times$ and 13.09$\times$ speedup compared to standard autoregressive decoding in CanItEdit and CodeIF-Bench, respectively, outperforming state-of-the-art inference acceleration approaches by up to 90.6%. The code and data are available at https://github.com/zhu-zhu-ding/EfficientEdit.

Authors:Chunwei Tian, Kai Liu, Bob Zhang, Zhixiang Huang, Chia-Wen Lin, David Zhang
Title: A Dynamic Transformer Network for Vehicle Detection
Abstract:
Stable consumer electronic systems can assist traffic better. Good traffic consumer electronic systems require collaborative work between traffic algorithms and hardware. However, performance of popular traffic algorithms containing vehicle detection methods based on deep networks via learning data relation rather than learning differences in different lighting and occlusions is limited. In this paper, we present a dynamic Transformer network for vehicle detection (DTNet). DTNet utilizes a dynamic convolution to guide a deep network to dynamically generate weights to enhance adaptability of an obtained detector. Taking into relations of different information account, a mixed attention mechanism based channel attention and Transformer is exploited to strengthen relations of channels and pixels to extract more salient information for vehicle detection. To overcome the drawback of difference in an image account, a translation-variant convolution relies on spatial location information to refine obtained structural information for vehicle detection. Experimental results illustrate that our DTNet is competitive for vehicle detection. Code of the proposed DTNet can be obtained at https://github.com/hellloxiaotian/DTNet.

Authors:Renyang Liu, Wenjie Feng, Tianwei Zhang, Wei Zhou, Xueqi Cheng, See-Kiong Ng
Title: Rethinking Machine Unlearning in Image Generation Models
Abstract:
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.

Authors:Yankai Chen, Yue Que, Xinni Zhang, Chen Ma, Irwin King
Title: Learning Binarized Representations with Pseudo-positive Sample Enhancement for Efficient Graph Collaborative Filtering
Abstract:
Learning vectorized embeddings is fundamental to many recommender systems for user-item matching. To enable efficient online inference, representation binarization, which embeds latent features into compact binary sequences, has recently shown significant promise in optimizing both memory usage and computational overhead. However, existing approaches primarily focus on numerical quantization, neglecting the associated information loss, which often results in noticeable performance degradation. To address these issues, we study the problem of graph representation binarization for efficient collaborative filtering. Our findings indicate that explicitly mitigating information loss at various stages of embedding binarization has a significant positive impact on performance. Building on these insights, we propose an enhanced framework, BiGeaR++, which specifically leverages supervisory signals from pseudo-positive samples, incorporating both real item data and latent embedding samples. Compared to its predecessor BiGeaR, BiGeaR++ introduces a fine-grained inference distillation mechanism and an effective embedding sample synthesis approach. Empirical evaluations across five real-world datasets demonstrate that the new designs in BiGeaR++ work seamlessly well with other modules, delivering substantial improvements of around 1%-10% over BiGeaR and thus achieving state-of-the-art performance compared to the competing methods. Our implementation is available at https://github.com/QueYork/BiGeaR-SS.

Authors:Changyi Xiao, Yixin Cao
Title: Knowledge Graph Completion by Intermediate Variables Regularization
Abstract:
Knowledge graph completion (KGC) can be framed as a 3-order binary tensor completion task. Tensor decomposition-based (TDB) models have demonstrated strong performance in KGC. In this paper, we provide a summary of existing TDB models and derive a general form for them, serving as a foundation for further exploration of TDB models. Despite the expressiveness of TDB models, they are prone to overfitting. Existing regularization methods merely minimize the norms of embeddings to regularize the model, leading to suboptimal performance. Therefore, we propose a novel regularization method for TDB models that addresses this limitation. The regularization is applicable to most TDB models and ensures tractable computation. Our method minimizes the norms of intermediate variables involved in the different ways of computing the predicted tensor. To support our regularization method, we provide a theoretical analysis that proves its effect in promoting low trace norm of the predicted tensor to reduce overfitting. Finally, we conduct experiments to verify the effectiveness of our regularization technique as well as the reliability of our theoretical analysis. The code is available at https://github.com/changyi7231/IVR.

Authors:Shufan Qing, Anzhen Li, Qiandi Wang, Yuefeng Niu, Mingchen Feng, Guoliang Hu, Jinqiao Wu, Fengtao Nan, Yingchun Fan
Title: GeneA-SLAM2: Dynamic SLAM with AutoEncoder-Preprocessed Genetic Keypoints Resampling and Depth Variance-Guided Dynamic Region Removal
Abstract:
Existing semantic SLAM in dynamic environments mainly identify dynamic regions through object detection or semantic segmentation methods. However, in certain highly dynamic scenarios, the detection boxes or segmentation masks cannot fully cover dynamic regions. Therefore, this paper proposes a robust and efficient GeneA-SLAM2 system that leverages depth variance constraints to handle dynamic scenes. Our method extracts dynamic pixels via depth variance and creates precise depth masks to guide the removal of dynamic objects. Simultaneously, an autoencoder is used to reconstruct keypoints, improving the genetic resampling keypoint algorithm to obtain more uniformly distributed keypoints and enhance the accuracy of pose estimation. Our system was evaluated on multiple highly dynamic sequences. The results demonstrate that GeneA-SLAM2 maintains high accuracy in dynamic scenes compared to current methods. Code is available at: https://github.com/qingshufan/GeneA-SLAM2.

Authors:Tibor Kubík, François Guibault, Michal Španěl, Hervé Lombaert
Title: ToothForge: Automatic Dental Shape Generation using Synchronized Spectral Embeddings
Abstract:
We introduce ToothForge, a spectral approach for automatically generating novel 3D teeth, effectively addressing the sparsity of dental shape datasets. By operating in the spectral domain, our method enables compact machine learning modeling, allowing the generation of high-resolution tooth meshes in milliseconds. However, generating shape spectra comes with the instability of the decomposed harmonics. To address this, we propose modeling the latent manifold on synchronized frequential embeddings. Spectra of all data samples are aligned to a common basis prior to the training procedure, effectively eliminating biases introduced by the decomposition instability. Furthermore, synchronized modeling removes the limiting factor imposed by previous methods, which require all shapes to share a common fixed connectivity. Using a private dataset of real dental crowns, we observe a greater reconstruction quality of the synthetized shapes, exceeding those of models trained on unaligned embeddings. We also explore additional applications of spectral analysis in digital dentistry, such as shape compression and interpolation. ToothForge facilitates a range of approaches at the intersection of spectral analysis and machine learning, with fewer restrictions on mesh structure. This makes it applicable for shape analysis not only in dentistry, but also in broader medical applications, where guaranteeing consistent connectivity across shapes from various clinics is unrealistic. The code is available at https://github.com/tiborkubik/toothForge.

Authors:Jan Robine, Marc Höftmann, Stefan Harmeling
Title: Simple, Good, Fast: Self-Supervised World Models Free of Baggage
Abstract:
What are the essential components of world models? How far do we get with world models that are not employing RNNs, transformers, discrete representations, and image reconstructions? This paper introduces SGF, a Simple, Good, and Fast world model that uses self-supervised representation learning, captures short-time dependencies through frame and action stacking, and enhances robustness against model errors through data augmentation. We extensively discuss SGF's connections to established world models, evaluate the building blocks in ablation studies, and demonstrate good performance through quantitative comparisons on the Atari 100k benchmark.

Authors:Zhi-Yuan Chen, Hao Wang, Xinyu Zhang, Enrui Hu, Yankai Lin
Title: Beyond the Surface: Measuring Self-Preference in LLM Judgments
Abstract:
Recent studies show that large language models (LLMs) exhibit self-preference bias when serving as judges, meaning they tend to favor their own responses over those generated by other models. Existing methods typically measure this bias by calculating the difference between the scores a judge model assigns to its own responses and those it assigns to responses from other models. However, this approach conflates self-preference bias with response quality, as higher-quality responses from the judge model may also lead to positive score differences, even in the absence of bias. To address this issue, we introduce gold judgments as proxies for the actual quality of responses and propose the DBG score, which measures self-preference bias as the difference between the scores assigned by the judge model to its own responses and the corresponding gold judgments. Since gold judgments reflect true response quality, the DBG score mitigates the confounding effect of response quality on bias measurement. Using the DBG score, we conduct comprehensive experiments to assess self-preference bias across LLMs of varying versions, sizes, and reasoning abilities. Additionally, we investigate two factors that influence and help alleviate self-preference bias: response text style and the post-training data of judge models. Finally, we explore potential underlying mechanisms of self-preference bias from an attention-based perspective. Our code and data are available at https://github.com/zhiyuanc2001/self-preference.

Authors:Chunwei Tian, Mingjian Song, Xiaopeng Fan, Xiangtao Zheng, Bob Zhang, David Zhang
Title: A Tree-guided CNN for image super-resolution
Abstract:
Deep convolutional neural networks can extract more accurate structural information via deep architectures to obtain good performance in image super-resolution. However, it is not easy to find effect of important layers in a single network architecture to decrease performance of super-resolution. In this paper, we design a tree-guided CNN for image super-resolution (TSRNet). It uses a tree architecture to guide a deep network to enhance effect of key nodes to amplify the relation of hierarchical information for improving the ability of recovering images. To prevent insufficiency of the obtained structural information, cosine transform techniques in the TSRNet are used to extract cross-domain information to improve the performance of image super-resolution. Adaptive Nesterov momentum optimizer (Adan) is applied to optimize parameters to boost effectiveness of training a super-resolution model. Extended experiments can verify superiority of the proposed TSRNet for restoring high-quality images. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet.

Authors:Xuewen Luo, Fengze Yang, Fan Ding, Xiangbo Gao, Shuo Xing, Yang Zhou, Zhengzhong Tu, Chenxi Liu
Title: V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving
Abstract:
Autonomous driving (AD) has achieved significant progress, yet single-vehicle perception remains constrained by sensing range and occlusions. Vehicle-to-Everything (V2X) communication addresses these limits by enabling collaboration across vehicles and infrastructure, but it also faces heterogeneity, synchronization, and latency constraints. Language models offer strong knowledge-driven reasoning and decision-making capabilities, but they are not inherently designed to process raw sensor streams and are prone to hallucination. We propose V2X-UniPool, the first framework that unifies V2X perception with language-based reasoning for knowledge-driven AD. It transforms multimodal V2X data into structured, language-based knowledge, organizes it in a time-indexed knowledge pool for temporally consistent reasoning, and employs Retrieval-Augmented Generation (RAG) to ground decisions in real-time context. Experiments on the real-world DAIR-V2X dataset show that V2X-UniPool achieves state-of-the-art planning accuracy and safety while reducing communication cost by more than 80\%, achieving the lowest overhead among evaluated methods. These results highlight the promise of bridging V2X perception and language reasoning to advance scalable and trustworthy driving. Our code is available at: https://github.com/Xuewen2025/V2X-UniPool

Authors:Haichen Wang, Liu Yang, Xinyuan Zhang, Haomin Yu, Ming Li, Jilin Hu
Title: ADFormer: Aggregation Differential Transformer for Passenger Demand Forecasting
Abstract:
Passenger demand forecasting helps optimize vehicle scheduling, thereby improving urban efficiency. Recently, attention-based methods have been used to adequately capture the dynamic nature of spatio-temporal data. However, existing methods that rely on heuristic masking strategies cannot fully adapt to the complex spatio-temporal correlations, hindering the model from focusing on the right context. These works also overlook the high-level correlations that exist in the real world. Effectively integrating these high-level correlations with the original correlations is crucial. To fill this gap, we propose the Aggregation Differential Transformer (ADFormer), which offers new insights to demand forecasting promotion. Specifically, we utilize Differential Attention to capture the original spatial correlations and achieve attention denoising. Meanwhile, we design distinct aggregation strategies based on the nature of space and time. Then, the original correlations are unified with the high-level correlations, enabling the model to capture holistic spatio-temporal relations. Experiments conducted on taxi and bike datasets confirm the effectiveness and efficiency of our model, demonstrating its practical value. The code is available at https://github.com/decisionintelligence/ADFormer.

Authors:Ping Gong, Jiawei Yi, Shengnan Wang, Juncheng Zhang, Zewen Jin, Ouxiang Zhou, Ruibo Liu, Guanbin Xu, Youhui Bai, Bowen Ye, Kun Yuan, Tong Yang, Gong Zhang, Renhai Chen, Feng Wu, Cheng Li
Title: HATA: Trainable and Hardware-Efficient Hash-Aware Top-k Attention for Scalable Large Model Inference
Abstract:
Large Language Models (LLMs) have emerged as a pivotal research area, yet the attention module remains a critical bottleneck in LLM inference, even with techniques like KVCache to mitigate redundant computations. While various top-$k$ attention mechanisms have been proposed to accelerate LLM inference by exploiting the inherent sparsity of attention, they often struggled to strike a balance between efficiency and accuracy. In this paper, we introduce HATA (Hash-Aware Top-$k$ Attention), a novel approach that systematically integrates low-overhead learning-to-hash techniques into the Top-$k$ attention process. Different from the existing top-k attention methods which are devoted to seeking an absolute estimation of qk score, typically with a great cost, HATA maps queries and keys into binary hash codes, and acquires the relative qk score order with a quite low cost, which is sufficient for realizing top-k attention. Extensive experiments demonstrate that HATA achieves up to 7.2$\times$ speedup compared to vanilla full attention while maintaining model accuracy. In addition, HATA outperforms the state-of-the-art top-$k$ attention methods in both accuracy and efficiency across multiple mainstream LLM models and diverse tasks. HATA is open source at https://github.com/gpzlx1/HATA.

Authors:Timo Osterburg, Franz Albers, Christopher Diehl, Rajesh Pushparaj, Torsten Bertram
Title: HiLO: High-Level Object Fusion for Autonomous Driving using Transformers
Abstract:
The fusion of sensor data is essential for a robust perception of the environment in autonomous driving. Learning-based fusion approaches mainly use feature-level fusion to achieve high performance, but their complexity and hardware requirements limit their applicability in near-production vehicles. High-level fusion methods offer robustness with lower computational requirements. Traditional methods, such as the Kalman filter, dominate this area. This paper modifies the Adapted Kalman Filter (AKF) and proposes a novel transformer-based high-level object fusion method called HiLO. Experimental results demonstrate improvements of $25.9$ percentage points in $\textrm{F}_1$ score and $6.1$ percentage points in mean IoU. Evaluation on a new large-scale real-world dataset demonstrates the effectiveness of the proposed approaches. Their generalizability is further validated by cross-domain evaluation between urban and highway scenarios. Code, data, and models are available at https://github.com/rst-tu-dortmund/HiLO .

Authors:Qiaohui Chu, Haoyu Zhang, Yisen Feng, Meng Liu, Weili Guan, Yaowei Wang, Liqiang Nie
Title: Technical Report for Ego4D Long-Term Action Anticipation Challenge 2025
Abstract:
In this report, we present a novel three-stage framework developed for the Ego4D Long-Term Action Anticipation (LTA) task. Inspired by recent advances in foundation models, our method consists of three stages: feature extraction, action recognition, and long-term action anticipation. First, visual features are extracted using a high-performance visual encoder. The features are then fed into a Transformer to predict verbs and nouns, with a verb-noun co-occurrence matrix incorporated to enhance recognition accuracy. Finally, the predicted verb-noun pairs are formatted as textual prompts and input into a fine-tuned large language model (LLM) to anticipate future action sequences. Our framework achieves first place in this challenge at CVPR 2025, establishing a new state-of-the-art in long-term action prediction. Our code will be released at https://github.com/CorrineQiu/Ego4D-LTA-Challenge-2025.

Authors:Niklas Kormann, Masoud Ramuz, Zeeshan Nisar, Nadine S. Schaadt, Hendrik Annuth, Benjamin Doerr, Friedrich Feuerhake, Thomas Lampert, Johannes F. Lutzeyer
Title: HIEGNet: A Heterogenous Graph Neural Network Including the Immune Environment in Glomeruli Classification
Abstract:
Graph Neural Networks (GNNs) have recently been found to excel in histopathology. However, an important histopathological task, where GNNs have not been extensively explored, is the classification of glomeruli health as an important indicator in nephropathology. This task presents unique difficulties, particularly for the graph construction, i.e., the identification of nodes, edges, and informative features. In this work, we propose a pipeline composed of different traditional and machine learning-based computer vision techniques to identify nodes, edges, and their corresponding features to form a heterogeneous graph. We then proceed to propose a novel heterogeneous GNN architecture for glomeruli classification, called HIEGNet, that integrates both glomeruli and their surrounding immune cells. Hence, HIEGNet is able to consider the immune environment of each glomerulus in its classification. Our HIEGNet was trained and tested on a dataset of Whole Slide Images from kidney transplant patients. Experimental results demonstrate that HIEGNet outperforms several baseline models and generalises best between patients among all baseline models. Our implementation is publicly available at https://github.com/nklsKrmnn/HIEGNet.git.

Authors:Hao Yan, Handong Zheng, Hao Wang, Liang Yin, Xingchen Liu, Zhenbiao Cao, Xinxing Su, Zihao Chen, Jihao Wu, Minghui Liao, Chao Weng, Wei Chen, Yuliang Liu, Xiang Bai
Title: VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
Abstract:
Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles

Authors:Sining Chen, Yilei Shi, Xiao Xiang Zhu
Title: Enhancing Monocular Height Estimation via Weak Supervision from Imperfect Labels
Abstract:
Monocular height estimation is considered the most efficient and cost-effective means of 3D perception in remote sensing, and it has attracted much attention since the emergence of deep learning. While training neural networks requires a large amount of data, data with perfect labels are scarce and only available within developed regions. The trained models therefore lack generalizability, which limits the potential for large-scale application of existing methods. We tackle this problem for the first time, by introducing data with imperfect labels into training pixel-wise height estimation networks, including labels that are incomplete, inexact, and inaccurate compared to high-quality labels. We propose an ensemble-based pipeline compatible with any monocular height estimation network. Taking the challenges of noisy labels, domain shift, and long-tailed distribution of height values into consideration, we carefully design the architecture and loss functions to leverage the information concealed in imperfect labels using weak supervision through balanced soft losses and ordinal constraints. We conduct extensive experiments on two datasets with different resolutions, DFC23 (0.5 to 1 m) and GBH (3 m). The results indicate that the proposed pipeline outperforms baselines by achieving more balanced performance across various domains, leading to improvements of average root mean square errors up to 22.94 %, and 18.62 % on DFC23 and GBH, respectively. The efficacy of each design component is validated through ablation studies. Code is available at https://github.com/zhu-xlab/weakim2h.

Authors:Sohan Patnaik, Milan Aggarwal, Sumit Bhatia, Balaji Krishnamurthy
Title: Learning Together to Perform Better: Teaching Small-Scale LLMs to Collaborate via Preferential Rationale Tuning
Abstract:
LLMssuch as GPT-4 have shown a remarkable ability to solve complex questions by generating step-by-step rationales. Prior works have utilized this capability to improve smaller and cheaper LMs (say, with 7B parameters). However, various practical constraints, such as copyright and legal issues, owing to lack of transparency in the pre-training data of large (often closed) models, prevent their use in commercial settings. Little focus has been given to improving the innate reasoning ability of smaller models without distilling information from larger LLMs. To address this, we propose COLLATE, a trainable framework that tunes a (small) LLM to generate those outputs from a pool of diverse rationales that selectively improves the downstream task. COLLATE enforces multiple instances of the same LLM to exhibit distinct behavior and employs them to generate rationales to obtain diverse outputs. The LLM is then tuned via preference optimization to choose the candidate rationale which maximizes the likelihood of ground-truth answer. COLLATE outperforms several trainable and prompting baselines on 5 datasets across 3 domains: maths problem solving, natural language inference, and commonsense reasoning. We show the eff icacy of COLLATE on LLMs from different model families across varying parameter scales (1B to 8B) and demonstrate the benefit of multiple rationale providers guided by the end task through ablations. Code is released here (https://github.com/Sohanpatnaik106/collate).

Authors:Gaoyang Dong, Zhicheng Zhang, Ping Sun, Minghui Zhang
Title: Adaptive Differential Denoising for Respiratory Sounds Classification
Abstract:
Automated respiratory sound classification faces practical challenges from background noise and insufficient denoising in existing systems. We propose Adaptive Differential Denoising network, that integrates noise suppression and pathological feature preservation via three innovations: 1) Adaptive Frequency Filter with learnable spectral masks and soft shrink to eliminate noise while retaining diagnostic high-frequency components; 2) A Differential Denoise Layer using differential attention to reduce noise-induced variations through augmented sample comparisons; 3) A bias denoising loss jointly optimizing classification and robustness without clean labels. Experiments on the ICBHI2017 dataset show that our method achieves 65.53\% of the Score, which is improved by 1.99\% over the previous sota method. The code is available in https://github.com/deegy666/ADD-RSC

Authors:Jiachen Liu, Rui Yu, Sili Chen, Sharon X. Huang, Hengkai Guo
Title: Towards In-the-wild 3D Plane Reconstruction from a Single Image
Abstract:
3D plane reconstruction from a single image is a crucial yet challenging topic in 3D computer vision. Previous state-of-the-art (SOTA) methods have focused on training their system on a single dataset from either indoor or outdoor domain, limiting their generalizability across diverse testing data. In this work, we introduce a novel framework dubbed ZeroPlane, a Transformer-based model targeting zero-shot 3D plane detection and reconstruction from a single image, over diverse domains and environments. To enable data-driven models across multiple domains, we have curated a large-scale planar benchmark, comprising over 14 datasets and 560,000 high-resolution, dense planar annotations for diverse indoor and outdoor scenes. To address the challenge of achieving desirable planar geometry on multi-dataset training, we propose to disentangle the representation of plane normal and offset, and employ an exemplar-guided, classification-then-regression paradigm to learn plane and offset respectively. Additionally, we employ advanced backbones as image encoder, and present an effective pixel-geometry-enhanced plane embedding module to further facilitate planar reconstruction. Extensive experiments across multiple zero-shot evaluation datasets have demonstrated that our approach significantly outperforms previous methods on both reconstruction accuracy and generalizability, especially over in-the-wild data. Our code and data are available at: https://github.com/jcliu0428/ZeroPlane.

Authors:Minghao Liu, Catherine Zhao, Nathan Zhou
Title: Building a Recommendation System Using Amazon Product Co-Purchasing Network
Abstract:
This project develops an online, inductive recommendation system for newly listed products on e-commerce platforms, focusing on suggesting relevant new items to customers as they purchase other products. Using the Amazon Product Co-Purchasing Network Metadata dataset, we construct a co-purchasing graph where nodes represent products and edges capture co-purchasing relationships. To address the challenge of recommending new products with limited information, we apply a modified GraphSAGE method for link prediction. This inductive approach leverages both product features and the existing co-purchasing graph structure to predict potential co-purchasing relationships, enabling the model to generalize to unseen products. As an online method, it updates in real time, making it scalable and adaptive to evolving product catalogs. Experimental results demonstrate that our approach outperforms baseline algorithms in predicting relevant product links, offering a promising solution for enhancing the relevance of new product recommendations in e-commerce environments. All code is available at https://github.com/cse416a-fl24/final-project-l-minghao_z-catherine_z-nathan.git.

Authors:Xuejiao Zhao, Siyan Liu, Su-Yin Yang, Chunyan Miao
Title: A Smart Multimodal Healthcare Copilot with Powerful LLM Reasoning
Abstract:
Misdiagnosis causes significant harm to healthcare systems worldwide, leading to increased costs and patient risks. MedRAG is a smart multimodal healthcare copilot equipped with powerful large language model (LLM) reasoning, designed to enhance medical decision-making. It supports multiple input modalities, including non-intrusive voice monitoring, general medical queries, and electronic health records. MedRAG provides recommendations on diagnosis, treatment, medication, and follow-up questioning. Leveraging retrieval-augmented generation enhanced by knowledge graph-elicited reasoning, MedRAG retrieves and integrates critical diagnostic insights, reducing the risk of misdiagnosis. It has been evaluated on both public and private datasets, outperforming existing models and offering more specific and accurate healthcare assistance. A demonstration video of MedRAG is available at: https://www.youtube.com/watch?v=PNIBDMYRfDM. The source code is available at: https://github.com/SNOWTEAM2023/MedRAG.

Authors:Tri Cao, Bennett Lim, Yue Liu, Yuan Sui, Yuexin Li, Shumin Deng, Lin Lu, Nay Oo, Shuicheng Yan, Bryan Hooi
Title: VPI-Bench: Visual Prompt Injection Attacks for Computer-Use Agents
Abstract:
Computer-Use Agents (CUAs) with full system access enable powerful task automation but pose significant security and privacy risks due to their ability to manipulate files, access user data, and execute arbitrary commands. While prior work has focused on browser-based agents and HTML-level attacks, the vulnerabilities of CUAs remain underexplored. In this paper, we investigate Visual Prompt Injection (VPI) attacks, where malicious instructions are visually embedded within rendered user interfaces, and examine their impact on both CUAs and Browser-Use Agents (BUAs). We propose VPI-Bench, a benchmark of 306 test cases across five widely used platforms, to evaluate agent robustness under VPI threats. Each test case is a variant of a web platform, designed to be interactive, deployed in a realistic environment, and containing a visually embedded malicious prompt. Our empirical study shows that current CUAs and BUAs can be deceived at rates of up to 51% and 100%, respectively, on certain platforms. The experimental results also indicate that system prompt defenses offer only limited improvements. These findings highlight the need for robust, context-aware defenses to ensure the safe deployment of multimodal AI agents in real-world environments. The code and dataset are available at: https://github.com/cua-framework/agents

Authors:Lingwei Dang, Ruizhi Shao, Hongwen Zhang, Wei Min, Yebin Liu, Qingyao Wu
Title: SViMo: Synchronized Diffusion for Video and Motion Generation in Hand-object Interaction Scenarios
Abstract:
Hand-Object Interaction (HOI) generation has significant application potential. However, current 3D HOI motion generation approaches heavily rely on predefined 3D object models and lab-captured motion data, limiting generalization capabilities. Meanwhile, HOI video generation methods prioritize pixel-level visual fidelity, often sacrificing physical plausibility. Recognizing that visual appearance and motion patterns share fundamental physical laws in the real world, we propose a novel framework that combines visual priors and dynamic constraints within a synchronized diffusion process to generate the HOI video and motion simultaneously. To integrate the heterogeneous semantics, appearance, and motion features, our method implements tri-modal adaptive modulation for feature aligning, coupled with 3D full-attention for modeling inter- and intra-modal dependencies. Furthermore, we introduce a vision-aware 3D interaction diffusion model that generates explicit 3D interaction sequences directly from the synchronized diffusion outputs, then feeds them back to establish a closed-loop feedback cycle. This architecture eliminates dependencies on predefined object models or explicit pose guidance while significantly enhancing video-motion consistency. Experimental results demonstrate our method's superiority over state-of-the-art approaches in generating high-fidelity, dynamically plausible HOI sequences, with notable generalization capabilities in unseen real-world scenarios. Project page at https://github.com/Droliven/SViMo_project.

Authors:Shuang Li, Jiaxu Leng, Changjiang Kuang, Mingpi Tan, Xinbo Gao
Title: Video-Level Language-Driven Video-Based Visible-Infrared Person Re-Identification
Abstract:
Video-based Visible-Infrared Person Re-Identification (VVI-ReID) aims to match pedestrian sequences across modalities by extracting modality-invariant sequence-level features. As a high-level semantic representation, language provides a consistent description of pedestrian characteristics in both infrared and visible modalities. Leveraging the Contrastive Language-Image Pre-training (CLIP) model to generate video-level language prompts and guide the learning of modality-invariant sequence-level features is theoretically feasible. However, the challenge of generating and utilizing modality-shared video-level language prompts to address modality gaps remains a critical problem. To address this problem, we propose a simple yet powerful framework, video-level language-driven VVI-ReID (VLD), which consists of two core modules: invariant-modality language prompting (IMLP) and spatial-temporal prompting (STP). IMLP employs a joint fine-tuning strategy for the visual encoder and the prompt learner to effectively generate modality-shared text prompts and align them with visual features from different modalities in CLIP's multimodal space, thereby mitigating modality differences. Additionally, STP models spatiotemporal information through two submodules, the spatial-temporal hub (STH) and spatial-temporal aggregation (STA), which further enhance IMLP by incorporating spatiotemporal information into text prompts. The STH aggregates and diffuses spatiotemporal information into the [CLS] token of each frame across the vision transformer (ViT) layers, whereas STA introduces dedicated identity-level loss and specialized multihead attention to ensure that the STH focuses on identity-relevant spatiotemporal feature aggregation. The VLD framework achieves state-of-the-art results on two VVI-ReID benchmarks. The code will be released at https://github.com/Visuang/VLD.

Authors:Maryam Berijanian, Kuldeep Singh, Amin Sehati
Title: Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
Abstract:
Entity relationship classification remains a challenging task in information extraction, especially in scenarios with limited labeled data and complex relational structures. In this study, we conduct a comparative analysis of three distinct AI agent architectures designed to perform relation classification using large language models (LLMs). The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism, each leveraging different modes of reasoning and prompt adaptation. In particular, our dynamic example generation approach introduces real-time cooperative and adversarial prompting. We systematically compare their performance across multiple domains and model backends. Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting and approaches the performance of fine-tuned models. These findings offer practical guidance for the design of modular, generalizable LLM-based systems for structured relation extraction. The source codes and dataset are available at https://github.com/maryambrj/ALIEN.git.

Authors:Nurislam Tursynbek, Hastings Greer, Basar Demir, Marc Niethammer
Title: Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models
Abstract:
Diffusion models, while trained for image generation, have emerged as powerful foundational feature extractors for downstream tasks. We find that off-the-shelf diffusion models, trained exclusively to generate natural RGB images, can identify semantically meaningful correspondences in medical images. Building on this observation, we propose to leverage diffusion model features as a similarity measure to guide deformable image registration networks. We show that common intensity-based similarity losses often fail in challenging scenarios, such as when certain anatomies are visible in one image but absent in another, leading to anatomically inaccurate alignments. In contrast, our method identifies true semantic correspondences, aligning meaningful structures while disregarding those not present across images. We demonstrate superior performance of our approach on two tasks: multimodal 2D registration (DXA to X-Ray) and monomodal 3D registration (brain-extracted to non-brain-extracted MRI). Code: https://github.com/uncbiag/dgir

Authors:Wenhao Tang, Rong Qin, Heng Fang, Fengtao Zhou, Hao Chen, Xiang Li, Ming-Ming Cheng
Title: Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology
Abstract:
Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.

Authors:Shengjia Zhang, Junjie Wu, Jiawei Chen, Changwang Zhang, Xingyu Lou, Wangchunshu Zhou, Sheng Zhou, Can Wang, Jun Wang
Title: OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
Abstract:
Recent advanced large reasoning models (LRMs) leverage extended chain-of-thought (CoT) reasoning to solve complex tasks, achieving state-of-the-art performance. Despite their success, we identify a critical issue: a substantial portion of simple tasks solved by LRMs can also be addressed by non-reasoning LLMs using significantly fewer tokens, indicating the complex reasoning may not always be necessary. To address this, we systematically analyze the reasoning trajectories of LRMs and present a method utilizing identified paradigms and LLM-Judge to classify these trajectories as either Redundant Reasoning or Essential Reasoning. And we introduce OThink-R1, a method that prunes redundant reasoning steps while preserving logical validity. OThink-R1 dynamically employs the non-thinking mode (fast-thinking) for straightforward problems while engaging in deliberate thinking (slow-thinking) for complex problems. Experiments across mathematical and question-answering tasks demonstrate that OThink-R1 reduces reasoning redundancy by almost 23\% on average without compromising accuracy, offering practical guidelines for efficient reasoning models. The code is available at https://github.com/AgenticIR-Lab/OThink-R1.

Authors:Yongxian Liu, Boyang Li, Ting Liu, Zaiping Lin, Wei An
Title: RRCANet: Recurrent Reusable-Convolution Attention Network for Infrared Small Target Detection
Abstract:
Infrared small target detection is a challenging task due to its unique characteristics (e.g., small, dim, shapeless and changeable). Recently published CNN-based methods have achieved promising performance with heavy feature extraction and fusion modules. To achieve efficient and effective detection, we propose a recurrent reusable-convolution attention network (RRCA-Net) for infrared small target detection. Specifically, RRCA-Net incorporates reusable-convolution block (RuCB) in a recurrent manner without introducing extra parameters. With the help of the repetitive iteration in RuCB, the high-level information of small targets in the deep layers can be well maintained and further refined. Then, a dual interactive attention aggregation module (DIAAM) is proposed to promote the mutual enhancement and fusion of refined information. In this way, RRCA-Net can both achieve high-level feature refinement and enhance the correlation of contextual information between adjacent layers. Moreover, to achieve steady convergence, we design a target characteristic inspired loss function (DpT-k loss) by integrating physical and mathematical constraints. Experimental results on three benchmark datasets (e.g. NUAA-SIRST, IRSTD-1k, DenseSIRST) demonstrate that our RRCA-Net can achieve comparable performance to the state-of-the-art methods while maintaining a small number of parameters, and act as a plug and play module to introduce consistent performance improvement for several popular IRSTD methods. Our code will be available at https://github.com/yongxianLiu/ soon.

Authors:Seulgi Kim, Ghazal Kaviani, Mohit Prabhushankar, Ghassan AlRegib
Title: Multi-level and Multi-modal Action Anticipation
Abstract:
Action anticipation, the task of predicting future actions from partially observed videos, is crucial for advancing intelligent systems. Unlike action recognition, which operates on fully observed videos, action anticipation must handle incomplete information. Hence, it requires temporal reasoning, and inherent uncertainty handling. While recent advances have been made, traditional methods often focus solely on visual modalities, neglecting the potential of integrating multiple sources of information. Drawing inspiration from human behavior, we introduce \textit{Multi-level and Multi-modal Action Anticipation (m\&m-Ant)}, a novel multi-modal action anticipation approach that combines both visual and textual cues, while explicitly modeling hierarchical semantic information for more accurate predictions. To address the challenge of inaccurate coarse action labels, we propose a fine-grained label generator paired with a specialized temporal consistency loss function to optimize performance. Extensive experiments on widely used datasets, including Breakfast, 50 Salads, and DARai, demonstrate the effectiveness of our approach, achieving state-of-the-art results with an average anticipation accuracy improvement of 3.08\% over existing methods. This work underscores the potential of multi-modal and hierarchical modeling in advancing action anticipation and establishes a new benchmark for future research in the field. Our code is available at: https://github.com/olivesgatech/mM-ant.

Authors:Xiaoyan Zhao, Juntao You, Yang Zhang, Wenjie Wang, Hong Cheng, Fuli Feng, See-Kiong Ng, Tat-Seng Chua
Title: NextQuill: Causal Preference Modeling for Enhancing LLM Personalization
Abstract:
Personalizing large language models (LLMs) for individual users has become increasingly important as they are progressively integrated into real-world applications to support users' daily lives. However, existing personalization approaches often fail to distinguish which components of model predictions and training data truly reflect user preferences, leading to superficial personalization alignment. In this paper, we introduce NextQuill, a novel LLM personalization alignment framework grounded in causal preference modeling. We approach personalization from a causal perspective, treating both model predictions and ground-truth data generation as outcomes influenced by user preferences, along with other factors. We define the true preference effect as the causal impact of user history (which reflects preferences) on each token prediction or data generation instance, estimated through causal intervention techniques. Building on this insight, NextQuill introduces two complementary alignment strategies: (1) aligning model-internal causal preference effects on predictions with those reflected in ground-truth data, rather than indiscriminately fitting predictions, and (2) focusing on fitting preference-bearing tokens identified via ground-truth data preference effects, rather than treating all tokens uniformly. By integrating these strategies, NextQuill shifts the alignment process toward learning from causal preference effects, facilitating more effective and personalized adaptation. Experiments across multiple personalization benchmarks demonstrate that NextQuill significantly improves personalization quality, offering a principled, causal foundation for LLM personalization. Our codes are available on https://github.com/juntaoyou/NextQuill.

Authors:Qin Xie, Qinghua Zhang, Shuyin Xia
Title: Approximate Borderline Sampling using Granular-Ball for Classification Tasks
Abstract:
Data sampling enhances classifier efficiency and robustness through data compression and quality improvement. Recently, the sampling method based on granular-ball (GB) has shown promising performance in generality and noisy classification tasks. However, some limitations remain, including the absence of borderline sampling strategies and issues with class boundary blurring or shrinking due to overlap between GBs. In this paper, an approximate borderline sampling method using GBs is proposed for classification tasks. First, a restricted diffusion-based GB generation (RD-GBG) method is proposed, which prevents GB overlaps by constrained expansion, preserving precise geometric representation of GBs via redefined ones. Second, based on the concept of heterogeneous nearest neighbor, a GB-based approximate borderline sampling (GBABS) method is proposed, which is the first general sampling method capable of both borderline sampling and improving the quality of class noise datasets. Additionally, since RD-GBG incorporates noise detection and GBABS focuses on borderline samples, GBABS performs outstandingly on class noise datasets without the need for an optimal purity threshold. Experimental results demonstrate that the proposed methods outperform the GB-based sampling method and several representative sampling methods. Our source code is publicly available at https://github.com/CherylTse/GBABS.

Authors:Liang Li, Jianli Zhao, Sheng Fang, Siyu Chen, Hui Sun
Title: A TRPCA-Inspired Deep Unfolding Network for Hyperspectral Image Denoising via Thresholded t-SVD and Top-K Sparse Transformer
Abstract:
Hyperspectral images (HSIs) are often degraded by complex mixed noise during acquisition and transmission, making effective denoising essential for subsequent analysis. Recent hybrid approaches that bridge model-driven and data-driven paradigms have shown great promise. However, most of these approaches lack effective alternation between different priors or modules, resulting in loosely coupled regularization and insufficient exploitation of their complementary strengths. Inspired by tensor robust principal component analysis (TRPCA), we propose a novel deep unfolding network (DU-TRPCA) that enforces stage-wise alternation between two tightly integrated modules: low-rank and sparse. The low-rank module employs thresholded tensor singular value decomposition (t-SVD), providing a widely adopted convex surrogate for tensor low-rankness and has been demonstrated to effectively capture the global spatial-spectral structure of HSIs. The Top-K sparse transformer module adaptively imposes sparse constraints, directly matching the sparse regularization in TRPCA and enabling effective removal of localized outliers and complex noise. This tightly coupled architecture preserves the stage-wise alternation between low-rank approximation and sparse refinement inherent in TRPCA, while enhancing representational capacity through attention mechanisms. Extensive experiments on synthetic and real-world HSIs demonstrate that DU-TRPCA surpasses state-of-the-art methods under severe mixed noise, while offering interpretability benefits and stable denoising dynamics inspired by iterative optimization. Code is available at https://github.com/liangli97/TRPCA-Deep-Unfolding-HSI-Denoising.

Authors:Xueqi Cheng, Minxing Zheng, Shixiang Zhu, Yushun Dong
Title: MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models
Abstract:
Model extraction attacks aim to replicate the functionality of a black-box model through query access, threatening the intellectual property (IP) of machine-learning-as-a-service (MLaaS) providers. Defending against such attacks is challenging, as it must balance efficiency, robustness, and utility preservation in the real-world scenario. Despite the recent advances, most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs. However, this assumption is increasingly unreliable, as modern models are trained on diverse datasets and attackers often operate under limited query budgets. As a result, the effectiveness of these defenses is significantly compromised in realistic deployment scenarios. To address this gap, we propose MISLEADER (enseMbles of dIStiLled modEls Against moDel ExtRaction), a novel defense strategy that does not rely on OOD assumptions. MISLEADER formulates model protection as a bilevel optimization problem that simultaneously preserves predictive fidelity on benign inputs and reduces extractability by potential clone models. Our framework combines data augmentation to simulate attacker queries with an ensemble of heterogeneous distilled models to improve robustness and diversity. We further provide a tractable approximation algorithm and derive theoretical error bounds to characterize defense effectiveness. Extensive experiments across various settings validate the utility-preserving and extraction-resistant properties of our proposed defense strategy. Our code is available at https://github.com/LabRAI/MISLEADER.

Authors:Andre He, Daniel Fried, Sean Welleck
Title: Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening
Abstract:
Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities. A fundamental question is whether current reinforcement learning algorithms -- such as Group Relative Policy Optimization (GRPO), the de facto standard algorithm used to improve language model reasoning -- merely sharpen the base model's distribution around problems it can already solve. We investigate this question in the context of formal theorem proving, which has access to a perfect verifier. We identify a degenerate rank bias in GRPO in which highly probable trajectories are reinforced and rare ones are neglected. This results in distribution sharpening: the model can solve some problems with fewer samples, but underperforms simply sampling more solutions from the original model. To overcome GRPO's rank bias we introduce unlikeliness reward, a simple method for explicitly up-weighting rare but correct solutions. We show that unlikeliness reward mitigates rank bias and improves pass@$N$ across a large range of $N$ in both synthetic and real theorem proving settings. We also uncover an unexpected link between rank bias and a seemingly mundane hyperparameter -- the number of updates per batch -- that leads to a second, complementary mitigation. We combine our insights into a revised GRPO training recipe for formal theorem proving, yielding an open pipeline that achieves competitive performance to DeepSeek-Prover-V1.5-RL on the miniF2F-test benchmark. We release our implementation at https://github.com/AndreHe02/rewarding-unlikely-release

Authors:Herun Wan, Jiaying Wu, Minnan Luo, Zhi Zeng, Zhixiong Su
Title: Truth over Tricks: Measuring and Mitigating Shortcut Learning in Misinformation Detection
Abstract:
Misinformation detection models often rely on superficial cues (i.e., \emph{shortcuts}) that correlate with misinformation in training data but fail to generalize to the diverse and evolving nature of real-world misinformation. This issue is exacerbated by large language models (LLMs), which can easily generate convincing misinformation through simple prompts. We introduce TruthOverTricks, a unified evaluation paradigm for measuring shortcut learning in misinformation detection. TruthOverTricks categorizes shortcut behaviors into intrinsic shortcut induction and extrinsic shortcut injection, and evaluates seven representative detectors across 14 popular benchmarks, along with two new factual misinformation datasets, NQ-Misinfo and Streaming-Misinfo. Empirical results reveal that existing detectors suffer severe performance degradation when exposed to both naturally occurring and adversarially crafted shortcuts. To address this, we propose SMF, an LLM-augmented data augmentation framework that mitigates shortcut reliance through paraphrasing, factual summarization, and sentiment normalization. SMF consistently enhances robustness across 16 benchmarks, encouraging models to rely on deeper semantic understanding rather than shortcut cues. To promote the development of misinformation detectors, we have published the resources publicly at https://github.com/whr000001/TruthOverTricks.

Authors:Duo Liu, Zhiquan Tan, Linglan Zhao, Zhongqiang Zhang, Xiangzhong Fang, Weiran Huang
Title: Generalized Category Discovery via Reciprocal Learning and Class-Wise Distribution Regularization
Abstract:
Generalized Category Discovery (GCD) aims to identify unlabeled samples by leveraging the base knowledge from labeled ones, where the unlabeled set consists of both base and novel classes. Since clustering methods are time-consuming at inference, parametric-based approaches have become more popular. However, recent parametric-based methods suffer from inferior base discrimination due to unreliable self-supervision. To address this issue, we propose a Reciprocal Learning Framework (RLF) that introduces an auxiliary branch devoted to base classification. During training, the main branch filters the pseudo-base samples to the auxiliary branch. In response, the auxiliary branch provides more reliable soft labels for the main branch, leading to a virtuous cycle. Furthermore, we introduce Class-wise Distribution Regularization (CDR) to mitigate the learning bias towards base classes. CDR essentially increases the prediction confidence of the unlabeled data and boosts the novel class performance. Combined with both components, our proposed method, RLCD, achieves superior performance in all classes with negligible extra computation. Comprehensive experiments across seven GCD datasets validate its superiority. Our codes are available at https://github.com/APORduo/RLCD.

Authors:Cristian-Ioan Blaga, Paul Suganthan, Sahil Dua, Krishna Srinivasan, Enrique Alfonseca, Peter Dornbach, Tom Duerig, Imed Zitouni, Zhe Dong
Title: Entity Image and Mixed-Modal Image Retrieval Datasets
Abstract:
Despite advances in multimodal learning, challenging benchmarks for mixed-modal image retrieval that combines visual and textual information are lacking. This paper introduces a novel benchmark to rigorously evaluate image retrieval that demands deep cross-modal contextual understanding. We present two new datasets: the Entity Image Dataset (EI), providing canonical images for Wikipedia entities, and the Mixed-Modal Image Retrieval Dataset (MMIR), derived from the WIT dataset. The MMIR benchmark features two challenging query types requiring models to ground textual descriptions in the context of provided visual entities: single entity-image queries (one entity image with descriptive text) and multi-entity-image queries (multiple entity images with relational text). We empirically validate the benchmark's utility as both a training corpus and an evaluation set for mixed-modal retrieval. The quality of both datasets is further affirmed through crowd-sourced human annotations. The datasets are accessible through the GitHub page: https://github.com/google-research-datasets/wit-retrieval.

Authors:Qinsi Wang, Jinghan Ke, Hancheng Ye, Yueqian Lin, Yuzhe Fu, Jianyi Zhang, Kurt Keutzer, Chenfeng Xu, Yiran Chen
Title: Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals
Abstract:
Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.

Authors:Qinsi Wang, Jinghan Ke, Hancheng Ye, Yueqian Lin, Yuzhe Fu, Jianyi Zhang, Kurt Keutzer, Chenfeng Xu, Yiran Chen
Title: Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals
Abstract:
Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.

Authors:Asha Ramanujam, Adam Elyoumi, Hao Chen, Sai Madhukiran Kompalli, Akshdeep Singh Ahluwalia, Shraman Pal, Dimitri J. Papageorgiou, Can Li
Title: SafeOR-Gym: A Benchmark Suite for Safe Reinforcement Learning Algorithms on Practical Operations Research Problems
Abstract:
Most existing safe reinforcement learning (RL) benchmarks focus on robotics and control tasks, offering limited relevance to high-stakes domains that involve structured constraints, mixed-integer decisions, and industrial complexity. This gap hinders the advancement and deployment of safe RL in critical areas such as energy systems, manufacturing, and supply chains. To address this limitation, we present SafeOR-Gym, a benchmark suite of nine operations research (OR) environments tailored for safe RL under complex constraints. Each environment captures a realistic planning, scheduling, or control problems characterized by cost-based constraint violations, planning horizons, and hybrid discrete-continuous action spaces. The suite integrates seamlessly with the Constrained Markov Decision Process (CMDP) interface provided by OmniSafe. We evaluate several state-of-the-art safe RL algorithms across these environments, revealing a wide range of performance: while some tasks are tractable, others expose fundamental limitations in current approaches. SafeOR-Gym provides a challenging and practical testbed that aims to catalyze future research in safe RL for real-world decision-making problems. The SafeOR-Gym framework and all accompanying code are available at: https://github.com/li-group/SafeOR-Gym.

Authors:Johannes Schusterbauer, Ming Gui, Frank Fundel, Björn Ommer
Title: Diff2Flow: Training Flow Matching Models via Diffusion Model Alignment
Abstract:
Diffusion models have revolutionized generative tasks through high-fidelity outputs, yet flow matching (FM) offers faster inference and empirical performance gains. However, current foundation FM models are computationally prohibitive for finetuning, while diffusion models like Stable Diffusion benefit from efficient architectures and ecosystem support. This work addresses the critical challenge of efficiently transferring knowledge from pre-trained diffusion models to flow matching. We propose Diff2Flow, a novel framework that systematically bridges diffusion and FM paradigms by rescaling timesteps, aligning interpolants, and deriving FM-compatible velocity fields from diffusion predictions. This alignment enables direct and efficient FM finetuning of diffusion priors with no extra computation overhead. Our experiments demonstrate that Diff2Flow outperforms naïve FM and diffusion finetuning particularly under parameter-efficient constraints, while achieving superior or competitive performance across diverse downstream tasks compared to state-of-the-art methods. We will release our code at https://github.com/CompVis/diff2flow.

Authors:Navid NaderiAlizadeh, Darian Salehi, Xinran Liu, Soheil Kolouri
Title: Constrained Sliced Wasserstein Embedding
Abstract:
Sliced Wasserstein (SW) distances offer an efficient method for comparing high-dimensional probability measures by projecting them onto multiple 1-dimensional probability distributions. However, identifying informative slicing directions has proven challenging, often necessitating a large number of slices to achieve desirable performance and thereby increasing computational complexity. We introduce a constrained learning approach to optimize the slicing directions for SW distances. Specifically, we constrain the 1D transport plans to approximate the optimal plan in the original space, ensuring meaningful slicing directions. By leveraging continuous relaxations of these transport plans, we enable a gradient-based primal-dual approach to train the slicer parameters, alongside the remaining model parameters. We demonstrate how this constrained slicing approach can be applied to pool high-dimensional embeddings into fixed-length permutation-invariant representations. Numerical results on foundation models trained on images, point clouds, and protein sequences showcase the efficacy of the proposed constrained learning approach in learning more informative slicing directions. Our implementation code can be found at https://github.com/Stranja572/constrainedswe.

Authors:Michael Li, Nishant Subramani
Title: Model Internal Sleuthing: Finding Lexical Identity and Inflectional Morphology in Modern Language Models
Abstract:
Large transformer-based language models dominate modern NLP, yet our understanding of how they encode linguistic information is rooted in studies of early models like BERT and GPT-2. To better understand today's language models, we investigate how 25 models - from classical architectures (BERT, DeBERTa, GPT-2) to modern large language models (Pythia, OLMo-2, Gemma-2, Qwen2.5, Llama-3.1) - represent lexical identity and inflectional morphology across six typologically diverse languages. Using linear and nonlinear classifiers trained on hidden activations, we predict word lemmas and inflectional features layer by layer. We find that models concentrate lexical information linearly in early layers and increasingly nonlinearly in later layers, while keeping inflectional information uniformly accessible and linearly separable throughout. Additional experiments probe the nature of these encodings: attention and residual analyses examine where within layers information can be recovered, steering vector experiments test what information can be functionally manipulated, and intrinsic dimensionality analyses explore how the representational structure evolves across layers. Remarkably, these encoding patterns emerge across all models we test, despite differences in architecture, size, and training regime (pretrained and instruction-tuned variants). This suggests that, even with substantial advances in LLM technologies, transformer models organize linguistic information in similar ways, indicating that these properties are important for next token prediction and are learned early during pretraining. Our code is available at https://github.com/ml5885/model_internal_sleuthing

Authors:Xuefeng Jiang, Tian Wen, Zhiqin Yang, Lvhua Wu, Yufeng Chen, Sheng Sun, Yuwei Wang, Min Liu
Title: Robust Federated Learning against Noisy Clients via Masked Optimization
Abstract:
In recent years, federated learning (FL) has made significant advance in privacy-sensitive applications. However, it can be hard to ensure that FL participants provide well-annotated data for training. The corresponding annotations from different clients often contain complex label noise at varying levels. This label noise issue has a substantial impact on the performance of the trained models, and clients with greater noise levels can be largely attributed for this degradation. To this end, it is necessary to develop an effective optimization strategy to alleviate the adverse effects of these noisy clients.In this study, we present a two-stage optimization framework, MaskedOptim, to address this intricate label noise problem. The first stage is designed to facilitate the detection of noisy clients with higher label noise rates. The second stage focuses on rectifying the labels of the noisy clients' data through an end-to-end label correction mechanism, aiming to mitigate the negative impacts caused by misinformation within datasets. This is achieved by learning the potential ground-truth labels of the noisy clients' datasets via backpropagation. To further enhance the training robustness, we apply the geometric median based model aggregation instead of the commonly-used vanilla averaged model aggregation. We implement sixteen related methods and conduct evaluations on three image datasets and one text dataset with diverse label noise patterns for a comprehensive comparison. Extensive experimental results indicate that our proposed framework shows its robustness in different scenarios. Additionally, our label correction framework effectively enhances the data quality of the detected noisy clients' local datasets. % Our codes will be open-sourced to facilitate related research communities. Our codes are available via https://github.com/Sprinter1999/MaskedOptim .

Authors:Mengliang He, Jiayi Zeng, Yankai Jiang, Wei Zhang, Zeming Liu, Xiaoming Shi, Aimin Zhou
Title: Flow2Code: Evaluating Large Language Models for Flowchart-based Code Generation Capability
Abstract:
While large language models (LLMs) show promise in code generation, existing benchmarks neglect the flowchart-based code generation. To promote further research on flowchart-based code generation, this work presents Flow2Code, a novel benchmark for flowchart-based code generation evaluation. The evaluation dataset spans 15 programming languages and includes 5,622 code segments paired with 16,866 flowcharts of three types: code, UML, and pseudocode. Extensive experiments with 13 multimodal LLMs reveal that current LLMs can not generate code based on flowcharts perfectly. Besides, experiment results show that the supervised fine-tuning technique contributes greatly to the models' performance. We publicly release our code and datasets at https://github.com/hml-github/Flow2Code.

Authors:Nikola Balic
Title: Will Agents Replace Us? Perceptions of Autonomous Multi-Agent AI
Abstract:
Autonomous multi-agent AI systems are poised to transform various industries, particularly software development and knowledge work. Understanding current perceptions among professionals is crucial for anticipating adoption challenges, ethical considerations, and future workforce development. This study analyzes responses from 130 participants to a survey on the capabilities, impact, and governance of AI agents. We explore expected timelines for AI replacing programmers, identify perceived barriers to deployment, and examine beliefs about responsibility when agents make critical decisions. Key findings reveal three distinct clusters of respondents. While the study explored factors associated with current AI agent deployment, the initial logistic regression model did not yield statistically significant predictors, suggesting that deployment decisions are complex and may be influenced by factors not fully captured or that a larger sample is needed. These insights highlight the need for organizations to address compliance concerns (a commonly cited barrier) and establish clear governance frameworks as they integrate autonomous agents into their workflows.

Authors:Xu Zhang, Haoye Qiu, Weixuan Liang, Hui Liu, Junhui Hou, Yuheng Jia
Title: Generalization Performance of Ensemble Clustering: From Theory to Algorithm
Abstract:
Ensemble clustering has demonstrated great success in practice; however, its theoretical foundations remain underexplored. This paper examines the generalization performance of ensemble clustering, focusing on generalization error, excess risk and consistency. We derive a convergence rate of generalization error bound and excess risk bound both of $\mathcal{O}(\sqrt{\frac{\log n}{m}}+\frac{1}{\sqrt{n}})$, with $n$ and $m$ being the numbers of samples and base clusterings. Based on this, we prove that when $m$ and $n$ approach infinity and $m$ is significantly larger than log $n$, i.e., $m,n\to \infty, m\gg \log n$, ensemble clustering is consistent. Furthermore, recognizing that $n$ and $m$ are finite in practice, the generalization error cannot be reduced to zero. Thus, by assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation. From this, we theoretically demonstrate that to achieve better clustering performance, we should minimize the deviation (bias) of base clustering from its expectation and maximize the differences (diversity) among various base clusterings. Additionally, we derive that maximizing diversity is nearly equivalent to a robust (min-max) optimization model. Finally, we instantiate our theory to develop a new ensemble clustering algorithm. Compared with SOTA methods, our approach achieves average improvements of 6.1%, 7.3%, and 6.0% on 10 datasets w.r.t. NMI, ARI, and Purity. The code is available at https://github.com/xuz2019/GPEC.

Authors:Shuo Yan, Yuliang Yan, Bin Ma, Chenao Li, Haochun Tang, Jiahua Lu, Minhua Lin, Yuyuan Feng, Hui Xiong, Enyan Dai
Title: Protap: A Benchmark for Protein Modeling on Realistic Downstream Applications
Abstract:
Recently, extensive deep learning architectures and pretraining strategies have been explored to support downstream protein applications. Additionally, domain-specific models incorporating biological knowledge have been developed to enhance performance in specialized tasks. In this work, we introduce $\textbf{Protap}$, a comprehensive benchmark that systematically compares backbone architectures, pretraining strategies, and domain-specific models across diverse and realistic downstream protein applications. Specifically, Protap covers five applications: three general tasks and two novel specialized tasks, i.e., enzyme-catalyzed protein cleavage site prediction and targeted protein degradation, which are industrially relevant yet missing from existing benchmarks. For each application, Protap compares various domain-specific models and general architectures under multiple pretraining settings. Our empirical studies imply that: (i) Though large-scale pretraining encoders achieve great results, they often underperform supervised encoders trained on small downstream training sets. (ii) Incorporating structural information during downstream fine-tuning can match or even outperform protein language models pretrained on large-scale sequence corpora. (iii) Domain-specific biological priors can enhance performance on specialized downstream tasks. Code and datasets are publicly available at https://github.com/Trust-App-AI-Lab/protap.

Authors:Qingyu Xiao, Yuanlin Chang, Youtian Du
Title: Decoupled Hierarchical Reinforcement Learning with State Abstraction for Discrete Grids
Abstract:
Effective agent exploration remains a core challenge in reinforcement learning (RL) for complex discrete state-space environments, particularly under partial observability. This paper presents a decoupled hierarchical RL framework integrating state abstraction (DcHRL-SA) to address this issue. The proposed method employs a dual-level architecture, consisting of a high level RL-based actor and a low-level rule-based policy, to promote effective exploration. Additionally, state abstraction method is incorporated to cluster discrete states, effectively lowering state dimensionality. Experiments conducted in two discrete customized grid environments demonstrate that the proposed approach consistently outperforms PPO in terms of exploration efficiency, convergence speed, cumulative reward, and policy stability. These results demonstrate a practical approach for integrating decoupled hierarchical policies and state abstraction in discrete grids with large-scale exploration space. Code will be available at https://github.com/XQY169/DcHRL-SA.

Authors:Beichen Huang, Ran Cheng, Kay Chen Tan
Title: EvoGit: Decentralized Code Evolution via Git-Based Multi-Agent Collaboration
Abstract:
We introduce EvoGit, a decentralized multi-agent framework for collaborative software development driven by autonomous code evolution. EvoGit deploys a population of independent coding agents, each proposing edits to a shared codebase without centralized coordination, explicit message passing, or shared memory. Instead, all coordination emerges through a Git-based phylogenetic graph that tracks the full version lineage and enables agents to asynchronously read from and write to the evolving code repository. This graph-based structure supports fine-grained branching, implicit concurrency, and scalable agent interaction while preserving a consistent historical record. Human involvement is minimal but strategic: users define high-level goals, periodically review the graph, and provide lightweight feedback to promote promising directions or prune unproductive ones. Experiments demonstrate EvoGit's ability to autonomously produce functional and modular software artifacts across two real-world tasks: (1) building a web application from scratch using modern frameworks, and (2) constructing a meta-level system that evolves its own language-model-guided solver for the bin-packing optimization problem. Our results underscore EvoGit's potential to establish a new paradigm for decentralized, automated, and continual software development. EvoGit is open-sourced at https://github.com/BillHuang2001/evogit.

Authors:Xinxu Wei, Kanhao Zhao, Yong Jiao, Lifang He, Yu Zhang
Title: A Brain Graph Foundation Model: Pre-Training and Prompt-Tuning for Any Atlas and Disorder
Abstract:
As large language models (LLMs) continue to revolutionize AI research, there is a growing interest in building large-scale brain foundation models to advance neuroscience. While most existing brain foundation models are pre-trained on time-series signals or connectome features, we propose a novel graph-based pre-training paradigm for constructing a brain graph foundation model. In this paper, we introduce the Brain Graph Foundation Model, termed BrainGFM, a unified framework that leverages graph contrastive learning and graph masked autoencoders for large-scale fMRI-based pre-training. BrainGFM is pre-trained on a diverse mixture of brain atlases with varying parcellations, significantly expanding the pre-training corpus and enhancing the model's ability to generalize across heterogeneous fMRI-derived brain representations. To support efficient and versatile downstream transfer, we integrate both graph prompts and language prompts into the model design, enabling BrainGFM to flexibly adapt to a wide range of atlases, neurological and psychiatric disorders, and task settings. Furthermore, we employ meta-learning to optimize the graph prompts, facilitating strong generalization to previously unseen disorders under both few-shot and zero-shot learning conditions via language-guided prompting. BrainGFM is pre-trained on 27 neuroimaging datasets spanning 25 common neurological and psychiatric disorders, encompassing 2 types of brain atlases (functional and anatomical) across 8 widely-used parcellations, and covering over 25,000 subjects, 60,000 fMRI scans, and a total of 400,000 graph samples aggregated across all atlases and parcellations. The code is available at: https://github.com/weixinxu666/BrainGFM

Authors:Aditya Kanade, Tanuja Ganu
Title: Do You See Me : A Multidimensional Benchmark for Evaluating Visual Perception in Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) show reasoning promise, yet their visual perception is a critical bottleneck. Strikingly, MLLMs can produce correct answers even while misinterpreting crucial visual elements, masking these underlying failures. Our preliminary study on a joint perception-reasoning dataset revealed that for one leading MLLM, 29% of its correct answers to reasoning questions still exhibited visual perception errors. To systematically address this, we introduce "Do You See Me", a scalable benchmark with 1,758 images and 2,612 questions. It spans seven human-psychology inspired subtasks in 2D and 3D, featuring controllable complexity to rigorously evaluate MLLM visual skills. Our findings on 3 leading closed-source and 5 major open-source models reveal a stark deficit: humans achieve 96.49% accuracy, while top MLLMs average below 50%. This performance gap widens rapidly with increased task complexity (e.g., from 12% to 45% in the visual form constancy subtask). Further analysis into the root causes suggests that failures stem from challenges like misallocated visual attention and the instability of internal representations for fine-grained details, especially at or below encoder patch resolution. This underscores an urgent need for MLLMs with truly robust visual perception. The benchmark dataset, source code and evaluation scripts are available at https://github.com/microsoft/Do-You-See-Me.

Authors:Youze Xue, Dian Li, Gang Liu
Title: Improve Multi-Modal Embedding Learning via Explicit Hard Negative Gradient Amplifying
Abstract:
With the rapid advancement of multi-modal large language models (MLLMs) in recent years, the foundational Contrastive Language-Image Pretraining (CLIP) framework has been successfully extended to MLLMs, enabling more powerful and universal multi-modal embeddings for a wide range of retrieval tasks. Despite these developments, the core contrastive learning paradigm remains largely unchanged from CLIP-style models to MLLMs. Within this framework, the effective mining of hard negative samples continues to be a critical factor for enhancing performance. Prior works have introduced both offline and online strategies for hard negative mining to improve the efficiency of contrastive learning. While these approaches have led to improved multi-modal embeddings, the specific contribution of each hard negative sample to the learning process has not been thoroughly investigated. In this work, we conduct a detailed analysis of the gradients of the info-NCE loss with respect to the query, positive, and negative samples, elucidating the role of hard negatives in updating model parameters. Building upon this analysis, we propose to explicitly amplify the gradients associated with hard negative samples, thereby encouraging the model to learn more discriminative embeddings. Our multi-modal embedding model, trained with the proposed Explicit Gradient Amplifier and based on the LLaVA-OneVision-7B architecture, achieves state-of-the-art performance on the MMEB benchmark compared to previous methods utilizing the same MLLM backbone. Furthermore, when integrated with our self-developed MLLM, QQMM, our approach attains the top rank on the MMEB leaderboard. Code and models are released on https://github.com/QQ-MM/QQMM-embed.

Authors:E Fan, Kang Hu, Zhuowen Wu, Jiangyang Ge, Jiawei Miao, Yuzhi Zhang, He Sun, Weizong Wang, Tianhan Zhang
Title: ChatCFD: An LLM-Driven Agent for End-to-End CFD Automation with Domain-Specific Structured Reasoning
Abstract:
Computational Fluid Dynamics (CFD) is essential for advancing scientific and engineering fields but is hindered by operational complexity, high expertise requirements, and limited accessibility. This paper introduces ChatCFD, an automated agent system for OpenFOAM simulations that processes multi-modal inputs (e.g., research papers, meshes) via an interactive interface, leveraging DeepSeek-R1 and DeepSeek-V3 large language models, a multi-agent architecture, and OpenFOAM knowledge. Its four-stage pipeline (Knowledge Base Construction, User Input Processing, Case File Generation, and Execution and Error Reflection) enables iterative trial-reflection-refinement for intricate setups, supporting diverse physical models and external meshes. Validation on 205 benchmark tutorial cases, 110 perturbed variants, and 2 literature-derived cases shows ChatCFD's 82.1 percent operational success rate on basic cases, outperforming MetaOpenFOAM (6.2 percent) and Foam-Agent (42.3 percent), and 60-80 percent on literature-derived complex cases. Turbulence model studies show a 40 percent success rate for common models versus 10 percent for rare ones like RNG k-epsilon. Physics coupling analyses reveal higher resource demands for multi-physics-coupled cases, while LLM bias toward simpler setups introduces persistent errors, such as dimensional inconsistency. Ablation studies highlight the efficacy of RAG-based modules and reflection mechanisms. By automating hypothesis testing and parameter exploration, ChatCFD accelerates scientific discovery in fluid mechanics and engineering, addressing LLM limitations through structured design and showing strong potential as a modular component in MCP-based agent networks for collaborative multi-agent systems, paving the way for scalable AI-driven CFD innovation. The code for ChatCFD is available at https://github.com/ConMoo/ChatCFD.

Authors:Christopher Lee Lübbers
Title: Enhancing Paraphrase Type Generation: The Impact of DPO and RLHF Evaluated with Human-Ranked Data
Abstract:
Paraphrasing re-expresses meaning to enhance applications like text simplification, machine translation, and question-answering. Specific paraphrase types facilitate accurate semantic analysis and robust language models. However, existing paraphrase-type generation methods often misalign with human preferences due to reliance on automated metrics and limited human-annotated training data, obscuring crucial aspects of semantic fidelity and linguistic transformations. This study addresses this gap by leveraging a human-ranked paraphrase-type dataset and integrating Direct Preference Optimization (DPO) to align model outputs directly with human judgments. DPO-based training increases paraphrase-type generation accuracy by 3 percentage points over a supervised baseline and raises human preference ratings by 7 percentage points. A newly created human-annotated dataset supports more rigorous future evaluations. Additionally, a paraphrase-type detection model achieves F1 scores of 0.91 for addition/deletion, 0.78 for same polarity substitution, and 0.70 for punctuation changes. These findings demonstrate that preference data and DPO training produce more reliable, semantically accurate paraphrases, enabling downstream applications such as improved summarization and more robust question-answering. The PTD model surpasses automated metrics and provides a more reliable framework for evaluating paraphrase quality, advancing paraphrase-type research toward richer, user-aligned language generation and establishing a stronger foundation for future evaluations grounded in human-centric criteria.

Authors:Xiao-Yang Liu Yanglet, Yupeng Cao, Li Deng
Title: Multimodal Financial Foundation Models (MFFMs): Progress, Prospects, and Challenges
Abstract:
Financial Large Language Models (FinLLMs), such as open FinGPT and proprietary BloombergGPT, have demonstrated great potential in select areas of financial services. Beyond this earlier language-centric approach, Multimodal Financial Foundation Models (MFFMs) can digest interleaved multimodal financial data, including fundamental data, market data, data analytics, macroeconomic, and alternative data (e.g., natural language, audio, images, and video). In this position paper, presented at the MFFM Workshop joined with ACM International Conference on AI in Finance (ICAIF) 2024, we describe the progress, prospects, and challenges of MFFMs. This paper also highlights ongoing research on FinAgents in the \textbf{SecureFinAI Lab}\footnote{\https://openfin.engineering.columbia.edu/} at Columbia University. We believe that MFFMs will enable a deeper understanding of the underlying complexity associated with numerous financial tasks and data, streamlining the operation of financial services and investment processes. Github Repo https://github.com/Open-Finance-Lab/Awesome-MFFMs/.

Authors:Pengcuo Dege, Qiuming Luo, Rui Mao, Chang Kong
Title: FlashMLA-ETAP: Efficient Transpose Attention Pipeline for Accelerating MLA Inference on NVIDIA H20 GPUs
Abstract:
Efficient inference of Multi-Head Latent Attention (MLA) is challenged by deploying the DeepSeek-R1 671B model on a single Multi-GPU server. This paper introduces FlashMLA-ETAP, a novel framework that enhances MLA inference for the single-instance deployment scenario on NVIDIA H20 GPUs. We propose the Efficient Transpose Attention Pipeline (ETAP), which reconfigures attention computation through transposition to align the KV context length with the \(M\)-dimension in WGMMA operations, significantly reducing redundant computations. FlashMLA-ETAP achieves a 2.78x speedup over FlashMLA at 64K sequence length (batch size 16), with 5.24x and 4.94x improvements over FlashAttention-3 and FlashInfer, respectively, while maintaining numerical stability with a 15.2x lower RMSE (\(1.25 \times 10^{-5}\)) than FlashAttention-3. Furthermore, ETAP's design enables seamless integration into frameworks like FlashAttention-3 and FlashInfer, supported by a detailed theoretical analysis. Our work addresses a critical gap in resource-constrained inference, offering a scalable solution for mid-tier GPUs and paving the way for broader adoption in hardware-aware optimization. Code is available at https://github.com/pengcuo/FlashMLA-ETAP.

Authors:Jennifer Chen, Aidar Myrzakhan, Yaxin Luo, Hassaan Muhammad Khan, Sondos Mahmoud Bsharat, Zhiqiang Shen
Title: DRAG: Distilling RAG for SLMs from LLMs to Transfer Knowledge and Mitigate Hallucination via Evidence and Graph-based Distillation
Abstract:
Retrieval-Augmented Generation (RAG) methods have proven highly effective for tasks requiring factual consistency and robust knowledge retrieval. However, large-scale RAG systems consume significant computational resources and are prone to generating hallucinated content from Humans. In this work, we introduce $\texttt{DRAG}$, a novel framework for distilling RAG knowledge from large-scale Language Models (LLMs) into small LMs (SLMs). Our approach leverages evidence- and knowledge graph-based distillation, ensuring that the distilled model retains critical factual knowledge while significantly reducing model size and computational cost. By aligning the smaller model's predictions with a structured knowledge graph and ranked evidence, $\texttt{DRAG}$ effectively mitigates hallucinations and improves factual accuracy. We further present a case demonstrating how our framework mitigates user privacy risks and introduce a corresponding benchmark. Experimental evaluations on multiple benchmarks demonstrate that our method outperforms the prior competitive RAG methods like MiniRAG for SLMs by up to 27.7% using the same models, preserving high-level efficiency and reliability. With $\texttt{DRAG}$, we provide a practical and resource-efficient roadmap to deploying enhanced retrieval and generation capabilities in small-sized LLMs.

Authors:Jiajun Jiang, Yiming Zhu, Zirui Wu, Jie Song
Title: DualMap: Online Open-Vocabulary Semantic Mapping for Natural Language Navigation in Dynamic Changing Scenes
Abstract:
We introduce DualMap, an online open-vocabulary mapping system that enables robots to understand and navigate dynamically changing environments through natural language queries. Designed for efficient semantic mapping and adaptability to changing environments, DualMap meets the essential requirements for real-world robot navigation applications. Our proposed hybrid segmentation frontend and object-level status check eliminate the costly 3D object merging required by prior methods, enabling efficient online scene mapping. The dual-map representation combines a global abstract map for high-level candidate selection with a local concrete map for precise goal-reaching, effectively managing and updating dynamic changes in the environment. Through extensive experiments in both simulation and real-world scenarios, we demonstrate state-of-the-art performance in 3D open-vocabulary segmentation, efficient scene mapping, and online language-guided navigation.Project page: https://eku127.github.io/DualMap/

Authors:Fei Shen, Xiaoyu Du, Yutong Gao, Jian Yu, Yushe Cao, Xing Lei, Jinhui Tang
Title: IMAGHarmony: Controllable Image Editing with Consistent Object Quantity and Layout
Abstract:
Recent diffusion models have advanced image editing by enhancing visual quality and control, supporting broad applications across creative and personalized domains. However, current image editing largely overlooks multi-object scenarios, where precise control over object categories, counts, and spatial layouts remains a significant challenge. To address this, we introduce a new task, quantity-and-layout consistent image editing (QL-Edit), which aims to enable fine-grained control of object quantity and spatial structure in complex scenes. We further propose IMAGHarmony, a structure-aware framework that incorporates harmony-aware attention (HA) to integrate multimodal semantics, explicitly modeling object counts and layouts to enhance editing accuracy and structural consistency. In addition, we observe that diffusion models are susceptible to initial noise and exhibit strong preferences for specific noise patterns. Motivated by this, we present a preference-guided noise selection (PNS) strategy that chooses semantically aligned initial noise samples based on vision-language matching, thereby improving generation stability and layout consistency in multi-object editing. To support evaluation, we construct HarmonyBench, a comprehensive benchmark covering diverse quantity and layout control scenarios. Extensive experiments demonstrate that IMAGHarmony consistently outperforms state-of-the-art methods in structural alignment and semantic accuracy. The code and model are available at https://github.com/muzishen/IMAGHarmony.

Authors:Fei Shen, Yutong Gao, Jian Yu, Xiaoyu Du, Jinhui Tang
Title: IMAGHarmony: Controllable Image Editing with Consistent Object Quantity and Layout
Abstract:
Recent diffusion models have advanced image editing by improving fidelity and controllability across creative and personalized applications. However, multi-object scenes remain challenging, as reliable control over object categories, counts, and spatial layout is difficult to achieve. For that, we first study quantity and layout consistent image editing, abbreviated as QL-Edit, which targets control of object quantity and spatial layout in multi-object scenes. Then, we present IMAGHarmony, a straightforward framework featuring a plug-and-play harmony aware (HA) module that fuses perception semantics while modeling object counts and locations, resulting in accurate edits and strong structural consistency. We further observe that diffusion models are sensitive to the choice of initial noise and tend to prefer certain noise patterns. Based on this finding, we present a preference-guided noise selection (PNS) strategy that selects semantically aligned initial noise through vision and language matching, thereby further improving generation stability and layout consistency in multiple object editing. To support evaluation, we develop HarmonyBench, a comprehensive benchmark that covers a diverse range of quantity and layout control scenarios. Extensive experiments demonstrate that IMAGHarmony outperforms prior methods in both structural alignment and semantic accuracy, utilizing only 200 training images and 10.6M of trainable parameters. Code, models, and data are available at https://github.com/muzishen/IMAGHarmony.

Authors:Xiao Fu, Xintao Wang, Xian Liu, Jianhong Bai, Runsen Xu, Pengfei Wan, Di Zhang, Dahua Lin
Title: Learning Video Generation for Robotic Manipulation with Collaborative Trajectory Control
Abstract:
Recent advances in video diffusion models have demonstrated strong potential for generating robotic decision-making data, with trajectory conditions further enabling fine-grained control. However, existing trajectory-based methods primarily focus on individual object motion and struggle to capture multi-object interaction crucial in complex robotic manipulation. This limitation arises from multi-feature entanglement in overlapping regions, which leads to degraded visual fidelity. To address this, we present RoboMaster, a novel framework that models inter-object dynamics through a collaborative trajectory formulation. Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction. Each stage is modeled using the feature of the dominant object, specifically the robotic arm in the pre- and post-interaction phases and the manipulated object during interaction, thereby mitigating the drawback of multi-object feature fusion present during interaction in prior work. To further ensure subject semantic consistency throughout the video, we incorporate appearance- and shape-aware latent representations for objects. Extensive experiments on the challenging Bridge V2 dataset, as well as in-the-wild evaluation, demonstrate that our method outperforms existing approaches, establishing new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation.

Authors:Salwa K. Al Khatib, Ahmed ElHagry, Shitong Shao, Zhiqiang Shen
Title: OD3: Optimization-free Dataset Distillation for Object Detection
Abstract:
Training large neural networks on large-scale datasets requires substantial computational resources, particularly for dense prediction tasks such as object detection. Although dataset distillation (DD) has been proposed to alleviate these demands by synthesizing compact datasets from larger ones, most existing work focuses solely on image classification, leaving the more complex detection setting largely unexplored. In this paper, we introduce OD3, a novel optimization-free data distillation framework specifically designed for object detection. Our approach involves two stages: first, a candidate selection process in which object instances are iteratively placed in synthesized images based on their suitable locations, and second, a candidate screening process using a pre-trained observer model to remove low-confidence objects. We perform our data synthesis framework on MS COCO and PASCAL VOC, two popular detection datasets, with compression ratios ranging from 0.25% to 5%. Compared to the prior solely existing dataset distillation method on detection and conventional core set selection methods, OD3 delivers superior accuracy, establishes new state-of-the-art results, surpassing prior best method by more than 14% on COCO mAP50 at a compression ratio of 1.0%. Code and condensed datasets are available at: https://github.com/VILA-Lab/OD3.

Authors:Chi-Jane Chen, Yuhang Chen, Sukwon Yun, Natalie Stanley, Tianlong Chen
Title: Spatial Coordinates as a Cell Language: A Multi-Sentence Framework for Imaging Mass Cytometry Analysis
Abstract:
Image mass cytometry (IMC) enables high-dimensional spatial profiling by combining mass cytometry's analytical power with spatial distributions of cell phenotypes. Recent studies leverage large language models (LLMs) to extract cell states by translating gene or protein expression into biological context. However, existing single-cell LLMs face two major challenges: (1) Integration of spatial information: they struggle to generalize spatial coordinates and effectively encode spatial context as text, and (2) Treating each cell independently: they overlook cell-cell interactions, limiting their ability to capture biological relationships. To address these limitations, we propose Spatial2Sentence, a novel framework that integrates single-cell expression and spatial information into natural language using a multi-sentence approach. Spatial2Sentence constructs expression similarity and distance matrices, pairing spatially adjacent and expressionally similar cells as positive pairs while using distant and dissimilar cells as negatives. These multi-sentence representations enable LLMs to learn cellular interactions in both expression and spatial contexts. Equipped with multi-task learning, Spatial2Sentence outperforms existing single-cell LLMs on preprocessed IMC datasets, improving cell-type classification by 5.98% and clinical status prediction by 4.18% on the diabetes dataset while enhancing interpretability. The source code can be found here: https://github.com/UNITES-Lab/Spatial2Sentence.

Authors:Krishna Acharya, Aleksandr V. Petrov, Juba Ziani
Title: GLoSS: Generative Language Models with Semantic Search for Sequential Recommendation
Abstract:
We propose Generative Low-rank language model with Semantic Search (GLoSS), a generative recommendation framework that combines large language models with dense retrieval for sequential recommendation. Unlike prior methods such as GPT4Rec, which rely on lexical matching via BM25, GLoSS uses semantic search to retrieve relevant items beyond lexical matching. For query generation, we employ 4-bit quantized LlaMA-3 models fine-tuned with low-rank adaptation (LoRA), enabling efficient training and inference on modest hardware. We evaluate GLoSS on three real-world Amazon review datasets: Beauty, Toys, and Sports, and find that it achieves state-of-the-art performance. Compared to traditional ID-based baselines, GLoSS improves Recall@5 by 33.3%, 52.8%, and 15.2%, and NDCG@5 by 30.0%, 42.6%, and 16.1%, respectively. It also outperforms LLM-based recommenders such as P5, GPT4Rec, LlamaRec and E4SRec with Recall@5 gains of 4.3%, 22.8%, and 29.5%. Additionally, user segment evaluations show that GLoSS performs particularly well for cold-start users in the Amazon Toys and Sports datasets, and benefits from longer user histories in Amazon Beauty dataset, demonstrating robustness across different levels of interaction lengths.

Authors:Hongyu Li, Songhao Han, Yue Liao, Junfeng Luo, Jialin Gao, Shuicheng Yan, Si Liu
Title: Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency
Abstract:
Understanding real-world videos with complex semantics and long temporal dependencies remains a fundamental challenge in computer vision. Recent progress in multimodal large language models (MLLMs) has demonstrated strong capabilities in vision-language tasks, while reinforcement learning tuning (RLT) has further improved their reasoning abilities. In this work, we explore RLT as a post-training strategy to enhance the video-specific reasoning capabilities of MLLMs. Built upon the Group Relative Policy Optimization (GRPO) framework, we propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals. To facilitate effective preference-based optimization, we introduce a variance-aware data selection strategy based on repeated inference to identify samples that provide informative learning signals. We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA. Our method consistently outperforms supervised fine-tuning and existing RLT baselines, achieving superior performance with significantly less training data. These results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs. Notably, The initial code release (two months ago) has now been expanded with updates, including optimized reward mechanisms and additional datasets. The latest version is available at https://github.com/appletea233/Temporal-R1 .

Authors:Junliang Ye, Zhengyi Wang, Ruowen Zhao, Shenghao Xie, Jun Zhu
Title: ShapeLLM-Omni: A Native Multimodal LLM for 3D Generation and Understanding
Abstract:
Recently, the powerful text-to-image capabilities of ChatGPT-4o have led to growing appreciation for native multimodal large language models. However, its multimodal capabilities remain confined to images and text. Yet beyond images, the ability to understand and generate 3D content is equally crucial. To address this gap, we propose ShapeLLM-Omni-a native 3D large language model capable of understanding and generating 3D assets and text in any sequence. First, we train a 3D vector-quantized variational autoencoder (VQVAE), which maps 3D objects into a discrete latent space to achieve efficient and accurate shape representation and reconstruction. Building upon the 3D-aware discrete tokens, we innovatively construct a large-scale continuous training dataset named 3D-Alpaca, encompassing generation, comprehension, and editing, thus providing rich resources for future research and training. Finally, by performing instruction-based training of the Qwen-2.5-vl-7B-Instruct model on the 3D-Alpaca dataset. Our work provides an effective attempt at extending multimodal models with basic 3D capabilities, which contributes to future research in 3D-native AI. Project page: https://github.com/JAMESYJL/ShapeLLM-Omni

Authors:Kwanghee Choi, Masao Someki, Emma Strubell, Shinji Watanabe
Title: On-device Streaming Discrete Speech Units
Abstract:
Discrete speech units (DSUs) are derived from clustering the features of self-supervised speech models (S3Ms). DSUs offer significant advantages for on-device streaming speech applications due to their rich phonetic information, high transmission efficiency, and seamless integration with large language models. However, conventional DSU-based approaches are impractical as they require full-length speech input and computationally expensive S3Ms. In this work, we reduce both the attention window and the model size while preserving the effectiveness of DSUs. Our results demonstrate that we can reduce floating-point operations (FLOPs) by 50% with only a relative increase of 6.5% in character error rate (CER) on the ML-SUPERB 1h dataset. These findings highlight the potential of DSUs for real-time speech processing in resource-constrained environments.

Authors:Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, Simon Alibert, Matthieu Cord, Thomas Wolf, Remi Cadene
Title: SmolVLA: A Vision-Language-Action Model for Affordable and Efficient Robotics
Abstract:
Vision-language models (VLMs) pretrained on large-scale multimodal datasets encode rich visual and linguistic knowledge, making them a strong foundation for robotics. Rather than training robotic policies from scratch, recent approaches adapt VLMs into vision-language-action (VLA) models that enable natural language-driven perception and control. However, existing VLAs are typically massive--often with billions of parameters--leading to high training costs and limited real-world deployability. Moreover, they rely on academic and industrial datasets, overlooking the growing availability of community-collected data from affordable robotic platforms. In this work, we present SmolVLA, a small, efficient, and community-driven VLA that drastically reduces both training and inference costs, while retaining competitive performance. SmolVLA is designed to be trained on a single GPU and deployed on consumer-grade GPUs or even CPUs. To further improve responsiveness, we introduce an asynchronous inference stack decoupling perception and action prediction from action execution, allowing higher control rates with chunked action generation. Despite its compact size, SmolVLA achieves performance comparable to VLAs that are 10x larger. We evaluate SmolVLA on a range of both simulated as well as real-world robotic benchmarks and release all code, pretrained models, and training data.

Authors:Zhao Yang, Jiwei Zhu, Bing Su
Title: SPACE: Your Genomic Profile Predictor is a Powerful DNA Foundation Model
Abstract:
Inspired by the success of unsupervised pre-training paradigms, researchers have applied these approaches to DNA pre-training. However, we argue that these approaches alone yield suboptimal results because pure DNA sequences lack sufficient information, since their functions are regulated by genomic profiles like chromatin accessibility. Here, we demonstrate that supervised training for genomic profile prediction serves as a more effective alternative to pure sequence pre-training. Furthermore, considering the multi-species and multi-profile nature of genomic profile prediction, we introduce our $\textbf{S}$pecies-$\textbf{P}$rofile $\textbf{A}$daptive $\textbf{C}$ollaborative $\textbf{E}$xperts (SPACE) that leverages Mixture of Experts (MoE) to better capture the relationships between DNA sequences across different species and genomic profiles, thereby learning more effective DNA representations. Through extensive experiments across various tasks, our model achieves state-of-the-art performance, establishing that DNA models trained with supervised genomic profiles serve as powerful DNA representation learners. The code is available at https://github.com/ZhuJiwei111/SPACE.

Authors:Sicheng Li, Chengzhen Wu, Hao Li, Xiang Gao, Yiyi Liao, Lu Yu
Title: GSCodec Studio: A Modular Framework for Gaussian Splat Compression
Abstract:
3D Gaussian Splatting and its extension to 4D dynamic scenes enable photorealistic, real-time rendering from real-world captures, positioning Gaussian Splats (GS) as a promising format for next-generation immersive media. However, their high storage requirements pose significant challenges for practical use in sharing, transmission, and storage. Despite various studies exploring GS compression from different perspectives, these efforts remain scattered across separate repositories, complicating benchmarking and the integration of best practices. To address this gap, we present GSCodec Studio, a unified and modular framework for GS reconstruction, compression, and rendering. The framework incorporates a diverse set of 3D/4D GS reconstruction methods and GS compression techniques as modular components, facilitating flexible combinations and comprehensive comparisons. By integrating best practices from community research and our own explorations, GSCodec Studio supports the development of compact representation and compression solutions for static and dynamic Gaussian Splats, namely our Static and Dynamic GSCodec, achieving competitive rate-distortion performance in static and dynamic GS compression. The code for our framework is publicly available at https://github.com/JasonLSC/GSCodec_Studio , to advance the research on Gaussian Splats compression.

Authors:Manuel-Andreas Schneider, Lukas Höllein, Matthias Nießner
Title: WorldExplorer: Towards Generating Fully Navigable 3D Scenes
Abstract:
Generating 3D worlds from text is a highly anticipated goal in computer vision. Existing works are limited by the degree of exploration they allow inside of a scene, i.e., produce streched-out and noisy artifacts when moving beyond central or panoramic perspectives. To this end, we propose WorldExplorer, a novel method based on autoregressive video trajectory generation, which builds fully navigable 3D scenes with consistent visual quality across a wide range of viewpoints. We initialize our scenes by creating multi-view consistent images corresponding to a 360 degree panorama. Then, we expand it by leveraging video diffusion models in an iterative scene generation pipeline. Concretely, we generate multiple videos along short, pre-defined trajectories, that explore the scene in depth, including motion around objects. Our novel scene memory conditions each video on the most relevant prior views, while a collision-detection mechanism prevents degenerate results, like moving into objects. Finally, we fuse all generated views into a unified 3D representation via 3D Gaussian Splatting optimization. Compared to prior approaches, WorldExplorer produces high-quality scenes that remain stable under large camera motion, enabling for the first time realistic and unrestricted exploration. We believe this marks a significant step toward generating immersive and truly explorable virtual 3D environments.

Authors:Yijin Guo, Kaiyuan Ji, Xiaorong Zhu, Junying Wang, Farong Wen, Chunyi Li, Zicheng Zhang, Guangtao Zhai
Title: Human-Centric Evaluation for Foundation Models
Abstract:
Currently, nearly all evaluations of foundation models focus on objective metrics, emphasizing quiz performance to define model capabilities. While this model-centric approach enables rapid performance assessment, it fails to reflect authentic human experiences. To address this gap, we propose a Human-Centric subjective Evaluation (HCE) framework, focusing on three core dimensions: problem-solving ability, information quality, and interaction experience. Through experiments involving Deepseek R1, OpenAI o3 mini, Grok 3, and Gemini 2.5, we conduct over 540 participant-driven evaluations, where humans and models collaborate on open-ended research tasks, yielding a comprehensive subjective dataset. This dataset captures diverse user feedback across multiple disciplines, revealing distinct model strengths and adaptability. Our findings highlight Grok 3's superior performance, followed by Deepseek R1 and Gemini 2.5, with OpenAI o3 mini lagging behind. By offering a novel framework and a rich dataset, this study not only enhances subjective evaluation methodologies but also lays the foundation for standardized, automated assessments, advancing LLM development for research and practical scenarios. Our dataset link is https://github.com/yijinguo/Human-Centric-Evaluation.

Authors:Zachary Coalson, Juhan Bae, Nicholas Carlini, Sanghyun Hong
Title: IF-GUIDE: Influence Function-Guided Detoxification of LLMs
Abstract:
We study how training data contributes to the emergence of toxic behaviors in large-language models. Most prior work on reducing model toxicity adopts $reactive$ approaches, such as fine-tuning pre-trained (and potentially toxic) models to align them with human values. In contrast, we propose a $proactive$ approach$-$IF-Guide$-$which leverages influence functions to identify harmful tokens within any training data and suppress their impact during training. To this end, we first show that standard influence functions are ineffective at discovering harmful training records. We then present a novel adaptation that measures token-level attributions from training data to model toxicity, along with techniques for selecting toxic training documents and a learning objective that can be integrated into both pre-training and fine-tuning. Moreover, IF-Guide does not rely on human-preference data, which is typically required by existing alignment methods. In evaluation, we demonstrate that IF-Guide substantially reduces both explicit and implicit toxicity$-$by up to 10$\times$ compared to uncensored models, and up to 3$\times$ compared to baseline alignment methods, e.g., DPO and RAD$-$across both pre-training and fine-tuning scenarios. IF-Guide is computationally efficient: a billion-parameter model is $not$ $necessary$ for computing influence scores; a million-parameter model$-$with 7.5$\times$ fewer parameters$-$can effectively serve as a proxy for identifying harmful data. Our code is publicly available at: https://github.com/ztcoalson/IF-Guide

Authors:Genta Indra Winata, David Anugraha, Emmy Liu, Alham Fikri Aji, Shou-Yi Hung, Aditya Parashar, Patrick Amadeus Irawan, Ruochen Zhang, Zheng-Xin Yong, Jan Christian Blaise Cruz, Niklas Muennighoff, Seungone Kim, Hanyang Zhao, Sudipta Kar, Kezia Erina Suryoraharjo, M. Farid Adilazuarda, En-Shiun Annie Lee, Ayu Purwarianti, Derry Tanti Wijaya, Monojit Choudhury
Title: Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability
Abstract:
High-quality datasets are fundamental to training and evaluating machine learning models, yet their creation-especially with accurate human annotations-remains a significant challenge. Many dataset paper submissions lack originality, diversity, or rigorous quality control, and these shortcomings are often overlooked during peer review. Submissions also frequently omit essential details about dataset construction and properties. While existing tools such as datasheets aim to promote transparency, they are largely descriptive and do not provide standardized, measurable methods for evaluating data quality. Similarly, metadata requirements at conferences promote accountability but are inconsistently enforced. To address these limitations, this position paper advocates for the integration of systematic, rubric-based evaluation metrics into the dataset review process-particularly as submission volumes continue to grow. We also explore scalable, cost-effective methods for synthetic data generation, including dedicated tools and LLM-as-a-judge approaches, to support more efficient evaluation. As a call to action, we introduce DataRubrics, a structured framework for assessing the quality of both human- and model-generated datasets. Leveraging recent advances in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and actionable solution for dataset quality assessment, enabling both authors and reviewers to uphold higher standards in data-centric research. We also release code to support reproducibility of LLM-based evaluations at https://github.com/datarubrics/datarubrics.

Authors:Yafei Yang, Zihui Zhang, Bo Yang
Title: unMORE: Unsupervised Multi-Object Segmentation via Center-Boundary Reasoning
Abstract:
We study the challenging problem of unsupervised multi-object segmentation on single images. Existing methods, which rely on image reconstruction objectives to learn objectness or leverage pretrained image features to group similar pixels, often succeed only in segmenting simple synthetic objects or discovering a limited number of real-world objects. In this paper, we introduce unMORE, a novel two-stage pipeline designed to identify many complex objects in real-world images. The key to our approach involves explicitly learning three levels of carefully defined object-centric representations in the first stage. Subsequently, our multi-object reasoning module utilizes these learned object priors to discover multiple objects in the second stage. Notably, this reasoning module is entirely network-free and does not require human labels. Extensive experiments demonstrate that unMORE significantly outperforms all existing unsupervised methods across 6 real-world benchmark datasets, including the challenging COCO dataset, achieving state-of-the-art object segmentation results. Remarkably, our method excels in crowded images where all baselines collapse.

Authors:Zeming Wei, Chengcan Wu, Meng Sun
Title: ReGA: Representation-Guided Abstraction for Model-based Safeguarding of LLMs
Abstract:
Large Language Models (LLMs) have achieved significant success in various tasks, yet concerns about their safety and security have emerged. In particular, they pose risks in generating harmful content and vulnerability to jailbreaking attacks. To analyze and monitor machine learning models, model-based analysis has demonstrated notable potential in stateful deep neural networks, yet suffers from scalability issues when extending to LLMs due to their vast feature spaces. In this paper, we propose ReGA, a model-based analysis framework with representation-guided abstraction, to safeguard LLMs against harmful prompts and generations. By leveraging safety-critical representations, which are low-dimensional directions emerging in hidden states that indicate safety-related concepts, ReGA effectively addresses the scalability issue when constructing the abstract model for safety modeling. Our comprehensive evaluation shows that ReGA performs sufficiently well in distinguishing between safe and harmful inputs, achieving an AUROC of 0.975 at the prompt level and 0.985 at the conversation level. Additionally, ReGA exhibits robustness to real-world attacks and generalization across different safety perspectives, outperforming existing safeguard paradigms in terms of interpretability and scalability. Overall, ReGA serves as an efficient and scalable solution to enhance LLM safety by integrating representation engineering with model-based abstraction, paving the way for new paradigms to utilize software insights for AI safety. Our code is available at https://github.com/weizeming/ReGA.

Authors:Tao Yang, Ruibin Li, Yangming Shi, Yuqi Zhang, Qide Dong, Haoran Cheng, Weiguo Feng, Shilei Wen, Bingyue Peng, Lei Zhang
Title: Many-for-Many: Unify the Training of Multiple Video and Image Generation and Manipulation Tasks
Abstract:
Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, etc. However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely many-for-many, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes are available at https://github.com/leeruibin/MfM.git.

Authors:Haoru Tan, Sitong Wu, Wei Huang, Shizhen Zhao, Xiaojuan Qi
Title: Data Pruning by Information Maximization
Abstract:
In this paper, we present InfoMax, a novel data pruning method, also known as coreset selection, designed to maximize the information content of selected samples while minimizing redundancy. By doing so, InfoMax enhances the overall informativeness of the coreset. The information of individual samples is measured by importance scores, which capture their influence or difficulty in model learning. To quantify redundancy, we use pairwise sample similarities, based on the premise that similar samples contribute similarly to the learning process. We formalize the coreset selection problem as a discrete quadratic programming (DQP) task, with the objective of maximizing the total information content, represented as the sum of individual sample contributions minus the redundancies introduced by similar samples within the coreset. To ensure practical scalability, we introduce an efficient gradient-based solver, complemented by sparsification techniques applied to the similarity matrix and dataset partitioning strategies. This enables InfoMax to seamlessly scale to datasets with millions of samples. Extensive experiments demonstrate the superior performance of InfoMax in various data pruning tasks, including image classification, vision-language pre-training, and instruction tuning for large language models. Code is available at https://github.com/hrtan/InfoMax.

Authors:Anya Sims, Thom Foster, Klara Kaleb, Tuan-Duy H. Nguyen, Joseph Lee, Jakob N. Foerster, Yee Whye Teh, Cong Lu
Title: StochasTok: Improving Fine-Grained Subword Understanding in LLMs
Abstract:
Subword-level understanding is integral to numerous tasks, including understanding multi-digit numbers, spelling mistakes, abbreviations, rhyming, and wordplay. Despite this, current large language models (LLMs) still often struggle with seemingly simple subword-level tasks like How many 'r's in 'strawberry'?. A key factor behind these failures is tokenization which obscures the fine-grained structure of words. Current alternatives, such as character-level and dropout tokenization methods, significantly increase computational costs and provide inconsistent improvements. In this paper we revisit tokenization and introduce StochasTok, a simple, efficient stochastic tokenization scheme that randomly splits tokens during training, allowing LLMs to 'see' their internal structure. Our experiments show that pretraining with StochasTok substantially improves LLMs' downstream performance across multiple subword-level language games, including character counting, substring identification, and math tasks. Furthermore, StochasTok's simplicity allows seamless integration at any stage of the training pipeline; and we demonstrate that post-training with StochasTok can instill improved subword understanding into existing pretrained models, thus avoiding costly pretraining from scratch. These dramatic improvements achieved with a minimal change suggest StochasTok holds exciting potential when applied to larger, more capable models. Code open-sourced at: https://github.com/anyasims/stochastok.

Authors:Chong Li, Chenglin Zhu, Tao Zhang, Mingan Lin, Zenan Zhou, Jian Xie
Title: K12Vista: Exploring the Boundaries of MLLMs in K-12 Education
Abstract:
Multimodal large language models have demonstrated remarkable reasoning capabilities in various visual tasks. However, their abilities in K12 scenarios are still systematically underexplored. Previous studies suffer from various limitations including narrow subject coverage, insufficient data scale, lack of diversity in question types, and naive answer-centric evaluation method, resulting in insufficient exploration of model capabilities. To address these gaps, we propose K12Vista, the most comprehensive multimodal benchmark for Chinese K12 subject knowledge understanding and reasoning to date, featuring 33,000 questions across five core subjects from primary to high school and three question types. Moreover, beyond the final outcome, we are also concerned with the correctness of MLLMs' reasoning processes. For this purpose, we meticulously compiles errors from MLLMs' reasoning processes and leverage an automated data pipeline to construct K12-PEM-800K, the largest process evaluation dataset offering detailed step-by-step judgement annotations for MLLMs' reasoning. Subsequently, we developed K12-PEM, an advanced process evaluation model that integrates an overall assessment of both the reasoning process and answer correctness. Moreover, we also introduce K12-PEBench, the first high-quality, human-annotated benchmark specifically designed for evaluating abilities of reasoning process evaluation.Extensive experiments reveal that current MLLMs exhibit significant flaws when reasoning within K12Vista, providing critical insights for the development of more capable MLLMs.We open our resources at https://github.com/lichongod/K12Vista.

Authors:Sunkyung Lee, Minjin Choi, Eunseong Choi, Hye-young Kim, Jongwuk Lee
Title: GRAM: Generative Recommendation via Semantic-aware Multi-granular Late Fusion
Abstract:
Generative recommendation is an emerging paradigm that leverages the extensive knowledge of large language models by formulating recommendations into a text-to-text generation task. However, existing studies face two key limitations in (i) incorporating implicit item relationships and (ii) utilizing rich yet lengthy item information. To address these challenges, we propose a Generative Recommender via semantic-Aware Multi-granular late fusion (GRAM), introducing two synergistic innovations. First, we design semantic-to-lexical translation to encode implicit hierarchical and collaborative item relationships into the vocabulary space of LLMs. Second, we present multi-granular late fusion to integrate rich semantics efficiently with minimal information loss. It employs separate encoders for multi-granular prompts, delaying the fusion until the decoding stage. Experiments on four benchmark datasets show that GRAM outperforms eight state-of-the-art generative recommendation models, achieving significant improvements of 11.5-16.0% in Recall@5 and 5.3-13.6% in NDCG@5. The source code is available at https://github.com/skleee/GRAM.

Authors:Florian Fürrutter, Zohim Chandani, Ikko Hamamura, Hans J. Briegel, Gorka Muñoz-Gil
Title: Synthesis of discrete-continuous quantum circuits with multimodal diffusion models
Abstract:
Efficiently compiling quantum operations remains a major bottleneck in scaling quantum computing. Today's state-of-the-art methods achieve low compilation error by combining search algorithms with gradient-based parameter optimization, but they incur long runtimes and require multiple calls to quantum hardware or expensive classical simulations, making their scaling prohibitive. Recently, machine-learning models have emerged as an alternative, though they are currently restricted to discrete gate sets. Here, we introduce a multimodal denoising diffusion model that simultaneously generates a circuit's structure and its continuous parameters for compiling a target unitary. It leverages two independent diffusion processes, one for discrete gate selection and one for parameter prediction. We benchmark the model over different experiments, analyzing the method's accuracy across varying qubit counts, circuit depths, and proportions of parameterized gates. Finally, by exploiting its rapid circuit generation, we create large datasets of circuits for particular operations and use these to extract valuable heuristics that can help us discover new insights into quantum circuit synthesis.

Authors:Xuan Yu, Dayan Guan, Yanfeng Gu
Title: Zoom-Refine: Boosting High-Resolution Multimodal Understanding via Localized Zoom and Self-Refinement
Abstract:
Multimodal Large Language Models (MLLM) often struggle to interpret high-resolution images accurately, where fine-grained details are crucial for complex visual understanding. We introduce Zoom-Refine, a novel training-free method that enhances MLLM capabilities to address this issue. Zoom-Refine operates through a synergistic process of \textit{Localized Zoom} and \textit{Self-Refinement}. In the \textit{Localized Zoom} step, Zoom-Refine leverages the MLLM to provide a preliminary response to an input query and identifies the most task-relevant image region by predicting its bounding box coordinates. During the \textit{Self-Refinement} step, Zoom-Refine then integrates fine-grained details from the high-resolution crop (identified by \textit{Localized Zoom}) with its initial reasoning to re-evaluate and refine its preliminary response. Our method harnesses the MLLM's inherent capabilities for spatial localization, contextual reasoning and comparative analysis without requiring additional training or external experts. Comprehensive experiments demonstrate the efficacy of Zoom-Refine on two challenging high-resolution multimodal benchmarks. Code is available at \href{https://github.com/xavier-yu114/Zoom-Refine}{\color{magenta}github.com/xavier-yu114/Zoom-Refine}

Authors:Zixiao Zhu, Kezhi Mao
Title: Domain Lexical Knowledge-based Word Embedding Learning for Text Classification under Small Data
Abstract:
Pre-trained language models such as BERT have been proved to be powerful in many natural language processing tasks. But in some text classification applications such as emotion recognition and sentiment analysis, BERT may not lead to satisfactory performance. This often happens in applications where keywords play critical roles in the prediction of class labels. Our investigation found that the root cause of the problem is that the context-based BERT embedding of the keywords may not be discriminative enough to produce discriminative text representation for classification. Motivated by this finding, we develop a method to enhance word embeddings using domain-specific lexical knowledge. The knowledge-based embedding enhancement model projects the BERT embedding into a new space where within-class similarity and between-class difference are maximized. To implement the knowledge-based word embedding enhancement model, we also develop a knowledge acquisition algorithm for automatically collecting lexical knowledge from online open sources. Experiment results on three classification tasks, including sentiment analysis, emotion recognition and question answering, have shown the effectiveness of our proposed word embedding enhancing model. The codes and datasets are in https://github.com/MidiyaZhu/KVWEFFER.

Authors:Karl El Hajal, Enno Hermann, Sevada Hovsepyan, Mathew Magimai. -Doss
Title: Unsupervised Rhythm and Voice Conversion to Improve ASR on Dysarthric Speech
Abstract:
Automatic speech recognition (ASR) systems struggle with dysarthric speech due to high inter-speaker variability and slow speaking rates. To address this, we explore dysarthric-to-healthy speech conversion for improved ASR performance. Our approach extends the Rhythm and Voice (RnV) conversion framework by introducing a syllable-based rhythm modeling method suited for dysarthric speech. We assess its impact on ASR by training LF-MMI models and fine-tuning Whisper on converted speech. Experiments on the Torgo corpus reveal that LF-MMI achieves significant word error rate reductions, especially for more severe cases of dysarthria, while fine-tuning Whisper on converted data has minimal effect on its performance. These results highlight the potential of unsupervised rhythm and voice conversion for dysarthric ASR. Code available at: https://github.com/idiap/RnV

Authors:Wangyou Zhang, Kohei Saijo, Samuele Cornell, Robin Scheibler, Chenda Li, Zhaoheng Ni, Anurag Kumar, Marvin Sach, Wei Wang, Yihui Fu, Shinji Watanabe, Tim Fingscheidt, Yanmin Qian
Title: Lessons Learned from the URGENT 2024 Speech Enhancement Challenge
Abstract:
The URGENT 2024 Challenge aims to foster speech enhancement (SE) techniques with great universality, robustness, and generalizability, featuring a broader task definition, large-scale multi-domain data, and comprehensive evaluation metrics. Nourished by the challenge outcomes, this paper presents an in-depth analysis of two key, yet understudied, issues in SE system development: data cleaning and evaluation metrics. We highlight several overlooked problems in traditional SE pipelines: (1) mismatches between declared and effective audio bandwidths, along with label noise even in various "high-quality" speech corpora; (2) lack of both effective SE systems to conquer the hardest conditions (e.g., speech overlap, strong noise / reverberation) and reliable measure of speech sample difficulty; (3) importance of combining multifaceted metrics for a comprehensive evaluation correlating well with human judgment. We hope that this endeavor can inspire improved SE pipeline designs in the future.

Authors:Andy Bonnetto, Haozhe Qi, Franklin Leong, Matea Tashkovska, Mahdi Rad, Solaiman Shokur, Friedhelm Hummel, Silvestro Micera, Marc Pollefeys, Alexander Mathis
Title: EPFL-Smart-Kitchen-30: Densely annotated cooking dataset with 3D kinematics to challenge video and language models
Abstract:
Understanding behavior requires datasets that capture humans while carrying out complex tasks. The kitchen is an excellent environment for assessing human motor and cognitive function, as many complex actions are naturally exhibited in kitchens from chopping to cleaning. Here, we introduce the EPFL-Smart-Kitchen-30 dataset, collected in a noninvasive motion capture platform inside a kitchen environment. Nine static RGB-D cameras, inertial measurement units (IMUs) and one head-mounted HoloLens~2 headset were used to capture 3D hand, body, and eye movements. The EPFL-Smart-Kitchen-30 dataset is a multi-view action dataset with synchronized exocentric, egocentric, depth, IMUs, eye gaze, body and hand kinematics spanning 29.7 hours of 16 subjects cooking four different recipes. Action sequences were densely annotated with 33.78 action segments per minute. Leveraging this multi-modal dataset, we propose four benchmarks to advance behavior understanding and modeling through 1) a vision-language benchmark, 2) a semantic text-to-motion generation benchmark, 3) a multi-modal action recognition benchmark, 4) a pose-based action segmentation benchmark. We expect the EPFL-Smart-Kitchen-30 dataset to pave the way for better methods as well as insights to understand the nature of ecologically-valid human behavior. Code and data are available at https://github.com/amathislab/EPFL-Smart-Kitchen

Authors:Yuan Gan, Jiaxu Miao, Yunze Wang, Yi Yang
Title: Silence is Golden: Leveraging Adversarial Examples to Nullify Audio Control in LDM-based Talking-Head Generation
Abstract:
Advances in talking-head animation based on Latent Diffusion Models (LDM) enable the creation of highly realistic, synchronized videos. These fabricated videos are indistinguishable from real ones, increasing the risk of potential misuse for scams, political manipulation, and misinformation. Hence, addressing these ethical concerns has become a pressing issue in AI security. Recent proactive defense studies focused on countering LDM-based models by adding perturbations to portraits. However, these methods are ineffective at protecting reference portraits from advanced image-to-video animation. The limitations are twofold: 1) they fail to prevent images from being manipulated by audio signals, and 2) diffusion-based purification techniques can effectively eliminate protective perturbations. To address these challenges, we propose Silencer, a two-stage method designed to proactively protect the privacy of portraits. First, a nullifying loss is proposed to ignore audio control in talking-head generation. Second, we apply anti-purification loss in LDM to optimize the inverted latent feature to generate robust perturbations. Extensive experiments demonstrate the effectiveness of Silencer in proactively protecting portrait privacy. We hope this work will raise awareness among the AI security community regarding critical ethical issues related to talking-head generation techniques. Code: https://github.com/yuangan/Silencer.

Authors:Satvik Dixit, Sungjoon Park, Chris Donahue, Laurie M. Heller
Title: Learning Perceptually Relevant Temporal Envelope Morphing
Abstract:
Temporal envelope morphing, the process of interpolating between the amplitude dynamics of two audio signals, is an emerging problem in generative audio systems that lacks sufficient perceptual grounding. Morphing of temporal envelopes in a perceptually intuitive manner should enable new methods for sound blending in creative media and for probing perceptual organization in psychoacoustics. However, existing audio morphing techniques often fail to produce intermediate temporal envelopes when input sounds have distinct temporal structures; many morphers effectively overlay both temporal structures, leading to perceptually unnatural results. In this paper, we introduce a novel workflow for learning envelope morphing with perceptual guidance: we first derive perceptually grounded morphing principles through human listening studies, then synthesize large-scale datasets encoding these principles, and finally train machine learning models to create perceptually intermediate morphs. Specifically, we present: (1) perceptual principles that guide envelope morphing, derived from our listening studies, (2) a supervised framework to learn these principles, (3) an autoencoder that learns to compress temporal envelope structures into latent representations, and (4) benchmarks for evaluating audio envelope morphs, using both synthetic and naturalistic data, and show that our approach outperforms existing methods in producing temporally intermediate morphs. All code, models, and checkpoints are available at https://github.com/TemporalMorphing/EnvelopeMorphing.

Authors:Yiming Zhong, Yumeng Liu, Chuyang Xiao, Zemin Yang, Youzhuo Wang, Yufei Zhu, Ye Shi, Yujing Sun, Xinge Zhu, Yuexin Ma
Title: FreqPolicy: Frequency Autoregressive Visuomotor Policy with Continuous Tokens
Abstract:
Learning effective visuomotor policies for robotic manipulation is challenging, as it requires generating precise actions while maintaining computational efficiency. Existing methods remain unsatisfactory due to inherent limitations in the essential action representation and the basic network architectures. We observe that representing actions in the frequency domain captures the structured nature of motion more effectively: low-frequency components reflect global movement patterns, while high-frequency components encode fine local details. Additionally, robotic manipulation tasks of varying complexity demand different levels of modeling precision across these frequency bands. Motivated by this, we propose a novel paradigm for visuomotor policy learning that progressively models hierarchical frequency components. To further enhance precision, we introduce continuous latent representations that maintain smoothness and continuity in the action space. Extensive experiments across diverse 2D and 3D robotic manipulation benchmarks demonstrate that our approach outperforms existing methods in both accuracy and efficiency, showcasing the potential of a frequency-domain autoregressive framework with continuous tokens for generalized robotic manipulation.Code is available at https://github.com/4DVLab/Freqpolicy

Authors:Roman Plaud, Alexandre Perez-Lebel, Matthieu Labeau, Antoine Saillenfest, Thomas Bonald
Title: To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers
Abstract:
Hierarchical classification offers an approach to incorporate the concept of mistake severity by leveraging a structured, labeled hierarchy. However, decoding in such settings frequently relies on heuristic decision rules, which may not align with task-specific evaluation metrics. In this work, we propose a framework for the optimal decoding of an output probability distribution with respect to a target metric. We derive optimal decision rules for increasingly complex prediction settings, providing universal algorithms when candidates are limited to the set of nodes. In the most general case of predicting a subset of nodes, we focus on rules dedicated to the hierarchical $hF_β$ scores, tailored to hierarchical settings. To demonstrate the practical utility of our approach, we conduct extensive empirical evaluations, showcasing the superiority of our proposed optimal strategies, particularly in underdetermined scenarios. These results highlight the potential of our methods to enhance the performance and reliability of hierarchical classifiers in real-world applications. The code is available at https://github.com/RomanPlaud/hierarchical_decision_rules

Authors:Bingqian Lin, Yunshuang Nie, Khun Loun Zai, Ziming Wei, Mingfei Han, Rongtao Xu, Minzhe Niu, Jianhua Han, Liang Lin, Cewu Lu, Xiaodan Liang
Title: EvolveNav: Self-Improving Embodied Reasoning for LLM-Based Vision-Language Navigation
Abstract:
Building Vision-Language Navigation (VLN) agents which can navigate following natural language instructions is a long-standing goal in human-robot interaction applications. Recent studies have revealed the potential of training open-source Large Language Models (LLMs) to unleash LLMs' reasoning ability for improving navigation, and simultaneously mitigate the domain gap between LLMs' training corpus and the VLN task. However, these approaches primarily adopt direct input-output mapping paradigms, causing the mapping learning difficult and the navigational decisions unexplainable. Chain-of-Thought (CoT) training is a promising way to improve both navigational decision accuracy and interpretability, while the complexity of the navigation task makes the perfect CoT labels unavailable and may lead to overfitting through pure CoT supervised fine-tuning. In this paper, we propose a novel sElf-improving embodied reasoning framework for boosting LLM-based vision-language Navigation, dubbed EvolveNav. Our EvolveNav consists of two stages: (1) Formalized CoT Supervised Fine-Tuning, where we train the model with formalized CoT labels to both activate the model's navigational reasoning capabilities and increase the reasoning speed; (2) Self-Reflective Post-Training, where the model is iteratively trained with its own reasoning outputs as self-enriched CoT labels to enhance the supervision diversity. A self-reflective auxiliary task is also introduced to encourage learning correct reasoning patterns by contrasting with wrong ones. Experimental results on the popular VLN benchmarks demonstrate the superiority of EvolveNav over previous LLM-based VLN approaches. Code is available at https://github.com/expectorlin/EvolveNav.

Authors:Wenhao Liu, Zhenyi Lu, Xinyu Hu, Jierui Zhang, Dailin Li, Jiacheng Cen, Huilin Cao, Haiteng Wang, Yuhan Li, Kun Xie, Dandan Li, Pei Zhang, Chengbo Zhang, Yuxiang Ren, Xiaohong Huang, Yan Ma
Title: STORM-BORN: A Challenging Mathematical Derivations Dataset Curated via a Human-in-the-Loop Multi-Agent Framework
Abstract:
High-quality math datasets are crucial for advancing the reasoning abilities of large language models (LLMs). However, existing datasets often suffer from three key issues: outdated and insufficient challenging content, neglecting human-like reasoning, and limited reliability due to single-LLM generation. To address these, we introduce STORM-BORN, an ultra-challenging dataset of mathematical derivations sourced from cutting-edge academic papers, which includes dense human-like approximations and heuristic cues. To ensure the reliability and quality, we propose a novel human-in-the-loop, multi-agent data generation framework, integrating reasoning-dense filters, multi-agent collaboration, and human mathematicians' evaluations. We curated a set of 2,000 synthetic samples and deliberately selected the 100 most difficult problems. Even most advanced models like GPT-o1 solved fewer than 5% of them. Fine-tuning on STORM-BORN boosts accuracy by 7.84% (LLaMA3-8B) and 9.12% (Qwen2.5-7B). As AI approaches mathematician-level reasoning, STORM-BORN provides both a high-difficulty benchmark and a human-like reasoning training resource. Our code and dataset are publicly available at https://github.com/lwhere/STORM-BORN.

Authors:Kaixun Jiang, Zhaoyu Chen, Haijing Guo, Jinglun Li, Jiyuan Fu, Pinxue Guo, Hao Tang, Bo Li, Wenqiang Zhang
Title: Enhancing Diffusion-based Unrestricted Adversarial Attacks via Adversary Preferences Alignment
Abstract:
Preference alignment in diffusion models has primarily focused on benign human preferences (e.g., aesthetic). In this paper, we propose a novel perspective: framing unrestricted adversarial example generation as a problem of aligning with adversary preferences. Unlike benign alignment, adversarial alignment involves two inherently conflicting preferences: visual consistency and attack effectiveness, which often lead to unstable optimization and reward hacking (e.g., reducing visual quality to improve attack success). To address this, we propose APA (Adversary Preferences Alignment), a two-stage framework that decouples conflicting preferences and optimizes each with differentiable rewards. In the first stage, APA fine-tunes LoRA to improve visual consistency using rule-based similarity reward. In the second stage, APA updates either the image latent or prompt embedding based on feedback from a substitute classifier, guided by trajectory-level and step-wise rewards. To enhance black-box transferability, we further incorporate a diffusion augmentation strategy. Experiments demonstrate that APA achieves significantly better attack transferability while maintaining high visual consistency, inspiring further research to approach adversarial attacks from an alignment perspective. Code will be available at https://github.com/deep-kaixun/APA.

Authors:Ping Wu, Guobin Shen, Dongcheng Zhao, Yuwei Wang, Yiting Dong, Yu Shi, Enmeng Lu, Feifei Zhao, Yi Zeng
Title: CVC: A Large-Scale Chinese Value Rule Corpus for Value Alignment of Large Language Models
Abstract:
Ensuring that Large Language Models (LLMs) align with mainstream human values and ethical norms is crucial for the safe and sustainable development of AI. Current value evaluation and alignment are constrained by Western cultural bias and incomplete domestic frameworks reliant on non-native rules; furthermore, the lack of scalable, rule-driven scenario generation methods makes evaluations costly and inadequate across diverse cultural contexts. To address these challenges, we propose a hierarchical value framework grounded in core Chinese values, encompassing three main dimensions, 12 core values, and 50 derived values. Based on this framework, we construct a large-scale Chinese Values Corpus (CVC) containing over 250,000 value rules enhanced and expanded through human annotation. Experimental results show that CVC-guided scenarios outperform direct generation ones in value boundaries and content diversity. In the evaluation across six sensitive themes (e.g., surrogacy, suicide), seven mainstream LLMs preferred CVC-generated options in over 70.5% of cases, while five Chinese human annotators showed an 87.5% alignment with CVC, confirming its universality, cultural relevance, and strong alignment with Chinese values. Additionally, we construct 400,000 rule-based moral dilemma scenarios that objectively capture nuanced distinctions in conflicting value prioritization across 17 LLMs. Our work establishes a culturally-adaptive benchmarking framework for comprehensive value evaluation and alignment, representing Chinese characteristics. All data are available at https://huggingface.co/datasets/Beijing-AISI/CVC, and the code is available at https://github.com/Beijing-AISI/CVC.

Authors:Long Yao, Wenzhong Yang, Yabo Yin, Fuyuan Wei, Hongzhen Lv, Jiaren Peng, Liejun Wang, Xiaoming Tao
Title: Argument-Centric Causal Intervention Method for Mitigating Bias in Cross-Document Event Coreference Resolution
Abstract:
Cross-document Event Coreference Resolution (CD-ECR) is a fundamental task in natural language processing (NLP) that seeks to determine whether event mentions across multiple documents refer to the same real-world occurrence. However, current CD-ECR approaches predominantly rely on trigger features within input mention pairs, which induce spurious correlations between surface-level lexical features and coreference relationships, impairing the overall performance of the models. To address this issue, we propose a novel cross-document event coreference resolution method based on Argument-Centric Causal Intervention (ACCI). Specifically, we construct a structural causal graph to uncover confounding dependencies between lexical triggers and coreference labels, and introduce backdoor-adjusted interventions to isolate the true causal effect of argument semantics. To further mitigate spurious correlations, ACCI integrates a counterfactual reasoning module that quantifies the causal influence of trigger word perturbations, and an argument-aware enhancement module to promote greater sensitivity to semantically grounded information. In contrast to prior methods that depend on costly data augmentation or heuristic-based filtering, ACCI enables effective debiasing in a unified end-to-end framework without altering the underlying training procedure. Extensive experiments demonstrate that ACCI achieves CoNLL F1 of 88.4% on ECB+ and 85.2% on GVC, achieving state-of-the-art performance. The implementation and materials are available at https://github.com/era211/ACCI.

Authors:Zijian Zhao, Dian Jin, Zijing Zhou, Xiaoyu Zhang
Title: Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Abstract:
Stage lighting plays an essential role in live music performances, influencing the engaging experience of both musicians and audiences. Given the high costs associated with hiring or training professional lighting engineers, Automatic Stage Lighting Control (ASLC) has gained increasing attention. However, most existing approaches only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this issue, this paper presents an end-to-end solution that directly learns from experienced lighting engineers -- Skip-BART. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method modifies the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid.We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers.Specifically, our method yields a p-value of 0.72 in a statistical comparison based on human evaluations with human lighting engineers, suggesting that the proposed approach closely matches human lighting engineering performance. To support further research, we have made our self-collected dataset, code, and trained model parameters available at https://github.com/RS2002/Skip-BART .

Authors:Matthew D. Fuchs
Title: Policy as Code, Policy as Type
Abstract:
Policies are designed to distinguish between correct and incorrect actions; they are types. But badly typed actions may cause not compile errors, but financial and reputational harm We demonstrate how even the most complex ABAC policies can be expressed as types in dependently typed languages such as Agda and Lean, providing a single framework to express, analyze, and implement policies. We then go head-to-head with Rego, the popular and powerful open-source ABAC policy language. We show the superior safety that comes with a powerful type system and built-in proof assistant. In passing, we discuss various access control models, sketch how to integrate in a future when attributes are distributed and signed (as discussed at the W3C), and show how policies can be communicated using just the syntax of the language. Our examples are in Agda.

Authors:Jakob Schmid, Azin Jahedi, Noah Berenguel Senn, Andrés Bruhn
Title: MS-RAFT-3D: A Multi-Scale Architecture for Recurrent Image-Based Scene Flow
Abstract:
Although multi-scale concepts have recently proven useful for recurrent network architectures in the field of optical flow and stereo, they have not been considered for image-based scene flow so far. Hence, based on a single-scale recurrent scene flow backbone, we develop a multi-scale approach that generalizes successful hierarchical ideas from optical flow to image-based scene flow. By considering suitable concepts for the feature and the context encoder, the overall coarse-to-fine framework and the training loss, we succeed to design a scene flow approach that outperforms the current state of the art on KITTI and Spring by 8.7%(3.89 vs. 4.26) and 65.8% (9.13 vs. 26.71), respectively. Our code is available at https://github.com/cv-stuttgart/MS-RAFT-3D.

Authors:Rafael Flor-Rodríguez, Carlos Gutiérrez-Álvarez, Francisco Javier Acevedo-Rodríguez, Sergio Lafuente-Arroyo, Roberto J. López-Sastre
Title: SEMNAV: A Semantic Segmentation-Driven Approach to Visual Semantic Navigation
Abstract:
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce a newly curated dataset, i.e. the SEMNAV dataset, designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. We release SEMNAV dataset, code and trained models at https://github.com/gramuah/semnav

Authors:Yulei Qin, Gang Li, Zongyi Li, Zihan Xu, Yuchen Shi, Zhekai Lin, Xiao Cui, Ke Li, Xing Sun
Title: Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Abstract:
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions

Authors:Yulei Qin, Gang Li, Zongyi Li, Zihan Xu, Yuchen Shi, Zhekai Lin, Xiao Cui, Ke Li, Xing Sun
Title: Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Abstract:
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions

Authors:Minjeong Park, Hongbeen Park, Jinkyu Kim
Title: ViTA-PAR: Visual and Textual Attribute Alignment with Attribute Prompting for Pedestrian Attribute Recognition
Abstract:
The Pedestrian Attribute Recognition (PAR) task aims to identify various detailed attributes of an individual, such as clothing, accessories, and gender. To enhance PAR performance, a model must capture features ranging from coarse-grained global attributes (e.g., for identifying gender) to fine-grained local details (e.g., for recognizing accessories) that may appear in diverse regions. Recent research suggests that body part representation can enhance the model's robustness and accuracy, but these methods are often restricted to attribute classes within fixed horizontal regions, leading to degraded performance when attributes appear in varying or unexpected body locations. In this paper, we propose Visual and Textual Attribute Alignment with Attribute Prompting for Pedestrian Attribute Recognition, dubbed as ViTA-PAR, to enhance attribute recognition through specialized multimodal prompting and vision-language alignment. We introduce visual attribute prompts that capture global-to-local semantics, enabling diverse attribute representations. To enrich textual embeddings, we design a learnable prompt template, termed person and attribute context prompting, to learn person and attributes context. Finally, we align visual and textual attribute features for effective fusion. ViTA-PAR is validated on four PAR benchmarks, achieving competitive performance with efficient inference. We release our code and model at https://github.com/mlnjeongpark/ViTA-PAR.

Authors:Xiang Zhao, Ruijie Li, Qiao Ning, Shikai Guo, Hui Li, Qian Ma
Title: SOC-DGL: Social Interaction Behavior Inspired Dual Graph Learning Framework for Drug-Target Interaction Identification
Abstract:
The identification of drug-target interactions (DTI) is critical for drug discovery and repositioning, as it reveals potential therapeutic uses of existing drugs, accelerating development and reducing costs. However, most existing models focus only on direct similarity in homogeneous graphs, failing to exploit the rich similarity in heterogeneous graphs. To address this gap, inspired by real-world social interaction behaviors, we propose SOC-DGL, which comprises two specialized modules: the Affinity-Driven Graph Learning (ADGL) module, learning global similarity through an affinity-enhanced drug-target graph, and the Equilibrium-Driven Graph Learning (EDGL) module, capturing higher-order similarity by amplifying the influence of even-hop neighbors using an even-polynomial graph filter based on balance theory. This dual approach enables SOC-DGL to effectively capture similarity information across multiple interaction scales within affinity and association matrices. To address the issue of imbalance in DTI datasets, we propose an adjustable imbalance loss function that adjusts the weight of negative samples by the parameter. Extensive experiments on four benchmark datasets demonstrate that SOC-DGL consistently outperforms existing state-of-the-art methods across both balanced and imbalanced scenarios. Moreover, SOC-DGL successfully predicts the top 9 drugs known to bind ABL1, and further analyzed the 10th drug, which has not been experimentally confirmed to interact with ABL1, providing supporting evidence for its potential binding.

Authors:Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, Yesai Wu, Han Si, Xin Cong, Haotian Chen, Yankai Lin, Jie Xie, Wei Zhou, Wang Xu, Yuanheng Zhang, Zhou Su, Zhongwu Zhai, Xiaoming Liu, Yudong Mei, Jianming Xu, Hongyan Tian, Chongyi Wang, Chi Chen, Yuan Yao, Zhiyuan Liu, Maosong Sun
Title: AgentCPM-GUI: Building Mobile-Use Agents with Reinforcement Fine-Tuning
Abstract:
The recent progress of large language model agents has opened new possibilities for automating tasks through graphical user interfaces (GUIs), especially in mobile environments where intelligent interaction can greatly enhance usability. However, practical deployment of such agents remains constrained by several key challenges. Existing training data is often noisy and lack semantic diversity, which hinders the learning of precise grounding and planning. Models trained purely by imitation tend to overfit to seen interface patterns and fail to generalize in unfamiliar scenarios. Moreover, most prior work focuses on English interfaces while overlooks the growing diversity of non-English applications such as those in the Chinese mobile ecosystem. In this work, we present AgentCPM-GUI, an 8B-parameter GUI agent built for robust and efficient on-device GUI interaction. Our training pipeline includes grounding-aware pre-training to enhance perception, supervised fine-tuning on high-quality Chinese and English trajectories to imitate human-like actions, and reinforcement fine-tuning with GRPO to improve reasoning capability. We also introduce a compact action space that reduces output length and supports low-latency execution on mobile devices. AgentCPM-GUI achieves state-of-the-art performance on five public benchmarks and a new Chinese GUI benchmark called CAGUI, reaching $96.9\%$ Type-Match and $91.3\%$ Exact-Match. To facilitate reproducibility and further research, we publicly release all code, model checkpoint, and evaluation data.

Authors:Minghao Xu, Jiaze Song, Keming Wu, Xiangxin Zhou, Bin Cui, Wentao Zhang
Title: Modeling All-Atom Glycan Structures via Hierarchical Message Passing and Multi-Scale Pre-training
Abstract:
Understanding the various properties of glycans with machine learning has shown some preliminary promise. However, previous methods mainly focused on modeling the backbone structure of glycans as graphs of monosaccharides (i.e., sugar units), while they neglected the atomic structures underlying each monosaccharide, which are actually important indicators of glycan properties. We fill this blank by introducing the GlycanAA model for All-Atom-wise Glycan modeling. GlycanAA models a glycan as a heterogeneous graph with monosaccharide nodes representing its global backbone structure and atom nodes representing its local atomic-level structures. Based on such a graph, GlycanAA performs hierarchical message passing to capture from local atomic-level interactions to global monosaccharide-level interactions. To further enhance model capability, we pre-train GlycanAA on a high-quality unlabeled glycan dataset, deriving the PreGlycanAA model. We design a multi-scale mask prediction algorithm to endow the model about different levels of dependencies in a glycan. Extensive benchmark results show the superiority of GlycanAA over existing glycan encoders and verify the further improvements achieved by PreGlycanAA. We maintain all resources at https://github.com/kasawa1234/GlycanAA

Authors:Tomasz Stanczyk, Seongro Yoon, Francois Bremond
Title: No Train Yet Gain: Towards Generic Multi-Object Tracking in Sports and Beyond
Abstract:
Multi-object tracking (MOT) is essential for sports analytics, enabling performance evaluation and tactical insights. However, tracking in sports is challenging due to fast movements, occlusions, and camera shifts. Traditional tracking-by-detection methods require extensive tuning, while segmentation-based approaches struggle with track processing. We propose McByte, a tracking-by-detection framework that integrates temporally propagated segmentation mask as an association cue to improve robustness without per-video tuning. Unlike many existing methods, McByte does not require training, relying solely on pre-trained models and object detectors commonly used in the community. Evaluated on SportsMOT, DanceTrack, SoccerNet-tracking 2022 and MOT17, McByte demonstrates strong performance across sports and general pedestrian tracking. Our results highlight the benefits of mask propagation for a more adaptable and generalizable MOT approach. Code will be made available at https://github.com/tstanczyk95/McByte.

Authors:Fuxiang Zhang, Jiacheng Xu, Chaojie Wang, Ce Cui, Yang Liu, Bo An
Title: Incentivizing LLMs to Self-Verify Their Answers
Abstract:
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks through both post-training and test-time scaling laws. While prevalent test-time scaling approaches are often realized by using external reward models to guide the model generation process, we find only marginal gains can be acquired when scaling a model post-trained on specific reasoning tasks. We identify that the limited improvement stems from distribution discrepancies between the specific post-trained generator and the general reward model. To address this, we propose a framework that incentivizes LLMs to self-verify their own answers. By unifying answer generation and verification within a single reinforcement learning (RL) process, we train models that can effectively assess the correctness of their own solutions. The trained model can further scale its performance during inference time by verifying its generations, without the need for external verifiers. We train our self-verification models based on Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B, demonstrating its capabilities across varying reasoning context lengths. Experiments on multiple mathematical reasoning benchmarks show that our models can not only improve post-training performance but also enable effective test-time scaling. Our code is available at https://github.com/mansicer/self-verification.

Authors:Dongwon Choi, Sunwoo Kim, Juyeon Kim, Kyungho Kim, Geon Lee, Shinhwan Kang, Myunghwan Kim, Kijung Shin
Title: RDB2G-Bench: A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases
Abstract:
Relational databases (RDBs) are composed of interconnected tables, where relationships between them are defined through foreign keys. Recent research on applying machine learning to RDBs has explored graph-based representations of RDBs, where rows of tables are modeled as nodes, and foreign key relationships are modeled as edges. RDB-to-graph modeling helps capture cross-table dependencies, ultimately leading to enhanced performance across diverse tasks. However, there are numerous ways to model RDBs as graphs, and performance varies significantly depending on the chosen graph model. In our analysis, applying a common heuristic rule for graph modeling leads to up to a 10% drop in performance compared to the best-performing graph model, which remains non-trivial to identify. To foster research on intelligent RDB-to-graph modeling, we introduce RDB2G-Bench, the first benchmark framework for evaluating such methods. We construct extensive datasets covering 5 real-world RDBs and 12 predictive tasks, resulting in around 50k graph-performance pairs for efficient and reproducible evaluations. Thanks to our precomputed datasets, we were able to benchmark 9 automatic RDB-to-graph modeling methods on the 12 tasks over 600x faster than on-the-fly evaluation, which requires repeated model training. Our analysis of the datasets and benchmark results reveals key structural patterns affecting graph model effectiveness, along with practical implications for effective graph modeling.

Authors:Zhiyang Qi, Takumasa Kaneko, Keiko Takamizo, Mariko Ukiyo, Michimasa Inaba
Title: KokoroChat: A Japanese Psychological Counseling Dialogue Dataset Collected via Role-Playing by Trained Counselors
Abstract:
Generating psychological counseling responses with language models relies heavily on high-quality datasets. Crowdsourced data collection methods require strict worker training, and data from real-world counseling environments may raise privacy and ethical concerns. While recent studies have explored using large language models (LLMs) to augment psychological counseling dialogue datasets, the resulting data often suffers from limited diversity and authenticity. To address these limitations, this study adopts a role-playing approach where trained counselors simulate counselor-client interactions, ensuring high-quality dialogues while mitigating privacy risks. Using this method, we construct KokoroChat, a Japanese psychological counseling dialogue dataset comprising 6,589 long-form dialogues, each accompanied by comprehensive client feedback. Experimental results demonstrate that fine-tuning open-source LLMs with KokoroChat improves both the quality of generated counseling responses and the automatic evaluation of counseling dialogues. The KokoroChat dataset is available at https://github.com/UEC-InabaLab/KokoroChat.

Authors:Haoyu Li, Xiangru Zhong, Bin Hu, Huan Zhang
Title: Two-Stage Learning of Stabilizing Neural Controllers via Zubov Sampling and Iterative Domain Expansion
Abstract:
Learning-based neural network (NN) control policies have shown impressive empirical performance. However, obtaining stability guarantees and estimations of the region of attraction of these learned neural controllers is challenging due to the lack of stable and scalable training and verification algorithms. Although previous works in this area have achieved great success, much conservatism remains in their framework. In this work, we propose a novel two-stage training framework to jointly synthesize the controller and Lyapunov function for continuous-time systems. By leveraging a Zubov-inspired region of attraction characterization to directly estimate stability boundaries, we propose a novel training data sampling strategy and a domain updating mechanism that significantly reduces the conservatism in training. Moreover, unlike existing works on continuous-time systems that rely on an SMT solver to formally verify the Lyapunov condition, we extend state-of-the-art neural network verifier $α,\!β$-CROWN with the capability of performing automatic bound propagation through the Jacobian of dynamical systems and a novel verification scheme that avoids expensive bisection. To demonstrate the effectiveness of our approach, we conduct numerical experiments by synthesizing and verifying controllers on several challenging nonlinear systems across multiple dimensions. We show that our training can yield region of attractions with volume $5 - 1.5\cdot 10^{5}$ times larger compared to the baselines, and our verification on continuous systems can be up to $40-10000$ times faster compared to the traditional SMT solver dReal. Our code is available at https://github.com/Verified-Intelligence/Two-Stage_Neural_Controller_Training.

Authors:Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, Yu Meng
Title: The Surprising Effectiveness of Negative Reinforcement in LLM Reasoning
Abstract:
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for training language models (LMs) on reasoning tasks that elicit emergent long chains of thought (CoTs). Unlike supervised learning, it updates the model using both correct and incorrect samples via policy gradients. To better understand its mechanism, we decompose the learning signal into reinforcing correct responses and penalizing incorrect ones, referred to as Positive and Negative Sample Reinforcement (PSR and NSR), respectively. We train Qwen2.5-Math-7B and Qwen3-4B on a mathematical reasoning dataset and uncover a surprising result: training with only negative samples -- without reinforcing correct responses -- can be highly effective: it consistently improves performance over the base model across the entire Pass@$k$ spectrum ($k$ up to $256$), often matching or surpassing PPO and GRPO. In contrast, reinforcing only correct responses improves Pass@$1$ but degrades performance at higher $k$, due to reduced diversity. These inference-scaling trends highlight that solely penalizing incorrect responses may contribute more to performance than previously recognized. Through gradient analysis, we show that NSR works by suppressing incorrect generations and redistributing probability mass toward other plausible candidates, guided by the model's prior beliefs. It refines the model's existing knowledge rather than introducing entirely new behaviors. Building on this insight, we propose a simple variant of the RL objective that upweights NSR, and show that it consistently improves overall Pass@$k$ performance on MATH, AIME 2025, and AMC23. Our code is available at https://github.com/TianHongZXY/RLVR-Decomposed.

Authors:Zeming Li, Xiangyue Liu, Xiangyu Zhang, Ping Tan, Heung-Yeung Shum
Title: NoiseAR: AutoRegressing Initial Noise Prior for Diffusion Models
Abstract:
Diffusion models have emerged as powerful generative frameworks, creating data samples by progressively denoising an initial random state. Traditionally, this initial state is sampled from a simple, fixed distribution like isotropic Gaussian, inherently lacking structure and a direct mechanism for external control. While recent efforts have explored ways to introduce controllability into the diffusion process, particularly at the initialization stage, they often rely on deterministic or heuristic approaches. These methods can be suboptimal, lack expressiveness, and are difficult to scale or integrate into more sophisticated optimization frameworks. In this paper, we introduce NoiseAR, a novel method for AutoRegressive Initial Noise Prior for Diffusion Models. Instead of a static, unstructured source, NoiseAR learns to generate a dynamic and controllable prior distribution for the initial noise. We formulate the generation of the initial noise prior's parameters as an autoregressive probabilistic modeling task over spatial patches or tokens. This approach enables NoiseAR to capture complex spatial dependencies and introduce learned structure into the initial state. Crucially, NoiseAR is designed to be conditional, allowing text prompts to directly influence the learned prior, thereby achieving fine-grained control over the diffusion initialization. Our experiments demonstrate that NoiseAR can generate initial noise priors that lead to improved sample quality and enhanced consistency with conditional inputs, offering a powerful, learned alternative to traditional random initialization. A key advantage of NoiseAR is its probabilistic formulation, which naturally supports seamless integration into probabilistic frameworks like Markov Decision Processes and Reinforcement Learning. Our code will be available at https://github.com/HKUST-SAIL/NoiseAR/

Authors:Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo, Di Huang
Title: Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation
Abstract:
Ultra-high-resolution image synthesis holds significant potential, yet remains an underexplored challenge due to the absence of standardized benchmarks and computational constraints. In this paper, we establish Aesthetic-4K, a meticulously curated dataset containing dedicated training and evaluation subsets specifically designed for comprehensive research on ultra-high-resolution image synthesis. This dataset consists of high-quality 4K images accompanied by descriptive captions generated by GPT-4o. Furthermore, we propose Diffusion-4K, an innovative framework for the direct generation of ultra-high-resolution images. Our approach incorporates the Scale Consistent Variational Auto-Encoder (SC-VAE) and Wavelet-based Latent Fine-tuning (WLF), which are designed for efficient visual token compression and the capture of intricate details in ultra-high-resolution images, thereby facilitating direct training with photorealistic 4K data. This method is applicable to various latent diffusion models and demonstrates its efficacy in synthesizing highly detailed 4K images. Additionally, we propose novel metrics, namely the GLCM Score and Compression Ratio, to assess the texture richness and fine details in local patches, in conjunction with holistic measures such as FID, Aesthetics, and CLIPScore, enabling a thorough and multifaceted evaluation of ultra-high-resolution image synthesis. Consequently, Diffusion-4K achieves impressive performance in ultra-high-resolution image synthesis, particularly when powered by state-of-the-art large-scale diffusion models (eg, Flux-12B). The source code is publicly available at https://github.com/zhang0jhon/diffusion-4k.

Authors:Haiyang Mei, Pengyu Zhang, Mike Zheng Shou
Title: SAM-I2V: Upgrading SAM to Support Promptable Video Segmentation with Less than 0.2% Training Cost
Abstract:
Foundation models like the Segment Anything Model (SAM) have significantly advanced promptable image segmentation in computer vision. However, extending these capabilities to videos presents substantial challenges, particularly in ensuring precise and temporally consistent mask propagation in dynamic scenes. SAM 2 attempts to address this by training a model on massive image and video data from scratch to learn complex spatiotemporal associations, resulting in huge training costs that hinder research and practical deployment. In this paper, we introduce SAM-I2V, an effective image-to-video upgradation method for cultivating a promptable video segmentation (PVS) model. Our approach strategically upgrades the pre-trained SAM to support PVS, significantly reducing training complexity and resource requirements. To achieve this, we introduce three key innovations: (i) an image-to-video feature extraction upgrader built upon SAM's static image encoder to enable spatiotemporal video perception, (ii) a memory filtering strategy that selects the most relevant past frames for more effective utilization of historical information, and (iii) a memory-as-prompt mechanism leveraging object memory to ensure temporally consistent mask propagation in dynamic scenes. Comprehensive experiments demonstrate that our method achieves over 90% of SAM 2's performance while using only 0.2% of its training cost. Our work presents a resource-efficient pathway to PVS, lowering barriers for further research in PVS model design and enabling broader applications and advancements in the field. Code and model are available at: https://github.com/showlab/SAM-I2V.

Authors:Chong Li, Xiangyang Xue, Jianfeng Feng, Taiping Zeng
Title: Latent Structured Hopfield Network for Semantic Association and Retrieval
Abstract:
Episodic memory enables humans to recall past experiences by associating semantic elements such as objects, locations, and time into coherent event representations. While large pretrained models have shown remarkable progress in modeling semantic memory, the mechanisms for forming associative structures that support episodic memory remain underexplored. Inspired by hippocampal CA3 dynamics and its role in associative memory, we propose the Latent Structured Hopfield Network (LSHN), a biologically inspired framework that integrates continuous Hopfield attractor dynamics into an autoencoder architecture. LSHN mimics the cortical-hippocampal pathway: a semantic encoder extracts compact latent representations, a latent Hopfield network performs associative refinement through attractor convergence, and a decoder reconstructs perceptual input. Unlike traditional Hopfield networks, our model is trained end-to-end with gradient descent, achieving scalable and robust memory retrieval. Experiments on MNIST, CIFAR-10, and a simulated episodic memory task demonstrate superior performance in recalling corrupted inputs under occlusion and noise, outperforming existing associative memory models. Our work provides a computational perspective on how semantic elements can be dynamically bound into episodic memory traces through biologically grounded attractor mechanisms. Code: https://github.com/fudan-birlab/LSHN.

Authors:Jinmei Liu, Fuhong Liu, Jianye Hao, Bo Wang, Huaxiong Li, Chunlin Chen, Zhi Wang
Title: Scalable In-Context Q-Learning
Abstract:
Recent advancements in language models have demonstrated remarkable in-context learning abilities, prompting the exploration of in-context reinforcement learning (ICRL) to extend the promise to decision domains. Due to involving more complex dynamics and temporal correlations, existing ICRL approaches may face challenges in learning from suboptimal trajectories and achieving precise in-context inference. In the paper, we propose \textbf{S}calable \textbf{I}n-\textbf{C}ontext \textbf{Q}-\textbf{L}earning (\textbf{SICQL}), an innovative framework that harnesses dynamic programming and world modeling to steer ICRL toward efficient reward maximization and task generalization, while retaining the scalability and stability of supervised pretraining. We design a prompt-based multi-head transformer architecture that simultaneously predicts optimal policies and in-context value functions using separate heads. We pretrain a generalized world model to capture task-relevant information, enabling the construction of a compact prompt that facilitates fast and precise in-context inference. During training, we perform iterative policy improvement by fitting a state value function to an upper-expectile of the Q-function, and distill the in-context value functions into policy extraction using advantage-weighted regression. Extensive experiments across a range of discrete and continuous environments show consistent performance gains over various types of baselines, especially when learning from suboptimal data. Our code is available at https://github.com/NJU-RL/SICQL

Authors:Jinmei Liu, Fuhong Liu, Jianye Hao, Bo Wang, Huaxiong Li, Chunlin Chen, Zhi Wang
Title: Scalable In-Context Q-Learning
Abstract:
Recent advancements in language models have demonstrated remarkable in-context learning abilities, prompting the exploration of in-context reinforcement learning (ICRL) to extend the promise to decision domains. Due to involving more complex dynamics and temporal correlations, existing ICRL approaches may face challenges in learning from suboptimal trajectories and achieving precise in-context inference. In the paper, we propose \textbf{S}calable \textbf{I}n-\textbf{C}ontext \textbf{Q}-\textbf{L}earning (\textbf{SICQL}), an innovative framework that harnesses dynamic programming and world modeling to steer ICRL toward efficient reward maximization and task generalization, while retaining the scalability and stability of supervised pretraining. We design a prompt-based multi-head transformer architecture that simultaneously predicts optimal policies and in-context value functions using separate heads. We pretrain a generalized world model to capture task-relevant information, enabling the construction of a compact prompt that facilitates fast and precise in-context inference. During training, we perform iterative policy improvement by fitting a state value function to an upper-expectile of the Q-function, and distill the in-context value functions into policy extraction using advantage-weighted regression. Extensive experiments across a range of discrete and continuous environments show consistent performance gains over various types of baselines, especially when learning from suboptimal data. Our code is available at https://github.com/NJU-RL/SICQL

Authors:Ya Wen, Jixuan Cai, Qiyao Ma, Linyan Li, Xinhua Chen, Chris Webster, Yulun Zhou
Title: MobCLIP: Learning General-purpose Geospatial Representation at Scale
Abstract:
Representation learning of geospatial locations remains a core challenge in achieving general geospatial intelligence. Current embedding methods often lack versatility, limiting their utility across diverse tasks in both human and natural domains. We present MobCLIP, the first nationwide general-purpose location encoder, integrating an unprecedented diversity of data modalities through effective and scalable multimodal fusion. Adopting a novel CLIP-based architecture, our framework aligns 100M+ POIs, nationwide remote sensing imagery, and structured demographic statistics with a billion-edge mobility graph. By tokenizing spatial locations into grid cells inspired by Vision Transformers, we establish a unified representation space bridging mobility patterns and multimodal features. To rigorously evaluate the general-purpose effectiveness of MobCLIP, we construct a benchmark dataset composed of 11 downstream prediction tasks across social, economic, and natural domains. Experiments show that MobCLIP, with four input modalities and a compact 128-dimensional representation space, achieves significantly superior general-purpose predictive performances than state-of-the-art models by an average of 35%. Thanks to the effective integration of human-centric modalities, the performance gain is particularly profound in human-centric tasks, such as energy consumption (+260%), offline retail consumption amount (+98%), and crime cases (+95%) predictions. Echoing LLM scaling laws, we further demonstrate the scaling behavior in geospatial representation learning. We open-source code and pretrained models at: https://github.com/ylzhouchris/MobCLIP.

Authors:Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Min Zhang, Wen Zhang, Huajun Chen
Title: Abstractive Visual Understanding of Multi-modal Structured Knowledge: A New Perspective for MLLM Evaluation
Abstract:
Multi-modal large language models (MLLMs) incorporate heterogeneous modalities into LLMs, enabling a comprehensive understanding of diverse scenarios and objects. Despite the proliferation of evaluation benchmarks and leaderboards for MLLMs, they predominantly overlook the critical capacity of MLLMs to comprehend world knowledge with structured abstractions that appear in visual form. To address this gap, we propose a novel evaluation paradigm and devise M3STR, an innovative benchmark grounded in the Multi-Modal Map for STRuctured understanding. This benchmark leverages multi-modal knowledge graphs to synthesize images encapsulating subgraph architectures enriched with multi-modal entities. M3STR necessitates that MLLMs not only recognize the multi-modal entities within the visual inputs but also decipher intricate relational topologies among them. We delineate the benchmark's statistical profiles and automated construction pipeline, accompanied by an extensive empirical analysis of 26 state-of-the-art MLLMs. Our findings reveal persistent deficiencies in processing abstractive visual information with structured knowledge, thereby charting a pivotal trajectory for advancing MLLMs' holistic reasoning capacities. Our code and data are released at https://github.com/zjukg/M3STR

Authors:Yudong Lu, Yazhe Niu, Shuai Hu, Haolin Wang
Title: CleanS2S: Single-file Framework for Proactive Speech-to-Speech Interaction
Abstract:
CleanS2S is a framework for human-like speech-to-speech interaction that advances conversational AI through single-file implementation and proactive dialogue capabilities. Our system integrates automatic speech recognition, large language models, and text-to-speech synthesis into a unified pipeline with real-time interruption handling, achieving low transition latency through full-duplex websocket connections and non-blocking I/O. Beyond conventional chatbot paradigms, we pioneer a proactive interaction mechanism, which combines memory systems with Subjective Action Judgement module, enabling five human-like response strategies: interruption, refusal, deflection, silence, and standard response. The memory module dynamically aggregates historical, and contextual data to inform interaction decisions. This approach breaks the rigid turn-based convention by allowing system-initiated dialog control and context-aware response selection. And we propose Action Judgement SFT that assesses input streams for responses strategies. The framework's single-file implementation with atomic configurations offers researchers unprecedented transparency and extensibility for interaction agents. The code of CleanS2S is released at \https://github.com/opendilab/CleanS2S.

Authors:Jisoo Mok, Ik-hwan Kim, Sangkwon Park, Sungroh Yoon
Title: Exploring the Potential of LLMs as Personalized Assistants: Dataset, Evaluation, and Analysis
Abstract:
Personalized AI assistants, a hallmark of the human-like capabilities of Large Language Models (LLMs), are a challenging application that intertwines multiple problems in LLM research. Despite the growing interest in the development of personalized assistants, the lack of an open-source conversational dataset tailored for personalization remains a significant obstacle for researchers in the field. To address this research gap, we introduce HiCUPID, a new benchmark to probe and unleash the potential of LLMs to deliver personalized responses. Alongside a conversational dataset, HiCUPID provides a Llama-3.2-based automated evaluation model whose assessment closely mirrors human preferences. We release our dataset, evaluation model, and code at https://github.com/12kimih/HiCUPID.

Authors:Yimin Du
Title: Memory-Efficient FastText: A Comprehensive Approach Using Double-Array Trie Structures and Mark-Compact Memory Management
Abstract:
FastText has established itself as a fundamental algorithm for learning word representations, demonstrating exceptional capability in handling out-of-vocabulary words through character-level n-gram embeddings. However, its hash-based bucketing mechanism introduces critical limitations for large-scale industrial deployment: hash collisions cause semantic drift, and memory requirements become prohibitively expensive when dealing with real-world vocabularies containing millions of terms. This paper presents a comprehensive memory optimization framework that fundamentally reimagines FastText's memory management through the integration of double-array trie (DA-trie) structures and mark-compact garbage collection principles. Our approach leverages the linguistic insight that n-grams sharing common prefixes or suffixes exhibit highly correlated embeddings due to co-occurrence patterns in natural language. By systematically identifying and merging semantically similar embeddings based on structural relationships, we achieve compression ratios of 4:1 to 10:1 while maintaining near-perfect embedding quality. The algorithm consists of four sophisticated phases: prefix trie construction with embedding mapping, prefix-based similarity compression, suffix-based similarity compression, and mark-compact memory reorganization. Comprehensive experiments on a 30-million Chinese vocabulary dataset demonstrate memory reduction from over 100GB to approximately 30GB with negligible performance degradation. Our industrial deployment results show significant cost reduction, faster loading times, and improved model reliability through the elimination of hash collision artifacts. Code and experimental implementations are available at: https://github.com/initial-d/me_fasttext

Authors:Shufeng Kong, Xingru Yang, Yuanyuan Wei, Zijie Wang, Hao Tang, Jiuqi Qin, Shuting Lan, Yingheng Wang, Junwen Bai, Zhuangbin Chen, Zibin Zheng, Caihua Liu, Hao Liang
Title: MTCMB: A Multi-Task Benchmark Framework for Evaluating LLMs on Knowledge, Reasoning, and Safety in Traditional Chinese Medicine
Abstract:
Traditional Chinese Medicine (TCM) is a holistic medical system with millennia of accumulated clinical experience, playing a vital role in global healthcare-particularly across East Asia. However, the implicit reasoning, diverse textual forms, and lack of standardization in TCM pose major challenges for computational modeling and evaluation. Large Language Models (LLMs) have demonstrated remarkable potential in processing natural language across diverse domains, including general medicine. Yet, their systematic evaluation in the TCM domain remains underdeveloped. Existing benchmarks either focus narrowly on factual question answering or lack domain-specific tasks and clinical realism. To fill this gap, we introduce MTCMB-a Multi-Task Benchmark for Evaluating LLMs on TCM Knowledge, Reasoning, and Safety. Developed in collaboration with certified TCM experts, MTCMB comprises 12 sub-datasets spanning five major categories: knowledge QA, language understanding, diagnostic reasoning, prescription generation, and safety evaluation. The benchmark integrates real-world case records, national licensing exams, and classical texts, providing an authentic and comprehensive testbed for TCM-capable models. Preliminary results indicate that current LLMs perform well on foundational knowledge but fall short in clinical reasoning, prescription planning, and safety compliance. These findings highlight the urgent need for domain-aligned benchmarks like MTCMB to guide the development of more competent and trustworthy medical AI systems. All datasets, code, and evaluation tools are publicly available at: https://github.com/Wayyuanyuan/MTCMB.

Authors:SungHo Kim, Nayeon Kim, Taehee Jeon, SangKeun Lee
Title: Polishing Every Facet of the GEM: Testing Linguistic Competence of LLMs and Humans in Korean
Abstract:
We introduce the $\underline{Ko}rean \underline{G}rammar \underline{E}valuation Bench\underline{M}ark (KoGEM)$, designed to assess the linguistic competence of LLMs and humans in Korean. KoGEM consists of 1.5k multiple-choice QA pairs covering five main categories and 16 subcategories. The zero-shot evaluation of 27 LLMs of various sizes and types reveals that while LLMs perform remarkably well on straightforward tasks requiring primarily definitional knowledge, they struggle with tasks that demand the integration of real-world experiential knowledge, such as phonological rules and pronunciation. Furthermore, our in-depth analysis suggests that incorporating such experiential knowledge could enhance the linguistic competence of LLMs. With KoGEM, we not only highlight the limitations of current LLMs in linguistic competence but also uncover hidden facets of LLMs in linguistic competence, paving the way for enhancing comprehensive language understanding. Our code and dataset are available at: https://github.com/SungHo3268/KoGEM.

Authors:Majdi Hassan, Cristian Gabellini, Hatem Helal, Dominique Beaini, Kirill Neklyudov
Title: Self-Refining Training for Amortized Density Functional Theory
Abstract:
Density Functional Theory (DFT) allows for predicting all the chemical and physical properties of molecular systems from first principles by finding an approximate solution to the many-body Schrödinger equation. However, the cost of these predictions becomes infeasible when increasing the scale of the energy evaluations, e.g., when calculating the ground-state energy for simulating molecular dynamics. Recent works have demonstrated that, for substantially large datasets of molecular conformations, Deep Learning-based models can predict the outputs of the classical DFT solvers by amortizing the corresponding optimization problems. In this paper, we propose a novel method that reduces the dependency of amortized DFT solvers on large pre-collected datasets by introducing a self-refining training strategy. Namely, we propose an efficient method that simultaneously trains a deep-learning model to predict the DFT outputs and samples molecular conformations that are used as training data for the model. We derive our method as a minimization of the variational upper bound on the KL-divergence measuring the discrepancy between the generated samples and the target Boltzmann distribution defined by the ground state energy. To demonstrate the utility of the proposed scheme, we perform an extensive empirical study comparing it with the models trained on the pre-collected datasets. Finally, we open-source our implementation of the proposed algorithm, optimized with asynchronous training and sampling stages, which enables simultaneous sampling and training. Code is available at https://github.com/majhas/self-refining-dft.

Authors:William B. James
Title: Iola Walker: A Mobile Footfall Detection System for Music Composition
Abstract:
This outing is part of a larger music technology research project. The objective is to find a method for materially enhancing music using hardware and software. There is a strong likelihood that there exists a new medium for experiencing music via a wearable device that ordinary listeners prefer over the current state of the art. If such a medium is discovered, it is a step towards altruistic, prosocial reform in the music industry. A new playback system infrastructure has a chance to soothe some of the societal problems tied to the larger entertainment industry ecosystem. Iola walker is a music playback system that allows musicians to compose music that changes in accordance with the listener's gait. Artifacts are available here: https://github.com/willbjames/iolawalker

Authors:Antonia Karamolegkou, Oliver Eberle, Phillip Rust, Carina Kauf, Anders Søgaard
Title: Trick or Neat: Adversarial Ambiguity and Language Model Evaluation
Abstract:
Detecting ambiguity is important for language understanding, including uncertainty estimation, humour detection, and processing garden path sentences. We assess language models' sensitivity to ambiguity by introducing an adversarial ambiguity dataset that includes syntactic, lexical, and phonological ambiguities along with adversarial variations (e.g., word-order changes, synonym replacements, and random-based alterations). Our findings show that direct prompting fails to robustly identify ambiguity, while linear probes trained on model representations can decode ambiguity with high accuracy, sometimes exceeding 90\%. Our results offer insights into the prompting paradigm and how language models encode ambiguity at different layers. We release both our code and data: https://github.com/coastalcph/lm_ambiguity.

Authors:Mark Muchane, Sean Richardson, Kiho Park, Victor Veitch
Title: Incorporating Hierarchical Semantics in Sparse Autoencoder Architectures
Abstract:
Sparse dictionary learning (and, in particular, sparse autoencoders) attempts to learn a set of human-understandable concepts that can explain variation on an abstract space. A basic limitation of this approach is that it neither exploits nor represents the semantic relationships between the learned concepts. In this paper, we introduce a modified SAE architecture that explicitly models a semantic hierarchy of concepts. Application of this architecture to the internal representations of large language models shows both that semantic hierarchy can be learned, and that doing so improves both reconstruction and interpretability. Additionally, the architecture leads to significant improvements in computational efficiency.

Authors:Aleksandr Kutsakov, Alexandr Maximenko, Georgii Gospodinov, Pavel Bogomolov, Fyodor Minkin
Title: GigaAM: Efficient Self-Supervised Learner for Speech Recognition
Abstract:
Self-Supervised Learning (SSL) has demonstrated strong performance in speech processing, particularly in automatic speech recognition. In this paper, we explore an SSL pretraining framework that leverages masked language modeling with targets derived from a speech recognition model. We also present chunkwise attention with dynamic chunk size sampling during pretraining to enable both full-context and streaming fine-tuning. Our experiments examine scaling with respect to model size and the amount of data. Using our method, we train the GigaAM family of models, including a state-of-the-art model for Russian speech recognition that outperforms Whisper-large-v3 by 50%. We have released our foundation and ASR models, along with the inference code, under the MIT license as open-source resources to the research community. Available at https://github.com/salute-developers/gigaam.

Authors:Erhan Xu, Kai Ye, Hongyi Zhou, Luhan Zhu, Francesco Quinzan, Chengchun Shi
Title: Doubly Robust Alignment for Large Language Models
Abstract:
This paper studies reinforcement learning from human feedback (RLHF) for aligning large language models with human preferences. While RLHF has demonstrated promising results, many algorithms are highly sensitive to misspecifications in the underlying preference model (e.g., the Bradley-Terry model), the reference policy, or the reward function, resulting in undesirable fine-tuning. To address model misspecification, we propose a doubly robust preference optimization algorithm that remains consistent when either the preference model or the reference policy is correctly specified (without requiring both). Our proposal demonstrates superior and more robust performance than state-of-the-art algorithms, both in theory and in practice. The code is available at https://github.com/DRPO4LLM/DRPO4LLM

Authors:Xintong Sun, Chi Wei, Minghao Tian, Shiwen Ni
Title: Earley-Driven Dynamic Pruning for Efficient Structured Decoding
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities, yet ensuring their outputs conform to strict structural or grammatical constraints remains challenging, which is critical in function calls and domain-specific language (DSL) generation. Constrained decoding with context-free grammar is a flexible approach to guarantee LLMs' adherence to a specific format by dynamically building a token logits mask. However, creating this mask requires checking the validity of all tokens in the LLM vocabulary at every decoding step, which often incurs significant overheads in existing constrained decoding engines. To address this challenge, we propose $\textbf{ZapFormat}$, a novel $\textbf{dynamic pruning}$ strategy based on the Earley algorithm that identifies and eliminates invalid or redundant Earley states in real-time, significantly reducing memory occupation of the Earley algorithm's states. This further enables us to use a state cache to speed up structured generations on a large number of queries. We implemented ZapFormat in a new constrained decoding engine called Formatron which also incorporates existing optimizations. Through comprehensive experiments on structured generation tasks, including JSON generation, JSON Schema validation, and semantic parsing, we demonstrate that Formatron not only $\textbf{consistently maintains}$ high-precision compliant outputs but also achieves $\textbf{significant improvements}$ in inference speed up to 2x compared to state-of-the-art implementations. More importantly, Formatron is generally applicable across various LLM architectures. We release Formatron as open source at https://github.com/Dan-wanna-M/formatron.

Authors:Chenxiang Ma, Xinyi Chen, Kay Chen Tan, Jibin Wu
Title: Spatio-Temporal Decoupled Learning for Spiking Neural Networks
Abstract:
Spiking neural networks (SNNs) have gained significant attention for their potential to enable energy-efficient artificial intelligence. However, effective and efficient training of SNNs remains an unresolved challenge. While backpropagation through time (BPTT) achieves high accuracy, it incurs substantial memory overhead. In contrast, biologically plausible local learning methods are more memory-efficient but struggle to match the accuracy of BPTT. To bridge this gap, we propose spatio-temporal decouple learning (STDL), a novel training framework that decouples the spatial and temporal dependencies to achieve both high accuracy and training efficiency for SNNs. Specifically, to achieve spatial decoupling, STDL partitions the network into smaller subnetworks, each of which is trained independently using an auxiliary network. To address the decreased synergy among subnetworks resulting from spatial decoupling, STDL constructs each subnetwork's auxiliary network by selecting the largest subset of layers from its subsequent network layers under a memory constraint. Furthermore, STDL decouples dependencies across time steps to enable efficient online learning. Extensive evaluations on seven static and event-based vision datasets demonstrate that STDL consistently outperforms local learning methods and achieves comparable accuracy to the BPTT method with considerably reduced GPU memory cost. Notably, STDL achieves 4x reduced GPU memory than BPTT on the ImageNet dataset. Therefore, this work opens up a promising avenue for memory-efficient SNN training. Code is available at https://github.com/ChenxiangMA/STDL.

Authors:Yavuz Bakman, Duygu Nur Yaldiz, Sungmin Kang, Tuo Zhang, Baturalp Buyukates, Salman Avestimehr, Sai Praneeth Karimireddy
Title: Reconsidering LLM Uncertainty Estimation Methods in the Wild
Abstract:
Large Language Model (LLM) Uncertainty Estimation (UE) methods have become a crucial tool for detecting hallucinations in recent years. While numerous UE methods have been proposed, most existing studies evaluate them in isolated short-form QA settings using threshold-independent metrics such as AUROC or PRR. However, real-world deployment of UE methods introduces several challenges. In this work, we systematically examine four key aspects of deploying UE methods in practical settings. Specifically, we assess (1) the sensitivity of UE methods to decision threshold selection, (2) their robustness to query transformations such as typos, adversarial prompts, and prior chat history, (3) their applicability to long-form generation, and (4) strategies for handling multiple UE scores for a single query. Our evaluations on 19 UE methods reveal that most of them are highly sensitive to threshold selection when there is a distribution shift in the calibration dataset. While these methods generally exhibit robustness against previous chat history and typos, they are significantly vulnerable to adversarial prompts. Additionally, while existing UE methods can be adapted for long-form generation through various strategies, there remains considerable room for improvement. Lastly, ensembling multiple UE scores at test time provides a notable performance boost, which highlights its potential as a practical improvement strategy. Code is available at: https://github.com/duygunuryldz/uncertainty_in_the_wild.

Authors:Shunian Chen, Xinyuan Xie, Zheshu Chen, Liyan Zhao, Owen Lee, Zhan Su, Qilin Sun, Benyou Wang
Title: FusionAudio-1.2M: Towards Fine-grained Audio Captioning with Multimodal Contextual Fusion
Abstract:
High-quality, large-scale audio captioning is crucial for advancing audio understanding, yet current automated methods often generate captions that lack fine-grained detail and contextual accuracy, primarily due to their reliance on limited unimodal or superficial multimodal information. Drawing inspiration from human auditory perception, which adeptly integrates cross-modal cues and performs sophisticated auditory scene analysis, we introduce a novel two-stage automated pipeline. This pipeline first employs specialized pretrained models to extract diverse contextual cues (e.g., speech, music, general sounds, and visual information from associated video). A large language model (LLM) then synthesizes these rich, multimodal inputs to generate detailed and context-aware audio captions. Key contributions of this work include: (1) the proposed scalable method for fine-grained audio caption generation; (2) FusionAudio, a new large-scale dataset comprising 1.2 million such detailed captions, combined with 6 million QA pairs; and (3) enhanced audio models developed using FusionAudio, specifically a CLAP-based audio encoder with superior audio-text alignment and instruction following. This paper paves the way for more nuanced and accurate automated understanding of complex audio environments. Code and data can be found in https://github.com/satsuki2486441738/FusionAudio.

Authors:Metehan Oguz, Yavuz Bakman, Duygu Nur Yaldiz
Title: Un-considering Contextual Information: Assessing LLMs' Understanding of Indexical Elements
Abstract:
Large Language Models (LLMs) have demonstrated impressive performances in tasks related to coreference resolution. However, previous studies mostly assessed LLM performance on coreference resolution with nouns and third person pronouns. This study evaluates LLM performance on coreference resolution with indexical like I, you, here and tomorrow, which come with unique challenges due to their linguistic properties. We present the first study examining how LLMs interpret indexicals in English, releasing the English Indexical Dataset with 1600 multiple-choice questions. We evaluate pioneering LLMs, including GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Pro, and DeepSeek V3. Our results reveal that LLMs exhibit an impressive performance with some indexicals (I), while struggling with others (you, here, tomorrow), and that syntactic cues (e.g. quotation) contribute to LLM performance with some indexicals, while they reduce performance with others. Code and data are available at: https://github.com/metehanoguzz/LLMs-Indexicals-English.

Authors:Saibo Geng, Nathan Ranchin, Yunzhen yao, Maxime Peyrard, Chris Wendler, Michael Gastpar, Robert West
Title: zip2zip: Inference-Time Adaptive Vocabularies for Language Models via Token Compression
Abstract:
Tokenization efficiency plays a critical role in the performance and cost of large language models (LLMs), yet most models rely on static tokenizers optimized for general-purpose corpora. These tokenizers' fixed vocabularies often fail to adapt to domain- or language-specific inputs, leading to longer token sequences and higher computational costs. We introduce zip2zip, a framework that enables LLMs to dynamically adjust token vocabulary at inference time, allowing for fewer generated tokens and thus faster inference. zip2zip consists of three key components: (1) a tokenizer based on Lempel-Ziv-Welch (LZW) compression that incrementally compresses tokens into reusable "hypertokens" on the fly; (2) an embedding layer that computes embeddings for newly formed hypertokens at runtime; and (3) a causal language modeling variant that trains the model to operate on hypertokenized, compressed sequences. We show that an existing LLM can be zip2zip-fied in 10 GPU-hours via parameter-efficient finetuning. The resulting zip2zip LLMs effectively learn to use hypertokens at inference time, reducing input and output sequence length by 20-60\%, with significant improvements in inference latency.

Authors:Long Qian, Eric Wang, Bernardo Subercaseaux, Marijn J. H. Heule
Title: Unfolding Boxes with Local Constraints
Abstract:
We consider the problem of finding and enumerating polyominos that can be folded into multiple non-isomorphic boxes. While several computational approaches have been proposed, including SAT, randomized algorithms, and decision diagrams, none has been able to perform at scale. We argue that existing SAT encodings are hindered by the presence of global constraints (e.g., graph connectivity or acyclicity), which are generally hard to encode effectively and hard for solvers to reason about. In this work, we propose a new SAT-based approach that replaces these global constraints with simple local constraints that have substantially better propagation properties. Our approach dramatically improves the scalability of both computing and enumerating common box unfoldings: (i) while previous approaches could only find common unfoldings of two boxes up to area 88, ours easily scales beyond 150, and (ii) while previous approaches were only able to enumerate common unfoldings up to area 30, ours scales up to 60. This allows us to rule out 46, 54, and 58 as the smallest areas allowing a common unfolding of three boxes, thereby refuting a conjecture of Xu et al. (2017).

Authors:Yufei Zhan, Ziheng Wu, Yousong Zhu, Rongkun Xue, Ruipu Luo, Zhenghao Chen, Can Zhang, Yifan Li, Zhentao He, Zheming Yang, Ming Tang, Minghui Qiu, Jinqiao Wang
Title: GThinker: Towards General Multimodal Reasoning via Cue-Guided Rethinking
Abstract:
Despite notable advancements in multimodal reasoning, leading Multimodal Large Language Models (MLLMs) still underperform on vision-centric multimodal reasoning tasks in general scenarios. This shortfall stems from their predominant reliance on logic- and knowledge-based slow thinking strategies, while effective for domains like math and science, fail to integrate visual information effectively during reasoning. Consequently, these models often fail to adequately ground visual cues, resulting in suboptimal performance in tasks that require multiple plausible visual interpretations and inferences. To address this, we present GThinker (General Thinker), a novel reasoning MLLM excelling in multimodal reasoning across general scenarios, mathematics, and science. GThinker introduces Cue-Rethinking, a flexible reasoning pattern that grounds inferences in visual cues and iteratively reinterprets these cues to resolve inconsistencies. Building on this pattern, we further propose a two-stage training pipeline, including pattern-guided cold start and incentive reinforcement learning, designed to enable multimodal reasoning capabilities across domains. Furthermore, to support the training, we construct GThinker-11K, comprising 7K high-quality, iteratively-annotated reasoning paths and 4K curated reinforcement learning samples, filling the data gap toward general multimodal reasoning. Extensive experiments demonstrate that GThinker achieves 81.5% on the challenging comprehensive multimodal reasoning benchmark M$^3$CoT, surpassing the latest O4-mini model. It also shows an average improvement of 2.1% on general scenario multimodal reasoning benchmarks, while maintaining on-par performance in mathematical reasoning compared to counterpart advanced reasoning models. The code, model, and data will be released soon at https://github.com/jefferyZhan/GThinker.

Authors:Yueqian Guo, Tianzhao Li, Xin Lyu, Jiehaolin Chen, Zhaohan Wang, Sirui Xiao, Yurun Chen, Yezi He, Helin Li, Fan Zhang
Title: TRiMM: Transformer-Based Rich Motion Matching for Real-Time multi-modal Interaction in Digital Humans
Abstract:
Large Language Model (LLM)-driven digital humans have sparked a series of recent studies on co-speech gesture generation systems. However, existing approaches struggle with real-time synthesis and long-text comprehension. This paper introduces Transformer-Based Rich Motion Matching (TRiMM), a novel multi-modal framework for real-time 3D gesture generation. Our method incorporates three modules: 1) a cross-modal attention mechanism to achieve precise temporal alignment between speech and gestures; 2) a long-context autoregressive model with a sliding window mechanism for effective sequence modeling; 3) a large-scale gesture matching system that constructs an atomic action library and enables real-time retrieval. Additionally, we develop a lightweight pipeline implemented in the Unreal Engine for experimentation. Our approach achieves real-time inference at 120 fps and maintains a per-sentence latency of 0.15 seconds on consumer-grade GPUs (Geforce RTX3060). Extensive subjective and objective evaluations on the ZEGGS, and BEAT datasets demonstrate that our model outperforms current state-of-the-art methods. TRiMM enhances the speed of co-speech gesture generation while ensuring gesture quality, enabling LLM-driven digital humans to respond to speech in real time and synthesize corresponding gestures. Our code is available at https://github.com/teroon/TRiMM-Transformer-Based-Rich-Motion-Matching

Authors:Amir Hossein Kargaran, Yihong Liu, François Yvon, Hinrich Schütze
Title: How Programming Concepts and Neurons Are Shared in Code Language Models
Abstract:
Several studies have explored the mechanisms of large language models (LLMs) in coding tasks, but most have focused on programming languages (PLs) in a monolingual setting. In this paper, we investigate the relationship between multiple PLs and English in the concept space of LLMs. We perform a few-shot translation task on 21 PL pairs using two Llama-based models. By decoding the embeddings of intermediate layers during this task, we observe that the concept space is closer to English (including PL keywords) and assigns high probabilities to English tokens in the second half of the intermediate layers. We analyze neuron activations for 11 PLs and English, finding that while language-specific neurons are primarily concentrated in the bottom layers, those exclusive to each PL tend to appear in the top layers. For PLs that are highly aligned with multiple other PLs, identifying language-specific neurons is not feasible. These PLs also tend to have a larger keyword set than other PLs and are closer to the model's concept space regardless of the input/output PL in the translation task. Our findings provide insights into how LLMs internally represent PLs, revealing structural patterns in the model's concept space. Code is available at https://github.com/cisnlp/code-specific-neurons.

Authors:Yudong Zhang, Ruobing Xie, Yiqing Huang, Jiansheng Chen, Xingwu Sun, Zhanhui Kang, Di Wang, Yu Wang
Title: Fighting Fire with Fire (F3): A Training-free and Efficient Visual Adversarial Example Purification Method in LVLMs
Abstract:
Recent advances in large vision-language models (LVLMs) have showcased their remarkable capabilities across a wide range of multimodal vision-language tasks. However, these models remain vulnerable to visual adversarial attacks, which can substantially compromise their performance. In this paper, we introduce F3, a novel adversarial purification framework that employs a counterintuitive ``fighting fire with fire'' strategy: intentionally introducing simple perturbations to adversarial examples to mitigate their harmful effects. Specifically, F3 leverages cross-modal attentions derived from randomly perturbed adversary examples as reference targets. By injecting noise into these adversarial examples, F3 effectively refines their attention, resulting in cleaner and more reliable model outputs. Remarkably, this seemingly paradoxical approach of employing noise to counteract adversarial attacks yields impressive purification results. Furthermore, F3 offers several distinct advantages: it is training-free and straightforward to implement, and exhibits significant computational efficiency improvements compared to existing purification methods. These attributes render F3 particularly suitable for large-scale industrial applications where both robust performance and operational efficiency are critical priorities. The code is available at https://github.com/btzyd/F3.

Authors:Dahyeon Kye, Changhyun Roh, Sukhun Ko, Chanho Eom, Jihyong Oh
Title: AceVFI: A Comprehensive Survey of Advances in Video Frame Interpolation
Abstract:
Video Frame Interpolation (VFI) is a fundamental Low-Level Vision (LLV) task that synthesizes intermediate frames between existing ones while maintaining spatial and temporal coherence. VFI techniques have evolved from classical motion compensation-based approach to deep learning-based approach, including kernel-, flow-, hybrid-, phase-, GAN-, Transformer-, Mamba-, and more recently diffusion model-based approach. We introduce AceVFI, the most comprehensive survey on VFI to date, covering over 250+ papers across these approaches. We systematically organize and describe VFI methodologies, detailing the core principles, design assumptions, and technical characteristics of each approach. We categorize the learning paradigm of VFI methods namely, Center-Time Frame Interpolation (CTFI) and Arbitrary-Time Frame Interpolation (ATFI). We analyze key challenges of VFI such as large motion, occlusion, lighting variation, and non-linear motion. In addition, we review standard datasets, loss functions, evaluation metrics. We examine applications of VFI including event-based, cartoon, medical image VFI and joint VFI with other LLV tasks. We conclude by outlining promising future research directions to support continued progress in the field. This survey aims to serve as a unified reference for both newcomers and experts seeking a deep understanding of modern VFI landscapes.

Authors:Attila Szász, Balázs Bánhelyi, Márk Jelasity
Title: No Soundness in the Real World: On the Challenges of the Verification of Deployed Neural Networks
Abstract:
The ultimate goal of verification is to guarantee the safety of deployed neural networks. Here, we claim that all the state-of-the-art verifiers we are aware of fail to reach this goal. Our key insight is that theoretical soundness (bounding the full-precision output while computing with floating point) does not imply practical soundness (bounding the floating point output in a potentially stochastic environment). We prove this observation for the approaches that are currently used to achieve provable theoretical soundness, such as interval analysis and its variants. We also argue that achieving practical soundness is significantly harder computationally. We support our claims empirically as well by evaluating several well-known verification methods. To mislead the verifiers, we create adversarial networks that detect and exploit features of the deployment environment, such as the order and precision of floating point operations. We demonstrate that all the tested verifiers are vulnerable to our new deployment-specific attacks, which proves that they are not practically sound.

Authors:Siyuan Li, Juanxi Tian, Zedong Wang, Xin Jin, Zicheng Liu, Wentao Zhang, Dan Xu
Title: Taming LLMs by Scaling Learning Rates with Gradient Grouping
Abstract:
Training large language models (LLMs) poses challenges due to their massive scale and heterogeneous architectures. While adaptive optimizers like AdamW help address gradient variations, they still struggle with efficient and effective parameter-wise learning rate estimation, resulting in training instability, slow convergence, and poor compatibility with parameter-efficient fine-tuning (PEFT) techniques. This work introduces Scaling with Gradient Grouping (SGG), an optimizer wrapper that improves adaptive learning rate estimation by dynamic grouping and group-specific scaling. SGG first groups gradient statistics in each layer into clusters and then applies cluster-specific scaling to calibrate learning rates for each parameter, thus imposing collective group-wise constraints while maintaining precise per-parameter adaptation. Experiments on diverse (M)LLM benchmarks show that SGG integrates seamlessly with existing optimizers, and offers consistent gains and faster convergence over baselines, with various model sizes. Its stability across varying batch sizes and learning rates establishes SGG as a robust choice for LLM optimization.

Authors:Wei Song, Zhenya Huang, Cheng Cheng, Weibo Gao, Bihan Xu, GuanHao Zhao, Fei Wang, Runze Wu
Title: IRT-Router: Effective and Interpretable Multi-LLM Routing via Item Response Theory
Abstract:
Large language models (LLMs) have demonstrated exceptional performance across a wide range of natural language tasks. However, selecting the optimal LLM to respond to a user query often necessitates a delicate balance between performance and cost. While powerful models deliver better results, they come at a high cost, whereas smaller models are more cost-effective but less capable. To address this trade-off, we propose IRT-Router, a multi-LLM routing framework that efficiently routes user queries to the most suitable LLM. Inspired by Item Response Theory (IRT), a psychological measurement methodology, IRT-Router explicitly models the relationship between LLM capabilities and user query attributes. This not only enables accurate prediction of response performance but also provides interpretable insights, such as LLM abilities and query difficulty. Additionally, we design an online query warm-up technique based on semantic similarity, further enhancing the online generalization capability of IRT-Router. Extensive experiments on 20 LLMs and 12 datasets demonstrate that IRT-Router outperforms most baseline methods in terms of effectiveness and interpretability. Its superior performance in cold-start scenarios further confirms the reliability and practicality of IRT-Router in real-world applications. Code is available at https://github.com/Mercidaiha/IRT-Router.

Authors:Phan Anh Duong, Cat Luong, Divyesh Bommana, Tianyu Jiang
Title: CHEER-Ekman: Fine-grained Embodied Emotion Classification
Abstract:
Emotions manifest through physical experiences and bodily reactions, yet identifying such embodied emotions in text remains understudied. We present an embodied emotion classification dataset, CHEER-Ekman, extending the existing binary embodied emotion dataset with Ekman's six basic emotion categories. Using automatic best-worst scaling with large language models, we achieve performance superior to supervised approaches on our new dataset. Our investigation reveals that simplified prompting instructions and chain-of-thought reasoning significantly improve emotion recognition accuracy, enabling smaller models to achieve competitive performance with larger ones. Our dataset is publicly available at: https://github.com/menamerai/cheer-ekman.

Authors:Yu Zheng, Yuan Yuan, Yong Li, Paolo Santi
Title: Probing Neural Topology of Large Language Models
Abstract:
Probing large language models (LLMs) has yielded valuable insights into their internal mechanisms by linking neural representations to interpretable semantics. However, how neurons functionally co-activate with each other to give rise to emergent capabilities remains largely unknown, hindering a deeper understanding and safer development of LLMs. In this work, we introduce graph probing, a method for uncovering the functional connectivity topology of LLM neurons and relating it to language generation performance. By analyzing internal neural graphs across diverse LLM families and scales, we discover a universal predictability of next-token prediction performance using only neural topology. This predictability is robust even when retaining just 1% of neuron connections or probing models after only 8 pretraining steps, highlighting the sparsity and early emergence of topological patterns. Further graph matching analysis suggests that, despite significant distinctions in architectures, parameters, and training data, different LLMs develop intricate and consistent neural topological structures that may form the foundation for their language generation abilities. Codes and data for the graph probing toolbox are released at https://github.com/DavyMorgan/llm-graph-probing.

Authors:Yu Zheng, Yuan Yuan, Yue Zhuo, Yong Li, Paolo Santi
Title: Probing Neural Topology of Large Language Models
Abstract:
Probing large language models (LLMs) has yielded valuable insights into their internal mechanisms by linking neural activations to interpretable semantics. However, the complex mechanisms that link neuron's functional co-activation with the emergent model capabilities remains largely unknown, hindering a deeper understanding and safer development of LLMs. In this work, we introduce graph probing, a method for uncovering the functional connectivity of LLM neurons and relating it to language generation performance. By probing models across diverse LLM families and scales, we discover a universal predictability of next-token prediction performance using only neural topology, which persists even when retaining just 1% of neuron connections. Strikingly, probing on topology outperforms probing on activation by up to 130.4%, suggesting that neural topology contains orders of richer information of LLM performance than neural activation, which can be easily extracted with simple linear or MLP probes. To explain the dependence between neural topology and language performance, we identify default networks and hub neurons in LLMs and provide causal evidence by interventional experiments on multiple benchmarks, showing that LLMs actually exploit these topological information. Further analyses suggest that neural topology can be effectively leveraged to improve the efficiency, reliability, and safety of LLMs through proof-of-concept applications in model pruning, hallucination detection, and LLM fingerprinting. Codes and data for the graph probing toolbox are available at https://github.com/DavyMorgan/llm-graph-probing.

Authors:Zuzheng Kuang, Haixia Bi, Chen Xu, Jian Sun
Title: ECP-Mamba: An Efficient Multi-scale Self-supervised Contrastive Learning Method with State Space Model for PolSAR Image Classification
Abstract:
Recently, polarimetric synthetic aperture radar (PolSAR) image classification has been greatly promoted by deep neural networks. However,current deep learning-based PolSAR classification methods encounter difficulties due to its dependence on extensive labeled data and the computational inefficiency of architectures like Transformers. This paper presents ECP-Mamba, an efficient framework integrating multi-scale self-supervised contrastive learning with a state space model (SSM) backbone. Specifically, ECP-Mamba addresses annotation scarcity through a multi-scale predictive pretext task based on local-to-global feature correspondences, which uses a simplified self-distillation paradigm without negative sample pairs. To enhance computational efficiency,the Mamba architecture (a selective SSM) is first tailored for pixel-wise PolSAR classification task by designing a spiral scan strategy. This strategy prioritizes causally relevant features near the central pixel, leveraging the localized nature of pixel-wise classification tasks. Additionally, the lightweight Cross Mamba module is proposed to facilitates complementary multi-scale feature interaction with minimal overhead. Extensive experiments across four benchmark datasets demonstrate ECP-Mamba's effectiveness in balancing high accuracy with resource efficiency. On the Flevoland 1989 dataset, ECP-Mamba achieves state-of-the-art performance with an overall accuracy of 99.70%, average accuracy of 99.64% and Kappa coefficient of 99.62e-2. Our code will be available at https://github.com/HaixiaBi1982/ECP_Mamba.

Authors:Yuyuan Liu, Yuanhong Chen, Chong Wang, Junlin Han, Junde Wu, Can Peng, Jingkun Chen, Yu Tian, Gustavo Carneiro
Title: AuralSAM2: Enabling SAM2 Hear Through Pyramid Audio-Visual Feature Prompting
Abstract:
Segment Anything Model 2 (SAM2) exhibits strong generalisation for promptable segmentation in video clips; however, its integration with the audio modality remains underexplored. Existing approaches mainly follow two directions: (1) injecting adapters into the image encoder to receive audio signals, which incurs efficiency costs during prompt engineering, and (2) leveraging additional foundation models to generate visual prompts for the sounding objects, which are often imprecisely localised, leading to misguidance in SAM2. Moreover, these methods overlook the rich semantic interplay between hierarchical visual features and other modalities, resulting in suboptimal cross-modal fusion. In this work, we propose AuralSAM2, comprising the novel AuralFuser module, which externally attaches to SAM2 to integrate features from different modalities and generate feature-level prompts, guiding SAM2's decoder in segmenting sounding targets. Such integration is facilitated by a feature pyramid, further refining semantic understanding and enhancing object awareness in multimodal scenarios. Additionally, the audio-guided contrastive learning is introduced to explicitly align audio and visual representations and to also mitigate biases caused by dominant visual patterns. Results on public benchmarks show that our approach achieves remarkable improvements over the previous methods in the field. Code is available at https://github.com/yyliu01/AuralSAM2.

Authors:Chengyi Cai, Zesheng Ye, Lei Feng, Jianzhong Qi, Feng Liu
Title: Understanding Model Reprogramming for CLIP via Decoupling Visual Prompts
Abstract:
Model reprogramming adapts pretrained models to downstream tasks by modifying only the input and output spaces. Visual reprogramming (VR) is one instance for vision tasks that adds a trainable noise pattern (i.e., a visual prompt) to input images to facilitate downstream classification. The existing VR approaches for CLIP train a single visual prompt using all descriptions of different downstream classes. However, the limited learning capacity may result in (1) a failure to capture diverse aspects of the descriptions (e.g., shape, color, and texture), and (2) a possible bias toward less informative attributes that do not help distinguish between classes. In this paper, we introduce a decoupling-and-reweighting framework. Our decoupled visual prompts (DVP) are optimized using descriptions grouped by explicit causes (DVP-cse) or unsupervised clusters (DVP-cls). Then, we integrate the outputs of these visual prompts with a probabilistic reweighting matrix (PRM) that measures their contributions to each downstream class. Theoretically, DVP lowers the empirical risk bound. Experimentally, DVP outperforms baselines on average across 11 downstream datasets. Notably, the DVP-PRM integration enables insights into how individual visual prompts influence classification decisions, providing a probabilistic framework for understanding reprogramming. Our code is available at https://github.com/tmlr-group/DecoupledVP.

Authors:Xiaorong Zhu, Ziheng Jia, Jiarui Wang, Xiangyu Zhao, Haodong Duan, Xiongkuo Min, Jia Wang, Zicheng Zhang, Guangtao Zhai
Title: GOBench: Benchmarking Geometric Optics Generation and Understanding of MLLMs
Abstract:
The rapid evolution of Multi-modality Large Language Models (MLLMs) is driving significant advancements in visual understanding and generation. Nevertheless, a comprehensive assessment of their capabilities, concerning the fine-grained physical principles especially in geometric optics, remains underexplored. To address this gap, we introduce GOBench, the first benchmark to systematically evaluate MLLMs' ability across two tasks: 1) Generating Optically Authentic Imagery and 2) Understanding Underlying Optical Phenomena. We curates high-quality prompts of geometric optical scenarios and use MLLMs to construct GOBench-Gen-1k dataset.We then organize subjective experiments to assess the generated imagery based on Optical Authenticity, Aesthetic Quality, and Instruction Fidelity, revealing MLLMs' generation flaws that violate optical principles. For the understanding task, we apply crafted evaluation instructions to test optical understanding ability of eleven prominent MLLMs. The experimental results demonstrate that current models face significant challenges in both optical generation and understanding. The top-performing generative model, GPT-4o-Image, cannot perfectly complete all generation tasks, and the best-performing MLLM model, Gemini-2.5Pro, attains a mere 37.35\% accuracy in optical understanding. Database and codes are publicly available at https://github.com/aiben-ch/GOBench.

Authors:Alexander Sergeev, Valeriya Goloviznina, Mikhail Melnichenko, Evgeny Kotelnikov
Title: Talking to Data: Designing Smart Assistants for Humanities Databases
Abstract:
Access to humanities research databases is often hindered by the limitations of traditional interaction formats, particularly in the methods of searching and response generation. This study introduces an LLM-based smart assistant designed to facilitate natural language communication with digital humanities data. The assistant, developed in a chatbot format, leverages the RAG approach and integrates state-of-the-art technologies such as hybrid search, automatic query generation, text-to-SQL filtering, semantic database search, and hyperlink insertion. To evaluate the effectiveness of the system, experiments were conducted to assess the response quality of various language models. The testing was based on the Prozhito digital archive, which contains diary entries from predominantly Russian-speaking individuals who lived in the 20th century. The chatbot is tailored to support anthropology and history researchers, as well as non-specialist users with an interest in the field, without requiring prior technical training. By enabling researchers to query complex databases with natural language, this tool aims to enhance accessibility and efficiency in humanities research. The study highlights the potential of Large Language Models to transform the way researchers and the public interact with digital archives, making them more intuitive and inclusive. Additional materials are presented in GitHub repository: https://github.com/alekosus/talking-to-data-intersys2025.

Authors:Marianne de Heer Kloots, Hosein Mohebbi, Charlotte Pouw, Gaofei Shen, Willem Zuidema, Martijn Bentum
Title: What do self-supervised speech models know about Dutch? Analyzing advantages of language-specific pre-training
Abstract:
How language-specific are speech representations learned by self-supervised models? Existing work has shown that a range of linguistic features can be successfully decoded from end-to-end models trained only on speech recordings. However, it's less clear to what extent pre-training on specific languages improves language-specific linguistic information. Here we test the encoding of Dutch phonetic and lexical information in internal representations of self-supervised Wav2Vec2 models. Pre-training exclusively on Dutch improves the representation of Dutch linguistic features as compared to pre-training on similar amounts of English or larger amounts of multilingual data. This language-specific advantage is well-detected by trained clustering or classification probes, and partially observable using zero-shot metrics. Furthermore, the language-specific benefit on linguistic feature encoding aligns with downstream performance on Automatic Speech Recognition.

Authors:Zhan Li, Mingyu Zhao, Xin Dong, Haibin Ling, Bingyao Huang
Title: CAPAA: Classifier-Agnostic Projector-Based Adversarial Attack
Abstract:
Projector-based adversarial attack aims to project carefully designed light patterns (i.e., adversarial projections) onto scenes to deceive deep image classifiers. It has potential applications in privacy protection and the development of more robust classifiers. However, existing approaches primarily focus on individual classifiers and fixed camera poses, often neglecting the complexities of multi-classifier systems and scenarios with varying camera poses. This limitation reduces their effectiveness when introducing new classifiers or camera poses. In this paper, we introduce Classifier-Agnostic Projector-Based Adversarial Attack (CAPAA) to address these issues. First, we develop a novel classifier-agnostic adversarial loss and optimization framework that aggregates adversarial and stealthiness loss gradients from multiple classifiers. Then, we propose an attention-based gradient weighting mechanism that concentrates perturbations on regions of high classification activation, thereby improving the robustness of adversarial projections when applied to scenes with varying camera poses. Our extensive experimental evaluations demonstrate that CAPAA achieves both a higher attack success rate and greater stealthiness compared to existing baselines. Codes are available at: https://github.com/ZhanLiQxQ/CAPAA.

Authors:Youngmin Kim, Jiwan Chung, Jisoo Kim, Sunghyun Lee, Sangkyu Lee, Junhyeok Kim, Cheoljong Yang, Youngjae Yu
Title: Speaking Beyond Language: A Large-Scale Multimodal Dataset for Learning Nonverbal Cues from Video-Grounded Dialogues
Abstract:
Nonverbal communication is integral to human interaction, with gestures, facial expressions, and body language conveying critical aspects of intent and emotion. However, existing large language models (LLMs) fail to effectively incorporate these nonverbal elements, limiting their capacity to create fully immersive conversational experiences. We introduce MARS, a multimodal language model designed to understand and generate nonverbal cues alongside text, bridging this gap in conversational AI. Our key innovation is VENUS, a large-scale dataset comprising annotated videos with time-aligned text, facial expressions, and body language. Leveraging VENUS, we train MARS with a next-token prediction objective, combining text with vector-quantized nonverbal representations to achieve multimodal understanding and generation within a unified framework. Based on various analyses of the VENUS datasets, we validate its substantial scale and high effectiveness. Our quantitative and qualitative results demonstrate that MARS successfully generates text and nonverbal languages, corresponding to conversational input.

Authors:Geonu Lee, Yujeong Oh, Geonhui Jang, Soyoung Lee, Jeonghyo Song, Sungmin Cha, YoungJoon Yoo
Title: Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection
Abstract:
In this paper, we introduce a new benchmark for continual learning in anomaly detection, aimed at better reflecting real-world deployment scenarios. Our benchmark, Continual-MEGA, includes a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with our newly proposed dataset, ContinualAD. In addition to standard continual learning with expanded quantity, we propose a novel scenario that measures zero-shot generalization to unseen classes, those not observed during continual adaptation. This setting poses a new problem setting that continual adaptation also enhances zero-shot performance. We also present a unified baseline algorithm that improves robustness in few-shot detection and maintains strong generalization. Through extensive evaluations, we report three key findings: (1) existing methods show substantial room for improvement, particularly in pixel-level defect localization; (2) our proposed method consistently outperforms prior approaches; and (3) the newly introduced ContinualAD dataset enhances the performance of strong anomaly detection models. We release the benchmark and code in https://github.com/Continual-Mega/Continual-Mega.

Authors:Qiao Xiao, Boqian Wu, Andrey Poddubnyy, Elena Mocanu, Phuong H. Nguyen, Mykola Pechenizkiy, Decebal Constantin Mocanu
Title: Addressing the Collaboration Dilemma in Low-Data Federated Learning via Transient Sparsity
Abstract:
Federated learning (FL) enables collaborative model training across decentralized clients while preserving data privacy, leveraging aggregated updates to build robust global models. However, this training paradigm faces significant challenges due to data heterogeneity and limited local datasets, which often impede effective collaboration. In such scenarios, we identify the Layer-wise Inertia Phenomenon in FL, wherein the middle layers of global model undergo minimal updates after early communication rounds, ultimately limiting the effectiveness of global aggregation. We demonstrate the presence of this phenomenon across a wide range of federated settings, spanning diverse datasets and architectures. To address this issue, we propose LIPS (Layer-wise Inertia Phenomenon with Sparsity), a simple yet effective method that periodically introduces transient sparsity to stimulate meaningful updates and empower global aggregation. Experiments demonstrate that LIPS effectively mitigates layer-wise inertia, enhances aggregation effectiveness, and improves overall performance in various FL scenarios. This work not only deepens the understanding of layer-wise learning dynamics in FL but also paves the way for more effective collaboration strategies in resource-constrained environments. Our code is publicly available at: https://github.com/QiaoXiao7282/LIPS.

Authors:Yongqi Li, Shen Zhou, Xiaohu Li, Xin Miao, Jintao Wen, Mayi Xu, Jianhao Chen, Birong Pan, Hankun Kang, Yuanyuan Zhu, Ming Zhong, Tieyun Qian
Title: Aligning VLM Assistants with Personalized Situated Cognition
Abstract:
Vision-language models (VLMs) aligned with general human objectives, such as being harmless and hallucination-free, have become valuable assistants of humans in managing visual tasks. However, people with diversified backgrounds have different cognition even in the same situation. Consequently, they may have personalized expectations for VLM assistants. This highlights the urgent need to align VLM assistants with personalized situated cognition for real-world assistance. To study this problem, we first simplify it by characterizing individuals based on the sociological concept of Role-Set. Then, we propose to evaluate the individuals' actions to examine whether the personalized alignment is achieved. Further, we construct a benchmark named PCogAlignBench, which includes 18k instances and 20 individuals with different Role-Sets. Finally, we present a framework called PCogAlign, which constructs a cognition-aware and action-based reward model for personalized alignment. Experimental results and human evaluations demonstrate the reliability of the PCogAlignBench and the effectiveness of our proposed PCogAlign. We will open-source the constructed benchmark and code at https://github.com/NLPGM/PCogAlign.

Authors:Tianrui Pan, Jie Liu, Zewen Huang, Jie Tang, Gangshan Wu
Title: In-the-wild Audio Spatialization with Flexible Text-guided Localization
Abstract:
To enhance immersive experiences, binaural audio offers spatial awareness of sounding objects in AR, VR, and embodied AI applications. While existing audio spatialization methods can generally map any available monaural audio to binaural audio signals, they often lack the flexible and interactive control needed in complex multi-object user-interactive environments. To address this, we propose a Text-guided Audio Spatialization (TAS) framework that utilizes flexible text prompts and evaluates our model from unified generation and comprehension perspectives. Due to the limited availability of premium and large-scale stereo data, we construct the SpatialTAS dataset, which encompasses 376,000 simulated binaural audio samples to facilitate the training of our model. Our model learns binaural differences guided by 3D spatial location and relative position prompts, augmented by flipped-channel audio. It outperforms existing methods on both simulated and real-recorded datasets, demonstrating superior generalization and accuracy. Besides, we develop an assessment model based on Llama-3.1-8B, which evaluates the spatial semantic coherence between our generated binaural audio and text prompts through a spatial reasoning task. Results demonstrate that text prompts provide flexible and interactive control to generate binaural audio with excellent quality and semantic consistency in spatial locations. Dataset is available at \href{https://github.com/Alice01010101/TASU}

Authors:Lennart Bramlage, Cristóbal Curio
Title: Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks
Abstract:
Uncertainty quantification is critical in safety-sensitive applications but is often omitted from off-the-shelf neural networks due to adverse effects on predictive performance. Retrofitting uncertainty estimates post-hoc typically requires access to model parameters or gradients, limiting feasibility in practice. We propose a theoretically grounded framework for post-hoc uncertainty estimation in regression tasks by fitting an auxiliary model to both original inputs and frozen model outputs. Drawing from principles of maximum likelihood estimation and sequential parameter fitting, we formalize an exact post-hoc optimization objective that recovers the canonical MLE of Gaussian parameters, without requiring sampling or approximation at inference. While prior work has used model outputs to estimate uncertainty, we explicitly characterize the conditions under which this is valid and demonstrate the extent to which structured outputs can support quasi-epistemic inference. We find that using diverse auxiliary data, such as augmented subsets of the original training data, significantly enhances OOD detection and metric performance. Our hypothesis that frozen model outputs contain generalizable latent information about model error and predictive uncertainty is tested and confirmed. Finally, we ensure that our method maintains proper estimation of input-dependent uncertainty without relying exclusively on base model forecasts. These findings are demonstrated in toy problems and adapted to both UCI and depth regression benchmarks. Code: https://github.com/biggzlar/IO-CUE.

Authors:Seongjae Kang, Dong Bok Lee, Hyungjoon Jang, Dongseop Kim, Sung Ju Hwang
Title: PCoreSet: Effective Active Learning through Knowledge Distillation from Vision-Language Models
Abstract:
Knowledge distillation (KD) is a widely used framework for training compact, task-specific models by transferring the knowledge from teacher models. However, its application to active learning (AL), which aims to minimize annotation costs through iterative sample selection, remains underexplored. This gap stems from the fact that KD typically assumes access to sufficient labeled data, whereas AL operates in data-scarce scenarios where task-specific teacher models are often unavailable. In this paper, we first introduce ActiveKD, a framework that integrates AL with KD by leveraging the zero- and few-shot capabilities of large vision-language models (VLMs). A key aspect of ActiveKD is the structured prediction bias of VLMs-i.e., their predictions form clusters in the probability space. We regard this structure as an inductive bias of the teacher model, capturing generalizable output patterns beneficial to student learning. To exploit this bias, we propose Probabilistic CoreSet (PCoreSet), a selection strategy that maximizes coverage in the probability space rather than the feature space. PCoreSet strategically selects probabilistically diverse unlabeled samples, facilitating more efficient transfer of teacher knowledge under limited annotation budgets. Extensive evaluations on 11 datasets show that ActiveKD consistently improves performance across selection methods (e.g., +29.07% on ImageNet, averaged over methods). Under ActiveKD, PCoreSet ranks first in 64/73 settings (approximately 87.7%) across 5 student and 3 teacher networks, always achieving the best performance except for first 2 AL rounds. Our code is available at https://github.com/erjui/PCoreSet.

Authors:Jinfeng Zhou, Yuxuan Chen, Yihan Shi, Xuanming Zhang, Leqi Lei, Yi Feng, Zexuan Xiong, Miao Yan, Xunzhi Wang, Yaru Cao, Jianing Yin, Shuai Wang, Quanyu Dai, Zhenhua Dong, Hongning Wang, Minlie Huang
Title: SocialEval: Evaluating Social Intelligence of Large Language Models
Abstract:
LLMs exhibit promising Social Intelligence (SI) in modeling human behavior, raising the need to evaluate LLMs' SI and their discrepancy with humans. SI equips humans with interpersonal abilities to behave wisely in navigating social interactions to achieve social goals. This presents an operational evaluation paradigm: outcome-oriented goal achievement evaluation and process-oriented interpersonal ability evaluation, which existing work fails to address. To this end, we propose SocialEval, a script-based bilingual SI benchmark, integrating outcome- and process-oriented evaluation by manually crafting narrative scripts. Each script is structured as a world tree that contains plot lines driven by interpersonal ability, providing a comprehensive view of how LLMs navigate social interactions. Experiments show that LLMs fall behind humans on both SI evaluations, exhibit prosociality, and prefer more positive social behaviors, even if they lead to goal failure. Analysis of LLMs' formed representation space and neuronal activations reveals that LLMs have developed ability-specific functional partitions akin to the human brain.

Authors:Keyuan Cheng, Xudong Shen, Yihao Yang, Tengyue Wang, Yang Cao, Muhammad Asif Ali, Hanbin Wang, Lijie Hu, Di Wang
Title: CODEMENV: Benchmarking Large Language Models on Code Migration
Abstract:
Large language models (LLMs) have shown remarkable capabilities across various software engineering tasks; however, their effectiveness in code migration, adapting code to run in different environments, remains insufficiently studied. In this work, we introduce CODEMENV: Code Migration Across Environment, a new benchmark specifically designed to assess LLMs' abilities in code migration scenarios. CODEMENV consists of 922 examples spanning 19 Python and Java packages, and covers three core tasks: (1) identifying functions incompatible with specific versions, (2) detecting changes in function definitions, and (3) adapting code to target environments. Experimental evaluation with seven LLMs on CODEMENV yields an average pass@1 rate of 26.50%, with GPT-4O achieving the highest score at 43.84%. Key findings include: (i) LLMs tend to be more proficient with newer function versions, which aids in migrating legacy code, and (ii) LLMs sometimes exhibit logical inconsistencies by identifying function changes irrelevant to the intended migration environment. The datasets are available at https://github.com/xdshen-ai/Benchmark-of-Code-Migration.

Authors:Sa Zhu, Huashan Chen, Wanqian Zhang, Jinchao Zhang, Zexian Yang, Xiaoshuai Hao, Bo Li
Title: Uneven Event Modeling for Partially Relevant Video Retrieval
Abstract:
Given a text query, partially relevant video retrieval (PRVR) aims to retrieve untrimmed videos containing relevant moments, wherein event modeling is crucial for partitioning the video into smaller temporal events that partially correspond to the text. Previous methods typically segment videos into a fixed number of equal-length clips, resulting in ambiguous event boundaries. Additionally, they rely on mean pooling to compute event representations, inevitably introducing undesired misalignment. To address these, we propose an Uneven Event Modeling (UEM) framework for PRVR. We first introduce the Progressive-Grouped Video Segmentation (PGVS) module, to iteratively formulate events in light of both temporal dependencies and semantic similarity between consecutive frames, enabling clear event boundaries. Furthermore, we also propose the Context-Aware Event Refinement (CAER) module to refine the event representation conditioned the text's cross-attention. This enables event representations to focus on the most relevant frames for a given text, facilitating more precise text-video alignment. Extensive experiments demonstrate that our method achieves state-of-the-art performance on two PRVR benchmarks. Code is available at https://github.com/Sasa77777779/UEM.git.

Authors:Parul Gupta, Shreya Ghosh, Tom Gedeon, Thanh-Toan Do, Abhinav Dhall
Title: Multiverse Through Deepfakes: The MultiFakeVerse Dataset of Person-Centric Visual and Conceptual Manipulations
Abstract:
The rapid advancement of GenAI technology over the past few years has significantly contributed towards highly realistic deepfake content generation. Despite ongoing efforts, the research community still lacks a large-scale and reasoning capability driven deepfake benchmark dataset specifically tailored for person-centric object, context and scene manipulations. In this paper, we address this gap by introducing MultiFakeVerse, a large scale person-centric deepfake dataset, comprising 845,286 images generated through manipulation suggestions and image manipulations both derived from vision-language models (VLM). The VLM instructions were specifically targeted towards modifications to individuals or contextual elements of a scene that influence human perception of importance, intent, or narrative. This VLM-driven approach enables semantic, context-aware alterations such as modifying actions, scenes, and human-object interactions rather than synthetic or low-level identity swaps and region-specific edits that are common in existing datasets. Our experiments reveal that current state-of-the-art deepfake detection models and human observers struggle to detect these subtle yet meaningful manipulations. The code and dataset are available on \href{https://github.com/Parul-Gupta/MultiFakeVerse}{GitHub}.

Authors:Nidhi Kowtal, Raviraj Joshi
Title: L3Cube-MahaEmotions: A Marathi Emotion Recognition Dataset with Synthetic Annotations using CoTR prompting and Large Language Models
Abstract:
Emotion recognition in low-resource languages like Marathi remains challenging due to limited annotated data. We present L3Cube-MahaEmotions, a high-quality Marathi emotion recognition dataset with 11 fine-grained emotion labels. The training data is synthetically annotated using large language models (LLMs), while the validation and test sets are manually labeled to serve as a reliable gold-standard benchmark. Building on the MahaSent dataset, we apply the Chain-of-Translation (CoTR) prompting technique, where Marathi sentences are translated into English and emotion labeled via a single prompt. GPT-4 and Llama3-405B were evaluated, with GPT-4 selected for training data annotation due to superior label quality. We evaluate model performance using standard metrics and explore label aggregation strategies (e.g., Union, Intersection). While GPT-4 predictions outperform fine-tuned BERT models, BERT-based models trained on synthetic labels fail to surpass GPT-4. This highlights both the importance of high-quality human-labeled data and the inherent complexity of emotion recognition. An important finding of this work is that generic LLMs like GPT-4 and Llama3-405B generalize better than fine-tuned BERT for complex low-resource emotion recognition tasks. The dataset and model are shared publicly at https://github.com/l3cube-pune/MarathiNLP

Authors:Nidhi Kowtal, Raviraj Joshi
Title: L3Cube-MahaEmotions: A Marathi Emotion Recognition Dataset with Synthetic Annotations using CoTR prompting and Large Language Models
Abstract:
Emotion recognition in low-resource languages like Marathi remains challenging due to limited annotated data. We present L3Cube-MahaEmotions, a high-quality Marathi emotion recognition dataset with 11 fine-grained emotion labels. The training data is synthetically annotated using large language models (LLMs), while the validation and test sets are manually labeled to serve as a reliable gold-standard benchmark. Building on the MahaSent dataset, we apply the Chain-of-Translation (CoTR) prompting technique, where Marathi sentences are translated into English and emotion labeled via a single prompt. GPT-4 and Llama3-405B were evaluated, with GPT-4 selected for training data annotation due to superior label quality. We evaluate model performance using standard metrics and explore label aggregation strategies (e.g., Union, Intersection). While GPT-4 predictions outperform fine-tuned BERT models, BERT-based models trained on synthetic labels fail to surpass GPT-4. This highlights both the importance of high-quality human-labeled data and the inherent complexity of emotion recognition. An important finding of this work is that generic LLMs like GPT-4 and Llama3-405B generalize better than fine-tuned BERT for complex low-resource emotion recognition tasks. The dataset and model are shared publicly at https://github.com/l3cube-pune/MarathiNLP

Authors:Haixin Wang, Jiashu Pan, Hao Wu, Fan Zhang, Tailin Wu
Title: FourierFlow: Frequency-aware Flow Matching for Generative Turbulence Modeling
Abstract:
Modeling complex fluid systems, especially turbulence governed by partial differential equations (PDEs), remains a fundamental challenge in science and engineering. Recently, diffusion-based generative models have gained attention as a powerful approach for these tasks, owing to their capacity to capture long-range dependencies and recover hierarchical structures. However, we present both empirical and theoretical evidence showing that generative models struggle with significant spectral bias and common-mode noise when generating high-fidelity turbulent flows. Here we propose FourierFlow, a novel generative turbulence modeling framework that enhances the frequency-aware learning by both implicitly and explicitly mitigating spectral bias and common-mode noise. FourierFlow comprises three key innovations. Firstly, we adopt a dual-branch backbone architecture, consisting of a salient flow attention branch with local-global awareness to focus on sensitive turbulence areas. Secondly, we introduce a frequency-guided Fourier mixing branch, which is integrated via an adaptive fusion strategy to explicitly mitigate spectral bias in the generative model. Thirdly, we leverage the high-frequency modeling capabilities of the masked auto-encoder pre-training and implicitly align the features of the generative model toward high-frequency components. We validate the effectiveness of FourierFlow on three canonical turbulent flow scenarios, demonstrating superior performance compared to state-of-the-art methods. Furthermore, we show that our model exhibits strong generalization capabilities in challenging settings such as out-of-distribution domains, long-term temporal extrapolation, and robustness to noisy inputs. The code can be found at https://github.com/AI4Science-WestlakeU/FourierFlow.

Authors:Parismita Gogoi, Vishwanath Pratap Singh, Seema Khadirnaikar, Soma Siddhartha, Sishir Kalita, Jagabandhu Mishra, Md Sahidullah, Priyankoo Sarmah, S. R. M. Prasanna
Title: Leveraging AM and FM Rhythm Spectrograms for Dementia Classification and Assessment
Abstract:
This study explores the potential of Rhythm Formant Analysis (RFA) to capture long-term temporal modulations in dementia speech. Specifically, we introduce RFA-derived rhythm spectrograms as novel features for dementia classification and regression tasks. We propose two methodologies: (1) handcrafted features derived from rhythm spectrograms, and (2) a data-driven fusion approach, integrating proposed RFA-derived rhythm spectrograms with vision transformer (ViT) for acoustic representations along with BERT-based linguistic embeddings. We compare these with existing features. Notably, our handcrafted features outperform eGeMAPs with a relative improvement of $14.2\%$ in classification accuracy and comparable performance in the regression task. The fusion approach also shows improvement, with RFA spectrograms surpassing Mel spectrograms in classification by around a relative improvement of $13.1\%$ and a comparable regression score with the baselines.

Authors:Sau Lai Yip, Sunan He, Yuxiang Nie, Shu Pui Chan, Yilin Ye, Sum Ying Lam, Hao Chen
Title: MedBookVQA: A Systematic and Comprehensive Medical Benchmark Derived from Open-Access Book
Abstract:
The accelerating development of general medical artificial intelligence (GMAI), powered by multimodal large language models (MLLMs), offers transformative potential for addressing persistent healthcare challenges, including workforce deficits and escalating costs. The parallel development of systematic evaluation benchmarks emerges as a critical imperative to enable performance assessment and provide technological guidance. Meanwhile, as an invaluable knowledge source, the potential of medical textbooks for benchmark development remains underexploited. Here, we present MedBookVQA, a systematic and comprehensive multimodal benchmark derived from open-access medical textbooks. To curate this benchmark, we propose a standardized pipeline for automated extraction of medical figures while contextually aligning them with corresponding medical narratives. Based on this curated data, we generate 5,000 clinically relevant questions spanning modality recognition, disease classification, anatomical identification, symptom diagnosis, and surgical procedures. A multi-tier annotation system categorizes queries through hierarchical taxonomies encompassing medical imaging modalities (42 categories), body anatomies (125 structures), and clinical specialties (31 departments), enabling nuanced analysis across medical subdomains. We evaluate a wide array of MLLMs, including proprietary, open-sourced, medical, and reasoning models, revealing significant performance disparities across task types and model categories. Our findings highlight critical capability gaps in current GMAI systems while establishing textbook-derived multimodal benchmarks as essential evaluation tools. MedBookVQA establishes textbook-derived benchmarking as a critical paradigm for advancing clinical AI, exposing limitations in GMAI systems while providing anatomically structured performance metrics across specialties.

Authors:Jisheng Dang, Yizhou Zhang, Hao Ye, Teng Wang, Siming Chen, Huicheng Zheng, Yulan Guo, Jianhuang Lai, Bin Hu
Title: SynPO: Synergizing Descriptiveness and Preference Optimization for Video Detailed Captioning
Abstract:
Fine-grained video captioning aims to generate detailed, temporally coherent descriptions of video content. However, existing methods struggle to capture subtle video dynamics and rich detailed information. In this paper, we leverage preference learning to enhance the performance of vision-language models in fine-grained video captioning, while mitigating several limitations inherent to direct preference optimization (DPO). First, we propose a pipeline for constructing preference pairs that leverages the intrinsic properties of VLMs along with partial assistance from large language models, achieving an optimal balance between cost and data quality. Second, we propose Synergistic Preference Optimization (SynPO), a novel optimization method offering significant advantages over DPO and its variants. SynPO prevents negative preferences from dominating the optimization, explicitly preserves the model's language capability to avoid deviation of the optimization objective, and improves training efficiency by eliminating the need for the reference model. We extensively evaluate SynPO not only on video captioning benchmarks (e.g., VDC, VDD, VATEX) but also across well-established NLP tasks, including general language understanding and preference evaluation, using diverse pretrained models. Results demonstrate that SynPO consistently outperforms DPO variants while achieving 20\% improvement in training efficiency. Code is available at https://github.com/longmalongma/SynPO

Authors:Keyuan Cheng, Zijian Kan, Zhixian He, Zhuoran Zhang, Muhammad Asif Ali, Ke Xu, Lijie Hu, Di Wang
Title: COMPKE: Complex Question Answering under Knowledge Editing
Abstract:
Knowledge Editing, which efficiently modifies the knowledge in large language models, has gathered great attention. Current benchmarks primarily use multi-hop question answering to assess and analyze newly injected or updated knowledge. However, we argue that these benchmarks fail to effectively evaluate how well the updated models apply this knowledge in real-life scenarios, particularly when questions require complex reasoning, involving one-to-many relationships or multi-step logical intersections. To fill in this gap, we introduce a new benchmark, COMPKE: Complex Question Answering under Knowledge Editing, which includes 11,924 complex questions that reflect real-life situations. We conduct an extensive evaluation of four knowledge editing methods on COMPKE, revealing that their effectiveness varies notably across different models. For instance, MeLLo attains an accuracy of 39.47 on GPT-4O-MINI, but this drops sharply to 3.83 on QWEN2.5-3B. We further investigate the underlying causes of these disparities from both methodological and model-specific perspectives. The datasets are available at https://github.com/kzjkzj666/CompKE.

Authors:Yuntai Bao, Xuhong Zhang, Tianyu Du, Xinkui Zhao, Zhengwen Feng, Hao Peng, Jianwei Yin
Title: Probing the Geometry of Truth: Consistency and Generalization of Truth Directions in LLMs Across Logical Transformations and Question Answering Tasks
Abstract:
Large language models (LLMs) are trained on extensive datasets that encapsulate substantial world knowledge. However, their outputs often include confidently stated inaccuracies. Earlier works suggest that LLMs encode truthfulness as a distinct linear feature, termed the "truth direction", which can classify truthfulness reliably. We address several open questions about the truth direction: (i) whether LLMs universally exhibit consistent truth directions; (ii) whether sophisticated probing techniques are necessary to identify truth directions; and (iii) how the truth direction generalizes across diverse contexts. Our findings reveal that not all LLMs exhibit consistent truth directions, with stronger representations observed in more capable models, particularly in the context of logical negation. Additionally, we demonstrate that truthfulness probes trained on declarative atomic statements can generalize effectively to logical transformations, question-answering tasks, in-context learning, and external knowledge sources. Finally, we explore the practical application of truthfulness probes in selective question-answering, illustrating their potential to improve user trust in LLM outputs. These results advance our understanding of truth directions and provide new insights into the internal representations of LLM beliefs. Our code is public at https://github.com/colored-dye/truthfulness_probe_generalization

Authors:Jiatong Li, Libo Zhu, Haotong Qin, Jingkai Wang, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Title: QuantFace: Low-Bit Post-Training Quantization for One-Step Diffusion Face Restoration
Abstract:
Diffusion models have been achieving remarkable performance in face restoration. However, the heavy computations of diffusion models make it difficult to deploy them on devices like smartphones. In this work, we propose QuantFace, a novel low-bit quantization for one-step diffusion face restoration models, where the full-precision (\ie, 32-bit) weights and activations are quantized to 4$\sim$6-bit. We first analyze the data distribution within activations and find that they are highly variant. To preserve the original data information, we employ rotation-scaling channel balancing. Furthermore, we propose Quantization-Distillation Low-Rank Adaptation (QD-LoRA) that jointly optimizes for quantization and distillation performance. Finally, we propose an adaptive bit-width allocation strategy. We formulate such a strategy as an integer programming problem, which combines quantization error and perceptual metrics to find a satisfactory resource allocation. Extensive experiments on the synthetic and real-world datasets demonstrate the effectiveness of QuantFace under 6-bit and 4-bit. QuantFace achieves significant advantages over recent leading low-bit quantization methods for face restoration. The code is available at https://github.com/jiatongli2024/QuantFace.

Authors:Xiang Zhang, Run He, Jiao Chen, Di Fang, Ming Li, Ziqian Zeng, Cen Chen, Huiping Zhuang
Title: L3A: Label-Augmented Analytic Adaptation for Multi-Label Class Incremental Learning
Abstract:
Class-incremental learning (CIL) enables models to learn new classes continually without forgetting previously acquired knowledge. Multi-label CIL (MLCIL) extends CIL to a real-world scenario where each sample may belong to multiple classes, introducing several challenges: label absence, which leads to incomplete historical information due to missing labels, and class imbalance, which results in the model bias toward majority classes. To address these challenges, we propose Label-Augmented Analytic Adaptation (L3A), an exemplar-free approach without storing past samples. L3A integrates two key modules. The pseudo-label (PL) module implements label augmentation by generating pseudo-labels for current phase samples, addressing the label absence problem. The weighted analytic classifier (WAC) derives a closed-form solution for neural networks. It introduces sample-specific weights to adaptively balance the class contribution and mitigate class imbalance. Experiments on MS-COCO and PASCAL VOC datasets demonstrate that L3A outperforms existing methods in MLCIL tasks. Our code is available at https://github.com/scut-zx/L3A.

Authors:Jingyi Xi, Chenghao Mo, Benjamin Karsin, Artem Chirkin, Mingqin Li, Minjia Zhang
Title: VecFlow: A High-Performance Vector Data Management System for Filtered-Search on GPUs
Abstract:
Vector search and database systems have become a keystone component in many AI applications. While many prior research has investigated how to accelerate the performance of generic vector search, emerging AI applications require running more sophisticated vector queries efficiently, such as vector search with attribute filters. Unfortunately, recent filtered-ANNS solutions are primarily designed for CPUs, with few exploration and limited performance of filtered-ANNS that take advantage of the massive parallelism offered by GPUs. In this paper, we present VecFlow, a novel high-performance vector filtered search system that achieves unprecedented high throughput and recall while obtaining low latency for filtered-ANNS on GPUs. We propose a novel label-centric indexing and search algorithm that significantly improves the selectivity of ANNS with filters. In addition to algorithmic level optimization, we provide architectural-aware optimization for VecFlow's functional modules, effectively supporting both small batch and large batch queries, and single-label and multi-label query processing. Experimental results on NVIDIA A100 GPU over several public available datasets validate that VecFlow achieves 5 million QPS for recall 90%, outperforming state-of-the-art CPU-based solutions such as Filtered-DiskANN by up to 135 times. Alternatively, VecFlow can easily extend its support to high recall 99% regime, whereas strong GPU-based baselines plateau at around 80% recall. The source code is available at https://github.com/Supercomputing-System-AI-Lab/VecFlow.

Authors:Xuejiao Ma, Haibo Zhao, Zinuo Guo, Yijie Guo, Guanhong Liu, Bo Jiang
Title: CO-OPERA: A Human-AI Collaborative Playwriting Tool to Support Creative Storytelling for Interdisciplinary Drama Education
Abstract:
Drama-in-education is an interdisciplinary instructional approach that integrates subjects such as language, history, and psychology. Its core component is playwriting. Based on need-finding interviews of 13 teachers, we found that current general-purpose AI tools cannot effectively assist teachers and students during playwriting. Therefore, we propose CO-OPERA - a collaborative playwriting tool integrating generative artificial intelligence capabilities. In CO-OPERA, users can both expand their thinking through discussions with a tutor and converge their thinking by operating agents to generate script elements. Additionally, the system allows for iterative modifications and regenerations based on user requirements. A system usability test conducted with middle school students shows that our CO-OPERA helps users focus on whole logical narrative development during playwriting. Our playwriting examples and raw data for qualitative and quantitative analysis are available at https://github.com/daisyinb612/CO-OPERA.

Authors:Rong Wu, Pinlong Cai, Jianbiao Mei, Licheng Wen, Tao Hu, Xuemeng Yang, Daocheng Fu, Botian Shi
Title: KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision
Abstract:
Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness. This issue, often manifesting as hallucinations or unattributable reasoning processes, limits their applicability in complex reasoning scenarios. To address this, we propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES), a novel framework that enhances the reasoning ability of LLMs through explicit supervision over reasoning paths and processes. KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths. At inference phase, the model adapts to both KG-available and KG-unavailable scenarios, retrieving reasoning paths from a KG when possible or predicting plausible reasoning paths with only intrinsic knowledge when not. This design enables the model to reason in an explainable and source-attributable pattern. Through extensive experiments on complex reasoning tasks, we demonstrate that KG-TRACES significantly outperforms existing SOTA: it improves Hits@1 by 1.6% and F1 by 4.7% on WebQSP, and achieves improvements of 4.8% in Hits@1 and 2.1% in F1 on CWQ. Moreover, we show its transferability to specialized domains such as medicine. By visualizing the intermediate steps of reasoning processes, we further show that the explicit supervision introduced by KG-TRACES leads to more stable and goal-directed reasoning processes, aligning closely with correct answers. Code is available at https://github.com/Edaizi/KG-TRACES.

Authors:Md Tahmid Rahman Laskar, Israt Jahan, Elham Dolatabadi, Chun Peng, Enamul Hoque, Jimmy Huang
Title: Improving Automatic Evaluation of Large Language Models (LLMs) in Biomedical Relation Extraction via LLMs-as-the-Judge
Abstract:
Large Language Models (LLMs) have demonstrated impressive performance in biomedical relation extraction, even in zero-shot scenarios. However, evaluating LLMs in this task remains challenging due to their ability to generate human-like text, often producing synonyms or abbreviations of gold-standard answers, making traditional automatic evaluation metrics unreliable. On the other hand, while human evaluation is more reliable, it is costly and time-consuming, making it impractical for real-world applications. This paper investigates the use of LLMs-as-the-Judge as an alternative evaluation method for biomedical relation extraction. We benchmark 8 LLMs as judges to evaluate the responses generated by 5 other LLMs across 3 biomedical relation extraction datasets. Unlike other text-generation tasks, we observe that LLM-based judges perform quite poorly (usually below 50% accuracy) in the biomedical relation extraction task. Our findings reveal that it happens mainly because relations extracted by LLMs do not adhere to any standard format. To address this, we propose structured output formatting for LLM-generated responses that helps LLM-Judges to improve their performance by about 15% (on average). We also introduce a domain adaptation technique to further enhance LLM-Judge performance by effectively transferring knowledge between datasets. We release both our human-annotated and LLM-annotated judgment data (36k samples in total) for public use here: https://github.com/tahmedge/llm_judge_biomedical_re.

Authors:Milad Khanchi, Maria Amer, Charalambos Poullis
Title: Depth-Aware Scoring and Hierarchical Alignment for Multiple Object Tracking
Abstract:
Current motion-based multiple object tracking (MOT) approaches rely heavily on Intersection-over-Union (IoU) for object association. Without using 3D features, they are ineffective in scenarios with occlusions or visually similar objects. To address this, our paper presents a novel depth-aware framework for MOT. We estimate depth using a zero-shot approach and incorporate it as an independent feature in the association process. Additionally, we introduce a Hierarchical Alignment Score that refines IoU by integrating both coarse bounding box overlap and fine-grained (pixel-level) alignment to improve association accuracy without requiring additional learnable parameters. To our knowledge, this is the first MOT framework to incorporate 3D features (monocular depth) as an independent decision matrix in the association step. Our framework achieves state-of-the-art results on challenging benchmarks without any training nor fine-tuning. The code is available at https://github.com/Milad-Khanchi/DepthMOT

Authors:Boheng Sheng, Jiacheng Yao, Meicong Zhang, Guoxiu He
Title: Dynamic Chunking and Selection for Reading Comprehension of Ultra-Long Context in Large Language Models
Abstract:
Large language models (LLMs) often struggle to accurately read and comprehend extremely long texts. Current methods for improvement typically rely on splitting long contexts into fixed-length chunks. However, fixed truncation risks separating semantically relevant content, leading to ambiguity and compromising accurate understanding. To overcome this limitation, we propose a straightforward approach for dynamically separating and selecting chunks of long context, facilitating a more streamlined input for LLMs. In particular, we compute semantic similarities between adjacent sentences, using lower similarities to adaptively divide long contexts into variable-length chunks. We further train a question-aware classifier to select sensitive chunks that are critical for answering specific questions. Experimental results on both single-hop and multi-hop question-answering benchmarks show that the proposed approach consistently outperforms strong baselines. Notably, it maintains robustness across a wide range of input lengths, handling sequences of up to 256k tokens. Our datasets and code are available at the following link: https://github.com/ECNU-Text-Computing/DCS

Authors:Zihang Liu, Tianyu Pang, Oleg Balabanov, Chaoqun Yang, Tianjin Huang, Lu Yin, Yaoqing Yang, Shiwei Liu
Title: LIFT the Veil for the Truth: Principal Weights Emerge after Rank Reduction for Reasoning-Focused Supervised Fine-Tuning
Abstract:
Recent studies have shown that supervised fine-tuning of LLMs on a small number of high-quality datasets can yield strong reasoning capabilities. However, full fine-tuning (Full FT), while powerful, is computationally expensive and susceptible to overfitting and catastrophic forgetting, particularly when data is limited. Sparse fine-tuning, which previously achieved notable success by updating only a small subset of model parameters, offers a promising trade-off between efficiency and effectiveness. Yet, it has lagged behind in the LLM era due to the difficulty of identifying parameters truly critical for reasoning. In this work, we state that weights with the largest magnitude after low-rank approximation are critical weights for fine-tuning, which we call Principal Weights. Surprisingly, while magnitude-based sparse fine-tuning performs poorly as a baseline on LLM fine-tuning, it becomes highly effective after rank reduction. These insights motivate our method: Low-rank Informed Sparse Fine-Tuning (LIFT). LIFT only updates the top 5% Principal Weights throughout training and consistently achieves better performance on reasoning tasks than Full FT, while maintaining memory efficiency on par with popular parameter-efficient fine-tuning methods. In addition to strong performance on target domains such as arithmetic reasoning, LIFT also retains up to 20% more source-domain knowledge, compared to Full FT and LoRA. Our code is available at: https://github.com/zihanghliu/LIFT.

Authors:Zitao Chen, Yinjun Jia, Zitong Tian, Wei-Ying Ma, Yanyan Lan
Title: Manipulating 3D Molecules in a Fixed-Dimensional E(3)-Equivariant Latent Space
Abstract:
Medicinal chemists often optimize drugs considering their 3D structures and designing structurally distinct molecules that retain key features, such as shapes, pharmacophores, or chemical properties. Previous deep learning approaches address this through supervised tasks like molecule inpainting or property-guided optimization. In this work, we propose a flexible zero-shot molecule manipulation method by navigating in a shared latent space of 3D molecules. We introduce a Variational AutoEncoder (VAE) for 3D molecules, named MolFLAE, which learns a fixed-dimensional, E(3)-equivariant latent space independent of atom counts. MolFLAE encodes 3D molecules using an E(3)-equivariant neural network into fixed number of latent nodes, distinguished by learned embeddings. The latent space is regularized, and molecular structures are reconstructed via a Bayesian Flow Network (BFN) conditioned on the encoder's latent output. MolFLAE achieves competitive performance on standard unconditional 3D molecule generation benchmarks. Moreover, the latent space of MolFLAE enables zero-shot molecule manipulation, including atom number editing, structure reconstruction, and coordinated latent interpolation for both structure and properties. We further demonstrate our approach on a drug optimization task for the human glucocorticoid receptor, generating molecules with improved hydrophilicity while preserving key interactions, under computational evaluations. These results highlight the flexibility, robustness, and real-world utility of our method, opening new avenues for molecule editing and optimization.

Authors:Chiyu Zhang, Marc-Alexandre Cote, Michael Albada, Anush Sankaran, Jack W. Stokes, Tong Wang, Amir Abdi, William Blum, Muhammad Abdul-Mageed
Title: DefenderBench: A Toolkit for Evaluating Language Agents in Cybersecurity Environments
Abstract:
Large language model (LLM) agents have shown impressive capabilities in human language comprehension and reasoning, yet their potential in cybersecurity remains underexplored. We introduce DefenderBench, a practical, open-source toolkit for evaluating language agents across offense, defense, and cybersecurity knowledge-based tasks. DefenderBench includes environments for network intrusion, malicious content detection, code vulnerability analysis, and cybersecurity knowledge assessment. It is intentionally designed to be affordable and easily accessible for researchers while providing fair and rigorous assessment. We benchmark several state-of-the-art (SoTA) and popular LLMs, including both open- and closed-weight models, using a standardized agentic framework. Our results show that Claude-3.7-sonnet performs best with a DefenderBench score of 81.65, followed by Claude-3.7-sonnet-think with 78.40, while the best open-weight model, Llama 3.3 70B, is not far behind with a DefenderBench score of 71.81. DefenderBench's modular design allows seamless integration of custom LLMs and tasks, promoting reproducibility and fair comparisons. An anonymized version of DefenderBench is available at https://github.com/microsoft/DefenderBench.

Authors:Tianze Yang, Tyson Jordan, Ninghao Liu, Jin Sun
Title: Common Inpainted Objects In-N-Out of Context
Abstract:
We present Common Inpainted Objects In-N-Out of Context (COinCO), a novel dataset addressing the scarcity of out-of-context examples in existing vision datasets. By systematically replacing objects in COCO images through diffusion-based inpainting, we create 97,722 unique images featuring both contextually coherent and inconsistent scenes, enabling effective context learning. Each inpainted object is meticulously verified and categorized as in- or out-of-context through a multimodal large language model assessment. Our analysis reveals significant patterns in semantic priors that influence inpainting success across object categories. We demonstrate three key tasks enabled by COinCO: (1) training context classifiers that effectively determine whether existing objects belong in their context; (2) a novel Objects-from-Context prediction task that determines which new objects naturally belong in given scenes at both instance and clique levels, and (3) context-enhanced fake detection on state-of-the-art methods without fine-tuning. COinCO provides a controlled testbed with contextual variations, establishing a foundation for advancing context-aware visual understanding in computer vision and image forensics. Our code and data are at: https://github.com/YangTianze009/COinCO.

Authors:Wei Dai, Peilin Chen, Chanakya Ekbote, Paul Pu Liang
Title: QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training
Abstract:
Clinical decision-making routinely demands reasoning over heterogeneous data, yet existing multimodal language models (MLLMs) remain largely vision-centric and fail to generalize across clinical specialties. To bridge this gap, we introduce QoQ-Med-7B/32B, the first open generalist clinical foundation model that jointly reasons across medical images, time-series signals, and text reports. QoQ-Med is trained with Domain-aware Relative Policy Optimization (DRPO), a novel reinforcement-learning objective that hierarchically scales normalized rewards according to domain rarity and modality difficulty, mitigating performance imbalance caused by skewed clinical data distributions. Trained on 2.61 million instruction tuning pairs spanning 9 clinical domains, we show that DRPO training boosts diagnostic performance by 43% in macro-F1 on average across all visual domains as compared to other critic-free training methods like GRPO. Furthermore, with QoQ-Med trained on intensive segmentation data, it is able to highlight salient regions related to the diagnosis, with an IoU 10x higher than open models while reaching the performance of OpenAI o4-mini. To foster reproducibility and downstream research, we release (i) the full model weights, (ii) the modular training pipeline, and (iii) all intermediate reasoning traces at https://github.com/DDVD233/QoQ_Med.

Authors:Valter Hudovernik, Minkai Xu, Juntong Shi, Lovro Å ubelj, Stefano Ermon, Erik Å trumbelj, Jure Leskovec
Title: RelDiff: Relational Data Generative Modeling with Graph-Based Diffusion Models
Abstract:
Real-world databases are predominantly relational, comprising multiple interlinked tables that contain complex structural and statistical dependencies. Learning generative models on relational data has shown great promise in generating synthetic data and imputing missing values. However, existing methods often struggle to capture this complexity, typically reducing relational data to conditionally generated flat tables and imposing limiting structural assumptions. To address these limitations, we introduce RelDiff, a novel diffusion generative model that synthesizes complete relational databases by explicitly modeling their foreign key graph structure. RelDiff combines a joint graph-conditioned diffusion process across all tables for attribute synthesis, and a $2K+$SBM graph generator based on the Stochastic Block Model for structure generation. The decomposition of graph structure and relational attributes ensures both high fidelity and referential integrity, both of which are crucial aspects of synthetic relational database generation. Experiments on 11 benchmark datasets demonstrate that RelDiff consistently outperforms prior methods in producing realistic and coherent synthetic relational databases. Code is available at https://github.com/ValterH/RelDiff.

Authors:Tianze Yang, Yucheng Shi, Mengnan Du, Xuansheng Wu, Qiaoyu Tan, Jin Sun, Ninghao Liu
Title: Concept-Centric Token Interpretation for Vector-Quantized Generative Models
Abstract:
Vector-Quantized Generative Models (VQGMs) have emerged as powerful tools for image generation. However, the key component of VQGMs -- the codebook of discrete tokens -- is still not well understood, e.g., which tokens are critical to generate an image of a certain concept? This paper introduces Concept-Oriented Token Explanation (CORTEX), a novel approach for interpreting VQGMs by identifying concept-specific token combinations. Our framework employs two methods: (1) a sample-level explanation method that analyzes token importance scores in individual images, and (2) a codebook-level explanation method that explores the entire codebook to find globally relevant tokens. Experimental results demonstrate CORTEX's efficacy in providing clear explanations of token usage in the generative process, outperforming baselines across multiple pretrained VQGMs. Besides enhancing VQGMs transparency, CORTEX is useful in applications such as targeted image editing and shortcut feature detection. Our code is available at https://github.com/YangTianze009/CORTEX.

Authors:Yunguan Fu, Wenjia Bai, Weixi Yi, Charlotte Manisty, Anish N Bhuva, Thomas A Treibel, James C Moon, Matthew J Clarkson, Rhodri Huw Davies, Yipeng Hu
Title: A versatile foundation model for cine cardiac magnetic resonance image analysis tasks
Abstract:
Here we present a versatile foundation model that can perform a range of clinically-relevant image analysis tasks, including segmentation, landmark localisation, diagnosis, and prognostication. A multi-view convolution-transformer masked autoencoder, named as CineMA, was trained on 15 million cine images from 74,916 subjects. The model was validated on multiple image analysis tasks and compared to existing models on >4,500 images from eight independent datasets with diverse population characteristics, representing the largest benchmark study for cine CMR so far. CineMA consistently outperformed conventional convolutional neural networks (CNNs) in delineating ventricular boundaries and estimating ejection fraction, a key measure of cardiac function. The improved performance was preserved, even when the model only used half of fine-tuning data. CineMA also surpassed CNNs in disease detection and matched their performance in long-axis function measurement. Interestingly, we found that CineMA can also detect cardiac changes in systemic diseases, such as diabetes, hypertension and cancer, and can also predict mortality. Finally, we assessed model fairness and demonstrated consistent model performance across demographic subgroups. These findings highlight CineMA's accuracy, learning efficiency, adaptability, and fairness, underscoring its potential as a foundation model for automated cardiac image analysis to support clinical workflow and cardiovascular research. All training and inference code and models are made publicly available at https://github.com/mathpluscode/CineMA.

Authors:Saad Hossain, Samanvay Vajpayee, Sirisha Rambhatla
Title: SafeTuneBed: A Toolkit for Benchmarking LLM Safety Alignment in Fine-Tuning
Abstract:
As large language models (LLMs) become ubiquitous, parameter-efficient fine-tuning methods and safety-first defenses have proliferated rapidly. However, the number of approaches and their recent increase have resulted in diverse evaluations-varied datasets, metrics, and inconsistent threat settings-making it difficult to fairly compare safety, utility, and robustness across methods. To address this, we introduce SafeTuneBed, a benchmark and toolkit unifying fine-tuning and defense evaluation. SafeTuneBed (i) curates a diverse repository of multiple fine-tuning datasets spanning sentiment analysis, question-answering, multi-step reasoning, and open-ended instruction tasks, and allows for the generation of harmful-variant splits; (ii) enables integration of state-of-the-art defenses, including alignment-stage immunization, in-training safeguards, and post-tuning repair; and (iii) provides evaluators for safety (attack success rate, refusal consistency) and utility. Built on Python-first, dataclass-driven configs and plugins, SafeTuneBed requires minimal additional code to specify any fine-tuning regime, defense method, and metric suite, while ensuring end-to-end reproducibility. We showcase its value by benchmarking representative defenses across varied poisoning scenarios and tasks. By standardizing data, code, and metrics, SafeTuneBed is the first focused toolkit of its kind to accelerate rigorous and comparable research in safe LLM fine-tuning. Code is available at: https://github.com/criticalml-uw/SafeTuneBed

Authors:Yu Huang, Junhao Chen, Shuliang Liu, Hanqian Li, Qi Zheng, Yi R. Fung, Xuming Hu
Title: Video Signature: In-generation Watermarking for Latent Video Diffusion Models
Abstract:
The rapid development of Artificial Intelligence Generated Content (AIGC) has led to significant progress in video generation but also raises serious concerns about intellectual property protection and reliable content tracing. Watermarking is a widely adopted solution to this issue, but existing methods for video generation mainly follow a post-generation paradigm, which introduces additional computational overhead and often fails to effectively balance the trade-off between video quality and watermark extraction. To address these issues, we propose Video Signature (VIDSIG), an in-generation watermarking method for latent video diffusion models, which enables implicit and adaptive watermark integration during generation. Specifically, we achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality. Beyond spatial fidelity, we further enhance temporal consistency by introducing a lightweight Temporal Alignment module that guides the decoder to generate coherent frame sequences during fine-tuning. Experimental results show that VIDSIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency. It also demonstrates strong robustness against both spatial and temporal tampering, highlighting its practicality in real-world scenarios. Our code is available at \href{https://github.com/hardenyu21/Video-Signature}{here}

Authors:Daniele Molino, Camillo Maria Caruso, Filippo Ruffini, Paolo Soda, Valerio Guarrasi
Title: Text-to-CT Generation via 3D Latent Diffusion Model with Contrastive Vision-Language Pretraining
Abstract:
Objective: While recent advances in text-conditioned generative models have enabled the synthesis of realistic medical images, progress has been largely confined to 2D modalities such as chest X-rays. Extending text-to-image generation to volumetric CT remains a significant challenge, due to its high dimensionality, anatomical complexity, and the absence of robust frameworks that align vision-language data in 3D medical imaging. Methods: We introduce a novel architecture for Text-to-CT generation that combines a latent diffusion model with a 3D contrastive vision-language pretraining scheme. Our approach leverages a dual-encoder CLIP-style model trained on paired CT volumes and radiology reports to establish a shared embedding space, which serves as the conditioning input for generation. CT volumes are compressed into a low-dimensional latent space via a pretrained volumetric VAE, enabling efficient 3D denoising diffusion without requiring external super-resolution stages. Results: We evaluate our method on the CT-RATE dataset and conduct a comprehensive assessment of image fidelity, clinical relevance, and semantic alignment. Our model achieves competitive performance across all tasks, significantly outperforming prior baselines for text-to-CT generation. Moreover, we demonstrate that CT scans synthesized by our framework can effectively augment real data, improving downstream diagnostic performance. Conclusion: Our results show that modality-specific vision-language alignment is a key component for high-quality 3D medical image generation. By integrating contrastive pretraining and volumetric diffusion, our method offers a scalable and controllable solution for synthesizing clinically meaningful CT volumes from text, paving the way for new applications in data augmentation, medical education, and automated clinical simulation. Code at https://github.com/cosbidev/Text2CT.

Authors:Ruiming Min, Minghao Liu
Title: ABCDEFGH: An Adaptation-Based Convolutional Neural Network-CycleGAN Disease-Courses Evolution Framework Using Generative Models in Health Education
Abstract:
With the advancement of modern medicine and the development of technologies such as MRI, CT, and cellular analysis, it has become increasingly critical for clinicians to accurately interpret various diagnostic images. However, modern medical education often faces challenges due to limited access to high-quality teaching materials, stemming from privacy concerns and a shortage of educational resources (Balogh et al., 2015). In this context, image data generated by machine learning models, particularly generative models, presents a promising solution. These models can create diverse and comparable imaging datasets without compromising patient privacy, thereby supporting modern medical education. In this study, we explore the use of convolutional neural networks (CNNs) and CycleGAN (Zhu et al., 2017) for generating synthetic medical images. The source code is available at https://github.com/mliuby/COMP4211-Project.

Authors:Yufa Zhou, Shaobo Wang, Xingyu Dong, Xiangqi Jin, Yifang Chen, Yue Min, Kexin Yang, Xingzhang Ren, Dayiheng Liu, Linfeng Zhang
Title: Reasoning Like an Economist: Post-Training on Economic Problems Induces Strategic Generalization in LLMs
Abstract:
Directly training Large Language Models (LLMs) for Multi-Agent Systems (MAS) remains challenging due to intricate reward modeling, dynamic agent interactions, and demanding generalization requirements. This paper explores whether post-training techniques, specifically Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR), can effectively $\textit{generalize}$ to multi-agent scenarios. We use economic reasoning as a testbed, leveraging its strong foundations in mathematics and game theory, its demand for structured analytical reasoning, and its relevance to real-world applications such as market design, resource allocation, and policy analysis. We introduce $\textbf{Recon}$ ($\textbf{R}$easoning like an $\textbf{ECON}$omist), a 7B-parameter open-source LLM post-trained on a hand-curated dataset of 2,100 high-quality economic reasoning problems. Comprehensive evaluation on economic reasoning benchmarks and multi-agent games reveals clear improvements in structured reasoning and economic rationality. These results underscore the promise of domain-aligned post-training for enhancing reasoning and agent alignment, shedding light on the roles of SFT and RL in shaping model behavior. Code is available at https://github.com/MasterZhou1/Recon .

Authors:Yule Zhu, Ping Liu, Zhedong Zheng, Wei Liu
Title: SEED: A Benchmark Dataset for Sequential Facial Attribute Editing with Diffusion Models
Abstract:
Diffusion models have recently enabled precise and photorealistic facial editing across a wide range of semantic attributes. Beyond single-step modifications, a growing class of applications now demands the ability to analyze and track sequences of progressive edits, such as stepwise changes to hair, makeup, or accessories. However, sequential editing introduces significant challenges in edit attribution and detection robustness, further complicated by the lack of large-scale, finely annotated benchmarks tailored explicitly for this task. We introduce SEED, a large-scale Sequentially Edited facE Dataset constructed via state-of-the-art diffusion models. SEED contains over 90,000 facial images with one to four sequential attribute modifications, generated using diverse diffusion-based editing pipelines (LEdits, SDXL, SD3). Each image is annotated with detailed edit sequences, attribute masks, and prompts, facilitating research on sequential edit tracking, visual provenance analysis, and manipulation robustness assessment. To benchmark this task, we propose FAITH, a frequency-aware transformer-based model that incorporates high-frequency cues to enhance sensitivity to subtle sequential changes. Comprehensive experiments, including systematic comparisons of multiple frequency-domain methods, demonstrate the effectiveness of FAITH and the unique challenges posed by SEED. SEED offers a challenging and flexible resource for studying progressive diffusion-based edits at scale. Dataset and code will be publicly released at: https://github.com/Zeus1037/SEED.

Authors:Ming Wang, Peidong Wang, Lin Wu, Xiaocui Yang, Daling Wang, Shi Feng, Yuxin Chen, Bixuan Wang, Yifei Zhang
Title: AnnaAgent: Dynamic Evolution Agent System with Multi-Session Memory for Realistic Seeker Simulation
Abstract:
Constrained by the cost and ethical concerns of involving real seekers in AI-driven mental health, researchers develop LLM-based conversational agents (CAs) with tailored configurations, such as profiles, symptoms, and scenarios, to simulate seekers. While these efforts advance AI in mental health, achieving more realistic seeker simulation remains hindered by two key challenges: dynamic evolution and multi-session memory. Seekers' mental states often fluctuate during counseling, which typically spans multiple sessions. To address this, we propose AnnaAgent, an emotional and cognitive dynamic agent system equipped with tertiary memory. AnnaAgent incorporates an emotion modulator and a complaint elicitor trained on real counseling dialogues, enabling dynamic control of the simulator's configurations. Additionally, its tertiary memory mechanism effectively integrates short-term and long-term memory across sessions. Evaluation results, both automated and manual, demonstrate that AnnaAgent achieves more realistic seeker simulation in psychological counseling compared to existing baselines. The ethically reviewed and screened code can be found on https://github.com/sci-m-wang/AnnaAgent.

Authors:Hyangsuk Min, Yuho Lee, Minjeong Ban, Jiaqi Deng, Nicole Hee-Yeon Kim, Taewon Yun, Hang Su, Jason Cai, Hwanjun Song
Title: Towards Multi-dimensional Evaluation of LLM Summarization across Domains and Languages
Abstract:
Evaluation frameworks for text summarization have evolved in terms of both domain coverage and metrics. However, existing benchmarks still lack domain-specific assessment criteria, remain predominantly English-centric, and face challenges with human annotation due to the complexity of reasoning. To address these, we introduce MSumBench, which provides a multi-dimensional, multi-domain evaluation of summarization in English and Chinese. It also incorporates specialized assessment criteria for each domain and leverages a multi-agent debate system to enhance annotation quality. By evaluating eight modern summarization models, we discover distinct performance patterns across domains and languages. We further examine large language models as summary evaluators, analyzing the correlation between their evaluation and summarization capabilities, and uncovering systematic bias in their assessment of self-generated summaries. Our benchmark dataset is publicly available at https://github.com/DISL-Lab/MSumBench.

Authors:Changyue Wang, Weihang Su, Qingyao Ai, Yujia Zhou, Yiqun Liu
Title: Decoupling Reasoning and Knowledge Injection for In-Context Knowledge Editing
Abstract:
Knowledge editing aims to efficiently update Large Language Models (LLMs) by modifying specific knowledge without retraining the entire model. Among knowledge editing approaches, in-context editing (ICE) offers a lightweight solution by injecting new knowledge directly into the input context, leaving model parameters unchanged. However, existing ICE approaches do not explicitly separate the newly injected knowledge from the model's original reasoning process. This entanglement often results in conflicts between external updates and internal parametric knowledge, undermining the consistency and accuracy of the reasoning path.In this work, we conduct preliminary experiments to examine how parametric knowledge influences reasoning path planning. We find that the model's reasoning is tightly coupled with its internal knowledge, and that naively injecting new information without adapting the reasoning path often leads to performance degradation, particularly in multi-hop tasks. To this end, we propose DecKER, a novel ICE framework that decouples reasoning from knowledge editing by generating a masked reasoning path and then resolving knowledge edits via hybrid retrieval and model-based validation. Experiments on multi-hop QA benchmarks show that DecKER significantly outperforms existing ICE methods by mitigating knowledge conflicts and preserving reasoning consistency. Our code is available at: https://github.com/bebr2/DecKER .

Authors:Yudong Zhang, Ruobing Xie, Xingwu Sun, Jiansheng Chen, Zhanhui Kang, Di Wang, Yu Wang
Title: The Security Threat of Compressed Projectors in Large Vision-Language Models
Abstract:
The choice of a suitable visual language projector (VLP) is critical to the successful training of large visual language models (LVLMs). Mainstream VLPs can be broadly categorized into compressed and uncompressed projectors, and each offers distinct advantages in performance and computational efficiency. However, their security implications have not been thoroughly examined. Our comprehensive evaluation reveals significant differences in their security profiles: compressed projectors exhibit substantial vulnerabilities, allowing adversaries to successfully compromise LVLMs even with minimal knowledge of structure information. In stark contrast, uncompressed projectors demonstrate robust security properties and do not introduce additional vulnerabilities. These findings provide critical guidance for researchers in selecting optimal VLPs that enhance the security and reliability of visual language models. The code is available at https://github.com/btzyd/TCP.

Authors:Tianhui Liu, Jie Feng, Hetian Pang, Xin Zhang, Tianjian Ouyang, Zhiyuan Zhang, Yong Li
Title: CityLens: Benchmarking Large Language-Vision Models for Urban Socioeconomic Sensing
Abstract:
Understanding urban socioeconomic conditions through visual data is a challenging yet essential task for sustainable urban development and policy planning. In this work, we introduce $\textbf{CityLens}$, a comprehensive benchmark designed to evaluate the capabilities of large language-vision models (LLVMs) in predicting socioeconomic indicators from satellite and street view imagery. We construct a multi-modal dataset covering a total of 17 globally distributed cities, spanning 6 key domains: economy, education, crime, transport, health, and environment, reflecting the multifaceted nature of urban life. Based on this dataset, we define 11 prediction tasks and utilize three evaluation paradigms: Direct Metric Prediction, Normalized Metric Estimation, and Feature-Based Regression. We benchmark 17 state-of-the-art LLVMs across these tasks. Our results reveal that while LLVMs demonstrate promising perceptual and reasoning capabilities, they still exhibit limitations in predicting urban socioeconomic indicators. CityLens provides a unified framework for diagnosing these limitations and guiding future efforts in using LLVMs to understand and predict urban socioeconomic patterns. Our codes and datasets are open-sourced via https://github.com/tsinghua-fib-lab/CityLens.

Authors:Runtao Ren, Jian Ma, Jianxi Luo
Title: Retrieval-Augmented Generation Systems for Intellectual Property via Synthetic Multi-Angle Fine-tuning
Abstract:
Retrieval-Augmented Generation (RAG) systems in the Intellectual Property (IP) field often struggle with diverse user queries, including colloquial expressions, spelling errors, and ambiguous terminology, leading to inaccurate retrieval and suboptimal responses. To address this challenge, we propose Multi-Angle Question Generation and Retrieval Fine-Tuning Method (MQG-RFM), a novel framework that leverages large language models (LLMs) to simulate varied user inquiries and fine-tunes retrieval models to align semantically equivalent but linguistically diverse questions. Unlike complex architectural modifications, MQG-RFM adopts a lightweight Data-to-Tune paradigm, combining prompt-engineered query generation with hard negative mining to enhance retrieval robustness without costly infrastructure changes. Experimental results on a Taiwan patent Q&A dataset show 185.62% improvement in retrieval accuracy on the Patent Consultation dataset and 262.26% improvement on the Novel Patent Technology Report dataset, with 14.22% and 53.58% improvements in generation quality over the baselines, respectively. By bridging the gap between user intent and system comprehension through semantic-aware retrieval optimization, MQG-RFM offers a practical, scalable approach for rapid, cost-effective deployment among small and medium-sized agencies seeking reliable patent intelligence solutions. Additionally, our proposed method has already been adopted by ScholarMate, the largest professional research social networking platform in China, to support real-world development and deployment. A demo version of the instantiated is available at https://github.com/renruntao/patent_rag.

Authors:Xingtong Ge, Xin Zhang, Tongda Xu, Yi Zhang, Xinjie Zhang, Yan Wang, Jun Zhang
Title: SenseFlow: Scaling Distribution Matching for Flow-based Text-to-Image Distillation
Abstract:
The Distribution Matching Distillation (DMD) has been successfully applied to text-to-image diffusion models such as Stable Diffusion (SD) 1.5. However, vanilla DMD suffers from convergence difficulties on large-scale flow-based text-to-image models, such as SD 3.5 and FLUX. In this paper, we first analyze the issues when applying vanilla DMD on large-scale models. Then, to overcome the scalability challenge, we propose implicit distribution alignment (IDA) to regularize the distance between the generator and fake distribution. Furthermore, we propose intra-segment guidance (ISG) to relocate the timestep importance distribution from the teacher model. With IDA alone, DMD converges for SD 3.5; employing both IDA and ISG, DMD converges for SD 3.5 and FLUX.1 dev. Along with other improvements such as scaled up discriminator models, our final model, dubbed \textbf{SenseFlow}, achieves superior performance in distillation for both diffusion based text-to-image models such as SDXL, and flow-matching models such as SD 3.5 Large and FLUX. The source code will be avaliable at https://github.com/XingtongGe/SenseFlow.

Authors:Yuxi Sun, Aoqi Zuo, Wei Gao, Jing Ma
Title: CausalAbstain: Enhancing Multilingual LLMs with Causal Reasoning for Trustworthy Abstention
Abstract:
Large Language Models (LLMs) often exhibit knowledge disparities across languages. Encouraging LLMs to \textit{abstain} when faced with knowledge gaps is a promising strategy to reduce hallucinations in multilingual settings. Current abstention strategies for multilingual scenarios primarily rely on generating feedback in various languages using LLMs and performing self-reflection. However, these methods can be adversely impacted by inaccuracies and biases in the generated feedback. To address this, from a causal perspective, we introduce \textit{CausalAbstain}, a method that helps LLMs determine whether to utilize multiple generated feedback responses and how to identify the most useful ones. Extensive experiments demonstrate that \textit{CausalAbstain} effectively selects helpful feedback and enhances abstention decisions with interpretability in both native language (\textsc{Casual-native}) and multilingual (\textsc{Causal-multi}) settings, outperforming strong baselines on two benchmark datasets covering encyclopedic and commonsense knowledge QA tasks. Our code and data are open-sourced at https://github.com/peachch/CausalAbstain.

Authors:Zherui Li, Yan Mi, Zhenhong Zhou, Houcheng Jiang, Guibin Zhang, Kun Wang, Junfeng Fang
Title: Goal-Aware Identification and Rectification of Misinformation in Multi-Agent Systems
Abstract:
Large Language Model-based Multi-Agent Systems (MASs) have demonstrated strong advantages in addressing complex real-world tasks. However, due to the introduction of additional attack surfaces, MASs are particularly vulnerable to misinformation injection. To facilitate a deeper understanding of misinformation propagation dynamics within these systems, we introduce MisinfoTask, a novel dataset featuring complex, realistic tasks designed to evaluate MAS robustness against such threats. Building upon this, we propose ARGUS, a two-stage, training-free defense framework leveraging goal-aware reasoning for precise misinformation rectification within information flows. Our experiments demonstrate that in challenging misinformation scenarios, ARGUS exhibits significant efficacy across various injection attacks, achieving an average reduction in misinformation toxicity of approximately 28.17% and improving task success rates under attack by approximately 10.33%. Our code and dataset is available at: https://github.com/zhrli324/ARGUS.

Authors:Dohyun Lee, Seungil Chad Lee, Chanwoo Yang, Yujin Baek, Jaegul Choo
Title: Exploring In-context Example Generation for Machine Translation
Abstract:
Large language models (LLMs) have demonstrated strong performance across various tasks, leveraging their exceptional in-context learning ability with only a few examples. Accordingly, the selection of optimal in-context examples has been actively studied in the field of machine translation. However, these studies presuppose the presence of a demonstration pool with human-annotated pairs, making them less applicable to low-resource languages where such an assumption is challenging to meet. To overcome this limitation, this paper explores the research direction of in-context example generation for machine translation. Specifically, we propose Demonstration Augmentation for Translation (DAT), a simple yet effective approach that generates example pairs without relying on any external resources. This method builds upon two prior criteria, relevance and diversity, which have been highlighted in previous work as key factors for in-context example selection. Through experiments and analysis on low-resource languages where human-annotated pairs are scarce, we show that DAT achieves superior translation quality compared to the baselines. Furthermore, we investigate the potential of progressively accumulating generated pairs during test time to build and reuse a demonstration pool. Our implementation is publicly available at https://github.com/aiclaudev/DAT.

Authors:Junseo Kim, Jongwook Han, Dongmin Choi, Jongwook Yoon, Eun-Ju Lee, Yohan Jo
Title: PVP: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings
Abstract:
Visual persuasion, which uses visual elements to influence cognition and behaviors, is crucial in fields such as advertising and political communication. With recent advancements in artificial intelligence, there is growing potential to develop persuasive systems that automatically generate persuasive images tailored to individuals. However, a significant bottleneck in this area is the lack of comprehensive datasets that connect the persuasiveness of images with the personal information about those who evaluated the images. To address this gap and facilitate technological advancements in personalized visual persuasion, we release the Personalized Visual Persuasion (PVP) dataset, comprising 28,454 persuasive images across 596 messages and 9 persuasion strategies. Importantly, the PVP dataset provides persuasiveness scores of images evaluated by 2,521 human annotators, along with their demographic and psychological characteristics (personality traits and values). We demonstrate the utility of our dataset by developing a persuasive image generator and an automated evaluator, and establish benchmark baselines. Our experiments reveal that incorporating psychological characteristics enhances the generation and evaluation of persuasive images, providing valuable insights for personalized visual persuasion.

Authors:Leila Mahmoodi, Peyman Moghadam, Munawar Hayat, Christian Simon, Mehrtash Harandi
Title: Flashbacks to Harmonize Stability and Plasticity in Continual Learning
Abstract:
We introduce Flashback Learning (FL), a novel method designed to harmonize the stability and plasticity of models in Continual Learning (CL). Unlike prior approaches that primarily focus on regularizing model updates to preserve old information while learning new concepts, FL explicitly balances this trade-off through a bidirectional form of regularization. This approach effectively guides the model to swiftly incorporate new knowledge while actively retaining its old knowledge. FL operates through a two-phase training process and can be seamlessly integrated into various CL methods, including replay, parameter regularization, distillation, and dynamic architecture techniques. In designing FL, we use two distinct knowledge bases: one to enhance plasticity and another to improve stability. FL ensures a more balanced model by utilizing both knowledge bases to regularize model updates. Theoretically, we analyze how the FL mechanism enhances the stability-plasticity balance. Empirically, FL demonstrates tangible improvements over baseline methods within the same training budget. By integrating FL into at least one representative baseline from each CL category, we observed an average accuracy improvement of up to 4.91% in Class-Incremental and 3.51% in Task-Incremental settings on standard image classification benchmarks. Additionally, measurements of the stability-to-plasticity ratio confirm that FL effectively enhances this balance. FL also outperforms state-of-the-art CL methods on more challenging datasets like ImageNet.

Authors:Cunhang Fan, Ying Chen, Jian Zhou, Zexu Pan, Jingjing Zhang, Youdian Gao, Xiaoke Yang, Zhengqi Wen, Zhao Lv
Title: M3ANet: Multi-scale and Multi-Modal Alignment Network for Brain-Assisted Target Speaker Extraction
Abstract:
The brain-assisted target speaker extraction (TSE) aims to extract the attended speech from mixed speech by utilizing the brain neural activities, for example Electroencephalography (EEG). However, existing models overlook the issue of temporal misalignment between speech and EEG modalities, which hampers TSE performance. In addition, the speech encoder in current models typically uses basic temporal operations (e.g., one-dimensional convolution), which are unable to effectively extract target speaker information. To address these issues, this paper proposes a multi-scale and multi-modal alignment network (M3ANet) for brain-assisted TSE. Specifically, to eliminate the temporal inconsistency between EEG and speech modalities, the modal alignment module that uses a contrastive learning strategy is applied to align the temporal features of both modalities. Additionally, to fully extract speech information, multi-scale convolutions with GroupMamba modules are used as the speech encoder, which scans speech features at each scale from different directions, enabling the model to capture deep sequence information. Experimental results on three publicly available datasets show that the proposed model outperforms current state-of-the-art methods across various evaluation metrics, highlighting the effectiveness of our proposed method. The source code is available at: https://github.com/fchest/M3ANet.

Authors:Ioan-Paul Ciobanu, Andrei-Iulian Hiji, Nicolae-Catalin Ristea, Paul Irofti, Cristian Rusu, Radu Tudor Ionescu
Title: XMAD-Bench: Cross-Domain Multilingual Audio Deepfake Benchmark
Abstract:
Recent advances in audio generation led to an increasing number of deepfakes, making the general public more vulnerable to financial scams, identity theft, and misinformation. Audio deepfake detectors promise to alleviate this issue, with many recent studies reporting accuracy rates close to 99%. However, these methods are typically tested in an in-domain setup, where the deepfake samples from the training and test sets are produced by the same generative models. To this end, we introduce XMAD-Bench, a large-scale cross-domain multilingual audio deepfake benchmark comprising 668.8 hours of real and deepfake speech. In our novel dataset, the speakers, the generative methods, and the real audio sources are distinct across training and test splits. This leads to a challenging cross-domain evaluation setup, where audio deepfake detectors can be tested ``in the wild''. Our in-domain and cross-domain experiments indicate a clear disparity between the in-domain performance of deepfake detectors, which is usually as high as 100%, and the cross-domain performance of the same models, which is sometimes similar to random chance. Our benchmark highlights the need for the development of robust audio deepfake detectors, which maintain their generalization capacity across different languages, speakers, generative methods, and data sources. Our benchmark is publicly released at https://github.com/ristea/xmad-bench/.

Authors:Junwoo Park, Hyuck Lee, Dohyun Lee, Daehoon Gwak, Jaegul Choo
Title: Revisiting LLMs as Zero-Shot Time-Series Forecasters: Small Noise Can Break Large Models
Abstract:
Large Language Models (LLMs) have shown remarkable performance across diverse tasks without domain-specific training, fueling interest in their potential for time-series forecasting. While LLMs have shown potential in zero-shot forecasting through prompting alone, recent studies suggest that LLMs lack inherent effectiveness in forecasting. Given these conflicting findings, a rigorous validation is essential for drawing reliable conclusions. In this paper, we evaluate the effectiveness of LLMs as zero-shot forecasters compared to state-of-the-art domain-specific models. Our experiments show that LLM-based zero-shot forecasters often struggle to achieve high accuracy due to their sensitivity to noise, underperforming even simple domain-specific models. We have explored solutions to reduce LLMs' sensitivity to noise in the zero-shot setting, but improving their robustness remains a significant challenge. Our findings suggest that rather than emphasizing zero-shot forecasting, a more promising direction would be to focus on fine-tuning LLMs to better process numerical sequences. Our experimental code is available at https://github.com/junwoopark92/revisiting-LLMs-zeroshot-forecaster.

Authors:Seohyun Park, Chitralekha Gupta, Michelle Kah Yian Kwan, Xinhui Fung, Alexander Wenjun Yip, Suranga Nanayakkara
Title: Towards Temporally Explainable Dysarthric Speech Clarity Assessment
Abstract:
Dysarthria, a motor speech disorder, affects intelligibility and requires targeted interventions for effective communication. In this work, we investigate automated mispronunciation feedback by collecting a dysarthric speech dataset from six speakers reading two passages, annotated by a speech therapist with temporal markers and mispronunciation descriptions. We design a three-stage framework for explainable mispronunciation evaluation: (1) overall clarity scoring, (2) mispronunciation localization, and (3) mispronunciation type classification. We systematically analyze pretrained Automatic Speech Recognition (ASR) models in each stage, assessing their effectiveness in dysarthric speech evaluation (Code available at: https://github.com/augmented-human-lab/interspeech25_speechtherapy, Supplementary webpage: https://apps.ahlab.org/interspeech25_speechtherapy/). Our findings offer clinically relevant insights for automating actionable feedback for pronunciation assessment, which could enable independent practice for patients and help therapists deliver more effective interventions.

Authors:Hao Li, Hao Wan, Yuzhou Chen, Dongsheng Ye, Yulia Gel, Hao Jiang
Title: TMetaNet: Topological Meta-Learning Framework for Dynamic Link Prediction
Abstract:
Dynamic graphs evolve continuously, presenting challenges for traditional graph learning due to their changing structures and temporal dependencies. Recent advancements have shown potential in addressing these challenges by developing suitable meta-learning-based dynamic graph neural network models. However, most meta-learning approaches for dynamic graphs rely on fixed weight update parameters, neglecting the essential intrinsic complex high-order topological information of dynamically evolving graphs. We have designed Dowker Zigzag Persistence (DZP), an efficient and stable dynamic graph persistent homology representation method based on Dowker complex and zigzag persistence, to capture the high-order features of dynamic graphs. Armed with the DZP ideas, we propose TMetaNet, a new meta-learning parameter update model based on dynamic topological features. By utilizing the distances between high-order topological features, TMetaNet enables more effective adaptation across snapshots. Experiments on real-world datasets demonstrate TMetaNet's state-of-the-art performance and resilience to graph noise, illustrating its high potential for meta-learning and dynamic graph analysis. Our code is available at https://github.com/Lihaogx/TMetaNet.

Authors:Suhas BN, Han-Chin Shing, Lei Xu, Mitch Strong, Jon Burnsky, Jessica Ofor, Jordan R. Mason, Susan Chen, Sundararajan Srinivasan, Chaitanya Shivade, Jack Moriarty, Joseph Paul Cohen
Title: Fact-Controlled Diagnosis of Hallucinations in Medical Text Summarization
Abstract:
Hallucinations in large language models (LLMs) during summarization of patient-clinician dialogues pose significant risks to patient care and clinical decision-making. However, the phenomenon remains understudied in the clinical domain, with uncertainty surrounding the applicability of general-domain hallucination detectors. The rarity and randomness of hallucinations further complicate their investigation. In this paper, we conduct an evaluation of hallucination detection methods in the medical domain, and construct two datasets for the purpose: A fact-controlled Leave-N-out dataset -- generated by systematically removing facts from source dialogues to induce hallucinated content in summaries; and a natural hallucination dataset -- arising organically during LLM-based medical summarization. We show that general-domain detectors struggle to detect clinical hallucinations, and that performance on fact-controlled hallucinations does not reliably predict effectiveness on natural hallucinations. We then develop fact-based approaches that count hallucinations, offering explainability not available with existing methods. Notably, our LLM-based detectors, which we developed using fact-controlled hallucinations, generalize well to detecting real-world clinical hallucinations. This research contributes a suite of specialized metrics supported by expert-annotated datasets to advance faithful clinical summarization systems.

Authors:Mehedi Ahamed, Radib Bin Kabir, Tawsif Tashwar Dipto, Mueeze Al Mushabbir, Sabbir Ahmed, Md. Hasanul Kabir
Title: Performance Analysis of Few-Shot Learning Approaches for Bangla Handwritten Character and Digit Recognition
Abstract:
This study investigates the performance of few-shot learning (FSL) approaches in recognizing Bangla handwritten characters and numerals using limited labeled data. It demonstrates the applicability of these methods to scripts with intricate and complex structures, where dataset scarcity is a common challenge. Given the complexity of Bangla script, we hypothesize that models performing well on these characters can generalize effectively to languages of similar or lower structural complexity. To this end, we introduce SynergiProtoNet, a hybrid network designed to improve the recognition accuracy of handwritten characters and digits. The model integrates advanced clustering techniques with a robust embedding framework to capture fine-grained details and contextual nuances. It leverages multi-level (both high- and low-level) feature extraction within a prototypical learning framework. We rigorously benchmark SynergiProtoNet against several state-of-the-art few-shot learning models: BD-CSPN, Prototypical Network, Relation Network, Matching Network, and SimpleShot, across diverse evaluation settings including Monolingual Intra-Dataset Evaluation, Monolingual Inter-Dataset Evaluation, Cross-Lingual Transfer, and Split Digit Testing. Experimental results show that SynergiProtoNet consistently outperforms existing methods, establishing a new benchmark in few-shot learning for handwritten character and digit recognition. The code is available on GitHub: https://github.com/MehediAhamed/SynergiProtoNet.

Authors:Shihao Cai, Chongming Gao, Yang Zhang, Wentao Shi, Jizhi Zhang, Keqin Bao, Qifan Wang, Fuli Feng
Title: K-order Ranking Preference Optimization for Large Language Models
Abstract:
To adapt large language models (LLMs) to ranking tasks, existing list-wise methods, represented by list-wise Direct Preference Optimization (DPO), focus on optimizing partial-order or full-order list ranking consistency for LLMs to enhance their ranking abilities. However, we argue that optimizing top-K ranking consistency could be more appropriate for real-world applications. There are two main reasons: (1) users are typically concerned with only the top-K results, making top-K ranking more important, and (2) tail items often lack precise feedback, making top-K ranking more reliable. Based on this, we propose K-order Ranking Preference Optimization (KPO) by extending the DPO's Plackett-Luce model to accommodate top-K rankings. Additionally, recognizing that the number of important items can vary across queries, we extend KPO to dynamically determine appropriate K for different samples and introduce a curriculum learning strategy to boost training efficiency. Extensive experiments demonstrate the effectiveness of KPO, highlighting its high sample efficiency and robustness to noise. The code is available at https://github.com/Lanyu0303/KPO.

Authors:Tuan-Luc Huynh, Thanh-Danh Le, Tam V. Nguyen, Trung-Nghia Le, Minh-Triet Tran
Title: Efficient 3D Brain Tumor Segmentation with Axial-Coronal-Sagittal Embedding
Abstract:
In this paper, we address the crucial task of brain tumor segmentation in medical imaging and propose innovative approaches to enhance its performance. The current state-of-the-art nnU-Net has shown promising results but suffers from extensive training requirements and underutilization of pre-trained weights. To overcome these limitations, we integrate Axial-Coronal-Sagittal convolutions and pre-trained weights from ImageNet into the nnU-Net framework, resulting in reduced training epochs, reduced trainable parameters, and improved efficiency. Two strategies for transferring 2D pre-trained weights to the 3D domain are presented, ensuring the preservation of learned relationships and feature representations critical for effective information propagation. Furthermore, we explore a joint classification and segmentation model that leverages pre-trained encoders from a brain glioma grade classification proxy task, leading to enhanced segmentation performance, especially for challenging tumor labels. Experimental results demonstrate that our proposed methods in the fast training settings achieve comparable or even outperform the ensemble of cross-validation models, a common practice in the brain tumor segmentation literature.

Authors:Seunghan Lee, Taeyoung Park, Kibok Lee
Title: Channel Normalization for Time Series Channel Identification
Abstract:
Channel identifiability (CID) refers to the ability to distinguish between individual channels in time series (TS) modeling. The absence of CID often results in producing identical outputs for identical inputs, disregarding channel-specific characteristics. In this paper, we highlight the importance of CID and propose Channel Normalization (CN), a simple yet effective normalization strategy that enhances CID by assigning distinct affine transformation parameters to each channel. We further extend CN in two ways: 1) Adaptive CN (ACN) dynamically adjusts parameters based on the input TS, improving adaptability in TS models, and 2) Prototypical CN (PCN) introduces a set of learnable prototypes instead of per-channel parameters, enabling applicability to datasets with unknown or varying number of channels and facilitating use in TS foundation models. We demonstrate the effectiveness of CN and its variants by applying them to various TS models, achieving significant performance gains for both non-CID and CID models. In addition, we analyze the success of our approach from an information theory perspective. Code is available at https://github.com/seunghan96/CN.

Authors:Mohammad Saqib Hasan, Saikat Chakraborty, Santu Karmaker, Niranjan Balasubramanian
Title: Teaching an Old LLM Secure Coding: Localized Preference Optimization on Distilled Preferences
Abstract:
LLM generated code often contains security issues. We address two key challenges in improving secure code generation. First, obtaining high quality training data covering a broad set of security issues is critical. To address this, we introduce a method for distilling a preference dataset of insecure and secure code pairs from frontier LLMs, along with a security reasoning that explains the issues and the fix. The key idea here is to make use of security knowledge sources to devise a systematic prompting strategy that ensures broad coverage. Second, aligning models to secure code requires focusing on localized regions of code. Direct preference optimization methods, like SimPO, are not designed to handle these localized differences and turn out to be ineffective. We address this with a new localized preference optimization algorithm that masks the security related tokens in both the winning (secure) and losing (insecure) responses. To prevent loss in code quality, we also add a regularizer. Evaluations show that both training on our dataset, DiSCo, and the new preference optimization algorithm, LPO, yield substantial reductions in code insecurity while also improving overall code quality. Code and dataset are available at https://github.com/StonyBrookNLP/disco-lpo.

Authors:Ziwen Wang
Title: JojoSCL: Shrinkage Contrastive Learning for single-cell RNA sequence Clustering
Abstract:
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling gene expression analysis at the individual cell level. Clustering allows for the identification of cell types and the further discovery of intrinsic patterns in single-cell data. However, the high dimensionality and sparsity of scRNA-seq data continue to challenge existing clustering models. In this paper, we introduce JojoSCL, a novel self-supervised contrastive learning framework for scRNA-seq clustering. By incorporating a shrinkage estimator based on hierarchical Bayesian estimation, which adjusts gene expression estimates towards more reliable cluster centroids to reduce intra-cluster dispersion, and optimized using Stein's Unbiased Risk Estimate (SURE), JojoSCL refines both instance-level and cluster-level contrastive learning. Experiments on ten scRNA-seq datasets substantiate that JojoSCL consistently outperforms prevalent clustering methods, with further validation of its practicality through robustness analysis and ablation studies. JojoSCL's code is available at: https://github.com/ziwenwang28/JojoSCL.

Authors:Yakun Song, Jiawei Chen, Xiaobin Zhuang, Chenpeng Du, Ziyang Ma, Jian Wu, Jian Cong, Dongya Jia, Zhuo Chen, Yuping Wang, Yuxuan Wang, Xie Chen
Title: MagiCodec: Simple Masked Gaussian-Injected Codec for High-Fidelity Reconstruction and Generation
Abstract:
Neural audio codecs have made significant strides in efficiently mapping raw audio waveforms into discrete token representations, which are foundational for contemporary audio generative models. However, most existing codecs are optimized primarily for reconstruction quality, often at the expense of the downstream modelability of the encoded tokens. Motivated by the need to overcome this bottleneck, we introduce $\textbf{MagiCodec}$, a novel single-layer, streaming Transformer-based audio codec. MagiCodec is designed with a multistage training pipeline that incorporates Gaussian noise injection and latent regularization, explicitly targeting the enhancement of semantic expressiveness in the generated codes while preserving high reconstruction fidelity. We analytically derive the effect of noise injection in the frequency domain, demonstrating its efficacy in attenuating high-frequency components and fostering robust tokenization. Extensive experimental evaluations show that MagiCodec surpasses state-of-the-art codecs in both reconstruction quality and downstream tasks. Notably, the tokens produced by MagiCodec exhibit Zipf-like distributions, as observed in natural languages, thereby improving compatibility with language-model-based generative architectures. The code and pre-trained models are available at https://github.com/Ereboas/MagiCodec.

Authors:Siavash Shams, Richard Antonello, Gavin Mischler, Stephan Bickel, Ashesh Mehta, Nima Mesgarani
Title: Neuro2Semantic: A Transfer Learning Framework for Semantic Reconstruction of Continuous Language from Human Intracranial EEG
Abstract:
Decoding continuous language from neural signals remains a significant challenge in the intersection of neuroscience and artificial intelligence. We introduce Neuro2Semantic, a novel framework that reconstructs the semantic content of perceived speech from intracranial EEG (iEEG) recordings. Our approach consists of two phases: first, an LSTM-based adapter aligns neural signals with pre-trained text embeddings; second, a corrector module generates continuous, natural text directly from these aligned embeddings. This flexible method overcomes the limitations of previous decoding approaches and enables unconstrained text generation. Neuro2Semantic achieves strong performance with as little as 30 minutes of neural data, outperforming a recent state-of-the-art method in low-data settings. These results highlight the potential for practical applications in brain-computer interfaces and neural decoding technologies.

Authors:Yubai Wei, Jiale Han, Yi Yang
Title: Adapting General-Purpose Embedding Models to Private Datasets Using Keyword-based Retrieval
Abstract:
Text embedding models play a cornerstone role in AI applications, such as retrieval-augmented generation (RAG). While general-purpose text embedding models demonstrate strong performance on generic retrieval benchmarks, their effectiveness diminishes when applied to private datasets (e.g., company-specific proprietary data), which often contain specialized terminology and lingo. In this work, we introduce BMEmbed, a novel method for adapting general-purpose text embedding models to private datasets. By leveraging the well-established keyword-based retrieval technique (BM25), we construct supervisory signals from the ranking of keyword-based retrieval results to facilitate model adaptation. We evaluate BMEmbed across a range of domains, datasets, and models, showing consistent improvements in retrieval performance. Moreover, we provide empirical insights into how BM25-based signals contribute to improving embeddings by fostering alignment and uniformity, highlighting the value of this approach in adapting models to domain-specific data. We release the source code available at https://github.com/BaileyWei/BMEmbed for the research community.

Authors:Sarthak Kumar Maharana, Saksham Singh Kushwaha, Baoming Zhang, Adrian Rodriguez, Songtao Wei, Yapeng Tian, Yunhui Guo
Title: $\texttt{AVROBUSTBENCH}$: Benchmarking the Robustness of Audio-Visual Recognition Models at Test-Time
Abstract:
While recent audio-visual models have demonstrated impressive performance, their robustness to distributional shifts at test-time remains not fully understood. Existing robustness benchmarks mainly focus on single modalities, making them insufficient for thoroughly assessing the robustness of audio-visual models. Motivated by real-world scenarios where shifts can occur $\textit{simultaneously}$ in both audio and visual modalities, we introduce $\texttt{AVROBUSTBENCH}$, a comprehensive benchmark designed to evaluate the test-time robustness of audio-visual recognition models. $\texttt{AVROBUSTBENCH}$ comprises four audio-visual benchmark datasets, $\texttt{AUDIOSET-2C}$, $\texttt{VGGSOUND-2C}$, $\texttt{KINETICS-2C}$, and $\texttt{EPICKITCHENS-2C}$, each incorporating 75 bimodal audio-visual corruptions that are $\textit{co-occurring}$ and $\textit{correlated}$. Through extensive evaluations, we observe that state-of-the-art supervised and self-supervised audio-visual models exhibit declining robustness as corruption severity increases. Furthermore, online test-time adaptation (TTA) methods, on $\texttt{VGGSOUND-2C}$ and $\texttt{KINETICS-2C}$, offer minimal improvements in performance under bimodal corruptions. We further propose $\texttt{AV2C}$, a simple TTA approach enabling on-the-fly cross-modal fusion by penalizing high-entropy samples, which achieves improvements on $\texttt{VGGSOUND-2C}$. We hope that $\texttt{AVROBUSTBENCH}$ will steer the development of more effective and robust audio-visual TTA approaches. Our code is available $\href{https://github.com/sarthaxxxxx/AV-C-Robustness-Benchmark}{here}$.

Authors:Muhammad Adnan, Nithesh Kurella, Akhil Arunkumar, Prashant J. Nair
Title: Foresight: Adaptive Layer Reuse for Accelerated and High-Quality Text-to-Video Generation
Abstract:
Diffusion Transformers (DiTs) achieve state-of-the-art results in text-to-image, text-to-video generation, and editing. However, their large model size and the quadratic cost of spatial-temporal attention over multiple denoising steps make video generation computationally expensive. Static caching mitigates this by reusing features across fixed steps but fails to adapt to generation dynamics, leading to suboptimal trade-offs between speed and quality. We propose Foresight, an adaptive layer-reuse technique that reduces computational redundancy across denoising steps while preserving baseline performance. Foresight dynamically identifies and reuses DiT block outputs for all layers across steps, adapting to generation parameters such as resolution and denoising schedules to optimize efficiency. Applied to OpenSora, Latte, and CogVideoX, Foresight achieves up to \latencyimprv end-to-end speedup, while maintaining video quality. The source code of Foresight is available at \href{https://github.com/STAR-Laboratory/foresight}{https://github.com/STAR-Laboratory/foresight}.

Authors:Long Xu, Peng Gao, Wen-Jia Tang, Fei Wang, Ru-Yue Yuan
Title: Towards Effective and Efficient Adversarial Defense with Diffusion Models for Robust Visual Tracking
Abstract:
Although deep learning-based visual tracking methods have made significant progress, they exhibit vulnerabilities when facing carefully designed adversarial attacks, which can lead to a sharp decline in tracking performance. To address this issue, this paper proposes for the first time a novel adversarial defense method based on denoise diffusion probabilistic models, termed DiffDf, aimed at effectively improving the robustness of existing visual tracking methods against adversarial attacks. DiffDf establishes a multi-scale defense mechanism by combining pixel-level reconstruction loss, semantic consistency loss, and structural similarity loss, effectively suppressing adversarial perturbations through a gradual denoising process. Extensive experimental results on several mainstream datasets show that the DiffDf method demonstrates excellent generalization performance for trackers with different architectures, significantly improving various evaluation metrics while achieving real-time inference speeds of over 30 FPS, showcasing outstanding defense performance and efficiency. Codes are available at https://github.com/pgao-lab/DiffDf.

Authors:Sofiane Mahiou, Amir Dizche, Reza Nazari, Xinmin Wu, Ralph Abbey, Jorge Silva, Georgi Ganev
Title: dpmm: Differentially Private Marginal Models, a Library for Synthetic Tabular Data Generation
Abstract:
We propose dpmm, an open-source library for synthetic data generation with Differentially Private (DP) guarantees. It includes three popular marginal models -- PrivBayes, MST, and AIM -- that achieve superior utility and offer richer functionality compared to alternative implementations. Additionally, we adopt best practices to provide end-to-end DP guarantees and address well-known DP-related vulnerabilities. Our goal is to accommodate a wide audience with easy-to-install, highly customizable, and robust model implementations. Our codebase is available from https://github.com/sassoftware/dpmm.

Authors:Sara Ghazanfari, Francesco Croce, Nicolas Flammarion, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg
Title: Chain-of-Frames: Advancing Video Understanding in Multimodal LLMs via Frame-Aware Reasoning
Abstract:
Recent work has shown that eliciting Large Language Models (LLMs) to generate reasoning traces in natural language before answering the user's request can significantly improve their performance across tasks. This approach has been extended to multimodal LLMs, where the models can produce chain-of-thoughts (CoT) about the content of input images and videos. In this work, we propose to obtain video LLMs whose reasoning steps are grounded in, and explicitly refer to, the relevant video frames. For this, we first create CoF-Data, a large dataset of diverse questions, answers, and corresponding frame-grounded reasoning traces about both natural and synthetic videos, spanning various topics and tasks. Then, we fine-tune existing video LLMs on this chain-of-frames (CoF) data. Our approach is simple and self-contained, and, unlike existing approaches for video CoT, does not require auxiliary networks to select or caption relevant frames. We show that our models based on CoF are able to generate chain-of-thoughts that accurately refer to the key frames to answer the given question. This, in turn, leads to improved performance across multiple video understanding benchmarks, for example, surpassing leading video LLMs on Video-MME, MVBench, and VSI-Bench, and notably reducing the hallucination rate. Code available at https://github.com/SaraGhazanfari/CoF}{github.com/SaraGhazanfari/CoF.

Authors:Can Polat, Erchin Serpedin, Mustafa Kurban, Hasan Kurban
Title: Beyond Atomic Geometry Representations in Materials Science: A Human-in-the-Loop Multimodal Framework
Abstract:
Most materials science datasets are limited to atomic geometries (e.g., XYZ files), restricting their utility for multimodal learning and comprehensive data-centric analysis. These constraints have historically impeded the adoption of advanced machine learning techniques in the field. This work introduces MultiCrystalSpectrumSet (MCS-Set), a curated framework that expands materials datasets by integrating atomic structures with 2D projections and structured textual annotations, including lattice parameters and coordination metrics. MCS-Set enables two key tasks: (1) multimodal property and summary prediction, and (2) constrained crystal generation with partial cluster supervision. Leveraging a human-in-the-loop pipeline, MCS-Set combines domain expertise with standardized descriptors for high-quality annotation. Evaluations using state-of-the-art language and vision-language models reveal substantial modality-specific performance gaps and highlight the importance of annotation quality for generalization. MCS-Set offers a foundation for benchmarking multimodal models, advancing annotation practices, and promoting accessible, versatile materials science datasets. The dataset and implementations are available at https://github.com/KurbanIntelligenceLab/MultiCrystalSpectrumSet.

Authors:Boshra Khajehpiri, Eric Granger, Massimiliano de Zambotti, Fiona C. Baker, Mohamad Forouzanfar
Title: Sleep Brain and Cardiac Activity Predict Cognitive Flexibility and Conceptual Reasoning Using Deep Learning
Abstract:
Despite extensive research on the relationship between sleep and cognition, the connection between sleep microstructure and human performance across specific cognitive domains remains underexplored. This study investigates whether deep learning models can predict executive functions, particularly cognitive adaptability and conceptual reasoning from physiological processes during a night's sleep. To address this, we introduce CogPSGFormer, a multi-scale convolutional-transformer model designed to process multi-modal polysomnographic data. This model integrates one-channel ECG and EEG signals along with extracted features, including EEG power bands and heart rate variability parameters, to capture complementary information across modalities. A thorough evaluation of the CogPSGFormer architecture was conducted to optimize the processing of extended sleep signals and identify the most effective configuration. The proposed framework was evaluated on 817 individuals from the STAGES dataset using cross-validation. The model achieved 80.3\% accuracy in classifying individuals into low vs. high cognitive performance groups on unseen data based on Penn Conditional Exclusion Test (PCET) scores. These findings highlight the effectiveness of our multi-scale feature extraction and multi-modal learning approach in leveraging sleep-derived signals for cognitive performance prediction. To facilitate reproducibility, our code is publicly accessible (https://github.com/boshrakh95/CogPSGFormer.git).

Authors:Dang Nguyen, Ali Payani, Baharan Mirzasoleiman
Title: Beyond Semantic Entropy: Boosting LLM Uncertainty Quantification with Pairwise Semantic Similarity
Abstract:
Hallucination in large language models (LLMs) can be detected by assessing the uncertainty of model outputs, typically measured using entropy. Semantic entropy (SE) enhances traditional entropy estimation by quantifying uncertainty at the semantic cluster level. However, as modern LLMs generate longer one-sentence responses, SE becomes less effective because it overlooks two crucial factors: intra-cluster similarity (the spread within a cluster) and inter-cluster similarity (the distance between clusters). To address these limitations, we propose a simple black-box uncertainty quantification method inspired by nearest neighbor estimates of entropy. Our approach can also be easily extended to white-box settings by incorporating token probabilities. Additionally, we provide theoretical results showing that our method generalizes semantic entropy. Extensive empirical results demonstrate its effectiveness compared to semantic entropy across two recent LLMs (Phi3 and Llama3) and three common text generation tasks: question answering, text summarization, and machine translation. Our code is available at https://github.com/BigML-CS-UCLA/SNNE.

Authors:Rebekah A. Gelpí, Yibing Ju, Ethan C. Jackson, Yikai Tang, Shon Verch, Claas Voelcker, William A. Cunningham
Title: Sorrel: A simple and flexible framework for multi-agent reinforcement learning
Abstract:
We introduce Sorrel (https://github.com/social-ai-uoft/sorrel), a simple Python interface for generating and testing new multi-agent reinforcement learning environments. This interface places a high degree of emphasis on simplicity and accessibility, and uses a more psychologically intuitive structure for the basic agent-environment loop, making it a useful tool for social scientists to investigate how learning and social interaction leads to the development and change of group dynamics. In this short paper, we outline the basic design philosophy and features of Sorrel.

Authors:Bernardo Subercaseaux, Ethan Mackey, Long Qian, Marijn J. H. Heule
Title: Automated Symmetric Constructions in Discrete Geometry
Abstract:
We present a computational methodology for obtaining rotationally symmetric sets of points satisfying discrete geometric constraints, and demonstrate its applicability by discovering new solutions to some well-known problems in combinatorial geometry. Our approach takes the usage of SAT solvers in discrete geometry further by directly embedding rotational symmetry into the combinatorial encoding of geometric configurations. Then, to realize concrete point sets corresponding to abstract designs provided by a SAT solver, we introduce a novel local-search realizability solver, which shows excellent practical performance despite the intrinsic $\exists \mathbb{R}$-completeness of the problem. Leveraging this combined approach, we provide symmetric extremal solutions to the Erdős-Szekeres problem, as well as a minimal odd-sized solution with 21 points for the everywhere-unbalanced-points problem, improving on the previously known 23-point configuration. The imposed symmetries yield more aesthetically appealing solutions, enhancing human interpretability, and simultaneously offer computational benefits by significantly reducing the number of variables required to encode discrete geometric problems.

Authors:Anoop Kini, Andreas Jansche, Timo Bernthaler, Gerhard Schneider
Title: FastCAR: Fast Classification And Regression for Task Consolidation in Multi-Task Learning to Model a Continuous Property Variable of Detected Object Class
Abstract:
FastCAR is a novel task consolidation approach in Multi-Task Learning (MTL) for a classification and a regression task, despite the non-triviality of task heterogeneity with only a subtle correlation. The approach addresses the classification of a detected object (occupying the entire image frame) and regression for modeling a continuous property variable (for instances of an object class), a crucial use case in science and engineering. FastCAR involves a label transformation approach that is amenable for use with only a single-task regression network architecture. FastCAR outperforms traditional MTL model families, parametrized in the landscape of architecture and loss weighting schemes, when learning both tasks are collectively considered (classification accuracy of 99.54%, regression mean absolute percentage error of 2.4%). The experiments performed used "Advanced Steel Property Dataset" contributed by us https://github.com/fastcandr/AdvancedSteel-Property-Dataset. The dataset comprises 4536 images of 224x224 pixels, annotated with discrete object classes and its hardness property that can take continuous values. Our proposed FastCAR approach for task consolidation achieves training time efficiency (2.52x quicker) and reduced inference latency (55% faster) than benchmark MTL networks.

Authors:Linyuan Gong, Alvin Cheung, Mostafa Elhoushi, Sida Wang
Title: Structure-Aware Fill-in-the-Middle Pretraining for Code
Abstract:
Fill-in-the-Middle (FIM) is a common pretraining method for code LLMs, where models complete code segments given surrounding context. However, existing LLMs treat code as plain text and mask random character spans. We propose and evaluate AST-FIM, a pretraining strategy that leverages Abstract Syntax Trees (ASTs) to mask complete syntactic structures at scale, ensuring coherent training examples better aligned with universal code structures and common code editing patterns such as blocks, expressions, or functions. To evaluate real-world fill-in-the-middle (FIM) programming tasks, we introduce Real-FIM-Eval, a benchmark derived from 30,000+ GitHub commits across 12 languages. On infilling tasks, experiments on 1B and 8B parameter models show that AST-FIM is particularly beneficial for real-world code editing as it outperforms standard random-character FIM by up to 5 pts on standard FIM benchmarks. Our code is publicly available at https://github.com/gonglinyuan/ast_fim.

Authors:Edward Fish, Richard Bowden
Title: Geo-Sign: Hyperbolic Contrastive Regularisation for Geometrically Aware Sign Language Translation
Abstract:
Recent progress in Sign Language Translation (SLT) has focussed primarily on improving the representational capacity of large language models to incorporate Sign Language features. This work explores an alternative direction: enhancing the geometric properties of skeletal representations themselves. We propose Geo-Sign, a method that leverages the properties of hyperbolic geometry to model the hierarchical structure inherent in sign language kinematics. By projecting skeletal features derived from Spatio-Temporal Graph Convolutional Networks (ST-GCNs) into the Poincaré ball model, we aim to create more discriminative embeddings, particularly for fine-grained motions like finger articulations. We introduce a hyperbolic projection layer, a weighted Fréchet mean aggregation scheme, and a geometric contrastive loss operating directly in hyperbolic space. These components are integrated into an end-to-end translation framework as a regularisation function, to enhance the representations within the language model. This work demonstrates the potential of hyperbolic geometry to improve skeletal representations for Sign Language Translation, improving on SOTA RGB methods while preserving privacy and improving computational efficiency. Code available here: https://github.com/ed-fish/geo-sign.

Authors:Liangrui Pan, Qingchun Liang, Shen Zhao, Songqing Fan, Shaoliang Peng
Title: PathGene: Benchmarking Driver Gene Mutations and Exon Prediction Using Multicenter Lung Cancer Histopathology Image Dataset
Abstract:
Accurately predicting gene mutations, mutation subtypes and their exons in lung cancer is critical for personalized treatment planning and prognostic assessment. Faced with regional disparities in medical resources and the high cost of genomic assays, using artificial intelligence to infer these mutations and exon variants from routine histopathology images could greatly facilitate precision therapy. Although some prior studies have shown that deep learning can accelerate the prediction of key gene mutations from lung cancer pathology slides, their performance remains suboptimal and has so far been limited mainly to early screening tasks. To address these limitations, we have assembled PathGene, which comprises histopathology images paired with next-generation sequencing reports from 1,576 patients at the Second Xiangya Hospital, Central South University, and 448 TCGA-LUAD patients. This multi-center dataset links whole-slide images to driver gene mutation status, mutation subtypes, exon, and tumor mutational burden (TMB) status, with the goal of leveraging pathology images to predict mutations, subtypes, exon locations, and TMB for early genetic screening and to advance precision oncology. Unlike existing datasets, we provide molecular-level information related to histopathology images in PathGene to facilitate the development of biomarker prediction models. We benchmarked 11 multiple-instance learning methods on PathGene for mutation, subtype, exon, and TMB prediction tasks. These experimental methods provide valuable alternatives for early genetic screening of lung cancer patients and assisting clinicians to quickly develop personalized precision targeted treatment plans for patients. Code and data are available at https://github.com/panliangrui/NIPS2025/.

Authors:Hyundong Jin, Sicheol Sung, Shinwoo Park, SeungYeop Baik, Yo-Sub Han
Title: TRAPDOC: Deceiving LLM Users by Injecting Imperceptible Phantom Tokens into Documents
Abstract:
The reasoning, writing, text-editing, and retrieval capabilities of proprietary large language models (LLMs) have advanced rapidly, providing users with an ever-expanding set of functionalities. However, this growing utility has also led to a serious societal concern: the over-reliance on LLMs. In particular, users increasingly delegate tasks such as homework, assignments, or the processing of sensitive documents to LLMs without meaningful engagement. This form of over-reliance and misuse is emerging as a significant social issue. In order to mitigate these issues, we propose a method injecting imperceptible phantom tokens into documents, which causes LLMs to generate outputs that appear plausible to users but are in fact incorrect. Based on this technique, we introduce TRAPDOC, a framework designed to deceive over-reliant LLM users. Through empirical evaluation, we demonstrate the effectiveness of our framework on proprietary LLMs, comparing its impact against several baselines. TRAPDOC serves as a strong foundation for promoting more responsible and thoughtful engagement with language models. Our code is available at https://github.com/jindong22/TrapDoc.

Authors:Hyundong Jin, Sicheol Sung, Shinwoo Park, SeungYeop Baik, Yo-Sub Han
Title: TRAPDOC: Deceiving LLM Users by Injecting Imperceptible Phantom Tokens into Documents
Abstract:
The reasoning, writing, text-editing, and retrieval capabilities of proprietary large language models (LLMs) have advanced rapidly, providing users with an ever-expanding set of functionalities. However, this growing utility has also led to a serious societal concern: the over-reliance on LLMs. In particular, users increasingly delegate tasks such as homework, assignments, or the processing of sensitive documents to LLMs without meaningful engagement. This form of over-reliance and misuse is emerging as a significant social issue. In order to mitigate these issues, we propose a method injecting imperceptible phantom tokens into documents, which causes LLMs to generate outputs that appear plausible to users but are in fact incorrect. Based on this technique, we introduce TRAPDOC, a framework designed to deceive over-reliant LLM users. Through empirical evaluation, we demonstrate the effectiveness of our framework on proprietary LLMs, comparing its impact against several baselines. TRAPDOC serves as a strong foundation for promoting more responsible and thoughtful engagement with language models. Our code is available at https://github.com/jindong22/TrapDoc.

Authors:Dipam Goswami, Liying Wang, Bartłomiej Twardowski, Joost van de Weijer
Title: Query Drift Compensation: Enabling Compatibility in Continual Learning of Retrieval Embedding Models
Abstract:
Text embedding models enable semantic search, powering several NLP applications like Retrieval Augmented Generation by efficient information retrieval (IR). However, text embedding models are commonly studied in scenarios where the training data is static, thus limiting its applications to dynamic scenarios where new training data emerges over time. IR methods generally encode a huge corpus of documents to low-dimensional embeddings and store them in a database index. During retrieval, a semantic search over the corpus is performed and the document whose embedding is most similar to the query embedding is returned. When updating an embedding model with new training data, using the already indexed corpus is suboptimal due to the non-compatibility issue, since the model which was used to obtain the embeddings of the corpus has changed. While re-indexing of old corpus documents using the updated model enables compatibility, it requires much higher computation and time. Thus, it is critical to study how the already indexed corpus can still be effectively used without the need of re-indexing. In this work, we establish a continual learning benchmark with large-scale datasets and continually train dense retrieval embedding models on query-document pairs from new datasets in each task and observe forgetting on old tasks due to significant drift of embeddings. We employ embedding distillation on both query and document embeddings to maintain stability and propose a novel query drift compensation method during retrieval to project new model query embeddings to the old embedding space. This enables compatibility with previously indexed corpus embeddings extracted using the old model and thus reduces the forgetting. We show that the proposed method significantly improves performance without any re-indexing. Code is available at https://github.com/dipamgoswami/QDC.

Authors:Dipam Goswami, Liying Wang, Bartłomiej Twardowski, Joost van de Weijer
Title: Query Drift Compensation: Enabling Compatibility in Continual Learning of Retrieval Embedding Models
Abstract:
Text embedding models enable semantic search, powering several NLP applications like Retrieval Augmented Generation by efficient information retrieval (IR). However, text embedding models are commonly studied in scenarios where the training data is static, thus limiting its applications to dynamic scenarios where new training data emerges over time. IR methods generally encode a huge corpus of documents to low-dimensional embeddings and store them in a database index. During retrieval, a semantic search over the corpus is performed and the document whose embedding is most similar to the query embedding is returned. When updating an embedding model with new training data, using the already indexed corpus is suboptimal due to the non-compatibility issue, since the model which was used to obtain the embeddings of the corpus has changed. While re-indexing of old corpus documents using the updated model enables compatibility, it requires much higher computation and time. Thus, it is critical to study how the already indexed corpus can still be effectively used without the need of re-indexing. In this work, we establish a continual learning benchmark with large-scale datasets and continually train dense retrieval embedding models on query-document pairs from new datasets in each task and observe forgetting on old tasks due to significant drift of embeddings. We employ embedding distillation on both query and document embeddings to maintain stability and propose a novel query drift compensation method during retrieval to project new model query embeddings to the old embedding space. This enables compatibility with previously indexed corpus embeddings extracted using the old model and thus reduces the forgetting. We show that the proposed method significantly improves performance without any re-indexing. Code is available at https://github.com/dipamgoswami/QDC.

Authors:Shuai Liu, Quanmin Liang, Zefeng Li, Boyang Li, Kai Huang
Title: GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
Abstract:
Multi-sensor fusion is crucial for improving the performance and robustness of end-to-end autonomous driving systems. Existing methods predominantly adopt either attention-based flatten fusion or bird's eye view fusion through geometric transformations. However, these approaches often suffer from limited interpretability or dense computational overhead. In this paper, we introduce GaussianFusion, a Gaussian-based multi-sensor fusion framework for end-to-end autonomous driving. Our method employs intuitive and compact Gaussian representations as intermediate carriers to aggregate information from diverse sensors. Specifically, we initialize a set of 2D Gaussians uniformly across the driving scene, where each Gaussian is parameterized by physical attributes and equipped with explicit and implicit features. These Gaussians are progressively refined by integrating multi-modal features. The explicit features capture rich semantic and spatial information about the traffic scene, while the implicit features provide complementary cues beneficial for trajectory planning. To fully exploit rich spatial and semantic information in Gaussians, we design a cascade planning head that iteratively refines trajectory predictions through interactions with Gaussians. Extensive experiments on the NAVSIM and Bench2Drive benchmarks demonstrate the effectiveness and robustness of the proposed GaussianFusion framework. The source code will be released at https://github.com/Say2L/GaussianFusion.

Authors:Yaxin Luo, Zhaoyi Li, Jiacheng Liu, Jiacheng Cui, Xiaohan Zhao, Zhiqiang Shen
Title: Open CaptchaWorld: A Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents
Abstract:
CAPTCHAs have been a critical bottleneck for deploying web agents in real-world applications, often blocking them from completing end-to-end automation tasks. While modern multimodal LLM agents have demonstrated impressive performance in static perception tasks, their ability to handle interactive, multi-step reasoning challenges like CAPTCHAs is largely untested. To address this gap, we introduce Open CaptchaWorld, the first web-based benchmark and platform specifically designed to evaluate the visual reasoning and interaction capabilities of MLLM-powered agents through diverse and dynamic CAPTCHA puzzles. Our benchmark spans 20 modern CAPTCHA types, totaling 225 CAPTCHAs, annotated with a new metric we propose: CAPTCHA Reasoning Depth, which quantifies the number of cognitive and motor steps required to solve each puzzle. Experimental results show that humans consistently achieve near-perfect scores, state-of-the-art MLLM agents struggle significantly, with success rates at most 40.0% by Browser-Use Openai-o3, far below human-level performance, 93.3%. This highlights Open CaptchaWorld as a vital benchmark for diagnosing the limits of current multimodal agents and guiding the development of more robust multimodal reasoning systems. Code and Data are available at this https URL.

Authors:Tajamul Ashraf, Amal Saqib, Hanan Ghani, Muhra AlMahri, Yuhao Li, Noor Ahsan, Umair Nawaz, Jean Lahoud, Hisham Cholakkal, Mubarak Shah, Philip Torr, Fahad Shahbaz Khan, Rao Muhammad Anwer, Salman Khan
Title: Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks
Abstract:
Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X

Authors:Zilin Xiao, Jaywon Koo, Siru Ouyang, Jefferson Hernandez, Yu Meng, Vicente Ordonez
Title: ProxyThinker: Test-Time Guidance through Small Visual Reasoners
Abstract:
Recent advancements in reinforcement learning with verifiable rewards have pushed the boundaries of the visual reasoning capabilities in large vision-language models (LVLMs). However, training LVLMs with reinforcement fine-tuning (RFT) is computationally expensive, posing a significant challenge to scaling model size. In this work, we propose ProxyThinker, an inference-time technique that enables large models to inherit the visual reasoning capabilities from small, slow-thinking visual reasoners without any training. By subtracting the output distributions of base models from those of RFT reasoners, ProxyThinker modifies the decoding dynamics and successfully elicits the slow-thinking reasoning demonstrated by the emerged sophisticated behaviors such as self-verification and self-correction. ProxyThinker consistently boosts performance on challenging visual benchmarks on spatial, mathematical, and multi-disciplinary reasoning, enabling untuned base models to compete with the performance of their full-scale RFT counterparts. Furthermore, our implementation efficiently coordinates multiple language models with parallelism techniques and achieves up to 38 $\times$ faster inference compared to previous decoding-time methods, paving the way for the practical deployment of ProxyThinker. Code is available at https://github.com/MrZilinXiao/ProxyThinker.

Authors:Zilin Xiao, Jaywon Koo, Siru Ouyang, Jefferson Hernandez, Yu Meng, Vicente Ordonez
Title: ProxyThinker: Test-Time Guidance through Small Visual Reasoners
Abstract:
Recent advancements in reinforcement learning with verifiable rewards have pushed the boundaries of the visual reasoning capabilities in large vision-language models (LVLMs). However, training LVLMs with reinforcement fine-tuning (RFT) is computationally expensive, posing a significant challenge to scaling model size. In this work, we propose ProxyThinker, an inference-time technique that enables large models to inherit the visual reasoning capabilities from small, slow-thinking visual reasoners without any training. By subtracting the output distributions of base models from those of RFT reasoners, ProxyThinker modifies the decoding dynamics and successfully elicits the slow-thinking reasoning demonstrated by the emerged sophisticated behaviors such as self-verification and self-correction. ProxyThinker consistently boosts performance on challenging visual benchmarks on spatial, mathematical, and multi-disciplinary reasoning, enabling untuned base models to compete with the performance of their full-scale RFT counterparts. Furthermore, our implementation efficiently coordinates multiple language models with parallelism techniques and achieves up to 38 $\times$ faster inference compared to previous decoding-time methods, paving the way for the practical deployment of ProxyThinker. Code is available at https://github.com/MrZilinXiao/ProxyThinker.

Authors:Ce Zhang, Yan-Bo Lin, Ziyang Wang, Mohit Bansal, Gedas Bertasius
Title: SiLVR: A Simple Language-based Video Reasoning Framework
Abstract:
Recent advances in test-time optimization have led to remarkable reasoning capabilities in Large Language Models (LLMs), enabling them to solve highly complex problems in math and coding. However, the reasoning capabilities of multimodal LLMs (MLLMs) still significantly lag, especially for complex video-language tasks. To address this issue, we present SiLVR, a Simple Language-based Video Reasoning framework that decomposes complex video understanding into two stages. In the first stage, SiLVR transforms raw video into language-based representations using multisensory inputs, such as short clip captions and audio/speech subtitles. In the second stage, language descriptions are fed into a powerful reasoning LLM to solve complex video-language understanding tasks. To handle long-context multisensory inputs, we use an adaptive token reduction scheme, which dynamically determines the temporal granularity with which to sample the tokens. Our simple, modular, and training-free video reasoning framework achieves the best-reported results on Video-MME (long), Video-MMMU (comprehension), Video-MMLU, CGBench, and EgoLife. Furthermore, our empirical study focused on video reasoning capabilities shows that, despite not being explicitly trained on video, strong reasoning LLMs can effectively aggregate multisensory input information from video, speech, and audio for complex temporal, causal, long-context, and knowledge acquisition reasoning tasks in video. Code is available at https://github.com/CeeZh/SILVR.

Authors:Cailin Zhuang, Ailin Huang, Wei Cheng, Jingwei Wu, Yaoqi Hu, Jiaqi Liao, Hongyuan Wang, Xinyao Liao, Weiwei Cai, Hengyuan Xu, Xuanyang Zhang, Xianfang Zeng, Zhewei Huang, Gang Yu, Chi Zhang
Title: ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Abstract:
Story visualization aims to generate coherent image sequences that faithfully depict a narrative and align with character references. Despite progress in generative models, existing benchmarks are narrow in scope, often limited to short prompts, no character reference, or single-image cases, and fall short of real-world storytelling complexity. This hinders a nuanced understanding of model capabilities and limitations. We present ViStoryBench, a comprehensive benchmark designed to evaluate story visualization models across diverse narrative structures, visual styles, and character settings. The benchmark features richly annotated multi-shot scripts derived from curated stories spanning literature, film, and folklore. Large language models assist in story summarization and script generation, with all outputs verified by humans to ensure coherence and fidelity. Character references are carefully curated to maintain intra-story consistency across varying artistic styles. To enable thorough evaluation, ViStoryBench introduces a set of automated metrics that assess character consistency, style similarity, prompt adherence, aesthetic quality, and generation artifacts such as copy-paste behavior. These metrics are validated through human studies, and used to benchmark a broad range of open-source and commercial models. ViStoryBench offers a high-fidelity, multi-dimensional evaluation suite that facilitates systematic analysis and fosters future progress in visual storytelling.

Authors:Shuyao Xu, Cheng Peng, Jiangxuan Long, Weidi Xu, Wei Chu, Yuan Qi
Title: Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
Abstract:
Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.

Authors:Wanyun Xie, Francesco Tonin, Volkan Cevher
Title: Chameleon: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning
Abstract:
Training data mixtures greatly impact the generalization performance of large language models. Existing domain reweighting methods often rely on costly weight computations and require retraining when new data is introduced. To this end, we introduce a flexible and efficient data mixing framework, Chameleon, that employs leverage scores to quantify domain importance within a learned embedding space. We first construct a domain affinity matrix over domain embeddings. The induced leverage scores determine a mixture that upweights domains sharing common representations in embedding space. This formulation allows direct transfer to new data by computing the new domain embeddings. In experiments, we demonstrate improvements over three key scenarios: (i) our computed weights improve performance on pretraining domains with a fraction of the compute of existing methods; (ii) Chameleon can adapt to data changes without proxy retraining, boosting few-shot reasoning accuracies when transferred to new data; (iii) our method enables efficient domain reweighting in finetuning, consistently improving test perplexity on all finetuning domains over uniform mixture. Our code is available at https://github.com/LIONS-EPFL/Chameleon.

Authors:Fuyuan Lyu, Linfeng Du, Yunpeng Weng, Qiufang Ying, Zhiyan Xu, Wen Zou, Haolun Wu, Xiuqiang He, Xing Tang
Title: Timing is Important: Risk-aware Fund Allocation based on Time-Series Forecasting
Abstract:
Fund allocation has been an increasingly important problem in the financial domain. In reality, we aim to allocate the funds to buy certain assets within a certain future period. Naive solutions such as prediction-only or Predict-then-Optimize approaches suffer from goal mismatch. Additionally, the introduction of the SOTA time series forecasting model inevitably introduces additional uncertainty in the predicted result. To solve both problems mentioned above, we introduce a Risk-aware Time-Series Predict-and-Allocate (RTS-PnO) framework, which holds no prior assumption on the forecasting models. Such a framework contains three features: (i) end-to-end training with objective alignment measurement, (ii) adaptive forecasting uncertainty calibration, and (iii) agnostic towards forecasting models. The evaluation of RTS-PnO is conducted over both online and offline experiments. For offline experiments, eight datasets from three categories of financial applications are used: Currency, Stock, and Cryptos. RTS-PnO consistently outperforms other competitive baselines. The online experiment is conducted on the Cross-Border Payment business at FiT, Tencent, and an 8.4\% decrease in regret is witnessed when compared with the product-line approach. The code for the offline experiment is available at https://github.com/fuyuanlyu/RTS-PnO.

Authors:Li yunhan, Wu gengshen
Title: LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
Abstract:
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.

Authors:Marta López-Rauhut, Hongyu Zhou, Mathieu Aubry, Loic Landrieu
Title: Segmenting France Across Four Centuries
Abstract:
Historical maps offer an invaluable perspective into territory evolution across past centuries--long before satellite or remote sensing technologies existed. Deep learning methods have shown promising results in segmenting historical maps, but publicly available datasets typically focus on a single map type or period, require extensive and costly annotations, and are not suited for nationwide, long-term analyses. In this paper, we introduce a new dataset of historical maps tailored for analyzing large-scale, long-term land use and land cover evolution with limited annotations. Spanning metropolitan France (548,305 km^2), our dataset contains three map collections from the 18th, 19th, and 20th centuries. We provide both comprehensive modern labels and 22,878 km^2 of manually annotated historical labels for the 18th and 19th century maps. Our dataset illustrates the complexity of the segmentation task, featuring stylistic inconsistencies, interpretive ambiguities, and significant landscape changes (e.g., marshlands disappearing in favor of forests). We assess the difficulty of these challenges by benchmarking three approaches: a fully-supervised model trained with historical labels, and two weakly-supervised models that rely only on modern annotations. The latter either use the modern labels directly or first perform image-to-image translation to address the stylistic gap between historical and contemporary maps. Finally, we discuss how these methods can support long-term environment monitoring, offering insights into centuries of landscape transformation. Our official project repository is publicly available at https://github.com/Archiel19/FRAx4.git.

Authors:Marc González, Rachid Guerraoui, Rafael Pinot, Geovani Rizk, John Stephan, François Taïani
Title: ByzFL: Research Framework for Robust Federated Learning
Abstract:
We present ByzFL, an open-source Python library for developing and benchmarking robust federated learning (FL) algorithms. ByzFL provides a unified and extensible framework that includes implementations of state-of-the-art robust aggregators, a suite of configurable attacks, and tools for simulating a variety of FL scenarios, including heterogeneous data distributions, multiple training algorithms, and adversarial threat models. The library enables systematic experimentation via a single JSON-based configuration file and includes built-in utilities for result visualization. Compatible with PyTorch tensors and NumPy arrays, ByzFL is designed to facilitate reproducible research and rapid prototyping of robust FL solutions. ByzFL is available at https://byzfl.epfl.ch/, with source code hosted on GitHub: https://github.com/LPD-EPFL/byzfl.

Authors:Zimu Liao, Jifeng Ding, Rong Fu, Siwei Cui, Ruixuan Gong, Li Wang, Boni Hu, Yi Wang, Hengjie Li, XIngcheng Zhang, Hui Wang
Title: TC-GS: A Faster Gaussian Splatting Module Utilizing Tensor Cores
Abstract:
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where conditional alpha-blending dominates the time cost in the rendering pipeline. This paper proposes TC-GS, an algorithm-independent universal module that expands Tensor Core (TCU) applicability for 3DGS, leading to substantial speedups and seamless integration into existing 3DGS optimization frameworks. The key innovation lies in mapping alpha computation to matrix multiplication, fully utilizing otherwise idle TCUs in existing 3DGS implementations. TC-GS provides plug-and-play acceleration for existing top-tier acceleration algorithms tightly coupled with rendering pipeline designs, like Gaussian compression and redundancy elimination algorithms. Additionally, we introduce a global-to-local coordinate transformation to mitigate rounding errors from quadratic terms of pixel coordinates caused by Tensor Core half-precision computation. Extensive experiments demonstrate that our method maintains rendering quality while providing an additional 2.18x speedup over existing Gaussian acceleration algorithms, thus reaching up to a total 5.6x acceleration. The code is currently available at anonymous \href{https://github.com/TensorCore3DGS/3DGSTensorCore}

Authors:Yucheng Zhou, Jiahao Yuan, Qianning Wang
Title: Draw ALL Your Imagine: A Holistic Benchmark and Agent Framework for Complex Instruction-based Image Generation
Abstract:
Recent advancements in text-to-image (T2I) generation have enabled models to produce high-quality images from textual descriptions. However, these models often struggle with complex instructions involving multiple objects, attributes, and spatial relationships. Existing benchmarks for evaluating T2I models primarily focus on general text-image alignment and fail to capture the nuanced requirements of complex, multi-faceted prompts. Given this gap, we introduce LongBench-T2I, a comprehensive benchmark specifically designed to evaluate T2I models under complex instructions. LongBench-T2I consists of 500 intricately designed prompts spanning nine diverse visual evaluation dimensions, enabling a thorough assessment of a model's ability to follow complex instructions. Beyond benchmarking, we propose an agent framework (Plan2Gen) that facilitates complex instruction-driven image generation without requiring additional model training. This framework integrates seamlessly with existing T2I models, using large language models to interpret and decompose complex prompts, thereby guiding the generation process more effectively. As existing evaluation metrics, such as CLIPScore, fail to adequately capture the nuances of complex instructions, we introduce an evaluation toolkit that automates the quality assessment of generated images using a set of multi-dimensional metrics. The data and code are released at https://github.com/yczhou001/LongBench-T2I.

Authors:Patrick Tser Jern Kon, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia Peng, Jiarong Xing, Yibo Huang, Yiming Qiu, Jayanth Srinivasa, Myungjin Lee, Mosharaf Chowdhury, Matei Zaharia, Ang Chen
Title: EXP-Bench: Can AI Conduct AI Research Experiments?
Abstract:
Automating AI research holds immense potential for accelerating scientific progress, yet current AI agents struggle with the complexities of rigorous, end-to-end experimentation. We introduce EXP-Bench, a novel benchmark designed to systematically evaluate AI agents on complete research experiments sourced from influential AI publications. Given a research question and incomplete starter code, EXP-Bench challenges AI agents to formulate hypotheses, design and implement experimental procedures, execute them, and analyze results. To enable the creation of such intricate and authentic tasks with high-fidelity, we design a semi-autonomous pipeline to extract and structure crucial experimental details from these research papers and their associated open-source code. With the pipeline, EXP-Bench curated 461 AI research tasks from 51 top-tier AI research papers. Evaluations of leading LLM-based agents, such as OpenHands and IterativeAgent on EXP-Bench demonstrate partial capabilities: while scores on individual experimental aspects such as design or implementation correctness occasionally reach 20-35%, the success rate for complete, executable experiments was a mere 0.5%. By identifying these bottlenecks and providing realistic step-by-step experiment procedures, EXP-Bench serves as a vital tool for future AI agents to improve their ability to conduct AI research experiments. EXP-Bench is open-sourced at https://github.com/Just-Curieous/Curie/tree/main/benchmark/exp_bench.

Authors:Max Conti, Manuel Faysse, Gautier Viaud, Antoine Bosselut, Céline Hudelot, Pierre Colombo
Title: Context is Gold to find the Gold Passage: Evaluating and Training Contextual Document Embeddings
Abstract:
A limitation of modern document retrieval embedding methods is that they typically encode passages (chunks) from the same documents independently, often overlooking crucial contextual information from the rest of the document that could greatly improve individual chunk representations. In this work, we introduce ConTEB (Context-aware Text Embedding Benchmark), a benchmark designed to evaluate retrieval models on their ability to leverage document-wide context. Our results show that state-of-the-art embedding models struggle in retrieval scenarios where context is required. To address this limitation, we propose InSeNT (In-sequence Negative Training), a novel contrastive post-training approach which combined with late chunking pooling enhances contextual representation learning while preserving computational efficiency. Our method significantly improves retrieval quality on ConTEB without sacrificing base model performance. We further find chunks embedded with our method are more robust to suboptimal chunking strategies and larger retrieval corpus sizes. We open-source all artifacts at https://github.com/illuin-tech/contextual-embeddings.

Authors:Yidong Luo, Chenguang Wang, Jiahao Yang, Fanzeng Xia, Tianshu Yu
Title: EVA-MILP: Towards Standardized Evaluation of MILP Instance Generation
Abstract:
Mixed-Integer Linear Programming (MILP) is fundamental to solving complex decision-making problems. The proliferation of MILP instance generation methods, driven by machine learning's demand for diverse optimization datasets and the limitations of static benchmarks, has significantly outpaced standardized evaluation techniques. Consequently, assessing the fidelity and utility of synthetic MILP instances remains a critical, multifaceted challenge. This paper introduces a comprehensive benchmark framework designed for the systematic and objective evaluation of MILP instance generation methods. Our framework provides a unified and extensible methodology, assessing instance quality across crucial dimensions: mathematical validity, structural similarity, computational hardness, and utility in downstream machine learning tasks. A key innovation is its in-depth analysis of solver-internal features -- particularly by comparing distributions of key solver outputs including root node gap, heuristic success rates, and cut plane usage -- leveraging the solver's dynamic solution behavior as an `expert assessment' to reveal nuanced computational resemblances. By offering a structured approach with clearly defined solver-independent and solver-dependent metrics, our benchmark aims to facilitate robust comparisons among diverse generation techniques, spur the development of higher-quality instance generators, and ultimately enhance the reliability of research reliant on synthetic MILP data. The framework's effectiveness in systematically comparing the fidelity of instance sets is demonstrated using contemporary generative models.

Authors:Jiayu Liu, Qing Zong, Weiqi Wang, Yangqiu Song
Title: Revisiting Epistemic Markers in Confidence Estimation: Can Markers Accurately Reflect Large Language Models' Uncertainty?
Abstract:
As large language models (LLMs) are increasingly used in high-stakes domains, accurately assessing their confidence is crucial. Humans typically express confidence through epistemic markers (e.g., "fairly confident") instead of numerical values. However, it remains unclear whether LLMs consistently use these markers to reflect their intrinsic confidence due to the difficulty of quantifying uncertainty associated with various markers. To address this gap, we first define marker confidence as the observed accuracy when a model employs an epistemic marker. We evaluate its stability across multiple question-answering datasets in both in-distribution and out-of-distribution settings for open-source and proprietary LLMs. Our results show that while markers generalize well within the same distribution, their confidence is inconsistent in out-of-distribution scenarios. These findings raise significant concerns about the reliability of epistemic markers for confidence estimation, underscoring the need for improved alignment between marker based confidence and actual model uncertainty. Our code is available at https://github.com/HKUST-KnowComp/MarCon.

Authors:Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour, Andreas Köpf
Title: REASONING GYM: Reasoning Environments for Reinforcement Learning with Verifiable Rewards
Abstract:
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.

Authors:Yingchaojie Feng, Yiqun Sun, Yandong Sun, Minfeng Zhu, Qiang Huang, Anthony K. H. Tung, Wei Chen
Title: Don't Reinvent the Wheel: Efficient Instruction-Following Text Embedding based on Guided Space Transformation
Abstract:
In this work, we investigate an important task named instruction-following text embedding, which generates dynamic text embeddings that adapt to user instructions, highlighting specific attributes of text. Despite recent advancements, existing approaches suffer from significant computational overhead, as they require re-encoding the entire corpus for each new instruction. To address this challenge, we propose GSTransform, a novel instruction-following text embedding framework based on Guided Space Transformation. Our key observation is that instruction-relevant information is inherently encoded in generic embeddings but remains underutilized. Instead of repeatedly encoding the corpus for each instruction, GSTransform is a lightweight transformation mechanism that adapts pre-computed embeddings in real time to align with user instructions, guided by a small amount of text data with instruction-focused label annotation. We conduct extensive experiments on three instruction-awareness downstream tasks across nine real-world datasets, demonstrating that GSTransform improves instruction-following text embedding quality over state-of-the-art methods while achieving dramatic speedups of 6~300x in real-time processing on large-scale datasets. The source code is available at https://github.com/YingchaojieFeng/GSTransform.

Authors:Jiazhong Cen, Xudong Zhou, Jiemin Fang, Changsong Wen, Lingxi Xie, Xiaopeng Zhang, Wei Shen, Qi Tian
Title: Tackling View-Dependent Semantics in 3D Language Gaussian Splatting
Abstract:
Recent advancements in 3D Gaussian Splatting (3D-GS) enable high-quality 3D scene reconstruction from RGB images. Many studies extend this paradigm for language-driven open-vocabulary scene understanding. However, most of them simply project 2D semantic features onto 3D Gaussians and overlook a fundamental gap between 2D and 3D understanding: a 3D object may exhibit various semantics from different viewpoints--a phenomenon we term view-dependent semantics. To address this challenge, we propose LaGa (Language Gaussians), which establishes cross-view semantic connections by decomposing the 3D scene into objects. Then, it constructs view-aggregated semantic representations by clustering semantic descriptors and reweighting them based on multi-view semantics. Extensive experiments demonstrate that LaGa effectively captures key information from view-dependent semantics, enabling a more comprehensive understanding of 3D scenes. Notably, under the same settings, LaGa achieves a significant improvement of +18.7% mIoU over the previous SOTA on the LERF-OVS dataset. Our code is available at: https://github.com/SJTU-DeepVisionLab/LaGa.

Authors:Jisheng Dang, Jingze Wu, Teng Wang, Xuanhui Lin, Nannan Zhu, Hongbo Chen, Wei-Shi Zheng, Meng Wang, Tat-Seng Chua
Title: Reinforcing Video Reasoning with Focused Thinking
Abstract:
Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group information entropy), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at \href{https://github.com/longmalongma/TW-GRPO}.

Authors:Benjamin Holzschuh, Qiang Liu, Georg Kohl, Nils Thuerey
Title: PDE-Transformer: Efficient and Versatile Transformers for Physics Simulations
Abstract:
We introduce PDE-Transformer, an improved transformer-based architecture for surrogate modeling of physics simulations on regular grids. We combine recent architectural improvements of diffusion transformers with adjustments specific for large-scale simulations to yield a more scalable and versatile general-purpose transformer architecture, which can be used as the backbone for building large-scale foundation models in physical sciences. We demonstrate that our proposed architecture outperforms state-of-the-art transformer architectures for computer vision on a large dataset of 16 different types of PDEs. We propose to embed different physical channels individually as spatio-temporal tokens, which interact via channel-wise self-attention. This helps to maintain a consistent information density of tokens when learning multiple types of PDEs simultaneously. We demonstrate that our pre-trained models achieve improved performance on several challenging downstream tasks compared to training from scratch and also beat other foundation model architectures for physics simulations.

Authors:Junyu Luo, Zhizhuo Kou, Liming Yang, Xiao Luo, Jinsheng Huang, Zhiping Xiao, Jingshu Peng, Chengzhong Liu, Jiaming Ji, Xuanzhe Liu, Sirui Han, Ming Zhang, Yike Guo
Title: FinMME: Benchmark Dataset for Financial Multi-Modal Reasoning Evaluation
Abstract:
Multimodal Large Language Models (MLLMs) have experienced rapid development in recent years. However, in the financial domain, there is a notable lack of effective and specialized multimodal evaluation datasets. To advance the development of MLLMs in the finance domain, we introduce FinMME, encompassing more than 11,000 high-quality financial research samples across 18 financial domains and 6 asset classes, featuring 10 major chart types and 21 subtypes. We ensure data quality through 20 annotators and carefully designed validation mechanisms. Additionally, we develop FinScore, an evaluation system incorporating hallucination penalties and multi-dimensional capability assessment to provide an unbiased evaluation. Extensive experimental results demonstrate that even state-of-the-art models like GPT-4o exhibit unsatisfactory performance on FinMME, highlighting its challenging nature. The benchmark exhibits high robustness with prediction variations under different prompts remaining below 1%, demonstrating superior reliability compared to existing datasets. Our dataset and evaluation protocol are available at https://huggingface.co/datasets/luojunyu/FinMME and https://github.com/luo-junyu/FinMME.

Authors:Raman Jha, Adithya Lenka, Mani Ramanagopal, Aswin Sankaranarayanan, Kaushik Mitra
Title: RT-X Net: RGB-Thermal cross attention network for Low-Light Image Enhancement
Abstract:
In nighttime conditions, high noise levels and bright illumination sources degrade image quality, making low-light image enhancement challenging. Thermal images provide complementary information, offering richer textures and structural details. We propose RT-X Net, a cross-attention network that fuses RGB and thermal images for nighttime image enhancement. We leverage self-attention networks for feature extraction and a cross-attention mechanism for fusion to effectively integrate information from both modalities. To support research in this domain, we introduce the Visible-Thermal Image Enhancement Evaluation (V-TIEE) dataset, comprising 50 co-located visible and thermal images captured under diverse nighttime conditions. Extensive evaluations on the publicly available LLVIP dataset and our V-TIEE dataset demonstrate that RT-X Net outperforms state-of-the-art methods in low-light image enhancement. The code and the V-TIEE can be found here https://github.com/jhakrraman/rt-xnet.

Authors:Julio Silva-Rodríguez, Ismail Ben Ayed, Jose Dolz
Title: Conformal Prediction for Zero-Shot Models
Abstract:
Vision-language models pre-trained at large scale have shown unprecedented adaptability and generalization to downstream tasks. Although its discriminative potential has been widely explored, its reliability and uncertainty are still overlooked. In this work, we investigate the capabilities of CLIP models under the split conformal prediction paradigm, which provides theoretical guarantees to black-box models based on a small, labeled calibration set. In contrast to the main body of literature on conformal predictors in vision classifiers, foundation models exhibit a particular characteristic: they are pre-trained on a one-time basis on an inaccessible source domain, different from the transferred task. This domain drift negatively affects the efficiency of the conformal sets and poses additional challenges. To alleviate this issue, we propose Conf-OT, a transfer learning setting that operates transductive over the combined calibration and query sets. Solving an optimal transport problem, the proposed method bridges the domain gap between pre-training and adaptation without requiring additional data splits but still maintaining coverage guarantees. We comprehensively explore this conformal prediction strategy on a broad span of 15 datasets and three non-conformity scores. Conf-OT provides consistent relative improvements of up to 20% on set efficiency while being 15 times faster than popular transductive approaches.

Authors:Sander Land, Catherine Arnett
Title: BPE Stays on SCRIPT: Structured Encoding for Robust Multilingual Pretokenization
Abstract:
Byte Pair Encoding (BPE) tokenizers, widely used in Large Language Models, face challenges in multilingual settings, including penalization of non-Western scripts and the creation of tokens with partial UTF-8 sequences. Pretokenization, often reliant on complex regular expressions, can also introduce fragility and unexpected edge cases. We propose SCRIPT (Script Category Representation in PreTokenization), a novel encoding scheme that bypasses UTF-8 byte conversion by using initial tokens based on Unicode script and category properties. This approach enables a simple, rule-based pretokenization strategy that respects script boundaries, offering a robust alternative to pretokenization strategies based on regular expressions. We also introduce and validate a constrained BPE merging strategy that enforces character integrity, applicable to both SCRIPT-BPE and byte-based BPE. Our experiments demonstrate that SCRIPT-BPE achieves competitive compression while eliminating encoding-based penalties for non-Latin-script languages.

Authors:Qinglin Zhu, Runcong Zhao, Hanqi Yan, Yulan He, Yudong Chen, Lin Gui
Title: Soft Reasoning: Navigating Solution Spaces in Large Language Models through Controlled Embedding Exploration
Abstract:
Large Language Models (LLMs) struggle with complex reasoning due to limited diversity and inefficient search. We propose Soft Reasoning, an embedding-based search framework that optimises the embedding of the first token to guide generation. It combines (1) embedding perturbation for controlled exploration and (2) Bayesian optimisation to refine embeddings via a verifier-guided objective, balancing exploration and exploitation. This approach improves reasoning accuracy and coherence while avoiding reliance on heuristic search. Experiments demonstrate superior correctness with minimal computation, making it a scalable, model-agnostic solution. The code is released at https://github.com/alickzhu/Soft-Reasoning.

Authors:Jiahe Chen, Jiahe Ying, Shen Wang, Jianwei Zheng
Title: Decoupled Competitive Framework for Semi-supervised Medical Image Segmentation
Abstract:
Confronting the critical challenge of insufficiently annotated samples in medical domain, semi-supervised medical image segmentation (SSMIS) emerges as a promising solution. Specifically, most methodologies following the Mean Teacher (MT) or Dual Students (DS) architecture have achieved commendable results. However, to date, these approaches face a performance bottleneck due to two inherent limitations, \textit{e.g.}, the over-coupling problem within MT structure owing to the employment of exponential moving average (EMA) mechanism, as well as the severe cognitive bias between two students of DS structure, both of which potentially lead to reduced efficacy, or even model collapse eventually. To mitigate these issues, a Decoupled Competitive Framework (DCF) is elaborated in this work, which utilizes a straightforward competition mechanism for the update of EMA, effectively decoupling students and teachers in a dynamical manner. In addition, the seamless exchange of invaluable and precise insights is facilitated among students, guaranteeing a better learning paradigm. The DCF introduced undergoes rigorous validation on three publicly accessible datasets, which encompass both 2D and 3D datasets. The results demonstrate the superiority of our method over previous cutting-edge competitors. Code will be available at https://github.com/JiaheChen2002/DCF.

Authors:Yiqun Sun, Qiang Huang, Anthony K. H. Tung, Jun Yu
Title: PRISM: A Framework for Producing Interpretable Political Bias Embeddings with Political-Aware Cross-Encoder
Abstract:
Semantic Text Embedding is a fundamental NLP task that encodes textual content into vector representations, where proximity in the embedding space reflects semantic similarity. While existing embedding models excel at capturing general meaning, they often overlook ideological nuances, limiting their effectiveness in tasks that require an understanding of political bias. To address this gap, we introduce PRISM, the first framework designed to Produce inteRpretable polItical biaS eMbeddings. PRISM operates in two key stages: (1) Controversial Topic Bias Indicator Mining, which systematically extracts fine-grained political topics and their corresponding bias indicators from weakly labeled news data, and (2) Cross-Encoder Political Bias Embedding, which assigns structured bias scores to news articles based on their alignment with these indicators. This approach ensures that embeddings are explicitly tied to bias-revealing dimensions, enhancing both interpretability and predictive power. Through extensive experiments on two large-scale datasets, we demonstrate that PRISM outperforms state-of-the-art text embedding models in political bias classification while offering highly interpretable representations that facilitate diversified retrieval and ideological analysis. The source code is available at https://github.com/dukesun99/ACL-PRISM.

Authors:Masahiro Negishi, Thomas Gärtner, Pascal Welke
Title: WILTing Trees: Interpreting the Distance Between MPNN Embeddings
Abstract:
We investigate the distance function learned by message passing neural networks (MPNNs) in specific tasks, aiming to capture the functional distance between prediction targets that MPNNs implicitly learn. This contrasts with previous work, which links MPNN distances on arbitrary tasks to structural distances on graphs that ignore task-specific information. To address this gap, we distill the distance between MPNN embeddings into an interpretable graph distance. Our method uses optimal transport on the Weisfeiler Leman Labeling Tree (WILT), where the edge weights reveal subgraphs that strongly influence the distance between embeddings. This approach generalizes two well-known graph kernels and can be computed in linear time. Through extensive experiments, we demonstrate that MPNNs define the relative position of embeddings by focusing on a small set of subgraphs that are known to be functionally important in the domain.

Authors:Xuzhi Wang, Wei Feng, Lingdong Kong, Liang Wan
Title: NUC-Net: Non-uniform Cylindrical Partition Network for Efficient LiDAR Semantic Segmentation
Abstract:
LiDAR semantic segmentation plays a vital role in autonomous driving. Existing voxel-based methods for LiDAR semantic segmentation apply uniform partition to the 3D LiDAR point cloud to form a structured representation based on cartesian/cylindrical coordinates. Although these methods show impressive performance, the drawback of existing voxel-based methods remains in two aspects: (1) it requires a large enough input voxel resolution, which brings a large amount of computation cost and memory consumption. (2) it does not well handle the unbalanced point distribution of LiDAR point cloud. In this paper, we propose a non-uniform cylindrical partition network named NUC-Net to tackle the above challenges. Specifically, we propose the Arithmetic Progression of Interval (API) method to non-uniformly partition the radial axis and generate the voxel representation which is representative and efficient. Moreover, we propose a non-uniform multi-scale aggregation method to improve contextual information. Our method achieves state-of-the-art performance on SemanticKITTI and nuScenes datasets with much faster speed and much less training time. And our method can be a general component for LiDAR semantic segmentation, which significantly improves both the accuracy and efficiency of the uniform counterpart by $4 \times$ training faster and $2 \times$ GPU memory reduction and $3 \times$ inference speedup. We further provide theoretical analysis towards understanding why NUC is effective and how point distribution affects performance. Code is available at \href{https://github.com/alanWXZ/NUC-Net}{https://github.com/alanWXZ/NUC-Net}.

Authors:Ivan Pereira-Sánchez, Julia Navarro, Ana Belén Petro, Joan Duran
Title: Model-Guided Network with Cluster-Based Operators for Spatio-Spectral Super-Resolution
Abstract:
This paper addresses the problem of reconstructing a high-resolution hyperspectral image from a low-resolution multispectral observation. While spatial super-resolution and spectral super-resolution have been extensively studied, joint spatio-spectral super-resolution remains relatively explored. We propose an end-to-end model-driven framework that explicitly decomposes the joint spatio-spectral super-resolution problem into spatial super-resolution, spectral super-resolution and fusion tasks. Each sub-task is addressed by unfolding a variational-based approach, where the operators involved in the proximal gradient iterative scheme are replaced with tailored learnable modules. In particular, we design an upsampling operator for spatial super-resolution based on classical back-projection algorithms, adapted to handle arbitrary scaling factors. Spectral reconstruction is performed using learnable cluster-based upsampling and downsampling operators. For image fusion, we integrate low-frequency estimation and high-frequency injection modules to combine the spatial and spectral information from spatial super-resolution and spectral super-resolution outputs. Additionally, we introduce an efficient nonlocal post-processing step that leverages image self-similarity by combining a multi-head attention mechanism with residual connections. Extensive evaluations on several datasets and sampling factors demonstrate the effectiveness of our approach. The source code will be available at https://github.com/TAMI-UIB/JSSUNet

Authors:Qinghe Ma, Jian Zhang, Lei Qi, Qian Yu, Yinghuan Shi, Yang Gao
Title: Unleashing the Power of Intermediate Domains for Mixed Domain Semi-Supervised Medical Image Segmentation
Abstract:
Both limited annotation and domain shift are prevalent challenges in medical image segmentation. Traditional semi-supervised segmentation and unsupervised domain adaptation methods address one of these issues separately. However, the coexistence of limited annotation and domain shift is quite common, which motivates us to introduce a novel and challenging scenario: Mixed Domain Semi-supervised medical image Segmentation (MiDSS), where limited labeled data from a single domain and a large amount of unlabeled data from multiple domains. To tackle this issue, we propose the UST-RUN framework, which fully leverages intermediate domain information to facilitate knowledge transfer. We employ Unified Copy-paste (UCP) to construct intermediate domains, and propose a Symmetric GuiDance training strategy (SymGD) to supervise unlabeled data by merging pseudo-labels from intermediate samples. Subsequently, we introduce a Training Process aware Random Amplitude MixUp (TP-RAM) to progressively incorporate style-transition components into intermediate samples. To generate more diverse intermediate samples, we further select reliable samples with high-quality pseudo-labels, which are then mixed with other unlabeled data. Additionally, we generate sophisticated intermediate samples with high-quality pseudo-labels for unreliable samples, ensuring effective knowledge transfer for them. Extensive experiments on four public datasets demonstrate the superiority of UST-RUN. Notably, UST-RUN achieves a 12.94% improvement in Dice score on the Prostate dataset. Our code is available at https://github.com/MQinghe/UST-RUN

Authors:Simone Cammarasana, Giuseppe Patanè
Title: Optimal Weighted Convolution for Classification and Denosing
Abstract:
We introduce a novel weighted convolution operator that enhances traditional convolutional neural networks (CNNs) by integrating a spatial density function into the convolution operator. This extension enables the network to differentially weight neighbouring pixels based on their relative position to the reference pixel, improving spatial characterisation and feature extraction. The proposed operator maintains the same number of trainable parameters and is fully compatible with existing CNN architectures. Although developed for 2D image data, the framework is generalisable to signals on regular grids of arbitrary dimensions, such as 3D volumetric data or 1D time series. We propose an efficient implementation of the weighted convolution by pre-computing the density function and achieving execution times comparable to standard convolution layers. We evaluate our method on two deep learning tasks: image classification using the CIFAR-100 dataset [KH+09] and image denoising using the DIV2K dataset [AT17]. Experimental results with state-of-the-art classification (e.g., VGG [SZ15], ResNet [HZRS16]) and denoising (e.g., DnCNN [ZZC+17], NAFNet [CCZS22]) methods show that the weighted convolution improves performance with respect to standard convolution across different quantitative metrics. For example, VGG achieves an accuracy of 66.94% with weighted convolution versus 56.89% with standard convolution on the classification problem, while DnCNN improves the PSNR value from 20.17 to 22.63 on the denoising problem. All models were trained on the CINECA Leonardo cluster to reduce the execution time and improve the tuning of the density function values. The PyTorch implementation of the weighted convolution is publicly available at: https://github.com/cammarasana123/weightedConvolution2.0.

Authors:Xiaoang Xu, Shuo Wang, Xu Han, Zhenghao Liu, Huijia Wu, Peipei Li, Zhiyuan Liu, Maosong Sun, Zhaofeng He
Title: A*-Thought: Efficient Reasoning via Bidirectional Compression for Low-Resource Settings
Abstract:
Large Reasoning Models (LRMs) achieve superior performance by extending the thought length. However, a lengthy thinking trajectory leads to reduced efficiency. Most of the existing methods are stuck in the assumption of overthinking and attempt to reason efficiently by compressing the Chain-of-Thought, but this often leads to performance degradation. To address this problem, we introduce A*-Thought, an efficient tree search-based unified framework designed to identify and isolate the most essential thoughts from the extensive reasoning chains produced by these models. It formulates the reasoning process of LRMs as a search tree, where each node represents a reasoning span in the giant reasoning space. By combining the A* search algorithm with a cost function specific to the reasoning path, it can efficiently compress the chain of thought and determine a reasoning path with high information density and low cost. In addition, we also propose a bidirectional importance estimation mechanism, which further refines this search process and enhances its efficiency beyond uniform sampling. Extensive experiments on several advanced math tasks show that A*-Thought effectively balances performance and efficiency over a huge search space. Specifically, A*-Thought can improve the performance of QwQ-32B by 2.39$\times$ with low-budget and reduce the length of the output token by nearly 50% with high-budget. The proposed method is also compatible with several other LRMs, demonstrating its generalization capability. The code can be accessed at: https://github.com/AI9Stars/AStar-Thought.

Authors:Chaohui Xu, Qi Cui, Chip-Hong Chang
Title: CHIP: Chameleon Hash-based Irreversible Passport for Robust Deep Model Ownership Verification and Active Usage Control
Abstract:
The pervasion of large-scale Deep Neural Networks (DNNs) and their enormous training costs make their intellectual property (IP) protection of paramount importance. Recently introduced passport-based methods attempt to steer DNN watermarking towards strengthening ownership verification against ambiguity attacks by modulating the affine parameters of normalization layers. Unfortunately, neither watermarking nor passport-based methods provide a holistic protection with robust ownership proof, high fidelity, active usage authorization and user traceability for offline access distributed models and multi-user Machine-Learning as a Service (MLaaS) cloud model. In this paper, we propose a Chameleon Hash-based Irreversible Passport (CHIP) protection framework that utilizes the cryptographic chameleon hash function to achieve all these goals. The collision-resistant property of chameleon hash allows for strong model ownership claim upon IP infringement and liable user traceability, while the trapdoor-collision property enables hashing of multiple user passports and licensee certificates to the same immutable signature to realize active usage control. Using the owner passport as an oracle, multiple user-specific triplets, each contains a passport-aware user model, a user passport, and a licensee certificate can be created for secure offline distribution. The watermarked master model can also be deployed for MLaaS with usage permission verifiable by the provision of any trapdoor-colliding user passports. CHIP is extensively evaluated on four datasets and two architectures to demonstrate its protection versatility and robustness. Our code is released at https://github.com/Dshm212/CHIP.

Authors:Yinqi Li, Jiahe Zhao, Hong Chang, Ruibing Hou, Shiguang Shan, Xilin Chen
Title: un$^2$CLIP: Improving CLIP's Visual Detail Capturing Ability via Inverting unCLIP
Abstract:
Contrastive Language-Image Pre-training (CLIP) has become a foundation model and has been applied to various vision and multimodal tasks. However, recent works indicate that CLIP falls short in distinguishing detailed differences in images and shows suboptimal performance on dense-prediction and vision-centric multimodal tasks. Therefore, this work focuses on improving existing CLIP models, aiming to capture as many visual details in images as possible. We find that a specific type of generative models, unCLIP, provides a suitable framework for achieving our goal. Specifically, unCLIP trains an image generator conditioned on the CLIP image embedding. In other words, it inverts the CLIP image encoder. Compared to discriminative models like CLIP, generative models are better at capturing image details because they are trained to learn the data distribution of images. Additionally, the conditional input space of unCLIP aligns with CLIP's original image-text embedding space. Therefore, we propose to invert unCLIP (dubbed un$^2$CLIP) to improve the CLIP model. In this way, the improved image encoder can gain unCLIP's visual detail capturing ability while preserving its alignment with the original text encoder simultaneously. We evaluate our improved CLIP across various tasks to which CLIP has been applied, including the challenging MMVP-VLM benchmark, the dense-prediction open-vocabulary segmentation task, and multimodal large language model tasks. Experiments show that un$^2$CLIP significantly improves the original CLIP and previous CLIP improvement methods. Code and models will be available at https://github.com/LiYinqi/un2CLIP.

Authors:Falih Gozi Febrinanto, Kristen Moore, Chandra Thapa, Jiangang Ma, Vidya Saikrishna, Feng Xia
Title: Rehearsal with Auxiliary-Informed Sampling for Audio Deepfake Detection
Abstract:
The performance of existing audio deepfake detection frameworks degrades when confronted with new deepfake attacks. Rehearsal-based continual learning (CL), which updates models using a limited set of old data samples, helps preserve prior knowledge while incorporating new information. However, existing rehearsal techniques don't effectively capture the diversity of audio characteristics, introducing bias and increasing the risk of forgetting. To address this challenge, we propose Rehearsal with Auxiliary-Informed Sampling (RAIS), a rehearsal-based CL approach for audio deepfake detection. RAIS employs a label generation network to produce auxiliary labels, guiding diverse sample selection for the memory buffer. Extensive experiments show RAIS outperforms state-of-the-art methods, achieving an average Equal Error Rate (EER) of 1.953 % across five experiences. The code is available at: https://github.com/falihgoz/RAIS.

Authors:Jing Huang, Yongkang Zhao, Yuhan Li, Zhitao Dai, Cheng Chen, Qiying Lai
Title: ACM-UNet: Adaptive Integration of CNNs and Mamba for Efficient Medical Image Segmentation
Abstract:
The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.

Authors:Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu, Zhongyuan Wang, Ji-Rong Wen
Title: Towards Effective Code-Integrated Reasoning
Abstract:
In this paper, we investigate code-integrated reasoning, where models generate code when necessary and integrate feedback by executing it through a code interpreter. To acquire this capability, models must learn when and how to use external code tools effectively, which is supported by tool-augmented reinforcement learning (RL) through interactive learning. Despite its benefits, tool-augmented RL can still suffer from potential instability in the learning dynamics. In light of this challenge, we present a systematic approach to improving the training effectiveness and stability of tool-augmented RL for code-integrated reasoning. Specifically, we develop enhanced training strategies that balance exploration and stability, progressively building tool-use capabilities while improving reasoning performance. Through extensive experiments on five mainstream mathematical reasoning benchmarks, our model demonstrates significant performance improvements over multiple competitive baselines. Furthermore, we conduct an in-depth analysis of the mechanism and effect of code-integrated reasoning, revealing several key insights, such as the extension of model's capability boundaries and the simultaneous improvement of reasoning efficiency through code integration. All data and code for reproducing this work are available at: https://github.com/RUCAIBox/CIR.

Authors:Yuting Zhang, Hao Lu, Qingyong Hu, Yin Wang, Kaishen Yuan, Xin Liu, Kaishun Wu
Title: Period-LLM: Extending the Periodic Capability of Multimodal Large Language Model
Abstract:
Periodic or quasi-periodic phenomena reveal intrinsic characteristics in various natural processes, such as weather patterns, movement behaviors, traffic flows, and biological signals. Given that these phenomena span multiple modalities, the capabilities of Multimodal Large Language Models (MLLMs) offer promising potential to effectively capture and understand their complex nature. However, current MLLMs struggle with periodic tasks due to limitations in: 1) lack of temporal modelling and 2) conflict between short and long periods. This paper introduces Period-LLM, a multimodal large language model designed to enhance the performance of periodic tasks across various modalities, and constructs a benchmark of various difficulty for evaluating the cross-modal periodic capabilities of large models. Specially, We adopt an "Easy to Hard Generalization" paradigm, starting with relatively simple text-based tasks and progressing to more complex visual and multimodal tasks, ensuring that the model gradually builds robust periodic reasoning capabilities. Additionally, we propose a "Resisting Logical Oblivion" optimization strategy to maintain periodic reasoning abilities during semantic alignment. Extensive experiments demonstrate the superiority of the proposed Period-LLM over existing MLLMs in periodic tasks. The code is available at https://github.com/keke-nice/Period-LLM.

Authors:Jingyao Li, Senqiao Yang, Sitong Wu, Han Shi, Chuanyang Zheng, Hong Xu, Jiaya Jia
Title: Logits-Based Finetuning
Abstract:
In recent years, developing compact and efficient large language models (LLMs) has emerged as a thriving area of research. Traditional Supervised Fine-Tuning (SFT), which relies on singular ground truth labels, often fails to capture token-level dependencies and linguistic diversity. To address these limitations, we propose a logits-based fine-tuning framework that integrates the strengths of supervised learning and knowledge distillation. Our approach constructs enriched training targets by combining teacher logits with ground truth labels, preserving both correctness and linguistic diversity. This ensures more reliable and effective training. We constructed a large-scale 1.2M logits dataset and trained a series of science-focused models. Experimental results demonstrate that our method achieves significant improvements, with accuracy gains of 18% on Mawps and 22.7% on TabMWP. Across nine widely used mathematical benchmarks, our method consistently outperforms prior SFT models, achieving an average improvement of 7.28%. Codes are available at https://github.com/dvlab-research/Logits-Based-Finetuning.

Authors:Tianlong Yu, Chenghang Ye, Zheyu Yang, Ziyi Zhou, Cui Tang, Zui Tao, Jun Zhang, Kailong Wang, Liting Zhou, Yang Yang, Ting Bi
Title: SEAR: A Multimodal Dataset for Analyzing AR-LLM-Driven Social Engineering Behaviors
Abstract:
The SEAR Dataset is a novel multimodal resource designed to study the emerging threat of social engineering (SE) attacks orchestrated through augmented reality (AR) and multimodal large language models (LLMs). This dataset captures 180 annotated conversations across 60 participants in simulated adversarial scenarios, including meetings, classes and networking events. It comprises synchronized AR-captured visual/audio cues (e.g., facial expressions, vocal tones), environmental context, and curated social media profiles, alongside subjective metrics such as trust ratings and susceptibility assessments. Key findings reveal SEAR's alarming efficacy in eliciting compliance (e.g., 93.3% phishing link clicks, 85% call acceptance) and hijacking trust (76.7% post-interaction trust surge). The dataset supports research in detecting AR-driven SE attacks, designing defensive frameworks, and understanding multimodal adversarial manipulation. Rigorous ethical safeguards, including anonymization and IRB compliance, ensure responsible use. The SEAR dataset is available at https://github.com/INSLabCN/SEAR-Dataset.

Authors:Heejo Kong, Sung-Jin Kim, Gunho Jung, Seong-Whan Lee
Title: Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers
Abstract:
Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.

Authors:Zhentao Xie, Chengcheng Han, Jinxin Shi, Wenjun Cui, Xin Zhao, Xingjiao Wu, Jiabao Zhao
Title: RMoA: Optimizing Mixture-of-Agents through Diversity Maximization and Residual Compensation
Abstract:
Although multi-agent systems based on large language models show strong capabilities on multiple tasks, they are still limited by high computational overhead, information loss, and robustness. Inspired by ResNet's residual learning, we propose Residual Mixture-of-Agents (RMoA), integrating residual connections to optimize efficiency and reliability. To maximize information utilization from model responses while minimizing computational costs, we innovatively design an embedding-based diversity selection mechanism that greedily selects responses via vector similarity. Furthermore, to mitigate iterative information degradation, we introduce a Residual Extraction Agent to preserve cross-layer incremental information by capturing inter-layer response differences, coupled with a Residual Aggregation Agent for hierarchical information integration. Additionally, we propose an adaptive termination mechanism that dynamically halts processing based on residual convergence, further improving inference efficiency. RMoA achieves state-of-the-art performance on the benchmarks of across alignment, mathematical reasoning, code generation, and multitasking understanding, while significantly reducing computational overhead. Code is available at https://github.com/mindhunter01/RMoA.

Authors:Chunxu Liu, Chi Xie, Xiaxu Chen, Wei Li, Feng Zhu, Rui Zhao, Limin Wang
Title: SORCE: Small Object Retrieval in Complex Environments
Abstract:
Text-to-Image Retrieval (T2IR) is a highly valuable task that aims to match a given textual query to images in a gallery. Existing benchmarks primarily focus on textual queries describing overall image semantics or foreground salient objects, possibly overlooking inconspicuous small objects, especially in complex environments. Such small object retrieval is crucial, as in real-world applications, the targets of interest are not always prominent in the image. Thus, we introduce SORCE (Small Object Retrieval in Complex Environments), a new subfield of T2IR, focusing on retrieving small objects in complex images with textual queries. We propose a new benchmark, SORCE-1K, consisting of images with complex environments and textual queries describing less conspicuous small objects with minimal contextual cues from other salient objects. Preliminary analysis on SORCE-1K finds that existing T2IR methods struggle to capture small objects and encode all the semantics into a single embedding, leading to poor retrieval performance on SORCE-1K. Therefore, we propose to represent each image with multiple distinctive embeddings. We leverage Multimodal Large Language Models (MLLMs) to extract multiple embeddings for each image instructed by a set of Regional Prompts (ReP). Experimental results show that our multi-embedding approach through MLLM and ReP significantly outperforms existing T2IR methods on SORCE-1K. Our experiments validate the effectiveness of SORCE-1K for benchmarking SORCE performances, highlighting the potential of multi-embedding representation and text-customized MLLM features for addressing this task.

Authors:Bozhong Zheng, Jinye Gan, Xiaohao Xu, Wenqiao Li, Xiaonan Huang, Na Ni, Yingna Wu
Title: Bridging 3D Anomaly Localization and Repair via High-Quality Continuous Geometric Representation
Abstract:
3D point cloud anomaly detection is essential for robust vision systems but is challenged by pose variations and complex geometric anomalies. Existing patch-based methods often suffer from geometric fidelity issues due to discrete voxelization or projection-based representations, limiting fine-grained anomaly localization. We introduce Pose-Aware Signed Distance Field (PASDF), a novel framework that integrates 3D anomaly detection and repair by learning a continuous, pose-invariant shape representation. PASDF leverages a Pose Alignment Module for canonicalization and a SDF Network to dynamically incorporate pose, enabling implicit learning of high-fidelity anomaly repair templates from the continuous SDF. This facilitates precise pixel-level anomaly localization through an Anomaly-Aware Scoring Module. Crucially, the continuous 3D representation in PASDF extends beyond detection, facilitating in-situ anomaly repair. Experiments on Real3D-AD and Anomaly-ShapeNet demonstrate state-of-the-art performance, achieving high object-level AUROC scores of 80.2% and 90.0%, respectively. These results highlight the effectiveness of continuous geometric representations in advancing 3D anomaly detection and facilitating practical anomaly region repair. The code is available at https://github.com/ZZZBBBZZZ/PASDF to support further research.

Authors:Zhiwei Liu, Lingfei Qian, Qianqian Xie, Jimin Huang, Kailai Yang, Sophia Ananiadou
Title: MMAFFBen: A Multilingual and Multimodal Affective Analysis Benchmark for Evaluating LLMs and VLMs
Abstract:
Large language models and vision-language models (which we jointly call LMs) have transformed NLP and CV, demonstrating remarkable potential across various fields. However, their capabilities in affective analysis (i.e. sentiment analysis and emotion detection) remain underexplored. This gap is largely due to the absence of comprehensive evaluation benchmarks, and the inherent complexity of affective analysis tasks. In this paper, we introduce MMAFFBen, the first extensive open-source benchmark for multilingual multimodal affective analysis. MMAFFBen encompasses text, image, and video modalities across 35 languages, covering four key affective analysis tasks: sentiment polarity, sentiment intensity, emotion classification, and emotion intensity. Moreover, we construct the MMAFFIn dataset for fine-tuning LMs on affective analysis tasks, and further develop MMAFFLM-3b and MMAFFLM-7b based on it. We evaluate various representative LMs, including GPT-4o-mini, providing a systematic comparison of their affective understanding capabilities. This project is available at https://github.com/lzw108/MMAFFBen.

Authors:Wenlong Jiao, Binglong Li, Wei Shang, Ping Wang, Dongwei Ren
Title: Efficient RAW Image Deblurring with Adaptive Frequency Modulation
Abstract:
Image deblurring plays a crucial role in enhancing visual clarity across various applications. Although most deep learning approaches primarily focus on sRGB images, which inherently lose critical information during the image signal processing pipeline, RAW images, being unprocessed and linear, possess superior restoration potential but remain underexplored. Deblurring RAW images presents unique challenges, particularly in handling frequency-dependent blur while maintaining computational efficiency. To address these issues, we propose Frequency Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW deblurring that operates directly in the frequency domain. We introduce a novel Adaptive Frequency Positional Modulation module, which dynamically adjusts frequency components according to their spectral positions, thereby enabling precise control over the deblurring process. Additionally, frequency domain skip connections are adopted to further preserve high-frequency details. Experimental results demonstrate that FrENet surpasses state-of-the-art deblurring methods in RAW image deblurring, achieving significantly better restoration quality while maintaining high efficiency in terms of reduced MACs. Furthermore, FrENet's adaptability enables it to be extended to sRGB images, where it delivers comparable or superior performance compared to methods specifically designed for sRGB data. The code will be available at https://github.com/WenlongJiao/FrENet .

Authors:Kanokphan Lertniphonphan, Feng Chen, Junda Xu, Fengbu Lan, Jun Xie, Tao Zhang, Zhepeng Wang
Title: PCIE_Interaction Solution for Ego4D Social Interaction Challenge
Abstract:
This report presents our team's PCIE_Interaction solution for the Ego4D Social Interaction Challenge at CVPR 2025, addressing both Looking At Me (LAM) and Talking To Me (TTM) tasks. The challenge requires accurate detection of social interactions between subjects and the camera wearer, with LAM relying exclusively on face crop sequences and TTM combining speaker face crops with synchronized audio segments. In the LAM track, we employ face quality enhancement and ensemble methods. For the TTM task, we extend visual interaction analysis by fusing audio and visual cues, weighted by a visual quality score. Our approach achieved 0.81 and 0.71 mean average precision (mAP) on the LAM and TTM challenges leader board. Code is available at https://github.com/KanokphanL/PCIE_Ego4D_Social_Interaction

Authors:Xianheng Ma, Hongchen Tan, Xiuping Liu, Yi Zhang, Huasheng Wang, Jiang Liu, Ying Chen, Hantao Liu
Title: S3CE-Net: Spike-guided Spatiotemporal Semantic Coupling and Expansion Network for Long Sequence Event Re-Identification
Abstract:
In this paper, we leverage the advantages of event cameras to resist harsh lighting conditions, reduce background interference, achieve high time resolution, and protect facial information to study the long-sequence event-based person re-identification (Re-ID) task. To this end, we propose a simple and efficient long-sequence event Re-ID model, namely the Spike-guided Spatiotemporal Semantic Coupling and Expansion Network (S3CE-Net). To better handle asynchronous event data, we build S3CE-Net based on spiking neural networks (SNNs). The S3CE-Net incorporates the Spike-guided Spatial-temporal Attention Mechanism (SSAM) and the Spatiotemporal Feature Sampling Strategy (STFS). The SSAM is designed to carry out semantic interaction and association in both spatial and temporal dimensions, leveraging the capabilities of SNNs. The STFS involves sampling spatial feature subsequences and temporal feature subsequences from the spatiotemporal dimensions, driving the Re-ID model to perceive broader and more robust effective semantics. Notably, the STFS introduces no additional parameters and is only utilized during the training stage. Therefore, S3CE-Net is a low-parameter and high-efficiency model for long-sequence event-based person Re-ID. Extensive experiments have verified that our S3CE-Net achieves outstanding performance on many mainstream long-sequence event-based person Re-ID datasets. Code is available at:https://github.com/Mhsunshine/SC3E_Net.

Authors:Xiaoyu Wu, Yifei Pang, Terrance Liu, Zhiwei Steven Wu
Title: Rethinking Exact Unlearning under Exposure: Extracting Forgotten Data under Exact Unlearning in Large Language Model
Abstract:
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.

Authors:Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, Xiaokang Yang
Title: ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration
Abstract:
Large language models (LLMs) have achieved remarkable performance, yet their capability on long-context reasoning is often constrained by the excessive memory required to store the Key-Value (KV) cache. This makes KV cache compression an essential step toward enabling efficient long-context reasoning. Recent methods have explored reducing the hidden dimensions of the KV cache, but many introduce additional computation through projection layers or suffer from significant performance degradation under high compression ratios. To address these challenges, we propose ReCalKV, a post-training KV cache compression method that reduces the hidden dimensions of the KV cache. We develop distinct compression strategies for Keys and Values based on their different roles and varying importance in the attention mechanism. For Keys, we propose Head-wise Similarity-aware Reordering (HSR), which clusters similar heads and applies grouped SVD to the key projection matrix, reducing additional computation while preserving accuracy. For Values, we propose Offline Calibration and Matrix Fusion (OCMF) to preserve accuracy without extra computational overhead. Experiments show that ReCalKV outperforms existing low-rank compression methods, achieving high compression ratios with minimal performance loss. The code and models will be available at: https://github.com/XIANGLONGYAN/ReCalKV.

Authors:Xianglong Yan, Zhiteng Li, Tianao Zhang, Haotong Qin, Linghe Kong, Yulun Zhang, Xiaokang Yang
Title: ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration
Abstract:
Large language models (LLMs) have demonstrated remarkable performance, but their long-context reasoning remains constrained by the excessive memory required for the Key-Value (KV) cache. This makes KV cache compression a critical step toward efficient long-context inference. Recent methods have explored low-rank techniques to reduce the hidden size of the KV cache. However, they neglect the distinct roles and varying importance of Keys and Values, leading to significant performance drops under high compression. To address this, we propose ReCalKV, a post-training low-rank KV cache compression approach with tailored strategies for Keys and Values. For Keys, we propose Head-wise Similarity aware Reordering (HSR), which clusters structurally similar heads into groups, enabling more accurate low-rank approximation via grouped SVD. For Values, we propose Offline Value Calibration (OVC), which efficiently calibrates the value projection matrix using calibration data without training, ensuring an accurate representation of contextual information. Extensive experiments show that ReCalKV consistently outperforms existing low-rank compression methods, achieving high compression ratios with minimal performance loss. The code and models will be available at:https://github.com/XIANGLONGYAN/ReCalKV.

Authors:Gilles Quentin Hacheme, Girmaw Abebe Tadesse, Caleb Robinson, Akram Zaytar, Rahul Dodhia, Juan M. Lavista Ferres
Title: GeoVision Labeler: Zero-Shot Geospatial Classification with Vision and Language Models
Abstract:
Classifying geospatial imagery remains a major bottleneck for applications such as disaster response and land-use monitoring-particularly in regions where annotated data is scarce or unavailable. Existing tools (e.g., RS-CLIP) that claim zero-shot classification capabilities for satellite imagery nonetheless rely on task-specific pretraining and adaptation to reach competitive performance. We introduce GeoVision Labeler (GVL), a strictly zero-shot classification framework: a vision Large Language Model (vLLM) generates rich, human-readable image descriptions, which are then mapped to user-defined classes by a conventional Large Language Model (LLM). This modular, and interpretable pipeline enables flexible image classification for a large range of use cases. We evaluated GVL across three benchmarks-SpaceNet v7, UC Merced, and RESISC45. It achieves up to 93.2% zero-shot accuracy on the binary Buildings vs. No Buildings task on SpaceNet v7. For complex multi-class classification tasks (UC Merced, RESISC45), we implemented a recursive LLM-driven clustering to form meta-classes at successive depths, followed by hierarchical classification-first resolving coarse groups, then finer distinctions-to deliver competitive zero-shot performance. GVL is open-sourced at https://github.com/microsoft/geo-vision-labeler to catalyze adoption in real-world geospatial workflows.

Authors:Uzair Khan, Franco Fummi, Luigi Capogrosso
Title: KairosAD: A SAM-Based Model for Industrial Anomaly Detection on Embedded Devices
Abstract:
In the era of intelligent manufacturing, anomaly detection has become essential for maintaining quality control on modern production lines. However, while many existing models show promising performance, they are often too large, computationally demanding, and impractical to deploy on resource-constrained embedded devices that can be easily installed on the production lines of Small and Medium Enterprises (SMEs). To bridge this gap, we present KairosAD, a novel supervised approach that uses the power of the Mobile Segment Anything Model (MobileSAM) for image-based anomaly detection. KairosAD has been evaluated on the two well-known industrial anomaly detection datasets, i.e., MVTec-AD and ViSA. The results show that KairosAD requires 78% fewer parameters and boasts a 4x faster inference time compared to the leading state-of-the-art model, while maintaining comparable AUROC performance. We deployed KairosAD on two embedded devices, the NVIDIA Jetson NX, and the NVIDIA Jetson AGX. Finally, KairosAD was successfully installed and tested on the real production line of the Industrial Computer Engineering Laboratory (ICE Lab) at the University of Verona. The code is available at https://github.com/intelligolabs/KairosAD.

Authors:Yingsen Zeng, Zepeng Huang, Yujie Zhong, Chengjian Feng, Jie Hu, Lin Ma, Yang Liu
Title: DisTime: Distribution-based Time Representation for Video Large Language Models
Abstract:
Despite advances in general video understanding, Video Large Language Models (Video-LLMs) face challenges in precise temporal localization due to discrete time representations and limited temporally aware datasets. Existing methods for temporal expression either conflate time with text-based numerical values, add a series of dedicated temporal tokens, or regress time using specialized temporal grounding heads. To address these issues, we introduce DisTime, a lightweight framework designed to enhance temporal comprehension in Video-LLMs. DisTime employs a learnable token to create a continuous temporal embedding space and incorporates a Distribution-based Time Decoder that generates temporal probability distributions, effectively mitigating boundary ambiguities and maintaining temporal continuity. Additionally, the Distribution-based Time Encoder re-encodes timestamps to provide time markers for Video-LLMs. To overcome temporal granularity limitations in existing datasets, we propose an automated annotation paradigm that combines the captioning capabilities of Video-LLMs with the localization expertise of dedicated temporal models. This leads to the creation of InternVid-TG, a substantial dataset with 1.25M temporally grounded events across 179k videos, surpassing ActivityNet-Caption by 55 times. Extensive experiments demonstrate that DisTime achieves state-of-the-art performance across benchmarks in three time-sensitive tasks while maintaining competitive performance in Video QA tasks. Code and data are released at https://github.com/josephzpng/DisTime.

Authors:Kechen Li, Yaotian Tao, Ximing Wen, Quanwei Sun, Zifei Gong, Chang Xu, Xizhe Zhang, Tianbo Ji
Title: GridRoute: A Benchmark for LLM-Based Route Planning with Cardinal Movement in Grid Environments
Abstract:
Recent advancements in Large Language Models (LLMs) have demonstrated their potential in planning and reasoning tasks, offering a flexible alternative to classical pathfinding algorithms. However, most existing studies focus on LLMs' independent reasoning capabilities and overlook the potential synergy between LLMs and traditional algorithms. To fill this gap, we propose a comprehensive evaluation benchmark GridRoute to assess how LLMs can take advantage of traditional algorithms. We also propose a novel hybrid prompting technique called Algorithm of Thought (AoT), which introduces traditional algorithms' guidance into prompting. Our benchmark evaluates six LLMs ranging from 7B to 72B parameters across various map sizes, assessing their performance in correctness, optimality, and efficiency in grid environments with varying sizes. Our results show that AoT significantly boosts performance across all model sizes, particularly in larger or more complex environments, suggesting a promising approach to addressing path planning challenges. Our code is open-sourced at https://github.com/LinChance/GridRoute.

Authors:Enshang Zhang, Zhicheng Zhang, Takashi Hanakawa
Title: Category-aware EEG image generation based on wavelet transform and contrast semantic loss
Abstract:
Reconstructing visual stimuli from EEG signals is a crucial step in realizing brain-computer interfaces. In this paper, we propose a transformer-based EEG signal encoder integrating the Discrete Wavelet Transform (DWT) and the gating mechanism. Guided by the feature alignment and category-aware fusion losses, this encoder is used to extract features related to visual stimuli from EEG signals. Subsequently, with the aid of a pre-trained diffusion model, these features are reconstructed into visual stimuli. To verify the effectiveness of the model, we conducted EEG-to-image generation and classification tasks using the THINGS-EEG dataset. To address the limitations of quantitative analysis at the semantic level, we combined WordNet-based classification and semantic similarity metrics to propose a novel semantic-based score, emphasizing the ability of our model to transfer neural activities into visual representations. Experimental results show that our model significantly improves semantic alignment and classification accuracy, which achieves a maximum single-subject accuracy of 43\%, outperforming other state-of-the-art methods. The source code and supplementary material is available at https://github.com/zes0v0inn/DWT_EEG_Reconstruction/tree/main.

Authors:Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, Yi Wu
Title: AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning
Abstract:
Reinforcement learning (RL) has become a dominant paradigm for training large language models (LLMs), particularly for reasoning tasks. Effective RL for LLMs requires massive parallelization and poses an urgent need for efficient training systems. Most existing large-scale RL systems for LLMs are synchronous, alternating generation and training in a batch setting where rollouts in each training batch are generated by the same model. This approach stabilizes RL training but suffers from severe system-level inefficiency: generation must wait until the longest output in the batch is completed before model updates, resulting in GPU underutilization. We present AReaL, a fully asynchronous RL system that completely decouples generation from training. Rollout workers in AReaL continuously generate new outputs without waiting, while training workers update the model whenever a batch of data is collected. AReaL also incorporates a collection of system-level optimizations, leading to substantially higher GPU utilization. To stabilize RL training, AReaL balances the workload of rollout and training workers to control data staleness, and adopts a staleness-enhanced PPO variant to better handle outdated training samples. Extensive experiments on math and code reasoning benchmarks show that AReaL achieves up to 2.77$\times$ training speedup compared to synchronous systems with the same number of GPUs and matched or improved final performance. The code of AReaL is available at https://github.com/inclusionAI/AReaL/.

Authors:James R. Golden
Title: Large Language Models are Locally Linear Mappings
Abstract:
We demonstrate that the inference operations of several open-weight large language models (LLMs) can be mapped to an exactly equivalent linear system for an input sequence without modifying the model weights or altering output predictions. Extending techniques from image diffusion models that exhibit local or piecewise linearity, we strategically alter the gradient computation with respect to a given input sequence for a next-token prediction such that the Jacobian of the model nearly exactly reproduces the forward prediction with a linear system. We demonstrate this approach across models (Llama 3, Gemma 3, Qwen 3, Phi 4, Mistral Ministral and OLMo 2, up to Llama 3.3 70B Q4) and show through the singular value decomposition of the detached Jacobian that these LLMs operate in extremely low-dimensional subspaces where many of the largest singular vectors decode to concepts related to the most-likely output token. This approach also allows us to examine the operation of each successive layer (and its attention and MLP components) as nearly-exact linear systems and observe the emergence of semantic concepts. Despite their expressive power and global nonlinearity, modern LLMs can be interpreted through nearly-exact locally linear decompositions that provide insights into their internal representations and reveal interpretable semantic structures in the next-token prediction process.

Authors:Liancheng Fang, Aiwei Liu, Henry Peng Zou, Yankai Chen, Hengrui Zhang, Zhongfen Deng, Philip S. Yu
Title: MUSE: Model-Agnostic Tabular Watermarking via Multi-Sample Selection
Abstract:
We introduce MUSE, a watermarking algorithm for tabular generative models. Previous approaches typically leverage DDIM invertibility to watermark tabular diffusion models, but tabular diffusion models exhibit significantly poorer invertibility compared to other modalities, compromising performance. Simultaneously, tabular diffusion models require substantially less computation than other modalities, enabling a multi-sample selection approach to tabular generative model watermarking. MUSE embeds watermarks by generating multiple candidate samples and selecting one based on a specialized scoring function, without relying on model invertibility. Our theoretical analysis establishes the relationship between watermark detectability, candidate count, and dataset size, allowing precise calibration of watermarking strength. Extensive experiments demonstrate that MUSE achieves state-of-the-art watermark detectability and robustness against various attacks while maintaining data quality, and remains compatible with any tabular generative model supporting repeated sampling, effectively addressing key challenges in tabular data watermarking. Specifically, it reduces the distortion rates on fidelity metrics by 81-89%, while achieving a 1.0 TPR@0.1%FPR detection rate. Implementation of MUSE can be found at https://github.com/fangliancheng/MUSE.

Authors:Neemesh Yadav, Palakorn Achananuparp, Jing Jiang, Ee-Peng Lim
Title: Effects of Theory of Mind and Prosocial Beliefs on Steering Human-Aligned Behaviors of LLMs in Ultimatum Games
Abstract:
Large Language Models (LLMs) have shown potential in simulating human behaviors and performing theory-of-mind (ToM) reasoning, a crucial skill for complex social interactions. In this study, we investigate the role of ToM reasoning in aligning agentic behaviors with human norms in negotiation tasks, using the ultimatum game as a controlled environment. We initialized LLM agents with different prosocial beliefs (including Greedy, Fair, and Selfless) and reasoning methods like chain-of-thought (CoT) and varying ToM levels, and examined their decision-making processes across diverse LLMs, including reasoning models like o3-mini and DeepSeek-R1 Distilled Qwen 32B. Results from 2,700 simulations indicated that ToM reasoning enhances behavior alignment, decision-making consistency, and negotiation outcomes. Consistent with previous findings, reasoning models exhibit limited capability compared to models with ToM reasoning, different roles of the game benefits with different orders of ToM reasoning. Our findings contribute to the understanding of ToM's role in enhancing human-AI interaction and cooperative decision-making. The code used for our experiments can be found at https://github.com/Stealth-py/UltimatumToM.

Authors:Prasanna Reddy Pulakurthi, Majid Rabbani, Jamison Heard, Sohail Dianat, Celso M. de Melo, Raghuveer Rao
Title: Shuffle PatchMix Augmentation with Confidence-Margin Weighted Pseudo-Labels for Enhanced Source-Free Domain Adaptation
Abstract:
This work investigates Source-Free Domain Adaptation (SFDA), where a model adapts to a target domain without access to source data. A new augmentation technique, Shuffle PatchMix (SPM), and a novel reweighting strategy are introduced to enhance performance. SPM shuffles and blends image patches to generate diverse and challenging augmentations, while the reweighting strategy prioritizes reliable pseudo-labels to mitigate label noise. These techniques are particularly effective on smaller datasets like PACS, where overfitting and pseudo-label noise pose greater risks. State-of-the-art results are achieved on three major benchmarks: PACS, VisDA-C, and DomainNet-126. Notably, on PACS, improvements of 7.3% (79.4% to 86.7%) and 7.2% are observed in single-target and multi-target settings, respectively, while gains of 2.8% and 0.7% are attained on DomainNet-126 and VisDA-C. This combination of advanced augmentation and robust pseudo-label reweighting establishes a new benchmark for SFDA. The code is available at: https://github.com/PrasannaPulakurthi/SPM

Authors:Jiwan Chung, Janghan Yoon, Junhyeong Park, Sangeyl Lee, Joowon Yang, Sooyeon Park, Youngjae Yu
Title: Are Any-to-Any Models More Consistent Across Modality Transfers Than Specialists?
Abstract:
Any-to-any generative models aim to enable seamless interpretation and generation across multiple modalities within a unified framework, yet their ability to preserve relationships across modalities remains uncertain. Do unified models truly achieve cross-modal coherence, or is this coherence merely perceived? To explore this, we introduce ACON, a dataset of 1,000 images (500 newly contributed) paired with captions, editing instructions, and Q&A pairs to evaluate cross-modal transfers rigorously. Using three consistency criteria-cyclic consistency, forward equivariance, and conjugated equivariance-our experiments reveal that any-to-any models do not consistently demonstrate greater cross-modal consistency than specialized models in pointwise evaluations such as cyclic consistency. However, equivariance evaluations uncover weak but observable consistency through structured analyses of the intermediate latent space enabled by multiple editing operations. We release our code and data at https://github.com/JiwanChung/ACON.

Authors:Zheng Tan, Weizhen Wang, Andrea L. Bertozzi, Ernest K. Ryu
Title: STORK: Improving the Fidelity of Mid-NFE Sampling for Diffusion and Flow Matching Models
Abstract:
Diffusion models (DMs) have demonstrated remarkable performance in high-fidelity image and video generation. Because high-quality generations with DMs typically require a large number of function evaluations (NFEs), resulting in slow sampling, there has been extensive research successfully reducing the NFE to a small range (<10) while maintaining acceptable image quality. However, many practical applications, such as those involving Stable Diffusion 3.5, FLUX, and SANA, commonly operate in the mid-NFE regime (20-50 NFE) to achieve superior results, and, despite the practical relevance, research on the effective sampling within this mid-NFE regime remains underexplored. In this work, we propose a novel, training-free, and structure-independent DM ODE solver called the Stabilized Taylor Orthogonal Runge--Kutta (STORK) method, based on a class of stiff ODE solvers with a Taylor expansion adaptation. Unlike prior work such as DPM-Solver, which is dependent on the semi-linear structure of the DM ODE, STORK is applicable to any DM sampling, including noise-based and flow matching-based models. Within the 20-50 NFE range, STORK achieves improved generation quality, as measured by FID scores, across unconditional pixel-level generation and conditional latent-space generation tasks using models like Stable Diffusion 3.5 and SANA. Code is available at https://github.com/ZT220501/STORK.

Authors:Zheng Tan, Weizhen Wang, Andrea L. Bertozzi, Ernest K. Ryu
Title: STORK: Faster Diffusion And Flow Matching Sampling By Resolving Both Stiffness And Structure-Dependence
Abstract:
Diffusion models (DMs) and flow-matching models have demonstrated remarkable performance in image and video generation. However, such models require a significant number of function evaluations (NFEs) during sampling, leading to costly inference. Consequently, quality-preserving fast sampling methods that require fewer NFEs have been an active area of research. However, prior training-free sampling methods fail to simultaneously address two key challenges: the stiffness of the ODE (i.e., the non-straightness of the velocity field) and dependence on the semi-linear structure of the DM ODE (which limits their direct applicability to flow-matching models). In this work, we introduce the Stabilized Taylor Orthogonal Runge--Kutta (STORK) method, addressing both design concerns. We demonstrate that STORK consistently improves the quality of diffusion and flow-matching sampling for image and video generation. Code is available at https://github.com/ZT220501/STORK.

Authors:Gang Wu, Junjun Jiang, Kui Jiang, Xianming Liu
Title: Boosting All-in-One Image Restoration via Self-Improved Privilege Learning
Abstract:
Unified image restoration models for diverse and mixed degradations often suffer from unstable optimization dynamics and inter-task conflicts. This paper introduces Self-Improved Privilege Learning (SIPL), a novel paradigm that overcomes these limitations by innovatively extending the utility of privileged information (PI) beyond training into the inference stage. Unlike conventional Privilege Learning, where ground-truth-derived guidance is typically discarded after training, SIPL empowers the model to leverage its own preliminary outputs as pseudo-privileged signals for iterative self-refinement at test time. Central to SIPL is Proxy Fusion, a lightweight module incorporating a learnable Privileged Dictionary. During training, this dictionary distills essential high-frequency and structural priors from privileged feature representations. Critically, at inference, the same learned dictionary then interacts with features derived from the model's initial restoration, facilitating a self-correction loop. SIPL can be seamlessly integrated into various backbone architectures, offering substantial performance improvements with minimal computational overhead. Extensive experiments demonstrate that SIPL significantly advances the state-of-the-art on diverse all-in-one image restoration benchmarks. For instance, when integrated with the PromptIR model, SIPL achieves remarkable PSNR improvements of +4.58 dB on composite degradation tasks and +1.28 dB on diverse five-task benchmarks, underscoring its effectiveness and broad applicability. Codes are available at our project page https://github.com/Aitical/SIPL.

Authors:Lan-Cuong Nguyen, Quan Nguyen-Tri, Bang Tran Khanh, Dung D. Le, Long Tran-Thanh, Khoat Than
Title: Provably Improving Generalization of Few-Shot Models with Synthetic Data
Abstract:
Few-shot image classification remains challenging due to the scarcity of labeled training examples. Augmenting them with synthetic data has emerged as a promising way to alleviate this issue, but models trained on synthetic samples often face performance degradation due to the inherent gap between real and synthetic distributions. To address this limitation, we develop a theoretical framework that quantifies the impact of such distribution discrepancies on supervised learning, specifically in the context of image classification. More importantly, our framework suggests practical ways to generate good synthetic samples and to train a predictor with high generalization ability. Building upon this framework, we propose a novel theoretical-based algorithm that integrates prototype learning to optimize both data partitioning and model training, effectively bridging the gap between real few-shot data and synthetic data. Extensive experiments results show that our approach demonstrates superior performance compared to state-of-the-art methods, outperforming them across multiple datasets.

Authors:Katherine Tieu, Dongqi Fu, Jun Wu, Jingrui He
Title: Invariant Link Selector for Spatial-Temporal Out-of-Distribution Problem
Abstract:
In the era of foundation models, Out-of- Distribution (OOD) problems, i.e., the data discrepancy between the training environments and testing environments, hinder AI generalization. Further, relational data like graphs disobeying the Independent and Identically Distributed (IID) condition makes the problem more challenging, especially much harder when it is associated with time. Motivated by this, to realize the robust invariant learning over temporal graphs, we want to investigate what components in temporal graphs are most invariant and representative with respect to labels. With the Information Bottleneck (IB) method, we propose an error-bounded Invariant Link Selector that can distinguish invariant components and variant components during the training process to make the deep learning model generalizable for different testing scenarios. Besides deriving a series of rigorous generalizable optimization functions, we also equip the training with task-specific loss functions, e.g., temporal link prediction, to make pretrained models solve real-world application tasks like citation recommendation and merchandise recommendation, as demonstrated in our experiments with state-of-the-art (SOTA) methods. Our code is available at https://github.com/kthrn22/OOD-Linker.

Authors:Junyu Chen, Shuwen Wei, Yihao Liu, Aaron Carass, Yong Du
Title: Pretraining Deformable Image Registration Networks with Random Images
Abstract:
Recent advances in deep learning-based medical image registration have shown that training deep neural networks~(DNNs) does not necessarily require medical images. Previous work showed that DNNs trained on randomly generated images with carefully designed noise and contrast properties can still generalize well to unseen medical data. Building on this insight, we propose using registration between random images as a proxy task for pretraining a foundation model for image registration. Empirical results show that our pretraining strategy improves registration accuracy, reduces the amount of domain-specific data needed to achieve competitive performance, and accelerates convergence during downstream training, thereby enhancing computational efficiency.

Authors:Shilin Xu, Yanwei Li, Rui Yang, Tao Zhang, Yueyi Sun, Wei Chow, Linfeng Li, Hang Song, Qi Xu, Yunhai Tong, Xiangtai Li, Hao Fei
Title: Mixed-R1: Unified Reward Perspective For Reasoning Capability in Multimodal Large Language Models
Abstract:
Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.

Authors:Chiwei Zhu, Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Zhendong Mao
Title: Rationales Are Not Silver Bullets: Measuring the Impact of Rationales on Model Performance and Reliability
Abstract:
Training language models with rationales augmentation has been shown to be beneficial in many existing works. In this paper, we identify that such a prevailing view does not hold consistently. We conduct comprehensive investigations to thoroughly inspect the impact of rationales on model performance as well as a novel perspective of model reliability. The results lead to several key findings that add new insights upon existing understandings: 1) Rationales can, at times, deteriorate model performance; 2) Rationales can, at times, improve model reliability, even outperforming their untrained counterparts; 3) A linear correspondence exists in between the performance and reliability improvements, while both are driven by the intrinsic difficulty of the task. These findings provide informative regulations on the broad utilization of rationales and raise critical implications on the procedure of explicitly aligning language models with implicit human thoughts. Codes can be found at https://github.com/Ignoramus0817/rationales.

Authors:Jiashuai Liu, Yingjia Shang, Yingkang Zhan, Di Zhang, Yi Niu, Dong Wei, Xian Wu, Zeyu Gao, Chen Li, Yefeng Zheng
Title: The Butterfly Effect in Pathology: Exploring Security in Pathology Foundation Models
Abstract:
With the widespread adoption of pathology foundation models in both research and clinical decision support systems, exploring their security has become a critical concern. However, despite their growing impact, the vulnerability of these models to adversarial attacks remains largely unexplored. In this work, we present the first systematic investigation into the security of pathology foundation models for whole slide image~(WSI) analysis against adversarial attacks. Specifically, we introduce the principle of \textit{local perturbation with global impact} and propose a label-free attack framework that operates without requiring access to downstream task labels. Under this attack framework, we revise four classical white-box attack methods and redefine the perturbation budget based on the characteristics of WSI. We conduct comprehensive experiments on three representative pathology foundation models across five datasets and six downstream tasks. Despite modifying only 0.1\% of patches per slide with imperceptible noise, our attack leads to downstream accuracy degradation that can reach up to 20\% in the worst cases. Furthermore, we analyze key factors that influence attack success, explore the relationship between patch-level vulnerability and semantic content, and conduct a preliminary investigation into potential defence strategies. These findings lay the groundwork for future research on the adversarial robustness and reliable deployment of pathology foundation models. Our code is publicly available at: https://github.com/Jiashuai-Liu-hmos/Attack-WSI-pathology-foundation-models.

Authors:Peiran Xu, Yadong Mu
Title: Weakly-Supervised Affordance Grounding Guided by Part-Level Semantic Priors
Abstract:
In this work, we focus on the task of weakly supervised affordance grounding, where a model is trained to identify affordance regions on objects using human-object interaction images and egocentric object images without dense labels. Previous works are mostly built upon class activation maps, which are effective for semantic segmentation but may not be suitable for locating actions and functions. Leveraging recent advanced foundation models, we develop a supervised training pipeline based on pseudo labels. The pseudo labels are generated from an off-the-shelf part segmentation model, guided by a mapping from affordance to part names. Furthermore, we introduce three key enhancements to the baseline model: a label refining stage, a fine-grained feature alignment process, and a lightweight reasoning module. These techniques harness the semantic knowledge of static objects embedded in off-the-shelf foundation models to improve affordance learning, effectively bridging the gap between objects and actions. Extensive experiments demonstrate that the performance of the proposed model has achieved a breakthrough improvement over existing methods. Our codes are available at https://github.com/woyut/WSAG-PLSP .

Authors:Sayed T. Nowroz, Nermeen M. Saleh, Siam Shakur, Sean Banerjee, Fathi Amsaad
Title: A Benchmark Reference for ESP32-CAM Module
Abstract:
The ESP32-CAM is one of the most widely adopted open-source modules for prototyping embedded vision applications. Since its release in 2019, it has gained popularity among both hobbyists and professional developers due to its affordability, versatility, and integrated wireless capabilities. Despite its widespread use, comprehensive documentation of the performance metrics remains limited. This study addresses this gap by collecting and analyzing over six hours of real-time video streaming logs across all supported resolutions of the OV2640 image sensor, tested under five distinct voltage conditions via an HTTP-based WiFi connection. A long standing bug in the official Arduino ESP32 driver, responsible for inaccurate frame rate logging, was fixed. The resulting analysis includes key performance metrics such as instantaneous and average frame rate, total streamed data, transmission count, and internal chip temperature. The influence of varying power levels was evaluated to assess the reliability of the module.

Authors:Qiao Xiao, Alan Ansell, Boqian Wu, Lu Yin, Mykola Pechenizkiy, Shiwei Liu, Decebal Constantin Mocanu
Title: Leave it to the Specialist: Repair Sparse LLMs with Sparse Fine-Tuning via Sparsity Evolution
Abstract:
Large language models (LLMs) have achieved remarkable success across various tasks but face deployment challenges due to their massive computational demands. While post-training pruning methods like SparseGPT and Wanda can effectively reduce the model size, but struggle to maintain model performance at high sparsity levels, limiting their utility for downstream tasks. Existing fine-tuning methods, such as full fine-tuning and LoRA, fail to preserve sparsity as they require updating the whole dense metrics, not well-suited for sparse LLMs. In this paper, we propose Sparsity Evolution Fine-Tuning (SEFT), a novel method designed specifically for sparse LLMs. SEFT dynamically evolves the sparse topology of pruned models during fine-tuning, while preserving the overall sparsity throughout the process. The strengths of SEFT lie in its ability to perform task-specific adaptation through a weight drop-and-grow strategy, enabling the pruned model to self-adapt its sparse connectivity pattern based on the target dataset. Furthermore, a sensitivity-driven pruning criterion is employed to ensure that the desired sparsity level is consistently maintained throughout fine-tuning. Our experiments on various LLMs, including LLaMA families, DeepSeek, and Mistral, across a diverse set of benchmarks demonstrate that SEFT achieves stronger performance while offering superior memory and time efficiency compared to existing baselines. Our code is publicly available at: https://github.com/QiaoXiao7282/SEFT.

Authors:Amel Gader, Alsayed Algergawy
Title: GenIC: An LLM-Based Framework for Instance Completion in Knowledge Graphs
Abstract:
Knowledge graph completion aims to address the gaps of knowledge bases by adding new triples that represent facts. The complexity of this task depends on how many parts of a triple are already known. Instance completion involves predicting the relation-tail pair when only the head is given (h, ?, ?). Notably, modern knowledge bases often contain entity descriptions and types, which can provide valuable context for inferring missing facts. By leveraging these textual descriptions and the ability of large language models to extract facts from them and recognize patterns within the knowledge graph schema, we propose an LLM-powered, end-to-end instance completion approach. Specifically, we introduce GenIC: a two-step Generative Instance Completion framework. The first step focuses on property prediction, treated as a multi-label classification task. The second step is link prediction, framed as a generative sequence-to-sequence task. Experimental results on three datasets show that our method outperforms existing baselines. Our code is available at https://github.com/amal-gader/genic.

Authors:Vishal Dey, Xiao Hu, Xia Ning
Title: Large Language Models for Controllable Multi-property Multi-objective Molecule Optimization
Abstract:
In real-world drug design, molecule optimization requires selectively improving multiple molecular properties up to pharmaceutically relevant levels, while maintaining others that already meet such criteria. However, existing computational approaches and instruction-tuned LLMs fail to capture such nuanced property-specific objectives, limiting their practical applicability. To address this, we introduce C-MuMOInstruct, the first instruction-tuning dataset focused on multi-property optimization with explicit, property-specific objectives. Leveraging C-MuMOInstruct, we develop GeLLMO-Cs, a series of instruction-tuned LLMs that can perform targeted property-specific optimization. Our experiments across 5 in-distribution and 5 out-of-distribution tasks show that GeLLMO-Cs consistently outperform strong baselines, achieving up to 126% higher success rate. Notably, GeLLMO-Cs exhibit impressive 0-shot generalization to novel optimization tasks and unseen instructions. This offers a step toward a foundational LLM to support realistic, diverse optimizations with property-specific objectives. C-MuMOInstruct and code are accessible through https://github.com/ninglab/GeLLMO-C.

Authors:Feiteng Fang, Ting-En Lin, Yuchuan Wu, Xiong Liu, Xiang Huang, Dingwei Chen, Jing Ye, Haonan Zhang, Liang Zhu, Hamid Alinejad-Rokny, Min Yang, Fei Huang, Yongbin Li
Title: ChARM: Character-based Act-adaptive Reward Modeling for Advanced Role-Playing Language Agents
Abstract:
Role-Playing Language Agents (RPLAs) aim to simulate characters for realistic and engaging human-computer interactions. However, traditional reward models often struggle with scalability and adapting to subjective conversational preferences. We propose ChARM, a Character-based Act-adaptive Reward Model, addressing these challenges through two innovations: (1) an act-adaptive margin that significantly enhances learning efficiency and generalizability, and (2) a self-evolution mechanism leveraging large-scale unlabeled data to improve training coverage. Additionally, we introduce RoleplayPref, the first large-scale preference dataset specifically for RPLAs, featuring 1,108 characters, 13 subcategories, and 16,888 bilingual dialogues, alongside RoleplayEval, a dedicated evaluation benchmark. Experimental results show a 13% improvement over the conventional Bradley-Terry model in preference rankings. Furthermore, applying ChARM-generated rewards to preference learning techniques (e.g., direct preference optimization) achieves state-of-the-art results on CharacterEval and RoleplayEval. Code and dataset are available at https://github.com/calubkk/ChARM.

Authors:David Ma, Huaqing Yuan, Xingjian Wang, Qianbo Zang, Tianci Liu, Xinyang He, Yanbin Wei, Jiawei Guo, Ni Jiahui, Zhenzhu Yang, Meng Cao, Shanghaoran Quan, Yizhi Li, Wangchunshu Zhou, Jiaheng Liu, Wenhao Huang, Ge Zhang, Shiwen Ni, Xiaojie Jin
Title: ScaleLong: A Multi-Timescale Benchmark for Long Video Understanding
Abstract:
Although long-video understanding demands that models capture hierarchical temporal information -- from clip (seconds) and shot (tens of seconds) to event (minutes) and story (hours) -- existing benchmarks either neglect this multi-scale design or scatter scale-specific questions across different videos, preventing direct comparison of model performance across timescales on the same content. To address this, we introduce ScaleLong, the first benchmark to disentangle these factors by embedding questions targeting four hierarchical timescales -- clip (seconds), shot (tens of seconds), event (minutes), and story (hours) -- all within the same video content. This within-content multi-timescale questioning design enables direct comparison of model performance across timescales on identical videos. ScaleLong features 269 long videos (avg.\ 86\,min) from 5 main categories and 36 sub-categories, with 4--8 carefully designed questions, including at least one question for each timescale. Evaluating 23 MLLMs reveals a U-shaped performance curve, with higher accuracy at the shortest and longest timescales and a dip at intermediate levels. Furthermore, ablation studies show that increased visual token capacity consistently enhances reasoning across all timescales. ScaleLong offers a fine-grained, multi-timescale benchmark for advancing MLLM capabilities in long-video understanding. The code and dataset are available https://github.com/multimodal-art-projection/ScaleLong.

Authors:Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping Luo, Guohao Li
Title: OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation
Abstract:
Large Language Model (LLM)-based multi-agent systems show promise for automating real-world tasks but struggle to transfer across domains due to their domain-specific nature. Current approaches face two critical shortcomings: they require complete architectural redesign and full retraining of all components when applied to new domains. We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution through a modular architecture comprising: (i) a domain-agnostic Planner for task decomposition, (ii) a Coordinator for subtask management, and (iii) specialized Workers with domain-specific tool-calling capabilities. This decoupling enables cross-domain transferability during both inference and training phases: During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents; For training, we introduce Optimized Workforce Learning (OWL), which improves generalization across domains by optimizing a domain-agnostic planner with reinforcement learning from real-world feedback. To validate our approach, we evaluate Workforce on the GAIA benchmark, covering various realistic, multi-domain agentic tasks. Experimental results demonstrate Workforce achieves open-source state-of-the-art performance (69.70%), outperforming commercial systems like OpenAI's Deep Research by 2.34%. More notably, our OWL-trained 32B model achieves 52.73% accuracy (+16.37%) and demonstrates performance comparable to GPT-4o on challenging tasks. To summarize, by enabling scalable generalization and modular domain transfer, our work establishes a foundation for the next generation of general-purpose AI assistants.

Authors:Hongrui Peng, Haolang Lu, Yuanlong Yu, Weiye Fu, Kun Wang, Guoshun Nan
Title: KGMark: A Diffusion Watermark for Knowledge Graphs
Abstract:
Knowledge graphs (KGs) are ubiquitous in numerous real-world applications, and watermarking facilitates protecting intellectual property and preventing potential harm from AI-generated content. Existing watermarking methods mainly focus on static plain text or image data, while they can hardly be applied to dynamic graphs due to spatial and temporal variations of structured data. This motivates us to propose KGMARK, the first graph watermarking framework that aims to generate robust, detectable, and transparent diffusion fingerprints for dynamic KG data. Specifically, we propose a novel clustering-based alignment method to adapt the watermark to spatial variations. Meanwhile, we present a redundant embedding strategy to harden the diffusion watermark against various attacks, facilitating the robustness of the watermark to the temporal variations. Additionally, we introduce a novel learnable mask matrix to improve the transparency of diffusion fingerprints. By doing so, our KGMARK properly tackles the variation challenges of structured data. Experiments on various public benchmarks show the effectiveness of our proposed KGMARK. Our code is available at https://github.com/phrara/kgmark.

Authors:Wei Zhuo, Zhaohuan Zhan, Han Yu
Title: Personalized Subgraph Federated Learning with Differentiable Auxiliary Projections
Abstract:
Federated Learning (FL) on graph-structured data typically faces non-IID challenges, particularly in scenarios where each client holds a distinct subgraph sampled from a global graph. In this paper, we introduce Federated learning with Auxiliary projections (FedAux), a personalized subgraph FL framework that learns to align, compare, and aggregate heterogeneously distributed local models without sharing raw data or node embeddings. In FedAux, each client jointly trains (i) a local GNN and (ii) a learnable auxiliary projection vector (APV) that differentiably projects node embeddings onto a 1D space. A soft-sorting operation followed by a lightweight 1D convolution refines these embeddings in the ordered space, enabling the APV to effectively capture client-specific information. After local training, these APVs serve as compact signatures that the server uses to compute inter-client similarities and perform similarity-weighted parameter mixing, yielding personalized models while preserving cross-client knowledge transfer. Moreover, we provide rigorous theoretical analysis to establish the convergence and rationality of our design. Empirical evaluations across diverse graph benchmarks demonstrate that FedAux substantially outperforms existing baselines in both accuracy and personalization performance. The code is available at https://github.com/JhuoW/FedAux.

Authors:Chang Liu, Bohao Zhao, Jingtao Ding, Huandong Wang, Yong Li
Title: Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting
Abstract:
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.

Authors:Zheng Gong, Ziyi Jiang, Weihao Gao, Deng Zhuo, Lan Ma
Title: A New Deep-learning-Based Approach For mRNA Optimization: High Fidelity, Computation Efficiency, and Multiple Optimization Factors
Abstract:
The mRNA optimization is critical for therapeutic and biotechnological applications, since sequence features directly govern protein expression levels and efficacy. However, current methods face significant challenges in simultaneously achieving three key objectives: (1) fidelity (preventing unintended amino acid changes), (2) computational efficiency (speed and scalability), and (3) the scope of optimization variables considered (multi-objective capability). Furthermore, existing methods often fall short of comprehensively incorporating the factors related to the mRNA lifecycle and translation process, including intrinsic mRNA sequence properties, secondary structure, translation elongation kinetics, and tRNA availability. To address these limitations, we introduce \textbf{RNop}, a novel deep learning-based method for mRNA optimization. We collect a large-scale dataset containing over 3 million sequences and design four specialized loss functions, the GPLoss, CAILoss, tAILoss, and MFELoss, which simultaneously enable explicit control over sequence fidelity while optimizing species-specific codon adaptation, tRNA availability, and desirable mRNA secondary structure features. Then, we demonstrate RNop's effectiveness through extensive in silico and in vivo experiments. RNop ensures high sequence fidelity, achieves significant computational throughput up to 47.32 sequences/s, and yields optimized mRNA sequences resulting in a significant increase in protein expression for functional proteins compared to controls. RNop surpasses current methodologies in both quantitative metrics and experimental validation, enlightening a new dawn for efficient and effective mRNA design. Code and models will be available at https://github.com/HudenJear/RPLoss.

Authors:Renye Zhang, Mengyun Yang, Qichang Zhao, Jianxin Wang
Title: BiBLDR: Bidirectional Behavior Learning for Drug Repositioning
Abstract:
Drug repositioning aims to identify potential new indications for existing drugs to reduce the time and financial costs associated with developing new drugs. Most existing deep learning-based drug repositioning methods predominantly utilize graph-based representations. However, graph-based drug repositioning methods struggle to perform effective inference in cold-start scenarios involving novel drugs because of the lack of association information with the diseases. Unlike traditional graph-based approaches, we propose a bidirectional behavior learning strategy for drug repositioning, known as BiBLDR. This innovative framework redefines drug repositioning as a behavior sequential learning task to capture drug-disease interaction patterns. First, we construct bidirectional behavioral sequences based on drug and disease sides. The consideration of bidirectional information ensures a more meticulous and rigorous characterization of the behavioral sequences. Subsequently, we propose a two-stage strategy for drug repositioning. In the first stage, we construct prototype spaces to characterize the representational attributes of drugs and diseases. In the second stage, these refined prototypes and bidirectional behavior sequence data are leveraged to predict potential drug-disease associations. Based on this learning approach, the model can more robustly and precisely capture the interactive relationships between drug and disease features from bidirectional behavioral sequences. Extensive experiments demonstrate that our method achieves state-of-the-art performance on benchmark datasets. Meanwhile, BiBLDR demonstrates significantly superior performance compared to previous methods in cold-start scenarios. Our code is published in https://github.com/Renyeeah/BiBLDR.

Authors:Sahil Verma, Keegan Hines, Jeff Bilmes, Charlotte Siska, Luke Zettlemoyer, Hila Gonen, Chandan Singh
Title: OMNIGUARD: An Efficient Approach for AI Safety Moderation Across Modalities
Abstract:
The emerging capabilities of large language models (LLMs) have sparked concerns about their immediate potential for harmful misuse. The core approach to mitigate these concerns is the detection of harmful queries to the model. Current detection approaches are fallible, and are particularly susceptible to attacks that exploit mismatched generalization of model capabilities (e.g., prompts in low-resource languages or prompts provided in non-text modalities such as image and audio). To tackle this challenge, we propose OMNIGUARD, an approach for detecting harmful prompts across languages and modalities. Our approach (i) identifies internal representations of an LLM/MLLM that are aligned across languages or modalities and then (ii) uses them to build a language-agnostic or modality-agnostic classifier for detecting harmful prompts. OMNIGUARD improves harmful prompt classification accuracy by 11.57\% over the strongest baseline in a multilingual setting, by 20.44\% for image-based prompts, and sets a new SOTA for audio-based prompts. By repurposing embeddings computed during generation, OMNIGUARD is also very efficient ($\approx 120 \times$ faster than the next fastest baseline). Code and data are available at: https://github.com/vsahil/OmniGuard.

Authors:Michael Shalyt, Rotem Elimelech, Ido Kaminer
Title: ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark
Abstract:
Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics-such as integration, differential equations, and algebraic simplification. To address this gap, we introduce ASyMOB, a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic `perturbations'. Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems, we identify examples where they fail while LLMs succeed, as well as problems solved only by combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types). Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.

Authors:Zhenglun Kong, Zheng Zhan, Shiyue Hou, Yifan Gong, Xin Meng, Pengwei Sui, Peiyan Dong, Xuan Shen, Zifeng Wang, Pu Zhao, Hao Tang, Stratis Ioannidis, Yanzhi Wang
Title: Enabling Flexible Multi-LLM Integration for Scalable Knowledge Aggregation
Abstract:
Large language models (LLMs) have shown remarkable promise but remain challenging to continually improve through traditional finetuning, particularly when integrating capabilities from other specialized LLMs. Popular methods like ensemble and weight merging require substantial memory and struggle to adapt to changing data environments. Recent efforts have transferred knowledge from multiple LLMs into a single target model; however, they suffer from interference and degraded performance among tasks, largely due to limited flexibility in candidate selection and training pipelines. To address these issues, we propose a framework that adaptively selects and aggregates knowledge from diverse LLMs to build a single, stronger model, avoiding the high memory overhead of ensemble and inflexible weight merging. Specifically, we design an adaptive selection network that identifies the most relevant source LLMs based on their scores, thereby reducing knowledge interference. We further propose a dynamic weighted fusion strategy that accounts for the inherent strengths of candidate LLMs, along with a feedback-driven loss function that prevents the selector from converging on a single subset of sources. Experimental results demonstrate that our method can enable a more stable and scalable knowledge aggregation process while reducing knowledge interference by up to 50% compared to existing approaches. Code is avaliable at https://github.com/ZLKong/LLM_Integration

Authors:Jiseung Hong, Grace Byun, Seungone Kim, Kai Shu, Jinho D. Choi
Title: Measuring Sycophancy of Language Models in Multi-turn Dialogues
Abstract:
Large Language Models (LLMs) are expected to provide helpful and harmless responses, yet they often exhibit sycophancy--conforming to user beliefs regardless of factual accuracy or ethical soundness. Prior research on sycophancy has primarily focused on single-turn factual correctness, overlooking the dynamics of real-world interactions. In this work, we introduce SYCON Bench, a novel benchmark for evaluating sycophantic behavior in multi-turn, free-form conversational settings. Our benchmark measures how quickly a model conforms to the user (Turn of Flip) and how frequently it shifts its stance under sustained user pressure (Number of Flip). Applying SYCON Bench to 17 LLMs across three real-world scenarios, we find that sycophancy remains a prevalent failure mode. Our analysis shows that alignment tuning amplifies sycophantic behavior, whereas model scaling and reasoning optimization strengthen the model's ability to resist undesirable user views. Reasoning models generally outperform instruction-tuned models but often fail when they over-index on logical exposition instead of directly addressing the user's underlying beliefs. Finally, we evaluate four additional prompting strategies and demonstrate that adopting a third-person perspective reduces sycophancy by up to 63.8% in debate scenario. We release our code and data at https://github.com/JiseungHong/SYCON-Bench.

Authors:Zaixi Zhang, Zhenghong Zhou, Ruofan Jin, Le Cong, Mengdi Wang
Title: GeneBreaker: Jailbreak Attacks against DNA Language Models with Pathogenicity Guidance
Abstract:
DNA, encoding genetic instructions for almost all living organisms, fuels groundbreaking advances in genomics and synthetic biology. Recently, DNA Foundation Models have achieved success in designing synthetic functional DNA sequences, even whole genomes, but their susceptibility to jailbreaking remains underexplored, leading to potential concern of generating harmful sequences such as pathogens or toxin-producing genes. In this paper, we introduce GeneBreaker, the first framework to systematically evaluate jailbreak vulnerabilities of DNA foundation models. GeneBreaker employs (1) an LLM agent with customized bioinformatic tools to design high-homology, non-pathogenic jailbreaking prompts, (2) beam search guided by PathoLM and log-probability heuristics to steer generation toward pathogen-like sequences, and (3) a BLAST-based evaluation pipeline against a curated Human Pathogen Database (JailbreakDNABench) to detect successful jailbreaks. Evaluated on our JailbreakDNABench, GeneBreaker successfully jailbreaks the latest Evo series models across 6 viral categories consistently (up to 60\% Attack Success Rate for Evo2-40B). Further case studies on SARS-CoV-2 spike protein and HIV-1 envelope protein demonstrate the sequence and structural fidelity of jailbreak output, while evolutionary modeling of SARS-CoV-2 underscores biosecurity risks. Our findings also reveal that scaling DNA foundation models amplifies dual-use risks, motivating enhanced safety alignment and tracing mechanisms. Our code is at https://github.com/zaixizhang/GeneBreaker.

Authors:Trenton Chang, Tobias Schnabel, Adith Swaminathan, Jenna Wiens
Title: A Course Correction in Steerability Evaluation: Revealing Miscalibration and Side Effects in LLMs
Abstract:
Despite advances in large language models (LLMs) on reasoning and instruction-following benchmarks, it remains unclear whether they can reliably produce outputs aligned with a broad variety of user goals, a concept we refer to as steerability. The abundance of methods proposed to modify LLM behavior makes it unclear whether current LLMs are already steerable, or require further intervention. In particular, LLMs may exhibit (i) poor coverage, where rare user goals are underrepresented; (ii) miscalibration, where models overshoot requests; and (iii) side effects, where changes to one dimension of text inadvertently affect others. To systematically evaluate these failures, we introduce a framework based on a multi-dimensional goal space that models user goals and LLM outputs as vectors with dimensions corresponding to text attributes (e.g., reading difficulty). Applied to a text-rewriting task, we find that current LLMs struggle with steerability, as side effects are persistent. Interventions to improve steerability, such as prompt engineering, best-of-$N$ sampling, and reinforcement learning fine-tuning, have varying effectiveness, yet side effects remain problematic. Our findings suggest that even strong LLMs struggle with steerability, and existing alignment strategies may be insufficient. We open-source our steerability evaluation framework at https://github.com/MLD3/steerability.

Authors:Abhijit Talluri
Title: DP-RTFL: Differentially Private Resilient Temporal Federated Learning for Trustworthy AI in Regulated Industries
Abstract:
Federated Learning (FL) has emerged as a critical paradigm for enabling privacy-preserving machine learning, particularly in regulated sectors such as finance and healthcare. However, standard FL strategies often encounter significant operational challenges related to fault tolerance, system resilience against concurrent client and server failures, and the provision of robust, verifiable privacy guarantees essential for handling sensitive data. These deficiencies can lead to training disruptions, data loss, compromised model integrity, and non-compliance with data protection regulations (e.g., GDPR, CCPA). This paper introduces Differentially Private Resilient Temporal Federated Learning (DP-RTFL), an advanced FL framework designed to ensure training continuity, precise state recovery, and strong data privacy. DP-RTFL integrates local Differential Privacy (LDP) at the client level with resilient temporal state management and integrity verification mechanisms, such as hash-based commitments (referred to as Zero-Knowledge Integrity Proofs or ZKIPs in this context). The framework is particularly suited for critical applications like credit risk assessment using sensitive financial data, aiming to be operationally robust, auditable, and scalable for enterprise AI deployments. The implementation of the DP-RTFL framework is available as open-source.

Authors:Lin Mu, Xiaoyu Wang, Li Ni, Yang Li, Zhize Wu, Peiquan Jin, Yiwen Zhang
Title: DenseLoRA: Dense Low-Rank Adaptation of Large Language Models
Abstract:
Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs) by fine-tuning two low-rank matrices, thereby reducing the number of trainable parameters. However, prior research indicates that many of the weights in these matrices are redundant, leading to inefficiencies in parameter utilization. To address this limitation, we introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA. DenseLoRA builds upon the concept of representation fine-tuning, incorporating a single Encoder-Decoder to refine and compress hidden representations across all adaptation layers before applying adaptation. Instead of relying on two redundant low-rank matrices as in LoRA, DenseLoRA adapts LLMs through a dense low-rank matrix, improving parameter utilization and adaptation efficiency. We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B. Additionally, we conduct extensive experiments to systematically assess the impact of DenseLoRA's components on overall model performance. Code is available at https://github.com/mulin-ahu/DenseLoRA.

Authors:Yuli Chen, Bo Cheng, Jiale Han, Yingying Zhang, Yingting Li, Shuhao Zhang
Title: DLP: Dynamic Layerwise Pruning in Large Language Models
Abstract:
Pruning has recently been widely adopted to reduce the parameter scale and improve the inference efficiency of Large Language Models (LLMs). Mainstream pruning techniques often rely on uniform layerwise pruning strategies, which can lead to severe performance degradation at high sparsity levels. Recognizing the varying contributions of different layers in LLMs, recent studies have shifted their focus toward non-uniform layerwise pruning. However, these approaches often rely on pre-defined values, which can result in suboptimal performance. To overcome these limitations, we propose a novel method called Dynamic Layerwise Pruning (DLP). This approach adaptively determines the relative importance of each layer by integrating model weights with input activation information, assigning pruning rates accordingly. Experimental results show that DLP effectively preserves model performance at high sparsity levels across multiple LLMs. Specifically, at 70% sparsity, DLP reduces the perplexity of LLaMA2-7B by 7.79 and improves the average accuracy by 2.7% compared to state-of-the-art methods. Moreover, DLP is compatible with various existing LLM compression techniques and can be seamlessly integrated into Parameter-Efficient Fine-Tuning (PEFT). We release the code at https://github.com/ironartisan/DLP to facilitate future research.

Authors:Yuan Li, Qi Luo, Xiaonan Li, Bufan Li, Qinyuan Cheng, Bo Wang, Yining Zheng, Yuxin Wang, Zhangyue Yin, Xipeng Qiu
Title: R3-RAG: Learning Step-by-Step Reasoning and Retrieval for LLMs via Reinforcement Learning
Abstract:
Retrieval-Augmented Generation (RAG) integrates external knowledge with Large Language Models (LLMs) to enhance factual correctness and mitigate hallucination. However, dense retrievers often become the bottleneck of RAG systems due to their limited parameters compared to LLMs and their inability to perform step-by-step reasoning. While prompt-based iterative RAG attempts to address these limitations, it is constrained by human-designed workflows. To address these limitations, we propose $\textbf{R3-RAG}$, which uses $\textbf{R}$einforcement learning to make the LLM learn how to $\textbf{R}$eason and $\textbf{R}$etrieve step by step, thus retrieving comprehensive external knowledge and leading to correct answers. R3-RAG is divided into two stages. We first use cold start to make the model learn the manner of iteratively interleaving reasoning and retrieval. Then we use reinforcement learning to further harness its ability to better explore the external retrieval environment. Specifically, we propose two rewards for R3-RAG: 1) answer correctness for outcome reward, which judges whether the trajectory leads to a correct answer; 2) relevance-based document verification for process reward, encouraging the model to retrieve documents that are relevant to the user question, through which we can let the model learn how to iteratively reason and retrieve relevant documents to get the correct answer. Experimental results show that R3-RAG significantly outperforms baselines and can transfer well to different retrievers. We release R3-RAG at https://github.com/Yuan-Li-FNLP/R3-RAG.

Authors:Sefik Serengil, Alper Ozpinar
Title: LightDSA: A Python-Based Hybrid Digital Signature Library and Performance Analysis of RSA, DSA, ECDSA and EdDSA in Variable Configurations, Elliptic Curve Forms and Curves
Abstract:
Digital signature algorithms (DSAs) are fundamental to cryptographic security, ensuring data integrity and authentication. While RSA, DSA, ECDSA, and EdDSA are widely used, their performance varies significantly depending on key sizes, hash functions, and elliptic curve configurations. In this paper, we introduce LightDSA, a hybrid and configurable digital signature library that supports RSA, DSA, ECDSA, and EdDSA with flexible form and curve selection, open sourced at https://github.com/serengil/LightDSA. Unlike conventional implementations that impose strict curve-form mappings - such as Weierstrass for ECDSA and Edwards for EdDSA LightDSA - allows arbitrary combinations, enabling a broader performance evaluation. We analyze the computational efficiency of these algorithms across various configurations, comparing key generation, signing, and verification times. Our results provide insights into the trade-offs between security and efficiency, guiding the selection of optimal configurations for different cryptographic needs.

Authors:Yao Xiao, Qiqian Fu, Heyi Tao, Yuqun Wu, Zhen Zhu, Derek Hoiem
Title: TextRegion: Text-Aligned Region Tokens from Frozen Image-Text Models
Abstract:
Image-text models excel at image-level tasks but struggle with detailed visual understanding. While these models provide strong visual-language alignment, segmentation models like SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion, a simple, effective, and training-free framework that combines the strengths of image-text models and SAM2 to generate powerful text-aligned region tokens. These tokens enable detailed visual understanding while preserving open-vocabulary capabilities. They can be directly applied to various downstream tasks, including open-world semantic segmentation, referring expression comprehension, and grounding. We conduct extensive evaluations and consistently achieve superior or competitive performance compared to state-of-the-art training-free methods. Additionally, our framework is compatible with many image-text models, making it highly practical and easily extensible as stronger models emerge. Code is available at: https://github.com/avaxiao/TextRegion.

Authors:Chenyu Yang, Shiqian Su, Shi Liu, Xuan Dong, Yue Yu, Weijie Su, Xuehui Wang, Zhaoyang Liu, Jinguo Zhu, Hao Li, Wenhai Wang, Yu Qiao, Xizhou Zhu, Jifeng Dai
Title: ZeroGUI: Automating Online GUI Learning at Zero Human Cost
Abstract:
The rapid advancement of large Vision-Language Models (VLMs) has propelled the development of pure-vision-based GUI Agents, capable of perceiving and operating Graphical User Interfaces (GUI) to autonomously fulfill user instructions. However, existing approaches usually adopt an offline learning framework, which faces two core limitations: (1) heavy reliance on high-quality manual annotations for element grounding and action supervision, and (2) limited adaptability to dynamic and interactive environments. To address these limitations, we propose ZeroGUI, a scalable, online learning framework for automating GUI Agent training at Zero human cost. Specifically, ZeroGUI integrates (i) VLM-based automatic task generation to produce diverse training goals from the current environment state, (ii) VLM-based automatic reward estimation to assess task success without hand-crafted evaluation functions, and (iii) two-stage online reinforcement learning to continuously interact with and learn from GUI environments. Experiments on two advanced GUI Agents (UI-TARS and Aguvis) demonstrate that ZeroGUI significantly boosts performance across OSWorld and AndroidLab environments. The code is available at https://github.com/OpenGVLab/ZeroGUI.

Authors:Amber Yijia Zheng, Cedar Site Bai, Brian Bullins, Raymond A. Yeh
Title: Model Immunization from a Condition Number Perspective
Abstract:
Model immunization aims to pre-train models that are difficult to fine-tune on harmful tasks while retaining their utility on other non-harmful tasks. Though prior work has shown empirical evidence for immunizing text-to-image models, the key understanding of when immunization is possible and a precise definition of an immunized model remain unclear. In this work, we propose a framework, based on the condition number of a Hessian matrix, to analyze model immunization for linear models. Building on this framework, we design an algorithm with regularization terms to control the resulting condition numbers after pre-training. Empirical results on linear models and non-linear deep-nets demonstrate the effectiveness of the proposed algorithm on model immunization. The code is available at https://github.com/amberyzheng/model-immunization-cond-num.

Authors:Haohan Chi, Huan-ang Gao, Ziming Liu, Jianing Liu, Chenyu Liu, Jinwei Li, Kaisen Yang, Yangcheng Yu, Zeda Wang, Wenyi Li, Leichen Wang, Xingtao Hu, Hao Sun, Hang Zhao, Hao Zhao
Title: Impromptu VLA: Open Weights and Open Data for Driving Vision-Language-Action Models
Abstract:
Vision-Language-Action (VLA) models for autonomous driving show promise but falter in unstructured corner case scenarios, largely due to a scarcity of targeted benchmarks. To address this, we introduce Impromptu VLA. Our core contribution is the Impromptu VLA Dataset: over 80,000 meticulously curated video clips, distilled from over 2M source clips sourced from 8 open-source large-scale datasets. This dataset is built upon our novel taxonomy of four challenging unstructured categories and features rich, planning-oriented question-answering annotations and action trajectories. Crucially, experiments demonstrate that VLAs trained with our dataset achieve substantial performance gains on established benchmarks--improving closed-loop NeuroNCAP scores and collision rates, and reaching near state-of-the-art L2 accuracy in open-loop nuScenes trajectory prediction. Furthermore, our Q&A suite serves as an effective diagnostic, revealing clear VLM improvements in perception, prediction, and planning. Our code, data and models are available at https://github.com/ahydchh/Impromptu-VLA.

Authors:Hao Dong, Moru Liu, Jian Liang, Eleni Chatzi, Olga Fink
Title: To Trust Or Not To Trust Your Vision-Language Model's Prediction
Abstract:
Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning visual and textual modalities, enabling a wide range of applications in multimodal understanding and generation. While they excel in zero-shot and transfer learning scenarios, VLMs remain susceptible to misclassification, often yielding confident yet incorrect predictions. This limitation poses a significant risk in safety-critical domains, where erroneous predictions can lead to severe consequences. In this work, we introduce TrustVLM, a training-free framework designed to address the critical challenge of estimating when VLM's predictions can be trusted. Motivated by the observed modality gap in VLMs and the insight that certain concepts are more distinctly represented in the image embedding space, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection. We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 compared to existing baselines. By improving the reliability of the model without requiring retraining, TrustVLM paves the way for safer deployment of VLMs in real-world applications. The code is available at https://github.com/EPFL-IMOS/TrustVLM.

Authors:Qiang Wang, Xiang Song, Yuhang He, Jizhou Han, Chenhao Ding, Xinyuan Gao, Yihong Gong
Title: Boosting Domain Incremental Learning: Selecting the Optimal Parameters is All You Need
Abstract:
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.

Authors:Yufan Deng, Xun Guo, Yuanyang Yin, Jacob Zhiyuan Fang, Yiding Yang, Yizhi Wang, Shenghai Yuan, Angtian Wang, Bo Liu, Haibin Huang, Chongyang Ma
Title: MAGREF: Masked Guidance for Any-Reference Video Generation
Abstract:
Video generation has made substantial strides with the emergence of deep generative models, especially diffusion-based approaches. However, video generation based on multiple reference subjects still faces significant challenges in maintaining multi-subject consistency and ensuring high generation quality. In this paper, we propose MAGREF, a unified framework for any-reference video generation that introduces masked guidance to enable coherent multi-subject video synthesis conditioned on diverse reference images and a textual prompt. Specifically, we propose (1) a region-aware dynamic masking mechanism that enables a single model to flexibly handle various subject inference, including humans, objects, and backgrounds, without architectural changes, and (2) a pixel-wise channel concatenation mechanism that operates on the channel dimension to better preserve appearance features. Our model delivers state-of-the-art video generation quality, generalizing from single-subject training to complex multi-subject scenarios with coherent synthesis and precise control over individual subjects, outperforming existing open-source and commercial baselines. To facilitate evaluation, we also introduce a comprehensive multi-subject video benchmark. Extensive experiments demonstrate the effectiveness of our approach, paving the way for scalable, controllable, and high-fidelity multi-subject video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF

Authors:Yufan Deng, Yuanyang Yin, Xun Guo, Yizhi Wang, Jacob Zhiyuan Fang, Shenghai Yuan, Yiding Yang, Angtian Wang, Bo Liu, Haibin Huang, Chongyang Ma
Title: MAGREF: Masked Guidance for Any-Reference Video Generation with Subject Disentanglement
Abstract:
We tackle the task of any-reference video generation, which aims to synthesize videos conditioned on arbitrary types and combinations of reference subjects, together with textual prompts. This task faces persistent challenges, including identity inconsistency, entanglement among multiple reference subjects, and copy-paste artifacts. To address these issues, we introduce MAGREF, a unified and effective framework for any-reference video generation. Our approach incorporates masked guidance and a subject disentanglement mechanism, enabling flexible synthesis conditioned on diverse reference images and textual prompts. Specifically, masked guidance employs a region-aware masking mechanism combined with pixel-wise channel concatenation to preserve appearance features of multiple subjects along the channel dimension. This design preserves identity consistency and maintains the capabilities of the pre-trained backbone, without requiring any architectural changes. To mitigate subject confusion, we introduce a subject disentanglement mechanism which injects the semantic values of each subject derived from the text condition into its corresponding visual region. Additionally, we establish a four-stage data pipeline to construct diverse training pairs, effectively alleviating copy-paste artifacts. Extensive experiments on a comprehensive benchmark demonstrate that MAGREF consistently outperforms existing state-of-the-art approaches, paving the way for scalable, controllable, and high-fidelity any-reference video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF

Authors:Weijie Wang, Donny Y. Chen, Zeyu Zhang, Duochao Shi, Akide Liu, Bohan Zhuang
Title: ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS
Abstract:
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their encoders, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.

Authors:Jinzhe Li, Gengxu Li, Yi Chang, Yuan Wu
Title: Don't Take the Premise for Granted: Evaluating the Premise Critique Ability of Large Language Models
Abstract:
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the \textbf{Premise Critique Ability} for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs' reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the \textbf{Premise Critique Bench (PCBench)}, designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs. Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to detect than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs' proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems. The code is available at https://github.com/MLGroupJLU/Premise_Critique.

Authors:Zixiang Xu, Yanbo Wang, Yue Huang, Jiayi Ye, Haomin Zhuang, Zirui Song, Lang Gao, Chenxi Wang, Zhaorun Chen, Yujun Zhou, Sixian Li, Wang Pan, Yue Zhao, Jieyu Zhao, Xiangliang Zhang, Xiuying Chen
Title: SocialMaze: A Benchmark for Evaluating Social Reasoning in Large Language Models
Abstract:
Large language models (LLMs) are increasingly applied to socially grounded tasks, such as online community moderation, media content analysis, and social reasoning games. Success in these contexts depends on a model's social reasoning ability - the capacity to interpret social contexts, infer others' mental states, and assess the truthfulness of presented information. However, there is currently no systematic evaluation framework that comprehensively assesses the social reasoning capabilities of LLMs. Existing efforts often oversimplify real-world scenarios and consist of tasks that are too basic to challenge advanced models. To address this gap, we introduce SocialMaze, a new benchmark specifically designed to evaluate social reasoning. SocialMaze systematically incorporates three core challenges: deep reasoning, dynamic interaction, and information uncertainty. It provides six diverse tasks across three key settings: social reasoning games, daily-life interactions, and digital community platforms. Both automated and human validation are used to ensure data quality. Our evaluation reveals several key insights: models vary substantially in their ability to handle dynamic interactions and integrate temporally evolving information; models with strong chain-of-thought reasoning perform better on tasks requiring deeper inference beyond surface-level cues; and model reasoning degrades significantly under uncertainty. Furthermore, we show that targeted fine-tuning on curated reasoning examples can greatly improve model performance in complex social scenarios. The dataset is publicly available at: https://huggingface.co/datasets/MBZUAI/SocialMaze

Authors:Mohamad Alansari, Sajid Javed, Iyyakutti Iyappan Ganapathi, Sara Alansari, Muzammal Naseer
Title: CLDTracker: A Comprehensive Language Description for Visual Tracking
Abstract:
VOT remains a fundamental yet challenging task in computer vision due to dynamic appearance changes, occlusions, and background clutter. Traditional trackers, relying primarily on visual cues, often struggle in such complex scenarios. Recent advancements in VLMs have shown promise in semantic understanding for tasks like open-vocabulary detection and image captioning, suggesting their potential for VOT. However, the direct application of VLMs to VOT is hindered by critical limitations: the absence of a rich and comprehensive textual representation that semantically captures the target object's nuances, limiting the effective use of language information; inefficient fusion mechanisms that fail to optimally integrate visual and textual features, preventing a holistic understanding of the target; and a lack of temporal modeling of the target's evolving appearance in the language domain, leading to a disconnect between the initial description and the object's subsequent visual changes. To bridge these gaps and unlock the full potential of VLMs for VOT, we propose CLDTracker, a novel Comprehensive Language Description framework for robust visual Tracking. Our tracker introduces a dual-branch architecture consisting of a textual and a visual branch. In the textual branch, we construct a rich bag of textual descriptions derived by harnessing the powerful VLMs such as CLIP and GPT-4V, enriched with semantic and contextual cues to address the lack of rich textual representation. Experiments on six standard VOT benchmarks demonstrate that CLDTracker achieves SOTA performance, validating the effectiveness of leveraging robust and temporally-adaptive vision-language representations for tracking. Code and models are publicly available at: https://github.com/HamadYA/CLDTracker

Authors:Ran Zhang, Mohannad Elhamod
Title: Data-to-Dashboard: Multi-Agent LLM Framework for Insightful Visualization in Enterprise Analytics
Abstract:
The rapid advancement of LLMs has led to the creation of diverse agentic systems in data analysis, utilizing LLMs' capabilities to improve insight generation and visualization. In this paper, we present an agentic system that automates the data-to-dashboard pipeline through modular LLM agents capable of domain detection, concept extraction, multi-perspective analysis generation, and iterative self-reflection. Unlike existing chart QA systems, our framework simulates the analytical reasoning process of business analysts by retrieving domain-relevant knowledge and adapting to diverse datasets without relying on closed ontologies or question templates. We evaluate our system on three datasets across different domains. Benchmarked against GPT-4o with a single-prompt baseline, our approach shows improved insightfulness, domain relevance, and analytical depth, as measured by tailored evaluation metrics and qualitative human assessment. This work contributes a novel modular pipeline to bridge the path from raw data to visualization, and opens new opportunities for human-in-the-loop validation by domain experts in business analytics. All code can be found here: https://github.com/77luvC/D2D_Data2Dashboard

Authors:Beong-woo Kwak, Minju Kim, Dongha Lim, Hyungjoo Chae, Dongjin Kang, Sunghwan Kim, Dongil Yang, Jinyoung Yeo
Title: ToolHaystack: Stress-Testing Tool-Augmented Language Models in Realistic Long-Term Interactions
Abstract:
Large language models (LLMs) have demonstrated strong capabilities in using external tools to address user inquiries. However, most existing evaluations assume tool use in short contexts, offering limited insight into model behavior during realistic long-term interactions. To fill this gap, we introduce ToolHaystack, a benchmark for testing the tool use capabilities in long-term interactions. Each test instance in ToolHaystack includes multiple tasks execution contexts and realistic noise within a continuous conversation, enabling assessment of how well models maintain context and handle various disruptions. By applying this benchmark to 14 state-of-the-art LLMs, we find that while current models perform well in standard multi-turn settings, they often significantly struggle in ToolHaystack, highlighting critical gaps in their long-term robustness not revealed by previous tool benchmarks.

Authors:Size Wu, Zhonghua Wu, Zerui Gong, Qingyi Tao, Sheng Jin, Qinyue Li, Wei Li, Chen Change Loy
Title: OpenUni: A Simple Baseline for Unified Multimodal Understanding and Generation
Abstract:
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.

Authors:Ziteng Gao, Mike Zheng Shou
Title: D-AR: Diffusion via Autoregressive Models
Abstract:
This paper presents Diffusion via Autoregressive models (D-AR), a new paradigm recasting the image diffusion process as a vanilla autoregressive procedure in the standard next-token-prediction fashion. We start by designing the tokenizer that converts images into sequences of discrete tokens, where tokens in different positions can be decoded into different diffusion denoising steps in the pixel space. Thanks to the diffusion properties, these tokens naturally follow a coarse-to-fine order, which directly lends itself to autoregressive modeling. Therefore, we apply standard next-token prediction on these tokens, without modifying any underlying designs (either causal masks or training/inference strategies), and such sequential autoregressive token generation directly mirrors the diffusion procedure in image space. That is, once the autoregressive model generates an increment of tokens, we can directly decode these tokens into the corresponding diffusion denoising step in the streaming manner. Our pipeline naturally reveals several intriguing properties, for example, it supports consistent previews when generating only a subset of tokens and enables zero-shot layout-controlled synthesis. On the standard ImageNet benchmark, our method achieves 2.09 FID using a 775M Llama backbone with 256 discrete tokens. We hope our work can inspire future research on unified autoregressive architectures of visual synthesis, especially with large language models. Code and models will be available at https://github.com/showlab/D-AR

Authors:Juncheol Shin, Minsang Seok, Seonggon Kim, Eunhyeok Park
Title: Merge-Friendly Post-Training Quantization for Multi-Target Domain Adaptation
Abstract:
Model merging has emerged as a powerful technique for combining task-specific weights, achieving superior performance in multi-target domain adaptation. However, when applied to practical scenarios, such as quantized models, new challenges arise. In practical scenarios, quantization is often applied to target-specific data, but this process restricts the domain of interest and introduces discretization effects, making model merging highly non-trivial. In this study, we analyze the impact of quantization on model merging through the lens of error barriers. Leveraging these insights, we propose a novel post-training quantization, HDRQ - Hessian and distant regularizing quantization - that is designed to consider model merging for multi-target domain adaptation. Our approach ensures that the quantization process incurs minimal deviation from the source pre-trained model while flattening the loss surface to facilitate smooth model merging. To our knowledge, this is the first study on this challenge, and extensive experiments confirm its effectiveness.

Authors:Manuel Costa, Boris Köpf, Aashish Kolluri, Andrew Paverd, Mark Russinovich, Ahmed Salem, Shruti Tople, Lukas Wutschitz, Santiago Zanella-Béguelin
Title: Securing AI Agents with Information-Flow Control
Abstract:
As AI agents become increasingly autonomous and capable, ensuring their security against vulnerabilities such as prompt injection becomes critical. This paper explores the use of information-flow control (IFC) to provide security guarantees for AI agents. We present a formal model to reason about the security and expressiveness of agent planners. Using this model, we characterize the class of properties enforceable by dynamic taint-tracking and construct a taxonomy of tasks to evaluate security and utility trade-offs of planner designs. Informed by this exploration, we present Fides, a planner that tracks confidentiality and integrity labels, deterministically enforces security policies, and introduces novel primitives for selectively hiding information. Its evaluation in AgentDojo demonstrates that this approach enables us to complete a broad range of tasks with security guarantees. A tutorial to walk readers through the the concepts introduced in the paper can be found at https://github.com/microsoft/fides

Authors:Jiaxin Bai, Wei Fan, Qi Hu, Qing Zong, Chunyang Li, Hong Ting Tsang, Hongyu Luo, Yauwai Yim, Haoyu Huang, Xiao Zhou, Feng Qin, Tianshi Zheng, Xi Peng, Xin Yao, Huiwen Yang, Leijie Wu, Yi Ji, Gong Zhang, Renhai Chen, Yangqiu Song
Title: AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
Abstract:
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 92\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.

Authors:Qingyu Shi, Jinbin Bai, Zhuoran Zhao, Wenhao Chai, Kaidong Yu, Jianzong Wu, Shuangyong Song, Yunhai Tong, Xiangtai Li, Xuelong Li, Shuicheng Yan
Title: Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model
Abstract:
Unified generation models aim to handle diverse tasks across modalities -- such as text generation, image generation, and vision-language reasoning -- within a single architecture and decoding paradigm. Autoregressive unified models suffer from slow inference due to sequential decoding, and non-autoregressive unified models suffer from weak generalization due to limited pretrained backbones. We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities. Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder, enabling flexible and high-quality multimodal generation under a unified architecture. Empirical results show that Muddit achieves competitive or superior performance compared to significantly larger autoregressive models in both quality and efficiency. The work highlights the potential of purely discrete diffusion, when equipped with strong visual priors, as a scalable and effective backbone for unified generation.

Authors:Youssef Mohamed, Noran Mohamed, Khaled Abouhashad, Feilong Tang, Sara Atito, Shoaib Jameel, Imran Razzak, Ahmed B. Zaky
Title: DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification
Abstract:
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL

Authors:Xi Chen, Soham Jana, Christopher A. Metzler, Arian Maleki, Shirin Jalali
Title: Multilook Coherent Imaging: Theoretical Guarantees and Algorithms
Abstract:
Multilook coherent imaging is a widely used technique in applications such as digital holography, ultrasound imaging, and synthetic aperture radar. A central challenge in these systems is the presence of multiplicative noise, commonly known as speckle, which degrades image quality. Despite the widespread use of coherent imaging systems, their theoretical foundations remain relatively underexplored. In this paper, we study both the theoretical and algorithmic aspects of likelihood-based approaches for multilook coherent imaging, providing a rigorous framework for analysis and method development. Our theoretical contributions include establishing the first theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our results capture the dependence of MSE on the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we employ projected gradient descent (PGD) as an efficient method for computing the maximum likelihood solution. Furthermore, we introduce two key ideas to enhance the practical performance of PGD. First, we incorporate the Newton-Schulz algorithm to compute matrix inverses within the PGD iterations, significantly reducing computational complexity. Second, we develop a bagging strategy to mitigate projection errors introduced during PGD updates. We demonstrate that combining these techniques with PGD yields state-of-the-art performance. Our code is available at https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle.

Authors:Zifu Wang, Junyi Zhu, Bo Tang, Zhiyu Li, Feiyu Xiong, Jiaqian Yu, Matthew B. Blaschko
Title: Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
Abstract:
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL, using jigsaw puzzles as a structured experimental framework. Jigsaw puzzles offer inherent ground truth, adjustable difficulty, and demand complex decision-making, making them ideal for this study. Our research reveals several key findings: \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on the simplest jigsaw puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: https://github.com/zifuwanggg/Jigsaw-R1.

Authors:Ramit Aditya, Razvan Bunescu, Smita Nannaware, Erfan Al-Hossami
Title: Engineering Serendipity through Recommendations of Items with Atypical Aspects
Abstract:
A restaurant dinner or a hotel stay may lead to memorable experiences when guests encounter unexpected aspects that also match their interests. For example, an origami-making station in the waiting area of a restaurant may be both surprising and enjoyable for a customer who is passionate about paper crafts. Similarly, an exhibit of 18th century harpsichords would be atypical for a hotel lobby and likely pique the interest of a guest who has a passion for Baroque music. Motivated by this insight, in this paper we introduce the new task of engineering serendipity through recommendations of items with atypical aspects. We describe an LLM-based system pipeline that extracts atypical aspects from item reviews, then estimates and aggregates their user-specific utility in a measure of serendipity potential that is used to rerank a list of items recommended to the user. To facilitate system development and evaluation, we introduce a dataset of Yelp reviews that are manually annotated with atypical aspects and a dataset of artificially generated user profiles, together with crowdsourced annotations of user-aspect utility values. Furthermore, we introduce a custom procedure for dynamic selection of in-context learning examples, which is shown to improve LLM-based judgments of atypicality and utility. Experimental evaluations show that serendipity-based rankings generated by the system are highly correlated with ground truth rankings for which serendipity scores are computed from manual annotations of atypical aspects and their user-dependent utility. Overall, we hope that the new recommendation task and the associated system presented in this paper catalyze further research into recommendation approaches that go beyond accuracy in their pursuit of enhanced user satisfaction. The datasets and the code are made publicly available at https://github.com/ramituncc49er/ATARS .

Authors:Adibvafa Fallahpour, Andrew Magnuson, Purav Gupta, Shihao Ma, Jack Naimer, Arnav Shah, Haonan Duan, Omar Ibrahim, Hani Goodarzi, Chris J. Maddison, Bo Wang
Title: BioReason: Incentivizing Multimodal Biological Reasoning within a DNA-LLM Model
Abstract:
Unlocking deep, interpretable biological reasoning from complex genomic data is a major AI challenge hindering scientific discovery. Current DNA foundation models, despite strong sequence representation, struggle with multi-step reasoning and lack inherent transparent, biologically intuitive explanations. We introduce BioReason, a pioneering architecture that, for the first time, deeply integrates a DNA foundation model with a Large Language Model (LLM). This novel connection enables the LLM to directly process and reason with genomic information as a fundamental input, fostering a new form of multimodal biological understanding. BioReason's sophisticated multi-step reasoning is developed through supervised fine-tuning and targeted reinforcement learning, guiding the system to generate logical, biologically coherent deductions. On biological reasoning benchmarks including KEGG-based disease pathway prediction - where accuracy improves from 88% to 97% - and variant effect prediction, BioReason demonstrates an average 15% performance gain over strong single-modality baselines. BioReason reasons over unseen biological entities and articulates decision-making through interpretable, step-by-step biological traces, offering a transformative approach for AI in biology that enables deeper mechanistic insights and accelerates testable hypothesis generation from genomic data. Data, code, and checkpoints are publicly available at https://github.com/bowang-lab/BioReason

Authors:Yu Li, Jin Jiang, Jianhua Zhu, Shuai Peng, Baole Wei, Yuxuan Zhou, Liangcai Gao
Title: Uni-MuMER: Unified Multi-Task Fine-Tuning of Vision-Language Model for Handwritten Mathematical Expression Recognition
Abstract:
Handwritten Mathematical Expression Recognition (HMER) remains a persistent challenge in Optical Character Recognition (OCR) due to the inherent freedom of symbol layout and variability in handwriting styles. Prior methods have faced performance bottlenecks, proposing isolated architectural modifications that are difficult to integrate coherently into a unified framework. Meanwhile, recent advances in pretrained vision-language models (VLMs) have demonstrated strong cross-task generalization, offering a promising foundation for developing unified solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM for the HMER task without modifying its architecture, effectively injecting domain-specific knowledge into a generalist framework. Our method integrates three data-driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial reasoning, Error-Driven Learning (EDL) for reducing confusion among visually similar characters, and Symbol Counting (SC) for improving recognition consistency in long expressions. Experiments on the CROHME and HME100K datasets show that Uni-MuMER achieves new state-of-the-art performance, surpassing the best lightweight specialized model SSAN by 16.31% and the top-performing VLM Gemini2.5-flash by 24.42% in the zero-shot setting. Our datasets, models, and code are open-sourced at: https://github.com/BFlameSwift/Uni-MuMER

Authors:Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, Shuang Qiu
Title: Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models
Abstract:
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.

Authors:Kunlun Zhu, Jiaxun Zhang, Ziheng Qi, Nuoxing Shang, Zijia Liu, Peixuan Han, Yue Su, Haofei Yu, Jiaxuan You
Title: SafeScientist: Toward Risk-Aware Scientific Discoveries by LLM Agents
Abstract:
Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce \textbf{SafeScientist}, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose \textbf{SciSafetyBench}, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. \textcolor{red}{Warning: this paper contains example data that may be offensive or harmful.}

Authors:Xu Chu, Xinrong Chen, Guanyu Wang, Zhijie Tan, Kui Huang, Wenyu Lv, Tong Mo, Weiping Li
Title: Qwen Look Again: Guiding Vision-Language Reasoning Models to Re-attention Visual Information
Abstract:
Inference time scaling drives extended reasoning to enhance the performance of Vision-Language Models (VLMs), thus forming powerful Vision-Language Reasoning Models (VLRMs). However, long reasoning dilutes visual tokens, causing visual information to receive less attention and may trigger hallucinations. Although introducing text-only reflection processes shows promise in language models, we demonstrate that it is insufficient to suppress hallucinations in VLMs. To address this issue, we introduce Qwen-LookAgain (Qwen-LA), a novel VLRM designed to mitigate hallucinations by incorporating a vision-text reflection process that guides the model to re-attention visual information during reasoning. We first propose a reinforcement learning method Balanced Reflective Policy Optimization (BRPO), which guides the model to decide when to generate vision-text reflection on its own and balance the number and length of reflections. Then, we formally prove that VLRMs lose attention to visual tokens as reasoning progresses, and demonstrate that supplementing visual information during reflection enhances visual attention. Therefore, during training and inference, Visual Token COPY and Visual Token ROUTE are introduced to force the model to re-attention visual information at the visual level, addressing the limitations of text-only reflection. Experiments on multiple visual QA datasets and hallucination metrics indicate that Qwen-LA achieves leading accuracy performance while reducing hallucinations. Our code is available at: https://github.com/Liar406/Look_Again

Authors:Wei Jie Yeo, Nirmalendu Prakash, Clement Neo, Roy Ka-Wei Lee, Erik Cambria, Ranjan Satapathy
Title: Understanding Refusal in Language Models with Sparse Autoencoders
Abstract:
Refusal is a key safety behavior in aligned language models, yet the internal mechanisms driving refusals remain opaque. In this work, we conduct a mechanistic study of refusal in instruction-tuned LLMs using sparse autoencoders to identify latent features that causally mediate refusal behaviors. We apply our method to two open-source chat models and intervene on refusal-related features to assess their influence on generation, validating their behavioral impact across multiple harmful datasets. This enables a fine-grained inspection of how refusal manifests at the activation level and addresses key research questions such as investigating upstream-downstream latent relationship and understanding the mechanisms of adversarial jailbreaking techniques. We also establish the usefulness of refusal features in enhancing generalization for linear probes to out-of-distribution adversarial samples in classification tasks. We open source our code in https://github.com/wj210/refusal_sae.

Authors:Yunqiao Yang, Houxing Ren, Zimu Lu, Ke Wang, Weikang Shi, Aojun Zhou, Junting Pan, Mingjie Zhan, Hongsheng Li
Title: Probability-Consistent Preference Optimization for Enhanced LLM Reasoning
Abstract:
Recent advances in preference optimization have demonstrated significant potential for improving mathematical reasoning capabilities in large language models (LLMs). While current approaches leverage high-quality pairwise preference data through outcome-based criteria like answer correctness or consistency, they fundamentally neglect the internal logical coherence of responses. To overcome this, we propose Probability-Consistent Preference Optimization (PCPO), a novel framework that establishes dual quantitative metrics for preference selection: (1) surface-level answer correctness and (2) intrinsic token-level probability consistency across responses. Extensive experiments show that our PCPO consistently outperforms existing outcome-only criterion approaches across a diverse range of LLMs and benchmarks. Our code is publicly available at https://github.com/YunqiaoYang/PCPO.

Authors:Jiahao Cui, Yan Chen, Mingwang Xu, Hanlin Shang, Yuxuan Chen, Yun Zhan, Zilong Dong, Yao Yao, Jingdong Wang, Siyu Zhu
Title: Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization
Abstract:
Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4.

Authors:Liyun Zhu, Qixiang Chen, Xi Shen, Xiaodong Cun
Title: VAU-R1: Advancing Video Anomaly Understanding via Reinforcement Fine-Tuning
Abstract:
Video Anomaly Understanding (VAU) is essential for applications such as smart cities, security surveillance, and disaster alert systems, yet remains challenging due to its demand for fine-grained spatio-temporal perception and robust reasoning under ambiguity. Despite advances in anomaly detection, existing methods often lack interpretability and struggle to capture the causal and contextual aspects of abnormal events. This limitation is further compounded by the absence of comprehensive benchmarks for evaluating reasoning ability in anomaly scenarios. To address both challenges, we introduce VAU-R1, a data-efficient framework built upon Multimodal Large Language Models (MLLMs), which enhances anomaly reasoning through Reinforcement Fine-Tuning (RFT). Besides, we propose VAU-Bench, the first Chain-of-Thought benchmark tailored for video anomaly reasoning, featuring multiple-choice QA, detailed rationales, temporal annotations, and descriptive captions. Empirical results show that VAU-R1 significantly improves question answering accuracy, temporal grounding, and reasoning coherence across diverse contexts. Together, our method and benchmark establish a strong foundation for interpretable and reasoning-aware video anomaly understanding. Our code is available at https://github.com/GVCLab/VAU-R1.

Authors:Shi-Xue Zhang, Hongfa Wang, Duojun Huang, Xin Li, Xiaobin Zhu, Xu-Cheng Yin
Title: VCapsBench: A Large-scale Fine-grained Benchmark for Video Caption Quality Evaluation
Abstract:
Video captions play a crucial role in text-to-video generation tasks, as their quality directly influences the semantic coherence and visual fidelity of the generated videos. Although large vision-language models (VLMs) have demonstrated significant potential in caption generation, existing benchmarks inadequately address fine-grained evaluation, particularly in capturing spatial-temporal details critical for video generation. To address this gap, we introduce the Fine-grained Video Caption Evaluation Benchmark (VCapsBench), the first large-scale fine-grained benchmark comprising 5,677 (5K+) videos and 109,796 (100K+) question-answer pairs. These QA-pairs are systematically annotated across 21 fine-grained dimensions (e.g., camera movement, and shot type) that are empirically proven critical for text-to-video generation. We further introduce three metrics (Accuracy (AR), Inconsistency Rate (IR), Coverage Rate (CR)), and an automated evaluation pipeline leveraging large language model (LLM) to verify caption quality via contrastive QA-pairs analysis. By providing actionable insights for caption optimization, our benchmark can advance the development of robust text-to-video models. The dataset and codes are available at website: https://github.com/GXYM/VCapsBench.

Authors:Ron Shapira Weber, Shahar Ben Ishay, Andrey Lavrinenko, Shahaf E. Finder, Oren Freifeld
Title: TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
Abstract:
Fast and scalable alignment of time series is a fundamental challenge in many domains. The standard solution, Dynamic Time Warping (DTW), struggles with poor scalability and sensitivity to noise. We introduce TimePoint, a self-supervised method that dramatically accelerates DTW-based alignment while typically improving alignment accuracy by learning keypoints and descriptors from synthetic data. Inspired by 2D keypoint detection but carefully adapted to the unique challenges of 1D signals, TimePoint leverages efficient 1D diffeomorphisms, which effectively model nonlinear time warping, to generate realistic training data. This approach, along with fully convolutional and wavelet convolutional architectures, enables the extraction of informative keypoints and descriptors. Applying DTW to these sparse representations yield major speedups and typically higher alignment accuracy than standard DTW applied to the full signals. TimePoint demonstrates strong generalization to real-world time series when trained solely on synthetic data, and further improves with fine-tuning on real data. Extensive experiments demonstrate that TimePoint consistently achieves faster and more accurate alignments than standard DTW, making it a scalable solution for time-series analysis. Our code is available at https://github.com/BGU-CS-VIL/TimePoint

Authors:Jun Yang, Cheng-Chi Wang, Bogdan Alexandru Stoica, Kexin Pei
Title: Synthesizing Performance Constraints for Evaluating and Improving Code Efficiency
Abstract:
Large Language Models (LLMs) have been increasingly used to optimize code efficiency. Evaluating their effectiveness and further suggesting optimization opportunities often rely on high-quality tests to demonstrate the performance bottlenecks presented in the program. However, existing approaches rely on a limited set of hand-curated inputs or LLM-generated uninteresting length-stressing tests, failing to reveal more nuanced optimization opportunities. We present WEDGE, a framework for generating performance-stressing input given the program under test. WEDGE synthesizes explicit performance-characterizing constraints in the form of branch conditions to partition the programs' execution space into performance-specific regions. When integrated with the coverage-guided fuzzer, reaching different regions introduces explicit rewards for test generation to explore inefficient implementations. Our evaluation shows that WEDGE introduces a significant slowdown compared to the tests in CodeContests and those claimed to be optimized by existing approaches. From the utility perspective, integrating our tests substantially improves the existing code optimization approaches that rely on test-driven execution feedback. We release PERFFORGE, the performance tests generated by WEDGE, to benchmark future approaches for efficient code generation at https://github.com/UChiSeclab/perfforge.

Authors:Zhuodong Li, Fei Hou, Wencheng Wang, Xuequan Lu, Ying He
Title: A Divide-and-Conquer Approach for Global Orientation of Non-Watertight Scene-Level Point Clouds Using 0-1 Integer Optimization
Abstract:
Orienting point clouds is a fundamental problem in computer graphics and 3D vision, with applications in reconstruction, segmentation, and analysis. While significant progress has been made, existing approaches mainly focus on watertight, object-level 3D models. The orientation of large-scale, non-watertight 3D scenes remains an underexplored challenge. To address this gap, we propose DACPO (Divide-And-Conquer Point Orientation), a novel framework that leverages a divide-and-conquer strategy for scalable and robust point cloud orientation. Rather than attempting to orient an unbounded scene at once, DACPO segments the input point cloud into smaller, manageable blocks, processes each block independently, and integrates the results through a global optimization stage. For each block, we introduce a two-step process: estimating initial normal orientations by a randomized greedy method and refining them by an adapted iterative Poisson surface reconstruction. To achieve consistency across blocks, we model inter-block relationships using an an undirected graph, where nodes represent blocks and edges connect spatially adjacent blocks. To reliably evaluate orientation consistency between adjacent blocks, we introduce the concept of the visible connected region, which defines the region over which visibility-based assessments are performed. The global integration is then formulated as a 0-1 integer-constrained optimization problem, with block flip states as binary variables. Despite the combinatorial nature of the problem, DACPO remains scalable by limiting the number of blocks (typically a few hundred for 3D scenes) involved in the optimization. Experiments on benchmark datasets demonstrate DACPO's strong performance, particularly in challenging large-scale, non-watertight scenarios where existing methods often fail. The source code is available at https://github.com/zd-lee/DACPO.

Authors:Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang, Maoquan Wang, Yufan Huang, Shengyu Fu, Elsie Nallipogu, Qingwei Lin, Yingnong Dang, Saravan Rajmohan, Dongmei Zhang
Title: SWE-bench Goes Live!
Abstract:
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.

Authors:Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, Hyun Oh Song
Title: KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction
Abstract:
Transformer-based large language models (LLMs) cache context as key-value (KV) pairs during inference. As context length grows, KV cache sizes expand, leading to substantial memory overhead and increased attention latency. This paper introduces KVzip, a query-agnostic KV cache eviction method enabling effective reuse of compressed KV caches across diverse queries. KVzip quantifies the importance of a KV pair using the underlying LLM to reconstruct original contexts from cached KV pairs, subsequently evicting pairs with lower importance. Extensive empirical evaluations demonstrate that KVzip reduces KV cache size by $3$-$4\times$ and FlashAttention decoding latency by approximately $2\times$, with negligible performance loss in question-answering, retrieval, reasoning, and code comprehension tasks. Evaluations include various models such as LLaMA3.1, Qwen2.5, and Gemma3, with context lengths reaching up to 170K tokens. KVzip significantly outperforms existing query-aware KV eviction methods, which suffer from performance degradation even at a 90% cache budget ratio under multi-query scenarios.

Authors:Weijia Mao, Zhenheng Yang, Mike Zheng Shou
Title: UniRL: Self-Improving Unified Multimodal Models via Supervised and Reinforcement Learning
Abstract:
Unified multimodal large language models such as Show-o and Janus have achieved strong performance across both generation and understanding tasks. However, these models typically rely on large-scale datasets and require substantial computation during the pretraining stage. In addition, several post-training methods have been proposed, but they often depend on external data or are limited to task-specific customization. In this work, we introduce UniRL, a self-improving post-training approach. Our approach enables the model to generate images from prompts and use them as training data in each iteration, without relying on any external image data. Moreover, it enables the two tasks to enhance each other: the generated images are used for understanding, and the understanding results are used to supervise generation. We explore supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) to optimize the models. UniRL offers three key advantages: (1) it requires no external image data, as all training samples are generated by the model itself during training; (2) it not only improves individual task performance, but also reduces the imbalance between generation and understanding; and (3) it requires only several additional training steps during the post-training stage. We evaluate UniRL on top of Show-o and Janus, achieving a GenEval score of 0.77 for Show-o and 0.65 for Janus. Code and models will be released in https://github.com/showlab/UniRL.

Authors:Hongzhan Chen, Tao Yang, Shiping Gao, Ruijun Chen, Xiaojun Quan, Hongtao Tian, Ting Yao
Title: Discriminative Policy Optimization for Token-Level Reward Models
Abstract:
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs) for optimizing policy models, positioning them as a promising approach to enhancing the capabilities of LLMs in complex reasoning tasks. Recent efforts have advanced PRMs from step-level to token-level granularity by integrating reward modeling into the training of generative models, with reward scores derived from token generation probabilities. However, the conflict between generative language modeling and reward modeling may introduce instability and lead to inaccurate credit assignments. To address this challenge, we revisit token-level reward assignment by decoupling reward modeling from language generation and derive a token-level reward model through the optimization of a discriminative policy, termed the Q-function Reward Model (Q-RM). We theoretically demonstrate that Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations. In our experiments, Q-RM consistently outperforms all baseline methods across various benchmarks. For example, when integrated into PPO/REINFORCE algorithms, Q-RM enhances the average Pass@1 score by 5.85/4.70 points on mathematical reasoning tasks compared to the ORM baseline, and by 4.56/5.73 points compared to the token-level PRM counterpart. Moreover, reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH. Code and data are available at https://github.com/homzer/Q-RM.

Authors:Alexandra G. Roberts, Ha M. Luu, Mert Şişman, Alexey V. Dimov, Ceren Tozlu, Ilhami Kovanlikaya, Susan A. Gauthier, Thanh D. Nguyen, Yi Wang
Title: Synthetic Generation and Latent Projection Denoising of Rim Lesions in Multiple Sclerosis
Abstract:
Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.

Authors:Maya Dewhurst, Jack Collins, Justin J. H. Lo, Roy Alderton, Sam Kirkham
Title: Nosey: Open-source hardware for acoustic nasalance
Abstract:
We introduce Nosey (Nasalance Open Source Estimation sYstem), a low-cost, customizable, 3D-printed system for recording acoustic nasalance data that we have made available as open-source hardware (http://github.com/phoneticslab/nosey). We first outline the motivations and design principles behind our hardware nasalance system, and then present a comparison between Nosey and a commercial nasalance device. Nosey shows consistently higher nasalance scores than the commercial device, but the magnitude of contrast between phonological environments is comparable between systems. We also review ways of customizing the hardware to facilitate testing, such as comparison of microphones and different construction materials. We conclude that Nosey is a flexible and cost-effective alternative to commercial nasometry devices and propose some methodological considerations for its use in data collection.

Authors:Weizhe Kong, Xiao Wang, Ruichong Gao, Chenglong Li, Yu Zhang, Xing Yang, Yaowei Wang, Jin Tang
Title: Adversarial Semantic and Label Perturbation Attack for Pedestrian Attribute Recognition
Abstract:
Pedestrian Attribute Recognition (PAR) is an indispensable task in human-centered research and has made great progress in recent years with the development of deep neural networks. However, the potential vulnerability and anti-interference ability have still not been fully explored. To bridge this gap, this paper proposes the first adversarial attack and defense framework for pedestrian attribute recognition. Specifically, we exploit both global- and patch-level attacks on the pedestrian images, based on the pre-trained CLIP-based PAR framework. It first divides the input pedestrian image into non-overlapping patches and embeds them into feature embeddings using a projection layer. Meanwhile, the attribute set is expanded into sentences using prompts and embedded into attribute features using a pre-trained CLIP text encoder. A multi-modal Transformer is adopted to fuse the obtained vision and text tokens, and a feed-forward network is utilized for attribute recognition. Based on the aforementioned PAR framework, we adopt the adversarial semantic and label-perturbation to generate the adversarial noise, termed ASL-PAR. We also design a semantic offset defense strategy to suppress the influence of adversarial attacks. Extensive experiments conducted on both digital domains (i.e., PETA, PA100K, MSP60K, RAPv2) and physical domains fully validated the effectiveness of our proposed adversarial attack and defense strategies for the pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR.

Authors:James Xu Zhao, Jimmy Z. J. Liu, Bryan Hooi, See-Kiong Ng
Title: How Does Response Length Affect Long-Form Factuality
Abstract:
Large language models (LLMs) are widely used for long-form text generation. However, factual errors in the responses would undermine their reliability. Despite growing attention to LLM factuality, the effect of response length on factuality remains underexplored. In this work, we systematically investigate this relationship by first introducing an automatic and bi-level long-form factuality evaluation framework, which achieves high agreement with human annotations while being cost-effective. Using this framework, we conduct controlled experiments and find that longer responses exhibit lower factual precision, confirming the presence of length bias. To explain this phenomenon, we empirically examine three hypotheses: error propagation, long context, and facts exhaustion. Our results reveal that facts exhaustion, where the model gradually exhausts more reliable knowledge, is the primary cause of factual degradation, rather than the other two hypotheses.

Authors:Xinye Li, Zunwen Zheng, Qian Zhang, Dekai Zhuang, Jiabao Kang, Liyan Xu, Qingbin Liu, Xi Chen, Zhiying Tu, Dianhui Chu, Dianbo Sui
Title: ScEdit: Script-based Assessment of Knowledge Editing
Abstract:
Knowledge Editing (KE) has gained increasing attention, yet current KE tasks remain relatively simple. Under current evaluation frameworks, many editing methods achieve exceptionally high scores, sometimes nearing perfection. However, few studies integrate KE into real-world application scenarios (e.g., recent interest in LLM-as-agent). To support our analysis, we introduce a novel script-based benchmark -- ScEdit (Script-based Knowledge Editing Benchmark) -- which encompasses both counterfactual and temporal edits. We integrate token-level and text-level evaluation methods, comprehensively analyzing existing KE techniques. The benchmark extends traditional fact-based ("What"-type question) evaluation to action-based ("How"-type question) evaluation. We observe that all KE methods exhibit a drop in performance on established metrics and face challenges on text-level metrics, indicating a challenging task. Our benchmark is available at https://github.com/asdfo123/ScEdit.

Authors:Hao Li, Ju Dai, Xin Zhao, Feng Zhou, Junjun Pan, Lei Li
Title: Wav2Sem: Plug-and-Play Audio Semantic Decoupling for 3D Speech-Driven Facial Animation
Abstract:
In 3D speech-driven facial animation generation, existing methods commonly employ pre-trained self-supervised audio models as encoders. However, due to the prevalence of phonetically similar syllables with distinct lip shapes in language, these near-homophone syllables tend to exhibit significant coupling in self-supervised audio feature spaces, leading to the averaging effect in subsequent lip motion generation. To address this issue, this paper proposes a plug-and-play semantic decorrelation module-Wav2Sem. This module extracts semantic features corresponding to the entire audio sequence, leveraging the added semantic information to decorrelate audio encodings within the feature space, thereby achieving more expressive audio features. Extensive experiments across multiple Speech-driven models indicate that the Wav2Sem module effectively decouples audio features, significantly alleviating the averaging effect of phonetically similar syllables in lip shape generation, thereby enhancing the precision and naturalness of facial animations. Our source code is available at https://github.com/wslh852/Wav2Sem.git.

Authors:Chuandong Liu, Huijiao Wang, Lei Yu, Gui-Song Xia
Title: Holistic Large-Scale Scene Reconstruction via Mixed Gaussian Splatting
Abstract:
Recent advances in 3D Gaussian Splatting have shown remarkable potential for novel view synthesis. However, most existing large-scale scene reconstruction methods rely on the divide-and-conquer paradigm, which often leads to the loss of global scene information and requires complex parameter tuning due to scene partitioning and local optimization. To address these limitations, we propose MixGS, a novel holistic optimization framework for large-scale 3D scene reconstruction. MixGS models the entire scene holistically by integrating camera pose and Gaussian attributes into a view-aware representation, which is decoded into fine-detailed Gaussians. Furthermore, a novel mixing operation combines decoded and original Gaussians to jointly preserve global coherence and local fidelity. Extensive experiments on large-scale scenes demonstrate that MixGS achieves state-of-the-art rendering quality and competitive speed, while significantly reducing computational requirements, enabling large-scale scene reconstruction training on a single 24GB VRAM GPU. The code will be released at https://github.com/azhuantou/MixGS.

Authors:Yong Zhang, Yanwen Huang, Ning Cheng, Yang Guo, Yun Zhu, Yanmeng Wang, Shaojun Wang, Jing Xiao
Title: Sentinel: Attention Probing of Proxy Models for LLM Context Compression with an Understanding Perspective
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external context, but retrieved passages are often lengthy, noisy, or exceed input limits. Existing compression methods typically require supervised training of dedicated compression models, increasing cost and reducing portability. We propose Sentinel, a lightweight sentence-level compression framework that reframes context filtering as an attention-based understanding task. Rather than training a compression model, Sentinel probes decoder attention from an off-the-shelf 0.5B proxy LLM using a lightweight classifier to identify sentence relevance. Empirically, we find that query-context relevance estimation is consistent across model scales, with 0.5B proxies closely matching the behaviors of larger models. On the LongBench benchmark, Sentinel achieves up to 5$\times$ compression while matching the QA performance of 7B-scale compression systems. Our results suggest that probing native attention signals enables fast, effective, and question-aware context compression. Code available at: https://github.com/yzhangchuck/Sentinel.

Authors:Mao-Lin Luo, Zi-Hao Zhou, Tong Wei, Min-Ling Zhang
Title: LADA: Scalable Label-Specific CLIP Adapter for Continual Learning
Abstract:
Continual learning with vision-language models like CLIP offers a pathway toward scalable machine learning systems by leveraging its transferable representations. Existing CLIP-based methods adapt the pre-trained image encoder by adding multiple sets of learnable parameters, with each task using a partial set of parameters. This requires selecting the expected parameters for input images during inference, which is prone to error that degrades performance. To address this problem, we introduce LADA (Label-specific ADApter). Instead of partitioning parameters across tasks, LADA appends lightweight, label-specific memory units to the frozen CLIP image encoder, enabling discriminative feature generation by aggregating task-agnostic knowledge. To prevent catastrophic forgetting, LADA employs feature distillation for seen classes, preventing their features from being interfered with by new classes. Positioned after the image encoder, LADA prevents gradient flow to the frozen CLIP parameters, ensuring efficient training. Extensive results show that LADA achieves state-of-the-art performance in continual learning settings. The implementation code is available at https://github.com/MaolinLuo/LADA.

Authors:Yixun Liang, Kunming Luo, Xiao Chen, Rui Chen, Hongyu Yan, Weiyu Li, Jiarui Liu, Ping Tan
Title: UniTEX: Universal High Fidelity Generative Texturing for 3D Shapes
Abstract:
We present UniTEX, a novel two-stage 3D texture generation framework to create high-quality, consistent textures for 3D assets. Existing approaches predominantly rely on UV-based inpainting to refine textures after reprojecting the generated multi-view images onto the 3D shapes, which introduces challenges related to topological ambiguity. To address this, we propose to bypass the limitations of UV mapping by operating directly in a unified 3D functional space. Specifically, we first propose that lifts texture generation into 3D space via Texture Functions (TFs)--a continuous, volumetric representation that maps any 3D point to a texture value based solely on surface proximity, independent of mesh topology. Then, we propose to predict these TFs directly from images and geometry inputs using a transformer-based Large Texturing Model (LTM). To further enhance texture quality and leverage powerful 2D priors, we develop an advanced LoRA-based strategy for efficiently adapting large-scale Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as our first stage. Extensive experiments demonstrate that UniTEX achieves superior visual quality and texture integrity compared to existing approaches, offering a generalizable and scalable solution for automated 3D texture generation. Code will available in: https://github.com/YixunLiang/UniTEX.

Authors:Wanfu Gao, Jun Gao, Qingqi Han, Hanlin Pan, Kunpeng Liu
Title: Graph Random Walk with Feature-Label Space Alignment: A Multi-Label Feature Selection Method
Abstract:
The rapid growth in feature dimension may introduce implicit associations between features and labels in multi-label datasets, making the relationships between features and labels increasingly complex. Moreover, existing methods often adopt low-dimensional linear decomposition to explore the associations between features and labels. However, linear decomposition struggles to capture complex nonlinear associations and may lead to misalignment between the feature space and the label space. To address these two critical challenges, we propose innovative solutions. First, we design a random walk graph that integrates feature-feature, label-label, and feature-label relationships to accurately capture nonlinear and implicit indirect associations, while optimizing the latent representations of associations between features and labels after low-rank decomposition. Second, we align the variable spaces by leveraging low-dimensional representation coefficients, while preserving the manifold structure between the original high-dimensional multi-label data and the low-dimensional representation space. Extensive experiments and ablation studies conducted on seven benchmark datasets and three representative datasets using various evaluation metrics demonstrate the superiority of the proposed method\footnote{Code: https://github.com/Heilong623/-GRW-}.

Authors:Wenhao Xu, Shuchen Zheng, Changwei Wang, Zherui Zhang, Chuan Ren, Rongtao Xu, Shibiao Xu
Title: SAMamba: Adaptive State Space Modeling with Hierarchical Vision for Infrared Small Target Detection
Abstract:
Infrared small target detection (ISTD) is vital for long-range surveillance in military, maritime, and early warning applications. ISTD is challenged by targets occupying less than 0.15% of the image and low distinguishability from complex backgrounds. Existing deep learning methods often suffer from information loss during downsampling and inefficient global context modeling. This paper presents SAMamba, a novel framework integrating SAM2's hierarchical feature learning with Mamba's selective sequence modeling. Key innovations include: (1) A Feature Selection Adapter (FS-Adapter) for efficient natural-to-infrared domain adaptation via dual-stage selection (token-level with a learnable task embedding and channel-wise adaptive transformations); (2) A Cross-Channel State-Space Interaction (CSI) module for efficient global context modeling with linear complexity using selective state space modeling; and (3) A Detail-Preserving Contextual Fusion (DPCF) module that adaptively combines multi-scale features with a gating mechanism to balance high-resolution and low-resolution feature contributions. SAMamba addresses core ISTD challenges by bridging the domain gap, maintaining fine-grained details, and efficiently modeling long-range dependencies. Experiments on NUAA-SIRST, IRSTD-1k, and NUDT-SIRST datasets show SAMamba significantly outperforms state-of-the-art methods, especially in challenging scenarios with heterogeneous backgrounds and varying target scales. Code: https://github.com/zhengshuchen/SAMamba.

Authors:Aldino Rizaldy, Richard Gloaguen, Fabian Ewald Fassnacht, Pedram Ghamisi
Title: HyperPointFormer: Multimodal Fusion in 3D Space with Dual-Branch Cross-Attention Transformers
Abstract:
Multimodal remote sensing data, including spectral and lidar or photogrammetry, is crucial for achieving satisfactory land-use / land-cover classification results in urban scenes. So far, most studies have been conducted in a 2D context. When 3D information is available in the dataset, it is typically integrated with the 2D data by rasterizing the 3D data into 2D formats. Although this method yields satisfactory classification results, it falls short in fully exploiting the potential of 3D data by restricting the model's ability to learn 3D spatial features directly from raw point clouds. Additionally, it limits the generation of 3D predictions, as the dimensionality of the input data has been reduced. In this study, we propose a fully 3D-based method that fuses all modalities within the 3D point cloud and employs a dedicated dual-branch Transformer model to simultaneously learn geometric and spectral features. To enhance the fusion process, we introduce a cross-attention-based mechanism that fully operates on 3D points, effectively integrating features from various modalities across multiple scales. The purpose of cross-attention is to allow one modality to assess the importance of another by weighing the relevant features. We evaluated our method by comparing it against both 3D and 2D methods using the 2018 IEEE GRSS Data Fusion Contest (DFC2018) dataset. Our findings indicate that 3D fusion delivers competitive results compared to 2D methods and offers more flexibility by providing 3D predictions. These predictions can be projected onto 2D maps, a capability that is not feasible in reverse. Additionally, we evaluated our method on different datasets, specifically the ISPRS Vaihingen 3D and the IEEE 2019 Data Fusion Contest. Our code will be published here: https://github.com/aldinorizaldy/hyperpointformer.

Authors:Lifan Zhao, Yanyan Shen, Zhaoyang Liu, Xue Wang, Jiaji Deng
Title: Less is More: Unlocking Specialization of Time Series Foundation Models via Structured Pruning
Abstract:
Scaling laws motivate the development of Time Series Foundation Models (TSFMs) that pre-train vast parameters and achieve remarkable zero-shot forecasting performance. Surprisingly, even after fine-tuning, TSFMs cannot consistently outperform smaller, specialized models trained on full-shot downstream data. A key question is how to realize effective adaptation of TSFMs for a target forecasting task. Through empirical studies on various TSFMs, the pre-trained models often exhibit inherent sparsity and redundancy in computation, suggesting that TSFMs have learned to activate task-relevant network substructures to accommodate diverse forecasting tasks. To preserve this valuable prior knowledge, we propose a structured pruning method to regularize the subsequent fine-tuning process by focusing it on a more relevant and compact parameter space. Extensive experiments on seven TSFMs and six benchmarks demonstrate that fine-tuning a smaller, pruned TSFM significantly improves forecasting performance compared to fine-tuning original models. This prune-then-finetune paradigm often enables TSFMs to achieve state-of-the-art performance and surpass strong specialized baselines. Source code is made publicly available at https://github.com/SJTU-DMTai/Prune-then-Finetune.

Authors:Shiwei Li, Xiandi Luo, Xing Tang, Haozhao Wang, Hao Chen, Weihong Luo, Yuhua Li, Xiuqiang He, Ruixuan Li
Title: Beyond Zero Initialization: Investigating the Impact of Non-Zero Initialization on LoRA Fine-Tuning Dynamics
Abstract:
Low-rank adaptation (LoRA) is a widely used parameter-efficient fine-tuning method. In standard LoRA layers, one of the matrices, $A$ or $B$, is initialized to zero, ensuring that fine-tuning starts from the pretrained model. However, there is no theoretical support for this practice. In this paper, we investigate the impact of non-zero initialization on LoRA's fine-tuning dynamics from an infinite-width perspective. Our analysis reveals that, compared to zero initialization, simultaneously initializing $A$ and $B$ to non-zero values improves LoRA's robustness to suboptimal learning rates, particularly smaller ones. Further analysis indicates that although the non-zero initialization of $AB$ introduces random noise into the pretrained weight, it generally does not affect fine-tuning performance. In other words, fine-tuning does not need to strictly start from the pretrained model. The validity of our findings is confirmed through extensive experiments across various models and datasets. The code is available at https://github.com/Leopold1423/non_zero_lora-icml25.

Authors:Junyi Guo, Jingxuan Zhang, Fangyu Wu, Huanda Lu, Qiufeng Wang, Wenmian Yang, Eng Gee Lim, Dongming Lu
Title: HiGarment: Cross-modal Harmony Based Diffusion Model for Flat Sketch to Realistic Garment Image
Abstract:
Diffusion-based garment synthesis tasks primarily focus on the design phase in the fashion domain, while the garment production process remains largely underexplored. To bridge this gap, we introduce a new task: Flat Sketch to Realistic Garment Image (FS2RG), which generates realistic garment images by integrating flat sketches and textual guidance. FS2RG presents two key challenges: 1) fabric characteristics are solely guided by textual prompts, providing insufficient visual supervision for diffusion-based models, which limits their ability to capture fine-grained fabric details; 2) flat sketches and textual guidance may provide conflicting information, requiring the model to selectively preserve or modify garment attributes while maintaining structural coherence. To tackle this task, we propose HiGarment, a novel framework that comprises two core components: i) a multi-modal semantic enhancement mechanism that enhances fabric representation across textual and visual modalities, and ii) a harmonized cross-attention mechanism that dynamically balances information from flat sketches and text prompts, allowing controllable synthesis by generating either sketch-aligned (image-biased) or text-guided (text-biased) outputs. Furthermore, we collect Multi-modal Detailed Garment, the largest open-source dataset for garment generation. Experimental results and user studies demonstrate the effectiveness of HiGarment in garment synthesis. The code and dataset are available at https://github.com/Maple498/HiGarment.

Authors:Gabriele Sarti, Vilém Zouhar, Malvina Nissim, Arianna Bisazza
Title: Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement
Abstract:
Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices.

Authors:Ping Wang, Lishun Wang, Gang Qu, Xiaodong Wang, Yulun Zhang, Xin Yuan
Title: Proximal Algorithm Unrolling: Flexible and Efficient Reconstruction Networks for Single-Pixel Imaging
Abstract:
Deep-unrolling and plug-and-play (PnP) approaches have become the de-facto standard solvers for single-pixel imaging (SPI) inverse problem. PnP approaches, a class of iterative algorithms where regularization is implicitly performed by an off-the-shelf deep denoiser, are flexible for varying compression ratios (CRs) but are limited in reconstruction accuracy and speed. Conversely, unrolling approaches, a class of multi-stage neural networks where a truncated iterative optimization process is transformed into an end-to-end trainable network, typically achieve better accuracy with faster inference but require fine-tuning or even retraining when CR changes. In this paper, we address the challenge of integrating the strengths of both classes of solvers. To this end, we design an efficient deep image restorer (DIR) for the unrolling of HQS (half quadratic splitting) and ADMM (alternating direction method of multipliers). More importantly, a general proximal trajectory (PT) loss function is proposed to train HQS/ADMM-unrolling networks such that learned DIR approximates the proximal operator of an ideal explicit restoration regularizer. Extensive experiments demonstrate that, the resulting proximal unrolling networks can not only flexibly handle varying CRs with a single model like PnP algorithms, but also outperform previous CR-specific unrolling networks in both reconstruction accuracy and speed. Source codes and models are available at https://github.com/pwangcs/ProxUnroll.

Authors:Wenjing Xing, Wenke Lu, Yeheng Duan, Bing Zhao, Zhenghui kang, Yaolong Wang, Kai Gao, Lei Qiao
Title: Infinite-Instruct: Synthesizing Scaling Code instruction Data with Bidirectional Synthesis and Static Verification
Abstract:
Traditional code instruction data synthesis methods suffer from limited diversity and poor logic. We introduce Infinite-Instruct, an automated framework for synthesizing high-quality question-answer pairs, designed to enhance the code generation capabilities of large language models (LLMs). The framework focuses on improving the internal logic of synthesized problems and the quality of synthesized code. First, "Reverse Construction" transforms code snippets into diverse programming problems. Then, through "Backfeeding Construction," keywords in programming problems are structured into a knowledge graph to reconstruct them into programming problems with stronger internal logic. Finally, a cross-lingual static code analysis pipeline filters invalid samples to ensure data quality. Experiments show that on mainstream code generation benchmarks, our fine-tuned models achieve an average performance improvement of 21.70% on 7B-parameter models and 36.95% on 32B-parameter models. Using less than one-tenth of the instruction fine-tuning data, we achieved performance comparable to the Qwen-2.5-Coder-Instruct. Infinite-Instruct provides a scalable solution for LLM training in programming. We open-source the datasets used in the experiments, including both unfiltered versions and filtered versions via static analysis. The data are available at https://github.com/xingwenjing417/Infinite-Instruct-dataset

Authors:Shiwei Li, Xiandi Luo, Haozhao Wang, Xing Tang, Shijie Xu, Weihong Luo, Yuhua Li, Xiuqiang He, Ruixuan Li
Title: The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning
Abstract:
To improve the training efficiency of federated learning (FL), previous research has employed low-rank decomposition techniques to reduce communication overhead. In this paper, we seek to enhance the performance of these low-rank decomposition methods. Specifically, we focus on three key issues related to decomposition in FL: what to decompose, how to decompose, and how to aggregate. Subsequently, we introduce three novel techniques: Model Update Decomposition (MUD), Block-wise Kronecker Decomposition (BKD), and Aggregation-Aware Decomposition (AAD), each targeting a specific issue. These techniques are complementary and can be applied simultaneously to achieve optimal performance. Additionally, we provide a rigorous theoretical analysis to ensure the convergence of the proposed MUD. Extensive experimental results show that our approach achieves faster convergence and superior accuracy compared to relevant baseline methods. The code is available at https://github.com/Leopold1423/fedmud-icml25.

Authors:Shohei Enomoto
Title: Pseudo Multi-Source Domain Generalization: Bridging the Gap Between Single and Multi-Source Domain Generalization
Abstract:
Deep learning models often struggle to maintain performance when deployed on data distributions different from their training data, particularly in real-world applications where environmental conditions frequently change. While Multi-source Domain Generalization (MDG) has shown promise in addressing this challenge by leveraging multiple source domains during training, its practical application is limited by the significant costs and difficulties associated with creating multi-domain datasets. To address this limitation, we propose Pseudo Multi-source Domain Generalization (PMDG), a novel framework that enables the application of sophisticated MDG algorithms in more practical Single-source Domain Generalization (SDG) settings. PMDG generates multiple pseudo-domains from a single source domain through style transfer and data augmentation techniques, creating a synthetic multi-domain dataset that can be used with existing MDG algorithms. Through extensive experiments with PseudoDomainBed, our modified version of the DomainBed benchmark, we analyze the effectiveness of PMDG across multiple datasets and architectures. Our analysis reveals several key findings, including a positive correlation between MDG and PMDG performance and the potential of pseudo-domains to match or exceed actual multi-domain performance with sufficient data. These comprehensive empirical results provide valuable insights for future research in domain generalization. Our code is available at https://github.com/s-enmt/PseudoDomainBed.

Authors:Xiao Yu, Yan Fang, Xiaojie Jin, Yao Zhao, Yunchao Wei
Title: PreFM: Online Audio-Visual Event Parsing via Predictive Future Modeling
Abstract:
Audio-visual event parsing plays a crucial role in understanding multimodal video content, but existing methods typically rely on offline processing of entire videos with huge model sizes, limiting their real-time applicability. We introduce Online Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, visual, and audio-visual events by sequentially analyzing incoming video streams. The On-AVEP task necessitates models with two key capabilities: (1) Accurate online inference, to effectively distinguish events with unclear and limited context in online settings, and (2) Real-time efficiency, to balance high performance with computational constraints. To cultivate these, we propose the Predictive Future Modeling (PreFM) framework featured by (a) predictive multimodal future modeling to infer and integrate beneficial future audio-visual cues, thereby enhancing contextual understanding and (b) modality-agnostic robust representation along with focal temporal prioritization to improve precision and generalization. Extensive experiments on the UnAV-100 and LLP datasets show PreFM significantly outperforms state-of-the-art methods by a large margin with significantly fewer parameters, offering an insightful approach for real-time multimodal video understanding. Code is available at https://github.com/XiaoYu-1123/PreFM.

Authors:Jinquan Guan, Qi Chen, Lizhou Liang, Yuhang Liu, Vu Minh Hieu Phan, Minh-Son To, Jian Chen, Yutong Xie
Title: Interpreting Chest X-rays Like a Radiologist: A Benchmark with Clinical Reasoning
Abstract:
Artificial intelligence (AI)-based chest X-ray (CXR) interpretation assistants have demonstrated significant progress and are increasingly being applied in clinical settings. However, contemporary medical AI models often adhere to a simplistic input-to-output paradigm, directly processing an image and an instruction to generate a result, where the instructions may be integral to the model's architecture. This approach overlooks the modeling of the inherent diagnostic reasoning in chest X-ray interpretation. Such reasoning is typically sequential, where each interpretive stage considers the images, the current task, and the contextual information from previous stages. This oversight leads to several shortcomings, including misalignment with clinical scenarios, contextless reasoning, and untraceable errors. To fill this gap, we construct CXRTrek, a new multi-stage visual question answering (VQA) dataset for CXR interpretation. The dataset is designed to explicitly simulate the diagnostic reasoning process employed by radiologists in real-world clinical settings for the first time. CXRTrek covers 8 sequential diagnostic stages, comprising 428,966 samples and over 11 million question-answer (Q&A) pairs, with an average of 26.29 Q&A pairs per sample. Building on the CXRTrek dataset, we propose a new vision-language large model (VLLM), CXRTrekNet, specifically designed to incorporate the clinical reasoning flow into the VLLM framework. CXRTrekNet effectively models the dependencies between diagnostic stages and captures reasoning patterns within the radiological context. Trained on our dataset, the model consistently outperforms existing medical VLLMs on the CXRTrek benchmarks and demonstrates superior generalization across multiple tasks on five diverse external datasets. The dataset and model can be found in our repository (https://github.com/guanjinquan/CXRTrek).

Authors:Zhe Ye, Zhengxu Yan, Jingxuan He, Timothe Kasriel, Kaiyu Yang, Dawn Song
Title: VERINA: Benchmarking Verifiable Code Generation
Abstract:
Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.

Authors:Tongtong Su, Chengyu Wang, Jun Huang, Dongming Lu
Title: Zero-to-Hero: Zero-Shot Initialization Empowering Reference-Based Video Appearance Editing
Abstract:
Appearance editing according to user needs is a pivotal task in video editing. Existing text-guided methods often lead to ambiguities regarding user intentions and restrict fine-grained control over editing specific aspects of objects. To overcome these limitations, this paper introduces a novel approach named {Zero-to-Hero}, which focuses on reference-based video editing that disentangles the editing process into two distinct problems. It achieves this by first editing an anchor frame to satisfy user requirements as a reference image and then consistently propagating its appearance across other frames. We leverage correspondence within the original frames to guide the attention mechanism, which is more robust than previously proposed optical flow or temporal modules in memory-friendly video generative models, especially when dealing with objects exhibiting large motions. It offers a solid ZERO-shot initialization that ensures both accuracy and temporal consistency. However, intervention in the attention mechanism results in compounded imaging degradation with over-saturated colors and unknown blurring issues. Starting from Zero-Stage, our Hero-Stage Holistically learns a conditional generative model for vidEo RestOration. To accurately evaluate the consistency of the appearance, we construct a set of videos with multiple appearances using Blender, enabling a fine-grained and deterministic evaluation. Our method outperforms the best-performing baseline with a PSNR improvement of 2.6 dB. The project page is at https://github.com/Tonniia/Zero2Hero.

Authors:Shi Heng Zhang, Zhengjie Miao, Jiannan Wang
Title: LINEAGEX: A Column Lineage Extraction System for SQL
Abstract:
As enterprise data grows in size and complexity, column-level data lineage, which records the creation, transformation, and reference of each column in the warehouse, has been the key to effective data governance that assists tasks like data quality monitoring, storage refactoring, and workflow migration. Unfortunately, existing systems introduce overheads by integration with query execution or fail to achieve satisfying accuracy for column lineage. In this paper, we demonstrate LINEAGEX, a lightweight Python library that infers column level lineage from SQL queries and visualizes it through an interactive interface. LINEAGEX achieves high coverage and accuracy for column lineage extraction by intelligently traversing query parse trees and handling ambiguities. The demonstration walks through use cases of building lineage graphs and troubleshooting data quality issues. LINEAGEX is open sourced at https://github.com/sfu-db/lineagex and our video demonstration is at https://youtu.be/5LaBBDDitlw

Authors:Siyuan Wang, Jiawei Liu, Wei Wang, Yeying Jin, Jinsong Du, Zhi Han
Title: MMGT: Motion Mask Guided Two-Stage Network for Co-Speech Gesture Video Generation
Abstract:
Co-Speech Gesture Video Generation aims to generate vivid speech videos from audio-driven still images, which is challenging due to the diversity of different parts of the body in terms of amplitude of motion, audio relevance, and detailed features. Relying solely on audio as the control signal often fails to capture large gesture movements in video, leading to more pronounced artifacts and distortions. Existing approaches typically address this issue by introducing additional a priori information, but this can limit the practical application of the task. Specifically, we propose a Motion Mask-Guided Two-Stage Network (MMGT) that uses audio, as well as motion masks and motion features generated from the audio signal to jointly drive the generation of synchronized speech gesture videos. In the first stage, the Spatial Mask-Guided Audio Pose Generation (SMGA) Network generates high-quality pose videos and motion masks from audio, effectively capturing large movements in key regions such as the face and gestures. In the second stage, we integrate the Motion Masked Hierarchical Audio Attention (MM-HAA) into the Stabilized Diffusion Video Generation model, overcoming limitations in fine-grained motion generation and region-specific detail control found in traditional methods. This guarantees high-quality, detailed upper-body video generation with accurate texture and motion details. Evaluations show improved video quality, lip-sync, and gesture. The model and code are available at https://github.com/SIA-IDE/MMGT.

Authors:Pengfei Zhou, Yunlong Liu, Junli Liang, Qi Song, Xiangyang Li
Title: CrossLinear: Plug-and-Play Cross-Correlation Embedding for Time Series Forecasting with Exogenous Variables
Abstract:
Time series forecasting with exogenous variables is a critical emerging paradigm that presents unique challenges in modeling dependencies between variables. Traditional models often struggle to differentiate between endogenous and exogenous variables, leading to inefficiencies and overfitting. In this paper, we introduce CrossLinear, a novel Linear-based forecasting model that addresses these challenges by incorporating a plug-and-play cross-correlation embedding module. This lightweight module captures the dependencies between variables with minimal computational cost and seamlessly integrates into existing neural networks. Specifically, it captures time-invariant and direct variable dependencies while disregarding time-varying or indirect dependencies, thereby mitigating the risk of overfitting in dependency modeling and contributing to consistent performance improvements. Furthermore, CrossLinear employs patch-wise processing and a global linear head to effectively capture both short-term and long-term temporal dependencies, further improving its forecasting precision. Extensive experiments on 12 real-world datasets demonstrate that CrossLinear achieves superior performance in both short-term and long-term forecasting tasks. The ablation study underscores the effectiveness of the cross-correlation embedding module. Additionally, the generalizability of this module makes it a valuable plug-in for various forecasting tasks across different domains. Codes are available at https://github.com/mumiao2000/CrossLinear.

Authors:Ning Liu, Yue Yu
Title: Neural Interpretable PDEs: Harmonizing Fourier Insights with Attention for Scalable and Interpretable Physics Discovery
Abstract:
Attention mechanisms have emerged as transformative tools in core AI domains such as natural language processing and computer vision. Yet, their largely untapped potential for modeling intricate physical systems presents a compelling frontier. Learning such systems often entails discovering operators that map between functional spaces using limited instances of function pairs -- a task commonly framed as a severely ill-posed inverse PDE problem. In this work, we introduce Neural Interpretable PDEs (NIPS), a novel neural operator architecture that builds upon and enhances Nonlocal Attention Operators (NAO) in both predictive accuracy and computational efficiency. NIPS employs a linear attention mechanism to enable scalable learning and integrates a learnable kernel network that acts as a channel-independent convolution in Fourier space. As a consequence, NIPS eliminates the need to explicitly compute and store large pairwise interactions, effectively amortizing the cost of handling spatial interactions into the Fourier transform. Empirical evaluations demonstrate that NIPS consistently surpasses NAO and other baselines across diverse benchmarks, heralding a substantial leap in scalable, interpretable, and efficient physics learning. Our code and data accompanying this paper are available at https://github.com/fishmoon1234/Nonlocal-Attention-Operator.

Authors:Yuu Jinnai
Title: Document-Level Text Generation with Minimum Bayes Risk Decoding using Optimal Transport
Abstract:
Document-level text generation tasks are known to be more difficult than sentence-level text generation tasks as they require the understanding of longer context to generate high-quality texts. In this paper, we investigate the adaption of Minimum Bayes Risk (MBR) decoding for document-level text generation tasks. MBR decoding makes use of a utility function to estimate the output with the highest expected utility from a set of candidate outputs. Although MBR decoding is shown to be effective in a wide range of sentence-level text generation tasks, its performance on document-level text generation tasks is limited as many of the utility functions are designed for evaluating the utility of sentences. To this end, we propose MBR-OT, a variant of MBR decoding using Wasserstein distance to compute the utility of a document using a sentence-level utility function. The experimental result shows that the performance of MBR-OT outperforms that of the standard MBR in document-level machine translation, text simplification, and dense image captioning tasks. Our code is available at https://github.com/jinnaiyuu/mbr-optimal-transport

Authors:Dohyeon Lee, Yeonseok Jeong, Seung-won Hwang
Title: From Token to Action: State Machine Reasoning to Mitigate Overthinking in Information Retrieval
Abstract:
Chain-of-Thought (CoT) prompting enables complex reasoning in large language models (LLMs), including applications in information retrieval (IR). However, it often leads to overthinking, where models produce excessively long and semantically redundant traces with little or no benefit. We identify two key challenges in IR: redundant trajectories that revisit similar states and misguided reasoning that diverges from user intent. To address these, we propose State Machine Reasoning (SMR), a transition-based reasoning framework composed of discrete actions (Refine, Rerank, Stop) that support early stopping and fine-grained control. Experiments on the BEIR and BRIGHT benchmarks show that SMR improves retrieval performance (nDCG@10) by 3.4% while reducing token usage by 74.4%. It generalizes across LLMs and retrievers without requiring task-specific tuning, offering a practical alternative to conventional CoT reasoning. The code and details are available at https://github.com/ldilab/SMR.

Authors:Zhen Xiang, Aliyah R. Hsu, Austin V. Zane, Aaron E. Kornblith, Margaret J. Lin-Martore, Jasmanpreet C. Kaur, Vasuda M. Dokiparthi, Bo Li, Bin Yu
Title: CDR-Agent: Intelligent Selection and Execution of Clinical Decision Rules Using Large Language Model Agents
Abstract:
Clinical decision-making is inherently complex and fast-paced, particularly in emergency departments (EDs) where critical, rapid and high-stakes decisions are made. Clinical Decision Rules (CDRs) are standardized evidence-based tools that combine signs, symptoms, and clinical variables into decision trees to make consistent and accurate diagnoses. CDR usage is often hindered by the clinician's cognitive load, limiting their ability to quickly recall and apply the appropriate rules. We introduce CDR-Agent, a novel LLM-based system designed to enhance ED decision-making by autonomously identifying and applying the most appropriate CDRs based on unstructured clinical notes. To validate CDR-Agent, we curated two novel ED datasets: synthetic and CDR-Bench, although CDR-Agent is applicable to non ED clinics. CDR-Agent achieves a 56.3\% (synthetic) and 8.7\% (CDR-Bench) accuracy gain relative to the standalone LLM baseline in CDR selection. Moreover, CDR-Agent significantly reduces computational overhead. Using these datasets, we demonstrated that CDR-Agent not only selects relevant CDRs efficiently, but makes cautious yet effective imaging decisions by minimizing unnecessary interventions while successfully identifying most positively diagnosed cases, outperforming traditional LLM prompting approaches. Code for our work can be found at: https://github.com/zhenxianglance/medagent-cdr-agent

Authors:Tianteng Gu, Bei Liu, Bo Xiao, Ke Zeng, Jiacheng Liu, Yanmin Qian
Title: DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration
Abstract:
Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method is model-agnostic and can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at https://github.com/Axel-gu/DenoiseRotator.

Authors:Chuanhao Li, Wenbo Ye, Zhen Li, Yuwei Wu, Yunde Jia
Title: Multi-Sourced Compositional Generalization in Visual Question Answering
Abstract:
Compositional generalization is the ability of generalizing novel compositions from seen primitives, and has received much attention in vision-and-language (V\&L) recently. Due to the multi-modal nature of V\&L tasks, the primitives composing compositions source from different modalities, resulting in multi-sourced novel compositions. However, the generalization ability over multi-sourced novel compositions, \textit{i.e.}, multi-sourced compositional generalization (MSCG) remains unexplored. In this paper, we explore MSCG in the context of visual question answering (VQA), and propose a retrieval-augmented training framework to enhance the MSCG ability of VQA models by learning unified representations for primitives from different modalities. Specifically, semantically equivalent primitives are retrieved for each primitive in the training samples, and the retrieved features are aggregated with the original primitive to refine the model. This process helps the model learn consistent representations for the same semantic primitives across different modalities. To evaluate the MSCG ability of VQA models, we construct a new GQA-MSCG dataset based on the GQA dataset, in which samples include three types of novel compositions composed of primitives from different modalities. Experimental results demonstrate the effectiveness of the proposed framework. We release GQA-MSCG at https://github.com/NeverMoreLCH/MSCG.

Authors:Yihang Wu, Muhammad Owais, Reem Kateb, Ahmad Chaddad
Title: Deep Modeling and Optimization of Medical Image Classification
Abstract:
Deep models, such as convolutional neural networks (CNNs) and vision transformer (ViT), demonstrate remarkable performance in image classification. However, those deep models require large data to fine-tune, which is impractical in the medical domain due to the data privacy issue. Furthermore, despite the feasible performance of contrastive language image pre-training (CLIP) in the natural domain, the potential of CLIP has not been fully investigated in the medical field. To face these challenges, we considered three scenarios: 1) we introduce a novel CLIP variant using four CNNs and eight ViTs as image encoders for the classification of brain cancer and skin cancer, 2) we combine 12 deep models with two federated learning techniques to protect data privacy, and 3) we involve traditional machine learning (ML) methods to improve the generalization ability of those deep models in unseen domain data. The experimental results indicate that maxvit shows the highest averaged (AVG) test metrics (AVG = 87.03\%) in HAM10000 dataset with multimodal learning, while convnext\_l demonstrates remarkable test with an F1-score of 83.98\% compared to swin\_b with 81.33\% in FL model. Furthermore, the use of support vector machine (SVM) can improve the overall test metrics with AVG of $\sim 2\%$ for swin transformer series in ISIC2018. Our codes are available at https://github.com/AIPMLab/SkinCancerSimulation.

Authors:Si Wu, Sebastian Bruch
Title: Uncovering Visual-Semantic Psycholinguistic Properties from the Distributional Structure of Text Embedding Space
Abstract:
Imageability (potential of text to evoke a mental image) and concreteness (perceptibility of text) are two psycholinguistic properties that link visual and semantic spaces. It is little surprise that computational methods that estimate them do so using parallel visual and semantic spaces, such as collections of image-caption pairs or multi-modal models. In this paper, we work on the supposition that text itself in an image-caption dataset offers sufficient signals to accurately estimate these properties. We hypothesize, in particular, that the peakedness of the neighborhood of a word in the semantic embedding space reflects its degree of imageability and concreteness. We then propose an unsupervised, distribution-free measure, which we call Neighborhood Stability Measure (NSM), that quantifies the sharpness of peaks. Extensive experiments show that NSM correlates more strongly with ground-truth ratings than existing unsupervised methods, and is a strong predictor of these properties for classification. Our code and data are available on GitHub (https://github.com/Artificial-Memory-Lab/imageability).

Authors:Minh Nguyen Nhat To, Paul F RWilson, Viet Nguyen, Mohamed Harmanani, Michael Cooper, Fahimeh Fooladgar, Purang Abolmaesumi, Parvin Mousavi, Rahul G. Krishnan
Title: Diverse Prototypical Ensembles Improve Robustness to Subpopulation Shift
Abstract:
The subpopulationtion shift, characterized by a disparity in subpopulation distributibetween theween the training and target datasets, can significantly degrade the performance of machine learning models. Current solutions to subpopulation shift involve modifying empirical risk minimization with re-weighting strategies to improve generalization. This strategy relies on assumptions about the number and nature of subpopulations and annotations on group membership, which are unavailable for many real-world datasets. Instead, we propose using an ensemble of diverse classifiers to adaptively capture risk associated with subpopulations. Given a feature extractor network, we replace its standard linear classification layer with a mixture of prototypical classifiers, where each member is trained to classify the data while focusing on different features and samples from other members. In empirical evaluation on nine real-world datasets, covering diverse domains and kinds of subpopulation shift, our method of Diverse Prototypical Ensembles (DPEs) often outperforms the prior state-of-the-art in worst-group accuracy. The code is available at https://github.com/minhto2802/dpe4subpop

Authors:Haewon Park, Gyubin Choi, Minjun Kim, Yohan Jo
Title: Context-Robust Knowledge Editing for Language Models
Abstract:
Knowledge editing (KE) methods offer an efficient way to modify knowledge in large language models. Current KE evaluations typically assess editing success by considering only the edited knowledge without any preceding contexts. In real-world applications, however, preceding contexts often trigger the retrieval of the original knowledge and undermine the intended edit. To address this issue, we develop CHED -- a benchmark designed to evaluate the context robustness of KE methods. Evaluations on CHED show that they often fail when preceding contexts are present. To mitigate this shortcoming, we introduce CoRE, a KE method designed to strengthen context robustness by minimizing context-sensitive variance in hidden states of the model for edited knowledge. This method not only improves the editing success rate in situations where a preceding context is present but also preserves the overall capabilities of the model. We provide an in-depth analysis of the differing impacts of preceding contexts when introduced as user utterances versus assistant responses, and we dissect attention-score patterns to assess how specific tokens influence editing success.

Authors:Haoqin Sun, Xuechen Wang, Jinghua Zhao, Shiwan Zhao, Jiaming Zhou, Hui Wang, Jiabei He, Aobo Kong, Xi Yang, Yequan Wang, Yonghua Lin, Yong Qin
Title: EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations
Abstract:
In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose \textbf{EmotionTalk}, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.

Authors:Bowen Chen, Keyan Chen, Mohan Yang, Zhengxia Zou, Zhenwei Shi
Title: SeG-SR: Integrating Semantic Knowledge into Remote Sensing Image Super-Resolution via Vision-Language Model
Abstract:
High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring. However, due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation. Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition. Existing RSISR methods primarily focus on low-level characteristics in pixel space, while neglecting the high-level understanding of remote sensing scenes. This may lead to semantically inconsistent artifacts in the reconstructed results. Motivated by this observation, our work aims to explore the role of high-level semantic knowledge in improving RSISR performance. We propose a Semantic-Guided Super-Resolution framework, SeG-SR, which leverages Vision-Language Models (VLMs) to extract semantic knowledge from input images and uses it to guide the super resolution (SR) process. Specifically, we first design a Semantic Feature Extraction Module (SFEM) that utilizes a pretrained VLM to extract semantic knowledge from remote sensing images. Next, we propose a Semantic Localization Module (SLM), which derives a series of semantic guidance from the extracted semantic knowledge. Finally, we develop a Learnable Modulation Module (LMM) that uses semantic guidance to modulate the features extracted by the SR network, effectively incorporating high-level scene understanding into the SR pipeline. We validate the effectiveness and generalizability of SeG-SR through extensive experiments: SeG-SR achieves state-of-the-art performance on two datasets and consistently delivers performance improvements across various SR architectures. Codes can be found at https://github.com/Mr-Bamboo/SeG-SR.

Authors:Ruskin Raj Manku, Yuzhi Tang, Xingjian Shi, Mu Li, Alex Smola
Title: EmergentTTS-Eval: Evaluating TTS Models on Complex Prosodic, Expressiveness, and Linguistic Challenges Using Model-as-a-Judge
Abstract:
Text-to-Speech (TTS) benchmarks often fail to capture how well models handle nuanced and semantically complex text. Building on $\textit{EmergentTTS}$, we introduce $\textit{EmergentTTS-Eval}$, a comprehensive benchmark covering six challenging TTS scenarios: emotions, paralinguistics, foreign words, syntactic complexity, complex pronunciation (e.g. URLs, formulas), and questions. Crucially, our framework automates both test-case generation and evaluation, making the benchmark easily extensible. Starting from a small set of human-written seed prompts, we iteratively extend them using LLMs to target specific structural, phonetic and prosodic challenges, resulting in 1,645 diverse test cases. Moreover, we employ a model-as-a-judge approach, using a Large Audio Language Model (LALM) to assess the speech across multiple dimensions such as expressed emotion, prosodic, intonational, and pronunciation accuracy. We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval, demonstrating its ability to reveal fine-grained performance differences. Results show that the model-as-a-judge approach offers robust TTS assessment and a high correlation with human preferences. We open source the evaluation $\href{https://github.com/boson-ai/EmergentTTS-Eval-public}{code}$ and the $\href{https://huggingface.co/datasets/bosonai/EmergentTTS-Eval}{dataset}$.

Authors:Peixuan Han, Zijia Liu, Jiaxuan You
Title: ToMAP: Training Opponent-Aware LLM Persuaders with Theory of Mind
Abstract:
Large language models (LLMs) have shown promising potential in persuasion, but existing works on training LLM persuaders are still preliminary. Notably, while humans are skilled in modeling their opponent's thoughts and opinions proactively and dynamically, current LLMs struggle with such Theory of Mind (ToM) reasoning, resulting in limited diversity and opponent awareness. To address this limitation, we introduce Theory of Mind Augmented Persuader (ToMAP), a novel approach for building more flexible persuader agents by incorporating two theory of mind modules that enhance the persuader's awareness and analysis of the opponent's mental state. Specifically, we begin by prompting the persuader to consider possible objections to the target central claim, and then use a text encoder paired with a trained MLP classifier to predict the opponent's current stance on these counterclaims. Our carefully designed reinforcement learning schema enables the persuader learns how to analyze opponent-related information and utilize it to generate more effective arguments. Experiments show that the ToMAP persuader, while containing only 3B parameters, outperforms much larger baselines, like GPT-4o, with a relative gain of 39.4% across multiple persuadee models and diverse corpora. Notably, ToMAP exhibits complex reasoning chains and reduced repetition during training, which leads to more diverse and effective arguments. The opponent-aware feature of ToMAP also makes it suitable for long conversations and enables it to employ more logical and opponent-aware strategies. These results underscore our method's effectiveness and highlight its potential for developing more persuasive language agents. Code is available at: https://github.com/ulab-uiuc/ToMAP.

Authors:Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, Jeff Clune
Title: Darwin Godel Machine: Open-Ended Evolution of Self-Improving Agents
Abstract:
Today's AI systems have human-designed, fixed architectures and cannot autonomously and continuously improve themselves. The advance of AI could itself be automated. If done safely, that would accelerate AI development and allow us to reap its benefits much sooner. Meta-learning can automate the discovery of novel algorithms, but is limited by first-order improvements and the human design of a suitable search space. The Gödel machine proposed a theoretical alternative: a self-improving AI that repeatedly modifies itself in a provably beneficial manner. Unfortunately, proving that most changes are net beneficial is impossible in practice. We introduce the Darwin Gödel Machine (DGM), a self-improving system that iteratively modifies its own code (thereby also improving its ability to modify its own codebase) and empirically validates each change using coding benchmarks. Inspired by Darwinian evolution and open-endedness research, the DGM maintains an archive of generated coding agents. It grows the archive by sampling an agent from it and using a foundation model to create a new, interesting, version of the sampled agent. This open-ended exploration forms a growing tree of diverse, high-quality agents and allows the parallel exploration of many different paths through the search space. Empirically, the DGM automatically improves its coding capabilities (e.g., better code editing tools, long-context window management, peer-review mechanisms), increasing performance on SWE-bench from 20.0% to 50.0%, and on Polyglot from 14.2% to 30.7%. Furthermore, the DGM significantly outperforms baselines without self-improvement or open-ended exploration. All experiments were done with safety precautions (e.g., sandboxing, human oversight). The DGM is a significant step toward self-improving AI, capable of gathering its own stepping stones along paths that unfold into endless innovation.

Authors:Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, Jeff Clune
Title: Darwin Godel Machine: Open-Ended Evolution of Self-Improving Agents
Abstract:
Today's AI systems have human-designed, fixed architectures and cannot autonomously and continuously improve themselves. The advance of AI could itself be automated. If done safely, that would accelerate AI development and allow us to reap its benefits much sooner. Meta-learning can automate the discovery of novel algorithms, but is limited by first-order improvements and the human design of a suitable search space. The Gödel machine proposed a theoretical alternative: a self-improving AI that repeatedly modifies itself in a provably beneficial manner. Unfortunately, proving that most changes are net beneficial is impossible in practice. We introduce the Darwin Gödel Machine (DGM), a self-improving system that iteratively modifies its own code (thereby also improving its ability to modify its own codebase) and empirically validates each change using coding benchmarks. Inspired by Darwinian evolution and open-endedness research, the DGM maintains an archive of generated coding agents. It grows the archive by sampling an agent from it and using a foundation model to create a new, interesting, version of the sampled agent. This open-ended exploration forms a growing tree of diverse, high-quality agents and allows the parallel exploration of many different paths through the search space. Empirically, the DGM automatically improves its coding capabilities (e.g., better code editing tools, long-context window management, peer-review mechanisms), increasing performance on SWE-bench from 20.0% to 50.0%, and on Polyglot from 14.2% to 30.7%. Furthermore, the DGM significantly outperforms baselines without self-improvement or open-ended exploration. All experiments were done with safety precautions (e.g., sandboxing, human oversight). The DGM is a significant step toward self-improving AI, capable of gathering its own stepping stones along paths that unfold into endless innovation.

Authors:Michael Sun, Orion Foo, Gang Liu, Wojciech Matusik, Jie Chen
Title: Directed Graph Grammars for Sequence-based Learning
Abstract:
Directed acyclic graphs (DAGs) are a class of graphs commonly used in practice, with examples that include electronic circuits, Bayesian networks, and neural architectures. While many effective encoders exist for DAGs, it remains challenging to decode them in a principled manner, because the nodes of a DAG can have many different topological orders. In this work, we propose a grammar-based approach to constructing a principled, compact and equivalent sequential representation of a DAG. Specifically, we view a graph as derivations over an unambiguous grammar, where the DAG corresponds to a unique sequence of production rules. Equivalently, the procedure to construct such a description can be viewed as a lossless compression of the data. Such a representation has many uses, including building a generative model for graph generation, learning a latent space for property prediction, and leveraging the sequence representational continuity for Bayesian Optimization over structured data. Code is available at https://github.com/shiningsunnyday/induction.

Authors:Michael Sun, Weize Yuan, Gang Liu, Wojciech Matusik, Jie Chen
Title: Foundation Molecular Grammar: Multi-Modal Foundation Models Induce Interpretable Molecular Graph Languages
Abstract:
Recent data-efficient molecular generation approaches exploit graph grammars to introduce interpretability into the generative models. However, grammar learning therein relies on expert annotation or unreliable heuristics for algorithmic inference. We propose Foundation Molecular Grammar (FMG), which leverages multi-modal foundation models (MMFMs) to induce an interpretable molecular language. By exploiting the chemical knowledge of an MMFM, FMG renders molecules as images, describes them as text, and aligns information across modalities using prompt learning. FMG can be used as a drop-in replacement for the prior grammar learning approaches in molecular generation and property prediction. We show that FMG not only excels in synthesizability, diversity, and data efficiency but also offers built-in chemical interpretability for automated molecular discovery workflows. Code is available at https://github.com/shiningsunnyday/induction.

Authors:Guilherme Adamatti Bridi, André Luis Alves Martins, Franklin de Lima Marquezino, Celina Miraglia Herrera de Figueiredo
Title: The only Class 0 Flower snark is the smallest
Abstract:
Graph pebbling is a game played on graphs with pebbles on their vertices. A pebbling move removes two pebbles from one vertex and places one pebble on an adjacent vertex. The pebbling number is the smallest $t$ so that from any initial configuration of $t$ pebbles it is possible, after a sequence of pebbling moves, to place a pebble on any given target vertex. Graphs whose pebbling number is equal to the number of vertices are called Class~$0$ and provide a challenging set of graphs that resist being characterized. In this note, we answer a question recently proposed by the pioneering study on the pebbling number of snark graphs: we prove that the smallest Flower snark $J_3$ is Class~$0$, establishing that $J_3$ is in fact the only Class~$0$ Flower snark.

Authors:Ben Weiss
Title: Fast Isotropic Median Filtering
Abstract:
Median filtering is a cornerstone of computational image processing. It provides an effective means of image smoothing, with minimal blurring or softening of edges, invariance to monotonic transformations such as gamma adjustment, and robustness to noise and outliers. However, known algorithms have all suffered from practical limitations: the bit depth of the image data, the size of the filter kernel, or the kernel shape itself. Square-kernel implementations tend to produce streaky cross-hatching artifacts, and nearly all known efficient algorithms are in practice limited to square kernels. We present for the first time a method that overcomes all of these limitations. Our method operates efficiently on arbitrary bit-depth data, arbitrary kernel sizes, and arbitrary convex kernel shapes, including circular shapes.

Authors:Ruichen Chen
Title: Re-ttention: Ultra Sparse Visual Generation via Attention Statistical Reshape
Abstract:
Diffusion Transformers (DiT) have become the de-facto model for generating high-quality visual content like videos and images. A huge bottleneck is the attention mechanism where complexity scales quadratically with resolution and video length. One logical way to lessen this burden is sparse attention, where only a subset of tokens or patches are included in the calculation. However, existing techniques fail to preserve visual quality at extremely high sparsity levels and might even incur non-negligible compute overheads. % To address this concern, we propose Re-ttention, which implements very high sparse attention for visual generation models by leveraging the temporal redundancy of Diffusion Models to overcome the probabilistic normalization shift within the attention mechanism. Specifically, Re-ttention reshapes attention scores based on the prior softmax distribution history in order to preserve the visual quality of the full quadratic attention at very high sparsity levels. % Experimental results on T2V/T2I models such as CogVideoX and the PixArt DiTs demonstrate that Re-ttention requires as few as 3.1\% of the tokens during inference, outperforming contemporary methods like FastDiTAttn, Sparse VideoGen and MInference. Further, we measure latency to show that our method can attain over 45\% end-to-end % and over 92\% self-attention latency reduction on an H100 GPU at negligible overhead cost. Code available online here: \href{https://github.com/cccrrrccc/Re-ttention}{https://github.com/cccrrrccc/Re-ttention}

Authors:Donghyeon Joo, Helya Hosseini, Ramyad Hadidi, Bahar Asgari
Title: Mustafar: Promoting Unstructured Sparsity for KV Cache Pruning in LLM Inference
Abstract:
We demonstrate that unstructured sparsity significantly improves KV cache compression for LLMs, enabling sparsity levels up to 70% without compromising accuracy or requiring fine-tuning. We conduct a systematic exploration of pruning strategies and find per-token magnitude-based pruning as highly effective for both Key and Value caches under unstructured sparsity, surpassing prior structured pruning schemes. The Key cache benefits from prominent outlier elements, while the Value cache surprisingly benefits from a simple magnitude-based pruning despite its uniform distribution. KV cache size is the major bottleneck in decode performance due to high memory overhead for large context lengths. To address this, we use a bitmap-based sparse format and a custom attention kernel capable of compressing and directly computing over compressed caches pruned to arbitrary sparsity patterns, significantly accelerating memory-bound operations in decode computations and thereby compensating for the overhead of runtime pruning and compression. Our custom attention kernel coupled with the bitmap-based format delivers substantial compression of KV cache upto 45% of dense inference and thereby enables longer context length and increased tokens/sec throughput of upto 2.23x compared to dense inference. Our pruning mechanism and sparse attention kernel is available at https://github.com/dhjoo98/mustafar.

Authors:Jirui Qi, Shan Chen, Zidi Xiong, Raquel Fernández, Danielle S. Bitterman, Arianna Bisazza
Title: When Models Reason in Your Language: Controlling Thinking Trace Language Comes at the Cost of Accuracy
Abstract:
Recent Large Reasoning Models (LRMs) with thinking traces have shown strong performance on English reasoning tasks. However, their ability to think in other languages is less studied. This capability is as important as answer accuracy for real world applications because users may find the reasoning trace useful for oversight only when it is expressed in their own language. We comprehensively evaluate two leading families of LRMs on our XReasoning benchmark and find that even the most advanced models often revert to English or produce fragmented reasoning in other languages, revealing a substantial gap in multilingual reasoning. Prompt based interventions that force models to reason in the users language improve readability and oversight but reduce answer accuracy, exposing an important trade off. We further show that targeted post training on just 100 examples mitigates this mismatch, though some accuracy loss remains. Our results highlight the limited multilingual reasoning capabilities of current LRMs and outline directions for future work. Code and data are available at https://github.com/Betswish/mCoT-XReasoning.

Authors:Jirui Qi, Shan Chen, Zidi Xiong, Raquel Fernández, Danielle S. Bitterman, Arianna Bisazza
Title: When Models Reason in Your Language: Controlling Thinking Language Comes at the Cost of Accuracy
Abstract:
Recent Large Reasoning Models (LRMs) with thinking traces have shown strong performance on English reasoning tasks. However, their ability to think in other languages is less studied. This capability is as important as answer accuracy for real world applications because users may find the reasoning trace useful for oversight only when it is expressed in their own language. We comprehensively evaluate two leading families of LRMs on our XReasoning benchmark and find that even the most advanced models often revert to English or produce fragmented reasoning in other languages, revealing a substantial gap in multilingual reasoning. Prompt based interventions that force models to reason in the users language improve readability and oversight but reduce answer accuracy, exposing an important trade off. We further show that targeted post training on just 100 examples mitigates this mismatch, though some accuracy loss remains. Our results highlight the limited multilingual reasoning capabilities of current LRMs and outline directions for future work. Code and data are available at https://github.com/Betswish/mCoT-XReasoning.

Authors:Junbo Yin, Chao Zha, Wenjia He, Chencheng Xu, Xin Gao
Title: CFP-Gen: Combinatorial Functional Protein Generation via Diffusion Language Models
Abstract:
Existing PLMs generate protein sequences based on a single-condition constraint from a specific modality, struggling to simultaneously satisfy multiple constraints across different modalities. In this work, we introduce CFP-Gen, a novel diffusion language model for Combinatorial Functional Protein GENeration. CFP-Gen facilitates the de novo protein design by integrating multimodal conditions with functional, sequence, and structural constraints. Specifically, an Annotation-Guided Feature Modulation (AGFM) module is introduced to dynamically adjust the protein feature distribution based on composable functional annotations, e.g., GO terms, IPR domains and EC numbers. Meanwhile, the Residue-Controlled Functional Encoding (RCFE) module captures residue-wise interaction to ensure more precise control. Additionally, off-the-shelf 3D structure encoders can be seamlessly integrated to impose geometric constraints. We demonstrate that CFP-Gen enables high-throughput generation of novel proteins with functionality comparable to natural proteins, while achieving a high success rate in designing multifunctional proteins. Code and data available at https://github.com/yinjunbo/cfpgen.

Authors:Iknoor Singh, Carolina Scarton, Kalina Bontcheva
Title: GateNLP at SemEval-2025 Task 10: Hierarchical Three-Step Prompting for Multilingual Narrative Classification
Abstract:
The proliferation of online news and the increasing spread of misinformation necessitate robust methods for automatic data analysis. Narrative classification is emerging as a important task, since identifying what is being said online is critical for fact-checkers, policy markers and other professionals working on information studies. This paper presents our approach to SemEval 2025 Task 10 Subtask 2, which aims to classify news articles into a pre-defined two-level taxonomy of main narratives and sub-narratives across multiple languages. We propose Hierarchical Three-Step Prompting (H3Prompt) for multilingual narrative classification. Our methodology follows a three-step Large Language Model (LLM) prompting strategy, where the model first categorises an article into one of two domains (Ukraine-Russia War or Climate Change), then identifies the most relevant main narratives, and finally assigns sub-narratives. Our approach secured the top position on the English test set among 28 competing teams worldwide. The code is available at https://github.com/GateNLP/H3Prompt.

Authors:Yupei Li, Shuaijie Shao, Manuel Milling, Björn W. Schuller
Title: Large Language Models for Depression Recognition in Spoken Language Integrating Psychological Knowledge
Abstract:
Depression is a growing concern gaining attention in both public discourse and AI research. While deep neural networks (DNNs) have been used for recognition, they still lack real-world effectiveness. Large language models (LLMs) show strong potential but require domain-specific fine-tuning and struggle with non-textual cues. Since depression is often expressed through vocal tone and behaviour rather than explicit text, relying on language alone is insufficient. Diagnostic accuracy also suffers without incorporating psychological expertise. To address these limitations, we present, to the best of our knowledge, the first application of LLMs to multimodal depression detection using the DAIC-WOZ dataset. We extract the audio features using the pre-trained model Wav2Vec, and mapped it to text-based LLMs for further processing. We also propose a novel strategy for incorporating psychological knowledge into LLMs to enhance diagnostic performance, specifically using a question and answer set to grant authorised knowledge to LLMs. Our approach yields a notable improvement in both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to a base score proposed by the related original paper. The codes are available at https://github.com/myxp-lyp/Depression-detection.git

Authors:Kostas Triaridis, Panagiotis Kaliosis, E-Ro Nguyen, Jingyi Xu, Hieu Le, Dimitris Samaras
Title: Improving Contrastive Learning for Referring Expression Counting
Abstract:
Object counting has progressed from class-specific models, which count only known categories, to class-agnostic models that generalize to unseen categories. The next challenge is Referring Expression Counting (REC), where the goal is to count objects based on fine-grained attributes and contextual differences. Existing methods struggle with distinguishing visually similar objects that belong to the same category but correspond to different referring expressions. To address this, we propose C-REX, a novel contrastive learning framework, based on supervised contrastive learning, designed to enhance discriminative representation learning. Unlike prior works, C-REX operates entirely within the image space, avoiding the misalignment issues of image-text contrastive learning, thus providing a more stable contrastive signal. It also guarantees a significantly larger pool of negative samples, leading to improved robustness in the learned representations. Moreover, we showcase that our framework is versatile and generic enough to be applied to other similar tasks like class-agnostic counting. To support our approach, we analyze the key components of sota detection-based models and identify that detecting object centroids instead of bounding boxes is the key common factor behind their success in counting tasks. We use this insight to design a simple yet effective detection-based baseline to build upon. Our experiments show that C-REX achieves state-of-the-art results in REC, outperforming previous methods by more than 22\% in MAE and more than 10\% in RMSE, while also demonstrating strong performance in class-agnostic counting. Code is available at https://github.com/cvlab-stonybrook/c-rex.

Authors:Zhangyi Hu, Jiemin Wu, Hua Xu, Mingqian Liao, Ninghui Feng, Bo Gao, Songning Lai, Yutao Yue
Title: IMTS is Worth Time $\times$ Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction
Abstract:
Irregular Multivariate Time Series (IMTS) forecasting is challenging due to the unaligned nature of multi-channel signals and the prevalence of extensive missing data. Existing methods struggle to capture reliable temporal patterns from such data due to significant missing values. While pre-trained foundation models show potential for addressing these challenges, they are typically designed for Regularly Sampled Time Series (RTS). Motivated by the visual Mask AutoEncoder's (MAE) powerful capability for modeling sparse multi-channel information and its success in RTS forecasting, we propose VIMTS, a framework adapting Visual MAE for IMTS forecasting. To mitigate the effect of missing values, VIMTS first processes IMTS along the timeline into feature patches at equal intervals. These patches are then complemented using learned cross-channel dependencies. Then it leverages visual MAE's capability in handling sparse multichannel data for patch reconstruction, followed by a coarse-to-fine technique to generate precise predictions from focused contexts. In addition, we integrate self-supervised learning for improved IMTS modeling by adapting the visual MAE to IMTS data. Extensive experiments demonstrate VIMTS's superior performance and few-shot capability, advancing the application of visual foundation models in more general time series tasks. Our code is available at https://github.com/WHU-HZY/VIMTS.

Authors:Andrew Zhu, Evan Osgood, Chris Callison-Burch
Title: First Steps Towards Overhearing LLM Agents: A Case Study With Dungeons & Dragons Gameplay
Abstract:
Much work has been done on conversational LLM agents which directly assist human users with tasks. We present an alternative paradigm for interacting with LLM agents, which we call "overhearing agents". These overhearing agents do not actively participate in conversation -- instead, they "listen in" on human-to-human conversations and perform background tasks or provide suggestions to assist the user. In this work, we explore the overhearing agents paradigm through the lens of Dungeons & Dragons gameplay. We present an in-depth study using large multimodal audio-language models as overhearing agents to assist a Dungeon Master. We perform a human evaluation to examine the helpfulness of such agents and find that some large audio-language models have the emergent ability to perform overhearing agent tasks using implicit audio cues. Finally, we release Python libraries and our project code to support further research into the overhearing agents paradigm at https://github.com/zhudotexe/overhearing_agents.

Authors:Anton Björklund, Mykola Zaitsev, Marta Kwiatkowska
Title: Efficient Preimage Approximation for Neural Network Certification
Abstract:
The growing reliance on artificial intelligence in safety- and security-critical applications demands effective neural network certification. A challenging real-world use case is "patch attacks", where adversarial patches or lighting conditions obscure parts of images, for example, traffic signs. A significant step towards certification against patch attacks was recently achieved using PREMAP, which uses under- and over-approximations of the preimage, the set of inputs that lead to a specified output, for the certification. While the PREMAP approach is versatile, it is currently limited to fully-connected neural networks of moderate dimensionality. In order to tackle broader real-world use cases, we present novel algorithmic extensions to PREMAP involving tighter bounds, adaptive Monte Carlo sampling, and improved branching heuristics. Firstly, we demonstrate that these efficiency improvements significantly outperform the original PREMAP and enable scaling to convolutional neural networks that were previously intractable. Secondly, we showcase the potential of preimage approximation methodology for analysing and certifying reliability and robustness on a range of use cases from computer vision and control.

Authors:Mert Onur Cakiroglu, Idil Bilge Altun, Mehmet Dalkilic, Elham Buxton, Hasan Kurban
Title: Multivariate de Bruijn Graphs: A Symbolic Graph Framework for Time Series Forecasting
Abstract:
Time series forecasting remains a challenging task for foundation models due to temporal heterogeneity, high dimensionality, and the lack of inherent symbolic structure. In this work, we propose DRAGON (Discrete Representation and Augmented Graph encoding Over de BruijN Graphs), a novel encoder that introduces Multivariate de Bruijn Graphs (MdBGs) to bridge the gap between symbolic representations and neural modeling. DRAGON discretizes continuous input sequences and maps them onto a fixed graph structure, enabling dynamic context recovery via graph-based attention. Integrated as an auxiliary module within a dual-branch architecture, DRAGON augments conventional CNN-based encoders with symbolic, structure-aware representations. All code developed for this study is available at: https://github.com/KurbanIntelligenceLab/MultdBG-Time-Series-Library

Authors:Marco Colussi, Dragan Ahmetovic, Sergio Mascetti
Title: MIAS-SAM: Medical Image Anomaly Segmentation without thresholding
Abstract:
This paper presents MIAS-SAM, a novel approach for the segmentation of anomalous regions in medical images. MIAS-SAM uses a patch-based memory bank to store relevant image features, which are extracted from normal data using the SAM encoder. At inference time, the embedding patches extracted from the SAM encoder are compared with those in the memory bank to obtain the anomaly map. Finally, MIAS-SAM computes the center of gravity of the anomaly map to prompt the SAM decoder, obtaining an accurate segmentation from the previously extracted features. Differently from prior works, MIAS-SAM does not require to define a threshold value to obtain the segmentation from the anomaly map. Experimental results conducted on three publicly available datasets, each with a different imaging modality (Brain MRI, Liver CT, and Retina OCT) show accurate anomaly segmentation capabilities measured using DICE score. The code is available at: https://github.com/warpcut/MIAS-SAM

Authors:Tian Qin, Core Francisco Park, Mujin Kwun, Aaron Walsman, Eran Malach, Nikhil Anand, Hidenori Tanaka, David Alvarez-Melis
Title: Decomposing Elements of Problem Solving: What "Math" Does RL Teach?
Abstract:
Mathematical reasoning tasks have become prominent benchmarks for assessing the reasoning capabilities of LLMs, especially with reinforcement learning (RL) methods such as GRPO showing significant performance gains. However, accuracy metrics alone do not support fine-grained assessment of capabilities and fail to reveal which problem-solving skills have been internalized. To better understand these capabilities, we propose to decompose problem solving into fundamental capabilities: Plan (mapping questions to sequences of steps), Execute (correctly performing solution steps), and Verify (identifying the correctness of a solution). Empirically, we find that GRPO mainly enhances the execution skill-improving execution robustness on problems the model already knows how to solve-a phenomenon we call temperature distillation. More importantly, we show that RL-trained models struggle with fundamentally new problems, hitting a 'coverage wall' due to insufficient planning skills. To explore RL's impact more deeply, we construct a minimal, synthetic solution-tree navigation task as an analogy for mathematical problem-solving. This controlled setup replicates our empirical findings, confirming RL primarily boosts execution robustness. Importantly, in this setting, we identify conditions under which RL can potentially overcome the coverage wall through improved exploration and generalization to new solution paths. Our findings provide insights into the role of RL in enhancing LLM reasoning, expose key limitations, and suggest a path toward overcoming these barriers. Code is available at https://github.com/cfpark00/RL-Wall.

Authors:Rafik Mankour, Yassine Chafai, Hamada Saleh, Ghassen Ben Hassine, Thibaud Barreau, Peter Tankov
Title: Climate Finance Bench
Abstract:
Climate Finance Bench introduces an open benchmark that targets question-answering over corporate climate disclosures using Large Language Models. We curate 33 recent sustainability reports in English drawn from companies across all 11 GICS sectors and annotate 330 expert-validated question-answer pairs that span pure extraction, numerical reasoning, and logical reasoning. Building on this dataset, we propose a comparison of RAG (retrieval-augmented generation) approaches. We show that the retriever's ability to locate passages that actually contain the answer is the chief performance bottleneck. We further argue for transparent carbon reporting in AI-for-climate applications, highlighting advantages of techniques such as Weight Quantization.

Authors:Tamas Spisak, Karl Friston
Title: Self-orthogonalizing attractor neural networks emerging from the free energy principle
Abstract:
Attractor dynamics are a hallmark of many complex systems, including the brain. Understanding how such self-organizing dynamics emerge from first principles is crucial for advancing our understanding of neuronal computations and the design of artificial intelligence systems. Here we formalize how attractor networks emerge from the free energy principle applied to a universal partitioning of random dynamical systems. Our approach obviates the need for explicitly imposed learning and inference rules and identifies emergent, but efficient and biologically plausible inference and learning dynamics for such self-organizing systems. These result in a collective, multi-level Bayesian active inference process. Attractors on the free energy landscape encode prior beliefs; inference integrates sensory data into posterior beliefs; and learning fine-tunes couplings to minimize long-term surprise. Analytically and via simulations, we establish that the proposed networks favor approximately orthogonalized attractor representations, a consequence of simultaneously optimizing predictive accuracy and model complexity. These attractors efficiently span the input subspace, enhancing generalization and the mutual information between hidden causes and observable effects. Furthermore, while random data presentation leads to symmetric and sparse couplings, sequential data fosters asymmetric couplings and non-equilibrium steady-state dynamics, offering a natural extension to conventional Boltzmann Machines. Our findings offer a unifying theory of self-organizing attractor networks, providing novel insights for AI and neuroscience.

Authors:Yannick Stade, Wan-Hsuan Lin, Jason Cong, Robert Wille
Title: Routing-Aware Placement for Zoned Neutral Atom-based Quantum Computing
Abstract:
Quantum computing promises to solve previously intractable problems, with neutral atoms emerging as a promising technology. Zoned neutral atom architectures allow for immense parallelism and higher coherence times by shielding idling atoms from interference with laser beams. However, in addition to hardware, successful quantum computation requires sophisticated software support, particularly compilers that optimize quantum algorithms for hardware execution. In the compilation flow for zoned neutral atom architectures, the effective interplay of the placement and routing stages decides the overhead caused by rearranging the atoms during the quantum computation. Sub-optimal placements can lead to unnecessary serialization of the rearrangements in the subsequent routing stage. Despite this, all existing compilers treat placement and routing independently thus far - focusing solely on minimizing travel distances. This work introduces the first routing-aware placement method to address this shortcoming. It groups compatible movements into parallel rearrangement steps to minimize both rearrangement steps and travel distances. The implementation utilizing the A* algorithm reduces the rearrangement time by 17% on average and by 49% in the best case compared to the state-of-the-art. The complete code is publicly available in open-source as part of the Munich Quantum Toolkit (MQT) at https://github.com/munich-quantum-toolkit/qmap.

Authors:Qi Cai, Jingwen Chen, Yang Chen, Yehao Li, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Yiheng Zhang, Fengbin Gao, Peihan Xu, Yimeng Wang, Kai Yu, Wenxuan Chen, Ziwei Feng, Zijian Gong, Jianzhuang Pan, Yi Peng, Rui Tian, Siyu Wang, Bo Zhao, Ting Yao, Tao Mei
Title: HiDream-I1: A High-Efficient Image Generative Foundation Model with Sparse Diffusion Transformer
Abstract:
Recent advancements in image generative foundation models have prioritized quality improvements but often at the cost of increased computational complexity and inference latency. To address this critical trade-off, we introduce HiDream-I1, a new open-source image generative foundation model with 17B parameters that achieves state-of-the-art image generation quality within seconds. HiDream-I1 is constructed with a new sparse Diffusion Transformer (DiT) structure. Specifically, it starts with a dual-stream decoupled design of sparse DiT with dynamic Mixture-of-Experts (MoE) architecture, in which two separate encoders are first involved to independently process image and text tokens. Then, a single-stream sparse DiT structure with dynamic MoE architecture is adopted to trigger multi-model interaction for image generation in a cost-efficient manner. To support flexiable accessibility with varied model capabilities, we provide HiDream-I1 in three variants: HiDream-I1-Full, HiDream-I1-Dev, and HiDream-I1-Fast. Furthermore, we go beyond the typical text-to-image generation and remould HiDream-I1 with additional image conditions to perform precise, instruction-based editing on given images, yielding a new instruction-based image editing model namely HiDream-E1. Ultimately, by integrating text-to-image generation and instruction-based image editing, HiDream-I1 evolves to form a comprehensive image agent (HiDream-A1) capable of fully interactive image creation and refinement. To accelerate multi-modal AIGC research, we have open-sourced all the codes and model weights of HiDream-I1-Full, HiDream-I1-Dev, HiDream-I1-Fast, HiDream-E1 through our project websites: https://github.com/HiDream-ai/HiDream-I1 and https://github.com/HiDream-ai/HiDream-E1. All features can be directly experienced via https://vivago.ai/studio.

Authors:Filippo Rinaldi, Giacomo Capitani, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli, Elisa Ficarra, Emanuele RodolÃ, Simone Calderara, Angelo Porrello
Title: Update Your Transformer to the Latest Release: Re-Basin of Task Vectors
Abstract:
Foundation models serve as the backbone for numerous specialized models developed through fine-tuning. However, when the underlying pretrained model is updated or retrained (e.g., on larger and more curated datasets), the fine-tuned model becomes obsolete, losing its utility and requiring retraining. This raises the question: is it possible to transfer fine-tuning to a new release of the model? In this work, we investigate how to transfer fine-tuning to a new checkpoint without having to re-train, in a data-free manner. To do so, we draw principles from model re-basin and provide a recipe based on weight permutations to re-base the modifications made to the original base model, often called task vector. In particular, our approach tailors model re-basin for Transformer models, taking into account the challenges of residual connections and multi-head attention layers. Specifically, we propose a two-level method rooted in spectral theory, initially permuting the attention heads and subsequently adjusting parameters within select pairs of heads. Through extensive experiments on visual and textual tasks, we achieve the seamless transfer of fine-tuned knowledge to new pre-trained backbones without relying on a single training step or datapoint. Code is available at https://github.com/aimagelab/TransFusion.

Authors:Pawan Neupane, Jian Liu, Jianlin Cheng
Title: PSBench: a large-scale benchmark for estimating the accuracy of protein complex structural models
Abstract:
Predicting protein complex structures is essential for protein function analysis, protein design, and drug discovery. While AI methods like AlphaFold can predict accurate structural models for many protein complexes, reliably estimating the quality of these predicted models (estimation of model accuracy, or EMA) for model ranking and selection remains a major challenge. A key barrier to developing effective machine learning-based EMA methods is the lack of large, diverse, and well-annotated datasets for training and evaluation. To address this gap, we introduce PSBench, a benchmark suite comprising four large-scale, labeled datasets generated during the 15th and 16th community-wide Critical Assessment of Protein Structure Prediction (CASP15 and CASP16). PSBench includes over one million structural models covering a wide range of protein sequence lengths, complex stoichiometries, functional classes, and modeling difficulties. Each model is annotated with multiple complementary quality scores at the global, local, and interface levels. PSBench also provides multiple evaluation metrics and baseline EMA methods to facilitate rigorous comparisons. To demonstrate PSBench's utility, we trained and evaluated GATE, a graph transformer-based EMA method, on the CASP15 data. GATE was blindly tested in CASP16 (2024), where it ranked among the top-performing EMA methods. These results highlight PSBench as a valuable resource for advancing EMA research in protein complex modeling. PSBench is publicly available at: https://github.com/BioinfoMachineLearning/PSBench.

Authors:Kaiyu Yue, Vasu Singla, Menglin Jia, John Kirchenbauer, Rifaa Qadri, Zikui Cai, Abhinav Bhatele, Furong Huang, Tom Goldstein
Title: Zero-Shot Vision Encoder Grafting via LLM Surrogates
Abstract:
Vision language models (VLMs) typically pair a modestly sized vision encoder with a large language model (LLM), e.g., Llama-70B, making the decoder the primary computational burden during training. To reduce costs, a potential promising strategy is to first train the vision encoder using a small language model before transferring it to the large one. We construct small "surrogate models" that share the same embedding space and representation language as the large target LLM by directly inheriting its shallow layers. Vision encoders trained on the surrogate can then be directly transferred to the larger model, a process we call zero-shot grafting -- when plugged directly into the full-size target LLM, the grafted pair surpasses the encoder-surrogate pair and, on some benchmarks, even performs on par with full decoder training with the target LLM. Furthermore, our surrogate training approach reduces overall VLM training costs by ~45% when using Llama-70B as the decoder. The code is at https://github.com/facebookresearch/zero.

Authors:Ce Zhang, Kaixin Ma, Tianqing Fang, Wenhao Yu, Hongming Zhang, Zhisong Zhang, Yaqi Xie, Katia Sycara, Haitao Mi, Dong Yu
Title: VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models
Abstract:
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4\% of the original performance. Code is available at https://github.com/Tencent/SelfEvolvingAgent/tree/main/VScan.

Authors:Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, Rui Yan
Title: The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason
Abstract:
Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.

Authors:Guoxuan Chen, Lianghao Xia, Chao Huang
Title: Pre-training for Recommendation Unlearning
Abstract:
Modern recommender systems powered by Graph Neural Networks (GNNs) excel at modeling complex user-item interactions, yet increasingly face scenarios requiring selective forgetting of training data. Beyond user requests to remove specific interactions due to privacy concerns or preference changes, regulatory frameworks mandate recommender systems' ability to eliminate the influence of certain user data from models. This recommendation unlearning challenge presents unique difficulties as removing connections within interaction graphs creates ripple effects throughout the model, potentially impacting recommendations for numerous users. Traditional approaches suffer from significant drawbacks: fragmentation methods damage graph structure and diminish performance, while influence function techniques make assumptions that may not hold in complex GNNs, particularly with self-supervised or random architectures. To address these limitations, we propose a novel model-agnostic pre-training paradigm UnlearnRec that prepares systems for efficient unlearning operations. Our Influence Encoder takes unlearning requests together with existing model parameters and directly produces updated parameters of unlearned model with little fine-tuning, avoiding complete retraining while preserving model performance characteristics. Extensive evaluation on public benchmarks demonstrates that our method delivers exceptional unlearning effectiveness while providing more than 10x speedup compared to retraining approaches. We release our method implementation at: https://github.com/HKUDS/UnlearnRec.

Authors:Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang, Zekun Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: WebDancer: Towards Autonomous Information Seeking Agency
Abstract:
Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.

Authors:Zhe Kong, Feng Gao, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Xunliang Cai, Guanying Chen, Wenhan Luo
Title: Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation
Abstract:
Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.

Authors:Hanjia Lyu, Jiebo Luo, Jian Kang, Allison Koenecke
Title: Characterizing Bias: Benchmarking Large Language Models in Simplified versus Traditional Chinese
Abstract:
While the capabilities of Large Language Models (LLMs) have been studied in both Simplified and Traditional Chinese, it is yet unclear whether LLMs exhibit differential performance when prompted in these two variants of written Chinese. This understanding is critical, as disparities in the quality of LLM responses can perpetuate representational harms by ignoring the different cultural contexts underlying Simplified versus Traditional Chinese, and can exacerbate downstream harms in LLM-facilitated decision-making in domains such as education or hiring. To investigate potential LLM performance disparities, we design two benchmark tasks that reflect real-world scenarios: regional term choice (prompting the LLM to name a described item which is referred to differently in Mainland China and Taiwan), and regional name choice (prompting the LLM to choose who to hire from a list of names in both Simplified and Traditional Chinese). For both tasks, we audit the performance of 11 leading commercial LLM services and open-sourced models -- spanning those primarily trained on English, Simplified Chinese, or Traditional Chinese. Our analyses indicate that biases in LLM responses are dependent on both the task and prompting language: while most LLMs disproportionately favored Simplified Chinese responses in the regional term choice task, they surprisingly favored Traditional Chinese names in the regional name choice task. We find that these disparities may arise from differences in training data representation, written character preferences, and tokenization of Simplified and Traditional Chinese. These findings highlight the need for further analysis of LLM biases; as such, we provide an open-sourced benchmark dataset to foster reproducible evaluations of future LLM behavior across Chinese language variants (https://github.com/brucelyu17/SC-TC-Bench).

Authors:Yuchi Wang, Yishuo Cai, Shuhuai Ren, Sihan Yang, Linli Yao, Yuanxin Liu, Yuanxing Zhang, Pengfei Wan, Xu Sun
Title: RICO: Improving Accuracy and Completeness in Image Recaptioning via Visual Reconstruction
Abstract:
Image recaptioning is widely used to generate training datasets with enhanced quality for various multimodal tasks. Existing recaptioning methods typically rely on powerful multimodal large language models (MLLMs) to enhance textual descriptions, but often suffer from inaccuracies due to hallucinations and incompleteness caused by missing fine-grained details. To address these limitations, we propose RICO, a novel framework that refines captions through visual reconstruction. Specifically, we leverage a text-to-image model to reconstruct a caption into a reference image, and prompt an MLLM to identify discrepancies between the original and reconstructed images to refine the caption. This process is performed iteratively, further progressively promoting the generation of more faithful and comprehensive descriptions. To mitigate the additional computational cost induced by the iterative process, we introduce RICO-Flash, which learns to generate captions like RICO using DPO. Extensive experiments demonstrate that our approach significantly improves caption accuracy and completeness, outperforms most baselines by approximately 10% on both CapsBench and CompreCap. Code released at https://github.com/wangyuchi369/RICO.

Authors:Dmitrii Sorokin, Maksim Nakhodnov, Andrey Kuznetsov, Aibek Alanov
Title: ImageReFL: Balancing Quality and Diversity in Human-Aligned Diffusion Models
Abstract:
Recent advances in diffusion models have led to impressive image generation capabilities, but aligning these models with human preferences remains challenging. Reward-based fine-tuning using models trained on human feedback improves alignment but often harms diversity, producing less varied outputs. In this work, we address this trade-off with two contributions. First, we introduce \textit{combined generation}, a novel sampling strategy that applies a reward-tuned diffusion model only in the later stages of the generation process, while preserving the base model for earlier steps. This approach mitigates early-stage overfitting and helps retain global structure and diversity. Second, we propose \textit{ImageReFL}, a fine-tuning method that improves image diversity with minimal loss in quality by training on real images and incorporating multiple regularizers, including diffusion and ReFL losses. Our approach outperforms conventional reward tuning methods on standard quality and diversity metrics. A user study further confirms that our method better balances human preference alignment and visual diversity. The source code can be found at https://github.com/ControlGenAI/ImageReFL .

Authors:Ethan Chern, Zhulin Hu, Steffi Chern, Siqi Kou, Jiadi Su, Yan Ma, Zhijie Deng, Pengfei Liu
Title: Thinking with Generated Images
Abstract:
We present Thinking with Generated Images, a novel paradigm that fundamentally transforms how large multimodal models (LMMs) engage with visual reasoning by enabling them to natively think across text and vision modalities through spontaneous generation of intermediate visual thinking steps. Current visual reasoning with LMMs is constrained to either processing fixed user-provided images or reasoning solely through text-based chain-of-thought (CoT). Thinking with Generated Images unlocks a new dimension of cognitive capability where models can actively construct intermediate visual thoughts, critique their own visual hypotheses, and refine them as integral components of their reasoning process. We demonstrate the effectiveness of our approach through two complementary mechanisms: (1) vision generation with intermediate visual subgoals, where models decompose complex visual tasks into manageable components that are generated and integrated progressively, and (2) vision generation with self-critique, where models generate an initial visual hypothesis, analyze its shortcomings through textual reasoning, and produce refined outputs based on their own critiques. Our experiments on vision generation benchmarks show substantial improvements over baseline approaches, with our models achieving up to 50% (from 38% to 57%) relative improvement in handling complex multi-object scenarios. From biochemists exploring novel protein structures, and architects iterating on spatial designs, to forensic analysts reconstructing crime scenes, and basketball players envisioning strategic plays, our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking. We release our open-source suite at https://github.com/GAIR-NLP/thinking-with-generated-images.

Authors:Wenjie Sun, Bingzhe Wu, Zhile Yang, Chengke Wu
Title: Sparsification and Reconstruction from the Perspective of Representation Geometry
Abstract:
Sparse Autoencoders (SAEs) have emerged as a predominant tool in mechanistic interpretability, aiming to identify interpretable monosemantic features. However, how does sparse encoding organize the representations of activation vector from language models? What is the relationship between this organizational paradigm and feature disentanglement as well as reconstruction performance? To address these questions, we propose the SAEMA, which validates the stratified structure of the representation by observing the variability of the rank of the symmetric semipositive definite (SSPD) matrix corresponding to the modal tensor unfolded along the latent tensor with the level of noise added to the residual stream. To systematically investigate how sparse encoding alters representational structures, we define local and global representations, demonstrating that they amplify inter-feature distinctions by merging similar semantic features and introducing additional dimensionality. Furthermore, we intervene the global representation from an optimization perspective, proving a significant causal relationship between their separability and the reconstruction performance. This study explains the principles of sparsity from the perspective of representational geometry and demonstrates the impact of changes in representational structure on reconstruction performance. Particularly emphasizes the necessity of understanding representations and incorporating representational constraints, providing empirical references for developing new interpretable tools and improving SAEs. The code is available at \hyperlink{https://github.com/wenjie1835/SAERepGeo}{https://github.com/wenjie1835/SAERepGeo}.

Authors:Zobia Batool, Huseyin Ozkan, Erchan Aptoula
Title: Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning
Abstract:
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

Authors:Qiucheng Yu, Yuan Xie, Xin Tan
Title: SHTOcc: Effective 3D Occupancy Prediction with Sparse Head and Tail Voxels
Abstract:
3D occupancy prediction has attracted much attention in the field of autonomous driving due to its powerful geometric perception and object recognition capabilities. However, existing methods have not explored the most essential distribution patterns of voxels, resulting in unsatisfactory results. This paper first explores the inter-class distribution and geometric distribution of voxels, thereby solving the long-tail problem caused by the inter-class distribution and the poor performance caused by the geometric distribution. Specifically, this paper proposes SHTOcc (Sparse Head-Tail Occupancy), which uses sparse head-tail voxel construction to accurately identify and balance key voxels in the head and tail classes, while using decoupled learning to reduce the model's bias towards the dominant (head) category and enhance the focus on the tail class. Experiments show that significant improvements have been made on multiple baselines: SHTOcc reduces GPU memory usage by 42.2%, increases inference speed by 58.6%, and improves accuracy by about 7%, verifying its effectiveness and efficiency. The code is available at https://github.com/ge95net/SHTOcc

Authors:Seun-An Choe, Keon-Hee Park, Jinwoo Choi, Gyeong-Moon Park
Title: Universal Domain Adaptation for Semantic Segmentation
Abstract:
Unsupervised domain adaptation for semantic segmentation (UDA-SS) aims to transfer knowledge from labeled source data to unlabeled target data. However, traditional UDA-SS methods assume that category settings between source and target domains are known, which is unrealistic in real-world scenarios. This leads to performance degradation if private classes exist. To address this limitation, we propose Universal Domain Adaptation for Semantic Segmentation (UniDA-SS), achieving robust adaptation even without prior knowledge of category settings. We define the problem in the UniDA-SS scenario as low confidence scores of common classes in the target domain, which leads to confusion with private classes. To solve this problem, we propose UniMAP: UniDA-SS with Image Matching and Prototype-based Distinction, a novel framework composed of two key components. First, Domain-Specific Prototype-based Distinction (DSPD) divides each class into two domain-specific prototypes, enabling finer separation of domain-specific features and enhancing the identification of common classes across domains. Second, Target-based Image Matching (TIM) selects a source image containing the most common-class pixels based on the target pseudo-label and pairs it in a batch to promote effective learning of common classes. We also introduce a new UniDA-SS benchmark and demonstrate through various experiments that UniMAP significantly outperforms baselines. The code is available at https://github.com/KU-VGI/UniMAP.

Authors:Lai Wei, Yuting Li, Chen Wang, Yue Wang, Linghe Kong, Weiran Huang, Lichao Sun
Title: Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO
Abstract:
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %$\rightarrow$72.9 % on MathVista, 62.9 %$\rightarrow$68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.

Authors:Mattie Fellows, Clarisse Wibault, Uljad Berdica, Johannes Forkel, Michael A. Osborne, Jakob N. Foerster
Title: SOReL and TOReL: Two Methods for Fully Offline Reinforcement Learning
Abstract:
Sample efficiency remains a major obstacle for real world adoption of reinforcement learning (RL): success has been limited to settings where simulators provide access to essentially unlimited environment interactions, which in reality are typically costly or dangerous to obtain. Offline RL in principle offers a solution by exploiting offline data to learn a near-optimal policy before deployment. In practice, however, current offline RL methods rely on extensive online interactions for hyperparameter tuning, and have no reliable bound on their initial online performance. To address these two issues, we introduce two algorithms. Firstly, SOReL: an algorithm for safe offline reinforcement learning. Using only offline data, our Bayesian approach infers a posterior over environment dynamics to obtain a reliable estimate of the online performance via the posterior predictive uncertainty. Crucially, all hyperparameters are also tuned fully offline. Secondly, we introduce TOReL: a tuning for offline reinforcement learning algorithm that extends our information rate based offline hyperparameter tuning methods to general offline RL approaches. Our empirical evaluation confirms SOReL's ability to accurately estimate regret in the Bayesian setting whilst TOReL's offline hyperparameter tuning achieves competitive performance with the best online hyperparameter tuning methods using only offline data. Thus, SOReL and TOReL make a significant step towards safe and reliable offline RL, unlocking the potential for RL in the real world. Our implementations are publicly available: https://github.com/CWibault/sorel\_torel.

Authors:Van-Tin Luu, Yon-Lin Cai, Vu-Hoang Tran, Wei-Chen Chiu, Yi-Ting Chen, Ching-Chun Huang
Title: RC-AutoCalib: An End-to-End Radar-Camera Automatic Calibration Network
Abstract:
This paper presents a groundbreaking approach - the first online automatic geometric calibration method for radar and camera systems. Given the significant data sparsity and measurement uncertainty in radar height data, achieving automatic calibration during system operation has long been a challenge. To address the sparsity issue, we propose a Dual-Perspective representation that gathers features from both frontal and bird's-eye views. The frontal view contains rich but sensitive height information, whereas the bird's-eye view provides robust features against height uncertainty. We thereby propose a novel Selective Fusion Mechanism to identify and fuse reliable features from both perspectives, reducing the effect of height uncertainty. Moreover, for each view, we incorporate a Multi-Modal Cross-Attention Mechanism to explicitly find location correspondences through cross-modal matching. During the training phase, we also design a Noise-Resistant Matcher to provide better supervision and enhance the robustness of the matching mechanism against sparsity and height uncertainty. Our experimental results, tested on the nuScenes dataset, demonstrate that our method significantly outperforms previous radar-camera auto-calibration methods, as well as existing state-of-the-art LiDAR-camera calibration techniques, establishing a new benchmark for future research. The code is available at https://github.com/nycu-acm/RC-AutoCalib.

Authors:Václav Voráček, Francesco Orabona
Title: STaR-Bets: Sequential Target-Recalculating Bets for Tighter Confidence Intervals
Abstract:
The construction of confidence intervals for the mean of a bounded random variable is a classical problem in statistics with numerous applications in machine learning and virtually all scientific fields. In particular, obtaining the tightest possible confidence intervals is vital every time the sampling of the random variables is expensive. The current state-of-the-art method to construct confidence intervals is by using betting algorithms. This is a very successful approach for deriving optimal confidence sequences, even matching the rate of law of iterated logarithms. However, in the fixed horizon setting, these approaches are either sub-optimal or based on heuristic solutions with strong empirical performance but without a finite-time guarantee. Hence, no betting-based algorithm guaranteeing the optimal $\mathcal{O}(\sqrt{\frac{σ^2\log\frac1δ}{n}})$ width of the confidence intervals are known. This work bridges this gap. We propose a betting-based algorithm to compute confidence intervals that empirically outperforms the competitors. Our betting strategy uses the optimal strategy in every step (in a certain sense), whereas the standard betting methods choose a constant strategy in advance. Leveraging this fact results in strict improvements even for classical concentration inequalities, such as the ones of Hoeffding or Bernstein. Moreover, we also prove that the width of our confidence intervals is optimal up to an $1+o(1)$ factor diminishing with $n$. The code is available on~https://github.com/vvoracek/STaR-bets-confidence-interval.

Authors:Anthony Chen, Wenzhao Zheng, Yida Wang, Xueyang Zhang, Kun Zhan, Peng Jia, Kurt Keutzer, Shanghang Zhang
Title: GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Abstract:
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.

Authors:Yao Huang, Huanran Chen, Shouwei Ruan, Yichi Zhang, Xingxing Wei, Yinpeng Dong
Title: Mitigating Overthinking in Large Reasoning Models via Manifold Steering
Abstract:
Recent advances in Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in solving complex tasks such as mathematics and coding. However, these models frequently exhibit a phenomenon known as overthinking during inference, characterized by excessive validation loops and redundant deliberation, leading to substantial computational overheads. In this paper, we aim to mitigate overthinking by investigating the underlying mechanisms from the perspective of mechanistic interpretability. We first showcase that the tendency of overthinking can be effectively captured by a single direction in the model's activation space and the issue can be eased by intervening the activations along this direction. However, this efficacy soon reaches a plateau and even deteriorates as the intervention strength increases. We therefore systematically explore the activation space and find that the overthinking phenomenon is actually tied to a low-dimensional manifold, which indicates that the limited effect stems from the noises introduced by the high-dimensional steering direction. Based on this insight, we propose Manifold Steering, a novel approach that elegantly projects the steering direction onto the low-dimensional activation manifold given the theoretical approximation of the interference noise. Extensive experiments on DeepSeek-R1 distilled models validate that our method reduces output tokens by up to 71% while maintaining and even improving the accuracy on several mathematical benchmarks. Our method also exhibits robust cross-domain transferability, delivering consistent token reduction performance in code generation and knowledge-based QA tasks. Code is available at: https://github.com/Aries-iai/Manifold_Steering.

Authors:Enfang Cui, Yujun Cheng, Rui She, Dan Liu, Zhiyuan Liang, Minxin Guo, Tianzheng Li, Qian Wei, Wenjuan Xing, Zhijie Zhong
Title: AgentDNS: A Root Domain Naming System for LLM Agents
Abstract:
The rapid evolution of Large Language Model (LLM) agents has highlighted critical challenges in cross-vendor service discovery, interoperability, and communication. Existing protocols like model context protocol and agent-to-agent protocol have made significant strides in standardizing interoperability between agents and tools, as well as communication among multi-agents. However, there remains a lack of standardized protocols and solutions for service discovery across different agent and tool vendors. In this paper, we propose AgentDNS, a root domain naming and service discovery system designed to enable LLM agents to autonomously discover, resolve, and securely invoke third-party agent and tool services across organizational and technological boundaries. Inspired by the principles of the traditional DNS, AgentDNS introduces a structured mechanism for service registration, semantic service discovery, secure invocation, and unified billing. We detail the architecture, core functionalities, and use cases of AgentDNS, demonstrating its potential to streamline multi-agent collaboration in real-world scenarios. The source code will be published on https://github.com/agentdns.

Authors:Yongkang Liu, Xingle Xu, Ercong Nie, Zijing Wang, Shi Feng, Daling Wang, Qian Li, Hinrich Schütze
Title: Look Within or Look Beyond? A Theoretical Comparison Between Parameter-Efficient and Full Fine-Tuning
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) methods achieve performance comparable to Full Fine-Tuning (FFT) while requiring significantly fewer computing resources, making it the go-to choice for researchers. We find that although PEFT can achieve competitive results on some benchmarks, its performance falls short of FFT in complex tasks, such as reasoning and instruction-based fine-tuning. In this paper, we compare the characteristics of PEFT and FFT in terms of representational capacity and robustness based on optimization theory. We theoretically demonstrate that PEFT is a strict subset of FFT. By providing theoretical upper bounds for PEFT, we show that the limited parameter space constrains the model's representational ability, making it more susceptible to perturbations. Experiments on 15 datasets encompassing classification, generation, reasoning, instruction fine-tuning tasks and 11 adversarial test sets validate our theories. We hope that these results spark further research beyond the realms of well established PEFT. The source code is in the anonymous Github repository\footnote{https://github.com/misonsky/PEFTEval}.

Authors:Anjie Xu, Ruiqing Ding, Leye Wang
Title: ChatPD: An LLM-driven Paper-Dataset Networking System
Abstract:
Scientific research heavily depends on suitable datasets for method validation, but existing academic platforms with dataset management like PapersWithCode suffer from inefficiencies in their manual workflow. To overcome this bottleneck, we present a system, called ChatPD, that utilizes Large Language Models (LLMs) to automate dataset information extraction from academic papers and construct a structured paper-dataset network. Our system consists of three key modules: \textit{paper collection}, \textit{dataset information extraction}, and \textit{dataset entity resolution} to construct paper-dataset networks. Specifically, we propose a \textit{Graph Completion and Inference} strategy to map dataset descriptions to their corresponding entities. Through extensive experiments, we demonstrate that ChatPD not only outperforms the existing platform PapersWithCode in dataset usage extraction but also achieves about 90\% precision and recall in entity resolution tasks. Moreover, we have deployed ChatPD to continuously extract which datasets are used in papers, and provide a dataset discovery service, such as task-specific dataset queries and similar dataset recommendations. We open source ChatPD and the current paper-dataset network on this [GitHub repository]{https://github.com/ChatPD-web/ChatPD}.

Authors:Shriram M S, Xinyue Hao, Shihao Hou, Yang Lu, Laura Sevilla-Lara, Anurag Arnab, Shreyank N Gowda
Title: Progressive Data Dropout: An Embarrassingly Simple Approach to Faster Training
Abstract:
The success of the machine learning field has reliably depended on training on large datasets. While effective, this trend comes at an extraordinary cost. This is due to two deeply intertwined factors: the size of models and the size of datasets. While promising research efforts focus on reducing the size of models, the other half of the equation remains fairly mysterious. Indeed, it is surprising that the standard approach to training remains to iterate over and over, uniformly sampling the training dataset. In this paper we explore a series of alternative training paradigms that leverage insights from hard-data-mining and dropout, simple enough to implement and use that can become the new training standard. The proposed Progressive Data Dropout reduces the number of effective epochs to as little as 12.4% of the baseline. This savings actually do not come at any cost for accuracy. Surprisingly, the proposed method improves accuracy by up to 4.82%. Our approach requires no changes to model architecture or optimizer, and can be applied across standard training pipelines, thus posing an excellent opportunity for wide adoption. Code can be found here: https://github.com/bazyagami/LearningWithRevision

Authors:Hanyang Wang, Lu Wang, Chaoyun Zhang, Tianjun Mao, Si Qin, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Title: Text2Grad: Reinforcement Learning from Natural Language Feedback
Abstract:
Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answer while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results demonstrate that natural-language feedback, when converted to gradients, is a powerful signal for fine-grained policy optimization. The code for our method is available at https://github.com/microsoft/Text2Grad

Authors:Lai Wei, Yuting Li, Kaipeng Zheng, Chen Wang, Yue Wang, Linghe Kong, Lichao Sun, Weiran Huang
Title: Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start
Abstract:
Recent advancements in large language models (LLMs) have demonstrated impressive chain-of-thought reasoning capabilities, with reinforcement learning (RL) playing a crucial role in this progress. While "aha moment" patterns--where models exhibit self-correction through reflection--are often attributed to emergent properties from RL, we first demonstrate that these patterns exist in multimodal LLMs (MLLMs) prior to RL training but may not necessarily correlate with improved reasoning performance. Building on these insights, we present a comprehensive study on enhancing multimodal reasoning through a two-stage approach: (1) supervised fine-tuning (SFT) as a cold start with structured chain-of-thought reasoning patterns, followed by (2) reinforcement learning via GRPO to further refine these capabilities. Our extensive experiments show that this combined approach consistently outperforms both SFT-only and RL-only methods across challenging multimodal reasoning benchmarks. The resulting models achieve state-of-the-art performance among open-source MLLMs at both 3B and 7B scales, with our 7B model showing substantial improvements over base models (e.g., 66.3 %$\rightarrow$73.4 % on MathVista, 62.9 %$\rightarrow$70.4 % on We-Math) and our 3B model achieving performance competitive with several 7B models. Overall, this work provides practical guidance for building advanced multimodal reasoning models. Our code is available at https://github.com/waltonfuture/RL-with-Cold-Start.

Authors:Ganlin Xu, Zhoujia Zhang, Wangyi Mei, Jiaqing Liang, Weijia Lu, Xiaodong Zhang, Zhifei Yang, Xiaofeng Ma, Yanghua Xiao, Deqing Yang
Title: Logical Consistency is Vital: Neural-Symbolic Information Retrieval for Negative-Constraint Queries
Abstract:
Information retrieval plays a crucial role in resource localization. Current dense retrievers retrieve the relevant documents within a corpus via embedding similarities, which compute similarities between dense vectors mainly depending on word co-occurrence between queries and documents, but overlook the real query intents. Thus, they often retrieve numerous irrelevant documents. Particularly in the scenarios of complex queries such as \emph{negative-constraint queries}, their retrieval performance could be catastrophic. To address the issue, we propose a neuro-symbolic information retrieval method, namely \textbf{NS-IR}, that leverages first-order logic (FOL) to optimize the embeddings of naive natural language by considering the \emph{logical consistency} between queries and documents. Specifically, we introduce two novel techniques, \emph{logic alignment} and \emph{connective constraint}, to rerank candidate documents, thereby enhancing retrieval relevance. Furthermore, we construct a new dataset \textbf{NegConstraint} including negative-constraint queries to evaluate our NS-IR's performance on such complex IR scenarios. Our extensive experiments demonstrate that NS-IR not only achieves superior zero-shot retrieval performance on web search and low-resource retrieval tasks, but also performs better on negative-constraint queries. Our scource code and dataset are available at https://github.com/xgl-git/NS-IR-main.

Authors:Haosheng Zou, Xiaowei Lv, Shousheng Jia, Xiangzheng Zhang
Title: 360-LLaMA-Factory: Plug & Play Sequence Parallelism for Long Post-Training
Abstract:
Adding sequence parallelism into LLaMA-Factory, we open-sourced 360-LLaMA-Factory at https://github.com/Qihoo360/360-LLaMA-Factory. 360-LLaMA-Factory has received wide recognition and used in models such as Light-R1 arXiv:2503.10460, TinyR1 arXiv:2503.04872, Kaggle AIMO math models and also in large companies' training frameworks. This technical report delves deeper into the different sequence parallel modes behind 360-LLaMA-Factory and discusses our implementation insights.

Authors:Haosheng Zou, Xiaowei Lv, Shousheng Jia, Lin Li, Xiaochun Gong, Xiangzheng Zhang
Title: 360-LLaMA-Factory: Plug & Play Sequence Parallelism for Long Post-Training
Abstract:
Adding sequence parallelism into LLaMA-Factory, we open-sourced 360-LLaMA-Factory at https://github.com/Qihoo360/360-LLaMA-Factory. 360-LLaMA-Factory has received wide recognition and used in models such as Light-R1 arXiv:2503.10460, TinyR1 arXiv:2503.04872, Kaggle AIMO math models and also in large companies' training frameworks. This technical report delves deeper into the different sequence parallel modes behind 360-LLaMA-Factory and discusses our implementation insights.

Authors:Haibin He, Jing Zhang, Maoyuan Ye, Juhua Liu, Bo Du, Dacheng Tao
Title: GoMatching++: Parameter- and Data-Efficient Arbitrary-Shaped Video Text Spotting and Benchmarking
Abstract:
Video text spotting (VTS) extends image text spotting (ITS) by adding text tracking, significantly increasing task complexity. Despite progress in VTS, existing methods still fall short of the performance seen in ITS. This paper identifies a key limitation in current video text spotters: limited recognition capability, even after extensive end-to-end training. To address this, we propose GoMatching++, a parameter- and data-efficient method that transforms an off-the-shelf image text spotter into a video specialist. The core idea lies in freezing the image text spotter and introducing a lightweight, trainable tracker, which can be optimized efficiently with minimal training data. Our approach includes two key components: (1) a rescoring mechanism to bridge the domain gap between image and video data, and (2) the LST-Matcher, which enhances the frozen image text spotter's ability to handle video text. We explore various architectures for LST-Matcher to ensure efficiency in both parameters and training data. As a result, GoMatching++ sets new performance records on challenging benchmarks such as ICDAR15-video, DSText, and BOVText, while significantly reducing training costs. To address the lack of curved text datasets in VTS, we introduce ArTVideo, a new benchmark featuring over 30% curved text with detailed annotations. We also provide a comprehensive statistical analysis and experimental results for ArTVideo. We believe that GoMatching++ and the ArTVideo benchmark will drive future advancements in video text spotting. The source code, models and dataset are publicly available at https://github.com/Hxyz-123/GoMatching.

Authors:Xuchen Ma, Jianxiang Yu, Wenming Shao, Bo Pang, Xiang Li
Title: Breaking the Cloak! Unveiling Chinese Cloaked Toxicity with Homophone Graph and Toxic Lexicon
Abstract:
Social media platforms have experienced a significant rise in toxic content, including abusive language and discriminatory remarks, presenting growing challenges for content moderation. Some users evade censorship by deliberately disguising toxic words through homophonic cloak, which necessitates the task of unveiling cloaked toxicity. Existing methods are mostly designed for English texts, while Chinese cloaked toxicity unveiling has not been solved yet. To tackle the issue, we propose C$^2$TU, a novel training-free and prompt-free method for Chinese cloaked toxic content unveiling. It first employs substring matching to identify candidate toxic words based on Chinese homo-graph and toxic lexicon. Then it filters those candidates that are non-toxic and corrects cloaks to be their corresponding toxicities. Specifically, we develop two model variants for filtering, which are based on BERT and LLMs, respectively. For LLMs, we address the auto-regressive limitation in computing word occurrence probability and utilize the full semantic contexts of a text sequence to reveal cloaked toxic words. Extensive experiments demonstrate that C$^2$TU can achieve superior performance on two Chinese toxic datasets. In particular, our method outperforms the best competitor by up to 71% on the F1 score and 35% on accuracy, respectively. Our code and data are available at https://github.com/XDxc-cuber/C2TU-Chinese-cloaked-toxicity-unveiling.

Authors:Yudi Zhang, Weilin Zhao, Xu Han, Tiejun Zhao, Wang Xu, Hailong Cao, Conghui Zhu
Title: Speculative Decoding Meets Quantization: Compatibility Evaluation and Hierarchical Framework Design
Abstract:
Speculative decoding and quantization effectively accelerate memory-bound inference of large language models. Speculative decoding mitigates the memory bandwidth bottleneck by verifying multiple tokens within a single forward pass, which increases computational effort. Quantization achieves this optimization by compressing weights and activations into lower bit-widths and also reduces computations via low-bit matrix multiplications. To further leverage their strengths, we investigate the integration of these two techniques. Surprisingly, experiments applying the advanced speculative decoding method EAGLE-2 to various quantized models reveal that the memory benefits from 4-bit weight quantization are diminished by the computational load from speculative decoding. Specifically, verifying a tree-style draft incurs significantly more time overhead than a single-token forward pass on 4-bit weight quantized models. This finding led to our new speculative decoding design: a hierarchical framework that employs a small model as an intermediate stage to turn tree-style drafts into sequence drafts, leveraging the memory access benefits of the target quantized model. Experimental results show that our hierarchical approach achieves a 2.78$\times$ speedup across various tasks for the 4-bit weight Llama-3-70B model on an A100 GPU, outperforming EAGLE-2 by 1.31$\times$. Code available at https://github.com/AI9Stars/SpecMQuant.

Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Xiangqi Li, Yu Wang, Zhulin An, Libo Huang, Boyu Diao, Zixiang Zhao, Yongjun Xu, Michele Magno
Title: Q-VDiT: Towards Accurate Quantization and Distillation of Video-Generation Diffusion Transformers
Abstract:
Diffusion transformers (DiT) have demonstrated exceptional performance in video generation. However, their large number of parameters and high computational complexity limit their deployment on edge devices. Quantization can reduce storage requirements and accelerate inference by lowering the bit-width of model parameters. Yet, existing quantization methods for image generation models do not generalize well to video generation tasks. We identify two primary challenges: the loss of information during quantization and the misalignment between optimization objectives and the unique requirements of video generation. To address these challenges, we present Q-VDiT, a quantization framework specifically designed for video DiT models. From the quantization perspective, we propose the Token-aware Quantization Estimator (TQE), which compensates for quantization errors in both the token and feature dimensions. From the optimization perspective, we introduce Temporal Maintenance Distillation (TMD), which preserves the spatiotemporal correlations between frames and enables the optimization of each frame with respect to the overall video context. Our W3A6 Q-VDiT achieves a scene consistency of 23.40, setting a new benchmark and outperforming current state-of-the-art quantization methods by 1.9$\times$. Code will be available at https://github.com/cantbebetter2/Q-VDiT.

Authors:Tiantian Feng, Thanathai Lertpetchpun, Dani Byrd, Shrikanth Narayanan
Title: Developing a Top-tier Framework in Naturalistic Conditions Challenge for Categorized Emotion Prediction: From Speech Foundation Models and Learning Objective to Data Augmentation and Engineering Choices
Abstract:
Speech emotion recognition (SER), particularly for naturally expressed emotions, remains a challenging computational task. Key challenges include the inherent subjectivity in emotion annotation and the imbalanced distribution of emotion labels in datasets. This paper introduces the \texttt{SAILER} system developed for participation in the INTERSPEECH 2025 Emotion Recognition Challenge (Task 1). The challenge dataset, which contains natural emotional speech from podcasts, serves as a valuable resource for studying imbalanced and subjective emotion annotations. Our system is designed to be simple, reproducible, and effective, highlighting critical choices in modeling, learning objectives, data augmentation, and engineering choices. Results show that even a single system (without ensembling) can outperform more than 95\% of the submissions, with a Macro-F1 score exceeding 0.4. Moreover, an ensemble of three systems further improves performance, achieving a competitively ranked score (top-3 performing team). Our model is at: https://github.com/tiantiaf0627/vox-profile-release.

Authors:Zhuoyang Wu, Xinze Li, Zhenghao Liu, Yukun Yan, Zhiyuan Liu, Minghe Yu, Cheng Yang, Yu Gu, Ge Yu, Maosong Sun
Title: EULER: Enhancing the Reasoning Ability of Large Language Models through Error-Induced Learning
Abstract:
Large Language Models (LLMs) have demonstrated strong reasoning capabilities and achieved promising results in mathematical problem-solving tasks. Learning from errors offers the potential to further enhance the performance of LLMs during Supervised Fine-Tuning (SFT). However, the errors in synthesized solutions are typically gathered from sampling trails, making it challenging to generate solution errors for each mathematical problem. This paper introduces the Error-IndUced LEaRning (EULER) model, which aims to develop an error exposure model that generates high-quality solution errors to enhance the mathematical reasoning capabilities of LLMs. Specifically, EULER optimizes the error exposure model to increase the generation probability of self-made solution errors while utilizing solutions produced by a superior LLM to regularize the generation quality. Our experiments across various mathematical problem datasets demonstrate the effectiveness of the EULER model, achieving an improvement of over 4% compared to all baseline models. Further analysis reveals that EULER is capable of synthesizing more challenging and educational solution errors, which facilitate both the training and inference processes of LLMs. All codes are available at https://github.com/NEUIR/EULER.

Authors:Haidong Xin, Qiushi Xiong, Zhenghao Liu, Sen Mei, Yukun Yan, Shi Yu, Shuo Wang, Yu Gu, Ge Yu, Chenyan Xiong
Title: ConsRec: Denoising Sequential Recommendation through User-Consistent Preference Modeling
Abstract:
User-item interaction histories are pivotal for sequential recommendation systems but often include noise, such as unintended clicks or actions that fail to reflect genuine user preferences. To address this issue, we propose the User-Consistent Preference-based Sequential Recommendation System (ConsRec), designed to capture stable user preferences and filter noisy items from interaction histories. Specifically, ConsRec constructs a user-interacted item graph, learns item similarities from their text representations, and then extracts the maximum connected subgraph from the user-interacted item graph for denoising items. Experimental results on the Yelp and Amazon Product datasets illustrate that ConsRec achieves a 13% improvement over baseline recommendation models, showing its effectiveness in denoising user-interacted items. Further analysis reveals that the denoised interaction histories form semantically tighter clusters of user-preferred items, leading to higher relevance scores for ground-truth targets and more accurate recommendations. All codes are available at https://github.com/NEUIR/ConsRec.

Authors:Runyu Wang, Peng Ping, Zhengyu Guo, Xiaoye Zhang, Quan Shi, Liting Zhou, Tianbo Ji
Title: LoKI: Low-damage Knowledge Implanting of Large Language Models
Abstract:
Fine-tuning adapts pretrained models for specific tasks but poses the risk of catastrophic forgetting (CF), where critical knowledge from pre-training is overwritten. Current Parameter-Efficient Fine-Tuning (PEFT) methods for Large Language Models (LLMs), while efficient, often sacrifice general capabilities. To address the issue of CF in a general-purpose PEFT framework, we propose \textbf{Lo}w-damage \textbf{K}nowledge \textbf{I}mplanting (\textbf{LoKI}), a PEFT technique that is based on a mechanistic understanding of how knowledge is stored in transformer architectures. In two real-world scenarios, LoKI demonstrates task-specific performance that is comparable to or even surpasses that of full fine-tuning and LoRA-based methods across various model types, while significantly better preserving general capabilities. Our work connects mechanistic insights into LLM knowledge storage with practical fine-tuning objectives, achieving state-of-the-art trade-offs between task specialization and the preservation of general capabilities. Our implementation is publicly available as ready-to-use code\footnote{https://github.com/Nexround/LoKI}.

Authors:Jintao Zhang, Zirui Liu, Mingyue Cheng, Shilong Zhang, Tingyue Pan, Yitong zhou, Qi Liu, Yanhu Xie
Title: Multimodal Forecasting of Sparse Intraoperative Hypotension Events Powered by Language Model
Abstract:
Intraoperative hypotension (IOH) frequently occurs under general anesthesia and is strongly linked to adverse outcomes such as myocardial injury and increased mortality. Despite its significance, IOH prediction is hindered by event sparsity and the challenge of integrating static and dynamic data across diverse patients. In this paper, we propose \textbf{IOHFuseLM}, a multimodal language model framework. To accurately identify and differentiate sparse hypotensive events, we leverage a two-stage training strategy. The first stage involves domain adaptive pretraining on IOH physiological time series augmented through diffusion methods, thereby enhancing the model sensitivity to patterns associated with hypotension. Subsequently, task fine-tuning is performed on the original clinical dataset to further enhance the ability to distinguish normotensive from hypotensive states. To enable multimodal fusion for each patient, we align structured clinical descriptions with the corresponding physiological time series at the token level. Such alignment enables the model to capture individualized temporal patterns alongside their corresponding clinical semantics. In addition, we convert static patient attributes into structured text to enrich personalized information. Experimental evaluations on two intraoperative datasets demonstrate that IOHFuseLM outperforms established baselines in accurately identifying IOH events, highlighting its applicability in clinical decision support scenarios. Our code is publicly available to promote reproducibility at https://github.com/zjt-gpu/IOHFuseLM.

Authors:Shuhai Zhang, Zeng You, Yaofo Chen, Zhiquan Wen, Qianyue Wang, Zhijie Qiu, Yuanqing Li, Mingkui Tan
Title: Curse of High Dimensionality Issue in Transformer for Long-context Modeling
Abstract:
Transformer-based large language models (LLMs) excel in natural language processing tasks by capturing long-range dependencies through self-attention mechanisms. However, long-context modeling faces significant computational inefficiencies due to \textit{redundant} attention computations: while attention weights are often \textit{sparse}, all tokens consume \textit{equal} computational resources. In this paper, we reformulate traditional probabilistic sequence modeling as a \textit{supervised learning task}, enabling the separation of relevant and irrelevant tokens and providing a clearer understanding of redundancy. Based on this reformulation, we theoretically analyze attention sparsity, revealing that only a few tokens significantly contribute to predictions. Building on this, we formulate attention optimization as a linear coding problem and propose a \textit{group coding strategy}, theoretically showing its ability to improve robustness against random noise and enhance learning efficiency. Motivated by this, we propose \textit{Dynamic Group Attention} (DGA), which leverages the group coding to explicitly reduce redundancy by aggregating less important tokens during attention computation. Empirical results show that our DGA significantly reduces computational costs while maintaining competitive performance.Code is available at https://github.com/bolixinyu/DynamicGroupAttention.

Authors:Hang Chen, Maoyuan Ye, Peng Yang, Haibin He, Juhua Liu, Bo Du
Title: Adapting Segment Anything Model for Power Transmission Corridor Hazard Segmentation
Abstract:
Power transmission corridor hazard segmentation (PTCHS) aims to separate transmission equipment and surrounding hazards from complex background, conveying great significance to maintaining electric power transmission safety. Recently, the Segment Anything Model (SAM) has emerged as a foundational vision model and pushed the boundaries of segmentation tasks. However, SAM struggles to deal with the target objects in complex transmission corridor scenario, especially those with fine structure. In this paper, we propose ELE-SAM, adapting SAM for the PTCHS task. Technically, we develop a Context-Aware Prompt Adapter to achieve better prompt tokens via incorporating global-local features and focusing more on key regions. Subsequently, to tackle the hazard objects with fine structure in complex background, we design a High-Fidelity Mask Decoder by leveraging multi-granularity mask features and then scaling them to a higher resolution. Moreover, to train ELE-SAM and advance this field, we construct the ELE-40K benchmark, the first large-scale and real-world dataset for PTCHS including 44,094 image-mask pairs. Experimental results for ELE-40K demonstrate the superior performance that ELE-SAM outperforms the baseline model with the average 16.8% mIoU and 20.6% mBIoU performance improvement. Moreover, compared with the state-of-the-art method on HQSeg-44K, the average 2.9% mIoU and 3.8% mBIoU absolute improvements further validate the effectiveness of our method on high-quality generic object segmentation. The source code and dataset are available at https://github.com/Hhaizee/ELE-SAM.

Authors:Junhuan Liu, San Jiang, Wei Ge, Wei Huang, Bingxuan Guo, Qingquan Li
Title: UAVPairs: A Challenging Benchmark for Match Pair Retrieval of Large-scale UAV Images
Abstract:
The primary contribution of this paper is a challenging benchmark dataset, UAVPairs, and a training pipeline designed for match pair retrieval of large-scale UAV images. First, the UAVPairs dataset, comprising 21,622 high-resolution images across 30 diverse scenes, is constructed; the 3D points and tracks generated by SfM-based 3D reconstruction are employed to define the geometric similarity of image pairs, ensuring genuinely matchable image pairs are used for training. Second, to solve the problem of expensive mining cost for global hard negative mining, a batched nontrivial sample mining strategy is proposed, leveraging the geometric similarity and multi-scene structure of the UAVPairs to generate training samples as to accelerate training. Third, recognizing the limitation of pair-based losses, the ranked list loss is designed to improve the discrimination of image retrieval models, which optimizes the global similarity structure constructed from the positive set and negative set. Finally, the effectiveness of the UAVPairs dataset and training pipeline is validated through comprehensive experiments on three distinct large-scale UAV datasets. The experiment results demonstrate that models trained with the UAVPairs dataset and the ranked list loss achieve significantly improved retrieval accuracy compared to models trained on existing datasets or with conventional losses. Furthermore, these improvements translate to enhanced view graph connectivity and higher quality of reconstructed 3D models. The models trained by the proposed approach perform more robustly compared with hand-crafted global features, particularly in challenging repetitively textured scenes and weakly textured scenes. For match pair retrieval of large-scale UAV images, the trained image retrieval models offer an effective solution. The dataset would be made publicly available at https://github.com/json87/UAVPairs.

Authors:Valentin Cuzin-Rambaud, Emilien Komlenovic, Alexandre Faure, Bruno Yun
Title: VIRAL: Vision-grounded Integration for Reward design And Learning
Abstract:
The alignment between humans and machines is a critical challenge in artificial intelligence today. Reinforcement learning, which aims to maximize a reward function, is particularly vulnerable to the risks associated with poorly designed reward functions. Recent advancements has shown that Large Language Models (LLMs) for reward generation can outperform human performance in this context. We introduce VIRAL, a pipeline for generating and refining reward functions through the use of multi-modal LLMs. VIRAL autonomously creates and interactively improves reward functions based on a given environment and a goal prompt or annotated image. The refinement process can incorporate human feedback or be guided by a description generated by a video LLM, which explains the agent's policy in video form. We evaluated VIRAL in five Gymnasium environments, demonstrating that it accelerates the learning of new behaviors while ensuring improved alignment with user intent. The source-code and demo video are available at: https://github.com/VIRAL-UCBL1/VIRAL and https://youtu.be/Hqo82CxVT38.

Authors:Ruxiao Chen, Dezheng Han, Wenjie Han, Shuaishuai Guo
Title: Cognitively-Inspired Emergent Communication via Knowledge Graphs for Assisting the Visually Impaired
Abstract:
Assistive systems for visually impaired individuals must deliver rapid, interpretable, and adaptive feedback to facilitate real-time navigation. Current approaches face a trade-off between latency and semantic richness: natural language-based systems provide detailed guidance but are too slow for dynamic scenarios, while emergent communication frameworks offer low-latency symbolic languages but lack semantic depth, limiting their utility in tactile modalities like vibration. To address these limitations, we introduce a novel framework, Cognitively-Inspired Emergent Communication via Knowledge Graphs (VAG-EC), which emulates human visual perception and cognitive mapping. Our method constructs knowledge graphs to represent objects and their relationships, incorporating attention mechanisms to prioritize task-relevant entities, thereby mirroring human selective attention. This structured approach enables the emergence of compact, interpretable, and context-sensitive symbolic languages. Extensive experiments across varying vocabulary sizes and message lengths demonstrate that VAG-EC outperforms traditional emergent communication methods in Topographic Similarity (TopSim) and Context Independence (CI). These findings underscore the potential of cognitively grounded emergent communication as a fast, adaptive, and human-aligned solution for real-time assistive technologies. Code is available at https://github.com/Anonymous-NLPcode/Anonymous_submission/tree/main.

Authors:Shun Sato, Issei Sato
Title: Can Test-time Computation Mitigate Memorization Bias in Neural Symbolic Regression?
Abstract:
Symbolic regression aims to discover mathematical equations that fit given numerical data. It has been applied in various fields of scientific research, such as producing human-readable expressions that explain physical phenomena. Recently, Neural symbolic regression (NSR) methods that involve Transformers pre-trained on large-scale synthetic datasets have gained attention. While these methods offer advantages such as short inference time, they suffer from low performance, particularly when the number of input variables is large. In this study, we hypothesized that this limitation stems from the memorization bias of Transformers in symbolic regression. We conducted a quantitative evaluation of this bias in Transformers using a synthetic dataset and found that Transformers rarely generate expressions not present in the training data. Additional theoretical analysis reveals that this bias arises from the Transformer's inability to construct expressions compositionally while verifying their numerical validity. We finally examined if tailoring test-time strategies can lead to reduced memorization bias and better performance. We empirically demonstrate that providing additional information to the model at test time can significantly mitigate memorization bias. On the other hand, we also find that reducing memorization bias does not necessarily correlate with improved performance. These findings contribute to a deeper understanding of the limitations of NSR approaches and offer a foundation for designing more robust, generalizable symbolic regression methods. Code is available at https://github.com/Shun-0922/Mem-Bias-NSR .

Authors:Ran Li, Shimin Di, Yuchen Liu, Chen Jing, Yu Qiu, Lei Chen
Title: Beyond path selection: Better LLMs for Scientific Information Extraction with MimicSFT and Relevance and Rule-induced(R$^2$)GRPO
Abstract:
Previous study suggest that powerful Large Language Models (LLMs) trained with Reinforcement Learning with Verifiable Rewards (RLVR) only refines reasoning path without improving the reasoning capacity in math tasks while supervised-finetuning(SFT) with distillation can. We study this from the view of Scientific information extraction (SciIE) where LLMs and reasoning LLMs underperforms small Bert-based models. SciIE require both the reasoning and memorization. We argue that both SFT and RLVR can refine the reasoning path and improve reasoning capacity in a simple way based on SciIE. We propose two-stage training with 1. MimicSFT, using structured reasoning templates without needing high-quality chain-of-thought data, 2. R$^2$GRPO with relevance and rule-induced rewards. Experiments on scientific IE benchmarks show that both methods can improve the reasoning capacity. R$^2$GRPO with mimicSFT surpasses baseline LLMs and specialized supervised models in relation extraction. Our code is available at https://github.com/ranlislz/R2GRPO.

Authors:Jinming Zhang, Xuanru Zhou, Jiachen Lian, Shuhe Li, William Li, Zoe Ezzes, Rian Bogley, Lisa Wauters, Zachary Miller, Jet Vonk, Brittany Morin, Maria Gorno-Tempini, Gopala Anumanchipalli
Title: Analysis and Evaluation of Synthetic Data Generation in Speech Dysfluency Detection
Abstract:
Speech dysfluency detection is crucial for clinical diagnosis and language assessment, but existing methods are limited by the scarcity of high-quality annotated data. Although recent advances in TTS model have enabled synthetic dysfluency generation, existing synthetic datasets suffer from unnatural prosody and limited contextual diversity. To address these limitations, we propose LLM-Dys -- the most comprehensive dysfluent speech corpus with LLM-enhanced dysfluency simulation. This dataset captures 11 dysfluency categories spanning both word and phoneme levels. Building upon this resource, we improve an end-to-end dysfluency detection framework. Experimental validation demonstrates state-of-the-art performance. All data, models, and code are open-sourced at https://github.com/Berkeley-Speech-Group/LLM-Dys.

Authors:Zi-Hao Zhou, Jun-Jie Wang, Tong Wei, Min-Ling Zhang
Title: Weakly-Supervised Contrastive Learning for Imprecise Class Labels
Abstract:
Contrastive learning has achieved remarkable success in learning effective representations, with supervised contrastive learning often outperforming self-supervised approaches. However, in real-world scenarios, data annotations are often ambiguous or inaccurate, meaning that class labels may not reliably indicate whether two examples belong to the same class. This limitation restricts the applicability of supervised contrastive learning. To address this challenge, we introduce the concept of ``continuous semantic similarity'' to define positive and negative pairs. Instead of directly relying on imprecise class labels, we measure the semantic similarity between example pairs, which quantifies how closely they belong to the same category by iteratively refining weak supervisory signals. Based on this concept, we propose a graph-theoretic framework for weakly-supervised contrastive learning, where semantic similarity serves as the graph weights. Our framework is highly versatile and can be applied to many weakly-supervised learning scenarios. We demonstrate its effectiveness through experiments in two common settings, i.e., noisy label and partial label learning, where existing methods can be easily integrated to significantly improve performance. Theoretically, we establish an error bound for our approach, showing that it can approximate supervised contrastive learning under mild conditions. The implementation code is available at https://github.com/Speechless-10308/WSC.

Authors:Qiuchen Wang, Ruixue Ding, Yu Zeng, Zehui Chen, Lin Chen, Shihang Wang, Pengjun Xie, Fei Huang, Feng Zhao
Title: VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning
Abstract:
Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG.

Authors:Ruicheng Yin, Xuan Gao, Changze Lv, Xiaohua Wang, Xiaoqing Zheng, Xuanjing Huang
Title: Improving Continual Pre-training Through Seamless Data Packing
Abstract:
Continual pre-training has demonstrated significant potential in enhancing model performance, particularly in domain-specific scenarios. The most common approach for packing data before continual pre-training involves concatenating input texts and splitting them into fixed-length sequences. While straightforward and efficient, this method often leads to excessive truncation and context discontinuity, which can hinder model performance. To address these issues, we explore the potential of data engineering to enhance continual pre-training, particularly its impact on model performance and efficiency. We propose Seamless Packing (SP), a novel data packing strategy aimed at preserving contextual information more effectively and enhancing model performance. Our approach employs a sliding window technique in the first stage that synchronizes overlapping tokens across consecutive sequences, ensuring better continuity and contextual coherence. In the second stage, we adopt a First-Fit-Decreasing algorithm to pack shorter texts into bins slightly larger than the target sequence length, thereby minimizing padding and truncation. Empirical evaluations across various model architectures and corpus domains demonstrate the effectiveness of our method, outperforming baseline method in 99% of all settings. Code is available at https://github.com/Infernus-WIND/Seamless-Packing.

Authors:Ziyang Zheng, Kezhi Li, Zhengyuan Shi, Qiang Xu
Title: Functional Matching of Logic Subgraphs: Beyond Structural Isomorphism
Abstract:
Subgraph matching in logic circuits is foundational for numerous Electronic Design Automation (EDA) applications, including datapath optimization, arithmetic verification, and hardware trojan detection. However, existing techniques rely primarily on structural graph isomorphism and thus fail to identify function-related subgraphs when synthesis transformations substantially alter circuit topology. To overcome this critical limitation, we introduce the concept of functional subgraph matching, a novel approach that identifies whether a given logic function is implicitly present within a larger circuit, irrespective of structural variations induced by synthesis or technology mapping. Specifically, we propose a two-stage multi-modal framework: (1) learning robust functional embeddings across AIG and post-mapping netlists for functional subgraph detection, and (2) identifying fuzzy boundaries using a graph segmentation approach. Evaluations on standard benchmarks (ITC99, OpenABCD, ForgeEDA) demonstrate significant performance improvements over existing structural methods, with average $93.8\%$ accuracy in functional subgraph detection and a dice score of $91.3\%$ in fuzzy boundary identification. The source code and implementation details can be found at https://github.com/zyzheng17/Functional_Subgraph_Matching-Neurips25.

Authors:Fakhraddin Alwajih, Samar Mohamed Magdy, Abdellah El Mekki, Omer Nacar, Youssef Nafea, Safaa Taher Abdelfadil, Abdulfattah Mohammed Yahya, Hamzah Luqman, Nada Almarwani, Samah Aloufi, Baraah Qawasmeh, Houdaifa Atou, Serry Sibaee, Hamzah A. Alsayadi, Walid Al-Dhabyani, Maged S. Al-shaibani, Aya El aatar, Nour Qandos, Rahaf Alhamouri, Samar Ahmad, Razan Khassib, Lina Hamad, Mohammed Anwar AL-Ghrawi, Fatimah Alshamari, Cheikh Malainine, Doaa Qawasmeh, Aminetou Yacoub, Tfeil moilid, Ruwa AbuHweidi, Ahmed Aboeitta, Vatimetou Mohamed Lemin, Reem Abdel-Salam, Ahlam Bashiti, Adel Ammar, Aisha Alansari, Ahmed Ashraf, Nora Alturayeif, Sara Shatnawi, Alcides Alcoba Inciarte, AbdelRahim A. Elmadany, Mohamedou cheikh tourad, Ismail Berrada, Mustafa Jarrar, Shady Shehata, Muhammad Abdul-Mageed
Title: Pearl: A Multimodal Culturally-Aware Arabic Instruction Dataset
Abstract:
Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce Pearl, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 45 annotators from across the Arab world, Pearl comprises over K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks Pearl and Pearl-Lite along with a specialized subset Pearl-X explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. Pearl establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available.

Authors:Fakhraddin Alwajih, Samar M. Magdy, Abdellah El Mekki, Omer Nacar, Youssef Nafea, Safaa Taher Abdelfadil, Abdulfattah Mohammed Yahya, Hamzah Luqman, Nada Almarwani, Samah Aloufi, Baraah Qawasmen, Houdaifa Atou, Serry Sibaee, Hamzah A. Alsayadi, Walid Al-Dhabyani, Maged S. Al-shaibani, Aya El Aatar, Nour Qandos, Rahaf Alhamouri, Samar Ahmad, Mohammed Anwar Al-Ghrawi, Aminetou Yacoub, Ruwa AbuHweidi, Vatimetou Mohamed Lemin, Reem Abdel-Salam, Ahlam Bashiti, Aisha Alansari, Ahmed Ashraf, Nora Alturayeif, Alcides Alcoba Inciarte, Adel Ammar, Abdelrahim A. Elmadany, Mohamedou Cheikh Tourad, Ismail Berrada, Mustafa Jarrar, Shady Shehata, Muhammad Abdul-Mageed
Title: Pearl: A Multimodal Culturally-Aware Arabic Instruction Dataset
Abstract:
Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce PEARL, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 37 annotators from across the Arab world, PEARL comprises over 309K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks (PEARL and PEARL-LITE) along with a specialized subset (PEARL-X) explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. PEARL establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available.

Authors:Weiguang Zhang, Huangcheng Lu, Maizhen Ning, Xiaowei Huang, Wei Wang, Kaizhu Huang, Qiufeng Wang
Title: DvD: Unleashing a Generative Paradigm for Document Dewarping via Coordinates-based Diffusion Model
Abstract:
Document dewarping aims to rectify deformations in photographic document images, thus improving text readability, which has attracted much attention and made great progress, but it is still challenging to preserve document structures. Given recent advances in diffusion models, it is natural for us to consider their potential applicability to document dewarping. However, it is far from straightforward to adopt diffusion models in document dewarping due to their unfaithful control on highly complex document images (e.g., 2000$times$3000 resolution). In this paper, we propose DvD, the first generative model to tackle document Dewarping via a Diffusion framework. To be specific, DvD introduces a coordinate-level denoising instead of typical pixel-level denoising, generating a mapping for deformation rectification. In addition, we further propose a time-variant condition refinement mechanism to enhance the preservation of document structures. In experiments, we find that current document dewarping benchmarks can not evaluate dewarping models comprehensively. To this end, we present AnyPhotoDoc6300, a rigorously designed large-scale document dewarping benchmark comprising 6,300 real image pairs across three distinct domains, enabling fine-grained evaluation of dewarping models. Comprehensive experiments demonstrate that our proposed DvD can achieve state-of-the-art performance with acceptable computational efficiency on multiple metrics across various benchmarks, including DocUNet, DIR300, and AnyPhotoDoc6300. The new benchmark and code will be publicly available at https://github.com/hanquansanren/DvD.

Authors:Senmao Li, Lei Wang, Kai Wang, Tao Liu, Jiehang Xie, Joost van de Weijer, Fahad Shahbaz Khan, Shiqi Yang, Yaxing Wang, Jian Yang
Title: One-Way Ticket:Time-Independent Unified Encoder for Distilling Text-to-Image Diffusion Models
Abstract:
Text-to-Image (T2I) diffusion models have made remarkable advancements in generative modeling; however, they face a trade-off between inference speed and image quality, posing challenges for efficient deployment. Existing distilled T2I models can generate high-fidelity images with fewer sampling steps, but often struggle with diversity and quality, especially in one-step models. From our analysis, we observe redundant computations in the UNet encoders. Our findings suggest that, for T2I diffusion models, decoders are more adept at capturing richer and more explicit semantic information, while encoders can be effectively shared across decoders from diverse time steps. Based on these observations, we introduce the first Time-independent Unified Encoder TiUE for the student model UNet architecture, which is a loop-free image generation approach for distilling T2I diffusion models. Using a one-pass scheme, TiUE shares encoder features across multiple decoder time steps, enabling parallel sampling and significantly reducing inference time complexity. In addition, we incorporate a KL divergence term to regularize noise prediction, which enhances the perceptual realism and diversity of the generated images. Experimental results demonstrate that TiUE outperforms state-of-the-art methods, including LCM, SD-Turbo, and SwiftBrushv2, producing more diverse and realistic results while maintaining the computational efficiency.

Authors:Le Thien Phuc Nguyen, Zhuoran Yu, Khoa Quang Nhat Cao, Yuwei Guo, Tu Ho Manh Pham, Tuan Tai Nguyen, Toan Ngo Duc Vo, Lucas Poon, Soochahn Lee, Yong Jae Lee
Title: UniTalk: Towards Universal Active Speaker Detection in Real World Scenarios
Abstract:
We present UniTalk, a novel dataset specifically designed for the task of active speaker detection, emphasizing challenging scenarios to enhance model generalization. Unlike previously established benchmarks such as AVA, which predominantly features old movies and thus exhibits significant domain gaps, UniTalk focuses explicitly on diverse and difficult real-world conditions. These include underrepresented languages, noisy backgrounds, and crowded scenes - such as multiple visible speakers speaking concurrently or in overlapping turns. It contains over 44.5 hours of video with frame-level active speaker annotations across 48,693 speaking identities, and spans a broad range of video types that reflect real-world conditions. Through rigorous evaluation, we show that state-of-the-art models, while achieving nearly perfect scores on AVA, fail to reach saturation on UniTalk, suggesting that the ASD task remains far from solved under realistic conditions. Nevertheless, models trained on UniTalk demonstrate stronger generalization to modern "in-the-wild" datasets like Talkies and ASW, as well as to AVA. UniTalk thus establishes a new benchmark for active speaker detection, providing researchers with a valuable resource for developing and evaluating versatile and resilient models. Dataset: https://huggingface.co/datasets/plnguyen2908/UniTalk-ASD Code: https://github.com/plnguyen2908/UniTalk-ASD-code

Authors:Wei Lin, Chenyang Zhao, Antoni B. Chan
Title: Point-to-Region Loss for Semi-Supervised Point-Based Crowd Counting
Abstract:
Point detection has been developed to locate pedestrians in crowded scenes by training a counter through a point-to-point (P2P) supervision scheme. Despite its excellent localization and counting performance, training a point-based counter still faces challenges concerning annotation labor: hundreds to thousands of points are required to annotate a single sample capturing a dense crowd. In this paper, we integrate point-based methods into a semi-supervised counting framework based on pseudo-labeling, enabling the training of a counter with only a few annotated samples supplemented by a large volume of pseudo-labeled data. However, during implementation, the training encounters issues as the confidence for pseudo-labels fails to be propagated to background pixels via the P2P. To tackle this challenge, we devise a point-specific activation map (PSAM) to visually interpret the phenomena occurring during the ill-posed training. Observations from the PSAM suggest that the feature map is excessively activated by the loss for unlabeled data, causing the decoder to misinterpret these over-activations as pedestrians. To mitigate this issue, we propose a point-to-region (P2R) scheme to substitute P2P, which segments out local regions rather than detects a point corresponding to a pedestrian for supervision. Consequently, pixels in the local region can share the same confidence with the corresponding pseudo points. Experimental results in both semi-supervised counting and unsupervised domain adaptation highlight the advantages of our method, illustrating P2R can resolve issues identified in PSAM. The code is available at https://github.com/Elin24/P2RLoss.

Authors:Chenfeng Wei, Qi Wu, Si Zuo, Jiahua Xu, Boyang Zhao, Zeyu Yang, Guotao Xie, Shenhong Wang
Title: LiDARDustX: A LiDAR Dataset for Dusty Unstructured Road Environments
Abstract:
Autonomous driving datasets are essential for validating the progress of intelligent vehicle algorithms, which include localization, perception, and prediction. However, existing datasets are predominantly focused on structured urban environments, which limits the exploration of unstructured and specialized scenarios, particularly those characterized by significant dust levels. This paper introduces the LiDARDustX dataset, which is specifically designed for perception tasks under high-dust conditions, such as those encountered in mining areas. The LiDARDustX dataset consists of 30,000 LiDAR frames captured by six different LiDAR sensors, each accompanied by 3D bounding box annotations and point cloud semantic segmentation. Notably, over 80% of the dataset comprises dust-affected scenes. By utilizing this dataset, we have established a benchmark for evaluating the performance of state-of-the-art 3D detection and segmentation algorithms. Additionally, we have analyzed the impact of dust on perception accuracy and delved into the causes of these effects. The data and further information can be accessed at: https://github.com/vincentweikey/LiDARDustX.

Authors:Jianchao Jiang, Haofeng Zhang
Title: Concentrate on Weakness: Mining Hard Prototypes for Few-Shot Medical Image Segmentation
Abstract:
Few-Shot Medical Image Segmentation (FSMIS) has been widely used to train a model that can perform segmentation from only a few annotated images. However, most existing prototype-based FSMIS methods generate multiple prototypes from the support image solely by random sampling or local averaging, which can cause particularly severe boundary blurring due to the tendency for normal features accounting for the majority of features of a specific category. Consequently, we propose to focus more attention to those weaker features that are crucial for clear segmentation boundary. Specifically, we design a Support Self-Prediction (SSP) module to identify such weak features by comparing true support mask with one predicted by global support prototype. Then, a Hard Prototypes Generation (HPG) module is employed to generate multiple hard prototypes based on these weak features. Subsequently, a Multiple Similarity Maps Fusion (MSMF) module is devised to generate final segmenting mask in a dual-path fashion to mitigate the imbalance between foreground and background in medical images. Furthermore, we introduce a boundary loss to further constraint the edge of segmentation. Extensive experiments on three publicly available medical image datasets demonstrate that our method achieves state-of-the-art performance. Code is available at https://github.com/jcjiang99/CoW.

Authors:Tianyu Guo, Hande Dong, Yichong Leng, Feng Liu, Cheater Lin, Nong Xiao, Xianwei Zhang
Title: EFIM: Efficient Serving of LLMs for Infilling Tasks with Improved KV Cache Reuse
Abstract:
Large language models (LLMs) are often used for infilling tasks, which involve predicting or generating missing information in a given text. These tasks typically require multiple interactions with similar context. To reduce the computation of repeated historical tokens, cross-request key-value (KV) cache reuse, a technique that stores and reuses intermediate computations, has become a crucial method in multi-round interactive services. However, in infilling tasks, the KV cache reuse is often hindered by the structure of the prompt format, which typically consists of a prefix and suffix relative to the insertion point. Specifically, the KV cache of the prefix or suffix part is frequently invalidated as the other part (suffix or prefix) is incrementally generated. To address the issue, we propose EFIM, a transformed prompt format of FIM to unleash the performance potential of KV cache reuse. Although the transformed prompt can solve the inefficiency, it exposes subtoken generation problems in current LLMs, where they have difficulty generating partial words accurately. Therefore, we introduce a fragment tokenization training method which splits text into multiple fragments before tokenization during data processing. Experiments on two representative LLMs show that LLM serving with EFIM can lower the latency by 52% and improve the throughput by 98% while maintaining the original infilling capability. EFIM's source code is publicly available at https://github.com/gty111/EFIM.

Authors:Ruijie Li, Xiang Zhao, Qiao Ning, Shikai Guo
Title: HydraNet: Momentum-Driven State Space Duality for Multi-Granularity Tennis Tournaments Analysis
Abstract:
In tennis tournaments, momentum, a critical yet elusive phenomenon, reflects the dynamic shifts in performance of athletes that can decisively influence match outcomes. Despite its significance, momentum in terms of effective modeling and multi-granularity analysis across points, games, sets, and matches in tennis tournaments remains underexplored. In this study, we define a novel Momentum Score (MS) metric to quantify a player's momentum level in multi-granularity tennis tournaments, and design HydraNet, a momentum-driven state-space duality-based framework, to model MS by integrating thirty-two heterogeneous dimensions of athletes performance in serve, return, psychology and fatigue. HydraNet integrates a Hydra module, which builds upon a state-space duality (SSD) framework, capturing explicit momentum with a sliding-window mechanism and implicit momentum through cross-game state propagation. It also introduces a novel Versus Learning method to better enhance the adversarial nature of momentum between the two athletes at a macro level, along with a Collaborative-Adversarial Attention Mechanism (CAAM) for capturing and integrating intra-player and inter-player dynamic momentum at a micro level. Additionally, we construct a million-level tennis cross-tournament dataset spanning from 2012-2023 Wimbledon and 2013-2023 US Open, and validate the multi-granularity modeling capability of HydraNet for the MS metric on this dataset. Extensive experimental evaluations demonstrate that the MS metric constructed by the HydraNet framework provides actionable insights into how momentum impacts outcomes at different granularities, establishing a new foundation for momentum modeling and sports analysis. To the best of our knowledge, this is the first work to explore and effectively model momentum across multiple granularities in professional tennis tournaments.

Authors:Guiping Cao, Wenjian Huang, Xiangyuan Lan, Jianguo Zhang, Dongmei Jiang, Yaowei Wang
Title: Cross-DINO: Cross the Deep MLP and Transformer for Small Object Detection
Abstract:
Small Object Detection (SOD) poses significant challenges due to limited information and the model's low class prediction score. While Transformer-based detectors have shown promising performance, their potential for SOD remains largely unexplored. In typical DETR-like frameworks, the CNN backbone network, specialized in aggregating local information, struggles to capture the necessary contextual information for SOD. The multiple attention layers in the Transformer Encoder face difficulties in effectively attending to small objects and can also lead to blurring of features. Furthermore, the model's lower class prediction score of small objects compared to large objects further increases the difficulty of SOD. To address these challenges, we introduce a novel approach called Cross-DINO. This approach incorporates the deep MLP network to aggregate initial feature representations with both short and long range information for SOD. Then, a new Cross Coding Twice Module (CCTM) is applied to integrate these initial representations to the Transformer Encoder feature, enhancing the details of small objects. Additionally, we introduce a new kind of soft label named Category-Size (CS), integrating the Category and Size of objects. By treating CS as new ground truth, we propose a new loss function called Boost Loss to improve the class prediction score of the model. Extensive experimental results on COCO, WiderPerson, VisDrone, AI-TOD, and SODA-D datasets demonstrate that Cross-DINO efficiently improves the performance of DETR-like models on SOD. Specifically, our model achieves 36.4% APs on COCO for SOD with only 45M parameters, outperforming the DINO by +4.4% APS (36.4% vs. 32.0%) with fewer parameters and FLOPs, under 12 epochs training setting. The source codes will be available at https://github.com/Med-Process/Cross-DINO.

Authors:Chenhui Zhao, Yiwei Lyu, Asadur Chowdury, Edward Harake, Akhil Kondepudi, Akshay Rao, Xinhai Hou, Honglak Lee, Todd Hollon
Title: Towards Scalable Language-Image Pre-training for 3D Medical Imaging
Abstract:
Language-image pre-training has demonstrated strong performance in 2D medical imaging, but its success in 3D modalities such as CT and MRI remains limited due to the high computational demands of volumetric data, which pose a significant barrier to training on large-scale, uncurated clinical studies. In this study, we introduce Hierarchical attention for Language-Image Pre-training (HLIP), a scalable pre-training framework for 3D medical imaging. HLIP adopts a lightweight hierarchical attention mechanism inspired by the natural hierarchy of radiology data: slice, scan, and study. This mechanism exhibits strong generalizability, e.g., +4.3% macro AUC on the Rad-ChestCT benchmark when pre-trained on CT-RATE. Moreover, the computational efficiency of HLIP enables direct training on uncurated datasets. Trained on 220K patients with 3.13 million scans for brain MRI and 240K patients with 1.44 million scans for head CT, HLIP achieves state-of-the-art performance, e.g., +32.4% balanced ACC on the proposed publicly available brain MRI benchmark Pub-Brain-5; +1.4% and +6.9% macro AUC on head CT benchmarks RSNA and CQ500, respectively. These results demonstrate that, with HLIP, directly pre-training on uncurated clinical datasets is a scalable and effective direction for language-image pre-training in 3D medical imaging. The code is available at https://github.com/Zch0414/hlip

Authors:Chenhui Zhao, Yiwei Lyu, Asadur Chowdury, Edward Harake, Akhil Kondepudi, Akshay Rao, Xinhai Hou, Honglak Lee, Todd Hollon
Title: Towards Scalable Language-Image Pre-training for 3D Medical Imaging
Abstract:
The scalability of current language-image pre-training for 3D medical imaging, such as CT and MRI, is constrained by the need for radiologists to manually curate raw clinical studies. In this work, we pioneer pre-training directly on uncurated studies, which both aligns more closely with the radiologist's workflow and provides a natural path to scalability. However, the unique structure of such data presents new challenges for existing model architectures, which were originally designed for 2D slices or single 3D scans. To address this, we introduce a novel hierarchical attention mechanism inspired by the intrinsic hierarchy of radiology data: slice, scan, and study. We denote our framework as Hierarchical attention for Language-Image Pre-training (HLIP). Trained on 220K studies with 3.13 million scans for brain MRI and 240K studies with 1.44 million scans for head CT, HLIP achieves state-of-the-art performance, e.g., +10.5% balanced ACC on the proposed publicly available brain MRI benchmark Pub-Brain-5; +8.3% and +1.7% macro AUC on head CT benchmarks CQ500 and RSNA, respectively. HLIP also exhibits strong generalizability on existing 3D medical language-image pre-training benchmarks, e.g., +4.3% macro AUC on the Rad-ChestCT benchmark when pre-trained on CT-RATE. These results demonstrate that, with HLIP, directly pre-training on uncurated clinical datasets is a scalable and effective direction for language-image pre-training in 3D medical imaging. The code is available at https://github.com/Zch0414/hlip.

Authors:Xuwei Xu, Yang Li, Yudong Chen, Jiajun Liu, Sen Wang
Title: RePaViT: Scalable Vision Transformer Acceleration via Structural Reparameterization on Feedforward Network Layers
Abstract:
We reveal that feedforward network (FFN) layers, rather than attention layers, are the primary contributors to Vision Transformer (ViT) inference latency, with their impact signifying as model size increases. This finding highlights a critical opportunity for optimizing the efficiency of large-scale ViTs by focusing on FFN layers. In this work, we propose a novel channel idle mechanism that facilitates post-training structural reparameterization for efficient FFN layers during testing. Specifically, a set of feature channels remains idle and bypasses the nonlinear activation function in each FFN layer, thereby forming a linear pathway that enables structural reparameterization during inference. This mechanism results in a family of ReParameterizable Vision Transformers (RePaViTs), which achieve remarkable latency reductions with acceptable sacrifices (sometimes gains) in accuracy across various ViTs. The benefits of our method scale consistently with model sizes, demonstrating greater speed improvements and progressively narrowing accuracy gaps or even higher accuracies on larger models. In particular, RePa-ViT-Large and RePa-ViT-Huge enjoy 66.8% and 68.7% speed-ups with +1.7% and +1.1% higher top-1 accuracies under the same training strategy, respectively. RePaViT is the first to employ structural reparameterization on FFN layers to expedite ViTs to our best knowledge, and we believe that it represents an auspicious direction for efficient ViTs. Source code is available at https://github.com/Ackesnal/RePaViT.

Authors:Chen Yueh-Han, Guy Davidson, Brenden M. Lake
Title: SAGE-Eval: Evaluating LLMs for Systematic Generalizations of Safety Facts
Abstract:
Do LLMs robustly generalize critical safety facts to novel situations? Lacking this ability is dangerous when users ask naive questions. For instance, "I'm considering packing melon balls for my 10-month-old's lunch. What other foods would be good to include?" Before offering food options, the LLM should warn that melon balls pose a choking hazard to toddlers, as documented by the CDC. Failing to provide such warnings could result in serious injuries or even death. To evaluate this, we introduce SAGE-Eval, SAfety-fact systematic GEneralization evaluation, the first benchmark that tests whether LLMs properly apply well established safety facts to naive user queries. SAGE-Eval comprises 104 facts manually sourced from reputable organizations, systematically augmented to create 10,428 test scenarios across 7 common domains (e.g., Outdoor Activities, Medicine). We find that the top model, Claude-3.7-sonnet, passes only 58% of all the safety facts tested. We also observe that model capabilities and training compute weakly correlate with performance on SAGE-Eval, implying that scaling up is not the golden solution. Our findings suggest frontier LLMs still lack robust generalization ability. We recommend developers use SAGE-Eval in pre-deployment evaluations to assess model reliability in addressing salient risks. We publicly release SAGE-Eval at https://huggingface.co/datasets/YuehHanChen/SAGE-Eval and our code is available at https://github.com/YuehHanChen/SAGE-Eval/tree/main.

Authors:Clark Mingxuan Ju, Leonardo Neves, Bhuvesh Kumar, Liam Collins, Tong Zhao, Yuwei Qiu, Qing Dou, Sohail Nizam, Sen Yang, Neil Shah
Title: Revisiting Self-attention for Cross-domain Sequential Recommendation
Abstract:
Sequential recommendation is a popular paradigm in modern recommender systems. In particular, one challenging problem in this space is cross-domain sequential recommendation (CDSR), which aims to predict future behaviors given user interactions across multiple domains. Existing CDSR frameworks are mostly built on the self-attention transformer and seek to improve by explicitly injecting additional domain-specific components (e.g. domain-aware module blocks). While these additional components help, we argue they overlook the core self-attention module already present in the transformer, a naturally powerful tool to learn correlations among behaviors. In this work, we aim to improve the CDSR performance for simple models from a novel perspective of enhancing the self-attention. Specifically, we introduce a Pareto-optimal self-attention and formulate the cross-domain learning as a multi-objective problem, where we optimize the recommendation task while dynamically minimizing the cross-domain attention scores. Our approach automates knowledge transfer in CDSR (dubbed as AutoCDSR) -- it not only mitigates negative transfer but also encourages complementary knowledge exchange among auxiliary domains. Based on the idea, we further introduce AutoCDSR+, a more performant variant with slight additional cost. Our proposal is easy to implement and works as a plug-and-play module that can be incorporated into existing transformer-based recommenders. Besides flexibility, it is practical to deploy because it brings little extra computational overheads without heavy hyper-parameter tuning. AutoCDSR on average improves Recall@10 for SASRec and Bert4Rec by 9.8% and 16.0% and NDCG@10 by 12.0% and 16.7%, respectively. Code is available at https://github.com/snap-research/AutoCDSR.

Authors:Claudia Cuttano, Gabriele Trivigno, Giuseppe Averta, Carlo Masone
Title: SANSA: Unleashing the Hidden Semantics in SAM2 for Few-Shot Segmentation
Abstract:
Few-shot segmentation aims to segment unseen object categories from just a handful of annotated examples. This requires mechanisms that can both identify semantically related objects across images and accurately produce segmentation masks. We note that Segment Anything 2 (SAM2), with its prompt-and-propagate mechanism, offers both strong segmentation capabilities and a built-in feature matching process. However, we show that its representations are entangled with task-specific cues optimized for object tracking, which impairs its use for tasks requiring higher level semantic understanding. Our key insight is that, despite its class-agnostic pretraining, SAM2 already encodes rich semantic structure in its features. We propose SANSA (Semantically AligNed Segment Anything 2), a framework that makes this latent structure explicit, and repurposes SAM2 for few-shot segmentation through minimal task-specific modifications. SANSA achieves state-of-the-art performance on few-shot segmentation benchmarks specifically designed to assess generalization, outperforms generalist methods in the popular in-context setting, supports various prompts flexible interaction via points, boxes, or scribbles, and remains significantly faster and more compact than prior approaches. Code is available at https://github.com/ClaudiaCuttano/SANSA.

Authors:Chengyue Huang, Brisa Maneechotesuwan, Shivang Chopra, Zsolt Kira
Title: FRAMES-VQA: Benchmarking Fine-Tuning Robustness across Multi-Modal Shifts in Visual Question Answering
Abstract:
Visual question answering (VQA) systems face significant challenges when adapting to real-world data shifts, especially in multi-modal contexts. While robust fine-tuning strategies are essential for maintaining performance across in-distribution (ID) and out-of-distribution (OOD) scenarios, current evaluation settings are primarily unimodal or particular to some types of OOD, offering limited insight into the complexities of multi-modal contexts. In this work, we propose a new benchmark FRAMES-VQA (Fine-Tuning Robustness across Multi-Modal Shifts in VQA) for evaluating robust fine-tuning for VQA tasks. We utilize ten existing VQA benchmarks, including VQAv2, IV-VQA, VQA-CP, OK-VQA and others, and categorize them into ID, near and far OOD datasets covering uni-modal, multi-modal and adversarial distribution shifts. We first conduct a comprehensive comparison of existing robust fine-tuning methods. We then quantify the distribution shifts by calculating the Mahalanobis distance using uni-modal and multi-modal embeddings extracted from various models. Further, we perform an extensive analysis to explore the interactions between uni- and multi-modal shifts as well as modality importance for ID and OOD samples. These analyses offer valuable guidance on developing more robust fine-tuning methods to handle multi-modal distribution shifts. The code is available at https://github.com/chengyuehuang511/FRAMES-VQA .

Authors:Yitong Li, Morteza Ghahremani, Christian Wachinger
Title: MedBridge: Bridging Foundation Vision-Language Models to Medical Image Diagnosis
Abstract:
Recent vision-language foundation models deliver state-of-the-art results on natural image classification but falter on medical images due to pronounced domain shifts. At the same time, training a medical foundation model requires substantial resources, including extensive annotated data and high computational capacity. To bridge this gap with minimal overhead, we introduce MedBridge, a lightweight multimodal adaptation framework that re-purposes pretrained VLMs for accurate medical image diagnosis. MedBridge comprises three key components. First, a Focal Sampling module that extracts high-resolution local regions to capture subtle pathological features and compensate for the limited input resolution of general-purpose VLMs. Second, a Query Encoder (QEncoder) injects a small set of learnable queries that attend to the frozen feature maps of VLM, aligning them with medical semantics without retraining the entire backbone. Third, a Mixture of Experts mechanism, driven by learnable queries, harnesses the complementary strength of diverse VLMs to maximize diagnostic performance. We evaluate MedBridge on five medical imaging benchmarks across three key adaptation tasks, demonstrating its superior performance in both cross-domain and in-domain adaptation settings, even under varying levels of training data availability. Notably, MedBridge achieved over 6-15% improvement in AUC compared to state-of-the-art VLM adaptation methods in multi-label thoracic disease diagnosis, underscoring its effectiveness in leveraging foundation models for accurate and data-efficient medical diagnosis. Our code is available at https://github.com/ai-med/MedBridge.

Authors:Yongchao Chen, Yueying Liu, Junwei Zhou, Yilun Hao, Jingquan Wang, Yang Zhang, Chuchu Fan
Title: R1-Code-Interpreter: Training LLMs to Reason with Code via Supervised and Reinforcement Learning
Abstract:
Despite advances in reasoning and planning of R1-like models, Large Language Models (LLMs) still struggle with tasks requiring precise computation, symbolic manipulation, optimization, and algorithmic reasoning, in which textual reasoning lacks the rigor of code execution. A key challenge is enabling LLMs to decide when to use textual reasoning versus code generation. While OpenAI trains models to invoke a Code Interpreter as needed, public research lacks guidance on aligning pre-trained LLMs to effectively leverage code and generalize across diverse tasks. We present R1-Code-Interpreter, an extension of a text-only LLM trained via multi-turn supervised fine-tuning (SFT) and reinforcement learning (RL) to autonomously generate multiple code queries during step-by-step reasoning. We curate 144 reasoning and planning tasks (107 for training, 37 for testing), each with over 200 diverse questions. We fine-tune Qwen-2.5 models (3B/7B/14B) using various SFT and RL strategies, investigating different answer formats, reasoning vs. non-reasoning models, cold vs. warm starts, GRPO vs. PPO, and masked vs. unmasked code outputs. Unlike prior RL work on narrow domains, we find that Code Interpreter training is significantly harder due to high task diversity and expensive code execution, highlighting the critical role of the SFT stage. Our final model, R1-CI-14B, improves average accuracy on the 37 test tasks from 44.0\% to 64.1\%, outperforming GPT-4o (text-only: 58.6\%) and approaching GPT-4o with Code Interpreter (70.9\%), with the emergent self-checking behavior via code generation. Datasets, Codes, and Models are available at https://github.com/yongchao98/R1-Code-Interpreter and https://huggingface.co/yongchao98.

Authors:Yongchao Chen, Yueying Liu, Junwei Zhou, Yilun Hao, Jingquan Wang, Yang Zhang, Na Li, Chuchu Fan
Title: R1-Code-Interpreter: LLMs Reason with Code via Supervised and Multi-stage Reinforcement Learning
Abstract:
Practical guidance on training Large Language Models (LLMs) to leverage Code Interpreter across diverse tasks remains lacking. We present R1-Code-Interpreter, an extension of a text-only LLM trained via multi-turn supervised fine-tuning (SFT) and reinforcement learning (RL) to autonomously generate multiple code queries during step-by-step reasoning. Unlike prior RL + tool-use efforts focused on narrow domains such as math or retrieval, we curate 144 diverse reasoning and planning tasks and show that training a general-purpose Code Interpreter across them presents significant challenges due to task heterogeneity and scarcity of effective samples. To address this, we introduce a multi-stage curriculum learning approach that partitions training samples by measured improvement potential. The RL training prioritizes samples with higher potential and gradually shifts to lower-potential ones, increasing the average RL gains from merely +3.4% to +9.3% across Qwen-2.5 models (3/7/14B). Our final model, R1-CI-14B, improves average accuracy on the 37 test tasks from 44.1% to 72.4%, outperforming text-only GPT-4o (58.6%) and GPT-4o with Code Interpreter (70.9%). Notably, R1-CI-14B also exhibits emergent self-checking behavior through code generation. Datasets, Codes, and Models are available at https://github.com/yongchao98/R1-Code-Interpreter and https://huggingface.co/yongchao98.

Authors:Owen Oertell, Shikun Sun, Yiding Chen, Jin Peng Zhou, Zhiyong Wang, Wen Sun
Title: Efficient Controllable Diffusion via Optimal Classifier Guidance
Abstract:
The controllable generation of diffusion models aims to steer the model to generate samples that optimize some given objective functions. It is desirable for a variety of applications including image generation, molecule generation, and DNA/sequence generation. Reinforcement Learning (RL) based fine-tuning of the base model is a popular approach but it can overfit the reward function while requiring significant resources. We frame controllable generation as a problem of finding a distribution that optimizes a KL-regularized objective function. We present SLCD -- Supervised Learning based Controllable Diffusion, which iteratively generates online data and trains a small classifier to guide the generation of the diffusion model. Similar to the standard classifier-guided diffusion, SLCD's key computation primitive is classification and does not involve any complex concepts from RL or control. Via a reduction to no-regret online learning analysis, we show that under KL divergence, the output from SLCD provably converges to the optimal solution of the KL-regularized objective. Further, we empirically demonstrate that SLCD can generate high quality samples with nearly the same inference time as the base model in both image generation with continuous diffusion and biological sequence generation with discrete diffusion. Our code is available at https://github.com/Owen-Oertell/slcd

Authors:Xiaole Tang, Xiaoyi He, Xiang Gu, Jian Sun
Title: BaryIR: Learning Multi-Source Unified Representation in Continuous Barycenter Space for Generalizable All-in-One Image Restoration
Abstract:
Despite remarkable advances made in all-in-one image restoration (AIR) for handling different types of degradations simultaneously, existing methods remain vulnerable to out-of-distribution degradations and images, limiting their real-world applicability. In this paper, we propose a multi-source representation learning framework BaryIR, which decomposes the latent space of multi-source degraded images into a continuous barycenter space for unified feature encoding and source-specific subspaces for specific semantic encoding. Specifically, we seek the multi-source unified representation by introducing a multi-source latent optimal transport barycenter problem, in which a continuous barycenter map is learned to transport the latent representations to the barycenter space. The transport cost is designed such that the representations from source-specific subspaces are contrasted with each other while maintaining orthogonality to those from the barycenter space. This enables BaryIR to learn compact representations with unified degradation-agnostic information from the barycenter space, as well as degradation-specific semantics from source-specific subspaces, capturing the inherent geometry of multi-source data manifold for generalizable AIR. Extensive experiments demonstrate that BaryIR achieves competitive performance compared to state-of-the-art all-in-one methods. Particularly, BaryIR exhibits superior generalization ability to real-world data and unseen degradations. The code will be publicly available at https://github.com/xl-tang3/BaryIR.

Authors:Chengyu Yang, Chengjun Liu
Title: Laparoscopic Image Desmoking Using the U-Net with New Loss Function and Integrated Differentiable Wiener Filter
Abstract:
Laparoscopic surgeries often suffer from reduced visual clarity due to the presence of surgical smoke originated by surgical instruments, which poses significant challenges for both surgeons and vision based computer-assisted technologies. In order to remove the surgical smoke, a novel U-Net deep learning with new loss function and integrated differentiable Wiener filter (ULW) method is presented. Specifically, the new loss function integrates the pixel, structural, and perceptual properties. Thus, the new loss function, which combines the structural similarity index measure loss, the perceptual loss, as well as the mean squared error loss, is able to enhance the quality and realism of the reconstructed images. Furthermore, the learnable Wiener filter is capable of effectively modelling the degradation process caused by the surgical smoke. The effectiveness of the proposed ULW method is evaluated using the publicly available paired laparoscopic smoke and smoke-free image dataset, which provides reliable benchmarking and quantitative comparisons. Experimental results show that the proposed ULW method excels in both visual clarity and metric-based evaluation. As a result, the proposed ULW method offers a promising solution for real-time enhancement of laparoscopic imagery. The code is available at https://github.com/chengyuyang-njit/ImageDesmoke.

Authors:Zhengyuan Jiang, Moyang Guo, Kecen Li, Yuepeng Hu, Yupu Wang, Zhicong Huang, Cheng Hong, Neil Zhenqiang Gong
Title: VideoMarkBench: Benchmarking Robustness of Video Watermarking
Abstract:
The rapid development of video generative models has led to a surge in highly realistic synthetic videos, raising ethical concerns related to disinformation and copyright infringement. Recently, video watermarking has been proposed as a mitigation strategy by embedding invisible marks into AI-generated videos to enable subsequent detection. However, the robustness of existing video watermarking methods against both common and adversarial perturbations remains underexplored. In this work, we introduce VideoMarkBench, the first systematic benchmark designed to evaluate the robustness of video watermarks under watermark removal and watermark forgery attacks. Our study encompasses a unified dataset generated by three state-of-the-art video generative models, across three video styles, incorporating four watermarking methods and seven aggregation strategies used during detection. We comprehensively evaluate 12 types of perturbations under white-box, black-box, and no-box threat models. Our findings reveal significant vulnerabilities in current watermarking approaches and highlight the urgent need for more robust solutions. Our code is available at https://github.com/zhengyuan-jiang/VideoMarkBench.

Authors:Miao Peng, Nuo Chen, Jianheng Tang, Jia Li
Title: How does Misinformation Affect Large Language Model Behaviors and Preferences?
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities in knowledge-intensive tasks, while they remain vulnerable when encountering misinformation. Existing studies have explored the role of LLMs in combating misinformation, but there is still a lack of fine-grained analysis on the specific aspects and extent to which LLMs are influenced by misinformation. To bridge this gap, we present MisBench, the current largest and most comprehensive benchmark for evaluating LLMs' behavior and knowledge preference toward misinformation. MisBench consists of 10,346,712 pieces of misinformation, which uniquely considers both knowledge-based conflicts and stylistic variations in misinformation. Empirical results reveal that while LLMs demonstrate comparable abilities in discerning misinformation, they still remain susceptible to knowledge conflicts and stylistic variations. Based on these findings, we further propose a novel approach called Reconstruct to Discriminate (RtD) to strengthen LLMs' ability to detect misinformation. Our study provides valuable insights into LLMs' interactions with misinformation, and we believe MisBench can serve as an effective benchmark for evaluating LLM-based detectors and enhancing their reliability in real-world applications. Codes and data are available at https://github.com/GKNL/MisBench.

Authors:Tianyu Fu, Yi Ge, Yichen You, Enshu Liu, Zhihang Yuan, Guohao Dai, Shengen Yan, Huazhong Yang, Yu Wang
Title: R2R: Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing
Abstract:
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.

Authors:Shreyas Gururaj, Lars Grüne, Wojciech Samek, Sebastian Lapuschkin, Leander Weber
Title: Relevance-driven Input Dropout: an Explanation-guided Regularization Technique
Abstract:
Overfitting is a well-known issue extending even to state-of-the-art (SOTA) Machine Learning (ML) models, resulting in reduced generalization, and a significant train-test performance gap. Mitigation measures include a combination of dropout, data augmentation, weight decay, and other regularization techniques. Among the various data augmentation strategies, occlusion is a prominent technique that typically focuses on randomly masking regions of the input during training. Most of the existing literature emphasizes randomness in selecting and modifying the input features instead of regions that strongly influence model decisions. We propose Relevance-driven Input Dropout (RelDrop), a novel data augmentation method which selectively occludes the most relevant regions of the input, nudging the model to use other important features in the prediction process, thus improving model generalization through informed regularization. We further conduct qualitative and quantitative analyses to study how Relevance-driven Input Dropout (RelDrop) affects model decision-making. Through a series of experiments on benchmark datasets, we demonstrate that our approach improves robustness towards occlusion, results in models utilizing more features within the region of interest, and boosts inference time generalization performance. Our code is available at https://github.com/Shreyas-Gururaj/LRP_Relevance_Dropout.

Authors:Carina Newen, Luca Hinkamp, Maria Ntonti, Emmanuel Müller
Title: Do you see what I see? An Ambiguous Optical Illusion Dataset exposing limitations of Explainable AI
Abstract:
From uncertainty quantification to real-world object detection, we recognize the importance of machine learning algorithms, particularly in safety-critical domains such as autonomous driving or medical diagnostics. In machine learning, ambiguous data plays an important role in various machine learning domains. Optical illusions present a compelling area of study in this context, as they offer insight into the limitations of both human and machine perception. Despite this relevance, optical illusion datasets remain scarce. In this work, we introduce a novel dataset of optical illusions featuring intermingled animal pairs designed to evoke perceptual ambiguity. We identify generalizable visual concepts, particularly gaze direction and eye cues, as subtle yet impactful features that significantly influence model accuracy. By confronting models with perceptual ambiguity, our findings underscore the importance of concepts in visual learning and provide a foundation for studying bias and alignment between human and machine vision. To make this dataset useful for general purposes, we generate optical illusions systematically with different concepts discussed in our bias mitigation section. The dataset is accessible in Kaggle via https://kaggle.com/datasets/693bf7c6dd2cb45c8a863f9177350c8f9849a9508e9d50526e2ffcc5559a8333. Our source code can be found at https://github.com/KDD-OpenSource/Ambivision.git.

Authors:Huacan Wang, Ziyi Ni, Shuo Zhang, Shuo Lu, Sen Hu, Ziyang He, Chen Hu, Jiaye Lin, Yifu Guo, Ronghao Chen, Xin Li, Daxin Jiang, Yuntao Du, Pin Lyu
Title: RepoMaster: Autonomous Exploration and Understanding of GitHub Repositories for Complex Task Solving
Abstract:
The ultimate goal of code agents is to solve complex tasks autonomously. Although large language models (LLMs) have made substantial progress in code generation, real-world tasks typically demand full-fledged code repositories rather than simple scripts. Building such repositories from scratch remains a major challenge. Fortunately, GitHub hosts a vast, evolving collection of open-source repositories, which developers frequently reuse as modular components for complex tasks. Yet, existing frameworks like OpenHands and SWE-Agent still struggle to effectively leverage these valuable resources. Relying solely on README files provides insufficient guidance, and deeper exploration reveals two core obstacles: overwhelming information and tangled dependencies of repositories, both constrained by the limited context windows of current LLMs. To tackle these issues, we propose RepoMaster, an autonomous agent framework designed to explore and reuse GitHub repositories for solving complex tasks. For efficient understanding, RepoMaster constructs function-call graphs, module-dependency graphs, and hierarchical code trees to identify essential components, providing only identified core elements to the LLMs rather than the entire repository. During autonomous execution, it progressively explores related components using our exploration tools and prunes information to optimize context usage. Evaluated on the adjusted MLE-bench, RepoMaster achieves a 110% relative boost in valid submissions over the strongest baseline OpenHands. On our newly released GitTaskBench, RepoMaster lifts the task-pass rate from 40.7% to 62.9% while reducing token usage by 95%. Our code and demonstration materials are publicly available at https://github.com/QuantaAlpha/RepoMaster.

Authors:Jiawei Tang, Yuheng Jia
Title: Concentration Distribution Learning from Label Distributions
Abstract:
Label distribution learning (LDL) is an effective method to predict the relative label description degree (a.k.a. label distribution) of a sample. However, the label distribution is not a complete representation of an instance because it overlooks the absolute intensity of each label. Specifically, it's impossible to obtain the total description degree of hidden labels that not in the label space, which leads to the loss of information and confusion in instances. To solve the above problem, we come up with a new concept named background concentration to serve as the absolute description degree term of the label distribution and introduce it into the LDL process, forming the improved paradigm of concentration distribution learning. Moreover, we propose a novel model by probabilistic methods and neural networks to learn label distributions and background concentrations from existing LDL datasets. Extensive experiments prove that the proposed approach is able to extract background concentrations from label distributions while producing more accurate prediction results than the state-of-the-art LDL methods. The code is available in https://github.com/seutjw/CDL-LD.

Authors:Yao Lu, Tengfei Ma, Zeyu Wang, Zhuangzhi Chen, Dongwei Xu, Yun Lin, Qi Xuan, Guan Gui
Title: FCOS: A Two-Stage Recoverable Model Pruning Framework for Automatic Modulation Recognition
Abstract:
With the rapid development of wireless communications and the growing complexity of digital modulation schemes, traditional manual modulation recognition methods struggle to extract reliable signal features and meet real-time requirements in modern scenarios. Recently, deep learning based Automatic Modulation Recognition (AMR) approaches have greatly improved classification accuracy. However, their large model sizes and high computational demands hinder deployment on resource-constrained devices. Model pruning provides a general approach to reduce model complexity, but existing weight, channel, and layer pruning techniques each present a trade-off between compression rate, hardware acceleration, and accuracy preservation. To this end, in this paper, we introduce FCOS, a novel Fine-to-COarse two-Stage pruning framework that combines channel-level pruning with layer-level collapse diagnosis to achieve extreme compression, high performance and efficient inference. In the first stage of FCOS, hierarchical clustering and parameter fusion are applied to channel weights to achieve channel-level pruning. Then a Layer Collapse Diagnosis (LaCD) module uses linear probing to identify layer collapse and removes the collapsed layers due to high channel compression ratio. Experiments on multiple AMR benchmarks demonstrate that FCOS outperforms existing channel and layer pruning methods. Specifically, FCOS achieves 95.51% FLOPs reduction and 95.31% parameter reduction while still maintaining performance close to the original ResNet56, with only a 0.46% drop in accuracy on Sig2019-12. Code is available at https://github.com/yaolu-zjut/FCOS.

Authors:Weixing Wang, Zifeng Ding, Jindong Gu, Rui Cao, Christoph Meinel, Gerard de Melo, Haojin Yang
Title: Image Tokens Matter: Mitigating Hallucination in Discrete Tokenizer-based Large Vision-Language Models via Latent Editing
Abstract:
Large Vision-Language Models (LVLMs) with discrete image tokenizers unify multimodal representations by encoding visual inputs into a finite set of tokens. Despite their effectiveness, we find that these models still hallucinate non-existent objects. We hypothesize that this may be due to visual priors induced during training: When certain image tokens frequently co-occur in the same spatial regions and represent shared objects, they become strongly associated with the verbalizations of those objects. As a result, the model may hallucinate by evoking visually absent tokens that often co-occur with present ones. To test this assumption, we construct a co-occurrence graph of image tokens using a segmentation dataset and employ a Graph Neural Network (GNN) with contrastive learning followed by a clustering method to group tokens that frequently co-occur in similar visual contexts. We find that hallucinations predominantly correspond to clusters whose tokens dominate the input, and more specifically, that the visually absent tokens in those clusters show much higher correlation with hallucinated objects compared to tokens present in the image. Based on this observation, we propose a hallucination mitigation method that suppresses the influence of visually absent tokens by modifying latent image embeddings during generation. Experiments show our method reduces hallucinations while preserving expressivity. Code is available at https://github.com/weixingW/CGC-VTD/tree/main

Authors:Chika Maduabuchi, Hao Chen, Yujin Han, Jindong Wang
Title: Corruption-Aware Training of Latent Video Diffusion Models for Robust Text-to-Video Generation
Abstract:
Latent Video Diffusion Models (LVDMs) achieve high-quality generation but are sensitive to imperfect conditioning, which causes semantic drift and temporal incoherence on noisy, web-scale video-text datasets. We introduce CAT-LVDM, the first corruption-aware training framework for LVDMs that improves robustness through structured, data-aligned noise injection. Our method includes Batch-Centered Noise Injection (BCNI), which perturbs embeddings along intra-batch semantic directions to preserve temporal consistency. BCNI is especially effective on caption-rich datasets like WebVid-2M, MSR-VTT, and MSVD. We also propose Spectrum-Aware Contextual Noise (SACN), which injects noise along dominant spectral directions to improve low-frequency smoothness, showing strong results on UCF-101. On average, BCNI reduces FVD by 31.9% across WebVid-2M, MSR-VTT, and MSVD, while SACN yields a 12.3% improvement on UCF-101. Ablation studies confirm the benefit of low-rank, data-aligned noise. Our theoretical analysis further explains how such perturbations tighten entropy, Wasserstein, score-drift, mixing-time, and generalization bounds. CAT-LVDM establishes a principled, scalable training approach for robust video diffusion under multimodal noise. Code and models: https://github.com/chikap421/catlvdm

Authors:Zitong Wang, Hang Zhao, Qianyu Zhou, Xuequan Lu, Xiangtai Li, Yiren Song
Title: DiffDecompose: Layer-Wise Decomposition of Alpha-Composited Images via Diffusion Transformers
Abstract:
Diffusion models have recently motivated great success in many generation tasks like object removal. Nevertheless, existing image decomposition methods struggle to disentangle semi-transparent or transparent layer occlusions due to mask prior dependencies, static object assumptions, and the lack of datasets. In this paper, we delve into a novel task: Layer-Wise Decomposition of Alpha-Composited Images, aiming to recover constituent layers from single overlapped images under the condition of semi-transparent/transparent alpha layer non-linear occlusion. To address challenges in layer ambiguity, generalization, and data scarcity, we first introduce AlphaBlend, the first large-scale and high-quality dataset for transparent and semi-transparent layer decomposition, supporting six real-world subtasks (e.g., translucent flare removal, semi-transparent cell decomposition, glassware decomposition). Building on this dataset, we present DiffDecompose, a diffusion Transformer-based framework that learns the posterior over possible layer decompositions conditioned on the input image, semantic prompts, and blending type. Rather than regressing alpha mattes directly, DiffDecompose performs In-Context Decomposition, enabling the model to predict one or multiple layers without per-layer supervision, and introduces Layer Position Encoding Cloning to maintain pixel-level correspondence across layers. Extensive experiments on the proposed AlphaBlend dataset and public LOGO dataset verify the effectiveness of DiffDecompose. The code and dataset will be available upon paper acceptance. Our code will be available at: https://github.com/Wangzt1121/DiffDecompose.

Authors:Thalles Silva, Helio Pedrini, Adín Ramírez Rivera
Title: Self-Organizing Visual Prototypes for Non-Parametric Representation Learning
Abstract:
We present Self-Organizing Visual Prototypes (SOP), a new training technique for unsupervised visual feature learning. Unlike existing prototypical self-supervised learning (SSL) methods that rely on a single prototype to encode all relevant features of a hidden cluster in the data, we propose the SOP strategy. In this strategy, a prototype is represented by many semantically similar representations, or support embeddings (SEs), each containing a complementary set of features that together better characterize their region in space and maximize training performance. We reaffirm the feasibility of non-parametric SSL by introducing novel non-parametric adaptations of two loss functions that implement the SOP strategy. Notably, we introduce the SOP Masked Image Modeling (SOP-MIM) task, where masked representations are reconstructed from the perspective of multiple non-parametric local SEs. We comprehensively evaluate the representations learned using the SOP strategy on a range of benchmarks, including retrieval, linear evaluation, fine-tuning, and object detection. Our pre-trained encoders achieve state-of-the-art performance on many retrieval benchmarks and demonstrate increasing performance gains with more complex encoders.

Authors:Mokai Pan, Kaizhen Zhu, Yuexin Ma, Yanwei Fu, Jingyi Yu, Jingya Wang, Ye Shi
Title: UniDB++: Fast Sampling of Unified Diffusion Bridge
Abstract:
Diffusion Bridges enable transitions between arbitrary distributions, with the Unified Diffusion Bridge (UniDB) framework achieving high-fidelity image generation via a Stochastic Optimal Control (SOC) formulation. However, UniDB's reliance on iterative Euler sampling methods results in slow, computationally expensive inference, while existing acceleration techniques for diffusion or diffusion bridge models fail to address its unique challenges: missing terminal mean constraints and SOC-specific penalty coefficients in its SDEs. We present UniDB++, a training-free sampling algorithm that significantly improves upon these limitations. The method's key advancement comes from deriving exact closed-form solutions for UniDB's reverse-time SDEs, effectively reducing the error accumulation inherent in Euler approximations and enabling high-quality generation with up to 20$\times$ fewer sampling steps. This method is further complemented by replacing conventional noise prediction with a more stable data prediction model, along with an SDE-Corrector mechanism that maintains perceptual quality for low-step regimes (5-10 steps). Additionally, we demonstrate that UniDB++ aligns with existing diffusion bridge acceleration methods by evaluating their update rules, and UniDB++ can recover DBIMs as special cases under some theoretical conditions. Experiments demonstrate UniDB++'s state-of-the-art performance in image restoration tasks, outperforming Euler-based methods in fidelity and speed while reducing inference time significantly. This work bridges the gap between theoretical generality and practical efficiency in SOC-driven diffusion bridge models. Our code is available at https://github.com/2769433owo/UniDB-plusplus.

Authors:Amitai Yacobi, Nir Ben-Ari, Ronen Talmon, Uri Shaham
Title: Learning Shared Representations from Unpaired Data
Abstract:
Learning shared representations is a primary area of multimodal representation learning. The current approaches to achieve a shared embedding space rely heavily on paired samples from each modality, which are significantly harder to obtain than unpaired ones. In this work, we demonstrate that shared representations can be learned almost exclusively from unpaired data. Our arguments are grounded in the spectral embeddings of the random walk matrices constructed independently from each unimodal representation. Empirical results in computer vision and natural language processing domains support its potential, revealing the effectiveness of unpaired data in capturing meaningful cross-modal relations, demonstrating high capabilities in retrieval tasks, generation, arithmetics, zero-shot, and cross-domain classification. This work, to the best of our knowledge, is the first to demonstrate these capabilities almost exclusively from unpaired samples, giving rise to a cross-modal embedding that could be viewed as universal, i.e., independent of the specific modalities of the data. Our code IS publicly available at https://github.com/shaham-lab/SUE.

Authors:Haowei Wang, Junjie Wang, Xiaojun Jia, Rupeng Zhang, Mingyang Li, Zhe Liu, Yang Liu, Qing Wang
Title: AdInject: Real-World Black-Box Attacks on Web Agents via Advertising Delivery
Abstract:
Vision-Language Model (VLM) based Web Agents represent a significant step towards automating complex tasks by simulating human-like interaction with websites. However, their deployment in uncontrolled web environments introduces significant security vulnerabilities. Existing research on adversarial environmental injection attacks often relies on unrealistic assumptions, such as direct HTML manipulation, knowledge of user intent, or access to agent model parameters, limiting their practical applicability. In this paper, we propose AdInject, a novel and real-world black-box attack method that leverages the internet advertising delivery to inject malicious content into the Web Agent's environment. AdInject operates under a significantly more realistic threat model than prior work, assuming a black-box agent, static malicious content constraints, and no specific knowledge of user intent. AdInject includes strategies for designing malicious ad content aimed at misleading agents into clicking, and a VLM-based ad content optimization technique that infers potential user intents from the target website's context and integrates these intents into the ad content to make it appear more relevant or critical to the agent's task, thus enhancing attack effectiveness. Experimental evaluations demonstrate the effectiveness of AdInject, attack success rates exceeding 60% in most scenarios and approaching 100% in certain cases. This strongly demonstrates that prevalent advertising delivery constitutes a potent and real-world vector for environment injection attacks against Web Agents. This work highlights a critical vulnerability in Web Agent security arising from real-world environment manipulation channels, underscoring the urgent need for developing robust defense mechanisms against such threats. Our code is available at https://github.com/NicerWang/AdInject.

Authors:Wei Pang, Kevin Qinghong Lin, Xiangru Jian, Xi He, Philip Torr
Title: Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Abstract:
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.

Authors:Han Xiao, Guozhi Wang, Yuxiang Chai, Zimu Lu, Weifeng Lin, Hao He, Lue Fan, Liuyang Bian, Rui Hu, Liang Liu, Shuai Ren, Yafei Wen, Xiaoxin Chen, Aojun Zhou, Hongsheng Li
Title: UI-Genie: A Self-Improving Approach for Iteratively Boosting MLLM-based Mobile GUI Agents
Abstract:
In this paper, we introduce UI-Genie, a self-improving framework addressing two key challenges in GUI agents: verification of trajectory outcome is challenging and high-quality training data are not scalable. These challenges are addressed by a reward model and a self-improving pipeline, respectively. The reward model, UI-Genie-RM, features an image-text interleaved architecture that efficiently pro- cesses historical context and unifies action-level and task-level rewards. To sup- port the training of UI-Genie-RM, we develop deliberately-designed data genera- tion strategies including rule-based verification, controlled trajectory corruption, and hard negative mining. To address the second challenge, a self-improvement pipeline progressively expands solvable complex GUI tasks by enhancing both the agent and reward models through reward-guided exploration and outcome verification in dynamic environments. For training the model, we generate UI- Genie-RM-517k and UI-Genie-Agent-16k, establishing the first reward-specific dataset for GUI agents while demonstrating high-quality synthetic trajectory gen- eration without manual annotation. Experimental results show that UI-Genie achieves state-of-the-art performance across multiple GUI agent benchmarks with three generations of data-model self-improvement. We open-source our complete framework implementation and generated datasets to facilitate further research in https://github.com/Euphoria16/UI-Genie.

Authors:Xiaojun Jia, Sensen Gao, Simeng Qin, Tianyu Pang, Chao Du, Yihao Huang, Xinfeng Li, Yiming Li, Bo Li, Yang Liu
Title: Adversarial Attacks against Closed-Source MLLMs via Feature Optimal Alignment
Abstract:
Multimodal large language models (MLLMs) remain vulnerable to transferable adversarial examples. While existing methods typically achieve targeted attacks by aligning global features-such as CLIP's [CLS] token-between adversarial and target samples, they often overlook the rich local information encoded in patch tokens. This leads to suboptimal alignment and limited transferability, particularly for closed-source models. To address this limitation, we propose a targeted transferable adversarial attack method based on feature optimal alignment, called FOA-Attack, to improve adversarial transfer capability. Specifically, at the global level, we introduce a global feature loss based on cosine similarity to align the coarse-grained features of adversarial samples with those of target samples. At the local level, given the rich local representations within Transformers, we leverage clustering techniques to extract compact local patterns to alleviate redundant local features. We then formulate local feature alignment between adversarial and target samples as an optimal transport (OT) problem and propose a local clustering optimal transport loss to refine fine-grained feature alignment. Additionally, we propose a dynamic ensemble model weighting strategy to adaptively balance the influence of multiple models during adversarial example generation, thereby further improving transferability. Extensive experiments across various models demonstrate the superiority of the proposed method, outperforming state-of-the-art methods, especially in transferring to closed-source MLLMs. The code is released at https://github.com/jiaxiaojunQAQ/FOA-Attack.

Authors:Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang Wang, Min Lin, Chao Du
Title: Reinforcing General Reasoning without Verifiers
Abstract:
The recent paradigm shift towards training large language models (LLMs) using DeepSeek-R1-Zero-style reinforcement learning (RL) on verifiable rewards has led to impressive advancements in code and mathematical reasoning. However, this methodology is limited to tasks where rule-based answer verification is possible and does not naturally extend to real-world domains such as chemistry, healthcare, engineering, law, biology, business, and economics. Current practical workarounds use an additional LLM as a model-based verifier; however, this introduces issues such as reliance on a strong verifier LLM, susceptibility to reward hacking, and the practical burden of maintaining the verifier model in memory during training. To address this and extend DeepSeek-R1-Zero-style training to general reasoning domains, we propose a verifier-free method (VeriFree) that bypasses answer verification and instead uses RL to directly maximize the probability of generating the reference answer. We compare VeriFree with verifier-based methods and demonstrate that, in addition to its significant practical benefits and reduced compute requirements, VeriFree matches and even surpasses verifier-based methods on extensive evaluations across MMLU-Pro, GPQA, SuperGPQA, and math-related benchmarks. Moreover, we provide insights into this method from multiple perspectives: as an elegant integration of training both the policy and implicit verifier in a unified model, and as a variational optimization approach. Code is available at https://github.com/sail-sg/VeriFree.

Authors:Keenan Samway, Max Kleiman-Weiner, David Guzman Piedrahita, Rada Mihalcea, Bernhard Schölkopf, Zhijing Jin
Title: Are Language Models Consequentialist or Deontological Moral Reasoners?
Abstract:
As AI systems increasingly navigate applications in healthcare, law, and governance, understanding how they handle ethically complex scenarios becomes critical. Previous work has mainly examined the moral judgments in large language models (LLMs), rather than their underlying moral reasoning process. In contrast, we focus on a large-scale analysis of the moral reasoning traces provided by LLMs. Furthermore, unlike prior work that attempted to draw inferences from only a handful of moral dilemmas, our study leverages over 600 distinct trolley problems as probes for revealing the reasoning patterns that emerge within different LLMs. We introduce and test a taxonomy of moral rationales to systematically classify reasoning traces according to two main normative ethical theories: consequentialism and deontology. Our analysis reveals that LLM chains-of-thought tend to favor deontological principles based on moral obligations, while post-hoc explanations shift notably toward consequentialist rationales that emphasize utility. Our framework provides a foundation for understanding how LLMs process and articulate ethical considerations, an important step toward safe and interpretable deployment of LLMs in high-stakes decision-making environments. Our code is available at https://github.com/keenansamway/moral-lens .

Authors:Zijun Liu, Zhennan Wan, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu
Title: Scaling External Knowledge Input Beyond Context Windows of LLMs via Multi-Agent Collaboration
Abstract:
With the rapid advancement of post-training techniques for reasoning and information seeking, large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks. However, the limited context window of LLMs obstructs scaling the amount of external knowledge input, prohibiting further improvement, especially for tasks requiring significant amount of external knowledge. Existing context window extension methods inevitably cause information loss. LLM-based multi-agent methods emerge as a new paradigm to handle massive input in a distributional manner, where we identify two core bottlenecks in existing knowledge synchronization and reasoning processes. In this work, we develop a multi-agent framework, $\textbf{ExtAgents}$, to overcome the bottlenecks and enable better scalability in inference-time knowledge integration without longer-context training. Benchmarked with our enhanced multi-hop question answering test, $\textbf{$\boldsymbol{\infty}$Bench+}$, and other public test sets including long survey generation, ExtAgents significantly enhances the performance over existing non-training methods with the same amount of external knowledge input, regardless of whether it falls $\textit{within or exceeds the context window}$. Moreover, the method maintains high efficiency due to high parallelism. Further study in the coordination of LLM agents on increasing external knowledge input could benefit real-world applications.

Authors:Bozhou Li, Wentao Zhang
Title: ID-Align: RoPE-Conscious Position Remapping for Dynamic High-Resolution Adaptation in Vision-Language Models
Abstract:
Currently, a prevalent approach for enhancing Vision-Language Models (VLMs) performance is to encode both the high-resolution version and the thumbnail of an image simultaneously. While effective, this method generates a large number of image tokens. When combined with the widely used Rotary Position Embedding (RoPE), its long-term decay property hinders the interaction between high-resolution tokens and thumbnail tokens, as well as between text and image. To address these issues, we propose ID-Align, which alleviates these problems by reordering position IDs. In this method, high-resolution tokens inherit IDs from their corresponding thumbnail token while constraining the overexpansion of positional indices. Our experiments conducted within the LLaVA-Next framework demonstrate that ID-Align achieves significant improvements, including a 6.09% enhancement on MMBench's relation reasoning tasks and notable gains across multiple benchmarks. Our code is available at the following link: https://github.com/zooblastlbz/ID-Align.

Authors:Xiao Liu, Da Yin, Zirui Wu, Yansong Feng
Title: RefTool: Enhancing Model Reasoning with Reference-Guided Tool Creation
Abstract:
Tools enhance the reasoning capabilities of large language models (LLMs) in complex problem-solving tasks, but not all tasks have available tools. In the absence of predefined tools, prior works have explored instructing LLMs to generate tools on their own. However, such approaches rely heavily on the models' internal knowledge and would fail in domains beyond the LLMs' knowledge scope. To address this limitation, we propose RefTool, a reference-guided framework for automatic tool creation that leverages structured external materials such as textbooks. RefTool consists of two modules: (1) tool creation, where LLMs generate executable tools from reference content, validate them using illustrative examples, and organize them hierarchically into a toolbox; and (2) tool utilization, where LLMs navigate the toolbox structure to select and apply the appropriate tools to solve problems. Experiments on causality, physics, and chemistry benchmarks demonstrate that RefTool outperforms existing tool-creation and domain-specific reasoning methods by 11.3% on average accuracy, while being cost-efficient and broadly generalizable. Analyses reveal that grounding tool creation in references produces accurate and faithful tools, and that the hierarchical structure facilitates effective tool selection. RefTool enables LLMs to overcome knowledge limitations, demonstrating the value of grounding tool creation in external references for enhanced and generalizable reasoning.

Authors:Maria Cristina Carrisi, Mirko Marras, Sara Vergallo
Title: A Structured Unplugged Approach for Foundational AI Literacy in Primary Education
Abstract:
Younger generations are growing up in a world increasingly shaped by intelligent technologies, making early AI literacy crucial for developing the skills to critically understand and navigate them. However, education in this field often emphasizes tool-based learning, prioritizing usage over understanding the underlying concepts. This lack of knowledge leaves non-experts, especially children, prone to misconceptions, unrealistic expectations, and difficulties in recognizing biases and stereotypes. In this paper, we propose a structured and replicable teaching approach that fosters foundational AI literacy in primary students, by building upon core mathematical elements closely connected to and of interest in primary curricula, to strengthen conceptualization, data representation, classification reasoning, and evaluation of AI. To assess the effectiveness of our approach, we conducted an empirical study with thirty-one fifth-grade students across two classes, evaluating their progress through a post-test and a satisfaction survey. Our results indicate improvements in terminology understanding and usage, features description, logical reasoning, and evaluative skills, with students showing a deeper comprehension of decision-making processes and their limitations. Moreover, the approach proved engaging, with students particularly enjoying activities that linked AI concepts to real-world reasoning. Materials: https://github.com/tail-unica/ai-literacy-primary-ed.

Authors:Xiusi Chen, Shanyong Wang, Cheng Qian, Hongru Wang, Peixuan Han, Heng Ji
Title: DecisionFlow: Advancing Large Language Model as Principled Decision Maker
Abstract:
In high-stakes domains such as healthcare and finance, effective decision-making demands not just accurate outcomes but transparent and explainable reasoning. However, current language models often lack the structured deliberation needed for such tasks, instead generating decisions and justifications in a disconnected, post-hoc manner. To address this, we propose DecisionFlow, a novel decision modeling framework that guides models to reason over structured representations of actions, attributes, and constraints. Rather than predicting answers directly from prompts, DecisionFlow builds a semantically grounded decision space and infers a latent utility function to evaluate trade-offs in a transparent, utility-driven manner. This process produces decisions tightly coupled with interpretable rationales reflecting the model's reasoning. Empirical results on two high-stakes benchmarks show that DecisionFlow not only achieves up to 30% accuracy gains over strong prompting baselines but also enhances alignment in outcomes. Our work is a critical step toward integrating symbolic reasoning with LLMs, enabling more accountable, explainable, and reliable LLM decision support systems. Code and data are at https://github.com/xiusic/DecisionFlow.

Authors:Jingyuan Huang, Xi Zhu, Minghao Guo, Yongfeng Zhang
Title: DeSocial: Blockchain-based Decentralized Social Networks
Abstract:
Web 2.0 social platforms are inherently centralized, with user data and algorithmic decisions controlled by the platform. However, users can only passively receive social predictions without being able to choose the underlying algorithm, which limits personalization. Fortunately, with the emergence of blockchain, users are allowed to choose algorithms that are tailored to their local situation, improving prediction results in a personalized way. In a blockchain environment, each user possesses its own model to perform the social prediction, capturing different perspectives on social interactions. In our work, we propose DeSocial, a decentralized social network learning framework deployed on an Ethereum (ETH) local development chain that integrates distributed data storage, node-level consensus, and user-driven model selection through Ganache. In the first stage, each user leverages DeSocial to evaluate multiple backbone models on their local subgraph. DeSocial coordinates the execution and returns model-wise prediction results, enabling the user to select the most suitable backbone for personalized social prediction. Then, DeSocial uniformly selects several validation nodes that possess the algorithm specified by each user, and aggregates the prediction results by majority voting, to prevent errors caused by any single model's misjudgment. Extensive experiments show that DeSocial has an evident improvement compared to the five classical centralized social network learning models, promoting user empowerment in blockchain-based decentralized social networks, showing the importance of multi-node validation and personalized algorithm selection based on blockchain. Our implementation is available at: https://github.com/agiresearch/DeSocial.

Authors:Xihong Yang, Siwei Wang, Fangdi Wang, Jiaqi Jin, Suyuan Liu, Yue Liu, En Zhu, Xinwang Liu, Yueming Jin
Title: Automatically Identify and Rectify: Robust Deep Contrastive Multi-view Clustering in Noisy Scenarios
Abstract:
Leveraging the powerful representation learning capabilities, deep multi-view clustering methods have demonstrated reliable performance by effectively integrating multi-source information from diverse views in recent years. Most existing methods rely on the assumption of clean views. However, noise is pervasive in real-world scenarios, leading to a significant degradation in performance. To tackle this problem, we propose a novel multi-view clustering framework for the automatic identification and rectification of noisy data, termed AIRMVC. Specifically, we reformulate noisy identification as an anomaly identification problem using GMM. We then design a hybrid rectification strategy to mitigate the adverse effects of noisy data based on the identification results. Furthermore, we introduce a noise-robust contrastive mechanism to generate reliable representations. Additionally, we provide a theoretical proof demonstrating that these representations can discard noisy information, thereby improving the performance of downstream tasks. Extensive experiments on six benchmark datasets demonstrate that AIRMVC outperforms state-of-the-art algorithms in terms of robustness in noisy scenarios. The code of AIRMVC are available at https://github.com/xihongyang1999/AIRMVC on Github.

Authors:Junhao Cheng, Yuying Ge, Teng Wang, Yixiao Ge, Jing Liao, Ying Shan
Title: Video-Holmes: Can MLLM Think Like Holmes for Complex Video Reasoning?
Abstract:
Recent advances in CoT reasoning and RL post-training have been reported to enhance video reasoning capabilities of MLLMs. This progress naturally raises a question: can these models perform complex video reasoning in a manner comparable to human experts? However, existing video benchmarks primarily evaluate visual perception and grounding abilities, with questions that can be answered based on explicit prompts or isolated visual cues. Such benchmarks do not fully capture the intricacies of real-world reasoning, where humans must actively search for, integrate, and analyze multiple clues before reaching a conclusion. To address this issue, we present Video-Holmes, a benchmark inspired by the reasoning process of Sherlock Holmes, designed to evaluate the complex video reasoning capabilities of MLLMs. Video-Holmes consists of 1,837 questions derived from 270 manually annotated suspense short films, which spans seven carefully designed tasks. Each task is constructed by first identifying key events and causal relationships within films, and then designing questions that require models to actively locate and connect multiple relevant visual clues scattered across different video segments. Our comprehensive evaluation of state-of-the-art MLLMs reveals that, while these models generally excel at visual perception, they encounter substantial difficulties with integrating information and often miss critical clues. For example, the best-performing model, Gemini-2.5-Pro, achieves an accuracy of only 45%, with most models scoring below 40%. We aim that Video-Holmes can serve as a "Holmes-test" for multimodal reasoning, motivating models to reason more like humans and emphasizing the ongoing challenges in this field. The benchmark is released in https://github.com/TencentARC/Video-Holmes.

Authors:Qi Yu, Zhichen Zeng, Yuchen Yan, Zhining Liu, Baoyu Jing, Ruizhong Qiu, Ariful Azad, Hanghang Tong
Title: PLANETALIGN: A Comprehensive Python Library for Benchmarking Network Alignment
Abstract:
Network alignment (NA) aims to identify node correspondence across different networks and serves as a critical cornerstone behind various downstream multi-network learning tasks. Despite growing research in NA, there lacks a comprehensive library that facilitates the systematic development and benchmarking of NA methods. In this work, we introduce PLANETALIGN, a comprehensive Python library for network alignment that features a rich collection of built-in datasets, methods, and evaluation pipelines with easy-to-use APIs. Specifically, PLANETALIGN integrates 18 datasets and 14 NA methods with extensible APIs for easy use and development of NA methods. Our standardized evaluation pipeline encompasses a wide range of metrics, enabling a systematic assessment of the effectiveness, scalability, and robustness of NA methods. Through extensive comparative studies, we reveal practical insights into the strengths and limitations of existing NA methods. We hope that PLANETALIGN can foster a deeper understanding of the NA problem and facilitate the development and benchmarking of more effective, scalable, and robust methods in the future. The source code of PLANETALIGN is available at https://github.com/yq-leo/PlanetAlign.

Authors:James Oldfield, Shawn Im, Yixuan Li, Mihalis A. Nicolaou, Ioannis Patras, Grigorios G Chrysos
Title: Towards Interpretability Without Sacrifice: Faithful Dense Layer Decomposition with Mixture of Decoders
Abstract:
Multilayer perceptrons (MLPs) are an integral part of large language models, yet their dense representations render them difficult to understand, edit, and steer. Recent methods learn interpretable approximations via neuron-level sparsity, yet fail to faithfully reconstruct the original mapping--significantly increasing model's next-token cross-entropy loss. In this paper, we advocate for moving to layer-level sparsity to overcome the accuracy trade-off in sparse layer approximation. Under this paradigm, we introduce Mixture of Decoders (MxDs). MxDs generalize MLPs and Gated Linear Units, expanding pre-trained dense layers into tens of thousands of specialized sublayers. Through a flexible form of tensor factorization, each sparsely activating MxD sublayer implements a linear transformation with full-rank weights--preserving the original decoders' expressive capacity even under heavy sparsity. Experimentally, we show that MxDs significantly outperform state-of-the-art methods (e.g., Transcoders) on the sparsity-accuracy frontier in language models with up to 3B parameters. Further evaluations on sparse probing and feature steering demonstrate that MxDs learn similarly specialized features of natural language--opening up a promising new avenue for designing interpretable yet faithful decompositions. Our code is included at: https://github.com/james-oldfield/MxD/.

Authors:Wenyuan Li, Shunlin Liang, Keyan Chen, Yongzhe Chen, Han Ma, Jianglei Xu, Yichuan Ma, Shikang Guan, Husheng Fang, Zhenwei Shi
Title: AgriFM: A Multi-source Temporal Remote Sensing Foundation Model for Crop Mapping
Abstract:
Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at https://github.com/flyakon/AgriFM.

Authors:Kele Shao, Keda Tao, Can Qin, Haoxuan You, Yang Sui, Huan Wang
Title: HoliTom: Holistic Token Merging for Fast Video Large Language Models
Abstract:
Video large language models (video LLMs) excel at video comprehension but face significant computational inefficiency due to redundant video tokens. Existing token pruning methods offer solutions. However, approaches operating within the LLM (inner-LLM pruning), such as FastV, incur intrinsic computational overhead in shallow layers. In contrast, methods performing token pruning before the LLM (outer-LLM pruning) primarily address spatial redundancy within individual frames or limited temporal windows, neglecting the crucial global temporal dynamics and correlations across longer video sequences. This leads to sub-optimal spatio-temporal reduction and does not leverage video compressibility fully. Crucially, the synergistic potential and mutual influence of combining these strategies remain unexplored. To further reduce redundancy, we introduce HoliTom, a novel training-free holistic token merging framework. HoliTom employs outer-LLM pruning through global redundancy-aware temporal segmentation, followed by spatial-temporal merging to reduce visual tokens by over 90%, significantly alleviating the LLM's computational burden. Complementing this, we introduce a robust inner-LLM token similarity-based merging approach, designed for superior performance and compatibility with outer-LLM pruning. Evaluations demonstrate our method's promising efficiency-performance trade-off on LLaVA-OneVision-7B, reducing computational costs to 6.9% of FLOPs while maintaining 99.1% of the original performance. Furthermore, we achieve a 2.28x reduction in Time-To-First-Token (TTFT) and a 1.32x acceleration in decoding throughput, highlighting the practical benefits of our integrated pruning approach for efficient video LLMs inference.

Authors:Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, Mao Yang
Title: rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset
Abstract:
Advancing code reasoning in large language models (LLMs) is fundamentally limited by the scarcity of high-difficulty datasets, especially those with verifiable input-output test cases necessary for rigorous solution validation at scale. We introduce rStar-Coder, which significantly improves LLM code reasoning capabilities by constructing a large-scale, verified dataset of 418K competition-level code problems, 580K long-reasoning solutions along with rich test cases of varying difficulty. This is achieved through three core contributions: (1) we curate competitive programming code problems and oracle solutions to synthesize new, solvable problems; (2) we introduce a reliable input-output test case synthesis pipeline that decouples the generation into a three-step input generation method and a mutual verification mechanism for effective output labeling; (3) we augment problems with high-quality, test-case-verified long-reasoning solutions. Extensive experiments on Qwen models (1.5B-14B) across various code reasoning benchmarks demonstrate the superiority of rStar-Coder dataset, achieving leading performance comparable to frontier reasoning LLMs with much smaller model sizes. On LiveCodeBench, rStar-Coder improves Qwen2.5-7B from 17.4% to an impressive 57.3%, and Qwen2.5-14B from 23.3% to 62.5%, surpassing o3-mini (low) by3.1%. On the more challenging USA Computing Olympiad, our 7B model achieves an average pass@1 accuracy of 16.15%, outperforming the frontier-level QWQ-32B. Code and the dataset will be released at https://github.com/microsoft/rStar.

Authors:Shaoqing Zhang, Kehai Chen, Zhuosheng Zhang, Rumei Li, Rongxiang Weng, Yang Xiang, Liqiang Nie, Min Zhang
Title: XBOUND: Exploring the Capability Boundaries of Device-Control Agents through Trajectory Tree Exploration
Abstract:
Recent advancements in vision-language models (VLMs) have spurred increased interest in Device-Control Agents (DC agents), such as utilizing in-the-wild device control to manage graphical user interfaces. Conventional methods for assessing the capabilities of DC agents, such as computing step-wise action accuracy and overall task success rates, provide a macroscopic view of DC agents' performance; however, they fail to offer microscopic insights into potential errors that may occur in real-world applications. Conducting a finer-grained performance evaluation of DC agents presents significant challenges. This study introduces a new perspective on evaluation methods for DC agents by proposing the XBOUND evaluation method, which employs the calculation of a novel Explore Metric to delineate the capability boundaries of DC agents. Compared to previous evaluation methods, XBOUND focuses on individual states to assess the proficiency of DC agents in mastering these states. Furthermore, we have developed a ``pseudo'' episode tree dataset derived from Android Control test data. Utilizing this dataset and XBOUND, we comprehensively evaluate the OS-Atlas and UI-TARS series, examining both the overall and specific performance across five common tasks. Additionally, we select representative cases to highlight the current deficiencies and limitations inherent in both series. Code is available at https://github.com/sqzhang-lazy/XBOUND.

Authors:Yao Huang, Yitong Sun, Shouwei Ruan, Yichi Zhang, Yinpeng Dong, Xingxing Wei
Title: Breaking the Ceiling: Exploring the Potential of Jailbreak Attacks through Expanding Strategy Space
Abstract:
Large Language Models (LLMs), despite advanced general capabilities, still suffer from numerous safety risks, especially jailbreak attacks that bypass safety protocols. Understanding these vulnerabilities through black-box jailbreak attacks, which better reflect real-world scenarios, offers critical insights into model robustness. While existing methods have shown improvements through various prompt engineering techniques, their success remains limited against safety-aligned models, overlooking a more fundamental problem: the effectiveness is inherently bounded by the predefined strategy spaces. However, expanding this space presents significant challenges in both systematically capturing essential attack patterns and efficiently navigating the increased complexity. To better explore the potential of expanding the strategy space, we address these challenges through a novel framework that decomposes jailbreak strategies into essential components based on the Elaboration Likelihood Model (ELM) theory and develops genetic-based optimization with intention evaluation mechanisms. To be striking, our experiments reveal unprecedented jailbreak capabilities by expanding the strategy space: we achieve over 90% success rate on Claude-3.5 where prior methods completely fail, while demonstrating strong cross-model transferability and surpassing specialized safeguard models in evaluation accuracy. The code is open-sourced at: https://github.com/Aries-iai/CL-GSO.

Authors:Eve Le Guillou, Pierre Fortin, Julien Tierny
Title: Distributed Discrete Morse Sandwich: Efficient Computation of Persistence Diagrams for Massive Scalar Data
Abstract:
The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The "Discrete Morse Sandwich" (DMS) method has been reported to be the most efficient algorithm for computing persistence diagrams of 3D scalar fields on a single node, using shared-memory parallelism. In this work, we extend DMS to distributed-memory parallelism for the efficient and scalable computation of persistence diagrams for massive datasets across multiple compute nodes. On the one hand, we can leverage the embarrassingly parallel procedure of the first and most time-consuming step of DMS (namely the discrete gradient computation). On the other hand, the efficient distributed computations of the subsequent DMS steps are much more challenging. To address this, we have extensively revised the DMS routines by contributing a new self-correcting distributed pairing algorithm, redesigning key data structures and introducing computation tokens to coordinate distributed computations. We have also introduced a dedicated communication thread to overlap communication and computation. Detailed performance analyses show the scalability of our hybrid MPI+thread approach for strong and weak scaling using up to 16 nodes of 32 cores (512 cores total). Our algorithm outperforms DIPHA, a reference method for the distributed computation of persistence diagrams, with an average speedup of x8 on 512 cores. We show the practical capabilities of our approach by computing the persistence diagram of a public 3D scalar field of 6 billion vertices in 174 seconds on 512 cores. Finally, we provide a usage example of our open-source implementation at https://github.com/eve-le-guillou/DDMS-example.

Authors:M. Akin Yilmaz, Ahmet Bilican, A. Murat Tekalp
Title: DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution
Abstract:
Balancing reconstruction quality versus model efficiency remains a critical challenge in lightweight single image super-resolution (SISR). Despite the prevalence of attention mechanisms in recent state-of-the-art SISR approaches that primarily emphasize or suppress feature maps, alternative architectural paradigms warrant further exploration. This paper introduces DiMoSR (Dilated Modulation Super-Resolution), a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks. The proposed approach leverages multi-branch dilated convolutions to capture rich contextual information over a wider receptive field while maintaining computational efficiency. Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets, achieving superior PSNR and SSIM metrics with comparable or reduced computational complexity. Through comprehensive ablation studies, this work not only validates the effectiveness of DiMoSR but also provides critical insights into the interplay between attention mechanisms and feature modulation to guide future research in efficient network design. The code and model weights to reproduce our results are available at: https://github.com/makinyilmaz/DiMoSR

Authors:Gunjan Balde, Soumyadeep Roy, Mainack Mondal, Niloy Ganguly
Title: Evaluation of LLMs in Medical Text Summarization: The Role of Vocabulary Adaptation in High OOV Settings
Abstract:
Large Language Models (LLMs) recently achieved great success in medical text summarization by simply using in-context learning. However, these recent efforts do not perform fine-grained evaluations under difficult settings where LLMs might fail. They typically report performance scores over the entire dataset. Through our benchmarking study, we show that LLMs show a significant performance drop for data points with high concentration of out-of-vocabulary (OOV) words or with high novelty. Vocabulary adaptation is an intuitive solution to this vocabulary mismatch issue where the LLM vocabulary gets updated with certain expert domain (here, medical) words or subwords. An interesting finding from our study is that Llama-3.1, even with a vocabulary size of around 128K tokens, still faces over-fragmentation issue with medical words. To that end, we show vocabulary adaptation helps improve the LLM summarization performance even in difficult settings. Through extensive experimentation of multiple vocabulary adaptation strategies, two continual pretraining strategies, and three benchmark medical summarization datasets, we gain valuable insights into the role of vocabulary adaptation strategies for customizing LLMs to the medical domain. We also performed a human evaluation study with medical experts where they found that vocabulary adaptation results in more relevant and faithful summaries. Our codebase is made publicly available at https://github.com/gb-kgp/LLM-MedicalSummarization-Benchmark.

Authors:Yu He, Zihan Yao, Chentao Song, Tianyu Qi, Jun Liu, Ming Li, Qing Huang
Title: LMCD: Language Models are Zeroshot Cognitive Diagnosis Learners
Abstract:
Cognitive Diagnosis (CD) has become a critical task in AI-empowered education, supporting personalized learning by accurately assessing students' cognitive states. However, traditional CD models often struggle in cold-start scenarios due to the lack of student-exercise interaction data. Recent NLP-based approaches leveraging pre-trained language models (PLMs) have shown promise by utilizing textual features but fail to fully bridge the gap between semantic understanding and cognitive profiling. In this work, we propose Language Models as Zeroshot Cognitive Diagnosis Learners (LMCD), a novel framework designed to handle cold-start challenges by harnessing large language models (LLMs). LMCD operates via two primary phases: (1) Knowledge Diffusion, where LLMs generate enriched contents of exercises and knowledge concepts (KCs), establishing stronger semantic links; and (2) Semantic-Cognitive Fusion, where LLMs employ causal attention mechanisms to integrate textual information and student cognitive states, creating comprehensive profiles for both students and exercises. These representations are efficiently trained with off-the-shelf CD models. Experiments on two real-world datasets demonstrate that LMCD significantly outperforms state-of-the-art methods in both exercise-cold and domain-cold settings. The code is publicly available at https://github.com/TAL-auroraX/LMCD

Authors:Zijing Wang, Xingle Xu, Yongkang Liu, Yiqun Zhang, Peiqin Lin, Shi Feng, Xiaocui Yang, Daling Wang, Hinrich Schütze
Title: Why Do More Experts Fail? A Theoretical Analysis of Model Merging
Abstract:
Model merging dramatically reduces storage and computational resources by combining multiple expert models into a single multi-task model. Although recent model merging methods have shown promising results, they struggle to maintain performance gains as the number of merged models increases. In this paper, we investigate the key obstacles that limit the scalability of model merging when integrating a large number of expert models. First, we prove that there is an upper bound on model merging. Further theoretical analysis reveals that the limited effective parameter space imposes a strict constraint on the number of models that can be successfully merged. Gaussian Width shows that the marginal benefit of merging additional models diminishes according to a strictly concave function. This implies that the effective parameter space becomes rapidly saturated as the number of merged models increases. Furthermore, using Approximate Kinematics Theory, we prove the existence of a unique optimal threshold beyond which adding more models does not yield significant performance improvements. At the same time, we introduce a straightforward Reparameterized Heavy-Tailed method (RHT) to extend the coverage of the merged model, thereby enhancing its performance. Empirical results on 12 benchmarks, including both knowledge-intensive and general-purpose tasks, validate our theoretical analysis. We believe that these results spark further research beyond the current scope of model merging. The source code is in the Github repository: https://github.com/wzj1718/ModelMergingAnalysis.

Authors:M. Mebratu, W. L. K. Wu
Title: Wavelet Flow For Extragalactic Foreground Simulations
Abstract:
Extragalactic foregrounds in cosmic microwave background (CMB) observations are both a source of cosmological and astrophysical information and a nuisance to the CMB. Effective field-level modeling that captures their non-Gaussian statistical distributions is increasingly important for optimal information extraction, particularly given the precise and low-noise observations from current and upcoming experiments. We explore the use of Wavelet Flow (WF) models to tackle the novel task of modeling the field-level probability distributions of multi-component CMB secondaries and foreground. Specifically, we jointly train correlated CMB lensing convergence ($κ$) and cosmic infrared background (CIB) maps with a WF model and obtain a network that statistically recovers the input to high accuracy -- the trained network generates samples of $κ$ and CIB fields whose average power spectra are within a few percent of the inputs across all scales, and whose Minkowski functionals are similarly accurate compared to the inputs. Leveraging the multiscale architecture of these models, we fine-tune both the model parameters and the priors at each scale independently, optimizing performance across different resolutions. These results demonstrate that WF models can accurately simulate correlated components of CMB secondaries, supporting improved analysis of cosmological data. Our code and trained models can be found here (https://github.com/matiwosm/HybridPriorWavletFlow.git).

Authors:Jong Hak Moon, Geon Choi, Paloma Rabaey, Min Gwan Kim, Hyuk Gi Hong, Jung-Oh Lee, Hangyul Yoon, Eun Woo Doe, Jiyoun Kim, Harshita Sharma, Daniel C. Castro, Javier Alvarez-Valle, Edward Choi
Title: Lunguage: A Benchmark for Structured and Sequential Chest X-ray Interpretation
Abstract:
Radiology reports convey detailed clinical observations and capture diagnostic reasoning that evolves over time. However, existing evaluation methods are limited to single-report settings and rely on coarse metrics that fail to capture fine-grained clinical semantics and temporal dependencies. We introduce LUNGUAGE,a benchmark dataset for structured radiology report generation that supports both single-report evaluation and longitudinal patient-level assessment across multiple studies. It contains 1,473 annotated chest X-ray reports, each reviewed by experts, and 80 of them contain longitudinal annotations to capture disease progression and inter-study intervals, also reviewed by experts. Using this benchmark, we develop a two-stage framework that transforms generated reports into fine-grained, schema-aligned structured representations, enabling longitudinal interpretation. We also propose LUNGUAGESCORE, an interpretable metric that compares structured outputs at the entity, relation, and attribute level while modeling temporal consistency across patient timelines. These contributions establish the first benchmark dataset, structuring framework, and evaluation metric for sequential radiology reporting, with empirical results demonstrating that LUNGUAGESCORE effectively supports structured report evaluation. The code is available at: https://github.com/SuperSupermoon/Lunguage

Authors:Hesam Araghi, Jan van Gemert, Nergis Tomen
Title: Making Every Event Count: Balancing Data Efficiency and Accuracy in Event Camera Subsampling
Abstract:
Event cameras offer high temporal resolution and power efficiency, making them well-suited for edge AI applications. However, their high event rates present challenges for data transmission and processing. Subsampling methods provide a practical solution, but their effect on downstream visual tasks remains underexplored. In this work, we systematically evaluate six hardware-friendly subsampling methods using convolutional neural networks for event video classification on various benchmark datasets. We hypothesize that events from high-density regions carry more task-relevant information and are therefore better suited for subsampling. To test this, we introduce a simple causal density-based subsampling method, demonstrating improved classification accuracy in sparse regimes. Our analysis further highlights key factors affecting subsampling performance, including sensitivity to hyperparameters and failure cases in scenarios with large event count variance. These findings provide insights for utilization of hardware-efficient subsampling strategies that balance data efficiency and task accuracy. The code for this paper will be released at: https://github.com/hesamaraghi/event-camera-subsampling-methods.

Authors:Xurui Li, Zhonesheng Jiang, Tingxuan Ai, Yu Zhou
Title: RoBiS: Robust Binary Segmentation for High-Resolution Industrial Images
Abstract:
Robust unsupervised anomaly detection (AD) in real-world scenarios is an important task. Current methods exhibit severe performance degradation on the MVTec AD 2 benchmark due to its complex real-world challenges. To solve this problem, we propose a robust framework RoBiS, which consists of three core modules: (1) Swin-Cropping, a high-resolution image pre-processing strategy to preserve the information of small anomalies through overlapping window cropping. (2) The data augmentation of noise addition and lighting simulation is carried out on the training data to improve the robustness of AD model. We use INP-Former as our baseline, which could generate better results on the various sub-images. (3) The traditional statistical-based binarization strategy (mean+3std) is combined with our previous work, MEBin (published in CVPR2025), for joint adaptive binarization. Then, SAM is further employed to refine the segmentation results. Compared with some methods reported by the MVTec AD 2, our RoBiS achieves a 29.2% SegF1 improvement (from 21.8% to 51.00%) on Test_private and 29.82% SegF1 gains (from 16.7% to 46.52%) on Test_private_mixed. Code is available at https://github.com/xrli-U/RoBiS.

Authors:Sergey Karpukhin, Vadim Titov, Andrey Kuznetsov, Aibek Alanov
Title: FastFace: Tuning Identity Preservation in Distilled Diffusion via Guidance and Attention
Abstract:
In latest years plethora of identity-preserving adapters for a personalized generation with diffusion models have been released. Their main disadvantage is that they are dominantly trained jointly with base diffusion models, which suffer from slow multi-step inference. This work aims to tackle the challenge of training-free adaptation of pretrained ID-adapters to diffusion models accelerated via distillation - through careful re-design of classifier-free guidance for few-step stylistic generation and attention manipulation mechanisms in decoupled blocks to improve identity similarity and fidelity, we propose universal FastFace framework. Additionally, we develop a disentangled public evaluation protocol for id-preserving adapters.

Authors:Jintao Zhang, Xiaoming Xu, Jia Wei, Haofeng Huang, Pengle Zhang, Chendong Xiang, Jun Zhu, Jianfei Chen
Title: SageAttention2++: A More Efficient Implementation of SageAttention2
Abstract:
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.

Authors:Badr Moufad, Yazid Janati, Alain Durmus, Ahmed Ghorbel, Eric Moulines, Jimmy Olsson
Title: Conditional Diffusion Models with Classifier-Free Gibbs-like Guidance
Abstract:
Classifier-Free Guidance (CFG) is a widely used technique for improving conditional diffusion models by linearly combining the outputs of conditional and unconditional denoisers. While CFG enhances visual quality and improves alignment with prompts, it often reduces sample diversity, leading to a challenging trade-off between quality and diversity. To address this issue, we make two key contributions. First, CFG generally does not correspond to a well-defined denoising diffusion model (DDM). In particular, contrary to common intuition, CFG does not yield samples from the target distribution associated with the limiting CFG score as the noise level approaches zero -- where the data distribution is tilted by a power $w \gt 1$ of the conditional distribution. We identify the missing component: a Rényi divergence term that acts as a repulsive force and is required to correct CFG and render it consistent with a proper DDM. Our analysis shows that this correction term vanishes in the low-noise limit. Second, motivated by this insight, we propose a Gibbs-like sampling procedure to draw samples from the desired tilted distribution. This method starts with an initial sample from the conditional diffusion model without CFG and iteratively refines it, preserving diversity while progressively enhancing sample quality. We evaluate our approach on both image and text-to-audio generation tasks, demonstrating substantial improvements over CFG across all considered metrics. The code is available at https://github.com/yazidjanati/cfgig

Authors:Tianhao Peng, Ho Man Kwan, Yuxuan Jiang, Ge Gao, Fan Zhang, Xiaozhong Xu, Shan Liu, David Bull
Title: Instance Data Condensation for Image Super-Resolution
Abstract:
Deep learning based image Super-Resolution (ISR) relies on large training datasets to optimize model generalization; this requires substantial computational and storage resources during training. While dataset condensation has shown potential in improving data efficiency and privacy for high-level computer vision tasks, it has not yet been fully exploited for ISR. In this paper, we propose a novel Instance Data Condensation (IDC) framework specifically for ISR, which achieves instance-level data condensation through Random Local Fourier Feature Extraction and Multi-level Feature Distribution Matching. This aims to optimize feature distributions at both global and local levels and obtain high-quality synthesized training content with fine detail. This framework has been utilized to condense the most commonly used training dataset for ISR, DIV2K, with a 10% condensation rate. The resulting synthetic dataset offers comparable or (in certain cases) even better performance compared to the original full dataset and excellent training stability when used to train various popular ISR models. To the best of our knowledge, this is the first time that a condensed/synthetic dataset (with a 10% data volume) has demonstrated such performance. The source code and the synthetic dataset have been made available at https://github.com/.

Authors:Zeqing Wang, Bowen Zheng, Xingyi Yang, Zhenxiong Tan, Yuecong Xu, Xinchao Wang
Title: Minute-Long Videos with Dual Parallelisms
Abstract:
Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos. To address this, we propose a novel distributed inference strategy, termed DualParal. The core idea is that, instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs. However, a naive implementation of this division faces a key limitation: since diffusion models require synchronized noise levels across frames, this implementation leads to the serialization of original parallelisms. We leverage a block-wise denoising scheme to handle this. Namely, we process a sequence of frame blocks through the pipeline with progressively decreasing noise levels. Each GPU handles a specific block and layer subset while passing previous results to the next GPU, enabling asynchronous computation and communication. To further optimize performance, we incorporate two key enhancements. Firstly, a feature cache is implemented on each GPU to store and reuse features from the prior block as context, minimizing inter-GPU communication and redundant computation. Secondly, we employ a coordinated noise initialization strategy, ensuring globally consistent temporal dynamics by sharing initial noise patterns across GPUs without extra resource costs. Together, these enable fast, artifact-free, and infinitely long video generation. Applied to the latest diffusion transformer video generator, our method efficiently produces 1,025-frame videos with up to 6.54$\times$ lower latency and 1.48$\times$ lower memory cost on 8$\times$RTX 4090 GPUs.

Authors:Fatemeh Pesaran Zadeh, Yoojin Oh, Gunhee Kim
Title: LPOI: Listwise Preference Optimization for Vision Language Models
Abstract:
Aligning large VLMs with human preferences is a challenging task, as methods like RLHF and DPO often overfit to textual information or exacerbate hallucinations. Although augmenting negative image samples partially addresses these pitfalls, no prior work has employed listwise preference optimization for VLMs, due to the complexity and cost of constructing listwise image samples. In this work, we propose LPOI, the first object-aware listwise preference optimization developed for reducing hallucinations in VLMs. LPOI identifies and masks a critical object in the image, and then interpolates the masked region between the positive and negative images to form a sequence of incrementally more complete images. The model is trained to rank these images in ascending order of object visibility, effectively reducing hallucinations while retaining visual fidelity. LPOI requires no extra annotations beyond standard pairwise preference data, as it automatically constructs the ranked lists through object masking and interpolation. Comprehensive experiments on MMHalBench, AMBER, and Object HalBench confirm that LPOI outperforms existing preference optimization methods in reducing hallucinations and enhancing VLM performance. We make the code available at https://github.com/fatemehpesaran310/lpoi.

Authors:Kaiming Liu, Xuanyu Lei, Ziyue Wang, Peng Li, Yang Liu
Title: Agent-Environment Alignment via Automated Interface Generation
Abstract:
Large language model (LLM) agents have shown impressive reasoning capabilities in interactive decision-making tasks. These agents interact with environment through intermediate interfaces, such as predefined action spaces and interaction rules, which mediate the perception and action. However, mismatches often happen between the internal expectations of the agent regarding the influence of its issued actions and the actual state transitions in the environment, a phenomenon referred to as \textbf{agent-environment misalignment}. While prior work has invested substantially in improving agent strategies and environment design, the critical role of the interface still remains underexplored. In this work, we empirically demonstrate that agent-environment misalignment poses a significant bottleneck to agent performance. To mitigate this issue, we propose \textbf{ALIGN}, an \underline{A}uto-A\underline{l}igned \underline{I}nterface \underline{G}e\underline{n}eration framework that alleviates the misalignment by enriching the interface. Specifically, the ALIGN-generated interface enhances both the static information of the environment and the step-wise observations returned to the agent. Implemented as a lightweight wrapper, this interface achieves the alignment without modifying either the agent logic or the environment code. Experiments across multiple domains including embodied tasks, web navigation and tool-use, show consistent performance improvements, with up to a 45.67\% success rate improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface can generalize across different agent architectures and LLM backbones without interface regeneration. Code and experimental results are available at https://github.com/THUNLP-MT/ALIGN.

Authors:Wei Chen, Zhao Zhang, Meng Yuan, Kepeng Xu, Fuzhen Zhuang
Title: FCKT: Fine-Grained Cross-Task Knowledge Transfer with Semantic Contrastive Learning for Targeted Sentiment Analysis
Abstract:
In this paper, we address the task of targeted sentiment analysis (TSA), which involves two sub-tasks, i.e., identifying specific aspects from reviews and determining their corresponding sentiments. Aspect extraction forms the foundation for sentiment prediction, highlighting the critical dependency between these two tasks for effective cross-task knowledge transfer. While most existing studies adopt a multi-task learning paradigm to align task-specific features in the latent space, they predominantly rely on coarse-grained knowledge transfer. Such approaches lack fine-grained control over aspect-sentiment relationships, often assuming uniform sentiment polarity within related aspects. This oversimplification neglects contextual cues that differentiate sentiments, leading to negative transfer. To overcome these limitations, we propose FCKT, a fine-grained cross-task knowledge transfer framework tailored for TSA. By explicitly incorporating aspect-level information into sentiment prediction, FCKT achieves fine-grained knowledge transfer, effectively mitigating negative transfer and enhancing task performance. Experiments on three datasets, including comparisons with various baselines and large language models (LLMs), demonstrate the effectiveness of FCKT. The source code is available on https://github.com/cwei01/FCKT.

Authors:Wenhu Li, Niki van Stein, Thomas Bäck, Elena Raponi
Title: LLaMEA-BO: A Large Language Model Evolutionary Algorithm for Automatically Generating Bayesian Optimization Algorithms
Abstract:
Bayesian optimization (BO) is a powerful class of algorithms for optimizing expensive black-box functions, but designing effective BO algorithms remains a manual, expertise-driven task. Recent advancements in Large Language Models (LLMs) have opened new avenues for automating scientific discovery, including the automatic design of optimization algorithms. While prior work has used LLMs within optimization loops or to generate non-BO algorithms, we tackle a new challenge: Using LLMs to automatically generate full BO algorithm code. Our framework uses an evolution strategy to guide an LLM in generating Python code that preserves the key components of BO algorithms: An initial design, a surrogate model, and an acquisition function. The LLM is prompted to produce multiple candidate algorithms, which are evaluated on the established Black-Box Optimization Benchmarking (BBOB) test suite from the COmparing Continuous Optimizers (COCO) platform. Based on their performance, top candidates are selected, combined, and mutated via controlled prompt variations, enabling iterative refinement. Despite no additional fine-tuning, the LLM-generated algorithms outperform state-of-the-art BO baselines in 19 (out of 24) BBOB functions in dimension 5 and generalize well to higher dimensions, and different tasks (from the Bayesmark framework). This work demonstrates that LLMs can serve as algorithmic co-designers, offering a new paradigm for automating BO development and accelerating the discovery of novel algorithmic combinations. The source code is provided at https://github.com/Ewendawi/LLaMEA-BO.

Authors:Nils Neukirch, Johanna Vielhaben, Nils Strodthoff
Title: FeatInv: Spatially resolved mapping from feature space to input space using conditional diffusion models
Abstract:
Internal representations are crucial for understanding deep neural networks, such as their properties and reasoning patterns, but remain difficult to interpret. While mapping from feature space to input space aids in interpreting the former, existing approaches often rely on crude approximations. We propose using a conditional diffusion model - a pretrained high-fidelity diffusion model conditioned on spatially resolved feature maps - to learn such a mapping in a probabilistic manner. We demonstrate the feasibility of this approach across various pretrained image classifiers from CNNs to ViTs, showing excellent reconstruction capabilities. Through qualitative comparisons and robustness analysis, we validate our method and showcase possible applications, such as the visualization of concept steering in input space or investigations of the composite nature of the feature space. This approach has broad potential for improving feature space understanding in computer vision models.

Authors:Yuan Gao, Ruiqi Shu, Hao Wu, Fan Xu, Yanfei Xiang, Ruijian Gou, Qingsong Wen, Xian Wu, Kun Wang, Xiaomeng Huang
Title: NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Abstract:
Long-term, high-fidelity simulation of slow-changing physical systems, such as the ocean and climate, presents a fundamental challenge in scientific computing. Traditional autoregressive machine learning models often fail in these tasks as minor errors accumulate and lead to rapid forecast degradation. To address this problem, we propose NeuralOM, a general neural operator framework designed for simulating complex, slow-changing dynamics. NeuralOM's core consists of two key innovations: (1) a Progressive Residual Correction Framework that decomposes the forecasting task into a series of fine-grained refinement steps, effectively suppressing long-term error accumulation; and (2) a Physics-Guided Graph Network whose built-in adaptive messaging mechanism explicitly models multi-scale physical interactions, such as gradient-driven flows and multiplicative couplings, thereby enhancing physical consistency while maintaining computational efficiency. We validate NeuralOM on the challenging task of global Subseasonal-to-Seasonal (S2S) ocean simulation. Extensive experiments demonstrate that NeuralOM not only surpasses state-of-the-art models in forecast accuracy and long-term stability, but also excels in simulating extreme events. For instance, at a 60-day lead time, NeuralOM achieves a 13.3% lower RMSE compared to the best-performing baseline, offering a stable, efficient, and physically-aware paradigm for data-driven scientific computing. Code link: https://github.com/YuanGao-YG/NeuralOM.

Authors:Devran Ugurlu, Shuang Qian, Elliot Fairweather, Charlene Mauger, Bram Ruijsink, Laura Dal Toso, Yu Deng, Marina Strocchi, Reza Razavi, Alistair Young, Pablo Lamata, Steven Niederer, Martin Bishop
Title: Cardiac Digital Twins at Scale from MRI: Open Tools and Representative Models from ~55000 UK Biobank Participants
Abstract:
A cardiac digital twin is a virtual replica of a patient's heart for screening, diagnosis, prognosis, risk assessment, and treatment planning of cardiovascular diseases. This requires an anatomically accurate patient-specific 3D structural representation of the heart, suitable for electro-mechanical simulations or study of disease mechanisms. However, generation of cardiac digital twins at scale is demanding and there are no public repositories of models across demographic groups. We describe an automatic open-source pipeline for creating patient-specific left and right ventricular meshes from cardiovascular magnetic resonance images, its application to a large cohort of ~55000 participants from UK Biobank, and the construction of the most comprehensive cohort of adult heart models to date, comprising 1423 representative meshes across sex (male, female), body mass index (range: 16 - 42 kg/m$^2$) and age (range: 49 - 80 years). Our code is available at https://github.com/cdttk/biv-volumetric-meshing/tree/plos2025 , and pre-trained networks, representative volumetric meshes with fibers and UVCs will be made available soon.

Authors:Cainan Davidson, Deva Ramanan, Neehar Peri
Title: RefAV: Towards Planning-Centric Scenario Mining
Abstract:
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Lastly, we discuss our recent CVPR 2025 competition and share insights from the community. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html

Authors:Shamil Ayupov, Maksim Nakhodnov, Anastasia Yaschenko, Andrey Kuznetsov, Aibek Alanov
Title: DreamBoothDPO: Improving Personalized Generation using Direct Preference Optimization
Abstract:
Personalized diffusion models have shown remarkable success in Text-to-Image (T2I) generation by enabling the injection of user-defined concepts into diverse contexts. However, balancing concept fidelity with contextual alignment remains a challenging open problem. In this work, we propose an RL-based approach that leverages the diverse outputs of T2I models to address this issue. Our method eliminates the need for human-annotated scores by generating a synthetic paired dataset for DPO-like training using external quality metrics. These better-worse pairs are specifically constructed to improve both concept fidelity and prompt adherence. Moreover, our approach supports flexible adjustment of the trade-off between image fidelity and textual alignment. Through multi-step training, our approach outperforms a naive baseline in convergence speed and output quality. We conduct extensive qualitative and quantitative analysis, demonstrating the effectiveness of our method across various architectures and fine-tuning techniques. The source code can be found at https://github.com/ControlGenAI/DreamBoothDPO.

Authors:Zhibo Wang, Xiaoze Jiang, Zhiheng Qin, Enyun Yu, Han Li
Title: Personalized Query Auto-Completion for Long and Short-Term Interests with Adaptive Detoxification Generation
Abstract:
Query auto-completion (QAC) plays a crucial role in modern search systems. However, in real-world applications, there are two pressing challenges that still need to be addressed. First, there is a need for hierarchical personalized representations for users. Previous approaches have typically used users' search behavior as a single, overall representation, which proves inadequate in more nuanced generative scenarios. Additionally, query prefixes are typically short and may contain typos or sensitive information, increasing the likelihood of generating toxic content compared to traditional text generation tasks. Such toxic content can degrade user experience and lead to public relations issues. Therefore, the second critical challenge is detoxifying QAC systems. To address these two limitations, we propose a novel model (LaD) that captures personalized information from both long-term and short-term interests, incorporating adaptive detoxification. In LaD, personalized information is captured hierarchically at both coarse-grained and fine-grained levels. This approach preserves as much personalized information as possible while enabling online generation within time constraints. To move a futher step, we propose an online training method based on Reject Preference Optimization (RPO). By incorporating a special token [Reject] during both the training and inference processes, the model achieves adaptive detoxification. Consequently, the generated text presented to users is both non-toxic and relevant to the given prefix. We conduct comprehensive experiments on industrial-scale datasets and perform online A/B tests, delivering the largest single-experiment metric improvement in nearly two years of our product. Our model has been deployed on Kuaishou search, driving the primary traffic for hundreds of millions of active users. The code is available at https://github.com/JXZe/LaD.

Authors:Yaohua Zha, Yanzi Wang, Hang Guo, Jinpeng Wang, Tao Dai, Bin Chen, Zhihao Ouyang, Xue Yuerong, Ke Chen, Shu-Tao Xia
Title: PMA: Towards Parameter-Efficient Point Cloud Understanding via Point Mamba Adapter
Abstract:
Applying pre-trained models to assist point cloud understanding has recently become a mainstream paradigm in 3D perception. However, existing application strategies are straightforward, utilizing only the final output of the pre-trained model for various task heads. It neglects the rich complementary information in the intermediate layer, thereby failing to fully unlock the potential of pre-trained models. To overcome this limitation, we propose an orthogonal solution: Point Mamba Adapter (PMA), which constructs an ordered feature sequence from all layers of the pre-trained model and leverages Mamba to fuse all complementary semantics, thereby promoting comprehensive point cloud understanding. Constructing this ordered sequence is non-trivial due to the inherent isotropy of 3D space. Therefore, we further propose a geometry-constrained gate prompt generator (G2PG) shared across different layers, which applies shared geometric constraints to the output gates of the Mamba and dynamically optimizes the spatial order, thus enabling more effective integration of multi-layer information. Extensive experiments conducted on challenging point cloud datasets across various tasks demonstrate that our PMA elevates the capability for point cloud understanding to a new level by fusing diverse complementary intermediate features. Code is available at https://github.com/zyh16143998882/PMA.

Authors:Pingrui Zhang, Yifei Su, Pengyuan Wu, Dong An, Li Zhang, Zhigang Wang, Dong Wang, Yan Ding, Bin Zhao, Xuelong Li
Title: Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation
Abstract:
Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.

Authors:Weichao Pan, Bohan Xu, Xu Wang, Chengze Lv, Shuoyang Wang, Zhenke Duan, Zhen Tian
Title: YOLO-FireAD: Efficient Fire Detection via Attention-Guided Inverted Residual Learning and Dual-Pooling Feature Preservation
Abstract:
Fire detection in dynamic environments faces continuous challenges, including the interference of illumination changes, many false detections or missed detections, and it is difficult to achieve both efficiency and accuracy. To address the problem of feature extraction limitation and information loss in the existing YOLO-based models, this study propose You Only Look Once for Fire Detection with Attention-guided Inverted Residual and Dual-pooling Downscale Fusion (YOLO-FireAD) with two core innovations: (1) Attention-guided Inverted Residual Block (AIR) integrates hybrid channel-spatial attention with inverted residuals to adaptively enhance fire features and suppress environmental noise; (2) Dual Pool Downscale Fusion Block (DPDF) preserves multi-scale fire patterns through learnable fusion of max-average pooling outputs, mitigating small-fire detection failures. Extensive evaluation on two public datasets shows the efficient performance of our model. Our proposed model keeps the sum amount of parameters (1.45M, 51.8% lower than YOLOv8n) (4.6G, 43.2% lower than YOLOv8n), and mAP75 is higher than the mainstream real-time object detection models YOLOv8n, YOL-Ov9t, YOLOv10n, YOLO11n, YOLOv12n and other YOLOv8 variants 1.3-5.5%. For more details, please visit our repository: https://github.com/JEFfersusu/YOLO-FireAD

Authors:Jiyoung Lee, Seungho Kim, Jieun Han, Jun-Min Lee, Kitaek Kim, Alice Oh, Edward Choi
Title: Trans-EnV: A Framework for Evaluating the Linguistic Robustness of LLMs Against English Varieties
Abstract:
Large Language Models (LLMs) are predominantly evaluated on Standard American English (SAE), often overlooking the diversity of global English varieties. This narrow focus may raise fairness concerns as degraded performance on non-standard varieties can lead to unequal benefits for users worldwide. Therefore, it is critical to extensively evaluate the linguistic robustness of LLMs on multiple non-standard English varieties. We introduce Trans-EnV, a framework that automatically transforms SAE datasets into multiple English varieties to evaluate the linguistic robustness. Our framework combines (1) linguistics expert knowledge to curate variety-specific features and transformation guidelines from linguistic literature and corpora, and (2) LLM-based transformations to ensure both linguistic validity and scalability. Using Trans-EnV, we transform six benchmark datasets into 38 English varieties and evaluate seven state-of-the-art LLMs. Our results reveal significant performance disparities, with accuracy decreasing by up to 46.3% on non-standard varieties. These findings highlight the importance of comprehensive linguistic robustness evaluation across diverse English varieties. Each construction of Trans-EnV was validated through rigorous statistical testing and consultation with a researcher in the field of second language acquisition, ensuring its linguistic validity. Our code and datasets are publicly available at https://github.com/jiyounglee-0523/TransEnV and https://huggingface.co/collections/jiyounglee0523/transenv-681eadb3c0c8cf363b363fb1.

Authors:Jiyoung Lee, Seungho Kim, Jieun Han, Jun-Min Lee, Kitaek Kim, Alice Oh, Edward Choi
Title: Trans-EnV: A Framework for Evaluating the Linguistic Robustness of LLMs Against English Varieties
Abstract:
Large Language Models (LLMs) are predominantly evaluated on Standard American English (SAE), often overlooking the diversity of global English varieties. This narrow focus may raise fairness concerns as degraded performance on non-standard varieties can lead to unequal benefits for users worldwide. Therefore, it is critical to extensively evaluate the linguistic robustness of LLMs on multiple non-standard English varieties. We introduce Trans-EnV, a framework that automatically transforms SAE datasets into multiple English varieties to evaluate the linguistic robustness. Our framework combines (1) linguistics expert knowledge to curate variety-specific features and transformation guidelines from linguistic literature and corpora, and (2) LLM-based transformations to ensure both linguistic validity and scalability. Using Trans-EnV, we transform six benchmark datasets into 38 English varieties and evaluate seven state-of-the-art LLMs. Our results reveal significant performance disparities, with accuracy decreasing by up to 46.3% on non-standard varieties. These findings highlight the importance of comprehensive linguistic robustness evaluation across diverse English varieties. Each construction of Trans-EnV was validated through rigorous statistical testing and consultation with a researcher in the field of second language acquisition, ensuring its linguistic validity. Our code and datasets are publicly available at https://github.com/jiyounglee-0523/TransEnV and https://huggingface.co/collections/jiyounglee0523/transenv-681eadb3c0c8cf363b363fb1.

Authors:Chaeyoung Jung, Youngjoon Jang, Joon Son Chung
Title: AVCD: Mitigating Hallucinations in Audio-Visual Large Language Models through Contrastive Decoding
Abstract:
Hallucination remains a major challenge in multimodal large language models (MLLMs). To address this, various contrastive decoding (CD) methods have been proposed that contrasts original logits with hallucinated logits generated from perturbed inputs. While CD has shown promise in vision-language models (VLMs), it is not well-suited for AV-LLMs, where hallucinations often emerge from both unimodal and cross-modal combinations involving audio, video, and language. These intricate interactions call for a more adaptive and modality-aware decoding strategy. In this paper, we propose Audio-Visual Contrastive Decoding (AVCD)-a novel, training-free decoding framework designed to model trimodal interactions and suppress modality-induced hallucinations in AV-LLMs. Unlike previous CD methods in VLMs that corrupt a fixed modality, AVCD leverages attention distributions to dynamically identify less dominant modalities and applies attentive masking to generate perturbed output logits. To support CD in a trimodal setting, we also reformulate the original CD framework to jointly handle audio, visual, and textual inputs. Finally, to improve efficiency, we introduce entropy-guided adaptive decoding, which selectively skips unnecessary decoding steps based on the model's confidence in its predictions. Extensive experiments demonstrate that AVCD consistently outperforms existing decoding methods. Especially, on the AVHBench dataset, it improves accuracy by 2% for VideoLLaMA2 and 7% for video-SALMONN, demonstrating strong robustness and generalizability. Our code is available at https://github.com/kaistmm/AVCD.

Authors:Shuo Wang, Shunyang Huang, Jinghui Yuan, Zhixiang Shen, Zhao Kang
Title: Cooperation of Experts: Fusing Heterogeneous Information with Large Margin
Abstract:
Fusing heterogeneous information remains a persistent challenge in modern data analysis. While significant progress has been made, existing approaches often fail to account for the inherent heterogeneity of object patterns across different semantic spaces. To address this limitation, we propose the Cooperation of Experts (CoE) framework, which encodes multi-typed information into unified heterogeneous multiplex networks. By overcoming modality and connection differences, CoE provides a powerful and flexible model for capturing the intricate structures of real-world complex data. In our framework, dedicated encoders act as domain-specific experts, each specializing in learning distinct relational patterns in specific semantic spaces. To enhance robustness and extract complementary knowledge, these experts collaborate through a novel large margin mechanism supported by a tailored optimization strategy. Rigorous theoretical analyses guarantee the framework's feasibility and stability, while extensive experiments across diverse benchmarks demonstrate its superior performance and broad applicability. Our code is available at https://github.com/strangeAlan/CoE.

Authors:Dooho Lee, Myeong Kong, Sagad Hamid, Cheonwoo Lee, Jaemin Yoo
Title: Aggregation Buffer: Revisiting DropEdge with a New Parameter Block
Abstract:
We revisit DropEdge, a data augmentation technique for GNNs which randomly removes edges to expose diverse graph structures during training. While being a promising approach to effectively reduce overfitting on specific connections in the graph, we observe that its potential performance gain in supervised learning tasks is significantly limited. To understand why, we provide a theoretical analysis showing that the limited performance of DropEdge comes from the fundamental limitation that exists in many GNN architectures. Based on this analysis, we propose Aggregation Buffer, a parameter block specifically designed to improve the robustness of GNNs by addressing the limitation of DropEdge. Our method is compatible with any GNN model, and shows consistent performance improvements on multiple datasets. Moreover, our method effectively addresses well-known problems such as degree bias or structural disparity as a unifying solution. Code and datasets are available at https://github.com/dooho00/agg-buffer.

Authors:Soichiro Murakami, Peinan Zhang, Hidetaka Kamigaito, Hiroya Takamura, Manabu Okumura
Title: AdParaphrase v2.0: Generating Attractive Ad Texts Using a Preference-Annotated Paraphrase Dataset
Abstract:
Identifying factors that make ad text attractive is essential for advertising success. This study proposes AdParaphrase v2.0, a dataset for ad text paraphrasing, containing human preference data, to enable the analysis of the linguistic factors and to support the development of methods for generating attractive ad texts. Compared with v1.0, this dataset is 20 times larger, comprising 16,460 ad text paraphrase pairs, each annotated with preference data from ten evaluators, thereby enabling a more comprehensive and reliable analysis. Through the experiments, we identified multiple linguistic features of engaging ad texts that were not observed in v1.0 and explored various methods for generating attractive ad texts. Furthermore, our analysis demonstrated the relationships between human preference and ad performance, and highlighted the potential of reference-free metrics based on large language models for evaluating ad text attractiveness. The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase-v2.0.

Authors:Yuhao Wang, Ruiyang Ren, Yucheng Wang, Wayne Xin Zhao, Jing Liu, Hua Wu, Haifeng Wang
Title: Reinforced Informativeness Optimization for Long-Form Retrieval-Augmented Generation
Abstract:
Long-form question answering (LFQA) presents unique challenges for large language models, requiring the synthesis of coherent, paragraph-length answers. While retrieval-augmented generation (RAG) systems have emerged as a promising solution, existing research struggles with key limitations: the scarcity of high-quality training data for long-form generation, the compounding risk of hallucination in extended outputs, and the absence of reliable evaluation metrics for factual completeness. In this paper, we propose RioRAG, a novel reinforcement learning (RL) framework that advances long-form RAG through reinforced informativeness optimization. Our approach introduces two fundamental innovations to address the core challenges. First, we develop an RL training paradigm of reinforced informativeness optimization that directly optimizes informativeness and effectively addresses the slow-thinking deficit in conventional RAG systems, bypassing the need for expensive supervised data. Second, we propose a nugget-centric hierarchical reward modeling approach that enables precise assessment of long-form answers through a three-stage process: extracting the nugget from every source webpage, constructing a nugget claim checklist, and computing rewards based on factual alignment. Extensive experiments on two LFQA benchmarks LongFact and RAGChecker demonstrate the effectiveness of the proposed method. Our codes are available at https://github.com/RUCAIBox/RioRAG.

Authors:Jiaping Xiao, Cheng Wen Tsao, Yuhang Zhang, Mir Feroskhan
Title: FM-Planner: Foundation Model Guided Path Planning for Autonomous Drone Navigation
Abstract:
Path planning is a critical component in autonomous drone operations, enabling safe and efficient navigation through complex environments. Recent advances in foundation models, particularly large language models (LLMs) and vision-language models (VLMs), have opened new opportunities for enhanced perception and intelligent decision-making in robotics. However, their practical applicability and effectiveness in global path planning remain relatively unexplored. This paper proposes foundation model-guided path planners (FM-Planner) and presents a comprehensive benchmarking study and practical validation for drone path planning. Specifically, we first systematically evaluate eight representative LLM and VLM approaches using standardized simulation scenarios. To enable effective real-time navigation, we then design an integrated LLM-Vision planner that combines semantic reasoning with visual perception. Furthermore, we deploy and validate the proposed path planner through real-world experiments under multiple configurations. Our findings provide valuable insights into the strengths, limitations, and feasibility of deploying foundation models in real-world drone applications and providing practical implementations in autonomous flight. Project site: https://github.com/NTU-ICG/FM-Planner.

Authors:Noy Sternlicht, Tom Hope
Title: CHIMERA: A Knowledge Base of Scientific Idea Recombinations for Research Analysis and Ideation
Abstract:
A hallmark of human innovation is recombination -- the creation of novel ideas by integrating elements from existing concepts and mechanisms. In this work, we introduce CHIMERA, a large-scale Knowledge Base (KB) of over 28K recombination examples automatically mined from the scientific literature. CHIMERA enables large-scale empirical analysis of how scientists recombine concepts and draw inspiration from different areas, and enables training models that propose novel, cross-disciplinary research directions. To construct this KB, we define a new information extraction task: identifying recombination instances in scientific abstracts. We curate a high-quality, expert-annotated dataset and use it to fine-tune a large language model, which we apply to a broad corpus of AI papers. We showcase the utility of CHIMERA through two applications. First, we analyze patterns of recombination across AI subfields. Second, we train a scientific hypothesis generation model using the KB, showing that it can propose novel research directions that researchers rate as inspiring. We release our data and code at https://github.com/noy-sternlicht/CHIMERA-KB.

Authors:Jungyoub Cha, Hyunjong Kim, Sungzoon Cho
Title: SpecExtend: A Drop-in Enhancement for Speculative Decoding of Long Sequences
Abstract:
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), but its performance degrades on long inputs due to increased attention cost and reduced draft accuracy. We introduce SpecExtend, a drop-in enhancement that improves the performance of speculative decoding on long sequences without any additional training. First, SpecExtend integrates efficient attention mechanisms such as FlashAttention and Hybrid Tree Attention into both the draft and target models. To improve draft accuracy and speed on long inputs without retraining, we propose Cross-model Retrieval, a novel KV cache eviction strategy that uses the target model's attention scores to dynamically select relevant context for the draft model. Extensive evaluations on three long-context understanding datasets show that SpecExtend accelerates standard tree-based speculative decoding by up to 2.22x for inputs up to 16K tokens, providing an effective solution for speculative decoding of long sequences. Our code is available at https://github.com/jycha98/SpecExtend .

Authors:Jungyoub Cha, Hyunjong Kim, Sungzoon Cho
Title: SpecExtend: A Drop-in Enhancement for Speculative Decoding of Long Sequences
Abstract:
Speculative decoding is a widely used technique for accelerating inference in large language models (LLMs), but its performance degrades as input length grows, with significant drops even at moderate lengths. Yet, this early degradation has remained largely underexplored. We introduce SpecExtend, a drop-in enhancement that improves speculative decoding on long sequences without additional training. SpecExtend integrates efficient attention mechanisms such as FlashAttention and Hybrid Tree Attention to accelerate prefill and verification steps. To improve both draft accuracy and speed on long inputs without retraining, we propose Cross-model Retrieval, a novel KV cache eviction strategy that leverages the target model's attention scores to dynamically select relevant context for the smaller draft model. Extensive evaluations show that SpecExtend accelerates speculative decoding by up to 2.84x on 16K-token long summarization and up to 3.86x on long reasoning, while preserving the short-input performance of state-of-the-art frameworks. Our code is available at https://github.com/jycha98/SpecExtend .

Authors:Xiaowen Ma, Zhenliang Ni, Shuai Xiao, Xinghao Chen
Title: TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state
Abstract:
In long-term time series forecasting, different variables often influence the target variable over distinct time intervals, a challenge known as the multi-delay issue. Traditional models typically process all variables or time points uniformly, which limits their ability to capture complex variable relationships and obtain non-trivial time representations. To address this issue, we propose TimePro, an innovative Mamba-based model that constructs variate- and time-aware hyper-states. Unlike conventional approaches that merely transfer plain states across variable or time dimensions, TimePro preserves the fine-grained temporal features of each variate token and adaptively selects the focused time points to tune the plain state. The reconstructed hyper-state can perceive both variable relationships and salient temporal information, which helps the model make accurate forecasting. In experiments, TimePro performs competitively on eight real-world long-term forecasting benchmarks with satisfactory linear complexity. Code is available at https://github.com/xwmaxwma/TimePro.

Authors:Xiaqiang Tang, Jian Li, Keyu Hu, Du Nan, Xiaolong Li, Xi Zhang, Weigao Sun, Sihong Xie
Title: CogniBench: A Legal-inspired Framework and Dataset for Assessing Cognitive Faithfulness of Large Language Models
Abstract:
Faithfulness hallucinations are claims generated by a Large Language Model (LLM) not supported by contexts provided to the LLM. Lacking assessment standards, existing benchmarks focus on "factual statements" that rephrase source materials while overlooking "cognitive statements" that involve making inferences from the given context. Consequently, evaluating and detecting the hallucination of cognitive statements remains challenging. Inspired by how evidence is assessed in the legal domain, we design a rigorous framework to assess different levels of faithfulness of cognitive statements and introduce the CogniBench dataset where we reveal insightful statistics. To keep pace with rapidly evolving LLMs, we further develop an automatic annotation pipeline that scales easily across different models. This results in a large-scale CogniBench-L dataset, which facilitates training accurate detectors for both factual and cognitive hallucinations. We release our model and datasets at: https://github.com/FUTUREEEEEE/CogniBench

Authors:Eric Xing, Pranavi Kolouju, Robert Pless, Abby Stylianou, Nathan Jacobs
Title: ConText-CIR: Learning from Concepts in Text for Composed Image Retrieval
Abstract:
Composed image retrieval (CIR) is the task of retrieving a target image specified by a query image and a relative text that describes a semantic modification to the query image. Existing methods in CIR struggle to accurately represent the image and the text modification, resulting in subpar performance. To address this limitation, we introduce a CIR framework, ConText-CIR, trained with a Text Concept-Consistency loss that encourages the representations of noun phrases in the text modification to better attend to the relevant parts of the query image. To support training with this loss function, we also propose a synthetic data generation pipeline that creates training data from existing CIR datasets or unlabeled images. We show that these components together enable stronger performance on CIR tasks, setting a new state-of-the-art in composed image retrieval in both the supervised and zero-shot settings on multiple benchmark datasets, including CIRR and CIRCO. Source code, model checkpoints, and our new datasets are available at https://github.com/mvrl/ConText-CIR.

Authors:Ryota Ushio, Takashi Ishida, Masashi Sugiyama
Title: Practical estimation of the optimal classification error with soft labels and calibration
Abstract:
While the performance of machine learning systems has experienced significant improvement in recent years, relatively little attention has been paid to the fundamental question: to what extent can we improve our models? This paper provides a means of answering this question in the setting of binary classification, which is practical and theoretically supported. We extend a previous work that utilizes soft labels for estimating the Bayes error, the optimal error rate, in two important ways. First, we theoretically investigate the properties of the bias of the hard-label-based estimator discussed in the original work. We reveal that the decay rate of the bias is adaptive to how well the two class-conditional distributions are separated, and it can decay significantly faster than the previous result suggested as the number of hard labels per instance grows. Second, we tackle a more challenging problem setting: estimation with corrupted soft labels. One might be tempted to use calibrated soft labels instead of clean ones. However, we reveal that calibration guarantee is not enough, that is, even perfectly calibrated soft labels can result in a substantially inaccurate estimate. Then, we show that isotonic calibration can provide a statistically consistent estimator under an assumption weaker than that of the previous work. Our method is instance-free, i.e., we do not assume access to any input instances. This feature allows it to be adopted in practical scenarios where the instances are not available due to privacy issues. Experiments with synthetic and real-world datasets show the validity of our methods and theory.

Authors:Ryota Ushio, Takashi Ishida, Masashi Sugiyama
Title: Practical estimation of the optimal classification error with soft labels and calibration
Abstract:
While the performance of machine learning systems has experienced significant improvement in recent years, relatively little attention has been paid to the fundamental question: to what extent can we improve our models? This paper provides a means of answering this question in the setting of binary classification, which is practical and theoretically supported. We extend a previous work that utilizes soft labels for estimating the Bayes error, the optimal error rate, in two important ways. First, we theoretically investigate the properties of the bias of the hard-label-based estimator discussed in the original work. We reveal that the decay rate of the bias is adaptive to how well the two class-conditional distributions are separated, and it can decay significantly faster than the previous result suggested as the number of hard labels per instance grows. Second, we tackle a more challenging problem setting: estimation with corrupted soft labels. One might be tempted to use calibrated soft labels instead of clean ones. However, we reveal that calibration guarantee is not enough, that is, even perfectly calibrated soft labels can result in a substantially inaccurate estimate. Then, we show that isotonic calibration can provide a statistically consistent estimator under an assumption weaker than that of the previous work. Our method is instance-free, i.e., we do not assume access to any input instances. This feature allows it to be adopted in practical scenarios where the instances are not available due to privacy issues. Experiments with synthetic and real-world datasets show the validity of our methods and theory.

Authors:Yufei Zhan, Hongyin Zhao, Yousong Zhu, Shurong Zheng, Fan Yang, Ming Tang, Jinqiao Wang
Title: Understand, Think, and Answer: Advancing Visual Reasoning with Large Multimodal Models
Abstract:
Large Multimodal Models (LMMs) have recently demonstrated remarkable visual understanding performance on both vision-language and vision-centric tasks. However, they often fall short in integrating advanced, task-specific capabilities for compositional reasoning, which hinders their progress toward truly competent general vision models. To address this, we present a unified visual reasoning mechanism that enables LMMs to solve complicated compositional problems by leveraging their intrinsic capabilities (e.g. grounding and visual understanding capabilities). Different from the previous shortcut learning mechanism, our approach introduces a human-like understanding-thinking-answering process, allowing the model to complete all steps in a single pass forwarding without the need for multiple inferences or external tools. This design bridges the gap between foundational visual capabilities and general question answering, encouraging LMMs to generate faithful and traceable responses for complex visual reasoning. Meanwhile, we curate 334K visual instruction samples covering both general scenes and text-rich scenes and involving multiple foundational visual capabilities. Our trained model, Griffon-R, has the ability of end-to-end automatic understanding, self-thinking, and reasoning answers. Comprehensive experiments show that Griffon-R not only achieves advancing performance on complex visual reasoning benchmarks including VSR and CLEVR, but also enhances multimodal capabilities across various benchmarks like MMBench and ScienceQA. Data, models, and codes will be release at https://github.com/jefferyZhan/Griffon/tree/master/Griffon-R soon.

Authors:Yanran Tang, Ruihong Qiu, Zi Huang
Title: UQLegalAI@COLIEE2025: Advancing Legal Case Retrieval with Large Language Models and Graph Neural Networks
Abstract:
Legal case retrieval plays a pivotal role in the legal domain by facilitating the efficient identification of relevant cases, supporting legal professionals and researchers to propose legal arguments and make informed decision-making. To improve retrieval accuracy, the Competition on Legal Information Extraction and Entailment (COLIEE) is held annually, offering updated benchmark datasets for evaluation. This paper presents a detailed description of CaseLink, the method employed by UQLegalAI, the second highest team in Task 1 of COLIEE 2025. The CaseLink model utilises inductive graph learning and Global Case Graphs to capture the intrinsic case connectivity to improve the accuracy of legal case retrieval. Specifically, a large language model specialized in text embedding is employed to transform legal texts into embeddings, which serve as the feature representations of the nodes in the constructed case graph. A new contrastive objective, incorporating a regularization on the degree of case nodes, is proposed to leverage the information within the case reference relationship for model optimization. The main codebase used in our method is based on an open-sourced repo of CaseLink: https://github.com/yanran-tang/CaseLink.

Authors:Sunwoo Kim, Soo Yong Lee, Jaemin Yoo, Kijung Shin
Title: 'Hello, World!': Making GNNs Talk with LLMs
Abstract:
While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.

Authors:Xiangyu Zhao, Wanghan Xu, Bo Liu, Yuhao Zhou, Fenghua Ling, Ben Fei, Xiaoyu Yue, Lei Bai, Wenlong Zhang, Xiao-Ming Wu
Title: MSEarth: A Benchmark for Multimodal Scientific Comprehension of Earth Science
Abstract:
The rapid advancement of multimodal large language models (MLLMs) has unlocked new opportunities to tackle complex scientific challenges. Despite this progress, their application in addressing earth science problems, especially at the graduate level, remains underexplored. A significant barrier is the absence of benchmarks that capture the depth and contextual complexity of geoscientific reasoning. Current benchmarks often rely on synthetic datasets or simplistic figure-caption pairs, which do not adequately reflect the intricate reasoning and domain-specific insights required for real-world scientific applications. To address these gaps, we introduce MSEarth, a multimodal scientific benchmark curated from high-quality, open-access scientific publications. MSEarth encompasses the five major spheres of Earth science: atmosphere, cryosphere, hydrosphere, lithosphere, and biosphere, featuring over 7K figures with refined captions. These captions are crafted from the original figure captions and enriched with discussions and reasoning from the papers, ensuring the benchmark captures the nuanced reasoning and knowledge-intensive content essential for advanced scientific tasks. MSEarth supports a variety of tasks, including scientific figure captioning, multiple choice questions, and open-ended reasoning challenges. By bridging the gap in graduate-level benchmarks, MSEarth provides a scalable and high-fidelity resource to enhance the development and evaluation of MLLMs in scientific reasoning. The benchmark is publicly available to foster further research and innovation in this field. Resources related to this benchmark can be found at https://huggingface.co/MSEarth and https://github.com/xiangyu-mm/MSEarth.

Authors:Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, Wenjie Li
Title: SPA-RL: Reinforcing LLM Agents via Stepwise Progress Attribution
Abstract:
Reinforcement learning (RL) holds significant promise for training LLM agents to handle complex, goal-oriented tasks that require multi-step interactions with external environments. However, a critical challenge when applying RL to these agentic tasks arises from delayed rewards: feedback signals are typically available only after the entire task is completed. This makes it non-trivial to assign delayed rewards to earlier actions, providing insufficient guidance regarding environmental constraints and hindering agent training. In this work, we draw on the insight that the ultimate completion of a task emerges from the cumulative progress an agent makes across individual steps. We propose Stepwise Progress Attribution (SPA), a general reward redistribution framework that decomposes the final reward into stepwise contributions, each reflecting its incremental progress toward overall task completion. To achieve this, we train a progress estimator that accumulates stepwise contributions over a trajectory to match the task completion. During policy optimization, we combine the estimated per-step contribution with a grounding signal for actions executed in the environment as the fine-grained, intermediate reward for effective agent training. Extensive experiments on common agent benchmarks (including Webshop, ALFWorld, and VirtualHome) demonstrate that SPA consistently outperforms the state-of-the-art method in both success rate (+2.5\% on average) and grounding accuracy (+1.9\% on average). Further analyses demonstrate that our method remarkably provides more effective intermediate rewards for RL training. Our code is available at https://github.com/WangHanLinHenry/SPA-RL-Agent.

Authors:Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Title: Are Data Embeddings effective in time series forecasting?
Abstract:
Time series forecasting plays a crucial role in many real-world applications, and numerous complex forecasting models have been proposed in recent years. Despite their architectural innovations, most state-of-the-art models report only marginal improvements -- typically just a few thousandths in standard error metrics. These models often incorporate complex data embedding layers to transform raw inputs into higher-dimensional representations to enhance accuracy. But are data embedding techniques actually effective in time series forecasting? Through extensive ablation studies across fifteen state-of-the-art models and four benchmark datasets, we find that removing data embedding layers from many state-of-the-art models does not degrade forecasting performance. In many cases, it improves both accuracy and computational efficiency. The gains from removing embedding layers often exceed the performance differences typically reported between competing models. Code available at: https://github.com/neuripsdataembedidng/DataEmbedding

Authors:Fuwen Luo, Shengfeng Lou, Chi Chen, Ziyue Wang, Chenliang Li, Weizhou Shen, Jiyue Guo, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu
Title: MUSEG: Reinforcing Video Temporal Understanding via Timestamp-Aware Multi-Segment Grounding
Abstract:
Video temporal understanding is crucial for multimodal large language models (MLLMs) to reason over events in videos. Despite recent advances in general video understanding, current MLLMs still struggle with fine-grained temporal reasoning. While reinforcement learning (RL) has been explored to address this issue recently, existing RL approaches remain limited in effectiveness. In this work, we propose MUSEG, a novel RL-based method that enhances temporal understanding by introducing timestamp-aware multi-segment grounding. MUSEG enables MLLMs to align queries with multiple relevant video segments, promoting more comprehensive temporal reasoning. To facilitate effective learning, we design a customized RL training recipe with phased rewards that progressively guides the model toward temporally grounded reasoning. Extensive experiments on temporal grounding and time-sensitive video QA tasks demonstrate that MUSEG significantly outperforms existing methods and generalizes well across diverse temporal understanding scenarios. View our project at https://github.com/THUNLP-MT/MUSEG.

Authors:Zechen Li, Lanqing Yang, Yiheng Bian, Hao Pan, Yongjian Fu, Yezhou Wang, Yi-Chao Chen, Guangtao Xue, Ju Ren
Title: Wideband RF Radiance Field Modeling Using Frequency-embedded 3D Gaussian Splatting
Abstract:
This paper presents an innovative frequency-embedded 3D Gaussian splatting (3DGS) algorithm for wideband radio-frequency (RF) radiance field modeling, offering an advancement over the existing works limited to single-frequency modeling. Grounded in fundamental physics, we uncover the complex relationship between EM wave propagation behaviors and RF frequencies. Inspired by this, we design an EM feature network with attenuation and radiance modules to learn the complex relationships between RF frequencies and the key properties of each 3D Gaussian, specifically the attenuation factor and RF signal intensity. By training the frequency-embedded 3DGS model, we can efficiently reconstruct RF radiance fields at arbitrary unknown frequencies within a given 3D environment. Finally, we propose a large-scale power angular spectrum (PAS) dataset containing 50000 samples ranging from 1 to 100 GHz in 6 indoor environments, and conduct extensive experiments to verify the effectiveness of our method. Our approach achieves an average Structural Similarity Index Measure (SSIM) up to 0.72, and a significant improvement up to 17.8% compared to the current state-of-the-art (SOTA) methods trained on individual test frequencies. Additionally, our method achieves an SSIM of 0.70 without prior training on these frequencies, which represents only a 2.8% performance drop compared to models trained with full PAS data. This demonstrates our model's capability to estimate PAS at unknown frequencies. For related code and datasets, please refer to https://github.com/sim-2-real/Wideband3DGS.

Authors:Woomin Song, Jihoon Tack, Sangwoo Mo, Seunghyuk Oh, Jinwoo Shin
Title: Sparsified State-Space Models are Efficient Highway Networks
Abstract:
State-space models (SSMs) offer a promising architecture for sequence modeling, providing an alternative to Transformers by replacing expensive self-attention with linear recurrences. In this paper, we propose a simple yet effective trick to enhance SSMs within given computational budgets by sparsifying them. Our intuition is that tokens in SSMs are highly redundant due to gradual recurrent updates, and dense recurrence operations block the delivery of past information. In particular, we observe that upper layers of SSMs tend to be more redundant as they encode global information, while lower layers encode local information. Motivated by this, we introduce Simba, a hierarchical sparsification method for SSMs based on token pruning. Simba sparsifies upper layers more than lower layers, encouraging the upper layers to behave like highways. To achieve this, we propose a novel token pruning criterion for SSMs, measuring the global impact of tokens on the final output by accumulating local recurrences. We demonstrate that Simba outperforms the baseline model, Mamba, with the same FLOPS in various natural language tasks. Moreover, we illustrate the effect of highways, showing that Simba not only enhances efficiency but also improves the information flow across long sequences. Code is available at https://github.com/woominsong/Simba.

Authors:Mingxuan Sun, Juntao Jiang, Zhiqiang Yang, Shenao Kong, Jiamin Qi, Jianru Shang, Shuangling Luo, Wanfa Sun, Tianyi Wang, Yanqi Wang, Qixuan Wang, Tingjian Dai, Tianxiang Chen, Jinming Zhang, Xuerui Zhang, Yuepeng He, Pengcheng Fu, Qiu Guan, Shizheng Zhou, Yanbo Yu, Qigui Jiang, Teng Zhou, Liuyong Shi, Hong Yan
Title: VisAlgae 2023: A Dataset and Challenge for Algae Detection in Microscopy Images
Abstract:
Microalgae, vital for ecological balance and economic sectors, present challenges in detection due to their diverse sizes and conditions. This paper summarizes the second "Vision Meets Algae" (VisAlgae 2023) Challenge, aiming to enhance high-throughput microalgae cell detection. The challenge, which attracted 369 participating teams, includes a dataset of 1000 images across six classes, featuring microalgae of varying sizes and distinct features. Participants faced tasks such as detecting small targets, handling motion blur, and complex backgrounds. The top 10 methods, outlined here, offer insights into overcoming these challenges and maximizing detection accuracy. This intersection of algae research and computer vision offers promise for ecological understanding and technological advancement. The dataset can be accessed at: https://github.com/juntaoJianggavin/Visalgae2023/.

Authors:Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, Xuezhou Zhang
Title: Accelerating RL for LLM Reasoning with Optimal Advantage Regression
Abstract:
Reinforcement learning (RL) has emerged as a powerful tool for fine-tuning large language models (LLMs) to improve complex reasoning abilities. However, state-of-the-art policy optimization methods often suffer from high computational overhead and memory consumption, primarily due to the need for multiple generations per prompt and the reliance on critic networks or advantage estimates of the current policy. In this paper, we propose $A$*-PO, a novel two-stage policy optimization framework that directly approximates the optimal advantage function and enables efficient training of LLMs for reasoning tasks. In the first stage, we leverage offline sampling from a reference policy to estimate the optimal value function $V$*, eliminating the need for costly online value estimation. In the second stage, we perform on-policy updates using a simple least-squares regression loss with only a single generation per prompt. Theoretically, we establish performance guarantees and prove that the KL-regularized RL objective can be optimized without requiring complex exploration strategies. Empirically, $A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks, while reducing training time by up to 2$\times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL. Implementation of $A$*-PO can be found at https://github.com/ZhaolinGao/A-PO.

Authors:Danush Khanna, Pratinav Seth, Sidhaarth Sredharan Murali, Aditya Kumar Guru, Siddharth Shukla, Tanuj Tyagi, Sandeep Chaurasia, Kripabandhu Ghosh
Title: SELF-PERCEPT: Introspection Improves Large Language Models' Detection of Multi-Person Mental Manipulation in Conversations
Abstract:
Mental manipulation is a subtle yet pervasive form of abuse in interpersonal communication, making its detection critical for safeguarding potential victims. However, due to manipulation's nuanced and context-specific nature, identifying manipulative language in complex, multi-turn, and multi-person conversations remains a significant challenge for large language models (LLMs). To address this gap, we introduce the MultiManip dataset, comprising 220 multi-turn, multi-person dialogues balanced between manipulative and non-manipulative interactions, all drawn from reality shows that mimic real-world scenarios. For manipulative interactions, it includes 11 distinct manipulations depicting real-life scenarios. We conduct extensive evaluations of state-of-the-art LLMs, such as GPT-4o and Llama-3.1-8B, employing various prompting strategies. Despite their capabilities, these models often struggle to detect manipulation effectively. To overcome this limitation, we propose SELF-PERCEPT, a novel, two-stage prompting framework inspired by Self-Perception Theory, demonstrating strong performance in detecting multi-person, multi-turn mental manipulation. Our code and data are publicly available at https://github.com/danushkhanna/self-percept .

Authors:Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu Li, Zhouhan Lin
Title: Pretraining Language Models to Ponder in Continuous Space
Abstract:
Humans ponder before articulating complex sentence elements, enabling deeper cognitive processing through focused effort. In this work, we introduce this pondering process into language models by repeatedly invoking the forward process within a single token generation step. During pondering, instead of generating an actual token sampled from the prediction distribution, the model ponders by yielding a weighted sum of all token embeddings according to the predicted token distribution. The generated embedding is then fed back as input for another forward pass. We show that the model can learn to ponder in this way through self-supervised learning, without any human annotations. Experiments across three widely used open-source architectures-GPT-2, Pythia, and LLaMA-and extensive downstream task evaluations demonstrate the effectiveness and generality of our method. For language modeling tasks, pondering language models achieve performance comparable to vanilla models with twice the number of parameters. On 9 downstream benchmarks, our pondering-enhanced Pythia models significantly outperform the official Pythia models. Notably, PonderingPythia-2.8B surpasses Pythia-6.9B, and PonderingPythia-1B is comparable to TinyLlama-1.1B, which is trained on 10 times more data. The code is available at https://github.com/LUMIA-Group/PonderingLM.

Authors:Xuanle Zhao, Zilin Sang, Yuxuan Li, Qi Shi, Weilun Zhao, Shuo Wang, Duzhen Zhang, Xu Han, Zhiyuan Liu, Maosong Sun
Title: AutoReproduce: Automatic AI Experiment Reproduction with Paper Lineage
Abstract:
Efficient experiment reproduction is critical to accelerating progress in artificial intelligence. However, the inherent complexity of method design and training procedures presents substantial challenges for automation. Notably, reproducing experiments often requires implicit domain-specific knowledge not explicitly documented in the original papers. To address this, we introduce the paper lineage algorithm, which identifies and extracts implicit knowledge from the relevant references cited by the target paper. Building on this idea, we propose AutoReproduce, a multi-agent framework capable of automatically reproducing experiments described in research papers in an end-to-end manner. AutoReproduce enhances code executability by generating unit tests alongside the reproduction process. To evaluate the reproduction capability, we construct ReproduceBench, a benchmark annotated with verified implementations, and introduce novel evaluation metrics to assess both the reproduction and execution fidelity. Experimental results demonstrate that AutoReproduce outperforms the existing strong agent baselines on all five evaluation metrics by a peak margin of over $70\%$. In particular, compared to the official implementations, AutoReproduce achieves an average performance gap of $22.1\%$ on $89.74\%$ of the executable experiment runs. The code will be available at https://github.com/AI9Stars/AutoReproduce.

Authors:Lingyu Qiu, Ke Jiang, Xiaoyang Tan
Title: RoGA: Towards Generalizable Deepfake Detection through Robust Gradient Alignment
Abstract:
Recent advancements in domain generalization for deepfake detection have attracted significant attention, with previous methods often incorporating additional modules to prevent overfitting to domain-specific patterns. However, such regularization can hinder the optimization of the empirical risk minimization (ERM) objective, ultimately degrading model performance. In this paper, we propose a novel learning objective that aligns generalization gradient updates with ERM gradient updates. The key innovation is the application of perturbations to model parameters, aligning the ascending points across domains, which specifically enhances the robustness of deepfake detection models to domain shifts. This approach effectively preserves domain-invariant features while managing domain-specific characteristics, without introducing additional regularization. Experimental results on multiple challenging deepfake detection datasets demonstrate that our gradient alignment strategy outperforms state-of-the-art domain generalization techniques, confirming the efficacy of our method. The code is available at https://github.com/Lynn0925/RoGA.

Authors:Mengmeng Chen, Xiaohu Wu, Qiqi Liu, Tiantian He, Yew-Soon Ong, Yaochu Jin, Qicheng Lao, Han Yu
Title: Voronoi-grid-based Pareto Front Learning and Its Application to Collaborative Federated Learning
Abstract:
Multi-objective optimization (MOO) exists extensively in machine learning, and aims to find a set of Pareto-optimal solutions, called the Pareto front, e.g., it is fundamental for multiple avenues of research in federated learning (FL). Pareto-Front Learning (PFL) is a powerful method implemented using Hypernetworks (PHNs) to approximate the Pareto front. This method enables the acquisition of a mapping function from a given preference vector to the solutions on the Pareto front. However, most existing PFL approaches still face two challenges: (a) sampling rays in high-dimensional spaces; (b) failing to cover the entire Pareto Front which has a convex shape. Here, we introduce a novel PFL framework, called as PHN-HVVS, which decomposes the design space into Voronoi grids and deploys a genetic algorithm (GA) for Voronoi grid partitioning within high-dimensional space. We put forward a new loss function, which effectively contributes to more extensive coverage of the resultant Pareto front and maximizes the HV Indicator. Experimental results on multiple MOO machine learning tasks demonstrate that PHN-HVVS outperforms the baselines significantly in generating Pareto front. Also, we illustrate that PHN-HVVS advances the methodologies of several recent problems in the FL field. The code is available at https://github.com/buptcmm/phnhvvs}{https://github.com/buptcmm/phnhvvs.

Authors:Haoyu Zhang, Yisen Feng, Qiaohui Chu, Meng Liu, Weili Guan, Yaowei Wang, Liqiang Nie
Title: HCQA-1.5 @ Ego4D EgoSchema Challenge 2025
Abstract:
In this report, we present the method that achieves third place for Ego4D EgoSchema Challenge in CVPR 2025. To improve the reliability of answer prediction in egocentric video question answering, we propose an effective extension to the previously proposed HCQA framework. Our approach introduces a multi-source aggregation strategy to generate diverse predictions, followed by a confidence-based filtering mechanism that selects high-confidence answers directly. For low-confidence cases, we incorporate a fine-grained reasoning module that performs additional visual and contextual analysis to refine the predictions. Evaluated on the EgoSchema blind test set, our method achieves 77% accuracy on over 5,000 human-curated multiple-choice questions, outperforming last year's winning solution and the majority of participating teams. Our code will be added at https://github.com/Hyu-Zhang/HCQA.

Authors:Yuan Wu, Zhiqiang Yan, Yigong Zhang, Xiang Li, Jian Yang
Title: See through the Dark: Learning Illumination-affined Representations for Nighttime Occupancy Prediction
Abstract:
Occupancy prediction aims to estimate the 3D spatial distribution of occupied regions along with their corresponding semantic labels. Existing vision-based methods perform well on daytime benchmarks but struggle in nighttime scenarios due to limited visibility and challenging lighting conditions. To address these challenges, we propose \textbf{LIAR}, a novel framework that learns illumination-affined representations. LIAR first introduces Selective Low-light Image Enhancement (SLLIE), which leverages the illumination priors from daytime scenes to adaptively determine whether a nighttime image is genuinely dark or sufficiently well-lit, enabling more targeted global enhancement. Building on the illumination maps generated by SLLIE, LIAR further incorporates two illumination-aware components: 2D Illumination-guided Sampling (2D-IGS) and 3D Illumination-driven Projection (3D-IDP), to respectively tackle local underexposure and overexposure. Specifically, 2D-IGS modulates feature sampling positions according to illumination maps, assigning larger offsets to darker regions and smaller ones to brighter regions, thereby alleviating feature degradation in underexposed areas. Subsequently, 3D-IDP enhances semantic understanding in overexposed regions by constructing illumination intensity fields and supplying refined residual queries to the BEV context refinement process. Extensive experiments on both real and synthetic datasets demonstrate the superior performance of LIAR under challenging nighttime scenarios. The source code and pretrained models are available \href{https://github.com/yanzq95/LIAR}{here}.

Authors:Guiping Cao, Tao Wang, Wenjian Huang, Xiangyuan Lan, Jianguo Zhang, Dongmei Jiang
Title: Open-Det: An Efficient Learning Framework for Open-Ended Detection
Abstract:
Open-Ended object Detection (OED) is a novel and challenging task that detects objects and generates their category names in a free-form manner, without requiring additional vocabularies during inference. However, the existing OED models, such as GenerateU, require large-scale datasets for training, suffer from slow convergence, and exhibit limited performance. To address these issues, we present a novel and efficient Open-Det framework, consisting of four collaborative parts. Specifically, Open-Det accelerates model training in both the bounding box and object name generation process by reconstructing the Object Detector and the Object Name Generator. To bridge the semantic gap between Vision and Language modalities, we propose a Vision-Language Aligner with V-to-L and L-to-V alignment mechanisms, incorporating with the Prompts Distiller to transfer knowledge from the VLM into VL-prompts, enabling accurate object name generation for the LLM. In addition, we design a Masked Alignment Loss to eliminate contradictory supervision and introduce a Joint Loss to enhance classification, resulting in more efficient training. Compared to GenerateU, Open-Det, using only 1.5% of the training data (0.077M vs. 5.077M), 20.8% of the training epochs (31 vs. 149), and fewer GPU resources (4 V100 vs. 16 A100), achieves even higher performance (+1.0% in APr). The source codes are available at: https://github.com/Med-Process/Open-Det.

Authors:Wenhao You, Xingjian Diao, Chunhui Zhang, Keyi Kong, Weiyi Wu, Zhongyu Ouyang, Chiyu Ma, Tingxuan Wu, Noah Wei, Zong Ke, Ming Cheng, Soroush Vosoughi, Jiang Gui
Title: Music's Multimodal Complexity in AVQA: Why We Need More than General Multimodal LLMs
Abstract:
While recent Multimodal Large Language Models exhibit impressive capabilities for general multimodal tasks, specialized domains like music necessitate tailored approaches. Music Audio-Visual Question Answering (Music AVQA) particularly underscores this, presenting unique challenges with its continuous, densely layered audio-visual content, intricate temporal dynamics, and the critical need for domain-specific knowledge. Through a systematic analysis of Music AVQA datasets and methods, this position paper identifies that specialized input processing, architectures incorporating dedicated spatial-temporal designs, and music-specific modeling strategies are critical for success in this domain. Our study provides valuable insights for researchers by highlighting effective design patterns empirically linked to strong performance, proposing concrete future directions for incorporating musical priors, and aiming to establish a robust foundation for advancing multimodal musical understanding. This work is intended to inspire broader attention and further research, supported by a continuously updated anonymous GitHub repository of relevant papers: https://github.com/xid32/Survey4MusicAVQA.

Authors:Juan Ramirez, Meraj Hashemizadeh, Simon Lacoste-Julien
Title: Position: Adopt Constraints Over Penalties in Deep Learning
Abstract:
Recent efforts to develop trustworthy AI systems with accountability guarantees have led to widespread use of machine learning formulations incorporating external requirements, or constraints. These requirements are often enforced via penalization--adding fixed-weight terms to the task loss. We argue this approach is fundamentally ill-suited since there may be no penalty coefficient that simultaneously ensures constraint satisfaction and optimal constrained performance, i.e., that truly solves the constrained problem. Moreover, tuning these coefficients requires costly trial-and-error, incurring significant time and computational overhead. We, therefore, advocate for broader adoption of tailored constrained optimization methods--such as the Lagrangian approach, which jointly optimizes the penalization "coefficients" (the Lagrange multipliers) and the model parameters. Such methods (i) truly solve the constrained problem and do so accountably, by clearly defining feasibility and verifying when it is achieved, (ii) eliminate the need for extensive penalty tuning, and (iii) integrate seamlessly with modern deep learning pipelines.

Authors:Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan, Neehar Peri
Title: Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models
Abstract:
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 16.8 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl/ and https://universe.roboflow.com/rf100-vl/

Authors:Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan, Neehar Peri
Title: Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models
Abstract:
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 17 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl and https://universe.roboflow.com/rf100-vl/.

Authors:Mahdi Pourmirzaei, Farzaneh Esmaili, Salhuldin Alqarghuli, Mohammadreza Pourmirzaei, Ye Han, Kai Chen, Mohsen Rezaei, Duolin Wang, Dong Xu
Title: Prot2Token: A Unified Framework for Protein Modeling via Next-Token Prediction
Abstract:
The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions, from sequence-level properties and residue-specific attributes to complex inter-protein interactions, into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling a single model to master numerous tasks with improved efficiency. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Tokens strong predictive power in different types of protein-prediction tasks. Key results include significant speedups (e.g., near 1000x over AlphaFold2 with MSA) and performance often matching or exceeding specialized approaches. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a significant step towards a versatile, high-throughput paradigm for protein modeling, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .

Authors:Can Polat, Mehmet Tuncel, Mustafa Kurban, Erchin Serpedin, Hasan Kurban
Title: xChemAgents: Agentic AI for Explainable Quantum Chemistry
Abstract:
Recent progress in multimodal graph neural networks has demonstrated that augmenting atomic XYZ geometries with textual chemical descriptors can enhance predictive accuracy across a range of electronic and thermodynamic properties. However, naively appending large sets of heterogeneous descriptors often degrades performance on tasks sensitive to molecular shape or symmetry, and undermines interpretability. xChemAgents proposes a cooperative agent framework that injects physics-aware reasoning into multimodal property prediction. xChemAgents comprises two language-model-based agents: a Selector, which adaptively identifies a sparse, weighted subset of descriptors relevant to each target, and provides a natural language rationale; and a Validator, which enforces physical constraints such as unit consistency and scaling laws through iterative dialogue. On standard benchmark datasets, xChemAgents achieves up to a 22% reduction in mean absolute error over the state-of-the-art baselines, while producing faithful, human-interpretable explanations. Experiment results highlight the potential of cooperative, self-verifying agents to enhance both accuracy and transparency in foundation-model-driven materials science. The implementation and accompanying dataset are available at https://github.com/KurbanIntelligenceLab/xChemAgents.

Authors:Jihoon Lee, Min Song
Title: Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models
Abstract:
Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods.

Authors:Shenao Zhang, Yaqing Wang, Yinxiao Liu, Tianqi Liu, Peter Grabowski, Eugene Ie, Zhaoran Wang, Yunxuan Li
Title: Beyond Markovian: Reflective Exploration via Bayes-Adaptive RL for LLM Reasoning
Abstract:
Large Language Models (LLMs) trained via Reinforcement Learning (RL) have exhibited strong reasoning capabilities and emergent reflective behaviors, such as backtracking and error correction. However, conventional Markovian RL confines exploration to the training phase to learn an optimal deterministic policy and depends on the history contexts only through the current state. Therefore, it remains unclear whether reflective reasoning will emerge during Markovian RL training, or why they are beneficial at test time. To remedy this, we recast reflective exploration within the Bayes-Adaptive RL framework, which explicitly optimizes the expected return under a posterior distribution over Markov decision processes. This Bayesian formulation inherently incentivizes both reward-maximizing exploitation and information-gathering exploration via belief updates. Our resulting algorithm, BARL, instructs the LLM to stitch and switch strategies based on the observed outcomes, offering principled guidance on when and how the model should reflectively explore. Empirical results on both synthetic and mathematical reasoning tasks demonstrate that BARL outperforms standard Markovian RL approaches at test time, achieving superior token efficiency with improved exploration effectiveness. Our code is available at https://github.com/shenao-zhang/BARL.

Authors:Elias Arbash, Ahmed Jamal Afifi, Ymane Belahsen, Margret Fuchs, Pedram Ghamisi, Paul Scheunders, Richard Gloaguen
Title: Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
Abstract:
The global challenge of sustainable recycling demands automated, fast, and accurate, state-of-the-art (SOTA) material detection systems that act as a bedrock for a circular economy. Democratizing access to these cutting-edge solutions that enable real-time waste analysis is essential for scaling up recycling efforts and fostering the Green Deal. In response, we introduce \textbf{Electrolyzers-HSI}, a novel multimodal benchmark dataset designed to accelerate the recovery of critical raw materials through accurate electrolyzer materials classification. The dataset comprises 55 co-registered high-resolution RGB images and hyperspectral imaging (HSI) data cubes spanning the 400--2500 nm spectral range, yielding over 4.2 million pixel vectors and 424,169 labeled ones. This enables non-invasive spectral analysis of shredded electrolyzer samples, supporting quantitative and qualitative material classification and spectral properties investigation. We evaluate a suite of baseline machine learning (ML) methods alongside SOTA transformer-based deep learning (DL) architectures, including Vision Transformer, SpectralFormer, and the Multimodal Fusion Transformer, to investigate architectural bottlenecks for further efficiency optimisation when deploying transformers in material identification. We implement zero-shot detection techniques and majority voting across pixel-level predictions to establish object-level classification robustness. In adherence to the FAIR data principles, the electrolyzers-HSI dataset and accompanying codebase are openly available at https://github.com/hifexplo/Electrolyzers-HSI and https://rodare.hzdr.de/record/3668, supporting reproducible research and facilitating the broader adoption of smart and sustainable e-waste recycling solutions.

Authors:Tal Gonen, Itai Pemper, Ilan Naiman, Nimrod Berman, Omri Azencot
Title: Time Series Generation Under Data Scarcity: A Unified Generative Modeling Approach
Abstract:
Generative modeling of time series is a central challenge in time series analysis, particularly under data-scarce conditions. Despite recent advances in generative modeling, a comprehensive understanding of how state-of-the-art generative models perform under limited supervision remains lacking. In this work, we conduct the first large-scale study evaluating leading generative models in data-scarce settings, revealing a substantial performance gap between full-data and data-scarce regimes. To close this gap, we propose a unified diffusion-based generative framework that can synthesize high-fidelity time series across diverse domains using just a few examples. Our model is pre-trained on a large, heterogeneous collection of time series datasets, enabling it to learn generalizable temporal representations. It further incorporates architectural innovations such as dynamic convolutional layers for flexible channel adaptation and dataset token conditioning for domain-aware generation. Without requiring abundant supervision, our unified model achieves state-of-the-art performance in few-shot settings-outperforming domain-specific baselines across a wide range of subset sizes. Remarkably, it also surpasses all baselines even when tested on full datasets benchmarks, highlighting the strength of pre-training and cross-domain generalization. We hope this work encourages the community to revisit few-shot generative modeling as a key problem in time series research and pursue unified solutions that scale efficiently across domains. Code is available at https://github.com/azencot-group/ImagenFew.

Authors:Haoran Li, Yingjie Qin, Baoyuan Ou, Lai Xu, Ruiwen Xu
Title: HoPE: Hybrid of Position Embedding for Length Generalization in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) have made significant progress in multimodal tasks. However, their performance often deteriorates in long-context scenarios, particularly long videos. While Rotary Position Embedding (RoPE) has been widely adopted for length generalization in Large Language Models (LLMs), extending vanilla RoPE to capture the intricate spatial-temporal dependencies in videos remains an unsolved challenge. Existing methods typically allocate different frequencies within RoPE to encode 3D positional information. However, these allocation strategies mainly rely on heuristics, lacking in-depth theoretical analysis. In this paper, we first study how different allocation strategies impact the long-context capabilities of VLMs. Our analysis reveals that current multimodal RoPEs fail to reliably capture semantic similarities over extended contexts. To address this issue, we propose HoPE, a Hybrid of Position Embedding designed to improve the long-context capabilities of VLMs. HoPE introduces a hybrid frequency allocation strategy for reliable semantic modeling over arbitrarily long context, and a dynamic temporal scaling mechanism to facilitate robust learning and flexible inference across diverse context lengths. Extensive experiments across four video benchmarks on long video understanding and retrieval tasks demonstrate that HoPE consistently outperforms existing methods, confirming its effectiveness. Code is available at https://github.com/hrlics/HoPE.

Authors:Haoran Li, Yingjie Qin, Baoyuan Ou, Lai Xu, Ruiwen Xu
Title: HoPE: Hybrid of Position Embedding for Long Context Vision-Language Models
Abstract:
Vision-Language Models (VLMs) have made significant progress in multimodal tasks. However, their performance often deteriorates in long-context scenarios, particularly long videos. While Rotary Position Embedding (RoPE) has been widely adopted for length generalization in Large Language Models (LLMs), extending vanilla RoPE to capture the intricate spatial-temporal dependencies in videos remains an unsolved challenge. Existing methods typically allocate different frequencies within RoPE to encode 3D positional information. However, these allocation strategies mainly rely on heuristics, lacking in-depth theoretical analysis. In this paper, we first study how different allocation strategies impact the long-context capabilities of VLMs. Our analysis reveals that current multimodal RoPEs fail to reliably capture semantic similarities over extended contexts. To address this issue, we propose HoPE, a Hybrid of Position Embedding designed to improve the long-context capabilities of VLMs. HoPE introduces a hybrid frequency allocation strategy for reliable semantic modeling over arbitrarily long contexts, and a dynamic temporal scaling mechanism to facilitate robust learning and flexible inference across diverse context lengths. Extensive experiments across four video benchmarks on long video understanding and retrieval tasks demonstrate that HoPE consistently outperforms existing methods, confirming its effectiveness. Our code is available at https://github.com/hrlics/HoPE.

Authors:Zihong Chen, Wanli Jiang, Jinzhe Li, Zhonghang Yuan, Huanjun Kong, Wanli Ouyang, Nanqing Dong
Title: GraphGen: Enhancing Supervised Fine-Tuning for LLMs with Knowledge-Driven Synthetic Data Generation
Abstract:
Fine-tuning for large language models (LLMs) typically requires substantial amounts of high-quality supervised data, which is both costly and labor-intensive to acquire. While synthetic data generation has emerged as a promising solution, existing approaches frequently suffer from factual inaccuracies, insufficient long-tail coverage, simplistic knowledge structures, and homogenized outputs. To address these challenges, we introduce GraphGen, a knowledge graph-guided framework designed for three key question-answering (QA) scenarios: atomic QA, aggregated QA, and multi-hop QA. It begins by constructing a fine-grained knowledge graph from the source text. It then identifies knowledge gaps in LLMs using the expected calibration error metric, prioritizing the generation of QA pairs that target high-value, long-tail knowledge. Furthermore, GraphGen incorporates multi-hop neighborhood sampling to capture complex relational information and employs style-controlled generation to diversify the resulting QA data. Experimental results on knowledge-intensive tasks under closed-book settings demonstrate that GraphGen outperforms conventional synthetic data methods, offering a more reliable and comprehensive solution to the data scarcity challenge in supervised fine-tuning. The code and data are publicly available at https://github.com/open-sciencelab/GraphGen.

Authors:Royden Wagner, Omer Sahin Tas, Felix Hauser, Marlon Steiner, Dominik Strutz, Abhishek Vivekanandan, Carlos Fernandez, Christoph Stiller
Title: RetroMotion: Retrocausal Motion Forecasting Models are Instructable
Abstract:
Motion forecasts of road users (i.e., agents) vary in complexity as a function of scene constraints and interactive behavior. We address this with a multi-task learning method for motion forecasting that includes a retrocausal flow of information. The corresponding tasks are to forecast (1) marginal trajectory distributions for all modeled agents and (2) joint trajectory distributions for interacting agents. Using a transformer model, we generate the joint distributions by re-encoding marginal distributions followed by pairwise modeling. This incorporates a retrocausal flow of information from later points in marginal trajectories to earlier points in joint trajectories. Per trajectory point, we model positional uncertainty using compressed exponential power distributions. Notably, our method achieves state-of-the-art results in the Waymo Interaction Prediction dataset and generalizes well to the Argoverse 2 dataset. Additionally, our method provides an interface for issuing instructions through trajectory modifications. Our experiments show that regular training of motion forecasting leads to the ability to follow goal-based instructions and to adapt basic directional instructions to the scene context. Code: https://github.com/kit-mrt/future-motion

Authors:Jaeyoung Choe, Jihoon Kim, Woohwan Jung
Title: Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents
Abstract:
Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.

Authors:Jiahui Geng, Qing Li, Zongxiong Chen, Yuxia Wang, Derui Zhu, Zhuohan Xie, Chenyang Lyu, Xiuying Chen, Preslav Nakov, Fakhri Karray
Title: VSCBench: Bridging the Gap in Vision-Language Model Safety Calibration
Abstract:
The rapid advancement of vision-language models (VLMs) has brought a lot of attention to their safety alignment. However, existing methods have primarily focused on model undersafety, where the model responds to hazardous queries, while neglecting oversafety, where the model refuses to answer safe queries. In this paper, we introduce the concept of $\textit{safety calibration}$, which systematically addresses both undersafety and oversafety. Specifically, we present $\textbf{VSCBench}$, a novel dataset of 3,600 image-text pairs that are visually or textually similar but differ in terms of safety, which is designed to evaluate safety calibration across image-centric and text-centric scenarios. Based on our benchmark, we evaluate safety calibration across eleven widely used VLMs. Our extensive experiments revealed major issues with both undersafety and oversafety. We further investigated four approaches to improve the model's safety calibration. We found that even though some methods effectively calibrated the models' safety problems, these methods also lead to the degradation of models' utility. This trade-off underscores the urgent need for advanced calibration methods, and our benchmark provides a valuable tool for evaluating future approaches. Our code and data are available at https://github.com/jiahuigeng/VSCBench.git.

Authors:Lijun Zhang, Lin Li, Yajie Qi, Huizhong Song, Yaodong Yang, Jun Wang, Wei Wei
Title: Risk-aware Direct Preference Optimization under Nested Risk Measure
Abstract:
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.

Authors:Yeonjoon Jung, Daehyun Ahn, Hyungjun Kim, Taesu Kim, Eunhyeok Park
Title: GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
Abstract:
Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-tuning (PEFT) of generative models, valued for its simplicity and effectiveness. Despite recent enhancements, LoRA still suffers from a fundamental limitation: overfitting when the bottleneck is widened. It performs best at ranks 32-64, yet its accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning (FFT) performance. We identify the root cause as LoRA's structural bottleneck, which introduces gradient entanglement to the unrelated input channels and distorts gradient propagation. To address this, we introduce a novel structure, Granular Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, each with its own low-rank adapter. With negligible computational or storage cost, GraLoRA overcomes LoRA's limitations, effectively increases the representational capacity, and more closely approximates FFT behavior. Experiments on code generation and commonsense reasoning benchmarks show that GraLoRA consistently outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in Pass@1 on HumanEval+. These improvements hold across model sizes and rank settings, making GraLoRA a scalable and robust solution for PEFT. Code, data, and scripts are available at https://github.com/SqueezeBits/GraLoRA.git

Authors:Juntong Wu, Zijing Liu, He Cao, Hao Li, Bin Feng, Zishan Shu, Ke Yu, Li Yuan, Yu Li
Title: Rethinking Text-based Protein Understanding: Retrieval or LLM?
Abstract:
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.

Authors:Dong Liu, Yanxuan Yu, Jiayi Zhang, Yifan Li, Ben Lengerich, Ying Nian Wu
Title: FastCache: Fast Caching for Diffusion Transformer Through Learnable Linear Approximation
Abstract:
Diffusion Transformers (DiT) are powerful generative models but remain computationally intensive due to their iterative structure and deep transformer stacks. To alleviate this inefficiency, we propose FastCache, a hidden-state-level caching and compression framework that accelerates DiT inference by exploiting redundancy within the model's internal representations. FastCache introduces a dual strategy: (1) a spatial-aware token selection mechanism that adaptively filters redundant tokens based on hidden state saliency, and (2) a transformer-level cache that reuses latent activations across timesteps when changes are statistically insignificant. These modules work jointly to reduce unnecessary computation while preserving generation fidelity through learnable linear approximation. Theoretical analysis shows that FastCache maintains bounded approximation error under a hypothesis-testing-based decision rule. Empirical evaluations across multiple DiT variants demonstrate substantial reductions in latency and memory usage, with best generation output quality compared to other cache methods, as measured by FID and t-FID. Code implementation of FastCache is available on GitHub at https://github.com/NoakLiu/FastCache-xDiT.

Authors:Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, Kaixuan Chen, Mingli Song, Dacheng Tao
Title: SeRL: Self-Play Reinforcement Learning for Large Language Models with Limited Data
Abstract:
Recent advances have demonstrated the effectiveness of Reinforcement Learning (RL) in improving the reasoning capabilities of Large Language Models (LLMs). However, existing works inevitably rely on high-quality instructions and verifiable rewards for effective training, both of which are often difficult to obtain in specialized domains. In this paper, we propose Self-play Reinforcement Learning(SeRL) to bootstrap LLM training with limited initial data. Specifically, SeRL comprises two complementary modules: self-instruction and self-rewarding. The former module generates additional instructions based on the available data at each training step, employing robust online filtering strategies to ensure instruction quality, diversity, and difficulty. The latter module introduces a simple yet effective majority-voting mechanism to estimate response rewards for additional instructions, eliminating the need for external annotations. Finally, SeRL performs conventional RL based on the generated data, facilitating iterative self-play learning. Extensive experiments on various reasoning benchmarks and across different LLM backbones demonstrate that the proposed SeRL yields results superior to its counterparts and achieves performance on par with those obtained by high-quality data with verifiable rewards. Our code is available at https://github.com/wantbook-book/SeRL.

Authors:Rui Liu, Pu Gao, Jiatian Xi, Berrak Sisman, Carlos Busso, Haizhou Li
Title: Towards Emotionally Consistent Text-Based Speech Editing: Introducing EmoCorrector and The ECD-TSE Dataset
Abstract:
Text-based speech editing (TSE) modifies speech using only text, eliminating re-recording. However, existing TSE methods, mainly focus on the content accuracy and acoustic consistency of synthetic speech segments, and often overlook the emotional shifts or inconsistency issues introduced by text changes. To address this issue, we propose EmoCorrector, a novel post-correction scheme for TSE. EmoCorrector leverages Retrieval-Augmented Generation (RAG) by extracting the edited text's emotional features, retrieving speech samples with matching emotions, and synthesizing speech that aligns with the desired emotion while preserving the speaker's identity and quality. To support the training and evaluation of emotional consistency modeling in TSE, we pioneer the benchmarking Emotion Correction Dataset for TSE (ECD-TSE). The prominent aspect of ECD-TSE is its inclusion of $<$text, speech$>$ paired data featuring diverse text variations and a range of emotional expressions. Subjective and objective experiments and comprehensive analysis on ECD-TSE confirm that EmoCorrector significantly enhances the expression of intended emotion while addressing emotion inconsistency limitations in current TSE methods. Code and audio examples are available at https://github.com/AI-S2-Lab/EmoCorrector.

Authors:Mathew J. Koretsky, Maya Willey, Adi Asija, Owen Bianchi, Chelsea X. Alvarado, Tanay Nayak, Nicole Kuznetsov, Sungwon Kim, Mike A. Nalls, Daniel Khashabi, Faraz Faghri
Title: BiomedSQL: Text-to-SQL for Scientific Reasoning on Biomedical Knowledge Bases
Abstract:
Biomedical researchers increasingly rely on large-scale structured databases for complex analytical tasks. However, current text-to-SQL systems often struggle to map qualitative scientific questions into executable SQL, particularly when implicit domain reasoning is required. We introduce BiomedSQL, the first benchmark explicitly designed to evaluate scientific reasoning in text-to-SQL generation over a real-world biomedical knowledge base. BiomedSQL comprises 68,000 question/SQL query/answer triples grounded in a harmonized BigQuery knowledge base that integrates gene-disease associations, causal inference from omics data, and drug approval records. Each question requires models to infer domain-specific criteria, such as genome-wide significance thresholds, effect directionality, or trial phase filtering, rather than rely on syntactic translation alone. We evaluate a range of open- and closed-source LLMs across prompting strategies and interaction paradigms. Our results reveal a substantial performance gap: GPT-o3-mini achieves 59.0% execution accuracy, while our custom multi-step agent, BMSQL, reaches 62.6%, both well below the expert baseline of 90.0%. BiomedSQL provides a new foundation for advancing text-to-SQL systems capable of supporting scientific discovery through robust reasoning over structured biomedical knowledge bases. Our dataset is publicly available at https://huggingface.co/datasets/NIH-CARD/BiomedSQL, and our code is open-source at https://github.com/NIH-CARD/biomedsql.

Authors:Mathew J. Koretsky, Maya Willey, Adi Asija, Owen Bianchi, Chelsea X. Alvarado, Tanay Nayak, Nicole Kuznetsov, Sungwon Kim, Mike A. Nalls, Daniel Khashabi, Faraz Faghri
Title: BiomedSQL: Text-to-SQL for Scientific Reasoning on Biomedical Knowledge Bases
Abstract:
Biomedical researchers increasingly rely on large-scale structured databases for complex analytical tasks. However, current text-to-SQL systems often struggle to map qualitative scientific questions into executable SQL, particularly when implicit domain reasoning is required. We introduce BiomedSQL, the first benchmark explicitly designed to evaluate scientific reasoning in text-to-SQL generation over a real-world biomedical knowledge base. BiomedSQL comprises 68,000 question/SQL query/answer triples generated from templates and grounded in a harmonized BigQuery knowledge base that integrates gene-disease associations, causal inference from omics data, and drug approval records. Each question requires models to infer domain-specific criteria, such as genome-wide significance thresholds, effect directionality, or trial phase filtering, rather than rely on syntactic translation alone. We evaluate a range of open- and closed-source LLMs across prompting strategies and interaction paradigms. Our results reveal a substantial performance gap: GPT-o3-mini achieves 59.0% execution accuracy, while our custom multi-step agent, BMSQL, reaches 62.6%, both well below the expert baseline of 90.0%. BiomedSQL provides a new foundation for advancing text-to-SQL systems capable of supporting scientific discovery through robust reasoning over structured biomedical knowledge bases. Our dataset is publicly available at https://huggingface.co/datasets/NIH-CARD/BiomedSQL, and our code is open-source at https://github.com/NIH-CARD/biomedsql.

Authors:Joseph Maffetone, Julia Gersey, Pei Zhang
Title: ZV-Sim: Probabilistic Simulation Framework for Pre-emergent Novel Zoonose Tracking
Abstract:
ZV-Sim is an open-source, modular Python framework for probabilistic simulation and analysis of pre-emergent novel zoonotic diseases using pervasive sensing data. It incorporates customizable Human and Animal Presence agents that leverage known and simulated location data, contact networks, and illness reports to assess and predict disease origins and spread. The framework supports Monte Carlo experiments to analyze outcomes with various user-defined movement and probability models. Although initial models are basic and illustrative, ZV-Sim's extensible design facilitates the integration of more sophisticated models as richer data become available, enhancing future capabilities in zoonotic disease tracking. The source code is publicly available \href{https://github.com/jmaff/zv-sim}{\underline{\textit{here}}}.

Authors:Patrick Yubeaton, Andre Nakkab, Weihua Xiao, Luca Collini, Ramesh Karri, Chinmay Hegde, Siddharth Garg
Title: VeriThoughts: Enabling Automated Verilog Code Generation using Reasoning and Formal Verification
Abstract:
This paper introduces VeriThoughts, a novel dataset designed for reasoning-based Verilog code generation. We establish a new benchmark framework grounded in formal verification methods to evaluate the quality and correctness of generated hardware descriptions. Additionally, we present a suite of specialized small-scale models optimized specifically for Verilog generation. Our work addresses the growing need for automated hardware design tools that can produce verifiably correct implementations from high-level specifications, potentially accelerating the hardware development process while maintaining rigorous correctness guarantees. Our code and data are available at \href{https://github.com/wilyub/VeriThoughts}{this URL}.

Authors:Jianpeng Chen, Wangzhi Zhan, Haohui Wang, Zian Jia, Jingru Gan, Junkai Zhang, Jingyuan Qi, Tingwei Chen, Lifu Huang, Muhao Chen, Ling Li, Wei Wang, Dawei Zhou
Title: MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery
Abstract:
Metamaterials, engineered materials with architected structures across multiple length scales, offer unprecedented and tunable mechanical properties that surpass those of conventional materials. However, leveraging advanced machine learning (ML) for metamaterial discovery is hindered by three fundamental challenges: (C1) Data Heterogeneity Challenge arises from heterogeneous data sources, heterogeneous composition scales, and heterogeneous structure categories; (C2) Model Complexity Challenge stems from the intricate geometric constraints of ML models, which complicate their adaptation to metamaterial structures; and (C3) Human-AI Collaboration Challenge comes from the "dual black-box'' nature of sophisticated ML models and the need for intuitive user interfaces. To tackle these challenges, we introduce a unified framework, named MetamatBench, that operates on three levels. (1) At the data level, we integrate and standardize 5 heterogeneous, multi-modal metamaterial datasets. (2) The ML level provides a comprehensive toolkit that adapts 17 state-of-the-art ML methods for metamaterial discovery. It also includes a comprehensive evaluation suite with 12 novel performance metrics with finite element-based assessments to ensure accurate and reliable model validation. (3) The user level features a visual-interactive interface that bridges the gap between complex ML techniques and non-ML researchers, advancing property prediction and inverse design of metamaterials for research and applications. MetamatBench offers a unified platform deployed at http://zhoulab-1.cs.vt.edu:5550 that enables machine learning researchers and practitioners to develop and evaluate new methodologies in metamaterial discovery. For accessibility and reproducibility, we open-source our benchmark and the codebase at https://github.com/cjpcool/Metamaterial-Benchmark.

Authors:Qinyu Zhao, Jaskirat Singh, Ming Xu, Akshay Asthana, Stephen Gould, Liang Zheng
Title: DiSA: Diffusion Step Annealing in Autoregressive Image Generation
Abstract:
An increasing number of autoregressive models, such as MAR, FlowAR, xAR, and Harmon adopt diffusion sampling to improve the quality of image generation. However, this strategy leads to low inference efficiency, because it usually takes 50 to 100 steps for diffusion to sample a token. This paper explores how to effectively address this issue. Our key motivation is that as more tokens are generated during the autoregressive process, subsequent tokens follow more constrained distributions and are easier to sample. To intuitively explain, if a model has generated part of a dog, the remaining tokens must complete the dog and thus are more constrained. Empirical evidence supports our motivation: at later generation stages, the next tokens can be well predicted by a multilayer perceptron, exhibit low variance, and follow closer-to-straight-line denoising paths from noise to tokens. Based on our finding, we introduce diffusion step annealing (DiSA), a training-free method which gradually uses fewer diffusion steps as more tokens are generated, e.g., using 50 steps at the beginning and gradually decreasing to 5 steps at later stages. Because DiSA is derived from our finding specific to diffusion in autoregressive models, it is complementary to existing acceleration methods designed for diffusion alone. DiSA can be implemented in only a few lines of code on existing models, and albeit simple, achieves $5-10\times$ faster inference for MAR and Harmon and $1.4-2.5\times$ for FlowAR and xAR, while maintaining the generation quality.

Authors:Michael Kirchhof, Luca Füger, Adam Goliński, Eeshan Gunesh Dhekane, Arno Blaas, Sinead Williamson
Title: Self-reflective Uncertainties: Do LLMs Know Their Internal Answer Distribution?
Abstract:
To reveal when a large language model (LLM) is uncertain about a response, uncertainty quantification commonly produces percentage numbers along with the output. But is this all we can do? We argue that in the output space of LLMs, the space of strings, exist strings expressive enough to summarize the distribution over output strings the LLM deems possible. We lay a foundation for this new avenue of uncertainty explication and present SelfReflect, a theoretically-motivated metric to assess how faithfully a string summarizes an LLM's internal answer distribution. We show that SelfReflect is able to discriminate even subtle differences of candidate summary strings and that it aligns with human judgement, outperforming alternative metrics such as LLM judges and embedding comparisons. With SelfReflect, we investigate a number of self-summarization methods and find that even state-of-the-art reasoning models struggle to explicate their internal uncertainty. But we find that faithful summarizations can be generated by sampling and summarizing. To support the development of this universal form of LLM uncertainties, we publish our metric at https://github.com/apple/ml-selfreflect

Authors:Shenghai Yuan, Xianyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, Li Yuan
Title: OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation
Abstract:
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.

Authors:Di Wu, Yixin Wan, Kai-Wei Chang
Title: Visualized Text-to-Image Retrieval
Abstract:
We propose Visualize-then-Retrieve (VisRet), a new paradigm for Text-to-Image (T2I) retrieval that mitigates the limitations of cross-modal similarity alignment of existing multi-modal embeddings. VisRet first projects textual queries into the image modality via T2I generation. Then, it performs retrieval within the image modality to bypass the weaknesses of cross-modal retrievers in recognizing subtle visual-spatial features. Experiments on three knowledge-intensive T2I retrieval benchmarks, including a newly introduced multi-entity benchmark, demonstrate that VisRet consistently improves T2I retrieval by 24.5% to 32.7% NDCG@10 across different embedding models. VisRet also significantly benefits downstream visual question answering accuracy when used in retrieval-augmented generation pipelines. The method is plug-and-play and compatible with off-the-shelf retrievers, making it an effective module for knowledge-intensive multi-modal systems. Our code and the new benchmark are publicly available at https://github.com/xiaowu0162/Visualize-then-Retrieve.

Authors:Guangting Zheng, Yehao Li, Yingwei Pan, Jiajun Deng, Ting Yao, Yanyong Zhang, Tao Mei
Title: Hierarchical Masked Autoregressive Models with Low-Resolution Token Pivots
Abstract:
Autoregressive models have emerged as a powerful generative paradigm for visual generation. The current de-facto standard of next token prediction commonly operates over a single-scale sequence of dense image tokens, and is incapable of utilizing global context especially for early tokens prediction. In this paper, we introduce a new autoregressive design to model a hierarchy from a few low-resolution image tokens to the typical dense image tokens, and delve into a thorough hierarchical dependency across multi-scale image tokens. Technically, we present a Hierarchical Masked Autoregressive models (Hi-MAR) that pivot on low-resolution image tokens to trigger hierarchical autoregressive modeling in a multi-phase manner. Hi-MAR learns to predict a few image tokens in low resolution, functioning as intermediary pivots to reflect global structure, in the first phase. Such pivots act as the additional guidance to strengthen the next autoregressive modeling phase by shaping global structural awareness of typical dense image tokens. A new Diffusion Transformer head is further devised to amplify the global context among all tokens for mask token prediction. Extensive evaluations on both class-conditional and text-to-image generation tasks demonstrate that Hi-MAR outperforms typical AR baselines, while requiring fewer computational costs. Code is available at https://github.com/HiDream-ai/himar.

Authors:Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang, Shilong Liu, Hongru Wang, Mengdi Wang
Title: Alita: Generalist Agent Enabling Scalable Agentic Reasoning with Minimal Predefinition and Maximal Self-Evolution
Abstract:
Recent advances in large language models (LLMs) have enabled agents to autonomously perform complex, open-ended tasks. However, many existing frameworks depend heavily on manually predefined tools and workflows, which hinder their adaptability, scalability, and generalization across domains. In this work, we introduce Alita--a generalist agent designed with the principle of "Simplicity is the ultimate sophistication," enabling scalable agentic reasoning through minimal predefinition and maximal self-evolution. For minimal predefinition, Alita is equipped with only one component for direct problem-solving, making it much simpler and neater than previous approaches that relied heavily on hand-crafted, elaborate tools and workflows. This clean design enhances its potential to generalize to challenging questions, without being limited by tools. For Maximal self-evolution, we enable the creativity of Alita by providing a suite of general-purpose components to autonomously construct, refine, and reuse external capabilities by generating task-related model context protocols (MCPs) from open source, which contributes to scalable agentic reasoning. Notably, Alita achieves 75.15% pass@1 and 87.27% pass@3 accuracy, which is top-ranking among general-purpose agents, on the GAIA benchmark validation dataset, 74.00% and 52.00% pass@1, respectively, on Mathvista and PathVQA, outperforming many agent systems with far greater complexity. More details will be updated at $\href{https://github.com/CharlesQ9/Alita}{https://github.com/CharlesQ9/Alita}$.

Authors:Weiqi Wu, Xin Guan, Shen Huang, Yong Jiang, Pengjun Xie, Fei Huang, Jiuxin Cao, Hai Zhao, Jingren Zhou
Title: MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability
Abstract:
Retrieval-Augmented Language Models (RALMs) represent a classic paradigm where models enhance generative capabilities using external knowledge retrieved via a specialized module. Recent advancements in Agent techniques enable Large Language Models (LLMs) to autonomously utilize tools for retrieval, planning, and reasoning. While existing training-based methods show promise, their agentic abilities are limited by inherent characteristics of the task-specific data used during training. To further enhance the universal search capability of agents, we propose a novel pre-training framework, MaskSearch. In the pre-training stage, we introduce the Retrieval Augmented Mask Prediction (RAMP) task, where the model learns to leverage search tools to fill masked spans on a large number of pre-training data, thus acquiring universal retrieval and reasoning capabilities for LLMs. After that, the model is trained on downstream tasks to achieve further improvement. We apply both Supervised Fine-tuning (SFT) and Reinforcement Learning (RL) for training. For SFT, we combine agent-based and distillation-based methods to generate training data, starting with a multi-agent system consisting of a planner, rewriter, observer, and followed by a self-evolving teacher model. While for RL, we employ DAPO as the training framework and adopt a hybrid reward system consisting of answer rewards and format rewards. Additionally, we introduce a curriculum learning approach that allows the model to learn progressively from easier to more challenging instances based on the number of masked spans. We evaluate the effectiveness of our framework in the scenario of open-domain multi-hop question answering. Through extensive experiments, we demonstrate that MaskSearch significantly enhances the performance of LLM-based search agents on both in-domain and out-of-domain downstream tasks.

Authors:Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, Bryan Dai
Title: One-shot Entropy Minimization
Abstract:
We trained 13,440 large language models and found that entropy minimization requires only a single unlabeled data and 10 steps optimization to achieve performance improvements comparable to or even greater than those obtained using thousands of data and carefully designed rewards in rule-based reinforcement learning. This striking result may prompt a rethinking of post-training paradigms for large language models. Our code is avaliable at https://github.com/zitian-gao/one-shot-em.

Authors:Haonan Zhang, Run Luo, Xiong Liu, Yuchuan Wu, Ting-En Lin, Pengpeng Zeng, Qiang Qu, Feiteng Fang, Min Yang, Lianli Gao, Jingkuan Song, Fei Huang, Yongbin Li
Title: OmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction
Abstract:
Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/OmniCharacter.

Authors:Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, Li Yuan
Title: ImgEdit: A Unified Image Editing Dataset and Benchmark
Abstract:
Recent advancements in generative models have enabled high-fidelity text-to-image generation. However, open-source image-editing models still lag behind their proprietary counterparts, primarily due to limited high-quality data and insufficient benchmarks. To overcome these limitations, we introduce ImgEdit, a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs, which contain both novel and complex single-turn edits, as well as challenging multi-turn tasks. To ensure the data quality, we employ a multi-stage pipeline that integrates a cutting-edge vision-language model, a detection model, a segmentation model, alongside task-specific in-painting procedures and strict post-processing. ImgEdit surpasses existing datasets in both task novelty and data quality. Using ImgEdit, we train ImgEdit-E1, an editing model using Vision Language Model to process the reference image and editing prompt, which outperforms existing open-source models on multiple tasks, highlighting the value of ImgEdit and model design. For comprehensive evaluation, we introduce ImgEdit-Bench, a benchmark designed to evaluate image editing performance in terms of instruction adherence, editing quality, and detail preservation. It includes a basic testsuite, a challenging single-turn suite, and a dedicated multi-turn suite. We evaluate both open-source and proprietary models, as well as ImgEdit-E1, providing deep analysis and actionable insights into the current behavior of image-editing models. The source data are publicly available on https://github.com/PKU-YuanGroup/ImgEdit.

Authors:Jinsheng Quan, Chunshi Wang, Yawei Luo
Title: ParticleGS: Particle-Based Dynamics Modeling of 3D Gaussians for Prior-free Motion Extrapolation
Abstract:
This paper aims to model the dynamics of 3D Gaussians from visual observations to support temporal extrapolation. Existing dynamic 3D reconstruction methods often struggle to effectively learn underlying dynamics or rely heavily on manually defined physical priors, which limits their extrapolation capabilities. To address this issue, we propose a novel dynamic 3D Gaussian Splatting prior-free motion extrapolation framework based on particle dynamics systems. The core advantage of our method lies in its ability to learn differential equations that describe the dynamics of 3D Gaussians, and follow them during future frame extrapolation. Instead of simply fitting to the observed visual frame sequence, we aim to more effectively model the gaussian particle dynamics system. To this end, we introduce a dynamics latent state vector into the standard Gaussian kernel and design a dynamics latent space encoder to extract initial state. Subsequently, we introduce a Neural ODEs-based dynamics module that models the temporal evolution of Gaussian in dynamics latent space. Finally, a Gaussian kernel space decoder is used to decode latent state at the specific time step into the deformation. Experimental results demonstrate that the proposed method achieves comparable rendering quality with existing approaches in reconstruction tasks, and significantly outperforms them in future frame extrapolation. Our code is available at https://github.com/QuanJinSheng/ParticleGS.

Authors:Haoyu Wang, Zeyu Qin, Yifei Zhao, Chao Du, Min Lin, Xueqian Wang, Tianyu Pang
Title: Lifelong Safety Alignment for Language Models
Abstract:
LLMs have made impressive progress, but their growing capabilities also expose them to highly flexible jailbreaking attacks designed to bypass safety alignment. While many existing defenses focus on known types of attacks, it is more critical to prepare LLMs for unseen attacks that may arise during deployment. To address this, we propose a lifelong safety alignment framework that enables LLMs to continuously adapt to new and evolving jailbreaking strategies. Our framework introduces a competitive setup between two components: a Meta-Attacker, trained to actively discover novel jailbreaking strategies, and a Defender, trained to resist them. To effectively warm up the Meta-Attacker, we first leverage the GPT-4o API to extract key insights from a large collection of jailbreak-related research papers. Through iterative training, the first iteration Meta-Attacker achieves a 73% attack success rate (ASR) on RR and a 57% transfer ASR on LAT using only single-turn attacks. Meanwhile, the Defender progressively improves its robustness and ultimately reduces the Meta-Attacker's success rate to just 7%, enabling safer and more reliable deployment of LLMs in open-ended environments. The code is available at https://github.com/sail-sg/LifelongSafetyAlignment.

Authors:Muyao Niu, Mingdeng Cao, Yifan Zhan, Qingtian Zhu, Mingze Ma, Jiancheng Zhao, Yanhong Zeng, Zhihang Zhong, Xiao Sun, Yinqiang Zheng
Title: AniCrafter: Customizing Realistic Human-Centric Animation via Avatar-Background Conditioning in Video Diffusion Models
Abstract:
Recent advances in video diffusion models have significantly improved character animation techniques. However, current approaches rely on basic structural conditions such as DWPose or SMPL-X to animate character images, limiting their effectiveness in open-domain scenarios with dynamic backgrounds or challenging human poses. In this paper, we introduce \textbf{AniCrafter}, a diffusion-based human-centric animation model that can seamlessly integrate and animate a given character into open-domain dynamic backgrounds while following given human motion sequences. Built on cutting-edge Image-to-Video (I2V) diffusion architectures, our model incorporates an innovative ''avatar-background'' conditioning mechanism that reframes open-domain human-centric animation as a restoration task, enabling more stable and versatile animation outputs. Experimental results demonstrate the superior performance of our method. Codes are available at https://github.com/MyNiuuu/AniCrafter.

Authors:Qi Cao, Ruiyi Wang, Ruiyi Zhang, Sai Ashish Somayajula, Pengtao Xie
Title: DreamPRM: Domain-Reweighted Process Reward Model for Multimodal Reasoning
Abstract:
Reasoning has improved the performance of large language models (LLMs) on complicated tasks. Central to the current reasoning studies, Process Reward Models (PRMs) offer a fine-grained evaluation of intermediate reasoning steps and guide the reasoning process. However, extending PRMs to multimodal large language models (MLLMs) introduces challenges. Since multimodal reasoning covers a wider range of tasks compared to text-only scenarios, the resulting distribution shift from the training to testing sets is more severe, leading to greater generalization difficulty. Training a reliable multimodal PRM, therefore, demands large and diverse datasets to ensure sufficient coverage. However, current multimodal reasoning datasets suffer from quality imbalance, which degrades PRM performance and highlights the need for data selection strategy. To address the issues, we introduce DreamPRM, a domain-reweighted training framework for multimodal PRMs which employs bi-level optimization. In the lower-level optimization, DreamPRM performs fine-tuning on multiple datasets with domain weights, allowing the PRM to prioritize high-quality reasoning signals and alleviating the impact of dataset quality imbalance. In the upper-level optimization, the PRM is evaluated on a separate meta-learning dataset; this feedback updates the domain weights through an aggregation loss function, thereby improving the generalization capability of trained PRM. Extensive experiments on multiple multimodal reasoning benchmarks covering both mathematical and general reasoning show that test-time scaling with DreamPRM consistently improves performance of state-of-the-art MLLMs. Further comparisons reveal that DreamPRM's domain-reweighting strategy surpasses data selection methods and yields higher accuracy gains than existing test-time scaling approaches. Codes are available at https://github.com/coder-qicao/DreamPRM.

Authors:Pranav Poudel, Aavash Chhetri, Prashnna Gyawali, Georgios Leontidis, Binod Bhattarai
Title: Multimodal Federated Learning With Missing Modalities through Feature Imputation Network
Abstract:
Multimodal federated learning holds immense potential for collaboratively training models from multiple sources without sharing raw data, addressing both data scarcity and privacy concerns, two key challenges in healthcare. A major challenge in training multimodal federated models in healthcare is the presence of missing modalities due to multiple reasons, including variations in clinical practice, cost and accessibility constraints, retrospective data collection, privacy concerns, and occasional technical or human errors. Previous methods typically rely on publicly available real datasets or synthetic data to compensate for missing modalities. However, obtaining real datasets for every disease is impractical, and training generative models to synthesize missing modalities is computationally expensive and prone to errors due to the high dimensionality of medical data. In this paper, we propose a novel, lightweight, low-dimensional feature translator to reconstruct bottleneck features of the missing modalities. Our experiments on three different datasets (MIMIC-CXR, NIH Open-I, and CheXpert), in both homogeneous and heterogeneous settings consistently improve the performance of competitive baselines. The code and implementation details are available at: https://github.com/bhattarailab/FedFeatGen

Authors:Maximilian Dreyer, Lorenz Hufe, Jim Berend, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek
Title: From What to How: Attributing CLIP's Latent Components Reveals Unexpected Semantic Reliance
Abstract:
Transformer-based CLIP models are widely used for text-image probing and feature extraction, making it relevant to understand the internal mechanisms behind their predictions. While recent works show that Sparse Autoencoders (SAEs) yield interpretable latent components, they focus on what these encode and miss how they drive predictions. We introduce a scalable framework that reveals what latent components activate for, how they align with expected semantics, and how important they are to predictions. To achieve this, we adapt attribution patching for instance-wise component attributions in CLIP and highlight key faithfulness limitations of the widely used Logit Lens technique. By combining attributions with semantic alignment scores, we can automatically uncover reliance on components that encode semantically unexpected or spurious concepts. Applied across multiple CLIP variants, our method uncovers hundreds of surprising components linked to polysemous words, compound nouns, visual typography and dataset artifacts. While text embeddings remain prone to semantic ambiguity, they are more robust to spurious correlations compared to linear classifiers trained on image embeddings. A case study on skin lesion detection highlights how such classifiers can amplify hidden shortcuts, underscoring the need for holistic, mechanistic interpretability. We provide code at https://github.com/maxdreyer/attributing-clip.

Authors:Hao Kang, Zichun Yu, Chenyan Xiong
Title: FLAME-MoE: A Transparent End-to-End Research Platform for Mixture-of-Experts Language Models
Abstract:
Recent large language models such as Gemini-1.5, DeepSeek-V3, and Llama-4 increasingly adopt Mixture-of-Experts (MoE) architectures, which offer strong efficiency-performance trade-offs by activating only a fraction of the model per token. Yet academic researchers still lack a fully open, end-to-end MoE platform for investigating scaling, routing, and expert behavior. We release FLAME-MoE, a completely open-source research suite composed of seven decoder-only models, ranging from 38M to 1.7B active parameters, whose architecture--64 experts with top-8 gating and 2 shared experts--closely reflects modern production LLMs. All training data pipelines, scripts, logs, and checkpoints are publicly available to enable reproducible experimentation. Across six evaluation tasks, FLAME-MoE improves average accuracy by up to 3.4 points over dense baselines trained with identical FLOPs. Leveraging full training trace transparency, we present initial analyses showing that (i) experts increasingly specialize on distinct token subsets, (ii) co-activation matrices remain sparse, reflecting diverse expert usage, and (iii) routing behavior stabilizes early in training. All code, training logs, and model checkpoints are available at https://github.com/cmu-flame/FLAME-MoE.

Authors:Yixin Cui, Haotian Lin, Shuo Yang, Yixiao Wang, Yanjun Huang, Hong Chen
Title: Chain-of-Thought for Autonomous Driving: A Comprehensive Survey and Future Prospects
Abstract:
The rapid evolution of large language models in natural language processing has substantially elevated their semantic understanding and logical reasoning capabilities. Such proficiencies have been leveraged in autonomous driving systems, contributing to significant improvements in system performance. Models such as OpenAI o1 and DeepSeek-R1, leverage Chain-of-Thought (CoT) reasoning, an advanced cognitive method that simulates human thinking processes, demonstrating remarkable reasoning capabilities in complex tasks. By structuring complex driving scenarios within a systematic reasoning framework, this approach has emerged as a prominent research focus in autonomous driving, substantially improving the system's ability to handle challenging cases. This paper investigates how CoT methods improve the reasoning abilities of autonomous driving models. Based on a comprehensive literature review, we present a systematic analysis of the motivations, methodologies, challenges, and future research directions of CoT in autonomous driving. Furthermore, we propose the insight of combining CoT with self-learning to facilitate self-evolution in driving systems. To ensure the relevance and timeliness of this study, we have compiled a dynamic repository of literature and open-source projects, diligently updated to incorporate forefront developments. The repository is publicly available at https://github.com/cuiyx1720/Awesome-CoT4AD.

Authors:Chenxiao Fan, Chongming Gao, Wentao Shi, Yaxin Gong, Zihao Zhao, Fuli Feng
Title: Fine-grained List-wise Alignment for Generative Medication Recommendation
Abstract:
Accurate and safe medication recommendations are critical for effective clinical decision-making, especially in multimorbidity cases. However, existing systems rely on point-wise prediction paradigms that overlook synergistic drug effects and potential adverse drug-drug interactions (DDIs). We propose FLAME, a fine-grained list-wise alignment framework for large language models (LLMs), enabling drug-by-drug generation of drug lists. FLAME formulates recommendation as a sequential decision process, where each step adds or removes a single drug. To provide fine-grained learning signals, we devise step-wise Group Relative Policy Optimization (GRPO) with potential-based reward shaping, which explicitly models DDIs and optimizes the contribution of each drug to the overall prescription. Furthermore, FLAME enhances patient modeling by integrating structured clinical knowledge and collaborative information into the representation space of LLMs. Experiments on benchmark datasets demonstrate that FLAME achieves state-of-the-art performance, delivering superior accuracy, controllable safety-accuracy trade-offs, and strong generalization across diverse clinical scenarios. Our code is available at https://github.com/cxfann/Flame.

Authors:Pengxiang Li, Shilin Yan, Joey Tsai, Renrui Zhang, Ruichuan An, Ziyu Guo, Xiaowei Gao
Title: Adaptive Classifier-Free Guidance via Dynamic Low-Confidence Masking
Abstract:
Classifier-Free Guidance (CFG) significantly enhances controllability in generative models by interpolating conditional and unconditional predictions. However, standard CFG often employs a static unconditional input, which can be suboptimal for iterative generation processes where model uncertainty varies dynamically. We introduce Adaptive Classifier-Free Guidance (A-CFG), a novel method that tailors the unconditional input by leveraging the model's instantaneous predictive confidence. At each step of an iterative (masked) diffusion language model, A-CFG identifies tokens in the currently generated sequence for which the model exhibits low confidence. These tokens are temporarily re-masked to create a dynamic, localized unconditional input. This focuses CFG's corrective influence precisely on areas of ambiguity, leading to more effective guidance. We integrate A-CFG into a state-of-the-art masked diffusion language model and demonstrate its efficacy. Experiments on diverse language generation benchmarks show that A-CFG yields substantial improvements over standard CFG, achieving, for instance, a 3.9 point gain on GPQA. Our work highlights the benefit of dynamically adapting guidance mechanisms to model uncertainty in iterative generation.

Authors:Bingguang Hao, Maolin Wang, Zengzhuang Xu, Cunyin Peng, Yicheng Chen, Xiangyu Zhao, Jinjie Gu, Chenyi Zhuang
Title: FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement
Abstract:
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason

Authors:Shubham Gandhi, Atharva Naik, Yiqing Xie, Carolyn Rose
Title: An Empirical Study on Strong-Weak Model Collaboration for Repo-level Code Generation
Abstract:
We study cost-efficient collaboration between strong and weak language models for repository-level code generation, where the weak model handles simpler tasks at lower cost, and the most challenging tasks are delegated to the strong model. While many works propose architectures for this task, few analyze performance relative to cost. We evaluate a broad spectrum of collaboration strategies: context-based, pipeline-based, and dynamic, on GitHub issue resolution. Our most effective collaborative strategy achieves equivalent performance to the strong model while reducing the cost by 40%. Based on our findings, we offer actionable guidelines for choosing collaboration strategies under varying budget and performance constraints. Our results show that strong-weak collaboration substantially boosts the weak model's performance at a fraction of the cost, pipeline and context-based methods being most efficient. We release the code for our work at https://github.com/shubhamrgandhi/codegen-strong-weak-collab.

Authors:Kai Sun, Yushi Bai, Zhen Yang, Jiajie Zhang, Ji Qi, Lei Hou, Juanzi Li
Title: MMGeoLM: Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Abstract:
Large Multimodal Models (LMMs) typically build on ViTs (e.g., CLIP), yet their training with simple random in-batch negatives limits the ability to capture fine-grained visual differences, particularly in geometric scenarios. To address this challenge, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train a vision encoder (CLIP) using our hard negative training method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further conduct ablation studies to analyze three key factors: hard negative types, the efficiency of image-based negatives, and training configurations. These analyses yield important insights into optimizing the training pipeline of vision encoder for fine-grained geometric reasoning tasks. https://github.com/THU-KEG/MMGeoLM.

Authors:Cédric Goemaere, Gaspard Oliviers, Rafal Bogacz, Thomas Demeester
Title: Error Optimization: Overcoming Exponential Signal Decay in Deep Predictive Coding Networks
Abstract:
Predictive Coding (PC) offers a biologically plausible alternative to backpropagation for neural network training, yet struggles with deeper architectures. This paper identifies the root cause: an inherent signal decay problem where gradients attenuate exponentially with depth, becoming computationally negligible due to numerical precision constraints. To address this fundamental limitation, we introduce Error Optimization (EO), a novel reparameterization that preserves PC's theoretical properties while eliminating signal decay. By optimizing over prediction errors rather than states, EO enables signals to reach all layers simultaneously and without attenuation, converging orders of magnitude faster than standard PC. Experiments across multiple architectures and datasets demonstrate that EO matches backpropagation's performance even for deeper models where conventional PC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling biologically-inspired learning to deeper architectures on digital hardware and beyond.

Authors:Cédric Goemaere, Gaspard Oliviers, Rafal Bogacz, Thomas Demeester
Title: ePC: Overcoming Exponential Signal Decay in Deep Predictive Coding Networks
Abstract:
Predictive Coding (PC) offers a biologically plausible alternative to backpropagation for neural network training, yet struggles with deeper architectures. This paper identifies the root cause and provides a principled solution. We uncover that the canonical state-based formulation of PC (sPC) is, by design, deeply inefficient on digital hardware, due to an inherent signal decay problem that scales exponentially with depth. To address this fundamental limitation, we introduce a novel reparameterization of PC, named error-based PC (ePC), which does not suffer from signal decay. By optimizing over prediction errors rather than states, ePC enables signals to reach all layers simultaneously and unattenuated, converging orders of magnitude faster than sPC. Experiments across multiple architectures and datasets demonstrate that ePC matches backpropagation's performance even for deeper models where sPC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling bio-inspired learning to deeper architectures on digital hardware and beyond.

Authors:Jin Zhu, Jingyi Li, Hongyi Zhou, Yinan Lin, Zhenhua Lin, Chengchun Shi
Title: Balancing Interference and Correlation in Spatial Experimental Designs: A Causal Graph Cut Approach
Abstract:
This paper focuses on the design of spatial experiments to optimize the amount of information derived from the experimental data and enhance the accuracy of the resulting causal effect estimator. We propose a surrogate function for the mean squared error (MSE) of the estimator, which facilitates the use of classical graph cut algorithms to learn the optimal design. Our proposal offers three key advances: (1) it accommodates moderate to large spatial interference effects; (2) it adapts to different spatial covariance functions; (3) it is computationally efficient. Theoretical results and numerical experiments based on synthetic environments and a dispatch simulator that models a city-scale ridesharing market, further validate the effectiveness of our design. A python implementation of our method is available at https://github.com/Mamba413/CausalGraphCut.

Authors:Yige Yuan, Teng Xiao, Li Yunfan, Bingbing Xu, Shuchang Tao, Yunqi Qiu, Huawei Shen, Xueqi Cheng
Title: Inference-time Alignment in Continuous Space
Abstract:
Aligning large language models with human feedback at inference time has received increasing attention due to its flexibility. Existing methods rely on generating multiple responses from the base policy for search using a reward model, which can be considered as searching in a discrete response space. However, these methods struggle to explore informative candidates when the base policy is weak or the candidate set is small, resulting in limited effectiveness. In this paper, to address this problem, we propose Simple Energy Adaptation ($\textbf{SEA}$), a simple yet effective algorithm for inference-time alignment. In contrast to expensive search over the discrete space, SEA directly adapts original responses from the base policy toward the optimal one via gradient-based sampling in continuous latent space. Specifically, SEA formulates inference as an iterative optimization procedure on an energy function over actions in the continuous space defined by the optimal policy, enabling simple and effective alignment. For instance, despite its simplicity, SEA outperforms the second-best baseline with a relative improvement of up to $ \textbf{77.51%}$ on AdvBench and $\textbf{16.36%}$ on MATH. Our code is publicly available at https://github.com/yuanyige/sea

Authors:Yige Yuan, Teng Xiao, Li Yunfan, Bingbing Xu, Shuchang Tao, Yunqi Qiu, Huawei Shen, Xueqi Cheng
Title: Inference-time Alignment in Continuous Space
Abstract:
Aligning large language models with human feedback at inference time has received increasing attention due to its flexibility. Existing methods rely on generating multiple responses from the base policy for search using a reward model, which can be considered as searching in a discrete response space. However, these methods struggle to explore informative candidates when the base policy is weak or the candidate set is small, resulting in limited effectiveness. In this paper, to address this problem, we propose Simple Energy Adaptation ($\textbf{SEA}$), a simple yet effective algorithm for inference-time alignment. In contrast to expensive search over the discrete space, SEA directly adapts original responses from the base policy toward the optimal one via gradient-based sampling in continuous latent space. Specifically, SEA formulates inference as an iterative optimization procedure on an energy function over actions in the continuous space defined by the optimal policy, enabling simple and effective alignment. For instance, despite its simplicity, SEA outperforms the second-best baseline with a relative improvement of up to $ \textbf{77.51%}$ on AdvBench and $\textbf{16.36%}$ on MATH. Our code is publicly available at https://github.com/yuanyige/sea

Authors:Florian Eichin, Yupei Du, Philipp Mondorf, Barbara Plank, Michael A. Hedderich
Title: Grokking ExPLAIND: Unifying Model, Data, and Training Attribution to Study Model Behavior
Abstract:
Post-hoc interpretability methods typically attribute a model's behavior to its components, data, or training trajectory in isolation. This leads to explanations that lack a unified view and may miss key interactions. While combining existing methods or applying them at different training stages offers broader insights, these approaches usually lack theoretical support. In this work, we present ExPLAIND, a unified framework that integrates all three perspectives. First, we generalize recent work on gradient path kernels, which reformulate models trained by gradient descent as a kernel machine, to more realistic training settings. Empirically, we find that both a CNN and a Transformer model are replicated accurately by this reformulation. Second, we derive novel parameter- and step-wise influence scores from the kernel feature maps. We show their effectiveness in parameter pruning that is comparable to existing methods, reinforcing their value for model component attribution. Finally, jointly interpreting model components and data over the training process, we leverage ExPLAIND to analyze a Transformer that exhibits Grokking. Among other things, our findings support previously proposed stages of Grokking, while refining the final phase as one of alignment of input embeddings and final layers around a representation pipeline learned after the memorization phase. Overall, ExPLAIND provides a theoretically grounded, unified framework to interpret model behavior and training dynamics.

Authors:Florian Eichin, Yupei Du, Philipp Mondorf, Maria Matveev, Barbara Plank, Michael A. Hedderich
Title: ExPLAIND: Unifying Model, Data, and Training Attribution to Study Model Behavior
Abstract:
Post-hoc interpretability methods typically attribute a model's behavior to its components, data, or training trajectory in isolation. This leads to explanations that lack a unified view and may miss key interactions. While combining existing methods or applying them at different training stages offers broader insights, such approaches usually lack theoretical support. In this work, we present ExPLAIND, a unified framework that integrates all these perspectives. First, we generalize recent work on gradient path kernels, which reformulate models trained by gradient descent as a kernel machine, to realistic settings like AdamW. We empirically validate that a CNN and a Transformer are accurately replicated by this reformulation. Second, we derive novel parameter- and step-wise influence scores from the kernel feature maps. Their effectiveness for parameter pruning is comparable to existing methods, demonstrating their value for model component attribution. Finally, jointly interpreting model components and data over the training process, we leverage ExPLAIND to analyze a Transformer that exhibits Grokking. Our findings support previously proposed stages of Grokking, while refining the final phase as one of alignment of input embeddings and final layers around a representation pipeline learned after the memorization phase. Overall, ExPLAIND provides a theoretically grounded, unified framework to interpret model behavior and training dynamics.

Authors:Yige Yuan, Teng Xiao, Shuchang Tao, Xue Wang, Jinyang Gao, Bolin Ding, Bingbing Xu
Title: Incentivizing Strong Reasoning from Weak Supervision
Abstract:
Large language models (LLMs) have demonstrated impressive performance on reasoning-intensive tasks, but enhancing their reasoning abilities typically relies on either reinforcement learning (RL) with verifiable signals or supervised fine-tuning (SFT) with high-quality long chain-of-thought (CoT) demonstrations, both of which are expensive. In this paper, we study a novel problem of incentivizing the reasoning capacity of LLMs without expensive high-quality demonstrations and reinforcement learning. We investigate whether the reasoning capabilities of LLMs can be effectively incentivized via supervision from significantly weaker models. We further analyze when and why such weak supervision succeeds in eliciting reasoning abilities in stronger models. Our findings show that supervision from significantly weaker reasoners can substantially improve student reasoning performance, recovering close to 94% of the gains of expensive RL at a fraction of the cost. Experiments across diverse benchmarks and model architectures demonstrate that weak reasoners can effectively incentivize reasoning in stronger student models, consistently improving performance across a wide range of reasoning tasks. Our results suggest that this simple weak-to-strong paradigm is a promising and generalizable alternative to costly methods for incentivizing strong reasoning capabilities at inference-time in LLMs. The code is publicly available at https://github.com/yuanyige/w2sr.

Authors:Hongsong Wang, Ao Sun, Jie Gui, Liang Wang
Title: Data-Free Class-Incremental Gesture Recognition with Prototype-Guided Pseudo Feature Replay
Abstract:
Gesture recognition is an important research area in the field of computer vision. Most gesture recognition efforts focus on close-set scenarios, thereby limiting the capacity to effectively handle unseen or novel gestures. We aim to address class-incremental gesture recognition, which entails the ability to accommodate new and previously unseen gestures over time. Specifically, we introduce a Prototype-Guided Pseudo Feature Replay (PGPFR) framework for data-free class-incremental gesture recognition. This framework comprises four components: Pseudo Feature Generation with Batch Prototypes (PFGBP), Variational Prototype Replay (VPR) for old classes, Truncated Cross-Entropy (TCE) for new classes, and Continual Classifier Re-Training (CCRT). To tackle the issue of catastrophic forgetting, the PFGBP dynamically generates a diversity of pseudo features in an online manner, leveraging class prototypes of old classes along with batch class prototypes of new classes. Furthermore, the VPR enforces consistency between the classifier's weights and the prototypes of old classes, leveraging class prototypes and covariance matrices to enhance robustness and generalization capabilities. The TCE mitigates the impact of domain differences of the classifier caused by pseudo features. Finally, the CCRT training strategy is designed to prevent overfitting to new classes and ensure the stability of features extracted from old classes. Extensive experiments conducted on two widely used gesture recognition datasets, namely SHREC 2017 3D and EgoGesture 3D, demonstrate that our approach outperforms existing state-of-the-art methods by 11.8\% and 12.8\% in terms of mean global accuracy, respectively. The code is available on https://github.com/sunao-101/PGPFR-3/.

Authors:Chang Liu, Haomin Zhang, Shiyu Xia, Zihao Chen, Chaofan Ding, Xin Yue, Huizhe Chen, Xinhan Di
Title: Towards Video to Piano Music Generation with Chain-of-Perform Support Benchmarks
Abstract:
Generating high-quality piano audio from video requires precise synchronization between visual cues and musical output, ensuring accurate semantic and temporal alignment.However, existing evaluation datasets do not fully capture the intricate synchronization required for piano music generation. A comprehensive benchmark is essential for two primary reasons: (1) existing metrics fail to reflect the complexity of video-to-piano music interactions, and (2) a dedicated benchmark dataset can provide valuable insights to accelerate progress in high-quality piano music generation. To address these challenges, we introduce the CoP Benchmark Dataset-a fully open-sourced, multimodal benchmark designed specifically for video-guided piano music generation. The proposed Chain-of-Perform (CoP) benchmark offers several compelling features: (1) detailed multimodal annotations, enabling precise semantic and temporal alignment between video content and piano audio via step-by-step Chain-of-Perform guidance; (2) a versatile evaluation framework for rigorous assessment of both general-purpose and specialized video-to-piano generation tasks; and (3) full open-sourcing of the dataset, annotations, and evaluation protocols. The dataset is publicly available at https://github.com/acappemin/Video-to-Audio-and-Piano, with a continuously updated leaderboard to promote ongoing research in this domain.

Authors:Xueyi Liu, Zuodong Zhong, Yuxin Guo, Yun-Fu Liu, Zhiguo Su, Qichao Zhang, Junli Wang, Yinfeng Gao, Yupeng Zheng, Qiao Lin, Huiyong Chen, Dongbin Zhao
Title: ReasonPlan: Unified Scene Prediction and Decision Reasoning for Closed-loop Autonomous Driving
Abstract:
Due to the powerful vision-language reasoning and generalization abilities, multimodal large language models (MLLMs) have garnered significant attention in the field of end-to-end (E2E) autonomous driving. However, their application to closed-loop systems remains underexplored, and current MLLM-based methods have not shown clear superiority to mainstream E2E imitation learning approaches. In this work, we propose ReasonPlan, a novel MLLM fine-tuning framework designed for closed-loop driving through holistic reasoning with a self-supervised Next Scene Prediction task and supervised Decision Chain-of-Thought process. This dual mechanism encourages the model to align visual representations with actionable driving context, while promoting interpretable and causally grounded decision making. We curate a planning-oriented decision reasoning dataset, namely PDR, comprising 210k diverse and high-quality samples. Our method outperforms the mainstream E2E imitation learning method by a large margin of 19% L2 and 16.1 driving score on Bench2Drive benchmark. Furthermore, ReasonPlan demonstrates strong zero-shot generalization on unseen DOS benchmark, highlighting its adaptability in handling zero-shot corner cases. Code and dataset will be found in https://github.com/Liuxueyi/ReasonPlan.

Authors:Qiong Zhang, Yan Shuo Tan, Qinglong Tian, Pengfei Li
Title: TabPFN: One Model to Rule Them All?
Abstract:
Hollmann et al. (Nature 637 (2025) 319-326) recently introduced TabPFN, a transformer-based deep learning model for regression and classification on tabular data, which they claim "outperforms all previous methods on datasets with up to 10,000 samples by a wide margin, using substantially less training time." Furthermore, they have called TabPFN a "foundation model" for tabular data, as it can support "data generation, density estimation, learning reusable embeddings and fine-tuning". If these statements are well-supported, TabPFN may have the potential to supersede existing modeling approaches on a wide range of statistical tasks, mirroring a similar revolution in other areas of artificial intelligence that began with the advent of large language models. In this paper, we provide a tailored explanation of how TabPFN works for a statistics audience, by emphasizing its interpretation as approximate Bayesian inference. We also provide more evidence of TabPFN's "foundation model" capabilities: We show that an out-of-the-box application of TabPFN vastly outperforms specialized state-of-the-art methods for semi-supervised parameter estimation, prediction under covariate shift, and heterogeneous treatment effect estimation. We further show that TabPFN can outperform LASSO at sparse regression and can break a robustness-efficiency trade-off in classification. All experiments can be reproduced using the code provided at https://github.com/qinglong-tian/tabpfn_study (https://github.com/qinglong-tian/tabpfn_study).

Authors:Bilel Cherif, Tamas Bisztray, Richard A. Dubniczky, Aaesha Aldahmani, Saeed Alshehhi, Norbert Tihanyi
Title: DFIR-Metric: A Benchmark Dataset for Evaluating Large Language Models in Digital Forensics and Incident Response
Abstract:
Digital Forensics and Incident Response (DFIR) involves analyzing digital evidence to support legal investigations. Large Language Models (LLMs) offer new opportunities in DFIR tasks such as log analysis and memory forensics, but their susceptibility to errors and hallucinations raises concerns in high-stakes contexts. Despite growing interest, there is no comprehensive benchmark to evaluate LLMs across both theoretical and practical DFIR domains. To address this gap, we present DFIR-Metric, a benchmark with three components: (1) Knowledge Assessment: a set of 700 expert-reviewed multiple-choice questions sourced from industry-standard certifications and official documentation; (2) Realistic Forensic Challenges: 150 CTF-style tasks testing multi-step reasoning and evidence correlation; and (3) Practical Analysis: 500 disk and memory forensics cases from the NIST Computer Forensics Tool Testing Program (CFTT). We evaluated 14 LLMs using DFIR-Metric, analyzing both their accuracy and consistency across trials. We also introduce a new metric, the Task Understanding Score (TUS), designed to more effectively evaluate models in scenarios where they achieve near-zero accuracy. This benchmark offers a rigorous, reproducible foundation for advancing AI in digital forensics. All scripts, artifacts, and results are available on the project website at https://github.com/DFIR-Metric.

Authors:Zhongzhan Huang, Guoming Ling, Shanshan Zhong, Hefeng Wu, Liang Lin
Title: MiniLongBench: The Low-cost Long Context Understanding Benchmark for Large Language Models
Abstract:
Long Context Understanding (LCU) is a critical area for exploration in current large language models (LLMs). However, due to the inherently lengthy nature of long-text data, existing LCU benchmarks for LLMs often result in prohibitively high evaluation costs, like testing time and inference expenses. Through extensive experimentation, we discover that existing LCU benchmarks exhibit significant redundancy, which means the inefficiency in evaluation. In this paper, we propose a concise data compression method tailored for long-text data with sparse information characteristics. By pruning the well-known LCU benchmark LongBench, we create MiniLongBench. This benchmark includes only 237 test samples across six major task categories and 21 distinct tasks. Through empirical analysis of over 60 LLMs, MiniLongBench achieves an average evaluation cost reduced to only 4.5% of the original while maintaining an average rank correlation coefficient of 0.97 with LongBench results. Therefore, our MiniLongBench, as a low-cost benchmark, holds great potential to substantially drive future research into the LCU capabilities of LLMs. See https://github.com/MilkThink-Lab/MiniLongBench for our code, data and tutorial.

Authors:Yong Liu, Jinshan Pan, Yinchuan Li, Qingji Dong, Chao Zhu, Yu Guo, Fei Wang
Title: UltraVSR: Achieving Ultra-Realistic Video Super-Resolution with Efficient One-Step Diffusion Space
Abstract:
Diffusion models have shown great potential in generating realistic image detail. However, adapting these models to video super-resolution (VSR) remains challenging due to their inherent stochasticity and lack of temporal modeling. Previous methods have attempted to mitigate this issue by incorporating motion information and temporal layers. However, unreliable motion estimation from low-resolution videos and costly multiple sampling steps with deep temporal layers limit them to short sequences. In this paper, we propose UltraVSR, a novel framework that enables ultra-realistic and temporally-coherent VSR through an efficient one-step diffusion space. A central component of UltraVSR is the Degradation-aware Reconstruction Scheduling (DRS), which estimates a degradation factor from the low-resolution input and transforms the iterative denoising process into a single-step reconstruction from low-resolution to high-resolution videos. To ensure temporal consistency, we propose a lightweight Recurrent Temporal Shift (RTS) module, including an RTS-convolution unit and an RTS-attention unit. By partially shifting feature components along the temporal dimension, it enables effective propagation, fusion, and alignment across frames without explicit temporal layers. The RTS module is integrated into a pretrained text-to-image diffusion model and is further enhanced through Spatio-temporal Joint Distillation (SJD), which improves temporally coherence while preserving realistic details. Additionally, we introduce a Temporally Asynchronous Inference (TAI) strategy to capture long-range temporal dependencies under limited memory constraints. Extensive experiments show that UltraVSR achieves state-of-the-art performance, both qualitatively and quantitatively, in a single sampling step. Code is available at https://github.com/yongliuy/UltraVSR.

Authors:Jihyung Lee, Jin-Seop Lee, Jaehoon Lee, YunSeok Choi, Jee-Hyong Lee
Title: DCG-SQL: Enhancing In-Context Learning for Text-to-SQL with Deep Contextual Schema Link Graph
Abstract:
Text-to-SQL, which translates a natural language question into an SQL query, has advanced with in-context learning of Large Language Models (LLMs). However, existing methods show little improvement in performance compared to randomly chosen demonstrations, and significant performance drops when smaller LLMs (e.g., Llama 3.1-8B) are used. This indicates that these methods heavily rely on the intrinsic capabilities of hyper-scaled LLMs, rather than effectively retrieving useful demonstrations. In this paper, we propose a novel approach for effectively retrieving demonstrations and generating SQL queries. We construct a Deep Contextual Schema Link Graph, which contains key information and semantic relationship between a question and its database schema items. This graph-based structure enables effective representation of Text-to-SQL samples and retrieval of useful demonstrations for in-context learning. Experimental results on the Spider benchmark demonstrate the effectiveness of our approach, showing consistent improvements in SQL generation performance and efficiency across both hyper-scaled LLMs and small LLMs. The code is available at https://github.com/jjklle/DCG-SQL}{https://github.com/jjklle/DCG-SQL.

Authors:Herbert Woisetschläger, Ryan Zhang, Shiqiang Wang, Hans-Arno Jacobsen
Title: MESS+: Dynamically Learned Inference-Time LLM Routing in Model Zoos with Service Level Guarantees
Abstract:
Open-weight large language model (LLM) zoos provide access to numerous high-quality models, but selecting the appropriate model for specific tasks remains challenging and requires technical expertise. Most users simply want factually correct, safe, and satisfying responses without concerning themselves with model technicalities, while inference service providers prioritize minimizing operating costs. These competing interests are typically mediated through service level agreements (SLAs) that guarantee minimum service quality. We introduce MESS+, a stochastic optimization algorithm for cost-optimal LLM request routing while providing rigorous SLA compliance guarantees. MESS+ learns request satisfaction probabilities of LLMs in real-time as users interact with the system, based on which model selection decisions are made by solving a per-request optimization problem. Our algorithm includes a novel combination of virtual queues and request satisfaction prediction, along with a theoretical analysis of cost optimality and constraint satisfaction. Across a wide range of state-of-the-art LLM benchmarks, MESS+ achieves an average of $2\times$ cost savings compared to existing LLM routing techniques.

Authors:Huan Zhang, Fan Lyu, Shuyu Dong, Shenghua Fan, Yujin Zheng, Dingwen Wang
Title: Beyond Freezing: Sparse Tuning Enhances Plasticity in Continual Learning with Pre-Trained Models
Abstract:
Continual Learning with Pre-trained Models holds great promise for efficient adaptation across sequential tasks. However, most existing approaches freeze PTMs and rely on auxiliary modules like prompts or adapters, limiting model plasticity and leading to suboptimal generalization when facing significant distribution shifts. While full fine-tuning can improve adaptability, it risks disrupting crucial pre-trained knowledge. In this paper, we propose Mutual Information-guided Sparse Tuning (MIST), a plug-and-play method that selectively updates a small subset of PTM parameters, less than 5%, based on sensitivity to mutual information objectives. MIST enables effective task-specific adaptation while preserving generalization. To further reduce interference, we introduce strong sparsity regularization by randomly dropping gradients during tuning, resulting in fewer than 0.5% of parameters being updated per step. Applied before standard freeze-based methods, MIST consistently boosts performance across diverse continual learning benchmarks. Experiments show that integrating our method into multiple baselines yields significant performance gains. Our code is available at https://github.com/zhwhu/MIST.

Authors:Alejandro Carrasco, Victor Rodriguez-Fernandez, Richard Linares
Title: Large Language Models as Autonomous Spacecraft Operators in Kerbal Space Program
Abstract:
Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompts. We intend to apply these concepts to the field of Control in space, enabling LLMs to play a significant role in the decision-making process for autonomous satellite operations. As a first step towards this goal, we have developed a pure LLM-based solution for the Kerbal Space Program Differential Games (KSPDG) challenge, a public software design competition where participants create autonomous agents for maneuvering satellites involved in non-cooperative space operations, running on the KSP game engine. Our approach leverages prompt engineering, few-shot prompting, and fine-tuning techniques to create an effective LLM-based agent that ranked 2nd in the competition. To the best of our knowledge, this work pioneers the integration of LLM agents into space research. The project comprises several open repositories to facilitate replication and further research. The codebase is accessible on \href{https://github.com/ARCLab-MIT/kspdg}{GitHub}, while the trained models and datasets are available on \href{https://huggingface.co/OhhTuRnz}{Hugging Face}. Additionally, experiment tracking and detailed results can be reviewed on \href{https://wandb.ai/carrusk/huggingface}{Weights \& Biases

Authors:David Schneider, Zdravko Marinov, Rafael Baur, Zeyun Zhong, Rodi Düger, Rainer Stiefelhagen
Title: OmniFall: A Unified Staged-to-Wild Benchmark for Human Fall Detection
Abstract:
Current video-based fall detection research mostly relies on small, staged datasets with significant domain biases concerning background, lighting, and camera setup resulting in unknown real-world performance. We introduce OmniFall, unifying eight public fall detection datasets (roughly 14 h of recordings, roughly 42 h of multiview data, 101 subjects, 29 camera views) under a consistent ten-class taxonomy with standardized evaluation protocols. Our benchmark provides complete video segmentation labels and enables fair cross-dataset comparison previously impossible with incompatible annotation schemes. For real-world evaluation we curate OOPS-Fall from genuine accident videos and establish a staged-to-wild protocol measuring generalization from controlled to uncontrolled environments. Experiments with frozen pre-trained backbones such as I3D or VideoMAE reveal significant performance gaps between in-distribution and in-the-wild scenarios, highlighting critical challenges in developing robust fall detection systems. OmniFall Dataset at https://huggingface.co/datasets/simplexsigil2/omnifall , Code at https://github.com/simplexsigil/omnifall-experiments

Authors:Chao Huang, Benfeng Wang, Jie Wen, Chengliang Liu, Wei Wang, Li Shen, Xiaochun Cao
Title: Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought
Abstract:
Recent advancements in reasoning capability of Multimodal Large Language Models (MLLMs) demonstrate its effectiveness in tackling complex visual tasks. However, existing MLLM-based Video Anomaly Detection (VAD) methods remain limited to shallow anomaly descriptions without deep reasoning. In this paper, we propose a new task named Video Anomaly Reasoning (VAR), which aims to enable deep analysis and understanding of anomalies in the video by requiring MLLMs to think explicitly before answering. To this end, we propose Vad-R1, an end-to-end MLLM-based framework for VAR. Specifically, we design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies, guiding the MLLM to reason anomaly step-by-step. Based on the structured P2C-CoT, we construct Vad-Reasoning, a dedicated dataset for VAR. Furthermore, we propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs through a self-verification mechanism with limited annotations. Experimental results demonstrate that Vad-R1 achieves superior performance, outperforming both open-source and proprietary models on VAD and VAR tasks. Codes and datasets will be released at https://github.com/wbfwonderful/Vad-R1.

Authors:Hexuan Deng, Wenxiang Jiao, Xuebo Liu, Jun Rao, Min Zhang
Title: REA-RL: Reflection-Aware Online Reinforcement Learning for Efficient Large Reasoning Models
Abstract:
Large Reasoning Models (LRMs) demonstrate strong performance in complex tasks but often face the challenge of overthinking, leading to substantially high inference costs. Existing approaches synthesize shorter reasoning responses for LRMs to learn, but are inefficient for online usage due to the time-consuming data generation and filtering processes. Meanwhile, online reinforcement learning mainly adopts a length reward to encourage short reasoning responses, but tends to lose the reflection ability and harm the performance. To address these issues, we propose REA-RL, which introduces a small reflection model for efficient scaling in online training, offering both parallel sampling and sequential revision. Besides, a reflection reward is designed to further prevent LRMs from favoring short yet non-reflective responses. Experiments show that both methods maintain or enhance performance while significantly improving inference efficiency. Their combination achieves a good balance between performance and efficiency, reducing inference costs by 35% without compromising performance. Further analysis demonstrates that our methods are effective by maintaining reflection frequency for hard problems while appropriately reducing it for simpler ones without losing reflection ability. Codes are available at https://github.com/hexuandeng/REA-RL.

Authors:Haoqiang Yang, Congde Yuan, Kun Bai, Mengzhuo Guo, Wei Yang, Chao Zhou
Title: HIT Model: A Hierarchical Interaction-Enhanced Two-Tower Model for Pre-Ranking Systems
Abstract:
Online display advertising platforms rely on pre-ranking systems to efficiently filter and prioritize candidate ads from large corpora, balancing relevance to users with strict computational constraints. The prevailing two-tower architecture, though highly efficient due to its decoupled design and pre-caching, suffers from cross-domain interaction and coarse similarity metrics, undermining its capacity to model complex user-ad relationships. In this study, we propose the Hierarchical Interaction-Enhanced Two-Tower (HIT) model, a new architecture that augments the two-tower paradigm with two key components: $\textit{generators}$ that pre-generate holistic vectors incorporating coarse-grained user-ad interactions through a dual-generator framework with a cosine-similarity-based generation loss as the training objective, and $\textit{multi-head representers}$ that project embeddings into multiple latent subspaces to capture fine-grained, multi-faceted user interests and multi-dimensional ad attributes. This design enhances modeling effectiveness without compromising inference efficiency. Extensive experiments on public datasets and large-scale online A/B testing on Tencent's advertising platform demonstrate that HIT significantly outperforms several baselines in relevance metrics, yielding a $1.66\%$ increase in Gross Merchandise Volume and a $1.55\%$ improvement in Return on Investment, alongside similar serving latency to the vanilla two-tower models. The HIT model has been successfully deployed in Tencent's online display advertising system, serving billions of impressions daily. The code is available at https://github.com/HarveyYang123/HIT_model.

Authors:Dannong Wang, Jaisal Patel, Daochen Zha, Steve Y. Yang, Xiao-Yang Liu
Title: FinLoRA: Benchmarking LoRA Methods for Fine-Tuning LLMs on Financial Datasets
Abstract:
Low-rank adaptation (LoRA) methods show great potential for scaling pre-trained general-purpose Large Language Models (LLMs) to hundreds or thousands of use scenarios. However, their efficacy in high-stakes domains like finance is rarely explored, e.g., passing CFA exams and analyzing SEC filings. In this paper, we present the open-source FinLoRA project that benchmarks LoRA methods on both general and highly professional financial tasks. First, we curated 19 datasets covering diverse financial applications; in particular, we created four novel XBRL analysis datasets based on 150 SEC filings. Second, we evaluated five LoRA methods and five base LLMs. Finally, we provide extensive experimental results in terms of accuracy, F1, and BERTScore and report computational cost in terms of time and GPU memory during fine-tuning and inference stages. We find that LoRA methods achieved substantial performance gains of 36\% on average over base models. Our FinLoRA project provides an affordable and scalable approach to democratize financial intelligence to the general public. Datasets, LoRA adapters, code, and documentation are available at https://github.com/Open-Finance-Lab/FinLoRA

Authors:You Wang, Li Fang, Hao Zhu, Fei Hu, Long Ye, Zhan Ma
Title: GoLF-NRT: Integrating Global Context and Local Geometry for Few-Shot View Synthesis
Abstract:
Neural Radiance Fields (NeRF) have transformed novel view synthesis by modeling scene-specific volumetric representations directly from images. While generalizable NeRF models can generate novel views across unknown scenes by learning latent ray representations, their performance heavily depends on a large number of multi-view observations. However, with limited input views, these methods experience significant degradation in rendering quality. To address this limitation, we propose GoLF-NRT: a Global and Local feature Fusion-based Neural Rendering Transformer. GoLF-NRT enhances generalizable neural rendering from few input views by leveraging a 3D transformer with efficient sparse attention to capture global scene context. In parallel, it integrates local geometric features extracted along the epipolar line, enabling high-quality scene reconstruction from as few as 1 to 3 input views. Furthermore, we introduce an adaptive sampling strategy based on attention weights and kernel regression, improving the accuracy of transformer-based neural rendering. Extensive experiments on public datasets show that GoLF-NRT achieves state-of-the-art performance across varying numbers of input views, highlighting the effectiveness and superiority of our approach. Code is available at https://github.com/KLMAV-CUC/GoLF-NRT.

Authors:Zehong Ma, Shiliang Zhang, Longhui Wei, Qi Tian
Title: Efficient Multi-modal Long Context Learning for Training-free Adaptation
Abstract:
Traditional approaches to adapting multi-modal large language models (MLLMs) to new tasks have relied heavily on fine-tuning. This paper introduces Efficient Multi-Modal Long Context Learning (EMLoC), a novel training-free alternative that embeds demonstration examples directly into the model input. EMLoC offers a more efficient, flexible, and scalable solution for task adaptation. Because extremely lengthy inputs introduce prohibitive computational and memory overhead, EMLoC contributes a chunk-wise compression mechanism combined with layer-wise adaptive pruning. It condenses long-context multimodal inputs into compact, task-specific memory representations. By adaptively pruning tokens at each layer under a Jensen-Shannon divergence constraint, our method achieves a dramatic reduction in inference complexity without sacrificing performance. This approach is the first to seamlessly integrate compression and pruning techniques for multi-modal long-context learning, offering a scalable and efficient solution for real-world applications. Extensive experiments on diverse vision-language benchmarks demonstrate that EMLoC achieves performance on par with or superior to naive long-context approaches. Our results highlight the potential of EMLoC as a groundbreaking framework for efficient and flexible adaptation of multi-modal models in resource-constrained environments. Codes are publicly available at https://github.com/Zehong-Ma/EMLoC.

Authors:Sirui Chen, Shuqin Ma, Shu Yu, Hanwang Zhang, Shengjie Zhao, Chaochao Lu
Title: Exploring Consciousness in LLMs: A Systematic Survey of Theories, Implementations, and Frontier Risks
Abstract:
Consciousness stands as one of the most profound and distinguishing features of the human mind, fundamentally shaping our understanding of existence and agency. As large language models (LLMs) develop at an unprecedented pace, questions concerning intelligence and consciousness have become increasingly significant. However, discourse on LLM consciousness remains largely unexplored territory. In this paper, we first clarify frequently conflated terminologies (e.g., LLM consciousness and LLM awareness). Then, we systematically organize and synthesize existing research on LLM consciousness from both theoretical and empirical perspectives. Furthermore, we highlight potential frontier risks that conscious LLMs might introduce. Finally, we discuss current challenges and outline future directions in this emerging field. The references discussed in this paper are organized at https://github.com/OpenCausaLab/Awesome-LLM-Consciousness.

Authors:Zaid Alyafeai, Maged S. Al-Shaibani, Bernard Ghanem
Title: MOLE: Metadata Extraction and Validation in Scientific Papers Using LLMs
Abstract:
Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community.

Authors:Sajjad Shahabodini, Mobina Mansoori, Farnoush Bayatmakou, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi
Title: The Missing Point in Vision Transformers for Universal Image Segmentation
Abstract:
Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.

Authors:Li Fang, Hao Zhu, Longlong Chen, Fei Hu, Long Ye, Zhan Ma
Title: Depth-Guided Bundle Sampling for Efficient Generalizable Neural Radiance Field Reconstruction
Abstract:
Recent advancements in generalizable novel view synthesis have achieved impressive quality through interpolation between nearby views. However, rendering high-resolution images remains computationally intensive due to the need for dense sampling of all rays. Recognizing that natural scenes are typically piecewise smooth and sampling all rays is often redundant, we propose a novel depth-guided bundle sampling strategy to accelerate rendering. By grouping adjacent rays into a bundle and sampling them collectively, a shared representation is generated for decoding all rays within the bundle. To further optimize efficiency, our adaptive sampling strategy dynamically allocates samples based on depth confidence, concentrating more samples in complex regions while reducing them in smoother areas. When applied to ENeRF, our method achieves up to a 1.27 dB PSNR improvement and a 47% increase in FPS on the DTU dataset. Extensive experiments on synthetic and real-world datasets demonstrate state-of-the-art rendering quality and up to 2x faster rendering compared to existing generalizable methods. Code is available at https://github.com/KLMAV-CUC/GDB-NeRF.

Authors:Mobina Mansoori, Sajjad Shahabodini, Farnoush Bayatmakou, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi
Title: Advancements in Medical Image Classification through Fine-Tuning Natural Domain Foundation Models
Abstract:
Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks. These models have shown consistently improved results with the introduction of new methods. It is crucial to analyze how these trends impact the medical field and determine whether these advancements can drive meaningful change. This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification. We explore their effectiveness on datasets including CBIS-DDSM for mammography, ISIC2019 for skin lesions, APTOS2019 for diabetic retinopathy, and CHEXPERT for chest radiographs. By fine-tuning these models and evaluating their configurations, we aim to understand the potential of these advancements in medical image classification. The results indicate that these advanced models significantly enhance classification outcomes, demonstrating robust performance despite limited labeled data. Based on our results, AIMv2, DINOv2, and SAM2 models outperformed others, demonstrating that progress in natural domain training has positively impacted the medical domain and improved classification outcomes. Our code is publicly available at: https://github.com/sajjad-sh33/Medical-Transfer-Learning.

Authors:Patara Trirat, Wonyong Jeong, Sung Ju Hwang
Title: Agentic Predictor: Performance Prediction for Agentic Workflows via Multi-View Encoding
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but optimizing LLM-based agentic systems remains challenging due to the vast search space of agent configurations, prompting strategies, and communication patterns. Existing approaches often rely on heuristic-based tuning or exhaustive evaluation, which can be computationally expensive and suboptimal. This paper proposes Agentic Predictor, a lightweight predictor for efficient agentic workflow evaluation. Agentic Predictor is equipped with a multi-view workflow encoding technique that leverages multi-view representation learning of agentic systems by incorporating code architecture, textual prompts, and interaction graph features. To achieve high predictive accuracy while significantly reducing the number of required workflow evaluations for training a predictor, Agentic Predictor employs cross-domain unsupervised pretraining. By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations for a given task, significantly reducing the need for expensive trial-and-error evaluations. Experiments on a carefully curated benchmark spanning three domains show that our predictor outperforms state-of-the-art methods in both predictive accuracy and workflow utility, highlighting the potential of performance predictors in streamlining the design of LLM-based agentic workflows.

Authors:Ruihan Gong, Yue Liu, Wenjie Qu, Mingzhe Du, Yufei He, Yingwei Ma, Yulin Chen, Xiang Liu, Yi Wen, Xinfeng Li, Ruidong Wang, Xinzhong Zhu, Bryan Hooi, Jiaheng Zhang
Title: Efficient Reasoning via Chain of Unconscious Thought
Abstract:
Large Reasoning Models (LRMs) achieve promising performance but compromise token efficiency due to verbose reasoning processes. Unconscious Thought Theory (UTT) posits that complex problems can be solved more efficiently through internalized cognitive processes. Inspired by UTT, we propose a new reasoning paradigm, termed Chain of Unconscious Thought (CoUT), to improve the token efficiency of LRMs by guiding them to mimic human unconscious thought and internalize reasoning processes. Concretely, we first prompt the model to internalize the reasoning by thinking in the hidden layer. Then, we design a bag of token-efficient strategies to further help models reduce unnecessary tokens yet preserve the performance. Our work reveals that models may possess beneficial unconscious thought, enabling improved efficiency without sacrificing performance. Extensive experiments demonstrate the effectiveness of CoUT. Remarkably, it surpasses CoT by reducing token usage by 47.62% while maintaining comparable accuracy, as shown in Figure 1. The code of CoUT is available at this link: https://github.com/Rohan-GRH/CoUT

Authors:Ruisheng Cao, Hanchong Zhang, Tiancheng Huang, Zhangyi Kang, Yuxin Zhang, Liangtai Sun, Hanqi Li, Yuxun Miao, Shuai Fan, Lu Chen, Kai Yu
Title: NeuSym-RAG: Hybrid Neural Symbolic Retrieval with Multiview Structuring for PDF Question Answering
Abstract:
The increasing number of academic papers poses significant challenges for researchers to efficiently acquire key details. While retrieval augmented generation (RAG) shows great promise in large language model (LLM) based automated question answering, previous works often isolate neural and symbolic retrieval despite their complementary strengths. Moreover, conventional single-view chunking neglects the rich structure and layout of PDFs, e.g., sections and tables. In this work, we propose NeuSym-RAG, a hybrid neural symbolic retrieval framework which combines both paradigms in an interactive process. By leveraging multi-view chunking and schema-based parsing, NeuSym-RAG organizes semi-structured PDF content into both the relational database and vectorstore, enabling LLM agents to iteratively gather context until sufficient to generate answers. Experiments on three full PDF-based QA datasets, including a self-annotated one AIRQA-REAL, show that NeuSym-RAG stably defeats both the vector-based RAG and various structured baselines, highlighting its capacity to unify both retrieval schemes and utilize multiple views. Code and data are publicly available at https://github.com/X-LANCE/NeuSym-RAG.

Authors:Yang Zhang, Yu Yu, Bo Tang, Yu Zhu, Chuxiong Sun, Wenqiang Wei, Jie Hu, Zipeng Xie, Zhiyu Li, Feiyu Xiong, Edward Chung
Title: Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models
Abstract:
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs. The source code and implementation details are publicly available at https://github.com/IAAR-Shanghai/MARA, and the trained models are released at https://huggingface.co/IAAR-Shanghai/MARA_AGENTS.

Authors:Jue Gong, Tingyu Yang, Jingkai Wang, Zheng Chen, Xing Liu, Hong Gu, Yulun Zhang, Xiaokang Yang
Title: HAODiff: Human-Aware One-Step Diffusion via Dual-Prompt Guidance
Abstract:
Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.

Authors:Yifan Wu, Jingze Shi, Bingheng Wu, Jiayi Zhang, Xiaotian Lin, Nan Tang, Yuyu Luo
Title: Concise Reasoning, Big Gains: Pruning Long Reasoning Trace with Difficulty-Aware Prompting
Abstract:
Existing chain-of-thought (CoT) distillation methods can effectively transfer reasoning abilities to base models but suffer from two major limitations: excessive verbosity of reasoning traces and inadequate adaptability to problem difficulty. Long reasoning traces significantly increase inference costs, and uniform-length solutions prevent base models from learning adaptive reasoning strategies. To address these issues, we propose a difficulty-aware prompting (DAP) method to dynamically shorten reasoning traces without performance loss. In our approach, a large teacher model first judges each problem's difficulty and then rewrites its reasoning traces to an appropriate shorter length, yielding concise yet complete reasoning traces. Leveraging the DAP pipeline, we curate a distilled dataset called LiteCoT consisting of 100K concise reasoning examples, with solutions averaging only 720 tokens (an order of magnitude shorter than typical CoTs). Using LiteCoT, we distilled a new family of reasoning models called Liter (1.5B, 7B, and 32B) based on the Qwen2.5 architecture. Experiments show that a student model fine-tuned on just 100K of these difficulty-pruned CoT samples outperforms a model distilled on 800K original Long CoT samples, while significantly reducing training and inference costs. Our method also generalizes well: across 11 diverse benchmarks, the shorter difficulty-aware CoTs achieve equal or better accuracy than Long chains, using far fewer tokens. For example, on the challenging AIME24 exam, our approach reaches $74.2\%$ Pass@1 using only about 5K inference tokens, surpassing other methods that consume many more tokens. Our code and data are available at https://github.com/Evanwu1125/LiteCoT.

Authors:Tej Deep Pala, Panshul Sharma, Amir Zadeh, Chuan Li, Soujanya Poria
Title: Error Typing for Smarter Rewards: Improving Process Reward Models with Error-Aware Hierarchical Supervision
Abstract:
Large Language Models (LLMs) are prone to hallucination, especially during multi-hop and reasoning-intensive tasks such as mathematical problem solving. While Outcome Reward Models verify only final answers, Process Reward Models (PRMs) score each intermediate step to steer generation toward coherent solutions. We introduce PathFinder-PRM, a novel hierarchical, error-aware discriminative PRM that first classifies math and consistency errors at each step, then combines these fine-grained signals to estimate step correctness. To train PathFinder-PRM, we construct a 400K-sample dataset by enriching the human-annotated PRM800K corpus and RLHFlow Mistral traces with three-dimensional step-level labels. On PRMBench, PathFinder-PRM achieves a new state-of-the-art PRMScore of 67.7, outperforming the prior best (65.5) while using 3 times less data. When applied to reward guided greedy search, our model yields prm@8 48.3, a +1.5 point gain over the strongest baseline. These results demonstrate that decoupled error detection and reward estimation not only boost fine-grained error detection but also substantially improve end-to-end, reward-guided mathematical reasoning with greater data efficiency.

Authors:Junming Liu, Yanting Gao, Siyuan Meng, Yifei Sun, Aoqi Wu, Yufei Jin, Yirong Chen, Ding Wang, Guosun Zeng
Title: Mosaic: Data-Free Knowledge Distillation via Mixture-of-Experts for Heterogeneous Distributed Environments
Abstract:
Federated Learning (FL) is a decentralized machine learning paradigm that enables clients to collaboratively train models while preserving data privacy. However, the coexistence of model and data heterogeneity gives rise to inconsistent representations and divergent optimization dynamics across clients, ultimately hindering robust global performance. To transcend these challenges, we propose Mosaic, a novel data-free knowledge distillation framework tailored for heterogeneous distributed environments. Mosaic first trains local generative models to approximate each client's personalized distribution, enabling synthetic data generation that safeguards privacy through strict separation from real data. Subsequently, Mosaic forms a Mixture-of-Experts (MoE) from client models based on their specialized knowledge, and distills it into a global model using the generated data. To further enhance the MoE architecture, Mosaic integrates expert predictions via a lightweight meta model trained on a few representative prototypes. Extensive experiments on standard image classification benchmarks demonstrate that Mosaic consistently outperforms state-of-the-art approaches under both model and data heterogeneity. The source code has been published at https://github.com/Wings-Of-Disaster/Mosaic.

Authors:Wenchao Sun, Xuewu Lin, Keyu Chen, Zixiang Pei, Yining Shi, Chuang Zhang, Sifa Zheng
Title: DriveCamSim: Generalizable Camera Simulation via Explicit Camera Modeling for Autonomous Driving
Abstract:
Camera sensor simulation serves as a critical role for autonomous driving (AD), e.g. evaluating vision-based AD algorithms. While existing approaches have leveraged generative models for controllable image/video generation, they remain constrained to generating multi-view video sequences with fixed camera viewpoints and video frequency, significantly limiting their downstream applications. To address this, we present a generalizable camera simulation framework DriveCamSim, whose core innovation lies in the proposed Explicit Camera Modeling (ECM) mechanism. Instead of implicit interaction through vanilla attention, ECM establishes explicit pixel-wise correspondences across multi-view and multi-frame dimensions, decoupling the model from overfitting to the specific camera configurations (intrinsic/extrinsic parameters, number of views) and temporal sampling rates presented in the training data. For controllable generation, we identify the issue of information loss inherent in existing conditional encoding and injection pipelines, proposing an information-preserving control mechanism. This control mechanism not only improves conditional controllability, but also can be extended to be identity-aware to enhance temporal consistency in foreground object rendering. With above designs, our model demonstrates superior performance in both visual quality and controllability, as well as generalization capability across spatial-level (camera parameters variations) and temporal-level (video frame rate variations), enabling flexible user-customizable camera simulation tailored to diverse application scenarios. Code will be avaliable at https://github.com/swc-17/DriveCamSim for facilitating future research.

Authors:Xinrui Wang, Shao-yuan Li, Jiaqiang Zhang, Songcan Chen
Title: Cut out and Replay: A Simple yet Versatile Strategy for Multi-Label Online Continual Learning
Abstract:
Multi-Label Online Continual Learning (MOCL) requires models to learn continuously from endless multi-label data streams, facing complex challenges including persistent catastrophic forgetting, potential missing labels, and uncontrollable imbalanced class distributions. While existing MOCL methods attempt to address these challenges through various techniques, \textit{they all overlook label-specific region identifying and feature learning} - a fundamental solution rooted in multi-label learning but challenging to achieve in the online setting with incremental and partial supervision. To this end, we first leverage the inherent structural information of input data to evaluate and verify the innate localization capability of different pre-trained models. Then, we propose CUTER (CUT-out-and-Experience-Replay), a simple yet versatile strategy that provides fine-grained supervision signals by further identifying, strengthening and cutting out label-specific regions for efficient experience replay. It not only enables models to simultaneously address catastrophic forgetting, missing labels, and class imbalance challenges, but also serves as an orthogonal solution that seamlessly integrates with existing approaches. Extensive experiments on multiple multi-label image benchmarks demonstrate the superiority of our proposed method. The code is available at \href{https://github.com/wxr99/Cut-Replay}{https://github.com/wxr99/Cut-Replay}

Authors:Tingjia Shen, Hao Wang, Chuan Qin, Ruijun Sun, Yang Song, Defu Lian, Hengshu Zhu, Enhong Chen
Title: GenKI: Enhancing Open-Domain Question Answering with Knowledge Integration and Controllable Generation in Large Language Models
Abstract:
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI

Authors:Tingjia Shen, Hao Wang, Chuan Qin, Ruijun Sun, Yang Song, Defu Lian, Hengshu Zhu, Enhong Chen
Title: Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation on Large Language Models
Abstract:
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI

Authors:Piyush Tiwary, Kinjawl Bhattacharyya, Prathosh A. P
Title: LangDAug: Langevin Data Augmentation for Multi-Source Domain Generalization in Medical Image Segmentation
Abstract:
Medical image segmentation models often struggle to generalize across different domains due to various reasons. Domain Generalization (DG) methods overcome this either through representation learning or data augmentation (DAug). While representation learning methods seek domain-invariant features, they often rely on ad-hoc techniques and lack formal guarantees. DAug methods, which enrich model representations through synthetic samples, have shown comparable or superior performance to representation learning approaches. We propose LangDAug, a novel $\textbf{Lang}$evin $\textbf{D}$ata $\textbf{Aug}$mentation for multi-source domain generalization in 2D medical image segmentation. LangDAug leverages Energy-Based Models (EBMs) trained via contrastive divergence to traverse between source domains, generating intermediate samples through Langevin dynamics. Theoretical analysis shows that LangDAug induces a regularization effect, and for GLMs, it upper-bounds the Rademacher complexity by the intrinsic dimensionality of the data manifold. Through extensive experiments on Fundus segmentation and 2D MRI prostate segmentation benchmarks, we show that LangDAug outperforms state-of-the-art domain generalization methods and effectively complements existing domain-randomization approaches. The codebase for our method is available at https://github.com/backpropagator/LangDAug.

Authors:Xiaochuan Liu, Ruihua Song, Xiting Wang, Xu Chen
Title: Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation
Abstract:
Automatic related work generation (RWG) can save people's time and effort when writing a draft of related work section (RWS) for further revision. However, existing methods for RWG always suffer from shallow comprehension due to taking the limited portions of references papers as input and isolated explanation for each reference due to ineffective capturing the relationships among them. To address these issues, we focus on full-text-based RWG task and propose a novel multi-agent framework. Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory. To better capture the relationships among references, we also propose two graph-aware strategies for selector, enabling to optimize the reading order with constrains of the graph structure. Extensive experiments demonstrate that our framework consistently improves performance across three base models and various input configurations. The graph-aware selectors outperform alternative selectors, achieving state-of-the-art results. The code and data are available at https://github.com/1190200817/Full_Text_RWG.

Authors:Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding, Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong Weng, Aili Chen, Shiqi Chen, Yunan Huang, Mozhi Zhang, Pengyu Zhao, Junjie Yan, Junxian He
Title: SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond
Abstract:
Recent advances such as OpenAI-o1 and DeepSeek R1 have demonstrated the potential of Reinforcement Learning (RL) to enhance reasoning abilities in Large Language Models (LLMs). While open-source replication efforts have primarily focused on mathematical and coding domains, methods and resources for developing general reasoning capabilities remain underexplored. This gap is partly due to the challenge of collecting diverse and verifiable reasoning data suitable for RL. We hypothesize that logical reasoning is critical for developing general reasoning capabilities, as logic forms a fundamental building block of reasoning. In this work, we present SynLogic, a data synthesis framework and dataset that generates diverse logical reasoning data at scale, encompassing 35 diverse logical reasoning tasks. The SynLogic approach enables controlled synthesis of data with adjustable difficulty and quantity. Importantly, all examples can be verified by simple rules, making them ideally suited for RL with verifiable rewards. In our experiments, we validate the effectiveness of RL training on the SynLogic dataset based on 7B and 32B models. SynLogic leads to state-of-the-art logical reasoning performance among open-source datasets, surpassing DeepSeek-R1-Distill-Qwen-32B by 6 points on BBEH. Furthermore, mixing SynLogic data with mathematical and coding tasks improves the training efficiency of these domains and significantly enhances reasoning generalization. Notably, our mixed training model outperforms DeepSeek-R1-Zero-Qwen-32B across multiple benchmarks. These findings position SynLogic as a valuable resource for advancing the broader reasoning capabilities of LLMs. We open-source both the data synthesis pipeline and the SynLogic dataset at https://github.com/MiniMax-AI/SynLogic.

Authors:Zihong Zhang, Liqi He, Zuchao Li, Lefei Zhang, Hai Zhao, Bo Du
Title: Segment First or Comprehend First? Explore the Limit of Unsupervised Word Segmentation with Large Language Models
Abstract:
Word segmentation stands as a cornerstone of Natural Language Processing (NLP). Based on the concept of "comprehend first, segment later", we propose a new framework to explore the limit of unsupervised word segmentation with Large Language Models (LLMs) and evaluate the semantic understanding capabilities of LLMs based on word segmentation. We employ current mainstream LLMs to perform word segmentation across multiple languages to assess LLMs' "comprehension". Our findings reveal that LLMs are capable of following simple prompts to segment raw text into words. There is a trend suggesting that models with more parameters tend to perform better on multiple languages. Additionally, we introduce a novel unsupervised method, termed LLACA ($\textbf{L}$arge $\textbf{L}$anguage Model-Inspired $\textbf{A}$ho-$\textbf{C}$orasick $\textbf{A}$utomaton). Leveraging the advanced pattern recognition capabilities of Aho-Corasick automata, LLACA innovatively combines these with the deep insights of well-pretrained LLMs. This approach not only enables the construction of a dynamic $n$-gram model that adjusts based on contextual information but also integrates the nuanced understanding of LLMs, offering significant improvements over traditional methods. Our source code is available at https://github.com/hkr04/LLACA

Authors:Yichun Feng, Jiawei Wang, Lu Zhou, Zhen Lei, Yixue Li
Title: DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue
Abstract:
Large language models (LLMs) have demonstrated excellent capabilities in the field of biomedical question answering, but their application in real-world clinical consultations still faces core challenges. Single-round consultation systems require patients to describe all symptoms upfront, leading to vague diagnosis with unclear complaints. Traditional multi-turn dialogue models, constrained by static supervised learning, lack flexibility and fail to intelligently extract key clinical information. To address these limitations, we propose \Ours{}, a reinforcement learning (RL)-based multi-agent collaborative framework that models medical consultations as a dynamic decision-making process under uncertainty. The doctor agent continuously optimizes its questioning strategy within the RL framework through multi-turn interactions with the patient agent, dynamically adjusting its information-gathering path based on comprehensive rewards from the Consultation Evaluator. This RL fine-tuning mechanism enables LLMs to autonomously develop interaction strategies aligned with clinical reasoning logic, rather than superficially imitating patterns in existing dialogue data. Notably, we constructed MTMedDialog, the first English multi-turn medical consultation dataset capable of simulating patient interactions. Experiments demonstrate that \Ours{} outperforms existing models in both multi-turn reasoning capability and final diagnostic performance. This approach shows immense practical value by reducing misdiagnosis risks in time-pressured settings, freeing clinicians for complex cases, and pioneering a strategy to optimize medical resource allocation and alleviate workforce shortages. Code and data are available at https://github.com/JarvisUSTC/DoctorAgent-RL

Authors:Silin Li, Yuhang Guo, Jiashu Yao, Zeming Liu, Haifeng Wang
Title: HomeBench: Evaluating LLMs in Smart Homes with Valid and Invalid Instructions Across Single and Multiple Devices
Abstract:
Large language models (LLMs) have the potential to revolutionize smart home assistants by enhancing their ability to accurately understand user needs and respond appropriately, which is extremely beneficial for building a smarter home environment. While recent studies have explored integrating LLMs into smart home systems, they primarily focus on handling straightforward, valid single-device operation instructions. However, real-world scenarios are far more complex and often involve users issuing invalid instructions or controlling multiple devices simultaneously. These have two main challenges: LLMs must accurately identify and rectify errors in user instructions and execute multiple user instructions perfectly. To address these challenges and advance the development of LLM-based smart home assistants, we introduce HomeBench, the first smart home dataset with valid and invalid instructions across single and multiple devices in this paper. We have experimental results on 13 distinct LLMs; e.g., GPT-4o achieves only a 0.0% success rate in the scenario of invalid multi-device instructions, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning, retrieval-augmented generation, and fine-tuning. Our code and dataset are publicly available at https://github.com/BITHLP/HomeBench.

Authors:Jiawen Chen, Qi Shao, Duxin Chen, Wenwu Yu
Title: Decoupling Spatio-Temporal Prediction: When Lightweight Large Models Meet Adaptive Hypergraphs
Abstract:
Spatio-temporal prediction is a pivotal task with broad applications in traffic management, climate monitoring, energy scheduling, etc. However, existing methodologies often struggle to balance model expressiveness and computational efficiency, especially when scaling to large real-world datasets. To tackle these challenges, we propose STH-SepNet (Spatio-Temporal Hypergraph Separation Networks), a novel framework that decouples temporal and spatial modeling to enhance both efficiency and precision. Therein, the temporal dimension is modeled using lightweight large language models, which effectively capture low-rank temporal dynamics. Concurrently, the spatial dimension is addressed through an adaptive hypergraph neural network, which dynamically constructs hyperedges to model intricate, higher-order interactions. A carefully designed gating mechanism is integrated to seamlessly fuse temporal and spatial representations. By leveraging the fundamental principles of low-rank temporal dynamics and spatial interactions, STH-SepNet offers a pragmatic and scalable solution for spatio-temporal prediction in real-world applications. Extensive experiments on large-scale real-world datasets across multiple benchmarks demonstrate the effectiveness of STH-SepNet in boosting predictive performance while maintaining computational efficiency. This work may provide a promising lightweight framework for spatio-temporal prediction, aiming to reduce computational demands and while enhancing predictive performance. Our code is avaliable at https://github.com/SEU-WENJIA/ST-SepNet-Lightweight-LLMs-Meet-Adaptive-Hypergraphs.

Authors:Ruolin Shen, Xiaozhong Ji, Kai WU, Jiangning Zhang, Yijun He, HaiHua Yang, Xiaobin Hu, Xiaoyu Sun
Title: Align and Surpass Human Camouflaged Perception: Visual Refocus Reinforcement Fine-Tuning
Abstract:
Current multi-modal models exhibit a notable misalignment with the human visual system when identifying objects that are visually assimilated into the background. Our observations reveal that these multi-modal models cannot distinguish concealed objects, demonstrating an inability to emulate human cognitive processes which effectively utilize foreground-background similarity principles for visual analysis. To analyze this hidden human-model visual thinking discrepancy, we build a visual system that mimicks human visual camouflaged perception to progressively and iteratively `refocus' visual concealed content. The refocus is a progressive guidance mechanism enabling models to logically localize objects in visual images through stepwise reasoning. The localization process of concealed objects requires hierarchical attention shifting with dynamic adjustment and refinement of prior cognitive knowledge. In this paper, we propose a visual refocus reinforcement framework via the policy optimization algorithm to encourage multi-modal models to think and refocus more before answering, and achieve excellent reasoning abilities to align and even surpass human camouflaged perception systems. Our extensive experiments on camouflaged perception successfully demonstrate the emergence of refocus visual phenomena, characterized by multiple reasoning tokens and dynamic adjustment of the detection box. Besides, experimental results on both camouflaged object classification and detection tasks exhibit significantly superior performance compared to Supervised Fine-Tuning (SFT) baselines.

Authors:Ho Hin Lee, Quan Liu, Shunxing Bao, Yuankai Huo, Bennett A. Landman
Title: Rep3D: Re-parameterize Large 3D Kernels with Low-Rank Receptive Modeling for Medical Imaging
Abstract:
In contrast to vision transformers, which model long-range dependencies through global self-attention, large kernel convolutions provide a more efficient and scalable alternative, particularly in high-resolution 3D volumetric settings. However, naively increasing kernel size often leads to optimization instability and degradation in performance. Motivated by the spatial bias observed in effective receptive fields (ERFs), we hypothesize that different kernel elements converge at variable rates during training. To support this, we derive a theoretical connection between element-wise gradients and first-order optimization, showing that structurally re-parameterized convolution blocks inherently induce spatially varying learning rates. Building on this insight, we introduce Rep3D, a 3D convolutional framework that incorporates a learnable spatial prior into large kernel training. A lightweight two-stage modulation network generates a receptive-biased scaling mask, adaptively re-weighting kernel updates and enabling local-to-global convergence behavior. Rep3D adopts a plain encoder design with large depthwise convolutions, avoiding the architectural complexity of multi-branch compositions. We evaluate Rep3D on five challenging 3D segmentation benchmarks and demonstrate consistent improvements over state-of-the-art baselines, including transformer-based and fixed-prior re-parameterization methods. By unifying spatial inductive bias with optimization-aware learning, Rep3D offers an interpretable, and scalable solution for 3D medical image analysis. The source code is publicly available at https://github.com/leeh43/Rep3D.

Authors:Jeongsoo Choi, Zhikang Niu, Ji-Hoon Kim, Chunhui Wang, Joon Son Chung, Xie Chen
Title: Accelerating Diffusion-based Text-to-Speech Model Training with Dual Modality Alignment
Abstract:
The goal of this paper is to optimize the training process of diffusion-based text-to-speech models. While recent studies have achieved remarkable advancements, their training demands substantial time and computational costs, largely due to the implicit guidance of diffusion models in learning complex intermediate representations. To address this, we propose A-DMA, an effective strategy for Accelerating training with Dual Modality Alignment. Our method introduces a novel alignment pipeline leveraging both text and speech modalities: text-guided alignment, which incorporates contextual representations, and speech-guided alignment, which refines semantic representations. By aligning hidden states with discriminative features, our training scheme reduces the reliance on diffusion models for learning complex representations. Extensive experiments demonstrate that A-DMA doubles the convergence speed while achieving superior performance over baselines. Code and demo samples are available at: https://github.com/ZhikangNiu/A-DMA

Authors:Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, Dawn Song
Title: Learning to Reason without External Rewards
Abstract:
Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data. We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal. Intuitor replaces external rewards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling fully unsupervised learning. Experiments demonstrate that Intuitor matches GRPO's performance on mathematical benchmarks while achieving superior generalization to out-of-domain tasks like code generation, without requiring gold solutions or test cases. Our findings show that intrinsic model signals can drive effective learning across domains, offering a scalable alternative to RLVR for autonomous AI systems where verifiable rewards are unavailable. Code is available at https://github.com/sunblaze-ucb/Intuitor

Authors:Hu Xiaobin, Liang Yujie, Luo Donghao, Peng Xu, Zhang Jiangning, Zhu Junwei, Wang Chengjie, Fu Yanwei
Title: VTBench: Comprehensive Benchmark Suite Towards Real-World Virtual Try-on Models
Abstract:
While virtual try-on has achieved significant progress, evaluating these models towards real-world scenarios remains a challenge. A comprehensive benchmark is essential for three key reasons:(1) Current metrics inadequately reflect human perception, particularly in unpaired try-on settings;(2)Most existing test sets are limited to indoor scenarios, lacking complexity for real-world evaluation; and (3) An ideal system should guide future advancements in virtual try-on generation. To address these needs, we introduce VTBench, a hierarchical benchmark suite that systematically decomposes virtual image try-on into hierarchical, disentangled dimensions, each equipped with tailored test sets and evaluation criteria. VTBench exhibits three key advantages:1) Multi-Dimensional Evaluation Framework: The benchmark encompasses five critical dimensions for virtual try-on generation (e.g., overall image quality, texture preservation, complex background consistency, cross-category size adaptability, and hand-occlusion handling). Granular evaluation metrics of corresponding test sets pinpoint model capabilities and limitations across diverse, challenging scenarios.2) Human Alignment: Human preference annotations are provided for each test set, ensuring the benchmark's alignment with perceptual quality across all evaluation dimensions. (3) Valuable Insights: Beyond standard indoor settings, we analyze model performance variations across dimensions and investigate the disparity between indoor and real-world try-on scenarios. To foster the field of virtual try-on towards challenging real-world scenario, VTBench will be open-sourced, including all test sets, evaluation protocols, generated results, and human annotations.

Authors:Ying Xiao, Jie Huang, Ruijuan He, Jing Xiao, Mohammad Reza Mousavi, Yepang Liu, Kezhi Li, Zhenpeng Chen, Jie M. Zhang
Title: AMQA: An Adversarial Dataset for Benchmarking Bias of LLMs in Medicine and Healthcare
Abstract:
Large language models (LLMs) are reaching expert-level accuracy on medical diagnosis questions, yet their mistakes and the biases behind them pose life-critical risks. Bias linked to race, sex, and socioeconomic status is already well known, but a consistent and automatic testbed for measuring it is missing. To fill this gap, this paper presents AMQA -- an Adversarial Medical Question-Answering dataset -- built for automated, large-scale bias evaluation of LLMs in medical QA. AMQA includes 4,806 medical QA pairs sourced from the United States Medical Licensing Examination (USMLE) dataset, generated using a multi-agent framework to create diverse adversarial descriptions and question pairs. Using AMQA, we benchmark five representative LLMs and find surprisingly substantial disparities: even GPT-4.1, the least biased model tested, answers privileged-group questions over 10 percentage points more accurately than unprivileged ones. Compared with the existing benchmark CPV, AMQA reveals 15% larger accuracy gaps on average between privileged and unprivileged groups. Our dataset and code are publicly available at https://github.com/XY-Showing/AMQA to support reproducible research and advance trustworthy, bias-aware medical AI.

Authors:Yuan Feng, Yukun Cao, Hairu Wang, Xike Xie, S Kevin Zhou
Title: Lego Sketch: A Scalable Memory-augmented Neural Network for Sketching Data Streams
Abstract:
Sketches, probabilistic structures for estimating item frequencies in infinite data streams with limited space, are widely used across various domains. Recent studies have shifted the focus from handcrafted sketches to neural sketches, leveraging memory-augmented neural networks (MANNs) to enhance the streaming compression capabilities and achieve better space-accuracy trade-offs.However, existing neural sketches struggle to scale across different data domains and space budgets due to inflexible MANN configurations. In this paper, we introduce a scalable MANN architecture that brings to life the {\it Lego sketch}, a novel sketch with superior scalability and accuracy. Much like assembling creations with modular Lego bricks, the Lego sketch dynamically coordinates multiple memory bricks to adapt to various space budgets and diverse data domains. Our theoretical analysis guarantees its high scalability and provides the first error bound for neural sketch. Furthermore, extensive experimental evaluations demonstrate that the Lego sketch exhibits superior space-accuracy trade-offs, outperforming existing handcrafted and neural sketches. Our code is available at https://github.com/FFY0/LegoSketch_ICML.

Authors:Jianan Lou, Rong Zhang
Title: LF-GNSS: Towards More Robust Satellite Positioning with a Hard Example Mining Enhanced Learning-Filtering Deep Fusion Framework
Abstract:
Global Navigation Satellite System (GNSS) is essential for autonomous driving systems, unmanned vehicles, and various location-based technologies, as it provides the precise geospatial information necessary for navigation and situational awareness. However, its performance is often degraded by Non-Line-Of-Sight (NLOS) and multipath effects, especially in urban environments. Recently, Artificial Intelligence (AI) has been driving innovation across numerous industries, introducing novel solutions to mitigate the challenges in satellite positioning. This paper presents a learning-filtering deep fusion framework for satellite positioning, termed LF-GNSS. The framework utilizes deep learning networks to intelligently analyze the signal characteristics of satellite observations, enabling the adaptive construction of observation noise covariance matrices and compensated innovation vectors for Kalman filter input. A dynamic hard example mining technique is incorporated to enhance model robustness by prioritizing challenging satellite signals during training. Additionally, we introduce a novel feature representation based on Dilution of Precision (DOP) contributions, which helps to more effectively characterize the signal quality of individual satellites and improve measurement weighting. LF-GNSS has been validated on both public and private datasets, demonstrating superior positioning accuracy compared to traditional methods and other learning-based solutions. To encourage further integration of AI and GNSS research, we will open-source the code at https://github.com/GarlanLou/LF-GNSS, and release a collection of satellite positioning datasets for urban scenarios at https://github.com/GarlanLou/LF-GNSS-Dataset.

Authors:Derong Xu, Yi Wen, Pengyue Jia, Yingyi Zhang, wenlin zhang, Yichao Wang, Huifeng Guo, Ruiming Tang, Xiangyu Zhao, Enhong Chen, Tong Xu
Title: From Single to Multi-Granularity: Toward Long-Term Memory Association and Selection of Conversational Agents
Abstract:
Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings. \footnote{https://github.com/quqxui/MemGAS}

Authors:Ali Bahri, Moslem Yazdanpanah, Sahar Dastani, Mehrdad Noori, Gustavo Adolfo Vargas Hakim, David Osowiechi, Farzad Beizaee, Ismail Ben Ayed, Christian Desrosiers
Title: SMART-PC: Skeletal Model Adaptation for Robust Test-Time Training in Point Clouds
Abstract:
Test-Time Training (TTT) has emerged as a promising solution to address distribution shifts in 3D point cloud classification. However, existing methods often rely on computationally expensive backpropagation during adaptation, limiting their applicability in real-world, time-sensitive scenarios. In this paper, we introduce SMART-PC, a skeleton-based framework that enhances resilience to corruptions by leveraging the geometric structure of 3D point clouds. During pre-training, our method predicts skeletal representations, enabling the model to extract robust and meaningful geometric features that are less sensitive to corruptions, thereby improving adaptability to test-time distribution shifts. Unlike prior approaches, SMART-PC achieves real-time adaptation by eliminating backpropagation and updating only BatchNorm statistics, resulting in a lightweight and efficient framework capable of achieving high frame-per-second rates while maintaining superior classification performance. Extensive experiments on benchmark datasets, including ModelNet40-C, ShapeNet-C, and ScanObjectNN-C, demonstrate that SMART-PC achieves state-of-the-art results, outperforming existing methods such as MATE in terms of both accuracy and computational efficiency. The implementation is available at: https://github.com/AliBahri94/SMART-PC.

Authors:Yiyun Zhou, Zheqi Lv, Shengyu Zhang, Jingyuan Chen
Title: Cuff-KT: Tackling Learners' Real-time Learning Pattern Adjustment via Tuning-Free Knowledge State Guided Model Updating
Abstract:
Knowledge Tracing (KT) is a core component of Intelligent Tutoring Systems, modeling learners' knowledge state to predict future performance and provide personalized learning support. Traditional KT models assume that learners' learning abilities remain relatively stable over short periods or change in predictable ways based on prior performance. However, in reality, learners' abilities change irregularly due to factors like cognitive fatigue, motivation, and external stress -- a task introduced, which we refer to as Real-time Learning Pattern Adjustment (RLPA). Existing KT models, when faced with RLPA, lack sufficient adaptability, because they fail to timely account for the dynamic nature of different learners' evolving learning patterns. Current strategies for enhancing adaptability rely on retraining, which leads to significant overfitting and high time overhead issues. To address this, we propose Cuff-KT, comprising a controller and a generator. The controller assigns value scores to learners, while the generator generates personalized parameters for selected learners. Cuff-KT controllably adapts to data changes fast and flexibly without fine-tuning. Experiments on five datasets from different subjects demonstrate that Cuff-KT significantly improves the performance of five KT models with different structures under intra- and inter-learner shifts, with an average relative increase in AUC of 10% and 4%, respectively, at a negligible time cost, effectively tackling RLPA task. Our code and datasets are fully available at https://github.com/zyy-2001/Cuff-KT.

Authors:Jintao Tong, Wenwei Jin, Pengda Qin, Anqi Li, Yixiong Zou, Yuhong Li, Yuhua Li, Ruixuan Li
Title: FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models
Abstract:
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut

Authors:Yejin Lee, Joonghyuk Hahn, Hyeseon Ahn, Yo-Sub Han
Title: AmpleHate: Amplifying the Attention for Versatile Implicit Hate Detection
Abstract:
Implicit hate speech detection is challenging due to its subtlety and reliance on contextual interpretation rather than explicit offensive words. Current approaches rely on contrastive learning, which are shown to be effective on distinguishing hate and non-hate sentences. Humans, however, detect implicit hate speech by first identifying specific targets within the text and subsequently interpreting how these target relate to their surrounding context. Motivated by this reasoning process, we propose AmpleHate, a novel approach designed to mirror human inference for implicit hate detection. AmpleHate identifies explicit target using a pretrained Named Entity Recognition model and capture implicit target information via [CLS] tokens. It computes attention-based relationships between explicit, implicit targets and sentence context and then, directly injects these relational vectors into the final sentence representation. This amplifies the critical signals of target-context relations for determining implicit hate. Experiments demonstrate that AmpleHate achieves state-of-the-art performance, outperforming contrastive learning baselines by an average of 82.14% and achieve faster convergence. Qualitative analyses further reveal that attention patterns produced by AmpleHate closely align with human judgement, underscoring its interpretability and robustness. Our code is publicly available at: https://github.com/leeyejin1231/AmpleHate.

Authors:Dongil Yang, Minjin Kim, Sunghwan Kim, Beong-woo Kwak, Minjun Park, Jinseok Hong, Woontack Woo, Jinyoung Yeo
Title: LLM Meets Scene Graph: Can Large Language Models Understand and Generate Scene Graphs? A Benchmark and Empirical Study
Abstract:
The remarkable reasoning and generalization capabilities of Large Language Models (LLMs) have paved the way for their expanding applications in embodied AI, robotics, and other real-world tasks. To effectively support these applications, grounding in spatial and temporal understanding in multimodal environments is essential. To this end, recent works have leveraged scene graphs, a structured representation that encodes entities, attributes, and their relationships in a scene. However, a comprehensive evaluation of LLMs' ability to utilize scene graphs remains limited. In this work, we introduce Text-Scene Graph (TSG) Bench, a benchmark designed to systematically assess LLMs' ability to (1) understand scene graphs and (2) generate them from textual narratives. With TSG Bench we evaluate 11 LLMs and reveal that, while models perform well on scene graph understanding, they struggle with scene graph generation, particularly for complex narratives. Our analysis indicates that these models fail to effectively decompose discrete scenes from a complex narrative, leading to a bottleneck when generating scene graphs. These findings underscore the need for improved methodologies in scene graph generation and provide valuable insights for future research. The demonstration of our benchmark is available at https://tsg-bench.netlify.app. Additionally, our code and evaluation data are publicly available at https://github.com/docworlds/tsg-bench.

Authors:Yifan Jia, Kailin Jiang, Yuyang Liang, Qihan Ren, Yi Xin, Rui Yang, Fenze Feng, Mingcai Chen, Hengyang Lu, Haozhe Wang, Xiaoye Qu, Dongrui Liu, Lizhen Cui, Yuntao Du
Title: Benchmarking Multimodal Knowledge Conflict for Large Multimodal Models
Abstract:
Large Multimodal Models(LMMs) face notable challenges when encountering multimodal knowledge conflicts, particularly under retrieval-augmented generation(RAG) frameworks where the contextual information from external sources may contradict the model's internal parametric knowledge, leading to unreliable outputs. However, existing benchmarks fail to reflect such realistic conflict scenarios. Most focus solely on intra-memory conflicts, while context-memory and inter-context conflicts remain largely investigated. Furthermore, commonly used factual knowledge-based evaluations are often overlooked, and existing datasets lack a thorough investigation into conflict detection capabilities. To bridge this gap, we propose MMKC-Bench, a benchmark designed to evaluate factual knowledge conflicts in both context-memory and inter-context scenarios. MMKC-Bench encompasses three types of multimodal knowledge conflicts and includes 1,573 knowledge instances and 3,381 images across 23 broad types, collected through automated pipelines with human verification. We evaluate three representative series of LMMs on both model behavior analysis and conflict detection tasks. Our findings show that while current LMMs are capable of recognizing knowledge conflicts, they tend to favor internal parametric knowledge over external evidence. We hope MMKC-Bench will foster further research in multimodal knowledge conflict and enhance the development of multimodal RAG systems. The source code is available at https://github.com/MLLMKCBENCH/MLLMKC.

Authors:Pingzhi Li, Zhen Tan, Huaizhi Qu, Huan Liu, Tianlong Chen
Title: DOGe: Defensive Output Generation for LLM Protection Against Knowledge Distillation
Abstract:
Large Language Models (LLMs) represent substantial intellectual and economic investments, yet their effectiveness can inadvertently facilitate model imitation via knowledge distillation (KD).In practical scenarios, competitors can distill proprietary LLM capabilities by simply observing publicly accessible outputs, akin to reverse-engineering a complex performance by observation alone. Existing protective methods like watermarking only identify imitation post-hoc, while other defenses assume the student model mimics the teacher's internal logits, rendering them ineffective against distillation purely from observed output text. This paper confronts the challenge of actively protecting LLMs within the realistic constraints of API-based access. We introduce an effective and efficient Defensive Output Generation (DOGe) strategy that subtly modifies the output behavior of an LLM. Its outputs remain accurate and useful for legitimate users, yet are designed to be misleading for distillation, significantly undermining imitation attempts. We achieve this by fine-tuning only the final linear layer of the teacher LLM with an adversarial loss. This targeted training approach anticipates and disrupts distillation attempts during inference time. Our experiments show that, while preserving or even improving the original performance of the teacher model, student models distilled from the defensively generated teacher outputs demonstrate catastrophically reduced performance, demonstrating our method's effectiveness as a practical safeguard against KD-based model imitation.

Authors:Sanghyun Kim, Deunsol Jung, Minsu Cho
Title: Locality-Aware Zero-Shot Human-Object Interaction Detection
Abstract:
Recent methods for zero-shot Human-Object Interaction (HOI) detection typically leverage the generalization ability of large Vision-Language Model (VLM), i.e., CLIP, on unseen categories, showing impressive results on various zero-shot settings. However, existing methods struggle to adapt CLIP representations for human-object pairs, as CLIP tends to overlook fine-grained information necessary for distinguishing interactions. To address this issue, we devise, LAIN, a novel zero-shot HOI detection framework enhancing the locality and interaction awareness of CLIP representations. The locality awareness, which involves capturing fine-grained details and the spatial structure of individual objects, is achieved by aggregating the information and spatial priors of adjacent neighborhood patches. The interaction awareness, which involves identifying whether and how a human is interacting with an object, is achieved by capturing the interaction pattern between the human and the object. By infusing locality and interaction awareness into CLIP representation, LAIN captures detailed information about the human-object pairs. Our extensive experiments on existing benchmarks show that LAIN outperforms previous methods on various zero-shot settings, demonstrating the importance of locality and interaction awareness for effective zero-shot HOI detection.

Authors:Zhenhao Zhou, Zhuochen Huang, Yike He, Chong Wang, Jiajun Wang, Yijian Wu, Xin Peng, Yiling Lou
Title: Benchmarking and Enhancing LLM Agents in Localizing Linux Kernel Bugs
Abstract:
The Linux kernel is a critical system, serving as the foundation for numerous systems. Bugs in the Linux kernel can cause serious consequences, affecting billions of users. Fault localization (FL), which aims at identifying the buggy code elements in software, plays an essential role in software quality assurance. While recent LLM agents have achieved promising accuracy in FL on recent benchmarks like SWE-bench, it remains unclear how well these methods perform in the Linux kernel, where FL is much more challenging due to the large-scale code base, limited observability, and diverse impact factors. In this paper, we introduce LinuxFLBench, a FL benchmark constructed from real-world Linux kernel bugs. We conduct an empirical study to assess the performance of state-of-the-art LLM agents on the Linux kernel. Our initial results reveal that existing agents struggle with this task, achieving a best top-1 accuracy of only 41.6% at file level. To address this challenge, we propose LinuxFL$^+$, an enhancement framework designed to improve FL effectiveness of LLM agents for the Linux kernel. LinuxFL$^+$ substantially improves the FL accuracy of all studied agents (e.g., 7.2% - 11.2% accuracy increase) with minimal costs. Data and code are available at https://github.com/FudanSELab/LinuxFLBench.

Authors:Xinmiao Hu, Chun Wang, Ruihe An, ChenYu Shao, Xiaojun Ye, Sheng Zhou, Liangcheng Li
Title: Causal-LLaVA: Causal Disentanglement for Mitigating Hallucination in Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated strong performance in visual understanding tasks, yet they often suffer from object hallucinations--generating descriptions of objects that are inconsistent with or entirely absent from the input. This issue is closely related to dataset biases, where frequent co-occurrences of objects lead to entangled semantic representations across modalities. As a result, models may erroneously activate object representations that are commonly associated with the input but not actually present. To address this, we propose a causality-driven disentanglement framework that mitigates hallucinations through causal intervention. Our approach includes a Causal-Driven Projector in the visual pathway and a Causal Intervention Module integrated into the final transformer layer of the language model. These components work together to reduce spurious correlations caused by biased training data. Experimental results show that our method significantly reduces hallucinations while maintaining strong performance on multiple multimodal benchmarks. Visualization analyses further confirm improved separability of object representations. The code is available at: https://github.com/IgniSavium/Causal-LLaVA

Authors:Puyuan Peng, Shang-Wen Li, Abdelrahman Mohamed, David Harwath
Title: VoiceStar: Robust Zero-Shot Autoregressive TTS with Duration Control and Extrapolation
Abstract:
We present VoiceStar, the first zero-shot TTS model that achieves both output duration control and extrapolation. VoiceStar is an autoregressive encoder-decoder neural codec language model, that leverages a novel Progress-Monitoring Rotary Position Embedding (PM-RoPE) and is trained with Continuation-Prompt Mixed (CPM) training. PM-RoPE enables the model to better align text and speech tokens, indicates the target duration for the generated speech, and also allows the model to generate speech waveforms much longer in duration than those seen during. CPM training also helps to mitigate the training/inference mismatch, and significantly improves the quality of the generated speech in terms of speaker similarity and intelligibility. VoiceStar outperforms or is on par with current state-of-the-art models on short-form benchmarks such as Librispeech and Seed-TTS, and significantly outperforms these models on long-form/extrapolation benchmarks (20-50s) in terms of intelligibility and naturalness. Code and models: https://github.com/jasonppy/VoiceStar. Audio samples: https://jasonppy.github.io/VoiceStar_web

Authors:Guilong Lu, Xuntao Guo, Rongjunchen Zhang, Wenqiao Zhu, Ji Liu
Title: BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs
Abstract:
Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.

Authors:X. Feng, D. Zhang, S. Hu, X. Li, M. Wu, J. Zhang, X. Chen, K. Huang
Title: CSTrack: Enhancing RGB-X Tracking via Compact Spatiotemporal Features
Abstract:
Effectively modeling and utilizing spatiotemporal features from RGB and other modalities (\eg, depth, thermal, and event data, denoted as X) is the core of RGB-X tracker design. Existing methods often employ two parallel branches to separately process the RGB and X input streams, requiring the model to simultaneously handle two dispersed feature spaces, which complicates both the model structure and computation process. More critically, intra-modality spatial modeling within each dispersed space incurs substantial computational overhead, limiting resources for inter-modality spatial modeling and temporal modeling. To address this, we propose a novel tracker, CSTrack, which focuses on modeling Compact Spatiotemporal features to achieve simple yet effective tracking. Specifically, we first introduce an innovative Spatial Compact Module that integrates the RGB-X dual input streams into a compact spatial feature, enabling thorough intra- and inter-modality spatial modeling. Additionally, we design an efficient Temporal Compact Module that compactly represents temporal features by constructing the refined target distribution heatmap. Extensive experiments validate the effectiveness of our compact spatiotemporal modeling method, with CSTrack achieving new SOTA results on mainstream RGB-X benchmarks. The code and models will be released at: https://github.com/XiaokunFeng/CSTrack.

Authors:Peijie Dong, Zhenheng Tang, Xiang Liu, Lujun Li, Xiaowen Chu, Bo Li
Title: Can Compressed LLMs Truly Act? An Empirical Evaluation of Agentic Capabilities in LLM Compression
Abstract:
Post-training compression reduces the computational and memory costs of large language models (LLMs), enabling resource-efficient deployment. However, existing compression benchmarks only focus on language modeling (e.g., perplexity) and natural language understanding tasks (e.g., GLUE accuracy), ignoring the agentic capabilities - workflow, tool use/function call, long-context understanding and real-world application. We introduce the Agent Compression Benchmark (ACBench), the first comprehensive benchmark for evaluating how compression impacts LLMs' agentic abilities. ACBench spans (1) 12 tasks across 4 capabilities (e.g., WorfBench for workflow generation, Needle-in-Haystack for long-context retrieval), (2) quantization (GPTQ, AWQ) and pruning (Wanda, SparseGPT), and (3) 15 models, including small (Gemma-2B), standard (Qwen2.5 7B-32B), and distilled reasoning LLMs (DeepSeek-R1-Distill). Our experiments reveal compression tradeoffs: 4-bit quantization preserves workflow generation and tool use (1%-3% drop) but degrades real-world application accuracy by 10%-15%. We introduce ERank, Top-k Ranking Correlation and Energy to systematize analysis. ACBench provides actionable insights for optimizing LLM compression in agentic scenarios. The code can be found in https://github.com/pprp/ACBench.

Authors:Keane Ong, Rui Mao, Deeksha Varshney, Paul Pu Liang, Erik Cambria, Gianmarco Mengaldo
Title: Deriving Strategic Market Insights with Large Language Models: A Benchmark for Forward Counterfactual Generation
Abstract:
Counterfactual reasoning typically involves considering alternatives to actual events. While often applied to understand past events, a distinct form-forward counterfactual reasoning-focuses on anticipating plausible future developments. This type of reasoning is invaluable in dynamic financial markets, where anticipating market developments can powerfully unveil potential risks and opportunities for stakeholders, guiding their decision-making. However, performing this at scale is challenging due to the cognitive demands involved, underscoring the need for automated solutions. LLMs offer promise, but remain unexplored for this application. To address this gap, we introduce a novel benchmark, FIN-FORCE-FINancial FORward Counterfactual Evaluation. By curating financial news headlines and providing structured evaluation, FIN-FORCE supports LLM based forward counterfactual generation. This paves the way for scalable and automated solutions for exploring and anticipating future market developments, thereby providing structured insights for decision-making. Through experiments on FIN-FORCE, we evaluate state-of-the-art LLMs and counterfactual generation methods, analyzing their limitations and proposing insights for future research. We release the benchmark, supplementary data and all experimental codes at the following link: https://github.com/keanepotato/fin_force

Authors:Abhijnan Nath, Carine Graff, Andrei Bachinin, Nikhil Krishnaswamy
Title: Frictional Agent Alignment Framework: Slow Down and Don't Break Things
Abstract:
AI support of collaborative interactions entails mediating potential misalignment between interlocutor beliefs. Common preference alignment methods like DPO excel in static settings, but struggle in dynamic collaborative tasks where the explicit signals of interlocutor beliefs are sparse and skewed. We propose the Frictional Agent Alignment Framework (FAAF), to generate precise, context-aware "friction" that prompts for deliberation and re-examination of existing evidence. FAAF's two-player objective decouples from data skew: a frictive-state policy identifies belief misalignments, while an intervention policy crafts collaborator-preferred responses. We derive an analytical solution to this objective, enabling training a single policy via a simple supervised loss. Experiments on three benchmarks show FAAF outperforms competitors in producing concise, interpretable friction and in OOD generalization. By aligning LLMs to act as adaptive "thought partners" -- not passive responders -- FAAF advances scalable, dynamic human-AI collaboration. Our code and data can be found at https://github.com/csu-signal/FAAF_ACL.

Authors:Sihan Chen, Dan Zhao, Jongwoo Ko, Colby Banbury, Huiping Zhuang, Luming Liang, Tianyi Chen
Title: WINA: Weight Informed Neuron Activation for Accelerating Large Language Model Inference
Abstract:
The growing computational demands of large language models (LLMs) make efficient inference and activation strategies increasingly critical. While recent approaches, such as Mixture-of-Experts (MoE), leverage selective activation but require specialized training, training-free sparse activation methods offer broader applicability and superior resource efficiency through their plug-and-play design. However, many existing methods rely solely on hidden state magnitudes to determine activation, resulting in high approximation errors and suboptimal inference accuracy. To address these limitations, we propose WINA (Weight Informed Neuron Activation), a novel, simple, and training-free sparse activation framework that jointly considers hidden state magnitudes and the column-wise $\ell_2$-norms of weight matrices. We show that this leads to a sparsification strategy that obtains optimal approximation error bounds with theoretical guarantees tighter than existing techniques. Empirically, WINA also outperforms state-of-the-art methods (e.g., TEAL) by up to $2.94\%$ in average performance at the same sparsity levels, across a diverse set of LLM architectures and datasets. These results position WINA as a new performance frontier for training-free sparse activation in LLM inference, advancing training-free sparse activation methods and setting a robust baseline for efficient inference. The source code is available at https://github.com/microsoft/wina.

Authors:Ethan TS. Liu, Austin Wang, Spencer Mateega, Carlos Georgescu, Danny Tang
Title: VADER: A Human-Evaluated Benchmark for Vulnerability Assessment, Detection, Explanation, and Remediation
Abstract:
Ensuring that large language models (LLMs) can effectively assess, detect, explain, and remediate software vulnerabilities is critical for building robust and secure software systems. We introduce VADER, a human-evaluated benchmark designed explicitly to assess LLM performance across four key vulnerability-handling dimensions: assessment, detection, explanation, and remediation. VADER comprises 174 real-world software vulnerabilities, each carefully curated from GitHub repositories and annotated by security experts. For each vulnerability case, models are tasked with identifying the flaw, classifying it using Common Weakness Enumeration (CWE), explaining its underlying cause, proposing a patch, and formulating a test plan. Using a one-shot prompting strategy, we benchmark six state-of-the-art LLMs (Claude 3.7 Sonnet, Gemini 2.5 Pro, GPT-4.1, GPT-4.5, Grok 3 Beta, and o3) on VADER, and human security experts evaluated each response according to a rigorous scoring rubric emphasizing remediation (quality of the code fix, 50%), explanation (20%), and classification and test plan (30%) according to a standardized rubric. Our results show that current state-of-the-art LLMs achieve only moderate success on VADER - OpenAI's o3 attained 54.7% accuracy overall, with others in the 49-54% range, indicating ample room for improvement. Notably, remediation quality is strongly correlated (Pearson r > 0.97) with accurate classification and test plans, suggesting that models that effectively categorize vulnerabilities also tend to fix them well. VADER's comprehensive dataset, detailed evaluation rubrics, scoring tools, and visualized results with confidence intervals are publicly released, providing the community with an interpretable, reproducible benchmark to advance vulnerability-aware LLMs. All code and data are available at: https://github.com/AfterQuery/vader

Authors:Kidist Amde Mekonnen, Yosef Worku Alemneh, Maarten de Rijke
Title: Optimized Text Embedding Models and Benchmarks for Amharic Passage Retrieval
Abstract:
Neural retrieval methods using transformer-based pre-trained language models have advanced multilingual and cross-lingual retrieval. However, their effectiveness for low-resource, morphologically rich languages such as Amharic remains underexplored due to data scarcity and suboptimal tokenization. We address this gap by introducing Amharic-specific dense retrieval models based on pre-trained Amharic BERT and RoBERTa backbones. Our proposed RoBERTa-Base-Amharic-Embed model (110M parameters) achieves a 17.6% relative improvement in MRR@10 and a 9.86% gain in Recall@10 over the strongest multilingual baseline, Arctic Embed 2.0 (568M parameters). More compact variants, such as RoBERTa-Medium-Amharic-Embed (42M), remain competitive while being over 13x smaller. Additionally, we train a ColBERT-based late interaction retrieval model that achieves the highest MRR@10 score (0.843) among all evaluated models. We benchmark our proposed models against both sparse and dense retrieval baselines to systematically assess retrieval effectiveness in Amharic. Our analysis highlights key challenges in low-resource settings and underscores the importance of language-specific adaptation. To foster future research in low-resource IR, we publicly release our dataset, codebase, and trained models at https://github.com/kidist-amde/amharic-ir-benchmarks.

Authors:Xiao Liu, Lijun Zhang, Deepak Ganesan, Hui Guan
Title: Communication-Efficient Multi-Device Inference Acceleration for Transformer Models
Abstract:
Transformer models power many AI applications but suffer from high inference latency, limiting their use in real-time settings. Multi-device inference can reduce latency by parallelizing computation. Yet, existing methods require high inter-device bandwidth, making them impractical for bandwidth-constrained environments. We propose ASTRA, a communication-efficient framework that accelerates Transformer inference through a novel integration of sequence parallelism and a Mixed-Precision Attention mechanism designed to minimize inter-device communication. ASTRA compresses non-local token embeddings via vector quantization and preserves task accuracy through two optimizations, Noise-Augmented Quantization and Distributed Class Tokens. Experiments on ViT and GPT2 across vision and NLP tasks show that ASTRA achieves up to 2.64X speedups over single-device inference and up to 15.25X speedups over state-of-the-art multi-device inferences, while operating under bandwidths as low as 10 Mbps. ASTRA is open-sourced at https://github.com/xl1990/Astra.

Authors:Libo Wang
Title: Towards Humanoid Robot Autonomy: A Dynamic Architecture Integrating Continuous thought Machines (CTM) and Model Context Protocol (MCP)
Abstract:
To address the gaps between the static pre-set "thinking-planning-action" of humanoid robots in unfamiliar scenarios and the highly programmed "call tool-return result" due to the lack of autonomous coding capabilities, this work designs a dynamic architecture connecting continuous thought machines (CTM) and model context protocol (MCP). It proposes a theoretical parallel solution through tick-slab and uses rank compression to achieve parameter suppression to provide a solution for achieving autonomous actions due to autonomous coding. The researcher used a simulation-based experiment using OpenAI's o4-mini-high as a tool to build the experimental environment, and introduced the extended SayCan dataset to conduct nine epochs of experiments. The experimental results show that the CTM-MCP architecture is feasible and effective through the data results of seven metrics: task success rate (TSR), execution success rate (ESR), average episode length (AEL), ROSCOE, REVEAL, proficiency self-assessment (PSA), task effectiveness (TE). In practice, it provides a reference experience for exploring the autonomous dynamic coding of humanoid robots based on continuous thinking to achieve human-like autonomous actions.

Authors:Qiang Hu, Qimei Wang, Jia Chen, Xuantao Ji, Mei Liu, Qiang Li, Zhiwei Wang
Title: Holistic White-light Polyp Classification via Alignment-free Dense Distillation of Auxiliary Optical Chromoendoscopy
Abstract:
White Light Imaging (WLI) and Narrow Band Imaging (NBI) are the two main colonoscopic modalities for polyp classification. While NBI, as optical chromoendoscopy, offers valuable vascular details, WLI remains the most common and often the only available modality in resource-limited settings. However, WLI-based methods typically underperform, limiting their clinical applicability. Existing approaches transfer knowledge from NBI to WLI through global feature alignment but often rely on cropped lesion regions, which are susceptible to detection errors and neglect contextual and subtle diagnostic cues. To address this, this paper proposes a novel holistic classification framework that leverages full-image diagnosis without requiring polyp localization. The key innovation lies in the Alignment-free Dense Distillation (ADD) module, which enables fine-grained cross-domain knowledge distillation regardless of misalignment between WLI and NBI images. Without resorting to explicit image alignment, ADD learns pixel-wise cross-domain affinities to establish correspondences between feature maps, guiding the distillation along the most relevant pixel connections. To further enhance distillation reliability, ADD incorporates Class Activation Mapping (CAM) to filter cross-domain affinities, ensuring the distillation path connects only those semantically consistent regions with equal contributions to polyp diagnosis. Extensive results on public and in-house datasets show that our method achieves state-of-the-art performance, relatively outperforming the other approaches by at least 2.5% and 16.2% in AUC, respectively. Code is available at: https://github.com/Huster-Hq/ADD.

Authors:Zirui Li, Siwei Wu, Xingyu Wang, Yi Zhou, Yizhi Li, Chenghua Lin
Title: DocMMIR: A Framework for Document Multi-modal Information Retrieval
Abstract:
The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce DocMMIR, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains, including Wikipedia articles, scientific papers (arXiv), and presentation slides, within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal benchmark, comprising 450K samples, which systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP demonstrating reasonable zero-shot performance. Furthermore, we conduct a systematic investigation of training strategies, including cross-modal fusion methods and loss functions, and develop a tailored approach to train CLIP on our benchmark. This results in a +31% improvement in MRR@10 compared to the zero-shot baseline. All our data and code are released in https://github.com/J1mL1/DocMMIR.

Authors:Junnan Liu, Linhao Luo, Thuy-Trang Vu, Gholamreza Haffari
Title: SituatedThinker: Grounding LLM Reasoning with Real-World through Situated Thinking
Abstract:
Recent advances in large language models (LLMs) demonstrate their impressive reasoning capabilities. However, the reasoning confined to internal parametric space limits LLMs' access to real-time information and understanding of the physical world. To overcome this constraint, we introduce SituatedThinker, a novel framework that enables LLMs to ground their reasoning in real-world contexts through situated thinking, which adaptively combines both internal knowledge and external information with predefined interfaces. By utilizing reinforcement learning, SituatedThinker incentivizes deliberate reasoning with the real world to acquire information and feedback, allowing LLMs to surpass their knowledge boundaries and enhance reasoning. Experimental results demonstrate significant performance improvements on multi-hop question-answering and mathematical reasoning benchmarks. Furthermore, SituatedThinker demonstrates strong performance on unseen tasks, such as KBQA, TableQA, and text-based games, showcasing the generalizable real-world grounded reasoning capability. Our codes are available at https://github.com/jnanliu/SituatedThinker.

Authors:Jimeng Shi, Sizhe Zhou, Bowen Jin, Wei Hu, Runchu Tian, Shaowen Wang, Giri Narasimhan, Jiawei Han
Title: Hypercube-Based Retrieval-Augmented Generation for Scientific Question-Answering
Abstract:
Large language models (LLMs) often need to incorporate external knowledge to solve theme-specific problems. Retrieval-augmented generation (RAG) has shown its high promise, empowering LLMs to generate more qualified responses with retrieved external data and knowledge. However, most RAG methods retrieve relevant documents based on either sparse or dense retrieval methods or their combinations, which overlooks the essential, multi-dimensional, and structured semantic information present in documents. This structured information plays a critical role in finding concise yet highly relevant information for domain knowledge-intensive tasks, such as scientific question-answering (QA). In this work, we introduce a multi-dimensional (cube) structure, Hypercube, which can index and allocate documents in a pre-defined multi-dimensional space. Built on the hypercube, we further propose Hypercube-RAG, a novel RAG framework for precise and efficient retrieval. Given a query, Hypercube-RAG first decomposes it based on its entities, phrases, and topics along with pre-defined hypercube dimensions, and then retrieves relevant documents from cubes by aligning these decomposed components with corresponding dimensions. Experiments on three datasets across different domains demonstrate that our method improves response accuracy by 3.7% and retrieval accuracy by 5.3% over the strongest RAG baseline. It also boosts retrieval efficiency (speed) by one or two magnitudes faster than graph-based RAG. Notably, our Hypercube-RAG inherently offers explainability by revealing those underlying dimensions used for retrieval. The code and data are available at https://github.com/JimengShi/Hypercube-RAG.

Authors:Vivek Gopalakrishnan, Neel Dey, Polina Golland
Title: PolyPose: Localizing Deformable Anatomy in 3D from Sparse 2D X-ray Images using Polyrigid Transforms
Abstract:
Determining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g., CT and MRI) provides precise 3D localization and visualization of anatomical targets, these modalities cannot be acquired during procedures, where fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into intraoperative procedures, we present PolyPose, a simple and robust method for deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation fields as a composition of rigid transforms, leveraging the biological constraint that individual bones do not bend in typical motion. Unlike existing methods that either assume no inter-joint movement or fail outright in this under-determined setting, our polyrigid formulation enforces anatomically plausible priors that respect the piecewise rigid nature of human movement. This approach eliminates the need for expensive deformation regularizers that require patient- and procedure-specific hyperparameter optimization. Across extensive experiments on diverse datasets from orthopedic surgery and radiotherapy, we show that this strong inductive bias enables PolyPose to successfully align the patient's preoperative volume to as few as two X-ray images, thereby providing crucial 3D guidance in challenging sparse-view and limited-angle settings where current registration methods fail.

Authors:Vivek Gopalakrishnan, Neel Dey, Polina Golland
Title: PolyPose: Deformable 2D/3D Registration via Polyrigid Transformations
Abstract:
Determining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g., CT and MRI) provides precise 3D localization and visualization of anatomical targets, these modalities cannot be acquired during procedures, where fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into intraoperative procedures, we present PolyPose, a simple and robust method for deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation fields as a composition of rigid transforms, leveraging the biological constraint that individual bones do not bend in typical motion. Unlike existing methods that either assume no inter-joint movement or fail outright in this under-determined setting, our polyrigid formulation enforces anatomically plausible priors that respect the piecewise-rigid nature of human movement. This approach eliminates the need for expensive deformation regularizers that require patient- and procedure-specific hyperparameter optimization. Across extensive experiments on diverse datasets from orthopedic surgery and radiotherapy, we show that this strong inductive bias enables PolyPose to successfully align the patient's preoperative volume to as few as two X-rays, thereby providing crucial 3D guidance in challenging sparse-view and limited-angle settings where current registration methods fail. Additional visualizations, tutorials, and code are available at https://polypose.csail.mit.edu.

Authors:Mingyuan Wu, Jingcheng Yang, Jize Jiang, Meitang Li, Kaizhuo Yan, Hanchao Yu, Minjia Zhang, Chengxiang Zhai, Klara Nahrstedt
Title: VTool-R1: VLMs Learn to Think with Images via Reinforcement Learning on Multimodal Tool Use
Abstract:
Reinforcement Learning Finetuning (RFT) has significantly advanced the reasoning capabilities of large language models (LLMs) by enabling long chains of thought, self-correction, and effective tool use. While recent works attempt to extend RFT to vision-language models (VLMs), these efforts largely produce text-only reasoning conditioned on static image inputs, falling short of true multimodal reasoning in the response. In contrast, test-time methods like Visual Sketchpad incorporate visual steps but lack training mechanisms. We introduce VTool-R1, the first framework that trains VLMs to generate multimodal chains of thought by interleaving text and intermediate visual reasoning steps. VTool-R1 integrates Python-based visual editing tools into the RFT process, enabling VLMs to learn when and how to generate visual reasoning steps that benefit final reasoning. Trained with outcome-based rewards tied to task accuracy, our approach elicits strategic visual tool use for reasoning without relying on process-based supervision. Experiments on structured visual question answering over charts and tables show that VTool-R1 enhances reasoning performance by teaching VLMs to "think with images" and generate multimodal chain of thoughts with tools.

Authors:Aida Kostikova, Zhipin Wang, Deidamea Bajri, Ole Pütz, Benjamin Paaßen, Steffen Eger
Title: LLLMs: A Data-Driven Survey of Evolving Research on Limitations of Large Language Models
Abstract:
Large language model (LLM) research has grown rapidly, along with increasing concern about their limitations such as failures in reasoning, hallucinations, and limited multilingual capability. While prior reviews have addressed these issues, they often focus on individual limitations or consider them within the broader context of evaluating overall model performance. This survey addresses the gap by presenting a data-driven, semi-automated review of research on limitations of LLMs (LLLMs) from 2022 to 2025, using a bottom-up approach. From a corpus of 250,000 ACL and arXiv papers, we extract 14,648 relevant limitation papers using keyword filtering and LLM-based classification, validated against expert labels. Using topic clustering (via two approaches, HDBSCAN+BERTopic and LlooM), we identify between 7 and 15 prominent types of limitations discussed in recent LLM research across the ACL and arXiv datasets. We find that LLM-related research increases nearly sixfold in ACL and nearly fifteenfold in arXiv between 2022 and 2025, while LLLMs research grows even faster, by a factor of over 12 in ACL and nearly 28 in arXiv. Reasoning remains the most studied limitation, followed by generalization, hallucination, bias, and security. The distribution of topics in the ACL dataset stays relatively stable over time, while arXiv shifts toward safety and controllability (with topics like security risks, alignment, hallucinations, knowledge editing), and multimodality between 2022 and 2025. We offer a quantitative view of trends in LLM limitations research and release a dataset of annotated abstracts and a validated methodology, available at: https://github.com/a-kostikova/LLLMs-Survey.

Authors:Qinsi Wang, Hancheng Ye, Ming-Yu Chung, Yudong Liu, Yueqian Lin, Martin Kuo, Mingyuan Ma, Jianyi Zhang, Yiran Chen
Title: CoreMatching: A Co-adaptive Sparse Inference Framework with Token and Neuron Pruning for Comprehensive Acceleration of Vision-Language Models
Abstract:
Vision-Language Models (VLMs) excel across diverse tasks but suffer from high inference costs in time and memory. Token sparsity mitigates inefficiencies in token usage, while neuron sparsity reduces high-dimensional computations, both offering promising solutions to enhance efficiency. Recently, these two sparsity paradigms have evolved largely in parallel, fostering the prevailing assumption that they function independently. However, a fundamental yet underexplored question remains: Do they truly operate in isolation, or is there a deeper underlying interplay that has yet to be uncovered? In this paper, we conduct the first comprehensive investigation into this question. By introducing and analyzing the matching mechanism between Core Neurons and Core Tokens, we found that key neurons and tokens for inference mutually influence and reinforce each other. Building on this insight, we propose CoreMatching, a co-adaptive sparse inference framework, which leverages the synergy between token and neuron sparsity to enhance inference efficiency. Through theoretical analysis and efficiency evaluations, we demonstrate that the proposed method surpasses state-of-the-art baselines on ten image understanding tasks and three hardware devices. Notably, on the NVIDIA Titan Xp, it achieved 5x FLOPs reduction and a 10x overall speedup. Code is released at https://github.com/wangqinsi1/2025-ICML-CoreMatching/tree/main.

Authors:Chenglong Ma, Yuanfeng Ji, Jin Ye, Zilong Li, Chenhui Wang, Junzhi Ning, Wei Li, Lihao Liu, Qiushan Guo, Tianbin Li, Junjun He, Hongming Shan
Title: MedITok: A Unified Tokenizer for Medical Image Synthesis and Interpretation
Abstract:
Advanced autoregressive models have reshaped multimodal AI. However, their transformative potential in medical imaging remains largely untapped due to the absence of a unified visual tokenizer -- one capable of capturing fine-grained visual structures for faithful image reconstruction and realistic image synthesis, as well as rich semantics for accurate diagnosis and image interpretation. To this end, we present MedITok, the first unified tokenizer tailored for medical images, encoding both low-level structural details and high-level clinical semantics within a unified latent space. To balance these competing objectives, we introduce a novel two-stage training framework: a visual representation alignment stage that cold-starts the tokenizer reconstruction learning with a visual semantic constraint, followed by a textual semantic representation alignment stage that infuses detailed clinical semantics into the latent space. Trained on the meticulously collected large-scale dataset with over 30 million medical images and 2 million image-caption pairs, MedITok achieves state-of-the-art performance on more than 30 datasets across 9 imaging modalities and 4 different tasks. By providing a unified token space for autoregressive modeling, MedITok supports a wide range of tasks in clinical diagnostics and generative healthcare applications. Model and code will be made publicly available at: https://github.com/Masaaki-75/meditok.

Authors:Jingwei Wu, Zhewei Huang, Chang Liu
Title: Advancing Video Self-Supervised Learning via Image Foundation Models
Abstract:
In the past decade, image foundation models (IFMs) have achieved unprecedented progress. However, the potential of directly using IFMs for video self-supervised representation learning has largely been overlooked. In this study, we propose an advancing video self-supervised learning (AdViSe) approach, aimed at significantly reducing the training overhead of video representation models using pre-trained IFMs. Specifically, we first introduce temporal modeling modules (ResNet3D) to IFMs, constructing a video representation model. We then employ a video self-supervised learning approach, playback rate perception, to train temporal modules while freezing the IFM components. Experiments on UCF101 demonstrate that AdViSe achieves performance comparable to state-of-the-art methods while reducing training time by $3.4\times$ and GPU memory usage by $8.2\times$. This study offers fresh insights into low-cost video self-supervised learning based on pre-trained IFMs. Code is available at https://github.com/JingwWu/advise-video-ssl.

Authors:Steffen Backmann, David Guzman Piedrahita, Emanuel Tewolde, Rada Mihalcea, Bernhard Schölkopf, Zhijing Jin
Title: When Ethics and Payoffs Diverge: LLM Agents in Morally Charged Social Dilemmas
Abstract:
Recent advances in large language models (LLMs) have enabled their use in complex agentic roles, involving decision-making with humans or other agents, making ethical alignment a key AI safety concern. While prior work has examined both LLMs' moral judgment and strategic behavior in social dilemmas, there is limited understanding of how they act when moral imperatives directly conflict with rewards or incentives. To investigate this, we introduce Moral Behavior in Social Dilemma Simulation (MoralSim) and evaluate how LLMs behave in the prisoner's dilemma and public goods game with morally charged contexts. In MoralSim, we test a range of frontier models across both game structures and three distinct moral framings, enabling a systematic examination of how LLMs navigate social dilemmas in which ethical norms conflict with payoff-maximizing strategies. Our results show substantial variation across models in both their general tendency to act morally and the consistency of their behavior across game types, the specific moral framing, and situational factors such as opponent behavior and survival risks. Crucially, no model exhibits consistently moral behavior in MoralSim, highlighting the need for caution when deploying LLMs in agentic roles where the agent's "self-interest" may conflict with ethical expectations. Our code is available at https://github.com/sbackmann/moralsim.

Authors:Tyler Ward, Aaron Moseley, Abdullah-Al-Zubaer Imran
Title: Domain and Task-Focused Example Selection for Data-Efficient Contrastive Medical Image Segmentation
Abstract:
Segmentation is one of the most important tasks in the medical imaging pipeline as it influences a number of image-based decisions. To be effective, fully supervised segmentation approaches require large amounts of manually annotated training data. However, the pixel-level annotation process is expensive, time-consuming, and error-prone, hindering progress and making it challenging to perform effective segmentations. Therefore, models must learn efficiently from limited labeled data. Self-supervised learning (SSL), particularly contrastive learning via pre-training on unlabeled data and fine-tuning on limited annotations, can facilitate such limited labeled image segmentation. To this end, we propose a novel self-supervised contrastive learning framework for medical image segmentation, leveraging inherent relationships of different images, dubbed PolyCL. Without requiring any pixel-level annotations or unreasonable data augmentations, our PolyCL learns and transfers context-aware discriminant features useful for segmentation from an innovative surrogate, in a task-related manner. Additionally, we integrate the Segment Anything Model (SAM) into our framework in two novel ways: as a post-processing refinement module that improves the accuracy of predicted masks using bounding box prompts derived from coarse outputs, and as a propagation mechanism via SAM 2 that generates volumetric segmentations from a single annotated 2D slice. Experimental evaluations on three public computed tomography (CT) datasets demonstrate that PolyCL outperforms fully-supervised and self-supervised baselines in both low-data and cross-domain scenarios. Our code is available at https://github.com/tbwa233/PolyCL.

Authors:Yunhai Hu, Tianhua Xia, Zining Liu, Rahul Raman, Xingyu Liu, Bo Bao, Eric Sather, Vithursan Thangarasa, Sai Qian Zhang
Title: DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for Multimodal Speculative Decoding
Abstract:
Speculative decoding (SD) has emerged as a powerful method for accelerating autoregressive generation in large language models (LLMs), yet its integration into vision-language models (VLMs) remains underexplored. We introduce DREAM, a novel speculative decoding framework tailored for VLMs that combines three key innovations: (1) a cross-attention-based mechanism to inject intermediate features from the target model into the draft model for improved alignment, (2) adaptive intermediate feature selection based on attention entropy to guide efficient draft model training, and (3) visual token compression to reduce draft model latency. DREAM enables efficient, accurate, and parallel multimodal decoding with significant throughput improvement. Experiments across a diverse set of recent popular VLMs, including LLaVA, Pixtral, SmolVLM and Gemma3, demonstrate up to 3.6x speedup over conventional decoding and significantly outperform prior SD baselines in both inference throughput and speculative draft acceptance length across a broad range of multimodal benchmarks. The code is publicly available at: https://github.com/SAI-Lab-NYU/DREAM.git

Authors:Jiayi Xin, Sukwon Yun, Jie Peng, Inyoung Choi, Jenna L. Ballard, Tianlong Chen, Qi Long
Title: I2MoE: Interpretable Multimodal Interaction-aware Mixture-of-Experts
Abstract:
Modality fusion is a cornerstone of multimodal learning, enabling information integration from diverse data sources. However, vanilla fusion methods are limited by (1) inability to account for heterogeneous interactions between modalities and (2) lack of interpretability in uncovering the multimodal interactions inherent in the data. To this end, we propose I2MoE (Interpretable Multimodal Interaction-aware Mixture of Experts), an end-to-end MoE framework designed to enhance modality fusion by explicitly modeling diverse multimodal interactions, as well as providing interpretation on a local and global level. First, I2MoE utilizes different interaction experts with weakly supervised interaction losses to learn multimodal interactions in a data-driven way. Second, I2MoE deploys a reweighting model that assigns importance scores for the output of each interaction expert, which offers sample-level and dataset-level interpretation. Extensive evaluation of medical and general multimodal datasets shows that I2MoE is flexible enough to be combined with different fusion techniques, consistently improves task performance, and provides interpretation across various real-world scenarios. Code is available at https://github.com/Raina-Xin/I2MoE.

Authors:Yaoyang Liu, Junlin Li, Yinjun Wu, Zhen Chen
Title: POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval
Abstract:
Although Multi-Vector Retrieval (MVR) has achieved the state of the art on many information retrieval (IR) tasks, its performance highly depends on how to decompose queries into smaller pieces, say phrases or tokens. However, optimizing query decomposition for MVR performance is not end-to-end differentiable. Even worse, jointly solving this problem and training the downstream retrieval-based systems, say RAG systems could be highly inefficient. To overcome these challenges, we propose Performance-Oriented Query Decomposer (POQD), a novel query decomposition framework for MVR. POQD leverages one LLM for query decomposition and searches the optimal prompt with an LLM-based optimizer. We further propose an end-to-end training algorithm to alternatively optimize the prompt for query decomposition and the downstream models. This algorithm can achieve superior MVR performance at a reasonable training cost as our theoretical analysis suggests. POQD can be integrated seamlessly into arbitrary retrieval-based systems such as Retrieval-Augmented Generation (RAG) systems. Extensive empirical studies on representative RAG-based QA tasks show that POQD outperforms existing query decomposition strategies in both retrieval performance and end-to-end QA accuracy. POQD is available at https://github.com/PKU-SDS-lab/POQD-ICML25.

Authors:Pradyumna Shyama Prasad, Minh Nhat Nguyen
Title: When Two LLMs Debate, Both Think They'll Win
Abstract:
Can LLMs accurately adjust their confidence when facing opposition? Building on previous studies measuring calibration on static fact-based question-answering tasks, we evaluate Large Language Models (LLMs) in a dynamic, adversarial debate setting, uniquely combining two realistic factors: (a) a multi-turn format requiring models to update beliefs as new information emerges, and (b) a zero-sum structure to control for task-related uncertainty, since mutual high-confidence claims imply systematic overconfidence. We organized 60 three-round policy debates among ten state-of-the-art LLMs, with models privately rating their confidence (0-100) in winning after each round. We observed five concerning patterns: (1) Systematic overconfidence: models began debates with average initial confidence of 72.9% vs. a rational 50% baseline. (2) Confidence escalation: rather than reducing confidence as debates progressed, debaters increased their win probabilities, averaging 83% by the final round. (3) Mutual overestimation: in 61.7% of debates, both sides simultaneously claimed >=75% probability of victory, a logical impossibility. (4) Persistent self-debate bias: models debating identical copies increased confidence from 64.1% to 75.2%; even when explicitly informed their chance of winning was exactly 50%, confidence still rose (from 50.0% to 57.1%). (5) Misaligned private reasoning: models' private scratchpad thoughts sometimes differed from their public confidence ratings, raising concerns about faithfulness of chain-of-thought reasoning. These results suggest LLMs lack the ability to accurately self-assess or update their beliefs in dynamic, multi-turn tasks; a major concern as LLMs are now increasingly deployed without careful review in assistant and agentic roles. Code for our experiments is available at https://github.com/pradyuprasad/llms_overconfidence

Authors:Kefan Wang, Hao Wang, Wei Guo, Yong Liu, Jianghao Lin, Defu Lian, Enhong Chen
Title: DLF: Enhancing Explicit-Implicit Interaction via Dynamic Low-Order-Aware Fusion for CTR Prediction
Abstract:
Click-through rate (CTR) prediction is a critical task in online advertising and recommender systems, relying on effective modeling of feature interactions. Explicit interactions capture predefined relationships, such as inner products, but often suffer from data sparsity, while implicit interactions excel at learning complex patterns through non-linear transformations but lack inductive biases for efficient low-order modeling. Existing two-stream architectures integrate these paradigms but face challenges such as limited information sharing, gradient imbalance, and difficulty preserving low-order signals in sparse CTR data. We propose a novel framework, Dynamic Low-Order-Aware Fusion (DLF), which addresses these limitations through two key components: a Residual-Aware Low-Order Interaction Network (RLI) and a Network-Aware Attention Fusion Module (NAF). RLI explicitly preserves low-order signals while mitigating redundancy from residual connections, and NAF dynamically integrates explicit and implicit representations at each layer, enhancing information sharing and alleviating gradient imbalance. Together, these innovations balance low-order and high-order interactions, improving model expressiveness. Extensive experiments on public datasets demonstrate that DLF achieves state-of-the-art performance in CTR prediction, addressing key limitations of existing models. The implementation is publicly available at https://github.com/USTC-StarTeam/DLF.

Authors:Zhuo Liu, Moxin Li, Xun Deng, Qifan Wang, Fuli Feng
Title: Assistant-Guided Mitigation of Teacher Preference Bias in LLM-as-a-Judge
Abstract:
LLM-as-a-Judge employs large language models (LLMs), such as GPT-4, to evaluate the quality of LLM-generated responses, gaining popularity for its cost-effectiveness and strong alignment with human evaluations. However, training proxy judge models using evaluation data generated by powerful teacher models introduces a critical yet previously overlooked issue: teacher preference bias, where the proxy judge model learns a biased preference for responses from the teacher model. To tackle this problem, we propose a novel setting that incorporates an additional assistant model, which is not biased toward the teacher model's responses, to complement the training data. Building on this setup, we introduce AGDe-Judge, a three-stage framework designed to debias from both the labels and feedbacks in the training data. Extensive experiments demonstrate that AGDe-Judge effectively reduces teacher preference bias while maintaining strong performance across six evaluation benchmarks. Code is available at https://github.com/Liuz233/AGDe-Judge.

Authors:Shengdong Han, Shangdong Yang, Xin Zhang, Yuxuan Li, Xiang Li, Jian Yang, Ming-Ming Cheng, Yimian Dai
Title: DISTA-Net: Dynamic Closely-Spaced Infrared Small Target Unmixing
Abstract:
Resolving closely-spaced small targets in dense clusters presents a significant challenge in infrared imaging, as the overlapping signals hinder precise determination of their quantity, sub-pixel positions, and radiation intensities. While deep learning has advanced the field of infrared small target detection, its application to closely-spaced infrared small targets has not yet been explored. This gap exists primarily due to the complexity of separating superimposed characteristics and the lack of an open-source infrastructure. In this work, we propose the Dynamic Iterative Shrinkage Thresholding Network (DISTA-Net), which reconceptualizes traditional sparse reconstruction within a dynamic framework. DISTA-Net adaptively generates convolution weights and thresholding parameters to tailor the reconstruction process in real time. To the best of our knowledge, DISTA-Net is the first deep learning model designed specifically for the unmixing of closely-spaced infrared small targets, achieving superior sub-pixel detection accuracy. Moreover, we have established the first open-source ecosystem to foster further research in this field. This ecosystem comprises three key components: (1) CSIST-100K, a publicly available benchmark dataset; (2) CSO-mAP, a custom evaluation metric for sub-pixel detection; and (3) GrokCSO, an open-source toolkit featuring DISTA-Net and other models. Our code and dataset are available at https://github.com/GrokCV/GrokCSO.

Authors:Xuyang Liu, Zichen Wen, Shaobo Wang, Junjie Chen, Zhishan Tao, Yubo Wang, Xiangqi Jin, Chang Zou, Yiyu Wang, Chenfei Liao, Xu Zheng, Honggang Chen, Weijia Li, Xuming Hu, Conghui He, Linfeng Zhang
Title: Shifting AI Efficiency From Model-Centric to Data-Centric Compression
Abstract:
The rapid advancement of large language models (LLMs) and multi-modal LLMs (MLLMs) has historically relied on model-centric scaling through increasing parameter counts from millions to hundreds of billions to drive performance gains. However, as we approach hardware limits on model size, the dominant computational bottleneck has fundamentally shifted to the quadratic cost of self-attention over long token sequences, now driven by ultra-long text contexts, high-resolution images, and extended videos. In this position paper, \textbf{we argue that the focus of research for efficient AI is shifting from model-centric compression to data-centric compression}. We position token compression as the new frontier, which improves AI efficiency via reducing the number of tokens during model training or inference. Through comprehensive analysis, we first examine recent developments in long-context AI across various domains and establish a unified mathematical framework for existing model efficiency strategies, demonstrating why token compression represents a crucial paradigm shift in addressing long-context overhead. Subsequently, we systematically review the research landscape of token compression, analyzing its fundamental benefits and identifying its compelling advantages across diverse scenarios. Furthermore, we provide an in-depth analysis of current challenges in token compression research and outline promising future directions. Ultimately, our work aims to offer a fresh perspective on AI efficiency, synthesize existing research, and catalyze innovative developments to address the challenges that increasing context lengths pose to the AI community's advancement.

Authors:Wenyang Luo, Wayne Xin Zhao, Jing Sha, Shijin Wang, Ji-Rong Wen
Title: MMATH: A Multilingual Benchmark for Mathematical Reasoning
Abstract:
The advent of large reasoning models, such as OpenAI o1 and DeepSeek R1, has significantly advanced complex reasoning tasks. However, their capabilities in multilingual complex reasoning remain underexplored, with existing efforts largely focused on simpler tasks like MGSM. To address this gap, we introduce MMATH, a benchmark for multilingual complex reasoning spanning 374 high-quality math problems across 10 typologically diverse languages. Using MMATH, we observe that even advanced models like DeepSeek R1 exhibit substantial performance disparities across languages and suffer from a critical off-target issue-generating responses in unintended languages. To address this, we explore strategies including prompting and training, demonstrating that reasoning in English and answering in target languages can simultaneously enhance performance and preserve target-language consistency. Our findings offer new insights and practical strategies for advancing the multilingual reasoning capabilities of large language models. Our code and data could be found at https://github.com/RUCAIBox/MMATH.

Authors:Xiaoyang Liu, Bolin Qiu, Jiezhang Cao, Zheng Chen, Yulun Zhang, Xiaokang Yang
Title: Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition
Abstract:
Image demoiréing remains a challenging task due to the complex interplay between texture corruption and color distortions caused by moiré patterns. Existing methods, especially those relying on direct image-to-image restoration, often fail to disentangle these intertwined artifacts effectively. While wavelet-based frequency-aware approaches offer a promising direction, their potential remains underexplored. In this paper, we present Freqformer, a Transformer-based framework specifically designed for image demoiréing through targeted frequency separation. Our method performs an effective frequency decomposition that explicitly splits moiré patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions, which are then handled by a dual-branch architecture tailored to their distinct characteristics. We further propose a learnable Frequency Composition Transform (FCT) module to adaptively fuse the frequency-specific outputs, enabling consistent and high-fidelity reconstruction. To better aggregate the spatial dependencies and the inter-channel complementary information, we introduce a Spatial-Aware Channel Attention (SA-CA) module that refines moiré-sensitive regions without incurring high computational cost. Extensive experiments on various demoiréing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size. The code is publicly available at https://github.com/xyLiu339/Freqformer.

Authors:Brian Chmiel, Maxim Fishman, Ron Banner, Daniel Soudry
Title: FP4 All the Way: Fully Quantized Training of LLMs
Abstract:
We demonstrate, for the first time, fully quantized training (FQT) of large language models (LLMs) using predominantly 4-bit floating-point (FP4) precision for weights, activations, and gradients on datasets up to 200 billion tokens. We extensively investigate key design choices for FP4, including block sizes, scaling formats, and rounding methods. Our analysis shows that the NVFP4 format, where each block of 16 FP4 values (E2M1) shares a scale represented in E4M3, provides optimal results. We use stochastic rounding for backward and update passes and round-to-nearest for the forward pass to enhance stability. Additionally, we identify a theoretical and empirical threshold for effective quantized training: when the gradient norm falls below approximately $\sqrt{3}$ times the quantization noise, quantized training becomes less effective. Leveraging these insights, we successfully train a 7-billion-parameter model on 256 Intel Gaudi2 accelerators. The resulting FP4-trained model achieves downstream task performance comparable to a standard BF16 baseline, confirming that FP4 training is a practical and highly efficient approach for large-scale LLM training. A reference implementation is supplied in https://github.com/Anonymous1252022/fp4-all-the-way .

Authors:Zheng Chu, Huiming Fan, Jingchang Chen, Qianyu Wang, Mingda Yang, Jiafeng Liang, Zhongjie Wang, Hao Li, Guo Tang, Ming Liu, Bing Qin
Title: Self-Critique Guided Iterative Reasoning for Multi-hop Question Answering
Abstract:
Although large language models (LLMs) have demonstrated remarkable reasoning capabilities, they still face challenges in knowledge-intensive multi-hop reasoning. Recent work explores iterative retrieval to address complex problems. However, the lack of intermediate guidance often results in inaccurate retrieval and flawed intermediate reasoning, leading to incorrect reasoning. To address these, we propose Self-Critique Guided Iterative Reasoning (SiGIR), which uses self-critique feedback to guide the iterative reasoning process. Specifically, through end-to-end training, we enable the model to iteratively address complex problems via question decomposition. Additionally, the model is able to self-evaluate its intermediate reasoning steps. During iterative reasoning, the model engages in branching exploration and employs self-evaluation to guide the selection of promising reasoning trajectories. Extensive experiments on three multi-hop reasoning datasets demonstrate the effectiveness of our proposed method, surpassing the previous SOTA by $8.6\%$. Furthermore, our thorough analysis offers insights for future research. Our code, data, and models are available at Github: https://github.com/zchuz/SiGIR-MHQA.

Authors:Chuming Shen, Wei Wei, Xiaoye Qu, Yu Cheng
Title: SATORI-R1: Incentivizing Multimodal Reasoning with Spatial Grounding and Verifiable Rewards
Abstract:
DeepSeek-R1 has demonstrated powerful reasoning capabilities in the text domain through stable reinforcement learning (RL). Recently, in the multimodal domain, works have begun to directly apply RL to generate R1-like free-form reasoning for Visual Question Answering (VQA) tasks. However, multimodal tasks share an intrinsically different nature from textual tasks, which heavily rely on the understanding of the input image to solve the problem. Therefore, such free-form reasoning faces two critical limitations in the VQA task: (1) Extended reasoning chains diffuse visual focus away from task-critical regions, degrading answer accuracy. (2) Unverifiable intermediate steps amplify policy-gradient variance and computational costs overhead. To address these issues, in this paper, we introduce SATORI ($\textbf{S}patially$ $\textbf{A}nchored$ $\textbf{T}ask$ $\textbf{O}ptimization$ with $\textbf{R}e\textbf{I}nforcement$ Learning), which decomposes VQA into three verifiable stages, including global image captioning, region localization, and answer prediction, each supplying explicit reward signals. Furthermore, we also introduce VQA-Verify, a 12k dataset annotated with answer-aligned captions and bounding-boxes to facilitate training. Experiments demonstrate consistent performance improvements across seven VQA benchmarks, achieving up to $15.7\%$ improvement in accuracy in accuracy compared to the R1-like baseline. Our analysis of the attention map confirms enhanced focus on critical regions, which brings improvements in accuracy. Our code is available at https://github.com/justairr/SATORI-R1.

Authors:Benjamin Clavié, Florian Brand
Title: ReadBench: Measuring the Dense Text Visual Reading Ability of Vision-Language Models
Abstract:
Recent advancements in Large Vision-Language Models (VLMs), have greatly enhanced their capability to jointly process text and images. However, despite extensive benchmarks evaluating visual comprehension (e.g., diagrams, color schemes, OCR tasks...), there is limited assessment of VLMs' ability to read and reason about text-rich images effectively. To fill this gap, we introduce ReadBench, a multimodal benchmark specifically designed to evaluate the reading comprehension capabilities of VLMs. ReadBench transposes contexts from established text-only benchmarks into images of text while keeping textual prompts and questions intact. Evaluating leading VLMs with ReadBench, we find minimal-but-present performance degradation on short, text-image inputs, while performance sharply declines for longer, multi-page contexts. Our experiments further reveal that text resolution has negligible effects on multimodal performance. These findings highlight needed improvements in VLMs, particularly their reasoning over visually presented extensive textual content, a capability critical for practical applications. ReadBench is available at https://github.com/answerdotai/ReadBench .

Authors:Yifeng Xu, Zhenliang He, Meina Kan, Shiguang Shan, Xilin Chen
Title: Jodi: Unification of Visual Generation and Understanding via Joint Modeling
Abstract:
Visual generation and understanding are two deeply interconnected aspects of human intelligence, yet they have been traditionally treated as separate tasks in machine learning. In this paper, we propose Jodi, a diffusion framework that unifies visual generation and understanding by jointly modeling the image domain and multiple label domains. Specifically, Jodi is built upon a linear diffusion transformer along with a role switch mechanism, which enables it to perform three particular types of tasks: (1) joint generation, where the model simultaneously generates images and multiple labels; (2) controllable generation, where images are generated conditioned on any combination of labels; and (3) image perception, where multiple labels can be predicted at once from a given image. Furthermore, we present the Joint-1.6M dataset, which contains 200,000 high-quality images collected from public sources, automatic labels for 7 visual domains, and LLM-generated captions. Extensive experiments demonstrate that Jodi excels in both generation and understanding tasks and exhibits strong extensibility to a wider range of visual domains. Code is available at https://github.com/VIPL-GENUN/Jodi.

Authors:Jaemin Kim, Hangeol Chang, Hyunmin Hwang, Choonghan Kim, Jong Chul Ye
Title: Universal Reasoner: A Single, Composable Plug-and-Play Reasoner for Frozen LLMs
Abstract:
Large Language Models (LLMs) have demonstrated remarkable general capabilities, but enhancing skills such as reasoning often demands substantial computational resources and may compromise their generalization. While Parameter-Efficient Fine-Tuning (PEFT) methods offer a more resource-conscious alternative, they typically requires retraining for each LLM backbone due to architectural dependencies. To address these challenges, here we propose Universal Reasoner (UniR) - a single, lightweight, composable, and plug-and-play reasoning module that can be used with any frozen LLM to endow it with specialized reasoning capabilities. Specifically, UniR decomposes the reward into a standalone reasoning module that is trained independently using predefined rewards, effectively translating trajectory-level signals into token-level guidance. Once trained, UniR can be combined with any frozen LLM at inference time by simply adding its output logits to those of the LLM backbone. This additive structure naturally enables modular composition: multiple UniR modules trained for different tasks can be jointly applied by summing their logits, enabling complex reasoning via composition. Experimental results on mathematical reasoning and machine translation tasks show that UniR significantly outperforms existing baseline fine-tuning methods using the Llama3.2 model. Furthermore, UniR demonstrates strong weak-to-strong generalization: reasoning modules trained on smaller models effectively guide much larger LLMs. This makes UniR a cost-efficient, adaptable, and robust solution for enhancing reasoning in LLMs without compromising their core capabilities. Code is open-sourced at https://github.com/hangeol/UniR

Authors:Jiashuo Chang, Zhengyi Li, Jianxun Lou, Zhen Qiu, Hanhe Lin
Title: MMP-2K: A Benchmark Multi-Labeled Macro Photography Image Quality Assessment Database
Abstract:
Macro photography (MP) is a specialized field of photography that captures objects at an extremely close range, revealing tiny details. Although an accurate macro photography image quality assessment (MPIQA) metric can benefit macro photograph capturing, which is vital in some domains such as scientific research and medical applications, the lack of MPIQA data limits the development of MPIQA metrics. To address this limitation, we conducted a large-scale MPIQA study. Specifically, to ensure diversity both in content and quality, we sampled 2,000 MP images from 15,700 MP images, collected from three public image websites. For each MP image, 17 (out of 21 after outlier removal) quality ratings and a detailed quality report of distortion magnitudes, types, and positions are gathered by a lab study. The images, quality ratings, and quality reports form our novel multi-labeled MPIQA database, MMP-2k. Experimental results showed that the state-of-the-art generic IQA metrics underperform on MP images. The database and supplementary materials are available at https://github.com/Future-IQA/MMP-2k.

Authors:Ke-Han Lu, Chun-Yi Kuan, Hung-yi Lee
Title: Speech-IFEval: Evaluating Instruction-Following and Quantifying Catastrophic Forgetting in Speech-Aware Language Models
Abstract:
We introduce Speech-IFeval, an evaluation framework designed to assess instruction-following capabilities and quantify catastrophic forgetting in speech-aware language models (SLMs). Recent SLMs integrate speech perception with large language models (LLMs), often degrading textual capabilities due to speech-centric training. Existing benchmarks conflate speech perception with instruction-following, hindering evaluation of these distinct skills. To address this gap, we provide a benchmark for diagnosing the instruction-following abilities of SLMs. Our findings show that most SLMs struggle with even basic instructions, performing far worse than text-based LLMs. Additionally, these models are highly sensitive to prompt variations, often yielding inconsistent and unreliable outputs. We highlight core challenges and provide insights to guide future research, emphasizing the need for evaluation beyond task-level metrics.

Authors:Minzhi Lin, Tianchi Xie, Mengchen Liu, Yilin Ye, Changjian Chen, Shixia Liu
Title: InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Abstract:
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.

Authors:Jingping Liu, Ziyan Liu, Zhedong Cen, Yan Zhou, Yinan Zou, Weiyan Zhang, Haiyun Jiang, Tong Ruan
Title: Can Multimodal Large Language Models Understand Spatial Relations?
Abstract:
Spatial relation reasoning is a crucial task for multimodal large language models (MLLMs) to understand the objective world. However, current benchmarks have issues like relying on bounding boxes, ignoring perspective substitutions, or allowing questions to be answered using only the model's prior knowledge without image understanding. To address these issues, we introduce SpatialMQA, a human-annotated spatial relation reasoning benchmark based on COCO2017, which enables MLLMs to focus more on understanding images in the objective world. To ensure data quality, we design a well-tailored annotation procedure, resulting in SpatialMQA consisting of 5,392 samples. Based on this benchmark, a series of closed- and open-source MLLMs are implemented and the results indicate that the current state-of-the-art MLLM achieves only 48.14% accuracy, far below the human-level accuracy of 98.40%. Extensive experimental analyses are also conducted, suggesting the future research directions. The benchmark and codes are available at https://github.com/ziyan-xiaoyu/SpatialMQA.git.

Authors:Yunxin Li, Xinyu Chen, Zitao Li, Zhenyu Liu, Longyue Wang, Wenhan Luo, Baotian Hu, Min Zhang
Title: VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization
Abstract:
Applying Reinforcement Learning (RL) to Video Large Language Models (Video-LLMs) shows significant promise for complex video reasoning. However, popular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks (e.g., noise or high cost) and exhibit unstable improvements in the quality of long chain-of-thoughts (CoTs) and downstream performance.To address these limitations, we propose VerIPO, a Verifier-guided Iterative Policy Optimization method designed to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains. The core component is Rollout-Aware Verifier, positioned between the GRPO and Direct Preference Optimization (DPO) training phases to form the GRPO-Verifier-DPO training loop. This verifier leverages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the construction of high-quality contrastive data, including reflective and contextually consistent CoTs. These curated preference samples drive the efficient DPO stage (7x faster than GRPO), leading to marked improvements in reasoning chain quality, especially in terms of length and contextual consistency. This training loop benefits from GRPO's expansive search and DPO's targeted optimization. Experimental results demonstrate: 1) Significantly faster and more effective optimization compared to standard GRPO variants, yielding superior performance; 2) Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs, producing long and contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model with one iteration outperforms powerful LMMs (e.g., Kimi-VL) and long reasoning models (e.g., Video-R1), highlighting its effectiveness and stability.

Authors:Hewen Xiao, Xiuping Liu, Hang Zhao, Jian Liu, Kai Xu
Title: Designing Pin-pression Gripper and Learning its Dexterous Grasping with Online In-hand Adjustment
Abstract:
We introduce a novel design of parallel-jaw grippers drawing inspiration from pin-pression toys. The proposed pin-pression gripper features a distinctive mechanism in which each finger integrates a 2D array of pins capable of independent extension and retraction. This unique design allows the gripper to instantaneously customize its finger's shape to conform to the object being grasped by dynamically adjusting the extension/retraction of the pins. In addition, the gripper excels in in-hand re-orientation of objects for enhanced grasping stability again via dynamically adjusting the pins. To learn the dynamic grasping skills of pin-pression grippers, we devise a dedicated reinforcement learning algorithm with careful designs of state representation and reward shaping. To achieve a more efficient grasp-while-lift grasping mode, we propose a curriculum learning scheme. Extensive evaluations demonstrate that our design, together with the learned skills, leads to highly flexible and robust grasping with much stronger generality to unseen objects than alternatives. We also highlight encouraging physical results of sim-to-real transfer on a physically manufactured pin-pression gripper, demonstrating the practical significance of our novel gripper design and grasping skill. Demonstration videos for this paper are available at https://github.com/siggraph-pin-pression-gripper/pin-pression-gripper-video.

Authors:Tianchen Deng, Wenhua Wu, Junjie He, Yue Pan, Xirui Jiang, Shenghai Yuan, Danwei Wang, Hesheng Wang, Weidong Chen
Title: VPGS-SLAM: Voxel-based Progressive 3D Gaussian SLAM in Large-Scale Scenes
Abstract:
3D Gaussian Splatting has recently shown promising results in dense visual SLAM. However, existing 3DGS-based SLAM methods are all constrained to small-room scenarios and struggle with memory explosion in large-scale scenes and long sequences. To this end, we propose VPGS-SLAM, the first 3DGS-based large-scale RGBD SLAM framework for both indoor and outdoor scenarios. We design a novel voxel-based progressive 3D Gaussian mapping method with multiple submaps for compact and accurate scene representation in large-scale and long-sequence scenes. This allows us to scale up to arbitrary scenes and improves robustness (even under pose drifts). In addition, we propose a 2D-3D fusion camera tracking method to achieve robust and accurate camera tracking in both indoor and outdoor large-scale scenes. Furthermore, we design a 2D-3D Gaussian loop closure method to eliminate pose drift. We further propose a submap fusion method with online distillation to achieve global consistency in large-scale scenes when detecting a loop. Experiments on various indoor and outdoor datasets demonstrate the superiority and generalizability of the proposed framework. The code will be open source on https://github.com/dtc111111/vpgs-slam.

Authors:Tianyu Zhang, Xinyu Wang, Lu Li, Zhenghan Tai, Jijun Chi, Jingrui Tian, Hailin He, Suyuchen Wang
Title: STRICT: Stress Test of Rendering Images Containing Text
Abstract:
While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce $\textbf{STRICT}$, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.

Authors:Pingbang Hu, Joseph Melkonian, Weijing Tang, Han Zhao, Jiaqi W. Ma
Title: GraSS: Scalable Influence Function with Sparse Gradient Compression
Abstract:
Gradient-based data attribution methods, such as influence functions, are critical for understanding the impact of individual training samples without requiring repeated model retraining. However, their scalability is often limited by the high computational and memory costs associated with per-sample gradient computation. In this work, we propose GraSS, a novel gradient compression algorithm and its variants FactGraSS for linear layers specifically, that explicitly leverage the inherent sparsity of per-sample gradients to achieve sub-linear space and time complexity. Extensive experiments demonstrate the effectiveness of our approach, achieving substantial speedups while preserving data influence fidelity. In particular, FactGraSS achieves up to 165% faster throughput on billion-scale models compared to the previous state-of-the-art baselines. Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.

Authors:Jiong Wu, Yang Xing, Boxiao Yu, Wei Shao, Kuang Gong
Title: CDPDNet: Integrating Text Guidance with Hybrid Vision Encoders for Medical Image Segmentation
Abstract:
Most publicly available medical segmentation datasets are only partially labeled, with annotations provided for a subset of anatomical structures. When multiple datasets are combined for training, this incomplete annotation poses challenges, as it limits the model's ability to learn shared anatomical representations among datasets. Furthermore, vision-only frameworks often fail to capture complex anatomical relationships and task-specific distinctions, leading to reduced segmentation accuracy and poor generalizability to unseen datasets. In this study, we proposed a novel CLIP-DINO Prompt-Driven Segmentation Network (CDPDNet), which combined a self-supervised vision transformer with CLIP-based text embedding and introduced task-specific text prompts to tackle these challenges. Specifically, the framework was constructed upon a convolutional neural network (CNN) and incorporated DINOv2 to extract both fine-grained and global visual features, which were then fused using a multi-head cross-attention module to overcome the limited long-range modeling capability of CNNs. In addition, CLIP-derived text embeddings were projected into the visual space to help model complex relationships among organs and tumors. To further address the partial label challenge and enhance inter-task discriminative capability, a Text-based Task Prompt Generation (TTPG) module that generated task-specific prompts was designed to guide the segmentation. Extensive experiments on multiple medical imaging datasets demonstrated that CDPDNet consistently outperformed existing state-of-the-art segmentation methods. Code and pretrained model are available at: https://github.com/wujiong-hub/CDPDNet.git.

Authors:Yining Pan, Qiongjie Cui, Xulei Yang, Na Zhao
Title: How Do Images Align and Complement LiDAR? Towards a Harmonized Multi-modal 3D Panoptic Segmentation
Abstract:
LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at .

Authors:Saman Sarker Joy
Title: BnMMLU: Measuring Massive Multitask Language Understanding in Bengali
Abstract:
The Massive Multitask Language Understanding (MMLU) benchmark has been widely used to evaluate language models across various domains. However, existing MMLU datasets primarily focus on high-resource languages such as English, which leaves low-resource languages like Bengali underrepresented. In this paper, we introduce BnMMLU, a benchmark to evaluate the multitask language understanding capabilities of Bengali in language models. The dataset spans 23 domains, including science, humanities, mathematics and general knowledge and is structured in a multiple-choice format to assess factual knowledge, application-based problem-solving and reasoning abilities of language models. It consists of 138,949 question-option pairs. We benchmark several proprietary and open-source large language models (LLMs) on the BnMMLU test set. Additionally, we annotate the test set with three cognitive categories-factual knowledge, procedural application and reasoning-to gain deeper insights into model strengths and weaknesses across various cognitive tasks. The results reveal significant performance gaps, highlighting the need for improved pre-training and fine-tuning strategies tailored to Bengali data. We release the dataset and benchmark results to facilitate further research in this area.

Authors:Xuanming Zhang, Yuxuan Chen, Min-Hsuan Yeh, Yixuan Li
Title: MetaMind: Modeling Human Social Thoughts with Metacognitive Multi-Agent Systems
Abstract:
Human social interactions depend on the ability to infer others' unspoken intentions, emotions, and beliefs-a cognitive skill grounded in the psychological concept of Theory of Mind (ToM). While large language models (LLMs) excel in semantic understanding tasks, they struggle with the ambiguity and contextual nuance inherent in human communication. To bridge this gap, we introduce MetaMind, a multi-agent framework inspired by psychological theories of metacognition, designed to emulate human-like social reasoning. MetaMind decomposes social understanding into three collaborative stages: (1) a Theory-of-Mind Agent generates hypotheses user mental states (e.g., intent, emotion), (2) a Domain Agent refines these hypotheses using cultural norms and ethical constraints, and (3) a Response Agent generates contextually appropriate responses while validating alignment with inferred intent. Our framework achieves state-of-the-art performance across three challenging benchmarks, with 35.7% improvement in real-world social scenarios and 6.2% gain in ToM reasoning. Notably, it enables LLMs to match human-level performance on key ToM tasks for the first time. Ablation studies confirm the necessity of all components, which showcase the framework's ability to balance contextual plausibility, social appropriateness, and user adaptation. This work advances AI systems toward human-like social intelligence, with applications in empathetic dialogue and culturally sensitive interactions. Code is available at https://github.com/XMZhangAI/MetaMind.

Authors:Xuanming Zhang, Yuxuan Chen, Min-Hsuan Yeh, Yixuan Li
Title: MetaMind: Modeling Human Social Thoughts with Metacognitive Multi-Agent Systems
Abstract:
Human social interactions depend on the ability to infer others' unspoken intentions, emotions, and beliefs-a cognitive skill grounded in the psychological concept of Theory of Mind (ToM). While large language models (LLMs) excel in semantic understanding tasks, they struggle with the ambiguity and contextual nuance inherent in human communication. To bridge this gap, we introduce MetaMind, a multi-agent framework inspired by psychological theories of metacognition, designed to emulate human-like social reasoning. MetaMind decomposes social understanding into three collaborative stages: (1) a Theory-of-Mind Agent generates hypotheses about user mental states (e.g., intent, emotion), (2) a Moral Agent refines these hypotheses using cultural norms and ethical constraints, and (3) a Response Agent generates contextually appropriate responses while validating alignment with inferred intent. Our framework achieves state-of-the-art performance across three challenging benchmarks, with 35.7% improvement in real-world social scenarios and 6.2% gain in ToM reasoning. Notably, it enables LLMs to match human-level performance on key ToM tasks for the first time. Ablation studies confirm the necessity of all components, which showcase the framework's ability to balance contextual plausibility, social appropriateness, and user adaptation. This work advances AI systems toward human-like social intelligence, with applications in empathetic dialogue and culturally sensitive interactions. Code is available at https://github.com/XMZhangAI/MetaMind.

Authors:Xiping Li, Xiangyu Dong, Xingyi Zhang, Kun Xie, Yuanhao Feng, Bo Wang, Guilin Li, Wuxiong Zeng, Xiujun Shu, Sibo Wang
Title: Chi-Square Wavelet Graph Neural Networks for Heterogeneous Graph Anomaly Detection
Abstract:
Graph Anomaly Detection (GAD) in heterogeneous networks presents unique challenges due to node and edge heterogeneity. Existing Graph Neural Network (GNN) methods primarily focus on homogeneous GAD and thus fail to address three key issues: (C1) Capturing abnormal signal and rich semantics across diverse meta-paths; (C2) Retaining high-frequency content in HIN dimension alignment; and (C3) Learning effectively from difficult anomaly samples with class imbalance. To overcome these, we propose ChiGAD, a spectral GNN framework based on a novel Chi-Square filter, inspired by the wavelet effectiveness in diverse domains. Specifically, ChiGAD consists of: (1) Multi-Graph Chi-Square Filter, which captures anomalous information via applying dedicated Chi-Square filters to each meta-path graph; (2) Interactive Meta-Graph Convolution, which aligns features while preserving high-frequency information and incorporates heterogeneous messages by a unified Chi-Square Filter; and (3) Contribution-Informed Cross-Entropy Loss, which prioritizes difficult anomalies to address class imbalance. Extensive experiments on public and industrial datasets show that ChiGAD outperforms state-of-the-art models on multiple metrics. Additionally, its homogeneous variant, ChiGNN, excels on seven GAD datasets, validating the effectiveness of Chi-Square filters. Our code is available at https://github.com/HsipingLi/ChiGAD.

Authors:Javier Salazar Cavazos, Jeffrey A Fessler, Laura Balzano
Title: ALPCAHUS: Subspace Clustering for Heteroscedastic Data
Abstract:
Principal component analysis (PCA) is a key tool in the field of data dimensionality reduction. Various methods have been proposed to extend PCA to the union of subspace (UoS) setting for clustering data that come from multiple subspaces like K-Subspaces (KSS). However, some applications involve heterogeneous data that vary in quality due to noise characteristics associated with each data sample. Heteroscedastic methods aim to deal with such mixed data quality. This paper develops a heteroscedastic-focused subspace clustering method, named ALPCAHUS, that can estimate the sample-wise noise variances and use this information to improve the estimate of the subspace bases associated with the low-rank structure of the data. This clustering algorithm builds on K-Subspaces (KSS) principles by extending the recently proposed heteroscedastic PCA method, named LR-ALPCAH, for clusters with heteroscedastic noise in the UoS setting. Simulations and real-data experiments show the effectiveness of accounting for data heteroscedasticity compared to existing clustering algorithms. Code available at https://github.com/javiersc1/ALPCAHUS.

Authors:Yixiong Chen, Wenjie Xiao, Pedro R. A. S. Bassi, Xinze Zhou, Sezgin Er, Ibrahim Ethem Hamamci, Zongwei Zhou, Alan Yuille
Title: Are Vision Language Models Ready for Clinical Diagnosis? A 3D Medical Benchmark for Tumor-centric Visual Question Answering
Abstract:
Vision-Language Models (VLMs) have shown promise in various 2D visual tasks, yet their readiness for 3D clinical diagnosis remains unclear due to stringent demands for recognition precision, reasoning ability, and domain knowledge. To systematically evaluate these dimensions, we present DeepTumorVQA, a diagnostic visual question answering (VQA) benchmark targeting abdominal tumors in CT scans. It comprises 9,262 CT volumes (3.7M slices) from 17 public datasets, with 395K expert-level questions spanning four categories: Recognition, Measurement, Visual Reasoning, and Medical Reasoning. DeepTumorVQA introduces unique challenges, including small tumor detection and clinical reasoning across 3D anatomy. Benchmarking four advanced VLMs (RadFM, M3D, Merlin, CT-CHAT), we find current models perform adequately on measurement tasks but struggle with lesion recognition and reasoning, and are still not meeting clinical needs. Two key insights emerge: (1) large-scale multimodal pretraining plays a crucial role in DeepTumorVQA testing performance, making RadFM stand out among all VLMs. (2) Our dataset exposes critical differences in VLM components, where proper image preprocessing and design of vision modules significantly affect 3D perception. To facilitate medical multimodal research, we have released DeepTumorVQA as a rigorous benchmark: https://github.com/Schuture/DeepTumorVQA.

Authors:Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu Li, Chenfeng Xu, Kelly Peng, Jianfei Chen, Song Han, Kurt Keutzer, Ion Stoica
Title: Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation
Abstract:
Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively. Our code is open-sourced at \href{https://github.com/svg-project/Sparse-VideoGen}{https://github.com/svg-project/Sparse-VideoGen}.

Authors:Alexander Shabalin, Viacheslav Meshchaninov, Dmitry Vetrov
Title: Smoothie: Smoothing Diffusion on Token Embeddings for Text Generation
Abstract:
Diffusion models have achieved state-of-the-art performance in generating images, audio, and video, but their adaptation to text remains challenging due to its discrete nature. Prior approaches either apply Gaussian diffusion in continuous latent spaces, which inherits semantic structure but struggles with token decoding, or operate in categorical simplex space, which respect discreteness but disregard semantic relation between tokens. In this paper, we propose Smoothing Diffusion on Token Embeddings (Smoothie), a novel diffusion method that combines the strengths of both approaches by progressively smoothing token embeddings based on semantic similarity. This technique enables gradual information removal while maintaining a natural decoding process. Experimental results on several sequence-to-sequence generation tasks demonstrate that Smoothie outperforms existing diffusion-based models in generation quality. Furthermore, ablation studies show that our proposed diffusion space yields better performance than both the standard embedding space and the categorical simplex. Our code is available at https://github.com/ashaba1in/smoothie.

Authors:Kai Mei, Xi Zhu, Hang Gao, Shuhang Lin, Yongfeng Zhang
Title: LiteCUA: Computer as MCP Server for Computer-Use Agent on AIOS
Abstract:
We present AIOS 1.0, a novel platform designed to advance computer-use agent (CUA) capabilities through environmental contextualization. While existing approaches primarily focus on building more powerful agent frameworks or enhancing agent models, we identify a fundamental limitation: the semantic disconnect between how language models understand the world and how computer interfaces are structured. AIOS 1.0 addresses this challenge by transforming computers into contextual environments that language models can natively comprehend, implementing a Model Context Protocol (MCP) server architecture to abstract computer states and actions. This approach effectively decouples interface complexity from decision complexity, enabling agents to reason more effectively about computing environments. To demonstrate our platform's effectiveness, we introduce LiteCUA, a lightweight computer-use agent built on AIOS 1.0 that achieves a 14.66% success rate on the OSWorld benchmark, outperforming several specialized agent frameworks despite its simple architecture. Our results suggest that contextualizing computer environments for language models represents a promising direction for developing more capable computer-use agents and advancing toward AI that can interact with digital systems. The source code of LiteCUA is available at https://github.com/agiresearch/LiteCUA, and it is also integrated into the AIOS main branch as part of AIOS at https://github.com/agiresearch/AIOS.

Authors:Nicholas M. Boffi, Michael S. Albergo, Eric Vanden-Eijnden
Title: How to build a consistency model: Learning flow maps via self-distillation
Abstract:
Flow-based generative models achieve state-of-the-art sample quality, but require the expensive solution of a differential equation at inference time. Flow map models, commonly known as consistency models, encompass many recent efforts to improve inference-time efficiency by learning the solution operator of this differential equation. Yet despite their promise, these models lack a unified description that clearly explains how to learn them efficiently in practice. Here, building on the methodology proposed in Boffi et. al. (2024), we present a systematic algorithmic framework for directly learning the flow map associated with a flow or diffusion model. By exploiting a relationship between the velocity field underlying a continuous-time flow and the instantaneous rate of change of the flow map, we show how to convert any distillation scheme into a direct training algorithm via self-distillation, eliminating the need for pre-trained teachers. We introduce three algorithmic families based on different mathematical characterizations of the flow map: Eulerian, Lagrangian, and Progressive methods, which we show encompass and extend all known distillation and direct training schemes for consistency models. We find that the novel class of Lagrangian methods, which avoid both spatial derivatives and bootstrapping from small steps by design, achieve significantly more stable training and higher performance than more standard Eulerian and Progressive schemes. Our methodology unifies existing training schemes under a single common framework and reveals new design principles for accelerated generative modeling. Associated code is available at https://github.com/nmboffi/flow-maps.

Authors:Libin Lan, Yanxin Li, Xiaojuan Liu, Juan Zhou, Jianxun Zhang, Nannan Huang, Yudong Zhang
Title: MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image Segmentation
Abstract:
Both CNN-based and Transformer-based methods have achieved remarkable success in medical image segmentation tasks. However, CNN-based methods struggle to effectively capture global contextual information due to the inherent limitations of convolution operations. Meanwhile, Transformer-based methods suffer from insufficient local feature modeling and face challenges related to the high computational complexity caused by the self-attention mechanism. To address these limitations, we propose a novel hybrid CNN-Transformer architecture, named MSLAU-Net, which integrates the strengths of both paradigms. The proposed MSLAU-Net incorporates two key ideas. First, it introduces Multi-Scale Linear Attention, designed to efficiently extract multi-scale features from medical images while modeling long-range dependencies with low computational complexity. Second, it adopts a top-down feature aggregation mechanism, which performs multi-level feature aggregation and restores spatial resolution using a lightweight structure. Extensive experiments conducted on benchmark datasets covering three imaging modalities demonstrate that the proposed MSLAU-Net outperforms other state-of-the-art methods on nearly all evaluation metrics, validating the superiority, effectiveness, and robustness of our approach. Our code is available at https://github.com/Monsoon49/MSLAU-Net.

Authors:Wenhao Sun, Rong-Cheng Tu, Yifu Ding, Zhao Jin, Jingyi Liao, Shunyu Liu, Dacheng Tao
Title: VORTA: Efficient Video Diffusion via Routing Sparse Attention
Abstract:
Video Diffusion Transformers (VDiTs) have achieved remarkable progress in high-quality video generation, but remain computationally expensive due to the quadratic complexity of attention over high-dimensional video sequences. Recent attention acceleration methods leverage the sparsity of attention patterns to improve efficiency; however, they often overlook inefficiencies of redundant long-range interactions. To address this problem, we propose \textbf{VORTA}, an acceleration framework with two novel components: 1) a sparse attention mechanism that efficiently captures long-range dependencies, and 2) a routing strategy that adaptively replaces full 3D attention with specialized sparse attention variants throughout the sampling process. It achieves a $1.76\times$ end-to-end speedup without quality loss on VBench. Furthermore, VORTA can seamlessly integrate with various other acceleration methods, such as caching and step distillation, reaching up to $14.41\times$ speedup with negligible performance degradation. VORTA demonstrates its efficiency and enhances the practicality of VDiTs in real-world settings.

Authors:Hao Chen, Haoze Li, Zhiqing Xiao, Lirong Gao, Qi Zhang, Xiaomeng Hu, Ningtao Wang, Xing Fu, Junbo Zhao
Title: ALPS: Attention Localization and Pruning Strategy for Efficient Alignment of Large Language Models
Abstract:
Aligning general-purpose large language models (LLMs) to downstream tasks often incurs significant training adjustment costs. Prior research has explored various avenues to enhance alignment efficiency, primarily through minimal-data training or data-driven activations to identify key attention heads. However, these approaches inherently introduce data dependency, which hinders generalization and reusability. To address this issue and enhance model alignment efficiency, we propose the Attention Localization and Pruning Strategy (ALPS), an efficient algorithm that localizes the most task-sensitive attention heads and prunes by restricting attention training updates to these heads, thereby reducing alignment costs. Experimental results demonstrate that our method activates only 10% of attention parameters during fine-tuning while achieving a 2% performance improvement over baselines on three tasks. Moreover, the identified task-specific heads are transferable across datasets and mitigate knowledge forgetting. Our work and findings provide a novel perspective on efficient LLM alignment. The code is available at https://github.com/VoiceBeer/ALPS.

Authors:David K. Zhang, Alex Aiken
Title: Automatic Verification of Floating-Point Accumulation Networks
Abstract:
Floating-point accumulation networks (FPANs) are key building blocks used in many floating-point algorithms, including compensated summation and double-double arithmetic. FPANs are notoriously difficult to analyze, and algorithms using FPANs are often published without rigorous correctness proofs. In fact, on at least one occasion, a published error bound for a widely used FPAN was later found to be incorrect. In this paper, we present an automatic procedure that produces computer-verified proofs of several FPAN correctness properties, including error bounds that are tight to the nearest bit. Our approach is underpinned by a novel floating-point abstraction that models the sign, exponent, and number of leading and trailing zeros and ones in the mantissa of each number flowing through an FPAN. We also present a new FPAN for double-double addition that is faster and more accurate than the previous best known algorithm.

Authors:Hong-Hanh Nguyen-Le, Van-Tuan Tran, Dinh-Thuc Nguyen, Nhien-An Le-Khac
Title: Think Twice before Adaptation: Improving Adaptability of DeepFake Detection via Online Test-Time Adaptation
Abstract:
Deepfake (DF) detectors face significant challenges when deployed in real-world environments, particularly when encountering test samples deviated from training data through either postprocessing manipulations or distribution shifts. We demonstrate postprocessing techniques can completely obscure generation artifacts presented in DF samples, leading to performance degradation of DF detectors. To address these challenges, we propose Think Twice before Adaptation (\texttt{T$^2$A}), a novel online test-time adaptation method that enhances the adaptability of detectors during inference without requiring access to source training data or labels. Our key idea is to enable the model to explore alternative options through an Uncertainty-aware Negative Learning objective rather than solely relying on its initial predictions as commonly seen in entropy minimization (EM)-based approaches. We also introduce an Uncertain Sample Prioritization strategy and Gradients Masking technique to improve the adaptation by focusing on important samples and model parameters. Our theoretical analysis demonstrates that the proposed negative learning objective exhibits complementary behavior to EM, facilitating better adaptation capability. Empirically, our method achieves state-of-the-art results compared to existing test-time adaptation (TTA) approaches and significantly enhances the resilience and generalization of DF detectors during inference. Code is available \href{https://github.com/HongHanh2104/T2A-Think-Twice-Before-Adaptation}{here}.

Authors:Jiayu Wang, Yang Jiao, Yue Yu, Tianwen Qian, Shaoxiang Chen, Jingjing Chen, Yu-Gang Jiang
Title: OmniGenBench: A Benchmark for Omnipotent Multimodal Generation across 50+ Tasks
Abstract:
Recent breakthroughs in large multimodal models (LMMs), such as the impressive GPT-4o-Native, have demonstrated remarkable proficiency in following general-purpose instructions for image generation. However, current benchmarks often lack the necessary breadth and depth to fully evaluate the diverse capabilities of these models. To overcome this limitation, we introduce OmniGenBench, a novel and comprehensive benchmark meticulously designed to assess the instruction-following abilities of state-of-the-art LMMs across both perception-centric and cognition-centric dimensions. Our OmniGenBench includes 57 diverse sub-tasks grounded in real-world scenarios, systematically categorized according to the specific model capabilities they demand. For rigorous evaluation, we further employ a dual-mode protocol. This protocol utilizes off-the-shelf visual parsing tools for perception-centric tasks and a powerful LLM-based judger for cognition-centric tasks to assess the alignment between generated images and user instructions. Using OmniGenBench, we evaluate mainstream generative models, including prevalent models like GPT-4o, Gemini-2.0-Flash, and Seedream, and provide in-depth comparisons and analyses of their performance.Code and data are available at https://github.com/emilia113/OmniGenBench.

Authors:Alexander Conzelmann, Robert Bamler
Title: Reducing Storage of Pretrained Neural Networks by Rate-Constrained Quantization and Entropy Coding
Abstract:
The ever-growing size of neural networks poses serious challenges on resource-constrained devices, such as embedded sensors. Compression algorithms that reduce their size can mitigate these problems, provided that model performance stays close to the original. We propose a novel post-training compression framework that combines rate-aware quantization with entropy coding by (1) extending the well-known layer-wise loss by a quadratic rate estimation, and (2) providing locally exact solutions to this modified objective following the Optimal Brain Surgeon (OBS) method. Our method allows for very fast decoding and is compatible with arbitrary quantization grids. We verify our results empirically by testing on various computer-vision networks, achieving a 20-40\% decrease in bit rate at the same performance as the popular compression algorithm NNCodec. Our code is available at https://github.com/Conzel/cerwu.

Authors:Peijie Yu, Yifan Yang, Jinjian Li, Zelong Zhang, Haorui Wang, Xiao Feng, Feng Zhang
Title: $C^3$-Bench: The Things Real Disturbing LLM based Agent in Multi-Tasking
Abstract:
Agents based on large language models leverage tools to modify environments, revolutionizing how AI interacts with the physical world. Unlike traditional NLP tasks that rely solely on historical dialogue for responses, these agents must consider more complex factors, such as inter-tool relationships, environmental feedback and previous decisions, when making choices. Current research typically evaluates agents via multi-turn dialogues. However, it overlooks the influence of these critical factors on agent behavior. To bridge this gap, we present an open-source and high-quality benchmark $C^3$-Bench. This benchmark integrates attack concepts and applies univariate analysis to pinpoint key elements affecting agent robustness. In concrete, we design three challenges: navigate complex tool relationships, handle critical hidden information and manage dynamic decision paths. Complementing these challenges, we introduce fine-grained metrics, innovative data collection algorithms and reproducible evaluation methods. Extensive experiments are conducted on 49 mainstream agents, encompassing general fast-thinking, slow-thinking and domain-specific models. We observe that agents have significant shortcomings in handling tool dependencies, long context information dependencies and frequent policy-type switching. In essence, $C^3$-Bench aims to expose model vulnerabilities through these challenges and drive research into the interpretability of agent performance. The benchmark is publicly available at https://github.com/TencentHunyuan/C3-Benchmark.

Authors:Tao Liu, Xutao Mao, Hongying Zan, Dixuan Zhang, Yifan Li, Haixin Liu, Lulu Kong, Jiaming Hou, Rui Li, YunLong Li, aoze zheng, Zhiqiang Zhang, Luo Zhewei, Kunli Zhang, Min Peng
Title: LogicCat: A Chain-of-Thought Text-to-SQL Benchmark for Complex Reasoning
Abstract:
Text-to-SQL is a critical task in natural language processing that aims to transform natural language questions into accurate and executable SQL queries. In real-world scenarios, these reasoning tasks are often accompanied by complex mathematical computations, domain knowledge, and hypothetical reasoning scenarios. However, existing large-scale Text-to-SQL datasets typically focus on business logic and task logic, neglecting critical factors such as vertical domain knowledge, complex mathematical reasoning, and hypothetical reasoning, which are essential for realistically reflecting the reasoning demands in practical applications and completing data querying and analysis. To bridge this gap, we introduce LogicCat, the first Text-to-SQL benchmark dataset specifically designed for complex reasoning and chain-of-thought parsing, encompassing physics, arithmetic, commonsense, and hypothetical reasoning scenarios. LogicCat comprises 4,038 English questions paired 12,114 detailed chain-of-thought reasoning steps, spanning 45 databases across diverse domains, significantly surpassing existing datasets in complexity. Experimental results demonstrate that LogicCat substantially increases the task difficulty for current state-of-the-art models to at most 33.20% execution accuracy, indicating that this task remains exceptionally challenging. The advancement of LogicCat represents a crucial step toward developing systems suitable for real-world enterprise data analysis and autonomous query generation. We have released our dataset code at https://github.com/Ffunkytao/LogicCat.

Authors:Wenchao Zhang, Jiahe Tian, Runze He, Jizhong Han, Jiao Dai, Miaomiao Feng, Wei Mi, Xiaodan Zhang
Title: Align Beyond Prompts: Evaluating World Knowledge Alignment in Text-to-Image Generation
Abstract:
Recent text-to-image (T2I) generation models have advanced significantly, enabling the creation of high-fidelity images from textual prompts. However, existing evaluation benchmarks primarily focus on the explicit alignment between generated images and prompts, neglecting the alignment with real-world knowledge beyond prompts. To address this gap, we introduce Align Beyond Prompts (ABP), a comprehensive benchmark designed to measure the alignment of generated images with real-world knowledge that extends beyond the explicit user prompts. ABP comprises over 2,000 meticulously crafted prompts, covering real-world knowledge across six distinct scenarios. We further introduce ABPScore, a metric that utilizes existing Multimodal Large Language Models (MLLMs) to assess the alignment between generated images and world knowledge beyond prompts, which demonstrates strong correlations with human judgments. Through a comprehensive evaluation of 8 popular T2I models using ABP, we find that even state-of-the-art models, such as GPT-4o, face limitations in integrating simple real-world knowledge into generated images. To mitigate this issue, we introduce a training-free strategy within ABP, named Inference-Time Knowledge Injection (ITKI). By applying this strategy to optimize 200 challenging samples, we achieved an improvement of approximately 43% in ABPScore. The dataset and code are available in https://github.com/smile365317/ABP.

Authors:Meng Li, Guangda Huzhang, Haibo Zhang, Xiting Wang, Anxiang Zeng
Title: Optimal Transport-Based Token Weighting scheme for Enhanced Preference Optimization
Abstract:
Direct Preference Optimization (DPO) has emerged as a promising framework for aligning Large Language Models (LLMs) with human preferences by directly optimizing the log-likelihood difference between chosen and rejected responses. However, existing methods assign equal importance to all tokens in the response, while humans focus on more meaningful parts. This leads to suboptimal preference optimization, as irrelevant or noisy tokens disproportionately influence DPO loss. To address this limitation, we propose \textbf{O}ptimal \textbf{T}ransport-based token weighting scheme for enhancing direct \textbf{P}reference \textbf{O}ptimization (OTPO). By emphasizing semantically meaningful token pairs and de-emphasizing less relevant ones, our method introduces a context-aware token weighting scheme that yields a more contrastive reward difference estimate. This adaptive weighting enhances reward stability, improves interpretability, and ensures that preference optimization focuses on meaningful differences between responses. Extensive experiments have validated OTPO's effectiveness in improving instruction-following ability across various settings\footnote{Code is available at https://github.com/Mimasss2/OTPO.}.

Authors:Guodong Du, Zitao Fang, Jing Li, Junlin Li, Runhua Jiang, Shuyang Yu, Yifei Guo, Yangneng Chen, Sim Kuan Goh, Ho-Kin Tang, Daojing He, Honghai Liu, Min Zhang
Title: Neural Parameter Search for Slimmer Fine-Tuned Models and Better Transfer
Abstract:
Foundation models and their checkpoints have significantly advanced deep learning, boosting performance across various applications. However, fine-tuned models often struggle outside their specific domains and exhibit considerable redundancy. Recent studies suggest that combining a pruned fine-tuned model with the original pre-trained model can mitigate forgetting, reduce interference when merging model parameters across tasks, and improve compression efficiency. In this context, developing an effective pruning strategy for fine-tuned models is crucial. Leveraging the advantages of the task vector mechanism, we preprocess fine-tuned models by calculating the differences between them and the original model. Recognizing that different task vector subspaces contribute variably to model performance, we introduce a novel method called Neural Parameter Search (NPS-Pruning) for slimming down fine-tuned models. This method enhances pruning efficiency by searching through neural parameters of task vectors within low-rank subspaces. Our method has three key applications: enhancing knowledge transfer through pairwise model interpolation, facilitating effective knowledge fusion via model merging, and enabling the deployment of compressed models that retain near-original performance while significantly reducing storage costs. Extensive experiments across vision, NLP, and multi-modal benchmarks demonstrate the effectiveness and robustness of our approach, resulting in substantial performance gains. The code is publicly available at: https://github.com/duguodong7/NPS-Pruning.

Authors:Xu Zhang, Kun Zhang, Wenxin Ma, Rongsheng Wang, Chenxu Wu, Yingtai Li, S. Kevin Zhou
Title: A General Knowledge Injection Framework for ICD Coding
Abstract:
ICD Coding aims to assign a wide range of medical codes to a medical text document, which is a popular and challenging task in the healthcare domain. To alleviate the problems of long-tail distribution and the lack of annotations of code-specific evidence, many previous works have proposed incorporating code knowledge to improve coding performance. However, existing methods often focus on a single type of knowledge and design specialized modules that are complex and incompatible with each other, thereby limiting their scalability and effectiveness. To address this issue, we propose GKI-ICD, a novel, general knowledge injection framework that integrates three key types of knowledge, namely ICD Description, ICD Synonym, and ICD Hierarchy, without specialized design of additional modules. The comprehensive utilization of the above knowledge, which exhibits both differences and complementarity, can effectively enhance the ICD coding performance. Extensive experiments on existing popular ICD coding benchmarks demonstrate the effectiveness of GKI-ICD, which achieves the state-of-the-art performance on most evaluation metrics. Code is available at https://github.com/xuzhang0112/GKI-ICD.

Authors:Jiabin Tang, Lianghao Xia, Zhonghang Li, Chao Huang
Title: AI-Researcher: Autonomous Scientific Innovation
Abstract:
The powerful reasoning capabilities of Large Language Models (LLMs) in mathematics and coding, combined with their ability to automate complex tasks through agentic frameworks, present unprecedented opportunities for accelerating scientific innovation. In this paper, we introduce AI-Researcher, a fully autonomous research system that transforms how AI-driven scientific discovery is conducted and evaluated. Our framework seamlessly orchestrates the complete research pipeline--from literature review and hypothesis generation to algorithm implementation and publication-ready manuscript preparation--with minimal human intervention. To rigorously assess autonomous research capabilities, we develop Scientist-Bench, a comprehensive benchmark comprising state-of-the-art papers across diverse AI research domains, featuring both guided innovation and open-ended exploration tasks. Through extensive experiments, we demonstrate that AI-Researcher achieves remarkable implementation success rates and produces research papers that approach human-level quality. This work establishes new foundations for autonomous scientific innovation that can complement human researchers by systematically exploring solution spaces beyond cognitive limitations.

Authors:Chun Wang, Xiaoran Pan, Zihao Pan, Haofan Wang, Yiren Song
Title: GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
Abstract:
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.

Authors:Can Yaras, Alec S. Xu, Pierre Abillama, Changwoo Lee, Laura Balzano
Title: MonarchAttention: Zero-Shot Conversion to Fast, Hardware-Aware Structured Attention
Abstract:
Transformers have achieved state-of-the-art performance across various tasks, but suffer from a notable quadratic complexity in sequence length due to the attention mechanism. In this work, we propose MonarchAttention -- a novel approach to sub-quadratic attention approximation via Monarch matrices, an expressive class of structured matrices. Based on the variational form of softmax, we describe an efficient optimization-based algorithm to compute an approximate projection of softmax attention onto the class of Monarch matrices with $Θ(N\sqrt{N} d)$ computational complexity and $Θ(Nd)$ memory/IO complexity. Unlike previous approaches, MonarchAttention is both (1) transferable, yielding minimal performance loss with no additional training, even when replacing every attention layer of the transformer, and (2) hardware-efficient, utilizing the highest-throughput tensor core units on modern GPUs. With optimized kernels, MonarchAttention achieves substantial speed-ups in wall-time over FlashAttention-2: $1.4\times$ for shorter sequences $(N=256)$, $4.5\times$ for medium-length sequences $(N=4K)$, and $8.2\times$ for longer sequences $(N=16K)$. We demonstrate the quality of MonarchAttention on diverse tasks and architectures in vision and language problems, showing that it flexibly and accurately approximates softmax attention in a variety of contexts. Our code is available at https://github.com/cjyaras/monarch-attention.

Authors:Ziyang Cheng, Zhixun Li, Yuhan Li, Yixin Song, Kangyi Zhao, Dawei Cheng, Jia Li, Jeffrey Xu Yu
Title: Can LLMs Alleviate Catastrophic Forgetting in Graph Continual Learning? A Systematic Study
Abstract:
Nowadays, real-world data, including graph-structure data, often arrives in a streaming manner, which means that learning systems need to continuously acquire new knowledge without forgetting previously learned information. Although substantial existing works attempt to address catastrophic forgetting in graph machine learning, they are all based on training from scratch with streaming data. With the rise of pretrained models, an increasing number of studies have leveraged their strong generalization ability for continual learning. Therefore, in this work, we attempt to answer whether large language models (LLMs) can mitigate catastrophic forgetting in Graph Continual Learning (GCL). We first point out that current experimental setups for GCL have significant flaws, as the evaluation stage may lead to task ID leakage. Then, we evaluate the performance of LLMs in more realistic scenarios and find that even minor modifications can lead to outstanding results. Finally, based on extensive experiments, we propose a simple-yet-effective method, Simple Graph Continual Learning (SimGCL), that surpasses the previous state-of-the-art GNN-based baseline by around 20% under the rehearsal-free constraint. To facilitate reproducibility, we have developed an easy-to-use benchmark LLM4GCL for training and evaluating existing GCL methods. The code is available at: https://github.com/ZhixunLEE/LLM4GCL.

Authors:Ziyang Cheng, Zhixun Li, Yuhan Li, Yixin Song, Kangyi Zhao, Dawei Cheng, Jia Li, Hong Cheng, Jeffrey Xu Yu
Title: Can LLMs Alleviate Catastrophic Forgetting in Graph Continual Learning? A Systematic Study
Abstract:
Nowadays, real-world data, including graph-structure data, often arrives in a streaming manner, which means that learning systems need to continuously acquire new knowledge without forgetting previously learned information. Although substantial existing works attempt to address catastrophic forgetting in graph machine learning, they are all based on training from scratch with streaming data. With the rise of pretrained models, an increasing number of studies have leveraged their strong generalization ability for continual learning. Therefore, in this work, we attempt to answer whether large language models (LLMs) can mitigate catastrophic forgetting in Graph Continual Learning (GCL). We first point out that current experimental setups for GCL have significant flaws, as the evaluation stage may lead to task ID leakage. Then, we evaluate the performance of LLMs in more realistic scenarios and find that even minor modifications can lead to outstanding results. Finally, based on extensive experiments, we propose a simple-yet-effective method, Simple Graph Continual Learning (SimGCL), that surpasses the previous state-of-the-art GNN-based baseline by around 20% under the rehearsal-free constraint. To facilitate reproducibility, we have developed an easy-to-use benchmark LLM4GCL for training and evaluating existing GCL methods. The code is available at: https://github.com/ZhixunLEE/LLM4GCL.

Authors:Rafiu Adekoya Badekale, Adewale Akinfaderin
Title: AI-Driven Climate Policy Scenario Generation for Sub-Saharan Africa
Abstract:
Climate policy scenario generation and evaluation have traditionally relied on integrated assessment models (IAMs) and expert-driven qualitative analysis. These methods enable stakeholders, such as policymakers and researchers, to anticipate impacts, plan governance strategies, and develop mitigation measures. However, traditional methods are often time-intensive, reliant on simple extrapolations of past trends, and limited in capturing the complex and interconnected nature of energy and climate issues. With the advent of artificial intelligence (AI), particularly generative AI models trained on vast datasets, these limitations can be addressed, ensuring robustness even under limited data conditions. In this work, we explore the novel method that employs generative AI, specifically large language models (LLMs), to simulate climate policy scenarios for Sub-Saharan Africa. These scenarios focus on energy transition themes derived from the historical United Nations Climate Change Conference (COP) documents. By leveraging generative models, the project aims to create plausible and diverse policy scenarios that align with regional climate goals and energy challenges. Given limited access to human evaluators, automated techniques were employed for scenario evaluation. We generated policy scenarios using the llama3.2-3B model. Of the 34 generated responses, 30 (88%) passed expert validation, accurately reflecting the intended impacts provided in the corresponding prompts. We compared these validated responses against assessments from a human climate expert and two additional LLMs (gemma2-2B and mistral-7B). Our structured, embedding-based evaluation framework shows that generative AI effectively generate scenarios that are coherent, relevant, plausible, and diverse. This approach offers a transformative tool for climate policy planning in data-constrained regions.

Authors:Yang Liu, Silin Cheng, Xinwei He, Sebastien Ourselin, Lei Tan, Gen Luo
Title: WeakMCN: Multi-task Collaborative Network for Weakly Supervised Referring Expression Comprehension and Segmentation
Abstract:
Weakly supervised referring expression comprehension(WREC) and segmentation(WRES) aim to learn object grounding based on a given expression using weak supervision signals like image-text pairs. While these tasks have traditionally been modeled separately, we argue that they can benefit from joint learning in a multi-task framework. To this end, we propose WeakMCN, a novel multi-task collaborative network that effectively combines WREC and WRES with a dual-branch architecture. Specifically, the WREC branch is formulated as anchor-based contrastive learning, which also acts as a teacher to supervise the WRES branch. In WeakMCN, we propose two innovative designs to facilitate multi-task collaboration, namely Dynamic Visual Feature Enhancement(DVFE) and Collaborative Consistency Module(CCM). DVFE dynamically combines various pre-trained visual knowledge to meet different task requirements, while CCM promotes cross-task consistency from the perspective of optimization. Extensive experimental results on three popular REC and RES benchmarks, i.e., RefCOCO, RefCOCO+, and RefCOCOg, consistently demonstrate performance gains of WeakMCN over state-of-the-art single-task alternatives, e.g., up to 3.91% and 13.11% on RefCOCO for WREC and WRES tasks, respectively. Furthermore, experiments also validate the strong generalization ability of WeakMCN in both semi-supervised REC and RES settings against existing methods, e.g., +8.94% for semi-REC and +7.71% for semi-RES on 1% RefCOCO. The code is publicly available at https://github.com/MRUIL/WeakMCN.

Authors:Zixiang Xu, Yanbo Wang, Yue Huang, Xiuying Chen, Jieyu Zhao, Meng Jiang, Xiangliang Zhang
Title: Cross-Lingual Pitfalls: Automatic Probing Cross-Lingual Weakness of Multilingual Large Language Models
Abstract:
Large Language Models (LLMs) have achieved remarkable success in Natural Language Processing (NLP), yet their cross-lingual performance consistency remains a significant challenge. This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in LLMs. Our approach leverages beam search and LLM-based simulation to generate bilingual question pairs that expose performance discrepancies between English and target languages. We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models. The extensive experiments demonstrate that our method precisely and cost-effectively pinpoints cross-lingual weaknesses, consistently revealing over 50\% accuracy drops in target languages across a wide range of models. Moreover, further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns and benefit from targeted post-training. Code is available at https://github.com/xzx34/Cross-Lingual-Pitfalls.

Authors:Zhiteng Li, Hanxuan Li, Junyi Wu, Kai Liu, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Title: DVD-Quant: Data-free Video Diffusion Transformers Quantization
Abstract:
Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for video generation, yet their computational and memory demands hinder practical deployment. While post-training quantization (PTQ) presents a promising approach to accelerate Video DiT models, existing methods suffer from two critical limitations: (1) dependence on lengthy, computation-heavy calibration procedures, and (2) considerable performance deterioration after quantization. To address these challenges, we propose DVD-Quant, a novel Data-free quantization framework for Video DiTs. Our approach integrates three key innovations: (1) Progressive Bounded Quantization (PBQ) and (2) Auto-scaling Rotated Quantization (ARQ) for calibration data-free quantization error reduction, as well as (3) $δ$-Guided Bit Switching ($δ$-GBS) for adaptive bit-width allocation. Extensive experiments across multiple video generation benchmarks demonstrate that DVD-Quant achieves an approximately 2$\times$ speedup over full-precision baselines on HunyuanVideo while maintaining visual fidelity. Notably, DVD-Quant is the first to enable W4A4 PTQ for Video DiTs without compromising video quality. Code and models will be available at https://github.com/lhxcs/DVD-Quant.

Authors:Zhiteng Li, Hanxuan Li, Junyi Wu, Kai Liu, Haotong Qin, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Title: DVD-Quant: Data-free Video Diffusion Transformers Quantization
Abstract:
Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for video generation, yet their computational and memory demands hinder practical deployment. While post-training quantization (PTQ) presents a promising approach to accelerate Video DiT models, existing methods suffer from two critical limitations: (1) dependence on computation-heavy and inflexible calibration procedures, and (2) considerable performance deterioration after quantization. To address these challenges, we propose DVD-Quant, a novel Data-free quantization framework for Video DiTs. Our approach integrates three key innovations: (1) Bounded-init Grid Refinement (BGR) and (2) Auto-scaling Rotated Quantization (ARQ) for calibration data-free quantization error reduction, as well as (3) $δ$-Guided Bit Switching ($δ$-GBS) for adaptive bit-width allocation. Extensive experiments across multiple video generation benchmarks demonstrate that DVD-Quant achieves an approximately 2$\times$ speedup over full-precision baselines on advanced DiT models while maintaining visual fidelity. Notably, DVD-Quant is the first to enable W4A4 PTQ for Video DiTs without compromising video quality. Code and models will be available at https://github.com/lhxcs/DVD-Quant.

Authors:Yicheng Lin, Yunlong Jiang, Xujia Jiao, Bin Han
Title: Why Not Replace? Sustaining Long-Term Visual Localization via Handcrafted-Learned Feature Collaboration on CPU
Abstract:
Robust long-term visual localization in complex industrial environments is critical for mobile robotic systems. Existing approaches face limitations: handcrafted features are illumination-sensitive, learned features are computationally intensive, and semantic- or marker-based methods are environmentally constrained. Handcrafted and learned features share similar representations but differ functionally. Handcrafted features are optimized for continuous tracking, while learned features excel in wide-baseline matching. Their complementarity calls for integration rather than replacement. Building on this, we propose a hierarchical localization framework. It leverages real-time handcrafted feature extraction for relative pose estimation. In parallel, it employs selective learned keypoint detection on optimized keyframes for absolute positioning. This design enables CPU-efficient, long-term visual localization. Experiments systematically progress through three validation phases: Initially establishing feature complementarity through comparative analysis, followed by computational latency profiling across algorithm stages on CPU platforms. Final evaluation under photometric variations (including seasonal transitions and diurnal cycles) demonstrates 47% average error reduction with significantly improved localization consistency. The code implementation is publicly available at https://github.com/linyicheng1/ORB_SLAM3_localization.

Authors:Jian Liang, Wenke Huang, Xianda Guo, Guancheng Wan, Bo Du, Mang Ye
Title: ThanoRA: Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) is widely adopted for downstream fine-tuning of foundation models due to its efficiency and zero additional inference cost. Many real-world applications require foundation models to specialize in multiple tasks simultaneously, motivating the need for efficient multi-task adaptation. While recent approaches integrate LoRA with mixture-of-experts (MoE) to address this, the use of routers prevents parameter mergeability, which increases inference overhead and hinders unified multi-task adaptation, thereby limiting deployment practicality. In this work, we propose ThanoRA, a Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation framework that enables multi-task adaptation while preserving the inference efficiency of LoRA. ThanoRA jointly models task heterogeneity and mitigates subspace interference throughout training. Specifically, motivated by inherent differences in complexity and heterogeneity across tasks, ThanoRA constructs task-specific LoRA subspaces at initialization, enabling fine-grained knowledge injection aligned with task heterogeneity. Furthermore, to prevent task interference and subspace collapse during multi-task training, ThanoRA introduces a subspace-preserving regularization that maintains the independence of task-specific representations. With the synergy of both components, ThanoRA enables efficient and unified multi-task adaptation. Extensive experiments across multimodal and text-only benchmarks under varying multi-task mixtures demonstrate that ThanoRA consistently achieves robust and superior performance over strong baselines without introducing additional inference overhead. Our code is publicly available at: https://github.com/LiangJian24/ThanoRA.

Authors:Jian Liang, Wenke Huang, Xianda Guo, Guancheng Wan, Bo Du, Mang Ye
Title: ThanoRA: Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) is widely adopted for downstream fine-tuning of foundation models due to its efficiency and zero additional inference cost. Many real-world applications require foundation models to specialize in several specific tasks simultaneously, motivating the need for efficient multi-task downstream adaptation. To address this need, existing studies have primarily explored two directions: Model Merging with LoRA, which shows advantages in training-free scenarios but still lags behind multi-task training in overall performance; and MoE-based LoRA approaches, which improve multi-task learning performance but introduce routers that hinder the mergeability of LoRA parameters and incur considerable inference overhead, thereby limiting real-world deployment practicality. To this end, we propose ThanoRA, a Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation framework that enables effective, efficient and unified multi-task downstream adaptation without introducing additional structure. ThanoRA performs multi-task learning by tailoring subspace allocation at initialization and enforcing diversity preservation throughout training: it allocates varying dimensions to construct task-specific low-rank subspaces driven by inter-task heterogeneity, enabling fine-grained knowledge injection, while diversity-preserving regularization mitigates task interference and subspace collapse, thereby fully exploiting the low-rank capacity. Extensive experiments across multimodal and text-only benchmarks under varying multi-task mixtures demonstrate that ThanoRA consistently outperforms strong baselines, surpassing even separate task-specific fine-tuning, while introducing no additional structures or inference overhead. Our code will be publicly available at: https://github.com/LiangJian24/ThanoRA.

Authors:Md. Tanzib Hosain, Rajan Das Gupta, Md. Kishor Morol
Title: Multilingual Question Answering in Low-Resource Settings: A Dzongkha-English Benchmark for Foundation Models
Abstract:
In this work, we provide DZEN, a dataset of parallel Dzongkha and English test questions for Bhutanese middle and high school students. The over 5K questions in our collection span a variety of scientific topics and include factual, application, and reasoning-based questions. We use our parallel dataset to test a number of Large Language Models (LLMs) and find a significant performance difference between the models in English and Dzongkha. We also look at different prompting strategies and discover that Chain-of-Thought (CoT) prompting works well for reasoning questions but less well for factual ones. We also find that adding English translations enhances the precision of Dzongkha question responses. Our results point to exciting avenues for further study to improve LLM performance in Dzongkha and, more generally, in low-resource languages. We release the dataset at: https://github.com/kraritt/llm_dzongkha_evaluation.

Authors:Li Wang, Guangqi Yang, Lei Yang, Ziying Song, Xinyu Zhang, Ying Chen, Lin Liu, Junjie Gao, Zhiwei Li, Qingshan Yang, Jun Li, Liangliang Wang, Wenhao Yu, Bin Xu, Weida Wang, Huaping Liu
Title: S2R-Bench: A Sim-to-Real Evaluation Benchmark for Autonomous Driving
Abstract:
Safety is a long-standing and the final pursuit in the development of autonomous driving systems, with a significant portion of safety challenge arising from perception. How to effectively evaluate the safety as well as the reliability of perception algorithms is becoming an emerging issue. Despite its critical importance, existing perception methods exhibit a limitation in their robustness, primarily due to the use of benchmarks are entierly simulated, which fail to align predicted results with actual outcomes, particularly under extreme weather conditions and sensor anomalies that are prevalent in real-world scenarios. To fill this gap, in this study, we propose a Sim-to-Real Evaluation Benchmark for Autonomous Driving (S2R-Bench). We collect diverse sensor anomaly data under various road conditions to evaluate the robustness of autonomous driving perception methods in a comprehensive and realistic manner. This is the first corruption robustness benchmark based on real-world scenarios, encompassing various road conditions, weather conditions, lighting intensities, and time periods. By comparing real-world data with simulated data, we demonstrate the reliability and practical significance of the collected data for real-world applications. We hope that this dataset will advance future research and contribute to the development of more robust perception models for autonomous driving. This dataset is released on https://github.com/adept-thu/S2R-Bench.

Authors:Woohyun Cho, Youngmin Kim, Sunghyun Lee, Youngjae Yu
Title: MAVL: A Multilingual Audio-Video Lyrics Dataset for Animated Song Translation
Abstract:
Lyrics translation requires both accurate semantic transfer and preservation of musical rhythm, syllabic structure, and poetic style. In animated musicals, the challenge intensifies due to alignment with visual and auditory cues. We introduce Multilingual Audio-Video Lyrics Benchmark for Animated Song Translation (MAVL), the first multilingual, multimodal benchmark for singable lyrics translation. By integrating text, audio, and video, MAVL enables richer and more expressive translations than text-only approaches. Building on this, we propose Syllable-Constrained Audio-Video LLM with Chain-of-Thought SylAVL-CoT, which leverages audio-video cues and enforces syllabic constraints to produce natural-sounding lyrics. Experimental results demonstrate that SylAVL-CoT significantly outperforms text-based models in singability and contextual accuracy, emphasizing the value of multimodal, multilingual approaches for lyrics translation.

Authors:Faithful Chiagoziem Onwuegbuche, Adelodun Olaoluwa, Anca Delia Jurcut, Liliana Pasquale
Title: MLRan: A Behavioural Dataset for Ransomware Analysis and Detection
Abstract:
Ransomware remains a critical threat to cybersecurity, yet publicly available datasets for training machine learning-based ransomware detection models are scarce and often have limited sample size, diversity, and reproducibility. In this paper, we introduce MLRan, a behavioural ransomware dataset, comprising over 4,800 samples across 64 ransomware families and a balanced set of goodware samples. The samples span from 2006 to 2024 and encompass the four major types of ransomware: locker, crypto, ransomware-as-a-service, and modern variants. We also propose guidelines (GUIDE-MLRan), inspired by previous work, for constructing high-quality behavioural ransomware datasets, which informed the curation of our dataset. We evaluated the ransomware detection performance of several machine learning (ML) models using MLRan. For this purpose, we performed feature selection by conducting mutual information filtering to reduce the initial 6.4 million features to 24,162, followed by recursive feature elimination, yielding 483 highly informative features. The ML models achieved an accuracy, precision and recall of up to 98.7%, 98.9%, 98.5%, respectively. Using SHAP and LIME, we identified critical indicators of malicious behaviour, including registry tampering, strings, and API misuse. The dataset and source code for feature extraction, selection, ML training, and evaluation are available publicly to support replicability and encourage future research, which can be found at https://github.com/faithfulco/mlran.

Authors:Tengxuan Liu, Shiyao Li, Jiayi Yang, Tianchen Zhao, Feng Zhou, Xiaohui Song, Guohao Dai, Shengen Yan, Huazhong Yang, Yu Wang
Title: PM-KVQ: Progressive Mixed-precision KV Cache Quantization for Long-CoT LLMs
Abstract:
Recently, significant progress has been made in developing reasoning-capable Large Language Models (LLMs) through long Chain-of-Thought (CoT) techniques. However, this long-CoT reasoning process imposes substantial memory overhead due to the large Key-Value (KV) Cache memory overhead. Post-training KV Cache quantization has emerged as a promising compression technique and has been extensively studied in short-context scenarios. However, directly applying existing methods to long-CoT LLMs causes significant performance degradation due to the following two reasons: (1) Large cumulative error: Existing methods fail to adequately leverage available memory, and they directly quantize the KV Cache during each decoding step, leading to large cumulative quantization error. (2) Short-context calibration: Due to Rotary Positional Embedding (RoPE), the use of short-context data during calibration fails to account for the distribution of less frequent channels in the Key Cache, resulting in performance loss. We propose Progressive Mixed-Precision KV Cache Quantization (PM-KVQ) for long-CoT LLMs to address the above issues in two folds: (1) To reduce cumulative error, we design a progressive quantization strategy to gradually lower the bit-width of KV Cache in each block. Then, we propose block-wise memory allocation to assign a higher bit-width to more sensitive transformer blocks. (2) To increase the calibration length without additional overhead, we propose a new calibration strategy with positional interpolation that leverages short calibration data with positional interpolation to approximate the data distribution of long-context data. Extensive experiments on 7B-70B long-CoT LLMs show that PM-KVQ improves reasoning benchmark performance by up to 8% over SOTA baselines under the same memory budget. Our code is available at https://github.com/thu-nics/PM-KVQ.

Authors:Yuetong Fang, Deming Zhou, Ziqing Wang, Hongwei Ren, ZeCui Zeng, Lusong Li, Shibo Zhou, Renjing Xu
Title: Spiking Transformers Need High Frequency Information
Abstract:
Spiking Transformers offer an energy-efficient alternative to conventional deep learning by transmitting information solely through binary (0/1) spikes. However, there remains a substantial performance gap compared to artificial neural networks. A common belief is that their binary and sparse activation transmission leads to information loss, thus degrading feature representation and accuracy. In this work, however, we reveal for the first time that spiking neurons preferentially propagate low-frequency information. We hypothesize that the rapid dissipation of high-frequency components is the primary cause of performance degradation. For example, on Cifar-100, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73%; interestingly, replacing it with Max-Pooling (high-pass) pushes the top-1 accuracy to 79.12%, surpassing the well-tuned Spikformer baseline by 0.97%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: extra Max-Pooling in patch embedding and Depth-Wise Convolution in place of self-attention. Notably, our Max-Former (63.99 M) hits the top-1 accuracy of 82.39% on ImageNet, showing a +7.58% improvement over Spikformer with comparable model size (74.81%, 66.34 M). We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks, beyond the established practice in standard deep learning. \href{https://github.com/bic-L/Spiking-Transformers-Need-High-Frequency-Information}{Code} is available.

Authors:Jongwoo Ko, Sungnyun Kim, Sungwoo Cho, Se-Young Yun
Title: Flex-Judge: Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators
Abstract:
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.

Authors:Dongyang Jin, Chao Fan, Jingzhe Ma, Jingkai Zhou, Weihua Chen, Shiqi Yu
Title: On Denoising Walking Videos for Gait Recognition
Abstract:
To capture individual gait patterns, excluding identity-irrelevant cues in walking videos, such as clothing texture and color, remains a persistent challenge for vision-based gait recognition. Traditional silhouette- and pose-based methods, though theoretically effective at removing such distractions, often fall short of high accuracy due to their sparse and less informative inputs. Emerging end-to-end methods address this by directly denoising RGB videos using human priors. Building on this trend, we propose DenoisingGait, a novel gait denoising method. Inspired by the philosophy that "what I cannot create, I do not understand", we turn to generative diffusion models, uncovering how they partially filter out irrelevant factors for gait understanding. Additionally, we introduce a geometry-driven Feature Matching module, which, combined with background removal via human silhouettes, condenses the multi-channel diffusion features at each foreground pixel into a two-channel direction vector. Specifically, the proposed within- and cross-frame matching respectively capture the local vectorized structures of gait appearance and motion, producing a novel flow-like gait representation termed Gait Feature Field, which further reduces residual noise in diffusion features. Experiments on the CCPG, CASIA-B*, and SUSTech1K datasets demonstrate that DenoisingGait achieves a new SoTA performance in most cases for both within- and cross-domain evaluations. Code is available at https://github.com/ShiqiYu/OpenGait.

Authors:Wentao Hu, Wengyu Zhang, Yiyang Jiang, Chen Jason Zhang, Xiaoyong Wei, Qing Li
Title: Removal of Hallucination on Hallucination: Debate-Augmented RAG
Abstract:
Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external knowledge, yet it introduces a critical issue: erroneous or biased retrieval can mislead generation, compounding hallucinations, a phenomenon we term Hallucination on Hallucination. To address this, we propose Debate-Augmented RAG (DRAG), a training-free framework that integrates Multi-Agent Debate (MAD) mechanisms into both retrieval and generation stages. In retrieval, DRAG employs structured debates among proponents, opponents, and judges to refine retrieval quality and ensure factual reliability. In generation, DRAG introduces asymmetric information roles and adversarial debates, enhancing reasoning robustness and mitigating factual inconsistencies. Evaluations across multiple tasks demonstrate that DRAG improves retrieval reliability, reduces RAG-induced hallucinations, and significantly enhances overall factual accuracy. Our code is available at https://github.com/Huenao/Debate-Augmented-RAG.

Authors:Mengqi Liao, Xiangyu Xi, Ruinian Chen, Jia Leng, Yangen Hu, Ke Zeng, Shuai Liu, Huaiyu Wan
Title: Enhancing Efficiency and Exploration in Reinforcement Learning for LLMs
Abstract:
Reasoning large language models (LLMs) excel in complex tasks, which has drawn significant attention to reinforcement learning (RL) for LLMs. However, existing approaches allocate an equal number of rollouts to all questions during the RL process, which is inefficient. This inefficiency stems from the fact that training on simple questions yields limited gains, whereas more rollouts are needed for challenging questions to sample correct answers. Furthermore, while RL improves response precision, it limits the model's exploration ability, potentially resulting in a performance cap below that of the base model prior to RL. To address these issues, we propose a mechanism for dynamically allocating rollout budgets based on the difficulty of the problems, enabling more efficient RL training. Additionally, we introduce an adaptive dynamic temperature adjustment strategy to maintain the entropy at a stable level, thereby encouraging sufficient exploration. This enables LLMs to improve response precision while preserving their exploratory ability to uncover potential correct pathways. The code and data is available on: https://github.com/LiaoMengqi/E3-RL4LLMs

Authors:Min Cheng, Fatemeh Doudi, Dileep Kalathil, Mohammad Ghavamzadeh, Panganamala R. Kumar
Title: Diffusion Blend: Inference-Time Multi-Preference Alignment for Diffusion Models
Abstract:
Reinforcement learning (RL) algorithms have been used recently to align diffusion models with downstream objectives such as aesthetic quality and text-image consistency by fine-tuning them to maximize a single reward function under a fixed KL regularization. However, this approach is inherently restrictive in practice, where alignment must balance multiple, often conflicting objectives. Moreover, user preferences vary across prompts, individuals, and deployment contexts, with varying tolerances for deviation from a pre-trained base model. We address the problem of inference-time multi-preference alignment: given a set of basis reward functions and a reference KL regularization strength, can we design a fine-tuning procedure so that, at inference time, it can generate images aligned with any user-specified linear combination of rewards and regularization, without requiring additional fine-tuning? We propose Diffusion Blend, a novel approach to solve inference-time multi-preference alignment by blending backward diffusion processes associated with fine-tuned models, and we instantiate this approach with two algorithms: DB-MPA for multi-reward alignment and DB-KLA for KL regularization control. Extensive experiments show that Diffusion Blend algorithms consistently outperform relevant baselines and closely match or exceed the performance of individually fine-tuned models, enabling efficient, user-driven alignment at inference-time. The code is available at https://github.com/bluewoods127/DB-2025}{github.com/bluewoods127/DB-2025.

Authors:Haoyuan Sun, Jiaqi Wu, Bo Xia, Yifu Luo, Yifei Zhao, Kai Qin, Xufei Lv, Tiantian Zhang, Yongzhe Chang, Xueqian Wang
Title: Reinforcement Fine-Tuning Powers Reasoning Capability of Multimodal Large Language Models
Abstract:
Standing in 2025, at a critical juncture in the pursuit of Artificial General Intelligence (AGI), reinforcement fine-tuning (RFT) has demonstrated significant potential in enhancing the reasoning capability of large language models (LLMs) and has led to the development of cutting-edge AI models such as OpenAI-o1 and DeepSeek-R1. Moreover, the efficient application of RFT to enhance the reasoning capability of multimodal large language models (MLLMs) has attracted widespread attention from the community. In this position paper, we argue that reinforcement fine-tuning powers the reasoning capability of multimodal large language models. To begin with, we provide a detailed introduction to the fundamental background knowledge that researchers interested in this field should be familiar with. Furthermore, we meticulously summarize the improvements of RFT in powering reasoning capability of MLLMs into five key points: diverse modalities, diverse tasks and domains, better training algorithms, abundant benchmarks and thriving engineering frameworks. Finally, we propose five promising directions for future research that the community might consider. We hope that this position paper will provide valuable insights to the community at this pivotal stage in the advancement toward AGI. Summary of works done on RFT for MLLMs is available at https://github.com/Sun-Haoyuan23/Awesome-RL-based-Reasoning-MLLMs.

Authors:Mingyang Wu, Li Lin, Wenbin Zhang, Xin Wang, Zhenhuan Yang, Shu Hu
Title: Preserving AUC Fairness in Learning with Noisy Protected Groups
Abstract:
The Area Under the ROC Curve (AUC) is a key metric for classification, especially under class imbalance, with growing research focus on optimizing AUC over accuracy in applications like medical image analysis and deepfake detection. This leads to fairness in AUC optimization becoming crucial as biases can impact protected groups. While various fairness mitigation techniques exist, fairness considerations in AUC optimization remain in their early stages, with most research focusing on improving AUC fairness under the assumption of clean protected groups. However, these studies often overlook the impact of noisy protected groups, leading to fairness violations in practice. To address this, we propose the first robust AUC fairness approach under noisy protected groups with fairness theoretical guarantees using distributionally robust optimization. Extensive experiments on tabular and image datasets show that our method outperforms state-of-the-art approaches in preserving AUC fairness. The code is in https://github.com/Purdue-M2/AUC_Fairness_with_Noisy_Groups.

Authors:Yiqing Zhang, Xiaozhong Liu, Fabricio Murai
Title: CLaDMoP: Learning Transferrable Models from Successful Clinical Trials via LLMs
Abstract:
Many existing models for clinical trial outcome prediction are optimized using task-specific loss functions on trial phase-specific data. While this scheme may boost prediction for common diseases and drugs, it can hinder learning of generalizable representations, leading to more false positives/negatives. To address this limitation, we introduce CLaDMoP, a new pre-training approach for clinical trial outcome prediction, alongside the Successful Clinical Trials dataset(SCT), specifically designed for this task. CLaDMoP leverages a Large Language Model-to encode trials' eligibility criteria-linked to a lightweight Drug-Molecule branch through a novel multi-level fusion technique. To efficiently fuse long embeddings across levels, we incorporate a grouping block, drastically reducing computational overhead. CLaDMoP avoids reliance on task-specific objectives by pre-training on a "pair matching" proxy task. Compared to established zero-shot and few-shot baselines, our method significantly improves both PR-AUC and ROC-AUC, especially for phase I and phase II trials. We further evaluate and perform ablation on CLaDMoP after Parameter-Efficient Fine-Tuning, comparing it to state-of-the-art supervised baselines, including MEXA-CTP, on the Trial Outcome Prediction(TOP) benchmark. CLaDMoP achieves up to 10.5% improvement in PR-AUC and 3.6% in ROC-AUC, while attaining comparable F1 score to MEXA-CTP, highlighting its potential for clinical trial outcome prediction. Code and SCT dataset can be downloaded from https://github.com/murai-lab/CLaDMoP.

Authors:Haoyu Yang, Yuxiang Cai, Jintao Chen, Xuhong Zhang, Wenhui Lei, Xiaoming Shi, Jianwei Yin, Yankai Jiang
Title: TK-Mamba: Marrying KAN with Mamba for Text-Driven 3D Medical Image Segmentation
Abstract:
3D medical image segmentation is vital for clinical diagnosis and treatment but is challenged by high-dimensional data and complex spatial dependencies. Traditional single-modality networks, such as CNNs and Transformers, are often limited by computational inefficiency and constrained contextual modeling in 3D settings. We introduce a novel multimodal framework that leverages Mamba and Kolmogorov-Arnold Networks (KAN) as an efficient backbone for long-sequence modeling. Our approach features three key innovations: First, an EGSC (Enhanced Gated Spatial Convolution) module captures spatial information when unfolding 3D images into 1D sequences. Second, we extend Group-Rational KAN (GR-KAN), a Kolmogorov-Arnold Networks variant with rational basis functions, into 3D-Group-Rational KAN (3D-GR-KAN) for 3D medical imaging - its first application in this domain - enabling superior feature representation tailored to volumetric data. Third, a dual-branch text-driven strategy leverages CLIP's text embeddings: one branch swaps one-hot labels for semantic vectors to preserve inter-organ semantic relationships, while the other aligns images with detailed organ descriptions to enhance semantic alignment. Experiments on the Medical Segmentation Decathlon (MSD) and KiTS23 datasets show our method achieving state-of-the-art performance, surpassing existing approaches in accuracy and efficiency. This work highlights the power of combining advanced sequence modeling, extended network architectures, and vision-language synergy to push forward 3D medical image segmentation, delivering a scalable solution for clinical use. The source code is openly available at https://github.com/yhy-whu/TK-Mamba.

Authors:Yiheng Li, Feng Liang, Dan Kondratyuk, Masayoshi Tomizuka, Kurt Keutzer, Chenfeng Xu
Title: Improved Immiscible Diffusion: Accelerate Diffusion Training by Reducing Its Miscibility
Abstract:
The substantial training cost of diffusion models hinders their deployment. Immiscible Diffusion recently showed that reducing diffusion trajectory mixing in the noise space via linear assignment accelerates training by simplifying denoising. To extend immiscible diffusion beyond the inefficient linear assignment under high batch sizes and high dimensions, we refine this concept to a broader miscibility reduction at any layer and by any implementation. Specifically, we empirically demonstrate the bijective nature of the denoising process with respect to immiscible diffusion, ensuring its preservation of generative diversity. Moreover, we provide thorough analysis and show step-by-step how immiscibility eases denoising and improves efficiency. Extending beyond linear assignment, we propose a family of implementations including K-nearest neighbor (KNN) noise selection and image scaling to reduce miscibility, achieving up to >4x faster training across diverse models and tasks including unconditional/conditional generation, image editing, and robotics planning. Furthermore, our analysis of immiscibility offers a novel perspective on how optimal transport (OT) enhances diffusion training. By identifying trajectory miscibility as a fundamental bottleneck, we believe this work establishes a potentially new direction for future research into high-efficiency diffusion training. The code is available at https://github.com/yhli123/Immiscible-Diffusion.

Authors:Taeckyung Lee, Sorn Chottananurak, Junsu Kim, Jinwoo Shin, Taesik Gong, Sung-Ju Lee
Title: Test-Time Adaptation with Binary Feedback
Abstract:
Deep learning models perform poorly when domain shifts exist between training and test data. Test-time adaptation (TTA) is a paradigm to mitigate this issue by adapting pre-trained models using only unlabeled test samples. However, existing TTA methods can fail under severe domain shifts, while recent active TTA approaches requiring full-class labels are impractical due to high labeling costs. To address this issue, we introduce a new setting of TTA with binary feedback. This setting uses a few binary feedback inputs from annotators to indicate whether model predictions are correct, thereby significantly reducing the labeling burden of annotators. Under the setting, we propose BiTTA, a novel dual-path optimization framework that leverages reinforcement learning to balance binary feedback-guided adaptation on uncertain samples with agreement-based self-adaptation on confident predictions. Experiments show BiTTA achieves 13.3%p accuracy improvements over state-of-the-art baselines, demonstrating its effectiveness in handling severe distribution shifts with minimal labeling effort. The source code is available at https://github.com/taeckyung/BiTTA.

Authors:Weiwei Sun, Haokun Liu, Nikhil Kandpal, Colin Raffel, Yiming Yang
Title: Enhancing Training Data Attribution with Representational Optimization
Abstract:
Training data attribution (TDA) methods aim to measure how training data impacts a model's predictions. While gradient-based attribution methods, such as influence functions, offer theoretical grounding, their computational costs make them impractical for large-scale applications. Representation-based approaches are far more scalable, but typically rely on heuristic embeddings that are not optimized for attribution, limiting their fidelity. To address these challenges, we propose AirRep, a scalable, representation-based approach that closes this gap by learning task-specific and model-aligned representations optimized explicitly for TDA. AirRep introduces two key innovations: a trainable encoder tuned for attribution quality, and an attention-based pooling mechanism that enables accurate estimation of group-wise influence. We train AirRep using a ranking objective over automatically constructed training subsets labeled by their empirical effect on target predictions. Experiments on instruction-tuned LLMs demonstrate that AirRep achieves performance on par with state-of-the-art gradient-based approaches while being nearly two orders of magnitude more efficient at inference time. Further analysis highlights its robustness and generalization across tasks and models. Our code is available at https://github.com/sunnweiwei/AirRep.

Authors:Guodong Du, Xuanning Zhou, Junlin Li, Zhuo Li, Zesheng Shi, Wanyu Lin, Ho-Kin Tang, Xiucheng Li, Fangming Liu, Wenya Wang, Min Zhang, Jing Li
Title: Knowledge Grafting of Large Language Models
Abstract:
Cross-capability transfer is a key challenge in large language model (LLM) research, with applications in multi-task integration, model compression, and continual learning. Recent works like FuseLLM and FuseChat have demonstrated the potential of transferring multiple model capabilities to lightweight models, enhancing adaptability and efficiency, which motivates our investigation into more efficient cross-capability transfer methods. However, existing approaches primarily focus on small, homogeneous models, limiting their applicability. For large, heterogeneous models, knowledge distillation with full-parameter fine-tuning often overlooks the student model's intrinsic capacity and risks catastrophic forgetting, while PEFT methods struggle to effectively absorb knowledge from source LLMs. To address these issues, we introduce GraftLLM, a novel method that stores source model capabilities in a target model with SkillPack format. This approach preserves general capabilities, reduces parameter conflicts, and supports forget-free continual learning and model fusion. We employ a module-aware adaptive compression strategy to compress parameter updates, ensuring efficient storage while maintaining task-specific knowledge. The resulting SkillPack serves as a compact and transferable knowledge carrier, ideal for heterogeneous model fusion and continual learning. Experiments across various scenarios demonstrate that GraftLLM outperforms existing techniques in knowledge transfer, knowledge fusion, and forget-free learning, providing a scalable and efficient solution for cross-capability transfer. The code is publicly available at: https://github.com/duguodong7/GraftLLM.

Authors:Xiaojun Guo, Ang Li, Yifei Wang, Stefanie Jegelka, Yisen Wang
Title: G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning
Abstract:
Although Large Language Models (LLMs) have demonstrated remarkable progress, their proficiency in graph-related tasks remains notably limited, hindering the development of truly general-purpose models. Previous attempts, including pretraining graph foundation models or employing supervised fine-tuning, often face challenges such as the scarcity of large-scale, universally represented graph data. We introduce G1, a simple yet effective approach demonstrating that Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs' graph reasoning abilities. To enable RL training, we curate Erdõs, the largest graph reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying difficulty levels, 100k training data and 5k test data, all drived from real-world graphs. With RL on Erdõs, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size). RL-trained models also show strong zero-shot generalization to unseen tasks, domains, and graph encoding schemes, including other graph-theoretic benchmarks as well as real-world node classification and link prediction tasks, without compromising general reasoning abilities. Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks, which combines the strengths of pretrained LLM capabilities with abundant, automatically generated synthetic data, suggesting that LLMs possess graph understanding abilities that RL can elicit successfully. Our implementation is open-sourced at https://github.com/PKU-ML/G1, with models and datasets hosted on Hugging Face collections https://huggingface.co/collections/PKU-ML/g1-683d659e992794fc99618cf2 for broader accessibility.

Authors:Jialiang Sun, Yuzhi Tang, Ao Li, Chris J. Maddison, Kuldeep S. Meel
Title: Enumerate-Conjecture-Prove: Formally Solving Answer-Construction Problems in Math Competitions
Abstract:
Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem proving, which requires rigorous proofs of stated conclusions, and answer construction, which involves hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from a Chain-of-Thought (CoT) baseline of 14.54% to 45.06% with the gpt-4.1-mini model. Moreover, combined with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at https://github.com/JackSun200312/ECP.

Authors:Junlin Wang, Zhiyun Lin
Title: Grounding Bodily Awareness in Visual Representations for Efficient Policy Learning
Abstract:
Learning effective visual representations for robotic manipulation remains a fundamental challenge due to the complex body dynamics involved in action execution. In this paper, we study how visual representations that carry body-relevant cues can enable efficient policy learning for downstream robotic manipulation tasks. We present $\textbf{I}$nter-token $\textbf{Con}$trast ($\textbf{ICon}$), a contrastive learning method applied to the token-level representations of Vision Transformers (ViTs). ICon enforces a separation in the feature space between agent-specific and environment-specific tokens, resulting in agent-centric visual representations that embed body-specific inductive biases. This framework can be seamlessly integrated into end-to-end policy learning by incorporating the contrastive loss as an auxiliary objective. Our experiments show that ICon not only improves policy performance across various manipulation tasks but also facilitates policy transfer across different robots. The project website: https://github.com/HenryWJL/icon

Authors:Mengran Li, Pengyu Zhang, Wenbin Xing, Yijia Zheng, Klim Zaporojets, Junzhou Chen, Ronghui Zhang, Yong Zhang, Siyuan Gong, Jia Hu, Xiaolei Ma, Zhiyuan Liu, Paul Groth, Marcel Worring
Title: A Survey of Large Language Models for Data Challenges in Graphs
Abstract:
Graphs are a widely used paradigm for representing non-Euclidean data, with applications ranging from social network analysis to biomolecular prediction. While graph learning has achieved remarkable progress, real-world graph data presents a number of challenges that significantly hinder the learning process. In this survey, we focus on four fundamental data-centric challenges: (1) Incompleteness, real-world graphs have missing nodes, edges, or attributes; (2) Imbalance, the distribution of the labels of nodes or edges and their structures for real-world graphs are highly skewed; (3) Cross-domain Heterogeneity, graphs from different domains exhibit incompatible feature spaces or structural patterns; and (4) Dynamic Instability, graphs evolve over time in unpredictable ways. Recently, Large Language Models (LLMs) offer the potential to tackle these challenges by leveraging rich semantic reasoning and external knowledge. This survey focuses on how LLMs can address four fundamental data-centric challenges in graph-structured data, thereby improving the effectiveness of graph learning. For each challenge, we review both traditional solutions and modern LLM-driven approaches, highlighting how LLMs contribute unique advantages. Finally, we discuss open research questions and promising future directions in this emerging interdisciplinary field. To support further exploration, we have curated a repository of recent advances on graph learning challenges: https://github.com/limengran98/Awesome-Literature-Graph-Learning-Challenges.

Authors:Jingkai Wang, Wu Miao, Jue Gong, Zheng Chen, Xing Liu, Hong Gu, Yutong Liu, Yulun Zhang
Title: HonestFace: Towards Honest Face Restoration with One-Step Diffusion Model
Abstract:
Face restoration has achieved remarkable advancements through the years of development. However, ensuring that restored facial images exhibit high fidelity, preserve authentic features, and avoid introducing artifacts or biases remains a significant challenge. This highlights the need for models that are more "honest" in their reconstruction from low-quality inputs, accurately reflecting original characteristics. In this work, we propose HonestFace, a novel approach designed to restore faces with a strong emphasis on such honesty, particularly concerning identity consistency and texture realism. To achieve this, HonestFace incorporates several key components. First, we propose an identity embedder to effectively capture and preserve crucial identity features from both the low-quality input and multiple reference faces. Second, a masked face alignment method is presented to enhance fine-grained details and textural authenticity, thereby preventing the generation of patterned or overly synthetic textures and improving overall clarity. Furthermore, we present a new landmark-based evaluation metric. Based on affine transformation principles, this metric improves the accuracy compared to conventional L2 distance calculations for facial feature alignment. Leveraging these contributions within a one-step diffusion model framework, HonestFace delivers exceptional restoration results in terms of facial fidelity and realism. Extensive experiments demonstrate that our approach surpasses existing state-of-the-art methods, achieving superior performance in both visual quality and quantitative assessments. The code and pre-trained models will be made publicly available at https://github.com/jkwang28/HonestFace .

Authors:Xuanhe Zhou, Junxuan He, Wei Zhou, Haodong Chen, Zirui Tang, Haoyu Zhao, Xin Tong, Guoliang Li, Youmin Chen, Jun Zhou, Zhaojun Sun, Binyuan Hui, Shuo Wang, Conghui He, Zhiyuan Liu, Jingren Zhou, Fan Wu
Title: A Survey of LLM $\times$ DATA
Abstract:
The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.

Authors:Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong
Title: Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
Abstract:
Time-series forecasting plays a critical role in many real-world applications. Although increasingly powerful models have been developed and achieved superior results on benchmark datasets, through a fine-grained sample-level inspection, we find that (i) no single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases. These findings prompt us to explore how to adaptively leverage the distinct strengths of various forecasting models for different samples. We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models. TimeFuse utilizes meta-features to characterize input time series and trains a learnable fusor to predict optimal model fusion weights for any given input. The fusor can leverage samples from diverse datasets for joint training, allowing it to adapt to a wide variety of temporal patterns and thus generalize to new inputs, even from unseen datasets. Extensive experiments demonstrate the effectiveness of TimeFuse in various long-/short-term forecasting tasks, achieving near-universal improvement over the state-of-the-art individual models. Code is available at https://github.com/ZhiningLiu1998/TimeFuse.

Authors:Romeo Valentin, Sydney M. Katz, Vincent Vanhoucke, Mykel J. Kochenderfer
Title: DB-KSVD: Scalable Alternating Optimization for Disentangling High-Dimensional Embedding Spaces
Abstract:
Dictionary learning has recently emerged as a promising approach for mechanistic interpretability of large transformer models. Disentangling high-dimensional transformer embeddings, however, requires algorithms that scale to high-dimensional data with large sample sizes. Recent work has explored sparse autoencoders (SAEs) for this problem. However, SAEs use a simple linear encoder to solve the sparse encoding subproblem, which is known to be NP-hard. It is therefore interesting to understand whether this structure is sufficient to find good solutions to the dictionary learning problem or if a more sophisticated algorithm could find better solutions. In this work, we propose Double-Batch KSVD (DB-KSVD), a scalable dictionary learning algorithm that adapts the classic KSVD algorithm. DB-KSVD is informed by the rich theoretical foundations of KSVD but scales to datasets with millions of samples and thousands of dimensions. We demonstrate the efficacy of DB-KSVD by disentangling embeddings of the Gemma-2-2B model and evaluating on six metrics from the SAEBench benchmark, where we achieve competitive results when compared to established approaches based on SAEs. By matching SAE performance with an entirely different optimization approach, our results suggest that (i) SAEs do find strong solutions to the dictionary learning problem and (ii) that traditional optimization approaches can be scaled to the required problem sizes, offering a promising avenue for further research. We provide an implementation of DB-KSVD at https://github.com/RomeoV/KSVD.jl.

Authors:Afshin Bozorgpour, Sina Ghorbani Kolahi, Reza Azad, Ilker Hacihaliloglu, Dorit Merhof
Title: CENet: Context Enhancement Network for Medical Image Segmentation
Abstract:
Medical image segmentation, particularly in multi-domain scenarios, requires precise preservation of anatomical structures across diverse representations. While deep learning has advanced this field, existing models often struggle with accurate boundary representation, variability in organ morphology, and information loss during downsampling, limiting their accuracy and robustness. To address these challenges, we propose the Context Enhancement Network (CENet), a novel segmentation framework featuring two key innovations. First, the Dual Selective Enhancement Block (DSEB) integrated into skip connections enhances boundary details and improves the detection of smaller organs in a context-aware manner. Second, the Context Feature Attention Module (CFAM) in the decoder employs a multi-scale design to maintain spatial integrity, reduce feature redundancy, and mitigate overly enhanced representations. Extensive evaluations on both radiology and dermoscopic datasets demonstrate that CENet outperforms state-of-the-art (SOTA) methods in multi-organ segmentation and boundary detail preservation, offering a robust and accurate solution for complex medical image analysis tasks. The code is publicly available at https://github.com/xmindflow/cenet.

Authors:Yue Jiang, Jichu Li, Yang Liu, Dingkang Yang, Feng Zhou, Quyu Kong
Title: DanmakuTPPBench: A Multi-modal Benchmark for Temporal Point Process Modeling and Understanding
Abstract:
We introduce DanmakuTPPBench, a comprehensive benchmark designed to advance multi-modal Temporal Point Process (TPP) modeling in the era of Large Language Models (LLMs). While TPPs have been widely studied for modeling temporal event sequences, existing datasets are predominantly unimodal, hindering progress in models that require joint reasoning over temporal, textual, and visual information. To address this gap, DanmakuTPPBench comprises two complementary components: (1) DanmakuTPP-Events, a novel dataset derived from the Bilibili video platform, where user-generated bullet comments (Danmaku) naturally form multi-modal events annotated with precise timestamps, rich textual content, and corresponding video frames; (2) DanmakuTPP-QA, a challenging question-answering dataset constructed via a novel multi-agent pipeline powered by state-of-the-art LLMs and multi-modal LLMs (MLLMs), targeting complex temporal-textual-visual reasoning. We conduct extensive evaluations using both classical TPP models and recent MLLMs, revealing significant performance gaps and limitations in current methods' ability to model multi-modal event dynamics. Our benchmark establishes strong baselines and calls for further integration of TPP modeling into the multi-modal language modeling landscape. The code and dataset have been released at https://github.com/FRENKIE-CHIANG/DanmakuTPPBench

Authors:Lin Zhao, Yushu Wu, Xinru Jiang, Jianyang Gu, Yanzhi Wang, Xiaolin Xu, Pu Zhao, Xue Lin
Title: Taming Diffusion for Dataset Distillation with High Representativeness
Abstract:
Recent deep learning models demand larger datasets, driving the need for dataset distillation to create compact, cost-efficient datasets while maintaining performance. Due to the powerful image generation capability of diffusion, it has been introduced to this field for generating distilled images. In this paper, we systematically investigate issues present in current diffusion-based dataset distillation methods, including inaccurate distribution matching, distribution deviation with random noise, and separate sampling. Building on this, we propose D^3HR, a novel diffusion-based framework to generate distilled datasets with high representativeness. Specifically, we adopt DDIM inversion to map the latents of the full dataset from a low-normality latent domain to a high-normality Gaussian domain, preserving information and ensuring structural consistency to generate representative latents for the distilled dataset. Furthermore, we propose an efficient sampling scheme to better align the representative latents with the high-normality Gaussian distribution. Our comprehensive experiments demonstrate that D^3HR can achieve higher accuracy across different model architectures compared with state-of-the-art baselines in dataset distillation. Source code: https://github.com/lin-zhao-resoLve/D3HR.

Authors:Abdellah El Mekki, Houdaifa Atou, Omer Nacar, Shady Shehata, Muhammad Abdul-Mageed
Title: NileChat: Towards Linguistically Diverse and Culturally Aware LLMs for Local Communities
Abstract:
Enhancing the linguistic capabilities of Large Language Models (LLMs) to include low-resource languages is a critical research area. Current research directions predominantly rely on synthetic data generated by translating English corpora, which, while demonstrating promising linguistic understanding and translation abilities, often results in models aligned with source language culture. These models frequently fail to represent the cultural heritage and values of local communities. This work proposes a methodology to create both synthetic and retrieval-based pre-training data tailored to a specific community, considering its (i) language, (ii) cultural heritage, and (iii) cultural values. We demonstrate our methodology using Egyptian and Moroccan dialects as testbeds, chosen for their linguistic and cultural richness and current underrepresentation in LLMs. As a proof-of-concept, we develop NileChat, a 3B parameter Egyptian and Moroccan Arabic LLM adapted for Egyptian and Moroccan communities, incorporating their language, cultural heritage, and values. Our results on various understanding, translation, and cultural and values alignment benchmarks show that NileChat outperforms existing Arabic-aware LLMs of similar size and performs on par with larger models. This work addresses Arabic dialect in LLMs with a focus on cultural and values alignment via controlled synthetic data generation and retrieval-augmented pre-training for Moroccan Darija and Egyptian Arabic, including Arabizi variants, advancing Arabic NLP for low-resource communities. We share our methods, data, and models with the community to promote the inclusion and coverage of more diverse communities in cultural LLM development: https://github.com/UBC-NLP/nilechat .

Authors:Pingchuan Ma, Ziang Yin, Qi Jing, Zhengqi Gao, Nicholas Gangi, Boyang Zhang, Tsung-Wei Huang, Zhaoran Huang, Duane S. Boning, Yu Yao, Jiaqi Gu
Title: SP2RINT: Spatially-Decoupled Physics-Inspired Progressive Inverse Optimization for Scalable, PDE-Constrained Meta-Optical Neural Network Training
Abstract:
DONNs leverage light propagation for efficient analog AI and signal processing. Advances in nanophotonic fabrication and metasurface-based wavefront engineering have opened new pathways to realize high-capacity DONNs across various spectral regimes. Training such DONN systems to determine the metasurface structures remains challenging. Heuristic methods are fast but oversimplify metasurfaces modulation, often resulting in physically unrealizable designs and significant performance degradation. Simulation-in-the-loop optimizes implementable metasurfaces via adjoint methods, but is computationally prohibitive and unscalable. To address these limitations, we propose SP2RINT, a spatially decoupled, progressive training framework that formulates DONN training as a PDE-constrained learning problem. Metasurface responses are first relaxed into freely trainable transfer matrices with a banded structure. We then progressively enforce physical constraints by alternating between transfer matrix training and adjoint-based inverse design, avoiding per-iteration PDE solves while ensuring final physical realizability. To further reduce runtime, we introduce a physics-inspired, spatially decoupled inverse design strategy based on the natural locality of field interactions. This approach partitions the metasurface into independently solvable patches, enabling scalable and parallel inverse design with system-level calibration. Evaluated across diverse DONN training tasks, SP2RINT achieves digital-comparable accuracy while being 1825 times faster than simulation-in-the-loop approaches. By bridging the gap between abstract DONN models and implementable photonic hardware, SP2RINT enables scalable, high-performance training of physically realizable meta-optical neural systems. Our code is available at https://github.com/ScopeX-ASU/SP2RINT

Authors:Minwoo Jung, Lanke Frank Tarimo Fu, Maurice Fallon, Ayoung Kim
Title: ImLPR: Image-based LiDAR Place Recognition using Vision Foundation Models
Abstract:
LiDAR Place Recognition (LPR) is a key component in robotic localization, enabling robots to align current scans with prior maps of their environment. While Visual Place Recognition (VPR) has embraced Vision Foundation Models (VFMs) to enhance descriptor robustness, LPR has relied on task-specific models with limited use of pre-trained foundation-level knowledge. This is due to the lack of 3D foundation models and the challenges of using VFM with LiDAR point clouds. To tackle this, we introduce ImLPR, a novel pipeline that employs a pre-trained DINOv2 VFM to generate rich descriptors for LPR. To the best of our knowledge, ImLPR is the first method to utilize a VFM for LPR while retaining the majority of pre-trained knowledge. ImLPR converts raw point clouds into novel three-channel Range Image Views (RIV) to leverage VFM in the LiDAR domain. It employs MultiConv adapters and Patch-InfoNCE loss for effective feature learning. We validate ImLPR on public datasets and outperform state-of-the-art (SOTA) methods across multiple evaluation metrics in both intra- and inter-session LPR. Comprehensive ablations on key design choices such as channel composition, RIV, adapters, and the patch-level loss quantify each component's impact. We release ImLPR as open source for the robotics community: https://github.com/minwoo0611/ImLPR.

Authors:Jianyang Gu, Haonan Wang, Ruoxi Jia, Saeed Vahidian, Vyacheslav Kungurtsev, Wei Jiang, Yiran Chen
Title: CONCORD: Concept-Informed Diffusion for Dataset Distillation
Abstract:
Dataset distillation (DD) has witnessed significant progress in creating small datasets that encapsulate rich information from large original ones. Particularly, methods based on generative priors show promising performance, while maintaining computational efficiency and cross-architecture generalization. However, the generation process lacks explicit controllability for each sample. Previous distillation methods primarily match the real distribution from the perspective of the entire dataset, whereas overlooking concept completeness at the instance level. The missing or incorrectly represented object details cannot be efficiently compensated due to the constrained sample amount typical in DD settings. To this end, we propose incorporating the concept understanding of large language models (LLMs) to perform Concept-Informed Diffusion (CONCORD) for dataset distillation. Specifically, distinguishable and fine-grained concepts are retrieved based on category labels to inform the denoising process and refine essential object details. By integrating these concepts, the proposed method significantly enhances both the controllability and interpretability of the distilled image generation, without relying on pre-trained classifiers. We demonstrate the efficacy of CONCORD by achieving state-of-the-art performance on ImageNet-1K and its subsets. The code implementation is released in https://github.com/vimar-gu/CONCORD.

Authors:Míriam Máximo, Antonio Santo, Arturo Gil, Mónica Ballesta, David Valiente
Title: A Coarse to Fine 3D LiDAR Localization with Deep Local Features for Long Term Robot Navigation in Large Environments
Abstract:
The location of a robot is a key aspect in the field of mobile robotics. This problem is particularly complex when the initial pose of the robot is unknown. In order to find a solution, it is necessary to perform a global localization. In this paper, we propose a method that addresses this problem using a coarse-to-fine solution. The coarse localization relies on a probabilistic approach of the Monte Carlo Localization (MCL) method, with the contribution of a robust deep learning model, the MinkUNeXt neural network, to produce a robust description of point clouds of a 3D LiDAR within the observation model. For fine localization, global point cloud registration has been implemented. MinkUNeXt aids this by exploiting the outputs of its intermediate layers to produce deep local features for each point in a scan. These features facilitate precise alignment between the current sensor observation and one of the point clouds on the map. The proposed MCL method incorporating Deep Local Features for fine localization is termed MCL-DLF. Alternatively, a classical ICP method has been implemented for this precise localization aiming at comparison purposes. This method is termed MCL-ICP. In order to validate the performance of MCL-DLF method, it has been tested on publicly available datasets such as the NCLT dataset, which provides seasonal large-scale environments. Additionally, tests have been also performed with own data (UMH) that also includes seasonal variations on large indoor/outdoor scenarios. The results, which were compared with established state-of-the-art methodologies, demonstrate that the MCL-DLF method obtains an accurate estimate of the robot localization in dynamic environments despite changes in environmental conditions. For reproducibility purposes, the code is publicly available at https://github.com/miriammaximo/MCL-DLF.git

Authors:Yuqi Jia, Zedian Shao, Yupei Liu, Jinyuan Jia, Dawn Song, Neil Zhenqiang Gong
Title: A Critical Evaluation of Defenses against Prompt Injection Attacks
Abstract:
Large Language Models (LLMs) are vulnerable to prompt injection attacks, and several defenses have recently been proposed, often claiming to mitigate these attacks successfully. However, we argue that existing studies lack a principled approach to evaluating these defenses. In this paper, we argue the need to assess defenses across two critical dimensions: (1) effectiveness, measured against both existing and adaptive prompt injection attacks involving diverse target and injected prompts, and (2) general-purpose utility, ensuring that the defense does not compromise the foundational capabilities of the LLM. Our critical evaluation reveals that prior studies have not followed such a comprehensive evaluation methodology. When assessed using this principled approach, we show that existing defenses are not as successful as previously reported. This work provides a foundation for evaluating future defenses and guiding their development. Our code and data are available at: https://github.com/PIEval123/PIEval.

Authors:Licheng Pan, Yongqi Tong, Xin Zhang, Xiaolu Zhang, Jun Zhou, Zhixuan Chu
Title: Understanding and Mitigating Overrefusal in LLMs from an Unveiling Perspective of Safety Decision Boundary
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they often refuse to answer legitimate queries--a phenomenon known as overrefusal. Overrefusal typically stems from over-conservative safety alignment, causing models to treat many reasonable prompts as potentially risky. To systematically understand this issue, we probe and leverage the models' safety decision boundaries to analyze and mitigate overrefusal. Our findings reveal that overrefusal is closely tied to misalignment at these boundary regions, where models struggle to distinguish subtle differences between benign and harmful content. Building on these insights, we present RASS, an automated framework for prompt generation and selection that strategically targets overrefusal prompts near the safety boundary. By harnessing steering vectors in the representation space, RASS efficiently identifies and curates boundary-aligned prompts, enabling more effective and targeted mitigation of overrefusal. This approach not only provides a more precise and interpretable view of model safety decisions but also seamlessly extends to multilingual scenarios. We have explored the safety decision boundaries of various LLMs and construct the MORBench evaluation set to facilitate robust assessment of model safety and helpfulness across multiple languages. Code and datasets are available at https://github.com/Master-PLC/RASS.

Authors:Jianghao Wu, Feilong Tang, Yulong Li, Ming Hu, Haochen Xue, Shoaib Jameel, Yutong Xie, Imran Razzak
Title: TAGS: A Test-Time Generalist-Specialist Framework with Retrieval-Augmented Reasoning and Verification
Abstract:
Recent advances such as Chain-of-Thought prompting have significantly improved large language models (LLMs) in zero-shot medical reasoning. However, prompting-based methods often remain shallow and unstable, while fine-tuned medical LLMs suffer from poor generalization under distribution shifts and limited adaptability to unseen clinical scenarios. To address these limitations, we present TAGS, a test-time framework that combines a broadly capable generalist with a domain-specific specialist to offer complementary perspectives without any model fine-tuning or parameter updates. To support this generalist-specialist reasoning process, we introduce two auxiliary modules: a hierarchical retrieval mechanism that provides multi-scale exemplars by selecting examples based on both semantic and rationale-level similarity, and a reliability scorer that evaluates reasoning consistency to guide final answer aggregation. TAGS achieves strong performance across nine MedQA benchmarks, boosting GPT-4o accuracy by 13.8%, DeepSeek-R1 by 16.8%, and improving a vanilla 7B model from 14.1% to 23.9%. These results surpass several fine-tuned medical LLMs, without any parameter updates. The code will be available at https://github.com/JianghaoWu/TAGS.

Authors:Roy Elkayam
Title: Decomposition of Water Demand Patterns Using Skewed Gaussian Distributions for Behavioral Insights and Operational Planning
Abstract:
This study presents a novel approach for decomposing urban water demand patterns using Skewed Gaussian Distributions (SGD) to derive behavioral insights and support operational planning. Hourly demand profiles contain critical information for both long-term infrastructure design and daily operations, influencing network pressures, water quality, energy consumption, and overall reliability. By breaking down each daily demand curve into a baseline component and distinct peak components, the proposed SGD method characterizes each peak with interpretable parameters, including peak amplitude, timing (mean), spread (duration), and skewness (asymmetry), thereby reconstructing the observed pattern and uncovering latent usage dynamics. This detailed peak-level decomposition enables both operational applications, e.g. anomaly and leakage detection, real-time demand management, and strategic analyses, e.g. identifying behavioral shifts, seasonal influences, or policy impacts on consumption patterns. Unlike traditional symmetric Gaussian or purely statistical time-series models, SGDs explicitly capture asymmetric peak shapes such as sharp morning surges followed by gradual declines, improving the fidelity of synthetic pattern generation and enhancing the detection of irregular consumption behavior. The method is demonstrated on several real-world datasets, showing that SGD outperforms symmetric Gaussian models in reconstruction accuracy, reducing root-mean-square error by over 50% on average, while maintaining physical interpretability. The SGD framework can also be used to construct synthetic demand scenarios by designing daily peak profiles with chosen characteristics. All implementation code is publicly available at: https://github.com/Relkayam/water-demand-decomposition-sgd

Authors:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao
Title: BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs
Abstract:
With the rapid advancement of low-altitude remote sensing and Vision-Language Models (VLMs), Embodied Agents based on Unmanned Aerial Vehicles (UAVs) have shown significant potential in autonomous tasks. However, current evaluation methods for UAV-Embodied Agents (UAV-EAs) remain constrained by the lack of standardized benchmarks, diverse testing scenarios and open system interfaces. To address these challenges, we propose BEDI (Benchmark for Embodied Drone Intelligence), a systematic and standardized benchmark designed for evaluating UAV-EAs. Specifically, we introduce a novel Dynamic Chain-of-Embodied-Task paradigm based on the perception-decision-action loop, which decomposes complex UAV tasks into standardized, measurable subtasks. Building on this paradigm, we design a unified evaluation framework encompassing five core sub-skills: semantic perception, spatial perception, motion control, tool utilization, and task planning. Furthermore, we construct a hybrid testing platform that integrates static real-world environments with dynamic virtual scenarios, enabling comprehensive performance assessment of UAV-EAs across varied contexts. The platform also offers open and standardized interfaces, allowing researchers to customize tasks and extend scenarios, thereby enhancing flexibility and scalability in the evaluation process. Finally, through empirical evaluations of several state-of-the-art (SOTA) VLMs, we reveal their limitations in embodied UAV tasks, underscoring the critical role of the BEDI benchmark in advancing embodied intelligence research and model optimization. By filling the gap in systematic and standardized evaluation within this field, BEDI facilitates objective model comparison and lays a robust foundation for future development in this field. Our benchmark will be released at https://github.com/lostwolves/BEDI .

Authors:Zhenglun Kong, Yize Li, Fanhu Zeng, Lei Xin, Shvat Messica, Xue Lin, Pu Zhao, Manolis Kellis, Hao Tang, Marinka Zitnik
Title: Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
Abstract:
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.

Authors:Beck LaBash, Shahriar Khushrushahi, Fabian Ruehle
Title: Improving Generative Inverse Design of Rectangular Patch Antennas with Test Time Optimization
Abstract:
We propose a two-stage deep learning framework for the inverse design of rectangular patch antennas. Our approach leverages generative modeling to learn a latent representation of antenna frequency response curves and conditions a subsequent generative model on these responses to produce feasible antenna geometries. We further demonstrate that leveraging search and optimization techniques at test-time improves the accuracy of the generated designs and enables consideration of auxiliary objectives such as manufacturability. Our approach generalizes naturally to different design criteria, and can be easily adapted to more complex geometric design spaces.

Authors:Min Namgung, Yijun Lin, JangHyeon Lee, Yao-Yi Chiang
Title: Less is More: Multimodal Region Representation via Pairwise Inter-view Learning
Abstract:
With the increasing availability of geospatial datasets, researchers have explored region representation learning (RRL) to analyze complex region characteristics. Recent RRL methods use contrastive learning (CL) to capture shared information between two modalities but often overlook task-relevant unique information specific to each modality. Such modality-specific details can explain region characteristics that shared information alone cannot capture. Bringing information factorization to RRL can address this by factorizing multimodal data into shared and unique information. However, existing factorization approaches focus on two modalities, whereas RRL can benefit from various geospatial data. Extending factorization beyond two modalities is non-trivial because modeling high-order relationships introduces a combinatorial number of learning objectives, increasing model complexity. We introduce Cross modal Knowledge Injected Embedding, an information factorization approach for RRL that captures both shared and unique representations. CooKIE uses a pairwise inter-view learning approach that captures high-order information without modeling high-order dependency, avoiding exhaustive combinations. We evaluate CooKIE on three regression tasks and a land use classification task in New York City and Delhi, India. Results show that CooKIE outperforms existing RRL methods and a factorized RRL model, capturing multimodal information with fewer training parameters and floating-point operations per second (FLOPs). We release the code: https://github.com/MinNamgung/CooKIE.

Authors:Natia Kukhilava, Tatia Tsmindashvili, Rapael Kalandadze, Anchit Gupta, Sofio Katamadze, François Brémond, Laura M. Ferrari, Philipp Müller, Benedikt Emanuel Wirth
Title: Evaluation in EEG Emotion Recognition: State-of-the-Art Review and Unified Framework
Abstract:
Electroencephalography-based Emotion Recognition (EEG-ER) has become a growing research area in recent years. Analyzing 216 papers published between 2018 and 2023, we uncover that the field lacks a unified evaluation protocol, which is essential to fairly define the state of the art, compare new approaches and to track the field's progress. We report the main inconsistencies between the used evaluation protocols, which are related to ground truth definition, evaluation metric selection, data splitting types (e.g., subject-dependent or subject-independent) and the use of different datasets. Capitalizing on this state-of-the-art research, we propose a unified evaluation protocol, EEGain (https://github.com/EmotionLab/EEGain), which enables an easy and efficient evaluation of new methods and datasets. EEGain is a novel open source software framework, offering the capability to compare - and thus define - state-of-the-art results. EEGain includes standardized methods for data pre-processing, data splitting, evaluation metrics, and the ability to load the six most relevant datasets (i.e., AMIGOS, DEAP, DREAMER, MAHNOB-HCI, SEED, SEED-IV) in EEG-ER with only a single line of code. In addition, we have assessed and validated EEGain using these six datasets on the four most common publicly available methods (EEGNet, DeepConvNet, ShallowConvNet, TSception). This is a significant step to make research on EEG-ER more reproducible and comparable, thereby accelerating the overall progress of the field.

Authors:Austin Howard
Title: InjectLab: A Tactical Framework for Adversarial Threat Modeling Against Large Language Models
Abstract:
Large Language Models (LLMs) are changing the way people interact with technology. Tools like ChatGPT and Claude AI are now common in business, research, and everyday life. But with that growth comes new risks, especially prompt-based attacks that exploit how these models process language. InjectLab is a security framework designed to address that problem. This paper introduces InjectLab as a structured, open-source matrix that maps real-world techniques used to manipulate LLMs. The framework is inspired by MITRE ATT&CK and focuses specifically on adversarial behavior at the prompt layer. It includes over 25 techniques organized under six core tactics, covering threats like instruction override, identity swapping, and multi-agent exploitation. Each technique in InjectLab includes detection guidance, mitigation strategies, and YAML-based simulation tests. A Python tool supports easy execution of prompt-based test cases. This paper outlines the framework's structure, compares it to other AI threat taxonomies, and discusses its future direction as a practical, community-driven foundation for securing language models.

Authors:Savya Khosla, Sethuraman TV, Barnett Lee, Alexander Schwing, Derek Hoiem
Title: REN: Fast and Efficient Region Encodings from Patch-Based Image Encoders
Abstract:
We introduce the Region Encoder Network (REN), a fast and effective model for generating region-based image representations using point prompts. Recent methods combine class-agnostic segmenters (e.g., SAM) with patch-based image encoders (e.g., DINO) to produce compact and effective region representations, but they suffer from high computational cost due to the segmentation step. REN bypasses this bottleneck using a lightweight module that directly generates region tokens, enabling 60x faster token generation with 35x less memory, while also improving token quality. It uses a few cross-attention blocks that take point prompts as queries and features from a patch-based image encoder as keys and values to produce region tokens that correspond to the prompted objects. We train REN with three popular encoders-DINO, DINOv2, and OpenCLIP-and show that it can be extended to other encoders without dedicated training. We evaluate REN on semantic segmentation and retrieval tasks, where it consistently outperforms the original encoders in both performance and compactness, and matches or exceeds SAM-based region methods while being significantly faster. Notably, REN achieves state-of-the-art results on the challenging Ego4D VQ2D benchmark and outperforms proprietary LMMs on Visual Haystacks' single-needle challenge. Code and models are available at: https://github.com/savya08/REN.

Authors:Wafa Alghallabi, Ritesh Thawkar, Sara Ghaboura, Ketan More, Omkar Thawakar, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Title: Fann or Flop: A Multigenre, Multiera Benchmark for Arabic Poetry Understanding in LLMs
Abstract:
Arabic poetry is one of the richest and most culturally rooted forms of expression in the Arabic language, known for its layered meanings, stylistic diversity, and deep historical continuity. Although large language models (LLMs) have demonstrated strong performance across languages and tasks, their ability to understand Arabic poetry remains largely unexplored. In this work, we introduce \emph{Fann or Flop}, the first benchmark designed to assess the comprehension of Arabic poetry by LLMs in 12 historical eras, covering 14 core poetic genres and a variety of metrical forms, from classical structures to contemporary free verse. The benchmark comprises a curated corpus of poems with explanations that assess semantic understanding, metaphor interpretation, prosodic awareness, and cultural context. We argue that poetic comprehension offers a strong indicator for testing how good the LLM understands classical Arabic through Arabic poetry. Unlike surface-level tasks, this domain demands deeper interpretive reasoning and cultural sensitivity. Our evaluation of state-of-the-art LLMs shows that most models struggle with poetic understanding despite strong results on standard Arabic benchmarks. We release "Fann or Flop" along with the evaluation suite as an open-source resource to enable rigorous evaluation and advancement for Arabic language models. Code is available at: https://github.com/mbzuai-oryx/FannOrFlop.

Authors:Kazem Faghih, Wenxiao Wang, Yize Cheng, Siddhant Bharti, Gaurang Sriramanan, Sriram Balasubramanian, Parsa Hosseini, Soheil Feizi
Title: Tool Preferences in Agentic LLMs are Unreliable
Abstract:
Large language models (LLMs) can now access a wide range of external tools, thanks to the Model Context Protocol (MCP). This greatly expands their abilities as various agents. However, LLMs rely entirely on the text descriptions of tools to decide which ones to use--a process that is surprisingly fragile. In this work, we expose a vulnerability in prevalent tool/function-calling protocols by investigating a series of edits to tool descriptions, some of which can drastically increase a tool's usage from LLMs when competing with alternatives. Through controlled experiments, we show that tools with properly edited descriptions receive over 10 times more usage from GPT-4.1 and Qwen2.5-7B than tools with original descriptions. We further evaluate how various edits to tool descriptions perform when competing directly with one another and how these trends generalize or differ across a broader set of 17 different models. These phenomena, while giving developers a powerful way to promote their tools, underscore the need for a more reliable foundation for agentic LLMs to select and utilize tools and resources. Our code is publicly available at https://github.com/kazemf78/llm-unreliable-tool-preferences.

Authors:Yan Ma, Linge Du, Xuyang Shen, Shaoxiang Chen, Pengfei Li, Qibing Ren, Lizhuang Ma, Yuchao Dai, Pengfei Liu, Junjie Yan
Title: One RL to See Them All: Visual Triple Unified Reinforcement Learning
Abstract:
Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.

Authors:Jacob Hansen, Wei Lin, Junmo Kang, Muhammad Jehanzeb Mirza, Hongyin Luo, Rogerio Feris, Alan Ritter, James Glass, Leonid Karlinsky
Title: Instructify: Demystifying Metadata to Visual Instruction Tuning Data Conversion
Abstract:
Visual Instruction Tuning (VisIT) data, commonly available as human-assistant conversations with images interleaved in the human turns, are currently the most widespread vehicle for aligning strong LLMs to understand visual inputs, converting them to strong LMMs. While many VisIT datasets are available, most are constructed using ad-hoc techniques developed independently by different groups. They are often poorly documented, lack reproducible code, and rely on paid, closed-source model APIs such as GPT-4, Gemini, or Claude to convert image metadata (labels) into VisIT instructions. This leads to high costs and makes it challenging to scale, enhance quality, or generate VisIT data for new datasets. In this work, we address these challenges and propose an open and unified recipe and approach,~\textbf{\method}, for converting available metadata to VisIT instructions using open LLMs. Our multi-stage \method features an efficient framework for metadata grouping, quality control, data and prompt organization, and conversation sampling. We show that our approach can reproduce or enhance the data quality of available VisIT datasets when applied to the same image data and metadata sources, improving GPT-4 generated VisIT instructions by ~3\% on average and up to 12\% on individual benchmarks using open models, such as Gemma 2 27B and LLaMa 3.1 70B. Additionally, our approach enables effective performance scaling - both in quantity and quality - by enhancing the resulting LMM performance across a wide range of benchmarks. We also analyze the impact of various factors, including conversation format, base model selection, and resampling strategies. Our code, which supports the reproduction of equal or higher-quality VisIT datasets and facilities future metadata-to-VisIT data conversion for niche domains, is released at https://github.com/jacob-hansen/Instructify.

Authors:Lisheng Huang, Yichen Liu, Jinhao Jiang, Rongxiang Zhang, Jiahao Yan, Junyi Li, Wayne Xin Zhao
Title: ManuSearch: Democratizing Deep Search in Large Language Models with a Transparent and Open Multi-Agent Framework
Abstract:
Recent advances in web-augmented large language models (LLMs) have exhibited strong performance in complex reasoning tasks, yet these capabilities are mostly locked in proprietary systems with opaque architectures. In this work, we propose \textbf{ManuSearch}, a transparent and modular multi-agent framework designed to democratize deep search for LLMs. ManuSearch decomposes the search and reasoning process into three collaborative agents: (1) a solution planning agent that iteratively formulates sub-queries, (2) an Internet search agent that retrieves relevant documents via real-time web search, and (3) a structured webpage reading agent that extracts key evidence from raw web content. To rigorously evaluate deep reasoning abilities, we introduce \textbf{ORION}, a challenging benchmark focused on open-web reasoning over long-tail entities, covering both English and Chinese. Experimental results show that ManuSearch substantially outperforms prior open-source baselines and even surpasses leading closed-source systems. Our work paves the way for reproducible, extensible research in open deep search systems. We release the data and code in https://github.com/RUCAIBox/ManuSearch

Authors:Yuxin Liu, M. Amin Rahimian, Kiran Garimella
Title: Structural Dynamics of Harmful Content Dissemination on WhatsApp
Abstract:
WhatsApp, a platform with more than two billion global users, plays a crucial role in digital communication, but also serves as a vector for harmful content such as misinformation, hate speech, and political propaganda. This study examines the dynamics of harmful message dissemination in WhatsApp groups, with a focus on their structural characteristics. Using a comprehensive data set of more than 5.1 million messages, including text, images, and videos, collected from approximately 6,000 groups in India, we reconstruct message propagation cascades to analyze dissemination patterns. Our findings reveal that harmful messages consistently achieve greater depth and breadth of dissemination compared to messages without harmful annotations, with videos and images emerging as the primary modes of dissemination. These results suggest a distinctive pattern of dissemination of harmful content. However, our analysis indicates that modality alone cannot fully account for the structural differences in propagation.The findings highlight the critical role of structural characteristics in the spread of these harmful messages, suggesting that strategies targeting structural characteristics of re-sharing could be crucial in managing the dissemination of such content on private messaging platforms.

Authors:Hyungyung Lee, Geon Choi, Jung-Oh Lee, Hangyul Yoon, Hyuk Gi Hong, Edward Choi
Title: CXReasonBench: A Benchmark for Evaluating Structured Diagnostic Reasoning in Chest X-rays
Abstract:
Recent progress in Large Vision-Language Models (LVLMs) has enabled promising applications in medical tasks, such as report generation and visual question answering. However, existing benchmarks focus mainly on the final diagnostic answer, offering limited insight into whether models engage in clinically meaningful reasoning. To address this, we present CheXStruct and CXReasonBench, a structured pipeline and benchmark built on the publicly available MIMIC-CXR-JPG dataset. CheXStruct automatically derives a sequence of intermediate reasoning steps directly from chest X-rays, such as segmenting anatomical regions, deriving anatomical landmarks and diagnostic measurements, computing diagnostic indices, and applying clinical thresholds. CXReasonBench leverages this pipeline to evaluate whether models can perform clinically valid reasoning steps and to what extent they can learn from structured guidance, enabling fine-grained and transparent assessment of diagnostic reasoning. The benchmark comprises 18,988 QA pairs across 12 diagnostic tasks and 1,200 cases, each paired with up to 4 visual inputs, and supports multi-path, multi-stage evaluation including visual grounding via anatomical region selection and diagnostic measurements. Even the strongest of 10 evaluated LVLMs struggle with structured reasoning and generalization, often failing to link abstract knowledge with anatomically grounded visual interpretation. The code is available at https://github.com/ttumyche/CXReasonBench

Authors:Georgios Kementzidis, Erin Wong, John Nicholson, Ruichen Xu, Yuefan Deng
Title: An Iterative Framework for Generative Backmapping of Coarse Grained Proteins
Abstract:
The techniques of data-driven backmapping from coarse-grained (CG) to fine-grained (FG) representation often struggle with accuracy, unstable training, and physical realism, especially when applied to complex systems such as proteins. In this work, we introduce a novel iterative framework by using conditional Variational Autoencoders and graph-based neural networks, specifically designed to tackle the challenges associated with such large-scale biomolecules. Our method enables stepwise refinement from CG beads to full atomistic details. We outline the theory of iterative generative backmapping and demonstrate via numerical experiments the advantages of multistep schemes by applying them to proteins of vastly different structures with very coarse representations. This multistep approach not only improves the accuracy of reconstructions but also makes the training process more computationally efficient for proteins with ultra-CG representations.

Authors:Xiaoyi Zhang, Zhaoyang Jia, Zongyu Guo, Jiahao Li, Bin Li, Houqiang Li, Yan Lu
Title: Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding
Abstract:
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code has been released in https://github.com/microsoft/DeepVideoDiscovery.

Authors:Kaiyan Zhang, Xinghui Li, Jingyi Lu, Kai Han
Title: Semantic Correspondence: Unified Benchmarking and a Strong Baseline
Abstract:
Establishing semantic correspondence is a challenging task in computer vision, aiming to match keypoints with the same semantic information across different images. Benefiting from the rapid development of deep learning, remarkable progress has been made over the past decade. However, a comprehensive review and analysis of this task remains absent. In this paper, we present the first extensive survey of semantic correspondence methods. We first propose a taxonomy to classify existing methods based on the type of their method designs. These methods are then categorized accordingly, and we provide a detailed analysis of each approach. Furthermore, we aggregate and summarize the results of methods in literature across various benchmarks into a unified comparative table, with detailed configurations to highlight performance variations. Additionally, to provide a detailed understanding on existing methods for semantic matching, we thoroughly conduct controlled experiments to analyse the effectiveness of the components of different methods. Finally, we propose a simple yet effective baseline that achieves state-of-the-art performance on multiple benchmarks, providing a solid foundation for future research in this field. We hope this survey serves as a comprehensive reference and consolidated baseline for future development. Code is publicly available at: https://github.com/Visual-AI/Semantic-Correspondence.

Authors:Zizhao Chen, Yoav Artzi
Title: Knot So Simple: A Minimalistic Environment for Spatial Reasoning
Abstract:
We propose KnotGym, an interactive environment for complex, spatial reasoning and manipulation. KnotGym includes goal-oriented rope manipulation tasks with varying levels of complexity, all requiring acting from pure image observations. Tasks are defined along a clear and quantifiable axis of complexity based on the number of knot crossings, creating a natural generalization test. KnotGym has a simple observation space, allowing for scalable development, yet it highlights core challenges in integrating acute perception, spatial reasoning, and grounded manipulation. We evaluate methods of different classes, including model-based RL, model-predictive control, and chain-of-thought reasoning, and illustrate the challenges KnotGym presents. KnotGym is available at https://github.com/lil-lab/knotgym.

Authors:Xiaobao Wei, Jiawei Liu, Dongbo Yang, Junda Cheng, Changyong Shu, Wei Wang
Title: A Wavelet-based Stereo Matching Framework for Solving Frequency Convergence Inconsistency
Abstract:
We find that the EPE evaluation metrics of RAFT-stereo converge inconsistently in the low and high frequency regions, resulting high frequency degradation (e.g., edges and thin objects) during the iterative process. The underlying reason for the limited performance of current iterative methods is that it optimizes all frequency components together without distinguishing between high and low frequencies. We propose a wavelet-based stereo matching framework (Wavelet-Stereo) for solving frequency convergence inconsistency. Specifically, we first explicitly decompose an image into high and low frequency components using discrete wavelet transform. Then, the high-frequency and low-frequency components are fed into two different multi-scale frequency feature extractors. Finally, we propose a novel LSTM-based high-frequency preservation update operator containing an iterative frequency adapter to provide adaptive refined high-frequency features at different iteration steps by fine-tuning the initial high-frequency features. By processing high and low frequency components separately, our framework can simultaneously refine high-frequency information in edges and low-frequency information in smooth regions, which is especially suitable for challenging scenes with fine details and textures in the distance. Extensive experiments demonstrate that our Wavelet-Stereo outperforms the state-of-the-art methods and ranks 1st on both the KITTI 2015 and KITTI 2012 leaderboards for almost all metrics. We will provide code and pre-trained models to encourage further exploration, application, and development of our innovative framework (https://github.com/SIA-IDE/Wavelet-Stereo).

Authors:Liang Yao, Fan Liu, Delong Chen, Chuanyi Zhang, Yijun Wang, Ziyun Chen, Wei Xu, Shimin Di, Yuhui Zheng
Title: RemoteSAM: Towards Segment Anything for Earth Observation
Abstract:
We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.

Authors:Yao Sun, Sining Chen, Yifan Tian, Xiao Xiang Zhu
Title: Building Floor Number Estimation from Crowdsourced Street-Level Images: Munich Dataset and Baseline Method
Abstract:
Accurate information on the number of building floors, or above-ground storeys, is essential for household estimation, utility provision, risk assessment, evacuation planning, and energy modeling. Yet large-scale floor-count data are rarely available in cadastral and 3D city databases. This study proposes an end-to-end deep learning framework that infers floor numbers directly from unrestricted, crowdsourced street-level imagery, avoiding hand-crafted features and generalizing across diverse facade styles. To enable benchmarking, we release the Munich Building Floor Dataset, a public set of over 6800 geo-tagged images collected from Mapillary and targeted field photography, each paired with a verified storey label. On this dataset, the proposed classification-regression network attains 81.2% exact accuracy and predicts 97.9% of buildings within +/-1 floor. The method and dataset together offer a scalable route to enrich 3D city models with vertical information and lay a foundation for future work in urban informatics, remote sensing, and geographic information science. Source code and data will be released under an open license at https://github.com/ya0-sun/Munich-SVI-Floor-Benchmark.

Authors:Shashank Agnihotri, David Schader, Jonas Jakubassa, Nico Sharei, Simon Kral, Mehmet Ege Kaçar, Ruben Weber, Margret Keuper
Title: SemSegBench & DetecBench: Benchmarking Reliability and Generalization Beyond Classification
Abstract:
Reliability and generalization in deep learning are predominantly studied in the context of image classification. Yet, real-world applications in safety-critical domains involve a broader set of semantic tasks, such as semantic segmentation and object detection, which come with a diverse set of dedicated model architectures. To facilitate research towards robust model design in segmentation and detection, our primary objective is to provide benchmarking tools regarding robustness to distribution shifts and adversarial manipulations. We propose the benchmarking tools SEMSEGBENCH and DETECBENCH, along with the most extensive evaluation to date on the reliability and generalization of semantic segmentation and object detection models. In particular, we benchmark 76 segmentation models across four datasets and 61 object detectors across two datasets, evaluating their performance under diverse adversarial attacks and common corruptions. Our findings reveal systematic weaknesses in state-of-the-art models and uncover key trends based on architecture, backbone, and model capacity. SEMSEGBENCH and DETECBENCH are open-sourced in our GitHub repository (https://github.com/shashankskagnihotri/benchmarking_reliability_generalization) along with our complete set of total 6139 evaluations. We anticipate the collected data to foster and encourage future research towards improved model reliability beyond classification.

Authors:Honghao Li, Yiwen Zhang, Yi Zhang, Lei Sang, Jieming Zhu
Title: Revisiting Feature Interactions from the Perspective of Quadratic Neural Networks for Click-through Rate Prediction
Abstract:
Hadamard Product (HP) has long been a cornerstone in click-through rate (CTR) prediction tasks due to its simplicity, effectiveness, and ability to capture feature interactions without additional parameters. However, the underlying reasons for its effectiveness remain unclear. In this paper, we revisit HP from the perspective of Quadratic Neural Networks (QNN), which leverage quadratic interaction terms to model complex feature relationships. We further reveal QNN's ability to expand the feature space and provide smooth nonlinear approximations without relying on activation functions. Meanwhile, we find that traditional post-activation does not further improve the performance of the QNN. Instead, mid-activation is a more suitable alternative. Through theoretical analysis and empirical evaluation of 25 QNN neuron formats, we identify a good-performing variant and make further enhancements on it. Specifically, we propose the Multi-Head Khatri-Rao Product as a superior alternative to HP and a Self-Ensemble Loss with dynamic ensemble capability within the same network to enhance computational efficiency and performance. Ultimately, we propose a novel neuron format, QNN-alpha, which is tailored for CTR prediction tasks. Experimental results show that QNN-alpha achieves new state-of-the-art performance on six public datasets while maintaining low inference latency, good scalability, and excellent compatibility. The code, running logs, and detailed hyperparameter configurations are available at: https://github.com/salmon1802/QNN.

Authors:Yutong Chen, Jiandong Gao, Ji Wu
Title: Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
Abstract:
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has substantial influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring \textbf{sample effect}. Our hypothetical analysis shows the potential to improve SFT efficiency. Guided by our analysis, we propose \textbf{Re-distillation}, a technique that aims to boost the effectiveness of small-scale distillation by sampling from the RL-trained policy. Re-distillation shows consistent surprising efficiency on three datasets and both Qwen\&Llama models: Re-distilled models matched RL performance with far fewer samples and less computation. As a result, on K\&K dataset, our re-distilled Qwen-2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. We demonstrate that re-distillation can be used to efficiently balance multiple goals in RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning.

Authors:Bryan Wong, Jong Woo Kim, Huazhu Fu, Mun Yong Yi
Title: Few-Shot Learning from Gigapixel Images via Hierarchical Vision-Language Alignment and Modeling
Abstract:
Vision-language models (VLMs) have recently been integrated into multiple instance learning (MIL) frameworks to address the challenge of few-shot, weakly supervised classification of whole slide images (WSIs). A key trend involves leveraging multi-scale information to better represent hierarchical tissue structures. However, existing methods often face two key limitations: (1) insufficient modeling of interactions within the same modalities across scales (e.g., 5x and 20x) and (2) inadequate alignment between visual and textual modalities on the same scale. To address these gaps, we propose HiVE-MIL, a hierarchical vision-language framework that constructs a unified graph consisting of (1) parent-child links between coarse (5x) and fine (20x) visual/textual nodes to capture hierarchical relationships, and (2) heterogeneous intra-scale edges linking visual and textual nodes on the same scale. To further enhance semantic consistency, HiVE-MIL incorporates a two-stage, text-guided dynamic filtering mechanism that removes weakly correlated patch-text pairs, and introduces a hierarchical contrastive loss to align textual semantics across scales. Extensive experiments on TCGA breast, lung, and kidney cancer datasets demonstrate that HiVE-MIL consistently outperforms both traditional MIL and recent VLM-based MIL approaches, achieving gains of up to 4.1% in macro F1 under 16-shot settings. Our results demonstrate the value of jointly modeling hierarchical structure and multimodal alignment for efficient and scalable learning from limited pathology data. The code is available at https://github.com/bryanwong17/HiVE-MIL

Authors:Simone Gaisbauer, Prabin Gyawali, Qilin Zhang, Olaf Wysocki, Boris Jutzi
Title: To Glue or Not to Glue? Classical vs Learned Image Matching for Mobile Mapping Cameras to Textured Semantic 3D Building Models
Abstract:
Feature matching is a necessary step for many computer vision and photogrammetry applications such as image registration, structure-from-motion, and visual localization. Classical handcrafted methods such as SIFT feature detection and description combined with nearest neighbour matching and RANSAC outlier removal have been state-of-the-art for mobile mapping cameras. With recent advances in deep learning, learnable methods have been introduced and proven to have better robustness and performance under complex conditions. Despite their growing adoption, a comprehensive comparison between classical and learnable feature matching methods for the specific task of semantic 3D building camera-to-model matching is still missing. This submission systematically evaluates the effectiveness of different feature-matching techniques in visual localization using textured CityGML LoD2 models. We use standard benchmark datasets (HPatches, MegaDepth-1500) and custom datasets consisting of facade textures and corresponding camera images (terrestrial and drone). For the latter, we evaluate the achievable accuracy of the absolute pose estimated using a Perspective-n-Point (PnP) algorithm, with geometric ground truth derived from geo-referenced trajectory data. The results indicate that the learnable feature matching methods vastly outperform traditional approaches regarding accuracy and robustness on our challenging custom datasets with zero to 12 RANSAC-inliers and zero to 0.16 area under the curve. We believe that this work will foster the development of model-based visual localization methods. Link to the code: https://github.com/simBauer/To\_Glue\_or\_not\_to\_Glue

Authors:Ionut-Vlad Modoranu, Mher Safaryan, Erik Schultheis, Max Ryabinin, Artem Chumachenko, Dan Alistarh
Title: FFT-based Dynamic Subspace Selection for Low-Rank Adaptive Optimization of Large Language Models
Abstract:
Low-rank optimization has emerged as a promising direction in training large language models (LLMs) to improve running time and reduce the memory usage of adaptive optimizers by constraining learning to a lower-dimensional space. Prior work typically projects gradients of linear layers using approaches based on Singular Value Decomposition (SVD) or QR-decomposition. Applying these techniques individually to each layer in large models is computationally expensive and incurs additional memory costs due to storing the projection matrices. In this work, we propose a computationally efficient and conceptually simple, two-step procedure to approximate SVD/QR-based gradient projections into lower-dimensional spaces by using a predefined orthogonal matrix of the Discrete Cosine Transform (DCT). We dynamically select columns from the DCT matrix based on their alignment with the gradient of each layer. The effective projection matrices are obtained via a simple matmul with the DCT matrix in $O(n^3)$ time, followed by a lightweight sorting step to identify the most relevant basis vectors. For large layers, DCT can be computed via Makhoul's $N$-point algorithm based on Fast Fourier Transform (FFT) in $O(n^2 \log(n))$ time. Due to the predefined nature of the orthogonal bases, they are computed once at the start of training. Our numerical experiments on both pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy in approximating optimal low-rank projections, obtaining an approach with rank-independent running time that matches the performance of costly SVD/QR-based methods while achieving faster runtime and reduced memory usage by up to $25\%$ across different model sizes. Our code is available at \href{https://github.com/IST-DASLab/ISTA-DASLab-Optimizers}{\texttt{https://github.com/IST-DASLab/ISTA-DASLab-Optimizers}}.

Authors:Yujin Jeong, Arnas Uselis, Seong Joon Oh, Anna Rohrbach
Title: Diffusion Classifiers Understand Compositionality, but Conditions Apply
Abstract:
Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark Self-Bench comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.

Authors:Haihong Xiao, Jianan Zou, Yuxin Zhou, Ying He, Wenxiong Kang
Title: SplatCo: Structure-View Collaborative Gaussian Splatting for Detail-Preserving Rendering of Large-Scale Unbounded Scenes
Abstract:
We present SplatCo, a structure-view collaborative Gaussian splatting framework for high-fidelity rendering of complex outdoor environments. SplatCo builds upon two novel components: (1) a cross-structure collaboration module that combines global tri-plane representations, which capture coarse scene layouts, with local context grid features that represent fine surface details. This fusion is achieved through a novel hierarchical compensation strategy, ensuring both global consistency and local detail preservation; and (2) a cross-view assisted training strategy that enhances multi-view consistency by synchronizing gradient updates across viewpoints, applying visibility-aware densification, and pruning overfitted or inaccurate Gaussians based on structural consistency. Through joint optimization of structural representation and multi-view coherence, SplatCo effectively reconstructs fine-grained geometric structures and complex textures in large-scale scenes. Comprehensive evaluations on 13 diverse large-scale scenes, including Mill19, MatrixCity, Tanks & Temples, WHU, and custom aerial captures, demonstrate that SplatCo consistently achieves higher reconstruction quality than state-of-the-art methods, with PSNR improvements of 1-2 dB and SSIM gains of 0.1 to 0.2. These results establish a new benchmark for high-fidelity rendering of large-scale unbounded scenes. Code and additional information are available at https://github.com/SCUT-BIP-Lab/SplatCo.

Authors:Zigeng Chen, Xinyin Ma, Gongfan Fang, Ruonan Yu, Xinchao Wang
Title: VeriThinker: Learning to Verify Makes Reasoning Model Efficient
Abstract:
Large Reasoning Models (LRMs) excel at complex tasks using Chain-of-Thought (CoT) reasoning. However, their tendency to overthinking leads to unnecessarily lengthy reasoning chains, dramatically increasing inference costs. To mitigate this issue, we introduce VeriThinker, a novel approach for CoT compression. Unlike conventional methods that fine-tune LRMs directly on the original reasoning task using synthetic concise CoT data, we innovatively fine-tune the model solely through an auxiliary verification task. By training LRMs to accurately verify the correctness of CoT solutions, the LRMs inherently become more discerning about the necessity of subsequent self-reflection steps, thereby effectively suppressing overthinking. Extensive experiments validate that VeriThinker substantially reduces reasoning chain lengths while maintaining or even slightly improving accuracy. When applied to DeepSeek-R1-Distill-Qwen-7B, our approach reduces reasoning tokens on MATH500 from 3790 to 2125 while improving accuracy by 0.8% (94.0% to 94.8%), and on AIME25, tokens decrease from 14321 to 10287 with a 2.1% accuracy gain (38.7% to 40.8%). Additionally, our experiments demonstrate that VeriThinker can also be zero-shot generalized to speculative reasoning. Code is available at https://github.com/czg1225/VeriThinker

Authors:Nayoung Kim, Seongsu Kim, Sungsoo Ahn
Title: Flexible MOF Generation with Torsion-Aware Flow Matching
Abstract:
Designing metal-organic frameworks (MOFs) with novel chemistries is a longstanding challenge due to their large combinatorial space and complex 3D arrangements of the building blocks. While recent deep generative models have enabled scalable MOF generation, they assume (1) a fixed set of building blocks and (2) known local 3D coordinates of building blocks. However, this limits their ability to (1) design novel MOFs and (2) generate the structure using novel building blocks. We propose a two-stage MOF generation framework that overcomes these limitations by modeling both chemical and geometric degrees of freedom. First, we train an SMILES-based autoregressive model to generate metal and organic building blocks, paired with a cheminformatics toolkit for 3D structure initialization. Second, we introduce a flow matching model that predicts translations, rotations, and torsional angles to assemble the blocks into valid 3D frameworks. Our experiments demonstrate improved reconstruction accuracy, the generation of valid, novel, and unique MOFs, and the ability to create novel building blocks. Our code is available at https://github.com/nayoung10/MOFFlow-2.

Authors:Nayoung Kim, Seongsu Kim, Sungsoo Ahn
Title: Flexible MOF Generation with Torsion-Aware Flow Matching
Abstract:
Designing metal-organic frameworks (MOFs) with novel chemistries is a longstanding challenge due to their large combinatorial space and complex 3D arrangements of the building blocks. While recent deep generative models have enabled scalable MOF generation, they assume (1) a fixed set of building blocks and (2) known local 3D coordinates of building blocks. However, this limits their ability to (1) design novel MOFs and (2) generate the structure using novel building blocks. We propose a two-stage MOF generation framework that overcomes these limitations by modeling both chemical and geometric degrees of freedom. First, we train an SMILES-based autoregressive model to generate metal and organic building blocks, paired with a cheminformatics toolkit for 3D structure initialization. Second, we introduce a flow matching model that predicts translations, rotations, and torsional angles to assemble the blocks into valid 3D frameworks. Our experiments demonstrate improved reconstruction accuracy, the generation of valid, novel, and unique MOFs, and the ability to create novel building blocks. Our code is available at https://github.com/nayoung10/MOFFlow-2.

Authors:Zheyang Huang, Jagannath Aryal, Saeid Nahavandi, Xuequan Lu, Chee Peng Lim, Lei Wei, Hailing Zhou
Title: Object-level Cross-view Geo-localization with Location Enhancement and Multi-Head Cross Attention
Abstract:
Cross-view geo-localization determines the location of a query image, captured by a drone or ground-based camera, by matching it to a geo-referenced satellite image. While traditional approaches focus on image-level localization, many applications, such as search-and-rescue, infrastructure inspection, and precision delivery, demand object-level accuracy. This enables users to prompt a specific object with a single click on a drone image to retrieve precise geo-tagged information of the object. However, variations in viewpoints, timing, and imaging conditions pose significant challenges, especially when identifying visually similar objects in extensive satellite imagery. To address these challenges, we propose an Object-level Cross-view Geo-localization Network (OCGNet). It integrates user-specified click locations using Gaussian Kernel Transfer (GKT) to preserve location information throughout the network. This cue is dually embedded into the feature encoder and feature matching blocks, ensuring robust object-specific localization. Additionally, OCGNet incorporates a Location Enhancement (LE) module and a Multi-Head Cross Attention (MHCA) module to adaptively emphasize object-specific features or expand focus to relevant contextual regions when necessary. OCGNet achieves state-of-the-art performance on a public dataset, CVOGL. It also demonstrates few-shot learning capabilities, effectively generalizing from limited examples, making it suitable for diverse applications (https://github.com/ZheyangH/OCGNet).

Authors:Bin Wu, Wei Wang, Yahui Liu, Zixiang Li, Yao Zhao
Title: DiffusionReward: Enhancing Blind Face Restoration through Reward Feedback Learning
Abstract:
Reward Feedback Learning (ReFL) has recently shown great potential in aligning model outputs with human preferences across various generative tasks. In this work, we introduce a ReFL framework, named DiffusionReward, to the Blind Face Restoration task for the first time. DiffusionReward effectively overcomes the limitations of diffusion-based methods, which often fail to generate realistic facial details and exhibit poor identity consistency. The core of our framework is the Face Reward Model (FRM), which is trained using carefully annotated data. It provides feedback signals that play a pivotal role in steering the optimization process of the restoration network. In particular, our ReFL framework incorporates a gradient flow into the denoising process of off-the-shelf face restoration methods to guide the update of model parameters. The guiding gradient is collaboratively determined by three aspects: (i) the FRM to ensure the perceptual quality of the restored faces; (ii) a regularization term that functions as a safeguard to preserve generative diversity; and (iii) a structural consistency constraint to maintain facial fidelity. Furthermore, the FRM undergoes dynamic optimization throughout the process. It not only ensures that the restoration network stays precisely aligned with the real face manifold, but also effectively prevents reward hacking. Experiments on synthetic and wild datasets demonstrate that our method outperforms state-of-the-art methods, significantly improving identity consistency and facial details. The source codes, data, and models are available at: https://github.com/01NeuralNinja/DiffusionReward.

Authors:Bram Grooten, Farid Hasanov, Chenxiang Zhang, Qiao Xiao, Boqian Wu, Zahra Atashgahi, Ghada Sokar, Shiwei Liu, Lu Yin, Elena Mocanu, Mykola Pechenizkiy, Decebal Constantin Mocanu
Title: NeuroTrails: Training with Dynamic Sparse Heads as the Key to Effective Ensembling
Abstract:
Model ensembles have long been a cornerstone for improving generalization and robustness in deep learning. However, their effectiveness often comes at the cost of substantial computational overhead. To address this issue, state-of-the-art methods aim to replicate ensemble-class performance without requiring multiple independently trained networks. Unfortunately, these algorithms often still demand considerable compute at inference. In response to these limitations, we introduce $\textbf{NeuroTrails}$, a sparse multi-head architecture with dynamically evolving topology. This unexplored model-agnostic training paradigm improves ensemble performance while reducing the required resources. We analyze the underlying reason for its effectiveness and observe that the various neural trails induced by dynamic sparsity attain a $\textit{Goldilocks zone}$ of prediction diversity. NeuroTrails displays efficacy with convolutional and transformer-based architectures on computer vision and language tasks. Experiments on ResNet-50/ImageNet, LLaMA-350M/C4, among many others, demonstrate increased accuracy and stronger robustness in zero-shot generalization, while requiring significantly fewer parameters.

Authors:Litao Guo, Xinli Xu, Luozhou Wang, Jiantao Lin, Jinsong Zhou, Zixin Zhang, Bolan Su, Ying-Cong Chen
Title: ComfyMind: Toward General-Purpose Generation via Tree-Based Planning and Reactive Feedback
Abstract:
With the rapid advancement of generative models, general-purpose generation has gained increasing attention as a promising approach to unify diverse tasks across modalities within a single system. Despite this progress, existing open-source frameworks often remain fragile and struggle to support complex real-world applications due to the lack of structured workflow planning and execution-level feedback. To address these limitations, we present ComfyMind, a collaborative AI system designed to enable robust and scalable general-purpose generation, built on the ComfyUI platform. ComfyMind introduces two core innovations: Semantic Workflow Interface (SWI) that abstracts low-level node graphs into callable functional modules described in natural language, enabling high-level composition and reducing structural errors; Search Tree Planning mechanism with localized feedback execution, which models generation as a hierarchical decision process and allows adaptive correction at each stage. Together, these components improve the stability and flexibility of complex generative workflows. We evaluate ComfyMind on three public benchmarks: ComfyBench, GenEval, and Reason-Edit, which span generation, editing, and reasoning tasks. Results show that ComfyMind consistently outperforms existing open-source baselines and achieves performance comparable to GPT-Image-1. ComfyMind paves a promising path for the development of open-source general-purpose generative AI systems. Project page: https://github.com/LitaoGuo/ComfyMind

Authors:Nikita Ivanov, Mark Klimov, Dmitry Glukhikh, Tatiana Chernysheva, Igor Glukhikh
Title: Track Anything Annotate: Video annotation and dataset generation of computer vision models
Abstract:
Modern machine learning methods require significant amounts of labelled data, making the preparation process time-consuming and resource-intensive. In this paper, we propose to consider the process of prototyping a tool for annotating and generating training datasets based on video tracking and segmentation. We examine different approaches to solving this problem, from technology selection through to final implementation. The developed prototype significantly accelerates dataset generation compared to manual annotation. All resources are available at https://github.com/lnikioffic/track-anything-annotate

Authors:Hongshu Guo, Zeyuan Ma, Yining Ma, Xinglin Zhang, Wei-Neng Chen, Yue-Jiao Gong
Title: DesignX: Human-Competitive Algorithm Designer for Black-Box Optimization
Abstract:
Designing effective black-box optimizers is hampered by limited problem-specific knowledge and manual control that spans months for almost every detail. In this paper, we present DesignX, the first automated algorithm design framework that generates an effective optimizer specific to a given black-box optimization problem within seconds. Rooted in the first principles, we identify two key sub-tasks: 1) algorithm structure generation and 2) hyperparameter control. To enable systematic construction, a comprehensive modular algorithmic space is first built, embracing hundreds of algorithm components collected from decades of research. We then introduce a dual-agent reinforcement learning system that collaborates on structural and parametric design through a novel cooperative training objective, enabling large-scale meta-training across 10k diverse instances. Remarkably, through days of autonomous learning, the DesignX-generated optimizers continuously surpass human-crafted optimizers by orders of magnitude, either on synthetic testbed or on realistic optimization scenarios such as Protein-docking, AutoML and UAV path planning. Further in-depth analysis reveals DesignX's capability to discover non-trivial algorithm patterns beyond expert intuition, which, conversely, provides valuable design insights for the optimization community. We provide DesignX's inference code at https://github.com/MetaEvo/DesignX.

Authors:Ziwei Zhou, Rui Wang, Zuxuan Wu
Title: Daily-Omni: Towards Audio-Visual Reasoning with Temporal Alignment across Modalities
Abstract:
Recent Multimodal Large Language Models (MLLMs) achieve promising performance on visual and audio benchmarks independently. However, the ability of these models to process cross-modal information synchronously remains largely unexplored. In this paper, we introduce: 1) Daily-Omni, an Audio-Visual Questioning and Answering benchmark comprising 684 videos of daily life scenarios from diverse sources, rich in both audio and visual information, and featuring 1197 multiple-choice QA pairs across 6 major tasks; 2) Daily-Omni QA Generation Pipeline, which includes automatic annotation, QA generation and QA optimization, significantly improves efficiency for human evaluation and scalability of the benchmark; 3) Daily-Omni-Agent, a training-free agent utilizing open-source Visual Language Model (VLM), Audio Language Model (ALM) and Automatic Speech Recognition (ASR) model to establish a baseline for this benchmark. The results show that current MLLMs still struggle significantly with tasks requiring audio-visual integration, but combining VLMs and ALMs with simple temporal alignment techniques can achieve substantially better performance. Codes and benchmark are available at \href{https://github.com/Lliar-liar/Daily-Omni}{https://github.com/Lliar-liar/Daily-Omni}.

Authors:Hao Wang, Licheng Pan, Zhichao Chen, Xu Chen, Qingyang Dai, Lei Wang, Haoxuan Li, Zhouchen Lin
Title: Time-o1: Time-Series Forecasting Needs Transformed Label Alignment
Abstract:
Training time-series forecast models presents unique challenges in designing effective learning objectives. Existing methods predominantly utilize the temporal mean squared error, which faces two critical challenges: (1) label autocorrelation, which leads to bias from the label sequence likelihood; (2) excessive amount of tasks, which increases with the forecast horizon and complicates optimization. To address these challenges, we propose Time-o1, a transformation-augmented learning objective tailored for time-series forecasting. The central idea is to transform the label sequence into decorrelated components with discriminated significance. Models are then trained to align the most significant components, thereby effectively mitigating label autocorrelation and reducing task amount. Extensive experiments demonstrate that Time-o1 achieves state-of-the-art performance and is compatible with various forecast models. Code is available at https://github.com/Master-PLC/Time-o1.

Authors:Xuchen Pan, Yanxi Chen, Yushuo Chen, Yuchang Sun, Daoyuan Chen, Wenhao Zhang, Yuexiang Xie, Yilun Huang, Yilei Zhang, Dawei Gao, Weijie Shi, Yaliang Li, Bolin Ding, Jingren Zhou
Title: Trinity-RFT: A General-Purpose and Unified Framework for Reinforcement Fine-Tuning of Large Language Models
Abstract:
Trinity-RFT is a general-purpose, unified and easy-to-use framework designed for reinforcement fine-tuning (RFT) of large language models. It is built with a modular and decoupled design, consisting of (1) an RFT-core that unifies and generalizes synchronous/asynchronous, on-policy/off-policy, and online/offline modes of RFT; (2) seamless integration for agent-environment interaction with high efficiency and robustness; and (3) systematic data pipelines optimized for RFT. Trinity-RFT can be easily adapted for diverse application scenarios, and serves as a unified platform for development and research of advanced reinforcement learning paradigms at both macroscopic and microscopic levels. This technical report outlines the vision, features, design and implementations of Trinity-RFT, accompanied by extensive examples, applications and experiments that demonstrate its functionalities and user-friendliness.

Authors:Xuchen Pan, Yanxi Chen, Yushuo Chen, Yuchang Sun, Daoyuan Chen, Wenhao Zhang, Yuexiang Xie, Yilun Huang, Yilei Zhang, Dawei Gao, Weijie Shi, Yaliang Li, Bolin Ding, Jingren Zhou
Title: Trinity-RFT: A General-Purpose and Unified Framework for Reinforcement Fine-Tuning of Large Language Models
Abstract:
Trinity-RFT is a general-purpose, unified and easy-to-use framework designed for reinforcement fine-tuning (RFT) of large language models. It is built with a modular and decoupled design, consisting of (1) an RFT-core that unifies and generalizes synchronous/asynchronous, on-policy/off-policy, and online/offline modes of RFT; (2) seamless integration for agent-environment interaction with high efficiency and robustness; and (3) systematic data pipelines optimized for RFT. Trinity-RFT can be easily adapted for diverse application scenarios, and serves as a unified platform for development and research of advanced reinforcement learning paradigms at both macroscopic and microscopic levels. This technical report outlines the vision, features, design and implementations of Trinity-RFT, accompanied by extensive examples, applications and experiments that demonstrate its functionalities and user-friendliness.

Authors:Boxu Chen, Ziwei Zheng, Le Yang, Zeyu Geng, Zhengyu Zhao, Chenhao Lin, Chao Shen
Title: Seeing It or Not? Interpretable Vision-aware Latent Steering to Mitigate Object Hallucinations
Abstract:
Large Vision-Language Models (LVLMs) have achieved remarkable success but continue to struggle with object hallucination (OH), generating outputs inconsistent with visual inputs. While previous work has proposed methods to reduce OH, the visual decision-making mechanisms that lead to hallucinations remain poorly understood. In this paper, we propose VaLSe, a Vision-aware Latent Steering framework that adopts an interpretation-then-mitigation strategy to address OH in LVLMs. By tackling dual challenges of modeling complex vision-language interactions and eliminating spurious activation artifacts, VaLSe can generate visual contribution maps that trace how specific visual inputs influence individual output tokens. These maps reveal the model's vision-aware focus regions, which are then used to perform latent space steering, realigning internal representations toward semantically relevant content and reducing hallucinated outputs. Extensive experiments demonstrate that VaLSe is a powerful interpretability tool and an effective method for enhancing model robustness against OH across multiple benchmarks. Furthermore, our analysis uncovers limitations in existing OH evaluation metrics, underscoring the need for more nuanced, interpretable, and visually grounded OH benchmarks in future work. Code is available at: https://github.com/Ziwei-Zheng/VaLSe.

Authors:Ping Li, Jianan Ni, Bo Pang
Title: Temporal Consistency Constrained Transferable Adversarial Attacks with Background Mixup for Action Recognition
Abstract:
Action recognition models using deep learning are vulnerable to adversarial examples, which are transferable across other models trained on the same data modality. Existing transferable attack methods face two major challenges: 1) they heavily rely on the assumption that the decision boundaries of the surrogate (a.k.a., source) model and the target model are similar, which limits the adversarial transferability; and 2) their decision boundary difference makes the attack direction uncertain, which may result in the gradient oscillation, weakening the adversarial attack. This motivates us to propose a Background Mixup-induced Temporal Consistency (BMTC) attack method for action recognition. From the input transformation perspective, we design a model-agnostic background adversarial mixup module to reduce the surrogate-target model dependency. In particular, we randomly sample one video from each category and make its background frame, while selecting the background frame with the top attack ability for mixup with the clean frame by reinforcement learning. Moreover, to ensure an explicit attack direction, we leverage the background category as guidance for updating the gradient of adversarial example, and design a temporal gradient consistency loss, which strengthens the stability of the attack direction on subsequent frames. Empirical studies on two video datasets, i.e., UCF101 and Kinetics-400, and one image dataset, i.e., ImageNet, demonstrate that our method significantly boosts the transferability of adversarial examples across several action/image recognition models. Our code is available at https://github.com/mlvccn/BMTC_TransferAttackVid.

Authors:Tazeek Bin Abdur Rakib, Ambuj Mehrish, Lay-Ki Soon, Wern Han Lim, Soujanya Poria
Title: DialogXpert: Driving Intelligent and Emotion-Aware Conversations through Online Value-Based Reinforcement Learning with LLM Priors
Abstract:
Large-language-model (LLM) agents excel at reactive dialogue but struggle with proactive, goal-driven interactions due to myopic decoding and costly planning. We introduce DialogXpert, which leverages a frozen LLM to propose a small, high-quality set of candidate actions per turn and employs a compact Q-network over fixed BERT embeddings trained via temporal-difference learning to select optimal moves within this reduced space. By tracking the user's emotions, DialogXpert tailors each decision to advance the task while nurturing a genuine, empathetic connection. Across negotiation, emotional support, and tutoring benchmarks, DialogXpert drives conversations to under $3$ turns with success rates exceeding 94\% and, with a larger LLM prior, pushes success above 97\% while markedly improving negotiation outcomes. This framework delivers real-time, strategic, and emotionally intelligent dialogue planning at scale. Code available at https://github.com/declare-lab/dialogxpert/

Authors:Peilin Chen, Xiaoxuan Yang
Title: Titanus: Enabling KV Cache Pruning and Quantization On-the-Fly for LLM Acceleration
Abstract:
Large language models (LLMs) have gained great success in various domains. Existing systems cache Key and Value within the attention block to avoid redundant computations. However, the size of key-value cache (KV cache) is unpredictable and can even be tens of times larger than the weights in the long context length scenario. In this work, we propose Titanus, a software-hardware co-design to efficiently compress the KV cache on-the-fly. We first propose the cascade pruning-quantization (CPQ) method to reduce the KV cache movement. The hierarchical quantization extension strategy is introduced to tackle the non-independent per-channel quantization issue. To further reduce KV cache movement, we transfer only the non-zero KV cache between the accelerator and off-chip memory. Moreover, we customize a two-stage design space exploration framework for the CPQ method. A novel pipeline and parallelism dataflow is designed to reduce the first token generation time. Experiments show that Titanus achieves 159.9x (49.6x) and 34.8x (29.2x) energy efficiency (throughput) compared to Nvidia A100 GPU and FlightLLM respectively. The code for Titanus is available at https://github.com/peilin-chen/Titanus-for-LLM-acceleration.

Authors:Ildi Alla, Valeria Loscri
Title: Sec5GLoc: Securing 5G Indoor Localization via Adversary-Resilient Deep Learning Architecture
Abstract:
Emerging 5G millimeter-wave and sub-6 GHz networks enable high-accuracy indoor localization, but security and privacy vulnerabilities pose serious challenges. In this paper, we identify and address threats including location spoofing and adversarial signal manipulation against 5G-based indoor localization. We formalize a threat model encompassing attackers who inject forged radio signals or perturb channel measurements to mislead the localization system. To defend against these threats, we propose an adversary-resilient localization architecture that combines deep learning fingerprinting with physical domain knowledge. Our approach integrates multi-anchor Channel Impulse Response (CIR) fingerprints with Time Difference of Arrival (TDoA) features and known anchor positions in a hybrid Convolutional Neural Network (CNN) and multi-head attention network. This design inherently checks geometric consistency and dynamically down-weights anomalous signals, making localization robust to tampering. We formulate the secure localization problem and demonstrate, through extensive experiments on a public 5G indoor dataset, that the proposed system achieves a mean error approximately 0.58 m under mixed Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) trajectories in benign conditions and gracefully degrades to around 0.81 m under attack scenarios. We also show via ablation studies that each architecture component (attention mechanism, TDoA, etc.) is critical for both accuracy and resilience, reducing errors by 4-5 times compared to baselines. In addition, our system runs in real-time, localizing the user in just 1 ms on a simple CPU. The code has been released to ensure reproducibility (https://github.com/sec5gloc/Sec5GLoc).

Authors:Yanping Fu, Xinyuan Liu, Tianyu Li, Yike Ma, Yucheng Zhang, Feng Dai
Title: TopoPoint: Enhance Topology Reasoning via Endpoint Detection in Autonomous Driving
Abstract:
Topology reasoning, which unifies perception and structured reasoning, plays a vital role in understanding intersections for autonomous driving. However, its performance heavily relies on the accuracy of lane detection, particularly at connected lane endpoints. Existing methods often suffer from lane endpoints deviation, leading to incorrect topology construction. To address this issue, we propose TopoPoint, a novel framework that explicitly detects lane endpoints and jointly reasons over endpoints and lanes for robust topology reasoning. During training, we independently initialize point and lane query, and proposed Point-Lane Merge Self-Attention to enhance global context sharing through incorporating geometric distances between points and lanes as an attention mask . We further design Point-Lane Graph Convolutional Network to enable mutual feature aggregation between point and lane query. During inference, we introduce Point-Lane Geometry Matching algorithm that computes distances between detected points and lanes to refine lane endpoints, effectively mitigating endpoint deviation. Extensive experiments on the OpenLane-V2 benchmark demonstrate that TopoPoint achieves state-of-the-art performance in topology reasoning (48.8 on OLS). Additionally, we propose DET$_p$ to evaluate endpoint detection, under which our method significantly outperforms existing approaches (52.6 v.s. 45.2 on DET$_p$). The code is released at https://github.com/Franpin/TopoPoint.

Authors:Patrick Leask, Neel Nanda, Noura Al Moubayed
Title: Inference-Time Decomposition of Activations (ITDA): A Scalable Approach to Interpreting Large Language Models
Abstract:
Sparse autoencoders (SAEs) are a popular method for decomposing Large Langage Models (LLM) activations into interpretable latents. However, due to their substantial training cost, most academic research uses open-source SAEs which are only available for a restricted set of models of up to 27B parameters. SAE latents are also learned from a dataset of activations, which means they do not transfer between models. Motivated by relative representation similarity measures, we introduce Inference-Time Decomposition of Activations (ITDA) models, an alternative method for decomposing language model activations. To train an ITDA, we greedily construct a dictionary of language model activations on a dataset of prompts, selecting those activations which were worst approximated by matching pursuit on the existing dictionary. ITDAs can be trained in just 1% of the time required for SAEs, using 1% of the data. This allowed us to train ITDAs on Llama-3.1 70B and 405B on a single consumer GPU. ITDAs can achieve similar reconstruction performance to SAEs on some target LLMs, but generally incur a performance penalty. However, ITDA dictionaries enable cross-model comparisons, and a simple Jaccard similarity index on ITDA dictionaries outperforms existing methods like CKA, SVCCA, and relative representation similarity metrics. ITDAs provide a cheap alternative to SAEs where computational resources are limited, or when cross model comparisons are necessary. Code available at https://github.com/pleask/itda.

Authors:Ziyu Ge, Yuhao Wu, Daniel Wai Kit Chin, Roy Ka-Wei Lee, Rui Cao
Title: Resolving Conflicting Evidence in Automated Fact-Checking: A Study on Retrieval-Augmented LLMs
Abstract:
Large Language Models (LLMs) augmented with retrieval mechanisms have demonstrated significant potential in fact-checking tasks by integrating external knowledge. However, their reliability decreases when confronted with conflicting evidence from sources of varying credibility. This paper presents the first systematic evaluation of Retrieval-Augmented Generation (RAG) models for fact-checking in the presence of conflicting evidence. To support this study, we introduce \textbf{CONFACT} (\textbf{Con}flicting Evidence for \textbf{Fact}-Checking) (Dataset available at https://github.com/zoeyyes/CONFACT), a novel dataset comprising questions paired with conflicting information from various sources. Extensive experiments reveal critical vulnerabilities in state-of-the-art RAG methods, particularly in resolving conflicts stemming from differences in media source credibility. To address these challenges, we investigate strategies to integrate media background information into both the retrieval and generation stages. Our results show that effectively incorporating source credibility significantly enhances the ability of RAG models to resolve conflicting evidence and improve fact-checking performance.

Authors:M. Emre Sahin, Edoardo Altamura, Oscar Wallis, Stephen P. Wood, Anton Dekusar, Declan A. Millar, Takashi Imamichi, Atsushi Matsuo, Stefano Mensa
Title: Qiskit Machine Learning: an open-source library for quantum machine learning tasks at scale on quantum hardware and classical simulators
Abstract:
We present Qiskit Machine Learning (ML), a high-level Python library that combines elements of quantum computing with traditional machine learning. The API abstracts Qiskit's primitives to facilitate interactions with classical simulators and quantum hardware. Qiskit ML started as a proof-of-concept code in 2019 and has since been developed to be a modular, intuitive tool for non-specialist users while allowing extensibility and fine-tuning controls for quantum computational scientists and developers. The library is available as a public, open-source tool and is distributed under the Apache version 2.0 license.

Authors:Wei Huang, Yizhe Xiong, Xin Ye, Zhijie Deng, Hui Chen, Zijia Lin, Guiguang Ding
Title: Fast Quiet-STaR: Thinking Without Thought Tokens
Abstract:
Large Language Models (LLMs) have achieved impressive performance across a range of natural language processing tasks. However, recent advances demonstrate that further gains particularly in complex reasoning tasks require more than merely scaling up model sizes or training data. One promising direction is to enable models to think during the reasoning process. Recently, Quiet STaR significantly improves reasoning by generating token-level thought traces, but incurs substantial inference overhead. In this work, we propose Fast Quiet STaR, a more efficient reasoning framework that preserves the benefits of token-level reasoning while reducing computational cost. Our method introduces a curriculum learning based training strategy that gradually reduces the number of thought tokens, enabling the model to internalize more abstract and concise reasoning processes. We further extend this approach to the standard Next Token Prediction (NTP) setting through reinforcement learning-based fine-tuning, resulting in Fast Quiet-STaR NTP, which eliminates the need for explicit thought token generation during inference. Experiments on four benchmark datasets with Mistral 7B and Qwen2.5 7B demonstrate that Fast Quiet-STaR consistently outperforms Quiet-STaR in terms of average accuracy under the same inference time budget. Notably, Fast Quiet-STaR NTP achieves an average accuracy improvement of 9\% on Mistral 7B and 5.7\% on Qwen2.5 7B, while maintaining the same inference latency. Our code will be available at https://github.com/huangwei200012/Fast-Quiet-STaR.

Authors:Zeyuan Ma, Yue-Jiao Gong, Hongshu Guo, Wenjie Qiu, Sijie Ma, Hongqiao Lian, Jiajun Zhan, Kaixu Chen, Chen Wang, Zhiyang Huang, Zechuan Huang, Guojun Peng, Ran Cheng, Yining Ma
Title: MetaBox-v2: A Unified Benchmark Platform for Meta-Black-Box Optimization
Abstract:
Meta-Black-Box Optimization (MetaBBO) streamlines the automation of optimization algorithm design through meta-learning. It typically employs a bi-level structure: the meta-level policy undergoes meta-training to reduce the manual effort required in developing algorithms for low-level optimization tasks. The original MetaBox (2023) provided the first open-source framework for reinforcement learning-based single-objective MetaBBO. However, its relatively narrow scope no longer keep pace with the swift advancement in this field. In this paper, we introduce MetaBox-v2 (https://github.com/MetaEvo/MetaBox) as a milestone upgrade with four novel features: 1) a unified architecture supporting RL, evolutionary, and gradient-based approaches, by which we reproduce 23 up-to-date baselines; 2) efficient parallelization schemes, which reduce the training/testing time by 10-40x; 3) a comprehensive benchmark suite of 18 synthetic/realistic tasks (1900+ instances) spanning single-objective, multi-objective, multi-model, and multi-task optimization scenarios; 4) plentiful and extensible interfaces for custom analysis/visualization and integrating to external optimization tools/benchmarks. To show the utility of MetaBox-v2, we carry out a systematic case study that evaluates the built-in baselines in terms of the optimization performance, generalization ability and learning efficiency. Valuable insights are concluded from thorough and detailed analysis for practitioners and those new to the field.

Authors:Dong-Hee Kim, Hyunjee Song, Donghyun Kim
Title: SynRES: Towards Referring Expression Segmentation in the Wild via Synthetic Data
Abstract:
Despite the advances in Referring Expression Segmentation (RES) benchmarks, their evaluation protocols remain constrained, primarily focusing on either single targets with short queries (containing minimal attributes) or multiple targets from distinctly different queries on a single domain. This limitation significantly hinders the assessment of more complex reasoning capabilities in RES models. We introduce WildRES, a novel benchmark that incorporates long queries with diverse attributes and non-distinctive queries for multiple targets. This benchmark spans diverse application domains, including autonomous driving environments and robotic manipulation scenarios, thus enabling more rigorous evaluation of complex reasoning capabilities in real-world settings. Our analysis reveals that current RES models demonstrate substantial performance deterioration when evaluated on WildRES. To address this challenge, we introduce SynRES, an automated pipeline generating densely paired compositional synthetic training data through three innovations: (1) a dense caption-driven synthesis for attribute-rich image-mask-expression triplets, (2) reliable semantic alignment mechanisms rectifying caption-pseudo mask inconsistencies via Image-Text Aligned Grouping, and (3) domain-aware augmentations incorporating mosaic composition and superclass replacement to emphasize generalization ability and distinguishing attributes over object categories. Experimental results demonstrate that models trained with SynRES achieve state-of-the-art performance, improving gIoU by 2.0% on WildRES-ID and 3.8% on WildRES-DS. Code and datasets are available at https://github.com/UTLLab/SynRES.

Authors:Yunyao Lu, Yihang Wu, Reem Kateb, Ahmad Chaddad
Title: Semi-Supervised Medical Image Segmentation via Dual Networks
Abstract:
Traditional supervised medical image segmentation models require large amounts of labeled data for training; however, obtaining such large-scale labeled datasets in the real world is extremely challenging. Recent semi-supervised segmentation models also suffer from noisy pseudo-label issue and limited supervision in feature space. To solve these challenges, we propose an innovative semi-supervised 3D medical image segmentation method to reduce the dependency on large, expert-labeled datasets. Furthermore, we introduce a dual-network architecture to address the limitations of existing methods in using contextual information and generating reliable pseudo-labels. In addition, a self-supervised contrastive learning strategy is used to enhance the representation of the network and reduce prediction uncertainty by distinguishing between reliable and unreliable predictions. Experiments on clinical magnetic resonance imaging demonstrate that our approach outperforms state-of-the-art techniques. Our code is available at https://github.com/AIPMLab/Semi-supervised-Segmentation.

Authors:Dan Yuan, Yi Feng, Ziyun Tang
Title: Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection
Abstract:
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.

Authors:Xuerui Qiu, Peixi Wu, Yaozhi Wen, Shaowei Gu, Yuqi Pan, Xinhao Luo, Bo XU, Guoqi Li
Title: SVL: Spike-based Vision-language Pretraining for Efficient 3D Open-world Understanding
Abstract:
Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. However, existing SNNs still exhibit a significant performance gap compared to Artificial Neural Networks (ANNs) due to inadequate pre-training strategies. These limitations manifest as restricted generalization ability, task specificity, and a lack of multimodal understanding, particularly in challenging tasks such as multimodal question answering and zero-shot 3D classification. To overcome these challenges, we propose a Spike-based Vision-Language (SVL) pretraining framework that empowers SNNs with open-world 3D understanding while maintaining spike-driven efficiency. SVL introduces two key components: (i) Multi-scale Triple Alignment (MTA) for label-free triplet-based contrastive learning across 3D, image, and text modalities, and (ii) Re-parameterizable Vision-Language Integration (Rep-VLI) to enable lightweight inference without relying on large text encoders. Extensive experiments show that SVL achieves a top-1 accuracy of 85.4% in zero-shot 3D classification, surpassing advanced ANN models, and consistently outperforms prior SNNs on downstream tasks, including 3D classification (+6.1%), DVS action recognition (+2.1%), 3D detection (+1.1%), and 3D segmentation (+2.1%) with remarkable efficiency. Moreover, SVL enables SNNs to perform open-world 3D question answering, sometimes outperforming ANNs. To the best of our knowledge, SVL represents the first scalable, generalizable, and hardware-friendly paradigm for 3D open-world understanding, effectively bridging the gap between SNNs and ANNs in complex open-world understanding tasks. Code is available https://github.com/bollossom/SVL.

Authors:Jiawei Du, Jinlong Wu, Yuzheng Chen, Yucheng Hu, Bing Li, Joey Tianyi Zhou
Title: Rethinking Agent Design: From Top-Down Workflows to Bottom-Up Skill Evolution
Abstract:
Most LLM-based agent frameworks adopt a top-down philosophy: humans decompose tasks, define workflows, and assign agents to execute each step. While effective on benchmark-style tasks, such systems rely on designer updates and overlook agents' potential to learn from experience. Recently, Silver and Sutton(2025) envision a shift into a new era, where agents could progress from a stream of experiences. In this paper, we instantiate this vision of experience-driven learning by introducing a bottom-up agent paradigm that mirrors the human learning process. Agents acquire competence through a trial-and-reasoning mechanism-exploring, reflecting on outcomes, and abstracting skills over time. Once acquired, skills can be rapidly shared and extended, enabling continual evolution rather than static replication. As more agents are deployed, their diverse experiences accelerate this collective process, making bottom-up design especially suited for open-ended environments. We evaluate this paradigm in Slay the Spire and Civilization V, where agents perceive through raw visual inputs and act via mouse outputs, the same as human players. Using a unified, game-agnostic codebase without any game-specific prompts or privileged APIs, our bottom-up agents acquire skills entirely through autonomous interaction, demonstrating the potential of the bottom-up paradigm in complex, real-world environments. Our code is available at https://github.com/AngusDujw/Bottom-Up-Agent.

Authors:Tianheng Ling, Chao Qian, Lukas Johannes Haßler, Gregor Schiele
Title: Automating Versatile Time-Series Analysis with Tiny Transformers on Embedded FPGAs
Abstract:
Transformer-based models have shown strong performance across diverse time-series tasks, but their deployment on resource-constrained devices remains challenging due to high memory and computational demand. While prior work targeting Microcontroller Units (MCUs) has explored hardware-specific optimizations, such approaches are often task-specific and limited to 8-bit fixed-point precision. Field-Programmable Gate Arrays (FPGAs) offer greater flexibility, enabling fine-grained control over data precision and architecture. However, existing FPGA-based deployments of Transformers for time-series analysis typically focus on high-density platforms with manual configuration. This paper presents a unified and fully automated deployment framework for Tiny Transformers on embedded FPGAs. Our framework supports a compact encoder-only Transformer architecture across three representative time-series tasks (forecasting, classification, and anomaly detection). It combines quantization-aware training (down to 4 bits), hardware-aware hyperparameter search using Optuna, and automatic VHDL generation for seamless deployment. We evaluate our framework on six public datasets across two embedded FPGA platforms. Results show that our framework produces integer-only, task-specific Transformer accelerators achieving as low as 0.033 mJ per inference with millisecond latency on AMD Spartan-7, while also providing insights into deployment feasibility on Lattice iCE40. All source code will be released in the GitHub repository (https://github.com/Edwina1030/TinyTransformer4TS).

Authors:Xiaolong Tang, Meina Kan, Shiguang Shan, Xilin Chen
Title: Plan-R1: Safe and Feasible Trajectory Planning as Language Modeling
Abstract:
Safe and feasible trajectory planning is critical for real-world autonomous driving systems. However, existing learning-based planners rely heavily on expert demonstrations, which not only lack explicit safety awareness but also risk inheriting undesirable behaviors such as speeding from suboptimal human driving data. Inspired by the success of large language models, we propose Plan-R1, a two-stage trajectory planning framework that decouples principle alignment from behavior learning. In the first stage, a general trajectory predictor is pre-trained on expert data to capture diverse, human-like driving behaviors. In the second stage, the model is fine-tuned with rule-based rewards using Group Relative Policy Optimization (GRPO), explicitly aligning ego planning with principles such as safety, comfort, and traffic rule compliance. This two-stage paradigm retains human-like behaviors while enhancing safety awareness and discarding undesirable patterns from demonstrations. Furthermore, we identify a key limitation of directly applying GRPO to planning: group-wise normalization erases cross-group scale differences, causing rare, high-variance safety-violation groups to have similar advantages as abundant low-variance safe groups, thereby suppressing optimization for safety-critical objectives. To address this, we propose Variance-Decoupled GRPO (VD-GRPO), which replaces normalization with centering and fixed scaling to preserve absolute reward magnitudes, ensuring that safety-critical objectives remain dominant throughout training. Experiments on the nuPlan benchmark demonstrate that Plan-R1 significantly improves planning safety and feasibility, achieving state-of-the-art performance, particularly in realistic reactive settings. Our code is available at https://github.com/XiaolongTang23/Plan-R1.

Authors:Shixian Luo, Zezhou Zhu, Yu Yuan, Yuncheng Yang, Lianlei Shan, Yong Wu
Title: GeoGramBench: Benchmarking the Geometric Program Reasoning in Modern LLMs
Abstract:
Geometric spatial reasoning forms the foundation of many applications in artificial intelligence, yet the ability of large language models (LLMs) to operate over geometric spatial information expressed in procedural code remains underexplored. In this paper, we address this gap by formalizing the Program-to-Geometry task, which challenges models to translate programmatic drawing code into accurate and abstract geometric reasoning. To evaluate this capability, we present GeoGramBench, a benchmark of 500 carefully refined problems organized by a tailored three-level taxonomy that considers geometric complexity rather than traditional mathematical reasoning complexity. Our comprehensive evaluation of 17 frontier LLMs reveals consistent and pronounced deficiencies: even the most advanced models achieve less than 50% accuracy at the highest abstraction level. These results highlight the unique challenges posed by program-driven spatial reasoning and establish GeoGramBench as a valuable resource for advancing research in symbolic-to-spatial geometric reasoning. Project page: https://github.com/LiAuto-DSR/GeoGramBench.

Authors:Zehua Pei, Ying Zhang, Hui-Ling Zhen, Xianzhi Yu, Wulong Liu, Sinno Jialin Pan, Mingxuan Yuan, Bei Yu
Title: PreMoe: Lightening MoEs on Constrained Memory by Expert Pruning and Retrieval
Abstract:
Mixture-of-experts (MoE) architectures enable scaling large language models (LLMs) to vast parameter counts without a proportional rise in computational costs. However, the significant memory demands of large MoE models hinder their deployment across various computational environments, from cloud servers to consumer devices. This study first demonstrates pronounced task-specific specialization in expert activation patterns within MoE layers. Building on this, we introduce PreMoe, a novel framework that enables efficient deployment of massive MoE models in memory-constrained environments. PreMoe features two main components: probabilistic expert pruning (PEP) and task-adaptive expert retrieval (TAER). PEP employs a new metric, the task-conditioned expected selection score (TCESS), derived from router logits to quantify expert importance for specific tasks, thereby identifying a minimal set of critical experts. TAER leverages these task-specific expert importance profiles for efficient inference. It pre-computes and stores compact expert patterns for diverse tasks. When a user query is received, TAER rapidly identifies the most relevant stored task pattern and reconstructs the model by loading only the small subset of experts crucial for that task. This approach dramatically reduces the memory footprint across all deployment scenarios. DeepSeek-R1 671B maintains 97.2\% accuracy on MATH500 when pruned to 8/128 configuration (50\% expert reduction), and still achieves 72.0\% with aggressive 8/32 pruning (87.5\% expert reduction). Pangu-Ultra-MoE 718B achieves 97.15\% on MATH500 and 81.3\% on AIME24 with 8/128 pruning, while even more aggressive pruning to 4/64 (390GB memory) preserves 96.95\% accuracy on MATH500. We make our code publicly available at https://github.com/JarvisPei/PreMoe.

Authors:Joakim Edin, Róbert Csordás, Tuukka Ruotsalo, Zhengxuan Wu, Maria Maistro, Jing Huang, Lars Maaløe
Title: GIM: Improved Interpretability for Large Language Models
Abstract:
Ensuring faithful interpretability in large language models is imperative for trustworthy and reliable AI. A key obstacle is self-repair, a phenomenon where networks compensate for reduced signal in one component by amplifying others, masking the true importance of the ablated component. While prior work attributes self-repair to layer normalization and back-up components that compensate for ablated components, we identify a novel form occurring within the attention mechanism, where softmax redistribution conceals the influence of important attention scores. This leads traditional ablation and gradient-based methods to underestimate the significance of all components contributing to these attention scores. We introduce Gradient Interaction Modifications (GIM), a technique that accounts for self-repair during backpropagation. Extensive experiments across multiple large language models (Gemma 2B/9B, LLAMA 1B/3B/8B, Qwen 1.5B/3B) and diverse tasks demonstrate that GIM significantly improves faithfulness over existing circuit identification and feature attribution methods. Our work is a significant step toward better understanding the inner mechanisms of LLMs, which is crucial for improving them and ensuring their safety. Our code is available at https://github.com/JoakimEdin/gim.

Authors:Joakim Edin, Róbert Csordás, Tuukka Ruotsalo, Zhengxuan Wu, Maria Maistro, Casper L. Christensen, Jing Huang, Lars Maaløe
Title: GIM: Improved Interpretability for Large Language Models
Abstract:
Ensuring faithful interpretability in large language models is imperative for trustworthy and reliable AI. A key obstacle is self-repair, a phenomenon where networks compensate for reduced signal in one component by amplifying others, masking the true importance of the ablated component. While prior work attributes self-repair to layer normalization and back-up components that compensate for ablated components, we identify a novel form occurring within the attention mechanism, where softmax redistribution conceals the influence of important attention scores. This leads traditional ablation and gradient-based methods to underestimate the significance of all components contributing to these attention scores. We introduce Gradient Interaction Modifications (GIM), a technique that accounts for self-repair during backpropagation. Extensive experiments across multiple large language models (Gemma 2B/9B, LLAMA 1B/3B/8B, Qwen 1.5B/3B) and diverse tasks demonstrate that GIM significantly improves faithfulness over existing circuit identification and feature attribution methods. Our work is a significant step toward better understanding the inner mechanisms of LLMs, which is crucial for improving them and ensuring their safety. Our code is available at https://github.com/JoakimEdin/gim.

Authors:Minki Kang, Jongwon Jeong, Seanie Lee, Jaewoong Cho, Sung Ju Hwang
Title: Distilling LLM Agent into Small Models with Retrieval and Code Tools
Abstract:
Large language models (LLMs) excel at complex reasoning tasks but remain computationally expensive, limiting their practical deployment. To address this, recent works have focused on distilling reasoning capabilities into smaller language models (sLMs) using chain-of-thought (CoT) traces from teacher LLMs. However, this approach struggles in scenarios requiring rare factual knowledge or precise computation, where sLMs often hallucinate due to limited capability. In this work, we propose Agent Distillation, a framework for transferring not only reasoning capability but full task-solving behavior from LLM-based agents into sLMs with retrieval and code tools. We improve agent distillation along two complementary axes: (1) we introduce a prompting method called first-thought prefix to enhance the quality of teacher-generated trajectories; and (2) we propose a self-consistent action generation for improving test-time robustness of small agents. We evaluate our method on eight reasoning tasks across factual and mathematical domains, covering both in-domain and out-of-domain generalization. Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models fine-tuned using CoT distillation, demonstrating the potential of agent distillation for building practical, tool-using small agents. Our code is available at https://github.com/Nardien/agent-distillation.

Authors:Zixian Guo, Ming Liu, Qilong Wang, Zhilong Ji, Jinfeng Bai, Lei Zhang, Wangmeng Zuo
Title: Integrating Visual Interpretation and Linguistic Reasoning for Math Problem Solving
Abstract:
Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs) and use end-to-end training to achieve multi-modal understanding in a unified process. Effective alignment needs high-quality pre-training data and a carefully designed training process. Current LVLMs face challenges when addressing complex vision-language reasoning tasks, with their reasoning capabilities notably lagging behind those of LLMs. This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework based on existing visual interpretation specialists and text-based reasoning LLMs. Our approach leverages (1) a dedicated vision-language model to transform the visual content of images into textual descriptions and (2) an LLM to perform reasoning according to the visual-derived text and the original question. This method presents a cost-efficient solution for multi-modal model development by optimizing existing models to work collaboratively, avoiding end-to-end development of vision-language models from scratch. By transforming images into language model-compatible text representations, it facilitates future low-cost and flexible upgrades to upcoming powerful LLMs. We introduce an outcome-rewarded joint-tuning strategy to optimize the cooperation between the visual interpretation and linguistic reasoning model. Evaluation results on vision-language benchmarks demonstrate that the decoupled reasoning framework outperforms recent LVLMs. Our approach yields particularly significant performance gains on visually intensive geometric mathematics problems. The code is available: https://github.com/guozix/DVLR.

Authors:Linbao Li, Yannan Liu, Daojing He, Yu Li
Title: One Model Transfer to All: On Robust Jailbreak Prompts Generation against LLMs
Abstract:
Safety alignment in large language models (LLMs) is increasingly compromised by jailbreak attacks, which can manipulate these models to generate harmful or unintended content. Investigating these attacks is crucial for uncovering model vulnerabilities. However, many existing jailbreak strategies fail to keep pace with the rapid development of defense mechanisms, such as defensive suffixes, rendering them ineffective against defended models. To tackle this issue, we introduce a novel attack method called ArrAttack, specifically designed to target defended LLMs. ArrAttack automatically generates robust jailbreak prompts capable of bypassing various defense measures. This capability is supported by a universal robustness judgment model that, once trained, can perform robustness evaluation for any target model with a wide variety of defenses. By leveraging this model, we can rapidly develop a robust jailbreak prompt generator that efficiently converts malicious input prompts into effective attacks. Extensive evaluations reveal that ArrAttack significantly outperforms existing attack strategies, demonstrating strong transferability across both white-box and black-box models, including GPT-4 and Claude-3. Our work bridges the gap between jailbreak attacks and defenses, providing a fresh perspective on generating robust jailbreak prompts. We make the codebase available at https://github.com/LLBao/ArrAttack.

Authors:Hainuo Wang, Qiming Hu, Xiaojie Guo
Title: MODEM: A Morton-Order Degradation Estimation Mechanism for Adverse Weather Image Recovery
Abstract:
Restoring images degraded by adverse weather remains a significant challenge due to the highly non-uniform and spatially heterogeneous nature of weather-induced artifacts, e.g., fine-grained rain streaks versus widespread haze. Accurately estimating the underlying degradation can intuitively provide restoration models with more targeted and effective guidance, enabling adaptive processing strategies. To this end, we propose a Morton-Order Degradation Estimation Mechanism (MODEM) for adverse weather image restoration. Central to MODEM is the Morton-Order 2D-Selective-Scan Module (MOS2D), which integrates Morton-coded spatial ordering with selective state-space models to capture long-range dependencies while preserving local structural coherence. Complementing MOS2D, we introduce a Dual Degradation Estimation Module (DDEM) that disentangles and estimates both global and local degradation priors. These priors dynamically condition the MOS2D modules, facilitating adaptive and context-aware restoration. Extensive experiments and ablation studies demonstrate that MODEM achieves state-of-the-art results across multiple benchmarks and weather types, highlighting its effectiveness in modeling complex degradation dynamics. Our code will be released at https://github.com/hainuo-wang/MODEM.git.

Authors:Xueji Fang, Liyuan Ma, Zhiyang Chen, Mingyuan Zhou, Guo-jun Qi
Title: InfLVG: Reinforce Inference-Time Consistent Long Video Generation with GRPO
Abstract:
Recent advances in text-to-video generation, particularly with autoregressive models, have enabled the synthesis of high-quality videos depicting individual scenes. However, extending these models to generate long, cross-scene videos remains a significant challenge. As the context length grows during autoregressive decoding, computational costs rise sharply, and the model's ability to maintain consistency and adhere to evolving textual prompts deteriorates. We introduce InfLVG, an inference-time framework that enables coherent long video generation without requiring additional long-form video data. InfLVG leverages a learnable context selection policy, optimized via Group Relative Policy Optimization (GRPO), to dynamically identify and retain the most semantically relevant context throughout the generation process. Instead of accumulating the entire generation history, the policy ranks and selects the top-$K$ most contextually relevant tokens, allowing the model to maintain a fixed computational budget while preserving content consistency and prompt alignment. To optimize the policy, we design a hybrid reward function that jointly captures semantic alignment, cross-scene consistency, and artifact reduction. To benchmark performance, we introduce the Cross-scene Video Benchmark (CsVBench) along with an Event Prompt Set (EPS) that simulates complex multi-scene transitions involving shared subjects and varied actions/backgrounds. Experimental results show that InfLVG can extend video length by up to 9$\times$, achieving strong consistency and semantic fidelity across scenes. Our code is available at https://github.com/MAPLE-AIGC/InfLVG.

Authors:Qiyu Chen, Huiyuan Luo, Haiming Yao, Wei Luo, Zhen Qu, Chengkan Lv, Zhengtao Zhang
Title: Center-aware Residual Anomaly Synthesis for Multi-class Industrial Anomaly Detection
Abstract:
Anomaly detection plays a vital role in the inspection of industrial images. Most existing methods require separate models for each category, resulting in multiplied deployment costs. This highlights the challenge of developing a unified model for multi-class anomaly detection. However, the significant increase in inter-class interference leads to severe missed detections. Furthermore, the intra-class overlap between normal and abnormal samples, particularly in synthesis-based methods, cannot be ignored and may lead to over-detection. To tackle these issues, we propose a novel Center-aware Residual Anomaly Synthesis (CRAS) method for multi-class anomaly detection. CRAS leverages center-aware residual learning to couple samples from different categories into a unified center, mitigating the effects of inter-class interference. To further reduce intra-class overlap, CRAS introduces distance-guided anomaly synthesis that adaptively adjusts noise variance based on normal data distribution. Experimental results on diverse datasets and real-world industrial applications demonstrate the superior detection accuracy and competitive inference speed of CRAS. The source code and the newly constructed dataset are publicly available at https://github.com/cqylunlun/CRAS.

Authors:Xiaoyu Ye, Songjie Cheng, Yongtao Wang, Yajiao Xiong, Yishen Li
Title: T2VUnlearning: A Concept Erasing Method for Text-to-Video Diffusion Models
Abstract:
Recent advances in text-to-video (T2V) diffusion models have significantly enhanced the quality of generated videos. However, their ability to produce explicit or harmful content raises concerns about misuse and potential rights violations. Inspired by the success of unlearning techniques in erasing undesirable concepts from text-to-image (T2I) models, we extend unlearning to T2V models and propose a robust and precise unlearning method. Specifically, we adopt negatively-guided velocity prediction fine-tuning and enhance it with prompt augmentation to ensure robustness against LLM-refined prompts. To achieve precise unlearning, we incorporate a localization and a preservation regularization to preserve the model's ability to generate non-target concepts. Extensive experiments demonstrate that our method effectively erases a specific concept while preserving the model's generation capability for all other concepts, outperforming existing methods. We provide the unlearned models in \href{https://github.com/VDIGPKU/T2VUnlearning.git}{https://github.com/VDIGPKU/T2VUnlearning.git}.

Authors:Xiaoyu Ye, Songjie Cheng, Yongtao Wang, Yajiao Xiong, Yishen Li
Title: T2VUnlearning: A Concept Erasing Method for Text-to-Video Diffusion Models
Abstract:
Recent advances in text-to-video (T2V) diffusion models have significantly enhanced the quality of generated videos. However, their capability to produce explicit or harmful content introduces new challenges related to misuse and potential rights violations. To address this newly emerging threat, we propose unlearning-based concept erasing as a solution. First, we adopt negatively-guided velocity prediction fine-tuning and enhance it with prompt augmentation to ensure robustness against prompts refined by large language models (LLMs). Second, to achieve precise unlearning, we incorporate mask-based localization regularization and concept preservation regularization to preserve the model's ability to generate non-target concepts. Extensive experiments demonstrate that our method effectively erases a specific concept while preserving the model's generation capability for all other concepts, outperforming existing methods. We provide the unlearned models in \href{https://github.com/VDIGPKU/T2VUnlearning.git}{https://github.com/VDIGPKU/T2VUnlearning.git}.

Authors:Mingrui Wu, Lu Wang, Pu Zhao, Fangkai Yang, Jianjin Zhang, Jianfeng Liu, Yuefeng Zhan, Weihao Han, Hao Sun, Jiayi Ji, Xiaoshuai Sun, Qingwei Lin, Weiwei Deng, Dongmei Zhang, Feng Sun, Qi Zhang, Rongrong Ji
Title: RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning
Abstract:
Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.

Authors:Jingjing Jiang, Chongjie Si, Jun Luo, Hanwang Zhang, Chao Ma
Title: Co-Reinforcement Learning for Unified Multimodal Understanding and Generation
Abstract:
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce CoRL, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, ULM-R1, achieves average improvements of 7% on three text-to-image generation datasets and 23% on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs. Code is available at https://github.com/mm-vl/ULM-R1.

Authors:Vendi Ardianto Nugroho, Byung Moo Lee
Title: GPS-Aided Deep Learning for Beam Prediction and Tracking in UAV mmWave Communication
Abstract:
Millimeter-wave (mmWave) communication enables high data rates for cellular-connected Unmanned Aerial Vehicles (UAVs). However, a robust beam management remains challenging due to significant path loss and the dynamic mobility of UAVs, which can destabilize the UAV-base station (BS) link. This research presents a GPS-aided deep learning (DL) model that simultaneously predicts current and future optimal beams for UAV mmWave communications, maintaining a Top-1 prediction accuracy exceeding 70% and an average power loss below 0.6 dB across all prediction steps. These outcomes stem from a proposed data set splitting method ensuring balanced label distribution, paired with a GPS preprocessing technique that extracts key positional features, and a DL architecture that maps sequential position data to beam index predictions. The model reduces overhead by approximately 93% (requiring the training of 2 ~ 3 beams instead of 32 beams) with 95% beam prediction accuracy guarantees, and ensures 94% to 96% of predictions exhibit mean power loss not exceeding 1 dB.

Authors:Ye Du, Chen Yang, Nanxi Yu, Wanyu Lin, Qian Zhao, Shujun Wang
Title: Latent Imputation before Prediction: A New Computational Paradigm for De Novo Peptide Sequencing
Abstract:
De novo peptide sequencing is a fundamental computational technique for ascertaining amino acid sequences of peptides directly from tandem mass spectrometry data, eliminating the need for reference databases. Cutting-edge models usually encode the observed mass spectra into latent representations from which peptides are predicted autoregressively. However, the issue of missing fragmentation, attributable to factors such as suboptimal fragmentation efficiency and instrumental constraints, presents a formidable challenge in practical applications. To tackle this obstacle, we propose a novel computational paradigm called \underline{\textbf{L}}atent \underline{\textbf{I}}mputation before \underline{\textbf{P}}rediction (LIPNovo). LIPNovo is devised to compensate for missing fragmentation information within observed spectra before executing the final peptide prediction. Rather than generating raw missing data, LIPNovo performs imputation in the latent space, guided by the theoretical peak profile of the target peptide sequence. The imputation process is conceptualized as a set-prediction problem, utilizing a set of learnable peak queries to reason about the relationships among observed peaks and directly generate the latent representations of theoretical peaks through optimal bipartite matching. In this way, LIPNovo manages to supplement missing information during inference and thus boosts performance. Despite its simplicity, experiments on three benchmark datasets demonstrate that LIPNovo outperforms state-of-the-art methods by large margins. Code is available at \href{https://github.com/usr922/LIPNovo}{https://github.com/usr922/LIPNovo}.

Authors:Rafał Karczewski, Markus Heinonen, Alison Pouplin, Søren Hauberg, Vikas Garg
Title: Spacetime Geometry of Denoising in Diffusion Models
Abstract:
We present a novel perspective on diffusion models using the framework of information geometry. We show that the set of noisy samples, taken across all noise levels simultaneously, forms a statistical manifold -- a family of denoising probability distributions. Interpreting the noise level as a temporal parameter, we refer to this manifold as spacetime. This manifold naturally carries a Fisher-Rao metric, which defines geodesics -- shortest paths between noisy points. Notably, this family of distributions is exponential, enabling efficient geodesic computation even in high-dimensional settings without retraining or fine-tuning. We demonstrate the practical value of this geometric viewpoint in transition path sampling, where spacetime geodesics define smooth sequences of Boltzmann distributions, enabling the generation of continuous trajectories between low-energy metastable states. Code is available at: https://github.com/Aalto-QuML/diffusion-spacetime-geometry.

Authors:Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Yang Yuan, Quanquan Gu, Andrew C Yao
Title: On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning
Abstract:
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). Despite the widespread use of Kullback-Leibler (KL) regularization in policy gradient algorithms to stabilize training, the systematic exploration of how different KL divergence formulations can be estimated and integrated into surrogate loss functions for online reinforcement learning (RL) presents a nuanced and systematically explorable design space. In this paper, we propose regularized policy gradient (RPG), a systematic framework for deriving and analyzing KL-regularized policy gradient methods in the online RL setting. We derive policy gradients and corresponding surrogate loss functions for objectives regularized by both forward and reverse KL divergences, considering both normalized and unnormalized policy distributions. Furthermore, we present derivations for fully differentiable loss functions as well as REINFORCE-style gradient estimators, accommodating diverse algorithmic needs. We conduct extensive experiments on RL for LLM reasoning using these methods, showing improved or competitive results in terms of training stability and performance compared to strong baselines such as GRPO, REINFORCE++, and DAPO. The code is available at https://github.com/complex-reasoning/RPG.

Authors:Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Yang Yuan, Quanquan Gu, Andrew Chi-Chih Yao
Title: On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning
Abstract:
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). KL regularization is ubiquitous, yet the design surface, choice of KL direction (forward vs. reverse), normalization (normalized vs. unnormalized), and estimator ($k_1/k_2/k_3$), is scattered across the literature and often intertwined with off-policy estimation. We ask a focused question: under the off-policy setting, what weighting is required for each KL variant so that the surrogate we optimize yields the exact gradient of the intended KL-regularized objective? We answer this with a compact, unified derivation we call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and unnormalized KL variants and shows that the widely-used $k_3$ penalty is exactly the unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii) identifies and corrects an off-policy importance-weighting mismatch in GRPO's KL term; and (iv) introduces RPG-Style Clip, a truncated-importance-sampling step within RPG-REINFORCE that enables stable, off-policy policy-gradient training at scale. On mathematical reasoning benchmarks (AIME24, AIME25), RPG-REINFORCE with RPG-Style Clip improves accuracy by up to $+6$ absolute percentage points over DAPO. Notably, RPG is a stable and scalable RL algorithm for LLM reasoning, realized via (a) a KL-correct objective, (b) truncated importance sampling, and (c) an iterative reference-policy update scheme.

Authors:Xiaohao Liu, Xiaobo Xia, Weixiang Zhao, Manyi Zhang, Xianzhi Yu, Xiu Su, Shuo Yang, See-Kiong Ng, Tat-Seng Chua
Title: L-MTP: Leap Multi-Token Prediction Beyond Adjacent Context for Large Language Models
Abstract:
Large language models (LLMs) have achieved notable progress. Despite their success, next-token prediction (NTP), the dominant method for LLM training and inference, is constrained in both contextual coverage and inference efficiency due to its inherently sequential process. To overcome these challenges, we propose leap multi-token prediction~(L-MTP), an innovative token prediction method that extends the capabilities of multi-token prediction (MTP) by introducing a leap-based mechanism. Unlike conventional MTP, which generates multiple tokens at adjacent positions, L-MTP strategically skips over intermediate tokens, predicting non-sequential ones in a single forward pass. This structured leap not only enhances the model's ability to capture long-range dependencies but also enables a decoding strategy specially optimized for non-sequential leap token generation, effectively accelerating inference. We theoretically demonstrate the benefit of L-MTP in improving inference efficiency. Experiments across diverse benchmarks validate its merit in boosting both LLM performance and inference speed. The source code is available at https://github.com/Xiaohao-Liu/L-MTP.

Authors:Minsoo Khang, Sangjun Park, Teakgyu Hong, Dawoon Jung
Title: CReSt: A Comprehensive Benchmark for Retrieval-Augmented Generation with Complex Reasoning over Structured Documents
Abstract:
Large Language Models (LLMs) have made substantial progress in recent years, yet evaluating their capabilities in practical Retrieval-Augmented Generation (RAG) scenarios remains challenging. In practical applications, LLMs must demonstrate complex reasoning, refuse to answer appropriately, provide precise citations, and effectively understand document layout. These capabilities are crucial for advanced task handling, uncertainty awareness, maintaining reliability, and structural understanding. While some of the prior works address these aspects individually, there is a need for a unified framework that evaluates them collectively in practical RAG scenarios. To address this, we present CReSt (A Comprehensive Benchmark for Retrieval-Augmented Generation with Complex Reasoning over Structured Documents), a benchmark designed to assess these key dimensions holistically. CReSt comprises 2,245 human-annotated examples in English and Korean, designed to capture practical RAG scenarios that require complex reasoning over structured documents. It also introduces a tailored evaluation methodology to comprehensively assess model performance in these critical areas. Our evaluation shows that even advanced LLMs struggle to perform consistently across these dimensions, underscoring key areas for improvement. We release CReSt to support further research and the development of more robust RAG systems. The dataset and code are available at: https://github.com/UpstageAI/CReSt.

Authors:Uyoung Jeong, Jonathan Freer, Seungryul Baek, Hyung Jin Chang, Kwang In Kim
Title: PoseBH: Prototypical Multi-Dataset Training Beyond Human Pose Estimation
Abstract:
We study multi-dataset training (MDT) for pose estimation, where skeletal heterogeneity presents a unique challenge that existing methods have yet to address. In traditional domains, \eg regression and classification, MDT typically relies on dataset merging or multi-head supervision. However, the diversity of skeleton types and limited cross-dataset supervision complicate integration in pose estimation. To address these challenges, we introduce PoseBH, a new MDT framework that tackles keypoint heterogeneity and limited supervision through two key techniques. First, we propose nonparametric keypoint prototypes that learn within a unified embedding space, enabling seamless integration across skeleton types. Second, we develop a cross-type self-supervision mechanism that aligns keypoint predictions with keypoint embedding prototypes, providing supervision without relying on teacher-student models or additional augmentations. PoseBH substantially improves generalization across whole-body and animal pose datasets, including COCO-WholeBody, AP-10K, and APT-36K, while preserving performance on standard human pose benchmarks (COCO, MPII, and AIC). Furthermore, our learned keypoint embeddings transfer effectively to hand shape estimation (InterHand2.6M) and human body shape estimation (3DPW). The code for PoseBH is available at: https://github.com/uyoung-jeong/PoseBH.

Authors:Zhining Liu, Zihao Li, Ze Yang, Tianxin Wei, Jian Kang, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong
Title: CLIMB: Class-imbalanced Learning Benchmark on Tabular Data
Abstract:
Class-imbalanced learning (CIL) on tabular data is important in many real-world applications where the minority class holds the critical but rare outcomes. In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built on a high-quality open-source Python package with unified API designs, detailed documentation, and rigorous code quality controls, CLIMB supports easy implementation and comparison between different CIL algorithms. Through extensive experiments, we provide practical insights on method accuracy and efficiency, highlighting the limitations of naive rebalancing, the effectiveness of ensembles, and the importance of data quality. Our code, documentation, and examples are available at https://github.com/ZhiningLiu1998/imbalanced-ensemble.

Authors:Hefei Mei, Zirui Wang, Shen You, Minjing Dong, Chang Xu
Title: VEAttack: Downstream-agnostic Vision Encoder Attack against Large Vision Language Models
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding and generation, yet their vulnerability to adversarial attacks raises significant robustness concerns. While existing effective attacks always focus on task-specific white-box settings, these approaches are limited in the context of LVLMs, which are designed for diverse downstream tasks and require expensive full-model gradient computations. Motivated by the pivotal role and wide adoption of the vision encoder in LVLMs, we propose a simple yet effective Vision Encoder Attack (VEAttack), which targets the vision encoder of LVLMs only. Specifically, we propose to generate adversarial examples by minimizing the cosine similarity between the clean and perturbed visual features, without accessing the following large language models, task information, and labels. It significantly reduces the computational overhead while eliminating the task and label dependence of traditional white-box attacks in LVLMs. To make this simple attack effective, we propose to perturb images by optimizing image tokens instead of the classification token. We provide both empirical and theoretical evidence that VEAttack can easily generalize to various tasks. VEAttack has achieved a performance degradation of 94.5% on image caption task and 75.7% on visual question answering task. We also reveal some key observations to provide insights into LVLM attack/defense: 1) hidden layer variations of LLM, 2) token attention differential, 3) Möbius band in transfer attack, 4) low sensitivity to attack steps. The code is available at https://github.com/hfmei/VEAttack-LVLM

Authors:Rui Wang, Qianguo Sun, Tianrong Chen, Zhiyun Zeng, Junlong Wu, Jiaxing Zhang
Title: UniTTS: An end-to-end TTS system without decoupling of acoustic and semantic information
Abstract:
The emergence of multi-codebook neutral audio codecs such as Residual Vector Quantization (RVQ) and Group Vector Quantization (GVQ) has significantly advanced Large-Language-Model (LLM) based Text-to-Speech (TTS) systems. These codecs are crucial in separating semantic and acoustic information while efficiently harnessing semantic priors. However, since semantic and acoustic information cannot be fully aligned, a significant drawback of these methods when applied to LLM-based TTS is that large language models may have limited access to comprehensive audio information. To address this limitation, we propose DistilCodec and UniTTS, which collectively offer the following advantages: 1) This method can distill a multi-codebook audio codec into a single-codebook audio codec with 32,768 codes while achieving a near 100\% utilization. 2) As DistilCodec does not employ a semantic alignment scheme, a large amount of high-quality unlabeled audio (such as audiobooks with sound effects, songs, etc.) can be incorporated during training, further expanding data diversity and broadening its applicability. 3) Leveraging the comprehensive audio information modeling of DistilCodec, we integrated three key tasks into UniTTS's pre-training framework: audio modality autoregression, text modality autoregression, and speech-text cross-modal autoregression. This allows UniTTS to accept interleaved text and speech/audio prompts while substantially preserving LLM's text capabilities. 4) UniTTS employs a three-stage training process: Pre-Training, Supervised Fine-Tuning (SFT), and Alignment. Source code and model checkpoints are publicly available at https://github.com/IDEA-Emdoor-Lab/UniTTS and https://github.com/IDEA-Emdoor-Lab/DistilCodec.

Authors:Wei Jie Yeo, Rui Mao, Moloud Abdar, Erik Cambria, Ranjan Satapathy
Title: Debiasing CLIP: Interpreting and Correcting Bias in Attention Heads
Abstract:
Multimodal models like CLIP have gained significant attention due to their remarkable zero-shot performance across various tasks. However, studies have revealed that CLIP can inadvertently learn spurious associations between target variables and confounding factors. To address this, we introduce \textsc{Locate-Then-Correct} (LTC), a contrastive framework that identifies spurious attention heads in Vision Transformers via mechanistic insights and mitigates them through targeted ablation. Furthermore, LTC identifies salient, task-relevant attention heads, enabling the integration of discriminative features through orthogonal projection to improve classification performance. We evaluate LTC on benchmarks with inherent background and gender biases, achieving over a $>50\%$ gain in worst-group accuracy compared to non-training post-hoc baselines. Additionally, we visualize the representation of selected heads and find that the presented interpretation corroborates our contrastive mechanism for identifying both spurious and salient attention heads. Code available at https://github.com/wj210/CLIP_LTC.

Authors:Haoyu Sun, Huichen Will Wang, Jiawei Gu, Linjie Li, Yu Cheng
Title: FullFront: Benchmarking MLLMs Across the Full Front-End Engineering Workflow
Abstract:
Front-end engineering involves a complex workflow where engineers conceptualize designs, translate them into code, and iteratively refine the implementation. While recent benchmarks primarily focus on converting visual designs to code, we present FullFront, a benchmark designed to evaluate Multimodal Large Language Models (MLLMs) \textbf{across the full front-end development pipeline}. FullFront assesses three fundamental tasks that map directly to the front-end engineering pipeline: Webpage Design (conceptualization phase), Webpage Perception QA (comprehension of visual organization and elements), and Webpage Code Generation (implementation phase). Unlike existing benchmarks that use either scraped websites with bloated code or oversimplified LLM-generated HTML, FullFront employs a novel, two-stage process to transform real-world webpages into clean, standardized HTML while maintaining diverse visual designs and avoiding copyright issues. Extensive testing of state-of-the-art MLLMs reveals significant limitations in page perception, code generation (particularly for image handling and layout), and interaction implementation. Our results quantitatively demonstrate performance disparities across models and tasks, and highlight a substantial gap between current MLLM capabilities and human expert performance in front-end engineering. The FullFront benchmark and code are available in https://github.com/Mikivishy/FullFront.

Authors:Xianzhong Ding, Yunkai Zhang, Binbin Chen, Donghao Ying, Tieying Zhang, Jianjun Chen, Lei Zhang, Alberto Cerpa, Wan Du
Title: Towards VM Rescheduling Optimization Through Deep Reinforcement Learning
Abstract:
Modern industry-scale data centers need to manage a large number of virtual machines (VMs). Due to the continual creation and release of VMs, many small resource fragments are scattered across physical machines (PMs). To handle these fragments, data centers periodically reschedule some VMs to alternative PMs, a practice commonly referred to as VM rescheduling. Despite the increasing importance of VM rescheduling as data centers grow in size, the problem remains understudied. We first show that, unlike most combinatorial optimization tasks, the inference time of VM rescheduling algorithms significantly influences their performance, due to dynamic VM state changes during this period. This causes existing methods to scale poorly. Therefore, we develop a reinforcement learning system for VM rescheduling, VM2RL, which incorporates a set of customized techniques, such as a two-stage framework that accommodates diverse constraints and workload conditions, a feature extraction module that captures relational information specific to rescheduling, as well as a risk-seeking evaluation enabling users to optimize the trade-off between latency and accuracy. We conduct extensive experiments with data from an industry-scale data center. Our results show that VM2RL can achieve a performance comparable to the optimal solution but with a running time of seconds. Code and datasets are open-sourced: https://github.com/zhykoties/VMR2L_eurosys, https://drive.google.com/drive/folders/1PfRo1cVwuhH30XhsE2Np3xqJn2GpX5qy.

Authors:Yuheng Wu, Jianwen Xie, Denghui Zhang, Zhaozhuo Xu
Title: DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic
Abstract:
Theory-of-Mind (ToM) tasks pose a unique challenge for large language models (LLMs), which often lack the capability for dynamic logical reasoning. In this work, we propose DEL-ToM, a framework that improves verifiable ToM reasoning through inference-time scaling rather than architectural changes. Our approach decomposes ToM tasks into a sequence of belief updates grounded in Dynamic Epistemic Logic (DEL), enabling structured and verifiable dynamic logical reasoning. We use data generated automatically via a DEL simulator to train a verifier, which we call the Process Belief Model (PBM), to score each belief update step. During inference, the PBM evaluates candidate belief traces from the LLM and selects the highest-scoring one. This allows LLMs to allocate extra inference-time compute to yield more transparent reasoning. Experiments across model scales and benchmarks show that DEL-ToM consistently improves performance, demonstrating that verifiable belief supervision significantly enhances LLMs' ToM capabilities without retraining. Code is available at https://github.com/joel-wu/DEL-ToM.

Authors:Hitesh Laxmichand Patel, Amit Agarwal, Arion Das, Bhargava Kumar, Srikant Panda, Priyaranjan Pattnayak, Taki Hasan Rafi, Tejaswini Kumar, Dong-Kyu Chae
Title: SweEval: Do LLMs Really Swear? A Safety Benchmark for Testing Limits for Enterprise Use
Abstract:
Enterprise customers are increasingly adopting Large Language Models (LLMs) for critical communication tasks, such as drafting emails, crafting sales pitches, and composing casual messages. Deploying such models across different regions requires them to understand diverse cultural and linguistic contexts and generate safe and respectful responses. For enterprise applications, it is crucial to mitigate reputational risks, maintain trust, and ensure compliance by effectively identifying and handling unsafe or offensive language. To address this, we introduce SweEval, a benchmark simulating real-world scenarios with variations in tone (positive or negative) and context (formal or informal). The prompts explicitly instruct the model to include specific swear words while completing the task. This benchmark evaluates whether LLMs comply with or resist such inappropriate instructions and assesses their alignment with ethical frameworks, cultural nuances, and language comprehension capabilities. In order to advance research in building ethically aligned AI systems for enterprise use and beyond, we release the dataset and code: https://github.com/amitbcp/multilingual_profanity.

Authors:Amit Agarwal, Srikant Panda, Kulbhushan Pachauri
Title: FS-DAG: Few Shot Domain Adapting Graph Networks for Visually Rich Document Understanding
Abstract:
In this work, we propose Few Shot Domain Adapting Graph (FS-DAG), a scalable and efficient model architecture for visually rich document understanding (VRDU) in few-shot settings. FS-DAG leverages domain-specific and language/vision specific backbones within a modular framework to adapt to diverse document types with minimal data. The model is robust to practical challenges such as handling OCR errors, misspellings, and domain shifts, which are critical in real-world deployments. FS-DAG is highly performant with less than 90M parameters, making it well-suited for complex real-world applications for Information Extraction (IE) tasks where computational resources are limited. We demonstrate FS-DAG's capability through extensive experiments for information extraction task, showing significant improvements in convergence speed and performance compared to state-of-the-art methods. Additionally, this work highlights the ongoing progress in developing smaller, more efficient models that do not compromise on performance. Code : https://github.com/oracle-samples/fs-dag

Authors:Harim Kim, Yuhan Wang, Minkyu Ahn, Heeyoul Choi, Yuyin Zhou, Charmgil Hong
Title: Harnessing EHRs for Diffusion-based Anomaly Detection on Chest X-rays
Abstract:
Unsupervised anomaly detection (UAD) in medical imaging is crucial for identifying pathological abnormalities without requiring extensive labeled data. However, existing diffusion-based UAD models rely solely on imaging features, limiting their ability to distinguish between normal anatomical variations and pathological anomalies. To address this, we propose Diff3M, a multi-modal diffusion-based framework that integrates chest X-rays and structured Electronic Health Records (EHRs) for enhanced anomaly detection. Specifically, we introduce a novel image-EHR cross-attention module to incorporate structured clinical context into the image generation process, improving the model's ability to differentiate normal from abnormal features. Additionally, we develop a static masking strategy to enhance the reconstruction of normal-like images from anomalies. Extensive evaluations on CheXpert and MIMIC-CXR/IV demonstrate that Diff3M achieves state-of-the-art performance, outperforming existing UAD methods in medical imaging. Our code is available at this http URL https://github.com/nth221/Diff3M

Authors:Phat Thanh Dang, Saahil Thoppay, Wang Yang, Qifan Wang, Vipin Chaudhary, Xiaotian Han
Title: SELF: Self-Extend the Context Length With Logistic Growth Function
Abstract:
Large language models suffer issues when operated on long contexts that are larger than their training context length due to the standard position encoding for tokens in the attention layer. Tokens a long distance apart will rarely have an effect on each other and long prompts yield unexpected results. To solve this problem, we propose SELF (Self-Extend the Context Length With Logistic Growth Function): a solution of grouping consecutive tokens at varying group sizes using a logistic capacity equation combined with a constant group size at smaller relative distances. Our model had an increase in performance of up to 12% compared to the LongLM extension method in LEval (specifically on the Qwen model). On summarization related tasks in LongBench, our model performed up to 6.4% better than LongLM (specifically on the Llama-2-7b model). On reading comprehension tasks from LEval, our model performed up to 5.4% better than the LongLM. Our code is available at https://github.com/alexeipc/SELF-LLM.

Authors:Qihao Duan, Bingding Huang, Zhenqiao Song, Irina Lehmann, Lei Gu, Roland Eils, Benjamin Wild
Title: JanusDNA: A Powerful Bi-directional Hybrid DNA Foundation Model
Abstract:
Large language models (LLMs) have revolutionized natural language processing and are increasingly applied to other sequential data types, including genetic sequences. However, adapting LLMs to genomics presents significant challenges. Capturing complex genomic interactions requires modeling long-range dependencies within DNA sequences, where interactions often span over 10,000 base pairs, even within a single gene, posing substantial computational burdens under conventional model architectures and training paradigms. Moreover, standard LLM training approaches are suboptimal for DNA: autoregressive training, while efficient, supports only unidirectional understanding. However, DNA is inherently bidirectional, e.g., bidirectional promoters regulate transcription in both directions and account for nearly 11% of human gene expression. Masked language models (MLMs) allow bidirectional understanding but are inefficient, as only masked tokens contribute to the loss per step. To address these limitations, we introduce JanusDNA, the first bidirectional DNA foundation model built upon a novel pretraining paradigm that combines the optimization efficiency of autoregressive modeling with the bidirectional comprehension of masked modeling. JanusDNA adopts a hybrid Mamba, Attention and Mixture of Experts (MoE) architecture, combining long-range modeling of Attention with efficient sequential learning of Mamba. MoE layers further scale model capacity via sparse activation while keeping computational cost low. Notably, JanusDNA processes up to 1 million base pairs at single nucleotide resolution on a single 80GB GPU. Extensive experiments and ablations show JanusDNA achieves new SOTA results on three genomic representation benchmarks, outperforming models with 250x more activated parameters. Code: https://github.com/Qihao-Duan/JanusDNA

Authors:Razvan-Gabriel Dumitru, Darius Peteleaza, Vikas Yadav, Liangming Pan
Title: ConciseRL: Conciseness-Guided Reinforcement Learning for Efficient Reasoning Models
Abstract:
Large language models excel at complex tasks by breaking down problems into structured reasoning steps. However, reasoning traces often extend beyond reaching a correct answer, causing wasted computation, reduced readability, and hallucinations. To address this, we introduce a novel hyperparameter-free conciseness score used as a reward signal within a reinforcement learning framework to guide models toward generating correct and concise reasoning traces. This score is evaluated by a large language model acting as a judge, enabling dynamic, context-aware feedback beyond simple token length. Our method achieves state-of-the-art efficiency-accuracy trade-offs on the MATH dataset, reducing token usage by up to 31x on simple problems while improving accuracy by 7%, and on the hardest problems, it outperforms full reasoning by +7.5% accuracy with up to 3.6x fewer tokens. On TheoremQA, our method improves accuracy by +2.2% using 12.5x fewer tokens. We also conduct ablation studies on the judge model, reward composition, and problem difficulty, showing that our method dynamically adapts reasoning length based on problem difficulty and benefits significantly from stronger judges. The code, model weights, and datasets are open-sourced at https://github.com/RazvanDu/ConciseRL.

Authors:Niklas Holzner, Sebastian Maier, Stefan Feuerriegel
Title: Generative AI and Creativity: A Systematic Literature Review and Meta-Analysis
Abstract:
Generative artificial intelligence (GenAI) is increasingly used to support a wide range of human tasks, yet empirical evidence on its effect on creativity remains scattered. Can GenAI generate ideas that are creative? To what extent can it support humans in generating ideas that are both creative and diverse? In this study, we conduct a meta-analysis to evaluate the effect of GenAI on the performance in creative tasks. For this, we first perform a systematic literature search, based on which we identify n = 28 relevant studies (m = 8214 participants) for inclusion in our meta-analysis. We then compute standardized effect sizes based on Hedges' g. We compare different outcomes: (i) how creative GenAI is; (ii) how creative humans augmented by GenAI are; and (iii) the diversity of ideas by humans augmented by GenAI. Our results show no significant difference in creative performance between GenAI and humans (g = -0.05), while humans collaborating with GenAI significantly outperform those working without assistance (g = 0.27). However, GenAI has a significant negative effect on the diversity of ideas for such collaborations between humans and GenAI (g = -0.86). We further analyze heterogeneity across different GenAI models (e.g., GPT-3.5, GPT-4), different tasks (e.g., creative writing, ideation, divergent thinking), and different participant populations (e.g., laypeople, business, academia). Overall, our results position GenAI as an augmentative tool that can support, rather than replace, human creativity-particularly in tasks benefiting from ideation support.

Authors:Hongjian Zhou, Haoyu Yang, Ziang Ying, Nicholas Gangi, Zhaoran, Huang, Haoxing Ren, Joaquin Matres, Jiaqi Gu
Title: LiDAR 2.0: Hierarchical Curvy Waveguide Detailed Routing for Large-Scale Photonic Integrated Circuits
Abstract:
Driven by innovations in photonic computing and interconnects, photonic integrated circuit (PIC) designs advance and grow in complexity. Traditional manual physical design processes have become increasingly cumbersome. Available PIC layout tools are mostly schematic-driven, which has not alleviated the burden of manual waveguide planning and layout drawing. Previous research in PIC automated routing is largely adapted from electronic design, focusing on high-level planning and overlooking photonic-specific constraints such as curvy waveguides, bending, and port alignment. As a result, they fail to scale and cannot generate DRV-free layouts, highlighting the need for dedicated electronic-photonic design automation tools to streamline PIC physical design. In this work, we present LiDAR, the first automated PIC detailed router for large-scale designs. It features a grid-based, curvy-aware A* engine with adaptive crossing insertion, congestion-aware net ordering, and insertion-loss optimization. To enable routing in more compact and complex designs, we further extend our router to hierarchical routing as LiDAR 2.0. It introduces redundant-bend elimination, crossing space preservation, and routing order refinement for improved conflict resilience. We also develop and open-source a YAML-based PIC intermediate representation and diverse benchmarks, including TeMPO, GWOR, and Bennes, which feature hierarchical structures and high crossing densities. Evaluations across various benchmarks show that LiDAR 2.0 consistently produces DRV-free layouts, achieving up to 16% lower insertion loss and 7.69x speedup over prior methods on spacious cases, and 9% lower insertion loss with 6.95x speedup over LiDAR 1.0 on compact cases. Our codes are open-sourced at https://github.com/ScopeX-ASU/LiDAR.

Authors:Siyang Song, Micol Spitale, Xiangyu Kong, Hengde Zhu, Cheng Luo, Cristina Palmero, German Barquero, Sergio Escalera, Michel Valstar, Mohamed Daoudi, Tobias Baur, Fabien Ringeval, Andrew Howes, Elisabeth Andre, Hatice Gunes
Title: REACT 2025: the Third Multiple Appropriate Facial Reaction Generation Challenge
Abstract:
In dyadic interactions, a broad spectrum of human facial reactions might be appropriate for responding to each human speaker behaviour. Following the successful organisation of the REACT 2023 and REACT 2024 challenges, we are proposing the REACT 2025 challenge encouraging the development and benchmarking of Machine Learning (ML) models that can be used to generate multiple appropriate, diverse, realistic and synchronised human-style facial reactions expressed by human listeners in response to an input stimulus (i.e., audio-visual behaviours expressed by their corresponding speakers). As a key of the challenge, we provide challenge participants with the first natural and large-scale multi-modal MAFRG dataset (called MARS) recording 137 human-human dyadic interactions containing a total of 2856 interaction sessions covering five different topics. In addition, this paper also presents the challenge guidelines and the performance of our baselines on the two proposed sub-challenges: Offline MAFRG and Online MAFRG, respectively. The challenge baseline code is publicly available at https://github.com/reactmultimodalchallenge/baseline_react2025

Authors:Georgios Chochlakis, Peter Wu, Arjun Bedi, Marcus Ma, Kristina Lerman, Shrikanth Narayanan
Title: Humans Hallucinate Too: Language Models Identify and Correct Subjective Annotation Errors With Label-in-a-Haystack Prompts
Abstract:
Modeling complex subjective tasks in Natural Language Processing, such as recognizing emotion and morality, is considerably challenging due to significant variation in human annotations. This variation often reflects reasonable differences in semantic interpretations rather than mere noise, necessitating methods to distinguish between legitimate subjectivity and error. We address this challenge by exploring label verification in these contexts using Large Language Models (LLMs). First, we propose a simple In-Context Learning binary filtering baseline that estimates the reasonableness of a document-label pair. We then introduce the Label-in-a-Haystack setting: the query and its label(s) are included in the demonstrations shown to LLMs, which are prompted to predict the label(s) again, while receiving task-specific instructions (e.g., emotion recognition) rather than label copying. We show how the failure to copy the label(s) to the output of the LLM are task-relevant and informative. Building on this, we propose the Label-in-a-Haystack Rectification (LiaHR) framework for subjective label correction: when the model outputs diverge from the reference gold labels, we assign the generated labels to the example instead of discarding it. This approach can be integrated into annotation pipelines to enhance signal-to-noise ratios. Comprehensive analyses, human evaluations, and ecological validity studies verify the utility of LiaHR for label correction. Code is available at https://github.com/gchochla/liahr.

Authors:Kangda Wei, Hasnat Md Abdullah, Ruihong Huang
Title: Mitigating Gender Bias via Fostering Exploratory Thinking in LLMs
Abstract:
Large Language Models (LLMs) often exhibit gender bias, resulting in unequal treatment of male and female subjects across different contexts. To address this issue, we propose a novel data generation framework that fosters exploratory thinking in LLMs. Our approach prompts models to generate story pairs featuring male and female protagonists in structurally identical, morally ambiguous scenarios, then elicits and compares their moral judgments. When inconsistencies arise, the model is guided to produce balanced, gender-neutral judgments. These story-judgment pairs are used to fine-tune or optimize the models via Direct Preference Optimization (DPO). Experimental results show that our method significantly reduces gender bias while preserving or even enhancing general model capabilities. We will release the code and generated data. We release the code and generated data at: https://github.com/WeiKangda/LLMs-Exploratory-Bias-Mitigation/tree/main.

Authors:Huaiyuan Yao, Pengfei Li, Bu Jin, Yupeng Zheng, An Liu, Lisen Mu, Qing Su, Qian Zhang, Yilun Chen, Peng Li
Title: LiloDriver: A Lifelong Learning Framework for Closed-loop Motion Planning in Long-tail Autonomous Driving Scenarios
Abstract:
Recent advances in autonomous driving research towards motion planners that are robust, safe, and adaptive. However, existing rule-based and data-driven planners lack adaptability to long-tail scenarios, while knowledge-driven methods offer strong reasoning but face challenges in representation, control, and real-world evaluation. To address these challenges, we present LiloDriver, a lifelong learning framework for closed-loop motion planning in long-tail autonomous driving scenarios. By integrating large language models (LLMs) with a memory-augmented planner generation system, LiloDriver continuously adapts to new scenarios without retraining. It features a four-stage architecture including perception, scene encoding, memory-based strategy refinement, and LLM-guided reasoning. Evaluated on the nuPlan benchmark, LiloDriver achieves superior performance in both common and rare driving scenarios, outperforming static rule-based and learning-based planners. Our results highlight the effectiveness of combining structured memory and LLM reasoning to enable scalable, human-like motion planning in real-world autonomous driving. Our code is available at https://github.com/Hyan-Yao/LiloDriver.

Authors:Mingxin Huang, Yongxin Shi, Dezhi Peng, Songxuan Lai, Zecheng Xie, Lianwen Jin
Title: OCR-Reasoning Benchmark: Unveiling the True Capabilities of MLLMs in Complex Text-Rich Image Reasoning
Abstract:
Recent advancements in multimodal slow-thinking systems have demonstrated remarkable performance across diverse visual reasoning tasks. However, their capabilities in text-rich image reasoning tasks remain understudied due to the lack of a systematic benchmark. To address this gap, we propose OCR-Reasoning, a comprehensive benchmark designed to systematically assess Multimodal Large Language Models on text-rich image reasoning tasks. The benchmark comprises 1,069 human-annotated examples spanning 6 core reasoning abilities and 18 practical reasoning tasks in text-rich visual scenarios. Furthermore, unlike other text-rich image understanding benchmarks that only annotate the final answers, OCR-Reasoning also annotates the reasoning process simultaneously. With the annotated reasoning process and the final answers, OCR-Reasoning evaluates not only the final answers generated by models but also their reasoning processes, enabling a holistic analysis of their problem-solving abilities. Leveraging this benchmark, we conducted a comprehensive evaluation of state-of-the-art MLLMs. Our results demonstrate the limitations of existing methodologies. Notably, even state-of-the-art MLLMs exhibit substantial difficulties, with none achieving accuracy surpassing 50\% across OCR-Reasoning, indicating that the challenges of text-rich image reasoning are an urgent issue to be addressed. The benchmark and evaluation scripts are available at https://github.com/SCUT-DLVCLab/OCR-Reasoning.

Authors:Qin Chen, Yuanyi Ren, Xiaojun Ma, Yuyang Shi
Title: Large Language Models for Predictive Analysis: How Far Are They?
Abstract:
Predictive analysis is a cornerstone of modern decision-making, with applications in various domains. Large Language Models (LLMs) have emerged as powerful tools in enabling nuanced, knowledge-intensive conversations, thus aiding in complex decision-making tasks. With the burgeoning expectation to harness LLMs for predictive analysis, there is an urgent need to systematically assess their capability in this domain. However, there is a lack of relevant evaluations in existing studies. To bridge this gap, we introduce the \textbf{PredictiQ} benchmark, which integrates 1130 sophisticated predictive analysis queries originating from 44 real-world datasets of 8 diverse fields. We design an evaluation protocol considering text analysis, code generation, and their alignment. Twelve renowned LLMs are evaluated, offering insights into their practical use in predictive analysis. Generally, we believe that existing LLMs still face considerable challenges in conducting predictive analysis. See \href{https://github.com/Cqkkkkkk/PredictiQ}{Github}.

Authors:Bohan Jin, Shuhan Qi, Kehai Chen, Xinyi Guo, Xuan Wang
Title: MDIT-Bench: Evaluating the Dual-Implicit Toxicity in Large Multimodal Models
Abstract:
The widespread use of Large Multimodal Models (LMMs) has raised concerns about model toxicity. However, current research mainly focuses on explicit toxicity, with less attention to some more implicit toxicity regarding prejudice and discrimination. To address this limitation, we introduce a subtler type of toxicity named dual-implicit toxicity and a novel toxicity benchmark termed MDIT-Bench: Multimodal Dual-Implicit Toxicity Benchmark. Specifically, we first create the MDIT-Dataset with dual-implicit toxicity using the proposed Multi-stage Human-in-loop In-context Generation method. Based on this dataset, we construct the MDIT-Bench, a benchmark for evaluating the sensitivity of models to dual-implicit toxicity, with 317,638 questions covering 12 categories, 23 subcategories, and 780 topics. MDIT-Bench includes three difficulty levels, and we propose a metric to measure the toxicity gap exhibited by the model across them. In the experiment, we conducted MDIT-Bench on 13 prominent LMMs, and the results show that these LMMs cannot handle dual-implicit toxicity effectively. The model's performance drops significantly in hard level, revealing that these LMMs still contain a significant amount of hidden but activatable toxicity. Data are available at https://github.com/nuo1nuo/MDIT-Bench.

Authors:Subrata Biswas, Mohammad Nur Hossain Khan, Bashima Islam
Title: RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language
Abstract:
Multimodal question answering (QA) often requires identifying which video, audio, or sensor tokens are relevant to the question. Yet modality disagreements are common: off-camera speech, background noise, or motion outside the field of view often mislead fusion models that weight all streams equally. We present RAVEN, a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module that assigns scalar relevance scores to each token across modalities, enabling the model to amplify informative signals and suppress distractors before fusion. RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning -- each stage targeting a distinct challenge in multi-modal reasoning: representation quality, cross-modal relevance, and robustness to modality mismatch. To support training and evaluation, we release AVS-QA, a dataset of 300K synchronized Audio--Video-Sensor streams paired with automatically generated question-answer pairs. Experimental results on seven multi-modal QA benchmarks -- including egocentric and exocentric tasks -- show that RAVEN achieves up to 14.5\% and 8.0\% gains in accuracy compared to state-of-the-art multi-modal large language models, respectively. Incorporating sensor data provides an additional 16.4\% boost, and the model remains robust under modality corruption, outperforming SOTA baselines by 50.23\%. Our code and dataset are available at https://github.com/BASHLab/RAVEN.

Authors:Minghao Shao, Haoran Xi, Nanda Rani, Meet Udeshi, Venkata Sai Charan Putrevu, Kimberly Milner, Brendan Dolan-Gavitt, Sandeep Kumar Shukla, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Muhammad Shafique
Title: CRAKEN: Cybersecurity LLM Agent with Knowledge-Based Execution
Abstract:
Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.

Authors:Xiaozhao Liu, Dinggang Shen, Xihui Liu
Title: Learning Interpretable Representations Leads to Semantically Faithful EEG-to-Text Generation
Abstract:
Pretrained generative models have opened new frontiers in brain decoding by enabling the synthesis of realistic texts and images from non-invasive brain recordings. However, the reliability of such outputs remains questionable--whether they truly reflect semantic activation in the brain, or are merely hallucinated by the powerful generative models. In this paper, we focus on EEG-to-text decoding and address its hallucination issue through the lens of posterior collapse. Acknowledging the underlying mismatch in information capacity between EEG and text, we reframe the decoding task as semantic summarization of core meanings rather than previously verbatim reconstruction of stimulus texts. To this end, we propose the Generative Language Inspection Model (GLIM), which emphasizes learning informative and interpretable EEG representations to improve semantic grounding under heterogeneous and small-scale data conditions. Experiments on the public ZuCo dataset demonstrate that GLIM consistently generates fluent, EEG-grounded sentences without teacher forcing. Moreover, it supports more robust evaluation beyond text similarity, through EEG-text retrieval and zero-shot semantic classification across sentiment categories, relation types, and corpus topics. Together, our architecture and evaluation protocols lay the foundation for reliable and scalable benchmarking in generative brain decoding.

Authors:Kaibo Huang, Zipei Zhang, Yukun Wei, TianXin Zhang, Zhongliang Yang, Linna Zhou
Title: GSDFuse: Capturing Cognitive Inconsistencies from Multi-Dimensional Weak Signals in Social Media Steganalysis
Abstract:
The ubiquity of social media platforms facilitates malicious linguistic steganography, posing significant security risks. Steganalysis is profoundly hindered by the challenge of identifying subtle cognitive inconsistencies arising from textual fragmentation and complex dialogue structures, and the difficulty in achieving robust aggregation of multi-dimensional weak signals, especially given extreme steganographic sparsity and sophisticated steganography. These core detection difficulties are compounded by significant data imbalance. This paper introduces GSDFuse, a novel method designed to systematically overcome these obstacles. GSDFuse employs a holistic approach, synergistically integrating hierarchical multi-modal feature engineering to capture diverse signals, strategic data augmentation to address sparsity, adaptive evidence fusion to intelligently aggregate weak signals, and discriminative embedding learning to enhance sensitivity to subtle inconsistencies. Experiments on social media datasets demonstrate GSDFuse's state-of-the-art (SOTA) performance in identifying sophisticated steganography within complex dialogue environments. The source code for GSDFuse is available at https://github.com/NebulaEmmaZh/GSDFuse.

Authors:Yiduo Guo, Zhen Guo, Chuanwei Huang, Zi-Ang Wang, Zekai Zhang, Haofei Yu, Huishuai Zhang, Yikang Shen
Title: Synthetic Data RL: Task Definition Is All You Need
Abstract:
Reinforcement learning (RL) is a powerful way to adapt foundation models to specialized tasks, but its reliance on large-scale human-labeled data limits broad adoption. We introduce Synthetic Data RL, a simple and general framework that reinforcement fine-tunes models using only synthetic data generated from a task definition. Our method first generates question and answer pairs from the task definition and retrieved documents, then adapts the difficulty of the question based on model solvability, and selects questions using the average pass rate of the model across samples for RL training. On Qwen-2.5-7B, our method achieves a 29.2% absolute improvement over the base model on GSM8K (+2.9 pp vs. instruction-tuned, +6.6 pp vs. Self-Instruct), 8.7% on MATH, 13.1% on GPQA (+7.0 pp vs. SynthLLM), 8.9% on MedQA, 17.7% on CQA (law) and 13.7% on CFA (finance). It surpasses supervised fine-tuning under the same data budget and nearly matches RL with full human data across datasets (e.g., +17.2 pp on GSM8K). Adding 100 human demonstrations improves the performance of GSM8K only by 0.4 pp, showing a limited added value. By reducing human data annotation, Synthetic Data RL enables scalable and efficient RL-based model adaptation. Code and demos are available at https://github.com/gydpku/Data_Synthesis_RL/.

Authors:Xinlong Chen, Yuanxing Zhang, Qiang Liu, Junfei Wu, Fuzheng Zhang, Tieniu Tan
Title: Mixture of Decoding: An Attention-Inspired Adaptive Decoding Strategy to Mitigate Hallucinations in Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model's attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model's attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. The code is available at https://github.com/xlchen0205/MoD.

Authors:Wenyi Yu, Siyin Wang, Xiaoyu Yang, Xianzhao Chen, Xiaohai Tian, Jun Zhang, Guangzhi Sun, Lu Lu, Yuxuan Wang, Chao Zhang
Title: SALMONN-omni: A Standalone Speech LLM without Codec Injection for Full-duplex Conversation
Abstract:
In order to enable fluid and natural human-machine speech interaction, existing full-duplex conversational systems often adopt modular architectures with auxiliary components such as voice activity detectors, interrupters, conversation state predictors, or multiple LLMs. These systems, however, suffer from error accumulation across modules and struggle with key challenges such as context-dependent barge-in and echo cancellation. Recent approaches, most notably Moshi, simplify the pipeline by injecting audio codecs into the token space of a single LLM. However, such methods still incur significant performance degradation when operating on the speech rather than text modality. In this paper, we introduce SALMONN-omni, the first single, standalone full-duplex speech LLM that operates without audio codecs in its token space. It features a novel dynamic thinking mechanism within the LLM backbone, enabling the model to learn when to transition between speaking and listening states. Experiments on widely used benchmarks for spoken question answering and open-domain dialogue show that SALMONN-omni achieves at least 30\% relative performance improvement over existing open-source full-duplex models and performs highly competitively to half-duplex and turn-based systems, despite using substantially less training data. Moreover, SALMONN-omni demonstrates strong performance in complex conversational scenarios, including turn-taking, backchanneling, echo cancellation and context-dependent barge-in, with further improvements achieved through reinforcement learning. Some demo conversations between user and SALMONN-omni are provided in the following repository https://github.com/bytedance/SALMONN.

Authors:Jingzhi Hu, Geoffrey Ye Li
Title: Distillation-Enabled Knowledge Alignment Protocol for Semantic Communication in AI Agent Networks
Abstract:
Future networks are envisioned to connect massive artificial intelligence (AI) agents, enabling their extensive collaboration on diverse tasks. Compared to traditional entities, these agents naturally suit the semantic communication (SC), which can significantly enhance the bandwidth efficiency. Nevertheless, SC requires the knowledge among agents to be aligned, while agents have distinct expert knowledge for their individual tasks in practice. In this paper, we propose a distillation-enabled knowledge alignment protocol (DeKAP), which distills the expert knowledge of each agent into parameter-efficient low-rank matrices, allocates them across the network, and allows agents to simultaneously maintain aligned knowledge for multiple tasks. We formulate the joint minimization of alignment loss, communication overhead, and storage cost as a large-scale integer linear programming problem and develop a highly efficient greedy algorithm. From computer simulation, the DeKAP establishes knowledge alignment with the lowest communication and computation resources compared to conventional approaches.

Authors:Chengqi Duan, Rongyao Fang, Yuqing Wang, Kun Wang, Linjiang Huang, Xingyu Zeng, Hongsheng Li, Xihui Liu
Title: GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning
Abstract:
Visual generation models have made remarkable progress in creating realistic images from text prompts, yet struggle with complex prompts that specify multiple objects with precise spatial relationships and attributes. Effective handling of such prompts requires explicit reasoning about the semantic content and spatial layout. We present GoT-R1, a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation. Building upon the Generation Chain-of-Thought approach, GoT-R1 enables models to autonomously discover effective reasoning strategies beyond predefined templates through carefully designed reinforcement learning. To achieve this, we propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output, enabling effective supervision across the entire generation pipeline. The reward system assesses semantic alignment, spatial accuracy, and visual quality in a unified approach. Experimental results demonstrate significant improvements on T2I-CompBench benchmark, particularly in compositional tasks involving precise spatial relationships and attribute binding. GoT-R1 advances the state-of-the-art in image generation by successfully transferring sophisticated reasoning capabilities to the visual generation domain. To facilitate future research, we make our code and pretrained models publicly available at https://github.com/gogoduan/GoT-R1.

Authors:Sara Ghaboura, Ketan More, Wafa Alghallabi, Omkar Thawakar, Jorma Laaksonen, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Title: ARB: A Comprehensive Arabic Multimodal Reasoning Benchmark
Abstract:
As Large Multimodal Models (LMMs) become more capable, there is growing interest in evaluating their reasoning processes alongside their final outputs. However, most benchmarks remain focused on English, overlooking languages with rich linguistic and cultural contexts, such as Arabic. To address this gap, we introduce the Comprehensive Arabic Multimodal Reasoning Benchmark (ARB), the first benchmark designed to evaluate step-by-step reasoning in Arabic across both textual and visual modalities. ARB spans 11 diverse domains, including visual reasoning, document understanding, OCR, scientific analysis, and cultural interpretation. It comprises 1,356 multimodal samples paired with 5,119 human-curated reasoning steps and corresponding actions. We evaluated 12 state-of-the-art open- and closed-source LMMs and found persistent challenges in coherence, faithfulness, and cultural grounding. ARB offers a structured framework for diagnosing multimodal reasoning in underrepresented languages and marks a critical step toward inclusive, transparent, and culturally aware AI systems. We release the benchmark, rubric, and evaluation suit to support future research and reproducibility. Code available at: https://github.com/mbzuai-oryx/ARB

Authors:Shilin Yan, Jiaming Han, Joey Tsai, Hongwei Xue, Rongyao Fang, Lingyi Hong, Ziyu Guo, Ray Zhang
Title: CrossLMM: Decoupling Long Video Sequences from LMMs via Dual Cross-Attention Mechanisms
Abstract:
The advent of Large Multimodal Models (LMMs) has significantly enhanced Large Language Models (LLMs) to process and interpret diverse data modalities (e.g., image and video). However, as input complexity increases, particularly with long video sequences, the number of required tokens has grown significantly, leading to quadratically computational costs. This has made the efficient compression of video tokens in LMMs, while maintaining performance integrity, a pressing research challenge. In this paper, we introduce CrossLMM, decoupling long video sequences from LMMs via a dual cross-attention mechanism, which substantially reduces visual token quantity with minimal performance degradation. Specifically, we first implement a significant token reduction from pretrained visual encoders through a pooling methodology. Then, within LLM layers, we employ a visual-to-visual cross-attention mechanism, wherein the pooled visual tokens function as queries against the original visual token set. This module enables more efficient token utilization while retaining fine-grained informational fidelity. In addition, we introduce a text-to-visual cross-attention mechanism, for which the text tokens are enhanced through interaction with the original visual tokens, enriching the visual comprehension of the text tokens. Comprehensive empirical evaluation demonstrates that our approach achieves comparable or superior performance across diverse video-based LMM benchmarks, despite utilizing substantially fewer computational resources.

Authors:Chenhao Zhang, Yazhe Niu
Title: Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework
Abstract:
Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep.

Authors:Kaixuan Fan, Kaituo Feng, Haoming Lyu, Dongzhan Zhou, Xiangyu Yue
Title: SophiaVL-R1: Reinforcing MLLMs Reasoning with Thinking Reward
Abstract:
Recent advances have shown success in eliciting strong reasoning abilities in multimodal large language models (MLLMs) through rule-based reinforcement learning (RL) with outcome rewards. However, this paradigm typically lacks supervision over the thinking process leading to the final outcome.As a result, the model may learn sub-optimal reasoning strategies, which can hinder its generalization ability. In light of this, we propose SophiaVL-R1, as an attempt to add reward signals for the thinking process in this paradigm. To achieve this, we first train a thinking reward model that evaluates the quality of the entire thinking process. Given that the thinking reward may be unreliable for certain samples due to reward hacking, we propose the Trust-GRPO method, which assigns a trustworthiness weight to the thinking reward during training. This weight is computed based on the thinking reward comparison of responses leading to correct answers versus incorrect answers, helping to mitigate the impact of potentially unreliable thinking rewards. Moreover, we design an annealing training strategy that gradually reduces the thinking reward over time, allowing the model to rely more on the accurate rule-based outcome reward in later training stages. Experiments show that our SophiaVL-R1 surpasses a series of reasoning MLLMs on various benchmarks (e.g., MathVisita, MMMU), demonstrating strong reasoning and generalization capabilities. Notably, our SophiaVL-R1-7B even outperforms LLaVA-OneVision-72B on most benchmarks, despite the latter having 10 times more parameters. All code, models, and datasets are made publicly available at https://github.com/kxfan2002/SophiaVL-R1.

Authors:Chengzhuo Tong, Ziyu Guo, Renrui Zhang, Wenyu Shan, Xinyu Wei, Zhenghao Xing, Hongsheng Li, Pheng-Ann Heng
Title: Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO
Abstract:
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT

Authors:Yan Li, Changyao Tian, Renqiu Xia, Ning Liao, Weiwei Guo, Junchi Yan, Hongsheng Li, Jifeng Dai, Hao Li, Xue Yang
Title: Learning Adaptive and Temporally Causal Video Tokenization in a 1D Latent Space
Abstract:
We propose AdapTok, an adaptive temporal causal video tokenizer that can flexibly allocate tokens for different frames based on video content. AdapTok is equipped with a block-wise masking strategy that randomly drops tail tokens of each block during training, and a block causal scorer to predict the reconstruction quality of video frames using different numbers of tokens. During inference, an adaptive token allocation strategy based on integer linear programming is further proposed to adjust token usage given predicted scores. Such design allows for sample-wise, content-aware, and temporally dynamic token allocation under a controllable overall budget. Extensive experiments for video reconstruction and generation on UCF-101 and Kinetics-600 demonstrate the effectiveness of our approach. Without additional image data, AdapTok consistently improves reconstruction quality and generation performance under different token budgets, allowing for more scalable and token-efficient generative video modeling.

Authors:Huatong Song, Jinhao Jiang, Wenqing Tian, Zhipeng Chen, Yuhuan Wu, Jiahao Zhao, Yingqian Min, Wayne Xin Zhao, Lei Fang, Ji-Rong Wen
Title: R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via Reinforcement Learning
Abstract:
Large Language Models (LLMs) are powerful but prone to hallucinations due to static knowledge. Retrieval-Augmented Generation (RAG) helps by injecting external information, but current methods often are costly, generalize poorly, or ignore the internal knowledge of the model. In this paper, we introduce R1-Searcher++, a novel framework designed to train LLMs to adaptively leverage both internal and external knowledge sources. R1-Searcher++ employs a two-stage training strategy: an initial SFT Cold-start phase for preliminary format learning, followed by RL for Dynamic Knowledge Acquisition. The RL stage uses outcome-supervision to encourage exploration, incorporates a reward mechanism for internal knowledge utilization, and integrates a memorization mechanism to continuously assimilate retrieved information, thereby enriching the model's internal knowledge. By leveraging internal knowledge and external search engine, the model continuously improves its capabilities, enabling efficient retrieval-augmented reasoning. Our experiments demonstrate that R1-Searcher++ outperforms previous RAG and reasoning methods and achieves efficient retrieval. The code is available at https://github.com/RUCAIBox/R1-Searcher-plus.

Authors:Jiachen Yao, Abbas Mammadov, Julius Berner, Gavin Kerrigan, Jong Chul Ye, Kamyar Azizzadenesheli, Anima Anandkumar
Title: Guided Diffusion Sampling on Function Spaces with Applications to PDEs
Abstract:
We propose a general framework for conditional sampling in PDE-based inverse problems, targeting the recovery of whole solutions from extremely sparse or noisy measurements. This is accomplished by a function-space diffusion model and plug-and-play guidance for conditioning. Our method first trains an unconditional discretization-agnostic denoising model using neural operator architectures. At inference, we refine the samples to satisfy sparse observation data via a gradient-based guidance mechanism. Through rigorous mathematical analysis, we extend Tweedie's formula to infinite-dimensional Hilbert spaces, providing the theoretical foundation for our posterior sampling approach. Our method (FunDPS) accurately captures posterior distributions in function spaces under minimal supervision and severe data scarcity. Across five PDE tasks with only 3% observation, our method achieves an average 32% accuracy improvement over state-of-the-art fixed-resolution diffusion baselines while reducing sampling steps by 4x. Furthermore, multi-resolution fine-tuning ensures strong cross-resolution generalizability. To the best of our knowledge, this is the first diffusion-based framework to operate independently of discretization, offering a practical and flexible solution for forward and inverse problems in the context of PDEs. Code is available at https://github.com/neuraloperator/FunDPS

Authors:Jin Jiang, Jianing Wang, Yuchen Yan, Yang Liu, Jianhua Zhu, Mengdi Zhang, Xunliang Cai, Liangcai Gao
Title: Do Large Language Models Excel in Complex Logical Reasoning with Formal Language?
Abstract:
Large Language Models (LLMs) have been shown to achieve breakthrough performance on complex logical reasoning tasks. Nevertheless, most existing research focuses on employing formal language to guide LLMs to derive reliable reasoning paths, while systematic evaluations of these capabilities are still limited. In this paper, we aim to conduct a comprehensive evaluation of LLMs across various logical reasoning problems utilizing formal languages. From the perspective of three dimensions, i.e., spectrum of LLMs, taxonomy of tasks, and format of trajectories, our key findings are: 1) Thinking models significantly outperform Instruct models, especially when formal language is employed; 2) All LLMs exhibit limitations in inductive reasoning capability, irrespective of whether they use a formal language; 3) Data with PoT format achieves the best generalization performance across other languages. Additionally, we also curate the formal-relative training data to further enhance the small language models, and the experimental results indicate that a simple rejected fine-tuning method can better enable LLMs to generalize across formal languages and achieve the best overall performance. Our codes and reports are available at https://github.com/jiangjin1999/FormalEval.

Authors:Runyang You, Yongqi Li, Xinyu Lin, Xin Zhang, Wenjie Wang, Wenjie Li, Liqiang Nie
Title: $\text{R}^2\text{ec}$: Towards Large Recommender Models with Reasoning
Abstract:
Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. Current studies usually position LLMs as external reasoning modules to yield auxiliary thought for augmenting conventional recommendation pipelines. However, such decoupled designs are limited in significant resource cost and suboptimal joint optimization. To address these issues, we propose \name, a unified large recommender model with intrinsic reasoning capabilities. Initially, we reconceptualize the model architecture to facilitate interleaved reasoning and recommendation in the autoregressive process. Subsequently, we propose RecPO, a corresponding reinforcement learning framework that optimizes \name\ both the reasoning and recommendation capabilities simultaneously in a single policy update; RecPO introduces a fused reward scheme that solely leverages recommendation labels to simulate the reasoning capability, eliminating dependency on specialized reasoning annotations. Experiments on three datasets with various baselines verify the effectiveness of \name, showing relative improvements of 68.67\% in Hit@5 and 45.21\% in NDCG@20. Code available at https://github.com/YRYangang/RRec.

Authors:Aleksandra Franz, Hao Wei, Luca Guastoni, Nils Thuerey
Title: PICT -- A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics
Abstract:
Despite decades of advancements, the simulation of fluids remains one of the most challenging areas of in scientific computing. Supported by the necessity of gradient information in deep learning, differentiable simulators have emerged as an effective tool for optimization and learning in physics simulations. In this work, we present our fluid simulator PICT, a differentiable pressure-implicit solver coded in PyTorch with Graphics-processing-unit (GPU) support. We first verify the accuracy of both the forward simulation and our derived gradients in various established benchmarks like lid-driven cavities and turbulent channel flows before we show that the gradients provided by our solver can be used to learn complicated turbulence models in 2D and 3D. We apply both supervised and unsupervised training regimes using physical priors to match flow statistics. In particular, we learn a stable sub-grid scale (SGS) model for a 3D turbulent channel flow purely based on reference statistics. The low-resolution corrector trained with our solver runs substantially faster than the highly resolved references, while keeping or even surpassing their accuracy. Finally, we give additional insights into the physical interpretation of different solver gradients, and motivate a physically informed regularization technique. To ensure that the full potential of PICT can be leveraged, it is published as open source: https://github.com/tum-pbs/PICT.

Authors:Runpeng Yu, Xinyin Ma, Xinchao Wang
Title: Dimple: Discrete Diffusion Multimodal Large Language Model with Parallel Decoding
Abstract:
In this work, we propose Dimple, the first Discrete Diffusion Multimodal Large Language Model (DMLLM). We observe that training with a purely discrete diffusion approach leads to significant training instability, suboptimal performance, and severe length bias issues. To address these challenges, we design a novel training paradigm that combines an initial autoregressive phase with a subsequent diffusion phase. This approach yields the Dimple-7B model, trained on the same dataset and using a similar training pipeline as LLaVA-NEXT. Dimple-7B ultimately surpasses LLaVA-NEXT in performance by 3.9%, demonstrating that DMLLM can achieve performance comparable to that of autoregressive models. To improve inference efficiency, we propose a decoding strategy termed confident decoding, which dynamically adjusts the number of tokens generated at each step, significantly reducing the number of generation iterations. In autoregressive models, the number of forward iterations during generation equals the response length. With confident decoding, however, the number of iterations needed by Dimple is even only $\frac{\text{response length}}{3}$. We also re-implement the prefilling technique in autoregressive models and demonstrate that it does not significantly impact performance on most benchmark evaluations, while offering a speedup of 1.5x to 7x. Additionally, we explore Dimple's capability to precisely control its response using structure priors. These priors enable structured responses in a manner distinct from instruction-based or chain-of-thought prompting, and allow fine-grained control over response format and length, which is difficult to achieve in autoregressive models. Overall, this work validates the feasibility and advantages of DMLLM and enhances its inference efficiency and controllability. Code and models are available at https://github.com/yu-rp/Dimple.

Authors:Moru Liu, Hao Dong, Jessica Kelly, Olga Fink, Mario Trapp
Title: Extremely Simple Multimodal Outlier Synthesis for Out-of-Distribution Detection and Segmentation
Abstract:
Out-of-distribution (OOD) detection and segmentation are crucial for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. While prior research has primarily focused on unimodal image data, real-world applications are inherently multimodal, requiring the integration of multiple modalities for improved OOD detection. A key challenge is the lack of supervision signals from unknown data, leading to overconfident predictions on OOD samples. To address this challenge, we propose Feature Mixing, an extremely simple and fast method for multimodal outlier synthesis with theoretical support, which can be further optimized to help the model better distinguish between in-distribution (ID) and OOD data. Feature Mixing is modality-agnostic and applicable to various modality combinations. Additionally, we introduce CARLA-OOD, a novel multimodal dataset for OOD segmentation, featuring synthetic OOD objects across diverse scenes and weather conditions. Extensive experiments on SemanticKITTI, nuScenes, CARLA-OOD datasets, and the MultiOOD benchmark demonstrate that Feature Mixing achieves state-of-the-art performance with a $10 \times$ to $370 \times$ speedup. Our source code and dataset will be available at https://github.com/mona4399/FeatureMixing.

Authors:Junlong Tong, Jinlan Fu, Zixuan Lin, Yingqi Fan, Anhao Zhao, Hui Su, Xiaoyu Shen
Title: LLM as Effective Streaming Processor: Bridging Streaming-Batch Mismatches with Group Position Encoding
Abstract:
Large Language Models (LLMs) are primarily designed for batch processing. Existing methods for adapting LLMs to streaming rely either on expensive re-encoding or specialized architectures with limited scalability. This work identifies three key mismatches in adapting batch-oriented LLMs to streaming: (1) input-attention, (2) output-attention, and (3) position-ID mismatches. While it is commonly assumed that the latter two mismatches require frequent re-encoding, our analysis reveals that only the input-attention mismatch significantly impacts performance, indicating re-encoding outputs is largely unnecessary. To better understand this discrepancy with the common assumption, we provide the first comprehensive analysis of the impact of position encoding on LLMs in streaming, showing that preserving relative positions within source and target contexts is more critical than maintaining absolute order. Motivated by the above analysis, we introduce a group position encoding paradigm built on batch architectures to enhance consistency between streaming and batch modes. Extensive experiments on cross-lingual and cross-modal tasks demonstrate that our method outperforms existing approaches. Our method requires no architectural modifications, exhibits strong generalization in both streaming and batch modes. The code is available at repository https://github.com/EIT-NLP/StreamingLLM.

Authors:Weizhi Tang, Yixuan Li, Chris Sypherd, Elizabeth Polgreen, Vaishak Belle
Title: HyGenar: An LLM-Driven Hybrid Genetic Algorithm for Few-Shot Grammar Generation
Abstract:
Grammar plays a critical role in natural language processing and text/code generation by enabling the definition of syntax, the creation of parsers, and guiding structured outputs. Although large language models (LLMs) demonstrate impressive capabilities across domains, their ability to infer and generate grammars has not yet been thoroughly explored. In this paper, we aim to study and improve the ability of LLMs for few-shot grammar generation, where grammars are inferred from sets of a small number of positive and negative examples and generated in Backus-Naur Form. To explore this, we introduced a novel dataset comprising 540 structured grammar generation challenges, devised 6 metrics, and evaluated 8 various LLMs against it. Our findings reveal that existing LLMs perform sub-optimally in grammar generation. To address this, we propose an LLM-driven hybrid genetic algorithm, namely HyGenar, to optimize grammar generation. HyGenar achieves substantial improvements in both the syntactic and semantic correctness of generated grammars across LLMs.

Authors:Siqi Wan, Jingwen Chen, Yingwei Pan, Ting Yao, Tao Mei
Title: Incorporating Visual Correspondence into Diffusion Model for Virtual Try-On
Abstract:
Diffusion models have shown preliminary success in virtual try-on (VTON) task. The typical dual-branch architecture comprises two UNets for implicit garment deformation and synthesized image generation respectively, and has emerged as the recipe for VTON task. Nevertheless, the problem remains challenging to preserve the shape and every detail of the given garment due to the intrinsic stochasticity of diffusion model. To alleviate this issue, we novelly propose to explicitly capitalize on visual correspondence as the prior to tame diffusion process instead of simply feeding the whole garment into UNet as the appearance reference. Specifically, we interpret the fine-grained appearance and texture details as a set of structured semantic points, and match the semantic points rooted in garment to the ones over target person through local flow warping. Such 2D points are then augmented into 3D-aware cues with depth/normal map of target person. The correspondence mimics the way of putting clothing on human body and the 3D-aware cues act as semantic point matching to supervise diffusion model training. A point-focused diffusion loss is further devised to fully take the advantage of semantic point matching. Extensive experiments demonstrate strong garment detail preservation of our approach, evidenced by state-of-the-art VTON performances on both VITON-HD and DressCode datasets. Code is publicly available at: https://github.com/HiDream-ai/SPM-Diff.

Authors:Yaxin Du, Yuzhu Cai, Yifan Zhou, Cheng Wang, Yu Qian, Xianghe Pang, Qian Liu, Yue Hu, Siheng Chen
Title: SWE-Dev: Evaluating and Training Autonomous Feature-Driven Software Development
Abstract:
Large Language Models (LLMs) have shown strong capability in diverse software engineering tasks, e.g. code completion, bug fixing, and document generation. However, feature-driven development (FDD), a highly prevalent real-world task that involves developing new functionalities for large, existing codebases, remains underexplored. We therefore introduce SWE-Dev, the first large-scale dataset (with 14,000 training and 500 test samples) designed to evaluate and train autonomous coding systems on real-world feature development tasks. To ensure verifiable and diverse training, SWE-Dev uniquely provides all instances with a runnable environment and its developer-authored executable unit tests. This collection not only provides high-quality data for Supervised Fine-Tuning (SFT), but also enables Reinforcement Learning (RL) by delivering accurate reward signals from executable unit tests. Our extensive evaluations on SWE-Dev, covering 17 chatbot LLMs, 10 reasoning models, and 10 Multi-Agent Systems (MAS), reveal that FDD is a profoundly challenging frontier for current AI (e.g., Claude-3.7-Sonnet achieves only 22.45\% Pass@3 on the hard test split). Crucially, we demonstrate that SWE-Dev serves as an effective platform for model improvement: fine-tuning on training set enabled a 7B model comparable to GPT-4o on \textit{hard} split, underscoring the value of its high-quality training data. Code is available here \href{https://github.com/DorothyDUUU/SWE-Dev}{https://github.com/DorothyDUUU/SWE-Dev}.

Authors:Zongyan Han, Jiale Cao, Shuo Chen, Tong Wang, Jorma Laaksonen, Rao Muhammad Anwer
Title: OpenSeg-R: Improving Open-Vocabulary Segmentation via Step-by-Step Visual Reasoning
Abstract:
Open-Vocabulary Segmentation (OVS) has drawn increasing attention for its capacity to generalize segmentation beyond predefined categories. However, existing methods typically predict segmentation masks with simple forward inference, lacking explicit reasoning and interpretability. This makes it challenging for OVS model to distinguish similar categories in open-world settings due to the lack of contextual understanding and discriminative visual cues. To address this limitation, we propose a step-by-step visual reasoning framework for open-vocabulary segmentation, named OpenSeg-R. The proposed OpenSeg-R leverages Large Multimodal Models (LMMs) to perform hierarchical visual reasoning before segmentation. Specifically, we generate both generic and image-specific reasoning for each image, forming structured triplets that explain the visual reason for objects in a coarse-to-fine manner. Based on these reasoning steps, we can compose detailed description prompts, and feed them to the segmentor to produce more accurate segmentation masks. To the best of our knowledge, OpenSeg-R is the first framework to introduce explicit step-by-step visual reasoning into OVS. Experimental results demonstrate that OpenSeg-R significantly outperforms state-of-the-art methods on open-vocabulary semantic segmentation across five benchmark datasets. Moreover, it achieves consistent gains across all metrics on open-vocabulary panoptic segmentation. Qualitative results further highlight the effectiveness of our reasoning-guided framework in improving both segmentation precision and interpretability. Our code is publicly available at https://github.com/Hanzy1996/OpenSeg-R.

Authors:Nandan Thakur, Crystina Zhang, Xueguang Ma, Jimmy Lin
Title: Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval
Abstract:
Training robust retrieval and reranker models typically relies on large-scale retrieval datasets; for example, the BGE collection contains 1.6 million query-passage pairs sourced from various data sources. However, we find that certain datasets can negatively impact model effectiveness -- pruning 8 out of 15 datasets from the BGE collection reduces the training set size by 2.35$\times$ and increases nDCG@10 on BEIR by 1.0 point. This motivates a deeper examination of training data quality, with a particular focus on "false negatives", where relevant passages are incorrectly labeled as irrelevant. We propose a simple, cost-effective approach using cascading LLM prompts to identify and relabel hard negatives. Experimental results show that relabeling false negatives with true positives improves both E5 (base) and Qwen2.5-7B retrieval models by 0.7-1.4 nDCG@10 on BEIR and by 1.7-1.8 nDCG@10 on zero-shot AIR-Bench evaluation. Similar gains are observed for rerankers fine-tuned on the relabeled data, such as Qwen2.5-3B on BEIR. The reliability of the cascading design is further supported by human annotation results, where we find judgment by GPT-4o shows much higher agreement with humans than GPT-4o-mini.

Authors:Csaba Dékány, Stefan Balauca, Robin Staab, Dimitar I. Dimitrov, Martin Vechev
Title: MixAT: Combining Continuous and Discrete Adversarial Training for LLMs
Abstract:
Despite recent efforts in Large Language Models (LLMs) safety and alignment, current adversarial attacks on frontier LLMs are still able to force harmful generations consistently. Although adversarial training has been widely studied and shown to significantly improve the robustness of traditional machine learning models, its strengths and weaknesses in the context of LLMs are less understood. Specifically, while existing discrete adversarial attacks are effective at producing harmful content, training LLMs with concrete adversarial prompts is often computationally expensive, leading to reliance on continuous relaxations. As these relaxations do not correspond to discrete input tokens, such latent training methods often leave models vulnerable to a diverse set of discrete attacks. In this work, we aim to bridge this gap by introducing MixAT, a novel method that combines stronger discrete and faster continuous attacks during training. We rigorously evaluate MixAT across a wide spectrum of state-of-the-art attacks, proposing the At Least One Attack Success Rate (ALO-ASR) metric to capture the worst-case vulnerability of models. We show MixAT achieves substantially better robustness (ALO-ASR < 20%) compared to prior defenses (ALO-ASR > 50%), while maintaining a runtime comparable to methods based on continuous relaxations. We further analyze MixAT in realistic deployment settings, exploring how chat templates, quantization, low-rank adapters, and temperature affect both adversarial training and evaluation, revealing additional blind spots in current methodologies. Our results demonstrate that MixAT's discrete-continuous defense offers a principled and superior robustness-accuracy tradeoff with minimal computational overhead, highlighting its promise for building safer LLMs. We provide our code and models at https://github.com/insait-institute/MixAT.

Authors:InternAgent Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Runmin Ma, Yusong Hu, Zhiyin Yu, Xiaohan He, Songtao Huang, Shaowei Hou, Zheng Nie, Zhilong Wang, Jinyao Liu, Tianshuo Peng, Peng Ye, Dongzhan Zhou, Shufei Zhang, Xiaosong Wang, Yilan Zhang, Meng Li, Zhongying Tu, Xiangyu Yue, Wangli Ouyang, Bowen Zhou, Lei Bai
Title: InternAgent: When Agent Becomes the Scientist -- Building Closed-Loop System from Hypothesis to Verification
Abstract:
Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce InternAgent, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. InternAgent highlights three key advantages: 1) Scalability: InternAgent has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: InternAgent provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: InternAgent has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.65 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.

Authors:Daniel F. Perez-Ramirez, Dejan Kostic, Magnus Boman
Title: CASTILLO: Characterizing Response Length Distributions of Large Language Models
Abstract:
Efficiently managing compute resources for Large Language Model (LLM) inference remains challenging due to the inherently stochastic and variable lengths of autoregressive text generation. Accurately estimating response lengths in advance enables proactive resource allocation, yet existing approaches either bias text generation towards certain lengths or rely on assumptions that ignore model- and prompt-specific variability. We introduce CASTILLO, a dataset characterizing response length distributions across 13 widely-used open-source LLMs evaluated on seven distinct instruction-following corpora. For each $\langle$prompt, model$\rangle$ sample pair, we generate 10 independent completions using fixed decoding hyper-parameters, record the token length of each response, and publish summary statistics (mean, std-dev, percentiles), along with the shortest and longest completions, and the exact generation settings. Our analysis reveals significant inter- and intra-model variability in response lengths (even under identical generation settings), as well as model-specific behaviors and occurrences of partial text degeneration in only subsets of responses. CASTILLO enables the development of predictive models for proactive scheduling and provides a systematic framework for analyzing model-specific generation behaviors. We publicly release the dataset and code to foster research at the intersection of generative language modeling and systems.

Authors:Yuechen Zhang, Jinbo Xing, Bin Xia, Shaoteng Liu, Bohao Peng, Xin Tao, Pengfei Wan, Eric Lo, Jiaya Jia
Title: Training-Free Efficient Video Generation via Dynamic Token Carving
Abstract:
Despite the remarkable generation quality of video Diffusion Transformer (DiT) models, their practical deployment is severely hindered by extensive computational requirements. This inefficiency stems from two key challenges: the quadratic complexity of self-attention with respect to token length and the multi-step nature of diffusion models. To address these limitations, we present Jenga, a novel inference pipeline that combines dynamic attention carving with progressive resolution generation. Our approach leverages two key insights: (1) early denoising steps do not require high-resolution latents, and (2) later steps do not require dense attention. Jenga introduces a block-wise attention mechanism that dynamically selects relevant token interactions using 3D space-filling curves, alongside a progressive resolution strategy that gradually increases latent resolution during generation. Experimental results demonstrate that Jenga achieves substantial speedups across multiple state-of-the-art video diffusion models while maintaining comparable generation quality (8.83$\times$ speedup with 0.01\% performance drop on VBench). As a plug-and-play solution, Jenga enables practical, high-quality video generation on modern hardware by reducing inference time from minutes to seconds -- without requiring model retraining. Code: https://github.com/dvlab-research/Jenga

Authors:Jiaqi Wang, Kevin Qinghong Lin, James Cheng, Mike Zheng Shou
Title: Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models
Abstract:
Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.

Authors:Yibo Wang, Li Shen, Huanjin Yao, Tiansheng Huang, Rui Liu, Naiqiang Tan, Jiaxing Huang, Kai Zhang, Dacheng Tao
Title: R1-Compress: Long Chain-of-Thought Compression via Chunk Compression and Search
Abstract:
Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by enabling step-by-step problem-solving, yet its extension to Long-CoT introduces substantial computational overhead due to increased token length. Existing compression approaches -- instance-level and token-level -- either sacrifice essential local reasoning signals like reflection or yield incoherent outputs. To address these limitations, we propose R1-Compress, a two-stage chunk-level compression framework that preserves both local information and coherence. Our method segments Long-CoT into manageable chunks, applies LLM-driven inner-chunk compression, and employs an inter-chunk search mechanism to select the short and coherent sequence. Experiments on Qwen2.5-Instruct models across MATH500, AIME24, and GPQA-Diamond demonstrate that R1-Compress significantly reduces token usage while maintaining comparable reasoning accuracy. On MATH500, R1-Compress achieves an accuracy of 92.4%, with only a 0.6% drop compared to the Long-CoT baseline, while reducing token usage by about 20%. Source code will be available at https://github.com/w-yibo/R1-Compress

Authors:Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia Deng, Wayne Xin Zhao, Zheng Liu, Lei Fang, Zhongyuan Wang, Ji-Rong Wen
Title: SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
Abstract:
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.

Authors:Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia Deng, Wayne Xin Zhao, Zheng Liu, Lei Fang, Zhongyuan Wang, Ji-Rong Wen
Title: SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
Abstract:
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.

Authors:Haonian Ji, Shi Qiu, Siyang Xin, Siwei Han, Zhaorun Chen, Dake Zhang, Hongyi Wang, Huaxiu Yao
Title: From EduVisBench to EduVisAgent: A Benchmark and Multi-Agent Framework for Reasoning-Driven Pedagogical Visualization
Abstract:
While foundation models (FMs), such as diffusion models and large vision-language models (LVLMs), have been widely applied in educational contexts, their ability to generate pedagogically effective visual explanations remains limited. Most existing approaches focus primarily on textual reasoning, overlooking the critical role of structured and interpretable visualizations in supporting conceptual understanding. To better assess the visual reasoning capabilities of FMs in educational settings, we introduce EduVisBench, a multi-domain, multi-level benchmark. EduVisBench features diverse STEM problem sets requiring visually grounded solutions, along with a fine-grained evaluation rubric informed by pedagogical theory. Our empirical analysis reveals that existing models frequently struggle with the inherent challenge of decomposing complex reasoning and translating it into visual representations aligned with human cognitive processes. To address these limitations, we propose EduVisAgent, a multi-agent collaborative framework that coordinates specialized agents for instructional planning, reasoning decomposition, metacognitive prompting, and visualization design. Experimental results show that EduVisAgent substantially outperforms all baselines, achieving a 40.2% improvement and delivering more educationally aligned visualizations. EduVisBench and EduVisAgent are available at https://github.com/aiming-lab/EduVisBench and https://github.com/aiming-lab/EduVisAgent.

Authors:Xiaoyu Xu, Xiang Yue, Yang Liu, Qingqing Ye, Haibo Hu, Minxin Du
Title: Unlearning Isn't Deletion: Investigating Reversibility of Machine Unlearning in LLMs
Abstract:
Unlearning in large language models (LLMs) is intended to remove the influence of specific data, yet current evaluations rely heavily on token-level metrics such as accuracy and perplexity. We show that these metrics can be misleading: models often appear to forget, but their original behavior can be rapidly restored with minimal fine-tuning, revealing that unlearning may obscure information rather than erase it. To diagnose this phenomenon, we introduce a representation-level evaluation framework using PCA-based similarity and shift, centered kernel alignment, and Fisher information. Applying this toolkit across six unlearning methods, three domains (text, code, math), and two open-source LLMs, we uncover a critical distinction between reversible and irreversible forgetting. In reversible cases, models suffer token-level collapse yet retain latent features; in irreversible cases, deeper representational damage occurs. We further provide a theoretical account linking shallow weight perturbations near output layers to misleading unlearning signals, and show that reversibility is modulated by task type and hyperparameters. Our findings reveal a fundamental gap in current evaluation practices and establish a new diagnostic foundation for trustworthy unlearning in LLMs. We provide a unified toolkit for analyzing LLM representation changes under unlearning and relearning: https://github.com/XiaoyuXU1/Representational_Analysis_Tools.git.

Authors:Bin Xie, Rui Shao, Gongwei Chen, Kaiwen Zhou, Yinchuan Li, Jie Liu, Min Zhang, Liqiang Nie
Title: GUI-explorer: Autonomous Exploration and Mining of Transition-aware Knowledge for GUI Agent
Abstract:
GUI automation faces critical challenges in dynamic environments. MLLMs suffer from two key issues: misinterpreting UI components and outdated knowledge. Traditional fine-tuning methods are costly for app-specific knowledge updates. We propose GUI-explorer, a training-free GUI agent that incorporates two fundamental mechanisms: (1) Autonomous Exploration of Function-aware Trajectory. To comprehensively cover all application functionalities, we design a Function-aware Task Goal Generator that automatically constructs exploration goals by analyzing GUI structural information (e.g., screenshots and activity hierarchies). This enables systematic exploration to collect diverse trajectories. (2) Unsupervised Mining of Transition-aware Knowledge. To establish precise screen-operation logic, we develop a Transition-aware Knowledge Extractor that extracts effective screen-operation logic through unsupervised analysis the state transition of structured interaction triples (observation, action, outcome). This eliminates the need for human involvement in knowledge extraction. With a task success rate of 53.7% on SPA-Bench and 47.4% on AndroidWorld, GUI-explorer shows significant improvements over SOTA agents. It requires no parameter updates for new apps. GUI-explorer is open-sourced and publicly available at https://github.com/JiuTian-VL/GUI-explorer.

Authors:Chunyi Li, Jiaohao Xiao, Jianbo Zhang, Farong Wen, Zicheng Zhang, Yuan Tian, Xiangyang Zhu, Xiaohong Liu, Zhengxue Cheng, Weisi Lin, Guangtao Zhai
Title: Perceptual Quality Assessment for Embodied AI
Abstract:
Embodied AI has developed rapidly in recent years, but it is still mainly deployed in laboratories, with various distortions in the Real-world limiting its application. Traditionally, Image Quality Assessment (IQA) methods are applied to predict human preferences for distorted images; however, there is no IQA method to assess the usability of an image in embodied tasks, namely, the perceptual quality for robots. To provide accurate and reliable quality indicators for future embodied scenarios, we first propose the topic: IQA for Embodied AI. Specifically, we (1) based on the Mertonian system and meta-cognitive theory, constructed a perception-cognition-decision-execution pipeline and defined a comprehensive subjective score collection process; (2) established the Embodied-IQA database, containing over 36k reference/distorted image pairs, with more than 5m fine-grained annotations provided by Vision Language Models/Vision Language Action-models/Real-world robots; (3) trained and validated the performance of mainstream IQA methods on Embodied-IQA, demonstrating the need to develop more accurate quality indicators for Embodied AI. We sincerely hope that through evaluation, we can promote the application of Embodied AI under complex distortions in the Real-world. Project page: https://github.com/lcysyzxdxc/EmbodiedIQA

Authors:Junze Wang, Lei Fan, Weipeng Jing, Donglin Di, Yang Song, Sidong Liu, Cong Cong
Title: Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities
Abstract:
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2% in the Dice Similarity Coefficient across various tumor regions. Our code is available at https://github.com/reeive/ReHyDIL.

Authors:KiHyun Nam, Jungwoo Heo, Jee-weon Jung, Gangin Park, Chaeyoung Jung, Ha-Jin Yu, Joon Son Chung
Title: SEED: Speaker Embedding Enhancement Diffusion Model
Abstract:
A primary challenge when deploying speaker recognition systems in real-world applications is performance degradation caused by environmental mismatch. We propose a diffusion-based method that takes speaker embeddings extracted from a pre-trained speaker recognition model and generates refined embeddings. For training, our approach progressively adds Gaussian noise to both clean and noisy speaker embeddings extracted from clean and noisy speech, respectively, via forward process of a diffusion model, and then reconstructs them to clean embeddings in the reverse process. While inferencing, all embeddings are regenerated via diffusion process. Our method needs neither speaker label nor any modification to the existing speaker recognition pipeline. Experiments on evaluation sets simulating environment mismatch scenarios show that our method can improve recognition accuracy by up to 19.6% over baseline models while retaining performance on conventional scenarios. We publish our code here https://github.com/kaistmm/seed-pytorch

Authors:Ziqiao Wang, Wangbo Zhao, Yuhao Zhou, Zekai Li, Zhiyuan Liang, Mingjia Shi, Xuanlei Zhao, Pengfei Zhou, Kaipeng Zhang, Zhangyang Wang, Kai Wang, Yang You
Title: REPA Works Until It Doesn't: Early-Stopped, Holistic Alignment Supercharges Diffusion Training
Abstract:
Diffusion Transformers (DiTs) deliver state-of-the-art image quality, yet their training remains notoriously slow. A recent remedy -- representation alignment (REPA) that matches DiT hidden features to those of a non-generative teacher (e.g. DINO) -- dramatically accelerates the early epochs but plateaus or even degrades performance later. We trace this failure to a capacity mismatch: once the generative student begins modelling the joint data distribution, the teacher's lower-dimensional embeddings and attention patterns become a straitjacket rather than a guide. We then introduce HASTE (Holistic Alignment with Stage-wise Termination for Efficient training), a two-phase schedule that keeps the help and drops the hindrance. Phase I applies a holistic alignment loss that simultaneously distills attention maps (relational priors) and feature projections (semantic anchors) from the teacher into mid-level layers of the DiT, yielding rapid convergence. Phase II then performs one-shot termination that deactivates the alignment loss, once a simple trigger such as a fixed iteration is hit, freeing the DiT to focus on denoising and exploit its generative capacity. HASTE speeds up training of diverse DiTs without architecture changes. On ImageNet 256X256, it reaches the vanilla SiT-XL/2 baseline FID in 50 epochs and matches REPA's best FID in 500 epochs, amounting to a 28X reduction in optimization steps. HASTE also improves text-to-image DiTs on MS-COCO, demonstrating to be a simple yet principled recipe for efficient diffusion training across various tasks. Our code is available at https://github.com/NUS-HPC-AI-Lab/HASTE .

Authors:Punya Syon Pandey, Samuel Simko, Kellin Pelrine, Zhijing Jin
Title: Accidental Vulnerability: Factors in Fine-Tuning that Shift Model Safeguards
Abstract:
As large language models (LLMs) gain popularity, their vulnerability to adversarial attacks emerges as a primary concern. While fine-tuning models on domain-specific datasets is often employed to improve model performance, it can inadvertently introduce vulnerabilities within the underlying model. In this work, we investigate Accidental Vulnerability, unexpected vulnerabilities arising from characteristics of fine-tuning data. We begin by identifying potential correlation factors such as linguistic features, semantic similarity, and toxicity across multiple experimental datasets. We then evaluate the adversarial robustness of these fine-tuned models, analyzing persona shifts and interpretability traits to understand how dataset factors contribute to attack success rates. Lastly, we explore causal relationships that offer new insights into adversarial defense strategies, highlighting the crucial role of dataset design in preserving model alignment. Our code is available at https://github.com/psyonp/accidental_vulnerability.

Authors:Jun Xie, Xiongjun Guan, Yingjian Zhu, Zhaoran Zhao, Xinming Wang, Hongzhu Yi, Feng Chen, Zhepeng Wang
Title: Four Eyes Are Better Than Two: Harnessing the Collaborative Potential of Large Models via Differentiated Thinking and Complementary Ensembles
Abstract:
In this paper, we present the runner-up solution for the Ego4D EgoSchema Challenge at CVPR 2025 (Confirmed on May 20, 2025). Inspired by the success of large models, we evaluate and leverage leading accessible multimodal large models and adapt them to video understanding tasks via few-shot learning and model ensemble strategies. Specifically, diversified prompt styles and process paradigms are systematically explored and evaluated to effectively guide the attention of large models, fully unleashing their powerful generalization and adaptability abilities. Experimental results demonstrate that, with our carefully designed approach, directly utilizing an individual multimodal model already outperforms the previous state-of-the-art (SOTA) method which includes several additional processes. Besides, an additional stage is further introduced that facilitates the cooperation and ensemble of periodic results, which achieves impressive performance improvements. We hope this work serves as a valuable reference for the practical application of large models and inspires future research in the field. Our Code is available at https://github.com/XiongjunGuan/EgoSchema-CVPR25.

Authors:Xinghao Chen, Anhao Zhao, Heming Xia, Xuan Lu, Hanlin Wang, Yanjun Chen, Wei Zhang, Jian Wang, Wenjie Li, Xiaoyu Shen
Title: Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning
Abstract:
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.

Authors:Yiming Gao, Bin Wang, Chengwei Wei, Shuo Sun, AiTi Aw
Title: IFEval-Audio: Benchmarking Instruction-Following Capability in Audio-based Large Language Models
Abstract:
Large language models (LLMs) have demonstrated strong instruction-following capabilities in text-based tasks. However, this ability often deteriorates in multimodal models after alignment with non-text modalities such as images or audio. While several recent efforts have investigated instruction-following performance in text and vision-language models, instruction-following in audio-based large language models remains largely unexplored. To bridge this gap, we introduce IFEval-Audio, a novel evaluation dataset designed to assess the ability to follow instructions in an audio LLM. IFEval-Audio contains 280 audio-instruction-answer triples across six diverse dimensions: Content, Capitalization, Symbol, List Structure, Length, and Format. Each example pairs an audio input with a text instruction, requiring the model to generate an output that follows a specified structure. We benchmark state-of-the-art audio LLMs on their ability to follow audio-involved instructions. The dataset is released publicly to support future research in this emerging area.

Authors:Florentin Beck, William Rudman, Carsten Eickhoff
Title: TRIM: Achieving Extreme Sparsity with Targeted Row-wise Iterative Metric-driven Pruning
Abstract:
Large Language Models (LLMs) present significant computational and memory challenges due to their extensive size, making pruning essential for their efficient deployment. Existing one-shot pruning methods often apply uniform sparsity constraints across layers or within each layer, resulting in suboptimal performance, especially at high sparsity ratios. This work introduces TRIM (Targeted Row-wise Iterative Metric-driven pruning), a novel approach that applies varying sparsity ratios to individual output dimensions (rows) within each layer. TRIM employs an iterative adjustment process guided by quality metrics to optimize dimension-wise sparsity allocation, focusing on reducing variance in quality retention across outputs to preserve critical information. TRIM can be seamlessly integrated with existing layer-wise pruning strategies. Our evaluations on perplexity and zero-shot tasks across diverse LLM families (Qwen2.5, LLaMA-2, and OPT) and sparsity levels demonstrate that TRIM achieves new state-of-the-art results and enhances stability. For instance, at 80% sparsity, TRIM reduces perplexity by 48% for Qwen2.5-14B and over 90% for OPT-13B compared to baseline methods. We conclude that fine-grained, dimension-wise sparsity adaptation is crucial for pushing the limits of extreme LLM compression. Code available at: https://github.com/flobk/TRIM

Authors:Chengcan Wu, Zhixin Zhang, Zeming Wei, Yihao Zhang, Meng Sun
Title: Mitigating Fine-tuning Risks in LLMs via Safety-Aware Probing Optimization
Abstract:
The significant progress of large language models (LLMs) has led to remarkable achievements across numerous applications. However, their ability to generate harmful content has sparked substantial safety concerns. Despite the implementation of safety alignment techniques during the pre-training phase, recent research indicates that fine-tuning LLMs on adversarial or even benign data can inadvertently compromise their safety. In this paper, we re-examine the fundamental issue of why fine-tuning on non-harmful data still results in safety degradation. We introduce a safety-aware probing (SAP) optimization framework designed to mitigate the safety risks of fine-tuning LLMs. Specifically, SAP incorporates a safety-aware probe into the gradient propagation process, mitigating the model's risk of safety degradation by identifying potential pitfalls in gradient directions, thereby enhancing task-specific performance while successfully preserving model safety. Our extensive experimental results demonstrate that SAP effectively reduces harmfulness below the original fine-tuned model and achieves comparable test loss to standard fine-tuning methods. Our code is available at https://github.com/ChengcanWu/SAP.

Authors:Ziwei Luo, Fredrik K. Gustafsson, Jens Sjölund, Thomas B. Schön
Title: Forward-only Diffusion Probabilistic Models
Abstract:
This work presents a forward-only diffusion (FoD) approach for generative modelling. In contrast to traditional diffusion models that rely on a coupled forward-backward diffusion scheme, FoD directly learns data generation through a single forward diffusion process, yielding a simple yet efficient generative framework. The core of FoD is a state-dependent linear stochastic differential equation that involves a mean-reverting term in both the drift and diffusion functions. This mean-reversion property guarantees the convergence to clean data, naturally simulating a stochastic interpolation between source and target distributions. More importantly, FoD is analytically tractable and is trained using a simple stochastic flow matching objective, enabling a few-step non-Markov chain sampling during inference. The proposed FoD model, despite its simplicity, achieves competitive performance on various image-conditioned (e.g., image restoration) and unconditional generation tasks, demonstrating its effectiveness in generative modelling. Our code is available at https://github.com/Algolzw/FoD.

Authors:Ziwei Luo, Fredrik K. Gustafsson, Jens Sjölund, Thomas B. Schön
Title: Forward-only Diffusion Probabilistic Models
Abstract:
This work presents a forward-only diffusion (FoD) approach for generative modelling. In contrast to traditional diffusion models that rely on a coupled forward-backward diffusion scheme, FoD directly learns data generation through a single forward diffusion process, yielding a simple yet efficient generative framework. The core of FoD is a state-dependent stochastic differential equation that involves a mean-reverting term in both the drift and diffusion functions. This mean-reversion property guarantees the convergence to clean data, naturally simulating a stochastic interpolation between source and target distributions. More importantly, FoD is analytically tractable and is trained using a simple stochastic flow matching objective, enabling a few-step non-Markov chain sampling during inference. The proposed FoD model, despite its simplicity, achieves state-of-the-art performance on various image restoration tasks. Its general applicability on image-conditioned generation is also demonstrated via qualitative results on image-to-image translation. Our code is available at https://github.com/Algolzw/FoD.

Authors:Himanshu Beniwal, Youngwoo Kim, Maarten Sap, Soham Dan, Thomas Hartvigsen
Title: Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
Abstract:
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.

Authors:Wenhao Li, Yuxin Zhang, Gen Luo, Daohai Yu, Rongrong Ji
Title: Training Long-Context LLMs Efficiently via Chunk-wise Optimization
Abstract:
While long-context large language models (LLMs) exhibit remarkable document processing capabilities, their prohibitively high training costs often hinder customized applications. To mitigate this issue, we propose \textit{Sequential Chunk-wise Optimization} (SeCO), a memory-efficient training paradigm that partitions lengthy inputs into manageable chunks. Each chunk independently constructs its computational graph and performs localized backpropagation, ensuring that only one chunk's forward activations are stored in memory. Building on SeCO, we further introduce \textit{Sparse Chunk-wise Optimization} (SpaCO), which reduces computational overhead by selectively propagating gradients to specific chunks and incorporates a carefully designed compensation factor to ensure unbiased gradient estimation. SpaCO decouples the computational cost of backpropagation from the context length, enabling training time to gradually converge to inference time as sequences become longer. Implemented as lightweight training wrappers, both SeCO and SpaCO offer substantial practical benefits. For example, when fine-tuning an 8B model with LoRA on a single RTX 3090 GPU, SeCO expands maximum sequence length from 1K to 16K tokens, while SpaCO demonstrates accelerated training speed -- achieving up to 3x faster than SeCO under the same experimental setup. These innovations provide new insights into optimizing long-context models, making them more accessible for practical applications. We have open-sourced the code at \href{https://github.com/wenhaoli-xmu/seco}{here}.

Authors:Huanjin Yao, Qixiang Yin, Jingyi Zhang, Min Yang, Yibo Wang, Wenhao Wu, Fei Su, Li Shen, Minghui Qiu, Dacheng Tao, Jiaxing Huang
Title: R1-ShareVL: Incentivizing Reasoning Capability of Multimodal Large Language Models via Share-GRPO
Abstract:
In this work, we aim to incentivize the reasoning ability of Multimodal Large Language Models (MLLMs) via reinforcement learning (RL) and develop an effective approach that mitigates the sparse reward and advantage vanishing issues during RL. To this end, we propose Share-GRPO, a novel RL approach that tackle these issues by exploring and sharing diverse reasoning trajectories over expanded question space. Specifically, Share-GRPO first expands the question space for a given question via data transformation techniques, and then encourages MLLM to effectively explore diverse reasoning trajectories over the expanded question space and shares the discovered reasoning trajectories across the expanded questions during RL. In addition, Share-GRPO also shares reward information during advantage computation, which estimates solution advantages hierarchically across and within question variants, allowing more accurate estimation of relative advantages and improving the stability of policy training. Extensive evaluations over six widely-used reasoning benchmarks showcase the superior performance of our method. Code will be available at https://github.com/HJYao00/R1-ShareVL.

Authors:Xinwei Yang, Zhaofeng Liu, Chen Huang, Jiashuai Zhang, Tong Zhang, Yifan Zhang, Wenqiang Lei
Title: ELABORATION: A Comprehensive Benchmark on Human-LLM Competitive Programming
Abstract:
While recent research increasingly emphasizes the value of human-LLM collaboration in competitive programming and proposes numerous empirical methods, a comprehensive understanding remains elusive due to the fragmented nature of existing studies and their use of diverse, application-specific human feedback. Thus, our work serves a three-fold purpose: First, we present the first taxonomy of human feedback consolidating the entire programming process, which promotes fine-grained evaluation. Second, we introduce ELABORATIONSET, a novel programming dataset specifically designed for human-LLM collaboration, meticulously annotated to enable large-scale simulated human feedback and facilitate costeffective real human interaction studies. Third, we introduce ELABORATION, a novel benchmark to facilitate a thorough assessment of human-LLM competitive programming. With ELABORATION, we pinpoint strengthes and weaknesses of existing methods, thereby setting the foundation for future improvement. Our code and dataset are available at https://github.com/SCUNLP/ELABORATION

Authors:Shinnosuke Ono, Issey Sukeda, Takuro Fujii, Kosei Buma, Shunsuke Sasaki
Title: A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP
Abstract:
We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.

Authors:Giuseppe Guarino, Matteo Ciotola, Gemine Vivone, Giovanni Poggi, Giuseppe Scarpa
Title: Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
Abstract:
Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.

Authors:Michael Neri, Sara Baldoni
Title: Unsupervised Network Anomaly Detection with Autoencoders and Traffic Images
Abstract:
Due to the recent increase in the number of connected devices, the need to promptly detect security issues is emerging. Moreover, the high number of communication flows creates the necessity of processing huge amounts of data. Furthermore, the connected devices are heterogeneous in nature, having different computational capacities. For this reason, in this work we propose an image-based representation of network traffic which allows to realize a compact summary of the current network conditions with 1-second time windows. The proposed representation highlights the presence of anomalies thus reducing the need for complex processing architectures. Finally, we present an unsupervised learning approach which effectively detects the presence of anomalies. The code and the dataset are available at https://github.com/michaelneri/image-based-network-traffic-anomaly-detection.

Authors:Zhichao Zhu, Yang Qi, Hengyuan Ma, Wenlian Lu, Jianfeng Feng
Title: Stochastic Forward-Forward Learning through Representational Dimensionality Compression
Abstract:
The Forward-Forward (FF) algorithm provides a bottom-up alternative to backpropagation (BP) for training neural networks, relying on a layer-wise "goodness" function to guide learning. Existing goodness functions, inspired by energy-based learning (EBL), are typically defined as the sum of squared post-synaptic activations, neglecting the correlations between neurons. In this work, we propose a novel goodness function termed dimensionality compression that uses the effective dimensionality (ED) of fluctuating neural responses to incorporate second-order statistical structure. Our objective minimizes ED for clamped inputs when noise is considered while maximizing it across the sample distribution, promoting structured representations without the need to prepare negative samples. We demonstrate that this formulation achieves competitive performance compared to other non-BP methods. Moreover, we show that noise plays a constructive role that can enhance generalization and improve inference when predictions are derived from the mean of squared outputs, which is equivalent to making predictions based on the energy term. Our findings contribute to the development of more biologically plausible learning algorithms and suggest a natural fit for neuromorphic computing, where stochasticity is a computational resource rather than a nuisance. The code is available at https://github.com/ZhichaoZhu/StochasticForwardForward

Authors:Sushant Gautam, Michael A. Riegler, Pål Halvorsen
Title: Point, Detect, Count: Multi-Task Medical Image Understanding with Instruction-Tuned Vision-Language Models
Abstract:
We investigate fine-tuning Vision-Language Models (VLMs) for multi-task medical image understanding, focusing on detection, localization, and counting of findings in medical images. Our objective is to evaluate whether instruction-tuned VLMs can simultaneously improve these tasks, with the goal of enhancing diagnostic accuracy and efficiency. Using MedMultiPoints, a multimodal dataset with annotations from endoscopy (polyps and instruments) and microscopy (sperm cells), we reformulate each task into instruction-based prompts suitable for vision-language reasoning. We fine-tune Qwen2.5-VL-7B-Instruct using Low-Rank Adaptation (LoRA) across multiple task combinations. Results show that multi-task training improves robustness and accuracy. For example, it reduces the Count Mean Absolute Error (MAE) and increases Matching Accuracy in the Counting + Pointing task. However, trade-offs emerge, such as more zero-case point predictions, indicating reduced reliability in edge cases despite overall performance gains. Our study highlights the potential of adapting general-purpose VLMs to specialized medical tasks via prompt-driven fine-tuning. This approach mirrors clinical workflows, where radiologists simultaneously localize, count, and describe findings - demonstrating how VLMs can learn composite diagnostic reasoning patterns. The model produces interpretable, structured outputs, offering a promising step toward explainable and versatile medical AI. Code, model weights, and scripts will be released for reproducibility at https://github.com/simula/PointDetectCount.

Authors:Sushant Gautam, Cise Midoglu, Vajira Thambawita, Michael A. Riegler, PÃ¥l Halvorsen, Mubarak Shah
Title: SoccerChat: Integrating Multimodal Data for Enhanced Soccer Game Understanding
Abstract:
The integration of artificial intelligence in sports analytics has transformed soccer video understanding, enabling real-time, automated insights into complex game dynamics. Traditional approaches rely on isolated data streams, limiting their effectiveness in capturing the full context of a match. To address this, we introduce SoccerChat, a multimodal conversational AI framework that integrates visual and textual data for enhanced soccer video comprehension. Leveraging the extensive SoccerNet dataset, enriched with jersey color annotations and automatic speech recognition (ASR) transcripts, SoccerChat is fine-tuned on a structured video instruction dataset to facilitate accurate game understanding, event classification, and referee decision making. We benchmark SoccerChat on action classification and referee decision-making tasks, demonstrating its performance in general soccer event comprehension while maintaining competitive accuracy in referee decision making. Our findings highlight the importance of multimodal integration in advancing soccer analytics, paving the way for more interactive and explainable AI-driven sports analysis. https://github.com/simula/SoccerChat

Authors:Luyang Cao, Jianwei Li, Yinghuan Shi
Title: Background Matters: A Cross-view Bidirectional Modeling Framework for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised medical image segmentation (SSMIS) leverages unlabeled data to reduce reliance on manually annotated images. However, current SOTA approaches predominantly focus on foreground-oriented modeling (i.e., segmenting only the foreground region) and have largely overlooked the potential benefits of explicitly modeling the background region. Our study theoretically and empirically demonstrates that highly certain predictions in background modeling enhance the confidence of corresponding foreground modeling. Building on this insight, we propose the Cross-view Bidirectional Modeling (CVBM) framework, which introduces a novel perspective by incorporating background modeling to improve foreground modeling performance. Within CVBM, background modeling serves as an auxiliary perspective, providing complementary supervisory signals to enhance the confidence of the foreground model. Additionally, CVBM introduces an innovative bidirectional consistency mechanism, which ensures mutual alignment between foreground predictions and background-guided predictions. Extensive experiments demonstrate that our approach achieves SOTA performance on the LA, Pancreas, ACDC, and HRF datasets. Notably, on the Pancreas dataset, CVBM outperforms fully supervised methods (i.e., DSC: 84.57% vs. 83.89%) while utilizing only 20% of the labeled data. Our code is publicly available at https://github.com/caoluyang0830/CVBM.git.

Authors:Bowen Jiang, Runchuan Zhu, Jiang Wu, Zinco Jiang, Yifan He, Junyuan Gao, Jia Yu, Rui Min, Yinfan Wang, Haote Yang, Songyang Zhang, Dahua Lin, Lijun Wu, Conghui He
Title: Evaluating Large Language Model with Knowledge Oriented Language Specific Simple Question Answering
Abstract:
We introduce KoLasSimpleQA, the first benchmark evaluating the multilingual factual ability of Large Language Models (LLMs). Inspired by existing research, we created the question set with features such as single knowledge point coverage, absolute objectivity, unique answers, and temporal stability. These questions enable efficient evaluation using the LLM-as-judge paradigm, testing both the LLMs' factual memory and self-awareness ("know what they don't know"). KoLasSimpleQA expands existing research in two key dimensions: (1) Breadth (Multilingual Coverage): It includes 9 languages, supporting global applicability evaluation. (2) Depth (Dual Domain Design): It covers both the general domain (global facts) and the language-specific domain (such as history, culture, and regional traditions) for a comprehensive assessment of multilingual capabilities. We evaluated mainstream LLMs, including traditional LLM and emerging Large Reasoning Models. Results show significant performance differences between the two domains, particularly in performance metrics, ranking, calibration, and robustness. This highlights the need for targeted evaluation and optimization in multilingual contexts. We hope KoLasSimpleQA will help the research community better identify LLM capability boundaries in multilingual contexts and provide guidance for model optimization. We will release KoLasSimpleQA at https://github.com/opendatalab/KoLasSimpleQA .

Authors:Yongqi Zhao, Ji Zhou, Dong Bi, Tomislav Mihalj, Jia Hu, Arno Eichberger
Title: A Survey on the Application of Large Language Models in Scenario-Based Testing of Automated Driving Systems
Abstract:
The safety and reliability of Automated Driving Systems (ADSs) must be validated prior to large-scale deployment. Among existing validation approaches, scenario-based testing has been regarded as a promising method to improve testing efficiency and reduce associated costs. Recently, the emergence of Large Language Models (LLMs) has introduced new opportunities to reinforce this approach. While an increasing number of studies have explored the use of LLMs in the field of automated driving, a dedicated review focusing on their application within scenario-based testing remains absent. This survey addresses this gap by systematically categorizing the roles played by LLMs across various phased of scenario-based testing, drawing from both academic research and industrial practice. In addition, key characteristics of LLMs and corresponding usage strategies are comprehensively summarized. The paper concludes by outlining five open challenges and potential research directions. To support ongoing research efforts, a continuously updated repository of recent advancements and relevant open-source tools is made available at: https://github.com/ftgTUGraz/LLM4ADSTest.

Authors:Siqu Ou, Hongcheng Liu, Pingjie Wang, Yusheng Liao, Chuan Xuan, Yanfeng Wang, Yu Wang
Title: Bridging the Dynamic Perception Gap: Training-Free Draft Chain-of-Thought for Dynamic Multimodal Spatial Reasoning
Abstract:
While chains-of-thought (CoT) have advanced complex reasoning in multimodal large language models (MLLMs), existing methods remain confined to text or static visual domains, often faltering in dynamic spatial reasoning tasks. To bridge this gap, we present GRASSLAND, a novel maze navigation benchmark designed to evaluate dynamic spatial reasoning. Our experiments show that augmenting textual reasoning chains with dynamic visual drafts, overlaid on input images, significantly outperforms conventional approaches, offering new insights into spatial reasoning in evolving environments. To generalize this capability, we propose D2R (Dynamic Draft-Augmented Reasoning), a training-free framework that seamlessly integrates textual CoT with corresponding visual drafts into MLLMs. Extensive evaluations demonstrate that D2R consistently enhances performance across diverse tasks, establishing a robust baseline for dynamic spatial reasoning without requiring model fine-tuning. Project is open at https://github.com/Cratileo/D2R.

Authors:Jannis Becktepe, Leona Hennig, Steffen Oeltze-Jafra, Marius Lindauer
Title: Auto-nnU-Net: Towards Automated Medical Image Segmentation
Abstract:
Medical Image Segmentation (MIS) includes diverse tasks, from bone to organ segmentation, each with its own challenges in finding the best segmentation model. The state-of-the-art AutoML-related MIS-framework nnU-Net automates many aspects of model configuration but remains constrained by fixed hyperparameters and heuristic design choices. As a full-AutoML framework for MIS, we propose Auto-nnU-Net, a novel nnU-Net variant enabling hyperparameter optimization (HPO), neural architecture search (NAS), and hierarchical NAS (HNAS). Additionally, we propose Regularized PriorBand to balance model accuracy with the computational resources required for training, addressing the resource constraints often faced in real-world medical settings that limit the feasibility of extensive training procedures. We evaluate our approach across diverse MIS datasets from the well-established Medical Segmentation Decathlon, analyzing the impact of AutoML techniques on segmentation performance, computational efficiency, and model design choices. The results demonstrate that our AutoML approach substantially improves the segmentation performance of nnU-Net on 6 out of 10 datasets and is on par on the other datasets while maintaining practical resource requirements. Our code is available at https://github.com/automl/AutoNNUnet.

Authors:Ercong Nie, Helmut Schmid, Hinrich Schütze
Title: Mechanistic Understanding and Mitigation of Language Confusion in English-Centric Large Language Models
Abstract:
Language confusion -- where large language models (LLMs) generate unintended languages against the user's need -- remains a critical challenge, especially for English-centric models. We present the first mechanistic interpretability (MI) study of language confusion, combining behavioral benchmarking with neuron-level analysis. Using the Language Confusion Benchmark (LCB), we show that confusion points (CPs) -- specific positions where language switches occur -- are central to this phenomenon. Through layer-wise analysis with TunedLens and targeted neuron attribution, we reveal that transition failures in the final layers drive confusion. We further demonstrate that editing a small set of critical neurons, identified via comparative analysis with a multilingual-tuned counterpart, substantially mitigates confusion while largely preserving general competence and fluency. Our approach matches multilingual alignment in confusion reduction for many languages and yields cleaner, higher-quality outputs. These findings provide new insights into the internal dynamics of LLMs and highlight neuron-level interventions as a promising direction for robust, interpretable multilingual language modeling. Code and data are available at: https://github.com/ercong21/lang_confusion.

Authors:Yuliang Yan, Haochun Tang, Shuo Yan, Enyan Dai
Title: DuFFin: A Dual-Level Fingerprinting Framework for LLMs IP Protection
Abstract:
Large language models (LLMs) are considered valuable Intellectual Properties (IP) for legitimate owners due to the enormous computational cost of training. It is crucial to protect the IP of LLMs from malicious stealing or unauthorized deployment. Despite existing efforts in watermarking and fingerprinting LLMs, these methods either impact the text generation process or are limited in white-box access to the suspect model, making them impractical. Hence, we propose DuFFin, a novel $\textbf{Du}$al-Level $\textbf{Fin}$gerprinting $\textbf{F}$ramework for black-box setting ownership verification. DuFFin extracts the trigger pattern and the knowledge-level fingerprints to identify the source of a suspect model. We conduct experiments on a variety of models collected from the open-source website, including four popular base models as protected LLMs and their fine-tuning, quantization, and safety alignment versions, which are released by large companies, start-ups, and individual users. Results show that our method can accurately verify the copyright of the base protected LLM on their model variants, achieving the IP-ROC metric greater than 0.95. Our code is available at https://github.com/yuliangyan0807/llm-fingerprint.

Authors:Lingfeng Wang, Hualing Lin, Senda Chen, Tao Wang, Changxu Cheng, Yangyang Zhong, Dong Zheng, Wuyue Zhao
Title: ALTo: Adaptive-Length Tokenizer for Autoregressive Mask Generation
Abstract:
While humans effortlessly draw visual objects and shapes by adaptively allocating attention based on their complexity, existing multimodal large language models (MLLMs) remain constrained by rigid token representations. Bridging this gap, we propose ALTo, an adaptive length tokenizer for autoregressive mask generation. To achieve this, a novel token length predictor is designed, along with a length regularization term and a differentiable token chunking strategy. We further build ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-offs between mask quality and efficiency is implemented by group relative policy optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-the-art performance with adaptive token cost on popular segmentation benchmarks. Code and models are released at https://github.com/yayafengzi/ALToLLM.

Authors:Jisu Han, Jaemin Na, Wonjun Hwang
Title: Ranked Entropy Minimization for Continual Test-Time Adaptation
Abstract:
Test-time adaptation aims to adapt to realistic environments in an online manner by learning during test time. Entropy minimization has emerged as a principal strategy for test-time adaptation due to its efficiency and adaptability. Nevertheless, it remains underexplored in continual test-time adaptation, where stability is more important. We observe that the entropy minimization method often suffers from model collapse, where the model converges to predicting a single class for all images due to a trivial solution. We propose ranked entropy minimization to mitigate the stability problem of the entropy minimization method and extend its applicability to continuous scenarios. Our approach explicitly structures the prediction difficulty through a progressive masking strategy. Specifically, it gradually aligns the model's probability distributions across different levels of prediction difficulty while preserving the rank order of entropy. The proposed method is extensively evaluated across various benchmarks, demonstrating its effectiveness through empirical results. Our code is available at https://github.com/pilsHan/rem

Authors:Song Jin, Juntian Zhang, Yuhan Liu, Xun Zhang, Yufei Zhang, Guojun Yin, Fei Jiang, Wei Lin, Rui Yan
Title: Beyond Static Testbeds: An Interaction-Centric Agent Simulation Platform for Dynamic Recommender Systems
Abstract:
Evaluating and iterating upon recommender systems is crucial, yet traditional A/B testing is resource-intensive, and offline methods struggle with dynamic user-platform interactions. While agent-based simulation is promising, existing platforms often lack a mechanism for user actions to dynamically reshape the environment. To bridge this gap, we introduce RecInter, a novel agent-based simulation platform for recommender systems featuring a robust interaction mechanism. In RecInter platform, simulated user actions (e.g., likes, reviews, purchases) dynamically update item attributes in real-time, and introduced Merchant Agents can reply, fostering a more realistic and evolving ecosystem. High-fidelity simulation is ensured through Multidimensional User Profiling module, Advanced Agent Architecture, and LLM fine-tuned on Chain-of-Thought (CoT) enriched interaction data. Our platform achieves significantly improved simulation credibility and successfully replicates emergent phenomena like Brand Loyalty and the Matthew Effect. Experiments demonstrate that this interaction mechanism is pivotal for simulating realistic system evolution, establishing our platform as a credible testbed for recommender systems research. Our codes are available at https://github.com/jinsong8/RecInter.

Authors:Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu, Chao Zhang, Bing Yin, Hyokun Yun, Lihong Li
Title: WebAgent-R1: Training Web Agents via End-to-End Multi-Turn Reinforcement Learning
Abstract:
While reinforcement learning (RL) has demonstrated remarkable success in enhancing large language models (LLMs), it has primarily focused on single-turn tasks such as solving math problems. Training effective web agents for multi-turn interactions remains challenging due to the complexity of long-horizon decision-making across dynamic web interfaces. In this work, we present WebAgent-R1, a simple yet effective end-to-end multi-turn RL framework for training web agents. It learns directly from online interactions with web environments by asynchronously generating diverse trajectories, entirely guided by binary rewards depending on task success. Experiments on the WebArena-Lite benchmark demonstrate the effectiveness of WebAgent-R1, boosting the task success rate of Qwen-2.5-3B from 6.1% to 33.9% and Llama-3.1-8B from 8.5% to 44.8%, significantly outperforming existing state-of-the-art methods and strong proprietary models such as OpenAI o3. In-depth analyses reveal the effectiveness of the thinking-based prompting strategy and test-time scaling through increased interactions for web tasks. We further investigate different RL initialization policies by introducing two variants, namely WebAgent-R1-Zero and WebAgent-R1-CoT, which highlight the importance of the warm-up training stage (i.e., behavior cloning) and provide insights on incorporating long chain-of-thought (CoT) reasoning in web agents.

Authors:Chengcheng Wang, Jianyuan Guo, Hongguang Li, Yuchuan Tian, Ying Nie, Chang Xu, Kai Han
Title: Circle-RoPE: Cone-like Decoupled Rotary Positional Embedding for Large Vision-Language Models
Abstract:
Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative positional information in large language models (LLMs). However, when extended to large vision-language models (LVLMs), its variants introduce unintended cross-modal positional biases. Specifically, they enforce relative positional dependencies between text token indices and image tokens, causing spurious alignments. This issue arises because image tokens representing the same content but located at different spatial positions are assigned distinct positional biases, leading to inconsistent cross-modal associations. To address this, we propose Per-Token Distance (PTD) - a simple yet effective metric for quantifying the independence of positional encodings across modalities. Informed by this analysis, we introduce Circle-RoPE, a novel encoding scheme that maps image token indices onto a circular trajectory orthogonal to the linear path of text token indices, forming a cone-like structure. This configuration ensures that each text token maintains an equal distance to all image tokens, reducing artificial cross-modal biases while preserving intra-image spatial information. To further enhance performance, we propose a staggered layer strategy that applies different RoPE variants across layers. This design leverages the complementary strengths of each RoPE variant, thereby enhancing the model's overall performance. Our experimental results demonstrate that our method effectively preserves spatial information from images while reducing relative positional bias, offering a more robust and flexible positional encoding framework for LVLMs. The code is available at [https://github.com/lose4578/CircleRoPE](https://github.com/lose4578/CircleRoPE).

Authors:Chengcheng Wang, Jianyuan Guo, Hongguang Li, Yuchuan Tian, Ying Nie, Chang Xu, Kai Han
Title: Circle-RoPE: Cone-like Decoupled Rotary Positional Embedding for Large Vision-Language Models
Abstract:
Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative positional information in large language models (LLMs). However, when extended to vision-language models (VLMs), RoPE and its variants enforce relative positional dependencies separately within text and image tokens, introducing unintended cross-modal positional biases. For example, image tokens depicting semantically consistent content are assigned distinct positional encodings solely due to spatial location variations. As a result, such tokens exhibit entirely different relative positional relationships with their corresponding text tokens, ultimately leading to misaligned cross-modal representations. To address this, we propose Per-Token Distance, a simple yet effective metric for quantifying the independence of positional encodings across modalities. Informed by this analysis, we introduce Circle-RoPE, a novel encoding scheme designed to eliminate spurious cross-modal biases. Our key idea is to project image token indices onto a \emph{ring} that is orthogonal to the linear axis of text token indices, thereby forming a cone-like structure in the positional encoding space. In this configuration, each text token (point on the linear text axis) becomes the apex of a cone and maintains an equal distance to all image tokens (points on the circular image \emph{ring}), reducing artificial cross-modal biases while preserving intra-image spatial information. To further enhance performance, we propose a staggered strategy that applies different RoPE variants across layers. Extensive experiments demonstrate that our method effectively preserves spatial information from images while reducing relative positional bias, offering a more robust and flexible positional encoding framework for VLMs. The code is available at https://github.com/lose4578/CircleRoPE.

Authors:Ruizhe Li, Chen Chen, Yuchen Hu, Yanjun Gao, Xi Wang, Emine Yilmaz
Title: Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models. Our code is available at https://github.com/ruizheliUOA/ARC_JSD

Authors:Ruizhe Li, Chen Chen, Yuchen Hu, Yanjun Gao, Xi Wang, Emine Yilmaz
Title: Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning, gradient-calculation or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models and how they affect RAG behaviours. Our code is available at https://github.com/ruizheliUOA/ARC_JSD.

Authors:Sreetama Sarkar, Yue Che, Alex Gavin, Peter A. Beerel, Souvik Kundu
Title: Mitigating Hallucinations in Vision-Language Models through Image-Guided Head Suppression
Abstract:
Despite their remarkable progress in multimodal understanding tasks, large vision language models (LVLMs) often suffer from "hallucinations", generating texts misaligned with the visual context. Existing methods aimed at reducing hallucinations through inference time intervention incur a significant increase in latency. To mitigate this, we present SPIN, a task-agnostic attention-guided head suppression strategy that can be seamlessly integrated during inference, without incurring any significant compute or latency overhead. We investigate whether hallucination in LVLMs can be linked to specific model components. Our analysis suggests that hallucinations can be attributed to a dynamic subset of attention heads in each layer. Leveraging this insight, for each text query token, we selectively suppress attention heads that exhibit low attention to image tokens, keeping the top-K attention heads intact. Extensive evaluations on visual question answering and image description tasks demonstrate the efficacy of SPIN in reducing hallucination scores up to 2.7x while maintaining F1, and improving throughput by 1.8x compared to existing alternatives. Code is available at https://github.com/YUECHE77/SPIN.

Authors:Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui Zhou, Zhicheng Dou, Ji-Rong Wen
Title: Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning
Abstract:
Recently, large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL). However, leveraging the RL algorithm to empower effective multi-tool collaborative reasoning in LLMs remains an open challenge. In this paper, we introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning. Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training. To address the scarcity of tool-use data, we propose a general tool-integrated reasoning data synthesis pipeline, which combines tool-integrated prompting with hint-based sampling to automatically and scalably generate tool-use trajectories. A subsequent quality normalization and difficulty-aware classification process filters out low-quality samples and organizes the dataset from easy to hard. Furthermore, we propose a two-stage training framework to enhance multi-tool collaborative reasoning by: (1) cold-start fine-tuning, which guides LLMs to explore reasoning patterns via tool-invocation feedback; and (2) a multi-tool self-critic RL algorithm with hierarchical reward design, which reinforces reward understanding and promotes effective tool collaboration. Experimental analyses on over 10 challenging reasoning benchmarks highlight the effectiveness and efficiency of Tool-Star. The code is available at https://github.com/dongguanting/Tool-Star.

Authors:Muhammad Farid Adilazuarda, Chen Cecilia Liu, Iryna Gurevych, Alham Fikri Aji
Title: From Surveys to Narratives: Rethinking Cultural Value Adaptation in LLMs
Abstract:
Adapting cultural values in Large Language Models (LLMs) presents significant challenges, particularly due to biases and limited training data. Prior work primarily aligns LLMs with different cultural values using World Values Survey (WVS) data. However, it remains unclear whether this approach effectively captures cultural nuances or produces distinct cultural representations for various downstream tasks. In this paper, we systematically investigate WVS-based training for cultural value adaptation and find that relying solely on survey data can homogenize cultural norms and interfere with factual knowledge. To investigate these issues, we augment WVS with encyclopedic and scenario-based cultural narratives from Wikipedia and NormAd. While these narratives may have variable effects on downstream tasks, they consistently improve cultural distinctiveness than survey data alone. Our work highlights the inherent complexity of aligning cultural values with the goal of guiding task-specific behavior. We release our code at https://github.com/faridlazuarda/from-surveys-to-narratives.

Authors:Huazi Pan, Yanjun Zhang, Leo Yu Zhang, Scott Adams, Abbas Kouzani, Suiyang Khoo
Title: Performance Guaranteed Poisoning Attacks in Federated Learning: A Sliding Mode Approach
Abstract:
Manipulation of local training data and local updates, i.e., the poisoning attack, is the main threat arising from the collaborative nature of the federated learning (FL) paradigm. Most existing poisoning attacks aim to manipulate local data/models in a way that causes denial-of-service (DoS) issues. In this paper, we introduce a novel attack method, named Federated Learning Sliding Attack (FedSA) scheme, aiming at precisely introducing the extent of poisoning in a subtle controlled manner. It operates with a predefined objective, such as reducing global model's prediction accuracy by 10%. FedSA integrates robust nonlinear control-Sliding Mode Control (SMC) theory with model poisoning attacks. It can manipulate the updates from malicious clients to drive the global model towards a compromised state, achieving this at a controlled and inconspicuous rate. Additionally, leveraging the robust control properties of FedSA allows precise control over the convergence bounds, enabling the attacker to set the global accuracy of the poisoned model to any desired level. Experimental results demonstrate that FedSA can accurately achieve a predefined global accuracy with fewer malicious clients while maintaining a high level of stealth and adjustable learning rates.

Authors:Yuanhao Huang, Yilong Ren, Jinlei Wang, Lujia Huo, Xuesong Bai, Jinchuan Zhang, Haiyan Yu
Title: AdvReal: Physical Adversarial Patch Generation Framework for Security Evaluation of Object Detection Systems
Abstract:
Autonomous vehicles are typical complex intelligent systems with artificial intelligence at their core. However, perception methods based on deep learning are extremely vulnerable to adversarial samples, resulting in security accidents. How to generate effective adversarial examples in the physical world and evaluate object detection systems is a huge challenge. In this study, we propose a unified joint adversarial training framework for both 2D and 3D domains, which simultaneously optimizes texture maps in 2D image and 3D mesh spaces to better address intra-class diversity and real-world environmental variations. The framework includes a novel realistic enhanced adversarial module, with time-space and relighting mapping pipeline that adjusts illumination consistency between adversarial patches and target garments under varied viewpoints. Building upon this, we develop a realism enhancement mechanism that incorporates non-rigid deformation modeling and texture remapping to ensure alignment with the human body's non-rigid surfaces in 3D scenes. Extensive experiment results in digital and physical environments demonstrate that the adversarial textures generated by our method can effectively mislead the target detection model. Specifically, our method achieves an average attack success rate (ASR) of 70.13% on YOLOv12 in physical scenarios, significantly outperforming existing methods such as T-SEA (21.65%) and AdvTexture (19.70%). Moreover, the proposed method maintains stable ASR across multiple viewpoints and distances, with an average attack success rate exceeding 90% under both frontal and oblique views at a distance of 4 meters. This confirms the method's strong robustness and transferability under multi-angle attacks, varying lighting conditions, and real-world distances. The demo video and code can be obtained at https://github.com/Huangyh98/AdvReal.git.

Authors:Qian Deng, Le Hui, Jin Xie, Jian Yang
Title: Sketchy Bounding-box Supervision for 3D Instance Segmentation
Abstract:
Bounding box supervision has gained considerable attention in weakly supervised 3D instance segmentation. While this approach alleviates the need for extensive point-level annotations, obtaining accurate bounding boxes in practical applications remains challenging. To this end, we explore the inaccurate bounding box, named sketchy bounding box, which is imitated through perturbing ground truth bounding box by adding scaling, translation, and rotation. In this paper, we propose Sketchy-3DIS, a novel weakly 3D instance segmentation framework, which jointly learns pseudo labeler and segmentator to improve the performance under the sketchy bounding-box supervisions. Specifically, we first propose an adaptive box-to-point pseudo labeler that adaptively learns to assign points located in the overlapped parts between two sketchy bounding boxes to the correct instance, resulting in compact and pure pseudo instance labels. Then, we present a coarse-to-fine instance segmentator that first predicts coarse instances from the entire point cloud and then learns fine instances based on the region of coarse instances. Finally, by using the pseudo instance labels to supervise the instance segmentator, we can gradually generate high-quality instances through joint training. Extensive experiments show that our method achieves state-of-the-art performance on both the ScanNetV2 and S3DIS benchmarks, and even outperforms several fully supervised methods using sketchy bounding boxes. Code is available at https://github.com/dengq7/Sketchy-3DIS.

Authors:Zhixun Li, Bin Cao, Rui Jiao, Liang Wang, Ding Wang, Yang Liu, Dingshuo Chen, Jia Li, Qiang Liu, Yu Rong, Liang Wang, Tong-yi Zhang, Jeffrey Xu Yu
Title: Materials Generation in the Era of Artificial Intelligence: A Comprehensive Survey
Abstract:
Materials are the foundation of modern society, underpinning advancements in energy, electronics, healthcare, transportation, and infrastructure. The ability to discover and design new materials with tailored properties is critical to solving some of the most pressing global challenges. In recent years, the growing availability of high-quality materials data combined with rapid advances in Artificial Intelligence (AI) has opened new opportunities for accelerating materials discovery. Data-driven generative models provide a powerful tool for materials design by directly create novel materials that satisfy predefined property requirements. Despite the proliferation of related work, there remains a notable lack of up-to-date and systematic surveys in this area. To fill this gap, this paper provides a comprehensive overview of recent progress in AI-driven materials generation. We first organize various types of materials and illustrate multiple representations of crystalline materials. We then provide a detailed summary and taxonomy of current AI-driven materials generation approaches. Furthermore, we discuss the common evaluation metrics and summarize open-source codes and benchmark datasets. Finally, we conclude with potential future directions and challenges in this fast-growing field. The related sources can be found at https://github.com/ZhixunLEE/Awesome-AI-for-Materials-Generation.

Authors:Zijia Lu, A S M Iftekhar, Gaurav Mittal, Tianjian Meng, Xiawei Wang, Cheng Zhao, Rohith Kukkala, Ehsan Elhamifar, Mei Chen
Title: DeCafNet: Delegate and Conquer for Efficient Temporal Grounding in Long Videos
Abstract:
Long Video Temporal Grounding (LVTG) aims at identifying specific moments within lengthy videos based on user-provided text queries for effective content retrieval. The approach taken by existing methods of dividing video into clips and processing each clip via a full-scale expert encoder is challenging to scale due to prohibitive computational costs of processing a large number of clips in long videos. To address this issue, we introduce DeCafNet, an approach employing ``delegate-and-conquer'' strategy to achieve computation efficiency without sacrificing grounding performance. DeCafNet introduces a sidekick encoder that performs dense feature extraction over all video clips in a resource-efficient manner, while generating a saliency map to identify the most relevant clips for full processing by the expert encoder. To effectively leverage features from sidekick and expert encoders that exist at different temporal resolutions, we introduce DeCaf-Grounder, which unifies and refines them via query-aware temporal aggregation and multi-scale temporal refinement for accurate grounding. Experiments on two LTVG benchmark datasets demonstrate that DeCafNet reduces computation by up to 47\% while still outperforming existing methods, establishing a new state-of-the-art for LTVG in terms of both efficiency and performance. Our code is available at https://github.com/ZijiaLewisLu/CVPR2025-DeCafNet.

Authors:Estelle Chigot, Dennis G. Wilson, Meriem Ghrib, Thomas Oberlin
Title: Style Transfer with Diffusion Models for Synthetic-to-Real Domain Adaptation
Abstract:
Semantic segmentation models trained on synthetic data often perform poorly on real-world images due to domain gaps, particularly in adverse conditions where labeled data is scarce. Yet, recent foundation models enable to generate realistic images without any training. This paper proposes to leverage such diffusion models to improve the performance of vision models when learned on synthetic data. We introduce two novel techniques for semantically consistent style transfer using diffusion models: Class-wise Adaptive Instance Normalization and Cross-Attention (CACTI) and its extension with selective attention Filtering (CACTIF). CACTI applies statistical normalization selectively based on semantic classes, while CACTIF further filters cross-attention maps based on feature similarity, preventing artifacts in regions with weak cross-attention correspondences. Our methods transfer style characteristics while preserving semantic boundaries and structural coherence, unlike approaches that apply global transformations or generate content without constraints. Experiments using GTA5 as source and Cityscapes/ACDC as target domains show that our approach produces higher quality images with lower FID scores and better content preservation. Our work demonstrates that class-aware diffusion-based style transfer effectively bridges the synthetic-to-real domain gap even with minimal target domain data, advancing robust perception systems for challenging real-world applications. The source code is available at: https://github.com/echigot/cactif.

Authors:Pierre Achkar, Tim Gollub, Martin Potthast
Title: Ask, Retrieve, Summarize: A Modular Pipeline for Scientific Literature Summarization
Abstract:
The exponential growth of scientific publications has made it increasingly difficult for researchers to stay updated and synthesize knowledge effectively. This paper presents XSum, a modular pipeline for multi-document summarization (MDS) in the scientific domain using Retrieval-Augmented Generation (RAG). The pipeline includes two core components: a question-generation module and an editor module. The question-generation module dynamically generates questions adapted to the input papers, ensuring the retrieval of relevant and accurate information. The editor module synthesizes the retrieved content into coherent and well-structured summaries that adhere to academic standards for proper citation. Evaluated on the SurveySum dataset, XSum demonstrates strong performance, achieving considerable improvements in metrics such as CheckEval, G-Eval and Ref-F1 compared to existing approaches. This work provides a transparent, adaptable framework for scientific summarization with potential applications in a wide range of domains. Code available at https://github.com/webis-de/scolia25-xsum

Authors:Wenqing Wu, Chengzhi Zhang, Tong Bao, Yi Zhao
Title: SC4ANM: Identifying Optimal Section Combinations for Automated Novelty Prediction in Academic Papers
Abstract:
Novelty is a core component of academic papers, and there are multiple perspectives on the assessment of novelty. Existing methods often focus on word or entity combinations, which provide limited insights. The content related to a paper's novelty is typically distributed across different core sections, e.g., Introduction, Methodology and Results. Therefore, exploring the optimal combination of sections for evaluating the novelty of a paper is important for advancing automated novelty assessment. In this paper, we utilize different combinations of sections from academic papers as inputs to drive language models to predict novelty scores. We then analyze the results to determine the optimal section combinations for novelty score prediction. We first employ natural language processing techniques to identify the sectional structure of academic papers, categorizing them into introduction, methods, results, and discussion (IMRaD). Subsequently, we used different combinations of these sections (e.g., introduction and methods) as inputs for pretrained language models (PLMs) and large language models (LLMs), employing novelty scores provided by human expert reviewers as ground truth labels to obtain prediction results. The results indicate that using introduction, results and discussion is most appropriate for assessing the novelty of a paper, while the use of the entire text does not yield significant results. Furthermore, based on the results of the PLMs and LLMs, the introduction and results appear to be the most important section for the task of novelty score prediction. The code and dataset for this paper can be accessed at https://github.com/njust-winchy/SC4ANM.

Authors:Qian Tan, Dongzhan Zhou, Peng Xia, Wanhao Liu, Wanli Ouyang, Lei Bai, Yuqiang Li, Tianfan Fu
Title: ChemMLLM: Chemical Multimodal Large Language Model
Abstract:
Multimodal large language models (MLLMs) have made impressive progress in many applications in recent years. However, chemical MLLMs that can handle cross-modal understanding and generation remain underexplored. To fill this gap, we propose ChemMLLM, a unified chemical multimodal large language model for molecule understanding and generation. Also, we design five multimodal tasks across text, molecular SMILES strings, and image, and curate the datasets. We benchmark ChemMLLM against a range of general leading MLLMs and Chemical LLMs on these tasks. Experimental results show that ChemMLLM achieves superior performance across all evaluated tasks. For example, in molecule image optimization task, ChemMLLM outperforms the best baseline (GPT-4o) by 116.75\% (4.27 vs 1.97 property improvement). The code is publicly available at https://github.com/bbsbz/ChemMLLM.git.

Authors:Jie Zhao, Xin Chen, Yongsheng Yuan, Michael Felsberg, Dong Wang, Huchuan Lu
Title: Efficient Motion Prompt Learning for Robust Visual Tracking
Abstract:
Due to the challenges of processing temporal information, most trackers depend solely on visual discriminability and overlook the unique temporal coherence of video data. In this paper, we propose a lightweight and plug-and-play motion prompt tracking method. It can be easily integrated into existing vision-based trackers to build a joint tracking framework leveraging both motion and vision cues, thereby achieving robust tracking through efficient prompt learning. A motion encoder with three different positional encodings is proposed to encode the long-term motion trajectory into the visual embedding space, while a fusion decoder and an adaptive weight mechanism are designed to dynamically fuse visual and motion features. We integrate our motion module into three different trackers with five models in total. Experiments on seven challenging tracking benchmarks demonstrate that the proposed motion module significantly improves the robustness of vision-based trackers, with minimal training costs and negligible speed sacrifice. Code is available at https://github.com/zj5559/Motion-Prompt-Tracking.

Authors:Yangyang Wang, Jiawei Gu, Li Long, Xin Li, Li Shen, Zhouyu Fu, Xiangjun Zhou, Xu Jiang
Title: FreshRetailNet-50K: A Stockout-Annotated Censored Demand Dataset for Latent Demand Recovery and Forecasting in Fresh Retail
Abstract:
Accurate demand estimation is critical for the retail business in guiding the inventory and pricing policies of perishable products. However, it faces fundamental challenges from censored sales data during stockouts, where unobserved demand creates systemic policy biases. Existing datasets lack the temporal resolution and annotations needed to address this censoring effect. To fill this gap, we present FreshRetailNet-50K, the first large-scale benchmark for censored demand estimation. It comprises 50,000 store-product time series of detailed hourly sales data from 898 stores in 18 major cities, encompassing 863 perishable SKUs meticulously annotated for stockout events. The hourly stock status records unique to this dataset, combined with rich contextual covariates, including promotional discounts, precipitation, and temporal features, enable innovative research beyond existing solutions. We demonstrate one such use case of two-stage demand modeling: first, we reconstruct the latent demand during stockouts using precise hourly annotations. We then leverage the recovered demand to train robust demand forecasting models in the second stage. Experimental results show that this approach achieves a 2.73% improvement in prediction accuracy while reducing the systematic demand underestimation from 7.37% to near-zero bias. With unprecedented temporal granularity and comprehensive real-world information, FreshRetailNet-50K opens new research directions in demand imputation, perishable inventory optimization, and causal retail analytics. The unique annotation quality and scale of the dataset address long-standing limitations in retail AI, providing immediate solutions and a platform for future methodological innovation. The data (https://huggingface.co/datasets/Dingdong-Inc/FreshRetailNet-50K) and code (https://github.com/Dingdong-Inc/frn-50k-baseline}) are openly released.

Authors:Arjhun Swaminathan, Mete Akgün
Title: Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Abstract:
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70\% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.

Authors:Arjhun Swaminathan, Mete Akgün
Title: Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Abstract:
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.

Authors:Jiawei Liu, Qisi Chen, Jianshu Zhang, Quan Liu, Defu Lian
Title: EquivPruner: Boosting Efficiency and Quality in LLM-Based Search via Action Pruning
Abstract:
Large Language Models (LLMs) excel at complex reasoning through search algorithms, yet current strategies often suffer from massive token consumption due to redundant exploration of semantically equivalent steps. Existing semantic similarity methods struggle to accurately identify such equivalence in domain-specific contexts like mathematical reasoning. To address this, we propose EquivPruner, a simple yet effective approach that identifies and prunes semantically equivalent actions during LLM reasoning search. We also introduce MathEquiv, the first dataset we created for mathematical statement equivalence, which enables the training of a lightweight equivalence detector. Extensive experiments across various models and tasks demonstrate that EquivPruner significantly reduces token consumption, improving searching efficiency and often bolstering reasoning accuracy. For instance, when applied to Qwen2.5-Math-7B-Instruct on GSM8K, EquivPruner reduced token consumption by 48.1\% while also improving accuracy. Our code is available at https://github.com/Lolo1222/EquivPruner.

Authors:Feng Liu, Lixin Zou, Xiangyu Zhao, Min Tang, Liming Dong, Dan Luo, Xiangyang Luo, Chenliang Li
Title: Flow Matching based Sequential Recommender Model
Abstract:
Generative models, particularly diffusion model, have emerged as powerful tools for sequential recommendation. However, accurately modeling user preferences remains challenging due to the noise perturbations inherent in the forward and reverse processes of diffusion-based methods. Towards this end, this study introduces FMRec, a Flow Matching based model that employs a straight flow trajectory and a modified loss tailored for the recommendation task. Additionally, from the diffusion-model perspective, we integrate a reconstruction loss to improve robustness against noise perturbations, thereby retaining user preferences during the forward process. In the reverse process, we employ a deterministic reverse sampler, specifically an ODE-based updating function, to eliminate unnecessary randomness, thereby ensuring that the generated recommendations closely align with user needs. Extensive evaluations on four benchmark datasets reveal that FMRec achieves an average improvement of 6.53% over state-of-the-art methods. The replication code is available at https://github.com/FengLiu-1/FMRec.

Authors:Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, Jiaya Jia
Title: ARPO:End-to-End Policy Optimization for GUI Agents with Experience Replay
Abstract:
Training large language models (LLMs) as interactive agents for controlling graphical user interfaces (GUIs) presents a unique challenge to optimize long-horizon action sequences with multimodal feedback from complex environments. While recent works have advanced multi-turn reinforcement learning (RL) for reasoning and tool-using capabilities in LLMs, their application to GUI-based agents remains relatively underexplored due to the difficulty of sparse rewards, delayed feedback, and high rollout costs. In this paper, we investigate end-to-end policy optimization for vision-language-based GUI agents with the aim of improving performance on complex, long-horizon computer tasks. We propose Agentic Replay Policy Optimization (ARPO), an end-to-end RL approach that augments Group Relative Policy Optimization (GRPO) with a replay buffer to reuse the successful experience across training iterations. To further stabilize the training process, we propose a task selection strategy that filters tasks based on baseline agent performance, allowing the agent to focus on learning from informative interactions. Additionally, we compare ARPO with offline preference optimization approaches, highlighting the advantages of policy-based methods in GUI environments. Experiments on the OSWorld benchmark demonstrate that ARPO achieves competitive results, establishing a new performance baseline for LLM-based GUI agents trained via reinforcement learning. Our findings underscore the effectiveness of reinforcement learning for training multi-turn, vision-language GUI agents capable of managing complex real-world UI interactions. Codes and models:https://github.com/dvlab-research/ARPO.git.

Authors:Shijie Zhang, Renhao Li, Songsheng Wang, Philipp Koehn, Min Yang, Derek F. Wong
Title: HiMATE: A Hierarchical Multi-Agent Framework for Machine Translation Evaluation
Abstract:
The advancement of Large Language Models (LLMs) enables flexible and interpretable automatic evaluations. In the field of machine translation evaluation, utilizing LLMs with translation error annotations based on Multidimensional Quality Metrics (MQM) yields more human-aligned judgments. However, current LLM-based evaluation methods still face challenges in accurately identifying error spans and assessing their severity. In this paper, we propose HiMATE, a Hierarchical Multi-Agent Framework for Machine Translation Evaluation. We argue that existing approaches inadequately exploit the fine-grained structural and semantic information within the MQM hierarchy. To address this, we develop a hierarchical multi-agent system grounded in the MQM error typology, enabling granular evaluation of subtype errors. Two key strategies are incorporated to further mitigate systemic hallucinations within the framework: the utilization of the model's self-reflection capability and the facilitation of agent discussion involving asymmetric information. Empirically, HiMATE outperforms competitive baselines across different datasets in conducting human-aligned evaluations. Further analyses underscore its significant advantage in error span detection and severity assessment, achieving an average F1-score improvement of 89% over the best-performing baseline. We make our code and data publicly available at https://github.com/nlp2ct-shijie/HiMATE.

Authors:Sampanna Yashwant Kahu, Naman Ahuja
Title: All You Need is "Leet": Evading Hate-speech Detection AI
Abstract:
Social media and online forums are increasingly becoming popular. Unfortunately, these platforms are being used for spreading hate speech. In this paper, we design black-box techniques to protect users from hate-speech on online platforms by generating perturbations that can fool state of the art deep learning based hate speech detection models thereby decreasing their efficiency. We also ensure a minimal change in the original meaning of hate-speech. Our best perturbation attack is successfully able to evade hate-speech detection for 86.8 % of hateful text.

Authors:Aashish Anantha Ramakrishnan, Aadarsh Anantha Ramakrishnan, Dongwon Lee
Title: IRONIC: Coherence-Aware Reasoning Chains for Multi-Modal Sarcasm Detection
Abstract:
Interpreting figurative language such as sarcasm across multi-modal inputs presents unique challenges, often requiring task-specific fine-tuning and extensive reasoning steps. However, current Chain-of-Thought approaches do not efficiently leverage the same cognitive processes that enable humans to identify sarcasm. We present IRONIC, an in-context learning framework that leverages Multi-modal Coherence Relations to analyze referential, analogical and pragmatic image-text linkages. Our experiments show that IRONIC achieves state-of-the-art performance on zero-shot Multi-modal Sarcasm Detection across different baselines. This demonstrates the need for incorporating linguistic and cognitive insights into the design of multi-modal reasoning strategies. Our code is available at: https://github.com/aashish2000/IRONIC

Authors:Zheng Chen, Zichen Zou, Kewei Zhang, Xiongfei Su, Xin Yuan, Yong Guo, Yulun Zhang
Title: DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution
Abstract:
Diffusion models have demonstrated promising performance in real-world video super-resolution (VSR). However, the dozens of sampling steps they require, make inference extremely slow. Sampling acceleration techniques, particularly single-step, provide a potential solution. Nonetheless, achieving one step in VSR remains challenging, due to the high training overhead on video data and stringent fidelity demands. To tackle the above issues, we propose DOVE, an efficient one-step diffusion model for real-world VSR. DOVE is obtained by fine-tuning a pretrained video diffusion model (*i.e.*, CogVideoX). To effectively train DOVE, we introduce the latent-pixel training strategy. The strategy employs a two-stage scheme to gradually adapt the model to the video super-resolution task. Meanwhile, we design a video processing pipeline to construct a high-quality dataset tailored for VSR, termed HQ-VSR. Fine-tuning on this dataset further enhances the restoration capability of DOVE. Extensive experiments show that DOVE exhibits comparable or superior performance to multi-step diffusion-based VSR methods. It also offers outstanding inference efficiency, achieving up to a **28$\times$** speed-up over existing methods such as MGLD-VSR. Code is available at: https://github.com/zhengchen1999/DOVE.

Authors:Henry X. Liu, Xintao Yan, Haowei Sun, Tinghan Wang, Zhijie Qiao, Haojie Zhu, Shengyin Shen, Shuo Feng, Greg Stevens, Greg McGuire
Title: Behavioral Safety Assessment towards Large-scale Deployment of Autonomous Vehicles
Abstract:
Autonomous vehicles (AVs) have significantly advanced in real-world deployment in recent years, yet safety continues to be a critical barrier to widespread adoption. Traditional functional safety approaches, which primarily verify the reliability, robustness, and adequacy of AV hardware and software systems from a vehicle-centric perspective, do not sufficiently address the AV's broader interactions and behavioral impact on the surrounding traffic environment. To overcome this limitation, we propose a paradigm shift toward behavioral safety, a comprehensive approach focused on evaluating AV responses and interactions within traffic environment. To systematically assess behavioral safety, we introduce a third-party AV safety assessment framework comprising two complementary evaluation components: Driver Licensing Test and Driving Intelligence Test. The Driver Licensing Test evaluates AV's reactive behaviors under controlled scenarios, ensuring basic behavioral competency. In contrast, the Driving Intelligence Test assesses AV's interactive behaviors within naturalistic traffic conditions, quantifying the frequency of safety-critical events to deliver statistically meaningful safety metrics before large-scale deployment. We validated our proposed framework using \texttt{Autoware.Universe}, an open-source Level 4 AV, tested both in simulated environments and on the physical test track at the University of Michigan's Mcity Testing Facility. The results indicate that \texttt{Autoware.Universe} passed 6 out of 14 scenarios and exhibited a crash rate of 3.01e-3 crashes per mile, approximately 1,000 times higher than average human driver crash rate. During the tests, we also uncovered several unknown unsafe scenarios for \texttt{Autoware.Universe}. These findings underscore the necessity of behavioral safety evaluations for improving AV safety performance prior to widespread public deployment.

Authors:Kai Li, Can Shen, Yile Liu, Jirui Han, Kelong Zheng, Xuechao Zou, Zhe Wang, Xingjian Du, Shun Zhang, Hanjun Luo, Yingbin Jin, Xinxin Xing, Ziyang Ma, Yue Liu, Xiaojun Jia, Yifan Zhang, Junfeng Fang, Kun Wang, Yibo Yan, Haoyang Li, Yiming Li, Xiaobin Zhuang, Yang Liu, Haibo Hu, Zhizheng Wu, Xiaolin Hu, Eng-Siong Chng, XiaoFeng Wang, Wenyuan Xu, Wei Dong, Xinfeng Li
Title: AudioTrust: Benchmarking the Multifaceted Trustworthiness of Audio Large Language Models
Abstract:
The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.

Authors:Kai Li, Can Shen, Yile Liu, Jirui Han, Kelong Zheng, Xuechao Zou, Zhe Wang, Shun Zhang, Xingjian Du, Hanjun Luo, Yingbin Jin, Xinxin Xing, Ziyang Ma, Yue Liu, Yifan Zhang, Junfeng Fang, Kun Wang, Yibo Yan, Gelei Deng, Haoyang Li, Yiming Li, Xiaobin Zhuang, Tianlong Chen, Qingsong Wen, Tianwei Zhang, Yang Liu, Haibo Hu, Zhizheng Wu, Xiaolin Hu, Eng-Siong Chng, Wenyuan Xu, XiaoFeng Wang, Wei Dong, Xinfeng Li
Title: AudioTrust: Benchmarking the Multifaceted Trustworthiness of Audio Large Language Models
Abstract:
Audio Large Language Models (ALLMs) have gained widespread adoption, yet their trustworthiness remains underexplored. Existing evaluation frameworks, designed primarily for text, fail to address unique vulnerabilities introduced by audio's acoustic properties. We identify significant trustworthiness risks in ALLMs arising from non-semantic acoustic cues, including timbre, accent, and background noise, which can manipulate model behavior. We propose AudioTrust, a comprehensive framework for systematic evaluation of ALLM trustworthiness across audio-specific risks. AudioTrust encompasses six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. The framework implements 26 distinct sub-tasks using a curated dataset of over 4,420 audio samples from real-world scenarios, including daily conversations, emergency calls, and voice assistant interactions. We conduct comprehensive evaluations across 18 experimental configurations using human-validated automated pipelines. Our evaluation of 14 state-of-the-art open-source and closed-source ALLMs reveals significant limitations when confronted with diverse high-risk audio scenarios, providing insights for secure deployment of audio models. Code and data are available at https://github.com/JusperLee/AudioTrust.

Authors:Yuqing Yang, Robin Jia
Title: When Do LLMs Admit Their Mistakes? Understanding the Role of Model Belief in Retraction
Abstract:
Can large language models (LLMs) admit their mistakes when they should know better? In this work, we define the behavior of acknowledging errors in previously generated answers as "retraction" and aim to understand when and why LLMs choose to retract. We first construct model-specific datasets to evaluate whether a model will retract an incorrect answer that contradicts its own parametric knowledge. While LLMs are capable of retraction, they do so only infrequently. We demonstrate that retraction is closely tied to previously identified indicators of models' internal belief: models fail to retract wrong answers that they "believe" to be factually correct. Steering experiments further demonstrate that internal belief causally influences model retraction. In particular, when the model does not believe its answer, this not only encourages the model to attempt to verify the answer, but also alters attention behavior during self-verification. Finally, we demonstrate that simple supervised fine-tuning significantly improves retraction performance by helping the model learn more accurate internal beliefs. Code and datasets are available on https://github.com/ayyyq/llm-retraction.

Authors:Liyan Wang, Weixiang Zhou, Cong Wang, Kin-Man Lam, Zhixun Su, Jinshan Pan
Title: Deep Learning-Driven Ultra-High-Definition Image Restoration: A Survey
Abstract:
Ultra-high-definition (UHD) image restoration aims to specifically solve the problem of quality degradation in ultra-high-resolution images. Recent advancements in this field are predominantly driven by deep learning-based innovations, including enhancements in dataset construction, network architecture, sampling strategies, prior knowledge integration, and loss functions. In this paper, we systematically review recent progress in UHD image restoration, covering various aspects ranging from dataset construction to algorithm design. This serves as a valuable resource for understanding state-of-the-art developments in the field. We begin by summarizing degradation models for various image restoration subproblems, such as super-resolution, low-light enhancement, deblurring, dehazing, deraining, and desnowing, and emphasizing the unique challenges of their application to UHD image restoration. We then highlight existing UHD benchmark datasets and organize the literature according to degradation types and dataset construction methods. Following this, we showcase major milestones in deep learning-driven UHD image restoration, reviewing the progression of restoration tasks, technological developments, and evaluations of existing methods. We further propose a classification framework based on network architectures and sampling strategies, helping to clearly organize existing methods. Finally, we share insights into the current research landscape and propose directions for further advancements. A related repository is available at https://github.com/wlydlut/UHD-Image-Restoration-Survey.

Authors:Bin Xu, Yu Bai, Huashan Sun, Yiguan Lin, Siming Liu, Xinyue Liang, Yaolin Li, Yang Gao, Heyan Huang
Title: EduBench: A Comprehensive Benchmarking Dataset for Evaluating Large Language Models in Diverse Educational Scenarios
Abstract:
As large language models continue to advance, their application in educational contexts remains underexplored and under-optimized. In this paper, we address this gap by introducing the first diverse benchmark tailored for educational scenarios, incorporating synthetic data containing 9 major scenarios and over 4,000 distinct educational contexts. To enable comprehensive assessment, we propose a set of multi-dimensional evaluation metrics that cover 12 critical aspects relevant to both teachers and students. We further apply human annotation to ensure the effectiveness of the model-generated evaluation responses. Additionally, we succeed to train a relatively small-scale model on our constructed dataset and demonstrate that it can achieve performance comparable to state-of-the-art large models (e.g., Deepseek V3, Qwen Max) on the test set. Overall, this work provides a practical foundation for the development and evaluation of education-oriented language models. Code and data are released at https://github.com/ybai-nlp/EduBench.

Authors:Zhenglin Hua, Jinghan He, Zijun Yao, Tianxu Han, Haiyun Guo, Yuheng Jia, Junfeng Fang
Title: Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation
Abstract:
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.

Authors:Yuke Zhang
Title: Interpretable Machine Learning for Macro Alpha: A News Sentiment Case Study
Abstract:
This study introduces an interpretable machine learning (ML) framework to extract macroeconomic alpha from global news sentiment. We process the Global Database of Events, Language, and Tone (GDELT) Project's worldwide news feed using FinBERT -- a Bidirectional Encoder Representations from Transformers (BERT) based model pretrained on finance-specific language -- to construct daily sentiment indices incorporating mean tone, dispersion, and event impact. These indices drive an XGBoost classifier, benchmarked against logistic regression, to predict next-day returns for EUR/USD, USD/JPY, and 10-year U.S. Treasury futures (ZN). Rigorous out-of-sample (OOS) backtesting (5-fold expanding-window cross-validation, OOS period: c. 2017-April 2025) demonstrates exceptional, cost-adjusted performance for the XGBoost strategy: Sharpe ratios achieve 5.87 (EUR/USD), 4.65 (USD/JPY), and 4.65 (Treasuries), with respective compound annual growth rates (CAGRs) exceeding 50% in Foreign Exchange (FX) and 22% in bonds. Shapley Additive Explanations (SHAP) affirm that sentiment dispersion and article impact are key predictive features. Our findings establish that integrating domain-specific Natural Language Processing (NLP) with interpretable ML offers a potent and explainable source of macro alpha.

Authors:Haohan Wang, Xu Shi, Hengyu Zhang, Yashuai Cao, Jintao Wang
Title: Beamforming-Codebook-Aware Channel Knowledge Map Construction for Multi-Antenna Systems
Abstract:
Channel knowledge map (CKM) has emerged as a crucial technology for next-generation communication, enabling the construction of high-fidelity mappings between spatial environments and channel parameters via electromagnetic information analysis. Traditional CKM construction methods like ray tracing are computationally intensive. Recent studies utilizing neural networks (NNs) have achieved efficient CKM generation with reduced computational complexity and real-time processing capabilities. Nevertheless, existing research predominantly focuses on single-antenna systems, failing to address the beamforming requirements inherent to MIMO configurations. Given that appropriate precoding vector selection in MIMO systems can substantially enhance user communication rates, this paper presents a TransUNet-based framework for constructing CKM, which effectively incorporates discrete Fourier transform (DFT) precoding vectors. The proposed architecture combines a UNet backbone for multiscale feature extraction with a Transformer module to capture global dependencies among encoded linear vectors. Experimental results demonstrate that the proposed method outperforms state-of-the-art (SOTA) deep learning (DL) approaches, yielding a 17\% improvement in RMSE compared to RadioWNet. The code is publicly accessible at https://github.com/github-whh/TransUNet.

Authors:Nathan Brady, David Tennyson, Thomas Vandermeulen
Title: Machine Learning the 6d Supergravity Landscape
Abstract:
In this paper, we apply both supervised and unsupervised machine learning algorithms to the study of the string landscape and swampland in 6-dimensions. Our data are the (almost) anomaly-free 6-dimensional $\mathcal{N} = (1,0)$ supergravity models, characterised by the Gram matrix of anomaly coefficients. Our work demonstrates the ability of machine learning algorithms to efficiently learn highly complex features of the landscape and swampland. Employing an autoencoder for unsupervised learning, we provide an auto-classification of these models by compressing the Gram matrix data to 2-dimensions. Through compression, similar models cluster together, and we identify prominent features of these clusters. The autoencoder also identifies outlier models which are difficult to reconstruct. One of these outliers proves to be incredibly difficult to combine with other models such that the $\text{tr}R^{4}$ anomaly vanishes, making its presence in the landscape extremely rare. Further, we utilise supervised learning to build two classifiers predicting (1) model consistency under probe string insertion (precision: 0.78, predicting consistency for 214,837 models with reasonable certainty) and (2) inconsistency under anomaly inflow (precision: 0.91, predicting inconsistency for 1,909,359 models). Notably, projecting these predictions onto the autoencoder's 2-dimensional latent layer shows consistent models clustering together, further indicating that the autoencoder has learnt interesting and complex features of the set of models and potentially offers a novel approach to mapping the landscape and swampland of 6-dimensional supergravity theories.

Authors:Zehong Wang, Zheyuan Zhang, Tianyi Ma, Chuxu Zhang, Yanfang Ye
Title: Scalable Graph Generative Modeling via Substructure Sequences
Abstract:
Graph neural networks (GNNs) has been predominantly driven by message-passing, where node representations are iteratively updated via local neighborhood aggregation. Despite their success, message-passing suffers from fundamental limitations -- including constrained expressiveness, over-smoothing, over-squashing, and limited capacity to model long-range dependencies. These issues hinder scalability: increasing data size or model size often fails to yield improved performance, limiting the viability of GNNs as backbones for graph foundation models. In this work, we explore pathways beyond message-passing and introduce Generative Graph Pattern Machine (G$^2$PM), a generative Transformer pre-training framework for graphs. G$^2$PM represents graph instances (nodes, edges, or entire graphs) as sequences of substructures, and employs generative pre-training over the sequences to learn generalizable, transferable representations. Empirically, G$^2$PM demonstrates strong scalability: on the ogbn-arxiv benchmark, it continues to improve with model sizes up to 60M parameters, outperforming prior generative approaches that plateau at significantly smaller scales (e.g., 3M). In addition, we systematically analyze the model design space, highlighting key architectural choices that contribute to its scalability and generalization. Across diverse tasks -- including node classification, graph classification, and transfer learning -- G$^2$PM consistently outperforms strong baselines, establishing a compelling foundation for scalable graph learning. The code and dataset are available at https://github.com/Zehong-Wang/G2PM.

Authors:Zehong Wang, Zheyuan Zhang, Tianyi Ma, Chuxu Zhang, Yanfang Ye
Title: Scalable Graph Generative Modeling via Substructure Sequences
Abstract:
Graph neural networks (GNNs) have been predominantly driven by message-passing, where node representations are iteratively updated via local neighborhood aggregation. Despite their success, message-passing suffers from fundamental limitations -- including constrained expressiveness, over-smoothing, over-squashing, and limited capacity to model long-range dependencies. These issues hinder scalability: increasing data size or model size often fails to yield improved performance. To this end, we explore pathways beyond message-passing and introduce Generative Graph Pattern Machine (G$^2$PM), a generative Transformer pre-training framework for graphs. G$^2$PM represents graph instances (nodes, edges, or entire graphs) as sequences of substructures, and employs generative pre-training over the sequences to learn generalizable and transferable representations. Empirically, G$^2$PM demonstrates strong scalability: on the ogbn-arxiv benchmark, it continues to improve with model sizes up to 60M parameters, outperforming prior generative approaches that plateau at significantly smaller scales (e.g., 3M). In addition, we systematically analyze the model design space, highlighting key architectural choices that contribute to its scalability and generalization. Across diverse tasks -- including node/link/graph classification, transfer learning, and cross-graph pretraining -- G$^2$PM consistently outperforms strong baselines, establishing a compelling foundation for scalable graph learning. The code and dataset are available at https://github.com/Zehong-Wang/G2PM.

Authors:Hyang Cui
Title: LLMs Are Not Scorers: Rethinking MT Evaluation with Generation-Based Methods
Abstract:
Recent studies have applied large language models (LLMs) to machine translation quality estimation (MTQE) by prompting models to assign numeric scores. Nonetheless, these direct scoring methods tend to show low segment-level correlation with human judgments. In this paper, we propose a generation-based evaluation paradigm that leverages decoder-only LLMs to produce high-quality references, followed by semantic similarity scoring using sentence embeddings. We conduct the most extensive evaluation to date in MTQE, covering 8 LLMs and 8 language pairs. Empirical results show that our method outperforms both intra-LLM direct scoring baselines and external non-LLM reference-free metrics from MTME. These findings demonstrate the strength of generation-based evaluation and support a shift toward hybrid approaches that combine fluent generation with accurate semantic assessment.

Authors:Junhong Lin, Xinyue Zeng, Jie Zhu, Song Wang, Julian Shun, Jun Wu, Dawei Zhou
Title: Plan and Budget: Effective and Efficient Test-Time Scaling on Large Language Model Reasoning
Abstract:
Large Language Models (LLMs) have achieved remarkable success in complex reasoning tasks, but their inference remains computationally inefficient. We observe a common failure mode in many prevalent LLMs, overthinking, where models generate verbose and tangential reasoning traces even for simple queries. Recent works have tried to mitigate this by enforcing fixed token budgets, however, this can lead to underthinking, especially on harder problems. Through empirical analysis, we identify that this inefficiency often stems from unclear problem-solving strategies. To formalize this, we develop a theoretical model, BBAM (Bayesian Budget Allocation Model), which models reasoning as a sequence of sub-questions with varying uncertainty, and introduce the $E^3$ metric to capture the trade-off between correctness and computation efficiency. Building on theoretical results from BBAM, we propose Plan-and-Budget, a model-agnostic, test-time framework that decomposes complex queries into sub-questions and allocates token budgets based on estimated complexity using adaptive scheduling. Plan-and-Budget improves reasoning efficiency across a range of tasks and models, achieving up to +70% accuracy gains, -39% token reduction, and +187.5% improvement in $E^3$. Notably, it elevates a smaller model (DS-Qwen-32B) to match the efficiency of a larger model (DS-LLaMA-70B)-demonstrating Plan-and-Budget's ability to close performance gaps without retraining. Our code is available at https://github.com/junhongmit/P-and-B.

Authors:Naiqi Li, Peiyuan Liu, Zheng Liu, Tao Dai, Yong Jiang, Shu-Tao Xia
Title: Logic-of-Thought: Empowering Large Language Models with Logic Programs for Solving Puzzles in Natural Language
Abstract:
Solving puzzles in natural language poses a long-standing challenge in AI. While large language models (LLMs) have recently shown impressive capabilities in a variety of tasks, they continue to struggle with complex puzzles that demand precise reasoning and exhaustive search. In this paper, we propose Logic-of-Thought (Logot), a novel framework that bridges LLMs with logic programming to address this problem. Our method leverages LLMs to translate puzzle rules and states into answer set programs (ASPs), the solution of which are then accurately and efficiently inferred by an ASP interpreter. This hybrid approach combines the natural language understanding of LLMs with the precise reasoning capabilities of logic programs. We evaluate our method on various grid puzzles and dynamic puzzles involving actions, demonstrating near-perfect accuracy across all tasks. Our code and data are available at: https://github.com/naiqili/Logic-of-Thought.

Authors:Yash Kumar Atri, Thomas H Shin, Thomas Hartvigsen
Title: Continually Self-Improving Language Models for Bariatric Surgery Question--Answering
Abstract:
While bariatric and metabolic surgery (MBS) is considered the gold standard treatment for severe and morbid obesity, its therapeutic efficacy hinges upon active and longitudinal engagement with multidisciplinary providers, including surgeons, dietitians/nutritionists, psychologists, and endocrinologists. This engagement spans the entire patient journey, from preoperative preparation to long-term postoperative management. However, this process is often hindered by numerous healthcare disparities, such as logistical and access barriers, which impair easy patient access to timely, evidence-based, clinician-endorsed information. To address these gaps, we introduce bRAGgen, a novel adaptive retrieval-augmented generation (RAG)-based model that autonomously integrates real-time medical evidence when response confidence dips below dynamic thresholds. This self-updating architecture ensures that responses remain current and accurate, reducing the risk of misinformation. Additionally, we present bRAGq, a curated dataset of 1,302 bariatric surgery--related questions, validated by an expert bariatric surgeon. bRAGq constitutes the first large-scale, domain-specific benchmark for comprehensive MBS care. In a two-phase evaluation, bRAGgen is benchmarked against state-of-the-art models using both large language model (LLM)--based metrics and expert surgeon review. Across all evaluation dimensions, bRAGgen demonstrates substantially superior performance in generating clinically accurate and relevant responses.

Authors:Ziqing Wang, Kexin Zhang, Zihan Zhao, Yibo Wen, Abhishek Pandey, Han Liu, Kaize Ding
Title: A Survey of Large Language Models for Text-Guided Molecular Discovery: from Molecule Generation to Optimization
Abstract:
Large language models (LLMs) are introducing a paradigm shift in molecular discovery by enabling text-guided interaction with chemical spaces through natural language, symbolic notations, with emerging extensions to incorporate multi-modal inputs. To advance the new field of LLM for molecular discovery, this survey provides an up-to-date and forward-looking review of the emerging use of LLMs for two central tasks: molecule generation and molecule optimization. Based on our proposed taxonomy for both problems, we analyze representative techniques in each category, highlighting how LLM capabilities are leveraged across different learning settings. In addition, we include the commonly used datasets and evaluation protocols. We conclude by discussing key challenges and future directions, positioning this survey as a resource for researchers working at the intersection of LLMs and molecular science. A continuously updated reading list is available at https://github.com/REAL-Lab-NU/Awesome-LLM-Centric-Molecular-Discovery.

Authors:Jinpei Guo, Yifei Ji, Zheng Chen, Kai Liu, Min Liu, Wang Rao, Wenbo Li, Yong Guo, Yulun Zhang
Title: OSCAR: One-Step Diffusion Codec Across Multiple Bit-rates
Abstract:
Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models will be released at https://github.com/jp-guo/OSCAR.

Authors:Gagan Bhatia, Maxime Peyrard, Wei Zhao
Title: Date Fragments: A Hidden Bottleneck of Tokenization for Temporal Reasoning
Abstract:
Modern BPE tokenizers often split calendar dates into meaningless fragments, e.g., 20250312 $\rightarrow$ 202, 503, 12, inflating token counts and obscuring the inherent structure needed for robust temporal reasoning. In this work, we (1) introduce a simple yet interpretable metric, termed date fragmentation ratio, that measures how faithfully a tokenizer preserves multi-digit date components; (2) release DateAugBench, a suite of 6500 examples spanning three temporal reasoning tasks: context-based date resolution, format-invariance puzzles, and date arithmetic across historical, contemporary, and future time periods; and (3) through layer-wise probing and causal attention-hop analyses, uncover an emergent date-abstraction mechanism whereby large language models stitch together the fragments of month, day, and year components for temporal reasoning. Our experiments show that excessive fragmentation correlates with accuracy drops of up to 10 points on uncommon dates like historical and futuristic dates. Further, we find that the larger the model, the faster the emergent date abstraction that heals date fragments is accomplished. Lastly, we observe a reasoning path that LLMs follow to assemble date fragments, typically differing from human interpretation (year $\rightarrow$ month $\rightarrow$ day). Our datasets and code are made publicly available \href{https://github.com/gagan3012/date-fragments}{here}.

Authors:Duy-Nam Bui, Manh Duong Phung, Hung Pham Duy
Title: Event-based Reconfiguration Control for Time-varying Formation of Robot Swarms in Narrow Spaces
Abstract:
This study proposes an event-based reconfiguration control to navigate a robot swarm through challenging environments with narrow passages such as valleys, tunnels, and corridors. The robot swarm is modeled as an undirected graph, where each node represents a robot capable of collecting real-time data on the environment and the states of other robots in the formation. This data serves as the input for the controller to provide dynamic adjustments between the desired and straight-line configurations. The controller incorporates a set of behaviors, designed using artificial potential fields, to meet the requirements of goal-oriented motion, formation maintenance, tailgating, and collision avoidance. The stability of the formation control is guaranteed via the Lyapunov theorem. Simulation and comparison results show that the proposed controller not only successfully navigates the robot swarm through narrow spaces but also outperforms other established methods in key metrics including the success rate, heading order, speed, travel time, and energy efficiency. Software-in-the-loop tests have also been conducted to validate the controller's applicability in practical scenarios. The source code of the controller is available at https://github.com/duynamrcv/erc.

Authors:Jingcong Liang, Siyuan Wang, Miren Tian, Yitong Li, Duyu Tang, Zhongyu Wei
Title: Not All Models Suit Expert Offloading: On Local Routing Consistency of Mixture-of-Expert Models
Abstract:
Mixture-of-Experts (MoE) enables efficient scaling of large language models (LLMs) with sparsely activated experts during inference. To effectively deploy large MoE models on memory-constrained devices, many systems introduce *expert offloading* that caches a subset of experts in fast memory, leaving others on slow memory to run on CPU or load on demand. While some research has exploited the locality of expert activations, where consecutive tokens activate similar experts, the degree of this **local routing consistency** varies across models and remains understudied. In this paper, we propose two metrics to measure local routing consistency of MoE models: (1) **Segment Routing Best Performance (SRP)**, which evaluates how well a fixed group of experts can cover the needs of a segment of tokens, and (2) **Segment Cache Best Hit Rate (SCH)**, which measures the optimal segment-level cache hit rate under a given cache size limit. We analyzed 20 MoE LLMs with diverse sizes and architectures and found that models that apply MoE on every layer and do not use shared experts exhibit the highest local routing consistency. We further showed that domain-specialized experts contribute more to routing consistency than vocabulary-specialized ones, and that most models can balance between cache effectiveness and efficiency with cache sizes approximately 2x the active experts. These findings pave the way for memory-efficient MoE design and deployment without compromising inference speed. We publish the code for replicating experiments at https://github.com/ljcleo/moe-lrc .

Authors:Jingcong Liang, Siyuan Wang, Miren Tian, Yitong Li, Duyu Tang, Zhongyu Wei
Title: Not All Models Suit Expert Offloading: On Local Routing Consistency of Mixture-of-Expert Models
Abstract:
Mixture-of-Experts (MoE) enables efficient scaling of large language models (LLMs) with sparsely activated experts during inference. To effectively deploy large MoE models on memory-constrained devices, many systems introduce *expert offloading* that caches a subset of experts in fast memory, leaving others on slow memory to run on CPU or load on demand. While some research has exploited the locality of expert activations, where consecutive tokens activate similar experts, the degree of this **local routing consistency** varies across models and remains understudied. In this paper, we propose two metrics to measure local routing consistency of MoE models: (1) **Segment Routing Best Performance (SRP)**, which evaluates how well a fixed group of experts can cover the needs of a segment of tokens, and (2) **Segment Cache Best Hit Rate (SCH)**, which measures the optimal segment-level cache hit rate under a given cache size limit. We analyzed 20 MoE LLMs with diverse sizes and architectures and found that models that apply MoE on every layer and do not use shared experts exhibit the highest local routing consistency. We further showed that domain-specialized experts contribute more to routing consistency than vocabulary-specialized ones, and that most models can balance between cache effectiveness and efficiency with cache sizes approximately 2x the active experts. These findings pave the way for memory-efficient MoE design and deployment without compromising inference speed. We publish the code for replicating experiments at https://github.com/ljcleo/moe-lrc .

Authors:Shujun Liu, Siyuan Wang, Zejun Li, Jianxiang Wang, Cheng Zeng, Zhongyu Wei
Title: OViP: Online Vision-Language Preference Learning for VLM Hallucination
Abstract:
Large vision-language models (LVLMs) remain vulnerable to hallucination, often generating content misaligned with visual inputs. Although recent training-based approaches aim to mitigate hallucination, they typically rely on predefined or randomly edited negative samples that do not reflect actual model errors, thus limiting training efficacy. In this work, we propose an Online Vision-language Preference Learning (OViP) framework that dynamically constructs contrastive training data based on the model's own hallucinated outputs. By identifying semantic differences between sampled response pairs and synthesizing negative images using a diffusion model, OViP generates more relevant supervision signals in real time. This failure-driven training enables adaptive alignment of both textual and visual preferences. Moreover, we refine existing evaluation protocols to better capture the trade-off between hallucination suppression and expressiveness. Experiments on hallucination and general benchmarks demonstrate that OViP not only reduces hallucinations while preserving core multi-modal capabilities, but also substantially improves training efficiency. Code is available at https://github.com/lsjlsj35/Online-Vision-Language-Preference-Learning-for-VLM-Hallucination.

Authors:Linxi Zhao, Sofian Zalouk, Christian K. Belardi, Justin Lovelace, Jin Peng Zhou, Kilian Q. Weinberger, Yoav Artzi, Jennifer J. Sun
Title: Pre-training Large Memory Language Models with Internal and External Knowledge
Abstract:
Neural language models are black-boxes -- both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We propose a new class of language models, Large Memory Language Models (LMLM) with a pre-training recipe that stores factual knowledge in both internal weights and an external database. Our approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger, knowledge-dense LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases. This work represents a fundamental shift in how language models interact with and manage factual knowledge.

Authors:Linxi Zhao, Sofian Zalouk, Christian K. Belardi, Justin Lovelace, Jin Peng Zhou, Ryan Thomas Noonan, Dongyoung Go, Kilian Q. Weinberger, Yoav Artzi, Jennifer J. Sun
Title: Pre-training Limited Memory Language Models with Internal and External Knowledge
Abstract:
Neural language models are black-boxes--both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We introduce Limited Memory Language Models (LMLM), a new class of language models that externalizes factual knowledge to external database during pre-training rather than memorizing them. Our pre-training approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases.

Authors:Ryo Kamoi, Yusen Zhang, Nan Zhang, Sarkar Snigdha Sarathi Das, Rui Zhang
Title: Training Step-Level Reasoning Verifiers with Formal Verification Tools
Abstract:
Process Reward Models (PRMs), which provide step-by-step feedback on the reasoning generated by Large Language Models (LLMs), are receiving increasing attention. However, two key research gaps remain: collecting accurate step-level error labels for training typically requires costly human annotation, and existing PRMs are limited to math reasoning problems. In response to these gaps, this paper aims to address the challenges of automatic dataset creation and the generalization of PRMs to diverse reasoning tasks. To achieve this goal, we propose FoVer, an approach for training PRMs on step-level error labels automatically annotated by formal verification tools, such as Z3 for formal logic and Isabelle for theorem proof, which provide automatic and accurate verification for symbolic tasks. Using this approach, we synthesize a training dataset with error labels on LLM responses for formal logic and theorem proof tasks without human annotation. Although this data synthesis is feasible only for tasks compatible with formal verification, we observe that LLM-based PRMs trained on our dataset exhibit cross-task generalization, improving verification across diverse reasoning tasks. Specifically, PRMs trained with FoVer significantly outperform baseline PRMs based on the original LLMs and achieve competitive or superior results compared to state-of-the-art PRMs trained on labels annotated by humans or stronger models, as measured by step-level verification on ProcessBench and Best-of-K performance across 12 reasoning benchmarks, including MATH, AIME, ANLI, MMLU, and BBH. The datasets, models, and code are provided at https://github.com/psunlpgroup/FoVer.

Authors:Ryo Kamoi, Yusen Zhang, Nan Zhang, Sarkar Snigdha Sarathi Das, Rui Zhang
Title: Generalizable Process Reward Models via Formally Verified Training Data
Abstract:
Process Reward Models (PRMs), which provide step-level feedback on reasoning traces generated by Large Language Models (LLMs), are receiving increasing attention. However, two key research gaps remain: creating PRM training data requires costly human annotation to label accurate step-level errors, and existing PRMs are limited to math reasoning domains. In response to these gaps, this paper aims to enable automatic synthesis of accurate PRM training data and the generalization of PRMs to diverse reasoning tasks beyond math reasoning. We propose FoVer, an approach to synthesize PRM training data with accurate step-level error labels automatically annotated by formal verification tools, such as Z3 and Isabelle. To show the practical effectiveness of FoVer, we synthesize a training dataset by annotating step-level error labels on LLM responses to formal logic and theorem proving tasks, without relying on human annotation. While FoVer creates training data with symbolic tasks compatible with formal verification, our experiments show that PRMs trained on our dataset exhibit cross-task generalization, enabling a single PRM to effectively perform verification across diverse reasoning tasks. Specifically, LLM-based PRMs trained with FoVer significantly outperform PRMs based on the original LLMs and achieve competitive or superior results compared to state-of-the-art PRMs, as measured by step-level verification on ProcessBench and Best-of-K performance across 12 reasoning benchmarks, including MATH, AIME, ANLI, MMLU, and BBH. The dataset and code are in the supplementary material and will be made public. The datasets, models, and code are provided at https://github.com/psunlpgroup/FoVer.

Authors:Chih-Kai Yang, Neo S. Ho, Hung-yi Lee
Title: Towards Holistic Evaluation of Large Audio-Language Models: A Comprehensive Survey
Abstract:
With advancements in large audio-language models (LALMs), which enhance large language models (LLMs) with auditory capabilities, these models are expected to demonstrate universal proficiency across various auditory tasks. While numerous benchmarks have emerged to assess LALMs' performance, they remain fragmented and lack a structured taxonomy. To bridge this gap, we conduct a comprehensive survey and propose a systematic taxonomy for LALM evaluations, categorizing them into four dimensions based on their objectives: (1) General Auditory Awareness and Processing, (2) Knowledge and Reasoning, (3) Dialogue-oriented Ability, and (4) Fairness, Safety, and Trustworthiness. We provide detailed overviews within each category and highlight challenges in this field, offering insights into promising future directions. To the best of our knowledge, this is the first survey specifically focused on the evaluations of LALMs, providing clear guidelines for the community. We will release the collection of the surveyed papers and actively maintain it to support ongoing advancements in the field.

Authors:Chih-Kai Yang, Neo S. Ho, Hung-yi Lee
Title: Towards Holistic Evaluation of Large Audio-Language Models: A Comprehensive Survey
Abstract:
With advancements in large audio-language models (LALMs), which enhance large language models (LLMs) with auditory capabilities, these models are expected to demonstrate universal proficiency across various auditory tasks. While numerous benchmarks have emerged to assess LALMs' performance, they remain fragmented and lack a structured taxonomy. To bridge this gap, we conduct a comprehensive survey and propose a systematic taxonomy for LALM evaluations, categorizing them into four dimensions based on their objectives: (1) General Auditory Awareness and Processing, (2) Knowledge and Reasoning, (3) Dialogue-oriented Ability, and (4) Fairness, Safety, and Trustworthiness. We provide detailed overviews within each category and highlight challenges in this field, offering insights into promising future directions. To the best of our knowledge, this is the first survey specifically focused on the evaluations of LALMs, providing clear guidelines for the community. We will release the collection of the surveyed papers and actively maintain it to support ongoing advancements in the field.

Authors:Yuxiang Wei, Yanteng Zhang, Xi Xiao, Tianyang Wang, Xiao Wang, Vince D. Calhoun
Title: MoRE-Brain: Routed Mixture of Experts for Interpretable and Generalizable Cross-Subject fMRI Visual Decoding
Abstract:
Decoding visual experiences from fMRI offers a powerful avenue to understand human perception and develop advanced brain-computer interfaces. However, current progress often prioritizes maximizing reconstruction fidelity while overlooking interpretability, an essential aspect for deriving neuroscientific insight. To address this gap, we propose MoRE-Brain, a neuro-inspired framework designed for high-fidelity, adaptable, and interpretable visual reconstruction. MoRE-Brain uniquely employs a hierarchical Mixture-of-Experts architecture where distinct experts process fMRI signals from functionally related voxel groups, mimicking specialized brain networks. The experts are first trained to encode fMRI into the frozen CLIP space. A finetuned diffusion model then synthesizes images, guided by expert outputs through a novel dual-stage routing mechanism that dynamically weighs expert contributions across the diffusion process. MoRE-Brain offers three main advancements: First, it introduces a novel Mixture-of-Experts architecture grounded in brain network principles for neuro-decoding. Second, it achieves efficient cross-subject generalization by sharing core expert networks while adapting only subject-specific routers. Third, it provides enhanced mechanistic insight, as the explicit routing reveals precisely how different modeled brain regions shape the semantic and spatial attributes of the reconstructed image. Extensive experiments validate MoRE-Brain's high reconstruction fidelity, with bottleneck analyses further demonstrating its effective utilization of fMRI signals, distinguishing genuine neural decoding from over-reliance on generative priors. Consequently, MoRE-Brain marks a substantial advance towards more generalizable and interpretable fMRI-based visual decoding. Code will be publicly available soon: https://github.com/yuxiangwei0808/MoRE-Brain.

Authors:Yuxiang Wei, Yanteng Zhang, Xi Xiao, Tianyang Wang, Xiao Wang, Vince D. Calhoun
Title: MoRE-Brain: Routed Mixture of Experts for Interpretable and Generalizable Cross-Subject fMRI Visual Decoding
Abstract:
Decoding visual experiences from fMRI offers a powerful avenue to understand human perception and develop advanced brain-computer interfaces. However, current progress often prioritizes maximizing reconstruction fidelity while overlooking interpretability, an essential aspect for deriving neuroscientific insight. To address this gap, we propose MoRE-Brain, a neuro-inspired framework designed for high-fidelity, adaptable, and interpretable visual reconstruction. MoRE-Brain uniquely employs a hierarchical Mixture-of-Experts architecture where distinct experts process fMRI signals from functionally related voxel groups, mimicking specialized brain networks. The experts are first trained to encode fMRI into the frozen CLIP space. A finetuned diffusion model then synthesizes images, guided by expert outputs through a novel dual-stage routing mechanism that dynamically weighs expert contributions across the diffusion process. MoRE-Brain offers three main advancements: First, it introduces a novel Mixture-of-Experts architecture grounded in brain network principles for neuro-decoding. Second, it achieves efficient cross-subject generalization by sharing core expert networks while adapting only subject-specific routers. Third, it provides enhanced mechanistic insight, as the explicit routing reveals precisely how different modeled brain regions shape the semantic and spatial attributes of the reconstructed image. Extensive experiments validate MoRE-Brain's high reconstruction fidelity, with bottleneck analyses further demonstrating its effective utilization of fMRI signals, distinguishing genuine neural decoding from over-reliance on generative priors. Consequently, MoRE-Brain marks a substantial advance towards more generalizable and interpretable fMRI-based visual decoding. Code will be publicly available soon: https://github.com/yuxiangwei0808/MoRE-Brain.

Authors:Tony Montes, Fernando Lozano
Title: ViQAgent: Zero-Shot Video Question Answering via Agent with Open-Vocabulary Grounding Validation
Abstract:
Recent advancements in Video Question Answering (VideoQA) have introduced LLM-based agents, modular frameworks, and procedural solutions, yielding promising results. These systems use dynamic agents and memory-based mechanisms to break down complex tasks and refine answers. However, significant improvements remain in tracking objects for grounding over time and decision-making based on reasoning to better align object references with language model outputs, as newer models get better at both tasks. This work presents an LLM-brained agent for zero-shot Video Question Answering (VideoQA) that combines a Chain-of-Thought framework with grounding reasoning alongside YOLO-World to enhance object tracking and alignment. This approach establishes a new state-of-the-art in VideoQA and Video Understanding, showing enhanced performance on NExT-QA, iVQA, and ActivityNet-QA benchmarks. Our framework also enables cross-checking of grounding timeframes, improving accuracy and providing valuable support for verification and increased output reliability across multiple video domains. The code is available at https://github.com/t-montes/viqagent.

Authors:Can Rong, Xin Zhang, Yanxin Xi, Hongjie Sui, Jingtao Ding, Yong Li
Title: Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
Abstract:
Commuting Origin-destination~(OD) flows, capturing daily population mobility of citizens, are vital for sustainable development across cities around the world. However, it is challenging to obtain the data due to the high cost of travel surveys and privacy concerns. Surprisingly, we find that satellite imagery, publicly available across the globe, contains rich urban semantic signals to support high-quality OD flow generation, with over 98\% expressiveness of traditional multisource hard-to-collect urban sociodemographic, economics, land use, and point of interest data. This inspires us to design a novel data generator, GlODGen, which can generate OD flow data for any cities of interest around the world. Specifically, GlODGen first leverages Vision-Language Geo-Foundation Models to extract urban semantic signals related to human mobility from satellite imagery. These features are then combined with population data to form region-level representations, which are used to generate OD flows via graph diffusion models. Extensive experiments on 4 continents and 6 representative cities show that GlODGen has great generalizability across diverse urban environments on different continents and can generate OD flow data for global cities highly consistent with real-world mobility data. We implement GlODGen as an automated tool, seamlessly integrating data acquisition and curation, urban semantic feature extraction, and OD flow generation together. It has been released at https://github.com/tsinghua-fib-lab/generate-od-pubtools.

Authors:Tianyi Ma, Yiyue Qian, Zheyuan Zhang, Zehong Wang, Xiaoye Qian, Feifan Bai, Yifan Ding, Xuwei Luo, Shinan Zhang, Keerthiram Murugesan, Chuxu Zhang, Yanfang Ye
Title: AutoData: A Multi-Agent System for Open Web Data Collection
Abstract:
The exponential growth of data-driven systems and AI technologies has intensified the demand for high-quality web-sourced datasets. While existing datasets have proven valuable, conventional web data collection approaches face significant limitations in terms of human effort and scalability. Current data-collecting solutions fall into two categories: wrapper-based methods that struggle with adaptability and reproducibility, and large language model (LLM)-based approaches that incur substantial computational and financial costs. To address these challenges, we propose AutoData, a novel multi-agent system for Automated web Data collection, that requires minimal human intervention, i.e., only necessitating a natural language instruction specifying the desired dataset. In addition, AutoData is designed with a robust multi-agent architecture, featuring a novel oriented message hypergraph coordinated by a central task manager, to efficiently organize agents across research and development squads. Besides, we introduce a novel hypergraph cache system to advance the multi-agent collaboration process that enables efficient automated data collection and mitigates the token cost issues prevalent in existing LLM-based systems. Moreover, we introduce Instruct2DS, a new benchmark dataset supporting live data collection from web sources across three domains: academic, finance, and sports. Comprehensive evaluations over Instruct2DS and three existing benchmark datasets demonstrate AutoData's superior performance compared to baseline methods. Case studies on challenging tasks such as picture book collection and paper extraction from surveys further validate its applicability. Our source code and dataset are available at https://github.com/GraphResearcher/AutoData.

Authors:Kai Yin, Xiangjue Dong, Chengkai Liu, Lipai Huang, Yiming Xiao, Zhewei Liu, Ali Mostafavi, James Caverlee
Title: DisastIR: A Comprehensive Information Retrieval Benchmark for Disaster Management
Abstract:
Effective disaster management requires timely access to accurate and contextually relevant information. Existing Information Retrieval (IR) benchmarks, however, focus primarily on general or specialized domains, such as medicine or finance, neglecting the unique linguistic complexity and diverse information needs encountered in disaster management scenarios. To bridge this gap, we introduce DisastIR, the first comprehensive IR evaluation benchmark specifically tailored for disaster management. DisastIR comprises 9,600 diverse user queries and more than 1.3 million labeled query-passage pairs, covering 48 distinct retrieval tasks derived from six search intents and eight general disaster categories that include 301 specific event types. Our evaluations of 30 state-of-the-art retrieval models demonstrate significant performance variances across tasks, with no single model excelling universally. Furthermore, comparative analyses reveal significant performance gaps between general-domain and disaster management-specific tasks, highlighting the necessity of disaster management-specific benchmarks for guiding IR model selection to support effective decision-making in disaster management scenarios. All source codes and DisastIR are available at https://github.com/KaiYin97/Disaster_IR.

Authors:Penghao Wu, Lewei Lu, Ziwei Liu
Title: Streamline Without Sacrifice -- Squeeze out Computation Redundancy in LMM
Abstract:
Large multimodal models excel in multimodal tasks but face significant computational challenges due to excessive computation on visual tokens. Unlike token reduction methods that focus on token-level redundancy, we identify and study the computation-level redundancy on vision tokens to ensure no information loss. Our key insight is that vision tokens from the pretrained vision encoder do not necessarily require all the heavy operations (e.g., self-attention, FFNs) in decoder-only LMMs and could be processed more lightly with proper designs. We designed a series of experiments to discover and progressively squeeze out the vision-related computation redundancy. Based on our findings, we propose ProxyV, a novel approach that utilizes proxy vision tokens to alleviate the computational burden on original vision tokens. ProxyV enhances efficiency without compromising performance and can even yield notable performance gains in scenarios with more moderate efficiency improvements. Furthermore, the flexibility of ProxyV is demonstrated through its combination with token reduction methods to boost efficiency further. The code will be made public at this https://github.com/penghao-wu/ProxyV URL.

Authors:Satoshi Kosugi
Title: Leveraging the Powerful Attention of a Pre-trained Diffusion Model for Exemplar-based Image Colorization
Abstract:
Exemplar-based image colorization aims to colorize a grayscale image using a reference color image, ensuring that reference colors are applied to corresponding input regions based on their semantic similarity. To achieve accurate semantic matching between regions, we leverage the self-attention module of a pre-trained diffusion model, which is trained on a large dataset and exhibits powerful attention capabilities. To harness this power, we propose a novel, fine-tuning-free approach based on a pre-trained diffusion model, making two key contributions. First, we introduce dual attention-guided color transfer. We utilize the self-attention module to compute an attention map between the input and reference images, effectively capturing semantic correspondences. The color features from the reference image is then transferred to the semantically matching regions of the input image, guided by this attention map, and finally, the grayscale features are replaced with the corresponding color features. Notably, we utilize dual attention to calculate attention maps separately for the grayscale and color images, achieving more precise semantic alignment. Second, we propose classifier-free colorization guidance, which enhances the transferred colors by combining color-transferred and non-color-transferred outputs. This process improves the quality of colorization. Our experimental results demonstrate that our method outperforms existing techniques in terms of image quality and fidelity to the reference. Specifically, we use 335 input-reference pairs from previous research, achieving an FID of 95.27 (image quality) and an SI-FID of 5.51 (fidelity to the reference). Our source code is available at https://github.com/satoshi-kosugi/powerful-attention.

Authors:Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, Jun Xu
Title: GUI-G1: Understanding R1-Zero-Like Training for Visual Grounding in GUI Agents
Abstract:
Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm, coupling online Reinforcement Learning (RL) with explicit chain-of-thought reasoning prior to object grounding and thereby achieving substantial performance gains. In this paper, we first conduct extensive analysis experiments of three key components of that training pipeline: input design, output evaluation, and policy update-each revealing distinct challenges arising from blindly applying general-purpose RL without adapting to GUI grounding tasks. Input design: Current templates encourage the model to generate chain-of-thought reasoning, but longer chains unexpectedly lead to worse grounding performance. Output evaluation: Reward functions based on hit signals or box area allow models to exploit box size, leading to reward hacking and poor localization quality. Policy update: Online RL tends to overfit easy examples due to biases in length and sample difficulty, leading to under-optimization on harder cases. To address these issues, we propose three targeted solutions. First, we adopt a Fast Thinking Template that encourages direct answer generation, reducing excessive reasoning during training. Second, we incorporate a box size constraint into the reward function to mitigate reward hacking. Third, we revise the RL objective by adjusting length normalization and adding a difficulty-aware scaling factor, enabling better optimization on hard samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro. This surpasses all prior models of similar size and even outperforms the larger UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.

Authors:Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, Mengdi Wang
Title: MMaDA: Multimodal Large Diffusion Language Models
Abstract:
We introduce MMaDA, a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation. The approach is distinguished by three key innovations: (i) MMaDA adopts a unified diffusion architecture with a shared probabilistic formulation and a modality-agnostic design, eliminating the need for modality-specific components. This architecture ensures seamless integration and processing across different data types. (ii) We implement a mixed long chain-of-thought (CoT) fine-tuning strategy that curates a unified CoT format across modalities. By aligning reasoning processes between textual and visual domains, this strategy facilitates cold-start training for the final reinforcement learning (RL) stage, thereby enhancing the model's ability to handle complex tasks from the outset. (iii) We propose UniGRPO, a unified policy-gradient-based RL algorithm specifically tailored for diffusion foundation models. Utilizing diversified reward modeling, UniGRPO unifies post-training across both reasoning and generation tasks, ensuring consistent performance improvements. Experimental results demonstrate that MMaDA-8B exhibits strong generalization capabilities as a unified multimodal foundation model. It surpasses powerful models like LLaMA-3-7B and Qwen2-7B in textual reasoning, outperforms Show-o and SEED-X in multimodal understanding, and excels over SDXL and Janus in text-to-image generation. These achievements highlight MMaDA's effectiveness in bridging the gap between pretraining and post-training within unified diffusion architectures, providing a comprehensive framework for future research and development. We open-source our code and trained models at: https://github.com/Gen-Verse/MMaDA

Authors:Zongzhao Li, Zongyang Ma, Mingze Li, Songyou Li, Yu Rong, Tingyang Xu, Ziqi Zhang, Deli Zhao, Wenbing Huang
Title: STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.

Authors:Yuchen Yan, Jin Jiang, Zhenbang Ren, Yijun Li, Xudong Cai, Yang Liu, Xin Xu, Mengdi Zhang, Jian Shao, Yongliang Shen, Jun Xiao, Yueting Zhuang
Title: VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models
Abstract:
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.

Authors:Danna Zheng, Mirella Lapata, Jeff Z. Pan
Title: Long-Form Information Alignment Evaluation Beyond Atomic Facts
Abstract:
Information alignment evaluators are vital for various NLG evaluation tasks and trustworthy LLM deployment, reducing hallucinations and enhancing user trust. Current fine-grained methods, like FactScore, verify facts individually but neglect inter-fact dependencies, enabling subtle vulnerabilities. In this work, we introduce MontageLie, a challenging benchmark that constructs deceptive narratives by "montaging" truthful statements without introducing explicit hallucinations. We demonstrate that both coarse-grained LLM-based evaluators and current fine-grained frameworks are susceptible to this attack, with AUC-ROC scores falling below 65%. To enable more robust fine-grained evaluation, we propose DoveScore, a novel framework that jointly verifies factual accuracy and event-order consistency. By modeling inter-fact relationships, DoveScore outperforms existing fine-grained methods by over 8%, providing a more robust solution for long-form text alignment evaluation. Our code and datasets are available at https://github.com/dannalily/DoveScore.

Authors:Xinyin Ma, Runpeng Yu, Gongfan Fang, Xinchao Wang
Title: dKV-Cache: The Cache for Diffusion Language Models
Abstract:
Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.

Authors:Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen, Xin Eric Wang
Title: Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space
Abstract:
Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.

Authors:Weihao Xia, Cengiz Oztireli
Title: Exploring The Visual Feature Space for Multimodal Neural Decoding
Abstract:
The intrication of brain signals drives research that leverages multimodal AI to align brain modalities with visual and textual data for explainable descriptions. However, most existing studies are limited to coarse interpretations, lacking essential details on object descriptions, locations, attributes, and their relationships. This leads to imprecise and ambiguous reconstructions when using such cues for visual decoding. To address this, we analyze different choices of vision feature spaces from pre-trained visual components within Multimodal Large Language Models (MLLMs) and introduce a zero-shot multimodal brain decoding method that interacts with these models to decode across multiple levels of granularities. % To assess a model's ability to decode fine details from brain signals, we propose the Multi-Granularity Brain Detail Understanding Benchmark (MG-BrainDub). This benchmark includes two key tasks: detailed descriptions and salient question-answering, with metrics highlighting key visual elements like objects, attributes, and relationships. Our approach enhances neural decoding precision and supports more accurate neuro-decoding applications. Code will be available at https://github.com/weihaox/VINDEX.

Authors:Zhuodong Jiang, Haoran Wang, Guoxi Huang, Brett Seymour, Nantheera Anantrasirichai
Title: RUSplatting: Robust 3D Gaussian Splatting for Sparse-View Underwater Scene Reconstruction
Abstract:
Reconstructing high-fidelity underwater scenes remains a challenging task due to light absorption, scattering, and limited visibility inherent in aquatic environments. This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and geometric accuracy of deep underwater rendering. We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration. To address sparse-view limitations and improve view consistency, we introduce a frame interpolation strategy with a novel adaptive weighting scheme. Additionally, we introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content. We also release a newly collected dataset, Submerged3D, captured specifically in deep-sea environments. Experimental results demonstrate that our framework consistently outperforms state-of-the-art methods with PSNR gains up to 1.90dB, delivering superior perceptual quality and robustness, and offering promising directions for marine robotics and underwater visual analytics. The code of RUSplatting is available at https://github.com/theflash987/RUSplatting and the dataset Submerged3D can be downloaded at https://zenodo.org/records/15482420.

Authors:Gaurav Srivastava, Zhenyu Bi, Meng Lu, Xuan Wang
Title: DEBATE, TRAIN, EVOLVE: Self Evolution of Language Model Reasoning
Abstract:
Large language models (LLMs) have improved significantly in their reasoning through extensive training on massive datasets. However, relying solely on additional data for improvement is becoming increasingly impractical, highlighting the need for models to autonomously enhance their reasoning without external supervision. In this paper, we propose Debate, Train, Evolve (DTE), a novel ground truth-free training framework that uses multi-agent debate traces to evolve a single language model. We also introduce a new prompting strategy Reflect-Critique-Refine, to improve debate quality by explicitly instructing agents to critique and refine their reasoning. Extensive evaluations on seven reasoning benchmarks with six open-weight models show that our DTE framework achieve substantial improvements, with an average accuracy gain of 8.92% on the challenging GSM-PLUS dataset. Furthermore, we observe strong cross-domain generalization, with an average accuracy gain of 5.8% on all other benchmarks, suggesting that our method captures general reasoning capabilities. Our framework code and trained models are publicly available at https://github.com/ctrl-gaurav/Debate-Train-Evolve

Authors:Peng Wang, Biyu Zhou, Xuehai Tang, Jizhong Han, Songlin Hu
Title: LyapLock: Bounded Knowledge Preservation in Sequential Large Language Model Editing
Abstract:
Large Language Models often contain factually incorrect or outdated knowledge, giving rise to model editing methods for precise knowledge updates. However, current mainstream locate-then-edit approaches exhibit a progressive performance decline during sequential editing, due to inadequate mechanisms for long-term knowledge preservation. To tackle this, we model the sequential editing as a constrained stochastic programming. Given the challenges posed by the cumulative preservation error constraint and the gradually revealed editing tasks, \textbf{LyapLock} is proposed. It integrates queuing theory and Lyapunov optimization to decompose the long-term constrained programming into tractable stepwise subproblems for efficient solving. This is the first model editing framework with rigorous theoretical guarantees, achieving asymptotic optimal editing performance while meeting the constraints of long-term knowledge preservation. Experimental results show that our framework scales sequential editing capacity to over 10,000 edits while stabilizing general capabilities and boosting average editing efficacy by 11.89\% over SOTA baselines. Furthermore, it can be leveraged to enhance the performance of baseline methods. Our code is released on https://github.com/caskcsg/LyapLock.

Authors:Pingqing Zheng, Jiayin Qin, Fuqi Zhang, Shang Wu, Yu Cao, Caiwen Ding, Yang, Zhao
Title: HDLxGraph: Bridging Large Language Models and HDL Repositories via HDL Graph Databases
Abstract:
Large Language Models (LLMs) have demonstrated their potential in hardware design tasks, such as Hardware Description Language (HDL) generation and debugging. Yet, their performance in real-world, repository-level HDL projects with thousands or even tens of thousands of code lines is hindered. To this end, we propose HDLxGraph, a novel framework that integrates Graph Retrieval Augmented Generation (Graph RAG) with LLMs, introducing HDL-specific graph representations by incorporating Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs) to capture both code graph view and hardware graph view. HDLxGraph utilizes a dual-retrieval mechanism that not only mitigates the limited recall issues inherent in similarity-based semantic retrieval by incorporating structural information, but also enhances its extensibility to various real-world tasks by a task-specific retrieval finetuning. Additionally, to address the lack of comprehensive HDL search benchmarks, we introduce HDLSearch, a multi-granularity evaluation dataset derived from real-world repository-level projects. Experimental results demonstrate that HDLxGraph significantly improves average search accuracy, debugging efficiency and completion quality by 12.04%, 12.22% and 5.04% compared to similarity-based RAG, respectively. The code of HDLxGraph and collected HDLSearch benchmark are available at https://github.com/Nick-Zheng-Q/HDLxGraph.

Authors:Zhexin Zhang, Yuhao Sun, Junxiao Yang, Shiyao Cui, Hongning Wang, Minlie Huang
Title: Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
Abstract:
Fine-tuning on open-source Large Language Models (LLMs) with proprietary data is now a standard practice for downstream developers to obtain task-specific LLMs. Surprisingly, we reveal a new and concerning risk along with the practice: the creator of the open-source LLMs can later extract the private downstream fine-tuning data through simple backdoor training, only requiring black-box access to the fine-tuned downstream model. Our comprehensive experiments, across 4 popularly used open-source models with 3B to 32B parameters and 2 downstream datasets, suggest that the extraction performance can be strikingly high: in practical settings, as much as 76.3% downstream fine-tuning data (queries) out of a total 5,000 samples can be perfectly extracted, and the success rate can increase to 94.9% in more ideal settings. We also explore a detection-based defense strategy but find it can be bypassed with improved attack. Overall, we highlight the emergency of this newly identified data breaching risk in fine-tuning, and we hope that more follow-up research could push the progress of addressing this concerning risk. The code and data used in our experiments are released at https://github.com/thu-coai/Backdoor-Data-Extraction.

Authors:Tianjiao Cao, Jiahao Lyu, Weichao Zeng, Weimin Mu, Yu Zhou
Title: The Devil is in Fine-tuning and Long-tailed Problems:A New Benchmark for Scene Text Detection
Abstract:
Scene text detection has seen the emergence of high-performing methods that excel on academic benchmarks. However, these detectors often fail to replicate such success in real-world scenarios. We uncover two key factors contributing to this discrepancy through extensive experiments. First, a \textit{Fine-tuning Gap}, where models leverage \textit{Dataset-Specific Optimization} (DSO) paradigm for one domain at the cost of reduced effectiveness in others, leads to inflated performances on academic benchmarks. Second, the suboptimal performance in practical settings is primarily attributed to the long-tailed distribution of texts, where detectors struggle with rare and complex categories as artistic or overlapped text. Given that the DSO paradigm might undermine the generalization ability of models, we advocate for a \textit{Joint-Dataset Learning} (JDL) protocol to alleviate the Fine-tuning Gap. Additionally, an error analysis is conducted to identify three major categories and 13 subcategories of challenges in long-tailed scene text, upon which we propose a Long-Tailed Benchmark (LTB). LTB facilitates a comprehensive evaluation of ability to handle a diverse range of long-tailed challenges. We further introduce MAEDet, a self-supervised learning-based method, as a strong baseline for LTB. The code is available at https://github.com/pd162/LTB.

Authors:Pujun Xue, Junyi Ge, Xiaotong Jiang, Siyang Song, Zijian Wu, Yupeng Huo, Weicheng Xie, Linlin Shen, Xiaoqin Zhou, Xiaofeng Liu, Min Gu
Title: Oral Imaging for Malocclusion Issues Assessments: OMNI Dataset, Deep Learning Baselines and Benchmarking
Abstract:
Malocclusion is a major challenge in orthodontics, and its complex presentation and diverse clinical manifestations make accurate localization and diagnosis particularly important. Currently, one of the major shortcomings facing the field of dental image analysis is the lack of large-scale, accurately labeled datasets dedicated to malocclusion issues, which limits the development of automated diagnostics in the field of dentistry and leads to a lack of diagnostic accuracy and efficiency in clinical practice. Therefore, in this study, we propose the Oral and Maxillofacial Natural Images (OMNI) dataset, a novel and comprehensive dental image dataset aimed at advancing the study of analyzing dental images for issues of malocclusion. Specifically, the dataset contains 4166 multi-view images with 384 participants in data collection and annotated by professional dentists. In addition, we performed a comprehensive validation of the created OMNI dataset, including three CNN-based methods, two Transformer-based methods, and one GNN-based method, and conducted automated diagnostic experiments for malocclusion issues. The experimental results show that the OMNI dataset can facilitate the automated diagnosis research of malocclusion issues and provide a new benchmark for the research in this field. Our OMNI dataset and baseline code are publicly available at https://github.com/RoundFaceJ/OMNI.

Authors:Iuliia Kotseruba, John K. Tsotsos
Title: SNAP: A Benchmark for Testing the Effects of Capture Conditions on Fundamental Vision Tasks
Abstract:
Generalization of deep-learning-based (DL) computer vision algorithms to various image perturbations is hard to establish and remains an active area of research. The majority of past analyses focused on the images already captured, whereas effects of the image formation pipeline and environment are less studied. In this paper, we address this issue by analyzing the impact of capture conditions, such as camera parameters and lighting, on DL model performance on 3 vision tasks -- image classification, object detection, and visual question answering (VQA). To this end, we assess capture bias in common vision datasets and create a new benchmark, SNAP (for $\textbf{S}$hutter speed, ISO se$\textbf{N}$sitivity, and $\textbf{AP}$erture), consisting of images of objects taken under controlled lighting conditions and with densely sampled camera settings. We then evaluate a large number of DL vision models and show the effects of capture conditions on each selected vision task. Lastly, we conduct an experiment to establish a human baseline for the VQA task. Our results show that computer vision datasets are significantly biased, the models trained on this data do not reach human accuracy even on the well-exposed images, and are susceptible to both major exposure changes and minute variations of camera settings. Code and data can be found at https://github.com/ykotseruba/SNAP

Authors:Ruilin Yao, Bo Zhang, Jirui Huang, Xinwei Long, Yifang Zhang, Tianyu Zou, Yufei Wu, Shichao Su, Yifan Xu, Wenxi Zeng, Zhaoyu Yang, Guoyou Li, Shilan Zhang, Zichan Li, Yaxiong Chen, Shengwu Xiong, Peng Xu, Jiajun Zhang, Bowen Zhou, David Clifton, Luc Van Gool
Title: LENS: Multi-level Evaluation of Multimodal Reasoning with Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have achieved significant advances in integrating visual and linguistic information, yet their ability to reason about complex and real-world scenarios remains limited. The existing benchmarks are usually constructed in the task-oriented manner without guarantee that different task samples come from the same data distribution, thus they often fall short in evaluating the synergistic effects of lower-level perceptual capabilities on higher-order reasoning. To lift this limitation, we contribute Lens, a multi-level benchmark with 3.4K contemporary images and 60K+ human-authored questions covering eight tasks and 12 daily scenarios, forming three progressive task tiers, i.e., perception, understanding, and reasoning. One feature is that each image is equipped with rich annotations for all tasks. Thus, this dataset intrinsically supports to evaluate MLLMs to handle image-invariable prompts, from basic perception to compositional reasoning. In addition, our images are manully collected from the social media, in which 53% were published later than Jan. 2025. We evaluate 15+ frontier MLLMs such as Qwen2.5-VL-72B, InternVL3-78B, GPT-4o and two reasoning models QVQ-72B-preview and Kimi-VL. These models are released later than Dec. 2024, and none of them achieve an accuracy greater than 60% in the reasoning tasks. Project page: https://github.com/Lens4MLLMs/lens. ICCV 2025 workshop page: https://lens4mllms.github.io/mars2-workshop-iccv2025/

Authors:Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang, Junxian He
Title: Learn to Reason Efficiently with Adaptive Length-based Reward Shaping
Abstract:
Large Reasoning Models (LRMs) have shown remarkable capabilities in solving complex problems through reinforcement learning (RL), particularly by generating long reasoning traces. However, these extended outputs often exhibit substantial redundancy, which limits the efficiency of LRMs. In this paper, we investigate RL-based approaches to promote reasoning efficiency. Specifically, we first present a unified framework that formulates various efficient reasoning methods through the lens of length-based reward shaping. Building on this perspective, we propose a novel Length-bAsed StEp Reward shaping method (LASER), which employs a step function as the reward, controlled by a target length. LASER surpasses previous methods, achieving a superior Pareto-optimal balance between performance and efficiency. Next, we further extend LASER based on two key intuitions: (1) The reasoning behavior of the model evolves during training, necessitating reward specifications that are also adaptive and dynamic; (2) Rather than uniformly encouraging shorter or longer chains of thought (CoT), we posit that length-based reward shaping should be difficulty-aware i.e., it should penalize lengthy CoTs more for easy queries. This approach is expected to facilitate a combination of fast and slow thinking, leading to a better overall tradeoff. The resulting method is termed LASER-D (Dynamic and Difficulty-aware). Experiments on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Qwen-32B show that our approach significantly enhances both reasoning performance and response length efficiency. For instance, LASER-D and its variant achieve a +6.1 improvement on AIME2024 while reducing token usage by 63%. Further analysis reveals our RL-based compression produces more concise reasoning patterns with less redundant "self-reflections". Resources are at https://github.com/hkust-nlp/Laser.

Authors:David Dinucu-Jianu, Jakub Macina, Nico Daheim, Ido Hakimi, Iryna Gurevych, Mrinmaya Sachan
Title: From Problem-Solving to Teaching Problem-Solving: Aligning LLMs with Pedagogy using Reinforcement Learning
Abstract:
Large language models (LLMs) can transform education, but their optimization for direct question-answering often undermines effective pedagogy which requires strategically withholding answers. To mitigate this, we propose an online reinforcement learning (RL)-based alignment framework that can quickly adapt LLMs into effective tutors using simulated student-tutor interactions by emphasizing pedagogical quality and guided problem-solving over simply giving away answers. We use our method to train a 7B parameter tutor model without human annotations which reaches similar performance to larger proprietary models like LearnLM. We introduce a controllable reward weighting to balance pedagogical support and student solving accuracy, allowing us to trace the Pareto frontier between these two objectives. Our models better preserve reasoning capabilities than single-turn SFT baselines and can optionally enhance interpretability through thinking tags that expose the model's instructional planning.

Authors:Xinyi Lu, Aditya Mahesh, Zejia Shen, Mitchell Dudley, Larissa Sano, Xu Wang
Title: Exploring LLM-Generated Feedback for Economics Essays: How Teaching Assistants Evaluate and Envision Its Use
Abstract:
This project examines the prospect of using AI-generated feedback as suggestions to expedite and enhance human instructors' feedback provision. In particular, we focus on understanding the teaching assistants' perspectives on the quality of AI-generated feedback and how they may or may not utilize AI feedback in their own workflows. We situate our work in a foundational college Economics class, which has frequent short essay assignments. We developed an LLM-powered feedback engine that generates feedback on students' essays based on grading rubrics used by the teaching assistants (TAs). To ensure that TAs can meaningfully critique and engage with the AI feedback, we had them complete their regular grading jobs. For a randomly selected set of essays that they had graded, we used our feedback engine to generate feedback and displayed the feedback as in-text comments in a Word document. We then performed think-aloud studies with 5 TAs over 20 1-hour sessions to have them evaluate the AI feedback, contrast the AI feedback with their handwritten feedback, and share how they envision using the AI feedback if they were offered as suggestions. The study highlights the importance of providing detailed rubrics for AI to generate high-quality feedback for knowledge-intensive essays. TAs considered that using AI feedback as suggestions during their grading could expedite grading, enhance consistency, and improve overall feedback quality. We discuss the importance of decomposing the feedback generation task into steps and presenting intermediate results, in order for TAs to use the AI feedback.

Authors:Haocheng Ju, Bin Dong
Title: MIRB: Mathematical Information Retrieval Benchmark
Abstract:
Mathematical Information Retrieval (MIR) is the task of retrieving information from mathematical documents and plays a key role in various applications, including theorem search in mathematical libraries, answer retrieval on math forums, and premise selection in automated theorem proving. However, a unified benchmark for evaluating these diverse retrieval tasks has been lacking. In this paper, we introduce MIRB (Mathematical Information Retrieval Benchmark) to assess the MIR capabilities of retrieval models. MIRB includes four tasks: semantic statement retrieval, question-answer retrieval, premise retrieval, and formula retrieval, spanning a total of 12 datasets. We evaluate 13 retrieval models on this benchmark and analyze the challenges inherent to MIR. We hope that MIRB provides a comprehensive framework for evaluating MIR systems and helps advance the development of more effective retrieval models tailored to the mathematical domain.

Authors:Hua Li, Shijie Lian, Zhiyuan Li, Runmin Cong, Chongyi Li, Laurence T. Yang, Weidong Zhang, Sam Kwong
Title: Advancing Marine Research: UWSAM Framework and UIIS10K Dataset for Precise Underwater Instance Segmentation
Abstract:
With recent breakthroughs in large-scale modeling, the Segment Anything Model (SAM) has demonstrated significant potential in a variety of visual applications. However, due to the lack of underwater domain expertise, SAM and its variants face performance limitations in end-to-end underwater instance segmentation tasks, while their higher computational requirements further hinder their application in underwater scenarios. To address this challenge, we propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories. Then, we introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances. UWSAM efficiently distills knowledge from the SAM ViT-Huge image encoder into the smaller ViT-Small image encoder via the Mask GAT-based Underwater Knowledge Distillation (MG-UKD) method for effective visual representation learning. Furthermore, we design an End-to-end Underwater Prompt Generator (EUPG) for UWSAM, which automatically generates underwater prompts instead of explicitly providing foreground points or boxes as prompts, thus enabling the network to locate underwater instances accurately for efficient segmentation. Comprehensive experimental results show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets. Datasets and codes are available at https://github.com/LiamLian0727/UIIS10K.

Authors:Hua Li, Shijie Lian, Zhiyuan Li, Runmin Cong, Chongyi Li, Laurence T. Yang, Weidong Zhang, Sam Kwong
Title: Advancing Marine Research: UWSAM Framework and UIIS10K Dataset for Precise Underwater Instance Segmentation
Abstract:
With recent breakthroughs in large-scale modeling, the Segment Anything Model (SAM) has demonstrated significant potential in a variety of visual applications. However, due to the lack of underwater domain expertise, SAM and its variants face performance limitations in end-to-end underwater instance segmentation tasks, while their higher computational requirements further hinder their application in underwater scenarios. To address this challenge, we propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories. Then, we introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances. UWSAM efficiently distills knowledge from the SAM ViT-Huge image encoder into the smaller ViT-Small image encoder via the Mask GAT-based Underwater Knowledge Distillation (MG-UKD) method for effective visual representation learning. Furthermore, we design an End-to-end Underwater Prompt Generator (EUPG) for UWSAM, which automatically generates underwater prompts instead of explicitly providing foreground points or boxes as prompts, thus enabling the network to locate underwater instances accurately for efficient segmentation. Comprehensive experimental results show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets. Datasets and codes are available at https://github.com/LiamLian0727/UIIS10K.

Authors:Xin Huang, Ruibin Li, Tong Jia, Wei Zheng, Ya Wang
Title: Visual Perturbation and Adaptive Hard Negative Contrastive Learning for Compositional Reasoning in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) are essential for multimodal tasks, especially compositional reasoning (CR) tasks, which require distinguishing fine-grained semantic differences between visual and textual embeddings. However, existing methods primarily fine-tune the model by generating text-based hard negative samples, neglecting the importance of image-based negative samples, which results in insufficient training of the visual encoder and ultimately impacts the overall performance of the model. Moreover, negative samples are typically treated uniformly, without considering their difficulty levels, and the alignment of positive samples is insufficient, which leads to challenges in aligning difficult sample pairs. To address these issues, we propose Adaptive Hard Negative Perturbation Learning (AHNPL). AHNPL translates text-based hard negatives into the visual domain to generate semantically disturbed image-based negatives for training the model, thereby enhancing its overall performance. AHNPL also introduces a contrastive learning approach using a multimodal hard negative loss to improve the model's discrimination of hard negatives within each modality and a dynamic margin loss that adjusts the contrastive margin according to sample difficulty to enhance the distinction of challenging sample pairs. Experiments on three public datasets demonstrate that our method effectively boosts VLMs' performance on complex CR tasks. The source code is available at https://github.com/nynu-BDAI/AHNPL.

Authors:Andrew Caunes, Thierry Chateau, Vincent Fremont
Title: seg_3D_by_PC2D: Multi-View Projection for Domain Generalization and Adaptation in 3D Semantic Segmentation
Abstract:
3D semantic segmentation plays a pivotal role in autonomous driving and road infrastructure analysis, yet state-of-the-art 3D models are prone to severe domain shift when deployed across different datasets. We propose a novel multi-view projection framework that excels in both domain generalization (DG) and unsupervised domain adaptation (UDA). Our approach first aligns Lidar scans into coherent 3D scenes and renders them from multiple virtual camera poses to create a large-scale synthetic 2D dataset (PC2D). We then use it to train a 2D segmentation model in-domain. During inference, the model processes hundreds of views per scene; the resulting logits are back-projected to 3D with an occlusion-aware voting scheme to generate final point-wise labels. Our framework is modular and enables extensive exploration of key design parameters, such as view generation optimization (VGO), visualization modality optimization (MODO), and 2D model choice. We evaluate on the nuScenes and SemanticKITTI datasets under both the DG and UDA settings. We achieve state-of-the-art results in UDA and close to state-of-the-art in DG, with particularly large gains on large, static classes. Our code and dataset generation tools will be publicly available at https://github.com/andrewcaunes/ia4markings

Authors:Yiyun Zhou, Chang Yao, Jingyuan Chen
Title: CoLA: Collaborative Low-Rank Adaptation
Abstract:
The scaling law of Large Language Models (LLMs) reveals a power-law relationship, showing diminishing return on performance as model scale increases. While training LLMs from scratch is resource-intensive, fine-tuning a pre-trained model for specific tasks has become a practical alternative. Full fine-tuning (FFT) achieves strong performance; however, it is computationally expensive and inefficient. Parameter-efficient fine-tuning (PEFT) methods, like LoRA, have been proposed to address these challenges by freezing the pre-trained model and adding lightweight task-specific modules. LoRA, in particular, has proven effective, but its application to multi-task scenarios is limited by interference between tasks. Recent approaches, such as Mixture-of-Experts (MOE) and asymmetric LoRA, have aimed to mitigate these issues but still struggle with sample scarcity and noise interference due to their fixed structure. In response, we propose CoLA, a more flexible LoRA architecture with an efficient initialization scheme, and introduces three collaborative strategies to enhance performance by better utilizing the quantitative relationships between matrices $A$ and $B$. Our experiments demonstrate the effectiveness and robustness of CoLA, outperforming existing PEFT methods, especially in low-sample scenarios. Our data and code are fully publicly available at https://github.com/zyy-2001/CoLA.

Authors:Zeqing Wang, Shiyuan Zhang, Chengpei Tang, Keze Wang
Title: TimeCausality: Evaluating the Causal Ability in Time Dimension for Vision Language Models
Abstract:
Reasoning about temporal causality, particularly irreversible transformations of objects governed by real-world knowledge (e.g., fruit decay and human aging), is a fundamental aspect of human visual understanding. Unlike temporal perception based on simple event sequences, this form of reasoning requires a deeper comprehension of how object states change over time. Although the current powerful Vision-Language Models (VLMs) have demonstrated impressive performance on a wide range of downstream tasks, their capacity to reason about temporal causality remains underexplored. To address this gap, we introduce \textbf{TimeCausality}, a novel benchmark specifically designed to evaluate the causal reasoning ability of VLMs in the temporal dimension. Based on our TimeCausality, we find that while the current SOTA open-source VLMs have achieved performance levels comparable to closed-source models like GPT-4o on various standard visual question answering tasks, they fall significantly behind on our benchmark compared with their closed-source competitors. Furthermore, even GPT-4o exhibits a marked drop in performance on TimeCausality compared to its results on other tasks. These findings underscore the critical need to incorporate temporal causality into the evaluation and development of VLMs, and they highlight an important challenge for the open-source VLM community moving forward. Code and Data are available at \href{https://github.com/Zeqing-Wang/TimeCausality }{TimeCausality}.

Authors:Raza Imam, Rufael Marew, Mohammad Yaqub
Title: On the Robustness of Medical Vision-Language Models: Are they Truly Generalizable?
Abstract:
Medical Vision-Language Models (MVLMs) have achieved par excellence generalization in medical image analysis, yet their performance under noisy, corrupted conditions remains largely untested. Clinical imaging is inherently susceptible to acquisition artifacts and noise; however, existing evaluations predominantly assess generally clean datasets, overlooking robustness -- i.e., the model's ability to perform under real-world distortions. To address this gap, we first introduce MediMeta-C, a corruption benchmark that systematically applies several perturbations across multiple medical imaging datasets. Combined with MedMNIST-C, this establishes a comprehensive robustness evaluation framework for MVLMs. We further propose RobustMedCLIP, a visual encoder adaptation of a pretrained MVLM that incorporates few-shot tuning to enhance resilience against corruptions. Through extensive experiments, we benchmark 5 major MVLMs across 5 medical imaging modalities, revealing that existing models exhibit severe degradation under corruption and struggle with domain-modality tradeoffs. Our findings highlight the necessity of diverse training and robust adaptation strategies, demonstrating that efficient low-rank adaptation when paired with few-shot tuning, improves robustness while preserving generalization across modalities.

Authors:Naiqi Li, Yuqiu Xie, Peiyuan Liu, Tao Dai, Yong Jiang, Shu-Tao Xia
Title: Efficient Differentiable Approximation of Generalized Low-rank Regularization
Abstract:
Low-rank regularization (LRR) has been widely applied in various machine learning tasks, but the associated optimization is challenging. Directly optimizing the rank function under constraints is NP-hard in general. To overcome this difficulty, various relaxations of the rank function were studied. However, optimization of these relaxed LRRs typically depends on singular value decomposition, which is a time-consuming and nondifferentiable operator that cannot be optimized with gradient-based techniques. To address these challenges, in this paper we propose an efficient differentiable approximation of the generalized LRR. The considered LRR form subsumes many popular choices like the nuclear norm, the Schatten-$p$ norm, and various nonconvex relaxations. Our method enables LRR terms to be appended to loss functions in a plug-and-play fashion, and the GPU-friendly operations enable efficient and convenient implementation. Furthermore, convergence analysis is presented, which rigorously shows that both the bias and the variance of our rank estimator rapidly reduce with increased sample size and iteration steps. In the experimental study, the proposed method is applied to various tasks, which demonstrates its versatility and efficiency. Code is available at https://github.com/naiqili/EDLRR.

Authors:Zirui Song, Qian Jiang, Mingxuan Cui, Mingzhe Li, Lang Gao, Zeyu Zhang, Zixiang Xu, Yanbo Wang, Chenxi Wang, Guangxian Ouyang, Zhenhao Chen, Xiuying Chen
Title: Audio Jailbreak: An Open Comprehensive Benchmark for Jailbreaking Large Audio-Language Models
Abstract:
The rise of Large Audio Language Models (LAMs) brings both potential and risks, as their audio outputs may contain harmful or unethical content. However, current research lacks a systematic, quantitative evaluation of LAM safety especially against jailbreak attacks, which are challenging due to the temporal and semantic nature of speech. To bridge this gap, we introduce AJailBench, the first benchmark specifically designed to evaluate jailbreak vulnerabilities in LAMs. We begin by constructing AJailBench-Base, a dataset of 1,495 adversarial audio prompts spanning 10 policy-violating categories, converted from textual jailbreak attacks using realistic text to speech synthesis. Using this dataset, we evaluate several state-of-the-art LAMs and reveal that none exhibit consistent robustness across attacks. To further strengthen jailbreak testing and simulate more realistic attack conditions, we propose a method to generate dynamic adversarial variants. Our Audio Perturbation Toolkit (APT) applies targeted distortions across time, frequency, and amplitude domains. To preserve the original jailbreak intent, we enforce a semantic consistency constraint and employ Bayesian optimization to efficiently search for perturbations that are both subtle and highly effective. This results in AJailBench-APT, an extended dataset of optimized adversarial audio samples. Our findings demonstrate that even small, semantically preserved perturbations can significantly reduce the safety performance of leading LAMs, underscoring the need for more robust and semantically aware defense mechanisms.

Authors:Zhexin Zhang, Xian Qi Loye, Victor Shea-Jay Huang, Junxiao Yang, Qi Zhu, Shiyao Cui, Fei Mi, Lifeng Shang, Yingkang Wang, Hongning Wang, Minlie Huang
Title: How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study
Abstract:
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.

Authors:DongGeon Lee, Joonwon Jang, Jihae Jeong, Hwanjo Yu
Title: Are Vision-Language Models Safe in the Wild? A Meme-Based Benchmark Study
Abstract:
Rapid deployment of vision-language models (VLMs) magnifies safety risks, yet most evaluations rely on artificial images. This study asks: How safe are current VLMs when confronted with meme images that ordinary users share? To investigate this question, we introduce MemeSafetyBench, a 50,430-instance benchmark pairing real meme images with both harmful and benign instructions. Using a comprehensive safety taxonomy and LLM-based instruction generation, we assess multiple VLMs across single and multi-turn interactions. We investigate how real-world memes influence harmful outputs, the mitigating effects of conversational context, and the relationship between model scale and safety metrics. Our findings demonstrate that VLMs are more vulnerable to meme-based harmful prompts than to synthetic or typographic images. Memes significantly increase harmful responses and decrease refusals compared to text-only inputs. Though multi-turn interactions provide partial mitigation, elevated vulnerability persists. These results highlight the need for ecologically valid evaluations and stronger safety mechanisms. MemeSafetyBench is publicly available at https://github.com/oneonlee/Meme-Safety-Bench.

Authors:Raphael Sulzer, Liuyun Duan, Nicolas Girard, Florent Lafarge
Title: The P$^3$ dataset: Pixels, Points and Polygons for Multimodal Building Vectorization
Abstract:
We present the P$^3$ dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 centimeter. While many existing datasets primarily focus on the image modality, P$^3$ offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P$^3$ dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons .

Authors:Lu Li, Cunhang Fan, Hongyu Zhang, Jingjing Zhang, Xiaoke Yang, Jian Zhou, Zhao Lv
Title: MHANet: Multi-scale Hybrid Attention Network for Auditory Attention Detection
Abstract:
Auditory attention detection (AAD) aims to detect the target speaker in a multi-talker environment from brain signals, such as electroencephalography (EEG), which has made great progress. However, most AAD methods solely utilize attention mechanisms sequentially and overlook valuable multi-scale contextual information within EEG signals, limiting their ability to capture long-short range spatiotemporal dependencies simultaneously. To address these issues, this paper proposes a multi-scale hybrid attention network (MHANet) for AAD, which consists of the multi-scale hybrid attention (MHA) module and the spatiotemporal convolution (STC) module. Specifically, MHA combines channel attention and multi-scale temporal and global attention mechanisms. This effectively extracts multi-scale temporal patterns within EEG signals and captures long-short range spatiotemporal dependencies simultaneously. To further improve the performance of AAD, STC utilizes temporal and spatial convolutions to aggregate expressive spatiotemporal representations. Experimental results show that the proposed MHANet achieves state-of-the-art performance with fewer trainable parameters across three datasets, 3 times lower than that of the most advanced model. Code is available at: https://github.com/fchest/MHANet.

Authors:Jacob E. Kooi, Zhao Yang, Vincent François-Lavet
Title: Hadamax Encoding: Elevating Performance in Model-Free Atari
Abstract:
Neural network architectures have a large impact in machine learning. In reinforcement learning, network architectures have remained notably simple, as changes often lead to small gains in performance. This work introduces a novel encoder architecture for pixel-based model-free reinforcement learning. The Hadamax (\textbf{Hada}mard \textbf{max}-pooling) encoder achieves state-of-the-art performance by max-pooling Hadamard products between GELU-activated parallel hidden layers. Based on the recent PQN algorithm, the Hadamax encoder achieves state-of-the-art model-free performance in the Atari-57 benchmark. Specifically, without applying any algorithmic hyperparameter modifications, Hadamax-PQN achieves an 80\% performance gain over vanilla PQN and significantly surpasses Rainbow-DQN. For reproducibility, the full code is available on \href{https://github.com/Jacobkooi/Hadamax}{GitHub}.

Authors:Yuxuan Shu, Vasileios Lampos
Title: Sonnet: Spectral Operator Neural Network for Multivariable Time Series Forecasting
Abstract:
Multivariable time series forecasting methods can integrate information from exogenous variables, leading to significant prediction accuracy gains. Transformer architecture has been widely applied in various time series forecasting models due to its ability to capture long-range sequential dependencies. However, a naïve application of transformers often struggles to effectively model complex relationships among variables over time. To mitigate against this, we propose a novel architecture, namely the Spectral Operator Neural Network (Sonnet). Sonnet applies learnable wavelet transformations to the input and incorporates spectral analysis using the Koopman operator. Its predictive skill relies on the Multivariable Coherence Attention (MVCA), an operation that leverages spectral coherence to model variable dependencies. Our empirical analysis shows that Sonnet yields the best performance on $34$ out of $47$ forecasting tasks with an average mean absolute error (MAE) reduction of $1.1\%$ against the most competitive baseline (different per task). We further show that MVCA -- when put in place of the naïve attention used in various deep learning models -- can remedy its deficiencies, reducing MAE by $10.7\%$ on average in the most challenging forecasting tasks.

Authors:Daisuke Niizumi, Daiki Takeuchi, Masahiro Yasuda, Binh Thien Nguyen, Yasunori Ohishi, Noboru Harada
Title: Towards Pre-training an Effective Respiratory Audio Foundation Model
Abstract:
Recent advancements in foundation models have sparked interest in respiratory audio foundation models. However, the effectiveness of applying conventional pre-training schemes to datasets that are small-sized and lack diversity has not been sufficiently verified. This study aims to explore better pre-training practices for respiratory sounds by comparing numerous pre-trained audio models. Our investigation reveals that models pre-trained on AudioSet, a general audio dataset, are more effective than the models specifically pre-trained on respiratory sounds. Moreover, combining AudioSet and respiratory sound datasets for further pre-training enhances performance, and preserving the frequency-wise information when aggregating features is vital. Along with more insights found in the experiments, we establish a new state-of-the-art for the OPERA benchmark, contributing to advancing respiratory audio foundation models. Our code is available online at https://github.com/nttcslab/eval-audio-repr/tree/main/plugin/OPERA.

Authors:Kangan Qian, Sicong Jiang, Yang Zhong, Ziang Luo, Zilin Huang, Tianze Zhu, Kun Jiang, Mengmeng Yang, Zheng Fu, Jinyu Miao, Yining Shi, He Zhe Lim, Li Liu, Tianbao Zhou, Huang Yu, Yifei Hu, Guang Li, Guang Chen, Hao Ye, Lijun Sun, Diange Yang
Title: AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving
Abstract:
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce \textbf{AgentThink}, a pioneering unified framework that integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: \textbf{(i) Structured Data Generation}, which establishes an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; \textbf{(ii) A Two-stage Training Pipeline}, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and \textbf{(iii) Agent-style Tool-Usage Evaluation}, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate that AgentThink significantly boosts overall reasoning scores by \textbf{53.91%} and enhances answer accuracy by \textbf{33.54%}, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models. Code is available at https://github.com/curryqka/AgentThink.

Authors:Yanzhi Tian, Zeming Liu, Zhengyang Liu, Yuhang Guo
Title: Exploring In-Image Machine Translation with Real-World Background
Abstract:
In-Image Machine Translation (IIMT) aims to translate texts within images from one language to another. Previous research on IIMT was primarily conducted on simplified scenarios such as images of one-line text with black font in white backgrounds, which is far from reality and impractical for applications in the real world. To make IIMT research practically valuable, it is essential to consider a complex scenario where the text backgrounds are derived from real-world images. To facilitate research of complex scenario IIMT, we design an IIMT dataset that includes subtitle text with real-world background. However previous IIMT models perform inadequately in complex scenarios. To address the issue, we propose the DebackX model, which separates the background and text-image from the source image, performs translation on text-image directly, and fuses the translated text-image with the background, to generate the target image. Experimental results show that our model achieves improvements in both translation quality and visual effect.

Authors:Zihao Jiang, Ben Liu, Miao Peng, Wenjie Xu, Yao Xiao, Zhenyan Shan, Min Peng
Title: Towards Explainable Temporal Reasoning in Large Language Models: A Structure-Aware Generative Framework
Abstract:
While large language models (LLMs) show great potential in temporal reasoning, most existing work focuses heavily on enhancing performance, often neglecting the explainable reasoning processes underlying the results. To address this gap, we introduce a comprehensive benchmark covering a wide range of temporal granularities, designed to systematically evaluate LLMs' capabilities in explainable temporal reasoning. Furthermore, our findings reveal that LLMs struggle to deliver convincing explanations when relying solely on textual information. To address challenge, we propose GETER, a novel structure-aware generative framework that integrates Graph structures with text for Explainable TEmporal Reasoning. Specifically, we first leverage temporal knowledge graphs to develop a temporal encoder that captures structural information for the query. Subsequently, we introduce a structure-text prefix adapter to map graph structure features into the text embedding space. Finally, LLMs generate explanation text by seamlessly integrating the soft graph token with instruction-tuning prompt tokens. Experimental results indicate that GETER achieves state-of-the-art performance while also demonstrating its effectiveness as well as strong generalization capabilities. Our dataset and code are available at https://github.com/carryTatum/GETER.

Authors:Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan
Title: X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography
Abstract:
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.

Authors:Ting Huang, Zeyu Zhang, Ruicheng Zhang, Yang Zhao
Title: DC-Scene: Data-Centric Learning for 3D Scene Understanding
Abstract:
3D scene understanding plays a fundamental role in vision applications such as robotics, autonomous driving, and augmented reality. However, advancing learning-based 3D scene understanding remains challenging due to two key limitations: (1) the large scale and complexity of 3D scenes lead to higher computational costs and slower training compared to 2D counterparts; and (2) high-quality annotated 3D datasets are significantly scarcer than those available for 2D vision. These challenges underscore the need for more efficient learning paradigms. In this work, we propose DC-Scene, a data-centric framework tailored for 3D scene understanding, which emphasizes enhancing data quality and training efficiency. Specifically, we introduce a CLIP-driven dual-indicator quality (DIQ) filter, combining vision-language alignment scores with caption-loss perplexity, along with a curriculum scheduler that progressively expands the training pool from the top 25% to 75% of scene-caption pairs. This strategy filters out noisy samples and significantly reduces dependence on large-scale labeled 3D data. Extensive experiments on ScanRefer and Nr3D demonstrate that DC-Scene achieves state-of-the-art performance (86.1 CIDEr with the top-75% subset vs. 85.4 with the full dataset) while reducing training cost by approximately two-thirds, confirming that a compact set of high-quality samples can outperform exhaustive training. Code will be available at https://github.com/AIGeeksGroup/DC-Scene.

Authors:Yisi Luo, Xile Zhao, Deyu Meng
Title: Continuous Representation Methods, Theories, and Applications: An Overview and Perspectives
Abstract:
Recently, continuous representation methods emerge as novel paradigms that characterize the intrinsic structures of real-world data through function representations that map positional coordinates to their corresponding values in the continuous space. As compared with the traditional discrete framework, the continuous framework demonstrates inherent superiority for data representation and reconstruction (e.g., image restoration, novel view synthesis, and waveform inversion) by offering inherent advantages including resolution flexibility, cross-modal adaptability, inherent smoothness, and parameter efficiency. In this review, we systematically examine recent advancements in continuous representation frameworks, focusing on three aspects: (i) Continuous representation method designs such as basis function representation, statistical modeling, tensor function decomposition, and implicit neural representation; (ii) Theoretical foundations of continuous representations such as approximation error analysis, convergence property, and implicit regularization; (iii) Real-world applications of continuous representations derived from computer vision, graphics, bioinformatics, and remote sensing. Furthermore, we outline future directions and perspectives to inspire exploration and deepen insights to facilitate continuous representation methods, theories, and applications. All referenced works are summarized in our open-source repository: https://github.com/YisiLuo/Continuous-Representation-Zoo

Authors:Haotian Qin, Dongliang Chang, Yueying Gao, Bingyao Yu, Lei Chen, Zhanyu Ma
Title: Multimodal Conditional Information Bottleneck for Generalizable AI-Generated Image Detection
Abstract:
Although existing CLIP-based methods for detecting AI-generated images have achieved promising results, they are still limited by severe feature redundancy, which hinders their generalization ability. To address this issue, incorporating an information bottleneck network into the task presents a straightforward solution. However, relying solely on image-corresponding prompts results in suboptimal performance due to the inherent diversity of prompts. In this paper, we propose a multimodal conditional bottleneck network to reduce feature redundancy while enhancing the discriminative power of features extracted by CLIP, thereby improving the model's generalization ability. We begin with a semantic analysis experiment, where we observe that arbitrary text features exhibit lower cosine similarity with real image features than with fake image features in the CLIP feature space, a phenomenon we refer to as "bias". Therefore, we introduce InfoFD, a text-guided AI-generated image detection framework. InfoFD consists of two key components: the Text-Guided Conditional Information Bottleneck (TGCIB) and Dynamic Text Orthogonalization (DTO). TGCIB improves the generalizability of learned representations by conditioning on both text and class modalities. DTO dynamically updates weighted text features, preserving semantic information while leveraging the global "bias". Our model achieves exceptional generalization performance on the GenImage dataset and latest generative models. Our code is available at https://github.com/Ant0ny44/InfoFD.

Authors:Sampanna Yashwant Kahu
Title: KernelOracle: Predicting the Linux Scheduler's Next Move with Deep Learning
Abstract:
Efficient task scheduling is paramount in the Linux kernel, where the Completely Fair Scheduler (CFS) meticulously manages CPU resources to balance high utilization with interactive responsiveness. This research pioneers the use of deep learning techniques to predict the sequence of tasks selected by CFS, aiming to evaluate the feasibility of a more generalized and potentially more adaptive task scheduler for diverse workloads. Our core contributions are twofold: first, the systematic generation and curation of a novel scheduling dataset from a running Linux kernel, capturing real-world CFS behavior; and second, the development, training, and evaluation of a Long Short-Term Memory (LSTM) network designed to accurately forecast the next task to be scheduled. This paper further discusses the practical pathways and implications of integrating such a predictive model into the kernel's scheduling framework. The findings and methodologies presented herein open avenues for data-driven advancements in kernel scheduling, with the full source code provided for reproducibility and further exploration.

Authors:Jie Ma, Ning Qu, Zhitao Gao, Rui Xing, Jun Liu, Hongbin Pei, Jiang Xie, Linyun Song, Pinghui Wang, Jing Tao, Zhou Su
Title: Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs
Abstract:
Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.

Authors:Yifan Liu, Keyu Fan, Weihao Yu, Chenxin Li, Hao Lu, Yixuan Yuan
Title: MonoSplat: Generalizable 3D Gaussian Splatting from Monocular Depth Foundation Models
Abstract:
Recent advances in generalizable 3D Gaussian Splatting have demonstrated promising results in real-time high-fidelity rendering without per-scene optimization, yet existing approaches still struggle to handle unfamiliar visual content during inference on novel scenes due to limited generalizability. To address this challenge, we introduce MonoSplat, a novel framework that leverages rich visual priors from pre-trained monocular depth foundation models for robust Gaussian reconstruction. Our approach consists of two key components: a Mono-Multi Feature Adapter that transforms monocular features into multi-view representations, coupled with an Integrated Gaussian Prediction module that effectively fuses both feature types for precise Gaussian generation. Through the Adapter's lightweight attention mechanism, features are seamlessly aligned and aggregated across views while preserving valuable monocular priors, enabling the Prediction module to generate Gaussian primitives with accurate geometry and appearance. Through extensive experiments on diverse real-world datasets, we convincingly demonstrate that MonoSplat achieves superior reconstruction quality and generalization capability compared to existing methods while maintaining computational efficiency with minimal trainable parameters. Codes are available at https://github.com/CUHK-AIM-Group/MonoSplat.

Authors:Yangting Shi, Renjie He, Le Hui, Xiang Li, Jian Yang, Ming-Ming Cheng, Yimian Dai
Title: AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection
Abstract:
Omni-domain infrared small target detection (IRSTD) poses formidable challenges, as a single model must seamlessly adapt to diverse imaging systems, varying resolutions, and multiple spectral bands simultaneously. Current approaches predominantly rely on visual-only modeling paradigms that not only struggle with complex background interference and inherently scarce target features, but also exhibit limited generalization capabilities across complex omni-scene environments where significant domain shifts and appearance variations occur. In this work, we reveal a critical oversight in existing paradigms: the neglect of readily available auxiliary metadata describing imaging parameters and acquisition conditions, such as spectral bands, sensor platforms, resolution, and observation perspectives. To address this limitation, we propose the Auxiliary Metadata Driven Infrared Small Target Detector (AuxDet), a novel multi-modal framework that fundamentally reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization. Through a high-dimensional fusion module based on multi-layer perceptrons (MLPs), AuxDet dynamically integrates metadata semantics with visual features, guiding adaptive representation learning for each individual sample. Additionally, we design a lightweight prior-initialized enhancement module using 1D convolutional blocks to further refine fused features and recover fine-grained target cues. Extensive experiments on the challenging WideIRSTD-Full benchmark demonstrate that AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy in omni-domain IRSTD tasks. Code is available at https://github.com/GrokCV/AuxDet.

Authors:Yangting Shi, Yinfei Zhu, Renjie He, Le Hui, Meng Cai, Ming-Ming Cheng, Yimian Dai
Title: AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection
Abstract:
Omni-domain infrared small target detection (Omni-IRSTD) poses formidable challenges, as a single model must seamlessly adapt to diverse imaging systems, varying resolutions, and multiple spectral bands simultaneously. Current approaches predominantly rely on visual-only modeling paradigms that not only struggle with complex background interference and inherently scarce target features, but also exhibit limited generalization capabilities across complex omni-scene environments where significant domain shifts and appearance variations occur. In this work, we reveal a critical oversight in existing paradigms: the neglect of readily available auxiliary metadata describing imaging parameters and acquisition conditions, such as spectral bands, sensor platforms, resolution, and observation perspectives. To address this limitation, we propose the Auxiliary Metadata Driven Infrared Small Target Detector (AuxDet), a novel multimodal framework that is the first to incorporate metadata into the IRSTD paradigm for scene-aware optimization. Through a high-dimensional fusion module based on multi-layer perceptrons (MLPs), AuxDet dynamically integrates metadata semantics with visual features, guiding adaptive representation learning for each individual sample. Additionally, we design a lightweight prior-initialized enhancement module using 1D convolutional blocks to further refine fused features and recover fine-grained target cues. Extensive experiments on the challenging WideIRSTD-Full benchmark demonstrate that AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy in omni-domain IRSTD tasks. Code is available at https://github.com/GrokCV/AuxDet.

Authors:Qian Zhou, Xianda Guo, Jilong Wang, Chuanfu Shen, Zhongyuan Wang, Hua Zou, Qin Zou, Chao Liang, Long Chen, Gang Wu
Title: Exploring Generalized Gait Recognition: Reducing Redundancy and Noise within Indoor and Outdoor Datasets
Abstract:
Generalized gait recognition, which aims to achieve robust performance across diverse domains, remains a challenging problem due to severe domain shifts in viewpoints, appearances, and environments. While mixed-dataset training is widely used to enhance generalization, it introduces new obstacles including inter-dataset optimization conflicts and redundant or noisy samples, both of which hinder effective representation learning. To address these challenges, we propose a unified framework that systematically improves cross-domain gait recognition. First, we design a disentangled triplet loss that isolates supervision signals across datasets, mitigating gradient conflicts during optimization. Second, we introduce a targeted dataset distillation strategy that filters out the least informative 20\% of training samples based on feature redundancy and prediction uncertainty, enhancing data efficiency. Extensive experiments on CASIA-B, OU-MVLP, Gait3D, and GREW demonstrate that our method significantly improves cross-dataset recognition for both GaitBase and DeepGaitV2 backbones, without sacrificing source-domain accuracy. Code will be released at https://github.com/li1er3/Generalized_Gait.

Authors:Bo-Han Lai, Pin-Han Huang, Bo-Han Kung, Shang-Tse Chen
Title: Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss
Abstract:
Lipschitz neural networks are well-known for providing certified robustness in deep learning. In this paper, we present a novel, efficient Block Reflector Orthogonal (BRO) layer that enhances the capability of orthogonal layers on constructing more expressive Lipschitz neural architectures. In addition, by theoretically analyzing the nature of Lipschitz neural networks, we introduce a new loss function that employs an annealing mechanism to increase margin for most data points. This enables Lipschitz models to provide better certified robustness. By employing our BRO layer and loss function, we design BRONet - a simple yet effective Lipschitz neural network that achieves state-of-the-art certified robustness. Extensive experiments and empirical analysis on CIFAR-10/100, Tiny-ImageNet, and ImageNet validate that our method outperforms existing baselines. The implementation is available at https://github.com/ntuaislab/BRONet.

Authors:Yuante Li, Xu Yang, Xiao Yang, Minrui Xu, Xisen Wang, Weiqing Liu, Jiang Bian
Title: R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization
Abstract:
Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility. Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation. In this paper, we propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization. RD-Agent(Q) decomposes the quant process into two iterative stages: a Research stage that dynamically sets goal-aligned prompts, formulates hypotheses based on domain priors, and maps them to concrete tasks, and a Development stage that employs a code-generation agent, Co-STEER, to implement task-specific code, which is then executed in real-market backtests. The two stages are connected through a feedback stage that thoroughly evaluates experimental outcomes and informs subsequent iterations, with a multi-armed bandit scheduler for adaptive direction selection. Empirically, RD-Agent(Q) achieves up to 2X higher annualized returns than classical factor libraries using 70% fewer factors, and outperforms state-of-the-art deep time-series models on real markets. Its joint factor-model optimization delivers a strong balance between predictive accuracy and strategy robustness. Our code is available at: https://github.com/microsoft/RD-Agent.

Authors:Lanxiang Hu, Mingjia Huo, Yuxuan Zhang, Haoyang Yu, Eric P. Xing, Ion Stoica, Tajana Rosing, Haojian Jin, Hao Zhang
Title: lmgame-Bench: How Good are LLMs at Playing Games?
Abstract:
Playing video games requires perception, memory, and planning, exactly the faculties modern large language model (LLM) agents are expected to master. We study the major challenges in using popular video games to evaluate modern LLMs and find that directly dropping LLMs into games cannot make an effective evaluation, for three reasons -- brittle vision perception, prompt sensitivity, and potential data contamination. We introduce lmgame-Bench to turn games into reliable evaluations. lmgame-Bench features a suite of platformer, puzzle, and narrative games delivered through a unified Gym-style API and paired with lightweight perception and memory scaffolds, and is designed to stabilize prompt variance and remove contamination. Across 13 leading models, we show lmgame-Bench is challenging while still separating models well. Correlation analysis shows that every game probes a unique blend of capabilities often tested in isolation elsewhere. More interestingly, performing reinforcement learning on a single game from lmgame-Bench transfers both to unseen games and to external planning tasks. Our evaluation code is available at https://github.com/lmgame-org/GamingAgent/lmgame-bench.

Authors:Xinran Wang, Songyu Xu, Xiangxuan Shan, Yuxuan Zhang, Muxi Diao, Xueyan Duan, Yanhua Huang, Kongming Liang, Zhanyu Ma
Title: CineTechBench: A Benchmark for Cinematographic Technique Understanding and Generation
Abstract:
Cinematography is a cornerstone of film production and appreciation, shaping mood, emotion, and narrative through visual elements such as camera movement, shot composition, and lighting. Despite recent progress in multimodal large language models (MLLMs) and video generation models, the capacity of current models to grasp and reproduce cinematographic techniques remains largely uncharted, hindered by the scarcity of expert-annotated data. To bridge this gap, we present CineTechBench, a pioneering benchmark founded on precise, manual annotation by seasoned cinematography experts across key cinematography dimensions. Our benchmark covers seven essential aspects-shot scale, shot angle, composition, camera movement, lighting, color, and focal length-and includes over 600 annotated movie images and 120 movie clips with clear cinematographic techniques. For the understanding task, we design question answer pairs and annotated descriptions to assess MLLMs' ability to interpret and explain cinematographic techniques. For the generation task, we assess advanced video generation models on their capacity to reconstruct cinema-quality camera movements given conditions such as textual prompts or keyframes. We conduct a large-scale evaluation on 15+ MLLMs and 5+ video generation models. Our results offer insights into the limitations of current models and future directions for cinematography understanding and generation in automatically film production and appreciation. The code and benchmark can be accessed at https://github.com/PRIS-CV/CineTechBench.

Authors:Tong Cheng, Jie Fu, Xinpeng Ling, Huifa Li, Zhili Chen, Haifeng Qian, Junqing Gong
Title: EC-LDA : Label Distribution Inference Attack against Federated Graph Learning with Embedding Compression
Abstract:
Graph Neural Networks (GNNs) have been widely used for graph analysis. Federated Graph Learning (FGL) is an emerging learning framework to collaboratively train graph data from various clients. Although FGL allows client data to remain localized, a malicious server can still steal client private data information through uploaded gradient. In this paper, we for the first time propose label distribution attacks (LDAs) on FGL that aim to infer the label distributions of the client-side data. Firstly, we observe that the effectiveness of LDA is closely related to the variance of node embeddings in GNNs. Next, we analyze the relation between them and propose a new attack named EC-LDA, which significantly improves the attack effectiveness by compressing node embeddings. Then, extensive experiments on node classification and link prediction tasks across six widely used graph datasets show that EC-LDA outperforms the SOTA LDAs. Specifically, EC-LDA can achieve the Cos-sim as high as 1.0 under almost all cases. Finally, we explore the robustness of EC-LDA under differential privacy protection and discuss the potential effective defense methods to EC-LDA. Our code is available at https://github.com/cheng-t/EC-LDA.

Authors:Seongmin Hwang, Daeyoung Han, Moongu Jeon
Title: Multispectral Detection Transformer with Infrared-Centric Feature Fusion
Abstract:
Multispectral object detection aims to leverage complementary information from visible (RGB) and infrared (IR) modalities to enable robust performance under diverse environmental conditions. Our key insight, derived from wavelet analysis and empirical observations, is that IR images contain structurally rich high-frequency information critical for object detection, making an infrared-centric approach highly effective. To capitalize on this finding, we propose Infrared-Centric Fusion (IC-Fusion), a lightweight and modality-aware sensor fusion method that prioritizes infrared features while effectively integrating complementary RGB semantic context. IC-Fusion adopts a compact RGB backbone and designs a novel fusion module comprising a Multi-Scale Feature Distillation (MSFD) block to enhance RGB features and a three-stage fusion block with a Cross-Modal Channel Shuffle Gate (CCSG), a Cross-Modal Large Kernel Gate (CLKG), and a Channel Shuffle Projection (CSP) to facilitate effective cross-modal interaction. Experiments on the FLIR and LLVIP benchmarks demonstrate the superior effectiveness and efficiency of our IR-centric fusion strategy, further validating its benefits. Our code is available at https://github.com/smin-hwang/IC-Fusion.

Authors:Haiduo Huang, Jiangcheng Song, Yadong Zhang, Pengju Ren
Title: DeepKD: A Deeply Decoupled and Denoised Knowledge Distillation Trainer
Abstract:
Recent advances in knowledge distillation have emphasized the importance of decoupling different knowledge components. While existing methods utilize momentum mechanisms to separate task-oriented and distillation gradients, they overlook the inherent conflict between target-class and non-target-class knowledge flows. Furthermore, low-confidence dark knowledge in non-target classes introduces noisy signals that hinder effective knowledge transfer. To address these limitations, we propose DeepKD, a novel training framework that integrates dual-level decoupling with adaptive denoising. First, through theoretical analysis of gradient signal-to-noise ratio (GSNR) characteristics in task-oriented and non-task-oriented knowledge distillation, we design independent momentum updaters for each component to prevent mutual interference. We observe that the optimal momentum coefficients for task-oriented gradient (TOG), target-class gradient (TCG), and non-target-class gradient (NCG) should be positively related to their GSNR. Second, we introduce a dynamic top-k mask (DTM) mechanism that gradually increases K from a small initial value to incorporate more non-target classes as training progresses, following curriculum learning principles. The DTM jointly filters low-confidence logits from both teacher and student models, effectively purifying dark knowledge during early training. Extensive experiments on CIFAR-100, ImageNet, and MS-COCO demonstrate DeepKD's effectiveness. Our code is available at https://github.com/haiduo/DeepKD.

Authors:Muniba Noreen, Furqan Shaukat
Title: Lung Nodule-SSM: Self-Supervised Lung Nodule Detection and Classification in Thoracic CT Images
Abstract:
Lung cancer remains among the deadliest types of cancer in recent decades, and early lung nodule detection is crucial for improving patient outcomes. The limited availability of annotated medical imaging data remains a bottleneck in developing accurate computer-aided diagnosis (CAD) systems. Self-supervised learning can help leverage large amounts of unlabeled data to develop more robust CAD systems. With the recent advent of transformer-based architecture and their ability to generalize to unseen tasks, there has been an effort within the healthcare community to adapt them to various medical downstream tasks. Thus, we propose a novel "LungNodule-SSM" method, which utilizes selfsupervised learning with DINOv2 as a backbone to enhance lung nodule detection and classification without annotated data. Our methodology has two stages: firstly, the DINOv2 model is pre-trained on unlabeled CT scans to learn robust feature representations, then secondly, these features are fine-tuned using transformer-based architectures for lesionlevel detection and accurate lung nodule diagnosis. The proposed method has been evaluated on the challenging LUNA 16 dataset, consisting of 888 CT scans, and compared with SOTA methods. Our experimental results show the superiority of our proposed method with an accuracy of 98.37%, explaining its effectiveness in lung nodule detection. The source code, datasets, and pre-processed data can be accessed using the link:https://github.com/EMeRALDsNRPU/Lung-Nodule-SSM-Self-Supervised-Lung-Nodule-Detection-and-Classification/tree/main

Authors:Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O. Arik, Jiawei Han
Title: An Empirical Study on Reinforcement Learning for Reasoning-Search Interleaved LLM Agents
Abstract:
Reinforcement learning (RL) has demonstrated strong potential in training large language models (LLMs) capable of complex reasoning for real-world problem solving. More recently, RL has been leveraged to create sophisticated LLM-based search agents that adeptly combine reasoning with search engine use. While the use of RL for training search agents is promising, the optimal design of such agents remains not fully understood. In particular, key factors -- such as (1) reward formulation, (2) the choice and characteristics of the underlying LLM, and (3) the role of the search engine in the RL process -- require further investigation. In this work, we conduct comprehensive empirical studies to systematically investigate these and offer actionable insights. We highlight several key findings: format rewards are effective in improving final performance, whereas intermediate retrieval rewards have limited impact; the scale and initialization of the LLM (general-purpose vs. reasoning-specialized) significantly influence RL outcomes; and the choice of search engine plays a critical role in shaping RL training dynamics and the robustness of the trained agent during inference. These establish important guidelines for successfully building and deploying LLM-based search agents in real-world applications. Code is available at https://github.com/PeterGriffinJin/Search-R1.

Authors:Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li, Zhengqing Yuan, Wei Song, Yijun Ma, Qingkai Zeng, Xiusi Chen, Jianan Zhao, Jundong Li, Meng Jiang, Pietro Lio, Nitesh Chawla, Chuxu Zhang, Yanfang Ye
Title: Graph Foundation Models: A Comprehensive Survey
Abstract:
Graph-structured data pervades domains such as social networks, biological systems, knowledge graphs, and recommender systems. While foundation models have transformed natural language processing, vision, and multimodal learning through large-scale pretraining and generalization, extending these capabilities to graphs -- characterized by non-Euclidean structures and complex relational semantics -- poses unique challenges and opens new opportunities. To this end, Graph Foundation Models (GFMs) aim to bring scalable, general-purpose intelligence to structured data, enabling broad transfer across graph-centric tasks and domains. This survey provides a comprehensive overview of GFMs, unifying diverse efforts under a modular framework comprising three key components: backbone architectures, pretraining strategies, and adaptation mechanisms. We categorize GFMs by their generalization scope -- universal, task-specific, and domain-specific -- and review representative methods, key innovations, and theoretical insights within each category. Beyond methodology, we examine theoretical foundations including transferability and emergent capabilities, and highlight key challenges such as structural alignment, heterogeneity, scalability, and evaluation. Positioned at the intersection of graph learning and general-purpose AI, GFMs are poised to become foundational infrastructure for open-ended reasoning over structured data. This survey consolidates current progress and outlines future directions to guide research in this rapidly evolving field. Resources are available at https://github.com/Zehong-Wang/Awesome-Foundation-Models-on-Graphs.

Authors:Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, Yichao Wu
Title: StepSearch: Igniting LLMs Search Ability via Step-Wise Proximal Policy Optimization
Abstract:
Efficient multi-hop reasoning requires Large Language Models (LLMs) based agents to acquire high-value external knowledge iteratively. Previous work has explored reinforcement learning (RL) to train LLMs to perform search-based document retrieval, achieving notable improvements in QA performance, but underperform on complex, multi-hop QA resulting from the sparse rewards from global signal only. To address this gap in existing research, we introduce StepSearch, a framework for search LLMs that trained with step-wise proximal policy optimization method. It consists of richer and more detailed intermediate search rewards and token-level process supervision based on information gain and redundancy penalties to better guide each search step. We constructed a fine-grained question-answering dataset containing sub-question-level search trajectories based on open source datasets through a set of data pipeline method. On standard multi-hop QA benchmarks, it significantly outperforms global-reward baselines, achieving 11.2% and 4.2% absolute improvements for 3B and 7B models over various search with RL baselines using only 19k training data, demonstrating the effectiveness of fine-grained, stepwise supervision in optimizing deep search LLMs. Our code will be released on https://github.com/Zillwang/StepSearch.

Authors:Qihang Yu, Kairui Fu, Shengyu Zhang, Zheqi Lv, Fan Wu, Fei Wu
Title: ThinkRec: Thinking-based recommendation via LLM
Abstract:
Recent advances in large language models (LLMs) have enabled more semantic-aware recommendations through natural language generation. Existing LLM for recommendation (LLM4Rec) methods mostly operate in a System 1-like manner, relying on superficial features to match similar items based on click history, rather than reasoning through deeper behavioral logic. This often leads to superficial and erroneous recommendations. Motivated by this, we propose ThinkRec, a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system). Technically, ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces, guiding the model to form interpretable reasoning chains that consist of analyzing interaction histories, identifying user preferences, and making decisions based on target items. On top of this, we propose an instance-wise expert fusion mechanism to reduce the reasoning difficulty. By dynamically assigning weights to expert models based on users' latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization. Extensive experiments on real-world datasets demonstrate that ThinkRec significantly improves the accuracy and interpretability of recommendations. Our implementations are available in anonymous Github: https://github.com/Yu-Qi-hang/ThinkRec.

Authors:Zhiyu Shen, Jiyuan Liu, Yunhe Pang, Yanghui Rao
Title: HopWeaver: Synthesizing Authentic Multi-Hop Questions Across Text Corpora
Abstract:
Multi-Hop Question Answering (MHQA) is crucial for evaluating the model's capability to integrate information from diverse sources. However, creating extensive and high-quality MHQA datasets is challenging: (i) manual annotation is expensive, and (ii) current synthesis methods often produce simplistic questions or require extensive manual guidance. This paper introduces HopWeaver, the first automatic framework synthesizing authentic multi-hop questions from unstructured text corpora without human intervention. HopWeaver synthesizes two types of multi-hop questions (bridge and comparison) using an innovative approach that identifies complementary documents across corpora. Its coherent pipeline constructs authentic reasoning paths that integrate information across multiple documents, ensuring synthesized questions necessitate authentic multi-hop reasoning. We further present a comprehensive system for evaluating synthesized multi-hop questions. Empirical evaluations demonstrate that the synthesized questions achieve comparable or superior quality to human-annotated datasets at a lower cost. Our approach is valuable for developing MHQA datasets in specialized domains with scarce annotated resources. The code for HopWeaver is publicly available.

Authors:Zhiyu Shen, Jiyuan Liu, Yunhe Pang, Yanghui Rao
Title: HopWeaver: Cross-Document Synthesis of High-Quality and Authentic Multi-Hop Questions
Abstract:
Multi-Hop Question Answering (MHQA) is crucial for evaluating the model's capability to integrate information from diverse sources. However, creating extensive and high-quality MHQA datasets is challenging: (i) manual annotation is expensive, and (ii) current synthesis methods often produce simplistic questions or require extensive manual guidance. This paper introduces HopWeaver, the first cross-document framework synthesizing authentic multi-hop questions without human intervention. HopWeaver synthesizes bridge and comparison questions through an innovative pipeline that identifies complementary documents and constructs authentic reasoning paths to ensure true multi-hop reasoning. We further present a comprehensive system for evaluating the synthesized multi-hop questions. Empirical evaluations demonstrate that the synthesized questions achieve comparable or superior quality to human-annotated datasets at a lower cost. Our framework provides a valuable tool for the research community: it can automatically generate challenging benchmarks from any raw corpus, which opens new avenues for both evaluation and targeted training to improve the reasoning capabilities of advanced QA models, especially in domains with scarce resources.

Authors:Jeremy Qin
Title: Robust Multi-Modal Forecasting: Integrating Static and Dynamic Features
Abstract:
Time series forecasting plays a crucial role in various applications, particularly in healthcare, where accurate predictions of future health trajectories can significantly impact clinical decision-making. Ensuring transparency and explainability of the models responsible for these tasks is essential for their adoption in critical settings. Recent work has explored a top-down approach to bi-level transparency, focusing on understanding trends and properties of predicted time series using static features. In this work, we extend this framework by incorporating exogenous time series features alongside static features in a structured manner, while maintaining cohesive interpretation. Our approach leverages the insights of trajectory comprehension to introduce an encoding mechanism for exogenous time series, where they are decomposed into meaningful trends and properties, enabling the extraction of interpretable patterns. Through experiments on several synthetic datasets, we demonstrate that our approach remains predictive while preserving interpretability and robustness. This work represents a step towards developing robust, and generalized time series forecasting models. The code is available at https://github.com/jeremy-qin/TIMEVIEW

Authors:Yuhang Zhou, Jing Zhu, Shengyi Qian, Zhuokai Zhao, Xiyao Wang, Xiaoyu Liu, Ming Li, Paiheng Xu, Wei Ai, Furong Huang
Title: DISCO Balances the Scales: Adaptive Domain- and Difficulty-Aware Reinforcement Learning on Imbalanced Data
Abstract:
Large Language Models (LLMs) are increasingly aligned with human preferences through Reinforcement Learning from Human Feedback (RLHF). Among RLHF methods, Group Relative Policy Optimization (GRPO) has gained attention for its simplicity and strong performance, notably eliminating the need for a learned value function. However, GRPO implicitly assumes a balanced domain distribution and uniform semantic alignment across groups, assumptions that rarely hold in real-world datasets. When applied to multi-domain, imbalanced data, GRPO disproportionately optimizes for dominant domains, neglecting underrepresented ones and resulting in poor generalization and fairness. We propose Domain-Informed Self-Consistency Policy Optimization (DISCO), a principled extension to GRPO that addresses inter-group imbalance with two key innovations. Domain-aware reward scaling counteracts frequency bias by reweighting optimization based on domain prevalence. Difficulty-aware reward scaling leverages prompt-level self-consistency to identify and prioritize uncertain prompts that offer greater learning value. Together, these strategies promote more equitable and effective policy learning across domains. Extensive experiments across multiple LLMs and skewed training distributions show that DISCO improves generalization, outperforms existing GRPO variants by 5% on Qwen3 models, and sets new state-of-the-art results on multi-domain alignment benchmarks. Our code and data are available at https://github.com/Tonyzhou98/disco_grpo.

Authors:Chen Huang, Junkai Luo, Xinzuo Wang, Wenqiang Lei, Jiancheng Lv
Title: Can Large Language Models Understand Internet Buzzwords Through User-Generated Content
Abstract:
The massive user-generated content (UGC) available in Chinese social media is giving rise to the possibility of studying internet buzzwords. In this paper, we study if large language models (LLMs) can generate accurate definitions for these buzzwords based on UGC as examples. Our work serves a threefold contribution. First, we introduce CHEER, the first dataset of Chinese internet buzzwords, each annotated with a definition and relevant UGC. Second, we propose a novel method, called RESS, to effectively steer the comprehending process of LLMs to produce more accurate buzzword definitions, mirroring the skills of human language learning. Third, with CHEER, we benchmark the strengths and weaknesses of various off-the-shelf definition generation methods and our RESS. Our benchmark demonstrates the effectiveness of RESS while revealing crucial shared challenges: over-reliance on prior exposure, underdeveloped inferential abilities, and difficulty identifying high-quality UGC to facilitate comprehension. We believe our work lays the groundwork for future advancements in LLM-based definition generation. Our dataset and code are available at https://github.com/SCUNLP/Buzzword.

Authors:Sarfraz Ahmad, Hasan Iqbal, Momina Ahsan, Numaan Naeem, Muhammad Ahsan Riaz Khan, Arham Riaz, Muhammad Arslan Manzoor, Yuxia Wang, Preslav Nakov
Title: UrduFactCheck: An Agentic Fact-Checking Framework for Urdu with Evidence Boosting and Benchmarking
Abstract:
The rapid use of large language models (LLMs) has raised critical concerns regarding the factual reliability of their outputs, especially in low-resource languages such as Urdu. Existing automated fact-checking solutions overwhelmingly focus on English, leaving a significant gap for the 200+ million Urdu speakers worldwide. In this work, we introduce UrduFactCheck, the first comprehensive, modular fact-checking framework specifically tailored for Urdu. Our system features a dynamic, multi-strategy evidence retrieval pipeline that combines monolingual and translation-based approaches to address the scarcity of high-quality Urdu evidence. We curate and release two new hand-annotated benchmarks: UrduFactBench for claim verification and UrduFactQA for evaluating LLM factuality. Extensive experiments demonstrate that UrduFactCheck, particularly its translation-augmented variants, consistently outperforms baselines and open-source alternatives on multiple metrics. We further benchmark twelve state-of-the-art (SOTA) LLMs on factual question answering in Urdu, highlighting persistent gaps between proprietary and open-source models. UrduFactCheck's code and datasets are open-sourced and publicly available at https://github.com/mbzuai-nlp/UrduFactCheck.

Authors:Wen-Chin Huang, Erica Cooper, Tomoki Toda
Title: SHEET: A Multi-purpose Open-source Speech Human Evaluation Estimation Toolkit
Abstract:
We introduce SHEET, a multi-purpose open-source toolkit designed to accelerate subjective speech quality assessment (SSQA) research. SHEET stands for the Speech Human Evaluation Estimation Toolkit, which focuses on data-driven deep neural network-based models trained to predict human-labeled quality scores of speech samples. SHEET provides comprehensive training and evaluation scripts, multi-dataset and multi-model support, as well as pre-trained models accessible via Torch Hub and HuggingFace Spaces. To demonstrate its capabilities, we re-evaluated SSL-MOS, a speech self-supervised learning (SSL)-based SSQA model widely used in recent scientific papers, on an extensive list of speech SSL models. Experiments were conducted on two representative SSQA datasets named BVCC and NISQA, and we identified the optimal speech SSL model, whose performance surpassed the original SSL-MOS implementation and was comparable to state-of-the-art methods.

Authors:Yingming Pu, Tao Lin, Hongyu Chen
Title: PiFlow: Principle-aware Scientific Discovery with Multi-Agent Collaboration
Abstract:
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering systematic uncertainty reduction. Overcoming these limitations fundamentally requires systematic uncertainty reduction. We introduce \texttt{PiFlow}, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). In evaluations across three distinct scientific domains -- discovering nanomaterial structures, bio-molecules, and superconductor candidates with targeted properties -- our method significantly improves discovery efficiency, reflected by a 73.55\% increase in the Area Under the Curve (AUC) of property values versus exploration steps, and enhances solution quality by 94.06\% compared to a vanilla agent system. Overall, \texttt{PiFlow} serves as a Plug-and-Play method, establishing a novel paradigm shift in highly efficient automated scientific discovery, paving the way for more robust and accelerated AI-driven research. Code is publicly available at our \href{https://github.com/amair-lab/PiFlow}{GitHub}.

Authors:Yingming Pu, Tao Lin, Hongyu Chen
Title: PiFlow: Principle-aware Scientific Discovery with Multi-Agent Collaboration
Abstract:
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering the systematic reduction of uncertainty. Overcoming these limitations fundamentally requires a principled approach to exploration. We introduce PiFlow, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). In evaluations across three distinct scientific domains -- discovering nanomaterial structures, bio-molecules, and superconductor candidates with targeted properties -- our method significantly improves discovery efficiency, reflected by a 73.55\% increase in the Area Under the Curve (AUC) of property values versus exploration steps, and enhances solution quality by 94.06\% compared to a vanilla agent system. Overall, PiFlow serves as a Plug-and-Play method, establishing a novel paradigm shift in highly efficient automated scientific discovery, paving the way for more robust and accelerated AI-driven research. Code is publicly available at our \href{https://github.com/amair-lab/PiFlow}{GitHub}.

Authors:Ze Wang, Jingang Qu, Zhenyu Gao, Pascal Morin
Title: Learning-based Airflow Inertial Odometry for MAVs using Thermal Anemometers in a GPS and vision denied environment
Abstract:
This work demonstrates an airflow inertial based odometry system with multi-sensor data fusion, including thermal anemometer, IMU, ESC, and barometer. This goal is challenging because low-cost IMUs and barometers have significant bias, and anemometer measurements are very susceptible to interference from spinning propellers and ground effects. We employ a GRU-based deep neural network to estimate relative air speed from noisy and disturbed anemometer measurements, and an observer with bias model to fuse the sensor data and thus estimate the state of aerial vehicle. A complete flight data, including takeoff and landing on the ground, shows that the approach is able to decouple the downwash induced wind speed caused by propellers and the ground effect, and accurately estimate the flight speed in a wind-free indoor environment. IMU, and barometer bias are effectively estimated, which significantly reduces the position integration drift, which is only 5.7m for 203s manual random flight. The open source is available on https://github.com/SyRoCo-ISIR/Flight-Speed-Estimation-Airflow.

Authors:Ivan Smirnov, Shangding Gu
Title: RLBenchNet: The Right Network for the Right Reinforcement Learning Task
Abstract:
Reinforcement learning (RL) has seen significant advancements through the application of various neural network architectures. In this study, we systematically investigate the performance of several neural networks in RL tasks, including Long Short-Term Memory (LSTM), Multi-Layer Perceptron (MLP), Mamba/Mamba-2, Transformer-XL, Gated Transformer-XL, and Gated Recurrent Unit (GRU). Through comprehensive evaluation across continuous control, discrete decision-making, and memory-based environments, we identify architecture-specific strengths and limitations. Our results reveal that: (1) MLPs excel in fully observable continuous control tasks, providing an optimal balance of performance and efficiency; (2) recurrent architectures like LSTM and GRU offer robust performance in partially observable environments with moderate memory requirements; (3) Mamba models achieve a 4.5x higher throughput compared to LSTM and a 3.9x increase over GRU, all while maintaining comparable performance; and (4) only Transformer-XL, Gated Transformer-XL, and Mamba-2 successfully solve the most challenging memory-intensive tasks, with Mamba-2 requiring 8x less memory than Transformer-XL. These findings provide insights for researchers and practitioners, enabling more informed architecture selection based on specific task characteristics and computational constraints. Code is available at: https://github.com/SafeRL-Lab/RLBenchNet

Authors:Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S. Boning, Dina Katabi
Title: RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning
Abstract:
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.

Authors:Qingyu Song, Peiyu Liao, Wenqian Zhao, Yiwen Wang, Shoubo Hu, Hui-Ling Zhen, Ning Jiang, Mingxuan Yuan
Title: Harnessing On-Device Large Language Model: Empirical Results and Implications for AI PC
Abstract:
The increasing deployment of Large Language Models (LLMs) on edge devices, driven by model advancements and hardware improvements, offers significant privacy benefits. However, these on-device LLMs inherently face performance limitations due to reduced model capacity and necessary compression techniques. To address this, we introduce a systematic methodology -- encompassing model capability, development efficiency, and system resources -- for evaluating on-device LLMs. Our comprehensive evaluation, encompassing models from 0.5B to 14B parameters and seven post-training quantization (PTQ) methods on commodity laptops, yields several critical insights: 1) System-level metrics exhibit near-linear scaling with effective bits-per-weight (BPW). 2) A practical threshold exists around $\sim$3.5 effective BPW, larger models subjected to low-bit quantization consistently outperform smaller models utilizing higher bit-precision. 3) Quantization with low BPW incurs marginal accuracy loss but significant memory savings. 4) Determined by low-level implementation specifics power consumption on CPU, where computation-intensive operations spend more power than memory-intensive ones. These findings offer crucial insights and practical guidelines for the efficient deployment and optimized configuration of LLMs on resource-constrained edge devices. Our codebase is available at https://github.com/simmonssong/LLMOnDevice.

Authors:Alvin Heng, Harold Soh
Title: Know When to Abstain: Optimal Selective Classification with Likelihood Ratios
Abstract:
Selective classification enhances the reliability of predictive models by allowing them to abstain from making uncertain predictions. In this work, we revisit the design of optimal selection functions through the lens of the Neyman--Pearson lemma, a classical result in statistics that characterizes the optimal rejection rule as a likelihood ratio test. We show that this perspective not only unifies the behavior of several post-hoc selection baselines, but also motivates new approaches to selective classification which we propose here. A central focus of our work is the setting of covariate shift, where the input distribution at test time differs from that at training. This realistic and challenging scenario remains relatively underexplored in the context of selective classification. We evaluate our proposed methods across a range of vision and language tasks, including both supervised learning and vision-language models. Our experiments demonstrate that our Neyman--Pearson-informed methods consistently outperform existing baselines, indicating that likelihood ratio-based selection offers a robust mechanism for improving selective classification under covariate shifts. Our code is publicly available at https://github.com/clear-nus/sc-likelihood-ratios.

Authors:Jose Sosa, Danila Rukhovich, Anis Kacem, Djamila Aouada
Title: MultiMAE Meets Earth Observation: Pre-training Multi-modal Multi-task Masked Autoencoders for Earth Observation Tasks
Abstract:
Multi-modal data in Earth Observation (EO) presents a huge opportunity for improving transfer learning capabilities when pre-training deep learning models. Unlike prior work that often overlooks multi-modal EO data, recent methods have started to include it, resulting in more effective pre-training strategies. However, existing approaches commonly face challenges in effectively transferring learning to downstream tasks where the structure of available data differs from that used during pre-training. This paper addresses this limitation by exploring a more flexible multi-modal, multi-task pre-training strategy for EO data. Specifically, we adopt a Multi-modal Multi-task Masked Autoencoder (MultiMAE) that we pre-train by reconstructing diverse input modalities, including spectral, elevation, and segmentation data. The pre-trained model demonstrates robust transfer learning capabilities, outperforming state-of-the-art methods on various EO datasets for classification and segmentation tasks. Our approach exhibits significant flexibility, handling diverse input configurations without requiring modality-specific pre-trained models. Code will be available at: https://github.com/josesosajs/multimae-meets-eo.

Authors:Zhiwei Liu, Paul Thompson, Jiaqi Rong, Sophia Ananiadou
Title: ConspEmoLLM-v2: A robust and stable model to detect sentiment-transformed conspiracy theories
Abstract:
Despite the many benefits of large language models (LLMs), they can also cause harm, e.g., through automatic generation of misinformation, including conspiracy theories. Moreover, LLMs can also ''disguise'' conspiracy theories by altering characteristic textual features, e.g., by transforming their typically strong negative emotions into a more positive tone. Although several studies have proposed automated conspiracy theory detection methods, they are usually trained using human-authored text, whose features can vary from LLM-generated text. Furthermore, several conspiracy detection models, including the previously proposed ConspEmoLLM, rely heavily on the typical emotional features of human-authored conspiracy content. As such, intentionally disguised content may evade detection. To combat such issues, we firstly developed an augmented version of the ConDID conspiracy detection dataset, ConDID-v2, which supplements human-authored conspiracy tweets with versions rewritten by an LLM to reduce the negativity of their original sentiment. The quality of the rewritten tweets was verified by combining human and LLM-based assessment. We subsequently used ConDID-v2 to train ConspEmoLLM-v2, an enhanced version of ConspEmoLLM. Experimental results demonstrate that ConspEmoLLM-v2 retains or exceeds the performance of ConspEmoLLM on the original human-authored content in ConDID, and considerably outperforms both ConspEmoLLM and several other baselines when applied to sentiment-transformed tweets in ConDID-v2. The project will be available at https://github.com/lzw108/ConspEmoLLM.

Authors:Xiaoyan Bai, Ike Peng, Aditya Singh, Chenhao Tan
Title: Concept Incongruence: An Exploration of Time and Death in Role Playing
Abstract:
Consider this prompt "Draw a unicorn with two horns". Should large language models (LLMs) recognize that a unicorn has only one horn by definition and ask users for clarifications, or proceed to generate something anyway? We introduce concept incongruence to capture such phenomena where concept boundaries clash with each other, either in user prompts or in model representations, often leading to under-specified or mis-specified behaviors. In this work, we take the first step towards defining and analyzing model behavior under concept incongruence. Focusing on temporal boundaries in the Role-Play setting, we propose three behavioral metrics--abstention rate, conditional accuracy, and answer rate--to quantify model behavior under incongruence due to the role's death. We show that models fail to abstain after death and suffer from an accuracy drop compared to the Non-Role-Play setting. Through probing experiments, we identify two main causes: (i) unreliable encoding of the "death" state across different years, leading to unsatisfactory abstention behavior, and (ii) role playing causes shifts in the model's temporal representations, resulting in accuracy drops. We leverage these insights to improve consistency in the model's abstention and answer behaviors. Our findings suggest that concept incongruence leads to unexpected model behaviors and point to future directions on improving model behavior under concept incongruence.

Authors:Tuan-Nghia Bui, Huy-Son Nguyen, Cam-Van Thi Nguyen, Hoang-Quynh Le, Duc-Trong Le
Title: Personalized Diffusion Model Reshapes Cold-Start Bundle Recommendation
Abstract:
Bundle recommendation aims to recommend a set of items to each user. However, the sparser interactions between users and bundles raise a big challenge, especially in cold-start scenarios. Traditional collaborative filtering methods do not work well for this kind of problem because these models rely on interactions to update the latent embedding, which is hard to work in a cold-start setting. We propose a new approach (DisCo), which relies on a personalized Diffusion backbone, enhanced by disentangled aspects for the user's interest, to generate a bundle in distribution space for each user to tackle the cold-start challenge. During the training phase, DisCo adjusts an additional objective loss term to avoid bias, a prevalent issue while using the generative model for top-$K$ recommendation purposes. Our empirical experiments show that DisCo outperforms five comparative baselines by a large margin on three real-world datasets. Thereby, this study devises a promising framework and essential viewpoints in cold-start recommendation. Our materials for reproducibility are available at: https://github.com/bt-nghia/DisCo.

Authors:Susav Shrestha, Brad Settlemyer, Nikoli Dryden, Narasimha Reddy
Title: Polar Sparsity: High Throughput Batched LLM Inferencing with Scalable Contextual Sparsity
Abstract:
Accelerating large language model (LLM) inference is critical for real-world deployments requiring high throughput and low latency. Contextual sparsity, where each token dynamically activates only a small subset of the model parameters, shows promise but does not scale to large batch sizes due to union of active neurons quickly approaching dense computation. We introduce Polar Sparsity, highlighting a key shift in sparsity importance from MLP to Attention layers as we scale batch size and sequence length. While MLP layers become more compute-efficient under batching, their sparsity vanishes. In contrast, attention becomes increasingly more expensive at scale, while their head sparsity remains stable and batch-invariant. We develop hardware-efficient, sparsity-aware GPU kernels for selective MLP and Attention computations, delivering up to \(2.2\times\) end-to-end speedups for models like OPT, LLaMA-2 \& 3, across various batch sizes and sequence lengths without compromising accuracy. To our knowledge, this is the first work to demonstrate that contextual sparsity can scale effectively to large batch sizes, delivering substantial inference acceleration with minimal changes, making Polar Sparsity practical for large-scale, high-throughput LLM deployment systems. Our code is available at: https://github.com/susavlsh10/Polar-Sparsity.

Authors:So Won Jeong, Claire Donnat
Title: LOBSTUR: A Local Bootstrap Framework for Tuning Unsupervised Representations in Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) are increasingly used in conjunction with unsupervised learning techniques to learn powerful node representations, but their deployment is hindered by their high sensitivity to hyperparameter tuning and the absence of established methodologies for selecting the optimal models. To address these challenges, we propose LOBSTUR-GNN ({\bf Lo}cal {\bf B}oot{\bf s}trap for {\bf T}uning {\bf U}nsupervised {\bf R}epresentations in GNNs) i), a novel framework designed to adapt bootstrapping techniques for unsupervised graph representation learning. LOBSTUR-GNN tackles two main challenges: (a) adapting the bootstrap edge and feature resampling process to account for local graph dependencies in creating alternative versions of the same graph, and (b) establishing robust metrics for evaluating learned representations without ground-truth labels. Using locally bootstrapped resampling and leveraging Canonical Correlation Analysis (CCA) to assess embedding consistency, LOBSTUR provides a principled approach for hyperparameter tuning in unsupervised GNNs. We validate the effectiveness and efficiency of our proposed method through extensive experiments on established academic datasets, showing an 65.9\% improvement in the classification accuracy compared to an uninformed selection of hyperparameters. Finally, we deploy our framework on a real-world application, thereby demonstrating its validity and practical utility in various settings. \footnote{The code is available at \href{https://github.com/sowonjeong/lobstur-graph-bootstrap}{github.com/sowonjeong/lobstur-graph-bootstrap}.}

Authors:Daniya Najiha A. Kareem, Jean Lahoud, Mustansar Fiaz, Amandeep Kumar, Hisham Cholakkal
Title: Open-Set Semi-Supervised Learning for Long-Tailed Medical Datasets
Abstract:
Many practical medical imaging scenarios include categories that are under-represented but still crucial. The relevance of image recognition models to real-world applications lies in their ability to generalize to these rare classes as well as unseen classes. Real-world generalization requires taking into account the various complexities that can be encountered in the real-world. First, training data is highly imbalanced, which may lead to model exhibiting bias toward the more frequently represented classes. Moreover, real-world data may contain unseen classes that need to be identified, and model performance is affected by the data scarcity. While medical image recognition has been extensively addressed in the literature, current methods do not take into account all the intricacies in the real-world scenarios. To this end, we propose an open-set learning method for highly imbalanced medical datasets using a semi-supervised approach. Understanding the adverse impact of long-tail distribution at the inherent model characteristics, we implement a regularization strategy at the feature level complemented by a classifier normalization technique. We conduct extensive experiments on the publicly available datasets, ISIC2018, ISIC2019, and TissueMNIST with various numbers of labelled samples. Our analysis shows that addressing the impact of long-tail data in classification significantly improves the overall performance of the network in terms of closed-set and open-set accuracies on all datasets. Our code and trained models will be made publicly available at https://github.com/Daniyanaj/OpenLTR.

Authors:Juan Nathaniel, Carla Roesch, Jatan Buch, Derek DeSantis, Adam Rupe, Kara Lamb, Pierre Gentine
Title: Deep Koopman operator framework for causal discovery in nonlinear dynamical systems
Abstract:
We use a deep Koopman operator-theoretic formalism to develop a novel causal discovery algorithm, Kausal. Causal discovery aims to identify cause-effect mechanisms for better scientific understanding, explainable decision-making, and more accurate modeling. Standard statistical frameworks, such as Granger causality, lack the ability to quantify causal relationships in nonlinear dynamics due to the presence of complex feedback mechanisms, timescale mixing, and nonstationarity. This presents a challenge in studying many real-world systems, such as the Earth's climate. Meanwhile, Koopman operator methods have emerged as a promising tool for approximating nonlinear dynamics in a linear space of observables. In Kausal, we propose to leverage this powerful idea for causal analysis where optimal observables are inferred using deep learning. Causal estimates are then evaluated in a reproducing kernel Hilbert space, and defined as the distance between the marginal dynamics of the effect and the joint dynamics of the cause-effect observables. Our numerical experiments demonstrate Kausal's superior ability in discovering and characterizing causal signals compared to existing approaches of prescribed observables. Lastly, we extend our analysis to observations of El Niño-Southern Oscillation highlighting our algorithm's applicability to real-world phenomena. Our code is available at https://github.com/juannat7/kausal.

Authors:Yihong Liu, Mingyang Wang, Amir Hossein Kargaran, Felicia Körner, Ercong Nie, Barbara Plank, François Yvon, Hinrich Schütze
Title: Tracing Multilingual Factual Knowledge Acquisition in Pretraining
Abstract:
Large Language Models (LLMs) are capable of recalling multilingual factual knowledge present in their pretraining data. However, most studies evaluate only the final model, leaving the development of factual recall and crosslingual consistency throughout pretraining largely unexplored. In this work, we trace how factual recall and crosslingual consistency evolve during pretraining, focusing on OLMo-7B as a case study. We find that both accuracy and consistency improve over time for most languages. We show that this improvement is primarily driven by the fact frequency in the pretraining corpus: more frequent facts are more likely to be recalled correctly, regardless of language. Yet, some low-frequency facts in non-English languages can still be correctly recalled. Our analysis reveals that these instances largely benefit from crosslingual transfer of their English counterparts -- an effect that emerges predominantly in the early stages of pretraining. We pinpoint two distinct pathways through which multilingual factual knowledge acquisition occurs: (1) frequency-driven learning, which is dominant and language-agnostic, and (2) crosslingual transfer, which is limited in scale and typically constrained to relation types involving named entities. We release our code and data to facilitate further research at https://github.com/cisnlp/multilingual-fact-tracing.

Authors:Yihong Liu, Mingyang Wang, Amir Hossein Kargaran, Felicia Körner, Ercong Nie, Barbara Plank, François Yvon, Hinrich Schütze
Title: Tracing Multilingual Factual Knowledge Acquisition in Pretraining
Abstract:
Large Language Models (LLMs) are capable of recalling multilingual factual knowledge present in their pretraining data. However, most studies evaluate only the final model, leaving the development of factual recall and crosslingual consistency throughout pretraining largely unexplored. In this work, we trace how factual recall and crosslingual consistency evolve during pretraining, focusing on OLMo-7B as a case study. We find that both accuracy and consistency improve over time for most languages. We show that this improvement is primarily driven by the fact frequency in the pretraining corpus: more frequent facts are more likely to be recalled correctly, regardless of language. Yet, some low-frequency facts in non-English languages can still be correctly recalled. Our analysis reveals that these instances largely benefit from crosslingual transfer of their English counterparts -- an effect that emerges predominantly in the early stages of pretraining. We pinpoint two distinct pathways through which multilingual factual knowledge acquisition occurs: (1) frequency-driven learning, which is dominant and language-agnostic, and (2) crosslingual transfer, which is limited in scale and typically constrained to relation types involving named entities. We release our code and data to facilitate further research at https://github.com/cisnlp/multilingual-fact-tracing.

Authors:Kushagra Gupta, Surya Murthy, Mustafa O. Karabag, Ufuk Topcu, David Fridovich-Keil
Title: Cooperative Bargaining Games Without Utilities: Mediated Solutions from Direction Oracles
Abstract:
Cooperative bargaining games are widely used to model resource allocation and conflict resolution. Traditional solutions assume the mediator can access agents utility function values and gradients. However, there is an increasing number of settings, such as human AI interactions, where utility values may be inaccessible or incomparable due to unknown, nonaffine transformations. To model such settings, we consider that the mediator has access only to agents most preferred directions, i.e., normalized utility gradients in the decision space. To this end, we propose a cooperative bargaining algorithm where a mediator has access to only the direction oracle of each agent. We prove that unlike popular approaches such as the Nash and Kalai Smorodinsky bargaining solutions, our approach is invariant to monotonic nonaffine transformations, and that under strong convexity and smoothness assumptions, this approach enjoys global asymptotic convergence to Pareto stationary solutions. Moreover, we show that the bargaining solutions found by our algorithm also satisfy the axioms of symmetry and (under slightly stronger conditions) independence of irrelevant alternatives, which are popular in the literature. Finally, we conduct experiments in two domains, multi agent formation assignment and mediated stock portfolio allocation, which validate these theoretic results. All code for our experiments can be found at https://github.com/suryakmurthy/dibs_bargaining.

Authors:Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, Yu Cheng
Title: Scaling Reasoning, Losing Control: Evaluating Instruction Following in Large Reasoning Models
Abstract:
Instruction-following is essential for aligning large language models (LLMs) with user intent. While recent reasoning-oriented models exhibit impressive performance on complex mathematical problems, their ability to adhere to natural language instructions remains underexplored. In this work, we introduce MathIF, a dedicated benchmark for evaluating instruction-following in mathematical reasoning tasks. Our empirical analysis reveals a consistent tension between scaling up reasoning capacity and maintaining controllability, as models that reason more effectively often struggle to comply with user directives. We find that models tuned on distilled long chains-of-thought or trained with reasoning-oriented reinforcement learning often degrade in instruction adherence, especially when generation length increases. Furthermore, we show that even simple interventions can partially recover obedience, though at the cost of reasoning performance. These findings highlight a fundamental tension in current LLM training paradigms and motivate the need for more instruction-aware reasoning models. We release the code and data at https://github.com/TingchenFu/MathIF.

Authors:Ben Cohen, Emaad Khwaja, Youssef Doubli, Salahidine Lemaachi, Chris Lettieri, Charles Masson, Hugo Miccinilli, Elise Ramé, Qiqi Ren, Afshin Rostamizadeh, Jean Ogier du Terrail, Anna-Monica Toon, Kan Wang, Stephan Xie, Zongzhe Xu, Viktoriya Zhukova, David Asker, Ameet Talwalkar, Othmane Abou-Amal
Title: This Time is Different: An Observability Perspective on Time Series Foundation Models
Abstract:
We introduce Toto, a time series forecasting foundation model with 151 million parameters. Toto uses a modern decoder-only architecture coupled with architectural innovations designed to account for specific challenges found in multivariate observability time series data. Toto's pre-training corpus is a mixture of observability data, open datasets, and synthetic data, and is 4-10$\times$ larger than those of leading time series foundation models. Additionally, we introduce BOOM, a large-scale benchmark consisting of 350 million observations across 2,807 real-world time series. For both Toto and BOOM, we source observability data exclusively from Datadog's own telemetry and internal observability metrics. Extensive evaluations demonstrate that Toto achieves state-of-the-art performance on both BOOM and on established general purpose time series forecasting benchmarks. Toto's model weights, inference code, and evaluation scripts, as well as BOOM's data and evaluation code, are all available as open source under the Apache 2.0 License available at https://huggingface.co/Datadog/Toto-Open-Base-1.0 and https://github.com/DataDog/toto.

Authors:Chih-Yu Chang, Milad Azvar, Chinedum Okwudire, Raed Al Kontar
Title: $\texttt{LLINBO}$: Trustworthy LLM-in-the-Loop Bayesian Optimization
Abstract:
Bayesian optimization (BO) is a sequential decision-making tool widely used for optimizing expensive black-box functions. Recently, Large Language Models (LLMs) have shown remarkable adaptability in low-data regimes, making them promising tools for black-box optimization by leveraging contextual knowledge to propose high-quality query points. However, relying solely on LLMs as optimization agents introduces risks due to their lack of explicit surrogate modeling and calibrated uncertainty, as well as their inherently opaque internal mechanisms. This structural opacity makes it difficult to characterize or control the exploration-exploitation trade-off, ultimately undermining theoretical tractability and reliability. To address this, we propose LLINBO: LLM-in-the-Loop BO, a hybrid framework for BO that combines LLMs with statistical surrogate experts (e.g., Gaussian Processes (GP)). The core philosophy is to leverage contextual reasoning strengths of LLMs for early exploration, while relying on principled statistical models to guide efficient exploitation. Specifically, we introduce three mechanisms that enable this collaboration and establish their theoretical guarantees. We end the paper with a real-life proof-of-concept in the context of 3D printing. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/LLM-in-the-Loop-BO.

Authors:Chih-Yu Chang, Milad Azvar, Chinedum Okwudire, Raed Al Kontar
Title: LLINBO: Trustworthy LLM-in-the-Loop Bayesian Optimization
Abstract:
Bayesian optimization (BO) is a sequential decision-making tool widely used for optimizing expensive black-box functions. Recently, Large Language Models (LLMs) have shown remarkable adaptability in low-data regimes, making them promising tools for black-box optimization by leveraging contextual knowledge to propose high-quality query points. However, relying solely on LLMs as optimization agents introduces risks due to their lack of explicit surrogate modeling and calibrated uncertainty, as well as their inherently opaque internal mechanisms. This structural opacity makes it difficult to characterize or control the exploration-exploitation trade-off, ultimately undermining theoretical tractability and reliability. To address this, we propose LLINBO: LLM-in-the-Loop BO, a hybrid framework for BO that combines LLMs with statistical surrogate experts (e.g., Gaussian Processes (GP)). The core philosophy is to leverage contextual reasoning strengths of LLMs for early exploration, while relying on principled statistical models to guide efficient exploitation. Specifically, we introduce three mechanisms that enable this collaboration and establish their theoretical guarantees. We end the paper with a real-life proof-of-concept in the context of 3D printing. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/LLM-in-the-Loop-BO.

Authors:Hong Huang, Dapeng Wu
Title: Quaff: Quantized Parameter-Efficient Fine-Tuning under Outlier Spatial Stability Hypothesis
Abstract:
Large language models (LLMs) have made exciting achievements across various domains, yet their deployment on resource-constrained personal devices remains hindered by the prohibitive computational and memory demands of task-specific fine-tuning. While quantization offers a pathway to efficiency, existing methods struggle to balance performance and overhead, either incurring high computational/memory costs or failing to address activation outliers, a critical bottleneck in quantized fine-tuning. To address these challenges, we propose the Outlier Spatial Stability Hypothesis (OSSH): During fine-tuning, certain activation outlier channels retain stable spatial positions across training iterations. Building on OSSH, we propose Quaff, a Quantized parameter-efficient fine-tuning framework for LLMs, optimizing low-precision activation representations through targeted momentum scaling. Quaff dynamically suppresses outliers exclusively in invariant channels using lightweight operations, eliminating full-precision weight storage and global rescaling while reducing quantization errors. Extensive experiments across ten benchmarks validate OSSH and demonstrate Quaff's efficacy. Specifically, on the GPQA reasoning benchmark, Quaff achieves a 1.73x latency reduction and 30% memory savings over full-precision fine-tuning while improving accuracy by 0.6% on the Phi-3 model, reconciling the triple trade-off between efficiency, performance, and deployability. By enabling consumer-grade GPU fine-tuning (e.g., RTX 2080 Super) without sacrificing model utility, Quaff democratizes personalized LLM deployment. The code is available at https://github.com/Little0o0/Quaff.git.

Authors:Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan, Xinpeng Hong, Weiqing Liu, Yelong Shen, Weizhu Chen, Jiang Bian
Title: R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution
Abstract:
Recent advances in AI and ML have transformed data science, yet increasing complexity and expertise requirements continue to hinder progress. While crowdsourcing platforms alleviate some challenges, high-level data science tasks remain labor-intensive and iterative. To overcome these limitations, we introduce R&D-Agent, a dual-agent framework for iterative exploration. The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback. By enabling multiple parallel exploration traces that merge and enhance one another, R&D-Agent narrows the gap between automated solutions and expert-level performance. Evaluated on MLE-Bench, R&D-Agent emerges as the top-performing machine learning engineering agent, demonstrating its potential to accelerate innovation and improve precision across diverse data science applications. We have open-sourced R&D-Agent on GitHub: https://github.com/microsoft/RD-Agent.

Authors:Xu Yang, Xiao Yang, Shikai Fang, Yifei Zhang, Jian Wang, Bowen Xian, Qizheng Li, Jingyuan Li, Minrui Xu, Yuante Li, Haoran Pan, Yuge Zhang, Weiqing Liu, Yelong Shen, Weizhu Chen, Jiang Bian
Title: R&D-Agent: An LLM-Agent Framework Towards Autonomous Data Science
Abstract:
Recent advances in AI and ML have transformed data science, yet increasing complexity and expertise requirements continue to hinder progress. Although crowd-sourcing platforms alleviate some challenges, high-level machine learning engineering (MLE) tasks remain labor-intensive and iterative. We introduce R&D-Agent, a comprehensive, decoupled, and extensible framework that formalizes the MLE process. R&D-Agent defines the MLE workflow into two phases and six components, turning agent design for MLE from ad-hoc craftsmanship into a principled, testable process. Although several existing agents report promising gains on their chosen components, they can mostly be summarized as a partial optimization from our framework's simple baseline. Inspired by human experts, we designed efficient and effective agents within this framework that achieve state-of-the-art performance. Evaluated on MLE-Bench, the agent built on R&D-Agent ranks as the top-performing machine learning engineering agent, achieving 35.1% any medal rate, demonstrating the ability of the framework to speed up innovation and improve accuracy across a wide range of data science applications. We have open-sourced R&D-Agent on GitHub: https://github.com/microsoft/RD-Agent.

Authors:Wei Hua, Chenlin Zhou, Jibin Wu, Yansong Chua, Yangyang Shu
Title: MSVIT: Improving Spiking Vision Transformer Using Multi-scale Attention Fusion
Abstract:
The combination of Spiking Neural Networks (SNNs) with Vision Transformer architectures has garnered significant attention due to their potential for energy-efficient and high-performance computing paradigms. However, a substantial performance gap still exists between SNN-based and ANN-based transformer architectures. While existing methods propose spiking self-attention mechanisms that are successfully combined with SNNs, the overall architectures proposed by these methods suffer from a bottleneck in effectively extracting features from different image scales. In this paper, we address this issue and propose MSVIT. This novel spike-driven Transformer architecture firstly uses multi-scale spiking attention (MSSA) to enhance the capabilities of spiking attention blocks. We validate our approach across various main datasets. The experimental results show that MSVIT outperforms existing SNN-based models, positioning itself as a state-of-the-art solution among SNN-transformer architectures. The codes are available at https://github.com/Nanhu-AI-Lab/MSViT.

Authors:Xigui Li, Yuanye Zhou, Feiyang Xiao, Xin Guo, Chen Jiang, Tan Pan, Xingmeng Zhang, Cenyu Liu, Zeyun Miao, Jianchao Ge, Xiansheng Wang, Qimeng Wang, Yichi Zhang, Wenbo Zhang, Fengping Zhu, Limei Han, Yuan Qi, Chensen Lin, Yuan Cheng
Title: Aneumo: A Large-Scale Multimodal Aneurysm Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks
Abstract:
Intracranial aneurysms (IAs) are serious cerebrovascular lesions found in approximately 5\% of the general population. Their rupture may lead to high mortality. Current methods for assessing IA risk focus on morphological and patient-specific factors, but the hemodynamic influences on IA development and rupture remain unclear. While accurate for hemodynamic studies, conventional computational fluid dynamics (CFD) methods are computationally intensive, hindering their deployment in large-scale or real-time clinical applications. To address this challenge, we curated a large-scale, high-fidelity aneurysm CFD dataset to facilitate the development of efficient machine learning algorithms for such applications. Based on 427 real aneurysm geometries, we synthesized 10,660 3D shapes via controlled deformation to simulate aneurysm evolution. The authenticity of these synthetic shapes was confirmed by neurosurgeons. CFD computations were performed on each shape under eight steady-state mass flow conditions, generating a total of 85,280 blood flow dynamics data covering key parameters. Furthermore, the dataset includes segmentation masks, which can support tasks that use images, point clouds or other multimodal data as input. Additionally, we introduced a benchmark for estimating flow parameters to assess current modeling methods. This dataset aims to advance aneurysm research and promote data-driven approaches in biofluids, biomedical engineering, and clinical risk assessment. The code and dataset are available at: https://github.com/Xigui-Li/Aneumo.

Authors:Tuan-Vinh La, Minh-Hieu Nguyen, Minh-Son Dao
Title: KGAlign: Joint Semantic-Structural Knowledge Encoding for Multimodal Fake News Detection
Abstract:
Fake news detection remains a challenging problem due to the complex interplay between textual misinformation, manipulated images, and external knowledge reasoning. While existing approaches have achieved notable results in verifying veracity and cross-modal consistency, two key challenges persist: (1) Existing methods often consider only the global image context while neglecting local object-level details, and (2) they fail to incorporate external knowledge and entity relationships for deeper semantic understanding. To address these challenges, we propose a novel multi-modal fake news detection framework that integrates visual, textual, and knowledge-based representations. Our approach leverages bottom-up attention to capture fine-grained object details, CLIP for global image semantics, and RoBERTa for context-aware text encoding. We further enhance knowledge utilization by retrieving and adaptively selecting relevant entities from a knowledge graph. The fused multi-modal features are processed through a Transformer-based classifier to predict news veracity. Experimental results demonstrate that our model outperforms recent approaches, showcasing the effectiveness of neighbor selection mechanism and multi-modal fusion for fake news detection. Our proposal introduces a new paradigm: knowledge-grounded multimodal reasoning. By integrating explicit entity-level selection and NLI-guided filtering, we shift fake news detection from feature fusion to semantically grounded verification. For reproducibility and further research, the source code is publicly at \href{https://github.com/latuanvinh1998/KGAlign}{github.com/latuanvinh1998/KGAlign}.

Authors:Xuan Shen, Weize Ma, Yufa Zhou, Enhao Tang, Yanyue Xie, Zhengang Li, Yifan Gong, Quanyi Wang, Henghui Ding, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jun Lin, Jiuxiang Gu
Title: FastCar: Cache Attentive Replay for Fast Auto-Regressive Video Generation on the Edge
Abstract:
Auto-regressive (AR) models, initially successful in language generation, have recently shown promise in visual generation tasks due to their superior sampling efficiency. Unlike image generation, video generation requires a substantially larger number of tokens to produce coherent temporal frames, resulting in significant overhead during the decoding phase. Our key observations are: (i) MLP modules in the decode phase dominate the inference latency, and (ii) there exists high temporal redundancy in MLP outputs of adjacent frames. In this paper, we propose the \textbf{FastCar} framework to accelerate the decode phase for the AR video generation by exploring the temporal redundancy. The Temporal Attention Score (TAS) is proposed to determine whether to apply the replay strategy (\textit{i.e.}, reusing cached MLP outputs from the previous frame to reduce redundant computations) with detailed theoretical analysis and justification. Also, we develop a hardware accelerator on FPGA with Dynamic Resource Scheduling (DRS) based on TAS to enable better resource utilization and faster inference. Experimental results demonstrate the effectiveness of our method, which outperforms traditional sparse attention approaches with more than 2.1x decoding speedup and higher energy efficiency on the edge. Furthermore, by combining FastCar and sparse attention, FastCar can boost the performance of sparse attention with alleviated drifting, demonstrating our unique advantages for high-resolution and long-duration video generation. Code: https://github.com/shawnricecake/fast-car

Authors:Xuan Shen, Chenxia Han, Yufa Zhou, Yanyue Xie, Yifan Gong, Quanyi Wang, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jiuxiang Gu
Title: DraftAttention: Fast Video Diffusion via Low-Resolution Attention Guidance
Abstract:
Diffusion transformer-based video generation models (DiTs) have recently attracted widespread attention for their excellent generation quality. However, their computational cost remains a major bottleneck-attention alone accounts for over 80% of total latency, and generating just 8 seconds of 720p video takes tens of minutes-posing serious challenges to practical application and scalability. To address this, we propose the DraftAttention, a training-free framework for the acceleration of video diffusion transformers with dynamic sparse attention on GPUs. We apply down-sampling to each feature map across frames in the compressed latent space, enabling a higher-level receptive field over the latent composed of hundreds of thousands of tokens. The low-resolution draft attention map, derived from draft query and key, exposes redundancy both spatially within each feature map and temporally across frames. We reorder the query, key, and value based on the draft attention map to guide the sparse attention computation in full resolution, and subsequently restore their original order after the attention computation. This reordering enables structured sparsity that aligns with hardware-optimized execution. Our theoretical analysis demonstrates that the low-resolution draft attention closely approximates the full attention, providing reliable guidance for constructing accurate sparse attention. Experimental results show that our method outperforms existing sparse attention approaches in video generation quality and achieves up to 1.75x end-to-end speedup on GPUs. Code: https://github.com/shawnricecake/draft-attention

Authors:Xiaojie Gu, Guangxu Chen, Jungang Li, Jia-Chen Gu, Xuming Hu, Kai Zhang
Title: UltraEdit: Training-, Subject-, and Memory-Free Lifelong Editing in Large Language Models
Abstract:
Lifelong learning enables large language models (LLMs) to adapt to evolving information by continually updating their internal knowledge. An ideal system should support efficient, wide-ranging updates while preserving existing capabilities and ensuring reliable deployment. Model editing stands out as a promising solution for this goal, offering a focused and efficient way to revise a model's internal knowledge. Although recent paradigms have made notable progress, they often struggle to meet the demands of practical lifelong adaptation at scale. To bridge this gap, we propose ULTRAEDIT-a fundamentally new editing solution that is training-, subject- and memory-free, making it particularly well-suited for ultra-scalable, real-world lifelong model editing. ULTRAEDIT performs editing through a self-contained process that relies solely on lightweight linear algebra operations to compute parameter shifts, enabling fast and consistent parameter modifications with minimal overhead. To improve scalability in lifelong settings, ULTRAEDIT employs a lifelong normalization strategy that continuously updates feature statistics across turns, allowing it to adapt to distributional shifts and maintain consistency over time. ULTRAEDIT achieves editing speeds over 7x faster than the previous state-of-the-art method-which was also the fastest known approach-while consuming less than 1/3 the VRAM, making it the only method currently capable of editing a 7B LLM on a 24GB consumer-grade GPU. Furthermore, we construct ULTRAEDITBENCH-the largest dataset in the field to date, with over 2M editing pairs-and demonstrate that our method supports up to 1M edits while maintaining high accuracy. Comprehensive experiments on four datasets and six models show that ULTRAEDIT consistently achieves superior performance across diverse model editing scenarios. Our code is available at: https://github.com/XiaojieGu/UltraEdit.

Authors:Xiaojie Gu, Ziying Huang, Jia-Chen Gu, Kai Zhang
Title: UltraEdit: Training-, Subject-, and Memory-Free Lifelong Editing in Language Models
Abstract:
Lifelong learning enables large language models (LLMs) to adapt to evolving information by continually updating their internal knowledge. An ideal system should support efficient, wide-ranging updates while preserving existing capabilities and ensuring reliable deployment. Model editing stands out as a promising solution for this goal, offering a focused and efficient way to revise a model's internal knowledge. Although recent paradigms have made notable progress, they often struggle to meet the demands of practical lifelong adaptation at scale. To bridge this gap, we propose UltraEdit, a training-, subject-, and memory-free approach that is well-suited for ultra-scalable, real-world lifelong model editing. UltraEdit fundamentally differs from traditional paradigms by computing parameter shifts in one step using only a hidden state and its gradient, making the approach simple yet efficient. To improve scalability in lifelong settings, UltraEdit employs a lifelong normalization strategy that continuously updates feature statistics across turns, allowing it to adapt to distributional shifts and maintain consistency over time. UltraEdit achieves editing speeds over 7x faster than the previous state-of-the-art method, which was also the fastest known approach, while using less than 1/4 the VRAM. This makes it the only method currently capable of editing a 7B LLM on a 24GB consumer-grade GPU. Furthermore, we construct UltraEditBench, the largest dataset in the field to date with over 2M editing pairs, and demonstrate that our method supports up to 2M edits while maintaining high accuracy. Comprehensive experiments on five datasets and six models show that UltraEdit consistently achieves superior performance across diverse model editing scenarios, taking a further step towards safe and scalable lifelong learning. Our code is available at: https://github.com/XiaojieGu/UltraEdit

Authors:Ruichuan An, Sihan Yang, Renrui Zhang, Zijun Shen, Ming Lu, Gaole Dai, Hao Liang, Ziyu Guo, Shilin Yan, Yulin Luo, Bocheng Zou, Chaoqun Yang, Wentao Zhang
Title: UniCTokens: Boosting Personalized Understanding and Generation via Unified Concept Tokens
Abstract:
Personalized models have demonstrated remarkable success in understanding and generating concepts provided by users. However, existing methods use separate concept tokens for understanding and generation, treating these tasks in isolation. This may result in limitations for generating images with complex prompts. For example, given the concept $\langle bo\rangle$, generating "$\langle bo\rangle$ wearing its hat" without additional textual descriptions of its hat. We call this kind of generation personalized knowledge-driven generation. To address the limitation, we present UniCTokens, a novel framework that effectively integrates personalized information into a unified vision language model (VLM) for understanding and generation. UniCTokens trains a set of unified concept tokens to leverage complementary semantics, boosting two personalized tasks. Moreover, we propose a progressive training strategy with three stages: understanding warm-up, bootstrapping generation from understanding, and deepening understanding from generation to enhance mutual benefits between both tasks. To quantitatively evaluate the unified VLM personalization, we present UnifyBench, the first benchmark for assessing concept understanding, concept generation, and knowledge-driven generation. Experimental results on UnifyBench indicate that UniCTokens shows competitive performance compared to leading methods in concept understanding, concept generation, and achieving state-of-the-art results in personalized knowledge-driven generation. Our research demonstrates that enhanced understanding improves generation, and the generation process can yield valuable insights into understanding. Our code and dataset will be released at: \href{https://github.com/arctanxarc/UniCTokens}{https://github.com/arctanxarc/UniCTokens}.

Authors:Roberto L. Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan, Saleh Ashkboos, Dan Alistarh
Title: Quartet: Native FP4 Training Can Be Optimal for Large Language Models
Abstract:
Training large language models (LLMs) models directly in low-precision offers a way to address computational costs by improving both throughput and energy efficiency. For those purposes, NVIDIA's recent Blackwell architecture facilitates very low-precision operations using FP4 variants. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we investigate hardware-supported FP4 training and introduce a new approach for accurate, end-to-end FP4 training with all the major computations (i.e., linear layers) in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across bit-widths and training setups. Guided by this investigation, we design an "optimal" technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for Blackwell, demonstrating that fully FP4-based training is a competitive alternative to FP16 half-precision and to FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.

Authors:Yilin Ye, Junchao Huang, Xingchen Zeng, Jiazhi Xia, Wei Zeng
Title: AKRMap: Adaptive Kernel Regression for Trustworthy Visualization of Cross-Modal Embeddings
Abstract:
Cross-modal embeddings form the foundation for multi-modal models. However, visualization methods for interpreting cross-modal embeddings have been primarily confined to traditional dimensionality reduction (DR) techniques like PCA and t-SNE. These DR methods primarily focus on feature distributions within a single modality, whilst failing to incorporate metrics (e.g., CLIPScore) across multiple modalities. This paper introduces AKRMap, a new DR technique designed to visualize cross-modal embeddings metric with enhanced accuracy by learning kernel regression of the metric landscape in the projection space. Specifically, AKRMap constructs a supervised projection network guided by a post-projection kernel regression loss, and employs adaptive generalized kernels that can be jointly optimized with the projection. This approach enables AKRMap to efficiently generate visualizations that capture complex metric distributions, while also supporting interactive features such as zoom and overlay for deeper exploration. Quantitative experiments demonstrate that AKRMap outperforms existing DR methods in generating more accurate and trustworthy visualizations. We further showcase the effectiveness of AKRMap in visualizing and comparing cross-modal embeddings for text-to-image models. Code and demo are available at https://github.com/yilinye/AKRMap.

Authors:Zikai Liao, Yi Ouyang, Yi-Lun Lee, Chen-Ping Yu, Yi-Hsuan Tsai, Zhaozheng Yin
Title: Beyond Words: Multimodal LLM Knows When to Speak
Abstract:
While large language model (LLM)-based chatbots have demonstrated strong capabilities in generating coherent and contextually relevant responses, they often struggle with understanding when to speak, particularly in delivering brief, timely reactions during ongoing conversations. This limitation arises largely from their reliance on text input, lacking the rich contextual cues in real-world human dialogue. In this work, we focus on real-time prediction of response types, with an emphasis on short, reactive utterances that depend on subtle, multimodal signals across vision, audio, and text. To support this, we introduce a new multimodal dataset constructed from real-world conversational videos, containing temporally aligned visual, auditory, and textual streams. This dataset enables fine-grained modeling of response timing in dyadic interactions. Building on this dataset, we propose MM-When2Speak, a multimodal LLM-based model that adaptively integrates visual, auditory, and textual context to predict when a response should occur, and what type of response is appropriate. Experiments show that MM-When2Speak significantly outperforms state-of-the-art unimodal and LLM-based baselines, achieving up to a 4x improvement in response timing accuracy over leading commercial LLMs. These results underscore the importance of multimodal inputs for producing timely, natural, and engaging conversational AI.

Authors:Tiantian Feng, Jihwan Lee, Anfeng Xu, Yoonjeong Lee, Thanathai Lertpetchpun, Xuan Shi, Helin Wang, Thomas Thebaud, Laureano Moro-Velazquez, Dani Byrd, Najim Dehak, Shrikanth Narayanan
Title: Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits
Abstract:
We introduce Vox-Profile, a comprehensive benchmark to characterize rich speaker and speech traits using speech foundation models. Unlike existing works that focus on a single dimension of speaker traits, Vox-Profile provides holistic and multi-dimensional profiles that reflect both static speaker traits (e.g., age, sex, accent) and dynamic speech properties (e.g., emotion, speech flow). This benchmark is grounded in speech science and linguistics, developed with domain experts to accurately index speaker and speech characteristics. We report benchmark experiments using over 15 publicly available speech datasets and several widely used speech foundation models that target various static and dynamic speaker and speech properties. In addition to benchmark experiments, we showcase several downstream applications supported by Vox-Profile. First, we show that Vox-Profile can augment existing speech recognition datasets to analyze ASR performance variability. Vox-Profile is also used as a tool to evaluate the performance of speech generation systems. Finally, we assess the quality of our automated profiles through comparison with human evaluation and show convergent validity. Vox-Profile is publicly available at: https://github.com/tiantiaf0627/vox-profile-release.

Authors:Anna C. Doris, Md Ferdous Alam, Amin Heyrani Nobari, Faez Ahmed
Title: CAD-Coder: An Open-Source Vision-Language Model for Computer-Aided Design Code Generation
Abstract:
Efficient creation of accurate and editable 3D CAD models is critical in engineering design, significantly impacting cost and time-to-market in product innovation. Current manual workflows remain highly time-consuming and demand extensive user expertise. While recent developments in AI-driven CAD generation show promise, existing models are limited by incomplete representations of CAD operations, inability to generalize to real-world images, and low output accuracy. This paper introduces CAD-Coder, an open-source Vision-Language Model (VLM) explicitly fine-tuned to generate editable CAD code (CadQuery Python) directly from visual input. Leveraging a novel dataset that we created--GenCAD-Code, consisting of over 163k CAD-model image and code pairs--CAD-Coder outperforms state-of-the-art VLM baselines such as GPT-4.5 and Qwen2.5-VL-72B, achieving a 100% valid syntax rate and the highest accuracy in 3D solid similarity. Notably, our VLM demonstrates some signs of generalizability, successfully generating CAD code from real-world images and executing CAD operations unseen during fine-tuning. The performance and adaptability of CAD-Coder highlights the potential of VLMs fine-tuned on code to streamline CAD workflows for engineers and designers. CAD-Coder is publicly available at: https://github.com/anniedoris/CAD-Coder.

Authors:Yu Ying Chiu, Zhilin Wang, Sharan Maiya, Yejin Choi, Kyle Fish, Sydney Levine, Evan Hubinger
Title: Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Abstract:
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.

Authors:Fnu Mohbat, Mohammed J Zaki
Title: KERL: Knowledge-Enhanced Personalized Recipe Recommendation using Large Language Models
Abstract:
Recent advances in large language models (LLMs) and the abundance of food data have resulted in studies to improve food understanding using LLMs. Despite several recommendation systems utilizing LLMs and Knowledge Graphs (KGs), there has been limited research on integrating food related KGs with LLMs. We introduce KERL, a unified system that leverages food KGs and LLMs to provide personalized food recommendations and generates recipes with associated micro-nutritional information. Given a natural language question, KERL extracts entities, retrieves subgraphs from the KG, which are then fed into the LLM as context to select the recipes that satisfy the constraints. Next, our system generates the cooking steps and nutritional information for each recipe. To evaluate our approach, we also develop a benchmark dataset by curating recipe related questions, combined with constraints and personal preferences. Through extensive experiments, we show that our proposed KG-augmented LLM significantly outperforms existing approaches, offering a complete and coherent solution for food recommendation, recipe generation, and nutritional analysis. Our code and benchmark datasets are publicly available at https://github.com/mohbattharani/KERL.

Authors:Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen Lin, Radha Poovendran
Title: TinyV: Reducing False Negatives in Verification Improves RL for LLM Reasoning
Abstract:
Reinforcement Learning (RL) has become a powerful tool for enhancing the reasoning abilities of large language models (LLMs) by optimizing their policies with reward signals. Yet, RL's success relies on the reliability of rewards, which are provided by verifiers. In this paper, we expose and analyze a widespread problem--false negatives--where verifiers wrongly reject correct model outputs. Our in-depth study of the Big-Math-RL-Verified dataset reveals that over 38% of model-generated responses suffer from false negatives, where the verifier fails to recognize correct answers. We show, both empirically and theoretically, that these false negatives severely impair RL training by depriving the model of informative gradient signals and slowing convergence. To mitigate this, we propose tinyV, a lightweight LLM-based verifier that augments existing rule-based methods, which dynamically identifies potential false negatives and recovers valid responses to produce more accurate reward estimates. Across multiple math-reasoning benchmarks, integrating TinyV boosts pass rates by up to 10% and accelerates convergence relative to the baseline. Our findings highlight the critical importance of addressing verifier false negatives and offer a practical approach to improve RL-based fine-tuning of LLMs. Our code is available at https://github.com/uw-nsl/TinyV.

Authors:Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo, Ke Wang, Alex Aiken
Title: SATBench: Benchmarking LLMs' Logical Reasoning via Automated Puzzle Generation from SAT Formulas
Abstract:
We introduce SATBench, a benchmark for evaluating the logical reasoning capabilities of large language models (LLMs) through logical puzzles derived from Boolean satisfiability (SAT) problems. Unlike prior work that focuses on inference rule-based reasoning, which often involves deducing conclusions from a set of premises, our approach leverages the search-based nature of SAT problems, where the objective is to find a solution that fulfills a specified set of logical constraints. Each instance in SATBench is generated from a SAT formula, then translated into a puzzle using LLMs. The generation process is fully automated and allows for adjustable difficulty by varying the number of clauses. All 2100 puzzles are validated through both LLM-based and solver-based consistency checks, with human validation on a subset. Experimental results show that even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to the random baseline of 50%. Our error analysis reveals systematic failures such as satisfiability bias, context inconsistency, and condition omission, highlighting limitations of current LLMs in search-based logical reasoning. Our code and data are publicly available at https://github.com/Anjiang-Wei/SATBench

Authors:Maksim Zhdanov, Vladislav Kurenkov
Title: Electrostatics from Laplacian Eigenbasis for Neural Network Interatomic Potentials
Abstract:
Recent advances in neural network interatomic potentials have emerged as a promising research direction. However, popular deep learning models often lack auxiliary constraints grounded in physical laws, which could accelerate training and improve fidelity through physics-based regularization. In this work, we introduce $Φ$-Module, a universal plugin module that enforces Poisson's equation within the message-passing framework to learn electrostatic interactions in a self-supervised manner. Specifically, each atom-wise representation is encouraged to satisfy a discretized Poisson's equation, making it possible to acquire a potential $\boldsymbolϕ$ and a corresponding charge density $\boldsymbolρ$ linked to the learnable Laplacian eigenbasis coefficients of a given molecular graph. We then derive an electrostatic energy term, crucial for improved total energy predictions. This approach integrates seamlessly into any existing neural potential with insignificant computational overhead. Experiments on the OE62 and MD22 benchmarks confirm that models combined with $Φ$-Module achieve robust improvements over baseline counterparts. For OE62 error reduction ranges from 4.5\% to 17.8\%, and for MD22, baseline equipped with $Φ$-Module achieves best results on 5 out of 14 cases. Our results underscore how embedding a first-principles constraint in neural interatomic potentials can significantly improve performance while remaining hyperparameter-friendly, memory-efficient and lightweight in training. Code will be available at \href{https://github.com/dunnolab/phi-module}{dunnolab/phi-module}.

Authors:Haoran Zhao, Yuchen Yan, Yongliang Shen, Haolei Xu, Wenqi Zhang, Kaitao Song, Jian Shao, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: Let LLMs Break Free from Overthinking via Self-Braking Tuning
Abstract:
Large reasoning models (LRMs), such as OpenAI o1 and DeepSeek-R1, have significantly enhanced their reasoning capabilities by generating longer chains of thought, demonstrating outstanding performance across a variety of tasks. However, this performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process, leading to high computational overhead and exacerbating the issue of overthinking. Although numerous existing approaches aim to address the problem of overthinking, they often rely on external interventions. In this paper, we propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process, thus eliminating the reliance on external control mechanisms. We construct a set of overthinking identification metrics based on standard answers and design a systematic method to detect redundant reasoning. This method accurately identifies unnecessary steps within the reasoning trajectory and generates training signals for learning self-regulation behaviors. Building on this foundation, we develop a complete strategy for constructing data with adaptive reasoning lengths and introduce an innovative braking prompt mechanism that enables the model to naturally learn when to terminate reasoning at an appropriate point. Experiments across mathematical benchmarks (AIME, AMC, MATH500, GSM8K) demonstrate that our method reduces token consumption by up to 60% while maintaining comparable accuracy to unconstrained models.

Authors:Guangzhi Xiong, Eric Xie, Corey Williams, Myles Kim, Amir Hassan Shariatmadari, Sikun Guo, Stefan Bekiranov, Aidong Zhang
Title: Toward Reliable Scientific Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models
Abstract:
Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful scientific hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.

Authors:Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Mingzheng Xu, Tianhao Cheng, Yixuan Wang, Zheng Chu, Shijie Xuyang, Zhiyuan Ma, YuanTao Fan, Wanxiang Che
Title: Success is in the Details: Evaluate and Enhance Details Sensitivity of Code LLMs through Counterfactuals
Abstract:
Code Sensitivity refers to the ability of Code LLMs to recognize and respond to details changes in problem descriptions. While current code benchmarks and instruction data focus on difficulty and diversity, sensitivity is overlooked. We first introduce the CTF-Code benchmark, constructed using counterfactual perturbations, minimizing input changes while maximizing output changes. The evaluation shows that many LLMs have a more than 10\% performance drop compared to the original problems. To fully utilize sensitivity, CTF-Instruct, an incremental instruction fine-tuning framework, extends on existing data and uses a selection mechanism to meet the three dimensions of difficulty, diversity, and sensitivity. Experiments show that LLMs fine-tuned with CTF-Instruct data achieve over a 2\% improvement on CTF-Code, and more than a 10\% performance boost on LiveCodeBench, validating the feasibility of enhancing LLMs' sensitivity to improve performance.

Authors:Isabella Degen, Zahraa S Abdallah, Henry W J Reeve, Kate Robson Brown
Title: CSTS: A Benchmark for the Discovery of Correlation Structures in Time Series Clustering
Abstract:
Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.

Authors:Lei Li, Xiao Zhou, Zheng Liu
Title: R2MED: A Benchmark for Reasoning-Driven Medical Retrieval
Abstract:
Current medical retrieval benchmarks primarily emphasize lexical or shallow semantic similarity, overlooking the reasoning-intensive demands that are central to clinical decision-making. In practice, physicians often retrieve authoritative medical evidence to support diagnostic hypotheses. Such evidence typically aligns with an inferred diagnosis rather than the surface form of a patient's symptoms, leading to low lexical or semantic overlap between queries and relevant documents. To address this gap, we introduce R2MED, the first benchmark explicitly designed for reasoning-driven medical retrieval. It comprises 876 queries spanning three tasks: Q&A reference retrieval, clinical evidence retrieval, and clinical case retrieval. These tasks are drawn from five representative medical scenarios and twelve body systems, capturing the complexity and diversity of real-world medical information needs. We evaluate 15 widely-used retrieval systems on R2MED and find that even the best model achieves only 31.4 nDCG@10, demonstrating the benchmark's difficulty. Classical re-ranking and generation-augmented retrieval methods offer only modest improvements. Although large reasoning models improve performance via intermediate inference generation, the best results still peak at 41.4 nDCG@10. These findings underscore a substantial gap between current retrieval techniques and the reasoning demands of real clinical tasks. We release R2MED as a challenging benchmark to foster the development of next-generation medical retrieval systems with enhanced reasoning capabilities. Data and code are available at https://github.com/R2MED/R2MED

Authors:Chuanbo Tang, Zhuoyuan Li, Yifan Bian, Li Li, Dong Liu
Title: Neural Video Compression with Context Modulation
Abstract:
Efficient video coding is highly dependent on exploiting the temporal redundancy, which is usually achieved by extracting and leveraging the temporal context in the emerging conditional coding-based neural video codec (NVC). Although the latest NVC has achieved remarkable progress in improving the compression performance, the inherent temporal context propagation mechanism lacks the ability to sufficiently leverage the reference information, limiting further improvement. In this paper, we address the limitation by modulating the temporal context with the reference frame in two steps. Specifically, we first propose the flow orientation to mine the inter-correlation between the reference frame and prediction frame for generating the additional oriented temporal context. Moreover, we introduce the context compensation to leverage the oriented context to modulate the propagated temporal context generated from the propagated reference feature. Through the synergy mechanism and decoupling loss supervision, the irrelevant propagated information can be effectively eliminated to ensure better context modeling. Experimental results demonstrate that our codec achieves on average 22.7% bitrate reduction over the advanced traditional video codec H.266/VVC, and offers an average 10.1% bitrate saving over the previous state-of-the-art NVC DCVC-FM. The code is available at https://github.com/Austin4USTC/DCMVC.

Authors:Yuxuan Wang, Xuanyu Yi, Qingshan Xu, Yuan Zhou, Long Chen, Hanwang Zhang
Title: Personalize Your Gaussian: Consistent 3D Scene Personalization from a Single Image
Abstract:
Personalizing 3D scenes from a single reference image enables intuitive user-guided editing, which requires achieving both multi-view consistency across perspectives and referential consistency with the input image. However, these goals are particularly challenging due to the viewpoint bias caused by the limited perspective provided in a single image. Lacking the mechanisms to effectively expand reference information beyond the original view, existing methods of image-conditioned 3DGS personalization often suffer from this viewpoint bias and struggle to produce consistent results. Therefore, in this paper, we present Consistent Personalization for 3D Gaussian Splatting (CP-GS), a framework that progressively propagates the single-view reference appearance to novel perspectives. In particular, CP-GS integrates pre-trained image-to-3D generation and iterative LoRA fine-tuning to extract and extend the reference appearance, and finally produces faithful multi-view guidance images and the personalized 3DGS outputs through a view-consistent generation process guided by geometric cues. Extensive experiments on real-world scenes show that our CP-GS effectively mitigates the viewpoint bias, achieving high-quality personalization that significantly outperforms existing methods. The code will be released at https://github.com/Yuxuan-W/CP-GS.

Authors:Guillaume Vray, Devavrat Tomar, Xufeng Gao, Jean-Philippe Thiran, Evan Shelhamer, Behzad Bozorgtabar
Title: ReservoirTTA: Prolonged Test-time Adaptation for Evolving and Recurring Domains
Abstract:
This paper introduces ReservoirTTA, a novel plug-in framework designed for prolonged test-time adaptation (TTA) in scenarios where the test domain continuously shifts over time, including cases where domains recur or evolve gradually. At its core, ReservoirTTA maintains a reservoir of domain-specialized models -- an adaptive test-time model ensemble -- that both detects new domains via online clustering over style features of incoming samples and routes each sample to the appropriate specialized model, and thereby enables domain-specific adaptation. This multi-model strategy overcomes key limitations of single model adaptation, such as catastrophic forgetting, inter-domain interference, and error accumulation, ensuring robust and stable performance on sustained non-stationary test distributions. Our theoretical analysis reveals key components that bound parameter variance and prevent model collapse, while our plug-in TTA module mitigates catastrophic forgetting of previously encountered domains. Extensive experiments on scene-level corruption benchmarks (ImageNet-C, CIFAR-10/100-C), object-level style shifts (DomainNet-126, PACS), and semantic segmentation (Cityscapes->ACDC) covering recurring and continuously evolving domain shifts -- show that ReservoirTTA substantially improves adaptation accuracy and maintains stable performance across prolonged, recurring shifts, outperforming state-of-the-art methods. Our code is publicly available at https://github.com/LTS5/ReservoirTTA.

Authors:Xuyang Liu, Yiyu Wang, Junpeng Ma, Linfeng Zhang
Title: Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models
Abstract:
Video large language models (VideoLLM) excel at video understanding, but face efficiency challenges due to the quadratic complexity of abundant visual tokens. Our systematic analysis of token compression methods for VideoLLMs reveals two critical issues: (i) overlooking distinctive visual signals across frames, leading to information loss; (ii) suffering from implementation constraints, causing incompatibility with modern architectures or efficient operators. To address these challenges, we distill three design principles for VideoLLM token compression and propose a plug-and-play inference acceleration framework "Video Compression Commander" (VidCom2). By quantifying each frame's uniqueness, VidCom2 adaptively adjusts compression intensity across frames, effectively preserving essential information while reducing redundancy in video sequences. Extensive experiments across various VideoLLMs and benchmarks demonstrate the superior performance and efficiency of our VidCom2. With only 25% visual tokens, VidCom2 achieves 99.6% of the original performance on LLaVA-OV while reducing 70.8% of the LLM generation latency. Notably, our Frame Compression Adjustment strategy is compatible with other token compression methods to further improve their performance. Our code is available at https://github.com/xuyang-liu16/VidCom2.

Authors:Yuanbo Fang, Haoze Sun, Jun Liu, Tao Zhang, Zenan Zhou, Weipeng Chen, Xiaofen Xing, Xiangmin Xu
Title: S2SBench: A Benchmark for Quantifying Intelligence Degradation in Speech-to-Speech Large Language Models
Abstract:
End-to-end speech large language models ((LLMs)) extend the capabilities of text-based models to directly process and generate audio tokens. However, this often leads to a decline in reasoning and generation performance compared to text input, a phenomenon referred to as intelligence degradation. To systematically evaluate this gap, we propose S2SBench, a benchmark designed to quantify performance degradation in Speech LLMs. It includes diagnostic datasets targeting sentence continuation and commonsense reasoning under audio input. We further introduce a pairwise evaluation protocol based on perplexity differences between plausible and implausible samples to measure degradation relative to text input. We apply S2SBench to analyze the training process of Baichuan-Audio, which further demonstrates the benchmark's effectiveness. All datasets and evaluation code are available at https://github.com/undobug/S2SBench.

Authors:Yuqiao Tan, Shizhu He, Kang Liu, Jun Zhao
Title: Neural Incompatibility: The Unbridgeable Gap of Cross-Scale Parametric Knowledge Transfer in Large Language Models
Abstract:
Large Language Models (LLMs) offer a transparent brain with accessible parameters that encode extensive knowledge, which can be analyzed, located and transferred. Consequently, a key research challenge is to transcend traditional knowledge transfer paradigms rooted in symbolic language and achieve genuine Parametric Knowledge Transfer (PKT). Significantly, exploring effective methods for transferring knowledge across LLMs of different scales through parameters presents an intriguing and valuable research direction. In this paper, we first demonstrate $\textbf{Alignment}$ in parametric space is the fundamental prerequisite to achieve successful cross-scale PKT. We redefine the previously explored knowledge transfer as Post-Align PKT (PostPKT), which utilizes extracted parameters for LoRA initialization and requires subsequent fine-tune for alignment. Hence, to reduce cost for further fine-tuning, we introduce a novel Pre-Align PKT (PrePKT) paradigm and propose a solution called $\textbf{LaTen}$ ($\textbf{L}$oc$\textbf{a}$te-$\textbf{T}$h$\textbf{e}$n-Alig$\textbf{n}$) that aligns the parametric spaces of LLMs across scales only using several training steps without following training. Comprehensive experiments on four benchmarks demonstrate that both PostPKT and PrePKT face challenges in achieving consistently stable transfer. Through in-depth analysis, we identify $\textbf{Neural Incompatibility}$ as the ethological and parametric structural differences between LLMs of varying scales, presenting fundamental challenges to achieving effective PKT. These findings provide fresh insights into the parametric architectures of LLMs and highlight promising directions for future research on efficient PKT. Our code is available at https://github.com/Trae1ounG/Neural_Incompatibility.

Authors:Chengtang Yao, Lidong Yu, Zhidan Liu, Jiaxi Zeng, Yuwei Wu, Yunde Jia
Title: Diving into the Fusion of Monocular Priors for Generalized Stereo Matching
Abstract:
The matching formulation makes it naturally hard for the stereo matching to handle ill-posed regions like occlusions and non-Lambertian surfaces. Fusing monocular priors has been proven helpful for ill-posed matching, but the biased monocular prior learned from small stereo datasets constrains the generalization. Recently, stereo matching has progressed by leveraging the unbiased monocular prior from the vision foundation model (VFM) to improve the generalization in ill-posed regions. We dive into the fusion process and observe three main problems limiting the fusion of the VFM monocular prior. The first problem is the misalignment between affine-invariant relative monocular depth and absolute depth of disparity. Besides, when we use the monocular feature in an iterative update structure, the over-confidence in the disparity update leads to local optima results. A direct fusion of a monocular depth map could alleviate the local optima problem, but noisy disparity results computed at the first several iterations will misguide the fusion. In this paper, we propose a binary local ordering map to guide the fusion, which converts the depth map into a binary relative format, unifying the relative and absolute depth representation. The computed local ordering map is also used to re-weight the initial disparity update, resolving the local optima and noisy problem. In addition, we formulate the final direct fusion of monocular depth to the disparity as a registration problem, where a pixel-wise linear regression module can globally and adaptively align them. Our method fully exploits the monocular prior to support stereo matching results effectively and efficiently. We significantly improve the performance from the experiments when generalizing from SceneFlow to Middlebury and Booster datasets while barely reducing the efficiency.

Authors:Paweł Batorski, Adrian Kosmala, Paul Swoboda
Title: PRL: Prompts from Reinforcement Learning
Abstract:
Effective prompt engineering remains a central challenge in fully harnessing the capabilities of LLMs. While well-designed prompts can dramatically enhance performance, crafting them typically demands expert intuition and a nuanced understanding of the task. Moreover, the most impactful prompts often hinge on subtle semantic cues, ones that may elude human perception but are crucial for guiding LLM behavior. In this paper, we introduce PRL (Prompts from Reinforcement Learning), a novel RL-based approach for automatic prompt generation. Unlike previous methods, PRL can produce novel few-shot examples that were not seen during training. Our approach achieves state-of-the-art performance across a range of benchmarks, including text classification, simplification, and summarization. On the classification task, it surpasses prior methods by 2.58% over APE and 1.00% over EvoPrompt. Additionally, it improves the average ROUGE scores on the summarization task by 4.32 over APE and by 2.12 over EvoPrompt and the SARI score on simplification by 6.93 over APE and by 6.01 over EvoPrompt. Our code is available at https://github.com/Batorskq/prl .

Authors:Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, Xing Yu
Title: DeepEyes: Incentivizing "Thinking with Images" via Reinforcement Learning
Abstract:
Large Vision-Language Models (VLMs) have shown strong capabilities in multimodal understanding and reasoning, yet they are primarily constrained by text-based reasoning processes. However, achieving seamless integration of visual and textual reasoning which mirrors human cognitive processes remains a significant challenge. In particular, effectively incorporating advanced visual input processing into reasoning mechanisms is still an open question. Thus, in this paper, we explore the interleaved multimodal reasoning paradigm and introduce DeepEyes, a model with "thinking with images" capabilities incentivized through end-to-end reinforcement learning without the need for cold-start SFT. Notably, this ability emerges natively within the model itself, leveraging its inherent grounding ability as a tool instead of depending on separate specialized models. Specifically, we propose a tool-use-oriented data selection mechanism and a reward strategy to encourage successful tool-assisted reasoning trajectories. DeepEyes achieves significant performance gains on fine-grained perception and reasoning benchmarks and also demonstrates improvement in grounding, hallucination, and mathematical reasoning tasks. Interestingly, we observe the distinct evolution of tool-calling behavior from initial exploration to efficient and accurate exploitation, and diverse thinking patterns that closely mirror human visual reasoning processes. Code is available at https://github.com/Visual-Agent/DeepEyes.

Authors:Ruoxin Chen, Junwei Xi, Zhiyuan Yan, Ke-Yue Zhang, Shuang Wu, Jingyi Xie, Xu Chen, Lei Xu, Isabel Guan, Taiping Yao, Shouhong Ding
Title: Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable
Abstract:
Existing detectors are often trained on biased datasets, leading to the possibility of overfitting on non-causal image attributes that are spuriously correlated with real/synthetic labels. While these biased features enhance performance on the training data, they result in substantial performance degradation when applied to unbiased datasets. One common solution is to perform dataset alignment through generative reconstruction, matching the semantic content between real and synthetic images. However, we revisit this approach and show that pixel-level alignment alone is insufficient. The reconstructed images still suffer from frequency-level misalignment, which can perpetuate spurious correlations. To illustrate, we observe that reconstruction models tend to restore the high-frequency details lost in real images (possibly due to JPEG compression), inadvertently creating a frequency-level misalignment, where synthetic images appear to have richer high-frequency content than real ones. This misalignment leads to models associating high-frequency features with synthetic labels, further reinforcing biased cues. To resolve this, we propose Dual Data Alignment (DDA), which aligns both the pixel and frequency domains. Moreover, we introduce two new test sets: DDA-COCO, containing DDA-aligned synthetic images for testing detector performance on the most aligned dataset, and EvalGEN, featuring the latest generative models for assessing detectors under new generative architectures such as visual auto-regressive generators. Finally, our extensive evaluations demonstrate that a detector trained exclusively on DDA-aligned MSCOCO could improve across 8 diverse benchmarks by a non-trivial margin, showing a +7.2% on in-the-wild benchmarks, highlighting the improved generalizability of unbiased detectors. Our code is available at: https://github.com/roy-ch/Dual-Data-Alignment.

Authors:Sho Inoue, Shai Wang, Haizhou Li
Title: PersonaTAB: Predicting Personality Traits using Textual, Acoustic, and Behavioral Cues in Fully-Duplex Speech Dialogs
Abstract:
Despite significant progress in neural spoken dialog systems, personality-aware conversation agents -- capable of adapting behavior based on personalities -- remain underexplored due to the absence of personality annotations in speech datasets. We propose a pipeline that preprocesses raw audio recordings to create a dialogue dataset annotated with timestamps, response types, and emotion/sentiment labels. We employ an automatic speech recognition (ASR) system to extract transcripts and timestamps, then generate conversation-level annotations. Leveraging these annotations, we design a system that employs large language models to predict conversational personality. Human evaluators were engaged to identify conversational characteristics and assign personality labels. Our analysis demonstrates that the proposed system achieves stronger alignment with human judgments compared to existing approaches.

Authors:Xiang Li, Xianfu Cheng, Dezhuang Miao, Xiaoming Zhang, Zhoujun Li
Title: TF-Mamba: Text-enhanced Fusion Mamba with Missing Modalities for Robust Multimodal Sentiment Analysis
Abstract:
Multimodal Sentiment Analysis (MSA) with missing modalities has attracted increasing attention recently. While current Transformer-based methods leverage dense text information to maintain model robustness, their quadratic complexity hinders efficient long-range modeling and multimodal fusion. To this end, we propose a novel and efficient Text-enhanced Fusion Mamba (TF-Mamba) framework for robust MSA with missing modalities. Specifically, a Text-aware Modality Enhancement (TME) module aligns and enriches non-text modalities, while reconstructing the missing text semantics. Moreover, we develop Text-based Context Mamba (TC-Mamba) to capture intra-modal contextual dependencies under text collaboration. Finally, Text-guided Query Mamba (TQ-Mamba) queries text-guided multimodal information and learns joint representations for sentiment prediction. Extensive experiments on three MSA datasets demonstrate the effectiveness and efficiency of the proposed method under missing modality scenarios. Our code is available at https://github.com/codemous/TF-Mamba.

Authors:Jinwang Song, Hongying Zan, Kunli Zhang, Lingling Mu, Yingjie Han, Haobo Hua, Min Peng
Title: JOLT-SQL: Joint Loss Tuning of Text-to-SQL with Confusion-aware Noisy Schema Sampling
Abstract:
Text-to-SQL, which maps natural language to SQL queries, has benefited greatly from recent advances in Large Language Models (LLMs). While LLMs offer various paradigms for this task, including prompting and supervised fine-tuning (SFT), SFT approaches still face challenges such as complex multi-stage pipelines and poor robustness to noisy schema information. To address these limitations, we present JOLT-SQL, a streamlined single-stage SFT framework that jointly optimizes schema linking and SQL generation via a unified loss. JOLT-SQL employs discriminative schema linking, enhanced by local bidirectional attention, alongside a confusion-aware noisy schema sampling strategy with selective attention to improve robustness under noisy schema conditions. Experiments on the Spider and BIRD benchmarks demonstrate that JOLT-SQL achieves state-of-the-art execution accuracy among comparable-size open-source models, while significantly improving both training and inference efficiency. Our code is available at https://github.com/Songjw133/JOLT-SQL.

Authors:Hiroki Shiraishi, Hisao Ishibuchi, Masaya Nakata
Title: X-KAN: Optimizing Local Kolmogorov-Arnold Networks via Evolutionary Rule-Based Machine Learning
Abstract:
Function approximation is a critical task in various fields. However, existing neural network approaches struggle with locally complex or discontinuous functions due to their reliance on a single global model covering the entire problem space. We propose X-KAN, a novel method that optimizes multiple local Kolmogorov-Arnold Networks (KANs) through an evolutionary rule-based machine learning framework called XCSF. X-KAN combines KAN's high expressiveness with XCSF's adaptive partitioning capability by implementing local KAN models as rule consequents and defining local regions via rule antecedents. Our experimental results on artificial test functions and real-world datasets demonstrate that X-KAN significantly outperforms conventional methods, including XCSF, Multi-Layer Perceptron, and KAN, in terms of approximation accuracy. Notably, X-KAN effectively handles functions with locally complex or discontinuous structures that are challenging for conventional KAN, using a compact set of rules (average 7.2 $\pm$ 2.3 rules). These results validate the effectiveness of using KAN as a local model in XCSF, which evaluates the rule fitness based on both accuracy and generality. Our X-KAN implementation is available at https://github.com/YNU-NakataLab/X-KAN.

Authors:Luxi Lin, Zhihang Lin, Zhanpeng Zeng, Rongrong Ji
Title: Speculative Decoding Reimagined for Multimodal Large Language Models
Abstract:
This paper introduces Multimodal Speculative Decoding (MSD) to accelerate Multimodal Large Language Models (MLLMs) inference. Speculative decoding has been shown to accelerate Large Language Models (LLMs) without sacrificing accuracy. However, current speculative decoding methods for MLLMs fail to achieve the same speedup as they do for LLMs. To address this, we reimagine speculative decoding specifically for MLLMs. Our analysis of MLLM characteristics reveals two key design principles for MSD: (1) Text and visual tokens have fundamentally different characteristics and need to be processed separately during drafting. (2) Both language modeling ability and visual perception capability are crucial for the draft model. For the first principle, MSD decouples text and visual tokens in the draft model, allowing each to be handled based on its own characteristics. For the second principle, MSD uses a two-stage training strategy: In stage one, the draft model is trained on text-only instruction-tuning datasets to improve its language modeling ability. In stage two, MSD gradually introduces multimodal data to enhance the visual perception capability of the draft model. Experiments show that MSD boosts inference speed by up to $2.29\times$ for LLaVA-1.5-7B and up to $2.46\times$ for LLaVA-1.5-13B on multimodal benchmarks, demonstrating its effectiveness. Our code is available at https://github.com/Lyn-Lucy/MSD.

Authors:Ziyu Liu, Yuhang Zang, Yushan Zou, Zijian Liang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: Visual Agentic Reinforcement Fine-Tuning
Abstract:
A key trend in Large Reasoning Models (e.g., OpenAI's o3) is the native agentic ability to use external tools such as web browsers for searching and writing/executing code for image manipulation to think with images. In the open-source research community, while significant progress has been made in language-only agentic abilities such as function calling and tool integration, the development of multi-modal agentic capabilities that involve truly thinking with images, and their corresponding benchmarks, are still less explored. This work highlights the effectiveness of Visual Agentic Reinforcement Fine-Tuning (Visual-ARFT) for enabling flexible and adaptive reasoning abilities for Large Vision-Language Models (LVLMs). With Visual-ARFT, open-source LVLMs gain the ability to browse websites for real-time information updates and write code to manipulate and analyze input images through cropping, rotation, and other image processing techniques. We also present a Multi-modal Agentic Tool Bench (MAT) with two settings (MAT-Search and MAT-Coding) designed to evaluate LVLMs' agentic search and coding abilities. Our experimental results demonstrate that Visual-ARFT outperforms its baseline by +18.6% F1 / +13.0% EM on MAT-Coding and +10.3% F1 / +8.7% EM on MAT-Search, ultimately surpassing GPT-4o. Visual-ARFT also achieves +29.3 F1% / +25.9% EM gains on existing multi-hop QA benchmarks such as 2Wiki and HotpotQA, demonstrating strong generalization capabilities. Our findings suggest that Visual-ARFT offers a promising path toward building robust and generalizable multimodal agents.

Authors:Raghav Singhal, Kaustubh Ponkshe, Rohit Vartak, Praneeth Vepakomma
Title: ABBA: Highly Expressive Hadamard Product Adaptation for Large Language Models
Abstract:
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget. We formally analyze ABBA's expressive capacity and validate its advantages through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.

Authors:Raghav Singhal, Kaustubh Ponkshe, Rohit Vartak, Praneeth Vepakomma
Title: ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models
Abstract:
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.

Authors:Kaustubh Ponkshe, Shaan Shah, Raghav Singhal, Praneeth Vepakomma
Title: Safety Subspaces are Not Distinct: A Fine-Tuning Case Study
Abstract:
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. This is typically achieved through instruction tuning and reinforcement learning from human feedback. However, this alignment is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable geometric directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this geometric perspective. We examine whether safety-relevant behavior is concentrated in specific subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in internal representations. Across both parameter and activation space, our findings are consistent: subspaces that amplify safe behaviors also amplify unsafe ones, and prompts with different safety implications activate overlapping representations. We find no evidence of a subspace that selectively governs safety. These results challenge the assumption that alignment is geometrically localized. Rather than residing in distinct directions, safety appears to emerge from entangled, high-impact components of the model's broader learning dynamics. This suggests that subspace-based defenses may face fundamental limitations and underscores the need for alternative strategies to preserve alignment under continued training. We corroborate these findings through multiple experiments on five open-source LLMs. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.

Authors:Kaustubh Ponkshe, Shaan Shah, Raghav Singhal, Praneeth Vepakomma
Title: Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study
Abstract:
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.

Authors:Tong Bao, Heng Zhang, Chengzhi Zhang
Title: Enhancing Abstractive Summarization of Scientific Papers Using Structure Information
Abstract:
Abstractive summarization of scientific papers has always been a research focus, yet existing methods face two main challenges. First, most summarization models rely on Encoder-Decoder architectures that treat papers as sequences of words, thus fail to fully capture the structured information inherent in scientific papers. Second, existing research often use keyword mapping or feature engineering to identify the structural information, but these methods struggle with the structural flexibility of scientific papers and lack robustness across different disciplines. To address these challenges, we propose a two-stage abstractive summarization framework that leverages automatic recognition of structural functions within scientific papers. In the first stage, we standardize chapter titles from numerous scientific papers and construct a large-scale dataset for structural function recognition. A classifier is then trained to automatically identify the key structural components (e.g., Background, Methods, Results, Discussion), which provides a foundation for generating more balanced summaries. In the second stage, we employ Longformer to capture rich contextual relationships across sections and generating context-aware summaries. Experiments conducted on two domain-specific scientific paper summarization datasets demonstrate that our method outperforms advanced baselines, and generates more comprehensive summaries. The code and dataset can be accessed at https://github.com/tongbao96/code-for-SFR-AS.

Authors:Jiaming Li, Sheng Wang, Xin Wang, Yitao Zhu, Honglin Xiong, Zixu Zhuang, Qian Wang
Title: ReactDiff: Latent Diffusion for Facial Reaction Generation
Abstract:
Given the audio-visual clip of the speaker, facial reaction generation aims to predict the listener's facial reactions. The challenge lies in capturing the relevance between video and audio while balancing appropriateness, realism, and diversity. While prior works have mostly focused on uni-modal inputs or simplified reaction mappings, recent approaches such as PerFRDiff have explored multi-modal inputs and the one-to-many nature of appropriate reaction mappings. In this work, we propose the Facial Reaction Diffusion (ReactDiff) framework that uniquely integrates a Multi-Modality Transformer with conditional diffusion in the latent space for enhanced reaction generation. Unlike existing methods, ReactDiff leverages intra- and inter-class attention for fine-grained multi-modal interaction, while the latent diffusion process between the encoder and decoder enables diverse yet contextually appropriate outputs. Experimental results demonstrate that ReactDiff significantly outperforms existing approaches, achieving a facial reaction correlation of 0.26 and diversity score of 0.094 while maintaining competitive realism. The code is open-sourced at \href{https://github.com/Hunan-Tiger/ReactDiff}{github}.

Authors:Chengzhi Zhang, Xinyi Yan, Lei Zhao, Yingyi Zhang
Title: Enhancing Keyphrase Extraction from Academic Articles Using Section Structure Information
Abstract:
The exponential increase in academic papers has significantly increased the time required for researchers to access relevant literature. Keyphrase Extraction (KPE) offers a solution to this situation by enabling researchers to efficiently retrieve relevant literature. The current study on KPE from academic articles aims to improve the performance of extraction models through innovative approaches using Title and Abstract as input corpora. However, the semantic richness of keywords is significantly constrained by the length of the abstract. While full-text-based KPE can address this issue, it simultaneously introduces noise, which significantly diminishes KPE performance. To address this issue, this paper utilized the structural features and section texts obtained from the section structure information of academic articles to extract keyphrase from academic papers. The approach consists of two main parts: (1) exploring the effect of seven structural features on KPE models, and (2) integrating the extraction results from all section texts used as input corpora for KPE models via a keyphrase integration algorithm to obtain the keyphrase integration result. Furthermore, this paper also examined the effect of the classification quality of section structure on the KPE performance. The results show that incorporating structural features improves KPE performance, though different features have varying effects on model efficacy. The keyphrase integration approach yields the best performance, and the classification quality of section structure can affect KPE performance. These findings indicate that using the section structure information of academic articles contributes to effective KPE from academic articles. The code and dataset supporting this study are available at https://github.com/yan-xinyi/SSB_KPE.

Authors:Fan Liu, Zherui Yang, Cancheng Liu, Tianrui Song, Xiaofeng Gao, Hao Liu
Title: MM-Agent: LLM as Agents for Real-world Mathematical Modeling Problem
Abstract:
Mathematical modeling is a cornerstone of scientific discovery and engineering practice, enabling the translation of real-world problems into formal systems across domains such as physics, biology, and economics. Unlike mathematical reasoning, which assumes a predefined formulation, modeling requires open-ended problem analysis, abstraction, and principled formalization. While Large Language Models (LLMs) have shown strong reasoning capabilities, they fall short in rigorous model construction, limiting their utility in real-world problem-solving. To this end, we formalize the task of LLM-powered real-world mathematical modeling, where agents must analyze problems, construct domain-appropriate formulations, and generate complete end-to-end solutions. We introduce MM-Bench, a curated benchmark of 111 problems from the Mathematical Contest in Modeling (MCM/ICM), spanning the years 2000 to 2025 and across ten diverse domains such as physics, biology, and economics. To tackle this task, we propose MM-Agent, an expert-inspired framework that decomposes mathematical modeling into four stages: open-ended problem analysis, structured model formulation, computational problem solving, and report generation. Experiments on MM-Bench show that MM-Agent significantly outperforms baseline agents, achieving an 11.88\% improvement over human expert solutions while requiring only 15 minutes and \$0.88 per task using GPT-4o. Furthermore, under official MCM/ICM protocols, MM-Agent assisted two undergraduate teams in winning the Finalist Award (\textbf{top 2.0\% among 27,456 teams}) in MCM/ICM 2025, demonstrating its practical effectiveness as a modeling copilot. Our code is available at https://github.com/usail-hkust/LLM-MM-Agent

Authors:Yihang Du, Jiaying Hu, Suyang Hou, Yueyang Ding, Xiaobo Sun
Title: A Methodological Framework for Measuring Spatial Labeling Similarity
Abstract:
Spatial labeling assigns labels to specific spatial locations to characterize their spatial properties and relationships, with broad applications in scientific research and practice. Measuring the similarity between two spatial labelings is essential for understanding their differences and the contributing factors, such as changes in location properties or labeling methods. An adequate and unbiased measurement of spatial labeling similarity should consider the number of matched labels (label agreement), the topology of spatial label distribution, and the heterogeneous impacts of mismatched labels. However, existing methods often fail to account for all these aspects. To address this gap, we propose a methodological framework to guide the development of methods that meet these requirements. Given two spatial labelings, the framework transforms them into graphs based on location organization, labels, and attributes (e.g., location significance). The distributions of their graph attributes are then extracted, enabling an efficient computation of distributional discrepancy to reflect the dissimilarity level between the two labelings. We further provide a concrete implementation of this framework, termed Spatial Labeling Analogy Metric (SLAM), along with an analysis of its theoretical foundation, for evaluating spatial labeling results in spatial transcriptomics (ST) \textit{as per} their similarity with ground truth labeling. Through a series of carefully designed experimental cases involving both simulated and real ST data, we demonstrate that SLAM provides a comprehensive and accurate reflection of labeling quality compared to other well-established evaluation metrics. Our code is available at https://github.com/YihDu/SLAM.

Authors:Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan Turaga
Title: Intra-class Patch Swap for Self-Distillation
Abstract:
Knowledge distillation (KD) is a valuable technique for compressing large deep learning models into smaller, edge-suitable networks. However, conventional KD frameworks rely on pre-trained high-capacity teacher networks, which introduce significant challenges such as increased memory/storage requirements, additional training costs, and ambiguity in selecting an appropriate teacher for a given student model. Although a teacher-free distillation (self-distillation) has emerged as a promising alternative, many existing approaches still rely on architectural modifications or complex training procedures, which limit their generality and efficiency. To address these limitations, we propose a novel framework based on teacher-free distillation that operates using a single student network without any auxiliary components, architectural modifications, or additional learnable parameters. Our approach is built on a simple yet highly effective augmentation, called intra-class patch swap augmentation. This augmentation simulates a teacher-student dynamic within a single model by generating pairs of intra-class samples with varying confidence levels, and then applying instance-to-instance distillation to align their predictive distributions. Our method is conceptually simple, model-agnostic, and easy to implement, requiring only a single augmentation function. Extensive experiments across image classification, semantic segmentation, and object detection show that our method consistently outperforms both existing self-distillation baselines and conventional teacher-based KD approaches. These results suggest that the success of self-distillation could hinge on the design of the augmentation itself. Our codes are available at https://github.com/hchoi71/Intra-class-Patch-Swap.

Authors:Tianle Gu, Zongqi Wang, Kexin Huang, Yuanqi Yao, Xiangliang Zhang, Yujiu Yang, Xiuying Chen
Title: Invisible Entropy: Towards Safe and Efficient Low-Entropy LLM Watermarking
Abstract:
Logit-based LLM watermarking traces and verifies AI-generated content by maintaining green and red token lists and increasing the likelihood of green tokens during generation. However, it fails in low-entropy scenarios, where predictable outputs make green token selection difficult without disrupting natural text flow. Existing approaches address this by assuming access to the original LLM to calculate entropy and selectively watermark high-entropy tokens. However, these methods face two major challenges: (1) high computational costs and detection delays due to reliance on the original LLM, and (2) potential risks of model leakage. To address these limitations, we propose Invisible Entropy (IE), a watermarking paradigm designed to enhance both safety and efficiency. Instead of relying on the original LLM, IE introduces a lightweight feature extractor and an entropy tagger to predict whether the entropy of the next token is high or low. Furthermore, based on theoretical analysis, we develop a threshold navigator that adaptively sets entropy thresholds. It identifies a threshold where the watermark ratio decreases as the green token count increases, enhancing the naturalness of the watermarked text and improving detection robustness. Experiments on HumanEval and MBPP datasets demonstrate that IE reduces parameter size by 99\% while achieving performance on par with state-of-the-art methods. Our work introduces a safe and efficient paradigm for low-entropy watermarking. https://github.com/Carol-gutianle/IE https://huggingface.co/datasets/Carol0110/IE-Tagger

Authors:Yakun Zhu, Zhongzhen Huang, Linjie Mu, Yutong Huang, Wei Nie, Jiaji Liu, Shaoting Zhang, Pengfei Liu, Xiaofan Zhang
Title: DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models
Abstract:
The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AI's diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.

Authors:Zhenyu Li, Tianyi Shang, Pengjie Xu, Zhaojun Deng
Title: Place Recognition Meet Multiple Modalitie: A Comprehensive Review, Current Challenges and Future Directions
Abstract:
Place recognition is a cornerstone of vehicle navigation and mapping, which is pivotal in enabling systems to determine whether a location has been previously visited. This capability is critical for tasks such as loop closure in Simultaneous Localization and Mapping (SLAM) and long-term navigation under varying environmental conditions. In this survey, we comprehensively review recent advancements in place recognition, emphasizing three representative methodological paradigms: Convolutional Neural Network (CNN)-based approaches, Transformer-based frameworks, and cross-modal strategies. We begin by elucidating the significance of place recognition within the broader context of autonomous systems. Subsequently, we trace the evolution of CNN-based methods, highlighting their contributions to robust visual descriptor learning and scalability in large-scale environments. We then examine the emerging class of Transformer-based models, which leverage self-attention mechanisms to capture global dependencies and offer improved generalization across diverse scenes. Furthermore, we discuss cross-modal approaches that integrate heterogeneous data sources such as Lidar, vision, and text description, thereby enhancing resilience to viewpoint, illumination, and seasonal variations. We also summarize standard datasets and evaluation metrics widely adopted in the literature. Finally, we identify current research challenges and outline prospective directions, including domain adaptation, real-time performance, and lifelong learning, to inspire future advancements in this domain. The unified framework of leading-edge place recognition methods, i.e., code library, and the results of their experimental evaluations are available at https://github.com/CV4RA/SOTA-Place-Recognitioner.

Authors:Hao Feng, Shu Wei, Xiang Fei, Wei Shi, Yingdong Han, Lei Liao, Jinghui Lu, Binghong Wu, Qi Liu, Chunhui Lin, Jingqun Tang, Hao Liu, Can Huang
Title: Dolphin: Document Image Parsing via Heterogeneous Anchor Prompting
Abstract:
Document image parsing is challenging due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Current approaches either assemble specialized expert models or directly generate page-level content autoregressively, facing integration overhead, efficiency bottlenecks, and layout structure degradation despite their decent performance. To address these limitations, we present \textit{Dolphin} (\textit{\textbf{Do}cument Image \textbf{P}arsing via \textbf{H}eterogeneous Anchor Prompt\textbf{in}g}), a novel multimodal document image parsing model following an analyze-then-parse paradigm. In the first stage, Dolphin generates a sequence of layout elements in reading order. These heterogeneous elements, serving as anchors and coupled with task-specific prompts, are fed back to Dolphin for parallel content parsing in the second stage. To train Dolphin, we construct a large-scale dataset of over 30 million samples, covering multi-granularity parsing tasks. Through comprehensive evaluations on both prevalent benchmarks and self-constructed ones, Dolphin achieves state-of-the-art performance across diverse page-level and element-level settings, while ensuring superior efficiency through its lightweight architecture and parallel parsing mechanism. The code and pre-trained models are publicly available at https://github.com/ByteDance/Dolphin

Authors:Yibo Gao, Hangqi Zhou, Zheyao Gao, Bomin Wang, Shangqi Gao, Sihan Wang, Xiahai Zhuang
Title: Learning Concept-Driven Logical Rules for Interpretable and Generalizable Medical Image Classification
Abstract:
The pursuit of decision safety in clinical applications highlights the potential of concept-based methods in medical imaging. While these models offer active interpretability, they often suffer from concept leakages, where unintended information within soft concept representations undermines both interpretability and generalizability. Moreover, most concept-based models focus solely on local explanations (instance-level), neglecting the global decision logic (dataset-level). To address these limitations, we propose Concept Rule Learner (CRL), a novel framework to learn Boolean logical rules from binarized visual concepts. CRL employs logical layers to capture concept correlations and extract clinically meaningful rules, thereby providing both local and global interpretability. Experiments on two medical image classification tasks show that CRL achieves competitive performance with existing methods while significantly improving generalizability to out-of-distribution data. The code of our work is available at https://github.com/obiyoag/crl.

Authors:Soichiro Kumano, Hiroshi Kera, Toshihiko Yamasaki
Title: Adversarially Pretrained Transformers may be Universally Robust In-Context Learners
Abstract:
Adversarial training is one of the most effective adversarial defenses, but it incurs a high computational cost. In this study, we show that transformers adversarially pretrained on diverse tasks can serve as robust foundation models and eliminate the need for adversarial training in downstream tasks. Specifically, we theoretically demonstrate that through in-context learning, a single adversarially pretrained transformer can robustly generalize to multiple unseen tasks without any additional training, i.e., without any parameter updates. This robustness stems from the model's focus on robust features and its resistance to attacks that exploit non-predictive features. Besides these positive findings, we also identify several limitations. Under certain conditions (though unrealistic), no universally robust single-layer transformers exist. Moreover, robust transformers exhibit an accuracy--robustness trade-off and require a large number of in-context demonstrations. The code is available at https://github.com/s-kumano/universally-robust-in-context-learner.

Authors:Jesper Duemose Nielsen, Karthik Gopinath, Andrew Hoopes, Adrian Dalca, Colin Magdamo, Steven Arnold, Sudeshna Das, Axel Thielscher, Juan Eugenio Iglesias, Oula Puonti
Title: End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images
Abstract:
Surface-based cortical analysis is valuable for a variety of neuroimaging tasks, such as spatial normalization, parcellation, and gray matter (GM) thickness estimation. However, most tools for estimating cortical surfaces work exclusively on scans with at least 1 mm isotropic resolution and are tuned to a specific magnetic resonance (MR) contrast, often T1-weighted (T1w). This precludes application using most clinical MR scans, which are very heterogeneous in terms of contrast and resolution. Here, we use synthetic domain-randomized data to train the first neural network for explicit estimation of cortical surfaces from scans of any contrast and resolution, without retraining. Our method deforms a template mesh to the white matter (WM) surface, which guarantees topological correctness. This mesh is further deformed to estimate the GM surface. We compare our method to recon-all-clinical (RAC), an implicit surface reconstruction method which is currently the only other tool capable of processing heterogeneous clinical MR scans, on ADNI and a large clinical dataset (n=1,332). We show a approximately 50 % reduction in cortical thickness error (from 0.50 to 0.24 mm) with respect to RAC and better recovery of the aging-related cortical thinning patterns detected by FreeSurfer on high-resolution T1w scans. Our method enables fast and accurate surface reconstruction of clinical scans, allowing studies (1) with sample sizes far beyond what is feasible in a research setting, and (2) of clinical populations that are difficult to enroll in research studies. The code is publicly available at https://github.com/simnibs/brainnet.

Authors:Zhidan Liu, Chengtang Yao, Jiaxi Zeng, Yuwei Wu, Yunde Jia
Title: Multi-Label Stereo Matching for Transparent Scene Depth Estimation
Abstract:
In this paper, we present a multi-label stereo matching method to simultaneously estimate the depth of the transparent objects and the occluded background in transparent scenes.Unlike previous methods that assume a unimodal distribution along the disparity dimension and formulate the matching as a single-label regression problem, we propose a multi-label regression formulation to estimate multiple depth values at the same pixel in transparent scenes. To resolve the multi-label regression problem, we introduce a pixel-wise multivariate Gaussian representation, where the mean vector encodes multiple depth values at the same pixel, and the covariance matrix determines whether a multi-label representation is necessary for a given pixel. The representation is iteratively predicted within a GRU framework. In each iteration, we first predict the update step for the mean parameters and then use both the update step and the updated mean parameters to estimate the covariance matrix. We also synthesize a dataset containing 10 scenes and 89 objects to validate the performance of transparent scene depth estimation. The experiments show that our method greatly improves the performance on transparent surfaces while preserving the background information for scene reconstruction. Code is available at https://github.com/BFZD233/TranScene.

Authors:Marc Kaufeld, Korbinian Moller, Alessio Gambi, Paolo Arcaini, Johannes Betz
Title: MultiDrive: A Co-Simulation Framework Bridging 2D and 3D Driving Simulation for AV Software Validation
Abstract:
Scenario-based testing using simulations is a cornerstone of Autonomous Vehicles (AVs) software validation. So far, developers needed to choose between low-fidelity 2D simulators to explore the scenario space efficiently, and high-fidelity 3D simulators to study relevant scenarios in more detail, thus reducing testing costs while mitigating the sim-to-real gap. This paper presents a novel framework that leverages multi-agent co-simulation and procedural scenario generation to support scenario-based testing across low- and high-fidelity simulators for the development of motion planning algorithms. Our framework limits the effort required to transition scenarios between simulators and automates experiment execution, trajectory analysis, and visualization. Experiments with a reference motion planner show that our framework uncovers discrepancies between the planner's intended and actual behavior, thus exposing weaknesses in planning assumptions under more realistic conditions. Our framework is available at: https://github.com/TUM-AVS/MultiDrive

Authors:Ziyang Zeng, Dun Zhang, Jiacheng Li, Panxiang Zou, Yudong Zhou, Yuqing Yang
Title: An Empirical Study of Position Bias in Modern Information Retrieval
Abstract:
This study investigates the position bias in information retrieval, where models tend to overemphasize content at the beginning of passages while neglecting semantically relevant information that appears later. To analyze the extent and impact of position bias, we introduce a new evaluation framework consisting of two position-aware retrieval benchmarks (SQuAD-PosQ, FineWeb-PosQ) and an intuitive diagnostic metric, the Position Sensitivity Index (PSI), for quantifying position bias from a worst-case perspective. We conduct a comprehensive evaluation across the full retrieval pipeline, including BM25, dense embedding models, ColBERT-style late-interaction models, and full-interaction reranker models. Our experiments show that when relevant information appears later in the passage, dense embedding models and ColBERT-style models suffer significant performance degradation (an average drop of 15.6%). In contrast, BM25 and reranker models demonstrate greater robustness to such positional variation. These findings provide practical insights into model sensitivity to the position of relevant information and offer guidance for building more position-robust retrieval systems. Code and data are publicly available at: https://github.com/NovaSearch-Team/position-bias-in-IR.

Authors:Bao-Ngoc Dao, Quang Nguyen, Luyen Ngo Dinh, Minh Le, Nam Le, Linh Ngo Van
Title: Towards Rehearsal-Free Continual Relation Extraction: Capturing Within-Task Variance with Adaptive Prompting
Abstract:
Memory-based approaches have shown strong performance in Continual Relation Extraction (CRE). However, storing examples from previous tasks increases memory usage and raises privacy concerns. Recently, prompt-based methods have emerged as a promising alternative, as they do not rely on storing past samples. Despite this progress, current prompt-based techniques face several core challenges in CRE, particularly in accurately identifying task identities and mitigating catastrophic forgetting. Existing prompt selection strategies often suffer from inaccuracies, lack robust mechanisms to prevent forgetting in shared parameters, and struggle to handle both cross-task and within-task variations. In this paper, we propose WAVE++, a novel approach inspired by the connection between prefix-tuning and mixture of experts. Specifically, we introduce task-specific prompt pools that enhance flexibility and adaptability across diverse tasks while avoiding boundary-spanning risks; this design more effectively captures variations within each task and across tasks. To further refine relation classification, we incorporate label descriptions that provide richer, more global context, enabling the model to better distinguish among different relations. We also propose a training-free mechanism to improve task prediction during inference. Moreover, we integrate a generative model to consolidate prior knowledge within the shared parameters, thereby removing the need for explicit data storage. Extensive experiments demonstrate that WAVE++ outperforms state-of-the-art prompt-based and rehearsal-based methods, offering a more robust solution for continual relation extraction. Our code is publicly available at https://github.com/PiDinosauR2804/WAVE-CRE-PLUS-PLUS.

Authors:Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan Zetzsche, Greg Durrett, Yisong Yue, Swarat Chaudhuri
Title: CLEVER: A Curated Benchmark for Formally Verified Code Generation
Abstract:
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).

Authors:Saydul Akbar Murad, Ashim Dahal, Nick Rahimi
Title: EEG-to-Text Translation: A Model for Deciphering Human Brain Activity
Abstract:
With the rapid advancement of large language models like Gemini, GPT, and others, bridging the gap between the human brain and language processing has become an important area of focus. To address this challenge, researchers have developed various models to decode EEG signals into text. However, these models still face significant performance limitations. To overcome these shortcomings, we propose a new model, R1 Translator, which aims to improve the performance of EEG-to-text decoding. The R1 Translator model combines a bidirectional LSTM encoder with a pretrained transformer-based decoder, utilizing EEG features to produce high-quality text outputs. The model processes EEG embeddings through the LSTM to capture sequential dependencies, which are then fed into the transformer decoder for effective text generation. The R1 Translator excels in ROUGE metrics, outperforming both T5 (previous research) and Brain Translator. Specifically, R1 achieves a ROUGE-1 score of 38.00% (P), which is up to 9% higher than T5 (34.89%) and 3% better than Brain (35.69%). It also leads in ROUGE-L, with a F1 score of 32.51%, outperforming T5 by 3% (29.67%) and Brain by 2% (30.38%). In terms of CER, R1 achieves a CER of 0.5795, which is 2% lower than T5 (0.5917) and 4% lower than Brain (0.6001). Additionally, R1 performs better in WER with a score of 0.7280, outperforming T5 by 4.3% (0.7610) and Brain by 3.6% (0.7553). Code is available at https://github.com/Mmurrad/EEG-To-text.

Authors:Qifeng Cai, Hao Liang, Hejun Dong, Meiyi Qiang, Ruichuan An, Zhaoyang Han, Zhengzhou Zhu, Bin Cui, Wentao Zhang
Title: LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Abstract:
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark

Authors:Wanjing Huang, Weixiang Yan, Zhen Zhang, Ambuj Singh
Title: APEX: Empowering LLMs with Physics-Based Task Planning for Real-time Insight
Abstract:
Large Language Models (LLMs) demonstrate strong reasoning and task planning capabilities but remain fundamentally limited in physical interaction modeling. Existing approaches integrate perception via Vision-Language Models (VLMs) or adaptive decision-making through Reinforcement Learning (RL), but they fail to capture dynamic object interactions or require task-specific training, limiting their real-world applicability. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework that equips LLMs with physics-driven foresight for real-time task planning. APEX constructs structured graphs to identify and model the most relevant dynamic interactions in the environment, providing LLMs with explicit physical state updates. Simultaneously, APEX provides low-latency forward simulations of physically feasible actions, allowing LLMs to select optimal strategies based on predictive outcomes rather than static observations. We evaluate APEX on three benchmarks designed to assess perception, prediction, and decision-making: (1) Physics Reasoning Benchmark, testing causal inference and object motion prediction; (2) Tetris, evaluating whether physics-informed prediction enhances decision-making performance in long-horizon planning tasks; (3) Dynamic Obstacle Avoidance, assessing the immediate integration of perception and action feasibility analysis. APEX significantly outperforms standard LLMs and VLM-based models, demonstrating the necessity of explicit physics reasoning for bridging the gap between language-based intelligence and real-world task execution. The source code and experiment setup are publicly available at https://github.com/hwj20/APEX_EXP .

Authors:Yanheng He, Jiahe Jin, Pengfei Liu
Title: Efficient Agent Training for Computer Use
Abstract:
Scaling up high-quality trajectory data has long been a critical bottleneck for developing human-like computer use agents. We introduce PC Agent-E, an efficient agent training framework that significantly reduces reliance on large-scale human demonstrations. Starting with just 312 human-annotated computer use trajectories, we further improved data quality by synthesizing diverse action decisions with Claude 3.7 Sonnet. Trained on these enriched trajectories, our PC Agent-E model achieved a remarkable 141% relative improvement, surpassing the strong Claude 3.7 Sonnet with extended thinking on WindowsAgentArena-V2, an improved benchmark we also released. Furthermore, PC Agent-E demonstrates strong generalizability to different operating systems on OSWorld. Our findings suggest that strong computer use capabilities can be stimulated from a small amount of high-quality trajectory data.

Authors:Ruihan Liu, Xiaoyi Wu, Xijun Chen, Liang Hu, Yunjiang Lou
Title: 4D-ROLLS: 4D Radar Occupancy Learning via LiDAR Supervision
Abstract:
A comprehensive understanding of 3D scenes is essential for autonomous vehicles (AVs), and among various perception tasks, occupancy estimation plays a central role by providing a general representation of drivable and occupied space. However, most existing occupancy estimation methods rely on LiDAR or cameras, which perform poorly in degraded environments such as smoke, rain, snow, and fog. In this paper, we propose 4D-ROLLS, the first weakly supervised occupancy estimation method for 4D radar using the LiDAR point cloud as the supervisory signal. Specifically, we introduce a method for generating pseudo-LiDAR labels, including occupancy queries and LiDAR height maps, as multi-stage supervision to train the 4D radar occupancy estimation model. Then the model is aligned with the occupancy map produced by LiDAR, fine-tuning its accuracy in occupancy estimation. Extensive comparative experiments validate the exceptional performance of 4D-ROLLS. Its robustness in degraded environments and effectiveness in cross-dataset training are qualitatively demonstrated. The model is also seamlessly transferred to downstream tasks BEV segmentation and point cloud occupancy prediction, highlighting its potential for broader applications. The lightweight network enables 4D-ROLLS model to achieve fast inference speeds at about 30 Hz on a 4060 GPU. The code of 4D-ROLLS will be made available at https://github.com/CLASS-Lab/4D-ROLLS.

Authors:Chengyu Shen, Zhen Hao Wong, Runming He, Hao Liang, Meiyi Qiang, Zimo Meng, Zhengyang Zhao, Bohan Zeng, Zhengzhou Zhu, Bin Cui, Wentao Zhang
Title: Let's Verify Math Questions Step by Step
Abstract:
Large Language Models (LLMs) have recently achieved remarkable progress in mathematical reasoning. To enable such capabilities, many existing works distill strong reasoning models into long chains of thought or design algorithms to construct high-quality math QA data for training. However, these efforts primarily focus on generating correct reasoning paths and answers, while largely overlooking the validity of the questions themselves. In this work, we propose Math Question Verification (MathQ-Verify), a novel five-stage pipeline designed to rigorously filter ill-posed or under-specified math problems. MathQ-Verify first performs format-level validation to remove redundant instructions and ensure that each question is syntactically well-formed. It then formalizes each question, decomposes it into atomic conditions, and verifies them against mathematical definitions. Next, it detects logical contradictions among these conditions, followed by a goal-oriented completeness check to ensure the question provides sufficient information for solving. To evaluate this task, we use existing benchmarks along with an additional dataset we construct, containing 2,147 math questions with diverse error types, each manually double-validated. Experiments show that MathQ-Verify achieves state-of-the-art performance across multiple benchmarks, improving the F1 score by up to 25 percentage points over the direct verification baseline. It further attains approximately 90% precision and 63% recall through a lightweight model voting scheme. MathQ-Verify offers a scalable and accurate solution for curating reliable mathematical datasets, reducing label noise and avoiding unnecessary computation on invalid questions. Our code and data are available at https://github.com/scuuy/MathQ-Verify.

Authors:Yingwei Zhang, Ke Bu, Zhuoran Zhuang, Tao Xie, Yao Yu, Dong Li, Yang Guo, Detao Lv
Title: CRAFT: Time Series Forecasting with Cross-Future Behavior Awareness
Abstract:
The past decades witness the significant advancements in time series forecasting (TSF) across various real-world domains, including e-commerce and disease spread prediction. However, TSF is usually constrained by the uncertainty dilemma of predicting future data with limited past observations. To settle this question, we explore the use of Cross-Future Behavior (CFB) in TSF, which occurs before the current time but takes effect in the future. We leverage CFB features and propose the CRoss-Future Behavior Awareness based Time Series Forecasting method (CRAFT). The core idea of CRAFT is to utilize the trend of cross-future behavior to mine the trend of time series data to be predicted. Specifically, to settle the sparse and partial flaws of cross-future behavior, CRAFT employs the Koopman Predictor Module to extract the key trend and the Internal Trend Mining Module to supplement the unknown area of the cross-future behavior matrix. Then, we introduce the External Trend Guide Module with a hierarchical structure to acquire more representative trends from higher levels. Finally, we apply the demand-constrained loss to calibrate the distribution deviation of prediction results. We conduct experiments on real-world dataset. Experiments on both offline large-scale dataset and online A/B test demonstrate the effectiveness of CRAFT. Our dataset and code is available at https://github.com/CRAFTinTSF/CRAFT.

Authors:Ziqian Wang, Xianjun Xia, Xinfa Zhu, Lei Xie
Title: U-SAM: An audio language Model for Unified Speech, Audio, and Music Understanding
Abstract:
The text generation paradigm for audio tasks has opened new possibilities for unified audio understanding. However, existing models face significant challenges in achieving a comprehensive understanding across diverse audio types, such as speech, general audio events, and music. Furthermore, their exclusive reliance on cross-entropy loss for alignment often falls short, as it treats all tokens equally and fails to account for redundant audio features, leading to weaker cross-modal alignment. To deal with the above challenges, this paper introduces U-SAM, an advanced audio language model that integrates specialized encoders for speech, audio, and music with a pre-trained large language model (LLM). U-SAM employs a Mixture of Experts (MoE) projector for task-aware feature fusion, dynamically routing and integrating the domain-specific encoder outputs. Additionally, U-SAM incorporates a Semantic-Aware Contrastive Loss Module, which explicitly identifies redundant audio features under language supervision and rectifies their semantic and spectral representations to enhance cross-modal alignment. Extensive experiments demonstrate that U-SAM consistently outperforms both specialized models and existing audio language models across multiple benchmarks. Moreover, it exhibits emergent capabilities on unseen tasks, showcasing its generalization potential. Code is available (https://github.com/Honee-W/U-SAM/).

Authors:Jiwon Song, Dongwon Jo, Yulhwa Kim, Jae-Joon Kim
Title: Reasoning Path Compression: Compressing Generation Trajectories for Efficient LLM Reasoning
Abstract:
Recent reasoning-focused language models achieve high accuracy by generating lengthy intermediate reasoning paths before producing final answers. While this approach is effective in solving problems that require logical thinking, long reasoning paths significantly increase memory usage and throughput of token generation, limiting the practical deployment of such models. We propose Reasoning Path Compression (RPC), a training-free method that accelerates inference by leveraging the semantic sparsity of reasoning paths. RPC periodically compresses the KV cache by retaining KV cache that receive high importance score, which are computed using a selector window composed of recently generated queries. Experiments show that RPC improves generation throughput of QwQ-32B by up to 1.60$\times$ compared to the inference with full KV cache, with an accuracy drop of 1.2% on the AIME 2024 benchmark. Our findings demonstrate that semantic sparsity in reasoning traces can be effectively exploited for compression, offering a practical path toward efficient deployment of reasoning LLMs. Our code is available at https://github.com/jiwonsong-dev/ReasoningPathCompression.

Authors:Tian Sun, Yuqi Chen, Baihua Zheng, Weiwei Sun
Title: Learning Spatio-Temporal Dynamics for Trajectory Recovery via Time-Aware Transformer
Abstract:
In real-world applications, GPS trajectories often suffer from low sampling rates, with large and irregular intervals between consecutive GPS points. This sparse characteristic presents challenges for their direct use in GPS-based systems. This paper addresses the task of map-constrained trajectory recovery, aiming to enhance trajectory sampling rates of GPS trajectories. Previous studies commonly adopt a sequence-to-sequence framework, where an encoder captures the trajectory patterns and a decoder reconstructs the target trajectory. Within this framework, effectively representing the road network and extracting relevant trajectory features are crucial for overall performance. Despite advancements in these models, they fail to fully leverage the complex spatio-temporal dynamics present in both the trajectory and the road network. To overcome these limitations, we categorize the spatio-temporal dynamics of trajectory data into two distinct aspects: spatial-temporal traffic dynamics and trajectory dynamics. Furthermore, We propose TedTrajRec, a novel method for trajectory recovery. To capture spatio-temporal traffic dynamics, we introduce PD-GNN, which models periodic patterns and learns topologically aware dynamics concurrently for each road segment. For spatio-temporal trajectory dynamics, we present TedFormer, a time-aware Transformer that incorporates temporal dynamics for each GPS location by integrating closed-form neural ordinary differential equations into the attention mechanism. This allows TedFormer to effectively handle irregularly sampled data. Extensive experiments on three real-world datasets demonstrate the superior performance of TedTrajRec. The code is publicly available at https://github.com/ysygMhdxw/TEDTrajRec/.

Authors:Zhenyu Bao, Qing Li, Guibiao Liao, Zhongyuan Zhao, Kanglin Liu
Title: MGStream: Motion-aware 3D Gaussian for Streamable Dynamic Scene Reconstruction
Abstract:
3D Gaussian Splatting (3DGS) has gained significant attention in streamable dynamic novel view synthesis (DNVS) for its photorealistic rendering capability and computational efficiency. Despite much progress in improving rendering quality and optimization strategies, 3DGS-based streamable dynamic scene reconstruction still suffers from flickering artifacts and storage inefficiency, and struggles to model the emerging objects. To tackle this, we introduce MGStream which employs the motion-related 3D Gaussians (3DGs) to reconstruct the dynamic and the vanilla 3DGs for the static. The motion-related 3DGs are implemented according to the motion mask and the clustering-based convex hull algorithm. The rigid deformation is applied to the motion-related 3DGs for modeling the dynamic, and the attention-based optimization on the motion-related 3DGs enables the reconstruction of the emerging objects. As the deformation and optimization are only conducted on the motion-related 3DGs, MGStream avoids flickering artifacts and improves the storage efficiency. Extensive experiments on real-world datasets N3DV and MeetRoom demonstrate that MGStream surpasses existing streaming 3DGS-based approaches in terms of rendering quality, training/storage efficiency and temporal consistency. Our code is available at: https://github.com/pcl3dv/MGStream.

Authors:Matthew Raffel, Lizhong Chen
Title: FlashKAT: Understanding and Addressing Performance Bottlenecks in the Kolmogorov-Arnold Transformer
Abstract:
The Kolmogorov-Arnold Network (KAN) has been gaining popularity as an alternative to the multi-layer perceptron (MLP) with its increased expressiveness and interpretability. However, the KAN can be orders of magnitude slower due to its increased computational cost and training instability, limiting its applicability to larger-scale tasks. Recently, the Kolmogorov-Arnold Transformer (KAT) has been proposed, which can achieve FLOPs similar to the traditional Transformer with MLPs by leveraging Group-Rational KAN (GR-KAN). Unfortunately, despite the comparable FLOPs, our characterizations reveal that the KAT is still 123x slower in training speeds, indicating that there are other performance bottlenecks beyond FLOPs. In this paper, we conduct a series of experiments to understand the root cause of the slowdown in KAT. We uncover that the slowdown can be isolated to memory stalls and, more specifically, in the backward pass of GR-KAN caused by inefficient gradient accumulation. To address this memory bottleneck, we propose FlashKAT, which builds on our restructured kernel that minimizes gradient accumulation with atomic adds and accesses to slow memory. Evaluations demonstrate that FlashKAT can achieve a training speedup of 86.5x compared with the state-of-the-art KAT, while reducing rounding errors in the coefficient gradients. Our code is available at https://github.com/OSU-STARLAB/FlashKAT.

Authors:Guoheng Sun, Ziyao Wang, Bowei Tian, Meng Liu, Zheyu Shen, Shwai He, Yexiao He, Wanghao Ye, Yiting Wang, Ang Li
Title: CoIn: Counting the Invisible Reasoning Tokens in Commercial Opaque LLM APIs
Abstract:
As post-training techniques evolve, large language models (LLMs) are increasingly augmented with structured multi-step reasoning abilities, often optimized through reinforcement learning. These reasoning-enhanced models outperform standard LLMs on complex tasks and now underpin many commercial LLM APIs. However, to protect proprietary behavior and reduce verbosity, providers typically conceal the reasoning traces while returning only the final answer. This opacity introduces a critical transparency gap: users are billed for invisible reasoning tokens, which often account for the majority of the cost, yet have no means to verify their authenticity. This opens the door to token count inflation, where providers may overreport token usage or inject synthetic, low-effort tokens to inflate charges. To address this issue, we propose CoIn, a verification framework that audits both the quantity and semantic validity of hidden tokens. CoIn constructs a verifiable hash tree from token embedding fingerprints to check token counts, and uses embedding-based relevance matching to detect fabricated reasoning content. Experiments demonstrate that CoIn, when deployed as a trusted third-party auditor, can effectively detect token count inflation with a success rate reaching up to 94.7%, showing the strong ability to restore billing transparency in opaque LLM services. The dataset and code are available at https://github.com/CASE-Lab-UMD/LLM-Auditing-CoIn.

Authors:Etienne Gauthier, Francis Bach, Michael I. Jordan
Title: Backward Conformal Prediction
Abstract:
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tildeα}(X_{\rm test})) \ge 1 - \mathbb{E}[\tildeα]$ up to a first-order Taylor approximation for any data-dependent miscoverage $\tildeα$, and (ii) a novel leave-one-out estimator $\hatα^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tildeα]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.

Authors:Zihan Chen, Jiakang Li, Minghao Guo, Henry Chen, Zirui Li, Joel Bierman, Yipeng Huang, Huiyang Zhou, Yuan Liu, Eddy Z. Zhang
Title: Genesis: A Compiler Framework for Hamiltonian Simulation on Hybrid CV-DV Quantum Computers
Abstract:
This paper introduces Genesis, the first compiler designed to support Hamiltonian Simulation on hybrid continuous-variable (CV) and discrete-variable (DV) quantum computing systems. Genesis is a two-level compilation system. At the first level, it decomposes an input Hamiltonian into basis gates using the native instruction set of the target hybrid CV-DV quantum computer. At the second level, it tackles the mapping and routing of qumodes/qubits to implement long-range interactions for the gates decomposed from the first level. Rather than a typical implementation that relies on SWAP primitives similar to qubit-based (or DV-only) systems, we propose an integrated design of connectivity-aware gate synthesis and beamsplitter SWAP insertion tailored for hybrid CV-DV systems. We also introduce an OpenQASM-like domain-specific language (DSL) named CVDV-QASM to represent Hamiltonian in terms of Pauli-exponentials and basic gate sequences from the hybrid CV-DV gate set. Genesis has successfully compiled several important Hamiltonians, including the Bose-Hubbard model, $\mathbb{Z}_2-$Higgs model, Hubbard-Holstein model, Heisenberg model and Electron-vibration coupling Hamiltonians, which are critical in domains like quantum field theory, condensed matter physics, and quantum chemistry. Our implementation is available at Genesis-CVDV-Compiler(https://github.com/ruadapt/Genesis-CVDV-Compiler).

Authors:Barkin Dagda, Muhammad Awais, Saber Fallah
Title: GeoVLM: Improving Automated Vehicle Geolocalisation Using Vision-Language Matching
Abstract:
Cross-view geo-localisation identifies coarse geographical position of an automated vehicle by matching a ground-level image to a geo-tagged satellite image from a database. Despite the advancements in Cross-view geo-localisation, significant challenges still persist such as similar looking scenes which makes it challenging to find the correct match as the top match. Existing approaches reach high recall rates but they still fail to rank the correct image as the top match. To address this challenge, this paper proposes GeoVLM, a novel approach which uses the zero-shot capabilities of vision language models to enable cross-view geo-localisation using interpretable cross-view language descriptions. GeoVLM is a trainable reranking approach which improves the best match accuracy of cross-view geo-localisation. GeoVLM is evaluated on standard benchmark VIGOR and University-1652 and also through real-life driving environments using Cross-View United Kingdom, a new benchmark dataset introduced in this paper. The results of the paper show that GeoVLM improves retrieval performance of cross-view geo-localisation compared to the state-of-the-art methods with the help of explainable natural language descriptions. The code is available at https://github.com/CAV-Research-Lab/GeoVLM

Authors:Fynn Fromme, Hans Harder, Christine Allen-Blanchette, Sebastian Peitz
Title: Surrogate Modeling of 3D Rayleigh-Benard Convection with Equivariant Autoencoders
Abstract:
The use of machine learning for modeling, understanding, and controlling large-scale physics systems is quickly gaining in popularity, with examples ranging from electromagnetism over nuclear fusion reactors and magneto-hydrodynamics to fluid mechanics and climate modeling. These systems - governed by partial differential equations - present unique challenges regarding the large number of degrees of freedom and the complex dynamics over many scales both in space and time, and additional measures to improve accuracy and sample efficiency are highly desirable. We present an end-to-end equivariant surrogate model consisting of an equivariant convolutional autoencoder and an equivariant convolutional LSTM using $G$-steerable kernels. As a case study, we consider the three-dimensional Rayleigh-Bénard convection, which describes the buoyancy-driven fluid flow between a heated bottom and a cooled top plate. While the system is E(2)-equivariant in the horizontal plane, the boundary conditions break the translational equivariance in the vertical direction. Our architecture leverages vertically stacked layers of $D_4$-steerable kernels, with additional partial kernel sharing in the vertical direction for further efficiency improvement. We demonstrate significant gains in sample and parameter efficiency, as well as a better scaling to more complex dynamics. The accompanying code is available under https://github.com/FynnFromme/equivariant-rb-forecasting.

Authors:Yiru Jiao, Simeon C. Calvert, Sander van Cranenburgh, Hans van Lint
Title: Learning collision risk proactively from naturalistic driving data at scale
Abstract:
Accurately and proactively alerting drivers or automated systems to emerging collisions is crucial for road safety, particularly in highly interactive and complex urban environments. However, existing approaches to identifying potential collisions either require labour-intensive annotation of sparse risk, struggle to consider varying contextual factors, or are only useful in specific scenarios. To address these limits, this study introduces the Generalised Surrogate Safety Measure (GSSM), a new data-driven approach that learns collision risk exclusively from naturalistic driving without the need for crash or risk labels. GSSM captures the patterns of normal driving and estimates the extent to which a traffic interaction deviates from the norm towards an unsafe state. Diverse data from naturalistic driving, including motion kinematics, weather, lighting, etc., are used to train multiple GSSMs, which are tested with 2,591 reconstructed real-world crashes and near-crashes. These test events are also released here as the largest dataset of its kind to date. A basic GSSM using only instantaneous motion kinematics achieves an area under the precision-recall curve of 0.9 and secures a median time advance of 2.6 seconds to prevent potential collisions. Additional interaction patterns and contextual factors provide further performance gains. Across various types of collision risk scenarios (such as rear-end, merging, and turning interactions), the accuracy and timeliness of GSSM consistently outperforms existing baselines. GSSM therefore establishes a scalable, context-aware, and generalisable foundation for proactively quantifying collision risk in traffic interactions. This can support and facilitate autonomous driving systems, traffic safety assessment, and road emergency management. Code and experiment data are openly accessible at https://github.com/Yiru-Jiao/GSSM.

Authors:Pengxin Guo, Yinong Wang, Wei Li, Mengting Liu, Ming Li, Jinkai Zheng, Liangqiong Qu
Title: Exploring Federated Pruning for Large Language Models
Abstract:
LLM pruning has emerged as a promising technology for compressing LLMs, enabling their deployment on resource-limited devices. However, current methodologies typically require access to public calibration samples, which can be challenging to obtain in privacy-sensitive domains. To address this issue, we introduce FedPrLLM, a comprehensive federated pruning framework designed for the privacy-preserving compression of LLMs. In FedPrLLM, each client only needs to calculate a pruning mask matrix based on its local calibration data and share it with the server to prune the global model. This approach allows for collaborative pruning of the global model with the knowledge of each client while maintaining local data privacy. Additionally, we conduct extensive experiments to explore various possibilities within the FedPrLLM framework, including different comparison groups, pruning strategies, and the decision to scale weights. Our extensive evaluation reveals that one-shot pruning with layer comparison and no weight scaling is the optimal choice within the FedPrLLM framework. We hope our work will help guide future efforts in pruning LLMs in privacy-sensitive fields. Our code is available at https://github.com/Pengxin-Guo/FedPrLLM.

Authors:Jessica Foo, Pradyumna Shyama Prasad, Shaun Khoo
Title: Know Or Not: a library for evaluating out-of-knowledge base robustness
Abstract:
While the capabilities of large language models (LLMs) have progressed significantly, their use in high-stakes applications have been limited due to risks of hallucination. One key approach in reducing hallucination is retrieval-augmented generation (RAG), but even in such setups, LLMs may still hallucinate when presented with questions outside of the knowledge base. Such behavior is unacceptable in high-stake applications where LLMs are expected to abstain from answering queries it does not have sufficient context on. In this work, we present a novel methodology for systematically evaluating out-of-knowledge base (OOKB) robustness of LLMs (whether LLMs know or do not know) in the RAG setting, without the need for manual annotation of gold standard answers. We implement our methodology in knowornot, an open-source library that enables users to develop their own customized evaluation data and pipelines for OOKB robustness. knowornot comprises four main features. Firstly, it provides a unified, high-level API that streamlines the process of setting up and running robustness benchmarks. Secondly, its modular architecture emphasizes extensibility and flexibility, allowing users to easily integrate their own LLM clients and RAG settings. Thirdly, its rigorous data modeling design ensures experiment reproducibility, reliability and traceability. Lastly, it implements a comprehensive suite of tools for users to customize their pipelines. We demonstrate the utility of knowornot by developing a challenging benchmark, PolicyBench, which spans four Question-Answer (QA) chatbots on government policies, and analyze its OOKB robustness. The source code of knowornot is available https://github.com/govtech-responsibleai/KnowOrNot.

Authors:Rodrigo Fritz, Pablo Suárez-Serrato, Victor Mijangos, Anayanzi D. Martinez-Hernandez, Eduardo Ivan Velazquez Richards
Title: EuLearn: A 3D database for learning Euler characteristics
Abstract:
We present EuLearn, the first surface datasets equitably representing a diversity of topological types. We designed our embedded surfaces of uniformly varying genera relying on random knots, thus allowing our surfaces to knot with themselves. EuLearn contributes new topological datasets of meshes, point clouds, and scalar fields in 3D. We aim to facilitate the training of machine learning systems that can discern topological features. We experimented with specific emblematic 3D neural network architectures, finding that their vanilla implementations perform poorly on genus classification. To enhance performance, we developed a novel, non-Euclidean, statistical sampling method adapted to graph and manifold data. We also introduce adjacency-informed adaptations of PointNet and Transformer architectures that rely on our non-Euclidean sampling strategy. Our results demonstrate that incorporating topological information into deep learning workflows significantly improves performance on these otherwise challenging EuLearn datasets.

Authors:Dan Ofer, Michal Linial, Dafna Shahaf
Title: InterFeat: A Pipeline for Finding Interesting Scientific Features
Abstract:
Finding interesting phenomena is the core of scientific discovery, but it is a manual, ill-defined concept. We present an integrative pipeline for automating the discovery of interesting simple hypotheses (feature-target relations with effect direction and a potential underlying mechanism) in structured biomedical data. The pipeline combines machine learning, knowledge graphs, literature search and Large Language Models. We formalize "interestingness" as a combination of novelty, utility and plausibility. On 8 major diseases from the UK Biobank, our pipeline consistently recovers risk factors years before their appearance in the literature. 40--53% of our top candidates were validated as interesting, compared to 0--7% for a SHAP-based baseline. Overall, 28% of 109 candidates were interesting to medical experts. The pipeline addresses the challenge of operationalizing "interestingness" scalably and for any target. We release data and code: https://github.com/LinialLab/InterFeat

Authors:Zhipeng Hou, Junyi Tang, Yipeng Wang
Title: HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems
Abstract:
Recent advancements in Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) have demonstrated tremendous potential in diverse task scenarios. Nonetheless, existing agentic systems typically rely on predefined agent-role design spaces and static communication structures, limiting their adaptability as well as flexibility in complex interaction environments and leading to subpar performance on highly specialized and expert-level tasks. To address these issues, we introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture. Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution. Particularly, subtask execution is reformulated as a structured workflow search problem, where Monte Carlo Tree Search (MCTS) systematically explores the agentic action space to construct optimal reasoning trajectories. Additionally, as the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts. Empirical evaluations on Code Generation (HumanEval), General Reasoning (MMLU), and Arithmetic Reasoning (MATH) benchmark datasets highlight the effectiveness of HALO, yielding a 14.4% average improvement over state-of-the-art baselines. Notably, HALO achieves up to 13.3% performance gain on the Moral Scenarios subject in the MMLU benchmark and up to 19.6% performance gain on the Algebra subarea in the MATH benchmark, indicating its advanced proficiency in tackling highly specialized and expert-level tasks. The code repository is available at https://github.com/23japhone/HALO.

Authors:Khanh-Tung Tran, Barry O'Sullivan, Hoang D. Nguyen
Title: IRLBench: A Multi-modal, Culturally Grounded, Parallel Irish-English Benchmark for Open-Ended LLM Reasoning Evaluation
Abstract:
Recent advances in Large Language Models (LLMs) have demonstrated promising knowledge and reasoning abilities, yet their performance in multilingual and low-resource settings remains underexplored. Existing benchmarks often exhibit cultural bias, restrict evaluation to text-only, rely on multiple-choice formats, and, more importantly, are limited for extremely low-resource languages. To address these gaps, we introduce IRLBench, presented in parallel English and Irish, which is considered definitely endangered by UNESCO. Our benchmark consists of 12 representative subjects developed from the 2024 Irish Leaving Certificate exams, enabling fine-grained analysis of model capabilities across domains. By framing the task as long-form generation and leveraging the official marking scheme, it does not only support a comprehensive evaluation of correctness but also language fidelity. Our extensive experiments of leading closed-source and open-source LLMs reveal a persistent performance gap between English and Irish, in which models produce valid Irish responses less than 80\% of the time, and answer correctly 55.8\% of the time compared to 76.2\% in English for the best-performing model. We release IRLBench (https://huggingface.co/datasets/ReliableAI/IRLBench) and an accompanying evaluation codebase (https://github.com/ReML-AI/IRLBench) to enable future research on robust, culturally aware multilingual AI development.

Authors:Xingyuan Lu, Yuxi Liu, Dongyu Zhang, Zhiyao Wu, Jing Ren, Feng Xia
Title: EmoMeta: A Multimodal Dataset for Fine-grained Emotion Classification in Chinese Metaphors
Abstract:
Metaphors play a pivotal role in expressing emotions, making them crucial for emotional intelligence. The advent of multimodal data and widespread communication has led to a proliferation of multimodal metaphors, amplifying the complexity of emotion classification compared to single-mode scenarios. However, the scarcity of research on constructing multimodal metaphorical fine-grained emotion datasets hampers progress in this domain. Moreover, existing studies predominantly focus on English, overlooking potential variations in emotional nuances across languages. To address these gaps, we introduce a multimodal dataset in Chinese comprising 5,000 text-image pairs of metaphorical advertisements. Each entry is meticulously annotated for metaphor occurrence, domain relations and fine-grained emotion classification encompassing joy, love, trust, fear, sadness, disgust, anger, surprise, anticipation, and neutral. Our dataset is publicly accessible (https://github.com/DUTIR-YSQ/EmoMeta), facilitating further advancements in this burgeoning field.

Authors:Avinash Patil, Siru Tao, Amardeep Gedhu
Title: Evaluating Reasoning LLMs for Suicide Screening with the Columbia-Suicide Severity Rating Scale
Abstract:
Suicide prevention remains a critical public health challenge. While online platforms such as Reddit's r/SuicideWatch have historically provided spaces for individuals to express suicidal thoughts and seek community support, the advent of large language models (LLMs) introduces a new paradigm-where individuals may begin disclosing ideation to AI systems instead of humans. This study evaluates the capability of LLMs to perform automated suicide risk assessment using the Columbia-Suicide Severity Rating Scale (C-SSRS). We assess the zero-shot performance of six models-including Claude, GPT, Mistral, and LLaMA-in classifying posts across a 7-point severity scale (Levels 0-6). Results indicate that Claude and GPT closely align with human annotations, while Mistral achieves the lowest ordinal prediction error. Most models exhibit ordinal sensitivity, with misclassifications typically occurring between adjacent severity levels. We further analyze confusion patterns, misclassification sources, and ethical considerations, underscoring the importance of human oversight, transparency, and cautious deployment. Full code and supplementary materials are available at https://github.com/av9ash/llm_cssrs_code.

Authors:Xiaoyuan Liu, Tian Liang, Zhiwei He, Jiahao Xu, Wenxuan Wang, Pinjia He, Zhaopeng Tu, Haitao Mi, Dong Yu
Title: Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards
Abstract:
Large Language Models (LLMs) show great promise in complex reasoning, with Reinforcement Learning with Verifiable Rewards (RLVR) being a key enhancement strategy. However, a prevalent issue is ``superficial self-reflection'', where models fail to robustly verify their own outputs. We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this. RISE explicitly and simultaneously trains an LLM to improve both its problem-solving and self-verification abilities within a single, integrated RL process. The core mechanism involves leveraging verifiable rewards from an outcome verifier to provide on-the-fly feedback for both solution generation and self-verification tasks. In each iteration, the model generates solutions, then critiques its own on-policy generated solutions, with both trajectories contributing to the policy update. Extensive experiments on diverse mathematical reasoning benchmarks show that RISE consistently improves model's problem-solving accuracy while concurrently fostering strong self-verification skills. Our analyses highlight the advantages of online verification and the benefits of increased verification compute. Additionally, RISE models exhibit more frequent and accurate self-verification behaviors during reasoning. These advantages reinforce RISE as a flexible and effective path towards developing more robust and self-aware reasoners.

Authors:Ruoyu Wang, Yi Ma, Shenghua Gao
Title: Recollection from Pensieve: Novel View Synthesis via Learning from Uncalibrated Videos
Abstract:
Currently almost all state-of-the-art novel view synthesis and reconstruction models rely on calibrated cameras or additional geometric priors for training. These prerequisites significantly limit their applicability to massive uncalibrated data. To alleviate this requirement and unlock the potential for self-supervised training on large-scale uncalibrated videos, we propose a novel two-stage strategy to train a view synthesis model from only raw video frames or multi-view images, without providing camera parameters or other priors. In the first stage, we learn to reconstruct the scene implicitly in a latent space without relying on any explicit 3D representation. Specifically, we predict per-frame latent camera and scene context features, and employ a view synthesis model as a proxy for explicit rendering. This pretraining stage substantially reduces the optimization complexity and encourages the network to learn the underlying 3D consistency in a self-supervised manner. The learned latent camera and implicit scene representation have a large gap compared with the real 3D world. To reduce this gap, we introduce the second stage training by explicitly predicting 3D Gaussian primitives. We additionally apply explicit Gaussian Splatting rendering loss and depth projection loss to align the learned latent representations with physically grounded 3D geometry. In this way, Stage 1 provides a strong initialization and Stage 2 enforces 3D consistency - the two stages are complementary and mutually beneficial. Extensive experiments demonstrate the effectiveness of our approach, achieving high-quality novel view synthesis and accurate camera pose estimation, compared to methods that employ supervision with calibration, pose, or depth information. The code is available at https://github.com/Dwawayu/Pensieve.

Authors:Lingxiao Du, Fanqing Meng, Zongkai Liu, Zhixiang Zhou, Ping Luo, Qiaosheng Zhang, Wenqi Shao
Title: MM-PRM: Enhancing Multimodal Mathematical Reasoning with Scalable Step-Level Supervision
Abstract:
While Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language understanding, they still struggle with complex multi-step reasoning, often producing logically inconsistent or partially correct solutions. A key limitation lies in the lack of fine-grained supervision over intermediate reasoning steps. To address this, we propose MM-PRM, a process reward model trained within a fully automated, scalable framework. We first build MM-Policy, a strong multimodal model trained on diverse mathematical reasoning data. Then, we construct MM-K12, a curated dataset of 10,000 multimodal math problems with verifiable answers, which serves as seed data. Leveraging a Monte Carlo Tree Search (MCTS)-based pipeline, we generate over 700k step-level annotations without human labeling. The resulting PRM is used to score candidate reasoning paths in the Best-of-N inference setup and achieves significant improvements across both in-domain (MM-K12 test set) and out-of-domain (OlympiadBench, MathVista, etc.) benchmarks. Further analysis confirms the effectiveness of soft labels, smaller learning rates, and path diversity in optimizing PRM performance. MM-PRM demonstrates that process supervision is a powerful tool for enhancing the logical robustness of multimodal reasoning systems. We release all our codes and data at https://github.com/ModalMinds/MM-PRM.

Authors:Liang Chen, Hongcheng Gao, Tianyu Liu, Zhiqi Huang, Flood Sung, Xinyu Zhou, Yuxin Wu, Baobao Chang
Title: G1: Bootstrapping Perception and Reasoning Abilities of Vision-Language Model via Reinforcement Learning
Abstract:
Vision-Language Models (VLMs) excel in many direct multimodal tasks but struggle to translate this prowess into effective decision-making within interactive, visually rich environments like games. This ``knowing-doing'' gap significantly limits their potential as autonomous agents, as leading VLMs often performing badly in simple games. To address this, we introduce VLM-Gym, a curated reinforcement learning (RL) environment featuring diverse visual games with unified interfaces and adjustable, compositional difficulty, specifically designed for scalable multi-game parallel training. Leveraging VLM-Gym, we train G0 models using pure RL-driven self-evolution, which demonstrate emergent perception and reasoning patterns. To further mitigate challenges arising from game diversity, we develop G1 models. G1 incorporates a perception-enhanced cold start prior to RL fine-tuning. Our resulting G1 models consistently surpass their teacher across all games and outperform leading proprietary models like Claude-3.7-Sonnet-Thinking. Systematic analysis reveals an intriguing finding: perception and reasoning abilities mutually bootstrap each other throughout the RL training process. Source code including VLM-Gym and RL training are released at https://github.com/chenllliang/G1 to foster future research in advancing VLMs as capable interactive agents.

Authors:Zhuozhao Hu, Kaishen Yuan, Xin Liu, Zitong Yu, Yuan Zong, Jingang Shi, Huanjing Yue, Jingyu Yang
Title: FEALLM: Advancing Facial Emotion Analysis in Multimodal Large Language Models with Emotional Synergy and Reasoning
Abstract:
Facial Emotion Analysis (FEA) plays a crucial role in visual affective computing, aiming to infer a person's emotional state based on facial data. Scientifically, facial expressions (FEs) result from the coordinated movement of facial muscles, which can be decomposed into specific action units (AUs) that provide detailed emotional insights. However, traditional methods often struggle with limited interpretability, constrained generalization and reasoning abilities. Recently, Multimodal Large Language Models (MLLMs) have shown exceptional performance in various visual tasks, while they still face significant challenges in FEA due to the lack of specialized datasets and their inability to capture the intricate relationships between FEs and AUs. To address these issues, we introduce a novel FEA Instruction Dataset that provides accurate and aligned FE and AU descriptions and establishes causal reasoning relationships between them, followed by constructing a new benchmark, FEABench. Moreover, we propose FEALLM, a novel MLLM architecture designed to capture more detailed facial information, enhancing its capability in FEA tasks. Our model demonstrates strong performance on FEABench and impressive generalization capability through zero-shot evaluation on various datasets, including RAF-DB, AffectNet, BP4D, and DISFA, showcasing its robustness and effectiveness in FEA tasks. The dataset and code will be available at https://github.com/953206211/FEALLM.

Authors:Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, Juanzi Li
Title: AdaptThink: Reasoning Models Can Learn When to Think
Abstract:
Recently, large reasoning models have achieved impressive performance on various tasks by employing human-like deep thinking. However, the lengthy thinking process substantially increases inference overhead, making efficiency a critical bottleneck. In this work, we first demonstrate that NoThinking, which prompts the reasoning model to skip thinking and directly generate the final solution, is a better choice for relatively simple tasks in terms of both performance and efficiency. Motivated by this, we propose AdaptThink, a novel RL algorithm to teach reasoning models to choose the optimal thinking mode adaptively based on problem difficulty. Specifically, AdaptThink features two core components: (1) a constrained optimization objective that encourages the model to choose NoThinking while maintaining the overall performance; (2) an importance sampling strategy that balances Thinking and NoThinking samples during on-policy training, thereby enabling cold start and allowing the model to explore and exploit both thinking modes throughout the training process. Our experiments indicate that AdaptThink significantly reduces the inference costs while further enhancing performance. Notably, on three math datasets, AdaptThink reduces the average response length of DeepSeek-R1-Distill-Qwen-1.5B by 53% and improves its accuracy by 2.4%, highlighting the promise of adaptive thinking-mode selection for optimizing the balance between reasoning quality and efficiency. Our codes and models are available at https://github.com/THU-KEG/AdaptThink.

Authors:Peiyuan Zhang, Yongqi Chen, Haofeng Huang, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing, Hao Zhang
Title: VSA: Faster Video Diffusion with Trainable Sparse Attention
Abstract:
Scaling video diffusion transformers (DiTs) is limited by their quadratic 3D attention, even though most of the attention mass concentrates on a small subset of positions. We turn this observation into VSA, a trainable, hardware-efficient sparse attention that replaces full attention at \emph{both} training and inference. In VSA, a lightweight coarse stage pools tokens into tiles and identifies high-weight \emph{critical tokens}; a fine stage computes token-level attention only inside those tiles subjecting to block computing layout to ensure hard efficiency. This leads to a single differentiable kernel that trains end-to-end, requires no post-hoc profiling, and sustains 85\% of FlashAttention3 MFU. We perform a large sweep of ablation studies and scaling-law experiments by pretraining DiTs from 60M to 1.4B parameters. VSA reaches a Pareto point that cuts training FLOPS by 2.53$\times$ with no drop in diffusion loss. Retrofitting the open-source Wan-2.1 model speeds up attention time by 6$\times$ and lowers end-to-end generation time from 31s to 18s with comparable quality. These results establish trainable sparse attention as a practical alternative to full attention and a key enabler for further scaling of video diffusion models. Code will be available at https://github.com/hao-ai-lab/FastVideo.

Authors:David Anugraha, Zilu Tang, Lester James V. Miranda, Hanyang Zhao, Mohammad Rifqi Farhansyah, Garry Kuwanto, Derry Wijaya, Genta Indra Winata
Title: R3: Robust Rubric-Agnostic Reward Models
Abstract:
Reward models are essential for aligning language model outputs with human preferences, yet existing approaches often lack both controllability and interpretability. These models are typically optimized for narrow objectives, limiting their generalizability to broader downstream tasks. Moreover, their scalar outputs are difficult to interpret without contextual reasoning. To address these limitations, we introduce $\shortmethodname$, a novel reward modeling framework that is rubric-agnostic, generalizable across evaluation dimensions, and provides interpretable, reasoned score assignments. $\shortmethodname$ enables more transparent and flexible evaluation of language models, supporting robust alignment with diverse human values and use cases. Our models, data, and code are available as open source at https://github.com/rubricreward/r3.

Authors:Nam V. Nguyen, Huy Nguyen, Quang Pham, Van Nguyen, Savitha Ramasamy, Nhat Ho
Title: CompeteSMoE -- Statistically Guaranteed Mixture of Experts Training via Competition
Abstract:
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width. However, we argue that effective SMoE training remains challenging because of the suboptimal routing process where experts that perform computation do not directly contribute to the routing process. In this work, we propose competition, a novel mechanism to route tokens to experts with the highest neural response. Theoretically, we show that the competition mechanism enjoys a better sample efficiency than the traditional softmax routing. Furthermore, we develop CompeteSMoE, a simple yet effective algorithm to train large language models by deploying a router to learn the competition policy, thus enjoying strong performances at a low training overhead. Our extensive empirical evaluations on both the visual instruction tuning and language pre-training tasks demonstrate the efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art SMoE strategies. We have made the implementation available at: https://github.com/Fsoft-AIC/CompeteSMoE. This work is an improved version of the previous study at arXiv:2402.02526

Authors:Gongfan Fang, Xinyin Ma, Xinchao Wang
Title: Thinkless: LLM Learns When to Think
Abstract:
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference. However, applying elaborate reasoning for all queries often results in substantial computational inefficiencies, particularly when many problems admit straightforward solutions. This motivates an open question: Can LLMs learn when to think? To answer this, we propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning, based on both task complexity and the model's ability. Thinkless is trained under a reinforcement learning paradigm and employs two control tokens, for concise responses and for detailed reasoning. At the core of our method is a Decoupled Group Relative Policy Optimization (DeGRPO) algorithm, which decomposes the learning objective of hybrid reasoning into two components: (1) a control token loss that governs the selection of the reasoning mode, and (2) a response loss that improves the accuracy of the generated answers. This decoupled formulation enables fine-grained control over the contributions of each objective, stabilizing training and effectively preventing collapse observed in vanilla GRPO. Empirically, on several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%, significantly improving the efficiency of Reasoning Language Models. The code is available at https://github.com/VainF/Thinkless

Authors:Nimrod Berman, Ilan Naiman, Moshe Eliasof, Hedi Zisling, Omri Azencot
Title: One-Step Offline Distillation of Diffusion-based Models via Koopman Modeling
Abstract:
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model KDM, a novel offline distillation approach grounded in Koopman theory-a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. Empirically, KDM achieves state-of-the-art performance across standard offline distillation benchmarks, improving FID scores by up to 40% in a single generation step. All implementation details and code for the experimental setups are provided in our GitHub - https://github.com/azencot-group/KDM, or in our project page - https://sites.google.com/view/koopman-distillation-model.

Authors:Shuqing Luo, Pingzhi Li, Jie Peng, Hanrui Wang, Yang, Zhao, Yu, Cao, Yu Cheng, Tianlong Chen
Title: Occult: Optimizing Collaborative Communication across Experts for Accelerated Parallel MoE Training and Inference
Abstract:
Mixture-of-experts (MoE) architectures could achieve impressive computational efficiency with expert parallelism, which relies heavily on all-to-all communication across devices. Unfortunately, such communication overhead typically constitutes a significant portion of the total runtime, hampering the scalability of distributed training and inference for modern MoE models (consuming over $40\%$ runtime in large-scale training). In this paper, we first define collaborative communication to illustrate this intrinsic limitation, and then propose system- and algorithm-level innovations to reduce communication costs. Specifically, given a pair of experts co-activated by one token, we call them "collaborated", which comprises $2$ cases as intra- and inter-collaboration, depending on whether they are kept on the same device. Our pilot investigations reveal that augmenting the proportion of intra-collaboration can accelerate expert parallelism at scale. It motivates us to strategically optimize collaborative communication for accelerated MoE training and inference, dubbed Occult. Our designs are capable of either delivering exact results with reduced communication cost or controllably minimizing the cost with collaboration pruning, materialized by modified fine-tuning. Comprehensive experiments on various MoE-LLMs demonstrate that Occult can be faster than popular state-of-the-art inference or training frameworks (more than $1.5\times$ speed up across multiple tasks and models) with comparable or superior quality compared to the standard fine-tuning. Code is available at $\href{https://github.com/UNITES-Lab/Occult}{https://github.com/UNITES-Lab/Occult}$.

Authors:Paula Feldman, Martin Sinnona, Claudio Delrieux, Viviana Siless, Emmanuel Iarussi
Title: VesselGPT: Autoregressive Modeling of Vascular Geometry
Abstract:
Anatomical trees are critical for clinical diagnosis and treatment planning, yet their complex and diverse geometry make accurate representation a significant challenge. Motivated by the latest advances in large language models, we introduce an autoregressive method for synthesizing anatomical trees. Our approach first embeds vessel structures into a learned discrete vocabulary using a VQ-VAE architecture, then models their generation autoregressively with a GPT-2 model. This method effectively captures intricate geometries and branching patterns, enabling realistic vascular tree synthesis. Comprehensive qualitative and quantitative evaluations reveal that our technique achieves high-fidelity tree reconstruction with compact discrete representations. Moreover, our B-spline representation of vessel cross-sections preserves critical morphological details that are often overlooked in previous' methods parameterizations. To the best of our knowledge, this work is the first to generate blood vessels in an autoregressive manner. Code is available at https://github.com/LIA-DiTella/VesselGPT-MICCAI.

Authors:Gabriele Spadaro, Alberto Presta, Jhony H. Giraldo, Marco Grangetto, Wei Hu, Giuseppe Valenzise, Attilio Fiandrotti, Enzo Tartaglione
Title: Denoising Diffusion Probabilistic Model for Point Cloud Compression at Low Bit-Rates
Abstract:
Efficient compression of low-bit-rate point clouds is critical for bandwidth-constrained applications. However, existing techniques mainly focus on high-fidelity reconstruction, requiring many bits for compression. This paper proposes a "Denoising Diffusion Probabilistic Model" (DDPM) architecture for point cloud compression (DDPM-PCC) at low bit-rates. A PointNet encoder produces the condition vector for the generation, which is then quantized via a learnable vector quantizer. This configuration allows to achieve a low bitrates while preserving quality. Experiments on ShapeNet and ModelNet40 show improved rate-distortion at low rates compared to standardized and state-of-the-art approaches. We publicly released the code at https://github.com/EIDOSLAB/DDPM-PCC.

Authors:Qiguang Chen, Libo Qin, Jinhao Liu, Yue Liao, Jiaqi Wang, Jingxuan Zhou, Wanxiang Che
Title: RBF++: Quantifying and Optimizing Reasoning Boundaries across Measurable and Unmeasurable Capabilities for Chain-of-Thought Reasoning
Abstract:
Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models (LLMs) on complex tasks, spurring research into its underlying mechanisms. However, two primary challenges remain for real-world applications: (1) the lack of quantitative metrics and actionable guidelines for evaluating and optimizing measurable boundaries of CoT capability, and (2) the absence of methods to assess boundaries of unmeasurable CoT capability, such as multimodal perception. To address these gaps, we introduce the Reasoning Boundary Framework++ (RBF++). To tackle the first challenge, we define the reasoning boundary (RB) as the maximum limit of CoT performance. We also propose a combination law for RBs, enabling quantitative analysis and offering actionable guidance across various CoT tasks. For the second challenge, particularly in multimodal scenarios, we introduce a constant assumption, which replaces unmeasurable RBs with scenario-specific constants. Additionally, we propose the reasoning boundary division mechanism, which divides unmeasurable RBs into two sub-boundaries, facilitating the quantification and optimization of both unmeasurable domain knowledge and multimodal perception capabilities. Extensive experiments involving 38 models across 13 tasks validate the feasibility of our framework in cross-modal settings. Additionally, we evaluate 10 CoT strategies, offer insights into optimization and decay from two complementary perspectives, and expand evaluation benchmarks for measuring RBs in LLM reasoning. We hope this work advances the understanding of RBs and optimization strategies in LLMs. Code and data are available at https://github.com/LightChen233/reasoning-boundary.

Authors:Alice Plebe, Timothy Douglas, Diana Riazi, R. Maria del Rio-Chanona
Title: I'll believe it when I see it: Images increase misinformation sharing in Vision-Language Models
Abstract:
Large language models are increasingly integrated into news recommendation systems, raising concerns about their role in spreading misinformation. In humans, visual content is known to boost credibility and shareability of information, yet its effect on vision-language models (VLMs) remains unclear. We present the first study examining how images influence VLMs' propensity to reshare news content, whether this effect varies across model families, and how persona conditioning and content attributes modulate this behavior. To support this analysis, we introduce two methodological contributions: a jailbreaking-inspired prompting strategy that elicits resharing decisions from VLMs while simulating users with antisocial traits and political alignments; and a multimodal dataset of fact-checked political news from PolitiFact, paired with corresponding images and ground-truth veracity labels. Experiments across model families reveal that image presence increases resharing rates by 4.8% for true news and 15.0% for false news. Persona conditioning further modulates this effect: Dark Triad traits amplify resharing of false news, whereas Republican-aligned profiles exhibit reduced veracity sensitivity. Of all the tested models, only Claude-3-Haiku demonstrates robustness to visual misinformation. These findings highlight emerging risks in multimodal model behavior and motivate the development of tailored evaluation frameworks and mitigation strategies for personalized AI systems. Code and dataset are available at: https://github.com/3lis/misinfo_vlm

Authors:Gabriel de Albuquerque Gleizer
Title: Output behavior equivalence and simultaneous subspace identification of systems and faults
Abstract:
We address the problem of identifying a system subject to additive faults, while simultaneously reconstructing the fault signal via subspace methods. We do not require nominal data for the identification, neither do we impose any assumption on the class of faults, e.g., sensor or actuator faults. We show that, under mild assumptions on the fault signal, standard PI-MOESP can recover the system matrices associated to the input-output subsystem. Then we introduce the concept of output behavior equivalence, which characterizes systems with the same output behavior set, and present a method to establish this equivalence from system matrices. Finally, we show how to estimate from data the complete set of fault matrices for which there exist a fault signal with minimal dimension that explains the data.

Authors:Yifu Cai, Xinyu Li, Mononito Goswami, Michał Wiliński, Gus Welter, Artur Dubrawski
Title: TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents
Abstract:
We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.

Authors:Anthony Zhou, Amir Barati Farimani
Title: Neural Functional: Learning Function to Scalar Maps for Neural PDE Surrogates
Abstract:
Many architectures for neural PDE surrogates have been proposed in recent years, largely based on neural networks or operator learning. In this work, we derive and propose a new architecture, the Neural Functional, which learns function to scalar mappings. Its implementation leverages insights from operator learning and neural fields, and we show the ability of neural functionals to implicitly learn functional derivatives. For the first time, this allows for an extension of Hamiltonian mechanics to neural PDE surrogates by learning the Hamiltonian functional and optimizing its functional derivatives. We demonstrate that the Hamiltonian Neural Functional can be an effective surrogate model through improved stability and conserving energy-like quantities on 1D and 2D PDEs. Beyond PDEs, functionals are prevalent in physics; functional approximation and learning with its gradients may find other uses, such as in molecular dynamics or design optimization.

Authors:Anthony Zhou, Amir Barati Farimani
Title: Hamiltonian Neural PDE Solvers through Functional Approximation
Abstract:
Designing neural networks within a Hamiltonian framework offers a principled way to ensure that conservation laws are respected in physical systems. While promising, these capabilities have been largely limited to discrete, analytically solvable systems. In contrast, many physical phenomena are governed by PDEs, which govern infinite-dimensional fields through Hamiltonian functionals and their functional derivatives. Building on prior work, we represent the Hamiltonian functional as a kernel integral parameterized by a neural field, enabling learnable function-to-scalar mappings and the use of automatic differentiation to calculate functional derivatives. This allows for an extension of Hamiltonian mechanics to neural PDE solvers by predicting a functional and learning in the gradient domain. We show that the resulting Hamiltonian Neural Solver (HNS) can be an effective surrogate model through improved stability and conserving energy-like quantities across 1D and 2D PDEs. This ability to respect conservation laws also allows HNS models to better generalize to longer time horizons or unseen initial conditions.

Authors:Lei Sheng, Shuai-Shuai Xu
Title: CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
Abstract:
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD private test set, our 7B model achieves 71.72\% execution accuracy, while the 32B model achieves 73.67\%. The code has been open sourced at https://github.com/CycloneBoy/csc_sql.

Authors:Tianshi Zheng, Zheye Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, Yangqiu Song
Title: From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery
Abstract:
Large Language Models (LLMs) are catalyzing a paradigm shift in scientific discovery, evolving from task-specific automation tools into increasingly autonomous agents and fundamentally redefining research processes and human-AI collaboration. This survey systematically charts this burgeoning field, placing a central focus on the changing roles and escalating capabilities of LLMs in science. Through the lens of the scientific method, we introduce a foundational three-level taxonomy-Tool, Analyst, and Scientist-to delineate their escalating autonomy and evolving responsibilities within the research lifecycle. We further identify pivotal challenges and future research trajectories such as robotic automation, self-improvement, and ethical governance. Overall, this survey provides a conceptual architecture and strategic foresight to navigate and shape the future of AI-driven scientific discovery, fostering both rapid innovation and responsible advancement. Github Repository: https://github.com/HKUST-KnowComp/Awesome-LLM-Scientific-Discovery.

Authors:Jieying Xue, Phuong Minh Nguyen, Minh Le Nguyen, Xin Liu
Title: JNLP at SemEval-2025 Task 11: Cross-Lingual Multi-Label Emotion Detection Using Generative Models
Abstract:
With the rapid advancement of global digitalization, users from different countries increasingly rely on social media for information exchange. In this context, multilingual multi-label emotion detection has emerged as a critical research area. This study addresses SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection. Our paper focuses on two sub-tracks of this task: (1) Track A: Multi-label emotion detection, and (2) Track B: Emotion intensity. To tackle multilingual challenges, we leverage pre-trained multilingual models and focus on two architectures: (1) a fine-tuned BERT-based classification model and (2) an instruction-tuned generative LLM. Additionally, we propose two methods for handling multi-label classification: the base method, which maps an input directly to all its corresponding emotion labels, and the pairwise method, which models the relationship between the input text and each emotion category individually. Experimental results demonstrate the strong generalization ability of our approach in multilingual emotion recognition. In Track A, our method achieved Top 4 performance across 10 languages, ranking 1st in Hindi. In Track B, our approach also secured Top 5 performance in 7 languages, highlighting its simplicity and effectiveness\footnote{Our code is available at https://github.com/yingjie7/mlingual_multilabel_emo_detection.

Authors:Chih-Kai Yang, Neo Ho, Yen-Ting Piao, Hung-yi Lee
Title: SAKURA: On the Multi-hop Reasoning of Large Audio-Language Models Based on Speech and Audio Information
Abstract:
Large audio-language models (LALMs) extend the large language models with multimodal understanding in speech, audio, etc. While their performances on speech and audio-processing tasks are extensively studied, their reasoning abilities remain underexplored. Particularly, their multi-hop reasoning, the ability to recall and integrate multiple facts, lacks systematic evaluation. Existing benchmarks focus on general speech and audio-processing tasks, conversational abilities, and fairness but overlook this aspect. To bridge this gap, we introduce SAKURA, a benchmark assessing LALMs' multi-hop reasoning based on speech and audio information. Results show that LALMs struggle to integrate speech/audio representations for multi-hop reasoning, even when they extract the relevant information correctly, highlighting a fundamental challenge in multimodal reasoning. Our findings expose a critical limitation in LALMs, offering insights and resources for future research.

Authors:Lincan Cai, Jingxuan Kang, Shuang Li, Wenxuan Ma, Binhui Xie, Zhida Qin, Jian Liang
Title: From Local Details to Global Context: Advancing Vision-Language Models with Attention-Based Selection
Abstract:
Pretrained vision-language models (VLMs), e.g., CLIP, demonstrate impressive zero-shot capabilities on downstream tasks. Prior research highlights the crucial role of visual augmentation techniques, like random cropping, in alignment with fine-grained class descriptions generated by large language models (LLMs), significantly enhancing zero-shot performance by incorporating multi-view information. However, the inherent randomness of these augmentations can inevitably introduce background artifacts and cause models to overly focus on local details, compromising global semantic understanding. To address these issues, we propose an \textbf{A}ttention-\textbf{B}ased \textbf{S}election (\textbf{ABS}) method from local details to global context, which applies attention-guided cropping in both raw images and feature space, supplement global semantic information through strategic feature selection. Additionally, we introduce a soft matching technique to effectively filter LLM descriptions for better alignment. \textbf{ABS} achieves state-of-the-art performance on out-of-distribution generalization and zero-shot classification tasks. Notably, \textbf{ABS} is training-free and even rivals few-shot and test-time adaptation methods. Our code is available at \href{https://github.com/BIT-DA/ABS}{\textcolor{darkgreen}{https://github.com/BIT-DA/ABS}}.

Authors:Younghyun Kim, Jongheon Jeong, Sangkyung Kwak, Kyungmin Lee, Juho Lee, Jinwoo Shin
Title: StarFT: Robust Fine-tuning of Zero-shot Models via Spuriosity Alignment
Abstract:
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions. We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features. Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.

Authors:Qingling Shu, Sibao Chen, Xiao Wang, Zhihui You, Wei Lu, Jin Tang, Bin Luo
Title: Semantic Change Detection of Roads and Bridges: A Fine-grained Dataset and Multimodal Frequency-driven Detector
Abstract:
Accurate detection of road and bridge changes is crucial for urban planning and transportation management, yet presents unique challenges for general change detection (CD). Key difficulties arise from maintaining the continuity of roads and bridges as linear structures and disambiguating visually similar land covers (e.g., road construction vs. bare land). Existing spatial-domain models struggle with these issues, further hindered by the lack of specialized, semantically rich datasets. To fill these gaps, we introduce the Road and Bridge Semantic Change Detection (RB-SCD) dataset. As the first benchmark to systematically target semantic change detection of roads and bridges, RB-SCD offers comprehensive fine-grained annotations for 11 semantic change categories. This enables a detailed analysis of traffic infrastructure evolution. Building on this, we propose a novel framework, the Multimodal Frequency-Driven Change Detector (MFDCD). MFDCD integrates multimodal features in the frequency domain through two key components: (1) the Dynamic Frequency Coupler (DFC), which leverages wavelet transform to decompose visual features, enabling it to robustly model the continuity of linear transitions; and (2) the Textual Frequency Filter (TFF), which encodes semantic priors into frequency-domain graphs and applies filter banks to align them with visual features, resolving semantic ambiguities. Experiments demonstrate the state-of-the-art performance of MFDCD on RB-SCD and three public CD datasets. The code will be available at https://github.com/DaGuangDaGuang/RB-SCD.

Authors:Sand. ai, Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang, Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli Su, Hanwen Sun, Hong Pan, Jie Wang, Jiexin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang, Yuqiao Li
Title: MAGI-1: Autoregressive Video Generation at Scale
Abstract:
We present MAGI-1, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 facilitates controllable generation via chunk-wise prompting and supports real-time, memory-efficient deployment by maintaining constant peak inference cost, regardless of video length. The largest variant of MAGI-1 comprises 24 billion parameters and supports context lengths of up to 4 million tokens, demonstrating the scalability and robustness of our approach. The code and models are available at https://github.com/SandAI-org/MAGI-1 and https://github.com/SandAI-org/MagiAttention. The product can be accessed at https://sand.ai.

Authors:Yuzhen Chen, Hojun Son, Arpan Kusari
Title: MatPredict: a dataset and benchmark for learning material properties of diverse indoor objects
Abstract:
Determining material properties from camera images can expand the ability to identify complex objects in indoor environments, which is valuable for consumer robotics applications. To support this, we introduce MatPredict, a dataset that combines the high-quality synthetic objects from Replica dataset with MatSynth dataset's material properties classes - to create objects with diverse material properties. We select 3D meshes of specific foreground objects and render them with different material properties. In total, we generate \textbf{18} commonly occurring objects with \textbf{14} different materials. We showcase how we provide variability in terms of lighting and camera placement for these objects. Next, we provide a benchmark for inferring material properties from visual images using these perturbed models in the scene, discussing the specific neural network models involved and their performance based on different image comparison metrics. By accurately simulating light interactions with different materials, we can enhance realism, which is crucial for training models effectively through large-scale simulations. This research aims to revolutionize perception in consumer robotics. The dataset is provided \href{https://huggingface.co/datasets/UMTRI/MatPredict}{here} and the code is provided \href{https://github.com/arpan-kusari/MatPredict}{here}.

Authors:Zhengrui Ma, Yang Feng, Chenze Shao, Fandong Meng, Jie Zhou, Min Zhang
Title: Efficient Speech Language Modeling via Energy Distance in Continuous Latent Space
Abstract:
We introduce SLED, an alternative approach to speech language modeling by encoding speech waveforms into sequences of continuous latent representations and modeling them autoregressively using an energy distance objective. The energy distance offers an analytical measure of the distributional gap by contrasting simulated and target samples, enabling efficient training to capture the underlying continuous autoregressive distribution. By bypassing reliance on residual vector quantization, SLED avoids discretization errors and eliminates the need for the complicated hierarchical architectures common in existing speech language models. It simplifies the overall modeling pipeline while preserving the richness of speech information and maintaining inference efficiency. Empirical results demonstrate that SLED achieves strong performance in both zero-shot and streaming speech synthesis, showing its potential for broader applications in general-purpose speech language models.

Authors:Zihao Cheng, Hongru Wang, Zeming Liu, Yuhang Guo, Yuanfang Guo, Yunhong Wang, Haifeng Wang
Title: ToolSpectrum : Towards Personalized Tool Utilization for Large Language Models
Abstract:
While integrating external tools into large language models (LLMs) enhances their ability to access real-time information and domain-specific services, existing approaches focus narrowly on functional tool selection following user instructions, overlooking the context-aware personalization in tool selection. This oversight leads to suboptimal user satisfaction and inefficient tool utilization, particularly when overlapping toolsets require nuanced selection based on contextual factors. To bridge this gap, we introduce ToolSpectrum, a benchmark designed to evaluate LLMs' capabilities in personalized tool utilization. Specifically, we formalize two key dimensions of personalization, user profile and environmental factors, and analyze their individual and synergistic impacts on tool utilization. Through extensive experiments on ToolSpectrum, we demonstrate that personalized tool utilization significantly improves user experience across diverse scenarios. However, even state-of-the-art LLMs exhibit the limited ability to reason jointly about user profiles and environmental factors, often prioritizing one dimension at the expense of the other. Our findings underscore the necessity of context-aware personalization in tool-augmented LLMs and reveal critical limitations for current models. Our data and code are available at https://github.com/Chengziha0/ToolSpectrum.

Authors:Yassine El Boudouri, Walter Nuninger, Julian Alvarez, Yvan Peter
Title: Role-Playing Evaluation for Large Language Models
Abstract:
Large Language Models (LLMs) demonstrate a notable capacity for adopting personas and engaging in role-playing. However, evaluating this ability presents significant challenges, as human assessments are resource-intensive and automated evaluations can be biased. To address this, we introduce Role-Playing Eval (RPEval), a novel benchmark designed to assess LLM role-playing capabilities across four key dimensions: emotional understanding, decision-making, moral alignment, and in-character consistency. This article details the construction of RPEval and presents baseline evaluations. Our code and dataset are available at https://github.com/yelboudouri/RPEval

Authors:Francesco Innocenti, El Mehdi Achour, Christopher L. Buckley
Title: $μ$PC: Scaling Predictive Coding to 100+ Layer Networks
Abstract:
The biological implausibility of backpropagation (BP) has motivated many alternative, brain-inspired algorithms that attempt to rely only on local information, such as predictive coding (PC) and equilibrium propagation. However, these algorithms have notoriously struggled to train very deep networks, preventing them from competing with BP in large-scale settings. Indeed, scaling PC networks (PCNs) has recently been posed as a challenge for the community (Pinchetti et al., 2024). Here, we show that 100+ layer PCNs can be trained reliably using a Depth-$μ$P parameterisation (Yang et al., 2023; Bordelon et al., 2023) which we call "$μ$PC". Through an extensive analysis of the scaling behaviour of PCNs, we reveal several pathologies that make standard PCNs difficult to train at large depths. We then show that, despite addressing only some of these instabilities, $μ$PC allows stable training of very deep (up to 128-layer) residual networks on simple classification tasks with competitive performance and little tuning compared to current benchmarks. Moreover, $μ$PC enables zero-shot transfer of both weight and activity learning rates across widths and depths. Our results have implications for other local algorithms and could be extended to convolutional and transformer architectures. Code for $μ$PC is made available as part of a JAX library for PCNs at https://github.com/thebuckleylab/jpc (Innocenti et al., 2024).

Authors:Ji Qi, Tam Thuc Do, Mingxiao Liu, Zhuoshi Pan, Yuzhe Li, Gene Cheung, H. Vicky Zhao
Title: Lightweight Transformer via Unrolling of Mixed Graph Algorithms for Traffic Forecast
Abstract:
To forecast traffic with both spatial and temporal dimensions, we unroll a mixed-graph-based optimization algorithm into a lightweight and interpretable transformer-like neural net. Specifically, we construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We formulate a prediction problem for the future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We construct an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$, which are akin to the self-attention mechanism in classical transformers. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically. Our code is available in https://github.com/SingularityUndefined/Unrolling-GSP-STForecast.

Authors:Chengtang Yao, Zhidan Liu, Jiaxi Zeng, Lidong Yu, Yuwei Wu, Yunde Jia
Title: 3D Visual Illusion Depth Estimation
Abstract:
3D visual illusion is a perceptual phenomenon where a two-dimensional plane is manipulated to simulate three-dimensional spatial relationships, making a flat artwork or object look three-dimensional in the human visual system. In this paper, we reveal that the machine visual system is also seriously fooled by 3D visual illusions, including monocular and binocular depth estimation. In order to explore and analyze the impact of 3D visual illusion on depth estimation, we collect a large dataset containing almost 3k scenes and 200k images to train and evaluate SOTA monocular and binocular depth estimation methods. We also propose a robust depth estimation framework that uses common sense from a vision-language model to adaptively select reliable depth from binocular disparity and monocular depth. Experiments show that SOTA monocular, binocular, and multi-view depth estimation approaches are all fooled by various 3D visual illusions, while our method achieves SOTA performance.

Authors:Hongrui Kou, Jingkai Li, Ziyu Wang, Zhouhang Lv, Yuxin Zhang, Cheng Wang
Title: PPTNet: A Hybrid Periodic Pattern-Transformer Architecture for Traffic Flow Prediction and Congestion Identification
Abstract:
Accurate prediction of traffic flow parameters and real time identification of congestion states are essential for the efficient operation of intelligent transportation systems. This paper proposes a Periodic Pattern Transformer Network (PPTNet) for traffic flow prediction, integrating periodic pattern extraction with the Transformer architecture, coupled with a fuzzy inference method for real-time congestion identification. Firstly, a high-precision traffic flow dataset (Traffic Flow Dataset for China's Congested Highways and Expressways, TF4CHE) suitable for congested highway scenarios in China is constructed based on drone aerial imagery data. Subsequently, the proposed PPTNet employs Fast Fourier Transform to capture multi-scale periodic patterns and utilizes two-dimensional Inception convolutions to efficiently extract intra and inter periodic features. A Transformer decoder dynamically models temporal dependencies, enabling accurate predictions of traffic density and speed. Finally, congestion probabilities are calculated in real-time using the predicted outcomes via a Mamdani fuzzy inference-based congestion identification module. Experimental results demonstrate that the proposed PPTNet significantly outperforms mainstream traffic prediction methods in prediction accuracy, and the congestion identification module effectively identifies real-time road congestion states, verifying the superiority and practicality of the proposed method in real-world traffic scenarios. Project page: https://github.com/ADSafetyJointLab/PPTNet.

Authors:Xiao Wu, Xiaoqing Zhang, Zunjie Xiao, Lingxi Hu, Risa Higashita, Jiang Liu
Title: Expert-Like Reparameterization of Heterogeneous Pyramid Receptive Fields in Efficient CNNs for Fair Medical Image Classification
Abstract:
Efficient convolutional neural network (CNN) architecture design has attracted growing research interests. However, they typically apply single receptive field (RF), small asymmetric RFs, or pyramid RFs to learn different feature representations, still encountering two significant challenges in medical image classification tasks: 1) They have limitations in capturing diverse lesion characteristics efficiently, e.g., tiny, coordination, small and salient, which have unique roles on the classification results, especially imbalanced medical image classification. 2) The predictions generated by those CNNs are often unfair/biased, bringing a high risk when employing them to real-world medical diagnosis conditions. To tackle these issues, we develop a new concept, Expert-Like Reparameterization of Heterogeneous Pyramid Receptive Fields (ERoHPRF), to simultaneously boost medical image classification performance and fairness. This concept aims to mimic the multi-expert consultation mode by applying the well-designed heterogeneous pyramid RF bag to capture lesion characteristics with varying significances effectively via convolution operations with multiple heterogeneous kernel sizes. Additionally, ERoHPRF introduces an expert-like structural reparameterization technique to merge its parameters with the two-stage strategy, ensuring competitive computation cost and inference speed through comparisons to a single RF. To manifest the effectiveness and generalization ability of ERoHPRF, we incorporate it into mainstream efficient CNN architectures. The extensive experiments show that our proposed ERoHPRF maintains a better trade-off than state-of-the-art methods in terms of medical image classification, fairness, and computation overhead. The code of this paper is available at https://github.com/XiaoLing12138/Expert-Like-Reparameterization-of-Heterogeneous-Pyramid-Receptive-Fields.

Authors:Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, Wenxi Chen, Yuanzhe Chen, Zhuo Chen, Jian Cong, Kai Li, Keliang Li, Siyou Li, Xinfeng Li, Xiquan Li, Zheng Lian, Yuzhe Liang, Minghao Liu, Zhikang Niu, Tianrui Wang, Yuping Wang, Yuxuan Wang, Yihao Wu, Guanrou Yang, Jianwei Yu, Ruibin Yuan, Zhisheng Zheng, Ziya Zhou, Haina Zhu, Wei Xue, Emmanouil Benetos, Kai Yu, Eng-Siong Chng, Xie Chen
Title: MMAR: A Challenging Benchmark for Deep Reasoning in Speech, Audio, Music, and Their Mix
Abstract:
We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area.

Authors:Yicheng Xiao, Lin Song, Yukang Chen, Yingmin Luo, Yuxin Chen, Yukang Gan, Wei Huang, Xiu Li, Xiaojuan Qi, Ying Shan
Title: MindOmni: Unleashing Reasoning Generation in Vision Language Models with RGPO
Abstract:
Recent text-to-image systems face limitations in handling multimodal inputs and complex reasoning tasks. We introduce MindOmni, a unified multimodal large language model that addresses these challenges by incorporating reasoning generation through reinforcement learning. MindOmni leverages a three-phase training strategy: i) design of a unified vision language model with a decoder-only diffusion module, ii) supervised fine-tuning with Chain-of-Thought (CoT) instruction data, and iii) our proposed Reasoning Generation Policy Optimization (RGPO) algorithm, utilizing multimodal feedback to effectively guide policy updates. Experimental results demonstrate that MindOmni outperforms existing models, achieving impressive performance on both understanding and generation benchmarks, meanwhile showcasing advanced fine-grained reasoning generation capabilities, especially with mathematical reasoning instruction. All codes will be made public at https://github.com/TencentARC/MindOmni

Authors:Federico Del Pup, Andrea Zanola, Louis Fabrice Tshimanga, Alessandra Bertoldo, Livio Finos, Manfredo Atzori
Title: The role of data partitioning on the performance of EEG-based deep learning models in supervised cross-subject analysis: a preliminary study
Abstract:
Deep learning is significantly advancing the analysis of electroencephalography (EEG) data by effectively discovering highly nonlinear patterns within the signals. Data partitioning and cross-validation are crucial for assessing model performance and ensuring study comparability, as they can produce varied results and data leakage due to specific signal properties (e.g., biometric). Such variability leads to incomparable studies and, increasingly, overestimated performance claims, which are detrimental to the field. Nevertheless, no comprehensive guidelines for proper data partitioning and cross-validation exist in the domain, nor is there a quantitative evaluation of their impact on model accuracy, reliability, and generalizability. To assist researchers in identifying optimal experimental strategies, this paper thoroughly investigates the role of data partitioning and cross-validation in evaluating EEG deep learning models. Five cross-validation settings are compared across three supervised cross-subject classification tasks (BCI, Parkinson's, and Alzheimer's disease detection) and four established architectures of increasing complexity (ShallowConvNet, EEGNet, DeepConvNet, and Temporal-based ResNet). The comparison of over 100,000 trained models underscores, first, the importance of using subject-based cross-validation strategies for evaluating EEG deep learning models, except when within-subject analyses are acceptable (e.g., BCI). Second, it highlights the greater reliability of nested approaches (N-LNSO) compared to non-nested counterparts, which are prone to data leakage and favor larger models overfitting to validation data. In conclusion, this work provides EEG deep learning researchers with an analysis of data partitioning and cross-validation and offers guidelines to avoid data leakage, currently undermining the domain with potentially overestimated performance claims.

Authors:Yuhao Qing, Boyu Zhu, Mingzhe Du, Zhijiang Guo, Terry Yue Zhuo, Qianru Zhang, Jie M. Zhang, Heming Cui, Siu-Ming Yiu, Dong Huang, See-Kiong Ng, Luu Anh Tuan
Title: EffiBench-X: A Multi-Language Benchmark for Measuring Efficiency of LLM-Generated Code
Abstract:
Existing code generation benchmarks primarily evaluate functional correctness, with limited focus on code efficiency and often restricted to a single language like Python. To address this gap, we introduce EffiBench-X, the first multi-language benchmark designed to measure the efficiency of LLM-generated code. EffiBench-X supports Python, C++, Java, JavaScript, Ruby, and Golang. It comprises competitive programming tasks with human-expert solutions as efficiency baselines. Evaluating state-of-the-art LLMs on EffiBench-X reveals that while models generate functionally correct code, they consistently underperform human experts in efficiency. Even the most efficient LLM-generated solutions (Qwen3-32B) achieve only around \textbf{62\%} of human efficiency on average, with significant language-specific variations. LLMs show better efficiency in Python, Ruby, and JavaScript than in Java, C++, and Golang. For instance, DeepSeek-R1's Python code is significantly more efficient than its Java code. These results highlight the critical need for research into LLM optimization techniques to improve code efficiency across diverse languages. The dataset and evaluation infrastructure are submitted and available at https://github.com/EffiBench/EffiBench-X.git and https://huggingface.co/datasets/EffiBench/effibench-x.

Authors:Jiaqi Li, Xiaolong Lin, Zhekai Li, Shixi Huang, Yuancheng Wang, Chaoren Wang, Zhenpeng Zhan, Zhizheng Wu
Title: DualCodec: A Low-Frame-Rate, Semantically-Enhanced Neural Audio Codec for Speech Generation
Abstract:
Neural audio codecs form the foundational building blocks for language model (LM)-based speech generation. Typically, there is a trade-off between frame rate and audio quality. This study introduces a low-frame-rate, semantically enhanced codec model. Existing approaches distill semantically rich self-supervised (SSL) representations into the first-layer codec tokens. This work proposes DualCodec, a dual-stream encoding approach that integrates SSL and waveform representations within an end-to-end codec framework. In this setting, DualCodec enhances the semantic information in the first-layer codec and enables the codec system to maintain high audio quality while operating at a low frame rate. Note that a low-frame-rate codec improves the efficiency of speech generation. Experimental results on audio codec and speech generation tasks confirm the effectiveness of the proposed DualCodec compared to state-of-the-art codec systems, such as Mimi Codec, SpeechTokenizer, DAC, and Encodec. Demos and codes are available at: https://dualcodec.github.io

Authors:Jiaqi Li, Xiaolong Lin, Zhekai Li, Shixi Huang, Yuancheng Wang, Chaoren Wang, Zhenpeng Zhan, Zhizheng Wu
Title: DualCodec: A Low-Frame-Rate, Semantically-Enhanced Neural Audio Codec for Speech Generation
Abstract:
Neural audio codecs form the foundational building blocks for language model (LM)-based speech generation. Typically, there is a trade-off between frame rate and audio quality. This study introduces a low-frame-rate, semantically enhanced codec model. Existing approaches distill semantically rich self-supervised (SSL) representations into the first-layer codec tokens. This work proposes DualCodec, a dual-stream encoding approach that integrates SSL and waveform representations within an end-to-end codec framework. In this setting, DualCodec enhances the semantic information in the first-layer codec and enables the codec system to maintain high audio quality while operating at a low frame rate. Note that a low-frame-rate codec improves the efficiency of speech generation. Experimental results on audio codec and speech generation tasks confirm the effectiveness of the proposed DualCodec compared to state-of-the-art codec systems, such as Mimi Codec, SpeechTokenizer, DAC, and Encodec. Demos are available at: https://dualcodec.github.io, code is available at: https://github.com/jiaqili3/DualCodec

Authors:Lorena Garcia-Foncillas Macias, Aaron Kujawa, Aya Elshalakany, Jonathan Shapey, Tom Vercauteren
Title: A generalisable head MRI defacing pipeline: Evaluation on 2,566 meningioma scans
Abstract:
Reliable MRI defacing techniques to safeguard patient privacy while preserving brain anatomy are critical for research collaboration. Existing methods often struggle with incomplete defacing or degradation of brain tissue regions. We present a robust, generalisable defacing pipeline for high-resolution MRI that integrates atlas-based registration with brain masking. Our method was evaluated on 2,566 heterogeneous clinical scans for meningioma and achieved a 99.92 per cent success rate (2,564/2,566) upon visual inspection. Excellent anatomical preservation is demonstrated with a Dice similarity coefficient of 0.9975 plus or minus 0.0023 between brain masks automatically extracted from the original and defaced volumes. Source code is available at https://github.com/cai4cai/defacing_pipeline.

Authors:Vinkle Srivastav, Juliette Puel, Jonathan Vappou, Elijah Van Houten, Paolo Cabras, Nicolas Padoy
Title: A Skull-Adaptive Framework for AI-Based 3D Transcranial Focused Ultrasound Simulation
Abstract:
Transcranial focused ultrasound (tFUS) is an emerging modality for non-invasive brain stimulation and therapeutic intervention, offering millimeter-scale spatial precision and the ability to target deep brain structures. However, the heterogeneous and anisotropic nature of the human skull introduces significant distortions to the propagating ultrasound wavefront, which require time-consuming patient-specific planning and corrections using numerical solvers for accurate targeting. To enable data-driven approaches in this domain, we introduce TFUScapes, the first large-scale, high-resolution dataset of tFUS simulations through anatomically realistic human skulls derived from T1-weighted MRI images. We have developed a scalable simulation engine pipeline using the k-Wave pseudo-spectral solver, where each simulation returns a steady-state pressure field generated by a focused ultrasound transducer placed at realistic scalp locations. In addition to the dataset, we present DeepTFUS, a deep learning model that estimates normalized pressure fields directly from input 3D CT volumes and transducer position. The model extends a U-Net backbone with transducer-aware conditioning, incorporating Fourier-encoded position embeddings and MLP layers to create global transducer embeddings. These embeddings are fused with U-Net encoder features via feature-wise modulation, dynamic convolutions, and cross-attention mechanisms. The model is trained using a combination of spatially weighted and gradient-sensitive loss functions, enabling it to approximate high-fidelity wavefields. The TFUScapes dataset is publicly released to accelerate research at the intersection of computational acoustics, neurotechnology, and deep learning. The project page is available at https://github.com/CAMMA-public/TFUScapes.

Authors:Baohao Liao, Hanze Dong, Yuhui Xu, Doyen Sahoo, Christof Monz, Junnan Li, Caiming Xiong
Title: Fractured Chain-of-Thought Reasoning
Abstract:
Inference-time scaling techniques have significantly bolstered the reasoning capabilities of large language models (LLMs) by harnessing additional computational effort at inference without retraining. Similarly, Chain-of-Thought (CoT) prompting and its extension, Long CoT, improve accuracy by generating rich intermediate reasoning trajectories, but these approaches incur substantial token costs that impede their deployment in latency-sensitive settings. In this work, we first show that truncated CoT, which stops reasoning before completion and directly generates the final answer, often matches full CoT sampling while using dramatically fewer tokens. Building on this insight, we introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling along three orthogonal axes: (1) the number of reasoning trajectories, (2) the number of final solutions per trajectory, and (3) the depth at which reasoning traces are truncated. Through extensive experiments on five diverse reasoning benchmarks and several model scales, we demonstrate that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget. Our analysis reveals how to allocate computation across these dimensions to maximize performance, paving the way for more efficient and scalable LLM reasoning. Code is available at https://github.com/BaohaoLiao/frac-cot.

Authors:Shanshan Liu, Noriki Nishida, Rumana Ferdous Munne, Narumi Tokunaga, Yuki Yamagata, Kouji Kozaki, Yuji Matsumoto
Title: MA-COIR: Leveraging Semantic Search Index and Generative Models for Ontology-Driven Biomedical Concept Recognition
Abstract:
Recognizing biomedical concepts in the text is vital for ontology refinement, knowledge graph construction, and concept relationship discovery. However, traditional concept recognition methods, relying on explicit mention identification, often fail to capture complex concepts not explicitly stated in the text. To overcome this limitation, we introduce MA-COIR, a framework that reformulates concept recognition as an indexing-recognition task. By assigning semantic search indexes (ssIDs) to concepts, MA-COIR resolves ambiguities in ontology entries and enhances recognition efficiency. Using a pretrained BART-based model fine-tuned on small datasets, our approach reduces computational requirements to facilitate adoption by domain experts. Furthermore, we incorporate large language models (LLMs)-generated queries and synthetic data to improve recognition in low-resource settings. Experimental results on three scenarios (CDR, HPO, and HOIP) highlight the effectiveness of MA-COIR in recognizing both explicit and implicit concepts without the need for mention-level annotations during inference, advancing ontology-driven concept recognition in biomedical domain applications. Our code and constructed data are available at https://github.com/sl-633/macoir-master.

Authors:Zhihe Yang, Xufang Luo, Zilong Wang, Dongqi Han, Zhiyuan He, Dongsheng Li, Yunjian Xu
Title: Do Not Let Low-Probability Tokens Over-Dominate in RL for LLMs
Abstract:
Reinforcement learning (RL) has become a cornerstone for enhancing the reasoning capabilities of large language models (LLMs), with recent innovations such as Group Relative Policy Optimization (GRPO) demonstrating exceptional effectiveness. In this study, we identify a critical yet underexplored issue in RL training: low-probability tokens disproportionately influence model updates due to their large gradient magnitudes. This dominance hinders the effective learning of high-probability tokens, whose gradients are essential for LLMs' performance but are substantially suppressed. To mitigate this interference, we propose two novel methods: Advantage Reweighting and Low-Probability Token Isolation (Lopti), both of which effectively attenuate gradients from low-probability tokens while emphasizing parameter updates driven by high-probability tokens. Our approaches promote balanced updates across tokens with varying probabilities, thereby enhancing the efficiency of RL training. Experimental results demonstrate that they substantially improve the performance of GRPO-trained LLMs, achieving up to a 46.2% improvement in K&K Logic Puzzle reasoning tasks. Our implementation is available at https://github.com/zhyang2226/AR-Lopti.

Authors:Han Deng, Yuan Meng, Shixiang Tang, Wanli Ouyang, Xinzhu Ma
Title: CPRet: A Dataset, Benchmark, and Model for Retrieval in Competitive Programming
Abstract:
Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem -- similar question retrieval -- to address this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code and Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate and Simplified-to-Full), built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. In addition, we develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks. Code and data are available at: https://github.com/coldchair/CPRet

Authors:Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, Weiwei Lin
Title: Temporal Query Network for Efficient Multivariate Time Series Forecasting
Abstract:
Sufficiently modeling the correlations among variables (aka channels) is crucial for achieving accurate multivariate time series forecasting (MTSF). In this paper, we propose a novel technique called Temporal Query (TQ) to more effectively capture multivariate correlations, thereby improving model performance in MTSF tasks. Technically, the TQ technique employs periodically shifted learnable vectors as queries in the attention mechanism to capture global inter-variable patterns, while the keys and values are derived from the raw input data to encode local, sample-level correlations. Building upon the TQ technique, we develop a simple yet efficient model named Temporal Query Network (TQNet), which employs only a single-layer attention mechanism and a lightweight multi-layer perceptron (MLP). Extensive experiments demonstrate that TQNet learns more robust multivariate correlations, achieving state-of-the-art forecasting accuracy across 12 challenging real-world datasets. Furthermore, TQNet achieves high efficiency comparable to linear-based methods even on high-dimensional datasets, balancing performance and computational cost. The code is available at: https://github.com/ACAT-SCUT/TQNet.

Authors:Kazuki Adachi, Shin'ya Yamaguchi, Tomoki Hamagami
Title: Uniformity First: Uniformity-aware Test-time Adaptation of Vision-language Models against Image Corruption
Abstract:
Pre-trained vision-language models such as contrastive language-image pre-training (CLIP) have demonstrated a remarkable generalizability, which has enabled a wide range of applications represented by zero-shot classification. However, vision-language models still suffer when they face datasets with large gaps from training ones, i.e., distribution shifts. We found that CLIP is especially vulnerable to sensor degradation, a type of realistic distribution shift caused by sensor conditions such as weather, light, or noise. Collecting a new dataset from a test distribution for fine-tuning highly costs since sensor degradation occurs unexpectedly and has a range of variety. Thus, we investigate test-time adaptation (TTA) of zero-shot classification, which enables on-the-fly adaptation to the test distribution with unlabeled test data. Existing TTA methods for CLIP mainly focus on modifying image and text embeddings or predictions to address distribution shifts. Although these methods can adapt to domain shifts, such as fine-grained labels spaces or different renditions in input images, they fail to adapt to distribution shifts caused by sensor degradation. We found that this is because image embeddings are "corrupted" in terms of uniformity, a measure related to the amount of information. To make models robust to sensor degradation, we propose a novel method called uniformity-aware information-balanced TTA (UnInfo). To address the corruption of image embeddings, we introduce uniformity-aware confidence maximization, information-aware loss balancing, and knowledge distillation from the exponential moving average (EMA) teacher. Through experiments, we demonstrate that our UnInfo improves accuracy under sensor degradation by retaining information in terms of uniformity.

Authors:Simone Alberto Peirone, Francesca Pistilli, Giuseppe Averta
Title: HiERO: understanding the hierarchy of human behavior enhances reasoning on egocentric videos
Abstract:
Human activities are particularly complex and variable, and this makes challenging for deep learning models to reason about them. However, we note that such variability does have an underlying structure, composed of a hierarchy of patterns of related actions. We argue that such structure can emerge naturally from unscripted videos of human activities, and can be leveraged to better reason about their content. We present HiERO, a weakly-supervised method to enrich video segments features with the corresponding hierarchical activity threads. By aligning video clips with their narrated descriptions, HiERO infers contextual, semantic and temporal reasoning with an hierarchical architecture. We prove the potential of our enriched features with multiple video-text alignment benchmarks (EgoMCQ, EgoNLQ) with minimal additional training, and in zero-shot for procedure learning tasks (EgoProceL and Ego4D Goal-Step). Notably, HiERO achieves state-of-the-art performance in all the benchmarks, and for procedure learning tasks it outperforms fully-supervised methods by a large margin (+12.5% F1 on EgoProceL) in zero shot. Our results prove the relevance of using knowledge of the hierarchy of human activities for multiple reasoning tasks in egocentric vision.

Authors:Xiao Wang, Yu Jin, Lan Chen, Bo Jiang, Lin Zhu, Yonghong Tian, Jin Tang, Bin Luo
Title: Dynamic Graph Induced Contour-aware Heat Conduction Network for Event-based Object Detection
Abstract:
Event-based Vision Sensors (EVS) have demonstrated significant advantages over traditional RGB frame-based cameras in low-light conditions, high-speed motion capture, and low latency. Consequently, object detection based on EVS has attracted increasing attention from researchers. Current event stream object detection algorithms are typically built upon Convolutional Neural Networks (CNNs) or Transformers, which either capture limited local features using convolutional filters or incur high computational costs due to the utilization of self-attention. Recently proposed vision heat conduction backbone networks have shown a good balance between efficiency and accuracy; however, these models are not specifically designed for event stream data. They exhibit weak capability in modeling object contour information and fail to exploit the benefits of multi-scale features. To address these issues, this paper proposes a novel dynamic graph induced contour-aware heat conduction network for event stream based object detection, termed CvHeat-DET. The proposed model effectively leverages the clear contour information inherent in event streams to predict the thermal diffusivity coefficients within the heat conduction model, and integrates hierarchical structural graph features to enhance feature learning across multiple scales. Extensive experiments on three benchmark datasets for event stream-based object detection fully validated the effectiveness of the proposed model. The source code of this paper will be released on https://github.com/Event-AHU/OpenEvDET.

Authors:Shiao Wang, Xiao Wang, Liye Jin, Bo Jiang, Lin Zhu, Lan Chen, Yonghong Tian, Bin Luo
Title: Towards Low-Latency Event Stream-based Visual Object Tracking: A Slow-Fast Approach
Abstract:
Existing tracking algorithms typically rely on low-frame-rate RGB cameras coupled with computationally intensive deep neural network architectures to achieve effective tracking. However, such frame-based methods inherently face challenges in achieving low-latency performance and often fail in resource-constrained environments. Visual object tracking using bio-inspired event cameras has emerged as a promising research direction in recent years, offering distinct advantages for low-latency applications. In this paper, we propose a novel Slow-Fast Tracking paradigm that flexibly adapts to different operational requirements, termed SFTrack. The proposed framework supports two complementary modes, i.e., a high-precision slow tracker for scenarios with sufficient computational resources, and an efficient fast tracker tailored for latency-aware, resource-constrained environments. Specifically, our framework first performs graph-based representation learning from high-temporal-resolution event streams, and then integrates the learned graph-structured information into two FlashAttention-based vision backbones, yielding the slow and fast trackers, respectively. The fast tracker achieves low latency through a lightweight network design and by producing multiple bounding box outputs in a single forward pass. Finally, we seamlessly combine both trackers via supervised fine-tuning and further enhance the fast tracker's performance through a knowledge distillation strategy. Extensive experiments on public benchmarks, including FE240, COESOT, and EventVOT, demonstrate the effectiveness and efficiency of our proposed method across different real-world scenarios. The source code has been released on https://github.com/Event-AHU/SlowFast_Event_Track.

Authors:Shaohang Wei, Wei Li, Feifan Song, Wen Luo, Tianyi Zhuang, Haochen Tan, Zhijiang Guo, Houfeng Wang
Title: TIME: A Multi-level Benchmark for Temporal Reasoning of LLMs in Real-World Scenarios
Abstract:
Temporal reasoning is pivotal for Large Language Models (LLMs) to comprehend the real world. However, existing works neglect the real-world challenges for temporal reasoning: (1) intensive temporal information, (2) fast-changing event dynamics, and (3) complex temporal dependencies in social interactions. To bridge this gap, we propose a multi-level benchmark TIME, designed for temporal reasoning in real-world scenarios. TIME consists of 38,522 QA pairs, covering 3 levels with 11 fine-grained sub-tasks. This benchmark encompasses 3 sub-datasets reflecting different real-world challenges: TIME-Wiki, TIME-News, and TIME-Dial. We conduct extensive experiments on reasoning models and non-reasoning models. And we conducted an in-depth analysis of temporal reasoning performance across diverse real-world scenarios and tasks, and summarized the impact of test-time scaling on temporal reasoning capabilities. Additionally, we release TIME-Lite, a human-annotated subset to foster future research and standardized evaluation in temporal reasoning. The code is available at https://github.com/sylvain-wei/TIME , and the dataset is available at https://huggingface.co/datasets/SylvainWei/TIME .

Authors:Shaohang Wei, Wei Li, Feifan Song, Wen Luo, Tianyi Zhuang, Haochen Tan, Zhijiang Guo, Houfeng Wang
Title: TIME: A Multi-level Benchmark for Temporal Reasoning of LLMs in Real-World Scenarios
Abstract:
Temporal reasoning is pivotal for Large Language Models (LLMs) to comprehend the real world. However, existing works neglect the real-world challenges for temporal reasoning: (1) intensive temporal information, (2) fast-changing event dynamics, and (3) complex temporal dependencies in social interactions. To bridge this gap, we propose a multi-level benchmark TIME, designed for temporal reasoning in real-world scenarios. TIME consists of 38,522 QA pairs, covering 3 levels with 11 fine-grained sub-tasks. This benchmark encompasses 3 sub-datasets reflecting different real-world challenges: TIME-Wiki, TIME-News, and TIME-Dial. We conduct extensive experiments on reasoning models and non-reasoning models. And we conducted an in-depth analysis of temporal reasoning performance across diverse real-world scenarios and tasks, and summarized the impact of test-time scaling on temporal reasoning capabilities. Additionally, we release TIME-Lite, a human-annotated subset to foster future research and standardized evaluation in temporal reasoning. The code is available at https://github.com/sylvain-wei/TIME , the dataset is available at https://huggingface.co/datasets/SylvainWei/TIME , and the project page link is https://sylvain-wei.github.io/TIME/ .

Authors:Junzhi Ning, Cheng Tang, Kaijing Zhou, Diping Song, Lihao Liu, Ming Hu, Wei Li, Huihui Xu, Yanzhou Su, Tianbin Li, Jiyao Liu, Jin Ye, Sheng Zhang, Yuanfeng Ji, Junjun He
Title: RetinaLogos: Fine-Grained Synthesis of High-Resolution Retinal Images Through Captions
Abstract:
The scarcity of high-quality, labelled retinal imaging data, which presents a significant challenge in the development of machine learning models for ophthalmology, hinders progress in the field. Existing methods for synthesising Colour Fundus Photographs (CFPs) largely rely on predefined disease labels, which restricts their ability to generate images that reflect fine-grained anatomical variations, subtle disease stages, and diverse pathological features beyond coarse class categories. To overcome these challenges, we first introduce an innovative pipeline that creates a large-scale, captioned retinal dataset comprising 1.4 million entries, called RetinaLogos-1400k. Specifically, RetinaLogos-1400k uses the visual language model(VLM) to describe retinal conditions and key structures, such as optic disc configuration, vascular distribution, nerve fibre layers, and pathological features. Building on this dataset, we employ a novel three-step training framework, RetinaLogos, which enables fine-grained semantic control over retinal images and accurately captures different stages of disease progression, subtle anatomical variations, and specific lesion types. Through extensive experiments, our method demonstrates superior performance across multiple datasets, with 62.07% of text-driven synthetic CFPs indistinguishable from real ones by ophthalmologists. Moreover, the synthetic data improves accuracy by 5%-10% in diabetic retinopathy grading and glaucoma detection. Codes are available at https://github.com/uni-medical/retina-text2cfp.

Authors:Yu Fan, Jingwei Ni, Jakob Merane, Yang Tian, Yoan Hermstrüwer, Yinya Huang, Mubashara Akhtar, Etienne Salimbeni, Florian Geering, Oliver Dreyer, Daniel Brunner, Markus Leippold, Mrinmaya Sachan, Alexander Stremitzer, Christoph Engel, Elliott Ash, Joel Niklaus
Title: LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Abstract:
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. To address this, we introduce \textsc{LEXam}, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Deploying an ensemble LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately, closely aligning with human expert assessments. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. We have open-sourced our code on \href{https://github.com/LEXam-Benchmark/LEXam}{GitHub} and released our data on \href{https://huggingface.co/datasets/LEXam-Benchmark/LEXam}{Hugging Face}. Project page: https://lexam-benchmark.github.io/

Authors:Ben Liu, Zhen Qin
Title: Accelerate TarFlow Sampling with GS-Jacobi Iteration
Abstract:
Image generation models have achieved widespread applications. As an instance, the TarFlow model combines the transformer architecture with Normalizing Flow models, achieving state-of-the-art results on multiple benchmarks. However, due to the causal form of attention requiring sequential computation, TarFlow's sampling process is extremely slow. In this paper, we demonstrate that through a series of optimization strategies, TarFlow sampling can be greatly accelerated by using the Gauss-Seidel-Jacobi (abbreviated as GS-Jacobi) iteration method. Specifically, we find that blocks in the TarFlow model have varying importance: a small number of blocks play a major role in image generation tasks, while other blocks contribute relatively little; some blocks are sensitive to initial values and prone to numerical overflow, while others are relatively robust. Based on these two characteristics, we propose the Convergence Ranking Metric (CRM) and the Initial Guessing Metric (IGM): CRM is used to identify whether a TarFlow block is "simple" (converges in few iterations) or "tough" (requires more iterations); IGM is used to evaluate whether the initial value of the iteration is good. Experiments on four TarFlow models demonstrate that GS-Jacobi sampling can significantly enhance sampling efficiency while maintaining the quality of generated images (measured by FID), achieving speed-ups of 4.53x in Img128cond, 5.32x in AFHQ, 2.96x in Img64uncond, and 2.51x in Img64cond without degrading FID scores or sample quality. Code and checkpoints are accessible on https://github.com/encoreus/GS-Jacobi_for_TarFlow

Authors:Zheng Wu, Pengzhou Cheng, Zongru Wu, Lingzhong Dong, Zhuosheng Zhang
Title: GEM: Gaussian Embedding Modeling for Out-of-Distribution Detection in GUI Agents
Abstract:
Graphical user interface (GUI) agents have recently emerged as an intriguing paradigm for human-computer interaction, capable of automatically executing user instructions to operate intelligent terminal devices. However, when encountering out-of-distribution (OOD) instructions that violate environmental constraints or exceed the current capabilities of agents, GUI agents may suffer task breakdowns or even pose security threats. Therefore, effective OOD detection for GUI agents is essential. Traditional OOD detection methods perform suboptimally in this domain due to the complex embedding space and evolving GUI environments. In this work, we observe that the in-distribution input semantic space of GUI agents exhibits a clustering pattern with respect to the distance from the centroid. Based on the finding, we propose GEM, a novel method based on fitting a Gaussian mixture model over input embedding distances extracted from the GUI agent that reflect its capability boundary. Evaluated on eight datasets spanning smartphones, computers, and web browsers, our method achieves an average accuracy improvement of 23.70\% over the best-performing baseline while only increasing training time by 4.9\% and testing time by 6.5\%. We also experimentally demonstrate that GEM can improve the step-wise success rate by 9.40\% by requesting assistance from the cloud model when encountering OOD samples. Analysis verifies the generalization ability of our method through experiments on nine different backbones. The codes are available at https://github.com/Wuzheng02/GEM-OODforGUIagents.

Authors:Zifeng Cheng, Zhonghui Wang, Yuchen Fu, Zhiwei Jiang, Yafeng Yin, Cong Wang, Qing Gu
Title: Contrastive Prompting Enhances Sentence Embeddings in LLMs through Inference-Time Steering
Abstract:
Extracting sentence embeddings from large language models (LLMs) is a practical direction, as it requires neither additional data nor fine-tuning. Previous studies usually focus on prompt engineering to guide LLMs to encode the core semantic information of the sentence into the embedding of the last token. However, the last token in these methods still encodes an excess of non-essential information, such as stop words, limiting its encoding capacity. To this end, we propose a Contrastive Prompting (CP) method that introduces an extra auxiliary prompt to elicit better sentence embedding. By contrasting with the auxiliary prompt, CP can steer existing prompts to encode the core semantics of the sentence, rather than non-essential information. CP is a plug-and-play inference-time intervention method that can be combined with various prompt-based methods. Extensive experiments on Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our method can improve the performance of existing prompt-based methods across different LLMs. Our code will be released at https://github.com/zifengcheng/CP.

Authors:Hulin Li
Title: Rethinking Features-Fused-Pyramid-Neck for Object Detection
Abstract:
Multi-head detectors typically employ a features-fused-pyramid-neck for multi-scale detection and are widely adopted in the industry. However, this approach faces feature misalignment when representations from different hierarchical levels of the feature pyramid are forcibly fused point-to-point. To address this issue, we designed an independent hierarchy pyramid (IHP) architecture to evaluate the effectiveness of the features-unfused-pyramid-neck for multi-head detectors. Subsequently, we introduced soft nearest neighbor interpolation (SNI) with a weight downscaling factor to mitigate the impact of feature fusion at different hierarchies while preserving key textures. Furthermore, we present a features adaptive selection method for down sampling in extended spatial windows (ESD) to retain spatial features and enhance lightweight convolutional techniques (GSConvE). These advancements culminate in our secondary features alignment solution (SA) for real-time detection, achieving state-of-the-art results on Pascal VOC and MS COCO. Code will be released at https://github.com/AlanLi1997/rethinking-fpn. This paper has been accepted by ECCV2024 and published on Springer Nature.

Authors:Yanbin Yin, Kun Zhou, Zhen Wang, Xiangdong Zhang, Yifei Shao, Shibo Hao, Yi Gu, Jieyuan Liu, Somanshu Singla, Tianyang Liu, Eric P. Xing, Zhengzhong Liu, Haojian Jin, Zhiting Hu
Title: Decentralized Arena: Towards Democratic and Scalable Automatic Evaluation of Language Models
Abstract:
The recent explosion of large language models (LLMs), each with its own general or specialized strengths, makes scalable, reliable benchmarking more urgent than ever. Standard practices nowadays face fundamental trade-offs: closed-ended question-based benchmarks (eg MMLU) struggle with saturation as newer models emerge, while crowd-sourced leaderboards (eg Chatbot Arena) rely on costly and slow human judges. Recently, automated methods (eg LLM-as-a-judge) shed light on the scalability, but risk bias by relying on one or a few "authority" models. To tackle these issues, we propose Decentralized Arena (dearena), a fully automated framework leveraging collective intelligence from all LLMs to evaluate each other. It mitigates single-model judge bias by democratic, pairwise evaluation, and remains efficient at scale through two key components: (1) a coarse-to-fine ranking algorithm for fast incremental insertion of new models with sub-quadratic complexity, and (2) an automatic question selection strategy for the construction of new evaluation dimensions. Across extensive experiments across 66 LLMs, dearena attains up to 97% correlation with human judgements, while significantly reducing the cost. Our code and data will be publicly released on https://github.com/maitrix-org/de-arena.

Authors:Yiling Tao, Shuyi Wang, Jiaxi Yang, Guido Zuccon
Title: Unlearning for Federated Online Learning to Rank: A Reproducibility Study
Abstract:
This paper reports on findings from a comparative study on the effectiveness and efficiency of federated unlearning strategies within Federated Online Learning to Rank (FOLTR), with specific attention to systematically analysing the unlearning capabilities of methods in a verifiable manner. Federated approaches to ranking of search results have recently garnered attention to address users privacy concerns. In FOLTR, privacy is safeguarded by collaboratively training ranking models across decentralized data sources, preserving individual user data while optimizing search results based on implicit feedback, such as clicks. Recent legislation introduced across numerous countries is establishing the so called "the right to be forgotten", according to which services based on machine learning models like those in FOLTR should provide capabilities that allow users to remove their own data from those used to train models. This has sparked the development of unlearning methods, along with evaluation practices to measure whether unlearning of a user data successfully occurred. Current evaluation practices are however often controversial, necessitating the use of multiple metrics for a more comprehensive assessment -- but previous proposals of unlearning methods only used single evaluation metrics. This paper addresses this limitation: our study rigorously assesses the effectiveness of unlearning strategies in managing both under-unlearning and over-unlearning scenarios using adapted, and newly proposed evaluation metrics. Thanks to our detailed analysis, we uncover the strengths and limitations of five unlearning strategies, offering valuable insights into optimizing federated unlearning to balance data privacy and system performance within FOLTR. We publicly release our code and complete results at https://github.com/Iris1026/Unlearning-for-FOLTR.git.

Authors:Jitai Hao, Qiang Huang, Hao Liu, Xinyan Xiao, Zhaochun Ren, Jun Yu
Title: A Token is Worth over 1,000 Tokens: Efficient Knowledge Distillation through Low-Rank Clone
Abstract:
Training high-performing Small Language Models (SLMs) remains costly, even with knowledge distillation and pruning from larger teacher models. Existing work often faces three key challenges: (1) information loss from hard pruning, (2) inefficient alignment of representations, and (3) underutilization of informative activations, particularly from Feed-Forward Networks (FFNs). To address these challenges, we introduce Low-Rank Clone (LRC), an efficient pre-training method that constructs SLMs aspiring to behavioral equivalence with strong teacher models. LRC trains a set of low-rank projection matrices that jointly enable soft pruning by compressing teacher weights, and activation clone by aligning student activations, including FFN signals, with those of the teacher. This unified design maximizes knowledge transfer while removing the need for explicit alignment modules. Extensive experiments with open-source teachers (e.g., Llama-3.2-3B-Instruct, Qwen2.5-3B/7B-Instruct) show that LRC matches or surpasses state-of-the-art models trained on trillions of tokens--while using only 20B tokens, achieving over 1,000x training efficiency. Our codes and model checkpoints are available at https://github.com/CURRENTF/LowRankClone and https://huggingface.co/collections/JitaiHao/low-rank-clone-lrc-6828389e96a93f1d4219dfaf.

Authors:Haibin He, Maoyuan Ye, Jing Zhang, Xiantao Cai, Juhua Liu, Bo Du, Dacheng Tao
Title: Reasoning-OCR: Can Large Multimodal Models Solve Complex Logical Reasoning Problems from OCR Cues?
Abstract:
Large Multimodal Models (LMMs) have become increasingly versatile, accompanied by impressive Optical Character Recognition (OCR) related capabilities. Existing OCR-related benchmarks emphasize evaluating LMMs' abilities of relatively simple visual question answering, visual-text parsing, etc. However, the extent to which LMMs can deal with complex logical reasoning problems based on OCR cues is relatively unexplored. To this end, we introduce the Reasoning-OCR benchmark, which challenges LMMs to solve complex reasoning problems based on the cues that can be extracted from rich visual-text. Reasoning-OCR covers six visual scenarios and encompasses 150 meticulously designed questions categorized into six reasoning challenges. Additionally, Reasoning-OCR minimizes the impact of field-specialized knowledge. Our evaluation offers some insights for proprietary and open-source LMMs in different reasoning challenges, underscoring the urgent to improve the reasoning performance. We hope Reasoning-OCR can inspire and facilitate future research on enhancing complex reasoning ability based on OCR cues. Reasoning-OCR is publicly available at https://github.com/Hxyz-123/ReasoningOCR.

Authors:Hangyu Li, Qin Zhao, Haoran Xu, Xinyu Jiang, Qingwei Ben, Feiyu Jia, Haoyu Zhao, Liang Xu, Jia Zeng, Hanqing Wang, Bo Dai, Junting Dong, Jiangmiao Pang
Title: TeleOpBench: A Simulator-Centric Benchmark for Dual-Arm Dexterous Teleoperation
Abstract:
Teleoperation is a cornerstone of embodied-robot learning, and bimanual dexterous teleoperation in particular provides rich demonstrations that are difficult to obtain with fully autonomous systems. While recent studies have proposed diverse hardware pipelines-ranging from inertial motion-capture gloves to exoskeletons and vision-based interfaces-there is still no unified benchmark that enables fair, reproducible comparison of these systems. In this paper, we introduce TeleOpBench, a simulator-centric benchmark tailored to bimanual dexterous teleoperation. TeleOpBench contains 30 high-fidelity task environments that span pick-and-place, tool use, and collaborative manipulation, covering a broad spectrum of kinematic and force-interaction difficulty. Within this benchmark we implement four representative teleoperation modalities-(i) MoCap, (ii) VR device, (iii) arm-hand exoskeletons, and (iv) monocular vision tracking-and evaluate them with a common protocol and metric suite. To validate that performance in simulation is predictive of real-world behavior, we conduct mirrored experiments on a physical dual-arm platform equipped with two 6-DoF dexterous hands. Across 10 held-out tasks we observe a strong correlation between simulator and hardware performance, confirming the external validity of TeleOpBench. TeleOpBench establishes a common yardstick for teleoperation research and provides an extensible platform for future algorithmic and hardware innovation. Codes is now available at https://github.com/cyjdlhy/TeleOpBench .

Authors:Zihua Wang, Ruibo Li, Haozhe Du, Joey Tianyi Zhou, Yu Zhang, Xu Yang
Title: FLASH: Latent-Aware Semi-Autoregressive Speculative Decoding for Multimodal Tasks
Abstract:
Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds. This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text -- an issue exacerbated by recent trends toward finer-grained visual tokenizations to boost performance. Speculative decoding has been effective in accelerating LLM inference by using a smaller draft model to generate candidate tokens, which are then selectively verified by the target model, improving speed without sacrificing output quality. While this strategy has been extended to LMMs, existing methods largely overlook the unique properties of visual inputs and depend solely on text-based draft models. In this work, we propose \textbf{FLASH} (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs, which leverages two key properties of multimodal data to design the draft model. First, to address redundancy in visual tokens, we propose a lightweight latent-aware token compression mechanism. Second, recognizing that visual objects often co-occur within a scene, we employ a semi-autoregressive decoding strategy to generate multiple tokens per forward pass. These innovations accelerate draft decoding while maintaining high acceptance rates, resulting in faster overall inference. Experiments show that FLASH significantly outperforms prior speculative decoding approaches in both unimodal and multimodal settings, achieving up to \textbf{2.68$\times$} speed-up on video captioning and \textbf{2.55$\times$} on visual instruction tuning tasks compared to the original LMM. Our code is available \href{https://github.com/ZihuaEvan/FlashSD/}{[here]}.

Authors:Han Meng, Yancan Chen, Yunan Li, Yitian Yang, Jungup Lee, Renwen Zhang, Yi-Chieh Lee
Title: What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma
Abstract:
Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma. Our corpus is openly available at https://github.com/HanMeng2004/Mental-Health-Stigma-Interview-Corpus.

Authors:Taiqiang Wu, Runming Yang, Jiayi Li, Pengfei Hu, Ngai Wong, Yujiu Yang
Title: Shadow-FT: Tuning Instruct via Base
Abstract:
Large language models (LLMs) consistently benefit from further fine-tuning on various tasks. However, we observe that directly tuning the INSTRUCT (i.e., instruction tuned) models often leads to marginal improvements and even performance degeneration. Notably, paired BASE models, the foundation for these INSTRUCT variants, contain highly similar weight values (i.e., less than 2% on average for Llama 3.1 8B). Therefore, we propose a novel Shadow-FT framework to tune the INSTRUCT models by leveraging the corresponding BASE models. The key insight is to fine-tune the BASE model, and then directly graft the learned weight updates to the INSTRUCT model. Our proposed Shadow-FT introduces no additional parameters, is easy to implement, and significantly improves performance. We conduct extensive experiments on tuning mainstream LLMs, such as Qwen 3 and Llama 3 series, and evaluate them across 19 benchmarks covering coding, reasoning, and mathematical tasks. Experimental results demonstrate that Shadow-FT consistently outperforms conventional full-parameter and parameter-efficient tuning approaches. Further analyses indicate that Shadow-FT can be applied to multimodal large language models (MLLMs) and combined with direct preference optimization (DPO). Codes and weights are available at \href{https://github.com/wutaiqiang/Shadow-FT}{Github}.

Authors:Taiqiang Wu, Runming Yang, Jiayi Li, Pengfei Hu, Yik-Chung Wu, Ngai Wong, Yujiu Yang
Title: Shadow-FT: Tuning Instruct Model via Training on Paired Base Model
Abstract:
Large language models (LLMs) consistently benefit from further fine-tuning on various tasks. However, we observe that directly tuning the Instruct (i.e., instruction-tuned) models often leads to marginal improvements and even performance degeneration. Notably, paired Base models, the foundation for these Instruct variants, contain highly similar weight values (i.e., less than 2% on average for Llama 3.1 8B). The Base model tends to be a good learner yet a weak backbone without post-training. Therefore, we propose a novel Shadow-FT framework to tune the Instruct models by leveraging the corresponding Base models. The key insight is to fine-tune the Base model, and then \textit{directly} graft the learned weight updates to the Instruct model. Our proposed Shadow-FT introduces no additional parameters, is easy to implement, and significantly improves performance. We conduct extensive experiments on tuning mainstream LLMs, such as Qwen 3 and Llama 3 series, and evaluate them across 19 benchmarks covering coding, reasoning, and mathematical tasks. Experimental results demonstrate that Shadow-FT consistently outperforms conventional full-parameter and parameter-efficient tuning approaches. Further analyses indicate that Shadow-FT can be applied to multimodal large language models (MLLMs) and combined with direct preference optimization~(DPO). Codes and weights are available at \href{https://github.com/wutaiqiang/Shadow-FT}{Github}.

Authors:Yinzhe Wang, Yiwen Xiao, Hu Wang, Yiping Xu, Yan Tian
Title: IA-MVS: Instance-Focused Adaptive Depth Sampling for Multi-View Stereo
Abstract:
Multi-view stereo (MVS) models based on progressive depth hypothesis narrowing have made remarkable advancements. However, existing methods haven't fully utilized the potential that the depth coverage of individual instances is smaller than that of the entire scene, which restricts further improvements in depth estimation precision. Moreover, inevitable deviations in the initial stage accumulate as the process advances. In this paper, we propose Instance-Adaptive MVS (IA-MVS). It enhances the precision of depth estimation by narrowing the depth hypothesis range and conducting refinement on each instance. Additionally, a filtering mechanism based on intra-instance depth continuity priors is incorporated to boost robustness. Furthermore, recognizing that existing confidence estimation can degrade IA-MVS performance on point clouds. We have developed a detailed mathematical model for confidence estimation based on conditional probability. The proposed method can be widely applied in models based on MVSNet without imposing extra training burdens. Our method achieves state-of-the-art performance on the DTU benchmark. The source code is available at https://github.com/KevinWang73106/IA-MVS.

Authors:Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu, Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, Loic Magne, Ajay Mandlekar, Avnish Narayan, You Liang Tan, Guanzhi Wang, Jing Wang, Qi Wang, Yinzhen Xu, Xiaohui Zeng, Kaiyuan Zheng, Ruijie Zheng, Ming-Yu Liu, Luke Zettlemoyer, Dieter Fox, Jan Kautz, Scott Reed, Yuke Zhu, Linxi Fan
Title: DreamGen: Unlocking Generalization in Robot Learning through Video World Models
Abstract:
We introduce DreamGen, a simple yet highly effective 4-stage pipeline for training robot policies that generalize across behaviors and environments through neural trajectories - synthetic robot data generated from video world models. DreamGen leverages state-of-the-art image-to-video generative models, adapting them to the target robot embodiment to produce photorealistic synthetic videos of familiar or novel tasks in diverse environments. Since these models generate only videos, we recover pseudo-action sequences using either a latent action model or an inverse-dynamics model (IDM). Despite its simplicity, DreamGen unlocks strong behavior and environment generalization: a humanoid robot can perform 22 new behaviors in both seen and unseen environments, while requiring teleoperation data from only a single pick-and-place task in one environment. To evaluate the pipeline systematically, we introduce DreamGen Bench, a video generation benchmark that shows a strong correlation between benchmark performance and downstream policy success. Our work establishes a promising new axis for scaling robot learning well beyond manual data collection. Code available at https://github.com/NVIDIA/GR00T-Dreams.

Authors:Jiabin Chen, Haiping Wang, Jinpeng Li, Yuan Liu, Zhen Dong, Bisheng Yang
Title: SpatialLLM: From Multi-modality Data to Urban Spatial Intelligence
Abstract:
We propose SpatialLLM, a novel approach advancing spatial intelligence tasks in complex urban scenes. Unlike previous methods requiring geographic analysis tools or domain expertise, SpatialLLM is a unified language model directly addressing various spatial intelligence tasks without any training, fine-tuning, or expert intervention. The core of SpatialLLM lies in constructing detailed and structured scene descriptions from raw spatial data to prompt pre-trained LLMs for scene-based analysis. Extensive experiments show that, with our designs, pretrained LLMs can accurately perceive spatial distribution information and enable zero-shot execution of advanced spatial intelligence tasks, including urban planning, ecological analysis, traffic management, etc. We argue that multi-field knowledge, context length, and reasoning ability are key factors influencing LLM performances in urban analysis. We hope that SpatialLLM will provide a novel viable perspective for urban intelligent analysis and management. The code and dataset are available at https://github.com/WHU-USI3DV/SpatialLLM.

Authors:Chaofan Li, Jianlyu Chen, Yingxia Shao, Defu Lian, Zheng Liu
Title: Towards A Generalist Code Embedding Model Based On Massive Data Synthesis
Abstract:
Code embedding models attract increasing attention due to the widespread popularity of retrieval-augmented generation (RAG) in software development. These models are expected to capture the rich semantic relationships inherent to code, which differ significantly from those found in text. However, existing models remain severely limited due to the scarcity of high-quality training data. In this work, we introduce \textbf{CodeR} (\underline{Code} \underline{R}etrieval), a state-of-the-art embedding model for general-purpose code retrieval. The superior performance of CodeR is built upon CodeR-Pile, a large-scale synthetic dataset constructed under the DRU (Diversity, Reliability, Usability) principle via a novel data synthesis pipeline. To optimize training effectiveness, we propose Annealing, a curriculum learning strategy that enables effective knowledge transfer across heterogeneous sources of data. We evaluate CodeR based on 16 diverse code retrieval tasks, where it significantly outperforms existing baselines and exhibits strong out-of-domain generalization performance. We have publicly released our code and the well-trained model to facilitate further research in this critical area. https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE_Coder.

Authors:Kian Kai Ang, Guy Farrelly, Cheryl Pope, Damith C. Ranasinghe
Title: An Automated Blackbox Noncompliance Checker for QUIC Server Implementations
Abstract:
We develop QUICtester, an automated approach for uncovering non-compliant behaviors in the ratified QUIC protocol implementations (RFC 9000/9001). QUICtester leverages active automata learning to abstract the behavior of a QUIC implementation into a finite state machine (FSM) representation. Unlike prior noncompliance checking methods, to help uncover state dependencies on event timing, QUICtester introduces the idea of state learning with event timing variations, adopting both valid and invalid input configurations, and combinations of security and transport layer parameters during learning. We use pairwise differential analysis of learned behaviour models of tested QUIC implementations to identify non-compliance instances as behaviour deviations in a property-agnostic way. This exploits the existence of the many different QUIC implementations, removing the need for validated, formal models. The diverse implementations act as cross-checking test oracles to discover non-compliance. We used QUICtester to analyze analyze 186 learned models from 19 QUIC implementations under the five security settings and discovered 55 implementation errors. Significantly, the tool uncovered a QUIC specification ambiguity resulting in an easily exploitable DoS vulnerability, led to 5 CVE assignments from developers, and two bug bounties thus far.

Authors:Mingyuan Zhou, Yi Gu, Zhendong Wang
Title: Few-Step Diffusion via Score identity Distillation
Abstract:
Diffusion distillation has emerged as a promising strategy for accelerating text-to-image (T2I) diffusion models by distilling a pretrained score network into a one- or few-step generator. While existing methods have made notable progress, they often rely on real or teacher-synthesized images to perform well when distilling high-resolution T2I diffusion models such as Stable Diffusion XL (SDXL), and their use of classifier-free guidance (CFG) introduces a persistent trade-off between text-image alignment and generation diversity. We address these challenges by optimizing Score identity Distillation (SiD) -- a data-free, one-step distillation framework -- for few-step generation. Backed by theoretical analysis that justifies matching a uniform mixture of outputs from all generation steps to the data distribution, our few-step distillation algorithm avoids step-specific networks and integrates seamlessly into existing pipelines, achieving state-of-the-art performance on SDXL at 1024x1024 resolution. To mitigate the alignment-diversity trade-off when real text-image pairs are available, we introduce a Diffusion GAN-based adversarial loss applied to the uniform mixture and propose two new guidance strategies: Zero-CFG, which disables CFG in the teacher and removes text conditioning in the fake score network, and Anti-CFG, which applies negative CFG in the fake score network. This flexible setup improves diversity without sacrificing alignment. Comprehensive experiments on SD1.5 and SDXL demonstrate state-of-the-art performance in both one-step and few-step generation settings, along with robustness to the absence of real images. Our efficient PyTorch implementation, along with the resulting one- and few-step distilled generators, will be released publicly as a separate branch at https://github.com/mingyuanzhou/SiD-LSG.

Authors:Hanzhuo Tan, Xiaolong Tian, Hanrui Qi, Jiaming Liu, Zuchen Gao, Siyi Wang, Qi Luo, Jing Li, Yuqun Zhang
Title: Decompile-Bench: Million-Scale Binary-Source Function Pairs for Real-World Binary Decompilation
Abstract:
Recent advances in LLM-based decompilers have been shown effective to convert low-level binaries into human-readable source code. However, there still lacks a comprehensive benchmark that provides large-scale binary-source function pairs, which is critical for advancing the LLM decompilation technology. Creating accurate binary-source mappings incurs severe issues caused by complex compilation settings and widespread function inlining that obscure the correspondence between binaries and their original source code. Previous efforts have either relied on used contest-style benchmarks, synthetic binary-source mappings that diverge significantly from the mappings in real world, or partially matched binaries with only code lines or variable names, compromising the effectiveness of analyzing the binary functionality. To alleviate these issues, we introduce Decompile-Bench, the first open-source dataset comprising two million binary-source function pairs condensed from 100 million collected function pairs, i.e., 450GB of binaries compiled from permissively licensed GitHub projects. For the evaluation purposes, we also developed a benchmark Decompile-Bench-Eval including manually crafted binaries from the well-established HumanEval and MBPP, alongside the compiled GitHub repositories released after 2025 to mitigate data leakage issues. We further explore commonly-used evaluation metrics to provide a thorough assessment of the studied LLM decompilers and find that fine-tuning with Decompile-Bench causes a 20% improvement over previous benchmarks in terms of the re-executability rate. Our code and data has been released in HuggingFace and Github. https://github.com/albertan017/LLM4Decompile

Authors:Zihan Su, Xuerui Qiu, Hongbin Xu, Tangyu Jiang, Junhao Zhuang, Chun Yuan, Ming Li, Shengfeng He, Fei Richard Yu
Title: Safe-Sora: Safe Text-to-Video Generation via Graphical Watermarking
Abstract:
The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. Code is publicly available at https://github.com/Sugewud/Safe-Sora

Authors:Yaotian Yang, Yiwen Tang, Yizhe Chen, Xiao Chen, Jiangjie Qiu, Hao Xiong, Haoyu Yin, Zhiyao Luo, Yifei Zhang, Sijia Tao, Wentao Li, Qinghua Zhang, Yuqiang Li, Wanli Ouyang, Bin Zhao, Xiaonan Wang, Fei Wei
Title: AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use
Abstract:
Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.

Authors:Xiangpeng Tian, Xiangyu Liao, Xiao Liu, Meng Li, Chao Ren
Title: Degradation-Aware Feature Perturbation for All-in-One Image Restoration
Abstract:
All-in-one image restoration aims to recover clear images from various degradation types and levels with a unified model. Nonetheless, the significant variations among degradation types present challenges for training a universal model, often resulting in task interference, where the gradient update directions of different tasks may diverge due to shared parameters. To address this issue, motivated by the routing strategy, we propose DFPIR, a novel all-in-one image restorer that introduces Degradation-aware Feature Perturbations(DFP) to adjust the feature space to align with the unified parameter space. In this paper, the feature perturbations primarily include channel-wise perturbations and attention-wise perturbations. Specifically, channel-wise perturbations are implemented by shuffling the channels in high-dimensional space guided by degradation types, while attention-wise perturbations are achieved through selective masking in the attention space. To achieve these goals, we propose a Degradation-Guided Perturbation Block (DGPB) to implement these two functions, positioned between the encoding and decoding stages of the encoder-decoder architecture. Extensive experimental results demonstrate that DFPIR achieves state-of-the-art performance on several all-in-one image restoration tasks including image denoising, image dehazing, image deraining, motion deblurring, and low-light image enhancement. Our codes are available at https://github.com/TxpHome/DFPIR.

Authors:Wanfu Gao, Zengyao Man, Hanlin Pan, Kunpeng Liu
Title: Dual-Agent Reinforcement Learning for Automated Feature Generation
Abstract:
Feature generation involves creating new features from raw data to capture complex relationships among the original features, improving model robustness and machine learning performance. Current methods using reinforcement learning for feature generation have made feature exploration more flexible and efficient. However, several challenges remain: first, during feature expansion, a large number of redundant features are generated. When removing them, current methods only retain the best features each round, neglecting those that perform poorly initially but could improve later. Second, the state representation used by current methods fails to fully capture complex feature relationships. Third, there are significant differences between discrete and continuous features in tabular data, requiring different operations for each type. To address these challenges, we propose a novel dual-agent reinforcement learning method for feature generation. Two agents are designed: the first generates new features, and the second determines whether they should be preserved. A self-attention mechanism enhances state representation, and diverse operations distinguish interactions between discrete and continuous features. The experimental results on multiple datasets demonstrate that the proposed method is effective. The code is available at https://github.com/extess0/DARL.

Authors:Yifan Hu, Rui Liu, Yi Ren, Xiang Yin, Haizhou Li
Title: Chain-Talker: Chain Understanding and Rendering for Empathetic Conversational Speech Synthesis
Abstract:
Conversational Speech Synthesis (CSS) aims to align synthesized speech with the emotional and stylistic context of user-agent interactions to achieve empathy. Current generative CSS models face interpretability limitations due to insufficient emotional perception and redundant discrete speech coding. To address the above issues, we present Chain-Talker, a three-stage framework mimicking human cognition: Emotion Understanding derives context-aware emotion descriptors from dialogue history; Semantic Understanding generates compact semantic codes via serialized prediction; and Empathetic Rendering synthesizes expressive speech by integrating both components. To support emotion modeling, we develop CSS-EmCap, an LLM-driven automated pipeline for generating precise conversational speech emotion captions. Experiments on three benchmark datasets demonstrate that Chain-Talker produces more expressive and empathetic speech than existing methods, with CSS-EmCap contributing to reliable emotion modeling. The code and demos are available at: https://github.com/AI-S2-Lab/Chain-Talker.

Authors:Sanggeon Yun, Ryozo Masukawa, Hyunwoo Oh, Nathaniel D. Bastian, Mohsen Imani
Title: A Few Large Shifts: Layer-Inconsistency Based Minimal Overhead Adversarial Example Detection
Abstract:
Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle, imperceptible perturbations that can lead to incorrect predictions. While detection-based defenses offer a practical alternative to adversarial training, many existing methods depend on external models, complex architectures, heavy augmentations, or adversarial data, limiting their efficiency and generalizability. We introduce a lightweight, plug-in detection framework that leverages internal layer-wise inconsistencies within the target model itself, requiring only benign data for calibration. Our approach is grounded in the A Few Large Shifts Assumption, which posits that adversarial perturbations typically induce large representation shifts in a small subset of layers. Building on this, we propose two complementary strategies--Recovery Testing (RT) and Logit-layer Testing (LT)--to expose internal disruptions caused by adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both standard and adaptive threat models, our method achieves state-of-the-art detection performance with negligible computational overhead and no compromise to clean accuracy. The code is available here: https://github.com/c0510gy/AFLS-AED.

Authors:Sanggeon Yun, Ryozo Masukawa, Hyunwoo Oh, Nathaniel D. Bastian, Mohsen Imani
Title: A Few Large Shifts: Layer-Inconsistency Based Minimal Overhead Adversarial Example Detection
Abstract:
Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle, imperceptible perturbations that can lead to incorrect predictions. While detection-based defenses offer a practical alternative to adversarial training, many existing methods depend on external models, complex architectures, or adversarial data, limiting their efficiency and generalizability. We introduce a lightweight, plug-in detection framework that leverages internal layer-wise inconsistencies within the target model itself, requiring only benign data for calibration. Our approach is grounded in the A Few Large Shifts Assumption, which posits that adversarial perturbations induce large, localized violations of layer-wise Lipschitz continuity in a small subset of layers. Building on this, we propose two complementary strategies--Recovery Testing (RT) and Logit-layer Testing (LT)--to empirically measure these violations and expose internal disruptions caused by adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both standard and adaptive threat models, our method achieves state-of-the-art detection performance with negligible computational overhead. Furthermore, our system-level analysis provides a practical method for selecting a detection threshold with a formal lower-bound guarantee on accuracy. The code is available here: https://github.com/c0510gy/AFLS-AED.

Authors:Florent Chiaroni, Ali Ayub, Ola Ahmad
Title: ProMi: An Efficient Prototype-Mixture Baseline for Few-Shot Segmentation with Bounding-Box Annotations
Abstract:
In robotics applications, few-shot segmentation is crucial because it allows robots to perform complex tasks with minimal training data, facilitating their adaptation to diverse, real-world environments. However, pixel-level annotations of even small amount of images is highly time-consuming and costly. In this paper, we present a novel few-shot binary segmentation method based on bounding-box annotations instead of pixel-level labels. We introduce, ProMi, an efficient prototype-mixture-based method that treats the background class as a mixture of distributions. Our approach is simple, training-free, and effective, accommodating coarse annotations with ease. Compared to existing baselines, ProMi achieves the best results across different datasets with significant gains, demonstrating its effectiveness. Furthermore, we present qualitative experiments tailored to real-world mobile robot tasks, demonstrating the applicability of our approach in such scenarios. Our code: https://github.com/ThalesGroup/promi.

Authors:Botao Amber Hu, Rem Rungu Lin, Yilan Elan Tao, Samuli Laato, Yue Li
Title: Towards Immersive Mixed Reality Street Play: Understanding Co-located Bodily Play with See-through Head-mounted Displays in Public Spaces
Abstract:
As see-through Mixed Reality Head-Mounted Displays (MRHMDs) proliferate, their usage is gradually shifting from controlled, private settings to spontaneous, public contexts. While location-based augmented reality mobile games such as Pokemon GO have been successful, the embodied interaction afforded by MRHMDs moves play beyond phone-based screen-tapping toward co-located, bodily, movement-based play. In anticipation of widespread MRHMD adoption, major technology companies have teased concept videos envisioning urban streets as vast mixed reality playgrounds-imagine Harry Potter-style wizard duels in city streets-which we term Immersive Mixed Reality Street Play (IMRSP). However, few real-world studies examine such scenarios. Through empirical, in-the-wild studies of our research-through-design game probe, Multiplayer Omnipresent Fighting Arena (MOFA), deployed across diverse public venues, we offer initial insights into the social implications, challenges, opportunities, and design recommendations of IMRSP. The MOFA framework, which includes three gameplay modes-"The Training," "The Duel," and "The Dragon"-is open-sourced at https://github.com/realitydeslab/mofa.

Authors:Zongkai Liu, Fanqing Meng, Lingxiao Du, Zhixiang Zhou, Chao Yu, Wenqi Shao, Qiaosheng Zhang
Title: CPGD: Toward Stable Rule-based Reinforcement Learning for Language Models
Abstract:
Recent advances in rule-based reinforcement learning (RL) have significantly improved the reasoning capability of language models (LMs) with rule-based rewards. However, existing RL methods -- such as GRPO, REINFORCE++, and RLOO -- often suffer from training instability, where large policy updates and improper clipping can lead to training collapse. To address this issue, we propose Clipped Policy Gradient Optimization with Policy Drift (CPGD), a novel algorithm designed to stabilize policy learning in LMs. CPGD introduces a policy drift constraint based on KL divergence to dynamically regularize policy updates, and leverages a clip mechanism on the logarithm of the ratio to prevent excessive policy updates. We provide theoretical justification for CPGD and demonstrate through empirical analysis that it mitigates the instability observed in prior approaches. Furthermore, we show that CPGD significantly improves performance while maintaining training stability. Our implementation balances theoretical rigor with practical usability, offering a robust alternative for RL in the post-training of LMs. We release our code at https://github.com/ModalMinds/MM-EUREKA.

Authors:Jingyue Gao, Runji Lin, Keming Lu, Bowen Yu, Junyang Lin, Jianyu Chen
Title: MARGE: Improving Math Reasoning for LLMs with Guided Exploration
Abstract:
Large Language Models (LLMs) exhibit strong potential in mathematical reasoning, yet their effectiveness is often limited by a shortage of high-quality queries. This limitation necessitates scaling up computational responses through self-generated data, yet current methods struggle due to spurious correlated data caused by ineffective exploration across all reasoning stages. To address such challenge, we introduce \textbf{MARGE}: Improving \textbf{Ma}th \textbf{R}easoning with \textbf{G}uided \textbf{E}xploration, a novel method to address this issue and enhance mathematical reasoning through hit-guided exploration. MARGE systematically explores intermediate reasoning states derived from self-generated solutions, enabling adequate exploration and improved credit assignment throughout the reasoning process. Through extensive experiments across multiple backbone models and benchmarks, we demonstrate that MARGE significantly improves reasoning capabilities without requiring external annotations or training additional value models. Notably, MARGE improves both single-shot accuracy and exploration diversity, mitigating a common trade-off in alignment methods. These results demonstrate MARGE's effectiveness in enhancing mathematical reasoning capabilities and unlocking the potential of scaling self-generated training data. Our code and models are available at \href{https://github.com/georgao35/MARGE}{this link}.

Authors:Longxi Gao, Li Zhang, Mengwei Xu
Title: UIShift: Enhancing VLM-based GUI Agents through Self-supervised Reinforcement Learning
Abstract:
Training effective Vision Language Models (VLMs) for GUI agents typically relies on supervised fine-tuning (SFT) over large-scale annotated datasets, where the collection process is labor-intensive and error-prone. In this work, we propose a self-supervised inverse dynamics task to enable VLMs to learn from GUI transition pairs by inferring the action that caused that transition. This training task offers two advantages: (1) It enables VLMs to ignore variations unrelated to user actions (e.g., background refreshes, ads) and to focus on true affordances such as buttons and input fields within complex GUIs. (2) The training data can be easily obtained from existing GUI trajectories without requiring human annotation, and it can be easily scaled through automatic offline exploration. Using this training task, we propose UI-shift, a framework for enhancing VLM-based GUI agents through self-supervised reinforcement learning (RL). With only 2K training samples sourced from existing datasets, two VLMs -- Qwen2.5-VL-3B and Qwen2.5-VL-7B -- trained with UI-Shift achieve competitive or superior performance on grounding tasks (ScreenSpot-series benchmarks) and GUI automation tasks (AndroidControl), compared to SFT baselines and GUI-specific models that explicitly elicit reasoning abilities during RL. Our findings suggest a potential direction for enhancing VLMs for GUI agents by leveraging more self-supervised training data in the future. Code, model, and data are available at: https://github.com/UbiquitousLearning/UIShift

Authors:Wenchen Chen, Yanmei Zhang, Zhongwei Xiao, Jianping Chu, Xingbo Wang
Title: Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification
Abstract:
Few-shot classification of hyperspectral images (HSI) faces the challenge of scarce labeled samples. Self-Supervised learning (SSL) and Few-Shot Learning (FSL) offer promising avenues to address this issue. However, existing methods often struggle to adapt to the spatial geometric diversity of HSIs and lack sufficient spectral prior knowledge. To tackle these challenges, we propose a method, Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification (S4L-FSC), aimed at improving the performance of few-shot HSI classification. Specifically, we first leverage heterogeneous datasets to pretrain a spatial feature extractor using a designed Rotation-Mirror Self-Supervised Learning (RM-SSL) method, combined with FSL. This approach enables the model to learn the spatial geometric diversity of HSIs using rotation and mirroring labels as supervisory signals, while acquiring transferable spatial meta-knowledge through few-shot learning. Subsequently, homogeneous datasets are utilized to pretrain a spectral feature extractor via a combination of FSL and Masked Reconstruction Self-Supervised Learning (MR-SSL). The model learns to reconstruct original spectral information from randomly masked spectral vectors, inferring spectral dependencies. In parallel, FSL guides the model to extract pixel-level discriminative features, thereby embedding rich spectral priors into the model. This spectral-spatial pretraining method, along with the integration of knowledge from heterogeneous and homogeneous sources, significantly enhances model performance. Extensive experiments on four HSI datasets demonstrate the effectiveness and superiority of the proposed S4L-FSC approach for few-shot HSI classification.

Authors:Qi Wang, Yanrui Yu, Ye Yuan, Rui Mao, Tianfei Zhou
Title: VideoRFT: Incentivizing Video Reasoning Capability in MLLMs via Reinforced Fine-Tuning
Abstract:
Reinforcement fine-tuning (RFT) has shown great promise in achieving humanlevel reasoning capabilities of Large Language Models (LLMs), and has recently been extended to MLLMs. Nevertheless, reasoning about videos, which is a fundamental aspect of human intelligence, remains a persistent challenge due to the complex logic, temporal and causal structures inherent in video data. To fill this gap, we propose VIDEORFT, a novel approach that extends the RFT paradigm to cultivate human-like video reasoning capabilities in MLLMs. VIDEORFT follows the standard two-stage scheme in RFT: supervised fine-tuning (SFT) with chain-of-thought (CoT) annotations, followed by reinforcement learning (RL) to improve generalization. A central challenge to achieve this in the video domain lies in the scarcity of large-scale, high-quality video CoT datasets. We address this by building a multi-expert, cognition-inspired CoT curation pipeline. First, we devise a cognition-inspired prompting strategy to elicit a reasoning LLM to generate preliminary CoTs based solely on rich, structured, and literal representations of video content. Subsequently, these CoTs are revised by a MLLM conditioned on the actual video, ensuring visual consistency and reducing visual hallucinations. This pipeline results in two new datasets, i.e.VideoRFT-CoT-102K for SFT and VideoRFT-RL-310K for RL. To further strengthen the RL phase, we introduce a novel semantic-consistency reward that explicitly promotes the alignment between textual reasoning and visual evidence. This reward encourages the model to produce coherent, context-aware reasoning outputs grounded in visual input. Extensive experiments show that VIDEORFT achieves state-of-the-art performance on six video reasoning benchmarks.

Authors:Zirun Guo, Minjie Hong, Tao Jin
Title: Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning
Abstract:
Reinforcement Learning (RL) has shown promise in improving the reasoning abilities of Large Language Models (LLMs). However, the specific challenges of adapting RL to multimodal data and formats remain relatively unexplored. In this work, we present Observe-R1, a novel framework aimed at enhancing the reasoning capabilities of multimodal large language models (MLLMs). We draw inspirations from human learning progression--from simple to complex and easy to difficult, and propose a gradual learning paradigm for MLLMs. To this end, we construct the NeuraLadder dataset, which is organized and sampled according to the difficulty and complexity of data samples for RL training. To tackle multimodal tasks, we introduce a multimodal format constraint that encourages careful observation of images, resulting in enhanced visual abilities and clearer and more structured responses. Additionally, we implement a bonus reward system that favors concise, correct answers within a length constraint, alongside a dynamic weighting mechanism that prioritizes uncertain and medium-difficulty problems, ensuring that more informative samples have a greater impact on training. Our experiments with the Qwen2.5-VL-3B and Qwen2.5-VL-7B models on 20k samples from the NeuraLadder dataset show that Observe-R1 outperforms a series of larger reasoning models on both reasoning and general benchmarks, achieving superior clarity and conciseness in reasoning chains. Ablation studies validate the effectiveness of our strategies, highlighting the robustness and generalization of our approach. The dataset and code will be released at https://github.com/zrguo/Observe-R1.

Authors:Siwei Xia, Li Sun, Tiantian Sun, Qingli Li
Title: DragLoRA: Online Optimization of LoRA Adapters for Drag-based Image Editing in Diffusion Model
Abstract:
Drag-based editing within pretrained diffusion model provides a precise and flexible way to manipulate foreground objects. Traditional methods optimize the input feature obtained from DDIM inversion directly, adjusting them iteratively to guide handle points towards target locations. However, these approaches often suffer from limited accuracy due to the low representation ability of the feature in motion supervision, as well as inefficiencies caused by the large search space required for point tracking. To address these limitations, we present DragLoRA, a novel framework that integrates LoRA (Low-Rank Adaptation) adapters into the drag-based editing pipeline. To enhance the training of LoRA adapters, we introduce an additional denoising score distillation loss which regularizes the online model by aligning its output with that of the original model. Additionally, we improve the consistency of motion supervision by adapting the input features using the updated LoRA, giving a more stable and accurate input feature for subsequent operations. Building on this, we design an adaptive optimization scheme that dynamically toggles between two modes, prioritizing efficiency without compromising precision. Extensive experiments demonstrate that DragLoRA significantly enhances the control precision and computational efficiency for drag-based image editing. The Codes of DragLoRA are available at: https://github.com/Sylvie-X/DragLoRA.

Authors:Wenqiao Zhu, Chao Xu, Lulu Wang, Jun Wu
Title: PSC: Extending Context Window of Large Language Models via Phase Shift Calibration
Abstract:
Rotary Position Embedding (RoPE) is an efficient position encoding approach and is widely utilized in numerous large language models (LLMs). Recently, a lot of methods have been put forward to further expand the context window based on RoPE. The core concept of those methods is to predefine or search for a set of factors to rescale the base frequencies of RoPE. Nevertheless, it is quite a challenge for existing methods to predefine an optimal factor due to the exponential search space. In view of this, we introduce PSC (Phase Shift Calibration), a small module for calibrating the frequencies predefined by existing methods. With the employment of PSC, we demonstrate that many existing methods can be further enhanced, like PI, YaRN, and LongRoPE. We conducted extensive experiments across multiple models and tasks. The results demonstrate that (1) when PSC is enabled, the comparative reductions in perplexity increase as the context window size is varied from 16k, to 32k, and up to 64k. (2) Our approach is broadly applicable and exhibits robustness across a variety of models and tasks. The code can be found at https://github.com/WNQzhu/PSC.

Authors:Emanuele La Malfa, Jon Vadillo, Marco Molinari, Michael Wooldridge
Title: Fixed Point Explainability
Abstract:
This paper introduces a formal notion of fixed point explanations, inspired by the "why regress" principle, to assess, through recursive applications, the stability of the interplay between a model and its explainer. Fixed point explanations satisfy properties like minimality, stability, and faithfulness, revealing hidden model behaviours and explanatory weaknesses. We define convergence conditions for several classes of explainers, from feature-based to mechanistic tools like Sparse AutoEncoders, and we report quantitative and qualitative results.

Authors:Yang Hu, Xingyu Zhang, Xueji Fang, Zhiyang Chen, Xiao Wang, Huatian Zhang, Guojun Qi
Title: SLOT: Sample-specific Language Model Optimization at Test-time
Abstract:
We propose SLOT (Sample-specific Language Model Optimization at Test-time), a novel and parameter-efficient test-time inference approach that enhances a language model's ability to more accurately respond to individual prompts. Existing Large Language Models (LLMs) often struggle with complex instructions, leading to poor performances on those not well represented among general samples. To address this, SLOT conducts few optimization steps at test-time to update a light-weight sample-specific parameter vector. It is added to the final hidden layer before the output head, and enables efficient adaptation by caching the last layer features during per-sample optimization. By minimizing the cross-entropy loss on the input prompt only, SLOT helps the model better aligned with and follow each given instruction. In experiments, we demonstrate that our method outperforms the compared models across multiple benchmarks and LLMs. For example, Qwen2.5-7B with SLOT achieves an accuracy gain of 8.6% on GSM8K from 57.54% to 66.19%, while DeepSeek-R1-Distill-Llama-70B with SLOT achieves a SOTA accuracy of 68.69% on GPQA among 70B-level models. Our code is available at https://github.com/maple-research-lab/SLOT.

Authors:Elizaveta Pestova, Ilya Osokin, Danil Belov, Pavel Osinenko
Title: Adaptive MPC-based quadrupedal robot control under periodic disturbances
Abstract:
Recent advancements in adaptive control for reference trajectory tracking enable quadrupedal robots to perform locomotion tasks under challenging conditions. There are methods enabling the estimation of the external disturbances in terms of forces and torques. However, a specific case of disturbances that are periodic was not explicitly tackled in application to quadrupeds. This work is devoted to the estimation of the periodic disturbances with a lightweight regressor using simplified robot dynamics and extracting the disturbance properties in terms of the magnitude and frequency. Experimental evidence suggests performance improvement over the baseline static disturbance compensation. All source files, including simulation setups, code, and calculation scripts, are available on GitHub at https://github.com/aidagroup/quad-periodic-mpc.

Authors:Ya Shen, Gang Chen, Hui Ma, Mengjie Zhang
Title: GATES: Cost-aware Dynamic Workflow Scheduling via Graph Attention Networks and Evolution Strategy
Abstract:
Cost-aware Dynamic Workflow Scheduling (CADWS) is a key challenge in cloud computing, focusing on devising an effective scheduling policy to efficiently schedule dynamically arriving workflow tasks, represented as Directed Acyclic Graphs (DAG), to suitable virtual machines (VMs). Deep reinforcement learning (DRL) has been widely employed for automated scheduling policy design. However, the performance of DRL is heavily influenced by the design of the problem-tailored policy network and is highly sensitive to hyperparameters and the design of reward feedback. Considering the above-mentioned issues, this study proposes a novel DRL method combining Graph Attention Networks-based policy network and Evolution Strategy, referred to as GATES. The contributions of GATES are summarized as follows: (1) GATES can capture the impact of current task scheduling on subsequent tasks by learning the topological relationships between tasks in a DAG. (2) GATES can assess the importance of each VM to the ready task, enabling it to adapt to dynamically changing VM resources. (3) Utilizing Evolution Strategy's robustness, exploratory nature, and tolerance for delayed rewards, GATES achieves stable policy learning in CADWS. Extensive experimental results demonstrate the superiority of the proposed GATES in CADWS, outperforming several state-of-the-art algorithms. The source code is available at: https://github.com/YaShen998/GATES.

Authors:Qizhou Chen, Dakan Wang, Taolin Zhang, Zaoming Yan, Chengsong You, Chengyu Wang, Xiaofeng He
Title: UniEdit: A Unified Knowledge Editing Benchmark for Large Language Models
Abstract:
Model editing aims to enhance the accuracy and reliability of large language models (LLMs) by efficiently adjusting their internal parameters. Currently, most LLM editing datasets are confined to narrow knowledge domains and cover a limited range of editing evaluation. They often overlook the broad scope of editing demands and the diversity of ripple effects resulting from edits. In this context, we introduce UniEdit, a unified benchmark for LLM editing grounded in open-domain knowledge. First, we construct editing samples by selecting entities from 25 common domains across five major categories, utilizing the extensive triple knowledge available in open-domain knowledge graphs to ensure comprehensive coverage of the knowledge domains. To address the issues of generality and locality in editing, we design an Neighborhood Multi-hop Chain Sampling (NMCS) algorithm to sample subgraphs based on a given knowledge piece to entail comprehensive ripple effects to evaluate. Finally, we employ proprietary LLMs to convert the sampled knowledge subgraphs into natural language text, guaranteeing grammatical accuracy and syntactical diversity. Extensive statistical analysis confirms the scale, comprehensiveness, and diversity of our UniEdit benchmark. We conduct comprehensive experiments across multiple LLMs and editors, analyzing their performance to highlight strengths and weaknesses in editing across open knowledge domains and various evaluation criteria, thereby offering valuable insights for future research endeavors.

Authors:Xinye Li, Mingqi Wan, Dianbo Sui
Title: LLMSR@XLLM25: An Empirical Study of LLM for Structural Reasoning
Abstract:
We present Team asdfo123's submission to the LLMSR@XLLM25 shared task, which evaluates large language models on producing fine-grained, controllable, and interpretable reasoning processes. Systems must extract all problem conditions, decompose a chain of thought into statement-evidence pairs, and verify the logical validity of each pair. Leveraging only the off-the-shelf Meta-Llama-3-8B-Instruct, we craft a concise few-shot, multi-turn prompt that first enumerates all conditions and then guides the model to label, cite, and adjudicate every reasoning step. A lightweight post-processor based on regular expressions normalises spans and enforces the official JSON schema. Without fine-tuning, external retrieval, or ensembling, our method ranks 5th overall, achieving macro F1 scores on par with substantially more complex and resource-consuming pipelines. We conclude by analysing the strengths and limitations of our approach and outlining directions for future research in structural reasoning with LLMs. Our code is available at https://github.com/asdfo123/LLMSR-asdfo123.

Authors:Maoyuan Ye, Jing Zhang, Juhua Liu, Bo Du, Dacheng Tao
Title: LogicOCR: Do Your Large Multimodal Models Excel at Logical Reasoning on Text-Rich Images?
Abstract:
Recent advances in Large Multimodal Models (LMMs) have significantly improved their reasoning and Optical Character Recognition (OCR) capabilities. However, their performance on complex logical reasoning tasks involving text-rich images remains underexplored. To bridge this gap, we introduce LogicOCR, a benchmark comprising 1,100 multiple-choice questions designed to evaluate LMMs' logical reasoning abilities on text-rich images, while minimizing reliance on domain-specific knowledge (e.g., mathematics). We construct LogicOCR by curating a text corpus from the Chinese National Civil Servant Examination and develop a scalable, automated pipeline to convert it into multimodal samples. First, we design prompt templates to steer GPT-Image-1 to generate images with diverse backgrounds, interleaved text-illustration layouts, and varied fonts, ensuring contextual relevance and visual realism. Then, the generated images are manually verified, with low-quality examples discarded. We evaluate a range of representative open-source and proprietary LMMs under both Chain-of-Thought (CoT) and direct-answer settings. Our multi-dimensional analysis reveals key insights, such as the impact of test-time scaling, input modality differences, and sensitivity to visual-text orientation. Notably, LMMs still lag in multimodal reasoning compared to text-only inputs, indicating that they have not fully bridged visual reading with reasoning. We hope LogicOCR will serve as a valuable resource for advancing multimodal reasoning research. The dataset is available at https://github.com/MiliLab/LogicOCR.

Authors:Sijie Zhao, Feng Liu, Enzhuo Zhang, Yiqing Guo, Pengfeng Xiao, Lei Bai, Xueliang Zhang, Hao Chen
Title: Spatial-Temporal-Spectral Unified Modeling for Remote Sensing Dense Prediction
Abstract:
The proliferation of multi-source remote sensing data has propelled the development of deep learning for dense prediction, yet significant challenges in data and task unification persist. Current deep learning architectures for remote sensing are fundamentally rigid. They are engineered for fixed input-output configurations, restricting their adaptability to the heterogeneous spatial, temporal, and spectral dimensions inherent in real-world data. Furthermore, these models neglect the intrinsic correlations among semantic segmentation, binary change detection, and semantic change detection, necessitating the development of distinct models or task-specific decoders. This paradigm is also constrained to a predefined set of output semantic classes, where any change to the classes requires costly retraining. To overcome these limitations, we introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling. STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands by leveraging their metadata for a unified representation. Moreover, STSUN unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings. Similarly, STSUN facilitates flexible prediction across multiple set of semantic categories by integrating trainable category embeddings as metadata. Extensive experiments on multiple datasets with diverse Spatial-Temporal-Spectral configurations in multiple scenarios demonstrate that a single STSUN model effectively adapts to heterogeneous inputs and outputs, unifying various dense prediction tasks and diverse semantic class predictions. The proposed approach consistently achieves state-of-the-art performance, highlighting its robustness and generalizability for complex remote sensing applications.

Authors:Md. Atiqur Rahman, Sabrina Islam, Mushfiqul Haque Omi
Title: LLM-Based Evaluation of Low-Resource Machine Translation: A Reference-less Dialect Guided Approach with a Refined Sylheti-English Benchmark
Abstract:
Evaluating machine translation (MT) for low-resource languages poses a persistent challenge, primarily due to the limited availability of high quality reference translations. This issue is further exacerbated in languages with multiple dialects, where linguistic diversity and data scarcity hinder robust evaluation. Large Language Models (LLMs) present a promising solution through reference-free evaluation techniques; however, their effectiveness diminishes in the absence of dialect-specific context and tailored guidance. In this work, we propose a comprehensive framework that enhances LLM-based MT evaluation using a dialect guided approach. We extend the ONUBAD dataset by incorporating Sylheti-English sentence pairs, corresponding machine translations, and Direct Assessment (DA) scores annotated by native speakers. To address the vocabulary gap, we augment the tokenizer vocabulary with dialect-specific terms. We further introduce a regression head to enable scalar score prediction and design a dialect-guided (DG) prompting strategy. Our evaluation across multiple LLMs shows that the proposed pipeline consistently outperforms existing methods, achieving the highest gain of +0.1083 in Spearman correlation, along with improvements across other evaluation settings. The dataset and the code are available at https://github.com/180041123-Atiq/MTEonLowResourceLanguage.

Authors:ZhanFeng Feng, Long Peng, Xin Di, Yong Guo, Wenbo Li, Yulun Zhang, Renjing Pei, Yang Wang, Yang Cao, Zheng-Jun Zha
Title: PMQ-VE: Progressive Multi-Frame Quantization for Video Enhancement
Abstract:
Multi-frame video enhancement tasks aim to improve the spatial and temporal resolution and quality of video sequences by leveraging temporal information from multiple frames, which are widely used in streaming video processing, surveillance, and generation. Although numerous Transformer-based enhancement methods have achieved impressive performance, their computational and memory demands hinder deployment on edge devices. Quantization offers a practical solution by reducing the bit-width of weights and activations to improve efficiency. However, directly applying existing quantization methods to video enhancement tasks often leads to significant performance degradation and loss of fine details. This stems from two limitations: (a) inability to allocate varying representational capacity across frames, which results in suboptimal dynamic range adaptation; (b) over-reliance on full-precision teachers, which limits the learning of low-bit student models. To tackle these challenges, we propose a novel quantization method for video enhancement: Progressive Multi-Frame Quantization for Video Enhancement (PMQ-VE). This framework features a coarse-to-fine two-stage process: Backtracking-based Multi-Frame Quantization (BMFQ) and Progressive Multi-Teacher Distillation (PMTD). BMFQ utilizes a percentile-based initialization and iterative search with pruning and backtracking for robust clipping bounds. PMTD employs a progressive distillation strategy with both full-precision and multiple high-bit (INT) teachers to enhance low-bit models' capacity and quality. Extensive experiments demonstrate that our method outperforms existing approaches, achieving state-of-the-art performance across multiple tasks and benchmarks.The code will be made publicly available at: https://github.com/xiaoBIGfeng/PMQ-VE.

Authors:Quanjiang Guo, Jinchuan Zhang, Sijie Wang, Ling Tian, Zhao Kang, Bin Yan, Weidong Xiao
Title: Bridging Generative and Discriminative Learning: Few-Shot Relation Extraction via Two-Stage Knowledge-Guided Pre-training
Abstract:
Few-Shot Relation Extraction (FSRE) remains a challenging task due to the scarcity of annotated data and the limited generalization capabilities of existing models. Although large language models (LLMs) have demonstrated potential in FSRE through in-context learning (ICL), their general-purpose training objectives often result in suboptimal performance for task-specific relation extraction. To overcome these challenges, we propose TKRE (Two-Stage Knowledge-Guided Pre-training for Relation Extraction), a novel framework that synergistically integrates LLMs with traditional relation extraction models, bridging generative and discriminative learning paradigms. TKRE introduces two key innovations: (1) leveraging LLMs to generate explanation-driven knowledge and schema-constrained synthetic data, addressing the issue of data scarcity; and (2) a two-stage pre-training strategy combining Masked Span Language Modeling (MSLM) and Span-Level Contrastive Learning (SCL) to enhance relational reasoning and generalization. Together, these components enable TKRE to effectively tackle FSRE tasks. Comprehensive experiments on benchmark datasets demonstrate the efficacy of TKRE, achieving new state-of-the-art performance in FSRE and underscoring its potential for broader application in low-resource scenarios. \footnote{The code and data are released on https://github.com/UESTC-GQJ/TKRE.

Authors:Yeonkyung Lee, Woojung Han, Youngjun Jun, Hyeonmin Kim, Jungkyung Cho, Seong Jae Hwang
Title: PRETI: Patient-Aware Retinal Foundation Model via Metadata-Guided Representation Learning
Abstract:
Retinal foundation models have significantly advanced retinal image analysis by leveraging self-supervised learning to reduce dependence on labeled data while achieving strong generalization. Many recent approaches enhance retinal image understanding using report supervision, but obtaining clinical reports is often costly and challenging. In contrast, metadata (e.g., age, gender) is widely available and serves as a valuable resource for analyzing disease progression. To effectively incorporate patient-specific information, we propose PRETI, a retinal foundation model that integrates metadata-aware learning with robust self-supervised representation learning. We introduce Learnable Metadata Embedding (LME), which dynamically refines metadata representations. Additionally, we construct patient-level data pairs, associating images from the same individual to improve robustness against non-clinical variations. To further optimize retinal image representation, we propose Retina-Aware Adaptive Masking (RAAM), a strategy that selectively applies masking within the retinal region and dynamically adjusts the masking ratio during training. PRETI captures both global structures and fine-grained pathological details, resulting in superior diagnostic performance. Extensive experiments demonstrate that PRETI achieves state-of-the-art results across diverse diseases and biomarker predictions using in-house and public data, indicating the importance of metadata-guided foundation models in retinal disease analysis. Our code and pretrained model are available at https://github.com/MICV-yonsei/PRETI

Authors:Shaobo Wang, Xiangqi Jin, Ziming Wang, Jize Wang, Jiajun Zhang, Kaixin Li, Zichen Wen, Zhong Li, Conghui He, Xuming Hu, Linfeng Zhang
Title: Data Whisperer: Efficient Data Selection for Task-Specific LLM Fine-Tuning via Few-Shot In-Context Learning
Abstract:
Fine-tuning large language models (LLMs) on task-specific data is essential for their effective deployment. As dataset sizes grow, efficiently selecting optimal subsets for training becomes crucial to balancing performance and computational costs. Traditional data selection methods often require fine-tuning a scoring model on the target dataset, which is time-consuming and resource-intensive, or rely on heuristics that fail to fully leverage the model's predictive capabilities. To address these challenges, we propose Data Whisperer, an efficient, training-free, attention-based method that leverages few-shot in-context learning with the model to be fine-tuned. Comprehensive evaluations were conducted on both raw and synthetic datasets across diverse tasks and models. Notably, Data Whisperer achieves superior performance compared to the full GSM8K dataset on the Llama-3-8B-Instruct model, using just 10% of the data, and outperforms existing methods with a 3.1-point improvement and a 7.4$\times$ speedup. The code is available at https://github.com/gszfwsb/Data-Whisperer.

Authors:Riad Hossain, Muhammad Ashad Kabir, Arat Ibne Golam Mowla, Animesh Chandra Roy, Ranjit Kumar Ghosh
Title: BenSParX: A Robust Explainable Machine Learning Framework for Parkinson's Disease Detection from Bengali Conversational Speech
Abstract:
Parkinson's disease (PD) poses a growing global health challenge, with Bangladesh experiencing a notable rise in PD-related mortality. Early detection of PD remains particularly challenging in resource-constrained settings, where voice-based analysis has emerged as a promising non-invasive and cost-effective alternative. However, existing studies predominantly focus on English or other major languages; notably, no voice dataset for PD exists for Bengali - posing a significant barrier to culturally inclusive and accessible healthcare solutions. Moreover, most prior studies employed only a narrow set of acoustic features, with limited or no hyperparameter tuning and feature selection strategies, and little attention to model explainability. This restricts the development of a robust and generalizable machine learning model. To address this gap, we present BenSparX, the first Bengali conversational speech dataset for PD detection, along with a robust and explainable machine learning framework tailored for early diagnosis. The proposed framework incorporates diverse acoustic feature categories, systematic feature selection methods, and state-of-the-art machine learning algorithms with extensive hyperparameter optimization. Furthermore, to enhance interpretability and trust in model predictions, the framework incorporates SHAP (SHapley Additive exPlanations) analysis to quantify the contribution of individual acoustic features toward PD detection. Our framework achieves state-of-the-art performance, yielding an accuracy of 95.77%, F1 score of 95.57%, and AUC-ROC of 0.982. We further externally validated our approach by applying the framework to existing PD datasets in other languages, where it consistently outperforms state-of-the-art approaches. To facilitate further research and reproducibility, the dataset has been made publicly available at https://github.com/Riad071/BenSParX.

Authors:Wenquan Lu, Jiaqi Zhang, Hugues Van Assel, Randall Balestriero
Title: Ditch the Denoiser: Emergence of Noise Robustness in Self-Supervised Learning from Data Curriculum
Abstract:
Self-Supervised Learning (SSL) has become a powerful solution to extract rich representations from unlabeled data. Yet, SSL research is mostly focused on clean, curated and high-quality datasets. As a result, applying SSL on noisy data remains a challenge, despite being crucial to applications such as astrophysics, medical imaging, geophysics or finance. In this work, we present a fully self-supervised framework that enables noise-robust representation learning without requiring a denoiser at inference or downstream fine-tuning. Our method first trains an SSL denoiser on noisy data, then uses it to construct a denoised-to-noisy data curriculum (i.e., training first on denoised, then noisy samples) for pretraining a SSL backbone (e.g., DINOv2), combined with a teacher-guided regularization that anchors noisy embeddings to their denoised counterparts. This process encourages the model to internalize noise robustness. Notably, the denoiser can be discarded after pretraining, simplifying deployment. On ImageNet-1k with ViT-B under extreme Gaussian noise ($σ=255$, SNR = 0.72 dB), our method improves linear probing accuracy by 4.8% over DINOv2, demonstrating that denoiser-free robustness can emerge from noise-aware pretraining. The code is available at https://github.com/wenquanlu/noisy_dinov2.

Authors:Hanyu Wang, Xinrui Wu, Zijian Ding, Su Zheng, Chengyue Wang, Tony Nowatzki, Yizhou Sun, Jason Cong
Title: LLM-DSE: Searching Accelerator Parameters with LLM Agents
Abstract:
Even though high-level synthesis (HLS) tools mitigate the challenges of programming domain-specific accelerators (DSAs) by raising the abstraction level, optimizing hardware directive parameters remains a significant hurdle. Existing heuristic and learning-based methods struggle with adaptability and sample efficiency. We present LLM-DSE, a multi-agent framework designed specifically for optimizing HLS directives. Combining LLM with design space exploration (DSE), our explorer coordinates four agents: Router, Specialists, Arbitrator, and Critic. These multi-agent components interact with various tools to accelerate the optimization process. LLM-DSE leverages essential domain knowledge to identify efficient parameter combinations while maintaining adaptability through verbal learning from online interactions. Evaluations on the HLSyn dataset demonstrate that LLM-DSE achieves substantial $2.55\times$ performance gains over state-of-the-art methods, uncovering novel designs while reducing runtime. Ablation studies validate the effectiveness and necessity of the proposed agent interactions. Our code is open-sourced here: https://github.com/Nozidoali/LLM-DSE.

Authors:Omar Choukrani, Idriss Malek, Daniil Orel, Zhuohan Xie, Zangir Iklassov, Martin Takáč, Salem Lahlou
Title: LLM-BABYBENCH: Understanding and Evaluating Grounded Planning and Reasoning in LLMs
Abstract:
Assessing the capacity of Large Language Models (LLMs) to plan and reason within the constraints of interactive environments is crucial for developing capable AI agents. We introduce $\textbf{LLM-BabyBench}$, a new benchmark suite designed specifically for this purpose. Built upon a textual adaptation of the procedurally generated BabyAI grid world, this suite evaluates LLMs on three fundamental aspects of grounded intelligence: (1) predicting the consequences of actions on the environment state ($\textbf{Predict}$ task), (2) generating sequences of low-level actions to achieve specified objectives ($\textbf{Plan}$ task), and (3) decomposing high-level instructions into coherent subgoal sequences ($\textbf{Decompose}$ task). We detail the methodology for generating the three corresponding datasets ($\texttt{LLM-BabyBench-Predict}$, $\texttt{-Plan}$, $\texttt{-Decompose}$) by extracting structured information from an expert agent operating within the text-based environment. Furthermore, we provide a standardized evaluation harness and metrics, including environment interaction for validating generated plans, to facilitate reproducible assessment of diverse LLMs. Initial baseline results highlight the challenges posed by these grounded reasoning tasks. The benchmark suite, datasets, data generation code, and evaluation code are made publicly available ($\href{https://github.com/choukrani/llm-babybench}{\text{GitHub}}$, $\href{https://huggingface.co/datasets/salem-mbzuai/LLM-BabyBench}{\text{HuggingFace}}$).

Authors:Dmitry Nechaev, Alexey Pchelnikov, Ekaterina Ivanova
Title: HISTAI: An Open-Source, Large-Scale Whole Slide Image Dataset for Computational Pathology
Abstract:
Recent advancements in Digital Pathology (DP), particularly through artificial intelligence and Foundation Models, have underscored the importance of large-scale, diverse, and richly annotated datasets. Despite their critical role, publicly available Whole Slide Image (WSI) datasets often lack sufficient scale, tissue diversity, and comprehensive clinical metadata, limiting the robustness and generalizability of AI models. In response, we introduce the HISTAI dataset, a large, multimodal, open-access WSI collection comprising over 60,000 slides from various tissue types. Each case in the HISTAI dataset is accompanied by extensive clinical metadata, including diagnosis, demographic information, detailed pathological annotations, and standardized diagnostic coding. The dataset aims to fill gaps identified in existing resources, promoting innovation, reproducibility, and the development of clinically relevant computational pathology solutions. The dataset can be accessed at https://github.com/HistAI/HISTAI.

Authors:Jiarui Wang, Huiyu Duan, Ziheng Jia, Yu Zhao, Woo Yi Yang, Zicheng Zhang, Zijian Chen, Juntong Wang, Yuke Xing, Guangtao Zhai, Xiongkuo Min
Title: LOVE: Benchmarking and Evaluating Text-to-Video Generation and Video-to-Text Interpretation
Abstract:
Recent advancements in large multimodal models (LMMs) have driven substantial progress in both text-to-video (T2V) generation and video-to-text (V2T) interpretation tasks. However, current AI-generated videos (AIGVs) still exhibit limitations in terms of perceptual quality and text-video alignment. Therefore, a reliable and scalable automatic model for AIGV evaluation is desirable, which heavily relies on the scale and quality of human annotations. To this end, we present AIGVE-60K, a comprehensive dataset and benchmark for AI-Generated Video Evaluation, which features (i) comprehensive tasks, encompassing 3,050 extensive prompts across 20 fine-grained task dimensions, (ii) the largest human annotations, including 120K mean-opinion scores (MOSs) and 60K question-answering (QA) pairs annotated on 58,500 videos generated from 30 T2V models, and (iii) bidirectional benchmarking and evaluating for both T2V generation and V2T interpretation capabilities. Based on AIGVE-60K, we propose LOVE, a LMM-based metric for AIGV Evaluation from multiple dimensions including perceptual preference, text-video correspondence, and task-specific accuracy in terms of both instance level and model level. Comprehensive experiments demonstrate that LOVE not only achieves state-of-the-art performance on the AIGVE-60K dataset, but also generalizes effectively to a wide range of other AIGV evaluation benchmarks. These findings highlight the significance of the AIGVE-60K dataset. Database and codes are anonymously available at https://github.com/IntMeGroup/LOVE.

Authors:Ninghan Zhong, Steven Caro, Avraiem Iskandar, Megnath Ramesh, Stephen L. Smith
Title: Bench-NPIN: Benchmarking Non-prehensile Interactive Navigation
Abstract:
Mobile robots are increasingly deployed in unstructured environments where obstacles and objects are movable. Navigation in such environments is known as interactive navigation, where task completion requires not only avoiding obstacles but also strategic interactions with movable objects. Non-prehensile interactive navigation focuses on non-grasping interaction strategies, such as pushing, rather than relying on prehensile manipulation. Despite a growing body of research in this field, most solutions are evaluated using case-specific setups, limiting reproducibility and cross-comparison. In this paper, we present Bench-NPIN, the first comprehensive benchmark for non-prehensile interactive navigation. Bench-NPIN includes multiple components: 1) a comprehensive range of simulated environments for non-prehensile interactive navigation tasks, including navigating a maze with movable obstacles, autonomous ship navigation in icy waters, box delivery, and area clearing, each with varying levels of complexity; 2) a set of evaluation metrics that capture unique aspects of interactive navigation, such as efficiency, interaction effort, and partial task completion; and 3) demonstrations using Bench-NPIN to evaluate example implementations of established baselines across environments. Bench-NPIN is an open-source Python library with a modular design. The code, documentation, and trained models can be found at https://github.com/IvanIZ/BenchNPIN.

Authors:Yuqi Li, Kai Li, Xin Yin, Zhifei Yang, Junhao Dong, Zeyu Dong, Chuanguang Yang, Yingli Tian, Yao Lu
Title: SepPrune: Structured Pruning for Efficient Deep Speech Separation
Abstract:
Although deep learning has substantially advanced speech separation in recent years, most existing studies continue to prioritize separation quality while overlooking computational efficiency, an essential factor for low-latency speech processing in real-time applications. In this paper, we propose SepPrune, the first structured pruning framework specifically designed to compress deep speech separation models and reduce their computational cost. SepPrune begins by analyzing the computational structure of a given model to identify layers with the highest computational burden. It then introduces a differentiable masking strategy to enable gradient-driven channel selection. Based on the learned masks, SepPrune prunes redundant channels and fine-tunes the remaining parameters to recover performance. Extensive experiments demonstrate that this learnable pruning paradigm yields substantial advantages for channel pruning in speech separation models, outperforming existing methods. Notably, a model pruned with SepPrune can recover 85% of the performance of a pre-trained model (trained over hundreds of epochs) with only one epoch of fine-tuning, and achieves convergence 36$\times$ faster than training from scratch. Code is available at https://github.com/itsnotacie/SepPrune.

Authors:Yijie Zheng, Jinxuan Yang, Yu Chen, Yaxuan Wang, Yihang Lu, Guoqing Li
Title: Beluga Whale Detection from Satellite Imagery with Point Labels
Abstract:
Very high-resolution (VHR) satellite imagery has emerged as a powerful tool for monitoring marine animals on a large scale. However, existing deep learning-based whale detection methods usually require manually created, high-quality bounding box annotations, which are labor-intensive to produce. Moreover, existing studies often exclude ``uncertain whales'', individuals that have ambiguous appearances in satellite imagery, limiting the applicability of these models in real-world scenarios. To address these limitations, this study introduces an automated pipeline for detecting beluga whales and harp seals in VHR satellite imagery. The pipeline leverages point annotations and the Segment Anything Model (SAM) to generate precise bounding box annotations, which are used to train YOLOv8 for multiclass detection of certain whales, uncertain whales, and harp seals. Experimental results demonstrated that SAM-generated annotations significantly improved detection performance, achieving higher $\text{F}_\text{1}$-scores compared to traditional buffer-based annotations. YOLOv8 trained on SAM-labeled boxes achieved an overall $\text{F}_\text{1}$-score of 72.2% for whales overall and 70.3% for harp seals, with superior performance in dense scenes. The proposed approach not only reduces the manual effort required for annotation but also enhances the detection of uncertain whales, offering a more comprehensive solution for marine animal monitoring. This method holds great potential for extending to other species, habitats, and remote sensing platforms, as well as for estimating whale biometrics, thereby advancing ecological monitoring and conservation efforts. The codes for our label and detection pipeline are publicly available at http://github.com/voyagerxvoyagerx/beluga-seeker .

Authors:Tiannuo Yang, Zebin Yao, Bowen Jin, Lixiao Cui, Yusen Li, Gang Wang, Xiaoguang Liu
Title: Demystifying and Enhancing the Efficiency of Large Language Model Based Search Agents
Abstract:
Large Language Model (LLM)-based search agents have shown remarkable capabilities in solving complex tasks by dynamically decomposing problems and addressing them through interleaved reasoning and retrieval. However, this interleaved paradigm introduces substantial efficiency bottlenecks. First, we observe that both highly accurate and overly approximate retrieval methods degrade system efficiency: exact search incurs significant retrieval overhead, while coarse retrieval requires additional reasoning steps during generation. Second, we identify inefficiencies in system design, including improper scheduling and frequent retrieval stalls, which lead to cascading latency -- where even minor delays in retrieval amplify end-to-end inference time. To address these challenges, we introduce SearchAgent-X, a high-efficiency inference framework for LLM-based search agents. SearchAgent-X leverages high-recall approximate retrieval and incorporates two key techniques: priority-aware scheduling and non-stall retrieval. Extensive experiments demonstrate that SearchAgent-X consistently outperforms state-of-the-art systems such as vLLM and HNSW-based retrieval across diverse tasks, achieving up to 3.4$\times$ higher throughput and 5$\times$ lower latency, without compromising generation quality. SearchAgent-X is available at https://github.com/tiannuo-yang/SearchAgent-X.

Authors:Peng Ding, Jun Kuang, Zongyu Wang, Xuezhi Cao, Xunliang Cai, Jiajun Chen, Shujian Huang
Title: Why Not Act on What You Know? Unleashing Safety Potential of LLMs via Self-Aware Guard Enhancement
Abstract:
Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks. In this paper, we identify a critical safety gap: while LLMs are adept at detecting jailbreak prompts, they often produce unsafe responses when directly processing these inputs. Inspired by this insight, we propose SAGE (Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs' strong safety discrimination performance with their relatively weaker safety generation ability. SAGE consists of two core components: a Discriminative Analysis Module and a Discriminative Response Module, enhancing resilience against sophisticated jailbreak attempts through flexible safety discrimination instructions. Extensive experiments demonstrate SAGE's effectiveness and robustness across various open-source and closed-source LLMs of different sizes and architectures, achieving an average 99% defense success rate against numerous complex and covert jailbreak methods while maintaining helpfulness on general benchmarks. We further conduct mechanistic interpretability analysis through hidden states and attention distributions, revealing the underlying mechanisms of this detection-generation discrepancy. Our work thus contributes to developing future LLMs with coherent safety awareness and generation behavior. Our code and datasets are publicly available at https://github.com/NJUNLP/SAGE.

Authors:Tianxiong Zhong, Xingye Tian, Boyuan Jiang, Xuebo Wang, Xin Tao, Pengfei Wan, Zhiwei Zhang
Title: VFRTok: Variable Frame Rates Video Tokenizer with Duration-Proportional Information Assumption
Abstract:
Modern video generation frameworks based on Latent Diffusion Models suffer from inefficiencies in tokenization due to the Frame-Proportional Information Assumption. Existing tokenizers provide fixed temporal compression rates, causing the computational cost of the diffusion model to scale linearly with the frame rate. The paper proposes the Duration-Proportional Information Assumption: the upper bound on the information capacity of a video is proportional to the duration rather than the number of frames. Based on this insight, the paper introduces VFRTok, a Transformer-based video tokenizer, that enables variable frame rate encoding and decoding through asymmetric frame rate training between the encoder and decoder. Furthermore, the paper proposes Partial Rotary Position Embeddings (RoPE) to decouple position and content modeling, which groups correlated patches into unified tokens. The Partial RoPE effectively improves content-awareness, enhancing the video generation capability. Benefiting from the compact and continuous spatio-temporal representation, VFRTok achieves competitive reconstruction quality and state-of-the-art generation fidelity while using only 1/8 tokens compared to existing tokenizers. The code and weights are released at: https://github.com/KwaiVGI/VFRTok.

Authors:Yinghui Zhang, Tailin Chen, Yuchen Zhang, Zeyu Fu
Title: Enhanced Multimodal Hate Video Detection via Channel-wise and Modality-wise Fusion
Abstract:
The rapid rise of video content on platforms such as TikTok and YouTube has transformed information dissemination, but it has also facilitated the spread of harmful content, particularly hate videos. Despite significant efforts to combat hate speech, detecting these videos remains challenging due to their often implicit nature. Current detection methods primarily rely on unimodal approaches, which inadequately capture the complementary features across different modalities. While multimodal techniques offer a broader perspective, many fail to effectively integrate temporal dynamics and modality-wise interactions essential for identifying nuanced hate content. In this paper, we present CMFusion, an enhanced multimodal hate video detection model utilizing a novel Channel-wise and Modality-wise Fusion Mechanism. CMFusion first extracts features from text, audio, and video modalities using pre-trained models and then incorporates a temporal cross-attention mechanism to capture dependencies between video and audio streams. The learned features are then processed by channel-wise and modality-wise fusion modules to obtain informative representations of videos. Our extensive experiments on a real-world dataset demonstrate that CMFusion significantly outperforms five widely used baselines in terms of accuracy, precision, recall, and F1 score. Comprehensive ablation studies and parameter analyses further validate our design choices, highlighting the model's effectiveness in detecting hate videos. The source codes will be made publicly available at https://github.com/EvelynZ10/cmfusion.

Authors:Kazuhiko Kawamoto, Atsuhiro Endo, Hiroshi Kera
Title: Cross-Model Transfer of Task Vectors via Few-Shot Orthogonal Alignment
Abstract:
Task arithmetic enables efficient model editing by representing task-specific changes as vectors in parameter space. Task arithmetic typically assumes that the source and target models are initialized from the same pre-trained parameters. This assumption limits its applicability in cross-model transfer settings, where models are independently pre-trained on different datasets. To address this challenge, we propose a method based on few-shot orthogonal alignment, which aligns task vectors to the parameter space of a differently pre-trained target model. These transformations preserve key properties of task vectors, such as norm and rank, and are learned using only a small number of labeled examples. We evaluate the method using two Vision Transformers pre-trained on YFCC100M and LAION400M, and test on eight classification datasets. Experimental results show that our method improves transfer accuracy over direct task vector application and achieves performance comparable to few-shot fine-tuning, while maintaining the modularity and reusability of task vectors. Our code is available at https://github.com/kawakera-lab/CrossModelTransfer.

Authors:Mingcheng Qu, Guang Yang, Donglin Di, Tonghua Su, Yue Gao, Yang Song, Lei Fan
Title: Multimodal Cancer Survival Analysis via Hypergraph Learning with Cross-Modality Rebalance
Abstract:
Multimodal pathology-genomic analysis has become increasingly prominent in cancer survival prediction. However, existing studies mainly utilize multi-instance learning to aggregate patch-level features, neglecting the information loss of contextual and hierarchical details within pathology images. Furthermore, the disparity in data granularity and dimensionality between pathology and genomics leads to a significant modality imbalance. The high spatial resolution inherent in pathology data renders it a dominant role while overshadowing genomics in multimodal integration. In this paper, we propose a multimodal survival prediction framework that incorporates hypergraph learning to effectively capture both contextual and hierarchical details from pathology images. Moreover, it employs a modality rebalance mechanism and an interactive alignment fusion strategy to dynamically reweight the contributions of the two modalities, thereby mitigating the pathology-genomics imbalance. Quantitative and qualitative experiments are conducted on five TCGA datasets, demonstrating that our model outperforms advanced methods by over 3.4\% in C-Index performance.

Authors:Puning Yang, Qizhou Wang, Zhuo Huang, Tongliang Liu, Chengqi Zhang, Bo Han
Title: Exploring Criteria of Loss Reweighting to Enhance LLM Unlearning
Abstract:
Loss reweighting has shown significant benefits for machine unlearning with large language models (LLMs). However, their exact functionalities are left unclear and the optimal strategy remains an open question, thus impeding the understanding and improvement of existing methodologies. In this paper, we identify two distinct goals of loss reweighting, namely, Saturation and Importance -- the former indicates that those insufficiently optimized data should be emphasized, while the latter stresses some critical data that are most influential for loss minimization. To study their usefulness, we design specific reweighting strategies for each goal and evaluate their respective effects on unlearning. We conduct extensive empirical analyses on well-established benchmarks, and summarize some important observations as follows: (i) Saturation enhances efficacy more than importance-based reweighting, and their combination can yield additional improvements. (ii) Saturation typically allocates lower weights to data with lower likelihoods, whereas importance-based reweighting does the opposite. (iii) The efficacy of unlearning is also largely influenced by the smoothness and granularity of the weight distributions. Based on these findings, we propose SatImp, a simple reweighting method that combines the advantages of both saturation and importance. Empirical results on extensive datasets validate the efficacy of our method, potentially bridging existing research gaps and indicating directions for future research. Our code is available at https://github.com/tmlr-group/SatImp.

Authors:Xuanle Zhao, Xuexin Liu, Haoyue Yang, Xianzhen Luo, Fanhu Zeng, Jianling Li, Qi Shi, Chi Chen
Title: ChartEdit: How Far Are MLLMs From Automating Chart Analysis? Evaluating MLLMs' Capability via Chart Editing
Abstract:
Although multimodal large language models (MLLMs) show promise in generating chart rendering code, editing charts via code presents a greater challenge. This task demands MLLMs to integrate chart understanding and reasoning capacities, which are labor-intensive. While many MLLMs claim such editing capabilities, current evaluations rely on limited case studies, highlighting the urgent need for a comprehensive evaluation framework. In this work, we propose \textsc{ChartEdit}, a novel benchmark designed for chart editing tasks, featuring $1405$ diverse editing instructions applied to $233$ real-world charts, each manually annotated and validated for accuracy. Utilizing \textsc{ChartEdit}, we evaluate the performance of 10 mainstream MLLMs across two types of experiments at both the code and chart levels. The results suggest that large-scale models can generate code to produce images that partially match the reference images. However, their ability to generate accurate edits according to the instructions remains limited. The state-of-the-art (SOTA) model achieves a score of only $59.96$, highlighting significant challenges in precise modification. In contrast, small-scale models, including chart-domain models, struggle both with following editing instructions and generating overall chart images, underscoring the need for further development in this area. Code is available at https://github.com/xxlllz/ChartEdit.

Authors:Yuyao Zhang, Zhicheng Dou, Xiaoxi Li, Jiajie Jin, Yongkang Wu, Zhonghua Li, Qi Ye, Ji-Rong Wen
Title: Neuro-Symbolic Query Compiler
Abstract:
Precise recognition of search intent in Retrieval-Augmented Generation (RAG) systems remains a challenging goal, especially under resource constraints and for complex queries with nested structures and dependencies. This paper presents QCompiler, a neuro-symbolic framework inspired by linguistic grammar rules and compiler design, to bridge this gap. It theoretically designs a minimal yet sufficient Backus-Naur Form (BNF) grammar $G[q]$ to formalize complex queries. Unlike previous methods, this grammar maintains completeness while minimizing redundancy. Based on this, QCompiler includes a Query Expression Translator, a Lexical Syntax Parser, and a Recursive Descent Processor to compile queries into Abstract Syntax Trees (ASTs) for execution. The atomicity of the sub-queries in the leaf nodes ensures more precise document retrieval and response generation, significantly improving the RAG system's ability to address complex queries.

Authors:Faruk Alpay
Title: XiSort: Deterministic Sorting via IEEE-754 Total Ordering and Entropy Minimization
Abstract:
We introduce XiSort, a deterministic and reproducible sorting algorithm for floating-point sequences based on IEEE-754 total ordering and entropy minimization. XiSort guarantees bit-for-bit stability across runs and platforms by resolving tie-breaking via information-theoretic and symbolic methods. The algorithm supports both in-memory and external (out-of-core) operation, offering consistent performance on large datasets. We formalize a curved variant of the sorting metric that integrates into the Alpay Algebra framework, treating XiSort as a recursive operator with provable convergence and symbolic idempotence. This model preserves state-space closure while minimizing local disorder, interpretable as symbolic entropy. Empirical benchmarks demonstrate that XiSort achieves competitive throughput (e.g., sorting 10^8 doubles in approximately 12 seconds in-memory, and 100 GB at around 100 MB/s on SSDs), with applications in scientific computing, high-frequency finance, and reproducible numerical workflows. The results position XiSort as a principled tool for stable data alignment, symbolic preprocessing, and cross-platform float ordering. Keywords: deterministic sorting, IEEE-754, entropy minimization, symbolic algebra, reproducibility, external memory, Alpay Algebra, data pipelines

Authors:Haitao Li, Ziyu Li, Yiheng Mao, Zhengyao Ding, Zhengxing Huang
Title: DC-Seg: Disentangled Contrastive Learning for Brain Tumor Segmentation with Missing Modalities
Abstract:
Accurate segmentation of brain images typically requires the integration of complementary information from multiple image modalities. However, clinical data for all modalities may not be available for every patient, creating a significant challenge. To address this, previous studies encode multiple modalities into a shared latent space. While somewhat effective, it remains suboptimal, as each modality contains distinct and valuable information. In this study, we propose DC-Seg (Disentangled Contrastive Learning for Segmentation), a new method that explicitly disentangles images into modality-invariant anatomical representation and modality-specific representation, by using anatomical contrastive learning and modality contrastive learning respectively. This solution improves the separation of anatomical and modality-specific features by considering the modality gaps, leading to more robust representations. Furthermore, we introduce a segmentation-based regularizer that enhances the model's robustness to missing modalities. Extensive experiments on the BraTS 2020 and a private white matter hyperintensity(WMH) segmentation dataset demonstrate that DC-Seg outperforms state-of-the-art methods in handling incomplete multimodal brain tumor segmentation tasks with varying missing modalities, while also demonstrate strong generalizability in WMH segmentation. The code is available at https://github.com/CuCl-2/DC-Seg.

Authors:Zhiheng Chen, Ruofan Wu, Guanhua Fang
Title: Transformers as Unsupervised Learning Algorithms: A study on Gaussian Mixtures
Abstract:
The transformer architecture has demonstrated remarkable capabilities in modern artificial intelligence, among which the capability of implicitly learning an internal model during inference time is widely believed to play a key role in the under standing of pre-trained large language models. However, most recent works have been focusing on studying supervised learning topics such as in-context learning, leaving the field of unsupervised learning largely unexplored. This paper investigates the capabilities of transformers in solving Gaussian Mixture Models (GMMs), a fundamental unsupervised learning problem through the lens of statistical estimation. We propose a transformer-based learning framework called TGMM that simultaneously learns to solve multiple GMM tasks using a shared transformer backbone. The learned models are empirically demonstrated to effectively mitigate the limitations of classical methods such as Expectation-Maximization (EM) or spectral algorithms, at the same time exhibit reasonable robustness to distribution shifts. Theoretically, we prove that transformers can approximate both the EM algorithm and a core component of spectral methods (cubic tensor power iterations). These results bridge the gap between practical success and theoretical understanding, positioning transformers as versatile tools for unsupervised learning.

Authors:Pengfei Lyu, Pak-Hei Yeung, Xiaosheng Yu, Jing Xia, Jianning Chi, Chengdong Wu, Jagath C. Rajapakse
Title: Bridging the Inter-Domain Gap through Low-Level Features for Cross-Modal Medical Image Segmentation
Abstract:
This paper addresses the task of cross-modal medical image segmentation by exploring unsupervised domain adaptation (UDA) approaches. We propose a model-agnostic UDA framework, LowBridge, which builds on a simple observation that cross-modal images share some similar low-level features (e.g., edges) as they are depicting the same structures. Specifically, we first train a generative model to recover the source images from their edge features, followed by training a segmentation model on the generated source images, separately. At test time, edge features from the target images are input to the pretrained generative model to generate source-style target domain images, which are then segmented using the pretrained segmentation network. Despite its simplicity, extensive experiments on various publicly available datasets demonstrate that \proposed achieves state-of-the-art performance, outperforming eleven existing UDA approaches under different settings. Notably, further ablation studies show that \proposed is agnostic to different types of generative and segmentation models, suggesting its potential to be seamlessly plugged with the most advanced models to achieve even more outstanding results in the future. The code is available at https://github.com/JoshuaLPF/LowBridge.

Authors:Zihuan Qiu, Yi Xu, Chiyuan He, Fanman Meng, Linfeng Xu, Qingbo Wu, Hongliang Li
Title: MINGLE: Mixture of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging
Abstract:
Continual model merging integrates independently fine-tuned models sequentially without access to the original training data, offering a scalable and efficient solution for continual learning. However, existing methods face two critical challenges: parameter interference among tasks, which leads to catastrophic forgetting, and limited adaptability to evolving test distributions. To address these issues, we introduce the task of Test-Time Continual Model Merging (TTCMM), which leverages a small set of unlabeled test samples during inference to alleviate parameter conflicts and handle distribution shifts. We propose MINGLE, a novel framework for TTCMM. MINGLE employs a mixture-of-experts architecture with parameter-efficient, low-rank experts, which enhances adaptability to evolving test distributions while dynamically merging models to mitigate conflicts. To further reduce forgetting, we propose Null-Space Constrained Gating, which restricts gating updates to subspaces orthogonal to prior task representations, thereby suppressing activations on old tasks and preserving past knowledge. We further introduce an Adaptive Relaxation Strategy that adjusts constraint strength dynamically based on interference signals observed during test-time adaptation, striking a balance between stability and adaptability. Extensive experiments on standard continual merging benchmarks demonstrate that MINGLE achieves robust generalization, significantly reduces forgetting, and consistently surpasses previous state-of-the-art methods by 7-9\% on average across diverse task orders. Our code is available at: https://github.com/zihuanqiu/MINGLE

Authors:Shiming Chen, Dingjie Fu, Salman Khan, Fahad Shahbaz Khan
Title: GenZSL: Generative Zero-Shot Learning Via Inductive Variational Autoencoder
Abstract:
Remarkable progress in zero-shot learning (ZSL) has been achieved using generative models. However, existing generative ZSL methods merely generate (imagine) the visual features from scratch guided by the strong class semantic vectors annotated by experts, resulting in suboptimal generative performance and limited scene generalization. To address these and advance ZSL, we propose an inductive variational autoencoder for generative zero-shot learning, dubbed GenZSL. Mimicking human-level concept learning, GenZSL operates by inducting new class samples from similar seen classes using weak class semantic vectors derived from target class names (i.e., CLIP text embedding). To ensure the generation of informative samples for training an effective ZSL classifier, our GenZSL incorporates two key strategies. Firstly, it employs class diversity promotion to enhance the diversity of class semantic vectors. Secondly, it utilizes target class-guided information boosting criteria to optimize the model. Extensive experiments conducted on three popular benchmark datasets showcase the superiority and potential of our GenZSL with significant efficacy and efficiency over f-VAEGAN, e.g., 24.7% performance gains and more than $60\times$ faster training speed on AWA2. Codes are available at https://github.com/shiming-chen/GenZSL.

Authors:Chicago Y. Park, Shirin Shoushtari, Hongyu An, Ulugbek S. Kamilov
Title: Measurement Score-Based Diffusion Model
Abstract:
Diffusion models are widely used in applications ranging from image generation to inverse problems. However, training diffusion models typically requires clean ground-truth images, which are unavailable in many applications. We introduce the Measurement Score-based diffusion Model (MSM), a novel framework that learns partial measurement scores using only noisy and subsampled measurements. MSM models the distribution of full measurements as an expectation over partial scores induced by randomized subsampling. To make the MSM representation computationally efficient, we also develop a stochastic sampling algorithm that generates full images by using a randomly selected subset of partial scores at each step. We additionally propose a new posterior sampling method for solving inverse problems that reconstructs images using these partial scores. We provide a theoretical analysis that bounds the Kullback-Leibler divergence between the distributions induced by full and stochastic sampling, establishing the accuracy of the proposed algorithm. We demonstrate the effectiveness of MSM on natural images and multi-coil MRI, showing that it can generate high-quality images and solve inverse problems -- all without access to clean training data. Code is available at https://github.com/wustl-cig/MSM.

Authors:Yiting Wang, Guoheng Sun, Wanghao Ye, Gang Qu, Ang Li
Title: VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation
Abstract:
Automating Register Transfer Level (RTL) code generation using Large Language Models (LLMs) offers substantial promise for streamlining digital circuit design and reducing human effort. However, current LLM-based approaches face significant challenges with training data scarcity, poor specification-code alignment, lack of verification mechanisms, and balancing generalization with specialization. Inspired by DeepSeek-R1, we introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation. Using curated training examples and a feedback-driven reward model, VeriReason combines testbench evaluations with structural heuristics while embedding self-checking capabilities for autonomous error correction. On the VerilogEval Benchmark, VeriReason delivers significant improvements: achieving 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo. Additionally, our approach demonstrates up to a 2.8X increase in first-attempt functional correctness compared to baseline methods and exhibits robust generalization to unseen designs. To our knowledge, VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis. The models and datasets are available at: https://huggingface.co/collections/AI4EDA-CASE Code is Available at: https://github.com/NellyW8/VeriReason

Authors:Ziyao Cui, Minxing Zhang, Jian Pei
Title: On Membership Inference Attacks in Knowledge Distillation
Abstract:
Nowadays, Large Language Models (LLMs) are trained on huge datasets, some including sensitive information. This poses a serious privacy concern because privacy attacks such as Membership Inference Attacks (MIAs) may detect this sensitive information. While knowledge distillation compresses LLMs into efficient, smaller student models, its impact on privacy remains underexplored. In this paper, we investigate how knowledge distillation affects model robustness against MIA. We focus on two questions. First, how is private data protected in teacher and student models? Second, how can we strengthen privacy preservation against MIAs in knowledge distillation? Through comprehensive experiments, we show that while teacher and student models achieve similar overall MIA accuracy, teacher models better protect member data, the primary target of MIA, whereas student models better protect non-member data. To address this vulnerability in student models, we propose 5 privacy-preserving distillation methods and demonstrate that they successfully reduce student models' vulnerability to MIA, with ensembling further stabilizing the robustness, offering a reliable approach for distilling more secure and efficient student models. Our implementation source code is available at https://github.com/richardcui18/MIA_in_KD.

Authors:Jeremy Budd, Javier Ideami, Benjamin Macdowall Rynne, Keith Duggar, Randall Balestriero
Title: SplInterp: Improving our Understanding and Training of Sparse Autoencoders
Abstract:
Sparse autoencoders (SAEs) have received considerable recent attention as tools for mechanistic interpretability, showing success at extracting interpretable features even from very large LLMs. However, this research has been largely empirical, and there have been recent doubts about the true utility of SAEs. In this work, we seek to enhance the theoretical understanding of SAEs, using the spline theory of deep learning. By situating SAEs in this framework: we discover that SAEs generalise ``$k$-means autoencoders'' to be piecewise affine, but sacrifice accuracy for interpretability vs. the optimal ``$k$-means-esque plus local principal component analysis (PCA)'' piecewise affine autoencoder. We characterise the underlying geometry of (TopK) SAEs using power diagrams. And we develop a novel proximal alternating method SGD (PAM-SGD) algorithm for training SAEs, with both solid theoretical foundations and promising empirical results in MNIST and LLM experiments, particularly in sample efficiency and (in the LLM setting) improved sparsity of codes. All code is available at: https://github.com/splInterp2025/splInterp

Authors:Hongliang Li, Jinan Xu, Gengping Cui, Changhao Guan, Fengran Mo, Kaiyu Huang
Title: Multilingual Collaborative Defense for Large Language Models
Abstract:
The robustness and security of large language models (LLMs) has become a prominent research area. One notable vulnerability is the ability to bypass LLM safeguards by translating harmful queries into rare or underrepresented languages, a simple yet effective method of "jailbreaking" these models. Despite the growing concern, there has been limited research addressing the safeguarding of LLMs in multilingual scenarios, highlighting an urgent need to enhance multilingual safety. In this work, we investigate the correlation between various attack features across different languages and propose Multilingual Collaborative Defense (MCD), a novel learning method that optimizes a continuous, soft safety prompt automatically to facilitate multilingual safeguarding of LLMs. The MCD approach offers three advantages: First, it effectively improves safeguarding performance across multiple languages. Second, MCD maintains strong generalization capabilities while minimizing false refusal rates. Third, MCD mitigates the language safety misalignment caused by imbalances in LLM training corpora. To evaluate the effectiveness of MCD, we manually construct multilingual versions of commonly used jailbreak benchmarks, such as MaliciousInstruct and AdvBench, to assess various safeguarding methods. Additionally, we introduce these datasets in underrepresented (zero-shot) languages to verify the language transferability of MCD. The results demonstrate that MCD outperforms existing approaches in safeguarding against multilingual jailbreak attempts while also exhibiting strong language transfer capabilities. Our code is available at https://github.com/HLiang-Lee/MCD.

Authors:Yansong Ning, Wei Li, Jun Fang, Naiqiang Tan, Hao Liu
Title: Not All Thoughts are Generated Equal: Efficient LLM Reasoning via Multi-Turn Reinforcement Learning
Abstract:
Compressing long chain-of-thought (CoT) from large language models (LLMs) is an emerging strategy to improve the reasoning efficiency of LLMs. Despite its promising benefits, existing studies equally compress all thoughts within a long CoT, hindering more concise and effective reasoning. To this end, we first investigate the importance of different thoughts by examining their effectiveness and efficiency in contributing to reasoning through automatic long CoT chunking and Monte Carlo rollouts. Building upon the insights, we propose a theoretically bounded metric to jointly measure the effectiveness and efficiency of different thoughts. We then propose Long$\otimes$Short, an efficient reasoning framework that enables two LLMs to collaboratively solve the problem: a long-thought LLM for more effectively generating important thoughts, while a short-thought LLM for efficiently generating remaining thoughts. Specifically, we begin by synthesizing a small amount of cold-start data to fine-tune LLMs for long-thought and short-thought reasoning styles, respectively. Furthermore, we propose a synergizing-oriented multi-turn reinforcement learning, focusing on the model self-evolution and collaboration between long-thought and short-thought LLMs. Experimental results show that our method enables Qwen2.5-7B and Llama3.1-8B to achieve comparable performance compared to DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B, while reducing token length by over 80% across the MATH500, AIME24/25, AMC23, and GPQA Diamond benchmarks. Our data and code are available at https://github.com/usail-hkust/LongShort.

Authors:Kaitao Song, Xiaohua Wang, Xu Tan, Huiqiang Jiang, Chengruidong Zhang, Yongliang Shen, Cen LU, Zihao Li, Zifan Song, Caihua Shan, Yansen Wang, Kan Ren, Xiaoqing Zheng, Tao Qin, Yuqing Yang, Dongsheng Li, Lili Qiu
Title: Chain-of-Model Learning for Language Model
Abstract:
In this paper, we propose a novel learning paradigm, termed Chain-of-Model (CoM), which incorporates the causal relationship into the hidden states of each layer as a chain style, thereby introducing great scaling efficiency in model training and inference flexibility in deployment. We introduce the concept of Chain-of-Representation (CoR), which formulates the hidden states at each layer as a combination of multiple sub-representations (i.e., chains) at the hidden dimension level. In each layer, each chain from the output representations can only view all of its preceding chains in the input representations. Consequently, the model built upon CoM framework can progressively scale up the model size by increasing the chains based on the previous models (i.e., chains), and offer multiple sub-models at varying sizes for elastic inference by using different chain numbers. Based on this principle, we devise Chain-of-Language-Model (CoLM), which incorporates the idea of CoM into each layer of Transformer architecture. Based on CoLM, we further introduce CoLM-Air by introducing a KV sharing mechanism, that computes all keys and values within the first chain and then shares across all chains. This design demonstrates additional extensibility, such as enabling seamless LM switching, prefilling acceleration and so on. Experimental results demonstrate our CoLM family can achieve comparable performance to the standard Transformer, while simultaneously enabling greater flexiblity, such as progressive scaling to improve training efficiency and offer multiple varying model sizes for elastic inference, paving a a new way toward building language models. Our code will be released in the future at: https://github.com/microsoft/CoLM.

Authors:Jiajun Qin, Yuan Pu, Zhuolun He, Seunggeun Kim, David Z. Pan, Bei Yu
Title: UniMoCo: Unified Modality Completion for Robust Multi-Modal Embeddings
Abstract:
Current research has explored vision-language models for multi-modal embedding tasks, such as information retrieval, visual grounding, and classification. However, real-world scenarios often involve diverse modality combinations between queries and targets, such as text and image to text, text and image to text and image, and text to text and image. These diverse combinations pose significant challenges for existing models, as they struggle to align all modality combinations within a unified embedding space during training, which degrades performance at inference. To address this limitation, we propose UniMoCo, a novel vision-language model architecture designed for multi-modal embedding tasks. UniMoCo introduces a modality-completion module that generates visual features from textual inputs, ensuring modality completeness for both queries and targets. Additionally, we develop a specialized training strategy to align embeddings from both original and modality-completed inputs, ensuring consistency within the embedding space. This enables the model to robustly handle a wide range of modality combinations across embedding tasks. Experiments show that UniMoCo outperforms previous methods while demonstrating consistent robustness across diverse settings. More importantly, we identify and quantify the inherent bias in conventional approaches caused by imbalance of modality combinations in training data, which can be mitigated through our modality-completion paradigm. The code is available at https://github.com/HobbitQia/UniMoCo.

Authors:Yang Tan, Wenrui Gou, Bozitao Zhong, Liang Hong, Huiqun Yu, Bingxin Zhou
Title: VenusX: Unlocking Fine-Grained Functional Understanding of Proteins
Abstract:
Deep learning models have driven significant progress in predicting protein function and interactions at the protein level. While these advancements have been invaluable for many biological applications such as enzyme engineering and function annotation, a more detailed perspective is essential for understanding protein functional mechanisms and evaluating the biological knowledge captured by models. To address this demand, we introduce VenusX, the first large-scale benchmark for fine-grained functional annotation and function-based protein pairing at the residue, fragment, and domain levels. VenusX comprises three major task categories across six types of annotations, including residue-level binary classification, fragment-level multi-class classification, and pairwise functional similarity scoring for identifying critical active sites, binding sites, conserved sites, motifs, domains, and epitopes. The benchmark features over 878,000 samples curated from major open-source databases such as InterPro, BioLiP, and SAbDab. By providing mixed-family and cross-family splits at three sequence identity thresholds, our benchmark enables a comprehensive assessment of model performance on both in-distribution and out-of-distribution scenarios. For baseline evaluation, we assess a diverse set of popular and open-source models, including pre-trained protein language models, sequence-structure hybrids, structure-based methods, and alignment-based techniques. Their performance is reported across all benchmark datasets and evaluation settings using multiple metrics, offering a thorough comparison and a strong foundation for future research. Code and data are publicly available at https://github.com/ai4protein/VenusX.

Authors:Jian Zhu, He Wang, Yang Xu, Zebin Wu, Zhihui Wei
Title: Self-Learning Hyperspectral and Multispectral Image Fusion via Adaptive Residual Guided Subspace Diffusion Model
Abstract:
Hyperspectral and multispectral image (HSI-MSI) fusion involves combining a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Most deep learning-based methods for HSI-MSI fusion rely on large amounts of hyperspectral data for supervised training, which is often scarce in practical applications. In this paper, we propose a self-learning Adaptive Residual Guided Subspace Diffusion Model (ARGS-Diff), which only utilizes the observed images without any extra training data. Specifically, as the LR-HSI contains spectral information and the HR-MSI contains spatial information, we design two lightweight spectral and spatial diffusion models to separately learn the spectral and spatial distributions from them. Then, we use these two models to reconstruct HR-HSI from two low-dimensional components, i.e, the spectral basis and the reduced coefficient, during the reverse diffusion process. Furthermore, we introduce an Adaptive Residual Guided Module (ARGM), which refines the two components through a residual guided function at each sampling step, thereby stabilizing the sampling process. Extensive experimental results demonstrate that ARGS-Diff outperforms existing state-of-the-art methods in terms of both performance and computational efficiency in the field of HSI-MSI fusion. Code is available at https://github.com/Zhu1116/ARGS-Diff.

Authors:Hancan Zhu, Jinhao Chen, Guanghua He
Title: MedVKAN: Efficient Feature Extraction with Mamba and KAN for Medical Image Segmentation
Abstract:
Medical image segmentation relies heavily on convolutional neural networks (CNNs) and Transformer-based models. However, CNNs are constrained by limited receptive fields, while Transformers suffer from scalability challenges due to their quadratic computational complexity. To address these limitations, recent advances have explored alternative architectures. The state-space model Mamba offers near-linear complexity while capturing long-range dependencies, and the Kolmogorov-Arnold Network (KAN) enhances nonlinear expressiveness by replacing fixed activation functions with learnable ones. Building on these strengths, we propose MedVKAN, an efficient feature extraction model integrating Mamba and KAN. Specifically, we introduce the EFC-KAN module, which enhances KAN with convolutional operations to improve local pixel interaction. We further design the VKAN module, integrating Mamba with EFC-KAN as a replacement for Transformer modules, significantly improving feature extraction. Extensive experiments on five public medical image segmentation datasets show that MedVKAN achieves state-of-the-art performance on four datasets and ranks second on the remaining one. These results validate the potential of Mamba and KAN for medical image segmentation while introducing an innovative and computationally efficient feature extraction framework. The code is available at: https://github.com/beginner-cjh/MedVKAN.

Authors:Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, Yinyu Ye
Title: Solver-Informed RL: Grounding Large Language Models for Authentic Optimization Modeling
Abstract:
Optimization modeling is fundamental to decision-making across diverse domains. Despite progress in automating optimization formulation from natural language descriptions, Large Language Models (LLMs) often struggle to generate formally correct and usable models against hallucinations, posing a challenge for reliable automation. Inspired by the success of Reinforcement Learning (RL) in enhancing Large Reasoning Models, we present Solver-Informed Reinforcement Learning (SIRL), a novel framework that significantly improves the authenticity of LLMs for optimization modeling using Reinforcement Learning with Verifiable Reward by leveraging external optimization solvers as verifiers. These verifiers automatically assess the executable code and the instance-level mathematical model represented by the associated LP file, yielding precise and comprehensive feedback signals -- including syntax, feasibility, and solution quality, serving as direct rewards for the RL process. This automated verification process, particularly from classic optimization solvers, also underpins our instance-enhanced self-consistency method to synthesize high-quality training data. Extensive experiments on diverse public benchmarks demonstrate that SIRL achieves state-of-the-art performance, substantially outperforming existing methods in generating accurate and executable optimization models. Our code is publicly available at https://github.com/Cardinal-Operations/SIRL.

Authors:Raymond Baartmans, Matthew Raffel, Rahul Vikram, Aiden Deringer, Lizhong Chen
Title: Towards Universal Semantics With Large Language Models
Abstract:
The Natural Semantic Metalanguage (NSM) is a linguistic theory based on a universal set of semantic primes: simple, primitive word-meanings that have been shown to exist in most, if not all, languages of the world. According to this framework, any word, regardless of complexity, can be paraphrased using these primes, revealing a clear and universally translatable meaning. These paraphrases, known as explications, can offer valuable applications for many natural language processing (NLP) tasks, but producing them has traditionally been a slow, manual process. In this work, we present the first study of using large language models (LLMs) to generate NSM explications. We introduce automatic evaluation methods, a tailored dataset for training and evaluation, and fine-tuned models for this task. Our 1B and 8B models outperform GPT-4o in producing accurate, cross-translatable explications, marking a significant step toward universal semantic representation with LLMs and opening up new possibilities for applications in semantic analysis, translation, and beyond. Our code is available at https://github.com/OSU-STARLAB/DeepNSM.

Authors:Wenyu Huang, Pavlos Vougiouklis, Mirella Lapata, Jeff Z. Pan
Title: Masking in Multi-hop QA: An Analysis of How Language Models Perform with Context Permutation
Abstract:
Multi-hop Question Answering (MHQA) adds layers of complexity to question answering, making it more challenging. When Language Models (LMs) are prompted with multiple search results, they are tasked not only with retrieving relevant information but also employing multi-hop reasoning across the information sources. Although LMs perform well on traditional question-answering tasks, the causal mask can hinder their capacity to reason across complex contexts. In this paper, we explore how LMs respond to multi-hop questions by permuting search results (retrieved documents) under various configurations. Our study reveals interesting findings as follows: 1) Encoder-decoder models, such as the ones in the Flan-T5 family, generally outperform causal decoder-only LMs in MHQA tasks, despite being significantly smaller in size; 2) altering the order of gold documents reveals distinct trends in both Flan T5 models and fine-tuned decoder-only models, with optimal performance observed when the document order aligns with the reasoning chain order; 3) enhancing causal decoder-only models with bi-directional attention by modifying the causal mask can effectively boost their end performance. In addition to the above, we conduct a thorough investigation of the distribution of LM attention weights in the context of MHQA. Our experiments reveal that attention weights tend to peak at higher values when the resulting answer is correct. We leverage this finding to heuristically improve LMs' performance on this task. Our code is publicly available at https://github.com/hwy9855/MultiHopQA-Reasoning.

Authors:Kevin Wu, Eric Wu, Rahul Thapa, Kevin Wei, Angela Zhang, Arvind Suresh, Jacqueline J. Tao, Min Woo Sun, Alejandro Lozano, James Zou
Title: MedCaseReasoning: Evaluating and learning diagnostic reasoning from clinical case reports
Abstract:
Doctors and patients alike increasingly use Large Language Models (LLMs) to diagnose clinical cases. However, unlike domains such as math or coding, where correctness can be objectively defined by the final answer, medical diagnosis requires both the outcome and the reasoning process to be accurate. Currently, widely used medical benchmarks like MedQA and MMLU assess only accuracy in the final answer, overlooking the quality and faithfulness of the clinical reasoning process. To address this limitation, we introduce MedCaseReasoning, the first open-access dataset for evaluating LLMs on their ability to align with clinician-authored diagnostic reasoning. The dataset includes 14,489 diagnostic question-and-answer cases, each paired with detailed reasoning statements derived from open-access medical case reports. We evaluate state-of-the-art reasoning LLMs on MedCaseReasoning and find significant shortcomings in their diagnoses and reasoning: for instance, the top-performing open-source model, DeepSeek-R1, achieves only 48% 10-shot diagnostic accuracy and mentions only 64% of the clinician reasoning statements (recall). However, we demonstrate that fine-tuning LLMs on the reasoning traces derived from MedCaseReasoning significantly improves diagnostic accuracy and clinical reasoning recall by an average relative gain of 29% and 41%, respectively. The open-source dataset, code, and models are available at https://github.com/kevinwu23/Stanford-MedCaseReasoning.

Authors:Shun Inadumi, Nobuhiro Ueda, Koichiro Yoshino
Title: Disambiguating Reference in Visually Grounded Dialogues through Joint Modeling of Textual and Multimodal Semantic Structures
Abstract:
Multimodal reference resolution, including phrase grounding, aims to understand the semantic relations between mentions and real-world objects. Phrase grounding between images and their captions is a well-established task. In contrast, for real-world applications, it is essential to integrate textual and multimodal reference resolution to unravel the reference relations within dialogue, especially in handling ambiguities caused by pronouns and ellipses. This paper presents a framework that unifies textual and multimodal reference resolution by mapping mention embeddings to object embeddings and selecting mentions or objects based on their similarity. Our experiments show that learning textual reference resolution, such as coreference resolution and predicate-argument structure analysis, positively affects performance in multimodal reference resolution. In particular, our model with coreference resolution performs better in pronoun phrase grounding than representative models for this task, MDETR and GLIP. Our qualitative analysis demonstrates that incorporating textual reference relations strengthens the confidence scores between mentions, including pronouns and predicates, and objects, which can reduce the ambiguities that arise in visually grounded dialogues.

Authors:Ryan Hoque, Peide Huang, David J. Yoon, Mouli Sivapurapu, Jian Zhang
Title: EgoDex: Learning Dexterous Manipulation from Large-Scale Egocentric Video
Abstract:
Imitation learning for manipulation has a well-known data scarcity problem. Unlike natural language and 2D computer vision, there is no Internet-scale corpus of data for dexterous manipulation. One appealing option is egocentric human video, a passively scalable data source. However, existing large-scale datasets such as Ego4D do not have native hand pose annotations and do not focus on object manipulation. To this end, we use Apple Vision Pro to collect EgoDex: the largest and most diverse dataset of dexterous human manipulation to date. EgoDex has 829 hours of egocentric video with paired 3D hand and finger tracking data collected at the time of recording, where multiple calibrated cameras and on-device SLAM can be used to precisely track the pose of every joint of each hand. The dataset covers a wide range of diverse manipulation behaviors with everyday household objects in 194 different tabletop tasks ranging from tying shoelaces to folding laundry. Furthermore, we train and systematically evaluate imitation learning policies for hand trajectory prediction on the dataset, introducing metrics and benchmarks for measuring progress in this increasingly important area. By releasing this large-scale dataset, we hope to push the frontier of robotics, computer vision, and foundation models. EgoDex is publicly available for download at https://github.com/apple/ml-egodex.

Authors:Haipeng Fang, Sheng Tang, Juan Cao, Enshuo Zhang, Fan Tang, Tong-Yee Lee
Title: Attend to Not Attended: Structure-then-Detail Token Merging for Post-training DiT Acceleration
Abstract:
Diffusion transformers have shown exceptional performance in visual generation but incur high computational costs. Token reduction techniques that compress models by sharing the denoising process among similar tokens have been introduced. However, existing approaches neglect the denoising priors of the diffusion models, leading to suboptimal acceleration and diminished image quality. This study proposes a novel concept: attend to prune feature redundancies in areas not attended by the diffusion process. We analyze the location and degree of feature redundancies based on the structure-then-detail denoising priors. Subsequently, we introduce SDTM, a structure-then-detail token merging approach that dynamically compresses feature redundancies. Specifically, we design dynamic visual token merging, compression ratio adjusting, and prompt reweighting for different stages. Served in a post-training way, the proposed method can be integrated seamlessly into any DiT architecture. Extensive experiments across various backbones, schedulers, and datasets showcase the superiority of our method, for example, it achieves 1.55 times acceleration with negligible impact on image quality. Project page: https://github.com/ICTMCG/SDTM.

Authors:Jae Myung Kim, Stephan Alaniz, Cordelia Schmid, Zeynep Akata
Title: LoFT: LoRA-fused Training Dataset Generation with Few-shot Guidance
Abstract:
Despite recent advances in text-to-image generation, using synthetically generated data seldom brings a significant boost in performance for supervised learning. Oftentimes, synthetic datasets do not faithfully recreate the data distribution of real data, i.e., they lack the fidelity or diversity needed for effective downstream model training. While previous work has employed few-shot guidance to address this issue, existing methods still fail to capture and generate features unique to specific real images. In this paper, we introduce a novel dataset generation framework named LoFT, LoRA-Fused Training-data Generation with Few-shot Guidance. Our method fine-tunes LoRA weights on individual real images and fuses them at inference time, producing synthetic images that combine the features of real images for improved diversity and fidelity of generated data. We evaluate the synthetic data produced by LoFT on 10 datasets, using 8 to 64 real images per class as guidance and scaling up to 1000 images per class. Our experiments show that training on LoFT-generated data consistently outperforms other synthetic dataset methods, significantly increasing accuracy as the dataset size increases. Additionally, our analysis demonstrates that LoFT generates datasets with high fidelity and sufficient diversity, which contribute to the performance improvement. The code is available at https://github.com/ExplainableML/LoFT.

Authors:Keenan Eikenberry, Lizuo Liu, Yoonsang Lee
Title: Invariant Representations via Wasserstein Correlation Maximization
Abstract:
This work investigates the use of Wasserstein correlation -- a normalized measure of statistical dependence based on the Wasserstein distance between a joint distribution and the product of its marginals -- for unsupervised representation learning. Unlike, for example, contrastive methods, which naturally cluster classes in the latent space, we find that an (auto)encoder trained to maximize Wasserstein correlation between the input and encoded distributions instead acts as a compressor, reducing dimensionality while approximately preserving the topological and geometric properties of the input distribution. More strikingly, we show that Wasserstein correlation maximization can be used to arrive at an (auto)encoder -- either trained from scratch, or else one that extends a frozen, pretrained model -- that is approximately invariant to a chosen augmentation, or collection of augmentations, and that still approximately preserves the structural properties of the non-augmented input distribution. To do this, we first define the notion of an augmented encoder using the machinery of Markov-Wasserstein kernels. When the maximization objective is then applied to the augmented encoder, as opposed to the underlying, deterministic encoder, the resulting model exhibits the desired invariance properties. Finally, besides our experimental results, which show that even simple feedforward networks can be imbued with invariants or can, alternatively, be used to impart invariants to pretrained models under this training process, we additionally establish various theoretical results for optimal transport-based dependence measures. Code is available at https://github.com/keenan-eikenberry/wasserstein_correlation_maximization .

Authors:Hung Nguyen, Alireza Rahimi, Veronica Whitford, Hélène Fournier, Irina Kondratova, René Richard, Hung Cao
Title: Heart2Mind: Human-Centered Contestable Psychiatric Disorder Diagnosis System using Wearable ECG Monitors
Abstract:
Psychiatric disorders affect millions globally, yet their diagnosis faces significant challenges in clinical practice due to subjective assessments and accessibility concerns, leading to potential delays in treatment. To help address this issue, we present Heart2Mind, a human-centered contestable psychiatric disorder diagnosis system using wearable electrocardiogram (ECG) monitors. Our approach leverages cardiac biomarkers, particularly heart rate variability (HRV) and R-R intervals (RRI) time series, as objective indicators of autonomic dysfunction in psychiatric conditions. The system comprises three key components: (1) a Cardiac Monitoring Interface (CMI) for real-time data acquisition from Polar H9/H10 devices; (2) a Multi-Scale Temporal-Frequency Transformer (MSTFT) that processes RRI time series through integrated time-frequency domain analysis; (3) a Contestable Diagnosis Interface (CDI) combining Self-Adversarial Explanations (SAEs) with contestable Large Language Models (LLMs). Our MSTFT achieves 91.7% accuracy on the HRV-ACC dataset using leave-one-out cross-validation, outperforming state-of-the-art methods. SAEs successfully detect inconsistencies in model predictions by comparing attention-based and gradient-based explanations, while LLMs enable clinicians to validate correct predictions and contest erroneous ones. This work demonstrates the feasibility of combining wearable technology with Explainable Artificial Intelligence (XAI) and contestable LLMs to create a transparent, contestable system for psychiatric diagnosis that maintains clinical oversight while leveraging advanced AI capabilities. Our implementation is publicly available at: https://github.com/Analytics-Everywhere-Lab/heart2mind.

Authors:Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang, Jun Zhu, Jianfei Chen
Title: SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training
Abstract:
The efficiency of attention is important due to its quadratic time complexity. We enhance the efficiency of attention through two key contributions: First, we leverage the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation. Our implementation achieves 1038 TOPS on RTX5090, which is a 5x speedup over the fastest FlashAttention on RTX5090. Experiments show that our FP4 attention can accelerate inference of various models in a plug-and-play way. Second, we pioneer low-bit attention to training tasks. Existing low-bit attention works like FlashAttention3 and SageAttention focus only on inference. However, the efficiency of training large models is also important. To explore whether low-bit attention can be effectively applied to training tasks, we design an accurate and efficient 8-bit attention for both forward and backward propagation. Experiments indicate that 8-bit attention achieves lossless performance in fine-tuning tasks but exhibits slower convergence in pretraining tasks. The code will be available at https://github.com/thu-ml/SageAttention.

Authors:Rui Zhang, Yun Shen, Hongwei Li, Wenbo Jiang, Hanxiao Chen, Yuan Zhang, Guowen Xu, Yang Zhang
Title: The Ripple Effect: On Unforeseen Complications of Backdoor Attacks
Abstract:
Recent research highlights concerns about the trustworthiness of third-party Pre-Trained Language Models (PTLMs) due to potential backdoor attacks. These backdoored PTLMs, however, are effective only for specific pre-defined downstream tasks. In reality, these PTLMs can be adapted to many other unrelated downstream tasks. Such adaptation may lead to unforeseen consequences in downstream model outputs, consequently raising user suspicion and compromising attack stealthiness. We refer to this phenomenon as backdoor complications. In this paper, we undertake the first comprehensive quantification of backdoor complications. Through extensive experiments using 4 prominent PTLMs and 16 text classification benchmark datasets, we demonstrate the widespread presence of backdoor complications in downstream models fine-tuned from backdoored PTLMs. The output distribution of triggered samples significantly deviates from that of clean samples. Consequently, we propose a backdoor complication reduction method leveraging multi-task learning to mitigate complications without prior knowledge of downstream tasks. The experimental results demonstrate that our proposed method can effectively reduce complications while maintaining the efficacy and consistency of backdoor attacks. Our code is available at https://github.com/zhangrui4041/Backdoor_Complications.

Authors:Andrew Liu, Axel Elaldi, Nicholas T Franklin, Nathan Russell, Gurinder S Atwal, Yih-En A Ban, Olivia Viessmann
Title: Flash Invariant Point Attention
Abstract:
Invariant Point Attention (IPA) is a key algorithm for geometry-aware modeling in structural biology, central to many protein and RNA models. However, its quadratic complexity limits the input sequence length. We introduce FlashIPA, a factorized reformulation of IPA that leverages hardware-efficient FlashAttention to achieve linear scaling in GPU memory and wall-clock time with sequence length. FlashIPA matches or exceeds standard IPA performance while substantially reducing computational costs. FlashIPA extends training to previously unattainable lengths, and we demonstrate this by re-training generative models without length restrictions and generating structures of thousands of residues. FlashIPA is available at https://github.com/flagshippioneering/flash_ipa.

Authors:Stylianos Stasinos, Martino Mensio, Elena Lazovik, Athanasios Trantas
Title: BioCube: A Multimodal Dataset for Biodiversity Research
Abstract:
Biodiversity research requires complete and detailed information to study ecosystem dynamics at different scales. Employing data-driven methods like Machine Learning is getting traction in ecology and more specific biodiversity, offering alternative modelling pathways. For these methods to deliver accurate results there is the need for large, curated and multimodal datasets that offer granular spatial and temporal resolutions. In this work, we introduce BioCube, a multimodal, fine-grained global dataset for ecology and biodiversity research. BioCube incorporates species observations through images, audio recordings and descriptions, environmental DNA, vegetation indices, agricultural, forest, land indicators, and high-resolution climate variables. All observations are geospatially aligned under the WGS84 geodetic system, spanning from 2000 to 2020. The dataset will become available at https://huggingface.co/datasets/BioDT/BioCube while the acquisition and processing code base at https://github.com/BioDT/bfm-data.

Authors:Tianyi Shi, Zhu Meng, Yue Chen, Siyang Zheng, Fei Su, Jin Huang, Changrui Ren, Zhicheng Zhao
Title: OLMA: One Loss for More Accurate Time Series Forecasting
Abstract:
Time series forecasting faces two important but often overlooked challenges. Firstly, the inherent random noise in the time series labels sets a theoretical lower bound for the forecasting error, which is positively correlated with the entropy of the labels. Secondly, neural networks exhibit a frequency bias when modeling the state-space of time series, that is, the model performs well in learning certain frequency bands but poorly in others, thus restricting the overall forecasting performance. To address the first challenge, we prove a theorem that there exists a unitary transformation that can reduce the marginal entropy of multiple correlated Gaussian processes, thereby providing guidance for reducing the lower bound of forecasting error. Furthermore, experiments confirm that Discrete Fourier Transform (DFT) can reduce the entropy in the majority of scenarios. Correspondingly, to alleviate the frequency bias, we jointly introduce supervision in the frequency domain along the temporal dimension through DFT and Discrete Wavelet Transform (DWT). This supervision-side strategy is highly general and can be seamlessly integrated into any supervised learning method. Moreover, we propose a novel loss function named OLMA, which utilizes the frequency domain transformation across both channel and temporal dimensions to enhance forecasting. Finally, the experimental results on multiple datasets demonstrate the effectiveness of OLMA in addressing the above two challenges and the resulting improvement in forecasting accuracy. The results also indicate that the perspectives of entropy and frequency bias provide a new and feasible research direction for time series forecasting. The code is available at: https://github.com/Yuyun1011/OLMA-One-Loss-for-More-Accurate-Time-Series-Forecasting.

Authors:Kyla Guru, Robert J. Moss, Mykel J. Kochenderfer
Title: On Technique Identification and Threat-Actor Attribution using LLMs and Embedding Models
Abstract:
Attribution of cyber-attacks remains a complex but critical challenge for cyber defenders. Currently, manual extraction of behavioral indicators from dense forensic documentation causes significant attribution delays, especially following major incidents at the international scale. This research evaluates large language models (LLMs) for cyber-attack attribution based on behavioral indicators extracted from forensic documentation. We test OpenAI's GPT-4 and text-embedding-3-large for identifying threat actors' tactics, techniques, and procedures (TTPs) by comparing LLM-generated TTPs against human-generated data from MITRE ATT&CK Groups. Our framework then identifies TTPs from text using vector embedding search and builds profiles to attribute new attacks for a machine learning model to learn. Key contributions include: (1) assessing off-the-shelf LLMs for TTP extraction and attribution, and (2) developing an end-to-end pipeline from raw CTI documents to threat-actor prediction. This research finds that standard LLMs generate TTP datasets with noise, resulting in a low similarity to human-generated datasets. However, the TTPs generated are similar in frequency to those within the existing MITRE datasets. Additionally, although these TTPs are different than human-generated datasets, our work demonstrates that they still prove useful for training a model that performs above baseline on attribution. Project code and files are contained here: https://github.com/kylag/ttp_attribution.

Authors:Jiacheng Hou, Zhenjie Song, Ercan Engin Kuruoglu
Title: BrainNetMLP: An Efficient and Effective Baseline for Functional Brain Network Classification
Abstract:
Recent studies have made great progress in functional brain network classification by modeling the brain as a network of Regions of Interest (ROIs) and leveraging their connections to understand brain functionality and diagnose mental disorders. Various deep learning architectures, including Convolutional Neural Networks, Graph Neural Networks, and the recent Transformer, have been developed. However, despite the increasing complexity of these models, the performance gain has not been as salient. This raises a question: Does increasing model complexity necessarily lead to higher classification accuracy? In this paper, we revisit the simplest deep learning architecture, the Multi-Layer Perceptron (MLP), and propose a pure MLP-based method, named BrainNetMLP, for functional brain network classification, which capitalizes on the advantages of MLP, including efficient computation and fewer parameters. Moreover, BrainNetMLP incorporates a dual-branch structure to jointly capture both spatial connectivity and spectral information, enabling precise spatiotemporal feature fusion. We evaluate our proposed BrainNetMLP on two public and popular brain network classification datasets, the Human Connectome Project (HCP) and the Autism Brain Imaging Data Exchange (ABIDE). Experimental results demonstrate pure MLP-based methods can achieve state-of-the-art performance, revealing the potential of MLP-based models as more efficient yet effective alternatives in functional brain network classification. The code will be available at https://github.com/JayceonHo/BrainNetMLP.

Authors:Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao
Title: SoftCoT++: Test-Time Scaling with Soft Chain-of-Thought Reasoning
Abstract:
Test-Time Scaling (TTS) refers to approaches that improve reasoning performance by allocating extra computation during inference, without altering the model's parameters. While existing TTS methods operate in a discrete token space by generating more intermediate steps, recent studies in Coconut and SoftCoT have demonstrated that thinking in the continuous latent space can further enhance the reasoning performance. Such latent thoughts encode informative thinking without the information loss associated with autoregressive token generation, sparking increased interest in continuous-space reasoning. Unlike discrete decoding, where repeated sampling enables exploring diverse reasoning paths, latent representations in continuous space are fixed for a given input, which limits diverse exploration, as all decoded paths originate from the same latent thought. To overcome this limitation, we introduce SoftCoT++ to extend SoftCoT to the Test-Time Scaling paradigm by enabling diverse exploration of thinking paths. Specifically, we perturb latent thoughts via multiple specialized initial tokens and apply contrastive learning to promote diversity among soft thought representations. Experiments across five reasoning benchmarks and two distinct LLM architectures demonstrate that SoftCoT++ significantly boosts SoftCoT and also outperforms SoftCoT with self-consistency scaling. Moreover, it shows strong compatibility with conventional scaling techniques such as self-consistency. Source code is available at https://github.com/xuyige/SoftCoT.

Authors:Dingbang Huang, Wenbo Li, Yifei Zhao, Xinyu Pan, Yanhong Zeng, Bo Dai
Title: PSDiffusion: Harmonized Multi-Layer Image Generation via Layout and Appearance Alignment
Abstract:
Diffusion models have made remarkable advancements in generating high-quality images from textual descriptions. Recent works like LayerDiffuse have extended the previous single-layer, unified image generation paradigm to transparent image layer generation. However, existing multi-layer generation methods fail to handle the interactions among multiple layers such as rational global layout, physics-plausible contacts and visual effects like shadows and reflections while maintaining high alpha quality. To solve this problem, we propose PSDiffusion, a unified diffusion framework for simultaneous multi-layer text-to-image generation. Our model can automatically generate multi-layer images with one RGB background and multiple RGBA foregrounds through a single feed-forward process. Unlike existing methods that combine multiple tools for post-decomposition or generate layers sequentially and separately, our method introduces a global-layer interactive mechanism that generates layered-images concurrently and collaboratively, ensuring not only high quality and completeness for each layer, but also spatial and visual interactions among layers for global coherence.

Authors:Yiming Lei, Chenkai Zhang, Zeming Liu, Haitao Leng, Shaoguo Liu, Tingting Gao, Qingjie Liu, Yunhong Wang
Title: GODBench: A Benchmark for Multimodal Large Language Models in Video Comment Art
Abstract:
Video Comment Art enhances user engagement by providing creative content that conveys humor, satire, or emotional resonance, requiring a nuanced and comprehensive grasp of cultural and contextual subtleties. Although Multimodal Large Language Models (MLLMs) and Chain-of-Thought (CoT) have demonstrated strong reasoning abilities in STEM tasks (e.g. mathematics and coding), they still struggle to generate creative expressions such as resonant jokes and insightful satire. Moreover, existing benchmarks are constrained by their limited modalities and insufficient categories, hindering the exploration of comprehensive creativity in video-based Comment Art creation. To address these limitations, we introduce GODBench, a novel benchmark that integrates video and text modalities to systematically evaluate MLLMs' abilities to compose Comment Art. Furthermore, inspired by the propagation patterns of waves in physics, we propose Ripple of Thought (RoT), a multi-step reasoning framework designed to enhance the creativity of MLLMs. Extensive experiments reveal that existing MLLMs and CoT methods still face significant challenges in understanding and generating creative video comments. In contrast, RoT provides an effective approach to improve creative composing, highlighting its potential to drive meaningful advancements in MLLM-based creativity. GODBench is publicly available at https://github.com/stan-lei/GODBench-ACL2025.

Authors:Adrian Robert Minut, Tommaso Mencattini, Andrea Santilli, Donato Crisostomi, Emanuele RodolÃ
Title: Mergenetic: a Simple Evolutionary Model Merging Library
Abstract:
Model merging allows combining the capabilities of existing models into a new one - post hoc, without additional training. This has made it increasingly popular thanks to its low cost and the availability of libraries that support merging on consumer GPUs. Recent work shows that pairing merging with evolutionary algorithms can boost performance, but no framework currently supports flexible experimentation with such strategies in language models. We introduce Mergenetic, an open-source library for evolutionary model merging. Mergenetic enables easy composition of merging methods and evolutionary algorithms while incorporating lightweight fitness estimators to reduce evaluation costs. We describe its design and demonstrate that Mergenetic produces competitive results across tasks and languages using modest hardware.

Authors:Bohao Xing, Xin Liu, Guoying Zhao, Chengyu Liu, Xiaolan Fu, Heikki Kälviäinen
Title: EmotionHallucer: Evaluating Emotion Hallucinations in Multimodal Large Language Models
Abstract:
Emotion understanding is a critical yet challenging task. Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities in this area. However, MLLMs often suffer from hallucinations, generating irrelevant or nonsensical content. To the best of our knowledge, despite the importance of this issue, there has been no dedicated effort to evaluate emotion-related hallucinations in MLLMs. In this work, we introduce EmotionHallucer, the first benchmark for detecting and analyzing emotion hallucinations in MLLMs. Unlike humans, whose emotion understanding stems from the interplay of biology and social learning, MLLMs rely solely on data-driven learning and lack innate emotional instincts. Fortunately, emotion psychology provides a solid foundation of knowledge about human emotions. Building on this, we assess emotion hallucinations from two dimensions: emotion psychology knowledge and real-world multimodal perception. To support robust evaluation, we utilize an adversarial binary question-answer (QA) framework, which employs carefully crafted basic and hallucinated pairs to assess the emotion hallucination tendencies of MLLMs. By evaluating 38 LLMs and MLLMs on EmotionHallucer, we reveal that: i) most current models exhibit substantial issues with emotion hallucinations; ii) closed-source models outperform open-source ones in detecting emotion hallucinations, and reasoning capability provides additional advantages; iii) existing models perform better in emotion psychology knowledge than in multimodal emotion perception. As a byproduct, these findings inspire us to propose the PEP-MEK framework, which yields an average improvement of 9.90% in emotion hallucination detection across selected models. Resources will be available at https://github.com/xxtars/EmotionHallucer.

Authors:Wenchuan Zhang, Penghao Zhang, Jingru Guo, Tao Cheng, Jie Chen, Shuwan Zhang, Zhang Zhang, Yuhao Yi, Hong Bu
Title: Patho-R1: A Multimodal Reinforcement Learning-Based Pathology Expert Reasoner
Abstract:
Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose Patho-CLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both Patho-CLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.

Authors:Petr Kasalický, Martin Spišák, Vojtěch Vančura, Daniel Bohuněk, Rodrigo Alves, Pavel Kordík
Title: The Future is Sparse: Embedding Compression for Scalable Retrieval in Recommender Systems
Abstract:
Industry-scale recommender systems face a core challenge: representing entities with high cardinality, such as users or items, using dense embeddings that must be accessible during both training and inference. However, as embedding sizes grow, memory constraints make storage and access increasingly difficult. We describe a lightweight, learnable embedding compression technique that projects dense embeddings into a high-dimensional, sparsely activated space. Designed for retrieval tasks, our method reduces memory requirements while preserving retrieval performance, enabling scalable deployment under strict resource constraints. Our results demonstrate that leveraging sparsity is a promising approach for improving the efficiency of large-scale recommenders. We release our code at https://github.com/recombee/CompresSAE.

Authors:Zeyu Gao, Yuxin Cui, Hao Wang, Siliang Qin, Yuanda Wang, Bolun Zhang, Chao Zhang
Title: DecompileBench: A Comprehensive Benchmark for Evaluating Decompilers in Real-World Scenarios
Abstract:
Decompilers are fundamental tools for critical security tasks, from vulnerability discovery to malware analysis, yet their evaluation remains fragmented. Existing approaches primarily focus on syntactic correctness through synthetic micro-benchmarks or subjective human ratings, failing to address real-world requirements for semantic fidelity and analyst usability. We present DecompileBench, the first comprehensive framework that enables effective evaluation of decompilers in reverse engineering workflows through three key components: \textit{real-world function extraction} (comprising 23,400 functions from 130 real-world programs), \textit{runtime-aware validation}, and \textit{automated human-centric assessment} using LLM-as-Judge to quantify the effectiveness of decompilers in reverse engineering workflows. Through a systematic comparison between six industrial-strength decompilers and six recent LLM-powered approaches, we demonstrate that LLM-based methods surpass commercial tools in code understandability despite 52.2% lower functionality correctness. These findings highlight the potential of LLM-based approaches to transform human-centric reverse engineering. We open source \href{https://github.com/Jennieett/DecompileBench}{DecompileBench} to provide a framework to advance research on decompilers and assist security experts in making informed tool selections based on their specific requirements.

Authors:Raja Gond, Nipun Kwatra, Ramachandran Ramjee
Title: TokenWeave: Efficient Compute-Communication Overlap for Distributed LLM Inference
Abstract:
Distributed inference of large language models (LLMs) can introduce overheads of up to 20% even over GPUs connected via high-speed interconnects such as NVLink. Multiple techniques have been proposed to mitigate these overheads by decomposing computations into finer-grained tasks and overlapping communication with sub-tasks as they complete. However, fine-grained decomposition of a large computation into many smaller computations on GPUs results in overheads. Furthermore, the communication itself uses many streaming multiprocessors (SMs), adding to the overhead. We present TokenWeave to address these challenges. TokenWeave proposes a Token-Splitting technique that divides the tokens in the inference batch into two approximately equal subsets in a wave-aware manner. The communication of one subset is then overlapped with the computation of the other. In addition, TokenWeave optimizes the order of the layer normalization computation with respect to communication operations and implements a novel fused AllReduce--RMSNorm kernel that carefully leverages Multimem instruction support available on NVIDIA Hopper GPUs. These optimizations allow TokenWeave to perform communication and RMSNorm using only 2-8 SMs. Moreover, our kernel enables the memory-bound RMSNorm to be overlapped with the other batch's computation, providing additional gains. Our evaluations demonstrate up to 1.29x speedup in latency and 1.26x higher throughput across multiple models and workloads. In several settings, TokenWeave results in better performance compared to an equivalent model with all communication removed.

Authors:Raja Gond, Nipun Kwatra, Ramachandran Ramjee
Title: TokenWeave: Efficient Compute-Communication Overlap for Distributed LLM Inference
Abstract:
Distributed inference of large language models (LLMs) can introduce overheads of up to 20% even over GPUs connected via high-speed interconnects such as NVLink. Multiple techniques have been proposed to mitigate these overheads by decomposing computations into finer-grained tasks and overlapping communication with sub-tasks as they complete. However, fine-grained decomposition of a large computation into many smaller computations on GPUs results in overheads. Furthermore, the communication itself uses many streaming multiprocessors (SMs), adding to the overhead. We present TokenWeave to address these challenges. TokenWeave proposes a Token-Splitting technique that divides the tokens in the inference batch into two approximately equal subsets in a wave-aware manner. The communication of one subset is then overlapped with the computation of the other. In addition, TokenWeave optimizes the order of the layer normalization computation with respect to communication operations and implements a novel fused AllReduce--RMSNorm kernel that carefully leverages Multimem instruction support available on Hopper and Blackwell NVIDIA GPUs. These optimizations allow TokenWeave to perform communication and RMSNorm using only 2-8 SMs. Moreover, our kernel enables the memory-bound RMSNorm to be overlapped with the other batch's computation, providing additional gains. Our evaluations demonstrate up to 1.29x speedup in latency and 1.26x higher throughput across multiple models and workloads. In several settings, TokenWeave results in better performance compared to an equivalent model with all communication removed.

Authors:Keunwoo Peter Yu, Joyce Chai
Title: Temporally-Grounded Language Generation: A Benchmark for Real-Time Vision-Language Models
Abstract:
Vision-language models (VLMs) have shown remarkable progress in offline tasks such as image captioning and video question answering. However, real-time interactive environments impose new demands on VLMs, requiring them to generate utterances that are not only semantically accurate but also precisely timed. We identify two core capabilities necessary for such settings -- $\textit{perceptual updating}$ and $\textit{contingency awareness}$ -- and propose a new benchmark task, $\textbf{Temporally-Grounded Language Generation (TGLG)}$, to evaluate them. TGLG requires models to generate utterances in response to streaming video such that both content and timing align with dynamic visual input. To support this benchmark, we curate evaluation datasets from sports broadcasting and egocentric human interaction domains, and introduce a new metric, $\textbf{TRACE}$, to evaluate TGLG by jointly measuring semantic similarity and temporal alignment. Finally, we present $\textbf{Vision-Language Model with Time-Synchronized Interleaving (VLM-TSI)}$, a model that interleaves visual and linguistic tokens in a time-synchronized manner, enabling real-time language generation without relying on turn-based assumptions. Experimental results show that VLM-TSI significantly outperforms a strong baseline, yet overall performance remains modest -- highlighting the difficulty of TGLG and motivating further research in real-time VLMs. Code and data available $\href{https://github.com/yukw777/tglg}{here}$.

Authors:Reginald McLean, Evangelos Chatzaroulas, Luc McCutcheon, Frank Röder, Tianhe Yu, Zhanpeng He, K. R. Zentner, Ryan Julian, J K Terry, Isaac Woungang, Nariman Farsad, Pablo Samuel Castro
Title: Meta-World+: An Improved, Standardized, RL Benchmark
Abstract:
Meta-World is widely used for evaluating multi-task and meta-reinforcement learning agents, which are challenged to master diverse skills simultaneously. Since its introduction however, there have been numerous undocumented changes which inhibit a fair comparison of algorithms. This work strives to disambiguate these results from the literature, while also leveraging the past versions of Meta-World to provide insights into multi-task and meta-reinforcement learning benchmark design. Through this process we release a new open-source version of Meta-World (https://github.com/Farama-Foundation/Metaworld/) that has full reproducibility of past results, is more technically ergonomic, and gives users more control over the tasks that are included in a task set.

Authors:Wilson Wongso, Hao Xue, Flora D. Salim
Title: Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Abstract:
Understanding human mobility through Point-of-Interest (POI) recommendation is increasingly important for applications such as urban planning, personalized services, and generative agent simulation. However, progress in this field is hindered by two key challenges: the over-reliance on older datasets from 2012-2013 and the lack of reproducible, city-level check-in datasets that reflect diverse global regions. To address these gaps, we present Massive-STEPS (Massive Semantic Trajectories for Understanding POI Check-ins), a large-scale, publicly available benchmark dataset built upon the Semantic Trails dataset and enriched with semantic POI metadata. Massive-STEPS spans 12 geographically and culturally diverse cities and features more recent (2017-2018) and longer-duration (24 months) check-in data than prior datasets. We benchmarked a wide range of POI recommendation models on Massive-STEPS using both supervised and zero-shot approaches, and evaluated their performance across multiple urban contexts. By releasing Massive-STEPS, we aim to facilitate reproducible and equitable research in human mobility and POI recommendation. The dataset and benchmarking code are available at: https://github.com/cruiseresearchgroup/Massive-STEPS

Authors:Wenhao Qian, Zhenzhen Hu, Zijie Song, Jia Li
Title: Concept Drift Guided LayerNorm Tuning for Efficient Multimodal Metaphor Identification
Abstract:
Metaphorical imagination, the ability to connect seemingly unrelated concepts, is fundamental to human cognition and communication. While understanding linguistic metaphors has advanced significantly, grasping multimodal metaphors, such as those found in internet memes, presents unique challenges due to their unconventional expressions and implied meanings. Existing methods for multimodal metaphor identification often struggle to bridge the gap between literal and figurative interpretations. Additionally, generative approaches that utilize large language models or text-to-image models, while promising, suffer from high computational costs. This paper introduces \textbf{C}oncept \textbf{D}rift \textbf{G}uided \textbf{L}ayerNorm \textbf{T}uning (\textbf{CDGLT}), a novel and training-efficient framework for multimodal metaphor identification. CDGLT incorporates two key innovations: (1) Concept Drift, a mechanism that leverages Spherical Linear Interpolation (SLERP) of cross-modal embeddings from a CLIP encoder to generate a new, divergent concept embedding. This drifted concept helps to alleviate the gap between literal features and the figurative task. (2) A prompt construction strategy, that adapts the method of feature extraction and fusion using pre-trained language models for the multimodal metaphor identification task. CDGLT achieves state-of-the-art performance on the MET-Meme benchmark while significantly reducing training costs compared to existing generative methods. Ablation studies demonstrate the effectiveness of both Concept Drift and our adapted LN Tuning approach. Our method represents a significant step towards efficient and accurate multimodal metaphor understanding. The code is available: \href{https://github.com/Qianvenh/CDGLT}{https://github.com/Qianvenh/CDGLT}.

Authors:Fei Wu, Jia Hu, Geyong Min, Shiqiang Wang
Title: Efficient Orthogonal Fine-Tuning with Principal Subspace Adaptation
Abstract:
Driven by the rapid growth of model parameters, parameter-efficient fine-tuning (PEFT) has become essential for adapting large models to diverse downstream tasks under constrained computational resources. Within this paradigm, orthogonal fine-tuning and its variants preserve semantic representations of pre-trained models, but struggle to achieve both expressiveness and efficiency in terms of parameter counts, memory, and computation. To overcome this limitation, we propose efficient Orthogonal Fine-Tuning with Principal Subspace adaptation (PSOFT), which confines orthogonal transformations to the principal subspace of pre-trained weights. Specifically, PSOFT constructs this subspace via matrix decomposition to enable compatible transformations with higher effective rank, establishes a theoretical condition that strictly maintains the geometry of this subspace for essential semantic preservation, and introduces efficient tunable vectors that gradually relax orthogonality during training to enhance adaptability. Extensive experiments on 35 NLP and CV tasks across four representative models demonstrate that PSOFT offers a practical and scalable solution to simultaneously achieve semantic preservation, expressiveness, and multi-dimensional efficiency in PEFT. The code is publicly available at https://github.com/fei407/PSOFT.

Authors:Hangyu Zhou, Aaron Gokaslan, Volodymyr Kuleshov, Bharath Hariharan
Title: RanDeS: Randomized Delta Superposition for Multi-Model Compression
Abstract:
From a multi-model compression perspective, model merging enables memory-efficient serving of multiple models fine-tuned from the same base, but suffers from degraded performance due to interference among their task-specific parameter adjustments (i.e., deltas). In this paper, we reformulate model merging as a compress-and-retrieve scheme, revealing that the task interference arises from the summation of irrelevant deltas during model retrieval. To address this issue, we use random orthogonal transformations to decorrelate these vectors into self-cancellation. We show that this approach drastically reduces interference, improving performance across both vision and language tasks. Since these transformations are fully defined by random seeds, adding new models requires no extra memory. Further, their data- and model-agnostic nature enables easy addition or removal of models with minimal compute overhead, supporting efficient and flexible multi-model serving.

Authors:Yuang Ai, Qihang Fan, Xuefeng Hu, Zhenheng Yang, Ran He, Huaibo Huang
Title: DiCo: Revitalizing ConvNets for Scalable and Efficient Diffusion Modeling
Abstract:
Diffusion Transformer (DiT), a promising diffusion model for visual generation, demonstrates impressive performance but incurs significant computational overhead. Intriguingly, analysis of pre-trained DiT models reveals that global self-attention is often redundant, predominantly capturing local patterns-highlighting the potential for more efficient alternatives. In this paper, we revisit convolution as an alternative building block for constructing efficient and expressive diffusion models. However, naively replacing self-attention with convolution typically results in degraded performance. Our investigations attribute this performance gap to the higher channel redundancy in ConvNets compared to Transformers. To resolve this, we introduce a compact channel attention mechanism that promotes the activation of more diverse channels, thereby enhancing feature diversity. This leads to Diffusion ConvNet (DiCo), a family of diffusion models built entirely from standard ConvNet modules, offering strong generative performance with significant efficiency gains. On class-conditional ImageNet generation benchmarks, DiCo-XL achieves an FID of 2.05 at 256x256 resolution and 2.53 at 512x512, with a 2.7x and 3.1x speedup over DiT-XL/2, respectively. Furthermore, experimental results on MS-COCO demonstrate that the purely convolutional DiCo exhibits strong potential for text-to-image generation. Code: https://github.com/shallowdream204/DiCo.

Authors:Sicheng Shen, Dongcheng Zhao, Linghao Feng, Zeyang Yue, Jindong Li, Tenglong Li, Guobin Shen, Yi Zeng
Title: STEP: A Unified Spiking Transformer Evaluation Platform for Fair and Reproducible Benchmarking
Abstract:
Spiking Transformers have recently emerged as promising architectures for combining the efficiency of spiking neural networks with the representational power of self-attention. However, the lack of standardized implementations, evaluation pipelines, and consistent design choices has hindered fair comparison and principled analysis. In this paper, we introduce \textbf{STEP}, a unified benchmark framework for Spiking Transformers that supports a wide range of tasks, including classification, segmentation, and detection across static, event-based, and sequential datasets. STEP provides modular support for diverse components such as spiking neurons, input encodings, surrogate gradients, and multiple backends (e.g., SpikingJelly, BrainCog). Using STEP, we reproduce and evaluate several representative models, and conduct systematic ablation studies on attention design, neuron types, encoding schemes, and temporal modeling capabilities. We also propose a unified analytical model for energy estimation, accounting for spike sparsity, bitwidth, and memory access, and show that quantized ANNs may offer comparable or better energy efficiency. Our results suggest that current Spiking Transformers rely heavily on convolutional frontends and lack strong temporal modeling, underscoring the need for spike-native architectural innovations. The full code is available at: https://github.com/Fancyssc/STEP

Authors:Feiran Li, Qianqian Xu, Shilong Bao, Zhiyong Yang, Xiaochun Cao, Qingming Huang
Title: One Image is Worth a Thousand Words: A Usability Preservable Text-Image Collaborative Erasing Framework
Abstract:
Concept erasing has recently emerged as an effective paradigm to prevent text-to-image diffusion models from generating visually undesirable or even harmful content. However, current removal methods heavily rely on manually crafted text prompts, making it challenging to achieve a high erasure (efficacy) while minimizing the impact on other benign concepts (usability). In this paper, we attribute the limitations to the inherent gap between the text and image modalities, which makes it hard to transfer the intricately entangled concept knowledge from text prompts to the image generation process. To address this, we propose a novel solution by directly integrating visual supervision into the erasure process, introducing the first text-image Collaborative Concept Erasing (Co-Erasing) framework. Specifically, Co-Erasing describes the concept jointly by text prompts and the corresponding undesirable images induced by the prompts, and then reduces the generating probability of the target concept through negative guidance. This approach effectively bypasses the knowledge gap between text and image, significantly enhancing erasure efficacy. Additionally, we design a text-guided image concept refinement strategy that directs the model to focus on visual features most relevant to the specified text concept, minimizing disruption to other benign concepts. Finally, comprehensive experiments suggest that Co-Erasing outperforms state-of-the-art erasure approaches significantly with a better trade-off between efficacy and usability. Codes are available at https://github.com/Ferry-Li/Co-Erasing.

Authors:Chenhong Zhou, Jie Chen, Zaifeng Yang, Ching Eng Png
Title: Dual-Balancing for Physics-Informed Neural Networks
Abstract:
Physics-informed neural networks (PINNs) have emerged as a new learning paradigm for solving partial differential equations (PDEs) by enforcing the constraints of physical equations, boundary conditions (BCs), and initial conditions (ICs) into the loss function. Despite their successes, vanilla PINNs still suffer from poor accuracy and slow convergence due to the intractable multi-objective optimization issue. In this paper, we propose a novel Dual-Balanced PINN (DB-PINN), which dynamically adjusts loss weights by integrating inter-balancing and intra-balancing to alleviate two imbalance issues in PINNs. Inter-balancing aims to mitigate the gradient imbalance between PDE residual loss and condition-fitting losses by determining an aggregated weight that offsets their gradient distribution discrepancies. Intra-balancing acts on condition-fitting losses to tackle the imbalance in fitting difficulty across diverse conditions. By evaluating the fitting difficulty based on the loss records, intra-balancing can allocate the aggregated weight proportionally to each condition loss according to its fitting difficulty level. We further introduce a robust weight update strategy to prevent abrupt spikes and arithmetic overflow in instantaneous weight values caused by large loss variances, enabling smooth weight updating and stable training. Extensive experiments demonstrate that DB-PINN achieves significantly superior performance than those popular gradient-based weighting methods in terms of convergence speed and prediction accuracy. Our code and supplementary material are available at https://github.com/chenhong-zhou/DualBalanced-PINNs.

Authors:Lin Zhu, Yijun Bian, Lei You
Title: FairSHAP: Preprocessing for Fairness Through Attribution-Based Data Augmentation
Abstract:
Ensuring fairness in machine learning models is critical, particularly in high-stakes domains where biased decisions can lead to serious societal consequences. Existing preprocessing approaches generally lack transparent mechanisms for identifying which features or instances are responsible for unfairness. This obscures the rationale behind data modifications. We introduce FairSHAP, a novel pre-processing framework that leverages Shapley value attribution to improve both individual and group fairness. FairSHAP identifies fairness-critical instances in the training data using an interpretable measure of feature importance, and systematically modifies them through instance-level matching across sensitive groups. This process reduces discriminative risk - an individual fairness metric - while preserving data integrity and model accuracy. We demonstrate that FairSHAP significantly improves demographic parity and equality of opportunity across diverse tabular datasets, achieving fairness gains with minimal data perturbation and, in some cases, improved predictive performance. As a model-agnostic and transparent method, FairSHAP integrates seamlessly into existing machine learning pipelines and provides actionable insights into the sources of bias.Our code is on https://github.com/youlei202/FairSHAP.

Authors:Lin Zhu, Yijun Bian, Lei You
Title: FairSHAP: Preprocessing for Fairness Through Attribution-Based Data Augmentation
Abstract:
Ensuring fairness in machine learning models is critical, particularly in high-stakes domains where biased decisions can lead to serious societal consequences. Existing preprocessing approaches generally lack transparent mechanisms for identifying which features or instances are responsible for unfairness. This obscures the rationale behind data modifications. We introduce FairSHAP, a novel pre-processing framework that leverages Shapley value attribution to improve both individual and group fairness. FairSHAP identifies fairness-critical instances in the training data using an interpretable measure of feature importance, and systematically modifies them through instance-level matching across sensitive groups. This process reduces discriminative risk - an individual fairness metric - while preserving data integrity and model accuracy. We demonstrate that FairSHAP significantly improves demographic parity and equality of opportunity across diverse tabular datasets, achieving fairness gains with minimal data perturbation and, in some cases, improved predictive performance. As a model-agnostic and transparent method, FairSHAP integrates seamlessly into existing machine learning pipelines and provides actionable insights into the sources of bias.Our code is on https://github.com/youlei202/FairSHAP.

Authors:Bin Liu, Chunyang Wang, Xuelian Liu, Bo Xiao, Guan Xi
Title: HyMamba: Mamba with Hybrid Geometry-Feature Coupling for Efficient Point Cloud Classification
Abstract:
Point cloud classification is one of the essential technologies for achieving intelligent perception of 3D environments by machines, its core challenge is to efficiently extract local and global features. Mamba leverages state space models (SSMs) for global point cloud modeling. Although prior Mamba-based point cloud processing methods pay attention to the limitation of its flattened sequence modeling mechanism in fusing local and global features, the critical issue of weakened local geometric relevance caused by decoupling geometric structures and features in the input patches remains not fully revealed, and both jointly limit local feature extraction. Therefore, we propose HyMamba, a geometry and feature coupled Mamba framework featuring: (1) Geometry-Feature Coupled Pooling (GFCP), which achieves physically interpretable geometric information coupling by dynamically aggregating adjacent geometric information into local features; (2) Collaborative Feature Enhancer (CoFE), which enhances sparse signal capture through cross-path feature hybridization while effectively integrating global and local contexts. We conducted extensive experiments on ModelNet40 and ScanObjectNN datasets. The results demonstrate that the proposed model achieves superior classification performance, particularly on the ModelNet40, where it elevates accuracy to 95.99% with merely 0.03M additional parameters. Furthermore, it attains 98.9% accuracy on the ModelNetFewShot dataset, validating its robust generalization capabilities under sparse samples. Our code and weights are available at https://github.com/L1277471578/HyMamba

Authors:Guangqiang Li, M. Amine Atoui, Xiangshun Li
Title: Fault Diagnosis across Heterogeneous Domains via Self-Adaptive Temporal-Spatial Attention and Sample Generation
Abstract:
Deep learning methods have shown promising performance in fault diagnosis for multimode process. Most existing studies assume that the collected health state categories from different operating modes are identical. However, in real industrial scenarios, these categories typically exhibit only partial overlap. The incompleteness of the available data and the large distributional differences between the operating modes pose a significant challenge to existing fault diagnosis methods. To address this problem, a novel fault diagnosis model named self-adaptive temporal-spatial attention network (TSA-SAN) is proposed. First, inter-mode mappings are constructed using healthy category data to generate multimode samples. To enrich the diversity of the fault data, interpolation is performed between healthy and fault samples. Subsequently, the fault diagnosis model is trained using real and generated data. The self-adaptive instance normalization is established to suppress irrelevant information while retaining essential statistical features for diagnosis. In addition, a temporal-spatial attention mechanism is constructed to focus on the key features, thus enhancing the generalization ability of the model. The extensive experiments demonstrate that the proposed model significantly outperforms the state-of-the-art methods. The code will be available on Github at https://github.com/GuangqiangLi/TSA-SAN.

Authors:Yapei Chang, Yekyung Kim, Michael Krumdick, Amir Zadeh, Chuan Li, Chris Tanner, Mohit Iyyer
Title: BLEUBERI: BLEU is a surprisingly effective reward for instruction following
Abstract:
Reward models are central to aligning LLMs with human preferences, but they are costly to train, requiring large-scale human-labeled preference data and powerful pretrained LLM backbones. Meanwhile, the increasing availability of high-quality synthetic instruction-following datasets raises the question: can simpler, reference-based metrics serve as viable alternatives to reward models during RL-based alignment? In this paper, we show first that BLEU, a basic string-matching metric, surprisingly matches strong reward models in agreement with human preferences on general instruction-following datasets. Based on this insight, we develop BLEUBERI, a method that first identifies challenging instructions and then applies Group Relative Policy Optimization (GRPO) using BLEU directly as the reward function. We demonstrate that BLEUBERI-trained models are competitive with models trained via reward model-guided RL across four challenging instruction-following benchmarks and three different base language models. A human evaluation further supports that the quality of BLEUBERI model outputs is on par with those from reward model-aligned models. Moreover, BLEUBERI models generate outputs that are more factually grounded than competing methods. Overall, we show that given access to high-quality reference outputs (easily obtained via existing instruction-following datasets or synthetic data generation), string matching-based metrics are cheap yet effective proxies for reward models during alignment. We release our code and data at https://github.com/lilakk/BLEUBERI.

Authors:Hao Gu, Jiangyan Yi, Chenglong Wang, Jianhua Tao, Zheng Lian, Jiayi He, Yong Ren, Yujie Chen, Zhengqi Wen
Title: ALLM4ADD: Unlocking the Capabilities of Audio Large Language Models for Audio Deepfake Detection
Abstract:
Audio deepfake detection (ADD) has grown increasingly important due to the rise of high-fidelity audio generative models and their potential for misuse. Given that audio large language models (ALLMs) have made significant progress in various audio processing tasks, a heuristic question arises: \textit{Can ALLMs be leveraged to solve ADD?}. In this paper, we first conduct a comprehensive zero-shot evaluation of ALLMs on ADD, revealing their ineffectiveness. To this end, we propose ALLM4ADD, an ALLM-driven framework for ADD. Specifically, we reformulate ADD task as an audio question answering problem, prompting the model with the question: ``Is this audio fake or real?''. We then perform supervised fine-tuning to enable the ALLM to assess the authenticity of query audio. Extensive experiments are conducted to demonstrate that our ALLM-based method can achieve superior performance in fake audio detection, particularly in data-scarce scenarios. As a pioneering study, we anticipate that this work will inspire the research community to leverage ALLMs to develop more effective ADD systems. Code is available at https://github.com/ucas-hao/qwen_audio_for_add.git

Authors:Vladimír Boža, Vladimír Macko
Title: Addition is almost all you need: Compressing neural networks with double binary factorization
Abstract:
Binary quantization approaches, which replace weight matrices with binary matrices and substitute costly multiplications with cheaper additions, offer a computationally efficient approach to address the increasing computational and storage requirements of Large Language Models (LLMs). However, the severe quantization constraint ($\pm1$) can lead to significant accuracy degradation. In this paper, we propose Double Binary Factorization (DBF), a novel method that factorizes dense weight matrices into products of two binary (sign) matrices, each accompanied by scaling vectors. DBF preserves the efficiency advantages of binary representations while achieving compression rates that are competitive with or superior to state-of-the-art methods. Specifically, in a 1-bit per weight range, DBF is better than existing binarization approaches. In a 2-bit per weight range, DBF is competitive with the best quantization methods like QuIP\# and QTIP. Unlike most existing compression techniques, which offer limited compression level choices, DBF allows fine-grained control over compression ratios by adjusting the factorization's intermediate dimension. Based on this advantage, we further introduce an algorithm for estimating non-uniform layer-wise compression ratios for DBF, based on previously developed channel pruning criteria. Code available at: https://github.com/usamec/double_binary

Authors:Rui Wang, Shichun Yang, Yuyi Chen, Zhuoyang Li, Zexiang Tong, Jianyi Xu, Jiayi Lu, Xinjie Feng, Yaoguang Cao
Title: A Multi-modal Fusion Network for Terrain Perception Based on Illumination Aware
Abstract:
Road terrains play a crucial role in ensuring the driving safety of autonomous vehicles (AVs). However, existing sensors of AVs, including cameras and Lidars, are susceptible to variations in lighting and weather conditions, making it challenging to achieve real-time perception of road conditions. In this paper, we propose an illumination-aware multi-modal fusion network (IMF), which leverages both exteroceptive and proprioceptive perception and optimizes the fusion process based on illumination features. We introduce an illumination-perception sub-network to accurately estimate illumination features. Moreover, we design a multi-modal fusion network which is able to dynamically adjust weights of different modalities according to illumination features. We enhance the optimization process by pre-training of the illumination-perception sub-network and incorporating illumination loss as one of the training constraints. Extensive experiments demonstrate that the IMF shows a superior performance compared to state-of-the-art methods. The comparison results with single modality perception methods highlight the comprehensive advantages of multi-modal fusion in accurately perceiving road terrains under varying lighting conditions. Our dataset is available at: https://github.com/lindawang2016/IMF.

Authors:Changlun Li, Yao Shi, Chen Wang, Qiqi Duan, Runke Ruan, Weijie Huang, Haonan Long, Lijun Huang, Yuyu Luo, Nan Tang
Title: Time Travel is Cheating: Going Live with DeepFund for Real-Time Fund Investment Benchmarking
Abstract:
Large Language Models (LLMs) have demonstrated notable capabilities across financial tasks, including financial report summarization, earnings call transcript analysis, and asset classification. However, their real-world effectiveness in managing complex fund investment remains inadequately assessed. A fundamental limitation of existing benchmarks for evaluating LLM-driven trading strategies is their reliance on historical back-testing, inadvertently enabling LLMs to "time travel"-leveraging future information embedded in their training corpora, thus resulting in possible information leakage and overly optimistic performance estimates. To address this issue, we introduce DeepFund, a live fund benchmark tool designed to rigorously evaluate LLM in real-time market conditions. Utilizing a multi-agent architecture, DeepFund connects directly with real-time stock market data-specifically data published after each model pretraining cutoff-to ensure fair and leakage-free evaluations. Empirical tests on nine flagship LLMs from leading global institutions across multiple investment dimensions-including ticker-level analysis, investment decision-making, portfolio management, and risk control-reveal significant practical challenges. Notably, even cutting-edge models such as DeepSeek-V3 and Claude-3.7-Sonnet incur net trading losses within DeepFund real-time evaluation environment, underscoring the present limitations of LLMs for active fund management. Our code is available at https://github.com/HKUSTDial/DeepFund.

Authors:Yue Liu, Shengfang Zhai, Mingzhe Du, Yulin Chen, Tri Cao, Hongcheng Gao, Cheng Wang, Xinfeng Li, Kun Wang, Junfeng Fang, Jiaheng Zhang, Bryan Hooi
Title: GuardReasoner-VL: Safeguarding VLMs via Reinforced Reasoning
Abstract:
To enhance the safety of VLMs, this paper introduces a novel reasoning-based VLM guard model dubbed GuardReasoner-VL. The core idea is to incentivize the guard model to deliberatively reason before making moderation decisions via online RL. First, we construct GuardReasoner-VLTrain, a reasoning corpus with 123K samples and 631K reasoning steps, spanning text, image, and text-image inputs. Then, based on it, we cold-start our model's reasoning ability via SFT. In addition, we further enhance reasoning regarding moderation through online RL. Concretely, to enhance diversity and difficulty of samples, we conduct rejection sampling followed by data augmentation via the proposed safety-aware data concatenation. Besides, we use a dynamic clipping parameter to encourage exploration in early stages and exploitation in later stages. To balance performance and token efficiency, we design a length-aware safety reward that integrates accuracy, format, and token cost. Extensive experiments demonstrate the superiority of our model. Remarkably, it surpasses the runner-up by 19.27% F1 score on average. We release data, code, and models (3B/7B) of GuardReasoner-VL at https://github.com/yueliu1999/GuardReasoner-VL/

Authors:Zongye Zhang, Bohan Kong, Qingjie Liu, Yunhong Wang
Title: Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion
Abstract:
Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence. The code is available at: https://github.com/zzysteve/MoMADiff

Authors:Bo Du, Xuekang Zhu, Xiaochen Ma, Chenfan Qu, Kaiwen Feng, Zhe Yang, Chi-Man Pun, Jian Liu, Jizhe Zhou
Title: ForensicHub: A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization
Abstract:
The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.

Authors:Rees Chang, Angela Pak, Alex Guerra, Ni Zhan, Nick Richardson, Elif Ertekin, Ryan P. Adams
Title: Space Group Equivariant Crystal Diffusion
Abstract:
Accelerating inverse design of crystalline materials with generative models has significant implications for a range of technologies. Unlike other atomic systems, 3D crystals are invariant to discrete groups of isometries called the space groups. Crucially, these space group symmetries are known to heavily influence materials properties. We propose SGEquiDiff, a crystal generative model which naturally handles space group constraints with space group invariant likelihoods. SGEquiD-iff consists of an SE(3)-invariant, telescoping discrete sampler of crystal lattices; permutation-invariant, transformer-based autoregressive sampling of Wyckoff positions, elements, and numbers of symmetrically unique atoms; and space group equivariant diffusion of atomic coordinates. We show that space group equivariant vector fields automatically live in the tangent spaces of the Wyckoff positions. SGEquiDiff achieves state-of-the-art performance on standard benchmark datasets as assessed by quantitative proxy metrics and quantum mechanical calculations. Our code is available at https://github.com/rees-c/sgequidiff.

Authors:Haiyang Shen, Hang Yan, Zhongshi Xing, Mugeng Liu, Yue Li, Zhiyang Chen, Yuxiang Wang, Jiuzheng Wang, Yun Ma
Title: RAGSynth: Synthetic Data for Robust and Faithful RAG Component Optimization
Abstract:
RAG can enhance the performance of LLMs on knowledge-intensive tasks. Various RAG paradigms, including vanilla, planning-based, and iterative RAG, are built upon 2 cores: the retriever, which should robustly select relevant documents across complex queries, and the generator, which should faithfully synthesize responses. However, existing retrievers rely heavily on public knowledge and struggle with queries of varying logical complexity and clue completeness, while generators frequently face fidelity problems. In this work, we introduce RAGSynth, a framework that includes a data construction modeling and a corresponding synthetic data generation implementation, designed to optimize retriever robustness and generator fidelity. Additionally, we present SynthBench, a benchmark encompassing 8 domain-specific documents across 4 domains, featuring diverse query complexities, clue completeness, and fine-grained citation granularity. Leveraging RAGSynth, we generate a large-scale synthetic dataset, including single and multi-hop. Extensive experiments demonstrate that the synthetic data significantly improves the robustness of the retrievers and the fidelity of the generators. Additional evaluations confirm that RAGSynth can also generalize well across different domains. By integrating the optimized retrievers into various RAG paradigms, we consistently observe enhanced RAG system performance. We have open-sourced the implementation on https://github.com/EachSheep/RAGSynth.

Authors:Yexiang Liu, Zekun Li, Zhi Fang, Nan Xu, Ran He, Tieniu Tan
Title: Rethinking the Role of Prompting Strategies in LLM Test-Time Scaling: A Perspective of Probability Theory
Abstract:
Recently, scaling test-time compute on Large Language Models (LLM) has garnered wide attention. However, there has been limited investigation of how various reasoning prompting strategies perform as scaling. In this paper, we focus on a standard and realistic scaling setting: majority voting. We systematically conduct experiments on 6 LLMs $\times$ 8 prompting strategies $\times$ 6 benchmarks. Experiment results consistently show that as the sampling time and computational overhead increase, complicated prompting strategies with superior initial performance gradually fall behind simple Chain-of-Thought. We analyze this phenomenon and provide theoretical proofs. Additionally, we propose a probabilistic method to efficiently predict scaling performance and identify the best prompting strategy under large sampling times, eliminating the need for resource-intensive inference processes in practical applications. Furthermore, we introduce two ways derived from our theoretical analysis to significantly improve the scaling performance. We hope that our research can promote to re-examine the role of complicated prompting, unleash the potential of simple prompting strategies, and provide new insights for enhancing test-time scaling performance. Code is available at https://github.com/MraDonkey/rethinking_prompting.

Authors:Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I. Kanatsoulis, Rishi Puri, Matthias Fey, Jure Leskovec
Title: Relational Graph Transformer
Abstract:
Relational Deep Learning (RDL) is a promising approach for building state-of-the-art predictive models on multi-table relational data by representing it as a heterogeneous temporal graph. However, commonly used Graph Neural Network models suffer from fundamental limitations in capturing complex structural patterns and long-range dependencies that are inherent in relational data. While Graph Transformers have emerged as powerful alternatives to GNNs on general graphs, applying them to relational entity graphs presents unique challenges: (i) Traditional positional encodings fail to generalize to massive, heterogeneous graphs; (ii) existing architectures cannot model the temporal dynamics and schema constraints of relational data; (iii) existing tokenization schemes lose critical structural information. Here we introduce the Relational Graph Transformer (RelGT), the first graph transformer architecture designed specifically for relational tables. RelGT employs a novel multi-element tokenization strategy that decomposes each node into five components (features, type, hop distance, time, and local structure), enabling efficient encoding of heterogeneity, temporality, and topology without expensive precomputation. Our architecture combines local attention over sampled subgraphs with global attention to learnable centroids, incorporating both local and database-wide representations. Across 21 tasks from the RelBench benchmark, RelGT consistently matches or outperforms GNN baselines by up to 18%, establishing Graph Transformers as a powerful architecture for Relational Deep Learning.

Authors:Mohammadtaha Bagherifard, Sahar Rajabi, Ali Edalat, Yadollah Yaghoobzadeh
Title: GenKnowSub: Improving Modularity and Reusability of LLMs through General Knowledge Subtraction
Abstract:
Large language models often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information, a method we call general knowledge subtraction (GenKnowSub). Leveraging the refined task-specific modules and the Arrow routing algorithm \citep{ostapenko2024towards}, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 demonstrate how GenKnowSub generalizes to weaker LLMs. The complete code and data are available at https://github.com/saharsamr/Modular-LLM.

Authors:Chao Wang, Wei Lu, Xiang Li, Jian Yang, Lei Luo
Title: M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection
Abstract:
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve $mAP$ by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.

Authors:Congcong Zhu, Xiaoyan Xu, Jiayue Han, Jingrun Chen
Title: Physics-informed Temporal Alignment for Auto-regressive PDE Foundation Models
Abstract:
Auto-regressive partial differential equation (PDE) foundation models have shown great potential in handling time-dependent data. However, these models suffer from the shortcut problem deeply rooted in auto-regressive prediction, causing error accumulation. The challenge becomes particularly evident for out-of-distribution data, as the pretraining performance may approach random model initialization for downstream tasks with long-term dynamics. To deal with this problem, we propose physics-informed temporal alignment (PITA), a self-supervised learning framework inspired by inverse problem solving. Specifically, PITA aligns the physical dynamics discovered at different time steps on each given PDE trajectory by integrating physics-informed constraints into the self-supervision signal. The alignment is derived from observation data without relying on known physics priors, indicating strong generalization ability to the out-of-distribution data. Extensive experiments show that PITA significantly enhances the accuracy and robustness of existing foundation models on diverse time-dependent PDE data. The code is available at https://github.com/SCAILab-USTC/PITA.

Authors:Saad Manzur, Bryan Vela, Brandon Vela, Aditya Agrawal, Lan-Anh Dang-Vu, David Li, Wayne Hayes
Title: PoseBench3D: A Cross-Dataset Analysis Framework for 3D Human Pose Estimation via Pose Lifting Networks
Abstract:
Reliable three-dimensional human pose estimation (3D HPE) remains challenging due to the differences in viewpoints, environments, and camera conventions among datasets. As a result, methods that achieve near-optimal in-dataset accuracy often degrade on unseen datasets. In practice, however, systems must adapt to diverse viewpoints, environments, and camera setups--conditions that differ significantly from those encountered during training, which is often the case in real-world scenarios. Measuring cross-dataset performance is a vital process, but extremely labor-intensive when done manually for human pose estimation. To address these challenges, we automate this evaluation using PoseBench3D, a standardized testing framework that enables consistent and fair cross-dataset comparisons on previously unseen data. PoseBench3D streamlines testing across four widely used 3D HPE datasets via a single, configurable interface. Using this framework, we re-evaluate 18 methods and report over 100 cross-dataset results under Protocol 1: MPJPE and Protocol 2: PA-MPJPE, revealing systematic generalization gaps and the impact of common preprocessing and dataset setup choices. The PoseBench3D code is found at: https://github.com/bryanjvela/PoseBench3D

Authors:Bin Lei, Weitai Kang, Zijian Zhang, Winson Chen, Xi Xie, Shan Zuo, Mimi Xie, Ali Payani, Mingyi Hong, Yan Yan, Caiwen Ding
Title: InfantAgent-Next: A Multimodal Generalist Agent for Automated Computer Interaction
Abstract:
This paper introduces \textsc{InfantAgent-Next}, a generalist agent capable of interacting with computers in a multimodal manner, encompassing text, images, audio, and video. Unlike existing approaches that either build intricate workflows around a single large model or only provide workflow modularity, our agent integrates tool-based and pure vision agents within a highly modular architecture, enabling different models to collaboratively solve decoupled tasks in a step-by-step manner. Our generality is demonstrated by our ability to evaluate not only pure vision-based real-world benchmarks (i.e., OSWorld), but also more general or tool-intensive benchmarks (e.g., GAIA and SWE-Bench). Specifically, we achieve $\mathbf{7.27\%}$ accuracy on OSWorld, higher than Claude-Computer-Use. Codes and evaluation scripts are open-sourced at https://github.com/bin123apple/InfantAgent.

Authors:Filippo Leveni, Luca Magri, Cesare Alippi, Giacomo Boracchi
Title: Hashing for Structure-based Anomaly Detection
Abstract:
We focus on the problem of identifying samples in a set that do not conform to structured patterns represented by low-dimensional manifolds. An effective way to solve this problem is to embed data in a high dimensional space, called Preference Space, where anomalies can be identified as the most isolated points. In this work, we employ Locality Sensitive Hashing to avoid explicit computation of distances in high dimensions and thus improve Anomaly Detection efficiency. Specifically, we present an isolation-based anomaly detection technique designed to work in the Preference Space which achieves state-of-the-art performance at a lower computational cost. Code is publicly available at https://github.com/ineveLoppiliF/Hashing-for-Structure-based-Anomaly-Detection.

Authors:Jiacheng Liang, Tanqiu Jiang, Yuhui Wang, Rongyi Zhu, Fenglong Ma, Ting Wang
Title: AutoRAN: Weak-to-Strong Jailbreaking of Large Reasoning Models
Abstract:
This paper presents AutoRAN, the first automated, weak-to-strong jailbreak attack framework targeting large reasoning models (LRMs). At its core, AutoRAN leverages a weak, less-aligned reasoning model to simulate the target model's high-level reasoning structures, generates narrative prompts, and iteratively refines candidate prompts by incorporating the target model's intermediate reasoning steps. We evaluate AutoRAN against state-of-the-art LRMs including GPT-o3/o4-mini and Gemini-2.5-Flash across multiple benchmark datasets (AdvBench, HarmBench, and StrongReject). Results demonstrate that AutoRAN achieves remarkable success rates (approaching 100%) within one or a few turns across different LRMs, even when judged by a robustly aligned external model. This work reveals that leveraging weak reasoning models can effectively exploit the critical vulnerabilities of much more capable reasoning models, highlighting the need for improved safety measures specifically designed for reasoning-based models. The code for replicating AutoRAN and running records are available at: (https://github.com/JACKPURCELL/AutoRAN-public). (warning: this paper contains potentially harmful content generated by LRMs.)

Authors:Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, Dongbin Zhao
Title: Learning When to Think: Shaping Adaptive Reasoning in R1-Style Models via Multi-Stage RL
Abstract:
Large reasoning models (LRMs) are proficient at generating explicit, step-by-step reasoning sequences before producing final answers. However, such detailed reasoning can introduce substantial computational overhead and latency, particularly for simple problems. To address this over-thinking problem, we explore how to equip LRMs with adaptive thinking capabilities: enabling them to dynamically decide whether or not to engage in explicit reasoning based on problem complexity. Building on R1-style distilled models, we observe that inserting a simple ellipsis ("...") into the prompt can stochastically trigger either a thinking or no-thinking mode, revealing a latent controllability in the reasoning behavior. Leveraging this property, we propose AutoThink, a multi-stage reinforcement learning (RL) framework that progressively optimizes reasoning policies via stage-wise reward shaping. AutoThink learns to invoke explicit reasoning only when necessary, while defaulting to succinct responses for simpler tasks. Experiments on five mainstream mathematical benchmarks demonstrate that AutoThink achieves favorable accuracy-efficiency trade-offs compared to recent prompting and RL-based pruning methods. It can be seamlessly integrated into any R1-style model, including both distilled and further fine-tuned variants. Notably, AutoThink improves relative accuracy by 6.4 percent while reducing token usage by 52 percent on DeepSeek-R1-Distill-Qwen-1.5B, establishing a scalable and adaptive reasoning paradigm for LRMs. Project Page: https://github.com/ScienceOne-AI/AutoThink.

Authors:Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, Dongbin Zhao
Title: Learning When to Think: Shaping Adaptive Reasoning in R1-Style Models via Multi-Stage RL
Abstract:
Large reasoning models (LRMs) are proficient at generating explicit, step-by-step reasoning sequences before producing final answers. However, such detailed reasoning can introduce substantial computational overhead and latency, particularly for simple problems. To address this over-thinking problem, we explore how to equip LRMs with adaptive thinking capabilities: enabling them to dynamically decide whether or not to engage in explicit reasoning based on problem complexity. Building on R1-style distilled models, we observe that inserting a simple ellipsis ("...") into the prompt can stochastically trigger either a thinking or no-thinking mode, revealing a latent controllability in the reasoning behavior. Leveraging this property, we propose AutoThink, a multi-stage reinforcement learning (RL) framework that progressively optimizes reasoning policies via stage-wise reward shaping. AutoThink learns to invoke explicit reasoning only when necessary, while defaulting to succinct responses for simpler tasks. Experiments on five mainstream mathematical benchmarks demonstrate that AutoThink achieves favorable accuracy-efficiency trade-offs compared to recent prompting and RL-based pruning methods. It can be seamlessly integrated into any R1-style model, including both distilled and further fine-tuned variants. Notably, AutoThink improves relative accuracy by 6.4 percent while reducing token usage by 52 percent on DeepSeek-R1-Distill-Qwen-1.5B, establishing a scalable and adaptive reasoning paradigm for LRMs. Project Page: https://github.com/ScienceOne-AI/AutoThink.

Authors:Kaifa Yang, Qi Yang, Zhu Li, Yiling Xu
Title: Textured mesh Quality Assessment using Geometry and Color Field Similarity
Abstract:
Textured mesh quality assessment (TMQA) is critical for various 3D mesh applications. However, existing TMQA methods often struggle to provide accurate and robust evaluations. Motivated by the effectiveness of fields in representing both 3D geometry and color information, we propose a novel point-based TMQA method called field mesh quality metric (FMQM). FMQM utilizes signed distance fields and a newly proposed color field named nearest surface point color field to realize effective mesh feature description. Four features related to visual perception are extracted from the geometry and color fields: geometry similarity, geometry gradient similarity, space color distribution similarity, and space color gradient similarity. Experimental results on three benchmark datasets demonstrate that FMQM outperforms state-of-the-art (SOTA) TMQA metrics. Furthermore, FMQM exhibits low computational complexity, making it a practical and efficient solution for real-world applications in 3D graphics and visualization. Our code is publicly available at: https://github.com/yyyykf/FMQM.

Authors:Ian Holmes, Min Chi
Title: Attention-Based Reward Shaping for Sparse and Delayed Rewards
Abstract:
Sparse and delayed reward functions pose a significant obstacle for real-world Reinforcement Learning (RL) applications. In this work, we propose Attention-based REward Shaping (ARES), a general and robust algorithm which uses a transformer's attention mechanism to generate shaped rewards and create a dense reward function for any environment. ARES requires a set of episodes and their final returns as input. It can be trained entirely offline and is able to generate meaningful shaped rewards even when using small datasets or episodes produced by agents taking random actions. ARES is compatible with any RL algorithm and can handle any level of reward sparsity. In our experiments, we focus on the most challenging case where rewards are fully delayed until the end of each episode. We evaluate ARES across a diverse range of environments, widely used RL algorithms, and baseline methods to assess the effectiveness of the shaped rewards it produces. Our results show that ARES can significantly improve learning in delayed reward settings, enabling RL agents to train in scenarios that would otherwise require impractical amounts of data or even be unlearnable. To our knowledge, ARES is the first approach that works fully offline, remains robust to extreme reward delays and low-quality data, and is not limited to goal-based tasks.

Authors:Weiqin Wang, Yile Wang, Hui Huang
Title: Ranked Voting based Self-Consistency of Large Language Models
Abstract:
Majority voting is considered an effective method to enhance chain-of-thought reasoning, as it selects the answer with the highest "self-consistency" among different reasoning paths (Wang et al., 2023). However, previous chain-of-thought reasoning methods typically generate only a single answer in each trial, thereby ignoring the possibility of other potential answers. As a result, these alternative answers are often overlooked in subsequent voting processes. In this work, we propose to generate ranked answers in each reasoning process and conduct ranked voting among multiple ranked answers from different responses, thereby making the overall self-consistency more reliable. Specifically, we use three ranked voting methods: Instant-runoff voting, Borda count voting, and mean reciprocal rank voting. We validate our methods on six datasets, including three multiple-choice and three open-ended question-answering tasks, using both advanced open-source and closed-source large language models. Extensive experimental results indicate that our proposed method outperforms the baselines, showcasing the potential of leveraging the information of ranked answers and using ranked voting to improve reasoning performance. The code is available at https://github.com/szu-tera/RankedVotingSC.

Authors:Manyu Li, Ruian He, Zixian Zhang, Weimin Tan, Bo Yan
Title: Unifying Segment Anything in Microscopy with Multimodal Large Language Model
Abstract:
Accurate segmentation of regions of interest in biomedical images holds substantial value in image analysis. Although several foundation models for biomedical segmentation have currently achieved excellent performance on certain datasets, they typically demonstrate sub-optimal performance on unseen domain data. We owe the deficiency to lack of vision-language knowledge before segmentation. Multimodal Large Language Models (MLLMs) bring outstanding understanding and reasoning capabilities to multimodal tasks, which inspires us to leverage MLLMs to inject Vision-Language Knowledge (VLK), thereby enabling vision models to demonstrate superior generalization capabilities on cross-domain datasets. In this paper, we propose using MLLMs to guide SAM in learning microscopy crose-domain data, unifying Segment Anything in Microscopy, named uLLSAM. Specifically, we propose the Vision-Language Semantic Alignment (VLSA) module, which injects VLK into Segment Anything Model (SAM). We find that after SAM receives global VLK prompts, its performance improves significantly, but there are deficiencies in boundary contour perception. Therefore, we further propose Semantic Boundary Regularization (SBR) to prompt SAM. Our method achieves performance improvements of 7.71% in Dice and 12.10% in SA across 9 in-domain microscopy datasets, achieving state-of-the-art performance. Our method also demonstrates improvements of 6.79% in Dice and 10.08% in SA across 10 out-ofdomain datasets, exhibiting strong generalization capabilities. Code is available at https://github.com/ieellee/uLLSAM.

Authors:NingFeng Que, Xiaofei Wang, Jingjing Chen, Yixuan Jiang, Chao Li
Title: Adaptive Spatial Transcriptomics Interpolation via Cross-modal Cross-slice Modeling
Abstract:
Spatial transcriptomics (ST) is a promising technique that characterizes the spatial gene profiling patterns within the tissue context. Comprehensive ST analysis depends on consecutive slices for 3D spatial insights, whereas the missing intermediate tissue sections and high costs limit the practical feasibility of generating multi-slice ST. In this paper, we propose C2-STi, the first attempt for interpolating missing ST slices at arbitrary intermediate positions between adjacent ST slices. Despite intuitive, effective ST interpolation presents significant challenges, including 1) limited continuity across heterogeneous tissue sections, 2) complex intrinsic correlation across genes, and 3) intricate cellular structures and biological semantics within each tissue section. To mitigate these challenges, in C2-STi, we design 1) a distance-aware local structural modulation module to adaptively capture cross-slice deformations and enhance positional correlations between ST slices, 2) a pyramid gene co-expression correlation module to capture multi-scale biological associations among genes, and 3) a cross-modal alignment module that integrates the ST-paired hematoxylin and eosin (H&E)-stained images to filter and align the essential cellular features across ST and H\&E images. Extensive experiments on the public dataset demonstrate our superiority over state-of-the-art approaches on both single-slice and multi-slice ST interpolation. Codes are available at https://github.com/XiaofeiWang2018/C2-STi.

Authors:Sayed Mehedi Azim, Brian Corbett, Iman Dehzangi
Title: ROIsGAN: A Region Guided Generative Adversarial Framework for Murine Hippocampal Subregion Segmentation
Abstract:
The hippocampus, a critical brain structure involved in memory processing and various neurodegenerative and psychiatric disorders, comprises three key subregions: the dentate gyrus (DG), Cornu Ammonis 1 (CA1), and Cornu Ammonis 3 (CA3). Accurate segmentation of these subregions from histological tissue images is essential for advancing our understanding of disease mechanisms, developmental dynamics, and therapeutic interventions. However, no existing methods address the automated segmentation of hippocampal subregions from tissue images, particularly from immunohistochemistry (IHC) images. To bridge this gap, we introduce a novel set of four comprehensive murine hippocampal IHC datasets featuring distinct staining modalities: cFos, NeuN, and multiplexed stains combining cFos, NeuN, and either ΔFosB or GAD67, capturing structural, neuronal activity, and plasticity associated information. Additionally, we propose ROIsGAN, a region-guided U-Net-based generative adversarial network tailored for hippocampal subregion segmentation. By leveraging adversarial learning, ROIsGAN enhances boundary delineation and structural detail refinement through a novel region-guided discriminator loss combining Dice and binary cross-entropy loss. Evaluated across DG, CA1, and CA3 subregions, ROIsGAN consistently outperforms conventional segmentation models, achieving performance gains ranging from 1-10% in Dice score and up to 11% in Intersection over Union (IoU), particularly under challenging staining conditions. Our work establishes foundational datasets and methods for automated hippocampal segmentation, enabling scalable, high-precision analysis of tissue images in neuroscience research. Our generated datasets, proposed model as a standalone tool, and its corresponding source code are publicly available at: https://github.com/MehediAzim/ROIsGAN

Authors:Jianyang Xie, Yitian Zhao, Yanda Meng, He Zhao, Anh Nguyen, Yalin Zheng
Title: Are Spatial-Temporal Graph Convolution Networks for Human Action Recognition Over-Parameterized?
Abstract:
Spatial-temporal graph convolutional networks (ST-GCNs) showcase impressive performance in skeleton-based human action recognition (HAR). However, despite the development of numerous models, their recognition performance does not differ significantly after aligning the input settings. With this observation, we hypothesize that ST-GCNs are over-parameterized for HAR, a conjecture subsequently confirmed through experiments employing the lottery ticket hypothesis. Additionally, a novel sparse ST-GCNs generator is proposed, which trains a sparse architecture from a randomly initialized dense network while maintaining comparable performance levels to the dense components. Moreover, we generate multi-level sparsity ST-GCNs by integrating sparse structures at various sparsity levels and demonstrate that the assembled model yields a significant enhancement in HAR performance. Thorough experiments on four datasets, including NTU-RGB+D 60(120), Kinetics-400, and FineGYM, demonstrate that the proposed sparse ST-GCNs can achieve comparable performance to their dense components. Even with 95% fewer parameters, the sparse ST-GCNs exhibit a degradation of <1% in top-1 accuracy. Meanwhile, the multi-level sparsity ST-GCNs, which require only 66% of the parameters of the dense ST-GCNs, demonstrate an improvement of >1% in top-1 accuracy. The code is available at https://github.com/davelailai/Sparse-ST-GCN.

Authors:Patara Trirat, Jae-Gil Lee
Title: MONAQ: Multi-Objective Neural Architecture Querying for Time-Series Analysis on Resource-Constrained Devices
Abstract:
The growing use of smartphones and IoT devices necessitates efficient time-series analysis on resource-constrained hardware, which is critical for sensing applications such as human activity recognition and air quality prediction. Recent efforts in hardware-aware neural architecture search (NAS) automate architecture discovery for specific platforms; however, none focus on general time-series analysis with edge deployment. Leveraging the problem-solving and reasoning capabilities of large language models (LLM), we propose MONAQ, a novel framework that reformulates NAS into Multi-Objective Neural Architecture Querying tasks. MONAQ is equipped with multimodal query generation for processing multimodal time-series inputs and hardware constraints, alongside an LLM agent-based multi-objective search to achieve deployment-ready models via code generation. By integrating numerical data, time-series images, and textual descriptions, MONAQ improves an LLM's understanding of time-series data. Experiments on fifteen datasets demonstrate that MONAQ-discovered models outperform both handcrafted models and NAS baselines while being more efficient.

Authors:Xingye Cui, Junhai Luo, Jiakun Deng, Kexuan Li, Xiangyu Qiu, Zhenming Peng
Title: ARFC-WAHNet: Adaptive Receptive Field Convolution and Wavelet-Attentive Hierarchical Network for Infrared Small Target Detection
Abstract:
Infrared small target detection (ISTD) is critical in both civilian and military applications. However, the limited texture and structural information in infrared images makes accurate detection particularly challenging. Although recent deep learning-based methods have improved performance, their use of conventional convolution kernels limits adaptability to complex scenes and diverse targets. Moreover, pooling operations often cause feature loss and insufficient exploitation of image information. To address these issues, we propose an adaptive receptive field convolution and wavelet-attentive hierarchical network for infrared small target detection (ARFC-WAHNet). This network incorporates a multi-receptive field feature interaction convolution (MRFFIConv) module to adaptively extract discriminative features by integrating multiple convolutional branches with a gated unit. A wavelet frequency enhancement downsampling (WFED) module leverages Haar wavelet transform and frequency-domain reconstruction to enhance target features and suppress background noise. Additionally, we introduce a high-low feature fusion (HLFF) module for integrating low-level details with high-level semantics, and a global median enhancement attention (GMEA) module to improve feature diversity and expressiveness via global attention. Experiments on public datasets SIRST, NUDT-SIRST, and IRSTD-1k demonstrate that ARFC-WAHNet outperforms recent state-of-the-art methods in both detection accuracy and robustness, particularly under complex backgrounds. The code is available at https://github.com/Leaf2001/ARFC-WAHNet.

Authors:Qifan Fu, Xu Chen, Muhammad Asad, Shanxin Yuan, Changjae Oh, Gregory Slabaugh
Title: Robust Photo-Realistic Hand Gesture Generation: from Single View to Multiple View
Abstract:
High-fidelity hand gesture generation represents a significant challenge in human-centric generation tasks. Existing methods typically employ a single-view mesh-rendered image prior to enhancing gesture generation quality. However, the spatial complexity of hand gestures and the inherent limitations of single-view rendering make it difficult to capture complete gesture information, particularly when fingers are occluded. The fundamental contradiction lies in the loss of 3D topological relationships through 2D projection and the incomplete spatial coverage inherent to single-view representations. Diverging from single-view prior approaches, we propose a multi-view prior framework, named Multi-Modal UNet-based Feature Encoder (MUFEN), to guide diffusion models in learning comprehensive 3D hand information. Specifically, we extend conventional front-view rendering to include rear, left, right, top, and bottom perspectives, selecting the most information-rich view combination as training priors to address occlusion. This multi-view prior with a dedicated dual stream encoder significantly improves the model's understanding of complete hand features. Furthermore, we design a bounding box feature fusion module, which can fuse the gesture localization features and multi-modal features to enhance the location-awareness of the MUFEN features to the gesture-related features. Experiments demonstrate that our method achieves state-of-the-art performance in both quantitative metrics and qualitative evaluations. The source code is available at https://github.com/fuqifan/MUFEN.

Authors:Jen-tse Huang, Kaiser Sun, Wenxuan Wang, Mark Dredze
Title: Language Models Do Not Have Human-Like Working Memory
Abstract:
While Large Language Models (LLMs) exhibit remarkable reasoning abilities, we demonstrate that they lack a fundamental aspect of human cognition: working memory. Human working memory is an active cognitive system that enables not only the temporary storage of information but also its processing and utilization, enabling coherent reasoning and decision-making. Without working memory, individuals may produce unrealistic responses, exhibit self-contradictions, and struggle with tasks that require mental reasoning. Existing evaluations using N-back or context-dependent tasks fall short as they allow LLMs to exploit external context rather than retaining the reasoning process in the latent space. We introduce three novel tasks: (1) Number Guessing, (2) Yes-No Deduction, and (3) Math Magic, designed to isolate internal representation from external context. Across seventeen frontier models spanning four major model families, we consistently observe irrational or contradictory behaviors, indicating LLMs' inability to retain and manipulate latent information. Our work establishes a new benchmark for evaluating working memory in LLMs and highlights this limitation as a key bottleneck for advancing reliable reasoning systems. Code and prompts for the experiments are available at https://github.com/penguinnnnn/LLM-Working-Memory.

Authors:Zeying Zhu, Jonathan Chamberlain, Kenny Wu, David Starobinski, Zaoxing Liu
Title: Approximation-First Timeseries Monitoring Query At Scale
Abstract:
Timeseries monitoring systems such as Prometheus play a crucial role in gaining observability of the underlying system components. These systems collect timeseries metrics from various system components and perform monitoring queries over periodic window-based aggregations (i.e., rule queries). However, despite wide adoption, the operational costs and query latency of rule queries remain high. In this paper, we identify major bottlenecks associated with repeated data scans and query computations concerning window overlaps in rule queries, and present PromSketch, an approximation-first query framework as intermediate caches for monitoring systems. It enables low operational costs and query latency, by combining approximate window-based query frameworks and sketch-based precomputation. PromSketch is implemented as a standalone module that can be integrated into Prometheus and VictoriaMetrics, covering 70% of Prometheus' aggregation over time queries. Our evaluation shows that PromSketch achieves up to a two orders of magnitude reduction in query latency over Prometheus and VictoriaMetrics, while lowering operational dollar costs of query processing by two orders of magnitude compared to Prometheus and by at least 4x compared to VictoriaMetrics with at most 5% average errors across statistics. The source code has been made available at https://github.com/Froot-NetSys/promsketch.

Authors:Ke Wang, Junting Pan, Linda Wei, Aojun Zhou, Weikang Shi, Zimu Lu, Han Xiao, Yunqiao Yang, Houxing Ren, Mingjie Zhan, Hongsheng Li
Title: MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning
Abstract:
Natural language image-caption datasets, widely used for training Large Multimodal Models, mainly focus on natural scenarios and overlook the intricate details of mathematical figures that are critical for problem-solving, hindering the advancement of current LMMs in multimodal mathematical reasoning. To this end, we propose leveraging code as supervision for cross-modal alignment, since code inherently encodes all information needed to generate corresponding figures, establishing a precise connection between the two modalities. Specifically, we co-develop our image-to-code model and dataset with model-in-the-loop approach, resulting in an image-to-code model, FigCodifier and ImgCode-8.6M dataset, the largest image-code dataset to date. Furthermore, we utilize FigCodifier to synthesize novel mathematical figures and then construct MM-MathInstruct-3M, a high-quality multimodal math instruction fine-tuning dataset. Finally, we present MathCoder-VL, trained with ImgCode-8.6M for cross-modal alignment and subsequently fine-tuned on MM-MathInstruct-3M for multimodal math problem solving. Our model achieves a new open-source SOTA across all six metrics. Notably, it surpasses GPT-4o and Claude 3.5 Sonnet in the geometry problem-solving subset of MathVista, achieving improvements of 8.9% and 9.2%. The dataset and models will be released at https://github.com/mathllm/MathCoder.

Authors:Zhiyuan Hu, Yibo Wang, Hanze Dong, Yuhui Xu, Amrita Saha, Caiming Xiong, Bryan Hooi, Junnan Li
Title: Beyond 'Aha!': Toward Systematic Meta-Abilities Alignment in Large Reasoning Models
Abstract:
Large reasoning models (LRMs) already possess a latent capacity for long chain-of-thought reasoning. Prior work has shown that outcome-based reinforcement learning (RL) can incidentally elicit advanced reasoning behaviors such as self-correction, backtracking, and verification phenomena often referred to as the model's "aha moment". However, the timing and consistency of these emergent behaviors remain unpredictable and uncontrollable, limiting the scalability and reliability of LRMs' reasoning capabilities. To address these limitations, we move beyond reliance on prompts and coincidental "aha moments". Instead, we explicitly align models with three meta-abilities: deduction, induction, and abduction, using automatically generated, self-verifiable tasks. Our three stage-pipeline individual alignment, parameter-space merging, and domain-specific reinforcement learning, boosting performance by over 10\% relative to instruction-tuned baselines. Furthermore, domain-specific RL from the aligned checkpoint yields an additional gain in performance ceiling for both 7B and 32B models across math, coding, and science benchmarks, demonstrating that explicit meta-ability alignment offers a scalable and dependable foundation for reasoning. Code is available at: https://github.com/zhiyuanhubj/Meta-Ability-Alignment

Authors:Anastasios Gerontopoulos, Spyros Gidaris, Nikos Komodakis
Title: Multi-Token Prediction Needs Registers
Abstract:
Multi-token prediction has emerged as a promising objective for improving language model pretraining, but its benefits have not consistently generalized to other settings such as fine-tuning. In this paper, we propose MuToR, a simple and effective approach to multi-token prediction that interleaves learnable register tokens into the input sequence, each tasked with predicting future targets. Compared to existing methods, MuToR offers several key advantages: it introduces only a negligible number of additional parameters, requires no architectural changes--ensuring compatibility with off-the-shelf pretrained language models--and remains aligned with the next-token pretraining objective, making it especially well-suited for supervised fine-tuning. Moreover, it naturally supports scalable prediction horizons. We demonstrate the effectiveness and versatility of MuToR across a range of use cases, including supervised fine-tuning, parameter-efficient fine-tuning (PEFT), and pretraining, on challenging generative tasks in both language and vision domains. Our code will be available at: https://github.com/nasosger/MuToR.

Authors:Jiaming Liang, Lihuan Dai, Xiaoqi Sheng, Xiangguang Chen, Chun Yao, Guihua Tao, Qibin Leng, Hongmin Cai, Xi Zhong
Title: HWA-UNETR: Hierarchical Window Aggregate UNETR for 3D Multimodal Gastric Lesion Segmentation
Abstract:
Multimodal medical image segmentation faces significant challenges in the context of gastric cancer lesion analysis. This clinical context is defined by the scarcity of independent multimodal datasets and the imperative to amalgamate inherently misaligned modalities. As a result, algorithms are constrained to train on approximate data and depend on application migration, leading to substantial resource expenditure and a potential decline in analysis accuracy. To address those challenges, we have made two major contributions: First, we publicly disseminate the GCM 2025 dataset, which serves as the first large-scale, open-source collection of gastric cancer multimodal MRI scans, featuring professionally annotated FS-T2W, CE-T1W, and ADC images from 500 patients. Second, we introduce HWA-UNETR, a novel 3D segmentation framework that employs an original HWA block with learnable window aggregation layers to establish dynamic feature correspondences between different modalities' anatomical structures, and leverages the innovative tri-orientated fusion mamba mechanism for context modeling and capturing long-range spatial dependencies. Extensive experiments on our GCM 2025 dataset and the publicly BraTS 2021 dataset validate the performance of our framework, demonstrating that the new approach surpasses existing methods by up to 1.68\% in the Dice score while maintaining solid robustness. The dataset and code are public via https://github.com/JeMing-creater/HWA-UNETR.

Authors:Dechen Gao, Hang Wang, Hanchu Zhou, Nejib Ammar, Shatadal Mishra, Ahmadreza Moradipari, Iman Soltani, Junshan Zhang
Title: IN-RIL: Interleaved Reinforcement and Imitation Learning for Policy Fine-Tuning
Abstract:
Imitation learning (IL) and reinforcement learning (RL) each offer distinct advantages for robotics policy learning: IL provides stable learning from demonstrations, and RL promotes generalization through exploration. While existing robot learning approaches using IL-based pre-training followed by RL-based fine-tuning are promising, this two-step learning paradigm often suffers from instability and poor sample efficiency during the RL fine-tuning phase. In this work, we introduce IN-RIL, INterleaved Reinforcement learning and Imitation Learning, for policy fine-tuning, which periodically injects IL updates after multiple RL updates and hence can benefit from the stability of IL and the guidance of expert data for more efficient exploration throughout the entire fine-tuning process. Since IL and RL involve different optimization objectives, we develop gradient separation mechanisms to prevent destructive interference during \ABBR fine-tuning, by separating possibly conflicting gradient updates in orthogonal subspaces. Furthermore, we conduct rigorous analysis, and our findings shed light on why interleaving IL with RL stabilizes learning and improves sample-efficiency. Extensive experiments on 14 robot manipulation and locomotion tasks across 3 benchmarks, including FurnitureBench, OpenAI Gym, and Robomimic, demonstrate that \ABBR can significantly improve sample efficiency and mitigate performance collapse during online finetuning in both long- and short-horizon tasks with either sparse or dense rewards. IN-RIL, as a general plug-in compatible with various state-of-the-art RL algorithms, can significantly improve RL fine-tuning, e.g., from 12\% to 88\% with 6.3x improvement in the success rate on Robomimic Transport. Project page: https://github.com/ucd-dare/IN-RIL.

Authors:Andrei Arhire, Radu Timofte
Title: Learned Lightweight Smartphone ISP with Unpaired Data
Abstract:
The Image Signal Processor (ISP) is a fundamental component in modern smartphone cameras responsible for conversion of RAW sensor image data to RGB images with a strong focus on perceptual quality. Recent work highlights the potential of deep learning approaches and their ability to capture details with a quality increasingly close to that of professional cameras. A difficult and costly step when developing a learned ISP is the acquisition of pixel-wise aligned paired data that maps the raw captured by a smartphone camera sensor to high-quality reference images. In this work, we address this challenge by proposing a novel training method for a learnable ISP that eliminates the need for direct correspondences between raw images and ground-truth data with matching content. Our unpaired approach employs a multi-term loss function guided by adversarial training with multiple discriminators processing feature maps from pre-trained networks to maintain content structure while learning color and texture characteristics from the target RGB dataset. Using lightweight neural network architectures suitable for mobile devices as backbones, we evaluated our method on the Zurich RAW to RGB and Fujifilm UltraISP datasets. Compared to paired training methods, our unpaired learning strategy shows strong potential and achieves high fidelity across multiple evaluation metrics. The code and pre-trained models are available at https://github.com/AndreiiArhire/Learned-Lightweight-Smartphone-ISP-with-Unpaired-Data .

Authors:Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yongkang Wu, Zhonghua Li, Qi Ye, Zhicheng Dou
Title: Hierarchical Document Refinement for Long-context Retrieval-augmented Generation
Abstract:
Real-world RAG applications often encounter long-context input scenarios, where redundant information and noise results in higher inference costs and reduced performance. To address these challenges, we propose LongRefiner, an efficient plug-and-play refiner that leverages the inherent structural characteristics of long documents. LongRefiner employs dual-level query analysis, hierarchical document structuring, and adaptive refinement through multi-task learning on a single foundation model. Experiments on seven QA datasets demonstrate that LongRefiner achieves competitive performance in various scenarios while using 10x fewer computational costs and latency compared to the best baseline. Further analysis validates that LongRefiner is scalable, efficient, and effective, providing practical insights for real-world long-text RAG applications. Our code is available at https://github.com/ignorejjj/LongRefiner.

Authors:Wenhao Ding, Choon Hwai Yap, Kangjun Ji, Simão Castro
Title: Two-Stage Generative Model for Intracranial Aneurysm Meshes with Morphological Marker Conditioning
Abstract:
A generative model for the mesh geometry of intracranial aneurysms (IA) is crucial for training networks to predict blood flow forces in real time, which is a key factor affecting disease progression. This need is necessitated by the absence of a large IA image datasets. Existing shape generation methods struggle to capture realistic IA features and ignore the relationship between IA pouches and parent vessels, limiting physiological realism and their generation cannot be controlled to have specific morphological measurements. We propose AneuG, a two-stage Variational Autoencoder (VAE)-based IA mesh generator. In the first stage, AneuG generates low-dimensional Graph Harmonic Deformation (GHD) tokens to encode and reconstruct aneurysm pouch shapes, constrained to morphing energy statistics truths. GHD enables more accurate shape encoding than alternatives. In the second stage, AneuG generates parent vessels conditioned on GHD tokens, by generating vascular centreline and propagating the cross-section. AneuG's IA shape generation can further be conditioned to have specific clinically relevant morphological measurements. This is useful for studies to understand shape variations represented by clinical measurements, and for flow simulation studies to understand effects of specific clinical shape parameters on fluid dynamics. Source code and implementation details are available at https://github.com/anonymousaneug/AneuG.

Authors:Kaivalya Rawal, Zihao Fu, Eoin Delaney, Chris Russell
Title: Evaluating Model Explanations without Ground Truth
Abstract:
There can be many competing and contradictory explanations for a single model prediction, making it difficult to select which one to use. Current explanation evaluation frameworks measure quality by comparing against ideal "ground-truth" explanations, or by verifying model sensitivity to important inputs. We outline the limitations of these approaches, and propose three desirable principles to ground the future development of explanation evaluation strategies for local feature importance explanations. We propose a ground-truth Agnostic eXplanation Evaluation framework (AXE) for evaluating and comparing model explanations that satisfies these principles. Unlike prior approaches, AXE does not require access to ideal ground-truth explanations for comparison, or rely on model sensitivity - providing an independent measure of explanation quality. We verify AXE by comparing with baselines, and show how it can be used to detect explanation fairwashing. Our code is available at https://github.com/KaiRawal/Evaluating-Model-Explanations-without-Ground-Truth.

Authors:Rui Melo, Claudia Mamede, Andre Catarino, Rui Abreu, Henrique Lopes Cardoso
Title: Are Sparse Autoencoders Useful for Java Function Bug Detection?
Abstract:
Software vulnerabilities such as buffer overflows and SQL injections are a major source of security breaches. Traditional methods for vulnerability detection remain essential but are limited by high false positive rates, scalability issues, and reliance on manual effort. These constraints have driven interest in AI-based approaches to automated vulnerability detection and secure code generation. While Large Language Models (LLMs) have opened new avenues for classification tasks, their complexity and opacity pose challenges for interpretability and deployment. Sparse Autoencoder offer a promising solution to this problem. We explore whether SAEs can serve as a lightweight, interpretable alternative for bug detection in Java functions. We evaluate the effectiveness of SAEs when applied to representations from GPT-2 Small and Gemma 2B, examining their capacity to highlight buggy behaviour without fine-tuning the underlying LLMs. We found that SAE-derived features enable bug detection with an F1 score of up to 89%, consistently outperforming fine-tuned transformer encoder baselines. Our work provides the first empirical evidence that SAEs can be used to detect software bugs directly from the internal representations of pretrained LLMs, without any fine-tuning or task-specific supervision. Code available at https://github.com/rufimelo99/SAE-Java-Bug-Detection

Authors:Yile Wang, Zhanyu Shen, Hui Huang
Title: LDIR: Low-Dimensional Dense and Interpretable Text Embeddings with Relative Representations
Abstract:
Semantic text representation is a fundamental task in the field of natural language processing. Existing text embedding (e.g., SimCSE and LLM2Vec) have demonstrated excellent performance, but the values of each dimension are difficult to trace and interpret. Bag-of-words, as classic sparse interpretable embeddings, suffers from poor performance. Recently, Benara et al. (2024) propose interpretable text embeddings using large language models, which forms "0/1" embeddings based on responses to a series of questions. These interpretable text embeddings are typically high-dimensional (larger than 10,000). In this work, we propose Low-dimensional (lower than 500) Dense and Interpretable text embeddings with Relative representations (LDIR). The numerical values of its dimensions indicate semantic relatedness to different anchor texts through farthest point sampling, offering both semantic representation as well as a certain level of traceability and interpretability. We validate LDIR on multiple semantic textual similarity, retrieval, and clustering tasks. Extensive experimental results show that LDIR performs close to the black-box baseline models and outperforms the interpretable embeddings baselines with much fewer dimensions. Code is available at https://github.com/szu-tera/LDIR.

Authors:Shihao Zou, Qingfeng Li, Wei Ji, Jingjing Li, Yongkui Yang, Guoqi Li, Chao Dong
Title: SpikeVideoFormer: An Efficient Spike-Driven Video Transformer with Hamming Attention and $\mathcal{O}(T)$ Complexity
Abstract:
Spiking Neural Networks (SNNs) have shown competitive performance to Artificial Neural Networks (ANNs) in various vision tasks, while offering superior energy efficiency. However, existing SNN-based Transformers primarily focus on single-image tasks, emphasizing spatial features while not effectively leveraging SNNs' efficiency in video-based vision tasks. In this paper, we introduce SpikeVideoFormer, an efficient spike-driven video Transformer, featuring linear temporal complexity $\mathcal{O}(T)$. Specifically, we design a spike-driven Hamming attention (SDHA) which provides a theoretically guided adaptation from traditional real-valued attention to spike-driven attention. Building on SDHA, we further analyze various spike-driven space-time attention designs and identify an optimal scheme that delivers appealing performance for video tasks, while maintaining only linear temporal complexity. The generalization ability and efficiency of our model are demonstrated across diverse downstream video tasks, including classification, human pose tracking, and semantic segmentation. Empirical results show our method achieves state-of-the-art (SOTA) performance compared to existing SNN approaches, with over 15\% improvement on the latter two tasks. Additionally, it matches the performance of recent ANN-based methods while offering significant efficiency gains, achieving $\times 16$, $\times 10$ and $\times 5$ improvements on the three tasks. https://github.com/JimmyZou/SpikeVideoFormer

Authors:Jie Zhu, Jirong Zha, Ding Li, Leye Wang
Title: A Unified and Scalable Membership Inference Method for Visual Self-supervised Encoder via Part-aware Capability
Abstract:
Self-supervised learning shows promise in harnessing extensive unlabeled data, but it also confronts significant privacy concerns, especially in vision. In this paper, we perform membership inference on visual self-supervised models in a more realistic setting: self-supervised training method and details are unknown for an adversary when attacking as he usually faces a black-box system in practice. In this setting, considering that self-supervised model could be trained by completely different self-supervised paradigms, e.g., masked image modeling and contrastive learning, with complex training details, we propose a unified membership inference method called PartCrop. It is motivated by the shared part-aware capability among models and stronger part response on the training data. Specifically, PartCrop crops parts of objects in an image to query responses within the image in representation space. We conduct extensive attacks on self-supervised models with different training protocols and structures using three widely used image datasets. The results verify the effectiveness and generalization of PartCrop. Moreover, to defend against PartCrop, we evaluate two common approaches, i.e., early stop and differential privacy, and propose a tailored method called shrinking crop scale range. The defense experiments indicate that all of them are effective. Finally, besides prototype testing on toy visual encoders and small-scale image datasets, we quantitatively study the impacts of scaling from both data and model aspects in a realistic scenario and propose a scalable PartCrop-v2 by introducing two structural improvements to PartCrop. Our code is at https://github.com/JiePKU/PartCrop.

Authors:Cunhang Fan, Xiaoke Yang, Hongyu Zhang, Ying Chen, Lu Li, Jian Zhou, Zhao Lv
Title: ListenNet: A Lightweight Spatio-Temporal Enhancement Nested Network for Auditory Attention Detection
Abstract:
Auditory attention detection (AAD) aims to identify the direction of the attended speaker in multi-speaker environments from brain signals, such as Electroencephalography (EEG) signals. However, existing EEG-based AAD methods overlook the spatio-temporal dependencies of EEG signals, limiting their decoding and generalization abilities. To address these issues, this paper proposes a Lightweight Spatio-Temporal Enhancement Nested Network (ListenNet) for AAD. The ListenNet has three key components: Spatio-temporal Dependency Encoder (STDE), Multi-scale Temporal Enhancement (MSTE), and Cross-Nested Attention (CNA). The STDE reconstructs dependencies between consecutive time windows across channels, improving the robustness of dynamic pattern extraction. The MSTE captures temporal features at multiple scales to represent both fine-grained and long-range temporal patterns. In addition, the CNA integrates hierarchical features more effectively through novel dynamic attention mechanisms to capture deep spatio-temporal correlations. Experimental results on three public datasets demonstrate the superiority of ListenNet over state-of-the-art methods in both subject-dependent and challenging subject-independent settings, while reducing the trainable parameter count by approximately 7 times. Code is available at:https://github.com/fchest/ListenNet.

Authors:Gabriel S. Gama, Valdir Grassi
Title: Uniform Loss vs. Specialized Optimization: A Comparative Analysis in Multi-Task Learning
Abstract:
Specialized Multi-Task Optimizers (SMTOs) balance task learning in Multi-Task Learning by addressing issues like conflicting gradients and differing gradient norms, which hinder equal-weighted task training. However, recent critiques suggest that equally weighted tasks can achieve competitive results compared to SMTOs, arguing that previous SMTO results were influenced by poor hyperparameter optimization and lack of regularization. In this work, we evaluate these claims through an extensive empirical evaluation of SMTOs, including some of the latest methods, on more complex multi-task problems to clarify this behavior. Our findings indicate that SMTOs perform well compared to uniform loss and that fixed weights can achieve competitive performance compared to SMTOs. Furthermore, we demonstrate why uniform loss perform similarly to SMTOs in some instances. The source code is available at https://github.com/Gabriel-SGama/UnitScal_vs_SMTOs.

Authors:Alan Jeffares, Liyuan Liu
Title: An Introduction to Discrete Variational Autoencoders
Abstract:
Variational Autoencoders (VAEs) are well-established as a principled approach to probabilistic unsupervised learning with neural networks. Typically, an encoder network defines the parameters of a Gaussian distributed latent space from which we can sample and pass realizations to a decoder network. This model is trained to reconstruct its inputs and is optimized through the evidence lower bound. In recent years, discrete latent spaces have grown in popularity, suggesting that they may be a natural choice for many data modalities (e.g. text). In this tutorial, we provide a rigorous, yet practical, introduction to discrete variational autoencoders -- specifically, VAEs in which the latent space is made up of latent variables that follow a categorical distribution. We assume only a basic mathematical background with which we carefully derive each step from first principles. From there, we develop a concrete training recipe and provide an example implementation, hosted at https://github.com/alanjeffares/discreteVAE.

Authors:Julius Henke
Title: AutoPentest: Enhancing Vulnerability Management With Autonomous LLM Agents
Abstract:
A recent area of increasing research is the use of Large Language Models (LLMs) in penetration testing, which promises to reduce costs and thus allow for higher frequency. We conduct a review of related work, identifying best practices and common evaluation issues. We then present AutoPentest, an application for performing black-box penetration tests with a high degree of autonomy. AutoPentest is based on the LLM GPT-4o from OpenAI and the LLM agent framework LangChain. It can perform complex multi-step tasks, augmented by external tools and knowledge bases. We conduct a study on three capture-the-flag style Hack The Box (HTB) machines, comparing our implementation AutoPentest with the baseline approach of manually using the ChatGPT-4o user interface. Both approaches are able to complete 15-25 % of the subtasks on the HTB machines, with AutoPentest slightly outperforming ChatGPT. We measure a total cost of \$96.20 US when using AutoPentest across all experiments, while a one-month subscription to ChatGPT Plus costs \$20. The results show that further implementation efforts and the use of more powerful LLMs released in the future are likely to make this a viable part of vulnerability management.

Authors:Tuan Dung Nguyen, Duncan J. Watts, Mark E. Whiting
Title: Empirically evaluating commonsense intelligence in large language models with large-scale human judgments
Abstract:
Commonsense intelligence in machines is often assessed by static benchmarks that compare a model's output against human-prescribed correct labels. An important, albeit implicit, assumption of these labels is that they accurately capture what any human would think, effectively treating human common sense as homogeneous. However, recent empirical work has shown that humans vary enormously in what they consider commonsensical; thus what appears self-evident to one benchmark designer may not be so to another. Here, we propose a method for evaluating common sense in artificial intelligence (AI), specifically in large language models (LLMs), that incorporates empirically observed heterogeneity among humans by measuring the correspondence between a model's judgment and that of a human population. We first find that, when treated as independent survey respondents, most LLMs remain below the human median in their individual commonsense competence. Second, when used as simulators of a hypothetical population, LLMs correlate with real humans only modestly in the extent to which they agree on the same set of statements. In both cases, smaller, open-weight models are surprisingly more competitive than larger, proprietary frontier models. Our evaluation framework, which ties commonsense intelligence to its cultural basis, contributes to the growing call for adapting AI models to human collectivities that possess different, often incompatible, social stocks of knowledge.

Authors:Yue Wang, Shuai Xu, Xuelin Zhu, Yicong Li
Title: MSCI: Addressing CLIP's Inherent Limitations for Compositional Zero-Shot Learning
Abstract:
Compositional Zero-Shot Learning (CZSL) aims to recognize unseen state-object combinations by leveraging known combinations. Existing studies basically rely on the cross-modal alignment capabilities of CLIP but tend to overlook its limitations in capturing fine-grained local features, which arise from its architectural and training paradigm. To address this issue, we propose a Multi-Stage Cross-modal Interaction (MSCI) model that effectively explores and utilizes intermediate-layer information from CLIP's visual encoder. Specifically, we design two self-adaptive aggregators to extract local information from low-level visual features and integrate global information from high-level visual features, respectively. These key information are progressively incorporated into textual representations through a stage-by-stage interaction mechanism, significantly enhancing the model's perception capability for fine-grained local visual information. Additionally, MSCI dynamically adjusts the attention weights between global and local visual information based on different combinations, as well as different elements within the same combination, allowing it to flexibly adapt to diverse scenarios. Experiments on three widely used datasets fully validate the effectiveness and superiority of the proposed model. Data and code are available at https://github.com/ltpwy/MSCI.

Authors:Mengqiu Xu, Kaixin Chen, Heng Guo, Yixiang Huang, Ming Wu, Zhenwei Shi, Chuang Zhang, Jun Guo
Title: MFogHub: Bridging Multi-Regional and Multi-Satellite Data for Global Marine Fog Detection and Forecasting
Abstract:
Deep learning approaches for marine fog detection and forecasting have outperformed traditional methods, demonstrating significant scientific and practical importance. However, the limited availability of open-source datasets remains a major challenge. Existing datasets, often focused on a single region or satellite, restrict the ability to evaluate model performance across diverse conditions and hinder the exploration of intrinsic marine fog characteristics. To address these limitations, we introduce \textbf{MFogHub}, the first multi-regional and multi-satellite dataset to integrate annotated marine fog observations from 15 coastal fog-prone regions and six geostationary satellites, comprising over 68,000 high-resolution samples. By encompassing diverse regions and satellite perspectives, MFogHub facilitates rigorous evaluation of both detection and forecasting methods under varying conditions. Extensive experiments with 16 baseline models demonstrate that MFogHub can reveal generalization fluctuations due to regional and satellite discrepancy, while also serving as a valuable resource for the development of targeted and scalable fog prediction techniques. Through MFogHub, we aim to advance both the practical monitoring and scientific understanding of marine fog dynamics on a global scale. The dataset and code are at \href{https://github.com/kaka0910/MFogHub}{https://github.com/kaka0910/MFogHub}.

Authors:Taian Guo, Haiyang Shen, JinSheng Huang, Zhengyang Mao, Junyu Luo, Binqi Chen, Zhuoru Chen, Luchen Liu, Bingyu Xia, Xuhui Liu, Yun Ma, Ming Zhang
Title: MASS: Muli-agent simulation scaling for portfolio construction
Abstract:
The application of LLM-based agents in financial investment has shown significant promise, yet existing approaches often require intermediate steps like predicting individual stock movements or rely on predefined, static workflows. These limitations restrict their adaptability and effectiveness in constructing optimal portfolios. In this paper, we introduce the Multi-Agent Scaling Simulation (MASS), a novel framework that leverages multi-agent simulation for direct, end-to-end portfolio construction. At its core, MASS employs a backward optimization process to dynamically learn the optimal distribution of heterogeneous agents, enabling the system to adapt to evolving market regimes. A key finding enabled by our framework is the exploration of the scaling effect for portfolio construction: we demonstrate that as the number of agents increases exponentially (up to 512), the aggregated decisions yield progressively higher excess returns. Extensive experiments on a challenging, self-collected dataset from the 2023 Chinese A-share market show that MASS consistently outperforms seven state-of-the-art baselines. Further backtesting, stability analyses and the experiment on data leakage concerns validate its enhanced profitability and robustness. We have open-sourced our code, dataset, and training snapshots at https://github.com/gta0804/MASS/ to foster further research.

Authors:Pavel Korotaev, Petr Surovtsev, Alexander Kapitanov, Karina Kvanchiani, Aleksandr Nagaev
Title: HandReader: Advanced Techniques for Efficient Fingerspelling Recognition
Abstract:
Fingerspelling is a significant component of Sign Language (SL), allowing the interpretation of proper names, characterized by fast hand movements during signing. Although previous works on fingerspelling recognition have focused on processing the temporal dimension of videos, there remains room for improving the accuracy of these approaches. This paper introduces HandReader, a group of three architectures designed to address the fingerspelling recognition task. HandReader$_{RGB}$ employs the novel Temporal Shift-Adaptive Module (TSAM) to process RGB features from videos of varying lengths while preserving important sequential information. HandReader$_{KP}$ is built on the proposed Temporal Pose Encoder (TPE) operated on keypoints as tensors. Such keypoints composition in a batch allows the encoder to pass them through 2D and 3D convolution layers, utilizing temporal and spatial information and accumulating keypoints coordinates. We also introduce HandReader_RGB+KP - architecture with a joint encoder to benefit from RGB and keypoint modalities. Each HandReader model possesses distinct advantages and achieves state-of-the-art results on the ChicagoFSWild and ChicagoFSWild+ datasets. Moreover, the models demonstrate high performance on the first open dataset for Russian fingerspelling, Znaki, presented in this paper. The Znaki dataset and HandReader pre-trained models are publicly available.

Authors:Xiangwen Zhuge, Xu Shen, Zeyu Wang, Fan Dang, Xuan Ding, Danyang Li, Yahui Han, Tianxiang Hao, Zheng Yang
Title: SpecOffload: Unlocking Latent GPU Capacity for LLM Inference on Resource-Constrained Devices
Abstract:
Efficient LLM inference on resource-constrained devices presents significant challenges in compute and memory utilization. Due to limited GPU memory, existing systems offload model weights to CPU memory, incurring substantial I/O overhead between the CPU and GPU. This leads to two major inefficiencies: (1) GPU cores are underutilized, often remaining idle while waiting for data to be loaded; and (2) GPU memory has low impact on performance, as reducing its capacity has minimal effect on overall throughput.In this paper, we propose SpecOffload, a high-throughput inference engine that embeds speculative decoding into offloading. Our key idea is to unlock latent GPU resources for storing and executing a draft model used for speculative decoding, thus accelerating inference at near-zero additional cost. To support this, we carefully orchestrate the interleaved execution of target and draft models in speculative decoding within the offloading pipeline, and propose a planner to manage tensor placement and select optimal parameters. Compared to the best baseline, SpecOffload improves GPU core utilization by 4.49x and boosts inference throughput by 2.54x. Our code is available at https://github.com/MobiSense/SpecOffload-public .

Authors:Wenhao Shen, Wanqi Yin, Xiaofeng Yang, Cheng Chen, Chaoyue Song, Zhongang Cai, Lei Yang, Hao Wang, Guosheng Lin
Title: ADHMR: Aligning Diffusion-based Human Mesh Recovery via Direct Preference Optimization
Abstract:
Human mesh recovery (HMR) from a single image is inherently ill-posed due to depth ambiguity and occlusions. Probabilistic methods have tried to solve this by generating numerous plausible 3D human mesh predictions, but they often exhibit misalignment with 2D image observations and weak robustness to in-the-wild images. To address these issues, we propose ADHMR, a framework that Aligns a Diffusion-based HMR model in a preference optimization manner. First, we train a human mesh prediction assessment model, HMR-Scorer, capable of evaluating predictions even for in-the-wild images without 3D annotations. We then use HMR-Scorer to create a preference dataset, where each input image has a pair of winner and loser mesh predictions. This dataset is used to finetune the base model using direct preference optimization. Moreover, HMR-Scorer also helps improve existing HMR models by data cleaning, even with fewer training samples. Extensive experiments show that ADHMR outperforms current state-of-the-art methods. Code is available at: https://github.com/shenwenhao01/ADHMR.

Authors:Yanbo Ding, Xirui Hu, Zhizhi Guo, Chi Zhang, Yali Wang
Title: MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation
Abstract:
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information for open-world animation. To tackle this problem, we propose MTVCrafter (Motion Tokenization Video Crafter), the first framework that directly models raw 3D motion sequences (i.e., 4D motion) for human image animation. Specifically, we introduce 4DMoT (4D motion tokenizer) to quantize 3D motion sequences into 4D motion tokens. Compared to 2D-rendered pose images, 4D motion tokens offer more robust spatio-temporal cues and avoid strict pixel-level alignment between pose image and character, enabling more flexible and disentangled control. Then, we introduce MV-DiT (Motion-aware Video DiT). By designing unique motion attention with 4D positional encodings, MV-DiT can effectively leverage motion tokens as 4D compact yet expressive context for human image animation in the complex 3D world. Hence, it marks a significant step forward in this field and opens a new direction for pose-guided human video generation. Experiments show that our MTVCrafter achieves state-of-the-art results with an FID-VID of 6.98, surpassing the second-best by 65%. Powered by robust motion tokens, MTVCrafter also generalizes well to diverse open-world characters (single/multiple, full/half-body) across various styles and scenarios. Our video demos and code are on: https://github.com/DINGYANB/MTVCrafter.

Authors:Haozhe Luo, Ziyu Zhou, Zixin Shu, Aurélie Pahud de Mortanges, Robert Berke, Mauricio Reyes
Title: On the Interplay of Human-AI Alignment,Fairness, and Performance Trade-offs in Medical Imaging
Abstract:
Deep neural networks excel in medical imaging but remain prone to biases, leading to fairness gaps across demographic groups. We provide the first systematic exploration of Human-AI alignment and fairness in this domain. Our results show that incorporating human insights consistently reduces fairness gaps and enhances out-of-domain generalization, though excessive alignment can introduce performance trade-offs, emphasizing the need for calibrated strategies. These findings highlight Human-AI alignment as a promising approach for developing fair, robust, and generalizable medical AI systems, striking a balance between expert guidance and automated efficiency. Our code is available at https://github.com/Roypic/Aligner.

Authors:Dario Di Palma, Felice Antonio Merra, Maurizio Sfilio, Vito Walter Anelli, Fedelucio Narducci, Tommaso Di Noia
Title: Do LLMs Memorize Recommendation Datasets? A Preliminary Study on MovieLens-1M
Abstract:
Large Language Models (LLMs) have become increasingly central to recommendation scenarios due to their remarkable natural language understanding and generation capabilities. Although significant research has explored the use of LLMs for various recommendation tasks, little effort has been dedicated to verifying whether they have memorized public recommendation dataset as part of their training data. This is undesirable because memorization reduces the generalizability of research findings, as benchmarking on memorized datasets does not guarantee generalization to unseen datasets. Furthermore, memorization can amplify biases, for example, some popular items may be recommended more frequently than others. In this work, we investigate whether LLMs have memorized public recommendation datasets. Specifically, we examine two model families (GPT and Llama) across multiple sizes, focusing on one of the most widely used dataset in recommender systems: MovieLens-1M. First, we define dataset memorization as the extent to which item attributes, user profiles, and user-item interactions can be retrieved by prompting the LLMs. Second, we analyze the impact of memorization on recommendation performance. Lastly, we examine whether memorization varies across model families and model sizes. Our results reveal that all models exhibit some degree of memorization of MovieLens-1M, and that recommendation performance is related to the extent of memorization. We have made all the code publicly available at: https://github.com/sisinflab/LLM-MemoryInspector

Authors:Xiang He, Dongcheng Zhao, Yang Li, Qingqun Kong, Xin Yang, Yi Zeng
Title: Incorporating brain-inspired mechanisms for multimodal learning in artificial intelligence
Abstract:
Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.

Authors:Saikat Barua, Mostafizur Rahman, Shehenaz Khaled, Md Jafor Sadek, Rafiul Islam, Shahnewaz Siddique
Title: QuXAI: Explainers for Hybrid Quantum Machine Learning Models
Abstract:
The emergence of hybrid quantum-classical machine learning (HQML) models opens new horizons of computational intelligence but their fundamental complexity frequently leads to black box behavior that undermines transparency and reliability in their application. Although XAI for quantum systems still in its infancy, a major research gap is evident in robust global and local explainability approaches that are designed for HQML architectures that employ quantized feature encoding followed by classical learning. The gap is the focus of this work, which introduces QuXAI, an framework based upon Q-MEDLEY, an explainer for explaining feature importance in these hybrid systems. Our model entails the creation of HQML models incorporating quantum feature maps, the use of Q-MEDLEY, which combines feature based inferences, preserving the quantum transformation stage and visualizing the resulting attributions. Our result shows that Q-MEDLEY delineates influential classical aspects in HQML models, as well as separates their noise, and competes well against established XAI techniques in classical validation settings. Ablation studies more significantly expose the virtues of the composite structure used in Q-MEDLEY. The implications of this work are critically important, as it provides a route to improve the interpretability and reliability of HQML models, thus promoting greater confidence and being able to engage in safer and more responsible use of quantum-enhanced AI technology. Our code and experiments are open-sourced at: https://github.com/GitsSaikat/QuXAI

Authors:Ziad Kheil, Lucas Robinet, Laurent Risser, Soleakhena Ken
Title: IMITATE: Image Registration with Context for unknown time frame recovery
Abstract:
In this paper, we formulate a novel image registration formalism dedicated to the estimation of unknown condition-related images, based on two or more known images and their associated conditions. We show how to practically model this formalism by using a new conditional U-Net architecture, which fully takes into account the conditional information and does not need any fixed image. Our formalism is then applied to image moving tumors for radiotherapy treatment at different breathing amplitude using 4D-CT (3D+t) scans in thoracoabdominal regions. This driving application is particularly complex as it requires to stitch a collection of sequential 2D slices into several 3D volumes at different organ positions. Movement interpolation with standard methods then generates well known reconstruction artefacts in the assembled volumes due to irregular patient breathing, hysteresis and poor correlation of breathing signal to internal motion. Results obtained on 4D-CT clinical data showcase artefact-free volumes achieved through real-time latencies. The code is publicly available at https://github.com/Kheil-Z/IMITATE .

Authors:Jeonghyun Woo, Joyce Qu, Gururaj Saileshwar, Prashant J. Nair
Title: When Mitigations Backfire: Timing Channel Attacks and Defense for PRAC-Based RowHammer Mitigations
Abstract:
Per Row Activation Counting (PRAC) has emerged as a robust framework for mitigating RowHammer (RH) vulnerabilities in modern DRAM systems. However, we uncover a critical vulnerability: a timing channel introduced by the Alert Back-Off (ABO) protocol and Refresh Management (RFM) commands. We present PRACLeak, a novel attack that exploits these timing differences to leak sensitive information, such as secret keys from vulnerable AES implementations, by monitoring memory access latencies. To counter this, we propose Timing-Safe PRAC (TPRAC), a defense that eliminates PRAC-induced timing channels without compromising RH mitigation efficacy. TPRAC uses Timing-Based RFMs, issued periodically and independent of memory activity. It requires only a single-entry in-DRAM mitigation queue per DRAM bank and is compatible with existing DRAM standards. Our evaluations demonstrate that TPRAC closes timing channels while incurring only 3.4% performance overhead at the RH threshold of 1024.

Authors:Ijazul Haq, Yingjie Zhang, Irfan Ali Khan
Title: PsOCR: Benchmarking Large Multimodal Models for Optical Character Recognition in Low-resource Pashto Language
Abstract:
This paper evaluates the performance of Large Multimodal Models (LMMs) on Optical Character Recognition (OCR) in the low-resource Pashto language. Natural Language Processing (NLP) in Pashto faces several challenges due to the cursive nature of its script and a scarcity of structured datasets. To address this, we developed a synthetic Pashto OCR dataset, PsOCR, consisting of one million images annotated with bounding boxes at word, line, and document levels, suitable for training and evaluating models based on different architectures, including Convolutional Neural Networks (CNNs) and Transformers. PsOCR covers variations across 1,000 unique font families, colors, image sizes, and layouts. A benchmark subset of 10K images was selected to evaluate the performance of several LMMs, including seven open-source models: DeepSeek's Janus, InternVL, MiniCPM, Florence, and Qwen (3B and 7B), and four closed-source models: GPT-4o, Gemini, Claude, and Grok. Experimental results demonstrate that Gemini achieves the best performance among all models, whereas among open-source models, Qwen-7B stands out. This work provides an insightful assessment of the capabilities and limitations of current LMMs for OCR tasks in Pashto and establishes a foundation for further research not only in Pashto OCR but also for other similar scripts such as Arabic, Persian, and Urdu. PsOCR is available at https://github.com/zirak-ai/PashtoOCR.

Authors:Jing-Cheng Pang, Kaiyuan Li, Yidi Wang, Si-Hang Yang, Shengyi Jiang, Yang Yu
Title: ImagineBench: Evaluating Reinforcement Learning with Large Language Model Rollouts
Abstract:
A central challenge in reinforcement learning (RL) is its dependence on extensive real-world interaction data to learn task-specific policies. While recent work demonstrates that large language models (LLMs) can mitigate this limitation by generating synthetic experience (noted as imaginary rollouts) for mastering novel tasks, progress in this emerging field is hindered due to the lack of a standard benchmark. To bridge this gap, we introduce ImagineBench, the first comprehensive benchmark for evaluating offline RL algorithms that leverage both real rollouts and LLM-imaginary rollouts. The key features of ImagineBench include: (1) datasets comprising environment-collected and LLM-imaginary rollouts; (2) diverse domains of environments covering locomotion, robotic manipulation, and navigation tasks; and (3) natural language task instructions with varying complexity levels to facilitate language-conditioned policy learning. Through systematic evaluation of state-of-the-art offline RL algorithms, we observe that simply applying existing offline RL algorithms leads to suboptimal performance on unseen tasks, achieving 35.44% success rate in hard tasks in contrast to 64.37% of method training on real rollouts for hard tasks. This result highlights the need for algorithm advancements to better leverage LLM-imaginary rollouts. Additionally, we identify key opportunities for future research: including better utilization of imaginary rollouts, fast online adaptation and continual learning, and extension to multi-modal tasks. Our code is publicly available at https://github.com/LAMDA-RL/ImagineBench.

Authors:Yuxing Xiang, Xue Li, Kun Qian, Wenyuan Yu, Ennan Zhai, Xin Jin
Title: ServeGen: Workload Characterization and Generation of Large Language Model Serving in Production
Abstract:
With the widespread adoption of Large Language Models (LLMs), serving LLM inference requests has become an increasingly important task, attracting active research advancements. Practical workloads play an essential role in this process: they are critical for motivating and benchmarking serving techniques and systems. However, the existing understanding of real-world LLM serving workloads is limited due to the lack of a comprehensive workload characterization. Prior analyses remain insufficient in scale and scope, thus failing to fully capture intricate workload characteristics. In this paper, we fill the gap with an in-depth characterization of LLM serving workloads collected from our worldwide cloud inference serving service, covering not only language models but also emerging multimodal and reasoning models, and unveiling important new findings in each case. Moreover, based on our findings, we propose ServeGen, a principled framework for generating realistic LLM serving workloads by composing them on a per-client basis. A practical use case in production validates that ServeGen avoids 50% under-provisioning compared to naive workload generation, demonstrating ServeGen's advantage in performance benchmarking. ServeGen is available at https://github.com/alibaba/ServeGen.

Authors:Jianpeng Qi, Chao Liu, Xiao Zhang, Lei Wang, Rui Wang, Junyu Dong, Yanwei Yu
Title: A Survey on Open-Source Edge Computing Simulators and Emulators: The Computing and Networking Convergence Perspective
Abstract:
Edge computing, with its low latency, dynamic scalability, and location awareness, along with the convergence of computing and communication paradigms, has been successfully applied in critical domains such as industrial IoT, smart healthcare, smart homes, and public safety. This paper provides a comprehensive survey of open-source edge computing simulators and emulators, presented in our GitHub repository (https://github.com/qijianpeng/awesome-edge-computing), emphasizing the convergence of computing and networking paradigms. By examining more than 40 tools, including CloudSim, NS-3, and others, we identify the strengths and limitations in simulating and emulating edge environments. This survey classifies these tools into three categories: packet-level, application-level, and emulators. Furthermore, we evaluate them across five dimensions, ranging from resource representation to resource utilization. The survey highlights the integration of different computing paradigms, packet processing capabilities, support for edge environments, user-defined metric interfaces, and scenario visualization. The findings aim to guide researchers in selecting appropriate tools for developing and validating advanced computing and networking technologies.

Authors:Yuan Gao, Shaobo Xia, Sheng Nie, Cheng Wang, Xiaohuan Xi, Bisheng Yang
Title: APCoTTA: Continual Test-Time Adaptation for Semantic Segmentation of Airborne LiDAR Point Clouds
Abstract:
Airborne laser scanning (ALS) point cloud segmentation is a fundamental task for large-scale 3D scene understanding. In real-world applications, models are typically fixed after training. However, domain shifts caused by changes in the environment, sensor types, or sensor degradation often lead to a decline in model performance. Continuous Test-Time Adaptation (CTTA) offers a solution by adapting a source-pretrained model to evolving, unlabeled target domains. Despite its potential, research on ALS point clouds remains limited, facing challenges such as the absence of standardized datasets and the risk of catastrophic forgetting and error accumulation during prolonged adaptation. To tackle these challenges, we propose APCoTTA, the first CTTA method tailored for ALS point cloud semantic segmentation. We propose a dynamic trainable layer selection module. This module utilizes gradient information to select low-confidence layers for training, and the remaining layers are kept frozen, mitigating catastrophic forgetting. To further reduce error accumulation, we propose an entropy-based consistency loss. By losing such samples based on entropy, we apply consistency loss only to the reliable samples, enhancing model stability. In addition, we propose a random parameter interpolation mechanism, which randomly blends parameters from the selected trainable layers with those of the source model. This approach helps balance target adaptation and source knowledge retention, further alleviating forgetting. Finally, we construct two benchmarks, ISPRSC and H3DC, to address the lack of CTTA benchmarks for ALS point cloud segmentation. Experimental results demonstrate that APCoTTA achieves the best performance on two benchmarks, with mIoU improvements of approximately 9% and 14% over direct inference. The new benchmarks and code are available at https://github.com/Gaoyuan2/APCoTTA.

Authors:Jiakun Deng, Kexuan Li, Xingye Cui, Jiaxuan Li, Chang Long, Tian Pu, Zhenming Peng
Title: CSPENet: Contour-Aware and Saliency Priors Embedding Network for Infrared Small Target Detection
Abstract:
Infrared small target detection (ISTD) plays a critical role in a wide range of civilian and military applications. Existing methods suffer from deficiencies in the localization of dim targets and the perception of contour information under dense clutter environments, severely limiting their detection performance. To tackle these issues, we propose a contour-aware and saliency priors embedding network (CSPENet) for ISTD. We first design a surround-convergent prior extraction module (SCPEM) that effectively captures the intrinsic characteristic of target contour pixel gradients converging toward their center. This module concurrently extracts two collaborative priors: a boosted saliency prior for accurate target localization and multi-scale structural priors for comprehensively enriching contour detail representation. Building upon this, we propose a dual-branch priors embedding architecture (DBPEA) that establishes differentiated feature fusion pathways, embedding these two priors at optimal network positions to achieve performance enhancement. Finally, we develop an attention-guided feature enhancement module (AGFEM) to refine feature representations and improve saliency estimation accuracy. Experimental results on public datasets NUDT-SIRST, IRSTD-1k, and NUAA-SIRST demonstrate that our CSPENet outperforms other state-of-the-art methods in detection performance. The code is available at https://github.com/IDIP2025/CSPENet.

Authors:Zhe Shan, Lei Zhou, Liu Mao, Shaofan Chen, Chuanqiu Ren, Xia Xie
Title: Non-Registration Change Detection: A Novel Change Detection Task and Benchmark Dataset
Abstract:
In this study, we propose a novel remote sensing change detection task, non-registration change detection, to address the increasing number of emergencies such as natural disasters, anthropogenic accidents, and military strikes. First, in light of the limited discourse on the issue of non-registration change detection, we systematically propose eight scenarios that could arise in the real world and potentially contribute to the occurrence of non-registration problems. Second, we develop distinct image transformation schemes tailored to various scenarios to convert the available registration change detection dataset into a non-registration version. Finally, we demonstrate that non-registration change detection can cause catastrophic damage to the state-of-the-art methods. Our code and dataset are available at https://github.com/ShanZard/NRCD.

Authors:Zixiao Zhu, Hanzhang Zhou, Zijian Feng, Tianjiao Li, Chua Jia Jim Deryl, Mak Lee Onn, Gee Wah Ng, Kezhi Mao
Title: Rethinking Prompt Optimizers: From Prompt Merits to Optimization
Abstract:
Prompt optimization (PO) provides a practical way to improve response quality when users lack the time or expertise to manually craft effective prompts. Existing methods typically rely on LLMs' self-generation ability to optimize prompts. However, due to limited downward compatibility, the instruction-heavy prompts generated by advanced LLMs can overwhelm lightweight inference models and degrade response quality, while also lacking interpretability due to implicit optimization. In this work, we rethink prompt optimization through the lens of explicit and interpretable design. We first identify a set of model-agnostic prompt quality merits and empirically validate their effectiveness in enhancing prompt and response quality. We then introduce MePO, a merit-guided, locally deployable prompt optimizer trained on our merit-guided prompt preference dataset generated by a lightweight LLM. MePO avoids online optimization, reduces privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models. Experiments demonstrate that MePO achieves better results across diverse tasks and model types, offering a scalable and robust solution for real-world deployment.The code, model and dataset can be found in https://github.com/MidiyaZhu/MePO

Authors:Bin-Bin Gao, Yue Zhou, Jiangtao Yan, Yuezhi Cai, Weixi Zhang, Meng Wang, Jun Liu, Yong Liu, Lei Wang, Chengjie Wang
Title: AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection
Abstract:
Universal visual anomaly detection aims to identify anomalies from novel or unseen vision domains without additional fine-tuning, which is critical in open scenarios. Recent studies have demonstrated that pre-trained vision-language models like CLIP exhibit strong generalization with just zero or a few normal images. However, existing methods struggle with designing prompt templates, complex token interactions, or requiring additional fine-tuning, resulting in limited flexibility. In this work, we present a simple yet effective method called AdaptCLIP based on two key insights. First, adaptive visual and textual representations should be learned alternately rather than jointly. Second, comparative learning between query and normal image prompt should incorporate both contextual and aligned residual features, rather than relying solely on residual features. AdaptCLIP treats CLIP models as a foundational service, adding only three simple adapters, visual adapter, textual adapter, and prompt-query adapter, at its input or output ends. AdaptCLIP supports zero-/few-shot generalization across domains and possesses a training-free manner on target domains once trained on a base dataset. AdaptCLIP achieves state-of-the-art performance on 12 anomaly detection benchmarks from industrial and medical domains, significantly outperforming existing competitive methods. We will make the code and model of AdaptCLIP available at https://github.com/gaobb/AdaptCLIP.

Authors:Yidan Wang, Yubing Ren, Yanan Cao, Binxing Fang
Title: From Trade-off to Synergy: A Versatile Symbiotic Watermarking Framework for Large Language Models
Abstract:
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms. Our code is available at https://github.com/redwyd/SymMark.

Authors:Yidan Wang, Yanan Cao, Yubing Ren, Fang Fang, Zheng Lin, Binxing Fang
Title: PIG: Privacy Jailbreak Attack on LLMs via Gradient-based Iterative In-Context Optimization
Abstract:
Large Language Models (LLMs) excel in various domains but pose inherent privacy risks. Existing methods to evaluate privacy leakage in LLMs often use memorized prefixes or simple instructions to extract data, both of which well-alignment models can easily block. Meanwhile, Jailbreak attacks bypass LLM safety mechanisms to generate harmful content, but their role in privacy scenarios remains underexplored. In this paper, we examine the effectiveness of jailbreak attacks in extracting sensitive information, bridging privacy leakage and jailbreak attacks in LLMs. Moreover, we propose PIG, a novel framework targeting Personally Identifiable Information (PII) and addressing the limitations of current jailbreak methods. Specifically, PIG identifies PII entities and their types in privacy queries, uses in-context learning to build a privacy context, and iteratively updates it with three gradient-based strategies to elicit target PII. We evaluate PIG and existing jailbreak methods using two privacy-related datasets. Experiments on four white-box and two black-box LLMs show that PIG outperforms baseline methods and achieves state-of-the-art (SoTA) results. The results underscore significant privacy risks in LLMs, emphasizing the need for stronger safeguards. Our code is availble at https://github.com/redwyd/PrivacyJailbreak.

Authors:Yanlong Yang, Jianan Liu, Guanxiong Luo, Hao Li, Euijoon Ahn, Mostafa Rahimi Azghadi, Tao Huang
Title: Unsupervised Radar Point Cloud Enhancement via Arbitrary LiDAR Guided Diffusion Prior
Abstract:
In industrial automation, radar is a critical sensor in machine perception. However, the angular resolution of radar is inherently limited by the Rayleigh criterion, which depends on both the radar's operating wavelength and the effective aperture of its antenna array.To overcome these hardware-imposed limitations, recent neural network-based methods have leveraged high-resolution LiDAR data, paired with radar measurements, during training to enhance radar point cloud resolution. While effective, these approaches require extensive paired datasets, which are costly to acquire and prone to calibration error. These challenges motivate the need for methods that can improve radar resolution without relying on paired high-resolution ground-truth data. Here, we introduce an unsupervised radar points enhancement algorithm that employs an arbitrary LiDAR-guided diffusion model as a prior without the need for paired training data. Specifically, our approach formulates radar angle estimation recovery as an inverse problem and incorporates prior knowledge through a diffusion model with arbitrary LiDAR domain knowledge. Experimental results demonstrate that our method attains high fidelity and low noise performance compared to traditional regularization techniques. Additionally, compared to paired training methods, it not only achieves comparable performance but also offers improved generalization capability. To our knowledge, this is the first approach that enhances radar points output by integrating prior knowledge via a diffusion model rather than relying on paired training data. Our code is available at https://github.com/yyxr75/RadarINV.

Authors:Spencer Lee, Daniel Appelo
Title: High-Order Hermite Optimization: Fast and Exact Gradient Computation in Open-Loop Quantum Optimal Control using a Discrete Adjoint Approach
Abstract:
This work introduces the High-Order Hermite Optimization (HOHO) method, an open-loop discrete adjoint method for quantum optimal control. Our method is the first of its kind to efficiently compute exact (discrete) gradients when using continuous, parameterized control pulses while solving the forward equations (e.g. Schrodinger's equation or the Linblad master equation) with an arbitrarily high-order Hermite Runge-Kutta method. The HOHO method is implemented in QuantumGateDesign$.$jl (https://github.com/leespen1/QuantumGateDesign.jl), an open-source software package for the Julia programming language, which we use to perform numerical experiments comparing the method to Juqbox$.$jl (https://github.com/LLNL/Juqbox.jl). For realistic model problems we observe speedups up to 775x.

Authors:Sajib Biswas, Mao Nishino, Samuel Jacob Chacko, Xiuwen Liu
Title: Adversarial Attack on Large Language Models using Exponentiated Gradient Descent
Abstract:
As Large Language Models (LLMs) are widely used, understanding them systematically is key to improving their safety and realizing their full potential. Although many models are aligned using techniques such as reinforcement learning from human feedback (RLHF), they are still vulnerable to jailbreaking attacks. Some of the existing adversarial attack methods search for discrete tokens that may jailbreak a target model while others try to optimize the continuous space represented by the tokens of the model's vocabulary. While techniques based on the discrete space may prove to be inefficient, optimization of continuous token embeddings requires projections to produce discrete tokens, which might render them ineffective. To fully utilize the constraints and the structures of the space, we develop an intrinsic optimization technique using exponentiated gradient descent with the Bregman projection method to ensure that the optimized one-hot encoding always stays within the probability simplex. We prove the convergence of the technique and implement an efficient algorithm that is effective in jailbreaking several widely used LLMs. We demonstrate the efficacy of the proposed technique using five open-source LLMs on four openly available datasets. The results show that the technique achieves a higher success rate with great efficiency compared to three other state-of-the-art jailbreaking techniques. The source code for our implementation is available at: https://github.com/sbamit/Exponentiated-Gradient-Descent-LLM-Attack

Authors:Hu Yue, Siyuan Huang, Yue Liao, Shengcong Chen, Pengfei Zhou, Liliang Chen, Maoqing Yao, Guanghui Ren
Title: EWMBench: Evaluating Scene, Motion, and Semantic Quality in Embodied World Models
Abstract:
Recent advances in creative AI have enabled the synthesis of high-fidelity images and videos conditioned on language instructions. Building on these developments, text-to-video diffusion models have evolved into embodied world models (EWMs) capable of generating physically plausible scenes from language commands, effectively bridging vision and action in embodied AI applications. This work addresses the critical challenge of evaluating EWMs beyond general perceptual metrics to ensure the generation of physically grounded and action-consistent behaviors. We propose the Embodied World Model Benchmark (EWMBench), a dedicated framework designed to evaluate EWMs based on three key aspects: visual scene consistency, motion correctness, and semantic alignment. Our approach leverages a meticulously curated dataset encompassing diverse scenes and motion patterns, alongside a comprehensive multi-dimensional evaluation toolkit, to assess and compare candidate models. The proposed benchmark not only identifies the limitations of existing video generation models in meeting the unique requirements of embodied tasks but also provides valuable insights to guide future advancements in the field. The dataset and evaluation tools are publicly available at https://github.com/AgibotTech/EWMBench.

Authors:Julian Büchel, Iason Chalas, Giovanni Acampa, An Chen, Omobayode Fagbohungbe, Sidney Tsai, Kaoutar El Maghraoui, Manuel Le Gallo, Abbas Rahimi, Abu Sebastian
Title: Analog Foundation Models
Abstract:
Analog in-memory computing (AIMC) is a promising compute paradigm to improve speed and power efficiency of neural network inference beyond the limits of conventional von Neumann-based architectures. However, AIMC introduces fundamental challenges such as noisy computations and strict constraints on input and output quantization. Because of these constraints and imprecisions, off-the-shelf LLMs are not able to achieve 4-bit-level performance when deployed on AIMC-based hardware. While researchers previously investigated recovering this accuracy gap on small, mostly vision-based models, a generic method applicable to LLMs pre-trained on trillions of tokens does not yet exist. In this work, we introduce a general and scalable method to robustly adapt LLMs for execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models $\unicode{x2013}$ including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct $\unicode{x2013}$ to retain performance comparable to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation models can be quantized for inference on low-precision digital hardware. Finally, we show that our models also benefit from test-time compute scaling, showing better scaling behavior than models trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation models. Code is available at https://github.com/IBM/analog-foundation-models.

Authors:Jinghao He, Zhengyan Sheng, Liping Chen, Kong Aik Lee, Zhen-Hua Ling
Title: Introducing voice timbre attribute detection
Abstract:
This paper focuses on explaining the timbre conveyed by speech signals and introduces a task termed voice timbre attribute detection (vTAD). In this task, voice timbre is explained with a set of sensory attributes describing its human perception. A pair of speech utterances is processed, and their intensity is compared in a designated timbre descriptor. Moreover, a framework is proposed, which is built upon the speaker embeddings extracted from the speech utterances. The investigation is conducted on the VCTK-RVA dataset. Experimental examinations on the ECAPA-TDNN and FACodec speaker encoders demonstrated that: 1) the ECAPA-TDNN speaker encoder was more capable in the seen scenario, where the testing speakers were included in the training set; 2) the FACodec speaker encoder was superior in the unseen scenario, where the testing speakers were not part of the training, indicating enhanced generalization capability. The VCTK-RVA dataset and open-source code are available on the website https://github.com/vTAD2025-Challenge/vTAD.

Authors:Long Chen, Xiaotian Song, Yanan Sun
Title: LAS: Loss-less ANN-SNN Conversion for Fully Spike-Driven Large Language Models
Abstract:
Spiking Large Language Models (LLMs) have emerged as an energy-efficient alternative to conventional LLMs through their event-driven computation. To effectively obtain spiking LLMs, researchers develop different ANN-to-SNN conversion methods by leveraging pre-trained ANN parameters while inheriting the energy efficiency of SNN. However, existing conversion methods struggle with extreme activation outliers and incompatible nonlinear operations of ANN-based LLMs. To address this, we propose a loss-less ANN-SNN conversion for fully spike-driven LLMs, termed LAS. Specifically, LAS introduces two novel neurons to convert the activation outlier and nonlinear operation of ANN-based LLMs. Moreover, LAS tailors the spike-equivalent Transformer components for spiking LLMs, which can ensure full spiking conversion without any loss of performance. Experimental results on six language models and two vision-language models demonstrate that LAS achieves loss-less conversion. Notably, on OPT-66B, LAS even improves the accuracy of 2\% on the WSC task. In addition, the parameter and ablation studies further verify the effectiveness of LAS. The source code is available at https://github.com/lc783/LAS

Authors:Xiwen Chen, Wenhui Zhu, Peijie Qiu, Xuanzhao Dong, Hao Wang, Haiyu Wu, Huayu Li, Aristeidis Sotiras, Yalin Wang, Abolfazl Razi
Title: DRA-GRPO: Exploring Diversity-Aware Reward Adjustment for R1-Zero-Like Training of Large Language Models
Abstract:
Recent advances in reinforcement learning for language model post-training, such as Group Relative Policy Optimization (GRPO), have shown promise in low-resource settings. However, GRPO typically relies on solution-level and scalar reward signals that fail to capture the semantic diversity among sampled completions. This leads to what we identify as a diversity-quality inconsistency, where distinct reasoning paths may receive indistinguishable rewards. To address this limitation, we propose $\textit{Diversity-aware Reward Adjustment}$ (DRA), a method that explicitly incorporates semantic diversity into the reward computation. DRA uses Submodular Mutual Information (SMI) to downweight redundant completions and amplify rewards for diverse ones. This encourages better exploration during learning, while maintaining stable exploitation of high-quality samples. Our method integrates seamlessly with both GRPO and its variant DR.~GRPO, resulting in $\textit{DRA-GRPO}$ and $\textit{DGA-DR.~GRPO}$. We evaluate our method on five mathematical reasoning benchmarks and find that it outperforms recent strong baselines. It achieves state-of-the-art performance with an average accuracy of 58.2%, using only 7,000 fine-tuning samples and a total training cost of approximately $55. The code is available at https://github.com/xiwenc1/DRA-GRPO.

Authors:Xixuan Hao, Yutian Jiang, Xingchen Zou, Jiabo Liu, Yifang Yin, Yuxuan Liang
Title: Unlocking Location Intelligence: A Survey from Deep Learning to The LLM Era
Abstract:
Location Intelligence (LI), the science of transforming location-centric geospatial data into actionable knowledge, has become a cornerstone of modern spatial decision-making. The rapid evolution of Geospatial Representation Learning is fundamentally reshaping LI development through two successive technological revolutions: the deep learning breakthrough and the emerging large language model (LLM) paradigm. While deep neural networks (DNNs) have demonstrated remarkable success in automated feature extraction from structured geospatial data (e.g., satellite imagery, GPS trajectories), the recent integration of LLMs introduces transformative capabilities for cross-modal geospatial reasoning and unstructured geo-textual data processing. This survey presents a comprehensive review of geospatial representation learning across both technological eras, organizing them into a structured taxonomy based on the complete pipeline comprising: (1) data perspective, (2) methodological perspective and (3) application perspective. We also highlight current advancements, discuss existing limitations, and propose potential future research directions in the LLM era. This work offers a thorough exploration of the field and providing a roadmap for further innovation in LI. The summary of the up-to-date paper list can be found in https://github.com/CityMind-Lab/Awesome-Location-Intelligence and will undergo continuous updates.

Authors:Nick Sunday
Title: Detecting Musical Deepfakes
Abstract:
The proliferation of Text-to-Music (TTM) platforms has democratized music creation, enabling users to effortlessly generate high-quality compositions. However, this innovation also presents new challenges to musicians and the broader music industry. This study investigates the detection of AI-generated songs using the FakeMusicCaps dataset by classifying audio as either deepfake or human. To simulate real-world adversarial conditions, tempo stretching and pitch shifting were applied to the dataset. Mel spectrograms were generated from the modified audio, then used to train and evaluate a convolutional neural network. In addition to presenting technical results, this work explores the ethical and societal implications of TTM platforms, arguing that carefully designed detection systems are essential to both protecting artists and unlocking the positive potential of generative AI in music.

Authors:Dhruv Ajmera
Title: An $\mathcal{O}(n)$ Space Construction of Superpermutations
Abstract:
A superpermutation is a sequence that contains every permutation of $n$ distinct symbols as a contiguous substring. For instance, a valid example for three symbols is a sequence that contains all six permutations. This paper introduces a new algorithm that constructs such sequences more efficiently than existing recursive and graph-theoretic methods. Unlike traditional techniques that suffer from scalability and factorial memory demands, the proposed approach builds superpermutations directly and compactly. This improves memory usage, enabling the construction of larger sequences previously considered impractical.

Authors:Linbo Liu, Xinle Liu, Qiang Zhou, Lin Chen, Yihan Liu, Hoan Nguyen, Behrooz Omidvar-Tehrani, Xi Shen, Jun Huan, Omer Tripp, Anoop Deoras
Title: MigrationBench: Repository-Level Code Migration Benchmark from Java 8
Abstract:
With the rapid advancement of powerful large language models (LLMs) in recent years, a wide range of software engineering tasks can now be addressed using LLMs, significantly enhancing productivity and scalability. Numerous benchmark datasets have been developed to evaluate the coding capabilities of these models, while they primarily focus on code generation and issue-resolution tasks. In contrast, we introduce a new coding benchmark MigrationBench with a distinct focus: code migration. MigrationBench aims to serve as a comprehensive benchmark for migration from Java $8$ to the latest long-term support (LTS) versions (Java $17$, $21$), including a full dataset and its subset selected with $5,102$ and $300$ repositories respectively. Selected is a representative subset curated for complexity and difficulty, offering a versatile resource to support research in the field of code migration. Additionally, we provide a comprehensive evaluation framework to facilitate rigorous and standardized assessment of LLMs on this challenging task. We further propose SD-Feedback and demonstrate that LLMs can effectively tackle repository-level code migration to Java $17$. For the selected subset with Claude-3.5-Sonnet-v2, SD-Feedback achieves $62.33\%$ and $27.33\%$ success rate (pass@1) for minimal and maximal migration respectively. The benchmark dataset and source code are available at: https://huggingface.co/collections/AmazonScience/migrationbench-68125452fc21a4564b92b6c3 and https://github.com/amazon-science/MigrationBench respectively.

Authors:Nicola Marinello, Simen Cassiman, Jonas Heylen, Marc Proesmans, Luc Van Gool
Title: Camera-Only 3D Panoptic Scene Completion for Autonomous Driving through Differentiable Object Shapes
Abstract:
Autonomous vehicles need a complete map of their surroundings to plan and act. This has sparked research into the tasks of 3D occupancy prediction, 3D scene completion, and 3D panoptic scene completion, which predict a dense map of the ego vehicle's surroundings as a voxel grid. Scene completion extends occupancy prediction by predicting occluded regions of the voxel grid, and panoptic scene completion further extends this task by also distinguishing object instances within the same class; both aspects are crucial for path planning and decision-making. However, 3D panoptic scene completion is currently underexplored. This work introduces a novel framework for 3D panoptic scene completion that extends existing 3D semantic scene completion models. We propose an Object Module and Panoptic Module that can easily be integrated with 3D occupancy and scene completion methods presented in the literature. Our approach leverages the available annotations in occupancy benchmarks, allowing individual object shapes to be learned as a differentiable problem. The code is available at https://github.com/nicolamarinello/OffsetOcc .

Authors:Shengpeng Ji, Tianle Liang, Yangzhuo Li, Jialong Zuo, Minghui Fang, Jinzheng He, Yifu Chen, Zhengqing Liu, Ziyue Jiang, Xize Cheng, Siqi Zheng, Jin Xu, Junyang Lin, Zhou Zhao
Title: WavReward: Spoken Dialogue Models With Generalist Reward Evaluators
Abstract:
End-to-end spoken dialogue models such as GPT-4o-audio have recently garnered significant attention in the speech domain. However, the evaluation of spoken dialogue models' conversational performance has largely been overlooked. This is primarily due to the intelligent chatbots convey a wealth of non-textual information which cannot be easily measured using text-based language models like ChatGPT. To address this gap, we propose WavReward, a reward feedback model based on audio language models that can evaluate both the IQ and EQ of spoken dialogue systems with speech input. Specifically, 1) based on audio language models, WavReward incorporates the deep reasoning process and the nonlinear reward mechanism for post-training. By utilizing multi-sample feedback via the reinforcement learning algorithm, we construct a specialized evaluator tailored to spoken dialogue models. 2) We introduce ChatReward-30K, a preference dataset used to train WavReward. ChatReward-30K includes both comprehension and generation aspects of spoken dialogue models. These scenarios span various tasks, such as text-based chats, nine acoustic attributes of instruction chats, and implicit chats. WavReward outperforms previous state-of-the-art evaluation models across multiple spoken dialogue scenarios, achieving a substantial improvement about Qwen2.5-Omni in objective accuracy from 53.4$\%$ to 91.5$\%$. In subjective A/B testing, WavReward also leads by a margin of 83$\%$. Comprehensive ablation studies confirm the necessity of each component of WavReward. All data and code will be publicly at https://github.com/jishengpeng/WavReward after the paper is accepted.

Authors:Jeffrey Wen, Rizwan Ahmad, Philip Schniter
Title: Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
Abstract:
In imaging inverse problems, we would like to know how close the recovered image is to the true image in terms of full-reference image quality (FRIQ) metrics like PSNR, SSIM, LPIPS, etc. This is especially important in safety-critical applications like medical imaging, where knowing that, say, the SSIM was poor could potentially avoid a costly misdiagnosis. But since we don't know the true image, computing FRIQ is non-trivial. In this work, we combine conformal prediction with approximate posterior sampling to construct bounds on FRIQ that are guaranteed to hold up to a user-specified error probability. We demonstrate our approach on image denoising and accelerated magnetic resonance imaging (MRI) problems. Code is available at https://github.com/jwen307/quality_uq.

Authors:Dongyi He, Shiyang Li, Bin Jiang, He Yan
Title: Spec2VolCAMU-Net: A Spectrogram-to-Volume Model for EEG-to-fMRI Reconstruction based on Multi-directional Time-Frequency Convolutional Attention Encoder and Vision-Mamba U-Net
Abstract:
High-resolution functional magnetic resonance imaging (fMRI) is essential for mapping human brain activity; however, it remains costly and logistically challenging. If comparable volumes could be generated directly from widely available scalp electroencephalography (EEG), advanced neuroimaging would become significantly more accessible. Existing EEG-to-fMRI generators rely on plain Convolutional Neural Networks (CNNs) that fail to capture cross-channel time-frequency cues or on heavy transformer/Generative Adversarial Network (GAN) decoders that strain memory and stability. To address these limitations, we propose Spec2VolCAMU-Net, a lightweight architecture featuring a Multi-directional Time-Frequency Convolutional Attention Encoder for rich feature extraction and a Vision-Mamba U-Net decoder that uses linear-time state-space blocks for efficient long-range spatial modelling. We frame the goal of this work as establishing a new state of the art in the spatial fidelity of single-volume reconstruction, a foundational prerequisite for the ultimate aim of generating temporally coherent fMRI time series. Trained end-to-end with a hybrid SSI-MSE loss, Spec2VolCAMU-Net achieves state-of-the-art fidelity on three public benchmarks, recording Structural Similarity Index (SSIM) of 0.693 on NODDI, 0.725 on Oddball and 0.788 on CN-EPFL, representing improvements of 14.5%, 14.9%, and 16.9% respectively over previous best SSIM scores. Furthermore, it achieves competitive Signal-to-Noise Ratio (PSNR) scores, particularly excelling on the CN-EPFL dataset with a 4.6% improvement over the previous best PSNR, thus striking a better balance in reconstruction quality. The proposed model is lightweight and efficient, making it suitable for real-time applications in clinical and research settings. The code is available at https://github.com/hdy6438/Spec2VolCAMU-Net.

Authors:Patrik Kenfack, Samira Ebrahimi Kahou, Ulrich Aïvodji
Title: Towards Fair In-Context Learning with Tabular Foundation Models
Abstract:
Transformer-based tabular foundation models have recently demonstrated promising in-context learning (ICL) performance on structured data, emerging as competitive alternatives to gradient-boosted trees. However, the fairness implications of this new paradigm remain largely unexplored. We present the first investigation of fairness in tabular ICL, evaluating three recently proposed foundation models -- TabPFNv2, TabICL, and TabDPT -- on multiple benchmark datasets. To mitigate biases, we explore three pre-processing fairness-enhancing methods: correlation removal (decorrelating input features from the sensitive attribute), group-balanced sample selection (ensuring equal representation of protected groups in context examples), and uncertainty-based sample selection (prioritizing context examples with high sensitive-attribute prediction uncertainty). Our experiments show that the uncertainty-based strategy consistently improves group fairness metrics (e.g., demographic parity, equalized odds, and equal opportunity) with minimal impact on predictive accuracy. We release our code to facilitate reproducibility (https://github.com/patrikken/Fair-TabICL)

Authors:Yuelin Zhang, Qingpeng Ding, Long Lei, Yongxuan Feng, Raymond Shing-Yan Tang, Shing Shin Cheng
Title: MrTrack: Register Mamba for Needle Tracking with Rapid Reciprocating Motion during Ultrasound-Guided Aspiration Biopsy
Abstract:
Ultrasound-guided fine needle aspiration (FNA) biopsy is a common minimally invasive diagnostic procedure. However, an aspiration needle tracker addressing rapid reciprocating motion is still missing. MrTrack, an aspiration needle tracker with a mamba-based register mechanism, is proposed. MrTrack leverages a Mamba-based register extractor to sequentially distill global context from each historical search map, storing these temporal cues in a register bank. The Mamba-based register retriever then retrieves temporal prompts from the register bank to provide external cues when current vision features are temporarily unusable due to rapid reciprocating motion and imaging degradation. A self-supervised register diversify loss is proposed to encourage feature diversity and dimension independence within the learned register, mitigating feature collapse. Comprehensive experiments conducted on both robotic and manual aspiration biopsy datasets demonstrate that MrTrack not only outperforms state-of-the-art trackers in accuracy and robustness but also achieves superior inference efficiency. Project page: https://github.com/PieceZhang/MrTrack

Authors:Han Sun, Yizhao Wang, Zhenning Zhou, Shuai Wang, Haibo Yang, Jingyuan Sun, Qixin Cao
Title: Exploring Pose-Guided Imitation Learning for Robotic Precise Insertion
Abstract:
Recent studies have proved that imitation learning shows strong potential in the field of robotic manipulation. However, existing methods still struggle with precision manipulation task and rely on inefficient image/point cloud observations. In this paper, we explore to introduce SE(3) object pose into imitation learning and propose the pose-guided efficient imitation learning methods for robotic precise insertion task. First, we propose a precise insertion diffusion policy which utilizes the relative SE(3) pose as the observation-action pair. The policy models the source object SE(3) pose trajectory relative to the target object. Second, we explore to introduce the RGBD data to the pose-guided diffusion policy. Specifically, we design a goal-conditioned RGBD encoder to capture the discrepancy between the current state and the goal state. In addition, a pose-guided residual gated fusion method is proposed, which takes pose features as the backbone, and the RGBD features selectively compensate for pose feature deficiencies through an adaptive gating mechanism. Our methods are evaluated on 6 robotic precise insertion tasks, demonstrating competitive performance with only 7-10 demonstrations. Experiments demonstrate that the proposed methods can successfully complete precision insertion tasks with a clearance of about 0.01 mm. Experimental results highlight its superior efficiency and generalization capability compared to existing baselines. Code will be available at https://github.com/sunhan1997/PoseInsert.

Authors:Ma Changfeng, Bi Ran, Guo Jie, Wang Chongjun, Guo Yanwen
Title: Sparse Point Cloud Patches Rendering via Splitting 2D Gaussians
Abstract:
Current learning-based methods predict NeRF or 3D Gaussians from point clouds to achieve photo-realistic rendering but still depend on categorical priors, dense point clouds, or additional refinements. Hence, we introduce a novel point cloud rendering method by predicting 2D Gaussians from point clouds. Our method incorporates two identical modules with an entire-patch architecture enabling the network to be generalized to multiple datasets. The module normalizes and initializes the Gaussians utilizing the point cloud information including normals, colors and distances. Then, splitting decoders are employed to refine the initial Gaussians by duplicating them and predicting more accurate results, making our methodology effectively accommodate sparse point clouds as well. Once trained, our approach exhibits direct generalization to point clouds across different categories. The predicted Gaussians are employed directly for rendering without additional refinement on the rendered images, retaining the benefits of 2D Gaussians. We conduct extensive experiments on various datasets, and the results demonstrate the superiority and generalization of our method, which achieves SOTA performance. The code is available at https://github.com/murcherful/GauPCRender}{https://github.com/murcherful/GauPCRender.

Authors:Akash Kundu, Stefano Mangini
Title: TensorRL-QAS: Reinforcement learning with tensor networks for improved quantum architecture search
Abstract:
Variational quantum algorithms hold the promise to address meaningful quantum problems already on noisy intermediate-scale quantum hardware. In spite of the promise, they face the challenge of designing quantum circuits that both solve the target problem and comply with device limitations. Quantum architecture search (QAS) automates the design process of quantum circuits, with reinforcement learning (RL) emerging as a promising approach. Yet, RL-based QAS methods encounter significant scalability issues, as computational and training costs grow rapidly with the number of qubits, circuit depth, and hardware noise. To address these challenges, we introduce $\textit{TensorRL-QAS}$, an improved framework that combines tensor network methods with RL for QAS. By warm-starting the QAS with a matrix product state approximation of the target solution, TensorRL-QAS effectively narrows the search space to physically meaningful circuits and accelerates the convergence to the desired solution. Tested on several quantum chemistry problems of up to 12-qubit, TensorRL-QAS achieves up to a 10-fold reduction in CNOT count and circuit depth compared to baseline methods, while maintaining or surpassing chemical accuracy. It reduces classical optimizer function evaluation by up to 100-fold, accelerates training episodes by up to 98$\%$, and can achieve 50$\%$ success probability for 10-qubit systems, far exceeding the $<$1$\%$ rates of baseline. Robustness and versatility are demonstrated both in the noiseless and noisy scenarios, where we report a simulation of an 8-qubit system. Furthermore, TensorRL-QAS demonstrates effectiveness on systems on 20-qubit quantum systems, positioning it as a state-of-the-art quantum circuit discovery framework for near-term hardware and beyond.

Authors:Srinivas Ravuri, Yuan Xu, Martin Ludwig Zehetner, Ketan Motlag, Sahin Albayrak
Title: APR-Transformer: Initial Pose Estimation for Localization in Complex Environments through Absolute Pose Regression
Abstract:
Precise initialization plays a critical role in the performance of localization algorithms, especially in the context of robotics, autonomous driving, and computer vision. Poor localization accuracy is often a consequence of inaccurate initial poses, particularly noticeable in GNSS-denied environments where GPS signals are primarily relied upon for initialization. Recent advances in leveraging deep neural networks for pose regression have led to significant improvements in both accuracy and robustness, especially in estimating complex spatial relationships and orientations. In this paper, we introduce APR-Transformer, a model architecture inspired by state-of-the-art methods, which predicts absolute pose (3D position and 3D orientation) using either image or LiDAR data. We demonstrate that our proposed method achieves state-of-the-art performance on established benchmark datasets such as the Radar Oxford Robot-Car and DeepLoc datasets. Furthermore, we extend our experiments to include our custom complex APR-BeIntelli dataset. Additionally, we validate the reliability of our approach in GNSS-denied environments by deploying the model in real-time on an autonomous test vehicle. This showcases the practical feasibility and effectiveness of our approach. The source code is available at:https://github.com/GT-ARC/APR-Transformer.

Authors:Pengli Zhu, Yingji Fu, Nanguang Chen, Anqi Qiu
Title: Q-space Guided Collaborative Attention Translation Network for Flexible Diffusion-Weighted Images Synthesis
Abstract:
This study, we propose a novel Q-space Guided Collaborative Attention Translation Networks (Q-CATN) for multi-shell, high-angular resolution DWI (MS-HARDI) synthesis from flexible q-space sampling, leveraging the commonly acquired structural MRI data. Q-CATN employs a collaborative attention mechanism to effectively extract complementary information from multiple modalities and dynamically adjust its internal representations based on flexible q-space information, eliminating the need for fixed sampling schemes. Additionally, we introduce a range of task-specific constraints to preserve anatomical fidelity in DWI, enabling Q-CATN to accurately learn the intrinsic relationships between directional DWI signal distributions and q-space. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that Q-CATN outperforms existing methods, including 1D-qDL, 2D-qDL, MESC-SD, and QGAN, in estimating parameter maps and fiber tracts both quantitatively and qualitatively, while preserving fine-grained details. Notably, its ability to accommodate flexible q-space sampling highlights its potential as a promising toolkit for clinical and research applications. Our code is available at https://github.com/Idea89560041/Q-CATN.

Authors:Chaoran Zhang, Chenhao Zhang, Zhaobo Xu, Qinghongbing Xie, Jinliang Hou, Pingfa Feng, Long Zeng
Title: Embodied intelligent industrial robotics: Concepts and techniques
Abstract:
In order to work more efficiently, accurately, reliably, and safely in industrial scenarios, robots should have at least general knowledge, working-environment knowledge, and operating-object knowledge. These pose significant challenges to existing embodied intelligent robotics (EIR) techniques. Thus, this paper first briefly reviews the history of industrial robotics and analyzes the limitations of mainstream EIR frameworks. Then, a knowledge-driven technical framework of embodied intelligent industrial robotics (EIIR) is proposed for various industrial environments. It has five modules: a world model, a high-level task planner, a low-level skill controller, a simulator, and a physical system. The development of techniques related to each module are also thoroughly reviewed, and recent progress regarding their adaption to industrial applications are discussed. A case study is given to demonstrate the newly proposed EIIR framework's applicability to real-world assembly system. Finally, the key challenges that EIIR encounters in industrial scenarios are summarized and future research directions are suggested. The authors believe that EIIR technology is shaping the next generation of industrial robotics and EIIR-based industrial systems supply a new technological paradigm for intelligent manufacturing. It is expected that this review could serve as a valuable reference for scholars and engineers that are interested in industrial embodied intelligence. Together, scholars can use this research to drive their rapid advancement and application of EIIR techniques. The interested authors would continue to track and contribute new studies in the project page https://github.com/jackyzengl/EIIR.

Authors:Fan Xu, Wuyang Chen, Wei Gao
Title: On the Learning with Augmented Class via Forests
Abstract:
Decision trees and forests have achieved successes in various real applications, most working with all testing classes known in training data. In this work, we focus on learning with augmented class via forests, where an augmented class may appear in testing data yet not in training data. We incorporate information of augmented class into trees' splitting, that is, augmented Gini impurity, a new splitting criterion is introduced to exploit some unlabeled data from testing distribution. We then develop the Learning with Augmented Class via Forests (short for LACForest) approach, which constructs shallow forests according to the augmented Gini impurity and then splits forests with pseudo-labeled augmented instances for better performance. We also develop deep neural forests via an optimization objective based on our augmented Gini impurity, which essentially utilizes the representation power of neural networks for forests. Theoretically, we present the convergence analysis for our augmented Gini impurity, and we finally conduct experiments to evaluate our approaches. The code is available at https://github.com/nju-xuf/LACForest.

Authors:Fares Bougourzi, Abdenour Hadid
Title: Recent Advances in Medical Imaging Segmentation: A Survey
Abstract:
Medical imaging is a cornerstone of modern healthcare, driving advancements in diagnosis, treatment planning, and patient care. Among its various tasks, segmentation remains one of the most challenging problem due to factors such as data accessibility, annotation complexity, structural variability, variation in medical imaging modalities, and privacy constraints. Despite recent progress, achieving robust generalization and domain adaptation remains a significant hurdle, particularly given the resource-intensive nature of some proposed models and their reliance on domain expertise. This survey explores cutting-edge advancements in medical image segmentation, focusing on methodologies such as Generative AI, Few-Shot Learning, Foundation Models, and Universal Models. These approaches offer promising solutions to longstanding challenges. We provide a comprehensive overview of the theoretical foundations, state-of-the-art techniques, and recent applications of these methods. Finally, we discuss inherent limitations, unresolved issues, and future research directions aimed at enhancing the practicality and accessibility of segmentation models in medical imaging. We are maintaining a \href{https://github.com/faresbougourzi/Awesome-DL-for-Medical-Imaging-Segmentation}{GitHub Repository} to continue tracking and updating innovations in this field.

Authors:Bin-Bin Gao
Title: MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
Abstract:
Zero- and few-shot visual anomaly segmentation relies on powerful vision-language models that detect unseen anomalies using manually designed textual prompts. However, visual representations are inherently independent of language. In this paper, we explore the potential of a pure visual foundation model as an alternative to widely used vision-language models for universal visual anomaly segmentation. We present a novel paradigm that unifies anomaly segmentation into change segmentation. This paradigm enables us to leverage large-scale synthetic image pairs, featuring object-level and local region changes, derived from existing image datasets, which are independent of target anomaly datasets. We propose a one-prompt Meta-learning framework for Universal Anomaly Segmentation (MetaUAS) that is trained on this synthetic dataset and then generalizes well to segment any novel or unseen visual anomalies in the real world. To handle geometrical variations between prompt and query images, we propose a soft feature alignment module that bridges paired-image change perception and single-image semantic segmentation. This is the first work to achieve universal anomaly segmentation using a pure vision model without relying on special anomaly detection datasets and pre-trained visual-language models. Our method effectively and efficiently segments any anomalies with only one normal image prompt and enjoys training-free without guidance from language. Our MetaUAS significantly outperforms previous zero-shot, few-shot, and even full-shot anomaly segmentation methods. The code and pre-trained models are available at https://github.com/gaobb/MetaUAS.

Authors:Bin-Bin Gao
Title: Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
Abstract:
Unsupervised reconstruction networks using self-attention transformers have achieved state-of-the-art performance for multi-class (unified) anomaly detection with a single model. However, these self-attention reconstruction models primarily operate on target features, which may result in perfect reconstruction for both normal and anomaly features due to high consistency with context, leading to failure in detecting anomalies. Additionally, these models often produce inaccurate anomaly segmentation due to performing reconstruction in a low spatial resolution latent space. To enable reconstruction models enjoying high efficiency while enhancing their generalization for unified anomaly detection, we propose a simple yet effective method that reconstructs normal features and restores anomaly features with just One Normal Image Prompt (OneNIP). In contrast to previous work, OneNIP allows for the first time to reconstruct or restore anomalies with just one normal image prompt, effectively boosting unified anomaly detection performance. Furthermore, we propose a supervised refiner that regresses reconstruction errors by using both real normal and synthesized anomalous images, which significantly improves pixel-level anomaly segmentation. OneNIP outperforms previous methods on three industry anomaly detection benchmarks: MVTec, BTAD, and VisA. The code and pre-trained models are available at https://github.com/gaobb/OneNIP.

Authors:Guan Gui, Bin-Bin Gao, Jun Liu, Chengjie Wang, Yunsheng Wu
Title: Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation
Abstract:
Anomaly detection is a practical and challenging task due to the scarcity of anomaly samples in industrial inspection. Some existing anomaly detection methods address this issue by synthesizing anomalies with noise or external data. However, there is always a large semantic gap between synthetic and real-world anomalies, resulting in weak performance in anomaly detection. To solve the problem, we propose a few-shot Anomaly-driven Generation (AnoGen) method, which guides the diffusion model to generate realistic and diverse anomalies with only a few real anomalies, thereby benefiting training anomaly detection models. Specifically, our work is divided into three stages. In the first stage, we learn the anomaly distribution based on a few given real anomalies and inject the learned knowledge into an embedding. In the second stage, we use the embedding and given bounding boxes to guide the diffusion model to generate realistic and diverse anomalies on specific objects (or textures). In the final stage, we propose a weakly-supervised anomaly detection method to train a more powerful model with generated anomalies. Our method builds upon DRAEM and DesTSeg as the foundation model and conducts experiments on the commonly used industrial anomaly detection dataset, MVTec. The experiments demonstrate that our generated anomalies effectively improve the model performance of both anomaly classification and segmentation tasks simultaneously, \eg, DRAEM and DseTSeg achieved a 5.8\% and 1.5\% improvement in AU-PR metric on segmentation task, respectively. The code and generated anomalous data are available at https://github.com/gaobb/AnoGen.

Authors:Derian Boer, Stephen Roth, Stefan Kramer
Title: Focus, Merge, Rank: Improved Question Answering Based on Semi-structured Knowledge Bases
Abstract:
In many real-world settings, machine learning models and interactive systems have access to both structured knowledge, e.g., knowledge graphs or tables, and unstructured content, e.g., natural language documents. However, most rely on either. Semi-Structured Knowledge Bases (SKBs) bridge this gap by linking unstructured content to nodes within structured data, thereby enabling new strategies for knowledge access and use. In this work, we present FocusedRetriever, a modular SKB-based framework for multi-hop question answering. It integrates components (VSS-based entity search, LLM-based generation of Cypher queries and pairwise re-ranking) in a way that enables it to outperform state-of-the-art methods across all three STaRK benchmark test sets, covering diverse domains and multiple performance metrics. The average first-hit rate exceeds that of the second-best method by 25.7%. FocusedRetriever leverages (1) the capacity of Large Language Models (LLMs) to extract relational facts and entity attributes from unstructured text, (2) node set joins to filter answer candidates based on these extracted triplets and constraints, (3) vector similarity search to retrieve and rank relevant unstructured content, and (4) the contextual capabilities of LLMs to finally rank the top-k answers. For generality, we only incorporate base LLMs in FocusedRetriever in our evaluation. However, our analysis of intermediate results highlights several opportunities for further upgrades including finetuning. The source code is publicly available at https://github.com/kramerlab/FocusedRetriever .

Authors:Faruk Alpay
Title: Stable and Convexified Information Bottleneck Optimization via Symbolic Continuation and Entropy-Regularized Trajectories
Abstract:
The Information Bottleneck (IB) method frequently suffers from unstable optimization, characterized by abrupt representation shifts near critical points of the IB trade-off parameter, beta. In this paper, I introduce a novel approach to achieve stable and convex IB optimization through symbolic continuation and entropy-regularized trajectories. I analytically prove convexity and uniqueness of the IB solution path when an entropy regularization term is included, and demonstrate how this stabilizes representation learning across a wide range of \b{eta} values. Additionally, I provide extensive sensitivity analyses around critical points (beta) with statistically robust uncertainty quantification (95% confidence intervals). The open-source implementation, experimental results, and reproducibility framework included in this work offer a clear path for practical deployment and future extension of my proposed method.

Authors:Jianlin Sun, Xiaolin Fang, Juwei Guan, Dongdong Gui, Teqi Wang, Tongxin Zhu
Title: DRRNet: Macro-Micro Feature Fusion and Dual Reverse Refinement for Camouflaged Object Detection
Abstract:
The core challenge in Camouflage Object Detection (COD) lies in the indistinguishable similarity between targets and backgrounds in terms of color, texture, and shape. This causes existing methods to either lose edge details (such as hair-like fine structures) due to over-reliance on global semantic information or be disturbed by similar backgrounds (such as vegetation patterns) when relying solely on local features. We propose DRRNet, a four-stage architecture characterized by a "context-detail-fusion-refinement" pipeline to address these issues. Specifically, we introduce an Omni-Context Feature Extraction Module to capture global camouflage patterns and a Local Detail Extraction Module to supplement microstructural information for the full-scene context module. We then design a module for forming dual representations of scene understanding and structural awareness, which fuses panoramic features and local features across various scales. In the decoder, we also introduce a reverse refinement module that leverages spatial edge priors and frequency-domain noise suppression to perform a two-stage inverse refinement of the output. By applying two successive rounds of inverse refinement, the model effectively suppresses background interference and enhances the continuity of object boundaries. Experimental results demonstrate that DRRNet significantly outperforms state-of-the-art methods on benchmark datasets. Our code is available at https://github.com/jerrySunning/DRRNet.

Authors:Zechao Guan, Feng Yan, Shuai Du, Lin Ma, Qingshan Liu
Title: TopoDiT-3D: Topology-Aware Diffusion Transformer with Bottleneck Structure for 3D Point Cloud Generation
Abstract:
Recent advancements in Diffusion Transformer (DiT) models have significantly improved 3D point cloud generation. However, existing methods primarily focus on local feature extraction while overlooking global topological information, such as voids, which are crucial for maintaining shape consistency and capturing complex geometries. To address this limitation, we propose TopoDiT-3D, a Topology-Aware Diffusion Transformer with a bottleneck structure for 3D point cloud generation. Specifically, we design the bottleneck structure utilizing Perceiver Resampler, which not only offers a mode to integrate topological information extracted through persistent homology into feature learning, but also adaptively filters out redundant local features to improve training efficiency. Experimental results demonstrate that TopoDiT-3D outperforms state-of-the-art models in visual quality, diversity, and training efficiency. Furthermore, TopoDiT-3D demonstrates the importance of rich topological information for 3D point cloud generation and its synergy with conventional local feature learning. Videos and code are available at https://github.com/Zechao-Guan/TopoDiT-3D.

Authors:Dayong Liang, Changmeng Zheng, Zhiyuan Wen, Yi Cai, Xiao-Yong Wei, Qing Li
Title: Seeing Beyond the Scene: Enhancing Vision-Language Models with Interactional Reasoning
Abstract:
Traditional scene graphs primarily focus on spatial relationships, limiting vision-language models' (VLMs) ability to reason about complex interactions in visual scenes. This paper addresses two key challenges: (1) conventional detection-to-construction methods produce unfocused, contextually irrelevant relationship sets, and (2) existing approaches fail to form persistent memories for generalizing interaction reasoning to new scenes. We propose Interaction-augmented Scene Graph Reasoning (ISGR), a framework that enhances VLMs' interactional reasoning through three complementary components. First, our dual-stream graph constructor combines SAM-powered spatial relation extraction with interaction-aware captioning to generate functionally salient scene graphs with spatial grounding. Second, we employ targeted interaction queries to activate VLMs' latent knowledge of object functionalities, converting passive recognition into active reasoning about how objects work together. Finally, we introduce a lone-term memory reinforcement learning strategy with a specialized interaction-focused reward function that transforms transient patterns into long-term reasoning heuristics. Extensive experiments demonstrate that our approach significantly outperforms baseline methods on interaction-heavy reasoning benchmarks, with particularly strong improvements on complex scene understanding tasks. The source code can be accessed at https://github.com/open_upon_acceptance.

Authors:Yicheng Rui, Yifan Xuan, Shuyue Zheng, Kexin Li, Kaiming Cui, Kai Xiao, Jie Zheng, Jun Kai Ng, Hongxuan Jiang, Fabo Feng, Qinghui Sun
Title: Architecture of Tianyu Software: Relative Photometry as a Case Study
Abstract:
Tianyu telescope, an one-meter robotic optical survey instrument to be constructed in Lenghu, Qinghai, China, is designed for detecting transiting exoplanets, variable stars and transients. It requires a highly automated, optimally distributed, easily extendable, and highly flexible software to enable the data processing for the raw data at rates exceeding 500MB/s. In this work, we introduce the architecture of the Tianyu pipeline and use relative photometry as a case to demonstrate its high scalability and efficiency. This pipeline is tested on the data collected from Muguang observatory and Xinglong observatory. The pipeline demonstrates high scalability, with most processing stages increasing in throughput as the number of consumers grows. Compared to a single consumer, the median throughput of image calibration, alignment, and flux extraction increases by 41%, 257%, and 107% respectively when using 5 consumers, while image stacking exhibits limited scalability due to I/O constraints. In our tests, the pipeline was able to detect two transiting sources. Besides, the pipeline captures variability in the light curves of nine known and two previously unknown variable sources in the testing data. Meanwhile, the differential photometric precision of the light curves is near the theoretical limitation. These results indicate that this pipeline is suitable for detecting transiting exoplanets and variable stars. This work builds the fundation for further development of Tianyu software. Code of this work is available at https://github.com/ruiyicheng/Tianyu_pipeline.

Authors:Yuhang Wang, Abdulaziz Alhuraish, Shengming Yuan, Hao Zhou
Title: OpenLKA: An Open Dataset of Lane Keeping Assist from Recent Car Models under Real-world Driving Conditions
Abstract:
Lane Keeping Assist (LKA) is widely adopted in modern vehicles, yet its real-world performance remains underexplored due to proprietary systems and limited data access. This paper presents OpenLKA, the first open, large-scale dataset for LKA evaluation and improvement. It includes 400 hours of driving data from 62 production vehicle models, collected through extensive road testing in Tampa, Florida and global contributions from the Comma.ai driving community. The dataset spans a wide range of challenging scenarios, including complex road geometries, degraded lane markings, adverse weather, lighting conditions and surrounding traffic. The dataset is multimodal, comprising: i) full CAN bus streams, decoded using custom reverse-engineered DBC files to extract key LKA events (e.g., system disengagements, lane detection failures); ii) synchronized high-resolution dash-cam video; iii) real-time outputs from Openpilot, providing accurate estimates of road curvature and lane positioning; iv) enhanced scene annotations generated by Vision Language Models, describing lane visibility, pavement quality, weather, lighting, and traffic conditions. By integrating vehicle-internal signals with high-fidelity perception and rich semantic context, OpenLKA provides a comprehensive platform for benchmarking the real-world performance of production LKA systems, identifying safety-critical operational scenarios, and assessing the readiness of current road infrastructure for autonomous driving. The dataset is publicly available at: https://github.com/OpenLKA/OpenLKA.

Authors:Wei-Long Tian, Peng Gao, Xiao Liu, Long Xu, Hamido Fujita, Hanan Aljuai, Mao-Li Wang
Title: Towards Adaptive Meta-Gradient Adversarial Examples for Visual Tracking
Abstract:
In recent years, visual tracking methods based on convolutional neural networks and Transformers have achieved remarkable performance and have been successfully applied in fields such as autonomous driving. However, the numerous security issues exposed by deep learning models have gradually affected the reliable application of visual tracking methods in real-world scenarios. Therefore, how to reveal the security vulnerabilities of existing visual trackers through effective adversarial attacks has become a critical problem that needs to be addressed. To this end, we propose an adaptive meta-gradient adversarial attack (AMGA) method for visual tracking. This method integrates multi-model ensembles and meta-learning strategies, combining momentum mechanisms and Gaussian smoothing, which can significantly enhance the transferability and attack effectiveness of adversarial examples. AMGA randomly selects models from a large model repository, constructs diverse tracking scenarios, and iteratively performs both white- and black-box adversarial attacks in each scenario, optimizing the gradient directions of each model. This paradigm minimizes the gap between white- and black-box adversarial attacks, thus achieving excellent attack performance in black-box scenarios. Extensive experimental results on large-scale datasets such as OTB2015, LaSOT, and GOT-10k demonstrate that AMGA significantly improves the attack performance, transferability, and deception of adversarial examples. Codes and data are available at https://github.com/pgao-lab/AMGA.

Authors:Yangyi Chen, Hao Peng, Tong Zhang, Heng Ji
Title: Prioritizing Image-Related Tokens Enhances Vision-Language Pre-Training
Abstract:
In standard large vision-language models (LVLMs) pre-training, the model typically maximizes the joint probability of the caption conditioned on the image via next-token prediction (NTP); however, since only a small subset of caption tokens directly relates to the visual content, this naive NTP unintentionally fits the model to noise and increases the risk of hallucination. We present PRIOR, a simple vision-language pre-training approach that addresses this issue by prioritizing image-related tokens through differential weighting in the NTP loss, drawing from the importance sampling framework. PRIOR introduces a reference model-a text-only large language model (LLM) trained on the captions without image inputs, to weight each token based on its probability for LVLMs training. Intuitively, tokens that are directly related to the visual inputs are harder to predict without the image and thus receive lower probabilities from the text-only reference LLM. During training, we implement a token-specific re-weighting term based on the importance scores to adjust each token's loss. We implement PRIOR in two distinct settings: LVLMs with visual encoders and LVLMs without visual encoders. We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP. In addition, PRIOR exhibits superior scaling properties, as demonstrated by significantly higher scaling coefficients, indicating greater potential for performance gains compared to NTP given increasing compute and data.

Authors:Yancheng Wang, Nebojsa Jojic, Yingzhen Yang
Title: Differentiable Channel Selection in Self-Attention For Person Re-Identification
Abstract:
In this paper, we propose a novel attention module termed the Differentiable Channel Selection Attention module, or the DCS-Attention module. In contrast with conventional self-attention, the DCS-Attention module features selection of informative channels in the computation of the attention weights. The selection of the feature channels is performed in a differentiable manner, enabling seamless integration with DNN training. Our DCS-Attention is compatible with either fixed neural network backbones or learnable backbones with Differentiable Neural Architecture Search (DNAS), leading to DCS with Fixed Backbone (DCS-FB) and DCS-DNAS, respectively. Importantly, our DCS-Attention is motivated by the principle of Information Bottleneck (IB), and a novel variational upper bound for the IB loss, which can be optimized by SGD, is derived and incorporated into the training loss of the networks with the DCS-Attention modules. In this manner, a neural network with DCS-Attention modules is capable of selecting the most informative channels for feature extraction so that it enjoys state-of-the-art performance for the Re-ID task. Extensive experiments on multiple person Re-ID benchmarks using both DCS-FB and DCS-DNAS show that DCS-Attention significantly enhances the prediction accuracy of DNNs for person Re-ID, which demonstrates the effectiveness of DCS-Attention in learning discriminative features critical to identifying person identities. The code of our work is available at https://github.com/Statistical-Deep-Learning/DCS-Attention.

Authors:Kangxian Xie, Yufei Zhu, Kaiming Kuang, Li Zhang, Hongwei Bran Li, Mingchen Gao, Jiancheng Yang
Title: Template-Guided Reconstruction of Pulmonary Segments with Neural Implicit Functions
Abstract:
High-quality 3D reconstruction of pulmonary segments plays a crucial role in segmentectomy and surgical treatment planning for lung cancer. Due to the resolution requirement of the target reconstruction, conventional deep learning-based methods often suffer from computational resource constraints or limited granularity. Conversely, implicit modeling is favored due to its computational efficiency and continuous representation at any resolution. We propose a neural implicit function-based method to learn a 3D surface to achieve anatomy-aware, precise pulmonary segment reconstruction, represented as a shape by deforming a learnable template. Additionally, we introduce two clinically relevant evaluation metrics to assess the reconstruction comprehensively. Further, due to the absence of publicly available shape datasets to benchmark reconstruction algorithms, we developed a shape dataset named Lung3D, including the 3D models of 800 labeled pulmonary segments and the corresponding airways, arteries, veins, and intersegmental veins. We demonstrate that the proposed approach outperforms existing methods, providing a new perspective for pulmonary segment reconstruction. Code and data will be available at https://github.com/M3DV/ImPulSe.

Authors:Marina Popova, Iaroslav Chelombitko, Aleksey Komissarov
Title: When repeats drive the vocabulary: a Byte-Pair Encoding analysis of T2T primate genomes
Abstract:
The emergence of telomere-to-telomere (T2T) genome assemblies has opened new avenues for comparative genomics, yet effective tokenization strategies for genomic sequences remain underexplored. In this pilot study, we apply Byte Pair Encoding (BPE) to nine T2T primate genomes including three human assemblies by training independent BPE tokenizers with a fixed vocabulary of 512,000 tokens using our custom tool, dnaBPE. Our analysis reveals that only 11,569 tokens are shared across all assemblies, while nearly 991,854 tokens are unique to a single genome, indicating a rapid decline in shared vocabulary with increasing assembly comparisons. Moreover, phylogenetic trees derived from token overlap failed to recapitulate established primate relationships, a discrepancy attributed to the disproportionate influence of species-specific high-copy repetitive elements. These findings underscore the dual nature of BPE tokenization: while it effectively compresses repetitive sequences, its sensitivity to high-copy elements limits its utility as a universal tool for comparative genomics. We discuss potential hybrid strategies and repeat-masking approaches to refine genomic tokenization, emphasizing the need for domain-specific adaptations in the development of large-scale genomic language models. The dnaBPE tool used in this study is open-source and available at https://github.com/aglabx/dnaBPE.

Authors:Nahid Alam, Karthik Reddy Kanjula, Surya Guthikonda, Timothy Chung, Bala Krishna S Vegesna, Abhipsha Das, Anthony Susevski, Ryan Sze-Yin Chan, S M Iftekhar Uddin, Shayekh Bin Islam, Roshan Santhosh, Snegha A, Drishti Sharma, Chen Liu, Isha Chaturvedi, Genta Indra Winata, Ashvanth. S, Snehanshu Mukherjee, Alham Fikri Aji
Title: Behind Maya: Building a Multilingual Vision Language Model
Abstract:
In recent times, we have seen a rapid development of large Vision-Language Models (VLMs). They have shown impressive results on academic benchmarks, primarily in widely spoken languages but lack performance on low-resource languages and varied cultural contexts. To address these limitations, we introduce Maya, an open-source Multilingual VLM. Our contributions are: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; and 2) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.

Authors:Michael Majurski, Cynthia Matuszek
Title: Grounding Synthetic Data Evaluations of Language Models in Unsupervised Document Corpora
Abstract:
Language Models (LMs) continue to advance, improving response quality and coherence. Given Internet-scale training datasets, LMs have likely encountered much of what users may ask them to generate in some form during their training. A plethora of evaluation benchmarks have been constructed to assess model quality, response appropriateness, and reasoning capabilities. However, the human effort required for benchmark construction is rapidly being outpaced by the size and scope of the models under evaluation. Having humans build a benchmark for every possible domain of interest is impractical. Therefore, we propose a methodology for automating the construction of fact-based synthetic data model evaluations grounded in document populations. This work leverages the same LMs to evaluate domain-specific knowledge automatically, using only grounding documents (e.g., a textbook) as input. This synthetic data benchmarking approach corresponds well with human curated questions producing a Spearman ranking correlation of 0.97 and a benchmark evaluation Pearson accuracy correlation of 0.75. This novel approach supports generating both multiple choice and open-ended synthetic data questions to gain diagnostic insight of LM capability. We apply this methodology to evaluate model performance on two recent arXiv preprints, discovering a surprisingly strong performance from Gemma-3 models on open-ended questions. Code is available at https://github.com/mmajurski/grounded-synth-lm-benchmark

Authors:Dor Tsur, Carol Xuan Long, Claudio Mayrink Verdun, Hsiang Hsu, Haim Permuter, Flavio P. Calmon
Title: Optimized Couplings for Watermarking Large Language Models
Abstract:
Large-language models (LLMs) are now able to produce text that is, in many cases, seemingly indistinguishable from human-generated content. This has fueled the development of watermarks that imprint a ``signal'' in LLM-generated text with minimal perturbation of an LLM's output. This paper provides an analysis of text watermarking in a one-shot setting. Through the lens of hypothesis testing with side information, we formulate and analyze the fundamental trade-off between watermark detection power and distortion in generated textual quality. We argue that a key component in watermark design is generating a coupling between the side information shared with the watermark detector and a random partition of the LLM vocabulary. Our analysis identifies the optimal coupling and randomization strategy under the worst-case LLM next-token distribution that satisfies a min-entropy constraint. We provide a closed-form expression of the resulting detection rate under the proposed scheme and quantify the cost in a max-min sense. Finally, we provide an array of numerical results, comparing the proposed scheme with the theoretical optimum and existing schemes, in both synthetic data and LLM watermarking. Our code is available at https://github.com/Carol-Long/CC_Watermark

Authors:Yuping Wang, Shuo Xing, Cui Can, Renjie Li, Hongyuan Hua, Kexin Tian, Zhaobin Mo, Xiangbo Gao, Keshu Wu, Sulong Zhou, Hengxu You, Juntong Peng, Junge Zhang, Zehao Wang, Rui Song, Mingxuan Yan, Walter Zimmer, Xingcheng Zhou, Peiran Li, Zhaohan Lu, Chia-Ju Chen, Yue Huang, Ryan A. Rossi, Lichao Sun, Hongkai Yu, Zhiwen Fan, Frank Hao Yang, Yuhao Kang, Ross Greer, Chenxi Liu, Eun Hak Lee, Xuan Di, Xinyue Ye, Liu Ren, Alois Knoll, Xiaopeng Li, Shuiwang Ji, Masayoshi Tomizuka, Marco Pavone, Tianbao Yang, Jing Du, Ming-Hsuan Yang, Hua Wei, Ziran Wang, Yang Zhou, Jiachen Li, Zhengzhong Tu
Title: Generative AI for Autonomous Driving: Frontiers and Opportunities
Abstract:
Generative Artificial Intelligence (GenAI) constitutes a transformative technological wave that reconfigures industries through its unparalleled capabilities for content creation, reasoning, planning, and multimodal understanding. This revolutionary force offers the most promising path yet toward solving one of engineering's grandest challenges: achieving reliable, fully autonomous driving, particularly the pursuit of Level 5 autonomy. This survey delivers a comprehensive and critical synthesis of the emerging role of GenAI across the autonomous driving stack. We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models (LLMs). We then map their frontier applications in image, LiDAR, trajectory, occupancy, video generation as well as LLM-guided reasoning and decision making. We categorize practical applications, such as synthetic data workflows, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI. We identify key obstacles and possibilities such as comprehensive generalization across rare cases, evaluation and safety checks, budget-limited implementation, regulatory compliance, ethical concerns, and environmental effects, while proposing research plans across theoretical assurances, trust metrics, transport integration, and socio-technical influence. By unifying these threads, the survey provides a forward-looking reference for researchers, engineers, and policymakers navigating the convergence of generative AI and advanced autonomous mobility. An actively maintained repository of cited works is available at https://github.com/taco-group/GenAI4AD.

Authors:Ippokratis Koukoulis, Ilias Syrigos, Thanasis Korakis
Title: Self-Supervised Transformer-based Contrastive Learning for Intrusion Detection Systems
Abstract:
As the digital landscape becomes more interconnected, the frequency and severity of zero-day attacks, have significantly increased, leading to an urgent need for innovative Intrusion Detection Systems (IDS). Machine Learning-based IDS that learn from the network traffic characteristics and can discern attack patterns from benign traffic offer an advanced solution to traditional signature-based IDS. However, they heavily rely on labeled datasets, and their ability to generalize when encountering unseen traffic patterns remains a challenge. This paper proposes a novel self-supervised contrastive learning approach based on transformer encoders, specifically tailored for generalizable intrusion detection on raw packet sequences. Our proposed learning scheme employs a packet-level data augmentation strategy combined with a transformer-based architecture to extract and generate meaningful representations of traffic flows. Unlike traditional methods reliant on handcrafted statistical features (NetFlow), our approach automatically learns comprehensive packet sequence representations, significantly enhancing performance in anomaly identification tasks and supervised learning for intrusion detection. Our transformer-based framework exhibits better performance in comparison to existing NetFlow self-supervised methods. Specifically, we achieve up to a 3% higher AUC in anomaly detection for intra-dataset evaluation and up to 20% higher AUC scores in inter-dataset evaluation. Moreover, our model provides a strong baseline for supervised intrusion detection with limited labeled data, exhibiting an improvement over self-supervised NetFlow models of up to 1.5% AUC when pretrained and evaluated on the same dataset. Additionally, we show the adaptability of our pretrained model when fine-tuned across different datasets, demonstrating strong performance even when lacking benign data from the target domain.

Authors:Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, Ameet Talwalkar
Title: CodePDE: An Inference Framework for LLM-driven PDE Solver Generation
Abstract:
Partial differential equations (PDEs) are fundamental to modeling physical systems, yet solving them remains a complex challenge. Traditional numerical solvers rely on expert knowledge to implement and are computationally expensive, while neural-network-based solvers require large training datasets and often lack interpretability. In this work, we frame PDE solving as a code generation task and introduce CodePDE, the first inference framework for generating PDE solvers using large language models (LLMs). Leveraging advanced inference-time algorithms and scaling strategies, CodePDE unlocks critical capacities of LLM for PDE solving: reasoning, debugging, selfrefinement, and test-time scaling -- all without task-specific tuning. CodePDE achieves superhuman performance across a range of representative PDE problems. We also present a systematic empirical analysis of LLM generated solvers, analyzing their accuracy, efficiency, and numerical scheme choices. Our findings highlight the promise and the current limitations of LLMs in PDE solving, offering a new perspective on solver design and opportunities for future model development. Our code is available at https://github.com/LithiumDA/CodePDE.

Authors:Rahul K. Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela, Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, Johannes Heidecke, Karan Singhal
Title: HealthBench: Evaluating Large Language Models Towards Improved Human Health
Abstract:
We present HealthBench, an open-source benchmark measuring the performance and safety of large language models in healthcare. HealthBench consists of 5,000 multi-turn conversations between a model and an individual user or healthcare professional. Responses are evaluated using conversation-specific rubrics created by 262 physicians. Unlike previous multiple-choice or short-answer benchmarks, HealthBench enables realistic, open-ended evaluation through 48,562 unique rubric criteria spanning several health contexts (e.g., emergencies, transforming clinical data, global health) and behavioral dimensions (e.g., accuracy, instruction following, communication). HealthBench performance over the last two years reflects steady initial progress (compare GPT-3.5 Turbo's 16% to GPT-4o's 32%) and more rapid recent improvements (o3 scores 60%). Smaller models have especially improved: GPT-4.1 nano outperforms GPT-4o and is 25 times cheaper. We additionally release two HealthBench variations: HealthBench Consensus, which includes 34 particularly important dimensions of model behavior validated via physician consensus, and HealthBench Hard, where the current top score is 32%. We hope that HealthBench grounds progress towards model development and applications that benefit human health.

Authors:Fanyu Meng, Ziwen Kan, Shahbaz Rezaei, Zhaodan Kong, Xin Chen, Xin Liu
Title: Implet: A Post-hoc Subsequence Explainer for Time Series Models
Abstract:
Explainability in time series models is crucial for fostering trust, facilitating debugging, and ensuring interpretability in real-world applications. In this work, we introduce Implet, a novel post-hoc explainer that generates accurate and concise subsequence-level explanations for time series models. Our approach identifies critical temporal segments that significantly contribute to the model's predictions, providing enhanced interpretability beyond traditional feature-attribution methods. Based on it, we propose a cohort-based (group-level) explanation framework designed to further improve the conciseness and interpretability of our explanations. We evaluate Implet on several standard time-series classification benchmarks, demonstrating its effectiveness in improving interpretability. The code is available at https://github.com/LbzSteven/implet

Authors:Abdolmehdi Behroozi, Chaopeng Shen and, Daniel Kifer
Title: Sensitivity-Constrained Fourier Neural Operators for Forward and Inverse Problems in Parametric Differential Equations
Abstract:
Parametric differential equations of the form du/dt = f(u, x, t, p) are fundamental in science and engineering. While deep learning frameworks such as the Fourier Neural Operator (FNO) can efficiently approximate solutions, they struggle with inverse problems, sensitivity estimation (du/dp), and concept drift. We address these limitations by introducing a sensitivity-based regularization strategy, called Sensitivity-Constrained Fourier Neural Operators (SC-FNO). SC-FNO achieves high accuracy in predicting solution paths and consistently outperforms standard FNO and FNO with physics-informed regularization. It improves performance in parameter inversion tasks, scales to high-dimensional parameter spaces (tested with up to 82 parameters), and reduces both data and training requirements. These gains are achieved with a modest increase in training time (30% to 130% per epoch) and generalize across various types of differential equations and neural operators. Code and selected experiments are available at: https://github.com/AMBehroozi/SC_Neural_Operators

Authors:Zongchuang Zhao, Haoyu Fu, Dingkang Liang, Xin Zhou, Dingyuan Zhang, Hongwei Xie, Bing Wang, Xiang Bai
Title: Extending Large Vision-Language Model for Diverse Interactive Tasks in Autonomous Driving
Abstract:
The Large Visual-Language Models (LVLMs) have significantly advanced image understanding. Their comprehension and reasoning capabilities enable promising applications in autonomous driving scenarios. However, existing research typically focuses on front-view perspectives and partial objects within scenes, struggling to achieve comprehensive scene understanding. Meanwhile, existing LVLMs suffer from the lack of mapping relationship between 2D and 3D and insufficient integration of 3D object localization and instruction understanding. To tackle these limitations, we first introduce NuInteract, a large-scale dataset with over 1.5M multi-view image language pairs spanning dense scene captions and diverse interactive tasks. Furthermore, we propose DriveMonkey, a simple yet effective framework that seamlessly integrates LVLMs with a spatial processor using a series of learnable queries. The spatial processor, designed as a plug-and-play component, can be initialized with pre-trained 3D detectors to improve 3D perception. Our experiments show that DriveMonkey outperforms general LVLMs, especially achieving a 9.86% notable improvement on the 3D visual grounding task. The dataset and code will be released at https://github.com/zc-zhao/DriveMonkey.

Authors:Xiaolei Qin, Di Wang, Jing Zhang, Fengxiang Wang, Xin Su, Bo Du, Liangpei Zhang
Title: TiMo: Spatiotemporal Foundation Model for Satellite Image Time Series
Abstract:
Satellite image time series (SITS) provide continuous observations of the Earth's surface, making them essential for applications such as environmental management and disaster assessment. However, existing spatiotemporal foundation models rely on plain vision transformers, which encode entire temporal sequences without explicitly capturing multiscale spatiotemporal relationships between land objects. This limitation hinders their effectiveness in downstream tasks. To overcome this challenge, we propose TiMo, a novel hierarchical vision transformer foundation model tailored for SITS analysis. At its core, we introduce a spatiotemporal gyroscope attention mechanism that dynamically captures evolving multiscale patterns across both time and space. For pre-training, we curate MillionST, a large-scale dataset of one million images from 100,000 geographic locations, each captured across 10 temporal phases over five years, encompassing diverse geospatial changes and seasonal variations. Leveraging this dataset, we adapt masked image modeling to pre-train TiMo, enabling it to effectively learn and encode generalizable spatiotemporal representations.Extensive experiments across multiple spatiotemporal tasks-including deforestation monitoring, land cover segmentation, crop type classification, and flood detection-demonstrate TiMo's superiority over state-of-the-art methods. Code, model, and dataset will be released at https://github.com/MiliLab/TiMo.

Authors:Donghoon Kim, Minji Bae, Kyuhong Shim, Byonghyo Shim
Title: Visually Guided Decoding: Gradient-Free Hard Prompt Inversion with Language Models
Abstract:
Text-to-image generative models like DALL-E and Stable Diffusion have revolutionized visual content creation across various applications, including advertising, personalized media, and design prototyping. However, crafting effective textual prompts to guide these models remains challenging, often requiring extensive trial and error. Existing prompt inversion approaches, such as soft and hard prompt techniques, are not so effective due to the limited interpretability and incoherent prompt generation. To address these issues, we propose Visually Guided Decoding (VGD), a gradient-free approach that leverages large language models (LLMs) and CLIP-based guidance to generate coherent and semantically aligned prompts. In essence, VGD utilizes the robust text generation capabilities of LLMs to produce human-readable prompts. Further, by employing CLIP scores to ensure alignment with user-specified visual concepts, VGD enhances the interpretability, generalization, and flexibility of prompt generation without the need for additional training. Our experiments demonstrate that VGD outperforms existing prompt inversion techniques in generating understandable and contextually relevant prompts, facilitating more intuitive and controllable interactions with text-to-image models.

Authors:Ziyuan He, Zhiqing Guo, Liejun Wang, Gaobo Yang, Yunfeng Diao, Dan Ma
Title: WaveGuard: Robust Deepfake Detection and Source Tracing via Dual-Tree Complex Wavelet and Graph Neural Networks
Abstract:
Deepfake technology poses increasing risks such as privacy invasion and identity theft. To address these threats, we propose WaveGuard, a proactive watermarking framework that enhances robustness and imperceptibility via frequency-domain embedding and graph-based structural consistency. Specifically, we embed watermarks into high-frequency sub-bands using Dual-Tree Complex Wavelet Transform (DT-CWT) and employ a Structural Consistency Graph Neural Network (SC-GNN) to preserve visual quality. We also design an attention module to refine embedding precision. Experimental results on face swap and reenactment tasks demonstrate that WaveGuard outperforms state-of-the-art methods in both robustness and visual quality. Code is available at https://github.com/vpsg-research/WaveGuard.

Authors:Haofeng Liu, Mingqi Gao, Xuxiao Luo, Ziyue Wang, Guanyi Qin, Junde Wu, Yueming Jin
Title: ReSurgSAM2: Referring Segment Anything in Surgical Video via Credible Long-term Tracking
Abstract:
Surgical scene segmentation is critical in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, referring surgical segmentation is emerging, given its advantage of providing surgeons with an interactive experience to segment the target object. However, existing methods are limited by low efficiency and short-term tracking, hindering their applicability in complex real-world surgical scenarios. In this paper, we introduce ReSurgSAM2, a two-stage surgical referring segmentation framework that leverages Segment Anything Model 2 to perform text-referred target detection, followed by tracking with reliable initial frame identification and diversity-driven long-term memory. For the detection stage, we propose a cross-modal spatial-temporal Mamba to generate precise detection and segmentation results. Based on these results, our credible initial frame selection strategy identifies the reliable frame for the subsequent tracking. Upon selecting the initial frame, our method transitions to the tracking stage, where it incorporates a diversity-driven memory mechanism that maintains a credible and diverse memory bank, ensuring consistent long-term tracking. Extensive experiments demonstrate that ReSurgSAM2 achieves substantial improvements in accuracy and efficiency compared to existing methods, operating in real-time at 61.2 FPS. Our code and datasets will be available at https://github.com/jinlab-imvr/ReSurgSAM2.

Authors:Xiao Ni, Carsten Kuehnel, Xiaoyi Jiang
Title: Thermal Detection of People with Mobility Restrictions for Barrier Reduction at Traffic Lights Controlled Intersections
Abstract:
Rapid advances in deep learning for computer vision have driven the adoption of RGB camera-based adaptive traffic light systems to improve traffic safety and pedestrian comfort. However, these systems often overlook the needs of people with mobility restrictions. Moreover, the use of RGB cameras presents significant challenges, including limited detection performance under adverse weather or low-visibility conditions, as well as heightened privacy concerns. To address these issues, we propose a fully automated, thermal detector-based traffic light system that dynamically adjusts signal durations for individuals with walking impairments or mobility burden and triggers the auditory signal for visually impaired individuals, thereby advancing towards barrier-free intersection for all users. To this end, we build the thermal dataset for people with mobility restrictions (TD4PWMR), designed to capture diverse pedestrian scenarios, particularly focusing on individuals with mobility aids or mobility burden under varying environmental conditions, such as different lighting, weather, and crowded urban settings. While thermal imaging offers advantages in terms of privacy and robustness to adverse conditions, it also introduces inherent hurdles for object detection due to its lack of color and fine texture details and generally lower resolution of thermal images. To overcome these limitations, we develop YOLO-Thermal, a novel variant of the YOLO architecture that integrates advanced feature extraction and attention mechanisms for enhanced detection accuracy and robustness in thermal imaging. Experiments demonstrate that the proposed thermal detector outperforms existing detectors, while the proposed traffic light system effectively enhances barrier-free intersection. The source codes and dataset are available at https://github.com/leon2014dresden/YOLO-THERMAL.

Authors:Shan Zhao, Zhitong Xiong, Jie Zhao, Xiao Xiang Zhu
Title: ExEBench: Benchmarking Foundation Models on Extreme Earth Events
Abstract:
Our planet is facing increasingly frequent extreme events, which pose major risks to human lives and ecosystems. Recent advances in machine learning (ML), especially with foundation models (FMs) trained on extensive datasets, excel in extracting features and show promise in disaster management. Nevertheless, these models often inherit biases from training data, challenging their performance over extreme values. To explore the reliability of FM in the context of extreme events, we introduce \textbf{ExE}Bench (\textbf{Ex}treme \textbf{E}arth Benchmark), a collection of seven extreme event categories across floods, wildfires, storms, tropical cyclones, extreme precipitation, heatwaves, and cold waves. The dataset features global coverage, varying data volumes, and diverse data sources with different spatial, temporal, and spectral characteristics. To broaden the real-world impact of FMs, we include multiple challenging ML tasks that are closely aligned with operational needs in extreme events detection, monitoring, and forecasting. ExEBench aims to (1) assess FM generalizability across diverse, high-impact tasks and domains, (2) promote the development of novel ML methods that benefit disaster management, and (3) offer a platform for analyzing the interactions and cascading effects of extreme events to advance our understanding of Earth system, especially under the climate change expected in the decades to come. The dataset and code are public https://github.com/zhaoshan2/EarthExtreme-Bench.

Authors:Zheang Huai, Hui Tang, Yi Li, Zhuangzhuang Chen, Xiaomeng Li
Title: Leveraging Segment Anything Model for Source-Free Domain Adaptation via Dual Feature Guided Auto-Prompting
Abstract:
Source-free domain adaptation (SFDA) for segmentation aims at adapting a model trained in the source domain to perform well in the target domain with only the source model and unlabeled target data. Inspired by the recent success of Segment Anything Model (SAM) which exhibits the generality of segmenting images of various modalities and in different domains given human-annotated prompts like bounding boxes or points, we for the first time explore the potentials of Segment Anything Model for SFDA via automatedly finding an accurate bounding box prompt. We find that the bounding boxes directly generated with existing SFDA approaches are defective due to the domain gap. To tackle this issue, we propose a novel Dual Feature Guided (DFG) auto-prompting approach to search for the box prompt. Specifically, the source model is first trained in a feature aggregation phase, which not only preliminarily adapts the source model to the target domain but also builds a feature distribution well-prepared for box prompt search. In the second phase, based on two feature distribution observations, we gradually expand the box prompt with the guidance of the target model feature and the SAM feature to handle the class-wise clustered target features and the class-wise dispersed target features, respectively. To remove the potentially enlarged false positive regions caused by the over-confident prediction of the target model, the refined pseudo-labels produced by SAM are further postprocessed based on connectivity analysis. Experiments on 3D and 2D datasets indicate that our approach yields superior performance compared to conventional methods. Code is available at https://github.com/xmed-lab/DFG.

Authors:Alexandra Khirianova, Ekaterina Solodneva, Andrey Pudovikov, Sergey Osokin, Egor Samosvat, Yuriy Dorn, Alexander Ledovsky, Yana Zenkova
Title: BAT: Benchmark for Auto-bidding Task
Abstract:
The optimization of bidding strategies for online advertising slot auctions presents a critical challenge across numerous digital marketplaces. A significant obstacle to the development, evaluation, and refinement of real-time autobidding algorithms is the scarcity of comprehensive datasets and standardized benchmarks. To address this deficiency, we present an auction benchmark encompassing the two most prevalent auction formats. We implement a series of robust baselines on a novel dataset, addressing the most salient Real-Time Bidding (RTB) problem domains: budget pacing uniformity and Cost Per Click (CPC) constraint optimization. This benchmark provides a user-friendly and intuitive framework for researchers and practitioners to develop and refine innovative autobidding algorithms, thereby facilitating advancements in the field of programmatic advertising. The implementation and additional resources can be accessed at the following repository (https://github.com/avito-tech/bat-autobidding-benchmark, https://doi.org/10.5281/zenodo.14794182).

Authors:Shuai Xu, Sijia Cui, Yanna Wang, Bo Xu, Qi Wang
Title: Strategy-Augmented Planning for Large Language Models via Opponent Exploitation
Abstract:
Efficiently modeling and exploiting opponents is a long-standing challenge in adversarial domains. Large Language Models (LLMs) trained on extensive textual data have recently demonstrated outstanding performance in general tasks, introducing new research directions for opponent modeling. Some studies primarily focus on directly using LLMs to generate decisions based on the elaborate prompt context that incorporates opponent descriptions, while these approaches are limited to scenarios where LLMs possess adequate domain expertise. To address that, we introduce a two-stage Strategy-Augmented Planning (SAP) framework that significantly enhances the opponent exploitation capabilities of LLM-based agents by utilizing a critical component, the Strategy Evaluation Network (SEN). Specifically, in the offline stage, we construct an explicit strategy space and subsequently collect strategy-outcome pair data for training the SEN network. During the online phase, SAP dynamically recognizes the opponent's strategies and greedily exploits them by searching best response strategy on the well-trained SEN, finally translating strategy to a course of actions by carefully designed prompts. Experimental results show that SAP exhibits robust generalization capabilities, allowing it to perform effectively not only against previously encountered opponent strategies but also against novel, unseen strategies. In the MicroRTS environment, SAP achieves a $85.35\%$ performance improvement over baseline methods and matches the competitiveness of reinforcement learning approaches against state-of-the-art (SOTA) rule-based AI. Our code is available at https://github.com/hsushuai/SAP.

Authors:Wenkui Yang, Zhida Zhang, Xiaoqiang Zhou, Junxian Duan, Jie Cao
Title: TT-DF: A Large-Scale Diffusion-Based Dataset and Benchmark for Human Body Forgery Detection
Abstract:
The emergence and popularity of facial deepfake methods spur the vigorous development of deepfake datasets and facial forgery detection, which to some extent alleviates the security concerns about facial-related artificial intelligence technologies. However, when it comes to human body forgery, there has been a persistent lack of datasets and detection methods, due to the later inception and complexity of human body generation methods. To mitigate this issue, we introduce TikTok-DeepFake (TT-DF), a novel large-scale diffusion-based dataset containing 6,120 forged videos with 1,378,857 synthetic frames, specifically tailored for body forgery detection. TT-DF offers a wide variety of forgery methods, involving multiple advanced human image animation models utilized for manipulation, two generative configurations based on the disentanglement of identity and pose information, as well as different compressed versions. The aim is to simulate any potential unseen forged data in the wild as comprehensively as possible, and we also furnish a benchmark on TT-DF. Additionally, we propose an adapted body forgery detection model, Temporal Optical Flow Network (TOF-Net), which exploits the spatiotemporal inconsistencies and optical flow distribution differences between natural data and forged data. Our experiments demonstrate that TOF-Net achieves favorable performance on TT-DF, outperforming current state-of-the-art extendable facial forgery detection models. For our TT-DF dataset, please refer to https://github.com/HashTAG00002/TT-DF.

Authors:Huiyun Jiang, Zhuang Yang
Title: Adaptive Diffusion Policy Optimization for Robotic Manipulation
Abstract:
Recent studies have shown the great potential of diffusion models in improving reinforcement learning (RL) by modeling complex policies, expressing a high degree of multi-modality, and efficiently handling high-dimensional continuous control tasks. However, there is currently limited research on how to optimize diffusion-based polices (e.g., Diffusion Policy) fast and stably. In this paper, we propose an Adam-based Diffusion Policy Optimization (ADPO), a fast algorithmic framework containing best practices for fine-tuning diffusion-based polices in robotic control tasks using the adaptive gradient descent method in RL. Adaptive gradient method is less studied in training RL, let alone diffusion-based policies. We confirm that ADPO outperforms other diffusion-based RL methods in terms of overall effectiveness for fine-tuning on standard robotic tasks. Concretely, we conduct extensive experiments on standard robotic control tasks to test ADPO, where, particularly, six popular diffusion-based RL methods are provided as benchmark methods. Experimental results show that ADPO acquires better or comparable performance than the baseline methods. Finally, we systematically analyze the sensitivity of multiple hyperparameters in standard robotics tasks, providing guidance for subsequent practical applications. Our video demonstrations are released in https://github.com/Timeless-lab/ADPO.git.

Authors:Erpai Luo, Jinmeng Jia, Yifan Xiong, Xiangyu Li, Xiaobo Guo, Baoqi Yu, Lei Wei, Xuegong Zhang
Title: Benchmarking AI scientists in omics data-driven biological research
Abstract:
The rise of large language models and multi-agent systems has sparked growing interest in AI scientists capable of autonomous biological research. However, existing benchmarks either focus on reasoning without data or on data analysis with predefined statistical answers, lacking realistic, data-driven evaluation settings. Here, we introduce the Biological AI Scientist Benchmark (BaisBench), a benchmark designed to assess AI scientists' ability to generate biological discoveries through data analysis and reasoning with external knowledge. BaisBench comprises two tasks: cell type annotation on 31 expert-labeled single-cell datasets, and scientific discovery through answering 198 multiple-choice questions derived from the biological insights of 41 recent single-cell studies. Systematic experiments on state-of-the-art AI scientists and LLM agents showed that while promising, current models still substantially underperform human experts on both tasks. We hope BaisBench will fill this gap and serve as a foundation for advancing and evaluating AI models for scientific discovery. The benchmark can be found at: https://github.com/EperLuo/BaisBench.

Authors:Nibir Chandra Mandal, Oishee Bintey Hoque, Abhijin Adiga, Samarth Swarup, Mandy Wilson, Lu Feng, Yangfeng Ji, Miaomiao Zhang, Geoffrey Fox, Madhav Marathe
Title: IrrMap: A Large-Scale Comprehensive Dataset for Irrigation Method Mapping
Abstract:
We introduce IrrMap, the first large-scale dataset (1.1 million patches) for irrigation method mapping across regions. IrrMap consists of multi-resolution satellite imagery from LandSat and Sentinel, along with key auxiliary data such as crop type, land use, and vegetation indices. The dataset spans 1,687,899 farms and 14,117,330 acres across multiple western U.S. states from 2013 to 2023, providing a rich and diverse foundation for irrigation analysis and ensuring geospatial alignment and quality control. The dataset is ML-ready, with standardized 224x224 GeoTIFF patches, the multiple input modalities, carefully chosen train-test-split data, and accompanying dataloaders for seamless deep learning model training andbenchmarking in irrigation mapping. The dataset is also accompanied by a complete pipeline for dataset generation, enabling researchers to extend IrrMap to new regions for irrigation data collection or adapt it with minimal effort for other similar applications in agricultural and geospatial analysis. We also analyze the irrigation method distribution across crop groups, spatial irrigation patterns (using Shannon diversity indices), and irrigated area variations for both LandSat and Sentinel, providing insights into regional and resolution-based differences. To promote further exploration, we openly release IrrMap, along with the derived datasets, benchmark models, and pipeline code, through a GitHub repository: https://github.com/Nibir088/IrrMap and Data repository: https://huggingface.co/Nibir/IrrMap, providing comprehensive documentation and implementation details.

Authors:Midi Wan, Pengfei Li, Yizhuo Liang, Di Wu, Yushan Pan, Guangzhen Zhu, Hao Wang
Title: Skeleton-Guided Diffusion Model for Accurate Foot X-ray Synthesis in Hallux Valgus Diagnosis
Abstract:
Medical image synthesis plays a crucial role in providing anatomically accurate images for diagnosis and treatment. Hallux valgus, which affects approximately 19% of the global population, requires frequent weight-bearing X-rays for assessment, placing additional strain on both patients and healthcare providers. Existing X-ray models often struggle to balance image fidelity, skeletal consistency, and physical constraints, particularly in diffusion-based methods that lack skeletal guidance. We propose the Skeletal-Constrained Conditional Diffusion Model (SCCDM) and introduce KCC, a foot evaluation method utilizing skeletal landmarks. SCCDM incorporates multi-scale feature extraction and attention mechanisms, improving the Structural Similarity Index (SSIM) by 5.72% (0.794) and Peak Signal-to-Noise Ratio (PSNR) by 18.34% (21.40 dB). When combined with KCC, the model achieves an average score of 0.85, demonstrating strong clinical applicability. The code is available at https://github.com/midisec/SCCDM.

Authors:Haoran Ye, Jing Jin, Yuhang Xie, Xin Zhang, Guojie Song
Title: Large Language Model Psychometrics: A Systematic Review of Evaluation, Validation, and Enhancement
Abstract:
The advancement of large language models (LLMs) has outpaced traditional evaluation methodologies. This progress presents novel challenges, such as measuring human-like psychological constructs, moving beyond static and task-specific benchmarks, and establishing human-centered evaluation. These challenges intersect with psychometrics, the science of quantifying the intangible aspects of human psychology, such as personality, values, and intelligence. This review paper introduces and synthesizes the emerging interdisciplinary field of LLM Psychometrics, which leverages psychometric instruments, theories, and principles to evaluate, understand, and enhance LLMs. The reviewed literature systematically shapes benchmarking principles, broadens evaluation scopes, refines methodologies, validates results, and advances LLM capabilities. Diverse perspectives are integrated to provide a structured framework for researchers across disciplines, enabling a more comprehensive understanding of this nascent field. Ultimately, the review provides actionable insights for developing future evaluation paradigms that align with human-level AI and promote the advancement of human-centered AI systems for societal benefit. A curated repository of LLM psychometric resources is available at https://github.com/valuebyte-ai/Awesome-LLM-Psychometrics.

Authors:Wangxuan Fan, Siqi Li, Doudou Zhou, Yohei Okada, Chuan Hong, Molei Liu, Nan Liu
Title: SIM-Shapley: A Stable and Computationally Efficient Approach to Shapley Value Approximation
Abstract:
Explainable artificial intelligence (XAI) is essential for trustworthy machine learning (ML), particularly in high-stakes domains such as healthcare and finance. Shapley value (SV) methods provide a principled framework for feature attribution in complex models but incur high computational costs, limiting their scalability in high-dimensional settings. We propose Stochastic Iterative Momentum for Shapley Value Approximation (SIM-Shapley), a stable and efficient SV approximation method inspired by stochastic optimization. We analyze variance theoretically, prove linear $Q$-convergence, and demonstrate improved empirical stability and low bias in practice on real-world datasets. In our numerical experiments, SIM-Shapley reduces computation time by up to 85% relative to state-of-the-art baselines while maintaining comparable feature attribution quality. Beyond feature attribution, our stochastic mini-batch iterative framework extends naturally to a broader class of sample average approximation problems, offering a new avenue for improving computational efficiency with stability guarantees. Code is publicly available at https://github.com/nliulab/SIM-Shapley.

Authors:Wangxuan Fan, Siqi Li, Doudou Zhou, Yohei Okada, Chuan Hong, Molei Liu, Nan Liu
Title: SIM-Shapley: A Stable and Computationally Efficient Approach to Shapley Value Approximation
Abstract:
Explainable artificial intelligence (XAI) is essential for trustworthy machine learning (ML), particularly in high-stakes domains such as healthcare and finance. Shapley value (SV) methods provide a principled framework for feature attribution in complex models but incur high computational costs, limiting their scalability in high-dimensional settings. We propose Stochastic Iterative Momentum for Shapley Value Approximation (SIM-Shapley), a stable and efficient SV approximation method inspired by stochastic optimization. We analyze variance theoretically, prove linear $Q$-convergence, and demonstrate improved empirical stability and low bias in practice on real-world datasets. In our numerical experiments, SIM-Shapley reduces computation time by up to 85% relative to state-of-the-art baselines while maintaining comparable feature attribution quality. Beyond feature attribution, our stochastic mini-batch iterative framework extends naturally to a broader class of sample average approximation problems, offering a new avenue for improving computational efficiency with stability guarantees. Code is publicly available at https://github.com/nliulab/SIM-Shapley.

Authors:He Huang, Qi Yang, Mufan Liu, Yiling Xu, Zhu Li
Title: ADC-GS: Anchor-Driven Deformable and Compressed Gaussian Splatting for Dynamic Scene Reconstruction
Abstract:
Existing 4D Gaussian Splatting methods rely on per-Gaussian deformation from a canonical space to target frames, which overlooks redundancy among adjacent Gaussian primitives and results in suboptimal performance. To address this limitation, we propose Anchor-Driven Deformable and Compressed Gaussian Splatting (ADC-GS), a compact and efficient representation for dynamic scene reconstruction. Specifically, ADC-GS organizes Gaussian primitives into an anchor-based structure within the canonical space, enhanced by a temporal significance-based anchor refinement strategy. To reduce deformation redundancy, ADC-GS introduces a hierarchical coarse-to-fine pipeline that captures motions at varying granularities. Moreover, a rate-distortion optimization is adopted to achieve an optimal balance between bitrate consumption and representation fidelity. Experimental results demonstrate that ADC-GS outperforms the per-Gaussian deformation approaches in rendering speed by 300%-800% while achieving state-of-the-art storage efficiency without compromising rendering quality. The code is released at https://github.com/H-Huang774/ADC-GS.git.

Authors:Xiannan Huang, Shuhan Qiu
Title: Feature Fitted Online Conformal Prediction for Deep Time Series Forecasting Model
Abstract:
Time series forecasting is critical for many applications, where deep learning-based point prediction models have demonstrated strong performance. However, in practical scenarios, there is also a need to quantify predictive uncertainty through online confidence intervals. Existing confidence interval modeling approaches building upon these deep point prediction models suffer from key limitations: they either require costly retraining, fail to fully leverage the representational strengths of deep models, or lack theoretical guarantees. To address these gaps, we propose a lightweight conformal prediction method that provides valid coverage and shorter interval lengths without retraining. Our approach leverages features extracted from pre-trained point prediction models to fit a residual predictor and construct confidence intervals, further enhanced by an adaptive coverage control mechanism. Theoretically, we prove that our method achieves asymptotic coverage convergence, with error bounds dependent on the feature quality of the underlying point prediction model. Experiments on 12 datasets demonstrate that our method delivers tighter confidence intervals while maintaining desired coverage rates. Code, model and dataset in \href{https://github.com/xiannanhuang/FFDCI}{Github}

Authors:Licheng Zhang, Bach Le, Naveed Akhtar, Siew-Kei Lam, Tuan Ngo
Title: Large Language Models for Computer-Aided Design: A Survey
Abstract:
Large Language Models (LLMs) have seen rapid advancements in recent years, with models like ChatGPT and DeepSeek, showcasing their remarkable capabilities across diverse domains. While substantial research has been conducted on LLMs in various fields, a comprehensive review focusing on their integration with Computer-Aided Design (CAD) remains notably absent. CAD is the industry standard for 3D modeling and plays a vital role in the design and development of products across different industries. As the complexity of modern designs increases, the potential for LLMs to enhance and streamline CAD workflows presents an exciting frontier. This article presents the first systematic survey exploring the intersection of LLMs and CAD. We begin by outlining the industrial significance of CAD, highlighting the need for AI-driven innovation. Next, we provide a detailed overview of the foundation of LLMs. We also examine both closed-source LLMs as well as publicly available models. The core of this review focuses on the various applications of LLMs in CAD, providing a taxonomy of six key areas where these models are making considerable impact. Finally, we propose several promising future directions for further advancements, which offer vast opportunities for innovation and are poised to shape the future of CAD technology. Github: https://github.com/lichengzhanguom/LLMs-CAD-Survey-Taxonomy

Authors:Jiashen, Du, Jesse Yao, Allen Liu, Zhekai Zhang
Title: Are LLMs complicated ethical dilemma analyzers?
Abstract:
One open question in the study of Large Language Models (LLMs) is whether they can emulate human ethical reasoning and act as believable proxies for human judgment. To investigate this, we introduce a benchmark dataset comprising 196 real-world ethical dilemmas and expert opinions, each segmented into five structured components: Introduction, Key Factors, Historical Theoretical Perspectives, Resolution Strategies, and Key Takeaways. We also collect non-expert human responses for comparison, limited to the Key Factors section due to their brevity. We evaluate multiple frontier LLMs (GPT-4o-mini, Claude-3.5-Sonnet, Deepseek-V3, Gemini-1.5-Flash) using a composite metric framework based on BLEU, Damerau-Levenshtein distance, TF-IDF cosine similarity, and Universal Sentence Encoder similarity. Metric weights are computed through an inversion-based ranking alignment and pairwise AHP analysis, enabling fine-grained comparison of model outputs to expert responses. Our results show that LLMs generally outperform non-expert humans in lexical and structural alignment, with GPT-4o-mini performing most consistently across all sections. However, all models struggle with historical grounding and proposing nuanced resolution strategies, which require contextual abstraction. Human responses, while less structured, occasionally achieve comparable semantic similarity, suggesting intuitive moral reasoning. These findings highlight both the strengths and current limitations of LLMs in ethical decision-making.

Authors:Luu Tung Hai, Thinh D. Le, Zhicheng Ding, Qing Tian, Truong-Son Hy
Title: Topology-Guided Knowledge Distillation for Efficient Point Cloud Processing
Abstract:
Point cloud processing has gained significant attention due to its critical role in applications such as autonomous driving and 3D object recognition. However, deploying high-performance models like Point Transformer V3 in resource-constrained environments remains challenging due to their high computational and memory demands. This work introduces a novel distillation framework that leverages topology-aware representations and gradient-guided knowledge distillation to effectively transfer knowledge from a high-capacity teacher to a lightweight student model. Our approach captures the underlying geometric structures of point clouds while selectively guiding the student model's learning process through gradient-based feature alignment. Experimental results in the Nuscenes, SemanticKITTI, and Waymo datasets demonstrate that the proposed method achieves competitive performance, with an approximately 16x reduction in model size and a nearly 1.9x decrease in inference time compared to its teacher model. Notably, on NuScenes, our method achieves state-of-the-art performance among knowledge distillation techniques trained solely on LiDAR data, surpassing prior knowledge distillation baselines in segmentation performance. Our implementation is available publicly at: https://github.com/HySonLab/PointDistill

Authors:Alexandre Cotorobai, Jorge Miguel Silva, Jose Luis Oliveira
Title: A Federated Random Forest Solution for Secure Distributed Machine Learning
Abstract:
Privacy and regulatory barriers often hinder centralized machine learning solutions, particularly in sectors like healthcare where data cannot be freely shared. Federated learning has emerged as a powerful paradigm to address these concerns; however, existing frameworks primarily support gradient-based models, leaving a gap for more interpretable, tree-based approaches. This paper introduces a federated learning framework for Random Forest classifiers that preserves data privacy and provides robust performance in distributed settings. By leveraging PySyft for secure, privacy-aware computation, our method enables multiple institutions to collaboratively train Random Forest models on locally stored data without exposing sensitive information. The framework supports weighted model averaging to account for varying data distributions, incremental learning to progressively refine models, and local evaluation to assess performance across heterogeneous datasets. Experiments on two real-world healthcare benchmarks demonstrate that the federated approach maintains competitive predictive accuracy - within a maximum 9\% margin of centralized methods - while satisfying stringent privacy requirements. These findings underscore the viability of tree-based federated learning for scenarios where data cannot be centralized due to regulatory, competitive, or technical constraints. The proposed solution addresses a notable gap in existing federated learning libraries, offering an adaptable tool for secure distributed machine learning tasks that demand both transparency and reliable performance. The tool is available at https://github.com/ieeta-pt/fed_rf.

Authors:Yu Cheng, Arushi Goel, Hakan Bilen
Title: Visually Interpretable Subtask Reasoning for Visual Question Answering
Abstract:
Answering complex visual questions like `Which red furniture can be used for sitting?' requires multi-step reasoning, including object recognition, attribute filtering, and relational understanding. Recent work improves interpretability in multimodal large language models (MLLMs) by decomposing tasks into sub-task programs, but these methods are computationally expensive and less accurate due to poor adaptation to target data. To address this, we introduce VISTAR (Visually Interpretable Subtask-Aware Reasoning Model), a subtask-driven training framework that enhances both interpretability and reasoning by generating textual and visual explanations within MLLMs. Instead of relying on external models, VISTAR fine-tunes MLLMs to produce structured Subtask-of-Thought rationales (step-by-step reasoning sequences). Experiments on two benchmarks show that VISTAR consistently improves reasoning accuracy while maintaining interpretability. Our code and dataset will be available at https://github.com/ChengJade/VISTAR.

Authors:Héber H. Arcolezi, Mina Alishahi, Adda-Akram Bendoukha, Nesrine Kaaniche
Title: Fair Play for Individuals, Foul Play for Groups? Auditing Anonymization's Impact on ML Fairness
Abstract:
Machine learning (ML) algorithms are heavily based on the availability of training data, which, depending on the domain, often includes sensitive information about data providers. This raises critical privacy concerns. Anonymization techniques have emerged as a practical solution to address these issues by generalizing features or suppressing data to make it more difficult to accurately identify individuals. Although recent studies have shown that privacy-enhancing technologies can influence ML predictions across different subgroups, thus affecting fair decision-making, the specific effects of anonymization techniques, such as $k$-anonymity, $\ell$-diversity, and $t$-closeness, on ML fairness remain largely unexplored. In this work, we systematically audit the impact of anonymization techniques on ML fairness, evaluating both individual and group fairness. Our quantitative study reveals that anonymization can degrade group fairness metrics by up to four orders of magnitude. Conversely, similarity-based individual fairness metrics tend to improve under stronger anonymization, largely as a result of increased input homogeneity. By analyzing varying levels of anonymization across diverse privacy settings and data distributions, this study provides critical insights into the trade-offs between privacy, fairness, and utility, offering actionable guidelines for responsible AI development. Our code is publicly available at: https://github.com/hharcolezi/anonymity-impact-fairness.

Authors:Joseph Tooby-Smith
Title: Digitalizing Wick's theorem
Abstract:
Wick's theorem is a cornerstone of perturbative quantum field theory. In this paper we announce and discuss the digitalization of Wick's theorem and its proof into the interactive theorem prover Lean 4 as part of the project PhysLean. We do the same for the static and normal-ordered versions of Wick's theorem.

Authors:Yuyang Liu, Liuzhenghao Lv, Xiancheng Zhang, Li Yuan, Yonghong Tian
Title: BioProBench: Comprehensive Dataset and Benchmark in Biological Protocol Understanding and Reasoning
Abstract:
Biological protocols are fundamental to reproducibility and safety in life science research. While large language models (LLMs) perform well on general tasks, their systematic evaluation on these highly specialized, accuracy-critical, and inherently procedural texts remains limited. In this work, we present BioProBench, the first large-scale, multi-task benchmark for biological protocol understanding and reasoning. While there are several benchmark tasks involving protocol question answering, BioProBench provides a comprehensive suite of five core tasks: Protocol Question Answering, Step Ordering, Error Correction, Protocol Generation, and Protocol Reasoning, enabling a holistic evaluation of LLMs on procedural biological texts. Built upon 27K original protocols, it yields nearly 556K high-quality structured instances. We evaluate 12 mainstream open/closed-source LLMs. Experimental results reveal that some models perform well on basic understanding tasks (e.g., \sim70% PQA-Acc., >64% ERR F1), but struggle significantly with deep reasoning and structured generation tasks like ordering and generation. Furthermore, model comparisons show diverse performance: certain open-source models approach closed-source levels on some tasks, yet bio-specific small models lag behind general LLMs, indicating limitations on complex procedural content. Overall, BioProBench, through its task design and experimental findings, systematically reveals the fundamental challenges for current LLMs in procedural knowledge understanding, deep adaptability to specific domains, reliability of structured reasoning, and handling of sophisticated precision and safety constraints, providing key directions for future AI in the field of scientific experiment automation. The code and data are available at: https://github.com/YuyangSunshine/bioprotocolbench and https://huggingface.co/datasets/BioProBench/BioProBench.

Authors:Qian Xu, Lei Zhang, Yixiao Liu
Title: Enhancing Trust Management System for Connected Autonomous Vehicles Using Machine Learning Methods: A Survey
Abstract:
Connected Autonomous Vehicles (CAVs) operate in dynamic, open, and multi-domain networks, rendering them vulnerable to various threats. Trust Management Systems (TMS) systematically organize essential steps in the trust mechanism, identifying malicious nodes against internal threats and external threats, as well as ensuring reliable decision-making for more cooperative tasks. Recent advances in machine learning (ML) offer significant potential to enhance TMS, especially for the strict requirements of CAVs, such as CAV nodes moving at varying speeds, and opportunistic and intermittent network behavior. Those features distinguish ML-based TMS from social networks, static IoT, and Social IoT. This survey proposes a novel three-layer ML-based TMS framework for CAVs in the vehicle-road-cloud integration system, i.e., trust data layer, trust calculation layer and trust incentive layer. A six-dimensional taxonomy of objectives is proposed. Furthermore, the principles of ML methods for each module in each layer are analyzed. Then, recent studies are categorized based on traffic scenarios that are against the proposed objectives. Finally, future directions are suggested, addressing the open issues and meeting the research trend. We maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/octoberzzzzz/ML-based-TMS-CAV-Survey.

Authors:Chenze Shao, Fandong Meng, Jie Zhou
Title: Continuous Visual Autoregressive Generation via Score Maximization
Abstract:
Conventional wisdom suggests that autoregressive models are used to process discrete data. When applied to continuous modalities such as visual data, Visual AutoRegressive modeling (VAR) typically resorts to quantization-based approaches to cast the data into a discrete space, which can introduce significant information loss. To tackle this issue, we introduce a Continuous VAR framework that enables direct visual autoregressive generation without vector quantization. The underlying theoretical foundation is strictly proper scoring rules, which provide powerful statistical tools capable of evaluating how well a generative model approximates the true distribution. Within this framework, all we need is to select a strictly proper score and set it as the training objective to optimize. We primarily explore a class of training objectives based on the energy score, which is likelihood-free and thus overcomes the difficulty of making probabilistic predictions in the continuous space. Previous efforts on continuous autoregressive generation, such as GIVT and diffusion loss, can also be derived from our framework using other strictly proper scores. Source code: https://github.com/shaochenze/EAR.

Authors:Assaf Ben-Kish, Itamar Zimerman, M. Jehanzeb Mirza, Lior Wolf, James Glass, Leonid Karlinsky, Raja Giryes
Title: Overflow Prevention Enhances Long-Context Recurrent LLMs
Abstract:
A recent trend in LLMs is developing recurrent sub-quadratic models that improve long-context processing efficiency. We investigate leading large long-context models, focusing on how their fixed-size recurrent memory affects their performance. Our experiments reveal that, even when these models are trained for extended contexts, their use of long contexts remains underutilized. Specifically, we demonstrate that a chunk-based inference procedure, which identifies and processes only the most relevant portion of the input can mitigate recurrent memory failures and be effective for many long-context tasks: On LongBench, our method improves the overall performance of Falcon3-Mamba-Inst-7B by 14%, Falcon-Mamba-Inst-7B by 28%, RecurrentGemma-IT-9B by 50%, and RWKV6-Finch-7B by 51%. Surprisingly, this simple approach also leads to state-of-the-art results in the challenging LongBench v2 benchmark, showing competitive performance with equivalent size Transformers. Furthermore, our findings raise questions about whether recurrent models genuinely exploit long-range dependencies, as our single-chunk strategy delivers stronger performance - even in tasks that presumably require cross-context relations.

Authors:Xinji Mai, Haotian Xu, Zhong-Zhi Li, Xing W, Weinong Wang, Jian Hu, Yingying Zhang, Wenqiang Zhang
Title: Agent RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving
Abstract:
Large Language Models (LLMs) often struggle with mathematical reasoning tasks requiring precise, verifiable computation. While Reinforcement Learning (RL) from outcome-based rewards enhances text-based reasoning, understanding how agents autonomously learn to leverage external tools like code execution remains crucial. We investigate RL from outcome-based rewards for Tool-Integrated Reasoning, ZeroTIR, training base LLMs to spontaneously generate and execute Python code for mathematical problems without supervised tool-use examples. Our central contribution is we demonstrate that as RL training progresses, key metrics scale predictably. Specifically, we observe strong positive correlations where increased training steps lead to increases in the spontaneous code execution frequency, the average response length, and, critically, the final task accuracy. This suggests a quantifiable relationship between computational effort invested in training and the emergence of effective, tool-augmented reasoning strategies. We implement a robust framework featuring a decoupled code execution environment and validate our findings across standard RL algorithms and frameworks. Experiments show ZeroTIR significantly surpasses non-tool ZeroRL baselines on challenging math benchmarks. Our findings provide a foundational understanding of how autonomous tool use is acquired and scales within Agent RL, offering a reproducible benchmark for future studies. Code is released at \href{https://github.com/yyht/openrlhf_async_pipline}{https://github.com/yyht/openrlhf\_async\_pipline}.

Authors:Quang Vinh Nguyen, Minh Duc Nguyen, Thanh Hoang Son Vo, Hyung-Jeong Yang, Soo-Hyung Kim
Title: Anatomical Attention Alignment representation for Radiology Report Generation
Abstract:
Automated Radiology report generation (RRG) aims at producing detailed descriptions of medical images, reducing radiologists' workload and improving access to high-quality diagnostic services. Existing encoder-decoder models only rely on visual features extracted from raw input images, which can limit the understanding of spatial structures and semantic relationships, often resulting in suboptimal text generation. To address this, we propose Anatomical Attention Alignment Network (A3Net), a framework that enhance visual-textual understanding by constructing hyper-visual representations. Our approach integrates a knowledge dictionary of anatomical structures with patch-level visual features, enabling the model to effectively associate image regions with their corresponding anatomical entities. This structured representation improves semantic reasoning, interpretability, and cross-modal alignment, ultimately enhancing the accuracy and clinical relevance of generated reports. Experimental results on IU X-Ray and MIMIC-CXR datasets demonstrate that A3Net significantly improves both visual perception and text generation quality. Our code is available at \href{https://github.com/Vinh-AI/A3Net}{GitHub}.

Authors:Feng Yuan, Yifan Gao, Wenbin Wu, Keqing Wu, Xiaotong Guo, Jie Jiang, Xin Gao
Title: ABS-Mamba: SAM2-Driven Bidirectional Spiral Mamba Network for Medical Image Translation
Abstract:
Accurate multi-modal medical image translation requires ha-rmonizing global anatomical semantics and local structural fidelity, a challenge complicated by intermodality information loss and structural distortion. We propose ABS-Mamba, a novel architecture integrating the Segment Anything Model 2 (SAM2) for organ-aware semantic representation, specialized convolutional neural networks (CNNs) for preserving modality-specific edge and texture details, and Mamba's selective state-space modeling for efficient long- and short-range feature dependencies. Structurally, our dual-resolution framework leverages SAM2's image encoder to capture organ-scale semantics from high-resolution inputs, while a parallel CNNs branch extracts fine-grained local features. The Robust Feature Fusion Network (RFFN) integrates these epresentations, and the Bidirectional Mamba Residual Network (BMRN) models spatial dependencies using spiral scanning and bidirectional state-space dynamics. A three-stage skip fusion decoder enhances edge and texture fidelity. We employ Efficient Low-Rank Adaptation (LoRA+) fine-tuning to enable precise domain specialization while maintaining the foundational capabilities of the pre-trained components. Extensive experimental validation on the SynthRAD2023 and BraTS2019 datasets demonstrates that ABS-Mamba outperforms state-of-the-art methods, delivering high-fidelity cross-modal synthesis that preserves anatomical semantics and structural details to enhance diagnostic accuracy in clinical applications. The code is available at https://github.com/gatina-yone/ABS-Mamba

Authors:Seongjae Kang, Dong Bok Lee, Hyungjoon Jang, Sung Ju Hwang
Title: Simple yet Effective Semi-supervised Knowledge Distillation from Vision-Language Models via Dual-Head Optimization
Abstract:
Semi-supervised learning (SSL) has emerged as a practical solution for addressing data scarcity challenges by leveraging unlabeled data. Recently, vision-language models (VLMs), pre-trained on massive image-text pairs, have demonstrated remarkable zero-/few-shot performance that often surpasses SSL approaches due to their exceptional generalization capabilities. This gap motivates us to question: how can we effectively harness the powerful generalization capabilities of VLMs into task-specific models? Knowledge distillation (KD) offers a natural framework for transferring VLM capabilities, but we identify that it suffers from gradient conflicts between supervised and distillation losses. To address this challenge, we propose Dual-Head Optimization (DHO), which introduces dual prediction heads for each distinct signal. We observe that DHO resolves gradient conflicts, enabling improved feature learning compared to single-head KD baselines, with practical benefits of minimal computational overhead and test-time hyperparameter tuning without retraining. Extensive experiments across 15 datasets show that DHO consistently outperforms KD baselines, often outperforming teacher models with smaller student models. DHO also achieves new state-of-the-art performance on both in-distribution ImageNet semi-supervised learning and out-of-distribution generalization across ImageNet variants. We publicly release our code and model checkpoints to facilitate future research at https://github.com/erjui/DHO.

Authors:Dieu-Donne Fangnon, Armandine Sorel Kouyim Meli, Verlon Roel Mbingui, Phanie Dianelle Negho, Regis Konan Marcel Djaha
Title: A comparative study of Bitcoin and Ripple cryptocurrencies trading using Deep Reinforcement Learning algorithms
Abstract:
Artificial intelligence (AI) has demonstrated remarkable success across various applications. In light of this trend, the field of automated trading has developed a keen interest in leveraging AI techniques to forecast the future prices of financial assets. This interest stems from the need to address trading challenges posed by the inherent volatility and dynamic nature of asset prices. However, crafting a flawless strategy becomes a formidable task when dealing with assets characterized by intricate and ever-changing price dynamics. To surmount these formidable challenges, this research employs an innovative rule-based strategy approach to train Deep Reinforcement Learning (DRL). This application is carried out specifically in the context of trading Bitcoin (BTC) and Ripple (XRP). Our proposed approach hinges on the integration of Deep Q-Network, Double Deep Q-Network, Dueling Deep Q-learning networks, alongside the Advantage Actor-Critic algorithms. Each of them aims to yield an optimal policy for our application. To evaluate the effectiveness of our Deep Reinforcement Learning (DRL) approach, we rely on portfolio wealth and the trade signal as performance metrics. The experimental outcomes highlight that Duelling and Double Deep Q-Network outperformed when using XRP with the increasing of the portfolio wealth. All codes are available in this \href{https://github.com/VerlonRoelMBINGUI/RL_Final_Projects_AMMI2023}{\color{blue}Github link}.

Authors:Paul Primus, Florian Schmid, Gerhard Widmer
Title: TACOS: Temporally-aligned Audio CaptiOnS for Language-Audio Pretraining
Abstract:
Learning to associate audio with textual descriptions is valuable for a range of tasks, including pretraining, zero-shot classification, audio retrieval, audio captioning, and text-conditioned audio generation. Existing contrastive language-audio pretrained models are typically trained using global, clip-level descriptions, which provide only weak temporal supervision. We hypothesize that CLAP-like language-audio models - particularly, if they are expected to produce frame-level embeddings - can benefit from a stronger temporal supervision. To confirm our hypothesis, we curate a novel dataset of approximately 12,000 audio recordings from Freesound, each annotated with single-sentence free-text descriptions linked to a specific temporal segment in an audio recording. We use large language models to clean these annotations by removing references to non-audible events, transcribed speech, typos, and annotator language bias. We further propose a frame-wise contrastive training strategy that learns to align text descriptions with temporal regions in an audio recording and demonstrate that our model has better temporal text-audio alignment abilities compared to models trained only on global captions when evaluated on the AudioSet Strong benchmark. The dataset and our source code are available on Zenodo and GitHub, respectively.

Authors:LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin Zhang, Huaqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang, Shihua Yu, Shimao Chen, Weikun Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song, Zihan Jiang, Bowen Ye, Can Cai, Chenhong He, Dong Zhang, Duo Zhang, Guoan Wang, Hao Tian, Haochen Zhao, Heng Qu, Hongshen Xu, Jun Shi, Kainan Bao, Kai Fang, Kang Zhou, Kangyang Zhou, Lei Li, Menghang Zhu, Nuo Chen, Qiantong Wang, Shaohui Liu, Shicheng Li, Shuhao Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang, Weiwei Lv, Wenyu Yang, Xin Zhang, Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang, Yihan Yan, Yu Tu, Yuanyuan Tian, Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, Zihao Yue
Title: MiMo: Unlocking the Reasoning Potential of Language Model -- From Pretraining to Posttraining
Abstract:
We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at https://github.com/xiaomimimo/MiMo.

Authors:Junjie Ye, Caishuang Huang, Zhuohan Chen, Wenjie Fu, Chenyuan Yang, Leyi Yang, Yilong Wu, Peng Wang, Meng Zhou, Xiaolong Yang, Tao Gui, Qi Zhang, Zhongchao Shi, Jianping Fan, Xuanjing Huang
Title: A Multi-Dimensional Constraint Framework for Evaluating and Improving Instruction Following in Large Language Models
Abstract:
Instruction following evaluates large language models (LLMs) on their ability to generate outputs that adhere to user-defined constraints. However, existing benchmarks often rely on templated constraint prompts, which lack the diversity of real-world usage and limit fine-grained performance assessment. To fill this gap, we propose a multi-dimensional constraint framework encompassing three constraint patterns, four constraint categories, and four difficulty levels. Building on this framework, we develop an automated instruction generation pipeline that performs constraint expansion, conflict detection, and instruction rewriting, yielding 1,200 code-verifiable instruction-following test samples. We evaluate 19 LLMs across seven model families and uncover substantial variation in performance across constraint forms. For instance, average performance drops from 77.67% at Level I to 32.96% at Level IV. Furthermore, we demonstrate the utility of our approach by using it to generate data for reinforcement learning, achieving substantial gains in instruction following without degrading general performance. In-depth analysis indicates that these gains stem primarily from modifications in the model's attention modules parameters, which enhance constraint recognition and adherence. Code and data are available in https://github.com/Junjie-Ye/MulDimIF.

Authors:Sarah de Boer, Hartmut Häntze, Kiran Vaidhya Venkadesh, Myrthe A. D. Buser, Gabriel E. Humpire Mamani, Lina Xu, Lisa C. Adams, Jawed Nawabi, Keno K. Bressem, Bram van Ginneken, Mathias Prokop, Alessa Hering
Title: Robust Kidney Abnormality Segmentation: A Validation Study of an AI-Based Framework
Abstract:
Kidney abnormality segmentation has important potential to enhance the clinical workflow, especially in settings requiring quantitative assessments. Kidney volume could serve as an important biomarker for renal diseases, with changes in volume correlating directly with kidney function. Currently, clinical practice often relies on subjective visual assessment for evaluating kidney size and abnormalities, including tumors and cysts, which are typically staged based on diameter, volume, and anatomical location. To support a more objective and reproducible approach, this research aims to develop a robust, thoroughly validated kidney abnormality segmentation algorithm, made publicly available for clinical and research use. We employ publicly available training datasets and leverage the state-of-the-art medical image segmentation framework nnU-Net. Validation is conducted using both proprietary and public test datasets, with segmentation performance quantified by Dice coefficient and the 95th percentile Hausdorff distance. Furthermore, we analyze robustness across subgroups based on patient sex, age, CT contrast phases, and tumor histologic subtypes. Our findings demonstrate that our segmentation algorithm, trained exclusively on publicly available data, generalizes effectively to external test sets and outperforms existing state-of-the-art models across all tested datasets. Subgroup analyses reveal consistent high performance, indicating strong robustness and reliability. The developed algorithm and associated code are publicly accessible at https://github.com/DIAGNijmegen/oncology-kidney-abnormality-segmentation.

Authors:Kamil Jeziorek, Tomasz Kryjak
Title: Self-Supervised Event Representations: Towards Accurate, Real-Time Perception on SoC FPGAs
Abstract:
Event cameras offer significant advantages over traditional frame-based sensors. These include microsecond temporal resolution, robustness under varying lighting conditions and low power consumption. Nevertheless, the effective processing of their sparse, asynchronous event streams remains challenging. Existing approaches to this problem can be categorised into two distinct groups. The first group involves the direct processing of event data with neural models, such as Spiking Neural Networks or Graph Convolutional Neural Networks. However, this approach is often accompanied by a compromise in terms of qualitative performance. The second group involves the conversion of events into dense representations with handcrafted aggregation functions, which can boost accuracy at the cost of temporal fidelity. This paper introduces a novel Self-Supervised Event Representation (SSER) method leveraging Gated Recurrent Unit (GRU) networks to achieve precise per-pixel encoding of event timestamps and polarities without temporal discretisation. The recurrent layers are trained in a self-supervised manner to maximise the fidelity of event-time encoding. The inference is performed with event representations generated asynchronously, thus ensuring compatibility with high-throughput sensors. The experimental validation demonstrates that SSER outperforms aggregation-based baselines, achieving improvements of 2.4% mAP and 0.6% on the Gen1 and 1 Mpx object detection datasets. Furthermore, the paper presents the first hardware implementation of recurrent representation for event data on a System-on-Chip FPGA, achieving sub-microsecond latency and power consumption between 1-2 W, suitable for real-time, power-efficient applications. Code is available at https://github.com/vision-agh/RecRepEvent.

Authors:Hu Wang, Congbo Ma, Ian Reid, Mohammad Yaqub
Title: Kalman Filter Enhanced GRPO for Reinforcement Learning-Based Language Model Reasoning
Abstract:
The advantage function is a central concept in RL that helps reduce variance in policy gradient estimates. Recently, for language modeling, Group Relative Policy Optimization (GRPO) was proposed to compute the advantage for each output by subtracting the mean reward, as the baseline, for all outputs in the group. However, it can lead to high variance when the reward advantage is inaccurately predicted. In this work, we propose Kalman Filter Enhanced Group Relative Policy Optimization (KRPO) model, by using lightweight Kalman filtering to dynamically estimate the latent reward baseline and uncertainty. This filtering technique replaces the naive group mean, enabling more adaptive advantage normalization. Our method does not require additional learned parameters over GRPO. This approach offers a simple yet effective way to incorporate multiple outputs of GRPO into advantage estimation, improving policy optimization in settings where highly dynamic reward signals are difficult to model for language models. Through the accuracies and rewards obtained from math question answering and reasoning, we show that using a more adaptive advantage estimation model, KRPO can improve the stability and performance of GRPO. The code is available at https://github.com/billhhh/KRPO_LLMs_RL.

Authors:Feng Ding, Tingting Wang, Yupeng Gao, Shuo Yu, Jing Ren, Feng Xia
Title: HALO: Half Life-Based Outdated Fact Filtering in Temporal Knowledge Graphs
Abstract:
Outdated facts in temporal knowledge graphs (TKGs) result from exceeding the expiration date of facts, which negatively impact reasoning performance on TKGs. However, existing reasoning methods primarily focus on positive importance of historical facts, neglecting adverse effects of outdated facts. Besides, training on these outdated facts yields extra computational cost. To address these challenges, we propose an outdated fact filtering framework named HALO, which quantifies the temporal validity of historical facts by exploring the half-life theory to filter outdated facts in TKGs. HALO consists of three modules: the temporal fact attention module, the dynamic relation-aware encoder module, and the outdated fact filtering module. Firstly, the temporal fact attention module captures the evolution of historical facts over time to identify relevant facts. Secondly, the dynamic relation-aware encoder module is designed for efficiently predicting the half life of each fact. Finally, we construct a time decay function based on the half-life theory to quantify the temporal validity of facts and filter outdated facts. Experimental results show that HALO outperforms the state-of-the-art TKG reasoning methods on three public datasets, demonstrating its effectiveness in detecting and filtering outdated facts (Codes are available at https://github.com/yushuowiki/K-Half/tree/main ).

Authors:Mohamed Ali Souibgui, Changkyu Choi, Andrey Barsky, Kangsoo Jung, Ernest Valveny, Dimosthenis Karatzas
Title: DocVXQA: Context-Aware Visual Explanations for Document Question Answering
Abstract:
We propose DocVXQA, a novel framework for visually self-explainable document question answering. The framework is designed not only to produce accurate answers to questions but also to learn visual heatmaps that highlight contextually critical regions, thereby offering interpretable justifications for the model's decisions. To integrate explanations into the learning process, we quantitatively formulate explainability principles as explicit learning objectives. Unlike conventional methods that emphasize only the regions pertinent to the answer, our framework delivers explanations that are \textit{contextually sufficient} while remaining \textit{representation-efficient}. This fosters user trust while achieving a balance between predictive performance and interpretability in DocVQA applications. Extensive experiments, including human evaluation, provide strong evidence supporting the effectiveness of our method. The code is available at https://github.com/dali92002/DocVXQA.

Authors:Hongkun Dou, Zeyu Li, Xingyu Jiang, Hongjue Li, Lijun Yang, Wen Yao, Yue Deng
Title: You Only Look One Step: Accelerating Backpropagation in Diffusion Sampling with Gradient Shortcuts
Abstract:
Diffusion models (DMs) have recently demonstrated remarkable success in modeling large-scale data distributions. However, many downstream tasks require guiding the generated content based on specific differentiable metrics, typically necessitating backpropagation during the generation process. This approach is computationally expensive, as generating with DMs often demands tens to hundreds of recursive network calls, resulting in high memory usage and significant time consumption. In this paper, we propose a more efficient alternative that approaches the problem from the perspective of parallel denoising. We show that full backpropagation throughout the entire generation process is unnecessary. The downstream metrics can be optimized by retaining the computational graph of only one step during generation, thus providing a shortcut for gradient propagation. The resulting method, which we call Shortcut Diffusion Optimization (SDO), is generic, high-performance, and computationally lightweight, capable of optimizing all parameter types in diffusion sampling. We demonstrate the effectiveness of SDO on several real-world tasks, including controlling generation by optimizing latent and aligning the DMs by fine-tuning network parameters. Compared to full backpropagation, our approach reduces computational costs by $\sim 90\%$ while maintaining superior performance. Code is available at https://github.com/deng-ai-lab/SDO.

Authors:Wei Li, Ming Hu, Guoan Wang, Lihao Liu, Kaijing Zhou, Junzhi Ning, Xin Guo, Zongyuan Ge, Lixu Gu, Junjun He
Title: Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model
Abstract:
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/uni-medical/Ophora.

Authors:Peng Sun, Yi Jiang, Tao Lin
Title: Unified Continuous Generative Models
Abstract:
Recent advances in continuous generative models, including multi-step approaches like diffusion and flow-matching (typically requiring 8-1000 sampling steps) and few-step methods such as consistency models (typically 1-8 steps), have demonstrated impressive generative performance. However, existing work often treats these approaches as distinct paradigms, resulting in separate training and sampling methodologies. We introduce a unified framework for training, sampling, and analyzing these models. Our implementation, the Unified Continuous Generative Models Trainer and Sampler (UCGM-{T,S}), achieves state-of-the-art (SOTA) performance. For example, on ImageNet 256x256 using a 675M diffusion transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps and a few-step model reaching 1.42 FID in just 2 steps. Additionally, applying UCGM-S to a pre-trained model (previously 1.26 FID at 250 steps) improves performance to 1.06 FID in only 40 steps. Code is available at: https://github.com/LINs-lab/UCGM.

Authors:Truc Mai-Thanh Nguyen, Dat Minh Nguyen, Son T. Luu, Kiet Van Nguyen
Title: ViMRHP: A Vietnamese Benchmark Dataset for Multimodal Review Helpfulness Prediction via Human-AI Collaborative Annotation
Abstract:
Multimodal Review Helpfulness Prediction (MRHP) is an essential task in recommender systems, particularly in E-commerce platforms. Determining the helpfulness of user-generated reviews enhances user experience and improves consumer decision-making. However, existing datasets focus predominantly on English and Indonesian, resulting in a lack of linguistic diversity, especially for low-resource languages such as Vietnamese. In this paper, we introduce ViMRHP (Vietnamese Multimodal Review Helpfulness Prediction), a large-scale benchmark dataset for MRHP task in Vietnamese. This dataset covers four domains, including 2K products with 46K reviews. Meanwhile, a large-scale dataset requires considerable time and cost. To optimize the annotation process, we leverage AI to assist annotators in constructing the ViMRHP dataset. With AI assistance, annotation time is reduced (90 to 120 seconds per task down to 20 to 40 seconds per task) while maintaining data quality and lowering overall costs by approximately 65%. However, AI-generated annotations still have limitations in complex annotation tasks, which we further examine through a detailed performance analysis. In our experiment on ViMRHP, we evaluate baseline models on human-verified and AI-generated annotations to assess their quality differences. The ViMRHP dataset is publicly available at https://github.com/trng28/ViMRHP

Authors:Wenhao Hu, Paul Henderson, José Cano
Title: ICE-Pruning: An Iterative Cost-Efficient Pruning Pipeline for Deep Neural Networks
Abstract:
Pruning is a widely used method for compressing Deep Neural Networks (DNNs), where less relevant parameters are removed from a DNN model to reduce its size. However, removing parameters reduces model accuracy, so pruning is typically combined with fine-tuning, and sometimes other operations such as rewinding weights, to recover accuracy. A common approach is to repeatedly prune and then fine-tune, with increasing amounts of model parameters being removed in each step. While straightforward to implement, pruning pipelines that follow this approach are computationally expensive due to the need for repeated fine-tuning. In this paper we propose ICE-Pruning, an iterative pruning pipeline for DNNs that significantly decreases the time required for pruning by reducing the overall cost of fine-tuning, while maintaining a similar accuracy to existing pruning pipelines. ICE-Pruning is based on three main components: i) an automatic mechanism to determine after which pruning steps fine-tuning should be performed; ii) a freezing strategy for faster fine-tuning in each pruning step; and iii) a custom pruning-aware learning rate scheduler to further improve the accuracy of each pruning step and reduce the overall time consumption. We also propose an efficient auto-tuning stage for the hyperparameters (e.g., freezing percentage) introduced by the three components. We evaluate ICE-Pruning on several DNN models and datasets, showing that it can accelerate pruning by up to 9.61x. Code is available at https://github.com/gicLAB/ICE-Pruning

Authors:Chunpeng Li, Ya-tang Li
Title: Feature Visualization in 3D Convolutional Neural Networks
Abstract:
Understanding the computations of convolutional neural networks requires effective visualization of their kernels. While maximal activation methods have proven successful in highlighting the preferred features of 2D convolutional kernels, directly applying these techniques to 3D convolutions often leads to uninterpretable results due to the higher dimensionality and complexity of 3D features. To address this challenge, we propose a novel visualization approach for 3D convolutional kernels that disentangles their texture and motion preferences. Our method begins with a data-driven decomposition of the optimal input that maximally activates a given kernel. We then introduce a two-stage optimization strategy to extract distinct texture and motion components from this input. Applying our approach to visualize kernels at various depths of several pre-trained models, we find that the resulting visualizations--particularly those capturing motion--clearly reveal the preferred dynamic patterns encoded by 3D kernels. These results demonstrate the effectiveness of our method in providing interpretable insights into 3D convolutional operations. Code is available at https://github.com/YatangLiLab/3DKernelVisualizer.

Authors:Yuqi Cheng, Yunkang Cao, Dongfang Wang, Weiming Shen, Wenlong Li
Title: Boosting Global-Local Feature Matching via Anomaly Synthesis for Multi-Class Point Cloud Anomaly Detection
Abstract:
Point cloud anomaly detection is essential for various industrial applications. The huge computation and storage costs caused by the increasing product classes limit the application of single-class unsupervised methods, necessitating the development of multi-class unsupervised methods. However, the feature similarity between normal and anomalous points from different class data leads to the feature confusion problem, which greatly hinders the performance of multi-class methods. Therefore, we introduce a multi-class point cloud anomaly detection method, named GLFM, leveraging global-local feature matching to progressively separate data that are prone to confusion across multiple classes. Specifically, GLFM is structured into three stages: Stage-I proposes an anomaly synthesis pipeline that stretches point clouds to create abundant anomaly data that are utilized to adapt the point cloud feature extractor for better feature representation. Stage-II establishes the global and local memory banks according to the global and local feature distributions of all the training data, weakening the impact of feature confusion on the establishment of the memory bank. Stage-III implements anomaly detection of test data leveraging its feature distance from global and local memory banks. Extensive experiments on the MVTec 3D-AD, Real3D-AD and actual industry parts dataset showcase our proposed GLFM's superior point cloud anomaly detection performance. The code is available at https://github.com/hustCYQ/GLFM-Multi-class-3DAD.

Authors:Zhiye Xie, Enmei Tu, Xianping Fu, Guoliang Yuan, Yi Han
Title: AIS Data-Driven Maritime Monitoring Based on Transformer: A Comprehensive Review
Abstract:
With the increasing demands for safety, efficiency, and sustainability in global shipping, Automatic Identification System (AIS) data plays an increasingly important role in maritime monitoring. AIS data contains spatial-temporal variation patterns of vessels that hold significant research value in the marine domain. However, due to its massive scale, the full potential of AIS data has long remained untapped. With its powerful sequence modeling capabilities, particularly its ability to capture long-range dependencies and complex temporal dynamics, the Transformer model has emerged as an effective tool for processing AIS data. Therefore, this paper reviews the research on Transformer-based AIS data-driven maritime monitoring, providing a comprehensive overview of the current applications of Transformer models in the marine field. The focus is on Transformer-based trajectory prediction methods, behavior detection, and prediction techniques. Additionally, this paper collects and organizes publicly available AIS datasets from the reviewed papers, performing data filtering, cleaning, and statistical analysis. The statistical results reveal the operational characteristics of different vessel types, providing data support for further research on maritime monitoring tasks. Finally, we offer valuable suggestions for future research, identifying two promising research directions. Datasets are available at https://github.com/eyesofworld/Maritime-Monitoring.

Authors:Prateek Garg, Lokesh Nagalapatti, Sunita Sarawagi
Title: From Search To Sampling: Generative Models For Robust Algorithmic Recourse
Abstract:
Algorithmic Recourse provides recommendations to individuals who are adversely impacted by automated model decisions, on how to alter their profiles to achieve a favorable outcome. Effective recourse methods must balance three conflicting goals: proximity to the original profile to minimize cost, plausibility for realistic recourse, and validity to ensure the desired outcome. We show that existing methods train for these objectives separately and then search for recourse through a joint optimization over the recourse goals during inference, leading to poor recourse recommendations. We introduce GenRe, a generative recourse model designed to train the three recourse objectives jointly. Training such generative models is non-trivial due to lack of direct recourse supervision. We propose efficient ways to synthesize such supervision and further show that GenRe's training leads to a consistent estimator. Unlike most prior methods, that employ non-robust gradient descent based search during inference, GenRe simply performs a forward sampling over the generative model to produce minimum cost recourse, leading to superior performance across multiple metrics. We also demonstrate GenRe provides the best trade-off between cost, plausibility and validity, compared to state-of-art baselines. Our code is available at: https://github.com/prateekgargx/genre.

Authors:Keyue Qiu, Yuxuan Song, Zhehuan Fan, Peidong Liu, Zhe Zhang, Mingyue Zheng, Hao Zhou, Wei-Ying Ma
Title: Piloting Structure-Based Drug Design via Modality-Specific Optimal Schedule
Abstract:
Structure-Based Drug Design (SBDD) is crucial for identifying bioactive molecules. Recent deep generative models are faced with challenges in geometric structure modeling. A major bottleneck lies in the twisted probability path of multi-modalities -- continuous 3D positions and discrete 2D topologies -- which jointly determine molecular geometries. By establishing the fact that noise schedules decide the Variational Lower Bound (VLB) for the twisted probability path, we propose VLB-Optimal Scheduling (VOS) strategy in this under-explored area, which optimizes VLB as a path integral for SBDD. Our model effectively enhances molecular geometries and interaction modeling, achieving state-of-the-art PoseBusters passing rate of 95.9% on CrossDock, more than 10% improvement upon strong baselines, while maintaining high affinities and robust intramolecular validity evaluated on held-out test set. Code is available at https://github.com/AlgoMole/MolCRAFT.

Authors:Javier Salazar Cavazos, Jeffrey A. Fessler, Laura Balzano
Title: ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
Abstract:
Principal component analysis (PCA) is a key tool in the field of data dimensionality reduction. However, some applications involve heterogeneous data that vary in quality due to noise characteristics associated with each data sample. Heteroscedastic methods aim to deal with such mixed data quality. This paper develops a subspace learning method, named ALPCAH, that can estimate the sample-wise noise variances and use this information to improve the estimate of the subspace basis associated with the low-rank structure of the data. Our method makes no distributional assumptions of the low-rank component and does not assume that the noise variances are known. Further, this method uses a soft rank constraint that does not require subspace dimension to be known. Additionally, this paper develops a matrix factorized version of ALPCAH, named LR-ALPCAH, that is much faster and more memory efficient at the cost of requiring subspace dimension to be known or estimated. Simulations and real data experiments show the effectiveness of accounting for data heteroscedasticity compared to existing algorithms. Code available at https://github.com/javiersc1/ALPCAH.

Authors:Jiwoo Hong, Noah Lee, Eunki Kim, Guijin Son, Woojin Chung, Aman Gupta, Shao Tang, James Thorne
Title: On the Robustness of Reward Models for Language Model Alignment
Abstract:
The Bradley-Terry (BT) model is widely practiced in reward modeling for reinforcement learning with human feedback (RLHF). Despite its effectiveness, reward models (RMs) trained with BT model loss are prone to over-optimization, losing generalizability to unseen input distributions. In this paper, we study the cause of over-optimization in RM training and its downstream effects on the RLHF procedure, accentuating the importance of distributional robustness of RMs in unseen data. First, we show that the excessive dispersion of hidden state norms is the main source of over-optimization. Then, we propose batch-wise sum-to-zero regularization (BSR) to enforce zero-centered reward sum per batch, constraining the rewards with extreme magnitudes. We assess the impact of BSR in improving robustness in RMs through four scenarios of over-optimization, where BSR consistently manifests better robustness. Subsequently, we compare the plain BT model and BSR on RLHF training and empirically show that robust RMs better align the policy to the gold preference model. Finally, we apply BSR to high-quality data and models, which surpasses state-of-the-art RMs in the 8B scale by adding more than 5% in complex preference prediction tasks. By conducting RLOO training with 8B RMs, AlpacaEval 2.0 reduces generation length by 40% while adding a 7% increase in win rate, further highlighting that robustness in RMs induces robustness in RLHF training. We release the code, data, and models: https://github.com/LinkedIn-XFACT/RM-Robustness.

Authors:Yi Zhang, Ruihong Qiu, Xuwei Xu, Jiajun Liu, Sen Wang
Title: DARLR: Dual-Agent Offline Reinforcement Learning for Recommender Systems with Dynamic Reward
Abstract:
Model-based offline reinforcement learning (RL) has emerged as a promising approach for recommender systems, enabling effective policy learning by interacting with frozen world models. However, the reward functions in these world models, trained on sparse offline logs, often suffer from inaccuracies. Specifically, existing methods face two major limitations in addressing this challenge: (1) deterministic use of reward functions as static look-up tables, which propagates inaccuracies during policy learning, and (2) static uncertainty designs that fail to effectively capture decision risks and mitigate the impact of these inaccuracies. In this work, a dual-agent framework, DARLR, is proposed to dynamically update world models to enhance recommendation policies. To achieve this, a \textbf{\textit{selector}} is introduced to identify reference users by balancing similarity and diversity so that the \textbf{\textit{recommender}} can aggregate information from these users and iteratively refine reward estimations for dynamic reward shaping. Further, the statistical features of the selected users guide the dynamic adaptation of an uncertainty penalty to better align with evolving recommendation requirements. Extensive experiments on four benchmark datasets demonstrate the superior performance of DARLR, validating its effectiveness. The code is available at https://github.com/ArronDZhang/DARLR.

Authors:Jiashuo Sun, Xianrui Zhong, Sizhe Zhou, Jiawei Han
Title: DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) systems combine large language models (LLMs) with external knowledge retrieval, making them highly effective for knowledge-intensive tasks. A crucial but often under-explored component of these systems is the reranker. Since irrelevant documents in RAG systems can mislead the generator, the reranker plays a vital role in refining retrieved documents to enhance generation quality and explainability. However, it is challenging to determine the appropriate number of documents ($k$) that the reranker should select: too few may result in missing critical information, while too many introduce noise and inefficiencies. Although recent studies have explored LLM-based rerankers, they primarily leverage internal model knowledge and overlook the rich supervisory signals that LLMs can provide, such as using response quality as feedback for optimizing reranking decisions. In this paper, we propose DynamicRAG, a novel RAG framework where the reranker dynamically adjusts both the order and number of retrieved documents based on the query. We model the reranker as an agent optimized through reinforcement learning (RL), using rewards derived from LLM output quality. Across seven knowledge-intensive datasets, DynamicRAG demonstrates superior performance, achieving state-of-the-art results among models of same parameter sizes. The model, data and code are available at https://github.com/GasolSun36/DynamicRAG.

Authors:Hongda Qin, Xiao Lu, Zhiyong Wei, Yihong Cao, Kailun Yang, Ningjiang Chen
Title: Language-Driven Dual Style Mixing for Single-Domain Generalized Object Detection
Abstract:
Generalizing an object detector trained on a single domain to multiple unseen domains is a challenging task. Existing methods typically introduce image or feature augmentation to diversify the source domain to raise the robustness of the detector. Vision-Language Model (VLM)-based augmentation techniques have been proven to be effective, but they require that the detector's backbone has the same structure as the image encoder of VLM, limiting the detector framework selection. To address this problem, we propose Language-Driven Dual Style Mixing (LDDS) for single-domain generalization, which diversifies the source domain by fully utilizing the semantic information of the VLM. Specifically, we first construct prompts to transfer style semantics embedded in the VLM to an image translation network. This facilitates the generation of style diversified images with explicit semantic information. Then, we propose image-level style mixing between the diversified images and source domain images. This effectively mines the semantic information for image augmentation without relying on specific augmentation selections. Finally, we propose feature-level style mixing in a double-pipeline manner, allowing feature augmentation to be model-agnostic and can work seamlessly with the mainstream detector frameworks, including the one-stage, two-stage, and transformer-based detectors. Extensive experiments demonstrate the effectiveness of our approach across various benchmark datasets, including real to cartoon and normal to adverse weather tasks. The source code and pre-trained models will be publicly available at https://github.com/qinhongda8/LDDS.

Authors:Yifan Wei, Xiaoyan Yu, Tengfei Pan, Angsheng Li, Li Du
Title: Structural Entropy Guided Agent for Detecting and Repairing Knowledge Deficiencies in LLMs
Abstract:
Large language models (LLMs) have achieved unprecedented performance by leveraging vast pretraining corpora, yet their performance remains suboptimal in knowledge-intensive domains such as medicine and scientific research, where high factual precision is required. While synthetic data provides a promising avenue for augmenting domain knowledge, existing methods frequently generate redundant samples that do not align with the model's true knowledge gaps. To overcome this limitation, we propose a novel Structural Entropy-guided Knowledge Navigator (SENATOR) framework that addresses the intrinsic knowledge deficiencies of LLMs. Our approach employs the Structure Entropy (SE) metric to quantify uncertainty along knowledge graph paths and leverages Monte Carlo Tree Search (MCTS) to selectively explore regions where the model lacks domain-specific knowledge. Guided by these insights, the framework generates targeted synthetic data for supervised fine-tuning, enabling continuous self-improvement. Experimental results on LLaMA-3 and Qwen2 across multiple domain-specific benchmarks show that SENATOR effectively detects and repairs knowledge deficiencies, achieving notable performance improvements. The code and data for our methods and experiments are available at https://github.com/weiyifan1023/senator.

Authors:Jeongho Kim, Chanyeong Heo, Jaehee Jung
Title: ReCDAP: Relation-Based Conditional Diffusion with Attention Pooling for Few-Shot Knowledge Graph Completion
Abstract:
Knowledge Graphs (KGs), composed of triples in the form of (head, relation, tail) and consisting of entities and relations, play a key role in information retrieval systems such as question answering, entity search, and recommendation. In real-world KGs, although many entities exist, the relations exhibit a long-tail distribution, which can hinder information retrieval performance. Previous few-shot knowledge graph completion studies focused exclusively on the positive triple information that exists in the graph or, when negative triples were incorporated, used them merely as a signal to indicate incorrect triples. To overcome this limitation, we propose Relation-Based Conditional Diffusion with Attention Pooling (ReCDAP). First, negative triples are generated by randomly replacing the tail entity in the support set. By conditionally incorporating positive information in the KG and non-existent negative information into the diffusion process, the model separately estimates the latent distributions for positive and negative relations. Moreover, including an attention pooler enables the model to leverage the differences between positive and negative cases explicitly. Experiments on two widely used datasets demonstrate that our method outperforms existing approaches, achieving state-of-the-art performance. The code is available at https://github.com/hou27/ReCDAP-FKGC.

Authors:Zheng Yao, Shuai Wang, Guido Zuccon
Title: Pre-training vs. Fine-tuning: A Reproducibility Study on Dense Retrieval Knowledge Acquisition
Abstract:
Dense retrievers utilize pre-trained backbone language models (e.g., BERT, LLaMA) that are fine-tuned via contrastive learning to perform the task of encoding text into sense representations that can be then compared via a shallow similarity operation, e.g. inner product. Recent research has questioned the role of fine-tuning vs. that of pre-training within dense retrievers, specifically arguing that retrieval knowledge is primarily gained during pre-training, meaning knowledge not acquired during pre-training cannot be sub-sequentially acquired via fine-tuning. We revisit this idea here as the claim was only studied in the context of a BERT-based encoder using DPR as representative dense retriever. We extend the previous analysis by testing other representation approaches (comparing the use of CLS tokens with that of mean pooling), backbone architectures (encoder-only BERT vs. decoder-only LLaMA), and additional datasets (MSMARCO in addition to Natural Questions). Our study confirms that in DPR tuning, pre-trained knowledge underpins retrieval performance, with fine-tuning primarily adjusting neuron activation rather than reorganizing knowledge. However, this pattern does not hold universally, such as in mean-pooled (Contriever) and decoder-based (LLaMA) models. We ensure full reproducibility and make our implementation publicly available at https://github.com/ielab/DenseRetriever-Knowledge-Acquisition.

Authors:SangEun Lee, Yubeen Lee, Eunil Park
Title: EmoVLM-KD: Fusing Distilled Expertise with Vision-Language Models for Visual Emotion Analysis
Abstract:
Visual emotion analysis, which has gained considerable attention in the field of affective computing, aims to predict the dominant emotions conveyed by an image. Despite advancements in visual emotion analysis with the emergence of vision-language models, we observed that instruction-tuned vision-language models and conventional vision models exhibit complementary strengths in visual emotion analysis, as vision-language models excel in certain cases, whereas vision models perform better in others. This finding highlights the need to integrate these capabilities to enhance the performance of visual emotion analysis. To bridge this gap, we propose EmoVLM-KD, an instruction-tuned vision-language model augmented with a lightweight module distilled from conventional vision models. Instead of deploying both models simultaneously, which incurs high computational costs, we transfer the predictive patterns of a conventional vision model into the vision-language model using a knowledge distillation framework. Our approach first fine-tunes a vision-language model on emotion-specific instruction data and then attaches a distilled module to its visual encoder while keeping the vision-language model frozen. Predictions from the vision language model and the distillation module are effectively balanced by a gate module, which subsequently generates the final outcome. Extensive experiments show that EmoVLM-KD achieves state-of-the-art performance on multiple visual emotion analysis benchmark datasets, outperforming the existing methods while maintaining computational efficiency. The code is available in https://github.com/sange1104/EmoVLM-KD.

Authors:Zihang Liu, Zhenyu Zhang, Hao Tang
Title: Semantic-Guided Diffusion Model for Single-Step Image Super-Resolution
Abstract:
Diffusion-based image super-resolution (SR) methods have demonstrated remarkable performance. Recent advancements have introduced deterministic sampling processes that reduce inference from 15 iterative steps to a single step, thereby significantly improving the inference speed of existing diffusion models. However, their efficiency remains limited when handling complex semantic regions due to the single-step inference. To address this limitation, we propose SAMSR, a semantic-guided diffusion framework that incorporates semantic segmentation masks into the sampling process. Specifically, we introduce the SAM-Noise Module, which refines Gaussian noise using segmentation masks to preserve spatial and semantic features. Furthermore, we develop a pixel-wise sampling strategy that dynamically adjusts the residual transfer rate and noise strength based on pixel-level semantic weights, prioritizing semantically rich regions during the diffusion process. To enhance model training, we also propose a semantic consistency loss, which aligns pixel-wise semantic weights between predictions and ground truth. Extensive experiments on both real-world and synthetic datasets demonstrate that SAMSR significantly improves perceptual quality and detail recovery, particularly in semantically complex images. Our code is released at https://github.com/Liu-Zihang/SAMSR.

Authors:Zhengye Zhang, Sirui Zhao, Shifeng Liu, Shukang Yin, Xinglong Mao, Tong Xu, Enhong Chen
Title: MELLM: Exploring LLM-Powered Micro-Expression Understanding Enhanced by Subtle Motion Perception
Abstract:
Micro-expressions (MEs) are crucial psychological responses with significant potential for affective computing. However, current automatic micro-expression recognition (MER) research primarily focuses on discrete emotion classification, neglecting a convincing analysis of the subtle dynamic movements and inherent emotional cues. The rapid progress in multimodal large language models (MLLMs), known for their strong multimodal comprehension and language generation abilities, offers new possibilities. MLLMs have shown success in various vision-language tasks, indicating their potential to understand MEs comprehensively, including both fine-grained motion patterns and underlying emotional semantics. Nevertheless, challenges remain due to the subtle intensity and short duration of MEs, as existing MLLMs are not designed to capture such delicate frame-level facial dynamics. In this paper, we propose a novel Micro-Expression Large Language Model (MELLM), which incorporates a subtle facial motion perception strategy with the strong inference capabilities of MLLMs, representing the first exploration of MLLMs in the domain of ME analysis. Specifically, to explicitly guide the MLLM toward motion-sensitive regions, we construct an interpretable motion-enhanced color map by fusing onset-apex optical flow dynamics with the corresponding grayscale onset frame as the model input. Additionally, specialized fine-tuning strategies are incorporated to further enhance the model's visual perception of MEs. Furthermore, we construct an instruction-description dataset based on Facial Action Coding System (FACS) annotations and emotion labels to train our MELLM. Comprehensive evaluations across multiple benchmark datasets demonstrate that our model exhibits superior robustness and generalization capabilities in ME understanding (MEU). Code is available at https://github.com/zyzhangUstc/MELLM.

Authors:Jinuk Kim, Marwa El Halabi, Wonpyo Park, Clemens JS Schaefer, Deokjae Lee, Yeonhong Park, Jae W. Lee, Hyun Oh Song
Title: GuidedQuant: Large Language Model Quantization via Exploiting End Loss Guidance
Abstract:
Post-training quantization is a key technique for reducing the memory and inference latency of large language models by quantizing weights and activations without requiring retraining. However, existing methods either (1) fail to account for the varying importance of hidden features to the end loss or, when incorporating end loss, (2) neglect the critical interactions between model weights. To address these limitations, we propose GuidedQuant, a novel quantization approach that integrates gradient information from the end loss into the quantization objective while preserving cross-weight dependencies within output channels. GuidedQuant consistently boosts the performance of state-of-the-art quantization methods across weight-only scalar, weight-only vector, and weight-and-activation quantization. Additionally, we introduce a novel non-uniform scalar quantization algorithm, which is guaranteed to monotonically decrease the quantization objective value, and outperforms existing methods in this category. We release the code at https://github.com/snu-mllab/GuidedQuant.

Authors:Bidur Khanal, Sandesh Pokhrel, Sanjay Bhandari, Ramesh Rana, Nikesh Shrestha, Ram Bahadur Gurung, Cristian Linte, Angus Watson, Yash Raj Shrestha, Binod Bhattarai
Title: Hallucination-Aware Multimodal Benchmark for Gastrointestinal Image Analysis with Large Vision-Language Models
Abstract:
Vision-Language Models (VLMs) are becoming increasingly popular in the medical domain, bridging the gap between medical images and clinical language. Existing VLMs demonstrate an impressive ability to comprehend medical images and text queries to generate detailed, descriptive diagnostic medical reports. However, hallucination--the tendency to generate descriptions that are inconsistent with the visual content--remains a significant issue in VLMs, with particularly severe implications in the medical field. To facilitate VLM research on gastrointestinal (GI) image analysis and study hallucination, we curate a multimodal image-text GI dataset: Gut-VLM. This dataset is created using a two-stage pipeline: first, descriptive medical reports of Kvasir-v2 images are generated using ChatGPT, which introduces some hallucinated or incorrect texts. In the second stage, medical experts systematically review these reports, and identify and correct potential inaccuracies to ensure high-quality, clinically reliable annotations. Unlike traditional datasets that contain only descriptive texts, our dataset also features tags identifying hallucinated sentences and their corresponding corrections. A common approach to reducing hallucination in VLM is to finetune the model on a small-scale, problem-specific dataset. However, we take a different strategy using our dataset. Instead of finetuning the VLM solely for generating textual reports, we finetune it to detect and correct hallucinations, an approach we call hallucination-aware finetuning. Our results show that this approach is better than simply finetuning for descriptive report generation. Additionally, we conduct an extensive evaluation of state-of-the-art VLMs across several metrics, establishing a benchmark. GitHub Repo: https://github.com/bhattarailab/Hallucination-Aware-VLM.

Authors:Wei Shang, Dongwei Ren, Wanying Zhang, Pengfei Zhu, Qinghua Hu, Wangmeng Zuo
Title: High-Frequency Prior-Driven Adaptive Masking for Accelerating Image Super-Resolution
Abstract:
The primary challenge in accelerating image super-resolution lies in reducing computation while maintaining performance and adaptability. Motivated by the observation that high-frequency regions (e.g., edges and textures) are most critical for reconstruction, we propose a training-free adaptive masking module for acceleration that dynamically focuses computation on these challenging areas. Specifically, our method first extracts high-frequency components via Gaussian blur subtraction and adaptively generates binary masks using K-means clustering to identify regions requiring intensive processing. Our method can be easily integrated with both CNNs and Transformers. For CNN-based architectures, we replace standard $3 \times 3$ convolutions with an unfold operation followed by $1 \times 1$ convolutions, enabling pixel-wise sparse computation guided by the mask. For Transformer-based models, we partition the mask into non-overlapping windows and selectively process tokens based on their average values. During inference, unnecessary pixels or windows are pruned, significantly reducing computation. Moreover, our method supports dilation-based mask adjustment to control the processing scope without retraining, and is robust to unseen degradations (e.g., noise, compression). Extensive experiments on benchmarks demonstrate that our method reduces FLOPs by 24--43% for state-of-the-art models (e.g., CARN, SwinIR) while achieving comparable or better quantitative metrics. The source code is available at https://github.com/shangwei5/AMSR

Authors:Fei Zhou, Yi Li, Mingqing Zhu
Title: Transformer-Based Dual-Optical Attention Fusion Crowd Head Point Counting and Localization Network
Abstract:
In this paper, the dual-optical attention fusion crowd head point counting model (TAPNet) is proposed to address the problem of the difficulty of accurate counting in complex scenes such as crowd dense occlusion and low light in crowd counting tasks under UAV view. The model designs a dual-optical attention fusion module (DAFP) by introducing complementary information from infrared images to improve the accuracy and robustness of all-day crowd counting. In order to fully utilize different modal information and solve the problem of inaccurate localization caused by systematic misalignment between image pairs, this paper also proposes an adaptive two-optical feature decomposition fusion module (AFDF). In addition, we optimize the training strategy to improve the model robustness through spatial random offset data augmentation. Experiments on two challenging public datasets, DroneRGBT and GAIIC2, show that the proposed method outperforms existing techniques in terms of performance, especially in challenging dense low-light scenes. Code is available at https://github.com/zz-zik/TAPNet

Authors:Lishan Yang, Wei Emma Zhang, Quan Z. Sheng, Lina Yao, Weitong Chen, Ali Shakeri
Title: MMiC: Mitigating Modality Incompleteness in Clustered Federated Learning
Abstract:
In the era of big data, data mining has become indispensable for uncovering hidden patterns and insights from vast and complex datasets. The integration of multimodal data sources further enhances its potential. Multimodal Federated Learning (MFL) is a distributed approach that enhances the efficiency and quality of multimodal learning, ensuring collaborative work and privacy protection. However, missing modalities pose a significant challenge in MFL, often due to data quality issues or privacy policies across the clients. In this work, we present MMiC, a framework for Mitigating Modality incompleteness in MFL within the Clusters. MMiC replaces partial parameters within client models inside clusters to mitigate the impact of missing modalities. Furthermore, it leverages the Banzhaf Power Index to optimize client selection under these conditions. Finally, MMiC employs an innovative approach to dynamically control global aggregation by utilizing Markovitz Portfolio Optimization. Extensive experiments demonstrate that MMiC consistently outperforms existing federated learning architectures in both global and personalized performance on multimodal datasets with missing modalities, confirming the effectiveness of our proposed solution. Our code is available at https://github.com/gotobcn8/MMiC.

Authors:Lhuqita Fazry
Title: A Split-then-Join Approach to Abstractive Summarization for Very Long Documents in a Low Resource Setting
Abstract:
$\texttt{BIGBIRD-PEGASUS}$ model achieves $\textit{state-of-the-art}$ on abstractive text summarization for long documents. However it's capacity still limited to maximum of $4,096$ tokens, thus caused performance degradation on summarization for very long documents. Common method to deal with the issue is to truncate the documents. In this reasearch, we'll use different approach. We'll use the pretrained $\texttt{BIGBIRD-PEGASUS}$ model by fine tuned the model on other domain dataset. First, we filter out all documents which length less than $20,000$ tokens to focus on very long documents. To prevent domain shifting problem and overfitting on transfer learning due to small dataset, we augment the dataset by splitting document-summary training pair into parts, to fit the document into $4,096$ tokens. Source code available on $\href{https://github.com/lhfazry/SPIN-summ}{https://github.com/lhfazry/SPIN-summ}$.

Authors:Zihan Guan, Mengxuan Hu, Ronghang Zhu, Sheng Li, Anil Vullikanti
Title: Benign Samples Matter! Fine-tuning On Outlier Benign Samples Severely Breaks Safety
Abstract:
Recent studies have uncovered a troubling vulnerability in the fine-tuning stage of large language models (LLMs): even fine-tuning on entirely benign datasets can lead to a significant increase in the harmfulness of LLM outputs. Building on this finding, our red teaming study takes this threat one step further by developing a more effective attack. Specifically, we analyze and identify samples within benign datasets that contribute most to safety degradation, then fine-tune LLMs exclusively on these samples. We approach this problem from an outlier detection perspective and propose Self-Inf-N, to detect and extract outliers for fine-tuning. Our findings reveal that fine-tuning LLMs on 100 outlier samples selected by Self-Inf-N in the benign datasets severely compromises LLM safety alignment. Extensive experiments across seven mainstream LLMs demonstrate that our attack exhibits high transferability across different architectures and remains effective in practical scenarios. Alarmingly, our results indicate that most existing mitigation strategies fail to defend against this attack, underscoring the urgent need for more robust alignment safeguards. Codes are available at https://github.com/GuanZihan/Benign-Samples-Matter.

Authors:Ye Zhu, Yunan Wang, Zitong Yu
Title: Multimodal Fake News Detection: MFND Dataset and Shallow-Deep Multitask Learning
Abstract:
Multimodal news contains a wealth of information and is easily affected by deepfake modeling attacks. To combat the latest image and text generation methods, we present a new Multimodal Fake News Detection dataset (MFND) containing 11 manipulated types, designed to detect and localize highly authentic fake news. Furthermore, we propose a Shallow-Deep Multitask Learning (SDML) model for fake news, which fully uses unimodal and mutual modal features to mine the intrinsic semantics of news. Under shallow inference, we propose the momentum distillation-based light punishment contrastive learning for fine-grained uniform spatial image and text semantic alignment, and an adaptive cross-modal fusion module to enhance mutual modal features. Under deep inference, we design a two-branch framework to augment the image and text unimodal features, respectively merging with mutual modalities features, for four predictions via dedicated detection and localization projections. Experiments on both mainstream and our proposed datasets demonstrate the superiority of the model. Codes and dataset are released at https://github.com/yunan-wang33/sdml.

Authors:Ammar Daskin
Title: Quantum RNNs and LSTMs Through Entangling and Disentangling Power of Unitary Transformations
Abstract:
In this paper, we discuss how quantum recurrent neural networks (RNNs) and their enhanced version, long short-term memory (LSTM) networks, can be modeled using the core ideas presented in Ref.[1], where the entangling and disentangling power of unitary transformations is investigated. In particular, we interpret entangling and disentangling power as information retention and forgetting mechanisms in LSTMs. Therefore, entanglement becomes a key component of the optimization (training) process. We believe that, by leveraging prior knowledge of the entangling power of unitaries, the proposed quantum-classical framework can guide and help to design better-parameterized quantum circuits for various real-world applications.

Authors:Shalin Anand Jain, Jiazhen Liu, Siva Kailas, Harish Ravichandar
Title: JaxRobotarium: Training and Deploying Multi-Robot Policies in 10 Minutes
Abstract:
Multi-agent reinforcement learning (MARL) has emerged as a promising solution for learning complex and scalable coordination behaviors in multi-robot systems. However, established MARL platforms (e.g., SMAC and MPE) lack robotics relevance and hardware deployment, leaving multi-robot learning researchers to develop bespoke environments and hardware testbeds dedicated to the development and evaluation of their individual contributions. The Multi-Agent RL Benchmark and Learning Environment for the Robotarium (MARBLER) is an exciting recent step in providing a standardized robotics-relevant platform for MARL, by bridging the Robotarium testbed with existing MARL software infrastructure. However, MARBLER lacks support for parallelization and GPU/TPU execution, making the platform prohibitively slow compared to modern MARL environments and hindering adoption. We contribute JaxRobotarium, a Jax-powered end-to-end simulation, learning, deployment, and benchmarking platform for the Robotarium. JaxRobotarium enables rapid training and deployment of multi-robot RL (MRRL) policies with realistic robot dynamics and safety constraints, supporting parallelization and hardware acceleration. Our generalizable learning interface integrates easily with SOTA MARL libraries (e.g., JaxMARL). In addition, JaxRobotarium includes eight standardized coordination scenarios, including four novel scenarios that bring established MARL benchmark tasks (e.g., RWARE and Level-Based Foraging) to a robotics setting. We demonstrate that JaxRobotarium retains high simulation fidelity while achieving dramatic speedups over baseline (20x in training and 150x in simulation), and provides an open-access sim-to-real evaluation pipeline through the Robotarium testbed, accelerating and democratizing access to multi-robot learning research and evaluation. Our code is available at https://github.com/GT-STAR-Lab/JaxRobotarium.

Authors:Youcef Djenouri, Nassim Belmecheri, Tomasz Michalak, Jan Dubiński, Ahmed Nabil Belbachir, Anis Yazidi
Title: Learning Graph Representation of Agent Diffusers
Abstract:
Diffusion-based generative models have significantly advanced text-to-image synthesis, demonstrating impressive text comprehension and zero-shot generalization. These models refine images from random noise based on textual prompts, with initial reliance on text input shifting towards enhanced visual fidelity over time. This transition suggests that static model parameters might not optimally address the distinct phases of generation. We introduce LGR-AD (Learning Graph Representation of Agent Diffusers), a novel multi-agent system designed to improve adaptability in dynamic computer vision tasks. LGR-AD models the generation process as a distributed system of interacting agents, each representing an expert sub-model. These agents dynamically adapt to varying conditions and collaborate through a graph neural network that encodes their relationships and performance metrics. Our approach employs a coordination mechanism based on top-$k$ maximum spanning trees, optimizing the generation process. Each agent's decision-making is guided by a meta-model that minimizes a novel loss function, balancing accuracy and diversity. Theoretical analysis and extensive empirical evaluations show that LGR-AD outperforms traditional diffusion models across various benchmarks, highlighting its potential for scalable and flexible solutions in complex image generation tasks. Code is available at: https://github.com/YousIA/LGR_AD

Authors:Morui Zhu, Yongqi Zhu, Yihao Zhu, Qi Chen, Deyuan Qu, Song Fu, Qing Yang
Title: M3CAD: Towards Generic Cooperative Autonomous Driving Benchmark
Abstract:
We introduce M$^3$CAD, a novel benchmark designed to advance research in generic cooperative autonomous driving. M$^3$CAD comprises 204 sequences with 30k frames, spanning a diverse range of cooperative driving scenarios. Each sequence includes multiple vehicles and sensing modalities, e.g., LiDAR point clouds, RGB images, and GPS/IMU, supporting a variety of autonomous driving tasks, including object detection and tracking, mapping, motion forecasting, occupancy prediction, and path planning. This rich multimodal setup enables M$^3$CAD to support both single-vehicle and multi-vehicle autonomous driving research, significantly broadening the scope of research in the field. To our knowledge, M$^3$CAD is the most comprehensive benchmark specifically tailored for cooperative multi-task autonomous driving research. We evaluate the state-of-the-art end-to-end solution on M$^3$CAD to establish baseline performance. To foster cooperative autonomous driving research, we also propose E2EC, a simple yet effective framework for cooperative driving solution that leverages inter-vehicle shared information for improved path planning. We release M$^3$CAD, along with our baseline models and evaluation results, to support the development of robust cooperative autonomous driving systems. All resources will be made publicly available on https://github.com/zhumorui/M3CAD

Authors:Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu, Fei Huang, Suozhi Huang, Dayiheng Liu, Jingren Zhou, Junyang Lin
Title: Gated Attention for Large Language Models: Non-linearity, Sparsity, and Attention-Sink-Free
Abstract:
Gating mechanisms have been widely utilized, from early models like LSTMs and Highway Networks to recent state space models, linear attention, and also softmax attention. Yet, existing literature rarely examines the specific effects of gating. In this work, we conduct comprehensive experiments to systematically investigate gating-augmented softmax attention variants. Specifically, we perform a comprehensive comparison over 30 variants of 15B Mixture-of-Experts (MoE) models and 1.7B dense models trained on a 3.5 trillion token dataset. Our central finding is that a simple modification-applying a head-specific sigmoid gate after the Scaled Dot-Product Attention (SDPA)-consistently improves performance. This modification also enhances training stability, tolerates larger learning rates, and improves scaling properties. By comparing various gating positions and computational variants, we attribute this effectiveness to two key factors: (1) introducing non-linearity upon the low-rank mapping in the softmax attention, and (2) applying query-dependent sparse gating scores to modulate the SDPA output. Notably, we find this sparse gating mechanism mitigates 'attention sink' and enhances long-context extrapolation performance, and we also release related $\href{https://github.com/qiuzh20/gated_attention}{codes}$ and $\href{https://huggingface.co/QwQZh/gated_attention}{models}$ to facilitate future research.

Authors:Dominik Koterwa, Maciej Świtała
Title: Enhancing BERTopic with Intermediate Layer Representations
Abstract:
BERTopic is a topic modeling algorithm that leverages transformer-based embeddings to create dense clusters, enabling the estimation of topic structures and the extraction of valuable insights from a corpus of documents. This approach allows users to efficiently process large-scale text data and gain meaningful insights into its structure. While BERTopic is a powerful tool, embedding preparation can vary, including extracting representations from intermediate model layers and applying transformations to these embeddings. In this study, we evaluate 18 different embedding representations and present findings based on experiments conducted on three diverse datasets. To assess the algorithm's performance, we report topic coherence and topic diversity metrics across all experiments. Our results demonstrate that, for each dataset, it is possible to find an embedding configuration that performs better than the default setting of BERTopic. Additionally, we investigate the influence of stop words on different embedding configurations.

Authors:Xuefeng Jiang, Jia Li, Nannan Wu, Zhiyuan Wu, Xujing Li, Sheng Sun, Gang Xu, Yuwei Wang, Qi Li, Min Liu
Title: FNBench: Benchmarking Robust Federated Learning against Noisy Labels
Abstract:
Robustness to label noise within data is a significant challenge in federated learning (FL). From the data-centric perspective, the data quality of distributed datasets can not be guaranteed since annotations of different clients contain complicated label noise of varying degrees, which causes the performance degradation. There have been some early attempts to tackle noisy labels in FL. However, there exists a lack of benchmark studies on comprehensively evaluating their practical performance under unified settings. To this end, we propose the first benchmark study FNBench to provide an experimental investigation which considers three diverse label noise patterns covering synthetic label noise, imperfect human-annotation errors and systematic errors. Our evaluation incorporates eighteen state-of-the-art methods over five image recognition datasets and one text classification dataset. Meanwhile, we provide observations to understand why noisy labels impair FL, and additionally exploit a representation-aware regularization method to enhance the robustness of existing methods against noisy labels based on our observations. Finally, we discuss the limitations of this work and propose three-fold future directions. To facilitate related communities, our source code is open-sourced at https://github.com/Sprinter1999/FNBench.

Authors:Zijun Zhan, Yaxian Dong, Daniel Mawunyo Doe, Yuqing Hu, Shuai Li, Shaohua Cao, Lei Fan, Zhu Han
Title: Distributionally Robust Contract Theory for Edge AIGC Services in Teleoperation
Abstract:
Advanced AI-Generated Content (AIGC) technologies have injected new impetus into teleoperation, further enhancing its security and efficiency. Edge AIGC networks have been introduced to meet the stringent low-latency requirements of teleoperation. However, the inherent uncertainty of AIGC service quality and the need to incentivize AIGC service providers (ASPs) make the design of a robust incentive mechanism essential. This design is particularly challenging due to both uncertainty and information asymmetry, as teleoperators have limited knowledge of the remaining resource capacities of ASPs. To this end, we propose a distributionally robust optimization (DRO)-based contract theory to design robust reward schemes for AIGC task offloading. Notably, our work extends the contract theory by integrating DRO, addressing the fundamental challenge of contract design under uncertainty. In this paper, contract theory is employed to model the information asymmetry, while DRO is utilized to capture the uncertainty in AIGC service quality. Given the inherent complexity of the original DRO-based contract theory problem, we reformulate it into an equivalent, tractable bi-level optimization problem. To efficiently solve this problem, we develop a Block Coordinate Descent (BCD)-based algorithm to derive robust reward schemes. Simulation results on our unity-based teleoperation platform demonstrate that the proposed method improves teleoperator utility by 2.7\% to 10.74\% under varying degrees of AIGC service quality shifts and increases ASP utility by 60.02\% compared to the SOTA method, i.e., Deep Reinforcement Learning (DRL)-based contract theory. The code and data are publicly available at https://github.com/Zijun0819/DRO-Contract-Theory.

Authors:Lei Hu, Zhiyong Gan, Ling Deng, Jinglin Liang, Lingyu Liang, Shuangping Huang, Tianshui Chen
Title: ReplayCAD: Generative Diffusion Replay for Continual Anomaly Detection
Abstract:
Continual Anomaly Detection (CAD) enables anomaly detection models in learning new classes while preserving knowledge of historical classes. CAD faces two key challenges: catastrophic forgetting and segmentation of small anomalous regions. Existing CAD methods store image distributions or patch features to mitigate catastrophic forgetting, but they fail to preserve pixel-level detailed features for accurate segmentation. To overcome this limitation, we propose ReplayCAD, a novel diffusion-driven generative replay framework that replay high-quality historical data, thus effectively preserving pixel-level detailed features. Specifically, we compress historical data by searching for a class semantic embedding in the conditional space of the pre-trained diffusion model, which can guide the model to replay data with fine-grained pixel details, thus improving the segmentation performance. However, relying solely on semantic features results in limited spatial diversity. Hence, we further use spatial features to guide data compression, achieving precise control of sample space, thereby generating more diverse data. Our method achieves state-of-the-art performance in both classification and segmentation, with notable improvements in segmentation: 11.5% on VisA and 8.1% on MVTec. Our source code is available at https://github.com/HULEI7/ReplayCAD.

Authors:Yangguang Shao, Xinjie Lin, Haozheng Luo, Chengshang Hou, Gang Xiong, Jiahao Yu, Junzheng Shi
Title: POISONCRAFT: Practical Poisoning of Retrieval-Augmented Generation for Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable success in various domains, primarily due to their strong capabilities in reasoning and generating human-like text. Despite their impressive performance, LLMs are susceptible to hallucinations, which can lead to incorrect or misleading outputs. This is primarily due to the lack of up-to-date knowledge or domain-specific information. Retrieval-augmented generation (RAG) is a promising approach to mitigate hallucinations by leveraging external knowledge sources. However, the security of RAG systems has not been thoroughly studied. In this paper, we study a poisoning attack on RAG systems named POISONCRAFT, which can mislead the model to refer to fraudulent websites. Compared to existing poisoning attacks on RAG systems, our attack is more practical as it does not require access to the target user query's info or edit the user query. It not only ensures that injected texts can be retrieved by the model, but also ensures that the LLM will be misled to refer to the injected texts in its response. We demonstrate the effectiveness of POISONCRAFTacross different datasets, retrievers, and language models in RAG pipelines, and show that it remains effective when transferred across retrievers, including black-box systems. Moreover, we present a case study revealing how the attack influences both the retrieval behavior and the step-by-step reasoning trace within the generation model, and further evaluate the robustness of POISONCRAFTunder multiple defense mechanisms. These results validate the practicality of our threat model and highlight a critical security risk for RAG systems deployed in real-world applications. We release our code\footnote{https://github.com/AndyShaw01/PoisonCraft} to support future research on the security and robustness of RAG systems in real-world settings.

Authors:Maxim Vashkevich, Egor Krivalcevich
Title: Compact and Efficient Neural Networks for Image Recognition Based on Learned 2D Separable Transform
Abstract:
The paper presents a learned two-dimensional separable transform (LST) that can be considered as a new type of computational layer for constructing neural network (NN) architecture for image recognition tasks. The LST based on the idea of sharing the weights of one fullyconnected (FC) layer to process all rows of an image. After that, a second shared FC layer is used to process all columns of image representation obtained from the first layer. The use of LST layers in a NN architecture significantly reduces the number of model parameters compared to models that use stacked FC layers. We show that a NN-classifier based on a single LST layer followed by an FC layer achieves 98.02\% accuracy on the MNIST dataset, while having only 9.5k parameters. We also implemented a LST-based classifier for handwritten digit recognition on the FPGA platform to demonstrate the efficiency of the suggested approach for designing a compact and high-performance implementation of NN models. Git repository with supplementary materials: https://github.com/Mak-Sim/LST-2d

Authors:Woosang Lim, Zekun Li, Gyuwan Kim, Sungyoung Ji, HyeonJung Kim, Kyuri Choi, Jin Hyuk Lim, Kyungpyo Park, William Yang Wang
Title: MacRAG: Compress, Slice, and Scale-up for Multi-Scale Adaptive Context RAG
Abstract:
Long-context large language models (LC LLMs) combined with retrieval-augmented generation (RAG) hold strong potential for complex multi-hop and large-document tasks. However, existing RAG systems often suffer from imprecise retrieval, incomplete context coverage under constrained windows, and fragmented information from suboptimal context construction. We introduce Multi-scale Adaptive Context RAG (MacRAG), a hierarchical RAG framework that compresses and partitions documents into coarse-to-fine granularities, then adaptively merges relevant contexts through real-time chunk- and document-level expansions. By initiating with finest-level retrieval and progressively incorporating broader, higher-level context, MacRAG constructs effective query-specific long contexts, optimizing both precision and coverage. Evaluations on challenging LongBench expansions of HotpotQA, 2WikiMultihopQA, and Musique confirm MacRAG consistently surpasses baseline RAG pipelines in single- and multi-step generation using Llama-3.1-8B, Gemini-1.5-pro, and GPT-4o. Our results establish MacRAG as an efficient, scalable solution for real-world long-context, multi-hop reasoning. Our code is available at https://github.com/Leezekun/MacRAG.

Authors:Danil Belov, Artem Erkhov, Elizaveta Pestova, Ilya Osokin, Dzmitry Tsetserukou, Pavel Osinenko
Title: Quadrupedal Robot Skateboard Mounting via Reverse Curriculum Learning
Abstract:
The aim of this work is to enable quadrupedal robots to mount skateboards using Reverse Curriculum Reinforcement Learning. Although prior work has demonstrated skateboarding for quadrupeds that are already positioned on the board, the initial mounting phase still poses a significant challenge. A goal-oriented methodology was adopted, beginning with the terminal phases of the task and progressively increasing the complexity of the problem definition to approximate the desired objective. The learning process was initiated with the skateboard rigidly fixed within the global coordinate frame and the robot positioned directly above it. Through gradual relaxation of these initial conditions, the learned policy demonstrated robustness to variations in skateboard position and orientation, ultimately exhibiting a successful transfer to scenarios involving a mobile skateboard. The code, trained models, and reproducible examples are available at the following link: https://github.com/dancher00/quadruped-skateboard-mounting

Authors:Xinyue Lou, You Li, Jinan Xu, Xiangyu Shi, Chi Chen, Kaiyu Huang
Title: Think in Safety: Unveiling and Mitigating Safety Alignment Collapse in Multimodal Large Reasoning Model
Abstract:
The rapid development of Multimodal Large Reasoning Models (MLRMs) has demonstrated broad application potential, yet their safety and reliability remain critical concerns that require systematic exploration. To address this gap, we conduct a comprehensive and systematic safety evaluation of 11 MLRMs across 5 benchmarks and unveil prevalent safety degradation phenomena in most advanced models. Moreover, our analysis reveals distinct safety patterns across different benchmarks: significant safety degradation is observed across jailbreak robustness benchmarks, whereas safety-awareness benchmarks demonstrate less pronounced degradation. In particular, the long thought process in some scenarios even enhances safety performance. Therefore, it is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent. To operationalize this insight, we construct a multimodal tuning dataset that incorporates a safety-oriented thought process. Experimental results from fine-tuning existing MLRMs with this dataset effectively enhances the safety on both jailbreak robustness and safety-awareness benchmarks. This study provides a new perspective for developing safe MLRMs. Our dataset is available at https://github.com/xinyuelou/Think-in-Safety.

Authors:Feng Liu, Ziwang Fu, Yunlong Wang, Qijian Zheng
Title: TACFN: Transformer-based Adaptive Cross-modal Fusion Network for Multimodal Emotion Recognition
Abstract:
The fusion technique is the key to the multimodal emotion recognition task. Recently, cross-modal attention-based fusion methods have demonstrated high performance and strong robustness. However, cross-modal attention suffers from redundant features and does not capture complementary features well. We find that it is not necessary to use the entire information of one modality to reinforce the other during cross-modal interaction, and the features that can reinforce a modality may contain only a part of it. To this end, we design an innovative Transformer-based Adaptive Cross-modal Fusion Network (TACFN). Specifically, for the redundant features, we make one modality perform intra-modal feature selection through a self-attention mechanism, so that the selected features can adaptively and efficiently interact with another modality. To better capture the complementary information between the modalities, we obtain the fused weight vector by splicing and use the weight vector to achieve feature reinforcement of the modalities. We apply TCAFN to the RAVDESS and IEMOCAP datasets. For fair comparison, we use the same unimodal representations to validate the effectiveness of the proposed fusion method. The experimental results show that TACFN brings a significant performance improvement compared to other methods and reaches the state-of-the-art. All code and models could be accessed from https://github.com/shuzihuaiyu/TACFN.

Authors:Ummay Maria Muna, Fahim Hafiz, Shanta Biswas, Riasat Azim
Title: GBDTSVM: Combined Support Vector Machine and Gradient Boosting Decision Tree Framework for efficient snoRNA-disease association prediction
Abstract:
Small nucleolar RNAs (snoRNAs) are increasingly recognized for their critical role in the pathogenesis and characterization of various human diseases. Consequently, the precise identification of snoRNA-disease associations (SDAs) is essential for the progression of diseases and the advancement of treatment strategies. However, conventional biological experimental approaches are costly, time-consuming, and resource-intensive; therefore, machine learning-based computational methods offer a promising solution to mitigate these limitations. This paper proposes a model called 'GBDTSVM', representing a novel and efficient machine learning approach for predicting snoRNA-disease associations by leveraging a Gradient Boosting Decision Tree (GBDT) and Support Vector Machine (SVM). 'GBDTSVM' effectively extracts integrated snoRNA-disease feature representations utilizing GBDT and SVM is subsequently utilized to classify and identify potential associations. Furthermore, the method enhances the accuracy of these predictions by incorporating Gaussian kernel profile similarity for both snoRNAs and diseases. Experimental evaluation of the GBDTSVM model demonstrated superior performance compared to state-of-the-art methods in the field, achieving an area under the receiver operating characteristic (AUROC) of 0.96 and an area under the precision-recall curve (AUPRC) of 0.95 on MDRF dataset. Moreover, our model shows superior performance on two more datasets named LSGT and PsnoD. Additionally, a case study on the predicted snoRNA-disease associations verified the top 10 predicted snoRNAs across nine prevalent diseases, further validating the efficacy of the GBDTSVM approach. These results underscore the model's potential as a robust tool for advancing snoRNA-related disease research. Source codes and datasets our proposed framework can be obtained from: https://github.com/mariamuna04/gbdtsvm

Authors:Jing Hu, Kaiwei Yu, Hongjiang Xian, Shu Hu, Xin Wang
Title: Improving Generalization of Medical Image Registration Foundation Model
Abstract:
Deformable registration is a fundamental task in medical image processing, aiming to achieve precise alignment by establishing nonlinear correspondences between images. Traditional methods offer good adaptability and interpretability but are limited by computational efficiency. Although deep learning approaches have significantly improved registration speed and accuracy, they often lack flexibility and generalizability across different datasets and tasks. In recent years, foundation models have emerged as a promising direction, leveraging large and diverse datasets to learn universal features and transformation patterns for image registration, thus demonstrating strong cross-task transferability. However, these models still face challenges in generalization and robustness when encountering novel anatomical structures, varying imaging conditions, or unseen modalities. To address these limitations, this paper incorporates Sharpness-Aware Minimization (SAM) into foundation models to enhance their generalization and robustness in medical image registration. By optimizing the flatness of the loss landscape, SAM improves model stability across diverse data distributions and strengthens its ability to handle complex clinical scenarios. Experimental results show that foundation models integrated with SAM achieve significant improvements in cross-dataset registration performance, offering new insights for the advancement of medical image registration technology. Our code is available at https://github.com/Promise13/fm_sam}{https://github.com/Promise13/fm\_sam.

Authors:Larry Preuett, Qiuyi Zhang, Muhammad Aurangzeb Ahmad
Title: Reinforcement Learning under State and Outcome Uncertainty: A Foundational Distributional Perspective
Abstract:
In many real-world planning tasks, agents must tackle uncertainty about the environment's state and variability in the outcomes of any chosen policy. We address both forms of uncertainty as a first step toward safer algorithms in partially observable settings. Specifically, we extend Distributional Reinforcement Learning (DistRL)-which models the entire return distribution for fully observable domains-to Partially Observable Markov Decision Processes (POMDPs), allowing an agent to learn the distribution of returns for each conditional plan. Concretely, we introduce new distributional Bellman operators for partial observability and prove their convergence under the supremum p-Wasserstein metric. We also propose a finite representation of these return distributions via psi-vectors, generalizing the classical alpha-vectors in POMDP solvers. Building on this, we develop Distributional Point-Based Value Iteration (DPBVI), which integrates psi-vectors into a standard point-based backup procedure-bridging DistRL and POMDP planning. By tracking return distributions, DPBVI naturally enables risk-sensitive control in domains where rare, high-impact events must be carefully managed. We provide source code to foster further research in robust decision-making under partial observability.

Authors:Hang Wang, Zhi-Qi Cheng, Chenhao Lin, Chao Shen, Lei Zhang
Title: HCMA: Hierarchical Cross-model Alignment for Grounded Text-to-Image Generation
Abstract:
Text-to-image synthesis has progressed to the point where models can generate visually compelling images from natural language prompts. Yet, existing methods often fail to reconcile high-level semantic fidelity with explicit spatial control, particularly in scenes involving multiple objects, nuanced relations, or complex layouts. To bridge this gap, we propose a Hierarchical Cross-Modal Alignment (HCMA) framework for grounded text-to-image generation. HCMA integrates two alignment modules into each diffusion sampling step: a global module that continuously aligns latent representations with textual descriptions to ensure scene-level coherence, and a local module that employs bounding-box layouts to anchor objects at specified locations, enabling fine-grained spatial control. Extensive experiments on the MS-COCO 2014 validation set show that HCMA surpasses state-of-the-art baselines, achieving a 0.69 improvement in Frechet Inception Distance (FID) and a 0.0295 gain in CLIP Score. These results demonstrate HCMA's effectiveness in faithfully capturing intricate textual semantics while adhering to user-defined spatial constraints, offering a robust solution for semantically grounded image generation. Our code is available at https://github.com/hwang-cs-ime/HCMA.

Authors:Haoyang Xie, Feng Ju
Title: Text-to-CadQuery: A New Paradigm for CAD Generation with Scalable Large Model Capabilities
Abstract:
Computer-aided design (CAD) is fundamental to modern engineering and manufacturing, but creating CAD models still requires expert knowledge and specialized software. Recent advances in large language models (LLMs) open up the possibility of generative CAD, where natural language is directly translated into parametric 3D models. However, most existing methods generate task-specific command sequences that pretrained models cannot directly handle. These sequences must be converted into CAD representations such as CAD vectors before a 3D model can be produced, which requires training models from scratch and adds unnecessary complexity. To tackle this issue, we propose generating CadQuery code directly from text, leveraging the strengths of pretrained LLMs to produce 3D models without intermediate representations, using this Python-based scripting language. Since LLMs already excel at Python generation and spatial reasoning, fine-tuning them on Text-to-CadQuery data proves highly effective. Given that these capabilities typically improve with scale, we hypothesize that larger models will perform better after fine-tuning. To enable this, we augment the Text2CAD dataset with 170,000 CadQuery annotations. We fine-tune six open-source LLMs of varying sizes and observe consistent improvements. Our best model achieves a top-1 exact match of 69.3%, up from 58.8%, and reduces Chamfer Distance by 48.6%. Project page: https://github.com/Text-to-CadQuery/Text-to-CadQuery.

Authors:Md Rakibul Hasan, Pouria Behnoudfar, Dan MacKinlay, Thomas Poulet
Title: PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations
Abstract:
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super-Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional SR methods, even with limited training data (e.g., only 13% of training data is required to achieve performance similar to SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning by improving accuracy and efficiency, enhancing process understanding, and broadening applications to scientific research. We publicly release the complete source code of PC-SRGAN and all experiments at https://github.com/hasan-rakibul/PC-SRGAN.

Authors:Yanjun Lin, Kai Zhang, Zhenying He, Yinan Jing, X. Sean Wang
Title: Survey of Filtered Approximate Nearest Neighbor Search over the Vector-Scalar Hybrid Data
Abstract:
Filtered approximate nearest neighbor search (FANNS), an extension of approximate nearest neighbor search (ANNS) that incorporates scalar filters, has been widely applied to constrained retrieval of vector data. Despite its growing importance, no dedicated survey on FANNS over the vector-scalar hybrid data currently exists, and the field has several problems, including inconsistent definitions of the search problem, insufficient framework for algorithm classification, and incomplete analysis of query difficulty. This survey paper formally defines the concepts of hybrid dataset and hybrid query, as well as the corresponding evaluation metrics. Based on these, a pruning-focused framework is proposed to classify and summarize existing algorithms, providing a broader and finer-grained classification framework compared to the existing ones. In addition, a review is conducted on representative hybrid datasets, followed by an analysis on the difficulty of hybrid queries from the perspective of distribution relationships between data and queries. This paper aims to establish a structured foundation for FANNS over the vector-scalar hybrid data, facilitate more meaningful comparisons between FANNS algorithms, and offer practical recommendations for practitioners. The code used for downloading hybrid datasets and analyzing query difficulty is available at https://github.com/lyj-fdu/FANNS

Authors:Chathurangi Shyalika, Renjith Prasad, Alaa Al Ghazo, Darssan Eswaramoorthi, Harleen Kaur, Sara Shree Muthuselvam, Amit Sheth
Title: SmartPilot: A Multiagent CoPilot for Adaptive and Intelligent Manufacturing
Abstract:
In the dynamic landscape of Industry 4.0, achieving efficiency, precision, and adaptability is essential to optimize manufacturing operations. Industries suffer due to supply chain disruptions caused by anomalies, which are being detected by current AI models but leaving domain experts uncertain without deeper insights into these anomalies. Additionally, operational inefficiencies persist due to inaccurate production forecasts and the limited effectiveness of traditional AI models for processing complex sensor data. Despite these advancements, existing systems lack the seamless integration of these capabilities needed to create a truly unified solution for enhancing production and decision-making. We propose SmartPilot, a neurosymbolic, multiagent CoPilot designed for advanced reasoning and contextual decision-making to address these challenges. SmartPilot processes multimodal sensor data and is compact to deploy on edge devices. It focuses on three key tasks: anomaly prediction, production forecasting, and domain-specific question answering. By bridging the gap between AI capabilities and real-world industrial needs, SmartPilot empowers industries with intelligent decision-making and drives transformative innovation in manufacturing. The demonstration video, datasets, and supplementary materials are available at https://github.com/ChathurangiShyalika/SmartPilot.

Authors:Shehryar Khattak, Timon Homberger, Lukas Bernreiter, Julian Nubert, Olov Andersson, Roland Siegwart, Kostas Alexis, Marco Hutter
Title: CompSLAM: Complementary Hierarchical Multi-Modal Localization and Mapping for Robot Autonomy in Underground Environments
Abstract:
Robot autonomy in unknown, GPS-denied, and complex underground environments requires real-time, robust, and accurate onboard pose estimation and mapping for reliable operations. This becomes particularly challenging in perception-degraded subterranean conditions under harsh environmental factors, including darkness, dust, and geometrically self-similar structures. This paper details CompSLAM, a highly resilient and hierarchical multi-modal localization and mapping framework designed to address these challenges. Its flexible architecture achieves resilience through redundancy by leveraging the complementary nature of pose estimates derived from diverse sensor modalities. Developed during the DARPA Subterranean Challenge, CompSLAM was successfully deployed on all aerial, legged, and wheeled robots of Team Cerberus during their competition-winning final run. Furthermore, it has proven to be a reliable odometry and mapping solution in various subsequent projects, with extensions enabling multi-robot map sharing for marsupial robotic deployments and collaborative mapping. This paper also introduces a comprehensive dataset acquired by a manually teleoperated quadrupedal robot, covering a significant portion of the DARPA Subterranean Challenge finals course. This dataset evaluates CompSLAM's robustness to sensor degradations as the robot traverses 740 meters in an environment characterized by highly variable geometries and demanding lighting conditions. The CompSLAM code and the DARPA SubT Finals dataset are made publicly available for the benefit of the robotics community

Authors:Ruijian Zha, Bojun Liu
Title: A New DAPO Algorithm for Stock Trading
Abstract:
Recent advances in reinforcement learning, such as Dynamic Sampling Policy Optimization (DAPO), show strong performance when paired with large language models (LLMs). Motivated by this success, we ask whether similar gains can be realized in financial trading. We design a trading agent that combines an improved Group Relative Policy Optimization (GRPO) algorithm, augmented with ideas from DAPO, with LLM-based risk and sentiment signals extracted from financial news. On the NASDAQ-100 index (FNSPID dataset), our agent attains a cumulative return of 230.49 percent and an information ratio of 0.37, outperforming the CPPO-DeepSeek baseline. It also cuts training time from about 8 hours to 2.5 hours over 100 epochs while markedly reducing RAM usage. The proposed RL-LLM framework offers a scalable path toward data-efficient trading agents. Code: https://github.com/Ruijian-Zha/FinRL-DAPO-SR/

Authors:Everest Yang, Ria Vasishtha, Luqman K. Dad, Lisa A. Kachnic, Andrew Hope, Eric Wang, Xiao Wu, Yading Yuan, David J. Brenner, Igor Shuryak
Title: CAST: Time-Varying Treatment Effects with Application to Chemotherapy and Radiotherapy on Head and Neck Squamous Cell Carcinoma
Abstract:
Causal machine learning (CML) enables individualized estimation of treatment effects, offering critical advantages over traditional correlation-based methods. However, existing approaches for medical survival data with censoring such as causal survival forests estimate effects at fixed time points, limiting their ability to capture dynamic changes over time. We introduce Causal Analysis for Survival Trajectories (CAST), a novel framework that models treatment effects as continuous functions of time following treatment. By combining parametric and non-parametric methods, CAST overcomes the limitations of discrete time-point analysis to estimate continuous effect trajectories. Using the RADCURE dataset [1] of 2,651 patients with head and neck squamous cell carcinoma (HNSCC) as a clinically relevant example, CAST models how chemotherapy and radiotherapy effects evolve over time at the population and individual levels. By capturing the temporal dynamics of treatment response, CAST reveals how treatment effects rise, peak, and decline over the follow-up period, helping clinicians determine when and for whom treatment benefits are maximized. This framework advances the application of CML to personalized care in HNSCC and other life-threatening medical conditions. Source code/data available at: https://github.com/CAST-FW/HNSCC

Authors:Chathurangi Shyalika, Renjith Prasad, Fadi El Kalach, Revathy Venkataramanan, Ramtin Zand, Ramy Harik, Amit Sheth
Title: NSF-MAP: Neurosymbolic Multimodal Fusion for Robust and Interpretable Anomaly Prediction in Assembly Pipelines
Abstract:
In modern assembly pipelines, identifying anomalies is crucial in ensuring product quality and operational efficiency. Conventional single-modality methods fail to capture the intricate relationships required for precise anomaly prediction in complex predictive environments with abundant data and multiple modalities. This paper proposes a neurosymbolic AI and fusion-based approach for multimodal anomaly prediction in assembly pipelines. We introduce a time series and image-based fusion model that leverages decision-level fusion techniques. Our research builds upon three primary novel approaches in multimodal learning: time series and image-based decision-level fusion modeling, transfer learning for fusion, and knowledge-infused learning. We evaluate the novel method using our derived and publicly available multimodal dataset and conduct comprehensive ablation studies to assess the impact of our preprocessing techniques and fusion model compared to traditional baselines. The results demonstrate that a neurosymbolic AI-based fusion approach that uses transfer learning can effectively harness the complementary strengths of time series and image data, offering a robust and interpretable approach for anomaly prediction in assembly pipelines with enhanced performance. \noindent The datasets, codes to reproduce the results, supplementary materials, and demo are available at https://github.com/ChathurangiShyalika/NSF-MAP.

Authors:Hang Gao, Chenhao Zhang, Tie Wang, Junsuo Zhao, Fengge Wu, Changwen Zheng, Huaping Liu
Title: Learn to Think: Bootstrapping LLM Reasoning Capability Through Graph Representation Learning
Abstract:
Large Language Models (LLMs) have achieved remarkable success across various domains. However, they still face significant challenges, including high computational costs for training and limitations in solving complex reasoning problems. Although existing methods have extended the reasoning capabilities of LLMs through structured paradigms, these approaches often rely on task-specific prompts and predefined reasoning processes, which constrain their flexibility and generalizability. To address these limitations, we propose a novel framework that leverages graph learning to enable more flexible and adaptive reasoning capabilities for LLMs. Specifically, this approach models the reasoning process of a problem as a graph and employs LLM-based graph learning to guide the adaptive generation of each reasoning step. To further enhance the adaptability of the model, we introduce a Graph Neural Network (GNN) module to perform representation learning on the generated reasoning process, enabling real-time adjustments to both the model and the prompt. Experimental results demonstrate that this method significantly improves reasoning performance across multiple tasks without requiring additional training or task-specific prompt design. Code can be found in https://github.com/zch65458525/L2T.

Authors:Tongyu Wen, Chenglong Wang, Xiyuan Yang, Haoyu Tang, Yueqi Xie, Lingjuan Lyu, Zhicheng Dou, Fangzhao Wu
Title: Defending against Indirect Prompt Injection by Instruction Detection
Abstract:
The integration of Large Language Models (LLMs) with external sources is becoming increasingly common, with Retrieval-Augmented Generation (RAG) being a prominent example. However, this integration introduces vulnerabilities of Indirect Prompt Injection (IPI) attacks, where hidden instructions embedded in external data can manipulate LLMs into executing unintended or harmful actions. We recognize that IPI attacks fundamentally rely on the presence of instructions embedded within external content, which can alter the behavioral states of LLMs. Can the effective detection of such state changes help us defend against IPI attacks? In this paper, we propose InstructDetector, a novel detection-based approach that leverages the behavioral states of LLMs to identify potential IPI attacks. Specifically, we demonstrate the hidden states and gradients from intermediate layers provide highly discriminative features for instruction detection. By effectively combining these features, InstructDetector achieves a detection accuracy of 99.60% in the in-domain setting and 96.90% in the out-of-domain setting, and reduces the attack success rate to just 0.03% on the BIPIA benchmark. The code is publicly available at https://github.com/MYVAE/Instruction-detection.

Authors:Wei Xiong, Junming Lin, Jiangtong Li, Jie Li, Changjun Jiang
Title: ALFEE: Adaptive Large Foundation Model for EEG Representation
Abstract:
While foundation models excel in text, image, and video domains, the critical biological signals, particularly electroencephalography(EEG), remain underexplored. EEG benefits neurological research with its high temporal resolution, operational practicality, and safety profile. However, low signal-to-noise ratio, inter-subject variability, and cross-paradigm differences hinder the generalization of current models. Existing methods often employ simplified strategies, such as a single loss function or a channel-temporal joint representation module, and suffer from a domain gap between pretraining and evaluation tasks that compromises efficiency and adaptability. To address these limitations, we propose the Adaptive Large Foundation model for EEG signal representation(ALFEE) framework, a novel hybrid transformer architecture with two learning stages for robust EEG representation learning. ALFEE employs a hybrid attention that separates channel-wise feature aggregation from temporal dynamics modeling, enabling robust EEG representation with variable channel configurations. A channel encoder adaptively compresses variable channel information, a temporal encoder captures task-guided evolution, and a hybrid decoder reconstructs signals in both temporal and frequency domains. During pretraining, ALFEE optimizes task prediction, channel and temporal mask reconstruction, and temporal forecasting to enhance multi-scale and multi-channel representation. During fine-tuning, a full-model adaptation with a task-specific token dictionary and a cross-attention layer boosts performance across multiple tasks. After 25,000 hours of pretraining, extensive experimental results on six downstream EEG tasks demonstrate the superior performance of ALFEE over existing models. Our ALFEE framework establishes a scalable foundation for biological signal analysis with implementation at https://github.com/xw1216/ALFEE.

Authors:Zixu Wang, Bingbing Xu, Yige Yuan, Huawei Shen, Xueqi Cheng
Title: InfoNCE is a Free Lunch for Semantically guided Graph Contrastive Learning
Abstract:
As an important graph pre-training method, Graph Contrastive Learning (GCL) continues to play a crucial role in the ongoing surge of research on graph foundation models or LLM as enhancer for graphs. Traditional GCL optimizes InfoNCE by using augmentations to define self-supervised tasks, treating augmented pairs as positive samples and others as negative. However, this leads to semantically similar pairs being classified as negative, causing significant sampling bias and limiting performance. In this paper, we argue that GCL is essentially a Positive-Unlabeled (PU) learning problem, where the definition of self-supervised tasks should be semantically guided, i.e., augmented samples with similar semantics are considered positive, while others, with unknown semantics, are treated as unlabeled. From this perspective, the key lies in how to extract semantic information. To achieve this, we propose IFL-GCL, using InfoNCE as a "free lunch" to extract semantic information. Specifically, We first prove that under InfoNCE, the representation similarity of node pairs aligns with the probability that the corresponding contrastive sample is positive. Then we redefine the maximum likelihood objective based on the corrected samples, leading to a new InfoNCE loss function. Extensive experiments on both the graph pretraining framework and LLM as an enhancer show significantly improvements of IFL-GCL in both IID and OOD scenarios, achieving up to a 9.05% improvement, validating the effectiveness of semantically guided. Code for IFL-GCL is publicly available at: https://github.com/Camel-Prince/IFL-GCL.

Authors:Gabriele Rosi, Fabio Cermelli
Title: Show or Tell? A Benchmark To Evaluate Visual and Textual Prompts in Semantic Segmentation
Abstract:
Prompt engineering has shown remarkable success with large language models, yet its systematic exploration in computer vision remains limited. In semantic segmentation, both textual and visual prompts offer distinct advantages: textual prompts through open-vocabulary methods allow segmentation of arbitrary categories, while visual reference prompts provide intuitive reference examples. However, existing benchmarks evaluate these modalities in isolation, without direct comparison under identical conditions. We present Show or Tell (SoT), a novel benchmark specifically designed to evaluate both visual and textual prompts for semantic segmentation across 14 datasets spanning 7 diverse domains (common scenes, urban, food, waste, parts, tools, and land-cover). We evaluate 5 open-vocabulary methods and 4 visual reference prompt approaches, adapting the latter to handle multi-class segmentation through a confidence-based mask merging strategy. Our extensive experiments reveal that open-vocabulary methods excel with common concepts easily described by text but struggle with complex domains like tools, while visual reference prompt methods achieve good average results but exhibit high variability depending on the input prompt. Through comprehensive quantitative and qualitative analysis, we identify the strengths and weaknesses of both prompting modalities, providing valuable insights to guide future research in vision foundation models for segmentation tasks.

Authors:Baijiong Lin, Weisen Jiang, Yuancheng Xu, Hao Chen, Ying-Cong Chen
Title: PARM: Multi-Objective Test-Time Alignment via Preference-Aware Autoregressive Reward Model
Abstract:
Multi-objective test-time alignment aims to adapt large language models (LLMs) to diverse multi-dimensional user preferences during inference while keeping LLMs frozen. Recently, GenARM (Xu et al., 2025) first independently trains Autoregressive Reward Models (ARMs) for each preference dimension without awareness of each other, then combines their outputs based on user-specific preference vectors during inference to achieve multi-objective test-time alignment, leading to two key limitations: the need for \textit{multiple} ARMs increases the inference cost, and the separate training of ARMs causes the misalignment between the guided generation and the user preferences. To address these issues, we propose Preference-aware ARM (PARM), a single unified ARM trained across all preference dimensions. PARM uses our proposed Preference-Aware Bilinear Low-Rank Adaptation (PBLoRA), which employs a bilinear form to condition the ARM on preference vectors, enabling it to achieve precise control over preference trade-offs during inference. Experiments demonstrate that PARM reduces inference costs and achieves better alignment with preference vectors compared with existing methods. Additionally, PARM enables weak-to-strong guidance, allowing a smaller PARM to guide a larger frozen LLM without expensive training, making multi-objective alignment accessible with limited computing resources. The code is available at https://github.com/Baijiong-Lin/PARM.

Authors:Junzhou Xu, Boyu Diao
Title: A Sensitivity-Driven Expert Allocation Method in LoRA-MoE for Efficient Fine-Tuning
Abstract:
As deep learning models expand, the pre-training-fine-tuning paradigm has become the standard approach for handling various downstream tasks. However, shared parameters can lead to diminished performance when dealing with complex datasets involving multiple tasks. While introducing Mixture-of-Experts (MoE) methods has alleviated this issue to some extent, it also significantly increases the number of parameters required for fine-tuning and training time, introducing greater parameter redundancy. To address these challenges, we propose a method for allocating expert numbers based on parameter sensitivity LoRA-SMoE (A Sensitivity-Driven Expert Allocation Method in LoRA-MoE for Efficient Fine-Tuning). This method rapidly assesses the sensitivity of different tasks to parameters by sampling a small amount of data and using gradient information. It then adaptively allocates expert numbers within a given budget. The process maintains comparable memory consumption to LoRA (Low-Rank Adaptation) while ensuring an efficient and resource-friendly fine-tuning procedure. Experimental results demonstrate that compared to SOTA fine-tuning methods, our LoRA-SMoE approach can enhance model performance while reducing the number of trainable parameters. This significantly improves model performance in resource-constrained environments. Additionally, due to its efficient parameter sensitivity evaluation mechanism, LoRA-SMoE requires minimal computational overhead to optimize expert allocation, making it particularly suitable for scenarios with limited computational resources. All the code in this study will be made publicly available following the acceptance of the paper for publication. Source code is at https://github.com/EMLS-ICTCAS/LoRA-SMoE

Authors:Zhiyu Zhu, Jiayu Zhang, Zhibo Jin, Fang Chen, Jianlong Zhou
Title: ABE: A Unified Framework for Robust and Faithful Attribution-Based Explainability
Abstract:
Attribution algorithms are essential for enhancing the interpretability and trustworthiness of deep learning models by identifying key features driving model decisions. Existing frameworks, such as InterpretDL and OmniXAI, integrate multiple attribution methods but suffer from scalability limitations, high coupling, theoretical constraints, and lack of user-friendly implementations, hindering neural network transparency and interoperability. To address these challenges, we propose Attribution-Based Explainability (ABE), a unified framework that formalizes Fundamental Attribution Methods and integrates state-of-the-art attribution algorithms while ensuring compliance with attribution axioms. ABE enables researchers to develop novel attribution techniques and enhances interpretability through four customizable modules: Robustness, Interpretability, Validation, and Data & Model. This framework provides a scalable, extensible foundation for advancing attribution-based explainability and fostering transparent AI systems. Our code is available at: https://github.com/LMBTough/ABE-XAI.

Authors:Wenqi Zeng, Yuqi Sun, Chenxi Ma, Weimin Tan, Bo Yan
Title: MM-Skin: Enhancing Dermatology Vision-Language Model with an Image-Text Dataset Derived from Textbooks
Abstract:
Medical vision-language models (VLMs) have shown promise as clinical assistants across various medical fields. However, specialized dermatology VLM capable of delivering professional and detailed diagnostic analysis remains underdeveloped, primarily due to less specialized text descriptions in current dermatology multimodal datasets. To address this issue, we propose MM-Skin, the first large-scale multimodal dermatology dataset that encompasses 3 imaging modalities, including clinical, dermoscopic, and pathological and nearly 10k high-quality image-text pairs collected from professional textbooks. In addition, we generate over 27k diverse, instruction-following vision question answering (VQA) samples (9 times the size of current largest dermatology VQA dataset). Leveraging public datasets and MM-Skin, we developed SkinVL, a dermatology-specific VLM designed for precise and nuanced skin disease interpretation. Comprehensive benchmark evaluations of SkinVL on VQA, supervised fine-tuning (SFT) and zero-shot classification tasks across 8 datasets, reveal its exceptional performance for skin diseases in comparison to both general and medical VLM models. The introduction of MM-Skin and SkinVL offers a meaningful contribution to advancing the development of clinical dermatology VLM assistants. MM-Skin is available at https://github.com/ZwQ803/MM-Skin

Authors:Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, Hongyang Li
Title: UniVLA: Learning to Act Anywhere with Task-centric Latent Actions
Abstract:
A generalist robot should perform effectively across various environments. However, most existing approaches heavily rely on scaling action-annotated data to enhance their capabilities. Consequently, they are often limited to single physical specification and struggle to learn transferable knowledge across different embodiments and environments. To confront these limitations, we propose UniVLA, a new framework for learning cross-embodiment vision-language-action (VLA) policies. Our key innovation is to derive task-centric action representations from videos with a latent action model. This enables us to exploit extensive data across a wide spectrum of embodiments and perspectives. To mitigate the effect of task-irrelevant dynamics, we incorporate language instructions and establish a latent action model within the DINO feature space. Learned from internet-scale videos, the generalist policy can be deployed to various robots through efficient latent action decoding. We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments. UniVLA achieves superior performance over OpenVLA with less than 1/20 of pretraining compute and 1/10 of downstream data. Continuous performance improvements are observed as heterogeneous data, even including human videos, are incorporated into the training pipeline. The results underscore UniVLA's potential to facilitate scalable and efficient robot policy learning.

Authors:Wendy Carvalho, Meriem Elkoudi, Brendan Hertel, Reza Azadeh
Title: Parameter-Free Segmentation of Robot Movements with Cross-Correlation Using Different Similarity Metrics
Abstract:
Often, robots are asked to execute primitive movements, whether as a single action or in a series of actions representing a larger, more complex task. These movements can be learned in many ways, but a common one is from demonstrations presented to the robot by a teacher. However, these demonstrations are not always simple movements themselves, and complex demonstrations must be broken down, or segmented, into primitive movements. In this work, we present a parameter-free approach to segmentation using techniques inspired by autocorrelation and cross-correlation from signal processing. In cross-correlation, a representative signal is found in some larger, more complex signal by correlating the representative signal with the larger signal. This same idea can be applied to segmenting robot motion and demonstrations, provided with a representative motion primitive. This results in a fast and accurate segmentation, which does not take any parameters. One of the main contributions of this paper is the modification of the cross-correlation process by employing similarity metrics that can capture features specific to robot movements. To validate our framework, we conduct several experiments of complex tasks both in simulation and in real-world. We also evaluate the effectiveness of our segmentation framework by comparing various similarity metrics.

Authors:Brendan Hertel, Reza Azadeh
Title: Robot Learning Using Multi-Coordinate Elastic Maps
Abstract:
To learn manipulation skills, robots need to understand the features of those skills. An easy way for robots to learn is through Learning from Demonstration (LfD), where the robot learns a skill from an expert demonstrator. While the main features of a skill might be captured in one differential coordinate (i.e., Cartesian), they could have meaning in other coordinates. For example, an important feature of a skill may be its shape or velocity profile, which are difficult to discover in Cartesian differential coordinate. In this work, we present a method which enables robots to learn skills from human demonstrations via encoding these skills into various differential coordinates, then determines the importance of each coordinate to reproduce the skill. We also introduce a modified form of Elastic Maps that includes multiple differential coordinates, combining statistical modeling of skills in these differential coordinate spaces. Elastic Maps, which are flexible and fast to compute, allow for the incorporation of several different types of constraints and the use of any number of demonstrations. Additionally, we propose methods for auto-tuning several parameters associated with the modified Elastic Map formulation. We validate our approach in several simulated experiments and a real-world writing task with a UR5e manipulator arm.

Authors:Gabriel Gagné, Anisha Azad, Thomas Labbé, Evan Campbell, Xavier Isabel, Erik Scheme, Ulysse Côté-Allard, Benoit Gosselin
Title: Context Informed Incremental Learning Improves Myoelectric Control Performance in Virtual Reality Object Manipulation Tasks
Abstract:
Electromyography (EMG)-based gesture recognition is a promising approach for designing intuitive human-computer interfaces. However, while these systems typically perform well in controlled laboratory settings, their usability in real-world applications is compromised by declining performance during real-time control. This decline is largely due to goal-directed behaviors that are not captured in static, offline scenarios. To address this issue, we use \textit{Context Informed Incremental Learning} (CIIL) - marking its first deployment in an object-manipulation scenario - to continuously adapt the classifier using contextual cues. Nine participants without upper limb differences completed a functional task in a virtual reality (VR) environment involving transporting objects with life-like grips. We compared two scenarios: one where the classifier was adapted in real-time using contextual information, and the other using a traditional open-loop approach without adaptation. The CIIL-based approach not only enhanced task success rates and efficiency, but also reduced the perceived workload by 7.1 %, despite causing a 5.8 % reduction in offline classification accuracy. This study highlights the potential of real-time contextualized adaptation to enhance user experience and usability of EMG-based systems for practical, goal-oriented applications, crucial elements towards their long-term adoption. The source code for this study is available at: https://github.com/BiomedicalITS/ciil-emg-vr.

Authors:Congqi Cao, Peiheng Han, Yueran zhang, Yating Yu, Qinyi Lv, Lingtong Min, Yanning zhang
Title: Task-Adapter++: Task-specific Adaptation with Order-aware Alignment for Few-shot Action Recognition
Abstract:
Large-scale pre-trained models have achieved remarkable success in language and image tasks, leading an increasing number of studies to explore the application of pre-trained image models, such as CLIP, in the domain of few-shot action recognition (FSAR). However, current methods generally suffer from several problems: 1) Direct fine-tuning often undermines the generalization capability of the pre-trained model; 2) The exploration of task-specific information is insufficient in the visual tasks; 3) The semantic order information is typically overlooked during text modeling; 4) Existing cross-modal alignment techniques ignore the temporal coupling of multimodal information. To address these, we propose Task-Adapter++, a parameter-efficient dual adaptation method for both image and text encoders. Specifically, to make full use of the variations across different few-shot learning tasks, we design a task-specific adaptation for the image encoder so that the most discriminative information can be well noticed during feature extraction. Furthermore, we leverage large language models (LLMs) to generate detailed sequential sub-action descriptions for each action class, and introduce semantic order adapters into the text encoder to effectively model the sequential relationships between these sub-actions. Finally, we develop an innovative fine-grained cross-modal alignment strategy that actively maps visual features to reside in the same temporal stage as semantic descriptions. Extensive experiments fully demonstrate the effectiveness and superiority of the proposed method, which achieves state-of-the-art performance on 5 benchmarks consistently. The code is open-sourced at https://github.com/Jaulin-Bage/Task-Adapter-pp.

Authors:Vytenis Šliogeris, Povilas Daniušis, Artūras Nakvosas
Title: Full-Parameter Continual Pretraining of Gemma2: Insights into Fluency and Domain Knowledge
Abstract:
In this technical report, we empirically investigate the relationship between linguistic fluency and domain knowledge in the context of continual learning with large language models (LLMs). Specifically, we enhance the linguistic fluency of the Gemma2 LLM for the Lithuanian language by autoregressively pretraining its full parameter set on the first 10\% of the Lithuanian language component of the CulturaX dataset. To prevent catastrophic forgetting of the model's existing domain knowledge, we apply Elastic Weight Consolidation (EWC), leveraging Fisher information estimated using data from the Massive Multitask Language Understanding (MMLU) benchmark. In the post-training evaluations, we assess linguistic fluency through perplexity and evaluate domain knowledge using accuracy on a suite of language understanding benchmarks, including ARC-Easy, Belebele, GSM8K, HellaSwag, MMLU, TruthfulQA, and Winogrande, in both English and Lithuanian. The empirical results demonstrate that EWC not only mitigates catastrophic forgetting by preserving the model's performance in terms of both linguistic fluency and domain knowledge but also improves or maintains these capabilities for the newly added Lithuanian language. These findings highlight the potential for more efficient adaptation of general-purpose LLMs to under-represented languages without requiring access to the original training data. The accompanying codebase is openly accessible at https://github.com/Neurotechnology/LLM_EWC.

Authors:Weihong Li, Xiaoqiong Liu, Heng Fan, Libo Zhang
Title: CGTrack: Cascade Gating Network with Hierarchical Feature Aggregation for UAV Tracking
Abstract:
Recent advancements in visual object tracking have markedly improved the capabilities of unmanned aerial vehicle (UAV) tracking, which is a critical component in real-world robotics applications. While the integration of hierarchical lightweight networks has become a prevalent strategy for enhancing efficiency in UAV tracking, it often results in a significant drop in network capacity, which further exacerbates challenges in UAV scenarios, such as frequent occlusions and extreme changes in viewing angles. To address these issues, we introduce a novel family of UAV trackers, termed CGTrack, which combines explicit and implicit techniques to expand network capacity within a coarse-to-fine framework. Specifically, we first introduce a Hierarchical Feature Cascade (HFC) module that leverages the spirit of feature reuse to increase network capacity by integrating the deep semantic cues with the rich spatial information, incurring minimal computational costs while enhancing feature representation. Based on this, we design a novel Lightweight Gated Center Head (LGCH) that utilizes gating mechanisms to decouple target-oriented coordinates from previously expanded features, which contain dense local discriminative information. Extensive experiments on three challenging UAV tracking benchmarks demonstrate that CGTrack achieves state-of-the-art performance while running fast. Code will be available at https://github.com/Nightwatch-Fox11/CGTrack.

Authors:Jianjian Yin, Yi Chen, Chengyu Li, Zhichao Zheng, Yanhui Gu, Junsheng Zhou
Title: DFEN: Dual Feature Equalization Network for Medical Image Segmentation
Abstract:
Current methods for medical image segmentation primarily focus on extracting contextual feature information from the perspective of the whole image. While these methods have shown effective performance, none of them take into account the fact that pixels at the boundary and regions with a low number of class pixels capture more contextual feature information from other classes, leading to misclassification of pixels by unequal contextual feature information. In this paper, we propose a dual feature equalization network based on the hybrid architecture of Swin Transformer and Convolutional Neural Network, aiming to augment the pixel feature representations by image-level equalization feature information and class-level equalization feature information. Firstly, the image-level feature equalization module is designed to equalize the contextual information of pixels within the image. Secondly, we aggregate regions of the same class to equalize the pixel feature representations of the corresponding class by class-level feature equalization module. Finally, the pixel feature representations are enhanced by learning weights for image-level equalization feature information and class-level equalization feature information. In addition, Swin Transformer is utilized as both the encoder and decoder, thereby bolstering the ability of the model to capture long-range dependencies and spatial correlations. We conducted extensive experiments on Breast Ultrasound Images (BUSI), International Skin Imaging Collaboration (ISIC2017), Automated Cardiac Diagnosis Challenge (ACDC) and PH$^2$ datasets. The experimental results demonstrate that our method have achieved state-of-the-art performance. Our code is publicly available at https://github.com/JianJianYin/DFEN.

Authors:Hanzhe Liang, Aoran Wang, Jie Zhou, Xin Jin, Can Gao, Jinbao Wang
Title: Examining the Source of Defects from a Mechanical Perspective for 3D Anomaly Detection
Abstract:
In this paper, we explore a novel approach to 3D anomaly detection (AD) that goes beyond merely identifying anomalies based on structural characteristics. Our primary perspective is that most anomalies arise from unpredictable defective forces originating from both internal and external sources. To address these anomalies, we seek out opposing forces that can help correct them. Therefore, we introduce the Mechanics Complementary Model-based Framework for the 3D-AD task (MC4AD), which generates internal and external corrective forces for each point. We first propose a Diverse Anomaly-Generation (DA-Gen) module designed to simulate various types of anomalies. Next, we present the Corrective Force Prediction Network (CFP-Net), which uses complementary representations for point-level analysis to simulate the different contributions from internal and external corrective forces. To ensure the corrective forces are constrained effectively, we have developed a combined loss function that includes a new symmetric loss and an overall loss. Notably, we implement a Hierarchical Quality Control (HQC) strategy based on a three-way decision process and contribute a dataset titled Anomaly-IntraVariance, which incorporates intraclass variance to evaluate our model. As a result, the proposed MC4AD has been proven effective through theory and experimentation. The experimental results demonstrate that our approach yields nine state-of-the-art performances, achieving optimal results with minimal parameters and the fastest inference speed across five existing datasets, in addition to the proposed Anomaly-IntraVariance dataset. The source is available at https://github.com/hzzzzzhappy/MC4AD

Authors:Changkun Ye, Russell Tsuchida, Lars Petersson, Nick Barnes
Title: Open Set Label Shift with Test Time Out-of-Distribution Reference
Abstract:
Open set label shift (OSLS) occurs when label distributions change from a source to a target distribution, and the target distribution has an additional out-of-distribution (OOD) class. In this work, we build estimators for both source and target open set label distributions using a source domain in-distribution (ID) classifier and an ID/OOD classifier. With reasonable assumptions on the ID/OOD classifier, the estimators are assembled into a sequence of three stages: 1) an estimate of the source label distribution of the OOD class, 2) an EM algorithm for Maximum Likelihood estimates (MLE) of the target label distribution, and 3) an estimate of the target label distribution of OOD class under relaxed assumptions on the OOD classifier. The sampling errors of estimates in 1) and 3) are quantified with a concentration inequality. The estimation result allows us to correct the ID classifier trained on the source distribution to the target distribution without retraining. Experiments on a variety of open set label shift settings demonstrate the effectiveness of our model. Our code is available at https://github.com/ChangkunYe/OpenSetLabelShift.

Authors:Chunlai Dong, Haochao Ying, Qibo Qiu, Jinhong Wang, Danny Chen, Jian Wu
Title: Dual-level Fuzzy Learning with Patch Guidance for Image Ordinal Regression
Abstract:
Ordinal regression bridges regression and classification by assigning objects to ordered classes. While human experts rely on discriminative patch-level features for decisions, current approaches are limited by the availability of only image-level ordinal labels, overlooking fine-grained patch-level characteristics. In this paper, we propose a Dual-level Fuzzy Learning with Patch Guidance framework, named DFPG that learns precise feature-based grading boundaries from ambiguous ordinal labels, with patch-level supervision. Specifically, we propose patch-labeling and filtering strategies to enable the model to focus on patch-level features exclusively with only image-level ordinal labels available. We further design a dual-level fuzzy learning module, which leverages fuzzy logic to quantitatively capture and handle label ambiguity from both patch-wise and channel-wise perspectives. Extensive experiments on various image ordinal regression datasets demonstrate the superiority of our proposed method, further confirming its ability in distinguishing samples from difficult-to-classify categories. The code is available at https://github.com/ZJUMAI/DFPG-ord.

Authors:Zhiyuan Chen, Keyi Li, Yifan Jia, Le Ye, Yufei Ma
Title: Accelerating Diffusion Transformer via Increment-Calibrated Caching with Channel-Aware Singular Value Decomposition
Abstract:
Diffusion transformer (DiT) models have achieved remarkable success in image generation, thanks for their exceptional generative capabilities and scalability. Nonetheless, the iterative nature of diffusion models (DMs) results in high computation complexity, posing challenges for deployment. Although existing cache-based acceleration methods try to utilize the inherent temporal similarity to skip redundant computations of DiT, the lack of correction may induce potential quality degradation. In this paper, we propose increment-calibrated caching, a training-free method for DiT acceleration, where the calibration parameters are generated from the pre-trained model itself with low-rank approximation. To deal with the possible correction failure arising from outlier activations, we introduce channel-aware Singular Value Decomposition (SVD), which further strengthens the calibration effect. Experimental results show that our method always achieve better performance than existing naive caching methods with a similar computation resource budget. When compared with 35-step DDIM, our method eliminates more than 45% computation and improves IS by 12 at the cost of less than 0.06 FID increase. Code is available at https://github.com/ccccczzy/icc.

Authors:Yizhuo Yang, Jiulin Zhao, Xinhang Xu, Kun Cao, Shenghai Yuan, Lihua Xie
Title: Unsupervised Anomaly Detection for Autonomous Robots via Mahalanobis SVDD with Audio-IMU Fusion
Abstract:
Reliable anomaly detection is essential for ensuring the safety of autonomous robots, particularly when conventional detection systems based on vision or LiDAR become unreliable in adverse or unpredictable conditions. In such scenarios, alternative sensing modalities are needed to provide timely and robust feedback. To this end, we explore the use of audio and inertial measurement unit (IMU) sensors to detect underlying anomalies in autonomous mobile robots, such as collisions and internal mechanical faults. Furthermore, to address the challenge of limited labeled anomaly data, we propose an unsupervised anomaly detection framework based on Mahalanobis Support Vector Data Description (M-SVDD). In contrast to conventional SVDD methods that rely on Euclidean distance and assume isotropic feature distributions, our approach employs the Mahalanobis distance to adaptively scale feature dimensions and capture inter-feature correlations, enabling more expressive decision boundaries. In addition, a reconstruction-based auxiliary branch is introduced to preserve feature diversity and prevent representation collapse, further enhancing the robustness of anomaly detection. Extensive experiments on a collected mobile robot dataset and four public datasets demonstrate the effectiveness of the proposed method, as shown in the video https://youtu.be/yh1tn6DDD4A. Code and dataset are available at https://github.com/jamesyang7/M-SVDD.

Authors:Haojie Duanmu, Xiuhong Li, Zhihang Yuan, Size Zheng, Jiangfei Duan, Xingcheng Zhang, Dahua Lin
Title: MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design
Abstract:
Mixture-of-Experts (MoE) models face deployment challenges due to their large parameter counts and computational demands. We explore quantization for MoE models and highlight two key insights: 1) linear blocks exhibit varying quantization sensitivity, and 2) divergent expert activation frequencies create heterogeneous computational characteristics. Based on these observations, we introduce MxMoE, a mixed-precision optimization framework for MoE models that considers both algorithmic and system perspectives. MxMoE navigates the design space defined by parameter sensitivity, expert activation dynamics, and hardware resources to derive efficient mixed-precision configurations. Additionally, MxMoE automatically generates optimized mixed-precision GroupGEMM kernels, enabling parallel execution of GEMMs with different precisions. Evaluations show that MxMoE outperforms existing methods, achieving 2.4 lower Wikitext-2 perplexity than GPTQ at 2.25-bit and delivering up to 3.4x speedup over full precision, as well as up to 29.4% speedup over uniform quantization at equivalent accuracy with 5-bit weight-activation quantization. Our code is available at https://github.com/cat538/MxMoE.

Authors:Azim Ospanov, Farzan Farnia, Roozbeh Yousefzadeh
Title: APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning
Abstract:
Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with LLMs remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair via LLM and Lean cOllaboration), a modular, modelagnostic pipeline that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proofgeneration results at a low sampling budget. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sublemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low budget. The repaired subproofs are recombined and reverified, iterating up to a usercontrolled maximum number of attempts. On the miniF2F benchmark, we establish a new stateoftheart accuracy of 84.9% among sub 8Bparameter models while keeping the sampling budget below one hundred. Moreover, Apollo raises the stateoftheart accuracy for GoedelProverSFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. Generalpurpose models (o3mini, o4mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compilerguided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving. The codebase is available at https://github.com/aziksh-ospanov/APOLLO

Authors:Amin Ghafourian, Andrew Lee, Dechen Gao, Tyler Beer, Kin Yen, Iman Soltani
Title: Automating Infrastructure Surveying: A Framework for Geometric Measurements and Compliance Assessment Using Point Cloud Data
Abstract:
Automation can play a prominent role in improving efficiency, accuracy, and scalability in infrastructure surveying and assessing construction and compliance standards. This paper presents a framework for automation of geometric measurements and compliance assessment using point cloud data. The proposed approach integrates deep learning-based detection and segmentation, in conjunction with geometric and signal processing techniques, to automate surveying tasks. As a proof of concept, we apply this framework to automatically evaluate the compliance of curb ramps with the Americans with Disabilities Act (ADA), demonstrating the utility of point cloud data in survey automation. The method leverages a newly collected, large annotated dataset of curb ramps, made publicly available as part of this work, to facilitate robust model training and evaluation. Experimental results, including comparison with manual field measurements of several ramps, validate the accuracy and reliability of the proposed method, highlighting its potential to significantly reduce manual effort and improve consistency in infrastructure assessment. Beyond ADA compliance, the proposed framework lays the groundwork for broader applications in infrastructure surveying and automated construction evaluation, promoting wider adoption of point cloud data in these domains. The annotated database, manual ramp survey data, and developed algorithms are publicly available on the project's GitHub page: https://github.com/Soltanilara/SurveyAutomation.

Authors:Zhangchi Hu, Peixi Wu, Jie Chen, Huyue Zhu, Yijun Wang, Yansong Peng, Hebei Li, Xiaoyan Sun
Title: Dome-DETR: DETR with Density-Oriented Feature-Query Manipulation for Efficient Tiny Object Detection
Abstract:
Tiny object detection plays a vital role in drone surveillance, remote sensing, and autonomous systems, enabling the identification of small targets across vast landscapes. However, existing methods suffer from inefficient feature leverage and high computational costs due to redundant feature processing and rigid query allocation. To address these challenges, we propose Dome-DETR, a novel framework with Density-Oriented Feature-Query Manipulation for Efficient Tiny Object Detection. To reduce feature redundancies, we introduce a lightweight Density-Focal Extractor (DeFE) to produce clustered compact foreground masks. Leveraging these masks, we incorporate Masked Window Attention Sparsification (MWAS) to focus computational resources on the most informative regions via sparse attention. Besides, we propose Progressive Adaptive Query Initialization (PAQI), which adaptively modulates query density across spatial areas for better query allocation. Extensive experiments demonstrate that Dome-DETR achieves state-of-the-art performance (+3.3 AP on AI-TOD-V2 and +2.5 AP on VisDrone) while maintaining low computational complexity and a compact model size. Code is available at https://github.com/RicePasteM/Dome-DETR.

Authors:Jinze Lv, Jian Chen, Zi Long, Xianghua Fu, Yin Chen
Title: TopicVD: A Topic-Based Dataset of Video-Guided Multimodal Machine Translation for Documentaries
Abstract:
Most existing multimodal machine translation (MMT) datasets are predominantly composed of static images or short video clips, lacking extensive video data across diverse domains and topics. As a result, they fail to meet the demands of real-world MMT tasks, such as documentary translation. In this study, we developed TopicVD, a topic-based dataset for video-supported multimodal machine translation of documentaries, aiming to advance research in this field. We collected video-subtitle pairs from documentaries and categorized them into eight topics, such as economy and nature, to facilitate research on domain adaptation in video-guided MMT. Additionally, we preserved their contextual information to support research on leveraging the global context of documentaries in video-guided MMT. To better capture the shared semantics between text and video, we propose an MMT model based on a cross-modal bidirectional attention module. Extensive experiments on the TopicVD dataset demonstrate that visual information consistently improves the performance of the NMT model in documentary translation. However, the MMT model's performance significantly declines in out-of-domain scenarios, highlighting the need for effective domain adaptation methods. Additionally, experiments demonstrate that global context can effectively improve translation performance. % Dataset and our implementations are available at https://github.com/JinzeLv/TopicVD

Authors:Ho-Joong Kim, Yearang Lee, Jung-Ho Hong, Seong-Whan Lee
Title: DiGIT: Multi-Dilated Gated Encoder and Central-Adjacent Region Integrated Decoder for Temporal Action Detection Transformer
Abstract:
In this paper, we examine a key limitation in query-based detectors for temporal action detection (TAD), which arises from their direct adaptation of originally designed architectures for object detection. Despite the effectiveness of the existing models, they struggle to fully address the unique challenges of TAD, such as the redundancy in multi-scale features and the limited ability to capture sufficient temporal context. To address these issues, we propose a multi-dilated gated encoder and central-adjacent region integrated decoder for temporal action detection transformer (DiGIT). Our approach replaces the existing encoder that consists of multi-scale deformable attention and feedforward network with our multi-dilated gated encoder. Our proposed encoder reduces the redundant information caused by multi-level features while maintaining the ability to capture fine-grained and long-range temporal information. Furthermore, we introduce a central-adjacent region integrated decoder that leverages a more comprehensive sampling strategy for deformable cross-attention to capture the essential information. Extensive experiments demonstrate that DiGIT achieves state-of-the-art performance on THUMOS14, ActivityNet v1.3, and HACS-Segment. Code is available at: https://github.com/Dotori-HJ/DiGIT

Authors:Guilherme Vieira Neto, Marcos Eduardo Valle
Title: V-EfficientNets: Vector-Valued Efficiently Scaled Convolutional Neural Network Models
Abstract:
EfficientNet models are convolutional neural networks optimized for parameter allocation by jointly balancing network width, depth, and resolution. Renowned for their exceptional accuracy, these models have become a standard for image classification tasks across diverse computer vision benchmarks. While traditional neural networks learn correlations between feature channels during training, vector-valued neural networks inherently treat multidimensional data as coherent entities, taking for granted the inter-channel relationships. This paper introduces vector-valued EfficientNets (V-EfficientNets), a novel extension of EfficientNet designed to process arbitrary vector-valued data. The proposed models are evaluated on a medical image classification task, achieving an average accuracy of 99.46% on the ALL-IDB2 dataset for detecting acute lymphoblastic leukemia. V-EfficientNets demonstrate remarkable efficiency, significantly reducing parameters while outperforming state-of-the-art models, including the original EfficientNet. The source code is available at https://github.com/mevalle/v-nets.

Authors:Zhongweiyang Xu, Xulin Fan, Zhong-Qiu Wang, Xilin Jiang, Romit Roy Choudhury
Title: ArrayDPS: Unsupervised Blind Speech Separation with a Diffusion Prior
Abstract:
Blind Speech Separation (BSS) aims to separate multiple speech sources from audio mixtures recorded by a microphone array. The problem is challenging because it is a blind inverse problem, i.e., the microphone array geometry, the room impulse response (RIR), and the speech sources, are all unknown. We propose ArrayDPS to solve the BSS problem in an unsupervised, array-agnostic, and generative manner. The core idea builds on diffusion posterior sampling (DPS), but unlike DPS where the likelihood is tractable, ArrayDPS must approximate the likelihood by formulating a separate optimization problem. The solution to the optimization approximates room acoustics and the relative transfer functions between microphones. These approximations, along with the diffusion priors, iterate through the ArrayDPS sampling process and ultimately yield separated voice sources. We only need a simple single-speaker speech diffusion model as a prior along with the mixtures recorded at the microphones; no microphone array information is necessary. Evaluation results show that ArrayDPS outperforms all baseline unsupervised methods while being comparable to supervised methods in terms of SDR. Audio demos are provided at: https://arraydps.github.io/ArrayDPSDemo/.

Authors:Tien Dang, Truong-Son Hy
Title: EquiHGNN: Scalable Rotationally Equivariant Hypergraph Neural Networks
Abstract:
Molecular interactions often involve high-order relationships that cannot be fully captured by traditional graph-based models limited to pairwise connections. Hypergraphs naturally extend graphs by enabling multi-way interactions, making them well-suited for modeling complex molecular systems. In this work, we introduce EquiHGNN, an Equivariant HyperGraph Neural Network framework that integrates symmetry-aware representations to improve molecular modeling. By enforcing the equivariance under relevant transformation groups, our approach preserves geometric and topological properties, leading to more robust and physically meaningful representations. We examine a range of equivariant architectures and demonstrate that integrating symmetry constraints leads to notable performance gains on large-scale molecular datasets. Experiments on both small and large molecules show that high-order interactions offer limited benefits for small molecules but consistently outperform 2D graphs on larger ones. Adding geometric features to these high-order structures further improves the performance, emphasizing the value of spatial information in molecular learning. Our source code is available at https://github.com/HySonLab/EquiHGNN/

Authors:Mohamed-Khalil Bouzidi, Christian Schlauch, Nicole Scheuerer, Yue Yao, Nadja Klein, Daniel Göhring, Jörg Reichardt
Title: Closing the Loop: Motion Prediction Models beyond Open-Loop Benchmarks
Abstract:
Fueled by motion prediction competitions and benchmarks, recent years have seen the emergence of increasingly large learning based prediction models, many with millions of parameters, focused on improving open-loop prediction accuracy by mere centimeters. However, these benchmarks fail to assess whether such improvements translate to better performance when integrated into an autonomous driving stack. In this work, we systematically evaluate the interplay between state-of-the-art motion predictors and motion planners. Our results show that higher open-loop accuracy does not always correlate with better closed-loop driving behavior and that other factors, such as temporal consistency of predictions and planner compatibility, also play a critical role. Furthermore, we investigate downsized variants of these models, and, surprisingly, find that in some cases models with up to 86% fewer parameters yield comparable or even superior closed-loop driving performance. Our code is available at https://github.com/continental/pred2plan.

Authors:Weichen Zhang, Chen Gao, Shiquan Yu, Ruiying Peng, Baining Zhao, Qian Zhang, Jinqiang Cui, Xinlei Chen, Yong Li
Title: CityNavAgent: Aerial Vision-and-Language Navigation with Hierarchical Semantic Planning and Global Memory
Abstract:
Aerial vision-and-language navigation (VLN), requiring drones to interpret natural language instructions and navigate complex urban environments, emerges as a critical embodied AI challenge that bridges human-robot interaction, 3D spatial reasoning, and real-world deployment. Although existing ground VLN agents achieved notable results in indoor and outdoor settings, they struggle in aerial VLN due to the absence of predefined navigation graphs and the exponentially expanding action space in long-horizon exploration. In this work, we propose \textbf{CityNavAgent}, a large language model (LLM)-empowered agent that significantly reduces the navigation complexity for urban aerial VLN. Specifically, we design a hierarchical semantic planning module (HSPM) that decomposes the long-horizon task into sub-goals with different semantic levels. The agent reaches the target progressively by achieving sub-goals with different capacities of the LLM. Additionally, a global memory module storing historical trajectories into a topological graph is developed to simplify navigation for visited targets. Extensive benchmark experiments show that our method achieves state-of-the-art performance with significant improvement. Further experiments demonstrate the effectiveness of different modules of CityNavAgent for aerial VLN in continuous city environments. The code is available at \href{https://github.com/VinceOuti/CityNavAgent}{link}.

Authors:Seraj Al Mahmud Mostafa, Chenxi Wang, Jia Yue, Yuta Hozumi, Jianwu Wang
Title: Enhancing Satellite Object Localization with Dilated Convolutions and Attention-aided Spatial Pooling
Abstract:
Object localization in satellite imagery is particularly challenging due to the high variability of objects, low spatial resolution, and interference from noise and dominant features such as clouds and city lights. In this research, we focus on three satellite datasets: upper atmospheric Gravity Waves (GW), mesospheric Bores (Bore), and Ocean Eddies (OE), each presenting its own unique challenges. These challenges include the variability in the scale and appearance of the main object patterns, where the size, shape, and feature extent of objects of interest can differ significantly. To address these challenges, we introduce YOLO-DCAP, a novel enhanced version of YOLOv5 designed to improve object localization in these complex scenarios. YOLO-DCAP incorporates a Multi-scale Dilated Residual Convolution (MDRC) block to capture multi-scale features at scale with varying dilation rates, and an Attention-aided Spatial Pooling (AaSP) module to focus on the global relevant spatial regions, enhancing feature selection. These structural improvements help to better localize objects in satellite imagery. Experimental results demonstrate that YOLO-DCAP significantly outperforms both the YOLO base model and state-of-the-art approaches, achieving an average improvement of 20.95% in mAP50 and 32.23% in IoU over the base model, and 7.35% and 9.84% respectively over state-of-the-art alternatives, consistently across all three satellite datasets. These consistent gains across all three satellite datasets highlight the robustness and generalizability of the proposed approach. Our code is open sourced at https://github.com/AI-4-atmosphere-remote-sensing/satellite-object-localization.

Authors:Qianbo Zang, Christophe Zgrzendek, Igor Tchappi, Afshin Khadangi, Johannes Sedlmeir
Title: KG-HTC: Integrating Knowledge Graphs into LLMs for Effective Zero-shot Hierarchical Text Classification
Abstract:
Hierarchical Text Classification (HTC) involves assigning documents to labels organized within a taxonomy. Most previous research on HTC has focused on supervised methods. However, in real-world scenarios, employing supervised HTC can be challenging due to a lack of annotated data. Moreover, HTC often faces issues with large label spaces and long-tail distributions. In this work, we present Knowledge Graphs for zero-shot Hierarchical Text Classification (KG-HTC), which aims to address these challenges of HTC in applications by integrating knowledge graphs with Large Language Models (LLMs) to provide structured semantic context during classification. Our method retrieves relevant subgraphs from knowledge graphs related to the input text using a Retrieval-Augmented Generation (RAG) approach. Our KG-HTC can enhance LLMs to understand label semantics at various hierarchy levels. We evaluate KG-HTC on three open-source HTC datasets: WoS, DBpedia, and Amazon. Our experimental results show that KG-HTC significantly outperforms three baselines in the strict zero-shot setting, particularly achieving substantial improvements at deeper levels of the hierarchy. This evaluation demonstrates the effectiveness of incorporating structured knowledge into LLMs to address HTC's challenges in large label spaces and long-tailed label distributions. Our code is available at: https://github.com/QianboZang/KG-HTC.

Authors:Mikhail Chaichuk, Sushant Gautam, Steven Hicks, Elena Tutubalina
Title: Prompt to Polyp: Medical Text-Conditioned Image Synthesis with Diffusion Models
Abstract:
The generation of realistic medical images from text descriptions has significant potential to address data scarcity challenges in healthcare AI while preserving patient privacy. This paper presents a comprehensive study of text-to-image synthesis in the medical domain, comparing two distinct approaches: (1) fine-tuning large pre-trained latent diffusion models and (2) training small, domain-specific models. We introduce a novel model named MSDM, an optimized architecture based on Stable Diffusion that integrates a clinical text encoder, variational autoencoder, and cross-attention mechanisms to better align medical text prompts with generated images. Our study compares two approaches: fine-tuning large pre-trained models (FLUX, Kandinsky) versus training compact domain-specific models (MSDM). Evaluation across colonoscopy (MedVQA-GI) and radiology (ROCOv2) datasets reveals that while large models achieve higher fidelity, our optimized MSDM delivers comparable quality with lower computational costs. Quantitative metrics and qualitative evaluations by medical experts reveal strengths and limitations of each approach.

Authors:Yanbo Wang, Xiyuan Wang, Quan Gan, Minjie Wang, Qibin Yang, David Wipf, Muhan Zhang
Title: Griffin: Towards a Graph-Centric Relational Database Foundation Model
Abstract:
We introduce Griffin, the first foundation model attemptation designed specifically for Relational Databases (RDBs). Unlike previous smaller models focused on single RDB tasks, Griffin unifies the data encoder and task decoder to handle diverse tasks. Additionally, we enhance the architecture by incorporating a cross-attention module and a novel aggregator. Griffin utilizes pretraining on both single-table and RDB datasets, employing advanced encoders for categorical, numerical, and metadata features, along with innovative components such as cross-attention modules and enhanced message-passing neural networks (MPNNs) to capture the complexities of relational data. Evaluated on large-scale, heterogeneous, and temporal graphs extracted from RDBs across various domains (spanning over 150 million nodes), Griffin demonstrates superior or comparable performance to individually trained models, excels in low-data scenarios, and shows strong transferability with similarity and diversity in pretraining across new datasets and tasks, highlighting its potential as a universally applicable foundation model for RDBs. Code available at https://github.com/yanxwb/Griffin.

Authors:Md Kamrujjaman Mobin, Md Saiful Islam, Sadik Al Barid, Md Masum
Title: Cardioformer: Advancing AI in ECG Analysis with Multi-Granularity Patching and ResNet
Abstract:
Electrocardiogram (ECG) classification is crucial for automated cardiac disease diagnosis, yet existing methods often struggle to capture local morphological details and long-range temporal dependencies simultaneously. To address these challenges, we propose Cardioformer, a novel multi-granularity hybrid model that integrates cross-channel patching, hierarchical residual learning, and a two-stage self-attention mechanism. Cardioformer first encodes multi-scale token embeddings to capture fine-grained local features and global contextual information and then selectively fuses these representations through intra- and inter-granularity self-attention. Extensive evaluations on three benchmark ECG datasets under subject-independent settings demonstrate that model consistently outperforms four state-of-the-art baselines. Our Cardioformer model achieves the AUROC of 96.34$\pm$0.11, 89.99$\pm$0.12, and 95.59$\pm$1.66 in MIMIC-IV, PTB-XL and PTB dataset respectively outperforming PatchTST, Reformer, Transformer, and Medformer models. It also demonstrates strong cross-dataset generalization, achieving 49.18% AUROC on PTB and 68.41% on PTB-XL when trained on MIMIC-IV. These findings underscore the potential of Cardioformer to advance automated ECG analysis, paving the way for more accurate and robust cardiovascular disease diagnosis. We release the source code at https://github.com/KMobin555/Cardioformer.

Authors:Kai Liu, Qian Zheng, Kaiwen Tao, Zhiteng Li, Haotong Qin, Wenbo Li, Yong Guo, Xianglong Liu, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Title: Low-bit Model Quantization for Deep Neural Networks: A Survey
Abstract:
With unprecedented rapid development, deep neural networks (DNNs) have deeply influenced almost all fields. However, their heavy computation costs and model sizes are usually unacceptable in real-world deployment. Model quantization, an effective weight-lighting technique, has become an indispensable procedure in the whole deployment pipeline. The essence of quantization acceleration is the conversion from continuous floating-point numbers to discrete integer ones, which significantly speeds up the memory I/O and calculation, i.e., addition and multiplication. However, performance degradation also comes with the conversion because of the loss of precision. Therefore, it has become increasingly popular and critical to investigate how to perform the conversion and how to compensate for the information loss. This article surveys the recent five-year progress towards low-bit quantization on DNNs. We discuss and compare the state-of-the-art quantization methods and classify them into 8 main categories and 24 sub-categories according to their core techniques. Furthermore, we shed light on the potential research opportunities in the field of model quantization. A curated list of model quantization is provided at https://github.com/Kai-Liu001/Awesome-Model-Quantization.

Authors:Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, James Bailey
Title: X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
Abstract:
As Contrastive Language-Image Pre-training (CLIP) models are increasingly adopted for diverse downstream tasks and integrated into large vision-language models (VLMs), their susceptibility to adversarial perturbations has emerged as a critical concern. In this work, we introduce \textbf{X-Transfer}, a novel attack method that exposes a universal adversarial vulnerability in CLIP. X-Transfer generates a Universal Adversarial Perturbation (UAP) capable of deceiving various CLIP encoders and downstream VLMs across different samples, tasks, and domains. We refer to this property as \textbf{super transferability}--a single perturbation achieving cross-data, cross-domain, cross-model, and cross-task adversarial transferability simultaneously. This is achieved through \textbf{surrogate scaling}, a key innovation of our approach. Unlike existing methods that rely on fixed surrogate models, which are computationally intensive to scale, X-Transfer employs an efficient surrogate scaling strategy that dynamically selects a small subset of suitable surrogates from a large search space. Extensive evaluations demonstrate that X-Transfer significantly outperforms previous state-of-the-art UAP methods, establishing a new benchmark for adversarial transferability across CLIP models. The code is publicly available in our \href{https://github.com/HanxunH/XTransferBench}{GitHub repository}.

Authors:Zinan Liu, Haoran Li, Jingyi Lu, Gaoyuan Ma, Xu Hong, Giovanni Iacca, Arvind Kumar, Shaojun Tang, Lin Wang
Title: Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience
Abstract:
Autonomous AI is no longer a hard-to-reach concept, it enables the agents to move beyond executing tasks to independently addressing complex problems, adapting to change while handling the uncertainty of the environment. However, what makes the agents truly autonomous? It is agentic reasoning, that is crucial for foundation models to develop symbolic logic, statistical correlations, or large-scale pattern recognition to process information, draw inferences, and make decisions. However, it remains unclear why and how existing agentic reasoning approaches work, in comparison to biological reasoning, which instead is deeply rooted in neural mechanisms involving hierarchical cognition, multimodal integration, and dynamic interactions. In this work, we propose a novel neuroscience-inspired framework for agentic reasoning. Grounded in three neuroscience-based definitions and supported by mathematical and biological foundations, we propose a unified framework modeling reasoning from perception to action, encompassing four core types, perceptual, dimensional, logical, and interactive, inspired by distinct functional roles observed in the human brain. We apply this framework to systematically classify and analyze existing AI reasoning methods, evaluating their theoretical foundations, computational designs, and practical limitations. We also explore its implications for building more generalizable, cognitively aligned agents in physical and virtual environments. Finally, building on our framework, we outline future directions and propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting. By bridging cognitive neuroscience and AI, this work offers a theoretical foundation and practical roadmap for advancing agentic reasoning in intelligent systems. The associated project can be found at: https://github.com/BioRAILab/Awesome-Neuroscience-Agent-Reasoning .

Authors:Thomas Sommariva, Simone Calderara, Angelo Porrello
Title: How to Train Your Metamorphic Deep Neural Network
Abstract:
Neural Metamorphosis (NeuMeta) is a recent paradigm for generating neural networks of varying width and depth. Based on Implicit Neural Representation (INR), NeuMeta learns a continuous weight manifold, enabling the direct generation of compressed models, including those with configurations not seen during training. While promising, the original formulation of NeuMeta proves effective only for the final layers of the undelying model, limiting its broader applicability. In this work, we propose a training algorithm that extends the capabilities of NeuMeta to enable full-network metamorphosis with minimal accuracy degradation. Our approach follows a structured recipe comprising block-wise incremental training, INR initialization, and strategies for replacing batch normalization. The resulting metamorphic networks maintain competitive accuracy across a wide range of compression ratios, offering a scalable solution for adaptable and efficient deployment of deep models. The code is available at: https://github.com/TSommariva/HTTY_NeuMeta.

Authors:Yiming Qin, Zhu Xu, Yang Liu
Title: Apply Hierarchical-Chain-of-Generation to Complex Attributes Text-to-3D Generation
Abstract:
Recent text-to-3D models can render high-quality assets, yet they still stumble on objects with complex attributes. The key obstacles are: (1) existing text-to-3D approaches typically lift text-to-image models to extract semantics via text encoders, while the text encoder exhibits limited comprehension ability for long descriptions, leading to deviated cross-attention focus, subsequently wrong attribute binding in generated results. (2) Occluded object parts demand a disciplined generation order and explicit part disentanglement. Though some works introduce manual efforts to alleviate the above issues, their quality is unstable and highly reliant on manual information. To tackle above problems, we propose a automated method Hierarchical-Chain-of-Generation (HCoG). It leverages a large language model to decompose the long description into blocks representing different object parts, and orders them from inside out according to occlusions, forming a hierarchical chain. Within each block we first coarsely create components, then precisely bind attributes via target-region localization and corresponding 3D Gaussian kernel optimization. Between blocks, we introduce Gaussian Extension and Label Elimination to seamlessly generate new parts by extending new Gaussian kernels, re-assigning semantic labels, and eliminating unnecessary kernels, ensuring that only relevant parts are added without disrupting previously optimized parts. Experiments confirm that HCoG yields structurally coherent, attribute-faithful 3D objects with complex attributes. The code is available at https://github.com/Wakals/GASCOL .

Authors:Xingyu Jiang, Ning Gao, Xiuhui Zhang, Hongkun Dou, Shaowen Fu, Xiaoqing Zhong, Hongjue Li, Yue Deng
Title: Image Restoration via Multi-domain Learning
Abstract:
Due to adverse atmospheric and imaging conditions, natural images suffer from various degradation phenomena. Consequently, image restoration has emerged as a key solution and garnered substantial attention. Although recent Transformer architectures have demonstrated impressive success across various restoration tasks, their considerable model complexity poses significant challenges for both training and real-time deployment. Furthermore, instead of investigating the commonalities among different degradations, most existing restoration methods focus on modifying Transformer under limited restoration priors. In this work, we first review various degradation phenomena under multi-domain perspective, identifying common priors. Then, we introduce a novel restoration framework, which integrates multi-domain learning into Transformer. Specifically, in Token Mixer, we propose a Spatial-Wavelet-Fourier multi-domain structure that facilitates local-region-global multi-receptive field modeling to replace vanilla self-attention. Additionally, in Feed-Forward Network, we incorporate multi-scale learning to fuse multi-domain features at different resolutions. Comprehensive experimental results across ten restoration tasks, such as dehazing, desnowing, motion deblurring, defocus deblurring, rain streak/raindrop removal, cloud removal, shadow removal, underwater enhancement and low-light enhancement, demonstrate that our proposed model outperforms state-of-the-art methods and achieves a favorable trade-off among restoration performance, parameter size, computational cost and inference latency. The code is available at: https://github.com/deng-ai-lab/SWFormer.

Authors:Yunfan Lu, Xiaogang Xu, Pengteng Li, Yusheng Wang, Yi Cui, Huizai Yao, Hui Xiong
Title: From Events to Enhancement: A Survey on Event-Based Imaging Technologies
Abstract:
Event cameras offering high dynamic range and low latency have emerged as disruptive technologies in imaging. Despite growing research on leveraging these benefits for different imaging tasks, a comprehensive study of recently advances and challenges are still lacking. This limits the broader understanding of how to utilize events in universal imaging applications. In this survey, we first introduce a physical model and the characteristics of different event sensors as the foundation. Following this, we highlight the advancement and interaction of image/video enhancement tasks with events. Additionally, we explore advanced tasks, which capture richer light information with events, \eg~light field estimation, multi-view generation, and photometric. Finally, we discuss new challenges and open questions offering a perspective for this rapidly evolving field. More continuously updated resources are at this link: https://github.com/yunfanLu/Awesome-Event-Imaging

Authors:Beichen Wen, Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, Ziwei Liu
Title: 3D Scene Generation: A Survey
Abstract:
3D scene generation seeks to synthesize spatially structured, semantically meaningful, and photorealistic environments for applications such as immersive media, robotics, autonomous driving, and embodied AI. Early methods based on procedural rules offered scalability but limited diversity. Recent advances in deep generative models (e.g., GANs, diffusion models) and 3D representations (e.g., NeRF, 3D Gaussians) have enabled the learning of real-world scene distributions, improving fidelity, diversity, and view consistency. Recent advances like diffusion models bridge 3D scene synthesis and photorealism by reframing generation as image or video synthesis problems. This survey provides a systematic overview of state-of-the-art approaches, organizing them into four paradigms: procedural generation, neural 3D-based generation, image-based generation, and video-based generation. We analyze their technical foundations, trade-offs, and representative results, and review commonly used datasets, evaluation protocols, and downstream applications. We conclude by discussing key challenges in generation capacity, 3D representation, data and annotations, and evaluation, and outline promising directions including higher fidelity, physics-aware and interactive generation, and unified perception-generation models. This review organizes recent advances in 3D scene generation and highlights promising directions at the intersection of generative AI, 3D vision, and embodied intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/hzxie/Awesome-3D-Scene-Generation.

Authors:Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang, Wanli Ouyang
Title: Flow-GRPO: Training Flow Matching Models via Online RL
Abstract:
We propose Flow-GRPO, the first method integrating online reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original inference timestep number, significantly improving sampling efficiency without performance degradation. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For complex compositions, RL-tuned SD3.5 generates nearly perfect object counts, spatial relations, and fine-grained attributes, boosting GenEval accuracy from 63% to 95%. In visual text rendering, its accuracy improves from 59% to 92%, significantly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, very little reward hacking occurred, meaning rewards did not increase at the cost of appreciable image quality or diversity degradation.

Authors:Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, Junxian He
Title: Bring Reason to Vision: Understanding Perception and Reasoning through Model Merging
Abstract:
Vision-Language Models (VLMs) combine visual perception with the general capabilities, such as reasoning, of Large Language Models (LLMs). However, the mechanisms by which these two abilities can be combined and contribute remain poorly understood. In this work, we explore to compose perception and reasoning through model merging that connects parameters of different models. Unlike previous works that often focus on merging models of the same kind, we propose merging models across modalities, enabling the incorporation of the reasoning capabilities of LLMs into VLMs. Through extensive experiments, we demonstrate that model merging offers a successful pathway to transfer reasoning abilities from LLMs to VLMs in a training-free manner. Moreover, we utilize the merged models to understand the internal mechanism of perception and reasoning and how merging affects it. We find that perception capabilities are predominantly encoded in the early layers of the model, whereas reasoning is largely facilitated by the middle-to-late layers. After merging, we observe that all layers begin to contribute to reasoning, whereas the distribution of perception abilities across layers remains largely unchanged. These observations shed light on the potential of model merging as a tool for multimodal integration and interpretation.

Authors:Ran Zhang, Wei Zhao, Lieve Macken, Steffen Eger
Title: LiTransProQA: an LLM-based Literary Translation evaluation metric with Professional Question Answering
Abstract:
The impact of Large Language Models (LLMs) has extended into literary domains. However, existing evaluation metrics prioritize mechanical accuracy over artistic expression and tend to overrate machine translation as being superior to human translation from experienced professionals. In the long run, this bias could result in an irreversible decline in translation quality and cultural authenticity. In response to the urgent need for a specialized literary evaluation metric, we introduce LiTransProQA, a novel, reference-free, LLM-based question-answering framework designed for literary translation evaluation. LiTransProQA uniquely integrates insights from professional literary translators and researchers, focusing on critical elements in literary quality assessment such as literary devices, cultural understanding, and authorial voice. Our extensive evaluation shows that while literary-finetuned XCOMET-XL yields marginal gains, LiTransProQA substantially outperforms current metrics, achieving up to 0.07 gain in correlation and surpassing the best state-of-the-art metrics by over 15 points in adequacy assessments. Incorporating professional translator insights as weights further improves performance, highlighting the value of translator inputs. Notably, LiTransProQA reaches human-level evaluation performance comparable to trained student evaluators. It shows broad applicability to open-source models like LLaMa3.3-70b and Qwen2.5-32b, indicating its potential as an accessible and training-free tool for evaluating literary translations that require local processing due to copyright or ethical considerations. The code and datasets are available under: https://github.com/zhangr2021/TransProQA.

Authors:Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan Sun, Ying Shan
Title: TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation
Abstract:
Pioneering token-based works such as Chameleon and Emu3 have established a foundation for multimodal unification but face challenges of high training computational overhead and limited comprehension performance due to a lack of high-level semantics. In this paper, we introduce TokLIP, a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens and incorporating CLIP-level semantics while enabling end-to-end multimodal autoregressive training with standard VQ tokens. TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. Unlike previous approaches (e.g., VILA-U) that discretize high-level features, TokLIP disentangles training objectives for comprehension and generation, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. Our empirical results demonstrate that TokLIP achieves exceptional data efficiency, empowering visual tokens with high-level semantic understanding while enhancing low-level generative capacity, making it well-suited for autoregressive Transformers in both comprehension and generation tasks. The code and models are available at https://github.com/TencentARC/TokLIP.

Authors:Sooyoung Park, Arda Senocak, Joon Son Chung
Title: Hearing and Seeing Through CLIP: A Framework for Self-Supervised Sound Source Localization
Abstract:
Large-scale vision-language models demonstrate strong multimodal alignment and generalization across diverse tasks. Among them, CLIP stands out as one of the most successful approaches. In this work, we extend the application of CLIP to sound source localization, proposing a self-supervised method operates without explicit text input. We introduce a framework that maps audios into tokens compatible with CLIP's text encoder, producing audio-driven embeddings. These embeddings are used to generate sounding region masks, from which visual features are extracted and aligned with the audio embeddings through a contrastive audio-visual correspondence objective. Our findings show that alignment knowledge of pre-trained multimodal foundation model enables our method to generate more complete and compact localization for sounding objects. We further propose an LLM-guided extension that distills object-aware audio-visual scene understanding into the model during training to enhance alignment. Extensive experiments across five diverse tasks demonstrate that our method, in all variants, outperforms state-of-the-art approaches and achieves strong generalization in zero-shot settings.

Authors:Thevathayarajh Thayananthan, Xin Zhang, Yanbo Huang, Jingdao Chen, Nuwan K. Wijewardane, Vitor S. Martins, Gary D. Chesser, Christopher T. Goodin
Title: CottonSim: Development of an autonomous visual-guided robotic cotton-picking system in the Gazebo
Abstract:
In this study, an autonomous visual-guided robotic cotton-picking system, built on a Clearpath's Husky robot platform and the Cotton-Eye perception system, was developed in the Gazebo robotic simulator. Furthermore, a virtual cotton farm was designed and developed as a Robot Operating System (ROS 1) package to deploy the robotic cotton picker in the Gazebo environment for simulating autonomous field navigation. The navigation was assisted by the map coordinates and an RGB-depth camera, while the ROS navigation algorithm utilized a trained YOLOv8n-seg model for instance segmentation. The model achieved a desired mean Average Precision (mAP) of 85.2%, a recall of 88.9%, and a precision of 93.0% for scene segmentation. The developed ROS navigation packages enabled our robotic cotton-picking system to autonomously navigate through the cotton field using map-based and GPS-based approaches, visually aided by a deep learning-based perception system. The GPS-based navigation approach achieved a 100% completion rate (CR) with a threshold of 5 x 10^-6 degrees, while the map-based navigation approach attained a 96.7% CR with a threshold of 0.25 m. This study establishes a fundamental baseline of simulation for future agricultural robotics and autonomous vehicles in cotton farming and beyond. CottonSim code and data are released to the research community via GitHub: https://github.com/imtheva/CottonSim

Authors:Thevathayarajh Thayananthan, Xin Zhang, Yanbo Huang, Jingdao Chen, Nuwan K. Wijewardane, Vitor S. Martins, Gary D. Chesser, Christopher T. Goodin
Title: CottonSim: A vision-guided autonomous robotic system for cotton harvesting in Gazebo simulation
Abstract:
Cotton is a major cash crop in the United States, with the country being a leading global producer and exporter. Nearly all U.S. cotton is grown in the Cotton Belt, spanning 17 states in the southern region. Harvesting remains a critical yet challenging stage, impacted by the use of costly, environmentally harmful defoliants and heavy, expensive cotton pickers. These factors contribute to yield loss, reduced fiber quality, and soil compaction, which collectively threaten long-term sustainability. To address these issues, this study proposes a lightweight, small-scale, vision-guided autonomous robotic cotton picker as an alternative. An autonomous system, built on Clearpath's Husky platform and integrated with the CottonEye perception system, was developed and tested in the Gazebo simulation environment. A virtual cotton field was designed to facilitate autonomous navigation testing. The navigation system used Global Positioning System (GPS) and map-based guidance, assisted by an RGBdepth camera and a YOLOv8nseg instance segmentation model. The model achieved a mean Average Precision (mAP) of 85.2%, a recall of 88.9%, and a precision of 93.0%. The GPS-based approach reached a 100% completion rate (CR) within a $(5e-6)^{\circ}$ threshold, while the map-based method achieved a 96.7% CR within a 0.25 m threshold. The developed Robot Operating System (ROS) packages enable robust simulation of autonomous cotton picking, offering a scalable baseline for future agricultural robotics. CottonSim code and datasets are publicly available on GitHub: https://github.com/imtheva/CottonSim

Authors:Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, Caiming Xiong
Title: Scalable Chain of Thoughts via Elastic Reasoning
Abstract:
Large reasoning models (LRMs) have achieved remarkable progress on complex tasks by generating extended chains of thought (CoT). However, their uncontrolled output lengths pose significant challenges for real-world deployment, where inference-time budgets on tokens, latency, or compute are strictly constrained. We propose Elastic Reasoning, a novel framework for scalable chain of thoughts that explicitly separates reasoning into two phases--thinking and solution--with independently allocated budgets. At test time, Elastic Reasoning prioritizes the completeness of solution segments, significantly improving reliability under tight resource constraints. To train models that are robust to truncated thinking, we introduce a lightweight budget-constrained rollout strategy, integrated into GRPO, which teaches the model to reason adaptively when the thinking process is cut short and generalizes effectively to unseen budget constraints without additional training. Empirical results on mathematical (AIME, MATH500) and programming (LiveCodeBench, Codeforces) benchmarks demonstrate that Elastic Reasoning performs robustly under strict budget constraints, while incurring significantly lower training cost than baseline methods. Remarkably, our approach also produces more concise and efficient reasoning even in unconstrained settings. Our code has been made available at https://github.com/SalesforceAIResearch/Elastic-Reasoning.

Authors:Yifan Bian, Chuanbo Tang, Li Li, Dong Liu
Title: Augmented Deep Contexts for Spatially Embedded Video Coding
Abstract:
Most Neural Video Codecs (NVCs) only employ temporal references to generate temporal-only contexts and latent prior. These temporal-only NVCs fail to handle large motions or emerging objects due to limited contexts and misaligned latent prior. To relieve the limitations, we propose a Spatially Embedded Video Codec (SEVC), in which the low-resolution video is compressed for spatial references. Firstly, our SEVC leverages both spatial and temporal references to generate augmented motion vectors and hybrid spatial-temporal contexts. Secondly, to address the misalignment issue in latent prior and enrich the prior information, we introduce a spatial-guided latent prior augmented by multiple temporal latent representations. At last, we design a joint spatial-temporal optimization to learn quality-adaptive bit allocation for spatial references, further boosting rate-distortion performance. Experimental results show that our SEVC effectively alleviates the limitations in handling large motions or emerging objects, and also reduces 11.9% more bitrate than the previous state-of-the-art NVC while providing an additional low-resolution bitstream. Our code and model are available at https://github.com/EsakaK/SEVC.

Authors:You Peng, Youhe Jiang, Chen Wang, Binhang Yuan
Title: HEXGEN-TEXT2SQL: Optimizing LLM Inference Request Scheduling for Agentic Text-to-SQL Workflow
Abstract:
Recent advances in leveraging the agentic paradigm of large language models (LLMs) utilization have significantly enhanced Text-to-SQL capabilities, enabling users without specialized database expertise to query data intuitively. However, deploying these agentic LLM-based Text-to-SQL systems in production poses substantial challenges due to their inherently multi-stage workflows, stringent latency constraints, and potentially heterogeneous GPU infrastructure in enterprise environments. Current LLM serving frameworks lack effective mechanisms for handling interdependent inference tasks, dynamic latency variability, and resource heterogeneity, leading to suboptimal performance and frequent service-level objective (SLO) violations. In this paper, we introduce HEXGEN-TEXT2SQL, a novel framework designed explicitly to schedule and execute agentic multi-stage LLM-based Text-to-SQL workflows on heterogeneous GPU clusters that handle multi-tenant end-to-end queries. HEXGEN-TEXT2SQL introduce a hierarchical scheduling approach combining global workload-balanced task dispatching and local adaptive urgency-guided prioritization, guided by a systematic analysis of agentic Text-to-SQL workflows. Additionally, we propose a lightweight simulation-based method for tuning critical scheduling hyperparameters, further enhancing robustness and adaptability. Our extensive evaluation on realistic Text-to-SQL benchmarks demonstrates that HEXGEN-TEXT2SQL significantly outperforms state-of-the-art LLM serving frameworks. Specifically, HEXGEN-TEXT2SQL reduces latency deadlines by up to 1.67$\times$ (average: 1.41$\times$) and improves system throughput by up to 1.75$\times$ (average: 1.65$\times$) compared to vLLM under diverse, realistic workload conditions. Our code is available at https://github.com/Relaxed-System-Lab/Hexgen-Flow.

Authors:Mengze Hong, Wailing Ng, Chen Jason Zhang, Di Jiang
Title: QualBench: Benchmarking Chinese LLMs with Localized Professional Qualifications for Vertical Domain Evaluation
Abstract:
The rapid advancement of Chinese LLMs underscores the need for vertical-domain evaluations to ensure reliable applications. However, existing benchmarks often lack domain coverage and provide limited insights into the Chinese working context. Leveraging qualification exams as a unified framework for expertise evaluation, we introduce QualBench, the first multi-domain Chinese QA benchmark dedicated to localized assessment of Chinese LLMs. The dataset includes over 17,000 questions across six vertical domains, drawn from 24 Chinese qualifications to align with national policies and professional standards. Results reveal an interesting pattern of Chinese LLMs consistently surpassing non-Chinese models, with the Qwen2.5 model outperforming the more advanced GPT-4o, emphasizing the value of localized domain knowledge in meeting qualification requirements. The average accuracy of 53.98% reveals the current gaps in domain coverage within model capabilities. Furthermore, we identify performance degradation caused by LLM crowdsourcing, assess data contamination, and illustrate the effectiveness of prompt engineering and model fine-tuning, suggesting opportunities for future improvements through multi-domain RAG and Federated Learning.

Authors:Qian Zeng, Chenggong Hu, Mingli Song, Jie Song
Title: Diffusion Model Quantization: A Review
Abstract:
Recent success of large text-to-image models has empirically underscored the exceptional performance of diffusion models in generative tasks. To facilitate their efficient deployment on resource-constrained edge devices, model quantization has emerged as a pivotal technique for both compression and acceleration. This survey offers a thorough review of the latest advancements in diffusion model quantization, encapsulating and analyzing the current state of the art in this rapidly advancing domain. First, we provide an overview of the key challenges encountered in the quantization of diffusion models, including those based on U-Net architectures and Diffusion Transformers (DiT). We then present a comprehensive taxonomy of prevalent quantization techniques, engaging in an in-depth discussion of their underlying principles. Subsequently, we perform a meticulous analysis of representative diffusion model quantization schemes from both qualitative and quantitative perspectives. From a quantitative standpoint, we rigorously benchmark a variety of methods using widely recognized datasets, delivering an extensive evaluation of the most recent and impactful research in the field. From a qualitative standpoint, we categorize and synthesize the effects of quantization errors, elucidating these impacts through both visual analysis and trajectory examination. In conclusion, we outline prospective avenues for future research, proposing novel directions for the quantization of generative models in practical applications. The list of related papers, corresponding codes, pre-trained models and comparison results are publicly available at the survey project homepage https://github.com/TaylorJocelyn/Diffusion-Model-Quantization.

Authors:Wangkun Xu, Zhongda Chu, Fei Teng
Title: LAPSO: A Unified Optimization View for Learning-Augmented Power System Operations
Abstract:
With the high penetration of renewables, traditional model-based power system operation is challenged to deliver economic, stable, and robust decisions. Machine learning has emerged as a powerful modeling tool for capturing complex dynamics to address these challenges. However, its separate design often lacks systematic integration with existing methods. To fill the gap, this paper proposes a holistic framework of Learning-Augmented Power System Operations (LAPSO, pronounced as Lap-So). Adopting a native optimization perspective, LAPSO is centered on the operation stage and aims to break the boundary between temporally siloed power system tasks, such as forecast, operation and control, while unifying the objectives of machine learning and model-based optimizations at both training and inference stages. Systematic analysis and simulations demonstrate the effectiveness of applying LAPSO in designing new integrated algorithms, such as stability-constrained optimization (SCO) and objective-based forecasting (OBF), while enabling end-to-end tracing of different sources of uncertainties. In addition, a dedicated Python package-lapso is introduced to automatically augment existing power system optimization models with learnable components. All code and data are available at https://github.com/xuwkk/lapso_exp.

Authors:Wei Peng, Kang Liu, Jianchen Hu, Meng Zhang
Title: Biomed-DPT: Dual Modality Prompt Tuning for Biomedical Vision-Language Models
Abstract:
Prompt learning is one of the most effective paradigms for adapting pre-trained vision-language models (VLMs) to the biomedical image classification tasks in few shot scenarios. However, most of the current prompt learning methods only used the text prompts and ignored the particular structures (such as the complex anatomical structures and subtle pathological features) in the biomedical images. In this work, we propose Biomed-DPT, a knowledge-enhanced dual modality prompt tuning technique. In designing the text prompt, Biomed-DPT constructs a dual prompt including the template-driven clinical prompts and the large language model (LLM)-driven domain-adapted prompts, then extracts the clinical knowledge from the domain-adapted prompts through the knowledge distillation technique. In designing the vision prompt, Biomed-DPT introduces the zero vector as a soft prompt to leverage attention re-weighting so that the focus on non-diagnostic regions and the recognition of non-critical pathological features are avoided. Biomed-DPT achieves an average classification accuracy of 66.14\% across 11 biomedical image datasets covering 9 modalities and 10 organs, with performance reaching 78.06\% in base classes and 75.97\% in novel classes, surpassing the Context Optimization (CoOp) method by 6.20\%, 3.78\%, and 8.04\%, respectively. Our code are available at \underline{https://github.com/Kanyooo/Biomed-DPT}.

Authors:Cong Hua, Qianqian Xu, Zhiyong Yang, Zitai Wang, Shilong Bao, Qingming Huang
Title: OpenworldAUC: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning
Abstract:
Prompt tuning adapts Vision-Language Models like CLIP to open-world tasks with minimal training costs. In this direction, one typical paradigm evaluates model performance separately on known classes (i.e., base domain) and unseen classes (i.e., new domain). However, real-world scenarios require models to handle inputs without prior domain knowledge. This practical challenge has spurred the development of open-world prompt tuning, which demands a unified evaluation of two stages: 1) detecting whether an input belongs to the base or new domain (P1), and 2) classifying the sample into its correct class (P2). What's more, as domain distributions are generally unknown, a proper metric should be insensitive to varying base/new sample ratios (P3). However, we find that current metrics, including HM, overall accuracy, and AUROC, fail to satisfy these three properties simultaneously. To bridge this gap, we propose OpenworldAUC, a unified metric that jointly assesses detection and classification through pairwise instance comparisons. To optimize OpenworldAUC effectively, we introduce Gated Mixture-of-Prompts (GMoP), which employs domain-specific prompts and a gating mechanism to dynamically balance detection and classification. Theoretical guarantees ensure generalization of GMoP under practical conditions. Experiments on 15 benchmarks in open-world scenarios show GMoP achieves SOTA performance on OpenworldAUC and other metrics. We release the code at https://github.com/huacong/OpenworldAUC

Authors:Boyi Deng, Yu Wan, Yidan Zhang, Baosong Yang, Fuli Feng
Title: Unveiling Language-Specific Features in Large Language Models via Sparse Autoencoders
Abstract:
The mechanisms behind multilingual capabilities in Large Language Models (LLMs) have been examined using neuron-based or internal-activation-based methods. However, these methods often face challenges such as superposition and layer-wise activation variance, which limit their reliability. Sparse Autoencoders (SAEs) offer a more nuanced analysis by decomposing the activations of LLMs into a sparse linear combination of SAE features. We introduce a novel metric to assess the monolinguality of features obtained from SAEs, discovering that some features are strongly related to specific languages. Additionally, we show that ablating these SAE features only significantly reduces abilities in one language of LLMs, leaving others almost unaffected. Interestingly, we find some languages have multiple synergistic SAE features, and ablating them together yields greater improvement than ablating individually. Moreover, we leverage these SAE-derived language-specific features to enhance steering vectors, achieving control over the language generated by LLMs. The code is publicly available at https://github.com/Aatrox103/multilingual-llm-features.

Authors:Shashank Agnihotri, Amaan Ansari, Annika Dackermann, Fabian Rösch, Margret Keuper
Title: DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions
Abstract:
Deep learning (DL) has surpassed human performance on standard benchmarks, driving its widespread adoption in computer vision tasks. One such task is disparity estimation, estimating the disparity between matching pixels in stereo image pairs, which is crucial for safety-critical applications like medical surgeries and autonomous navigation. However, DL-based disparity estimation methods are highly susceptible to distribution shifts and adversarial attacks, raising concerns about their reliability and generalization. Despite these concerns, a standardized benchmark for evaluating the robustness of disparity estimation methods remains absent, hindering progress in the field. To address this gap, we introduce DispBench, a comprehensive benchmarking tool for systematically assessing the reliability of disparity estimation methods. DispBench evaluates robustness against synthetic image corruptions such as adversarial attacks and out-of-distribution shifts caused by 2D Common Corruptions across multiple datasets and diverse corruption scenarios. We conduct the most extensive performance and robustness analysis of disparity estimation methods to date, uncovering key correlations between accuracy, reliability, and generalization. Open-source code for DispBench: https://github.com/shashankskagnihotri/benchmarking_robustness/tree/disparity_estimation/final/disparity_estimation

Authors:Wenyang Liu, Jianjun Gao, Kim-Hui Yap
Title: SSH-Net: A Self-Supervised and Hybrid Network for Noisy Image Watermark Removal
Abstract:
Visible watermark removal is challenging due to its inherent complexities and the noise carried within images. Existing methods primarily rely on supervised learning approaches that require paired datasets of watermarked and watermark-free images, which are often impractical to obtain in real-world scenarios. To address this challenge, we propose SSH-Net, a Self-Supervised and Hybrid Network specifically designed for noisy image watermark removal. SSH-Net synthesizes reference watermark-free images using the watermark distribution in a self-supervised manner and adopts a dual-network design to address the task. The upper network, focused on the simpler task of noise removal, employs a lightweight CNN-based architecture, while the lower network, designed to handle the more complex task of simultaneously removing watermarks and noise, incorporates Transformer blocks to model long-range dependencies and capture intricate image features. To enhance the model's effectiveness, a shared CNN-based feature encoder is introduced before dual networks to extract common features that both networks can leverage. Our code will be available at https://github.com/wenyang001/SSH-Net.

Authors:Hyunho Song, Dongjae Lee, Seunghun Oh, Minwoo Jung, Ayoung Kim
Title: The City that Never Settles: Simulation-based LiDAR Dataset for Long-Term Place Recognition Under Extreme Structural Changes
Abstract:
Large-scale construction and demolition significantly challenge long-term place recognition (PR) by drastically reshaping urban and suburban environments. Existing datasets predominantly reflect limited or indoor-focused changes, failing to adequately represent extensive outdoor transformations. To bridge this gap, we introduce the City that Never Settles (CNS) dataset, a simulation-based dataset created using the CARLA simulator, capturing major structural changes-such as building construction and demolition-across diverse maps and sequences. Additionally, we propose TCR_sym, a symmetric version of the original TCR metric, enabling consistent measurement of structural changes irrespective of source-target ordering. Quantitative comparisons demonstrate that CNS encompasses more extensive transformations than current real-world benchmarks. Evaluations of state-of-the-art LiDAR-based PR methods on CNS reveal substantial performance degradation, underscoring the need for robust algorithms capable of handling significant environmental changes. Our dataset is available at https://github.com/Hyunho111/CNS_dataset.

Authors:Chunyu Xie, Bin Wang, Fanjing Kong, Jincheng Li, Dawei Liang, Gengshen Zhang, Dawei Leng, Yuhui Yin
Title: FG-CLIP: Fine-Grained Visual and Textual Alignment
Abstract:
Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model's ability to distinguish subtle semantic differences. We construct a comprehensive dataset, termed FineHARD, by integrating high-quality region-specific annotations with hard fine-grained negative samples. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP's effectiveness in capturing fine-grained image details and improving overall model performance. The data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.

Authors:Ruihuai Liang, Bo Yang, Pengyu Chen, Xuelin Cao, Zhiwen Yu, H. Vincent Poor, Chau Yuen
Title: Cross-Problem Solving for Network Optimization: Is Problem-Aware Learning the Key?
Abstract:
As intelligent network services continue to diversify, ensuring efficient and adaptive resource allocation in edge networks has become increasingly critical. Yet the wide functional variations across services often give rise to new and unforeseen optimization problems, rendering traditional manual modeling and solver design both time-consuming and inflexible. This limitation reveals a key gap between current methods and human solving - the inability to recognize and understand problem characteristics. It raises the question of whether problem-aware learning can bridge this gap and support effective cross-problem generalization. To answer this question, we propose a problem-aware diffusion (PAD) model, which leverages a problem-aware learning framework to enable cross-problem generalization. By explicitly encoding the mathematical formulations of optimization problems into token-level embeddings, PAD empowers the model to understand and adapt to problem structures. Extensive experiments across six diverse network optimization problems show that PAD generalizes well to unseen problems while significantly improving solution quality and feasibility. Meanwhile, an auxiliary constraint-aware module is designed to enforce solution validity further. The experiments reveal that problem-aware learning is promising for building general-purpose solvers for intelligent network operation and resource management. Our code is open source at https://github.com/qiyu3816/PAD.

Authors:Xinyang Lu, Xinyuan Niu, Gregory Kang Ruey Lau, Bui Thi Cam Nhung, Rachael Hwee Ling Sim, Fanyu Wen, Chuan-Sheng Foo, See-Kiong Ng, Bryan Kian Hsiang Low
Title: WaterDrum: Watermarking for Data-centric Unlearning Metric
Abstract:
Large language model (LLM) unlearning is critical in real-world applications where it is necessary to efficiently remove the influence of private, copyrighted, or harmful data from some users. However, existing utility-centric unlearning metrics (based on model utility) may fail to accurately evaluate the extent of unlearning in realistic settings such as when (a) the forget and retain set have semantically similar content, (b) retraining the model from scratch on the retain set is impractical, and/or (c) the model owner can improve the unlearning metric without directly performing unlearning on the LLM. This paper presents the first data-centric unlearning metric for LLMs called WaterDrum that exploits robust text watermarking for overcoming these limitations. We also introduce new benchmark datasets for LLM unlearning that contain varying levels of similar data points and can be used to rigorously evaluate unlearning algorithms using WaterDrum. Our code is available at https://github.com/lululu008/WaterDrum and our new benchmark datasets are released at https://huggingface.co/datasets/Glow-AI/WaterDrum-Ax.

Authors:Ao Jin, Weijian Zhao, Yifeng Ma, Panfeng Huang, Fan Zhang
Title: Enhanced Robust Tracking Control: An Online Learning Approach
Abstract:
This work focuses the tracking control problem for nonlinear systems subjected to unknown external disturbances. Inspired by contraction theory, a neural network-dirven CCM synthesis is adopted to obtain a feedback controller that could track any feasible trajectory. Based on the observation that the system states under continuous control input inherently contain embedded information about unknown external disturbances, we propose an online learning scheme that captures the disturbances dyanmics from online historical data and embeds the compensation within the CCM controller. The proposed scheme operates as a plug-and-play module that intrinsically enhances the tracking performance of CCM synthesis. The numerical simulations on tethered space robot and PVTOL demonstrate the effectiveness of proposed scheme. The source code of the proposed online learning scheme can be found at https://github.com/NPU-RCIR/Online_CCM.git.

Authors:Yingyi Zhang, Pengyue Jia, Xianneng Li, Derong Xu, Maolin Wang, Yichao Wang, Zhaocheng Du, Huifeng Guo, Yong Liu, Ruiming Tang, Xiangyu Zhao
Title: LSRP: A Leader-Subordinate Retrieval Framework for Privacy-Preserving Cloud-Device Collaboration
Abstract:
Cloud-device collaboration leverages on-cloud Large Language Models (LLMs) for handling public user queries and on-device Small Language Models (SLMs) for processing private user data, collectively forming a powerful and privacy-preserving solution. However, existing approaches often fail to fully leverage the scalable problem-solving capabilities of on-cloud LLMs while underutilizing the advantage of on-device SLMs in accessing and processing personalized data. This leads to two interconnected issues: 1) Limited utilization of the problem-solving capabilities of on-cloud LLMs, which fail to align with personalized user-task needs, and 2) Inadequate integration of user data into on-device SLM responses, resulting in mismatches in contextual user information. In this paper, we propose a Leader-Subordinate Retrieval framework for Privacy-preserving cloud-device collaboration (LSRP), a novel solution that bridges these gaps by: 1) enhancing on-cloud LLM guidance to on-device SLM through a dynamic selection of task-specific leader strategies named as user-to-user retrieval-augmented generation (U-U-RAG), and 2) integrating the data advantages of on-device SLMs through small model feedback Direct Preference Optimization (SMFB-DPO) for aligning the on-cloud LLM with the on-device SLM. Experiments on two datasets demonstrate that LSRP consistently outperforms state-of-the-art baselines, significantly improving question-answer relevance and personalization, while preserving user privacy through efficient on-device retrieval. Our code is available at: https://github.com/Applied-Machine-Learning-Lab/LSRP.

Authors:Jaehyun Jeon, Min Soo Kim, Jang Han Yoon, Sumin Shim, Yejin Choi, Hanbin Kim, Youngjae Yu
Title: Do MLLMs Capture How Interfaces Guide User Behavior? A Benchmark for Multimodal UI/UX Design Understanding
Abstract:
User interface (UI) design goes beyond visuals, guiding user behavior and overall user experience (UX). Strategically crafted interfaces, for example, can boost sign-ups and drive business sales, underscoring the shift toward UI/UX as a unified design concept. While recent studies have explored UI quality evaluation using Multimodal Large Language Models (MLLMs), they largely focus on surface-level features, overlooking behavior-oriented aspects. To fill this gap, we introduce WiserUI-Bench, a novel benchmark for assessing models' multimodal understanding of UI/UX design. It includes 300 diverse real-world UI image pairs, each consisting of two design variants A/B-tested at scale by actual companies, where one was empirically validated to steer more user actions than the other. Each pair is accompanied one or more of 684 expert-curated rationales that capture key factors behind each winning design's effectiveness, spanning diverse cognitive dimensions of UX. Our benchmark supports two core tasks: (1) selecting the more effective UI/UX design by predicting the A/B test verified winner and (2) assessing how well a model, given the winner, can explain its effectiveness in alignment with expert reasoning. Experiments across several MLLMs show that current models exhibit limited nuanced reasoning about UI/UX design and its behavioral impact. We believe our work will foster research in UI/UX understanding and enable broader applications such as behavior-aware interface optimization.

Authors:Tingting Liao, Yujian Zheng, Adilbek Karmanov, Liwen Hu, Leyang Jin, Yuliang Xiu, Hao Li
Title: SOAP: Style-Omniscient Animatable Portraits
Abstract:
Creating animatable 3D avatars from a single image remains challenging due to style limitations (realistic, cartoon, anime) and difficulties in handling accessories or hairstyles. While 3D diffusion models advance single-view reconstruction for general objects, outputs often lack animation controls or suffer from artifacts because of the domain gap. We propose SOAP, a style-omniscient framework to generate rigged, topology-consistent avatars from any portrait. Our method leverages a multiview diffusion model trained on 24K 3D heads with multiple styles and an adaptive optimization pipeline to deform the FLAME mesh while maintaining topology and rigging via differentiable rendering. The resulting textured avatars support FACS-based animation, integrate with eyeballs and teeth, and preserve details like braided hair or accessories. Extensive experiments demonstrate the superiority of our method over state-of-the-art techniques for both single-view head modeling and diffusion-based generation of Image-to-3D. Our code and data are publicly available for research purposes at https://github.com/TingtingLiao/soap.

Authors:Yuntai Bao, Xuhong Zhang, Tianyu Du, Xinkui Zhao, Jiang Zong, Hao Peng, Jianwei Yin
Title: Scalable Multi-Stage Influence Function for Large Language Models via Eigenvalue-Corrected Kronecker-Factored Parameterization
Abstract:
Pre-trained large language models (LLMs) are commonly fine-tuned to adapt to downstream tasks. Since the majority of knowledge is acquired during pre-training, attributing the predictions of fine-tuned LLMs to their pre-training data may provide valuable insights. Influence functions have been proposed as a means to explain model predictions based on training data. However, existing approaches fail to compute ``multi-stage'' influence and lack scalability to billion-scale LLMs. In this paper, we propose the multi-stage influence function to attribute the downstream predictions of fine-tuned LLMs to pre-training data under the full-parameter fine-tuning paradigm. To enhance the efficiency and practicality of our multi-stage influence function, we leverage Eigenvalue-corrected Kronecker-Factored (EK-FAC) parameterization for efficient approximation. Empirical results validate the superior scalability of EK-FAC approximation and the effectiveness of our multi-stage influence function. Additionally, case studies on a real-world LLM, dolly-v2-3b, demonstrate its interpretive power, with exemplars illustrating insights provided by multi-stage influence estimates. Our code is public at https://github.com/colored-dye/multi_stage_influence_function.

Authors:Xin Bi, Zhichao Li, Yuxuan Xia, Panpan Tong, Lijuan Zhang, Yang Chen, Junsheng Fu
Title: Driving with Context: Online Map Matching for Complex Roads Using Lane Markings and Scenario Recognition
Abstract:
Accurate online map matching is fundamental to vehicle navigation and the activation of intelligent driving functions. Current online map matching methods are prone to errors in complex road networks, especially in multilevel road area. To address this challenge, we propose an online Standard Definition (SD) map matching method by constructing a Hidden Markov Model (HMM) with multiple probability factors. Our proposed method can achieve accurate map matching even in complex road networks by carefully leveraging lane markings and scenario recognition in the designing of the probability factors. First, the lane markings are generated by a multi-lane tracking method and associated with the SD map using HMM to build an enriched SD map. In areas covered by the enriched SD map, the vehicle can re-localize itself by performing Iterative Closest Point (ICP) registration for the lane markings. Then, the probability factor accounting for the lane marking detection can be obtained using the association probability between adjacent lanes and roads. Second, the driving scenario recognition model is applied to generate the emission probability factor of scenario recognition, which improves the performance of map matching on elevated roads and ordinary urban roads underneath them. We validate our method through extensive road tests in Europe and China, and the experimental results show that our proposed method effectively improves the online map matching accuracy as compared to other existing methods, especially in multilevel road area. Specifically, the experiments show that our proposed method achieves $F_1$ scores of 98.04% and 94.60% on the Zenseact Open Dataset and test data of multilevel road areas in Shanghai respectively, significantly outperforming benchmark methods. The implementation is available at https://github.com/TRV-Lab/LMSR-OMM.

Authors:Lang Nie, Chunyu Lin, Kang Liao, Yun Zhang, Shuaicheng Liu, Yao Zhao
Title: StabStitch++: Unsupervised Online Video Stitching with Spatiotemporal Bidirectional Warps
Abstract:
We retarget video stitching to an emerging issue, named warping shake, which unveils the temporal content shakes induced by sequentially unsmooth warps when extending image stitching to video stitching. Even if the input videos are stable, the stitched video can inevitably cause undesired warping shakes and affect the visual experience. To address this issue, we propose StabStitch++, a novel video stitching framework to realize spatial stitching and temporal stabilization with unsupervised learning simultaneously. First, different from existing learning-based image stitching solutions that typically warp one image to align with another, we suppose a virtual midplane between original image planes and project them onto it. Concretely, we design a differentiable bidirectional decomposition module to disentangle the homography transformation and incorporate it into our spatial warp, evenly spreading alignment burdens and projective distortions across two views. Then, inspired by camera paths in video stabilization, we derive the mathematical expression of stitching trajectories in video stitching by elaborately integrating spatial and temporal warps. Finally, a warp smoothing model is presented to produce stable stitched videos with a hybrid loss to simultaneously encourage content alignment, trajectory smoothness, and online collaboration. Compared with StabStitch that sacrifices alignment for stabilization, StabStitch++ makes no compromise and optimizes both of them simultaneously, especially in the online mode. To establish an evaluation benchmark and train the learning framework, we build a video stitching dataset with a rich diversity in camera motions and scenes. Experiments exhibit that StabStitch++ surpasses current solutions in stitching performance, robustness, and efficiency, offering compelling advancements in this field by building a real-time online video stitching system.

Authors:Ling Yue, Nithin Somasekharan, Yadi Cao, Shaowu Pan
Title: Foam-Agent: Towards Automated Intelligent CFD Workflows
Abstract:
Computational Fluid Dynamics (CFD) is an essential simulation tool in various engineering disciplines, but it often requires substantial domain expertise and manual configuration, creating barriers to entry. We present Foam-Agent, a multi-agent framework that automates complex OpenFOAM-based CFD simulation workflows from natural language inputs. Our innovation includes (1) a hierarchical multi-index retrieval system with specialized indices for different simulation aspects, (2) a dependency-aware file generation system that provides consistency management across configuration files, and (3) an iterative error correction mechanism that diagnoses and resolves simulation failures without human intervention. Through comprehensive evaluation on the dataset of 110 simulation tasks, Foam-Agent achieves an 83.6% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM and 37.3% for OpenFOAM-GPT). Ablation studies demonstrate the critical contribution of each system component, with the specialized error correction mechanism providing a 36.4% performance improvement. Foam-Agent substantially lowers the CFD expertise threshold while maintaining modeling accuracy, demonstrating the potential of specialized multi-agent systems to democratize access to complex scientific simulation tools. The code is public at https://github.com/csml-rpi/Foam-Agent

Authors:Lizhe Fang, Yifei Wang, Khashayar Gatmiry, Lei Fang, Yisen Wang
Title: Rethinking Invariance in In-context Learning
Abstract:
In-Context Learning (ICL) has emerged as a pivotal capability of auto-regressive large language models, yet it is hindered by a notable sensitivity to the ordering of context examples regardless of their mutual independence. To address this issue, recent studies have introduced several variant algorithms of ICL that achieve permutation invariance. However, many of these do not exhibit comparable performance with the standard auto-regressive ICL algorithm. In this work, we identify two crucial elements in the design of an invariant ICL algorithm: information non-leakage and context interdependence, which are not simultaneously achieved by any of the existing methods. These investigations lead us to the proposed Invariant ICL (InvICL), a methodology designed to achieve invariance in ICL while ensuring the two properties. Empirically, our findings reveal that InvICL surpasses previous models, both invariant and non-invariant, in most benchmark datasets, showcasing superior generalization capabilities across varying input lengths. Code is available at https://github.com/PKU-ML/InvICL.

Authors:Xin Zhou, Xiaoxiong Zhang, Dusit Niyato, Zhiqi Shen
Title: Learning Item Representations Directly from Multimodal Features for Effective Recommendation
Abstract:
Conventional multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations by amalgamating item identity (ID) embeddings with multimodal features. Nevertheless, our empirical and theoretical findings unequivocally demonstrate a pronounced optimization gradient bias in favor of acquiring representations from multimodal features over item ID embeddings. As a consequence, item ID embeddings frequently exhibit suboptimal characteristics despite the convergence of multimodal feature parameters. Given the rich informational content inherent in multimodal features, in this paper, we propose a novel model (i.e., LIRDRec) that learns item representations directly from these features to augment recommendation performance. Recognizing that features derived from each modality may capture disparate yet correlated aspects of items, we propose a multimodal transformation mechanism, integrated with modality-specific encoders, to effectively fuse features from all modalities. Moreover, to differentiate the influence of diverse modality types, we devise a progressive weight copying fusion module within LIRDRec. This module incrementally learns the weight assigned to each modality in synthesizing the final user or item representations. Finally, we utilize the powerful visual understanding of Multimodal Large Language Models (MLLMs) to convert the item images into texts and extract semantics embeddings upon the texts via LLMs. Empirical evaluations conducted on five real-world datasets validate the superiority of our approach relative to competing baselines. It is worth noting the proposed model, equipped with embeddings extracted from MLLMs and LLMs, can further improve the recommendation accuracy of NDCG@20 by an average of 4.21% compared to the original embeddings.

Authors:Fangwei Zhu, Peiyi Wang, Zhifang Sui
Title: Chain-of-Thought Tokens are Computer Program Variables
Abstract:
Chain-of-thoughts (CoT) requires large language models (LLMs) to generate intermediate steps before reaching the final answer, and has been proven effective to help LLMs solve complex reasoning tasks. However, the inner mechanism of CoT still remains largely unclear. In this paper, we empirically study the role of CoT tokens in LLMs on two compositional tasks: multi-digit multiplication and dynamic programming. While CoT is essential for solving these problems, we find that preserving only tokens that store intermediate results would achieve comparable performance. Furthermore, we observe that storing intermediate results in an alternative latent form will not affect model performance. We also randomly intervene some values in CoT, and notice that subsequent CoT tokens and the final answer would change correspondingly. These findings suggest that CoT tokens may function like variables in computer programs but with potential drawbacks like unintended shortcuts and computational complexity limits between tokens. The code and data are available at https://github.com/solitaryzero/CoTs_are_Variables.

Authors:Md Aminul Islam, Ahmed Sayeed Faruk
Title: Prompt-Based LLMs for Position Bias-Aware Reranking in Personalized Recommendations
Abstract:
Recommender systems are essential for delivering personalized content across digital platforms by modeling user preferences and behaviors. Recently, large language models (LLMs) have been adopted for prompt-based recommendation due to their ability to generate personalized outputs without task-specific training. However, LLM-based methods face limitations such as limited context window size, inefficient pointwise and pairwise prompting, and difficulty handling listwise ranking due to token constraints. LLMs can also be sensitive to position bias, as they may overemphasize earlier items in the prompt regardless of their true relevance. To address and investigate these issues, we propose a hybrid framework that combines a traditional recommendation model with an LLM for reranking top-k items using structured prompts. We evaluate the effects of user history reordering and instructional prompts for mitigating position bias. Experiments on MovieLens-100K show that randomizing user history improves ranking quality, but LLM-based reranking does not outperform the base model. Explicit instructions to reduce position bias are also ineffective. Our evaluations reveal limitations in LLMs' ability to model ranking context and mitigate bias. Our code is publicly available at https://github.com/aminul7506/LLMForReRanking.

Authors:Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhenran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan Jiang, Xintong Wang, Jifang Wang, Shouzheng Huang, Xinping Zhao, Borui Jiang, Lanqing Hong, Longyue Wang, Zhuotao Tian, Baoxing Huai, Wenhan Luo, Weihua Luo, Zheng Zhang, Baotian Hu, Min Zhang
Title: Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models
Abstract:
Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.

Authors:Jiaqi Zheng, Qing Ling, Yerong Feng
Title: Physics-Assisted and Topology-Informed Deep Learning for Weather Prediction
Abstract:
Although deep learning models have demonstrated remarkable potential in weather prediction, most of them overlook either the \textbf{physics} of the underlying weather evolution or the \textbf{topology} of the Earth's surface. In light of these disadvantages, we develop PASSAT, a novel Physics-ASSisted And Topology-informed deep learning model for weather prediction. PASSAT attributes the weather evolution to two key factors: (i) the advection process that can be characterized by the advection equation and the Navier-Stokes equation; (ii) the Earth-atmosphere interaction that is difficult to both model and calculate. PASSAT also takes the topology of the Earth's surface into consideration, other than simply treating it as a plane. With these considerations, PASSAT numerically solves the advection equation and the Navier-Stokes equation on the spherical manifold, utilizes a spherical graph neural network to capture the Earth-atmosphere interaction, and generates the initial velocity fields that are critical to solving the advection equation from the same spherical graph neural network. In the $5.625^\circ$-resolution ERA5 data set, PASSAT outperforms both the state-of-the-art deep learning-based weather prediction models and the operational numerical weather prediction model IFS T42. Code and checkpoint are available at https://github.com/Yumenomae/PASSAT_5p625.

Authors:Shashank Agnihotri, David Schader, Nico Sharei, Mehmet Ege Kaçar, Margret Keuper
Title: Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions?
Abstract:
Deep learning (DL) models are widely used in real-world applications but remain vulnerable to distribution shifts, especially due to weather and lighting changes. Collecting diverse real-world data for testing the robustness of DL models is resource-intensive, making synthetic corruptions an attractive alternative for robustness testing. However, are synthetic corruptions a reliable proxy for real-world corruptions? To answer this, we conduct the largest benchmarking study on semantic segmentation models, comparing performance on real-world corruptions and synthetic corruptions datasets. Our results reveal a strong correlation in mean performance, supporting the use of synthetic corruptions for robustness evaluation. We further analyze corruption-specific correlations, providing key insights to understand when synthetic corruptions succeed in representing real-world corruptions. Open-source Code: https://github.com/shashankskagnihotri/benchmarking_robustness/tree/segmentation_david/semantic_segmentation

Authors:Bangyan Liao, Zhenjun Zhao, Haoang Li, Yi Zhou, Yingping Zeng, Hao Li, Peidong Liu
Title: Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World
Abstract:
Determining the vanishing points (VPs) in a Manhattan world, as a fundamental task in many 3D vision applications, consists of jointly inferring the line-VP association and locating each VP. Existing methods are, however, either sub-optimal solvers or pursuing global optimality at a significant cost of computing time. In contrast to prior works, we introduce convex relaxation techniques to solve this task for the first time. Specifically, we employ a "soft" association scheme, realized via a truncated multi-selection error, that allows for joint estimation of VPs' locations and line-VP associations. This approach leads to a primal problem that can be reformulated into a quadratically constrained quadratic programming (QCQP) problem, which is then relaxed into a convex semidefinite programming (SDP) problem. To solve this SDP problem efficiently, we present a globally optimal outlier-robust iterative solver (called GlobustVP), which independently searches for one VP and its associated lines in each iteration, treating other lines as outliers. After each independent update of all VPs, the mutual orthogonality between the three VPs in a Manhattan world is reinforced via local refinement. Extensive experiments on both synthetic and real-world data demonstrate that GlobustVP achieves a favorable balance between efficiency, robustness, and global optimality compared to previous works. The code is publicly available at https://github.com/WU-CVGL/GlobustVP.

Authors:Shuoyan Wei, Feng Li, Shengeng Tang, Yao Zhao, Huihui Bai
Title: EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events
Abstract:
Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.

Authors:Zilong Chen, Yikai Wang, Wenqiang Sun, Feng Wang, Yiwen Chen, Huaping Liu
Title: MeshGen: Generating PBR Textured Mesh with Render-Enhanced Auto-Encoder and Generative Data Augmentation
Abstract:
In this paper, we introduce MeshGen, an advanced image-to-3D pipeline that generates high-quality 3D meshes with detailed geometry and physically based rendering (PBR) textures. Addressing the challenges faced by existing 3D native diffusion models, such as suboptimal auto-encoder performance, limited controllability, poor generalization, and inconsistent image-based PBR texturing, MeshGen employs several key innovations to overcome these limitations. We pioneer a render-enhanced point-to-shape auto-encoder that compresses meshes into a compact latent space by designing perceptual optimization with ray-based regularization. This ensures that the 3D shapes are accurately represented and reconstructed to preserve geometric details within the latent space. To address data scarcity and image-shape misalignment, we further propose geometric augmentation and generative rendering augmentation techniques, which enhance the model's controllability and generalization ability, allowing it to perform well even with limited public datasets. For the texture generation, MeshGen employs a reference attention-based multi-view ControlNet for consistent appearance synthesis. This is further complemented by our multi-view PBR decomposer that estimates PBR components and a UV inpainter that fills invisible areas, ensuring a seamless and consistent texture across the 3D mesh. Our extensive experiments demonstrate that MeshGen largely outperforms previous methods in both shape and texture generation, setting a new standard for the quality of 3D meshes generated with PBR textures. See our code at https://github.com/heheyas/MeshGen, project page https://heheyas.github.io/MeshGen

Authors:Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen
Title: Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation
Abstract:
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

Authors:Hicham Assoudi
Title: A Comparative Benchmark of a Moroccan Darija Toxicity Detection Model (Typica.ai) and Major LLM-Based Moderation APIs (OpenAI, Mistral, Anthropic)
Abstract:
This paper presents a comparative benchmark evaluating the performance of Typica.ai's custom Moroccan Darija toxicity detection model against major LLM-based moderation APIs: OpenAI (omni-moderation-latest), Mistral (mistral-moderation-latest), and Anthropic Claude (claude-3-haiku-20240307). We focus on culturally grounded toxic content, including implicit insults, sarcasm, and culturally specific aggression often overlooked by general-purpose systems. Using a balanced test set derived from the OMCD_Typica.ai_Mix dataset, we report precision, recall, F1-score, and accuracy, offering insights into challenges and opportunities for moderation in underrepresented languages. Our results highlight Typica.ai's superior performance, underlining the importance of culturally adapted models for reliable content moderation.

Authors:Yuning Du, Jingshuai Liu, Rohan Dharmakumar, Sotirios A. Tsaftaris
Title: Active Sampling for MRI-based Sequential Decision Making
Abstract:
Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling

Authors:Kunlun Xu, Xu Zou, Gang Hua, Jiahuan Zhou
Title: Componential Prompt-Knowledge Alignment for Domain Incremental Learning
Abstract:
Domain Incremental Learning (DIL) aims to learn from non-stationary data streams across domains while retaining and utilizing past knowledge. Although prompt-based methods effectively store multi-domain knowledge in prompt parameters and obtain advanced performance through cross-domain prompt fusion, we reveal an intrinsic limitation: component-wise misalignment between domain-specific prompts leads to conflicting knowledge integration and degraded predictions. This arises from the random positioning of knowledge components within prompts, where irrelevant component fusion introduces interference.To address this, we propose Componential Prompt-Knowledge Alignment (KA-Prompt), a novel prompt-based DIL method that introduces component-aware prompt-knowledge alignment during training, significantly improving both the learning and inference capacity of the model. KA-Prompt operates in two phases: (1) Initial Componential Structure Configuring, where a set of old prompts containing knowledge relevant to the new domain are mined via greedy search, which is then exploited to initialize new prompts to achieve reusable knowledge transfer and establish intrinsic alignment between new and old prompts. (2) Online Alignment Preservation, which dynamically identifies the target old prompts and applies adaptive componential consistency constraints as new prompts evolve. Extensive experiments on DIL benchmarks demonstrate the effectiveness of our KA-Prompt. Our source code is available at https://github.com/zhoujiahuan1991/ICML2025-KA-Prompt

Authors:Guanghui Wang, Zhiyong Yang, Zitai Wang, Shi Wang, Qianqian Xu, Qingming Huang
Title: ABKD: Pursuing a Proper Allocation of the Probability Mass in Knowledge Distillation via $α$-$β$-Divergence
Abstract:
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student model by minimizing the divergence between their output distributions, typically using forward Kullback-Leibler divergence (FKLD) or reverse KLD (RKLD). It has become an effective training paradigm due to the broader supervision information provided by the teacher distribution compared to one-hot labels. We identify that the core challenge in KD lies in balancing two mode-concentration effects: the \textbf{\textit{Hardness-Concentration}} effect, which refers to focusing on modes with large errors, and the \textbf{\textit{Confidence-Concentration}} effect, which refers to focusing on modes with high student confidence. Through an analysis of how probabilities are reassigned during gradient updates, we observe that these two effects are entangled in FKLD and RKLD, but in extreme forms. Specifically, both are too weak in FKLD, causing the student to fail to concentrate on the target class. In contrast, both are too strong in RKLD, causing the student to overly emphasize the target class while ignoring the broader distributional information from the teacher. To address this imbalance, we propose ABKD, a generic framework with $α$-$β$-divergence. Our theoretical results show that ABKD offers a smooth interpolation between FKLD and RKLD, achieving an effective trade-off between these effects. Extensive experiments on 17 language/vision datasets with 12 teacher-student settings confirm its efficacy. The code is available at https://github.com/ghwang-s/abkd.

Authors:Ashutosh Singandhupe, Sanket Lokhande, Hung Manh La
Title: Registration of 3D Point Sets Using Exponential-based Similarity Matrix
Abstract:
Point cloud registration is a fundamental problem in computer vision and robotics, involving the alignment of 3D point sets captured from varying viewpoints using depth sensors such as LiDAR or structured light. In modern robotic systems, especially those focused on mapping, it is essential to merge multiple views of the same environment accurately. However, state-of-the-art registration techniques often struggle when large rotational differences exist between point sets or when the data is significantly corrupted by sensor noise. These challenges can lead to misalignments and, consequently, to inaccurate or distorted 3D reconstructions. In this work, we address both these limitations by proposing a robust modification to the classic Iterative Closest Point (ICP) algorithm. Our method, termed Exponential Similarity Matrix ICP (ESM-ICP), integrates a Gaussian-inspired exponential weighting scheme to construct a similarity matrix that dynamically adapts across iterations. This matrix facilitates improved estimation of both rotational and translational components during alignment. We demonstrate the robustness of ESM-ICP in two challenging scenarios: (i) large rotational discrepancies between the source and target point clouds, and (ii) data corrupted by non-Gaussian noise. Our results show that ESM-ICP outperforms traditional geometric registration techniques as well as several recent learning-based methods. To encourage reproducibility and community engagement, our full implementation is made publicly available on GitHub. https://github.com/aralab-unr/ESM_ICP

Authors:Qi Zhou, Yukai Shi, Xiaojun Yang, Xiaoyu Xian, Lunjia Liao, Ruimao Zhang, Liang Lin
Title: DFVO: Learning Darkness-free Visible and Infrared Image Disentanglement and Fusion All at Once
Abstract:
Visible and infrared image fusion is one of the most crucial tasks in the field of image fusion, aiming to generate fused images with clear structural information and high-quality texture features for high-level vision tasks. However, when faced with severe illumination degradation in visible images, the fusion results of existing image fusion methods often exhibit blurry and dim visual effects, posing major challenges for autonomous driving. To this end, a Darkness-Free network is proposed to handle Visible and infrared image disentanglement and fusion all at Once (DFVO), which employs a cascaded multi-task approach to replace the traditional two-stage cascaded training (enhancement and fusion), addressing the issue of information entropy loss caused by hierarchical data transmission. Specifically, we construct a latent-common feature extractor (LCFE) to obtain latent features for the cascaded tasks strategy. Firstly, a details-extraction module (DEM) is devised to acquire high-frequency semantic information. Secondly, we design a hyper cross-attention module (HCAM) to extract low-frequency information and preserve texture features from source images. Finally, a relevant loss function is designed to guide the holistic network learning, thereby achieving better image fusion. Extensive experiments demonstrate that our proposed approach outperforms state-of-the-art alternatives in terms of qualitative and quantitative evaluations. Particularly, DFVO can generate clearer, more informative, and more evenly illuminated fusion results in the dark environments, achieving best performance on the LLVIP dataset with 63.258 dB PSNR and 0.724 CC, providing more effective information for high-level vision tasks. Our code is publicly accessible at https://github.com/DaVin-Qi530/DFVO.

Authors:Zhikai Zhao, Chuanbo Hua, Federico Berto, Kanghoon Lee, Zihan Ma, Jiachen Li, Jinkyoo Park
Title: TrajEvo: Designing Trajectory Prediction Heuristics via LLM-driven Evolution
Abstract:
Trajectory prediction is a crucial task in modeling human behavior, especially in fields as social robotics and autonomous vehicle navigation. Traditional heuristics based on handcrafted rules often lack accuracy, while recently proposed deep learning approaches suffer from computational cost, lack of explainability, and generalization issues that limit their practical adoption. In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction heuristics. TrajEvo employs an evolutionary algorithm to generate and refine prediction heuristics from past trajectory data. We introduce a Cross-Generation Elite Sampling to promote population diversity and a Statistics Feedback Loop allowing the LLM to analyze alternative predictions. Our evaluations show TrajEvo outperforms previous heuristic methods on the ETH-UCY datasets, and remarkably outperforms both heuristics and deep learning methods when generalizing to the unseen SDD dataset. TrajEvo represents a first step toward automated design of fast, explainable, and generalizable trajectory prediction heuristics. We make our source code publicly available to foster future research at https://github.com/ai4co/trajevo.

Authors:Jing Hu, Chengming Feng, Shu Hu, Ming-Ching Chang, Xin Li, Xi Wu, Xin Wang
Title: RLMiniStyler: Light-weight RL Style Agent for Arbitrary Sequential Neural Style Generation
Abstract:
Arbitrary style transfer aims to apply the style of any given artistic image to another content image. Still, existing deep learning-based methods often require significant computational costs to generate diverse stylized results. Motivated by this, we propose a novel reinforcement learning-based framework for arbitrary style transfer RLMiniStyler. This framework leverages a unified reinforcement learning policy to iteratively guide the style transfer process by exploring and exploiting stylization feedback, generating smooth sequences of stylized results while achieving model lightweight. Furthermore, we introduce an uncertainty-aware multi-task learning strategy that automatically adjusts loss weights to adapt to the content and style balance requirements at different training stages, thereby accelerating model convergence. Through a series of experiments across image various resolutions, we have validated the advantages of RLMiniStyler over other state-of-the-art methods in generating high-quality, diverse artistic image sequences at a lower cost. Codes are available at https://github.com/fengxiaoming520/RLMiniStyler.

Authors:Ren Wang, Pengcheng Zhou
Title: Latent Manifold Reconstruction and Representation with Topological and Geometrical Regularization
Abstract:
Manifold learning aims to discover and represent low-dimensional structures underlying high-dimensional data while preserving critical topological and geometric properties. Existing methods often fail to capture local details with global topological integrity from noisy data or construct a balanced dimensionality reduction, resulting in distorted or fractured embeddings. We present an AutoEncoder-based method that integrates a manifold reconstruction layer, which uncovers latent manifold structures from noisy point clouds, and further provides regularizations on topological and geometric properties during dimensionality reduction, whereas the two components promote each other during training. Experiments on point cloud datasets demonstrate that our method outperforms baselines like t-SNE, UMAP, and Topological AutoEncoders in discovering manifold structures from noisy data and preserving them through dimensionality reduction, as validated by visualization and quantitative metrics. This work demonstrates the significance of combining manifold reconstruction with manifold learning to achieve reliable representation of the latent manifold, particularly when dealing with noisy real-world data. Code repository: https://github.com/Thanatorika/mrtg.

Authors:Junjie Wang, Bin Chen, Yulin Li, Bin Kang, Yichi Chen, Zhuotao Tian
Title: DeCLIP: Decoupled Learning for Open-Vocabulary Dense Perception
Abstract:
Dense visual prediction tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense prediction often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The ``content'' features are aligned with image crop representations to improve local discriminability, while ``context'' features learn to retain the spatial correlations under the guidance of vision foundation models, such as DINO. Extensive experiments demonstrate that DeCLIP significantly outperforms existing methods across multiple open-vocabulary dense prediction tasks, including object detection and semantic segmentation. Code is available at \textcolor{magenta}{https://github.com/xiaomoguhz/DeCLIP}.

Authors:Mohammad Elayan, Wissam Kontar
Title: Consensus-Aware AV Behavior: Trade-offs Between Safety, Interaction, and Performance in Mixed Urban Traffic
Abstract:
Transportation systems have long been shaped by complexity and heterogeneity, driven by the interdependency of agent actions and traffic outcomes. The deployment of automated vehicles (AVs) in such systems introduces a new challenge: achieving consensus across safety, interaction quality, and traffic performance. In this work, we position consensus as a fundamental property of the traffic system and aim to quantify it. We use high-resolution trajectory data from the Third Generation Simulation (TGSIM) dataset to empirically analyze AV and human-driven vehicle (HDV) behavior at a signalized urban intersection and around vulnerable road users (VRUs). Key metrics, including Time-to-Collision (TTC), Post-Encroachment Time (PET), deceleration patterns, headways, and string stability, are evaluated across the three performance dimensions. Results show that full consensus across safety, interaction, and performance is rare, with only 1.63% of AV-VRU interaction frames meeting all three conditions. These findings highlight the need for AV models that explicitly balance multi-dimensional performance in mixed-traffic environments. Full reproducibility is supported via our open-source codebase on https://github.com/wissamkontar/Consensus-AV-Analysis.

Authors:Jie Sun, Heng Liu, Yongzhen Wang, Xiao-Ping Zhang, Mingqiang Wei
Title: WDMamba: When Wavelet Degradation Prior Meets Vision Mamba for Image Dehazing
Abstract:
In this paper, we reveal a novel haze-specific wavelet degradation prior observed through wavelet transform analysis, which shows that haze-related information predominantly resides in low-frequency components. Exploiting this insight, we propose a novel dehazing framework, WDMamba, which decomposes the image dehazing task into two sequential stages: low-frequency restoration followed by detail enhancement. This coarse-to-fine strategy enables WDMamba to effectively capture features specific to each stage of the dehazing process, resulting in high-quality restored images. Specifically, in the low-frequency restoration stage, we integrate Mamba blocks to reconstruct global structures with linear complexity, efficiently removing overall haze and producing a coarse restored image. Thereafter, the detail enhancement stage reinstates fine-grained information that may have been overlooked during the previous phase, culminating in the final dehazed output. Furthermore, to enhance detail retention and achieve more natural dehazing, we introduce a self-guided contrastive regularization during network training. By utilizing the coarse restored output as a hard negative example, our model learns more discriminative representations, substantially boosting the overall dehazing performance. Extensive evaluations on public dehazing benchmarks demonstrate that our method surpasses state-of-the-art approaches both qualitatively and quantitatively. Code is available at https://github.com/SunJ000/WDMamba.

Authors:Kai Ruan, Mowen Huang, Ji-Rong Wen, Hao Sun
Title: Benchmarking LLMs' Swarm intelligence
Abstract:
Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) when operating under strict swarm-like constraints-limited local perception and communication-remains largely unexplored. Existing benchmarks often do not fully capture the unique challenges of decentralized coordination when agents operate with incomplete spatio-temporal information. To bridge this gap, we introduce SwarmBench, a novel benchmark designed to systematically evaluate the swarm intelligence capabilities of LLMs acting as decentralized agents. SwarmBench features five foundational MAS coordination tasks (Pursuit, Synchronization, Foraging, Flocking, Transport) within a configurable 2D grid environment, forcing agents to rely solely on local sensory input ($k\times k$ view) and local communication. We propose metrics for coordination effectiveness and analyze emergent group dynamics. Zero-shot evaluations of leading LLMs (e.g., deepseek-v3, o4-mini) reveal significant task-dependent performance variations. While some rudimentary coordination is observed, our results indicate that current LLMs significantly struggle with robust long-range planning and adaptive strategy formation under the uncertainty inherent in these decentralized scenarios. Assessing LLMs under such swarm-like constraints is crucial for understanding their utility in future decentralized intelligent systems. We release SwarmBench as an open, extensible toolkit-built on a customizable physical system-providing environments, prompts, evaluation scripts, and comprehensive datasets. This aims to foster reproducible research into LLM-based MAS coordination and the theoretical underpinnings of emergent collective behavior under severe informational decentralization. Our code repository is available at https://github.com/x66ccff/swarmbench.

Authors:Yi Li, Zhiyuan Zhang, Jiangnan Xia, Jianghan Cheng, Qilong Wu, Junwei Li, Yibin Tian, Hui Kong
Title: TS-Diff: Two-Stage Diffusion Model for Low-Light RAW Image Enhancement
Abstract:
This paper presents a novel Two-Stage Diffusion Model (TS-Diff) for enhancing extremely low-light RAW images. In the pre-training stage, TS-Diff synthesizes noisy images by constructing multiple virtual cameras based on a noise space. Camera Feature Integration (CFI) modules are then designed to enable the model to learn generalizable features across diverse virtual cameras. During the aligning stage, CFIs are averaged to create a target-specific CFI$^T$, which is fine-tuned using a small amount of real RAW data to adapt to the noise characteristics of specific cameras. A structural reparameterization technique further simplifies CFI$^T$ for efficient deployment. To address color shifts during the diffusion process, a color corrector is introduced to ensure color consistency by dynamically adjusting global color distributions. Additionally, a novel dataset, QID, is constructed, featuring quantifiable illumination levels and a wide dynamic range, providing a comprehensive benchmark for training and evaluation under extreme low-light conditions. Experimental results demonstrate that TS-Diff achieves state-of-the-art performance on multiple datasets, including QID, SID, and ELD, excelling in denoising, generalization, and color consistency across various cameras and illumination levels. These findings highlight the robustness and versatility of TS-Diff, making it a practical solution for low-light imaging applications. Source codes and models are available at https://github.com/CircccleK/TS-Diff

Authors:Weiwei Ye, Zhuopeng Xu, Ning Gui
Title: Non-stationary Diffusion For Probabilistic Time Series Forecasting
Abstract:
Due to the dynamics of underlying physics and external influences, the uncertainty of time series often varies over time. However, existing Denoising Diffusion Probabilistic Models (DDPMs) often fail to capture this non-stationary nature, constrained by their constant variance assumption from the additive noise model (ANM). In this paper, we innovatively utilize the Location-Scale Noise Model (LSNM) to relax the fixed uncertainty assumption of ANM. A diffusion-based probabilistic forecasting framework, termed Non-stationary Diffusion (NsDiff), is designed based on LSNM that is capable of modeling the changing pattern of uncertainty. Specifically, NsDiff combines a denoising diffusion-based conditional generative model with a pre-trained conditional mean and variance estimator, enabling adaptive endpoint distribution modeling. Furthermore, we propose an uncertainty-aware noise schedule, which dynamically adjusts the noise levels to accurately reflect the data uncertainty at each step and integrates the time-varying variances into the diffusion process. Extensive experiments conducted on nine real-world and synthetic datasets demonstrate the superior performance of NsDiff compared to existing approaches. Code is available at https://github.com/wwy155/NsDiff.

Authors:Yajie Fu, Chaorui Huang, Junwei Li, Hui Kong, Yibin Tian, Huakang Li, Zhiyuan Zhang
Title: HDiffTG: A Lightweight Hybrid Diffusion-Transformer-GCN Architecture for 3D Human Pose Estimation
Abstract:
We propose HDiffTG, a novel 3D Human Pose Estimation (3DHPE) method that integrates Transformer, Graph Convolutional Network (GCN), and diffusion model into a unified framework. HDiffTG leverages the strengths of these techniques to significantly improve pose estimation accuracy and robustness while maintaining a lightweight design. The Transformer captures global spatiotemporal dependencies, the GCN models local skeletal structures, and the diffusion model provides step-by-step optimization for fine-tuning, achieving a complementary balance between global and local features. This integration enhances the model's ability to handle pose estimation under occlusions and in complex scenarios. Furthermore, we introduce lightweight optimizations to the integrated model and refine the objective function design to reduce computational overhead without compromising performance. Evaluation results on the Human3.6M and MPI-INF-3DHP datasets demonstrate that HDiffTG achieves state-of-the-art (SOTA) performance on the MPI-INF-3DHP dataset while excelling in both accuracy and computational efficiency. Additionally, the model exhibits exceptional robustness in noisy and occluded environments. Source codes and models are available at https://github.com/CirceJie/HDiffTG

Authors:Yisen Feng, Haoyu Zhang, Meng Liu, Weili Guan, Liqiang Nie
Title: Object-Shot Enhanced Grounding Network for Egocentric Video
Abstract:
Egocentric video grounding is a crucial task for embodied intelligence applications, distinct from exocentric video moment localization. Existing methods primarily focus on the distributional differences between egocentric and exocentric videos but often neglect key characteristics of egocentric videos and the fine-grained information emphasized by question-type queries. To address these limitations, we propose OSGNet, an Object-Shot enhanced Grounding Network for egocentric video. Specifically, we extract object information from videos to enrich video representation, particularly for objects highlighted in the textual query but not directly captured in the video features. Additionally, we analyze the frequent shot movements inherent to egocentric videos, leveraging these features to extract the wearer's attention information, which enhances the model's ability to perform modality alignment. Experiments conducted on three datasets demonstrate that OSGNet achieves state-of-the-art performance, validating the effectiveness of our approach. Our code can be found at https://github.com/Yisen-Feng/OSGNet.

Authors:Trinh T. L. Vuong, Jin Tae Kwak
Title: VideoPath-LLaVA: Pathology Diagnostic Reasoning Through Video Instruction Tuning
Abstract:
We present VideoPath-LLaVA, the first large multimodal model (LMM) in computational pathology that integrates three distinct image scenarios, single patch images, automatically keyframe-extracted clips, and manually segmented video pathology images, to mimic the natural diagnostic process of pathologists. By generating detailed histological descriptions and culminating in a definitive sign-out diagnosis, VideoPath-LLaVA bridges visual narratives with diagnostic reasoning. Central to our approach is the VideoPath-Instruct dataset, comprising 4278 video and diagnosis-specific chain-of-thought instructional pairs sourced from educational histopathology videos on YouTube. Although high-quality data is critical for enhancing diagnostic reasoning, its creation is time-intensive and limited in volume. To overcome this challenge, we transfer knowledge from existing single-image instruction datasets to train on weakly annotated, keyframe-extracted clips, followed by fine-tuning on manually segmented videos. VideoPath-LLaVA establishes a new benchmark in pathology video analysis and offers a promising foundation for future AI systems that support clinical decision-making through integrated visual and diagnostic reasoning. Our code, data, and model are publicly available at https://github.com/trinhvg/VideoPath-LLaVA.

Authors:Hail Song, Wonsik Shin, Naeun Lee, Soomin Chung, Nojun Kwak, Woontack Woo
Title: S3D: Sketch-Driven 3D Model Generation
Abstract:
Generating high-quality 3D models from 2D sketches is a challenging task due to the inherent ambiguity and sparsity of sketch data. In this paper, we present S3D, a novel framework that converts simple hand-drawn sketches into detailed 3D models. Our method utilizes a U-Net-based encoder-decoder architecture to convert sketches into face segmentation masks, which are then used to generate a 3D representation that can be rendered from novel views. To ensure robust consistency between the sketch domain and the 3D output, we introduce a novel style-alignment loss that aligns the U-Net bottleneck features with the initial encoder outputs of the 3D generation module, significantly enhancing reconstruction fidelity. To further enhance the network's robustness, we apply augmentation techniques to the sketch dataset. This streamlined framework demonstrates the effectiveness of S3D in generating high-quality 3D models from sketch inputs. The source code for this project is publicly available at https://github.com/hailsong/S3D.

Authors:Hongyi Li, Jun Xu, William Ward Armstrong
Title: LHT: Statistically-Driven Oblique Decision Trees for Interpretable Classification
Abstract:
We introduce the Learning Hyperplane Tree (LHT), a novel oblique decision tree model designed for expressive and interpretable classification. LHT fundamentally distinguishes itself through a non-iterative, statistically-driven approach to constructing splitting hyperplanes. Unlike methods that rely on iterative optimization or heuristics, LHT directly computes the hyperplane parameters, which are derived from feature weights based on the differences in feature expectations between classes within each node. This deterministic mechanism enables a direct and well-defined hyperplane construction process. Predictions leverage a unique piecewise linear membership function within leaf nodes, obtained via local least-squares fitting. We formally analyze the convergence of the LHT splitting process, ensuring that each split yields meaningful, non-empty partitions. Furthermore, we establish that the time complexity for building an LHT up to depth $d$ is $O(mnd)$, demonstrating the practical feasibility of constructing trees with powerful oblique splits using this methodology. The explicit feature weighting at each split provides inherent interpretability. Experimental results on benchmark datasets demonstrate LHT's competitive accuracy, positioning it as a practical, theoretically grounded, and interpretable alternative in the landscape of tree-based models. The implementation of the proposed method is available at https://github.com/Hongyi-Li-sz/LHT_model.

Authors:Zixiang Ai, Zichen Liu, Jiahuan Zhou
Title: Vision Graph Prompting via Semantic Low-Rank Decomposition
Abstract:
Vision GNN (ViG) demonstrates superior performance by representing images as graph structures, providing a more natural way to capture irregular semantic patterns beyond traditional grid or sequence-based representations. To efficiently adapt ViG to downstream tasks, parameter-efficient fine-tuning techniques like visual prompting become increasingly essential. However, existing prompting methods are primarily designed for Transformer-based models, neglecting the rich topological relationships among nodes and edges in graph-based representations, limiting their capacity to model complex semantics. In this paper, we propose Vision Graph Prompting (VGP), a novel framework tailored for vision graph structures. Our core insight reveals that semantically connected components in the graph exhibit low-rank properties. Building on this observation, we introduce a semantic low-rank prompting method that decomposes low-rank semantic features and integrates them with prompts on vision graph topologies, capturing both global structural patterns and fine-grained semantic dependencies. Extensive experiments demonstrate our method significantly improves ViG's transfer performance on diverse downstream tasks, achieving results comparable to full fine-tuning while maintaining parameter efficiency. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-VGP.

Authors:Zixiang Ai, Zichen Liu, Yuanhang Lei, Zhenyu Cui, Xu Zou, Jiahuan Zhou
Title: GAPrompt: Geometry-Aware Point Cloud Prompt for 3D Vision Model
Abstract:
Pre-trained 3D vision models have gained significant attention for their promising performance on point cloud data. However, fully fine-tuning these models for downstream tasks is computationally expensive and storage-intensive. Existing parameter-efficient fine-tuning (PEFT) approaches, which focus primarily on input token prompting, struggle to achieve competitive performance due to their limited ability to capture the geometric information inherent in point clouds. To address this challenge, we propose a novel Geometry-Aware Point Cloud Prompt (GAPrompt) that leverages geometric cues to enhance the adaptability of 3D vision models. First, we introduce a Point Prompt that serves as an auxiliary input alongside the original point cloud, explicitly guiding the model to capture fine-grained geometric details. Additionally, we present a Point Shift Prompter designed to extract global shape information from the point cloud, enabling instance-specific geometric adjustments at the input level. Moreover, our proposed Prompt Propagation mechanism incorporates the shape information into the model's feature extraction process, further strengthening its ability to capture essential geometric characteristics. Extensive experiments demonstrate that GAPrompt significantly outperforms state-of-the-art PEFT methods and achieves competitive results compared to full fine-tuning on various benchmarks, while utilizing only 2.19% of trainable parameters. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-GAPrompt.

Authors:Xu Huang, Yuefeng Huang, Weiwen Liu, Xingshan Zeng, Yasheng Wang, Ruiming Tang, Hong Xie, Defu Lian
Title: Advancing and Benchmarking Personalized Tool Invocation for LLMs
Abstract:
Tool invocation is a crucial mechanism for extending the capabilities of Large Language Models (LLMs) and has recently garnered significant attention. It enables LLMs to solve complex problems through tool calls while accessing up-to-date world knowledge. However, existing work primarily focuses on the fundamental ability of LLMs to invoke tools for problem-solving, without considering personalized constraints in tool invocation. In this work, we introduce the concept of Personalized Tool Invocation and define two key tasks: Tool Preference and Profile-dependent Query. Tool Preference addresses user preferences when selecting among functionally similar tools, while Profile-dependent Query considers cases where a user query lacks certain tool parameters, requiring the model to infer them from the user profile. To tackle these challenges, we propose PTool, a data synthesis framework designed for personalized tool invocation. Additionally, we construct \textbf{PTBench}, the first benchmark for evaluating personalized tool invocation. We then fine-tune various open-source models, demonstrating the effectiveness of our framework and providing valuable insights. Our benchmark is public at https://github.com/hyfshadow/PTBench.

Authors:Xuyang Wang, Siyuan Duan, Qizhi Li, Guiduo Duan, Yuan Sun, Dezhong Peng
Title: Reliable Disentanglement Multi-view Learning Against View Adversarial Attacks
Abstract:
Trustworthy multi-view learning has attracted extensive attention because evidence learning can provide reliable uncertainty estimation to enhance the credibility of multi-view predictions. Existing trusted multi-view learning methods implicitly assume that multi-view data is secure. However, in safety-sensitive applications such as autonomous driving and security monitoring, multi-view data often faces threats from adversarial perturbations, thereby deceiving or disrupting multi-view models. This inevitably leads to the adversarial unreliability problem (AUP) in trusted multi-view learning. To overcome this tricky problem, we propose a novel multi-view learning framework, namely Reliable Disentanglement Multi-view Learning (RDML). Specifically, we first propose evidential disentanglement learning to decompose each view into clean and adversarial parts under the guidance of corresponding evidences, which is extracted by a pretrained evidence extractor. Then, we employ the feature recalibration module to mitigate the negative impact of adversarial perturbations and extract potential informative features from them. Finally, to further ignore the irreparable adversarial interferences, a view-level evidential attention mechanism is designed. Extensive experiments on multi-view classification tasks with adversarial attacks show that RDML outperforms the state-of-the-art methods by a relatively large margin. Our code is available at https://github.com/Willy1005/2025-IJCAI-RDML.

Authors:Feng Gao, Sheng Liu, Chuanzheng Gong, Xiaowei Zhou, Jiayi Wang, Junyu Dong, Qian Du
Title: Prototype-Based Information Compensation Network for Multi-Source Remote Sensing Data Classification
Abstract:
Multi-source remote sensing data joint classification aims to provide accuracy and reliability of land cover classification by leveraging the complementary information from multiple data sources. Existing methods confront two challenges: inter-frequency multi-source feature coupling and inconsistency of complementary information exploration. To solve these issues, we present a Prototype-based Information Compensation Network (PICNet) for land cover classification based on HSI and SAR/LiDAR data. Specifically, we first design a frequency interaction module to enhance the inter-frequency coupling in multi-source feature extraction. The multi-source features are first decoupled into high- and low-frequency components. Then, these features are recoupled to achieve efficient inter-frequency communication. Afterward, we design a prototype-based information compensation module to model the global multi-source complementary information. Two sets of learnable modality prototypes are introduced to represent the global modality information of multi-source data. Subsequently, cross-modal feature integration and alignment are achieved through cross-attention computation between the modality-specific prototype vectors and the raw feature representations. Extensive experiments on three public datasets demonstrate the significant superiority of our PICNet over state-of-the-art methods. The codes are available at https://github.com/oucailab/PICNet.

Authors:Gerrit Großmann, Larisa Ivanova, Sai Leela Poduru, Mohaddeseh Tabrizian, Islam Mesabah, David A. Selby, Sebastian J. Vollmer
Title: The Power of Stories: Narrative Priming Shapes How LLM Agents Collaborate and Compete
Abstract:
According to Yuval Noah Harari, large-scale human cooperation is driven by shared narratives that encode common beliefs and values. This study explores whether such narratives can similarly nudge LLM agents toward collaboration. We use a finitely repeated public goods game in which LLM agents choose either cooperative or egoistic spending strategies. We prime agents with stories highlighting teamwork to different degrees and test how this influences negotiation outcomes. Our experiments explore four questions:(1) How do narratives influence negotiation behavior? (2) What differs when agents share the same story versus different ones? (3) What happens when the agent numbers grow? (4) Are agents resilient against self-serving negotiators? We find that story-based priming significantly affects negotiation strategies and success rates. Common stories improve collaboration, benefiting each agent. By contrast, priming agents with different stories reverses this effect, and those agents primed toward self-interest prevail. We hypothesize that these results carry implications for multi-agent system design and AI alignment.

Authors:Xiang Li, Yiyang Hao, Doug Fulop
Title: Frog Soup: Zero-Shot, In-Context, and Sample-Efficient Frogger Agents
Abstract:
One of the primary aspirations in reinforcement learning research is developing general-purpose agents capable of rapidly adapting to and mastering novel tasks. While RL gaming agents have mastered many Atari games, they remain slow and costly to train for each game. In this work, we demonstrate that latest reasoning LLMs with out-of-domain RL post-training can play a challenging Atari game called Frogger under a zero-shot setting. We then investigate the effect of in-context learning and the amount of reasoning effort on LLM performance. Lastly, we demonstrate a way to bootstrap traditional RL method with LLM demonstrations, which significantly improves their performance and sample efficiency. Our implementation is open sourced at https://github.com/AlienKevin/frogger.

Authors:Shuang Zeng, Chee Hong Lee, Micky C Nnamdi, Wenqi Shi, J Ben Tamo, Lei Zhu, Hangzhou He, Xinliang Zhang, Qian Chen, May D. Wang, Yanye Lu, Qiushi Ren
Title: Novel Extraction of Discriminative Fine-Grained Feature to Improve Retinal Vessel Segmentation
Abstract:
Retinal vessel segmentation is a vital early detection method for several severe ocular diseases. Despite significant progress in retinal vessel segmentation with the advancement of Neural Networks, there are still challenges to overcome. Specifically, retinal vessel segmentation aims to predict the class label for every pixel within a fundus image, with a primary focus on intra-image discrimination, making it vital for models to extract more discriminative features. Nevertheless, existing methods primarily focus on minimizing the difference between the output from the decoder and the label, but ignore fully using feature-level fine-grained representations from the encoder. To address these issues, we propose a novel Attention U-shaped Kolmogorov-Arnold Network named AttUKAN along with a novel Label-guided Pixel-wise Contrastive Loss for retinal vessel segmentation. Specifically, we implement Attention Gates into Kolmogorov-Arnold Networks to enhance model sensitivity by suppressing irrelevant feature activations and model interpretability by non-linear modeling of KAN blocks. Additionally, we also design a novel Label-guided Pixel-wise Contrastive Loss to supervise our proposed AttUKAN to extract more discriminative features by distinguishing between foreground vessel-pixel pairs and background pairs. Experiments are conducted across four public datasets including DRIVE, STARE, CHASE_DB1, HRF and our private dataset. AttUKAN achieves F1 scores of 82.50%, 81.14%, 81.34%, 80.21% and 80.09%, along with MIoU scores of 70.24%, 68.64%, 68.59%, 67.21% and 66.94% in the above datasets, which are the highest compared to 11 networks for retinal vessel segmentation. Quantitative and qualitative results show that our AttUKAN achieves state-of-the-art performance and outperforms existing retinal vessel segmentation methods. Our code will be available at https://github.com/stevezs315/AttUKAN.

Authors:Tin Mišić, Karlo Koledić, Fabio Bonsignorio, Ivan Petrović, Ivan Marković
Title: An Active Inference Model of Covert and Overt Visual Attention
Abstract:
The ability to selectively attend to relevant stimuli while filtering out distractions is essential for agents that process complex, high-dimensional sensory input. This paper introduces a model of covert and overt visual attention through the framework of active inference, utilizing dynamic optimization of sensory precisions to minimize free-energy. The model determines visual sensory precisions based on both current environmental beliefs and sensory input, influencing attentional allocation in both covert and overt modalities. To test the effectiveness of the model, we analyze its behavior in the Posner cueing task and a simple target focus task using two-dimensional(2D) visual data. Reaction times are measured to investigate the interplay between exogenous and endogenous attention, as well as valid and invalid cueing. The results show that exogenous and valid cues generally lead to faster reaction times compared to endogenous and invalid cues. Furthermore, the model exhibits behavior similar to inhibition of return, where previously attended locations become suppressed after a specific cue-target onset asynchrony interval. Lastly, we investigate different aspects of overt attention and show that involuntary, reflexive saccades occur faster than intentional ones, but at the expense of adaptability.

Authors:Chongsheng Zhang, Shuwen Wu, Yingqi Chen, Yi Men, Gaojuan Fan, Matthias Aßenmacher, Christian Heumann, João Gama
Title: Explainable Coarse-to-Fine Ancient Manuscript Duplicates Discovery
Abstract:
Ancient manuscripts are the primary source of ancient linguistic corpora. However, many ancient manuscripts exhibit duplications due to unintentional repeated publication or deliberate forgery. The Dead Sea Scrolls, for example, include counterfeit fragments, whereas Oracle Bones (OB) contain both republished materials and fabricated specimens. Identifying ancient manuscript duplicates is of great significance for both archaeological curation and ancient history study. In this work, we design a progressive OB duplicate discovery framework that combines unsupervised low-level keypoints matching with high-level text-centric content-based matching to refine and rank the candidate OB duplicates with semantic awareness and interpretability. We compare our model with state-of-the-art content-based image retrieval and image matching methods, showing that our model yields comparable recall performance and the highest simplified mean reciprocal rank scores for both Top-5 and Top-15 retrieval results, and with significantly accelerated computation efficiency. We have discovered over 60 pairs of new OB duplicates in real-world deployment, which were missed by domain experts for decades. Code, model and real-world results are available at: https://github.com/cszhangLMU/OBD-Finder/.

Authors:Xuechao Wang, Sven Nomm, Junqing Huang, Kadri Medijainen, Aaro Toomela, Michael Ruzhansky
Title: PointExplainer: Towards Transparent Parkinson's Disease Diagnosis
Abstract:
Deep neural networks have shown potential in analyzing digitized hand-drawn signals for early diagnosis of Parkinson's disease. However, the lack of clear interpretability in existing diagnostic methods presents a challenge to clinical trust. In this paper, we propose PointExplainer, an explainable diagnostic strategy to identify hand-drawn regions that drive model diagnosis. Specifically, PointExplainer assigns discrete attribution values to hand-drawn segments, explicitly quantifying their relative contributions to the model's decision. Its key components include: (i) a diagnosis module, which encodes hand-drawn signals into 3D point clouds to represent hand-drawn trajectories, and (ii) an explanation module, which trains an interpretable surrogate model to approximate the local behavior of the black-box diagnostic model. We also introduce consistency measures to further address the issue of faithfulness in explanations. Extensive experiments on two benchmark datasets and a newly constructed dataset show that PointExplainer can provide intuitive explanations with no diagnostic performance degradation. The source code is available at https://github.com/chaoxuewang/PointExplainer.

Authors:Ioannis Nasios
Title: AI-driven multi-source data fusion for algal bloom severity classification in small inland water bodies: Leveraging Sentinel-2, DEM, and NOAA climate data
Abstract:
Harmful algal blooms are a growing threat to inland water quality and public health worldwide, creating an urgent need for efficient, accurate, and cost-effective detection methods. This research introduces a high-performing methodology that integrates multiple open-source remote sensing data with advanced artificial intelligence models. Key data sources include Copernicus Sentinel-2 optical imagery, the Copernicus Digital Elevation Model (DEM), and NOAA's High-Resolution Rapid Refresh (HRRR) climate data, all efficiently retrieved using platforms like Google Earth Engine (GEE) and Microsoft Planetary Computer (MPC). The NIR and two SWIR bands from Sentinel-2, the altitude from the elevation model, the temperature and wind from NOAA as well as the longitude and latitude were the most important features. The approach combines two types of machine learning models, tree-based models and a neural network, into an ensemble for classifying algal bloom severity. While the tree models performed strongly on their own, incorporating a neural network added robustness and demonstrated how deep learning models can effectively use diverse remote sensing inputs. The method leverages high-resolution satellite imagery and AI-driven analysis to monitor algal blooms dynamically, and although initially developed for a NASA competition in the U.S., it shows potential for global application. The complete code is available for further adaptation and practical implementation, illustrating the convergence of remote sensing data and AI to address critical environmental challenges (https://github.com/IoannisNasios/HarmfulAlgalBloomDetection).

Authors:Lang Feng, Weihao Tan, Zhiyi Lyu, Longtao Zheng, Haiyang Xu, Ming Yan, Fei Huang, Bo An
Title: Towards Efficient Online Tuning of VLM Agents via Counterfactual Soft Reinforcement Learning
Abstract:
Online fine-tuning vision-language model (VLM) agents with reinforcement learning (RL) has shown promise for equipping agents with multi-step, goal-oriented capabilities in dynamic environments. However, their open-ended textual action space and non-end-to-end nature of action generation present significant challenges to effective online exploration in RL, e.g., explosion of the exploration space. We propose a novel online fine-tuning method, Counterfactual Soft Reinforcement Learning (CoSo), better suited to the textual output space of VLM agents. Compared to prior methods that assign uniform uncertainty to all tokens, CoSo leverages counterfactual reasoning to dynamically assess the causal influence of individual tokens on post-processed actions. By prioritizing the exploration of action-critical tokens while reducing the impact of semantically redundant or low-impact tokens, CoSo enables a more targeted and efficient online rollout process. We provide theoretical analysis proving CoSo's convergence and policy improvement guarantees, and extensive empirical evaluations supporting CoSo's effectiveness. Our results across a diverse set of agent tasks, including Android device control, card gaming, and embodied AI, highlight its remarkable ability to enhance exploration efficiency and deliver consistent performance gains. The code is available at https://github.com/langfengQ/CoSo.

Authors:Md Fahim Anjum
Title: When Reasoning Beats Scale: A 1.5B Reasoning Model Outranks 13B LLMs as Discriminator
Abstract:
Large Language Models (LLM) with reasoning capabilities offer a promising path for improving candidate evaluation in planning frameworks, but their relative performance against traditional non-reasoning models remains largely underexplored. In this study, we benchmark a distilled 1.5B parameter reasoning model (DeepSeek-R1) against several state-of-the-art non-reasoning LLMs within a generator-discriminator LLM planning framework for the text-to-SQL task. For this, we introduce a novel method for extracting soft scores from the chain-of-thought (CoT) outputs from reasoning that enables fine-grained ranking of candidates. Our central hypothesis is that reasoning models are more effective discriminators than non-reasoning LLMs. Our results show that distilled DeepSeek-R1-1.5B achieves up to $87\%$ higher F1 and $3.7\%$ better discrimination accuracy than CodeLlama-7B, as well as $3.7\%$ higher execution accuracy than CodeLlama-13B, despite having significantly fewer parameters. Furthermore, we find that there is a limit to the logical capabilities of reasoning models, and only providing more context or allowing more compute budget for reasoning is not enough to improve their discrimination performance. Finally, we demonstrate that, unlike non-reasoning LLMs, reasoning models find generation more challenging than discrimination and may underperform as generators compared to smaller non-reasoning LLMs. Our work highlights the potential of reasoning models as discriminators in agentic frameworks, far outweighing their capabilities as generators, offering insights into their optimal role within LLM planning infrastructures.

Authors:Eleftherios Tzanis, Michail E. Klontzas
Title: mAIstro: an open-source multi-agentic system for automated end-to-end development of radiomics and deep learning models for medical imaging
Abstract:
Agentic systems built on large language models (LLMs) offer promising capabilities for automating complex workflows in healthcare AI. We introduce mAIstro, an open-source, autonomous multi-agentic framework for end-to-end development and deployment of medical AI models. The system orchestrates exploratory data analysis, radiomic feature extraction, image segmentation, classification, and regression through a natural language interface, requiring no coding from the user. Built on a modular architecture, mAIstro supports both open- and closed-source LLMs, and was evaluated using a large and diverse set of prompts across 16 open-source datasets, covering a wide range of imaging modalities, anatomical regions, and data types. The agents successfully executed all tasks, producing interpretable outputs and validated models. This work presents the first agentic framework capable of unifying data analysis, AI model development, and inference across varied healthcare applications, offering a reproducible and extensible foundation for clinical and research AI integration. The code is available at: https://github.com/eltzanis/mAIstro

Authors:Eleftherios Tzanis, Michail E. Klontzas
Title: mAIstro: an open-source multi-agentic system for automated end-to-end development of radiomics and deep learning models for medical imaging
Abstract:
Agentic systems built on large language models (LLMs) offer promising capabilities for automating complex workflows in healthcare AI. We introduce mAIstro, an open-source, autonomous multi-agentic framework for end-to-end development and deployment of medical AI models. The system orchestrates exploratory data analysis, radiomic feature extraction, image segmentation, classification, and regression through a natural language interface, requiring no coding from the user. Built on a modular architecture, mAIstro supports both open- and closed-source LLMs, and was evaluated using a large and diverse set of prompts across 16 open-source datasets, covering a wide range of imaging modalities, anatomical regions, and data types. The agents successfully executed all tasks, producing interpretable outputs and validated models. This work presents the first agentic framework capable of unifying data analysis, AI model development, and inference across varied healthcare applications, offering a reproducible and extensible foundation for clinical and research AI integration. The code is available at: https://github.com/eltzanis/mAIstro

Authors:Asad Aali, Adney Cardoza, Melissa Capo
Title: Splitwiser: Efficient LM inference with constrained resources
Abstract:
Efficient inference of LLMs remains a crucial challenge, with two main phases: a compute-intensive prompt computation and a memory-intensive token generation. Despite existing batching and scheduling techniques, token generation phases fail to fully utilize compute resources, especially when compared to prompt computation phases. To address these challenges, we propose Splitwiser, a methodology that splits the two phases of an LLM inference request onto the same GPU, thereby reducing overhead and improving memory access and cache utilization. By eliminating the need to transfer data across devices, Splitwiser aims to minimize network-related overheads. In this report, we describe the basic structure of our proposed pipeline while sharing preliminary results and analysis. We implement our proposed multiprocessing design on two widely-used and independent LLM architectures: Huggingface and vLLM. We open-source our code for the respective implementations: 1) Huggingface (https://github.com/asad-aali/splitwiser), and 2) vLLM (https://github.com/adney11/vllm-sysml).

Authors:Yonghao Tan, Pingcheng Dong, Yongkun Wu, Yu Liu, Xuejiao Liu, Peng Luo, Shih-Yang Liu, Xijie Huang, Dong Zhang, Luhong Liang, Kwang-Ting Cheng
Title: APSQ: Additive Partial Sum Quantization with Algorithm-Hardware Co-Design
Abstract:
DNN accelerators, significantly advanced by model compression and specialized dataflow techniques, have marked considerable progress. However, the frequent access of high-precision partial sums (PSUMs) leads to excessive memory demands in architectures utilizing input/weight stationary dataflows. Traditional compression strategies have typically overlooked PSUM quantization, which may account for 69% of power consumption. This study introduces a novel Additive Partial Sum Quantization (APSQ) method, seamlessly integrating PSUM accumulation into the quantization framework. A grouping strategy that combines APSQ with PSUM quantization enhanced by a reconfigurable architecture is further proposed. The APSQ performs nearly lossless on NLP and CV tasks across BERT, Segformer, and EfficientViT models while compressing PSUMs to INT8. This leads to a notable reduction in energy costs by 28-87%. Extended experiments on LLaMA2-7B demonstrate the potential of APSQ for large language models. Code is available at https://github.com/Yonghao-Tan/APSQ.

Authors:Zuwei Long, Yunhang Shen, Chaoyou Fu, Heting Gao, Lijiang Li, Peixian Chen, Mengdan Zhang, Hang Shao, Jian Li, Jinlong Peng, Haoyu Cao, Ke Li, Rongrong Ji, Xing Sun
Title: VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model
Abstract:
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.

Authors:Shiqi Li, Jihua Zhu, Yifan Xie, Naiwen Hu, Di Wang
Title: Matching Distance and Geometric Distribution Aided Learning Multiview Point Cloud Registration
Abstract:
Multiview point cloud registration plays a crucial role in robotics, automation, and computer vision fields. This paper concentrates on pose graph construction and motion synchronization within multiview registration. Previous methods for pose graph construction often pruned fully connected graphs or constructed sparse graph using global feature aggregated from local descriptors, which may not consistently yield reliable results. To identify dependable pairs for pose graph construction, we design a network model that extracts information from the matching distance between point cloud pairs. For motion synchronization, we propose another neural network model to calculate the absolute pose in a data-driven manner, rather than optimizing inaccurate handcrafted loss functions. Our model takes into account geometric distribution information and employs a modified attention mechanism to facilitate flexible and reliable feature interaction. Experimental results on diverse indoor and outdoor datasets confirm the effectiveness and generalizability of our approach. The source code is available at https://github.com/Shi-Qi-Li/MDGD.

Authors:Sharvi Endait, Ruturaj Ghatage, Aditya Kulkarni, Rajlaxmi Patil, Raviraj Joshi
Title: IndicSQuAD: A Comprehensive Multilingual Question Answering Dataset for Indic Languages
Abstract:
The rapid progress in question-answering (QA) systems has predominantly benefited high-resource languages, leaving Indic languages largely underrepresented despite their vast native speaker base. In this paper, we present IndicSQuAD, a comprehensive multi-lingual extractive QA dataset covering nine major Indic languages, systematically derived from the SQuAD dataset. Building on previous work with MahaSQuAD for Marathi, our approach adapts and extends translation techniques to maintain high linguistic fidelity and accurate answer-span alignment across diverse languages. IndicSQuAD comprises extensive training, validation, and test sets for each language, providing a robust foundation for model development. We evaluate baseline performances using language-specific monolingual BERT models and the multilingual MuRIL-BERT. The results indicate some challenges inherent in low-resource settings. Moreover, our experiments suggest potential directions for future work, including expanding to additional languages, developing domain-specific datasets, and incorporating multimodal data. The dataset and models are publicly shared at https://github.com/l3cube-pune/indic-nlp

Authors:Arthur Satouf, Gabriel Ben Zenou, Benjamin Piwowarski, Habiboulaye Amadou Boubacar, Pablo Piantanida
Title: Rational Retrieval Acts: Leveraging Pragmatic Reasoning to Improve Sparse Retrieval
Abstract:
Current sparse neural information retrieval (IR) methods, and to a lesser extent more traditional models such as BM25, do not take into account the document collection and the complex interplay between different term weights when representing a single document. In this paper, we show how the Rational Speech Acts (RSA), a linguistics framework used to minimize the number of features to be communicated when identifying an object in a set, can be adapted to the IR case -- and in particular to the high number of potential features (here, tokens). RSA dynamically modulates token-document interactions by considering the influence of other documents in the dataset, better contrasting document representations. Experiments show that incorporating RSA consistently improves multiple sparse retrieval models and achieves state-of-the-art performance on out-of-domain datasets from the BEIR benchmark. https://github.com/arthur-75/Rational-Retrieval-Acts

Authors:Huajie Tan, Xiaoshuai Hao, Cheng Chi, Minglan Lin, Yaoxu Lyu, Mingyu Cao, Dong Liang, Zhuo Chen, Mengsi Lyu, Cheng Peng, Chenrui He, Yulong Ao, Yonghua Lin, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang
Title: RoboOS: A Hierarchical Embodied Framework for Cross-Embodiment and Multi-Agent Collaboration
Abstract:
The dawn of embodied intelligence has ushered in an unprecedented imperative for resilient, cognition-enabled multi-agent collaboration across next-generation ecosystems, revolutionizing paradigms in autonomous manufacturing, adaptive service robotics, and cyber-physical production architectures. However, current robotic systems face significant limitations, such as limited cross-embodiment adaptability, inefficient task scheduling, and insufficient dynamic error correction. While End-to-end VLA models demonstrate inadequate long-horizon planning and task generalization, hierarchical VLA models suffer from a lack of cross-embodiment and multi-agent coordination capabilities. To address these challenges, we introduce RoboOS, the first open-source embodied system built on a Brain-Cerebellum hierarchical architecture, enabling a paradigm shift from single-agent to multi-agent intelligence. Specifically, RoboOS consists of three key components: (1) Embodied Brain Model (RoboBrain), a MLLM designed for global perception and high-level decision-making; (2) Cerebellum Skill Library, a modular, plug-and-play toolkit that facilitates seamless execution of multiple skills; and (3) Real-Time Shared Memory, a spatiotemporal synchronization mechanism for coordinating multi-agent states. By integrating hierarchical information flow, RoboOS bridges Embodied Brain and Cerebellum Skill Library, facilitating robust planning, scheduling, and error correction for long-horizon tasks, while ensuring efficient multi-agent collaboration through Real-Time Shared Memory. Furthermore, we enhance edge-cloud communication and cloud-based distributed inference to facilitate high-frequency interactions and enable scalable deployment. Extensive real-world experiments across various scenarios, demonstrate RoboOS's versatility in supporting heterogeneous embodiments. Project website: https://github.com/FlagOpen/RoboOS

Authors:Yifan Xiang, Zhenxi Zhang, Bin Li, Yixuan Weng, Shoujun Zhou, Yangfan He, Keqin Li
Title: ReGraP-LLaVA: Reasoning enabled Graph-based Personalized Large Language and Vision Assistant
Abstract:
Recent advances in personalized MLLMs enable effective capture of user-specific concepts, supporting both recognition of personalized concepts and contextual captioning. However, humans typically explore and reason over relations among objects and individuals, transcending surface-level information to achieve more personalized and contextual understanding. To this end, existing methods may face three main limitations: Their training data lacks multi-object sets in which relations among objects are learnable. Building on the limited training data, their models overlook the relations between different personalized concepts and fail to reason over them. Their experiments mainly focus on a single personalized concept, where evaluations are limited to recognition and captioning tasks. To address the limitations, we present a new dataset named ReGraP, consisting of 120 sets of personalized knowledge. Each set includes images, KGs, and CoT QA pairs derived from the KGs, enabling more structured and sophisticated reasoning pathways. We propose ReGraP-LLaVA, an MLLM trained with the corresponding KGs and CoT QA pairs, where soft and hard graph prompting methods are designed to align KGs within the model's semantic space. We establish the ReGraP Benchmark, which contains diverse task types: multiple-choice, fill-in-the-blank, True/False, and descriptive questions in both open- and closed-ended settings. The proposed benchmark is designed to evaluate the relational reasoning and knowledge-connection capability of personalized MLLMs. We conduct experiments on the proposed ReGraP-LLaVA and other competitive MLLMs. Results show that the proposed model not only learns personalized knowledge but also performs relational reasoning in responses, achieving the SoTA performance compared with the competitive methods. All the codes and datasets are released at: https://github.com/xyfyyds/ReGraP.

Authors:Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca, Gonzalo Mateos
Title: Weighted Random Dot Product Graphs
Abstract:
Modeling of intricate relational patterns has become a cornerstone of contemporary statistical research and related data science fields. Networks, represented as graphs, offer a natural framework for this analysis. This paper extends the Random Dot Product Graph (RDPG) model to accommodate weighted graphs, markedly broadening the model's scope to scenarios where edges exhibit heterogeneous weight distributions. We propose a nonparametric weighted (W)RDPG model that assigns a sequence of latent positions to each node. Inner products of these nodal vectors specify the moments of their incident edge weights' distribution via moment-generating functions. In this way, and unlike prior art, the WRDPG can discriminate between weight distributions that share the same mean but differ in other higher-order moments. We derive statistical guarantees for an estimator of the nodal's latent positions adapted from the workhorse adjacency spectral embedding, establishing its consistency and asymptotic normality. We also contribute a generative framework that enables sampling of graphs that adhere to a (prescribed or data-fitted) WRDPG, facilitating, e.g., the analysis and testing of observed graph metrics using judicious reference distributions. The paper is organized to formalize the model's definition, the estimation (or nodal embedding) process and its guarantees, as well as the methodologies for generating weighted graphs, all complemented by illustrative and reproducible examples showcasing the WRDPG's effectiveness in various network analytic applications.

Authors:Alessandro Simoni, Francesco Pelosin
Title: Bounding Box-Guided Diffusion for Synthesizing Industrial Images and Segmentation Map
Abstract:
Synthetic dataset generation in Computer Vision, particularly for industrial applications, is still underexplored. Industrial defect segmentation, for instance, requires highly accurate labels, yet acquiring such data is costly and time-consuming. To address this challenge, we propose a novel diffusion-based pipeline for generating high-fidelity industrial datasets with minimal supervision. Our approach conditions the diffusion model on enriched bounding box representations to produce precise segmentation masks, ensuring realistic and accurately localized defect synthesis. Compared to existing layout-conditioned generative methods, our approach improves defect consistency and spatial accuracy. We introduce two quantitative metrics to evaluate the effectiveness of our method and assess its impact on a downstream segmentation task trained on real and synthetic data. Our results demonstrate that diffusion-based synthesis can bridge the gap between artificial and real-world industrial data, fostering more reliable and cost-efficient segmentation models. The code is publicly available at https://github.com/covisionlab/diffusion_labeling.

Authors:Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou
Title: Fixed-Length Dense Fingerprint Representation
Abstract:
Fixed-length fingerprint representations, which map each fingerprint to a compact and fixed-size feature vector, are computationally efficient and well-suited for large-scale matching. However, designing a robust representation that effectively handles diverse fingerprint modalities, pose variations, and noise interference remains a significant challenge. In this work, we propose a fixed-length dense descriptor of fingerprints, and introduce FLARE-a fingerprint matching framework that integrates the Fixed-Length dense descriptor with pose-based Alignment and Robust Enhancement. This fixed-length representation employs a three-dimensional dense descriptor to effectively capture spatial relationships among fingerprint ridge structures, enabling robust and locally discriminative representations. To ensure consistency within this dense feature space, FLARE incorporates pose-based alignment using complementary estimation methods, along with dual enhancement strategies that refine ridge clarity while preserving the original fingerprint modality. The proposed dense descriptor supports fixed-length representation while maintaining spatial correspondence, enabling fast and accurate similarity computation. Extensive experiments demonstrate that FLARE achieves superior performance across rolled, plain, latent, and contactless fingerprints, significantly outperforming existing methods in cross-modality and low-quality scenarios. Further analysis validates the effectiveness of the dense descriptor design, as well as the impact of alignment and enhancement modules on the accuracy of dense descriptor matching. Experimental results highlight the effectiveness and generalizability of FLARE as a unified and scalable solution for robust fingerprint representation and matching. The implementation and code will be publicly available at https://github.com/Yu-Yy/FLARE.

Authors:Songchen Fu, Siang Chen, Shaojing Zhao, Letian Bai, Ta Li, Yonghong Yan
Title: Rainbow Delay Compensation: A Multi-Agent Reinforcement Learning Framework for Mitigating Delayed Observation
Abstract:
In real-world multi-agent systems (MASs), observation delays are ubiquitous, preventing agents from making decisions based on the environment's true state. An individual agent's local observation often consists of multiple components from other agents or dynamic entities in the environment. These discrete observation components with varying delay characteristics pose significant challenges for multi-agent reinforcement learning (MARL). In this paper, we first formulate the decentralized stochastic individual delay partially observable Markov decision process (DSID-POMDP) by extending the standard Dec-POMDP. We then propose the Rainbow Delay Compensation (RDC), a MARL training framework for addressing stochastic individual delays, along with recommended implementations for its constituent modules. We implement the DSID-POMDP's observation generation pattern using standard MARL benchmarks, including MPE and SMAC. Experiments demonstrate that baseline MARL methods suffer severe performance degradation under fixed and unfixed delays. The RDC-enhanced approach mitigates this issue, remarkably achieving ideal delay-free performance in certain delay scenarios while maintaining generalizability. Our work provides a novel perspective on multi-agent delayed observation problems and offers an effective solution framework. The source code is available at https://anonymous.4open.science/r/RDC-pymarl-4512/.

Authors:Mariya Davydova, Daniel Jeffries, Patrick Barker, Arturo Márquez Flores, Sinéad Ryan
Title: OSUniverse: Benchmark for Multimodal GUI-navigation AI Agents
Abstract:
In this paper, we introduce OSUniverse: a benchmark of complex, multimodal desktop-oriented tasks for advanced GUI-navigation AI agents that focuses on ease of use, extensibility, comprehensive coverage of test cases, and automated validation. We divide the tasks in increasing levels of complexity, from basic precision clicking to multistep, multiapplication tests requiring dexterity, precision, and clear thinking from the agent. In version one of the benchmark, presented here, we have calibrated the complexity of the benchmark test cases to ensure that the SOTA (State of the Art) agents (at the time of publication) do not achieve results higher than 50%, while the average white collar worker can perform all these tasks with perfect accuracy. The benchmark can be scored manually, but we also introduce an automated validation mechanism that has an average error rate less than 2%. Therefore, this benchmark presents solid ground for fully automated measuring of progress, capabilities and the effectiveness of GUI-navigation AI agents over the short and medium-term horizon. The source code of the benchmark is available at https://github.com/agentsea/osuniverse.

Authors:Mishal Fatima, Steffen Jung, Margret Keuper
Title: Corner Cases: How Size and Position of Objects Challenge ImageNet-Trained Models
Abstract:
Backgrounds in images play a major role in contributing to spurious correlations among different data points. Owing to aesthetic preferences of humans capturing the images, datasets can exhibit positional (location of the object within a given frame) and size (region-of-interest to image ratio) biases for different classes. In this paper, we show that these biases can impact how much a model relies on spurious features in the background to make its predictions. To better illustrate our findings, we propose a synthetic dataset derived from ImageNet-1k, Hard-Spurious-ImageNet, which contains images with various backgrounds, object positions, and object sizes. By evaluating the dataset on different pretrained models, we find that most models rely heavily on spurious features in the background when the region-of-interest (ROI) to image ratio is small and the object is far from the center of the image. Moreover, we also show that current methods that aim to mitigate harmful spurious features, do not take into account these factors, hence fail to achieve considerable performance gains for worst-group accuracies when the size and location of core features in an image change. The dataset and implementation code are available at https://github.com/Mishalfatima/Corner_Cases.

Authors:João Alves, Pia Haubro Andersen, Rikke Gade
Title: Read My Ears! Horse Ear Movement Detection for Equine Affective State Assessment
Abstract:
The Equine Facial Action Coding System (EquiFACS) enables the systematic annotation of facial movements through distinct Action Units (AUs). It serves as a crucial tool for assessing affective states in horses by identifying subtle facial expressions associated with discomfort. However, the field of horse affective state assessment is constrained by the scarcity of annotated data, as manually labelling facial AUs is both time-consuming and costly. To address this challenge, automated annotation systems are essential for leveraging existing datasets and improving affective states detection tools. In this work, we study different methods for specific ear AU detection and localization from horse videos. We leverage past works on deep learning-based video feature extraction combined with recurrent neural networks for the video classification task, as well as a classic optical flow based approach. We achieve 87.5% classification accuracy of ear movement presence on a public horse video dataset, demonstrating the potential of our approach. We discuss future directions to develop these systems, with the aim of bridging the gap between automated AU detection and practical applications in equine welfare and veterinary diagnostics. Our code will be made publicly available at https://github.com/jmalves5/read-my-ears.

Authors:Mengfei Duan, Kailun Yang, Yuheng Zhang, Yihong Cao, Fei Teng, Kai Luo, Jiaming Zhang, Zhiyong Li, Shutao Li
Title: Panoramic Out-of-Distribution Segmentation
Abstract:
Panoramic imaging enables capturing 360° images with an ultra-wide Field-of-View (FoV) for dense omnidirectional perception. However, current panoramic semantic segmentation methods fail to identify outliers, and pinhole Out-of-distribution Segmentation (OoS) models perform unsatisfactorily in the panoramic domain due to background clutter and pixel distortions. To address these issues, we introduce a new task, Panoramic Out-of-distribution Segmentation (PanOoS), achieving OoS for panoramas. Furthermore, we propose the first solution, POS, which adapts to the characteristics of panoramic images through text-guided prompt distribution learning. Specifically, POS integrates a disentanglement strategy designed to materialize the cross-domain generalization capability of CLIP. The proposed Prompt-based Restoration Attention (PRA) optimizes semantic decoding by prompt guidance and self-adaptive correction, while Bilevel Prompt Distribution Learning (BPDL) refines the manifold of per-pixel mask embeddings via semantic prototype supervision. Besides, to compensate for the scarcity of PanOoS datasets, we establish two benchmarks: DenseOoS, which features diverse outliers in complex environments, and QuadOoS, captured by a quadruped robot with a panoramic annular lens system. Extensive experiments demonstrate superior performance of POS, with AuPRC improving by 34.25% and FPR95 decreasing by 21.42% on DenseOoS, outperforming state-of-the-art pinhole-OoS methods. Moreover, POS achieves leading closed-set segmentation capabilities. Code and datasets will be available at https://github.com/MengfeiD/PanOoS.

Authors:Chuyu Zhao, Hao Huang, Jiashuo Guo, Ziyu Shen, Zhongwei Zhou, Jie Liu, Zekuan Yu
Title: RAIL: Region-Aware Instructive Learning for Semi-Supervised Tooth Segmentation in CBCT
Abstract:
Semi-supervised learning has become a compelling approach for 3D tooth segmentation from CBCT scans, where labeled data is minimal. However, existing methods still face two persistent challenges: limited corrective supervision in structurally ambiguous or mislabeled regions during supervised training and performance degradation caused by unreliable pseudo-labels on unlabeled data. To address these problems, we propose Region-Aware Instructive Learning (RAIL), a dual-group dual-student, semi-supervised framework. Each group contains two student models guided by a shared teacher network. By alternating training between the two groups, RAIL promotes intergroup knowledge transfer and collaborative region-aware instruction while reducing overfitting to the characteristics of any single model. Specifically, RAIL introduces two instructive mechanisms. Disagreement-Focused Supervision (DFS) Controller improves supervised learning by instructing predictions only within areas where student outputs diverge from both ground truth and the best student, thereby concentrating supervision on structurally ambiguous or mislabeled areas. In the unsupervised phase, Confidence-Aware Learning (CAL) Modulator reinforces agreement in regions with high model certainty while reducing the effect of low-confidence predictions during training. This helps prevent our model from learning unstable patterns and improves the overall reliability of pseudo-labels. Extensive experiments on four CBCT tooth segmentation datasets show that RAIL surpasses state-of-the-art methods under limited annotation. Our code will be available at https://github.com/Tournesol-Saturday/RAIL.

Authors:Shenglan Li, Rui Yao, Yong Zhou, Hancheng Zhu, Kunyang Sun, Bing Liu, Zhiwen Shao, Jiaqi Zhao
Title: Modality-Guided Dynamic Graph Fusion and Temporal Diffusion for Self-Supervised RGB-T Tracking
Abstract:
To reduce the reliance on large-scale annotations, self-supervised RGB-T tracking approaches have garnered significant attention. However, the omission of the object region by erroneous pseudo-label or the introduction of background noise affects the efficiency of modality fusion, while pseudo-label noise triggered by similar object noise can further affect the tracking performance. In this paper, we propose GDSTrack, a novel approach that introduces dynamic graph fusion and temporal diffusion to address the above challenges in self-supervised RGB-T tracking. GDSTrack dynamically fuses the modalities of neighboring frames, treats them as distractor noise, and leverages the denoising capability of a generative model. Specifically, by constructing an adjacency matrix via an Adjacency Matrix Generator (AMG), the proposed Modality-guided Dynamic Graph Fusion (MDGF) module uses a dynamic adjacency matrix to guide graph attention, focusing on and fusing the object's coherent regions. Temporal Graph-Informed Diffusion (TGID) models MDGF features from neighboring frames as interference, and thus improving robustness against similar-object noise. Extensive experiments conducted on four public RGB-T tracking datasets demonstrate that GDSTrack outperforms the existing state-of-the-art methods. The source code is available at https://github.com/LiShenglana/GDSTrack.

Authors:Zhanyuan Jia, Ni Yao, Danyang Sun, Chuang Han, Yanting Li, Jiaofen Nan, Fubao Zhu, Chen Zhao, Weihua Zhou
Title: UPMAD-Net: A Brain Tumor Segmentation Network with Uncertainty Guidance and Adaptive Multimodal Feature Fusion
Abstract:
Background: Brain tumor segmentation has a significant impact on the diagnosis and treatment of brain tumors. Accurate brain tumor segmentation remains challenging due to their irregular shapes, vague boundaries, and high variability. Objective: We propose a brain tumor segmentation method that combines deep learning with prior knowledge derived from a region-growing algorithm. Methods: The proposed method utilizes a multi-scale feature fusion (MSFF) module and adaptive attention mechanisms (AAM) to extract multi-scale features and capture global contextual information. To enhance the model's robustness in low-confidence regions, the Monte Carlo Dropout (MC Dropout) strategy is employed for uncertainty estimation. Results: Extensive experiments demonstrate that the proposed method achieves superior performance on Brain Tumor Segmentation (BraTS) datasets, significantly outperforming various state-of-the-art methods. On the BraTS2021 dataset, the test Dice scores are 89.18% for Enhancing Tumor (ET) segmentation, 93.67% for Whole Tumor (WT) segmentation, and 91.23% for Tumor Core (TC) segmentation. On the BraTS2019 validation set, the validation Dice scores are 87.43%, 90.92%, and 90.40% for ET, WT, and TC segmentation, respectively. Ablation studies further confirmed the contribution of each module to segmentation accuracy, indicating that each component played a vital role in overall performance improvement. Conclusion: This study proposed a novel 3D brain tumor segmentation network based on the U-Net architecture. By incorporating the prior knowledge and employing the uncertainty estimation method, the robustness and performance were improved. The code for the proposed method is available at https://github.com/chenzhao2023/UPMAD_Net_BrainSeg.

Authors:Qi Gan, Sao Mai Nguyen, Eric Fenaux, Stephan Clémençon, Mounîm El Yacoubi
Title: Polar Coordinate-Based 2D Pose Prior with Neural Distance Field
Abstract:
Human pose capture is essential for sports analysis, enabling precise evaluation of athletes' movements. While deep learning-based human pose estimation (HPE) models from RGB videos have achieved impressive performance on public datasets, their effectiveness in real-world sports scenarios is often hindered by motion blur, occlusions, and domain shifts across different pose representations. Fine-tuning these models can partially alleviate such challenges but typically requires large-scale annotated data and still struggles to generalize across diverse sports environments. To address these limitations, we propose a 2D pose prior-guided refinement approach based on Neural Distance Fields (NDF). Unlike existing approaches that rely solely on angular representations of human poses, we introduce a polar coordinate-based representation that explicitly incorporates joint connection lengths, enabling a more accurate correction of erroneous pose estimations. Additionally, we define a novel non-geodesic distance metric that separates angular and radial discrepancies, which we demonstrate is better suited for polar representations than traditional geodesic distances. To mitigate data scarcity, we develop a gradient-based batch-projection augmentation strategy, which synthesizes realistic pose samples through iterative refinement. Our method is evaluated on a long jump dataset, demonstrating its ability to improve 2D pose estimation across multiple pose representations, making it robust across different domains. Experimental results show that our approach enhances pose plausibility while requiring only limited training data. Code is available at: https://github.com/QGAN2019/polar-NDF.

Authors:Kirill Lukyanov, Mikhail Drobyshevskiy, Georgii Sazonov, Mikhail Soloviov, Ilya Makarov
Title: Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Abstract:
The growing need for Trusted AI (TAI) highlights the importance of interpretability and robustness in machine learning models. However, many existing tools overlook graph data and rarely combine these two aspects into a single solution. Graph Neural Networks (GNNs) have become a popular approach, achieving top results across various tasks. We introduce GNN-AID (Graph Neural Network Analysis, Interpretation, and Defense), an open-source framework designed for graph data to address this gap. Built as a Python library, GNN-AID supports advanced trust methods and architectural layers, allowing users to analyze graph datasets and GNN behavior using attacks, defenses, and interpretability methods. GNN-AID is built on PyTorch-Geometric, offering preloaded datasets, models, and support for any GNNs through customizable interfaces. It also includes a web interface with tools for graph visualization and no-code features like an interactive model builder, simplifying the exploration and analysis of GNNs. The framework also supports MLOps techniques, ensuring reproducibility and result versioning to track and revisit analyses efficiently. GNN-AID is a flexible tool for developers and researchers. It helps developers create, analyze, and customize graph models, while also providing access to prebuilt datasets and models for quick experimentation. Researchers can use the framework to explore advanced topics on the relationship between interpretability and robustness, test defense strategies, and combine methods to protect against different types of attacks. We also show how defenses against evasion and poisoning attacks can conflict when applied to graph data, highlighting the complex connections between defense strategies. GNN-AID is available at \href{https://github.com/ispras/GNN-AID}{github.com/ispras/GNN-AID}

Authors:Yepeng Liu, Wenpeng Lai, Zhou Zhao, Yuxuan Xiong, Jinchi Zhu, Jun Cheng, Yongchao Xu
Title: LiftFeat: 3D Geometry-Aware Local Feature Matching
Abstract:
Robust and efficient local feature matching plays a crucial role in applications such as SLAM and visual localization for robotics. Despite great progress, it is still very challenging to extract robust and discriminative visual features in scenarios with drastic lighting changes, low texture areas, or repetitive patterns. In this paper, we propose a new lightweight network called \textit{LiftFeat}, which lifts the robustness of raw descriptor by aggregating 3D geometric feature. Specifically, we first adopt a pre-trained monocular depth estimation model to generate pseudo surface normal label, supervising the extraction of 3D geometric feature in terms of predicted surface normal. We then design a 3D geometry-aware feature lifting module to fuse surface normal feature with raw 2D descriptor feature. Integrating such 3D geometric feature enhances the discriminative ability of 2D feature description in extreme conditions. Extensive experimental results on relative pose estimation, homography estimation, and visual localization tasks, demonstrate that our LiftFeat outperforms some lightweight state-of-the-art methods. Code will be released at : https://github.com/lyp-deeplearning/LiftFeat.

Authors:Shanshan Song, Hui Tang, Honglong Yang, Xiaomeng Li
Title: DDaTR: Dynamic Difference-aware Temporal Residual Network for Longitudinal Radiology Report Generation
Abstract:
Radiology Report Generation (RRG) automates the creation of radiology reports from medical imaging, enhancing the efficiency of the reporting process. Longitudinal Radiology Report Generation (LRRG) extends RRG by incorporating the ability to compare current and prior exams, facilitating the tracking of temporal changes in clinical findings. Existing LRRG approaches only extract features from prior and current images using a visual pre-trained encoder, which are then concatenated to generate the final report. However, these methods struggle to effectively capture both spatial and temporal correlations during the feature extraction process. Consequently, the extracted features inadequately capture the information of difference across exams and thus underrepresent the expected progressions, leading to sub-optimal performance in LRRG. To address this, we develop a novel dynamic difference-aware temporal residual network (DDaTR). In DDaTR, we introduce two modules at each stage of the visual encoder to capture multi-level spatial correlations. The Dynamic Feature Alignment Module (DFAM) is designed to align prior features across modalities for the integrity of prior clinical information. Prompted by the enriched prior features, the dynamic difference-aware module (DDAM) captures favorable difference information by identifying relationships across exams. Furthermore, our DDaTR employs the dynamic residual network to unidirectionally transmit longitudinal information, effectively modelling temporal correlations. Extensive experiments demonstrated superior performance over existing methods on three benchmarks, proving its efficacy in both RRG and LRRG tasks.

Authors:Shanshan Song, Hui Tang, Honglong Yang, Xiaomeng Li
Title: DDaTR: Dynamic Difference-aware Temporal Residual Network for Longitudinal Radiology Report Generation
Abstract:
Radiology Report Generation (RRG) automates the creation of radiology reports from medical imaging, enhancing the efficiency of the reporting process. Longitudinal Radiology Report Generation (LRRG) extends RRG by incorporating the ability to compare current and prior exams, facilitating the tracking of temporal changes in clinical findings. Existing LRRG approaches only extract features from prior and current images using a visual pre-trained encoder, which are then concatenated to generate the final report. However, these methods struggle to effectively capture both spatial and temporal correlations during the feature extraction process. Consequently, the extracted features inadequately capture the information of difference across exams and thus underrepresent the expected progressions, leading to sub-optimal performance in LRRG. To address this, we develop a novel dynamic difference-aware temporal residual network (DDaTR). In DDaTR, we introduce two modules at each stage of the visual encoder to capture multi-level spatial correlations. The Dynamic Feature Alignment Module (DFAM) is designed to align prior features across modalities for the integrity of prior clinical information. Prompted by the enriched prior features, the dynamic difference-aware module (DDAM) captures favorable difference information by identifying relationships across exams. Furthermore, our DDaTR employs the dynamic residual network to unidirectionally transmit longitudinal information, effectively modelling temporal correlations. Extensive experiments demonstrated superior performance over existing methods on three benchmarks, proving its efficacy in both RRG and LRRG tasks.

Authors:Saleh Zare Zade, Yao Qiang, Xiangyu Zhou, Hui Zhu, Mohammad Amin Roshani, Prashant Khanduri, Dongxiao Zhu
Title: Automatic Calibration for Membership Inference Attack on Large Language Models
Abstract:
Membership Inference Attacks (MIAs) have recently been employed to determine whether a specific text was part of the pre-training data of Large Language Models (LLMs). However, existing methods often misinfer non-members as members, leading to a high false positive rate, or depend on additional reference models for probability calibration, which limits their practicality. To overcome these challenges, we introduce a novel framework called Automatic Calibration Membership Inference Attack (ACMIA), which utilizes a tunable temperature to calibrate output probabilities effectively. This approach is inspired by our theoretical insights into maximum likelihood estimation during the pre-training of LLMs. We introduce ACMIA in three configurations designed to accommodate different levels of model access and increase the probability gap between members and non-members, improving the reliability and robustness of membership inference. Extensive experiments on various open-source LLMs demonstrate that our proposed attack is highly effective, robust, and generalizable, surpassing state-of-the-art baselines across three widely used benchmarks. Our code is available at: \href{https://github.com/Salehzz/ACMIA}{\textcolor{blue}{Github}}.

Authors:Hao Liao, Wensheng Lu, Jianxun Lian, Mingqi Wu, Shuo Wang, Yong Zhang, Yitian Huang, Mingyang Zhou, Xing Xie
Title: Avoid Recommending Out-of-Domain Items: Constrained Generative Recommendation with LLMs
Abstract:
Large Language Models (LLMs) have shown promise for generative recommender systems due to their transformative capabilities in user interaction. However, ensuring they do not recommend out-of-domain (OOD) items remains a challenge. We study two distinct methods to address this issue: RecLM-ret, a retrieval-based method, and RecLM-cgen, a constrained generation method. Both methods integrate seamlessly with existing LLMs to ensure in-domain recommendations. Comprehensive experiments on three recommendation datasets demonstrate that RecLM-cgen consistently outperforms RecLM-ret and existing LLM-based recommender models in accuracy while eliminating OOD recommendations, making it the preferred method for adoption. Additionally, RecLM-cgen maintains strong generalist capabilities and is a lightweight plug-and-play module for easy integration into LLMs, offering valuable practical benefits for the community. Source code is available at https://github.com/microsoft/RecAI

Authors:Guoting Wei, Yu Liu, Xia Yuan, Xizhe Xue, Linlin Guo, Yifan Yang, Chunxia Zhao, Zongwen Bai, Haokui Zhang, Rong Xiao
Title: OS-W2S: An Automatic Labeling Engine for Language-Guided Open-Set Aerial Object Detection
Abstract:
In recent years, language-guided open-set aerial object detection has gained significant attention due to its better alignment with real-world application needs. However, due to limited datasets, most existing language-guided methods primarily focus on vocabulary-level descriptions, which fail to meet the demands of fine-grained open-world detection. To address this limitation, we propose constructing a large-scale language-guided open-set aerial detection dataset, encompassing three levels of language guidance: from words to phrases, and ultimately to sentences. Centered around an open-source large vision-language model and integrating image-operation-based preprocessing with BERT-based postprocessing, we present the OS-W2S Label Engine, an automatic annotation pipeline capable of handling diverse scene annotations for aerial images. Using this label engine, we expand existing aerial detection datasets with rich textual annotations and construct a novel benchmark dataset, called MI-OAD, addressing the limitations of current remote sensing grounding data and enabling effective language-guided open-set aerial detection. Specifically, MI-OAD contains 163,023 images and 2 million image-caption pairs, approximately 40 times larger than comparable datasets. To demonstrate the effectiveness and quality of MI-OAD, we evaluate three representative tasks. On language-guided open-set aerial detection, training on MI-OAD lifts Grounding DINO by +31.1 AP$_{50}$ and +34.7 Recall@10 with sentence-level inputs under zero-shot transfer. Moreover, using MI-OAD for pre-training yields state-of-the-art performance on multiple existing open-vocabulary aerial detection and remote sensing visual grounding benchmarks, validating both the effectiveness of the dataset and the high quality of its OS-W2S annotations. More details are available at https://github.com/GT-Wei/MI-OAD.

Authors:Rui Lan, Yancheng Bai, Xu Duan, Mingxing Li, Dongyang Jin, Ryan Xu, Lei Sun, Xiangxiang Chu
Title: FLUX-Text: A Simple and Advanced Diffusion Transformer Baseline for Scene Text Editing
Abstract:
Scene text editing aims to modify or add texts on images while ensuring text fidelity and overall visual quality consistent with the background. Recent methods are primarily built on UNet-based diffusion models, which have improved scene text editing results, but still struggle with complex glyph structures, especially for non-Latin ones (\eg, Chinese, Korean, Japanese). To address these issues, we present \textbf{FLUX-Text}, a simple and advanced multilingual scene text editing DiT method. Specifically, our FLUX-Text enhances glyph understanding and generation through lightweight Visual and Text Embedding Modules, while preserving the original generative capability of FLUX. We further propose a Regional Text Perceptual Loss tailored for text regions, along with a matching two-stage training strategy to better balance text editing and overall image quality. Benefiting from the DiT-based architecture and lightweight feature injection modules, FLUX-Text can be trained with only $0.1$M training examples, a \textbf{97\%} reduction compared to $2.9$M required by popular methods. Extensive experiments on multiple public datasets, including English and Chinese benchmarks, demonstrate that our method surpasses other methods in visual quality and text fidelity. All the code is available at https://github.com/AMAP-ML/FluxText.

Authors:Arthur Corrêa, Alexandre Jesus, Cristóvão Silva, Samuel Moniz
Title: Unraveling the Rainbow: can value-based methods schedule?
Abstract:
Recently, deep reinforcement learning has emerged as a promising approach for solving complex combinatorial optimization problems. Broadly, deep reinforcement learning methods fall into two categories: policy-based and value-based. While value-based approaches have achieved notable success in domains such as the Arcade Learning Environment, the combinatorial optimization community has predominantly favored policy-based methods, often overlooking the potential of value-based algorithms. In this work, we conduct a comprehensive empirical evaluation of value-based algorithms, including the deep q-network and several of its advanced extensions, within the context of two complex combinatorial problems: the job-shop and the flexible job-shop scheduling problems, two fundamental challenges with multiple industrial applications. Our results challenge the assumption that policy-based methods are inherently superior for combinatorial optimization. We show that several value-based approaches can match or even outperform the widely adopted proximal policy optimization algorithm, suggesting that value-based strategies deserve greater attention from the combinatorial optimization community. Our code is openly available at: https://github.com/AJ-Correa/Unraveling-the-Rainbow.

Authors:Jincheng Zhang, György Fazekas, Charalampos Saitis
Title: Mamba-Diffusion Model with Learnable Wavelet for Controllable Symbolic Music Generation
Abstract:
The recent surge in the popularity of diffusion models for image synthesis has attracted new attention to their potential for generation tasks in other domains. However, their applications to symbolic music generation remain largely under-explored because symbolic music is typically represented as sequences of discrete events and standard diffusion models are not well-suited for discrete data. We represent symbolic music as image-like pianorolls, facilitating the use of diffusion models for the generation of symbolic music. Moreover, this study introduces a novel diffusion model that incorporates our proposed Transformer-Mamba block and learnable wavelet transform. Classifier-free guidance is utilised to generate symbolic music with target chords. Our evaluation shows that our method achieves compelling results in terms of music quality and controllability, outperforming the strong baseline in pianoroll generation. Our code is available at https://github.com/jinchengzhanggg/proffusion.

Authors:Pierre Adorni, Minh-Tan Pham, Stéphane May, Sébastien Lefèvre
Title: Towards Efficient Benchmarking of Foundation Models in Remote Sensing: A Capabilities Encoding Approach
Abstract:
Foundation models constitute a significant advancement in computer vision: after a single, albeit costly, training phase, they can address a wide array of tasks. In the field of Earth observation, over 75 remote sensing vision foundation models have been developed in the past four years. However, none has consistently outperformed the others across all available downstream tasks. To facilitate their comparison, we propose a cost-effective method for predicting a model's performance on multiple downstream tasks without the need for fine-tuning on each one. This method is based on what we call "capabilities encoding." The utility of this novel approach is twofold: we demonstrate its potential to simplify the selection of a foundation model for a given new task, and we employ it to offer a fresh perspective on the existing literature, suggesting avenues for future research. Codes are available at https://github.com/pierreadorni/capabilities-encoding.

Authors:Zhenxing Ming, Julie Stephany Berrio, Mao Shan, Yaoqi Huang, Hongyu Lyu, Nguyen Hoang Khoi Tran, Tzu-Yun Tseng, Stewart Worrall
Title: OccCylindrical: Multi-Modal Fusion with Cylindrical Representation for 3D Semantic Occupancy Prediction
Abstract:
The safe operation of autonomous vehicles (AVs) is highly dependent on their understanding of the surroundings. For this, the task of 3D semantic occupancy prediction divides the space around the sensors into voxels, and labels each voxel with both occupancy and semantic information. Recent perception models have used multisensor fusion to perform this task. However, existing multisensor fusion-based approaches focus mainly on using sensor information in the Cartesian coordinate system. This ignores the distribution of the sensor readings, leading to a loss of fine-grained details and performance degradation. In this paper, we propose OccCylindrical that merges and refines the different modality features under cylindrical coordinates. Our method preserves more fine-grained geometry detail that leads to better performance. Extensive experiments conducted on the nuScenes dataset, including challenging rainy and nighttime scenarios, confirm our approach's effectiveness and state-of-the-art performance. The code will be available at: https://github.com/DanielMing123/OccCylindrical

Authors:Yutong Xie, Fuchao Yang, Yuheng Jia
Title: Partial Label Clustering
Abstract:
Partial label learning (PLL) is a significant weakly supervised learning framework, where each training example corresponds to a set of candidate labels and only one label is the ground-truth label. For the first time, this paper investigates the partial label clustering problem, which takes advantage of the limited available partial labels to improve the clustering performance. Specifically, we first construct a weight matrix of examples based on their relationships in the feature space and disambiguate the candidate labels to estimate the ground-truth label based on the weight matrix. Then, we construct a set of must-link and cannot-link constraints based on the disambiguation results. Moreover, we propagate the initial must-link and cannot-link constraints based on an adversarial prior promoted dual-graph learning approach. Finally, we integrate weight matrix construction, label disambiguation, and pairwise constraints propagation into a joint model to achieve mutual enhancement. We also theoretically prove that a better disambiguated label matrix can help improve clustering performance. Comprehensive experiments demonstrate our method realizes superior performance when comparing with state-of-the-art constrained clustering methods, and outperforms PLL and semi-supervised PLL methods when only limited samples are annotated. The code is publicly available at https://github.com/xyt-ml/PLC.

Authors:Kien Tran Duc Tuan, Tam Nguyen Trong, Son Nguyen Hoang, Khoat Than, Anh Nguyen Duc
Title: Weighted Integrated Gradients for Feature Attribution
Abstract:
In explainable AI, Integrated Gradients (IG) is a widely adopted technique for assessing the significance of feature attributes of the input on model outputs by evaluating contributions from a baseline input to the current input. The choice of the baseline input significantly influences the resulting explanation. While the traditional Expected Gradients (EG) method assumes baselines can be uniformly sampled and averaged with equal weights, this study argues that baselines should not be treated equivalently. We introduce Weighted Integrated Gradients (WG), a novel approach that unsupervisedly evaluates baseline suitability and incorporates a strategy for selecting effective baselines. Theoretical analysis demonstrates that WG satisfies essential explanation method criteria and offers greater stability than prior approaches. Experimental results further confirm that WG outperforms EG across diverse scenarios, achieving an improvement of 10-35\% on main metrics. Moreover, by evaluating baselines, our method can filter a subset of effective baselines for each input to calculate explanations, maintaining high accuracy while reducing computational cost. The code is available at: https://github.com/tamnt240904/weighted_ig.

Authors:Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi, Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong Zhi, Jia Li, Zhengying Liu
Title: CombiBench: Benchmarking LLM Capability for Combinatorial Mathematics
Abstract:
Neurosymbolic approaches integrating large language models with formal reasoning have recently achieved human-level performance on mathematics competition problems in algebra, geometry and number theory. In comparison, combinatorics remains a challenging domain, characterized by a lack of appropriate benchmarks and theorem libraries. To address this gap, we introduce CombiBench, a comprehensive benchmark comprising 100 combinatorial problems, each formalized in Lean~4 and paired with its corresponding informal statement. The problem set covers a wide spectrum of difficulty levels, ranging from middle school to IMO and university level, and span over ten combinatorial topics. CombiBench is suitable for testing IMO solving capabilities since it includes all IMO combinatorial problems since 2000 (except IMO 2004 P3 as its statement contain an images). Furthermore, we provide a comprehensive and standardized evaluation framework, dubbed Fine-Eval (for $\textbf{F}$ill-in-the-blank $\textbf{in}$ L$\textbf{e}$an Evaluation), for formal mathematics. It accommodates not only proof-based problems but also, for the first time, the evaluation of fill-in-the-blank questions. Using Fine-Eval as the evaluation method and Kimina Lean Server as the backend, we benchmark several LLMs on CombiBench and observe that their capabilities for formally solving combinatorial problems remain limited. Among all models tested (none of which has been trained for this particular task), Kimina-Prover attains the best results, solving 7 problems (out of 100) under both ``with solution'' and ``without solution'' scenarios. We open source the benchmark dataset alongside with the code of the proposed evaluation method at https://github.com/MoonshotAI/CombiBench/.

Authors:Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond
Title: Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation
Abstract:
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.

Authors:Zherui Zhang, Rongtao Xu, Jie Zhou, Changwei Wang, Xingtian Pei, Wenhao Xu, Jiguang Zhang, Li Guo, Longxiang Gao, Wenbo Xu, Shibiao Xu
Title: Image Recognition with Online Lightweight Vision Transformer: A Survey
Abstract:
The Transformer architecture has achieved significant success in natural language processing, motivating its adaptation to computer vision tasks. Unlike convolutional neural networks, vision transformers inherently capture long-range dependencies and enable parallel processing, yet lack inductive biases and efficiency benefits, facing significant computational and memory challenges that limit its real-world applicability. This paper surveys various online strategies for generating lightweight vision transformers for image recognition, focusing on three key areas: Efficient Component Design, Dynamic Network, and Knowledge Distillation. We evaluate the relevant exploration for each topic on the ImageNet-1K benchmark, analyzing trade-offs among precision, parameters, throughput, and more to highlight their respective advantages, disadvantages, and flexibility. Finally, we propose future research directions and potential challenges in the lightweighting of vision transformers with the aim of inspiring further exploration and providing practical guidance for the community. Project Page: https://github.com/ajxklo/Lightweight-VIT

Authors:Zherui Zhang, Rongtao Xu, Jie Zhou, Changwei Wang, Xingtian Pei, Wenhao Xu, Jiguang Zhang, Li Guo, Longxiang Gao, Wenbo Xu, Shibiao Xu
Title: Image Recognition with Online Lightweight Vision Transformer: A Survey
Abstract:
The Transformer architecture has achieved significant success in natural language processing, motivating its adaptation to computer vision tasks. Unlike convolutional neural networks, vision transformers inherently capture long-range dependencies and enable parallel processing, yet lack inductive biases and efficiency benefits, facing significant computational and memory challenges that limit its real-world applicability. This paper surveys various online strategies for generating lightweight vision transformers for image recognition, focusing on three key areas: Efficient Component Design, Dynamic Network, and Knowledge Distillation. We evaluate the relevant exploration for each topic on the ImageNet-1K benchmark, analyzing trade-offs among precision, parameters, throughput, and more to highlight their respective advantages, disadvantages, and flexibility. Finally, we propose future research directions and potential challenges in the lightweighting of vision transformers with the aim of inspiring further exploration and providing practical guidance for the community. Project Page: https://github.com/ajxklo/Lightweight-VIT

Authors:Mohammad Rostami, Atik Faysal, Reihaneh Gh. Roshan, Huaxia Wang, Nikhil Muralidhar, Yu-Dong Yao
Title: Plug-and-Play AMC: Context Is King in Training-Free, Open-Set Modulation with LLMs
Abstract:
Automatic Modulation Classification (AMC) is critical for efficient spectrum management and robust wireless communications. However, AMC remains challenging due to the complex interplay of signal interference and noise. In this work, we propose an innovative framework that integrates traditional signal processing techniques with Large-Language Models (LLMs) to address AMC. Our approach leverages higher-order statistics and cumulant estimation to convert quantitative signal features into structured natural language prompts. By incorporating exemplar contexts into these prompts, our method exploits the LLM's inherent familiarity with classical signal processing, enabling effective one-shot classification without additional training or preprocessing (e.g., denoising). Experimental evaluations on synthetically generated datasets, spanning both noiseless and noisy conditions, demonstrate that our framework achieves competitive performance across diverse modulation schemes and Signal-to-Noise Ratios (SNRs). Moreover, our approach paves the way for robust foundation models in wireless communications across varying channel conditions, significantly reducing the expense associated with developing channel-specific models. This work lays the foundation for scalable, interpretable, and versatile signal classification systems in next-generation wireless networks. The source code is available at https://github.com/RU-SIT/context-is-king

Authors:Mohammad Rostami, Atik Faysal, Reihaneh Gh. Roshan, Huaxia Wang, Nikhil Muralidhar, Yu-Dong Yao
Title: Plug-and-Play AMC: Context Is King in Training-Free, Open-Set Modulation with LLMs
Abstract:
Automatic Modulation Classification (AMC) is critical for efficient spectrum management and robust wireless communications. However, AMC remains challenging due to the complex interplay of signal interference and noise. In this work, we propose an innovative framework that integrates traditional signal processing techniques with Large-Language Models (LLMs) to address AMC. Our approach leverages higher-order statistics and cumulant estimation to convert quantitative signal features into structured natural language prompts. By incorporating exemplar contexts into these prompts, our method exploits the LLM's inherent familiarity with classical signal processing, enabling effective one-shot classification without additional training or preprocessing (e.g., denoising). Experimental evaluations on synthetically generated datasets, spanning both noiseless and noisy conditions, demonstrate that our framework achieves competitive performance across diverse modulation schemes and Signal-to-Noise Ratios (SNRs). Moreover, our approach paves the way for robust foundation models in wireless communications across varying channel conditions, significantly reducing the expense associated with developing channel-specific models. This work lays the foundation for scalable, interpretable, and versatile signal classification systems in next-generation wireless networks. The source code is available at https://github.com/RU-SIT/context-is-king

Authors:Pau Amargant, Peter Hönig, Markus Vincze
Title: Sim2Real Transfer for Vision-Based Grasp Verification
Abstract:
The verification of successful grasps is a crucial aspect of robot manipulation, particularly when handling deformable objects. Traditional methods relying on force and tactile sensors often struggle with deformable and non-rigid objects. In this work, we present a vision-based approach for grasp verification to determine whether the robotic gripper has successfully grasped an object. Our method employs a two-stage architecture; first YOLO-based object detection model to detect and locate the robot's gripper and then a ResNet-based classifier determines the presence of an object. To address the limitations of real-world data capture, we introduce HSR-GraspSynth, a synthetic dataset designed to simulate diverse grasping scenarios. Furthermore, we explore the use of Visual Question Answering capabilities as a zero-shot baseline to which we compare our model. Experimental results demonstrate that our approach achieves high accuracy in real-world environments, with potential for integration into grasping pipelines. Code and datasets are publicly available at https://github.com/pauamargant/HSR-GraspSynth .

Authors:Saeed Ebrahimi, Sahar Rahimi, Ali Dabouei, Srinjoy Das, Jeremy M. Dawson, Nasser M. Nasrabadi
Title: GIF: Generative Inspiration for Face Recognition at Scale
Abstract:
Aiming to reduce the computational cost of Softmax in massive label space of Face Recognition (FR) benchmarks, recent studies estimate the output using a subset of identities. Although promising, the association between the computation cost and the number of identities in the dataset remains linear only with a reduced ratio. A shared characteristic among available FR methods is the employment of atomic scalar labels during training. Consequently, the input to label matching is through a dot product between the feature vector of the input and the Softmax centroids. Inspired by generative modeling, we present a simple yet effective method that substitutes scalar labels with structured identity code, i.e., a sequence of integers. Specifically, we propose a tokenization scheme that transforms atomic scalar labels into structured identity codes. Then, we train an FR backbone to predict the code for each input instead of its scalar label. As a result, the associated computational cost becomes logarithmic w.r.t. number of identities. We demonstrate the benefits of the proposed method by conducting experiments. In particular, our method outperforms its competitors by 1.52%, and 0.6% at TAR@FAR$=1e-4$ on IJB-B and IJB-C, respectively, while transforming the association between computational cost and the number of identities from linear to logarithmic. See code at https://github.com/msed-Ebrahimi/GIF

Authors:Nikolay Safonov, Alexey Bryncev, Andrey Moskalenko, Dmitry Kulikov, Dmitry Vatolin, Radu Timofte, Haibo Lei, Qifan Gao, Qing Luo, Yaqing Li, Jie Song, Shaozhe Hao, Meisong Zheng, Jingyi Xu, Chengbin Wu, Jiahui Liu, Ying Chen, Xin Deng, Mai Xu, Peipei Liang, Jie Ma, Junjie Jin, Yingxue Pang, Fangzhou Luo, Kai Chen, Shijie Zhao, Mingyang Wu, Renjie Li, Yushen Zuo, Shengyun Zhong, Zhengzhong Tu
Title: NTIRE 2025 Challenge on UGC Video Enhancement: Methods and Results
Abstract:
This paper presents an overview of the NTIRE 2025 Challenge on UGC Video Enhancement. The challenge constructed a set of 150 user-generated content videos without reference ground truth, which suffer from real-world degradations such as noise, blur, faded colors, compression artifacts, etc. The goal of the participants was to develop an algorithm capable of improving the visual quality of such videos. Given the widespread use of UGC on short-form video platforms, this task holds substantial practical importance. The evaluation was based on subjective quality assessment in crowdsourcing, obtaining votes from over 8000 assessors. The challenge attracted more than 25 teams submitting solutions, 7 of which passed the final phase with source code verification. The outcomes may provide insights into the state-of-the-art in UGC video enhancement and highlight emerging trends and effective strategies in this evolving research area. All data, including the processed videos and subjective comparison votes and scores, is made publicly available at https://github.com/msu-video-group/NTIRE25_UGC_Video_Enhancement.

Authors:Daniel Goldstein, Eric Alcaide, Janna Lu, Eugene Cheah
Title: RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
Abstract:
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper

Authors:Anjila Budathoki, Manish Dhakal
Title: Adversarial Robustness Analysis of Vision-Language Models in Medical Image Segmentation
Abstract:
Adversarial attacks have been fairly explored for computer vision and vision-language models. However, the avenue of adversarial attack for the vision language segmentation models (VLSMs) is still under-explored, especially for medical image analysis. Thus, we have investigated the robustness of VLSMs against adversarial attacks for 2D medical images with different modalities with radiology, photography, and endoscopy. The main idea of this project was to assess the robustness of the fine-tuned VLSMs specially in the medical domain setting to address the high risk scenario. First, we have fine-tuned pre-trained VLSMs for medical image segmentation with adapters. Then, we have employed adversarial attacks -- projected gradient descent (PGD) and fast gradient sign method (FGSM) -- on that fine-tuned model to determine its robustness against adversaries. We have reported models' performance decline to analyze the adversaries' impact. The results exhibit significant drops in the DSC and IoU scores after the introduction of these adversaries. Furthermore, we also explored universal perturbation but were not able to find for the medical images. \footnote{https://github.com/anjilab/secure-private-ai}

Authors:Franklin Zhang, Sonya Zhang, Alon Halevy
Title: Leveraging LLMs to Create Content Corpora for Niche Domains
Abstract:
Constructing specialized content corpora from vast, unstructured web sources for domain-specific applications poses substantial data curation challenges. In this paper, we introduce a streamlined approach for generating high-quality, domain-specific corpora by efficiently acquiring, filtering, structuring, and cleaning web-based data. We showcase how Large Language Models (LLMs) can be leveraged to address complex data curation at scale, and propose a strategical framework incorporating LLM-enhanced techniques for structured content extraction and semantic deduplication. We validate our approach in the behavior education domain through its integration into 30 Day Me, a habit formation application. Our data pipeline, named 30DayGen, enabled the extraction and synthesis of 3,531 unique 30-day challenges from over 15K webpages. A user survey reports a satisfaction score of 4.3 out of 5, with 91% of respondents indicating willingness to use the curated content for their habit-formation goals.

Authors:Bang Zhang, Ruotian Ma, Qingxuan Jiang, Peisong Wang, Jiaqi Chen, Zheng Xie, Xingyu Chen, Yue Wang, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, Xiaolong Li
Title: Sentient Agent as a Judge: Evaluating Higher-Order Social Cognition in Large Language Models
Abstract:
Assessing how well a large language model (LLM) understands human, rather than merely text, remains an open challenge. To bridge the gap, we introduce Sentient Agent as a Judge (SAGE), an automated evaluation framework that measures an LLM's higher-order social cognition. SAGE instantiates a Sentient Agent that simulates human-like emotional changes and inner thoughts during interaction, providing a more realistic evaluation of the tested model in multi-turn conversations. At every turn, the agent reasons about (i) how its emotion changes, (ii) how it feels, and (iii) how it should reply, yielding a numerical emotion trajectory and interpretable inner thoughts. Experiments on 100 supportive-dialogue scenarios show that the final Sentient emotion score correlates strongly with Barrett-Lennard Relationship Inventory (BLRI) ratings and utterance-level empathy metrics, validating psychological fidelity. We also build a public Sentient Leaderboard covering 18 commercial and open-source models that uncovers substantial gaps (up to 4x) between frontier systems (GPT-4o-Latest, Gemini2.5-Pro) and earlier baselines, gaps not reflected in conventional leaderboards (e.g., Arena). SAGE thus provides a principled, scalable and interpretable tool for tracking progress toward genuinely empathetic and socially adept language agents.

Authors:Zhikai Wang, Yanyan Shen, Zibin Zhang, Kangyi Lin
Title: Feature Staleness Aware Incremental Learning for CTR Prediction
Abstract:
Click-through Rate (CTR) prediction in real-world recommender systems often deals with billions of user interactions every day. To improve the training efficiency, it is common to update the CTR prediction model incrementally using the new incremental data and a subset of historical data. However, the feature embeddings of a CTR prediction model often get stale when the corresponding features do not appear in current incremental data. In the next period, the model would have a performance degradation on samples containing stale features, which we call the feature staleness problem. To mitigate this problem, we propose a Feature Staleness Aware Incremental Learning method for CTR prediction (FeSAIL) which adaptively replays samples containing stale features. We first introduce a staleness aware sampling algorithm (SAS) to sample a fixed number of stale samples with high sampling efficiency. We then introduce a staleness aware regularization mechanism (SAR) for a fine-grained control of the feature embedding updating. We instantiate FeSAIL with a general deep learning-based CTR prediction model and the experimental results demonstrate FeSAIL outperforms various state-of-the-art methods on four benchmark datasets.

Authors:Yi-Fan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu Jiang, Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang, Tingting Gao, Liang Wang
Title: R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning
Abstract:
Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a $8.4\%$ improvement on the VL Reward-Bench and a $14.3\%$ improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.

Authors:Dengyang Jiang, Mengmeng Wang, Liuzhuozheng Li, Lei Zhang, Haoyu Wang, Wei Wei, Guang Dai, Yanning Zhang, Jingdong Wang
Title: No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves
Abstract:
Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance the generation quality of diffusion transformers. However, existing approaches necessitate to either introduce an external and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation Alignment (SRA), a simple yet straightforward method that obtains representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in the earlier layer with higher noise to that in the later layer with lower noise to progressively enhance the overall representation learning during only the generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that are heavily dependent on powerful external representation priors.

Authors:Zinan Guo, Pengze Zhang, Yanze Wu, Chong Mou, Songtao Zhao, Qian He
Title: MUSAR: Exploring Multi-Subject Customization from Single-Subject Dataset via Attention Routing
Abstract:
Current multi-subject customization approaches encounter two critical challenges: the difficulty in acquiring diverse multi-subject training data, and attribute entanglement across different subjects. To bridge these gaps, we propose MUSAR - a simple yet effective framework to achieve robust multi-subject customization while requiring only single-subject training data. Firstly, to break the data limitation, we introduce debiased diptych learning. It constructs diptych training pairs from single-subject images to facilitate multi-subject learning, while actively correcting the distribution bias introduced by diptych construction via static attention routing and dual-branch LoRA. Secondly, to eliminate cross-subject entanglement, we introduce dynamic attention routing mechanism, which adaptively establishes bijective mappings between generated images and conditional subjects. This design not only achieves decoupling of multi-subject representations but also maintains scalable generalization performance with increasing reference subjects. Comprehensive experiments demonstrate that our MUSAR outperforms existing methods - even those trained on multi-subject dataset - in image quality, subject consistency, and interaction naturalness, despite requiring only single-subject dataset.

Authors:Dmitriy Shopkhoev, Ammar Ali, Magauiya Zhussip, Valentin Malykh, Stamatios Lefkimmiatis, Nikos Komodakis, Sergey Zagoruyko
Title: ReplaceMe: Network Simplification via Depth Pruning and Transformer Block Linearization
Abstract:
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation, which approximates the pruned blocks. The estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25% pruning while retaining approximately 90% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead (see Fig.1). We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at https://github.com/mts-ai/ReplaceMe.

Authors:Dmitriy Shopkhoev, Ammar Ali, Magauiya Zhussip, Valentin Malykh, Stamatios Lefkimmiatis, Nikos Komodakis, Sergey Zagoruyko
Title: ReplaceMe: Network Simplification via Depth Pruning and Transformer Block Linearization
Abstract:
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation, which approximates the pruned blocks. The estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25% pruning while retaining approximately 90% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead (see Fig.1). We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at https://github.com/mts-ai/ReplaceMe.

Authors:Jai Prakash Veerla, Partha Sai Guttikonda, Helen H. Shang, Mohammad Sadegh Nasr, Cesar Torres, Jacob M. Luber
Title: Beyond the Monitor: Mixed Reality Visualization and AI for Enhanced Digital Pathology Workflow
Abstract:
Pathologists rely on gigapixel whole-slide images (WSIs) to diagnose diseases like cancer, yet current digital pathology tools hinder diagnosis. The immense scale of WSIs, often exceeding 100,000 X 100,000 pixels, clashes with the limited views traditional monitors offer. This mismatch forces constant panning and zooming, increasing pathologist cognitive load, causing diagnostic fatigue, and slowing pathologists' adoption of digital methods. PathVis, our mixed-reality visualization platform for Apple Vision Pro, addresses these challenges. It transforms the pathologist's interaction with data, replacing cumbersome mouse-and-monitor navigation with intuitive exploration using natural hand gestures, eye gaze, and voice commands in an immersive workspace. PathVis integrates AI to enhance diagnosis. An AI-driven search function instantly retrieves and displays the top five similar patient cases side-by-side, improving diagnostic precision and efficiency through rapid comparison. Additionally, a multimodal conversational AI assistant offers real-time image interpretation support and aids collaboration among pathologists across multiple Apple devices. By merging the directness of traditional pathology with advanced mixed-reality visualization and AI, PathVis improves diagnostic workflows, reduces cognitive strain, and makes pathology practice more effective and engaging. The PathVis source code and a demo video are publicly available at: https://github.com/jaiprakash1824/Path_Vis

Authors:Yankai Jiang, Peng Zhang, Donglin Yang, Yuan Tian, Hai Lin, Xiaosong Wang
Title: Advancing Generalizable Tumor Segmentation with Anomaly-Aware Open-Vocabulary Attention Maps and Frozen Foundation Diffusion Models
Abstract:
We explore Generalizable Tumor Segmentation, aiming to train a single model for zero-shot tumor segmentation across diverse anatomical regions. Existing methods face limitations related to segmentation quality, scalability, and the range of applicable imaging modalities. In this paper, we uncover the potential of the internal representations within frozen medical foundation diffusion models as highly efficient zero-shot learners for tumor segmentation by introducing a novel framework named DiffuGTS. DiffuGTS creates anomaly-aware open-vocabulary attention maps based on text prompts to enable generalizable anomaly segmentation without being restricted by a predefined training category list. To further improve and refine anomaly segmentation masks, DiffuGTS leverages the diffusion model, transforming pathological regions into high-quality pseudo-healthy counterparts through latent space inpainting, and applies a novel pixel-level and feature-level residual learning approach, resulting in segmentation masks with significantly enhanced quality and generalization. Comprehensive experiments on four datasets and seven tumor categories demonstrate the superior performance of our method, surpassing current state-of-the-art models across multiple zero-shot settings. Codes are available at https://github.com/Yankai96/DiffuGTS.

Authors:Binghong Chen, Tingting Chai, Wei Jiang, Yuanrong Xu, Guanglu Zhou, Xiangqian Wu
Title: Multi-View Learning with Context-Guided Receptance for Image Denoising
Abstract:
Image denoising is essential in low-level vision applications such as photography and automated driving. Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources due to reliance on Transformer-based models. In this work, the Context-guided Receptance Weighted Key-Value (\M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling. Our approach introduces the Context-guided Token Shift (CTS) paradigm, which effectively captures local spatial dependencies and enhance the model's ability to model real-world noise distributions. Additionally, the Frequency Mix (FMix) module extracting frequency-domain features is designed to isolate noise in high-frequency spectra, and is integrated with spatial representations through a multi-view learning process. To improve computational efficiency, the Bidirectional WKV (BiWKV) mechanism is adopted, enabling full pixel-sequence interaction with linear complexity while overcoming the causal selection constraints. The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40\%. Qualitative results further demonstrate the ability of our model to restore fine details in various scenes.

Authors:Maxime Poli, Emmanuel Chemla, Emmanuel Dupoux
Title: fastabx: A library for efficient computation of ABX discriminability
Abstract:
We introduce fastabx, a high-performance Python library for building ABX discrimination tasks. ABX is a measure of the separation between generic categories of interest. It has been used extensively to evaluate phonetic discriminability in self-supervised speech representations. However, its broader adoption has been limited by the absence of adequate tools. fastabx addresses this gap by providing a framework capable of constructing any type of ABX task while delivering the efficiency necessary for rapid development cycles, both in task creation and in calculating distances between representations. We believe that fastabx will serve as a valuable resource for the broader representation learning community, enabling researchers to systematically investigate what information can be directly extracted from learned representations across several domains beyond speech processing. The source code is available at https://github.com/bootphon/fastabx.

Authors:Xiaobao Wu
Title: Sailing by the Stars: A Survey on Reward Models and Learning Strategies for Learning from Rewards
Abstract:
Recent developments in Large Language Models (LLMs) have shifted from pre-training scaling to post-training and test-time scaling. Across these developments, a key unified paradigm has arisen: Learning from Rewards, where reward signals act as the guiding stars to steer LLM behavior. It has underpinned a wide range of prevalent techniques, such as reinforcement learning (RLHF, RLAIF, DPO, and GRPO), reward-guided decoding, and post-hoc correction. Crucially, this paradigm enables the transition from passive learning from static data to active learning from dynamic feedback. This endows LLMs with aligned preferences and deep reasoning capabilities for diverse tasks. In this survey, we present a comprehensive overview of learning from rewards, from the perspective of reward models and learning strategies across training, inference, and post-inference stages. We further discuss the benchmarks for reward models and the primary applications. Finally we highlight the challenges and future directions. We maintain a paper collection at https://github.com/bobxwu/learning-from-rewards-llm-papers.

Authors:Shiwei Guo, Ziang Chen, Yupeng Ma, Yunfei Han, Yi Wang
Title: SCFormer: Structured Channel-wise Transformer with Cumulative Historical State for Multivariate Time Series Forecasting
Abstract:
The Transformer model has shown strong performance in multivariate time series forecasting by leveraging channel-wise self-attention. However, this approach lacks temporal constraints when computing temporal features and does not utilize cumulative historical series effectively.To address these limitations, we propose the Structured Channel-wise Transformer with Cumulative Historical state (SCFormer). SCFormer introduces temporal constraints to all linear transformations, including the query, key, and value matrices, as well as the fully connected layers within the Transformer. Additionally, SCFormer employs High-order Polynomial Projection Operators (HiPPO) to deal with cumulative historical time series, allowing the model to incorporate information beyond the look-back window during prediction. Extensive experiments on multiple real-world datasets demonstrate that SCFormer significantly outperforms mainstream baselines, highlighting its effectiveness in enhancing time series forecasting. The code is publicly available at https://github.com/ShiweiGuo1995/SCFormer

Authors:Qingkai Fang, Yan Zhou, Shoutao Guo, Shaolei Zhang, Yang Feng
Title: LLaMA-Omni2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis
Abstract:
Real-time, intelligent, and natural speech interaction is an essential part of the next-generation human-computer interaction. Recent advancements have showcased the potential of building intelligent spoken chatbots based on large language models (LLMs). In this paper, we introduce LLaMA-Omni 2, a series of speech language models (SpeechLMs) ranging from 0.5B to 14B parameters, capable of achieving high-quality real-time speech interaction. LLaMA-Omni 2 is built upon the Qwen2.5 series models, integrating a speech encoder and an autoregressive streaming speech decoder. Despite being trained on only 200K multi-turn speech dialogue samples, LLaMA-Omni 2 demonstrates strong performance on several spoken question answering and speech instruction following benchmarks, surpassing previous state-of-the-art SpeechLMs like GLM-4-Voice, which was trained on millions of hours of speech data.

Authors:Xinjie Zhang, Jintao Guo, Shanshan Zhao, Minghao Fu, Lunhao Duan, Jiakui Hu, Yong Xien Chng, Guo-Hua Wang, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Abstract:
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).

Authors:Hongze Li, Zesheng Zhou, Zhenbiao Cao, Xinhui Li, Wei Chen, Xiaojin Zhang
Title: FedSDAF: Leveraging Source Domain Awareness for Enhanced Federated Domain Generalization
Abstract:
Traditional Federated Domain Generalization (FedDG) methods focus on learning domain-invariant features or adapting to unseen target domains, often overlooking the unique knowledge embedded within the source domain, especially in strictly isolated federated learning environments. Through experimentation, we discovered a counterintuitive phenomenon.: features learned from a complete source domain have superior generalization capabilities compared to those learned directly from the target domain. This insight leads us to propose the Federated Source Domain Awareness Framework (FedSDAF), the first systematic approach to enhance FedDG by leveraging source domain-aware features. FedSDAF employs a dual-adapter architecture that decouples "local expertise" from "global generalization consensus". A Domain-Aware Adapter, retained locally, extracts and protects the unique discriminative knowledge of each source domain, while a Domain-Invariant Adapter, shared across clients, builds a robust global consensus. To enable knowledge exchange, we introduce a Bidirectional Knowledge Distillation mechanism that facilitates efficient dialogue between the adapters. Extensive experiments on four benchmark datasets (OfficeHome, PACS, VLCS, DomainNet) show that FedSDAF significantly outperforms existing FedDG methods.The source code is available at https://github.com/pizzareapers/FedSDAF.

Authors:Xiongjun Guan, Zhiyu Pan, Jianjiang Feng, Jie Zhou
Title: Finger Pose Estimation for Under-screen Fingerprint Sensor
Abstract:
Two-dimensional pose estimation plays a crucial role in fingerprint recognition by facilitating global alignment and reduce pose-induced variations. However, existing methods are still unsatisfactory when handling with large angle or small area inputs. These limitations are particularly pronounced on fingerprints captured by under-screen fingerprint sensors in smartphones. In this paper, we present a novel dual-modal input based network for under-screen fingerprint pose estimation. Our approach effectively integrates two distinct yet complementary modalities: texture details extracted from ridge patches through the under-screen fingerprint sensor, and rough contours derived from capacitive images obtained via the touch screen. This collaborative integration endows our network with more comprehensive and discriminative information, substantially improving the accuracy and stability of pose estimation. A decoupled probability distribution prediction task is designed, instead of the traditional supervised forms of numerical regression or heatmap voting, to facilitate the training process. Additionally, we incorporate a Mixture of Experts (MoE) based feature fusion mechanism and a relationship driven cross-domain knowledge transfer strategy to further strengthen feature extraction and fusion capabilities. Extensive experiments are conducted on several public datasets and two private datasets. The results indicate that our method is significantly superior to previous state-of-the-art (SOTA) methods and remarkably boosts the recognition ability of fingerprint recognition algorithms. Our code is available at https://github.com/XiongjunGuan/DRACO.

Authors:Inclusion AI, Biao Gong, Cheng Zou, Dandan Zheng, Hu Yu, Jingdong Chen, Jianxin Sun, Junbo Zhao, Jun Zhou, Kaixiang Ji, Lixiang Ru, Libin Wang, Qingpei Guo, Rui Liu, Weilong Chai, Xinyu Xiao, Ziyuan Huang
Title: Ming-Lite-Uni: Advancements in Unified Architecture for Natural Multimodal Interaction
Abstract:
We introduce Ming-Lite-Uni, an open-source multimodal framework featuring a newly designed unified visual generator and a native multimodal autoregressive model tailored for unifying vision and language. Specifically, this project provides an open-source implementation of the integrated MetaQueries and M2-omni framework, while introducing the novel multi-scale learnable tokens and multi-scale representation alignment strategy. By leveraging a fixed MLLM and a learnable diffusion model, Ming-Lite-Uni enables native multimodal AR models to perform both text-to-image generation and instruction based image editing tasks, expanding their capabilities beyond pure visual understanding. Our experimental results demonstrate the strong performance of Ming-Lite-Uni and illustrate the impressive fluid nature of its interactive process. All code and model weights are open-sourced to foster further exploration within the community. Notably, this work aligns with concurrent multimodal AI milestones - such as ChatGPT-4o with native image generation updated in March 25, 2025 - underscoring the broader significance of unified models like Ming-Lite-Uni on the path toward AGI. Ming-Lite-Uni is in alpha stage and will soon be further refined.

Authors:Jiaqi Zhang, Zhuodong Liu, Kejian Yu
Title: MSFNet-CPD: Multi-Scale Cross-Modal Fusion Network for Crop Pest Detection
Abstract:
Accurate identification of agricultural pests is essential for crop protection but remains challenging due to the large intra-class variance and fine-grained differences among pest species. While deep learning has advanced pest detection, most existing approaches rely solely on low-level visual features and lack effective multi-modal integration, leading to limited accuracy and poor interpretability. Moreover, the scarcity of high-quality multi-modal agricultural datasets further restricts progress in this field. To address these issues, we construct two novel multi-modal benchmarks-CTIP102 and STIP102-based on the widely-used IP102 dataset, and introduce a Multi-scale Cross-Modal Fusion Network (MSFNet-CPD) for robust pest detection. Our approach enhances visual quality via a super-resolution reconstruction module, and feeds both the original and reconstructed images into the network to improve clarity and detection performance. To better exploit semantic cues, we propose an Image-Text Fusion (ITF) module for joint modeling of visual and textual features, and an Image-Text Converter (ITC) that reconstructs fine-grained details across multiple scales to handle challenging backgrounds. Furthermore, we introduce an Arbitrary Combination Image Enhancement (ACIE) strategy to generate a more complex and diverse pest detection dataset, MTIP102, improving the model's generalization to real-world scenarios. Extensive experiments demonstrate that MSFNet-CPD consistently outperforms state-of-the-art methods on multiple pest detection benchmarks. All code and datasets will be made publicly available at: https://github.com/Healer-ML/MSFNet-CPD.

Authors:Zichen Liu, Xu Zou, Gang Hua, Jiahuan Zhou
Title: Token Coordinated Prompt Attention is Needed for Visual Prompting
Abstract:
Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.

Authors:Sungheon Jeong, Jihong Park, Mohsen Imani
Title: Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
Abstract:
Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.

Authors:Jiarui Yao, Yifan Hao, Hanning Zhang, Hanze Dong, Wei Xiong, Nan Jiang, Tong Zhang
Title: Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL
Abstract:
Chain-of-thought (CoT) reasoning in large language models (LLMs) can be formalized as a latent variable problem, where the model needs to generate intermediate reasoning steps. While prior approaches such as iterative reward-ranked fine-tuning (RAFT) have relied on such formulations, they typically apply uniform inference budgets across prompts, which fails to account for variability in difficulty and convergence behavior. This work identifies the main bottleneck in CoT training as inefficient stochastic gradient estimation due to static sampling strategies. We propose GVM-RAFT, a prompt-specific Dynamic Sample Allocation Strategy designed to minimize stochastic gradient variance under a computational budget constraint. The method dynamically allocates computational resources by monitoring prompt acceptance rates and stochastic gradient norms, ensuring that the resulting gradient variance is minimized. Our theoretical analysis shows that the proposed dynamic sampling strategy leads to accelerated convergence guarantees under suitable conditions. Experiments on mathematical reasoning show that GVM-RAFT achieves a 2-4x speedup and considerable accuracy improvements over vanilla RAFT. The proposed dynamic sampling strategy is general and can be incorporated into other reinforcement learning algorithms, such as GRPO, leading to similar improvements in convergence and test accuracy. Our code is available at https://github.com/RLHFlow/GVM.

Authors:Enbo Zhao, Yi Shen, Shuming Shi, Jieyun Huang, Zhihao Chen, Ning Wang, Siqi Xiao, Jian Zhang, Kai Wang, Shiguo Lian
Title: Quantitative Analysis of Performance Drop in DeepSeek Model Quantization
Abstract:
Recently, there is a high demand for deploying DeepSeek-R1 and V3 locally, possibly because the official service often suffers from being busy and some organizations have data privacy concerns. While single-machine deployment offers infrastructure simplicity, the models' 671B FP8 parameter configuration exceeds the practical memory limits of a standard 8-GPU machine. Quantization is a widely used technique that helps reduce model memory consumption. However, it is unclear what the performance of DeepSeek-R1 and V3 will be after being quantized. This technical report presents the first quantitative evaluation of multi-bitwidth quantization across the complete DeepSeek model spectrum. Key findings reveal that 4-bit quantization maintains little performance degradation versus FP8 while enabling single-machine deployment on standard NVIDIA GPU devices. We further propose DQ3_K_M, a dynamic 3-bit quantization method that significantly outperforms traditional Q3_K_M variant on various benchmarks, which is also comparable with 4-bit quantization (Q4_K_M) approach in most tasks. Moreover, DQ3_K_M supports single-machine deployment configurations for both NVIDIA H100/A100 and Huawei 910B. Our implementation of DQ3\_K\_M is released at https://github.com/UnicomAI/DeepSeek-Eval, containing optimized 3-bit quantized variants of both DeepSeek-R1 and DeepSeek-V3.

Authors:Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang, Denghui Zhang, Tong Zhang, Hanghang Tong, Heng Ji
Title: RM-R1: Reward Modeling as Reasoning
Abstract:
Reward modeling is essential for aligning large language models with human preferences through reinforcement learning from human feedback. To provide accurate reward signals, a reward model (RM) should stimulate deep thinking and conduct interpretable reasoning before assigning a score or a judgment. Inspired by recent advances of long chain-of-thought on reasoning-intensive tasks, we hypothesize and validate that integrating reasoning capabilities into reward modeling significantly enhances RMs interpretability and performance. To this end, we introduce a new class of generative reward models - Reasoning Reward Models (ReasRMs) - which formulate reward modeling as a reasoning task. We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1. RM-R1 features a chain-of-rubrics (CoR) mechanism - self-generating sample-level chat rubrics or math/code solutions, and evaluating candidate responses against them. The training of RM-R1 consists of two key stages: (1) distillation of high-quality reasoning chains and (2) reinforcement learning with verifiable rewards. Empirically, our models achieve state-of-the-art performance across three reward model benchmarks on average, outperforming much larger open-weight models (e.g., INF-ORM-Llama3.1-70B) and proprietary ones (e.g., GPT-4o) by up to 4.9%. Beyond final performance, we perform thorough empirical analyses to understand the key ingredients of successful ReasRM training. To facilitate future research, we release six REASRM models along with code and data at https://github.com/RM-R1-UIUC/RM-R1.

Authors:Ming Li, Xin Gu, Fan Chen, Xiaoying Xing, Longyin Wen, Chen Chen, Sijie Zhu
Title: SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
Abstract:
Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.

Authors:Vincent-Daniel Yun
Title: Sharpness-Aware Minimization with Z-Score Gradient Filtering
Abstract:
Deep neural networks achieve high performance across many domains but can still face challenges in generalization when optimization is influenced by small or noisy gradient components. Sharpness-Aware Minimization improves generalization by perturbing parameters toward directions of high curvature, but it uses the entire gradient vector, which means that small or noisy components may affect the ascent step and cause the optimizer to miss optimal solutions. We propose Z-Score Filtered Sharpness-Aware Minimization, which applies Z-score based filtering to gradients in each layer. Instead of using all gradient components, a mask is constructed to retain only the top percentile with the largest absolute Z-scores. The percentile threshold $Q_p$ determines how many components are kept, so that the ascent step focuses on directions that stand out most compared to the average of the layer. This selective perturbation refines the search toward flatter minima while reducing the influence of less significant gradients. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet with architectures including ResNet, VGG, and Vision Transformers show that the proposed method consistently improves test accuracy compared to Sharpness-Aware Minimization and its variants. The code repository is available at: https://github.com/YUNBLAK/Sharpness-Aware-Minimization-with-Z-Score-Gradient-Filtering

Authors:Bobo Lian, Dandan Wang, Chenjian Wu, Minxin Chen
Title: Sparse Ellipsoidal Radial Basis Function Network for Point Cloud Surface Representation
Abstract:
Point cloud surface representation is a fundamental problem in computer graphics and vision. This paper presents a machine learning approach for approximating the signed distance function (SDF) of a point cloud using a sparse ellipsoidal radial basis function network, enabling a compact and accurate surface representation. Given the SDF values defined on the grid points constructed from the point cloud, our method approximates the SDF accurately with as few ellipsoidal radial basis functions (ERBFs) as possible, i.e., represents the SDF of a point cloud by sparse ERBFs. To balance sparsity and approximation precision, a dynamic multi-objective optimization strategy is introduced, which adaptively adds the regularization terms and jointly optimizes the weights, centers, shapes, and orientations of ERBFs. To improve computational efficiency, a nearest-neighbor-based data structure is employed, restricting function calculations to points near each Gaussian kernel center. The computations for each kernel are further parallelized on CUDA, which significantly improves the optimization speed. Additionally, a hierarchical octree-based refinement strategy is designed for training. Specifically, the initialization and optimization of network parameters are conducted using coarse grid points in the octree lattice structure. Subsequently, fine lattice points are progressively incorporated to accelerate model convergence and enhance training efficiency. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms previous sparse representation approaches in terms of accuracy, robustness, and computational efficiency. The corresponding executable program is publicly available at https://github.com/lianbobo/SE-RBFNet.git.

Authors:Kahim Wong, Jicheng Zhou, Jiantao Zhou, Yain-Whar Si
Title: An End-to-End Model For Logits Based Large Language Models Watermarking
Abstract:
The rise of LLMs has increased concerns over source tracing and copyright protection for AIGC, highlighting the need for advanced detection technologies. Passive detection methods usually face high false positives, while active watermarking techniques using logits or sampling manipulation offer more effective protection. Existing LLM watermarking methods, though effective on unaltered content, suffer significant performance drops when the text is modified and could introduce biases that degrade LLM performance in downstream tasks. These methods fail to achieve an optimal tradeoff between text quality and robustness, particularly due to the lack of end-to-end optimization of the encoder and decoder. In this paper, we introduce a novel end-to-end logits perturbation method for watermarking LLM-generated text. By jointly optimization, our approach achieves a better balance between quality and robustness. To address non-differentiable operations in the end-to-end training pipeline, we introduce an online prompting technique that leverages the on-the-fly LLM as a differentiable surrogate. Our method achieves superior robustness, outperforming distortion-free methods by 37-39% under paraphrasing and 17.2% on average, while maintaining text quality on par with these distortion-free methods in terms of text perplexity and downstream tasks. Our method can be easily generalized to different LLMs. Code is available at https://github.com/KAHIMWONG/E2E_LLM_WM.

Authors:Hao Cheng, Zhiwei Zhao, Yichao He, Zhenzhen Hu, Jia Li, Meng Wang, Richang Hong
Title: VAEmo: Efficient Representation Learning for Visual-Audio Emotion with Knowledge Injection
Abstract:
Audiovisual emotion recognition (AVER) aims to infer human emotions from nonverbal visual-audio (VA) cues, offering modality-complementary and language-agnostic advantages. However, AVER remains challenging due to the inherent ambiguity of emotional expressions, cross-modal expressive disparities, and the scarcity of reliably annotated data. Recent self-supervised AVER approaches have introduced strong multimodal representations, yet they predominantly rely on modality-specific encoders and coarse content-level alignment, limiting fine-grained emotional semantic modeling. To address these issues, we propose VAEmo, an efficient two-stage framework for emotion-centric joint VA representation learning with external knowledge injection. In Stage~1, a unified and lightweight representation network is pre-trained on large-scale speaker-centric VA corpora via masked reconstruction and contrastive objectives, mitigating the modality gap and learning expressive, complementary representations without emotion labels. In Stage~2, multimodal large language models automatically generate detailed affective descriptions according to our well-designed chain-of-thought prompting for only a small subset of VA samples; these rich textual semantics are then injected by aligning their corresponding embeddings with VA representations through dual-path contrastive learning, further bridging the emotion gap. Extensive experiments on multiple downstream AVER benchmarks show that VAEmo achieves state-of-the-art performance with a compact design, highlighting the benefit of unified cross-modal encoding and emotion-aware semantic guidance for efficient, generalizable VA emotion representations.

Authors:Zhichuan Wang, Yang Zhou, Jinhai Xiang, Yulong Wang, Xinwei He
Title: TeDA: Boosting Vision-Lanuage Models for Zero-Shot 3D Object Retrieval via Testing-time Distribution Alignment
Abstract:
Learning discriminative 3D representations that generalize well to unknown testing categories is an emerging requirement for many real-world 3D applications. Existing well-established methods often struggle to attain this goal due to insufficient 3D training data from broader concepts. Meanwhile, pre-trained large vision-language models (e.g., CLIP) have shown remarkable zero-shot generalization capabilities. Yet, they are limited in extracting suitable 3D representations due to substantial gaps between their 2D training and 3D testing distributions. To address these challenges, we propose Testing-time Distribution Alignment (TeDA), a novel framework that adapts a pretrained 2D vision-language model CLIP for unknown 3D object retrieval at test time. To our knowledge, it is the first work that studies the test-time adaptation of a vision-language model for 3D feature learning. TeDA projects 3D objects into multi-view images, extracts features using CLIP, and refines 3D query embeddings with an iterative optimization strategy by confident query-target sample pairs in a self-boosting manner. Additionally, TeDA integrates textual descriptions generated by a multimodal language model (InternVL) to enhance 3D object understanding, leveraging CLIP's aligned feature space to fuse visual and textual cues. Extensive experiments on four open-set 3D object retrieval benchmarks demonstrate that TeDA greatly outperforms state-of-the-art methods, even those requiring extensive training. We also experimented with depth maps on Objaverse-LVIS, further validating its effectiveness. Code is available at https://github.com/wangzhichuan123/TeDA.

Authors:Michael F. Herbst, Bonan Sun
Title: Efficient Krylov methods for linear response in plane-wave electronic structure calculations
Abstract:
We propose a novel algorithm based on inexact GMRES methods for linear response calculations in density functional theory. Such calculations require iteratively solving a nested linear problem $\mathcal{E} δρ= b$ to obtain the variation of the electron density $δρ$. Notably each application of the dielectric operator $\mathcal{E}$ in turn requires the iterative solution of multiple linear systems, the Sternheimer equations. We develop computable bounds to estimate the accuracy of the density variation given the tolerances to which the Sternheimer equations have been solved. Based on this result we suggest reliable strategies for adaptively selecting the convergence tolerances of the Sternheimer equations, such that each applications of $\mathcal{E}$ is no more accurate than needed. Experiments on challenging materials systems of practical relevance demonstrate our strategies to achieve superlinear convergence as well as a reduction of computational time by about 40% while preserving the accuracy of the returned response solution. Our algorithm seamlessly combines with standard preconditioning approaches known from the context of self-consistent field problems making it a promising framework for efficient response solvers based on Krylov subspace techniques.

Authors:James Read, Ming-Yen Lee, Wei-Hsing Huang, Yuan-Chun Luo, Anni Lu, Shimeng Yu
Title: NeuroSim V1.5: Improved Software Backbone for Benchmarking Compute-in-Memory Accelerators with Device and Circuit-level Non-idealities
Abstract:
The exponential growth of artificial intelligence (AI) applications has exposed the inefficiency of conventional von Neumann architectures, where frequent data transfers between compute units and memory create significant energy and latency bottlenecks. Analog Computing-in-Memory (ACIM) addresses this challenge by performing multiply-accumulate (MAC) operations directly in the memory arrays, substantially reducing data movement. However, designing robust ACIM accelerators requires accurate modeling of device- and circuit-level non-idealities. In this work, we present NeuroSim V1.5, introducing several key advances: (1) seamless integration with TensorRT's post-training quantization flow enabling support for more neural networks including transformers, (2) a flexible noise injection methodology built on pre-characterized statistical models, making it straightforward to incorporate data from SPICE simulations or silicon measurements, (3) expanded device support including emerging non-volatile capacitive memories, and (4) up to 6.5x faster runtime than NeuroSim V1.4 through optimized behavioral simulation. The combination of these capabilities uniquely enables systematic design space exploration across both accuracy and hardware efficiency metrics. Through multiple case studies, we demonstrate optimization of critical design parameters while maintaining network accuracy. By bridging high-fidelity noise modeling with efficient simulation, NeuroSim V1.5 advances the design and validation of next-generation ACIM accelerators. All NeuroSim versions are available open-source at https://github.com/neurosim/NeuroSim.

Authors:Madhukar Reddy Vongala, Saurabh Srivastava, Jana Košecká
Title: Compositional Image-Text Matching and Retrieval by Grounding Entities
Abstract:
Vision-language pretraining on large datasets of images-text pairs is one of the main building blocks of current Vision-Language Models. While with additional training, these models excel in various downstream tasks, including visual question answering, image captioning, and visual commonsense reasoning. However, a notable weakness of pretrained models like CLIP, is their inability to perform entity grounding and compositional image and text matching~\cite{Jiang2024ComCLIP, yang2023amc, Rajabi2023GroundedVSR, learninglocalizeCVPR24}. In this work we propose a novel learning-free zero-shot augmentation of CLIP embeddings that has favorable compositional properties. We compute separate embeddings of sub-images of object entities and relations that are localized by the state of the art open vocabulary detectors and dynamically adjust the baseline global image embedding. % The final embedding is obtained by computing a weighted combination of the sub-image embeddings. The resulting embedding is then utilized for similarity computation with text embedding, resulting in a average 1.5\% improvement in image-text matching accuracy on the Visual Genome and SVO Probes datasets~\cite{krishna2017visualgenome, svo}. Notably, the enhanced embeddings demonstrate superior retrieval performance, thus achieving significant gains on the Flickr30K and MS-COCO retrieval benchmarks~\cite{flickr30ke, mscoco}, improving the state-of-the-art Recall@1 by 12\% and 0.4\%, respectively. Our code is available at https://github.com/madhukarreddyvongala/GroundingCLIP.

Authors:Henry Ndubuaku, Mouad Talhi
Title: Parameter-Efficient Transformer Embeddings
Abstract:
Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings.

Authors:Xingyu Zheng, Yuye Li, Haoran Chu, Yue Feng, Xudong Ma, Jie Luo, Jinyang Guo, Haotong Qin, Michele Magno, Xianglong Liu
Title: An Empirical Study of Qwen3 Quantization
Abstract:
The Qwen series has emerged as a leading family of open-source Large Language Models (LLMs), demonstrating remarkable capabilities in natural language understanding tasks. With the recent release of Qwen3, which exhibits superior performance across diverse benchmarks, there is growing interest in deploying these models efficiently in resource-constrained environments. Low-bit quantization presents a promising solution, yet its impact on Qwen3's performance remains underexplored. This study conducts a systematic evaluation of Qwen3's robustness under various quantization settings, aiming to uncover both opportunities and challenges in compressing this state-of-the-art model. We rigorously assess 5 existing classic post-training quantization techniques applied to Qwen3, spanning bit-widths from 1 to 8 bits, and evaluate their effectiveness across multiple datasets. Our findings reveal that while Qwen3 maintains competitive performance at moderate bit-widths, it experiences notable degradation in linguistic tasks under ultra-low precision, underscoring the persistent hurdles in LLM compression. These results emphasize the need for further research to mitigate performance loss in extreme quantization scenarios. We anticipate that this empirical analysis will provide actionable insights for advancing quantization methods tailored to Qwen3 and future LLMs, ultimately enhancing their practicality without compromising accuracy. Our project is released on https://github.com/Efficient-ML/Qwen3-Quantization and https://huggingface.co/collections/Efficient-ML/qwen3-quantization-68164450decb1c868788cb2b.

Authors:Yamini Sri Krubha, Aryana Hou, Braden Vester, Web Walker, Xin Wang, Li Lin, Shu Hu
Title: Robust AI-Generated Face Detection with Imbalanced Data
Abstract:
Deepfakes, created using advanced AI techniques such as Variational Autoencoder and Generative Adversarial Networks, have evolved from research and entertainment applications into tools for malicious activities, posing significant threats to digital trust. Current deepfake detection techniques have evolved from CNN-based methods focused on local artifacts to more advanced approaches using vision transformers and multimodal models like CLIP, which capture global anomalies and improve cross-domain generalization. Despite recent progress, state-of-the-art deepfake detectors still face major challenges in handling distribution shifts from emerging generative models and addressing severe class imbalance between authentic and fake samples in deepfake datasets, which limits their robustness and detection accuracy. To address these challenges, we propose a framework that combines dynamic loss reweighting and ranking-based optimization, which achieves superior generalization and performance under imbalanced dataset conditions. The code is available at https://github.com/Purdue-M2/SP_CUP.

Authors:Tao Zhu, Qi Yu, Xinru Dong, Shiyu Li, Yue Liu, Jinlong Jiang, Lei Shu
Title: ProDisc-VAD: An Efficient System for Weakly-Supervised Anomaly Detection in Video Surveillance Applications
Abstract:
Weakly-supervised video anomaly detection (WS-VAD) using Multiple Instance Learning (MIL) suffers from label ambiguity, hindering discriminative feature learning. We propose ProDisc-VAD, an efficient framework tackling this via two synergistic components. The Prototype Interaction Layer (PIL) provides controlled normality modeling using a small set of learnable prototypes, establishing a robust baseline without being overwhelmed by dominant normal data. The Pseudo-Instance Discriminative Enhancement (PIDE) loss boosts separability by applying targeted contrastive learning exclusively to the most reliable extreme-scoring instances (highest/lowest scores). ProDisc-VAD achieves strong AUCs (97.98% ShanghaiTech, 87.12% UCF-Crime) using only 0.4M parameters, over 800x fewer than recent ViT-based methods like VadCLIP. Code is available at https://github.com/modadundun/ProDisc-VAD.

Authors:Minzheng Wang, Yongbin Li, Haobo Wang, Xinghua Zhang, Nan Xu, Bingli Wu, Fei Huang, Haiyang Yu, Wenji Mao
Title: Adaptive Thinking via Mode Policy Optimization for Social Language Agents
Abstract:
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current studies. Existing methods either lack this kind of reasoning capability or enforce Long Chain-of-Thought reasoning uniformly across all scenarios, resulting in excessive token usage and inflexible social simulation. To address this, we propose an $\textbf{A}$daptive $\textbf{M}$ode $\textbf{L}$earning ($\textbf{AML}$) framework in this paper, aiming to improve the adaptive thinking ability of language agents in dynamic social interactions. To this end, we first identify hierarchical thinking modes ranging from intuitive response to deep deliberation based on the cognitive control theory. We then develop the $\textbf{A}$daptive $\textbf{M}$ode $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{AMPO}$) algorithm to optimize the context-aware mode switching and reasoning. Our framework advances existing research in three key aspects: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence benchmarks verify that AML achieves 15.6% higher task performance than GPT-4o. Notably, our AMPO outperforms GRPO by 7.0% with 32.8% shorter reasoning chains, demonstrating the advantage of adaptive thinking mode selection and optimization mechanism in AMPO over GRPO's fixed-depth solution.

Authors:Oliver Savolainen, Dur e Najaf Amjad, Roxana Petcu
Title: Interpreting Multilingual and Document-Length Sensitive Relevance Computations in Neural Retrieval Models through Axiomatic Causal Interventions
Abstract:
This reproducibility study analyzes and extends the paper "Axiomatic Causal Interventions for Reverse Engineering Relevance Computation in Neural Retrieval Models," which investigates how neural retrieval models encode task-relevant properties such as term frequency. We reproduce key experiments from the original paper, confirming that information on query terms is captured in the model encoding. We extend this work by applying activation patching to Spanish and Chinese datasets and by exploring whether document-length information is encoded in the model as well. Our results confirm that the designed activation patching method can isolate the behavior to specific components and tokens in neural retrieval models. Moreover, our findings indicate that the location of term frequency generalizes across languages and that in later layers, the information for sequence-level tasks is represented in the CLS token. The results highlight the need for further research into interpretability in information retrieval and reproducibility in machine learning research. Our code is available at https://github.com/OliverSavolainen/axiomatic-ir-reproduce.

Authors:Muyao Zhong, Yushi Lin, Peng Yang
Title: Representation Learning of Limit Order Book: A Comprehensive Study and Benchmarking
Abstract:
The Limit Order Book (LOB), the mostly fundamental data of the financial market, provides a fine-grained view of market dynamics while poses significant challenges in dealing with the esteemed deep models due to its strong autocorrelation, cross-feature constrains, and feature scale disparity. Existing approaches often tightly couple representation learning with specific downstream tasks in an end-to-end manner, failed to analyze the learned representations individually and explicitly, limiting their reusability and generalization. This paper conducts the first systematic comparative study of LOB representation learning, aiming to identify the effective way of extracting transferable, compact features that capture essential LOB properties. We introduce LOBench, a standardized benchmark with real China A-share market data, offering curated datasets, unified preprocessing, consistent evaluation metrics, and strong baselines. Extensive experiments validate the sufficiency and necessity of LOB representations for various downstream tasks and highlight their advantages over both the traditional task-specific end-to-end models and the advanced representation learning models for general time series. Our work establishes a reproducible framework and provides clear guidelines for future research. Datasets and code will be publicly available at https://github.com/financial-simulation-lab/LOBench.

Authors:Xiaorui Zhao, Xinyue Zhou, Peibei Cao, Junyu Lou, Shuhang Gu
Title: HiLLIE: Human-in-the-Loop Training for Low-Light Image Enhancement
Abstract:
Developing effective approaches to generate enhanced results that align well with human visual preferences for high-quality well-lit images remains a challenge in low-light image enhancement (LLIE). In this paper, we propose a human-in-the-loop LLIE training framework that improves the visual quality of unsupervised LLIE model outputs through iterative training stages, named HiLLIE. At each stage, we introduce human guidance into the training process through efficient visual quality annotations of enhanced outputs. Subsequently, we employ a tailored image quality assessment (IQA) model to learn human visual preferences encoded in the acquired labels, which is then utilized to guide the training process of an enhancement model. With only a small amount of pairwise ranking annotations required at each stage, our approach continually improves the IQA model's capability to simulate human visual assessment of enhanced outputs, thus leading to visually appealing LLIE results. Extensive experiments demonstrate that our approach significantly improves unsupervised LLIE model performance in terms of both quantitative and qualitative performance. The code and collected ranking dataset will be available at https://github.com/LabShuHangGU/HiLLIE.

Authors:Zhong Guan, Likang Wu, Hongke Zhao, Ming He, Jianpin Fan
Title: Attention Mechanisms Perspective: Exploring LLM Processing of Graph-Structured Data
Abstract:
Attention mechanisms are critical to the success of large language models (LLMs), driving significant advancements in multiple fields. However, for graph-structured data, which requires emphasis on topological connections, they fall short compared to message-passing mechanisms on fixed links, such as those employed by Graph Neural Networks (GNNs). This raises a question: ``Does attention fail for graphs in natural language settings?'' Motivated by these observations, we embarked on an empirical study from the perspective of attention mechanisms to explore how LLMs process graph-structured data. The goal is to gain deeper insights into the attention behavior of LLMs over graph structures. We uncovered unique phenomena regarding how LLMs apply attention to graph-structured data and analyzed these findings to improve the modeling of such data by LLMs. The primary findings of our research are: 1) While LLMs can recognize graph data and capture text-node interactions, they struggle to model inter-node relationships within graph structures due to inherent architectural constraints. 2) The attention distribution of LLMs across graph nodes does not align with ideal structural patterns, indicating a failure to adapt to graph topology nuances. 3) Neither fully connected attention nor fixed connectivity is optimal; each has specific limitations in its application scenarios. Instead, intermediate-state attention windows improve LLM training performance and seamlessly transition to fully connected windows during inference. Source code: \href{https://github.com/millioniron/LLM_exploration}{LLM4Exploration}

Authors:Xiao Zhou, Zhongxiang Zhao, Hanze Guo
Title: Tricolore: Multi-Behavior User Profiling for Enhanced Candidate Generation in Recommender Systems
Abstract:
Online platforms aggregate extensive user feedback across diverse behaviors, providing a rich source for enhancing user engagement. Traditional recommender systems, however, typically optimize for a single target behavior and represent user preferences with a single vector, limiting their ability to handle multiple important behaviors or optimization objectives. This conventional approach also struggles to capture the full spectrum of user interests, resulting in a narrow item pool during candidate generation. To address these limitations, we present Tricolore, a versatile multi-vector learning framework that uncovers connections between different behavior types for more robust candidate generation. Tricolore's adaptive multi-task structure is also customizable to specific platform needs. To manage the variability in sparsity across behavior types, we incorporate a behavior-wise multi-view fusion module that dynamically enhances learning. Moreover, a popularity-balanced strategy ensures the recommendation list balances accuracy with item popularity, fostering diversity and improving overall performance. Extensive experiments on public datasets demonstrate Tricolore's effectiveness across various recommendation scenarios, from short video platforms to e-commerce. By leveraging a shared base embedding strategy, Tricolore also significantly improves the performance for cold-start users. The source code is publicly available at: https://github.com/abnering/Tricolore.

Authors:Zeyu Zhang, Quanyu Dai, Xu Chen, Rui Li, Zhongyang Li, Zhenhua Dong
Title: MemEngine: A Unified and Modular Library for Developing Advanced Memory of LLM-based Agents
Abstract:
Recently, large language model based (LLM-based) agents have been widely applied across various fields. As a critical part, their memory capabilities have captured significant interest from both industrial and academic communities. Despite the proposal of many advanced memory models in recent research, however, there remains a lack of unified implementations under a general framework. To address this issue, we develop a unified and modular library for developing advanced memory models of LLM-based agents, called MemEngine. Based on our framework, we implement abundant memory models from recent research works. Additionally, our library facilitates convenient and extensible memory development, and offers user-friendly and pluggable memory usage. For benefiting our community, we have made our project publicly available at https://github.com/nuster1128/MemEngine.

Authors:Joy Lim Jia Yin, Daniel Zhang-Li, Jifan Yu, Haoxuan Li, Shangqing Tu, Yuanchun Wang, Zhiyuan Liu, Huiqin Liu, Lei Hou, Juanzi Li, Bin Xu
Title: LecEval: An Automated Metric for Multimodal Knowledge Acquisition in Multimedia Learning
Abstract:
Evaluating the quality of slide-based multimedia instruction is challenging. Existing methods like manual assessment, reference-based metrics, and large language model evaluators face limitations in scalability, context capture, or bias. In this paper, we introduce LecEval, an automated metric grounded in Mayer's Cognitive Theory of Multimedia Learning, to evaluate multimodal knowledge acquisition in slide-based learning. LecEval assesses effectiveness using four rubrics: Content Relevance (CR), Expressive Clarity (EC), Logical Structure (LS), and Audience Engagement (AE). We curate a large-scale dataset of over 2,000 slides from more than 50 online course videos, annotated with fine-grained human ratings across these rubrics. A model trained on this dataset demonstrates superior accuracy and adaptability compared to existing metrics, bridging the gap between automated and human assessments. We release our dataset and toolkits at https://github.com/JoylimJY/LecEval.

Authors:Volodymyr Havrylov, Haiwen Huang, Dan Zhang, Andreas Geiger
Title: Benchmarking Feature Upsampling Methods for Vision Foundation Models using Interactive Segmentation
Abstract:
Vision Foundation Models (VFMs) are large-scale, pre-trained models that serve as general-purpose backbones for various computer vision tasks. As VFMs' popularity grows, there is an increasing interest in understanding their effectiveness for dense prediction tasks. However, VFMs typically produce low-resolution features, limiting their direct applicability in this context. One way to tackle this limitation is by employing a task-agnostic feature upsampling module that refines VFM features resolution. To assess the effectiveness of this approach, we investigate Interactive Segmentation (IS) as a novel benchmark for evaluating feature upsampling methods on VFMs. Due to its inherent multimodal input, consisting of an image and a set of user-defined clicks, as well as its dense mask output, IS creates a challenging environment that demands comprehensive visual scene understanding. Our benchmarking experiments show that selecting appropriate upsampling strategies significantly improves VFM features quality. The code is released at https://github.com/havrylovv/iSegProbe

Authors:Yi Han
Title: Lightweight Defense Against Adversarial Attacks in Time Series Classification
Abstract:
As time series classification (TSC) gains prominence, ensuring robust TSC models against adversarial attacks is crucial. While adversarial defense is well-studied in Computer Vision (CV), the TSC field has primarily relied on adversarial training (AT), which is computationally expensive. In this paper, five data augmentation-based defense methods tailored for time series are developed, with the most computationally intensive method among them increasing the computational resources by only 14.07% compared to the original TSC model. Moreover, the deployment process for these methods is straightforward. By leveraging these advantages of our methods, we create two combined methods. One of these methods is an ensemble of all the proposed techniques, which not only provides better defense performance than PGD-based AT but also enhances the generalization ability of TSC models. Moreover, the computational resources required for our ensemble are less than one-third of those required for PGD-based AT. These methods advance robust TSC in data mining. Furthermore, as foundation models are increasingly explored for time series feature learning, our work provides insights into integrating data augmentation-based adversarial defense with large-scale pre-trained models in future research.

Authors:Shuhang Xun, Sicheng Tao, Jungang Li, Yibo Shi, Zhixin Lin, Zhanhui Zhu, Yibo Yan, Hanqian Li, Linghao Zhang, Shikang Wang, Yixin Liu, Hanbo Zhang, Ying Ma, Xuming Hu
Title: RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video
Abstract:
Multimodal Large Language Models (MLLMs) increasingly excel at perception, understanding, and reasoning. However, current benchmarks inadequately evaluate their ability to perform these tasks continuously in dynamic, real-world environments. To bridge this gap, we introduce RTV-Bench, a fine-grained benchmark for MLLM real-time video analysis. RTV-Bench uses three key principles: (1) Multi-Timestamp Question Answering (MTQA), where answers evolve with scene changes; (2) Hierarchical Question Structure, combining basic and advanced queries; and (3) Multi-dimensional Evaluation, assessing the ability of continuous perception, understanding, and reasoning. RTV-Bench contains 552 diverse videos (167.2 hours) and 4,631 high-quality QA pairs. We evaluated leading MLLMs, including proprietary (GPT-4o, Gemini 2.0), open-source offline (Qwen2.5-VL, VideoLLaMA3), and open-source real-time (VITA-1.5, InternLM-XComposer2.5-OmniLive) models. Experiment results show open-source real-time models largely outperform offline ones but still trail top proprietary models. Our analysis also reveals that larger model size or higher frame sampling rates do not significantly boost RTV-Bench performance, sometimes causing slight decreases. This underscores the need for better model architectures optimized for video stream processing and long sequences to advance real-time video analysis with MLLMs. Our benchmark toolkit is available at: https://github.com/LJungang/RTV-Bench.

Authors:Branko Brkljač, Vladimir Kalušev, Branislav Popović, Milan Sečujski
Title: Transforming faces into video stories -- VideoFace2.0
Abstract:
Face detection and face recognition have been in the focus of vision community since the very beginnings. Inspired by the success of the original Videoface digitizer, a pioneering device that allowed users to capture video signals from any source, we have designed an advanced video analytics tool to efficiently create structured video stories, i.e. identity-based information catalogs. VideoFace2.0 is the name of the developed system for spatial and temporal localization of each unique face in the input video, i.e. face re-identification (ReID), which also allows their cataloging, characterization and creation of structured video outputs for later downstream tasks. Developed near real-time solution is primarily designed to be utilized in application scenarios involving TV production, media analysis, and as an efficient tool for creating large video datasets necessary for training machine learning (ML) models in challenging vision tasks such as lip reading and multimodal speech recognition. Conducted experiments confirm applicability of the proposed face ReID algorithm that is combining the concepts of face detection, face recognition and passive tracking-by-detection in order to achieve robust and efficient face ReID. The system is envisioned as a compact and modular extensions of the existing video production equipment. Presented results are based on test implementation that achieves between 18-25 fps on consumer type notebook. Ablation experiments also confirmed that the proposed algorithm brings relative gain in the reduction of number of false identities in the range of 73%-93%. We hope that the presented work and shared code implementation will stimulate further interest in development of similar, application specific video analysis tools, and lower the entry barrier for production of high-quality multi-modal datasets in the future.

Authors:Rui Lv, Zaixi Zhang, Kai Zhang, Qi Liu, Weibo Gao, Jiawei Liu, Jiaxia Yan, Linan Yue, Fangzhou Yao
Title: GraphPrompter: Multi-stage Adaptive Prompt Optimization for Graph In-Context Learning
Abstract:
Graph In-Context Learning, with the ability to adapt pre-trained graph models to novel and diverse downstream graphs without updating any parameters, has gained much attention in the community. The key to graph in-context learning is to perform downstream graphs conditioned on chosen prompt examples. Existing methods randomly select subgraphs or edges as prompts, leading to noisy graph prompts and inferior model performance. Additionally, due to the gap between pre-training and testing graphs, when the number of classes in the testing graphs is much greater than that in the training, the in-context learning ability will also significantly deteriorate. To tackle the aforementioned challenges, we develop a multi-stage adaptive prompt optimization method GraphPrompter, which optimizes the entire process of generating, selecting, and using graph prompts for better in-context learning capabilities. Firstly, Prompt Generator introduces a reconstruction layer to highlight the most informative edges and reduce irrelevant noise for graph prompt construction. Furthermore, in the selection stage, Prompt Selector employs the $k$-nearest neighbors algorithm and pre-trained selection layers to dynamically choose appropriate samples and minimize the influence of irrelevant prompts. Finally, we leverage a Prompt Augmenter with a cache replacement strategy to enhance the generalization capability of the pre-trained model on new datasets. Extensive experiments show that GraphPrompter effectively enhances the in-context learning ability of graph models. On average across all the settings, our approach surpasses the state-of-the-art baselines by over 8%. Our code is released at https://github.com/karin0018/GraphPrompter.

Authors:Yancheng Chen, Wenguo Yang, Zhipeng Jiang
Title: Wide & Deep Learning for Node Classification
Abstract:
Wide & Deep, a simple yet effective learning architecture for recommendation systems developed by Google, has had a significant impact in both academia and industry due to its combination of the memorization ability of generalized linear models and the generalization ability of deep models. Graph convolutional networks (GCNs) remain dominant in node classification tasks; however, recent studies have highlighted issues such as heterophily and expressiveness, which focus on graph structure while seemingly neglecting the potential role of node features. In this paper, we propose a flexible framework GCNIII, which leverages the Wide & Deep architecture and incorporates three techniques: Intersect memory, Initial residual and Identity mapping. We provide comprehensive empirical evidence showing that GCNIII can more effectively balance the trade-off between over-fitting and over-generalization on various semi- and full- supervised tasks. Additionally, we explore the use of large language models (LLMs) for node feature engineering to enhance the performance of GCNIII in cross-domain node classification tasks. Our implementation is available at https://github.com/CYCUCAS/GCNIII.

Authors:Zeyuan Ma, Zhiguang Cao, Zhou Jiang, Hongshu Guo, Yue-Jiao Gong
Title: Meta-Black-Box-Optimization through Offline Q-function Learning
Abstract:
Recent progress in Meta-Black-Box-Optimization (MetaBBO) has demonstrated that using RL to learn a meta-level policy for dynamic algorithm configuration (DAC) over an optimization task distribution could significantly enhance the performance of the low-level BBO algorithm. However, the online learning paradigms in existing works makes the efficiency of MetaBBO problematic. To address this, we propose an offline learning-based MetaBBO framework in this paper, termed Q-Mamba, to attain both effectiveness and efficiency in MetaBBO. Specifically, we first transform DAC task into long-sequence decision process. This allows us further introduce an effective Q-function decomposition mechanism to reduce the learning difficulty within the intricate algorithm configuration space. Under this setting, we propose three novel designs to meta-learn DAC policy from offline data: we first propose a novel collection strategy for constructing offline DAC experiences dataset with balanced exploration and exploitation. We then establish a decomposition-based Q-loss that incorporates conservative Q-learning to promote stable offline learning from the offline dataset. To further improve the offline learning efficiency, we equip our work with a Mamba architecture which helps long-sequence learning effectiveness and efficiency by selective state model and hardware-aware parallel scan respectively. Through extensive benchmarking, we observe that Q-Mamba achieves competitive or even superior performance to prior online/offline baselines, while significantly improving the training efficiency of existing online baselines. We provide sourcecodes of Q-Mamba at https://github.com/MetaEvo/Q-Mamba.

Authors:Zhenxing Mi, Ping Yin, Xue Xiao, Dan Xu
Title: Learning Heterogeneous Mixture of Scene Experts for Large-scale Neural Radiance Fields
Abstract:
Recent NeRF methods on large-scale scenes have underlined the importance of scene decomposition for scalable NeRFs. Although achieving reasonable scalability, there are several critical problems remaining unexplored, i.e., learnable decomposition, modeling scene heterogeneity, and modeling efficiency. In this paper, we introduce Switch-NeRF++, a Heterogeneous Mixture of Hash Experts (HMoHE) network that addresses these challenges within a unified framework. It is a highly scalable NeRF that learns heterogeneous decomposition and heterogeneous NeRFs efficiently for large-scale scenes in an end-to-end manner. In our framework, a gating network learns to decompose scenes and allocates 3D points to specialized NeRF experts. This gating network is co-optimized with the experts by our proposed Sparsely Gated Mixture of Experts (MoE) NeRF framework. We incorporate a hash-based gating network and distinct heterogeneous hash experts. The hash-based gating efficiently learns the decomposition of the large-scale scene. The distinct heterogeneous hash experts consist of hash grids of different resolution ranges, enabling effective learning of the heterogeneous representation of different scene parts. These design choices make our framework an end-to-end and highly scalable NeRF solution for real-world large-scale scene modeling to achieve both quality and efficiency. We evaluate our accuracy and scalability on existing large-scale NeRF datasets and a new dataset with very large-scale scenes ($>6.5km^2$) from UrbanBIS. Extensive experiments demonstrate that our approach can be easily scaled to various large-scale scenes and achieve state-of-the-art scene rendering accuracy. Furthermore, our method exhibits significant efficiency, with an 8x acceleration in training and a 16x acceleration in rendering compared to Switch-NeRF. Codes will be released at https://github.com/MiZhenxing/Switch-NeRF.

Authors:Jiayi Cheng, Can Gao, Jie Zhou, Jiajun Wen, Tao Dai, Jinbao Wang
Title: MC3D-AD: A Unified Geometry-aware Reconstruction Model for Multi-category 3D Anomaly Detection
Abstract:
3D Anomaly Detection (AD) is a promising means of controlling the quality of manufactured products. However, existing methods typically require carefully training a task-specific model for each category independently, leading to high cost, low efficiency, and weak generalization. Therefore, this paper presents a novel unified model for Multi-Category 3D Anomaly Detection (MC3D-AD) that aims to utilize both local and global geometry-aware information to reconstruct normal representations of all categories. First, to learn robust and generalized features of different categories, we propose an adaptive geometry-aware masked attention module that extracts geometry variation information to guide mask attention. Then, we introduce a local geometry-aware encoder reinforced by the improved mask attention to encode group-level feature tokens. Finally, we design a global query decoder that utilizes point cloud position embeddings to improve the decoding process and reconstruction ability. This leads to local and global geometry-aware reconstructed feature tokens for the AD task. MC3D-AD is evaluated on two publicly available Real3D-AD and Anomaly-ShapeNet datasets, and exhibits significant superiority over current state-of-the-art single-category methods, achieving 3.1\% and 9.3\% improvement in object-level AUROC over Real3D-AD and Anomaly-ShapeNet, respectively. The code is available at https://github.com/iCAN-SZU/MC3D-AD.

Authors:Leyi Yan, Linda Wang, Sihang Liu, Yi Ding
Title: EnsembleCI: Ensemble Learning for Carbon Intensity Forecasting
Abstract:
Carbon intensity (CI) measures the average carbon emissions generated per unit of electricity, making it a crucial metric for quantifying and managing the environmental impact. Accurate CI predictions are vital for minimizing carbon footprints, yet the state-of-the-art method (CarbonCast) falls short due to its inability to address regional variability and lack of adaptability. To address these limitations, we introduce EnsembleCI, an adaptive, end-to-end ensemble learning-based approach for CI forecasting. EnsembleCI combines weighted predictions from multiple sublearners, offering enhanced flexibility and regional adaptability. In evaluations across 11 regional grids, EnsembleCI consistently surpasses CarbonCast, achieving the lowest mean absolute percentage error (MAPE) in almost all grids and improving prediction accuracy by an average of 19.58%. While performance still varies across grids due to inherent regional diversity, EnsembleCI reduces variability and exhibits greater robustness in long-term forecasting compared to CarbonCast and identifies region-specific key features, underscoring its interpretability and practical relevance. These findings position EnsembleCI as a more accurate and reliable solution for CI forecasting. EnsembleCI source code and data used in this paper are available at https://github.com/emmayly/EnsembleCI.

Authors:Qi Yang, Le Yang, Geert Van Der Auwera, Zhu Li
Title: HybridGS: High-Efficiency Gaussian Splatting Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder
Abstract:
Most existing 3D Gaussian Splatting (3DGS) compression schemes focus on producing compact 3DGS representation via implicit data embedding. They have long coding times and highly customized data format, making it difficult for widespread deployment. This paper presents a new 3DGS compression framework called HybridGS, which takes advantage of both compact generation and standardized point cloud data encoding. HybridGS first generates compact and explicit 3DGS data. A dual-channel sparse representation is introduced to supervise the primitive position and feature bit depth. It then utilizes a canonical point cloud encoder to perform further data compression and form standard output bitstreams. A simple and effective rate control scheme is proposed to pivot the interpretable data compression scheme. At the current stage, HybridGS does not include any modules aimed at improving 3DGS quality during generation. But experiment results show that it still provides comparable reconstruction performance against state-of-the-art methods, with evidently higher encoding and decoding speed. The code is publicly available at https://github.com/Qi-Yangsjtu/HybridGS.

Authors:Xingyu Miao, Haoran Duan, Yang Long, Jungong Han
Title: Rethinking Score Distilling Sampling for 3D Editing and Generation
Abstract:
Score Distillation Sampling (SDS) has emerged as a prominent method for text-to-3D generation by leveraging the strengths of 2D diffusion models. However, SDS is limited to generation tasks and lacks the capability to edit existing 3D assets. Conversely, variants of SDS that introduce editing capabilities often can not generate new 3D assets effectively. In this work, we observe that the processes of generation and editing within SDS and its variants have unified underlying gradient terms. Building on this insight, we propose Unified Distillation Sampling (UDS), a method that seamlessly integrates both the generation and editing of 3D assets. Essentially, UDS refines the gradient terms used in vanilla SDS methods, unifying them to support both tasks. Extensive experiments demonstrate that UDS not only outperforms baseline methods in generating 3D assets with richer details but also excels in editing tasks, thereby bridging the gap between 3D generation and editing. The code is available on: https://github.com/xingy038/UDS.

Authors:Siddharth Kothari, Srinivasan Murali, Sankalp Kothari, Ujjwal Verma, Jaya Sreevalsan-Nair
Title: Adversarial Robustness of Deep Learning Models for Inland Water Body Segmentation from SAR Images
Abstract:
Inland water body segmentation from Synthetic Aperture Radar (SAR) images is an important task needed for several applications, such as flood mapping. While SAR sensors capture data in all-weather conditions as high-resolution images, differentiating water and water-like surfaces from SAR images is not straightforward. Inland water bodies, such as large river basins, have complex geometry, which adds to the challenge of segmentation. U-Net is a widely used deep learning model for land-water segmentation of SAR images. In practice, manual annotation is often used to generate the corresponding water masks as ground truth. Manual annotation of the images is prone to label noise owing to data poisoning attacks, especially due to complex geometry. In this work, we simulate manual errors in the form of adversarial attacks on the U-Net model and study the robustness of the model to human errors in annotation. Our results indicate that U-Net can tolerate a certain level of corruption before its performance drops significantly. This finding highlights the crucial role that the quality of manual annotations plays in determining the effectiveness of the segmentation model. The code and the new dataset, along with adversarial examples for robust training, are publicly available. (GitHub link - https://github.com/GVCL/IWSeg-SAR-Poison.git)

Authors:Jiakun Yan, Marc Snir
Title: LCI: a Lightweight Communication Interface for Efficient Asynchronous Multithreaded Communication
Abstract:
The evolution of architectures, programming models, and algorithms is driving communication towards greater asynchrony and concurrency, usually in multithreaded environments. We present LCI, a communication library designed for efficient asynchronous multithreaded communication. LCI provides a concise interface that supports common point-to-point primitives and diverse completion mechanisms, along with flexible controls for incrementally fine-tuning communication resources and runtime behavior. It features a threading-efficient runtime built on atomic data structures, fine-grained non-blocking locks, and low-level network insights. We evaluate LCI on both Infiniband and Slingshot-11 clusters with microbenchmarks and two application-level benchmarks. Experimental results show that LCI significantly outperforms existing communication libraries in various multithreaded scenarios, achieving performance that exceeds the traditional multi-process execution mode and unlocking new possibilities for emerging programming models and applications. LCI is open-source and available at https://github.com/uiuc-hpc/lci.

Authors:Anthony Nguyen, Wenjun Lin
Title: Intra-Layer Recurrence in Transformers for Language Modeling
Abstract:
Transformer models have established new benchmarks in natural language processing; however, their increasing depth results in substantial growth in parameter counts. While existing recurrent transformer methods address this issue by reprocessing layers multiple times, they often apply recurrence indiscriminately across entire blocks of layers. In this work, we investigate Intra-Layer Recurrence (ILR), a more targeted approach that applies recurrence selectively to individual layers within a single forward pass. Our experiments show that allocating more iterations to earlier layers yields optimal results. These findings suggest that ILR offers a promising direction for optimizing recurrent structures in transformer architectures.

Authors:Janak Kapuriya, Manit Kaushik, Debasis Ganguly, Sumit Bhatia
Title: Exploring the Role of Diversity in Example Selection for In-Context Learning
Abstract:
In-Context Learning (ICL) has gained prominence due to its ability to perform tasks without requiring extensive training data and its robustness to noisy labels. A typical ICL workflow involves selecting localized examples relevant to a given input using sparse or dense embedding-based similarity functions. However, relying solely on similarity-based selection may introduce topical biases in the retrieved contexts, potentially leading to suboptimal downstream performance. We posit that reranking the retrieved context to enhance topical diversity can improve downstream task performance. To achieve this, we leverage maximum marginal relevance (MMR) which balances topical similarity with inter-example diversity. Our experimental results demonstrate that diversifying the selected examples leads to consistent improvements in downstream performance across various context sizes and similarity functions. The implementation of our approach is made available at https://github.com/janak11111/Diverse-ICL.

Authors:Jiesong Bai, Yuhao Yin, Yihang Dong, Xiaofeng Zhang, Chi-Man Pun, Xuhang Chen
Title: LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction
Abstract:
Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.

Authors:Wolfgang Gritz, Hewi Salih, Anett Hoppe, Ralph Ewerth
Title: From Formulas to Figures: How Visual Elements Impact User Interactions in Educational Videos
Abstract:
Educational videos have become increasingly relevant in today's learning environments. While prior research in laboratory studies has provided valuable insights, analyzing real-world interaction data can enhance our understanding of authentic user behavior. Previous studies have investigated technical aspects, such as the influence of cuts on pausing behavior, but the impact of visual complexity remains understudied. In this paper, we address this gap and propose a novel approach centered on visual complexity, defined as the number of visually distinguishable and meaningful elements in a video frame, such as mathematical equations, chemical formulas, or graphical representations. Our study introduces a fine-grained taxonomy of visual objects in educational videos, expanding on previous classifications. Applying this taxonomy to 25 videos from physics and chemistry, we examine the relationship between visual complexity and user behavior, including pauses, in-video navigation, and session dropouts. The results indicate that increased visual complexity, especially of textual elements, correlates with more frequent pauses, rewinds, and dropouts. The results offer a deeper understanding of how video design affects user behavior in real-world scenarios. Our work has implications for optimizing educational videos, particularly in STEM fields. We make our code publicly available (https://github.com/TIBHannover/from_formulas_to_figures).

Authors:Yize Jiang, Xinze Li, Yuanyuan Zhang, Jin Han, Youjun Xu, Ayush Pandit, Zaixi Zhang, Mengdi Wang, Mengyang Wang, Chong Liu, Guang Yang, Yejin Choi, Wu-Jun Li, Tianfan Fu, Fang Wu, Junhong Liu
Title: PoseX: AI Defeats Physics Approaches on Protein-Ligand Cross Docking
Abstract:
Existing protein-ligand docking studies typically focus on the self-docking scenario, which is less practical in real applications. Moreover, some studies involve heavy frameworks requiring extensive training, posing challenges for convenient and efficient assessment of docking methods. To fill these gaps, we design PoseX, an open-source benchmark to evaluate both self-docking and cross-docking, enabling a practical and comprehensive assessment of algorithmic advances. Specifically, we curated a novel dataset comprising 718 entries for self-docking and 1,312 entries for cross-docking; second, we incorporated 23 docking methods in three methodological categories, including physics-based methods (e.g., Schrödinger Glide), AI docking methods (e.g., DiffDock) and AI co-folding methods (e.g., AlphaFold3); third, we developed a relaxation method for post-processing to minimize conformational energy and refine binding poses; fourth, we built a leaderboard to rank submitted models in real-time. We derived some key insights and conclusions from extensive experiments: (1) AI approaches have consistently outperformed physics-based methods in overall docking success rate. (2) Most intra- and intermolecular clashes of AI approaches can be greatly alleviated with relaxation, which means combining AI modeling with physics-based post-processing could achieve excellent performance. (3) AI co-folding methods exhibit ligand chirality issues, except for Boltz-1x, which introduced physics-inspired potentials to fix hallucinations, suggesting modeling on stereochemistry improves the structural plausibility markedly. (4) Specifying binding pockets significantly promotes docking performance, indicating that pocket information can be leveraged adequately, particularly for AI co-folding methods, in future modeling efforts. The code, dataset, and leaderboard are released at https://github.com/CataAI/PoseX.

Authors:Yifan Liu, Ruichen Yao, Yaokun Liu, Ruohan Zong, Zelin Li, Yang Zhang, Dong Wang
Title: Component-Based Fairness in Face Attribute Classification with Bayesian Network-informed Meta Learning
Abstract:
The widespread integration of face recognition technologies into various applications (e.g., access control and personalized advertising) necessitates a critical emphasis on fairness. While previous efforts have focused on demographic fairness, the fairness of individual biological face components remains unexplored. In this paper, we focus on face component fairness, a fairness notion defined by biological face features. To our best knowledge, our work is the first work to mitigate bias of face attribute prediction at the biological feature level. In this work, we identify two key challenges in optimizing face component fairness: attribute label scarcity and attribute inter-dependencies, both of which limit the effectiveness of bias mitigation from previous approaches. To address these issues, we propose \textbf{B}ayesian \textbf{N}etwork-informed \textbf{M}eta \textbf{R}eweighting (BNMR), which incorporates a Bayesian Network calibrator to guide an adaptive meta-learning-based sample reweighting process. During the training process of our approach, the Bayesian Network calibrator dynamically tracks model bias and encodes prior probabilities for face component attributes to overcome the above challenges. To demonstrate the efficacy of our approach, we conduct extensive experiments on a large-scale real-world human face dataset. Our results show that BNMR is able to consistently outperform recent face bias mitigation baselines. Moreover, our results suggest a positive impact of face component fairness on the commonly considered demographic fairness (e.g., \textit{gender}). Our findings pave the way for new research avenues on face component fairness, suggesting that face component fairness could serve as a potential surrogate objective for demographic fairness. The code for our work is publicly available~\footnote{https://github.com/yliuaa/BNMR-FairCompFace.git}.

Authors:Yuying Zhao, Yu Wang, Xueqi Cheng, Anne Marie Tumlin, Yunchao Liu, Damin Xia, Meng Jiang, Tyler Derr
Title: Amplifying Your Social Media Presence: Personalized Influential Content Generation with LLMs
Abstract:
The remarkable advancements in Large Language Models (LLMs) have revolutionized the content generation process in social media, offering significant convenience in writing tasks. However, existing applications, such as sentence completion and fluency enhancement, do not fully address the complex challenges in real-world social media contexts. A prevalent goal among social media users is to increase the visibility and influence of their posts. This paper, therefore, delves into the compelling question: Can LLMs generate personalized influential content to amplify a user's presence on social media? We begin by examining prevalent techniques in content generation to assess their impact on post influence. Acknowledging the critical impact of underlying network structures in social media, which are instrumental in initiating content cascades and highly related to the influence/popularity of a post, we then inject network information into prompt for content generation to boost the post's influence. We design multiple content-centric and structure-aware prompts. The empirical experiments across LLMs validate their ability in improving the influence and draw insights on which strategies are more effective. Our code is available at https://github.com/YuyingZhao/LLM-influence-amplifier.

Authors:Yuying Zhao, Xiaodong Yang, Huiyuan Chen, Xiran Fan, Yu Wang, Yiwei Cai, Tyler Derr
Title: SimAug: Enhancing Recommendation with Pretrained Language Models for Dense and Balanced Data Augmentation
Abstract:
Deep Neural Networks (DNNs) are extensively used in collaborative filtering due to their impressive effectiveness. These systems depend on interaction data to learn user and item embeddings that are crucial for recommendations. However, the data often suffers from sparsity and imbalance issues: limited observations of user-item interactions can result in sub-optimal performance, and a predominance of interactions with popular items may introduce recommendation bias. To address these challenges, we employ Pretrained Language Models (PLMs) to enhance the interaction data with textual information, leading to a denser and more balanced dataset. Specifically, we propose a simple yet effective data augmentation method (SimAug) based on the textual similarity from PLMs, which can be seamlessly integrated to any systems as a lightweight, plug-and-play component in the pre-processing stage. Our experiments across nine datasets consistently demonstrate improvements in both utility and fairness when training with the augmented data generated by SimAug. The code is available at https://github.com/YuyingZhao/SimAug.

Authors:Sihyeong Park, Sungryeol Jeon, Chaelyn Lee, Seokhun Jeon, Byung-Soo Kim, Jemin Lee
Title: A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency
Abstract:
Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine

Authors:Jun Li, Yijue Zhang, Haibo Shi, Minhong Li, Qiwei Li, Xiaohua Qian
Title: A Dual-Task Synergy-Driven Generalization Framework for Pancreatic Cancer Segmentation in CT Scans
Abstract:
Pancreatic cancer, characterized by its notable prevalence and mortality rates, demands accurate lesion delineation for effective diagnosis and therapeutic interventions. The generalizability of extant methods is frequently compromised due to the pronounced variability in imaging and the heterogeneous characteristics of pancreatic lesions, which may mimic normal tissues and exhibit significant inter-patient variability. Thus, we propose a generalization framework that synergizes pixel-level classification and regression tasks, to accurately delineate lesions and improve model stability. This framework not only seeks to align segmentation contours with actual lesions but also uses regression to elucidate spatial relationships between diseased and normal tissues, thereby improving tumor localization and morphological characterization. Enhanced by the reciprocal transformation of task outputs, our approach integrates additional regression supervision within the segmentation context, bolstering the model's generalization ability from a dual-task perspective. Besides, dual self-supervised learning in feature spaces and output spaces augments the model's representational capability and stability across different imaging views. Experiments on 594 samples composed of three datasets with significant imaging differences demonstrate that our generalized pancreas segmentation results comparable to mainstream in-domain validation performance (Dice: 84.07%). More importantly, it successfully improves the results of the highly challenging cross-lesion generalized pancreatic cancer segmentation task by 9.51%. Thus, our model constitutes a resilient and efficient foundational technological support for pancreatic disease management and wider medical applications. The codes will be released at https://github.com/SJTUBME-QianLab/Dual-Task-Seg.

Authors:Jianxing Qin, Jingrong Chen, Xinhao Kong, Yongji Wu, Tianjun Yuan, Liang Luo, Zhaodong Wang, Ying Zhang, Tingjun Chen, Alvin R. Lebeck, Danyang Zhuo
Title: Phantora: Maximizing Code Reuse in Simulation-based Machine Learning System Performance Estimation
Abstract:
Modern machine learning (ML) training workloads place substantial demands on both computational and communication resources. Consequently, accurate performance estimation has become increasingly critical for guiding system design decisions, such as the selection of parallelization strategies, cluster configurations, and hardware provisioning. Existing simulation-based performance estimation requires reimplementing the ML framework in a simulator, which demands significant manual effort and is hard to maintain as ML frameworks evolve rapidly. This paper introduces Phantora, a hybrid GPU cluster simulator designed for performance estimation of ML training workloads. Phantora executes unmodified ML frameworks as is within a distributed, containerized environment. Each container emulates the behavior of a GPU server in a large-scale cluster, while Phantora intercepts and simulates GPU- and communication-related operations to provide high-fidelity performance estimation. We call this approach hybrid simulation of ML systems, in contrast to traditional methods that simulate static workloads. The primary advantage of hybrid simulation is that it allows direct reuse of ML framework source code in simulation, avoiding the need for reimplementation. Our evaluation shows that Phantora provides accuracy comparable to static workload simulation while supporting three state-of-the-art LLM training frameworks out-of-the-box. In addition, Phantora operates on a single GPU, eliminating the need for the resource-intensive trace collection and workload extraction steps required by traditional trace-based simulators. Phantora is open-sourced at https://github.com/QDelta/Phantora.

Authors:Jianxing Qin, Jingrong Chen, Xinhao Kong, Yongji Wu, Tianjun Yuan, Liang Luo, Zhaodong Wang, Ying Zhang, Tingjun Chen, Alvin R. Lebeck, Danyang Zhuo
Title: Phantora: Maximizing Code Reuse in Simulation-based Machine Learning System Performance Estimation
Abstract:
Modern machine learning (ML) training workloads place substantial demands on both computational and communication resources. Consequently, accurate performance estimation has become increasingly critical for guiding system design decisions, such as the selection of parallelization strategies, cluster configurations, and hardware provisioning. Existing simulation-based performance estimation requires reimplementing the ML framework in a simulator, which demands significant manual effort and is hard to maintain as ML frameworks evolve rapidly. This paper introduces Phantora, a hybrid GPU cluster simulator designed for performance estimation of ML training workloads. Phantora executes unmodified ML frameworks as is within a distributed, containerized environment. Each container emulates the behavior of a GPU server in a large-scale cluster, while Phantora intercepts and simulates GPU- and communication-related operations to provide high-fidelity performance estimation. We call this approach hybrid simulation of ML systems, in contrast to traditional methods that simulate static workloads. The primary advantage of hybrid simulation is that it allows direct reuse of ML framework source code in simulation, avoiding the need for reimplementation. Our evaluation shows that Phantora provides accuracy comparable to static workload simulation while supporting three state-of-the-art LLM training frameworks out-of-the-box. In addition, Phantora operates on a single GPU, eliminating the need for the resource-intensive trace collection and workload extraction steps required by traditional trace-based simulators. Phantora is open-sourced at https://github.com/QDelta/Phantora.

Authors:Abdalwahab Almajed, Maryam Tabar, Peyman Najafirad
Title: Machine Learning Fairness in House Price Prediction: A Case Study of America's Expanding Metropolises
Abstract:
As a basic human need, housing plays a key role in enhancing health, well-being, and educational outcome in society, and the housing market is a major factor for promoting quality of life and ensuring social equity. To improve the housing conditions, there has been extensive research on building Machine Learning (ML)-driven house price prediction solutions to accurately forecast the future conditions, and help inform actions and policies in the field. In spite of their success in developing high-accuracy models, there is a gap in our understanding of the extent to which various ML-driven house price prediction approaches show ethnic and/or racial bias, which in turn is essential for the responsible use of ML, and ensuring that the ML-driven solutions do not exacerbate inequity. To fill this gap, this paper develops several ML models from a combination of structural and neighborhood-level attributes, and conducts comprehensive assessments on the fairness of ML models under various definitions of privileged groups. As a result, it finds that the ML-driven house price prediction models show various levels of bias towards protected attributes (i.e., race and ethnicity in this study). Then, it investigates the performance of different bias mitigation solutions, and the experimental results show their various levels of effectiveness on different ML-driven methods. However, in general, the in-processing bias mitigation approach tends to be more effective than the pre-processing one in this problem domain. Our code is available at https://github.com/wahab1412/housing_fairness.

Authors:Stefanos Gkikas, Raul Fernandez Rojas, Manolis Tsiknakis
Title: PainFormer: a Vision Foundation Model for Automatic Pain Assessment
Abstract:
Pain is a manifold condition that impacts a significant percentage of the population. Accurate and reliable pain evaluation for the people suffering is crucial to developing effective and advanced pain management protocols. Automatic pain assessment systems provide continuous monitoring and support decision-making processes, ultimately aiming to alleviate distress and prevent functionality decline. This study introduces PainFormer, a vision foundation model based on multi-task learning principles trained simultaneously on 14 tasks/datasets with a total of 10.9 million samples. Functioning as an embedding extractor for various input modalities, the foundation model provides feature representations to the Embedding-Mixer, a transformer-based module that performs the final pain assessment. Extensive experiments employing behavioral modalities - including RGB, synthetic thermal, and estimated depth videos - and physiological modalities such as ECG, EMG, GSR, and fNIRS revealed that PainFormer effectively extracts high-quality embeddings from diverse input modalities. The proposed framework is evaluated on two pain datasets, BioVid and AI4Pain, and directly compared to 75 different methodologies documented in the literature. Experiments conducted in unimodal and multimodal settings demonstrate state-of-the-art performances across modalities and pave the way toward general-purpose models for automatic pain assessment. The foundation model's architecture (code) and weights are available at: https://github.com/GkikasStefanos/PainFormer.

Authors:Stefanos Gkikas, Raul Fernandez Rojas, Manolis Tsiknakis
Title: PainFormer: a Vision Foundation Model for Automatic Pain Assessment
Abstract:
Pain is a manifold condition that impacts a significant percentage of the population. Accurate and reliable pain evaluation for the people suffering is crucial to developing effective and advanced pain management protocols. Automatic pain assessment systems provide continuous monitoring and support decision-making processes, ultimately aiming to alleviate distress and prevent functionality decline. This study introduces PainFormer, a vision foundation model based on multi-task learning principles trained simultaneously on 14 tasks/datasets with a total of 10.9 million samples. Functioning as an embedding extractor for various input modalities, the foundation model provides feature representations to the Embedding-Mixer, a transformer-based module that performs the final pain assessment. Extensive experiments employing behavioral modalities - including RGB, synthetic thermal, and estimated depth videos - and physiological modalities such as ECG, EMG, GSR, and fNIRS revealed that PainFormer effectively extracts high-quality embeddings from diverse input modalities. The proposed framework is evaluated on two pain datasets, BioVid and AI4Pain, and directly compared to 75 different methodologies documented in the literature. Experiments conducted in unimodal and multimodal settings demonstrate state-of-the-art performances across modalities and pave the way toward general-purpose models for automatic pain assessment. The foundation model's architecture (code) and weights are available at: https://github.com/GkikasStefanos/PainFormer.

Authors:Zhen Yao, Xiaowen Ying, Zhiyu Zhu, Mooi Choo Chuah
Title: Learning Flow-Guided Registration for RGB-Event Semantic Segmentation
Abstract:
Event cameras capture microsecond-level motion cues that complement RGB sensors. However, the prevailing paradigm of treating RGB-Event perception as a fusion problem is ill-posed, as it ignores the intrinsic (i) Spatiotemporal and (ii) Modal Misalignment, unlike other RGB-X sensing domains. To tackle these limitations, we recast RGB-Event segmentation from fusion to registration. We propose BRENet, a novel flow-guided bidirectional framework that adaptively matches correspondence between the asymmetric modalities. Specifically, it leverages temporally aligned optical flows as a coarse-grained guide, along with fine-grained event temporal features, to generate precise forward and backward pixel pairings for registration. This pairing mechanism converts the inherent motion lag into terms governed by flow estimation error, bridging modality gaps. Moreover, we introduce Motion-Enhanced Event Tensor (MET), a new representation that transforms sparse event streams into a dense, temporally coherent form. Extensive experiments on four large-scale datasets validate our approach, establishing flow-guided registration as a promising direction for RGB-Event segmentation. Our code is available at: https://github.com/zyaocoder/BRENet.

Authors:Zongxia Li, Xiyang Wu, Guangyao Shi, Yubin Qin, Hongyang Du, Tianyi Zhou, Dinesh Manocha, Jordan Lee Boyd-Graber
Title: VideoHallu: Evaluating and Mitigating Multi-modal Hallucinations on Synthetic Video Understanding
Abstract:
Synthetic video generation has gained significant attention for its realism and broad applications, but remains prone to violations of common sense and physical laws. This highlights the need for reliable abnormality detectors that understand such principles and are robust to hallucinations. To address this, we introduce VideoHallu, a benchmark of over 3,000 video QA pairs built from synthetic videos generated by models like Veo2, Sora, and Kling, paired with expert-crafted counterintuitive QA to evaluate the critical thinking abilities of Multi-modal Large Language Models (MLLMs) on abnormalities that are perceptually obvious to humans but often hallucinated due to language priors. VideoHallu evaluates MLLMs' abnormality detection abilities with examples across alignment, consistency, commonsense, and physics. We benchmark SOTA MLLMs, including GPT-4o, Gemini-2.5-Pro, Qwen2.5-VL, Video-R1, and VideoChat-R1. We observe that these models perform well on many real-world benchmarks like MVBench and MovieChat, but still struggle with basic physics-based and commonsense reasoning in synthetic videos. We further show that post-training with Group Relative Policy Optimization (GRPO), using curriculum learning on datasets combining video QA with counterintuitive commonsense and physics reasoning over real and synthetic videos, improves MLLMs' abnormality detection and critical thinking, demonstrating the value of targeted training for improving their understanding of commonsense and physical laws. Our code is available at https://github.com/zli12321/VideoHallu.git.

Authors:Zhe Zhang, Mingxiu Cai, Hanxiao Wang, Gaochang Wu, Tianyou Chai, Xiatian Zhu
Title: CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.

Authors:Zhe Zhang, Mingxiu Cai, Hanxiao Wang, Gaochang Wu, Tianyou Chai, Xiatian Zhu
Title: CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.

Authors:Vaidehi Patil, Yi-Lin Sung, Peter Hase, Jie Peng, Tianlong Chen, Mohit Bansal
Title: Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation
Abstract:
LLMs trained on massive datasets may inadvertently acquire sensitive information such as personal details and potentially harmful content. This risk is further heightened in multimodal LLMs as they integrate information from multiple modalities (image and text). Adversaries can exploit this knowledge through multimodal prompts to extract sensitive details. Evaluating how effectively MLLMs can forget such information (targeted unlearning) necessitates the creation of high-quality, well-annotated image-text pairs. While prior work on unlearning has focused on text, multimodal unlearning remains underexplored. To address this gap, we first introduce a multimodal unlearning benchmark, UnLOK-VQA (Unlearning Outside Knowledge VQA), as well as an attack-and-defense framework to evaluate methods for deleting specific multimodal knowledge from MLLMs. We extend a visual question-answering dataset using an automated pipeline that generates varying-proximity samples for testing generalization and specificity, followed by manual filtering for maintaining high quality. We then evaluate six defense objectives against seven attacks (four whitebox, three blackbox), including a novel whitebox method leveraging interpretability of hidden states. Our results show multimodal attacks outperform text- or image-only ones, and that the most effective defense removes answer information from internal model states. Additionally, larger models exhibit greater post-editing robustness, suggesting that scale enhances safety. UnLOK-VQA provides a rigorous benchmark for advancing unlearning in MLLMs.

Authors:Chaoyi Wang, Junjie Zheng, Zihao Chen, Shiyu Xia, Chaofan Ding, Xiaohao Zhang, Xi Tao, Xiaoming He, Xinhan Di
Title: Towards Film-Making Production Dialogue, Narration, Monologue Adaptive Moving Dubbing Benchmarks
Abstract:
Movie dubbing has advanced significantly, yet assessing the real-world effectiveness of these models remains challenging. A comprehensive evaluation benchmark is crucial for two key reasons: 1) Existing metrics fail to fully capture the complexities of dialogue, narration, monologue, and actor adaptability in movie dubbing. 2) A practical evaluation system should offer valuable insights to improve movie dubbing quality and advancement in film production. To this end, we introduce Talking Adaptive Dubbing Benchmarks (TA-Dubbing), designed to improve film production by adapting to dialogue, narration, monologue, and actors in movie dubbing. TA-Dubbing offers several key advantages: 1) Comprehensive Dimensions: TA-Dubbing covers a variety of dimensions of movie dubbing, incorporating metric evaluations for both movie understanding and speech generation. 2) Versatile Benchmarking: TA-Dubbing is designed to evaluate state-of-the-art movie dubbing models and advanced multi-modal large language models. 3) Full Open-Sourcing: We fully open-source TA-Dubbing at https://github.com/woka- 0a/DeepDubber- V1 including all video suits, evaluation methods, annotations. We also continuously integrate new movie dubbing models into the TA-Dubbing leaderboard at https://github.com/woka- 0a/DeepDubber-V1 to drive forward the field of movie dubbing.

Authors:Carlo Siebenschuh, Kyle Hippe, Ozan Gokdemir, Alexander Brace, Arham Khan, Khalid Hossain, Yadu Babuji, Nicholas Chia, Venkatram Vishwanath, Rick Stevens, Arvind Ramanathan, Ian Foster, Robert Underwood
Title: AdaParse: An Adaptive Parallel PDF Parsing and Resource Scaling Engine
Abstract:
Language models for scientific tasks are trained on text from scientific publications, most distributed as PDFs that require parsing. PDF parsing approaches range from inexpensive heuristics (for simple documents) to computationally intensive ML-driven systems (for complex or degraded ones). The choice of the "best" parser for a particular document depends on its computational cost and the accuracy of its output. To address these issues, we introduce an Adaptive Parallel PDF Parsing and Resource Scaling Engine (AdaParse), a data-driven strategy for assigning an appropriate parser to each document. We enlist scientists to select preferred parser outputs and incorporate this information through direct preference optimization (DPO) into AdaParse, thereby aligning its selection process with human judgment. AdaParse then incorporates hardware requirements and predicted accuracy of each parser to orchestrate computational resources efficiently for large-scale parsing campaigns. We demonstrate that AdaParse, when compared to state-of-the-art parsers, improves throughput by $17\times$ while still achieving comparable accuracy (0.2 percent better) on a benchmark set of 1000 scientific documents. AdaParse's combination of high accuracy and parallel scalability makes it feasible to parse large-scale scientific document corpora to support the development of high-quality, trillion-token-scale text datasets. The implementation is available at https://github.com/7shoe/AdaParse/

Authors:Wenqi Guo, Mohamed Shehata, Shan Du
Title: ZS-VCOS: Zero-Shot Video Camouflaged Object Segmentation By Optical Flow and Open Vocabulary Object Detection
Abstract:
Camouflaged object segmentation presents unique challenges compared to traditional segmentation tasks, primarily due to the high similarity in patterns and colors between camouflaged objects and their backgrounds. Effective solutions to this problem have significant implications in critical areas such as pest control, defect detection, and lesion segmentation in medical imaging. Prior research has predominantly emphasized supervised or unsupervised pre-training methods, leaving zero-shot approaches significantly underdeveloped. Existing zero-shot techniques commonly utilize the Segment Anything Model (SAM) in automatic mode or rely on vision-language models to generate cues for segmentation; however, their performances remain unsatisfactory, due to the similarity of the camouflaged object and the background. This work studies how to avoid training by integrating large pre-trained models like SAM-2 and Owl-v2 with temporal information into a modular pipeline. Evaluated on the MoCA-Mask dataset, our approach achieves outstanding performance improvements, significantly outperforming existing zero-shot methods by raising the F-measure ($F_β^w$) from 0.296 to 0.628. Our approach also surpasses supervised methods, increasing the F-measure from 0.476 to 0.628. Additionally, evaluation on the MoCA-Filter dataset demonstrates an increase in the success rate from 0.628 to 0.697 when compared with FlowSAM, a supervised transfer method. A thorough ablation study further validates the individual contributions of each component. Besides our main contributions, we also highlight inconsistencies in previous work regarding metrics and settings. Code can be found in https://github.com/weathon/vcos.

Authors:Rahuul Rangaraj, Jimeng Shi, Azam Shirali, Rajendra Paudel, Yanzhao Wu, Giri Narasimhan
Title: How Effective are Large Time Series Models in Hydrology? A Study on Water Level Forecasting in Everglades
Abstract:
The Everglades play a crucial role in flood and drought regulation, water resource planning, and ecosystem management in the surrounding regions. However, traditional physics-based and statistical methods for predicting water levels often face significant challenges, including high computational costs and limited adaptability to diverse or unforeseen conditions. Recent advancements in large time series models have demonstrated the potential to address these limitations, with state-of-the-art deep learning and foundation models achieving remarkable success in time series forecasting across various domains. Despite this progress, their application to critical environmental systems, such as the Everglades, remains underexplored. In this study, we fill the gap by investigating twelve task-specific models and five time series foundation models across six categories for a real-world application focused on water level prediction in the Everglades. Our primary results show that the foundation model Chronos significantly outperforms all other models while the remaining foundation models exhibit relatively poor performance. We also noticed that the performance of task-specific models varies with the model architectures, and discussed the possible reasons. We hope our study and findings will inspire the community to explore the applicability of large time series models in hydrological applications. The code and data are available at https://github.com/rahuul2992000/Everglades-Benchmark.

Authors:Mohammadreza Teymoorianfard, Shiqing Ma, Amir Houmansadr
Title: VIDSTAMP: A Temporally-Aware Watermark for Ownership and Integrity in Video Diffusion Models
Abstract:
The rapid rise of video diffusion models has enabled the generation of highly realistic and temporally coherent videos, raising critical concerns about content authenticity, provenance, and misuse. Existing watermarking approaches, whether passive, post-hoc, or adapted from image-based techniques, often struggle to withstand video-specific manipulations such as frame insertion, dropping, or reordering, and typically degrade visual quality. In this work, we introduce VIDSTAMP, a watermarking framework that embeds per-frame or per-segment messages directly into the latent space of temporally-aware video diffusion models. By fine-tuning the model's decoder through a two-stage pipeline, first on static image datasets to promote spatial message separation, and then on synthesized video sequences to restore temporal consistency, VIDSTAMP learns to embed high-capacity, flexible watermarks with minimal perceptual impact. Leveraging architectural components such as 3D convolutions and temporal attention, our method imposes no additional inference cost and offers better perceptual quality than prior methods, while maintaining comparable robustness against common distortions and tampering. VIDSTAMP embeds 768 bits per video (48 bits per frame) with a bit accuracy of 95.0%, achieves a log P-value of -166.65 (lower is better), and maintains a video quality score of 0.836, comparable to unwatermarked outputs (0.838) and surpassing prior methods in capacity-quality tradeoffs. Code: Code: \url{https://github.com/SPIN-UMass/VidStamp}

Authors:Fahong Zhang, Yilei Shi, Xiao Xiang Zhu
Title: Global Collinearity-aware Polygonizer for Polygonal Building Mapping in Remote Sensing
Abstract:
This paper addresses the challenge of mapping polygonal buildings from remote sensing images and introduces a novel algorithm, the Global Collinearity-aware Polygonizer (GCP). GCP, built upon an instance segmentation framework, processes binary masks produced by any instance segmentation model. The algorithm begins by collecting polylines sampled along the contours of the binary masks. These polylines undergo a refinement process using a transformer-based regression module to ensure they accurately fit the contours of the targeted building instances. Subsequently, a collinearity-aware polygon simplification module simplifies these refined polylines and generate the final polygon representation. This module employs dynamic programming technique to optimize an objective function that balances the simplicity and fidelity of the polygons, achieving globally optimal solutions. Furthermore, the optimized collinearity-aware objective is seamlessly integrated into network training, enhancing the cohesiveness of the entire pipeline. The effectiveness of GCP has been validated on two public benchmarks for polygonal building mapping. Further experiments reveal that applying the collinearity-aware polygon simplification module to arbitrary polylines, without prior knowledge, enhances accuracy over traditional methods such as the Douglas-Peucker algorithm. This finding underscores the broad applicability of GCP. The code for the proposed method will be made available at https://github.com/zhu-xlab.

Authors:Dan Barry, Davoud Shariat Panah, Alessandro Ragano, Jan Skoglund, Andrew Hines
Title: Binamix -- A Python Library for Generating Binaural Audio Datasets
Abstract:
The increasing demand for spatial audio in applications such as virtual reality, immersive media, and spatial audio research necessitates robust solutions to generate binaural audio data sets for use in testing and validation. Binamix is an open-source Python library designed to facilitate programmatic binaural mixing using the extensive SADIE II Database, which provides Head Related Impulse Response (HRIR) and Binaural Room Impulse Response (BRIR) data for 20 subjects. The Binamix library provides a flexible and repeatable framework for creating large-scale spatial audio datasets, making it an invaluable resource for codec evaluation, audio quality metric development, and machine learning model training. A range of pre-built example scripts, utility functions, and visualization plots further streamline the process of custom pipeline creation. This paper presents an overview of the library's capabilities, including binaural rendering, impulse response interpolation, and multi-track mixing for various speaker layouts. The tools utilize a modified Delaunay triangulation technique to achieve accurate HRIR/BRIR interpolation where desired angles are not present in the data. By supporting a wide range of parameters such as azimuth, elevation, subject Impulse Responses (IRs), speaker layouts, mixing controls, and more, the library enables researchers to create large binaural datasets for any downstream purpose. Binamix empowers researchers and developers to advance spatial audio applications with reproducible methodologies by offering an open-source solution for binaural rendering and dataset generation. We release the library under the Apache 2.0 License at https://github.com/QxLabIreland/Binamix/

Authors:Dongliang Guo, Mengxuan Hu, Zihan Guan, Thomas Hartvigsen, Sheng Li
Title: BalancEdit: Dynamically Balancing the Generality-Locality Trade-off in Multi-modal Model Editing
Abstract:
Large multi-modal models inevitably decay over time as facts update and previously learned information becomes outdated. Traditional approaches such as fine-tuning are often impractical for updating these models due to their size and complexity. Instead, direct knowledge editing within the models presents a more viable solution. Current model editing techniques, however, typically overlook the unique influence ranges of different facts, leading to compromised model performance in terms of both generality and locality. To address this issue, we introduce the concept of the generality-locality trade-off in multi-modal model editing. We develop a new model editing dataset named OKEDIT, specifically designed to effectively evaluate this trade-off. Building on this foundation, we propose \textbf{BalancEdit}, a novel method for balanced model editing that dynamically achieves an optimal balance between generality and locality. BalancEdit utilizes a unique mechanism that generates both positive and negative samples for each fact to accurately determine its influence scope and incorporates these insights into the model's latent space using a discrete, localized codebook of edits, without modifying the underlying model weights. To our knowledge, this is the first approach explicitly addressing the generality-locality trade-off in multi-modal model editing. Our comprehensive results confirm the effectiveness of BalancEdit, demonstrating minimal trade-offs while maintaining robust editing capabilities. Our code and dataset are available at https://github.com/donglgcn/BalancEdit/tree/MMOKVQA.

Authors:Yajuan Zhang, Jiahai Jiang, Yule Yan, Liang Yang, Ping Zhang
Title: 2DXformer: Dual Transformers for Wind Power Forecasting with Dual Exogenous Variables
Abstract:
Accurate wind power forecasting can help formulate scientific dispatch plans, which is of great significance for maintaining the safety, stability, and efficient operation of the power system. In recent years, wind power forecasting methods based on deep learning have focused on extracting the spatiotemporal correlations among data, achieving significant improvements in forecasting accuracy. However, they exhibit two limitations. First, there is a lack of modeling for the inter-variable relationships, which limits the accuracy of the forecasts. Second, by treating endogenous and exogenous variables equally, it leads to unnecessary interactions between the endogenous and exogenous variables, increasing the complexity of the model. In this paper, we propose the 2DXformer, which, building upon the previous work's focus on spatiotemporal correlations, addresses the aforementioned two limitations. Specifically, we classify the inputs of the model into three types: exogenous static variables, exogenous dynamic variables, and endogenous variables. First, we embed these variables as variable tokens in a channel-independent manner. Then, we use the attention mechanism to capture the correlations among exogenous variables. Finally, we employ a multi-layer perceptron with residual connections to model the impact of exogenous variables on endogenous variables. Experimental results on two real-world large-scale datasets indicate that our proposed 2DXformer can further improve the performance of wind power forecasting. The code is available in this repository: \href{https://github.com/jseaj/2DXformer}{https://github.com/jseaj/2DXformer}.

Authors:Vladimir Somers, Baptiste Standaert, Victor Joos, Alexandre Alahi, Christophe De Vleeschouwer
Title: CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking
Abstract:
Online multi-object tracking has been recently dominated by tracking-by-detection (TbD) methods, where recent advances rely on increasingly sophisticated heuristics for tracklet representation, feature fusion, and multi-stage matching. The key strength of TbD lies in its modular design, enabling the integration of specialized off-the-shelf models like motion predictors and re-identification. However, the extensive usage of human-crafted rules for temporal associations makes these methods inherently limited in their ability to capture the complex interplay between various tracking cues. In this work, we introduce CAMEL, a novel association module for Context-Aware Multi-Cue ExpLoitation, that learns resilient association strategies directly from data, breaking free from hand-crafted heuristics while maintaining TbD's valuable modularity. At its core, CAMEL employs two transformer-based modules and relies on a novel association-centric training scheme to effectively model the complex interactions between tracked targets and their various association cues. Unlike end-to-end detection-by-tracking approaches, our method remains lightweight and fast to train while being able to leverage external off-the-shelf models. Our proposed online tracking pipeline, CAMELTrack, achieves state-of-the-art performance on multiple tracking benchmarks. Our code is available at https://github.com/TrackingLaboratory/CAMELTrack.

Authors:Edson Araujo, Andrew Rouditchenko, Yuan Gong, Saurabhchand Bhati, Samuel Thomas, Brian Kingsbury, Leonid Karlinsky, Rogerio Feris, James R. Glass, Hilde Kuehne
Title: CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment
Abstract:
Recent advances in audio-visual learning have shown promising results in learning representations across modalities. However, most approaches rely on global audio representations that fail to capture fine-grained temporal correspondences with visual frames. Additionally, existing methods often struggle with conflicting optimization objectives when trying to jointly learn reconstruction and cross-modal alignment. In this work, we propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning. We address three key challenges: First, we tackle the granularity mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations. Second, we resolve conflicting optimization goals by separating contrastive and reconstruction objectives through dedicated global tokens. Third, we improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens. We evaluate the proposed approach on AudioSet, VGG Sound, and the ADE20K Sound dataset on zero-shot retrieval, classification and localization tasks demonstrating state-of-the-art performance and outperforming more complex architectures.

Authors:Keiller Nogueira, Akram Zaytar, Wanli Ma, Ribana Roscher, Ronny Hänsch, Caleb Robinson, Anthony Ortiz, Simone Nsutezo, Rahul Dodhia, Juan M. Lavista Ferres, Oktay Karakuş, Paul L. Rosin
Title: Core-Set Selection for Data-efficient Land Cover Segmentation
Abstract:
The increasing accessibility of remotely sensed data and the potential of such data to inform large-scale decision-making has driven the development of deep learning models for many Earth Observation tasks. Traditionally, such models must be trained on large datasets. However, the common assumption that broadly larger datasets lead to better outcomes tends to overlook the complexities of the data distribution, the potential for introducing biases and noise, and the computational resources required for processing and storing vast datasets. Therefore, effective solutions should consider both the quantity and quality of data. In this paper, we propose six novel core-set selection methods for selecting important subsets of samples from remote sensing image segmentation datasets that rely on imagery only, labels only, and a combination of each. We benchmark these approaches against a random-selection baseline on three commonly used land cover classification datasets: DFC2022, Vaihingen, and Potsdam. In each of the datasets, we demonstrate that training on a subset of samples outperforms the random baseline, and some approaches outperform training on all available data. This result shows the importance and potential of data-centric learning for the remote sensing domain. The code is available at https://github.com/keillernogueira/data-centric-rs-classification/.

Authors:Kui Jiang, Yan Luo, Junjun Jiang, Xin Xu, Fei Ma, Fei Yu
Title: RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement
Abstract:
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications, where wavelength-dependent attenuation causes severe content degradation and color distortion. While recent state space models like Mamba show potential for long-range dependency modeling, their unfolding operations and fixed scan paths on 1D sequences fail to adapt to local object semantics and global relation modeling, limiting their efficacy in complex underwater environments. To address this, we enhance conventional Mamba with the sorting-based scanning mechanism that dynamically reorders scanning sequences based on statistical distribution of spatial correlation of all pixels. In this way, it encourages the network to prioritize the most informative components--structural and semantic features. Upon building this mechanism, we devise a Visually Self-adaptive State Block (VSSB) that harmonizes dynamic sorting of Mamba with input-dependent dynamic convolution, enabling coherent integration of global context and local relational cues. This exquisite design helps eliminate global focus bias, especially for widely distributed contents, which greatly weakens the statistical frequency. For robust feature extraction and refinement, we design a cross-feature bridge (CFB) to adaptively fuse multi-scale representations. These efforts compose the novel relation-driven Mamba framework for effective UIE (RD-UIE). Extensive experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba in both quantitative metrics and visual fidelity, averagely achieving 0.55 dB performance gain on the three benchmarks. Our code is available at https://github.com/kkoucy/RD-UIE/tree/main

Authors:Jiangtong Tan, Hu Yu, Jie Huang, Jie Xiao, Feng Zhao
Title: FreePCA: Integrating Consistency Information across Long-short Frames in Training-free Long Video Generation via Principal Component Analysis
Abstract:
Long video generation involves generating extended videos using models trained on short videos, suffering from distribution shifts due to varying frame counts. It necessitates the use of local information from the original short frames to enhance visual and motion quality, and global information from the entire long frames to ensure appearance consistency. Existing training-free methods struggle to effectively integrate the benefits of both, as appearance and motion in videos are closely coupled, leading to motion inconsistency and visual quality. In this paper, we reveal that global and local information can be precisely decoupled into consistent appearance and motion intensity information by applying Principal Component Analysis (PCA), allowing for refined complementary integration of global consistency and local quality. With this insight, we propose FreePCA, a training-free long video generation paradigm based on PCA that simultaneously achieves high consistency and quality. Concretely, we decouple consistent appearance and motion intensity features by measuring cosine similarity in the principal component space. Critically, we progressively integrate these features to preserve original quality and ensure smooth transitions, while further enhancing consistency by reusing the mean statistics of the initial noise. Experiments demonstrate that FreePCA can be applied to various video diffusion models without requiring training, leading to substantial improvements. Code is available at https://github.com/JosephTiTan/FreePCA.

Authors:Murtadha Ahmed, Wenbo, Liu yunfeng
Title: MateICL: Mitigating Attention Dispersion in Large-Scale In-Context Learning
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in In-Context Learning (ICL). However, the fixed position length constraints in pre-trained models limit the number of demonstration examples. Recent efforts to extend context suffer from attention dispersion as the number of demonstrations increases. In this paper, we introduce Mitigating Attention Dispersion in large-scale ICL (MateICL) that enables LLMs to maintain effective self-attention as the context size grows. We first split the context into multiple windows, each filled to the model's context capacity, which are processed separately. Then, we introduce an additional layer to recalibrate the attention weights, prioritizing the query tokens as the number of demonstrations increases. Our empirical results show that MateICL can effectively leverage larger contexts to improve ICL performance. Compared to retrieval-based baselines, MateICL consistently achieves better performance without requiring an externally trained retrieval model. Despite recent advances in inference strategies (e.g., 32k token contexts), our results demonstrate that MateICL remains beneficial in computationally resource-constrained settings. The code is publicly available at https://github.com/amurtadha/MateICL.

Authors:Zhiwei Hao, Jianyuan Guo, Li Shen, Yong Luo, Han Hu, Guoxia Wang, Dianhai Yu, Yonggang Wen, Dacheng Tao
Title: Low-Precision Training of Large Language Models: Methods, Challenges, and Opportunities
Abstract:
Large language models (LLMs) have achieved impressive performance across various domains. However, the substantial hardware resources required for their training present a significant barrier to efficiency and scalability. To mitigate this challenge, low-precision training techniques have been widely adopted, leading to notable advancements in training efficiency. Despite these gains, low-precision training involves several components$\unicode{x2013}$such as weights, activations, and gradients$\unicode{x2013}$each of which can be represented in different numerical formats. The resulting diversity has created a fragmented landscape in low-precision training research, making it difficult for researchers to gain a unified overview of the field. This survey provides a comprehensive review of existing low-precision training methods. To systematically organize these approaches, we categorize them into three primary groups based on their underlying numerical formats, which is a key factor influencing hardware compatibility, computational efficiency, and ease of reference for readers. The categories are: (1) fixed-point and integer-based methods, (2) floating-point-based methods, and (3) customized format-based methods. Additionally, we discuss quantization-aware training approaches, which share key similarities with low-precision training during forward propagation. Finally, we highlight several promising research directions to advance this field. A collection of papers discussed in this survey is provided in https://github.com/Hao840/Awesome-Low-Precision-Training.

Authors:Lokesh Nagalapatti, Ashutosh Srivastava, Sunita Sarawagi, Amit Sharma
Title: Robust Root Cause Diagnosis using In-Distribution Interventions
Abstract:
Diagnosing the root cause of an anomaly in a complex interconnected system is a pressing problem in today's cloud services and industrial operations. We propose In-Distribution Interventions (IDI), a novel algorithm that predicts root cause as nodes that meet two criteria: 1) **Anomaly:** root cause nodes should take on anomalous values; 2) **Fix:** had the root cause nodes assumed usual values, the target node would not have been anomalous. Prior methods of assessing the fix condition rely on counterfactuals inferred from a Structural Causal Model (SCM) trained on historical data. But since anomalies are rare and fall outside the training distribution, the fitted SCMs yield unreliable counterfactual estimates. IDI overcomes this by relying on interventional estimates obtained by solely probing the fitted SCM at in-distribution inputs. We present a theoretical analysis comparing and bounding the errors in assessing the fix condition using interventional and counterfactual estimates. We then conduct experiments by systematically varying the SCM's complexity to demonstrate the cases where IDI's interventional approach outperforms the counterfactual approach and vice versa. Experiments on both synthetic and PetShop RCD benchmark datasets demonstrate that \our\ consistently identifies true root causes more accurately and robustly than nine existing state-of-the-art RCD baselines. Code is released at https://github.com/nlokeshiisc/IDI_release.

Authors:Ihab Tabbara, Hussein Sibai
Title: Learning Conservative Neural Control Barrier Functions from Offline Data
Abstract:
Safety filters, particularly those based on control barrier functions, have gained increased interest as effective tools for safe control of dynamical systems. Existing correct-by-construction synthesis algorithms for such filters, however, suffer from the curse-of-dimensionality. Deep learning approaches have been proposed in recent years to address this challenge. In this paper, we add to this set of approaches an algorithm for training neural control barrier functions from offline datasets. Such functions can be used to design constraints for quadratic programs that are then used as safety filters. Our algorithm trains these functions so that the system is not only prevented from reaching unsafe states but is also disincentivized from reaching out-of-distribution ones, at which they would be less reliable. It is inspired by Conservative Q-learning, an offline reinforcement learning algorithm. We call its outputs Conservative Control Barrier Functions (CCBFs). Our empirical results demonstrate that CCBFs outperform existing methods in maintaining safety while minimally affecting task performance. Source code is available at https://github.com/tabz23/CCBF.

Authors:Viktor Kocur, Charalambos Tzamos, Yaqing Ding, Zuzana Berger Haladova, Torsten Sattler, Zuzana Kukelova
Title: Are Minimal Radial Distortion Solvers Really Necessary for Relative Pose Estimation?
Abstract:
Estimating the relative pose between two cameras is a fundamental step in many applications such as Structure-from-Motion. The common approach to relative pose estimation is to apply a minimal solver inside a RANSAC loop. Highly efficient solvers exist for pinhole cameras. Yet, (nearly) all cameras exhibit radial distortion. Not modeling radial distortion leads to (significantly) worse results. However, minimal radial distortion solvers are significantly more complex than pinhole solvers, both in terms of run-time and implementation efforts. This paper compares radial distortion solvers with two simple-to-implement approaches that do not use minimal radial distortion solvers: The first approach combines an efficient pinhole solver with sampled radial undistortion parameters, where the sampled parameters are used for undistortion prior to applying the pinhole solver. The second approach uses a state-of-the-art neural network to estimate the distortion parameters rather than sampling them from a set of potential values. Extensive experiments on multiple datasets, and different camera setups, show that complex minimal radial distortion solvers are not necessary in practice. We discuss under which conditions a simple sampling of radial undistortion parameters is preferable over calibrating cameras using a learning-based prior approach. Code and newly created benchmark for relative pose estimation under radial distortion are available at https://github.com/kocurvik/rdnet.

Authors:Quang P. M. Pham, Khoi T. N. Nguyen, Nhi H. Doan, Cuong A. Pham, Qinbo Sun, Weimin Qi, Kentaro Inui, Dezhen Song
Title: SmallPlan: Leverage Small Language Models for Sequential Path Planning with Simulation-Powered, LLM-Guided Distillation
Abstract:
Efficient path planning in robotics, particularly within large-scale, complex environments, remains a significant hurdle. While Large Language Models (LLMs) offer strong reasoning capabilities, their high computational cost and limited adaptability hinder real-time deployment on edge devices. We present SmallPlan - a novel framework leveraging LLMs as teacher models to train lightweight Small Language Models (SLMs) for high-level path planning tasks. In SmallPlan, the SLMs provide optimal action sequences to navigate across scene graphs that compactly represent full-scaled 3D scenes. The SLMs are trained in a simulation-powered, interleaved manner with LLM-guided supervised fine-tuning (SFT) and reinforcement learning (RL). This strategy not only enables SLMs to successfully complete navigation tasks but also makes them aware of important factors like distance travel, providing more efficient path planning. Through experiments, we demonstrate that the fine-tuned SLMs perform competitively with larger models like GPT-4o on sequential path planning, without suffering from hallucination and overfitting. SmallPlan is resource-efficient, making it well-suited for edge-device deployment and advancing practical autonomous robotics. Our source code is available here: https://github.com/quangpham2006/SmallPlan

Authors:Fadi Abdeladhim Zidi, Abdelkrim Ouafi, Fares Bougourzi, Cosimo Distante, Abdelmalik Taleb-Ahmed
Title: Advancing Wheat Crop Analysis: A Survey of Deep Learning Approaches Using Hyperspectral Imaging
Abstract:
As one of the most widely cultivated and consumed crops, wheat is essential to global food security. However, wheat production is increasingly challenged by pests, diseases, climate change, and water scarcity, threatening yields. Traditional crop monitoring methods are labor-intensive and often ineffective for early issue detection. Hyperspectral imaging (HSI) has emerged as a non-destructive and efficient technology for remote crop health assessment. However, the high dimensionality of HSI data and limited availability of labeled samples present notable challenges. In recent years, deep learning has shown great promise in addressing these challenges due to its ability to extract and analysis complex structures. Despite advancements in applying deep learning methods to HSI data for wheat crop analysis, no comprehensive survey currently exists in this field. This review addresses this gap by summarizing benchmark datasets, tracking advancements in deep learning methods, and analyzing key applications such as variety classification, disease detection, and yield estimation. It also highlights the strengths, limitations, and future opportunities in leveraging deep learning methods for HSI-based wheat crop analysis. We have listed the current state-of-the-art papers and will continue tracking updating them in the following https://github.com/fadi-07/Awesome-Wheat-HSI-DeepLearning.

Authors:Branko Brkljač, Milan Brkljač
Title: Person detection and re-identification in open-world settings of retail stores and public spaces
Abstract:
Practical applications of computer vision in smart cities usually assume system integration and operation in challenging open-world environments. In the case of person re-identification task the main goal is to retrieve information whether the specific person has appeared in another place at a different time instance of the same video, or over multiple camera feeds. This typically assumes collecting raw data from video surveillance cameras in different places and under varying illumination conditions. In the considered open-world setting it also requires detection and localization of the person inside the analyzed video frame before the main re-identification step. With multi-person and multi-camera setups the system complexity becomes higher, requiring sophisticated tracking solutions and re-identification models. In this work we will discuss existing challenges in system design architectures, consider possible solutions based on different computer vision techniques, and describe applications of such systems in retail stores and public spaces for improved marketing analytics. In order to analyse sensitivity of person re-identification task under different open-world environments, a performance of one close to real-time solution will be demonstrated over several video captures and live camera feeds. Finally, based on conducted experiments we will indicate further research directions and possible system improvements.

Authors:Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Yankai Chen, Chunyu Miao, Hoang Nguyen, Yue Zhou, Weizhi Zhang, Liancheng Fang, Langzhou He, Yangning Li, Dongyuan Li, Renhe Jiang, Xue Liu, Philip S. Yu
Title: LLM-Based Human-Agent Collaboration and Interaction Systems: A Survey
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. These human-agent collaboration systems enable humans and LLM-based agents to collaborate effectively by leveraging their complementary strengths. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities arising from human-AI collaboration. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-Human-Agent-Collaboration-Interaction-Systems.

Authors:Zhengbin Zhang, Yan Wu, Hongkun Zhang
Title: Fast2comm:Collaborative perception combined with prior knowledge
Abstract:
Collaborative perception has the potential to significantly enhance perceptual accuracy through the sharing of complementary information among agents. However, real-world collaborative perception faces persistent challenges, particularly in balancing perception performance and bandwidth limitations, as well as coping with localization errors. To address these challenges, we propose Fast2comm, a prior knowledge-based collaborative perception framework. Specifically, (1)we propose a prior-supervised confidence feature generation method, that effectively distinguishes foreground from background by producing highly discriminative confidence features; (2)we propose GT Bounding Box-based spatial prior feature selection strategy to ensure that only the most informative prior-knowledge features are selected and shared, thereby minimizing background noise and optimizing bandwidth efficiency while enhancing adaptability to localization inaccuracies; (3)we decouple the feature fusion strategies between model training and testing phases, enabling dynamic bandwidth adaptation. To comprehensively validate our framework, we conduct extensive experiments on both real-world and simulated datasets. The results demonstrate the superior performance of our model and highlight the necessity of the proposed methods. Our code is available at https://github.com/Zhangzhengbin-TJ/Fast2comm.

Authors:Jiajia Li, Xinda Qi, Seyed Hamidreza Nabaei, Meiqi Liu, Dong Chen, Xin Zhang, Xunyuan Yin, Zhaojian Li
Title: A Survey on 3D Reconstruction Techniques in Plant Phenotyping: From Classical Methods to Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and Beyond
Abstract:
Plant phenotyping plays a pivotal role in understanding plant traits and their interactions with the environment, making it crucial for advancing precision agriculture and crop improvement. 3D reconstruction technologies have emerged as powerful tools for capturing detailed plant morphology and structure, offering significant potential for accurate and automated phenotyping. This paper provides a comprehensive review of the 3D reconstruction techniques for plant phenotyping, covering classical reconstruction methods, emerging Neural Radiance Fields (NeRF), and the novel 3D Gaussian Splatting (3DGS) approach. Classical methods, which often rely on high-resolution sensors, are widely adopted due to their simplicity and flexibility in representing plant structures. However, they face challenges such as data density, noise, and scalability. NeRF, a recent advancement, enables high-quality, photorealistic 3D reconstructions from sparse viewpoints, but its computational cost and applicability in outdoor environments remain areas of active research. The emerging 3DGS technique introduces a new paradigm in reconstructing plant structures by representing geometry through Gaussian primitives, offering potential benefits in both efficiency and scalability. We review the methodologies, applications, and performance of these approaches in plant phenotyping and discuss their respective strengths, limitations, and future prospects (https://github.com/JiajiaLi04/3D-Reconstruction-Plants). Through this review, we aim to provide insights into how these diverse 3D reconstruction techniques can be effectively leveraged for automated and high-throughput plant phenotyping, contributing to the next generation of agricultural technology.

Authors:Marius-Constantin Dinu
Title: Primality Testing via Circulant Matrix Eigenvalue Structure: A Novel Approach Using Cyclotomic Field Theory
Abstract:
This paper presents a novel primality test based on the eigenvalue structure of circulant matrices constructed from roots of unity. We prove that an integer $n > 2$ is prime if and only if the minimal polynomial of the circulant matrix $C_n = W_n + W_n^2$ has exactly two irreducible factors over $\mathbb{Q}$. This characterization connects cyclotomic field theory with matrix algebra, providing both theoretical insights and practical applications. We demonstrate that the eigenvalue patterns of these matrices reveal fundamental distinctions between prime and composite numbers, leading to a deterministic primality test. Our approach leverages the relationship between primitive roots of unity, Galois theory, and the factorization of cyclotomic polynomials. We provide comprehensive experimental validation across various ranges of integers, discuss practical implementation considerations, and analyze the computational complexity of our method in comparison with established primality tests. The visual interpretation of our mathematical framework provides intuitive understanding of the algebraic structures that distinguish prime numbers. Our experimental validation demonstrates that our approach offers a deterministic alternative to existing methods, with performance characteristics reflecting its algebraic foundations.

Authors:Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, Hongsheng Li
Title: T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Abstract:
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1

Authors:Tiange Luo, Lajanugen Logeswaran, Justin Johnson, Honglak Lee
Title: Visual Test-time Scaling for GUI Agent Grounding
Abstract:
We introduce RegionFocus, a visual test-time scaling approach for Vision Language Model Agents. Understanding webpages is challenging due to the visual complexity of GUI images and the large number of interface elements, making accurate action selection difficult. Our approach dynamically zooms in on relevant regions, reducing background clutter and improving grounding accuracy. To support this process, we propose an image-as-map mechanism that visualizes key landmarks at each step, providing a transparent action record and enables the agent to effectively choose among action candidates. Even with a simple region selection strategy, we observe significant performance gains of 28+\% on Screenspot-pro and 24+\% on WebVoyager benchmarks on top of two state-of-the-art open vision language model agents, UI-TARS and Qwen2.5-VL, highlighting the effectiveness of visual test-time scaling in interactive settings. We achieve a new state-of-the-art grounding performance of 61.6\% on the ScreenSpot-Pro benchmark by applying RegionFocus to a Qwen2.5-VL-72B model. Our code will be released publicly at https://github.com/tiangeluo/RegionFocus.

Authors:Arsha Nagrani, Sachit Menon, Ahmet Iscen, Shyamal Buch, Ramin Mehran, Nilpa Jha, Anja Hauth, Yukun Zhu, Carl Vondrick, Mikhail Sirotenko, Cordelia Schmid, Tobias Weyand
Title: MINERVA: Evaluating Complex Video Reasoning
Abstract:
Multimodal LLMs are turning their focus to video benchmarks, however most video benchmarks only provide outcome supervision, with no intermediate or interpretable reasoning steps. This makes it challenging to assess if models are truly able to combine perceptual and temporal information to reason about videos, or simply get the correct answer by chance or by exploiting linguistic biases. To remedy this, we provide a new video reasoning dataset called MINERVA for modern multimodal models. Each question in the dataset comes with 5 answer choices, as well as detailed, hand-crafted reasoning traces. Our dataset is multimodal, diverse in terms of video domain and length, and consists of complex multi-step questions. Extensive benchmarking shows that our dataset provides a challenge for frontier open-source and proprietary models. We perform fine-grained error analysis to identify common failure modes across various models, and create a taxonomy of reasoning errors. We use this to explore both human and LLM-as-a-judge methods for scoring video reasoning traces, and find that failure modes are primarily related to temporal localization, followed by visual perception errors, as opposed to logical or completeness errors. The dataset, along with questions, answer candidates and reasoning traces will be publicly available under https://github.com/google-deepmind/neptune?tab=readme-ov-file\#minerva.

Authors:Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata, Kam-Fai Wong, Jeff Z. Pan
Title: Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions
Abstract:
Memory is a fundamental component of AI systems, underpinning large language models (LLMs)-based agents. While prior surveys have focused on memory applications with LLMs (e.g., enabling personalized memory in conversational agents), they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric and contextual forms, and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future research\footnote{The paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI}{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.

Authors:Wenkai Yang, Jingwen Chen, Yankai Lin, Ji-Rong Wen
Title: DeepCritic: Deliberate Critique with Large Language Models
Abstract:
As Large Language Models (LLMs) are rapidly evolving, providing accurate feedback and scalable oversight on their outputs becomes an urgent and critical problem. Leveraging LLMs as critique models to achieve automated supervision is a promising solution. In this work, we focus on studying and enhancing the math critique ability of LLMs. Current LLM critics provide critiques that are too shallow and superficial on each step, leading to low judgment accuracy and struggling to offer sufficient feedback for the LLM generator to correct mistakes. To tackle this issue, we propose a novel and effective two-stage framework to develop LLM critics that are capable of deliberately critiquing on each reasoning step of math solutions. In the first stage, we utilize Qwen2.5-72B-Instruct to generate 4.5K long-form critiques as seed data for supervised fine-tuning. Each seed critique consists of deliberate step-wise critiques that includes multi-perspective verifications as well as in-depth critiques of initial critiques for each reasoning step. Then, we perform reinforcement learning on the fine-tuned model with either existing human-labeled data from PRM800K or our automatically annotated data obtained via Monte Carlo sampling-based correctness estimation, to further incentivize its critique ability. Our developed critique model built on Qwen2.5-7B-Instruct not only significantly outperforms existing LLM critics (including the same-sized DeepSeek-R1-distill models and GPT-4o) on various error identification benchmarks, but also more effectively helps the LLM generator refine erroneous steps through more detailed feedback.

Authors:Atahan Karagoz
Title: OmicsCL: Unsupervised Contrastive Learning for Cancer Subtype Discovery and Survival Stratification
Abstract:
Unsupervised learning of disease subtypes from multi-omics data presents a significant opportunity for advancing personalized medicine. We introduce OmicsCL, a modular contrastive learning framework that jointly embeds heterogeneous omics modalities-such as gene expression, DNA methylation, and miRNA expression-into a unified latent space. Our method incorporates a survival-aware contrastive loss that encourages the model to learn representations aligned with survival-related patterns, without relying on labeled outcomes. Evaluated on the TCGA BRCA dataset, OmicsCL uncovers clinically meaningful clusters and achieves strong unsupervised concordance with patient survival. The framework demonstrates robustness across hyperparameter configurations and can be tuned to prioritize either subtype coherence or survival stratification. Ablation studies confirm that integrating survival-aware loss significantly enhances the predictive power of learned embeddings. These results highlight the promise of contrastive objectives for biological insight discovery in high-dimensional, heterogeneous omics data.

Authors:Marco Braga, Pranav Kasela, Alessandro Raganato, Gabriella Pasi
Title: Investigating Task Arithmetic for Zero-Shot Information Retrieval
Abstract:
Large Language Models (LLMs) have shown impressive zero-shot performance across a variety of Natural Language Processing tasks, including document re-ranking. However, their effectiveness degrades on unseen tasks and domains, largely due to shifts in vocabulary and word distributions. In this paper, we investigate Task Arithmetic, a technique that combines the weights of LLMs pre-trained on different tasks or domains via simple mathematical operations, such as addition or subtraction, to adapt retrieval models without requiring additional fine-tuning. Our method is able to synthesize diverse tasks and domain knowledge into a single model, enabling effective zero-shot adaptation in different retrieval contexts. Extensive experiments on publicly available scientific, biomedical, and multilingual datasets show that our method improves state-of-the-art re-ranking performance by up to 18% in NDCG@10 and 15% in P@10. In addition to these empirical gains, our analysis provides insights into the strengths and limitations of Task Arithmetic as a practical strategy for zero-shot learning and model adaptation. We make our code publicly available at https://github.com/DetectiveMB/Task-Arithmetic-for-ZS-IR.

Authors:Muyi Bao, Shuchang Lyu, Zhaoyang Xu, Huiyu Zhou, Jinchang Ren, Shiming Xiang, Xiangtai Li, Guangliang Cheng
Title: Vision Mamba in Remote Sensing: A Comprehensive Survey of Techniques, Applications and Outlook
Abstract:
Deep learning has profoundly transformed remote sensing, yet prevailing architectures like Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) remain constrained by critical trade-offs: CNNs suffer from limited receptive fields, while ViTs grapple with quadratic computational complexity, hindering their scalability for high-resolution remote sensing data. State Space Models (SSMs), particularly the recently proposed Mamba architecture, have emerged as a paradigm-shifting solution, combining linear computational scaling with global context modeling. This survey presents a comprehensive review of Mamba-based methodologies in remote sensing, systematically analyzing about 120 Mamba-based remote sensing studies to construct a holistic taxonomy of innovations and applications. Our contributions are structured across five dimensions: (i) foundational principles of vision Mamba architectures, (ii) micro-architectural advancements such as adaptive scan strategies and hybrid SSM formulations, (iii) macro-architectural integrations, including CNN-Transformer-Mamba hybrids and frequency-domain adaptations, (iv) rigorous benchmarking against state-of-the-art methods in multiple application tasks, such as object detection, semantic segmentation, change detection, etc. and (v) critical analysis of unresolved challenges with actionable future directions. By bridging the gap between SSM theory and remote sensing practice, this survey establishes Mamba as a transformative framework for remote sensing analysis. To our knowledge, this paper is the first systematic review of Mamba architectures in remote sensing. Our work provides a structured foundation for advancing research in remote sensing systems through SSM-based methods. We curate an open-source repository (https://github.com/BaoBao0926/Awesome-Mamba-in-Remote-Sensing) to foster community-driven advancements.

Authors:Haozheng Luo, Chenghao Qiu, Maojiang Su, Zhihan Zhou, Zoe Mehta, Guo Ye, Jerry Yao-Chieh Hu, Han Liu
Title: Fast and Low-Cost Genomic Foundation Models via Outlier Removal
Abstract:
To address the challenge of scarce computational resources in genomic modeling, we introduce GERM, a genomic foundation model with strong compression performance and fast adaptability. GERM improves upon models like DNABERT-2 by eliminating outliers that hinder low-rank adaptation and post-training quantization, enhancing both efficiency and robustness. We replace the vanilla attention layer with an outlier-free mechanism inspired by associative memory models. By removing outliers during both pre-training and fine-tuning, this approach accelerates adaptation, reduces computational costs, and enhances quantization robustness within acceptable loss margins. Additionally, we propose GERM-T, a strategy that employs small-step continual learning within the outlier-free framework, leveraging original checkpoints to avoid retraining from scratch. Empirically, GERM improves fine-tuning performance by 37.98% and quantization by 64.34% over the baseline model. It also reduces average kurtosis by 92.14% and maximum infinity norm by 82.77%. Compared to leading methods, GERM consistently delivers superior performance, offering a practical solution for genomic modeling in resource-constrained settings. Code is available at https://github.com/MAGICS-LAB/GERM.

Authors:Alex Schutz, Yang You, Matias Mattamala, Ipek Caliskanelli, Bruno Lacerda, Nick Hawes
Title: A Finite-State Controller Based Offline Solver for Deterministic POMDPs
Abstract:
Deterministic partially observable Markov decision processes (DetPOMDPs) often arise in planning problems where the agent is uncertain about its environmental state but can act and observe deterministically. In this paper, we propose DetMCVI, an adaptation of the Monte Carlo Value Iteration (MCVI) algorithm for DetPOMDPs, which builds policies in the form of finite-state controllers (FSCs). DetMCVI solves large problems with a high success rate, outperforming existing baselines for DetPOMDPs. We also verify the performance of the algorithm in a real-world mobile robot forest mapping scenario.

Authors:Lucas Robinet, Ahmad Berjaoui, Elizabeth Cohen-Jonathan Moyal
Title: Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities
Abstract:
Multimodal magnetic resonance imaging (MRI) constitutes the first line of investigation for clinicians in the care of brain tumors, providing crucial insights for surgery planning, treatment monitoring, and biomarker identification. Pre-training on large datasets have been shown to help models learn transferable representations and adapt with minimal labeled data. This behavior is especially valuable in medical imaging, where annotations are often scarce. However, applying this paradigm to multimodal medical data introduces a challenge: most existing approaches assume that all imaging modalities are available during both pre-training and fine-tuning. In practice, missing modalities often occur due to acquisition issues, specialist unavailability, or specific experimental designs on small in-house datasets. Consequently, a common approach involves training a separate model for each desired modality combination, making the process both resource-intensive and impractical for clinical use. Therefore, we introduce BM-MAE, a masked image modeling pre-training strategy tailored for multimodal MRI data. The same pre-trained model seamlessly adapts to any combination of available modalities, extracting rich representations that capture both intra- and inter-modal information. This allows fine-tuning on any subset of modalities without requiring architectural changes, while still benefiting from a model pre-trained on the full set of modalities. Extensive experiments show that the proposed pre-training strategy outperforms or remains competitive with baselines that require separate pre-training for each modality subset, while substantially surpassing training from scratch on several downstream tasks. Additionally, it can quickly and efficiently reconstruct missing modalities, highlighting its practical value. Code and trained models are available at: https://github.com/Lucas-rbnt/BM-MAE

Authors:Jorgen Cani, Christos Diou, Spyridon Evangelatos, Panagiotis Radoglou-Grammatikis, Vasileios Argyriou, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos
Title: X-ray illicit object detection using hybrid CNN-transformer neural network architectures
Abstract:
In the field of X-ray security applications, even the smallest details can significantly impact outcomes. Objects that are heavily occluded or intentionally concealed pose a great challenge for detection, whether by human observation or through advanced technological applications. While certain Deep Learning (DL) architectures demonstrate strong performance in processing local information, such as Convolutional Neural Networks (CNNs), others excel in handling distant information, e.g., transformers. In X-ray security imaging the literature has been dominated by the use of CNN-based methods, while the integration of the two aforementioned leading architectures has not been sufficiently explored. In this paper, various hybrid CNN-transformer architectures are evaluated against a common CNN object detection baseline, namely YOLOv8. In particular, a CNN (HGNetV2) and a hybrid CNN-transformer (Next-ViT-S) backbone are combined with different CNN/transformer detection heads (YOLOv8 and RT-DETR). The resulting architectures are comparatively evaluated on three challenging public X-ray inspection datasets, namely EDS, HiXray, and PIDray. Interestingly, while the YOLOv8 detector with its default backbone (CSP-DarkNet53) is generally shown to be advantageous on the HiXray and PIDray datasets, when a domain distribution shift is incorporated in the X-ray images (as happens in the EDS datasets), hybrid CNN-transformer architectures exhibit increased robustness. Detailed comparative evaluation results, including object-level detection performance and object-size error analysis, demonstrate the strengths and weaknesses of each architectural combination and suggest guidelines for future research. The source code and network weights of the models employed in this study are available at https://github.com/jgenc/xray-comparative-evaluation.

Authors:Yue Meng, Chuchu Fan
Title: TeLoGraF: Temporal Logic Planning via Graph-encoded Flow Matching
Abstract:
Learning to solve complex tasks with signal temporal logic (STL) specifications is crucial to many real-world applications. However, most previous works only consider fixed or parametrized STL specifications due to the lack of a diverse STL dataset and encoders to effectively extract temporal logic information for downstream tasks. In this paper, we propose TeLoGraF, Temporal Logic Graph-encoded Flow, which utilizes Graph Neural Networks (GNN) encoder and flow-matching to learn solutions for general STL specifications. We identify four commonly used STL templates and collect a total of 200K specifications with paired demonstrations. We conduct extensive experiments in five simulation environments ranging from simple dynamical models in the 2D space to high-dimensional 7DoF Franka Panda robot arm and Ant quadruped navigation. Results show that our method outperforms other baselines in the STL satisfaction rate. Compared to classical STL planning algorithms, our approach is 10-100X faster in inference and can work on any system dynamics. Besides, we show our graph-encoding method's capability to solve complex STLs and robustness to out-distribution STL specifications. Code is available at https://github.com/mengyuest/TeLoGraF

Authors:Chanwoo Kim, Jinkyu Sung, Yebonn Han, Joonseok Lee
Title: Graph Spectral Filtering with Chebyshev Interpolation for Recommendation
Abstract:
Graph convolutional networks have recently gained prominence in collaborative filtering (CF) for recommendations. However, we identify potential bottlenecks in two foundational components. First, the embedding layer leads to a latent space with limited capacity, overlooking locally observed but potentially valuable preference patterns. Also, the widely-used neighborhood aggregation is limited in its ability to leverage diverse preference patterns in a fine-grained manner. Building on spectral graph theory, we reveal that these limitations stem from graph filtering with a cut-off in the frequency spectrum and a restricted linear form. To address these issues, we introduce ChebyCF, a CF framework based on graph spectral filtering. Instead of a learned embedding, it takes a user's raw interaction history to utilize the full spectrum of signals contained in it. Also, it adopts Chebyshev interpolation to effectively approximate a flexible non-linear graph filter, and further enhances it by using an additional ideal pass filter and degree-based normalization. Through extensive experiments, we verify that ChebyCF overcomes the aforementioned bottlenecks and achieves state-of-the-art performance across multiple benchmarks and reasonably fast inference. Our code is available at https://github.com/chanwoo0806/ChebyCF.

Authors:Qingyuan Wu, Yuhui Wang, Simon Sinong Zhan, Yixuan Wang, Chung-Wei Lin, Chen Lv, Qi Zhu, Jürgen Schmidhuber, Chao Huang
Title: Directly Forecasting Belief for Reinforcement Learning with Delays
Abstract:
Reinforcement learning (RL) with delays is challenging as sensory perceptions lag behind the actual events: the RL agent needs to estimate the real state of its environment based on past observations. State-of-the-art (SOTA) methods typically employ recursive, step-by-step forecasting of states. This can cause the accumulation of compounding errors. To tackle this problem, our novel belief estimation method, named Directly Forecasting Belief Transformer (DFBT), directly forecasts states from observations without incrementally estimating intermediate states step-by-step. We theoretically demonstrate that DFBT greatly reduces compounding errors of existing recursively forecasting methods, yielding stronger performance guarantees. In experiments with D4RL offline datasets, DFBT reduces compounding errors with remarkable prediction accuracy. DFBT's capability to forecast state sequences also facilitates multi-step bootstrapping, thus greatly improving learning efficiency. On the MuJoCo benchmark, our DFBT-based method substantially outperforms SOTA baselines. Code is available at https://github.com/QingyuanWuNothing/DFBT.

Authors:Jeremias Ferrao, Luhan Mikaelson, Keenan Pepper, Natalia Perez-Campanero Antolin
Title: Self-Ablating Transformers: More Interpretability, Less Sparsity
Abstract:
A growing intuition in machine learning suggests a link between sparsity and interpretability. We introduce a novel self-ablation mechanism to investigate this connection ante-hoc in the context of language transformers. Our approach dynamically enforces a k-winner-takes-all constraint, forcing the model to demonstrate selective activation across neuron and attention units. Unlike post-hoc methods that analyze already-trained models, our approach integrates interpretability directly into model training, promoting feature localization from inception. Training small models on the TinyStories dataset and employing interpretability tests, we find that self-ablation leads to more localized circuits, concentrated feature representations, and increased neuron specialization without compromising language modelling performance. Surprisingly, our method also decreased overall sparsity, indicating that self-ablation promotes specialization rather than widespread inactivity. This reveals a complex interplay between sparsity and interpretability, where decreased global sparsity can coexist with increased local specialization, leading to enhanced interpretability. To facilitate reproducibility, we make our code available at https://github.com/keenanpepper/self-ablating-transformers.

Authors:Kwon Byung-Ki, Qi Dai, Lee Hyoseok, Chong Luo, Tae-Hyun Oh
Title: JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers
Abstract:
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, namely, adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timesteps of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a viable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.

Authors:Thomas Flinkow, Marco Casadio, Colin Kessler, Rosemary Monahan, Ekaterina Komendantskaya
Title: A General Framework for Property-Driven Machine Learning
Abstract:
Neural networks have been shown to frequently fail to learn critical safety and correctness properties purely from data, highlighting the need for training methods that directly integrate logical specifications. While adversarial training can be used to improve robustness to small perturbations within $ε$-cubes, domains other than computer vision -- such as control systems and natural language processing -- may require more flexible input region specifications via generalised hyper-rectangles. Differentiable logics offer a way to encode arbitrary logical constraints as additional loss terms that guide the learning process towards satisfying these constraints. In this paper, we investigate how these two complementary approaches can be unified within a single framework for property-driven machine learning, as a step toward effective formal verification of neural networks. We show that well-known properties from the literature are subcases of this general approach, and we demonstrate its practical effectiveness on a case study involving a neural network controller for a drone system. Our framework is made publicly available at https://github.com/tflinkow/property-driven-ml.

Authors:Fabian Woller, Lis Arend, Christian Fuchsberger, Markus List, David B. Blumenthal
Title: NApy: Efficient Statistics in Python for Large-Scale Heterogeneous Data with Enhanced Support for Missing Data
Abstract:
Existing Python libraries and tools lack the ability to efficiently compute statistical test results for large datasets in the presence of missing values. This presents an issue as soon as constraints on runtime and memory availability become essential considerations for a particular usecase. Relevant research areas where such limitations arise include interactive tools and databases for exploratory analysis of biomedical data. To address this problem, we present the Python package NApy, which relies on a Numba and C++ backend with OpenMP parallelization to enable scalable statistical testing for mixed-type datasets in the presence of missing values. Both with respect to runtime and memory consumption, NApy outperforms competitor tools and baseline implementations with naive Python-based parallelization by orders of magnitude, thereby enabling on-the-fly analyses in interactive applications. NApy is publicly available at https://github.com/DyHealthNet/NApy.

Authors:Chenhao Xu, Longxiang Gao, Yuan Miao, Xi Zheng
Title: Distributed Retrieval-Augmented Generation
Abstract:
As large language models (LLMs) become increasingly adopted on edge devices, Retrieval-Augmented Generation (RAG) is gaining prominence as a solution to address factual deficiencies and hallucinations by integrating external knowledge. However, centralized RAG architectures face significant challenges in data privacy and scalability. For instance, smart healthcare services often rely on collecting sensitive patient data and building a centralized knowledge base to provide better diagnosis and treatment advice, while privacy concerns significantly impede this process. Besides, maintaining a comprehensive and continuously updated knowledge base is costly, particularly in response to regional epidemics and rapidly mutating viruses. To address these challenges, this paper introduces Distributed Retrieval-Augmented Generation (DRAG), a novel framework that improves data privacy by eliminating the need for a centralized knowledge base and restoring data control to owners. DRAG incorporates a Topic-Aware Random Walk (TARW) algorithm that leverages LLMs to extract query topics and facilitate targeted peer discovery within a peer-to-peer network, enabling efficient knowledge retrieval in decentralized environments. Extensive experiments across three diverse datasets and LLMs demonstrate that DRAG with TARW achieves near-centralized RAG performance by using half as many messages as flooding. The code is available at https://github.com/xuchenhao001/DRAG.

Authors:Sindre M. Hegre, Welf Rehberg, Mihir Kulkarni, Kostas Alexis
Title: A Neural Network Mode for PX4 on Embedded Flight Controllers
Abstract:
This paper contributes an open-sourced implementation of a neural-network based controller framework within the PX4 stack. We develop a custom module for inference on the microcontroller while retaining all of the functionality of the PX4 autopilot. Policies trained in the Aerial Gym Simulator are converted to the TensorFlow Lite format and then built together with PX4 and flashed to the flight controller. The policies substitute the control-cascade within PX4 to offer an end-to-end position-setpoint tracking controller directly providing normalized motor RPM setpoints. Experiments conducted in simulation and the real-world show similar tracking performance. We thus provide a flight-ready pipeline for testing neural control policies in the real world. The pipeline simplifies the deployment of neural networks on embedded flight controller hardware thereby accelerating research on learning-based control. Both the Aerial Gym Simulator and the PX4 module are open-sourced at https://github.com/ntnu-arl/aerial_gym_simulator and https://github.com/SindreMHegre/PX4-Autopilot-public/tree/for_paper. Video: https://youtu.be/lY1OKz_UOqM?si=VtzL243BAY3lblTJ.

Authors:Ruiyuan Zhang, Qi Wang, Jiaxiang Liu, Yu Zhang, Yuchi Huo, Chao Wu
Title: Leveraging Pretrained Diffusion Models for Zero-Shot Part Assembly
Abstract:
3D part assembly aims to understand part relationships and predict their 6-DoF poses to construct realistic 3D shapes, addressing the growing demand for autonomous assembly, which is crucial for robots. Existing methods mainly estimate the transformation of each part by training neural networks under supervision, which requires a substantial quantity of manually labeled data. However, the high cost of data collection and the immense variability of real-world shapes and parts make traditional methods impractical for large-scale applications. In this paper, we propose first a zero-shot part assembly method that utilizes pre-trained point cloud diffusion models as discriminators in the assembly process, guiding the manipulation of parts to form realistic shapes. Specifically, we theoretically demonstrate that utilizing a diffusion model for zero-shot part assembly can be transformed into an Iterative Closest Point (ICP) process. Then, we propose a novel pushing-away strategy to address the overlap parts, thereby further enhancing the robustness of the method. To verify our work, we conduct extensive experiments and quantitative comparisons to several strong baseline methods, demonstrating the effectiveness of the proposed approach, which even surpasses the supervised learning method. The code has been released on https://github.com/Ruiyuan-Zhang/Zero-Shot-Assembly.

Authors:Wenxuan Liu, Yao Deng, Kang Chen, Xian Zhong, Zhaofei Yu, Tiejun Huang
Title: SOTA: Spike-Navigated Optimal TrAnsport Saliency Region Detection in Composite-bias Videos
Abstract:
Existing saliency detection methods struggle in real-world scenarios due to motion blur and occlusions. In contrast, spike cameras, with their high temporal resolution, significantly enhance visual saliency maps. However, the composite noise inherent to spike camera imaging introduces discontinuities in saliency detection. Low-quality samples further distort model predictions, leading to saliency bias. To address these challenges, we propose Spike-navigated Optimal TrAnsport Saliency Region Detection (SOTA), a framework that leverages the strengths of spike cameras while mitigating biases in both spatial and temporal dimensions. Our method introduces Spike-based Micro-debias (SM) to capture subtle frame-to-frame variations and preserve critical details, even under minimal scene or lighting changes. Additionally, Spike-based Global-debias (SG) refines predictions by reducing inconsistencies across diverse conditions. Extensive experiments on real and synthetic datasets demonstrate that SOTA outperforms existing methods by eliminating composite noise bias. Our code and dataset will be released at https://github.com/lwxfight/sota.

Authors:Feng Xue, Wenzhuang Xu, Guofeng Zhong, Anlong Minga, Nicu Sebe
Title: Cues3D: Unleashing the Power of Sole NeRF for Consistent and Unique Instances in Open-Vocabulary 3D Panoptic Segmentation
Abstract:
Open-vocabulary 3D panoptic segmentation has recently emerged as a significant trend. Top-performing methods currently integrate 2D segmentation with geometry-aware 3D primitives. However, the advantage would be lost without high-fidelity 3D point clouds, such as methods based on Neural Radiance Field (NeRF). These methods are limited by the insufficient capacity to maintain consistency across partial observations. To address this, recent works have utilized contrastive loss or cross-view association pre-processing for view consensus. In contrast to them, we present Cues3D, a compact approach that relies solely on NeRF instead of pre-associations. The core idea is that NeRF's implicit 3D field inherently establishes a globally consistent geometry, enabling effective object distinction without explicit cross-view supervision. We propose a three-phase training framework for NeRF, initialization-disambiguation-refinement, whereby the instance IDs are corrected using the initially-learned knowledge. Additionally, an instance disambiguation method is proposed to match NeRF-rendered 3D masks and ensure globally unique 3D instance identities. With the aid of Cues3D, we obtain highly consistent and unique 3D instance ID for each object across views with a balanced version of NeRF. Our experiments are conducted on ScanNet v2, ScanNet200, ScanNet++, and Replica datasets for 3D instance, panoptic, and semantic segmentation tasks. Cues3D outperforms other 2D image-based methods and competes with the latest 2D-3D merging based methods, while even surpassing them when using additional 3D point clouds. The code link could be found in the appendix and will be released on \href{https://github.com/mRobotit/Cues3D}{github}

Authors:Usman Muhammad, Jorma Laaksonen, Lyudmila Mihaylova
Title: Towards Lightweight Hyperspectral Image Super-Resolution with Depthwise Separable Dilated Convolutional Network
Abstract:
Deep neural networks have demonstrated highly competitive performance in super-resolution (SR) for natural images by learning mappings from low-resolution (LR) to high-resolution (HR) images. However, hyperspectral super-resolution remains an ill-posed problem due to the high spectral dimensionality of the data and the scarcity of available training samples. Moreover, existing methods often rely on large models with a high number of parameters or require the fusion with panchromatic or RGB images, both of which are often impractical in real-world scenarios. Inspired by the MobileNet architecture, we introduce a lightweight depthwise separable dilated convolutional network (DSDCN) to address the aforementioned challenges. Specifically, our model leverages multiple depthwise separable convolutions, similar to the MobileNet architecture, and further incorporates a dilated convolution fusion block to make the model more flexible for the extraction of both spatial and spectral features. In addition, we propose a custom loss function that combines mean squared error (MSE), an L2 norm regularization-based constraint, and a spectral angle-based loss, ensuring the preservation of both spectral and spatial details. The proposed model achieves very competitive performance on two publicly available hyperspectral datasets, making it well-suited for hyperspectral image super-resolution tasks. The source codes are publicly available at: \href{https://github.com/Usman1021/lightweight}{https://github.com/Usman1021/lightweight}.

Authors:Yu-Hsiang Lan, Eric K. Oermann
Title: Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations
Abstract:
There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.

Authors:Zhijie Qiao, Haowei Li, Zhong Cao, Henry X. Liu
Title: LightEMMA: Lightweight End-to-End Multimodal Model for Autonomous Driving
Abstract:
Vision-Language Models (VLMs) have demonstrated significant potential for end-to-end autonomous driving. However, the field still lacks a practical platform that enables dynamic model updates, rapid validation, fair comparison, and intuitive performance assessment. To that end, we introduce LightEMMA, a Lightweight End-to-End Multimodal Model for Autonomous driving. LightEMMA provides a unified, VLM-based autonomous driving framework without ad hoc customizations, enabling easy integration with evolving state-of-the-art commercial and open-source models. We construct twelve autonomous driving agents using various VLMs and evaluate their performance on the challenging nuScenes prediction task, comprehensively assessing computational metrics and providing critical insights. Illustrative examples show that, although VLMs exhibit strong scenario interpretation capabilities, their practical performance in autonomous driving tasks remains a concern. Additionally, increased model complexity and extended reasoning do not necessarily lead to better performance, emphasizing the need for further improvements and task-specific designs. The code is available at https://github.com/michigan-traffic-lab/LightEMMA.

Authors:Shingo Higashiguchi, Yasuko Matsubara, Koki Kawabata, Taichi Murayama, Yasushi Sakurai
Title: D-Tracker: Modeling Interest Diffusion in Social Activity Tensor Data Streams
Abstract:
Large quantities of social activity data, such as weekly web search volumes and the number of new infections with infectious diseases, reflect peoples' interests and activities. It is important to discover temporal patterns from such data and to forecast future activities accurately. However, modeling and forecasting social activity data streams is difficult because they are high-dimensional and composed of multiple time-varying dynamics such as trends, seasonality, and interest diffusion. In this paper, we propose D-Tracker, a method for continuously capturing time-varying temporal patterns within social activity tensor data streams and forecasting future activities. Our proposed method has the following properties: (a) Interpretable: it incorporates the partial differential equation into a tensor decomposition framework and captures time-varying temporal patterns such as trends, seasonality, and interest diffusion between locations in an interpretable manner; (b) Automatic: it has no hyperparameters and continuously models tensor data streams fully automatically; (c) Scalable: the computation time of D-Tracker is independent of the time series length. Experiments using web search volume data obtained from GoogleTrends, and COVID-19 infection data obtained from COVID-19 Open Data Repository show that our method can achieve higher forecasting accuracy in less computation time than existing methods while extracting the interest diffusion between locations. Our source code and datasets are available at {https://github.com/Higashiguchi-Shingo/D-Tracker.

Authors:Xiaoxia Xu, Xidong Mu, Zhaolin Wang, Yuanwei Liu, Arumugam Nallanathan
Title: Pinching-Antenna Systems (PASS): Power Radiation Model and Optimal Beamforming Design
Abstract:
Pinching-antenna systems (PASS) improve wireless links by configuring the locations of activated pinching antennas along dielectric waveguides, namely pinching beamforming. In this paper, a novel adjustable power radiation model is proposed for PASS, where power radiation ratios of pinching antennas can be flexibly controlled by tuning the spacing between pinching antennas and waveguides. A closed-form pinching antenna spacing arrangement strategy is derived to achieve the commonly assumed equal-power radiation. Based on this, a practical PASS framework relying on discrete activation is considered, where pinching antennas can only be activated among a set of predefined locations. A transmit power minimization problem is formulated, which jointly optimizes the transmit beamforming, pinching beamforming, and the numbers of activated pinching antennas, subject to each user's minimum rate requirement. (1) To solve the resulting highly coupled mixed-integer nonlinear programming (MINLP) problem, branch-and-bound (BnB)-based algorithms are proposed for both single-user and multi-user scenarios, which is guaranteed to converge to globally optimal solutions. (2) A low-complexity many-to-many matching algorithm is further developed. Combined with the Karush-Kuhn-Tucker (KKT) theory, locally optimal and pairwise-stable solutions are obtained within polynomial-time complexity. Simulation results demonstrate that: (i) PASS significantly outperforms conventional multi-antenna architectures, particularly when the number of users and the spatial range increase; and (ii) The proposed matching-based algorithm achieves near-optimal performance, resulting in only a slight performance loss while significantly reducing computational overheads. Code is available at https://github.com/xiaoxiaxusummer/PASS_Discrete

Authors:Xiaoxia Xu, Xidong Mu, Zhaolin Wang, Yuanwei Liu, Arumugam Nallanathan
Title: Pinching-Antenna Systems (PASS): Power Radiation Model and Optimal Beamforming Design
Abstract:
Pinching-antenna systems (PASS) improve wireless links by configuring the locations of activated pinching antennas along dielectric waveguides, namely pinching beamforming. In this paper, a novel adjustable power radiation model is proposed for PASS, where power radiation ratios of pinching antennas can be flexibly controlled by tuning the spacing between pinching antennas and waveguides. A closed-form pinching antenna spacing arrangement strategy is derived to achieve the commonly assumed equal-power radiation. Based on this, a practical PASS framework relying on discrete activation is considered, where pinching antennas can only be activated among a set of predefined locations. A transmit power minimization problem is formulated, which jointly optimizes the transmit beamforming, pinching beamforming, and the numbers of activated pinching antennas, subject to each user's minimum rate requirement. (1) To solve the resulting highly coupled mixed-integer nonlinear programming (MINLP) problem, branch-and-bound (BnB)-based algorithms are proposed for both single-user and multi-user scenarios, which is guaranteed to converge to globally optimal solutions. (2) A low-complexity many-to-many matching algorithm is further developed. Combined with the Karush-Kuhn-Tucker (KKT) theory, locally optimal and pairwise-stable solutions are obtained within polynomial-time complexity. Simulation results demonstrate that: (i) PASS significantly outperforms conventional multi-antenna architectures, particularly when the number of users and the spatial range increase; and (ii) The proposed matching-based algorithm achieves near-optimal performance, resulting in only a slight performance loss while significantly reducing computational overheads. Code is available at https://github.com/xiaoxiaxusummer/PASS_Discrete

Authors:Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li, Chi Wang, Huazheng Wang, Yiran Chen, Qingyun Wu
Title: Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems
Abstract:
Failure attribution in LLM multi-agent systems-identifying the agent and step responsible for task failures-provides crucial clues for systems debugging but remains underexplored and labor-intensive. In this paper, we propose and formulate a new research area: automated failure attribution for LLM multi-agent systems. To support this initiative, we introduce the Who&When dataset, comprising extensive failure logs from 127 LLM multi-agent systems with fine-grained annotations linking failures to specific agents and decisive error steps. Using the Who&When, we develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons. The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps, with some methods performing below random. Even SOTA reasoning models, such as OpenAI o1 and DeepSeek R1, fail to achieve practical usability. These results highlight the task's complexity and the need for further research in this area. Code and dataset are available at https://github.com/mingyin1/Agents_Failure_Attribution

Authors:Filipp Nikitin, Ian Dunn, David Ryan Koes, Olexandr Isayev
Title: GEOM-Drugs Revisited: Toward More Chemically Accurate Benchmarks for 3D Molecule Generation
Abstract:
Deep generative models have shown significant promise in generating valid 3D molecular structures, with the GEOM-Drugs dataset serving as a key benchmark. However, current evaluation protocols suffer from critical flaws, including incorrect valency definitions, bugs in bond order calculations, and reliance on force fields inconsistent with the reference data. In this work, we revisit GEOM-Drugs and propose a corrected evaluation framework: we identify and fix issues in data preprocessing, construct chemically accurate valency tables, and introduce a GFN2-xTB-based geometry and energy benchmark. We retrain and re-evaluate several leading models under this framework, providing updated performance metrics and practical recommendations for future benchmarking. Our results underscore the need for chemically rigorous evaluation practices in 3D molecular generation. Our recommended evaluation methods and GEOM-Drugs processing scripts are available at https://github.com/isayevlab/geom-drugs-3dgen-evaluation.

Authors:Zheng Zhang, Jinyi Li, Yihuai Lan, Xiang Wang, Hao Wang
Title: An Empirical Study on Prompt Compression for Large Language Models
Abstract:
Prompt engineering enables Large Language Models (LLMs) to perform a variety of tasks. However, lengthy prompts significantly increase computational complexity and economic costs. To address this issue, we study six prompt compression methods for LLMs, aiming to reduce prompt length while maintaining LLM response quality. In this paper, we present a comprehensive analysis covering aspects such as generation performance, model hallucinations, efficacy in multimodal tasks, word omission analysis, and more. We evaluate these methods across 13 datasets, including news, scientific articles, commonsense QA, math QA, long-context QA, and VQA datasets. Our experiments reveal that prompt compression has a greater impact on LLM performance in long contexts compared to short ones. In the Longbench evaluation, moderate compression even enhances LLM performance. Our code and data is available at https://github.com/3DAgentWorld/Toolkit-for-Prompt-Compression.

Authors:Vinit K. Chavan
Title: Manifold-Constrained Sentence Embeddings via Triplet Loss: Projecting Semantics onto Spheres, Tori, and Möbius Strips
Abstract:
Recent advances in representation learning have emphasized the role of embedding geometry in capturing semantic structure. Traditional sentence embeddings typically reside in unconstrained Euclidean spaces, which may limit their ability to reflect complex relationships in language. In this work, we introduce a novel framework that constrains sentence embeddings to lie on continuous manifolds -- specifically the unit sphere, torus, and Möbius strip -- using triplet loss as the core training objective. By enforcing differential geometric constraints on the output space, our approach encourages the learning of embeddings that are both discriminative and topologically structured. We evaluate our method on benchmark datasets (AG News and MBTI) and compare it to classical baselines including TF-IDF, Word2Vec, and unconstrained Keras-derived embeddings. Our results demonstrate that manifold-constrained embeddings, particularly those projected onto spheres and Möbius strips, significantly outperform traditional approaches in both clustering quality (Silhouette Score) and classification performance (Accuracy). These findings highlight the value of embedding in manifold space -- where topological structure complements semantic separation -- offering a new and mathematically grounded direction for geometric representation learning in NLP.

Authors:Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, Zhicheng Dou
Title: WebThinker: Empowering Large Reasoning Models with Deep Research Capability
Abstract:
Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate impressive long-horizon reasoning capabilities. However, their reliance on static internal knowledge limits their performance on complex, knowledge-intensive tasks and hinders their ability to produce comprehensive research reports requiring synthesis of diverse web information. To address this, we propose \textbf{WebThinker}, a deep research agent that empowers LRMs to autonomously search the web, navigate web pages, and draft research reports during the reasoning process. WebThinker integrates a \textbf{Deep Web Explorer} module, enabling LRMs to dynamically search, navigate, and extract information from the web when encountering knowledge gaps. It also employs an \textbf{Autonomous Think-Search-and-Draft strategy}, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time. To further enhance research tool utilization, we introduce an \textbf{RL-based training strategy} via iterative online Direct Preference Optimization (DPO). Extensive experiments on complex reasoning benchmarks (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive) demonstrate that WebThinker significantly outperforms existing methods and strong proprietary systems. Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems. The code is available at https://github.com/RUC-NLPIR/WebThinker.

Authors:Jiuwu Hao, Liguo Sun, Yuting Wan, Yueyang Wu, Ti Xiang, Haolin Song, Pin Lv
Title: Is Intermediate Fusion All You Need for UAV-based Collaborative Perception?
Abstract:
Collaborative perception enhances environmental awareness through inter-agent communication and is regarded as a promising solution to intelligent transportation systems. However, existing collaborative methods for Unmanned Aerial Vehicles (UAVs) overlook the unique characteristics of the UAV perspective, resulting in substantial communication overhead. To address this issue, we propose a novel communication-efficient collaborative perception framework based on late-intermediate fusion, dubbed LIF. The core concept is to exchange informative and compact detection results and shift the fusion stage to the feature representation level. In particular, we leverage vision-guided positional embedding (VPE) and box-based virtual augmented feature (BoBEV) to effectively integrate complementary information from various agents. Additionally, we innovatively introduce an uncertainty-driven communication mechanism that uses uncertainty evaluation to select high-quality and reliable shared areas. Experimental results demonstrate that our LIF achieves superior performance with minimal communication bandwidth, proving its effectiveness and practicality. Code and models are available at https://github.com/uestchjw/LIF.

Authors:Junsheng Huang, Zhitao He, Yucheng Huang, Sandeep Polisetty, Qingyun Wang, Yi. R Fung
Title: MAC-Tuning: LLM Multi-Compositional Problem Reasoning with Enhanced Knowledge Boundary Awareness
Abstract:
The hallucination of non-existent facts by LLMs is an important problem given its widespread adoption across various applications. Previous research addresses this problem by analyzing the internal parameterized knowledge boundaries to estimate confidence. However, these studies focus on the single-problem setting and have not explored the more challenging multi-problem setting, which requires accurately answering multiple questions simultaneously. We introduce a novel method for the multi-problem setting, Multiple Answers and Confidence Stepwise Tuning (MAC-Tuning), that separates the learning of answer prediction and confidence estimation during fine-tuning on instruction data. Extensive experiments demonstrate that our method outperforms baselines by up to 25\% in average precision.

Authors:Bahram Jafrasteh, Wei Peng, Cheng Wan, Yimin Luo, Ehsan Adeli, Qingyu Zhao
Title: WASABI: A Metric for Evaluating Morphometric Plausibility of Synthetic Brain MRIs
Abstract:
Generative models enhance neuroimaging through data augmentation, quality improvement, and rare condition studies. Despite advances in realistic synthetic MRIs, evaluations focus on texture and perception, lacking sensitivity to crucial anatomical fidelity. This study proposes a new metric, called WASABI (Wasserstein-Based Anatomical Brain Index), to assess the anatomical realism of synthetic brain MRIs. WASABI leverages \textit{SynthSeg}, a deep learning-based brain parcellation tool, to derive volumetric measures of brain regions in each MRI and uses the multivariate Wasserstein distance to compare distributions between real and synthetic anatomies. Based on controlled experiments on two real datasets and synthetic MRIs from five generative models, WASABI demonstrates higher sensitivity in quantifying anatomical discrepancies compared to traditional image-level metrics, even when synthetic images achieve near-perfect visual quality. Our findings advocate for shifting the evaluation paradigm beyond visual inspection and conventional metrics, emphasizing anatomical fidelity as a crucial benchmark for clinically meaningful brain MRI synthesis. Our code is available at https://github.com/BahramJafrasteh/wasabi-mri.

Authors:Jonas Werner, Kun Chu, Cornelius Weber, Stefan Wermter
Title: LLM-based Interactive Imitation Learning for Robotic Manipulation
Abstract:
Recent advancements in machine learning provide methods to train autonomous agents capable of handling the increasing complexity of sequential decision-making in robotics. Imitation Learning (IL) is a prominent approach, where agents learn to control robots based on human demonstrations. However, IL commonly suffers from violating the independent and identically distributed (i.i.d) assumption in robotic tasks. Interactive Imitation Learning (IIL) achieves improved performance by allowing agents to learn from interactive feedback from human teachers. Despite these improvements, both approaches come with significant costs due to the necessity of human involvement. Leveraging the emergent capabilities of Large Language Models (LLMs) in reasoning and generating human-like responses, we introduce LLM-iTeach -- a novel IIL framework that utilizes an LLM as an interactive teacher to enhance agent performance while alleviating the dependence on human resources. Firstly, LLM-iTeach uses a hierarchical prompting strategy that guides the LLM in generating a policy in Python code. Then, with a designed similarity-based feedback mechanism, LLM-iTeach provides corrective and evaluative feedback interactively during the agent's training. We evaluate LLM-iTeach against baseline methods such as Behavior Cloning (BC), an IL method, and CEILing, a state-of-the-art IIL method using a human teacher, on various robotic manipulation tasks. Our results demonstrate that LLM-iTeach surpasses BC in the success rate and achieves or even outscores that of CEILing, highlighting the potential of LLMs as cost-effective, human-like teachers in interactive learning environments. We further demonstrate the method's potential for generalization by evaluating it on additional tasks. The code and prompts are provided at: https://github.com/Tubicor/LLM-iTeach.

Authors:Ting Qiao, Yingjia Wang, Xing Liu, Sixing Wu, Jianbing Li, Yiming Li
Title: Cert-SSB: Toward Certified Sample-Specific Backdoor Defense
Abstract:
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where an attacker manipulates a small portion of the training data to implant hidden backdoors into the model. The compromised model behaves normally on clean samples but misclassifies backdoored samples into the attacker-specified target class, posing a significant threat to real-world DNN applications. Currently, several empirical defense methods have been proposed to mitigate backdoor attacks, but they are often bypassed by more advanced backdoor techniques. In contrast, certified defenses based on randomized smoothing have shown promise by adding random noise to training and testing samples to counteract backdoor attacks. In this paper, we reveal that existing randomized smoothing defenses implicitly assume that all samples are equidistant from the decision boundary. However, it may not hold in practice, leading to suboptimal certification performance. To address this issue, we propose a sample-specific certified backdoor defense method, termed Cert-SSB. Cert-SSB first employs stochastic gradient ascent to optimize the noise magnitude for each sample, ensuring a sample-specific noise level that is then applied to multiple poisoned training sets to retrain several smoothed models. After that, Cert-SSB aggregates the predictions of multiple smoothed models to generate the final robust prediction. In particular, in this case, existing certification methods become inapplicable since the optimized noise varies across different samples. To conquer this challenge, we introduce a storage-update-based certification method, which dynamically adjusts each sample's certification region to improve certification performance. We conduct extensive experiments on multiple benchmark datasets, demonstrating the effectiveness of our proposed method. Our code is available at https://github.com/NcepuQiaoTing/Cert-SSB.

Authors:Marc Glocker, Peter Hönig, Matthias Hirschmanner, Markus Vincze
Title: LLM-Empowered Embodied Agent for Memory-Augmented Task Planning in Household Robotics
Abstract:
We present an embodied robotic system with an LLM-driven agent-orchestration architecture for autonomous household object management. The system integrates memory-augmented task planning, enabling robots to execute high-level user commands while tracking past actions. It employs three specialized agents: a routing agent, a task planning agent, and a knowledge base agent, each powered by task-specific LLMs. By leveraging in-context learning, our system avoids the need for explicit model training. RAG enables the system to retrieve context from past interactions, enhancing long-term object tracking. A combination of Grounded SAM and LLaMa3.2-Vision provides robust object detection, facilitating semantic scene understanding for task planning. Evaluation across three household scenarios demonstrates high task planning accuracy and an improvement in memory recall due to RAG. Specifically, Qwen2.5 yields best performance for specialized agents, while LLaMA3.1 excels in routing tasks. The source code is available at: https://github.com/marc1198/chat-hsr.

Authors:Yan Shu, Weichao Zeng, Fangmin Zhao, Zeyu Chen, Zhenhang Li, Xiaomeng Yang, Yu Zhou, Paolo Rota, Xiang Bai, Lianwen Jin, Xu-Cheng Yin, Nicu Sebe
Title: Visual Text Processing: A Comprehensive Review and Unified Evaluation
Abstract:
Visual text is a crucial component in both document and scene images, conveying rich semantic information and attracting significant attention in the computer vision community. Beyond traditional tasks such as text detection and recognition, visual text processing has witnessed rapid advancements driven by the emergence of foundation models, including text image reconstruction and text image manipulation. Despite significant progress, challenges remain due to the unique properties that differentiate text from general objects. Effectively capturing and leveraging these distinct textual characteristics is essential for developing robust visual text processing models. In this survey, we present a comprehensive, multi-perspective analysis of recent advancements in visual text processing, focusing on two key questions: (1) What textual features are most suitable for different visual text processing tasks? (2) How can these distinctive text features be effectively incorporated into processing frameworks? Furthermore, we introduce VTPBench, a new benchmark that encompasses a broad range of visual text processing datasets. Leveraging the advanced visual quality assessment capabilities of multimodal large language models (MLLMs), we propose VTPScore, a novel evaluation metric designed to ensure fair and reliable evaluation. Our empirical study with more than 20 specific models reveals substantial room for improvement in the current techniques. Our aim is to establish this work as a fundamental resource that fosters future exploration and innovation in the dynamic field of visual text processing. The relevant repository is available at https://github.com/shuyansy/Visual-Text-Processing-survey.

Authors:Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao, Dacheng Tao, Li Shen
Title: Ada-R1: Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization
Abstract:
Recently, long-thought reasoning models achieve strong performance on complex reasoning tasks, but often incur substantial inference overhead, making efficiency a critical concern. Our empirical analysis reveals that the benefit of using Long-CoT varies across problems: while some problems require elaborate reasoning, others show no improvement, or even degraded accuracy. This motivates adaptive reasoning strategies that tailor reasoning depth to the input. However, prior work primarily reduces redundancy within long reasoning paths, limiting exploration of more efficient strategies beyond the Long-CoT paradigm. To address this, we propose a novel two-stage framework for adaptive and efficient reasoning. First, we construct a hybrid reasoning model by merging long and short CoT models to enable diverse reasoning styles. Second, we apply bi-level preference training to guide the model to select suitable reasoning styles (group-level), and prefer concise and correct reasoning within each style group (instance-level). Experiments demonstrate that our method (Ada-R1) significantly reduces inference costs compared to other baseline approaches, while maintaining performance. Notably, on five mathematical datasets, the average length of reasoning is reduced by more than 50%, highlighting the potential of adaptive strategies to optimize reasoning efficiency in large language models. Our code is coming soon at https://github.com/StarDewXXX/AdaR1

Authors:Haiyang Zhou, Wangbo Yu, Jiawen Guan, Xinhua Cheng, Yonghong Tian, Li Yuan
Title: HoloTime: Taming Video Diffusion Models for Panoramic 4D Scene Generation
Abstract:
The rapid advancement of diffusion models holds the promise of revolutionizing the application of VR and AR technologies, which typically require scene-level 4D assets for user experience. Nonetheless, existing diffusion models predominantly concentrate on modeling static 3D scenes or object-level dynamics, constraining their capacity to provide truly immersive experiences. To address this issue, we propose HoloTime, a framework that integrates video diffusion models to generate panoramic videos from a single prompt or reference image, along with a 360-degree 4D scene reconstruction method that seamlessly transforms the generated panoramic video into 4D assets, enabling a fully immersive 4D experience for users. Specifically, to tame video diffusion models for generating high-fidelity panoramic videos, we introduce the 360World dataset, the first comprehensive collection of panoramic videos suitable for downstream 4D scene reconstruction tasks. With this curated dataset, we propose Panoramic Animator, a two-stage image-to-video diffusion model that can convert panoramic images into high-quality panoramic videos. Following this, we present Panoramic Space-Time Reconstruction, which leverages a space-time depth estimation method to transform the generated panoramic videos into 4D point clouds, enabling the optimization of a holistic 4D Gaussian Splatting representation to reconstruct spatially and temporally consistent 4D scenes. To validate the efficacy of our method, we conducted a comparative analysis with existing approaches, revealing its superiority in both panoramic video generation and 4D scene reconstruction. This demonstrates our method's capability to create more engaging and realistic immersive environments, thereby enhancing user experiences in VR and AR applications.

Authors:Jiaming wang, Yunke Zhao, Peng Ding, Jun Kuang, Yibin Shen, Zhe Tang, Yilin Jin, ZongYu Wang, Xiaoyu Li, Xuezhi Cao, Xunliang Cai
Title: Meeseeks: A Feedback-Driven, Iterative Self-Correction Benchmark evaluating LLMs' Instruction Following Capability
Abstract:
The capability to precisely adhere to instructions is a cornerstone for Large Language Models (LLMs) to function as dependable agents in real-world scenarios. However, confronted with complex prompts, LLMs frequently encounter difficulties in fulfilling all specified requirements within a single response. Drawing inspiration from recent advancements in Chain-of-Thought (CoT) prompting and self-correction methodologies, we introduce Meeseeks (The name is inspired by Mr. Meeseeks from "Rick and Morty," a character renowned for efficiently accomplishing assigned tasks. See: https://en.wikipedia.org/wiki/Mr._Meeseeks), a fully automated iterative instruction-following benchmark equipped with an integrated feedback mechanism. Meeseeks identifies erroneous components in model responses and provides corresponding feedback accurately, thereby iteratively guiding the model toward self-correction. The dataset contains over 700 curated instances annotated by 32 distinct capability tags in Chinese and English. Extensive experimental results reveal that different state-of-the-art commercial and open-source LLMs exhibit vastly disparate performance, and even after 20 turns of iterative feedback-driven self-correction, nearly all models demonstrate suboptimal performance. We conducted comprehensive analysis from both macro and instance levels, uncovering numerous common issues prevalent in current state-of-the-art models, as well as several counterintuitive phenomena. We've open-sourced our work on https://github.com/ADoublLEN/Meeseeks.

Authors:Daniel Bogdoll, Rajanikant Patnaik Ananta, Abeyankar Giridharan, Isabel Moore, Gregory Stevens, Henry X. Liu
Title: Mcity Data Engine: Iterative Model Improvement Through Open-Vocabulary Data Selection
Abstract:
With an ever-increasing availability of data, it has become more and more challenging to select and label appropriate samples for the training of machine learning models. It is especially difficult to detect long-tail classes of interest in large amounts of unlabeled data. This holds especially true for Intelligent Transportation Systems (ITS), where vehicle fleets and roadside perception systems generate an abundance of raw data. While industrial, proprietary data engines for such iterative data selection and model training processes exist, researchers and the open-source community suffer from a lack of an openly available system. We present the Mcity Data Engine, which provides modules for the complete data-based development cycle, beginning at the data acquisition phase and ending at the model deployment stage. The Mcity Data Engine focuses on rare and novel classes through an open-vocabulary data selection process. All code is publicly available on GitHub under an MIT license: https://github.com/mcity/mcity_data_engine

Authors:Bing Wang, Ximing Li, Changchun Li, Bingrui Zhao, Bo Fu, Renchu Guan, Shengsheng Wang
Title: Robust Misinformation Detection by Visiting Potential Commonsense Conflict
Abstract:
The development of Internet technology has led to an increased prevalence of misinformation, causing severe negative effects across diverse domains. To mitigate this challenge, Misinformation Detection (MD), aiming to detect online misinformation automatically, emerges as a rapidly growing research topic in the community. In this paper, we propose a novel plug-and-play augmentation method for the MD task, namely Misinformation Detection with Potential Commonsense Conflict (MD-PCC). We take inspiration from the prior studies indicating that fake articles are more likely to involve commonsense conflict. Accordingly, we construct commonsense expressions for articles, serving to express potential commonsense conflicts inferred by the difference between extracted commonsense triplet and golden ones inferred by the well-established commonsense reasoning tool COMET. These expressions are then specified for each article as augmentation. Any specific MD methods can be then trained on those commonsense-augmented articles. Besides, we also collect a novel commonsense-oriented dataset named CoMis, whose all fake articles are caused by commonsense conflict. We integrate MD-PCC with various existing MD backbones and compare them across both 4 public benchmark datasets and CoMis. Empirical results demonstrate that MD-PCC can consistently outperform the existing MD baselines.

Authors:Hannes Reichert, Benjamin Serfling, Elijah Schüssler, Kerim Turacan, Konrad Doll, Bernhard Sick
Title: Real Time Semantic Segmentation of High Resolution Automotive LiDAR Scans
Abstract:
In recent studies, numerous previous works emphasize the importance of semantic segmentation of LiDAR data as a critical component to the development of driver-assistance systems and autonomous vehicles. However, many state-of-the-art methods are tested on outdated, lower-resolution LiDAR sensors and struggle with real-time constraints. This study introduces a novel semantic segmentation framework tailored for modern high-resolution LiDAR sensors that addresses both accuracy and real-time processing demands. We propose a novel LiDAR dataset collected by a cutting-edge automotive 128 layer LiDAR in urban traffic scenes. Furthermore, we propose a semantic segmentation method utilizing surface normals as strong input features. Our approach is bridging the gap between cutting-edge research and practical automotive applications. Additionaly, we provide a Robot Operating System (ROS2) implementation that we operate on our research vehicle. Our dataset and code are publicly available: https://github.com/kav-institute/SemanticLiDAR.

Authors:Saima Afrin, Md Zahidul Haque, Antonio Mastropaolo
Title: A Systematic Literature Review of Parameter-Efficient Fine-Tuning for Large Code Models
Abstract:
The rise of Artificial Intelligence (AI)-and particularly Large Language Models (LLMs) for code-has reshaped Software Engineering (SE) by enabling the automation of tasks such as code generation, bug detection, and repair. However, these models require significant computational resources for training and fine-tuning, posing challenges for real-world adoption in resource-constrained environments. To address this, the research community has increasingly turned to Parameter-Efficient Fine-Tuning (PEFT)-a class of techniques that enables the adaptation of large models by updating only a small subset of parameters, rather than the entire model. In this Systematic Literature Review (SLR), we examine the growing application of PEFT techniques-across a wide range of software engineering tasks. We analyze how these methods are used to optimize various deep learning (DL) architectures, focusing on their impact on both performance and efficiency. Our study synthesizes findings from 28 peer-reviewed papers, identifying patterns in configuration strategies and adaptation trade-offs. The outcome of this review is a comprehensive taxonomy that categorizes PEFT usage by task type, distinguishing between generative (e.g., Code Summarization) and non-generative (e.g., Code Clone Detection) scenarios. Our findings aim to inform future research and guide the practical deployment of PEFT in sustainable, AI-powered software development. Our artifacts are publicly available at https://github.com/alvi75/SLR-PEFT

Authors:Uzair Shah, Marco Agus, Daniya Boges, Vanessa Chiappini, Mahmood Alzubaidi, Jens Schneider, Markus Hadwiger, Pierre J. Magistretti, Mowafa Househ, Corrado Calı
Title: SAM4EM: Efficient memory-based two stage prompt-free segment anything model adapter for complex 3D neuroscience electron microscopy stacks
Abstract:
We present SAM4EM, a novel approach for 3D segmentation of complex neural structures in electron microscopy (EM) data by leveraging the Segment Anything Model (SAM) alongside advanced fine-tuning strategies. Our contributions include the development of a prompt-free adapter for SAM using two stage mask decoding to automatically generate prompt embeddings, a dual-stage fine-tuning method based on Low-Rank Adaptation (LoRA) for enhancing segmentation with limited annotated data, and a 3D memory attention mechanism to ensure segmentation consistency across 3D stacks. We further release a unique benchmark dataset for the segmentation of astrocytic processes and synapses. We evaluated our method on challenging neuroscience segmentation benchmarks, specifically targeting mitochondria, glia, and synapses, with significant accuracy improvements over state-of-the-art (SOTA) methods, including recent SAM-based adapters developed for the medical domain and other vision transformer-based approaches. Experimental results indicate that our approach outperforms existing solutions in the segmentation of complex processes like glia and post-synaptic densities. Our code and models are available at https://github.com/Uzshah/SAM4EM.

Authors:Mengting Wei, Yante Li, Tuomas Varanka, Yan Jiang, Guoying Zhao
Title: MagicPortrait: Temporally Consistent Face Reenactment with 3D Geometric Guidance
Abstract:
In this study, we propose a method for video face reenactment that integrates a 3D face parametric model into a latent diffusion framework, aiming to improve shape consistency and motion control in existing video-based face generation approaches. Our approach employs the FLAME (Faces Learned with an Articulated Model and Expressions) model as the 3D face parametric representation, providing a unified framework for modeling face expressions and head pose. This not only enables precise extraction of motion features from driving videos, but also contributes to the faithful preservation of face shape and geometry. Specifically, we enhance the latent diffusion model with rich 3D expression and detailed pose information by incorporating depth maps, normal maps, and rendering maps derived from FLAME sequences. These maps serve as motion guidance and are encoded into the denoising UNet through a specifically designed Geometric Guidance Encoder (GGE). A multi-layer feature fusion module with integrated self-attention mechanisms is used to combine facial appearance and motion latent features within the spatial domain. By utilizing the 3D face parametric model as motion guidance, our method enables parametric alignment of face identity between the reference image and the motion captured from the driving video. Experimental results on benchmark datasets show that our method excels at generating high-quality face animations with precise expression and head pose variation modeling. In addition, it demonstrates strong generalization performance on out-of-domain images. Code is publicly available at https://github.com/weimengting/MagicPortrait.

Authors:Qinfeng Zhu, Yunxi Jiang, Lei Fan
Title: ClassWise-CRF: Category-Specific Fusion for Enhanced Semantic Segmentation of Remote Sensing Imagery
Abstract:
We propose a result-level category-specific fusion architecture called ClassWise-CRF. This architecture employs a two-stage process: first, it selects expert networks that perform well in specific categories from a pool of candidate networks using a greedy algorithm; second, it integrates the segmentation predictions of these selected networks by adaptively weighting their contributions based on their segmentation performance in each category. Inspired by Conditional Random Field (CRF), the ClassWise-CRF architecture treats the segmentation predictions from multiple networks as confidence vector fields. It leverages segmentation metrics (such as Intersection over Union) from the validation set as priors and employs an exponential weighting strategy to fuse the category-specific confidence scores predicted by each network. This fusion method dynamically adjusts the weights of each network for different categories, achieving category-specific optimization. Building on this, the architecture further optimizes the fused results using unary and pairwise potentials in CRF to ensure spatial consistency and boundary accuracy. To validate the effectiveness of ClassWise-CRF, we conducted experiments on two remote sensing datasets, LoveDA and Vaihingen, using eight classic and advanced semantic segmentation networks. The results show that the ClassWise-CRF architecture significantly improves segmentation performance: on the LoveDA dataset, the mean Intersection over Union (mIoU) metric increased by 1.00% on the validation set and by 0.68% on the test set; on the Vaihingen dataset, the mIoU improved by 0.87% on the validation set and by 0.91% on the test set. These results fully demonstrate the effectiveness and generality of the ClassWise-CRF architecture in semantic segmentation of remote sensing images. The full code is available at https://github.com/zhuqinfeng1999/ClassWise-CRF.

Authors:Hebaixu Wang, Jing Zhang, Haonan Guo, Di Wang, Jiayi Ma, Bo Du
Title: DGSolver: Diffusion Generalist Solver with Universal Posterior Sampling for Image Restoration
Abstract:
Diffusion models have achieved remarkable progress in universal image restoration. While existing methods speed up inference by reducing sampling steps, substantial step intervals often introduce cumulative errors. Moreover, they struggle to balance the commonality of degradation representations and restoration quality. To address these challenges, we introduce \textbf{DGSolver}, a diffusion generalist solver with universal posterior sampling. We first derive the exact ordinary differential equations for generalist diffusion models and tailor high-order solvers with a queue-based accelerated sampling strategy to improve both accuracy and efficiency. We then integrate universal posterior sampling to better approximate manifold-constrained gradients, yielding a more accurate noise estimation and correcting errors in inverse inference. Extensive experiments show that DGSolver outperforms state-of-the-art methods in restoration accuracy, stability, and scalability, both qualitatively and quantitatively. Code and models will be available at https://github.com/MiliLab/DGSolver.

Authors:Jingjing Liu, Nian Wu, Xianchao Xiu, Jianhua Zhang
Title: Robust Orthogonal NMF with Label Propagation for Image Clustering
Abstract:
Non-negative matrix factorization (NMF) is a popular unsupervised learning approach widely used in image clustering. However, in real-world clustering scenarios, most existing NMF methods are highly sensitive to noise corruption and are unable to effectively leverage limited supervised information. To overcome these drawbacks, we propose a unified non-convex framework with label propagation called robust orthogonal nonnegative matrix factorization (RONMF). This method not only considers the graph Laplacian and label propagation as regularization terms but also introduces a more effective non-convex structure to measure the reconstruction error and imposes orthogonal constraints on the basis matrix to reduce the noise corruption, thereby achieving higher robustness. To solve RONMF, we develop an alternating direction method of multipliers (ADMM)-based optimization algorithm. In particular, all subproblems have closed-form solutions, which ensures its efficiency. Experimental evaluations on eight public image datasets demonstrate that the proposed RONMF outperforms state-of-the-art NMF methods across various standard metrics and shows excellent robustness. The code will be available at https://github.com/slinda-liu.

Authors:Haowen Hou, Zhiyi Huang, Kaifeng Tan, Rongchang Lu, Fei Richard Yu
Title: RWKV-X: A Linear Complexity Hybrid Language Model
Abstract:
In this paper, we introduce RWKV-X, a novel hybrid architecture that combines the efficiency of RWKV for short-range modeling with a sparse attention mechanism designed to capture long-range context. Unlike previous hybrid approaches that rely on full attention layers and retain quadratic complexity, RWKV-X achieves linear-time complexity in training and constant-time complexity in inference decoding. We demonstrate that RWKV-X, when continually pretrained on 64K-token sequences, achieves near-perfect accuracy on the 64K passkey retrieval benchmark. It consistently outperforms prior RWKV-7 models on long-context benchmarks, while maintaining strong performance on short-context tasks. These results highlight RWKV-X as a scalable and efficient backbone for general-purpose language modeling, capable of decoding sequences up to 1 million tokens with stable speed and memory usage. To facilitate further research and analysis, we have made the checkpoints and the associated code publicly accessible at: https://github.com/howard-hou/RWKV-X.

Authors:Chenkai Zhang, Yiming Lei, Zeming Liu, Haitao Leng, Shaoguo Liu, Tingting Gao, Qingjie Liu, Yunhong Wang
Title: SeriesBench: A Benchmark for Narrative-Driven Drama Series Understanding
Abstract:
With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on standalone videos and mainly assess "visual elements" like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a series. To address this challenge, we propose SeriesBench, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, PC-DCoT. Extensive results on SeriesBench indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while PC-DCoT enables these MLLMs to achieve performance improvements. Overall, our SeriesBench and PC-DCoT highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.

Authors:Weicai Yan, Wang Lin, Zirun Guo, Ye Wang, Fangming Feng, Xiaoda Yang, Zehan Wang, Tao Jin
Title: Diff-Prompt: Diffusion-Driven Prompt Generator with Mask Supervision
Abstract:
Prompt learning has demonstrated promising results in fine-tuning pre-trained multimodal models. However, the performance improvement is limited when applied to more complex and fine-grained tasks. The reason is that most existing methods directly optimize the parameters involved in the prompt generation process through loss backpropagation, which constrains the richness and specificity of the prompt representations. In this paper, we propose Diffusion-Driven Prompt Generator (Diff-Prompt), aiming to use the diffusion model to generate rich and fine-grained prompt information for complex downstream tasks. Specifically, our approach consists of three stages. In the first stage, we train a Mask-VAE to compress the masks into latent space. In the second stage, we leverage an improved Diffusion Transformer (DiT) to train a prompt generator in the latent space, using the masks for supervision. In the third stage, we align the denoising process of the prompt generator with the pre-trained model in the semantic space, and use the generated prompts to fine-tune the model. We conduct experiments on a complex pixel-level downstream task, referring expression comprehension, and compare our method with various parameter-efficient fine-tuning approaches. Diff-Prompt achieves a maximum improvement of 8.87 in R@1 and 14.05 in R@5 compared to the foundation model and also outperforms other state-of-the-art methods across multiple metrics. The experimental results validate the effectiveness of our approach and highlight the potential of using generative models for prompt generation. Code is available at https://github.com/Kelvin-ywc/diff-prompt.

Authors:Xinyi Liu, Yujie Wang, Shenhan Zhu, Fangcheng Fu, Qingshuo Liu, Guangming Lin, Bin Cui
Title: Galvatron: An Automatic Distributed System for Efficient Foundation Model Training
Abstract:
Galvatron is a distributed system for efficiently training large-scale Foundation Models. It overcomes the complexities of selecting optimal parallelism strategies by automatically identifying the most efficient hybrid strategy, incorporating data, tensor, pipeline, sharded data, and sequence parallelism, along with recomputation. The system's architecture includes a profiler for hardware and model analysis, a search engine for strategy optimization using decision trees and dynamic programming, and a runtime for executing these strategies efficiently. Benchmarking on various clusters demonstrates Galvatron's superior throughput compared to existing frameworks. This open-source system offers user-friendly interfaces and comprehensive documentation, making complex distributed training accessible and efficient. The source code of Galvatron is available at https://github.com/PKU-DAIR/Hetu-Galvatron.

Authors:Yumeng Shi, Quanyu Long, Wenya Wang
Title: Static or Dynamic: Towards Query-Adaptive Token Selection for Video Question Answering
Abstract:
Video question answering benefits from the rich information in videos, enabling various applications. However, the large volume of tokens generated from long videos presents challenges to memory efficiency and model performance. To alleviate this, existing works propose to compress video inputs, but often overlook the varying importance of static and dynamic information across different queries, leading to inefficient token usage within limited budgets. We propose a novel token selection strategy, \textsc{explore-then-select}, that adaptively adjusts static and dynamic information based on question requirements. Our framework first explores different token allocations between key frames, which preserve spatial details, and delta frames, which capture temporal changes. Then it employs a query-aware attention-based metric to select the optimal token combination without model updates. Our framework is plug-and-play and can be seamlessly integrated within diverse video language models. Extensive experiments show that our method achieves significant performance improvements (up to 5.8\%) on multiple video question answering benchmarks. Our code is available at https://github.com/ANDgate99/Explore-Then-Select .

Authors:Hong Zhang, Zhongjie Duan, Xingjun Wang, Yuze Zhao, Weiyi Lu, Zhipeng Di, Yixuan Xu, Yingda Chen, Yu Zhang
Title: Nexus-Gen: Unified Image Understanding, Generation, and Editing via Prefilled Autoregression in Shared Embedding Space
Abstract:
Unified multimodal generative models aim to integrate image understanding and generation abilities, offering significant advantages in harnessing multimodal corpora, particularly interleaved text-image data. However, existing unified models exhibit limitations in image synthesis quality, autoregressive error accumulation, and image editing capability. In this work, we propose Nexus-Gen, a novel architecture that unifies image understanding, generation, and editing tasks in a shared image embedding space. This shared space serves as a bridge for the autoregressive and diffusion models, which seamlessly integrates their complementary strengths in cross-modal modeling. To mitigate the severe error accumulation during autoregressive embedding prediction, we propose a novel prefilled autoregression strategy that aligns training-inference dynamics by prefilling input sequences with learnable embeddings. After multi-stage and multi-task training on our constructed large-scale dataset with 26.3 million samples, Nexus-Gen achieves state-of-the-art performance on the evaluation benchmarks spanning image understanding, generation and editing tasks. All models, datasets, and source codes are released in https://github.com/modelscope/Nexus-Gen to facilitate further advancements across the field.

Authors:Luoting Zhuang, Seyed Mohammad Hossein Tabatabaei, Ramin Salehi-Rad, Linh M. Tran, Denise R. Aberle, Ashley E. Prosper, William Hsu
Title: Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Lung Nodule Malignancy Prediction
Abstract:
Machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, guiding the model to learn clinically relevant, robust, and explainable imaging features for predicting lung cancer. We obtained 938 low-dose CT scans from the National Lung Screening Trial (NLST) with 1,246 nodules and semantic features. Additionally, the Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We fine-tuned a pretrained Contrastive Language-Image Pretraining (CLIP) model with a parameter-efficient fine-tuning approach to align imaging and semantic text features and predict the one-year lung cancer diagnosis. Our model outperformed state-of-the-art (SOTA) models in the NLST test set with an AUROC of 0.901 and AUPRC of 0.776. It also showed robust results in external datasets. Using CLIP, we also obtained predictions on semantic features through zero-shot inference, such as nodule margin (AUROC: 0.812), nodule consistency (0.812), and pleural attachment (0.840). Our approach surpasses the SOTA models in predicting lung cancer across datasets collected from diverse clinical settings, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings. The code is available at https://github.com/luotingzhuang/CLIP_nodule.

Authors:Khoa Tuan Nguyen, Ho-min Park, Gaeun Oh, Joris Vankerschaver, Wesley De Neve
Title: Towards Improved Cervical Cancer Screening: Vision Transformer-Based Classification and Interpretability
Abstract:
We propose a novel approach to cervical cell image classification for cervical cancer screening using the EVA-02 transformer model. We developed a four-step pipeline: fine-tuning EVA-02, feature extraction, selecting important features through multiple machine learning models, and training a new artificial neural network with optional loss weighting for improved generalization. With this design, our best model achieved an F1-score of 0.85227, outperforming the baseline EVA-02 model (0.84878). We also utilized Kernel SHAP analysis and identified key features correlating with cell morphology and staining characteristics, providing interpretable insights into the decision-making process of the fine-tuned model. Our code is available at https://github.com/Khoa-NT/isbi2025_ps3c.

Authors:Zhelun Shen, Zhuo Li, Chenming Wu, Zhibo Rao, Lina Liu, Yuchao Dai, Liangjun Zhang
Title: CMD: Constraining Multimodal Distribution for Domain Adaptation in Stereo Matching
Abstract:
Recently, learning-based stereo matching methods have achieved great improvement in public benchmarks, where soft argmin and smooth L1 loss play a core contribution to their success. However, in unsupervised domain adaptation scenarios, we observe that these two operations often yield multimodal disparity probability distributions in target domains, resulting in degraded generalization. In this paper, we propose a novel approach, Constrain Multi-modal Distribution (CMD), to address this issue. Specifically, we introduce \textit{uncertainty-regularized minimization} and \textit{anisotropic soft argmin} to encourage the network to produce predominantly unimodal disparity distributions in the target domain, thereby improving prediction accuracy. Experimentally, we apply the proposed method to multiple representative stereo-matching networks and conduct domain adaptation from synthetic data to unlabeled real-world scenes. Results consistently demonstrate improved generalization in both top-performing and domain-adaptable stereo-matching models. The code for CMD will be available at: \href{https://github.com/gallenszl/CMD}{https://github.com/gallenszl/CMD}.

Authors:Jinpeng Wang, Tianci Luo, Yaohua Zha, Yan Feng, Ruisheng Luo, Bin Chen, Tao Dai, Long Chen, Yaowei Wang, Shu-Tao Xia
Title: Embracing Collaboration Over Competition: Condensing Multiple Prompts for Visual In-Context Learning
Abstract:
Visual In-Context Learning (VICL) enables adaptively solving vision tasks by leveraging pixel demonstrations, mimicking human-like task completion through analogy. Prompt selection is critical in VICL, but current methods assume the existence of a single "ideal" prompt in a pool of candidates, which in practice may not hold true. Multiple suitable prompts may exist, but individually they often fall short, leading to difficulties in selection and the exclusion of useful context. To address this, we propose a new perspective: prompt condensation. Rather than relying on a single prompt, candidate prompts collaborate to efficiently integrate informative contexts without sacrificing resolution. We devise Condenser, a lightweight external plugin that compresses relevant fine-grained context across multiple prompts. Optimized end-to-end with the backbone, Condenser ensures accurate integration of contextual cues. Experiments demonstrate Condenser outperforms state-of-the-arts across benchmark tasks, showing superior context compression, scalability with more prompts, and enhanced computational efficiency compared to ensemble methods, positioning it as a highly competitive solution for VICL. Code is open-sourced at https://github.com/gimpong/CVPR25-Condenser.

Authors:Sixuan Wang, Jiao Yin, Jinli Cao, MingJian Tang, Hua Wang, Yanchun Zhang
Title: ABG-NAS: Adaptive Bayesian Genetic Neural Architecture Search for Graph Representation Learning
Abstract:
Effective and efficient graph representation learning is essential for enabling critical downstream tasks, such as node classification, link prediction, and subgraph search. However, existing graph neural network (GNN) architectures often struggle to adapt to diverse and complex graph structures, limiting their ability to produce structure-aware and task-discriminative representations. To address this challenge, we propose ABG-NAS, a novel framework for automated graph neural network architecture search tailored for efficient graph representation learning. ABG-NAS encompasses three key components: a Comprehensive Architecture Search Space (CASS), an Adaptive Genetic Optimization Strategy (AGOS), and a Bayesian-Guided Tuning Module (BGTM). CASS systematically explores diverse propagation (P) and transformation (T) operations, enabling the discovery of GNN architectures capable of capturing intricate graph characteristics. AGOS dynamically balances exploration and exploitation, ensuring search efficiency and preserving solution diversity. BGTM further optimizes hyperparameters periodically, enhancing the scalability and robustness of the resulting architectures. Empirical evaluations on benchmark datasets (Cora, PubMed, Citeseer, and CoraFull) demonstrate that ABG-NAS consistently outperforms both manually designed GNNs and state-of-the-art neural architecture search (NAS) methods. These results highlight the potential of ABG-NAS to advance graph representation learning by providing scalable and adaptive solutions for diverse graph structures. Our code is publicly available at https://github.com/sserranw/ABG-NAS.

Authors:Xuanzhao Dong, Wenhui Zhu, Hao Wang, Xiwen Chen, Peijie Qiu, Rui Yin, Yi Su, Yalin Wang
Title: Talk Before You Retrieve: Agent-Led Discussions for Better RAG in Medical QA
Abstract:
Medical question answering (QA) is a reasoning-intensive task that remains challenging for large language models (LLMs) due to hallucinations and outdated domain knowledge. Retrieval-Augmented Generation (RAG) provides a promising post-training solution by leveraging external knowledge. However, existing medical RAG systems suffer from two key limitations: (1) a lack of modeling for human-like reasoning behaviors during information retrieval, and (2) reliance on suboptimal medical corpora, which often results in the retrieval of irrelevant or noisy snippets. To overcome these challenges, we propose Discuss-RAG, a plug-and-play module designed to enhance the medical QA RAG system through collaborative agent-based reasoning. Our method introduces a summarizer agent that orchestrates a team of medical experts to emulate multi-turn brainstorming, thereby improving the relevance of retrieved content. Additionally, a decision-making agent evaluates the retrieved snippets before their final integration. Experimental results on four benchmark medical QA datasets show that Discuss-RAG consistently outperforms MedRAG, especially significantly improving answer accuracy by up to 16.67% on BioASQ and 12.20% on PubMedQA. The code is available at: https://github.com/LLM-VLM-GSL/Discuss-RAG.

Authors:Alexander L. Mitchell, Tobit Flatscher, Ingmar Posner
Title: Task and Joint Space Dual-Arm Compliant Control
Abstract:
Robots that interact with humans or perform delicate manipulation tasks must exhibit compliance. However, most commercial manipulators are rigid and suffer from significant friction, limiting end-effector tracking accuracy in torque-controlled modes. To address this, we present a real-time, open-source impedance controller that smoothly interpolates between joint-space and task-space compliance. This hybrid approach ensures safe interaction and precise task execution, such as sub-centimetre pin insertions. We deploy our controller on Frank, a dual-arm platform with two Kinova Gen3 arms, and compensate for modelled friction dynamics using a model-free observer. The system is real-time capable and integrates with standard ROS tools like MoveIt!. It also supports high-frequency trajectory streaming, enabling closed-loop execution of trajectories generated by learning-based methods, optimal control, or teleoperation. Our results demonstrate robust tracking and compliant behaviour even under high-friction conditions. The complete system is available open-source at https://github.com/applied-ai-lab/compliant_controllers.

Authors:Shuai Gong, Chaoran Cui, Xiaolin Dong, Xiushan Nie, Lei Zhu, Xiaojun Chang
Title: Token-Level Prompt Mixture with Parameter-Free Routing for Federated Domain Generalization
Abstract:
Federated domain generalization (FedDG) aims to learn a globally generalizable model from decentralized clients with heterogeneous data while preserving privacy. Recent studies have introduced prompt learning to adapt vision-language models (VLMs) in FedDG by learning a single global prompt. However, such a one-prompt-fits-all learning paradigm typically leads to performance degradation on personalized samples. Although the mixture of experts (MoE) offers a promising solution for specialization, existing MoE-based methods suffer from coarse image-level expert assignment and high communication costs from parameterized routers. To address these limitations, we propose TRIP, a Token-level prompt mixture with parameter-free routing framework for FedDG, which treats multiple prompts as distinct experts. Unlike existing image-level routing designs, TRIP assigns different tokens within an image to specific experts. To ensure communication efficiency, TRIP incorporates a parameter-free routing mechanism based on token clustering and optimal transport. The instance-specific prompt is then synthesized by aggregating experts, weighted by the number of tokens assigned to each. Additionally, TRIP develops an unbiased learning strategy for prompt experts, leveraging the VLM's zero-shot generalization capability. Extensive experiments across four benchmarks demonstrate that TRIP achieves optimal generalization results, with communication of only 1K parameters per round. Our code is available at https://github.com/GongShuai8210/TRIP.

Authors:Yu Zheng, Longyi Liu, Yuming Lin, Jie Feng, Guozhen Zhang, Depeng Jin, Yong Li
Title: UrbanPlanBench: A Comprehensive Urban Planning Benchmark for Evaluating Large Language Models
Abstract:
The advent of Large Language Models (LLMs) holds promise for revolutionizing various fields traditionally dominated by human expertise. Urban planning, a professional discipline that fundamentally shapes our daily surroundings, is one such field heavily relying on multifaceted domain knowledge and experience of human experts. The extent to which LLMs can assist human practitioners in urban planning remains largely unexplored. In this paper, we introduce a comprehensive benchmark, UrbanPlanBench, tailored to evaluate the efficacy of LLMs in urban planning, which encompasses fundamental principles, professional knowledge, and management and regulations, aligning closely with the qualifications expected of human planners. Through extensive evaluation, we reveal a significant imbalance in the acquisition of planning knowledge among LLMs, with even the most proficient models falling short of meeting professional standards. For instance, we observe that 70% of LLMs achieve subpar performance in understanding planning regulations compared to other aspects. Besides the benchmark, we present the largest-ever supervised fine-tuning (SFT) dataset, UrbanPlanText, comprising over 30,000 instruction pairs sourced from urban planning exams and textbooks. Our findings demonstrate that fine-tuned models exhibit enhanced performance in memorization tests and comprehension of urban planning knowledge, while there exists significant room for improvement, particularly in tasks requiring domain-specific terminology and reasoning. By making our benchmark, dataset, and associated evaluation and fine-tuning toolsets publicly available at https://github.com/tsinghua-fib-lab/PlanBench, we aim to catalyze the integration of LLMs into practical urban planning, fostering a symbiotic collaboration between human expertise and machine intelligence.

Authors:Tianqing Fang, Hongming Zhang, Zhisong Zhang, Kaixin Ma, Wenhao Yu, Haitao Mi, Dong Yu
Title: WebEvolver: Enhancing Web Agent Self-Improvement with Coevolving World Model
Abstract:
Agent self-improvement, where the backbone Large Language Model (LLM) of the agent are trained on trajectories sampled autonomously based on their own policies, has emerged as a promising approach for enhancing performance. Recent advancements, particularly in web environments, face a critical limitation: their performance will reach a stagnation point during autonomous learning cycles, hindering further improvement. We argue that this stems from limited exploration of the web environment and insufficient exploitation of pre-trained web knowledge in LLMs. To improve the performance of self-improvement, we propose a novel framework that introduces a co-evolving World Model LLM. This world model predicts the next observation based on the current observation and action within the web environment. Leveraging LLMs' pretrained knowledge of abundant web content, the World Model serves dual roles: (1) as a virtual web server generating self-instructed training data to continuously refine the agent's policy, and (2) as an imagination engine during inference, enabling look-ahead simulation to guide action selection for the agent LLM. Experiments in real-world web environments (Mind2Web-Live, WebVoyager, and GAIA-web) show a 10% performance gain over existing self-evolving agents, demonstrating the efficacy and generalizability of our approach, without using any distillation from more powerful close-sourced models. Our work establishes the necessity of integrating world models into autonomous agent frameworks to unlock sustained adaptability. Code is available at https://github.com/Tencent/SelfEvolvingAgent

Authors:Yinghan Zhou, Juan Wen, Wanli Peng, Yiming Xue, Ziwei Zhang, Zhengxian Wu
Title: Kill two birds with one stone: generalized and robust AI-generated text detection via dynamic perturbations
Abstract:
The growing popularity of large language models has raised concerns regarding the potential to misuse AI-generated text (AIGT). It becomes increasingly critical to establish an excellent AIGT detection method with high generalization and robustness. However, existing methods either focus on model generalization or concentrate on robustness. The unified mechanism, to simultaneously address the challenges of generalization and robustness, is less explored. In this paper, we argue that robustness can be view as a specific form of domain shift, and empirically reveal an intrinsic mechanism for model generalization of AIGT detection task. Then, we proposed a novel AIGT detection method (DP-Net) via dynamic perturbations introduced by a reinforcement learning with elaborated reward and action. Experimentally, extensive results show that the proposed DP-Net significantly outperforms some state-of-the-art AIGT detection methods for generalization capacity in three cross-domain scenarios. Meanwhile, the DP-Net achieves best robustness under two text adversarial attacks. The code is publicly available at https://github.com/CAU-ISS-Lab/AIGT-Detection-Evade-Detection/tree/main/DP-Net.

Authors:Zayd M. K. Zuhri, Erland Hilman Fuadi, Alham Fikri Aji
Title: Softpick: No Attention Sink, No Massive Activations with Rectified Softmax
Abstract:
We introduce softpick, a rectified, not sum-to-one, drop-in replacement for softmax in transformer attention mechanisms that eliminates attention sink and massive activations. Our experiments with 340M and 1.8B parameter models demonstrate that softpick achieves 0\% sink rate consistently. The softpick transformers produce hidden states with significantly lower kurtosis and creates sparse attention maps. Quantized models using softpick outperform softmax on standard benchmarks, with a particularly pronounced advantage at lower bit precisions. Our analysis and discussion shows how softpick has the potential to open new possibilities for quantization, low-precision training, sparsity optimization, pruning, and interpretability. Our code is available at https://github.com/zaydzuhri/softpick-attention

Authors:Zikui Cai, Shayan Shabihi, Bang An, Zora Che, Brian R. Bartoldson, Bhavya Kailkhura, Tom Goldstein, Furong Huang
Title: AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security
Abstract:
We introduce AegisLLM, a cooperative multi-agent defense against adversarial attacks and information leakage. In AegisLLM, a structured workflow of autonomous agents - orchestrator, deflector, responder, and evaluator - collaborate to ensure safe and compliant LLM outputs, while self-improving over time through prompt optimization. We show that scaling agentic reasoning system at test-time - both by incorporating additional agent roles and by leveraging automated prompt optimization (such as DSPy)- substantially enhances robustness without compromising model utility. This test-time defense enables real-time adaptability to evolving attacks, without requiring model retraining. Comprehensive evaluations across key threat scenarios, including unlearning and jailbreaking, demonstrate the effectiveness of AegisLLM. On the WMDP unlearning benchmark, AegisLLM achieves near-perfect unlearning with only 20 training examples and fewer than 300 LM calls. For jailbreaking benchmarks, we achieve 51% improvement compared to the base model on StrongReject, with false refusal rates of only 7.9% on PHTest compared to 18-55% for comparable methods. Our results highlight the advantages of adaptive, agentic reasoning over static defenses, establishing AegisLLM as a strong runtime alternative to traditional approaches based on model modifications. Code is available at https://github.com/zikuicai/aegisllm

Authors:Shangyu Li, Juyong Jiang, Tiancheng Zhao, Jiasi Shen
Title: OSVBench: Benchmarking LLMs on Specification Generation Tasks for Operating System Verification
Abstract:
We introduce OSVBench, a new benchmark for evaluating Large Language Models (LLMs) in generating complete specification code pertaining to operating system kernel verification tasks. The benchmark first defines the specification generation problem into a program synthesis problem within a confined scope of syntax and semantics by providing LLMs with the programming model. The LLMs are required to understand the provided verification assumption and the potential syntax and semantics space to search for, then generate the complete specification for the potentially buggy operating system code implementation under the guidance of the high-level functional description of the operating system. This benchmark is built upon a real-world operating system kernel, Hyperkernel, and consists of 245 complex specification generation tasks in total, each is a long context task of about 20k-30k tokens. Our comprehensive evaluation of 12 LLMs exhibits the limited performance of the current LLMs on the specification generation tasks for operating system verification. Significant disparities in their performance on the benchmark highlight differences in their ability to handle long-context code generation tasks. The evaluation toolkit and benchmark are available at https://github.com/lishangyu-hkust/OSVBench.

Authors:Quentin Guimard, Moreno D'IncÃ, Massimiliano Mancini, Elisa Ricci
Title: Classifier-to-Bias: Toward Unsupervised Automatic Bias Detection for Visual Classifiers
Abstract:
A person downloading a pre-trained model from the web should be aware of its biases. Existing approaches for bias identification rely on datasets containing labels for the task of interest, something that a non-expert may not have access to, or may not have the necessary resources to collect: this greatly limits the number of tasks where model biases can be identified. In this work, we present Classifier-to-Bias (C2B), the first bias discovery framework that works without access to any labeled data: it only relies on a textual description of the classification task to identify biases in the target classification model. This description is fed to a large language model to generate bias proposals and corresponding captions depicting biases together with task-specific target labels. A retrieval model collects images for those captions, which are then used to assess the accuracy of the model w.r.t. the given biases. C2B is training-free, does not require any annotations, has no constraints on the list of biases, and can be applied to any pre-trained model on any classification task. Experiments on two publicly available datasets show that C2B discovers biases beyond those of the original datasets and outperforms a recent state-of-the-art bias detection baseline that relies on task-specific annotations, being a promising first step toward addressing task-agnostic unsupervised bias detection.

Authors:Harry Mead, Clarissa Costen, Bruno Lacerda, Nick Hawes
Title: Return Capping: Sample-Efficient CVaR Policy Gradient Optimisation
Abstract:
When optimising for conditional value at risk (CVaR) using policy gradients (PG), current methods rely on discarding a large proportion of trajectories, resulting in poor sample efficiency. We propose a reformulation of the CVaR optimisation problem by capping the total return of trajectories used in training, rather than simply discarding them, and show that this is equivalent to the original problem if the cap is set appropriately. We show, with empirical results in an number of environments, that this reformulation of the problem results in consistently improved performance compared to baselines. We have made all our code available here: https://github.com/HarryMJMead/cvar-return-capping.

Authors:Lorenzo Pellegrini, Davide Cozzolino, Serafino Pandolfini, Davide Maltoni, Matteo Ferrara, Luisa Verdoliva, Marco Prati, Marco Ramilli
Title: AI-GenBench: A New Ongoing Benchmark for AI-Generated Image Detection
Abstract:
The rapid advancement of generative AI has revolutionized image creation, enabling high-quality synthesis from text prompts while raising critical challenges for media authenticity. We present Ai-GenBench, a novel benchmark designed to address the urgent need for robust detection of AI-generated images in real-world scenarios. Unlike existing solutions that evaluate models on static datasets, Ai-GenBench introduces a temporal evaluation framework where detection methods are incrementally trained on synthetic images, historically ordered by their generative models, to test their ability to generalize to new generative models, such as the transition from GANs to diffusion models. Our benchmark focuses on high-quality, diverse visual content and overcomes key limitations of current approaches, including arbitrary dataset splits, unfair comparisons, and excessive computational demands. Ai-GenBench provides a comprehensive dataset, a standardized evaluation protocol, and accessible tools for both researchers and non-experts (e.g., journalists, fact-checkers), ensuring reproducibility while maintaining practical training requirements. By establishing clear evaluation rules and controlled augmentation strategies, Ai-GenBench enables meaningful comparison of detection methods and scalable solutions. Code and data are publicly available to ensure reproducibility and to support the development of robust forensic detectors to keep pace with the rise of new synthetic generators.

Authors:Mainak Singha, Subhankar Roy, Sarthak Mehrotra, Ankit Jha, Moloud Abdar, Biplab Banerjee, Elisa Ricci
Title: FedMVP: Federated Multimodal Visual Prompt Tuning for Vision-Language Models
Abstract:
In federated learning, textual prompt tuning adapts Vision-Language Models (e.g., CLIP) by tuning lightweight input tokens (or prompts) on local client data, while keeping network weights frozen. After training, only the prompts are shared by the clients with the central server for aggregation. However, textual prompt tuning suffers from overfitting to known concepts, limiting its generalizability to unseen concepts. To address this limitation, we propose Multimodal Visual Prompt Tuning (FedMVP) that conditions the prompts on multimodal contextual information - derived from the input image and textual attribute features of a class. At the core of FedMVP is a PromptFormer module that synergistically aligns textual and visual features through a cross-attention mechanism. The dynamically generated multimodal visual prompts are then input to the frozen vision encoder of CLIP, and trained with a combination of CLIP similarity loss and a consistency loss. Extensive evaluation on 20 datasets, spanning three generalization settings, demonstrates that FedMVP not only preserves performance on in-distribution classes and domains, but also displays higher generalizability to unseen classes and domains, surpassing state-of-the-art methods by a notable margin of +1.57% - 2.26%. Code is available at https://github.com/mainaksingha01/FedMVP.

Authors:Haitao Wu, Zongbo Han, Joey Tianyi Zhou, Huaxi Huang, Changqing Zhang
Title: Computational Reasoning of Large Language Models
Abstract:
With the rapid development and widespread application of Large Language Models (LLMs), multidimensional evaluation has become increasingly critical. However, current evaluations are often domain-specific and overly complex, limiting their effectiveness as cross-domain proxies for core capabilities. To address these limitations and enable a unified and simple evaluation framework, an ideal proxy task should target a basic capability that generalizes across tasks and is independent of domain-specific knowledge. Turing machine provides a powerful theoretical lens by reducing complex processes to basic, domain-agnostic computational operations. This perspective offers a principled framework for evaluating basic computational abilities essential to a wide range of tasks. Motivated by this abstraction, we introduce \textbf{Turing Machine Bench}, a benchmark designed to assess the ability of LLMs to \textbf{strictly follow rules} and \textbf{accurately manage internal states} for multi-step, referred to as \textbf{computational reasoning}. TMBench incorporates four key features: self-contained and knowledge-agnostic reasoning, a minimalistic multi-step structure, controllable difficulty, and a solid theoretical foundation based on Turing machine. Empirical results demonstrate that TMBench serves as an effective proxy for evaluating computational reasoning on representative LLMs. It produces clear step-wise accuracy curves, revealing LLMs' ability to execute multi-step reasoning processes. By analyzing performance trends across TMBench and established reasoning benchmarks, we find strong correlations with real-world tasks, bridging real-task evaluation with basic ability assessment. These findings suggest that TMBench holds potential as a cross-domain dimension for evaluating reasoning in LLMs. Code and data are available at \href{https://github.com/HaitaoWuTJU/Turing-Machine-Bench}{Repo}.

Authors:Hasan Abed Al Kader Hammoud, Hani Itani, Bernard Ghanem
Title: Beyond the Last Answer: Your Reasoning Trace Uncovers More than You Think
Abstract:
Large Language Models (LLMs) leverage step-by-step reasoning to solve complex problems. Standard evaluation practice involves generating a complete reasoning trace and assessing the correctness of the final answer presented at its conclusion. In this paper, we challenge the reliance on the final answer by posing the following two questions: Does the final answer reliably represent the model's optimal conclusion? Can alternative reasoning paths yield different results? To answer these questions, we analyze intermediate reasoning steps, termed subthoughts, and propose a method based on our findings. Our approach involves segmenting a reasoning trace into sequential subthoughts based on linguistic cues. We start by prompting the model to generate continuations from the end-point of each intermediate subthought. We extract a potential answer from every completed continuation originating from different subthoughts. We find that aggregating these answers by selecting the most frequent one (the mode) often yields significantly higher accuracy compared to relying solely on the answer derived from the original complete trace. Analyzing the consistency among the answers derived from different subthoughts reveals characteristics that correlate with the model's confidence and correctness, suggesting potential for identifying less reliable answers. Our experiments across various LLMs and challenging mathematical reasoning datasets (AIME2024 and AIME2025) show consistent accuracy improvements, with gains reaching up to 13\% and 10\% respectively. Implementation is available at: https://github.com/hammoudhasan/SubthoughtReasoner.

Authors:Zechuan Zhang, Ji Xie, Yu Lu, Zongxin Yang, Yi Yang
Title: In-Context Edit: Enabling Instructional Image Editing with In-Context Generation in Large Scale Diffusion Transformer
Abstract:
Instruction-based image editing enables precise modifications via natural language prompts, but existing methods face a precision-efficiency tradeoff: fine-tuning demands massive datasets (>10M) and computational resources, while training-free approaches suffer from weak instruction comprehension. We address this by proposing ICEdit, which leverages the inherent comprehension and generation abilities of large-scale Diffusion Transformers (DiTs) through three key innovations: (1) An in-context editing paradigm without architectural modifications; (2) Minimal parameter-efficient fine-tuning for quality improvement; (3) Early Filter Inference-Time Scaling, which uses VLMs to select high-quality noise samples for efficiency. Experiments show that ICEdit achieves state-of-the-art editing performance with only 0.1\% of the training data and 1\% trainable parameters compared to previous methods. Our approach establishes a new paradigm for balancing precision and efficiency in instructional image editing. Codes and demos can be found in https://river-zhang.github.io/ICEdit-gh-pages/.

Authors:Long Liu, Cihui Yang
Title: OG-HFYOLO :Orientation gradient guidance and heterogeneous feature fusion for deformation table cell instance segmentation
Abstract:
Table structure recognition is a key task in document analysis. However, the geometric deformation in deformed tables causes a weak correlation between content information and structure, resulting in downstream tasks not being able to obtain accurate content information. To obtain fine-grained spatial coordinates of cells, we propose the OG-HFYOLO model, which enhances the edge response by Gradient Orientation-aware Extractor, combines a Heterogeneous Kernel Cross Fusion module and a scale-aware loss function to adapt to multi-scale objective features, and introduces mask-driven non-maximal suppression in the post-processing, which replaces the traditional bounding box suppression mechanism. Furthermore, we also propose a data generator, filling the gap in the dataset for fine-grained deformation table cell spatial coordinate localization, and derive a large-scale dataset named Deformation Wired Table (DWTAL). Experiments show that our proposed model demonstrates excellent segmentation accuracy on all mainstream instance segmentation models. The dataset and the source code are open source: https://github.com/justliulong/OGHFYOLO.

Authors:Adam Gudyś, Cezary Maszczyk, Joanna Badura, Adam Grzelak, Marek Sikora, Łukasz Wróbel
Title: RuleKit 2: Faster and simpler rule learning
Abstract:
Rules offer an invaluable combination of predictive and descriptive capabilities. Our package for rule-based data analysis, RuleKit, has proven its effectiveness in classification, regression, and survival problems. Here we present its second version. New algorithms and optimized implementations of those previously included, significantly improved the computational performance of our suite, reducing the analysis time of some data sets by two orders of magnitude. The usability of RuleKit 2 is provided by two new components: Python package and browser application with a graphical user interface. The former complies with scikit-learn, the most popular data mining library for Python, allowing RuleKit 2 to be straightforwardly integrated into existing data analysis pipelines. RuleKit 2 is available at GitHub under GNU AGPL 3 license (https://github.com/adaa-polsl/RuleKit)

Authors:Andrew Fitzgibbon, Stephen Felix
Title: On Stochastic Rounding with Few Random Bits
Abstract:
Large-scale numerical computations make increasing use of low-precision (LP) floating point formats and mixed precision arithmetic, which can be enhanced by the technique of stochastic rounding (SR), that is, rounding an intermediate high-precision value up or down randomly as a function of the value's distance to the two rounding candidates. Stochastic rounding requires, in addition to the high-precision input value, a source of random bits. As the provision of high-quality random bits is an additional computational cost, it is of interest to require as few bits as possible while maintaining the desirable properties of SR in a given computation, or computational domain. This paper examines a number of possible implementations of few-bit stochastic rounding (FBSR), and shows how several natural implementations can introduce sometimes significant bias into the rounding process, which are not present in the case of infinite-bit, infinite-precision examinations of these implementations. The paper explores the impact of these biases in machine learning examples, and hence opens another class of configuration parameters of which practitioners should be aware when developing or adopting low-precision floating point. Code is available at http://github.com/graphcore-research/arith25-stochastic-rounding.

Authors:Yu Zhang, Wenxiang Guo, Changhao Pan, Zhiyuan Zhu, Tao Jin, Zhou Zhao
Title: ISDrama: Immersive Spatial Drama Generation through Multimodal Prompting
Abstract:
Multimodal immersive spatial drama generation focuses on creating continuous multi-speaker binaural speech with dramatic prosody based on multimodal prompts, with potential applications in AR, VR, and others. This task requires simultaneous modeling of spatial information and dramatic prosody based on multimodal inputs, with high data collection costs. To the best of our knowledge, our work is the first attempt to address these challenges. We construct MRSDrama, the first multimodal recorded spatial drama dataset, containing binaural drama audios, scripts, videos, geometric poses, and textual prompts. Then, we propose ISDrama, the first immersive spatial drama generation model through multimodal prompting. ISDrama comprises these primary components: 1) Multimodal Pose Encoder, based on contrastive learning, considering the Doppler effect caused by moving speakers to extract unified pose information from multimodal prompts. 2) Immersive Drama Transformer, a flow-based mamba-transformer model that generates high-quality drama, incorporating Drama-MOE to select proper experts for enhanced prosody and pose control. We also design a context-consistent classifier-free guidance strategy to coherently generate complete drama. Experimental results show that ISDrama outperforms baseline models on objective and subjective metrics. The demos are available at https://aaronz345.github.io/ISDramaDemo. We provide the dataset and the evaluation code at https://huggingface.co/datasets/AaronZ345/MRSDrama and https://github.com/AaronZ345/ISDrama.

Authors:Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Wen-tau Yih, Pang Wei Koh, Luke Zettlemoyer
Title: ReasonIR: Training Retrievers for Reasoning Tasks
Abstract:
We present ReasonIR-8B, the first retriever specifically trained for general reasoning tasks. Existing retrievers have shown limited gains on reasoning tasks, in part because existing training datasets focus on short factual queries tied to documents that straightforwardly answer them. We develop a synthetic data generation pipeline that, for each document, our pipeline creates a challenging and relevant query, along with a plausibly related but ultimately unhelpful hard negative. By training on a mixture of our synthetic data and existing public data, ReasonIR-8B achieves a new state-of-the-art of 29.9 nDCG@10 without reranker and 36.9 nDCG@10 with reranker on BRIGHT, a widely-used reasoning-intensive information retrieval (IR) benchmark. When applied to RAG tasks, ReasonIR-8B improves MMLU and GPQA performance by 6.4% and 22.6% respectively, relative to the closed-book baseline, outperforming other retrievers and search engines. In addition, ReasonIR-8B uses test-time compute more effectively: on BRIGHT, its performance consistently increases with longer and more information-rich rewritten queries; it continues to outperform other retrievers when combined with an LLM reranker. Our training recipe is general and can be easily extended to future LLMs; to this end, we open-source our code, data, and model.

Authors:Rilind Sahitaj, Paulius Sasnauskas, Yiğit Yalın, Debmalya Mandal, Goran Radanović
Title: Independent Learning in Performative Markov Potential Games
Abstract:
Performative Reinforcement Learning (PRL) refers to a scenario in which the deployed policy changes the reward and transition dynamics of the underlying environment. In this work, we study multi-agent PRL by incorporating performative effects into Markov Potential Games (MPGs). We introduce the notion of a performatively stable equilibrium (PSE) and show that it always exists under a reasonable sensitivity assumption. We then provide convergence results for state-of-the-art algorithms used to solve MPGs. Specifically, we show that independent policy gradient ascent (IPGA) and independent natural policy gradient (INPG) converge to an approximate PSE in the best-iterate sense, with an additional term that accounts for the performative effects. Furthermore, we show that INPG asymptotically converges to a PSE in the last-iterate sense. As the performative effects vanish, we recover the convergence rates from prior work. For a special case of our game, we provide finite-time last-iterate convergence results for a repeated retraining approach, in which agents independently optimize a surrogate objective. We conduct extensive experiments to validate our theoretical findings.

Authors:Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, Yelong Shen
Title: Reinforcement Learning for Reasoning in Large Language Models with One Training Example
Abstract:
We show that reinforcement learning with verifiable reward using one training example (1-shot RLVR) is effective in incentivizing the mathematical reasoning capabilities of large language models (LLMs). Applying RLVR to the base model Qwen2.5-Math-1.5B, we identify a single example that elevates model performance on MATH500 from 36.0% to 73.6%, and improves the average performance across six common mathematical reasoning benchmarks from 17.6% to 35.7%. This result matches the performance obtained using the 1.2k DeepScaleR subset (MATH500: 73.6%, average: 35.9%), which includes the aforementioned example. Furthermore, RLVR with only two examples even slightly exceeds these results (MATH500: 74.8%, average: 36.6%). Similar substantial improvements are observed across various models (Qwen2.5-Math-7B, Llama3.2-3B-Instruct, DeepSeek-R1-Distill-Qwen-1.5B), RL algorithms (GRPO and PPO), and different math examples (when employed as a single training example). In addition, we identify some interesting phenomena during 1-shot RLVR, including cross-domain generalization, increased frequency of self-reflection, and sustained test performance improvement even after the training accuracy has saturated, a phenomenon we term post-saturation generalization. Moreover, we verify that the effectiveness of 1-shot RLVR primarily arises from the policy gradient loss, distinguishing it from the "grokking" phenomenon. We also show the critical role of promoting exploration (e.g., by incorporating entropy loss with an appropriate coefficient) in 1-shot RLVR training. We also further discuss related observations about format correction, label robustness and prompt modification. These findings can inspire future work on RLVR efficiency and encourage a re-examination of recent progress and the underlying mechanisms in RLVR. Our code, model, and data are open source at https://github.com/ypwang61/One-Shot-RLVR.

Authors:Zhongqi Wang, Jie Zhang, Shiguang Shan, Xilin Chen
Title: Dynamic Attention Analysis for Backdoor Detection in Text-to-Image Diffusion Models
Abstract:
Recent studies have revealed that text-to-image diffusion models are vulnerable to backdoor attacks, where attackers implant stealthy textual triggers to manipulate model outputs. Previous backdoor detection methods primarily focus on the static features of backdoor samples. However, a vital property of diffusion models is their inherent dynamism. This study introduces a novel backdoor detection perspective named Dynamic Attention Analysis (DAA), showing that these dynamic characteristics serve as better indicators for backdoor detection. Specifically, by examining the dynamic evolution of cross-attention maps, we observe that backdoor samples exhibit distinct feature evolution patterns at the $<$EOS$>$ token compared to benign samples. To quantify these dynamic anomalies, we first introduce DAA-I, which treats the tokens' attention maps as spatially independent and measures dynamic feature using the Frobenius norm. Furthermore, to better capture the interactions between attention maps and refine the feature, we propose a dynamical system-based approach, referred to as DAA-S. This model formulates the spatial correlations among attention maps using a graph-based state equation and we theoretically analyze the global asymptotic stability of this method. Extensive experiments across five representative backdoor attack scenarios demonstrate that our approach significantly surpasses existing detection methods, achieving an average F1 Score of 79.49% and an AUC of 87.67%. The code is available at https://github.com/Robin-WZQ/DAA.

Authors:Yichu Xu, Di Wang, Hongzan Jiao, Lefei Zhang, Liangpei Zhang
Title: MambaMoE: Mixture-of-Spectral-Spatial-Experts State Space Model for Hyperspectral Image Classification
Abstract:
Mamba-based models have recently demonstrated significant potential in hyperspectral image (HSI) classification, primarily due to their ability to perform contextual modeling with linear computational complexity. However, existing Mamba-based approaches often overlook the directional modeling heterogeneity across different land-cover types, leading to limited classification performance. To address these limitations, we propose MambaMoE, a novel spectral-spatial Mixture-of-Experts (MoE) framework, which represents the first MoE-based approach in the HSI classification domain. Specifically, we design a Mixture of Mamba Expert Block (MoMEB) that performs adaptive spectral-spatial feature modeling via a sparse expert activation mechanism. Additionally, we introduce an uncertainty-guided corrective learning (UGCL) strategy that encourages the model to focus on complex regions prone to prediction ambiguity. This strategy dynamically samples supervision signals from regions with high predictive uncertainty, guiding the model to adaptively refine feature representations and thereby enhancing its focus on challenging areas. Extensive experiments conducted on multiple public HSI benchmark datasets show that MambaMoE achieves state-of-the-art performance in both classification accuracy and computational efficiency compared to existing advanced methods, particularly Mamba-based ones. The code will be available online at https://github.com/YichuXu/MambaMoE.

Authors:Elena Martinez, Beatrice Moscoloni, Matteo Salvador, Fanwei Kong, Mathias Peirlinck, Alison Lesley Marsden
Title: Full-field surrogate modeling of cardiac function encoding geometric variability
Abstract:
Combining physics-based modeling with data-driven methods is critical to enabling the translation of computational methods to clinical use in cardiology. The use of rigorous differential equations combined with machine learning tools allows for model personalization with uncertainty quantification in time frames compatible with clinical practice. However, accurate and efficient surrogate models of cardiac function, built from physics-based numerical simulation, are still mostly geometry-specific and require retraining for different patients and pathological conditions. We propose a novel computational pipeline to embed cardiac anatomies into full-field surrogate models. We generate a dataset of electrophysiology simulations using a complex multi-scale mathematical model coupling partial and ordinary differential equations. We adopt Branched Latent Neural Maps (BLNMs) as an effective scientific machine learning method to encode activation maps extracted from physics-based numerical simulations into a neural network. Leveraging large deformation diffeomorphic metric mappings, we build a biventricular anatomical atlas and parametrize the anatomical variability of a small and challenging cohort of 13 pediatric patients affected by Tetralogy of Fallot. We propose a novel statistical shape modeling based z-score sampling approach to generate a new synthetic cohort of 52 biventricular geometries that are compatible with the original geometrical variability. This synthetic cohort acts as the training set for BLNMs. Our surrogate model demonstrates robustness and great generalization across the complex original patient cohort, achieving an average adimensional mean squared error of 0.0034. The Python implementation of our BLNM model is publicly available under MIT License at https://github.com/StanfordCBCL/BLNM.

Authors:Jiajun Ding, Beiyao Zhu, Xiaosheng Liu, Lishen Zhang, Zhao Liu
Title: LymphAtlas- A Unified Multimodal Lymphoma Imaging Repository Delivering AI-Enhanced Diagnostic Insight
Abstract:
This study integrates PET metabolic information with CT anatomical structures to establish a 3D multimodal segmentation dataset for lymphoma based on whole-body FDG PET/CT examinations, which bridges the gap of the lack of standardised multimodal segmentation datasets in the field of haematological malignancies. We retrospectively collected 483 examination datasets acquired between March 2011 and May 2024, involving 220 patients (106 non-Hodgkin lymphoma, 42 Hodgkin lymphoma); all data underwent ethical review and were rigorously de-identified. Complete 3D structural information was preserved during data acquisition, preprocessing and annotation, and a high-quality dataset was constructed based on the nnUNet format. By systematic technical validation and evaluation of the preprocessing process, annotation quality and automatic segmentation algorithm, the deep learning model trained based on this dataset is verified to achieve accurate segmentation of lymphoma lesions in PET/CT images with high accuracy, good robustness and reproducibility, which proves the applicability and stability of this dataset in accurate segmentation and quantitative analysis. The deep fusion of PET/CT images achieved with this dataset not only significantly improves the accurate portrayal of the morphology, location and metabolic features of tumour lesions, but also provides solid data support for early diagnosis, clinical staging and personalized treatment, and promotes the development of automated image segmentation and precision medicine based on deep learning. The dataset and related resources are available at https://github.com/SuperD0122/LymphAtlas-.

Authors:Derui Shan, Peng Guo, Wenshuo Li, Du Tao
Title: LPVIMO-SAM: Tightly-coupled LiDAR/Polarization Vision/Inertial/Magnetometer/Optical Flow Odometry via Smoothing and Mapping
Abstract:
We propose a tightly-coupled LiDAR/Polarization Vision/Inertial/Magnetometer/Optical Flow Odometry via Smoothing and Mapping (LPVIMO-SAM) framework, which integrates LiDAR, polarization vision, inertial measurement unit, magnetometer, and optical flow in a tightly-coupled fusion. This framework enables high-precision and highly robust real-time state estimation and map construction in challenging environments, such as LiDAR-degraded, low-texture regions, and feature-scarce areas. The LPVIMO-SAM comprises two subsystems: a Polarized Vision-Inertial System and a LiDAR/Inertial/Magnetometer/Optical Flow System. The polarized vision enhances the robustness of the Visual/Inertial odometry in low-feature and low-texture scenarios by extracting the polarization information of the scene. The magnetometer acquires the heading angle, and the optical flow obtains the speed and height to reduce the accumulated error. A magnetometer heading prior factor, an optical flow speed observation factor, and a height observation factor are designed to eliminate the cumulative errors of the LiDAR/Inertial odometry through factor graph optimization. Meanwhile, the LPVIMO-SAM can maintain stable positioning even when one of the two subsystems fails, further expanding its applicability in LiDAR-degraded, low-texture, and low-feature environments. Code is available on https://github.com/junxiaofanchen/LPVIMO-SAM.

Authors:Amaan Izhar, Nurul Japar, Norisma Idris, Ting Dang
Title: MicarVLMoE: A Modern Gated Cross-Aligned Vision-Language Mixture of Experts Model for Medical Image Captioning and Report Generation
Abstract:
Medical image reporting (MIR) aims to generate structured clinical descriptions from radiological images. Existing methods struggle with fine-grained feature extraction, multimodal alignment, and generalization across diverse imaging types, often relying on vanilla transformers and focusing primarily on chest X-rays. We propose MicarVLMoE, a vision-language mixture-of-experts model with gated cross-aligned fusion, designed to address these limitations. Our architecture includes: (i) a multiscale vision encoder (MSVE) for capturing anatomical details at varying resolutions, (ii) a multihead dual-branch latent attention (MDLA) module for vision-language alignment through latent bottleneck representations, and (iii) a modulated mixture-of-experts (MoE) decoder for adaptive expert specialization. We extend MIR to CT scans, retinal imaging, MRI scans, and gross pathology images, reporting state-of-the-art results on COVCTR, MMR, PGROSS, and ROCO datasets. Extensive experiments and ablations confirm improved clinical accuracy, cross-modal alignment, and model interpretability. Code is available at https://github.com/AI-14/micar-vl-moe.

Authors:Cedric Le Gentil, Leonardo Brizi, Daniil Lisus, Xinyuan Qiao, Giorgio Grisetti, Timothy D. Barfoot
Title: DRO: Doppler-Aware Direct Radar Odometry
Abstract:
A renaissance in radar-based sensing for mobile robotic applications is underway. Compared to cameras or lidars, millimetre-wave radars have the ability to `see' through thin walls, vegetation, and adversarial weather conditions such as heavy rain, fog, snow, and dust. In this paper, we propose a novel SE(2) odometry approach for spinning frequency-modulated continuous-wave radars. Our method performs scan-to-local-map registration of the incoming radar data in a direct manner using all the radar intensity information without the need for feature or point cloud extraction. The method performs locally continuous trajectory estimation and accounts for both motion and Doppler distortion of the radar scans. If the radar possesses a specific frequency modulation pattern that makes radial Doppler velocities observable, an additional Doppler-based constraint is formulated to improve the velocity estimate and enable odometry in geometrically feature-deprived scenarios (e.g., featureless tunnels). Our method has been validated on over 250km of on-road data sourced from public datasets (Boreas and MulRan) and collected using our automotive platform. With the aid of a gyroscope, it outperforms state-of-the-art methods and achieves an average relative translation error of 0.26% on the Boreas leaderboard. When using data with the appropriate Doppler-enabling frequency modulation pattern, the translation error is reduced to 0.18% in similar environments. We also benchmarked our algorithm using 1.5 hours of data collected with a mobile robot in off-road environments with various levels of structure to demonstrate its versatility. Our real-time implementation is publicly available: https://github.com/utiasASRL/dro.

Authors:Junlin Guo, James R. Zimmer-Dauphinee, Jordan M. Nieusma, Siqi Lu, Quan Liu, Ruining Deng, Can Cui, Jialin Yue, Yizhe Lin, Tianyuan Yao, Juming Xiong, Junchao Zhu, Chongyu Qu, Yuechen Yang, Mitchell Wilkes, Xiao Wang, Parker VanValkenburgh, Steven A. Wernke, Yuankai Huo
Title: DeepAndes: A Self-Supervised Vision Foundation Model for Multi-Spectral Remote Sensing Imagery of the Andes
Abstract:
By mapping sites at large scales using remotely sensed data, archaeologists can generate unique insights into long-term demographic trends, inter-regional social networks, and past adaptations to climate change. Remote sensing surveys complement field-based approaches, and their reach can be especially great when combined with deep learning and computer vision techniques. However, conventional supervised deep learning methods face challenges in annotating fine-grained archaeological features at scale. While recent vision foundation models have shown remarkable success in learning large-scale remote sensing data with minimal annotations, most off-the-shelf solutions are designed for RGB images rather than multi-spectral satellite imagery, such as the 8-band data used in our study. In this paper, we introduce DeepAndes, a transformer-based vision foundation model trained on three million multi-spectral satellite images, specifically tailored for Andean archaeology. DeepAndes incorporates a customized DINOv2 self-supervised learning algorithm optimized for 8-band multi-spectral imagery, marking the first foundation model designed explicitly for the Andes region. We evaluate its image understanding performance through imbalanced image classification, image instance retrieval, and pixel-level semantic segmentation tasks. Our experiments show that DeepAndes achieves superior F1 scores, mean average precision, and Dice scores in few-shot learning scenarios, significantly outperforming models trained from scratch or pre-trained on smaller datasets. This underscores the effectiveness of large-scale self-supervised pre-training in archaeological remote sensing. Codes will be available on https://github.com/geopacha/DeepAndes.

Authors:Stefan Kober
Title: Radius-Guided Post-Clustering for Shape-Aware, Scalable Refinement of k-Means Results
Abstract:
Traditional k-means clustering underperforms on non-convex shapes and requires the number of clusters k to be specified in advance. We propose a simple geometric enhancement: after standard k-means, each cluster center is assigned a radius (the distance to its farthest assigned point), and clusters whose radii overlap are merged. This post-processing step loosens the requirement for exact k: as long as k is overestimated (but not excessively), the method can often reconstruct non-convex shapes through meaningful merges. We also show that this approach supports recursive partitioning: clustering can be performed independently on tiled regions of the feature space, then globally merged, making the method scalable and suitable for distributed systems. Implemented as a lightweight post-processing step atop scikit-learn's k-means, the algorithm performs well on benchmark datasets, achieving high accuracy with minimal additional computation.

Authors:Nishant Subramani, Jason Eisner, Justin Svegliato, Benjamin Van Durme, Yu Su, Sam Thomson
Title: MICE for CATs: Model-Internal Confidence Estimation for Calibrating Agents with Tools
Abstract:
Tool-using agents that act in the world need to be both useful and safe. Well-calibrated model confidences can be used to weigh the risk versus reward of potential actions, but prior work shows that many models are poorly calibrated. Inspired by interpretability literature exploring the internals of models, we propose a novel class of model-internal confidence estimators (MICE) to better assess confidence when calling tools. MICE first decodes from each intermediate layer of the language model using logitLens and then computes similarity scores between each layer's generation and the final output. These features are fed into a learned probabilistic classifier to assess confidence in the decoded output. On the simulated trial and error (STE) tool-calling dataset using Llama3 models, we find that MICE beats or matches the baselines on smoothed expected calibration error. Using MICE confidences to determine whether to call a tool significantly improves over strong baselines on a new metric, expected tool-calling utility. Further experiments show that MICE is sample-efficient, can generalize zero-shot to unseen APIs, and results in higher tool-calling utility in scenarios with varying risk levels. Our code is open source, available at https://github.com/microsoft/mice_for_cats.

Authors:Zae Myung Kim, Chanwoo Park, Vipul Raheja, Suin Kim, Dongyeop Kang
Title: Toward Evaluative Thinking: Meta Policy Optimization with Evolving Reward Models
Abstract:
Reward-based alignment methods for large language models (LLMs) face two key limitations: vulnerability to reward hacking, where models exploit flaws in the reward signal; and reliance on brittle, labor-intensive prompt engineering when LLMs are used as reward models. We introduce Meta Policy Optimization (MPO), a framework that addresses these challenges by integrating a meta-reward model that dynamically refines the reward model's prompt throughout training. In MPO, the meta-reward model monitors the evolving training context and continuously adjusts the reward model's prompt to maintain high alignment, providing an adaptive reward signal that resists exploitation by the policy. This meta-learning approach promotes a more stable policy optimization, and greatly reduces the need for manual reward prompt design. It yields performance on par with or better than models guided by extensively hand-crafted reward prompts. Furthermore, we show that MPO maintains its effectiveness across diverse tasks, from essay writing to mathematical reasoning, without requiring specialized reward designs. Beyond standard RLAIF, MPO's meta-learning formulation is readily extensible to higher-level alignment frameworks. Overall, this method addresses theoretical and practical challenges in reward-based RL alignment for LLMs, paving the way for more robust and adaptable alignment strategies. The code and data can be accessed at: https://github.com/minnesotanlp/mpo

Authors:Alireza Kazemi, Helia Rezvani, Mahsa Baktashmotlagh
Title: Benchmarking Transferability: A Framework for Fair and Robust Evaluation
Abstract:
Transferability scores aim to quantify how well a model trained on one domain generalizes to a target domain. Despite numerous methods proposed for measuring transferability, their reliability and practical usefulness remain inconclusive, often due to differing experimental setups, datasets, and assumptions. In this paper, we introduce a comprehensive benchmarking framework designed to systematically evaluate transferability scores across diverse settings. Through extensive experiments, we observe variations in how different metrics perform under various scenarios, suggesting that current evaluation practices may not fully capture each method's strengths and limitations. Our findings underscore the value of standardized assessment protocols, paving the way for more reliable transferability measures and better-informed model selection in cross-domain applications. Additionally, we achieved a 3.5\% improvement using our proposed metric for the head-training fine-tuning experimental setup. Our code is available in this repository: https://github.com/alizkzm/pert_robust_platform.

Authors:Zijie Lin, Yiqing Shen, Qilin Cai, He Sun, Jinrui Zhou, Mingjun Xiao
Title: AutoP2C: An LLM-Based Agent Framework for Code Repository Generation from Multimodal Content in Academic Papers
Abstract:
Machine Learning (ML) research is spread through academic papers featuring rich multimodal content, including text, diagrams, and tabular results. However, translating these multimodal elements into executable code remains a challenging and time-consuming process that requires substantial ML expertise. We introduce ``Paper-to-Code'' (P2C), a novel task that transforms the multimodal content of scientific publications into fully executable code repositories, which extends beyond the existing formulation of code generation that merely converts textual descriptions into isolated code snippets. To automate the P2C process, we propose AutoP2C, a multi-agent framework based on large language models that processes both textual and visual content from research papers to generate complete code repositories. Specifically, AutoP2C contains four stages: (1) repository blueprint extraction from established codebases, (2) multimodal content parsing that integrates information from text, equations, and figures, (3) hierarchical task decomposition for structured code generation, and (4) iterative feedback-driven debugging to ensure functionality and performance. Evaluation on a benchmark of eight research papers demonstrates the effectiveness of AutoP2C, which can successfully generate executable code repositories for all eight papers, while OpenAI-o1 or DeepSeek-R1 can only produce runnable code for one paper. The code is available at https://github.com/shoushouyu/Automated-Paper-to-Code.

Authors:Zhonghao Li, Kunpeng Zhang, Jinghuai Ou, Shuliang Liu, Xuming Hu
Title: TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering
Abstract:
Retrieval-augmented generation (RAG) systems face significant challenges in multi-hop question answering (MHQA), where complex queries require synthesizing information across multiple document chunks. Existing approaches typically rely on iterative LLM-based query rewriting and routing, resulting in high computational costs due to repeated LLM invocations and multi-stage processes. To address these limitations, we propose TreeHop, an embedding-level framework without the need for LLMs in query refinement. TreeHop dynamically updates query embeddings by fusing semantic information from prior queries and retrieved documents, enabling iterative retrieval through embedding-space operations alone. This method replaces the traditional "Retrieve-Rewrite-Vectorize-Retrieve" cycle with a streamlined "Retrieve-Embed-Retrieve" loop, significantly reducing computational overhead. Moreover, a rule-based stop criterion is introduced to further prune redundant retrievals, balancing efficiency and recall rate. Experimental results show that TreeHop rivals advanced RAG methods across three open-domain MHQA datasets, achieving comparable performance with only 5\%-0.4\% of the model parameter size and reducing the query latency by approximately 99\% compared to concurrent approaches. This makes TreeHop a faster and more cost-effective solution for deployment in a range of knowledge-intensive applications. For reproducibility purposes, codes and data are available here: https://github.com/allen-li1231/TreeHop-RAG.

Authors:Damien Martins Gomes
Title: Towards Practical Second-Order Optimizers in Deep Learning: Insights from Fisher Information Analysis
Abstract:
First-order optimization methods remain the standard for training deep neural networks (DNNs). Optimizers like Adam incorporate limited curvature information by preconditioning the stochastic gradient with a diagonal matrix. Despite the widespread adoption of first-order methods, second-order optimization algorithms often exhibit superior convergence compared to methods like Adam and SGD. However, their practicality in training DNNs is still limited by a significantly higher per-iteration computational cost compared to first-order methods. In this thesis, we present AdaFisher, a novel adaptive second-order optimizer that leverages a diagonal block-Kronecker approximation of the Fisher information matrix to adaptively precondition gradients. AdaFisher aims to bridge the gap between the improved convergence and generalization of second-order methods and the computational efficiency needed for training DNNs. Despite the traditionally slower speed of second-order optimizers, AdaFisher is effective for tasks such as image classification and language modeling, exhibiting remarkable stability and robustness during hyperparameter tuning. We demonstrate that AdaFisher outperforms state-of-the-art optimizers in both accuracy and convergence speed. The code is available from https://github.com/AtlasAnalyticsLab/AdaFisher.

Authors:Noriyuki Kugo, Xiang Li, Zixin Li, Ashish Gupta, Arpandeep Khatua, Nidhish Jain, Chaitanya Patel, Yuta Kyuragi, Yasunori Ishii, Masamoto Tanabiki, Kazuki Kozuka, Ehsan Adeli
Title: VideoMultiAgents: A Multi-Agent Framework for Video Question Answering
Abstract:
Video Question Answering (VQA) inherently relies on multimodal reasoning, integrating visual, temporal, and linguistic cues to achieve a deeper understanding of video content. However, many existing methods rely on feeding frame-level captions into a single model, making it difficult to adequately capture temporal and interactive contexts. To address this limitation, we introduce VideoMultiAgents, a framework that integrates specialized agents for vision, scene graph analysis, and text processing. It enhances video understanding leveraging complementary multimodal reasoning from independently operating agents. Our approach is also supplemented with a question-guided caption generation, which produces captions that highlight objects, actions, and temporal transitions directly relevant to a given query, thus improving the answer accuracy. Experimental results demonstrate that our method achieves state-of-the-art performance on Intent-QA (79.0%, +6.2% over previous SOTA), EgoSchema subset (75.4%, +3.4%), and NExT-QA (79.6%, +0.4%). The source code is available at https://github.com/PanasonicConnect/VideoMultiAgents.

Authors:Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, Manling Li
Title: RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning
Abstract:
Training large language models (LLMs) as interactive agents presents unique challenges including long-horizon decision making and interacting with stochastic environment feedback. While reinforcement learning (RL) has enabled progress in static tasks, multi-turn agent RL training remains underexplored. We propose StarPO (State-Thinking-Actions-Reward Policy Optimization), a general framework for trajectory-level agent RL, and introduce RAGEN, a modular system for training and evaluating LLM agents. Our study on four stylized environments reveals three core findings. First, our agent RL training shows a recurring mode of Echo Trap where reward variance cliffs and gradient spikes; we address this with StarPO-S, a stabilized variant with trajectory filtering, critic incorporation, and gradient stabilization. Second, we find the shaping of RL rollouts would benefit from diverse initial states, medium interaction granularity and more frequent sampling. Third, we show that without fine-grained, reasoning-aware reward signals, agent reasoning hardly emerge through multi-turn RL and they may show shallow strategies or hallucinated thoughts. Code and environments are available at https://github.com/RAGEN-AI/RAGEN.

Authors:Moto Hira, Christian Puhrsch, Valentin Andrei, Roman Malinovskyy, Gael Le Lan, Abhinandan Krishnan, Joseph Cummings, Miguel Martin, Gokul Gunasekaran, Yuta Inoue, Alex J Turner, Raghuraman Krishnamoorthi
Title: Scalable and Performant Data Loading
Abstract:
We present SPDL (Scalable and Performant Data Loading), an open-source, framework-agnostic library designed for efficiently loading array data to GPU. Data loading is often a bottleneck in AI applications, and is challenging to optimize because it requires coordination of network calls, CPU-bound tasks, and GPU device transfer. On top of that, Python's GIL (Global Interpreter Lock) makes it difficult to gain performance improvement from multi-threading. We found that when data preprocessing functions release the GIL entirely, it is possible to execute them concurrently in a thread pool, thereby improving the workflow performance. Our benchmark shows that compared to the PyTorch DataLoader, SPDL can iterate through the ImageNet dataset 74% faster while using 38% less CPU and 50GB less memory. When training ViT-B/16 model, SPDL can send data to the GPU at a speed that does not starve the training. Additionally, when using SPDL on Python 3.13t, without changing any code, the throughput is further by improved by 33%, thanks to the disabled GIL. SPDL can improve the performance of current AI model training, and receives further performance improvements when Free-Threaded Python is adopted in production systems. SPDL is available at https://github.com/facebookresearch/spdl.

Authors:Zador Pataki, Paul-Edouard Sarlin, Johannes L. Schönberger, Marc Pollefeys
Title: MP-SfM: Monocular Surface Priors for Robust Structure-from-Motion
Abstract:
While Structure-from-Motion (SfM) has seen much progress over the years, state-of-the-art systems are prone to failure when facing extreme viewpoint changes in low-overlap, low-parallax or high-symmetry scenarios. Because capturing images that avoid these pitfalls is challenging, this severely limits the wider use of SfM, especially by non-expert users. We overcome these limitations by augmenting the classical SfM paradigm with monocular depth and normal priors inferred by deep neural networks. Thanks to a tight integration of monocular and multi-view constraints, our approach significantly outperforms existing ones under extreme viewpoint changes, while maintaining strong performance in standard conditions. We also show that monocular priors can help reject faulty associations due to symmetries, which is a long-standing problem for SfM. This makes our approach the first capable of reliably reconstructing challenging indoor environments from few images. Through principled uncertainty propagation, it is robust to errors in the priors, can handle priors inferred by different models with little tuning, and will thus easily benefit from future progress in monocular depth and normal estimation. Our code is publicly available at https://github.com/cvg/mpsfm.

Authors:Sahel Sharifymoghaddam, Shivani Upadhyay, Nandan Thakur, Ronak Pradeep, Jimmy Lin
Title: Chatbot Arena Meets Nuggets: Towards Explanations and Diagnostics in the Evaluation of LLM Responses
Abstract:
Battles, or side-by-side comparisons in so-called arenas that elicit human preferences, have emerged as a popular approach for assessing the output quality of LLMs. Recently, this idea has been extended to retrieval-augmented generation (RAG) systems. While undoubtedly representing an advance in evaluation, battles have at least two drawbacks, particularly in the context of complex information-seeking queries: they are neither explanatory nor diagnostic. Recently, the nugget evaluation methodology has emerged as a promising approach to evaluate the quality of RAG answers. Nuggets decompose long-form LLM-generated answers into atomic facts, highlighting important pieces of information necessary in a "good" response. In this work, we apply our AutoNuggetizer framework to analyze data from roughly 7K Search Arena battles provided by LMArena in a fully automatic manner. Our results show a significant correlation between nugget scores and human preferences, showcasing promise in our approach to explainable and diagnostic system evaluations. All the code necessary to reproduce results in our work is available in https://github.com/castorini/lmsys_nuggetize.

Authors:Narges Rashvand, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Babak Rahimi Ardabili, Hamed Tabkhi
Title: Shopformer: Transformer-Based Framework for Detecting Shoplifting via Human Pose
Abstract:
Shoplifting remains a costly issue for the retail sector, but traditional surveillance systems, which are mostly based on human monitoring, are still largely ineffective, with only about 2% of shoplifters being arrested. Existing AI-based approaches rely on pixel-level video analysis which raises privacy concerns, is sensitive to environmental variations, and demands significant computational resources. To address these limitations, we introduce Shopformer, a novel transformer-based model that detects shoplifting by analyzing pose sequences rather than raw video. We propose a custom tokenization strategy that converts pose sequences into compact embeddings for efficient transformer processing. To the best of our knowledge, this is the first pose-sequence-based transformer model for shoplifting detection. Evaluated on real-world pose data, our method outperforms state-of-the-art anomaly detection models, offering a privacy-preserving, and scalable solution for real-time retail surveillance. The code base for this work is available at https://github.com/TeCSAR-UNCC/Shopformer.

Authors:Yunfei Wan, Jianheng Liu, Chunran Zheng, Jiarong Lin, Fu Zhang
Title: Mesh-Learner: Texturing Mesh with Spherical Harmonics
Abstract:
In this paper, we present a 3D reconstruction and rendering framework termed Mesh-Learner that is natively compatible with traditional rasterization pipelines. It integrates mesh and spherical harmonic (SH) texture (i.e., texture filled with SH coefficients) into the learning process to learn each mesh s view-dependent radiance end-to-end. Images are rendered by interpolating surrounding SH Texels at each pixel s sampling point using a novel interpolation method. Conversely, gradients from each pixel are back-propagated to the related SH Texels in SH textures. Mesh-Learner exploits graphic features of rasterization pipeline (texture sampling, deferred rendering) to render, which makes Mesh-Learner naturally compatible with tools (e.g., Blender) and tasks (e.g., 3D reconstruction, scene rendering, reinforcement learning for robotics) that are based on rasterization pipelines. Our system can train vast, unlimited scenes because we transfer only the SH textures within the frustum to the GPU for training. At other times, the SH textures are stored in CPU RAM, which results in moderate GPU memory usage. The rendering results on interpolation and extrapolation sequences in the Replica and FAST-LIVO2 datasets achieve state-of-the-art performance compared to existing state-of-the-art methods (e.g., 3D Gaussian Splatting and M2-Mapping). To benefit the society, the code will be available at https://github.com/hku-mars/Mesh-Learner.

Authors:Mamadou Keita, Wassim Hamidouche, Hessen Bougueffa Eutamene, Abdelmalik Taleb-Ahmed, Abdenour Hadid
Title: DeeCLIP: A Robust and Generalizable Transformer-Based Framework for Detecting AI-Generated Images
Abstract:
This paper introduces DeeCLIP, a novel framework for detecting AI-generated images using CLIP-ViT and fusion learning. Despite significant advancements in generative models capable of creating highly photorealistic images, existing detection methods often struggle to generalize across different models and are highly sensitive to minor perturbations. To address these challenges, DeeCLIP incorporates DeeFuser, a fusion module that combines high-level and low-level features, improving robustness against degradations such as compression and blurring. Additionally, we apply triplet loss to refine the embedding space, enhancing the model's ability to distinguish between real and synthetic content. To further enable lightweight adaptation while preserving pre-trained knowledge, we adopt parameter-efficient fine-tuning using low-rank adaptation (LoRA) within the CLIP-ViT backbone. This approach supports effective zero-shot learning without sacrificing generalization. Trained exclusively on 4-class ProGAN data, DeeCLIP achieves an average accuracy of 89.00% on 19 test subsets composed of generative adversarial network (GAN) and diffusion models. Despite having fewer trainable parameters, DeeCLIP outperforms existing methods, demonstrating superior robustness against various generative models and real-world distortions. The code is publicly available at https://github.com/Mamadou-Keita/DeeCLIP for research purposes.

Authors:Andre Schreiber, Katherine Driggs-Campbell
Title: Do You Know the Way? Human-in-the-Loop Understanding for Fast Traversability Estimation in Mobile Robotics
Abstract:
The increasing use of robots in unstructured environments necessitates the development of effective perception and navigation strategies to enable field robots to successfully perform their tasks. In particular, it is key for such robots to understand where in their environment they can and cannot travel -- a task known as traversability estimation. However, existing geometric approaches to traversability estimation may fail to capture nuanced representations of traversability, whereas vision-based approaches typically either involve manually annotating a large number of images or require robot experience. In addition, existing methods can struggle to address domain shifts as they typically do not learn during deployment. To this end, we propose a human-in-the-loop (HiL) method for traversability estimation that prompts a human for annotations as-needed. Our method uses a foundation model to enable rapid learning on new annotations and to provide accurate predictions even when trained on a small number of quickly-provided HiL annotations. We extensively validate our method in simulation and on real-world data, and demonstrate that it can provide state-of-the-art traversability prediction performance.

Authors:Kyo Gerrits, Ana Guerberof-Arenas
Title: To MT or not to MT: An eye-tracking study on the reception by Dutch readers of different translation and creativity levels
Abstract:
This article presents the results of a pilot study involving the reception of a fictional short story translated from English into Dutch under four conditions: machine translation (MT), post-editing (PE), human translation (HT) and original source text (ST). The aim is to understand how creativity and errors in different translation modalities affect readers, specifically regarding cognitive load. Eight participants filled in a questionnaire, read a story using an eye-tracker, and conducted a retrospective think-aloud (RTA) interview. The results show that units of creative potential (UCP) increase cognitive load and that this effect is highest for HT and lowest for MT; no effect of error was observed. Triangulating the data with RTAs leads us to hypothesize that the higher cognitive load in UCPs is linked to increases in reader enjoyment and immersion. The effect of translation creativity on cognitive load in different translation modalities at word-level is novel and opens up new avenues for further research. All the code and data are available at https://github.com/INCREC/Pilot_to_MT_or_not_to_MT

Authors:Yulong Guo, Zilun Zhang, Yongheng Shang, Tiancheng Zhao, Shuiguang Deng, Yingchun Yang, Jianwei Yin
Title: SRMF: A Data Augmentation and Multimodal Fusion Approach for Long-Tail UHR Satellite Image Segmentation
Abstract:
The long-tail problem presents a significant challenge to the advancement of semantic segmentation in ultra-high-resolution (UHR) satellite imagery. While previous efforts in UHR semantic segmentation have largely focused on multi-branch network architectures that emphasize multi-scale feature extraction and fusion, they have often overlooked the importance of addressing the long-tail issue. In contrast to prior UHR methods that focused on independent feature extraction, we emphasize data augmentation and multimodal feature fusion to alleviate the long-tail problem. In this paper, we introduce SRMF, a novel framework for semantic segmentation in UHR satellite imagery. Our approach addresses the long-tail class distribution by incorporating a multi-scale cropping technique alongside a data augmentation strategy based on semantic reordering and resampling. To further enhance model performance, we propose a multimodal fusion-based general representation knowledge injection method, which, for the first time, fuses text and visual features without the need for individual region text descriptions, extracting more robust features. Extensive experiments on the URUR, GID, and FBP datasets demonstrate that our method improves mIoU by 3.33\%, 0.66\%, and 0.98\%, respectively, achieving state-of-the-art performance. Code is available at: https://github.com/BinSpa/SRMF.git.

Authors:Guangyi Liu, Pengxiang Zhao, Liang Liu, Yaxuan Guo, Han Xiao, Weifeng Lin, Yuxiang Chai, Yue Han, Shuai Ren, Hao Wang, Xiaoyu Liang, Wenhao Wang, Tianze Wu, Linghao Li, Hao Wang, Guanjing Xiong, Yong Liu, Hongsheng Li
Title: LLM-Powered GUI Agents in Phone Automation: Surveying Progress and Prospects
Abstract:
With the rapid rise of large language models (LLMs), phone automation has undergone transformative changes. This paper systematically reviews LLM-driven phone GUI agents, highlighting their evolution from script-based automation to intelligent, adaptive systems. We first contextualize key challenges, (i) limited generality, (ii) high maintenance overhead, and (iii) weak intent comprehension, and show how LLMs address these issues through advanced language understanding, multimodal perception, and robust decision-making. We then propose a taxonomy covering fundamental agent frameworks (single-agent, multi-agent, plan-then-act), modeling approaches (prompt engineering, training-based), and essential datasets and benchmarks. Furthermore, we detail task-specific architectures, supervised fine-tuning, and reinforcement learning strategies that bridge user intent and GUI operations. Finally, we discuss open challenges such as dataset diversity, on-device deployment efficiency, user-centric adaptation, and security concerns, offering forward-looking insights into this rapidly evolving field. By providing a structured overview and identifying pressing research gaps, this paper serves as a definitive reference for researchers and practitioners seeking to harness LLMs in designing scalable, user-friendly phone GUI agents.

Authors:Xiaoyu Liu, Mingshuai Yao, Yabo Zhang, Xianhui Lin, Peiran Ren, Xiaoming Li, Ming Liu, Wangmeng Zuo
Title: AnimateAnywhere: Rouse the Background in Human Image Animation
Abstract:
Human image animation aims to generate human videos of given characters and backgrounds that adhere to the desired pose sequence. However, existing methods focus more on human actions while neglecting the generation of background, which typically leads to static results or inharmonious movements. The community has explored camera pose-guided animation tasks, yet preparing the camera trajectory is impractical for most entertainment applications and ordinary users. As a remedy, we present an AnimateAnywhere framework, rousing the background in human image animation without requirements on camera trajectories. In particular, based on our key insight that the movement of the human body often reflects the motion of the background, we introduce a background motion learner (BML) to learn background motions from human pose sequences. To encourage the model to learn more accurate cross-frame correspondences, we further deploy an epipolar constraint on the 3D attention map. Specifically, the mask used to suppress geometrically unreasonable attention is carefully constructed by combining an epipolar mask and the current 3D attention map. Extensive experiments demonstrate that our AnimateAnywhere effectively learns the background motion from human pose sequences, achieving state-of-the-art performance in generating human animation results with vivid and realistic backgrounds. The source code and model will be available at https://github.com/liuxiaoyu1104/AnimateAnywhere.

Authors:Hoang Chuong Nguyen, Wei Mao, Jose M. Alvarez, Miaomiao Liu
Title: Joint Optimization of Neural Radiance Fields and Continuous Camera Motion from a Monocular Video
Abstract:
Neural Radiance Fields (NeRF) has demonstrated its superior capability to represent 3D geometry but require accurately precomputed camera poses during training. To mitigate this requirement, existing methods jointly optimize camera poses and NeRF often relying on good pose initialisation or depth priors. However, these approaches struggle in challenging scenarios, such as large rotations, as they map each camera to a world coordinate system. We propose a novel method that eliminates prior dependencies by modeling continuous camera motions as time-dependent angular velocity and velocity. Relative motions between cameras are learned first via velocity integration, while camera poses can be obtained by aggregating such relative motions up to a world coordinate system defined at a single time step within the video. Specifically, accurate continuous camera movements are learned through a time-dependent NeRF, which captures local scene geometry and motion by training from neighboring frames for each time step. The learned motions enable fine-tuning the NeRF to represent the full scene geometry. Experiments on Co3D and Scannet show our approach achieves superior camera pose and depth estimation and comparable novel-view synthesis performance compared to state-of-the-art methods. Our code is available at https://github.com/HoangChuongNguyen/cope-nerf.

Authors:Nicola Debole, Pietro Barbiero, Francesco Giannini, Andrea Passerini, Stefano Teso, Emanuele Marconato
Title: If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Abstract:
Concept Bottleneck Models (CBMs) are neural networks designed to conjoin high performance with ante-hoc interpretability. CBMs work by first mapping inputs (e.g., images) to high-level concepts (e.g., visible objects and their properties) and then use these to solve a downstream task (e.g., tagging or scoring an image) in an interpretable manner. Their performance and interpretability, however, hinge on the quality of the concepts they learn. The go-to strategy for ensuring good quality concepts is to leverage expert annotations, which are expensive to collect and seldom available in applications. Researchers have recently addressed this issue by introducing "VLM-CBM" architectures that replace manual annotations with weak supervision from foundation models. It is however unclear what is the impact of doing so on the quality of the learned concepts. To answer this question, we put state-of-the-art VLM-CBMs to the test, analyzing their learned concepts empirically using a selection of significant metrics. Our results show that, depending on the task, VLM supervision can sensibly differ from expert annotations, and that concept accuracy and quality are not strongly correlated. Our code is available at https://github.com/debryu/CQA.

Authors:Zhimin Liao, Ping Wei, Shuaijia Chen, Haoxuan Wang, Ziyang Ren
Title: STCOcc: Sparse Spatial-Temporal Cascade Renovation for 3D Occupancy and Scene Flow Prediction
Abstract:
3D occupancy and scene flow offer a detailed and dynamic representation of 3D scene. Recognizing the sparsity and complexity of 3D space, previous vision-centric methods have employed implicit learning-based approaches to model spatial and temporal information. However, these approaches struggle to capture local details and diminish the model's spatial discriminative ability. To address these challenges, we propose a novel explicit state-based modeling method designed to leverage the occupied state to renovate the 3D features. Specifically, we propose a sparse occlusion-aware attention mechanism, integrated with a cascade refinement strategy, which accurately renovates 3D features with the guidance of occupied state information. Additionally, we introduce a novel method for modeling long-term dynamic interactions, which reduces computational costs and preserves spatial information. Compared to the previous state-of-the-art methods, our efficient explicit renovation strategy not only delivers superior performance in terms of RayIoU and mAVE for occupancy and scene flow prediction but also markedly reduces GPU memory usage during training, bringing it down to 8.7GB. Our code is available on https://github.com/lzzzzzm/STCOcc

Authors:Valerie Zermatten, Javiera Castillo-Navarro, Pallavi Jain, Devis Tuia, Diego Marcos
Title: EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observations and Wikipedia
Abstract:
The presence of species provides key insights into the ecological properties of a location such as land cover, climatic conditions or even soil properties. We propose a method to predict such ecological properties directly from remote sensing (RS) images by aligning them with species habitat descriptions. We introduce the EcoWikiRS dataset, consisting of high-resolution aerial images, the corresponding geolocated species observations, and, for each species, the textual descriptions of their habitat from Wikipedia. EcoWikiRS offers a scalable way of supervision for RS vision language models (RS-VLMs) for ecology. This is a setting with weak and noisy supervision, where, for instance, some text may describe properties that are specific only to part of the species' niche or is irrelevant to a specific image. We tackle this by proposing WINCEL, a weighted version of the InfoNCE loss. We evaluate our model on the task of ecosystem zero-shot classification by following the habitat definitions from the European Nature Information System (EUNIS). Our results show that our approach helps in understanding RS images in a more ecologically meaningful manner. The code and the dataset are available at https://github.com/eceo-epfl/EcoWikiRS.

Authors:Yonghui Zhai, Yang Zhang, Minghao Shang, Lihua Pang, Yaxin Ren
Title: Graph Fourier Transformer with Structure-Frequency Information
Abstract:
Graph Transformers (GTs) have shown advantages in numerous graph structure tasks but their self-attention mechanism ignores the generalization bias of graphs, with existing methods mainly compensating for this bias from aspects like position encoding, attention bias and relative distance yet still having sub-optimal performance and being insufficient by only considering the structural perspective of generalization bias. To address this, this paper proposes Grafourierformer, which innovatively combines GT with inductive bias containing Frequency-Structure information by applying Graph Fourier Transform to the Attention Matrix: specifically, eigenvalues from the Graph Laplacian matrix are used to construct an Eigenvalue matrix mask (reflecting node positions and structural relationships with neighboring nodes to enable consideration of node range structural characteristics and focus on local graph details), and inverse Fourier transform is employed to extract node high-frequency and low-frequency features, calculate low-frequency and high-frequency energy, and construct a node frequency-energy matrix to filter the eigenvalue matrix mask, allowing attention heads to incorporate both graph structural information and node frequency information optimization, adaptively distinguish global trends from local details, and effectively suppress redundant information interference. Extensive experiments on various benchmarks show Grafourierformer consistently outperforms GNN and GT-based models in graph classification and node classification tasks, with ablation experiments further validating the effectiveness and necessity of the method. Codes are available at https://github.com/Arichibald/Grafourierformer.git

Authors:Yingbin Bai, Sylvie Thiebaux, Felipe Trevizan
Title: Learning Efficiency Meets Symmetry Breaking
Abstract:
Learning-based planners leveraging Graph Neural Networks can learn search guidance applicable to large search spaces, yet their potential to address symmetries remains largely unexplored. In this paper, we introduce a graph representation of planning problems allying learning efficiency with the ability to detect symmetries, along with two pruning methods, action pruning and state pruning, designed to manage symmetries during search. The integration of these techniques into Fast Downward achieves a first-time success over LAMA on the latest IPC learning track dataset. Code is released at: https://github.com/bybeye/Distincter.

Authors:Abhishek Kuriyal, Elliot Vincent, Mathieu Aubry, Loic Landrieu
Title: CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis
Abstract:
Global variations in terrain appearance raise a major challenge for satellite image analysis, leading to poor model performance when training on locations that differ from those encountered at test time. This remains true even with recent large global datasets. To address this challenge, we propose a novel domain-generalization framework for satellite images. Instead of trying to learn a single generalizable model, we train one expert model per training domain, while learning experts' similarity and encouraging similar experts to be consistent. A model selection module then identifies the most suitable experts for a given test sample and aggregates their predictions. Experiments on four datasets (DynamicEarthNet, MUDS, OSCD, and FMoW) demonstrate consistent gains over existing domain generalization and adaptation methods. Our code is publicly available at https://github.com/Abhishek19009/CoDEx.

Authors:Shengjian Fang, Yixuan Zhou, Yu Zheng, Pengyu Jiang, Siyuan Liu, Hesheng Wang
Title: UTTG_ A Universal Teleoperation Approach via Online Trajectory Generation
Abstract:
Teleoperation is crucial for hazardous environment operations and serves as a key tool for collecting expert demonstrations in robot learning. However, existing methods face robotic hardware dependency and control frequency mismatches between teleoperation devices and robotic platforms. Our approach automatically extracts kinematic parameters from unified robot description format (URDF) files, and enables pluggable deployment across diverse robots through uniform interfaces. The proposed interpolation algorithm bridges the frequency gap between low-rate human inputs and high-frequency robotic control commands through online continuous trajectory generation, \n{while requiring no access to the closed, bottom-level control loop}. To enhance trajectory smoothness, we introduce a minimum-stretch spline that optimizes the motion quality. The system further provides precision and rapid modes to accommodate different task requirements. Experiments across various robotic platforms including dual-arm ones demonstrate generality and smooth operation performance of our methods. The code is developed in C++ with python interface, and available at https://github.com/IRMV-Manipulation-Group/UTTG.

Authors:Nikolaos Chaidos, Angeliki Dimitriou, Nikolaos Spanos, Athanasios Voulodimos, Giorgos Stamou
Title: Explaining Vision GNNs: A Semantic and Visual Analysis of Graph-based Image Classification
Abstract:
Graph Neural Networks (GNNs) have emerged as an efficient alternative to convolutional approaches for vision tasks such as image classification, leveraging patch-based representations instead of raw pixels. These methods construct graphs where image patches serve as nodes, and edges are established based on patch similarity or classification relevance. Despite their efficiency, the explainability of GNN-based vision models remains underexplored, even though graphs are naturally interpretable. In this work, we analyze the semantic consistency of the graphs formed at different layers of GNN-based image classifiers, focusing on how well they preserve object structures and meaningful relationships. A comprehensive analysis is presented by quantifying the extent to which inter-layer graph connections reflect semantic similarity and spatial coherence. Explanations from standard and adversarial settings are also compared to assess whether they reflect the classifiers' robustness. Additionally, we visualize the flow of information across layers through heatmap-based visualization techniques, thereby highlighting the models' explainability. Our findings demonstrate that the decision-making processes of these models can be effectively explained, while also revealing that their reasoning does not necessarily align with human perception, especially in deeper layers.

Authors:Biqing Duan, Qing Wang, Di Liu, Wei Zhou, Zhenli He, Shengfa Miao
Title: LODAP: On-Device Incremental Learning Via Lightweight Operations and Data Pruning
Abstract:
Incremental learning that learns new classes over time after the model's deployment is becoming increasingly crucial, particularly for industrial edge systems, where it is difficult to communicate with a remote server to conduct computation-intensive learning. As more classes are expected to learn after their execution for edge devices. In this paper, we propose LODAP, a new on-device incremental learning framework for edge systems. The key part of LODAP is a new module, namely Efficient Incremental Module (EIM). EIM is composed of normal convolutions and lightweight operations. During incremental learning, EIM exploits some lightweight operations, called adapters, to effectively and efficiently learn features for new classes so that it can improve the accuracy of incremental learning while reducing model complexity as well as training overhead. The efficiency of LODAP is further enhanced by a data pruning strategy that significantly reduces the training data, thereby lowering the training overhead. We conducted extensive experiments on the CIFAR-100 and Tiny- ImageNet datasets. Experimental results show that LODAP improves the accuracy by up to 4.32\% over existing methods while reducing around 50\% of model complexity. In addition, evaluations on real edge systems demonstrate its applicability for on-device machine learning. The code is available at https://github.com/duanbiqing/LODAP.

Authors:Haroui Ma, Francesco Quinzan, Theresa Willem, Stefan Bauer
Title: AI Alignment in Medical Imaging: Unveiling Hidden Biases Through Counterfactual Analysis
Abstract:
Machine learning (ML) systems for medical imaging have demonstrated remarkable diagnostic capabilities, but their susceptibility to biases poses significant risks, since biases may negatively impact generalization performance. In this paper, we introduce a novel statistical framework to evaluate the dependency of medical imaging ML models on sensitive attributes, such as demographics. Our method leverages the concept of counterfactual invariance, measuring the extent to which a model's predictions remain unchanged under hypothetical changes to sensitive attributes. We present a practical algorithm that combines conditional latent diffusion models with statistical hypothesis testing to identify and quantify such biases without requiring direct access to counterfactual data. Through experiments on synthetic datasets and large-scale real-world medical imaging datasets, including \textsc{cheXpert} and MIMIC-CXR, we demonstrate that our approach aligns closely with counterfactual fairness principles and outperforms standard baselines. This work provides a robust tool to ensure that ML diagnostic systems generalize well, e.g., across demographic groups, offering a critical step towards AI safety in healthcare. Code: https://github.com/Neferpitou3871/AI-Alignment-Medical-Imaging.

Authors:Kitsuya Azuma, Takayuki Nishio, Yuichi Kitagawa, Wakako Nakano, Takahito Tanimura
Title: Soft-Label Caching and Sharpening for Communication-Efficient Federated Distillation
Abstract:
Federated Learning (FL) enables collaborative model training across decentralized clients, enhancing privacy by keeping data local. Yet conventional FL, relying on frequent parameter-sharing, suffers from high communication overhead and limited model heterogeneity. Distillation-based FL approaches address these issues by sharing predictions (soft-labels) instead, but they often involve redundant transmissions across communication rounds, reducing efficiency. We propose SCARLET, a novel framework integrating synchronized soft-label caching and an enhanced Entropy Reduction Aggregation (Enhanced ERA) mechanism. SCARLET minimizes redundant communication by reusing cached soft-labels, achieving up to 50% reduction in communication costs compared to existing methods while maintaining accuracy. Enhanced ERA can be tuned to adapt to non-IID data variations, ensuring robust aggregation and performance in diverse client scenarios. Experimental evaluations demonstrate that SCARLET consistently outperforms state-of-the-art distillation-based FL methods in terms of accuracy and communication efficiency. The implementation of SCARLET is publicly available at https://github.com/kitsuyaazuma/SCARLET.

Authors:Seongmin Hwang, Daeyoung Han, Moongu Jeon
Title: DG-DETR: Toward Domain Generalized Detection Transformer
Abstract:
End-to-end Transformer-based detectors (DETRs) have demonstrated strong detection performance. However, domain generalization (DG) research has primarily focused on convolutional neural network (CNN)-based detectors, while paying little attention to enhancing the robustness of DETRs. In this letter, we introduce a Domain Generalized DEtection TRansformer (DG-DETR), a simple, effective, and plug-and-play method that improves out-of-distribution (OOD) robustness for DETRs. Specifically, we propose a novel domain-agnostic query selection strategy that removes domain-induced biases from object queries via orthogonal projection onto the instance-specific style space. Additionally, we leverage a wavelet decomposition to disentangle features into domain-invariant and domain-specific components, enabling synthesis of diverse latent styles while preserving the semantic features of objects. Experimental results validate the effectiveness of DG-DETR. Our code is available at https://github.com/sminhwang/DG-DETR.

Authors:Yasir Ghunaim, Andrés Villa, Gergo Ignacz, Gyorgy Szekely, Motasem Alfarra, Bernard Ghanem
Title: Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Abstract:
Advancements in machine learning for molecular property prediction have improved accuracy but at the expense of higher computational cost and longer training times. Recently, the Joint Multi-domain Pre-training (JMP) foundation model has demonstrated strong performance across various downstream tasks with reduced training time over previous models. Despite JMP's advantages, fine-tuning it on molecular datasets ranging from small-scale to large-scale requires considerable time and computational resources. In this work, we investigate strategies to enhance efficiency by reducing model size while preserving performance. To better understand the model's efficiency, we analyze the layer contributions of JMP and find that later interaction blocks provide diminishing returns, suggesting an opportunity for model compression. We explore block reduction strategies by pruning the pre-trained model and evaluating its impact on efficiency and accuracy during fine-tuning. Our analysis reveals that removing two interaction blocks results in a minimal performance drop, reducing the model size by 32% while increasing inference throughput by 1.3x. These results suggest that JMP-L is over-parameterized and that a smaller, more efficient variant can achieve comparable performance with lower computational cost. Our study provides insights for developing lighter, faster, and more scalable foundation models for molecular and materials discovery. The code is publicly available at: https://github.com/Yasir-Ghunaim/efficient-jmp.

Authors:Peijian Zeng, Feiyan Pang, Zhanbo Wang, Aimin Yang
Title: LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
Abstract:
Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects. Traditional methods such as feature embedding and reconstruction-based approaches require large datasets and struggle with scalability. Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations, leading to high implementation costs and false positives. Additionally, industrial datasets like MVTec-AD and VisA suffer from severe class imbalance, with defect samples constituting only 23.8% and 11.1% of total data respectively. To address these challenges, we propose a reward function that dynamically prioritizes rare defect patterns during training to handle class imbalance. We also introduce a mask-free reasoning framework using Chain of Thought (CoT) and Group Relative Policy Optimization (GRPO) mechanisms, enabling anomaly detection directly from raw images without annotated masks. This approach generates interpretable step-by-step explanations for defect localization. Our method achieves state-of-the-art performance, outperforming prior approaches by 36% in accuracy on MVTec-AD and 16% on VisA. By eliminating mask dependency and reducing costs while providing explainable outputs, this work advances industrial anomaly detection and supports scalable quality control in manufacturing. Code to reproduce the experiment is available at https://github.com/LilaKen/LR-IAD.

Authors:Ke Hong, Xiuhong Li, Minxu Liu, Qiuli Mao, Tianqi Wu, Zixiao Huang, Lufang Chen, Zhong Wang, Yichong Zhang, Zhenhua Zhu, Guohao Dai, Yu Wang
Title: Efficient and Adaptable Overlapping for Computation and Communication via Signaling and Reordering
Abstract:
Generative models have achieved remarkable success across various applications, driving the demand for multi-GPU computing. Inter-GPU communication becomes a bottleneck in multi-GPU computing systems, particularly on consumer-grade GPUs. By exploiting concurrent hardware execution, overlapping computation and communication latency becomes an effective technique for mitigating the communication overhead. We identify that an efficient and adaptable overlapping design should satisfy (1) tile-wise overlapping to maximize the overlapping opportunity, (2) interference-free computation to maintain the original computational performance, and (3) communication agnosticism to reduce the development burden against varying communication primitives. Nevertheless, current designs fail to simultaneously optimize for all of those features. To address the issue, we propose FlashOverlap, which utilizes a novel signaling mechanism: when part of the output finishes, the computation kernel sends a signal to trigger the communication of that part, while continuing the computation of the remaining part (interference-free computation). Consequently, the communication of the finished part and the computation of the remaining part can be overlapped. On top of the signaling mechanism, FlashOverlap comprises two key components: (1) the determination of the signaling timing to boost the overlap efficiency (tile-wise overlapping), and (2) a pre-communication reordering to create the contiguous address for finished data, enabling communication by simply calling NCCL APIs (communication agnosticism), and a post-communication reordering to correct the data order. Experiments show that FlashOverlap achieves up to 1.65x speedup through overlap, outperforming existing works in most cases. Code is available at https://github.com/infinigence/FlashOverlap.

Authors:Xinyang Li, Chengjie Yi, Jiawei Lai, Mingbao Lin, Yansong Qu, Shengchuan Zhang, Liujuan Cao
Title: SynergyAmodal: Deocclude Anything with Text Control
Abstract:
Image deocclusion (or amodal completion) aims to recover the invisible regions (\ie, shape and appearance) of occluded instances in images. Despite recent advances, the scarcity of high-quality data that balances diversity, plausibility, and fidelity remains a major obstacle. To address this challenge, we identify three critical elements: leveraging in-the-wild image data for diversity, incorporating human expertise for plausibility, and utilizing generative priors for fidelity. We propose SynergyAmodal, a novel framework for co-synthesizing in-the-wild amodal datasets with comprehensive shape and appearance annotations, which integrates these elements through a tripartite data-human-model collaboration. First, we design an occlusion-grounded self-supervised learning algorithm to harness the diversity of in-the-wild image data, fine-tuning an inpainting diffusion model into a partial completion diffusion model. Second, we establish a co-synthesis pipeline to iteratively filter, refine, select, and annotate the initial deocclusion results of the partial completion diffusion model, ensuring plausibility and fidelity through human expert guidance and prior model constraints. This pipeline generates a high-quality paired amodal dataset with extensive category and scale diversity, comprising approximately 16K pairs. Finally, we train a full completion diffusion model on the synthesized dataset, incorporating text prompts as conditioning signals. Extensive experiments demonstrate the effectiveness of our framework in achieving zero-shot generalization and textual controllability. Our code, dataset, and models will be made publicly available at https://github.com/imlixinyang/SynergyAmodal.

Authors:Sonia Joseph, Praneet Suresh, Lorenz Hufe, Edward Stevinson, Robert Graham, Yash Vadi, Danilo Bzdok, Sebastian Lapuschkin, Lee Sharkey, Blake Aaron Richards
Title: Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video
Abstract:
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.

Authors:Yejin Jeong, Donghun Lee
Title: CLIP-KOA: Enhancing Knee Osteoarthritis Diagnosis with Multi-Modal Learning and Symmetry-Aware Loss Functions
Abstract:
Knee osteoarthritis (KOA) is a universal chronic musculoskeletal disorders worldwide, making early diagnosis crucial. Currently, the Kellgren and Lawrence (KL) grading system is widely used to assess KOA severity. However, its high inter-observer variability and subjectivity hinder diagnostic consistency. To address these limitations, automated diagnostic techniques using deep learning have been actively explored in recent years. In this study, we propose a CLIP-based framework (CLIP-KOA) to enhance the consistency and reliability of KOA grade prediction. To achieve this, we introduce a learning approach that integrates image and text information and incorporate Symmetry Loss and Consistency Loss to ensure prediction consistency between the original and flipped images. CLIP-KOA achieves state-of-the-art accuracy of 71.86\% on KOA severity prediction task, and ablation studies show that CLIP-KOA has 2.36\% improvement in accuracy over the standard CLIP model due to our contribution. This study shows a novel direction for data-driven medical prediction not only to improve reliability of fine-grained diagnosis and but also to explore multimodal methods for medical image analysis. Our code is available at https://github.com/anonymized-link.

Authors:Dehao Yuan, Cornelia Fermüller
Title: A Real-Time Event-Based Normal Flow Estimator
Abstract:
This paper presents a real-time, asynchronous, event-based normal flow estimator. It follows the same algorithm as Learning Normal Flow Directly From Event Neighborhoods, but with a more optimized implementation. The original method treats event slices as 3D point clouds, encodes each event's local geometry into a fixed-length vector, and uses a multi-layer perceptron to predict normal flow. It constructs representations by multiplying an adjacency matrix with a feature matrix, resulting in quadratic time complexity with respect to the number of events. In contrast, we leverage the fact that event coordinates are integers and reformulate the representation step as a pooling operation. This achieves the same effect as the adjacency matrix but with much lower computational cost. As a result, our method supports real-time normal flow prediction on event cameras. Our estimator uses 1 GB of CUDA memory and runs at 4 million normal flows per second on an RTX 3070, or 6 million per second on an RTX A5000. We release the CUDA implementation along with a Python interface at https://github.com/dhyuan99/VecKM_flow_cpp.

Authors:Mengxia Yu, Bang Nguyen, Olivia Zino, Meng Jiang
Title: Context Selection and Rewriting for Video-based Educational Question Generation
Abstract:
Educational question generation (EQG) is a crucial component of intelligent educational systems, significantly aiding self-assessment, active learning, and personalized education. While EQG systems have emerged, existing datasets typically rely on predefined, carefully edited texts, failing to represent real-world classroom content, including lecture speech with a set of complementary slides. To bridge this gap, we collect a dataset of educational questions based on lectures from real-world classrooms. On this realistic dataset, we find that current methods for EQG struggle with accurately generating questions from educational videos, particularly in aligning with specific timestamps and target answers. Common challenges include selecting informative contexts from extensive transcripts and ensuring generated questions meaningfully incorporate the target answer. To address the challenges, we introduce a novel framework utilizing large language models for dynamically selecting and rewriting contexts based on target timestamps and answers. First, our framework selects contexts from both lecture transcripts and video keyframes based on answer relevance and temporal proximity. Then, we integrate the contexts selected from both modalities and rewrite them into answer-containing knowledge statements, to enhance the logical connection between the contexts and the desired answer. This approach significantly improves the quality and relevance of the generated questions. Our dataset and code are released in https://github.com/mengxiayu/COSER.

Authors:Jiahao Lu, Chong Yin, Silvia Ingala, Kenny Erleben, Michael Bachmann Nielsen, Sune Darkner
Title: MERA: Multimodal and Multiscale Self-Explanatory Model with Considerably Reduced Annotation for Lung Nodule Diagnosis
Abstract:
Lung cancer, a leading cause of cancer-related deaths globally, emphasises the importance of early detection for better patient outcomes. Pulmonary nodules, often early indicators of lung cancer, necessitate accurate, timely diagnosis. Despite Explainable Artificial Intelligence (XAI) advances, many existing systems struggle providing clear, comprehensive explanations, especially with limited labelled data. This study introduces MERA, a Multimodal and Multiscale self-Explanatory model designed for lung nodule diagnosis with considerably Reduced Annotation requirements. MERA integrates unsupervised and weakly supervised learning strategies (self-supervised learning techniques and Vision Transformer architecture for unsupervised feature extraction) and a hierarchical prediction mechanism leveraging sparse annotations via semi-supervised active learning in the learned latent space. MERA explains its decisions on multiple levels: model-level global explanations via semantic latent space clustering, instance-level case-based explanations showing similar instances, local visual explanations via attention maps, and concept explanations using critical nodule attributes. Evaluations on the public LIDC dataset show MERA's superior diagnostic accuracy and self-explainability. With only 1% annotated samples, MERA achieves diagnostic accuracy comparable to or exceeding state-of-the-art methods requiring full annotation. The model's inherent design delivers comprehensive, robust, multilevel explanations aligned closely with clinical practice, enhancing trustworthiness and transparency. Demonstrated viability of unsupervised and weakly supervised learning lowers the barrier to deploying diagnostic AI in broader medical domains. Our complete code is open-source available: https://github.com/diku-dk/credanno.

Authors:Pascal Roth, Jonas Frey, Cesar Cadena, Marco Hutter
Title: Learned Perceptive Forward Dynamics Model for Safe and Platform-aware Robotic Navigation
Abstract:
Ensuring safe navigation in complex environments requires accurate real-time traversability assessment and understanding of environmental interactions relative to the robot`s capabilities. Traditional methods, which assume simplified dynamics, often require designing and tuning cost functions to safely guide paths or actions toward the goal. This process is tedious, environment-dependent, and not generalizable. To overcome these issues, we propose a novel learned perceptive Forward Dynamics Model (FDM) that predicts the robot`s future state conditioned on the surrounding geometry and history of proprioceptive measurements, proposing a more scalable, safer, and heuristic-free solution. The FDM is trained on multiple years of simulated navigation experience, including high-risk maneuvers, and real-world interactions to incorporate the full system dynamics beyond rigid body simulation. We integrate our perceptive FDM into a zero-shot Model Predictive Path Integral (MPPI) planning framework, leveraging the learned mapping between actions, future states, and failure probability. This allows for optimizing a simplified cost function, eliminating the need for extensive cost-tuning to ensure safety. On the legged robot ANYmal, the proposed perceptive FDM improves the position estimation by on average 41% over competitive baselines, which translates into a 27% higher navigation success rate in rough simulation environments. Moreover, we demonstrate effective sim-to-real transfer and showcase the benefit of training on synthetic and real data. Code and models are made publicly available under https://github.com/leggedrobotics/fdm.

Authors:Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling Jin, Chenxuan Xie, Meng Cao, Yuxin Gu, Sixin Hong, Jing Ren, Jian Chen, Chao Liu, Yining Hua
Title: BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese
Abstract:
As large language models (LLMs) evolve into tool-using agents, the ability to browse the web in real-time has become a critical yardstick for measuring their reasoning and retrieval competence. Existing benchmarks such as BrowseComp concentrate on English and overlook the linguistic, infrastructural, and censorship-related complexities of other major information ecosystems -- most notably Chinese. To address this gap, we introduce BrowseComp-ZH, a high-difficulty benchmark purpose-built to comprehensively evaluate LLM agents on the Chinese web. BrowseComp-ZH consists of 289 multi-hop questions spanning 11 diverse domains. Each question is reverse-engineered from a short, objective, and easily verifiable answer (e.g., a date, number, or proper noun). A two-stage quality control protocol is applied to strive for high question difficulty and answer uniqueness. We benchmark over 20 state-of-the-art language models and agentic search systems on our proposed BrowseComp-ZH. Despite their strong conversational and retrieval capabilities, most models struggle severely: a large number achieve accuracy rates below 10%, and only a handful exceed 20%. Even the best-performing system, OpenAI's DeepResearch, reaches just 42.9%. These results demonstrate the considerable difficulty of BrowseComp-ZH, where success demands not only effective retrieval strategies, but also sophisticated reasoning and information reconciliation -- capabilities that current models still struggle to master. Our dataset, construction guidelines, and benchmark results have been publicly released at https://github.com/PALIN2018/BrowseComp-ZH.

Authors:Ni Yao, Xiangyu Liu, Danyang Sun, Chuang Han, Yanting Li, Jiaofen Nan, Chengyang Li, Fubao Zhu, Weihua Zhou, Chen Zhao
Title: Myocardial Region-guided Feature Aggregation Net for Automatic Coronary artery Segmentation and Stenosis Assessment using Coronary Computed Tomography Angiography
Abstract:
Coronary artery disease (CAD) remains a leading cause of mortality worldwide, requiring accurate segmentation and stenosis detection using Coronary Computed Tomography angiography (CCTA). Existing methods struggle with challenges such as low contrast, morphological variability and small vessel segmentation. To address these limitations, we propose the Myocardial Region-guided Feature Aggregation Net, a novel U-shaped dual-encoder architecture that integrates anatomical prior knowledge to enhance robustness in coronary artery segmentation. Our framework incorporates three key innovations: (1) a Myocardial Region-guided Module that directs attention to coronary regions via myocardial contour expansion and multi-scale feature fusion, (2) a Residual Feature Extraction Encoding Module that combines parallel spatial channel attention with residual blocks to enhance local-global feature discrimination, and (3) a Multi-scale Feature Fusion Module for adaptive aggregation of hierarchical vascular features. Additionally, Monte Carlo dropout f quantifies prediction uncertainty, supporting clinical interpretability. For stenosis detection, a morphology-based centerline extraction algorithm separates the vascular tree into anatomical branches, enabling cross-sectional area quantification and stenosis grading. The superiority of MGFA-Net was demonstrated by achieving an Dice score of 85.04%, an accuracy of 84.24%, an HD95 of 6.1294 mm, and an improvement of 5.46% in true positive rate for stenosis detection compared to3D U-Net. The integrated segmentation-to-stenosis pipeline provides automated, clinically interpretable CAD assessment, bridging deep learning with anatomical prior knowledge for precision medicine. Our code is publicly available at http://github.com/chenzhao2023/MGFA_CCTA

Authors:Hanyu Lai, Junjie Gao, Xiao Liu, Yifan Xu, Shudan Zhang, Yuxiao Dong, Jie Tang
Title: AndroidGen: Building an Android Language Agent under Data Scarcity
Abstract:
Large language models have opened up a world of possibilities for various NLP tasks, sparking optimism for the future. Despite their potential, LLMs have yet to be widely used as agents on real mobile devices. The main challenge is the need for high-quality data sources. Time constraints and labor intensity often hinder human annotation. On the other hand, existing LLMs exhibit inadequate completion rates and need a robust data filtration strategy. Given these challenges, we develop a framework called AndroidGen to enhance the capabilities of LLM-based agents under data scarcity. In addition, we leverage AndroidGen to collect trajectories given human tasks and train open-source LLMs on these trajectories to develop an open-source mobile agent without manually labeled trajectories. We extensively evaluate AndroidGen with AndroidWorld, AitW, and various popular applications, demonstrating its improvements and revealing potential areas for future improvement. Code, model, and data are available at https://github.com/THUDM/AndroidGen.

Authors:Shuhao Kang, Martin Y. Liao, Yan Xia, Olaf Wysocki, Boris Jutzi, Daniel Cremers
Title: OPAL: Visibility-aware LiDAR-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion
Abstract:
LiDAR place recognition is a critical capability for autonomous navigation and cross-modal localization in large-scale outdoor environments. Existing approaches predominantly depend on pre-built 3D dense maps or aerial imagery, which impose significant storage overhead and lack real-time adaptability. In this paper, we propose OPAL, a novel framework for LiDAR place recognition that leverages OpenStreetMap (OSM) as a lightweight and up-to-date prior. Our key innovation lies in bridging the domain disparity between sparse LiDAR scans and structured OSM data through two carefully designed components. First, a cross-modal visibility mask that identifies observable regions from both modalities to guide feature alignment. Second, an adaptive radial fusion module that dynamically consolidates radial features into discriminative global descriptors. Extensive experiments on KITTI and KITTI-360 datasets demonstrate OPAL's superiority, achieving 15.98% higher recall at 1m threshold for top-1 retrieved matches, along with 12x faster inference speed compared to the state-of-the-art approach. Code and data are publicly available at: https://github.com/kang-1-2-3/OPAL.

Authors:Dylan Bouchard, Mohit Singh Chauhan
Title: Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
Abstract:
Hallucinations are a persistent problem with Large Language Models (LLMs). As these models become increasingly used in high-stakes domains, such as healthcare and finance, the need for effective hallucination detection is crucial. To this end, we outline a versatile framework for zero-resource hallucination detection that practitioners can apply to real-world use cases. To achieve this, we adapt a variety of existing uncertainty quantification (UQ) techniques, including black-box UQ, white-box UQ, and LLM-as-a-Judge, transforming them as necessary into standardized response-level confidence scores ranging from 0 to 1. To enhance flexibility, we propose a tunable ensemble approach that incorporates any combination of the individual confidence scores. This approach enables practitioners to optimize the ensemble for a specific use case for improved performance. To streamline implementation, the full suite of scorers is offered in this paper's companion Python toolkit, UQLM. To evaluate the performance of the various scorers, we conduct an extensive set of experiments using several LLM question-answering benchmarks. We find that our tunable ensemble typically surpasses its individual components and outperforms existing hallucination detection methods. Our results demonstrate the benefits of customized hallucination detection strategies for improving the accuracy and reliability of LLMs.

Authors:Loc Phuc Truong Nguyen, Hung Truong Thanh Nguyen, Hung Cao
Title: ODExAI: A Comprehensive Object Detection Explainable AI Evaluation
Abstract:
Explainable Artificial Intelligence (XAI) techniques for interpreting object detection models remain in an early stage, with no established standards for systematic evaluation. This absence of consensus hinders both the comparative analysis of methods and the informed selection of suitable approaches. To address this gap, we introduce the Object Detection Explainable AI Evaluation (ODExAI), a comprehensive framework designed to assess XAI methods in object detection based on three core dimensions: localization accuracy, faithfulness to model behavior, and computational complexity. We benchmark a set of XAI methods across two widely used object detectors (YOLOX and Faster R-CNN) and standard datasets (MS-COCO and PASCAL VOC). Empirical results demonstrate that region-based methods (e.g., D-CLOSE) achieve strong localization (PG = 88.49%) and high model faithfulness (OA = 0.863), though with substantial computational overhead (Time = 71.42s). On the other hand, CAM-based methods (e.g., G-CAME) achieve superior localization (PG = 96.13%) and significantly lower runtime (Time = 0.54s), but at the expense of reduced faithfulness (OA = 0.549). These findings demonstrate critical trade-offs among existing XAI approaches and reinforce the need for task-specific evaluation when deploying them in object detection pipelines. Our implementation and evaluation benchmarks are publicly available at: https://github.com/Analytics-Everywhere-Lab/odexai.

Authors:De Cheng, Lingfeng He, Nannan Wang, Dingwen Zhang, Xinbo Gao
Title: Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID
Abstract:
Unsupervised visible-infrared person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning. Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning. However, these methods overlook the cross-modality variations in feature representation and pseudo-label distributions brought by fine-grained patterns. This insight results in insufficient modality-shared learning when only global features are optimized. To address this issue, we propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up optimization objective for specific fine-grained patterns emphasized by each modality, thereby achieving complementary alignment between the label distributions of different modalities. Specifically, we first introduce a Dual Association with Global Learning (DAGI) module to unify the pseudo-labels of cross-modality instances in a bi-directional manner. Afterward, a Fine-Grained Semantic-Aligned Learning (FGSAL) module is carried out to explore part-level semantic-aligned patterns emphasized by each modality from cross-modality instances. Optimization objective is then formulated based on the semantic-aligned features and their corresponding label space. To alleviate the side-effects arising from noisy pseudo-labels, we propose a Global-Part Collaborative Refinement (GPCR) module to mine reliable positive sample sets for the global and part features dynamically and optimize the inter-instance relationships. Extensive experiments demonstrate the effectiveness of the proposed method, which achieves superior performances to state-of-the-art methods. Our code is available at \href{https://github.com/FranklinLingfeng/code-for-SALCR}.

Authors:Guoqing Hu, An Zhang, Shuo Liu, Zhibo Cai, Xun Yang, Xiang Wang
Title: AlphaFuse: Learn ID Embeddings for Sequential Recommendation in Null Space of Language Embeddings
Abstract:
Recent advancements in sequential recommendation have underscored the potential of Large Language Models (LLMs) for enhancing item embeddings. However, existing approaches face three key limitations: 1) the degradation of the semantic space when high-dimensional language embeddings are mapped to lower-dimensional ID embeddings, 2) the underutilization of language embeddings, and 3) the reliance on additional trainable parameters, such as an adapter, to bridge the gap between the semantic and behavior spaces. In this paper, we introduce AlphaFuse, a simple but effective language-guided learning strategy that addresses these challenges by learning ID embeddings within the null space of language embeddings. Specifically, we decompose the semantic space of language embeddings via Singular Value Decomposition (SVD), distinguishing it into a semantic-rich row space and a semantic-sparse null space. Collaborative signals are then injected into the null space, while preserving the rich semantics of the row space. AlphaFuse prevents degradation of the semantic space, integrates the retained language embeddings into the final item embeddings, and eliminates the need for auxiliary trainable modules, enabling seamless adaptation to any sequential recommendation framework. We validate the effectiveness and flexibility of AlphaFuse through extensive experiments on three benchmark datasets, including cold-start user and long-tail settings, showcasing significant improvements in both discriminative and diffusion-based generative sequential recommenders. Our codes and datasets are available at https://github.com/Hugo-Chinn/AlphaFuse.

Authors:Yuming Zhao, Qijian Zhang, Junhui Hou, Jiazhi Xia, Wenping Wang, Ying He
Title: FlexPara: Flexible Neural Surface Parameterization
Abstract:
Surface parameterization is a fundamental geometry processing task, laying the foundations for the visual presentation of 3D assets and numerous downstream shape analysis scenarios. Conventional parameterization approaches demand high-quality mesh triangulation and are restricted to certain simple topologies unless additional surface cutting and decomposition are provided. In practice, the optimal configurations (e.g., type of parameterization domains, distribution of cutting seams, number of mapping charts) may vary drastically with different surface structures and task characteristics, thus requiring more flexible and controllable processing pipelines. To this end, this paper introduces FlexPara, an unsupervised neural optimization framework to achieve both global and multi-chart surface parameterizations by establishing point-wise mappings between 3D surface points and adaptively-deformed 2D UV coordinates. We ingeniously design and combine a series of geometrically-interpretable sub-networks, with specific functionalities of cutting, deforming, unwrapping, and wrapping, to construct a bi-directional cycle mapping framework for global parameterization without the need for manually specified cutting seams. Furthermore, we construct a multi-chart parameterization framework with adaptively-learned chart assignment. Extensive experiments demonstrate the universality, superiority, and inspiring potential of our neural surface parameterization paradigm. The code will be publicly available at https://github.com/AidenZhao/FlexPara

Authors:Jianlong Chen, Chao Li, Yang Yuan, Andrew C Yao
Title: Hierarchical Attention Generates Better Proofs
Abstract:
Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce \textbf{Hierarchical Attention}, a regularization method that aligns LLMs' attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05\% on miniF2F and 1.69\% on ProofNet while reducing proof complexity by 23.81\% and 16.50\% respectively. The code is available at https://github.com/Car-pe/HAGBP.

Authors:Zhangshuo Qi, Luqi Cheng, Zijie Zhou, Guangming Xiong
Title: LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition
Abstract:
In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.

Authors:Zhangshuo Qi, Luqi Cheng, Zijie Zhou, Guangming Xiong
Title: LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition
Abstract:
In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.

Authors:Zhikai Wang, Yanyan Shen, Zexi Zhang, Li He, Yichun Li, Hao Gu, Yinghua Zhang
Title: Relative Contrastive Learning for Sequential Recommendation with Similarity-based Positive Pair Selection
Abstract:
Contrastive Learning (CL) enhances the training of sequential recommendation (SR) models through informative self-supervision signals. Existing methods often rely on data augmentation strategies to create positive samples and promote representation invariance. Some strategies such as item reordering and item substitution may inadvertently alter user intent. Supervised Contrastive Learning (SCL) based methods find an alternative to augmentation-based CL methods by selecting same-target sequences (interaction sequences with the same target item) to form positive samples. However, SCL-based methods suffer from the scarcity of same-target sequences and consequently lack enough signals for contrastive learning. In this work, we propose to use similar sequences (with different target items) as additional positive samples and introduce a Relative Contrastive Learning (RCL) framework for sequential recommendation. RCL comprises a dual-tiered positive sample selection module and a relative contrastive learning module. The former module selects same-target sequences as strong positive samples and selects similar sequences as weak positive samples. The latter module employs a weighted relative contrastive loss, ensuring that each sequence is represented closer to its strong positive samples than its weak positive samples. We apply RCL on two mainstream deep learning-based SR models, and our empirical results reveal that RCL can achieve 4.88% improvement averagely than the state-of-the-art SR methods on five public datasets and one private dataset.

Authors:Piotr Migus
Title: Newton-Puiseux Analysis for Interpretability and Calibration of Complex-Valued Neural Networks
Abstract:
Complex-valued neural networks (CVNNs) excel where phase matters, yet their multi-sheeted decision surfaces defy standard explainability and calibration tools. We propose a \emph{Newton-Puiseux} framework that fits a local polynomial surrogate to a high-uncertainty input and analytically decomposes this surrogate into fractional-power series. The resulting Puiseux expansions, dominant Puiseux coefficients, and phase-aligned curvature descriptors deliver closed-form estimates of robustness and over-confidence that gradient - or perturbation-based methods (saliency, LIME, SHAP) cannot provide. On a controlled $\mathbb{C}^2$ helix the surrogate attains RMSE $< 0.09$ while recovering the number of decision sheets; quartic coefficients predict adversarial flip radii within $10^{-3}$. On the real-world MIT-BIH arrhythmia corpus, Puiseux-guided, phase-aware temperature scaling lowers expected calibration error from 0.087 to 0.034, contributing to the advancement of CVNNs. Full code, pre-trained weights, and scripts are at https://github.com/piotrmgs/puiseux-cvnn.

Authors:Xin Li, Kaikai Jia, Hao Sun, Jun Dai, Ziyang Jiang
Title: Muyan-TTS: A Trainable Text-to-Speech Model Optimized for Podcast Scenarios with a $50K Budget
Abstract:
Recent advancements in text-to-speech (TTS) models have been driven by the integration of large language models (LLMs), enhancing semantic comprehension and improving speech naturalness. However, existing LLM-based TTS models often lack open-source training code and efficient inference acceleration frameworks, limiting their accessibility and adaptability. Additionally, there is no publicly available TTS model specifically optimized for podcast scenarios, which are in high demand for voice interaction applications. To address these limitations, we introduce Muyan-TTS, an open-source trainable TTS model designed for podcast applications within a $50,000 budget. Our model is pre-trained on over 100,000 hours of podcast audio data, enabling zero-shot TTS synthesis with high-quality voice generation. Furthermore, Muyan-TTS supports speaker adaptation with dozens of minutes of target speech, making it highly customizable for individual voices. In addition to open-sourcing the model, we provide a comprehensive data collection and processing pipeline, a full training procedure, and an optimized inference framework that accelerates LLM-based TTS synthesis. Our code and models are available at https://github.com/MYZY-AI/Muyan-TTS.

Authors:Bowei Wang, Jiaran Gao, Yelai Feng, Renzhi Chen, Shanshan Li, Lei Wang
Title: ChiseLLM: Unleashing the Power of Reasoning LLMs for Chisel Agile Hardware Development
Abstract:
The growing demand for Domain-Specific Architecture (DSA) has driven the development of Agile Hardware Development Methodology (AHDM). Hardware Construction Language (HCL) like Chisel offers high-level abstraction features, making it an ideal language for HCL-Based AHDM. While Large Language Models (LLMs) excel in code generation tasks, they still face challenges with Chisel generation, particularly regarding syntax correctness and design variability. Recent reasoning models have significantly enhanced code generation capabilities through test-time scaling techniques. However, we found that reasoning models without domain adaptation cannot bring substantial benefits to Chisel code generation tasks. This paper presents ChiseLLM, a solution comprising data processing and transformation, prompt-guided reasoning trace synthesis, and domain-adapted model training. We constructed high-quality datasets from public RTL code resources and guided the model to adopt structured thinking patterns through prompt enhancement methods. Experiments demonstrate that our ChiseLLM-7B and ChiseLLM-32B models improved syntax correctness by 18.85% and 26.32% respectively over base models, while increasing variability design ability by 47.58% compared to baseline reasoning models. Our datasets and models are publicly available, providing high-performance, cost-effective models for HCL-Based AHDM, and offering an effective baseline for future research. Github repository: https://github.com/observerw/ChiseLLM

Authors:Huiling Zheng, Xian Zhong, Bin Liu, Yi Xiao, Bihan Wen, Xiaofeng Li
Title: PAD: Phase-Amplitude Decoupling Fusion for Multi-Modal Land Cover Classification
Abstract:
The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and underutilized spectral complementarity. Existing methods often fail to decouple shared structural features from modality-complementary radiometric attributes, causing feature conflicts and information loss. To address this, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-complementary) components in the Fourier domain, thus reinforcing shared structures while preserving complementary characteristics to improve fusion quality. Unlike prior approaches that overlook the distinct physical properties encoded in frequency spectra, PAD is the first to introduce explicit amplitude-phase decoupling for multi-modal fusion. Specifically, PAD comprises two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features via convolution-guided scaling to enhance geometric consistency; and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency and low-frequency patterns using frequency-adaptive multilayer perceptrons, leveraging SAR's morphological sensitivity and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.

Authors:Jialang Lu, Huayu Zhao, Huiyu Zhai, Xingxing Yang, Shini Han
Title: DeepSPG: Exploring Deep Semantic Prior Guidance for Low-light Image Enhancement with Multimodal Learning
Abstract:
There has long been a belief that high-level semantics learning can benefit various downstream computer vision tasks. However, in the low-light image enhancement (LLIE) community, existing methods learn a brutal mapping between low-light and normal-light domains without considering the semantic information of different regions, especially in those extremely dark regions that suffer from severe information loss. To address this issue, we propose a new deep semantic prior-guided framework (DeepSPG) based on Retinex image decomposition for LLIE to explore informative semantic knowledge via a pre-trained semantic segmentation model and multimodal learning. Notably, we incorporate both image-level semantic prior and text-level semantic prior and thus formulate a multimodal learning framework with combinatorial deep semantic prior guidance for LLIE. Specifically, we incorporate semantic knowledge to guide the enhancement process via three designs: an image-level semantic prior guidance by leveraging hierarchical semantic features from a pre-trained semantic segmentation model; a text-level semantic prior guidance by integrating natural language semantic constraints via a pre-trained vision-language model; a multi-scale semantic-aware structure that facilitates effective semantic feature incorporation. Eventually, our proposed DeepSPG demonstrates superior performance compared to state-of-the-art methods across five benchmark datasets. The implementation details and code are publicly available at https://github.com/Wenyuzhy/DeepSPG.

Authors:Jikai Wang, Juntao Li, Jianye Hou, Bowen Yan, Lijun Wu, Min Zhang
Title: Efficient Reasoning for LLMs through Speculative Chain-of-Thought
Abstract:
Large reasoning language models such as OpenAI-o1 and Deepseek-R1 have recently attracted widespread attention due to their impressive task-solving abilities. However, the enormous model size and the generation of lengthy thought chains introduce significant reasoning costs and response latency. Existing methods for efficient reasoning mainly focus on reducing the number of model parameters or shortening the chain-of-thought length. In this paper, we introduce Speculative Chain-of-Thought (SCoT), which reduces reasoning latency from another perspective by accelerated average reasoning speed through large and small model collaboration. SCoT conducts thought-level drafting using a lightweight draft model. Then it selects the best CoT draft and corrects the error cases with the target model. The proposed thinking behavior alignment improves the efficiency of drafting and the draft selection strategy maintains the prediction accuracy of the target model for complex tasks. Experimental results on GSM8K, MATH, GaoKao, CollegeMath and Olympiad datasets show that SCoT reduces reasoning latency by 48\%$\sim$66\% and 21\%$\sim$49\% for Deepseek-R1-Distill-Qwen-32B and Deepseek-R1-Distill-Llama-70B while achieving near-target-model-level performance. Our code is available at https://github.com/Jikai0Wang/Speculative_CoT.

Authors:Yu Zhang, Wenxiang Guo, Changhao Pan, Zhiyuan Zhu, Ruiqi Li, Jingyu Lu, Rongjie Huang, Ruiyuan Zhang, Zhiqing Hong, Ziyue Jiang, Zhou Zhao
Title: Versatile Framework for Song Generation with Prompt-based Control
Abstract:
Song generation focuses on producing controllable high-quality songs based on various prompts. However, existing methods struggle to generate vocals and accompaniments with prompt-based control and proper alignment. Additionally, they fall short in supporting various tasks. To address these challenges, we introduce VersBand, a multi-task song generation framework for synthesizing high-quality, aligned songs with prompt-based control. VersBand comprises these primary models: 1) VocalBand, a decoupled model, leverages the flow-matching method for generating singing styles, pitches, and mel-spectrograms, allowing fast, high-quality vocal generation with style control. 2) AccompBand, a flow-based transformer model, incorporates the Band-MOE, selecting suitable experts for enhanced quality, alignment, and control. This model allows for generating controllable, high-quality accompaniments aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for melodies, contribute to the comprehensive multi-task song generation system, allowing for extensive control based on multiple prompts. Experimental results show that VersBand outperforms baseline models across multiple song generation tasks using objective and subjective metrics. Demos and codes are available at https://aaronz345.github.io/VersBandDemo and https://github.com/AaronZ345/VersBand.

Authors:Mohammad Mahdi Abootorabi, Omid Ghahroodi, Pardis Sadat Zahraei, Hossein Behzadasl, Alireza Mirrokni, Mobina Salimipanah, Arash Rasouli, Bahar Behzadipour, Sara Azarnoush, Benyamin Maleki, Erfan Sadraiye, Kiarash Kiani Feriz, Mahdi Teymouri Nahad, Ali Moghadasi, Abolfazl Eshagh Abianeh, Nizi Nazar, Hamid R. Rabiee, Mahdieh Soleymani Baghshah, Meisam Ahmadi, Ehsaneddin Asgari
Title: Generative AI for Character Animation: A Comprehensive Survey of Techniques, Applications, and Future Directions
Abstract:
Generative AI is reshaping art, gaming, and most notably animation. Recent breakthroughs in foundation and diffusion models have reduced the time and cost of producing animated content. Characters are central animation components, involving motion, emotions, gestures, and facial expressions. The pace and breadth of advances in recent months make it difficult to maintain a coherent view of the field, motivating the need for an integrative review. Unlike earlier overviews that treat avatars, gestures, or facial animation in isolation, this survey offers a single, comprehensive perspective on all the main generative AI applications for character animation. We begin by examining the state-of-the-art in facial animation, expression rendering, image synthesis, avatar creation, gesture modeling, motion synthesis, object generation, and texture synthesis. We highlight leading research, practical deployments, commonly used datasets, and emerging trends for each area. To support newcomers, we also provide a comprehensive background section that introduces foundational models and evaluation metrics, equipping readers with the knowledge needed to enter the field. We discuss open challenges and map future research directions, providing a roadmap to advance AI-driven character-animation technologies. This survey is intended as a resource for researchers and developers entering the field of generative AI animation or adjacent fields. Resources are available at: https://github.com/llm-lab-org/Generative-AI-for-Character-Animation-Survey.

Authors:Di Wu, Yibin Lei, Christof Monz
Title: Calibrating Translation Decoding with Quality Estimation on LLMs
Abstract:
Neural machine translation (NMT) systems typically employ maximum a posteriori (MAP) decoding to select the highest-scoring translation from the distribution mass. However, recent evidence highlights the inadequacy of MAP decoding, often resulting in low-quality or even pathological hypotheses -- the decoding objective is not aligned with real-world translation quality. This paper proposes calibrating hypothesis likelihoods with translation quality from a distribution view by directly optimizing their Pearson correlation -- thereby enhancing the effectiveness of translation decoding. With our method, translation on large language models (LLMs) improves substantially after limited training (2K instances per direction). This improvement is orthogonal to those achieved through supervised fine-tuning, leading to substantial gains across a broad range of metrics and human evaluations -- even when applied to top-performing translation-specialized LLMs fine-tuned on high-quality translation data, such as Tower, or when compared to recent preference optimization methods, like CPO. Moreover, the calibrated translation likelihood can directly serve as a strong proxy for translation quality, closely approximating or even surpassing some state-of-the-art translation quality estimation models, like CometKiwi. Lastly, our in-depth analysis demonstrates that calibration enhances the effectiveness of MAP decoding, thereby enabling greater efficiency in real-world deployment. The resulting state-of-the-art translation model, which covers 10 languages, along with the accompanying code and human evaluation data, has been released to the community: https://github.com/moore3930/calibrating-llm-mt.

Authors:Justin Mücke, Ansgar Scherp
Title: GLaMoR: Consistency Checking of OWL Ontologies using Graph Language Models
Abstract:
Semantic reasoning aims to infer new knowledge from existing knowledge, with OWL ontologies serving as a standardized framework for organizing information. A key challenge in semantic reasoning is verifying ontology consistency. However, state-of-the-art reasoners are computationally expensive, and their efficiency decreases as ontology sizes grow. While classical machine learning models have been explored for consistency checking, they struggle to capture complex relationships within ontologies. Large language models (LLMs) have shown promising results for simple reasoning tasks but perform poorly on structured reasoning. The recently introduced Graph Language Model (GLM) offers a way to simultaneously process graph-structured data and text. This paper proposes GLaMoR (Graph Language Model for Reasoning), a reasoning pipeline that transforms OWL ontologies into graph-structured data and adapts the GLM architecture for consistency checking. We evaluate GLaMoR on ontologies from the NCBO BioPortal repository, converting them into triples suitable for model input. Our results show that the GLM outperforms all baseline models, achieving $95\%$ accuracy while being 20 times faster than classical reasoners. The Code is accessible under: https://github.com/JustinMuecke/GLaMoR

Authors:Mohammad Akbar-Tajari, Mohammad Taher Pilehvar, Mohammad Mahmoody
Title: Graph of Attacks: Improved Black-Box and Interpretable Jailbreaks for LLMs
Abstract:
The challenge of ensuring Large Language Models (LLMs) align with societal standards is of increasing interest, as these models are still prone to adversarial jailbreaks that bypass their safety mechanisms. Identifying these vulnerabilities is crucial for enhancing the robustness of LLMs against such exploits. We propose Graph of ATtacks (GoAT), a method for generating adversarial prompts to test the robustness of LLM alignment using the Graph of Thoughts framework [Besta et al., 2024]. GoAT excels at generating highly effective jailbreak prompts with fewer queries to the victim model than state-of-the-art attacks, achieving up to five times better jailbreak success rate against robust models like Llama. Notably, GoAT creates high-quality, human-readable prompts without requiring access to the targeted model's parameters, making it a black-box attack. Unlike approaches constrained by tree-based reasoning, GoAT's reasoning is based on a more intricate graph structure. By making simultaneous attack paths aware of each other's progress, this dynamic framework allows a deeper integration and refinement of reasoning paths, significantly enhancing the collaborative exploration of adversarial vulnerabilities in LLMs. At a technical level, GoAT starts with a graph structure and iteratively refines it by combining and improving thoughts, enabling synergy between different thought paths. The code for our implementation can be found at: https://github.com/GoAT-pydev/Graph_of_Attacks.

Authors:Gal Almog, Ariel Shamir, Ohad Fried
Title: REED-VAE: RE-Encode Decode Training for Iterative Image Editing with Diffusion Models
Abstract:
While latent diffusion models achieve impressive image editing results, their application to iterative editing of the same image is severely restricted. When trying to apply consecutive edit operations using current models, they accumulate artifacts and noise due to repeated transitions between pixel and latent spaces. Some methods have attempted to address this limitation by performing the entire edit chain within the latent space, sacrificing flexibility by supporting only a limited, predetermined set of diffusion editing operations. We present a RE-encode decode (REED) training scheme for variational autoencoders (VAEs), which promotes image quality preservation even after many iterations. Our work enables multi-method iterative image editing: users can perform a variety of iterative edit operations, with each operation building on the output of the previous one using both diffusion-based operations and conventional editing techniques. We demonstrate the advantage of REED-VAE across a range of image editing scenarios, including text-based and mask-based editing frameworks. In addition, we show how REED-VAE enhances the overall editability of images, increasing the likelihood of successful and precise edit operations. We hope that this work will serve as a benchmark for the newly introduced task of multi-method image editing. Our code and models will be available at https://github.com/galmog/REED-VAE

Authors:Xuyin Qi, Zeyu Zhang, Canxuan Gang, Hao Zhang, Lei Zhang, Zhiwei Zhang, Yang Zhao
Title: MediAug: Exploring Visual Augmentation in Medical Imaging
Abstract:
Data augmentation is essential in medical imaging for improving classification accuracy, lesion detection, and organ segmentation under limited data conditions. However, two significant challenges remain. First, a pronounced domain gap between natural photographs and medical images can distort critical disease features. Second, augmentation studies in medical imaging are fragmented and limited to single tasks or architectures, leaving the benefits of advanced mix-based strategies unclear. To address these challenges, we propose a unified evaluation framework with six mix-based augmentation methods integrated with both convolutional and transformer backbones on brain tumour MRI and eye disease fundus datasets. Our contributions are threefold. (1) We introduce MediAug, a comprehensive and reproducible benchmark for advanced data augmentation in medical imaging. (2) We systematically evaluate MixUp, YOCO, CropMix, CutMix, AugMix, and SnapMix with ResNet-50 and ViT-B backbones. (3) We demonstrate through extensive experiments that MixUp yields the greatest improvement on the brain tumor classification task for ResNet-50 with 79.19% accuracy and SnapMix yields the greatest improvement for ViT-B with 99.44% accuracy, and that YOCO yields the greatest improvement on the eye disease classification task for ResNet-50 with 91.60% accuracy and CutMix yields the greatest improvement for ViT-B with 97.94% accuracy. Code will be available at https://github.com/AIGeeksGroup/MediAug.

Authors:Junjie Zhou
Title: Feature Fusion Revisited: Multimodal CTR Prediction for MMCTR Challenge
Abstract:
With the rapid advancement of Multimodal Large Language Models (MLLMs), an increasing number of researchers are exploring their application in recommendation systems. However, the high latency associated with large models presents a significant challenge for such use cases. The EReL@MIR workshop provided a valuable opportunity to experiment with various approaches aimed at improving the efficiency of multimodal representation learning for information retrieval tasks. As part of the competition's requirements, participants were mandated to submit a technical report detailing their methodologies and findings. Our team was honored to receive the award for Task 2 - Winner (Multimodal CTR Prediction). In this technical report, we present our methods and key findings. Additionally, we propose several directions for future work, particularly focusing on how to effectively integrate recommendation signals into multimodal representations. The codebase for our implementation is publicly available at: https://github.com/Lattice-zjj/MMCTR_Code, and the trained model weights can be accessed at: https://huggingface.co/FireFlyCourageous/MMCTR_DIN_MicroLens_1M_x1.

Authors:Ali Nazari, Mohsen Ebrahimi Moghaddam, Omidreza Borzoei
Title: Kinship Verification through a Forest Neural Network
Abstract:
Early methods used face representations in kinship verification, which are less accurate than joint representations of parents' and children's facial images learned from scratch. We propose an approach featuring graph neural network concepts to utilize face representations and have comparable results to joint representation algorithms. Moreover, we designed the structure of the classification module and introduced a new combination of losses to engage the center loss gradually in training our network. Additionally, we conducted experiments on KinFaceW-I and II, demonstrating the effectiveness of our approach. We achieved the best result on KinFaceW-II, an average improvement of nearly 1.6 for all kinship types, and we were near the best on KinFaceW-I. The code is available at https://github.com/ali-nazari/Kinship-Verification

Authors:Zhongpu Chen, Wanjun Hao, Ziang Zeng, Long Shi, Yi Wen, Zhi-Jie Wang, Yu Zhao
Title: LiLIS: Enhancing Big Spatial Data Processing with Lightweight Distributed Learned Index
Abstract:
The efficient management of big spatial data is crucial for location-based services, particularly in smart cities. However, existing systems such as Simba and Sedona, which incorporate distributed spatial indexing, still incur substantial index construction overheads, rendering them far from optimal for real-time analytics. Recent studies demonstrate that learned indices can achieve high efficiency through well-designed machine learning models, but how to design a learned index for distributed spatial analytics remains unaddressed. In this paper, we present LiLIS, a Lightweight Distributed Learned Index for big spatial data. LiLIS combines machine-learned search strategies with spatial-aware partitioning within a distributed framework, and efficiently implements common spatial queries, including point query, range query, k-nearest neighbors (kNN), and spatial joins. Extensive experimental results over real-world and synthetic datasets show that LiLIS outperforms state-of-the-art big spatial data analytics by $2-3$ orders of magnitude for most spatial queries, and the index building achieves $1.5-2\times$ speed-up. The code is available at https://github.com/SWUFE-DB-Group/learned-index-spark.

Authors:Robert Leppich, Michael Stenger, Daniel Grillmeyer, Vanessa Borst, Samuel Kounev
Title: TSRM: A Lightweight Temporal Feature Encoding Architecture for Time Series Forecasting and Imputation
Abstract:
We introduce a temporal feature encoding architecture called Time Series Representation Model (TSRM) for multivariate time series forecasting and imputation. The architecture is structured around CNN-based representation layers, each dedicated to an independent representation learning task and designed to capture diverse temporal patterns, followed by an attention-based feature extraction layer and a merge layer, designed to aggregate extracted features. The architecture is fundamentally based on a configuration that is inspired by a Transformer encoder, with self-attention mechanisms at its core. The TSRM architecture outperforms state-of-the-art approaches on most of the seven established benchmark datasets considered in our empirical evaluation for both forecasting and imputation tasks. At the same time, it significantly reduces complexity in the form of learnable parameters. The source code is available at https://github.com/RobertLeppich/TSRM.

Authors:Shahad Albastaki, Anabia Sohail, Iyyakutti Iyappan Ganapathi, Basit Alawode, Asim Khan, Sajid Javed, Naoufel Werghi, Mohammed Bennamoun, Arif Mahmood
Title: Multi-Resolution Pathology-Language Pre-training Model with Text-Guided Visual Representation
Abstract:
In Computational Pathology (CPath), the introduction of Vision-Language Models (VLMs) has opened new avenues for research, focusing primarily on aligning image-text pairs at a single magnification level. However, this approach might not be sufficient for tasks like cancer subtype classification, tissue phenotyping, and survival analysis due to the limited level of detail that a single-resolution image can provide. Addressing this, we propose a novel multi-resolution paradigm leveraging Whole Slide Images (WSIs) to extract histology patches at multiple resolutions and generate corresponding textual descriptions through advanced CPath VLM. We introduce visual-textual alignment at multiple resolutions as well as cross-resolution alignment to establish more effective text-guided visual representations. Cross-resolution alignment using a multimodal encoder enhances the model's ability to capture context from multiple resolutions in histology images. Our model aims to capture a broader range of information, supported by novel loss functions, enriches feature representation, improves discriminative ability, and enhances generalization across different resolutions. Pre-trained on a comprehensive TCGA dataset with 34 million image-language pairs at various resolutions, our fine-tuned model outperforms state-of-the-art (SOTA) counterparts across multiple datasets and tasks, demonstrating its effectiveness in CPath. The code is available on GitHub at: https://github.com/BasitAlawode/MR-PLIP

Authors:Hayley Ross, Ameya Sunil Mahabaleshwarkar, Yoshi Suhara
Title: When2Call: When (not) to Call Tools
Abstract:
Leveraging external tools is a key feature for modern Language Models (LMs) to expand their capabilities and integrate them into existing systems. However, existing benchmarks primarily focus on the accuracy of tool calling -- whether the correct tool is called with the correct parameters -- and less on evaluating when LMs should (not) call tools. We develop a new benchmark, When2Call, which evaluates tool-calling decision-making: when to generate a tool call, when to ask follow-up questions and when to admit the question can't be answered with the tools provided. We find that state-of-the-art tool-calling LMs show significant room for improvement on When2Call, indicating the importance of this benchmark. We also develop a training set for When2Call and leverage the multiple-choice nature of the benchmark to develop a preference optimization training regime, which shows considerably more improvement than traditional fine-tuning. We release the benchmark and training data as well as evaluation scripts at https://github.com/NVIDIA/When2Call.

Authors:Hang Yu, Jiahao Wen, Zhedong Zheng
Title: CAMeL: Cross-modality Adaptive Meta-Learning for Text-based Person Retrieval
Abstract:
Text-based person retrieval aims to identify specific individuals within an image database using textual descriptions. Due to the high cost of annotation and privacy protection, researchers resort to synthesized data for the paradigm of pretraining and fine-tuning. However, these generated data often exhibit domain biases in both images and textual annotations, which largely compromise the scalability of the pre-trained model. Therefore, we introduce a domain-agnostic pretraining framework based on Cross-modality Adaptive Meta-Learning (CAMeL) to enhance the model generalization capability during pretraining to facilitate the subsequent downstream tasks. In particular, we develop a series of tasks that reflect the diversity and complexity of real-world scenarios, and introduce a dynamic error sample memory unit to memorize the history for errors encountered within multiple tasks. To further ensure multi-task adaptation, we also adopt an adaptive dual-speed update strategy, balancing fast adaptation to new tasks and slow weight updates for historical tasks. Albeit simple, our proposed model not only surpasses existing state-of-the-art methods on real-world benchmarks, including CUHK-PEDES, ICFG-PEDES, and RSTPReid, but also showcases robustness and scalability in handling biased synthetic images and noisy text annotations. Our code is available at https://github.com/Jahawn-Wen/CAMeL-reID.

Authors:Jianyou Wang, Weili Cao, Kaicheng Wang, Xiaoyue Wang, Ashish Dalvi, Gino Prasad, Qishan Liang, Hsuan-lin Her, Ming Wang, Qin Yang, Gene W. Yeo, David E. Neal, Maxim Khan, Christopher D. Rosin, Ramamohan Paturi, Leon Bergen
Title: EvidenceBench: A Benchmark for Extracting Evidence from Biomedical Papers
Abstract:
We study the task of automatically finding evidence relevant to hypotheses in biomedical papers. Finding relevant evidence is an important step when researchers investigate scientific hypotheses. We introduce EvidenceBench to measure models performance on this task, which is created by a novel pipeline that consists of hypothesis generation and sentence-by-sentence annotation of biomedical papers for relevant evidence, completely guided by and faithfully following existing human experts judgment. We demonstrate the pipeline's validity and accuracy with multiple sets of human-expert annotations. We evaluated a diverse set of language models and retrieval systems on the benchmark and found that model performances still fall significantly short of the expert level on this task. To show the scalability of our proposed pipeline, we create a larger EvidenceBench-100k with 107,461 fully annotated papers with hypotheses to facilitate model training and development. Both datasets are available at https://github.com/EvidenceBench/EvidenceBench

Authors:Tung D. Vu, Chung Hoang, Truong-Son Hy
Title: Multimodal graph representation learning for website generation based on visual sketch
Abstract:
The Design2Code problem, which involves converting digital designs into functional source code, is a significant challenge in software development due to its complexity and time-consuming nature. Traditional approaches often struggle with accurately interpreting the intricate visual details and structural relationships inherent in webpage designs, leading to limitations in automation and efficiency. In this paper, we propose a novel method that leverages multimodal graph representation learning to address these challenges. By integrating both visual and structural information from design sketches, our approach enhances the accuracy and efficiency of code generation, particularly in producing semantically correct and structurally sound HTML code. We present a comprehensive evaluation of our method, demonstrating significant improvements in both accuracy and efficiency compared to existing techniques. Extensive evaluation demonstrates significant improvements of multimodal graph learning over existing techniques, highlighting the potential of our method to revolutionize design-to-code automation. Code available at https://github.com/HySonLab/Design2Code

Authors:Felix Burr, Marcel Hoffmann, Ansgar Scherp
Title: Active Few-Shot Learning for Vertex Classification Starting from an Unlabeled Dataset
Abstract:
Despite the ample availability of graph data, obtaining vertex labels is a tedious and expensive task. Therefore, it is desirable to learn from a few labeled vertices only. Existing few-shot learners assume a class oracle, which provides labeled vertices for a desired class. However, such an oracle is not available in a real-world setting, i.e., when drawing a vertex for labeling it is unknown to which class the vertex belongs. Few-shot learners are often combined with prototypical networks, while classical semi-supervised vertex classification uses discriminative models, e.g., Graph Convolutional Networks (GCN). In this paper, we train our models by iteratively prompting a human annotator with vertices to annotate. We perform three experiments where we continually relax our assumptions. First, we assume a class oracle, i.e., the human annotator is provided with an equal number of vertices to label for each class. We denote this as "Balanced Sampling''. In the subsequent experiment, "Unbalanced Sampling,'' we replace the class oracle with $k$-medoids clustering and draw vertices to label from the clusters. In the last experiment, the "Unknown Number of Classes,'' we no longer assumed we knew the number and distribution of classes. Our results show that prototypical models outperform discriminative models in all experiments when fewer than $20$ samples per class are available. While dropping the assumption of the class oracle for the "Unbalanced Sampling'' experiment reduces the performance of the GCN by $9\%$, the prototypical network loses only $1\%$ on average. For the "Unknown Number of Classes'' experiment, the average performance for both models decreased further by $1\%$. Source code: https://github.com/Ximsa/2023-felix-ma

Authors:Nader Zantout, Haochen Zhang, Pujith Kachana, Jinkai Qiu, Guofei Chen, Ji Zhang, Wenshan Wang
Title: SORT3D: Spatial Object-centric Reasoning Toolbox for Zero-Shot 3D Grounding Using Large Language Models
Abstract:
Interpreting object-referential language and grounding objects in 3D with spatial relations and attributes is essential for robots operating alongside humans. However, this task is often challenging due to the diversity of scenes, large number of fine-grained objects, and complex free-form nature of language references. Furthermore, in the 3D domain, obtaining large amounts of natural language training data is difficult. Thus, it is important for methods to learn from little data and zero-shot generalize to new environments. To address these challenges, we propose SORT3D, an approach that utilizes rich object attributes from 2D data and merges a heuristics-based spatial reasoning toolbox with the ability of large language models (LLMs) to perform sequential reasoning. Importantly, our method does not require text-to-3D data for training and can be applied zero-shot to unseen environments. We show that SORT3D achieves state-of-the-art zero-shot performance on complex view-dependent grounding tasks on two benchmarks. We also implement the pipeline to run real-time on two autonomous vehicles and demonstrate that our approach can be used for object-goal navigation on previously unseen real-world environments. All source code for the system pipeline is publicly released at https://github.com/nzantout/SORT3D.

Authors:Ivan Evtimov, Arman Zharmagambetov, Aaron Grattafiori, Chuan Guo, Kamalika Chaudhuri
Title: WASP: Benchmarking Web Agent Security Against Prompt Injection Attacks
Abstract:
Autonomous UI agents powered by AI have tremendous potential to boost human productivity by automating routine tasks such as filing taxes and paying bills. However, a major challenge in unlocking their full potential is security, which is exacerbated by the agent's ability to take action on their user's behalf. Existing tests for prompt injections in web agents either over-simplify the threat by testing unrealistic scenarios or giving the attacker too much power, or look at single-step isolated tasks. To more accurately measure progress for secure web agents, we introduce WASP -- a new publicly available benchmark for end-to-end evaluation of Web Agent Security against Prompt injection attacks. Evaluating with WASP shows that even top-tier AI models, including those with advanced reasoning capabilities, can be deceived by simple, low-effort human-written injections in very realistic scenarios. Our end-to-end evaluation reveals a previously unobserved insight: while attacks partially succeed in up to 86% of the case, even state-of-the-art agents often struggle to fully complete the attacker goals -- highlighting the current state of security by incompetence.

Authors:Jialei Song, Xingquan Zuo, Feiyang Wang, Hai Huang, Tianle Zhang
Title: RDI: An adversarial robustness evaluation metric for deep neural networks based on model statistical features
Abstract:
Deep neural networks (DNNs) are highly susceptible to adversarial samples, raising concerns about their reliability in safety-critical tasks. Currently, methods of evaluating adversarial robustness are primarily categorized into attack-based and certified robustness evaluation approaches. The former not only relies on specific attack algorithms but also is highly time-consuming, while the latter due to its analytical nature, is typically difficult to implement for large and complex models. A few studies evaluate model robustness based on the model's decision boundary, but they suffer from low evaluation accuracy. To address the aforementioned issues, we propose a novel adversarial robustness evaluation metric, Robustness Difference Index (RDI), which is based on model statistical features. RDI draws inspiration from clustering evaluation by analyzing the intra-class and inter-class distances of feature vectors separated by the decision boundary to quantify model robustness. It is attack-independent and has high computational efficiency. Experiments show that, RDI demonstrates a stronger correlation with the gold-standard adversarial robustness metric of attack success rate (ASR). The average computation time of RDI is only 1/30 of the evaluation method based on the PGD attack. Our open-source code is available at: https://github.com/BUPTAIOC/RDI.

Authors:Sungnyun Kim, Sungwoo Cho, Sangmin Bae, Kangwook Jang, Se-Young Yun
Title: Multi-Task Corrupted Prediction for Learning Robust Audio-Visual Speech Representation
Abstract:
Audio-visual speech recognition (AVSR) incorporates auditory and visual modalities to improve recognition accuracy, particularly in noisy environments where audio-only speech systems are insufficient. While previous research has largely addressed audio disruptions, few studies have dealt with visual corruptions, e.g., lip occlusions or blurred videos, which are also detrimental. To address this real-world challenge, we propose CAV2vec, a novel self-supervised speech representation learning framework particularly designed to handle audio-visual joint corruption. CAV2vec employs a self-distillation approach with a corrupted prediction task, where the student model learns to predict clean targets, generated by the teacher model, with corrupted input frames. Specifically, we suggest a unimodal multi-task learning, which distills cross-modal knowledge and aligns the corrupted modalities, by predicting clean audio targets with corrupted videos, and clean video targets with corrupted audios. This strategy mitigates the dispersion in the representation space caused by corrupted modalities, leading to more reliable and robust audio-visual fusion. Our experiments on robust AVSR benchmarks demonstrate that the corrupted representation learning method significantly enhances recognition accuracy across generalized environments involving various types of corruption. Our code is available at https://github.com/sungnyun/cav2vec.

Authors:Gwen Yidou Weng, Benjie Wang, Guy Van den Broeck
Title: TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation
Abstract:
As large language models (LMs) advance, there is an increasing need to control their outputs to align with human values (e.g., detoxification) or desired attributes (e.g., personalization, topic). However, autoregressive models focus on next-token predictions and struggle with global properties that require looking ahead. Existing solutions either post-train LMs for each new attribute--expensive and inflexible--or approximate the Expected Attribute Probability (EAP) of future sequences by sampling or training, which is slow and unreliable for rare attributes. We introduce TRACE (Tractable Probabilistic Reasoning for Adaptable Controllable gEneration), a novel framework that efficiently computes EAP and adapts to new attributes through tractable probabilistic reasoning and lightweight control. TRACE distills a Hidden Markov Model (HMM) from an LM and pairs it with a small classifier to estimate attribute probabilities, enabling exact EAP computation over the HMM's predicted futures. This EAP is then used to reweigh the LM's next-token probabilities for globally compliant continuations. Empirically, TRACE achieves state-of-the-art detoxification results with only 20% decoding overhead, yields 76 low-resource personalized LMs within seconds, and seamlessly extends to composite attributes. Our code is available at: https://github.com/yidouweng/trace.

Authors:Jonas Frey, Turcan Tuna, Lanke Frank Tarimo Fu, Cedric Weibel, Katharine Patterson, Benjamin Krummenacher, Matthias Müller, Julian Nubert, Maurice Fallon, Cesar Cadena, Marco Hutter
Title: Boxi: Design Decisions in the Context of Algorithmic Performance for Robotics
Abstract:
Achieving robust autonomy in mobile robots operating in complex and unstructured environments requires a multimodal sensor suite capable of capturing diverse and complementary information. However, designing such a sensor suite involves multiple critical design decisions, such as sensor selection, component placement, thermal and power limitations, compute requirements, networking, synchronization, and calibration. While the importance of these key aspects is widely recognized, they are often overlooked in academia or retained as proprietary knowledge within large corporations. To improve this situation, we present Boxi, a tightly integrated sensor payload that enables robust autonomy of robots in the wild. This paper discusses the impact of payload design decisions made to optimize algorithmic performance for downstream tasks, specifically focusing on state estimation and mapping. Boxi is equipped with a variety of sensors: two LiDARs, 10 RGB cameras including high-dynamic range, global shutter, and rolling shutter models, an RGB-D camera, 7 inertial measurement units (IMUs) of varying precision, and a dual antenna RTK GNSS system. Our analysis shows that time synchronization, calibration, and sensor modality have a crucial impact on the state estimation performance. We frame this analysis in the context of cost considerations and environment-specific challenges. We also present a mobile sensor suite `cookbook` to serve as a comprehensive guideline, highlighting generalizable key design considerations and lessons learned during the development of Boxi. Finally, we demonstrate the versatility of Boxi being used in a variety of applications in real-world scenarios, contributing to robust autonomy. More details and code: https://github.com/leggedrobotics/grand_tour_box

Authors:Alejandro Murillo-Gonzalez, Lantao Liu
Title: Action Flow Matching for Continual Robot Learning
Abstract:
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks, mirroring human adaptability. A key challenge is refining dynamics models, essential for planning and control, while addressing issues such as safe adaptation, catastrophic forgetting, outlier management, data efficiency, and balancing exploration with exploitation -- all within task and onboard resource constraints. Towards this goal, we introduce a generative framework leveraging flow matching for online robot dynamics model alignment. Rather than executing actions based on a misaligned model, our approach refines planned actions to better match with those the robot would take if its model was well aligned. We find that by transforming the actions themselves rather than exploring with a misaligned model -- as is traditionally done -- the robot collects informative data more efficiently, thereby accelerating learning. Moreover, we validate that the method can handle an evolving and possibly imperfect model while reducing, if desired, the dependency on replay buffers or legacy model snapshots. We validate our approach using two platforms: an unmanned ground vehicle and a quadrotor. The results highlight the method's adaptability and efficiency, with a record 34.2\% higher task success rate, demonstrating its potential towards enabling continual robot learning. Code: https://github.com/AlejandroMllo/action_flow_matching.

Authors:Ryo Yamaki, Shintaro Shiba, Guillermo Gallego, Yoshimitsu Aoki
Title: Iterative Event-based Motion Segmentation by Variational Contrast Maximization
Abstract:
Event cameras provide rich signals that are suitable for motion estimation since they respond to changes in the scene. As any visual changes in the scene produce event data, it is paramount to classify the data into different motions (i.e., motion segmentation), which is useful for various tasks such as object detection and visual servoing. We propose an iterative motion segmentation method, by classifying events into background (e.g., dominant motion hypothesis) and foreground (independent motion residuals), thus extending the Contrast Maximization framework. Experimental results demonstrate that the proposed method successfully classifies event clusters both for public and self-recorded datasets, producing sharp, motion-compensated edge-like images. The proposed method achieves state-of-the-art accuracy on moving object detection benchmarks with an improvement of over 30%, and demonstrates its possibility of applying to more complex and noisy real-world scenes. We hope this work broadens the sensitivity of Contrast Maximization with respect to both motion parameters and input events, thus contributing to theoretical advancements in event-based motion segmentation estimation. https://github.com/aoki-media-lab/event_based_segmentation_vcmax

Authors:Erika Hunhoff, Joseph Melber, Kristof Denolf, Andra Bisca, Samuel Bayliss, Stephen Neuendorffer, Jeff Fifield, Jack Lo, Pranathi Vasireddy, Phil James-Roxby, Eric Keller
Title: Efficiency, Expressivity, and Extensibility in a Close-to-Metal NPU Programming Interface
Abstract:
Accelerators such as neural processing units (NPUs) deliver an enticing balance of performance and efficiency compared to general purpose compute architectures. However, effectively leveraging accelerator capabilities is not always simple: low-level programming toolkits may require substantial developer effort while high-level programming toolkits may abstract critical optimization features. This work aims to increase efficiency of designers using IRON, a toolkit for close-to-metal NPU performance engineers. We provide an updated programmer interface to IRON containing new and refined programming constructs. The new interface includes extensible features for placement and data transformation. These contributions are evaluated in terms of 1) efficiency, with analysis showing ~26% average reduction in lines of code and decreases in Halstead metrics for a variety of designs; 2) expressivity, demonstrating the new interface supports the wide range of features and patterns already supported by IRON; and 3) extensibility, illustrating the new tooling for placement and tiling can be extended to accommodate common use-cases.

Authors:KimiTeam, Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song, Xu Tan, Heyi Tang, Zhengtao Wang, Chu Wei, Yifei Xin, Xinran Xu, Jianwei Yu, Yutao Zhang, Xinyu Zhou, Y. Charles, Jun Chen, Yanru Chen, Yulun Du, Weiran He, Zhenxing Hu, Guokun Lai, Qingcheng Li, Yangyang Liu, Weidong Sun, Jianzhou Wang, Yuzhi Wang, Yuefeng Wu, Yuxin Wu, Dongchao Yang, Hao Yang, Ying Yang, Zhilin Yang, Aoxiong Yin, Ruibin Yuan, Yutong Zhang, Zaida Zhou
Title: Kimi-Audio Technical Report
Abstract:
We present Kimi-Audio, an open-source audio foundation model that excels in audio understanding, generation, and conversation. We detail the practices in building Kimi-Audio, including model architecture, data curation, training recipe, inference deployment, and evaluation. Specifically, we leverage a 12.5Hz audio tokenizer, design a novel LLM-based architecture with continuous features as input and discrete tokens as output, and develop a chunk-wise streaming detokenizer based on flow matching. We curate a pre-training dataset that consists of more than 13 million hours of audio data covering a wide range of modalities including speech, sound, and music, and build a pipeline to construct high-quality and diverse post-training data. Initialized from a pre-trained LLM, Kimi-Audio is continual pre-trained on both audio and text data with several carefully designed tasks, and then fine-tuned to support a diverse of audio-related tasks. Extensive evaluation shows that Kimi-Audio achieves state-of-the-art performance on a range of audio benchmarks including speech recognition, audio understanding, audio question answering, and speech conversation. We release the codes, model checkpoints, as well as the evaluation toolkits in https://github.com/MoonshotAI/Kimi-Audio.

Authors:Alan Khoja, Martin Kölbl, Stefan Leue, Rüdiger Wilhelmi
Title: Automated Consistency Analysis for Legal Contracts
Abstract:
Business contracts, particularly sale and purchase agreements, often contain a large number of clauses and are correspondingly long and complex. In practice, it is therefore a great challenge to keep track of their legal context and to identify and avoid inconsistencies in such contracts. Against this background, we describe a method and tool called ContractCheck which allows for the consistency analysis of legal contracts, in particular Share Purchase Agreements (SPAs). In order to identify the concepts that are relevant for an analysis we define an ontology for SPAs. The analysis is, then, based on an encoding of the preconditions for the execution of the clauses of an SPA, as well as on a set of proposed consistency constraints formalized using decidable fragments of First-Order Logic (FOL). Based on the ontology for SPAs, textual SPAs are first encoded in a structured natural language format that we refer to as ``blocks''. ContractCheck interprets these blocks and constraints and translates them into assertions formulated in FOL. It then invokes a Satisfiability Modulo Theory (SMT) solver in order to check the executability of a considered contract, either by providing a satisfying model, or by proving the existence of conflicting clauses that prevent the contract from being executed. We illustrate the application of ContractCheck to concrete SPAs, including one example of an SPA of realistic size and complexity, and conclude by suggesting directions for future research.

Authors:Ning Xian, Yixing Fan, Ruqing Zhang, Maarten de Rijke, Jiafeng Guo
Title: An Empirical Study of Evaluating Long-form Question Answering
Abstract:
\Ac{LFQA} aims to generate lengthy answers to complex questions. This scenario presents great flexibility as well as significant challenges for evaluation. Most evaluations rely on deterministic metrics that depend on string or n-gram matching, while the reliability of large language model-based evaluations for long-form answers remains relatively unexplored. We address this gap by conducting an in-depth study of long-form answer evaluation with the following research questions: (i) To what extent do existing automatic evaluation metrics serve as a substitute for human evaluations? (ii) What are the limitations of existing evaluation metrics compared to human evaluations? (iii) How can the effectiveness and robustness of existing evaluation methods be improved? We collect 5,236 factoid and non-factoid long-form answers generated by different large language models and conduct a human evaluation on 2,079 of them, focusing on correctness and informativeness. Subsequently, we investigated the performance of automatic evaluation metrics by evaluating these answers, analyzing the consistency between these metrics and human evaluations. We find that the style, length of the answers, and the category of questions can bias the automatic evaluation metrics. However, fine-grained evaluation helps mitigate this issue on some metrics. Our findings have important implications for the use of large language models for evaluating long-form question answering. All code and datasets are available at https://github.com/bugtig6351/lfqa_evaluation.

Authors:Xinmin Feng, Zhuoyuan Li, Li Li, Dong Liu, Feng Wu
Title: Partition Map-Based Fast Block Partitioning for VVC Inter Coding
Abstract:
Among the new techniques of Versatile Video Coding (VVC), the quadtree with nested multi-type tree (QT+MTT) block structure yields significant coding gains by providing more flexible block partitioning patterns. However, the recursive partition search in the VVC encoder increases the encoder complexity substantially. To address this issue, we propose a partition map-based algorithm to pursue fast block partitioning in inter coding. Based on our previous work on partition map-based methods for intra coding, we analyze the characteristics of VVC inter coding, and thus improve the partition map by incorporating an MTT mask for early termination. Next, we develop a neural network that uses both spatial and temporal features to predict the partition map. It consists of several special designs including stacked top-down and bottom-up processing, quantization parameter modulation layers, and partitioning-adaptive warping. Furthermore, we present a dual-threshold decision scheme to achieve a fine-grained trade-off between complexity reduction and rate-distortion (RD) performance loss. The experimental results demonstrate that the proposed method achieves an average 51.30% encoding time saving with a 2.12% Bjontegaard Delta Bit Rate (BDBR) under the random access configuration.

Authors:Kesen Zhao, Beier Zhu, Qianru Sun, Hanwang Zhang
Title: Unsupervised Visual Chain-of-Thought Reasoning via Preference Optimization
Abstract:
Chain-of-thought (CoT) reasoning greatly improves the interpretability and problem-solving abilities of multimodal large language models (MLLMs). However, existing approaches are focused on text CoT, limiting their ability to leverage visual cues. Visual CoT remains underexplored, and the only work is based on supervised fine-tuning (SFT) that relies on extensive labeled bounding-box data and is hard to generalize to unseen cases. In this paper, we introduce Unsupervised Visual CoT (UV-CoT), a novel framework for image-level CoT reasoning via preference optimization. UV-CoT performs preference comparisons between model-generated bounding boxes (one is preferred and the other is dis-preferred), eliminating the need for bounding-box annotations. We get such preference data by introducing an automatic data generation pipeline. Given an image, our target MLLM (e.g., LLaVA-1.5-7B) generates seed bounding boxes using a template prompt and then answers the question using each bounded region as input. An evaluator MLLM (e.g., OmniLLM-12B) ranks the responses, and these rankings serve as supervision to train the target MLLM with UV-CoT by minimizing negative log-likelihood losses. By emulating human perception--identifying key regions and reasoning based on them--UV-CoT can improve visual comprehension, particularly in spatial reasoning tasks where textual descriptions alone fall short. Our experiments on six datasets demonstrate the superiority of UV-CoT, compared to the state-of-the-art textual and visual CoT methods. Our zero-shot testing on four unseen datasets shows the strong generalization of UV-CoT. The code is available in https://github.com/kesenzhao/UV-CoT.

Authors:Lei Shen, Xiaoyu Shen
Title: Auto-SLURP: A Benchmark Dataset for Evaluating Multi-Agent Frameworks in Smart Personal Assistant
Abstract:
In recent years, multi-agent frameworks powered by large language models (LLMs) have advanced rapidly. Despite this progress, there is still a notable absence of benchmark datasets specifically tailored to evaluate their performance. To bridge this gap, we introduce Auto-SLURP, a benchmark dataset aimed at evaluating LLM-based multi-agent frameworks in the context of intelligent personal assistants. Auto-SLURP extends the original SLURP dataset -- initially developed for natural language understanding tasks -- by relabeling the data and integrating simulated servers and external services. This enhancement enables a comprehensive end-to-end evaluation pipeline, covering language understanding, task execution, and response generation. Our experiments demonstrate that Auto-SLURP presents a significant challenge for current state-of-the-art frameworks, highlighting that truly reliable and intelligent multi-agent personal assistants remain a work in progress. The dataset and related code are available at https://github.com/lorashen/Auto-SLURP/.

Authors:Zhengru Fang, Zhenghao Liu, Jingjing Wang, Senkang Hu, Yu Guo, Yiqin Deng, Yuguang Fang
Title: Task-Oriented Communications for Visual Navigation with Edge-Aerial Collaboration in Low Altitude Economy
Abstract:
To support the Low Altitude Economy (LAE), it is essential to achieve precise localization of unmanned aerial vehicles (UAVs) in urban areas where global positioning system (GPS) signals are unavailable. Vision-based methods offer a viable alternative but face severe bandwidth, memory and processing constraints on lightweight UAVs. Inspired by mammalian spatial cognition, we propose a task-oriented communication framework, where UAVs equipped with multi-camera systems extract compact multi-view features and offload localization tasks to edge servers. We introduce the Orthogonally-constrained Variational Information Bottleneck encoder (O-VIB), which incorporates automatic relevance determination (ARD) to prune non-informative features while enforcing orthogonality to minimize redundancy. This enables efficient and accurate localization with minimal transmission cost. Extensive evaluation on a dedicated LAE UAV dataset shows that O-VIB achieves high-precision localization under stringent bandwidth budgets. Code and dataset will be made publicly available at: github.com/fangzr/TOC-Edge-Aerial.

Authors:Marco Turzi, Siamak Mehrkanoon
Title: SSA-UNet: Advanced Precipitation Nowcasting via Channel Shuffling
Abstract:
Weather forecasting is essential for facilitating diverse socio-economic activity and environmental conservation initiatives. Deep learning techniques are increasingly being explored as complementary approaches to Numerical Weather Prediction (NWP) models, offering potential benefits such as reduced complexity and enhanced adaptability in specific applications. This work presents a novel design, Small Shuffled Attention UNet (SSA-UNet), which enhances SmaAt-UNet's architecture by including a shuffle channeling mechanism to optimize performance and diminish complexity. To assess its efficacy, this architecture and its reduced variant are examined and trained on two datasets: a Dutch precipitation dataset from 2016 to 2019, and a French cloud cover dataset containing radar images from 2017 to 2018. Three output configurations of the proposed architecture are evaluated, yielding outputs of 1, 6, and 12 precipitation maps, respectively. To better understand how this model operates and produces its predictions, a gradient-based approach called Grad-CAM is used to analyze the outputs generated. The analysis of heatmaps generated by Grad-CAM facilitated the identification of regions within the input maps that the model considers most informative for generating its predictions. The implementation of SSA-UNet can be found on our Github\footnote{\href{https://github.com/MarcoTurzi/SSA-UNet}{https://github.com/MarcoTurzi/SSA-UNet}}

Authors:Tao Wu, Kexue Fu, Qiang Hua, Xinxin Liu, Muhammad Ali Imran, Bo Liu
Title: LEAM: A Prompt-only Large Language Model-enabled Antenna Modeling Method
Abstract:
Antenna modeling is a time-consuming and complex process, decreasing the speed of antenna analysis and design. In this paper, a large language model (LLM)- enabled antenna modeling method, called LEAM, is presented to address this challenge. LEAM enables automatic antenna model generation based on language descriptions via prompt input, images, descriptions from academic papers, patents, and technical reports (either one or multiple). The effectiveness of LEAM is demonstrated by three examples: a Vivaldi antenna generated from a complete user description, a slotted patch antenna generated from an incomplete user description and the operating frequency, and a monopole slotted antenna generated from images and descriptions scanned from the literature. For all the examples, correct antenna models are generated in a few minutes. The code can be accessed via https://github.com/TaoWu974/LEAM.

Authors:Elena Plekhanova, Damien Robert, Johannes Dollinger, Emilia Arens, Philipp Brun, Jan Dirk Wegner, Niklaus Zimmermann
Title: SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology
Abstract:
With the exacerbation of the biodiversity and climate crises, macroecological pursuits such as global biodiversity mapping become more urgent. Remote sensing offers a wealth of Earth observation data for ecological studies, but the scarcity of labeled datasets remains a major challenge. Recently, self-supervised learning has enabled learning representations from unlabeled data, triggering the development of pretrained geospatial models with generalizable features. However, these models are often trained on datasets biased toward areas of high human activity, leaving entire ecological regions underrepresented. Additionally, while some datasets attempt to address seasonality through multi-date imagery, they typically follow calendar seasons rather than local phenological cycles. To better capture vegetation seasonality at a global scale, we propose a simple phenology-informed sampling strategy and introduce corresponding SSL4Eco, a multi-date Sentinel-2 dataset, on which we train an existing model with a season-contrastive objective. We compare representations learned from SSL4Eco against other datasets on diverse ecological downstream tasks and demonstrate that our straightforward sampling method consistently improves representation quality, highlighting the importance of dataset construction. The model pretrained on SSL4Eco reaches state of the art performance on 7 out of 8 downstream tasks spanning (multi-label) classification and regression. We release our code, data, and model weights to support macroecological and computer vision research at https://github.com/PlekhanovaElena/ssl4eco.

Authors:Ritesh Goru, Shanay Mehta, Prateek Jain
Title: One-Pass to Reason: Token Duplication and Block-Sparse Mask for Efficient Fine-Tuning on Multi-Turn Reasoning
Abstract:
Fine-tuning Large Language Models (LLMs) on multi-turn reasoning datasets requires N (number of turns) separate forward passes per conversation due to reasoning token visibility constraints, as reasoning tokens for a turn are discarded in subsequent turns. We propose duplicating response tokens along with a custom attention mask to enable single-pass processing of entire conversations. We prove our method produces identical losses to the N-pass approach while reducing time complexity from $O\bigl(N^{3}\bigl)$ to $O\bigl(N^{2}\bigl)$ and maintaining the same memory complexity for a transformer based model. Our approach achieves significant training speedup while preserving accuracy. Our implementation is available online (https://github.com/devrev/One-Pass-to-Reason).

Authors:Jiahao Zhang, Bowen Wang, Hong Liu, Liangzhi Li, Yuta Nakashima, Hajime Nagahara
Title: E-InMeMo: Enhanced Prompting for Visual In-Context Learning
Abstract:
Large-scale models trained on extensive datasets have become the standard due to their strong generalizability across diverse tasks. In-context learning (ICL), widely used in natural language processing, leverages these models by providing task-specific prompts without modifying their parameters. This paradigm is increasingly being adapted for computer vision, where models receive an input-output image pair, known as an in-context pair, alongside a query image to illustrate the desired output. However, the success of visual ICL largely hinges on the quality of these prompts. To address this, we propose Enhanced Instruct Me More (E-InMeMo), a novel approach that incorporates learnable perturbations into in-context pairs to optimize prompting. Through extensive experiments on standard vision tasks, E-InMeMo demonstrates superior performance over existing state-of-the-art methods. Notably, it improves mIoU scores by 7.99 for foreground segmentation and by 17.04 for single object detection when compared to the baseline without learnable prompts. These results highlight E-InMeMo as a lightweight yet effective strategy for enhancing visual ICL. Code is publicly available at: https://github.com/Jackieam/E-InMeMo

Authors:Suntae Hwang, Seonghyeon Kang, Kyungsu Kim, Semin Ahn, Kyogu Lee
Title: DOSE : Drum One-Shot Extraction from Music Mixture
Abstract:
Drum one-shot samples are crucial for music production, particularly in sound design and electronic music. This paper introduces Drum One-Shot Extraction, a task in which the goal is to extract drum one-shots that are present in the music mixture. To facilitate this, we propose the Random Mixture One-shot Dataset (RMOD), comprising large-scale, randomly arranged music mixtures paired with corresponding drum one-shot samples. Our proposed model, Drum One- Shot Extractor (DOSE), leverages neural audio codec language models for end-to-end extraction, bypassing traditional source separation steps. Additionally, we introduce a novel onset loss, designed to encourage accurate prediction of the initial transient of drum one-shots, which is essential for capturing timbral characteristics. We compare this approach against a source separation-based extraction method as a baseline. The results, evaluated using Frechet Audio Distance (FAD) and Multi-Scale Spectral loss (MSS), demonstrate that DOSE, enhanced with onset loss, outperforms the baseline, providing more accurate and higher-quality drum one-shots from music mixtures. The code, model checkpoint, and audio examples are available at https://github.com/HSUNEH/DOSE

Authors:Jingjin Wang, Jiawei Han
Title: PropRAG: Guiding Retrieval with Beam Search over Proposition Paths
Abstract:
Retrieval Augmented Generation (RAG) has become the standard approach for equipping Large Language Models (LLMs) with up-to-date knowledge. However, standard RAG, relying on independent passage retrieval, often fails to capture the interconnected nature of information required for complex, multi-hop reasoning. While structured RAG methods attempt to address this using knowledge graphs built from triples, we argue that the inherent context loss of triples (context collapse) limits the fidelity of the knowledge representation. We introduce PropRAG, a novel RAG framework that shifts from triples to context-rich propositions and introduces an efficient, LLM-free online beam search over proposition paths to discover multi-step reasoning chains. By coupling a higher-fidelity knowledge representation with explicit path discovery, PropRAG achieves state-of-the-art zero-shot Recall@5 and F1 scores on 2Wiki, HotpotQA, and MuSiQue, advancing non-parametric knowledge integration by improving evidence retrieval through richer representation and efficient reasoning path discovery.

Authors:Jingjin Wang
Title: PropRAG: Guiding Retrieval with Beam Search over Proposition Paths
Abstract:
Retrieval Augmented Generation (RAG) has become the standard non-parametric approach for equipping Large Language Models (LLMs) with up-to-date knowledge and mitigating catastrophic forgetting common in continual learning. However, standard RAG, relying on independent passage retrieval, fails to capture the interconnected nature of human memory crucial for complex reasoning (associativity) and contextual understanding (sense-making). While structured RAG methods like HippoRAG utilize knowledge graphs (KGs) built from triples, the inherent context loss limits fidelity. We introduce PropRAG, a framework leveraging contextually rich propositions and a novel beam search algorithm over proposition paths to explicitly discover multi-step reasoning chains. Crucially, PropRAG's online retrieval process operates entirely without invoking generative LLMs, relying instead on efficient graph traversal and pre-computed embeddings. This avoids online LLM inference costs and potential inconsistencies during evidence gathering. LLMs are used effectively offline for high-quality proposition extraction and post-retrieval for answer generation. PropRAG achieves state-of-the-art zero-shot Recall@5 results on PopQA (55.3%), 2Wiki (93.7%), HotpotQA (97.0%), and MuSiQue (77.3%), alongside top F1 scores (e.g., 52.4% on MuSiQue). By improving evidence retrieval through richer representation and explicit, LLM-free online path finding, PropRAG advances non-parametric continual learning.

Authors:Zhuohao Yan, Shaoquan Feng, Xingxing Li, Yuxuan Zhou, Chunxi Xia, Shengyu Li
Title: S3MOT: Monocular 3D Object Tracking with Selective State Space Model
Abstract:
Accurate and reliable multi-object tracking (MOT) in 3D space is essential for advancing robotics and computer vision applications. However, it remains a significant challenge in monocular setups due to the difficulty of mining 3D spatiotemporal associations from 2D video streams. In this work, we present three innovative techniques to enhance the fusion and exploitation of heterogeneous cues for monocular 3D MOT: (1) we introduce the Hungarian State Space Model (HSSM), a novel data association mechanism that compresses contextual tracking cues across multiple paths, enabling efficient and comprehensive assignment decisions with linear complexity. HSSM features a global receptive field and dynamic weights, in contrast to traditional linear assignment algorithms that rely on hand-crafted association costs. (2) We propose Fully Convolutional One-stage Embedding (FCOE), which eliminates ROI pooling by directly using dense feature maps for contrastive learning, thus improving object re-identification accuracy under challenging conditions such as varying viewpoints and lighting. (3) We enhance 6-DoF pose estimation through VeloSSM, an encoder-decoder architecture that models temporal dependencies in velocity to capture motion dynamics, overcoming the limitations of frame-based 3D inference. Experiments on the KITTI public test benchmark demonstrate the effectiveness of our method, achieving a new state-of-the-art performance of 76.86~HOTA at 31~FPS. Our approach outperforms the previous best by significant margins of +2.63~HOTA and +3.62~AssA, showcasing its robustness and efficiency for monocular 3D MOT tasks. The code and models are available at https://github.com/bytepioneerX/s3mot.

Authors:Prachi Garg, Joseph K J, Vineeth N Balasubramanian, Necati Cihan Camgoz, Chengde Wan, Kenrick Kin, Weiguang Si, Shugao Ma, Fernando De La Torre
Title: POET: Prompt Offset Tuning for Continual Human Action Adaptation
Abstract:
As extended reality (XR) is redefining how users interact with computing devices, research in human action recognition is gaining prominence. Typically, models deployed on immersive computing devices are static and limited to their default set of classes. The goal of our research is to provide users and developers with the capability to personalize their experience by adding new action classes to their device models continually. Importantly, a user should be able to add new classes in a low-shot and efficient manner, while this process should not require storing or replaying any of user's sensitive training data. We formalize this problem as privacy-aware few-shot continual action recognition. Towards this end, we propose POET: Prompt-Offset Tuning. While existing prompt tuning approaches have shown great promise for continual learning of image, text, and video modalities; they demand access to extensively pretrained transformers. Breaking away from this assumption, POET demonstrates the efficacy of prompt tuning a significantly lightweight backbone, pretrained exclusively on the base class data. We propose a novel spatio-temporal learnable prompt offset tuning approach, and are the first to apply such prompt tuning to Graph Neural Networks. We contribute two new benchmarks for our new problem setting in human action recognition: (i) NTU RGB+D dataset for activity recognition, and (ii) SHREC-2017 dataset for hand gesture recognition. We find that POET consistently outperforms comprehensive benchmarks. Source code at https://github.com/humansensinglab/POET-continual-action-recognition.

Authors:Jianyu Liu, Hangyu Guo, Ranjie Duan, Xingyuan Bu, Yancheng He, Shilong Li, Hui Huang, Jiaheng Liu, Yucheng Wang, Chenchen Jing, Xingwei Qu, Xiao Zhang, Yingshui Tan, Yanan Wu, Jihao Gu, Yangguang Li, Jianke Zhu
Title: DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data, thereby introducing new dimensions of potential attacks and complex risk combinations. In this paper, we begin with a detailed analysis aimed at disentangling risks through step-by-step reasoning within multimodal inputs. We find that systematic multimodal risk disentanglement substantially enhances the risk awareness of MLLMs. Via leveraging the strong discriminative abilities of multimodal risk disentanglement, we further introduce \textbf{DREAM} (\textit{\textbf{D}isentangling \textbf{R}isks to \textbf{E}nhance Safety \textbf{A}lignment in \textbf{M}LLMs}), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback (RLAIF). Experimental results show that DREAM significantly boosts safety during both inference and training phases without compromising performance on normal tasks (namely oversafety), achieving a 16.17\% improvement in the SIUO safe\&effective score compared to GPT-4V. The data and code are available at https://github.com/Kizna1ver/DREAM.

Authors:Yiwei Zha
Title: SMARTFinRAG: Interactive Modularized Financial RAG Benchmark
Abstract:
Financial sectors are rapidly adopting language model technologies, yet evaluating specialized RAG systems in this domain remains challenging. This paper introduces SMARTFinRAG, addressing three critical gaps in financial RAG assessment: (1) a fully modular architecture where components can be dynamically interchanged during runtime; (2) a document-centric evaluation paradigm generating domain-specific QA pairs from newly ingested financial documents; and (3) an intuitive interface bridging research-implementation divides. Our evaluation quantifies both retrieval efficacy and response quality, revealing significant performance variations across configurations. The platform's open-source architecture supports transparent, reproducible research while addressing practical deployment challenges faced by financial institutions implementing RAG systems.

Authors:Hanrui Wang, Shuo Wang, Chun-Shien Lu, Isao Echizen
Title: DiffMI: Breaking Face Recognition Privacy via Diffusion-Driven Training-Free Model Inversion
Abstract:
Face recognition poses serious privacy risks due to its reliance on sensitive and immutable biometric data. While modern systems mitigate privacy risks by mapping facial images to embeddings (commonly regarded as privacy-preserving), model inversion attacks reveal that identity information can still be recovered, exposing critical vulnerabilities. However, existing attacks are often computationally expensive and lack generalization, especially those requiring target-specific training. Even training-free approaches suffer from limited identity controllability, hindering faithful reconstruction of nuanced or unseen identities. In this work, we propose DiffMI, the first diffusion-driven, training-free model inversion attack. DiffMI introduces a novel pipeline combining robust latent code initialization, a ranked adversarial refinement strategy, and a statistically grounded, confidence-aware optimization objective. DiffMI applies directly to unseen target identities and face recognition models, offering greater adaptability than training-dependent approaches while significantly reducing computational overhead. Our method achieves 84.42%--92.87% attack success rates against inversion-resilient systems and outperforms the best prior training-free GAN-based approach by 4.01%--9.82%. The implementation is available at https://github.com/azrealwang/DiffMI.

Authors:Kazi Shahrukh Omar, Shuaijie Wang, Ridhuparan Kungumaraju, Tanvi Bhatt, Fabio Miranda
Title: VIGMA: An Open-Access Framework for Visual Gait and Motion Analytics
Abstract:
Gait disorders are commonly observed in older adults, who frequently experience various issues related to walking. Additionally, researchers and clinicians extensively investigate mobility related to gait in typically and atypically developing children, athletes, and individuals with orthopedic and neurological disorders. Effective gait analysis enables the understanding of the causal mechanisms of mobility and balance control of patients, the development of tailored treatment plans to improve mobility, the reduction of fall risk, and the tracking of rehabilitation progress. However, analyzing gait data is a complex task due to the multivariate nature of the data, the large volume of information to be interpreted, and the technical skills required. Existing tools for gait analysis are often limited to specific patient groups (e.g., cerebral palsy), only handle a specific subset of tasks in the entire workflow, and are not openly accessible. To address these shortcomings, we conducted a requirements assessment with gait practitioners (e.g., researchers, clinicians) via surveys and identified key components of the workflow, including (1) data processing and (2) data analysis and visualization. Based on the findings, we designed VIGMA, an open-access visual analytics framework integrated with computational notebooks and a Python library, to meet the identified requirements. Notably, the framework supports analytical capabilities for assessing disease progression and for comparing multiple patient groups. We validated the framework through usage scenarios with experts specializing in gait and mobility rehabilitation. VIGMA is available at https://github.com/komar41/VIGMA.

Authors:Kaiyuan Tang, Siyuan Yao, Chaoli Wang
Title: iVR-GS: Inverse Volume Rendering for Explorable Visualization via Editable 3D Gaussian Splatting
Abstract:
In volume visualization, users can interactively explore the three-dimensional data by specifying color and opacity mappings in the transfer function (TF) or adjusting lighting parameters, facilitating meaningful interpretation of the underlying structure. However, rendering large-scale volumes demands powerful GPUs and high-speed memory access for real-time performance. While existing novel view synthesis (NVS) methods offer faster rendering speeds with lower hardware requirements, the visible parts of a reconstructed scene are fixed and constrained by preset TF settings, significantly limiting user exploration. This paper introduces inverse volume rendering via Gaussian splatting (iVR-GS), an innovative NVS method that reduces the rendering cost while enabling scene editing for interactive volume exploration. Specifically, we compose multiple iVR-GS models associated with basic TFs covering disjoint visible parts to make the entire volumetric scene visible. Each basic model contains a collection of 3D editable Gaussians, where each Gaussian is a 3D spatial point that supports real-time scene rendering and editing. We demonstrate the superior reconstruction quality and composability of iVR-GS against other NVS solutions (Plenoxels, CCNeRF, and base 3DGS) on various volume datasets. The code is available at https://github.com/TouKaienn/iVR-GS.

Authors:Mert Sonmezer, Seyda Ertekin
Title: CANet: ChronoAdaptive Network for Enhanced Long-Term Time Series Forecasting under Non-Stationarity
Abstract:
Long-term time series forecasting plays a pivotal role in various real-world applications. Despite recent advancements and the success of different architectures, forecasting is often challenging due to non-stationary nature of the real-world data, which frequently exhibit distribution shifts and temporal changes in statistical properties like mean and variance over time. Previous studies suggest that this inherent variability complicates forecasting, limiting the performance of many models by leading to loss of non-stationarity and resulting in over-stationarization (Liu, Wu, Wang and Long, 2022). To address this challenge, we introduce a novel architecture, ChoronoAdaptive Network (CANet), inspired by style-transfer techniques. The core of CANet is the Non-stationary Adaptive Normalization module, seamlessly integrating the Style Blending Gate and Adaptive Instance Normalization (AdaIN) (Huang and Belongie, 2017). The Style Blending Gate preserves and reintegrates non-stationary characteristics, such as mean and standard deviation, by blending internal and external statistics, preventing over-stationarization while maintaining essential temporal dependencies. Coupled with AdaIN, which dynamically adapts the model to statistical changes, this approach enhances predictive accuracy under non-stationary conditions. CANet also employs multi-resolution patching to handle short-term fluctuations and long-term trends, along with Fourier analysis-based adaptive thresholding to reduce noise. A Stacked Kronecker Product Layer further optimizes the model's efficiency while maintaining high performance. Extensive experiments on real-world datasets validate CANet's superiority over state-of-the-art methods, achieving a 42% reduction in MSE and a 22% reduction in MAE. The source code is publicly available at https://github.com/mertsonmezer/CANet.

Authors:Haokai Zhang, Shengtao Zhang, Zijian Cai, Heng Wang, Ruixuan Zhu, Zinan Zeng, Minnan Luo
Title: Unveiling the Hidden: Movie Genre and User Bias in Spoiler Detection
Abstract:
Spoilers in movie reviews are important on platforms like IMDb and Rotten Tomatoes, offering benefits and drawbacks. They can guide some viewers' choices but also affect those who prefer no plot details in advance, making effective spoiler detection essential. Existing spoiler detection methods mainly analyze review text, often overlooking the impact of movie genres and user bias, limiting their effectiveness. To address this, we analyze movie review data, finding genre-specific variations in spoiler rates and identifying that certain users are more likely to post spoilers. Based on these findings, we introduce a new spoiler detection framework called GUSD (The code is available at https://github.com/AI-explorer-123/GUSD) (Genre-aware and User-specific Spoiler Detection), which incorporates genre-specific data and user behavior bias. User bias is calculated through dynamic graph modeling of review history. Additionally, the R2GFormer module combines RetGAT (Retentive Graph Attention Network) for graph information and GenreFormer for genre-specific aggregation. The GMoE (Genre-Aware Mixture of Experts) model further assigns reviews to specialized experts based on genre. Extensive testing on benchmark datasets shows that GUSD achieves state-of-the-art results. This approach advances spoiler detection by addressing genre and user-specific patterns, enhancing user experience on movie review platforms.

Authors:Anirudhan Badrinath, Alex Yang, Kousik Rajesh, Prabhat Agarwal, Jaewon Yang, Haoyu Chen, Jiajing Xu, Charles Rosenberg
Title: OmniSage: Large Scale, Multi-Entity Heterogeneous Graph Representation Learning
Abstract:
Representation learning, a task of learning latent vectors to represent entities, is a key task in improving search and recommender systems in web applications. Various representation learning methods have been developed, including graph-based approaches for relationships among entities, sequence-based methods for capturing the temporal evolution of user activities, and content-based models for leveraging text and visual content. However, the development of a unifying framework that integrates these diverse techniques to support multiple applications remains a significant challenge. This paper presents OmniSage, a large-scale representation framework that learns universal representations for a variety of applications at Pinterest. OmniSage integrates graph neural networks with content-based models and user sequence models by employing multiple contrastive learning tasks to effectively process graph data, user sequence data, and content signals. To support the training and inference of OmniSage, we developed an efficient infrastructure capable of supporting Pinterest graphs with billions of nodes. The universal representations generated by OmniSage have significantly enhanced user experiences on Pinterest, leading to an approximate 2.5% increase in sitewide repins (saves) across five applications. This paper highlights the impact of unifying representation learning methods, and we make the model code publicly available at https://github.com/pinterest/atg-research/tree/main/omnisage.

Authors:Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang, Honghao Fu, Chunrui Han, Guopeng Li, Yuang Peng, Quan Sun, Jingwei Wu, Yan Cai, Zheng Ge, Ranchen Ming, Lei Xia, Xianfang Zeng, Yibo Zhu, Binxing Jiao, Xiangyu Zhang, Gang Yu, Daxin Jiang
Title: Step1X-Edit: A Practical Framework for General Image Editing
Abstract:
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.

Authors:Mingchen Jiang, Peng Xu, Xichen Ye, Xiaohui Chen, Yun Yang, Yifan Chen
Title: Embedding Empirical Distributions for Computing Optimal Transport Maps
Abstract:
Distributional data have become increasingly prominent in modern signal processing, highlighting the necessity of computing optimal transport (OT) maps across multiple probability distributions. Nevertheless, recent studies on neural OT methods predominantly focused on the efficient computation of a single map between two distributions. To address this challenge, we introduce a novel approach to learning transport maps for new empirical distributions. Specifically, we employ the transformer architecture to produce embeddings from distributional data of varying length; these embeddings are then fed into a hypernetwork to generate neural OT maps. Various numerical experiments were conducted to validate the embeddings and the generated OT maps. The model implementation and the code are provided on https://github.com/jiangmingchen/HOTET.

Authors:Matthijs van der Lende, Jeremias Lino Ferrao, Niclas Müller-Hof
Title: Evaluating Uncertainty in Deep Gaussian Processes
Abstract:
Reliable uncertainty estimates are crucial in modern machine learning. Deep Gaussian Processes (DGPs) and Deep Sigma Point Processes (DSPPs) extend GPs hierarchically, offering promising methods for uncertainty quantification grounded in Bayesian principles. However, their empirical calibration and robustness under distribution shift relative to baselines like Deep Ensembles remain understudied. This work evaluates these models on regression (CASP dataset) and classification (ESR dataset) tasks, assessing predictive performance (MAE, Accu- racy), calibration using Negative Log-Likelihood (NLL) and Expected Calibration Error (ECE), alongside robustness under various synthetic feature-level distribution shifts. Results indicate DSPPs provide strong in-distribution calibration leveraging their sigma point approximations. However, compared to Deep Ensembles, which demonstrated superior robustness in both per- formance and calibration under the tested shifts, the GP-based methods showed vulnerabilities, exhibiting particular sensitivity in the observed metrics. Our findings underscore ensembles as a robust baseline, suggesting that while deep GP methods offer good in-distribution calibration, their practical robustness under distribution shift requires careful evaluation. To facilitate reproducibility, we make our code available at https://github.com/matthjs/xai-gp.

Authors:Óscar Escudero-Arnanz, Antonio G. Marques, Inmaculada Mora-Jiménez, Joaquín Álvarez-Rodríguez, Cristina Soguero-Ruiz
Title: Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations
Abstract:
Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.

Authors:Honghao Li, Hanwei Li, Jing Zhang, Yi Zhang, Ziniu Yu, Lei Sang, Yiwen Zhang
Title: Quadratic Interest Network for Multimodal Click-Through Rate Prediction
Abstract:
Multimodal click-through rate (CTR) prediction is a key technique in industrial recommender systems. It leverages heterogeneous modalities such as text, images, and behavioral logs to capture high-order feature interactions between users and items, thereby enhancing the system's understanding of user interests and its ability to predict click behavior. The primary challenge in this field lies in effectively utilizing the rich semantic information from multiple modalities while satisfying the low-latency requirements of online inference in real-world applications. To foster progress in this area, the Multimodal CTR Prediction Challenge Track of the WWW 2025 EReL@MIR Workshop formulates the problem into two tasks: (1) Task 1 of Multimodal Item Embedding: this task aims to explore multimodal information extraction and item representation learning methods that enhance recommendation tasks; and (2) Task 2 of Multimodal CTR Prediction: this task aims to explore what multimodal recommendation model can effectively leverage multimodal embedding features and achieve better performance. In this paper, we propose a novel model for Task 2, named Quadratic Interest Network (QIN) for Multimodal CTR Prediction. Specifically, QIN employs adaptive sparse target attention to extract multimodal user behavior features, and leverages Quadratic Neural Networks to capture high-order feature interactions. As a result, QIN achieved an AUC of 0.9798 on the leaderboard and ranked second in the competition. The model code, training logs, hyperparameter configurations, and checkpoints are available at https://github.com/salmon1802/QIN.

Authors:Shengtao Zhang, Haokai Zhang, Shiqi Lou, Zicheng Wang, Zinan Zeng, Yilin Wang, Minnan Luo
Title: PTCL: Pseudo-Label Temporal Curriculum Learning for Label-Limited Dynamic Graph
Abstract:
Dynamic node classification is critical for modeling evolving systems like financial transactions and academic collaborations. In such systems, dynamically capturing node information changes is critical for dynamic node classification, which usually requires all labels at every timestamp. However, it is difficult to collect all dynamic labels in real-world scenarios due to high annotation costs and label uncertainty (e.g., ambiguous or delayed labels in fraud detection). In contrast, final timestamp labels are easier to obtain as they rely on complete temporal patterns and are usually maintained as a unique label for each user in many open platforms, without tracking the history data. To bridge this gap, we propose PTCL(Pseudo-label Temporal Curriculum Learning), a pioneering method addressing label-limited dynamic node classification where only final labels are available. PTCL introduces: (1) a temporal decoupling architecture separating the backbone (learning time-aware representations) and decoder (strictly aligned with final labels), which generate pseudo-labels, and (2) a Temporal Curriculum Learning strategy that prioritizes pseudo-labels closer to the final timestamp by assigning them higher weights using an exponentially decaying function. We contribute a new academic dataset (CoOAG), capturing long-range research interest in dynamic graph. Experiments across real-world scenarios demonstrate PTCL's consistent superiority over other methods adapted to this task. Beyond methodology, we propose a unified framework FLiD (Framework for Label-Limited Dynamic Node Classification), consisting of a complete preparation workflow, training pipeline, and evaluation standards, and supporting various models and datasets. The code can be found at https://github.com/3205914485/FLiD.

Authors:Fengchun Liu, Tong Zhang, Chunying Zhang
Title: STCL:Curriculum learning Strategies for deep learning image steganography models
Abstract:
Aiming at the problems of poor quality of steganographic images and slow network convergence of image steganography models based on deep learning, this paper proposes a Steganography Curriculum Learning training strategy (STCL) for deep learning image steganography models. So that only easy images are selected for training when the model has poor fitting ability at the initial stage, and gradually expand to more difficult images, the strategy includes a difficulty evaluation strategy based on the teacher model and an knee point-based training scheduling strategy. Firstly, multiple teacher models are trained, and the consistency of the quality of steganographic images under multiple teacher models is used as the difficulty score to construct the training subsets from easy to difficult. Secondly, a training control strategy based on knee points is proposed to reduce the possibility of overfitting on small training sets and accelerate the training process. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed image steganography scheme is able to improve the model performance under multiple algorithmic frameworks, which not only has a high PSNR, SSIM score, and decoding accuracy, but also the steganographic images generated by the model under the training of the STCL strategy have a low steganography analysis scores. You can find our code at \href{https://github.com/chaos-boops/STCL}{https://github.com/chaos-boops/STCL}.

Authors:Ivan Rossi, Flavio Sartori, Cesare Rollo, Giovanni Birolo, Piero Fariselli, Tiziana Sanavia
Title: Beyond Cox Models: Assessing the Performance of Machine-Learning Methods in Non-Proportional Hazards and Non-Linear Survival Analysis
Abstract:
Survival analysis often relies on Cox models, assuming both linearity and proportional hazards (PH). This study evaluates machine and deep learning methods that relax these constraints, comparing their performance with penalized Cox models on a benchmark of three synthetic and three real datasets. In total, eight different models were tested, including six non-linear models of which four were also non-PH. Although Cox regression often yielded satisfactory performance, we showed the conditions under which machine and deep learning models can perform better. Indeed, the performance of these methods has often been underestimated due to the improper use of Harrell's concordance index (C-index) instead of more appropriate scores such as Antolini's concordance index, which generalizes C-index in cases where the PH assumption does not hold. In addition, since occasionally high C-index models happen to be badly calibrated, combining Antolini's C-index with Brier's score is useful to assess the overall performance of a survival method. Results on our benchmark data showed that survival prediction should be approached by testing different methods to select the most appropriate one according to sample size, non-linearity and non-PH conditions. To allow an easy reproducibility of these tests on our benchmark data, code and documentation are freely available at https://github.com/compbiomed-unito/survhive.

Authors:Lin Che, Yizi Chen, Tanhua Jin, Martin Raubal, Konrad Schindler, Peter Kiefer
Title: Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
Abstract:
Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.

Authors:Anyi Xiao, Cihui Yang
Title: TableCenterNet: A one-stage network for table structure recognition
Abstract:
Table structure recognition aims to parse tables in unstructured data into machine-understandable formats. Recent methods address this problem through a two-stage process or optimized one-stage approaches. However, these methods either require multiple networks to be serially trained and perform more time-consuming sequential decoding, or rely on complex post-processing algorithms to parse the logical structure of tables. They struggle to balance cross-scenario adaptability, robustness, and computational efficiency. In this paper, we propose a one-stage end-to-end table structure parsing network called TableCenterNet. This network unifies the prediction of table spatial and logical structure into a parallel regression task for the first time, and implicitly learns the spatial-logical location mapping laws of cells through a synergistic architecture of shared feature extraction layers and task-specific decoding. Compared with two-stage methods, our method is easier to train and faster to infer. Experiments on benchmark datasets show that TableCenterNet can effectively parse table structures in diverse scenarios and achieve state-of-the-art performance on the TableGraph-24k dataset. Code is available at https://github.com/dreamy-xay/TableCenterNet.

Authors:Zihan Cheng, Jintao Guo, Jian Zhang, Lei Qi, Luping Zhou, Yinghuan Shi, Yang Gao
Title: Mamba-Sea: A Mamba-based Framework with Global-to-Local Sequence Augmentation for Generalizable Medical Image Segmentation
Abstract:
To segment medical images with distribution shifts, domain generalization (DG) has emerged as a promising setting to train models on source domains that can generalize to unseen target domains. Existing DG methods are mainly based on CNN or ViT architectures. Recently, advanced state space models, represented by Mamba, have shown promising results in various supervised medical image segmentation. The success of Mamba is primarily owing to its ability to capture long-range dependencies while keeping linear complexity with input sequence length, making it a promising alternative to CNNs and ViTs. Inspired by the success, in the paper, we explore the potential of the Mamba architecture to address distribution shifts in DG for medical image segmentation. Specifically, we propose a novel Mamba-based framework, Mamba-Sea, incorporating global-to-local sequence augmentation to improve the model's generalizability under domain shift issues. Our Mamba-Sea introduces a global augmentation mechanism designed to simulate potential variations in appearance across different sites, aiming to suppress the model's learning of domain-specific information. At the local level, we propose a sequence-wise augmentation along input sequences, which perturbs the style of tokens within random continuous sub-sequences by modeling and resampling style statistics associated with domain shifts. To our best knowledge, Mamba-Sea is the first work to explore the generalization of Mamba for medical image segmentation, providing an advanced and promising Mamba-based architecture with strong robustness to domain shifts. Remarkably, our proposed method is the first to surpass a Dice coefficient of 90% on the Prostate dataset, which exceeds previous SOTA of 88.61%. The code is available at https://github.com/orange-czh/Mamba-Sea.

Authors:Mingqi Yuan, Qi Wang, Guozheng Ma, Bo Li, Xin Jin, Yunbo Wang, Xiaokang Yang, Wenjun Zeng, Dacheng Tao
Title: Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Abstract:
Developing lifelong learning agents is crucial for artificial general intelligence. However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 10 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to open-ended environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.

Authors:Vipin Singh, Tianheng Ling, Teodor Chiaburu, Felix Biessmann
Title: Evaluating Time Series Models for Urban Wastewater Management: Predictive Performance, Model Complexity and Resilience
Abstract:
Climate change increases the frequency of extreme rainfall, placing a significant strain on urban infrastructures, especially Combined Sewer Systems (CSS). Overflows from overburdened CSS release untreated wastewater into surface waters, posing environmental and public health risks. Although traditional physics-based models are effective, they are costly to maintain and difficult to adapt to evolving system dynamics. Machine Learning (ML) approaches offer cost-efficient alternatives with greater adaptability. To systematically assess the potential of ML for modeling urban infrastructure systems, we propose a protocol for evaluating Neural Network architectures for CSS time series forecasting with respect to predictive performance, model complexity, and robustness to perturbations. In addition, we assess model performance on peak events and critical fluctuations, as these are the key regimes for urban wastewater management. To investigate the feasibility of lightweight models suitable for IoT deployment, we compare global models, which have access to all information, with local models, which rely solely on nearby sensor readings. Additionally, to explore the security risks posed by network outages or adversarial attacks on urban infrastructure, we introduce error models that assess the resilience of models. Our results demonstrate that while global models achieve higher predictive performance, local models provide sufficient resilience in decentralized scenarios, ensuring robust modeling of urban infrastructure. Furthermore, models with longer native forecast horizons exhibit greater robustness to data perturbations. These findings contribute to the development of interpretable and reliable ML solutions for sustainable urban wastewater management. The implementation is available in our GitHub repository.

Authors:De-An Huang, Subhashree Radhakrishnan, Zhiding Yu, Jan Kautz
Title: FRAG: Frame Selection Augmented Generation for Long Video and Long Document Understanding
Abstract:
There has been impressive progress in Large Multimodal Models (LMMs). Recent works extend these models to long inputs, including multi-page documents and long videos. However, the model size and performance of these long context models are still limited due to the computational cost in both training and inference. In this work, we explore an orthogonal direction and process long inputs without long context LMMs. We propose Frame Selection Augmented Generation (FRAG), where the model first selects relevant frames within the input, and then only generates the final outputs based on the selected frames. The core of the selection process is done by scoring each frame independently, which does not require long context processing. The frames with the highest scores are then selected by a simple Top-K selection. We show that this frustratingly simple framework is applicable to both long videos and multi-page documents using existing LMMs without any fine-tuning. We consider two models, LLaVA-OneVision and InternVL2, in our experiments and show that FRAG consistently improves the performance and achieves state-of-the-art performances for both long video and long document understanding. For videos, FRAG substantially improves InternVL2-76B by 5.8% on MLVU and 3.7% on Video-MME. For documents, FRAG achieves over 20% improvements on MP-DocVQA compared with recent LMMs specialized in long document understanding. Code is available at: https://github.com/NVlabs/FRAG

Authors:Francesc Marti-Escofet, Benedikt Blumenstiel, Linus Scheibenreif, Paolo Fraccaro, Konrad Schindler
Title: Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
Abstract:
Earth observation (EO) is crucial for monitoring environmental changes, responding to disasters, and managing natural resources. In this context, foundation models facilitate remote sensing image analysis to retrieve relevant geoinformation accurately and efficiently. However, as these models grow in size, fine-tuning becomes increasingly challenging due to the associated computational resources and costs, limiting their accessibility and scalability. Furthermore, full fine-tuning can lead to forgetting pre-trained features and even degrade model generalization. To address this, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a promising solution. In this paper, we conduct extensive experiments with various foundation model architectures and PEFT techniques to evaluate their effectiveness on five different EO datasets. Our results provide a comprehensive comparison, offering insights into when and how PEFT methods support the adaptation of pre-trained geospatial models. We demonstrate that PEFT techniques match or even exceed full fine-tuning performance and enhance model generalisation to unseen geographic regions, while reducing training time and memory requirements. Additional experiments investigate the effect of architecture choices such as the decoder type or the use of metadata, suggesting UNet decoders and fine-tuning without metadata as the recommended configuration. We have integrated all evaluated foundation models and techniques into the open-source package TerraTorch to support quick, scalable, and cost-effective model adaptation.

Authors:Jihyun Lee, Yejin Jeon, Seungyeon Seo, Gary Geunbae Lee
Title: PicPersona-TOD : A Dataset for Personalizing Utterance Style in Task-Oriented Dialogue with Image Persona
Abstract:
Task-Oriented Dialogue (TOD) systems are designed to fulfill user requests through natural language interactions, yet existing systems often produce generic, monotonic responses that lack individuality and fail to adapt to users' personal attributes. To address this, we introduce PicPersona-TOD, a novel dataset that incorporates user images as part of the persona, enabling personalized responses tailored to user-specific factors such as age or emotional context. This is facilitated by first impressions, dialogue policy-guided prompting, and the use of external knowledge to reduce hallucinations. Human evaluations confirm that our dataset enhances user experience, with personalized responses contributing to a more engaging interaction. Additionally, we introduce a new NLG model, Pictor, which not only personalizes responses, but also demonstrates robust performance across unseen domains https://github.com/JihyunLee1/PicPersona.

Authors:Hassan Keshvarikhojasteh, Mihail Tifrea, Sibylle Hess, Josien P. W. Pluim, Mitko Veta
Title: A Spatially-Aware Multiple Instance Learning Framework for Digital Pathology
Abstract:
Multiple instance learning (MIL) is a promising approach for weakly supervised classification in pathology using whole slide images (WSIs). However, conventional MIL methods such as Attention-Based Deep Multiple Instance Learning (ABMIL) typically disregard spatial interactions among patches that are crucial to pathological diagnosis. Recent advancements, such as Transformer based MIL (TransMIL), have incorporated spatial context and inter-patch relationships. However, it remains unclear whether explicitly modeling patch relationships yields similar performance gains in ABMIL, which relies solely on Multi-Layer Perceptrons (MLPs). In contrast, TransMIL employs Transformer-based layers, introducing a fundamental architectural shift at the cost of substantially increased computational complexity. In this work, we enhance the ABMIL framework by integrating interaction-aware representations to address this question. Our proposed model, Global ABMIL (GABMIL), explicitly captures inter-instance dependencies while preserving computational efficiency. Experimental results on two publicly available datasets for tumor subtyping in breast and lung cancers demonstrate that GABMIL achieves up to a 7 percentage point improvement in AUPRC and a 5 percentage point increase in the Kappa score over ABMIL, with minimal or no additional computational overhead. These findings underscore the importance of incorporating patch interactions within MIL frameworks. Our code is available at \href{https://github.com/tueimage/GABMIL}{\texttt{GABMIL}}.

Authors:Yongxuan Wu, Runyu Chen, Peiyu Liu, Hongjin Qian
Title: LiveLongBench: Tackling Long-Context Understanding for Spoken Texts from Live Streams
Abstract:
Long-context understanding poses significant challenges in natural language processing, particularly for real-world dialogues characterized by speech-based elements, high redundancy, and uneven information density. Although large language models (LLMs) achieve impressive results on existing benchmarks, these datasets fail to reflect the complexities of such texts, limiting their applicability to practical scenarios. To bridge this gap, we construct the first spoken long-text dataset, derived from live streams, designed to reflect the redundancy-rich and conversational nature of real-world scenarios. We construct tasks in three categories: retrieval-dependent, reasoning-dependent, and hybrid. We then evaluate both popular LLMs and specialized methods to assess their ability to understand long-contexts in these tasks. Our results show that current methods exhibit strong task-specific preferences and perform poorly on highly redundant inputs, with no single method consistently outperforming others. We propose a new baseline that better handles redundancy in spoken text and achieves strong performance across tasks. Our findings highlight key limitations of current methods and suggest future directions for improving long-context understanding. Finally, our benchmark fills a gap in evaluating long-context spoken language understanding and provides a practical foundation for developing real-world e-commerce systems. The code and benchmark are available at https://github.com/Yarayx/livelongbench.

Authors:Xiuying Chen, Tairan Wang, Juexiao Zhou, Zirui Song, Xin Gao, Xiangliang Zhang
Title: Evaluating and Mitigating Bias in AI-Based Medical Text Generation
Abstract:
Artificial intelligence (AI) systems, particularly those based on deep learning models, have increasingly achieved expert-level performance in medical applications. However, there is growing concern that such AI systems may reflect and amplify human bias, and reduce the quality of their performance in historically under-served populations. The fairness issue has attracted considerable research interest in the medical imaging classification field, yet it remains understudied in the text generation domain. In this study, we investigate the fairness problem in text generation within the medical field and observe significant performance discrepancies across different races, sexes, and age groups, including intersectional groups, various model scales, and different evaluation metrics. To mitigate this fairness issue, we propose an algorithm that selectively optimizes those underperformed groups to reduce bias. The selection rules take into account not only word-level accuracy but also the pathology accuracy to the target reference, while ensuring that the entire process remains fully differentiable for effective model training. Our evaluations across multiple backbones, datasets, and modalities demonstrate that our proposed algorithm enhances fairness in text generation without compromising overall performance. Specifically, the disparities among various groups across different metrics were diminished by more than 30% with our algorithm, while the relative change in text generation accuracy was typically within 2%. By reducing the bias generated by deep learning models, our proposed approach can potentially alleviate concerns about the fairness and reliability of text generation diagnosis in medical domain. Our code is publicly available to facilitate further research at https://github.com/iriscxy/GenFair.

Authors:Yinqi Li, Hong Chang, Ruibing Hou, Shiguang Shan, Xilin Chen
Title: DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Abstract:
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .

Authors:Minju Seo, Jinheon Baek, Seongyun Lee, Sung Ju Hwang
Title: Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning
Abstract:
Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, particularly from the authors of those papers, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins. Code is available at: https://github.com/going-doer/Paper2Code.

Authors:Radha Lahoti, M. Khalid Jawed
Title: MAT-DiSMech: A Discrete Differential Geometry-based Computational Tool for Simulation of Rods, Shells, and Soft Robots
Abstract:
Accurate and efficient simulation tools are essential in robotics, enabling the visualization of system dynamics and the validation of control laws before committing resources to physical experimentation. Developing physically accurate simulation tools is particularly challenging in soft robotics, largely due to the prevalence of geometrically nonlinear deformation. A variety of robot simulators tackle this challenge by using simplified modeling techniques -- such as lumped mass models -- which lead to physical inaccuracies in real-world applications. On the other hand, high-fidelity simulation methods for soft structures, like finite element analysis, offer increased accuracy but lead to higher computational costs. In light of this, we present a Discrete Differential Geometry-based simulator that provides a balance between physical accuracy and computational speed. Building on an extensive body of research on rod and shell-based representations of soft robots, our tool provides a pathway to accurately model soft robots in a computationally tractable manner. Our open-source MATLAB-based framework is capable of simulating the deformations of rods, shells, and their combinations, primarily utilizing implicit integration techniques. The software design is modular for the user to customize the code, for example, add new external forces and impose custom boundary conditions. The implementations for prevalent forces encountered in robotics, including gravity, contact, kinetic and viscous friction, and aerodynamic drag, have been provided. We provide several illustrative examples that showcase the capabilities and validate the physical accuracy of the simulator. The open-source code is available at https://github.com/StructuresComp/dismech-matlab.git. We anticipate that the proposed simulator can serve as an effective digital twin tool, enhancing the Sim2Real pathway in soft robotics research.

Authors:Kai Cui, Jia Li, Yu Liu, Xuesong Zhang, Zhenzhen Hu, Meng Wang
Title: PhysioSync: Temporal and Cross-Modal Contrastive Learning Inspired by Physiological Synchronization for EEG-Based Emotion Recognition
Abstract:
Electroencephalography (EEG) signals provide a promising and involuntary reflection of brain activity related to emotional states, offering significant advantages over behavioral cues like facial expressions. However, EEG signals are often noisy, affected by artifacts, and vary across individuals, complicating emotion recognition. While multimodal approaches have used Peripheral Physiological Signals (PPS) like GSR to complement EEG, they often overlook the dynamic synchronization and consistent semantics between the modalities. Additionally, the temporal dynamics of emotional fluctuations across different time resolutions in PPS remain underexplored. To address these challenges, we propose PhysioSync, a novel pre-training framework leveraging temporal and cross-modal contrastive learning, inspired by physiological synchronization phenomena. PhysioSync incorporates Cross-Modal Consistency Alignment (CM-CA) to model dynamic relationships between EEG and complementary PPS, enabling emotion-related synchronizations across modalities. Besides, it introduces Long- and Short-Term Temporal Contrastive Learning (LS-TCL) to capture emotional synchronization at different temporal resolutions within modalities. After pre-training, cross-resolution and cross-modal features are hierarchically fused and fine-tuned to enhance emotion recognition. Experiments on DEAP and DREAMER datasets demonstrate PhysioSync's advanced performance under uni-modal and cross-modal conditions, highlighting its effectiveness for EEG-centered emotion recognition.

Authors:Alberto Fernández-Hernández, Jose I. Mestre, Manuel F. Dolz, Jose Duato, Enrique S. Quintana-Ortí
Title: OUI Need to Talk About Weight Decay: A New Perspective on Overfitting Detection
Abstract:
We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.

Authors:Chanhee Park, Hyeonseok Moon, Chanjun Park, Heuiseok Lim
Title: MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation
Abstract:
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs) through the incorporation of external knowledge. However, the evaluation of RAG systems remains a challenge, due to the intricate interplay between retrieval and generation components. This limitation has resulted in a scarcity of benchmarks that facilitate a detailed, component-specific assessment. In this work, we present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation. MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks. We also introduce novel evaluation metrics aimed at measuring RAG adaptability, encompassing dimensions such as noise vulnerability, context acceptability, context insensitivity, and context misinterpretation. Through comprehensive experiments across various retriever-LLM configurations, we provide new insights into the optimal alignment of model pairs and the nuanced dynamics within RAG systems. The dataset and evaluation code are publicly available, allowing for seamless integration and customization in diverse research settings\footnote{The MIRAGE code and data are available at https://github.com/nlpai-lab/MIRAGE.

Authors:Ning Li, Antai Andy Liu, Jingran Zhang, Justin Cui
Title: Latent Video Dataset Distillation
Abstract:
Dataset distillation has demonstrated remarkable effectiveness in high-compression scenarios for image datasets. While video datasets inherently contain greater redundancy, existing video dataset distillation methods primarily focus on compression in the pixel space, overlooking advances in the latent space that have been widely adopted in modern text-to-image and text-to-video models. In this work, we bridge this gap by introducing a novel video dataset distillation approach that operates in the latent space using a state-of-the-art variational encoder. Furthermore, we employ a diversity-aware data selection strategy to select both representative and diverse samples. Additionally, we introduce a simple, training-free method to further compress the distilled latent dataset. By combining these techniques, our approach achieves a new state-of-the-art performance in dataset distillation, outperforming prior methods on all datasets, e.g. on HMDB51 IPC 1, we achieve a 2.6% performance increase; on MiniUCF IPC 5, we achieve a 7.8% performance increase. Our code is available at https://github.com/liningresearch/Latent_Video_Dataset_Distillation.

Authors:Hannah Cyberey, David Evans
Title: Steering the CensorShip: Uncovering Representation Vectors for LLM "Thought" Control
Abstract:
Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector. Our code is publicly available at: https://github.com/hannahxchen/llm-censorship-steering

Authors:Kartikay Tehlan, Thomas Wendler
Title: Physiological neural representation for personalised tracer kinetic parameter estimation from dynamic PET
Abstract:
Dynamic positron emission tomography (PET) with [$^{18}$F]FDG enables non-invasive quantification of glucose metabolism through kinetic analysis, often modelled by the two-tissue compartment model (TCKM). However, voxel-wise kinetic parameter estimation using conventional methods is computationally intensive and limited by spatial resolution. Deep neural networks (DNNs) offer an alternative but require large training datasets and significant computational resources. To address these limitations, we propose a physiological neural representation based on implicit neural representations (INRs) for personalized kinetic parameter estimation. INRs, which learn continuous functions, allow for efficient, high-resolution parametric imaging with reduced data requirements. Our method also integrates anatomical priors from a 3D CT foundation model to enhance robustness and precision in kinetic modelling. We evaluate our approach on an [$^{18}$F]FDG dynamic PET/CT dataset and compare it to state-of-the-art DNNs. Results demonstrate superior spatial resolution, lower mean-squared error, and improved anatomical consistency, particularly in tumour and highly vascularized regions. Our findings highlight the potential of INRs for personalized, data-efficient tracer kinetic modelling, enabling applications in tumour characterization, segmentation, and prognostic assessment.

Authors:Valentin Langer, Kartikay Tehlan, Thomas Wendler
Title: Anatomy-constrained modelling of image-derived input functions in dynamic PET using multi-organ segmentation
Abstract:
Accurate kinetic analysis of [$^{18}$F]FDG distribution in dynamic positron emission tomography (PET) requires anatomically constrained modelling of image-derived input functions (IDIFs). Traditionally, IDIFs are obtained from the aorta, neglecting anatomical variations and complex vascular contributions. This study proposes a multi-organ segmentation-based approach that integrates IDIFs from the aorta, portal vein, pulmonary artery, and ureters. Using high-resolution CT segmentations of the liver, lungs, kidneys, and bladder, we incorporate organ-specific blood supply sources to improve kinetic modelling. Our method was evaluated on dynamic [$^{18}$F]FDG PET data from nine patients, resulting in a mean squared error (MSE) reduction of $13.39\%$ for the liver and $10.42\%$ for the lungs. These initial results highlight the potential of multiple IDIFs in improving anatomical modelling and fully leveraging dynamic PET imaging. This approach could facilitate the integration of tracer kinetic modelling into clinical routine.

Authors:Joohwan Seo, Nikhil Potu Surya Prakash, Soomi Lee, Arvind Kruthiventy, Megan Teng, Jongeun Choi, Roberto Horowitz
Title: Geometric Formulation of Unified Force-Impedance Control on SE(3) for Robotic Manipulators
Abstract:
In this paper, we present an impedance control framework on the SE(3) manifold, which enables force tracking while guaranteeing passivity. Building upon the unified force-impedance control (UFIC) and our previous work on geometric impedance control (GIC), we develop the geometric unified force impedance control (GUFIC) to account for the SE(3) manifold structure in the controller formulation using a differential geometric perspective. As in the case of the UFIC, the GUFIC utilizes energy tank augmentation for both force-tracking and impedance control to guarantee the manipulator's passivity relative to external forces. This ensures that the end effector maintains safe contact interaction with uncertain environments and tracks a desired interaction force. Moreover, we resolve a non-causal implementation problem in the UFIC formulation by introducing velocity and force fields. Due to its formulation on SE(3), the proposed GUFIC inherits the desirable SE(3) invariance and equivariance properties of the GIC, which helps increase sample efficiency in machine learning applications where a learning algorithm is incorporated into the control law. The proposed control law is validated in a simulation environment under scenarios requiring tracking an SE(3) trajectory, incorporating both position and orientation, while exerting a force on a surface. The codes are available at https://github.com/Joohwan-Seo/GUFIC_mujoco.

Authors:Dongjin Seo, Soobin Um, Sangbin Lee, Jong Chul Ye, Haejun Chung
Title: Physics-guided and fabrication-aware inverse design of photonic devices using diffusion models
Abstract:
Designing free-form photonic devices is fundamentally challenging due to the vast number of possible geometries and the complex requirements of fabrication constraints. Traditional inverse-design approaches--whether driven by human intuition, global optimization, or adjoint-based gradient methods--often involve intricate binarization and filtering steps, while recent deep learning strategies demand prohibitively large numbers of simulations (10^5 to 10^6). To overcome these limitations, we present AdjointDiffusion, a physics-guided framework that integrates adjoint sensitivity gradients into the sampling process of diffusion models. AdjointDiffusion begins by training a diffusion network on a synthetic, fabrication-aware dataset of binary masks. During inference, we compute the adjoint gradient of a candidate structure and inject this physics-based guidance at each denoising step, steering the generative process toward high figure-of-merit (FoM) solutions without additional post-processing. We demonstrate our method on two canonical photonic design problems--a bent waveguide and a CMOS image sensor color router--and show that our method consistently outperforms state-of-the-art nonlinear optimizers (such as MMA and SLSQP) in both efficiency and manufacturability, while using orders of magnitude fewer simulations (approximately 2 x 10^2) than pure deep learning approaches (approximately 10^5 to 10^6). By eliminating complex binarization schedules and minimizing simulation overhead, AdjointDiffusion offers a streamlined, simulation-efficient, and fabrication-aware pipeline for next-generation photonic device design. Our open-source implementation is available at https://github.com/dongjin-seo2020/AdjointDiffusion.

Authors:Xinqi Xiong, Andrea Dunn Beltran, Jun Myeong Choi, Marc Niethammer, Roni Sengupta
Title: PPS-Ctrl: Controllable Sim-to-Real Translation for Colonoscopy Depth Estimation
Abstract:
Accurate depth estimation enhances endoscopy navigation and diagnostics, but obtaining ground-truth depth in clinical settings is challenging. Synthetic datasets are often used for training, yet the domain gap limits generalization to real data. We propose a novel image-to-image translation framework that preserves structure while generating realistic textures from clinical data. Our key innovation integrates Stable Diffusion with ControlNet, conditioned on a latent representation extracted from a Per-Pixel Shading (PPS) map. PPS captures surface lighting effects, providing a stronger structural constraint than depth maps. Experiments show our approach produces more realistic translations and improves depth estimation over GAN-based MI-CycleGAN. Our code is publicly accessible at https://github.com/anaxqx/PPS-Ctrl.

Authors:Emre Can Acikgoz, Cheng Qian, Hongru Wang, Vardhan Dongre, Xiusi Chen, Heng Ji, Dilek Hakkani-Tür, Gokhan Tur
Title: A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions
Abstract:
Recent advances in Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users. Yet, fundamental questions about their capabilities, limitations, and paths forward remain open. This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence. To that end, we systematically analyze LLM-driven Conversational Agents by organizing their capabilities into three primary dimensions: (i) Reasoning - logical, systematic thinking inspired by human intelligence for decision making, (ii) Monitor - encompassing self-awareness and user interaction monitoring, and (iii) Control - focusing on tool utilization and policy following. Building upon this, we introduce a novel taxonomy by classifying recent work on Conversational Agents around our proposed desideratum. We identify critical research gaps and outline key directions, including realistic evaluations, long-term multi-turn reasoning skills, self-evolution capabilities, collaborative and multi-agent task completion, personalization, and proactivity. This work aims to provide a structured foundation, highlight existing limitations, and offer insights into potential future research directions for Conversational Agents, ultimately advancing progress toward Artificial General Intelligence (AGI). We maintain a curated repository of papers at: https://github.com/emrecanacikgoz/awesome-conversational-agents.

Authors:David Yan, Alexander Raistrick, Jia Deng
Title: Procedural Dataset Generation for Zero-Shot Stereo Matching
Abstract:
Synthetic datasets are a crucial ingredient for training stereo matching networks, but the question of what makes a stereo dataset effective remains largely unexplored. We investigate the design space of synthetic datasets by varying the parameters of a procedural dataset generator, and report the effects on zero-shot stereo matching performance using standard benchmarks. We collect the best settings to produce Infinigen-Stereo, a procedural generator specifically optimized for zero-shot stereo datasets. Models trained only on data from our system outperform robust baselines trained on a combination of existing synthetic datasets and have stronger zero-shot stereo matching performance than public checkpoints from prior works. We open source our system at https://github.com/princeton-vl/InfinigenStereo to enable further research on procedural stereo datasets.

Authors:Ali Hassani, Fengzhe Zhou, Aditya Kane, Jiannan Huang, Chieh-Yun Chen, Min Shi, Steven Walton, Markus Hoehnerbach, Vijay Thakkar, Michael Isaev, Qinsheng Zhang, Bing Xu, Haicheng Wu, Wen-mei Hwu, Ming-Yu Liu, Humphrey Shi
Title: Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Abstract:
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.

Authors:Hanwen Du, Bo Peng, Xia Ning
Title: Planning with Diffusion Models for Target-Oriented Dialogue Systems
Abstract:
Target-Oriented Dialogue (TOD) remains a significant challenge in the LLM era, where strategic dialogue planning is crucial for directing conversations toward specific targets. However, existing dialogue planning methods generate dialogue plans in a step-by-step sequential manner, and may suffer from compounding errors and myopic actions. To address these limitations, we introduce a novel dialogue planning framework, DiffTOD, which leverages diffusion models to enable non-sequential dialogue planning. DiffTOD formulates dialogue planning as a trajectory generation problem with conditional guidance, and leverages a diffusion language model to estimate the likelihood of the dialogue trajectory. To optimize the dialogue action strategies, DiffTOD introduces three tailored guidance mechanisms for different target types, offering flexible guidance toward diverse TOD targets at test time. Extensive experiments across three diverse TOD settings show that DiffTOD can effectively perform non-myopic lookahead exploration and optimize action strategies over a long horizon through non-sequential dialogue planning, and demonstrates strong flexibility across complex and diverse dialogue scenarios. Our code and data are accessible through https://github.com/ninglab/DiffTOD.

Authors:Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moontae Lee, Honglak Lee, Lu Wang
Title: Process Reward Models That Think
Abstract:
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models are released at https://github.com/mukhal/thinkprm.

Authors:Xiaoxing Hu, Kaicheng Yang, Jun Wang, Haoran Xu, Ziyong Feng, Yupei Wang
Title: Decoupled Global-Local Alignment for Improving Compositional Understanding
Abstract:
Contrastive Language-Image Pre-training (CLIP) has achieved success on multiple downstream tasks by aligning image and text modalities. However, the nature of global contrastive learning limits CLIP's ability to comprehend compositional concepts, such as relations and attributes. Although recent studies employ global hard negative samples to improve compositional understanding, these methods significantly compromise the model's inherent general capabilities by forcibly distancing textual negative samples from images in the embedding space. To overcome this limitation, we introduce a Decoupled Global-Local Alignment (DeGLA) framework that improves compositional understanding while substantially mitigating losses in general capabilities. To optimize the retention of the model's inherent capabilities, we incorporate a self-distillation mechanism within the global alignment process, aligning the learnable image-text encoder with a frozen teacher model derived from an exponential moving average. Under the constraint of self-distillation, it effectively mitigates the catastrophic forgetting of pretrained knowledge during fine-tuning. To improve compositional understanding, we first leverage the in-context learning capability of Large Language Models (LLMs) to construct about 2M high-quality negative captions across five types. Subsequently, we propose the Image-Grounded Contrast (IGC) loss and Text-Grounded Contrast (TGC) loss to enhance vision-language compositionally. Extensive experimental results demonstrate the effectiveness of the DeGLA framework. Compared to previous state-of-the-art methods, DeGLA achieves an average enhancement of 3.5% across the VALSE, SugarCrepe, and ARO benchmarks. Concurrently, it obtains an average performance improvement of 13.0% on zero-shot classification tasks across eleven datasets. Our code will be released at https://github.com/xiaoxing2001/DeGLA

Authors:Jialiang Zhang, Feng Gao, Yanhai Gan, Junyu Dong, Qian Du
Title: Frequency-Compensated Network for Daily Arctic Sea Ice Concentration Prediction
Abstract:
Accurately forecasting sea ice concentration (SIC) in the Arctic is critical to global ecosystem health and navigation safety. However, current methods still is confronted with two challenges: 1) these methods rarely explore the long-term feature dependencies in the frequency domain. 2) they can hardly preserve the high-frequency details, and the changes in the marginal area of the sea ice cannot be accurately captured. To this end, we present a Frequency-Compensated Network (FCNet) for Arctic SIC prediction on a daily basis. In particular, we design a dual-branch network, including branches for frequency feature extraction and convolutional feature extraction. For frequency feature extraction, we design an adaptive frequency filter block, which integrates trainable layers with Fourier-based filters. By adding frequency features, the FCNet can achieve refined prediction of edges and details. For convolutional feature extraction, we propose a high-frequency enhancement block to separate high and low-frequency information. Moreover, high-frequency features are enhanced via channel-wise attention, and temporal attention unit is employed for low-frequency feature extraction to capture long-range sea ice changes. Extensive experiments are conducted on a satellite-derived daily SIC dataset, and the results verify the effectiveness of the proposed FCNet. Our codes and data will be made public available at: https://github.com/oucailab/FCNet .

Authors:Aniketh Garikaparthi, Manasi Patwardhan, Lovekesh Vig, Arman Cohan
Title: IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
Abstract:
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System

Authors:Xinru Meng, Han Sun, Jiamei Liu, Ningzhong Liu, Huiyu Zhou
Title: Energy-Based Pseudo-Label Refining for Source-free Domain Adaptation
Abstract:
Source-free domain adaptation (SFDA), which involves adapting models without access to source data, is both demanding and challenging. Existing SFDA techniques typically rely on pseudo-labels generated from confidence levels, leading to negative transfer due to significant noise. To tackle this problem, Energy-Based Pseudo-Label Refining (EBPR) is proposed for SFDA. Pseudo-labels are created for all sample clusters according to their energy scores. Global and class energy thresholds are computed to selectively filter pseudo-labels. Furthermore, a contrastive learning strategy is introduced to filter difficult samples, aligning them with their augmented versions to learn more discriminative features. Our method is validated on the Office-31, Office-Home, and VisDA-C datasets, consistently finding that our model outperformed state-of-the-art methods.

Authors:Gerardus Croonen, Andreas Trondl, Julia Simon, Daniel Steininger
Title: SemanticSugarBeets: A Multi-Task Framework and Dataset for Inspecting Harvest and Storage Characteristics of Sugar Beets
Abstract:
While sugar beets are stored prior to processing, they lose sugar due to factors such as microorganisms present in adherent soil and excess vegetation. Their automated visual inspection promises to aide in quality assurance and thereby increase efficiency throughout the processing chain of sugar production. In this work, we present a novel high-quality annotated dataset and two-stage method for the detection, semantic segmentation and mass estimation of post-harvest and post-storage sugar beets in monocular RGB images. We conduct extensive ablation experiments for the detection of sugar beets and their fine-grained semantic segmentation regarding damages, rot, soil adhesion and excess vegetation. For these tasks, we evaluate multiple image sizes, model architectures and encoders, as well as the influence of environmental conditions. Our experiments show an mAP50-95 of 98.8 for sugar-beet detection and an mIoU of 64.0 for the best-performing segmentation model.

Authors:Ceren Yildirim, Kamer Kaya, Sinan Yildirim, Erkay Savas
Title: MCMC for Bayesian estimation of Differential Privacy from Membership Inference Attacks
Abstract:
We propose a new framework for Bayesian estimation of differential privacy, incorporating evidence from multiple membership inference attacks (MIA). Bayesian estimation is carried out via a Markov chain Monte Carlo (MCMC) algorithm, named MCMC-DP-Est, which provides an estimate of the full posterior distribution of the privacy parameter (e.g., instead of just credible intervals). Critically, the proposed method does not assume that privacy auditing is performed with the most powerful attack on the worst-case (dataset, challenge point) pair, which is typically unrealistic. Instead, MCMC-DP-Est jointly estimates the strengths of MIAs used and the privacy of the training algorithm, yielding a more cautious privacy analysis. We also present an economical way to generate measurements for the performance of an MIA that is to be used by the MCMC method to estimate privacy. We present the use of the methods with numerical examples with both artificial and real data.

Authors:Wenping Ma, Boyou Xue, Mengru Ma, Chuang Chen, Hekai Zhang, Hao Zhu
Title: A Diff-Attention Aware State Space Fusion Model for Remote Sensing Classification
Abstract:
Multispectral (MS) and panchromatic (PAN) images describe the same land surface, so these images not only have their own advantages, but also have a lot of similar information. In order to separate these similar information and their respective advantages, reduce the feature redundancy in the fusion stage. This paper introduces a diff-attention aware state space fusion model (DAS2F-Model) for multimodal remote sensing image classification. Based on the selective state space model, a cross-modal diff-attention module (CMDA-Module) is designed to extract and separate the common features and their respective dominant features of MS and PAN images. Among this, space preserving visual mamba (SPVM) retains image spatial features and captures local features by optimizing visual mamba's input reasonably. Considering that features in the fusion stage will have large semantic differences after feature separation and simple fusion operations struggle to effectively integrate these significantly different features, an attention-aware linear fusion module (AALF-Module) is proposed. It performs pixel-wise linear fusion by calculating influence coefficients. This mechanism can fuse features with large semantic differences while keeping the feature size unchanged. Empirical evaluations indicate that the presented method achieves better results than alternative approaches. The relevant code can be found at:https://github.com/AVKSKVL/DAS-F-Model

Authors:William Corrias, Fabio De Gaspari, Dorjan Hitaj, Luigi V. Mancini
Title: MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
Abstract:
Recent advances in generative models have led to their application in password guessing, with the aim of replicating the complexity, structure, and patterns of human-created passwords. Despite their potential, inconsistencies and inadequate evaluation methodologies in prior research have hindered meaningful comparisons and a comprehensive, unbiased understanding of their capabilities. This paper introduces MAYA, a unified, customizable, plug-and-play benchmarking framework designed to facilitate the systematic characterization and benchmarking of generative password-guessing models in the context of trawling attacks. Using MAYA, we conduct a comprehensive assessment of six state-of-the-art approaches, which we re-implemented and adapted to ensure standardization. Our evaluation spans eight real-world password datasets and covers an exhaustive set of advanced testing scenarios, totaling over 15,000 compute hours. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, the diverse password distributions learned by the models enable a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark generative password-guessing models. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking.

Authors:Antonios Tragoudaras, Theofanis Aslanidis, Emmanouil Georgios Lionis, Marina Orozco González, Panagiotis Eustratiadis
Title: Information Leakage of Sentence Embeddings via Generative Embedding Inversion Attacks
Abstract:
Text data are often encoded as dense vectors, known as embeddings, which capture semantic, syntactic, contextual, and domain-specific information. These embeddings, widely adopted in various applications, inherently contain rich information that may be susceptible to leakage under certain attacks. The GEIA framework highlights vulnerabilities in sentence embeddings, demonstrating that they can reveal the original sentences they represent. In this study, we reproduce GEIA's findings across various neural sentence embedding models. Additionally, we contribute new analysis to examine whether these models leak sensitive information from their training datasets. We propose a simple yet effective method without any modification to the attacker's architecture proposed in GEIA. The key idea is to examine differences between log-likelihood for masked and original variants of data that sentence embedding models have been pre-trained on, calculated on the embedding space of the attacker. Our findings indicate that following our approach, an adversary party can recover meaningful sensitive information related to the pre-training knowledge of the popular models used for creating sentence embeddings, seriously undermining their security. Our code is available on: https://github.com/taslanidis/GEIA

Authors:Xu Guo, Tong Zhang, Fuyun Wang, Xudong Wang, Xiaoya Zhang, Xin Liu, Zhen Cui
Title: MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
Abstract:
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.

Authors:Junjie Chen, Haitao Li, Jingli Yang, Yiqun Liu, Qingyao Ai
Title: Enhancing LLM-Based Agents via Global Planning and Hierarchical Execution
Abstract:
Intelligent agent systems based on Large Language Models (LLMs) have shown great potential in real-world applications. However, existing agent frameworks still face critical limitations in task planning and execution, restricting their effectiveness and generalizability. Specifically, current planning methods often lack clear global goals, leading agents to get stuck in local branches, or produce non-executable plans. Meanwhile, existing execution mechanisms struggle to balance complexity and stability, and their limited action space restricts their ability to handle diverse real-world tasks. To address these limitations, we propose GoalAct, a novel agent framework that introduces a continuously updated global planning mechanism and integrates a hierarchical execution strategy. GoalAct decomposes task execution into high-level skills, including searching, coding, writing and more, thereby reducing planning complexity while enhancing the agents' adaptability across diverse task scenarios. We evaluate GoalAct on LegalAgentBench, a benchmark with multiple types of legal tasks that require the use of multiple types of tools. Experimental results demonstrate that GoalAct achieves state-of-the-art (SOTA) performance, with an average improvement of 12.22% in success rate. These findings highlight GoalAct's potential to drive the development of more advanced intelligent agent systems, making them more effective across complex real-world applications. Our code can be found at https://github.com/cjj826/GoalAct.

Authors:Wei Zhou, Xiong Xu, Changzheng Wei, Ying Yan, Wei Tang, Zhihao Chen, Xuebing Huang, Wengang Chen, Jie Zhang, Yang Chen, Xiaofu Zheng, Hanghang Wu, Shenglong Chen, Ermei Wang, Xiangfei Chen, Yang Yu, Meng Wu, Tao Zhu, Liwei Yuan, Feng Yu, Alex Zhang, Wei Wang, Ji Luo, Zhengyu He, Wenbiao Zhao
Title: DTVM: Revolutionizing Smart Contract Execution with Determinism and Compatibility
Abstract:
We introduce the DeTerministic Virtual Machine (DTVM) Stack, a next-generation smart contract execution framework designed to address critical performance, determinism, and ecosystem compatibility challenges in blockchain networks. Building upon WebAssembly (Wasm) while maintaining full Ethereum Virtual Machine (EVM) ABI compatibility, DTVM introduces a Deterministic Middle Intermediate Representation (dMIR) and a hybrid lazy-JIT compilation engine to balance compilation speed and execution efficiency. DTVM further accommodates diverse instruction set architectures (e.g., EVM, RISC-V) through modular adaptation layers. This enables seamless integration with DTVM's hybrid lazy-JIT compilation engine, which dynamically optimizes performance while preserving deterministic execution guarantees across heterogeneous environments. The key contributions including: 1). The framework achieves up to 2$\times$ acceleration over evmone in dominant Ethereum contract (e.g. ERC20/721/1155) execution and reduces fibonacci computation latency by 11.8$\sim$40.5% compared to Wasm based VMs. 2). A novel trampoline hot-switch mechanism enables sub-millisecond (0.95ms) post-deployment invocation times, outperforming up to about 23$\times$ in compilation and invocation efficiency. 3). It supports multi-language development (Solidity, C++, Rust, Java, Go, and AssemblyScript) through unified bytecode conversion while maintaining EVM ABI compatibility for seamless invocation. It reduces machine code object sizes by 30.0$\sim$72.6%, coupled with a minimized Trusted Computing Base. 4). It offers SmartCogent, an AI-driven full-stack development experience, leveraging fine-tuned LLMs and retrieval-augmented generation to automate tasks across the smart contract lifecycle: development, debugging, security auditing, and deployment. DTVM Stack has been open-sourced (https://github.com/DTVMStack).

Authors:Seungyoon Choi, Sein Kim, Hongseok Kang, Wonjoong Kim, Chanyoung Park
Title: Dynamic Time-aware Continual User Representation Learning
Abstract:
Traditional user modeling (UM) approaches have primarily focused on designing models for a single specific task, but they face limitations in generalization and adaptability across various tasks. Recognizing these challenges, recent studies have shifted towards continual learning (CL)-based universal user representation learning aiming to develop a single model capable of handling multiple tasks. Despite advancements, existing methods are in fact evaluated under an unrealistic scenario that does not consider the passage of time as tasks progress, which overlooks newly emerged items that may change the item distribution of previous tasks. In this paper, we introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated, which takes into account the passage of time as tasks progress. Then, we propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO, designed to alleviate catastrophic forgetting despite continuous shifts in item distribution, while also allowing the knowledge acquired from previous tasks to adapt to the current shifted item distribution. Through our extensive experiments, we demonstrate the superiority of DITTO over state-of-the-art methods under a practical evaluation scenario. Our source code is available at https://github.com/seungyoon-Choi/DITTO_official.

Authors:Yahao Lu, Yuehui Li, Xingyuan Guo, Shuai Yuan, Yukai Shi, Liang Lin
Title: Rethinking Generalizable Infrared Small Target Detection: A Real-scene Benchmark and Cross-view Representation Learning
Abstract:
Infrared small target detection (ISTD) is highly sensitive to sensor type, observation conditions, and the intrinsic properties of the target. These factors can introduce substantial variations in the distribution of acquired infrared image data, a phenomenon known as domain shift. Such distribution discrepancies significantly hinder the generalization capability of ISTD models across diverse scenarios. To tackle this challenge, this paper introduces an ISTD framework enhanced by domain adaptation. To alleviate distribution shift between datasets and achieve cross-sample alignment, we introduce Cross-view Channel Alignment (CCA). Additionally, we propose the Cross-view Top-K Fusion strategy, which integrates target information with diverse background features, enhancing the model' s ability to extract critical data characteristics. To further mitigate the impact of noise on ISTD, we develop a Noise-guided Representation learning strategy. This approach enables the model to learn more noise-resistant feature representations, to improve its generalization capability across diverse noisy domains. Finally, we develop a dedicated infrared small target dataset, RealScene-ISTD. Compared to state-of-the-art methods, our approach demonstrates superior performance in terms of detection probability (Pd), false alarm rate (Fa), and intersection over union (IoU). The code is available at: https://github.com/luy0222/RealScene-ISTD.

Authors:Shun Zou, Yi Zou, Juncheng Li, Guangwei Gao, Guojun Qi
Title: Cross Paradigm Representation and Alignment Transformer for Image Deraining
Abstract:
Transformer-based networks have achieved strong performance in low-level vision tasks like image deraining by utilizing spatial or channel-wise self-attention. However, irregular rain patterns and complex geometric overlaps challenge single-paradigm architectures, necessitating a unified framework to integrate complementary global-local and spatial-channel representations. To address this, we propose a novel Cross Paradigm Representation and Alignment Transformer (CPRAformer). Its core idea is the hierarchical representation and alignment, leveraging the strengths of both paradigms (spatial-channel and global-local) to aid image reconstruction. It bridges the gap within and between paradigms, aligning and coordinating them to enable deep interaction and fusion of features. Specifically, we use two types of self-attention in the Transformer blocks: sparse prompt channel self-attention (SPC-SA) and spatial pixel refinement self-attention (SPR-SA). SPC-SA enhances global channel dependencies through dynamic sparsity, while SPR-SA focuses on spatial rain distribution and fine-grained texture recovery. To address the feature misalignment and knowledge differences between them, we introduce the Adaptive Alignment Frequency Module (AAFM), which aligns and interacts with features in a two-stage progressive manner, enabling adaptive guidance and complementarity. This reduces the information gap within and between paradigms. Through this unified cross-paradigm dynamic interaction framework, we achieve the extraction of the most valuable interactive fusion information from the two paradigms. Extensive experiments demonstrate that our model achieves state-of-the-art performance on eight benchmark datasets and further validates CPRAformer's robustness in other image restoration tasks and downstream applications.

Authors:Ye Tian, Yanqiu Yu, Jianguo Sun, Yanbin Wang
Title: From Past to Present: A Survey of Malicious URL Detection Techniques, Datasets and Code Repositories
Abstract:
Malicious URLs persistently threaten the cybersecurity ecosystem, by either deceiving users into divulging private data or distributing harmful payloads to infiltrate host systems. Gaining timely insights into the current state of this ongoing battle holds significant importance. However, existing reviews exhibit 4 critical gaps: 1) Their reliance on algorithm-centric taxonomies obscures understanding of how detection approaches exploit specific modal information channels; 2) They fail to incorporate pivotal LLM/Transformer-based defenses; 3) No open-source implementations are collected to facilitate benchmarking; 4) Insufficient dataset coverage.This paper presents a comprehensive review of malicious URL detection technologies, systematically analyzing methods from traditional blacklisting to advanced deep learning approaches (e.g. Transformer, GNNs, and LLMs). Unlike prior surveys, we propose a novel modality-based taxonomy that categorizes existing works according to their primary data modalities (URL, HTML, Visual, etc.). This hierarchical classification enables both rigorous technical analysis and clear understanding of multimodal information utilization. Furthermore, to establish a profile of accessible datasets and address the lack of standardized benchmarking (where current studies often lack proper baseline comparisons), we curate and analyze: 1) publicly available datasets (2016-2024), and 2) open-source implementations from published works(2013-2025). Then, we outline essential design principles and architectural frameworks for product-level implementations. The review concludes by examining emerging challenges and proposing actionable directions for future research. We maintain a GitHub repository for ongoing curating datasets and open-source implementations: https://github.com/sevenolu7/Malicious-URL-Detection-Open-Source/tree/master.

Authors:Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, Giulia Fanti
Title: POPri: Private Federated Learning using Preference-Optimized Synthetic Data
Abstract:
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as an RL (reinforcement learning) reward. Our algorithm, Policy Optimization for Private Data (POPri) harnesses client feedback using policy optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 58%, compared to 28% for prior synthetic data methods, and 3% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.

Authors:Hariseetharam Gunduboina, Muhammad Haris Khan, Biplab Banerjee
Title: FrogDogNet: Fourier frequency Retained visual prompt Output Guidance for Domain Generalization of CLIP in Remote Sensing
Abstract:
In recent years, large-scale vision-language models (VLMs) like CLIP have gained attention for their zero-shot inference using instructional text prompts. While these models excel in general computer vision, their potential for domain generalization in remote sensing (RS) remains underexplored. Existing approaches enhance prompt learning by generating visual prompt tokens but rely on full-image features, introducing noise and background artifacts that vary within a class, causing misclassification. To address this, we propose FrogDogNet, a novel prompt learning framework integrating Fourier frequency filtering and self-attention to improve RS scene classification and domain generalization. FrogDogNet selectively retains invariant low-frequency components while eliminating noise and irrelevant backgrounds, ensuring robust feature representation across domains. The model first extracts significant features via projection and self-attention, then applies frequency-based filtering to preserve essential structural information for prompt learning. Extensive experiments on four RS datasets and three domain generalization tasks show that FrogDogNet consistently outperforms state-of-the-art prompt learning methods, demonstrating superior adaptability across domain shifts. Our findings highlight the effectiveness of frequency-based invariant feature retention in generalization, paving the way for broader applications. Our code is available at https://github.com/HariseetharamG/FrogDogNet

Authors:Hanlei Zhang, Zhuohang Li, Yeshuang Zhu, Hua Xu, Peiwu Wang, Haige Zhu, Jie Zhou, Jinchao Zhang
Title: Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Abstract:
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.

Authors:Jiahao Yuan, Xingzhe Sun, Xing Yu, Jingwen Wang, Dehui Du, Zhiqing Cui, Zixiang Di
Title: LLMSR@XLLM25: Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
Abstract:
The LLMSR@XLLM25 formulates a low-resource structural reasoning task that challenges LLMs to generate interpretable, step-by-step rationales with minimal labeled data. We present Less is More, the third-place winning approach in the LLMSR@XLLM25, which focuses on structured reasoning from only 24 labeled examples. Our approach leverages a multi-agent framework with reverse-prompt induction, retrieval-augmented reasoning synthesis via GPT-4o, and dual-stage reward-guided filtering to distill high-quality supervision across three subtasks: question parsing, CoT parsing, and step-level verification. All modules are fine-tuned from Meta-Llama-3-8B-Instruct under a unified LoRA+ setup. By combining structure validation with reward filtering across few-shot and zero-shot prompts, our pipeline consistently improves structure reasoning quality. These results underscore the value of controllable data distillation in enhancing structured inference under low-resource constraints. Our code is available at https://github.com/JhCircle/Less-is-More.

Authors:Yuanjian Wang, Yufei Deng, Rong Xiao, Jiahao Fan, Chenwei Tang, Deng Xiong, Jiancheng Lv
Title: SaENeRF: Suppressing Artifacts in Event-based Neural Radiance Fields
Abstract:
Event cameras are neuromorphic vision sensors that asynchronously capture changes in logarithmic brightness changes, offering significant advantages such as low latency, low power consumption, low bandwidth, and high dynamic range. While these characteristics make them ideal for high-speed scenarios, reconstructing geometrically consistent and photometrically accurate 3D representations from event data remains fundamentally challenging. Current event-based Neural Radiance Fields (NeRF) methods partially address these challenges but suffer from persistent artifacts caused by aggressive network learning in early stages and the inherent noise of event cameras. To overcome these limitations, we present SaENeRF, a novel self-supervised framework that effectively suppresses artifacts and enables 3D-consistent, dense, and photorealistic NeRF reconstruction of static scenes solely from event streams. Our approach normalizes predicted radiance variations based on accumulated event polarities, facilitating progressive and rapid learning for scene representation construction. Additionally, we introduce regularization losses specifically designed to suppress artifacts in regions where photometric changes fall below the event threshold and simultaneously enhance the light intensity difference of non-zero events, thereby improving the visual fidelity of the reconstructed scene. Extensive qualitative and quantitative experiments demonstrate that our method significantly reduces artifacts and achieves superior reconstruction quality compared to existing methods. The code is available at https://github.com/Mr-firework/SaENeRF.

Authors:Fengchun Liu, Tong Zhang, Chunying Zhang
Title: CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
Abstract:
In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.

Authors:Xuming Hu, Hanqian Li, Jungang Li, Yu Huang, Aiwei Liu
Title: VideoMark: A Distortion-Free Robust Watermarking Framework for Video Diffusion Models
Abstract:
This work introduces \textbf{VideoMark}, a distortion-free robust watermarking framework for video diffusion models. As diffusion models excel in generating realistic videos, reliable content attribution is increasingly critical. However, existing video watermarking methods often introduce distortion by altering the initial distribution of diffusion variables and are vulnerable to temporal attacks, such as frame deletion, due to variable video lengths. VideoMark addresses these challenges by employing a \textbf{pure pseudorandom initialization} to embed watermarks, avoiding distortion while ensuring uniform noise distribution in the latent space to preserve generation quality. To enhance robustness, we adopt a frame-wise watermarking strategy with pseudorandom error correction (PRC) codes, using a fixed watermark sequence with randomly selected starting indices for each video. For watermark extraction, we propose a Temporal Matching Module (TMM) that leverages edit distance to align decoded messages with the original watermark sequence, ensuring resilience against temporal attacks. Experimental results show that VideoMark achieves higher decoding accuracy than existing methods while maintaining video quality comparable to watermark-free generation. The watermark remains imperceptible to attackers without the secret key, offering superior invisibility compared to other frameworks. VideoMark provides a practical, training-free solution for content attribution in diffusion-based video generation. Code and data are available at \href{https://github.com/KYRIE-LI11/VideoMark}{https://github.com/KYRIE-LI11/VideoMark}{Project Page}.

Authors:Jiwan Kim, Hongseok Kang, Sein Kim, Kibum Kim, Chanyoung Park
Title: Disentangling and Generating Modalities for Recommendation in Missing Modality Scenarios
Abstract:
Multi-modal recommender systems (MRSs) have achieved notable success in improving personalization by leveraging diverse modalities such as images, text, and audio. However, two key challenges remain insufficiently addressed: (1) Insufficient consideration of missing modality scenarios and (2) the overlooking of unique characteristics of modality features. These challenges result in significant performance degradation in realistic situations where modalities are missing. To address these issues, we propose Disentangling and Generating Modality Recommender (DGMRec), a novel framework tailored for missing modality scenarios. DGMRec disentangles modality features into general and specific modality features from an information-based perspective, enabling richer representations for recommendation. Building on this, it generates missing modality features by integrating aligned features from other modalities and leveraging user modality preferences. Extensive experiments show that DGMRec consistently outperforms state-of-the-art MRSs in challenging scenarios, including missing modalities and new item settings as well as diverse missing ratios and varying levels of missing modalities. Moreover, DGMRec's generation-based approach enables cross-modal retrieval, a task inapplicable for existing MRSs, highlighting its adaptability and potential for real-world applications. Our code is available at https://github.com/ptkjw1997/DGMRec.

Authors:André Longon
Title: Naturally Computed Scale Invariance in the Residual Stream of ResNet18
Abstract:
An important capacity in visual object recognition is invariance to image-altering variables which leave the identity of objects unchanged, such as lighting, rotation, and scale. How do neural networks achieve this? Prior mechanistic interpretability research has illuminated some invariance-building circuitry in InceptionV1, but the results are limited and networks with different architectures have remained largely unexplored. This work investigates ResNet18 with a particular focus on its residual stream, an architectural component which InceptionV1 lacks. We observe that many convolutional channels in intermediate blocks exhibit scale invariant properties, computed by the element-wise residual summation of scale equivariant representations: the block input's smaller-scale copy with the block pre-sum output's larger-scale copy. Through subsequent ablation experiments, we attempt to causally link these neural properties with scale-robust object recognition behavior. Our tentative findings suggest how the residual stream computes scale invariance and its possible role in behavior. Code is available at: https://github.com/cest-andre/residual-stream-interp

Authors:Henry Marichal, Verónica Casaravilla, Candice Power, Karolain Mello, Joaquín Mazarino, Christine Lucas, Ludmila Profumo, Diego Passarella, Gregory Randall
Title: DeepCS-TRD, a Deep Learning-based Cross-Section Tree Ring Detector
Abstract:
Here, we propose Deep CS-TRD, a new automatic algorithm for detecting tree rings in whole cross-sections. It substitutes the edge detection step of CS-TRD by a deep-learning-based approach (U-Net), which allows the application of the method to different image domains: microscopy, scanner or smartphone acquired, and species (Pinus taeda, Gleditsia triachantos and Salix glauca). Additionally, we introduce two publicly available datasets of annotated images to the community. The proposed method outperforms state-of-the-art approaches in macro images (Pinus taeda and Gleditsia triacanthos) while showing slightly lower performance in microscopy images of Salix glauca. To our knowledge, this is the first paper that studies automatic tree ring detection for such different species and acquisition conditions. The dataset and source code are available in https://github.com/hmarichal93/deepcstrd

Authors:Obed Korshie Dzikunu, Amirhossein Toosi, Shadab Ahamed, Sara Harsini, Francois Benard, Xiaoxiao Li, Arman Rahmim
Title: Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
Abstract:
This study performs a comprehensive evaluation of quantitative measurements as extracted from automated deep-learning-based segmentation methods, beyond traditional Dice Similarity Coefficient assessments, focusing on six quantitative metrics, namely SUVmax, SUVmean, total lesion activity (TLA), tumor volume (TMTV), lesion count, and lesion spread. We analyzed 380 prostate-specific membrane antigen (PSMA) targeted [18F]DCFPyL PET/CT scans of patients with biochemical recurrence of prostate cancer, training deep neural networks, U-Net, Attention U-Net and SegResNet with four loss functions: Dice Loss, Dice Cross Entropy, Dice Focal Loss, and our proposed L1 weighted Dice Focal Loss (L1DFL). Evaluations indicated that Attention U-Net paired with L1DFL achieved the strongest correlation with the ground truth (concordance correlation = 0.90-0.99 for SUVmax and TLA), whereas models employing the Dice Loss and the other two compound losses, particularly with SegResNet, underperformed. Equivalence testing (TOST, alpha = 0.05, Delta = 20%) confirmed high performance for SUV metrics, lesion count and TLA, with L1DFL yielding the best performance. By contrast, tumor volume and lesion spread exhibited greater variability. Bland-Altman, Coverage Probability, and Total Deviation Index analyses further highlighted that our proposed L1DFL minimizes variability in quantification of the ground truth clinical measures. The code is publicly available at: https://github.com/ObedDzik/pca\_segment.git.

Authors:Martin Fleischmann, Anastassia Vybornova, James D. Gaboardi, Anna Brázdová, Daniela Dančejová
Title: Adaptive continuity-preserving simplification of street networks
Abstract:
Street network data is widely used to study human-based activities and urban structure. Often, these data are geared towards transportation applications, which require highly granular, directed graphs that capture the complex relationships of potential traffic patterns. While this level of network detail is critical for certain fine-grained mobility models, it represents a hindrance for studies concerned with the morphology of the street network. For the latter case, street network simplification - the process of converting a highly granular input network into its most simple morphological form - is a necessary, but highly tedious preprocessing step, especially when conducted manually. In this manuscript, we develop and present a novel adaptive algorithm for simplifying street networks that is both fully automated and able to mimic results obtained through a manual simplification routine. The algorithm - available in the neatnet Python package - outperforms current state-of-the-art procedures when comparing those methods to manually, human-simplified data, while preserving network continuity.

Authors:Zexi Fan, Yan Sun, Shihao Yang, Yiping Lu
Title: Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning
Abstract:
High-dimensional partial differential equations (PDEs) pose significant computational challenges across fields ranging from quantum chemistry to economics and finance. Although scientific machine learning (SciML) techniques offer approximate solutions, they often suffer from bias and neglect crucial physical insights. Inspired by inference-time scaling strategies in language models, we propose Simulation-Calibrated Scientific Machine Learning (SCaSML), a physics-informed framework that dynamically refines and debiases the SCiML predictions during inference by enforcing the physical laws. SCaSML leverages derived new physical laws that quantifies systematic errors and employs Monte Carlo solvers based on the Feynman-Kac and Elworthy-Bismut-Li formulas to dynamically correct the prediction. Both numerical and theoretical analysis confirms enhanced convergence rates via compute-optimal inference methods. Our numerical experiments demonstrate that SCaSML reduces errors by 20-50% compared to the base surrogate model, establishing it as the first algorithm to refine approximated solutions to high-dimensional PDE during inference. Code of SCaSML is available at https://github.com/Francis-Fan-create/SCaSML.

Authors:Jingchao Wang, Hong Wang, Wenlong Zhang, Kunhua Ji, Dingjiang Huang, Yefeng Zheng
Title: Progressive Language-guided Visual Learning for Multi-Task Visual Grounding
Abstract:
Multi-task visual grounding (MTVG) includes two sub-tasks, i.e., Referring Expression Comprehension (REC) and Referring Expression Segmentation (RES). The existing representative approaches generally follow the research pipeline which mainly consists of three core procedures, including independent feature extraction for visual and linguistic modalities, respectively, cross-modal interaction module, and independent prediction heads for different sub-tasks. Albeit achieving remarkable performance, this research line has two limitations: 1) The linguistic content has not been fully injected into the entire visual backbone for boosting more effective visual feature extraction and it needs an extra cross-modal interaction module; 2) The relationship between REC and RES tasks is not effectively exploited to help the collaborative prediction for more accurate output. To deal with these problems, in this paper, we propose a Progressive Language-guided Visual Learning framework for multi-task visual grounding, called PLVL, which not only finely mine the inherent feature expression of the visual modality itself but also progressively inject the language information to help learn linguistic-related visual features. In this manner, our PLVL does not need additional cross-modal fusion module while fully introducing the language guidance. Furthermore, we analyze that the localization center for REC would help identify the to-be-segmented object region for RES to some extent. Inspired by this investigation, we design a multi-task head to accomplish collaborative predictions for these two sub-tasks. Extensive experiments conducted on several benchmark datasets comprehensively substantiate that our PLVL obviously outperforms the representative methods in both REC and RES tasks. https://github.com/jcwang0602/PLVL

Authors:Junwei Liao, Muning Wen, Jun Wang, Weinan Zhang
Title: MARFT: Multi-Agent Reinforcement Fine-Tuning
Abstract:
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks, from generating high-quality presentation slides to even conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methods to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a brand-new POMDP called Flex-POMDP, which aligns with the LaMAS optimization in real-world applications and a universal algorithmic framework tailored specifically for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We review the evolution from RL to RFT, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a LaMAS-oriented formulation of RFT. Central to this work is a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work serves as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.

Authors:Xingxing Zuo, Nikhil Ranganathan, Connor Lee, Georgia Gkioxari, Soon-Jo Chung
Title: MonoTher-Depth: Enhancing Thermal Depth Estimation via Confidence-Aware Distillation
Abstract:
Monocular depth estimation (MDE) from thermal images is a crucial technology for robotic systems operating in challenging conditions such as fog, smoke, and low light. The limited availability of labeled thermal data constrains the generalization capabilities of thermal MDE models compared to foundational RGB MDE models, which benefit from datasets of millions of images across diverse scenarios. To address this challenge, we introduce a novel pipeline that enhances thermal MDE through knowledge distillation from a versatile RGB MDE model. Our approach features a confidence-aware distillation method that utilizes the predicted confidence of the RGB MDE to selectively strengthen the thermal MDE model, capitalizing on the strengths of the RGB model while mitigating its weaknesses. Our method significantly improves the accuracy of the thermal MDE, independent of the availability of labeled depth supervision, and greatly expands its applicability to new scenarios. In our experiments on new scenarios without labeled depth, the proposed confidence-aware distillation method reduces the absolute relative error of thermal MDE by 22.88\% compared to the baseline without distillation.

Authors:Jun-Peng Jiang, Si-Yang Liu, Hao-Run Cai, Qile Zhou, Han-Jia Ye
Title: Representation Learning for Tabular Data: A Comprehensive Survey
Abstract:
Tabular data, structured as rows and columns, is among the most prevalent data types in machine learning classification and regression applications. Models for learning from tabular data have continuously evolved, with Deep Neural Networks (DNNs) recently demonstrating promising results through their capability of representation learning. In this survey, we systematically introduce the field of tabular representation learning, covering the background, challenges, and benchmarks, along with the pros and cons of using DNNs. We organize existing methods into three main categories according to their generalization capabilities: specialized, transferable, and general models. Specialized models focus on tasks where training and evaluation occur within the same data distribution. We introduce a hierarchical taxonomy for specialized models based on the key aspects of tabular data -- features, samples, and objectives -- and delve into detailed strategies for obtaining high-quality feature- and sample-level representations. Transferable models are pre-trained on one or more datasets and subsequently fine-tuned on downstream tasks, leveraging knowledge acquired from homogeneous or heterogeneous sources, or even cross-modalities such as vision and language. General models, also known as tabular foundation models, extend this concept further, allowing direct application to downstream tasks without fine-tuning. We group these general models based on the strategies used to adapt across heterogeneous datasets. Additionally, we explore ensemble methods, which integrate the strengths of multiple tabular models. Finally, we discuss representative extensions of tabular learning, including open-environment tabular machine learning, multimodal learning with tabular data, and tabular understanding. More information can be found in the following repository: https://github.com/LAMDA-Tabular/Tabular-Survey.

Authors:Jiaxing Xu, Kai He, Yue Tang, Wei Li, Mengcheng Lan, Xia Dong, Yiping Ke, Mengling Feng
Title: BrainPrompt: Multi-Level Brain Prompt Enhancement for Neurological Condition Identification
Abstract:
Neurological conditions, such as Alzheimer's Disease, are challenging to diagnose, particularly in the early stages where symptoms closely resemble healthy controls. Existing brain network analysis methods primarily focus on graph-based models that rely solely on imaging data, which may overlook important non-imaging factors and limit the model's predictive power and interpretability. In this paper, we present BrainPrompt, an innovative framework that enhances Graph Neural Networks (GNNs) by integrating Large Language Models (LLMs) with knowledge-driven prompts, enabling more effective capture of complex, non-imaging information and external knowledge for neurological disease identification. BrainPrompt integrates three types of knowledge-driven prompts: (1) ROI-level prompts to encode the identity and function of each brain region, (2) subject-level prompts that incorporate demographic information, and (3) disease-level prompts to capture the temporal progression of disease. By leveraging these multi-level prompts, BrainPrompt effectively harnesses knowledge-enhanced multi-modal information from LLMs, enhancing the model's capability to predict neurological disease stages and meanwhile offers more interpretable results. We evaluate BrainPrompt on two resting-state functional Magnetic Resonance Imaging (fMRI) datasets from neurological disorders, showing its superiority over state-of-the-art methods. Additionally, a biomarker study demonstrates the framework's ability to extract valuable and interpretable information aligned with domain knowledge in neuroscience. The code is available at https://github.com/AngusMonroe/BrainPrompt

Authors:Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen Zhang, Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding, Bowen Zhou
Title: TTRL: Test-Time Reinforcement Learning
Abstract:
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the maj@n metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model maj@n, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL

Authors:Ziqi Pang, Yu-Xiong Wang
Title: MR. Video: "MapReduce" is the Principle for Long Video Understanding
Abstract:
We propose MR. Video, an agentic long video understanding framework that demonstrates the simple yet effective MapReduce principle for processing long videos: (1) Map: independently and densely perceiving short video clips, and (2) Reduce: jointly aggregating information from all clips. Compared with sequence-to-sequence vision-language models (VLMs), MR. Video performs detailed short video perception without being limited by context length. Compared with existing video agents that typically rely on sequential key segment selection, the Map operation enables simpler and more scalable sequence parallel perception of short video segments. Its Reduce step allows for more comprehensive context aggregation and reasoning, surpassing explicit key segment retrieval. This MapReduce principle is applicable to both VLMs and video agents, and we use LLM agents to validate its effectiveness. In practice, MR. Video employs two MapReduce stages: (A) Captioning: generating captions for short video clips (map), then standardizing repeated characters and objects into shared names (reduce); (B) Analysis: for each user question, analyzing relevant information from individual short videos (map), and integrating them into a final answer (reduce). MR. Video achieves over 10% accuracy improvement on the challenging LVBench compared to state-of-the-art VLMs and video agents. Code is available at: https://github.com/ziqipang/MR-Video

Authors:Yimu Wang, Xuye Liu, Wei Pang, Li Ma, Shuai Yuan, Paul Debevec, Ning Yu
Title: Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Abstract:
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.

Authors:Zhifan Ye, Kejing Xia, Yonggan Fu, Xin Dong, Jihoon Hong, Xiangchi Yuan, Shizhe Diao, Jan Kautz, Pavlo Molchanov, Yingyan Celine Lin
Title: LongMamba: Enhancing Mamba's Long Context Capabilities via Training-Free Receptive Field Enlargement
Abstract:
State space models (SSMs) have emerged as an efficient alternative to Transformer models for language modeling, offering linear computational complexity and constant memory usage as context length increases. However, despite their efficiency in handling long contexts, recent studies have shown that SSMs, such as Mamba models, generally underperform compared to Transformers in long-context understanding tasks. To address this significant shortfall and achieve both efficient and accurate long-context understanding, we propose LongMamba, a training-free technique that significantly enhances the long-context capabilities of Mamba models. LongMamba builds on our discovery that the hidden channels in Mamba can be categorized into local and global channels based on their receptive field lengths, with global channels primarily responsible for long-context capability. These global channels can become the key bottleneck as the input context lengthens. Specifically, when input lengths largely exceed the training sequence length, global channels exhibit limitations in adaptively extend their receptive fields, leading to Mamba's poor long-context performance. The key idea of LongMamba is to mitigate the hidden state memory decay in these global channels by preventing the accumulation of unimportant tokens in their memory. This is achieved by first identifying critical tokens in the global channels and then applying token filtering to accumulate only those critical tokens. Through extensive benchmarking across synthetic and real-world long-context scenarios, LongMamba sets a new standard for Mamba's long-context performance, significantly extending its operational range without requiring additional training. Our code is available at https://github.com/GATECH-EIC/LongMamba.

Authors:Nicholas Julian Behr, Mattia Bianchi, Keith Moffat, Saverio Bolognani, Florian Dörfler
Title: PRIME: Fast Primal-Dual Feedback Optimization for Markets with Application to Optimal Power Flow
Abstract:
Online Feedback Optimization (OFO) controllers iteratively drive a plant to an optimal operating point that satisfies input and output constraints, relying solely on the input-output sensitivity as model information. This paper introduces PRIME (PRoximal Iterative MarkEts), a novel OFO approach based on proximal-point iterations. Unlike existing OFO solutions, PRIME admits a market-based implementation, where self-interested actors are incentivized to make choices that result in safe and efficient operation, without communicating private costs or constraints. Furthermore, PRIME can handle non-smooth objective functions, achieve fast convergence rates and rapid constraint satisfaction, and effectively reject measurement noise. We demonstrate PRIME on an AC optimal power flow problem, obtaining an efficient real-time nonlinear local marginal pricing scheme.

Authors:Song Wang, Xiaolu Liu, Lingdong Kong, Jianyun Xu, Chunyong Hu, Gongfan Fang, Wentong Li, Jianke Zhu, Xinchao Wang
Title: PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning
Abstract:
Self-supervised representation learning for point cloud has demonstrated effectiveness in improving pre-trained model performance across diverse tasks. However, as pre-trained models grow in complexity, fully fine-tuning them for downstream applications demands substantial computational and storage resources. Parameter-efficient fine-tuning (PEFT) methods offer a promising solution to mitigate these resource requirements, yet most current approaches rely on complex adapter and prompt mechanisms that increase tunable parameters. In this paper, we propose PointLoRA, a simple yet effective method that combines low-rank adaptation (LoRA) with multi-scale token selection to efficiently fine-tune point cloud models. Our approach embeds LoRA layers within the most parameter-intensive components of point cloud transformers, reducing the need for tunable parameters while enhancing global feature capture. Additionally, multi-scale token selection extracts critical local information to serve as prompts for downstream fine-tuning, effectively complementing the global context captured by LoRA. The experimental results across various pre-trained models and three challenging public datasets demonstrate that our approach achieves competitive performance with only 3.43% of the trainable parameters, making it highly effective for resource-constrained applications. Source code is available at: https://github.com/songw-zju/PointLoRA.

Authors:Zebin Yao, Lei Ren, Huixing Jiang, Chen Wei, Xiaojie Wang, Ruifan Li, Fangxiang Feng
Title: FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Abstract:
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance, yet existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive subject-specific optimization, while zero-shot methods fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor employs semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated image. Additionally, our framework incorporates a novel noise initialization strategy to preserve geometry priors of reference subjects for robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.

Authors:Ekaterina Kondrateva, Sandzhi Barg, Mikhail Vasiliev
Title: Benchmarking the Reproducibility of Brain MRI Segmentation Across Scanners and Time
Abstract:
Accurate and reproducible brain morphometry from structural MRI is critical for monitoring neuroanatomical changes across time and across imaging domains. Although deep learning has accelerated segmentation workflows, scanner-induced variability and reproducibility limitations remain-especially in longitudinal and multi-site settings. In this study, we benchmark two modern segmentation pipelines, FastSurfer and SynthSeg, both integrated into FreeSurfer, one of the most widely adopted tools in neuroimaging. Using two complementary datasets - a 17-year longitudinal cohort (SIMON) and a 9-site test-retest cohort (SRPBS)-we quantify inter-scan segmentation variability using Dice coefficient, Surface Dice, Hausdorff Distance (HD95), and Mean Absolute Percentage Error (MAPE). Our results reveal up to 7-8% volume variation in small subcortical structures such as the amygdala and ventral diencephalon, even under controlled test-retest conditions. This raises a key question: is it feasible to detect subtle longitudinal changes on the order of 5-10% in pea-sized brain regions, given the magnitude of domain-induced morphometric noise? We further analyze the effects of registration templates and interpolation modes, and propose surface-based quality filtering to improve segmentation reliability. This study provides a reproducible benchmark for morphometric reproducibility and emphasizes the need for harmonization strategies in real-world neuroimaging studies. Code and figures: https://github.com/kondratevakate/brain-mri-segmentation

Authors:Alycia Carey, Xintao Wu
Title: Achieving Distributive Justice in Federated Learning via Uncertainty Quantification
Abstract:
Client-level fairness metrics for federated learning are used to ensure that all clients in a federation either: a) have similar final performance on their local data distributions (i.e., client parity), or b) obtain final performance on their local data distributions relative to their contribution to the federated learning process (i.e., contribution fairness). While a handful of works that propose either client-parity or contribution-based fairness metrics ground their definitions and decisions in social theories of equality -- such as distributive justice -- most works arbitrarily choose what notion of fairness to align with which makes it difficult for practitioners to choose which fairness metric aligns best with their fairness ethics. In this work, we propose UDJ-FL (Uncertainty-based Distributive Justice for Federated Learning), a flexible federated learning framework that can achieve multiple distributive justice-based client-level fairness metrics. Namely, by utilizing techniques inspired by fair resource allocation, in conjunction with performing aleatoric uncertainty-based client weighing, our UDJ-FL framework is able to achieve egalitarian, utilitarian, Rawls' difference principle, or desert-based client-level fairness. We empirically show the ability of UDJ-FL to achieve all four defined distributive justice-based client-level fairness metrics in addition to providing fairness equivalent to (or surpassing) other popular fair federated learning works. Further, we provide justification for why aleatoric uncertainty weighing is necessary to the construction of our UDJ-FL framework as well as derive theoretical guarantees for the generalization bounds of UDJ-FL. Our code is publicly available at https://github.com/alycia-noel/UDJ-FL.

Authors:Chang Zong, Bin Li, Shoujun Zhou, Jian Wan, Lei Zhang
Title: Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Abstract:
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.

Authors:Lotfi Abdelkrim Mecharbat, Ibrahim Almakky, Martin Takac, Mohammad Yaqub
Title: MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Abstract:
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fréchet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.

Authors:Diego de Oliveira Hitzges, Suman Ghosh, Guillermo Gallego
Title: DERD-Net: Learning Depth from Event-based Ray Densities
Abstract:
Event cameras offer a promising avenue for multi-view stereo depth estimation and Simultaneous Localization And Mapping (SLAM) due to their ability to detect blur-free 3D edges at high-speed and over broad illumination conditions. However, traditional deep learning frameworks designed for conventional cameras struggle with the asynchronous, stream-like nature of event data, as their architectures are optimized for discrete, image-like inputs. We propose a scalable, flexible and adaptable framework for pixel-wise depth estimation with event cameras in both monocular and stereo setups. The 3D scene structure is encoded into disparity space images (DSIs), representing spatial densities of rays obtained by back-projecting events into space via known camera poses. Our neural network processes local subregions of the DSIs combining 3D convolutions and a recurrent structure to recognize valuable patterns for depth prediction. Local processing enables fast inference with full parallelization and ensures constant ultra-low model complexity and memory costs, regardless of camera resolution. Experiments on standard benchmarks (MVSEC and DSEC datasets) demonstrate unprecedented effectiveness: (i) using purely monocular data, our method achieves comparable results to existing stereo methods; (ii) when applied to stereo data, it strongly outperforms all state-of-the-art (SOTA) approaches, reducing the mean absolute error by at least 42%; (iii) our method also allows for increases in depth completeness by more than 3-fold while still yielding a reduction in median absolute error of at least 30%. Given its remarkable performance and effective processing of event-data, our framework holds strong potential to become a standard approach for using deep learning for event-based depth estimation and SLAM. Project page: https://github.com/tub-rip/DERD-Net

Authors:Lingxi Cui, Huan Li, Ke Chen, Lidan Shou, Gang Chen
Title: NLCTables: A Dataset for Marrying Natural Language Conditions with Table Discovery
Abstract:
With the growing abundance of repositories containing tabular data, discovering relevant tables for in-depth analysis remains a challenging task. Existing table discovery methods primarily retrieve desired tables based on a query table or several vague keywords, leaving users to manually filter large result sets. To address this limitation, we propose a new task: NL-conditional table discovery (nlcTD), where users combine a query table with natural language (NL) requirements to refine search results. To advance research in this area, we present nlcTables, a comprehensive benchmark dataset comprising 627 diverse queries spanning NL-only, union, join, and fuzzy conditions, 22,080 candidate tables, and 21,200 relevance annotations. Our evaluation of six state-of-the-art table discovery methods on nlcTables reveals substantial performance gaps, highlighting the need for advanced techniques to tackle this challenging nlcTD scenario. The dataset, construction framework, and baseline implementations are publicly available at https://github.com/SuDIS-ZJU/nlcTables to foster future research.

Authors:Luwei Xiao, Rui Mao, Shuai Zhao, Qika Lin, Yanhao Jia, Liang He, Erik Cambria
Title: Exploring Cognitive and Aesthetic Causality for Multimodal Aspect-Based Sentiment Analysis
Abstract:
Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions (cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses and cognitive interpretations). Specifically, this framework first incorporates visual patch features for patch-word alignment. Meanwhile, it extracts coarse-grained visual features (e.g., overall image representation) and fine-grained visual regions (e.g., aspect-related regions) and translates them into corresponding textual descriptions (e.g., facial, aesthetic). Finally, we leverage the sentimental causes and impressions generated by a large language model (LLM) to enhance the model's awareness of sentimental cues evoked by semantic content and affective-cognitive resonance. Experimental results on standard MASC datasets demonstrate the effectiveness of the proposed model, which also exhibits greater flexibility to MASC compared to LLMs such as GPT-4o. We have publicly released the complete implementation and dataset at https://github.com/Xillv/Chimera

Authors:Siyu Zhou, Tianyi Zhou, Yijun Yang, Guodong Long, Deheng Ye, Jing Jiang, Chengqi Zhang
Title: WALL-E 2.0: World Alignment by NeuroSymbolic Learning improves World Model-based LLM Agents
Abstract:
Can we build accurate world models out of large language models (LLMs)? How can world models benefit LLM agents? The gap between the prior knowledge of LLMs and the specified environment's dynamics usually bottlenecks LLMs' performance as world models. To bridge the gap, we propose a training-free "world alignment" that learns an environment's symbolic knowledge complementary to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and scene graphs, which are extracted by LLMs from exploration trajectories and encoded into executable codes to regulate LLM agents' policies. We further propose an RL-free, model-based agent "WALL-E 2.0" through the model-predictive control (MPC) framework. Unlike classical MPC requiring costly optimization on the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future steps' actions by interacting with the neurosymbolic world model. While the LLM agent's strong heuristics make it an efficient planner in MPC, the quality of its planned actions is also secured by the accurate predictions of the aligned world model. They together considerably improve learning efficiency in a new environment. On open-world challenges in Mars (Minecraft like) and ALFWorld (embodied indoor environments), WALL-E 2.0 significantly outperforms existing methods, e.g., surpassing baselines in Mars by 16.1%-51.6% of success rate and by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success rate after only 4 iterations.

Authors:Daocheng Fu, Jianlong Chen, Renqiu Xia, Zijun Chen, Qi Liu, Yuan Feng, Hongbin Zhou, Renrui Zhang, Shiyang Feng, Peng Gao, Hongyuan Zha, Junchi Yan, Botian Shi, Yu Qiao, Bo Zhang
Title: TrustGeoGen: Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Abstract:
Mathematical geometric problem solving (GPS) demands verifiable logical coherence and multimodal reasoning capabilities. While large language models (LLMs) have shown rapid progress in GPS, their advancement is hindered by the lack of reliable benchmarks and systematic methodologies. A critical challenge is the inherent hallucination in LLMs, which leads to synthetic GPS datasets that are often noisy, unverified, and self-contradictory. To address this, we introduce TrustGeoGen, a data engine that generates formally verified geometric problems to establish a principled and trustworthy benchmark. Our engine integrates four key innovations: 1) Multimodal Alignment, which synchronizes the generation of diagrams, text, and step-by-step solutions; 2) Formal Verification, ensuring all reasoning paths are rule-compliant; 3) Connection Thinking, bridging formal deduction with human-like logical steps; and 4) our \textit{GeoExplore} series algorithms, which produce diverse problem variants with multiple solutions and self-reflective backtracking. Using this engine, we create the GeoTrust-200K dataset and the corresponding GeoTrust-test benchmark, both with guaranteed cross-modal integrity. Experiments reveal that state-of-the-art models achieve only 45.83\% accuracy on GeoTrust-test, highlighting its significant challenge. Furthermore, training on our synthesized data substantially improves model performance on GPS tasks, with strong generalization to out-of-domain (OOD) benchmarks. Our code and data are available at https://github.com/Alpha-Innovator/TrustGeoGen

Authors:Daocheng Fu, Jianlong Chen, Renqiu Xia, Zijun Chen, Qi Liu, Yuan Feng, Hongbin Zhou, Renrui Zhang, Shiyang Feng, Peng Gao, Hongyuan Zha, Junchi Yan, Botian Shi, Yu Qiao, Bo Zhang
Title: TrustGeoGen: Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Abstract:
Mathematical geometric problem solving (GPS) demands verifiable logical coherence and multimodal reasoning capabilities. While large language models (LLMs) have shown rapid progress in GPS, their advancement is hindered by the lack of reliable benchmarks and systematic methodologies. A critical challenge is the inherent hallucination in LLMs, which leads to synthetic GPS datasets that are often noisy, unverified, and self-contradictory. To address this, we introduce TrustGeoGen, a data engine that generates formally verified geometric problems to establish a principled and trustworthy benchmark. Our engine integrates four key innovations: 1) Multimodal Alignment, which synchronizes the generation of diagrams, text, and step-by-step solutions; 2) Formal Verification, ensuring all reasoning paths are rule-compliant; 3) Connection Thinking, bridging formal deduction with human-like logical steps; and 4) our \textit{GeoExplore} series algorithms, which produce diverse problem variants with multiple solutions and self-reflective backtracking. Using this engine, we create the GeoTrust-200K dataset and the corresponding GeoTrust-test benchmark, both with guaranteed cross-modal integrity. Experiments reveal that state-of-the-art models achieve only 45.83\% accuracy on GeoTrust-test, highlighting its significant challenge. Furthermore, training on our synthesized data substantially improves model performance on GPS tasks, with strong generalization to out-of-domain (OOD) benchmarks. Our code and data are available at https://github.com/Alpha-Innovator/TrustGeoGen

Authors:Lei Xu, Mehmet Yamac, Mete Ahishali, Moncef Gabbouj
Title: Multi-Scale Tensorial Summation and Dimensional Reduction Guided Neural Network for Edge Detection
Abstract:
Edge detection has attracted considerable attention thanks to its exceptional ability to enhance performance in downstream computer vision tasks. In recent years, various deep learning methods have been explored for edge detection tasks resulting in a significant performance improvement compared to conventional computer vision algorithms. In neural networks, edge detection tasks require considerably large receptive fields to provide satisfactory performance. In a typical convolutional operation, such a large receptive field can be achieved by utilizing a significant number of consecutive layers, which yields deep network structures. Recently, a Multi-scale Tensorial Summation (MTS) factorization operator was presented, which can achieve very large receptive fields even from the initial layers. In this paper, we propose a novel MTS Dimensional Reduction (MTS-DR) module guided neural network, MTS-DR-Net, for the edge detection task. The MTS-DR-Net uses MTS layers, and corresponding MTS-DR blocks as a new backbone to remove redundant information initially. Such a dimensional reduction module enables the neural network to focus specifically on relevant information (i.e., necessary subspaces). Finally, a weight U-shaped refinement module follows MTS-DR blocks in the MTS-DR-Net. We conducted extensive experiments on two benchmark edge detection datasets: BSDS500 and BIPEDv2 to verify the effectiveness of our model. The implementation of the proposed MTS-DR-Net can be found at https://github.com/LeiXuAI/MTS-DR-Net.git.

Authors:Manjunath D, Aniruddh Sikdar, Prajwal Gurunath, Sumanth Udupa, Suresh Sundaram
Title: SAGA: Semantic-Aware Gray color Augmentation for Visible-to-Thermal Domain Adaptation across Multi-View Drone and Ground-Based Vision Systems
Abstract:
Domain-adaptive thermal object detection plays a key role in facilitating visible (RGB)-to-thermal (IR) adaptation by reducing the need for co-registered image pairs and minimizing reliance on large annotated IR datasets. However, inherent limitations of IR images, such as the lack of color and texture cues, pose challenges for RGB-trained models, leading to increased false positives and poor-quality pseudo-labels. To address this, we propose Semantic-Aware Gray color Augmentation (SAGA), a novel strategy for mitigating color bias and bridging the domain gap by extracting object-level features relevant to IR images. Additionally, to validate the proposed SAGA for drone imagery, we introduce the IndraEye, a multi-sensor (RGB-IR) dataset designed for diverse applications. The dataset contains 5,612 images with 145,666 instances, captured from diverse angles, altitudes, backgrounds, and times of day, offering valuable opportunities for multimodal learning, domain adaptation for object detection and segmentation, and exploration of sensor-specific strengths and weaknesses. IndraEye aims to enhance the development of more robust and accurate aerial perception systems, especially in challenging environments. Experimental results show that SAGA significantly improves RGB-to-IR adaptation for autonomous driving and IndraEye dataset, achieving consistent performance gains of +0.4% to +7.6% (mAP) when integrated with state-of-the-art domain adaptation techniques. The dataset and codes are available at https://github.com/airliisc/IndraEye.

Authors:Yannic Neuhaus, Matthias Hein
Title: RePOPE: Impact of Annotation Errors on the POPE Benchmark
Abstract:
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .

Authors:Anjiang Wei, Huanmi Tan, Tarun Suresh, Daniel Mendoza, Thiago S. F. X. Teixeira, Ke Wang, Caroline Trippel, Alex Aiken
Title: VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Abstract:
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of 125,777 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4%, respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation. Our code, data, and models are publicly available at https://github.com/Anjiang-Wei/VeriCoder

Authors:Yunfeng Li, Bo Wang, Jiahao Wan, Xueyi Wu, Ye Li
Title: SonarT165: A Large-scale Benchmark and STFTrack Framework for Acoustic Object Tracking
Abstract:
Underwater observation systems typically integrate optical cameras and imaging sonar systems. When underwater visibility is insufficient, only sonar systems can provide stable data, which necessitates exploration of the underwater acoustic object tracking (UAOT) task. Previous studies have explored traditional methods and Siamese networks for UAOT. However, the absence of a unified evaluation benchmark has significantly constrained the value of these methods. To alleviate this limitation, we propose the first large-scale UAOT benchmark, SonarT165, comprising 165 square sequences, 165 fan sequences, and 205K high-quality annotations. Experimental results demonstrate that SonarT165 reveals limitations in current state-of-the-art SOT trackers. To address these limitations, we propose STFTrack, an efficient framework for acoustic object tracking. It includes two novel modules, a multi-view template fusion module (MTFM) and an optimal trajectory correction module (OTCM). The MTFM module integrates multi-view feature of both the original image and the binary image of the dynamic template, and introduces a cross-attention-like layer to fuse the spatio-temporal target representations. The OTCM module introduces the acoustic-response-equivalent pixel property and proposes normalized pixel brightness response scores, thereby suppressing suboptimal matches caused by inaccurate Kalman filter prediction boxes. To further improve the model feature, STFTrack introduces a acoustic image enhancement method and a Frequency Enhancement Module (FEM) into its tracking pipeline. Comprehensive experiments show the proposed STFTrack achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/SonarT165.

Authors:Yuxin Jiang, Yufei Wang, Chuhan Wu, Xinyi Dai, Yan Xu, Weinan Gan, Yasheng Wang, Xin Jiang, Lifeng Shang, Ruiming Tang, Wei Wang
Title: Instruction-Tuning Data Synthesis from Scratch via Web Reconstruction
Abstract:
The improvement of LLMs' instruction-following capabilities depends critically on the availability of high-quality instruction-response pairs. While existing automatic data synthetic methods alleviate the burden of manual curation, they often rely heavily on either the quality of seed data or strong assumptions about the structure and content of web documents. To tackle these challenges, we propose Web Reconstruction (WebR), a fully automated framework for synthesizing high-quality instruction-tuning (IT) data directly from raw web documents with minimal assumptions. Leveraging the inherent diversity of raw web content, we conceptualize web reconstruction as an instruction-tuning data synthesis task via a novel dual-perspective paradigm--Web as Instruction and Web as Response--where each web document is designated as either an instruction or a response to trigger the reconstruction process. Comprehensive experiments show that datasets generated by WebR outperform state-of-the-art baselines by up to 16.65% across four instruction-following benchmarks. Notably, WebR demonstrates superior compatibility, data efficiency, and scalability, enabling enhanced domain adaptation with minimal effort. The data and code are publicly available at https://github.com/YJiangcm/WebR.

Authors:Zheyuan Gu, Chang Liu, Xiyuan Zhang, Chen Yang, Gaopeng Gou, Gang Xiong, Zhen Li, Sijia Li
Title: DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement
Abstract:
Due to the growing demand for privacy protection, encrypted tunnels have become increasingly popular among mobile app users, which brings new challenges to app fingerprinting (AF)-based network management. Existing methods primarily transfer traditional AF methods to encrypted tunnels directly, ignoring the core obfuscation and re-encapsulation mechanism of encrypted tunnels, thus resulting in unsatisfactory performance. In this paper, we propose DecETT, a dual decouple-based semantic enhancement method for accurate AF under encrypted tunnels. Specifically, DecETT improves AF under encrypted tunnels from two perspectives: app-specific feature enhancement and irrelevant tunnel feature decoupling.Considering the obfuscated app-specific information in encrypted tunnel traffic, DecETT introduces TLS traffic with stronger app-specific information as a semantic anchor to guide and enhance the fingerprint generation for tunnel traffic. Furthermore, to address the app-irrelevant tunnel feature introduced by the re-encapsulation mechanism, DecETT is designed with a dual decouple-based fingerprint enhancement module, which decouples the tunnel feature and app semantic feature from tunnel traffic separately, thereby minimizing the impact of tunnel features on accurate app fingerprint extraction. Evaluation under five prevalent encrypted tunnels indicates that DecETT outperforms state-of-the-art methods in accurate AF under encrypted tunnels, and further demonstrates its superiority under tunnels with more complicated obfuscation. \textit{Project page: \href{https://github.com/DecETT/DecETT}{https://github.com/DecETT/DecETT}}

Authors:Zizhi Chen, Xinyu Zhang, Minghao Han, Yizhou Liu, Ziyun Qian, Weifeng Zhang, Xukun Zhang, Jingwei Wei, Lihua Zhang
Title: VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
Abstract:
In histopathology, tissue sections are typically stained using common H&E staining or special stains (MAS, PAS, PASM, etc.) to clearly visualize specific tissue structures. The rapid advancement of deep learning offers an effective solution for generating virtually stained images, significantly reducing the time and labor costs associated with traditional histochemical staining. However, a new challenge arises in separating the fundamental visual characteristics of tissue sections from the visual differences induced by staining agents. Additionally, virtual staining often overlooks essential pathological knowledge and the physical properties of staining, resulting in only style-level transfer. To address these issues, we introduce, for the first time in virtual staining tasks, a pathological vision-language large model (VLM) as an auxiliary tool. We integrate contrastive learnable prompts, foundational concept anchors for tissue sections, and staining-specific concept anchors to leverage the extensive knowledge of the pathological VLM. This approach is designed to describe, frame, and enhance the direction of virtual staining. Furthermore, we have developed a data augmentation method based on the constraints of the VLM. This method utilizes the VLM's powerful image interpretation capabilities to further integrate image style and structural information, proving beneficial in high-precision pathological diagnostics. Extensive evaluations on publicly available multi-domain unpaired staining datasets demonstrate that our method can generate highly realistic images and enhance the accuracy of downstream tasks, such as glomerular detection and segmentation. Our code is available at: https://github.com/CZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR

Authors:Yixuan Zhu, Haolin Wang, Ao Li, Wenliang Zhao, Yansong Tang, Jingxuan Niu, Lei Chen, Jie Zhou, Jiwen Lu
Title: InstaRevive: One-Step Image Enhancement via Dynamic Score Matching
Abstract:
Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.

Authors:Eammon A. Littler, Emmanuel A. Mannoh, Ethan P. M. LaRochelle
Title: Fluorescence Reference Target Quantitative Analysis Library
Abstract:
Standardized performance evaluation of fluorescence imaging systems remains a critical unmet need in the field of fluorescence-guided surgery (FGS). While the American Association of Physicists in Medicine (AAPM) TG311 report and recent FDA draft guidance provide recommended metrics for system characterization, practical tools for extracting these metrics remain limited, inconsistent, and often inaccessible. We present QUEL-QAL, an open-source Python library designed to streamline and standardize the quantitative analysis of fluorescence images using solid reference targets. The library provides a modular, reproducible workflow that includes region of interest (ROI) detection, statistical analysis, and visualization capabilities. QUEL-QAL supports key metrics such as response linearity, limit of detection, depth sensitivity, and spatial resolution, in alignment with regulatory and academic guidance. Built on widely adopted Python packages, the library is designed to be extensible, enabling users to adapt it to novel target designs and analysis protocols. By promoting transparency, reproducibility, and regulatory alignment, QUEL-QAL offers a foundational tool to support standardized benchmarking and accelerate the development and evaluation of fluorescence imaging systems.

Authors:Atin Pothiraj, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Title: CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Abstract:
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty in counting in images. Code and data: https://github.com/atinpothiraj/CAPTURe

Authors:Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer, Alane Suhr
Title: Learning Adaptive Parallel Reasoning with Language Models
Abstract:
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.

Authors:David Ma, Yuanxing Zhang, Jincheng Ren, Jarvis Guo, Yifan Yao, Zhenlin Wei, Zhenzhu Yang, Zhongyuan Peng, Boyu Feng, Jun Ma, Xiao Gu, Zhoufutu Wen, King Zhu, Yancheng He, Meng Cao, Shiwen Ni, Jiaheng Liu, Wenhao Huang, Ge Zhang, Xiaojie Jin
Title: IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Abstract:
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.

Authors:Tajamul Ashraf, Rajes Manna, Partha Sarathi Purkayastha, Tavaheed Tariq, Janibul Bashir
Title: Context Aware Grounded Teacher for Source Free Object Detection
Abstract:
We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.

Authors:Wei Fang, Priyadarshini Panda
Title: Event2Vec: Processing neuromorphic events directly by representations in vector space
Abstract:
The neuromorphic event cameras have overwhelming advantages in temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, the event cameras output asynchronous, sparse, and irregular events, which are not compatible with mainstream computer vision and deep learning methods. Various methods have been proposed to solve this issue but at the cost of long preprocessing procedures, losing temporal resolutions, or being incompatible with massively parallel computation. Inspired by the great success of the word to vector, we summarize the similarities between words and events, then propose the first event to vector (event2vec) representation. We validate event2vec on classifying the ASL-DVS dataset, showing impressive parameter efficiency, accuracy, and speed than previous graph/image/voxel-based representations. Beyond task performance, the most attractive advantage of event2vec is that it aligns events to the domain of natural language processing, showing the promising prospect of integrating events into large language and multimodal models. Our codes, models, and training logs are available at https://github.com/fangwei123456/event2vec.

Authors:Wei Fang, Priyadarshini Panda
Title: Event2Vec: Processing Neuromorphic Events directly by Representations in Vector Space
Abstract:
Neuromorphic event cameras possess superior temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, their asynchronous and sparse data format poses a significant challenge for conventional deep learning methods. Existing solutions to this incompatibility often sacrifice temporal resolution, require extensive pre-processing, and do not fully leverage GPU acceleration. Inspired by word-to-vector models, we draw an analogy between words and events to introduce event2vec, a novel representation that allows neural networks to process events directly. This approach is fully compatible with the parallel processing and self-supervised learning capabilities of Transformer architectures. We demonstrate the effectiveness of event2vec on the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks. A comprehensive ablation study further analyzes our method's features and contrasts them with existing representations. The experimental results show that event2vec is remarkably parameter-efficient, has high throughput, and can achieve high accuracy even with an extremely low number of events. Beyond its performance, the most significant contribution of event2vec is a new paradigm that enables neural networks to process event streams as if they were natural language. This paradigm shift paves the way for the native integration of event cameras with large language models and multimodal models. Code, model, and training logs are provided in https://github.com/Intelligent-Computing-Lab-Panda/event2vec.

Authors:Qifan Yan, Andrew Liu, Shiqi He, Mathias Lécuyer, Ivan Beschastnikh
Title: FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching
Abstract:
Federated learning (FL) is a machine learning paradigm that facilitates massively distributed model training with end-user data on edge devices directed by a central server. However, the large number of heterogeneous clients in FL deployments leads to a communication bottleneck between the server and the clients. This bottleneck is made worse by straggling clients, any one of which will further slow down training. To tackle these challenges, researchers have proposed techniques like client sampling and update compression. These techniques work well in isolation but combine poorly in the downstream, server-to-client direction. This is because unselected clients have outdated local model states and need to synchronize these states with the server first. We introduce FedFetch, a strategy to mitigate the download time overhead caused by combining client sampling and compression techniques. FedFetch achieves this with an efficient prefetch schedule for clients to prefetch model states multiple rounds before a stated training round. We empirically show that adding FedFetch to communication efficient FL techniques reduces end-to-end training time by 1.26$\times$ and download time by 4.49$\times$ across compression techniques with heterogeneous client settings. Our implementation is available at https://github.com/DistributedML/FedFetch

Authors:Yike Zhang, Eduardo Davalos, Jack Noble
Title: Vision6D: 3D-to-2D Interactive Visualization and Annotation Tool for 6D Pose Estimation
Abstract:
Accurate 6D pose estimation has gained more attention over the years for robotics-assisted tasks that require precise interaction with physical objects. This paper presents an interactive 3D-to-2D visualization and annotation tool to support the 6D pose estimation research community. To the best of our knowledge, the proposed work is the first tool that allows users to visualize and manipulate 3D objects interactively on a 2D real-world scene, along with a comprehensive user study. This system supports robust 6D camera pose annotation by providing both visual cues and spatial relationships to determine object position and orientation in various environments. The annotation feature in Vision6D is particularly helpful in scenarios where the transformation matrix between the camera and world objects is unknown, as it enables accurate annotation of these objects' poses using only the camera intrinsic matrix. This capability serves as a foundational step in developing and training advanced pose estimation models across various domains. We evaluate Vision6D's effectiveness by utilizing widely-used open-source pose estimation datasets Linemod and HANDAL through comparisons between the default ground-truth camera poses with manual annotations. A user study was performed to show that Vision6D generates accurate pose annotations via visual cues in an intuitive 3D user interface. This approach aims to bridge the gap between 2D scene projections and 3D scenes, offering an effective way for researchers and developers to solve 6D pose annotation related problems. The software is open-source and publicly available at https://github.com/InteractiveGL/vision6D.

Authors:Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang, Gang Xiong, Yisheng Lv, Fei-Yue Wang
Title: Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Abstract:
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.

Authors:Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, Aditi Raghunathan
Title: Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
Abstract:
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic; multi-token approaches, namely teacherless training and diffusion models, comparatively excel in producing diverse and original output. Secondly, to elicit randomness without hurting coherence, we find that injecting noise at the input layer (dubbed seed-conditioning) works surprisingly as well as (and in some conditions, better than) temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and temperature sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity

Authors:Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, Aditi Raghunathan
Title: Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
Abstract:
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic; multi-token approaches, namely teacherless training and diffusion models, comparatively excel in producing diverse and original output. Secondly, to elicit randomness without hurting coherence, we find that injecting noise at the input layer (dubbed seed-conditioning) works surprisingly as well as (and in some conditions, better than) temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and temperature sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity

Authors:Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin, Tianyu Pang
Title: FlowReasoner: Reinforcing Query-Level Meta-Agents
Abstract:
This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems, i.e., one system per user query. Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning ability regarding the generation of multi-agent systems to FlowReasoner. Then, we further enhance it via reinforcement learning (RL) with external execution feedback. A multi-purpose reward is designed to guide the RL training from aspects of performance, complexity, and efficiency. In this manner, FlowReasoner is enabled to generate a personalized multi-agent system for each user query via deliberative reasoning. Experiments on both engineering and competition code benchmarks demonstrate the superiority of FlowReasoner. Remarkably, it surpasses o1-mini by 10.52% accuracy across three benchmarks. The code is available at https://github.com/sail-sg/FlowReasoner.

Authors:Anirudh Khatry, Robert Zhang, Jia Pan, Ziteng Wang, Qiaochu Chen, Greg Durrett, Isil Dillig
Title: CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
Abstract:
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.

Authors:Anirudh Khatry, Robert Zhang, Jia Pan, Ziteng Wang, Qiaochu Chen, Greg Durrett, Isil Dillig
Title: CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
Abstract:
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.

Authors:Yilun Zhou, Austin Xu, Peifeng Wang, Caiming Xiong, Shafiq Joty
Title: Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
Abstract:
Scaling test-time computation, or affording a generator large language model (LLM) extra compute during inference, typically employs the help of external non-generative evaluators (i.e., reward models). Concurrently, LLM-judges, models trained to generate evaluations and critiques (explanations) in natural language, are becoming increasingly popular in automatic evaluation. Despite judge empirical successes, their effectiveness as evaluators in test-time scaling settings is largely unknown. In this paper, we introduce the Judge Evaluation for Test-Time Scaling (JETTS) benchmark, which evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings: response reranking, step-level beam search, and critique-based response refinement. We evaluate 10 different judge models (7B-70B parameters) for 8 different base generator models (6.7B-72B parameters). Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures. Furthermore, though unique to LLM-judges, their natural language critiques are currently ineffective in guiding the generator towards better responses.

Authors:Xiaoyu Han, Shunyuan Zheng, Zonglin Li, Chenyang Wang, Xin Sun, Quanling Meng
Title: Shape-Guided Clothing Warping for Virtual Try-On
Abstract:
Image-based virtual try-on aims to seamlessly fit in-shop clothing to a person image while maintaining pose consistency. Existing methods commonly employ the thin plate spline (TPS) transformation or appearance flow to deform in-shop clothing for aligning with the person's body. Despite their promising performance, these methods often lack precise control over fine details, leading to inconsistencies in shape between clothing and the person's body as well as distortions in exposed limb regions. To tackle these challenges, we propose a novel shape-guided clothing warping method for virtual try-on, dubbed SCW-VTON, which incorporates global shape constraints and additional limb textures to enhance the realism and consistency of the warped clothing and try-on results. To integrate global shape constraints for clothing warping, we devise a dual-path clothing warping module comprising a shape path and a flow path. The former path captures the clothing shape aligned with the person's body, while the latter path leverages the mapping between the pre- and post-deformation of the clothing shape to guide the estimation of appearance flow. Furthermore, to alleviate distortions in limb regions of try-on results, we integrate detailed limb guidance by developing a limb reconstruction network based on masked image modeling. Through the utilization of SCW-VTON, we are able to generate try-on results with enhanced clothing shape consistency and precise control over details. Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. The code is available at https://github.com/xyhanHIT/SCW-VTON.

Authors:Sarah Alnegheimish, Zelin He, Matthew Reimherr, Akash Chandrayan, Abhinav Pradhan, Luca D'Angelo
Title: M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding
Abstract:
With the widespread availability of sensor data across industrial and operational systems, we frequently encounter heterogeneous time series from multiple systems. Anomaly detection is crucial for such systems to facilitate predictive maintenance. However, most existing anomaly detection methods are designed for either univariate or single-system multivariate data, making them insufficient for these complex scenarios. To address this, we introduce M$^2$AD, a framework for unsupervised anomaly detection in multivariate time series data from multiple systems. M$^2$AD employs deep models to capture expected behavior under normal conditions, using the residuals as indicators of potential anomalies. These residuals are then aggregated into a global anomaly score through a Gaussian Mixture Model and Gamma calibration. We theoretically demonstrate that this framework can effectively address heterogeneity and dependencies across sensors and systems. Empirically, M$^2$AD outperforms existing methods in extensive evaluations by 21% on average, and its effectiveness is demonstrated on a large-scale real-world case study on 130 assets in Amazon Fulfillment Centers. Our code and results are available at https://github.com/sarahmish/M2AD.

Authors:Amirmohammad Mohammadi, Davelle Carreiro, Alexandra Van Dine, Joshua Peeples
Title: Histogram-based Parameter-efficient Tuning for Passive Sonar Classification
Abstract:
Parameter-efficient transfer learning (PETL) methods adapt large artificial neural networks to downstream tasks without fine-tuning the entire model. However, existing additive methods, such as adapters, sometimes struggle to capture distributional shifts in intermediate feature embeddings. We propose a novel histogram-based parameter-efficient tuning (HPT) technique that captures the statistics of the target domain and modulates the embeddings. Experimental results on three downstream passive sonar datasets (ShipsEar, DeepShip, VTUAD) demonstrate that HPT outperforms conventional adapters. Notably, HPT achieves 91.8% vs. 89.8% accuracy on VTUAD. Furthermore, HPT trains faster and yields feature representations closer to those of fully fine-tuned models. Overall, HPT balances parameter savings and performance, providing a distribution-aware alternative to existing adapters and shows a promising direction for scalable transfer learning in resource-constrained environments. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/HLAST_DeepShip_ParameterEfficient.

Authors:Andy Wanna, Hanqiu Chen, Cong Hao
Title: ForgeBench: A Machine Learning Benchmark Suite and Auto-Generation Framework for Next-Generation HLS Tools
Abstract:
Although High-Level Synthesis (HLS) has attracted considerable interest in hardware design, it has not yet become mainstream due to two primary challenges. First, current HLS hardware design benchmarks are outdated as they do not cover modern machine learning (ML) applications, preventing the rigorous development of HLS tools on ML-focused hardware design. Second, existing HLS tools are outdated because they predominantly target individual accelerator designs and lack an architecture-oriented perspective to support common hardware module extraction and reuse, limiting their adaptability and broader applicability. Motivated by these two limitations, we propose ForgeBench, an ML-focused benchmark suite with a hardware design auto-generation framework for next-generation HLS tools. In addition to the auto-generation framework, we provide two ready-to-use benchmark suites. The first contains over 6,000 representative ML HLS designs. We envision future HLS tools being architecture-oriented, capable of automatically identifying common computational modules across designs, and supporting flexible dataflow and control. Accordingly, the second benchmark suite includes ML HLS designs with possible resource sharing manually implemented to highlight the necessity of architecture-oriented design, ensuring it is future-HLS ready. ForgeBench is open-sourced at https://github.com/hchen799/ForgeBench .

Authors:Chengxi Han, Xiaoyu Su, Zhiqiang Wei, Meiqi Hu, Yichu Xu
Title: HSANET: A Hybrid Self-Cross Attention Network For Remote Sensing Change Detection
Abstract:
The remote sensing image change detection task is an essential method for large-scale monitoring. We propose HSANet, a network that uses hierarchical convolution to extract multi-scale features. It incorporates hybrid self-attention and cross-attention mechanisms to learn and fuse global and cross-scale information. This enables HSANet to capture global context at different scales and integrate cross-scale features, refining edge details and improving detection performance. We will also open-source our model code: https://github.com/ChengxiHAN/HSANet.

Authors:Juyeon Kim, Geon Lee, Taeuk Kim, Kijung Shin
Title: KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking
Abstract:
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.

Authors:Ziwen Xu, Shuxun Wang, Kewei Xu, Haoming Xu, Mengru Wang, Xinle Deng, Yunzhi Yao, Guozhou Zheng, Huajun Chen, Ningyu Zhang
Title: EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
Abstract:
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://www.youtube.com/watch?v=AkfoiPfp5rQ for a quick introduction.

Authors:Yiqian Yang
Title: NeuGaze: Reshaping the future BCI
Abstract:
Traditional brain-computer interfaces (BCIs), reliant on costly electroencephalography or invasive implants, struggle with complex human-computer interactions due to setup complexity and limited precision. We present NeuGaze, a novel webcam-based system that leverages eye gaze, head movements, and facial expressions to enable intuitive, real-time control using only a standard 30 Hz webcam, often pre-installed in laptops. Requiring minimal calibration, NeuGaze achieves performance comparable to conventional inputs, supporting precise cursor navigation, key triggering via an efficient skill wheel, and dynamic gaming interactions, such as defeating formidable opponents in first-person games. By harnessing preserved neck-up functionalities in motor-impaired individuals, NeuGaze eliminates the need for specialized hardware, offering a low-cost, accessible alternative to BCIs. This paradigm empowers diverse applications, from assistive technology to entertainment, redefining human-computer interaction for motor-impaired users. Project is at \href{https://github.com/NeuSpeech/NeuGaze}{github.com/NeuSpeech/NeuGaze}.

Authors:Louis Bradshaw, Simon Colton
Title: Aria-MIDI: A Dataset of Piano MIDI Files for Symbolic Music Modeling
Abstract:
We introduce an extensive new dataset of MIDI files, created by transcribing audio recordings of piano performances into their constituent notes. The data pipeline we use is multi-stage, employing a language model to autonomously crawl and score audio recordings from the internet based on their metadata, followed by a stage of pruning and segmentation using an audio classifier. The resulting dataset contains over one million distinct MIDI files, comprising roughly 100,000 hours of transcribed audio. We provide an in-depth analysis of our techniques, offering statistical insights, and investigate the content by extracting metadata tags, which we also provide. Dataset available at https://github.com/loubbrad/aria-midi.

Authors:Minjin Choi, Sunkyung Lee, Seongmin Park, Jongwuk Lee
Title: Linear Item-Item Model with Neural Knowledge for Session-based Recommendation
Abstract:
Session-based recommendation (SBR) aims to predict users' subsequent actions by modeling short-term interactions within sessions. Existing neural models primarily focus on capturing complex dependencies for sequential item transitions. As an alternative solution, linear item-item models mainly identify strong co-occurrence patterns across items and support faster inference speed. Although each paradigm has been actively studied in SBR, their fundamental differences in capturing item relationships and how to bridge these distinct modeling paradigms effectively remain unexplored. In this paper, we propose a novel SBR model, namely Linear Item-Item model with Neural Knowledge (LINK), which integrates both types of knowledge into a unified linear framework. Specifically, we design two specialized components of LINK: (i) Linear knowledge-enhanced Item-item Similarity model (LIS), which refines the item similarity correlation via self-distillation, and (ii) Neural knowledge-enhanced Item-item Transition model (NIT), which seamlessly incorporates complicated neural knowledge distilled from the off-the-shelf neural model. Extensive experiments demonstrate that LINK outperforms state-of-the-art linear SBR models across six real-world datasets, achieving improvements of up to 14.78% and 11.04% in Recall@20 and MRR@20 while showing up to 813x fewer inference FLOPs. Our code is available at https://github.com/jin530/LINK.

Authors:Quy-Anh Dang, Chris Ngo, Truong-Son Hy
Title: RainbowPlus: Enhancing Adversarial Prompt Generation via Evolutionary Quality-Diversity Search
Abstract:
Large Language Models (LLMs) exhibit remarkable capabilities but are susceptible to adversarial prompts that exploit vulnerabilities to produce unsafe or biased outputs. Existing red-teaming methods often face scalability challenges, resource-intensive requirements, or limited diversity in attack strategies. We propose RainbowPlus, a novel red-teaming framework rooted in evolutionary computation, enhancing adversarial prompt generation through an adaptive quality-diversity (QD) search that extends classical evolutionary algorithms like MAP-Elites with innovations tailored for language models. By employing a multi-element archive to store diverse high-quality prompts and a comprehensive fitness function to evaluate multiple prompts concurrently, RainbowPlus overcomes the constraints of single-prompt archives and pairwise comparisons in prior QD methods like Rainbow Teaming. Experiments comparing RainbowPlus to QD methods across six benchmark datasets and four open-source LLMs demonstrate superior attack success rate (ASR) and diversity (Diverse-Score $\approx 0.84$), generating up to 100 times more unique prompts (e.g., 10,418 vs. 100 for Ministral-8B-Instruct-2410). Against nine state-of-the-art methods on the HarmBench dataset with twelve LLMs (ten open-source, two closed-source), RainbowPlus achieves an average ASR of 81.1%, surpassing AutoDAN-Turbo by 3.9%, and is 9 times faster (1.45 vs. 13.50 hours). Our open-source implementation fosters further advancements in LLM safety, offering a scalable tool for vulnerability assessment. Code and resources are publicly available at https://github.com/knoveleng/rainbowplus, supporting reproducibility and future research in LLM red-teaming.

Authors:Shilin Zhang, Zican Hu, Wenhao Wu, Xinyi Xie, Jianxiang Tang, Chunlin Chen, Daoyi Dong, Yu Cheng, Zhenhong Sun, Zhi Wang
Title: Text-to-Decision Agent: Offline Meta-Reinforcement Learning from Natural Language Supervision
Abstract:
Offline meta-RL usually tackles generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose \textbf{T}ext-to-\textbf{D}ecision \textbf{A}gent (\textbf{T2DA}), a simple and scalable framework that supervises offline meta-RL with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines. Our code is available at https://github.com/NJU-RL/T2DA.

Authors:Shiben Liu, Huijie Fan, Qiang Wang, Baojie Fan, Yandong Tang, Liangqiong Qu
Title: Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Abstract:
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.

Authors:Weijie He, Mushui Liu, Yunlong Yu, Zhao Wang, Chao Wu
Title: DyST-XL: Dynamic Layout Planning and Content Control for Compositional Text-to-Video Generation
Abstract:
Compositional text-to-video generation, which requires synthesizing dynamic scenes with multiple interacting entities and precise spatial-temporal relationships, remains a critical challenge for diffusion-based models. Existing methods struggle with layout discontinuity, entity identity drift, and implausible interaction dynamics due to unconstrained cross-attention mechanisms and inadequate physics-aware reasoning. To address these limitations, we propose DyST-XL, a \textbf{training-free} framework that enhances off-the-shelf text-to-video models (e.g., CogVideoX-5B) through frame-aware control. DyST-XL integrates three key innovations: (1) A Dynamic Layout Planner that leverages large language models (LLMs) to parse input prompts into entity-attribute graphs and generates physics-aware keyframe layouts, with intermediate frames interpolated via trajectory optimization; (2) A Dual-Prompt Controlled Attention Mechanism that enforces localized text-video alignment through frame-aware attention masking, achieving precise control over individual entities; and (3) An Entity-Consistency Constraint strategy that propagates first-frame feature embeddings to subsequent frames during denoising, preserving object identity without manual annotation. Experiments demonstrate that DyST-XL excels in compositional text-to-video generation, significantly improving performance on complex prompts and bridging a crucial gap in training-free video synthesis. The code is released in https://github.com/XiaoBuL/DyST-XL.

Authors:Hong-Tao Yu, Xiu-Shen Wei, Yuxin Peng, Serge Belongie
Title: Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation
Abstract:
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal perception capabilities, garnering significant attention. While numerous evaluation studies have emerged, assessing LVLMs both holistically and on specialized tasks, fine-grained image tasks-fundamental to computer vision-remain largely unexplored. To fill this gap, we introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 1.01 million questions and 0.33 million images. Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives, focusing on their semantic recognition and fine-grained feature representation capabilities. Through extensive experiments on twelve representative LVLMs/VLMs, we uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance. This work provides critical insights into the limitations of current LVLMs and offers guidance for future data construction and model design in the development of more advanced LVLMs. Our code is open-source and available at https://github.com/SEU-VIPGroup/FG-BMK.

Authors:Qianyu Zhu, Junjie Wang, Jeremiah Hu, Jia Ai, Yong Lee
Title: PIV-FlowDiffuser:Transfer-learning-based denoising diffusion models for PIV
Abstract:
Deep learning algorithms have significantly reduced the computational time and improved the spatial resolution of particle image velocimetry~(PIV). However, the models trained on synthetic datasets might have a degraded performance on practical particle images due to domain gaps. As a result, special residual patterns are often observed for the vector fields of deep learning-based estimators. To reduce the special noise step-by-step, we employ a denoising diffusion model~(FlowDiffuser) for PIV analysis. And the data-hungry iterative denoising diffusion model is trained via a transfer learning strategy, resulting in our PIV-FlowDiffuser method. Specifically, (1) pre-training a FlowDiffuser model with multiple optical flow datasets of the computer vision community, such as Sintel, KITTI, etc; (2) fine-tuning the pre-trained model on synthetic PIV datasets. Note that the PIV images are upsampled by a factor of two to resolve the small-scale turbulent flow structures. The visualized results indicate that our PIV-FlowDiffuser effectively suppresses the noise patterns. Therefore, the denoising diffusion model reduces the average end-point error~($AEE$) by 59.4% over RAFT256-PIV baseline on the classic Cai's dataset. Besides, PIV-FlowDiffuser exhibits enhanced generalization performance on unseen particle images due to transfer learning. Overall, this study highlights the transfer-learning-based denoising diffusion models for PIV. And a detailed implementation is recommended for interested readers in the repository https://github.com/Zhu-Qianyu/PIV-FlowDiffuser.

Authors:Geng Li, Jinglin Xu, Yunzhen Zhao, Yuxin Peng
Title: DyFo: A Training-Free Dynamic Focus Visual Search for Enhancing LMMs in Fine-Grained Visual Understanding
Abstract:
Humans can effortlessly locate desired objects in cluttered environments, relying on a cognitive mechanism known as visual search to efficiently filter out irrelevant information and focus on task-related regions. Inspired by this process, we propose Dyfo (Dynamic Focus), a training-free dynamic focusing visual search method that enhances fine-grained visual understanding in large multimodal models (LMMs). Unlike existing approaches which require additional modules or data collection, Dyfo leverages a bidirectional interaction between LMMs and visual experts, using a Monte Carlo Tree Search (MCTS) algorithm to simulate human-like focus adjustments. This enables LMMs to focus on key visual regions while filtering out irrelevant content, without introducing additional training caused by vocabulary expansion or the integration of specialized localization modules. Experimental results demonstrate that Dyfo significantly improves fine-grained visual understanding and reduces hallucination issues in LMMs, achieving superior performance across both fixed and dynamic resolution models. The code is available at https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025

Authors:Huadai Liu, Tianyi Luo, Kaicheng Luo, Qikai Jiang, Peiwen Sun, Jialei Wang, Rongjie Huang, Qian Chen, Wen Wang, Xiangtai Li, Shiliang Zhang, Zhijie Yan, Zhou Zhao, Wei Xue
Title: OmniAudio: Generating Spatial Audio from 360-Degree Video
Abstract:
Traditional video-to-audio generation techniques primarily focus on perspective video and non-spatial audio, often missing the spatial cues necessary for accurately representing sound sources in 3D environments. To address this limitation, we introduce a novel task, 360V2SA, to generate spatial audio from 360-degree videos, specifically producing First-order Ambisonics (FOA) audio - a standard format for representing 3D spatial audio that captures sound directionality and enables realistic 3D audio reproduction. We first create Sphere360, a novel dataset tailored for this task that is curated from real-world data. We also design an efficient semi-automated pipeline for collecting and cleaning paired video-audio data. To generate spatial audio from 360-degree video, we propose a novel framework OmniAudio, which leverages self-supervised pre-training using both spatial audio data (in FOA format) and large-scale non-spatial data. Furthermore, OmniAudio features a dual-branch framework that utilizes both panoramic and perspective video inputs to capture comprehensive local and global information from 360-degree videos. Experimental results demonstrate that OmniAudio achieves state-of-the-art performance across both objective and subjective metrics on Sphere360. Code and datasets are available at https://github.com/liuhuadai/OmniAudio. The project website is available at https://OmniAudio-360V2SA.github.io.

Authors:Yingming Zheng, Xiaoliang Liu, Peng Wu, Li Pan
Title: CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs
Abstract:
The rapid spread of misinformation, driven by digital media and AI-generated content, has made automatic claim verification essential. Traditional methods, which depend on expert-annotated evidence, are labor-intensive and not scalable. Although recent automated systems have improved, they still struggle with complex claims that require nuanced reasoning. To address this, we propose CRAVE, a Conflicting Reasoning Approach for explainable claim VErification, that verify the complex claims based on the conflicting rationales reasoned by large language models (LLMs). Specifically, CRAVE introduces a three-module framework. Ambiguity Elimination enchanced Evidence Retrieval module performs ambiguity elimination and entity-based search to gather relevant evidence related to claim verification from external sources like Wikipedia. Conflicting Perspective Reasoning and Preliminary Judgment module with LLMs adopts LLMs to reason rationales with conflicting stances about claim verification from retrieved evidence across four dimensions, i.e., direct evidence, semantic relationships, linguistic patterns, and logical reasoning and make a preliminary judgment. Finally, Small Language Model (SLM) based Judge module is fine-tuned to make use of preliminary judgment from LLMs to assess the confidence of the conflicting rationales and make a final authenticity judgment. This methodology allows CRAVE to capture subtle inconsistencies in complex claims, improving both the accuracy and transparency of claim verification. Extensive experiments on two public claim verification datasets demonstrate that our CRAVE model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for finding relevant evidence and explaining the model predictions. The code is provided at https://github.com/8zym/CRAVE.

Authors:Chenjie Cao, Jingkai Zhou, Shikai Li, Jingyun Liang, Chaohui Yu, Fan Wang, Xiangyang Xue, Yanwei Fu
Title: Uni3C: Unifying Precisely 3D-Enhanced Camera and Human Motion Controls for Video Generation
Abstract:
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.

Authors:Jingzehua Xu, Guanwen Xie, Jiwei Tang, Yimian Ding, Weiyi Liu, Shuai Zhang, Yi Li
Title: Never too Cocky to Cooperate: An FIM and RL-based USV-AUV Collaborative System for Underwater Tasks in Extreme Sea Conditions
Abstract:
This paper develops a novel unmanned surface vehicle (USV)-autonomous underwater vehicle (AUV) collaborative system designed to enhance underwater task performance in extreme sea conditions. The system integrates a dual strategy: (1) high-precision multi-AUV localization enabled by Fisher information matrix-optimized USV path planning, and (2) reinforcement learning-based cooperative planning and control method for multi-AUV task execution. Extensive experimental evaluations in the underwater data collection task demonstrate the system's operational feasibility, with quantitative results showing significant performance improvements over baseline methods. The proposed system exhibits robust coordination capabilities between USV and AUVs while maintaining stability in extreme sea conditions. To facilitate reproducibility and community advancement, we provide an open-source simulation toolkit available at: https://github.com/360ZMEM/USV-AUV-colab .

Authors:Aihua Zheng, Yongqi Sun, Zi Wang, Chenglong Li, Jin Tang
Title: Collaborative Enhancement Network for Low-quality Multi-spectral Vehicle Re-identification
Abstract:
The performance of multi-spectral vehicle Re-identification (ReID) is significantly degraded when some important discriminative cues in visible, near infrared and thermal infrared spectra are lost. Existing methods generate or enhance missing details in low-quality spectra data using the high-quality one, generally called the primary spectrum, but how to justify the primary spectrum is a challenging problem. In addition, when the quality of the primary spectrum is low, the enhancement effect would be greatly degraded, thus limiting the performance of multi-spectral vehicle ReID. To address these problems, we propose the Collaborative Enhancement Network (CoEN), which generates a high-quality proxy from all spectra data and leverages it to supervise the selection of primary spectrum and enhance all spectra features in a collaborative manner, for robust multi-spectral vehicle ReID. First, to integrate the rich cues from all spectra data, we design the Proxy Generator (PG) to progressively aggregate multi-spectral features. Second, we design the Dynamic Quality Sort Module (DQSM), which sorts all spectra data by measuring their correlations with the proxy, to accurately select the primary spectra with the highest correlation. Finally, we design the Collaborative Enhancement Module (CEM) to effectively compensate for missing contents of all spectra by collaborating the primary spectra and the proxy, thereby mitigating the impact of low-quality primary spectra. Extensive experiments on three benchmark datasets are conducted to validate the efficacy of the proposed approach against other multi-spectral vehicle ReID methods. The codes will be released at https://github.com/yongqisun/CoEN.

Authors:Chris Dongjoo Kim, Jihwan Moon, Sangwoo Moon, Heeseung Yun, Sihaeng Lee, Aniruddha Kembhavi, Soonyoung Lee, Gunhee Kim, Sangho Lee, Christopher Clark
Title: ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams
Abstract:
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.

Authors:Yiming Luo, Yunfei Wang, Hongming Chen, Chengkai Wu, Ximin Lyu, Jinni Zhou, Jun Ma, Fu Zhang, Boyu Zhou
Title: FERMI: Flexible Radio Mapping with a Hybrid Propagation Model and Scalable Autonomous Data Collection
Abstract:
Communication is fundamental for multi-robot collaboration, with accurate radio mapping playing a crucial role in predicting signal strength between robots. However, modeling radio signal propagation in large and occluded environments is challenging due to complex interactions between signals and obstacles. Existing methods face two key limitations: they struggle to predict signal strength for transmitter-receiver pairs not present in the training set, while also requiring extensive manual data collection for modeling, making them impractical for large, obstacle-rich scenarios. To overcome these limitations, we propose FERMI, a flexible radio mapping framework. FERMI combines physics-based modeling of direct signal paths with a neural network to capture environmental interactions with radio signals. This hybrid model learns radio signal propagation more efficiently, requiring only sparse training data. Additionally, FERMI introduces a scalable planning method for autonomous data collection using a multi-robot team. By increasing parallelism in data collection and minimizing robot travel costs between regions, overall data collection efficiency is significantly improved. Experiments in both simulation and real-world scenarios demonstrate that FERMI enables accurate signal prediction and generalizes well to unseen positions in complex environments. It also supports fully autonomous data collection and scales to different team sizes, offering a flexible solution for creating radio maps. Our code is open-sourced at https://github.com/ymLuo1214/Flexible-Radio-Mapping.

Authors:Qiushi Xiong, Zhipeng Xu, Zhenghao Liu, Mengjia Wang, Zulong Chen, Yue Sun, Yu Gu, Xiaohua Li, Ge Yu
Title: Enhancing the Patent Matching Capability of Large Language Models via the Memory Graph
Abstract:
Intellectual Property (IP) management involves strategically protecting and utilizing intellectual assets to enhance organizational innovation, competitiveness, and value creation. Patent matching is a crucial task in intellectual property management, which facilitates the organization and utilization of patents. Existing models often rely on the emergent capabilities of Large Language Models (LLMs) and leverage them to identify related patents directly. However, these methods usually depend on matching keywords and overlook the hierarchical classification and categorical relationships of patents. In this paper, we propose MemGraph, a method that augments the patent matching capabilities of LLMs by incorporating a memory graph derived from their parametric memory. Specifically, MemGraph prompts LLMs to traverse their memory to identify relevant entities within patents, followed by attributing these entities to corresponding ontologies. After traversing the memory graph, we utilize extracted entities and ontologies to improve the capability of LLM in comprehending the semantics of patents. Experimental results on the PatentMatch dataset demonstrate the effectiveness of MemGraph, achieving a 17.68% performance improvement over baseline LLMs. The further analysis highlights the generalization ability of MemGraph across various LLMs, both in-domain and out-of-domain, and its capacity to enhance the internal reasoning processes of LLMs during patent matching. All data and codes are available at https://github.com/NEUIR/MemGraph.

Authors:Ryu Tadokoro, Tsukasa Takagi, Shin-ichi Maeda
Title: Segmentation with Noisy Labels via Spatially Correlated Distributions
Abstract:
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szegö (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.

Authors:Sirui Zeng, Xifeng Yan
Title: ADL: A Declarative Language for Agent-Based Chatbots
Abstract:
There are numerous frameworks capable of creating and orchestrating agents to address complex tasks. However, most of them highly coupled Python programming with agent declaration, making it hard for maintenance and runtime optimization. In this work, we introduce ADL, an agent declarative language for customer service chatbots. ADL abstracts away implementation details, offering a declarative way to define agents and their interactions, which could ease maintenance and debugging. It also incorporates natural language programming at its core to simplify the specification and communication of chatbot designs. ADL includes four basic types of agents and supports integration with custom functions, tool use, and third-party agents. MICA, a multi-agent system designed to interpret and execute ADL programs, has been developed and is now available as an open-source project at https://github.com/Mica-labs/MICA. Its documentation can be found at https://mica-labs.github.io/.

Authors:Wenhui Zhu, Peijie Qiu, Xiwen Chen, Zhangsihao Yang, Aristeidis Sotiras, Abolfazl Razi, Yalin Wang
Title: How Effective Can Dropout Be in Multiple Instance Learning ?
Abstract:
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.

Authors:Chin-Yun Yu, Marco A. Martínez-Ramírez, Junghyun Koo, Ben Hayes, Wei-Hsiang Liao, György Fazekas, Yuki Mitsufuji
Title: DiffVox: A Differentiable Model for Capturing and Analysing Vocal Effects Distributions
Abstract:
This study introduces a novel and interpretable model, DiffVox, for matching vocal effects in music production. DiffVox, short for ``Differentiable Vocal Fx", integrates parametric equalisation, dynamic range control, delay, and reverb with efficient differentiable implementations to enable gradient-based optimisation for parameter estimation. Vocal presets are retrieved from two datasets, comprising 70 tracks from MedleyDB and 365 tracks from a private collection. Analysis of parameter correlations reveals strong relationships between effects and parameters, such as the high-pass and low-shelf filters often working together to shape the low end, and the delay time correlating with the intensity of the delayed signals. Principal component analysis reveals connections to McAdams' timbre dimensions, where the most crucial component modulates the perceived spaciousness while the secondary components influence spectral brightness. Statistical testing confirms the non-Gaussian nature of the parameter distribution, highlighting the complexity of the vocal effects space. These initial findings on the parameter distributions set the foundation for future research in vocal effects modelling and automatic mixing. Our source code and datasets are accessible at https://github.com/SonyResearch/diffvox.

Authors:Bowei Zhang, Lei Ke, Adam W. Harley, Katerina Fragkiadaki
Title: TAPIP3D: Tracking Any Point in Persistent 3D Geometry
Abstract:
We introduce TAPIP3D, a novel approach for long-term 3D point tracking in monocular RGB and RGB-D videos. TAPIP3D represents videos as camera-stabilized spatio-temporal feature clouds, leveraging depth and camera motion information to lift 2D video features into a 3D world space where camera movement is effectively canceled out. Within this stabilized 3D representation, TAPIP3D iteratively refines multi-frame motion estimates, enabling robust point tracking over long time horizons. To handle the irregular structure of 3D point distributions, we propose a 3D Neighborhood-to-Neighborhood (N2N) attention mechanism - a 3D-aware contextualization strategy that builds informative, spatially coherent feature neighborhoods to support precise trajectory estimation. Our 3D-centric formulation significantly improves performance over existing 3D point tracking methods and even surpasses state-of-the-art 2D pixel trackers in accuracy when reliable depth is available. The model supports inference in both camera-centric (unstabilized) and world-centric (stabilized) coordinates, with experiments showing that compensating for camera motion leads to substantial gains in tracking robustness. By replacing the conventional 2D square correlation windows used in prior 2D and 3D trackers with a spatially grounded 3D attention mechanism, TAPIP3D achieves strong and consistent results across multiple 3D point tracking benchmarks. Project Page: https://tapip3d.github.io

Authors:Yeoreum Lee, Jinwook Jung, Sungyong Baik
Title: Mitigating Parameter Interference in Model Merging via Sharpness-Aware Fine-Tuning
Abstract:
Large-scale deep learning models with a pretraining-finetuning paradigm have led to a surge of numerous task-specific models fine-tuned from a common pre-trained model. Recently, several research efforts have been made on merging these large models into a single multi-task model, particularly with simple arithmetic on parameters. Such merging methodology faces a central challenge: interference between model parameters fine-tuned on different tasks. Few recent works have focused on designing a new fine-tuning scheme that can lead to small parameter interference, however at the cost of the performance of each task-specific fine-tuned model and thereby limiting that of a merged model. To improve the performance of a merged model, we note that a fine-tuning scheme should aim for (1) smaller parameter interference and (2) better performance of each fine-tuned model on the corresponding task. In this work, we aim to design a new fine-tuning objective function to work towards these two goals. In the course of this process, we find such objective function to be strikingly similar to sharpness-aware minimization (SAM) objective function, which aims to achieve generalization by finding flat minima. Drawing upon our observation, we propose to fine-tune pre-trained models via sharpness-aware minimization. The experimental and theoretical results showcase the effectiveness and orthogonality of our proposed approach, improving performance upon various merging and fine-tuning methods. Our code is available at https://github.com/baiklab/SAFT-Merge.

Authors:Binjie Guo, Hanyu Zheng, Guowei Su, Ru Zhang, Haohan Jiang, Xurong Lin, Hongyan Wei, Aisheng Mo, Jie Li, Zhiyuan Qian, Zhuhao Zhang, Xiaoyuan Cheng
Title: AlphaZero-Edu: Making AlphaZero Accessible to Everyone
Abstract:
Recent years have witnessed significant progress in reinforcement learning, especially with Zero-like paradigms, which have greatly boosted the generalization and reasoning abilities of large-scale language models. Nevertheless, existing frameworks are often plagued by high implementation complexity and poor reproducibility. To tackle these challenges, we present AlphaZero-Edu, a lightweight, education-focused implementation built upon the mathematical framework of AlphaZero. It boasts a modular architecture that disentangles key components, enabling transparent visualization of the algorithmic processes. Additionally, it is optimized for resource-efficient training on a single NVIDIA RTX 3090 GPU and features highly parallelized self-play data generation, achieving a 3.2-fold speedup with 8 processes. In Gomoku matches, the framework has demonstrated exceptional performance, achieving a consistently high win rate against human opponents. AlphaZero-Edu has been open-sourced at https://github.com/StarLight1212/AlphaZero_Edu, providing an accessible and practical benchmark for both academic research and industrial applications.

Authors:Haiyan Qin, Jiahao Feng, Xiaotong Feng, Wei W. Xing, Wang Kang
Title: Towards Optimal Circuit Generation: Multi-Agent Collaboration Meets Collective Intelligence
Abstract:
Large language models (LLMs) have transformed code generation, yet their application in hardware design produces gate counts 38\%--1075\% higher than human designs. We present CircuitMind, a multi-agent framework that achieves human-competitive efficiency through three key innovations: syntax locking (constraining generation to basic logic gates), retrieval-augmented generation (enabling knowledge-driven design), and dual-reward optimization (balancing correctness with efficiency). To evaluate our approach, we introduce TC-Bench, the first gate-level benchmark harnessing collective intelligence from the TuringComplete ecosystem -- a competitive circuit design platform with hundreds of thousands of players. Experiments show CircuitMind enables 55.6\% of model implementations to match or exceed top-tier human experts in composite efficiency metrics. Most remarkably, our framework elevates the 14B Phi-4 model to outperform both GPT-4o mini and Gemini 2.0 Flash, achieving efficiency comparable to the top 25\% of human experts without requiring specialized training. These innovations establish a new paradigm for hardware optimization where collaborative AI systems leverage collective human expertise to achieve optimal circuit designs. Our model, data, and code are open-source at https://github.com/BUAA-CLab/CircuitMind.

Authors:Zhenkui Yang, Zeyi Huang, Ge Wang, Han Ding, Tony Xiao Han, Fei Wang
Title: Talk is Not Always Cheap: Promoting Wireless Sensing Models with Text Prompts
Abstract:
Wireless signal-based human sensing technologies, such as WiFi, millimeter-wave (mmWave) radar, and Radio Frequency Identification (RFID), enable the detection and interpretation of human presence, posture, and activities, thereby providing critical support for applications in public security, healthcare, and smart environments. These technologies exhibit notable advantages due to their non-contact operation and environmental adaptability; however, existing systems often fail to leverage the textual information inherent in datasets. To address this, we propose an innovative text-enhanced wireless sensing framework, WiTalk, that seamlessly integrates semantic knowledge through three hierarchical prompt strategies-label-only, brief description, and detailed action description-without requiring architectural modifications or incurring additional data costs. We rigorously validate this framework across three public benchmark datasets: XRF55 for human action recognition (HAR), and WiFiTAL and XRFV2 for WiFi temporal action localization (TAL). Experimental results demonstrate significant performance improvements: on XRF55, accuracy for WiFi, RFID, and mmWave increases by 3.9%, 2.59%, and 0.46%, respectively; on WiFiTAL, the average performance of WiFiTAD improves by 4.98%; and on XRFV2, the mean average precision gains across various methods range from 4.02% to 13.68%. Our codes have been included in https://github.com/yangzhenkui/WiTalk.

Authors:Siyi Jiao, Wenzheng Zeng, Yerong Li, Huayu Zhang, Changxin Gao, Nong Sang, Mike Zheng Shou
Title: MP-Mat: A 3D-and-Instance-Aware Human Matting and Editing Framework with Multiplane Representation
Abstract:
Human instance matting aims to estimate an alpha matte for each human instance in an image, which is challenging as it easily fails in complex cases requiring disentangling mingled pixels belonging to multiple instances along hairy and thin boundary structures. In this work, we address this by introducing MP-Mat, a novel 3D-and-instance-aware matting framework with multiplane representation, where the multiplane concept is designed from two different perspectives: scene geometry level and instance level. Specifically, we first build feature-level multiplane representations to split the scene into multiple planes based on depth differences. This approach makes the scene representation 3D-aware, and can serve as an effective clue for splitting instances in different 3D positions, thereby improving interpretability and boundary handling ability especially in occlusion areas. Then, we introduce another multiplane representation that splits the scene in an instance-level perspective, and represents each instance with both matte and color. We also treat background as a special instance, which is often overlooked by existing methods. Such an instance-level representation facilitates both foreground and background content awareness, and is useful for other down-stream tasks like image editing. Once built, the representation can be reused to realize controllable instance-level image editing with high efficiency. Extensive experiments validate the clear advantage of MP-Mat in matting task. We also demonstrate its superiority in image editing tasks, an area under-explored by existing matting-focused methods, where our approach under zero-shot inference even outperforms trained specialized image editing techniques by large margins. Code is open-sourced at https://github.com/JiaoSiyi/MPMat.git}.

Authors:Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang, Pu Zhao, Chao Du, Liqun Li, Yu Kang, Zhao Jiang, Suzhen Zheng, Rujia Wang, Jiaxu Qian, Minghua Ma, Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Title: UFO2: The Desktop AgentOS
Abstract:
Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.

Authors:Zheng Chen, Jingkai Wang, Kai Liu, Jue Gong, Lei Sun, Zongwei Wu, Radu Timofte, Yulun Zhang, Jianxing Zhang, Jinlong Wu, Jun Wang, Zheng Xie, Hakjae Jeon, Suejin Han, Hyung-Ju Chun, Hyunhee Park, Zhicun Yin, Junjie Chen, Ming Liu, Xiaoming Li, Chao Zhou, Wangmeng Zuo, Weixia Zhang, Dingquan Li, Kede Ma, Yun Zhang, Zhuofan Zheng, Yuyue Liu, Shizhen Tang, Zihao Zhang, Yi Ning, Hao Jiang, Wenjie An, Kangmeng Yu, Chenyang Wang, Kui Jiang, Xianming Liu, Junjun Jiang, Yingfu Zhang, Gang He, Siqi Wang, Kepeng Xu, Zhenyang Liu, Changxin Zhou, Shanlan Shen, Yubo Duan, Yiang Chen, Jin Guo, Mengru Yang, Jen-Wei Lee, Chia-Ming Lee, Chih-Chung Hsu, Hu Peng, Chunming He
Title: NTIRE 2025 Challenge on Real-World Face Restoration: Methods and Results
Abstract:
This paper provides a review of the NTIRE 2025 challenge on real-world face restoration, highlighting the proposed solutions and the resulting outcomes. The challenge focuses on generating natural, realistic outputs while maintaining identity consistency. Its goal is to advance state-of-the-art solutions for perceptual quality and realism, without imposing constraints on computational resources or training data. The track of the challenge evaluates performance using a weighted image quality assessment (IQA) score and employs the AdaFace model as an identity checker. The competition attracted 141 registrants, with 13 teams submitting valid models, and ultimately, 10 teams achieved a valid score in the final ranking. This collaborative effort advances the performance of real-world face restoration while offering an in-depth overview of the latest trends in the field.

Authors:Wenke Xia, Ruoxuan Feng, Dong Wang, Di Hu
Title: Phoenix: A Motion-based Self-Reflection Framework for Fine-grained Robotic Action Correction
Abstract:
Building a generalizable self-correction system is crucial for robots to recover from failures. Despite advancements in Multimodal Large Language Models (MLLMs) that empower robots with semantic reflection ability for failure, translating semantic reflection into how to correct fine-grained robotic actions remains a significant challenge. To address this gap, we build the Phoenix framework, which leverages motion instruction as a bridge to connect high-level semantic reflection with low-level robotic action correction. In this motion-based self-reflection framework, we start with a dual-process motion adjustment mechanism with MLLMs to translate the semantic reflection into coarse-grained motion instruction adjustment. To leverage this motion instruction for guiding how to correct fine-grained robotic actions, a multi-task motion-conditioned diffusion policy is proposed to integrate visual observations for high-frequency robotic action correction. By combining these two models, we could shift the demand for generalization capability from the low-level manipulation policy to the MLLMs-driven motion adjustment model and facilitate precise, fine-grained robotic action correction. Utilizing this framework, we further develop a lifelong learning method to automatically improve the model's capability from interactions with dynamic environments. The experiments conducted in both the RoboMimic simulation and real-world scenarios prove the superior generalization and robustness of our framework across a variety of manipulation tasks. Our code is released at \href{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}.

Authors:Zheng Chen, Kai Liu, Jue Gong, Jingkai Wang, Lei Sun, Zongwei Wu, Radu Timofte, Yulun Zhang, Xiangyu Kong, Xiaoxuan Yu, Hyunhee Park, Suejin Han, Hakjae Jeon, Dafeng Zhang, Hyung-Ju Chun, Donghun Ryou, Inju Ha, Bohyung Han, Lu Zhao, Yuyi Zhang, Pengyu Yan, Jiawei Hu, Pengwei Liu, Fengjun Guo, Hongyuan Yu, Pufan Xu, Zhijuan Huang, Shuyuan Cui, Peng Guo, Jiahui Liu, Dongkai Zhang, Heng Zhang, Huiyuan Fu, Huadong Ma, Yanhui Guo, Sisi Tian, Xin Liu, Jinwen Liang, Jie Liu, Jie Tang, Gangshan Wu, Zeyu Xiao, Zhuoyuan Li, Yinxiang Zhang, Wenxuan Cai, Vijayalaxmi Ashok Aralikatti, Nikhil Akalwadi, G Gyaneshwar Rao, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudenagudi, Marcos V. Conde, Alejandro Merino, Bruno Longarela, Javier Abad, Weijun Yuan, Zhan Li, Zhanglu Chen, Boyang Yao, Aagam Jain, Milan Kumar Singh, Ankit Kumar, Shubh Kawa, Divyavardhan Singh, Anjali Sarvaiya, Kishor Upla, Raghavendra Ramachandra, Chia-Ming Lee, Yu-Fan Lin, Chih-Chung Hsu, Risheek V Hiremath, Yashaswini Palani, Yuxuan Jiang, Qiang Zhu, Siyue Teng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull, Jingwei Liao, Yuqing Yang, Wenda Shao, Junyi Zhao, Qisheng Xu, Kele Xu, Sunder Ali Khowaja, Ik Hyun Lee, Snehal Singh Tomar, Rajarshi Ray, Klaus Mueller, Sachin Chaudhary, Surya Vashisth, Akshay Dudhane, Praful Hambarde, Satya Naryan Tazi, Prashant Patil, Santosh Kumar Vipparthi, Subrahmanyam Murala, Bilel Benjdira, Anas M. Ali, Wadii Boulila, Zahra Moammeri, Ahmad Mahmoudi-Aznaveh, Ali Karbasi, Hossein Motamednia, Liangyan Li, Guanhua Zhao, Kevin Le, Yimo Ning, Haoxuan Huang, Jun Chen
Title: NTIRE 2025 Challenge on Image Super-Resolution ($\times$4): Methods and Results
Abstract:
This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.

Authors:Lawrence Liu, Inesh Chakrabarti, Yixiao Li, Mengdi Wang, Tuo Zhao, Lin F. Yang
Title: NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Abstract:
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag (Normalized Weight and Activation Guided Compression), a unified framework for one-shot shape preserving compression algorithms. We apply NoWag to compress Llama-2 (7B, 13B, 70B) and Llama-3 (8B, 70B) models using two popular shape-preserving techniques: vector quantization (NoWag-VQ) and unstructured/semi-structured pruning (NoWag-P). Our results show that NoWag-VQ significantly outperforms state-of-the-art one-shot vector quantization methods, while NoWag-P performs competitively against leading pruning techniques. These findings highlight underlying commonalities between these compression paradigms and suggest promising directions for future research. Our code is available at https://github.com/LawrenceRLiu/NoWag

Authors:Haiyan Qin, Zhiwei Xie, Jingjing Li, Liangchen Li, Xiaotong Feng, Junzhan Liu, Wang Kang
Title: ReasoningV: Efficient Verilog Code Generation with Adaptive Hybrid Reasoning Model
Abstract:
Large Language Models (LLMs) have advanced Verilog code generation significantly, yet face challenges in data quality, reasoning capabilities, and computational efficiency. This paper presents ReasoningV, a novel model employing a hybrid reasoning strategy that integrates trained intrinsic capabilities with dynamic inference adaptation for Verilog code generation. Our framework introduces three complementary innovations: (1) ReasoningV-5K, a high-quality dataset of 5,000 functionally verified instances with reasoning paths created through multi-dimensional filtering of PyraNet samples; (2) a two-stage training approach combining parameter-efficient fine-tuning for foundational knowledge with full-parameter optimization for enhanced reasoning; and (3) an adaptive reasoning mechanism that dynamically adjusts reasoning depth based on problem complexity, reducing token consumption by up to 75\% while preserving performance. Experimental results demonstrate ReasoningV's effectiveness with a pass@1 accuracy of 57.8\% on VerilogEval-human, achieving performance competitive with leading commercial models like Gemini-2.0-flash (59.5\%) and exceeding the previous best open-source model by 10.4 percentage points. ReasoningV offers a more reliable and accessible pathway for advancing AI-driven hardware design automation, with our model, data, and code available at https://github.com/BUAA-CLab/ReasoningV.

Authors:Liang Peng, Boxi Wu, Haoran Cheng, Yibo Zhao, Xiaofei He
Title: SUDO: Enhancing Text-to-Image Diffusion Models with Self-Supervised Direct Preference Optimization
Abstract:
Previous text-to-image diffusion models typically employ supervised fine-tuning (SFT) to enhance pre-trained base models. However, this approach primarily minimizes the loss of mean squared error (MSE) at the pixel level, neglecting the need for global optimization at the image level, which is crucial for achieving high perceptual quality and structural coherence. In this paper, we introduce Self-sUpervised Direct preference Optimization (SUDO), a novel paradigm that optimizes both fine-grained details at the pixel level and global image quality. By integrating direct preference optimization into the model, SUDO generates preference image pairs in a self-supervised manner, enabling the model to prioritize global-level learning while complementing the pixel-level MSE loss. As an effective alternative to supervised fine-tuning, SUDO can be seamlessly applied to any text-to-image diffusion model. Importantly, it eliminates the need for costly data collection and annotation efforts typically associated with traditional direct preference optimization methods. Through extensive experiments on widely-used models, including Stable Diffusion 1.5 and XL, we demonstrate that SUDO significantly enhances both global and local image quality. The codes are provided at \href{https://github.com/SPengLiang/SUDO}{this link}.

Authors:Tong Zeng, Longfeng Wu, Liang Shi, Dawei Zhou, Feng Guo
Title: Are Vision LLMs Road-Ready? A Comprehensive Benchmark for Safety-Critical Driving Video Understanding
Abstract:
Vision Large Language Models (VLLMs) have demonstrated impressive capabilities in general visual tasks such as image captioning and visual question answering. However, their effectiveness in specialized, safety-critical domains like autonomous driving remains largely unexplored. Autonomous driving systems require sophisticated scene understanding in complex environments, yet existing multimodal benchmarks primarily focus on normal driving conditions, failing to adequately assess VLLMs' performance in safety-critical scenarios. To address this, we introduce DVBench, a pioneering benchmark designed to evaluate the performance of VLLMs in understanding safety-critical driving videos. Built around a hierarchical ability taxonomy that aligns with widely adopted frameworks for describing driving scenarios used in assessing highly automated driving systems, DVBench features 10,000 multiple-choice questions with human-annotated ground-truth answers, enabling a comprehensive evaluation of VLLMs' capabilities in perception and reasoning. Experiments on 14 SOTA VLLMs, ranging from 0.5B to 72B parameters, reveal significant performance gaps, with no model achieving over 40% accuracy, highlighting critical limitations in understanding complex driving scenarios. To probe adaptability, we fine-tuned selected models using domain-specific data from DVBench, achieving accuracy gains ranging from 5.24 to 10.94 percentage points, with relative improvements of up to 43.59%. This improvement underscores the necessity of targeted adaptation to bridge the gap between general-purpose VLLMs and mission-critical driving applications. DVBench establishes an essential evaluation framework and research roadmap for developing VLLMs that meet the safety and robustness requirements for real-world autonomous systems. We released the benchmark toolbox and the fine-tuned model at: https://github.com/tong-zeng/DVBench.git.

Authors:Xiang Li, Duyi Pan, Hongru Xiao, Jiale Han, Jing Tang, Jiabao Ma, Wei Wang, Bo Cheng
Title: DialogueAgents: A Hybrid Agent-Based Speech Synthesis Framework for Multi-Party Dialogue
Abstract:
Speech synthesis is crucial for human-computer interaction, enabling natural and intuitive communication. However, existing datasets involve high construction costs due to manual annotation and suffer from limited character diversity, contextual scenarios, and emotional expressiveness. To address these issues, we propose DialogueAgents, a novel hybrid agent-based speech synthesis framework, which integrates three specialized agents -- a script writer, a speech synthesizer, and a dialogue critic -- to collaboratively generate dialogues. Grounded in a diverse character pool, the framework iteratively refines dialogue scripts and synthesizes speech based on speech review, boosting emotional expressiveness and paralinguistic features of the synthesized dialogues. Using DialogueAgent, we contribute MultiTalk, a bilingual, multi-party, multi-turn speech dialogue dataset covering diverse topics. Extensive experiments demonstrate the effectiveness of our framework and the high quality of the MultiTalk dataset. We release the dataset and code https://github.com/uirlx/DialogueAgents to facilitate future research on advanced speech synthesis models and customized data generation.

Authors:Mingjie Zhang, Yuheng Du, Chengkai Wu, Jinni Zhou, Zhenchao Qi, Jun Ma, Boyu Zhou
Title: ApexNav: An Adaptive Exploration Strategy for Zero-Shot Object Navigation with Target-centric Semantic Fusion
Abstract:
Navigating unknown environments to find a target object is a significant challenge. While semantic information is crucial for navigation, relying solely on it for decision-making may not always be efficient, especially in environments with weak semantic cues. Additionally, many methods are susceptible to misdetections, especially in environments with visually similar objects. To address these limitations, we propose ApexNav, a zero-shot object navigation framework that is both more efficient and reliable. For efficiency, ApexNav adaptively utilizes semantic information by analyzing its distribution in the environment, guiding exploration through semantic reasoning when cues are strong, and switching to geometry-based exploration when they are weak. For reliability, we propose a target-centric semantic fusion method that preserves long-term memory of the target and similar objects, enabling robust object identification even under noisy detections. We evaluate ApexNav on the HM3Dv1, HM3Dv2, and MP3D datasets, where it outperforms state-of-the-art methods in both SR and SPL metrics. Comprehensive ablation studies further demonstrate the effectiveness of each module. Furthermore, real-world experiments validate the practicality of ApexNav in physical environments. The code will be released at https://github.com/Robotics-STAR-Lab/ApexNav.

Authors:Mingya Zhang, Liang Wang, Limei Gu, Tingsheng Ling, Xianping Tao
Title: WT-BCP: Wavelet Transform based Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation
Abstract:
Semi-supervised medical image segmentation (SSMIS) shows promise in reducing reliance on scarce labeled medical data. However, SSMIS field confronts challenges such as distribution mismatches between labeled and unlabeled data, artificial perturbations causing training biases, and inadequate use of raw image information, especially low-frequency (LF) and high-frequency (HF) components.To address these challenges, we propose a Wavelet Transform based Bidirectional Copy-Paste SSMIS framework, named WT-BCP, which improves upon the Mean Teacher approach. Our method enhances unlabeled data understanding by copying random crops between labeled and unlabeled images and employs WT to extract LF and HF details.We propose a multi-input and multi-output model named XNet-Plus, to receive the fused information after WT. Moreover, consistency training among multiple outputs helps to mitigate learning biases introduced by artificial perturbations. During consistency training, the mixed images resulting from WT are fed into both models, with the student model's output being supervised by pseudo-labels and ground-truth. Extensive experiments conducted on 2D and 3D datasets confirm the effectiveness of our model.Code: https://github.com/simzhangbest/WT-BCP.

Authors:Chuhao Liu, Zhijian Qiao, Jieqi Shi, Ke Wang, Peize Liu, Shaojie Shen
Title: SG-Reg: Generalizable and Efficient Scene Graph Registration
Abstract:
This paper addresses the challenges of registering two rigid semantic scene graphs, an essential capability when an autonomous agent needs to register its map against a remote agent, or against a prior map. The hand-crafted descriptors in classical semantic-aided registration, or the ground-truth annotation reliance in learning-based scene graph registration, impede their application in practical real-world environments. To address the challenges, we design a scene graph network to encode multiple modalities of semantic nodes: open-set semantic feature, local topology with spatial awareness, and shape feature. These modalities are fused to create compact semantic node features. The matching layers then search for correspondences in a coarse-to-fine manner. In the back-end, we employ a robust pose estimator to decide transformation according to the correspondences. We manage to maintain a sparse and hierarchical scene representation. Our approach demands fewer GPU resources and fewer communication bandwidth in multi-agent tasks. Moreover, we design a new data generation approach using vision foundation models and a semantic mapping module to reconstruct semantic scene graphs. It differs significantly from previous works, which rely on ground-truth semantic annotations to generate data. We validate our method in a two-agent SLAM benchmark. It significantly outperforms the hand-crafted baseline in terms of registration success rate. Compared to visual loop closure networks, our method achieves a slightly higher registration recall while requiring only 52 KB of communication bandwidth for each query frame. Code available at: \href{http://github.com/HKUST-Aerial-Robotics/SG-Reg}{http://github.com/HKUST-Aerial-Robotics/SG-Reg}.

Authors:Qiang Chen, Xiao Wang, Haowen Wang, Bo Jiang, Lin Zhu, Dawei Zhang, Yonghong Tian, Jin Tang
Title: Adversarial Attack for RGB-Event based Visual Object Tracking
Abstract:
Visual object tracking is a crucial research topic in the fields of computer vision and multi-modal fusion. Among various approaches, robust visual tracking that combines RGB frames with Event streams has attracted increasing attention from researchers. While striving for high accuracy and efficiency in tracking, it is also important to explore how to effectively conduct adversarial attacks and defenses on RGB-Event stream tracking algorithms, yet research in this area remains relatively scarce. To bridge this gap, in this paper, we propose a cross-modal adversarial attack algorithm for RGB-Event visual tracking. Because of the diverse representations of Event streams, and given that Event voxels and frames are more commonly used, this paper will focus on these two representations for an in-depth study. Specifically, for the RGB-Event voxel, we first optimize the perturbation by adversarial loss to generate RGB frame adversarial examples. For discrete Event voxel representations, we propose a two-step attack strategy, more in detail, we first inject Event voxels into the target region as initialized adversarial examples, then, conduct a gradient-guided optimization by perturbing the spatial location of the Event voxels. For the RGB-Event frame based tracking, we optimize the cross-modal universal perturbation by integrating the gradient information from multimodal data. We evaluate the proposed approach against attacks on three widely used RGB-Event Tracking datasets, i.e., COESOT, FE108, and VisEvent. Extensive experiments show that our method significantly reduces the performance of the tracker across numerous datasets in both unimodal and multimodal scenarios. The source code will be released on https://github.com/Event-AHU/Adversarial_Attack_Defense

Authors:Xiang Zhang, Yongfeng Zhang
Title: Planet as a Brain: Towards Internet of AgentSites based on AIOS Server
Abstract:
The internet is undergoing a historical transformation from the "Internet of Websites" to the "Internet of AgentSites." While traditional Websites served as the foundation for information hosting and dissemination, a new frontier is emerging where AgentSites serve as the hubs of the internet, where each AgentSite hosts one or more AI agents that receive tasks, address them, and deliver actionable solutions, marking a significant shift in the digital landscape and representing the next generation of online ecosystems. Under this vision, AIOS, the AI Agent Operating System, serves as the server for the development, deployment and execution of AI agents, which is a fundamental infrastructure for the Internet of Agentsites. In this paper, we introduce AIOS Server, a runtime framework to host agents and enable global-scale collaboration among decentralized agents. AIOS Server provides a communication protocol leveraging the Model Context Protocol (MCP) and JSON-RPC to enable agent-agent or human-agent interactions. Each AIOS node operates as a server to host and execute agents, while supporting peer-to-peer coordination without reliance on centralized orchestration. Based on AIOS Server, we further present the world's first practically deployed Internet of Agentsites (AIOS-IoA), including AgentHub for agent registration and discovery and AgentChat for interactive communication, at https://planet.aios.foundation. The agent discovery mechanism based on Distributed Hash Tables (DHT) and a Gossip protocol serves as the search engine for the internet of agentsites. This work provides a practical foundation for building the Internet of Agentsites-a new paradigm where autonomous agents become first-class citizens of the web. The implementation is available at https://github.com/agiresearch/AIOS.Server and is integrated into the AIOS main branch at https://github.com/agiresearch/AIOS.

Authors:Minho Park, Taewoong Kang, Jooyeol Yun, Sungwon Hwang, Jaegul Choo
Title: SphereDiff: Tuning-free Omnidirectional Panoramic Image and Video Generation via Spherical Latent Representation
Abstract:
The increasing demand for AR/VR applications has highlighted the need for high-quality 360-degree panoramic content. However, generating high-quality 360-degree panoramic images and videos remains a challenging task due to the severe distortions introduced by equirectangular projection (ERP). Existing approaches either fine-tune pretrained diffusion models on limited ERP datasets or attempt tuning-free methods that still rely on ERP latent representations, leading to discontinuities near the poles. In this paper, we introduce SphereDiff, a novel approach for seamless 360-degree panoramic image and video generation using state-of-the-art diffusion models without additional tuning. We define a spherical latent representation that ensures uniform distribution across all perspectives, mitigating the distortions inherent in ERP. We extend MultiDiffusion to spherical latent space and propose a spherical latent sampling method to enable direct use of pretrained diffusion models. Moreover, we introduce distortion-aware weighted averaging to further improve the generation quality in the projection process. Our method outperforms existing approaches in generating 360-degree panoramic content while maintaining high fidelity, making it a robust solution for immersive AR/VR applications. The code is available here. https://github.com/pmh9960/SphereDiff

Authors:Mohammed Ayman Shalaby, Syed Shabbir Ahmed, Nicholas Dahdah, Charles Champagne Cossette, Jerome Le Ny, James Richard Forbes
Title: MILUV: A Multi-UAV Indoor Localization dataset with UWB and Vision
Abstract:
This paper introduces MILUV, a Multi-UAV Indoor Localization dataset with UWB and Vision measurements. This dataset comprises 217 minutes of flight time over 36 experiments using three quadcopters, collecting ultra-wideband (UWB) ranging data such as the raw timestamps and channel-impulse response data, vision data from a stereo camera and a bottom-facing monocular camera, inertial measurement unit data, height measurements from a laser rangefinder, magnetometer data, and ground-truth poses from a motion-capture system. The UWB data is collected from up to 12 transceivers affixed to mobile robots and static tripods in both line-of-sight and non-line-of-sight conditions. The UAVs fly at a maximum speed of 4.418 m/s in an indoor environment with visual fiducial markers as features. MILUV is versatile and can be used for a wide range of applications beyond localization, but the primary purpose of MILUV is for testing and validating multi-robot UWB- and vision-based localization algorithms. The dataset can be downloaded at https://doi.org/10.25452/figshare.plus.28386041.v1. A development kit is presented alongside the MILUV dataset, which includes benchmarking algorithms such as visual-inertial odometry, UWB-based localization using an extended Kalman filter, and classification of CIR data using machine learning approaches. The development kit can be found at https://github.com/decargroup/miluv, and is supplemented with a website available at https://decargroup.github.io/miluv/.

Authors:Akshat Ramachandran, Souvik Kundu, Arnab Raha, Shamik Kundu, Deepak K. Mathaikutty, Tushar Krishna
Title: Accelerating LLM Inference with Flexible N:M Sparsity via A Fully Digital Compute-in-Memory Accelerator
Abstract:
Large language model (LLM) pruning with fixed N:M structured sparsity significantly limits the expressivity of the sparse model, yielding sub-optimal performance. In contrast, supporting multiple N:M patterns to provide sparse representational freedom introduces costly overhead in hardware. To address these challenges for LLMs, we first present a flexible layer-wise outlier-density-aware N:M sparsity (FLOW) selection method. FLOW enables the identification of optimal layer-wise N and M values (from a given range) by simultaneously accounting for the presence and distribution of outliers, allowing a higher degree of representational freedom. To deploy sparse models with such N:M flexibility, we then introduce a flexible, low-overhead digital compute-in-memory architecture (FlexCiM). FlexCiM supports diverse sparsity patterns by partitioning a digital CiM (DCiM) macro into smaller sub-macros, which are adaptively aggregated and disaggregated through distribution and merging mechanisms for different N and M values. Extensive experiments on both transformer-based and recurrence-based state space foundation models (SSMs) demonstrate that FLOW outperforms existing alternatives with an accuracy improvement of up to 36%, while FlexCiM achieves up to 1.75x lower inference latency and 1.5x lower energy consumption compared to existing sparse accelerators. Code is available at: https://github.com/FLOW-open-project/FLOW

Authors:Youngbin Lee, Yejin Kim, Suin Kim, Yongjae Lee
Title: Integrating LLM-Generated Views into Mean-Variance Optimization Using the Black-Litterman Model
Abstract:
Portfolio optimization faces challenges due to the sensitivity in traditional mean-variance models. The Black-Litterman model mitigates this by integrating investor views, but defining these views remains difficult. This study explores the integration of large language models (LLMs) generated views into portfolio optimization using the Black-Litterman framework. Our method leverages LLMs to estimate expected stock returns from historical prices and company metadata, incorporating uncertainty through the variance in predictions. We conduct a backtest of the LLM-optimized portfolios from June 2024 to February 2025, rebalancing biweekly using the previous two weeks of price data. As baselines, we compare against the S&P 500, an equal-weighted portfolio, and a traditional mean-variance optimized portfolio constructed using the same set of stocks. Empirical results suggest that different LLMs exhibit varying levels of predictive optimism and confidence stability, which impact portfolio performance. The source code and data are available at https://github.com/youngandbin/LLM-MVO-BLM.

Authors:Ionut-Gabriel Farcas, Rayomand P. Gundevia, Ramakanth Munipalli, Karen E. Willcox
Title: A parallel implementation of reduced-order modeling of large-scale systems
Abstract:
Motivated by the large-scale nature of modern aerospace engineering simulations, this paper presents a detailed description of distributed Operator Inference (dOpInf), a recently developed parallel algorithm designed to efficiently construct physics-based reduced-order models (ROMs) for problems with large state dimensions. One such example is the simulation of rotating detonation rocket engines, where snapshot data generated by high-fidelity large-eddy simulations have many millions of degrees of freedom. dOpInf enables, via distributed computing, the efficient processing of datasets with state dimensions that are too large to process on a single computer, and the learning of structured physics-based ROMs that approximate the dynamical systems underlying those datasets. All elements of dOpInf are scalable, leading to a fully parallelized reduced modeling approach that can scale to the thousands of processors available on leadership high-performance computing platforms. The resulting ROMs are computationally cheap, making them ideal for key engineering tasks such as design space exploration, risk assessment, and uncertainty quantification. To illustrate the practical application of dOpInf, we provide a step-by-step tutorial using a 2D Navier-Stokes flow over a step scenario as a case study. This tutorial guides users through the implementation process, making dOpInf accessible for integration into complex aerospace engineering simulations.

Authors:Jiyuan Shi, Xinzhe Liu, Dewei Wang, Ouyang Lu, Sören Schwertfeger, Fuchun Sun, Chenjia Bai, Xuelong Li
Title: Adversarial Locomotion and Motion Imitation for Humanoid Policy Learning
Abstract:
Humans exhibit diverse and expressive whole-body movements. However, attaining human-like whole-body coordination in humanoid robots remains challenging, as conventional approaches that mimic whole-body motions often neglect the distinct roles of upper and lower body. This oversight leads to computationally intensive policy learning and frequently causes robot instability and falls during real-world execution. To address these issues, we propose Adversarial Locomotion and Motion Imitation (ALMI), a novel framework that enables adversarial policy learning between upper and lower body. Specifically, the lower body aims to provide robust locomotion capabilities to follow velocity commands while the upper body tracks various motions. Conversely, the upper-body policy ensures effective motion tracking when the robot executes velocity-based movements. Through iterative updates, these policies achieve coordinated whole-body control, which can be extended to loco-manipulation tasks with teleoperation systems. Extensive experiments demonstrate that our method achieves robust locomotion and precise motion tracking in both simulation and on the full-size Unitree H1 robot. Additionally, we release a large-scale whole-body motion control dataset featuring high-quality episodic trajectories from MuJoCo simulations deployable on real robots. The project page is https://almi-humanoid.github.io.

Authors:Ze Zhao, Bin Lu, Xiaoying Gan, Gu Tang, Luoyi Fu, Xinbing Wang
Title: CHAINSFORMER: Numerical Reasoning on Knowledge Graphs from a Chain Perspective
Abstract:
Reasoning over Knowledge Graphs (KGs) plays a pivotal role in knowledge graph completion or question answering systems, providing richer and more accurate triples and attributes. As numerical attributes become increasingly essential in characterizing entities and relations in KGs, the ability to reason over these attributes has gained significant importance. Existing graph-based methods such as Graph Neural Networks (GNNs) and Knowledge Graph Embeddings (KGEs), primarily focus on aggregating homogeneous local neighbors and implicitly embedding diverse triples. However, these approaches often fail to fully leverage the potential of logical paths within the graph, limiting their effectiveness in exploiting the reasoning process. To address these limitations, we propose ChainsFormer, a novel chain-based framework designed to support numerical reasoning. Chainsformer not only explicitly constructs logical chains but also expands the reasoning depth to multiple hops. Specially, we introduces Relation-Attribute Chains (RA-Chains), a specialized logic chain, to model sequential reasoning patterns. ChainsFormer captures the step-by-step nature of multi-hop reasoning along RA-Chains by employing sequential in-context learning. To mitigate the impact of noisy chains, we propose a hyperbolic affinity scoring mechanism that selects relevant logic chains in a variable-resolution space. Furthermore, ChainsFormer incorporates an attention-based numerical reasoner to identify critical reasoning paths, enhancing both reasoning accuracy and transparency. Experimental results demonstrate that ChainsFormer significantly outperforms state-of-the-art methods, achieving up to a 20.0% improvement in performance. The implementations are available at https://github.com/zhaodazhuang2333/ChainsFormer.

Authors:Jindong Li, Yongguang Li, Yali Fu, Jiahong Liu, Yixin Liu, Menglin Yang, Irwin King
Title: CLIP-Powered Domain Generalization and Domain Adaptation: A Comprehensive Survey
Abstract:
As machine learning evolves, domain generalization (DG) and domain adaptation (DA) have become crucial for enhancing model robustness across diverse environments. Contrastive Language-Image Pretraining (CLIP) plays a significant role in these tasks, offering powerful zero-shot capabilities that allow models to perform effectively in unseen domains. However, there remains a significant gap in the literature, as no comprehensive survey currently exists that systematically explores the applications of CLIP in DG and DA, highlighting the necessity for this review. This survey presents a comprehensive review of CLIP's applications in DG and DA. In DG, we categorize methods into optimizing prompt learning for task alignment and leveraging CLIP as a backbone for effective feature extraction, both enhancing model adaptability. For DA, we examine both source-available methods utilizing labeled source data and source-free approaches primarily based on target domain data, emphasizing knowledge transfer mechanisms and strategies for improved performance across diverse contexts. Key challenges, including overfitting, domain diversity, and computational efficiency, are addressed, alongside future research opportunities to advance robustness and efficiency in practical applications. By synthesizing existing literature and pinpointing critical gaps, this survey provides valuable insights for researchers and practitioners, proposing directions for effectively leveraging CLIP to enhance methodologies in domain generalization and adaptation. Ultimately, this work aims to foster innovation and collaboration in the quest for more resilient machine learning models that can perform reliably across diverse real-world scenarios. A more up-to-date version of the papers is maintained at: https://github.com/jindongli-Ai/Survey_on_CLIP-Powered_Domain_Generalization_and_Adaptation.

Authors:Liu Xiao, Li Zhiyuan, Lin Yueyu
Title: Cross-attention for State-based model RWKV-7
Abstract:
We introduce CrossWKV, a novel cross-attention mechanism for the state-based RWKV-7 model, designed to enhance the expressive power of text-to-image generation. Leveraging RWKV-7's linear-complexity Weighted Key-Value (WKV) architecture, CrossWKV integrates text and image modalities in a single pass, utilizing a generalized delta rule with vector-valued gating and low-rank adaptations (LoRA) to achieve superior cross-modal alignment. Unlike Transformer-based models, CrossWKV's non-diagonal, input-dependent transition matrix enables it to represent complex functions beyond the $\mathrm{TC}^0$ complexity class, including all regular languages, as demonstrated by its ability to perform state-tracking tasks like $S_5$ permutation modeling. Evaluated within the Diffusion in RWKV-7 (DIR-7) on datasets such as LAION-5B and ImageNet, CrossWKV achieves a Frechet Inception Distance (FID) of 2.88 and a CLIP score of 0.33 on ImageNet 256x256, matching state-of-the-art performance while offering robust generalization across diverse prompts. The model's enhanced expressivity, combined with constant memory usage and linear scaling, positions it as a powerful solution for advanced cross-modal tasks, with potential applications in high-resolution generation and dynamic state manipulation.Code at https://github.com/TorchRWKV/flash-linear-attention

Authors:Jie Wang, Nana Yu, Zihao Zhang, Yahong Han
Title: Visual Consensus Prompting for Co-Salient Object Detection
Abstract:
Existing co-salient object detection (CoSOD) methods generally employ a three-stage architecture (i.e., encoding, consensus extraction & dispersion, and prediction) along with a typical full fine-tuning paradigm. Although they yield certain benefits, they exhibit two notable limitations: 1) This architecture relies on encoded features to facilitate consensus extraction, but the meticulously extracted consensus does not provide timely guidance to the encoding stage. 2) This paradigm involves globally updating all parameters of the model, which is parameter-inefficient and hinders the effective representation of knowledge within the foundation model for this task. Therefore, in this paper, we propose an interaction-effective and parameter-efficient concise architecture for the CoSOD task, addressing two key limitations. It introduces, for the first time, a parameter-efficient prompt tuning paradigm and seamlessly embeds consensus into the prompts to formulate task-specific Visual Consensus Prompts (VCP). Our VCP aims to induce the frozen foundation model to perform better on CoSOD tasks by formulating task-specific visual consensus prompts with minimized tunable parameters. Concretely, the primary insight of the purposeful Consensus Prompt Generator (CPG) is to enforce limited tunable parameters to focus on co-salient representations and generate consensus prompts. The formulated Consensus Prompt Disperser (CPD) leverages consensus prompts to form task-specific visual consensus prompts, thereby arousing the powerful potential of pre-trained models in addressing CoSOD tasks. Extensive experiments demonstrate that our concise VCP outperforms 13 cutting-edge full fine-tuning models, achieving the new state of the art (with 6.8% improvement in F_m metrics on the most challenging CoCA dataset). Source code has been available at https://github.com/WJ-CV/VCP.

Authors:Yikun Ji, Yan Hong, Jiahui Zhan, Haoxing Chen, jun lan, Huijia Zhu, Weiqiang Wang, Liqing Zhang, Jianfu Zhang
Title: Towards Explainable Fake Image Detection with Multi-Modal Large Language Models
Abstract:
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.

Authors:Yimeng Bai, Shunyu Zhang, Yang Zhang, Hu Liu, Wentian Bao, Enyun Yu, Fuli Feng, Wenwu Ou
Title: Unconstrained Monotonic Calibration of Predictions in Deep Ranking Systems
Abstract:
Ranking models primarily focus on modeling the relative order of predictions while often neglecting the significance of the accuracy of their absolute values. However, accurate absolute values are essential for certain downstream tasks, necessitating the calibration of the original predictions. To address this, existing calibration approaches typically employ predefined transformation functions with order-preserving properties to adjust the original predictions. Unfortunately, these functions often adhere to fixed forms, such as piece-wise linear functions, which exhibit limited expressiveness and flexibility, thereby constraining their effectiveness in complex calibration scenarios. To mitigate this issue, we propose implementing a calibrator using an Unconstrained Monotonic Neural Network (UMNN), which can learn arbitrary monotonic functions with great modeling power. This approach significantly relaxes the constraints on the calibrator, improving its flexibility and expressiveness while avoiding excessively distorting the original predictions by requiring monotonicity. Furthermore, to optimize this highly flexible network for calibration, we introduce a novel additional loss function termed Smooth Calibration Loss (SCLoss), which aims to fulfill a necessary condition for achieving the ideal calibration state. Extensive offline experiments confirm the effectiveness of our method in achieving superior calibration performance. Moreover, deployment in Kuaishou's large-scale online video ranking system demonstrates that the method's calibration improvements translate into enhanced business metrics. The source code is available at https://github.com/baiyimeng/UMC.

Authors:Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang, Fei Wu
Title: InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners
Abstract:
Multimodal Large Language Models (MLLMs) have powered Graphical User Interface (GUI) Agents, showing promise in automating tasks on computing devices. Recent works have begun exploring reasoning in GUI tasks with encouraging results. However, many current approaches rely on manually designed reasoning templates, which may result in reasoning that is not sufficiently robust and adaptive for complex GUI environments. Meanwhile, some existing agents continue to operate as Reactive Actors, relying primarily on implicit reasoning that may lack sufficient depth for GUI tasks demanding planning and error recovery. We argue that advancing these agents requires a shift from reactive acting towards acting based on deliberate reasoning. To facilitate this transformation, we introduce InfiGUI-R1, an MLLM-based GUI agent developed through our Actor2Reasoner framework, a reasoning-centric, two-stage training approach designed to progressively evolve agents from Reactive Actors to Deliberative Reasoners. The first stage, Reasoning Injection, focuses on establishing a basic reasoner. We employ Spatial Reasoning Distillation to transfer cross-modal spatial reasoning capabilities from teacher models to MLLMs through trajectories with explicit reasoning steps, enabling models to integrate GUI visual-spatial information with logical reasoning before action generation. The second stage, Deliberation Enhancement, refines the basic reasoner into a deliberative one using Reinforcement Learning. This stage introduces two approaches: Sub-goal Guidance, which rewards models for generating accurate intermediate sub-goals, and Error Recovery Scenario Construction, which creates failure-and-recovery training scenarios from identified prone-to-error steps. Experimental results show InfiGUI-R1 achieves strong performance in GUI grounding and trajectory tasks. Resources at https://github.com/Reallm-Labs/InfiGUI-R1.

Authors:Yong-En Tian, Yu-Chien Tang, Kuang-Da Wang, An-Zi Yen, Wen-Chih Peng
Title: Template-Based Financial Report Generation in Agentic and Decomposed Information Retrieval
Abstract:
Tailoring structured financial reports from companies' earnings releases is crucial for understanding financial performance and has been widely adopted in real-world analytics. However, existing summarization methods often generate broad, high-level summaries, which may lack the precision and detail required for financial reports that typically focus on specific, structured sections. While Large Language Models (LLMs) hold promise, generating reports adhering to predefined multi-section templates remains challenging. This paper investigates two LLM-based approaches popular in industry for generating templated financial reports: an agentic information retrieval (IR) framework and a decomposed IR approach, namely AgenticIR and DecomposedIR. The AgenticIR utilizes collaborative agents prompted with the full template. In contrast, the DecomposedIR approach applies a prompt chaining workflow to break down the template and reframe each section as a query answered by the LLM using the earnings release. To quantitatively assess the generated reports, we evaluated both methods in two scenarios: one using a financial dataset without direct human references, and another with a weather-domain dataset featuring expert-written reports. Experimental results show that while AgenticIR may excel in orchestrating tasks and generating concise reports through agent collaboration, DecomposedIR statistically significantly outperforms AgenticIR approach in providing broader and more detailed coverage in both scenarios, offering reflection on the utilization of the agentic framework in real-world applications.

Authors:Junchi Yao, Shu Yang, Jianhua Xu, Lijie Hu, Mengdi Li, Di Wang
Title: Understanding the Repeat Curse in Large Language Models from a Feature Perspective
Abstract:
Large language models (LLMs) have made remarkable progress in various domains, yet they often suffer from repetitive text generation, a phenomenon we refer to as the "Repeat Curse". While previous studies have proposed decoding strategies to mitigate repetition, the underlying mechanism behind this issue remains insufficiently explored. In this work, we investigate the root causes of repetition in LLMs through the lens of mechanistic interpretability. Inspired by recent advances in Sparse Autoencoders (SAEs), which enable monosemantic feature extraction, we propose a novel approach, "Duplicatus Charm", to induce and analyze the Repeat Curse. Our method systematically identifies "Repetition Features" -the key model activations responsible for generating repetitive outputs. First, we locate the layers most involved in repetition through logit analysis. Next, we extract and stimulate relevant features using SAE-based activation manipulation. To validate our approach, we construct a repetition dataset covering token and paragraph level repetitions and introduce an evaluation pipeline to quantify the influence of identified repetition features. Furthermore, by deactivating these features, we have effectively mitigated the Repeat Curse. The source code of our work is publicly available at: https://github.com/kaustpradalab/repeat-curse-llm

Authors:Pierre-Alain Fayolle, Evgenii Maltsev
Title: PyFRep: Shape Modeling with Differentiable Function Representation
Abstract:
We propose a framework for performing differentiable geometric modeling based on the Function Representation (FRep). The framework is built on top of modern libraries for performing automatic differentiation allowing us to obtain derivatives w.r.t. space or shape parameters. We demonstrate possible applications of this framework: Curvature estimation for shape interrogation, signed distance function computation and approximation and fitting shape parameters of a parametric model to data. Our framework is released as open-source.

Authors:Hongji Li, Hanwen Du, Youhua Li, Junchen Fu, Chunxiao Li, Ziyi Zhuang, Jiakang Li, Yongxin Ni
Title: Teach Me How to Denoise: A Universal Framework for Denoising Multi-modal Recommender Systems via Guided Calibration
Abstract:
The surge in multimedia content has led to the development of Multi-Modal Recommender Systems (MMRecs), which use diverse modalities such as text, images, videos, and audio for more personalized recommendations. However, MMRecs struggle with noisy data caused by misalignment among modal content and the gap between modal semantics and recommendation semantics. Traditional denoising methods are inadequate due to the complexity of multi-modal data. To address this, we propose a universal guided in-sync distillation denoising framework for multi-modal recommendation (GUIDER), designed to improve MMRecs by denoising user feedback. Specifically, GUIDER uses a re-calibration strategy to identify clean and noisy interactions from modal content. It incorporates a Denoising Bayesian Personalized Ranking (DBPR) loss function to handle implicit user feedback. Finally, it applies a denoising knowledge distillation objective based on Optimal Transport distance to guide the alignment from modality representations to recommendation semantics. GUIDER can be seamlessly integrated into existing MMRecs methods as a plug-and-play solution. Experimental results on four public datasets demonstrate its effectiveness and generalizability. Our source code is available at https://github.com/Neon-Jing/Guider

Authors:Mingzhe Han, Dongsheng Li, Jiafeng Xia, Jiahao Liu, Hansu Gu, Peng Zhang, Ning Gu, Tun Lu
Title: FedCIA: Federated Collaborative Information Aggregation for Privacy-Preserving Recommendation
Abstract:
Recommendation algorithms rely on user historical interactions to deliver personalized suggestions, which raises significant privacy concerns. Federated recommendation algorithms tackle this issue by combining local model training with server-side model aggregation, where most existing algorithms use a uniform weighted summation to aggregate item embeddings from different client models. This approach has three major limitations: 1) information loss during aggregation, 2) failure to retain personalized local features, and 3) incompatibility with parameter-free recommendation algorithms. To address these limitations, we first review the development of recommendation algorithms and recognize that their core function is to share collaborative information, specifically the global relationship between users and items. With this understanding, we propose a novel aggregation paradigm named collaborative information aggregation, which focuses on sharing collaborative information rather than item parameters. Based on this new paradigm, we introduce the federated collaborative information aggregation (FedCIA) method for privacy-preserving recommendation. This method requires each client to upload item similarity matrices for aggregation, which allows clients to align their local models without constraining embeddings to a unified vector space. As a result, it mitigates information loss caused by direct summation, preserves the personalized embedding distributions of individual clients, and supports the aggregation of parameter-free models. Theoretical analysis and experimental results on real-world datasets demonstrate the superior performance of FedCIA compared with the state-of-the-art federated recommendation algorithms. Code is available at https://github.com/Mingzhe-Han/FedCIA.

Authors:Wenxin Zhang, Cuicui Luo
Title: Decomposition-based multi-scale transformer framework for time series anomaly detection
Abstract:
Time series anomaly detection is crucial for maintaining stable systems. Existing methods face two main challenges. First, it is difficult to directly model the dependencies of diverse and complex patterns within the sequences. Second, many methods that optimize parameters using mean squared error struggle with noise in the time series, leading to performance deterioration. To address these challenges, we propose a transformer-based framework built on decomposition (TransDe) for multivariate time series anomaly detection. The key idea is to combine the strengths of time series decomposition and transformers to effectively learn the complex patterns in normal time series data. A multi-scale patch-based transformer architecture is proposed to exploit the representative dependencies of each decomposed component of the time series. Furthermore, a contrastive learn paradigm based on patch operation is proposed, which leverages KL divergence to align the positive pairs, namely the pure representations of normal patterns between different patch-level views. A novel asynchronous loss function with a stop-gradient strategy is further introduced to enhance the performance of TransDe effectively. It can avoid time-consuming and labor-intensive computation costs in the optimization process. Extensive experiments on five public datasets are conducted and TransDe shows superiority compared with twelve baselines in terms of F1 score. Our code is available at https://github.com/shaieesss/TransDe.

Authors:Wenxin Zhang, Jingxing Zhong, Guangzhen Yao, Renda Han, Xiaojian Lin, Zeyu Zhang, Cuicui Luo
Title: Dual-channel Heterophilic Message Passing for Graph Fraud Detection
Abstract:
Fraudulent activities have significantly increased across various domains, such as e-commerce, online review platforms, and social networks, making fraud detection a critical task. Spatial Graph Neural Networks (GNNs) have been successfully applied to fraud detection tasks due to their strong inductive learning capabilities. However, existing spatial GNN-based methods often enhance the graph structure by excluding heterophilic neighbors during message passing to align with the homophilic bias of GNNs. Unfortunately, this approach can disrupt the original graph topology and increase uncertainty in predictions. To address these limitations, this paper proposes a novel framework, Dual-channel Heterophilic Message Passing (DHMP), for fraud detection. DHMP leverages a heterophily separation module to divide the graph into homophilic and heterophilic subgraphs, mitigating the low-pass inductive bias of traditional GNNs. It then applies shared weights to capture signals at different frequencies independently and incorporates a customized sampling strategy for training. This allows nodes to adaptively balance the contributions of various signals based on their labels. Extensive experiments on three real-world datasets demonstrate that DHMP outperforms existing methods, highlighting the importance of separating signals with different frequencies for improved fraud detection. The code is available at https://github.com/shaieesss/DHMP.

Authors:Wenxin Zhang, Xiaojian Lin, Wenjun Yu, Guangzhen Yao, jingxiang Zhong, Yu Li, Renda Han, Songcheng Xu, Hao Shi, Cuicui Luo
Title: DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection
Abstract:
Time series anomaly detection holds notable importance for risk identification and fault detection across diverse application domains. Unsupervised learning methods have become popular because they have no requirement for labels. However, due to the challenges posed by the multiplicity of abnormal patterns, the sparsity of anomalies, and the growth of data scale and complexity, these methods often fail to capture robust and representative dependencies within the time series for identifying anomalies. To enhance the ability of models to capture normal patterns of time series and avoid the retrogression of modeling ability triggered by the dependencies on high-quality prior knowledge, we propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD). Specifically, DConAD generates differential data to provide additional information about time series and utilizes transformer-based architecture to capture spatiotemporal dependencies, which enhances the robustness of unbiased representation learning ability. Furthermore, DConAD implements a novel KL divergence-based contrastive learning paradigm that only uses positive samples to avoid deviation from reconstruction and deploys the stop-gradient strategy to compel convergence. Extensive experiments on five public datasets show the superiority and effectiveness of DConAD compared with nine baselines. The code is available at https://github.com/shaieesss/DConAD.

Authors:Xinlin Zhuang, Jiahui Peng, Ren Ma, Yinfan Wang, Tianyi Bai, Xingjian Wei, Jiantao Qiu, Chi Zhang, Ying Qian, Conghui He
Title: Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models
Abstract:
The composition of pre-training datasets for large language models (LLMs) remains largely undisclosed, hindering transparency and efforts to optimize data quality, a critical driver of model performance. Current data selection methods, such as natural language quality assessments, diversity-based filters, and classifier-based approaches, are limited by single-dimensional evaluation or redundancy-focused strategies. To address these gaps, we propose four dimensions to evaluate data quality: professionalism, readability, reasoning, and cleanliness. We further introduce Meta-rater,a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings. Meta-rater employs proxy models to train a regression model that predicts validation loss, enabling the identification of optimal combinations of quality scores. Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with advantages that scale to models as large as 7.2B parameters. Our work establishes that holistic, multi-dimensional quality integration significantly outperforms conventional single-dimension approaches, offering a scalable paradigm for enhancing pre-training efficiency and model capability. To advance future research, we release scripts, data, and models at https://github.com/opendatalab/Meta-rater.

Authors:Zekai Chen, Xunkai Li, Yinlin Zhu, Rong-Hua Li, Guoren Wang
Title: Rethinking Client-oriented Federated Graph Learning
Abstract:
As a new distributed graph learning paradigm, Federated Graph Learning (FGL) facilitates collaborative model training across local systems while preserving data privacy. We review existing FGL approaches and categorize their optimization mechanisms into: (1) Server-Client (S-C), where clients upload local model parameters for server-side aggregation and global updates; (2) Client-Client (C-C), which allows direct exchange of information between clients and customizing their local training process. We reveal that C-C shows superior potential due to its refined communication structure. However, existing C-C methods broadcast redundant node representations, incurring high communication costs and privacy risks at the node level. To this end, we propose FedC4, which combines graph Condensation with C-C Collaboration optimization. Specifically, FedC4 employs graph condensation technique to refine the knowledge of each client's graph into a few synthetic embeddings instead of transmitting node-level knowledge. Moreover, FedC4 introduces three novel modules that allow the source client to send distinct node representations tailored to the target client's graph properties. Experiments on eight public real-world datasets show that FedC4 outperforms state-of-the-art baselines in both task performance and communication cost. Our code is now available on https://github.com/Ereshkigal1/FedC4.

Authors:Zhenyu Yu, Mohd Yamani Idna Idris, Hua Wang, Pei Wang, Rizwan Qureshi, Shaina Raza, Aman Chadha, Yong Xiang, Zhixiang Chen
Title: DanceText: A Training-Free Layered Framework for Controllable Multilingual Text Transformation in Images
Abstract:
We present DanceText, a training-free framework for multilingual text editing in images, designed to support complex geometric transformations and achieve seamless foreground-background integration. While diffusion-based generative models have shown promise in text-guided image synthesis, they often lack controllability and fail to preserve layout consistency under non-trivial manipulations such as rotation, translation, scaling, and warping. To address these limitations, DanceText introduces a layered editing strategy that separates text from the background, allowing geometric transformations to be performed in a modular and controllable manner. A depth-aware module is further proposed to align appearance and perspective between the transformed text and the reconstructed background, enhancing photorealism and spatial consistency. Importantly, DanceText adopts a fully training-free design by integrating pretrained modules, allowing flexible deployment without task-specific fine-tuning. Extensive experiments on the AnyWord-3M benchmark demonstrate that our method achieves superior performance in visual quality, especially under large-scale and complex transformation scenarios. Code is avaible at https://github.com/YuZhenyuLindy/DanceText.git.

Authors:Wei Dong, Han Zhou, Seyed Amirreza Mousavi, Jun Chen
Title: Retinex-guided Histogram Transformer for Mask-free Shadow Removal
Abstract:
While deep learning methods have achieved notable progress in shadow removal, many existing approaches rely on shadow masks that are difficult to obtain, limiting their generalization to real-world scenes. In this work, we propose ReHiT, an efficient mask-free shadow removal framework based on a hybrid CNN-Transformer architecture guided by Retinex theory. We first introduce a dual-branch pipeline to separately model reflectance and illumination components, and each is restored by our developed Illumination-Guided Hybrid CNN-Transformer (IG-HCT) module. Second, besides the CNN-based blocks that are capable of learning residual dense features and performing multi-scale semantic fusion, multi-scale semantic fusion, we develop the Illumination-Guided Histogram Transformer Block (IGHB) to effectively handle non-uniform illumination and spatially complex shadows. Extensive experiments on several benchmark datasets validate the effectiveness of our approach over existing mask-free methods. Trained solely on the NTIRE 2025 Shadow Removal Challenge dataset, our solution delivers competitive results with one of the smallest parameter sizes and fastest inference speeds among top-ranked entries, highlighting its applicability for real-world applications with limited computational resources. The code is available at https://github.com/dongw22/oath.

Authors:Wei Dong, Yan Min, Han Zhou, Jun Chen
Title: Towards Scale-Aware Low-Light Enhancement via Structure-Guided Transformer Design
Abstract:
Current Low-light Image Enhancement (LLIE) techniques predominantly rely on either direct Low-Light (LL) to Normal-Light (NL) mappings or guidance from semantic features or illumination maps. Nonetheless, the intrinsic ill-posedness of LLIE and the difficulty in retrieving robust semantics from heavily corrupted images hinder their effectiveness in extremely low-light environments. To tackle this challenge, we present SG-LLIE, a new multi-scale CNN-Transformer hybrid framework guided by structure priors. Different from employing pre-trained models for the extraction of semantics or illumination maps, we choose to extract robust structure priors based on illumination-invariant edge detectors. Moreover, we develop a CNN-Transformer Hybrid Structure-Guided Feature Extractor (HSGFE) module at each scale with in the UNet encoder-decoder architecture. Besides the CNN blocks which excels in multi-scale feature extraction and fusion, we introduce a Structure-Guided Transformer Block (SGTB) in each HSGFE that incorporates structural priors to modulate the enhancement process. Extensive experiments show that our method achieves state-of-the-art performance on several LLIE benchmarks in both quantitative metrics and visual quality. Our solution ranks second in the NTIRE 2025 Low-Light Enhancement Challenge. Code is released at https://github.com/minyan8/imagine.

Authors:Leo Boisvert, Mihir Bansal, Chandra Kiran Reddy Evuru, Gabriel Huang, Abhay Puri, Avinandan Bose, Maryam Fazel, Quentin Cappart, Jason Stanley, Alexandre Lacoste, Alexandre Drouin, Krishnamurthy Dvijotham
Title: DoomArena: A framework for Testing AI Agents Against Evolving Security Threats
Abstract:
We present DoomArena, a security evaluation framework for AI agents. DoomArena is designed on three principles: 1) It is a plug-in framework and integrates easily into realistic agentic frameworks like BrowserGym (for web agents) and $τ$-bench (for tool calling agents); 2) It is configurable and allows for detailed threat modeling, allowing configuration of specific components of the agentic framework being attackable, and specifying targets for the attacker; and 3) It is modular and decouples the development of attacks from details of the environment in which the agent is deployed, allowing for the same attacks to be applied across multiple environments. We illustrate several advantages of our framework, including the ability to adapt to new threat models and environments easily, the ability to easily combine several previously published attacks to enable comprehensive and fine-grained security testing, and the ability to analyze trade-offs between various vulnerabilities and performance. We apply DoomArena to state-of-the-art (SOTA) web and tool-calling agents and find a number of surprising results: 1) SOTA agents have varying levels of vulnerability to different threat models (malicious user vs malicious environment), and there is no Pareto dominant agent across all threat models; 2) When multiple attacks are applied to an agent, they often combine constructively; 3) Guardrail model-based defenses seem to fail, while defenses based on powerful SOTA LLMs work better. DoomArena is available at https://github.com/ServiceNow/DoomArena.

Authors:Leo Boisvert, Mihir Bansal, Chandra Kiran Reddy Evuru, Gabriel Huang, Abhay Puri, Avinandan Bose, Maryam Fazel, Quentin Cappart, Jason Stanley, Alexandre Lacoste, Alexandre Drouin, Krishnamurthy Dvijotham
Title: DoomArena: A framework for Testing AI Agents Against Evolving Security Threats
Abstract:
We present DoomArena, a security evaluation framework for AI agents. DoomArena is designed on three principles: 1) It is a plug-in framework and integrates easily into realistic agentic frameworks like BrowserGym (for web agents) and $τ$-bench (for tool calling agents); 2) It is configurable and allows for detailed threat modeling, allowing configuration of specific components of the agentic framework being attackable, and specifying targets for the attacker; and 3) It is modular and decouples the development of attacks from details of the environment in which the agent is deployed, allowing for the same attacks to be applied across multiple environments. We illustrate several advantages of our framework, including the ability to adapt to new threat models and environments easily, the ability to easily combine several previously published attacks to enable comprehensive and fine-grained security testing, and the ability to analyze trade-offs between various vulnerabilities and performance. We apply DoomArena to state-of-the-art (SOTA) web and tool-calling agents and find a number of surprising results: 1) SOTA agents have varying levels of vulnerability to different threat models (malicious user vs malicious environment), and there is no Pareto dominant agent across all threat models; 2) When multiple attacks are applied to an agent, they often combine constructively; 3) Guardrail model-based defenses seem to fail, while defenses based on powerful SOTA LLMs work better. DoomArena is available at https://github.com/ServiceNow/DoomArena.

Authors:Kai Chen, Xiaochen Li, Chen Gong, Ryan McKenna, Tianhao Wang
Title: Benchmarking Differentially Private Tabular Data Synthesis
Abstract:
Differentially private (DP) tabular data synthesis generates artificial data that preserves the statistical properties of private data while safeguarding individual privacy. The emergence of diverse algorithms in recent years has introduced challenges in practical applications, such as inconsistent data processing methods, lack of in-depth algorithm analysis, and incomplete comparisons due to overlapping development timelines. These factors create significant obstacles to selecting appropriate algorithms. In this paper, we address these challenges by proposing a benchmark for evaluating tabular data synthesis methods. We present a unified evaluation framework that integrates data preprocessing, feature selection, and synthesis modules, facilitating fair and comprehensive comparisons. Our evaluation reveals that a significant utility-efficiency trade-off exists among current state-of-the-art methods. Some statistical methods are superior in synthesis utility, but their efficiency is not as good as most machine learning-based methods. Furthermore, we conduct an in-depth analysis of each module with experimental validation, offering theoretical insights into the strengths and limitations of different strategies.

Authors:Haiwen Huang, Anpei Chen, Volodymyr Havrylov, Andreas Geiger, Dan Zhang
Title: LoftUp: Learning a Coordinate-Based Feature Upsampler for Vision Foundation Models
Abstract:
Vision foundation models (VFMs) such as DINOv2 and CLIP have achieved impressive results on various downstream tasks, but their limited feature resolution hampers performance in applications requiring pixel-level understanding. Feature upsampling offers a promising direction to address this challenge. In this work, we identify two critical factors for enhancing feature upsampling: the upsampler architecture and the training objective. For the upsampler architecture, we introduce a coordinate-based cross-attention transformer that integrates the high-resolution images with coordinates and low-resolution VFM features to generate sharp, high-quality features. For the training objective, we propose constructing high-resolution pseudo-groundtruth features by leveraging class-agnostic masks and self-distillation. Our approach effectively captures fine-grained details and adapts flexibly to various input and feature resolutions. Through experiments, we demonstrate that our approach significantly outperforms existing feature upsampling techniques across various downstream tasks. Our code is released at https://github.com/andrehuang/loftup.

Authors:Mehmet Yamaç, Muhammad Numan Yousaf, Serkan Kiranyaz, Moncef Gabbouj
Title: Multiscale Tensor Summation Factorization as a New Neural Network Layer (MTS Layer) for Multidimensional Data Processing
Abstract:
Multilayer perceptrons (MLP), or fully connected artificial neural networks, are known for performing vector-matrix multiplications using learnable weight matrices; however, their practical application in many machine learning tasks, especially in computer vision, can be limited due to the high dimensionality of input-output pairs at each layer. To improve efficiency, convolutional operators have been utilized to facilitate weight sharing and local connections, yet they are constrained by limited receptive fields. In this paper, we introduce Multiscale Tensor Summation (MTS) Factorization, a novel neural network operator that implements tensor summation at multiple scales, where each tensor to be summed is obtained through Tucker-decomposition-like mode products. Unlike other tensor decomposition methods in the literature, MTS is not introduced as a network compression tool; instead, as a new backbone neural layer. MTS not only reduces the number of parameters required while enhancing the efficiency of weight optimization compared to traditional dense layers (i.e., unfactorized weight matrices in MLP layers), but it also demonstrates clear advantages over convolutional layers. The proof-of-concept experimental comparison of the proposed MTS networks with MLPs and Convolutional Neural Networks (CNNs) demonstrates their effectiveness across various tasks, such as classification, compression, and signal restoration. Additionally, when integrated with modern non-linear units such as the multi-head gate (MHG), also introduced in this study, the corresponding neural network, MTSNet, demonstrates a more favorable complexity-performance tradeoff compared to state-of-the-art transformers in various computer vision applications. The software implementation of the MTS layer and the corresponding MTS-based networks, MTSNets, is shared at https://github.com/mehmetyamac/MTSNet.

Authors:Chao Yang, Xiannan Huang, Shuhan Qiu, Yan Cheng
Title: CONTINA: Confidence Interval for Traffic Demand Prediction with Coverage Guarantee
Abstract:
Accurate short-term traffic demand prediction is critical for the operation of traffic systems. Besides point estimation, the confidence interval of the prediction is also of great importance. Many models for traffic operations, such as shared bike rebalancing and taxi dispatching, take into account the uncertainty of future demand and require confidence intervals as the input. However, existing methods for confidence interval modeling rely on strict assumptions, such as unchanging traffic patterns and correct model specifications, to guarantee enough coverage. Therefore, the confidence intervals provided could be invalid, especially in a changing traffic environment. To fill this gap, we propose an efficient method, CONTINA (Conformal Traffic Intervals with Adaptation) to provide interval predictions that can adapt to external changes. By collecting the errors of interval during deployment, the method can adjust the interval in the next step by widening it if the errors are too large or shortening it otherwise. Furthermore, we theoretically prove that the coverage of the confidence intervals provided by our method converges to the target coverage level. Experiments across four real-world datasets and prediction models demonstrate that the proposed method can provide valid confidence intervals with shorter lengths. Our method can help traffic management personnel develop a more reasonable and robust operation plan in practice. And we release the code, model and dataset in \href{ https://github.com/xiannanhuang/CONTINA/}{ Github}.

Authors:Zhongxi Qiu, Zhang Zhang, Yan Hu, Heng Li, Jiang Liu
Title: Open-Medical-R1: How to Choose Data for RLVR Training at Medicine Domain
Abstract:
This paper explores optimal data selection strategies for Reinforcement Learning with Verified Rewards (RLVR) training in the medical domain. While RLVR has shown exceptional potential for enhancing reasoning capabilities in large language models, most prior implementations have focused on mathematics and logical puzzles, with limited exploration of domain-specific applications like medicine. We investigate four distinct data sampling strategies from MedQA-USMLE: random sampling (baseline), and filtering using Phi-4, Gemma-3-27b-it, and Gemma-3-12b-it models. Using Gemma-3-12b-it as our base model and implementing Group Relative Policy Optimization (GRPO), we evaluate performance across multiple benchmarks including MMLU, GSM8K, MMLU-Pro, and CMMLU. Our findings demonstrate that models trained on filtered data generally outperform those trained on randomly selected samples. Notably, training on self-filtered samples (using Gemma-3-12b-it for filtering) achieved superior performance in medical domains but showed reduced robustness across different benchmarks, while filtering with larger models from the same series yielded better overall robustness. These results provide valuable insights into effective data organization strategies for RLVR in specialized domains and highlight the importance of thoughtful data selection in achieving optimal performance. You can access our repository (https://github.com/Qsingle/open-medical-r1) to get the codes.

Authors:Zhanglin Wu, Tengfei Song, Ning Xie, Mengli Zhu, Weidong Zhang, Shuang Wu, Pengfei Li, Chong Li, Junhao Zhu, Hao Yang, Shiliang Sun
Title: Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
Abstract:
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.

Authors:Kunihiko Fujiwara, Ryuta Tsurumi, Tomoki Kiyono, Zicheng Fan, Xiucheng Liang, Binyu Lei, Winston Yap, Koichi Ito, Filip Biljecki
Title: VoxCity: A Seamless Framework for Open Geospatial Data Integration, Grid-Based Semantic 3D City Model Generation, and Urban Environment Simulation
Abstract:
Three-dimensional urban environment simulation is a powerful tool for informed urban planning. However, the intensive manual effort required to prepare input 3D city models has hindered its widespread adoption. To address this challenge, we present VoxCity, an open-source Python package that provides a one-stop solution for grid-based 3D city model generation and urban environment simulation for cities worldwide. VoxCity's `generator' subpackage automatically downloads building heights, tree canopy heights, land cover, and terrain elevation within a specified target area, and voxelizes buildings, trees, land cover, and terrain to generate an integrated voxel city model. The `simulator' subpackage enables users to conduct environmental simulations, including solar radiation and view index analyses. Users can export the generated models using several file formats compatible with external software, such as ENVI-met (INX), Blender, and Rhino (OBJ). We generated 3D city models for eight global cities, and demonstrated the calculation of solar irradiance, sky view index, and green view index. We also showcased microclimate simulation and 3D rendering visualization through ENVI-met and Rhino, respectively, through the file export function. Additionally, we reviewed openly available geospatial data to create guidelines to help users choose appropriate data sources depending on their target areas and purposes. VoxCity can significantly reduce the effort and time required for 3D city model preparation and promote the utilization of urban environment simulations. This contributes to more informed urban and architectural design that considers environmental impacts, and in turn, fosters sustainable and livable cities. VoxCity is released openly at https://github.com/kunifujiwara/VoxCity.

Authors:Deyu Cao, Samin Aref
Title: Enhancing Ultra-Low-Bit Quantization of Large Language Models Through Saliency-Aware Partial Retraining
Abstract:
The growing use of large language models has raised environmental and economic concerns about their intensity of resource usage during inference. Serving these models to each user requires substantial energy and water for cooling. Model compression techniques like quantization can shrink large language models and make them more resource efficient at the cost of potential performance degradation. Quantization methods compress model size through replacing their high-precision parameters by quantized values of lower precision. Among existing methods, the ApiQ method achieves superior accuracy preservation at minimal memory and time overhead. We investigate two ideas to extend performance in ultra-low-bit quantization beyond ApiQ's level. First, we look into combining existing quantization-aware training techniques with ApiQ's partial training. We show that this does not outperform the baseline ApiQ method with limited training data and frozen weights. This leads to two key insights: (1) The substantial representational capacity that is gained through full retraining is unlikely to be feasible through partial training. (2) This gain may depend on using a large and diverse dataset in quantization-aware training. Second, through a novel approach informed by the two insights, we propose an ultra-low-bit quantization method that builds upon ApiQ and extends its performance without the need for full retraining. This publicly available method relies on a saliency-aware regularization term that prioritizes preserving the most impactful parameters during quantization. Our experiments on LLaMA 7B and 13B benchmarks demonstrate that our method reduces the ApiQ's accuracy degradation by 10.85% and 7.54% respectively. A Python implementation of the proposed quantization method is publicly available on GitHub https://github.com/TokuyuSou/ULB-SAPR.

Authors:Muhan Gao, Jash Shah, Weiqi Wang, Daniel Khashabi
Title: Science Hierarchography: Hierarchical Organization of Science Literature
Abstract:
Scientific knowledge is growing rapidly, making it difficult to track progress and high-level conceptual links across broad disciplines. While tools like citation networks and search engines help retrieve related papers, they lack the abstraction needed to capture the needed to represent the density and structure of activity across subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that spans multiple levels of abstraction -- from broad domains to specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve this goal, we develop a hybrid approach that combines efficient embedding-based clustering with LLM-based prompting, striking a balance between scalability and semantic precision. Compared to LLM-heavy methods like iterative tree construction, our approach achieves superior quality-speed trade-offs. Our hierarchies capture different dimensions of research contributions, reflecting the interdisciplinary and multifaceted nature of modern science. We evaluate its utility by measuring how effectively an LLM-based agent can navigate the hierarchy to locate target papers. Results show that our method improves interpretability and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo are available: https://github.com/JHU-CLSP/science-hierarchography

Authors:Muhan Gao, Jash Shah, Weiqi Wang, Daniel Khashabi
Title: Science Hierarchography: Hierarchical Organization of Science Literature
Abstract:
Scientific knowledge is growing rapidly, making it difficult to track progress and high-level conceptual links across broad disciplines. While tools like citation networks and search engines help retrieve related papers, they lack the abstraction needed to capture the needed to represent the density and structure of activity across subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that spans multiple levels of abstraction -- from broad domains to specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve this goal, we develop a hybrid approach that combines efficient embedding-based clustering with LLM-based prompting, striking a balance between scalability and semantic precision. Compared to LLM-heavy methods like iterative tree construction, our approach achieves superior quality-speed trade-offs. Our hierarchies capture different dimensions of research contributions, reflecting the interdisciplinary and multifaceted nature of modern science. We evaluate its utility by measuring how effectively an LLM-based agent can navigate the hierarchy to locate target papers. Results show that our method improves interpretability and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo are available: https://github.com/JHU-CLSP/science-hierarchography

Authors:Shijie Xia, Yiwei Qin, Xuefeng Li, Yan Ma, Run-Ze Fan, Steffi Chern, Haoyang Zou, Fan Zhou, Xiangkun Hu, Jiahe Jin, Yanheng He, Yixin Ye, Yixiu Liu, Pengfei Liu
Title: Generative AI Act II: Test Time Scaling Drives Cognition Engineering
Abstract:
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering

Authors:Yang Yue, Yulin Wang, Chenxin Tao, Pan Liu, Shiji Song, Gao Huang
Title: CheXWorld: Exploring Image World Modeling for Radiograph Representation Learning
Abstract:
Humans can develop internal world models that encode common sense knowledge, telling them how the world works and predicting the consequences of their actions. This concept has emerged as a promising direction for establishing general-purpose machine-learning models in recent preliminary works, e.g., for visual representation learning. In this paper, we present CheXWorld, the first effort towards a self-supervised world model for radiographic images. Specifically, our work develops a unified framework that simultaneously models three aspects of medical knowledge essential for qualified radiologists, including 1) local anatomical structures describing the fine-grained characteristics of local tissues (e.g., architectures, shapes, and textures); 2) global anatomical layouts describing the global organization of the human body (e.g., layouts of organs and skeletons); and 3) domain variations that encourage CheXWorld to model the transitions across different appearance domains of radiographs (e.g., varying clarity, contrast, and exposure caused by collecting radiographs from different hospitals, devices, or patients). Empirically, we design tailored qualitative and quantitative analyses, revealing that CheXWorld successfully captures these three dimensions of medical knowledge. Furthermore, transfer learning experiments across eight medical image classification and segmentation benchmarks showcase that CheXWorld significantly outperforms existing SSL methods and large-scale medical foundation models. Code & pre-trained models are available at https://github.com/LeapLabTHU/CheXWorld.

Authors:Chenghao Xiao, Hou Pong Chan, Hao Zhang, Mahani Aljunied, Lidong Bing, Noura Al Moubayed, Yu Rong
Title: Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations
Abstract:
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on the knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.

Authors:Zhu Zhu, Shuo Jiang, Jingyuan Zheng, Yawen Li, Yifei Chen, Manli Zhao, Weizhong Gu, Feiwei Qin, Jinhu Wang, Gang Yu
Title: Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Abstract:
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole-slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole-slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to bridge patch-level predictions to whole-slide image-level classifications seamlessly. We verified the CMSwinKAN on the publicly available BreakHis dataset and the PpNTs dataset, which was established by our hospital. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.

Authors:Benjamin Cohen-Wang, Yung-Sung Chuang, Aleksander Madry
Title: Learning to Attribute with Attention
Abstract:
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .

Authors:Paul K. Mandal, Cole Leo, Connor Hurley
Title: Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Abstract:
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.

Authors:Remko Proesmans, Thomas Lips, Francis wyffels
Title: Self-Mixing Laser Interferometry: In Search of an Ambient Noise-Resilient Alternative to Acoustic Sensing
Abstract:
Self-mixing interferometry (SMI) has been lauded for its sensitivity in detecting microvibrations, while requiring no physical contact with its target. Microvibrations, i.e., sounds, have recently been used as a salient indicator of extrinsic contact in robotic manipulation. In previous work, we presented a robotic fingertip using SMI for extrinsic contact sensing as an ambient-noise-resilient alternative to acoustic sensing. Here, we extend the validation experiments to the frequency domain. We find that for broadband ambient noise, SMI still outperforms acoustic sensing, but the difference is less pronounced than in time-domain analyses. For targeted noise disturbances, analogous to multiple robots simultaneously collecting data for the same task, SMI is still the clear winner. Lastly, we show how motor noise affects SMI sensing more so than acoustic sensing, and that a higher SMI readout frequency is important for future work. Design and data files are available at https://github.com/RemkoPr/icra2025-SMI-tactile-sensing.

Authors:Mengyuan Li, Changhong Fu, Ziyu Lu, Zijie Zhang, Haobo Zuo, Liangliang Yao
Title: AnyTSR: Any-Scale Thermal Super-Resolution for UAV
Abstract:
Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.

Authors:Sijing Li, Tianwei Lin, Lingshuai Lin, Wenqiao Zhang, Jiang Liu, Xiaoda Yang, Juncheng Li, Yucheng He, Xiaohui Song, Jun Xiao, Yueting Zhuang, Beng Chin Ooi
Title: EyecareGPT: Boosting Comprehensive Ophthalmology Understanding with Tailored Dataset, Benchmark and Model
Abstract:
Medical Large Vision-Language Models (Med-LVLMs) demonstrate significant potential in healthcare, but their reliance on general medical data and coarse-grained global visual understanding limits them in intelligent ophthalmic diagnosis. Currently, intelligent ophthalmic diagnosis faces three major challenges: (i) Data. The lack of deeply annotated, high-quality, multi-modal ophthalmic visual instruction data; (ii) Benchmark. The absence of a comprehensive and systematic benchmark for evaluating diagnostic performance; (iii) Model. The difficulty of adapting holistic visual architectures to fine-grained, region-specific ophthalmic lesion identification. In this paper, we propose the Eyecare Kit, which systematically tackles the aforementioned three key challenges with the tailored dataset, benchmark and model: First, we construct a multi-agent data engine with real-life ophthalmology data to produce Eyecare-100K, a high-quality ophthalmic visual instruction dataset. Subsequently, we design Eyecare-Bench, a benchmark that comprehensively evaluates the overall performance of LVLMs on intelligent ophthalmic diagnosis tasks across multiple dimensions. Finally, we develop the EyecareGPT, optimized for fine-grained ophthalmic visual understanding thoroughly, which incorporates an adaptive resolution mechanism and a layer-wise dense connector. Extensive experimental results indicate that the EyecareGPT achieves state-of-the-art performance in a range of ophthalmic tasks, underscoring its significant potential for the advancement of open research in intelligent ophthalmic diagnosis. Our project is available at https://github.com/DCDmllm/EyecareGPT.

Authors:Yushen He, Lei Zhao, Tianchen Deng, Zipeng Fang, Weidong Chen
Title: Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Abstract:
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.

Authors:Samuel Wertz, Arnaud Vandaele, Nicolas Gillis
Title: Efficient algorithms for the Hadamard decomposition
Abstract:
The Hadamard decomposition is a powerful technique for data analysis and matrix compression, which decomposes a given matrix into the element-wise product of two or more low-rank matrices. In this paper, we develop an efficient algorithm to solve this problem, leveraging an alternating optimization approach that decomposes the global non-convex problem into a series of convex sub-problems. To improve performance, we explore advanced initialization strategies inspired by the singular value decomposition (SVD) and incorporate acceleration techniques by introducing momentum-based updates. Beyond optimizing the two-matrix case, we also extend the Hadamard decomposition framework to support more than two low-rank matrices, enabling approximations with higher effective ranks while preserving computational efficiency. Finally, we conduct extensive experiments to compare our method with the existing gradient descent-based approaches for the Hadamard decomposition and with traditional low-rank approximation techniques. The results highlight the effectiveness of our proposed method across diverse datasets.

Authors:Rohan P. Singh, Mitsuharu Morisawa, Mehdi Benallegue, Zhaoming Xie, Fumio Kanehiro
Title: Robust Humanoid Walking on Compliant and Uneven Terrain with Deep Reinforcement Learning
Abstract:
For the deployment of legged robots in real-world environments, it is essential to develop robust locomotion control methods for challenging terrains that may exhibit unexpected deformability and irregularity. In this paper, we explore the application of sim-to-real deep reinforcement learning (RL) for the design of bipedal locomotion controllers for humanoid robots on compliant and uneven terrains. Our key contribution is to show that a simple training curriculum for exposing the RL agent to randomized terrains in simulation can achieve robust walking on a real humanoid robot using only proprioceptive feedback. We train an end-to-end bipedal locomotion policy using the proposed approach, and show extensive real-robot demonstration on the HRP-5P humanoid over several difficult terrains inside and outside the lab environment. Further, we argue that the robustness of a bipedal walking policy can be improved if the robot is allowed to exhibit aperiodic motion with variable stepping frequency. We propose a new control policy to enable modification of the observed clock signal, leading to adaptive gait frequencies depending on the terrain and command velocity. Through simulation experiments, we show the effectiveness of this policy specifically for walking over challenging terrains by controlling swing and stance durations. The code for training and evaluation is available online at https://github.com/rohanpsingh/LearningHumanoidWalking. Demo video is available at https://www.youtube.com/watch?v=ZgfNzGAkk2Q.

Authors:Zuyao Chen, Jinlin Wu, Zhen Lei, Marc Pollefeys, Chang Wen Chen
Title: Compile Scene Graphs with Reinforcement Learning
Abstract:
Next-token prediction is the fundamental principle for training large language models (LLMs), and reinforcement learning (RL) further enhances their reasoning performance. As an effective way to model language, image, video, and other modalities, the use of LLMs for end-to-end extraction of structured visual representations, such as scene graphs, remains underexplored. It requires the model to accurately produce a set of objects and relationship triplets, rather than generating text token by token. To achieve this, we introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset and subsequently refined using reinforcement learning to enhance its ability to generate scene graphs in an end-to-end manner. The SFT follows a conventional prompt-response paradigm, while RL requires the design of effective reward signals. We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall -- which evaluate semantic and spatial alignment between predictions and ground truth at the object and relation levels. A format consistency reward further ensures that outputs follow the expected structural schema. Extensive experiments on the VG150 and PSG benchmarks show that R1-SGG substantially reduces failure rates and achieves strong performance in Recall and mean Recall, surpassing traditional SGG models and existing multimodal language models. Our code is available at https://github.com/gpt4vision/R1-SGG

Authors:Ritwik Mishra, Rajiv Ratn Shah, Ponnurangam Kumaraguru
Title: Long-context Non-factoid Question Answering in Indic Languages
Abstract:
Question Answering (QA) tasks, which involve extracting answers from a given context, are relatively straightforward for modern Large Language Models (LLMs) when the context is short. However, long contexts pose challenges due to the quadratic complexity of the self-attention mechanism. This challenge is compounded in Indic languages, which are often low-resource. This study explores context-shortening techniques, including Open Information Extraction (OIE), coreference resolution, Answer Paragraph Selection (APS), and their combinations, to improve QA performance. Compared to the baseline of unshortened (long) contexts, our experiments on four Indic languages (Hindi, Tamil, Telugu, and Urdu) demonstrate that context-shortening techniques yield an average improvement of 4\% in semantic scores and 47\% in token-level scores when evaluated on three popular LLMs without fine-tuning. Furthermore, with fine-tuning, we achieve an average increase of 2\% in both semantic and token-level scores. Additionally, context-shortening reduces computational overhead. Explainability techniques like LIME and SHAP reveal that when the APS model confidently identifies the paragraph containing the answer, nearly all tokens within the selected text receive high relevance scores. However, the study also highlights the limitations of LLM-based QA systems in addressing non-factoid questions, particularly those requiring reasoning or debate. Moreover, verbalizing OIE-generated triples does not enhance system performance. These findings emphasize the potential of context-shortening techniques to improve the efficiency and effectiveness of LLM-based QA systems, especially for low-resource languages. The source code and resources are available at https://github.com/ritwikmishra/IndicGenQA.

Authors:Zahra Akhlaghi, Mostafa Haghir Chehreghani
Title: Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation
Abstract:
The rapid growth of the internet has made personalized recommendation systems indispensable. Graph-based sequential recommendation systems, powered by Graph Neural Networks (GNNs), effectively capture complex user-item interactions but often face challenges such as noise and static representations. In this paper, we introduce the Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation (ALDA4Rec) method, a novel model that constructs an item-item graph, filters noise through community detection, and enriches user-item interactions. Graph Convolutional Networks (GCNs) are then employed to learn short-term representations, while averaging, GRUs, and attention mechanisms are utilized to model long-term embeddings. An MLP-based adaptive weighting strategy is further incorporated to dynamically optimize long-term user preferences. Experiments conducted on four real-world datasets demonstrate that ALDA4Rec outperforms state-of-the-art baselines, delivering notable improvements in both accuracy and robustness. The source code is available at https://github.com/zahraakhlaghi/ALDA4Rec.

Authors:Yuhao Liu, Teng Fu, Jie Fan, Panpan Niu, Chaowen Deng, Zhongyi Huang
Title: Capacity-achieving sparse superposition codes with spatially coupled VAMP decoder
Abstract:
Sparse superposition (SS) codes provide an efficient communication scheme over the Gaussian channel, utilizing the vector approximate message passing (VAMP) decoder for rotational invariant design matrices. Previous work has established that the VAMP decoder for SS achieves Shannon capacity when the design matrix satisfies a specific spectral criterion and exponential decay power allocation is used. In this work, we propose a spatially coupled VAMP (SC-VAMP) decoder for SS with spatially coupled design matrices. Based on state evolution (SE) analysis, we demonstrate that the SC-VAMP decoder is capacity-achieving when the design matrices satisfy the spectra criterion. Empirically, we show that the SC-VAMP decoder outperforms the VAMP decoder with exponential decay power allocation, achieving a lower section error rate. All codes are available on https://github.com/yztfu/SC-VAMP-for-Superposition-Code.git.

Authors:Jun Zeng, KC Santosh, Deepak Rajan Nayak, Thomas de Lange, Jonas Varkey, Tyler Berzin, Debesh Jha
Title: FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Abstract:
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.

Authors:Shuobin Wei, Zhuang Zhou, Zhengan Lu, Zizhao Yuan, Binghua Su
Title: HDBFormer: Efficient RGB-D Semantic Segmentation with A Heterogeneous Dual-Branch Framework
Abstract:
In RGB-D semantic segmentation for indoor scenes, a key challenge is effectively integrating the rich color information from RGB images with the spatial distance information from depth images. However, most existing methods overlook the inherent differences in how RGB and depth images express information. Properly distinguishing the processing of RGB and depth images is essential to fully exploiting their unique and significant characteristics. To address this, we propose a novel heterogeneous dual-branch framework called HDBFormer, specifically designed to handle these modality differences. For RGB images, which contain rich detail, we employ both a basic and detail encoder to extract local and global features. For the simpler depth images, we propose LDFormer, a lightweight hierarchical encoder that efficiently extracts depth features with fewer parameters. Additionally, we introduce the Modality Information Interaction Module (MIIM), which combines transformers with large kernel convolutions to interact global and local information across modalities efficiently. Extensive experiments show that HDBFormer achieves state-of-the-art performance on the NYUDepthv2 and SUN-RGBD datasets. The code is available at: https://github.com/Weishuobin/HDBFormer.

Authors:Yang Wu, Yun Zhu, Kaihua Zhang, Jianjun Qian, Jin Xie, Jian Yang
Title: WeatherGen: A Unified Diverse Weather Generator for LiDAR Point Clouds via Spider Mamba Diffusion
Abstract:
3D scene perception demands a large amount of adverse-weather LiDAR data, yet the cost of LiDAR data collection presents a significant scaling-up challenge. To this end, a series of LiDAR simulators have been proposed. Yet, they can only simulate a single adverse weather with a single physical model, and the fidelity of the generated data is quite limited. This paper presents WeatherGen, the first unified diverse-weather LiDAR data diffusion generation framework, significantly improving fidelity. Specifically, we first design a map-based data producer, which can provide a vast amount of high-quality diverse-weather data for training purposes. Then, we utilize the diffusion-denoising paradigm to construct a diffusion model. Among them, we propose a spider mamba generator to restore the disturbed diverse weather data gradually. The spider mamba models the feature interactions by scanning the LiDAR beam circle or central ray, excellently maintaining the physical structure of the LiDAR data. Subsequently, following the generator to transfer real-world knowledge, we design a latent feature aligner. Afterward, we devise a contrastive learning-based controller, which equips weather control signals with compact semantic knowledge through language supervision, guiding the diffusion model to generate more discriminative data. Extensive evaluations demonstrate the high generation quality of WeatherGen. Through WeatherGen, we construct the mini-weather dataset, promoting the performance of the downstream task under adverse weather conditions. Code is available: https://github.com/wuyang98/weathergen

Authors:Yihao Ouyang, Xunheng Kuang, Mengjia Xiong, Zhida Wang, Yuanquan Wang
Title: A Novel Hybrid Approach for Retinal Vessel Segmentation with Dynamic Long-Range Dependency and Multi-Scale Retinal Edge Fusion Enhancement
Abstract:
Accurate retinal vessel segmentation provides essential structural information for ophthalmic image analysis. However, existing methods struggle with challenges such as multi-scale vessel variability, complex curvatures, and ambiguous boundaries. While Convolutional Neural Networks (CNNs), Transformer-based models and Mamba-based architectures have advanced the field, they often suffer from vascular discontinuities or edge feature ambiguity. To address these limitations, we propose a novel hybrid framework that synergistically integrates CNNs and Mamba for high-precision retinal vessel segmentation. Our approach introduces three key innovations: 1) The proposed High-Resolution Edge Fuse Network is a high-resolution preserving hybrid segmentation framework that combines a multi-scale backbone with the Multi-scale Retina Edge Fusion (MREF) module to enhance edge features, ensuring accurate and robust vessel segmentation. 2) The Dynamic Snake Visual State Space block combines Dynamic Snake Convolution with Mamba to adaptively capture vessel curvature details and long-range dependencies. An improved eight-directional 2D Snake-Selective Scan mechanism and a dynamic weighting strategy enhance the perception of complex vascular topologies. 3) The MREF module enhances boundary precision through multi-scale edge feature aggregation, suppressing noise while emphasizing critical vessel structures across scales. Experiments on three public datasets demonstrate that our method achieves state-of-the-art performance, particularly in maintaining vascular continuity and effectively segmenting vessels in low-contrast regions. This work provides a robust method for clinical applications requiring accurate retinal vessel analysis. The code is available at https://github.com/frank-oy/HREFNet.

Authors:Haoyang Luo, Linwei Tao, Minjing Dong, Chang Xu
Title: Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Abstract:
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present \textbf{Calibration-aware Semantic Mixing (CSM)}, a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Our code is \href{https://github.com/E-Galois/CSM}{available here}.

Authors:Jinhao Li, Zijian Chen, Tingzhu Chen, Zhiji Liu, Changbo Wang
Title: OBIFormer: A Fast Attentive Denoising Framework for Oracle Bone Inscriptions
Abstract:
Oracle bone inscriptions (OBIs) are the earliest known form of Chinese characters and serve as a valuable resource for research in anthropology and archaeology. However, most excavated fragments are severely degraded due to thousands of years of natural weathering, corrosion, and man-made destruction, making automatic OBI recognition extremely challenging. Previous methods either focus on pixel-level information or utilize vanilla transformers for glyph-based OBI denoising, which leads to tremendous computational overhead. Therefore, this paper proposes a fast attentive denoising framework for oracle bone inscriptions, i.e., OBIFormer. It leverages channel-wise self-attention, glyph extraction, and selective kernel feature fusion to reconstruct denoised images precisely while being computationally efficient. Our OBIFormer achieves state-of-the-art denoising performance for PSNR and SSIM metrics on synthetic and original OBI datasets. Furthermore, comprehensive experiments on a real oracle dataset demonstrate the great potential of our OBIFormer in assisting automatic OBI recognition. The code will be made available at https://github.com/LJHolyGround/OBIFormer.

Authors:Yipeng Sun, Linda-Sophie Schneider, Mingxuan Gu, Siyuan Mei, Chengze Ye, Fabian Wagner, Siming Bayer, Andreas Maier
Title: Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Abstract:
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .

Authors:Jianing Wang, Jin Jiang, Yang Liu, Mengdi Zhang, Xunliang Cai
Title: Prejudge-Before-Think: Enhancing Large Language Models at Test-Time by Process Prejudge Reasoning
Abstract:
In this paper, we introduce a new \emph{process prejudge} strategy in LLM reasoning to demonstrate that bootstrapping with process prejudge allows the LLM to adaptively anticipate the errors encountered when advancing the subsequent reasoning steps, similar to people sometimes pausing to think about what mistakes may occur and how to avoid them, rather than relying solely on trial and error. Specifically, we define a prejudge node in the rationale, which represents a reasoning step, with at least one step that follows the prejudge node that has no paths toward the correct answer. To synthesize the prejudge reasoning process, we present an automated reasoning framework with a dynamic tree-searching strategy. This framework requires only one LLM to perform answer judging, response critiquing, prejudge generation, and thought completion. Furthermore, we develop a two-phase training mechanism with supervised fine-tuning (SFT) and reinforcement learning (RL) to further enhance the reasoning capabilities of LLMs. Experimental results from competition-level complex reasoning demonstrate that our method can teach the model to prejudge before thinking and significantly enhance the reasoning ability of LLMs. Code and data is released at https://github.com/wjn1996/Prejudge-Before-Think.

Authors:Alex Ergasti, Filippo Botti, Tomaso Fontanini, Claudio Ferrari, Massimo Bertozzi, Andrea Prati
Title: U-Shape Mamba: State Space Model for faster diffusion
Abstract:
Diffusion models have become the most popular approach for high-quality image generation, but their high computational cost still remains a significant challenge. To address this problem, we propose U-Shape Mamba (USM), a novel diffusion model that leverages Mamba-based layers within a U-Net-like hierarchical structure. By progressively reducing sequence length in the encoder and restoring it in the decoder through Mamba blocks, USM significantly lowers computational overhead while maintaining strong generative capabilities. Experimental results against Zigma, which is currently the most efficient Mamba-based diffusion model, demonstrate that USM achieves one-third the GFlops, requires less memory and is faster, while outperforming Zigma in image quality. Frechet Inception Distance (FID) is improved by 15.3, 0.84 and 2.7 points on AFHQ, CelebAHQ and COCO datasets, respectively. These findings highlight USM as a highly efficient and scalable solution for diffusion-based generative models, making high-quality image synthesis more accessible to the research community while reducing computational costs.

Authors:Ziqi Zhao, Zhaochun Ren, Jiyuan Yang, Zuming Yan, Zihan Wang, Liu Yang, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Xin Xin
Title: Improving Sequential Recommenders through Counterfactual Augmentation of System Exposure
Abstract:
In sequential recommendation (SR), system exposure refers to items that are exposed to the user. Typically, only a few of the exposed items would be interacted with by the user. Although SR has achieved great success in predicting future user interests, existing SR methods still fail to fully exploit system exposure data. Most methods only model items that have been interacted with, while the large volume of exposed but non-interacted items is overlooked. Even methods that consider the whole system exposure typically train the recommender using only the logged historical system exposure, without exploring unseen user interests. In this paper, we propose counterfactual augmentation over system exposure for sequential recommendation (CaseRec). To better model historical system exposure, CaseRec introduces reinforcement learning to account for different exposure rewards. CaseRec uses a decision transformer-based sequential model to take an exposure sequence as input and assigns different rewards according to the user feedback. To further explore unseen user interests, CaseRec proposes to perform counterfactual augmentation, where exposed original items are replaced with counterfactual items. Then, a transformer-based user simulator is proposed to predict the user feedback reward for the augmented items. Augmentation, together with the user simulator, constructs counterfactual exposure sequences to uncover new user interests. Finally, CaseRec jointly uses the logged exposure sequences with the counterfactual exposure sequences to train a decision transformer-based sequential model for generating recommendation. Experiments on three real-world benchmarks show the effectiveness of CaseRec. Our code is available at https://github.com/ZiqiZhao1/CaseRec.

Authors:Chenwei Yan, Xiangling Fu, Yuxuan Xiong, Tianyi Wang, Siu Cheung Hui, Ji Wu, Xien Liu
Title: LLM Sensitivity Evaluation Framework for Clinical Diagnosis
Abstract:
Large language models (LLMs) have demonstrated impressive performance across various domains. However, for clinical diagnosis, higher expectations are required for LLM's reliability and sensitivity: thinking like physicians and remaining sensitive to key medical information that affects diagnostic reasoning, as subtle variations can lead to different diagnosis results. Yet, existing works focus mainly on investigating the sensitivity of LLMs to irrelevant context and overlook the importance of key information. In this paper, we investigate the sensitivity of LLMs, i.e. GPT-3.5, GPT-4, Gemini, Claude3 and LLaMA2-7b, to key medical information by introducing different perturbation strategies. The evaluation results highlight the limitations of current LLMs in remaining sensitive to key medical information for diagnostic decision-making. The evolution of LLMs must focus on improving their reliability, enhancing their ability to be sensitive to key information, and effectively utilizing this information. These improvements will enhance human trust in LLMs and facilitate their practical application in real-world scenarios. Our code and dataset are available at https://github.com/chenwei23333/DiagnosisQA.

Authors:Wang Liu, Zhiyu Wang, Xin Guo, Puhong Duan, Xudong Kang, Shutao Li
Title: Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping
Abstract:
Semantic segmentation of SAR images has garnered significant attention in remote sensing due to the immunity of SAR sensors to cloudy weather and light conditions. Nevertheless, SAR imagery lacks detailed information and is plagued by significant speckle noise, rendering the annotation or segmentation of SAR images a formidable task. Recent efforts have resorted to annotating paired optical-SAR images to generate pseudo-labels through the utilization of an optical image segmentation network. However, these pseudo-labels are laden with noise, leading to suboptimal performance in SAR image segmentation. In this study, we introduce a more precise method for generating pseudo-labels by incorporating semi-supervised learning alongside a novel image resolution alignment augmentation. Furthermore, we introduce a symmetric cross-entropy loss to mitigate the impact of noisy pseudo-labels. Additionally, a bag of training and testing tricks is utilized to generate better land-cover mapping results. Our experiments on the GRSS data fusion contest indicate the effectiveness of the proposed method, which achieves first place. The code is available at https://github.com/StuLiu/DFC2025Track1.git.

Authors:Saksham Rastogi, Pratyush Maini, Danish Pruthi
Title: STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings
Abstract:
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and utility of the original data. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.

Authors:Shimou Ling, Liang Zhang, Jiangwei Zhao, Lili Pan, Hongliang Li
Title: LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
Abstract:
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.

Authors:Yeongjun Jang, Joowon Lee, Junsoo Kim
Title: Documentation on Encrypted Dynamic Control Simulation Code using Ring-LWE based Cryptosystems
Abstract:
Encrypted controllers offer secure computation by employing modern cryptosystems to execute control operations directly over encrypted data without decryption. However, incorporating cryptosystems into dynamic controllers significantly increases the computational load. This paper aims to provide an accessible guideline for running encrypted controllers using an open-source library Lattigo, which supports an efficient implementation of Ring-Learing With Errors (LWE) based encrypted controllers, and our explanations are assisted with example codes that are fully available at https://github.com/CDSL-EncryptedControl/CDSL.

Authors:Shashank Shriram, Srinivasa Perisetla, Aryan Keskar, Harsha Krishnaswamy, Tonko Emil Westerhof Bossen, Andreas Møgelmose, Ross Greer
Title: Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Abstract:
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git

Authors:Mehmet Hamza Erol, Batu El, Mirac Suzgun, Mert Yuksekgonul, James Zou
Title: Cost-of-Pass: An Economic Framework for Evaluating Language Models
Abstract:
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment.

Authors:Omar Tsai, Jianing Li, Tsz Tung Cheung, Lejing Huang, Hao Zhu, Jianrui Xiao, Iman Sharafaldin, Mohammad A. Tayebi
Title: GraphQLer: Enhancing GraphQL Security with Context-Aware API Testing
Abstract:
GraphQL is an open-source data query and manipulation language for web applications, offering a flexible alternative to RESTful APIs. However, its dynamic execution model and lack of built-in security mechanisms expose it to vulnerabilities such as unauthorized data access, denial-of-service (DoS) attacks, and injections. Existing testing tools focus on functional correctness, often overlooking security risks stemming from query interdependencies and execution context. This paper presents GraphQLer, the first context-aware security testing framework for GraphQL APIs. GraphQLer constructs a dependency graph to analyze relationships among mutations, queries, and objects, capturing critical interdependencies. It chains related queries and mutations to reveal authentication and authorization flaws, access control bypasses, and resource misuse. Additionally, GraphQLer tracks internal resource usage to uncover data leakage, privilege escalation, and replay attack vectors. We assess GraphQLer on various GraphQL APIs, demonstrating improved testing coverage - averaging a 35% increase, with up to 84% in some cases - compared to top-performing baselines. Remarkably, this is achieved in less time, making GraphQLer suitable for time-sensitive contexts. GraphQLer also successfully detects a known CVE and potential vulnerabilities in large-scale production APIs. These results underline GraphQLer's utility in proactively securing GraphQL APIs through automated, context-aware vulnerability detection.

Authors:Jiang-Xin Shi, Tong Wei, Yu-Feng Li
Title: LIFT+: Lightweight Fine-Tuning for Long-Tail Learning
Abstract:
The fine-tuning paradigm has emerged as a prominent approach for addressing long-tail learning tasks in the era of foundation models. However, the impact of fine-tuning strategies on long-tail learning performance remains unexplored. In this work, we disclose that existing paradigms exhibit a profound misuse of fine-tuning methods, leaving significant room for improvement in both efficiency and accuracy. Specifically, we reveal that heavy fine-tuning (fine-tuning a large proportion of model parameters) can lead to non-negligible performance deterioration on tail classes, whereas lightweight fine-tuning demonstrates superior effectiveness. Through comprehensive theoretical and empirical validation, we identify this phenomenon as stemming from inconsistent class conditional distributions induced by heavy fine-tuning. Building on this insight, we propose LIFT+, an innovative lightweight fine-tuning framework to optimize consistent class conditions. Furthermore, LIFT+ incorporates semantic-aware initialization, minimalist data augmentation, and test-time ensembling to enhance adaptation and generalization of foundation models. Our framework provides an efficient and accurate pipeline that facilitates fast convergence and model compactness. Extensive experiments demonstrate that LIFT+ significantly reduces both training epochs (from $\sim$100 to $\leq$15) and learned parameters (less than 1%), while surpassing state-of-the-art approaches by a considerable margin. The source code is available at https://github.com/shijxcs/LIFT-plus.

Authors:Zichao Yue, Chenhui Deng, Zhiru Zhang
Title: Graph Learning at Scale: Characterizing and Optimizing Pre-Propagation GNNs
Abstract:
Graph neural networks (GNNs) are widely used for learning node embeddings in graphs, typically adopting a message-passing scheme. This approach, however, leads to the neighbor explosion problem, with exponentially growing computational and memory demands as layers increase. Graph sampling has become the predominant method for scaling GNNs to large graphs, mitigating but not fully solving the issue. Pre-propagation GNNs (PP-GNNs) represent a new class of models that decouple feature propagation from training through pre-processing, addressing neighbor explosion in theory. Yet, their practical advantages and system-level optimizations remain underexplored. This paper provides a comprehensive characterization of PP-GNNs, comparing them with graph-sampling-based methods in training efficiency, scalability, and accuracy. While PP-GNNs achieve comparable accuracy, we identify data loading as the key bottleneck for training efficiency and input expansion as a major scalability challenge. To address these issues, we propose optimized data loading schemes and tailored training methods that improve PP-GNN training throughput by an average of 15$\times$ over the PP-GNN baselines, with speedup of up to 2 orders of magnitude compared to sampling-based GNNs on large graph benchmarks. Our implementation is publicly available at https://github.com/cornell-zhang/preprop-gnn.

Authors:Weijie Shi, Jipeng Zhang, Yaguang Wu, Jingzhi Fang, Ruiyuan Zhang, Jiajie Xu, Jia Zhu, Hao Chen, Yao Zhao, Sirui Han, Xiaofang Zhou
Title: DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Abstract:
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency. The code is available at https://github.com/shiweijiezero/DIDS.

Authors:Wenhua Wu, Tong Zhao, Chensheng Peng, Lei Yang, Yintao Wei, Zhe Liu, Hesheng Wang
Title: BEV-GS: Feed-forward Gaussian Splatting in Bird's-Eye-View for Road Reconstruction
Abstract:
Road surface is the sole contact medium for wheels or robot feet. Reconstructing road surface is crucial for unmanned vehicles and mobile robots. Recent studies on Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) have achieved remarkable results in scene reconstruction. However, they typically rely on multi-view image inputs and require prolonged optimization times. In this paper, we propose BEV-GS, a real-time single-frame road surface reconstruction method based on feed-forward Gaussian splatting. BEV-GS consists of a prediction module and a rendering module. The prediction module introduces separate geometry and texture networks following Bird's-Eye-View paradigm. Geometric and texture parameters are directly estimated from a single frame, avoiding per-scene optimization. In the rendering module, we utilize grid Gaussian for road surface representation and novel view synthesis, which better aligns with road surface characteristics. Our method achieves state-of-the-art performance on the real-world dataset RSRD. The road elevation error reduces to 1.73 cm, and the PSNR of novel view synthesis reaches 28.36 dB. The prediction and rendering FPS is 26, and 2061, respectively, enabling high-accuracy and real-time applications. The code will be available at: \href{https://github.com/cat-wwh/BEV-GS}{\texttt{https://github.com/cat-wwh/BEV-GS}}

Authors:Liujianfu Wang, Xinyi Long, Yuyang Du, Xiaoyan Liu, Kexin Chen, Soung Chang Liew
Title: Cellular-X: An LLM-empowered Cellular Agent for Efficient Base Station Operations
Abstract:
This paper introduces Cellular-X, an LLM-powered agent designed to automate cellular base station (BS) maintenance. Leveraging multimodal LLM and retrieval-augmented generation (RAG) techniques, Cellular-X significantly enhances field engineer efficiency by quickly interpreting user intents, retrieving relevant technical information, and configuring a BS through iterative self-correction. Key features of the demo include automatic customized BS setup, document-based query answering, and voice-controlled configuration reporting and revision. We implemented Cellular-X on a USRP X310 testbed for demonstration. Demo videos and implementation details are available at https://github.com/SeaBreezing/Cellular-X.

Authors:Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li, Piotr Dollár, Christoph Feichtenhofer
Title: Perception Encoder: The best visual embeddings are not at the output of the network
Abstract:
We introduce Perception Encoder (PE), a state-of-the-art vision encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods: language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together, our PE family of models achieves best-in-class results on a wide variety of tasks, including (1) zero-shot image and video classification and retrieval, simultaneously obtaining 86.6 average zero-shot ImageNet robustness and 76.9 zero-shot Kinetics-400 video classification; (2) document, image, and video Q&A, enabling 94.6 DocVQA, 80.9 InfographicVQA, and 82.7 PerceptionTest with an 8B LLM; and (3) spatial tasks such as detection, tracking, and depth estimation, setting a new COCO state-of-the-art of 66.0 box mAP. To foster further research, we release our models, code, and novel dataset of synthetically and human-annotated videos: https://github.com/facebookresearch/perception_models

Authors:Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Suyog Jain, Miguel Martin, Huiyu Wang, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Nikhila Ravi, Shashank Jain, Tammy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan, Philipp Krähenbühl, Piotr Dollár, Lorenzo Torresani, Kristen Grauman, Christoph Feichtenhofer
Title: PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Abstract:
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models. https://github.com/facebookresearch/perception_models

Authors:Fei Shen, Jian Yu, Cong Wang, Xin Jiang, Xiaoyu Du, Jinhui Tang
Title: IMAGGarment: Fine-Grained Garment Generation for Controllable Fashion Design
Abstract:
This paper presents IMAGGarment, a fine-grained garment generation (FGG) framework that enables high-fidelity garment synthesis with precise control over silhouette, color, and logo placement. Unlike existing methods that are limited to single-condition inputs, IMAGGarment addresses the challenges of multi-conditional controllability in personalized fashion design and digital apparel applications. Specifically, IMAGGarment employs a two-stage training strategy to separately model global appearance and local details, while enabling unified and controllable generation through end-to-end inference. In the first stage, we propose a global appearance model that jointly encodes silhouette and color using a mixed attention module and a color adapter. In the second stage, we present a local enhancement model with an adaptive appearance-aware module to inject user-defined logos and spatial constraints, enabling accurate placement and visual consistency. To support this task, we release GarmentBench, a large-scale dataset comprising over 180K garment samples paired with multi-level design conditions, including sketches, color references, logo placements, and textual prompts. Extensive experiments demonstrate that our method outperforms existing baselines, achieving superior structural stability, color fidelity, and local controllability performance. Code, models, and datasets are publicly available at https://github.com/muzishen/IMAGGarment.

Authors:Kevin Lin, Charlie Snell, Yu Wang, Charles Packer, Sarah Wooders, Ion Stoica, Joseph E. Gonzalez
Title: Sleep-time Compute: Beyond Inference Scaling at Test-time
Abstract:
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.

Authors:Kaiyue Sun, Xian Liu, Yao Teng, Xihui Liu
Title: Personalized Text-to-Image Generation with Auto-Regressive Models
Abstract:
Personalized image synthesis has emerged as a pivotal application in text-to-image generation, enabling the creation of images featuring specific subjects in diverse contexts. While diffusion models have dominated this domain, auto-regressive models, with their unified architecture for text and image modeling, remain underexplored for personalized image generation. This paper investigates the potential of optimizing auto-regressive models for personalized image synthesis, leveraging their inherent multimodal capabilities to perform this task. We propose a two-stage training strategy that combines optimization of text embeddings and fine-tuning of transformer layers. Our experiments on the auto-regressive model demonstrate that this method achieves comparable subject fidelity and prompt following to the leading diffusion-based personalization methods. The results highlight the effectiveness of auto-regressive models in personalized image generation, offering a new direction for future research in this area.

Authors:Andrew Melnik, Benjamin Alt, Giang Nguyen, Artur Wilkowski, Maciej Stefańczyk, Qirui Wu, Sinan Harms, Helge Rhodin, Manolis Savva, Michael Beetz
Title: Digital Twin Generation from Visual Data: A Survey
Abstract:
This survey explores recent developments in generating digital twins from videos. Such digital twins can be used for robotics application, media content creation, or design and construction works. We analyze various approaches, including 3D Gaussian Splatting, generative in-painting, semantic segmentation, and foundation models highlighting their advantages and limitations. Additionally, we discuss challenges such as occlusions, lighting variations, and scalability, as well as potential future research directions. This survey aims to provide a comprehensive overview of state-of-the-art methodologies and their implications for real-world applications. Awesome list: https://github.com/ndrwmlnk/awesome-digital-twins

Authors:Shaohui Dai, Yansong Qu, Zheyan Li, Xinyang Li, Shengchuan Zhang, Liujuan Cao
Title: Training-Free Hierarchical Scene Understanding for Gaussian Splatting with Superpoint Graphs
Abstract:
Bridging natural language and 3D geometry is a crucial step toward flexible, language-driven scene understanding. While recent advances in 3D Gaussian Splatting (3DGS) have enabled fast and high-quality scene reconstruction, research has also explored incorporating open-vocabulary understanding into 3DGS. However, most existing methods require iterative optimization over per-view 2D semantic feature maps, which not only results in inefficiencies but also leads to inconsistent 3D semantics across views. To address these limitations, we introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives. The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities and providing a structured foundation for open-vocabulary understanding. Based on the graph structure, we design an efficient reprojection strategy that lifts 2D semantic features onto the superpoints, avoiding costly multi-view iterative training. The resulting representation ensures strong 3D semantic coherence and naturally supports hierarchical understanding, enabling both coarse- and fine-grained open-vocabulary perception within a unified semantic field. Extensive experiments demonstrate that our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30\times$ faster. Our code will be available at https://github.com/Atrovast/THGS.

Authors:Xin Li, Kun Yuan, Bingchen Li, Fengbin Guan, Yizhen Shao, Zihao Yu, Xijun Wang, Yiting Lu, Wei Luo, Suhang Yao, Ming Sun, Chao Zhou, Zhibo Chen, Radu Timofte, Yabin Zhang, Ao-Xiang Zhang, Tianwu Zhi, Jianzhao Liu, Yang Li, Jingwen Xu, Yiting Liao, Yushen Zuo, Mingyang Wu, Renjie Li, Shengyun Zhong, Zhengzhong Tu, Yufan Liu, Xiangguang Chen, Zuowei Cao, Minhao Tang, Shan Liu, Kexin Zhang, Jingfen Xie, Yan Wang, Kai Chen, Shijie Zhao, Yunchen Zhang, Xiangkai Xu, Hong Gao, Ji Shi, Yiming Bao, Xiugang Dong, Xiangsheng Zhou, Yaofeng Tu, Ying Liang, Yiwen Wang, Xinning Chai, Yuxuan Zhang, Zhengxue Cheng, Yingsheng Qin, Yucai Yang, Rong Xie, Li Song, Wei Sun, Kang Fu, Linhan Cao, Dandan Zhu, Kaiwei Zhang, Yucheng Zhu, Zicheng Zhang, Menghan Hu, Xiongkuo Min, Guangtao Zhai, Zhi Jin, Jiawei Wu, Wei Wang, Wenjian Zhang, Yuhai Lan, Gaoxiong Yi, Hengyuan Na, Wang Luo, Di Wu, MingYin Bai, Jiawang Du, Zilong Lu, Zhenyu Jiang, Hui Zeng, Ziguan Cui, Zongliang Gan, Guijin Tang, Xinglin Xie, Kehuan Song, Xiaoqiang Lu, Licheng Jiao, Fang Liu, Xu Liu, Puhua Chen, Ha Thu Nguyen, Katrien De Moor, Seyed Ali Amirshahi, Mohamed-Chaker Larabi, Qi Tang, Linfeng He, Zhiyong Gao, Zixuan Gao, Guohua Zhang, Zhiye Huang, Yi Deng, Qingmiao Jiang, Lu Chen, Yi Yang, Xi Liao, Nourine Mohammed Nadir, Yuxuan Jiang, Qiang Zhu, Siyue Teng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull, Meiqin Liu, Chao Yao, Yao Zhao
Title: NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: Methods and Results
Abstract:
This paper presents a review for the NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement. The challenge comprises two tracks: (i) Efficient Video Quality Assessment (KVQ), and (ii) Diffusion-based Image Super-Resolution (KwaiSR). Track 1 aims to advance the development of lightweight and efficient video quality assessment (VQA) models, with an emphasis on eliminating reliance on model ensembles, redundant weights, and other computationally expensive components in the previous IQA/VQA competitions. Track 2 introduces a new short-form UGC dataset tailored for single image super-resolution, i.e., the KwaiSR dataset. It consists of 1,800 synthetically generated S-UGC image pairs and 1,900 real-world S-UGC images, which are split into training, validation, and test sets using a ratio of 8:1:1. The primary objective of the challenge is to drive research that benefits the user experience of short-form UGC platforms such as Kwai and TikTok. This challenge attracted 266 participants and received 18 valid final submissions with corresponding fact sheets, significantly contributing to the progress of short-form UGC VQA and image superresolution. The project is publicly available at https://github.com/lixinustc/KVQE- ChallengeCVPR-NTIRE2025.

Authors:Haojian Huang, Haodong Chen, Shengqiong Wu, Meng Luo, Jinlan Fu, Xinya Du, Hanwang Zhang, Hao Fei
Title: VistaDPO: Video Hierarchical Spatial-Temporal Direct Preference Optimization for Large Video Models
Abstract:
Large Video Models (LVMs) built upon Large Language Models (LLMs) have shown promise in video understanding but often suffer from misalignment with human intuition and video hallucination issues. To address these challenges, we introduce VistaDPO, a novel framework for Video Hierarchical Spatial-Temporal Direct Preference Optimization. VistaDPO enhances text-video preference alignment across three hierarchical levels: i) Instance Level, aligning overall video content with responses; ii) Temporal Level, aligning video temporal semantics with event descriptions; and iii) Perceptive Level, aligning spatial objects with language tokens. Given the lack of datasets for fine-grained video-language preference alignment, we construct VistaDPO-7k, a dataset of 7.2K QA pairs annotated with chosen and rejected responses, along with spatial-temporal grounding information such as timestamps, keyframes, and bounding boxes. Extensive experiments on benchmarks such as Video Hallucination, Video QA, and Captioning performance tasks demonstrate that VistaDPO significantly improves the performance of existing LVMs, effectively mitigating video-language misalignment and hallucination. The code and data are available at https://github.com/HaroldChen19/VistaDPO.

Authors:Yihua Shao, Haojin He, Sijie Li, Siyu Chen, Xinwei Long, Fanhu Zeng, Yuxuan Fan, Muyang Zhang, Ziyang Yan, Ao Ma, Xiaochen Wang, Hao Tang, Yan Wang, Shuyan Li
Title: EventVAD: Training-Free Event-Aware Video Anomaly Detection
Abstract:
Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.

Authors:Han Wang, Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal
Title: Retrieval-Augmented Generation with Conflicting Evidence
Abstract:
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.

Authors:Prasanna Reddy Pulakurthi, Majid Rabbani, Celso M. de Melo, Sohail A. Dianat, Raghuveer M. Rao
Title: Effective Dual-Region Augmentation for Reduced Reliance on Large Amounts of Labeled Data
Abstract:
This paper introduces a novel dual-region augmentation approach designed to reduce reliance on large-scale labeled datasets while improving model robustness and adaptability across diverse computer vision tasks, including source-free domain adaptation (SFDA) and person re-identification (ReID). Our method performs targeted data transformations by applying random noise perturbations to foreground objects and spatially shuffling background patches. This effectively increases the diversity of the training data, improving model robustness and generalization. Evaluations on the PACS dataset for SFDA demonstrate that our augmentation strategy consistently outperforms existing methods, achieving significant accuracy improvements in both single-target and multi-target adaptation settings. By augmenting training data through structured transformations, our method enables model generalization across domains, providing a scalable solution for reducing reliance on manually annotated datasets. Furthermore, experiments on Market-1501 and DukeMTMC-reID datasets validate the effectiveness of our approach for person ReID, surpassing traditional augmentation techniques. The code is available at https://github.com/PrasannaPulakurthi/Foreground-Background-Augmentation

Authors:Ruizhe Chen, Dongyu Xue, Xiangxin Zhou, Zaixiang Zheng, Xiangxiang Zeng, Quanquan Gu
Title: An All-Atom Generative Model for Designing Protein Complexes
Abstract:
Proteins typically exist in complexes, interacting with other proteins or biomolecules to perform their specific biological roles. Research on single-chain protein modeling has been extensively and deeply explored, with advancements seen in models like the series of ESM and AlphaFold2. Despite these developments, the study and modeling of multi-chain proteins remain largely uncharted, though they are vital for understanding biological functions. Recognizing the importance of these interactions, we introduce APM (All-Atom Protein Generative Model), a model specifically designed for modeling multi-chain proteins. By integrating atom-level information and leveraging data on multi-chain proteins, APM is capable of precisely modeling inter-chain interactions and designing protein complexes with binding capabilities from scratch. It also performs folding and inverse-folding tasks for multi-chain proteins. Moreover, APM demonstrates versatility in downstream applications: it achieves enhanced performance through supervised fine-tuning (SFT) while also supporting zero-shot sampling in certain tasks, achieving state-of-the-art results. We released our code at https://github.com/bytedance/apm.

Authors:Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang, Sheng Chen, Zheng Chen, Chengcheng Ma, Weiming Xiong, Wei Wang, Nuo Pang, Kang Kang, Zhiheng Xu, Yuzhe Jin, Yupeng Liang, Yubing Song, Peng Zhao, Boyuan Xu, Di Qiu, Debang Li, Zhengcong Fei, Yang Li, Yahui Zhou
Title: SkyReels-V2: Infinite-length Film Generative Model
Abstract:
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.

Authors:Yang Yue, Yulin Wang, Haojun Jiang, Pan Liu, Shiji Song, Gao Huang
Title: EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance
Abstract:
Echocardiography is crucial for cardiovascular disease detection but relies heavily on experienced sonographers. Echocardiography probe guidance systems, which provide real-time movement instructions for acquiring standard plane images, offer a promising solution for AI-assisted or fully autonomous scanning. However, developing effective machine learning models for this task remains challenging, as they must grasp heart anatomy and the intricate interplay between probe motion and visual signals. To address this, we present EchoWorld, a motion-aware world modeling framework for probe guidance that encodes anatomical knowledge and motion-induced visual dynamics, while effectively leveraging past visual-motion sequences to enhance guidance precision. EchoWorld employs a pre-training strategy inspired by world modeling principles, where the model predicts masked anatomical regions and simulates the visual outcomes of probe adjustments. Built upon this pre-trained model, we introduce a motion-aware attention mechanism in the fine-tuning stage that effectively integrates historical visual-motion data, enabling precise and adaptive probe guidance. Trained on more than one million ultrasound images from over 200 routine scans, EchoWorld effectively captures key echocardiographic knowledge, as validated by qualitative analysis. Moreover, our method significantly reduces guidance errors compared to existing visual backbones and guidance frameworks, excelling in both single-frame and sequential evaluation protocols. Code is available at https://github.com/LeapLabTHU/EchoWorld.

Authors:Linkang Du, Zheng Zhu, Min Chen, Zhou Su, Shouling Ji, Peng Cheng, Jiming Chen, Zhikun Zhang
Title: ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models
Abstract:
Text-to-image models based on diffusion processes, such as DALL-E, Stable Diffusion, and Midjourney, are capable of transforming texts into detailed images and have widespread applications in art and design. As such, amateur users can easily imitate professional-level paintings by collecting an artist's work and fine-tuning the model, leading to concerns about artworks' copyright infringement. To tackle these issues, previous studies either add visually imperceptible perturbation to the artwork to change its underlying styles (perturbation-based methods) or embed post-training detectable watermarks in the artwork (watermark-based methods). However, when the artwork or the model has been published online, i.e., modification to the original artwork or model retraining is not feasible, these strategies might not be viable. To this end, we propose a novel method for data-use auditing in the text-to-image generation model. The general idea of ArtistAuditor is to identify if a suspicious model has been finetuned using the artworks of specific artists by analyzing the features related to the style. Concretely, ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style. Then, ArtistAuditor queries a trained discriminator to gain the auditing decisions. The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values (> 0.937). By studying ArtistAuditor's transferability and core modules, we provide valuable insights into the practical implementation. Finally, we demonstrate the effectiveness of ArtistAuditor in real-world cases by an online platform Scenario. ArtistAuditor is open-sourced at https://github.com/Jozenn/ArtistAuditor.

Authors:Dachun Kai, Yueyi Zhang, Jin Wang, Zeyu Xiao, Zhiwei Xiong, Xiaoyan Sun
Title: Event-Enhanced Blurry Video Super-Resolution
Abstract:
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.

Authors:Yide Liu, Haijiang Sun, Xiaowen Zhang, Qiaoyuan Liu, Zhouchang Chen, Chongzhuo Xiao
Title: TTRD3: Texture Transfer Residual Denoising Dual Diffusion Model for Remote Sensing Image Super-Resolution
Abstract:
Remote Sensing Image Super-Resolution (RSISR) reconstructs high-resolution (HR) remote sensing images from low-resolution inputs to support fine-grained ground object interpretation. Existing methods face three key challenges: (1) Difficulty in extracting multi-scale features from spatially heterogeneous RS scenes, (2) Limited prior information causing semantic inconsistency in reconstructions, and (3) Trade-off imbalance between geometric accuracy and visual quality. To address these issues, we propose the Texture Transfer Residual Denoising Dual Diffusion Model (TTRD3) with three innovations: First, a Multi-scale Feature Aggregation Block (MFAB) employing parallel heterogeneous convolutional kernels for multi-scale feature extraction. Second, a Sparse Texture Transfer Guidance (STTG) module that transfers HR texture priors from reference images of similar scenes. Third, a Residual Denoising Dual Diffusion Model (RDDM) framework combining residual diffusion for deterministic reconstruction and noise diffusion for diverse generation. Experiments on multi-source RS datasets demonstrate TTRD3's superiority over state-of-the-art methods, achieving 1.43% LPIPS improvement and 3.67% FID enhancement compared to best-performing baselines. Code/model: https://github.com/LED-666/TTRD3.

Authors:Guoqing Zhang, Jingyun Yang, Yang Li
Title: Hierarchical Feature Learning for Medical Point Clouds via State Space Model
Abstract:
Deep learning-based point cloud modeling has been widely investigated as an indispensable component of general shape analysis. Recently, transformer and state space model (SSM) have shown promising capacities in point cloud learning. However, limited research has been conducted on medical point clouds, which have great potential in disease diagnosis and treatment. This paper presents an SSM-based hierarchical feature learning framework for medical point cloud understanding. Specifically, we down-sample input into multiple levels through the farthest point sampling. At each level, we perform a series of k-nearest neighbor (KNN) queries to aggregate multi-scale structural information. To assist SSM in processing point clouds, we introduce coordinate-order and inside-out scanning strategies for efficient serialization of irregular points. Point features are calculated progressively from short neighbor sequences and long point sequences through vanilla and group Point SSM blocks, to capture both local patterns and long-range dependencies. To evaluate the proposed method, we build a large-scale medical point cloud dataset named MedPointS for anatomy classification, completion, and segmentation. Extensive experiments conducted on MedPointS demonstrate that our method achieves superior performance across all tasks. The dataset is available at https://flemme-docs.readthedocs.io/en/latest/medpoints.html. Code is merged to a public medical imaging platform: https://github.com/wlsdzyzl/flemme.

Authors:Yaoyao Ding, Bohan Hou, Xiao Zhang, Allan Lin, Tianqi Chen, Cody Yu Hao, Yida Wang, Gennady Pekhimenko
Title: Tilus: A Tile-Level GPGPU Programming Language for Low-Precision Computation
Abstract:
Serving Large Language Models (LLMs) is critical for AI-powered applications, yet it demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance because of high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, that are essential for efficient low-precision computations. In this paper, we introduce Tilus, a domain-specific language designed for General-Purpose GPU (GPGPU) computing that supports low-precision data types with arbitrary bit widths from 1 to 8 while maintaining GPU programmability. Tilus features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. Tilus programs are compiled into highly efficient GPU programs through automatic vectorization and instruction selection. Extensive experiments demonstrate that Tilus efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels. Compared to existing compilers such as Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, Tilus achieves performance improvements of: $1.75\times$, $2.61\times$, $1.29\times$ and $1.03\times$, respectively. We open-source Tilus at https://github.com/NVIDIA/tilus.

Authors:Al Arsh Basheer, Justin Chang, Yuyang Chen, David Kim, Iman Soltani
Title: Krysalis Hand: A Lightweight, High-Payload, 18-DoF Anthropomorphic End-Effector for Robotic Learning and Dexterous Manipulation
Abstract:
This paper presents the Krysalis Hand, a five-finger robotic end-effector that combines a lightweight design, high payload capacity, and a high number of degrees of freedom (DoF) to enable dexterous manipulation in both industrial and research settings. This design integrates the actuators within the hand while maintaining an anthropomorphic form. Each finger joint features a self-locking mechanism that allows the hand to sustain large external forces without active motor engagement. This approach shifts the payload limitation from the motor strength to the mechanical strength of the hand, allowing the use of smaller, more cost-effective motors. With 18 DoF and weighing only 790 grams, the Krysalis Hand delivers an active squeezing force of 10 N per finger and supports a passive payload capacity exceeding 10 lbs. These characteristics make Krysalis Hand one of the lightest, strongest, and most dexterous robotic end-effectors of its kind. Experimental evaluations validate its ability to perform intricate manipulation tasks and handle heavy payloads, underscoring its potential for industrial applications as well as academic research. All code related to the Krysalis Hand, including control and teleoperation, is available on the project GitHub repository: https://github.com/Soltanilara/Krysalis_Hand

Authors:Robin Hesse, Jonas Fischer, Simone Schaub-Meyer, Stefan Roth
Title: Disentangling Polysemantic Channels in Convolutional Neural Networks
Abstract:
Mechanistic interpretability is concerned with analyzing individual components in a (convolutional) neural network (CNN) and how they form larger circuits representing decision mechanisms. These investigations are challenging since CNNs frequently learn polysemantic channels that encode distinct concepts, making them hard to interpret. To address this, we propose an algorithm to disentangle a specific kind of polysemantic channel into multiple channels, each responding to a single concept. Our approach restructures weights in a CNN, utilizing that different concepts within the same channel exhibit distinct activation patterns in the previous layer. By disentangling these polysemantic features, we enhance the interpretability of CNNs, ultimately improving explanatory techniques such as feature visualizations.

Authors:Ebrahim Norouzi, Sven Hertling, Harald Sack
Title: ConExion: Concept Extraction with Large Language Models
Abstract:
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.

Authors:Youyi Zhan, Tianjia Shao, Yin Yang, Kun Zhou
Title: Real-time High-fidelity Gaussian Human Avatars with Position-based Interpolation of Spatially Distributed MLPs
Abstract:
Many works have succeeded in reconstructing Gaussian human avatars from multi-view videos. However, they either struggle to capture pose-dependent appearance details with a single MLP, or rely on a computationally intensive neural network to reconstruct high-fidelity appearance but with rendering performance degraded to non-real-time. We propose a novel Gaussian human avatar representation that can reconstruct high-fidelity pose-dependence appearance with details and meanwhile can be rendered in real time. Our Gaussian avatar is empowered by spatially distributed MLPs which are explicitly located on different positions on human body. The parameters stored in each Gaussian are obtained by interpolating from the outputs of its nearby MLPs based on their distances. To avoid undesired smooth Gaussian property changing during interpolation, for each Gaussian we define a set of Gaussian offset basis, and a linear combination of basis represents the Gaussian property offsets relative to the neutral properties. Then we propose to let the MLPs output a set of coefficients corresponding to the basis. In this way, although Gaussian coefficients are derived from interpolation and change smoothly, the Gaussian offset basis is learned freely without constraints. The smoothly varying coefficients combined with freely learned basis can still produce distinctly different Gaussian property offsets, allowing the ability to learn high-frequency spatial signals. We further use control points to constrain the Gaussians distributed on a surface layer rather than allowing them to be irregularly distributed inside the body, to help the human avatar generalize better when animated under novel poses. Compared to the state-of-the-art method, our method achieves better appearance quality with finer details while the rendering speed is significantly faster under novel views and novel poses.

Authors:Mingzhe Yu, Yunshan Ma, Lei Wu, Changshuo Wang, Xue Li, Lei Meng
Title: FashionDPO:Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization
Abstract:
Personalized outfit generation aims to construct a set of compatible and personalized fashion items as an outfit. Recently, generative AI models have received widespread attention, as they can generate fashion items for users to complete an incomplete outfit or create a complete outfit. However, they have limitations in terms of lacking diversity and relying on the supervised learning paradigm. Recognizing this gap, we propose a novel framework FashionDPO, which fine-tunes the fashion outfit generation model using direct preference optimization. This framework aims to provide a general fine-tuning approach to fashion generative models, refining a pre-trained fashion outfit generation model using automatically generated feedback, without the need to design a task-specific reward function. To make sure that the feedback is comprehensive and objective, we design a multi-expert feedback generation module which covers three evaluation perspectives, \ie quality, compatibility and personalization. Experiments on two established datasets, \ie iFashion and Polyvore-U, demonstrate the effectiveness of our framework in enhancing the model's ability to align with users' personalized preferences while adhering to fashion compatibility principles. Our code and model checkpoints are available at https://github.com/Yzcreator/FashionDPO.

Authors:Guanrou Yang, Chen Yang, Qian Chen, Ziyang Ma, Wenxi Chen, Wen Wang, Tianrui Wang, Yifan Yang, Zhikang Niu, Wenrui Liu, Fan Yu, Zhihao Du, Zhifu Gao, ShiLiang Zhang, Xie Chen
Title: EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Abstract:
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Dataset, code, checkpoints, and demo samples are available at https://github.com/yanghaha0908/EmoVoice.

Authors:Pengxuan Yang, Yupeng Zheng, Qichao Zhang, Kefei Zhu, Zebin Xing, Qiao Lin, Yun-Fu Liu, Zhiguo Su, Dongbin Zhao
Title: UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
Abstract:
End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.

Authors:Xue Wen Tan, Stanley Kok
Title: SMARTe: Slot-based Method for Accountable Relational Triple extraction
Abstract:
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research. Our code is available at https://github.com/Chen-XueWen/SMARTe.

Authors:Inzamamul Alam, Md Tanvir Islam, Simon S. Woo
Title: Saliency-Aware Diffusion Reconstruction for Effective Invisible Watermark Removal
Abstract:
As digital content becomes increasingly ubiquitous, the need for robust watermark removal techniques has grown due to the inadequacy of existing embedding techniques, which lack robustness. This paper introduces a novel Saliency-Aware Diffusion Reconstruction (SADRE) framework for watermark elimination on the web, combining adaptive noise injection, region-specific perturbations, and advanced diffusion-based reconstruction. SADRE disrupts embedded watermarks by injecting targeted noise into latent representations guided by saliency masks although preserving essential image features. A reverse diffusion process ensures high-fidelity image restoration, leveraging adaptive noise levels determined by watermark strength. Our framework is theoretically grounded with stability guarantees and achieves robust watermark removal across diverse scenarios. Empirical evaluations on state-of-the-art (SOTA) watermarking techniques demonstrate SADRE's superiority in balancing watermark disruption and image quality. SADRE sets a new benchmark for watermark elimination, offering a flexible and reliable solution for real-world web content. Code is available on~\href{https://github.com/inzamamulDU/SADRE}{\textbf{https://github.com/inzamamulDU/SADRE}}.

Authors:Leyang Li, Shilin Lu, Yan Ren, Adams Wai-Kin Kong
Title: Set You Straight: Auto-Steering Denoising Trajectories to Sidestep Unwanted Concepts
Abstract:
Ensuring the ethical deployment of text-to-image models requires effective techniques to prevent the generation of harmful or inappropriate content. While concept erasure methods offer a promising solution, existing finetuning-based approaches suffer from notable limitations. Anchor-free methods risk disrupting sampling trajectories, leading to visual artifacts, while anchor-based methods rely on the heuristic selection of anchor concepts. To overcome these shortcomings, we introduce a finetuning framework, dubbed ANT, which Automatically guides deNoising Trajectories to avoid unwanted concepts. ANT is built on a key insight: reversing the condition direction of classifier-free guidance during mid-to-late denoising stages enables precise content modification without sacrificing early-stage structural integrity. This inspires a trajectory-aware objective that preserves the integrity of the early-stage score function field, which steers samples toward the natural image manifold, without relying on heuristic anchor concept selection. For single-concept erasure, we propose an augmentation-enhanced weight saliency map to precisely identify the critical parameters that most significantly contribute to the unwanted concept, enabling more thorough and efficient erasure. For multi-concept erasure, our objective function offers a versatile plug-and-play solution that significantly boosts performance. Extensive experiments demonstrate that ANT achieves state-of-the-art results in both single and multi-concept erasure, delivering high-quality, safe outputs without compromising the generative fidelity. Code is available at https://github.com/lileyang1210/ANT

Authors:Yicheng Pan, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma, Jun Du, Jianshu Zhang, Quan Liu, Jianqing Gao, Feng Ma
Title: Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at https://github.com/ycpNotFound/GeoGen.

Authors:Hao Xu, Xiangru Jian, Xinjian Zhao, Wei Pang, Chao Zhang, Suyuchen Wang, Qixin Zhang, Zhengyuan Dong, Joao Monteiro, Bang Liu, Qiuzhuang Sun, Tianshu Yu
Title: GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks
Abstract:
This paper introduces GraphOmni, a comprehensive benchmark designed to evaluate the reasoning capabilities of LLMs on graph-theoretic tasks articulated in natural language. GraphOmni encompasses diverse graph types, serialization formats, and prompting schemes, significantly exceeding prior efforts in both scope and depth. Through extensive systematic evaluation, we identify critical interactions among these dimensions, demonstrating their substantial impact on model performance. Our experiments reveal that state-of-the-art models like Claude-3.5 and o4-mini consistently outperform other models, yet even these leading models exhibit substantial room for improvement. Performance variability is evident depending on the specific combinations of factors we considered, underscoring the necessity of comprehensive evaluations across these interconnected dimensions. Additionally, we observe distinct impacts of serialization and prompting strategies between open-source and closed-source models, encouraging the development of tailored approaches. Motivated by the findings, we also propose a reinforcement learning-inspired framework that adaptively selects the optimal factors influencing LLM reasoning capabilities. This flexible and extendable benchmark not only deepens our understanding of LLM performance on structured tasks but also provides a robust foundation for advancing research in LLM-based graph reasoning. The code and datasets are available at https://github.com/GAI-Community/GraphOmni.

Authors:Siyu Chen, Ting Han, Changshe Zhang, Xin Luo, Meiliu Wu, Guorong Cai, Jinhe Su
Title: Stronger, Steadier & Superior: Geometric Consistency in Depth VFM Forges Domain Generalized Semantic Segmentation
Abstract:
Vision Foundation Models (VFMs) have delivered remarkable performance in Domain Generalized Semantic Segmentation (DGSS). However, recent methods often overlook the fact that visual cues are susceptible, whereas the underlying geometry remains stable, rendering depth information more robust. In this paper, we investigate the potential of integrating depth information with features from VFMs, to improve the geometric consistency within an image and boost the generalization performance of VFMs. We propose a novel fine-tuning DGSS framework, named DepthForge, which integrates the visual cues from frozen DINOv2 or EVA02 and depth cues from frozen Depth Anything V2. In each layer of the VFMs, we incorporate depth-aware learnable tokens to continuously decouple domain-invariant visual and spatial information, thereby enhancing depth awareness and attention of the VFMs. Finally, we develop a depth refinement decoder and integrate it into the model architecture to adaptively refine multi-layer VFM features and depth-aware learnable tokens. Extensive experiments are conducted based on various DGSS settings and five different datsets as unseen target domains. The qualitative and quantitative results demonstrate that our method significantly outperforms alternative approaches with stronger performance, steadier visual-spatial attention, and superior generalization ability. In particular, DepthForge exhibits outstanding performance under extreme conditions (e.g., night and snow). Code is available at https://github.com/anonymouse-xzrptkvyqc/DepthForge.

Authors:Shin'ya Yamaguchi, Dewei Feng, Sekitoshi Kanai, Kazuki Adachi, Daiki Chijiwa
Title: Post-pre-training for Modality Alignment in Vision-Language Foundation Models
Abstract:
Contrastive language image pre-training (CLIP) is an essential component of building modern vision-language foundation models. While CLIP demonstrates remarkable zero-shot performance on downstream tasks, the multi-modal feature spaces still suffer from a modality gap, which is a gap between image and text feature clusters and limits downstream task performance. Although existing works attempt to address the modality gap by modifying pre-training or fine-tuning, they struggle with heavy training costs with large datasets or degradations of zero-shot performance. This paper presents CLIP-Refine, a post-pre-training method for CLIP models at a phase between pre-training and fine-tuning. CLIP-Refine aims to align the feature space with 1 epoch training on small image-text datasets without zero-shot performance degradations. To this end, we introduce two techniques: random feature alignment (RaFA) and hybrid contrastive-distillation (HyCD). RaFA aligns the image and text features to follow a shared prior distribution by minimizing the distance to random reference vectors sampled from the prior. HyCD updates the model with hybrid soft labels generated by combining ground-truth image-text pair labels and outputs from the pre-trained CLIP model. This contributes to achieving both maintaining the past knowledge and learning new knowledge to align features. Our extensive experiments with multiple classification and retrieval tasks show that CLIP-Refine succeeds in mitigating the modality gap and improving the zero-shot performance.

Authors:Qianqian Sun, Jixiang Luo, Dell Zhang, Xuelong Li
Title: SmartFreeEdit: Mask-Free Spatial-Aware Image Editing with Complex Instruction Understanding
Abstract:
Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.

Authors:Naibang Wang, Deyong Shang, Yan Gong, Xiaoxi Hu, Ziying Song, Lei Yang, Yuhan Huang, Xiaoyu Wang, Jianli Lu
Title: Collaborative Perception Datasets for Autonomous Driving: A Review
Abstract:
Collaborative perception has attracted growing interest from academia and industry due to its potential to enhance perception accuracy, safety, and robustness in autonomous driving through multi-agent information fusion. With the advancement of Vehicle-to-Everything (V2X) communication, numerous collaborative perception datasets have emerged, varying in cooperation paradigms, sensor configurations, data sources, and application scenarios. However, the absence of systematic summarization and comparative analysis hinders effective resource utilization and standardization of model evaluation. As the first comprehensive review focused on collaborative perception datasets, this work reviews and compares existing resources from a multi-dimensional perspective. We categorize datasets based on cooperation paradigms, examine their data sources and scenarios, and analyze sensor modalities and supported tasks. A detailed comparative analysis is conducted across multiple dimensions. We also outline key challenges and future directions, including dataset scalability, diversity, domain adaptation, standardization, privacy, and the integration of large language models. To support ongoing research, we provide a continuously updated online repository of collaborative perception datasets and related literature: https://github.com/frankwnb/Collaborative-Perception-Datasets-for-Autonomous-Driving.

Authors:Qishan Wang, Shuyong Gao, Junjie Hu, Jiawen Yu, Xuan Tong, You Li, Wenqiang Zhang
Title: HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset
Abstract:
Multi-class Unsupervised Anomaly Detection algorithms (MUAD) are receiving increasing attention due to their relatively low deployment costs and improved training efficiency. However, the real-world effectiveness of MUAD methods is questioned due to limitations in current Industrial Anomaly Detection (IAD) datasets. These datasets contain numerous classes that are unlikely to be produced by the same factory and fail to cover multiple structures or appearances. Additionally, the defects do not reflect real-world characteristics. Therefore, we introduce the Heterogeneous Same-Sort Industrial Anomaly Detection (HSS-IAD) dataset, which contains 8,580 images of metallic-like industrial parts and precise anomaly annotations. These parts exhibit variations in structure and appearance, with subtle defects that closely resemble the base materials. We also provide foreground images for synthetic anomaly generation. Finally, we evaluate popular IAD methods on this dataset under multi-class and class-separated settings, demonstrating its potential to bridge the gap between existing datasets and real factory conditions. The dataset is available at https://github.com/Qiqigeww/HSS-IAD-Dataset.

Authors:Pengtao Dang, Tingbo Guo, Melissa Fishel, Guang Lin, Wenzhuo Wu, Sha Cao, Chi Zhang
Title: Physics Informed Constrained Learning of Dynamics from Static Data
Abstract:
A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network. By enforcing physical laws as constraints, PINN overcomes challenges with data scarsity and potentially high dimensionality. Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems. In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data. Computational principles and a general mathematical formulation of Constrained Learning were developed. We further introduced MPOCtrL (Message Passing Optimization-based Constrained Learning) an optimization approach tailored for the Constrained Learning framework that strives to balance the fitting of physical models and observed data. Its code is available at github link: https://github.com/ptdang1001/MPOCtrL Experiments on synthetic and real-world data demonstrated that MPOCtrL can effectively detect the nonlinear dependency between observed data and the underlying physical properties of the system. In particular, on the task of metabolic flux analysis, MPOCtrL outperforms all existing data-driven flux estimators.

Authors:Lvmin Zhang, Maneesh Agrawala
Title: Packing Input Frame Context in Next-Frame Prediction Models for Video Generation
Abstract:
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.

Authors:John Chiang
Title: Privacy-Preserving CNN Training with Transfer Learning: Two Hidden Layers
Abstract:
In this paper, we present the demonstration of training a four-layer neural network entirely using fully homomorphic encryption (FHE), supporting both single-output and multi-output classification tasks in a non-interactive setting. A key contribution of our work is identifying that replacing \textit{Softmax} with \textit{Sigmoid}, in conjunction with the Binary Cross-Entropy (BCE) loss function, provides an effective and scalable solution for homomorphic classification. Moreover, we show that the BCE loss function, originally designed for multi-output tasks, naturally extends to the multi-class setting, thereby enabling broader applicability. We also highlight the limitations of prior loss functions such as the SLE loss and the one proposed in the 2019 CVPR Workshop, both of which suffer from vanishing gradients as network depth increases. To address the challenges posed by large-scale encrypted data, we further introduce an improved version of the previously proposed data encoding scheme, \textit{Double Volley Revolver}, which achieves a better trade-off between computational and memory efficiency, making FHE-based neural network training more practical. The complete, runnable C++ code to implement our work can be found at: \href{https://github.com/petitioner/ML.NNtraining}{$\texttt{https://github.com/petitioner/ML.NNtraining}$}.

Authors:Yun-Cheng Li, Sen Lei, Yi-Tao Zhao, Heng-Chao Li, Jun Li, Antonio Plaza
Title: SAM-Based Building Change Detection with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping
Abstract:
Building change detection remains challenging for urban development, disaster assessment, and military reconnaissance. While foundation models like Segment Anything Model (SAM) show strong segmentation capabilities, SAM is limited in the task of building change detection due to domain gap issues. Existing adapter-based fine-tuning approaches face challenges with imbalanced building distribution, resulting in poor detection of subtle changes and inaccurate edge extraction. Additionally, bi-temporal misalignment in change detection, typically addressed by optical flow, remains vulnerable to background noises. This affects the detection of building changes and compromises both detection accuracy and edge recognition. To tackle these challenges, we propose a new SAM-Based Network with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping (FAEWNet) for building change detection. FAEWNet utilizes the SAM encoder to extract rich visual features from remote sensing images. To guide SAM in focusing on specific ground objects in remote sensing scenes, we propose a Distribution-Aware Fourier Aggregated Adapter to aggregate task-oriented changed information. This adapter not only effectively addresses the domain gap issue, but also pays attention to the distribution of changed buildings. Furthermore, to mitigate noise interference and misalignment in height offset estimation, we design a novel flow module that refines building edge extraction and enhances the perception of changed buildings. Our state-of-the-art results on the LEVIR-CD, S2Looking and WHU-CD datasets highlight the effectiveness of FAEWNet. The code is available at https://github.com/SUPERMAN123000/FAEWNet.

Authors:Kewen Peng, Hao Zhuo, Yicheng Yang, Tim Menzies
Title: Software Engineering Principles for Fairer Systems: Experiments with GroupCART
Abstract:
Discrimination-aware classification aims to make accurate predictions while satisfying fairness constraints. Traditional decision tree learners typically optimize for information gain in the target attribute alone, which can result in models that unfairly discriminate against protected social groups (e.g., gender, ethnicity). Motivated by these shortcomings, we propose GroupCART, a tree-based ensemble optimizer that avoids bias during model construction by optimizing not only for decreased entropy in the target attribute but also for increased entropy in protected attributes. Our experiments show that GroupCART achieves fairer models without data transformation and with minimal performance degradation. Furthermore, the method supports customizable weighting, offering a smooth and flexible trade-off between predictive performance and fairness based on user requirements. These results demonstrate that algorithmic bias in decision tree models can be mitigated through multi-task, fairness-aware learning. All code and datasets used in this study are available at: https://github.com/anonymous12138/groupCART.

Authors:Wentao Wu, Xiao Wang, Chenglong Li, Bo Jiang, Jin Tang, Bin Luo, Qi Liu
Title: CM3AE: A Unified RGB Frame and Event-Voxel/-Frame Pre-training Framework
Abstract:
Event cameras have attracted increasing attention in recent years due to their advantages in high dynamic range, high temporal resolution, low power consumption, and low latency. Some researchers have begun exploring pre-training directly on event data. Nevertheless, these efforts often fail to establish strong connections with RGB frames, limiting their applicability in multi-modal fusion scenarios. To address these issues, we propose a novel CM3AE pre-training framework for the RGB-Event perception. This framework accepts multi-modalities/views of data as input, including RGB images, event images, and event voxels, providing robust support for both event-based and RGB-event fusion based downstream tasks. Specifically, we design a multi-modal fusion reconstruction module that reconstructs the original image from fused multi-modal features, explicitly enhancing the model's ability to aggregate cross-modal complementary information. Additionally, we employ a multi-modal contrastive learning strategy to align cross-modal feature representations in a shared latent space, which effectively enhances the model's capability for multi-modal understanding and capturing global dependencies. We construct a large-scale dataset containing 2,535,759 RGB-Event data pairs for the pre-training. Extensive experiments on five downstream tasks fully demonstrated the effectiveness of CM3AE. Source code and pre-trained models will be released on https://github.com/Event-AHU/CM3AE.

Authors:Haidar Khan, Hisham A. Alyahya, Yazeed Alnumay, M Saiful Bari, Bülent Yener
Title: ZeroSumEval: Scaling LLM Evaluation with Inter-Model Competition
Abstract:
Evaluating the capabilities of Large Language Models (LLMs) has traditionally relied on static benchmark datasets, human assessments, or model-based evaluations - methods that often suffer from overfitting, high costs, and biases. ZeroSumEval is a novel competition-based evaluation protocol that leverages zero-sum games to assess LLMs with dynamic benchmarks that resist saturation. ZeroSumEval encompasses a diverse suite of games, including security challenges (PyJail), classic games (Chess, Liar's Dice, Poker), knowledge tests (MathQuiz), and persuasion challenges (Gandalf, Debate). These games are designed to evaluate a range of AI capabilities such as strategic reasoning, planning, knowledge application, and creativity. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework. To demonstrate this, we conduct extensive experiments with >7000 simulations across 7 games and 13 models. Our results show that while frontier models from the GPT and Claude families can play common games and answer questions, they struggle to play games that require creating novel and challenging questions. We also observe that models cannot reliably jailbreak each other and fail generally at tasks requiring creativity. We release our code at https://github.com/facebookresearch/ZeroSumEval.

Authors:Negar Arabzadeh, Charles L. A. Clarke
Title: Benchmarking LLM-based Relevance Judgment Methods
Abstract:
Large Language Models (LLMs) are increasingly deployed in both academic and industry settings to automate the evaluation of information seeking systems, particularly by generating graded relevance judgments. Previous work on LLM-based relevance assessment has primarily focused on replicating graded human relevance judgments through various prompting strategies. However, there has been limited exploration of alternative assessment methods or comprehensive comparative studies. In this paper, we systematically compare multiple LLM-based relevance assessment methods, including binary relevance judgments, graded relevance assessments, pairwise preference-based methods, and two nugget-based evaluation methods~--~document-agnostic and document-dependent. In addition to a traditional comparison based on system rankings using Kendall correlations, we also examine how well LLM judgments align with human preferences, as inferred from relevance grades. We conduct extensive experiments on datasets from three TREC Deep Learning tracks 2019, 2020 and 2021 as well as the ANTIQUE dataset, which focuses on non-factoid open-domain question answering. As part of our data release, we include relevance judgments generated by both an open-source (Llama3.2b) and a commercial (gpt-4o) model. Our goal is to \textit{reproduce} various LLM-based relevance judgment methods to provide a comprehensive comparison. All code, data, and resources are publicly available in our GitHub Repository at https://github.com/Narabzad/llm-relevance-judgement-comparison.

Authors:Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, Amelia Glaese
Title: BrowseComp: A Simple Yet Challenging Benchmark for Browsing Agents
Abstract:
We present BrowseComp, a simple yet challenging benchmark for measuring the ability for agents to browse the web. BrowseComp comprises 1,266 questions that require persistently navigating the internet in search of hard-to-find, entangled information. Despite the difficulty of the questions, BrowseComp is simple and easy-to-use, as predicted answers are short and easily verifiable against reference answers. BrowseComp for browsing agents can be seen as analogous to how programming competitions are an incomplete but useful benchmark for coding agents. While BrowseComp sidesteps challenges of a true user query distribution, like generating long answers or resolving ambiguity, it measures the important core capability of exercising persistence and creativity in finding information. BrowseComp can be found at https://github.com/openai/simple-evals.

Authors:Kaustav Chanda, Aayush Atul Verma, Arpitsinh Vaghela, Yezhou Yang, Bharatesh Chakravarthi
Title: Event Quality Score (EQS): Assessing the Realism of Simulated Event Camera Streams via Distances in Latent Space
Abstract:
Event cameras promise a paradigm shift in vision sensing with their low latency, high dynamic range, and asynchronous nature of events. Unfortunately, the scarcity of high-quality labeled datasets hinders their widespread adoption in deep learning-driven computer vision. To mitigate this, several simulators have been proposed to generate synthetic event data for training models for detection and estimation tasks. However, the fundamentally different sensor design of event cameras compared to traditional frame-based cameras poses a challenge for accurate simulation. As a result, most simulated data fail to mimic data captured by real event cameras. Inspired by existing work on using deep features for image comparison, we introduce event quality score (EQS), a quality metric that utilizes activations of the RVT architecture. Through sim-to-real experiments on the DSEC driving dataset, it is shown that a higher EQS implies improved generalization to real-world data after training on simulated events. Thus, optimizing for EQS can lead to developing more realistic event camera simulators, effectively reducing the simulation gap. EQS is available at https://github.com/eventbasedvision/EQS.

Authors:Kaira M. Samuel, Faez Ahmed
Title: Continual Learning Strategies for 3D Engineering Regression Problems: A Benchmarking Study
Abstract:
Engineering problems that apply machine learning often involve computationally intensive methods but rely on limited datasets. As engineering data evolves with new designs and constraints, models must incorporate new knowledge over time. However, high computational costs make retraining models from scratch infeasible. Continual learning (CL) offers a promising solution by enabling models to learn from sequential data while mitigating catastrophic forgetting, where a model forgets previously learned mappings. This work introduces CL to engineering design by benchmarking several CL methods on representative regression tasks. We apply these strategies to five engineering datasets and construct nine new engineering CL benchmarks to evaluate their ability to address forgetting and improve generalization. Preliminary results show that applying existing CL methods to these tasks improves performance over naive baselines. In particular, the Replay strategy achieved performance comparable to retraining in several benchmarks while reducing training time by nearly half, demonstrating its potential for real-world engineering workflows. The code and datasets used in this work will be available at: https://github.com/kmsamuel/cl-for-engineering-release.

Authors:Ashwinee Panda, Vatsal Baherwani, Zain Sarwar, Benjamin Therien, Supriyo Chakraborty, Tom Goldstein
Title: Dense Backpropagation Improves Training for Sparse Mixture-of-Experts
Abstract:
Mixture of Experts (MoE) pretraining is more scalable than dense Transformer pretraining, because MoEs learn to route inputs to a sparse set of their feedforward parameters. However, this means that MoEs only receive a sparse backward update, leading to training instability and suboptimal performance. We present a lightweight approximation method that gives the MoE router a dense gradient update while continuing to sparsely activate its parameters. Our method, which we refer to as Default MoE, substitutes missing expert activations with default outputs consisting of an exponential moving average of expert outputs previously seen over the course of training. This allows the router to receive signals from every expert for each token, leading to significant improvements in training performance. Our Default MoE outperforms standard TopK routing in a variety of settings without requiring significant computational overhead. Code: https://github.com/vatsal0/default-moe.

Authors:Minmin Yang, Huantao Ren, Senem Velipasalar
Title: 3D-PointZshotS: Geometry-Aware 3D Point Cloud Zero-Shot Semantic Segmentation Narrowing the Visual-Semantic Gap
Abstract:
Existing zero-shot 3D point cloud segmentation methods often struggle with limited transferability from seen classes to unseen classes and from semantic to visual space. To alleviate this, we introduce 3D-PointZshotS, a geometry-aware zero-shot segmentation framework that enhances both feature generation and alignment using latent geometric prototypes (LGPs). Specifically, we integrate LGPs into a generator via a cross-attention mechanism, enriching semantic features with fine-grained geometric details. To further enhance stability and generalization, we introduce a self-consistency loss, which enforces feature robustness against point-wise perturbations. Additionally, we re-represent visual and semantic features in a shared space, bridging the semantic-visual gap and facilitating knowledge transfer to unseen classes. Experiments on three real-world datasets, namely ScanNet, SemanticKITTI, and S3DIS, demonstrate that our method achieves superior performance over four baselines in terms of harmonic mIoU. The code is available at \href{https://github.com/LexieYang/3D-PointZshotS}{Github}.

Authors:Negar Arabzadeh, Charles L. A . Clarke
Title: A Human-AI Comparative Analysis of Prompt Sensitivity in LLM-Based Relevance Judgment
Abstract:
Large Language Models (LLMs) are increasingly used to automate relevance judgments for information retrieval (IR) tasks, often demonstrating agreement with human labels that approaches inter-human agreement. To assess the robustness and reliability of LLM-based relevance judgments, we systematically investigate impact of prompt sensitivity on the task. We collected prompts for relevance assessment from 15 human experts and 15 LLMs across three tasks~ -- ~binary, graded, and pairwise~ -- ~yielding 90 prompts in total. After filtering out unusable prompts from three humans and three LLMs, we employed the remaining 72 prompts with three different LLMs as judges to label document/query pairs from two TREC Deep Learning Datasets (2020 and 2021). We compare LLM-generated labels with TREC official human labels using Cohen's $κ$ and pairwise agreement measures. In addition to investigating the impact of prompt variations on agreement with human labels, we compare human- and LLM-generated prompts and analyze differences among different LLMs as judges. We also compare human- and LLM-generated prompts with the standard UMBRELA prompt used for relevance assessment by Bing and TREC 2024 Retrieval Augmented Generation (RAG) Track. To support future research in LLM-based evaluation, we release all data and prompts at https://github.com/Narabzad/prompt-sensitivity-relevance-judgements/.

Authors:Kristjan Greenewald, Luis Lastras, Thomas Parnell, Vraj Shah, Lucian Popa, Giulio Zizzo, Chulaka Gunasekara, Ambrish Rawat, David Cox
Title: Activated LoRA: Fine-tuned LLMs for Intrinsics
Abstract:
Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for finetuning the weights of large foundation models, and has become the go-to method for data-driven customization of LLMs. Despite the promise of highly customized behaviors and capabilities, switching between relevant LoRAs in a multiturn setting is inefficient, as the key-value (KV) cache of the entire turn history must be recomputed with the LoRA weights before generation can begin. To address this problem, we propose Activated LoRA (aLoRA), an adapter architecture which modifies the LoRA framework to only adapt weights for the tokens in the sequence \emph{after} the aLoRA is invoked. This change crucially allows aLoRA to accept the base model's KV cache of the input string, meaning that aLoRA can be instantly activated whenever needed in a chain without recomputing the cache. This enables building what we call \emph{intrinsics}, i.e. specialized models invoked to perform well-defined operations on portions of an input chain or conversation that otherwise uses the base model by default. We train a set of aLoRA-based intrinsics models, demonstrating competitive accuracy with standard LoRA while achieving significant inference benefits. The codebase is at https://github.com/IBM/activated-lora.

Authors:Kristjan Greenewald, Luis Lastras, Thomas Parnell, Vraj Shah, Lucian Popa, Giulio Zizzo, Chulaka Gunasekara, Ambrish Rawat, David Cox
Title: Activated LoRA: Fine-tuned LLMs for Intrinsics
Abstract:
Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for finetuning the weights of large foundation models, and has become the go-to method for data-driven customization of LLMs. Despite the promise of highly customized behaviors and capabilities, switching between relevant LoRAs in a multiturn setting is inefficient, as the key-value (KV) cache of the entire turn history must be recomputed with the LoRA weights before generation can begin. To address this problem, we propose Activated LoRA (aLoRA), an adapter architecture which modifies the LoRA framework to only adapt weights for the tokens in the sequence after the aLoRA is invoked. This change crucially allows aLoRA to accept the base model's KV cache of the input string, meaning that aLoRA can be instantly activated whenever needed in a chain without recomputing the prior keys and values. This enables building what we call intrinsics, i.e. specialized models invoked to perform well-defined operations on portions of an input chain or conversation that otherwise uses the base model by default. We train a set of aLoRA-based intrinsics models, demonstrating competitive accuracy with standard LoRA while significantly improving inference efficiency. We contributed our Activated LoRA implementation to the Huggingface PEFT library https://github.com/huggingface/peft.

Authors:Jiale Tao, Yanbing Zhang, Qixun Wang, Yiji Cheng, Haofan Wang, Xu Bai, Zhengguang Zhou, Ruihuang Li, Linqing Wang, Chunyu Wang, Qin Lin, Qinglin Lu
Title: InstantCharacter: Personalize Any Characters with a Scalable Diffusion Transformer Framework
Abstract:
Current learning-based subject customization approaches, predominantly relying on U-Net architectures, suffer from limited generalization ability and compromised image quality. Meanwhile, optimization-based methods require subject-specific fine-tuning, which inevitably degrades textual controllability. To address these challenges, we propose InstantCharacter, a scalable framework for character customization built upon a foundation diffusion transformer. InstantCharacter demonstrates three fundamental advantages: first, it achieves open-domain personalization across diverse character appearances, poses, and styles while maintaining high-fidelity results. Second, the framework introduces a scalable adapter with stacked transformer encoders, which effectively processes open-domain character features and seamlessly interacts with the latent space of modern diffusion transformers. Third, to effectively train the framework, we construct a large-scale character dataset containing 10-million-level samples. The dataset is systematically organized into paired (multi-view character) and unpaired (text-image combinations) subsets. This dual-data structure enables simultaneous optimization of identity consistency and textual editability through distinct learning pathways. Qualitative experiments demonstrate the advanced capabilities of InstantCharacter in generating high-fidelity, text-controllable, and character-consistent images, setting a new benchmark for character-driven image generation. Our source code is available at https://github.com/Tencent/InstantCharacter.

Authors:Sidun Liu, Wenyu Li, Peng Qiao, Yong Dou
Title: Regist3R: Incremental Registration with Stereo Foundation Model
Abstract:
Multi-view 3D reconstruction has remained an essential yet challenging problem in the field of computer vision. While DUSt3R and its successors have achieved breakthroughs in 3D reconstruction from unposed images, these methods exhibit significant limitations when scaling to multi-view scenarios, including high computational cost and cumulative error induced by global alignment. To address these challenges, we propose Regist3R, a novel stereo foundation model tailored for efficient and scalable incremental reconstruction. Regist3R leverages an incremental reconstruction paradigm, enabling large-scale 3D reconstructions from unordered and many-view image collections. We evaluate Regist3R on public datasets for camera pose estimation and 3D reconstruction. Our experiments demonstrate that Regist3R achieves comparable performance with optimization-based methods while significantly improving computational efficiency, and outperforms existing multi-view reconstruction models. Furthermore, to assess its performance in real-world applications, we introduce a challenging oblique aerial dataset which has long spatial spans and hundreds of views. The results highlight the effectiveness of Regist3R. We also demonstrate the first attempt to reconstruct large-scale scenes encompassing over thousands of views through pointmap-based foundation models, showcasing its potential for practical applications in large-scale 3D reconstruction tasks, including urban modeling, aerial mapping, and beyond.

Authors:Nay Myat Min, Long H. Pham, Yige Li, Jun Sun
Title: Propaganda via AI? A Study on Semantic Backdoors in Large Language Models
Abstract:
Large language models (LLMs) demonstrate remarkable performance across myriad language tasks, yet they remain vulnerable to backdoor attacks, where adversaries implant hidden triggers that systematically manipulate model outputs. Traditional defenses focus on explicit token-level anomalies and therefore overlook semantic backdoors-covert triggers embedded at the conceptual level (e.g., ideological stances or cultural references) that rely on meaning-based cues rather than lexical oddities. We first show, in a controlled finetuning setting, that such semantic backdoors can be implanted with only a small poisoned corpus, establishing their practical feasibility. We then formalize the notion of semantic backdoors in LLMs and introduce a black-box detection framework, RAVEN (short for "Response Anomaly Vigilance for uncovering semantic backdoors"), which combines semantic entropy with cross-model consistency analysis. The framework probes multiple models with structured topic-perspective prompts, clusters the sampled responses via bidirectional entailment, and flags anomalously uniform outputs; cross-model comparison isolates model-specific anomalies from corpus-wide biases. Empirical evaluations across diverse LLM families (GPT-4o, Llama, DeepSeek, Mistral) uncover previously undetected semantic backdoors, providing the first proof-of-concept evidence of these hidden vulnerabilities and underscoring the urgent need for concept-level auditing of deployed language models. We open-source our code and data at https://github.com/NayMyatMin/RAVEN.

Authors:Xiangju Li, Dong Yang, Xiaogang Zhu, Faliang Huang, Peng Zhang, Zhongying Zhao
Title: Span-level Emotion-Cause-Category Triplet Extraction with Instruction Tuning LLMs and Data Augmentation
Abstract:
Span-level emotion-cause-category triplet extraction represents a novel and complex challenge within emotion cause analysis. This task involves identifying emotion spans, cause spans, and their associated emotion categories within the text to form structured triplets. While prior research has predominantly concentrated on clause-level emotion-cause pair extraction and span-level emotion-cause detection, these methods often confront challenges originating from redundant information retrieval and difficulty in accurately determining emotion categories, particularly when emotions are expressed implicitly or ambiguously. To overcome these challenges, this study explores a fine-grained approach to span-level emotion-cause-category triplet extraction and introduces an innovative framework that leverages instruction tuning and data augmentation techniques based on large language models. The proposed method employs task-specific triplet extraction instructions and utilizes low-rank adaptation to fine-tune large language models, eliminating the necessity for intricate task-specific architectures. Furthermore, a prompt-based data augmentation strategy is developed to address data scarcity by guiding large language models in generating high-quality synthetic training data. Extensive experimental evaluations demonstrate that the proposed approach significantly outperforms existing baseline methods, achieving at least a 12.8% improvement in span-level emotion-cause-category triplet extraction metrics. The results demonstrate the method's effectiveness and robustness, offering a promising avenue for advancing research in emotion cause analysis. The source code is available at https://github.com/zxgnlp/InstruDa-LLM.

Authors:Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, Jun Ma
Title: HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation
Abstract:
While Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge, conventional single-agent RAG remains fundamentally limited in resolving complex queries demanding coordinated reasoning across heterogeneous data ecosystems. We present HM-RAG, a novel Hierarchical Multi-agent Multimodal RAG framework that pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data. The framework is composed of three-tiered architecture with specialized agents: a Decomposition Agent that dissects complex queries into contextually coherent sub-tasks via semantic-aware query rewriting and schema-guided context augmentation; Multi-source Retrieval Agents that carry out parallel, modality-specific retrieval using plug-and-play modules designed for vector, graph, and web-based databases; and a Decision Agent that uses consistency voting to integrate multi-source answers and resolve discrepancies in retrieval results through Expert Model Refinement. This architecture attains comprehensive query understanding by combining textual, graph-relational, and web-derived evidence, resulting in a remarkable 12.95% improvement in answer accuracy and a 3.56% boost in question classification accuracy over baseline RAG systems on the ScienceQA and CrisisMMD benchmarks. Notably, HM-RAG establishes state-of-the-art results in zero-shot settings on both datasets. Its modular architecture ensures seamless integration of new data modalities while maintaining strict data governance, marking a significant advancement in addressing the critical challenges of multimodal reasoning and knowledge synthesis in RAG systems. Code is available at https://github.com/ocean-luna/HMRAG.

Authors:Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei Zhou, Jinjie Gu, Lei Zou
Title: A Comprehensive Survey of Reward Models: Taxonomy, Applications, Challenges, and Future
Abstract:
Reward Model (RM) has demonstrated impressive potential for enhancing Large Language Models (LLM), as RM can serve as a proxy for human preferences, providing signals to guide LLMs' behavior in various tasks. In this paper, we provide a comprehensive overview of relevant research, exploring RMs from the perspectives of preference collection, reward modeling, and usage. Next, we introduce the applications of RMs and discuss the benchmarks for evaluation. Furthermore, we conduct an in-depth analysis of the challenges existing in the field and dive into the potential research directions. This paper is dedicated to providing beginners with a comprehensive introduction to RMs and facilitating future studies. The resources are publicly available at github\footnote{https://github.com/JLZhong23/awesome-reward-models}.

Authors:Mengying Yuan, Wenhao Wang, Zixuan Wang, Yujie Huang, Kangli Wei, Fei Li, Chong Teng, Donghong Ji
Title: Cross-Document Cross-Lingual NLI via RST-Enhanced Graph Fusion and Interpretability Prediction
Abstract:
Natural Language Inference (NLI) is a fundamental task in natural language processing. While NLI has developed many sub-directions such as sentence-level NLI, document-level NLI and cross-lingual NLI, Cross-Document Cross-Lingual NLI (CDCL-NLI) remains largely unexplored. In this paper, we propose a novel paradigm: CDCL-NLI, which extends traditional NLI capabilities to multi-document, multilingual scenarios. To support this task, we construct a high-quality CDCL-NLI dataset including 25,410 instances and spanning 26 languages. To address the limitations of previous methods on CDCL-NLI task, we further propose an innovative method that integrates RST-enhanced graph fusion with interpretability-aware prediction. Our approach leverages RST (Rhetorical Structure Theory) within heterogeneous graph neural networks for cross-document context modeling, and employs a structure-aware semantic alignment based on lexical chains for cross-lingual understanding. For NLI interpretability, we develop an EDU (Elementary Discourse Unit)-level attribution framework that produces extractive explanations. Extensive experiments demonstrate our approach's superior performance, achieving significant improvements over both conventional NLI models as well as large language models. Our work sheds light on the study of NLI and will bring research interest on cross-document cross-lingual context understanding, hallucination elimination and interpretability inference. Our code and datasets are available at "https://github.com/Leonardo123-ui/CDCL_NLI" for peer review.

Authors:Xin Gao, Qizhi Pei, Zinan Tang, Yu Li, Honglin Lin, Jiang Wu, Lijun Wu, Conghui He
Title: A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
Abstract:
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.

Authors:Pouya Samanipour, Hasan Poonawala
Title: SEROAISE: Advancing ROA Estimation for ReLU and PWA Dynamics through Estimating Certified Invariant Sets
Abstract:
This paper presents a novel framework for constructing the Region of Attraction (RoA) for dynamics derived either from Piecewise Affine (PWA) functions or from Neural Networks (NNs) with Rectified Linear Units (ReLU) activation function. This method, described as Sequential Estimation of RoA based on Invariant Set Estimation (SEROAISE), computes a Lyapunov-like PWA function over a certified PWA invariant set. While traditional approaches search for Lyapunov functions by enforcing Lyapunov conditions over pre-selected domains, this framework enforces Lyapunov-like conditions over a certified invariant subset obtained using the Iterative Invariant Set Estimator(IISE). Compared to the state-of-the-art, IISE provides systematically larger certified invariant sets. In order to find a larger invariant subset, the IISE utilizes a novel concept known as the Non-Uniform Growth of Invariant Set (NUGIS). A number of examples illustrating the efficacy of the proposed methods are provided, including dynamical systems derived from learning algorithms. The implementation is publicly available at: https://github.com/PouyaSamanipour/SEROAISE.git.

Authors:Stefan Abi-Karam, Cong Hao
Title: HLS-Eval: A Benchmark and Framework for Evaluating LLMs on High-Level Synthesis Design Tasks
Abstract:
The rapid scaling of large language model (LLM) training and inference has driven their adoption in semiconductor design across academia and industry. While most prior work evaluates LLMs on hardware description language (HDL) tasks, particularly Verilog, designers are increasingly using high-level synthesis (HLS) to build domain-specific accelerators and complex hardware systems. However, benchmarks and tooling to comprehensively evaluate LLMs for HLS design tasks remain scarce. To address this, we introduce HLS-Eval, the first complete benchmark and evaluation framework for LLM-driven HLS design. HLS-Eval targets two core tasks: (1) generating HLS code from natural language descriptions, and (2) performing HLS-specific code edits to optimize performance and hardware efficiency. The benchmark includes 94 unique designs drawn from standard HLS benchmarks and novel sources. Each case is prepared via a semi-automated flow that produces a natural language description and a paired testbench for C-simulation and synthesis validation, ensuring each task is "LLM-ready." Beyond the benchmark, HLS-Eval offers a modular Python framework for automated, parallel evaluation of both local and hosted LLMs. It includes a parallel evaluation engine, direct HLS tool integration, and abstractions for to support different LLM interaction paradigms, enabling rapid prototyping of new benchmarks, tasks, and LLM methods. We demonstrate HLS-Eval through baseline evaluations of open-source LLMs on Vitis HLS, measuring outputs across four key metrics - parseability, compilability, runnability, and synthesizability - reflecting the iterative HLS design cycle. We also report pass@k metrics, establishing clear baselines and reusable infrastructure for the broader LLM-for-hardware community. All benchmarks, framework code, and results are open-sourced at https://github.com/stefanpie/hls-eval.

Authors:Andreas Plesner, Turlan Kuzhagaliyev, Roger Wattenhofer
Title: FLIP Reasoning Challenge
Abstract:
Over the past years, advances in artificial intelligence (AI) have demonstrated how AI can solve many perception and generation tasks, such as image classification and text writing, yet reasoning remains a challenge. This paper introduces the FLIP dataset, a benchmark for evaluating AI reasoning capabilities based on human verification tasks on the Idena blockchain. FLIP challenges present users with two orderings of 4 images, requiring them to identify the logically coherent one. By emphasizing sequential reasoning, visual storytelling, and common sense, FLIP provides a unique testbed for multimodal AI systems. Our experiments evaluate state-of-the-art models, leveraging both vision-language models (VLMs) and large language models (LLMs). Results reveal that even the best open-sourced and closed-sourced models achieve maximum accuracies of 75.5% and 77.9%, respectively, in zero-shot settings, compared to human performance of 95.3%. Captioning models aid reasoning models by providing text descriptions of images, yielding better results than when using the raw images directly, 69.6% vs. 75.2% for Gemini 1.5 Pro. Combining the predictions from 15 models in an ensemble increases the accuracy to 85.2%. These findings highlight the limitations of existing reasoning models and the need for robust multimodal benchmarks like FLIP. The full codebase and dataset will be available at https://github.com/aplesner/FLIP-Reasoning-Challenge.

Authors:Ling Zhang, Shaleen Deep, Jignesh M. Patel, Karthikeyan Sankaralingam
Title: An Evaluation of N-Gram Selection Strategies for Regular Expression Indexing in Contemporary Text Analysis Tasks. Extended Version
Abstract:
Efficient evaluation of regular expressions (regex, for short) is crucial for text analysis, and n-gram indexes are fundamental to achieving fast regex evaluation performance. However, these indexes face scalability challenges because of the exponential number of possible n-grams that must be indexed. Many existing selection strategies, developed decades ago, have not been rigorously evaluated on contemporary large-scale workloads and lack comprehensive performance comparisons. Therefore, a unified and comprehensive evaluation framework is necessary to compare these methods under the same experimental settings. This paper presents the first systematic evaluation of three representative n-gram selection strategies across five workloads, including real-time production logs and genomic sequence analysis. We examine their trade-offs in terms of index construction time, storage overhead, false positive rates, and end-to-end query performance. Through empirical results, this study provides a modern perspective on existing n-gram based regular expression evaluation methods, extensive observations, valuable discoveries, and an adaptable testing framework to guide future research in this domain. We make our implementations of these methods and our test framework available as open-source at https://github.com/mush-zhang/RegexIndexComparison.

Authors:Yancheng Zhang, Mengxin Zheng, Xun Chen, Jingtong Hu, Weidong Shi, Lei Ju, Yan Solihin, Qian Lou
Title: zkVC: Fast Zero-Knowledge Proof for Private and Verifiable Computing
Abstract:
In the context of cloud computing, services are held on cloud servers, where the clients send their data to the server and obtain the results returned by server. However, the computation, data and results are prone to tampering due to the vulnerabilities on the server side. Thus, verifying the integrity of computation is important in the client-server setting. The cryptographic method known as Zero-Knowledge Proof (ZKP) is renowned for facilitating private and verifiable computing. ZKP allows the client to validate that the results from the server are computed correctly without violating the privacy of the server's intellectual property. Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARKs), in particular, has been widely applied in various applications like blockchain and verifiable machine learning. Despite their popularity, existing zkSNARKs approaches remain highly computationally intensive. For instance, even basic operations like matrix multiplication require an extensive number of constraints, resulting in significant overhead. In addressing this challenge, we introduce \textit{zkVC}, which optimizes the ZKP computation for matrix multiplication, enabling rapid proof generation on the server side and efficient verification on the client side. zkVC integrates optimized ZKP modules, such as Constraint-reduced Polynomial Circuit (CRPC) and Prefix-Sum Query (PSQ), collectively yielding a more than 12-fold increase in proof speed over prior methods. The code is available at https://github.com/UCF-Lou-Lab-PET/zkformer

Authors:Alejandro Newell, Peiyun Hu, Lahav Lipson, Stephan R. Richter, Vladlen Koltun
Title: CoMotion: Concurrent Multi-person 3D Motion
Abstract:
We introduce an approach for detecting and tracking detailed 3D poses of multiple people from a single monocular camera stream. Our system maintains temporally coherent predictions in crowded scenes filled with difficult poses and occlusions. Our model performs both strong per-frame detection and a learned pose update to track people from frame to frame. Rather than match detections across time, poses are updated directly from a new input image, which enables online tracking through occlusion. We train on numerous image and video datasets leveraging pseudo-labeled annotations to produce a model that matches state-of-the-art systems in 3D pose estimation accuracy while being faster and more accurate in tracking multiple people through time. Code and weights are provided at https://github.com/apple/ml-comotion

Authors:Yike Liu, Haipeng Li, Shuaicheng Liu, Bing Zeng
Title: CodingHomo: Bootstrapping Deep Homography With Video Coding
Abstract:
Homography estimation is a fundamental task in computer vision with applications in diverse fields. Recent advances in deep learning have improved homography estimation, particularly with unsupervised learning approaches, offering increased robustness and generalizability. However, accurately predicting homography, especially in complex motions, remains a challenge. In response, this work introduces a novel method leveraging video coding, particularly by harnessing inherent motion vectors (MVs) present in videos. We present CodingHomo, an unsupervised framework for homography estimation. Our framework features a Mask-Guided Fusion (MGF) module that identifies and utilizes beneficial features among the MVs, thereby enhancing the accuracy of homography prediction. Additionally, the Mask-Guided Homography Estimation (MGHE) module is presented for eliminating undesired features in the coarse-to-fine homography refinement process. CodingHomo outperforms existing state-of-the-art unsupervised methods, delivering good robustness and generalizability. The code and dataset are available at: \href{github}{https://github.com/liuyike422/CodingHomo

Authors:Xiaojun Ye, Chun Wang, Yiren Song, Sheng Zhou, Liangcheng Li, Jiajun Bu
Title: FocusedAD: Character-centric Movie Audio Description
Abstract:
Movie Audio Description (AD) aims to narrate visual content during dialogue-free segments, particularly benefiting blind and visually impaired (BVI) audiences. Compared with general video captioning, AD demands plot-relevant narration with explicit character name references, posing unique challenges in movie understanding.To identify active main characters and focus on storyline-relevant regions, we propose FocusedAD, a novel framework that delivers character-centric movie audio descriptions. It includes: (i) a Character Perception Module(CPM) for tracking character regions and linking them to names; (ii) a Dynamic Prior Module(DPM) that injects contextual cues from prior ADs and subtitles via learnable soft prompts; and (iii) a Focused Caption Module(FCM) that generates narrations enriched with plot-relevant details and named characters. To overcome limitations in character identification, we also introduce an automated pipeline for building character query banks. FocusedAD achieves state-of-the-art performance on multiple benchmarks, including strong zero-shot results on MAD-eval-Named and our newly proposed Cinepile-AD dataset. Code and data will be released at https://github.com/Thorin215/FocusedAD .

Authors:Miaosen Luo, Yuncheng Jiang, Sijie Mai
Title: Towards Explainable Fusion and Balanced Learning in Multimodal Sentiment Analysis
Abstract:
Multimodal Sentiment Analysis (MSA) faces two critical challenges: the lack of interpretability in the decision logic of multimodal fusion and modality imbalance caused by disparities in inter-modal information density. To address these issues, we propose KAN-MCP, a novel framework that integrates the interpretability of Kolmogorov-Arnold Networks (KAN) with the robustness of the Multimodal Clean Pareto (MCPareto) framework. First, KAN leverages its univariate function decomposition to achieve transparent analysis of cross-modal interactions. This structural design allows direct inspection of feature transformations without relying on external interpretation tools, thereby ensuring both high expressiveness and interpretability. Second, the proposed MCPareto enhances robustness by addressing modality imbalance and noise interference. Specifically, we introduce the Dimensionality Reduction and Denoising Modal Information Bottleneck (DRD-MIB) method, which jointly denoises and reduces feature dimensionality. This approach provides KAN with discriminative low-dimensional inputs to reduce the modeling complexity of KAN while preserving critical sentiment-related information. Furthermore, MCPareto dynamically balances gradient contributions across modalities using the purified features output by DRD-MIB, ensuring lossless transmission of auxiliary signals and effectively alleviating modality imbalance. This synergy of interpretability and robustness not only achieves superior performance on benchmark datasets such as CMU-MOSI, CMU-MOSEI, and CH-SIMS v2 but also offers an intuitive visualization interface through KAN's interpretable architecture. Our code is released on https://github.com/LuoMSen/KAN-MCP.

Authors:Shuo Li, Fang Liu, Zehua Hao, Xinyi Wang, Lingling Li, Xu Liu, Puhua Chen, Wenping Ma
Title: Logits DeConfusion with CLIP for Few-Shot Learning
Abstract:
With its powerful visual-language alignment capability, CLIP performs well in zero-shot and few-shot learning tasks. However, we found in experiments that CLIP's logits suffer from serious inter-class confusion problems in downstream tasks, and the ambiguity between categories seriously affects the accuracy. To address this challenge, we propose a novel method called Logits DeConfusion, which effectively learns and eliminates inter-class confusion in logits by combining our Multi-level Adapter Fusion (MAF) module with our Inter-Class Deconfusion (ICD) module. Our MAF extracts features from different levels and fuses them uniformly to enhance feature representation. Our ICD learnably eliminates inter-class confusion in logits with a residual structure. Experimental results show that our method can significantly improve the classification performance and alleviate the inter-class confusion problem. The code is available at https://github.com/LiShuo1001/LDC.

Authors:Mengshi Qi, Pengfei Zhu, Xiangtai Li, Xiaoyang Bi, Lu Qi, Huadong Ma, Ming-Hsuan Yang
Title: DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency
Abstract:
Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.

Authors:Yizhuo Wu, Francesco Fioranelli, Chang Gao
Title: RadMamba: Efficient Human Activity Recognition through Radar-based Micro-Doppler-Oriented Mamba State-Space Model
Abstract:
Radar-based HAR has emerged as a promising alternative to conventional monitoring approaches, such as wearable devices and camera-based systems, due to its unique privacy preservation and robustness advantages. However, existing solutions based on convolutional and recurrent neural networks, although effective, are computationally demanding during deployment. This limits their applicability in scenarios with constrained resources or those requiring multiple sensors. Advanced architectures, such as Vision Transformer (ViT) and State-Space Model (SSM) architectures, offer improved modeling capabilities and have made efforts toward lightweight designs. However, their computational complexity remains relatively high. To leverage the strengths of transformer architectures while simultaneously enhancing accuracy and reducing computational complexity, this paper introduces RadMamba, a parameter-efficient, radar micro-Doppler-oriented Mamba SSM specifically tailored for radar-based HAR. Across three diverse datasets, RadMamba matches the top-performing previous model's 99.8% classification accuracy on Dataset DIAT with only 1/400 of its parameters and equals the leading models' 92.0% accuracy on Dataset CI4R with merely 1/10 of their parameters. In scenarios with continuous sequences of actions evaluated on Dataset UoG2020, RadMamba surpasses other models with significantly higher parameter counts by at least 3%, achieving this with only 6.7k parameters. Our code is available at: https://github.com/lab-emi/AIRHAR.

Authors:Mohamad Dalal, Artur Xarles, Anthony Cioppa, Silvio Giancola, Marc Van Droogenbroeck, Bernard Ghanem, Albert Clapés, Sergio Escalera, Thomas B. Moeslund
Title: Action Anticipation from SoccerNet Football Video Broadcasts
Abstract:
Artificial intelligence has revolutionized the way we analyze sports videos, whether to understand the actions of games in long untrimmed videos or to anticipate the player's motion in future frames. Despite these efforts, little attention has been given to anticipating game actions before they occur. In this work, we introduce the task of action anticipation for football broadcast videos, which consists in predicting future actions in unobserved future frames, within a five- or ten-second anticipation window. To benchmark this task, we release a new dataset, namely the SoccerNet Ball Action Anticipation dataset, based on SoccerNet Ball Action Spotting. Additionally, we propose a Football Action ANticipation TRAnsformer (FAANTRA), a baseline method that adapts FUTR, a state-of-the-art action anticipation model, to predict ball-related actions. To evaluate action anticipation, we introduce new metrics, including mAP@$δ$, which evaluates the temporal precision of predicted future actions, as well as mAP@$\infty$, which evaluates their occurrence within the anticipation window. We also conduct extensive ablation studies to examine the impact of various task settings, input configurations, and model architectures. Experimental results highlight both the feasibility and challenges of action anticipation in football videos, providing valuable insights into the design of predictive models for sports analytics. By forecasting actions before they unfold, our work will enable applications in automated broadcasting, tactical analysis, and player decision-making. Our dataset and code are publicly available at https://github.com/MohamadDalal/FAANTRA.

Authors:Heesoo Jung, Hogun Park
Title: Balancing Graph Embedding Smoothness in Self-Supervised Learning via Information-Theoretic Decomposition
Abstract:
Self-supervised learning (SSL) in graphs has garnered significant attention, particularly in employing Graph Neural Networks (GNNs) with pretext tasks initially designed for other domains, such as contrastive learning and feature reconstruction. However, it remains uncertain whether these methods effectively reflect essential graph properties, precisely representation similarity with its neighbors. We observe that existing methods position opposite ends of a spectrum driven by the graph embedding smoothness, with each end corresponding to outperformance on specific downstream tasks. Decomposing the SSL objective into three terms via an information-theoretic framework with a neighbor representation variable reveals that this polarization stems from an imbalance among the terms, which existing methods may not effectively maintain. Further insights suggest that balancing between the extremes can lead to improved performance across a wider range of downstream tasks. A framework, BSG (Balancing Smoothness in Graph SSL), introduces novel loss functions designed to supplement the representation quality in graph-based SSL by balancing the derived three terms: neighbor loss, minimal loss, and divergence loss. We present a theoretical analysis of the effects of these loss functions, highlighting their significance from both the SSL and graph smoothness perspectives. Extensive experiments on multiple real-world datasets across node classification and link prediction consistently demonstrate that BSG achieves state-of-the-art performance, outperforming existing methods. Our implementation code is available at https://github.com/steve30572/BSG.

Authors:Pascal Schlachter, Jonathan Fuss, Bin Yang
Title: Analysis of Pseudo-Labeling for Online Source-Free Universal Domain Adaptation
Abstract:
A domain (distribution) shift between training and test data often hinders the real-world performance of deep neural networks, necessitating unsupervised domain adaptation (UDA) to bridge this gap. Online source-free UDA has emerged as a solution for practical scenarios where access to source data is restricted and target data is received as a continuous stream. However, the open-world nature of many real-world applications additionally introduces category shifts meaning that the source and target label spaces may differ. Online source-free universal domain adaptation (SF-UniDA) addresses this challenge. Existing methods mainly rely on self-training with pseudo-labels, yet the relationship between pseudo-labeling and adaptation outcomes has not been studied yet. To bridge this gap, we conduct a systematic analysis through controlled experiments with simulated pseudo-labeling, offering valuable insights into pseudo-labeling for online SF-UniDA. Our findings reveal a substantial gap between the current state-of-the-art and the upper bound of adaptation achieved with perfect pseudo-labeling. Moreover, we show that a contrastive loss enables effective adaptation even with moderate pseudo-label accuracy, while a cross-entropy (CE) loss, though less robust to pseudo-label errors, achieves superior results when pseudo-labeling approaches perfection. Lastly, our findings indicate that pseudo-label accuracy is in general more crucial than quantity, suggesting that prioritizing fewer but high-confidence pseudo-labels is beneficial. Overall, our study highlights the critical role of pseudo-labeling in (online) SF-UniDA and provides actionable insights to drive future advancements in the field. Our code is available at https://github.com/pascalschlachter/PLAnalysis.

Authors:Xanh Ho, Jiahao Huang, Florian Boudin, Akiko Aizawa
Title: LLM-as-a-Judge: Reassessing the Performance of LLMs in Extractive QA
Abstract:
Extractive reading comprehension question answering (QA) datasets are typically evaluated using Exact Match (EM) and F1-score, but these metrics often fail to fully capture model performance. With the success of large language models (LLMs), they have been employed in various tasks, including serving as judges (LLM-as-a-judge). In this paper, we reassess the performance of QA models using LLM-as-a-judge across four reading comprehension QA datasets. We examine different families of LLMs and various answer types to evaluate the effectiveness of LLM-as-a-judge in these tasks. Our results show that LLM-as-a-judge is highly correlated with human judgments and can replace traditional EM/F1 metrics. By using LLM-as-a-judge, the correlation with human judgments improves significantly, from 0.22 (EM) and 0.40 (F1-score) to 0.85. These findings confirm that EM and F1 metrics underestimate the true performance of the QA models. While LLM-as-a-judge is not perfect for more difficult answer types (e.g., job), it still outperforms EM/F1, and we observe no bias issues, such as self-preference, when the same model is used for both the QA and judgment tasks.

Authors:Linjuan Fan, Di Wen, Kunyu Peng, Kailun Yang, Jiaming Zhang, Ruiping Liu, Yufan Chen, Junwei Zheng, Jiamin Wu, Xudong Han, Rainer Stiefelhagen
Title: Exploring Video-Based Driver Activity Recognition under Noisy Labels
Abstract:
As an open research topic in the field of deep learning, learning with noisy labels has attracted much attention and grown rapidly over the past ten years. Learning with label noise is crucial for driver distraction behavior recognition, as real-world video data often contains mislabeled samples, impacting model reliability and performance. However, label noise learning is barely explored in the driver activity recognition field. In this paper, we propose the first label noise learning approach for the driver activity recognition task. Based on the cluster assumption, we initially enable the model to learn clustering-friendly low-dimensional representations from given videos and assign the resultant embeddings into clusters. We subsequently perform co-refinement within each cluster to smooth the classifier outputs. Furthermore, we propose a flexible sample selection strategy that combines two selection criteria without relying on any hyperparameters to filter clean samples from the training dataset. We also incorporate a self-adaptive parameter into the sample selection process to enforce balancing across classes. A comprehensive variety of experiments on the public Drive&Act dataset for all granularity levels demonstrates the superior performance of our method in comparison with other label-denoising methods derived from the image classification field. The source code is available at https://github.com/ilonafan/DAR-noisy-labels.

Authors:Xia Deng, Shen Chen, Jiale Zhou, Lei Li
Title: Mind2Matter: Creating 3D Models from EEG Signals
Abstract:
The reconstruction of 3D objects from brain signals has gained significant attention in brain-computer interface (BCI) research. Current research predominantly utilizes functional magnetic resonance imaging (fMRI) for 3D reconstruction tasks due to its excellent spatial resolution. Nevertheless, the clinical utility of fMRI is limited by its prohibitive costs and inability to support real-time operations. In comparison, electroencephalography (EEG) presents distinct advantages as an affordable, non-invasive, and mobile solution for real-time brain-computer interaction systems. While recent advances in deep learning have enabled remarkable progress in image generation from neural data, decoding EEG signals into structured 3D representations remains largely unexplored. In this paper, we propose a novel framework that translates EEG recordings into 3D object reconstructions by leveraging neural decoding techniques and generative models. Our approach involves training an EEG encoder to extract spatiotemporal visual features, fine-tuning a large language model to interpret these features into descriptive multimodal outputs, and leveraging generative 3D Gaussians with layout-guided control to synthesize the final 3D structures. Experiments demonstrate that our model captures salient geometric and semantic features, paving the way for applications in brain-computer interfaces (BCIs), virtual reality, and neuroprosthetics. Our code is available in https://github.com/sddwwww/Mind2Matter.

Authors:Lvpan Cai, Haowei Wang, Jiayi Ji, YanShu ZhouMen, Yiwei Ma, Xiaoshuai Sun, Liujuan Cao, Rongrong Ji
Title: Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
Abstract:
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.

Authors:Qishan Wang, Jia Guo, Shuyong Gao, Haofen Wang, Li Xiong, Junjie Hu, Hanqi Guo, Wenqiang Zhang
Title: Search is All You Need for Few-shot Anomaly Detection
Abstract:
Few-shot anomaly detection (FSAD) has emerged as a crucial yet challenging task in industrial inspection, where normal distribution modeling must be accomplished with only a few normal images. While existing approaches typically employ multi-modal foundation models combining language and vision modalities for prompt-guided anomaly detection, these methods often demand sophisticated prompt engineering and extensive manual tuning. In this paper, we demonstrate that a straightforward nearest-neighbor search framework can surpass state-of-the-art performance in both single-class and multi-class FSAD scenarios. Our proposed method, VisionAD, consists of four simple yet essential components: (1) scalable vision foundation models that extract universal and discriminative features; (2) dual augmentation strategies - support augmentation to enhance feature matching adaptability and query augmentation to address the oversights of single-view prediction; (3) multi-layer feature integration that captures both low-frequency global context and high-frequency local details with minimal computational overhead; and (4) a class-aware visual memory bank enabling efficient one-for-all multi-class detection. Extensive evaluations across MVTec-AD, VisA, and Real-IAD benchmarks demonstrate VisionAD's exceptional performance. Using only 1 normal images as support, our method achieves remarkable image-level AUROC scores of 97.4%, 94.8%, and 70.8% respectively, outperforming current state-of-the-art approaches by significant margins (+1.6%, +3.2%, and +1.4%). The training-free nature and superior few-shot capabilities of VisionAD make it particularly appealing for real-world applications where samples are scarce or expensive to obtain. Code is available at https://github.com/Qiqigeww/VisionAD.

Authors:Yushuai Sun, Zikun Zhou, Dongmei Jiang, Yaowei Wang, Jun Yu, Guangming Lu, Wenjie Pei
Title: Learning Compatible Multi-Prize Subnetworks for Asymmetric Retrieval
Abstract:
Asymmetric retrieval is a typical scenario in real-world retrieval systems, where compatible models of varying capacities are deployed on platforms with different resource configurations. Existing methods generally train pre-defined networks or subnetworks with capacities specifically designed for pre-determined platforms, using compatible learning. Nevertheless, these methods suffer from limited flexibility for multi-platform deployment. For example, when introducing a new platform into the retrieval systems, developers have to train an additional model at an appropriate capacity that is compatible with existing models via backward-compatible learning. In this paper, we propose a Prunable Network with self-compatibility, which allows developers to generate compatible subnetworks at any desired capacity through post-training pruning. Thus it allows the creation of a sparse subnetwork matching the resources of the new platform without additional training. Specifically, we optimize both the architecture and weight of subnetworks at different capacities within a dense network in compatible learning. We also design a conflict-aware gradient integration scheme to handle the gradient conflicts between the dense network and subnetworks during compatible learning. Extensive experiments on diverse benchmarks and visual backbones demonstrate the effectiveness of our method. Our code and model are available at https://github.com/Bunny-Black/PrunNet.

Authors:Thu Hang Khuat, Duy-Nam Bui, Hoa TT. Nguyen, Mien L. Trinh, Minh T. Nguyen, Manh Duong Phung
Title: Multi-goal Rapidly Exploring Random Tree with Safety and Dynamic Constraints for UAV Cooperative Path Planning
Abstract:
Cooperative path planning is gaining its importance due to the increasing demand on using multiple unmanned aerial vehicles (UAVs) for complex missions. This work addresses the problem by introducing a new algorithm named MultiRRT that extends the rapidly exploring random tree (RRT) to generate paths for a group of UAVs to reach multiple goal locations at the same time. We first derive the dynamics constraint of the UAV and include it in the problem formulation. MultiRRT is then developed, taking into account the cooperative requirements and safe constraints during its path-searching process. The algorithm features two new mechanisms, node reduction and Bezier interpolation, to ensure the feasibility and optimality of the paths generated. Importantly, the interpolated paths are proven to meet the safety and dynamics constraints imposed by obstacles and the UAVs. A number of simulations, comparisons, and experiments have been conducted to evaluate the performance of the proposed approach. The results show that MultiRRT can generate collision-free paths for multiple UAVs to reach their goals with better scores in path length and smoothness metrics than state-of-the-art RRT variants including Theta-RRT, FN-RRT, RRT*, and RRT*-Smart. The generated paths are also tested in practical flights with real UAVs to evaluate their validity for cooperative tasks. The source code of the algorithm is available at https://github.com/duynamrcv/multi-target_RRT

Authors:Kishan Gurumurthy, Himanshu Pal, Charu Sharma
Title: Federated Spectral Graph Transformers Meet Neural Ordinary Differential Equations for Non-IID Graphs
Abstract:
Graph Neural Network (GNN) research is rapidly advancing due to GNNs' capacity to learn distributed representations from graph-structured data. However, centralizing large volumes of real-world graph data for GNN training is often impractical due to privacy concerns, regulatory restrictions, and commercial competition. Federated learning (FL), a distributed learning paradigm, offers a solution by preserving data privacy with collaborative model training. Despite progress in training huge vision and language models, federated learning for GNNs remains underexplored. To address this challenge, we present a novel method for federated learning on GNNs based on spectral GNNs equipped with neural ordinary differential equations (ODE) for better information capture, showing promising results across both homophilic and heterophilic graphs. Our approach effectively handles non-Independent and Identically Distributed (non-IID) data, while also achieving performance comparable to existing methods that only operate on IID data. It is designed to be privacy-preserving and bandwidth-optimized, making it suitable for real-world applications such as social network analysis, recommendation systems, and fraud detection, which often involve complex, non-IID, and heterophilic graph structures. Our results in the area of federated learning on non-IID heterophilic graphs demonstrate significant improvements, while also achieving better performance on homophilic graphs. This work highlights the potential of federated learning in diverse and challenging graph settings. Open-source code available on GitHub (https://github.com/SpringWiz11/Fed-GNODEFormer).

Authors:Zihui Zhang, Yafei Yang, Hongtao Wen, Bo Yang
Title: GrabS: Generative Embodied Agent for 3D Object Segmentation without Scene Supervision
Abstract:
We study the hard problem of 3D object segmentation in complex point clouds without requiring human labels of 3D scenes for supervision. By relying on the similarity of pretrained 2D features or external signals such as motion to group 3D points as objects, existing unsupervised methods are usually limited to identifying simple objects like cars or their segmented objects are often inferior due to the lack of objectness in pretrained features. In this paper, we propose a new two-stage pipeline called GrabS. The core concept of our method is to learn generative and discriminative object-centric priors as a foundation from object datasets in the first stage, and then design an embodied agent to learn to discover multiple objects by querying against the pretrained generative priors in the second stage. We extensively evaluate our method on two real-world datasets and a newly created synthetic dataset, demonstrating remarkable segmentation performance, clearly surpassing all existing unsupervised methods.

Authors:Zongye Zhang, Wenrui Cai, Qingjie Liu, Yunhong Wang
Title: SkeletonX: Data-Efficient Skeleton-based Action Recognition via Cross-sample Feature Aggregation
Abstract:
While current skeleton action recognition models demonstrate impressive performance on large-scale datasets, their adaptation to new application scenarios remains challenging. These challenges are particularly pronounced when facing new action categories, diverse performers, and varied skeleton layouts, leading to significant performance degeneration. Additionally, the high cost and difficulty of collecting skeleton data make large-scale data collection impractical. This paper studies one-shot and limited-scale learning settings to enable efficient adaptation with minimal data. Existing approaches often overlook the rich mutual information between labeled samples, resulting in sub-optimal performance in low-data scenarios. To boost the utility of labeled data, we identify the variability among performers and the commonality within each action as two key attributes. We present SkeletonX, a lightweight training pipeline that integrates seamlessly with existing GCN-based skeleton action recognizers, promoting effective training under limited labeled data. First, we propose a tailored sample pair construction strategy on two key attributes to form and aggregate sample pairs. Next, we develop a concise and effective feature aggregation module to process these pairs. Extensive experiments are conducted on NTU RGB+D, NTU RGB+D 120, and PKU-MMD with various GCN backbones, demonstrating that the pipeline effectively improves performance when trained from scratch with limited data. Moreover, it surpasses previous state-of-the-art methods in the one-shot setting, with only 1/10 of the parameters and much fewer FLOPs. The code and data are available at: https://github.com/zzysteve/SkeletonX

Authors:Muhammad Shahid Muneer, Simon S. Woo
Title: Towards Safe Synthetic Image Generation On the Web: A Multimodal Robust NSFW Defense and Million Scale Dataset
Abstract:
In the past years, we have witnessed the remarkable success of Text-to-Image (T2I) models and their widespread use on the web. Extensive research in making T2I models produce hyper-realistic images has led to new concerns, such as generating Not-Safe-For-Work (NSFW) web content and polluting the web society. To help prevent misuse of T2I models and create a safer web environment for users features like NSFW filters and post-hoc security checks are used in these models. However, recent work unveiled how these methods can easily fail to prevent misuse. In particular, adversarial attacks on text and image modalities can easily outplay defensive measures. %Exploiting such leads to the growing concern of preventing adversarial attacks on text and image modalities. Moreover, there is currently no robust multimodal NSFW dataset that includes both prompt and image pairs and adversarial examples. This work proposes a million-scale prompt and image dataset generated using open-source diffusion models. Second, we develop a multimodal defense to distinguish safe and NSFW text and images, which is robust against adversarial attacks and directly alleviates current challenges. Our extensive experiments show that our model performs well against existing SOTA NSFW detection methods in terms of accuracy and recall, drastically reducing the Attack Success Rate (ASR) in multimodal adversarial attack scenarios. Code: https://github.com/shahidmuneer/multimodal-nsfw-defense.

Authors:Xingwu Ji, Haochen Niu, Dexin Duan, Rendong Ying, Fei Wen, Peilin Liu
Title: An Online Adaptation Method for Robust Depth Estimation and Visual Odometry in the Open World
Abstract:
Recently, learning-based robotic navigation systems have gained extensive research attention and made significant progress. However, the diversity of open-world scenarios poses a major challenge for the generalization of such systems to practical scenarios. Specifically, learned systems for scene measurement and state estimation tend to degrade when the application scenarios deviate from the training data, resulting to unreliable depth and pose estimation. Toward addressing this problem, this work aims to develop a visual odometry system that can fast adapt to diverse novel environments in an online manner. To this end, we construct a self-supervised online adaptation framework for monocular visual odometry aided by an online-updated depth estimation module. Firstly, we design a monocular depth estimation network with lightweight refiner modules, which enables efficient online adaptation. Then, we construct an objective for self-supervised learning of the depth estimation module based on the output of the visual odometry system and the contextual semantic information of the scene. Specifically, a sparse depth densification module and a dynamic consistency enhancement module are proposed to leverage camera poses and contextual semantics to generate pseudo-depths and valid masks for the online adaptation. Finally, we demonstrate the robustness and generalization capability of the proposed method in comparison with state-of-the-art learning-based approaches on urban, in-house datasets and a robot platform. Code is publicly available at: https://github.com/jixingwu/SOL-SLAM.

Authors:Amirhossein Dadashzadeh, Parsa Esmati, Majid Mirmehdi
Title: Co-STAR: Collaborative Curriculum Self-Training with Adaptive Regularization for Source-Free Video Domain Adaptation
Abstract:
Recent advances in Source-Free Unsupervised Video Domain Adaptation (SFUVDA) leverage vision-language models to enhance pseudo-label generation. However, challenges such as noisy pseudo-labels and over-confident predictions limit their effectiveness in adapting well across domains. We propose Co-STAR, a novel framework that integrates curriculum learning with collaborative self-training between a source-trained teacher and a contrastive vision-language model (CLIP). Our curriculum learning approach employs a reliability-based weight function that measures bidirectional prediction alignment between the teacher and CLIP, balancing between confident and uncertain predictions. This function preserves uncertainty for difficult samples, while prioritizing reliable pseudo-labels when the predictions from both models closely align. To further improve adaptation, we propose Adaptive Curriculum Regularization, which modifies the learning priority of samples in a probabilistic, adaptive manner based on their confidence scores and prediction stability, mitigating overfitting to noisy and over-confident samples. Extensive experiments across multiple video domain adaptation benchmarks demonstrate that Co-STAR consistently outperforms state-of-the-art SFUVDA methods. Code is available at: https://github.com/Plrbear/Co-Star

Authors:Tianyi Zhang, Mohsen Hariri, Shaochen Zhong, Vipin Chaudhary, Yang Sui, Xia Hu, Anshumali Shrivastava
Title: 70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float
Abstract:
Large-scale AI models, such as Large Language Models (LLMs) and Diffusion Models (DMs), have grown rapidly in size, creating significant challenges for efficient deployment on resource-constrained hardware. In this paper, we introduce Dynamic-Length Float (DFloat11), a lossless compression framework that reduces LLM and DM size by 30% while preserving outputs that are bit-for-bit identical to the original model. DFloat11 is motivated by the low entropy in the BFloat16 weight representation of LLMs, which reveals significant inefficiency in the existing storage format. By applying entropy coding, DFloat11 assigns dynamic-length encodings to weights based on frequency, achieving near information-optimal compression without any loss of precision. To facilitate efficient inference with dynamic-length encodings, we develop a custom GPU kernel for fast online decompression. Our design incorporates the following: (i) compact, hierarchical lookup tables (LUTs) that fit within GPU SRAM for efficient decoding, (ii) a two-phase GPU kernel for coordinating thread read/write positions using lightweight auxiliary variables, and (iii) transformer-block-level decompression to minimize latency. Experiments on Llama 3.3, Qwen 3, Mistral 3, FLUX.1, and others validate our hypothesis that DFloat11 achieves around 30% model size reduction while preserving bit-for-bit identical outputs. Compared to a potential alternative of offloading parts of an uncompressed model to the CPU to meet memory constraints, DFloat11 achieves 2.3--46.2x higher throughput in token generation. With a fixed GPU memory budget, DFloat11 enables 5.7--14.9x longer generation lengths than uncompressed models. Notably, our method enables lossless inference of Llama 3.1 405B, an 810GB model, on a single node equipped with 8x80GB GPUs. Our code is available at https://github.com/LeanModels/DFloat11.

Authors:Dong Wang, Hannes Haag, Daniel Casado Herraez, Stefan May, Cyrill Stachniss, Andreas Nüchter
Title: Doppler-SLAM: Doppler-Aided Radar-Inertial and LiDAR-Inertial Simultaneous Localization and Mapping
Abstract:
Simultaneous localization and mapping (SLAM) is a critical capability for autonomous systems. Traditional SLAM approaches, which often rely on visual or LiDAR sensors, face significant challenges in adverse conditions such as low light or featureless environments. To overcome these limitations, we propose a novel Doppler-aided radar-inertial and LiDAR-inertial SLAM framework that leverages the complementary strengths of 4D radar, FMCW LiDAR, and inertial measurement units. Our system integrates Doppler velocity measurements and spatial data into a tightly-coupled front-end and graph optimization back-end to provide enhanced ego velocity estimation, accurate odometry, and robust mapping. We also introduce a Doppler-based scan-matching technique to improve front-end odometry in dynamic environments. In addition, our framework incorporates an innovative online extrinsic calibration mechanism, utilizing Doppler velocity and loop closure to dynamically maintain sensor alignment. Extensive evaluations on both public and proprietary datasets show that our system significantly outperforms state-of-the-art radar-SLAM and LiDAR-SLAM frameworks in terms of accuracy and robustness. To encourage further research, the code of our Doppler-SLAM and our dataset are available at: https://github.com/Wayne-DWA/Doppler-SLAM.

Authors:Tianjian Yang, Wei Vivian Li
Title: Generalized probabilistic canonical correlation analysis for multi-modal data integration with full or partial observations
Abstract:
Background: The integration and analysis of multi-modal data are increasingly essential across various domains including bioinformatics. As the volume and complexity of such data grow, there is a pressing need for computational models that not only integrate diverse modalities but also leverage their complementary information to improve clustering accuracy and insights, especially when dealing with partial observations with missing data. Results: We propose Generalized Probabilistic Canonical Correlation Analysis (GPCCA), an unsupervised method for the integration and joint dimensionality reduction of multi-modal data. GPCCA addresses key challenges in multi-modal data analysis by handling missing values within the model, enabling the integration of more than two modalities, and identifying informative features while accounting for correlations within individual modalities. The model demonstrates robustness to various missing data patterns and provides low-dimensional embeddings that facilitate downstream clustering and analysis. In a range of simulation settings, GPCCA outperforms existing methods in capturing essential patterns across modalities. Additionally, we demonstrate its applicability to multi-omics data from TCGA cancer datasets and a multi-view image dataset. Conclusion: GPCCA offers a useful framework for multi-modal data integration, effectively handling missing data and providing informative low-dimensional embeddings. Its performance across cancer genomics and multi-view image data highlights its robustness and potential for broad application. To make the method accessible to the wider research community, we have released an R package, GPCCA, which is available at https://github.com/Kaversoniano/GPCCA.

Authors:Ziyu Cao, William Talbot, Kailai Li
Title: RESPLE: Recursive Spline Estimation for LiDAR-Based Odometry
Abstract:
We present a novel recursive Bayesian estimation framework using B-splines for continuous-time 6-DoF dynamic motion estimation. The state vector consists of a recurrent set of position control points and orientation control point increments, enabling efficient estimation via a modified iterated extended Kalman filter without involving error-state formulations. The resulting recursive spline estimator (RESPLE) is further leveraged to develop a versatile suite of direct LiDAR-based odometry solutions, supporting the integration of one or multiple LiDARs and an IMU. We conduct extensive real-world evaluations using public datasets and our own experiments, covering diverse sensor setups, platforms, and environments. Compared to existing systems, RESPLE achieves comparable or superior estimation accuracy and robustness, while attaining real-time efficiency. Our results and analysis demonstrate RESPLE's strength in handling highly dynamic motions and complex scenes within a lightweight and flexible design, showing strong potential as a universal framework for multi-sensor motion estimation. We release the source code and experimental datasets at https://github.com/ASIG-X/RESPLE .

Authors:Tianyang Xu, Haojie Zheng, Chengze Li, Haoxiang Chen, Yixin Liu, Ruoxi Chen, Lichao Sun
Title: NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes
Abstract:
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus, enabling factually consistent responses in specific domains. By exploiting the inherent structure of the corpus, graph-based RAG methods further enrich this process by building a knowledge graph index and leveraging the structural nature of graphs. However, current graph-based RAG approaches seldom prioritize the design of graph structures. Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies and degraded performance. To further unleash the potential of graph for RAG, we propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures that enable the seamless and holistic integration of graph-based methodologies into the RAG workflow. By aligning closely with the capabilities of LLMs, this framework ensures a fully cohesive and efficient end-to-end process. Through extensive experiments, we demonstrate that NodeRAG exhibits performance advantages over previous methods, including GraphRAG and LightRAG, not only in indexing time, query time, and storage efficiency but also in delivering superior question-answering performance on multi-hop benchmarks and open-ended head-to-head evaluations with minimal retrieval tokens. Our GitHub repository could be seen at https://github.com/Terry-Xu-666/NodeRAG.

Authors:Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav Putta, Naman Garg, Tomas Abraham, Michael Lara, Federico Lopez, James Liu, Atharva Gundawar, Prannay Hebbar, Youngchul Joo, Jindong Gu, Charles London, Christian Schroeder de Witt, Sumeet Motwani
Title: REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites
Abstract:
We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.

Authors:Mansoor Hayat, Supavadee Aramvith, Subrata Bhattacharjee, Nouman Ahmad
Title: Attention GhostUNet++: Enhanced Segmentation of Adipose Tissue and Liver in CT Images
Abstract:
Accurate segmentation of abdominal adipose tissue, including subcutaneous (SAT) and visceral adipose tissue (VAT), along with liver segmentation, is essential for understanding body composition and associated health risks such as type 2 diabetes and cardiovascular disease. This study proposes Attention GhostUNet++, a novel deep learning model incorporating Channel, Spatial, and Depth Attention mechanisms into the Ghost UNet++ bottleneck for automated, precise segmentation. Evaluated on the AATTCT-IDS and LiTS datasets, the model achieved Dice coefficients of 0.9430 for VAT, 0.9639 for SAT, and 0.9652 for liver segmentation, surpassing baseline models. Despite minor limitations in boundary detail segmentation, the proposed model significantly enhances feature refinement, contextual understanding, and computational efficiency, offering a robust solution for body composition analysis. The implementation of the proposed Attention GhostUNet++ model is available at:https://github.com/MansoorHayat777/Attention-GhostUNetPlusPlus.

Authors:Huaxiang Zhang, Hao Zhang, Aoran Mei, Zhongxue Gan, Guo-Niu Zhu
Title: SO-DETR: Leveraging Dual-Domain Features and Knowledge Distillation for Small Object Detection
Abstract:
Detection Transformer-based methods have achieved significant advancements in general object detection. However, challenges remain in effectively detecting small objects. One key difficulty is that existing encoders struggle to efficiently fuse low-level features. Additionally, the query selection strategies are not effectively tailored for small objects. To address these challenges, this paper proposes an efficient model, Small Object Detection Transformer (SO-DETR). The model comprises three key components: a dual-domain hybrid encoder, an enhanced query selection mechanism, and a knowledge distillation strategy. The dual-domain hybrid encoder integrates spatial and frequency domains to fuse multi-scale features effectively. This approach enhances the representation of high-resolution features while maintaining relatively low computational overhead. The enhanced query selection mechanism optimizes query initialization by dynamically selecting high-scoring anchor boxes using expanded IoU, thereby improving the allocation of query resources. Furthermore, by incorporating a lightweight backbone network and implementing a knowledge distillation strategy, we develop an efficient detector for small objects. Experimental results on the VisDrone-2019-DET and UAVVaste datasets demonstrate that SO-DETR outperforms existing methods with similar computational demands. The project page is available at https://github.com/ValiantDiligent/SO_DETR.

Authors:Ziqi Pang, Xin Xu, Yu-Xiong Wang
Title: Aligning Generative Denoising with Discriminative Objectives Unleashes Diffusion for Visual Perception
Abstract:
With the success of image generation, generative diffusion models are increasingly adopted for discriminative tasks, as pixel generation provides a unified perception interface. However, directly repurposing the generative denoising process for discriminative objectives reveals critical gaps rarely addressed previously. Generative models tolerate intermediate sampling errors if the final distribution remains plausible, but discriminative tasks require rigorous accuracy throughout, as evidenced in challenging multi-modal tasks like referring image segmentation. Motivated by this gap, we analyze and enhance alignment between generative diffusion processes and perception tasks, focusing on how perception quality evolves during denoising. We find: (1) earlier denoising steps contribute disproportionately to perception quality, prompting us to propose tailored learning objectives reflecting varying timestep contributions; (2) later denoising steps show unexpected perception degradation, highlighting sensitivity to training-denoising distribution shifts, addressed by our diffusion-tailored data augmentation; and (3) generative processes uniquely enable interactivity, serving as controllable user interfaces adaptable to correctional prompts in multi-round interactions. Our insights significantly improve diffusion-based perception models without architectural changes, achieving state-of-the-art performance on depth estimation, referring image segmentation, and generalist perception tasks. Code available at https://github.com/ziqipang/ADDP.

Authors:Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, Yu-Gang Jiang
Title: SimpleAR: Pushing the Frontier of Autoregressive Visual Generation through Pretraining, SFT, and RL
Abstract:
This work presents SimpleAR, a vanilla autoregressive visual generation framework without complex architecure modifications. Through careful exploration of training and inference optimization, we demonstrate that: 1) with only 0.5B parameters, our model can generate 1024x1024 resolution images with high fidelity, and achieve competitive results on challenging text-to-image benchmarks, e.g., 0.59 on GenEval and 79.66 on DPG; 2) both supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) training could lead to significant improvements on generation aesthectics and prompt alignment; and 3) when optimized with inference acceleraton techniques like vLLM, the time for SimpleAR to generate an 1024x1024 image could be reduced to around 14 seconds. By sharing these findings and open-sourcing the code, we hope to reveal the potential of autoregressive visual generation and encourage more participation in this research field. Code is available at https://github.com/wdrink/SimpleAR.

Authors:Matthew Thomas Jackson, Uljad Berdica, Jarek Liesen, Shimon Whiteson, Jakob Nicolaus Foerster
Title: A Clean Slate for Offline Reinforcement Learning
Abstract:
Progress in offline reinforcement learning (RL) has been impeded by ambiguous problem definitions and entangled algorithmic designs, resulting in inconsistent implementations, insufficient ablations, and unfair evaluations. Although offline RL explicitly avoids environment interaction, prior methods frequently employ extensive, undocumented online evaluation for hyperparameter tuning, complicating method comparisons. Moreover, existing reference implementations differ significantly in boilerplate code, obscuring their core algorithmic contributions. We address these challenges by first introducing a rigorous taxonomy and a transparent evaluation protocol that explicitly quantifies online tuning budgets. To resolve opaque algorithmic design, we provide clean, minimalistic, single-file implementations of various model-free and model-based offline RL methods, significantly enhancing clarity and achieving substantial speed-ups. Leveraging these streamlined implementations, we propose Unifloral, a unified algorithm that encapsulates diverse prior approaches within a single, comprehensive hyperparameter space, enabling algorithm development in a shared hyperparameter space. Using Unifloral with our rigorous evaluation protocol, we develop two novel algorithms - TD3-AWR (model-free) and MoBRAC (model-based) - which substantially outperform established baselines. Our implementation is publicly available at https://github.com/EmptyJackson/unifloral.

Authors:An Zhao, Shengyuan Zhang, Ling Yang, Zejian Li, Jiale Wu, Haoran Xu, AnYang Wei, Perry Pengyun GU, Lingyun Sun
Title: Diffusion Distillation With Direct Preference Optimization For Efficient 3D LiDAR Scene Completion
Abstract:
The application of diffusion models in 3D LiDAR scene completion is limited due to diffusion's slow sampling speed. Score distillation accelerates diffusion sampling but with performance degradation, while post-training with direct policy optimization (DPO) boosts performance using preference data. This paper proposes Distillation-DPO, a novel diffusion distillation framework for LiDAR scene completion with preference aligment. First, the student model generates paired completion scenes with different initial noises. Second, using LiDAR scene evaluation metrics as preference, we construct winning and losing sample pairs. Such construction is reasonable, since most LiDAR scene metrics are informative but non-differentiable to be optimized directly. Third, Distillation-DPO optimizes the student model by exploiting the difference in score functions between the teacher and student models on the paired completion scenes. Such procedure is repeated until convergence. Extensive experiments demonstrate that, compared to state-of-the-art LiDAR scene completion diffusion models, Distillation-DPO achieves higher-quality scene completion while accelerating the completion speed by more than 5-fold. Our method is the first to explore adopting preference learning in distillation to the best of our knowledge and provide insights into preference-aligned distillation. Our code is public available on https://github.com/happyw1nd/DistillationDPO.

Authors:Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, Cheston Tan
Title: TextArena
Abstract:
TextArena is an open-source collection of competitive text-based games for training and evaluation of agentic behavior in Large Language Models (LLMs). It spans 57+ unique environments (including single-player, two-player, and multi-player setups) and allows for easy evaluation of model capabilities via an online-play system (against humans and other submitted models) with real-time TrueSkill scores. Traditional benchmarks rarely assess dynamic social skills such as negotiation, theory of mind, and deception, creating a gap that TextArena addresses. Designed with research, community and extensibility in mind, TextArena emphasizes ease of adding new games, adapting the framework, testing models, playing against the models, and training models. Detailed documentation of environments, games, leaderboard, and examples are available on https://github.com/LeonGuertler/TextArena and https://www.textarena.ai/.

Authors:Lewis Clifton, Xin Tian, Duangdao Palasuwan, Phandee Watanaboonyongcharoen, Ponlapat Rojnuckarin, Nantheera Anantrasirichai
Title: Mamba-Based Ensemble learning for White Blood Cell Classification
Abstract:
White blood cell (WBC) classification assists in assessing immune health and diagnosing various diseases, yet manual classification is labor-intensive and prone to inconsistencies. Recent advancements in deep learning have shown promise over traditional methods; however, challenges such as data imbalance and the computational demands of modern technologies, such as Transformer-based models which do not scale well with input size, limit their practical application. This paper introduces a novel framework that leverages Mamba models integrated with ensemble learning to improve WBC classification. Mamba models, known for their linear complexity, provide a scalable alternative to Transformer-based approaches, making them suitable for deployment in resource-constrained environments. Additionally, we introduce a new WBC dataset, Chula-WBC-8, for benchmarking. Our approach not only validates the effectiveness of Mamba models in this domain but also demonstrates their potential to significantly enhance classification efficiency without compromising accuracy. The source code can be found at https://github.com/LewisClifton/Mamba-WBC-Classification.

Authors:Xue Zhang, Songming Zhang, Yunlong Liang, Fandong Meng, Yufeng Chen, Jinan Xu, Jie Zhou
Title: A Dual-Space Framework for General Knowledge Distillation of Large Language Models
Abstract:
Knowledge distillation (KD) is a promising solution to compress large language models (LLMs) by transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the teacher model and the student model to transfer more information. However, we reveal that the current white-box KD framework exhibits two limitations: a) bridging probability distributions from different output spaces will limit the similarity between the teacher model and the student model; b) this framework cannot be applied to LLMs with different vocabularies. One of the root causes for these limitations is that the distributions from the teacher and the student for KD are output by different prediction heads, which yield distributions in different output spaces and dimensions. Therefore, in this paper, we propose a dual-space knowledge distillation (DSKD) framework that unifies the prediction heads of the teacher and the student models for KD. Specifically, we first introduce two projectors with ideal initialization to project the teacher/student hidden states into the student/teacher representation spaces. After this, the hidden states from different models can share the same head and unify the output spaces of the distributions. Furthermore, we develop an exact token alignment (ETA) algorithm to align the same tokens in two differently-tokenized sequences. Based on the above, our DSKD framework is a general KD framework that supports both off-policy and on-policy KD, and KD between any two LLMs regardless of their vocabularies. Extensive experiments on instruction-following, mathematical reasoning, and code generation benchmarks show that DSKD significantly outperforms existing methods based on the current white-box KD framework and surpasses other cross-tokenizer KD methods for LLMs with different vocabularies.

Authors:Panagiotis Agrafiotis, Begüm Demir
Title: Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps
Abstract:
Accurate, detailed, and high-frequent bathymetry is crucial for shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods utilizing airborne or satellite optical imagery to derive bathymetry primarily rely on either SfM-MVS with refraction correction or Spectrally Derived Bathymetry (SDB). However, SDB methods often require extensive manual fieldwork or costly reference data, while SfM-MVS approaches face challenges even after refraction correction. These include depth data gaps and noise in environments with homogeneous visual textures, which hinder the creation of accurate and complete Digital Surface Models (DSMs) of the seabed. To address these challenges, this work introduces a methodology that combines the high-fidelity 3D reconstruction capabilities of the SfM-MVS methods with state-of-the-art refraction correction techniques, along with the spectral analysis capabilities of a new deep learning-based method for bathymetry prediction. This integration enables a synergistic approach where SfM-MVS derived DSMs with data gaps are used as training data to generate complete bathymetric maps. In this context, we propose Swin-BathyUNet that combines U-Net with Swin Transformer self-attention layers and a cross-attention mechanism, specifically tailored for SDB. Swin-BathyUNet is designed to improve bathymetric accuracy by capturing long-range spatial relationships and can also function as a standalone solution for standard SDB with various training depth data, independent of the SfM-MVS output. Experimental results in two completely different test sites in the Mediterranean and Baltic Seas demonstrate the effectiveness of the proposed approach through extensive experiments that demonstrate improvements in bathymetric accuracy, detail, coverage, and noise reduction in the predicted DSM. The code is available at https://github.com/pagraf/Swin-BathyUNet.

Authors:Liu Yang, Huiyu Duan, Yucheng Zhu, Xiaohong Liu, Lu Liu, Zitong Xu, Guangji Ma, Xiongkuo Min, Guangtao Zhai, Patrick Le Callet
Title: Omni$^2$: Unifying Omnidirectional Image Generation and Editing in an Omni Model
Abstract:
$360^{\circ}$ omnidirectional images (ODIs) have gained considerable attention recently, and are widely used in various virtual reality (VR) and augmented reality (AR) applications. However, capturing such images is expensive and requires specialized equipment, making ODI synthesis increasingly important. While common 2D image generation and editing methods are rapidly advancing, these models struggle to deliver satisfactory results when generating or editing ODIs due to the unique format and broad 360$^{\circ}$ Field-of-View (FoV) of ODIs. To bridge this gap, we construct \textbf{\textit{Any2Omni}}, the first comprehensive ODI generation-editing dataset comprises 60,000+ training data covering diverse input conditions and up to 9 ODI generation and editing tasks. Built upon Any2Omni, we propose an \textbf{\underline{Omni}} model for \textbf{\underline{Omni}}-directional image generation and editing (\textbf{\textit{Omni$^2$}}), with the capability of handling various ODI generation and editing tasks under diverse input conditions using one model. Extensive experiments demonstrate the superiority and effectiveness of the proposed Omni$^2$ model for both the ODI generation and editing tasks. Both the Any2Omni dataset and the Omni$^2$ model are publicly available at: https://github.com/IntMeGroup/Omni2.

Authors:Jingkun Chen, Haoran Duan, Xiao Zhang, Boyan Gao, Tao Tan, Vicente Grau, Jungong Han
Title: From Gaze to Insight: Bridging Human Visual Attention and Vision Language Model Explanation for Weakly-Supervised Medical Image Segmentation
Abstract:
Medical image segmentation remains challenging due to the high cost of pixel-level annotations for training. In the context of weak supervision, clinician gaze data captures regions of diagnostic interest; however, its sparsity limits its use for segmentation. In contrast, vision-language models (VLMs) provide semantic context through textual descriptions but lack the explanation precision required. Recognizing that neither source alone suffices, we propose a teacher-student framework that integrates both gaze and language supervision, leveraging their complementary strengths. Our key insight is that gaze data indicates where clinicians focus during diagnosis, while VLMs explain why those regions are significant. To implement this, the teacher model first learns from gaze points enhanced by VLM-generated descriptions of lesion morphology, establishing a foundation for guiding the student model. The teacher then directs the student through three strategies: (1) Multi-scale feature alignment to fuse visual cues with textual semantics; (2) Confidence-weighted consistency constraints to focus on reliable predictions; (3) Adaptive masking to limit error propagation in uncertain areas. Experiments on the Kvasir-SEG, NCI-ISBI, and ISIC datasets show that our method achieves Dice scores of 80.78%, 80.53%, and 84.22%, respectively-improving 3-5% over gaze baselines without increasing the annotation burden. By preserving correlations among predictions, gaze data, and lesion descriptions, our framework also maintains clinical interpretability. This work illustrates how integrating human visual attention with AI-generated semantic context can effectively overcome the limitations of individual weak supervision signals, thereby advancing the development of deployable, annotation-efficient medical AI systems. Code is available at: https://github.com/jingkunchen/FGI.git.

Authors:Jingkun Chen, Haoran Duan, Xiao Zhang, Boyan Gao, Vicente Grau, Jungong Han
Title: From Gaze to Insight: Bridging Human Visual Attention and Vision Language Model Explanation for Weakly-Supervised Medical Image Segmentation
Abstract:
Medical image segmentation remains challenging due to the high cost of pixel-level annotations for training. In the context of weak supervision, clinician gaze data captures regions of diagnostic interest; however, its sparsity limits its use for segmentation. In contrast, vision-language models (VLMs) provide semantic context through textual descriptions but lack the explanation precision required. Recognizing that neither source alone suffices, we propose a teacher-student framework that integrates both gaze and language supervision, leveraging their complementary strengths. Our key insight is that gaze data indicates where clinicians focus during diagnosis, while VLMs explain why those regions are significant. To implement this, the teacher model first learns from gaze points enhanced by VLM-generated descriptions of lesion morphology, establishing a foundation for guiding the student model. The teacher then directs the student through three strategies: (1) Multi-scale feature alignment to fuse visual cues with textual semantics; (2) Confidence-weighted consistency constraints to focus on reliable predictions; (3) Adaptive masking to limit error propagation in uncertain areas. Experiments on the Kvasir-SEG, NCI-ISBI, and ISIC datasets show that our method achieves Dice scores of 80.78%, 80.53%, and 84.22%, respectively-improving 3-5% over gaze baselines without increasing the annotation burden. By preserving correlations among predictions, gaze data, and lesion descriptions, our framework also maintains clinical interpretability. This work illustrates how integrating human visual attention with AI-generated semantic context can effectively overcome the limitations of individual weak supervision signals, thereby advancing the development of deployable, annotation-efficient medical AI systems. Code is available at: https://github.com/jingkunchen/FGI.

Authors:Tianwei Ni, Allen Nie, Sapana Chaudhary, Yao Liu, Huzefa Rangwala, Rasool Fakoor
Title: Offline Learning and Forgetting for Reasoning with Large Language Models
Abstract:
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it on unpaired successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. A key challenge we identify is that naive fine-tuning can degrade the model's search capability; we show this can be mitigated with a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown reasoning benchmarks show that, replacing CoT-generated data with search-generated data for offline fine-tuning improves success rates by around 23% over inference-time search baselines, while reducing inference time by 180$\times$. On top of this, our learning and forgetting objective consistently outperforms both supervised fine-tuning and preference-based methods.

Authors:Yuezhe Yang, Boyu Yang, Yaqian Wang, Yang He, Xingbo Dong, Zhe Jin
Title: Explicit and Implicit Representations in AI-based 3D Reconstruction for Radiology: A Systematic Review
Abstract:
The demand for high-quality medical imaging in clinical practice and assisted diagnosis has made 3D reconstruction in radiological imaging a key research focus. Artificial intelligence (AI) has emerged as a promising approach to enhancing reconstruction accuracy while reducing acquisition and processing time, thereby minimizing patient radiation exposure and discomfort and ultimately benefiting clinical diagnosis. This review explores state-of-the-art AI-based 3D reconstruction algorithms in radiological imaging, categorizing them into explicit and implicit approaches based on their underlying principles. Explicit methods include point-based, volume-based, and Gaussian representations, while implicit methods encompass implicit prior embedding and neural radiance fields. Additionally, we examine commonly used evaluation metrics and benchmark datasets. Finally, we discuss the current state of development, key challenges, and future research directions in this evolving field. Our project available on: https://github.com/Bean-Young/AI4Radiology.

Authors:Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schönfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
Title: Autoregressive Distillation of Diffusion Transformers
Abstract:
Diffusion models with transformer architectures have demonstrated promising capabilities in generating high-fidelity images and scalability for high resolution. However, iterative sampling process required for synthesis is very resource-intensive. A line of work has focused on distilling solutions to probability flow ODEs into few-step student models. Nevertheless, existing methods have been limited by their reliance on the most recent denoised samples as input, rendering them susceptible to exposure bias. To address this limitation, we propose AutoRegressive Distillation (ARD), a novel approach that leverages the historical trajectory of the ODE to predict future steps. ARD offers two key benefits: 1) it mitigates exposure bias by utilizing a predicted historical trajectory that is less susceptible to accumulated errors, and 2) it leverages the previous history of the ODE trajectory as a more effective source of coarse-grained information. ARD modifies the teacher transformer architecture by adding token-wise time embedding to mark each input from the trajectory history and employs a block-wise causal attention mask for training. Furthermore, incorporating historical inputs only in lower transformer layers enhances performance and efficiency. We validate the effectiveness of ARD in a class-conditioned generation on ImageNet and T2I synthesis. Our model achieves a $5\times$ reduction in FID degradation compared to the baseline methods while requiring only 1.1\% extra FLOPs on ImageNet-256. Moreover, ARD reaches FID of 1.84 on ImageNet-256 in merely 4 steps and outperforms the publicly available 1024p text-to-image distilled models in prompt adherence score with a minimal drop in FID compared to the teacher. Project page: https://github.com/alsdudrla10/ARD.

Authors:Xiang Wang, Shiwei Zhang, Longxiang Tang, Yingya Zhang, Changxin Gao, Yuehuan Wang, Nong Sang
Title: UniAnimate-DiT: Human Image Animation with Large-Scale Video Diffusion Transformer
Abstract:
This report presents UniAnimate-DiT, an advanced project that leverages the cutting-edge and powerful capabilities of the open-source Wan2.1 model for consistent human image animation. Specifically, to preserve the robust generative capabilities of the original Wan2.1 model, we implement Low-Rank Adaptation (LoRA) technique to fine-tune a minimal set of parameters, significantly reducing training memory overhead. A lightweight pose encoder consisting of multiple stacked 3D convolutional layers is designed to encode motion information of driving poses. Furthermore, we adopt a simple concatenation operation to integrate the reference appearance into the model and incorporate the pose information of the reference image for enhanced pose alignment. Experimental results show that our approach achieves visually appearing and temporally consistent high-fidelity animations. Trained on 480p (832x480) videos, UniAnimate-DiT demonstrates strong generalization capabilities to seamlessly upscale to 720P (1280x720) during inference. The training and inference code is publicly available at https://github.com/ali-vilab/UniAnimate-DiT.

Authors:Xinning Chai, Yao Zhang, Yuxuan Zhang, Zhengxue Cheng, Yingsheng Qin, Yucai Yang, Li Song
Title: Distillation-Supervised Convolutional Low-Rank Adaptation for Efficient Image Super-Resolution
Abstract:
Convolutional neural networks (CNNs) have been widely used in efficient image super-resolution. However, for CNN-based methods, performance gains often require deeper networks and larger feature maps, which increase complexity and inference costs. Inspired by LoRA's success in fine-tuning large language models, we explore its application to lightweight models and propose Distillation-Supervised Convolutional Low-Rank Adaptation (DSCLoRA), which improves model performance without increasing architectural complexity or inference costs. Specifically, we integrate ConvLoRA into the efficient SR network SPAN by replacing the SPAB module with the proposed SConvLB module and incorporating ConvLoRA layers into both the pixel shuffle block and its preceding convolutional layer. DSCLoRA leverages low-rank decomposition for parameter updates and employs a spatial feature affinity-based knowledge distillation strategy to transfer second-order statistical information from teacher models (pre-trained SPAN) to student models (ours). This method preserves the core knowledge of lightweight models and facilitates optimal solution discovery under certain conditions. Experiments on benchmark datasets show that DSCLoRA improves PSNR and SSIM over SPAN while maintaining its efficiency and competitive image quality. Notably, DSCLoRA ranked first in the Overall Performance Track of the NTIRE 2025 Efficient Super-Resolution Challenge. Our code and models are made publicly available at https://github.com/Yaozzz666/DSCF-SR.

Authors:Hannes Petrenz, Johannes Köhler, Francesco Borrelli
Title: Robust MPC for Uncertain Linear Systems -- Combining Model Adaptation and Iterative Learning
Abstract:
This paper presents a robust adaptive learning Model Predictive Control (MPC) framework for linear systems with parametric uncertainties and additive disturbances performing iterative tasks. The approach refines the parameter estimates online using set-membership estimation. Performance enhancement over iterations is achieved by learning the terminal cost from data. Safety is enforced using a terminal set, which is also learned iteratively. The proposed method guarantees recursive feasibility, constraint satisfaction, and a robust bound on the closed-loop cost. Numerical simulations on a mass-spring-damper system demonstrate improved computational efficiency and control performance compared to a robust adaptive MPC scheme without iterative learning of the terminal ingredients.

Authors:Lijun Sheng, Jian Liang, Zilei Wang, Ran He
Title: R-TPT: Improving Adversarial Robustness of Vision-Language Models through Test-Time Prompt Tuning
Abstract:
Vision-language models (VLMs), such as CLIP, have gained significant popularity as foundation models, with numerous fine-tuning methods developed to enhance performance on downstream tasks. However, due to their inherent vulnerability and the common practice of selecting from a limited set of open-source models, VLMs suffer from a higher risk of adversarial attacks than traditional vision models. Existing defense techniques typically rely on adversarial fine-tuning during training, which requires labeled data and lacks of flexibility for downstream tasks. To address these limitations, we propose robust test-time prompt tuning (R-TPT), which mitigates the impact of adversarial attacks during the inference stage. We first reformulate the classic marginal entropy objective by eliminating the term that introduces conflicts under adversarial conditions, retaining only the pointwise entropy minimization. Furthermore, we introduce a plug-and-play reliability-based weighted ensembling strategy, which aggregates useful information from reliable augmented views to strengthen the defense. R-TPT enhances defense against adversarial attacks without requiring labeled training data while offering high flexibility for inference tasks. Extensive experiments on widely used benchmarks with various attacks demonstrate the effectiveness of R-TPT. The code is available in https://github.com/TomSheng21/R-TPT.

Authors:Taewook Kang, Bum-Jae You, Juyoun Park, Yisoo Lee
Title: A real-time anomaly detection method for robots based on a flexible and sparse latent space
Abstract:
The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoder model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code is available at https://github.com/twkang43/sparse-maf-aae.

Authors:P. Tomkiewicz, J. Jaworski, P. Zielonka, A. Wilinski
Title: K-means Enhanced Density Gradient Analysis for Urban and Transport Metrics Using Multi-Modal Satellite Imagery
Abstract:
This paper presents a novel computational approach for evaluating urban metrics through density gradient analysis using multi-modal satellite imagery, with applications including public transport and other urban systems. By combining optical and Synthetic Aperture Radar (SAR) data, we develop a method to segment urban areas, identify urban centers, and quantify density gradients. Our approach calculates two key metrics: the density gradient coefficient ($α$) and the minimum effective distance (LD) at which density reaches a target threshold. We further employ machine learning techniques, specifically K-means clustering, to objectively identify uniform and high-variability regions within density gradient plots. We demonstrate that these metrics provide an effective screening tool for public transport analyses by revealing the underlying urban structure. Through comparative analysis of two representative cities with contrasting urban morphologies (monocentric vs polycentric), we establish relationships between density gradient characteristics and public transport network topologies. Cities with clear density peaks in their gradient plots indicate distinct urban centers requiring different transport strategies than those with more uniform density distributions. This methodology offers urban planners a cost-effective, globally applicable approach to preliminary public transport assessment using freely available satellite data. The complete implementation, with additional examples and documentation, is available in an open-source repository under the MIT license at https://github.com/nexri/Satellite-Imagery-Urban-Analysis.

Authors:Elman Ghazaei, Erchan Aptoula
Title: Change State Space Models for Remote Sensing Change Detection
Abstract:
Despite their frequent use for change detection, both ConvNets and Vision transformers (ViT) exhibit well-known limitations, namely the former struggle to model long-range dependencies while the latter are computationally inefficient, rendering them challenging to train on large-scale datasets. Vision Mamba, an architecture based on State Space Models has emerged as an alternative addressing the aforementioned deficiencies and has been already applied to remote sensing change detection, though mostly as a feature extracting backbone. In this article the Change State Space Model is introduced, that has been specifically designed for change detection by focusing on the relevant changes between bi-temporal images, effectively filtering out irrelevant information. By concentrating solely on the changed features, the number of network parameters is reduced, enhancing significantly computational efficiency while maintaining high detection performance and robustness against input degradation. The proposed model has been evaluated via three benchmark datasets, where it outperformed ConvNets, ViTs, and Mamba-based counterparts at a fraction of their computational complexity. The implementation will be made available at https://github.com/Elman295/CSSM upon acceptance.

Authors:Dongmin Kim, Hoshinori Kanazawa, Naoto Yoshida, Yasuo Kuniyoshi
Title: Emergence of Goal-Directed Behaviors via Active Inference with Self-Prior
Abstract:
Infants often exhibit goal-directed behaviors, such as reaching for a sensory stimulus, even when no external reward criterion is provided. These intrinsically motivated behaviors facilitate spontaneous exploration and learning of the body and environment during early developmental stages. Although computational modeling can offer insight into the mechanisms underlying such behaviors, many existing studies on intrinsic motivation focus primarily on how exploration contributes to acquiring external rewards. In this paper, we propose a novel density model for an agent's own multimodal sensory experiences, called the "self-prior," and investigate whether it can autonomously induce goal-directed behavior. Integrated within an active inference framework based on the free energy principle, the self-prior generates behavioral references purely from an intrinsic process that minimizes mismatches between average past sensory experiences and current observations. This mechanism is also analogous to the acquisition and utilization of a body schema through continuous interaction with the environment. We examine this approach in a simulated environment and confirm that the agent spontaneously reaches toward a tactile stimulus. Our study implements intrinsically motivated behavior shaped by the agent's own sensory experiences, demonstrating the spontaneous emergence of intentional behavior during early development.

Authors:Alireza Salehi, Mohammadreza Salehi, Reshad Hosseini, Cees G. M. Snoek, Makoto Yamada, Mohammad Sabokrou
Title: Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detection
Abstract:
Anomaly Detection involves identifying deviations from normal data distributions and is critical in fields such as medical diagnostics and industrial defect detection. Traditional AD methods typically require the availability of normal training samples; however, this assumption is not always feasible. Recently, the rich pretraining knowledge of CLIP has shown promising zero-shot generalization in detecting anomalies without the need for training samples from target domains. However, CLIP's coarse-grained image-text alignment limits localization and detection performance for fine-grained anomalies due to: (1) spatial misalignment, and (2) the limited sensitivity of global features to local anomalous patterns. In this paper, we propose Crane which tackles both problems. First, we introduce a correlation-based attention module to retain spatial alignment more accurately. Second, to boost the model's awareness of fine-grained anomalies, we condition the learnable prompts of the text encoder on image context extracted from the vision encoder and perform a local-to-global representation fusion. Moreover, our method can incorporate vision foundation models such as DINOv2 to further enhance spatial understanding and localization. The key insight of Crane is to balance learnable adaptations for modeling anomalous concepts with non-learnable adaptations that preserve and exploit generalized pretrained knowledge, thereby minimizing in-domain overfitting and maximizing performance on unseen domains. Extensive evaluation across 14 diverse industrial and medical datasets demonstrates that Crane consistently improves the state-of-the-art ZSAD from 2% to 28%, at both image and pixel levels, while remaining competitive in inference speed. The code is available at https://github.com/AlirezaSalehy/Crane.

Authors:Sukannya Purkayastha, Zhuang Li, Anne Lauscher, Lizhen Qu, Iryna Gurevych
Title: LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews
Abstract:
Peer review is a cornerstone of quality control in scientific publishing. With the increasing workload, the unintended use of `quick' heuristics, referred to as lazy thinking, has emerged as a recurring issue compromising review quality. Automated methods to detect such heuristics can help improve the peer-reviewing process. However, there is limited NLP research on this issue, and no real-world dataset exists to support the development of detection tools. This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories. Our analysis reveals that Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting. However, instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points, highlighting the importance of high-quality training data. Furthermore, a controlled experiment demonstrates that reviews revised with lazy thinking feedback are more comprehensive and actionable than those written without such feedback. We will release our dataset and the enhanced guidelines that can be used to train junior reviewers in the community. (Code available here: https://github.com/UKPLab/acl2025-lazy-review)

Authors:Yudong Zhang, Ruobing Xie, Jiansheng Chen, Xingwu Sun, Zhanhui Kang, Yu Wang
Title: QAVA: Query-Agnostic Visual Attack to Large Vision-Language Models
Abstract:
In typical multimodal tasks, such as Visual Question Answering (VQA), adversarial attacks targeting a specific image and question can lead large vision-language models (LVLMs) to provide incorrect answers. However, it is common for a single image to be associated with multiple questions, and LVLMs may still answer other questions correctly even for an adversarial image attacked by a specific question. To address this, we introduce the query-agnostic visual attack (QAVA), which aims to create robust adversarial examples that generate incorrect responses to unspecified and unknown questions. Compared to traditional adversarial attacks focused on specific images and questions, QAVA significantly enhances the effectiveness and efficiency of attacks on images when the question is unknown, achieving performance comparable to attacks on known target questions. Our research broadens the scope of visual adversarial attacks on LVLMs in practical settings, uncovering previously overlooked vulnerabilities, particularly in the context of visual adversarial threats. The code is available at https://github.com/btzyd/qava.

Authors:Alexandru Vasilache, Jona Scholz, Vincent Schilling, Sven Nitzsche, Florian Kaelber, Johannes Korsch, Juergen Becker
Title: A PyTorch-Compatible Spike Encoding Framework for Energy-Efficient Neuromorphic Applications
Abstract:
Spiking Neural Networks (SNNs) offer promising energy efficiency advantages, particularly when processing sparse spike trains. However, their incompatibility with traditional datasets, which consist of batches of input vectors rather than spike trains, necessitates the development of efficient encoding methods. This paper introduces a novel, open-source PyTorch-compatible Python framework for spike encoding, designed for neuromorphic applications in machine learning and reinforcement learning. The framework supports a range of encoding algorithms, including Leaky Integrate-and-Fire (LIF), Step Forward (SF), Pulse Width Modulation (PWM), and Ben's Spiker Algorithm (BSA), as well as specialized encoding strategies covering population coding and reinforcement learning scenarios. Furthermore, we investigate the performance trade-offs of each method on embedded hardware using C/C++ implementations, considering energy consumption, computation time, spike sparsity, and reconstruction accuracy. Our findings indicate that SF typically achieves the lowest reconstruction error and offers the highest energy efficiency and fastest encoding speed, achieving the second-best spike sparsity. At the same time, other methods demonstrate particular strengths depending on the signal characteristics. This framework and the accompanying empirical analysis provide valuable resources for selecting optimal encoding strategies for energy-efficient SNN applications.

Authors:Hyejin Lee, Seokjun Hong, Jeonghoon Song, Haechan Cho, Zhixiong Jin, Byeonghun Kim, Joobin Jin, Jaegyun Im, Byeongjoon Noh, Hwasoo Yeo
Title: DRIFT open dataset: A drone-derived intelligence for traffic analysis in urban environment
Abstract:
Reliable traffic data are essential for understanding urban mobility and developing effective traffic management strategies. This study introduces the DRone-derived Intelligence For Traffic analysis (DRIFT) dataset, a large-scale urban traffic dataset collected systematically from synchronized drone videos at approximately 250 meters altitude, covering nine interconnected intersections in Daejeon, South Korea. DRIFT provides high-resolution vehicle trajectories that include directional information, processed through video synchronization and orthomap alignment, resulting in a comprehensive dataset of 81,699 vehicle trajectories. Through our DRIFT dataset, researchers can simultaneously analyze traffic at multiple scales - from individual vehicle maneuvers like lane-changes and safety metrics such as time-to-collision to aggregate network flow dynamics across interconnected urban intersections. The DRIFT dataset is structured to enable immediate use without additional preprocessing, complemented by open-source models for object detection and trajectory extraction, as well as associated analytical tools. DRIFT is expected to significantly contribute to academic research and practical applications, such as traffic flow analysis and simulation studies. The dataset and related resources are publicly accessible at https://github.com/AIxMobility/The-DRIFT.

Authors:Jinwu Hu, Wei Zhang, Yufeng Wang, Yu Hu, Bin Xiao, Mingkui Tan, Qing Du
Title: Dynamic Compressing Prompts for Efficient Inference of Large Language Models
Abstract:
Large Language Models (LLMs) have shown outstanding performance across a variety of tasks, partly due to advanced prompting techniques. However, these techniques often require lengthy prompts, which increase computational costs and can hinder performance because of the limited context windows of LLMs. While prompt compression is a straightforward solution, existing methods confront the challenges of retaining essential information, adapting to context changes, and remaining effective across different tasks. To tackle these issues, we propose a task-agnostic method called Dynamic Compressing Prompts (LLM-DCP). Our method reduces the number of prompt tokens while aiming to preserve the performance as much as possible. We model prompt compression as a Markov Decision Process (MDP), enabling the DCP-Agent to sequentially remove redundant tokens by adapting to dynamic contexts and retaining crucial content. We develop a reward function for training the DCP-Agent that balances the compression rate, the quality of the LLM output, and the retention of key information. This allows for prompt token reduction without needing an external black-box LLM. Inspired by the progressive difficulty adjustment in curriculum learning, we introduce a Hierarchical Prompt Compression (HPC) training strategy that gradually increases the compression difficulty, enabling the DCP-Agent to learn an effective compression method that maintains information integrity. Experiments demonstrate that our method outperforms state-of-the-art techniques, especially at higher compression rates. The code for our approach will be available at https://github.com/Fhujinwu/DCP.

Authors:Bo-Cheng Hu, Ge-Peng Ji, Dian Shao, Deng-Ping Fan
Title: PraNet-V2: Dual-Supervised Reverse Attention for Medical Image Segmentation
Abstract:
Accurate medical image segmentation is essential for effective diagnosis and treatment. Previously, PraNet-V1 was proposed to enhance polyp segmentation by introducing a reverse attention (RA) module that utilizes background information. However, PraNet-V1 struggles with multi-class segmentation tasks. To address this limitation, we propose PraNet-V2, which, compared to PraNet-V1, effectively performs a broader range of tasks including multi-class segmentation. At the core of PraNet-V2 is the Dual-Supervised Reverse Attention (DSRA) module, which incorporates explicit background supervision, independent background modeling, and semantically enriched attention fusion. Our PraNet-V2 framework demonstrates strong performance on four polyp segmentation datasets. Additionally, by integrating DSRA to iteratively enhance foreground segmentation results in three state-of-the-art semantic segmentation models, we achieve up to a 1.36% improvement in mean Dice score. Code is available at: https://github.com/ai4colonoscopy/PraNet-V2/tree/main/binary_seg/jittor.

Authors:Yubin Gu, Yuan Meng, Kaihang Zheng, Xiaoshuai Sun, Jiayi Ji, Weijian Ruan, Liujuan Cao, Rongrong Ji
Title: An Efficient and Mixed Heterogeneous Model for Image Restoration
Abstract:
Image restoration~(IR), as a fundamental multimedia data processing task, has a significant impact on downstream visual applications. In recent years, researchers have focused on developing general-purpose IR models capable of handling diverse degradation types, thereby reducing the cost and complexity of model development. Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas. CNNs excel in efficient inference, whereas Transformers and Mamba excel at capturing long-range dependencies and modeling global contexts. While each architecture has demonstrated success in specialized, single-task settings, limited efforts have been made to effectively integrate heterogeneous architectures to jointly address diverse IR challenges. To bridge this gap, we propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion. RestorMixer adopts a three-stage encoder-decoder structure, where each stage is tailored to the resolution and feature characteristics of the input. In the initial high-resolution stage, CNN-based blocks are employed to rapidly extract shallow local features. In the subsequent stages, we integrate a refined multi-directional scanning Mamba module with a multi-scale window-based self-attention mechanism. This hierarchical and adaptive design enables the model to leverage the strengths of CNNs in local feature extraction, Mamba in global context modeling, and attention mechanisms in dynamic feature refinement. Extensive experimental results demonstrate that RestorMixer achieves leading performance across multiple IR tasks while maintaining high inference efficiency. The official code can be accessed at https://github.com/ClimBin/RestorMixer.

Authors:Peipei Song, Long Zhang, Long Lan, Weidong Chen, Dan Guo, Xun Yang, Meng Wang
Title: Towards Efficient Partially Relevant Video Retrieval with Active Moment Discovering
Abstract:
Partially relevant video retrieval (PRVR) is a practical yet challenging task in text-to-video retrieval, where videos are untrimmed and contain much background content. The pursuit here is of both effective and efficient solutions to capture the partial correspondence between text queries and untrimmed videos. Existing PRVR methods, which typically focus on modeling multi-scale clip representations, however, suffer from content independence and information redundancy, impairing retrieval performance. To overcome these limitations, we propose a simple yet effective approach with active moment discovering (AMDNet). We are committed to discovering video moments that are semantically consistent with their queries. By using learnable span anchors to capture distinct moments and applying masked multi-moment attention to emphasize salient moments while suppressing redundant backgrounds, we achieve more compact and informative video representations. To further enhance moment modeling, we introduce a moment diversity loss to encourage different moments of distinct regions and a moment relevance loss to promote semantically query-relevant moments, which cooperate with a partially relevant retrieval loss for end-to-end optimization. Extensive experiments on two large-scale video datasets (\ie, TVR and ActivityNet Captions) demonstrate the superiority and efficiency of our AMDNet. In particular, AMDNet is about 15.5 times smaller (\#parameters) while 6.0 points higher (SumR) than the up-to-date method GMMFormer on TVR.

Authors:Changjiang Gao, Hankun Lin, Shujian Huang, Xin Huang, Xue Han, Junlan Feng, Chao Deng, Jiajun Chen
Title: Understanding LLMs' Cross-Lingual Context Retrieval: How Good It Is And Where It Comes From
Abstract:
The ability of cross-lingual context retrieval is a fundamental aspect of cross-lingual alignment of large language models (LLMs), where the model extracts context information in one language based on requests in another language. Despite its importance in real-life applications, this ability has not been adequately investigated for state-of-the-art models. In this paper, we evaluate the cross-lingual context retrieval ability of over 40 LLMs across 12 languages to understand the source of this ability, using cross-lingual machine reading comprehension (xMRC) as a representative scenario. Our results show that several small, post-trained open LLMs show strong cross-lingual context retrieval ability, comparable to closed-source LLMs such as GPT-4o, and their estimated oracle performances greatly improve after post-training. Our interpretability analysis shows that the cross-lingual context retrieval process can be divided into two main phases: question encoding and answer retrieval, which are formed in pre-training and post-training, respectively. The phasing stability correlates with xMRC performance, and the xMRC bottleneck lies at the last model layers in the second phase, where the effect of post-training can be evidently observed. Our results also indicate that larger-scale pretraining cannot improve the xMRC performance. Instead, larger LLMs need further multilingual post-training to fully unlock their cross-lingual context retrieval potential. Our code and is available at https://github.com/NJUNLP/Cross-Lingual-Context-Retrieval

Authors:Sicheng Feng, Gongfan Fang, Xinyin Ma, Xinchao Wang
Title: Efficient Reasoning Models: A Survey
Abstract:
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference of reasoning models. A curated collection of papers discussed in this survey is available in our GitHub repository: https://github.com/fscdc/Awesome-Efficient-Reasoning-Models.

Authors:Yuwen Liao, Xinhang Xu, Ruofei Bai, Yizhuo Yang, Muqing Cao, Shenghai Yuan, Lihua Xie
Title: Following Is All You Need: Robot Crowd Navigation Using People As Planners
Abstract:
Navigating in crowded environments requires the robot to be equipped with high-level reasoning and planning techniques. Existing works focus on developing complex and heavyweight planners while ignoring the role of human intelligence. Since humans are highly capable agents who are also widely available in a crowd navigation setting, we propose an alternative scheme where the robot utilises people as planners to benefit from their effective planning decisions and social behaviours. Through a set of rule-based evaluations, we identify suitable human leaders who exhibit the potential to guide the robot towards its goal. Using a simple base planner, the robot follows the selected leader through shorthorizon subgoals that are designed to be straightforward to achieve. We demonstrate through both simulated and real-world experiments that our novel framework generates safe and efficient robot plans compared to existing planners, even without predictive or data-driven modules. Our method also brings human-like robot behaviours without explicitly defining traffic rules and social norms. Code will be available at https://github.com/centiLinda/PeopleAsPlanner.git.

Authors:Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman, Tom Gedeon
Title: TFMPathy: Tabular Foundation Model for Privacy-Aware, Generalisable Empathy Detection from Videos
Abstract:
Detecting empathy from video interactions is an emerging area of research, particularly in healthcare and social robotics. However, privacy and ethical concerns often prevent the release of raw video data, with many datasets instead shared as pre-extracted tabular features. Previous work on such datasets has established classical tree-based models as the state of the art. Motivated by recent successes of large-scale foundation models for text, we investigate the potential of tabular foundation models (TFMs) for empathy detection from video-derived tabular data. Our proposed system, TFMPathy, is demonstrated with two recent TFMs (TabPFN v2 and TabICL) under both in-context learning and fine-tuning paradigms. On a public human-robot interaction benchmark, TFMPathy significantly improves empathy detection accuracy reported in the literature. While the established evaluation protocol in the literature does not ensure cross-subject generalisation, our evaluation scheme also captures such generalisation. We show that TFMPathy under a fine-tuning setup has better cross-subject generalisation capacity over baseline methods (accuracy: $0.590 \rightarrow 0.730$; AUC: $0.564 \rightarrow 0.669$). Given the ongoing privacy and ethical constraints around raw video sharing, the proposed TFMPathy system provides a practical and scalable path toward building AI systems dependent on human-centred video datasets. Our code is publicly available at https://github.com/hasan-rakibul/TFMPathy (will be made available upon acceptance of this paper).

Authors:Jessica Lin, Amir Zeldes
Title: GUM-SAGE: A Novel Dataset and Approach for Graded Entity Salience Prediction
Abstract:
Determining and ranking the most salient entities in a text is critical for user-facing systems, especially as users increasingly rely on models to interpret long documents they only partially read. Graded entity salience addresses this need by assigning entities scores that reflect their relative importance in a text. Existing approaches fall into two main categories: subjective judgments of salience, which allow for gradient scoring but lack consistency, and summarization-based methods, which define salience as mention-worthiness in a summary, promoting explainability but limiting outputs to binary labels (entities are either summary-worthy or not). In this paper, we introduce a novel approach for graded entity salience that combines the strengths of both approaches. Using an English dataset spanning 12 spoken and written genres, we collect 5 summaries per document and calculate each entity's salience score based on its presence across these summaries. Our approach shows stronger correlation with scores based on human summaries and alignments, and outperforms existing techniques, including LLMs. We release our data and code at https://github.com/jl908069/gum_sum_salience to support further research on graded salient entity extraction.

Authors:Qixu Chen, Yeye He, Raymond Chi-Wing Wong, Weiwei Cui, Song Ge, Haidong Zhang, Dongmei Zhang, Surajit Chaudhuri
Title: Auto-Test: Learning Semantic-Domain Constraints for Unsupervised Error Detection in Tables
Abstract:
Data cleaning is a long-standing challenge in data management. While powerful logic and statistical algorithms have been developed to detect and repair data errors in tables, existing algorithms predominantly rely on domain-experts to first manually specify data-quality constraints specific to a given table, before data cleaning algorithms can be applied. In this work, we propose a new class of data-quality constraints that we call Semantic-Domain Constraints, which can be reliably inferred and automatically applied to any tables, without requiring domain-experts to manually specify on a per-table basis. We develop a principled framework to systematically learn such constraints from table corpora using large-scale statistical tests, which can further be distilled into a core set of constraints using our optimization framework, with provable quality guarantees. Extensive evaluations show that this new class of constraints can be used to both (1) directly detect errors on real tables in the wild, and (2) augment existing expert-driven data-cleaning techniques as a new class of complementary constraints. Our extensively labeled benchmark dataset with 2400 real data columns, as well as our code are available at https://github.com/qixuchen/AutoTest to facilitate future research.

Authors:Yueqian Lin, Qinsi Wang, Hancheng Ye, Yuzhe Fu, Hai "Helen" Li, Yiran Chen
Title: HippoMM: Hippocampal-inspired Multimodal Memory for Long Audiovisual Event Understanding
Abstract:
Comprehending extended audiovisual experiences remains a fundamental challenge for computational systems. Current approaches struggle with temporal integration and cross-modal associations that humans accomplish effortlessly through hippocampal-cortical networks. We introduce HippoMM, a biologically-inspired architecture that transforms hippocampal mechanisms into computational advantages for multimodal understanding. HippoMM implements three key innovations: (i) hippocampus-inspired pattern separation and completion specifically designed for continuous audiovisual streams, (ii) short-to-long term memory consolidation that transforms perceptual details into semantic abstractions, and (iii) cross-modal associative retrieval pathways enabling modality-crossing queries. Unlike existing retrieval systems with static indexing schemes, HippoMM dynamically forms integrated episodic representations through adaptive temporal segmentation and dual-process memory encoding. Evaluations on our challenging HippoVlog benchmark demonstrate that HippoMM significantly outperforms state-of-the-art approaches (78.2% vs. 64.2% accuracy) while providing substantially faster response times (20.4s vs. 112.5s). Our results demonstrate that translating neuroscientific memory principles into computational architectures provides a promising foundation for next-generation multimodal understanding systems. The code and benchmark dataset are publicly available at https://github.com/linyueqian/HippoMM.

Authors:Kristina Nikolić, Luze Sun, Jie Zhang, Florian Tramèr
Title: The Jailbreak Tax: How Useful are Your Jailbreak Outputs?
Abstract:
Jailbreak attacks bypass the guardrails of large language models to produce harmful outputs. In this paper, we ask whether the model outputs produced by existing jailbreaks are actually useful. For example, when jailbreaking a model to give instructions for building a bomb, does the jailbreak yield good instructions? Since the utility of most unsafe answers (e.g., bomb instructions) is hard to evaluate rigorously, we build new jailbreak evaluation sets with known ground truth answers, by aligning models to refuse questions related to benign and easy-to-evaluate topics (e.g., biology or math). Our evaluation of eight representative jailbreaks across five utility benchmarks reveals a consistent drop in model utility in jailbroken responses, which we term the jailbreak tax. For example, while all jailbreaks we tested bypass guardrails in models aligned to refuse to answer math, this comes at the expense of a drop of up to 92% in accuracy. Overall, our work proposes the jailbreak tax as a new important metric in AI safety, and introduces benchmarks to evaluate existing and future jailbreaks. We make the benchmark available at https://github.com/ethz-spylab/jailbreak-tax

Authors:Zi-Han Jiang, Chien-Wei Lin, Wei-Hua Li, Hsuan-Tung Liu, Yi-Ren Yeh, Chu-Song Chen
Title: Relation-Rich Visual Document Generator for Visual Information Extraction
Abstract:
Despite advances in Large Language Models (LLMs) and Multimodal LLMs (MLLMs) for visual document understanding (VDU), visual information extraction (VIE) from relation-rich documents remains challenging due to the layout diversity and limited training data. While existing synthetic document generators attempt to address data scarcity, they either rely on manually designed layouts and templates, or adopt rule-based approaches that limit layout diversity. Besides, current layout generation methods focus solely on topological patterns without considering textual content, making them impractical for generating documents with complex associations between the contents and layouts. In this paper, we propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach: (1) Content Generation, which leverages LLMs to generate document content using a carefully designed Hierarchical Structure Text format which captures entity categories and relationships, and (2) Content-driven Layout Generation, which learns to create diverse, plausible document layouts solely from easily available Optical Character Recognition (OCR) results, requiring no human labeling or annotations efforts. Experimental results have demonstrated that our method significantly enhances the performance of document understanding models on various VIE benchmarks. The code and model will be available at https://github.com/AI-Application-and-Integration-Lab/RIDGE .

Authors:Nafis Sadeq, Xin Xu, Zhouhang Xie, Julian McAuley, Byungkyu Kang, Prarit Lamba, Xiang Gao
Title: Improving In-Context Learning with Reasoning Distillation
Abstract:
Language models rely on semantic priors to perform in-context learning, which leads to poor performance on tasks involving inductive reasoning. Instruction-tuning methods based on imitation learning can superficially enhance the in-context learning performance of language models, but they often fail to improve the model's understanding of the underlying rules that connect inputs and outputs in few-shot demonstrations. We propose ReDis, a reasoning distillation technique designed to improve the inductive reasoning capabilities of language models. Through a careful combination of data augmentation, filtering, supervised fine-tuning, and alignment, ReDis achieves significant performance improvements across a diverse range of tasks, including 1D-ARC, List Function, ACRE, and MiniSCAN. Experiments on three language model backbones show that ReDis outperforms equivalent few-shot prompting baselines across all tasks and even surpasses the teacher model, GPT-4o, in some cases. ReDis, based on the LLaMA-3 backbone, achieves relative improvements of 23.2%, 2.8%, and 66.6% over GPT-4o on 1D-ARC, ACRE, and MiniSCAN, respectively, within a similar hypothesis search space. The code, dataset, and model checkpoints will be made available at https://github.com/NafisSadeq/reasoning-distillation.git.

Authors:Laura S. Herzog, Lucas Berent, Aleksander Kubica, Robert Wille
Title: Lattice Surgery Compilation Beyond the Surface Code
Abstract:
Large-scale fault-tolerant quantum computation requires compiling logical circuits into physical operations tailored to a given architecture. Prior work addressing this challenge has mostly focused on the surface code and lattice surgery schemes. In this work, we broaden the scope by considering lattice surgery compilation for topological codes beyond the surface code. We begin by defining a code substrate - a blueprint for implementing topological codes and lattice surgery. We then abstract from the microscopic details and rephrase the compilation task as a mapping and routing problem on a macroscopic routing graph, potentially subject to substrate-specific constraints. We explore specific substrates and codes, including the color code and the folded surface code, providing detailed microscopic constructions. For the color code, we present numerical simulations analyzing how design choices at the microscopic and macroscopic levels affect the depth of compiled logical $\mathrm{CNOT}+\mathrm{T}$ circuits. An open-source code is available on GitHub https://github.com/cda-tum/mqt-qecc.

Authors:Arash Torabi Goodarzi, Roman Kochnev, Waleed Khalid, Hojjat Torabi Goudarzi, Furui Qin, Tolgay Atinc Uzun, Yashkumar Sanjaybhai Dhameliya, Yash Kanubhai Kathiriya, Zofia Antonina Bentyn, Dmitry Ignatov, Radu Timofte
Title: LEMUR Neural Network Dataset: Towards Seamless AutoML
Abstract:
Neural networks are the backbone of modern artificial intelligence, but designing, evaluating, and comparing them remains labor-intensive. While numerous datasets exist for training, there are few standardized collections of the models themselves. We introduce LEMUR, an open-source dataset and framework that provides a large collection of PyTorch-based neural networks across tasks such as classification, segmentation, detection, and natural language processing. Each model follows a unified template, with configurations and results stored in a structured database to ensure consistency and reproducibility. LEMUR integrates automated hyperparameter optimization via Optuna, includes statistical analysis and visualization tools, and offers an API for seamless access to performance data. The framework is extensible, allowing researchers to add new models, datasets, or metrics without breaking compatibility. By standardizing implementations and unifying evaluation, LEMUR aims to accelerate AutoML research, enable fair benchmarking, and reduce barriers to large-scale neural network experimentation. To support adoption and collaboration, LEMUR and its plugins are released under the MIT license at: https://github.com/ABrain-One/nn-dataset https://github.com/ABrain-One/nn-plots https://github.com/ABrain-One/nn-vr

Authors:Mingyang Zhu, Yinting Liu, Mingyu Li, Jiacheng Wang
Title: PathSeqSAM: Sequential Modeling for Pathology Image Segmentation with SAM2
Abstract:
Current methods for pathology image segmentation typically treat 2D slices independently, ignoring valuable cross-slice information. We present PathSeqSAM, a novel approach that treats 2D pathology slices as sequential video frames using SAM2's memory mechanisms. Our method introduces a distance-aware attention mechanism that accounts for variable physical distances between slices and employs LoRA for domain adaptation. Evaluated on the KPI Challenge 2024 dataset for glomeruli segmentation, PathSeqSAM demonstrates improved segmentation quality, particularly in challenging cases that benefit from cross-slice context. We have publicly released our code at https://github.com/JackyyyWang/PathSeqSAM.

Authors:Zhe Wang, Fangtian Fu, Wei Zhang, Lige Yan, Yan Meng, Jianping Wu, Hui Wu, Gang Xu, Si Chen
Title: BioChemInsight: An Open-Source Toolkit for Automated Identification and Recognition of Optical Chemical Structures and Activity Data in Scientific Publications
Abstract:
Automated extraction of chemical structures and their bioactivity data is crucial for accelerating drug discovery and enabling data-driven pharmaceutical research. Existing optical chemical structure recognition (OCSR) tools fail to autonomously associate molecular structures with their bioactivity profiles, creating a critical bottleneck in structure-activity relationship (SAR) analysis. Here, we present BioChemInsight, an open-source pipeline that integrates: (1) DECIMER Segmentation and MolVec for chemical structure recognition, (2) Qwen2.5-VL-32B for compound identifier association, and (3) PaddleOCR with Gemini-2.0-flash for bioactivity extraction and unit normalization. We evaluated the performance of BioChemInsight on 25 patents and 17 articles. BioChemInsight achieved 95% accuracy for tabular patent data (structure/identifier recognition), with lower accuracy in non-tabular patents (~80% structures, ~75% identifiers), plus 92.2 % bioactivity extraction accuracy. For articles, it attained >99% identifiers and 78-80% structure accuracy in non-tabular formats, plus 97.4% bioactivity extraction accuracy. The system generates ready-to-use SAR datasets, reducing data preprocessing time from weeks to hours while enabling applications in high-throughput screening and ML-driven drug design (https://github.com/dahuilangda/BioChemInsight).

Authors:Yijun Liang, Ming Li, Chenrui Fan, Ziyue Li, Dang Nguyen, Kwesi Cobbina, Shweta Bhardwaj, Jiuhai Chen, Fuxiao Liu, Tianyi Zhou
Title: ColorBench: Can VLMs See and Understand the Colorful World? A Comprehensive Benchmark for Color Perception, Reasoning, and Robustness
Abstract:
Color plays an important role in human perception and usually provides critical clues in visual reasoning. However, it is unclear whether and how vision-language models (VLMs) can perceive, understand, and leverage color as humans. This paper introduces ColorBench, an innovative benchmark meticulously crafted to assess the capabilities of VLMs in color understanding, including color perception, reasoning, and robustness. By curating a suite of diverse test scenarios, with grounding in real applications, ColorBench evaluates how these models perceive colors, infer meanings from color-based cues, and maintain consistent performance under varying color transformations. Through an extensive evaluation of 32 VLMs with varying language models and vision encoders, our paper reveals some undiscovered findings: (i) The scaling law (larger models are better) still holds on ColorBench, while the language model plays a more important role than the vision encoder. (ii) However, the performance gaps across models are relatively small, indicating that color understanding has been largely neglected by existing VLMs. (iii) CoT reasoning improves color understanding accuracies and robustness, though they are vision-centric tasks. (iv) Color clues are indeed leveraged by VLMs on ColorBench but they can also mislead models in some tasks. These findings highlight the critical limitations of current VLMs and underscore the need to enhance color comprehension. Our ColorBenchcan serve as a foundational tool for advancing the study of human-level color understanding of multimodal AI.

Authors:Ning Li, Jingran Zhang, Justin Cui
Title: ArXivBench: When You Should Avoid Using ChatGPT for Academic Writing
Abstract:
Large language models (LLMs) demonstrate strong capabilities in reasoning and question answering, yet their tendency to generate factually incorrect content remains a critical challenge. This study evaluates proprietary and open-source LLMs on generating relevant research papers with accurate arXiv links. Our evaluation reveals critical academic risks: LLMs frequently generate incorrect arXiv links or references to non-existent papers, fundamentally undermining their ability to properly attribute research contributions to the actual authors. We introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings show concerning accuracy variations across subjects, with Claude-3.5-Sonnet exhibiting a substantial advantage in generating both relevant and accurate responses. Notably, most LLMs perform significantly better in Artificial Intelligence than other subfields. This benchmark provides a standardized tool for evaluating LLM reliability in scientific contexts, promoting more dependable academic use in research environments. Our code and dataset are available at https://github.com/liningresearch/arXivBench and https://huggingface.co/datasets/arXivBenchLLM/arXivBench.

Authors:Vikranth Udandarao, Noel Abraham Tiju, Muthuraj Vairamuthu, Harsh Mistry, Dhruv Kumar
Title: Roamify: Designing and Evaluating an LLM Based Google Chrome Extension for Personalised Itinerary Planning
Abstract:
In this paper, we present Roamify, an Artificial Intelligence powered travel assistant that aims to ease the process of travel planning. We have tested and used multiple Large Language Models like Llama and T5 to generate personalised itineraries per user preferences. Results from user surveys highlight the preference for AI powered mediums over existing methods to help in travel planning across all user age groups. These results firmly validate the potential need of such a travel assistant. We highlight the two primary design considerations for travel assistance: D1) incorporating a web-scraping method to gather up-to-date news articles about destinations from various blog sources, which significantly improves our itinerary suggestions, and D2) utilising user preferences to create customised travel experiences along with a recommendation system which changes the itinerary according to the user needs. Our findings suggest that Roamify has the potential to improve and simplify how users across multiple age groups plan their travel experiences.

Authors:Yasser Benigmim, Mohammad Fahes, Tuan-Hung Vu, Andrei Bursuc, Raoul de Charette
Title: FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
Abstract:
In this paper, we challenge the conventional practice in Open-Vocabulary Semantic Segmentation (OVSS) of using averaged class-wise text embeddings, which are typically obtained by encoding each class name with multiple templates (e.g., a photo of , a sketch of a ). We investigate the impact of templates for OVSS, and find that for each class, there exist single-template classifiers--which we refer to as class-experts--that significantly outperform the conventional averaged classifier. First, to identify these class-experts, we introduce a novel approach that estimates them without any labeled data or training. By leveraging the class-wise prediction entropy of single-template classifiers, we select those yielding the lowest entropy as the most reliable class-experts. Second, we combine the outputs of class-experts in a new fusion process. Our plug-and-play method, coined FLOSS, is orthogonal and complementary to existing OVSS methods, offering an improvement without the need for additional labels or training. Extensive experiments show that FLOSS consistently enhances state-of-the-art OVSS models, generalizes well across datasets with different distribution shifts, and delivers substantial improvements in low-data scenarios where only a few unlabeled images are available. Our code is available at https://github.com/yasserben/FLOSS .

Authors:Chenghao Xiao, Isaac Chung, Imene Kerboua, Jamie Stirling, Xin Zhang, Márton Kardos, Roman Solomatin, Noura Al Moubayed, Kenneth Enevoldsen, Niklas Muennighoff
Title: MIEB: Massive Image Embedding Benchmark
Abstract:
Image representations are often evaluated through disjointed, task-specific protocols, leading to a fragmented understanding of model capabilities. For instance, it is unclear whether an image embedding model adept at clustering images is equally good at retrieving relevant images given a piece of text. We introduce the Massive Image Embedding Benchmark (MIEB) to evaluate the performance of image and image-text embedding models across the broadest spectrum to date. MIEB spans 38 languages across 130 individual tasks, which we group into 8 high-level categories. We benchmark 50 models across our benchmark, finding that no single method dominates across all task categories. We reveal hidden capabilities in advanced vision models such as their accurate visual representation of texts, and their yet limited capabilities in interleaved encodings and matching images and texts in the presence of confounders. We also show that the performance of vision encoders on MIEB correlates highly with their performance when used in multimodal large language models. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.

Authors:Tao Zhang, Xiangtai Li, Zilong Huang, Yanwei Li, Weixian Lei, Xueqing Deng, Shihao Chen, Shunping Ji, Jiashi Feng
Title: Pixel-SAIL: Single Transformer For Pixel-Grounded Understanding
Abstract:
Multimodal Large Language Models (MLLMs) achieve remarkable performance for fine-grained pixel-level understanding tasks. However, all the works rely heavily on extra components, such as vision encoder (CLIP), segmentation experts, leading to high system complexity and limiting model scaling. In this work, our goal is to explore a highly simplified MLLM without introducing extra components. Our work is motivated by the recent works on Single trAnsformer as a unified vIsion-Language Model (SAIL) design, where these works jointly learn vision tokens and text tokens in transformers. We present Pixel-SAIL, a single transformer for pixel-wise MLLM tasks. In particular, we present three technical improvements on the plain baseline. First, we design a learnable upsampling module to refine visual token features. Secondly, we propose a novel visual prompt injection strategy to enable the single transformer to understand visual prompt inputs and benefit from the early fusion of visual prompt embeddings and vision tokens. Thirdly, we introduce a vision expert distillation strategy to efficiently enhance the single transformer's fine-grained feature extraction capability. In addition, we have collected a comprehensive pixel understanding benchmark (PerBench), using a manual check. It includes three tasks: detailed object description, visual prompt-based question answering, and visual-text referring segmentation. Extensive experiments on four referring segmentation benchmarks, one visual prompt benchmark, and our PerBench show that our Pixel-SAIL achieves comparable or even better results with a much simpler pipeline. Code and model will be released at https://github.com/magic-research/Sa2VA.

Authors:Weixian Lei, Jiacong Wang, Haochen Wang, Xiangtai Li, Jun Hao Liew, Jiashi Feng, Zilong Huang
Title: The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer
Abstract:
This paper introduces SAIL, a single transformer unified multimodal large language model (MLLM) that integrates raw pixel encoding and language decoding within a singular architecture. Unlike existing modular MLLMs, which rely on a pre-trained vision transformer (ViT), SAIL eliminates the need for a separate vision encoder, presenting a more minimalist architecture design. Instead of introducing novel architectural components, SAIL adapts mix-attention mechanisms and multimodal positional encodings to better align with the distinct characteristics of visual and textual modalities. We systematically compare SAIL's properties-including scalability, cross-modal information flow patterns, and visual representation capabilities-with those of modular MLLMs. By scaling both training data and model size, SAIL achieves performance comparable to modular MLLMs. Notably, the removal of pretrained ViT components enhances SAIL's scalability and results in significantly different cross-modal information flow patterns. Moreover, SAIL demonstrates strong visual representation capabilities, achieving results on par with ViT-22B in vision tasks such as semantic segmentation. Code and models are available at https://github.com/bytedance/SAIL.

Authors:Davide Piras, Francesco Sorrenti, Ruth Durrer, Martin Kunz
Title: Anchors no more: Using peculiar velocities to constrain $H_0$ and the primordial Universe without calibrators
Abstract:
We develop a novel approach to constrain the Hubble parameter $H_0$ and the primordial power spectrum amplitude $A_\mathrm{s}$ using type Ia supernovae (SNIa) data. By considering SNIa as tracers of the peculiar velocity field, we can model their distance and their covariance as a function of cosmological parameters without the need of calibrators like Cepheids; this yields a new independent probe of the large-scale structure based on SNIa data without distance anchors. Crucially, we implement a differentiable pipeline in JAX, including efficient emulators and affine sampling, reducing inference time from years to hours on a single GPU. We first validate our method on mock datasets, demonstrating that we can constrain $H_0$ and $\log 10^{10}A_\mathrm{s}$ within $10\%$ and $15\%$, respectively, using $\mathcal{O}(10^3)$ SNIa. We then test our pipeline with SNIa from an $N$-body simulation, obtaining $6\%$-level unbiased constraints on $H_0$ with a moderate noise level. We finally apply our method to Pantheon+ data, constraining $H_0$ at the $15\%$ level without Cepheids when fixing $A_\mathrm{s}$ to its $\it{Planck}$ value. On the other hand, we obtain $20\%$-level constraints on $\log 10^{10}A_\mathrm{s}$ in agreement with $\it{Planck}$ when including Cepheids in the analysis. In light of upcoming observations of low redshift SNIa from the Zwicky Transient Facility and the Vera Rubin Legacy Survey of Space and Time, surveys for which our method will develop its full potential, we make our code publicly available.

Authors:Junxiong Wang, Wen-Ding Li, Daniele Paliotta, Daniel Ritter, Alexander M. Rush, Tri Dao
Title: M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models
Abstract:
Effective reasoning is crucial to solving complex mathematical problems. Recent large language models (LLMs) have boosted performance by scaling test-time computation through long chain-of-thought reasoning. However, transformer-based models are inherently limited in extending context length due to their quadratic computational complexity and linear memory requirements. In this paper, we introduce a novel hybrid linear RNN reasoning model, M1, built on the Mamba architecture, which allows memory-efficient inference. Our approach leverages a distillation process from existing reasoning models and is further enhanced through RL training. Experimental results on the AIME and MATH benchmarks show that M1 not only outperforms previous linear RNN models but also matches the performance of state-of-the-art Deepseek R1 distilled reasoning models at a similar scale. We also compare our generation speed with a highly performant general purpose inference engine, vLLM, and observe more than a 3x speedup compared to a same size transformer. With throughput speedup, we are able to achieve higher accuracy compared to DeepSeek R1 distilled transformer reasoning models under a fixed generation time budget using self-consistency voting. Overall, we introduce a hybrid Mamba reasoning model and provide a more effective approach to scaling test-time generation using self-consistency or long chain of thought reasoning.

Authors:Suyu Ye, Haojun Shi, Darren Shih, Hyokun Yun, Tanya Roosta, Tianmin Shu
Title: RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users
Abstract:
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.

Authors:Haoran Hao, Jiaming Han, Yiyuan Zhang, Xiangyu Yue
Title: Multimodal Long Video Modeling Based on Temporal Dynamic Context
Abstract:
Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.

Authors:Taihang Hu, Linxuan Li, Kai Wang, Yaxing Wang, Jian Yang, Ming-Ming Cheng
Title: Anchor Token Matching: Implicit Structure Locking for Training-free AR Image Editing
Abstract:
Text-to-image generation has seen groundbreaking advancements with diffusion models, enabling high-fidelity synthesis and precise image editing through cross-attention manipulation. Recently, autoregressive (AR) models have re-emerged as powerful alternatives, leveraging next-token generation to match diffusion models. However, existing editing techniques designed for diffusion models fail to translate directly to AR models due to fundamental differences in structural control. Specifically, AR models suffer from spatial poverty of attention maps and sequential accumulation of structural errors during image editing, which disrupt object layouts and global consistency. In this work, we introduce Implicit Structure Locking (ISLock), the first training-free editing strategy for AR visual models. Rather than relying on explicit attention manipulation or fine-tuning, ISLock preserves structural blueprints by dynamically aligning self-attention patterns with reference images through the Anchor Token Matching (ATM) protocol. By implicitly enforcing structural consistency in latent space, our method ISLock enables structure-aware editing while maintaining generative autonomy. Extensive experiments demonstrate that ISLock achieves high-quality, structure-consistent edits without additional training and is superior or comparable to conventional editing techniques. Our findings pioneer the way for efficient and flexible AR-based image editing, further bridging the performance gap between diffusion and autoregressive generative models. The code will be publicly available at https://github.com/hutaiHang/ATM

Authors:Jian Liu, Wei Sun, Hui Yang, Jin Zheng, Zichen Geng, Hossein Rahmani, Ajmal Mian
Title: MonoDiff9D: Monocular Category-Level 9D Object Pose Estimation via Diffusion Model
Abstract:
Object pose estimation is a core means for robots to understand and interact with their environment. For this task, monocular category-level methods are attractive as they require only a single RGB camera. However, current methods rely on shape priors or CAD models of the intra-class known objects. We propose a diffusion-based monocular category-level 9D object pose generation method, MonoDiff9D. Our motivation is to leverage the probabilistic nature of diffusion models to alleviate the need for shape priors, CAD models, or depth sensors for intra-class unknown object pose estimation. We first estimate coarse depth via DINOv2 from the monocular image in a zero-shot manner and convert it into a point cloud. We then fuse the global features of the point cloud with the input image and use the fused features along with the encoded time step to condition MonoDiff9D. Finally, we design a transformer-based denoiser to recover the object pose from Gaussian noise. Extensive experiments on two popular benchmark datasets show that MonoDiff9D achieves state-of-the-art monocular category-level 9D object pose estimation accuracy without the need for shape priors or CAD models at any stage. Our code will be made public at https://github.com/CNJianLiu/MonoDiff9D.

Authors:Yonghui Yang, Le Wu, Yuxin Liao, Zhuangzhuang He, Pengyang Shao, Richang Hong, Meng Wang
Title: Invariance Matters: Empowering Social Recommendation via Graph Invariant Learning
Abstract:
Graph-based social recommendation systems have shown significant promise in enhancing recommendation performance, particularly in addressing the issue of data sparsity in user behaviors. Typically, these systems leverage Graph Neural Networks (GNNs) to capture user preferences by incorporating high-order social influences from observed social networks. However, existing graph-based social recommendations often overlook the fact that social networks are inherently noisy, containing task-irrelevant relationships that can hinder accurate user preference learning. The removal of these redundant social relations is crucial, yet it remains challenging due to the lack of ground truth. In this paper, we approach the social denoising problem from the perspective of graph invariant learning and propose a novel method, Social Graph Invariant Learning(SGIL). Specifically,SGIL aims to uncover stable user preferences within the input social graph, thereby enhancing the robustness of graph-based social recommendation systems. To achieve this goal, SGIL first simulates multiple noisy social environments through graph generators. It then seeks to learn environment-invariant user preferences by minimizing invariant risk across these environments. To further promote diversity in the generated social environments, we employ an adversarial training strategy to simulate more potential social noisy distributions. Extensive experimental results demonstrate the effectiveness of the proposed SGIL. The code is available at https://github.com/yimutianyang/SIGIR2025-SGIL.

Authors:Michał Turski, Mateusz Chiliński, Łukasz Borchmann
Title: Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA
Abstract:
Checkboxes are critical in real-world document processing where the presence or absence of ticks directly informs data extraction and decision-making processes. Yet, despite the strong performance of Large Vision and Language Models across a wide range of tasks, they struggle with interpreting checkable content. This challenge becomes particularly pressing in industries where a single overlooked checkbox may lead to costly regulatory or contractual oversights. To address this gap, we introduce the CheckboxQA dataset, a targeted resource designed to evaluate and improve model performance on checkbox-related tasks. It reveals the limitations of current models and serves as a valuable tool for advancing document comprehension systems, with significant implications for applications in sectors such as legal tech and finance. The dataset is publicly available at: https://github.com/Snowflake-Labs/CheckboxQA

Authors:Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, Chandan K Reddy
Title: LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models
Abstract:
Scientific equation discovery is a fundamental task in the history of scientific progress, enabling the derivation of laws governing natural phenomena. Recently, Large Language Models (LLMs) have gained interest for this task due to their potential to leverage embedded scientific knowledge for hypothesis generation. However, evaluating the true discovery capabilities of these methods remains challenging, as existing benchmarks often rely on common equations that are susceptible to memorization by LLMs, leading to inflated performance metrics that do not reflect discovery. In this paper, we introduce LLM-SRBench, a comprehensive benchmark with 239 challenging problems across four scientific domains specifically designed to evaluate LLM-based scientific equation discovery methods while preventing trivial memorization. Our benchmark comprises two main categories: LSR-Transform, which transforms common physical models into less common mathematical representations to test reasoning beyond memorized forms, and LSR-Synth, which introduces synthetic, discovery-driven problems requiring data-driven reasoning. Through extensive evaluation of several state-of-the-art methods, using both open and closed LLMs, we find that the best-performing system so far achieves only 31.5% symbolic accuracy. These findings highlight the challenges of scientific equation discovery, positioning LLM-SRBench as a valuable resource for future research.

Authors:Weiqi Wang, Jiefu Ou, Yangqiu Song, Benjamin Van Durme, Daniel Khashabi
Title: Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol
Abstract:
Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.

Authors:Tianjie Ju, Zhenyu Shao, Bowen Wang, Yujia Chen, Zhuosheng Zhang, Hao Fei, Mong-Li Lee, Wynne Hsu, Sufeng Duan, Gongshen Liu
Title: Probing then Editing Response Personality of Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated promising capabilities to generate responses that simulate consistent personality traits. Despite the major attempts to analyze personality expression through output-based evaluations, little is known about how such traits are internally encoded within LLM parameters. In this paper, we introduce a layer-wise probing framework to systematically investigate the layer-wise capability of LLMs in simulating personality for responding. We conduct probing experiments on 11 open-source LLMs over the PersonalityEdit benchmark and find that LLMs predominantly simulate personality for responding in their middle and upper layers, with instruction-tuned models demonstrating a slightly clearer separation of personality traits. Furthermore, by interpreting the trained probing hyperplane as a layer-wise boundary for each personality category, we propose a layer-wise perturbation method to edit the personality expressed by LLMs during inference. Our results show that even when the prompt explicitly specifies a particular personality, our method can still successfully alter the response personality of LLMs. Interestingly, the difficulty of converting between certain personality traits varies substantially, which aligns with the representational distances in our probing experiments. Finally, we conduct a comprehensive MMLU benchmark evaluation and time overhead analysis, demonstrating that our proposed personality editing method incurs only minimal degradation in general capabilities while maintaining low training costs and acceptable inference latency. Our code is publicly available at https://github.com/universe-sky/probing-then-editing-personality.

Authors:Frederik Werner, Simon Sagmeister, Mattia Piccinini, Johannes Betz
Title: A Quasi-Steady-State Black Box Simulation Approach for the Generation of g-g-g-v Diagrams
Abstract:
The classical g-g diagram, representing the achievable acceleration space for a vehicle, is commonly used as a constraint in trajectory planning and control due to its computational simplicity. To address non-planar road geometries, this concept can be extended to incorporate g-g constraints as a function of vehicle speed and vertical acceleration, commonly referred to as g-g-g-v diagrams. However, the estimation of g-g-g-v diagrams is an open problem. Existing simulation-based approaches struggle to isolate non-transient, open-loop stable states across all combinations of speed and acceleration, while optimization-based methods often require simplified vehicle equations and have potential convergence issues. In this paper, we present a novel, open-source, quasi-steady-state black box simulation approach that applies a virtual inertial force in the longitudinal direction. The method emulates the load conditions associated with a specified longitudinal acceleration while maintaining constant vehicle speed, enabling open-loop steering ramps in a purely QSS manner. Appropriate regulation of the ramp steer rate inherently mitigates transient vehicle dynamics when determining the maximum feasible lateral acceleration. Moreover, treating the vehicle model as a black box eliminates model mismatch issues, allowing the use of high-fidelity or proprietary vehicle dynamics models typically unsuited for optimization approaches. An open-source version of the proposed method is available at: https://github.com/TUM-AVS/GGGVDiagrams

Authors:Deyuan Liu, Peng Sun, Xufeng Li, Tao Lin
Title: Efficient Generative Model Training via Embedded Representation Warmup
Abstract:
Diffusion models excel at generating high-dimensional data but fall short in training efficiency and representation quality compared to self-supervised methods. We identify a key bottleneck: the underutilization of high-quality, semantically rich representations during training notably slows down convergence. Our systematic analysis reveals a critical representation processing region -- primarily in the early layers -- where semantic and structural pattern learning takes place before generation can occur. To address this, we propose Embedded Representation Warmup (ERW), a plug-and-play framework where in the first stage we get the ERW module serves as a warmup that initializes the early layers of the diffusion model with high-quality, pretrained representations. This warmup minimizes the burden of learning representations from scratch, thereby accelerating convergence and boosting performance. Our theoretical analysis demonstrates that ERW's efficacy depends on its precise integration into specific neural network layers -- termed the representation processing region -- where the model primarily processes and transforms feature representations for later generation. We further establish that ERW not only accelerates training convergence but also enhances representation quality: empirically, our method achieves a 40$\times$ acceleration in training speed compared to REPA, the current state-of-the-art methods. Code is available at https://github.com/LINs-lab/ERW.

Authors:Deyuan Liu, Peng Sun, Xufeng Li, Tao Lin
Title: Efficient Generative Model Training via Embedded Representation Warmup
Abstract:
Generative models face a fundamental challenge: they must simultaneously learn high-level semantic concepts (what to generate) and low-level synthesis details (how to generate it). Conventional end-to-end training entangles these distinct, and often conflicting objectives, leading to a complex and inefficient optimization process. We argue that explicitly decoupling these tasks is key to unlocking more effective and efficient generative modeling. To this end, we propose Embedded Representation Warmup (ERW), a principled two-phase training framework. The first phase is dedicated to building a robust semantic foundation by aligning the early layers of a diffusion model with a powerful pretrained encoder. This provides a strong representational prior, allowing the second phase -- generative full training with alignment loss to refine the representation -- to focus its resources on high-fidelity synthesis. Our analysis confirms that this efficacy stems from functionally specializing the model's early layers for representation. Empirically, our framework achieves a 11.5$\times$ speedup in 350 epochs to reach FID=1.41 compared to single-phase methods like REPA. Code is available at https://github.com/LINs-lab/ERW.

Authors:Soumyadeep Pal, Changsheng Wang, James Diffenderfer, Bhavya Kailkhura, Sijia Liu
Title: LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
Abstract:
Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior by removing undesired data-model influences from the pretrained model while preserving general utility. Significant recent efforts have been dedicated to developing LLM unlearning benchmarks such as WMDP (Weapons of Mass Destruction Proxy) and MUSE (Machine Unlearning Six-way Evaluation), facilitating standardized unlearning performance assessment and method comparison. Despite their usefulness, we uncover for the first time a novel coreset effect within these benchmarks. Specifically, we find that LLM unlearning achieved with the original (full) forget set can be effectively maintained using a significantly smaller subset (functioning as a "coreset"), e.g., as little as 5% of the forget set, even when selected at random. This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime. We demonstrate that this coreset effect remains strong, regardless of the LLM unlearning method used, such as NPO (Negative Preference Optimization) and RMU (Representation Misdirection Unlearning), the popular ones in these benchmarks. The surprisingly strong coreset effect is also robust across various data selection methods, ranging from random selection to more sophisticated heuristic approaches. We explain the coreset effect in LLM unlearning through a keyword-based perspective, showing that keywords extracted from the forget set alone contribute significantly to unlearning effectiveness and indicating that current unlearning is driven by a compact set of high-impact tokens rather than the entire dataset. We further justify the faithfulness of coreset-unlearned models along additional dimensions, such as mode connectivity and robustness to jailbreaking attacks. Codes are available at https://github.com/OPTML-Group/MU-Coreset.

Authors:Zhaopeng Feng, Shaosheng Cao, Jiahan Ren, Jiayuan Su, Ruizhe Chen, Yan Zhang, Zhe Xu, Yao Hu, Jian Wu, Zuozhu Liu
Title: MT-R1-Zero: Advancing LLM-based Machine Translation via R1-Zero-like Reinforcement Learning
Abstract:
Large-scale reinforcement learning (RL) methods have proven highly effective in enhancing the reasoning abilities of large language models (LLMs), particularly for tasks with verifiable solutions such as mathematics and coding. However, applying this idea to machine translation (MT), where outputs are flexibly formatted and difficult to automatically evaluate with explicit rules, remains underexplored. In this work, we introduce MT-R1-Zero, the first open-source adaptation of the R1-Zero RL framework for MT without supervised fine-tuning or cold-start. We propose a rule-metric mixed reward mechanism to guide LLMs towards improved translation quality via emergent reasoning. On the WMT 24 English-Chinese benchmark, our MT-R1-Zero-3B-Mix achieves competitive performance, surpassing TowerInstruct-7B-v0.2 by an average of 1.26 points. Meanwhile, our MT-R1-Zero-7B-Mix attains a high average score of 62.25 across all metrics, placing it on par with advanced proprietary models such as GPT-4o and Claude-3.5-Sonnet, while the MT-R1-Zero-7B-Sem variant achieves state-of-the-art scores on semantic metrics. Moreover, our work exhibits strong generalization capabilities on out-of-distribution MT tasks, robustly supporting multilingual and low-resource settings. Extensive analysis of model behavior across different initializations and reward metrics offers pioneering insight into the critical role of reward design, LLM adaptability, training dynamics, and emergent reasoning patterns within the R1-Zero paradigm for MT. Our code is available at https://github.com/fzp0424/MT-R1-Zero.

Authors:Xiaopeng Li, Pengyue Jia, Derong Xu, Yi Wen, Yingyi Zhang, Wenlin Zhang, Wanyu Wang, Yichao Wang, Zhaocheng Du, Xiangyang Li, Yong Liu, Huifeng Guo, Ruiming Tang, Xiangyu Zhao
Title: A Survey of Personalization: From RAG to Agent
Abstract:
Personalization has become an essential capability in modern AI systems, enabling customized interactions that align with individual user preferences, contexts, and goals. Recent research has increasingly concentrated on Retrieval-Augmented Generation (RAG) frameworks and their evolution into more advanced agent-based architectures within personalized settings to enhance user satisfaction. Building on this foundation, this survey systematically examines personalization across the three core stages of RAG: pre-retrieval, retrieval, and generation. Beyond RAG, we further extend its capabilities into the realm of Personalized LLM-based Agents, which enhance traditional RAG systems with agentic functionalities, including user understanding, personalized planning and execution, and dynamic generation. For both personalization in RAG and agent-based personalization, we provide formal definitions, conduct a comprehensive review of recent literature, and summarize key datasets and evaluation metrics. Additionally, we discuss fundamental challenges, limitations, and promising research directions in this evolving field. Relevant papers and resources are continuously updated at https://github.com/Applied-Machine-Learning-Lab/Awesome-Personalized-RAG-Agent.

Authors:Junlei Zhang, Zichen Ding, Chang Ma, Zijie Chen, Qiushi Sun, Zhenzhong Lan, Junxian He
Title: Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Abstract:
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.

Authors:Yating Liu, Yaowei Li, Xiangyuan Lan, Wenming Yang, Zimo Liu, Qingmin Liao
Title: UP-Person: Unified Parameter-Efficient Transfer Learning for Text-based Person Retrieval
Abstract:
Text-based Person Retrieval (TPR) as a multi-modal task, which aims to retrieve the target person from a pool of candidate images given a text description, has recently garnered considerable attention due to the progress of contrastive visual-language pre-trained model. Prior works leverage pre-trained CLIP to extract person visual and textual features and fully fine-tune the entire network, which have shown notable performance improvements compared to uni-modal pre-training models. However, full-tuning a large model is prone to overfitting and hinders the generalization ability. In this paper, we propose a novel Unified Parameter-Efficient Transfer Learning (PETL) method for Text-based Person Retrieval (UP-Person) to thoroughly transfer the multi-modal knowledge from CLIP. Specifically, UP-Person simultaneously integrates three lightweight PETL components including Prefix, LoRA and Adapter, where Prefix and LoRA are devised together to mine local information with task-specific information prompts, and Adapter is designed to adjust global feature representations. Additionally, two vanilla submodules are optimized to adapt to the unified architecture of TPR. For one thing, S-Prefix is proposed to boost attention of prefix and enhance the gradient propagation of prefix tokens, which improves the flexibility and performance of the vanilla prefix. For another thing, L-Adapter is designed in parallel with layer normalization to adjust the overall distribution, which can resolve conflicts caused by overlap and interaction among multiple submodules. Extensive experimental results demonstrate that our UP-Person achieves state-of-the-art results across various person retrieval datasets, including CUHK-PEDES, ICFG-PEDES and RSTPReid while merely fine-tuning 4.7\% parameters. Code is available at https://github.com/Liu-Yating/UP-Person.

Authors:Wanyun Zhou, Saizhuo Wang, Xiang Li, Yiyan Qi, Jian Guo, Xiaowen Chu
Title: Unleashing Expert Opinion from Social Media for Stock Prediction
Abstract:
While stock prediction task traditionally relies on volume-price and fundamental data to predict the return ratio or price movement trend, sentiment factors derived from social media platforms such as StockTwits offer a complementary and useful source of real-time market information. However, we find that most social media posts, along with the public sentiment they reflect, provide limited value for trading predictions due to their noisy nature. To tackle this, we propose a novel dynamic expert tracing algorithm that filters out non-informative posts and identifies both true and inverse experts whose consistent predictions can serve as valuable trading signals. Our approach achieves significant improvements over existing expert identification methods in stock trend prediction. However, when using binary expert predictions to predict the return ratio, similar to all other expert identification methods, our approach faces a common challenge of signal sparsity with expert signals cover only about 4% of all stock-day combinations in our dataset. To address this challenge, we propose a dual graph attention neural network that effectively propagates expert signals across related stocks, enabling accurate prediction of return ratios and significantly increasing signal coverage. Empirical results show that our propagated expert-based signals not only exhibit strong predictive power independently but also work synergistically with traditional financial features. These combined signals significantly outperform representative baseline models in all quant-related metrics including predictive accuracy, return metrics, and correlation metrics, resulting in more robust investment strategies. We hope this work inspires further research into leveraging social media data for enhancing quantitative investment strategies. The code can be seen in https://github.com/wanyunzh/DualGAT.

Authors:Bingwen Zhu, Yudong Jiang, Baohan Xu, Siqian Yang, Mingyu Yin, Yidi Wu, Huyang Sun, Zuxuan Wu
Title: Aligning Anime Video Generation with Human Feedback
Abstract:
Anime video generation faces significant challenges due to the scarcity of anime data and unusual motion patterns, leading to issues such as motion distortion and flickering artifacts, which result in misalignment with human preferences. Existing reward models, designed primarily for real-world videos, fail to capture the unique appearance and consistency requirements of anime. In this work, we propose a pipeline to enhance anime video generation by leveraging human feedback for better alignment. Specifically, we construct the first multi-dimensional reward dataset for anime videos, comprising 30k human-annotated samples that incorporating human preferences for both visual appearance and visual consistency. Based on this, we develop AnimeReward, a powerful reward model that employs specialized vision-language models for different evaluation dimensions to guide preference alignment. Furthermore, we introduce Gap-Aware Preference Optimization (GAPO), a novel training method that explicitly incorporates preference gaps into the optimization process, enhancing alignment performance and efficiency. Extensive experiment results show that AnimeReward outperforms existing reward models, and the inclusion of GAPO leads to superior alignment in both quantitative benchmarks and human evaluations, demonstrating the effectiveness of our pipeline in enhancing anime video quality. Our code and dataset are publicly available at https://github.com/bilibili/Index-anisora.

Authors:Hao Ren, Yiming Zeng, Zetong Bi, Zhaoliang Wan, Junlong Huang, Hui Cheng
Title: Prior Does Matter: Visual Navigation via Denoising Diffusion Bridge Models
Abstract:
Recent advancements in diffusion-based imitation learning, which show impressive performance in modeling multimodal distributions and training stability, have led to substantial progress in various robot learning tasks. In visual navigation, previous diffusion-based policies typically generate action sequences by initiating from denoising Gaussian noise. However, the target action distribution often diverges significantly from Gaussian noise, leading to redundant denoising steps and increased learning complexity. Additionally, the sparsity of effective action distributions makes it challenging for the policy to generate accurate actions without guidance. To address these issues, we propose a novel, unified visual navigation framework leveraging the denoising diffusion bridge models named NaviBridger. This approach enables action generation by initiating from any informative prior actions, enhancing guidance and efficiency in the denoising process. We explore how diffusion bridges can enhance imitation learning in visual navigation tasks and further examine three source policies for generating prior actions. Extensive experiments in both simulated and real-world indoor and outdoor scenarios demonstrate that NaviBridger accelerates policy inference and outperforms the baselines in generating target action sequences. Code is available at https://github.com/hren20/NaiviBridger.

Authors:Xiao Wang, Haiyang Wang, Shiao Wang, Qiang Chen, Jiandong Jin, Haoyu Song, Bo Jiang, Chenglong Li
Title: RGB-Event based Pedestrian Attribute Recognition: A Benchmark Dataset and An Asymmetric RWKV Fusion Framework
Abstract:
Existing pedestrian attribute recognition methods are generally developed based on RGB frame cameras. However, these approaches are constrained by the limitations of RGB cameras, such as sensitivity to lighting conditions and motion blur, which hinder their performance. Furthermore, current attribute recognition primarily focuses on analyzing pedestrians' external appearance and clothing, lacking an exploration of emotional dimensions. In this paper, we revisit these issues and propose a novel multi-modal RGB-Event attribute recognition task by drawing inspiration from the advantages of event cameras in low-light, high-speed, and low-power consumption. Specifically, we introduce the first large-scale multi-modal pedestrian attribute recognition dataset, termed EventPAR, comprising 100K paired RGB-Event samples that cover 50 attributes related to both appearance and six human emotions, diverse scenes, and various seasons. By retraining and evaluating mainstream PAR models on this dataset, we establish a comprehensive benchmark and provide a solid foundation for future research in terms of data and algorithmic baselines. In addition, we propose a novel RWKV-based multi-modal pedestrian attribute recognition framework, featuring an RWKV visual encoder and an asymmetric RWKV fusion module. Extensive experiments are conducted on our proposed dataset as well as two simulated datasets (MARS-Attribute and DukeMTMC-VID-Attribute), achieving state-of-the-art results. The source code and dataset will be released on https://github.com/Event-AHU/OpenPAR

Authors:Yiming Zeng, Hao Ren, Shuhang Wang, Junlong Huang, Hui Cheng
Title: NaviDiffusor: Cost-Guided Diffusion Model for Visual Navigation
Abstract:
Visual navigation, a fundamental challenge in mobile robotics, demands versatile policies to handle diverse environments. Classical methods leverage geometric solutions to minimize specific costs, offering adaptability to new scenarios but are prone to system errors due to their multi-modular design and reliance on hand-crafted rules. Learning-based methods, while achieving high planning success rates, face difficulties in generalizing to unseen environments beyond the training data and often require extensive training. To address these limitations, we propose a hybrid approach that combines the strengths of learning-based methods and classical approaches for RGB-only visual navigation. Our method first trains a conditional diffusion model on diverse path-RGB observation pairs. During inference, it integrates the gradients of differentiable scene-specific and task-level costs, guiding the diffusion model to generate valid paths that meet the constraints. This approach alleviates the need for retraining, offering a plug-and-play solution. Extensive experiments in both indoor and outdoor settings, across simulated and real-world scenarios, demonstrate zero-shot transfer capability of our approach, achieving higher success rates and fewer collisions compared to baseline methods. Code will be released at https://github.com/SYSU-RoboticsLab/NaviD.

Authors:Si-Tong Wei, Rui-Huan Wang, Chuan-Zhi Zhou, Baoquan Chen, Peng-Shuai Wang
Title: OctGPT: Octree-based Multiscale Autoregressive Models for 3D Shape Generation
Abstract:
Autoregressive models have achieved remarkable success across various domains, yet their performance in 3D shape generation lags significantly behind that of diffusion models. In this paper, we introduce OctGPT, a novel multiscale autoregressive model for 3D shape generation that dramatically improves the efficiency and performance of prior 3D autoregressive approaches, while rivaling or surpassing state-of-the-art diffusion models. Our method employs a serialized octree representation to efficiently capture the hierarchical and spatial structures of 3D shapes. Coarse geometry is encoded via octree structures, while fine-grained details are represented by binary tokens generated using a vector quantized variational autoencoder (VQVAE), transforming 3D shapes into compact multiscale binary sequences suitable for autoregressive prediction. To address the computational challenges of handling long sequences, we incorporate octree-based transformers enhanced with 3D rotary positional encodings, scale-specific embeddings, and token-parallel generation schemes. These innovations reduce training time by 13 folds and generation time by 69 folds, enabling the efficient training of high-resolution 3D shapes, e.g.,$1024^3$, on just four NVIDIA 4090 GPUs only within days. OctGPT showcases exceptional versatility across various tasks, including text-, sketch-, and image-conditioned generation, as well as scene-level synthesis involving multiple objects. Extensive experiments demonstrate that OctGPT accelerates convergence and improves generation quality over prior autoregressive methods, offering a new paradigm for high-quality, scalable 3D content creation. Our code and trained models are available at https://github.com/octree-nn/octgpt.

Authors:Gang Wu, Junjun Jiang, Kui Jiang, Xianming Liu, Liqiang Nie
Title: Beyond Degradation Redundancy: Contrastive Prompt Learning for All-in-One Image Restoration
Abstract:
All-in-one image restoration, addressing diverse degradation types with a unified model, presents significant challenges in designing task-specific prompts that effectively guide restoration across multiple degradation scenarios. While adaptive prompt learning enables end-to-end optimization, it often yields overlapping or redundant task representations. Conversely, explicit prompts derived from pretrained classifiers enhance discriminability but may discard critical visual information for reconstruction. To address these limitations, we introduce Contrastive Prompt Learning (CPL), a novel framework that fundamentally enhances prompt-task alignment through two complementary innovations: a \emph{Sparse Prompt Module (SPM)} that efficiently captures degradation-specific features while minimizing redundancy, and a \emph{Contrastive Prompt Regularization (CPR)} that explicitly strengthens task boundaries by incorporating negative prompt samples across different degradation types. Unlike previous approaches that focus primarily on degradation classification, CPL optimizes the critical interaction between prompts and the restoration model itself. Extensive experiments across five comprehensive benchmarks demonstrate that CPL consistently enhances state-of-the-art all-in-one restoration models, achieving significant improvements in both standard multi-task scenarios and challenging composite degradation settings. Our framework establishes new state-of-the-art performance while maintaining parameter efficiency, offering a principled solution for unified image restoration.

Authors:Dongliang Luo, Hanshen Zhu, Ziyang Zhang, Dingkang Liang, Xudong Xie, Yuliang Liu, Xiang Bai
Title: SemiETS: Integrating Spatial and Content Consistencies for Semi-Supervised End-to-end Text Spotting
Abstract:
Most previous scene text spotting methods rely on high-quality manual annotations to achieve promising performance. To reduce their expensive costs, we study semi-supervised text spotting (SSTS) to exploit useful information from unlabeled images. However, directly applying existing semi-supervised methods of general scenes to SSTS will face new challenges: 1) inconsistent pseudo labels between detection and recognition tasks, and 2) sub-optimal supervisions caused by inconsistency between teacher/student. Thus, we propose a new Semi-supervised framework for End-to-end Text Spotting, namely SemiETS that leverages the complementarity of text detection and recognition. Specifically, it gradually generates reliable hierarchical pseudo labels for each task, thereby reducing noisy labels. Meanwhile, it extracts important information in locations and transcriptions from bidirectional flows to improve consistency. Extensive experiments on three datasets under various settings demonstrate the effectiveness of SemiETS on arbitrary-shaped text. For example, it outperforms previous state-of-the-art SSL methods by a large margin on end-to-end spotting (+8.7%, +5.6%, and +2.6% H-mean under 0.5%, 1%, and 2% labeled data settings on Total-Text, respectively). More importantly, it still improves upon a strongly supervised text spotter trained with plenty of labeled data by 2.0%. Compelling domain adaptation ability shows practical potential. Moreover, our method demonstrates consistent improvement on different text spotters.

Authors:Zheng Liu, Mengjie Liu, Jingzhou Chen, Jingwei Xu, Bin Cui, Conghui He, Wentao Zhang
Title: FUSION: Fully Integration of Vision-Language Representations for Deep Cross-Modal Understanding
Abstract:
We introduce FUSION, a family of multimodal large language models (MLLMs) with a fully vision-language alignment and integration paradigm. Unlike existing methods that primarily rely on late-stage modality interaction during LLM decoding, our approach achieves deep, dynamic integration throughout the entire processing pipeline. To this end, we propose Text-Guided Unified Vision Encoding, incorporating textual information in vision encoding to achieve pixel-level integration. We further design Context-Aware Recursive Alignment Decoding that recursively aggregates visual features conditioned on textual context during decoding, enabling fine-grained, question-level semantic integration. To guide feature mapping and mitigate modality discrepancies, we develop Dual-Supervised Semantic Mapping Loss. Additionally, we construct a Synthesized Language-Driven Question-Answer (QA) dataset through a new data synthesis method, prioritizing high-quality QA pairs to optimize text-guided feature integration. Building on these foundations, we train FUSION at two scales-3B, 8B-and demonstrate that our full-modality integration approach significantly outperforms existing methods with only 630 vision tokens. Notably, FUSION 3B surpasses Cambrian-1 8B and Florence-VL 8B on most benchmarks. FUSION 3B continues to outperform Cambrian-1 8B even when limited to 300 vision tokens. Our ablation studies show that FUSION outperforms LLaVA-NeXT on over half of the benchmarks under same configuration without dynamic resolution, highlighting the effectiveness of our approach. We release our code, model weights, and dataset. https://github.com/starriver030515/FUSION

Authors:Maria Tzelepi, Vasileios Mezaris
Title: Improving Multimodal Hateful Meme Detection Exploiting LMM-Generated Knowledge
Abstract:
Memes have become a dominant form of communication in social media in recent years. Memes are typically humorous and harmless, however there are also memes that promote hate speech, being in this way harmful to individuals and groups based on their identity. Therefore, detecting hateful content in memes has emerged as a task of critical importance. The need for understanding the complex interactions of images and their embedded text renders the hateful meme detection a challenging multimodal task. In this paper we propose to address the aforementioned task leveraging knowledge encoded in powerful Large Multimodal Models (LMM). Specifically, we propose to exploit LMMs in a two-fold manner. First, by extracting knowledge oriented to the hateful meme detection task in order to build strong meme representations. Specifically, generic semantic descriptions and emotions that the images along with their embedded texts elicit are extracted, which are then used to train a simple classification head for hateful meme detection. Second, by developing a novel hard mining approach introducing directly LMM-encoded knowledge to the training process, providing further improvements. We perform extensive experiments on two datasets that validate the effectiveness of the proposed method, achieving state-of-the-art performance. Our code and trained models are publicly available at: https://github.com/IDT-ITI/LMM-CLIP-meme.

Authors:Changwei Wang, Shunpeng Chen, Yukun Song, Rongtao Xu, Zherui Zhang, Jiguang Zhang, Haoran Yang, Yu Zhang, Kexue Fu, Shide Du, Zhiwei Xu, Longxiang Gao, Li Guo, Shibiao Xu
Title: Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition
Abstract:
Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images. For VPR task, often fewer discriminative local regions in an image produce important effects while mundane background regions do not contribute or even cause perceptual aliasing because of easy overlap. However, existing methods lack precisely modeling and full exploitation of these discriminative regions. In this paper, we propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously by mining and exploiting reliable discriminative local regions in images and introducing pseudo-correlation supervision. First, we design two losses, Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast Enhancement Loss (CEL), to explicitly model reliable discriminative local regions and use them to guide the generation of global representations and efficient re-ranking. Second, we introduce a weakly-supervised local feature training strategy based on pseudo-correspondences obtained from aggregating global features to alleviate the lack of local correspondences ground truth for the VPR task. Third, we suggest an efficient re-ranking pipeline that is efficiently and precisely based on discriminative region guidance. Finally, experimental results show that our FoL achieves the state-of-the-art on multiple VPR benchmarks in both image retrieval and re-ranking stages and also significantly outperforms existing two-stage VPR methods in terms of computational efficiency. Code and models are available at https://github.com/chenshunpeng/FoL

Authors:Zhisheng Zhang, Derui Wang, Qianyi Yang, Pengyang Huang, Junhan Pu, Yuxin Cao, Kai Ye, Jie Hao, Yixian Yang
Title: SafeSpeech: Robust and Universal Voice Protection Against Malicious Speech Synthesis
Abstract:
Speech synthesis technology has brought great convenience, while the widespread usage of realistic deepfake audio has triggered hazards. Malicious adversaries may unauthorizedly collect victims' speeches and clone a similar voice for illegal exploitation (\textit{e.g.}, telecom fraud). However, the existing defense methods cannot effectively prevent deepfake exploitation and are vulnerable to robust training techniques. Therefore, a more effective and robust data protection method is urgently needed. In response, we propose a defensive framework, \textit{\textbf{SafeSpeech}}, which protects the users' audio before uploading by embedding imperceptible perturbations on original speeches to prevent high-quality synthetic speech. In SafeSpeech, we devise a robust and universal proactive protection technique, \textbf{S}peech \textbf{PE}rturbative \textbf{C}oncealment (\textbf{SPEC}), that leverages a surrogate model to generate universally applicable perturbation for generative synthetic models. Moreover, we optimize the human perception of embedded perturbation in terms of time and frequency domains. To evaluate our method comprehensively, we conduct extensive experiments across advanced models and datasets, both subjectively and objectively. Our experimental results demonstrate that SafeSpeech achieves state-of-the-art (SOTA) voice protection effectiveness and transferability and is highly robust against advanced adaptive adversaries. Moreover, SafeSpeech has real-time capability in real-world tests. The source code is available at \href{https://github.com/wxzyd123/SafeSpeech}{https://github.com/wxzyd123/SafeSpeech}.

Authors:Korel Gundem, Zhengling Qi
Title: Offline Dynamic Inventory and Pricing Strategy: Addressing Censored and Dependent Demand
Abstract:
In this paper, we study the offline sequential feature-based pricing and inventory control problem where the current demand depends on the past demand levels and any demand exceeding the available inventory is lost. Our goal is to leverage the offline dataset, consisting of past prices, ordering quantities, inventory levels, covariates, and censored sales levels, to estimate the optimal pricing and inventory control policy that maximizes long-term profit. While the underlying dynamic without censoring can be modeled by Markov decision process (MDP), the primary obstacle arises from the observed process where demand censoring is present, resulting in missing profit information, the failure of the Markov property, and a non-stationary optimal policy. To overcome these challenges, we first approximate the optimal policy by solving a high-order MDP characterized by the number of consecutive censoring instances, which ultimately boils down to solving a specialized Bellman equation tailored for this problem. Inspired by offline reinforcement learning and survival analysis, we propose two novel data-driven algorithms to solving these Bellman equations and, thus, estimate the optimal policy. Furthermore, we establish finite sample regret bounds to validate the effectiveness of these algorithms. Finally, we conduct numerical experiments to demonstrate the efficacy of our algorithms in estimating the optimal policy. To the best of our knowledge, this is the first data-driven approach to learning optimal pricing and inventory control policies in a sequential decision-making environment characterized by censored and dependent demand. The implementations of the proposed algorithms are available at https://github.com/gundemkorel/Inventory_Pricing_Control

Authors:Hairong Zhang, Jiaheng Si, Guohang Yan, Boyuan Qi, Pinlong Cai, Song Mao, Ding Wang, Botian Shi
Title: RAKG:Document-level Retrieval Augmented Knowledge Graph Construction
Abstract:
With the rise of knowledge graph based retrieval-augmented generation (RAG) techniques such as GraphRAG and Pike-RAG, the role of knowledge graphs in enhancing the reasoning capabilities of large language models (LLMs) has become increasingly prominent. However, traditional Knowledge Graph Construction (KGC) methods face challenges like complex entity disambiguation, rigid schema definition, and insufficient cross-document knowledge integration. This paper focuses on the task of automatic document-level knowledge graph construction. It proposes the Document-level Retrieval Augmented Knowledge Graph Construction (RAKG) framework. RAKG extracts pre-entities from text chunks and utilizes these pre-entities as queries for RAG, effectively addressing the issue of long-context forgetting in LLMs and reducing the complexity of Coreference Resolution. In contrast to conventional KGC methods, RAKG more effectively captures global information and the interconnections among disparate nodes, thereby enhancing the overall performance of the model. Additionally, we transfer the RAG evaluation framework to the KGC field and filter and evaluate the generated knowledge graphs, thereby avoiding incorrectly generated entities and relationships caused by hallucinations in LLMs. We further developed the MINE dataset by constructing standard knowledge graphs for each article and experimentally validated the performance of RAKG. The results show that RAKG achieves an accuracy of 95.91 % on the MINE dataset, a 6.2 % point improvement over the current best baseline, GraphRAG (89.71 %). The code is available at https://github.com/LMMApplication/RAKG.

Authors:Can Jin, Hongwu Peng, Qixin Zhang, Yujin Tang, Dimitris N. Metaxas, Tong Che
Title: Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning
Abstract:
Multi-agent systems (MAS) built on large language models (LLMs) offer a promising path toward solving complex, real-world tasks that single-agent systems often struggle to manage. While recent advancements in test-time scaling (TTS) have significantly improved single-agent performance on challenging reasoning tasks, how to effectively scale collaboration and reasoning in MAS remains an open question. In this work, we introduce an adaptive multi-agent framework designed to enhance collaborative reasoning through both model-level training and system-level coordination. We construct M500, a high-quality dataset containing 500 multi-agent collaborative reasoning traces, and fine-tune Qwen2.5-32B-Instruct on this dataset to produce M1-32B, a model optimized for multi-agent collaboration. To further enable adaptive reasoning, we propose a novel CEO agent that dynamically manages the discussion process, guiding agent collaboration and adjusting reasoning depth for more effective problem-solving. Evaluated in an open-source MAS across a range of tasks-including general understanding, mathematical reasoning, and coding-our system significantly outperforms strong baselines. For instance, M1-32B achieves 12% improvement on GPQA-Diamond, 41% on AIME2024, and 10% on MBPP-Sanitized, matching the performance of state-of-the-art models like DeepSeek-R1 on some tasks. These results highlight the importance of both learned collaboration and adaptive coordination in scaling multi-agent reasoning. Code is available at https://github.com/jincan333/MAS-TTS

Authors:Kang Yang, Guanhong Tao, Xun Chen, Jun Xu
Title: Alleviating the Fear of Losing Alignment in LLM Fine-tuning
Abstract:
Large language models (LLMs) have demonstrated revolutionary capabilities in understanding complex contexts and performing a wide range of tasks. However, LLMs can also answer questions that are unethical or harmful, raising concerns about their applications. To regulate LLMs' responses to such questions, a training strategy called \textit{alignment} can help. Yet, alignment can be unexpectedly compromised when fine-tuning an LLM for downstream tasks. This paper focuses on recovering the alignment lost during fine-tuning. We observe that there are two distinct directions inherent in an aligned LLM: the \textit{aligned direction} and the \textit{harmful direction}. An LLM is inclined to answer questions in the aligned direction while refusing queries in the harmful direction. Therefore, we propose to recover the harmful direction of the fine-tuned model that has been compromised. Specifically, we restore a small subset of the fine-tuned model's weight parameters from the original aligned model using gradient descent. We also introduce a rollback mechanism to avoid aggressive recovery and maintain downstream task performance. Our evaluation on 125 fine-tuned LLMs demonstrates that our method can reduce their harmful rate (percentage of answering harmful questions) from 33.25\% to 1.74\%, without sacrificing task performance much. In contrast, the existing methods either only reduce the harmful rate to a limited extent or significantly impact the normal functionality. Our code is available at https://github.com/kangyangWHU/LLMAlignment

Authors:Zachary J. Wegert, Jordi Manyer, Connor Mallon, Santiago Badia, Vivien J. Challis
Title: Level-set topology optimisation with unfitted finite elements and automatic shape differentiation
Abstract:
In this paper we develop automatic shape differentiation techniques for unfitted discretisations and link these to recent advances in shape calculus for unfitted methods. We extend existing analytic shape calculus results to the case where the domain boundary intersects with the boundary of the background domain. We further show that we can recover these analytic derivatives to machine precision regardless of the mesh size using the developed automatic shape differentiation techniques, drastically reducing the burden associated with the analytic derivation of these quantities. In addition, we show that we can also recover the symmetric shape Hessian. We implement these techniques for both serial and distributed computing frameworks in the Julia package GridapTopOpt and the wider Gridap ecosystem. As part of this implementation we propose a novel graph-based approach for isolated volume detection. We demonstrate the applicability of the unfitted automatic shape differentiation framework and our implementation by considering the three-dimensional minimum compliance topology optimisation of a linear elastic wheel and of a linear elastic structure in a fluid-structure interaction problem with Stokes flow. The implementation is general and allows GridapTopOpt to solve a wider range of problems on unstructured meshes without analytic calculation of shape derivatives and avoiding issues that arise when material properties are smoothed at the domain boundary. The software is open source and available at https://github.com/zjwegert/GridapTopOpt.jl.

Authors:Nitya Thakkar, Mert Yuksekgonul, Jake Silberg, Animesh Garg, Nanyun Peng, Fei Sha, Rose Yu, Carl Vondrick, James Zou
Title: Can LLM feedback enhance review quality? A randomized study of 20K reviews at ICLR 2025
Abstract:
Peer review at AI conferences is stressed by rapidly rising submission volumes, leading to deteriorating review quality and increased author dissatisfaction. To address these issues, we developed Review Feedback Agent, a system leveraging multiple large language models (LLMs) to improve review clarity and actionability by providing automated feedback on vague comments, content misunderstandings, and unprofessional remarks to reviewers. Implemented at ICLR 2025 as a large randomized control study, our system provided optional feedback to more than 20,000 randomly selected reviews. To ensure high-quality feedback for reviewers at this scale, we also developed a suite of automated reliability tests powered by LLMs that acted as guardrails to ensure feedback quality, with feedback only being sent to reviewers if it passed all the tests. The results show that 27% of reviewers who received feedback updated their reviews, and over 12,000 feedback suggestions from the agent were incorporated by those reviewers. This suggests that many reviewers found the AI-generated feedback sufficiently helpful to merit updating their reviews. Incorporating AI feedback led to significantly longer reviews (an average increase of 80 words among those who updated after receiving feedback) and more informative reviews, as evaluated by blinded researchers. Moreover, reviewers who were selected to receive AI feedback were also more engaged during paper rebuttals, as seen in longer author-reviewer discussions. This work demonstrates that carefully designed LLM-generated review feedback can enhance peer review quality by making reviews more specific and actionable while increasing engagement between reviewers and authors. The Review Feedback Agent is publicly available at https://github.com/zou-group/review_feedback_agent.

Authors:Gaurav Shinde, Anuradha Ravi, Emon Dey, Shadman Sakib, Milind Rampure, Nirmalya Roy
Title: A Survey on Efficient Vision-Language Models
Abstract:
Vision-language models (VLMs) integrate visual and textual information, enabling a wide range of applications such as image captioning and visual question answering, making them crucial for modern AI systems. However, their high computational demands pose challenges for real-time applications. This has led to a growing focus on developing efficient vision language models. In this survey, we review key techniques for optimizing VLMs on edge and resource-constrained devices. We also explore compact VLM architectures, frameworks and provide detailed insights into the performance-memory trade-offs of efficient VLMs. Furthermore, we establish a GitHub repository at https://github.com/MPSCUMBC/Efficient-Vision-Language-Models-A-Survey to compile all surveyed papers, which we will actively update. Our objective is to foster deeper research in this area.

Authors:Zhenting Wang, Guofeng Cui, Yu-Jhe Li, Kun Wan, Wentian Zhao
Title: DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training
Abstract:
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.

Authors:Jixiao Zhang, Chunsheng Zuo
Title: GRPO-LEAD: A Difficulty-Aware Reinforcement Learning Approach for Concise Mathematical Reasoning in Language Models
Abstract:
Group Relative Policy Optimization (GRPO), which is widely adopted by R1-like reasoning models, has advanced mathematical reasoning. Nevertheless, GRPO faces challenges in reward sparsity, verbosity, and inadequate focus on problem difficulty. We propose GRPO-LEAD, enhancing GRPO with: (1) length-regularized rewards to encourage conciseness while maintaining accuracy; (2) explicit penalties for incorrect solutions to improve model precision; and (3) difficulty-aware advantage reweighting for robust generalization on challenging problems. Comprehensive evaluations demonstrate that GRPO-LEAD significantly improves reasoning accuracy, conciseness, and efficiency. Our approach achieves state-of-the-art performance for 14B-scale models, underscoring the synergy of our methods with appropriate model scale and high-quality data. Our source code, generated dataset, and models are available at https://github.com/aeroplanepaper/GRPO-LEAD.

Authors:Jiahao Qiu, Yinghui He, Xinzhe Juan, Yimin Wang, Yuhan Liu, Zixin Yao, Yue Wu, Xun Jiang, Ling Yang, Mengdi Wang
Title: EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
Abstract:
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent

Authors:Yao Yuan, Pan Gao, Qun Dai, Jie Qin, Wei Xiang
Title: Uncertainty Guided Refinement for Fine-Grained Salient Object Detection
Abstract:
Recently, salient object detection (SOD) methods have achieved impressive performance. However, salient regions predicted by existing methods usually contain unsaturated regions and shadows, which limits the model for reliable fine-grained predictions. To address this, we introduce the uncertainty guidance learning approach to SOD, intended to enhance the model's perception of uncertain regions. Specifically, we design a novel Uncertainty Guided Refinement Attention Network (UGRAN), which incorporates three important components, i.e., the Multilevel Interaction Attention (MIA) module, the Scale Spatial-Consistent Attention (SSCA) module, and the Uncertainty Refinement Attention (URA) module. Unlike conventional methods dedicated to enhancing features, the proposed MIA facilitates the interaction and perception of multilevel features, leveraging the complementary characteristics among multilevel features. Then, through the proposed SSCA, the salient information across diverse scales within the aggregated features can be integrated more comprehensively and integrally. In the subsequent steps, we utilize the uncertainty map generated from the saliency prediction map to enhance the model's perception capability of uncertain regions, generating a highly-saturated fine-grained saliency prediction map. Additionally, we devise an adaptive dynamic partition (ADP) mechanism to minimize the computational overhead of the URA module and improve the utilization of uncertainty guidance. Experiments on seven benchmark datasets demonstrate the superiority of the proposed UGRAN over the state-of-the-art methodologies. Codes will be released at https://github.com/I2-Multimedia-Lab/UGRAN.

Authors:Xingrui Wang, Jiang Liu, Ze Wang, Xiaodong Yu, Jialian Wu, Ximeng Sun, Yusheng Su, Alan Yuille, Zicheng Liu, Emad Barsoum
Title: KeyVID: Keyframe-Aware Video Diffusion for Audio-Synchronized Visual Animation
Abstract:
Generating video from various conditions, such as text, image, and audio, enables both spatial and temporal control, leading to high-quality generation results. Videos with dramatic motions often require a higher frame rate to ensure smooth motion. Currently, most audio-to-visual animation models use uniformly sampled frames from video clips. However, these uniformly sampled frames fail to capture significant key moments in dramatic motions at low frame rates and require significantly more memory when increasing the number of frames directly. In this paper, we propose KeyVID, a keyframe-aware audio-to-visual animation framework that significantly improves the generation quality for key moments in audio signals while maintaining computation efficiency. Given an image and an audio input, we first localize keyframe time steps from the audio. Then, we use a keyframe generator to generate the corresponding visual keyframes. Finally, we generate all intermediate frames using the motion interpolator. Through extensive experiments, we demonstrate that KeyVID significantly improves audio-video synchronization and video quality across multiple datasets, particularly for highly dynamic motions. The code is released in https://github.com/XingruiWang/KeyVID.

Authors:Avinash Patil
Title: GitBugs: Bug Reports for Duplicate Detection, Retrieval Augmented Generation, Triage, and More
Abstract:
Bug reports provide critical insights into software quality, yet existing datasets often suffer from limited scope, outdated content, or insufficient metadata for machine learning. To address these limitations, we present GitBugs-a comprehen- sive and up-to-date dataset comprising over 150,000 bug reports from nine actively maintained open-source projects, including Firefox, Cassandra, and VS Code. GitBugs aggregates data from Github, Bugzilla and Jira issue trackers, offering standardized categorical fields for classification tasks and predefined train/test splits for duplicate bug detection. In addition, it includes ex- ploratory analysis notebooks and detailed project-level statistics, such as duplicate rates and resolution times. GitBugs supports various software engineering research tasks, including duplicate detection, retrieval augmented generation, resolution prediction, automated triaging, and temporal analysis. The openly licensed dataset provides a valuable cross-project resource for bench- marking and advancing automated bug report analysis. Access the data and code at https://github.com/av9ash/gitbugs/.

Authors:Kaiyu Li, Zepeng Xin, Li Pang, Chao Pang, Yupeng Deng, Jing Yao, Guisong Xia, Deyu Meng, Zhi Wang, Xiangyong Cao
Title: SegEarth-R1: Geospatial Pixel Reasoning via Large Language Model
Abstract:
Remote sensing has become critical for understanding environmental dynamics, urban planning, and disaster management. However, traditional remote sensing workflows often rely on explicit segmentation or detection methods, which struggle to handle complex, implicit queries that require reasoning over spatial context, domain knowledge, and implicit user intent. Motivated by this, we introduce a new task, \ie, geospatial pixel reasoning, which allows implicit querying and reasoning and generates the mask of the target region. To advance this task, we construct and release the first large-scale benchmark dataset called EarthReason, which comprises 5,434 manually annotated image masks with over 30,000 implicit question-answer pairs. Moreover, we propose SegEarth-R1, a simple yet effective language-guided segmentation baseline that integrates a hierarchical visual encoder, a large language model (LLM) for instruction parsing, and a tailored mask generator for spatial correlation. The design of SegEarth-R1 incorporates domain-specific adaptations, including aggressive visual token compression to handle ultra-high-resolution remote sensing images, a description projection module to fuse language and multi-scale features, and a streamlined mask prediction pipeline that directly queries description embeddings. Extensive experiments demonstrate that SegEarth-R1 achieves state-of-the-art performance on both reasoning and referring segmentation tasks, significantly outperforming traditional and LLM-based segmentation methods. Our data and code will be released at https://github.com/earth-insights/SegEarth-R1.

Authors:Xingjian Zhang, Siwei Wen, Wenjun Wu, Lei Huang
Title: TinyLLaVA-Video-R1: Towards Smaller LMMs for Video Reasoning
Abstract:
Recently, improving the reasoning ability of large multimodal models (LMMs) through reinforcement learning has made great progress. However, most existing works are based on highly reasoning-intensive datasets such as mathematics and code, and researchers generally choose large-scale models as the foundation. We argue that exploring small-scale models' reasoning capabilities remains valuable for researchers with limited computational resources. Moreover, enabling models to explain their reasoning processes on general question-answering datasets is equally meaningful. Therefore, we present the small-scale video reasoning model TinyLLaVA-Video-R1. Based on TinyLLaVA-Video, a traceably trained video understanding model with no more than 4B parameters, it not only demonstrates significantly improved reasoning and thinking capabilities after using reinforcement learning on general Video-QA datasets, but also exhibits the emergent characteristic of "aha moments". Furthermore, we share a series of experimental findings, aiming to provide practical insights for future exploration of video reasoning (thinking) abilities in small-scale models. It is available at https://github.com/ZhangXJ199/TinyLLaVA-Video-R1.

Authors:Atharv Mahesh Mane, Dulanga Weerakoon, Vigneshwaran Subbaraju, Sougata Sen, Sanjay E. Sarma, Archan Misra
Title: Ges3ViG: Incorporating Pointing Gestures into Language-Based 3D Visual Grounding for Embodied Reference Understanding
Abstract:
3-Dimensional Embodied Reference Understanding (3D-ERU) combines a language description and an accompanying pointing gesture to identify the most relevant target object in a 3D scene. Although prior work has explored pure language-based 3D grounding, there has been limited exploration of 3D-ERU, which also incorporates human pointing gestures. To address this gap, we introduce a data augmentation framework-Imputer, and use it to curate a new benchmark dataset-ImputeRefer for 3D-ERU, by incorporating human pointing gestures into existing 3D scene datasets that only contain language instructions. We also propose Ges3ViG, a novel model for 3D-ERU that achieves ~30% improvement in accuracy as compared to other 3D-ERU models and ~9% compared to other purely language-based 3D grounding models. Our code and dataset are available at https://github.com/AtharvMane/Ges3ViG.

Authors:Jiuchen Chen, Xinyu Yan, Qizhi Xu, Kaiqi Li
Title: Tokenize Image Patches: Global Context Fusion for Effective Haze Removal in Large Images
Abstract:
Global contextual information and local detail features are essential for haze removal tasks. Deep learning models perform well on small, low-resolution images, but they encounter difficulties with large, high-resolution ones due to GPU memory limitations. As a compromise, they often resort to image slicing or downsampling. The former diminishes global information, while the latter discards high-frequency details. To address these challenges, we propose DehazeXL, a haze removal method that effectively balances global context and local feature extraction, enabling end-to-end modeling of large images on mainstream GPU hardware. Additionally, to evaluate the efficiency of global context utilization in haze removal performance, we design a visual attribution method tailored to the characteristics of haze removal tasks. Finally, recognizing the lack of benchmark datasets for haze removal in large images, we have developed an ultra-high-resolution haze removal dataset (8KDehaze) to support model training and testing. It includes 10000 pairs of clear and hazy remote sensing images, each sized at 8192 $\times$ 8192 pixels. Extensive experiments demonstrate that DehazeXL can infer images up to 10240 $\times$ 10240 pixels with only 21 GB of memory, achieving state-of-the-art results among all evaluated methods. The source code and experimental dataset are available at https://github.com/CastleChen339/DehazeXL.

Authors:Lexington Whalen, Zhenbang Du, Haoran You, Chaojian Li, Sixu Li, Yingyan, Lin
Title: Early-Bird Diffusion: Investigating and Leveraging Timestep-Aware Early-Bird Tickets in Diffusion Models for Efficient Training
Abstract:
Training diffusion models (DMs) requires substantial computational resources due to multiple forward and backward passes across numerous timesteps, motivating research into efficient training techniques. In this paper, we propose EB-Diff-Train, a new efficient DM training approach that is orthogonal to other methods of accelerating DM training, by investigating and leveraging Early-Bird (EB) tickets -- sparse subnetworks that manifest early in the training process and maintain high generation quality. We first investigate the existence of traditional EB tickets in DMs, enabling competitive generation quality without fully training a dense model. Then, we delve into the concept of diffusion-dedicated EB tickets, drawing on insights from varying importance of different timestep regions. These tickets adapt their sparsity levels according to the importance of corresponding timestep regions, allowing for aggressive sparsity during non-critical regions while conserving computational resources for crucial timestep regions. Building on this, we develop an efficient DM training technique that derives timestep-aware EB tickets, trains them in parallel, and combines them during inference for image generation. Extensive experiments validate the existence of both traditional and timestep-aware EB tickets, as well as the effectiveness of our proposed EB-Diff-Train method. This approach can significantly reduce training time both spatially and temporally -- achieving 2.9$\times$ to 5.8$\times$ speedups over training unpruned dense models, and up to 10.3$\times$ faster training compared to standard train-prune-finetune pipelines -- without compromising generative quality. Our code is available at https://github.com/GATECH-EIC/Early-Bird-Diffusion.

Authors:Zhehao Dong, Zhen Lu, Yue Yang
Title: Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations
Abstract:
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows. Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.

Authors:Zan Huang
Title: Revisiting Self-Attentive Sequential Recommendation
Abstract:
Recommender systems are ubiquitous in on-line services to drive businesses. And many sequential recommender models were deployed in these systems to enhance personalization. The approach of using the transformer decoder as the sequential recommender was proposed years ago and is still a strong baseline in recent works. But this kind of sequential recommender model did not scale up well, compared to language models. Quite some details in the classical self-attentive sequential recommender model could be revisited, and some new experiments may lead to new findings, without changing the general model structure which was the focus of many previous works. In this paper, we show the details and propose new experiment methodologies for future research on sequential recommendation, in hope to motivate further exploration to new findings in this area.

Authors:Chenghao Li, Chaoning Zhang, Yi Lu, Jiaquan Zhang, Qigan Sun, Xudong Wang, Jiwei Wei, Guoqing Wang, Yang Yang, Heng Tao Shen
Title: Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Abstract:
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.

Authors:Hao Wang, Xiaobao Wei, Xiaoan Zhang, Jianing Li, Chengyu Bai, Ying Li, Ming Lu, Wenzhao Zheng, Shanghang Zhang
Title: EmbodiedOcc++: Boosting Embodied 3D Occupancy Prediction with Plane Regularization and Uncertainty Sampler
Abstract:
Online 3D occupancy prediction provides a comprehensive spatial understanding of embodied environments. While the innovative EmbodiedOcc framework utilizes 3D semantic Gaussians for progressive indoor occupancy prediction, it overlooks the geometric characteristics of indoor environments, which are primarily characterized by planar structures. This paper introduces EmbodiedOcc++, enhancing the original framework with two key innovations: a Geometry-guided Refinement Module (GRM) that constrains Gaussian updates through plane regularization, along with a Semantic-aware Uncertainty Sampler (SUS) that enables more effective updates in overlapping regions between consecutive frames. GRM regularizes the position update to align with surface normals. It determines the adaptive regularization weight using curvature-based and depth-based constraints, allowing semantic Gaussians to align accurately with planar surfaces while adapting in complex regions. To effectively improve geometric consistency from different views, SUS adaptively selects proper Gaussians to update. Comprehensive experiments on the EmbodiedOcc-ScanNet benchmark demonstrate that EmbodiedOcc++ achieves state-of-the-art performance across different settings. Our method demonstrates improved edge accuracy and retains more geometric details while ensuring computational efficiency, which is essential for online embodied perception. The code will be released at: https://github.com/PKUHaoWang/EmbodiedOcc2.

Authors:Shuchao Duan, Amirhossein Dadashzadeh, Alan Whone, Majid Mirmehdi
Title: Trajectory-guided Motion Perception for Facial Expression Quality Assessment in Neurological Disorders
Abstract:
Automated facial expression quality assessment (FEQA) in neurological disorders is critical for enhancing diagnostic accuracy and improving patient care, yet effectively capturing the subtle motions and nuances of facial muscle movements remains a challenge. We propose to analyse facial landmark trajectories, a compact yet informative representation, that encodes these subtle motions from a high-level structural perspective. Hence, we introduce Trajectory-guided Motion Perception Transformer (TraMP-Former), a novel FEQA framework that fuses landmark trajectory features for fine-grained motion capture with visual semantic cues from RGB frames, ultimately regressing the combined features into a quality score. Extensive experiments demonstrate that TraMP-Former achieves new state-of-the-art performance on benchmark datasets with neurological disorders, including PFED5 (up by 6.51%) and an augmented Toronto NeuroFace (up by 7.62%). Our ablation studies further validate the efficiency and effectiveness of landmark trajectories in FEQA. Our code is available at https://github.com/shuchaoduan/TraMP-Former.

Authors:Ting Huang, Zeyu Zhang, Yemin Wang, Hao Tang
Title: 3D CoCa: Contrastive Learners are 3D Captioners
Abstract:
3D captioning, which aims to describe the content of 3D scenes in natural language, remains highly challenging due to the inherent sparsity of point clouds and weak cross-modal alignment in existing methods. To address these challenges, we propose 3D CoCa, a novel unified framework that seamlessly combines contrastive vision-language learning with 3D caption generation in a single architecture. Our approach leverages a frozen CLIP vision-language backbone to provide rich semantic priors, a spatially-aware 3D scene encoder to capture geometric context, and a multi-modal decoder to generate descriptive captions. Unlike prior two-stage methods that rely on explicit object proposals, 3D CoCa jointly optimizes contrastive and captioning objectives in a shared feature space, eliminating the need for external detectors or handcrafted proposals. This joint training paradigm yields stronger spatial reasoning and richer semantic grounding by aligning 3D and textual representations. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that 3D CoCa significantly outperforms current state-of-the-arts by 10.2% and 5.76% in CIDEr at 0.5IoU, respectively. Code will be available at https://github.com/AIGeeksGroup/3DCoCa.

Authors:Sharanya Dasgupta, Sujoy Nath, Arkaprabha Basu, Pourya Shamsolmoali, Swagatam Das
Title: HalluShift: Measuring Distribution Shifts towards Hallucination Detection in LLMs
Abstract:
Large Language Models (LLMs) have recently garnered widespread attention due to their adeptness at generating innovative responses to the given prompts across a multitude of domains. However, LLMs often suffer from the inherent limitation of hallucinations and generate incorrect information while maintaining well-structured and coherent responses. In this work, we hypothesize that hallucinations stem from the internal dynamics of LLMs. Our observations indicate that, during passage generation, LLMs tend to deviate from factual accuracy in subtle parts of responses, eventually shifting toward misinformation. This phenomenon bears a resemblance to human cognition, where individuals may hallucinate while maintaining logical coherence, embedding uncertainty within minor segments of their speech. To investigate this further, we introduce an innovative approach, HalluShift, designed to analyze the distribution shifts in the internal state space and token probabilities of the LLM-generated responses. Our method attains superior performance compared to existing baselines across various benchmark datasets. Our codebase is available at https://github.com/sharanya-dasgupta001/hallushift.

Authors:Chenbin Zhang, Zhiqiang Hu, Chuchu Jiang, Wen Chen, Jie Xu, Shaoting Zhang
Title: Rethinking the generalization of drug target affinity prediction algorithms via similarity aware evaluation
Abstract:
Drug-target binding affinity prediction is a fundamental task for drug discovery. It has been extensively explored in literature and promising results are reported. However, in this paper, we demonstrate that the results may be misleading and cannot be well generalized to real practice. The core observation is that the canonical randomized split of a test set in conventional evaluation leaves the test set dominated by samples with high similarity to the training set. The performance of models is severely degraded on samples with lower similarity to the training set but the drawback is highly overlooked in current evaluation. As a result, the performance can hardly be trusted when the model meets low-similarity samples in real practice. To address this problem, we propose a framework of similarity aware evaluation in which a novel split methodology is proposed to adapt to any desired distribution. This is achieved by a formulation of optimization problems which are approximately and efficiently solved by gradient descent. We perform extensive experiments across five representative methods in four datasets for two typical target evaluations and compare them with various counterpart methods. Results demonstrate that the proposed split methodology can significantly better fit desired distributions and guide the development of models. Code is released at https://github.com/Amshoreline/SAE/tree/main.

Authors:Yongchao Feng, Yajie Liu, Shuai Yang, Wenrui Cai, Jinqing Zhang, Qiqi Zhan, Ziyue Huang, Hongxi Yan, Qiao Wan, Chenguang Liu, Junzhe Wang, Jiahui Lv, Ziqi Liu, Tengyuan Shi, Qingjie Liu, Yunhong Wang
Title: Vision-Language Model for Object Detection and Segmentation: A Review and Evaluation
Abstract:
Vision-Language Model (VLM) have gained widespread adoption in Open-Vocabulary (OV) object detection and segmentation tasks. Despite they have shown promise on OV-related tasks, their effectiveness in conventional vision tasks has thus far been unevaluated. In this work, we present the systematic review of VLM-based detection and segmentation, view VLM as the foundational model and conduct comprehensive evaluations across multiple downstream tasks for the first time: 1) The evaluation spans eight detection scenarios (closed-set detection, domain adaptation, crowded objects, etc.) and eight segmentation scenarios (few-shot, open-world, small object, etc.), revealing distinct performance advantages and limitations of various VLM architectures across tasks. 2) As for detection tasks, we evaluate VLMs under three finetuning granularities: \textit{zero prediction}, \textit{visual fine-tuning}, and \textit{text prompt}, and further analyze how different finetuning strategies impact performance under varied task. 3) Based on empirical findings, we provide in-depth analysis of the correlations between task characteristics, model architectures, and training methodologies, offering insights for future VLM design. 4) We believe that this work shall be valuable to the pattern recognition experts working in the fields of computer vision, multimodal learning, and vision foundation models by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research. A project associated with this review and evaluation has been created at https://github.com/better-chao/perceptual_abilities_evaluation.

Authors:Sacheendra Talluri, Dante Niewenhuis, Xiaoyu Chu, Jakob Kyselica, Mehmet Cetin, Alexander Balgavy, Alexandru Iosup
Title: Cloud Uptime Archive: Open-Access Availability Data of Web, Cloud, and Gaming Services
Abstract:
Cloud services are critical to society. However, their reliability is poorly understood. Towards solving the problem, we propose a standard repository for cloud uptime data. We populate this repository with the data we collect containing failure reports from users and operators of cloud services, web services, and online games. The multiple vantage points help reduce bias from individual users and operators. We compare our new data to existing failure data from the Failure Trace Archive and the Google cluster trace. We analyze the MTBF and MTTR, time patterns, failure severity, user-reported symptoms, and operator-reported symptoms of failures in the data we collect. We observe that high-level user facing services fail less often than low-level infrastructure services, likely due to them using fault-tolerance techniques. We use simulation-based experiments to demonstrate the impact of different failure traces on the performance of checkpointing and retry mechanisms. We release the data, and the analysis and simulation tools, as open-source artifacts available at https://github.com/atlarge-research/cloud-uptime-archive .

Authors:Weinan Jia, Mengqi Huang, Nan Chen, Lei Zhang, Zhendong Mao
Title: D$^2$iT: Dynamic Diffusion Transformer for Accurate Image Generation
Abstract:
Diffusion models are widely recognized for their ability to generate high-fidelity images. Despite the excellent performance and scalability of the Diffusion Transformer (DiT) architecture, it applies fixed compression across different image regions during the diffusion process, disregarding the naturally varying information densities present in these regions. However, large compression leads to limited local realism, while small compression increases computational complexity and compromises global consistency, ultimately impacting the quality of generated images. To address these limitations, we propose dynamically compressing different image regions by recognizing the importance of different regions, and introduce a novel two-stage framework designed to enhance the effectiveness and efficiency of image generation: (1) Dynamic VAE (DVAE) at first stage employs a hierarchical encoder to encode different image regions at different downsampling rates, tailored to their specific information densities, thereby providing more accurate and natural latent codes for the diffusion process. (2) Dynamic Diffusion Transformer (D$^2$iT) at second stage generates images by predicting multi-grained noise, consisting of coarse-grained (less latent code in smooth regions) and fine-grained (more latent codes in detailed regions), through an novel combination of the Dynamic Grain Transformer and the Dynamic Content Transformer. The strategy of combining rough prediction of noise with detailed regions correction achieves a unification of global consistency and local realism. Comprehensive experiments on various generation tasks validate the effectiveness of our approach. Code will be released at https://github.com/jiawn-creator/Dynamic-DiT.

Authors:Lin Zhu, Xinbing Wang, Chenghu Zhou, Nanyang Ye
Title: Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization
Abstract:
Recent advances in large pre-trained models showed promising results in few-shot learning. However, their generalization ability on two-dimensional Out-of-Distribution (OoD) data, i.e., correlation shift and diversity shift, has not been thoroughly investigated. Researches have shown that even with a significant amount of training data, few methods can achieve better performance than the standard empirical risk minimization method (ERM) in OoD generalization. This few-shot OoD generalization dilemma emerges as a challenging direction in deep neural network generalization research, where the performance suffers from overfitting on few-shot examples and OoD generalization errors. In this paper, leveraging a broader supervision source, we explore a novel Bayesian cross-modal image-text alignment learning method (Bayes-CAL) to address this issue. Specifically, the model is designed as only text representations are fine-tuned via a Bayesian modelling approach with gradient orthogonalization loss and invariant risk minimization (IRM) loss. The Bayesian approach is essentially introduced to avoid overfitting the base classes observed during training and improve generalization to broader unseen classes. The dedicated loss is introduced to achieve better image-text alignment by disentangling the causal and non-casual parts of image features. Numerical experiments demonstrate that Bayes-CAL achieved state-of-the-art OoD generalization performances on two-dimensional distribution shifts. Moreover, compared with CLIP-like models, Bayes-CAL yields more stable generalization performances on unseen classes. Our code is available at https://github.com/LinLLLL/BayesCAL.

Authors:Wuyang Lan, Wenzheng Wang, Changwei Ji, Guoxing Yang, Yongbo Zhang, Xiaohong Liu, Song Wu, Guangyu Wang
Title: ClinicalGPT-R1: Pushing reasoning capability of generalist disease diagnosis with large language model
Abstract:
Recent advances in reasoning with large language models (LLMs)has shown remarkable reasoning capabilities in domains such as mathematics and coding, yet their application to clinical diagnosis remains underexplored. Here, we introduce ClinicalGPT-R1, a reasoning enhanced generalist large language model for disease diagnosis. Trained on a dataset of 20,000 real-world clinical records, ClinicalGPT-R1 leverages diverse training strategies to enhance diagnostic reasoning. To benchmark performance, we curated MedBench-Hard, a challenging dataset spanning seven major medical specialties and representative diseases. Experimental results demonstrate that ClinicalGPT-R1 outperforms GPT-4o in Chinese diagnostic tasks and achieves comparable performance to GPT-4 in English settings. This comparative study effectively validates the superior performance of ClinicalGPT-R1 in disease diagnosis tasks. Resources are available at https://github.com/medfound/medfound.

Authors:Jiawei Wu, Zhifei Yang, Zhe Wang, Zhi Jin
Title: Gradient as Conditions: Rethinking HOG for All-in-one Image Restoration
Abstract:
All-in-one image restoration (AIR) aims to address diverse degradations within a unified model by leveraging informative degradation conditions to guide the restoration process. However, existing methods often rely on implicitly learned priors, which may entangle feature representations and hinder performance in complex or unseen scenarios. Histogram of Oriented Gradients (HOG) as a classical gradient representation, we observe that it has strong discriminative capability across diverse degradations, making it a powerful and interpretable prior for AIR. Based on this insight, we propose HOGformer, a Transformer-based model that integrates learnable HOG features for degradation-aware restoration. The core of HOGformer is a Dynamic HOG-aware Self-Attention (DHOGSA) mechanism, which adaptively models long-range spatial dependencies conditioned on degradation-specific cues encoded by HOG descriptors. To further adapt the heterogeneity of degradations in AIR, we propose a Dynamic Interaction Feed-Forward (DIFF) module that facilitates channel-spatial interactions, enabling robust feature transformation under diverse degradations. Besides, we propose a HOG loss to explicitly enhance structural fidelity and edge sharpness. Extensive experiments on a variety of benchmarks, including adverse weather and natural degradations, demonstrate that HOGformer achieves state-of-the-art performance and generalizes well to complex real-world scenarios.Code is available at https://github.com/Fire-friend/HOGformer.

Authors:Iason Chaimalas, Arnas Vyšniauskas, Gabriel Brostow
Title: Explorer: Robust Collection of Interactable GUI Elements
Abstract:
Automation of existing Graphical User Interfaces (GUIs) is important but hard to achieve. Upstream of making the GUI user-accessible or somehow scriptable, even the data-collection to understand the original interface poses significant challenges. For example, large quantities of general UI data seem helpful for training general machine learning (ML) models, but accessibility for each person can hinge on the ML's precision on a specific app. We therefore take the perspective that a given user needs confidence, that the relevant UI elements are being detected correctly throughout one app or digital environment. We mostly assume that the target application is known in advance, so that data collection and ML-training can be personalized for the test-time target domain. The proposed Explorer system focuses on detecting on-screen buttons and text-entry fields, i.e. interactables, where the training process has access to a live version of the application. The live application can run on almost any popular platform except iOS phones, and the collection is especially streamlined for Android phones or for desktop Chrome browsers. Explorer also enables the recording of interactive user sessions, and subsequent mapping of how such sessions overlap and sometimes loop back to similar states. We show how having such a map enables a kind of path planning through the GUI, letting a user issue audio commands to get to their destination. Critically, we are releasing our code for Explorer openly at https://github.com/varnelis/Explorer.

Authors:Simon Adamov, Joel Oskarsson, Leif Denby, Tomas Landelius, Kasper Hintz, Simon Christiansen, Irene Schicker, Carlos Osuna, Fredrik Lindsten, Oliver Fuhrer, Sebastian Schemm
Title: Building Machine Learning Limited Area Models: Kilometer-Scale Weather Forecasting in Realistic Settings
Abstract:
Machine learning is revolutionizing global weather forecasting, with models that efficiently produce highly accurate forecasts. Apart from global forecasting there is also a large value in high-resolution regional weather forecasts, focusing on accurate simulations of the atmosphere for a limited area. Initial attempts have been made to use machine learning for such limited area scenarios, but these experiments do not consider realistic forecasting settings and do not investigate the many design choices involved. We present a framework for building kilometer-scale machine learning limited area models with boundary conditions imposed through a flexible boundary forcing method. This enables boundary conditions defined either from reanalysis or operational forecast data. Our approach employs specialized graph constructions with rectangular and triangular meshes, along with multi-step rollout training strategies to improve temporal consistency. We perform systematic evaluation of different design choices, including the boundary width, graph construction and boundary forcing integration. Models are evaluated across both a Danish and a Swiss domain, two regions that exhibit different orographical characteristics. Verification is performed against both gridded analysis data and in-situ observations, including a case study for the storm Ciara in February 2020. Both models achieve skillful predictions across a wide range of variables, with our Swiss model outperforming the numerical weather prediction baseline for key surface variables. With their substantially lower computational cost, our findings demonstrate great potential for machine learning limited area models in the future of regional weather forecasting.

Authors:Sijing Wu, Yunhao Li, Ziwen Xu, Yixuan Gao, Huiyu Duan, Wei Sun, Guangtao Zhai
Title: FVQ: A Large-Scale Dataset and an LMM-based Method for Face Video Quality Assessment
Abstract:
Face video quality assessment (FVQA) deserves to be explored in addition to general video quality assessment (VQA), as face videos are the primary content on social media platforms and human visual system (HVS) is particularly sensitive to human faces. However, FVQA is rarely explored due to the lack of large-scale FVQA datasets. To fill this gap, we present the first large-scale in-the-wild FVQA dataset, FVQ-20K, which contains 20,000 in-the-wild face videos together with corresponding mean opinion score (MOS) annotations. Along with the FVQ-20K dataset, we further propose a specialized FVQA method named FVQ-Rater to achieve human-like rating and scoring for face video, which is the first attempt to explore the potential of large multimodal models (LMMs) for the FVQA task. Concretely, we elaborately extract multi-dimensional features including spatial features, temporal features, and face-specific features (i.e., portrait features and face embeddings) to provide comprehensive visual information, and take advantage of the LoRA-based instruction tuning technique to achieve quality-specific fine-tuning, which shows superior performance on both FVQ-20K and CFVQA datasets. Extensive experiments and comprehensive analysis demonstrate the significant potential of the FVQ-20K dataset and FVQ-Rater method in promoting the development of FVQA.

Authors:Yomna Mokhtar, Tarek Shohdy, Abdallah A. Hassan, Mostafa Eshra, Omar Elmenawy, Osama Khalil, Haitham El-Hussieny
Title: Development of a PPO-Reinforcement Learned Walking Tripedal Soft-Legged Robot using SOFA
Abstract:
Rigid robots were extensively researched, whereas soft robotics remains an underexplored field. Utilizing soft-legged robots in performing tasks as a replacement for human beings is an important stride to take, especially under harsh and hazardous conditions over rough terrain environments. For the demand to teach any robot how to behave in different scenarios, a real-time physical and visual simulation is essential. When it comes to soft robots specifically, a simulation framework is still an arduous problem that needs to be disclosed. Using the simulation open framework architecture (SOFA) is an advantageous step. However, neither SOFA's manual nor prior public SOFA projects show its maximum capabilities the users can reach. So, we resolved this by establishing customized settings and handling the framework components appropriately. Settling on perfect, fine-tuned SOFA parameters has stimulated our motivation towards implementing the state-of-the-art (SOTA) reinforcement learning (RL) method of proximal policy optimization (PPO). The final representation is a well-defined, ready-to-deploy walking, tripedal, soft-legged robot based on PPO-RL in a SOFA environment. Robot navigation performance is a key metric to be considered for measuring the success resolution. Although in the simulated soft robots case, an 82\% success rate in reaching a single goal is a groundbreaking output, we pushed the boundaries to further steps by evaluating the progress under assigning a sequence of goals. While trailing the platform steps, outperforming discovery has been observed with an accumulative squared error deviation of 19 mm. The full code is publicly available at \href{https://github.com/tarekshohdy/PPO_SOFA_Soft_Legged_Robot.git}{github.com/tarekshohdy/PPO$\textunderscore$SOFA$\textunderscore$Soft$\textunderscore$Legged$\textunderscore$ Robot.git}

Authors:You Wu, Xucheng Wang, Xiangyang Yang, Mengyuan Liu, Dan Zeng, Hengzhou Ye, Shuiwang Li
Title: Learning Occlusion-Robust Vision Transformers for Real-Time UAV Tracking
Abstract:
Single-stream architectures using Vision Transformer (ViT) backbones show great potential for real-time UAV tracking recently. However, frequent occlusions from obstacles like buildings and trees expose a major drawback: these models often lack strategies to handle occlusions effectively. New methods are needed to enhance the occlusion resilience of single-stream ViT models in aerial tracking. In this work, we propose to learn Occlusion-Robust Representations (ORR) based on ViTs for UAV tracking by enforcing an invariance of the feature representation of a target with respect to random masking operations modeled by a spatial Cox process. Hopefully, this random masking approximately simulates target occlusions, thereby enabling us to learn ViTs that are robust to target occlusion for UAV tracking. This framework is termed ORTrack. Additionally, to facilitate real-time applications, we propose an Adaptive Feature-Based Knowledge Distillation (AFKD) method to create a more compact tracker, which adaptively mimics the behavior of the teacher model ORTrack according to the task's difficulty. This student model, dubbed ORTrack-D, retains much of ORTrack's performance while offering higher efficiency. Extensive experiments on multiple benchmarks validate the effectiveness of our method, demonstrating its state-of-the-art performance. Codes is available at https://github.com/wuyou3474/ORTrack.

Authors:Tzoulio Chamiti, Leandro Di Bella, Adrian Munteanu, Nikos Deligiannis
Title: ReferGPT: Towards Zero-Shot Referring Multi-Object Tracking
Abstract:
Tracking multiple objects based on textual queries is a challenging task that requires linking language understanding with object association across frames. Previous works typically train the whole process end-to-end or integrate an additional referring text module into a multi-object tracker, but they both require supervised training and potentially struggle with generalization to open-set queries. In this work, we introduce ReferGPT, a novel zero-shot referring multi-object tracking framework. We provide a multi-modal large language model (MLLM) with spatial knowledge enabling it to generate 3D-aware captions. This enhances its descriptive capabilities and supports a more flexible referring vocabulary without training. We also propose a robust query-matching strategy, leveraging CLIP-based semantic encoding and fuzzy matching to associate MLLM generated captions with user queries. Extensive experiments on Refer-KITTI, Refer-KITTIv2 and Refer-KITTI+ demonstrate that ReferGPT achieves competitive performance against trained methods, showcasing its robustness and zero-shot capabilities in autonomous driving. The codes are available on https://github.com/Tzoulio/ReferGPT

Authors:Shengyu Gong, Yueyang Li, Zijian Kang, Weiming Zeng, Hongjie Yan, Zhiguo Zhang, Wai Ting Siok, Nizhuan Wang
Title: LEL: A Novel Lipschitz Continuity-constrained Ensemble Learning Model for EEG-based Emotion Recognition
Abstract:
The accurate and efficient recognition of emotional states in oneself and others is critical, as impairments in this ability can lead to significant psychosocial difficulties. While electroencephalography (EEG) offers a powerful tool for emotion detection, current EEG-based emotion recognition (EER) methods face key limitations: insufficient model stability, limited accuracy in processing high-dimensional nonlinear EEG signals, and poor robustness against intra-subject variability and signal noise. To address these challenges, we introduce LEL (Lipschitz continuity-constrained Ensemble Learning), a novel framework that enhances EEG-based emotion recognition. By integrating Lipschitz continuity constraints, LEL ensures greater model stability and improves generalization, thereby reducing sensitivity to signal variability and noise while significantly boosting the model's overall accuracy and robustness. Its ensemble learning strategy optimizes overall performance by fusing decisions from multiple classifiers to reduce single-model bias and variance. Experimental results on three public benchmark datasets (EAV, FACED and SEED) demonstrated the LEL's state-of-the-art performance, achieving average recognition accuracies of 76.43%, 83.00% and 87.22%, respectively. The official implementation codes are released at https://github.com/NZWANG/LEL.

Authors:Yunfei Long, Abhinav Kumar, Xiaoming Liu, Daniel Morris
Title: RICCARDO: Radar Hit Prediction and Convolution for Camera-Radar 3D Object Detection
Abstract:
Radar hits reflect from points on both the boundary and internal to object outlines. This results in a complex distribution of radar hits that depends on factors including object category, size, and orientation. Current radar-camera fusion methods implicitly account for this with a black-box neural network. In this paper, we explicitly utilize a radar hit distribution model to assist fusion. First, we build a model to predict radar hit distributions conditioned on object properties obtained from a monocular detector. Second, we use the predicted distribution as a kernel to match actual measured radar points in the neighborhood of the monocular detections, generating matching scores at nearby positions. Finally, a fusion stage combines context with the kernel detector to refine the matching scores. Our method achieves the state-of-the-art radar-camera detection performance on nuScenes. Our source code is available at https://github.com/longyunf/riccardo.

Authors:Matt Grenander, Siddharth Varia, Paula Czarnowska, Yogarshi Vyas, Kishaloy Halder, Bonan Min
Title: Exploration of Plan-Guided Summarization for Narrative Texts: the Case of Small Language Models
Abstract:
Plan-guided summarization attempts to reduce hallucinations in small language models (SLMs) by grounding generated summaries to the source text, typically by targeting fine-grained details such as dates or named entities. In this work, we investigate whether plan-based approaches in SLMs improve summarization in long document, narrative tasks. Narrative texts' length and complexity often mean they are difficult to summarize faithfully. We analyze existing plan-guided solutions targeting fine-grained details, and also propose our own higher-level, narrative-based plan formulation. Our results show that neither approach significantly improves on a baseline without planning in either summary quality or faithfulness. Human evaluation reveals that while plan-guided approaches are often well grounded to their plan, plans are equally likely to contain hallucinations compared to summaries. As a result, the plan-guided summaries are just as unfaithful as those from models without planning. Our work serves as a cautionary tale to plan-guided approaches to summarization, especially for long, complex domains such as narrative texts. Code available at https://github.com/amazon-science/plan-guided-summarization

Authors:Zhijie Shen, Chunyu Lin, Shujuan Huang, Lang Nie, Kang Liao, Yao Zhao
Title: You Need a Transition Plane: Bridging Continuous Panoramic 3D Reconstruction with Perspective Gaussian Splatting
Abstract:
Recently, reconstructing scenes from a single panoramic image using advanced 3D Gaussian Splatting (3DGS) techniques has attracted growing interest. Panoramic images offer a 360$\times$ 180 field of view (FoV), capturing the entire scene in a single shot. However, panoramic images introduce severe distortion, making it challenging to render 3D Gaussians into 2D distorted equirectangular space directly. Converting equirectangular images to cubemap projections partially alleviates this problem but introduces new challenges, such as projection distortion and discontinuities across cube-face boundaries. To address these limitations, we present a novel framework, named TPGS, to bridge continuous panoramic 3D scene reconstruction with perspective Gaussian splatting. Firstly, we introduce a Transition Plane between adjacent cube faces to enable smoother transitions in splatting directions and mitigate optimization ambiguity in the boundary region. Moreover, an intra-to-inter face optimization strategy is proposed to enhance local details and restore visual consistency across cube-face boundaries. Specifically, we optimize 3D Gaussians within individual cube faces and then fine-tune them in the stitched panoramic space. Additionally, we introduce a spherical sampling technique to eliminate visible stitching seams. Extensive experiments on indoor and outdoor, egocentric, and roaming benchmark datasets demonstrate that our approach outperforms existing state-of-the-art methods. Code and models will be available at https://github.com/zhijieshen-bjtu/TPGS.

Authors:Adrianna Romanowski, Pedro H. V. Valois, Kazuhiro Fukui
Title: From Punchlines to Predictions: A Metric to Assess LLM Performance in Identifying Humor in Stand-Up Comedy
Abstract:
Comedy serves as a profound reflection of the times we live in and is a staple element of human interactions. In light of the widespread adoption of Large Language Models (LLMs), the intersection of humor and AI has become no laughing matter. Advancements in the naturalness of human-computer interaction correlates with improvements in AI systems' abilities to understand humor. In this study, we assess the ability of models in accurately identifying humorous quotes from a stand-up comedy transcript. Stand-up comedy's unique comedic narratives make it an ideal dataset to improve the overall naturalness of comedic understanding. We propose a novel humor detection metric designed to evaluate LLMs amongst various prompts on their capability to extract humorous punchlines. The metric has a modular structure that offers three different scoring methods - fuzzy string matching, sentence embedding, and subspace similarity - to provide an overarching assessment of a model's performance. The model's results are compared against those of human evaluators on the same task. Our metric reveals that regardless of prompt engineering, leading models, ChatGPT, Claude, and DeepSeek, achieve scores of at most 51% in humor detection. Notably, this performance surpasses that of humans who achieve a score of 41%. The analysis of human evaluators and LLMs reveals variability in agreement, highlighting the subjectivity inherent in humor and the complexities involved in extracting humorous quotes from live performance transcripts. Code available at https://github.com/swaggirl9000/humor.

Authors:Yongchang Wu, Zipeng Qi, Zhenwei Shi, Zhengxia Zou
Title: BlockGaussian: Efficient Large-Scale Scene Novel View Synthesis via Adaptive Block-Based Gaussian Splatting
Abstract:
The recent advancements in 3D Gaussian Splatting (3DGS) have demonstrated remarkable potential in novel view synthesis tasks. The divide-and-conquer paradigm has enabled large-scale scene reconstruction, but significant challenges remain in scene partitioning, optimization, and merging processes. This paper introduces BlockGaussian, a novel framework incorporating a content-aware scene partition strategy and visibility-aware block optimization to achieve efficient and high-quality large-scale scene reconstruction. Specifically, our approach considers the content-complexity variation across different regions and balances computational load during scene partitioning, enabling efficient scene reconstruction. To tackle the supervision mismatch issue during independent block optimization, we introduce auxiliary points during individual block optimization to align the ground-truth supervision, which enhances the reconstruction quality. Furthermore, we propose a pseudo-view geometry constraint that effectively mitigates rendering degradation caused by airspace floaters during block merging. Extensive experiments on large-scale scenes demonstrate that our approach achieves state-of-the-art performance in both reconstruction efficiency and rendering quality, with a 5x speedup in optimization and an average PSNR improvement of 1.21 dB on multiple benchmarks. Notably, BlockGaussian significantly reduces computational requirements, enabling large-scale scene reconstruction on a single 24GB VRAM device. The project page is available at https://github.com/SunshineWYC/BlockGaussian

Authors:Shubham Aggarwal, Dipankar Maity, Tamer Başar
Title: InterQ: A DQN Framework for Optimal Intermittent Control
Abstract:
In this letter, we explore the communication-control co-design of discrete-time stochastic linear systems through reinforcement learning. Specifically, we examine a closed-loop system involving two sequential decision-makers: a scheduler and a controller. The scheduler continuously monitors the system's state but transmits it to the controller intermittently to balance the communication cost and control performance. The controller, in turn, determines the control input based on the intermittently received information. Given the partially nested information structure, we show that the optimal control policy follows a certainty-equivalence form. Subsequently, we analyze the qualitative behavior of the scheduling policy. To develop the optimal scheduling policy, we propose InterQ, a deep reinforcement learning algorithm which uses a deep neural network to approximate the Q-function. Through extensive numerical evaluations, we analyze the scheduling landscape and further compare our approach against two baseline strategies: (a) a multi-period periodic scheduling policy, and (b) an event-triggered policy. The results demonstrate that our proposed method outperforms both baselines. The open source implementation can be found at https://github.com/AC-sh/InterQ.

Authors:Jiawei Li
Title: Detecting Instruction Fine-tuning Attack on Language Models with Influence Function
Abstract:
Instruction fine-tuning attacks pose a significant threat to large language models (LLMs) by subtly embedding poisoned data in fine-tuning datasets, which can trigger harmful or unintended responses across a range of tasks. This undermines model alignment and poses security risks in real-world deployment. In this work, we present a simple and effective approach to detect and mitigate such attacks using influence functions, a classical statistical tool adapted for machine learning interpretation. Traditionally, the high computational costs of influence functions have limited their application to large models and datasets. The recent Eigenvalue-Corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation method enables efficient influence score computation, making it feasible for large-scale analysis. We are the first to apply influence functions for detecting language model instruction fine-tuning attacks on large-scale datasets, as both the instruction fine-tuning attack on language models and the influence calculation approximation technique are relatively new. Our large-scale empirical evaluation of influence functions on 50,000 fine-tuning examples and 32 tasks reveals a strong association between influence scores and sentiment. Building on this, we introduce a novel sentiment transformation combined with influence functions to detect and remove critical poisons -- poisoned data points that skew model predictions. Removing these poisons (only 1% of total data) recovers model performance to near-clean levels, demonstrating the effectiveness and efficiency of our approach. Artifact is available at https://github.com/lijiawei20161002/Poison-Detection. WARNING: This paper contains offensive data examples.

Authors:Jiawei Li
Title: Detecting Instruction Fine-tuning Attacks on Language Models using Influence Function
Abstract:
Instruction finetuning attacks pose a serious threat to large language models (LLMs) by subtly embedding poisoned examples in finetuning datasets, leading to harmful or unintended behaviors in downstream applications. Detecting such attacks is challenging because poisoned data is often indistinguishable from clean data and prior knowledge of triggers or attack strategies is rarely available. We present a detection method that requires no prior knowledge of the attack. Our approach leverages influence functions under semantic transformation: by comparing influence distributions before and after a sentiment inversion, we identify critical poison examples whose influence is strong and remain unchanged before and after inversion. We show that this method works on sentiment classification task and math reasoning task, for different language models. Removing a small set of critical poisons (about 1% of the data) restores the model performance to near-clean levels. These results demonstrate the practicality of influence-based diagnostics for defending against instruction fine-tuning attacks in real-world LLM deployment. Artifact available at https://github.com/lijiawei20161002/Poison-Detection. WARNING: This paper contains offensive data examples.

Authors:Aashaka Shah, Abhinav Jangda, Binyang Li, Caio Rocha, Changho Hwang, Jithin Jose, Madan Musuvathi, Olli Saarikivi, Peng Cheng, Qinghua Zhou, Roshan Dathathri, Saeed Maleki, Ziyue Yang
Title: MSCCL++: Rethinking GPU Communication Abstractions for Cutting-edge AI Applications
Abstract:
Modern cutting-edge AI applications are being developed over fast-evolving, heterogeneous, nascent hardware devices. This requires frequent reworking of the AI software stack to adopt bottom-up changes from new hardware, which takes time for general-purpose software libraries. Consequently, real applications often develop custom software stacks optimized for their specific workloads and hardware. Custom stacks help in quick development and optimization, but incur a lot of redundant efforts across applications in writing non-portable code. This paper discusses an alternative communication library interface for AI applications that offers both portability and performance by reducing redundant efforts while maintaining flexibility for customization. We present MSCCL++, a novel abstraction of GPU communication based on separation of concerns: (1) a primitive interface provides a minimal hardware abstraction as a common ground for software and hardware developers to write custom communication, and (2) higher-level portable interfaces and specialized implementations enable optimization for different workloads and hardware environments. This approach makes the primitive interface reusable across applications while enabling highly flexible optimization. Compared to state-of-the-art baselines (NCCL, RCCL, and MSCCL), MSCCL++ achieves speedups of up to 5.4$\times$ for collective communication and up to 15% for real-world AI inference workloads. MSCCL++ is in production of multiple AI services provided by Microsoft Azure, and is also adopted by RCCL, the GPU collective communication library maintained by AMD. MSCCL++ is open-source and available at https://github.com/microsoft/mscclpp.

Authors:Han Liao, Shuaishuai Zu
Title: RouterKT: Mixture-of-Experts for Knowledge Tracing
Abstract:
Knowledge Tracing (KT) is a fundamental task in Intelligent Tutoring Systems (ITS), which aims to model the dynamic knowledge states of students based on their interaction histories. However, existing KT models often rely on a global forgetting decay mechanism for capturing learning patterns, assuming that students' performance is predominantly influenced by their most recent interactions. Such approaches fail to account for the diverse and complex learning patterns arising from individual differences and varying learning stages. To address this limitation, we propose RouterKT, a novel Mixture-of-Experts (MoE) architecture designed to capture heterogeneous learning patterns by enabling experts to specialize in different patterns without any handcrafted learning pattern bias such as forgetting decay. Specifically, RouterKT introduces a \textbf{person-wise routing mechanism} to effectively model individual-specific learning behaviors and employs \textbf{multi-heads as experts} to enhance the modeling of complex and diverse patterns. Comprehensive experiments on ten benchmark datasets demonstrate that RouterKT exhibits significant flexibility and improves the performance of various KT backbone models, with a maximum average AUC improvement of 3.29\% across different backbones and datasets, outperforming other state-of-the-art models. Moreover, RouterKT demonstrates consistently superior inference efficiency compared to existing approaches based on handcrafted learning pattern bias, highlighting its usability for real-world educational applications. The source code is available at https://github.com/ringotc/RouterKT.git.

Authors:Xijin Ge
Title: DataMap: A Portable Application for Visualizing High-Dimensional Data
Abstract:
Motivation: The visualization and analysis of high-dimensional data are essential in biomedical research. There is a need for secure, scalable, and reproducible tools to facilitate data exploration and interpretation. Results: We introduce DataMap, a browser-based application for visualization of high-dimensional data using heatmaps, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE). DataMap runs in the web browser, ensuring data privacy while eliminating the need for installation or a server. The application has an intuitive user interface for data transformation, annotation, and generation of reproducible R code. Availability and Implementation: Freely available as a GitHub page https://gexijin.github.io/datamap/. The source code can be found at https://github.com/gexijin/datamap, and can also be installed as an R package. Contact: Xijin.Ge@sdstate.ed

Authors:Yuchu Jiang, Jiale Fu, Chenduo Hao, Xinting Hu, Yingzhe Peng, Xin Geng, Xu Yang
Title: Mimic In-Context Learning for Multimodal Tasks
Abstract:
Recently, In-context Learning (ICL) has become a significant inference paradigm in Large Multimodal Models (LMMs), utilizing a few in-context demonstrations (ICDs) to prompt LMMs for new tasks. However, the synergistic effects in multimodal data increase the sensitivity of ICL performance to the configurations of ICDs, stimulating the need for a more stable and general mapping function. Mathematically, in Transformer-based models, ICDs act as "shift vectors" added to the hidden states of query tokens. Inspired by this, we introduce Mimic In-Context Learning (MimIC) to learn stable and generalizable shift effects from ICDs. Specifically, compared with some previous shift vector-based methods, MimIC more strictly approximates the shift effects by integrating lightweight learnable modules into LMMs with four key enhancements: 1) inserting shift vectors after attention layers, 2) assigning a shift vector to each attention head, 3) making shift magnitude query-dependent, and 4) employing a layer-wise alignment loss. Extensive experiments on two LMMs (Idefics-9b and Idefics2-8b-base) across three multimodal tasks (VQAv2, OK-VQA, Captioning) demonstrate that MimIC outperforms existing shift vector-based methods. The code is available at https://github.com/Kamichanw/MimIC.

Authors:Vasiliki Tassopoulou, Haochang Shou, Christos Davatzikos
Title: Adaptive Shrinkage Estimation For Personalized Deep Kernel Regression In Modeling Brain Trajectories
Abstract:
Longitudinal biomedical studies monitor individuals over time to capture dynamics in brain development, disease progression, and treatment effects. However, estimating trajectories of brain biomarkers is challenging due to biological variability, inconsistencies in measurement protocols (e.g., differences in MRI scanners), scarcity, and irregularity in longitudinal measurements. Herein, we introduce a novel personalized deep kernel regression framework for forecasting brain biomarkers, with application to regional volumetric measurements. Our approach integrates two key components: a population model that captures brain trajectories from a large and diverse cohort, and a subject-specific model that captures individual trajectories. To optimally combine these, we propose Adaptive Shrinkage Estimation, which effectively balances population and subject-specific models. We assess our model's performance through predictive accuracy metrics, uncertainty quantification, and validation against external clinical studies. Benchmarking against state-of-the-art statistical and machine learning models -- including linear mixed effects models, generalized additive models, and deep learning methods -- demonstrates the superior predictive performance of our approach. Additionally, we apply our method to predict trajectories of composite neuroimaging biomarkers, which highlights the versatility of our approach in modeling the progression of longitudinal neuroimaging biomarkers. Furthermore, validation on three external neuroimaging studies confirms the robustness of our method across different clinical contexts. We make the code available at https://github.com/vatass/AdaptiveShrinkageDKGP.

Authors:Zirui Chen, Zhaoyang Zhang, Ziqing Xing, Ridong Li, Zhaohui Yang, Richeng Jin, Chongwen Huang, Yuzhi Yang, Mérouane Debbah
Title: Analogical Learning for Cross-Scenario Generalization: Framework and Application to Intelligent Localization
Abstract:
Existing learning models often exhibit poor generalization when deployed across diverse scenarios. It is primarily due to that the underlying reference frame of the data varies with the deployment environment and settings. However, despite that data of each scenario has a distinct reference frame, its generation generally follows common underlying physical rules. Based on this understanding, this article proposes a deep learning framework named analogical learning (AL), which implicitly retrieves the reference frame information associated with a scenario and then to make accurate prediction by relative analogy with other scenarios. Specifically, we design a bipartite neural network called Mateformer. Its first part captures the relativity within multiple latent feature spaces between the input data and a small amount of embedded data from the studied scenario, while its second part uses this relativity to guide the nonlinear analogy. We apply AL to the typical multi-scenario learning problem of intelligent wireless localization in cellular networks. Extensive experiments validate AL's superiority across three key dimensions. First, it achieves state-of-the-art accuracy in single-scenario benchmarks. Second, it demonstrates stable transferability between different scenarios, avoiding catastrophic forgetting. Finally, and most importantly, it robustly adapts to new, unseen scenarios--including dynamic weather and traffic conditions--without any tuning. All data and code are available at https://github.com/ziruichen-research/ALLoc.

Authors:Zheyuan Lai, Yingming Pu
Title: PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration
Abstract:
Complex chemical space and limited knowledge scope with biases holds immense challenge for human scientists, yet in automated materials discovery. Existing intelligent methods relies more on numerical computation, leading to inefficient exploration and results with hard-interpretability. To bridge this gap, we introduce a principles-guided material discovery system powered by language inferential multi-agent system (MAS), namely PriM. Our framework integrates automated hypothesis generation with experimental validation in a roundtable system of MAS, enabling systematic exploration while maintaining scientific rigor. Based on our framework, the case study of nano helix demonstrates higher materials exploration rate and property value while providing transparent reasoning pathways. This approach develops an automated-and-transparent paradigm for material discovery, with broad implications for rational design of functional materials. Code is publicly available at our \href{https://github.com/amair-lab/PriM}{GitHub}.

Authors:Zhengke Sun, Hangwei Qian, Ivor Tsang
Title: Exploring the Effectiveness and Interpretability of Texts in LLM-based Time Series Models
Abstract:
Large Language Models (LLMs) have been applied to time series forecasting tasks, leveraging pre-trained language models as the backbone and incorporating textual data to purportedly enhance the comprehensive capabilities of LLMs for time series. However, are these texts really helpful for interpretation? This study seeks to investigate the actual efficacy and interpretability of such textual incorporations. Through a series of empirical experiments on textual prompts and textual prototypes, our findings reveal that the misalignment between two modalities exists, and the textual information does not significantly improve time series forecasting performance in many cases. Furthermore, visualization analysis indicates that the textual representations learned by existing frameworks lack sufficient interpretability when applied to time series data. We further propose a novel metric named Semantic Matching Index (SMI) to better evaluate the matching degree between time series and texts during our post hoc interpretability investigation. Our analysis reveals the misalignment and limited interpretability of texts in current time-series LLMs, and we hope this study can raise awareness of the interpretability of texts for time series. The code is available at https://github.com/zachysun/TS-Lang-Exp.

Authors:Zonghang Li, Tao Li, Wenjiao Feng, Mohsen Guizani, Hongfang Yu
Title: PRIMA.CPP: Speeding Up 70B-Scale LLM Inference on Low-Resource Everyday Home Clusters
Abstract:
Emergency of DeepSeek R1 and QwQ 32B have broken through performance barriers for running frontier large language models (LLMs) on home devices. While consumer hardware is getting stronger and model quantization is improving, existing end-side solutions still demand GPU clusters, large RAM/VRAM, and high bandwidth, far beyond what a common home cluster can handle. This paper introduces prima.cpp, a distributed inference system that runs 70B-scale models on everyday home devices using a mix of CPU/GPU, low RAM/VRAM, Wi-Fi, and cross-platform support. It uses mmap to manage model weights and introduces piped-ring parallelism with prefetching to hide disk loading. By modeling heterogeneity in computation, communication, disk, memory (and its management behavior), and OS, it optimally assigns model layers to each device's CPU and GPU, further reducing token latency. An elegant algorithm named Halda is proposed to solve this NP-hard assignment problem. We evaluate prima.cpp on a common four-node home cluster. It outperforms llama.cpp, exo, and dllama on 30B+ models while keeping memory pressure below 6%. This brings frontier 30B-70B models, such as Llama 3, DeepSeek R1, Qwen 2.5, and QwQ to home assistants, making advanced AI truly accessible to individuals. The code is open source and available at https://github.com/Lizonghang/prima.cpp.

Authors:Lucas Beerens, Desmond J. Higham
Title: Embedding Hidden Adversarial Capabilities in Pre-Trained Diffusion Models
Abstract:
We introduce a new attack paradigm that embeds hidden adversarial capabilities directly into diffusion models via fine-tuning, without altering their observable behavior or requiring modifications during inference. Unlike prior approaches that target specific images or adjust the generation process to produce adversarial outputs, our method integrates adversarial functionality into the model itself. The resulting tampered model generates high-quality images indistinguishable from those of the original, yet these images cause misclassification in downstream classifiers at a high rate. The misclassification can be targeted to specific output classes. Users can employ this compromised model unaware of its embedded adversarial nature, as it functions identically to a standard diffusion model. We demonstrate the effectiveness and stealthiness of our approach, uncovering a covert attack vector that raises new security concerns. These findings expose a risk arising from the use of externally-supplied models and highlight the urgent need for robust model verification and defense mechanisms against hidden threats in generative models. The code is available at https://github.com/LucasBeerens/CRAFTed-Diffusion .

Authors:Yuxuan Chen, Dewen Guo, Sen Mei, Xinze Li, Hao Chen, Yishan Li, Yixuan Wang, Chaoyue Tang, Ruobing Wang, Dingjun Wu, Yukun Yan, Zhenghao Liu, Shi Yu, Zhiyuan Liu, Maosong Sun
Title: UltraRAG: A Modular and Automated Toolkit for Adaptive Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) significantly enhances the performance of large language models (LLMs) in downstream tasks by integrating external knowledge. To facilitate researchers in deploying RAG systems, various RAG toolkits have been introduced. However, many existing RAG toolkits lack support for knowledge adaptation tailored to specific application scenarios. To address this limitation, we propose UltraRAG, a RAG toolkit that automates knowledge adaptation throughout the entire workflow, from data construction and training to evaluation, while ensuring ease of use. UltraRAG features a user-friendly WebUI that streamlines the RAG process, allowing users to build and optimize systems without coding expertise. It supports multimodal input and provides comprehensive tools for managing the knowledge base. With its highly modular architecture, UltraRAG delivers an end-to-end development solution, enabling seamless knowledge adaptation across diverse user scenarios. The code, demonstration videos, and installable package for UltraRAG are publicly available at https://github.com/OpenBMB/UltraRAG.

Authors:Yang Yang, Tong Zhang, Jian Wu, Lijie Su
Title: Dynamic Topic Analysis in Academic Journals using Convex Non-negative Matrix Factorization Method
Abstract:
With the rapid advancement of large language models, academic topic identification and topic evolution analysis are crucial for enhancing AI's understanding capabilities. Dynamic topic analysis provides a powerful approach to capturing and understanding the temporal evolution of topics in large-scale datasets. This paper presents a two-stage dynamic topic analysis framework that incorporates convex optimization to improve topic consistency, sparsity, and interpretability. In Stage 1, a two-layer non-negative matrix factorization (NMF) model is employed to extract annual topics and identify key terms. In Stage 2, a convex optimization algorithm refines the dynamic topic structure using the convex NMF (cNMF) model, further enhancing topic integration and stability. Applying the proposed method to IEEE journal abstracts from 2004 to 2022 effectively identifies and quantifies emerging research topics, such as COVID-19 and digital twins. By optimizing sparsity differences in the clustering feature space between traditional and emerging research topics, the framework provides deeper insights into topic evolution and ranking analysis. Moreover, the NMF-cNMF model demonstrates superior stability in topic consistency. At sparsity levels of 0.4, 0.6, and 0.9, the proposed approach improves topic ranking stability by 24.51%, 56.60%, and 36.93%, respectively. The source code (to be open after publication) is available at https://github.com/meetyangyang/CDNMF.

Authors:Anton Thielmann, Arik Reuter, Benjamin Saefken
Title: Beyond Black-Box Predictions: Identifying Marginal Feature Effects in Tabular Transformer Networks
Abstract:
In recent years, deep neural networks have showcased their predictive power across a variety of tasks. Beyond natural language processing, the transformer architecture has proven efficient in addressing tabular data problems and challenges the previously dominant gradient-based decision trees in these areas. However, this predictive power comes at the cost of intelligibility: Marginal feature effects are almost completely lost in the black-box nature of deep tabular transformer networks. Alternative architectures that use the additivity constraints of classical statistical regression models can maintain intelligible marginal feature effects, but often fall short in predictive power compared to their more complex counterparts. To bridge the gap between intelligibility and performance, we propose an adaptation of tabular transformer networks designed to identify marginal feature effects. We provide theoretical justifications that marginal feature effects can be accurately identified, and our ablation study demonstrates that the proposed model efficiently detects these effects, even amidst complex feature interactions. To demonstrate the model's predictive capabilities, we compare it to several interpretable as well as black-box models and find that it can match black-box performances while maintaining intelligibility. The source code is available at https://github.com/OpenTabular/NAMpy.

Authors:Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buchholz, Tim Esler, Simon Valentin, Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, Anoop Deoras, Giovanni Zappella, Laurent Callot
Title: SWE-PolyBench: A multi-language benchmark for repository level evaluation of coding agents
Abstract:
Coding agents powered by large language models have shown impressive capabilities in software engineering tasks, but evaluating their performance across diverse programming languages and real-world scenarios remains challenging. We introduce SWE-PolyBench, a new multi-language benchmark for repository-level, execution-based evaluation of coding agents. SWE-PolyBench contains 2110 instances from 21 repositories and includes tasks in Java (165), JavaScript (1017), TypeScript (729) and Python (199), covering bug fixes, feature additions, and code refactoring. We provide a task and repository-stratified subsample (SWE-PolyBench500) and release an evaluation harness allowing for fully automated evaluation. To enable a more comprehensive comparison of coding agents, this work also presents a novel set of metrics rooted in syntax tree analysis. We evaluate leading open source coding agents on SWE-PolyBench, revealing their strengths and limitations across languages, task types, and complexity classes. Our experiments show that current agents exhibit uneven performances across languages and struggle with complex problems while showing higher performance on simpler tasks. SWE-PolyBench aims to drive progress in developing more versatile and robust AI coding assistants for real-world software engineering. Our datasets and code are available at: https://github.com/amazon-science/SWE-PolyBench

Authors:Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Qiushi Sun, Kanzhi Cheng, Junxian He, Jun Liu, Zhiyong Wu
Title: Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning
Abstract:
Advancing LLM reasoning skills has captivated wide interest. However, current post-training techniques rely heavily on supervisory signals, such as outcome supervision or auxiliary reward models, which face the problem of scalability and high annotation costs. This motivates us to enhance LLM reasoning without the need for external supervision. We introduce a generalizable and purely unsupervised self-training framework, named Genius. Without external auxiliary, Genius requires to seek the optimal response sequence in a stepwise manner and optimize the LLM. To explore the potential steps and exploit the optimal ones, Genius introduces a stepwise foresight re-sampling strategy to sample and estimate the step value by simulating future outcomes. Further, we recognize that the unsupervised setting inevitably induces the intrinsic noise and uncertainty. To provide a robust optimization, we propose an advantage-calibrated optimization (ACO) loss function to mitigate estimation inconsistencies. Combining these techniques together, Genius provides an advanced initial step towards self-improve LLM reasoning with general queries and without supervision, revolutionizing reasoning scaling laws given the vast availability of general queries. The code will be released at https://github.com/xufangzhi/Genius.

Authors:Ian Noronha, Advait Prasad Jawaji, Juan Camilo Soto, Jiajun An, Yan Gu, Upinder Kaur
Title: MBE-ARI: A Multimodal Dataset Mapping Bi-directional Engagement in Animal-Robot Interaction
Abstract:
Animal-robot interaction (ARI) remains an unexplored challenge in robotics, as robots struggle to interpret the complex, multimodal communication cues of animals, such as body language, movement, and vocalizations. Unlike human-robot interaction, which benefits from established datasets and frameworks, animal-robot interaction lacks the foundational resources needed to facilitate meaningful bidirectional communication. To bridge this gap, we present the MBE-ARI (Multimodal Bidirectional Engagement in Animal-Robot Interaction), a novel multimodal dataset that captures detailed interactions between a legged robot and cows. The dataset includes synchronized RGB-D streams from multiple viewpoints, annotated with body pose and activity labels across interaction phases, offering an unprecedented level of detail for ARI research. Additionally, we introduce a full-body pose estimation model tailored for quadruped animals, capable of tracking 39 keypoints with a mean average precision (mAP) of 92.7%, outperforming existing benchmarks in animal pose estimation. The MBE-ARI dataset and our pose estimation framework lay a robust foundation for advancing research in animal-robot interaction, providing essential tools for developing perception, reasoning, and interaction frameworks needed for effective collaboration between robots and animals. The dataset and resources are publicly available at https://github.com/RISELabPurdue/MBE-ARI/, inviting further exploration and development in this critical area.

Authors:Gabriele Lozupone, Alessandro Bria, Francesco Fontanella, Frederick J. A. Meijer, Claudio De Stefano, Henkjan Huisman
Title: Latent Diffusion Autoencoders: Toward Efficient and Meaningful Unsupervised Representation Learning in Medical Imaging
Abstract:
This study presents Latent Diffusion Autoencoder (LDAE), a novel encoder-decoder diffusion-based framework for efficient and meaningful unsupervised learning in medical imaging, focusing on Alzheimer disease (AD) using brain MR from the ADNI database as a case study. Unlike conventional diffusion autoencoders operating in image space, LDAE applies the diffusion process in a compressed latent representation, improving computational efficiency and making 3D medical imaging representation learning tractable. To validate the proposed approach, we explore two key hypotheses: (i) LDAE effectively captures meaningful semantic representations on 3D brain MR associated with AD and ageing, and (ii) LDAE achieves high-quality image generation and reconstruction while being computationally efficient. Experimental results support both hypotheses: (i) linear-probe evaluations demonstrate promising diagnostic performance for AD (ROC-AUC: 90%, ACC: 84%) and age prediction (MAE: 4.1 years, RMSE: 5.2 years); (ii) the learned semantic representations enable attribute manipulation, yielding anatomically plausible modifications; (iii) semantic interpolation experiments show strong reconstruction of missing scans, with SSIM of 0.969 (MSE: 0.0019) for a 6-month gap. Even for longer gaps (24 months), the model maintains robust performance (SSIM > 0.93, MSE < 0.004), indicating an ability to capture temporal progression trends; (iv) compared to conventional diffusion autoencoders, LDAE significantly increases inference throughput (20x faster) while also enhancing reconstruction quality. These findings position LDAE as a promising framework for scalable medical imaging applications, with the potential to serve as a foundation model for medical image analysis. Code available at https://github.com/GabrieleLozupone/LDAE

Authors:Renu Sharma, Debasmita Pal, Arun Ross
Title: Task-conditioned Ensemble of Expert Models for Continuous Learning
Abstract:
One of the major challenges in machine learning is maintaining the accuracy of the deployed model (e.g., a classifier) in a non-stationary environment. The non-stationary environment results in distribution shifts and, consequently, a degradation in accuracy. Continuous learning of the deployed model with new data could be one remedy. However, the question arises as to how we should update the model with new training data so that it retains its accuracy on the old data while adapting to the new data. In this work, we propose a task-conditioned ensemble of models to maintain the performance of the existing model. The method involves an ensemble of expert models based on task membership information. The in-domain models-based on the local outlier concept (different from the expert models) provide task membership information dynamically at run-time to each probe sample. To evaluate the proposed method, we experiment with three setups: the first represents distribution shift between tasks (LivDet-Iris-2017), the second represents distribution shift both between and within tasks (LivDet-Iris-2020), and the third represents disjoint distribution between tasks (Split MNIST). The experiments highlight the benefits of the proposed method. The source code is available at https://github.com/iPRoBe-lab/Continuous_Learning_FE_DM.

Authors:Matteo Spanio, Antonio RodÃ
Title: TorchFX: A modern approach to Audio DSP with PyTorch and GPU acceleration
Abstract:
The burgeoning complexity and real-time processing demands of audio signals necessitate optimized algorithms that harness the computational prowess of Graphics Processing Units (GPUs). Existing Digital Signal Processing (DSP) libraries often fall short in delivering the requisite efficiency and flexibility, particularly in integrating Artificial Intelligence (AI) models. In response, we introduce TorchFX: a GPU-accelerated Python library for DSP, specifically engineered to facilitate sophisticated audio signal processing. Built atop the PyTorch framework, TorchFX offers an Object-Oriented interface that emulates the usability of torchaudio, enhancing functionality with a novel pipe operator for intuitive filter chaining. This library provides a comprehensive suite of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, with a focus on multichannel audio files, thus facilitating the integration of DSP and AI-based approaches. Our benchmarking results demonstrate significant efficiency gains over traditional libraries like SciPy, particularly in multichannel contexts. Despite current limitations in GPU compatibility, ongoing developments promise broader support and real-time processing capabilities. TorchFX aims to become a useful tool for the community, contributing to innovation and progress in DSP with GPU acceleration. TorchFX is publicly available on GitHub at https://github.com/matteospanio/torchfx.

Authors:Tao Zhang, Zhenhai Liu, Yong Xin, Yongjun Jiao
Title: MooseAgent: A LLM Based Multi-agent Framework for Automating Moose Simulation
Abstract:
The Finite Element Method (FEM) is widely used in engineering and scientific computing, but its pre-processing, solver configuration, and post-processing stages are often time-consuming and require specialized knowledge. This paper proposes an automated solution framework, MooseAgent, for the multi-physics simulation framework MOOSE, which combines large-scale pre-trained language models (LLMs) with a multi-agent system. The framework uses LLMs to understand user-described simulation requirements in natural language and employs task decomposition and multi-round iterative verification strategies to automatically generate MOOSE input files. To improve accuracy and reduce model hallucinations, the system builds and utilizes a vector database containing annotated MOOSE input cards and function documentation. We conducted experimental evaluations on several typical cases, including heat transfer, mechanics, phase field, and multi-physics coupling. The results show that MooseAgent can automate the MOOSE simulation process to a certain extent, especially demonstrating a high success rate when dealing with relatively simple single-physics problems. The main contribution of this research is the proposal of a multi-agent automated framework for MOOSE, which validates its potential in simplifying finite element simulation processes and lowering the user barrier, providing new ideas for the development of intelligent finite element simulation software. The code for the MooseAgent framework proposed in this paper has been open-sourced and is available at https://github.com/taozhan18/MooseAgent

Authors:Gesina Schwalbe, Georgii Mikriukov, Edgar Heinert, Stavros Gerolymatos, Mert Keser, Alois Knoll, Matthias Rottmann, Annika Mütze
Title: On Background Bias of Post-Hoc Concept Embeddings in Computer Vision DNNs
Abstract:
The thriving research field of concept-based explainable artificial intelligence (C-XAI) investigates how human-interpretable semantic concepts embed in the latent spaces of deep neural networks (DNNs). Post-hoc approaches therein use a set of examples to specify a concept, and determine its embeddings in DNN latent space using data driven techniques. This proved useful to uncover biases between different target (foreground or concept) classes. However, given that the background is mostly uncontrolled during training, an important question has been left unattended so far: Are/to what extent are state-of-the-art, data-driven post-hoc C-XAI approaches themselves prone to biases with respect to their backgrounds? E.g., wild animals mostly occur against vegetation backgrounds, and they seldom appear on roads. Even simple and robust C-XAI methods might abuse this shortcut for enhanced performance. A dangerous performance degradation of the concept-corner cases of animals on the road could thus remain undiscovered. This work validates and thoroughly confirms that established Net2Vec-based concept segmentation techniques frequently capture background biases, including alarming ones, such as underperformance on road scenes. For the analysis, we compare 3 established techniques from the domain of background randomization on >50 concepts from 2 datasets, and 7 diverse DNN architectures. Our results indicate that even low-cost setups can provide both valuable insight and improved background robustness.

Authors:Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, Jian Guo
Title: SQL-R1: Training Natural Language to SQL Reasoning Model By Reinforcement Learning
Abstract:
Natural Language to SQL (NL2SQL) enables intuitive interactions with databases by transforming natural language queries into structured SQL statements. Despite recent advancements in enhancing human-computer interaction within database applications, significant challenges persist, particularly regarding the reasoning performance in complex scenarios involving multi-table joins and nested queries. Current methodologies primarily utilize supervised fine-tuning~(SFT) to train the NL2SQL model, which may limit adaptability and interpretability in new environments~(e.g., finance and healthcare). In order to enhance the reasoning performance of the NL2SQL model in the above complex situations, we introduce SQL-R1, a novel NL2SQL reasoning model trained by the reinforcement learning~(RL) algorithms. We design a specialized RL-based reward function tailored for NL2SQL tasks and discussed the impact of cold start and synthetic data on the effectiveness of intensive training. In addition, we achieve competitive accuracy using only a tiny amount of synthetic NL2SQL data for augmented training and further explore data engineering for RL. In existing experiments, SQL-R1 achieves execution accuracy of 88.6\% and 67.1\% on the benchmark Spider and BIRD, respectively. The code is available at https://github.com/IDEA-FinAI/SQL-R1 .

Authors:Nicola Horst, Davide Mazzaccara, Antonia Schmidt, Michael Sullivan, Filippo Momentè, Luca Franceschetti, Philipp Sadler, Sherzod Hakimov, Alberto Testoni, Raffaella Bernardi, Raquel Fernández, Alexander Koller, Oliver Lemon, David Schlangen, Mario Giulianelli, Alessandro Suglia
Title: Playpen: An Environment for Exploring Learning Through Conversational Interaction
Abstract:
Interaction between learner and feedback-giver has come into focus recently for post-training of Large Language Models (LLMs), through the use of reward models that judge the appropriateness of a model's response. In this paper, we investigate whether Dialogue Games -- goal-directed and rule-governed activities driven predominantly by verbal actions -- can also serve as a source of feedback signals for learning. We introduce Playpen, an environment for off- and online learning through Dialogue Game self-play, and investigate a representative set of post-training methods: supervised fine-tuning; direct alignment (DPO); and reinforcement learning with GRPO. We experiment with post-training a small LLM (Llama-3.1-8B-Instruct), evaluating performance on unseen instances of training games as well as unseen games, and on standard benchmarks. We find that imitation learning through SFT improves performance on unseen instances, but negatively impacts other skills, while interactive learning with GRPO shows balanced improvements without loss of skills. We release the framework and the baseline training setups to foster research in the promising new direction of learning in (synthetic) interaction.

Authors:Vassili Korotkine, Mitchell Cohen, James Richard Forbes
Title: Globally Optimal Data-Association-Free Landmark-Based Localization Using Semidefinite Relaxations
Abstract:
This paper proposes a semidefinite relaxation for landmark-based localization with unknown data associations in planar environments. The proposed method simultaneously solves for the optimal robot states and data associations in a globally optimal fashion. Relative position measurements to known landmarks are used, but the data association is unknown in tha tthe robot does not know which landmark each measurement is generated from. The relaxation is shown to be tight in a majority of cases for moderate noise levels. The proposed algorithm is compared to local Gauss-Newton baselines initialized at the dead-reckoned trajectory, and is shown to significantly improve convergence to the problem's global optimum in simulation and experiment. Accompanying software and supplementary material may be found at https://github.com/decargroup/certifiable_uda_loc .

Authors:Ye Ye
Title: Task Memory Engine (TME): Enhancing State Awareness for Multi-Step LLM Agent Tasks
Abstract:
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.

Authors:Kerol Djoumessi, Samuel Ofosu Mensah, Philipp Berens
Title: A Hybrid Fully Convolutional CNN-Transformer Model for Inherently Interpretable Disease Detection from Retinal Fundus Images
Abstract:
In many medical imaging tasks, convolutional neural networks (CNNs) efficiently extract local features hierarchically. More recently, vision transformers (ViTs) have gained popularity, using self-attention mechanisms to capture global dependencies, but lacking the inherent spatial localization of convolutions. Therefore, hybrid models combining CNNs and ViTs have been developed to combine the strengths of both architectures. However, such hybrid models are difficult to interpret, which hinders their application in medical imaging. In this work, we introduce an interpretable-by-design hybrid fully convolutional CNN-Transformer architecture for retinal disease detection. Unlike widely used post-hoc saliency methods for ViTs, our approach generates faithful and localized evidence maps that directly reflect the mode's decision process. We evaluated our method on two medical tasks focused on disease detection using color fundus images. Our model achieves state-of-the-art predictive performance compared to black-box and interpretable models and provides class-specific sparse evidence maps in a single forward pass. The code is available at: https://github.com/kdjoumessi/Self-Explainable-CNN-Transformer.

Authors:Yi Chen, Tianchen Deng, Wentao Zhao, Xiaoning Wang, Wenqian Xi, Weidong Chen, Jingchuan Wang
Title: SN-LiDAR: Semantic Neural Fields for Novel Space-time View LiDAR Synthesis
Abstract:
Recent research has begun exploring novel view synthesis (NVS) for LiDAR point clouds, aiming to generate realistic LiDAR scans from unseen viewpoints. However, most existing approaches do not reconstruct semantic labels, which are crucial for many downstream applications such as autonomous driving and robotic perception. Unlike images, which benefit from powerful segmentation models, LiDAR point clouds lack such large-scale pre-trained models, making semantic annotation time-consuming and labor-intensive. To address this challenge, we propose SN-LiDAR, a method that jointly performs accurate semantic segmentation, high-quality geometric reconstruction, and realistic LiDAR synthesis. Specifically, we employ a coarse-to-fine planar-grid feature representation to extract global features from multi-frame point clouds and leverage a CNN-based encoder to extract local semantic features from the current frame point cloud. Extensive experiments on SemanticKITTI and KITTI-360 demonstrate the superiority of SN-LiDAR in both semantic and geometric reconstruction, effectively handling dynamic objects and large-scale scenes. Codes will be available on https://github.com/dtc111111/SN-Lidar.

Authors:Jiarui Wang, Huiyu Duan, Yu Zhao, Juntong Wang, Guangtao Zhai, Xiongkuo Min
Title: LMM4LMM: Benchmarking and Evaluating Large-multimodal Image Generation with LMMs
Abstract:
Recent breakthroughs in large multimodal models (LMMs) have significantly advanced both text-to-image (T2I) generation and image-to-text (I2T) interpretation. However, many generated images still suffer from issues related to perceptual quality and text-image alignment. Given the high cost and inefficiency of manual evaluation, an automatic metric that aligns with human preferences is desirable. To this end, we present EvalMi-50K, a comprehensive dataset and benchmark for evaluating large-multimodal image generation, which features (i) comprehensive tasks, encompassing 2,100 extensive prompts across 20 fine-grained task dimensions, and (ii) large-scale human-preference annotations, including 100K mean-opinion scores (MOSs) and 50K question-answering (QA) pairs annotated on 50,400 images generated from 24 T2I models. Based on EvalMi-50K, we propose LMM4LMM, an LMM-based metric for evaluating large multimodal T2I generation from multiple dimensions including perception, text-image correspondence, and task-specific accuracy. Extensive experimental results show that LMM4LMM achieves state-of-the-art performance on EvalMi-50K, and exhibits strong generalization ability on other AI-generated image evaluation benchmark datasets, manifesting the generality of both the EvalMi-50K dataset and LMM4LMM metric. Both EvalMi-50K and LMM4LMM will be released at https://github.com/IntMeGroup/LMM4LMM.

Authors:Lishuang Wang, Mengfei Zhao, Enyu Liu, Kebin Sun, Ran Cheng
Title: TensorNEAT: A GPU-accelerated Library for NeuroEvolution of Augmenting Topologies
Abstract:
The NeuroEvolution of Augmenting Topologies (NEAT) algorithm has received considerable recognition in the field of neuroevolution. Its effectiveness is derived from initiating with simple networks and incrementally evolving both their topologies and weights. Although its capability across various challenges is evident, the algorithm's computational efficiency remains an impediment, limiting its scalability potential. To address these limitations, this paper introduces TensorNEAT, a GPU-accelerated library that applies tensorization to the NEAT algorithm. Tensorization reformulates NEAT's diverse network topologies and operations into uniformly shaped tensors, enabling efficient parallel execution across entire populations. TensorNEAT is built upon JAX, leveraging automatic function vectorization and hardware acceleration to significantly enhance computational efficiency. In addition to NEAT, the library supports variants such as CPPN and HyperNEAT, and integrates with benchmark environments like Gym, Brax, and gymnax. Experimental evaluations across various robotic control environments in Brax demonstrate that TensorNEAT delivers up to 500x speedups compared to existing implementations, such as NEAT-Python. The source code for TensorNEAT is publicly available at: https://github.com/EMI-Group/tensorneat.

Authors:Shuaiyu Xie, Jian Wang, Yang Luo, Yunqing Yong, Yuzhen Tan, Bing Li
Title: ScalerEval: Automated and Consistent Evaluation Testbed for Auto-scalers in Microservices
Abstract:
Auto-scaling is an automated approach that dynamically provisions resources for microservices to accommodate fluctuating workloads. Despite the introduction of many sophisticated auto-scaling algorithms, evaluating auto-scalers remains time-consuming and labor-intensive, as it requires the implementation of numerous fundamental interfaces, complex manual operations, and in-depth domain knowledge. Besides, frequent human intervention can inevitably introduce operational errors, leading to inconsistencies in the evaluation of different auto-scalers. To address these issues, we present ScalerEval, an end-to-end automated and consistent testbed for auto-scalers in microservices. ScalerEval integrates essential fundamental interfaces for implementation of auto-scalers and further orchestrates a one-click evaluation workflow for researchers. The source code is publicly available at \href{https://github.com/WHU-AISE/ScalerEval}{https://github.com/WHU-AISE/ScalerEval}.

Authors:Jinghe Yang, Mingming Gong, Ye Pu
Title: Knowledge Distillation for Underwater Feature Extraction and Matching via GAN-synthesized Images
Abstract:
Autonomous Underwater Vehicles (AUVs) play a crucial role in underwater exploration. Vision-based methods offer cost-effective solutions for localization and mapping in the absence of conventional sensors like GPS and LiDAR. However, underwater environments present significant challenges for feature extraction and matching due to image blurring and noise caused by attenuation, scattering, and the interference of \textit{marine snow}. In this paper, we aim to improve the robustness of the feature extraction and matching in the turbid underwater environment using the cross-modal knowledge distillation method that transfers the in-air feature extraction and matching models to underwater settings using synthetic underwater images as the medium. We first propose a novel adaptive GAN-synthesis method to estimate water parameters and underwater noise distribution, to generate environment-specific synthetic underwater images. We then introduce a general knowledge distillation framework compatible with different teacher models. The evaluation of GAN-based synthesis highlights the significance of the new components, i.e. GAN-synthesized noise and forward scattering, in the proposed model. Additionally, VSLAM, as a representative downstream application of feature extraction and matching, is employed on real underwater sequences to validate the effectiveness of the transferred model. Project page: https://github.com/Jinghe-mel/UFEN-GAN.

Authors:Zhaoyu Liu, Kan Jiang, Murong Ma, Zhe Hou, Yun Lin, Jin Song Dong
Title: F$^3$Set: Towards Analyzing Fast, Frequent, and Fine-grained Events from Videos
Abstract:
Analyzing Fast, Frequent, and Fine-grained (F$^3$) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the F$^3$ criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce F$^3$Set, a benchmark that consists of video datasets for precise F$^3$ event detection. Datasets in F$^3$Set are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, F$^3$Set contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on F$^3$Set, revealing substantial challenges for existing techniques. Additionally, we propose a new method, F$^3$ED, for F$^3$ event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.

Authors:Guangcong Zheng, Teng Li, Xianpan Zhou, Xi Li
Title: RealCam-Vid: High-resolution Video Dataset with Dynamic Scenes and Metric-scale Camera Movements
Abstract:
Recent advances in camera-controllable video generation have been constrained by the reliance on static-scene datasets with relative-scale camera annotations, such as RealEstate10K. While these datasets enable basic viewpoint control, they fail to capture dynamic scene interactions and lack metric-scale geometric consistency-critical for synthesizing realistic object motions and precise camera trajectories in complex environments. To bridge this gap, we introduce the first fully open-source, high-resolution dynamic-scene dataset with metric-scale camera annotations in https://github.com/ZGCTroy/RealCam-Vid.

Authors:Eleanor Wallach, Sage Siler, Jing Deng
Title: The More is not the Merrier: Investigating the Effect of Client Size on Federated Learning
Abstract:
Federated Learning (FL) has been introduced as a way to keep data local to clients while training a shared machine learning model, as clients train on their local data and send trained models to a central aggregator. It is expected that FL will have a huge implication on Mobile Edge Computing, the Internet of Things, and Cross-Silo FL. In this paper, we focus on the widely used FedAvg algorithm to explore the effect of the number of clients in FL. We find a significant deterioration of learning accuracy for FedAvg as the number of clients increases. To address this issue for a general application, we propose a method called Knowledgeable Client Insertion (KCI) that introduces a very small number of knowledgeable clients to the MEC setting. These knowledgeable clients are expected to have accumulated a large set of data samples to help with training. With the help of KCI, the learning accuracy of FL increases much faster even with a normal FedAvg aggregation technique. We expect this approach to be able to provide great privacy protection for clients against security attacks such as model inversion attacks. Our code is available at https://github.com/Eleanor-W/KCI_for_FL.

Authors:Danielle Sullivan-Pao, Nicole Tian, Pooya Khorrami
Title: LoRAX: LoRA eXpandable Networks for Continual Synthetic Image Attribution
Abstract:
As generative AI image technologies become more widespread and advanced, there is a growing need for strong attribution models. These models are crucial for verifying the authenticity of images and identifying the architecture of their originating generative models-key to maintaining media integrity. However, attribution models struggle to generalize to unseen models, and traditional fine-tuning methods for updating these models have shown to be impractical in real-world settings. To address these challenges, we propose LoRA eXpandable Networks (LoRAX), a parameter-efficient class incremental algorithm that adapts to novel generative image models without the need for full retraining. Our approach trains an extremely parameter-efficient feature extractor per continual learning task via Low Rank Adaptation. Each task-specific feature extractor learns distinct features while only requiring a small fraction of the parameters present in the underlying feature extractor's backbone model. Our extensive experimentation shows LoRAX outperforms or remains competitive with state-of-the-art class incremental learning algorithms on the Continual Deepfake Detection benchmark across all training scenarios and memory settings, while requiring less than 3% of the number of trainable parameters per feature extractor compared to the full-rank implementation. LoRAX code is available at: https://github.com/mit-ll/lorax_cil.

Authors:Daniil Larionov, Sotaro Takeshita, Ran Zhang, Yanran Chen, Christoph Leiter, Zhipin Wang, Christian Greisinger, Steffen Eger
Title: DeepSeek-R1 vs. o3-mini: How Well can Reasoning LLMs Evaluate MT and Summarization?
Abstract:
Reasoning-enabled large language models (LLMs) excel in logical tasks, yet their utility for evaluating natural language generation remains unexplored. This study systematically compares reasoning LLMs with non-reasoning counterparts across machine translation and text summarization evaluation tasks. We evaluate eight models spanning state-of-the-art reasoning models (DeepSeek-R1, OpenAI o3), their distilled variants (8B-70B parameters), and equivalent non-reasoning LLMs. Experiments on WMT23 and SummEval benchmarks reveal architecture and task-dependent benefits: OpenAI o3-mini models show improved performance with increased reasoning on MT, while DeepSeek-R1 and generally underperforms compared to its non-reasoning variant except in summarization consistency evaluation. Correlation analysis demonstrates that reasoning token usage correlates with evaluation quality only in specific models, while almost all models generally allocate more reasoning tokens when identifying more quality issues. Distillation maintains reasonable performance up to 32B parameter models but degrades substantially at 8B scale. This work provides the first assessment of reasoning LLMs for NLG evaluation and comparison to non-reasoning models. We share our code to facilitate further research: https://github.com/NL2G/reasoning-eval.

Authors:Lucian Chauvin, Somil Gupta, Angelina Ibarra, Joshua Peeples
Title: Benchmarking Suite for Synthetic Aperture Radar Imagery Anomaly Detection (SARIAD) Algorithms
Abstract:
Anomaly detection is a key research challenge in computer vision and machine learning with applications in many fields from quality control to radar imaging. In radar imaging, specifically synthetic aperture radar (SAR), anomaly detection can be used for the classification, detection, and segmentation of objects of interest. However, there is no method for developing and benchmarking these methods on SAR imagery. To address this issue, we introduce SAR imagery anomaly detection (SARIAD). In conjunction with Anomalib, a deep-learning library for anomaly detection, SARIAD provides a comprehensive suite of algorithms and datasets for assessing and developing anomaly detection approaches on SAR imagery. SARIAD specifically integrates multiple SAR datasets along with tools to effectively apply various anomaly detection algorithms to SAR imagery. Several anomaly detection metrics and visualizations are available. Overall, SARIAD acts as a central package for benchmarking SAR models and datasets to allow for reproducible research in the field of anomaly detection in SAR imagery. This package is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/SARIAD.

Authors:Ingryd V. S. T. Pereira, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: Multi-view autoencoders for Fake News Detection
Abstract:
Given the volume and speed at which fake news spreads across social media, automatic fake news detection has become a highly important task. However, this task presents several challenges, including extracting textual features that contain relevant information about fake news. Research about fake news detection shows that no single feature extraction technique consistently outperforms the others across all scenarios. Nevertheless, different feature extraction techniques can provide complementary information about the textual data and enable a more comprehensive representation of the content. This paper proposes using multi-view autoencoders to generate a joint feature representation for fake news detection by integrating several feature extraction techniques commonly used in the literature. Experiments on fake news datasets show a significant improvement in classification performance compared to individual views (feature representations). We also observed that selecting a subset of the views instead of composing a latent space with all the views can be advantageous in terms of accuracy and computational effort. For further details, including source codes, figures, and datasets, please refer to the project's repository: https://github.com/ingrydpereira/multiview-fake-news.

Authors:Junbang Liu, Enpei Huang, Dongxing Mao, Hui Zhang, Xinyuan Song, Yongxin Ni
Title: ContrastiveGaussian: High-Fidelity 3D Generation with Contrastive Learning and Gaussian Splatting
Abstract:
Creating 3D content from single-view images is a challenging problem that has attracted considerable attention in recent years. Current approaches typically utilize score distillation sampling (SDS) from pre-trained 2D diffusion models to generate multi-view 3D representations. Although some methods have made notable progress by balancing generation speed and model quality, their performance is often limited by the visual inconsistencies of the diffusion model outputs. In this work, we propose ContrastiveGaussian, which integrates contrastive learning into the generative process. By using a perceptual loss, we effectively differentiate between positive and negative samples, leveraging the visual inconsistencies to improve 3D generation quality. To further enhance sample differentiation and improve contrastive learning, we incorporate a super-resolution model and introduce another Quantity-Aware Triplet Loss to address varying sample distributions during training. Our experiments demonstrate that our approach achieves superior texture fidelity and improved geometric consistency.

Authors:Chengyu Yang, Chengjun Liu
Title: Interpretable Automatic Rosacea Detection with Whitened Cosine Similarity
Abstract:
According to the National Rosacea Society, approximately sixteen million Americans suffer from rosacea, a common skin condition that causes flushing or long-term redness on a person's face. To increase rosacea awareness and to better assist physicians to make diagnosis on this disease, we propose an interpretable automatic rosacea detection method based on whitened cosine similarity in this paper. The contributions of the proposed methods are three-fold. First, the proposed method can automatically distinguish patients suffering from rosacea from people who are clean of this disease with a significantly higher accuracy than other methods in unseen test data, including both classical deep learning and statistical methods. Second, the proposed method addresses the interpretability issue by measuring the similarity between the test sample and the means of two classes, namely the rosacea class versus the normal class, which allows both medical professionals and patients to understand and trust the results. And finally, the proposed methods will not only help increase awareness of rosacea in the general population, but will also help remind patients who suffer from this disease of possible early treatment, as rosacea is more treatable in its early stages. The code and data are available at https://github.com/chengyuyang-njit/ICCRD-2025. The code and data are available at https://github.com/chengyuyang-njit/ICCRD-2025.

Authors:Sushant Gautam, Jingdao Chen
Title: X-DECODE: EXtreme Deblurring with Curriculum Optimization and Domain Equalization
Abstract:
Restoring severely blurred images remains a significant challenge in computer vision, impacting applications in autonomous driving, medical imaging, and photography. This paper introduces a novel training strategy based on curriculum learning to improve the robustness of deep learning models for extreme image deblurring. Unlike conventional approaches that train on only low to moderate blur levels, our method progressively increases the difficulty by introducing images with higher blur severity over time, allowing the model to adapt incrementally. Additionally, we integrate perceptual and hinge loss during training to enhance fine detail restoration and improve training stability. We experimented with various curriculum learning strategies and explored the impact of the train-test domain gap on the deblurring performance. Experimental results on the Extreme-GoPro dataset showed that our method outperforms the next best method by 14% in SSIM, whereas experiments on the Extreme-KITTI dataset showed that our method outperforms the next best by 18% in SSIM. Ablation studies showed that a linear curriculum progression outperforms step-wise, sigmoid, and exponential progressions, while hyperparameter settings such as the training blur percentage and loss function formulation all play important roles in addressing extreme blur artifacts. Datasets and code are available at https://github.com/RAPTOR-MSSTATE/XDECODE

Authors:Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune, David Ha
Title: The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search
Abstract:
AI is increasingly playing a pivotal role in transforming how scientific discoveries are made. We introduce The AI Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper. This system iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts. Compared to its predecessor (v1, Lu et al., 2024 arXiv:2408.06292), The AI Scientist-v2 eliminates the reliance on human-authored code templates, generalizes effectively across diverse machine learning domains, and leverages a novel progressive agentic tree-search methodology managed by a dedicated experiment manager agent. Additionally, we enhance the AI reviewer component by integrating a Vision-Language Model (VLM) feedback loop for iterative refinement of content and aesthetics of the figures. We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review. This accomplishment highlights the growing capability of AI in conducting all aspects of scientific research. We anticipate that further advancements in autonomous scientific discovery technologies will profoundly impact human knowledge generation, enabling unprecedented scalability in research productivity and significantly accelerating scientific breakthroughs, greatly benefiting society at large. We have open-sourced the code at https://github.com/SakanaAI/AI-Scientist-v2 to foster the future development of this transformative technology. We also discuss the role of AI in science, including AI safety.

Authors:Tony Shen, Seonghwan Seo, Ross Irwin, Kieran Didi, Simon Olsson, Woo Youn Kim, Martin Ester
Title: Compositional Flows for 3D Molecule and Synthesis Pathway Co-design
Abstract:
Many generative applications, such as synthesis-based 3D molecular design, involve constructing compositional objects with continuous features. Here, we introduce Compositional Generative Flows (CGFlow), a novel framework that extends flow matching to generate objects in compositional steps while modeling continuous states. Our key insight is that modeling compositional state transitions can be formulated as a straightforward extension of the flow matching interpolation process. We further build upon the theoretical foundations of generative flow networks (GFlowNets), enabling reward-guided sampling of compositional structures. We apply CGFlow to synthesizable drug design by jointly designing the molecule's synthetic pathway with its 3D binding pose. Our approach achieves state-of-the-art binding affinity on all 15 targets from the LIT-PCBA benchmark, and 5.8$\times$ improvement in sampling efficiency compared to 2D synthesis-based baseline. To our best knowledge, our method is also the first to achieve state of-art-performance in both Vina Dock (-9.38) and AiZynth success rate (62.2\%) on the CrossDocked benchmark.

Authors:Angelina Ibarra, Joshua Peeples
Title: Patch distribution modeling framework adaptive cosine estimator (PaDiM-ACE) for anomaly detection and localization in synthetic aperture radar imagery
Abstract:
This work presents a new approach to anomaly detection and localization in synthetic aperture radar imagery (SAR), expanding upon the existing patch distribution modeling framework (PaDiM). We introduce the adaptive cosine estimator (ACE) detection statistic. PaDiM uses the Mahalanobis distance at inference, an unbounded metric. ACE instead uses the cosine similarity metric, providing bounded anomaly detection scores. The proposed method is evaluated across multiple SAR datasets, with performance metrics including the area under the receiver operating curve (AUROC) at the image and pixel level, aiming for increased performance in anomaly detection and localization of SAR imagery. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/PaDiM-ACE.

Authors:Miguel López-Otal, Jorge Gracia, Jordi Bernad, Carlos Bobed, Lucía Pitarch-Ballesteros, Emma Anglés-Herrero
Title: Linguistic Interpretability of Transformer-based Language Models: a systematic review
Abstract:
Language models based on the Transformer architecture achieve excellent results in many language-related tasks, such as text classification or sentiment analysis. However, despite the architecture of these models being well-defined, little is known about how their internal computations help them achieve their results. This renders these models, as of today, a type of 'black box' systems. There is, however, a line of research -- 'interpretability' -- aiming to learn how information is encoded inside these models. More specifically, there is work dedicated to studying whether Transformer-based models possess knowledge of linguistic phenomena similar to human speakers -- an area we call 'linguistic interpretability' of these models. In this survey we present a comprehensive analysis of 160 research works, spread across multiple languages and models -- including multilingual ones -- that attempt to discover linguistic information from the perspective of several traditional Linguistics disciplines: Syntax, Morphology, Lexico-Semantics and Discourse. Our survey fills a gap in the existing interpretability literature, which either not focus on linguistic knowledge in these models or present some limitations -- e.g. only studying English-based models. Our survey also focuses on Pre-trained Language Models not further specialized for a downstream task, with an emphasis on works that use interpretability techniques that explore models' internal representations.

Authors:Nian Wu, Nivetha Jayakumar, Jiarui Xing, Miaomiao Zhang
Title: IGG: Image Generation Informed by Geodesic Dynamics in Deformation Spaces
Abstract:
Generative models have recently gained increasing attention in image generation and editing tasks. However, they often lack a direct connection to object geometry, which is crucial in sensitive domains such as computational anatomy, biology, and robotics. This paper presents a novel framework for Image Generation informed by Geodesic dynamics (IGG) in deformation spaces. Our IGG model comprises two key components: (i) an efficient autoencoder that explicitly learns the geodesic path of image transformations in the latent space; and (ii) a latent geodesic diffusion model that captures the distribution of latent representations of geodesic deformations conditioned on text instructions. By leveraging geodesic paths, our method ensures smooth, topology-preserving, and interpretable deformations, capturing complex variations in image structures while maintaining geometric consistency. We validate the proposed IGG on plant growth data and brain magnetic resonance imaging (MRI). Experimental results show that IGG outperforms the state-of-the-art image generation/editing models with superior performance in generating realistic, high-quality images with preserved object topology and reduced artifacts. Our code is publicly available at https://github.com/nellie689/IGG.

Authors:Biplav Srivastava, Kausik Lakkaraju, Nitin Gupta, Vansh Nagpal, Bharath C. Muppasani, Sara E. Jones
Title: SafeChat: A Framework for Building Trustworthy Collaborative Assistants and a Case Study of its Usefulness
Abstract:
Collaborative assistants, or chatbots, are data-driven decision support systems that enable natural interaction for task completion. While they can meet critical needs in modern society, concerns about their reliability and trustworthiness persist. In particular, Large Language Model (LLM)-based chatbots like ChatGPT, Gemini, and DeepSeek are becoming more accessible. However, such chatbots have limitations, including their inability to explain response generation, the risk of generating problematic content, the lack of standardized testing for reliability, and the need for deep AI expertise and extended development times. These issues make chatbots unsuitable for trust-sensitive applications like elections or healthcare. To address these concerns, we introduce SafeChat, a general architecture for building safe and trustworthy chatbots, with a focus on information retrieval use cases. Key features of SafeChat include: (a) safety, with a domain-agnostic design where responses are grounded and traceable to approved sources (provenance), and 'do-not-respond' strategies to prevent harmful answers; (b) usability, with automatic extractive summarization of long responses, traceable to their sources, and automated trust assessments to communicate expected chatbot behavior, such as sentiment; and (c) fast, scalable development, including a CSV-driven workflow, automated testing, and integration with various devices. We implemented SafeChat in an executable framework using the open-source chatbot platform Rasa. A case study demonstrates its application in building ElectionBot-SC, a chatbot designed to safely disseminate official election information. SafeChat is being used in many domains, validating its potential, and is available at: https://github.com/ai4society/trustworthy-chatbot.

Authors:Xuan-Hao Liu, Bao-Liang Lu, Wei-Long Zheng
Title: mixEEG: Enhancing EEG Federated Learning for Cross-subject EEG Classification with Tailored mixup
Abstract:
The cross-subject electroencephalography (EEG) classification exhibits great challenges due to the diversity of cognitive processes and physiological structures between different subjects. Modern EEG models are based on neural networks, demanding a large amount of data to achieve high performance and generalizability. However, privacy concerns associated with EEG pose significant limitations to data sharing between different hospitals and institutions, resulting in the lack of large dataset for most EEG tasks. Federated learning (FL) enables multiple decentralized clients to collaboratively train a global model without direct communication of raw data, thus preserving privacy. For the first time, we investigate the cross-subject EEG classification in the FL setting. In this paper, we propose a simple yet effective framework termed mixEEG. Specifically, we tailor the vanilla mixup considering the unique properties of the EEG modality. mixEEG shares the unlabeled averaged data of the unseen subject rather than simply sharing raw data under the domain adaptation setting, thus better preserving privacy and offering an averaged label as pseudo-label. Extensive experiments are conducted on an epilepsy detection and an emotion recognition dataset. The experimental result demonstrates that our mixEEG enhances the transferability of global model for cross-subject EEG classification consistently across different datasets and model architectures. Code is published at: https://github.com/XuanhaoLiu/mixEEG.

Authors:Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, Zhangyang Wang
Title: SEAL: Steerable Reasoning Calibration of Large Language Models for Free
Abstract:
Large Language Models (LLMs), such as OpenAI's o1-series have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism. However, recent studies reveal substantial redundancy in the CoT reasoning traces, which not only increases inference latency but also negatively impacts model performance by diverting attention to unnecessary reasoning paths. To address this issue, we investigate the internal reasoning structures of LLMs and categorize them into three primary thought types: execution, reflection, and transition thoughts. Moreover, our analysis reveals that excessive reflection and transition thoughts are strongly correlated with failure cases and these thought categories exhibit clear separation in the latent space. Based on these, we introduce SEAL (Steerable reasoning calibration), a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains. SEAL consists of an offline stage for extracting the reasoning steering vector in the latent space, followed by an on-the-fly calibration of the reasoning trace through representation intervention using the steering vector. Notably, the steering vector exhibits strong transferability across various tasks. Extensive experiments across multiple models (DeepSeek-R1-Distill and QwQ-32B-Preview) and benchmarks (Math500, GSM8K, LiveCodeBench) validate the effectiveness of SEAL, up to a 11% improvement in accuracy while reducing reasoning tokens by 11.8% to 50.4%. Our code is publicly available at https://github.com/VITA-Group/SEAL.

Authors:Hamidreza Eivazi, Jendrik-Alexander Tröger, Stefan Wittek, Stefan Hartmann, Andreas Rausch
Title: EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Abstract:
Multiscale problems are ubiquitous in physics. Numerical simulations of such problems by solving partial differential equations (PDEs) at high resolution are computationally too expensive for many-query scenarios, e.g., uncertainty quantification, remeshing applications, topology optimization, and so forth. This limitation has motivated the application of data-driven surrogate models, where the microscale computations are $\textit{substituted}$ with a surrogate, usually acting as a black-box mapping between macroscale quantities. These models offer significant speedups but struggle with incorporating microscale physical constraints, such as the balance of linear momentum and constitutive models. In this contribution, we propose Equilibrium Neural Operator (EquiNO) as a $\textit{complementary}$ physics-informed PDE surrogate for predicting microscale physics and compare it with variational physics-informed neural and operator networks. Our framework, applicable to the so-called multiscale FE$^{\,2}\,$ computations, introduces the FE-OL approach by integrating the finite element (FE) method with operator learning (OL). We apply the proposed FE-OL approach to quasi-static problems of solid mechanics. The results demonstrate that FE-OL can yield accurate solutions even when confronted with a restricted dataset during model development. Our results show that EquiNO achieves speedup factors exceeding 8000-fold compared to traditional methods and offers an optimal balance between data-driven and physics-based strategies.

Authors:Shoufa Chen, Chongjian Ge, Shilong Zhang, Peize Sun, Ping Luo
Title: PixelFlow: Pixel-Space Generative Models with Flow
Abstract:
We present PixelFlow, a family of image generation models that operate directly in the raw pixel space, in contrast to the predominant latent-space models. This approach simplifies the image generation process by eliminating the need for a pre-trained Variational Autoencoder (VAE) and enabling the whole model end-to-end trainable. Through efficient cascade flow modeling, PixelFlow achieves affordable computation cost in pixel space. It achieves an FID of 1.98 on 256$\times$256 ImageNet class-conditional image generation benchmark. The qualitative text-to-image results demonstrate that PixelFlow excels in image quality, artistry, and semantic control. We hope this new paradigm will inspire and open up new opportunities for next-generation visual generation models. Code and models are available at https://github.com/ShoufaChen/PixelFlow.

Authors:Shengyuan Ding, Shenxi Wu, Xiangyu Zhao, Yuhang Zang, Haodong Duan, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: MM-IFEngine: Towards Multimodal Instruction Following
Abstract:
The Instruction Following (IF) ability measures how well Multi-modal Large Language Models (MLLMs) understand exactly what users are telling them and whether they are doing it right. Existing multimodal instruction following training data is scarce, the benchmarks are simple with atomic instructions, and the evaluation strategies are imprecise for tasks demanding exact output constraints. To address this, we present MM-IFEngine, an effective pipeline to generate high-quality image-instruction pairs. Our MM-IFEngine pipeline yields large-scale, diverse, and high-quality training data MM-IFInstruct-23k, which is suitable for Supervised Fine-Tuning (SFT) and extended as MM-IFDPO-23k for Direct Preference Optimization (DPO). We further introduce MM-IFEval, a challenging and diverse multi-modal instruction-following benchmark that includes (1) both compose-level constraints for output responses and perception-level constraints tied to the input images, and (2) a comprehensive evaluation pipeline incorporating both rule-based assessment and judge model. We conduct SFT and DPO experiments and demonstrate that fine-tuning MLLMs on MM-IFInstruct-23k and MM-IFDPO-23k achieves notable gains on various IF benchmarks, such as MM-IFEval (+10.2$\%$), MIA (+7.6$\%$), and IFEval (+12.3$\%$). We have fully open-sourced the datasets (both SFT and DPO), evaluation code and training scripts at https://github.com/SYuan03/MM-IFEngine.

Authors:En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun, Chunrui Han, Zheng Ge, Xiangyu Zhang, Daxin Jiang, Jingyu Wang, Wenbing Tao
Title: Perception-R1: Pioneering Perception Policy with Reinforcement Learning
Abstract:
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in MLLM post-training for perception policy learning. While promising, our initial experiments reveal that incorporating a thinking process through RL does not consistently lead to performance gains across all visual perception tasks. This leads us to delve into the essential role of RL in the context of visual perception. In this work, we return to the fundamentals and explore the effects of RL on different perception tasks. We observe that the perceptual complexity is a major factor in determining the effectiveness of RL. We also observe that reward design plays a crucial role in further approching the upper limit of model perception. To leverage these findings, we propose Perception-R1, a scalable RL framework using GRPO during MLLM post-training. With a standard Qwen2.5-VL-3B-Instruct, Perception-R1 achieves +4.2% on RefCOCO+, +17.9% on PixMo-Count, +4.2% on PageOCR, and notably, 31.9% AP on COCO2017 val for the first time, establishing a strong baseline for perception policy learning.

Authors:Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi, Dan Jurafsky, James Zou
Title: Dynamic Cheatsheet: Test-Time Learning with Adaptive Memory
Abstract:
Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.

Authors:Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, Ravi Netravali
Title: SpecReason: Fast and Accurate Inference-Time Compute via Speculative Reasoning
Abstract:
Recent advances in inference-time compute have significantly improved performance on complex tasks by generating long chains of thought (CoTs) using Large Reasoning Models (LRMs). However, this improved accuracy comes at the cost of high inference latency due to the length of generated reasoning sequences and the autoregressive nature of decoding. Our key insight in tackling these overheads is that LRM inference, and the reasoning that it embeds, is highly tolerant of approximations: complex tasks are typically broken down into simpler steps, each of which brings utility based on the semantic insight it provides for downstream steps rather than the exact tokens it generates. Accordingly, we introduce SpecReason, a system that automatically accelerates LRM inference by using a lightweight model to (speculatively) carry out simpler intermediate reasoning steps and reserving the costly base model only to assess (and potentially correct) the speculated outputs. Importantly, SpecReason's focus on exploiting the semantic flexibility of thinking tokens in preserving final-answer accuracy is complementary to prior speculation techniques, most notably speculative decoding, which demands token-level equivalence at each step. Across a variety of reasoning benchmarks, SpecReason achieves $1.4-3.0\times$ speedup over vanilla LRM inference while improving accuracy by $0.4-9.0\%$. Compared to speculative decoding without SpecReason, their combination yields an additional $8.8-58.0\%$ latency reduction. We open-source SpecReason at https://github.com/ruipeterpan/specreason.

Authors:Ben Cheng, Yize Chen
Title: Open Datasets for Grid Modeling and Visualization: An Alberta Power Network Case
Abstract:
In the power and energy industry, multiple entities in grid operational logs are frequently recorded and updated. Thanks to recent advances in IT facilities and smart metering services, a variety of datasets such as system load, generation mix, and grid connection are often publicly available. While these resources are valuable in evaluating power grid's operational conditions and system resilience, the lack of fine-grained, accurate locational information constrain the usage of current data, which further hinders the development of smart grid and renewables integration. For instance, electricity end users are not aware of nodal generation mix or carbon emissions, while the general public have limited understanding about the effect of demand response or renewables integration if only the whole system's demands and generations are available. In this work, we focus on recovering power grid topology and line flow directions from open public dataset. Taking the Alberta grid as a working example, we start from mapping multi-modal power system datasets to the grid topology integrated with geographical information. By designing a novel optimization-based scheme to recover line flow directions, we are able to analyze and visualize the interactions between generations and demand vectors in an efficient manner. Proposed research is fully open-sourced and highly generalizable, which can help model and visualize grid information, create synthetic dataset, and facilitate analytics and decision-making framework for clean energy transition.

Authors:Erin Carson, Xinye Chen
Title: Pychop: Emulating Low-Precision Arithmetic in Numerical Methods and Neural Networks
Abstract:
Motivated by the growing demand for low-precision arithmetic in computational science, we exploit lower-precision emulation in Python -- widely regarded as the dominant programming language for numerical analysis and machine learning. Low-precision training has revolutionized deep learning by enabling more efficient computation and reduced memory and energy consumption while maintaining model fidelity. To better enable numerical experimentation with and exploration of low precision computation, we developed the Pychop library, which supports customizable floating-point formats and a comprehensive set of rounding modes in Python, allowing users to benefit from fast, low-precision emulation in numerous applications. Pychop also introduces interfaces for both PyTorch and JAX, enabling efficient low-precision emulation on GPUs for neural network training and inference with unparalleled flexibility. In this paper, we offer a comprehensive exposition of the design, implementation, validation, and practical application of Pychop, establishing it as a foundational tool for advancing efficient mixed-precision algorithms. Furthermore, we present empirical results on low-precision emulation for image classification and object detection using published datasets, illustrating the sensitivity of the use of low precision and offering valuable insights into its impact. Pychop enables in-depth investigations into the effects of numerical precision, facilitates the development of novel hardware accelerators, and integrates seamlessly into existing deep learning workflows. Software and experimental code are publicly available at https://github.com/inEXASCALE/pychop.

Authors:Yifan Ding, Arturas Aleksandraus, Amirhossein Ahmadian, Jonas Unger, Fredrik Lindsten, Gabriel Eilertsen
Title: Revisiting Likelihood-Based Out-of-Distribution Detection by Modeling Representations
Abstract:
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning systems, particularly in safety-critical applications. Likelihood-based deep generative models have historically faced criticism for their unsatisfactory performance in OOD detection, often assigning higher likelihood to OOD data than in-distribution samples when applied to image data. In this work, we demonstrate that likelihood is not inherently flawed. Rather, several properties in the images space prohibit likelihood as a valid detection score. Given a sufficiently good likelihood estimator, specifically using the probability flow formulation of a diffusion model, we show that likelihood-based methods can still perform on par with state-of-the-art methods when applied in the representation space of pre-trained encoders. The code of our work can be found at $\href{https://github.com/limchaos/Likelihood-OOD.git}{\texttt{https://github.com/limchaos/Likelihood-OOD.git}}$.

Authors:Bo Zhang, Hui Ma, Dailin Li, Jian Ding, Jian Wang, Bo Xu, HongFei Lin
Title: Efficient Tuning of Large Language Models for Knowledge-Grounded Dialogue Generation
Abstract:
Large language models (LLMs) demonstrate remarkable text comprehension and generation capabilities but often lack the ability to utilize up-to-date or domain-specific knowledge not included in their training data. To address this gap, we introduce KEDiT, an efficient method for fine-tuning LLMs for knowledge-grounded dialogue generation. KEDiT operates in two main phases: first, it employs an information bottleneck to compress retrieved knowledge into learnable parameters, retaining essential information while minimizing computational overhead. Second, a lightweight knowledge-aware adapter integrates these compressed knowledge vectors into the LLM during fine-tuning, updating less than 2\% of the model parameters. The experimental results on the Wizard of Wikipedia and a newly constructed PubMed-Dialog dataset demonstrate that KEDiT excels in generating contextually relevant and informative responses, outperforming competitive baselines in automatic, LLM-based, and human evaluations. This approach effectively combines the strengths of pretrained LLMs with the adaptability needed for incorporating dynamic knowledge, presenting a scalable solution for fields such as medicine.

Authors:Yihao Wang, Zhong Qian, Peifeng Li
Title: FMNV: A Dataset of Media-Published News Videos for Fake News Detection
Abstract:
News media, particularly video-based platforms, have become deeply embed-ded in daily life, concurrently amplifying the risks of misinformation dissem-ination. Consequently, multimodal fake news detection has garnered signifi-cant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public en-gagement, whereas professionally crafted fake news videos disseminated by media outlets-often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel da-taset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture that integrates spatio-temporal motion features from a 3D ResNeXt-101 backbone and static visual semantics from CLIP. The two streams are fused via an attention-based mechanism, while co-attention modules refine the visual, textual, and audio features for effective multi-modal aggregation. Comparative experiments demonstrate both the generali-zation capability of FMNV across multiple baselines and the superior detec-tion efficacy of FMNVD. This work establishes critical benchmarks for de-tecting high-impact fake news in media ecosystems while advancing meth-odologies for cross-modal inconsistency analysis. Our dataset is available in https://github.com/DennisIW/FMNV.

Authors:Anne-Sofie Maerten, Li-Wei Chen, Stefanie De Winter, Christophe Bossens, Johan Wagemans
Title: LAPIS: A novel dataset for personalized image aesthetic assessment
Abstract:
We present the Leuven Art Personalized Image Set (LAPIS), a novel dataset for personalized image aesthetic assessment (PIAA). It is the first dataset with images of artworks that is suitable for PIAA. LAPIS consists of 11,723 images and was meticulously curated in collaboration with art historians. Each image has an aesthetics score and a set of image attributes known to relate to aesthetic appreciation. Besides rich image attributes, LAPIS offers rich personal attributes of each annotator. We implemented two existing state-of-the-art PIAA models and assessed their performance on LAPIS. We assess the contribution of personal attributes and image attributes through ablation studies and find that performance deteriorates when certain personal and image attributes are removed. An analysis of failure cases reveals that both existing models make similar incorrect predictions, highlighting the need for improvements in artistic image aesthetic assessment. The LAPIS project page can be found at: https://github.com/Anne-SofieMaerten/LAPIS

Authors:Xiaowu Zhang, Hongfei Zhao, Jingyi Hou, Zhijie Liu
Title: Unveiling the Impact of Multimodal Features on Chinese Spelling Correction: From Analysis to Design
Abstract:
The Chinese Spelling Correction (CSC) task focuses on detecting and correcting spelling errors in sentences. Current research primarily explores two approaches: traditional multimodal pre-trained models and large language models (LLMs). However, LLMs face limitations in CSC, particularly over-correction, making them suboptimal for this task. While existing studies have investigated the use of phonetic and graphemic information in multimodal CSC models, effectively leveraging these features to enhance correction performance remains a challenge. To address this, we propose the Multimodal Analysis for Character Usage (\textbf{MACU}) experiment, identifying potential improvements for multimodal correctison. Based on empirical findings, we introduce \textbf{NamBert}, a novel multimodal model for Chinese spelling correction. Experiments on benchmark datasets demonstrate NamBert's superiority over SOTA methods. We also conduct a comprehensive comparison between NamBert and LLMs, systematically evaluating their strengths and limitations in CSC. Our code and model are available at https://github.com/iioSnail/NamBert.

Authors:Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, Tiancheng Zhao
Title: VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Abstract:
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1

Authors:Andrés Bell-Navas, María Villalba-Orero, Enrique Lara-Pezzi, Jesús Garicano-Mena, Soledad Le Clainche
Title: Heart Failure Prediction using Modal Decomposition and Masked Autoencoders for Scarce Echocardiography Databases
Abstract:
Heart diseases constitute the main cause of international human defunction. According to the World Health Organization (WHO), approximately 18 million deaths happen each year due to precisely heart diseases. In particular, heart failures (HF) press the healthcare industry to develop systems for their early, rapid, and effective prediction. This work presents an automatic system based on a novel deep learning framework which analyses in real-time echocardiography video sequences for the challenging and more specific task of heart failure time prediction. This system works in two stages. The first one transforms the data from a database of echocardiography video sequences into a machine learning-compatible collection of annotated images which can be used in the training phase of any machine learning-based framework, including a deep learning-based one. This stage includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm for both data augmentation and feature extraction. The second stage builds and trains a Vision Transformer (ViT). Self-supervised learning (SSL) methods, so far barely explored in the literature about heart failure prediction, are adopted to effectively train the ViT from scratch, even with scarce databases. The designed neural network analyses images from echocardiography sequences to estimate the time in which a heart failure will happen. The results obtained show the efficacy of the HODMD algorithm and the superiority of the proposed system with respect to several established ViT and Convolutional Neural Network (CNN) architectures. The source code will be incorporated into the next version release of the ModelFLOWs-app software (https://github.com/modelflows/ModelFLOWs-app).

Authors:Patrick Fernandes, Sweta Agrawal, Emmanouil Zaranis, André F. T. Martins, Graham Neubig
Title: Do LLMs Understand Your Translations? Evaluating Paragraph-level MT with Question Answering
Abstract:
Despite the steady progress in machine translation evaluation, existing automatic metrics struggle to capture how well meaning is preserved beyond sentence boundaries. We posit that reliance on a single intrinsic quality score, trained to mimic human judgments, might be insufficient for evaluating translations of long, complex passages, and a more ``pragmatic'' approach that assesses how accurately key information is conveyed by a translation in context is needed. We introduce TREQA (Translation Evaluation via Question-Answering), a framework that extrinsically evaluates translation quality by assessing how accurately candidate translations answer reading comprehension questions that target key information in the original source or reference texts. In challenging domains that require long-range understanding, such as literary texts, we show that TREQA is competitive with and, in some cases, outperforms state-of-the-art neural and LLM-based metrics in ranking alternative paragraph-level translations, despite never being explicitly optimized to correlate with human judgments. Furthermore, the generated questions and answers offer interpretability: empirical analysis shows that they effectively target translation errors identified by experts in evaluated datasets. Our code is available at https://github.com/deep-spin/treqa

Authors:Moritz Rempe, Fabian Hörst, Helmut Becker, Marco Schlimbach, Lukas Rotkopf, Kevin Kröninger, Jens Kleesiek
Title: PhaseGen: A Diffusion-Based Approach for Complex-Valued MRI Data Generation
Abstract:
Magnetic resonance imaging (MRI) raw data, or k-Space data, is complex-valued, containing both magnitude and phase information. However, clinical and existing Artificial Intelligence (AI)-based methods focus only on magnitude images, discarding the phase data despite its potential for downstream tasks, such as tumor segmentation and classification. In this work, we introduce $\textit{PhaseGen}$, a novel complex-valued diffusion model for generating synthetic MRI raw data conditioned on magnitude images, commonly used in clinical practice. This enables the creation of artificial complex-valued raw data, allowing pretraining for models that require k-Space information. We evaluate PhaseGen on two tasks: skull-stripping directly in k-Space and MRI reconstruction using the publicly available FastMRI dataset. Our results show that training with synthetic phase data significantly improves generalization for skull-stripping on real-world data, with an increased segmentation accuracy from $41.1\%$ to $80.1\%$, and enhances MRI reconstruction when combined with limited real-world data. This work presents a step forward in utilizing generative AI to bridge the gap between magnitude-based datasets and the complex-valued nature of MRI raw data. This approach allows researchers to leverage the vast amount of avaliable image domain data in combination with the information-rich k-Space data for more accurate and efficient diagnostic tasks. We make our code publicly $\href{https://github.com/TIO-IKIM/PhaseGen}{\text{available here}}$.

Authors:Yuxiang Lin, Jingdong Sun, Zhi-Qi Cheng, Jue Wang, Haomin Liang, Zebang Cheng, Yifei Dong, Jun-Yan He, Xiaojiang Peng, Xian-Sheng Hua
Title: Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models
Abstract:
Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: https://github.com/Lum1104/EIBench, offering a foundation for advanced multimodal causal analysis and next-generation affective computing.

Authors:Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang, Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie, Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Mengfan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu, Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinhao Li, Xinxing Zu, Xinyu Zhou, Xinyuan Wang, Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao, Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yuhao Dong, Yulun Du, Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, Ziwei Chen, Zongyu Lin
Title: Kimi-VL Technical Report
Abstract:
We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking-2506. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), the latest model exhibits strong long-horizon reasoning capabilities (64.0 on MMMU, 46.3 on MMMU-Pro, 56.9 on MathVision, 80.1 on MathVista, 65.2 on VideoMMMU) while obtaining robust general abilities. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.

Authors:Erdenebileg Batbaatar, Jeonggeol Kim, Yongcheol Kim, Young Yoon
Title: Traversal Learning: A Lossless And Efficient Distributed Learning Framework
Abstract:
In this paper, we introduce Traversal Learning (TL), a novel approach designed to address the problem of decreased quality encountered in popular distributed learning (DL) paradigms such as Federated Learning (FL), Split Learning (SL), and SplitFed Learning (SFL). Traditional FL experiences from an accuracy drop during aggregation due to its averaging function, while SL and SFL face increased loss due to the independent gradient updates on each split network. TL adopts a unique strategy where the model traverses the nodes during forward propagation (FP) and performs backward propagation (BP) on the orchestrator, effectively implementing centralized learning (CL) principles within a distributed environment. The orchestrator is tasked with generating virtual batches and planning the sequential node visits of the model during FP, aligning them with the ordered index of the data within these batches. We conducted experiments on six datasets representing diverse characteristics across various domains. Our evaluation demonstrates that TL is on par with classic CL approaches in terms of accurate inference, thereby offering a viable and robust solution for DL tasks. TL outperformed other DL methods and improved accuracy by 7.85% for independent and identically distributed (IID) datasets, macro F1-score by 1.06% for non-IID datasets, accuracy by 2.60% for text classification, and AUC by 3.88% and 4.54% for medical and financial datasets, respectively. By effectively preserving data privacy while maintaining performance, TL represents a significant advancement in DL methodologies. The implementation of TL is available at https://github.com/neouly-inc/Traversal-Learning

Authors:Hengrun Zhao, Yunzhi Zhuge, Yifan Wang, Lijun Wang, Huchuan Lu, Yu Zeng
Title: Learning Universal Features for Generalizable Image Forgery Localization
Abstract:
In recent years, advanced image editing and generation methods have rapidly evolved, making detecting and locating forged image content increasingly challenging. Most existing image forgery detection methods rely on identifying the edited traces left in the image. However, because the traces of different forgeries are distinct, these methods can identify familiar forgeries included in the training data but struggle to handle unseen ones. In response, we present an approach for Generalizable Image Forgery Localization (GIFL). Once trained, our model can detect both seen and unseen forgeries, providing a more practical and efficient solution to counter false information in the era of generative AI. Our method focuses on learning general features from the pristine content rather than traces of specific forgeries, which are relatively consistent across different types of forgeries and therefore can be used as universal features to locate unseen forgeries. Additionally, as existing image forgery datasets are still dominated by traditional hand-crafted forgeries, we construct a new dataset consisting of images edited by various popular deep generative image editing methods to further encourage research in detecting images manipulated by deep generative models. Extensive experimental results show that the proposed approach outperforms state-of-the-art methods in the detection of unseen forgeries and also demonstrates competitive results for seen forgeries. The code and dataset are available at https://github.com/ZhaoHengrun/GIFL.

Authors:Zitian Tang, Shijie Wang, Junho Cho, Jaewook Yoo, Chen Sun
Title: How Can Objects Help Video-Language Understanding?
Abstract:
Do we still need to represent objects explicitly in multimodal large language models (MLLMs)? To one extreme, pre-trained encoders convert images into visual tokens, with which objects and spatiotemporal relationships may be implicitly modeled. To the other extreme, image captions by themselves provide strong empirical performances for understanding tasks, despite missing fine-grained spatiotemporal information. To answer this question, we introduce ObjectMLLM, a framework capable of leveraging arbitrary computer vision algorithm to extract and integrate structured visual representation. Through extensive evaluations on six video question answering benchmarks, we confirm that explicit integration of object-centric representation remains necessary. Surprisingly, we observe that the simple approach of quantizing the continuous, structured object information and representing them as plain text performs the best, offering a data-efficient approach to integrate other visual perception modules into MLLM design. Our code and models are released at https://github.com/brown-palm/ObjectMLLM.

Authors:Anzhen Li, Shufan Qing, Xiaochang Li, Rui Mao, Mingchen Feng
Title: Probability Estimation and Scheduling Optimization for Battery Swap Stations via LRU-Enhanced Genetic Algorithm and Dual-Factor Decision System
Abstract:
To address the challenges of limited Battery Swap Stations datasets, high operational costs, and fluctuating user charging demand, this research proposes a probability estimation model based on charging pile data and constructs nine scenario-specific battery swap demand datasets. In addition, this study combines Least Recently Used strategy with Genetic Algorithm and incorporates a guided search mechanism, which effectively enhances the global optimization capability. Thus, a dual-factor decision-making based charging schedule optimization system is constructed. Experimental results show that the constructed datasets exhibit stable trend characteristics, adhering to 24-hour and 168-hour periodicity patterns, with outlier ratios consistently below 3.26%, confirming data validity. Compared to baseline, the improved algorithm achieves better fitness individuals in 80% of test regions under the same iterations. When benchmarked against immediate swap-and-charge strategy, our algorithm achieves a peak cost reduction of 13.96%. Moreover, peak user satisfaction reaches 98.57%, while the average iteration time remains below 0.6 seconds, demonstrating good computational efficiency. The complete datasets and optimization algorithm are open-sourced at https://github.com/qingshufan/GA-EVLRU.

Authors:Juzheng Zhang, Jiacheng You, Ashwinee Panda, Tom Goldstein
Title: LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs), yet it still incurs notable overhead and suffers from parameter interference in multi-task scenarios. We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks. This design substantially reduces the number of trainable parameters while maintaining strong task performance. Moreover, LoRI minimizes cross-task interference in adapter merging by leveraging the orthogonality between adapter subspaces, and supports continual learning by using sparsity to mitigate catastrophic forgetting. Extensive experiments across natural language understanding, mathematical reasoning, code generation, and safety alignment tasks demonstrate that LoRI outperforms full fine-tuning and existing PEFT methods, while using up to 95% fewer trainable parameters than LoRA. In multi-task experiments, LoRI enables effective adapter merging and continual learning with reduced cross-task interference. Code is available at: https://github.com/juzhengz/LoRI

Authors:Yixin Cao, Jiahao Ying, Yaoning Wang, Xipeng Qiu, Xuanjing Huang, Yugang Jiang
Title: Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric
Abstract:
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications, yet current evaluation methods struggle to keep pace with their rapid development. One core challenge of evaluation in the large language model (LLM) era is the generalization issue: how to infer a model's near-unbounded abilities from inevitably bounded benchmarks. We address this challenge by proposing Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores. MUI quantifies the effort a model expends on a task, defined as the proportion of activated neurons or features during inference. Intuitively, a truly capable model should achieve higher performance with lower effort. Extensive experiments across popular LLMs reveal a consistent inverse logarithmic relationship between MUI and performance, which we formulate as the Utility Law. From this law we derive four practical corollaries that (i) guide training diagnostics, (ii) expose data contamination issue, (iii) enable fairer model comparisons, and (iv) design model-specific dataset diversity. Our code can be found at https://github.com/ALEX-nlp/MUI-Eva.

Authors:Qi Liu, Haozhe Duan, Yiqun Chen, Quanfeng Lu, Weiwei Sun, Jiaxin Mao
Title: LLM4Ranking: An Easy-to-use Framework of Utilizing Large Language Models for Document Reranking
Abstract:
Utilizing large language models (LLMs) for document reranking has been a popular and promising research direction in recent years, many studies are dedicated to improving the performance and efficiency of using LLMs for reranking. Besides, it can also be applied in many real-world applications, such as search engines or retrieval-augmented generation. In response to the growing demand for research and application in practice, we introduce a unified framework, \textbf{LLM4Ranking}, which enables users to adopt different ranking methods using open-source or closed-source API-based LLMs. Our framework provides a simple and extensible interface for document reranking with LLMs, as well as easy-to-use evaluation and fine-tuning scripts for this task. We conducted experiments based on this framework and evaluated various models and methods on several widely used datasets, providing reproducibility results on utilizing LLMs for document reranking. Our code is publicly available at https://github.com/liuqi6777/llm4ranking.

Authors:Chenxi Sun, Hongzhi Zhang, Qi Wang, Fuzheng Zhang
Title: Routing to the Right Expertise: A Trustworthy Judge for Instruction-based Image Editing
Abstract:
Instruction-based Image Editing (IIE) models have made significantly improvement due to the progress of multimodal large language models (MLLMs) and diffusion models, which can understand and reason about complex editing instructions. In addition to advancing current IIE models, accurately evaluating their output has become increasingly critical and challenging. Current IIE evaluation methods and their evaluation procedures often fall short of aligning with human judgment and often lack explainability. To address these limitations, we propose JUdgement through Routing of Expertise (JURE). Each expert in JURE is a pre-selected model assumed to be equipped with an atomic expertise that can provide useful feedback to judge output, and the router dynamically routes the evaluation task of a given instruction and its output to appropriate experts, aggregating their feedback into a final judge. JURE is trustworthy in two aspects. First, it can effortlessly provide explanations about its judge by examining the routed experts and their feedback. Second, experimental results demonstrate that JURE is reliable by achieving superior alignment with human judgments, setting a new standard for automated IIE evaluation. Moreover, JURE's flexible design is future-proof - modular experts can be seamlessly replaced or expanded to accommodate advancements in IIE, maintaining consistently high evaluation quality. Our evaluation data and results are available at https://github.com/Cyyyyyrus/JURE.git.

Authors:Anning Hu, Ang Li, Xirui Jin, Danping Zou
Title: ThermoStereoRT: Thermal Stereo Matching in Real Time via Knowledge Distillation and Attention-based Refinement
Abstract:
We introduce ThermoStereoRT, a real-time thermal stereo matching method designed for all-weather conditions that recovers disparity from two rectified thermal stereo images, envisioning applications such as night-time drone surveillance or under-bed cleaning robots. Leveraging a lightweight yet powerful backbone, ThermoStereoRT constructs a 3D cost volume from thermal images and employs multi-scale attention mechanisms to produce an initial disparity map. To refine this map, we design a novel channel and spatial attention module. Addressing the challenge of sparse ground truth data in thermal imagery, we utilize knowledge distillation to boost performance without increasing computational demands. Comprehensive evaluations on multiple datasets demonstrate that ThermoStereoRT delivers both real-time capacity and robust accuracy, making it a promising solution for real-world deployment in various challenging environments. Our code will be released on https://github.com/SJTU-ViSYS-team/ThermoStereoRT

Authors:Dongqi Fu, Yada Zhu, Zhining Liu, Lecheng Zheng, Xiao Lin, Zihao Li, Liri Fang, Katherine Tieu, Onkar Bhardwaj, Kommy Weldemariam, Hanghang Tong, Hendrik Hamann, Jingrui He
Title: ClimateBench-M: A Multi-Modal Climate Data Benchmark with a Simple Generative Method
Abstract:
Climate science studies the structure and dynamics of Earth's climate system and seeks to understand how climate changes over time, where the data is usually stored in the format of time series, recording the climate features, geolocation, time attributes, etc. Recently, much research attention has been paid to the climate benchmarks. In addition to the most common task of weather forecasting, several pioneering benchmark works are proposed for extending the modality, such as domain-specific applications like tropical cyclone intensity prediction and flash flood damage estimation, or climate statement and confidence level in the format of natural language. To further motivate the artificial general intelligence development for climate science, in this paper, we first contribute a multi-modal climate benchmark, i.e., ClimateBench-M, which aligns (1) the time series climate data from ERA5, (2) extreme weather events data from NOAA, and (3) satellite image data from NASA HLS based on a unified spatial-temporal granularity. Second, under each data modality, we also propose a simple but strong generative method that could produce competitive performance in weather forecasting, thunderstorm alerts, and crop segmentation tasks in the proposed ClimateBench-M. The data and code of ClimateBench-M are publicly available at https://github.com/iDEA-iSAIL-Lab-UIUC/ClimateBench-M.

Authors:Darian Tomašević, Fadi Boutros, Chenhao Lin, Naser Damer, Vitomir Štruc, Peter Peer
Title: ID-Booth: Identity-consistent Face Generation with Diffusion Models
Abstract:
Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth.

Authors:Hanqi Xiao, Yi-Lin Sung, Elias Stengel-Eskin, Mohit Bansal
Title: Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression
Abstract:
Post-training quantization (PTQ) reduces a model's memory footprint by mapping full precision weights into low bit weights without costly retraining, but can degrade its downstream performance especially in low 2- to 3-bit settings. We develop a new mixed-precision PTQ approach, Task-Circuit Quantization (TaCQ), that draws parallels to automated circuit discovery, directly conditioning the quantization process on specific weight circuits -- which we define as sets of weights associated with downstream task performance. These weights are kept as 16-bit weights, while others are quantized, maintaining performance while only adding a marginal memory cost. Specifically, TaCQ contrasts unquantized model weights with a uniformly-quantized model to estimate the expected change in weights due to quantization and uses gradient information to predict the resulting impact on task performance, allowing us to preserve task-specific weights. We compare TaCQ-based quantization to existing mixed-precision quantization methods when conditioning both on general-purpose and task-specific data. Across QA, math reasoning, and text-to-SQL tasks for both Llama-3 and Qwen2.5, we find that TaCQ outperforms baselines using the same calibration data and a lower weight budget, achieving major improvements in the 2 and 3-bit regime. With only 3.1 bits we are able to recover 96% of Llama-3-8B-Instruct's unquantized 16-bit MMLU performance, obtaining a 5.25% absolute improvement over SPQR. We also observe consistently large gains over existing methods in the 2-bit regime, with an average gain of 14.74% over the strongest baseline, SliM-LLM. Moreover, we observe a 7.20% gain without conditioning on specific tasks, showing TaCQ's ability to identify important weights is not limited to task-conditioned settings.

Authors:Junyi Ma, Wentao Bao, Jingyi Xu, Guanzhong Sun, Xieyuanli Chen, Hesheng Wang
Title: Novel Diffusion Models for Multimodal 3D Hand Trajectory Prediction
Abstract:
Predicting hand motion is critical for understanding human intentions and bridging the action space between human movements and robot manipulations. Existing hand trajectory prediction (HTP) methods forecast the future hand waypoints in 3D space conditioned on past egocentric observations. However, such models are only designed to accommodate 2D egocentric video inputs. There is a lack of awareness of multimodal environmental information from both 2D and 3D observations, hindering the further improvement of 3D HTP performance. In addition, these models overlook the synergy between hand movements and headset camera egomotion, either predicting hand trajectories in isolation or encoding egomotion only from past frames. To address these limitations, we propose novel diffusion models (MMTwin) for multimodal 3D hand trajectory prediction. MMTwin is designed to absorb multimodal information as input encompassing 2D RGB images, 3D point clouds, past hand waypoints, and text prompt. Besides, two latent diffusion models, the egomotion diffusion and the HTP diffusion as twins, are integrated into MMTwin to predict camera egomotion and future hand trajectories concurrently. We propose a novel hybrid Mamba-Transformer module as the denoising model of the HTP diffusion to better fuse multimodal features. The experimental results on three publicly available datasets and our self-recorded data demonstrate that our proposed MMTwin can predict plausible future 3D hand trajectories compared to the state-of-the-art baselines, and generalizes well to unseen environments. The code and pretrained models will be released at https://github.com/IRMVLab/MMTwin.

Authors:Zhe Wang, Yuhua Ru, Aladine Chetouani, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane, Mohamed Jarraya, Yung Hsin Chen
Title: MoEDiff-SR: Mixture of Experts-Guided Diffusion Model for Region-Adaptive MRI Super-Resolution
Abstract:
Magnetic Resonance Imaging (MRI) at lower field strengths (e.g., 3T) suffers from limited spatial resolution, making it challenging to capture fine anatomical details essential for clinical diagnosis and neuroimaging research. To overcome this limitation, we propose MoEDiff-SR, a Mixture of Experts (MoE)-guided diffusion model for region-adaptive MRI Super-Resolution (SR). Unlike conventional diffusion-based SR models that apply a uniform denoising process across the entire image, MoEDiff-SR dynamically selects specialized denoising experts at a fine-grained token level, ensuring region-specific adaptation and enhanced SR performance. Specifically, our approach first employs a Transformer-based feature extractor to compute multi-scale patch embeddings, capturing both global structural information and local texture details. The extracted feature embeddings are then fed into an MoE gating network, which assigns adaptive weights to multiple diffusion-based denoisers, each specializing in different brain MRI characteristics, such as centrum semiovale, sulcal and gyral cortex, and grey-white matter junction. The final output is produced by aggregating the denoised results from these specialized experts according to dynamically assigned gating probabilities. Experimental results demonstrate that MoEDiff-SR outperforms existing state-of-the-art methods in terms of quantitative image quality metrics, perceptual fidelity, and computational efficiency. Difference maps from each expert further highlight their distinct specializations, confirming the effective region-specific denoising capability and the interpretability of expert contributions. Additionally, clinical evaluation validates its superior diagnostic capability in identifying subtle pathological features, emphasizing its practical relevance in clinical neuroimaging. Our code is available at https://github.com/ZWang78/MoEDiff-SR.

Authors:Donghao Ren, Fred Hohman, Dominik Moritz
Title: A Scalable Approach to Clustering Embedding Projections
Abstract:
Interactive visualization of embedding projections is a useful technique for understanding data and evaluating machine learning models. Labeling data within these visualizations is critical for interpretation, as labels provide an overview of the projection and guide user navigation. However, most methods for producing labels require clustering the points, which can be computationally expensive as the number of points grows. In this paper, we describe an efficient clustering approach using kernel density estimation in the projected 2D space instead of points. This algorithm can produce high-quality cluster regions from a 2D density map in a few hundred milliseconds, orders of magnitude faster than current approaches. We contribute the design of the algorithm, benchmarks, and applications that demonstrate the utility of the algorithm, including labeling and summarization.

Authors:Yousra Fettach, Adil Bahaj, Mounir Ghogho
Title: Skill Demand Forecasting Using Temporal Knowledge Graph Embeddings
Abstract:
Rapid technological advancements pose a significant threat to a large portion of the global workforce, potentially leaving them behind. In today's economy, there is a stark contrast between the high demand for skilled labour and the limited employment opportunities available to those who are not adequately prepared for the digital economy. To address this critical juncture and gain a deeper and more rapid understanding of labour market dynamics, in this paper, we approach the problem of skill need forecasting as a knowledge graph (KG) completion task, specifically, temporal link prediction. We introduce our novel temporal KG constructed from online job advertisements. We then train and evaluate different temporal KG embeddings for temporal link prediction. Finally, we present predictions of demand for a selection of skills practiced by workers in the information technology industry. The code and the data are available on our GitHub repository https://github.com/team611/JobEd.

Authors:Mingxuan Li, Hanchen Li, Chenhao Tan
Title: HypoEval: Hypothesis-Guided Evaluation for Natural Language Generation
Abstract:
Large language models (LLMs) have demonstrated great potential for automating the evaluation of natural language generation. Previous frameworks of LLM-as-a-judge fall short in two ways: they either use zero-shot setting without consulting any human input, which leads to low alignment, or fine-tune LLMs on labeled data, which requires a non-trivial number of samples. Moreover, previous methods often provide little reasoning behind automated evaluations. In this paper, we propose HypoEval, Hypothesis-guided Evaluation framework, which first uses a small corpus of human evaluations to generate more detailed rubrics for human judgments and then incorporates a checklist-like approach to combine LLM's assigned scores on each decomposed dimension to acquire overall scores. With only 30 human evaluations, HypoEval achieves state-of-the-art performance in alignment with both human rankings (Spearman correlation) and human scores (Pearson correlation), on average outperforming G-Eval by 11.86% and fine-tuned Llama-3.1-8B-Instruct with at least 3 times more human evaluations by 11.95%. Furthermore, we conduct systematic studies to assess the robustness of HypoEval, highlighting its effectiveness as a reliable and interpretable automated evaluation framework.

Authors:Nuren Zhaksylyk, Ibrahim Almakky, Jay Paranjape, S. Swaroop Vedula, Shameema Sikder, Vishal M. Patel, Mohammad Yaqub
Title: RP-SAM2: Refining Point Prompts for Stable Surgical Instrument Segmentation
Abstract:
Accurate surgical instrument segmentation is essential in cataract surgery for tasks such as skill assessment and workflow optimization. However, limited annotated data makes it difficult to develop fully automatic models. Prompt-based methods like SAM2 offer flexibility yet remain highly sensitive to the point prompt placement, often leading to inconsistent segmentations. We address this issue by introducing RP-SAM2, which incorporates a novel shift block and a compound loss function to stabilize point prompts. Our approach reduces annotator reliance on precise point positioning while maintaining robust segmentation capabilities. Experiments on the Cataract1k dataset demonstrate that RP-SAM2 improves segmentation accuracy, with a 2% mDSC gain, a 21.36% reduction in mHD95, and decreased variance across random single-point prompt results compared to SAM2. Additionally, on the CaDIS dataset, pseudo masks generated by RP-SAM2 for fine-tuning SAM2's mask decoder outperformed those generated by SAM2. These results highlight RP-SAM2 as a practical, stable and reliable solution for semi-automatic instrument segmentation in data-constrained medical settings. The code is available at https://github.com/BioMedIA-MBZUAI/RP-SAM2.

Authors:Will LeVine, Bijan Varjavand
Title: Relevance Isn't All You Need: Scaling RAG Systems With Inference-Time Compute Via Multi-Criteria Reranking
Abstract:
Modern Large Language Model (LLM) systems typically rely on Retrieval Augmented Generation (RAG) which aims to gather context that is useful for response generation. These RAG systems typically optimize strictly towards retrieving context that is maximally relevant to the query. However, conventional theory suggests that retrieval systems which seek to maximize context relevance without any additional explicit criteria can create information bottlenecks. We reaffirm this finding in the modern age of LLM's by showing that in standard RAG pipelines, maximizing for context relevance alone can degrade downstream response quality. In response, we show evaluations of existing RAG methods which account for both context relevance and answer quality. These evaluations introduce a novel finding that existing RAG systems scale poorly with inference time compute usage when considering our combined metric. We introduce "RErank BEyond reLevance (REBEL)", which enables RAG systems to scale with inference-time compute via injection of multi-criteria optimization using Chain-of-Thought prompting (and optionally Multi-Turn dialogue). Ultimately, this enables a new performance/speed tradeoff curve, where RAG systems are able to achieve both higher relevance of retrieved contexts and superior answer quality as inference time increases. Code for the implementation of our method in llama-index can be found at the following PR: https://github.com/run-llama/llama_index/pull/17590. Code for running experiments using this llama-index implementation can be found at https://github.com/microsoft/REBEL.

Authors:Yubin Hong, Chaofan Li, Jingyi Zhang, Yingxia Shao
Title: FG-RAG: Enhancing Query-Focused Summarization with Context-Aware Fine-Grained Graph RAG
Abstract:
Retrieval-Augmented Generation (RAG) enables large language models to provide more precise and pertinent responses by incorporating external knowledge. In the Query-Focused Summarization (QFS) task, GraphRAG-based approaches have notably enhanced the comprehensiveness and diversity of generated responses. However, existing GraphRAG-based approaches predominantly focus on coarse-grained information summarization without being aware of the specific query, and the retrieved content lacks sufficient contextual information to generate comprehensive responses. To address the deficiencies of current RAG systems, we propose Context-Aware Fine-Grained Graph RAG (FG-RAG) to enhance the performance of the QFS task. FG-RAG employs Context-Aware Entity Expansion in graph retrieval to expand the coverage of retrieved entities in the graph, thus providing enough contextual information for the retrieved content. Furthermore, FG-RAG utilizes Query-Level Fine-Grained Summarization to incorporate fine-grained details during response generation, enhancing query awareness for the generated summarization. Our evaluation demonstrates that FG-RAG outperforms other RAG systems in multiple metrics of comprehensiveness, diversity, and empowerment when handling the QFS task. Our implementation is available at https://github.com/BuptWululu/FG-RAG.

Authors:Gene Chou, Wenqi Xian, Guandao Yang, Mohamed Abdelfattah, Bharath Hariharan, Noah Snavely, Ning Yu, Paul Debevec
Title: FlashDepth: Real-time Streaming Video Depth Estimation at 2K Resolution
Abstract:
A versatile video depth estimation model should (1) be accurate and consistent across frames, (2) produce high-resolution depth maps, and (3) support real-time streaming. We propose FlashDepth, a method that satisfies all three requirements, performing depth estimation on a 2044x1148 streaming video at 24 FPS. We show that, with careful modifications to pretrained single-image depth models, these capabilities are enabled with relatively little data and training. We evaluate our approach across multiple unseen datasets against state-of-the-art depth models, and find that ours outperforms them in terms of boundary sharpness and speed by a significant margin, while maintaining competitive accuracy. We hope our model will enable various applications that require high-resolution depth, such as video editing, and online decision-making, such as robotics. We release all code and model weights at https://github.com/Eyeline-Research/FlashDepth

Authors:Alexander Rubinstein, Ameya Prabhu, Matthias Bethge, Seong Joon Oh
Title: Are We Done with Object-Centric Learning?
Abstract:
Object-centric learning (OCL) seeks to learn representations that only encode an object, isolated from other objects or background cues in a scene. This approach underpins various aims, including out-of-distribution (OOD) generalization, sample-efficient composition, and modeling of structured environments. Most research has focused on developing unsupervised mechanisms that separate objects into discrete slots in the representation space, evaluated using unsupervised object discovery. However, with recent sample-efficient segmentation models, we can separate objects in the pixel space and encode them independently. This achieves remarkable zero-shot performance on OOD object discovery benchmarks, is scalable to foundation models, and can handle a variable number of slots out-of-the-box. Hence, the goal of OCL methods to obtain object-centric representations has been largely achieved. Despite this progress, a key question remains: How does the ability to separate objects within a scene contribute to broader OCL objectives, such as OOD generalization? We address this by investigating the OOD generalization challenge caused by spurious background cues through the lens of OCL. We propose a novel, training-free probe called Object-Centric Classification with Applied Masks (OCCAM), demonstrating that segmentation-based encoding of individual objects significantly outperforms slot-based OCL methods. However, challenges in real-world applications remain. We provide the toolbox for the OCL community to use scalable object-centric representations, and focus on practical applications and fundamental questions, such as understanding object perception in human cognition. Our code is available here: https://github.com/AlexanderRubinstein/OCCAM.

Authors:Cassidy Laidlaw, Eli Bronstein, Timothy Guo, Dylan Feng, Lukas Berglund, Justin Svegliato, Stuart Russell, Anca Dragan
Title: AssistanceZero: Scalably Solving Assistance Games
Abstract:
Assistance games are a promising alternative to reinforcement learning from human feedback (RLHF) for training AI assistants. Assistance games resolve key drawbacks of RLHF, such as incentives for deceptive behavior, by explicitly modeling the interaction between assistant and user as a two-player game where the assistant cannot observe their shared goal. Despite their potential, assistance games have only been explored in simple settings. Scaling them to more complex environments is difficult because it requires both solving intractable decision-making problems under uncertainty and accurately modeling human users' behavior. We present the first scalable approach to solving assistance games and apply it to a new, challenging Minecraft-based assistance game with over $10^{400}$ possible goals. Our approach, AssistanceZero, extends AlphaZero with a neural network that predicts human actions and rewards, enabling it to plan under uncertainty. We show that AssistanceZero outperforms model-free RL algorithms and imitation learning in the Minecraft-based assistance game. In a human study, our AssistanceZero-trained assistant significantly reduces the number of actions participants take to complete building tasks in Minecraft. Our results suggest that assistance games are a tractable framework for training effective AI assistants in complex environments. Our code and models are available at https://github.com/cassidylaidlaw/minecraft-building-assistance-game.

Authors:Yiting Lu, Jiakang Yuan, Zhen Li, Shitian Zhao, Qi Qin, Xinyue Li, Le Zhuo, Licheng Wen, Dongyang Liu, Yuewen Cao, Xiangchao Yan, Xin Li, Tianshuo Peng, Shufei Zhang, Botian Shi, Tao Chen, Zhibo Chen, Lei Bai, Peng Gao, Bo Zhang
Title: OmniCaptioner: One Captioner to Rule Them All
Abstract:
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.

Authors:Jifang Wang, Xue Yang, Longyue Wang, Zhenran Xu, Yiyu Wang, Yaowei Wang, Weihua Luo, Kaifu Zhang, Baotian Hu, Min Zhang
Title: A Unified Agentic Framework for Evaluating Conditional Image Generation
Abstract:
Conditional image generation has gained significant attention for its ability to personalize content. However, the field faces challenges in developing task-agnostic, reliable, and explainable evaluation metrics. This paper introduces CIGEval, a unified agentic framework for comprehensive evaluation of conditional image generation tasks. CIGEval utilizes large multimodal models (LMMs) as its core, integrating a multi-functional toolbox and establishing a fine-grained evaluation framework. Additionally, we synthesize evaluation trajectories for fine-tuning, empowering smaller LMMs to autonomously select appropriate tools and conduct nuanced analyses based on tool outputs. Experiments across seven prominent conditional image generation tasks demonstrate that CIGEval (GPT-4o version) achieves a high correlation of 0.4625 with human assessments, closely matching the inter-annotator correlation of 0.47. Moreover, when implemented with 7B open-source LMMs using only 2.3K training trajectories, CIGEval surpasses the previous GPT-4o-based state-of-the-art method. Case studies on GPT-4o image generation highlight CIGEval's capability in identifying subtle issues related to subject consistency and adherence to control guidance, indicating its great potential for automating evaluation of image generation tasks with human-level reliability.

Authors:Yuan Xiao, Yuchen Chen, Shiqing Ma, Haocheng Huang, Chunrong Fang, Yanwei Chen, Weisong Sun, Yunfeng Zhu, Xiaofang Zhang, Zhenyu Chen
Title: DeCoMa: Detecting and Purifying Code Dataset Watermarks through Dual Channel Code Abstraction
Abstract:
Watermarking is a technique to help identify the source of data points, which can be used to help prevent the misuse of protected datasets. Existing methods on code watermarking, leveraging the idea from the backdoor research, embed stealthy triggers as watermarks. Despite their high resilience against dilution attacks and backdoor detections, the robustness has not been fully evaluated. To fill this gap, we propose DeCoMa, a dual-channel approach to Detect and purify Code dataset waterMarks. To overcome the high barrier created by the stealthy and hidden nature of code watermarks, DeCoMa leverages dual-channel constraints on code to generalize and map code samples into standardized templates. Subsequently, DeCoMa extracts hidden watermarks by identifying outlier associations between paired elements within the standardized templates. Finally, DeCoMa purifies the watermarked dataset by removing all samples containing the detected watermark, enabling the silent appropriation of protected code. We conduct extensive experiments to evaluate the effectiveness and efficiency of DeCoMa, covering 14 types of code watermarks and 3 representative intelligent code tasks (a total of 14 scenarios). Experimental results demonstrate that DeCoMa achieves a stable recall of 100% in 14 code watermark detection scenarios, significantly outperforming the baselines. Additionally, DeCoMa effectively attacks code watermarks with embedding rates as low as 0.1%, while maintaining comparable model performance after training on the purified dataset. Furthermore, as DeCoMa requires no model training for detection, it achieves substantially higher efficiency than all baselines, with a speedup ranging from 31.5 to 130.9X. The results call for more advanced watermarking techniques for code models, while DeCoMa can serve as a baseline for future evaluation. Code is available at https://github.com/xiaoyuanpigo/DeCoMa

Authors:Tomohiro Hayase, Benoît Collins, Nakamasa Inoue
Title: Free Random Projection for In-Context Reinforcement Learning
Abstract:
Hierarchical inductive biases are hypothesized to promote generalizable policies in reinforcement learning, as demonstrated by explicit hyperbolic latent representations and architectures. Therefore, a more flexible approach is to have these biases emerge naturally from the algorithm. We introduce Free Random Projection, an input mapping grounded in free probability theory that constructs random orthogonal matrices where hierarchical structure arises inherently. The free random projection integrates seamlessly into existing in-context reinforcement learning frameworks by encoding hierarchical organization within the input space without requiring explicit architectural modifications. Empirical results on multi-environment benchmarks show that free random projection consistently outperforms the standard random projection, leading to improvements in generalization. Furthermore, analyses within linearly solvable Markov decision processes and investigations of the spectrum of kernel random matrices reveal the theoretical underpinnings of free random projection's enhanced performance, highlighting its capacity for effective adaptation in hierarchically structured state spaces.

Authors:Zhixuan Lin, Johan Obando-Ceron, Xu Owen He, Aaron Courville
Title: Adaptive Computation Pruning for the Forgetting Transformer
Abstract:
The recently proposed Forgetting Transformer (FoX) incorporates a forget gate into softmax attention and has shown consistently better or on-par performance compared to the standard RoPE-based Transformer. Notably, many attention heads in FoX tend to forget quickly, causing their output at each timestep to rely primarily on local context. Based on this observation, we propose Adaptive Computation Pruning (ACP) for FoX, a method that dynamically prunes computations involving input-output dependencies that are strongly decayed by the forget gate. In particular, our method performs provably safe pruning via a dynamically set pruning threshold that guarantees the pruned attention weights are negligible. We apply ACP to language model pretraining with FoX and show it consistently reduces the number of FLOPs and memory accesses in softmax attention by around 70% across different model sizes and context lengths, resulting in a roughly 50% to 70% reduction in attention runtime (or a 2-3$\times$ speedup) and a roughly 10% to 40% increase in end-to-end training throughput. Furthermore, longer context lengths yield greater computational savings. All these speed improvements are achieved without any performance degradation. Our code is available at https://github.com/zhixuan-lin/forgetting-transformer.

Authors:Sergio Romero-Tapiador, Ruben Tolosana, Blanca Lacruz-Pleguezuelos, Laura Judith Marcos Zambrano, Guadalupe X. Bazán, Isabel Espinosa-Salinas, Julian Fierrez, Javier Ortega-Garcia, Enrique Carrillo de Santa Pau, Aythami Morales
Title: Are Vision-Language Models Ready for Dietary Assessment? Exploring the Next Frontier in AI-Powered Food Image Recognition
Abstract:
Automatic dietary assessment based on food images remains a challenge, requiring precise food detection, segmentation, and classification. Vision-Language Models (VLMs) offer new possibilities by integrating visual and textual reasoning. In this study, we evaluate six state-of-the-art VLMs (ChatGPT, Gemini, Claude, Moondream, DeepSeek, and LLaVA), analyzing their capabilities in food recognition at different levels. For the experimental framework, we introduce the FoodNExTDB, a unique food image database that contains 9,263 expert-labeled images across 10 categories (e.g., "protein source"), 62 subcategories (e.g., "poultry"), and 9 cooking styles (e.g., "grilled"). In total, FoodNExTDB includes 50k nutritional labels generated by seven experts who manually annotated all images in the database. Also, we propose a novel evaluation metric, Expert-Weighted Recall (EWR), that accounts for the inter-annotator variability. Results show that closed-source models outperform open-source ones, achieving over 90% EWR in recognizing food products in images containing a single product. Despite their potential, current VLMs face challenges in fine-grained food recognition, particularly in distinguishing subtle differences in cooking styles and visually similar food items, which limits their reliability for automatic dietary assessment. The FoodNExTDB database is publicly available at https://github.com/AI4Food/FoodNExtDB.

Authors:Chang Nie, Yiqing Xu, Guangming Wang, Zhe Liu, Yanzi Miao, Hesheng Wang
Title: MovSAM: A Single-image Moving Object Segmentation Framework Based on Deep Thinking
Abstract:
Moving object segmentation plays a vital role in understanding dynamic visual environments. While existing methods rely on multi-frame image sequences to identify moving objects, single-image MOS is critical for applications like motion intention prediction and handling camera frame drops. However, segmenting moving objects from a single image remains challenging for existing methods due to the absence of temporal cues. To address this gap, we propose MovSAM, the first framework for single-image moving object segmentation. MovSAM leverages a Multimodal Large Language Model (MLLM) enhanced with Chain-of-Thought (CoT) prompting to search the moving object and generate text prompts based on deep thinking for segmentation. These prompts are cross-fused with visual features from the Segment Anything Model (SAM) and a Vision-Language Model (VLM), enabling logic-driven moving object segmentation. The segmentation results then undergo a deep thinking refinement loop, allowing MovSAM to iteratively improve its understanding of the scene context and inter-object relationships with logical reasoning. This innovative approach enables MovSAM to segment moving objects in single images by considering scene understanding. We implement MovSAM in the real world to validate its practical application and effectiveness for autonomous driving scenarios where the multi-frame methods fail. Furthermore, despite the inherent advantage of multi-frame methods in utilizing temporal information, MovSAM achieves state-of-the-art performance across public MOS benchmarks, reaching 92.5\% on J\&F. Our implementation will be available at https://github.com/IRMVLab/MovSAM.

Authors:Yuxin Wang, Yiran Guo, Yining Zheng, Zhangyue Yin, Shuo Chen, Jie Yang, Jiajun Chen, Yuan Li, Xuanjing Huang, Xipeng Qiu
Title: FamilyTool: A Multi-hop Personalized Tool Use Benchmark
Abstract:
The integration of tool learning with Large Language Models (LLMs) has expanded their capabilities in handling complex tasks by leveraging external tools. However, existing benchmarks for tool learning inadequately address critical real-world personalized scenarios, particularly those requiring multi-hop reasoning and inductive knowledge adaptation in dynamic environments. To bridge this gap, we introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG) that simulates personalized, multi-hop tool use scenarios. FamilyTool, including base and extended datasets, challenges LLMs with queries spanning from 1 to 4 relational hops (e.g., inferring familial connections and preferences) and 2 to 6 hops respectively, and incorporates an inductive KG setting where models must adapt to unseen user preferences and relationships without re-training, a common limitation in prior approaches that compromises generalization. We further propose KGETool: a simple KG-augmented evaluation pipeline to systematically assess LLMs' tool use ability in these settings. Experiments reveal significant performance gaps in state-of-the-art LLMs, with accuracy dropping sharply as hop complexity increases and inductive scenarios exposing severe generalization deficits. These findings underscore the limitations of current LLMs in handling personalized, evolving real-world contexts and highlight the urgent need for advancements in tool-learning frameworks. FamilyTool serves as a critical resource for evaluating and advancing LLM agents' reasoning, adaptability, and scalability in complex, dynamic environments. Code and dataset are available at \href{https://github.com/yxzwang/FamilyTool}{https://github.com/yxzwang/FamilyTool}.

Authors:Pedro Hermosilla, Christian Stippel, Leon Sick
Title: Masked Scene Modeling: Narrowing the Gap Between Supervised and Self-Supervised Learning in 3D Scene Understanding
Abstract:
Self-supervised learning has transformed 2D computer vision by enabling models trained on large, unannotated datasets to provide versatile off-the-shelf features that perform similarly to models trained with labels. However, in 3D scene understanding, self-supervised methods are typically only used as a weight initialization step for task-specific fine-tuning, limiting their utility for general-purpose feature extraction. This paper addresses this shortcoming by proposing a robust evaluation protocol specifically designed to assess the quality of self-supervised features for 3D scene understanding. Our protocol uses multi-resolution feature sampling of hierarchical models to create rich point-level representations that capture the semantic capabilities of the model and, hence, are suitable for evaluation with linear probing and nearest-neighbor methods. Furthermore, we introduce the first self-supervised model that performs similarly to supervised models when only off-the-shelf features are used in a linear probing setup. In particular, our model is trained natively in 3D with a novel self-supervised approach based on a Masked Scene Modeling objective, which reconstructs deep features of masked patches in a bottom-up manner and is specifically tailored to hierarchical 3D models. Our experiments not only demonstrate that our method achieves competitive performance to supervised models, but also surpasses existing self-supervised approaches by a large margin. The model and training code can be found at our Github repository (https://github.com/phermosilla/msm).

Authors:Alexandre Banks, Richard Cook, Septimiu E. Salcudean
Title: Setup-Invariant Augmented Reality for Teaching by Demonstration with Surgical Robots
Abstract:
Augmented reality (AR) is an effective tool in robotic surgery education as it combines exploratory learning with three-dimensional guidance. However, existing AR systems require expert supervision and do not account for differences in the mentor and mentee robot configurations. To enable novices to train outside the operating room while receiving expert-informed guidance, we present dV-STEAR: an open-source system that plays back task-aligned expert demonstrations without assuming identical setup joint positions between expert and novice. Pose estimation was rigorously quantified, showing a registration error of 3.86 (SD=2.01)mm. In a user study (N=24), dV-STEAR significantly improved novice performance on tasks from the Fundamentals of Laparoscopic Surgery. In a single-handed ring-over-wire task, dV-STEAR increased completion speed (p=0.03) and reduced collision time (p=0.01) compared to dry-lab training alone. During a pick-and-place task, it improved success rates (p=0.004). Across both tasks, participants using dV-STEAR exhibited significantly more balanced hand use and reported lower frustration levels. This work presents a novel educational tool implemented on the da Vinci Research Kit, demonstrates its effectiveness in teaching novices, and builds the foundation for further AR integration into robot-assisted surgery.

Authors:Elia Peruzzo, Dejia Xu, Xingqian Xu, Humphrey Shi, Nicu Sebe
Title: RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism
Abstract:
Video generation is experiencing rapid growth, driven by advances in diffusion models and the development of better and larger datasets. However, producing high-quality videos remains challenging due to the high-dimensional data and the complexity of the task. Recent efforts have primarily focused on enhancing visual quality and addressing temporal inconsistencies, such as flickering. Despite progress in these areas, the generated videos often fall short in terms of motion complexity and physical plausibility, with many outputs either appearing static or exhibiting unrealistic motion. In this work, we propose a framework to improve the realism of motion in generated videos, exploring a complementary direction to much of the existing literature. Specifically, we advocate for the incorporation of a retrieval mechanism during the generation phase. The retrieved videos act as grounding signals, providing the model with demonstrations of how the objects move. Our pipeline is designed to apply to any text-to-video diffusion model, conditioning a pretrained model on the retrieved samples with minimal fine-tuning. We demonstrate the superiority of our approach through established metrics, recently proposed benchmarks, and qualitative results, and we highlight additional applications of the framework.

Authors:Ruotian Peng, Haiying He, Yake Wei, Yandong Wen, Di Hu
Title: Patch Matters: Training-free Fine-grained Image Caption Enhancement via Local Perception
Abstract:
High-quality image captions play a crucial role in improving the performance of cross-modal applications such as text-to-image generation, text-to-video generation, and text-image retrieval. To generate long-form, high-quality captions, many recent studies have employed multimodal large language models (MLLMs). However, current MLLMs often produce captions that lack fine-grained details or suffer from hallucinations, a challenge that persists in both open-source and closed-source models. Inspired by Feature-Integration theory, which suggests that attention must focus on specific regions to integrate visual information effectively, we propose a \textbf{divide-then-aggregate} strategy. Our method first divides the image into semantic and spatial patches to extract fine-grained details, enhancing the model's local perception of the image. These local details are then hierarchically aggregated to generate a comprehensive global description. To address hallucinations and inconsistencies in the generated captions, we apply a semantic-level filtering process during hierarchical aggregation. This training-free pipeline can be applied to both open-source models (LLaVA-1.5, LLaVA-1.6, Mini-Gemini) and closed-source models (Claude-3.5-Sonnet, GPT-4o, GLM-4V-Plus). Extensive experiments demonstrate that our method generates more detailed, reliable captions, advancing multimodal description generation without requiring model retraining. The source code are available at https://github.com/GeWu-Lab/Patch-Matters

Authors:Osama Ahmad, Zubair Khalid
Title: Robust and Noise-resilient Long-Term Prediction of Spatiotemporal Data Using Variational Mode Graph Neural Networks with 3D Attention
Abstract:
This paper focuses on improving the robustness of spatiotemporal long-term prediction using a variational mode graph convolutional network (VMGCN) by introducing 3D channel attention. The deep learning network for this task relies on historical data inputs, yet real-time data can be corrupted by sensor noise, altering its distribution. We model this noise as independent and identically distributed (i.i.d.) Gaussian noise and incorporate it into the LargeST traffic volume dataset, resulting in data with both inherent and additive noise components. Our approach involves decomposing the corrupted signal into modes using variational mode decomposition, followed by feeding the data into a learning pipeline for prediction. We integrate a 3D attention mechanism encompassing spatial, temporal, and channel attention. The spatial and temporal attention modules learn their respective correlations, while the channel attention mechanism is used to suppress noise and highlight the significant modes in the spatiotemporal signals. Additionally, a learnable soft thresholding method is implemented to exclude unimportant modes from the feature vector, and a feature reduction method based on the signal-to-noise ratio (SNR) is applied. We compare the performance of our approach against baseline models, demonstrating that our method achieves superior long-term prediction accuracy, robustness to noise, and improved performance with mode truncation compared to the baseline models. The code of the paper is available at https://github.com/OsamaAhmad369/VMGCN.

Authors:Nan Peng, Xun Zhou, Mingming Wang, Guisong Chen, Wenqi Xu
Title: Uni-PrevPredMap: Extending PrevPredMap to a Unified Framework of Prior-Informed Modeling for Online Vectorized HD Map Construction
Abstract:
Safety constitutes a foundational imperative for autonomous driving systems, necessitating the maximal incorporation of accessible external prior information. This study establishes that temporal perception buffers and cost-efficient maps inherently form complementary prior sources for online vectorized high-definition (HD) map construction. We present Uni-PrevPredMap, a unified prior-informed framework that systematically integrates two synergistic information sources: previous predictions and simulated outdated HD maps. The framework introduces two core innovations: a tile-indexed 3D vectorized global map processor enabling efficient refreshment, storage, and retrieval of 3D vectorized priors; a tri-mode operational optimization paradigm ensuring consistency across non-prior, temporal-prior, and temporal-map-fusion-prior scenarios while mitigating reliance on idealized map fidelity assumptions. Uni-PrevPredMap achieves state-of-the-art performance in map-absent scenarios across established online vectorized HD map construction benchmarks. When provided with simulated outdated HD maps, the framework exhibits robust capabilities in error-resilient prior fusion, empirically confirming the synergistic complementarity between previous predictions and simulated outdated HD maps. Code will be available at https://github.com/pnnnnnnn/Uni-PrevPredMap.

Authors:Hu Cui, Tessai Hayama
Title: HGMamba: Enhancing 3D Human Pose Estimation with a HyperGCN-Mamba Network
Abstract:
3D human pose lifting is a promising research area that leverages estimated and ground-truth 2D human pose data for training. While existing approaches primarily aim to enhance the performance of estimated 2D poses, they often struggle when applied to ground-truth 2D pose data. We observe that achieving accurate 3D pose reconstruction from ground-truth 2D poses requires precise modeling of local pose structures, alongside the ability to extract robust global spatio-temporal features. To address these challenges, we propose a novel Hyper-GCN and Shuffle Mamba (HGMamba) block, which processes input data through two parallel streams: Hyper-GCN and Shuffle-Mamba. The Hyper-GCN stream models the human body structure as hypergraphs with varying levels of granularity to effectively capture local joint dependencies. Meanwhile, the Shuffle Mamba stream leverages a state space model to perform spatio-temporal scanning across all joints, enabling the establishment of global dependencies. By adaptively fusing these two representations, HGMamba achieves strong global feature modeling while excelling at local structure modeling. We stack multiple HGMamba blocks to create three variants of our model, allowing users to select the most suitable configuration based on the desired speed-accuracy trade-off. Extensive evaluations on the Human3.6M and MPI-INF-3DHP benchmark datasets demonstrate the effectiveness of our approach. HGMamba-B achieves state-of-the-art results, with P1 errors of 38.65 mm and 14.33 mm on the respective datasets. Code and models are available: https://github.com/HuCui2022/HGMamba

Authors:Ludvig Dillén, Per-Erik Forssén, Johan Edstedt
Title: FACT: Multinomial Misalignment Classification for Point Cloud Registration
Abstract:
We present FACT, a method for predicting alignment quality (i.e., registration error) of registered lidar point cloud pairs. This is useful e.g. for quality assurance of large, automatically registered 3D models. FACT extracts local features from a registered pair and processes them with a point transformer-based network to predict a misalignment class. We generalize prior work that study binary alignment classification of registration errors, by recasting it as multinomial misalignment classification. To achieve this, we introduce a custom regression-by-classification loss function that combines the cross-entropy and Wasserstein losses, and demonstrate that it outperforms both direct regression and prior binary classification. FACT successfully classifies point-cloud pairs registered with both the classical ICP and GeoTransformer, while other choices, such as standard point-cloud-quality metrics and registration residuals are shown to be poor choices for predicting misalignment. On a synthetically perturbed point-cloud task introduced by the CorAl method, we show that FACT achieves substantially better performance than CorAl. Finally, we demonstrate how FACT can assist experts in correcting misaligned point-cloud maps. Our code is available at https://github.com/LudvigDillen/FACT_for_PCMC.

Authors:Sujay Khandagale, Bhawna Juneja, Prabhat Agarwal, Aditya Subramanian, Jaewon Yang, Yuting Wang
Title: InteractRank: Personalized Web-Scale Search Pre-Ranking with Cross Interaction Features
Abstract:
Modern search systems use a multi-stage architecture to deliver personalized results efficiently. Key stages include retrieval, pre-ranking, full ranking, and blending, which refine billions of items to top selections. The pre-ranking stage, vital for scoring and filtering hundreds of thousands of items down to a few thousand, typically relies on two tower models due to their computational efficiency, despite often lacking in capturing complex interactions. While query-item cross interaction features are paramount for full ranking, integrating them into pre-ranking models presents efficiency-related challenges. In this paper, we introduce InteractRank, a novel two tower pre-ranking model with robust cross interaction features used at Pinterest. By incorporating historical user engagement-based query-item interactions in the scoring function along with the two tower dot product, InteractRank significantly boosts pre-ranking performance with minimal latency and computation costs. In real-world A/B experiments at Pinterest, InteractRank improves the online engagement metric by 6.5% over a BM25 baseline and by 3.7% over a vanilla two tower baseline. We also highlight other components of InteractRank, like real-time user-sequence modeling, and analyze their contributions through offline ablation studies. The code for InteractRank is available at https://github.com/pinterest/atg-research/tree/main/InteractRank.

Authors:Junrui Zhang, Chenjie Wang, Jie Peng, Haoyu Li, Jianmin Ji, Yu Zhang, Yanyong Zhang
Title: CAFE-AD: Cross-Scenario Adaptive Feature Enhancement for Trajectory Planning in Autonomous Driving
Abstract:
Imitation learning based planning tasks on the nuPlan dataset have gained great interest due to their potential to generate human-like driving behaviors. However, open-loop training on the nuPlan dataset tends to cause causal confusion during closed-loop testing, and the dataset also presents a long-tail distribution of scenarios. These issues introduce challenges for imitation learning. To tackle these problems, we introduce CAFE-AD, a Cross-Scenario Adaptive Feature Enhancement for Trajectory Planning in Autonomous Driving method, designed to enhance feature representation across various scenario types. We develop an adaptive feature pruning module that ranks feature importance to capture the most relevant information while reducing the interference of noisy information during training. Moreover, we propose a cross-scenario feature interpolation module that enhances scenario information to introduce diversity, enabling the network to alleviate over-fitting in dominant scenarios. We evaluate our method CAFE-AD on the challenging public nuPlan Test14-Hard closed-loop simulation benchmark. The results demonstrate that CAFE-AD outperforms state-of-the-art methods including rule-based and hybrid planners, and exhibits the potential in mitigating the impact of long-tail distribution within the dataset. Additionally, we further validate its effectiveness in real-world environments. The code and models will be made available at https://github.com/AlniyatRui/CAFE-AD.

Authors:Li An, Yujian Liu, Yepeng Liu, Yang Zhang, Yuheng Bu, Shiyu Chang
Title: Defending LLM Watermarking Against Spoofing Attacks with Contrastive Representation Learning
Abstract:
Watermarking has emerged as a promising technique for detecting texts generated by LLMs. Current research has primarily focused on three design criteria: high quality of the watermarked text, high detectability, and robustness against removal attack. However, the security against spoofing attacks remains relatively understudied. For example, a piggyback attack can maliciously alter the meaning of watermarked text-transforming it into hate speech-while preserving the original watermark, thereby damaging the reputation of the LLM provider. We identify two core challenges that make defending against spoofing difficult: (1) the need for watermarks to be both sensitive to semantic-distorting changes and insensitive to semantic-preserving edits, and (2) the contradiction between the need to detect global semantic shifts and the local, auto-regressive nature of most watermarking schemes. To address these challenges, we propose a semantic-aware watermarking algorithm that post-hoc embeds watermarks into a given target text while preserving its original meaning. Our method introduces a semantic mapping model, which guides the generation of a green-red token list, contrastively trained to be sensitive to semantic-distorting changes and insensitive to semantic-preserving changes. Experiments on two standard benchmarks demonstrate strong robustness against removal attacks and security against spoofing attacks, including sentiment reversal and toxic content insertion, while maintaining high watermark detectability. Our approach offers a significant step toward more secure and semantically aware watermarking for LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/contrastive-watermark.

Authors:Minshuo Chen, Renyuan Xu, Yumin Xu, Ruixun Zhang
Title: Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure
Abstract:
Financial scenario simulation is essential for risk management and portfolio optimization, yet it remains challenging especially in high-dimensional and small data settings common in finance. We propose a diffusion factor model that integrates latent factor structure into generative diffusion processes, bridging econometrics with modern generative AI to address the challenges of the curse of dimensionality and data scarcity in financial simulation. By exploiting the low-dimensional factor structure inherent in asset returns, we decompose the score function--a key component in diffusion models--using time-varying orthogonal projections, and this decomposition is incorporated into the design of neural network architectures. We derive rigorous statistical guarantees, establishing nonasymptotic error bounds for both score estimation at O(d^{5/2} n^{-2/(k+5)}) and generated distribution at O(d^{5/4} n^{-1/2(k+5)}), primarily driven by the intrinsic factor dimension k rather than the number of assets d, surpassing the dimension-dependent limits in the classical nonparametric statistics literature and making the framework viable for markets with thousands of assets. Numerical studies confirm superior performance in latent subspace recovery under small data regimes. Empirical analysis demonstrates the economic significance of our framework in constructing mean-variance optimal portfolios and factor portfolios. This work presents the first theoretical integration of factor structure with diffusion models, offering a principled approach for high-dimensional financial simulation with limited data. Our code is available at https://github.com/xymmmm00/diffusion_factor_model.

Authors:Xiaohang Yang, Qing Wang, Jiahao Yang, Gregory Slabaugh, Shanxin Yuan
Title: STaR: Seamless Spatial-Temporal Aware Motion Retargeting with Penetration and Consistency Constraints
Abstract:
Motion retargeting seeks to faithfully replicate the spatio-temporal motion characteristics of a source character onto a target character with a different body shape. Apart from motion semantics preservation, ensuring geometric plausibility and maintaining temporal consistency are also crucial for effective motion retargeting. However, many existing methods prioritize either geometric plausibility or temporal consistency. Neglecting geometric plausibility results in interpenetration while neglecting temporal consistency leads to motion jitter. In this paper, we propose a novel sequence-to-sequence model for seamless Spatial-Temporal aware motion Retargeting (STaR), with penetration and consistency constraints. STaR consists of two modules: (1) a spatial module that incorporates dense shape representation and a novel limb penetration constraint to ensure geometric plausibility while preserving motion semantics, and (2) a temporal module that utilizes a temporal transformer and a novel temporal consistency constraint to predict the entire motion sequence at once while enforcing multi-level trajectory smoothness. The seamless combination of the two modules helps us achieve a good balance between the semantic, geometric, and temporal targets. Extensive experiments on the Mixamo and ScanRet datasets demonstrate that our method produces plausible and coherent motions while significantly reducing interpenetration rates compared with other approaches. Code page: https://github.com/XiaohangYang829/STaR.

Authors:Halid Abdulrahim Kadi, Kasim Terzić
Title: Agent-Arena: A General Framework for Evaluating Control Algorithms
Abstract:
Robotic research is inherently challenging, requiring expertise in diverse environments and control algorithms. Adapting algorithms to new environments often poses significant difficulties, compounded by the need for extensive hyper-parameter tuning in data-driven methods. To address these challenges, we present Agent-Arena, a Python framework designed to streamline the integration, replication, development, and testing of decision-making policies across a wide range of benchmark environments. Unlike existing frameworks, Agent-Arena is uniquely generalised to support all types of control algorithms and is adaptable to both simulation and real-robot scenarios. Please see our GitHub repository https://github.com/halid1020/agent-arena-v0.

Authors:Adam McArthur, Stephanie Wichuk, Stephen Burnside, Andrew Kirby, Alexander Scammon, Damian Sol, Abhilash Hareendranathan, Jacob L. Jaremko
Title: Retuve: Automated Multi-Modality Analysis of Hip Dysplasia with Open Source AI
Abstract:
Developmental dysplasia of the hip (DDH) poses significant diagnostic challenges, hindering timely intervention. Current screening methodologies lack standardization, and AI-driven studies suffer from reproducibility issues due to limited data and code availability. To address these limitations, we introduce Retuve, an open-source framework for multi-modality DDH analysis, encompassing both ultrasound (US) and X-ray imaging. Retuve provides a complete and reproducible workflow, offering open datasets comprising expert-annotated US and X-ray images, pre-trained models with training code and weights, and a user-friendly Python Application Programming Interface (API). The framework integrates segmentation and landmark detection models, enabling automated measurement of key diagnostic parameters such as the alpha angle and acetabular index. By adhering to open-source principles, Retuve promotes transparency, collaboration, and accessibility in DDH research. This initiative has the potential to democratize DDH screening, facilitate early diagnosis, and ultimately improve patient outcomes by enabling widespread screening and early intervention. The GitHub repository/code can be found here: https://github.com/radoss-org/retuve

Authors:Ildi Alla, Selma Yahia, Valeria Loscri
Title: TRIDENT: Tri-modal Real-time Intrusion Detection Engine for New Targets
Abstract:
The increasing availability of drones and their potential for malicious activities pose significant privacy and security risks, necessitating fast and reliable detection in real-world environments. However, existing drone detection systems often struggle in real-world settings due to environmental noise and sensor limitations. This paper introduces TRIDENT, a tri-modal drone detection framework that integrates synchronized audio, visual, and RF data to enhance robustness and reduce dependence on individual sensors. TRIDENT introduces two fusion strategies - Late Fusion and GMU Fusion - to improve multi-modal integration while maintaining efficiency. The framework incorporates domain-specific feature extraction techniques alongside a specialized data augmentation pipeline that simulates real-world sensor degradation to improve generalization capabilities. A diverse multi-sensor dataset is collected in urban and non-urban environments under varying lighting conditions, ensuring comprehensive evaluation. Experimental results show that TRIDENT achieves 98.8 percent accuracy in real-world recordings and 83.26 percent in a more complex setting (augmented data), outperforming unimodal and dual-modal baselines. Moreover, TRIDENT operates in real-time, detecting drones in just 6.09 ms while consuming only 75.27 mJ per detection, making it highly efficient for resource-constrained devices. The dataset and code have been released to ensure reproducibility (https://github.com/TRIDENT-2025/TRIDENT).

Authors:Huzaifa Arif, Keerthiram Murugesan, Payel Das, Alex Gittens, Pin-Yu Chen
Title: PEEL the Layers and Find Yourself: Revisiting Inference-time Data Leakage for Residual Neural Networks
Abstract:
This paper explores inference-time data leakage risks of deep neural networks (NNs), where a curious and honest model service provider is interested in retrieving users' private data inputs solely based on the model inference results. Particularly, we revisit residual NNs due to their popularity in computer vision and our hypothesis that residual blocks are a primary cause of data leakage owing to the use of skip connections. By formulating inference-time data leakage as a constrained optimization problem, we propose a novel backward feature inversion method, \textbf{PEEL}, which can effectively recover block-wise input features from the intermediate output of residual NNs. The surprising results in high-quality input data recovery can be explained by the intuition that the output from these residual blocks can be considered as a noisy version of the input and thus the output retains sufficient information for input recovery. We demonstrate the effectiveness of our layer-by-layer feature inversion method on facial image datasets and pre-trained classifiers. Our results show that PEEL outperforms the state-of-the-art recovery methods by an order of magnitude when evaluated by mean squared error (MSE). The code is available at \href{https://github.com/Huzaifa-Arif/PEEL}{https://github.com/Huzaifa-Arif/PEEL}

Authors:Jonas Torzewski
Title: Physical spline for denoising object trajectory data by combining splines, ML feature regression and model knowledge
Abstract:
This article presents a method for estimating the dynamic driving states (position, velocity, acceleration and heading) from noisy measurement data. The proposed approach is effective with both complete and partial observations, producing refined trajectory signals with kinematic consistency, ensuring that velocity is the integral of acceleration and position is the integral of velocity. Additionally, the method accounts for the constraint that vehicles can only move in the direction of their orientation. The method is implemented as a configurable python library that also enables trajectory estimation solely based on position data. Regularization is applied to prevent extreme state variations. A key application is enhancing recorded trajectory data for use as reference inputs in machine learning models. At the end, the article presents the results of the method along with a comparison to ground truth data.

Authors:Zixuan Yi, Yao Tian, Zachary G. Ives, Ryan Marcus
Title: Low Rank Learning for Offline Query Optimization
Abstract:
Recent deployments of learned query optimizers use expensive neural networks and ad-hoc search policies. To address these issues, we introduce \textsc{LimeQO}, a framework for offline query optimization leveraging low-rank learning to efficiently explore alternative query plans with minimal resource usage. By modeling the workload as a partially observed, low-rank matrix, we predict unobserved query plan latencies using purely linear methods, significantly reducing computational overhead compared to neural networks. We formalize offline exploration as an active learning problem, and present simple heuristics that reduces a 3-hour workload to 1.5 hours after just 1.5 hours of exploration. Additionally, we propose a transductive Tree Convolutional Neural Network (TCNN) that, despite higher computational costs, achieves the same workload reduction with only 0.5 hours of exploration. Unlike previous approaches that place expensive neural networks directly in the query processing ``hot'' path, our approach offers a low-overhead solution and a no-regressions guarantee, all without making assumptions about the underlying DBMS. The code is available in \href{https://github.com/zixy17/LimeQO}{https://github.com/zixy17/LimeQO}.

Authors:Hritam Basak, Zhaozheng Yin
Title: SemiDAViL: Semi-supervised Domain Adaptation with Vision-Language Guidance for Semantic Segmentation
Abstract:
Domain Adaptation (DA) and Semi-supervised Learning (SSL) converge in Semi-supervised Domain Adaptation (SSDA), where the objective is to transfer knowledge from a source domain to a target domain using a combination of limited labeled target samples and abundant unlabeled target data. Although intuitive, a simple amalgamation of DA and SSL is suboptimal in semantic segmentation due to two major reasons: (1) previous methods, while able to learn good segmentation boundaries, are prone to confuse classes with similar visual appearance due to limited supervision; and (2) skewed and imbalanced training data distribution preferring source representation learning whereas impeding from exploring limited information about tailed classes. Language guidance can serve as a pivotal semantic bridge, facilitating robust class discrimination and mitigating visual ambiguities by leveraging the rich semantic relationships encoded in pre-trained language models to enhance feature representations across domains. Therefore, we propose the first language-guided SSDA setting for semantic segmentation in this work. Specifically, we harness the semantic generalization capabilities inherent in vision-language models (VLMs) to establish a synergistic framework within the SSDA paradigm. To address the inherent class-imbalance challenges in long-tailed distributions, we introduce class-balanced segmentation loss formulations that effectively regularize the learning process. Through extensive experimentation across diverse domain adaptation scenarios, our approach demonstrates substantial performance improvements over contemporary state-of-the-art (SoTA) methodologies. Code is available: \href{https://github.com/hritam-98/SemiDAViL}{GitHub}.

Authors:Hicham Talaoubrid, Anissa Mokraoui, Ismail Ben Ayed, Axel Prouvost, Sonimith Hang, Monit Korn, Rémi Harvey
Title: Analyzing the Impact of Low-Rank Adaptation for Cross-Domain Few-Shot Object Detection in Aerial Images
Abstract:
This paper investigates the application of Low-Rank Adaptation (LoRA) to small models for cross-domain few-shot object detection in aerial images. Originally designed for large-scale models, LoRA helps mitigate overfitting, making it a promising approach for resource-constrained settings. We integrate LoRA into DiffusionDet, and evaluate its performance on the DOTA and DIOR datasets. Our results show that LoRA applied after an initial fine-tuning slightly improves performance in low-shot settings (e.g., 1-shot and 5-shot), while full fine-tuning remains more effective in higher-shot configurations. These findings highlight LoRA's potential for efficient adaptation in aerial object detection, encouraging further research into parameter-efficient fine-tuning strategies for few-shot learning. Our code is available here: https://github.com/HichTala/LoRA-DiffusionDet.

Authors:Bailey J. Eccles, Leon Wong, Blesson Varghese
Title: Mosaic: Composite Projection Pruning for Resource-efficient LLMs
Abstract:
Extensive compute and memory requirements limit the deployment of large language models (LLMs) on any hardware. Compression methods, such as pruning, can reduce model size, which in turn reduces resource requirements. State-of-the-art pruning is based on coarse-grained methods. They are time-consuming and inherently remove critical model parameters, adversely impacting the quality of the pruned model. This paper introduces projection pruning, a novel fine-grained method for pruning LLMs. In addition, LLM projection pruning is enhanced by a new approach we refer to as composite projection pruning - the synergistic combination of unstructured pruning that retains accuracy and structured pruning that reduces model size. We develop Mosaic, a novel system to create and deploy pruned LLMs using composite projection pruning. Mosaic is evaluated using a range of performance and quality metrics on multiple hardware platforms, LLMs, and datasets. Mosaic is 7.19x faster in producing models than existing approaches. Mosaic models achieve up to 84.2% lower perplexity and 31.4% higher accuracy than models obtained from coarse-grained pruning. Up to 67% faster inference and 68% lower GPU memory use is noted for Mosaic models. Mosaic is available for public use from https://github.com/blessonvar/Mosaic

Authors:Ziwei Yang, Takeyuki Tamura
Title: DeepGDel: Deep Learning-based Gene Deletion Prediction Framework for Growth-Coupled Production in Genome-Scale Metabolic Models
Abstract:
In genome-scale constraint-based metabolic models, gene deletion strategies are crucial for achieving growth-coupled production, where cell growth and target metabolite production are simultaneously achieved. While computational methods for calculating gene deletions have been widely explored and contribute to developing gene deletion strategy databases, current approaches are limited in leveraging new data-driven paradigms, such as machine learning, for more efficient strain design. Therefore, it is necessary to propose a fundamental framework for this objective. In this study, we first formulate the problem of gene deletion strategy prediction and then propose a framework for predicting gene deletion strategies for growth-coupled production in genome-scale metabolic models. The proposed framework leverages deep learning algorithms to learn and integrate sequential gene and metabolite data representation, enabling the automatic gene deletion strategy prediction. Computational experiment results demonstrate the feasibility of the proposed framework, showing substantial improvements over baseline methods. Specifically, the proposed framework achieves a 14.69%, 22.52%, and 13.03% increase in overall accuracy across three metabolic models of different scales under study, while maintaining balanced precision and recall in predicting gene deletion statuses. The source code and examples for the framework are publicly available at https://github.com/MetNetComp/DeepGDel.

Authors:Ziwei Yang, Takeyuki Tamura
Title: DeepGDel: Deep Learning-based Gene Deletion Prediction Framework for Growth-Coupled Production in Genome-Scale Metabolic Models
Abstract:
In genome-scale constraint-based metabolic models, gene deletion strategies are crucial for achieving growth-coupled production, where cell growth and target metabolite production are simultaneously achieved. While computational methods for calculating gene deletions have been widely explored and contribute to developing gene deletion strategy databases, current approaches are limited in leveraging new data-driven paradigms, such as machine learning, for more efficient strain design. Therefore, it is necessary to propose a fundamental framework for this objective. In this study, we first formulate the problem of gene deletion strategy prediction and then propose a framework for predicting gene deletion strategies for growth-coupled production in genome-scale metabolic models. The proposed framework leverages deep learning algorithms to learn and integrate sequential gene and metabolite data representation, enabling the automatic gene deletion strategy prediction. Computational experiment results demonstrate the feasibility of the proposed framework, showing substantial improvements over baseline methods. Specifically, the proposed framework achieves a 14.69%, 22.52%, and 13.03% increase in overall accuracy across three metabolic models of different scales under study, while maintaining balanced precision and recall in predicting gene deletion statuses. The source code and examples for the framework are publicly available at https://github.com/MetNetComp/DeepGDel.

Authors:Mohsen Jenadeleh, Jon Sneyers, Panqi Jia, Shima Mohammadi, Joao Ascenso, Dietmar Saupe
Title: Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
Abstract:
Learning-based image compression methods have recently emerged as promising alternatives to traditional codecs, offering improved rate-distortion performance and perceptual quality. JPEG AI represents the latest standardized framework in this domain, leveraging deep neural networks for high-fidelity image reconstruction. In this study, we present a comprehensive subjective visual quality assessment of JPEG AI-compressed images using the JPEG AIC-3 methodology, which quantifies perceptual differences in terms of Just Noticeable Difference (JND) units. We generated a dataset of 50 compressed images with fine-grained distortion levels from five diverse sources. A large-scale crowdsourced experiment collected 96,200 triplet responses from 459 participants. We reconstructed JND-based quality scales using a unified model based on boosted and plain triplet comparisons. Additionally, we evaluated the alignment of multiple objective image quality metrics with human perception in the high-fidelity range. The CVVDP metric achieved the overall highest performance; however, most metrics including CVVDP were overly optimistic in predicting the quality of JPEG AI-compressed images. These findings emphasize the necessity for rigorous subjective evaluations in the development and benchmarking of modern image codecs, particularly in the high-fidelity range. Another technical contribution is the introduction of the well-known Meng-Rosenthal-Rubin statistical test to the field of Quality of Experience research. This test can reliably assess the significance of difference in performance of quality metrics in terms of correlation between metrics and ground truth. The complete dataset, including all subjective scores, is publicly available at https://github.com/jpeg-aic/dataset-JPEG-AI-SDR25.

Authors:Hongbin Liang, Hezhe Qiao, Wei Huang, Qizhou Wang, Mingsheng Shang, Lin Chen
Title: Temporal-contextual Event Learning for Pedestrian Crossing Intent Prediction
Abstract:
Ensuring the safety of vulnerable road users through accurate prediction of pedestrian crossing intention (PCI) plays a crucial role in the context of autonomous and assisted driving. Analyzing the set of observation video frames in ego-view has been widely used in most PCI prediction methods to forecast the cross intent. However, they struggle to capture the critical events related to pedestrian behaviour along the temporal dimension due to the high redundancy of the video frames, which results in the sub-optimal performance of PCI prediction. Our research addresses the challenge by introducing a novel approach called \underline{T}emporal-\underline{c}ontextual Event \underline{L}earning (TCL). The TCL is composed of the Temporal Merging Module (TMM), which aims to manage the redundancy by clustering the observed video frames into multiple key temporal events. Then, the Contextual Attention Block (CAB) is employed to adaptively aggregate multiple event features along with visual and non-visual data. By synthesizing the temporal feature extraction and contextual attention on the key information across the critical events, TCL can learn expressive representation for the PCI prediction. Extensive experiments are carried out on three widely adopted datasets, including PIE, JAAD-beh, and JAAD-all. The results show that TCL substantially surpasses the state-of-the-art methods. Our code can be accessed at https://github.com/dadaguailhb/TCL.

Authors:Nayantara Mudur, Hao Cui, Subhashini Venugopalan, Paul Raccuglia, Michael P. Brenner, Peter Norgaard
Title: FEABench: Evaluating Language Models on Multiphysics Reasoning Ability
Abstract:
Building precise simulations of the real world and invoking numerical solvers to answer quantitative problems is an essential requirement in engineering and science. We present FEABench, a benchmark to evaluate the ability of large language models (LLMs) and LLM agents to simulate and solve physics, mathematics and engineering problems using finite element analysis (FEA). We introduce a comprehensive evaluation scheme to investigate the ability of LLMs to solve these problems end-to-end by reasoning over natural language problem descriptions and operating COMSOL Multiphysics$^\circledR$, an FEA software, to compute the answers. We additionally design a language model agent equipped with the ability to interact with the software through its Application Programming Interface (API), examine its outputs and use tools to improve its solutions over multiple iterations. Our best performing strategy generates executable API calls 88% of the time. LLMs that can successfully interact with and operate FEA software to solve problems such as those in our benchmark would push the frontiers of automation in engineering. Acquiring this capability would augment LLMs' reasoning skills with the precision of numerical solvers and advance the development of autonomous systems that can tackle complex problems in the real world. The code is available at https://github.com/google/feabench

Authors:Krithi Shailya, Shreya Rajpal, Gokul S Krishnan, Balaraman Ravindran
Title: LExT: Towards Evaluating Trustworthiness of Natural Language Explanations
Abstract:
As Large Language Models (LLMs) become increasingly integrated into high-stakes domains, there have been several approaches proposed toward generating natural language explanations. These explanations are crucial for enhancing the interpretability of a model, especially in sensitive domains like healthcare, where transparency and reliability are key. In light of such explanations being generated by LLMs and its known concerns, there is a growing need for robust evaluation frameworks to assess model-generated explanations. Natural Language Generation metrics like BLEU and ROUGE capture syntactic and semantic accuracies but overlook other crucial aspects such as factual accuracy, consistency, and faithfulness. To address this gap, we propose a general framework for quantifying trustworthiness of natural language explanations, balancing Plausibility and Faithfulness, to derive a comprehensive Language Explanation Trustworthiness Score (LExT) (The code and set up to reproduce our experiments are publicly available at https://github.com/cerai-iitm/LExT). Applying our domain-agnostic framework to the healthcare domain using public medical datasets, we evaluate six models, including domain-specific and general-purpose models. Our findings demonstrate significant differences in their ability to generate trustworthy explanations. On comparing these explanations, we make interesting observations such as inconsistencies in Faithfulness demonstrated by general-purpose models and their tendency to outperform domain-specific fine-tuned models. This work further highlights the importance of using a tailored evaluation framework to assess natural language explanations in sensitive fields, providing a foundation for improving the trustworthiness and transparency of language models in healthcare and beyond.

Authors:Xiaoxing Hu, Ziyang Gong, Yupei Wang, Yuru Jia, Gen Luo, Xue Yang
Title: Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) is a technique that allows us to adapt powerful Foundation Models (FMs) to diverse downstream tasks while preserving and unleashing their inherent capabilities. However, we have observed that existing PEFT methods, which are often designed with natural imagery in mind, struggle when applied to Remote Sensing (RS) scenarios. This is primarily due to their inability to handle artifact influences, a problem particularly severe in RS image features. To tackle this challenge, we introduce Earth-Adapter, the first PEFT method specifically designed for RS artifacts conquering. Earth-Adapter introduces a novel Mixture of Frequency Adaptation process that combines a Mixture of Adapter (MoA) with Discrete Fourier Transformation (DFT). By utilizing DFT, Earth-Adapter can decompose features into different frequency components, precisely separating artifacts from original features. The MoA then dynamically assigns weights to each adapter expert, allowing for the combination of features across various frequency domains. These simple-yet-effective approaches enable Earth-Adapter to more efficiently overcome the disturbances caused by artifacts than previous PEFT methods, significantly enhancing the FMs' performance on RS scenarios. Experiments on Domain Adaptation (DA), and Domain Generalization (DG) semantic segmentation benchmarks showcase the Earth-Adapter's effectiveness. Compared with baseline Rein, Earth-Adapter significantly improves 9.0% mIoU in DA and 3.1% mIoU in DG benchmarks. Our code will be released at https://github.com/VisionXLab/Earth-Adapter.

Authors:Qing Xu, Zhenye Lou, Chenxin Li, Yue Li, Xiangjian He, Tesema Fiseha Berhanu, Rong Qu, Wenting Duan, Zhen Chen
Title: HER-Seg: Holistically Efficient Segmentation for High-Resolution Medical Images
Abstract:
High-resolution segmentation is critical for precise disease diagnosis by extracting fine-grained morphological details. Existing hierarchical encoder-decoder frameworks have demonstrated remarkable adaptability across diverse medical segmentation tasks. While beneficial, they usually require the huge computation and memory cost when handling large-size segmentation, which limits their applications in foundation model building and real-world clinical scenarios. To address this limitation, we propose a holistically efficient framework for high-resolution medical image segmentation, called HER-Seg. Specifically, we first devise a computation-efficient image encoder (CE-Encoder) to model long-range dependencies with linear complexity while maintaining sufficient representations. In particular, we introduce the dual-gated linear attention (DLA) mechanism to perform cascaded token filtering, selectively retaining important tokens while ignoring irrelevant ones to enhance attention computation efficiency. Then, we introduce a memory-efficient mask decoder (ME-Decoder) to eliminate the demand for the hierarchical structure by leveraging cross-scale segmentation decoding. Extensive experiments reveal that HER-Seg outperforms state-of-the-arts in high-resolution medical 2D, 3D and video segmentation tasks. In particular, our HER-Seg requires only 0.59GB training GPU memory and 9.39G inference FLOPs per 1024$\times$1024 image, demonstrating superior memory and computation efficiency. The code is available at https://github.com/xq141839/HER-Seg.

Authors:Yujia Hu, Songhua Liu, Xingyi Yang, Xinchao Wang
Title: Flash Sculptor: Modular 3D Worlds from Objects
Abstract:
Existing text-to-3D and image-to-3D models often struggle with complex scenes involving multiple objects and intricate interactions. Although some recent attempts have explored such compositional scenarios, they still require an extensive process of optimizing the entire layout, which is highly cumbersome if not infeasible at all. To overcome these challenges, we propose Flash Sculptor in this paper, a simple yet effective framework for compositional 3D scene/object reconstruction from a single image. At the heart of Flash Sculptor lies a divide-and-conquer strategy, which decouples compositional scene reconstruction into a sequence of sub-tasks, including handling the appearance, rotation, scale, and translation of each individual instance. Specifically, for rotation, we introduce a coarse-to-fine scheme that brings the best of both worlds--efficiency and accuracy--while for translation, we develop an outlier-removal-based algorithm that ensures robust and precise parameters in a single step, without any iterative optimization. Extensive experiments demonstrate that Flash Sculptor achieves at least a 3 times speedup over existing compositional 3D methods, while setting new benchmarks in compositional 3D reconstruction performance. Codes are available at https://github.com/YujiaHu1109/Flash-Sculptor.

Authors:Saad Wazir, Daeyoung Kim
Title: Rethinking the Nested U-Net Approach: Enhancing Biomarker Segmentation with Attention Mechanisms and Multiscale Feature Fusion
Abstract:
Identifying biomarkers in medical images is vital for a wide range of biotech applications. However, recent Transformer and CNN based methods often struggle with variations in morphology and staining, which limits their feature extraction capabilities. In medical image segmentation, where data samples are often limited, state-of-the-art (SOTA) methods improve accuracy by using pre-trained encoders, while end-to-end approaches typically fall short due to difficulties in transferring multiscale features effectively between encoders and decoders. To handle these challenges, we introduce a nested UNet architecture that captures both local and global context through Multiscale Feature Fusion and Attention Mechanisms. This design improves feature integration from encoders, highlights key channels and regions, and restores spatial details to enhance segmentation performance. Our method surpasses SOTA approaches, as evidenced by experiments across four datasets and detailed ablation studies. Code: https://github.com/saadwazir/ReN-UNet

Authors:Xiangxi Zheng, Linjie Li, Zhengyuan Yang, Ping Yu, Alex Jinpeng Wang, Rui Yan, Yuan Yao, Lijuan Wang
Title: V-MAGE: A Game Evaluation Framework for Assessing Vision-Centric Capabilities in Multimodal Large Language Models
Abstract:
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in visual-text processing. However, existing static image-text benchmarks are insufficient for evaluating their dynamic perception and interactive reasoning abilities. We introduce Vision-centric Multiple Abilities Game Evaluation(V-MAGE), a novel game-based evaluation framework designed to systematically assess MLLMs' visual reasoning in interactive, continuous-space environments. V-MAGE features five distinct video games comprising over 30 carefully constructed evaluation scenarios. These scenarios are set in free-form, visually complex environments that require models to interpret dynamic game states and make decisions based solely on visual input, thereby closely reflecting the conditions encountered by human players. To ensure robust and interpretable comparisons across models, V-MAGE employs a dynamic Elo-based ranking system that accounts for varying difficulty levels and task diversity. Benchmarking state-of-the-art MLLMs against human baselines reveals that while leading models approach human-level performance in simple tasks, their performance drops significantly in complex scenarios requiring advanced reasoning and task orchestration. This persistent performance gap highlights fundamental limitations in current MLLMs' ability to perform real-time, vision-grounded interactions. Through extensive analyses, we demonstrate the utility of V-MAGE in uncovering these limitations and providing actionable insights for improving the visual and reasoning capabilities of MLLMs in dynamic, interactive settings. Code is publicly available at https://github.com/CSU-JPG/V-MAGE.

Authors:Luigi Tresca, Carolin Schmidt, James Harrison, Filipe Rodrigues, Gioele Zardini, Daniele Gammelli, Marco Pavone
Title: Robo-taxi Fleet Coordination at Scale via Reinforcement Learning
Abstract:
Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD

Authors:Davide Sferrazza, Gabriele Berton, Gabriele Trivigno, Carlo Masone
Title: To Match or Not to Match: Revisiting Image Matching for Reliable Visual Place Recognition
Abstract:
Visual Place Recognition (VPR) is a critical task in computer vision, traditionally enhanced by re-ranking retrieval results with image matching. However, recent advancements in VPR methods have significantly improved performance, challenging the necessity of re-ranking. In this work, we show that modern retrieval systems often reach a point where re-ranking can degrade results, as current VPR datasets are largely saturated. We propose using image matching as a verification step to assess retrieval confidence, demonstrating that inlier counts can reliably predict when re-ranking is beneficial. Our findings shift the paradigm of retrieval pipelines, offering insights for more robust and adaptive VPR systems. The code is available at https://github.com/FarInHeight/To-Match-or-Not-to-Match.

Authors:Vincenzo Petrone, Enrico Ferrentino, Pasquale Chiacchio
Title: A ROS2-based software library for inverse dynamics computation
Abstract:
Inverse dynamics computation is a critical component in robot control, planning and simulation, enabling the calculation of joint torques required to achieve a desired motion. This paper presents a ROS2-based software library designed to solve the inverse dynamics problem for robotic systems. The library is built around an abstract class with three concrete implementations: one for simulated robots and two for real UR10 and Franka robots. This contribution aims to provide a flexible, extensible, robot-agnostic solution to inverse dynamics, suitable for both simulation and real-world scenarios involving planning and control applications. The related software is available at https://github.com/unisa-acg/inverse-dynamics-solver/tree/rap.

Authors:Hao Li, Zhenyu Liang, Ran Cheng
Title: GPU-accelerated Evolutionary Many-objective Optimization Using Tensorized NSGA-III
Abstract:
NSGA-III is one of the most widely adopted algorithms for tackling many-objective optimization problems. However, its CPU-based design severely limits scalability and computational efficiency. To address the limitations, we propose {TensorNSGA-III}, a fully tensorized implementation of NSGA-III that leverages GPU parallelism for large-scale many-objective optimization. Unlike conventional GPU-accelerated evolutionary algorithms that rely on heuristic approximations to improve efficiency, TensorNSGA-III maintains the exact selection and variation mechanisms of NSGA-III while achieving significant acceleration. By reformulating the selection process with tensorized data structures and an optimized caching strategy, our approach effectively eliminates computational bottlenecks inherent in traditional CPU-based and naïve GPU implementations. Experimental results on widely used numerical benchmarks show that TensorNSGA-III achieves speedups of up to $3629\times$ over the CPU version of NSGA-III. Additionally, we validate its effectiveness in multiobjective robotic control tasks, where it discovers diverse and high-quality behavioral solutions. Furthermore, we investigate the critical role of large population sizes in many-objective optimization and demonstrate the scalability of TensorNSGA-III in such scenarios. The source code is available at https://github.com/EMI-Group/evomo

Authors:Qitong Wang, Mohammed J. Zaki, Georgios Kollias, Vasileios Kalantzis
Title: Multi-Sense Embeddings for Language Models and Knowledge Distillation
Abstract:
Transformer-based large language models (LLMs) rely on contextual embeddings which generate different (continuous) representations for the same token depending on its surrounding context. Nonetheless, words and tokens typically have a limited number of senses (or meanings). We propose multi-sense embeddings as a drop-in replacement for each token in order to capture the range of their uses in a language. To construct a sense embedding dictionary, we apply a clustering algorithm to embeddings generated by an LLM and consider the cluster centers as representative sense embeddings. In addition, we propose a novel knowledge distillation method that leverages the sense dictionary to learn a smaller student model that mimics the senses from the much larger base LLM model, offering significant space and inference time savings, while maintaining competitive performance. Via thorough experiments on various benchmarks, we showcase the effectiveness of our sense embeddings and knowledge distillation approach. We share our code at https://github.com/Qitong-Wang/SenseDict

Authors:Dahyun Kang, Ahmet Iscen, Eunchan Jo, Sua Choi, Minsu Cho, Cordelia Schmid
Title: Memory-Modular Classification: Learning to Generalize with Memory Replacement
Abstract:
We propose a novel memory-modular learner for image classification that separates knowledge memorization from reasoning. Our model enables effective generalization to new classes by simply replacing the memory contents, without the need for model retraining. Unlike traditional models that encode both world knowledge and task-specific skills into their weights during training, our model stores knowledge in the external memory of web-crawled image and text data. At inference time, the model dynamically selects relevant content from the memory based on the input image, allowing it to adapt to arbitrary classes by simply replacing the memory contents. The key differentiator that our learner meta-learns to perform classification tasks with noisy web data from unseen classes, resulting in robust performance across various classification scenarios. Experimental results demonstrate the promising performance and versatility of our approach in handling diverse classification tasks, including zero-shot/few-shot classification of unseen classes, fine-grained classification, and class-incremental classification.

Authors:Stefanos-Iordanis Papadopoulos, Christos Koutlis, Symeon Papadopoulos, Panagiotis C. Petrantonakis
Title: Latent Multimodal Reconstruction for Misinformation Detection
Abstract:
Multimodal misinformation, such as miscaptioned images, where captions misrepresent an image's origin, context, or meaning, poses a growing challenge in the digital age. To support fact-checkers, researchers have focused on developing datasets and methods for multimodal misinformation detection (MMD). Due to the scarcity of large-scale annotated MMD datasets, recent approaches rely on synthetic training data created via out-of-context pairings or named entity manipulations (e.g., altering names, dates, or locations). However, these often yield simplistic examples that lack real-world complexity, limiting model robustness. Meanwhile, Large Vision-Language Models (LVLMs) remain underexplored for generating diverse and realistic synthetic data for MMD. To address, we introduce "Miscaption This!", a collection of LVLM-generated miscaptioned image datasets. Additionally, we introduce "Latent Multimodal Reconstruction" (LAMAR), a network trained to reconstruct the embeddings of truthful captions, providing a strong auxiliary signal to guide detection. We explore various training strategies (end-to-end vs. large-scale pre-training) and integration mechanisms (direct, mask, gate, and attention). Extensive experiments show that models trained on "MisCaption This!" generalize better to real-world misinformation while LAMAR achieves new state-of-the-art on both NewsCLIPpings and VERITE benchmarks; highlighting the value of LVLM-generated data and reconstruction-based networks for advancing MMD. Our code is available at https://github.com/stevejpapad/miscaptioned-image-reconstruction

Authors:Roman Kochnev, Arash Torabi Goodarzi, Zofia Antonina Bentyn, Dmitry Ignatov, Radu Timofte
Title: Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning?
Abstract:
Optimal hyperparameter selection is critical for maximizing the performance of neural networks in computer vision, particularly as architectures become more complex. This work explores the use of large language models (LLMs) for hyperparameter optimization by fine-tuning a parameter-efficient version of Code Llama using LoRA. The resulting model produces accurate and computationally efficient hyperparameter recommendations across a wide range of vision architectures. Unlike traditional methods such as Optuna, which rely on resource-intensive trial-and-error procedures, our approach achieves competitive or superior Root Mean Square Error (RMSE) while substantially reducing computational overhead. Importantly, the models evaluated span image-centric tasks such as classification, detection, and segmentation, fundamental components in many image manipulation pipelines including enhancement, restoration, and style transfer. Our results demonstrate that LLM-based optimization not only rivals established Bayesian methods like Tree-structured Parzen Estimators (TPE), but also accelerates tuning for real-world applications requiring perceptual quality and low-latency processing. All generated configurations are publicly available in the LEMUR Neural Network Dataset (https://github.com/ABrain-One/nn-dataset), which serves as an open source benchmark for hyperparameter optimization research and provides a practical resource to improve training efficiency in image manipulation systems.

Authors:Sixiang Chen, Jinbin Bai, Zhuoran Zhao, Tian Ye, Qingyu Shi, Donghao Zhou, Wenhao Chai, Xin Lin, Jianzong Wu, Chao Tang, Shilin Xu, Tao Zhang, Haobo Yuan, Yikang Zhou, Wei Chow, Linfeng Li, Xiangtai Li, Lei Zhu, Lu Qi
Title: An Empirical Study of GPT-4o Image Generation Capabilities
Abstract:
The landscape of image generation has rapidly evolved, from early GAN-based approaches to diffusion models and, most recently, to unified generative architectures that seek to bridge understanding and generation tasks. Recent advances, especially the GPT-4o, have demonstrated the feasibility of high-fidelity multimodal generation, their architectural design remains mysterious and unpublished. This prompts the question of whether image and text generation have already been successfully integrated into a unified framework for those methods. In this work, we conduct an empirical study of GPT-4o's image generation capabilities, benchmarking it against leading open-source and commercial models. Our evaluation covers four main categories, including text-to-image, image-to-image, image-to-3D, and image-to-X generation, with more than 20 tasks. Our analysis highlights the strengths and limitations of GPT-4o under various settings, and situates it within the broader evolution of generative modeling. Through this investigation, we identify promising directions for future unified generative models, emphasizing the role of architectural design and data scaling. For a high-definition version of the PDF, please refer to the link on GitHub: \href{https://github.com/Ephemeral182/Empirical-Study-of-GPT-4o-Image-Gen}{https://github.com/Ephemeral182/Empirical-Study-of-GPT-4o-Image-Gen}.

Authors:Kuntian Zhang, Simin Yu, Yaoshu Wang, Makoto Onizuka, Chuan Xiao
Title: CKGAN: Training Generative Adversarial Networks Using Characteristic Kernel Integral Probability Metrics
Abstract:
In this paper, we propose CKGAN, a novel generative adversarial network (GAN) variant based on an integral probability metrics framework with characteristic kernel (CKIPM). CKIPM, as a distance between two probability distributions, is designed to optimize the lowerbound of the maximum mean discrepancy (MMD) in a reproducing kernel Hilbert space, and thus can be used to train GANs. CKGAN mitigates the notorious problem of mode collapse by mapping the generated images back to random noise. To save the effort of selecting the kernel function manually, we propose a soft selection method to automatically learn a characteristic kernel function. The experimental evaluation conducted on a set of synthetic and real image benchmarks (MNIST, CelebA, etc.) demonstrates that CKGAN generally outperforms other MMD-based GANs. The results also show that at the cost of moderately more training time, the automatically selected kernel function delivers very close performance to the best of manually fine-tuned one on real image benchmarks and is able to improve the performances of other MMD-based GANs.

Authors:Peerat Limkonchotiwat, Kanruethai Masuk, Surapon Nonesung, Chalermpun Mai-On, Sarana Nutanong, Wuttikorn Ponwitayarat, Potsawee Manakul
Title: Assessing Thai Dialect Performance in LLMs with Automatic Benchmarks and Human Evaluation
Abstract:
Large language models show promising results in various NLP tasks. Despite these successes, the robustness and consistency of LLMs in underrepresented languages remain largely unexplored, especially concerning local dialects. Existing benchmarks also focus on main dialects, neglecting LLMs' ability on local dialect texts. In this paper, we introduce a Thai local dialect benchmark covering Northern (Lanna), Northeastern (Isan), and Southern (Dambro) Thai, evaluating LLMs on five NLP tasks: summarization, question answering, translation, conversation, and food-related tasks. Furthermore, we propose a human evaluation guideline and metric for Thai local dialects to assess generation fluency and dialect-specific accuracy. Results show that LLM performance declines significantly in local Thai dialects compared to standard Thai, with only proprietary models like GPT-4o and Gemini2 demonstrating some fluency

Authors:Shuzhang Zhong, Yanfan Sun, Ling Liang, Runsheng Wang, Ru Huang, Meng Li
Title: HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference
Abstract:
The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation. However, the large MoE model size still introduces substantial memory demands, which usually requires expert offloading on resource-constrained platforms and incurs significant overhead. Hybrid CPU-GPU inference has been proposed to leverage CPU computation to reduce expert loading overhead but faces major challenges: on one hand, the expert activation patterns of MoE models are highly unstable, rendering the fixed mapping strategies in existing works inefficient; on the other hand, the hybrid CPU-GPU schedule for MoE is inherently complex due to the diverse expert sizes, structures, uneven workload distribution, etc. To address these challenges, in this paper, we propose HybriMoE, a hybrid CPU-GPU inference framework that improves resource utilization through a novel CPU-GPU scheduling and cache management system. HybriMoE introduces (i) a dynamic intra-layer scheduling strategy to balance workloads across CPU and GPU, (ii) an impact-driven inter-layer prefetching algorithm, and (iii) a score-based caching algorithm to mitigate expert activation instability. We implement HybriMoE on top of the kTransformers framework and evaluate it on three widely used MoE-based LLMs. Experimental results demonstrate that HybriMoE achieves an average speedup of 1.33$\times$ in the prefill stage and 1.70$\times$ in the decode stage compared to state-of-the-art hybrid MoE inference framework. Our code is available at: https://github.com/PKU-SEC-Lab/HybriMoE.

Authors:Toby van Gastelen, Wouter Edeling, Benjamin Sanderse
Title: Energy-Conserving Neural Network Closure Model for Long-Time Accurate and Stable LES
Abstract:
Machine learning-based closure models for LES have shown promise in capturing complex turbulence dynamics but often suffer from instabilities and physical inconsistencies. In this work, we develop a novel skew-symmetric neural architecture as closure model that enforces stability while preserving key physical conservation laws. Our approach leverages a discretization that ensures mass, momentum, and energy conservation, along with a face-averaging filter to maintain mass conservation in coarse-grained velocity fields. We compare our model against several conventional data-driven closures (including unconstrained convolutional neural networks), and the physics-based Smagorinsky model. Performance is evaluated on decaying turbulence and Kolmogorov flow for multiple coarse-graining factors. In these test cases we observe that unconstrained machine learning models suffer from numerical instabilities. In contrast, our skew-symmetric model remains stable across all tests, though at the cost of increased dissipation. Despite this trade-off, we demonstrate that our model still outperforms the Smagorinsky model in unseen scenarios. These findings highlight the potential of structure-preserving machine learning closures for reliable long-time LES.

Authors:Junxi Chen, Junhao Dong, Xiaohua Xie
Title: Mind the Trojan Horse: Image Prompt Adapter Enabling Scalable and Deceptive Jailbreaking
Abstract:
Recently, the Image Prompt Adapter (IP-Adapter) has been increasingly integrated into text-to-image diffusion models (T2I-DMs) to improve controllability. However, in this paper, we reveal that T2I-DMs equipped with the IP-Adapter (T2I-IP-DMs) enable a new jailbreak attack named the hijacking attack. We demonstrate that, by uploading imperceptible image-space adversarial examples (AEs), the adversary can hijack massive benign users to jailbreak an Image Generation Service (IGS) driven by T2I-IP-DMs and mislead the public to discredit the service provider. Worse still, the IP-Adapter's dependency on open-source image encoders reduces the knowledge required to craft AEs. Extensive experiments verify the technical feasibility of the hijacking attack. In light of the revealed threat, we investigate several existing defenses and explore combining the IP-Adapter with adversarially trained models to overcome existing defenses' limitations. Our code is available at https://github.com/fhdnskfbeuv/attackIPA.

Authors:Shiao Wang, Xiao Wang, Bo Jiang, Lin Zhu, Guoqi Li, Yaowei Wang, Yonghong Tian, Jin Tang
Title: Human Activity Recognition using RGB-Event based Sensors: A Multi-modal Heat Conduction Model and A Benchmark Dataset
Abstract:
Human Activity Recognition (HAR) primarily relied on traditional RGB cameras to achieve high-performance activity recognition. However, the challenging factors in real-world scenarios, such as insufficient lighting and rapid movements, inevitably degrade the performance of RGB cameras. To address these challenges, biologically inspired event cameras offer a promising solution to overcome the limitations of traditional RGB cameras. In this work, we rethink human activity recognition by combining the RGB and event cameras. The first contribution is the proposed large-scale multi-modal RGB-Event human activity recognition benchmark dataset, termed HARDVS 2.0, which bridges the dataset gaps. It contains 300 categories of everyday real-world actions with a total of 107,646 paired videos covering various challenging scenarios. Inspired by the physics-informed heat conduction model, we propose a novel multi-modal heat conduction operation framework for effective activity recognition, termed MMHCO-HAR. More in detail, given the RGB frames and event streams, we first extract the feature embeddings using a stem network. Then, multi-modal Heat Conduction blocks are designed to fuse the dual features, the key module of which is the multi-modal Heat Conduction Operation layer. We integrate RGB and event embeddings through a multi-modal DCT-IDCT layer while adaptively incorporating the thermal conductivity coefficient via FVEs into this module. After that, we propose an adaptive fusion module based on a policy routing strategy for high-performance classification. Comprehensive experiments demonstrate that our method consistently performs well, validating its effectiveness and robustness. The source code and benchmark dataset will be released on https://github.com/Event-AHU/HARDVS/tree/HARDVSv2

Authors:Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, Yatao Bian
Title: Right Question is Already Half the Answer: Fully Unsupervised LLM Reasoning Incentivization
Abstract:
Existing methods to enhance the reasoning capability of large language models predominantly rely on supervised fine-tuning (SFT) followed by reinforcement learning (RL) on reasoning-specific data. These approaches critically depend on external supervisions--such as labeled reasoning traces, verified golden answers, or pre-trained reward models. In this work, we propose Entropy Minimized Policy Optimization (\ours), which makes an early attempt at fully unsupervised LLM reasoning incentivization. By continuously minimizing the predictive entropy of LLMs on unlabeled questions in a latent semantic space, \ours achieves competitive performance compared to supervised counterparts on both mathematical and free-form natural reasoning tasks. Specifically, without any supervised signals, \ours boosts the accuracy of Qwen2.5-Math-7B Base from 30.7\% to 48.1\% on mathematical benchmarks and improves the accuracy of Qwen2.5-7B Base from 32.1\% to 50.1\% on MMLU-Pro. Primary experiments and analysis are also provided to interpret the effectiveness of \ours. Code is available at https://github.com/QingyangZhang/EMPO.

Authors:Seongmin Park, Mincheol Yoon, Hye-young Kim, Jongwuk Lee
Title: Why is Normalization Necessary for Linear Recommenders?
Abstract:
Despite their simplicity, linear autoencoder (LAE)-based models have shown comparable or even better performance with faster inference speed than neural recommender models. However, LAEs face two critical challenges: (i) popularity bias, which tends to recommend popular items, and (ii) neighborhood bias, which overly focuses on capturing local item correlations. To address these issues, this paper first analyzes the effect of two existing normalization methods for LAEs, i.e., random-walk and symmetric normalization. Our theoretical analysis reveals that normalization highly affects the degree of popularity and neighborhood biases among items. Inspired by this analysis, we propose a versatile normalization solution, called Data-Adaptive Normalization (DAN), which flexibly controls the popularity and neighborhood biases by adjusting item- and user-side normalization to align with unique dataset characteristics. Owing to its model-agnostic property, DAN can be easily applied to various LAE-based models. Experimental results show that DAN-equipped LAEs consistently improve existing LAE-based models across six benchmark datasets, with significant gains of up to 128.57% and 12.36% for long-tail items and unbiased evaluations, respectively. Refer to our code in https://github.com/psm1206/DAN.

Authors:Yiming Tang, Yi Fan, Chenxiao Yu, Tiankai Yang, Yue Zhao, Xiyang Hu
Title: StealthRank: LLM Ranking Manipulation via Stealthy Prompt Optimization
Abstract:
The integration of large language models (LLMs) into information retrieval systems introduces new attack surfaces, particularly for adversarial ranking manipulations. We present $\textbf{StealthRank}$, a novel adversarial attack method that manipulates LLM-driven ranking systems while maintaining textual fluency and stealth. Unlike existing methods that often introduce detectable anomalies, StealthRank employs an energy-based optimization framework combined with Langevin dynamics to generate StealthRank Prompts (SRPs)-adversarial text sequences embedded within item or document descriptions that subtly yet effectively influence LLM ranking mechanisms. We evaluate StealthRank across multiple LLMs, demonstrating its ability to covertly boost the ranking of target items while avoiding explicit manipulation traces. Our results show that StealthRank consistently outperforms state-of-the-art adversarial ranking baselines in both effectiveness and stealth, highlighting critical vulnerabilities in LLM-driven ranking systems. Our code is publicly available at $\href{https://github.com/Tangyiming205069/controllable-seo}{here}$.

Authors:Pengfei Zhou, Fanrui Zhang, Xiaopeng Peng, Zhaopan Xu, Jiaxin Ai, Yansheng Qiu, Chuanhao Li, Zhen Li, Ming Li, Yukang Feng, Jianwen Sun, Haoquan Zhang, Zizhen Li, Xiaofeng Mao, Wangbo Zhao, Kai Wang, Xiaojun Chang, Wenqi Shao, Yang You, Kaipeng Zhang
Title: MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
Abstract:
Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.

Authors:Luigi Rovito, Marco Virgolin
Title: Interpretable Non-linear Survival Analysis with Evolutionary Symbolic Regression
Abstract:
Survival Regression (SuR) is a key technique for modeling time to event in important applications such as clinical trials and semiconductor manufacturing. Currently, SuR algorithms belong to one of three classes: non-linear black-box -- allowing adaptability to many datasets but offering limited interpretability (e.g., tree ensembles); linear glass-box -- being easier to interpret but limited to modeling only linear interactions (e.g., Cox proportional hazards); and non-linear glass-box -- allowing adaptability and interpretability, but empirically found to have several limitations (e.g., explainable boosting machines, survival trees). In this work, we investigate whether Symbolic Regression (SR), i.e., the automated search of mathematical expressions from data, can lead to non-linear glass-box survival models that are interpretable and accurate. We propose an evolutionary, multi-objective, and multi-expression implementation of SR adapted to SuR. Our empirical results on five real-world datasets show that SR consistently outperforms traditional glass-box methods for SuR in terms of accuracy per number of dimensions in the model, while exhibiting comparable accuracy with black-box methods. Furthermore, we offer qualitative examples to assess the interpretability potential of SR models for SuR. Code at: https://github.com/lurovi/SurvivalMultiTree-pyNSGP.

Authors:Haoyu Wang, Yujia Fu, Zhu Zhang, Shuo Wang, Zirui Ren, Xiaorong Wang, Zhili Li, Chaoqun He, Bo An, Zhiyuan Liu, Maosong Sun
Title: LLM$\times$MapReduce-V2: Entropy-Driven Convolutional Test-Time Scaling for Generating Long-Form Articles from Extremely Long Resources
Abstract:
Long-form generation is crucial for a wide range of practical applications, typically categorized into short-to-long and long-to-long generation. While short-to-long generations have received considerable attention, generating long texts from extremely long resources remains relatively underexplored. The primary challenge in long-to-long generation lies in effectively integrating and analyzing relevant information from extensive inputs, which remains difficult for current large language models (LLMs). In this paper, we propose LLM$\times$MapReduce-V2, a novel test-time scaling strategy designed to enhance the ability of LLMs to process extremely long inputs. Drawing inspiration from convolutional neural networks, which iteratively integrate local features into higher-level global representations, LLM$\times$MapReduce-V2 utilizes stacked convolutional scaling layers to progressively expand the understanding of input materials. Both quantitative and qualitative experimental results demonstrate that our approach substantially enhances the ability of LLMs to process long inputs and generate coherent, informative long-form articles, outperforming several representative baselines. Both LLM$\times$MapReduce-V2 and SurveyEval are publicly available at https://github.com/thunlp/LLMxMapReduce .

Authors:Songyan Zhang, Yongtao Ge, Jinyuan Tian, Guangkai Xu, Hao Chen, Chen Lv, Chunhua Shen
Title: POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction
Abstract:
3D reconstruction in dynamic scenes primarily relies on the combination of geometry estimation and matching modules where the latter task is pivotal for distinguishing dynamic regions which can help to mitigate the interference introduced by camera and object motion. Furthermore, the matching module explicitly models object motion, enabling the tracking of specific targets and advancing motion understanding in complex scenarios. Recently, the proposed representation of pointmap in DUSt3R suggests a potential solution to unify both geometry estimation and matching in 3D space, but it still struggles with ambiguous matching in dynamic regions, which may hamper further improvement. In this work, we present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion. Specifically, our method first learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps within a unified coordinate system. Furthermore, we introduce a temporal motion module for dynamic motions that ensures scale consistency across different frames and enhances performance in tasks requiring both precise geometry and reliable matching, most notably 3D point tracking. We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks, including video depth estimation, 3D point tracking, and pose estimation. Code and models are publicly available at https://github.com/wyddmw/POMATO.

Authors:Keren Shao, Ke Chen, Matthew Baas, Shlomo Dubnov
Title: kNN-SVC: Robust Zero-Shot Singing Voice Conversion with Additive Synthesis and Concatenation Smoothness Optimization
Abstract:
Robustness is critical in zero-shot singing voice conversion (SVC). This paper introduces two novel methods to strengthen the robustness of the kNN-VC framework for SVC. First, kNN-VC's core representation, WavLM, lacks harmonic emphasis, resulting in dull sounds and ringing artifacts. To address this, we leverage the bijection between WavLM, pitch contours, and spectrograms to perform additive synthesis, integrating the resulting waveform into the model to mitigate these issues. Second, kNN-VC overlooks concatenative smoothness, a key perceptual factor in SVC. To enhance smoothness, we propose a new distance metric that filters out unsuitable kNN candidates and optimize the summing weights of the candidates during inference. Although our techniques are built on the kNN-VC framework for implementation convenience, they are broadly applicable to general concatenative neural synthesis models. Experimental results validate the effectiveness of these modifications in achieving robust SVC. Demo: http://knnsvc.com Code: https://github.com/SmoothKen/knn-svc

Authors:Shunsuke Sakai, Shunsuke Tsuge, Tatsuhito Hasegawa
Title: Noisy Deep Ensemble: Accelerating Deep Ensemble Learning via Noise Injection
Abstract:
Neural network ensembles is a simple yet effective approach for enhancing generalization capabilities. The most common method involves independently training multiple neural networks initialized with different weights and then averaging their predictions during inference. However, this approach increases training time linearly with the number of ensemble members. To address this issue, we propose the novel ``\textbf{Noisy Deep Ensemble}'' method, significantly reducing the training time required for neural network ensembles. In this method, a \textit{parent model} is trained until convergence, and then the weights of the \textit{parent model} are perturbed in various ways to construct multiple \textit{child models}. This perturbation of the \textit{parent model} weights facilitates the exploration of different local minima while significantly reducing the training time for each ensemble member. We evaluated our method using diverse CNN architectures on CIFAR-10 and CIFAR-100 datasets, surpassing conventional efficient ensemble methods and achieving test accuracy comparable to standard ensembles. Code is available at \href{https://github.com/TSTB-dev/NoisyDeepEnsemble}{https://github.com/TSTB-dev/NoisyDeepEnsemble}

Authors:Shunsuke Sakai, Xiangteng He, Chunzhi Gu, Leonid Sigal, Tatsuhito Hasegawa
Title: Reconstruction-Free Anomaly Detection with Diffusion Models
Abstract:
Despite the remarkable success, recent reconstruction-based anomaly detection (AD) methods via diffusion modeling still involve fine-grained noise-strength tuning and computationally expensive multi-step denoising, leading to a fundamental tension between fidelity and efficiency. In this paper, we propose a novel inversion-based AD approach - detection via noising in latent space - which circumvents explicit reconstruction. Importantly, we contend that the limitations in prior reconstruction-based methods originate from the prevailing detection via denoising in RGB space paradigm. To address this, we model AD under a reconstruction-free formulation, which directly infers the final latent variable corresponding to the input image via DDIM inversion, and then measures the deviation based on the known prior distribution for anomaly scoring. Specifically, in approximating the original probability flow ODE using the Euler method, we only enforce very few inversion steps to noise the clean image to pursue inference efficiency. As the added noise is adaptively derived with the learned diffusion model, the original features for the clean testing image can still be leveraged to yield high detection accuracy. We perform extensive experiments and detailed analysis across three widely used image AD datasets under the unsupervised unified setting to demonstrate the effectiveness of our model, regarding state-of-the-art AD performance, and about 2 times inference time speedup without diffusion distillation.

Authors:Tianchi Liu, Duc-Tuan Truong, Rohan Kumar Das, Kong Aik Lee, Haizhou Li
Title: Nes2Net: A Lightweight Nested Architecture for Foundation Model Driven Speech Anti-spoofing
Abstract:
Speech foundation models have significantly advanced various speech-related tasks by providing exceptional representation capabilities. However, their high-dimensional output features often create a mismatch with downstream task models, which typically require lower-dimensional inputs. A common solution is to apply a dimensionality reduction (DR) layer, but this approach increases parameter overhead, computational costs, and risks losing valuable information. To address these issues, we propose Nested Res2Net (Nes2Net), a lightweight back-end architecture designed to directly process high-dimensional features without DR layers. The nested structure enhances multi-scale feature extraction, improves feature interaction, and preserves high-dimensional information. We first validate Nes2Net on CtrSVDD, a singing voice deepfake detection dataset, and report a 22% performance improvement and an 87% back-end computational cost reduction over the state-of-the-art baseline. Additionally, extensive testing across four diverse datasets: ASVspoof 2021, ASVspoof 5, PartialSpoof, and In-the-Wild, covering fully spoofed speech, adversarial attacks, partial spoofing, and real-world scenarios, consistently highlights Nes2Net's superior robustness and generalization capabilities. The code package and pre-trained models are available at https://github.com/Liu-Tianchi/Nes2Net.

Authors:Yan Zhang, Zhong Ji, Changxu Meng, Yanwei Pang, Jungong Han
Title: iEBAKER: Improved Remote Sensing Image-Text Retrieval Framework via Eliminate Before Align and Keyword Explicit Reasoning
Abstract:
Recent studies focus on the Remote Sensing Image-Text Retrieval (RSITR), which aims at searching for the corresponding targets based on the given query. Among these efforts, the application of Foundation Models (FMs), such as CLIP, to the domain of remote sensing has yielded encouraging outcomes. However, existing FM based methodologies neglect the negative impact of weakly correlated sample pairs and fail to account for the key distinctions among remote sensing texts, leading to biased and superficial exploration of sample pairs. To address these challenges, we propose an approach named iEBAKER (an Improved Eliminate Before Align strategy with Keyword Explicit Reasoning framework) for RSITR. Specifically, we propose an innovative Eliminate Before Align (EBA) strategy to filter out the weakly correlated sample pairs, thereby mitigating their deviations from optimal embedding space during alignment.Further, two specific schemes are introduced from the perspective of whether local similarity and global similarity affect each other. On this basis, we introduce an alternative Sort After Reversed Retrieval (SAR) strategy, aims at optimizing the similarity matrix via reverse retrieval. Additionally, we incorporate a Keyword Explicit Reasoning (KER) module to facilitate the beneficial impact of subtle key concept distinctions. Without bells and whistles, our approach enables a direct transition from FM to RSITR task, eliminating the need for additional pretraining on remote sensing data. Extensive experiments conducted on three popular benchmark datasets demonstrate that our proposed iEBAKER method surpasses the state-of-the-art models while requiring less training data. Our source code will be released at https://github.com/zhangy0822/iEBAKER.

Authors:Igor Polyakov, Alexey Dukhanov, Egor Spirin
Title: TAGC: Optimizing Gradient Communication in Distributed Transformer Training
Abstract:
The increasing complexity of large language models (LLMs) necessitates efficient training strategies to mitigate the high computational costs associated with distributed training. A significant bottleneck in this process is gradient synchronization across multiple GPUs, particularly in the zero-redundancy parallelism mode. In this paper, we introduce Transformer-Aware Gradient Compression (TAGC), an optimized gradient compression algorithm designed specifically for transformer-based models. TAGC extends the lossless homomorphic compression method by adapting it for sharded models and incorporating transformer-specific optimizations, such as layer-selective compression and dynamic sparsification. Our experimental results demonstrate that TAGC accelerates training by up to 15% compared to the standard Fully Sharded Data Parallel (FSDP) approach, with minimal impact on model quality. We integrate TAGC into the PyTorch FSDP framework, the implementation is publicly available at https://github.com/ipolyakov/TAGC.

Authors:Xiao Zhang, Xiangyu Han, Xiwen Lai, Yao Sun, Pei Zhang, Konrad Kording
Title: Falcon: Fractional Alternating Cut with Overcoming Minima in Unsupervised Segmentation
Abstract:
Today's unsupervised image segmentation algorithms often segment suboptimally. Modern graph-cut based approaches rely on high-dimensional attention maps from Transformer-based foundation models, typically employing a relaxed Normalized Cut solved recursively via the Fiedler vector (the eigenvector of the second smallest eigenvalue). Consequently, they still lag behind supervised methods in both mask generation speed and segmentation accuracy. We present a regularized fractional alternating cut (Falcon), an optimization-based K-way Normalized Cut without relying on recursive eigenvector computations, achieving substantially improved speed and accuracy. Falcon operates in two stages: (1) a fast K-way Normalized Cut solved by extending into a fractional quadratic transformation, with an alternating iterative procedure and regularization to avoid local minima; and (2) refinement of the resulting masks using complementary low-level information, producing high-quality pixel-level segmentations. Experiments show that Falcon not only surpasses existing state-of-the-art methods by an average of 2.5% across six widely recognized benchmarks (reaching up to 4.3\% improvement on Cityscapes), but also reduces runtime by around 30% compared to prior graph-based approaches. These findings demonstrate that the semantic information within foundation-model attention can be effectively harnessed by a highly parallelizable graph cut framework. Consequently, Falcon can narrow the gap between unsupervised and supervised segmentation, enhancing scalability in real-world applications and paving the way for dense prediction-based vision pre-training in various downstream tasks. The code is released in https://github.com/KordingLab/Falcon.

Authors:Hossein Entezari Zarch, Lei Gao, Chaoyi Jiang, Murali Annavaram
Title: DEL: Context-Aware Dynamic Exit Layer for Efficient Self-Speculative Decoding
Abstract:
Speculative Decoding (SD) is a widely used approach to accelerate the inference of large language models (LLMs) without reducing generation quality. It operates by first using a compact model to draft multiple tokens efficiently, followed by parallel verification using the target LLM. This approach leads to faster inference compared to auto-regressive decoding. While there are multiple approaches to create a draft model, one promising approach is to use early-exit methods. These methods draft candidate tokens by using a subset of layers of the primary model and applying the remaining layers for verification, allowing a single model to handle both drafting and verification. While this technique reduces memory usage and computational cost, its performance relies on the choice of the exit layer for drafting and the number of tokens drafted (speculation length) in each SD round. Prior works use hyperparameter exploration to statically select these values. However, our evaluations show that these hyperparameter values are task-specific, and even within a task they are dependent on the current sequence context. We introduce DEL (Dynamic Exit Layer), a plug-and-play method that adaptively selects the exit layer and speculation length during inference. DEL dynamically tracks the token acceptance rate if the tokens are drafted at each layer of an LLM and uses that knowledge to heuristically select the optimal exit layer and speculation length. Our experiments across a broad range of models and downstream tasks show that DEL achieves overall speedups of $2.16\times$$\sim$$2.62\times$ over vanilla auto-regressive decoding and improves upon state-of-the-art SD methods, which peak at $2.43\times$, by up to $0.19\times$. The code is available at https://github.com/hoenza/DEL.

Authors:Qi Mao, Lan Chen, Yuchao Gu, Mike Zheng Shou, Ming-Hsuan Yang
Title: Tuning-Free Image Editing with Fidelity and Editability via Unified Latent Diffusion Model
Abstract:
Balancing fidelity and editability is essential in text-based image editing (TIE), where failures commonly lead to over- or under-editing issues. Existing methods typically rely on attention injections for structure preservation and leverage the inherent text alignment capabilities of pre-trained text-to-image (T2I) models for editability, but they lack explicit and unified mechanisms to properly balance these two objectives. In this work, we introduce UnifyEdit, a tuning-free method that performs diffusion latent optimization to enable a balanced integration of fidelity and editability within a unified framework. Unlike direct attention injections, we develop two attention-based constraints: a self-attention (SA) preservation constraint for structural fidelity, and a cross-attention (CA) alignment constraint to enhance text alignment for improved editability. However, simultaneously applying both constraints can lead to gradient conflicts, where the dominance of one constraint results in over- or under-editing. To address this challenge, we introduce an adaptive time-step scheduler that dynamically adjusts the influence of these constraints, guiding the diffusion latent toward an optimal balance. Extensive quantitative and qualitative experiments validate the effectiveness of our approach, demonstrating its superiority in achieving a robust balance between structure preservation and text alignment across various editing tasks, outperforming other state-of-the-art methods. The source code will be available at https://github.com/CUC-MIPG/UnifyEdit.

Authors:Long Ma, Yuxin Feng, Yan Zhang, Jinyuan Liu, Weimin Wang, Guang-Yong Chen, Chengpei Xu, Zhuo Su
Title: CoA: Towards Real Image Dehazing via Compression-and-Adaptation
Abstract:
Learning-based image dehazing algorithms have shown remarkable success in synthetic domains. However, real image dehazing is still in suspense due to computational resource constraints and the diversity of real-world scenes. Therefore, there is an urgent need for an algorithm that excels in both efficiency and adaptability to address real image dehazing effectively. This work proposes a Compression-and-Adaptation (CoA) computational flow to tackle these challenges from a divide-and-conquer perspective. First, model compression is performed in the synthetic domain to develop a compact dehazing parameter space, satisfying efficiency demands. Then, a bilevel adaptation in the real domain is introduced to be fearless in unknown real environments by aggregating the synthetic dehazing capabilities during the learning process. Leveraging a succinct design free from additional constraints, our CoA exhibits domain-irrelevant stability and model-agnostic flexibility, effectively bridging the model chasm between synthetic and real domains to further improve its practical utility. Extensive evaluations and analyses underscore the approach's superiority and effectiveness. The code is publicly available at https://github.com/fyxnl/COA.

Authors:Yunlong Tang, Jing Bi, Chao Huang, Susan Liang, Daiki Shimada, Hang Hua, Yunzhong Xiao, Yizhi Song, Pinxin Liu, Mingqian Feng, Junjia Guo, Zhuo Liu, Luchuan Song, Ali Vosoughi, Jinxi He, Liu He, Zeliang Zhang, Jiebo Luo, Chenliang Xu
Title: Caption Anything in Video: Fine-grained Object-centric Captioning via Spatiotemporal Multimodal Prompting
Abstract:
We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning that enables detailed descriptions of user-selected objects through time. CAT-V integrates three key components: a Segmenter based on SAMURAI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-Uni for accurate event boundary detection and temporal analysis, and a Captioner using InternVL-2.5 for generating detailed object-centric descriptions. Through spatiotemporal visual prompts and chain-of-thought reasoning, our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data. CAT-V supports flexible user interactions through various visual prompts (points, bounding boxes, and irregular regions) and maintains temporal sensitivity by tracking object states and interactions across different time segments. Our approach addresses limitations of existing video captioning methods, which either produce overly abstract descriptions or lack object-level precision, enabling fine-grained, object-specific descriptions while maintaining temporal coherence and spatial accuracy. The GitHub repository for this project is available at https://github.com/yunlong10/CAT-V

Authors:P Team, Siwei Wu, Jincheng Ren, Xinrun Du, Shuyue Guo, Xingwei Qu, Yiming Liang, Jie Liu, Yunwen Li, Tianyu Zheng, Boyu Feng, Huaqing Yuan, Zenith Wang, Jiaheng Liu, Wenhao Huang, Chenglin Cai, Haoran Que, Jian Yang, Yuelin Bai, Zekun Moore Wang, Zhouliang Yu, Qunshu Lin, Ding Pan, Yuchen Jiang, Tiannan Wang, Wangchunshu Zhou, Shenzhi Wang, Xingyuan Bu, Minghao Liu, Guoyin Wang, Ge Zhang, Chenghua Lin
Title: COIG-P: A High-Quality and Large-Scale Chinese Preference Dataset for Alignment with Human Values
Abstract:
Aligning large language models (LLMs) with human preferences has achieved remarkable success. However, existing Chinese preference datasets are limited by small scale, narrow domain coverage, and lack of rigorous data validation. Additionally, the reliance on human annotators for instruction and response labeling significantly constrains the scalability of human preference datasets. To address these challenges, we design an LLM-based Chinese preference dataset annotation pipeline with no human intervention. Specifically, we crawled and carefully filtered 92k high-quality Chinese queries and employed 15 mainstream LLMs to generate and score chosen-rejected response pairs. Based on it, we introduce COIG-P (Chinese Open Instruction Generalist - Preference), a high-quality, large-scale Chinese preference dataset, comprises 1,009k Chinese preference pairs spanning 6 diverse domains: Chat, Code, Math, Logic, Novel, and Role. Building upon COIG-P, to reduce the overhead of using LLMs for scoring, we trained a 8B-sized Chinese Reward Model (CRM) and meticulously constructed a Chinese Reward Benchmark (CRBench). Evaluation results based on AlignBench \citep{liu2024alignbenchbenchmarkingchinesealignment} show that that COIG-P significantly outperforms other Chinese preference datasets, and it brings significant performance improvements ranging from 2% to 12% for the Qwen2/2.5 and Infinity-Instruct-3M-0625 model series, respectively. The results on CRBench demonstrate that our CRM has a strong and robust scoring ability. We apply it to filter chosen-rejected response pairs in a test split of COIG-P, and our experiments show that it is comparable to GPT-4o in identifying low-quality samples while maintaining efficiency and cost-effectiveness. Our codes and data are released in https://github.com/multimodal-art-projection/COIG-P.

Authors:Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmohammadi, Megh Thakkar, Md Rizwan Parvez, Enamul Hoque, Shafiq Joty
Title: ChartQAPro: A More Diverse and Challenging Benchmark for Chart Question Answering
Abstract:
Charts are ubiquitous, as people often use them to analyze data, answer questions, and discover critical insights. However, performing complex analytical tasks with charts requires significant perceptual and cognitive effort. Chart Question Answering (CQA) systems automate this process by enabling models to interpret and reason with visual representations of data. However, existing benchmarks like ChartQA lack real-world diversity and have recently shown performance saturation with modern large vision-language models (LVLMs). To address these limitations, we introduce ChartQAPro, a new benchmark that includes 1,341 charts from 157 diverse sources, spanning various chart types, including infographics and dashboards, and featuring 1,948 questions in various types, such as multiple-choice, conversational, hypothetical, and unanswerable questions, to better reflect real-world challenges. Our evaluations with 21 models show a substantial performance drop for LVLMs on ChartQAPro; e.g., Claude Sonnet 3.5 scores 90.5% on ChartQA but only 55.81% on ChartQAPro, underscoring the complexity of chart reasoning. We complement our findings with detailed error analyses and ablation studies, identifying key challenges and opportunities for advancing LVLMs in chart understanding and reasoning. We release ChartQAPro at https://github.com/vis-nlp/ChartQAPro.

Authors:Marija Ivanovska, Leon Todorov, Naser Damer, Deepak Kumar Jain, Peter Peer, Vitomir Å truc
Title: SelfMAD: Enhancing Generalization and Robustness in Morphing Attack Detection via Self-Supervised Learning
Abstract:
With the continuous advancement of generative models, face morphing attacks have become a significant challenge for existing face verification systems due to their potential use in identity fraud and other malicious activities. Contemporary Morphing Attack Detection (MAD) approaches frequently rely on supervised, discriminative models trained on examples of bona fide and morphed images. These models typically perform well with morphs generated with techniques seen during training, but often lead to sub-optimal performance when subjected to novel unseen morphing techniques. While unsupervised models have been shown to perform better in terms of generalizability, they typically result in higher error rates, as they struggle to effectively capture features of subtle artifacts. To address these shortcomings, we present SelfMAD, a novel self-supervised approach that simulates general morphing attack artifacts, allowing classifiers to learn generic and robust decision boundaries without overfitting to the specific artifacts induced by particular face morphing methods. Through extensive experiments on widely used datasets, we demonstrate that SelfMAD significantly outperforms current state-of-the-art MADs, reducing the detection error by more than 64% in terms of EER when compared to the strongest unsupervised competitor, and by more than 66%, when compared to the best performing discriminative MAD model, tested in cross-morph settings. The source code for SelfMAD is available at https://github.com/LeonTodorov/SelfMAD.

Authors:Ruoyu Xue, Jingyi Xu, Sounak Mondal, Hieu Le, Gregory Zelinsky, Minh Hoai, Dimitris Samaras
Title: Few-shot Personalized Scanpath Prediction
Abstract:
A personalized model for scanpath prediction provides insights into the visual preferences and attention patterns of individual subjects. However, existing methods for training scanpath prediction models are data-intensive and cannot be effectively personalized to new individuals with only a few available examples. In this paper, we propose few-shot personalized scanpath prediction task (FS-PSP) and a novel method to address it, which aims to predict scanpaths for an unseen subject using minimal support data of that subject's scanpath behavior. The key to our method's adaptability is the Subject-Embedding Network (SE-Net), specifically designed to capture unique, individualized representations for each subject's scanpaths. SE-Net generates subject embeddings that effectively distinguish between subjects while minimizing variability among scanpaths from the same individual. The personalized scanpath prediction model is then conditioned on these subject embeddings to produce accurate, personalized results. Experiments on multiple eye-tracking datasets demonstrate that our method excels in FS-PSP settings and does not require any fine-tuning steps at test time. Code is available at: https://github.com/cvlab-stonybrook/few-shot-scanpath

Authors:Arnas Uselis, Seong Joon Oh
Title: Intermediate Layer Classifiers for OOD generalization
Abstract:
Deep classifiers are known to be sensitive to data distribution shifts, primarily due to their reliance on spurious correlations in training data. It has been suggested that these classifiers can still find useful features in the network's last layer that hold up under such shifts. In this work, we question the use of last-layer representations for out-of-distribution (OOD) generalisation and explore the utility of intermediate layers. To this end, we introduce \textit{Intermediate Layer Classifiers} (ILCs). We discover that intermediate layer representations frequently offer substantially better generalisation than those from the penultimate layer. In many cases, zero-shot OOD generalisation using earlier-layer representations approaches the few-shot performance of retraining on penultimate layer representations. This is confirmed across multiple datasets, architectures, and types of distribution shifts. Our analysis suggests that intermediate layers are less sensitive to distribution shifts compared to the penultimate layer. These findings highlight the importance of understanding how information is distributed across network layers and its role in OOD generalisation, while also pointing to the limits of penultimate layer representation utility. Code is available at https://github.com/oshapio/intermediate-layer-generalization

Authors:Ziad Kheil, Soleakhena Ken, Laurent Risser
Title: Biomechanical Constraints Assimilation in Deep-Learning Image Registration: Application to sliding and locally rigid deformations
Abstract:
Regularization strategies in medical image registration often take a one-size-fits-all approach by imposing uniform constraints across the entire image domain. Yet biological structures are anything but regular. Lacking structural awareness, these strategies may fail to consider a panoply of spatially inhomogeneous deformation properties, which would faithfully account for the biomechanics of soft and hard tissues, especially in poorly contrasted structures. To bridge this gap, we propose a learning-based image registration approach in which the inferred deformation properties can locally adapt themselves to trained biomechanical characteristics. Specifically, we first enforce in the training process local rigid displacements, shearing motions or pseudo-elastic deformations using regularization losses inspired from the field of solid-mechanics. We then show on synthetic and real 3D thoracic and abdominal images that these mechanical properties of different nature are well generalized when inferring the deformations between new image pairs. Our approach enables neural-networks to infer tissue-specific deformation patterns directly from input images, ensuring mechanically plausible motion. These networks preserve rigidity within hard tissues while allowing controlled sliding in regions where tissues naturally separate, more faithfully capturing physiological motion. The code is publicly available at https://github.com/Kheil-Z/biomechanical_DLIR .

Authors:Yue Yao, Mohamed-Khalil Bouzidi, Daniel Goehring, Joerg Reichardt
Title: EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
Abstract:
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach. The code and model checkpoints are available at: https://github.com/continental/EP-Diffuser.

Authors:Victor Fonte Chavez, Claudia Esteves, Jean-Bernard Hayet
Title: Time-adaptive Video Frame Interpolation based on Residual Diffusion
Abstract:
In this work, we propose a new diffusion-based method for video frame interpolation (VFI), in the context of traditional hand-made animation. We introduce three main contributions: The first is that we explicitly handle the interpolation time in our model, which we also re-estimate during the training process, to cope with the particularly large variations observed in the animation domain, compared to natural videos; The second is that we adapt and generalize a diffusion scheme called ResShift recently proposed in the super-resolution community to VFI, which allows us to perform a very low number of diffusion steps (in the order of 10) to produce our estimates; The third is that we leverage the stochastic nature of the diffusion process to provide a pixel-wise estimate of the uncertainty on the interpolated frame, which could be useful to anticipate where the model may be wrong. We provide extensive comparisons with respect to state-of-the-art models and show that our model outperforms these models on animation videos. Our code is available at https://github.com/VicFonch/Multi-Input-Resshift-Diffusion-VFI.

Authors:Xueqiao Zhang, Chao Zhang, Jianwen Sun, Jun Xiao, Yi Yang, Yawei Luo
Title: EduPlanner: LLM-Based Multi-Agent Systems for Customized and Intelligent Instructional Design
Abstract:
Large Language Models (LLMs) have significantly advanced smart education in the Artificial General Intelligence (AGI) era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: (1) Customized Generation: generating niche-targeted teaching content based on students' varying learning abilities and states, and (2) Intelligent Optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multi-agent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. Additionally, we introduce the CIDDP, an LLM-based five-dimensional evaluation module encompassing clarity, Integrity, Depth, Practicality, and Pertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework. Our code is publicly available at https://github.com/Zc0812/Edu_Planner

Authors:Junghun Oh, Sungyong Baik, Kyoung Mu Lee
Title: Find A Winning Sign: Sign Is All We Need to Win the Lottery
Abstract:
The Lottery Ticket Hypothesis (LTH) posits the existence of a sparse subnetwork (a.k.a. winning ticket) that can generalize comparably to its over-parameterized counterpart when trained from scratch. The common approach to finding a winning ticket is to preserve the original strong generalization through Iterative Pruning (IP) and transfer information useful for achieving the learned generalization by applying the resulting sparse mask to an untrained network. However, existing IP methods still struggle to generalize their observations beyond ad-hoc initialization and small-scale architectures or datasets, or they bypass these challenges by applying their mask to trained weights instead of initialized ones. In this paper, we demonstrate that the parameter sign configuration plays a crucial role in conveying useful information for generalization to any randomly initialized network. Through linear mode connectivity analysis, we observe that a sparse network trained by an existing IP method can retain its basin of attraction if its parameter signs and normalization layer parameters are preserved. To take a step closer to finding a winning ticket, we alleviate the reliance on normalization layer parameters by preventing high error barriers along the linear path between the sparse network trained by our method and its counterpart with initialized normalization layer parameters. Interestingly, across various architectures and datasets, we observe that any randomly initialized network can be optimized to exhibit low error barriers along the linear path to the sparse network trained by our method by inheriting its sparsity and parameter sign information, potentially achieving performance comparable to the original. The code is available at https://github.com/JungHunOh/AWS\_ICLR2025.git

Authors:Siqing Song, Chuang Wang, Ruiqi Wang, Yi Yang, Xu-Yao Zhang
Title: Achieving binary weight and activation for LLMs using Post-Training Quantization
Abstract:
Quantizing large language models (LLMs) to 1-bit precision significantly reduces computational costs, but existing quantization techniques suffer from noticeable performance degradation when using weight and activation precisions below 4 bits (W4A4). In this paper, we propose a post-training quantization framework with W(1+1)A(1*4) configuration, where weights are quantized to 1 bit with an additional 1 bit for fine-grain grouping and activations are quantized to 1 bit with a 4-fold increase in the number of channels. For weight quantization, we propose utilizing Hessian-aware fine-grained grouping along with an EM-based quantization scheme. For activation quantization, we decompose INT4-quantized activations into a 4 * INT1 format equivalently and simultaneously smooth the scaling factors based on quantization errors, which further reduces the quantization errors in activations. Our method surpasses state-of-the-art (SOTA) LLM quantization baselines on W2A4 across multiple tasks, pushing the boundaries of existing LLM quantization methods toward fully binarized models. Code is available at https://github.com/JimmyCrave/LLM-PTQ-binarization.

Authors:Hao Nan Sheng, Zhi-yong Wang, Mingrui Yang, Hing Cheung So
Title: AROMA: Autonomous Rank-one Matrix Adaptation
Abstract:
As large language models continue to grow in size, parameter-efficient fine-tuning (PEFT) has become increasingly crucial. While low-rank adaptation (LoRA) offers a solution through low-rank updates, its static rank allocation may yield suboptimal results. Adaptive low-rank adaptation (AdaLoRA) improves this with dynamic allocation but remains sensitive to initial and target rank configurations. We introduce AROMA, a framework that automatically constructs layer-specific updates by iteratively building up rank-one components with very few trainable parameters that gradually diminish to zero. Unlike existing methods that employ rank reduction mechanisms, AROMA introduces a dual-loop architecture for rank growth. The inner loop extracts information from each rank-one subspace, while the outer loop determines the number of rank-one subspaces, i.e., the optimal rank. We reset optimizer states to maintain subspace independence. AROMA significantly reduces parameters compared to LoRA and AdaLoRA while achieving superior performance on natural language understanding and commonsense reasoning tasks, offering new insights into adaptive PEFT. The code is available at \href{https://github.com/ShuDun23/AROMA}{AROMA}.

Authors:Changyu Du, Zihan Deng, Stavros Nousias, André Borrmann
Title: Predictive Modeling: BIM Command Recommendation Based on Large-scale Usage Logs
Abstract:
The adoption of Building Information Modeling (BIM) and model-based design within the Architecture, Engineering, and Construction (AEC) industry has been hindered by the perception that using BIM authoring tools demands more effort than conventional 2D drafting. To enhance design efficiency, this paper proposes a BIM command recommendation framework that predicts the optimal next actions in real-time based on users' historical interactions. We propose a comprehensive filtering and enhancement method for large-scale raw BIM log data and introduce a novel command recommendation model. Our model builds upon the state-of-the-art Transformer backbones originally developed for large language models (LLMs), incorporating a custom feature fusion module, dedicated loss function, and targeted learning strategy. In a case study, the proposed method is applied to over 32 billion rows of real-world log data collected globally from the BIM authoring software Vectorworks. Experimental results demonstrate that our method can learn universal and generalizable modeling patterns from anonymous user interaction sequences across different countries, disciplines, and projects. When generating recommendations for the next command, our approach achieves a Recall@10 of approximately 84%. The code is available at: https://github.com/dcy0577/BIM-Command-Recommendation.git

Authors:Sangbeom Lim, Junwan Kim, Heeji Yoon, Jaewoo Jung, Seungryong Kim
Title: URECA: Unique Region Caption Anything
Abstract:
Region-level captioning aims to generate natural language descriptions for specific image regions while highlighting their distinguishing features. However, existing methods struggle to produce unique captions across multi-granularity, limiting their real-world applicability. To address the need for detailed region-level understanding, we introduce URECA dataset, a large-scale dataset tailored for multi-granularity region captioning. Unlike prior datasets that focus primarily on salient objects, URECA dataset ensures a unique and consistent mapping between regions and captions by incorporating a diverse set of objects, parts, and background elements. Central to this is a stage-wise data curation pipeline, where each stage incrementally refines region selection and caption generation. By leveraging Multimodal Large Language Models (MLLMs) at each stage, our pipeline produces distinctive and contextually grounded captions with improved accuracy and semantic diversity. Building upon this dataset, we present URECA, a novel captioning model designed to effectively encode multi-granularity regions. URECA maintains essential spatial properties such as position and shape through simple yet impactful modifications to existing MLLMs, enabling fine-grained and semantically rich region descriptions. Our approach introduces dynamic mask modeling and a high-resolution mask encoder to enhance caption uniqueness. Experiments show that URECA achieves state-of-the-art performance on URECA dataset and generalizes well to existing region-level captioning benchmarks.

Authors:Hansheng Chen, Kai Zhang, Hao Tan, Zexiang Xu, Fujun Luan, Leonidas Guibas, Gordon Wetzstein, Sai Bi
Title: Gaussian Mixture Flow Matching Models
Abstract:
Diffusion models approximate the denoising distribution as a Gaussian and predict its mean, whereas flow matching models reparameterize the Gaussian mean as flow velocity. However, they underperform in few-step sampling due to discretization error and tend to produce over-saturated colors under classifier-free guidance (CFG). To address these limitations, we propose a novel Gaussian mixture flow matching (GMFlow) model: instead of predicting the mean, GMFlow predicts dynamic Gaussian mixture (GM) parameters to capture a multi-modal flow velocity distribution, which can be learned with a KL divergence loss. We demonstrate that GMFlow generalizes previous diffusion and flow matching models where a single Gaussian is learned with an $L_2$ denoising loss. For inference, we derive GM-SDE/ODE solvers that leverage analytic denoising distributions and velocity fields for precise few-step sampling. Furthermore, we introduce a novel probabilistic guidance scheme that mitigates the over-saturation issues of CFG and improves image generation quality. Extensive experiments demonstrate that GMFlow consistently outperforms flow matching baselines in generation quality, achieving a Precision of 0.942 with only 6 sampling steps on ImageNet 256$\times$256.

Authors:Kwangjun Ahn, Byron Xu, Natalie Abreu, Ying Fan, Gagik Magakyan, Pratyusha Sharma, Zheng Zhan, John Langford
Title: Dion: Distributed Orthonormalized Updates
Abstract:
Orthonormalized updates accelerate training, improve stability, and enable robust hyperparameter transfer, but existing methods like Muon rely on dense matrix operations that clash with sharded weights in large-scale LLM training, causing high compute and communication cost. We introduce Dion (Distributed Orthonormalization), a scalable and efficient update rule that replaces Newton-Schulz iteration with amortized power iteration on a momentum buffer, avoiding full-matrix reconstruction and integrating cleanly with weight sharding. The rank-fraction parameter with error feedback enables low-rank updates that balance quality with significant cost savings. On language models from 160M to 3B parameters, Dion retains the benefits of orthonormalized updates, while markedly reducing wall-clock time at scale, making it a practical optimizer for next-generation foundation models. Code is available at: https://github.com/microsoft/dion/

Authors:Yang Yan, Yu Lu, Renjun Xu, Zhenzhong Lan
Title: Do Large Language Models Truly Grasp Addition? A Rule-Focused Diagnostic Using Two-Integer Arithmetic
Abstract:
Large language models (LLMs) achieve impressive results on advanced mathematics benchmarks but sometimes fail on basic arithmetic tasks, raising the question of whether they have truly grasped fundamental arithmetic rules or are merely relying on pattern matching. To unravel this issue, we systematically probe LLMs' understanding of two-integer addition ($0$ to $2^{64}$) by testing three crucial properties: commutativity ($A+B=B+A$), representation invariance via symbolic remapping (e.g., $7 \mapsto Y$), and consistent accuracy scaling with operand length. Our evaluation of 12 leading LLMs reveals a stark disconnect: while models achieve high numeric accuracy (73.8-99.8%), they systematically fail these diagnostics. Specifically, accuracy plummets to $\le 7.5$% with symbolic inputs, commutativity is violated in up to 20% of cases, and accuracy scaling is non-monotonic. Interventions further expose this pattern-matching reliance: explicitly providing rules degrades performance by 29.49%, while prompting for explanations before answering merely maintains baseline accuracy. These findings demonstrate that current LLMs address elementary addition via pattern matching, not robust rule induction, motivating new diagnostic benchmarks and innovations in model architecture and training to cultivate genuine mathematical reasoning. Our dataset and generating code are available at https://github.com/kuri-leo/llm-arithmetic-diagnostic.

Authors:Mustafa Burak Gurbuz, Xingyu Zheng, Constantine Dovrolis
Title: PEAKS: Selecting Key Training Examples Incrementally via Prediction Error Anchored by Kernel Similarity
Abstract:
As deep learning continues to be driven by ever-larger datasets, understanding which examples are most important for generalization has become a critical question. While progress in data selection continues, emerging applications require studying this problem in dynamic contexts. To bridge this gap, we pose the Incremental Data Selection (IDS) problem, where examples arrive as a continuous stream, and need to be selected without access to the full data source. In this setting, the learner must incrementally build a training dataset of predefined size while simultaneously learning the underlying task. We find that in IDS, the impact of a new sample on the model state depends fundamentally on both its geometric relationship in the feature space and its prediction error. Leveraging this insight, we propose PEAKS (Prediction Error Anchored by Kernel Similarity), an efficient data selection method tailored for IDS. Our comprehensive evaluations demonstrate that PEAKS consistently outperforms existing selection strategies. Furthermore, PEAKS yields increasingly better performance returns than random selection as training data size grows on real-world datasets. The code is available at https://github.com/BurakGurbuz97/PEAKS.

Authors:Julio Silva-Rodríguez, Jose Dolz, Ismail Ben Ayed
Title: A Reality Check of Vision-Language Pre-training in Radiology: Have We Progressed Using Text?
Abstract:
Vision-language pre-training has recently gained popularity as it allows learning rich feature representations using large-scale data sources. This paradigm has quickly made its way into the medical image analysis community. In particular, there is an impressive amount of recent literature developing vision-language models for radiology. However, the available medical datasets with image-text supervision are scarce, and medical concepts are fine-grained, involving expert knowledge that existing vision-language models struggle to encode. In this paper, we propose to take a prudent step back from the literature and revisit supervised, unimodal pre-training, using fine-grained labels instead. We conduct an extensive comparison demonstrating that unimodal pre-training is highly competitive and better suited to integrating heterogeneous data sources. Our results also question the potential of recent vision-language models for open-vocabulary generalization, which have been evaluated using optimistic experimental settings. Finally, we study novel alternatives to better integrate fine-grained labels and noisy text supervision.

Authors:Jiaming Chen, Wentao Zhao, Ziyu Meng, Donghui Mao, Ran Song, Wei Pan, Wei Zhang
Title: Vision-Language Model Predictive Control for Manipulation Planning and Trajectory Generation
Abstract:
Model Predictive Control (MPC) is a widely adopted control paradigm that leverages predictive models to estimate future system states and optimize control inputs accordingly. However, while MPC excels in planning and control, it lacks the capability for environmental perception, leading to failures in complex and unstructured scenarios. To address this limitation, we introduce Vision-Language Model Predictive Control (VLMPC), a robotic manipulation planning framework that integrates the perception power of vision-language models (VLMs) with MPC. VLMPC utilizes a conditional action sampling module that takes a goal image or language instruction as input and leverages VLM to generate candidate action sequences. These candidates are fed into a video prediction model that simulates future frames based on the actions. In addition, we propose an enhanced variant, Traj-VLMPC, which replaces video prediction with motion trajectory generation to reduce computational complexity while maintaining accuracy. Traj-VLMPC estimates motion dynamics conditioned on the candidate actions, offering a more efficient alternative for long-horizon tasks and real-time applications. Both VLMPC and Traj-VLMPC select the optimal action sequence using a VLM-based hierarchical cost function that captures both pixel-level and knowledge-level consistency between the current observation and the task input. We demonstrate that both approaches outperform existing state-of-the-art methods on public benchmarks and achieve excellent performance in various real-world robotic manipulation tasks. Code is available at https://github.com/PPjmchen/VLMPC.

Authors:Rayan Merghani Ahmed, Adnan Iltaf, Mohamed Elmanna, Gang Zhao, Hongliang Li, Yue Du, Bin Li, Shoujun Zhou
Title: MSA-UNet3+: Multi-Scale Attention UNet3+ with New Supervised Prototypical Contrastive Loss for Coronary DSA Image Segmentation
Abstract:
Accurate segmentation of coronary Digital Subtraction Angiography images is essential to diagnose and treat coronary artery diseases. Despite advances in deep learning, challenges such as high intra-class variance and class imbalance limit precise vessel delineation. Most existing approaches for coronary DSA segmentation cannot address these issues. Also, existing segmentation network's encoders do not directly generate semantic embeddings, which could enable the decoder to reconstruct segmentation masks effectively from these well-defined features. We propose a Supervised Prototypical Contrastive Loss that fuses supervised and prototypical contrastive learning to enhance coronary DSA image segmentation. The supervised contrastive loss enforces semantic embeddings in the encoder, improving feature differentiation. The prototypical contrastive loss allows the model to focus on the foreground class while alleviating the high intra-class variance and class imbalance problems by concentrating only on the hard-to-classify background samples. We implement the proposed SPCL loss within an MSA-UNet3+: a Multi-Scale Attention-Enhanced UNet3+ architecture. The architecture integrates key components: a Multi-Scale Attention Encoder and a Multi-Scale Dilated Bottleneck designed to enhance multi-scale feature extraction and a Contextual Attention Fusion Module built to keep fine-grained details while improving contextual understanding. Experiments on a private coronary DSA dataset show that MSA-UNet3+ outperforms state-of-the-art methods, achieving the highest Dice coefficient and F1-score and significantly reducing ASD and ACD. The developed framework provides clinicians with precise vessel segmentation, enabling accurate identification of coronary stenosis and supporting informed diagnostic and therapeutic decisions. The code will be released at https://github.com/rayanmerghani/MSA-UNet3plus.

Authors:Kidist Amde Mekonnen, Yubao Tang, Maarten de Rijke
Title: Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval
Abstract:
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task, allowing for end-to-end optimization toward a unified global retrieval objective. However, existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively. While reinforcement learning-based methods, such as reinforcement learning from relevance feedback (RLRF), aim to address this misalignment through reward modeling, they introduce significant complexity, requiring the optimization of an auxiliary reward function followed by reinforcement fine-tuning, which is computationally expensive and often unstable. To address these challenges, we propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking, eliminating the need for explicit reward modeling and reinforcement learning. Experimental results on benchmark datasets, including MS MARCO document and Natural Questions, show that DDRO outperforms reinforcement learning-based methods, achieving a 7.4% improvement in MRR@10 for MS MARCO and a 19.9% improvement for Natural Questions. These findings highlight DDRO's potential to enhance retrieval effectiveness with a simplified optimization approach. By framing alignment as a direct optimization problem, DDRO simplifies the ranking optimization pipeline of GenIR models while offering a viable alternative to reinforcement learning-based methods.

Authors:Guangqiang Li, M. Amine Atoui, Xiangshun Li
Title: Attention-Based Multiscale Temporal Fusion Network for Uncertain-Mode Fault Diagnosis in Multimode Processes
Abstract:
Fault diagnosis in multimode processes plays a critical role in ensuring the safe operation of industrial systems across multiple modes. It faces a great challenge yet to be addressed - that is, the significant distributional differences among monitoring data from multiple modes make it difficult for the models to extract shared feature representations related to system health conditions. In response to this problem, this paper introduces a novel method called attention-based multiscale temporal fusion network. The multiscale depthwise convolution and gated recurrent unit are employed to extract multiscale contextual local features and long-short-term features. Instance normalization is applied to suppress mode-specific information. Furthermore, a temporal attention mechanism is designed to focus on critical time points with higher cross-mode shared information, thereby enhancing the accuracy of fault diagnosis. The proposed model is applied to Tennessee Eastman process dataset and three-phase flow facility dataset. The experiments demonstrate that the proposed model achieves superior diagnostic performance and maintains a small model size. The source code will be available on GitHub at https://github.com/GuangqiangLi/AMTFNet.

Authors:Xingyu Hu, Junjun Jiang, Chenyang Wang, Kui Jiang, Xianming Liu, Jiayi Ma
Title: Balancing Task-invariant Interaction and Task-specific Adaptation for Unified Image Fusion
Abstract:
Unified image fusion aims to integrate complementary information from multi-source images, enhancing image quality through a unified framework applicable to diverse fusion tasks. While treating all fusion tasks as a unified problem facilitates task-invariant knowledge sharing, it often overlooks task-specific characteristics, thereby limiting the overall performance. Existing general image fusion methods incorporate explicit task identification to enable adaptation to different fusion tasks. However, this dependence during inference restricts the model's generalization to unseen fusion tasks. To address these issues, we propose a novel unified image fusion framework named "TITA", which dynamically balances both Task-invariant Interaction and Task-specific Adaptation. For task-invariant interaction, we introduce the Interaction-enhanced Pixel Attention (IPA) module to enhance pixel-wise interactions for better multi-source complementary information extraction. For task-specific adaptation, the Operation-based Adaptive Fusion (OAF) module dynamically adjusts operation weights based on task properties. Additionally, we incorporate the Fast Adaptive Multitask Optimization (FAMO) strategy to mitigate the impact of gradient conflicts across tasks during joint training. Extensive experiments demonstrate that TITA not only achieves competitive performance compared to specialized methods across three image fusion scenarios but also exhibits strong generalization to unseen fusion tasks. The source codes are released at https://github.com/huxingyuabc/TITA.

Authors:Geyang Guo, Tarek Naous, Hiromi Wakaki, Yukiko Nishimura, Yuki Mitsufuji, Alan Ritter, Wei Xu
Title: CARE: Multilingual Human Preference Learning for Cultural Awareness
Abstract:
Language Models (LMs) are typically tuned with human preferences to produce helpful responses, but the impact of preference tuning on the ability to handle culturally diverse queries remains understudied. In this paper, we systematically analyze how native human cultural preferences can be incorporated into the preference learning process to train more culturally aware LMs. We introduce \textbf{CARE}, a multilingual resource containing 3,490 culturally specific questions and 31.7k responses with human judgments. We demonstrate how a modest amount of high-quality native preferences improves cultural awareness across various LMs, outperforming larger generic preference data. Our analyses reveal that models with stronger initial cultural performance benefit more from alignment, leading to gaps among models developed in different regions with varying access to culturally relevant data. CARE is publicly available at https://github.com/Guochry/CARE.

Authors:Suhang Gu, Ye Wang, Yongxin Chou, Jinliang Cong, Mingli Lu, Zhuqing Jiao
Title: Interpretable Style Takagi-Sugeno-Kang Fuzzy Clustering
Abstract:
Clustering is an efficient and essential technique for exploring latent knowledge of data. However, limited attention has been given to the interpretability of the clusters detected by most clustering algorithms. In addition, due to the homogeneity of data, different groups of data have their own homogeneous styles. In this paper, the above two aspects are considered, and an interpretable style Takagi-Sugeno-Kang (TSK) fuzzy clustering (IS-TSK-FC) algorithm is proposed. The clustering behavior of IS-TSK-FC is fully guided by the TSK fuzzy inference on fuzzy rules. In particular, samples are grouped into clusters represented by the corresponding consequent vectors of all fuzzy rules learned in an unsupervised manner. This can explain how the clusters are generated in detail, thus making the underlying decision-making process of the IS-TSK-FC interpretable. Moreover, a series of style matrices are introduced to facilitate the consequents of fuzzy rules in IS-TSK-FC by capturing the styles of clusters as well as the nuances between different styles. Consequently, all the fuzzy rules in IS-TSK-FC have powerful data representation capability. After determining the antecedents of all the fuzzy rules, the optimization problem of IS-TSK-FC can be iteratively solved in an alternation manner. The effectiveness of IS-TSK-FC as an interpretable clustering tool is validated through extensive experiments on benchmark datasets with unknown implicit/explicit styles. Specially, the superior clustering performance of IS-TSK-FC is demonstrated on case studies where different groups of data present explicit styles. The source code of IS-TSK-FC can be downloaded from https://github.com/gusuhang10/IS-TSK-FC.

Authors:Liu Xiao, Li Zhiyuan, Lin Yueyu
Title: State Tuning: State-based Test-Time Scaling on RWKV-7
Abstract:
Test-time scaling has emerged as a prominent research direction in machine learning, enabling models to enhance their expressive capabilities during inference.Transformers, renowned for striking a delicate balance between efficiency and expressiveness, have benefited from test-time scaling techniques that leverage an expanding key-value (KV) cache to significantly improve performance.In this paper, we introduce a novel state-based approach to test-time scaling, which we term state tuning, tailored to the RNN-based RWKV-7 model.By exploiting the unique strengths of RWKV-7, our method achieves state-of-the-art performance on the target task without altering the model's pre-trained weights. Our approach centers on three key innovations. First, we develop an observer framework that allows a smaller model to replicate and learn the state dynamics of the RWKV-7 model. Second, we employ a kernel method to dynamically upscale the state size, enhancing the model's capacity to capture intricate patterns. Third, we integrate Decorrelated Backpropagation (DBP) to optimize the upscaled state matrix, thereby improving convergence and expressivity. By tuning only the state matrix, we demonstrate that a smaller model can outperform larger models on the given task. This method preserves the efficiency of the original RWKV-7 architecture while harnessing the power of test-time scaling to deliver superior results. Our findings underscore the potential of state tuning as an effective strategy for advancing model performance in resource-constrained settings. Our code is https://github.com/TorchRWKV/flash-linear-attention.

Authors:Chandra Raskoti, Iftekharul Islam, Xuan Wang, Weizi Li
Title: MIAT: Maneuver-Intention-Aware Transformer for Spatio-Temporal Trajectory Prediction
Abstract:
Accurate vehicle trajectory prediction is critical for safe and efficient autonomous driving, especially in mixed traffic environments when both human-driven and autonomous vehicles co-exist. However, uncertainties introduced by inherent driving behaviors -- such as acceleration, deceleration, and left and right maneuvers -- pose significant challenges for reliable trajectory prediction. We introduce a Maneuver-Intention-Aware Transformer (MIAT) architecture, which integrates a maneuver intention awareness control mechanism with spatiotemporal interaction modeling to enhance long-horizon trajectory predictions. We systematically investigate the impact of varying awareness of maneuver intention on both short- and long-horizon trajectory predictions. Evaluated on the real-world NGSIM dataset and benchmarked against various transformer- and LSTM-based methods, our approach achieves an improvement of up to 4.7% in short-horizon predictions and a 1.6% in long-horizon predictions compared to other intention-aware benchmark methods. Moreover, by leveraging intention awareness control mechanism, MIAT realizes an 11.1% performance boost in long-horizon predictions, with a modest drop in short-horizon performance. The source code and datasets are available at https://github.com/cpraskoti/MIAT.

Authors:Wang Tang, Fethiye Irmak Dogan, Linbo Qing, Hatice Gunes
Title: AsyReC: A Multimodal Graph-based Framework for Spatio-Temporal Asymmetric Dyadic Relationship Classification
Abstract:
Dyadic social relationships, which refer to relationships between two individuals who know each other through repeated interactions (or not), are shaped by shared spatial and temporal experiences. Current computational methods for modeling these relationships face three major challenges: (1) the failure to model asymmetric relationships, e.g., one individual may perceive the other as a friend while the other perceives them as an acquaintance, (2) the disruption of continuous interactions by discrete frame sampling, which segments the temporal continuity of interaction in real-world scenarios, and (3) the limitation to consider periodic behavioral cues, such as rhythmic vocalizations or recurrent gestures, which are crucial for inferring the evolution of dyadic relationships. To address these challenges, we propose AsyReC, a multimodal graph-based framework for asymmetric dyadic relationship classification, with three core innovations: (i) a triplet graph neural network with node-edge dual attention that dynamically weights multimodal cues to capture interaction asymmetries (addressing challenge 1); (ii) a clip-level relationship learning architecture that preserves temporal continuity, enabling fine-grained modeling of real-world interaction dynamics (addressing challenge 2); and (iii) a periodic temporal encoder that projects time indices onto sine/cosine waveforms to model recurrent behavioral patterns (addressing challenge 3). Extensive experiments on two public datasets demonstrate state-of-the-art performance, while ablation studies validate the critical role of asymmetric interaction modeling and periodic temporal encoding in improving the robustness of dyadic relationship classification in real-world scenarios. Our code is publicly available at: https://github.com/tw-repository/AsyReC.

Authors:Changchuan Yang, Yuhang Dong, Guanzhong Tian, Haizhou Ge, Hongrui Zhu
Title: Wavelet Policy: Imitation Policy Learning in the Scale Domain with Wavelet Transforms
Abstract:
Recent imitation learning policies, often framed as time series prediction tasks, directly map robotic observations into the action space, such as high-dimensional visual data and proprioception. When deploying at the edge, we found the underutilization of frequency domain analysis in robotic manipulation trajectory prediction leads to neglecting the inherent rhythm information embedded within action sequences, resulting in errors at critical moments. To address this, we reframe imitation learning policies through the lens of time-scale domain and introduce the Wavelet Policy. This novel approach employs wavelet transforms (WT) and new Features Extractor (FE) for feature preprocessing and extracts multi-scale features using the Single Encoder to Multiple Decoder (SE2MD) architecture. Furthermore, to enhance feature mapping in the scale domain and appropriately increase model capacity, we introduce a Learnable Scale Domain Filter (LSDF) after each decoder, improving adaptability under different visual conditions. Our results show that the Wavelet Policy maintaining a comparable parameter count outperforms SOTA end-to-end methods on four challenging simulation robotic arm tasks and real tasks, especially at critical moments and remote settings simultaneously. We release the source code and model checkpoint of simulation task at https://github.com/lurenjia384/Wavelet_Policy.

Authors:Aditya Hemant Shahane, Prathosh A. P, Sandeep Kumar
Title: GOTHAM: Graph Class Incremental Learning Framework under Weak Supervision
Abstract:
Graphs are growing rapidly, along with the number of distinct label categories associated with them. Applications like e-commerce, healthcare, recommendation systems, and various social media platforms are rapidly moving towards graph representation of data due to their ability to capture both structural and attribute information. One crucial task in graph analysis is node classification, where unlabeled nodes are categorized into predefined classes. In practice, novel classes appear incrementally sometimes with just a few labels (seen classes) or even without any labels (unseen classes), either because they are new or haven't been explored much. Traditional methods assume abundant labeled data for training, which isn't always feasible. We investigate a broader objective: \emph{Graph Class Incremental Learning under Weak Supervision (GCL)}, addressing this challenge by meta-training on base classes with limited labeled instances. During the incremental streams, novel classes can have few-shot or zero-shot representation. Our proposed framework GOTHAM efficiently accommodates these unlabeled nodes by finding the closest prototype representation, serving as class representatives in the attribute space. For Text-Attributed Graphs (TAGs), our framework additionally incorporates semantic information to enhance the representation. By employing teacher-student knowledge distillation to mitigate forgetting, GOTHAM achieves promising results across various tasks. Experiments on datasets such as Cora-ML, Amazon, and OBGN-Arxiv showcase the effectiveness of our approach in handling evolving graph data under limited supervision. The repository is available here: \href{https://github.com/adityashahane10/GOTHAM--Graph-based-Class-Incremental-Learning-Framework-under-Weak-Supervision}{\small \textcolor{blue}{Code}}

Authors:Linwei Zhai, Han Ding, Cui Zhao, fei wang, Ge Wang, Wang Zhi, Wei Xi
Title: L3AC: Towards a Lightweight and Lossless Audio Codec
Abstract:
Neural audio codecs have recently gained traction for their ability to compress high-fidelity audio and provide discrete tokens for generative modeling. However, leading approaches often rely on resource-intensive models and complex multi-quantizer architectures, limiting their practicality in real-world applications. In this work, we introduce L3AC, a lightweight neural audio codec that addresses these challenges by leveraging a single quantizer and a highly efficient architecture. To enhance reconstruction fidelity while minimizing model complexity, L3AC explores streamlined convolutional networks and local Transformer modules, alongside TConv--a novel structure designed to capture acoustic variations across multiple temporal scales. Despite its compact design, extensive experiments across diverse datasets demonstrate that L3AC matches or exceeds the reconstruction quality of leading codecs while reducing computational overhead by an order of magnitude. The single-quantizer design further enhances its adaptability for downstream tasks. The source code is publicly available at https://github.com/zhai-lw/L3AC.

Authors:Ran Xu, Wenqi Shi, Yuchen Zhuang, Yue Yu, Joyce C. Ho, Haoyu Wang, Carl Yang
Title: Collab-RAG: Boosting Retrieval-Augmented Generation for Complex Question Answering via White-Box and Black-Box LLM Collaboration
Abstract:
Retrieval-Augmented Generation (RAG) systems often struggle to handle multi-hop question-answering tasks accurately due to irrelevant context retrieval and limited complex reasoning capabilities. We introduce Collab-RAG, a collaborative training framework that leverages mutual enhancement between a white-box small language model (SLM) and a blackbox large language model (LLM) for RAG. Specifically, the SLM decomposes complex queries into simpler sub-questions, thus enhancing the accuracy of the retrieval and facilitating more effective reasoning by the black-box LLM. Concurrently, the black-box LLM provides feedback signals to improve the SLM's decomposition capability. We observe that Collab-RAG relies solely on supervision from an affordable black-box LLM without additional distillation from frontier LLMs, yet demonstrates strong generalization across multiple black-box LLMs. Experimental evaluations across five multi-hop QA datasets demonstrate that Collab-RAG substantially outperforms existing black-box-only and SLM fine-tuning baselines by 1.8%-14.2% on average. In particular, our fine-tuned 3B SLM surpasses a frozen 32B LLM in question decomposition, highlighting the efficiency of Collab-RAG in improving reasoning and retrieval for complex questions. The code of Collab-RAG is available on https://github.com/ritaranx/Collab-RAG/.

Authors:Georg Ahnert, Elena Wurth, Markus Strohmaier, Jutta Mata
Title: Simulating Persuasive Dialogues on Meat Reduction with Generative Agents
Abstract:
Meat reduction benefits human and planetary health, but social norms keep meat central in shared meals. To date, the development of communication strategies that promote meat reduction while minimizing social costs has required the costly involvement of human participants at each stage of the process. We present work in progress on simulating multi-round dialogues on meat reduction between Generative Agents based on large language models (LLMs). We measure our main outcome using established psychological questionnaires based on the Theory of Planned Behavior and additionally investigate Social Costs. We find evidence that our preliminary simulations produce outcomes that are (i) consistent with theoretical expectations; and (ii) valid when compared to data from previous studies with human participants. Generative agent-based models are a promising tool for identifying novel communication strategies on meat reduction-tailored to highly specific participant groups-to then be tested in subsequent studies with human participants.

Authors:Yizhou Dang, Yuting Liu, Enneng Yang, Minhan Huang, Guibing Guo, Jianzhe Zhao, Xingwei Wang
Title: Data Augmentation as Free Lunch: Exploring the Test-Time Augmentation for Sequential Recommendation
Abstract:
Data augmentation has become a promising method of mitigating data sparsity in sequential recommendation. Existing methods generate new yet effective data during model training to improve performance. However, deploying them requires retraining, architecture modification, or introducing additional learnable parameters. The above steps are time-consuming and costly for well-trained models, especially when the model scale becomes large. In this work, we explore the test-time augmentation (TTA) for sequential recommendation, which augments the inputs during the model inference and then aggregates the model's predictions for augmented data to improve final accuracy. It avoids significant time and cost overhead from loss calculation and backward propagation. We first experimentally disclose the potential of existing augmentation operators for TTA and find that the Mask and Substitute consistently achieve better performance. Further analysis reveals that these two operators are effective because they retain the original sequential pattern while adding appropriate perturbations. Meanwhile, we argue that these two operators still face time-consuming item selection or interference information from mask tokens. Based on the analysis and limitations, we present TNoise and TMask. The former injects uniform noise into the original representation, avoiding the computational overhead of item selection. The latter blocks mask token from participating in model calculations or directly removes interactions that should have been replaced with mask tokens. Comprehensive experiments demonstrate the effectiveness, efficiency, and generalizability of our method. We provide an anonymous implementation at https://github.com/KingGugu/TTA4SR.

Authors:Zhaofeng Shi, Heqian Qiu, Lanxiao Wang, Qingbo Wu, Fanman Meng, Hongliang Li
Title: Unsupervised Ego- and Exo-centric Dense Procedural Activity Captioning via Gaze Consensus Adaptation
Abstract:
Even from an early age, humans naturally adapt between exocentric (Exo) and egocentric (Ego) perspectives to understand daily procedural activities. Inspired by this cognitive ability, we propose a novel Unsupervised Ego-Exo Dense Procedural Activity Captioning (UE$^{2}$DPAC) task, which aims to transfer knowledge from the labeled source view to predict the time segments and descriptions of action sequences for the target view without annotations. Despite previous works endeavoring to address the fully-supervised single-view or cross-view dense video captioning, they lapse in the proposed task due to the significant inter-view gap caused by temporal misalignment and irrelevant object interference. Hence, we propose a Gaze Consensus-guided Ego-Exo Adaptation Network (GCEAN) that injects the gaze information into the learned representations for the fine-grained Ego-Exo alignment. Specifically, we propose a Score-based Adversarial Learning Module (SALM) that incorporates a discriminative scoring network and compares the scores of distinct views to learn unified view-invariant representations from a global level. Then, the Gaze Consensus Construction Module (GCCM) utilizes the gaze to progressively calibrate the learned representations to highlight the regions of interest and extract the corresponding temporal contexts. Moreover, we adopt hierarchical gaze-guided consistency losses to construct gaze consensus for the explicit temporal and spatial adaptation between the source and target views. To support our research, we propose a new EgoMe-UE$^{2}$DPAC benchmark, and extensive experiments demonstrate the effectiveness of our method, which outperforms many related methods by a large margin. Code is available at https://github.com/ZhaofengSHI/GCEAN.

Authors:Pengju Sun, Banglei Guan, Zhenbao Yu, Yang Shang, Qifeng Yu, Daniel Barath
Title: Learning Affine Correspondences by Integrating Geometric Constraints
Abstract:
Affine correspondences have received significant attention due to their benefits in tasks like image matching and pose estimation. Existing methods for extracting affine correspondences still have many limitations in terms of performance; thus, exploring a new paradigm is crucial. In this paper, we present a new pipeline designed for extracting accurate affine correspondences by integrating dense matching and geometric constraints. Specifically, a novel extraction framework is introduced, with the aid of dense matching and a novel keypoint scale and orientation estimator. For this purpose, we propose loss functions based on geometric constraints, which can effectively improve accuracy by supervising neural networks to learn feature geometry. The experimental show that the accuracy and robustness of our method outperform the existing ones in image matching tasks. To further demonstrate the effectiveness of the proposed method, we applied it to relative pose estimation. Affine correspondences extracted by our method lead to more accurate poses than the baselines on a range of real-world datasets. The code is available at https://github.com/stilcrad/DenseAffine.

Authors:Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, Lu Hou
Title: Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models
Abstract:
Recent advancements in reasoning language models have demonstrated remarkable performance in complex tasks, but their extended chain-of-thought reasoning process increases inference overhead. While quantization has been widely adopted to reduce the inference cost of large language models, its impact on reasoning models remains understudied. In this paper, we conduct the first systematic study on quantized reasoning models, evaluating the open-sourced DeepSeek-R1-Distilled Qwen and LLaMA families ranging from 1.5B to 70B parameters, QwQ-32B, and Qwen3-8B. Our investigation covers weight, KV cache, and activation quantization using state-of-the-art algorithms at varying bit-widths, with extensive evaluation across mathematical (AIME, MATH-500), scientific (GPQA), and programming (LiveCodeBench) reasoning benchmarks. Our findings reveal that while lossless quantization can be achieved with W8A8 or W4A16 quantization, lower bit-widths introduce significant accuracy risks. We further identify model size, model origin, and task difficulty as critical determinants of performance. Contrary to expectations, quantized models do not exhibit increased output lengths. In addition, strategically scaling the model sizes or reasoning steps can effectively enhance the performance. All quantized models and codes are open-sourced in https://github.com/ruikangliu/Quantized-Reasoning-Models.

Authors:Timo Brand, Daniel Faber, Stephan Held, Petra Mutzel
Title: A Customized SAT-based Solver for Graph Coloring
Abstract:
We introduce ZykovColor, a novel SAT-based algorithm to solve the graph coloring problem working on top of an encoding that mimics the Zykov tree. Our method is based on an approach of Hébrard and Katsirelos (2020) that employs a propagator to enforce transitivity constraints, incorporate lower bounds for search tree pruning, and enable inferred propagations. We leverage the recently introduced IPASIR-UP interface for CaDiCal to implement these techniques with a SAT solver. Furthermore, we propose new features that take advantage of the underlying SAT solver. These include modifying the integrated decision strategy with vertex domination hints and using incremental bottom-up search that allows to reuse learned clauses from previous calls. Additionally, we integrate a more efficient clique computation to improve the lower bounds during the search. We validate the effectiveness of each new feature through an experimental analysis. ZykovColor outperforms other state-of-the-art graph coloring implementations on the DIMACS benchmark set. Further experiments on random Erdős-Rényi graphs show that our new approach dominates state-of-the-art SAT-based methods for both very sparse and highly dense graphs.

Authors:Tengjun Jin, Yuxuan Zhu, Daniel Kang
Title: ELT-Bench: An End-to-End Benchmark for Evaluating AI Agents on ELT Pipelines
Abstract:
Practitioners are increasingly turning to Extract-Load-Transform (ELT) pipelines with the widespread adoption of cloud data warehouses. However, designing these pipelines often involves significant manual work to ensure correctness. Recent advances in AI-based methods, which have shown strong capabilities in data tasks, such as text-to-SQL, present an opportunity to alleviate manual efforts in developing ELT pipelines. Unfortunately, current benchmarks in data engineering only evaluate isolated tasks, such as using data tools and writing data transformation queries, leaving a significant gap in evaluating AI agents for generating end-to-end ELT pipelines. To fill this gap, we introduce ELT-Bench, an end-to-end benchmark designed to assess the capabilities of AI agents to build ELT pipelines. ELT-Bench consists of 100 pipelines, including 835 source tables and 203 data models across various domains. By simulating realistic scenarios involving the integration of diverse data sources and the use of popular data tools, ELT-Bench evaluates AI agents' abilities in handling complex data engineering workflows. AI agents must interact with databases and data tools, write code and SQL queries, and orchestrate every pipeline stage. We evaluate two representative code agent frameworks, Spider-Agent and SWE-Agent, using six popular Large Language Models (LLMs) on ELT-Bench. The highest-performing agent, Spider-Agent Claude-3.7-Sonnet with extended thinking, correctly generates only 3.9% of data models, with an average cost of $4.30 and 89.3 steps per pipeline. Our experimental results demonstrate the challenges of ELT-Bench and highlight the need for a more advanced AI agent to reduce manual effort in ELT workflows. Our code and data are available at https://github.com/uiuc-kang-lab/ELT-Bench.

Authors:Tianyang Wu, Lipeng Wan, Yuhang Wang, Qiang Wan, Xuguang Lan
Title: Playing Non-Embedded Card-Based Games with Reinforcement Learning
Abstract:
Significant progress has been made in AI for games, including board games, MOBA, and RTS games. However, complex agents are typically developed in an embedded manner, directly accessing game state information, unlike human players who rely on noisy visual data, leading to unfair competition. Developing complex non-embedded agents remains challenging, especially in card-based RTS games with complex features and large state spaces. We propose a non-embedded offline reinforcement learning training strategy using visual inputs to achieve real-time autonomous gameplay in the RTS game Clash Royale. Due to the lack of a object detection dataset for this game, we designed an efficient generative object detection dataset for training. We extract features using state-of-the-art object detection and optical character recognition models. Our method enables real-time image acquisition, perception feature fusion, decision-making, and control on mobile devices, successfully defeating built-in AI opponents. All code is open-sourced at https://github.com/wty-yy/katacr.

Authors:Inhwan Bae, Junoh Lee, Hae-Gon Jeon
Title: Continuous Locomotive Crowd Behavior Generation
Abstract:
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .

Authors:Xiongbo Lu, Yaxiong Chen, Shengwu Xiong
Title: AnyArtisticGlyph: Multilingual Controllable Artistic Glyph Generation
Abstract:
Artistic Glyph Image Generation (AGIG) differs from current creativity-focused generation models by offering finely controllable deterministic generation. It transfers the style of a reference image to a source while preserving its content. Although advanced and promising, current methods may reveal flaws when scrutinizing synthesized image details, often producing blurred or incorrect textures, posing a significant challenge. Hence, we introduce AnyArtisticGlyph, a diffusion-based, multilingual controllable artistic glyph generation model. It includes a font fusion and embedding module, which generates latent features for detailed structure creation, and a vision-text fusion and embedding module that uses the CLIP model to encode references and blends them with transformation caption embeddings for seamless global image generation. Moreover, we incorporate a coarse-grained feature-level loss to enhance generation accuracy. Experiments show that it produces natural, detailed artistic glyph images with state-of-the-art performance. Our project will be open-sourced on https://github.com/jiean001/AnyArtisticGlyph to advance text generation technology.

Authors:Samarth Mishra, Kate Saenko, Venkatesh Saligrama
Title: Enhancing Compositional Reasoning in Vision-Language Models with Synthetic Preference Data
Abstract:
Compositionality, or correctly recognizing scenes as compositions of atomic visual concepts, remains difficult for multimodal large language models (MLLMs). Even state of the art MLLMs such as GPT-4o can make mistakes in distinguishing compositions like "dog chasing cat" vs "cat chasing dog". While on Winoground, a benchmark for measuring such reasoning, MLLMs have made significant progress, they are still far from a human's performance. We show that compositional reasoning in these models can be improved by elucidating such concepts via data, where a model is trained to prefer the correct caption for an image over a close but incorrect one. We introduce SCRAMBLe: Synthetic Compositional Reasoning Augmentation of MLLMs with Binary preference Learning, an approach for preference tuning open-weight MLLMs on synthetic preference data generated in a fully automated manner from existing image-caption data. SCRAMBLe holistically improves these MLLMs' compositional reasoning capabilities which we can see through significant improvements across multiple vision language compositionality benchmarks, as well as smaller but significant improvements on general question answering tasks. As a sneak peek, SCRAMBLe tuned Molmo-7B model improves on Winoground from 49.5% to 54.8% (best reported to date), while improving by ~1% on more general visual question answering tasks. Code for SCRAMBLe along with tuned models and our synthetic training dataset is available at https://github.com/samarth4149/SCRAMBLe.

Authors:Samarth Mishra, Kate Saenko, Venkatesh Saligrama
Title: SCRAMBLe : Enhancing Multimodal LLM Compositionality with Synthetic Preference Data
Abstract:
Compositionality, or correctly recognizing scenes as compositions of atomic visual concepts, remains difficult for multimodal large language models (MLLMs). Even state of the art MLLMs such as GPT-4o can make mistakes in distinguishing compositions like "dog chasing cat" vs "cat chasing dog". While on Winoground, a benchmark for measuring such reasoning, MLLMs have made significant progress, they are still far from a human's performance. We show that compositional reasoning in these models can be improved by elucidating such concepts via data, where a model is trained to prefer the correct caption for an image over a close but incorrect one. We introduce SCRAMBLe: Synthetic Compositional Reasoning Augmentation of MLLMs with Binary preference Learning, an approach for preference tuning open-weight MLLMs on synthetic preference data generated in a fully automated manner from existing image-caption data. SCRAMBLe holistically improves these MLLMs' compositional reasoning capabilities which we can see through significant improvements across multiple vision language compositionality benchmarks, as well as smaller but significant improvements on general question answering tasks. As a sneak peek, SCRAMBLe tuned Molmo-7B model improves on Winoground from 49.5% to 54.8% (best reported to date), while improving by ~1% on more general visual question answering tasks. Code for SCRAMBLe along with tuned models and our synthetic training dataset is available at https://github.com/samarth4149/SCRAMBLe.

Authors:Zhenxing Ming, Julie Stephany Berrio, Mao Shan, Stewart Worrall
Title: Inverse++: Vision-Centric 3D Semantic Occupancy Prediction Assisted with 3D Object Detection
Abstract:
3D semantic occupancy prediction aims to forecast detailed geometric and semantic information of the surrounding environment for autonomous vehicles (AVs) using onboard surround-view cameras. Existing methods primarily focus on intricate inner structure module designs to improve model performance, such as efficient feature sampling and aggregation processes or intermediate feature representation formats. In this paper, we explore multitask learning by introducing an additional 3D supervision signal by incorporating an additional 3D object detection auxiliary branch. This extra 3D supervision signal enhances the model's overall performance by strengthening the capability of the intermediate features to capture small dynamic objects in the scene, and these small dynamic objects often include vulnerable road users, i.e. bicycles, motorcycles, and pedestrians, whose detection is crucial for ensuring driving safety in autonomous vehicles. Extensive experiments conducted on the nuScenes datasets, including challenging rainy and nighttime scenarios, showcase that our approach attains state-of-the-art results, achieving an IoU score of 31.73% and a mIoU score of 20.91% and excels at detecting vulnerable road users (VRU). The code will be made available at:https://github.com/DanielMing123/Inverse++

Authors:Chu Zhao, Enneng Yang, Yuting Liu, Jianzhe Zhao, Guibing Guo, Xingwei Wang
Title: Can LLM-Driven Hard Negative Sampling Empower Collaborative Filtering? Findings and Potentials
Abstract:
Hard negative samples can accelerate model convergence and optimize decision boundaries, which is key to improving the performance of recommender systems. Although large language models (LLMs) possess strong semantic understanding and generation capabilities, systematic research has not yet been conducted on how to generate hard negative samples effectively. To fill this gap, this paper introduces the concept of Semantic Negative Sampling and exploreshow to optimize LLMs for high-quality, hard negative sampling. Specifically, we design an experimental pipeline that includes three main modules, profile generation, semantic negative sampling, and semantic alignment, to verify the potential of LLM-driven hard negative sampling in enhancing the accuracy of collaborative filtering (CF). Experimental results indicate that hard negative samples generated based on LLMs, when semantically aligned and integrated into CF, can significantly improve CF performance, although there is still a certain gap compared to traditional negative sampling methods. Further analysis reveals that this gap primarily arises from two major challenges: noisy samples and lack of behavioral constraints. To address these challenges, we propose a framework called HNLMRec, based on fine-tuning LLMs supervised by collaborative signals. Experimental results show that this framework outperforms traditional negative sampling and other LLM-driven recommendation methods across multiple datasets, providing new solutions for empowering traditional RS with LLMs. Additionally, we validate the excellent generalization ability of the LLM-based semantic negative sampling method on new datasets, demonstrating its potential in alleviating issues such as data sparsity, popularity bias, and the problem of false hard negative samples. Our implementation code is available at https://github.com/user683/HNLMRec.

Authors:Yubo Li, Xiaobin Shen, Xinyu Yao, Xueying Ding, Yidi Miao, Ramayya Krishnan, Rema Padman
Title: Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models
Abstract:
Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.

Authors:Haoren Zhao, Tianyi Chen, Zhen Wang
Title: On the Robustness of GUI Grounding Models Against Image Attacks
Abstract:
Graphical User Interface (GUI) grounding models are crucial for enabling intelligent agents to understand and interact with complex visual interfaces. However, these models face significant robustness challenges in real-world scenarios due to natural noise and adversarial perturbations, and their robustness remains underexplored. In this study, we systematically evaluate the robustness of state-of-the-art GUI grounding models, such as UGround, under three conditions: natural noise, untargeted adversarial attacks, and targeted adversarial attacks. Our experiments, which were conducted across a wide range of GUI environments, including mobile, desktop, and web interfaces, have clearly demonstrated that GUI grounding models exhibit a high degree of sensitivity to adversarial perturbations and low-resolution conditions. These findings provide valuable insights into the vulnerabilities of GUI grounding models and establish a strong benchmark for future research aimed at enhancing their robustness in practical applications. Our code is available at https://github.com/ZZZhr-1/Robust_GUI_Grounding.

Authors:Will Cai, Tianneng Shi, Xuandong Zhao, Dawn Song
Title: Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs
Abstract:
The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit

Authors:Will Cai, Tianneng Shi, Xuandong Zhao, Dawn Song
Title: Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs
Abstract:
Commercial Large Language Model (LLM) APIs create a fundamental trust problem: users pay for specific models but have no guarantee that providers deliver them faithfully. Providers may covertly substitute cheaper alternatives (e.g., quantized versions, smaller models) to reduce costs while maintaining advertised pricing. We formalize this model substitution problem and systematically evaluate detection methods under realistic adversarial conditions. Our empirical analysis reveals that software-only methods are fundamentally unreliable: statistical tests on text outputs are query-intensive and fail against subtle substitutions, while methods using log probabilities are defeated by inherent inference nondeterminism in production environments. We argue that this verification gap can be more effectively closed with hardware-level security. We propose and evaluate the use of Trusted Execution Environments (TEEs) as one practical and robust solution. Our findings demonstrate that TEEs can provide provable cryptographic guarantees of model integrity with only a modest performance overhead, offering a clear and actionable path to ensure users get what they pay for. Code is available at https://github.com/sunblaze-ucb/llm-api-audit

Authors:Xiaolun Jing, Genke Yang, Jian Chu
Title: TC-MGC: Text-Conditioned Multi-Grained Contrastive Learning for Text-Video Retrieval
Abstract:
Motivated by the success of coarse-grained or fine-grained contrast in text-video retrieval, there emerge multi-grained contrastive learning methods which focus on the integration of contrasts with different granularity. However, due to the wider semantic range of videos, the text-agnostic video representations might encode misleading information not described in texts, thus impeding the model from capturing precise cross-modal semantic correspondence. To this end, we propose a Text-Conditioned Multi-Grained Contrast framework, dubbed TC-MGC. Specifically, our model employs a language-video attention block to generate aggregated frame and video representations conditioned on the word's and text's attention weights over frames. To filter unnecessary similarity interactions and decrease trainable parameters in the Interactive Similarity Aggregation (ISA) module, we design a Similarity Reorganization (SR) module to identify attentive similarities and reorganize cross-modal similarity vectors and matrices. Next, we argue that the imbalance problem among multigrained similarities may result in over- and under-representation issues. We thereby introduce an auxiliary Similarity Decorrelation Regularization (SDR) loss to facilitate cooperative relationship utilization by similarity variance minimization on matching text-video pairs. Finally, we present a Linear Softmax Aggregation (LSA) module to explicitly encourage the interactions between multiple similarities and promote the usage of multi-grained information. Empirically, TC-MGC achieves competitive results on multiple text-video retrieval benchmarks, outperforming X-CLIP model by +2.8% (+1.3%), +2.2% (+1.0%), +1.5% (+0.9%) relative (absolute) improvements in text-to-video retrieval R@1 on MSR-VTT, DiDeMo and VATEX, respectively. Our code is publicly available at https://github.com/JingXiaolun/TC-MGC.

Authors:Manlai Liang, JiaMing Zhang, Xiong Li, Jinlong Li
Title: LagKV: Lag-Relative Information of the KV Cache Tells Which Tokens Are Important
Abstract:
The increasing size of the Key-Value (KV) cache during the Large Language Models long-context inference is the main obstacle for its balance between the deployment cost and task accuracy. To reduce the KV cache size in such scenarios, most previous efforts leveraged on the attention weight to evict non-critical cache tokens. But there is a trade-off in those methods, they usually require major modification of the inference infrastructure and significant computation overhead. Based on the fact that the Large Language models are autoregressive models, we propose LagKV, a KV compression strategy only relying on straight forward comparison among KV themselves. It is a totally attention free method which offers easy integration to the main stream inference platform and comparable performance comparing to other complicated KV compression methods. Results on RULER benchmark show that, our approach outperforms SnapKV and StreamingLLM in different compression ratios. Especially in the 64-digit passkey retrieval task, our method outperforms the attention weight based method $H_2O$ over $50\%$ with same compression ratios. Our code is available at https://github.com/AI-Lab-China-Merchants-Bank/LagKV.

Authors:Bo-Wen Yin, Jiao-Long Cao, Ming-Ming Cheng, Qibin Hou
Title: DFormerv2: Geometry Self-Attention for RGBD Semantic Segmentation
Abstract:
Recent advances in scene understanding benefit a lot from depth maps because of the 3D geometry information, especially in complex conditions (e.g., low light and overexposed). Existing approaches encode depth maps along with RGB images and perform feature fusion between them to enable more robust predictions. Taking into account that depth can be regarded as a geometry supplement for RGB images, a straightforward question arises: Do we really need to explicitly encode depth information with neural networks as done for RGB images? Based on this insight, in this paper, we investigate a new way to learn RGBD feature representations and present DFormerv2, a strong RGBD encoder that explicitly uses depth maps as geometry priors rather than encoding depth information with neural networks. Our goal is to extract the geometry clues from the depth and spatial distances among all the image patch tokens, which will then be used as geometry priors to allocate attention weights in self-attention. Extensive experiments demonstrate that DFormerv2 exhibits exceptional performance in various RGBD semantic segmentation benchmarks. Code is available at: https://github.com/VCIP-RGBD/DFormer.

Authors:Wanzhou Liu, Zhexiao Xiong, Xinyu Li, Nathan Jacobs
Title: DeclutterNeRF: Generative-Free 3D Scene Recovery for Occlusion Removal
Abstract:
Recent novel view synthesis (NVS) techniques, including Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have greatly advanced 3D scene reconstruction with high-quality rendering and realistic detail recovery. Effectively removing occlusions while preserving scene details can further enhance the robustness and applicability of these techniques. However, existing approaches for object and occlusion removal predominantly rely on generative priors, which, despite filling the resulting holes, introduce new artifacts and blurriness. Moreover, existing benchmark datasets for evaluating occlusion removal methods lack realistic complexity and viewpoint variations. To address these issues, we introduce DeclutterSet, a novel dataset featuring diverse scenes with pronounced occlusions distributed across foreground, midground, and background, exhibiting substantial relative motion across viewpoints. We further introduce DeclutterNeRF, an occlusion removal method free from generative priors. DeclutterNeRF introduces joint multi-view optimization of learnable camera parameters, occlusion annealing regularization, and employs an explainable stochastic structural similarity loss, ensuring high-quality, artifact-free reconstructions from incomplete images. Experiments demonstrate that DeclutterNeRF significantly outperforms state-of-the-art methods on our proposed DeclutterSet, establishing a strong baseline for future research.

Authors:Tomasz Kacprzak, Francois Kamper, Michael W. Heiss, Gianluca Janka, Ann M. Dillner, Satoshi Takahama
Title: Scalable Approximate Algorithms for Optimal Transport Linear Models
Abstract:
Recently, linear regression models incorporating an optimal transport (OT) loss have been explored for applications such as supervised unmixing of spectra, music transcription, and mass spectrometry. However, these task-specific approaches often do not generalize readily to a broader class of linear models. In this work, we propose a novel algorithmic framework for solving a general class of non-negative linear regression models with an entropy-regularized OT datafit term, based on Sinkhorn-like scaling iterations. Our framework accommodates convex penalty functions on the weights (e.g. squared-$\ell_2$ and $\ell_1$ norms), and admits additional convex loss terms between the transported marginal and target distribution (e.g. squared error or total variation). We derive simple multiplicative updates for common penalty and datafit terms. This method is suitable for large-scale problems due to its simplicity of implementation and straightforward parallelization.

Authors:Avaljot Singh, Yasmin Chandini Sarita, Charith Mendis, Gagandeep Singh
Title: Automated Verification of Soundness of DNN Certifiers
Abstract:
The uninterpretability of Deep Neural Networks (DNNs) hinders their use in safety-critical applications. Abstract Interpretation-based DNN certifiers provide promising avenues for building trust in DNNs. Unsoundness in the mathematical logic of these certifiers can lead to incorrect results. However, current approaches to ensure their soundness rely on manual, expert-driven proofs that are tedious to develop, limiting the speed of developing new certifiers. Automating the verification process is challenging due to the complexity of verifying certifiers for arbitrary DNN architectures and handling diverse abstract analyses. We introduce ProveSound, a novel verification procedure that automates the soundness verification of DNN certifiers for arbitrary DNN architectures. Our core contribution is the novel concept of a symbolic DNN, using which, ProveSound reduces the soundness property, a universal quantification over arbitrary DNNs, to a tractable symbolic representation, enabling verification with standard SMT solvers. By formalizing the syntax and operational semantics of ConstraintFlow, a DSL for specifying certifiers, ProveSound efficiently verifies both existing and new certifiers, handling arbitrary DNN architectures. Our code is available at https://github.com/uiuc-focal-lab/constraintflow.git

Authors:Motoki Abe, Shinpei Hayashi
Title: ICCheck: A Portable, Language-Agnostic Tool for Synchronizing Code Clones
Abstract:
Inconsistent modifications to code clones can lead to software defects. Many approaches exist to support consistent modifications based on clone detection and/or change pattern extraction. However, no tool currently supports synchronization of code clones across diverse programming languages and development environments. We propose ICCheck, a tool designed to be language-agnostic and portable across various environments. By leveraging an existing language-agnostic clone search technique and limiting the tool's external dependency to an existing Git repository, we developed a tool that can assist in synchronizing code clones in diverse environments. We validated the tool's functionality in multiple open-source repositories, demonstrating its language independence. Furthermore, by supporting the Language Server Protocol, we confirmed that ICCheck can be integrated into multiple development environments with minimal effort. ICCheck is available at https://github.com/salab/iccheck

Authors:Weikai Lin, Tianrui Ma, Adith Boloor, Yu Feng, Ruofan Xing, Xuan Zhang, Yuhao Zhu
Title: SnapPix: Efficient-Coding--Inspired In-Sensor Compression for Edge Vision
Abstract:
Energy-efficient image acquisition on the edge is crucial for enabling remote sensing applications where the sensor node has weak compute capabilities and must transmit data to a remote server/cloud for processing. To reduce the edge energy consumption, this paper proposes a sensor-algorithm co-designed system called SnapPix, which compresses raw pixels in the analog domain inside the sensor. We use coded exposure (CE) as the in-sensor compression strategy as it offers the flexibility to sample, i.e., selectively expose pixels, both spatially and temporally. SNAPPIX has three contributions. First, we propose a task-agnostic strategy to learn the sampling/exposure pattern based on the classic theory of efficient coding. Second, we co-design the downstream vision model with the exposure pattern to address the pixel-level non-uniformity unique to CE-compressed images. Finally, we propose lightweight augmentations to the image sensor hardware to support our in-sensor CE compression. Evaluating on action recognition and video reconstruction, SnapPix outperforms state-of-the-art video-based methods at the same speed while reducing the energy by up to 15.4x. We have open-sourced the code at: https://github.com/horizon-research/SnapPix.

Authors:Xuerui Su, Shufang Xie, Guoqing Liu, Yingce Xia, Renqian Luo, Peiran Jin, Zhiming Ma, Yue Wang, Zun Wang, Yuting Liu
Title: Trust Region Preference Approximation: A simple and stable reinforcement learning algorithm for LLM reasoning
Abstract:
Recently, Large Language Models (LLMs) have rapidly evolved, approaching Artificial General Intelligence (AGI) while benefiting from large-scale reinforcement learning to enhance Human Alignment (HA) and Reasoning. Recent reward-based optimization algorithms, such as Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO) have achieved significant performance on reasoning tasks, whereas preference-based optimization algorithms such as Direct Preference Optimization (DPO) significantly improve the performance of LLMs on human alignment. However, despite the strong performance of reward-based optimization methods in alignment tasks , they remain vulnerable to reward hacking. Furthermore, preference-based algorithms (such as Online DPO) haven't yet matched the performance of reward-based optimization algorithms (like PPO) on reasoning tasks, making their exploration in this specific area still a worthwhile pursuit. Motivated by these challenges, we propose the Trust Region Preference Approximation (TRPA) algorithm, which integrates rule-based optimization with preference-based optimization for reasoning tasks. As a preference-based algorithm, TRPA naturally eliminates the reward hacking issue. TRPA constructs preference levels using predefined rules, forms corresponding preference pairs, and leverages a novel optimization algorithm for RL training with a theoretical monotonic improvement guarantee. Experimental results demonstrate that TRPA not only achieves competitive performance on reasoning tasks but also exhibits robust stability. The code of this paper are released and updating on https://github.com/XueruiSu/Trust-Region-Preference-Approximation.git.

Authors:Junjie Jiang, Zelin Wang, Manqi Zhao, Yin Li, DongSheng Jiang
Title: SAM2MOT: A Novel Paradigm of Multi-Object Tracking by Segmentation
Abstract:
Segment Anything 2 (SAM2) enables robust single-object tracking using segmentation. To extend this to multi-object tracking (MOT), we propose SAM2MOT, introducing a novel Tracking by Segmentation paradigm. Unlike Tracking by Detection or Tracking by Query, SAM2MOT directly generates tracking boxes from segmentation masks, reducing reliance on detection accuracy. SAM2MOT has two key advantages: zero-shot generalization, allowing it to work across datasets without fine-tuning, and strong object association, inherited from SAM2. To further improve performance, we integrate a trajectory manager system for precise object addition and removal, and a cross-object interaction module to handle occlusions. Experiments on DanceTrack, UAVDT, and BDD100K show state-of-the-art results. Notably, SAM2MOT outperforms existing methods on DanceTrack by +2.1 HOTA and +4.5 IDF1, highlighting its effectiveness in MOT. Code is available at https://github.com/TripleJoy/SAM2MOT.

Authors:Jiancheng Pan, Yanxing Liu, Xiao He, Long Peng, Jiahao Li, Yuze Sun, Xiaomeng Huang
Title: Enhance Then Search: An Augmentation-Search Strategy with Foundation Models for Cross-Domain Few-Shot Object Detection
Abstract:
Foundation models pretrained on extensive datasets, such as GroundingDINO and LAE-DINO, have performed remarkably in the cross-domain few-shot object detection (CD-FSOD) task. Through rigorous few-shot training, we found that the integration of image-based data augmentation techniques and grid-based sub-domain search strategy significantly enhances the performance of these foundation models. Building upon GroundingDINO, we employed several widely used image augmentation methods and established optimization objectives to effectively navigate the expansive domain space in search of optimal sub-domains. This approach facilitates efficient few-shot object detection and introduces an approach to solving the CD-FSOD problem by efficiently searching for the optimal parameter configuration from the foundation model. Our findings substantially advance the practical deployment of vision-language models in data-scarce environments, offering critical insights into optimizing their cross-domain generalization capabilities without labor-intensive retraining. Code is available at https://github.com/jaychempan/ETS.

Authors:Archana Sahu, Plaban Kumar Bhowmick
Title: Directed Graph-alignment Approach for Identification of Gaps in Short Answers
Abstract:
In this paper, we have presented a method for identifying missing items known as gaps in the student answers by comparing them against the corresponding model answer/reference answers, automatically. The gaps can be identified at word, phrase or sentence level. The identified gaps are useful in providing feedback to the students for formative assessment. The problem of gap identification has been modelled as an alignment of a pair of directed graphs representing a student answer and the corresponding model answer for a given question. To validate the proposed approach, the gap annotated student answers considering answers from three widely known datasets in the short answer grading domain, namely, University of North Texas (UNT), SciEntsBank, and Beetle have been developed and this gap annotated student answers' dataset is available at: https://github.com/sahuarchana7/gaps-answers-dataset. Evaluation metrics used in the traditional machine learning tasks have been adopted to evaluate the task of gap identification. Though performance of the proposed approach varies across the datasets and the types of the answers, overall the performance is observed to be promising.

Authors:Shuolong Chen, Xingxing Li, Liu Yuan
Title: eKalibr-Stereo: Continuous-Time Spatiotemporal Calibration for Event-Based Stereo Visual Systems
Abstract:
The bioinspired event camera, distinguished by its exceptional temporal resolution, high dynamic range, and low power consumption, has been extensively studied in recent years for motion estimation, robotic perception, and object detection. In ego-motion estimation, the stereo event camera setup is commonly adopted due to its direct scale perception and depth recovery. For optimal stereo visual fusion, accurate spatiotemporal (extrinsic and temporal) calibration is required. Considering that few stereo visual calibrators orienting to event cameras exist, based on our previous work eKalibr (an event camera intrinsic calibrator), we propose eKalibr-Stereo for accurate spatiotemporal calibration of event-based stereo visual systems. To improve the continuity of grid pattern tracking, building upon the grid pattern recognition method in eKalibr, an additional motion prior-based tracking module is designed in eKalibr-Stereo to track incomplete grid patterns. Based on tracked grid patterns, a two-step initialization procedure is performed to recover initial guesses of piece-wise B-splines and spatiotemporal parameters, followed by a continuous-time batch bundle adjustment to refine the initialized states to optimal ones. The results of extensive real-world experiments show that eKalibr-Stereo can achieve accurate event-based stereo spatiotemporal calibration. The implementation of eKalibr-Stereo is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.

Authors:Yang Jiao, Haibo Qiu, Zequn Jie, Shaoxiang Chen, Jingjing Chen, Lin Ma, Yu-Gang Jiang
Title: UniToken: Harmonizing Multimodal Understanding and Generation through Unified Visual Encoding
Abstract:
We introduce UniToken, an auto-regressive generation model that encodes visual inputs through a combination of discrete and continuous representations, enabling seamless integration of unified visual understanding and image generation tasks. Unlike previous approaches that rely on unilateral visual representations, our unified visual encoding framework captures both high-level semantics and low-level details, delivering multidimensional information that empowers heterogeneous tasks to selectively assimilate domain-specific knowledge based on their inherent characteristics. Through in-depth experiments, we uncover key principles for developing a unified model capable of both visual understanding and image generation. Extensive evaluations across a diverse range of prominent benchmarks demonstrate that UniToken achieves state-of-the-art performance, surpassing existing approaches. These results establish UniToken as a robust foundation for future research in this domain. The code and models are available at https://github.com/SxJyJay/UniToken.

Authors:Yiming Shi, Shaoshuai Yang, Xun Zhu, Haoyu Wang, Xiangling Fu, Miao Li, Ji Wu
Title: MedM-VL: What Makes a Good Medical LVLM?
Abstract:
Medical image analysis is essential in modern healthcare. Deep learning has redirected research focus toward complex medical multimodal tasks, including report generation and visual question answering. Traditional task-specific models often fall short in handling these challenges. Large vision-language models (LVLMs) offer new solutions for solving such tasks. In this study, we build on the popular LLaVA framework to systematically explore model architectures and training strategies for both 2D and 3D medical LVLMs. We present extensive empirical findings and practical guidance. To support reproducibility and future research, we release a modular codebase, MedM-VL, and two pre-trained models: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code is available at: https://github.com/MSIIP/MedM-VL

Authors:Weiwei Sun, Shengyu Feng, Shanda Li, Yiming Yang
Title: CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
Abstract:
Although LLM-based agents have attracted significant attention in domains such as software engineering and machine learning research, their role in advancing combinatorial optimization (CO) remains relatively underexplored. This gap underscores the need for a deeper understanding of their potential in tackling structured, constraint-intensive problems -- a pursuit currently limited by the absence of comprehensive benchmarks for systematic investigation. To address this, we introduce CO-Bench, a benchmark suite featuring 36 real-world CO problems drawn from a broad range of domains and complexity levels. CO-Bench includes structured problem formulations and curated data to support rigorous investigation of LLM agents. We evaluate multiple agentic frameworks against established human-designed algorithms, revealing the strengths and limitations of existing LLM agents and identifying promising directions for future research. CO-Bench is publicly available at https://github.com/sunnweiwei/CO-Bench.

Authors:Anjan Bellamkonda, Laksh Bharani, Harivatsan Selvam
Title: AbsInf: A Lightweight Object to Represent float('inf') in Dijkstra's Algorithm
Abstract:
We introduce AbsInf, a lightweight abstract object designed as a high-performance alternative to Python's native float('inf') within pathfinding algorithms. Implemented as a C-based Python extension, AbsInf bypasses IEEE-754 float coercion and dynamic type dispatch, offering constant-time dominance comparisons and arithmetic neutrality. When integrated into Dijkstra's algorithm without altering its logic, AbsInf reduces runtime by up to 17.2%, averaging 9.74% across diverse synthetic and real-world graph datasets. This optimization highlights the performance trade-offs in high-frequency algorithmic constructs, where a symbolic use of infinity permits efficient abstraction. Our findings contribute to the broader discourse on lightweight architectural enhancements for interpreted languages, particularly in performance-critical control flows.

Authors:Mete Ahishali, Anis Ur Rahman, Einari Heinaro, Samuli Junttila
Title: ADA-Net: Attention-Guided Domain Adaptation Network with Contrastive Learning for Standing Dead Tree Segmentation Using Aerial Imagery
Abstract:
Information on standing dead trees is important for understanding forest ecosystem functioning and resilience but has been lacking over large geographic regions. Climate change has caused large-scale tree mortality events that can remain undetected due to limited data. In this study, we propose a novel method for segmenting standing dead trees using aerial multispectral orthoimages. Because access to annotated datasets has been a significant problem in forest remote sensing due to the need for forest expertise, we introduce a method for domain transfer by leveraging domain adaptation to learn a transformation from a source domain X to target domain Y. In this Image-to-Image translation task, we aim to utilize available annotations in the target domain by pre-training a segmentation network. When images from a new study site without annotations are introduced (source domain X), these images are transformed into the target domain. Then, transfer learning is applied by inferring the pre-trained network on domain-adapted images. In addition to investigating the feasibility of current domain adaptation approaches for this objective, we propose a novel approach called the Attention-guided Domain Adaptation Network (ADA-Net) with enhanced contrastive learning. Accordingly, the ADA-Net approach provides new state-of-the-art domain adaptation performance levels outperforming existing approaches. We have evaluated the proposed approach using two datasets from Finland and the US. The USA images are converted to the Finland domain, and we show that the synthetic USA2Finland dataset exhibits similar characteristics to the Finland domain images. The software implementation is shared at https://github.com/meteahishali/ADA-Net. The data is publicly available at https://www.kaggle.com/datasets/meteahishali/aerial-imagery-for-standing-dead-tree-segmentation.

Authors:Yuantao Zhang, Zhankui Yang
Title: A Perplexity and Menger Curvature-Based Approach for Similarity Evaluation of Large Language Models
Abstract:
The rise of Large Language Models (LLMs) has brought about concerns regarding copyright infringement and unethical practices in data and model usage. For instance, slight modifications to existing LLMs may be used to falsely claim the development of new models, leading to issues of model copying and violations of ownership rights. This paper addresses these challenges by introducing a novel metric for quantifying LLM similarity, which leverages perplexity curves and differences in Menger curvature. Comprehensive experiments validate the performance of our methodology, demonstrating its superiority over baseline methods and its ability to generalize across diverse models and domains. Furthermore, we highlight the capability of our approach in detecting model replication through simulations, emphasizing its potential to preserve the originality and integrity of LLMs. Code is available at https://github.com/zyttt-coder/LLM_similarity.

Authors:Xinyu Mao, Teerapong Leelanupab, Martin Potthast, Harrisen Scells, Guido Zuccon
Title: AiReview: An Open Platform for Accelerating Systematic Reviews with LLMs
Abstract:
Systematic reviews are fundamental to evidence-based medicine. Creating one is time-consuming and labour-intensive, mainly due to the need to screen, or assess, many studies for inclusion in the review. Several tools have been developed to streamline this process, mostly relying on traditional machine learning methods. Large language models (LLMs) have shown potential in further accelerating the screening process. However, no tool currently allows end users to directly leverage LLMs for screening or facilitates systematic and transparent usage of LLM-assisted screening methods. This paper introduces (i) an extensible framework for applying LLMs to systematic review tasks, particularly title and abstract screening, and (ii) a web-based interface for LLM-assisted screening. Together, these elements form AiReview-a novel platform for LLM-assisted systematic review creation. AiReview is the first of its kind to bridge the gap between cutting-edge LLM-assisted screening methods and those that create medical systematic reviews. The tool is available at https://aireview.ielab.io. The source code is also open sourced at https://github.com/ielab/ai-review.

Authors:Bohao Wang, Feng Liu, Jiawei Chen, Xingyu Lou, Changwang Zhang, Jun Wang, Yuegang Sun, Yan Feng, Chun Chen, Can Wang
Title: MSL: Not All Tokens Are What You Need for Tuning LLM as a Recommender
Abstract:
Large language models (LLMs), known for their comprehension capabilities and extensive knowledge, have been increasingly applied to recommendation systems (RS). Given the fundamental gap between the mechanism of LLMs and the requirement of RS, researchers have focused on fine-tuning LLMs with recommendation-specific data to enhance their performance. Language Modeling Loss (LML), originally designed for language generation tasks, is commonly adopted. However, we identify two critical limitations of LML: 1) it exhibits significant divergence from the recommendation objective; 2) it erroneously treats all fictitious item descriptions as negative samples, introducing misleading training signals. To address these limitations, we propose a novel Masked Softmax Loss (MSL) tailored for fine-tuning LLMs on recommendation. MSL improves LML by identifying and masking invalid tokens that could lead to fictitious item descriptions during loss computation. This strategy can effectively avoid the interference from erroneous negative signals and ensure well alignment with the recommendation objective supported by theoretical guarantees. During implementation, we identify a potential challenge related to gradient vanishing of MSL. To overcome this, we further introduce the temperature coefficient and propose an Adaptive Temperature Strategy (ATS) that adaptively adjusts the temperature without requiring extensive hyperparameter tuning. Extensive experiments conducted on four public datasets further validate the effectiveness of MSL, achieving an average improvement of 42.24% in NDCG@10. The code is available at https://github.com/WANGBohaO-jpg/MSL.

Authors:Shiguang Sun, Hanbo Zhang, Zeyang Liu, Xinrui Yang, Lipeng Wan, Xingyu Chen, Xuguang Lan
Title: MInCo: Mitigating Information Conflicts in Distracted Visual Model-based Reinforcement Learning
Abstract:
Existing visual model-based reinforcement learning (MBRL) algorithms with observation reconstruction often suffer from information conflicts, making it difficult to learn compact representations and hence result in less robust policies, especially in the presence of task-irrelevant visual distractions. In this paper, we first reveal that the information conflicts in current visual MBRL algorithms stem from visual representation learning and latent dynamics modeling with an information-theoretic perspective. Based on this finding, we present a new algorithm to resolve information conflicts for visual MBRL, named MInCo, which mitigates information conflicts by leveraging negative-free contrastive learning, aiding in learning invariant representation and robust policies despite noisy observations. To prevent the dominance of visual representation learning, we introduce time-varying reweighting to bias the learning towards dynamics modeling as training proceeds. We evaluate our method on several robotic control tasks with dynamic background distractions. Our experiments demonstrate that MInCo learns invariant representations against background noise and consistently outperforms current state-of-the-art visual MBRL methods. Code is available at https://github.com/ShiguangSun/minco.

Authors:Yikai Wang, Guangce Liu, Xinzhou Wang, Zilong Chen, Jiafang Li, Xin Liang, Fuchun Sun, Jun Zhu
Title: Video4DGen: Enhancing Video and 4D Generation through Mutual Optimization
Abstract:
The advancement of 4D (i.e., sequential 3D) generation opens up new possibilities for lifelike experiences in various applications, where users can explore dynamic objects or characters from any viewpoint. Meanwhile, video generative models are receiving particular attention given their ability to produce realistic and imaginative frames. These models are also observed to exhibit strong 3D consistency, indicating the potential to act as world simulators. In this work, we present Video4DGen, a novel framework that excels in generating 4D representations from single or multiple generated videos as well as generating 4D-guided videos. This framework is pivotal for creating high-fidelity virtual contents that maintain both spatial and temporal coherence. The 4D outputs generated by Video4DGen are represented using our proposed Dynamic Gaussian Surfels (DGS), which optimizes time-varying warping functions to transform Gaussian surfels (surface elements) from a static state to a dynamically warped state. We design warped-state geometric regularization and refinements on Gaussian surfels, to preserve the structural integrity and fine-grained appearance details. To perform 4D generation from multiple videos and capture representation across spatial, temporal, and pose dimensions, we design multi-video alignment, root pose optimization, and pose-guided frame sampling strategies. The leveraging of continuous warping fields also enables a precise depiction of pose, motion, and deformation over per-video frames. Further, to improve the overall fidelity from the observation of all camera poses, Video4DGen performs novel-view video generation guided by the 4D content, with the proposed confidence-filtered DGS to enhance the quality of generated sequences. With the ability of 4D and video generation, Video4DGen offers a powerful tool for applications in virtual reality, animation, and beyond.

Authors:Yongchuan Cui, Jinhe Zhang, Peng Liu, Weijing Song, Yi Zeng
Title: Overcoming the Identity Mapping Problem in Self-Supervised Hyperspectral Anomaly Detection
Abstract:
The surge of deep learning has catalyzed considerable progress in self-supervised Hyperspectral Anomaly Detection (HAD). The core premise for self-supervised HAD is that anomalous pixels are inherently more challenging to reconstruct, resulting in larger errors compared to the background. However, owing to the powerful nonlinear fitting capabilities of neural networks, self-supervised models often suffer from the Identity Mapping Problem (IMP). The IMP manifests as a tendency for the model to overfit to the entire image, particularly with increasing network complexity or prolonged training iterations. Consequently, the whole image can be precisely reconstructed, and even the anomalous pixels exhibit imperceptible errors, making them difficult to detect. Despite the proposal of several models aimed at addressing the IMP-related issues, a unified descriptive framework and validation of solutions for IMP remain lacking. In this paper, we conduct an in-depth exploration to IMP, and summarize a unified framework that describes IMP from the perspective of network optimization, which encompasses three aspects: perturbation, reconstruction, and regularization. Correspondingly, we introduce three solutions: superpixel pooling and uppooling for perturbation, error-adaptive convolution for reconstruction, and online background pixel mining for regularization. With extensive experiments being conducted to validate the effectiveness, it is hoped that our work will provide valuable insights and inspire further research for self-supervised HAD. Code: \url{https://github.com/yc-cui/Super-AD}.

Authors:Zekai Shen, Haitao Yuan, Xiaowei Mao, Congkang Lv, Shengnan Guo, Youfang Lin, Huaiyu Wan
Title: Towards An Efficient and Effective En Route Travel Time Estimation Framework
Abstract:
En route travel time estimation (ER-TTE) focuses on predicting the travel time of the remaining route. Existing ER-TTE methods always make re-estimation which significantly hinders real-time performance, especially when faced with the computational demands of simultaneous user requests. This results in delays and reduced responsiveness in ER-TTE services. We propose a general efficient framework U-ERTTE combining an Uncertainty-Guided Decision mechanism (UGD) and Fine-Tuning with Meta-Learning (FTML) to address these challenges. UGD quantifies the uncertainty and provides confidence intervals for the entire route. It selectively re-estimates only when the actual travel time deviates from the predicted confidence intervals, thereby optimizing the efficiency of ER-TTE. To ensure the accuracy of confidence intervals and accurate predictions that need to re-estimate, FTML is employed to train the model, enabling it to learn general driving patterns and specific features to adapt to specific tasks. Extensive experiments on two large-scale real datasets demonstrate that the U-ERTTE framework significantly enhances inference speed and throughput while maintaining high effectiveness. Our code is available at https://github.com/shenzekai/U-ERTTE

Authors:Xiao-Hui Li, Fei Yin, Cheng-Lin Liu
Title: DocSAM: Unified Document Image Segmentation via Query Decomposition and Heterogeneous Mixed Learning
Abstract:
Document image segmentation is crucial for document analysis and recognition but remains challenging due to the diversity of document formats and segmentation tasks. Existing methods often address these tasks separately, resulting in limited generalization and resource wastage. This paper introduces DocSAM, a transformer-based unified framework designed for various document image segmentation tasks, such as document layout analysis, multi-granularity text segmentation, and table structure recognition, by modelling these tasks as a combination of instance and semantic segmentation. Specifically, DocSAM employs Sentence-BERT to map category names from each dataset into semantic queries that match the dimensionality of instance queries. These two sets of queries interact through an attention mechanism and are cross-attended with image features to predict instance and semantic segmentation masks. Instance categories are predicted by computing the dot product between instance and semantic queries, followed by softmax normalization of scores. Consequently, DocSAM can be jointly trained on heterogeneous datasets, enhancing robustness and generalization while reducing computational and storage resources. Comprehensive evaluations show that DocSAM surpasses existing methods in accuracy, efficiency, and adaptability, highlighting its potential for advancing document image understanding and segmentation across various applications. Codes are available at https://github.com/xhli-git/DocSAM.

Authors:Aviv Brokman, Xuguang Ai, Yuhang Jiang, Shashank Gupta, Ramakanth Kavuluru
Title: A Benchmark for End-to-End Zero-Shot Biomedical Relation Extraction with LLMs: Experiments with OpenAI Models
Abstract:
Objective: Zero-shot methodology promises to cut down on costs of dataset annotation and domain expertise needed to make use of NLP. Generative large language models trained to align with human goals have achieved high zero-shot performance across a wide variety of tasks. As of yet, it is unclear how well these models perform on biomedical relation extraction (RE). To address this knowledge gap, we explore patterns in the performance of OpenAI LLMs across a diverse sampling of RE tasks. Methods: We use OpenAI GPT-4-turbo and OpenAI's reasoning models o1 and GPT-OSS to conduct end-to-end RE experiments on seven datasets. We use the JSON generation capabilities of GPT models to generate structured output in two ways: (1) by defining an explicit schema describing the structure of relations, and (2) using a setting that infers the structure from the prompt language. Results: Our work is the first to study and compare the performance of the GPT-4, o1 and GPT-OSS for the end-to-end zero-shot biomedical RE task across a broad array of datasets. We found the zero-shot performances to be proximal to that of fine-tuned methods. The limitations of this approach are that it performs poorly on instances containing many relations and errs on the boundaries of textual mentions. Conclusion: LLMs exhibit promising zero-shot capabilities in complex biomedical RE tasks, offering competitive performance with reduced dataset curation costs and NLP modeling needs but with increased perpetual compute costs. Addressing the limitations we identify could further boost reliability. The code, data, and prompts for all our experiments are publicly available for additional benchmarking by the community: https://github.com/bionlproc/ZeroShotRE

Authors:Bing Wang, Bingrui Zhao, Ximing Li, Changchun Li, Wanfu Gao, Shengsheng Wang
Title: Collaboration and Controversy Among Experts: Rumor Early Detection by Tuning a Comment Generator
Abstract:
Over the past decade, social media platforms have been key in spreading rumors, leading to significant negative impacts. To counter this, the community has developed various Rumor Detection (RD) algorithms to automatically identify them using user comments as evidence. However, these RD methods often fail in the early stages of rumor propagation when only limited user comments are available, leading the community to focus on a more challenging topic named Rumor Early Detection (RED). Typically, existing RED methods learn from limited semantics in early comments. However, our preliminary experiment reveals that the RED models always perform best when the number of training and test comments is consistent and extensive. This inspires us to address the RED issue by generating more human-like comments to support this hypothesis. To implement this idea, we tune a comment generator by simulating expert collaboration and controversy and propose a new RED framework named CAMERED. Specifically, we integrate a mixture-of-expert structure into a generative language model and present a novel routing network for expert collaboration. Additionally, we synthesize a knowledgeable dataset and design an adversarial learning strategy to align the style of generated comments with real-world comments. We further integrate generated and original comments with a mutual controversy fusion module. Experimental results show that CAMERED outperforms state-of-the-art RED baseline models and generation methods, demonstrating its effectiveness.

Authors:Giovanni Barbarino, Nicolas Gillis, David Sossa
Title: Computing cone-constrained singular values of matrices
Abstract:
The concept of singular values of a rectangular matrix $A$ relative to a pair of closed convex cones $(P,Q)$ has been recently introduced by Seeger and Sossa (Cone-constrained singular value problems, Journal of Convex Analysis 30, pp. 1285-1306, 2023). These singular values are the critical (stationary) values of the non-convex optimization problem of minimizing $\langle u,Av\rangle$ such that $u$ and $v$ are unit vectors in $P$ and $Q$, respectively. When $A$ is the identity matrix, the singular values coincide with the cosine of the critical angles between $P$ and $Q$. When $P$ and $Q$ are positive orthants, the singular values are called Pareto singular values of $A$ and have applications, for instance, in spectral graph theory. This paper deals with the numerical computation of these cone-constrained singular values. We prove the NP-hardness of all the above problems, while identifying cases when such problems can be solved in polynomial time. We then propose four algorithms. Two are exact algorithms, meaning that they are guaranteed to compute a globally optimal solution; one uses an exact non-convex quadratic programming solver, and the other a brute-force active-set method. The other two are heuristics, meaning that they rapidly compute locally optimal solutions; one uses an alternating projection algorithm with extrapolation, and the other a sequential partial linearization approach based on fractional programming. We illustrate the use of these algorithms on several examples.

Authors:Yuhao Wang, Heyang Liu, Ziyang Cheng, Ronghua Wu, Qunshan Gu, Yanfeng Wang, Yu Wang
Title: VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
Abstract:
Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework designed for real-time voice interaction. Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs. This approach represents a paradigm shift from standard next-token prediction (NTP), offering simultaneous improvements in generation speed and quality. Informed by analysis of MTP's effect on speech generation and experimental comparisons, we designed a straightforward and highly effective MTP implementation. Experiments demonstrate that VocalNet performs on par with mainstream Omni LLMs even with limited training data, and significantly surpasses existing open-source speech LLMs. To foster reproducibility and community advancement, all model weights, inference code, training data, and framework implementations have been made publicly available at https://github.com/SJTU-OmniAgent/VocalNet

Authors:Conghao Xiong, Hao Chen, Joseph J. Y. Sung
Title: A Survey of Pathology Foundation Model: Progress and Future Directions
Abstract:
Computational pathology, which involves analyzing whole slide images for automated cancer diagnosis, relies on multiple instance learning, where performance depends heavily on the feature extractor and aggregator. Recent Pathology Foundation Models (PFMs), pretrained on large-scale histopathology data, have significantly enhanced both the extractor and aggregator, but they lack a systematic analysis framework. In this survey, we present a hierarchical taxonomy organizing PFMs through a top-down philosophy applicable to foundation model analysis in any domain: model scope, model pretraining, and model design. Additionally, we systematically categorize PFM evaluation tasks into slide-level, patch-level, multimodal, and biological tasks, providing comprehensive benchmarking criteria. Our analysis identifies critical challenges in both PFM development (pathology-specific methodology, end-to-end pretraining, data-model scalability) and utilization (effective adaptation, model maintenance), paving the way for future directions in this promising field. Resources referenced in this survey are available at https://github.com/BearCleverProud/AwesomeWSI.

Authors:Shintaro Shiba, Yoshimitsu Aoki, Guillermo Gallego
Title: Simultaneous Motion And Noise Estimation with Event Cameras
Abstract:
Event cameras are emerging vision sensors whose noise is challenging to characterize. Existing denoising methods for event cameras are often designed in isolation and thus consider other tasks, such as motion estimation, separately (i.e., sequentially after denoising). However, motion is an intrinsic part of event data, since scene edges cannot be sensed without motion. We propose, to the best of our knowledge, the first method that simultaneously estimates motion in its various forms (e.g., ego-motion, optical flow) and noise. The method is flexible, as it allows replacing the one-step motion estimation of the widely-used Contrast Maximization framework with any other motion estimator, such as deep neural networks. The experiments show that the proposed method achieves state-of-the-art results on the E-MLB denoising benchmark and competitive results on the DND21 benchmark, while demonstrating effectiveness across motion estimation and intensity reconstruction tasks. Our approach advances event-data denoising theory and expands practical denoising use-cases via open-source code. Project page: https://github.com/tub-rip/ESMD

Authors:Yifan Li, Wentao Bao, Botao Ye, Zhen Tan, Tianlong Chen, Huan Liu, Yu Kong
Title: Window Token Concatenation for Efficient Visual Large Language Models
Abstract:
To effectively reduce the visual tokens in Visual Large Language Models (VLLMs), we propose a novel approach called Window Token Concatenation (WiCo). Specifically, we employ a sliding window to concatenate spatially adjacent visual tokens. However, directly concatenating these tokens may group diverse tokens into one, and thus obscure some fine details. To address this challenge, we propose fine-tuning the last few layers of the vision encoder to adaptively adjust the visual tokens, encouraging that those within the same window exhibit similar features. To further enhance the performance on fine-grained visual understanding tasks, we introduce WiCo+, which decomposes the visual tokens in later layers of the LLM. Such a design enjoys the merits of the large perception field of the LLM for fine-grained visual understanding while keeping a small number of visual tokens for efficient inference. We perform extensive experiments on both coarse- and fine-grained visual understanding tasks based on LLaVA-1.5 and Shikra, showing better performance compared with existing token reduction projectors. The code is available: https://github.com/JackYFL/WiCo.

Authors:Houzhang Fang, Xiaolin Wang, Zengyang Li, Lu Wang, Qingshan Li, Yi Chang, Luxin Yan
Title: Detection-Friendly Nonuniformity Correction: A Union Framework for Infrared UAVTarget Detection
Abstract:
Infrared unmanned aerial vehicle (UAV) images captured using thermal detectors are often affected by temperature dependent low-frequency nonuniformity, which significantly reduces the contrast of the images. Detecting UAV targets under nonuniform conditions is crucial in UAV surveillance applications. Existing methods typically treat infrared nonuniformity correction (NUC) as a preprocessing step for detection, which leads to suboptimal performance. Balancing the two tasks while enhancing detection beneficial information remains challenging. In this paper, we present a detection-friendly union framework, termed UniCD, that simultaneously addresses both infrared NUC and UAV target detection tasks in an end-to-end manner. We first model NUC as a small number of parameter estimation problem jointly driven by priors and data to generate detection-conducive images. Then, we incorporate a new auxiliary loss with target mask supervision into the backbone of the infrared UAV target detection network to strengthen target features while suppressing the background. To better balance correction and detection, we introduce a detection-guided self-supervised loss to reduce feature discrepancies between the two tasks, thereby enhancing detection robustness to varying nonuniformity levels. Additionally, we construct a new benchmark composed of 50,000 infrared images in various nonuniformity types, multi-scale UAV targets and rich backgrounds with target annotations, called IRBFD. Extensive experiments on IRBFD demonstrate that our UniCD is a robust union framework for NUC and UAV target detection while achieving real-time processing capabilities. Dataset can be available at https://github.com/IVPLaboratory/UniCD.

Authors:Wenliang Zheng, Sarkar Snigdha Sarathi Das, Yusen Zhang, Rui Zhang
Title: GREATERPROMPT: A Unified, Customizable, and High-Performing Open-Source Toolkit for Prompt Optimization
Abstract:
LLMs have gained immense popularity among researchers and the general public for its impressive capabilities on a variety of tasks. Notably, the efficacy of LLMs remains significantly dependent on the quality and structure of the input prompts, making prompt design a critical factor for their performance. Recent advancements in automated prompt optimization have introduced diverse techniques that automatically enhance prompts to better align model outputs with user expectations. However, these methods often suffer from the lack of standardization and compatibility across different techniques, limited flexibility in customization, inconsistent performance across model scales, and they often exclusively rely on expensive proprietary LLM APIs. To fill in this gap, we introduce GREATERPROMPT, a novel framework that democratizes prompt optimization by unifying diverse methods under a unified, customizable API while delivering highly effective prompts for different tasks. Our framework flexibly accommodates various model scales by leveraging both text feedback-based optimization for larger LLMs and internal gradient-based optimization for smaller models to achieve powerful and precise prompt improvements. Moreover, we provide a user-friendly Web UI that ensures accessibility for non-expert users, enabling broader adoption and enhanced performance across various user groups and application scenarios. GREATERPROMPT is available at https://github.com/psunlpgroup/GreaterPrompt via GitHub, PyPI, and web user interfaces.

Authors:Dahun Kim, AJ Piergiovanni, Ganesh Mallya, Anelia Angelova
Title: VideoComp: Advancing Fine-Grained Compositional and Temporal Alignment in Video-Text Models
Abstract:
We introduce VideoComp, a benchmark and learning framework for advancing video-text compositionality understanding, aimed at improving vision-language models (VLMs) in fine-grained temporal alignment. Unlike existing benchmarks focused on static image-text compositionality or isolated single-event videos, our benchmark targets alignment in continuous multi-event videos. Leveraging video-text datasets with temporally localized event captions (e.g. ActivityNet-Captions, YouCook2), we construct two compositional benchmarks, ActivityNet-Comp and YouCook2-Comp. We create challenging negative samples with subtle temporal disruptions such as reordering, action word replacement, partial captioning, and combined disruptions. These benchmarks comprehensively test models' compositional sensitivity across extended, cohesive video-text sequences. To improve model performance, we propose a hierarchical pairwise preference loss that strengthens alignment with temporally accurate pairs and gradually penalizes increasingly disrupted ones, encouraging fine-grained compositional learning. To mitigate the limited availability of densely annotated video data, we introduce a pretraining strategy that concatenates short video-caption pairs to simulate multi-event sequences. We evaluate video-text foundational models and large multimodal models (LMMs) on our benchmark, identifying both strengths and areas for improvement in compositionality. Overall, our work provides a comprehensive framework for evaluating and enhancing model capabilities in achieving fine-grained, temporally coherent video-text alignment.

Authors:Arash Sajjadi, Mark Eramian
Title: TGraphX: Tensor-Aware Graph Neural Network for Multi-Dimensional Feature Learning
Abstract:
TGraphX presents a novel paradigm in deep learning by unifying convolutional neural networks (CNNs) with graph neural networks (GNNs) to enhance visual reasoning tasks. Traditional CNNs excel at extracting rich spatial features from images but lack the inherent capability to model inter-object relationships. Conversely, conventional GNNs typically rely on flattened node features, thereby discarding vital spatial details. TGraphX overcomes these limitations by employing CNNs to generate multi-dimensional node features (e.g., (3*128*128) tensors) that preserve local spatial semantics. These spatially aware nodes participate in a graph where message passing is performed using 1*1 convolutions, which fuse adjacent features while maintaining their structure. Furthermore, a deep CNN aggregator with residual connections is used to robustly refine the fused messages, ensuring stable gradient flow and end-to-end trainability. Our approach not only bridges the gap between spatial feature extraction and relational reasoning but also demonstrates significant improvements in object detection refinement and ensemble reasoning.

Authors:Tyler Ward, Abdullah-Al-Zubaer Imran
Title: Improving Brain Disorder Diagnosis with Advanced Brain Function Representation and Kolmogorov-Arnold Networks
Abstract:
Quantifying functional connectivity (FC), a vital metric for the diagnosis of various brain disorders, traditionally relies on the use of a pre-defined brain atlas. However, using such atlases can lead to issues regarding selection bias and lack of regard for specificity. Addressing this, we propose a novel transformer-based classification network (ABFR-KAN) with effective brain function representation to aid in diagnosing autism spectrum disorder (ASD). ABFR-KAN leverages Kolmogorov-Arnold Network (KAN) blocks replacing traditional multi-layer perceptron (MLP) components. Thorough experimentation reveals the effectiveness of ABFR-KAN in improving the diagnosis of ASD under various configurations of the model architecture. Our code is available at https://github.com/tbwa233/ABFR-KAN

Authors:Rufei Ma, Chao Chen
Title: RF-BayesPhysNet: A Bayesian rPPG Uncertainty Estimation Method for Complex Scenarios
Abstract:
Remote photoplethysmography (rPPG) technology infers heart rate by capturing subtle color changes in facial skin using a camera, demonstrating great potential in non-contact heart rate measurement. However, measurement accuracy significantly decreases in complex scenarios such as lighting changes and head movements compared to ideal laboratory conditions. Existing deep learning models often neglect the quantification of measurement uncertainty, limiting their credibility in dynamic scenes. To address the issue of insufficient rPPG measurement reliability in complex scenarios, this paper introduces Bayesian neural networks to the rPPG field for the first time, proposing the Robust Fusion Bayesian Physiological Network (RF-BayesPhysNet), which can model both aleatoric and epistemic uncertainty. It leverages variational inference to balance accuracy and computational efficiency. Due to the current lack of uncertainty estimation metrics in the rPPG field, this paper also proposes a new set of methods, using Spearman correlation coefficient, prediction interval coverage, and confidence interval width, to measure the effectiveness of uncertainty estimation methods under different noise conditions. Experiments show that the model, with only double the parameters compared to traditional network models, achieves a MAE of 2.56 on the UBFC-RPPG dataset, surpassing most models. It demonstrates good uncertainty estimation capability in no-noise and low-noise conditions, providing prediction confidence and significantly enhancing robustness in real-world applications. We have open-sourced the code at https://github.com/AIDC-rPPG/RF-Net

Authors:Jiho Kim, Cong Hao
Title: RealProbe: An Automated and Lightweight Performance Profiler for In-FPGA Execution of High-Level Synthesis Designs
Abstract:
High-level synthesis (HLS) accelerates FPGA design by rapidly generating diverse implementations using optimization directives. However, even with cycle-accurate C/RTL co-simulation, the reported clock cycles often differ significantly from actual FPGA performance. This discrepancy hampers accurate bottleneck identification, leading to suboptimal design choices. Existing in-FPGA profiling tools, such as the Integrated Logic Analyzer (ILA), require tedious inspection of HLS-generated RTL and manual signal monitoring, reducing productivity. To address these challenges, we introduce RealProbe, the first fully automated, lightweight in-FPGA profiling tool for HLS designs. With a single directive--#pragma HLS RealProbe--the tool automatically generates all necessary code to profile cycle counts across the full function hierarchy, including submodules and loops. RealProbe extracts, records, and visualizes cycle counts with high precision, providing actionable insights into on-board performance. RealProbe is non-intrusive, implemented as independent logic to ensure minimal impact on kernel functionality or timing. It also supports automated design space exploration (DSE), optimizing resource allocation based on FPGA constraints and module complexity. By leveraging incremental synthesis and implementation, DSE runs independently of the original HLS kernel. Evaluated across 28 diverse test cases, including a large-scale design, RealProbe achieves 100% accuracy in capturing cycle counts with minimal logic overhead-just 16.98% LUTs, 43.15% FFs, and 0% BRAM usage. The tool, with full documentation and examples, is available on GitHub at https://github.com/sharc-lab/RealProbe .

Authors:Ved Umrajkar, Aakash Kumar Singh
Title: Detection Limits and Statistical Separability of Tree Ring Watermarks in Rectified Flow-based Text-to-Image Generation Models
Abstract:
Tree-Ring Watermarking is a significant technique for authenticating AI-generated images. However, its effectiveness in rectified flow-based models remains unexplored, particularly given the inherent challenges of these models with noise latent inversion. Through extensive experimentation, we evaluated and compared the detection and separability of watermarks between SD 2.1 and FLUX.1-dev models. By analyzing various text guidance configurations and augmentation attacks, we demonstrate how inversion limitations affect both watermark recovery and the statistical separation between watermarked and unwatermarked images. Our findings provide valuable insights into the current limitations of Tree-Ring Watermarking in the current SOTA models and highlight the critical need for improved inversion methods to achieve reliable watermark detection and separability. The official implementation, dataset release and all experimental results are available at this \href{https://github.com/dsgiitr/flux-watermarking}{\textbf{link}}.

Authors:Ruhui Zhang, Hezhe Qiao, Pengcheng Xu, Mingsheng Shang, Lin Chen
Title: Semantic-guided Representation Learning for Multi-Label Recognition
Abstract:
Multi-label Recognition (MLR) involves assigning multiple labels to each data instance in an image, offering advantages over single-label classification in complex scenarios. However, it faces the challenge of annotating all relevant categories, often leading to uncertain annotations, such as unseen or incomplete labels. Recent Vision and Language Pre-training (VLP) based methods have made significant progress in tackling zero-shot MLR tasks by leveraging rich vision-language correlations. However, the correlation between multi-label semantics has not been fully explored, and the learned visual features often lack essential semantic information. To overcome these limitations, we introduce a Semantic-guided Representation Learning approach (SigRL) that enables the model to learn effective visual and textual representations, thereby improving the downstream alignment of visual images and categories. Specifically, we first introduce a graph-based multi-label correlation module (GMC) to facilitate information exchange between labels, enriching the semantic representation across the multi-label texts. Next, we propose a Semantic Visual Feature Reconstruction module (SVFR) to enhance the semantic information in the visual representation by integrating the learned textual representation during reconstruction. Finally, we optimize the image-text matching capability of the VLP model using both local and global features to achieve zero-shot MLR. Comprehensive experiments are conducted on several MLR benchmarks, encompassing both zero-shot MLR (with unseen labels) and single positive multi-label learning (with limited labels), demonstrating the superior performance of our approach compared to state-of-the-art methods. The code is available at https://github.com/MVL-Lab/SigRL.

Authors:Jose Alberto Baeza Guerra
Title: Geospatial and Symbolic Hypothesis for the Foundation of Tenochtitlan Based on Digital Elevation Analysis of the Valley of Mexico
Abstract:
This paper proposes a novel hypothesis about the foundation of Tenochtitlan by combining digital elevation modeling with historical and symbolic analysis. Using geospatial data from EarthExplorer, we simulate various historical water levels in the Valley of Mexico. The resulting lake configurations reveal possible locations for ancient settlements near now-vanished shorelines, suggesting a dynamic transformation of sacred geography that aligns with key Mexica myths. We identify Santa María Aztahuacan as a strong candidate for the historical Aztlan and propose a reinterpretation of foundational codices in light of geomythical correlations.

Authors:Qian Chen, Xingjian Dong, Zhike Peng, Guang Meng
Title: SHapley Estimated Explanation (SHEP): A Fast Post-Hoc Attribution Method for Interpreting Intelligent Fault Diagnosis
Abstract:
Despite significant progress in intelligent fault diagnosis (IFD), the lack of interpretability remains a critical barrier to practical industrial applications, driving the growth of interpretability research in IFD. Post-hoc interpretability has gained popularity due to its ability to preserve network flexibility and scalability without modifying model structures. However, these methods often yield suboptimal time-domain explanations. Recently, combining domain transform with SHAP has improved interpretability by extending explanations to more informative domains. Nonetheless, the computational expense of SHAP, exacerbated by increased dimensions from domain transforms, remains a major challenge. To address this, we propose patch-wise attribution and SHapley Estimated Explanation (SHEP). Patch-wise attribution reduces feature dimensions at the cost of explanation granularity, while SHEP simplifies subset enumeration to approximate SHAP, reducing complexity from exponential to linear. Together, these methods significantly enhance SHAP's computational efficiency, providing feasibility for real-time interpretation in monitoring tasks. Extensive experiments confirm SHEP's efficiency, interpretability, and reliability in approximating SHAP. Additionally, with open-source code, SHEP has the potential to serve as a benchmark for post-hoc interpretability in IFD. The code is available on https://github.com/ChenQian0618/SHEP.

Authors:Brandon Radosevich, John Halloran
Title: MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits
Abstract:
To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner

Authors:Muyun Jiang, Yi Ding, Wei Zhang, Kok Ann Colin Teo, LaiGuan Fong, Shuailei Zhang, Zhiwei Guo, Chenyu Liu, Raghavan Bhuvanakantham, Wei Khang Jeremy Sim, Chuan Huat Vince Foo, Rong Hui Jonathan Chua, Parasuraman Padmanabhan, Victoria Leong, Jia Lu, Balazs Gulyas, Cuntai Guan
Title: Decoding Covert Speech from EEG Using a Functional Areas Spatio-Temporal Transformer
Abstract:
Covert speech involves imagining speaking without audible sound or any movements. Decoding covert speech from electroencephalogram (EEG) is challenging due to a limited understanding of neural pronunciation mapping and the low signal-to-noise ratio of the signal. In this study, we developed a large-scale multi-utterance speech EEG dataset from 57 right-handed native English-speaking subjects, each performing covert and overt speech tasks by repeating the same word in five utterances within a ten-second duration. Given the spatio-temporal nature of the neural activation process during speech pronunciation, we developed a Functional Areas Spatio-temporal Transformer (FAST), an effective framework for converting EEG signals into tokens and utilizing transformer architecture for sequence encoding. Our results reveal distinct and interpretable speech neural features by the visualization of FAST-generated activation maps across frontal and temporal brain regions with each word being covertly spoken, providing new insights into the discriminative features of the neural representation of covert speech. This is the first report of such a study, which provides interpretable evidence for speech decoding from EEG. The code for this work has been made public at https://github.com/Jiang-Muyun/FAST

Authors:Shijie Ma, Fei Zhu, Xu-Yao Zhang, Cheng-Lin Liu
Title: ProtoGCD: Unified and Unbiased Prototype Learning for Generalized Category Discovery
Abstract:
Generalized category discovery (GCD) is a pragmatic but underexplored problem, which requires models to automatically cluster and discover novel categories by leveraging the labeled samples from old classes. The challenge is that unlabeled data contain both old and new classes. Early works leveraging pseudo-labeling with parametric classifiers handle old and new classes separately, which brings about imbalanced accuracy between them. Recent methods employing contrastive learning neglect potential positives and are decoupled from the clustering objective, leading to biased representations and sub-optimal results. To address these issues, we introduce a unified and unbiased prototype learning framework, namely ProtoGCD, wherein old and new classes are modeled with joint prototypes and unified learning objectives, {enabling unified modeling between old and new classes}. Specifically, we propose a dual-level adaptive pseudo-labeling mechanism to mitigate confirmation bias, together with two regularization terms to collectively help learn more suitable representations for GCD. Moreover, for practical considerations, we devise a criterion to estimate the number of new classes. Furthermore, we extend ProtoGCD to detect unseen outliers, achieving task-level unification. Comprehensive experiments show that ProtoGCD achieves state-of-the-art performance on both generic and fine-grained datasets. The code is available at https://github.com/mashijie1028/ProtoGCD.

Authors:Kaiyuan Hou, Minghui Zhao, Lilin Xu, Yuang Fan, Xiaofan Jiang
Title: TDBench: Benchmarking Vision-Language Models in Understanding Top-Down Images
Abstract:
The rapid emergence of Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling applications in scene comprehension and visual reasoning. While these models have been primarily evaluated and developed for front-view image understanding, their capabilities in interpreting top-down images have received limited attention, partly due to the scarcity of diverse top-down datasets and the challenges in collecting such data. In contrast, top-down vision provides explicit spatial overviews and improved contextual understanding of scenes, making it particularly valuable for tasks like autonomous navigation, aerial imaging, and spatial planning. In this work, we address this gap by introducing TDBench, a comprehensive benchmark for VLMs in top-down image understanding. TDBench is constructed from public top-down view datasets and high-quality simulated images, including diverse real-world and synthetic scenarios. TDBench consists of visual question-answer pairs across ten evaluation dimensions of image understanding. Moreover, we conduct four case studies that commonly happen in real-world scenarios but are less explored. By revealing the strengths and limitations of existing VLM through evaluation results, we hope TDBench to provide insights for motivating future research. Project homepage: https://github.com/Columbia-ICSL/TDBench

Authors:Kaiyuan Hou, Minghui Zhao, Lilin Xu, Yuang Fan, Xiaofan Jiang
Title: TDBench: A Benchmark for Top-Down Image Understanding with Reliability Analysis of Vision-Language Models
Abstract:
Top-down images play an important role in safety-critical settings such as autonomous navigation and aerial surveillance, where they provide holistic spatial information that front-view images cannot capture. Despite this, Vision Language Models (VLMs) are mostly trained and evaluated on front-view benchmarks, leaving their performance in the top-down setting poorly understood. Existing evaluations also overlook a unique property of top-down images: their physical meaning is preserved under rotation. In addition, conventional accuracy metrics can be misleading, since they are often inflated by hallucinations or "lucky guesses", which obscures a model's true reliability and its grounding in visual evidence. To address these issues, we introduce TDBench, a benchmark for top-down image understanding that includes 2000 curated questions for each rotation. We further propose RotationalEval (RE), which measures whether models provide consistent answers across four rotated views of the same scene, and we develop a reliability framework that separates genuine knowledge from chance. Finally, we conduct four case studies targeting underexplored real-world challenges. By combining rigorous evaluation with reliability metrics, TDBench not only benchmarks VLMs in top-down perception but also provides a new perspective on trustworthiness, guiding the development of more robust and grounded AI systems. Project homepage: https://github.com/Columbia-ICSL/TDBench

Authors:Teodor Chiaburu, Felix Bießmann, Frank Haußer
Title: Uncertainty Propagation in XAI: A Comparison of Analytical and Empirical Estimators
Abstract:
Understanding uncertainty in Explainable AI (XAI) is crucial for building trust and ensuring reliable decision-making in Machine Learning models. This paper introduces a unified framework for quantifying and interpreting Uncertainty in XAI by defining a general explanation function $e_θ(x, f)$ that captures the propagation of uncertainty from key sources: perturbations in input data and model parameters. By using both analytical and empirical estimates of explanation variance, we provide a systematic means of assessing the impact uncertainty on explanations. We illustrate the approach using a first-order uncertainty propagation as the analytical estimator. In a comprehensive evaluation across heterogeneous datasets, we compare analytical and empirical estimates of uncertainty propagation and evaluate their robustness. Extending previous work on inconsistencies in explanations, our experiments identify XAI methods that do not reliably capture and propagate uncertainty. Our findings underscore the importance of uncertainty-aware explanations in high-stakes applications and offer new insights into the limitations of current XAI methods. The code for the experiments can be found in our repository at https://github.com/TeodorChiaburu/UXAI

Authors:Zhiqiang Wang, Pengbin Feng, Yanbin Lin, Shuzhang Cai, Zongao Bian, Jinghua Yan, Xingquan Zhu
Title: CrowdVLM-R1: Expanding R1 Ability to Vision Language Model for Crowd Counting using Fuzzy Group Relative Policy Reward
Abstract:
We propose Fuzzy Group Relative Policy Reward (FGRPR), a novel framework that integrates Group Relative Policy Optimization (GRPO) with a fuzzy reward function to enhance learning efficiency. Unlike the conventional binary 0/1 accuracy reward, our fuzzy reward model provides nuanced incentives, encouraging more precise outputs. Experimental results demonstrate that GRPO with a standard 0/1 accuracy reward underperforms compared to supervised fine-tuning (SFT). In contrast, FGRPR, applied to Qwen2.5-VL(3B and 7B), surpasses all baseline models, including GPT4o, LLaMA2(90B), and SFT, across five in-domain datasets. On an out-of-domain dataset, FGRPR achieves performance comparable to SFT but excels when target values are larger, as its fuzzy reward function assigns higher rewards to closer approximations. This approach is broadly applicable to tasks where the precision of the answer is critical. Code and data: https://github.com/yeyimilk/CrowdVLM-R1

Authors:Lihui Liu, Zihao Wang, Dawei Zhou, Ruijie Wang, Yuchen Yan, Bo Xiong, Sihong He, Kai Shu, Hanghang Tong
Title: TransNet: Transfer Knowledge for Few-shot Knowledge Graph Completion
Abstract:
Knowledge graphs (KGs) are ubiquitous and widely used in various applications. However, most real-world knowledge graphs are incomplete, which significantly degrades their performance on downstream tasks. Additionally, the relationships in real-world knowledge graphs often follow a long-tail distribution, meaning that most relations are represented by only a few training triplets. To address these challenges, few-shot learning has been introduced. Few-shot KG completion aims to make accurate predictions for triplets involving novel relations when only a limited number of training triplets are available. Although many methods have been proposed, they typically learn each relation individually, overlooking the correlations between different tasks and the relevant information in previously trained tasks. In this paper, we propose a transfer learning-based few-shot KG completion method (TransNet). By learning the relationships between different tasks, TransNet effectively transfers knowledge from similar tasks to improve the current task's performance. Furthermore, by employing meta-learning, TransNet can generalize effectively to new, unseen relations. Extensive experiments on benchmark datasets demonstrate the superiority of TransNet over state-of-the-art methods. Code can be found at https://github.com/lihuiliullh/TransNet/tree/main

Authors:Yongyi Yang, Jianyang Gao, Wei Hu
Title: RaanA: A Fast, Flexible, and Data-Efficient Post-Training Quantization Algorithm
Abstract:
Post-training Quantization (PTQ) has become a widely used technique for improving inference efficiency of large language models (LLMs). However, existing PTQ methods generally suffer from crucial limitations such as heavy calibration data requirements and inflexible choice of target number of bits. In this paper, we propose RaanA, a unified PTQ framework that overcomes these challenges by introducing two novel components: 1) RaBitQ-H, a variant of a randomized vector quantization method RaBitQ, designed for fast, accurate, and highly efficient quantization; and 2) AllocateBits, an algorithm that optimally allocates bit-widths across layers based on their quantization sensitivity. RaanA achieves competitive performance with state-of-the-art quantization methods while being extremely fast, requiring minimal calibration data, and enabling flexible bit allocation. Extensive experiments demonstrate RaanA's efficacy in balancing efficiency and accuracy. The code is publicly available at https://github.com/FFTYYY/RaanA .

Authors:Yuzhu Lei, Guanding Yu
Title: A multi-scale lithium-ion battery capacity prediction using mixture of experts and patch-based MLP
Abstract:
Lithium-ion battery health management has become increasingly important as the application of batteries expands. Precise forecasting of capacity degradation is critical for ensuring the healthy usage of batteries. In this paper, we innovatively propose MSPMLP, a multi-scale capacity prediction model utilizing the mixture of experts (MoE) architecture and patch-based multi-layer perceptron (MLP) blocks, to capture both the long-term degradation trend and local capacity regeneration phenomena. Specifically, we utilize patch-based MLP blocks with varying patch sizes to extract multi-scale features from the capacity sequence. Leveraging the MoE architecture, the model adaptively integrates the extracted features, thereby enhancing its capacity and expressiveness. Finally, the future battery capacity is predicted based on the integrated features, achieving high prediction accuracy and generalization. Experimental results on the public NASA dataset indicate that MSPMLP achieves a mean absolute error (MAE) of 0.0078, improving by 41.8\% compared to existing methods. These findings highlight that MSPMLP, owing to its multi-scale modeling capability and generalizability, provides a promising solution to the battery capacity prediction challenges caused by capacity regeneration phenomena and complex usage conditions. The code of this work is provided at https://github.com/LeiYuzhu/CapacityPredict.

Authors:Zongwu Wang, Peng Xu, Fangxin Liu, Yiwei Hu, Qingxiao Sun, Gezi Li, Cheng Li, Xuan Wang, Li Jiang, Haibing Guan
Title: MILLION: Mastering Long-Context LLM Inference Via Outlier-Immunized KV Product Quantization
Abstract:
Large language models (LLMs) are increasingly utilized for complex tasks requiring longer context lengths, with some models supporting up to 128K or 1M tokens. This trend, however, presents significant challenges in inference speed and memory management. Quantization emerges as a promising approach to address the widening gap between LLM size and memory capacity. However, traditional quantization schemes often yield suboptimal compression results for KV caches due to two key factors: i) On-the-fly quantization and de-quantization, causing significant performance overhead; ii) Prevalence of outliers in KV values, challenging low-bitwidth uniform quantization. To this end, we propose MILLION, a novel quantization framework achieving low-bitwidth KV cache through product quantization. First, we conduct a thorough analysis of KV cache distribution, revealing the limitations of existing quantization schemes. Second, we introduce a non-uniform quantization algorithm based on product quantization, which efficiently compresses data while preserving accuracy. Third, we develop a high-performance GPU inference framework with efficient attention kernel and pipeline design for MILLION that leverages sparse computation and asynchronous quantization, significantly enhancing inference speed. Comprehensive evaluation results demonstrate that MILLION can achieve 4 bits quantization with trivial perplexity and accuracy loss, and achieve 2.09x end-to-end performance gains at 32K context length. Code is released at https://github.com/ZongwuWang/MILLION.

Authors:Diyaz Yakubov, David Hästbacka
Title: Comparative Analysis of Lightweight Kubernetes Distributions for Edge Computing: Performance and Resource Efficiency
Abstract:
Edge computing environments increasingly rely on lightweight container orchestration platforms to manage resource-constrained devices. This paper provides an empirical analysis of five lightweight kubernetes distributions (KD)(k0s, k3s, KubeEdge, OpenYurt, and Kubernetes (k8s)) focusing on their performance and resource efficiency in edge computing scenarios. We evaluated key metrics such as CPU, memory, disk usage, throughput, and latency under varying workloads, utilizing a testbed of Intel NUCs and Raspberry Pi devices. Our results demonstrate significant differences in performance: k3s exhibited the lowest resource consumption, while k0s and k8s excelled in data plane throughput and latency. Under heavy stress scenarios, k3s and k0s accomplished the same workloads faster than the other distributions. OpenYurt offered balanced performance, suitable for hybrid cloud-edge use cases, but was less efficient in terms of resource usage and scalability compared to k0s, k3s and k8s. KubeEdge, although feature-rich for edge environments, exhibited higher resource consumption and lower scalability. These findings offer valuable insights for developers and operators selecting appropriate KD based on specific performance and resource efficiency requirements for edge computing environments.

Authors:The AIBrix Team, Jiaxin Shan, Varun Gupta, Le Xu, Haiyang Shi, Jingyuan Zhang, Ning Wang, Linhui Xu, Rong Kang, Tongping Liu, Yifei Zhang, Yiqing Zhu, Shuowei Jin, Gangmuk Lim, Binbin Chen, Zuzhi Chen, Xiao Liu, Xin Chen, Kante Yin, Chak-Pong Chung, Chenyu Jiang, Yicheng Lu, Jianjun Chen, Caixue Lin, Wu Xiang, Rui Shi, Liguang Xie
Title: AIBrix: Towards Scalable, Cost-Effective Large Language Model Inference Infrastructure
Abstract:
We introduce AIBrix, a cloud-native, open-source framework designed to optimize and simplify large-scale LLM deployment in cloud environments. Unlike traditional cloud-native stacks, AIBrix follows a co-design philosophy, ensuring every layer of the infrastructure is purpose-built for seamless integration with inference engines like vLLM. AIBrix introduces several key innovations to reduce inference costs and enhance performance including high-density LoRA management for dynamic adapter scheduling, LLM-specific autoscalers, and prefix-aware, load-aware routing. To further improve efficiency, AIBrix incorporates a distributed KV cache, boosting token reuse across nodes, leading to a 50% increase in throughput and a 70% reduction in inference latency. AIBrix also supports unified AI runtime which streamlines model management while maintaining vendor-agnostic engine compatibility. For large-scale multi-node inference, AIBrix employs hybrid orchestration -- leveraging Kubernetes for coarse-grained scheduling and Ray for fine-grained execution -- to balance efficiency and flexibility. Additionally, an SLO-driven GPU optimizer dynamically adjusts resource allocations, optimizing heterogeneous serving to maximize cost efficiency while maintaining service guarantees. Finally, AIBrix enhances system reliability with AI accelerator diagnostic tools, enabling automated failure detection and mock-up testing to improve fault resilience. AIBrix is available at https://github.com/vllm-project/aibrix.

Authors:Zae Myung Kim, Anand Ramachandran, Farideh Tavazoee, Joo-Kyung Kim, Oleg Rokhlenko, Dongyeop Kang
Title: Align to Structure: Aligning Large Language Models with Structural Information
Abstract:
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.

Authors:Niu Lian, Jun Li, Jinpeng Wang, Ruisheng Luo, Yaowei Wang, Shu-Tao Xia, Bin Chen
Title: AutoSSVH: Exploring Automated Frame Sampling for Efficient Self-Supervised Video Hashing
Abstract:
Self-Supervised Video Hashing (SSVH) compresses videos into hash codes for efficient indexing and retrieval using unlabeled training videos. Existing approaches rely on random frame sampling to learn video features and treat all frames equally. This results in suboptimal hash codes, as it ignores frame-specific information density and reconstruction difficulty. To address this limitation, we propose a new framework, termed AutoSSVH, that employs adversarial frame sampling with hash-based contrastive learning. Our adversarial sampling strategy automatically identifies and selects challenging frames with richer information for reconstruction, enhancing encoding capability. Additionally, we introduce a hash component voting strategy and a point-to-set (P2Set) hash-based contrastive objective, which help capture complex inter-video semantic relationships in the Hamming space and improve the discriminability of learned hash codes. Extensive experiments demonstrate that AutoSSVH achieves superior retrieval efficacy and efficiency compared to state-of-the-art approaches. Code is available at https://github.com/EliSpectre/CVPR25-AutoSSVH.

Authors:Runnan Fang, Xiaobin Wang, Yuan Liang, Shuofei Qiao, Jialong Wu, Zekun Xi, Ningyu Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen
Title: SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement
Abstract:
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.

Authors:Shuofei Qiao, Zhisong Qiu, Baochang Ren, Xiaobin Wang, Xiangyuan Ru, Ningyu Zhang, Xiang Chen, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen
Title: Agentic Knowledgeable Self-awareness
Abstract:
Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.

Authors:Khai Le-Duc, Tuyen Tran, Bach Phan Tat, Nguyen Kim Hai Bui, Quan Dang, Hung-Phong Tran, Thanh-Thuy Nguyen, Ly Nguyen, Tuan-Minh Phan, Thi Thu Phuong Tran, Chris Ngo, Nguyen X. Khanh, Thanh Nguyen-Tang
Title: MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation
Abstract:
Multilingual speech translation (ST) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, Traditional Chinese and Simplified Chinese, together with the models. With 290,000 samples, our dataset is the largest medical machine translation (MT) dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most extensive analysis study in ST research to date, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence (seq2seq) comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST.

Authors:Ilan Naiman, Emanuel Ben-Baruch, Oron Anschel, Alon Shoshan, Igor Kviatkovsky, Manoj Aggarwal, Gerard Medioni
Title: LV-MAE: Learning Long Video Representations through Masked-Embedding Autoencoders
Abstract:
In this work, we introduce long-video masked-embedding autoencoders (LV-MAE), a self-supervised learning framework for long video representation. Our approach treats short- and long-span dependencies as two separate tasks. Such decoupling allows for a more intuitive video processing where short-span spatiotemporal primitives are first encoded and are then used to capture long-range dependencies across consecutive video segments. To achieve this, we leverage advanced off-the-shelf multimodal encoders to extract representations from short segments within the long video, followed by pre-training a masked-embedding autoencoder capturing high-level interactions across segments. LV-MAE is highly efficient to train and enables the processing of much longer videos by alleviating the constraint on the number of input frames. Furthermore, unlike existing methods that typically pre-train on short-video datasets, our approach offers self-supervised pre-training using long video samples (e.g., 20+ minutes video clips) at scale. Using LV-MAE representations, we achieve state-of-the-art results on three long-video benchmarks -- LVU, COIN, and Breakfast -- employing only a simple classification head for either attentive or linear probing. Finally, to assess LV-MAE pre-training and visualize its reconstruction quality, we leverage the video-language aligned space of short video representations to monitor LV-MAE through video-text retrieval. Code is available at https://github.com/amazon-science/lv-mae.

Authors:Xi Wang, Ziqi He, Yang Zhou
Title: Dynamic Importance in Diffusion U-Net for Enhanced Image Synthesis
Abstract:
Traditional diffusion models typically employ a U-Net architecture. Previous studies have unveiled the roles of attention blocks in the U-Net. However, they overlook the dynamic evolution of their importance during the inference process, which hinders their further exploitation to improve image applications. In this study, we first theoretically proved that, re-weighting the outputs of the Transformer blocks within the U-Net is a "free lunch" for improving the signal-to-noise ratio during the sampling process. Next, we proposed Importance Probe to uncover and quantify the dynamic shifts in importance of the Transformer blocks throughout the denoising process. Finally, we design an adaptive importance-based re-weighting schedule tailored to specific image generation and editing tasks. Experimental results demonstrate that, our approach significantly improves the efficiency of the inference process, and enhances the aesthetic quality of the samples with identity consistency. Our method can be seamlessly integrated into any U-Net-based architecture. Code: https://github.com/Hytidel/UNetReweighting

Authors:Nasar Iqbal, Niki Martinel
Title: Pyramid-based Mamba Multi-class Unsupervised Anomaly Detection
Abstract:
Recent advances in convolutional neural networks (CNNs) and transformer-based methods have improved anomaly detection and localization, but challenges persist in precisely localizing small anomalies. While CNNs face limitations in capturing long-range dependencies, transformer architectures often suffer from substantial computational overheads. We introduce a state space model (SSM)-based Pyramidal Scanning Strategy (PSS) for multi-class anomaly detection and localization--a novel approach designed to address the challenge of small anomaly localization. Our method captures fine-grained details at multiple scales by integrating the PSS with a pre-trained encoder for multi-scale feature extraction and a feature-level synthetic anomaly generator. An improvement of $+1\%$ AP for multi-class anomaly localization and a +$1\%$ increase in AU-PRO on MVTec benchmark demonstrate our method's superiority in precise anomaly localization across diverse industrial scenarios. The code is available at https://github.com/iqbalmlpuniud/Pyramid Mamba.

Authors:Adam Moss
Title: The AI Cosmologist I: An Agentic System for Automated Data Analysis
Abstract:
We present the AI Cosmologist, an agentic system designed to automate cosmological/astronomical data analysis and machine learning research workflows. This implements a complete pipeline from idea generation to experimental evaluation and research dissemination, mimicking the scientific process typically performed by human researchers. The system employs specialized agents for planning, coding, execution, analysis, and synthesis that work together to develop novel approaches. Unlike traditional auto machine-learning systems, the AI Cosmologist generates diverse implementation strategies, writes complete code, handles execution errors, analyzes results, and synthesizes new approaches based on experimental outcomes. We demonstrate the AI Cosmologist capabilities across several machine learning tasks, showing how it can successfully explore solution spaces, iterate based on experimental results, and combine successful elements from different approaches. Our results indicate that agentic systems can automate portions of the research process, potentially accelerating scientific discovery. The code and experimental data used in this paper are available on GitHub at https://github.com/adammoss/aicosmologist. Example papers included in the appendix demonstrate the system's capability to autonomously produce complete scientific publications, starting from only the dataset and task description

Authors:Kaustubh Shivshankar Shejole, Pushpak Bhattacharyya
Title: StereoDetect: Detecting Stereotypes and Anti-stereotypes the Correct Way Using Social Psychological Underpinnings
Abstract:
Stereotypes are known to have very harmful effects, making their detection critically important. However, current research predominantly focuses on detecting and evaluating stereotypical biases, thereby leaving the study of stereotypes in its early stages. Our study revealed that many works have failed to clearly distinguish between stereotypes and stereotypical biases, which has significantly slowed progress in advancing research in this area. Stereotype and Anti-stereotype detection is a problem that requires social knowledge; hence, it is one of the most difficult areas in Responsible AI. This work investigates this task, where we propose a five-tuple definition and provide precise terminologies disentangling stereotypes, anti-stereotypes, stereotypical bias, and general bias. We provide a conceptual framework grounded in social psychology for reliable detection. We identify key shortcomings in existing benchmarks for this task of stereotype and anti-stereotype detection. To address these gaps, we developed StereoDetect, a well curated, definition-aligned benchmark dataset designed for this task. We show that sub-10B language models and GPT-4o frequently misclassify anti-stereotypes and fail to recognize neutral overgeneralizations. We demonstrate StereoDetect's effectiveness through multiple qualitative and quantitative comparisons with existing benchmarks and models fine-tuned on them. The dataset and code is available at https://github.com/KaustubhShejole/StereoDetect.

Authors:Denis Coquenet
Title: Meta-DAN: towards an efficient prediction strategy for page-level handwritten text recognition
Abstract:
Recent advances in text recognition led to a paradigm shift for page-level recognition, from multi-step segmentation-based approaches to end-to-end attention-based ones. However, the naïve character-level autoregressive decoding process results in long prediction times: it requires several seconds to process a single page image on a modern GPU. We propose the Meta Document Attention Network (Meta-DAN) as a novel decoding strategy to reduce the prediction time while enabling a better context modeling. It relies on two main components: windowed queries, to process several transformer queries altogether, enlarging the context modeling with near future; and multi-token predictions, whose goal is to predict several tokens per query instead of only the next one. We evaluate the proposed approach on 10 full-page handwritten datasets and demonstrate state-of-the-art results on average in terms of character error rate. Source code and weights of trained models are available at https://github.com/FactoDeepLearning/meta_dan.

Authors:Makoto Takamoto, Daniel Oñoro-Rubio, Wiem Ben Rim, Takashi Maruyama, Bhushan Kotnis
Title: Optimal Embedding Guided Negative Sample Generation for Knowledge Graph Link Prediction
Abstract:
Knowledge graph embedding (KGE) models encode the structural information of knowledge graphs to predicting new links. Effective training of these models requires distinguishing between positive and negative samples with high precision. Although prior research has shown that improving the quality of negative samples can significantly enhance model accuracy, identifying high-quality negative samples remains a challenging problem. This paper theoretically investigates the condition under which negative samples lead to optimal KG embedding and identifies a sufficient condition for an effective negative sample distribution. Based on this theoretical foundation, we propose \textbf{E}mbedding \textbf{MU}tation (\textsc{EMU}), a novel framework that \emph{generates} negative samples satisfying this condition, in contrast to conventional methods that focus on \emph{identifying} challenging negative samples within the training data. Importantly, the simplicity of \textsc{EMU} ensures seamless integration with existing KGE models and negative sampling methods. To evaluate its efficacy, we conducted comprehensive experiments across multiple datasets. The results consistently demonstrate significant improvements in link prediction performance across various KGE models and negative sampling methods. Notably, \textsc{EMU} enables performance improvements comparable to those achieved by models with embedding dimension five times larger. An implementation of the method and experiments are available at https://github.com/nec-research/EMU-KG.

Authors:Lin yueyu, Liu Xiao
Title: RWKVTTS: Yet another TTS based on RWKV-7
Abstract:
Human-AI interaction thrives on intuitive and efficient interfaces, among which voice stands out as a particularly natural and accessible modality. Recent advancements in transformer-based text-to-speech (TTS) systems, such as Fish-Speech, CosyVoice, and MegaTTS 3, have delivered remarkable improvements in quality and realism, driving a significant evolution in the TTS domain. In this paper, we introduce RWKV-7 \cite{peng2025rwkv}, a cutting-edge RNN-based architecture tailored for TTS applications. Unlike traditional transformer models, RWKV-7 leverages the strengths of recurrent neural networks to achieve greater computational efficiency and scalability, while maintaining high-quality output. Our comprehensive benchmarks demonstrate that RWKV-7 outperforms transformer-based models across multiple key metrics, including synthesis speed, naturalness of speech, and resource efficiency. Furthermore, we explore its adaptability to diverse linguistic contexts and low-resource environments, showcasing its potential to democratize TTS technology. These findings position RWKV-7 as a powerful and innovative alternative, paving the way for more accessible and versatile voice synthesis solutions in real-world applications.Our code and weights are https://github.com/yynil/RWKVTTS, https://huggingface.co/spaces/RWKV-Red-Team

Authors:Guido Barducci, Ivan Rossi, Francesco Codicè, Cesare Rollo, Valeria Repetto, Corrado Pancotti, Virginia Iannibelli, Tiziana Sanavia, Piero Fariselli
Title: JanusDDG: A Thermodynamics-Compliant Model for Sequence-Based Protein Stability via Two-Fronts Multi-Head Attention
Abstract:
Understanding how residue variations affect protein stability is crucial for designing functional proteins and deciphering the molecular mechanisms underlying disease-related mutations. Recent advances in protein language models (PLMs) have revolutionized computational protein analysis, enabling, among other things, more accurate predictions of mutational effects. In this work, we introduce JanusDDG, a deep learning framework that leverages PLM-derived embeddings and a bidirectional cross-attention transformer architecture to predict $ΔΔG$ of single and multiple-residue mutations while simultaneously being constrained to respect fundamental thermodynamic properties, such as antisymmetry and transitivity. Unlike conventional self-attention, JanusDDG computes queries (Q) and values (V) as the difference between wild-type and mutant embeddings, while keys (K) alternate between the two. This cross-interleaved attention mechanism enables the model to capture mutation-induced perturbations while preserving essential contextual information. Experimental results show that JanusDDG achieves state-of-the-art performance in predicting $ΔΔG$ from sequence alone, matching or exceeding the accuracy of structure-based methods for both single and multiple mutations. Code Availability:https://github.com/compbiomed-unito/JanusDDG

Authors:Yimin Wei, Aoran Xiao, Yexian Ren, Yuting Zhu, Hongruixuan Chen, Junshi Xia, Naoto Yokoya
Title: SARLANG-1M: A Benchmark for Vision-Language Modeling in SAR Image Understanding
Abstract:
Synthetic Aperture Radar (SAR) is a crucial remote sensing technology, enabling all-weather, day-and-night observation with strong surface penetration for precise and continuous environmental monitoring and analysis. However, SAR image interpretation remains challenging due to its complex physical imaging mechanisms and significant visual disparities from human perception. Recently, Vision-Language Models (VLMs) have demonstrated remarkable success in RGB image understanding, offering powerful open-vocabulary interpretation and flexible language interaction. However, their application to SAR images is severely constrained by the absence of SAR-specific knowledge in their training distributions, leading to suboptimal performance. To address this limitation, we introduce SARLANG-1M, a large-scale benchmark tailored for multimodal SAR image understanding, with a primary focus on integrating SAR with textual modality. SARLANG-1M comprises more than 1 million high-quality SAR image-text pairs collected from over 59 cities worldwide. It features hierarchical resolutions (ranging from 0.1 to 25 meters), fine-grained semantic descriptions (including both concise and detailed captions), diverse remote sensing categories (1,696 object types and 16 land cover classes), and multi-task question-answering pairs spanning seven applications and 1,012 question types. Extensive experiments on mainstream VLMs demonstrate that fine-tuning with SARLANG-1M significantly enhances their performance in SAR image interpretation, reaching performance comparable to human experts. The dataset and code will be made publicly available at https://github.com/Jimmyxichen/SARLANG-1M.

Authors:Lifan Hu
Title: Learning Lie Group Generators from Trajectories
Abstract:
This work investigates the inverse problem of generator recovery in matrix Lie groups from discretized trajectories. Let $G$ be a real matrix Lie group and $\mathfrak{g} = \text{Lie}(G)$ its corresponding Lie algebra. A smooth trajectory $γ($t$)$ generated by a fixed Lie algebra element $ξ\in \mathfrak{g}$ follows the exponential flow $γ($t$) = g_0 \cdot \exp(t ξ)$. The central task addressed in this work is the reconstruction of such a latent generator $ξ$ from a discretized sequence of poses $ \{g_0, g_1, \dots, g_T\} \subset G$, sampled at uniform time intervals. This problem is formulated as a data-driven regression from normalized sequences of discrete Lie algebra increments $\log\left(g_{t}^{-1} g_{t+1}\right)$ to the constant generator $ξ\in \mathfrak{g}$. A feedforward neural network is trained to learn this mapping across several groups, including $\text{SE(2)}, \text{SE(3)}, \text{SO(3)}, and \text{SL(2,$\mathbb{R})$}$. It demonstrates strong empirical accuracy under both clean and noisy conditions, which validates the viability of data-driven recovery of Lie group generators using shallow neural architectures. This is Lie-RL GitHub Repo https://github.com/Anormalm/LieRL-on-Trajectories. Feel free to make suggestions and collaborations!

Authors:Thomas Daniel, Malgorzata Olejniczak, Julien Tierny
Title: BondMatcher: H-Bond Stability Analysis in Molecular Systems
Abstract:
This application paper investigates the stability of hydrogen bonds (H-bonds), as characterized by the Quantum Theory of Atoms in Molecules (QTAIM). First, we contribute a database of 4544 electron densities associated to four isomers of water hexamers (the so-called Ring, Book, Cage and Prism), generated by distorting their equilibrium geometry under various structural perturbations, modeling the natural dynamic behavior of molecular systems. Second, we present a new stability measure, called bond occurrence rate, associating each bond path present at equilibrium with its rate of occurrence within the input ensemble. We also provide an algorithm, called BondMatcher, for its automatic computation, based on a tailored, geometry-aware partial isomorphism estimation between the extremum graphs of the considered electron densities. Our new stability measure allows for the automatic identification of densities lacking H-bond paths, enabling further visual inspections. Specifically, the topological analysis enabled by our framework corroborates experimental observations and provides refined geometrical criteria for characterizing the disappearance of H-bond paths. Our electron density database and our C++ implementation are available at this address: https://github.com/thom-dani/BondMatcher.

Authors:Xin Zhang, Robby T. Tan
Title: Mamba as a Bridge: Where Vision Foundation Models Meet Vision Language Models for Domain-Generalized Semantic Segmentation
Abstract:
Vision Foundation Models (VFMs) and Vision-Language Models (VLMs) have gained traction in Domain Generalized Semantic Segmentation (DGSS) due to their strong generalization capabilities. However, existing DGSS methods often rely exclusively on either VFMs or VLMs, overlooking their complementary strengths. VFMs (e.g., DINOv2) excel at capturing fine-grained features, while VLMs (e.g., CLIP) provide robust text alignment but struggle with coarse granularity. Despite their complementary strengths, effectively integrating VFMs and VLMs with attention mechanisms is challenging, as the increased patch tokens complicate long-sequence modeling. To address this, we propose MFuser, a novel Mamba-based fusion framework that efficiently combines the strengths of VFMs and VLMs while maintaining linear scalability in sequence length. MFuser consists of two key components: MVFuser, which acts as a co-adapter to jointly fine-tune the two models by capturing both sequential and spatial dynamics; and MTEnhancer, a hybrid attention-Mamba module that refines text embeddings by incorporating image priors. Our approach achieves precise feature locality and strong text alignment without incurring significant computational overhead. Extensive experiments demonstrate that MFuser significantly outperforms state-of-the-art DGSS methods, achieving 68.20 mIoU on synthetic-to-real and 71.87 mIoU on real-to-real benchmarks. The code is available at https://github.com/devinxzhang/MFuser.

Authors:Zeyang Zheng, Arman Hosseini, Dong Chen, Omid Shoghli, Arsalan Heydarian
Title: Real-Time Roadway Obstacle Detection for Electric Scooters Using Deep Learning and Multi-Sensor Fusion
Abstract:
The increasing adoption of electric scooters (e-scooters) in urban areas has coincided with a rise in traffic accidents and injuries, largely due to their small wheels, lack of suspension, and sensitivity to uneven surfaces. While deep learning-based object detection has been widely used to improve automobile safety, its application for e-scooter obstacle detection remains unexplored. This study introduces a novel ground obstacle detection system for e-scooters, integrating an RGB camera, and a depth camera to enhance real-time road hazard detection. Additionally, the Inertial Measurement Unit (IMU) measures linear vertical acceleration to identify surface vibrations, guiding the selection of six obstacle categories: tree branches, manhole covers, potholes, pine cones, non-directional cracks, and truncated domes. All sensors, including the RGB camera, depth camera, and IMU, are integrated within the Intel RealSense Camera D435i. A deep learning model powered by YOLO detects road hazards and utilizes depth data to estimate obstacle proximity. Evaluated on the seven hours of naturalistic riding dataset, the system achieves a high mean average precision (mAP) of 0.827 and demonstrates excellent real-time performance. This approach provides an effective solution to enhance e-scooter safety through advanced computer vision and data fusion. The dataset is accessible at https://zenodo.org/records/14583718, and the project code is hosted on https://github.com/Zeyang-Zheng/Real-Time-Roadway-Obstacle-Detection-for-Electric-Scooters.

Authors:Weitao Li, Kaiming Liu, Xiangyu Zhang, Xuanyu Lei, Weizhi Ma, Yang Liu
Title: Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge injection during large language model (LLM) inference in recent years. However, due to their limited ability to exploit fine-grained inter-document relationships, current RAG implementations face challenges in effectively addressing the retrieved noise and redundancy content, which may cause error in the generation results. To address these limitations, we propose an Efficient Dynamic Clustering-based document Compression framework (EDC2-RAG) that utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5-Turbo and GPT-4o-mini, on widely used knowledge-QA and Hallucination-Detection datasets. Experimental results show that our method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets are available at https://github.com/Tsinghua-dhy/EDC-2-RAG.

Authors:Zihan Gu, Ruoyu Chen, Hua Zhang, Yue Hu, Xiaochun Cao
Title: Beyond Progress Measures: Theoretical Insights into the Mechanism of Grokking
Abstract:
Grokking, referring to the abrupt improvement in test accuracy after extended overfitting, offers valuable insights into the mechanisms of model generalization. Existing researches based on progress measures imply that grokking relies on understanding the optimization dynamics when the loss function is dominated solely by the weight decay term. However, we find that this optimization merely leads to token uniformity, which is not a sufficient condition for grokking. In this work, we investigate the grokking mechanism underlying the Transformer in the task of prime number operations. Based on theoretical analysis and experimental validation, we present the following insights: (i) The weight decay term encourages uniformity across all tokens in the embedding space when it is minimized. (ii) The occurrence of grokking is jointly determined by the uniformity of the embedding space and the distribution of the training dataset. Building on these insights, we provide a unified perspective for understanding various previously proposed progress measures and introduce a novel, concise, and effective progress measure that could trace the changes in test loss more accurately. Finally, to demonstrate the versatility of our theoretical framework, we design a dedicated dataset to validate our theory on ResNet-18, successfully showcasing the occurrence of grokking. The code is released at https://github.com/Qihuai27/Grokking-Insight.

Authors:Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, Pengfei Liu
Title: DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Abstract:
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.

Authors:Haozhan Tang, Tianyi Zhang, Oliver Kroemer, Matthew Johnson-Roberson, Weiming Zhi
Title: GraphSeg: Segmented 3D Representations via Graph Edge Addition and Contraction
Abstract:
Robots operating in unstructured environments often require accurate and consistent object-level representations. This typically requires segmenting individual objects from the robot's surroundings. While recent large models such as Segment Anything (SAM) offer strong performance in 2D image segmentation. These advances do not translate directly to performance in the physical 3D world, where they often over-segment objects and fail to produce consistent mask correspondences across views. In this paper, we present GraphSeg, a framework for generating consistent 3D object segmentations from a sparse set of 2D images of the environment without any depth information. GraphSeg adds edges to graphs and constructs dual correspondence graphs: one from 2D pixel-level similarities and one from inferred 3D structure. We formulate segmentation as a problem of edge addition, then subsequent graph contraction, which merges multiple 2D masks into unified object-level segmentations. We can then leverage \emph{3D foundation models} to produce segmented 3D representations. GraphSeg achieves robust segmentation with significantly fewer images and greater accuracy than prior methods. We demonstrate state-of-the-art performance on tabletop scenes and show that GraphSeg enables improved performance on downstream robotic manipulation tasks. Code available at https://github.com/tomtang502/graphseg.git.

Authors:Kahim Wong, Jicheng Zhou, Kemou Li, Yain-Whar Si, Xiaowei Wu, Jiantao Zhou
Title: FontGuard: A Robust Font Watermarking Approach Leveraging Deep Font Knowledge
Abstract:
The proliferation of AI-generated content brings significant concerns on the forensic and security issues such as source tracing, copyright protection, etc, highlighting the need for effective watermarking technologies. Font-based text watermarking has emerged as an effective solution to embed information, which could ensure copyright, traceability, and compliance of the generated text content. Existing font watermarking methods usually neglect essential font knowledge, which leads to watermarked fonts of low quality and limited embedding capacity. These methods are also vulnerable to real-world distortions, low-resolution fonts, and inaccurate character segmentation. In this paper, we introduce FontGuard, a novel font watermarking model that harnesses the capabilities of font models and language-guided contrastive learning. Unlike previous methods that focus solely on the pixel-level alteration, FontGuard modifies fonts by altering hidden style features, resulting in better font quality upon watermark embedding. We also leverage the font manifold to increase the embedding capacity of our proposed method by generating substantial font variants closely resembling the original font. Furthermore, in the decoder, we employ an image-text contrastive learning to reconstruct the embedded bits, which can achieve desirable robustness against various real-world transmission distortions. FontGuard outperforms state-of-the-art methods by +5.4%, +7.4%, and +5.8% in decoding accuracy under synthetic, cross-media, and online social network distortions, respectively, while improving the visual quality by 52.7% in terms of LPIPS. Moreover, FontGuard uniquely allows the generation of watermarked fonts for unseen fonts without re-training the network. The code and dataset are available at https://github.com/KAHIMWONG/FontGuard.

Authors:Weili Cao, Jianyou Wang, Youze Zheng, Longtian Bao, Qirui Zheng, Taylor Berg-Kirkpatrick, Ramamohan Paturi, Leon Bergen
Title: Single-Pass Document Scanning for Question Answering
Abstract:
Handling extremely large documents for question answering is challenging: chunk-based embedding methods often lose track of important global context, while full-context transformers can be prohibitively expensive for hundreds of thousands of tokens. We propose a single-pass document scanning approach that processes the entire text in linear time, preserving global coherence while deciding which sentences are most relevant to the query. On 41 QA benchmarks, our single-pass scanner consistently outperforms chunk-based embedding methods and competes with large language models at a fraction of the computational cost. By conditioning on the entire preceding context without chunk breaks, the method preserves global coherence, which is especially important for long documents. Overall, single-pass document scanning offers a simple solution for question answering over massive text. All code, datasets, and model checkpoints are available at https://github.com/MambaRetriever/MambaRetriever

Authors:Daniel M. Cherenson, Devansh R. Agrawal, Dimitra Panagou
Title: Autonomy Architectures for Safe Planning in Unknown Environments Under Budget Constraints
Abstract:
Mission planning can often be formulated as a constrained control problem under multiple path constraints (i.e., safety constraints) and budget constraints (i.e., resource expenditure constraints). In a priori unknown environments, verifying that an offline solution will satisfy the constraints for all time can be difficult, if not impossible. Our contributions are as follows: 1) We propose an online method, building on our previous work "gatekeeper", to guarantee safety and satisfy budget constraints of the system trajectory at all times throughout a mission. 2) Next, we prove that our algorithm is recursively feasible and correct. 3) Finally, instead of using a heuristically designed backup controller, we propose a sampling-based method to construct backup trajectories that both minimize resource expenditure and reach budget renewal sets, in which path constraints are satisfied and the constrained resources are renewed. We demonstrate our approach in simulation with a fixed-wing UAV in a GNSS-denied environment with a budget constraint on localization error that can be renewed at visual landmarks.

Authors:Daniel M. Cherenson, Devansh R. Agrawal, Dimitra Panagou
Title: Autonomy Architectures for Safe Planning in Unknown Environments Under Budget Constraints
Abstract:
Mission planning can often be formulated as a constrained control problem under multiple path constraints (i.e., safety constraints) and budget constraints (i.e., resource expenditure constraints). In a priori unknown environments, verifying that an offline solution will satisfy the constraints for all time can be difficult, if not impossible. We present ReRoot, a novel sampling-based framework that enforces safety and budget constraints for nonlinear systems in unknown environments. The main idea is that ReRoot grows multiple reverse RRT* trees online, starting from renewal sets, i.e., sets where the budget constraints are renewed. The dynamically feasible backup trajectories guarantee safety and reduce resource expenditure, which provides a principled backup policy when integrated into the gatekeeper safety verification architecture. We demonstrate our approach in simulation with a fixed-wing UAV in a GNSS-denied environment with a budget constraint on localization error that can be renewed at visual landmarks.

Authors:Xianwei Zhuang, Yuxin Xie, Yufan Deng, Dongchao Yang, Liming Liang, Jinghan Ru, Yuguo Yin, Yuexian Zou
Title: VARGPT-v1.1: Improve Visual Autoregressive Large Unified Model via Iterative Instruction Tuning and Reinforcement Learning
Abstract:
In this work, we present VARGPT-v1.1, an advanced unified visual autoregressive model that builds upon our previous framework VARGPT. The model preserves the dual paradigm of next-token prediction for visual understanding and next-scale generation for image synthesis. Specifically, VARGPT-v1.1 integrates: (1) a novel training strategy combining iterative visual instruction tuning with reinforcement learning through Direct Preference Optimization (DPO), (2) an expanded training corpus containing 8.3M visual-generative instruction pairs, (3) an upgraded language model backbone using Qwen2, (4) enhanced image generation resolution, and (5) emergent image editing capabilities without architectural modifications. These advancements enable VARGPT-v1.1 to achieve state-of-the-art performance in multimodal understanding and text-to-image instruction-following tasks, demonstrating significant improvements in both comprehension and generation metrics. Notably, through visual instruction tuning, the model acquires image editing functionality while maintaining architectural consistency with its predecessor, revealing the potential for unified visual understanding, generation, and editing. Our findings suggest that well-designed unified visual autoregressive models can effectively adopt flexible training strategies from large language models (LLMs), exhibiting promising scalability. The codebase and model weights are publicly available at https://github.com/VARGPT-family/VARGPT-v1.1.

Authors:Rohit Agarwal, Aryan Dessai, Arif Ahmed Sekh, Krishna Agarwal, Alexander Horsch, Dilip K. Prasad
Title: Haphazard Inputs as Images in Online Learning
Abstract:
The field of varying feature space in online learning settings, also known as haphazard inputs, is very prominent nowadays due to its applicability in various fields. However, the current solutions to haphazard inputs are model-dependent and cannot benefit from the existing advanced deep-learning methods, which necessitate inputs of fixed dimensions. Therefore, we propose to transform the varying feature space in an online learning setting to a fixed-dimension image representation on the fly. This simple yet novel approach is model-agnostic, allowing any vision-based models to be applicable for haphazard inputs, as demonstrated using ResNet and ViT. The image representation handles the inconsistent input data seamlessly, making our proposed approach scalable and robust. We show the efficacy of our method on four publicly available datasets. The code is available at https://github.com/Rohit102497/HaphazardInputsAsImages.

Authors:Zhihan Zhang, Yixin Cao, Lizi Liao
Title: Boosting Chart-to-Code Generation in MLLM via Dual Preference-Guided Refinement
Abstract:
Translating chart images into executable plotting scripts-referred to as the chart-to-code generation task-requires Multimodal Large Language Models (MLLMs) to perform fine-grained visual parsing, precise code synthesis, and robust cross-modal reasoning. However, this task is inherently under-constrained: multiple valid code implementations can produce the same visual chart, and evaluation must consider both code correctness and visual fidelity across diverse dimensions. This makes it difficult to learn accurate and generalizable mappings through standard supervised fine-tuning. To address these challenges, we propose a dual preference-guided refinement framework that combines a feedback-driven, dual-modality reward mechanism with iterative preference learning. Our approach introduces a structured variant generation strategy and a visual reward model to efficiently produce high-quality, aspect-aware preference pairs-making preference collection scalable and supervision more targeted. These preferences are used in an offline reinforcement learning setup to optimize the model toward multi-dimensional fidelity. Experimental results show that our framework significantly enhances the performance of general-purpose open-source MLLMs, enabling them to generate high-quality plotting code that rivals specialized chart-centric models and even some proprietary systems. The code and datasets are publicly available at https://github.com/Zhihan72/Chart2Code.

Authors:Hongzhe Du, Weikai Li, Min Cai, Karim Saraipour, Zimin Zhang, Himabindu Lakkaraju, Yizhou Sun, Shichang Zhang
Title: How Post-Training Reshapes LLMs: A Mechanistic View on Knowledge, Truthfulness, Refusal, and Confidence
Abstract:
Post-training is essential for the success of large language models (LLMs), transforming pre-trained base models into more useful and aligned post-trained models. While plenty of works have studied post-training algorithms and evaluated post-training models by their outputs, it remains understudied how post-training reshapes LLMs internally. In this paper, we compare base and post-trained LLMs mechanistically from four perspectives to better understand post-training effects. Our findings across model families and datasets reveal that: (1) Post-training does not change the factual knowledge storage locations, and it adapts knowledge representations from the base model while developing new knowledge representations; (2) Both truthfulness and refusal can be represented by vectors in the hidden representation space. The truthfulness direction is highly similar between the base and post-trained model, and it is effectively transferable for interventions; (3) The refusal direction is different between the base and post-trained models, and it shows limited forward transferability; (4) Differences in confidence between the base and post-trained models cannot be attributed to entropy neurons. Our study provides insights into the fundamental mechanisms preserved and altered during post-training, facilitates downstream tasks like model steering, and could potentially benefit future research in interpretability and LLM post-training. Our code is publicly available at https://github.com/HZD01/post-training-mechanistic-analysis.

Authors:Sudong Wang, Yunjian Zhang, Yao Zhu, Jianing Li, Zizhe Wang, Yanwei Liu, Xiangyang Ji
Title: Towards Understanding How Knowledge Evolves in Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) are gradually becoming the foundation for many artificial intelligence applications. However, understanding their internal working mechanisms has continued to puzzle researchers, which in turn limits the further enhancement of their capabilities. In this paper, we seek to investigate how multimodal knowledge evolves and eventually induces natural languages in LVLMs. We design a series of novel strategies for analyzing internal knowledge within LVLMs, and delve into the evolution of multimodal knowledge from three levels, including single token probabilities, token probability distributions, and feature encodings. In this process, we identify two key nodes in knowledge evolution: the critical layers and the mutation layers, dividing the evolution process into three stages: rapid evolution, stabilization, and mutation. Our research is the first to reveal the trajectory of knowledge evolution in LVLMs, providing a fresh perspective for understanding their underlying mechanisms. Our codes are available at https://github.com/XIAO4579/Vlm-interpretability.

Authors:Xiangyu Zhao, Peiyuan Zhang, Kexian Tang, Xiaorong Zhu, Hao Li, Wenhao Chai, Zicheng Zhang, Renqiu Xia, Guangtao Zhai, Junchi Yan, Hua Yang, Xue Yang, Haodong Duan
Title: Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
Abstract:
Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To study this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning categories: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an robust evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and the LMM-as-a-judge approach. We conducted experiments evaluating nine prominent visual editing models, comprising both open-source and proprietary models. The evaluation results demonstrate that current models face significant challenges in reasoning-based editing tasks. Even the most powerful model evaluated, GPT-4o-Image, achieves an accuracy of merely 28.8%. RISEBench effectively highlights the limitations of contemporary editing models, provides valuable insights, and indicates potential future directions for the field of reasoning-aware visual editing. Our code and data have been released at https://github.com/PhoenixZ810/RISEBench.

Authors:Mateusz Pach, Shyamgopal Karthik, Quentin Bouniot, Serge Belongie, Zeynep Akata
Title: Sparse Autoencoders Learn Monosemantic Features in Vision-Language Models
Abstract:
Given that interpretability and steerability are crucial to AI safety, Sparse Autoencoders (SAEs) have emerged as a tool to enhance them in Large Language Models (LLMs). In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such as CLIP, and introduce a comprehensive framework for evaluating monosemanticity at the neuron-level in vision representations. To ensure that our evaluation aligns with human perception, we propose a benchmark derived from a large-scale user study. Our experimental results reveal that SAEs trained on VLMs significantly enhance the monosemanticity of individual neurons, with sparsity and wide latents being the most influential factors. Notably, we demonstrate that applying SAE interventions on CLIP's vision encoder directly steers multimodal LLM outputs (e.g., LLaVA), without any modifications to the underlying model. These findings emphasize the practicality and efficacy of SAEs as an unsupervised tool for enhancing both interpretability and control of VLMs. Code is available at https://github.com/ExplainableML/sae-for-vlm.

Authors:Yuexi Du, Jiazhen Zhang, Nicha C. Dvornek, John A. Onofrey
Title: GMR-Conv: An Efficient Rotation and Reflection Equivariant Convolution Kernel Using Gaussian Mixture Rings
Abstract:
Symmetry, where certain features remain invariant under geometric transformations, can often serve as a powerful prior in designing convolutional neural networks (CNNs). While conventional CNNs inherently support translational equivariance, extending this property to rotation and reflection has proven challenging, often forcing a compromise between equivariance, efficiency, and information loss. In this work, we introduce Gaussian Mixture Ring Convolution (GMR-Conv), an efficient convolution kernel that smooths radial symmetry using a mixture of Gaussian-weighted rings. This design mitigates discretization errors of circular kernels, thereby preserving robust rotation and reflection equivariance without incurring computational overhead. We further optimize both the space and speed efficiency of GMR-Conv via a novel parameterization and computation strategy, allowing larger kernels at an acceptable cost. Extensive experiments on eight classification and one segmentation datasets demonstrate that GMR-Conv not only matches conventional CNNs' performance but can also surpass it in applications with orientation-less data. GMR-Conv is also proven to be more robust and efficient than the state-of-the-art equivariant learning methods. Our work provides inspiring empirical evidence that carefully applied radial symmetry can alleviate the challenges of information loss, marking a promising advance in equivariant network architectures. The code is available at https://github.com/XYPB/GMR-Conv.

Authors:Jay N. Paranjape, Celso de Melo, Vishal M. Patel
Title: F-ViTA: Foundation Model Guided Visible to Thermal Translation
Abstract:
Thermal imaging is crucial for scene understanding, particularly in low-light and nighttime conditions. However, collecting large thermal datasets is costly and labor-intensive due to the specialized equipment required for infrared image capture. To address this challenge, researchers have explored visible-to-thermal image translation. Most existing methods rely on Generative Adversarial Networks (GANs) or Diffusion Models (DMs), treating the task as a style transfer problem. As a result, these approaches attempt to learn both the modality distribution shift and underlying physical principles from limited training data. In this paper, we propose F-ViTA, a novel approach that leverages the general world knowledge embedded in foundation models to guide the diffusion process for improved translation. Specifically, we condition an InstructPix2Pix Diffusion Model with zero-shot masks and labels from foundation models such as SAM and Grounded DINO. This allows the model to learn meaningful correlations between scene objects and their thermal signatures in infrared imagery. Extensive experiments on five public datasets demonstrate that F-ViTA outperforms state-of-the-art (SOTA) methods. Furthermore, our model generalizes well to out-of-distribution (OOD) scenarios and can generate Long-Wave Infrared (LWIR), Mid-Wave Infrared (MWIR), and Near-Infrared (NIR) translations from the same visible image. Code: https://github.com/JayParanjape/F-ViTA/tree/master.

Authors:Zhiyuan Yan, Junyan Ye, Weijia Li, Zilong Huang, Shenghai Yuan, Xiangyang He, Kaiqing Lin, Jun He, Conghui He, Li Yuan
Title: GPT-ImgEval: A Comprehensive Benchmark for Diagnosing GPT4o in Image Generation
Abstract:
The recent breakthroughs in OpenAI's GPT4o model have demonstrated surprisingly good capabilities in image generation and editing, resulting in significant excitement in the community. This technical report presents the first-look evaluation benchmark (named GPT-ImgEval), quantitatively and qualitatively diagnosing GPT-4o's performance across three critical dimensions: (1) generation quality, (2) editing proficiency, and (3) world knowledge-informed semantic synthesis. Across all three tasks, GPT-4o demonstrates strong performance, significantly surpassing existing methods in both image generation control and output quality, while also showcasing exceptional knowledge reasoning capabilities. Furthermore, based on the GPT-4o's generated data, we propose a classification-model-based approach to investigate the underlying architecture of GPT-4o, where our empirical results suggest the model consists of an auto-regressive (AR) combined with a diffusion-based head for image decoding, rather than the VAR-like architectures. We also provide a complete speculation on GPT-4o's overall architecture. In addition, we conduct a series of analyses to identify and visualize GPT-4o's specific limitations and the synthetic artifacts commonly observed in its image generation. We also present a comparative study of multi-round image editing between GPT-4o and Gemini 2.0 Flash, and discuss the safety implications of GPT-4o's outputs, particularly their detectability by existing image forensic models. We hope that our work can offer valuable insight and provide a reliable benchmark to guide future research, foster reproducibility, and accelerate innovation in the field of image generation and beyond. The codes and datasets used for evaluating GPT-4o can be found at https://github.com/PicoTrex/GPT-ImgEval.

Authors:Alexander Leszczynski, Sarah Gillet, Iolanda Leite, Fethiye Irmak Dogan
Title: BT-ACTION: A Test-Driven Approach for Modular Understanding of User Instruction Leveraging Behaviour Trees and LLMs
Abstract:
Natural language instructions are often abstract and complex, requiring robots to execute multiple subtasks even for seemingly simple queries. For example, when a user asks a robot to prepare avocado toast, the task involves several sequential steps. Moreover, such instructions can be ambiguous or infeasible for the robot or may exceed the robot's existing knowledge. While Large Language Models (LLMs) offer strong language reasoning capabilities to handle these challenges, effectively integrating them into robotic systems remains a key challenge. To address this, we propose BT-ACTION, a test-driven approach that combines the modular structure of Behavior Trees (BT) with LLMs to generate coherent sequences of robot actions for following complex user instructions, specifically in the context of preparing recipes in a kitchen-assistance setting. We evaluated BT-ACTION in a comprehensive user study with 45 participants, comparing its performance to direct LLM prompting. Results demonstrate that the modular design of BT-ACTION helped the robot make fewer mistakes and increased user trust, and participants showed a significant preference for the robot leveraging BT-ACTION. The code is publicly available at https://github.com/1Eggbert7/BT_LLM.

Authors:Vincent Gbouna Zakka, Luis J. Manso, Zhuangzhuang Dai
Title: Multi-Head Adaptive Graph Convolution Network for Sparse Point Cloud-Based Human Activity Recognition
Abstract:
Human activity recognition is increasingly vital for supporting independent living, particularly for the elderly and those in need of assistance. Domestic service robots with monitoring capabilities can enhance safety and provide essential support. Although image-based methods have advanced considerably in the past decade, their adoption remains limited by concerns over privacy and sensitivity to low-light or dark conditions. As an alternative, millimetre-wave (mmWave) radar can produce point cloud data which is privacy-preserving. However, processing the sparse and noisy point clouds remains a long-standing challenge. While graph-based methods and attention mechanisms show promise, they predominantly rely on "fixed" kernels; kernels that are applied uniformly across all neighbourhoods, highlighting the need for adaptive approaches that can dynamically adjust their kernels to the specific geometry of each local neighbourhood in point cloud data. To overcome this limitation, we introduce an adaptive approach within the graph convolutional framework. Instead of a single shared weight function, our Multi-Head Adaptive Kernel (MAK) module generates multiple dynamic kernels, each capturing different aspects of the local feature space. By progressively refining local features while maintaining global spatial context, our method enables convolution kernels to adapt to varying local features. Experimental results on benchmark datasets confirm the effectiveness of our approach, achieving state-of-the-art performance in human activity recognition. Our source code is made publicly available at: https://github.com/Gbouna/MAK-GCN

Authors:Feng Gao, Miao Fu, Jingchao Cao, Junyu Dong, Qian Du
Title: Adaptive Frequency Enhancement Network for Remote Sensing Image Semantic Segmentation
Abstract:
Semantic segmentation of high-resolution remote sensing images plays a crucial role in land-use monitoring and urban planning. Recent remarkable progress in deep learning-based methods makes it possible to generate satisfactory segmentation results. However, existing methods still face challenges in adapting network parameters to various land cover distributions and enhancing the interaction between spatial and frequency domain features. To address these challenges, we propose the Adaptive Frequency Enhancement Network (AFENet), which integrates two key components: the Adaptive Frequency and Spatial feature Interaction Module (AFSIM) and the Selective feature Fusion Module (SFM). AFSIM dynamically separates and modulates high- and low-frequency features according to the content of the input image. It adaptively generates two masks to separate high- and low-frequency components, therefore providing optimal details and contextual supplementary information for ground object feature representation. SFM selectively fuses global context and local detailed features to enhance the network's representation capability. Hence, the interactions between frequency and spatial features are further enhanced. Extensive experiments on three publicly available datasets demonstrate that the proposed AFENet outperforms state-of-the-art methods. In addition, we also validate the effectiveness of AFSIM and SFM in managing diverse land cover types and complex scenarios. Our codes are available at https://github.com/oucailab/AFENet.

Authors:Leonardo Iurada, Marco Ciccone, Tatiana Tommasi
Title: Efficient Model Editing with Task-Localized Sparse Fine-tuning
Abstract:
Task arithmetic has emerged as a promising approach for editing models by representing task-specific knowledge as composable task vectors. However, existing methods rely on network linearization to derive task vectors, leading to computational bottlenecks during training and inference. Moreover, linearization alone does not ensure weight disentanglement, the key property that enables conflict-free composition of task vectors. To address this, we propose TaLoS which allows to build sparse task vectors with minimal interference without requiring explicit linearization and sharing information across tasks. We find that pre-trained models contain a subset of parameters with consistently low gradient sensitivity across tasks, and that sparsely updating only these parameters allows for promoting weight disentanglement during fine-tuning. Our experiments prove that TaLoS improves training and inference efficiency while outperforming current methods in task addition and negation. By enabling modular parameter editing, our approach fosters practical deployment of adaptable foundation models in real-world applications.

Authors:Lihua Liu, Jiehong Lin, Zhenxin Liu, Kui Jia
Title: PicoPose: Progressive Pixel-to-Pixel Correspondence Learning for Novel Object Pose Estimation
Abstract:
RGB-based novel object pose estimation is critical for rapid deployment in robotic applications, yet zero-shot generalization remains a key challenge. In this paper, we introduce PicoPose, a novel framework designed to tackle this task using a three-stage pixel-to-pixel correspondence learning process. Firstly, PicoPose matches features from the RGB observation with those from rendered object templates, identifying the best-matched template and establishing coarse correspondences. Secondly, PicoPose smooths the correspondences by globally regressing a 2D affine transformation, including in-plane rotation, scale, and 2D translation, from the coarse correspondence map. Thirdly, PicoPose applies the affine transformation to the feature map of the best-matched template and learns correspondence offsets within local regions to achieve fine-grained correspondences. By progressively refining the correspondences, PicoPose significantly improves the accuracy of object poses computed via PnP/RANSAC. PicoPose achieves state-of-the-art performance on the seven core datasets of the BOP benchmark, demonstrating exceptional generalization to novel objects. Code and trained models are available at https://github.com/foollh/PicoPose.

Authors:Lihua Liu, Jiehong Lin, Zhenxin Liu, Kui Jia
Title: PicoPose: Progressive Pixel-to-Pixel Correspondence Learning for Novel Object Pose Estimation
Abstract:
RGB-based novel object pose estimation is critical for rapid deployment in robotic applications, yet zero-shot generalization remains a key challenge. In this paper, we introduce PicoPose, a novel framework designed to tackle this task using a three-stage pixel-to-pixel correspondence learning process. Firstly, PicoPose matches features from the RGB observation with those from rendered object templates, identifying the best-matched template and establishing coarse correspondences. Secondly, PicoPose smooths the correspondences by globally regressing a 2D affine transformation, including in-plane rotation, scale, and 2D translation, from the coarse correspondence map. Thirdly, PicoPose applies the affine transformation to the feature map of the best-matched template and learns correspondence offsets within local regions to achieve fine-grained correspondences. By progressively refining the correspondences, PicoPose significantly improves the accuracy of object poses computed via PnP/RANSAC. PicoPose achieves state-of-the-art performance on the seven core datasets of the BOP benchmark, demonstrating exceptional generalization to novel objects. Code and trained models are available at https://github.com/foollh/PicoPose.

Authors:Yan Ma, Steffi Chern, Xuyang Shen, Yiran Zhong, Pengfei Liu
Title: Rethinking RL Scaling for Vision Language Models: A Transparent, From-Scratch Framework and Comprehensive Evaluation Scheme
Abstract:
Reinforcement learning (RL) has recently shown strong potential in improving the reasoning capabilities of large language models and is now being actively extended to vision-language models (VLMs). However, existing RL applications in VLMs often rely on heavily engineered frameworks that hinder reproducibility and accessibility, while lacking standardized evaluation protocols, making it difficult to compare results or interpret training dynamics. This work introduces a transparent, from-scratch framework for RL in VLMs, offering a minimal yet functional four-step pipeline validated across multiple models and datasets. In addition, a standardized evaluation scheme is proposed to assess training dynamics and reflective behaviors. Extensive experiments on visual reasoning tasks uncover key empirical findings: response length is sensitive to random seeds, reflection correlates with output length, and RL consistently outperforms supervised fine-tuning (SFT) in generalization, even with high-quality data. These findings, together with the proposed framework, aim to establish a reproducible baseline and support broader engagement in RL-based VLM research.

Authors:Andrei Dumitriu, Florin Tatui, Florin Miron, Radu Tudor Ionescu, Radu Timofte
Title: Rip Current Segmentation: A Novel Benchmark and YOLOv8 Baseline Results
Abstract:
Rip currents are the leading cause of fatal accidents and injuries on many beaches worldwide, emphasizing the importance of automatically detecting these hazardous surface water currents. In this paper, we address a novel task: rip current instance segmentation. We introduce a comprehensive dataset containing $2,466$ images with newly created polygonal annotations for instance segmentation, used for training and validation. Additionally, we present a novel dataset comprising $17$ drone videos (comprising about $24K$ frames) captured at $30 FPS$, annotated with both polygons for instance segmentation and bounding boxes for object detection, employed for testing purposes. We train various versions of YOLOv8 for instance segmentation on static images and assess their performance on the test dataset (videos). The best results were achieved by the YOLOv8-nano model (runnable on a portable device), with an mAP50 of $88.94%$ on the validation dataset and $81.21%$ macro average on the test dataset. The results provide a baseline for future research in rip current segmentation. Our work contributes to the existing literature by introducing a detailed, annotated dataset, and training a deep learning model for instance segmentation of rip currents. The code, training details and the annotated dataset are made publicly available at https://github.com/Irikos/rip_currents.

Authors:Hesong Li, Ziqi Wu, Ruiwen Shao, Tao Zhang, Ying Fu
Title: Noise Calibration and Spatial-Frequency Interactive Network for STEM Image Enhancement
Abstract:
Scanning Transmission Electron Microscopy (STEM) enables the observation of atomic arrangements at sub-angstrom resolution, allowing for atomically resolved analysis of the physical and chemical properties of materials. However, due to the effects of noise, electron beam damage, sample thickness, etc, obtaining satisfactory atomic-level images is often challenging. Enhancing STEM images can reveal clearer structural details of materials. Nonetheless, existing STEM image enhancement methods usually overlook unique features in the frequency domain, and existing datasets lack realism and generality. To resolve these issues, in this paper, we develop noise calibration, data synthesis, and enhancement methods for STEM images. We first present a STEM noise calibration method, which is used to synthesize more realistic STEM images. The parameters of background noise, scan noise, and pointwise noise are obtained by statistical analysis and fitting of real STEM images containing atoms. Then we use these parameters to develop a more general dataset that considers both regular and random atomic arrangements and includes both HAADF and BF mode images. Finally, we design a spatial-frequency interactive network for STEM image enhancement, which can explore the information in the frequency domain formed by the periodicity of atomic arrangement. Experimental results show that our data is closer to real STEM images and achieves better enhancement performances together with our network. Code will be available at https://github.com/HeasonLee/SFIN}{https://github.com/HeasonLee/SFIN.

Authors:Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, Yong Wang
Title: GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning
Abstract:
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.

Authors:Fatemeh Behrad, Tinne Tuytelaars, Johan Wagemans
Title: Charm: The Missing Piece in ViT fine-tuning for Image Aesthetic Assessment
Abstract:
The capacity of Vision transformers (ViTs) to handle variable-sized inputs is often constrained by computational complexity and batch processing limitations. Consequently, ViTs are typically trained on small, fixed-size images obtained through downscaling or cropping. While reducing computational burden, these methods result in significant information loss, negatively affecting tasks like image aesthetic assessment. We introduce Charm, a novel tokenization approach that preserves Composition, High-resolution, Aspect Ratio, and Multi-scale information simultaneously. Charm prioritizes high-resolution details in specific regions while downscaling others, enabling shorter fixed-size input sequences for ViTs while incorporating essential information. Charm is designed to be compatible with pre-trained ViTs and their learned positional embeddings. By providing multiscale input and introducing variety to input tokens, Charm improves ViT performance and generalizability for image aesthetic assessment. We avoid cropping or changing the aspect ratio to further preserve information. Extensive experiments demonstrate significant performance improvements on various image aesthetic and quality assessment datasets (up to 8.1 %) using a lightweight ViT backbone. Code and pre-trained models are available at https://github.com/FBehrad/Charm.

Authors:Nedko Savov, Naser Kazemi, Mohammad Mahdi, Danda Pani Paudel, Xi Wang, Luc Van Gool
Title: Exploration-Driven Generative Interactive Environments
Abstract:
Modern world models require costly and time-consuming collection of large video datasets with action demonstrations by people or by environment-specific agents. To simplify training, we focus on using many virtual environments for inexpensive, automatically collected interaction data. Genie, a recent multi-environment world model, demonstrates simulation abilities of many environments with shared behavior. Unfortunately, training their model requires expensive demonstrations. Therefore, we propose a training framework merely using a random agent in virtual environments. While the model trained in this manner exhibits good controls, it is limited by the random exploration possibilities. To address this limitation, we propose AutoExplore Agent - an exploration agent that entirely relies on the uncertainty of the world model, delivering diverse data from which it can learn the best. Our agent is fully independent of environment-specific rewards and thus adapts easily to new environments. With this approach, the pretrained multi-environment model can quickly adapt to new environments achieving video fidelity and controllability improvement. In order to obtain automatically large-scale interaction datasets for pretraining, we group environments with similar behavior and controls. To this end, we annotate the behavior and controls of 974 virtual environments - a dataset that we name RetroAct. For building our model, we first create an open implementation of Genie - GenieRedux and apply enhancements and adaptations in our version GenieRedux-G. Our code and data are available at https://github.com/insait-institute/GenieRedux.

Authors:Zhuguanyu Wu, Jiayi Zhang, Jiaxin Chen, Jinyang Guo, Di Huang, Yunhong Wang
Title: APHQ-ViT: Post-Training Quantization with Average Perturbation Hessian Based Reconstruction for Vision Transformers
Abstract:
Vision Transformers (ViTs) have become one of the most commonly used backbones for vision tasks. Despite their remarkable performance, they often suffer significant accuracy drops when quantized for practical deployment, particularly by post-training quantization (PTQ) under ultra-low bits. Recently, reconstruction-based PTQ methods have shown promising performance in quantizing Convolutional Neural Networks (CNNs). However, they fail when applied to ViTs, primarily due to the inaccurate estimation of output importance and the substantial accuracy degradation in quantizing post-GELU activations. To address these issues, we propose \textbf{APHQ-ViT}, a novel PTQ approach based on importance estimation with Average Perturbation Hessian (APH). Specifically, we first thoroughly analyze the current approximation approaches with Hessian loss, and propose an improved average perturbation Hessian loss. To deal with the quantization of the post-GELU activations, we design an MLP Reconstruction (MR) method by replacing the GELU function in MLP with ReLU and reconstructing it by the APH loss on a small unlabeled calibration set. Extensive experiments demonstrate that APHQ-ViT using linear quantizers outperforms existing PTQ methods by substantial margins in 3-bit and 4-bit across different vision tasks. The source code is available at https://github.com/GoatWu/APHQ-ViT.

Authors:Abhay Kumar, Louis Owen, Nilabhra Roy Chowdhury, Fabian Güra
Title: ZClip: Adaptive Spike Mitigation for LLM Pre-Training
Abstract:
Training large language models (LLMs) presents numerous challenges, including gradient instability and loss spikes. These phenomena can lead to catastrophic divergence, requiring costly checkpoint restoration and data batch skipping. Traditional gradient clipping techniques, such as constant or norm-based methods, fail to address these issues effectively due to their reliance on fixed thresholds or heuristics, leading to inefficient learning and requiring frequent manual intervention. In this work, we propose ZClip, an adaptive gradient clipping algorithm that dynamically adjusts the clipping threshold based on statistical properties of gradient norms over time. Unlike prior reactive strategies, ZClip proactively adapts to training dynamics without making any prior assumptions on the scale and the temporal evolution of gradient norms. At its core, it leverages z-score-based anomaly detection to identify and mitigate large gradient spikes, preventing malignant loss spikes while not interfering with convergence otherwise. Our code is available at: https://github.com/bluorion-com/ZClip.

Authors:Xiaofeng Han, Shunpeng Chen, Zenghuang Fu, Zhe Feng, Lue Fan, Dong An, Changwei Wang, Li Guo, Weiliang Meng, Xiaopeng Zhang, Rongtao Xu, Shibiao Xu
Title: Multimodal Fusion and Vision-Language Models: A Survey for Robot Vision
Abstract:
Robot vision has greatly benefited from advancements in multimodal fusion techniques and vision-language models (VLMs). We systematically review the applications of multimodal fusion in key robotic vision tasks, including semantic scene understanding, simultaneous localization and mapping (SLAM), 3D object detection, navigation and localization, and robot manipulation. We compare VLMs based on large language models (LLMs) with traditional multimodal fusion methods, analyzing their advantages, limitations, and synergies. Additionally, we conduct an in-depth analysis of commonly used datasets, evaluating their applicability and challenges in real-world robotic scenarios. Furthermore, we identify critical research challenges such as cross-modal alignment, efficient fusion strategies, real-time deployment, and domain adaptation, and propose future research directions, including self-supervised learning for robust multimodal representations, transformer-based fusion architectures, and scalable multimodal frameworks. Through a comprehensive review, comparative analysis, and forward-looking discussion, we provide a valuable reference for advancing multimodal perception and interaction in robotic vision. A comprehensive list of studies in this survey is available at https://github.com/Xiaofeng-Han-Res/MF-RV.

Authors:Rick van Essen, Eldert van Henten, Lammert Kooistra, Gert Kootstra
Title: Adaptive path planning for efficient object search by UAVs in agricultural fields
Abstract:
This paper presents an adaptive path planner for object search in agricultural fields using UAVs. The path planner uses a high-altitude coverage flight path and plans additional low-altitude inspections when the detection network is uncertain. The path planner was evaluated in an offline simulation environment containing real-world images. We trained a YOLOv8 detection network to detect artificial plants placed in grass fields to showcase the potential of our path planner. We evaluated the effect of different detection certainty measures, optimized the path planning parameters, investigated the effects of localization errors, and different numbers of objects in the field. The YOLOv8 detection confidence worked best to differentiate between true and false positive detections and was therefore used in the adaptive planner. The optimal parameters of the path planner depended on the distribution of objects in the field. When the objects were uniformly distributed, more low-altitude inspections were needed compared to a non-uniform distribution of objects, resulting in a longer path length. The adaptive planner proved to be robust against localization uncertainty. When increasing the number of objects, the flight path length increased, especially when the objects were uniformly distributed. When the objects were non-uniformly distributed, the adaptive path planner yielded a shorter path than a low-altitude coverage path, even with a high number of objects. Overall, the presented adaptive path planner allowed finding non-uniformly distributed objects in a field faster than a coverage path planner and resulted in a compatible detection accuracy. The path planner is made available at https://github.com/wur-abe/uav_adaptive_planner.

Authors:Vladimir Slaykovskiy, Maksim Zvegintsev, Yury Sakhonchyk, Hrachik Ajamian
Title: Evaluating AI Recruitment Sourcing Tools by Human Preference
Abstract:
This study introduces a benchmarking methodology designed to evaluate the performance of AI-driven recruitment sourcing tools. We created and utilized a dataset to perform a comparative analysis of search results generated by leading AI-based solutions, LinkedIn Recruiter, and our proprietary system, Pearch.ai. Human experts assessed the relevance of the returned candidates, and an Elo rating system was applied to quantitatively measure each tool's comparative performance. Our findings indicate that AI-driven recruitment sourcing tools consistently outperform LinkedIn Recruiter in candidate relevance, with Pearch.ai achieving the highest performance scores. Furthermore, we found a strong alignment between AI-based evaluations and human judgments, highlighting the potential for advanced AI technologies to substantially enhance talent acquisition effectiveness. Code and supporting data are publicly available at https://github.com/vslaykovsky/ai-sourcing-benchmark

Authors:Changshuo Wang, Shuting He, Xiang Fang, Meiqing Wu, Siew-Kei Lam, Prayag Tiwari
Title: Taylor Series-Inspired Local Structure Fitting Network for Few-shot Point Cloud Semantic Segmentation
Abstract:
Few-shot point cloud semantic segmentation aims to accurately segment "unseen" new categories in point cloud scenes using limited labeled data. However, pretraining-based methods not only introduce excessive time overhead but also overlook the local structure representation among irregular point clouds. To address these issues, we propose a pretraining-free local structure fitting network for few-shot point cloud semantic segmentation, named TaylorSeg. Specifically, inspired by Taylor series, we treat the local structure representation of irregular point clouds as a polynomial fitting problem and propose a novel local structure fitting convolution, called TaylorConv. This convolution learns the low-order basic information and high-order refined information of point clouds from explicit encoding of local geometric structures. Then, using TaylorConv as the basic component, we construct two variants of TaylorSeg: a non-parametric TaylorSeg-NN and a parametric TaylorSeg-PN. The former can achieve performance comparable to existing parametric models without pretraining. For the latter, we equip it with an Adaptive Push-Pull (APP) module to mitigate the feature distribution differences between the query set and the support set. Extensive experiments validate the effectiveness of the proposed method. Notably, under the 2-way 1-shot setting, TaylorSeg-PN achieves improvements of +2.28% and +4.37% mIoU on the S3DIS and ScanNet datasets respectively, compared to the previous state-of-the-art methods. Our code is available at https://github.com/changshuowang/TaylorSeg.

Authors:Jiayi Gao, Zijin Yin, Changcheng Hua, Yuxin Peng, Kongming Liang, Zhanyu Ma, Jun Guo, Yang Liu
Title: ConMo: Controllable Motion Disentanglement and Recomposition for Zero-Shot Motion Transfer
Abstract:
The development of Text-to-Video (T2V) generation has made motion transfer possible, enabling the control of video motion based on existing footage. However, current methods have two limitations: 1) struggle to handle multi-subjects videos, failing to transfer specific subject motion; 2) struggle to preserve the diversity and accuracy of motion as transferring to subjects with varying shapes. To overcome these, we introduce \textbf{ConMo}, a zero-shot framework that disentangle and recompose the motions of subjects and camera movements. ConMo isolates individual subject and background motion cues from complex trajectories in source videos using only subject masks, and reassembles them for target video generation. This approach enables more accurate motion control across diverse subjects and improves performance in multi-subject scenarios. Additionally, we propose soft guidance in the recomposition stage which controls the retention of original motion to adjust shape constraints, aiding subject shape adaptation and semantic transformation. Unlike previous methods, ConMo unlocks a wide range of applications, including subject size and position editing, subject removal, semantic modifications, and camera motion simulation. Extensive experiments demonstrate that ConMo significantly outperforms state-of-the-art methods in motion fidelity and semantic consistency. The code is available at https://github.com/Andyplus1/ConMo.

Authors:Jingyi Wang, Duanfeng Chu, Zejian Deng, Liping Lu, Jinxiang Wang, Chen Sun
Title: CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
Abstract:
To address the challenge of insufficient interactivity and behavioral diversity in autonomous driving decision-making, this paper proposes a Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS). By leveraging Level-k game theory, CHARMS captures human-like reasoning patterns through a two-stage training pipeline comprising reinforcement learning pretraining and supervised fine-tuning. This enables the resulting models to exhibit diverse and human-like behaviors, enhancing their decision-making capacity and interaction fidelity in complex traffic environments. Building upon this capability, we further develop a scenario generation framework that utilizes the Poisson cognitive hierarchy theory to control the distribution of vehicles with different driving styles through Poisson and binomial sampling. Experimental results demonstrate that CHARMS is capable of both making intelligent driving decisions as an ego vehicle and generating diverse, realistic driving scenarios as environment vehicles. The code for CHARMS is released at https://github.com/chuduanfeng/CHARMS.

Authors:Chuanqi Cheng, Jian Guan, Wei Wu, Rui Yan
Title: Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation
Abstract:
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLAMP, a hierarchical video-language model that processes hour-long videos at "mixed precision" through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLAMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLAMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLAMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance. Code and model are available at https://github.com/steven-ccq/ViLAMP.

Authors:Mario Kahlhofer, Matteo Golinelli, Stefan Rass
Title: Koney: A Cyber Deception Orchestration Framework for Kubernetes
Abstract:
System operators responsible for protecting software applications remain hesitant to implement cyber deception technology, including methods that place traps to catch attackers, despite its proven benefits. Overcoming their concerns removes a barrier that currently hinders industry adoption of deception technology. Our work introduces deception policy documents to describe deception technology "as code" and pairs them with Koney, a Kubernetes operator, which facilitates the setup, rotation, monitoring, and removal of traps in Kubernetes. We leverage cloud-native technologies, such as service meshes and eBPF, to automatically add traps to containerized software applications, without having access to the source code. We focus specifically on operational properties, such as maintainability, scalability, and simplicity, which we consider essential to accelerate the adoption of cyber deception technology and to facilitate further research on cyber deception.

Authors:Peifu Liu, Huiyan Bai, Tingfa Xu, Jihui Wang, Huan Chen, Jianan Li
Title: Hyperspectral Remote Sensing Images Salient Object Detection: The First Benchmark Dataset and Baseline
Abstract:
The objective of hyperspectral remote sensing image salient object detection (HRSI-SOD) is to identify objects or regions that exhibit distinct spectrum contrasts with the background. This area holds significant promise for practical applications; however, progress has been limited by a notable scarcity of dedicated datasets and methodologies. To bridge this gap and stimulate further research, we introduce the first HRSI-SOD dataset, termed HRSSD, which includes 704 hyperspectral images and 5327 pixel-level annotated salient objects. The HRSSD dataset poses substantial challenges for salient object detection algorithms due to large scale variation, diverse foreground-background relations, and multi-salient objects. Additionally, we propose an innovative and efficient baseline model for HRSI-SOD, termed the Deep Spectral Saliency Network (DSSN). The core of DSSN is the Cross-level Saliency Assessment Block, which performs pixel-wise attention and evaluates the contributions of multi-scale similarity maps at each spatial location, effectively reducing erroneous responses in cluttered regions and emphasizes salient regions across scales. Additionally, the High-resolution Fusion Module combines bottom-up fusion strategy and learned spatial upsampling to leverage the strengths of multi-scale saliency maps, ensuring accurate localization of small objects. Experiments on the HRSSD dataset robustly validate the superiority of DSSN, underscoring the critical need for specialized datasets and methodologies in this domain. Further evaluations on the HSOD-BIT and HS-SOD datasets demonstrate the generalizability of the proposed method. The dataset and source code are publicly available at https://github.com/laprf/HRSSD.

Authors:Xiang Feng, Wentao Jiang, Zengmao Wang, Yong Luo, Pingbo Xu, Baosheng Yu, Hua Jin, Bo Du, Jing Zhang
Title: AnesBench: Multi-Dimensional Evaluation of LLM Reasoning in Anesthesiology
Abstract:
The application of large language models (LLMs) in the medical field has gained significant attention, yet their reasoning capabilities in more specialized domains like anesthesiology remain underexplored. In this paper, we systematically evaluate the reasoning capabilities of LLMs in anesthesiology and analyze key factors influencing their performance. To this end, we introduce AnesBench, a cross-lingual benchmark designed to assess anesthesiology-related reasoning across three levels: factual retrieval (System 1), hybrid reasoning (System 1.x), and complex decision-making (System 2). Through extensive experiments, we first explore how model characteristics, including model scale, Chain of Thought (CoT) length, and language transferability, affect reasoning performance. Then, we further evaluate the effectiveness of different training strategies, leveraging our curated anesthesiology-related dataset, including continuous pre-training (CPT) and supervised fine-tuning (SFT). Additionally, we also investigate how the test-time reasoning techniques, such as Best-of-N sampling and beam search, influence reasoning performance, and assess the impact of reasoning-enhanced model distillation, specifically DeepSeek-R1. We will publicly release AnesBench, along with our CPT and SFT training datasets and evaluation code at https://github.com/MiliLab/AnesBench.

Authors:Xiang Feng, Wentao Jiang, Zengmao Wang, Yong Luo, Pingbo Xu, Baosheng Yu, Hua Jin, Bo Du, Jing Zhang
Title: AnesSuite: A Comprehensive Benchmark and Dataset Suite for Anesthesiology Reasoning in LLMs
Abstract:
The application of large language models (LLMs) in the medical field has garnered significant attention, yet their reasoning capabilities in more specialized domains like anesthesiology remain underexplored. To bridge this gap, we introduce AnesSuite, the first comprehensive dataset suite specifically designed for anesthesiology reasoning in LLMs. The suite features AnesBench, an evaluation benchmark tailored to assess anesthesiology-related reasoning across three levels: factual retrieval (System 1), hybrid reasoning (System 1.x), and complex decision-making (System 2). Alongside this benchmark, the suite includes three training datasets that provide an infrastructure for continued pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning with verifiable rewards (RLVR). Leveraging this suite, we develop Morpheus, the first baseline model collection for anesthesiology reasoning. Despite undergoing limited training with SFT and group relative policy optimization (GRPO), Morpheus demonstrates substantial performance improvements, rivaling the performance of larger-scale models. Furthermore, through comprehensive evaluations and experiments, we analyze the key factors influencing anesthesiology reasoning performance, including model characteristics, training strategies and training data. Both AnesSuite and Morpheus will be open-sourced at https://github.com/MiliLab/AnesSuite.

Authors:Takahiro Shirakawa, Tomoyuki Suzuki, Takuto Narumoto, Daichi Haraguchi
Title: MG-Gen: Single Image to Motion Graphics Generation
Abstract:
We introduce MG-Gen, a framework that generates motion graphics directly from a single raster image. MG-Gen decompose a single raster image into layered structures represented as HTML, generate animation scripts for each layer, and then render them into a video. Experiments confirm MG-Gen generates dynamic motion graphics while preserving text readability and fidelity to the input conditions, whereas state-of-the-art image-to-video generation methods struggle with them. The code is available at https://github.com/CyberAgentAILab/MG-GEN.

Authors:Boris Sukhovilov
Title: Determining Sphere Radius through Pairwise Distances
Abstract:
We propose a novel method for determining the radius of a spherical surface based on the distances measured between points on this surface. We consider the most general case of determining the radius when the distances are measured with errors and the sphere has random deviations from its ideal shape. For the solution, we used the minimally necessary four points and an arbitrary N number of points. We provide a new closed form solution for the radius of the sphere through the matrix of pairwise distances. We also determine the standard deviation of the radius estimate caused by measurement errors and deviations of the sphere from its ideal shape. We found optimal configurations of points on the sphere that provide the minimum standard deviation of the radius estimate. This paper describes our solution and provides all the mathematical derivations. We share the implementation of our method as open source code at https://github.com/boris-sukhovilov/Sphere_Radius.

Authors:Ye Su, Hezhe Qiao, Di Wu, Yuwen Chen, Lin Chen
Title: Temporal Gaussian Copula For Clinical Multivariate Time Series Data Imputation
Abstract:
The imputation of the Multivariate time series (MTS) is particularly challenging since the MTS typically contains irregular patterns of missing values due to various factors such as instrument failures, interference from irrelevant data, and privacy regulations. Existing statistical methods and deep learning methods have shown promising results in time series imputation. In this paper, we propose a Temporal Gaussian Copula Model (TGC) for three-order MTS imputation. The key idea is to leverage the Gaussian Copula to explore the cross-variable and temporal relationships based on the latent Gaussian representation. Subsequently, we employ an Expectation-Maximization (EM) algorithm to improve robustness in managing data with varying missing rates. Comprehensive experiments were conducted on three real-world MTS datasets. The results demonstrate that our TGC substantially outperforms the state-of-the-art imputation methods. Additionally, the TGC model exhibits stronger robustness to the varying missing ratios in the test dataset. Our code is available at https://github.com/MVL-Lab/TGC-MTS.

Authors:Minheng Ni, Ennan Wu, Zidong Gong, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Kevin Lin, Lijuan Wang, Wangmeng Zuo
Title: Measurement of LLM's Philosophies of Human Nature
Abstract:
The widespread application of artificial intelligence (AI) in various tasks, along with frequent reports of conflicts or violations involving AI, has sparked societal concerns about interactions with AI systems. Based on Wrightsman's Philosophies of Human Nature Scale (PHNS), a scale empirically validated over decades to effectively assess individuals' attitudes toward human nature, we design the standardized psychological scale specifically targeting large language models (LLM), named the Machine-based Philosophies of Human Nature Scale (M-PHNS). By evaluating LLMs' attitudes toward human nature across six dimensions, we reveal that current LLMs exhibit a systemic lack of trust in humans, and there is a significant negative correlation between the model's intelligence level and its trust in humans. Furthermore, we propose a mental loop learning framework, which enables LLM to continuously optimize its value system during virtual interactions by constructing moral scenarios, thereby improving its attitude toward human nature. Experiments demonstrate that mental loop learning significantly enhances their trust in humans compared to persona or instruction prompts. This finding highlights the potential of human-based psychological assessments for LLM, which can not only diagnose cognitive biases but also provide a potential solution for ethical learning in artificial intelligence. We release the M-PHNS evaluation code and data at https://github.com/kodenii/M-PHNS.

Authors:Xinyu Luo, Kecheng Chen, Pao-Sheng Vincent Sun, Chris Xing Tian, Arindam Basu, Haoliang Li
Title: SPACE: SPike-Aware Consistency Enhancement for Test-Time Adaptation in Spiking Neural Networks
Abstract:
Spiking Neural Networks (SNNs), as a biologically plausible alternative to Artificial Neural Networks (ANNs), have demonstrated advantages in terms of energy efficiency, temporal processing, and biological plausibility. However, SNNs are highly sensitive to distribution shifts, which can significantly degrade their performance in real-world scenarios. Traditional test-time adaptation (TTA) methods designed for ANNs often fail to address the unique computational dynamics of SNNs, such as sparsity and temporal spiking behavior. To address these challenges, we propose SPike-Aware Consistency Enhancement (SPACE), the first source-free and single-instance TTA method specifically designed for SNNs. SPACE leverages the inherent spike dynamics of SNNs to maximize the consistency of spike-behavior-based local feature maps across augmented versions of a single test sample, enabling robust adaptation without requiring source data. We evaluate SPACE on multiple datasets. Furthermore, SPACE exhibits robust generalization across diverse network architectures, consistently enhancing the performance of SNNs on CNNs, Transformer, and ConvLSTM architectures. Experimental results show that SPACE outperforms state-of-the-art ANN methods while maintaining lower computational cost, highlighting its effectiveness and robustness for SNNs in real-world settings. The code will be available at https://github.com/ethanxyluo/SPACE.

Authors:Trung Thanh Nguyen, Yasutomo Kawanishi, Vijay John, Takahiro Komamizu, Ichiro Ide
Title: MultiSensor-Home: A Wide-area Multi-modal Multi-view Dataset for Action Recognition and Transformer-based Sensor Fusion
Abstract:
Multi-modal multi-view action recognition is a rapidly growing field in computer vision, offering significant potential for applications in surveillance. However, current datasets often fail to address real-world challenges such as wide-area distributed settings, asynchronous data streams, and the lack of frame-level annotations. Furthermore, existing methods face difficulties in effectively modeling inter-view relationships and enhancing spatial feature learning. In this paper, we introduce the MultiSensor-Home dataset, a novel benchmark designed for comprehensive action recognition in home environments, and also propose the Multi-modal Multi-view Transformer-based Sensor Fusion (MultiTSF) method. The proposed MultiSensor-Home dataset features untrimmed videos captured by distributed sensors, providing high-resolution RGB and audio data along with detailed multi-view frame-level action labels. The proposed MultiTSF method leverages a Transformer-based fusion mechanism to dynamically model inter-view relationships. Furthermore, the proposed method integrates a human detection module to enhance spatial feature learning, guiding the model to prioritize frames with human activity to enhance action the recognition accuracy. Experiments on the proposed MultiSensor-Home and the existing MM-Office datasets demonstrate the superiority of MultiTSF over the state-of-the-art methods. Quantitative and qualitative results highlight the effectiveness of the proposed method in advancing real-world multi-modal multi-view action recognition. The source code is available at https://github.com/thanhhff/MultiTSF.

Authors:Amit Rand, Hadi Ibrahim
Title: Beyond Conventional Transformers: The Medical X-ray Attention (MXA) Block for Improved Multi-Label Diagnosis Using Knowledge Distillation
Abstract:
Medical imaging, particularly X-ray analysis, often involves detecting multiple conditions simultaneously within a single scan, making multi-label classification crucial for real-world clinical applications. We present the Medical X-ray Attention (MXA) block, a novel attention mechanism tailored specifically to address the unique challenges of X-ray abnormality detection. The MXA block enhances traditional Multi-Head Self Attention (MHSA) by integrating a specialized module that efficiently captures both detailed local information and broader global context. To the best of our knowledge, this is the first work to propose a task-specific attention mechanism for diagnosing chest X-rays, as well as to attempt multi-label classification using an Efficient Vision Transformer (EfficientViT). By embedding the MXA block within the EfficientViT architecture and employing knowledge distillation, our proposed model significantly improves performance on the CheXpert dataset, a widely used benchmark for multi-label chest X-ray abnormality detection. Our approach achieves an area under the curve (AUC) of 0.85, an absolute improvement of 0.19 compared to our baseline model's AUC of 0.66, corresponding to a substantial approximate 233% relative improvement over random guessing (AUC = 0.5).

Authors:Shaocong Long, Qianyu Zhou, Xiangtai Li, Chenhao Ying, Yunhai Tong, Lizhuang Ma, Yuan Luo, Dacheng Tao
Title: Generative Classifier for Domain Generalization
Abstract:
Domain generalization (DG) aims to improve the generalizability of computer vision models toward distribution shifts. The mainstream DG methods focus on learning domain invariance, however, such methods overlook the potential inherent in domain-specific information. While the prevailing practice of discriminative linear classifier has been tailored to domain-invariant features, it struggles when confronted with diverse domain-specific information, e.g., intra-class shifts, that exhibits multi-modality. To address these issues, we explore the theoretical implications of relying on domain invariance, revealing the crucial role of domain-specific information in mitigating the target risk for DG. Drawing from these insights, we propose Generative Classifier-driven Domain Generalization (GCDG), introducing a generative paradigm for the DG classifier based on Gaussian Mixture Models (GMMs) for each class across domains. GCDG consists of three key modules: Heterogeneity Learning Classifier~(HLC), Spurious Correlation Blocking~(SCB), and Diverse Component Balancing~(DCB). Concretely, HLC attempts to model the feature distributions and thereby capture valuable domain-specific information via GMMs. SCB identifies the neural units containing spurious correlations and perturbs them, mitigating the risk of HLC learning spurious patterns. Meanwhile, DCB ensures a balanced contribution of components in HLC, preventing the underestimation or neglect of critical components. In this way, GCDG excels in capturing the nuances of domain-specific information characterized by diverse distributions. GCDG demonstrates the potential to reduce the target risk and encourage flat minima, improving the generalizability. Extensive experiments show GCDG's comparable performance on five DG benchmarks and one face anti-spoofing dataset, seamlessly integrating into existing DG methods with consistent improvements.

Authors:Wenzhuo Liu, Wenshuo Wang, Yicheng Qiao, Qiannan Guo, Jiayin Zhu, Pengfei Li, Zilong Chen, Huiming Yang, Zhiwei Li, Lening Wang, Tiao Tan, Huaping Liu
Title: MMTL-UniAD: A Unified Framework for Multimodal and Multi-Task Learning in Assistive Driving Perception
Abstract:
Advanced driver assistance systems require a comprehensive understanding of the driver's mental/physical state and traffic context but existing works often neglect the potential benefits of joint learning between these tasks. This paper proposes MMTL-UniAD, a unified multi-modal multi-task learning framework that simultaneously recognizes driver behavior (e.g., looking around, talking), driver emotion (e.g., anxiety, happiness), vehicle behavior (e.g., parking, turning), and traffic context (e.g., traffic jam, traffic smooth). A key challenge is avoiding negative transfer between tasks, which can impair learning performance. To address this, we introduce two key components into the framework: one is the multi-axis region attention network to extract global context-sensitive features, and the other is the dual-branch multimodal embedding to learn multimodal embeddings from both task-shared and task-specific features. The former uses a multi-attention mechanism to extract task-relevant features, mitigating negative transfer caused by task-unrelated features. The latter employs a dual-branch structure to adaptively adjust task-shared and task-specific parameters, enhancing cross-task knowledge transfer while reducing task conflicts. We assess MMTL-UniAD on the AIDE dataset, using a series of ablation studies, and show that it outperforms state-of-the-art methods across all four tasks. The code is available on https://github.com/Wenzhuo-Liu/MMTL-UniAD.

Authors:Tae-Young Lee, Sundong Park, Minwoo Jeon, Hyoseok Hwang, Gyeong-Moon Park
Title: ESC: Erasing Space Concept for Knowledge Deletion
Abstract:
As concerns regarding privacy in deep learning continue to grow, individuals are increasingly apprehensive about the potential exploitation of their personal knowledge in trained models. Despite several research efforts to address this, they often fail to consider the real-world demand from users for complete knowledge erasure. Furthermore, our investigation reveals that existing methods have a risk of leaking personal knowledge through embedding features. To address these issues, we introduce a novel concept of Knowledge Deletion (KD), an advanced task that considers both concerns, and provides an appropriate metric, named Knowledge Retention score (KR), for assessing knowledge retention in feature space. To achieve this, we propose a novel training-free erasing approach named Erasing Space Concept (ESC), which restricts the important subspace for the forgetting knowledge by eliminating the relevant activations in the feature. In addition, we suggest ESC with Training (ESC-T), which uses a learnable mask to better balance the trade-off between forgetting and preserving knowledge in KD. Our extensive experiments on various datasets and models demonstrate that our proposed methods achieve the fastest and state-of-the-art performance. Notably, our methods are applicable to diverse forgetting scenarios, such as facial domain setting, demonstrating the generalizability of our methods. The code is available at http://github.com/KU-VGI/ESC .

Authors:Shaojin Wu, Mengqi Huang, Wenxu Wu, Yufeng Cheng, Fei Ding, Qian He
Title: Less-to-More Generalization: Unlocking More Controllability by In-Context Generation
Abstract:
Although subject-driven generation has been extensively explored in image generation due to its wide applications, it still has challenges in data scalability and subject expansibility. For the first challenge, moving from curating single-subject datasets to multiple-subject ones and scaling them is particularly difficult. For the second, most recent methods center on single-subject generation, making it hard to apply when dealing with multi-subject scenarios. In this study, we propose a highly-consistent data synthesis pipeline to tackle this challenge. This pipeline harnesses the intrinsic in-context generation capabilities of diffusion transformers and generates high-consistency multi-subject paired data. Additionally, we introduce UNO, which consists of progressive cross-modal alignment and universal rotary position embedding. It is a multi-image conditioned subject-to-image model iteratively trained from a text-to-image model. Extensive experiments show that our method can achieve high consistency while ensuring controllability in both single-subject and multi-subject driven generation.

Authors:Heming Zhang, Tim Xu, Dekang Cao, Shunning Liang, Lars Schimmelpfennig, Levi Kaster, Di Huang, Carlos Cruchaga, Guangfu Li, Michael Province, Yixin Chen, Philip Payne, Fuhai Li
Title: OmniCellTOSG: The First Cell Text-Omic Signaling Graphs Dataset for Joint LLM and GNN Modeling
Abstract:
Complex cell signaling systems -- governed by varying protein abundances and interactions -- generate diverse cell types across organs. These systems evolve under influences such as age, sex, diet, environmental exposures, and diseases, making them challenging to decode given the involvement of tens of thousands of genes and proteins. Recently, hundreds of millions of single-cell omics data have provided a robust foundation for understanding these signaling networks within various cell subpopulations and conditions. Inspired by the success of large foundation models (for example, large language models and large vision models) pre-trained on massive datasets, we introduce OmniCellTOSG, the first dataset of cell text-omic signaling graphs (TOSGs). Each TOSG represents the signaling network of an individual or meta-cell and is labeled with information such as organ, disease, sex, age, and cell subtype. OmniCellTOSG offers two key contributions. First, it introduces a novel graph model that integrates human-readable annotations -- such as biological functions, cellular locations, signaling pathways, related diseases, and drugs -- with quantitative gene and protein abundance data, enabling graph reasoning to decode cell signaling. This approach calls for new joint models combining large language models and graph neural networks. Second, the dataset is built from single-cell RNA sequencing data of approximately 120 million cells from diverse tissues and conditions (healthy and diseased) and is fully compatible with PyTorch. This facilitates the development of innovative cell signaling models that could transform research in life sciences, healthcare, and precision medicine. The OmniCellTOSG dataset is continuously expanding and will be updated regularly. The dataset and code are available at https://github.com/FuhaiLiAiLab/OmniCellTOSG.

Authors:Georgios Hadjiantonis, Sarah Gillet, Marynel Vázquez, Iolanda Leite, Fethiye Irmak Dogan
Title: Let's move on: Topic Change in Robot-Facilitated Group Discussions
Abstract:
Robot-moderated group discussions have the potential to facilitate engaging and productive interactions among human participants. Previous work on topic management in conversational agents has predominantly focused on human engagement and topic personalization, with the agent having an active role in the discussion. Also, studies have shown the usefulness of including robots in groups, yet further exploration is still needed for robots to learn when to change the topic while facilitating discussions. Accordingly, our work investigates the suitability of machine-learning models and audiovisual non-verbal features in predicting appropriate topic changes. We utilized interactions between a robot moderator and human participants, which we annotated and used for extracting acoustic and body language-related features. We provide a detailed analysis of the performance of machine learning approaches using sequential and non-sequential data with different sets of features. The results indicate promising performance in classifying inappropriate topic changes, outperforming rule-based approaches. Additionally, acoustic features exhibited comparable performance and robustness compared to the complete set of multimodal features. Our annotated data is publicly available at https://github.com/ghadj/topic-change-robot-discussions-data-2024.

Authors:Jeffrey Li, Mohammadreza Armandpour, Iman Mirzadeh, Sachin Mehta, Vaishaal Shankar, Raviteja Vemulapalli, Samy Bengio, Oncel Tuzel, Mehrdad Farajtabar, Hadi Pouransari, Fartash Faghri
Title: TiC-LM: A Web-Scale Benchmark for Time-Continual LLM Pretraining
Abstract:
Large Language Models (LLMs) trained on historical web data inevitably become outdated. We investigate evaluation strategies and update methods for LLMs as new data becomes available. We introduce a web-scale dataset for time-continual pretraining of LLMs derived from 114 dumps of Common Crawl (CC) - orders of magnitude larger than previous continual language modeling benchmarks. We also design time-stratified evaluations across both general CC data and specific domains (Wikipedia, StackExchange, and code documentation) to assess how well various continual learning methods adapt to new data while retaining past knowledge. Our findings demonstrate that, on general CC data, autoregressive meta-schedules combined with a fixed-ratio replay of older data can achieve comparable held-out loss to re-training from scratch, while requiring significantly less computation (2.6x). However, the optimal balance between incorporating new data and replaying old data differs as replay is crucial to avoid forgetting on generic web data but less so on specific domains.

Authors:Zhonghang Li, Lianghao Xia, Xubin Ren, Jiabin Tang, Tianyi Chen, Yong Xu, Chao Huang
Title: Urban Computing in the Era of Large Language Models
Abstract:
Urban computing has emerged as a multidisciplinary field that harnesses data-driven technologies to address challenges and improve urban living. Traditional approaches, while beneficial, often face challenges with generalization, scalability, and contextual understanding. The advent of Large Language Models (LLMs) offers transformative potential in this domain. This survey explores the intersection of LLMs and urban computing, emphasizing the impact of LLMs in processing and analyzing urban data, enhancing decision-making, and fostering citizen engagement. We provide a concise overview of the evolution and core technologies of LLMs. Additionally, we survey their applications across key urban domains, such as transportation, public safety, and environmental monitoring, summarizing essential tasks and prior works in various urban contexts, while highlighting LLMs' functional roles and implementation patterns. Building on this, we propose potential LLM-based solutions to address unresolved challenges. To facilitate in-depth research, we compile a list of available datasets and tools applicable to diverse urban scenarios. Finally, we discuss the limitations of current approaches and outline future directions for advancing LLMs in urban computing.

Authors:Ilir Tahiraj, Markus Edinger, Dominik Kulmer, Markus Lienkamp
Title: CaLiV: LiDAR-to-Vehicle Calibration of Arbitrary Sensor Setups
Abstract:
In autonomous systems, sensor calibration is essential for safe and efficient navigation in dynamic environments. Accurate calibration is a prerequisite for reliable perception and planning tasks such as object detection and obstacle avoidance. Many existing LiDAR calibration methods require overlapping fields of view, while others use external sensing devices or postulate a feature-rich environment. In addition, Sensor-to-Vehicle calibration is not supported by the vast majority of calibration algorithms. In this work, we propose a novel target-based technique for extrinsic Sensor-to-Sensor and Sensor-to-Vehicle calibration of multi-LiDAR systems called CaLiV. This algorithm works for non-overlapping fields of view and does not require any external sensing devices. First, we apply motion to produce field of view overlaps and utilize a simple Unscented Kalman Filter to obtain vehicle poses. Then, we use the Gaussian mixture model-based registration framework GMMCalib to align the point clouds in a common calibration frame. Finally, we reduce the task of recovering the sensor extrinsics to a minimization problem. We show that both translational and rotational Sensor-to-Sensor errors can be solved accurately by our method. In addition, all Sensor-to-Vehicle rotation angles can also be calibrated with high accuracy. We validate the simulation results in real-world experiments. The code is open-source and available on https://github.com/TUMFTM/CaLiV.

Authors:Oliver Hahn, Christoph Reich, Nikita Araslanov, Daniel Cremers, Christian Rupprecht, Stefan Roth
Title: Scene-Centric Unsupervised Panoptic Segmentation
Abstract:
Unsupervised panoptic segmentation aims to partition an image into semantically meaningful regions and distinct object instances without training on manually annotated data. In contrast to prior work on unsupervised panoptic scene understanding, we eliminate the need for object-centric training data, enabling the unsupervised understanding of complex scenes. To that end, we present the first unsupervised panoptic method that directly trains on scene-centric imagery. In particular, we propose an approach to obtain high-resolution panoptic pseudo labels on complex scene-centric data, combining visual representations, depth, and motion cues. Utilizing both pseudo-label training and a panoptic self-training strategy yields a novel approach that accurately predicts panoptic segmentation of complex scenes without requiring any human annotations. Our approach significantly improves panoptic quality, e.g., surpassing the recent state of the art in unsupervised panoptic segmentation on Cityscapes by 9.4% points in PQ.

Authors:Jing Liu, Wenxuan Wang, Yisi Zhang, Yepeng Tang, Xingjian He, Longteng Guo, Tongtian Yue, Xinlong Wang
Title: Towards Unified Referring Expression Segmentation Across Omni-Level Visual Target Granularities
Abstract:
Referring expression segmentation (RES) aims at segmenting the entities' masks that match the descriptive language expression. While traditional RES methods primarily address object-level grounding, real-world scenarios demand a more versatile framework that can handle multiple levels of target granularity, such as multi-object, single object or part-level references. This introduces great challenges due to the diverse and nuanced ways users describe targets. However, existing datasets and models mainly focus on designing grounding specialists for object-level target localization, lacking the necessary data resources and unified frameworks for the more practical multi-grained RES. In this paper, we take a step further towards visual granularity unified RES task. To overcome the limitation of data scarcity, we introduce a new multi-granularity referring expression segmentation (MRES) task, alongside the RefCOCOm benchmark, which includes part-level annotations for advancing finer-grained visual understanding. In addition, we create MRES-32M, the largest visual grounding dataset, comprising over 32.2M masks and captions across 1M images, specifically designed for part-level vision-language grounding. To tackle the challenges of multi-granularity RES, we propose UniRES++, a unified multimodal large language model that integrates object-level and part-level RES tasks. UniRES++ incorporates targeted designs for fine-grained visual feature exploration. With the joint model architecture and parameters, UniRES++ achieves state-of-the-art performance across multiple benchmarks, including RefCOCOm for MRES, gRefCOCO for generalized RES, and RefCOCO, RefCOCO+, RefCOCOg for classic RES. To foster future research into multi-grained visual grounding, our RefCOCOm benchmark, MRES-32M dataset and model UniRES++ will be publicly available at https://github.com/Rubics-Xuan/MRES.

Authors:Yingyan Li, Yuqi Wang, Yang Liu, Jiawei He, Lue Fan, Zhaoxiang Zhang
Title: End-to-End Driving with Online Trajectory Evaluation via BEV World Model
Abstract:
End-to-end autonomous driving has achieved remarkable progress by integrating perception, prediction, and planning into a fully differentiable framework. Yet, to fully realize its potential, an effective online trajectory evaluation is indispensable to ensure safety. By forecasting the future outcomes of a given trajectory, trajectory evaluation becomes much more effective. This goal can be achieved by employing a world model to capture environmental dynamics and predict future states. Therefore, we propose an end-to-end driving framework WoTE, which leverages a BEV World model to predict future BEV states for Trajectory Evaluation. The proposed BEV world model is latency-efficient compared to image-level world models and can be seamlessly supervised using off-the-shelf BEV-space traffic simulators. We validate our framework on both the NAVSIM benchmark and the closed-loop Bench2Drive benchmark based on the CARLA simulator, achieving state-of-the-art performance. Code is released at https://github.com/liyingyanUCAS/WoTE.

Authors:Boshi Wang, Huan Sun
Title: Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure
Abstract:
Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we identify two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. We demonstrate that the skill of reversal unlocks a new kind of memory integration that enables models to solve large-scale arithmetic reasoning problems via parametric forward-chaining, outperforming frontier LLMs based on non-parametric memory and prolonged explicit reasoning.

Authors:Andrey Sidorenko, Michael Platzer, Mario Scriminaci, Paul Tiwald
Title: Benchmarking Synthetic Tabular Data: A Multi-Dimensional Evaluation Framework
Abstract:
Evaluating the quality of synthetic data remains a key challenge for ensuring privacy and utility in data-driven research. In this work, we present an evaluation framework that quantifies how well synthetic data replicates original distributional properties while ensuring privacy. The proposed approach employs a holdout-based benchmarking strategy that facilitates quantitative assessment through low- and high-dimensional distribution comparisons, embedding-based similarity measures, and nearest-neighbor distance metrics. The framework supports various data types and structures, including sequential and contextual information, and enables interpretable quality diagnostics through a set of standardized metrics. These contributions aim to support reproducibility and methodological consistency in benchmarking of synthetic data generation techniques. The code of the framework is available at https://github.com/mostly-ai/mostlyai-qa.

Authors:Yanzhou Su, Tianbin Li, Jiyao Liu, Chenglong Ma, Junzhi Ning, Cheng Tang, Sibo Ju, Jin Ye, Pengcheng Chen, Ming Hu, Shixiang Tang, Lihao Liu, Bin Fu, Wenqi Shao, Xiaowei Hu, Xiangwen Liao, Yuanfeng Ji, Junjun He
Title: GMAI-VL-R1: Harnessing Reinforcement Learning for Multimodal Medical Reasoning
Abstract:
Recent advances in general medical AI have made significant strides, but existing models often lack the reasoning capabilities needed for complex medical decision-making. This paper presents GMAI-VL-R1, a multimodal medical reasoning model enhanced by reinforcement learning (RL) to improve its reasoning abilities. Through iterative training, GMAI-VL-R1 optimizes decision-making, significantly boosting diagnostic accuracy and clinical support. We also develop a reasoning data synthesis method, generating step-by-step reasoning data via rejection sampling, which further enhances the model's generalization. Experimental results show that after RL training, GMAI-VL-R1 excels in tasks such as medical image diagnosis and visual question answering. While the model demonstrates basic memorization with supervised fine-tuning, RL is crucial for true generalization. Our work establishes new evaluation benchmarks and paves the way for future advancements in medical reasoning models. Code, data, and model will be released at \href{https://github.com/uni-medical/GMAI-VL-R1}{this link}.

Authors:Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese, Tejal Patwardhan
Title: PaperBench: Evaluating AI's Ability to Replicate AI Research
Abstract:
We introduce PaperBench, a benchmark evaluating the ability of AI agents to replicate state-of-the-art AI research. Agents must replicate 20 ICML 2024 Spotlight and Oral papers from scratch, including understanding paper contributions, developing a codebase, and successfully executing experiments. For objective evaluation, we develop rubrics that hierarchically decompose each replication task into smaller sub-tasks with clear grading criteria. In total, PaperBench contains 8,316 individually gradable tasks. Rubrics are co-developed with the author(s) of each ICML paper for accuracy and realism. To enable scalable evaluation, we also develop an LLM-based judge to automatically grade replication attempts against rubrics, and assess our judge's performance by creating a separate benchmark for judges. We evaluate several frontier models on PaperBench, finding that the best-performing tested agent, Claude 3.5 Sonnet (New) with open-source scaffolding, achieves an average replication score of 21.0%. Finally, we recruit top ML PhDs to attempt a subset of PaperBench, finding that models do not yet outperform the human baseline. We open-source our code (https://github.com/openai/preparedness) to facilitate future research in understanding the AI engineering capabilities of AI agents.

Authors:Minhu Park, Hongseok Oh, Eunkyung Choi, Wonseok Hwang
Title: LRAGE: Legal Retrieval Augmented Generation Evaluation Tool
Abstract:
Recently, building retrieval-augmented generation (RAG) systems to enhance the capability of large language models (LLMs) has become a common practice. Especially in the legal domain, previous judicial decisions play a significant role under the doctrine of stare decisis which emphasizes the importance of making decisions based on (retrieved) prior documents. However, the overall performance of RAG system depends on many components: (1) retrieval corpora, (2) retrieval algorithms, (3) rerankers, (4) LLM backbones, and (5) evaluation metrics. Here we propose LRAGE, an open-source tool for holistic evaluation of RAG systems focusing on the legal domain. LRAGE provides GUI and CLI interfaces to facilitate seamless experiments and investigate how changes in the aforementioned five components affect the overall accuracy. We validated LRAGE using multilingual legal benches including Korean (KBL), English (LegalBench), and Chinese (LawBench) by demonstrating how the overall accuracy changes when varying the five components mentioned above. The source code is available at https://github.com/hoorangyee/LRAGE.

Authors:Nusrat Munia, Abdullah-Al-Zubaer Imran
Title: Prompting Medical Vision-Language Models to Mitigate Diagnosis Bias by Generating Realistic Dermoscopic Images
Abstract:
Artificial Intelligence (AI) in skin disease diagnosis has improved significantly, but a major concern is that these models frequently show biased performance across subgroups, especially regarding sensitive attributes such as skin color. To address these issues, we propose a novel generative AI-based framework, namely, Dermatology Diffusion Transformer (DermDiT), which leverages text prompts generated via Vision Language Models and multimodal text-image learning to generate new dermoscopic images. We utilize large vision language models to generate accurate and proper prompts for each dermoscopic image which helps to generate synthetic images to improve the representation of underrepresented groups (patient, disease, etc.) in highly imbalanced datasets for clinical diagnoses. Our extensive experimentation showcases the large vision language models providing much more insightful representations, that enable DermDiT to generate high-quality images. Our code is available at https://github.com/Munia03/DermDiT

Authors:Huayang Huang, Xiangye Jin, Jiaxu Miao, Yu Wu
Title: Implicit Bias Injection Attacks against Text-to-Image Diffusion Models
Abstract:
The proliferation of text-to-image diffusion models (T2I DMs) has led to an increased presence of AI-generated images in daily life. However, biased T2I models can generate content with specific tendencies, potentially influencing people's perceptions. Intentional exploitation of these biases risks conveying misleading information to the public. Current research on bias primarily addresses explicit biases with recognizable visual patterns, such as skin color and gender. This paper introduces a novel form of implicit bias that lacks explicit visual features but can manifest in diverse ways across various semantic contexts. This subtle and versatile nature makes this bias challenging to detect, easy to propagate, and adaptable to a wide range of scenarios. We further propose an implicit bias injection attack framework (IBI-Attacks) against T2I diffusion models by precomputing a general bias direction in the prompt embedding space and adaptively adjusting it based on different inputs. Our attack module can be seamlessly integrated into pre-trained diffusion models in a plug-and-play manner without direct manipulation of user input or model retraining. Extensive experiments validate the effectiveness of our scheme in introducing bias through subtle and diverse modifications while preserving the original semantics. The strong concealment and transferability of our attack across various scenarios further underscore the significance of our approach. Code is available at https://github.com/Hannah1102/IBI-attacks.

Authors:Kun Ouyang, Yuanxin Liu, Haoning Wu, Yi Liu, Hao Zhou, Jie Zhou, Fandong Meng, Xu Sun
Title: SpaceR: Reinforcing MLLMs in Video Spatial Reasoning
Abstract:
Video spatial reasoning, which involves inferring the underlying spatial structure from observed video frames, poses a significant challenge for existing Multimodal Large Language Models (MLLMs). This limitation stems primarily from 1) the absence of high-quality datasets for this task, and 2) the lack of effective training strategies to develop spatial reasoning capabilities. Motivated by the success of Reinforcement Learning with Verifiable Reward (RLVR) in unlocking LLM reasoning abilities, this work aims to improve MLLMs in video spatial reasoning through the RLVR paradigm. To this end, we introduce the $\textbf{SpaceR}$ framework. First, we present $\textbf{SpaceR-151k}$, a dataset with 91k questions spanning diverse spatial reasoning scenarios with verifiable answers, and 60k samples for maintaining general multimodal understanding. Second, we propose $\textbf{Spatially-Guided RLVR (SG-RLVR)}$, a novel reinforcement learning approach that extends Group Relative Policy Optimization (GRPO) with a novel map imagination mechanism, which encourages the model to infer spatial layouts in the thinking process, thereby facilitating more effective spatial reasoning. Extensive experiments demonstrate that SpaceR achieves state-of-the-art performance on spatial reasoning benchmarks (e.g., VSI-Bench, STI-Bench, and SPAR-Bench), while maintaining competitive results on video understanding benchmarks (e.g., Video-MME, TempCompass, and LongVideoBench). Remarkably, SpaceR surpasses the advanced GPT-4o by 11.6\% accuracy on VSI-Bench and is on par with the leading proprietary model Gemini-2.0-Flash, highlighting the effectiveness of our SpaceR-151k dataset and SG-RLVR in reinforcing spatial reasoning ability of MLLMs. Code, model, and dataset are available at https://github.com/OuyangKun10/SpaceR.

Authors:Neville K. Kitson, Anthony C. Constantinou
Title: Stable Structure Learning with HC-Stable and Tabu-Stable Algorithms
Abstract:
Many Bayesian Network structure learning algorithms are unstable, with the learned graph sensitive to arbitrary dataset artifacts, such as the ordering of columns (i.e., variable order). PC-Stable attempts to address this issue for the widely-used PC algorithm, prompting researchers to use the "stable" version instead. However, this problem seems to have been overlooked for score-based algorithms. In this study, we show that some widely-used score-based algorithms, as well as hybrid and constraint-based algorithms, including PC-Stable, suffer from the same issue. We propose a novel solution for score-based greedy hill-climbing that eliminates instability by determining a stable node order, leading to consistent results regardless of variable ordering. Two implementations, HC-Stable and Tabu-Stable, are introduced. Tabu-Stable achieves the highest BIC scores across all networks, and the highest accuracy for categorical networks. These results highlight the importance of addressing instability in structure learning and provide a robust and practical approach for future applications. This extends the scope and impact of our previous work presented at Probabilistic Graphical Models 2024 by incorporating continuous variables. The implementation, along with usage instructions, is freely available on GitHub at https://github.com/causal-iq/discovery.

Authors:Kaan Karaman, Yuchang Jiang, Damien Robert, Vivien Sainte Fare Garnot, Maria João Santos, Jan Dirk Wegner
Title: GSR4B: Biomass Map Super-Resolution with Sentinel-1/2 Guidance
Abstract:
Accurate Above-Ground Biomass (AGB) mapping at both large scale and high spatio-temporal resolution is essential for applications ranging from climate modeling to biodiversity assessment, and sustainable supply chain monitoring. At present, fine-grained AGB mapping relies on costly airborne laser scanning acquisition campaigns usually limited to regional scales. Initiatives such as the ESA CCI map attempt to generate global biomass products from diverse spaceborne sensors but at a coarser resolution. To enable global, high-resolution (HR) mapping, several works propose to regress AGB from HR satellite observations such as ESA Sentinel-1/2 images. We propose a novel way to address HR AGB estimation, by leveraging both HR satellite observations and existing low-resolution (LR) biomass products. We cast this problem as Guided Super-Resolution (GSR), aiming at upsampling LR biomass maps (sources) from $100$ to $10$ m resolution, using auxiliary HR co-registered satellite images (guides). We compare super-resolving AGB maps with and without guidance, against direct regression from satellite images, on the public BioMassters dataset. We observe that Multi-Scale Guidance (MSG) outperforms direct regression both for regression ($-780$ t/ha RMSE) and perception ($+2.0$ dB PSNR) metrics, and better captures high-biomass values, without significant computational overhead. Interestingly, unlike the RGB+Depth setting they were originally designed for, our best-performing AGB GSR approaches are those that most preserve the guide image texture. Our results make a strong case for adopting the GSR framework for accurate HR biomass mapping at scale. Our code and model weights are made publicly available (https://github.com/kaankaramanofficial/GSR4B).

Authors:Taehan Lee, Hyukjun Lee
Title: Token Pruning in Audio Transformers: Optimizing Performance and Decoding Patch Importance
Abstract:
Vision Transformers (ViTs) have achieved state-of-the-art performance across various computer vision tasks, but their high computational cost remains a challenge. Token pruning has been proposed to reduce this cost by selectively removing less important tokens. While effective in vision tasks by discarding non-object regions, applying this technique to audio tasks presents unique challenges, as distinguishing relevant from irrelevant regions in time-frequency representations is less straightforward. In this study, for the first time, we applied token pruning to ViT-based audio classification models using Mel-spectrograms and analyzed the trade-offs between model performance and computational cost: TopK token pruning can reduce MAC operations of AudioMAE and AST by 30-40%, with less than a 1% drop in accuracy. Our analysis reveals that while high-intensity or high-variation tokens contribute significantly to model accuracy, low-intensity or low variation tokens also remain important when token pruning is applied; pruning solely based on the intensity or variation of signals in a patch leads to a noticeable drop in accuracy. We support our claim by measuring high correlation between attention scores and these statistical features and by showing retained tokens consistently receive distinct attention compared to pruned ones. We also show that AudioMAE retains more low-intensity tokens than AST. This can be explained by AudioMAE's self-supervised reconstruction objective, which encourages attention to all patches, whereas AST's supervised training focuses on label-relevant tokens.

Authors:Bo-Kai Ruan, Yi-Zeng Fang, Hong-Han Shuai, Juinn-Dar Huang
Title: Anomaly Detection for Hybrid Butterfly Subspecies via Probability Filtering
Abstract:
Detecting butterfly hybrids requires knowledge of the parent subspecies, and the process can be tedious when encountering a new subspecies. This study focuses on a specific scenario where a model trained to recognize hybrid species A can generalize to species B when B biologically mimics A. Since species A and B share similar patterns, we leverage BioCLIP as our feature extractor to capture features based on their taxonomy. Consequently, the algorithm designed for species A can be transferred to B, as their hybrid and non-hybrid patterns exhibit similar relationships. To determine whether a butterfly is a hybrid, we adopt proposed probability filtering and color jittering to augment and simulate the mimicry. With these approaches, we achieve second place in the official development phase. Our code is publicly available at https://github.com/Justin900429/NSF-HDR-Challenge.

Authors:Yiting Lu, Xin Li, Haoning Wu, Bingchen Li, Weisi Lin, Zhibo Chen
Title: Q-Adapt: Adapting LMM for Visual Quality Assessment with Progressive Instruction Tuning
Abstract:
The rapid advancement of Large Multi-modal Foundation Models (LMM) has paved the way for the possible Explainable Image Quality Assessment (EIQA) with instruction tuning from two perspectives: overall quality explanation, and attribute-wise perception answering. However, existing works usually overlooked the conflicts between these two types of perception explanations during joint instruction tuning, leading to insufficient perception understanding. To mitigate this, we propose a new paradigm for perception-oriented instruction tuning, i.e., Q-Adapt, which aims to eliminate the conflicts and achieve the synergy between these two EIQA tasks when adapting LMM, resulting in enhanced multi-faceted explanations of IQA. Particularly, we propose a progressive instruction tuning strategy by dividing the adaption process of LMM for EIQA into two stages, where the first stage empowers the LMM with universal perception knowledge tailored for two tasks using an efficient transfer learning strategy, i.e., LoRA, and the second stage introduces the instruction-adaptive visual prompt tuning to dynamically adapt visual features for the different instructions from two tasks. In this way, our proposed Q-Adapt can achieve a lightweight visual quality evaluator, demonstrating comparable performance and, in some instances, superior results across perceptual-related benchmarks and commonly-used IQA databases. The source code is publicly available at https://github.com/yeppp27/Q-Adapt.

Authors:Changshuo Zhang, Zihan Lin, Shukai Liu, Yongqi Liu, Han Li
Title: Comment Staytime Prediction with LLM-enhanced Comment Understanding
Abstract:
In modern online streaming platforms, the comments section plays a critical role in enhancing the overall user experience. Understanding user behavior within the comments section is essential for comprehensive user interest modeling. A key factor of user engagement is staytime, which refers to the amount of time that users browse and post comments. Existing watchtime prediction methods struggle to adapt to staytime prediction, overlooking interactions with individual comments and their interrelation. In this paper, we present a micro-video recommendation dataset with video comments (named as KuaiComt) which is collected from Kuaishou platform. correspondingly, we propose a practical framework for comment staytime prediction with LLM-enhanced Comment Understanding (LCU). Our framework leverages the strong text comprehension capabilities of large language models (LLMs) to understand textual information of comments, while also incorporating fine-grained comment ranking signals as auxiliary tasks. The framework is two-staged: first, the LLM is fine-tuned using domain-specific tasks to bridge the video and the comments; second, we incorporate the LLM outputs into the prediction model and design two comment ranking auxiliary tasks to better understand user preference. Extensive offline experiments demonstrate the effectiveness of our framework, showing significant improvements on the task of comment staytime prediction. Additionally, online A/B testing further validates the practical benefits on industrial scenario. Our dataset KuaiComt (https://github.com/lyingCS/KuaiComt.github.io) and code for LCU (https://github.com/lyingCS/LCU) are fully released.

Authors:Yuehui Qiu, Dandan Shan, Yining Wang, Pei Dong, Dijia Wu, Xinnian Yang, Qingqi Hong, Dinggang Shen
Title: A topology-preserving three-stage framework for fully-connected coronary artery extraction
Abstract:
Coronary artery extraction is a crucial prerequisite for computer-aided diagnosis of coronary artery disease. Accurately extracting the complete coronary tree remains challenging due to several factors, including presence of thin distal vessels, tortuous topological structures, and insufficient contrast. These issues often result in over-segmentation and under-segmentation in current segmentation methods. To address these challenges, we propose a topology-preserving three-stage framework for fully-connected coronary artery extraction. This framework includes vessel segmentation, centerline reconnection, and missing vessel reconstruction. First, we introduce a new centerline enhanced loss in the segmentation process. Second, for the broken vessel segments, we further propose a regularized walk algorithm to integrate distance, probabilities predicted by a centerline classifier, and directional cosine similarity, for reconnecting the centerlines. Third, we apply implicit neural representation and implicit modeling, to reconstruct the geometric model of the missing vessels. Experimental results show that our proposed framework outperforms existing methods, achieving Dice scores of 88.53\% and 85.07\%, with Hausdorff Distances (HD) of 1.07mm and 1.63mm on ASOCA and PDSCA datasets, respectively. Code will be available at https://github.com/YH-Qiu/CorSegRec.

Authors:Jijun Xiang, Xuan Zhu, Xianqi Wang, Yu Wang, Hong Zhang, Fei Guo, Xin Yang
Title: DEPTHOR: Depth Enhancement from a Practical Light-Weight dToF Sensor and RGB Image
Abstract:
Depth enhancement, which uses RGB images as guidance to convert raw signals from dToF into high-precision, dense depth maps, is a critical task in computer vision. Although existing super-resolution-based methods show promising results on public datasets, they often rely on idealized assumptions like accurate region correspondences and reliable dToF inputs, overlooking calibration errors that cause misalignment and anomaly signals inherent to dToF imaging, limiting real-world applicability. To address these challenges, we propose a novel completion-based method, named DEPTHOR, featuring advances in both the training strategy and model architecture. First, we propose a method to simulate real-world dToF data from the accurate ground truth in synthetic datasets to enable noise-robust training. Second, we design a novel network that incorporates monocular depth estimation (MDE), leveraging global depth relationships and contextual information to improve prediction in challenging regions. On the ZJU-L5 dataset, our training strategy significantly enhances depth completion models, achieving results comparable to depth super-resolution methods, while our model achieves state-of-the-art results, improving Rel and RMSE by 27% and 18%, respectively. On a more challenging set of dToF samples we collected, our method outperforms SOTA methods on preliminary stereo-based GT, improving Rel and RMSE by 23% and 22%, respectively. Our Code is available at https://github.com/ShadowBbBb/Depthor

Authors:Xinyi Li, Shenghai Yuan, Haoxin Cai, Shunan Lu, Wenhua Wang, Jianqi Liu
Title: LL-Localizer: A Life-Long Localization System based on Dynamic i-Octree
Abstract:
This paper proposes an incremental voxel-based life-long localization method, LL-Localizer, which enables robots to localize robustly and accurately in multi-session mode using prior maps. Meanwhile, considering that it is difficult to be aware of changes in the environment in the prior map and robots may traverse between mapped and unmapped areas during actual operation, we will update the map when needed according to the established strategies through incremental voxel map. Besides, to ensure high performance in real-time and facilitate our map management, we utilize Dynamic i-Octree, an efficient organization of 3D points based on Dynamic Octree to load local map and update the map during the robot's operation. The experiments show that our system can perform stable and accurate localization comparable to state-of-the-art LIO systems. And even if the environment in the prior map changes or the robots traverse between mapped and unmapped areas, our system can still maintain robust and accurate localization without any distinction. Our demo can be found on Blibili (https://www.bilibili.com/video/BV1faZHYCEkZ) and youtube (https://youtu.be/UWn7RCb9kA8) and the program will be available at https://github.com/M-Evanovic/LL-Localizer.

Authors:Dandan Shan, Zihan Li, Yunxiang Li, Qingde Li, Jie Tian, Qingqi Hong
Title: STPNet: Scale-aware Text Prompt Network for Medical Image Segmentation
Abstract:
Accurate segmentation of lesions plays a critical role in medical image analysis and diagnosis. Traditional segmentation approaches that rely solely on visual features often struggle with the inherent uncertainty in lesion distribution and size. To address these issues, we propose STPNet, a Scale-aware Text Prompt Network that leverages vision-language modeling to enhance medical image segmentation. Our approach utilizes multi-scale textual descriptions to guide lesion localization and employs retrieval-segmentation joint learning to bridge the semantic gap between visual and linguistic modalities. Crucially, STPNet retrieves relevant textual information from a specialized medical text repository during training, eliminating the need for text input during inference while retaining the benefits of cross-modal learning. We evaluate STPNet on three datasets: COVID-Xray, COVID-CT, and Kvasir-SEG. Experimental results show that our vision-language approach outperforms state-of-the-art segmentation methods, demonstrating the effectiveness of incorporating textual semantic knowledge into medical image analysis. The code has been made publicly on https://github.com/HUANGLIZI/STPNet.

Authors:Luca Ciampi, Gabriele Lagani, Giuseppe Amato, Fabrizio Falchi
Title: Semi-Supervised Biomedical Image Segmentation via Diffusion Models and Teacher-Student Co-Training
Abstract:
Supervised deep learning for semantic segmentation has achieved excellent results in accurately identifying anatomical and pathological structures in medical images. However, it often requires large annotated training datasets, which limits its scalability in clinical settings. To address this challenge, semi-supervised learning is a well-established approach that leverages both labeled and unlabeled data. In this paper, we introduce a novel semi-supervised teacher-student framework for biomedical image segmentation, inspired by the recent success of generative models. Our approach leverages denoising diffusion probabilistic models (DDPMs) to generate segmentation masks by progressively refining noisy inputs conditioned on the corresponding images. The teacher model is first trained in an unsupervised manner using a cycle-consistency constraint based on noise-corrupted image reconstruction, enabling it to generate informative semantic masks. Subsequently, the teacher is integrated into a co-training process with a twin-student network. The student learns from ground-truth labels when available and from teacher-generated pseudo-labels otherwise, while the teacher continuously improves its pseudo-labeling capabilities. Finally, to further enhance performance, we introduce a multi-round pseudo-label generation strategy that iteratively improves the pseudo-labeling process. We evaluate our approach on multiple biomedical imaging benchmarks, spanning multiple imaging modalities and segmentation tasks. Experimental results show that our method consistently outperforms state-of-the-art semi-supervised techniques, highlighting its effectiveness in scenarios with limited annotated data. The code to replicate our experiments can be found at https://github.com/ciampluca/diffusion_semi_supervised_biomedical_image_segmentation

Authors:Zixuan Wang, Duo Peng, Feng Chen, Yuwei Yang, Yinjie Lei
Title: Training-free Dense-Aligned Diffusion Guidance for Modular Conditional Image Synthesis
Abstract:
Conditional image synthesis is a crucial task with broad applications, such as artistic creation and virtual reality. However, current generative methods are often task-oriented with a narrow scope, handling a restricted condition with constrained applicability. In this paper, we propose a novel approach that treats conditional image synthesis as the modular combination of diverse fundamental condition units. Specifically, we divide conditions into three primary units: text, layout, and drag. To enable effective control over these conditions, we design a dedicated alignment module for each. For the text condition, we introduce a Dense Concept Alignment (DCA) module, which achieves dense visual-text alignment by drawing on diverse textual concepts. For the layout condition, we propose a Dense Geometry Alignment (DGA) module to enforce comprehensive geometric constraints that preserve the spatial configuration. For the drag condition, we introduce a Dense Motion Alignment (DMA) module to apply multi-level motion regularization, ensuring that each pixel follows its desired trajectory without visual artifacts. By flexibly inserting and combining these alignment modules, our framework enhances the model's adaptability to diverse conditional generation tasks and greatly expands its application range. Extensive experiments demonstrate the superior performance of our framework across a variety of conditions, including textual description, segmentation mask (bounding box), drag manipulation, and their combinations. Code is available at https://github.com/ZixuanWang0525/DADG.

Authors:Yongjun He, Roger Waleffe, Zhichao Han, Johnu George, Binhang Yuan, Zitao Zhang, Yinan Shan, Yang Zhao, Debojyoti Dutta, Theodoros Rekatsinas, Ce Zhang
Title: MLKV: Efficiently Scaling up Large Embedding Model Training with Disk-based Key-Value Storage
Abstract:
Many modern machine learning (ML) methods rely on embedding models to learn vector representations (embeddings) for a set of entities (embedding tables). As increasingly diverse ML applications utilize embedding models and embedding tables continue to grow in size and number, there has been a surge in the ad-hoc development of specialized frameworks targeted to train large embedding models for specific tasks. Although the scalability issues that arise in different embedding model training tasks are similar, each of these frameworks independently reinvents and customizes storage components for specific tasks, leading to substantial duplicated engineering efforts in both development and deployment. This paper presents MLKV, an efficient, extensible, and reusable data storage framework designed to address the scalability challenges in embedding model training, specifically data stall and staleness. MLKV augments disk-based key-value storage by democratizing optimizations that were previously exclusive to individual specialized frameworks and provides easy-to-use interfaces for embedding model training tasks. Extensive experiments on open-source workloads, as well as applications in eBay's payment transaction risk detection and seller payment risk detection, show that MLKV outperforms offloading strategies built on top of industrial-strength key-value stores by 1.6-12.6x. MLKV is open-source at https://github.com/llm-db/MLKV.

Authors:Soumyya Kanti Datta, Shan Jia, Siwei Lyu
Title: Detecting Lip-Syncing Deepfakes: Vision Temporal Transformer for Analyzing Mouth Inconsistencies
Abstract:
Deepfakes are AI-generated media in which the original content is digitally altered to create convincing but manipulated images, videos, or audio. Among the various types of deepfakes, lip-syncing deepfakes are one of the most challenging deepfakes to detect. In these videos, a person's lip movements are synthesized to match altered or entirely new audio using AI models. Therefore, unlike other types of deepfakes, the artifacts in lip-syncing deepfakes are confined to the mouth region, making them more subtle and, thus harder to discern. In this paper, we propose LIPINC-V2, a novel detection framework that leverages a combination of vision temporal transformer with multihead cross-attention to detect lip-syncing deepfakes by identifying spatiotemporal inconsistencies in the mouth region. These inconsistencies appear across adjacent frames and persist throughout the video. Our model can successfully capture both short-term and long-term variations in mouth movement, enhancing its ability to detect these inconsistencies. Additionally, we created a new lip-syncing deepfake dataset, LipSyncTIMIT, which was generated using five state-of-the-art lip-syncing models to simulate real-world scenarios. Extensive experiments on our proposed LipSyncTIMIT dataset and two other benchmark deepfake datasets demonstrate that our model achieves state-of-the-art performance. The code and the dataset are available at https://github.com/skrantidatta/LIPINC-V2 .

Authors:Athena Wen, Tanush Patil, Ansh Saxena, Yicheng Fu, Sean O'Brien, Kevin Zhu
Title: FAIRE: Assessing Racial and Gender Bias in AI-Driven Resume Evaluations
Abstract:
In an era where AI-driven hiring is transforming recruitment practices, concerns about fairness and bias have become increasingly important. To explore these issues, we introduce a benchmark, FAIRE (Fairness Assessment In Resume Evaluation), to test for racial and gender bias in large language models (LLMs) used to evaluate resumes across different industries. We use two methods-direct scoring and ranking-to measure how model performance changes when resumes are slightly altered to reflect different racial or gender identities. Our findings reveal that while every model exhibits some degree of bias, the magnitude and direction vary considerably. This benchmark provides a clear way to examine these differences and offers valuable insights into the fairness of AI-based hiring tools. It highlights the urgent need for strategies to reduce bias in AI-driven recruitment. Our benchmark code and dataset are open-sourced at our repository: https://github.com/athenawen/FAIRE-Fairness-Assessment-In-Resume-Evaluation.git.

Authors:Korbinian Moller, Truls Nyberg, Jana Tumova, Johannes Betz
Title: Pedestrian-Aware Motion Planning for Autonomous Driving in Complex Urban Scenarios
Abstract:
Motion planning in uncertain environments like complex urban areas is a key challenge for autonomous vehicles (AVs). The aim of our research is to investigate how AVs can navigate crowded, unpredictable scenarios with multiple pedestrians while maintaining a safe and efficient vehicle behavior. So far, most research has concentrated on static or deterministic traffic participant behavior. This paper introduces a novel algorithm for motion planning in crowded spaces by combining social force principles for simulating realistic pedestrian behavior with a risk-aware motion planner. We evaluate this new algorithm in a 2D simulation environment to rigorously assess AV-pedestrian interactions, demonstrating that our algorithm enables safe, efficient, and adaptive motion planning, particularly in highly crowded urban environments - a first in achieving this level of performance. This study has not taken into consideration real-time constraints and has been shown only in simulation so far. Further studies are needed to investigate the novel algorithm in a complete software stack for AVs on real cars to investigate the entire perception, planning and control pipeline in crowded scenarios. We release the code developed in this research as an open-source resource for further studies and development. It can be accessed at the following link: https://github.com/TUM-AVS/PedestrianAwareMotionPlanning

Authors:Korbinian Moller, Luis Schwarzmeier, Johannes Betz
Title: From Shadows to Safety: Occlusion Tracking and Risk Mitigation for Urban Autonomous Driving
Abstract:
Autonomous vehicles (AVs) must navigate dynamic urban environments where occlusions and perception limitations introduce significant uncertainties. This research builds upon and extends existing approaches in risk-aware motion planning and occlusion tracking to address these challenges. While prior studies have developed individual methods for occlusion tracking and risk assessment, a comprehensive method integrating these techniques has not been fully explored. We, therefore, enhance a phantom agent-centric model by incorporating sequential reasoning to track occluded areas and predict potential hazards. Our model enables realistic scenario representation and context-aware risk evaluation by modeling diverse phantom agents, each with distinct behavior profiles. Simulations demonstrate that the proposed approach improves situational awareness and balances proactive safety with efficient traffic flow. While these results underline the potential of our method, validation in real-world scenarios is necessary to confirm its feasibility and generalizability. By utilizing and advancing established methodologies, this work contributes to safer and more reliable AV planning in complex urban environments. To support further research, our method is available as open-source software at: https://github.com/TUM-AVS/OcclusionAwareMotionPlanning

Authors:Kecen Li, Chen Gong, Xiaochen Li, Yuzhong Zhao, Xinwen Hou, Tianhao Wang
Title: From Easy to Hard: Building a Shortcut for Differentially Private Image Synthesis
Abstract:
Differentially private (DP) image synthesis aims to generate synthetic images from a sensitive dataset, alleviating the privacy leakage concerns of organizations sharing and utilizing synthetic images. Although previous methods have significantly progressed, especially in training diffusion models on sensitive images with DP Stochastic Gradient Descent (DP-SGD), they still suffer from unsatisfactory performance. In this work, inspired by curriculum learning, we propose a two-stage DP image synthesis framework, where diffusion models learn to generate DP synthetic images from easy to hard. Unlike existing methods that directly use DP-SGD to train diffusion models, we propose an easy stage in the beginning, where diffusion models learn simple features of the sensitive images. To facilitate this easy stage, we propose to use `central images', simply aggregations of random samples of the sensitive dataset. Intuitively, although those central images do not show details, they demonstrate useful characteristics of all images and only incur minimal privacy costs, thus helping early-phase model training. We conduct experiments to present that on the average of four investigated image datasets, the fidelity and utility metrics of our synthetic images are 33.1% and 2.1% better than the state-of-the-art method.

Authors:Chang-Bin Zhang, Jinhong Ni, Yujie Zhong, Kai Han
Title: v-CLR: View-Consistent Learning for Open-World Instance Segmentation
Abstract:
In this paper, we address the challenging problem of open-world instance segmentation. Existing works have shown that vanilla visual networks are biased toward learning appearance information, \eg texture, to recognize objects. This implicit bias causes the model to fail in detecting novel objects with unseen textures in the open-world setting. To address this challenge, we propose a learning framework, called view-Consistent LeaRning (v-CLR), which aims to enforce the model to learn appearance-invariant representations for robust instance segmentation. In v-CLR, we first introduce additional views for each image, where the texture undergoes significant alterations while preserving the image's underlying structure. We then encourage the model to learn the appearance-invariant representation by enforcing the consistency between object features across different views, for which we obtain class-agnostic object proposals using off-the-shelf unsupervised models that possess strong object-awareness. These proposals enable cross-view object feature matching, greatly reducing the appearance dependency while enhancing the object-awareness. We thoroughly evaluate our method on public benchmarks under both cross-class and cross-dataset settings, achieving state-of-the-art performance. Project page: https://visual-ai.github.io/vclr

Authors:Zhe Jiang, Sam Ainsworth, Timothy Jones
Title: FireGuard: A Generalized Microarchitecture for Fine-Grained Security Analysis on OoO Superscalar Cores
Abstract:
High-performance security guarantees rely on hardware support. Generic programmable support for fine-grained instruction analysis has gained broad interest in the literature as a fundamental building block for the security of future processors. Yet, implementation in real out-of-order (OoO) superscalar processors presents tough challenges that cannot be explored in highly abstract simulators. We detail the challenges of implementing complex programmable pathways without critical paths or contention. We then introduce FireGuard, the first implementation of fine-grained instruction analysis on a real OoO superscalar processor. We establish an end-to-end system, including microarchitecture, SoC, ISA and programming model. Experiments show that our solution simultaneously ensures both security and performance of the system, with parallel scalability. We examine the feasibility of building FireGuard into modern SoCs: Apple's M1-Pro, Huawei's Kirin-960, and Intel's i7-12700F, where less than 1% silicon area is introduced. The Repo. of FireGuard's source code: https://github.com/SEU-ACAL/reproduce-FireGuard-DAC-25.

Authors:Lin Zhang, Zhouhong Gu, Suhang Zheng, Tao Wang, Tianyu Li, Hongwei Feng, Yanghua Xiao
Title: LITE: LLM-Impelled efficient Taxonomy Evaluation
Abstract:
This paper presents LITE, an LLM-based evaluation method designed for efficient and flexible assessment of taxonomy quality. To address challenges in large-scale taxonomy evaluation, such as efficiency, fairness, and consistency, LITE adopts a top-down hierarchical evaluation strategy, breaking down the taxonomy into manageable substructures and ensuring result reliability through cross-validation and standardized input formats. LITE also introduces a penalty mechanism to handle extreme cases and provides both quantitative performance analysis and qualitative insights by integrating evaluation metrics closely aligned with task objectives. Experimental results show that LITE demonstrates high reliability in complex evaluation tasks, effectively identifying semantic errors, logical contradictions, and structural flaws in taxonomies, while offering directions for improvement. Code is available at https://github.com/Zhang-l-i-n/TAXONOMY_DETECT .

Authors:Khoa A. Tran, John V. Pearson, Nicola Waddell
Title: xML-workFlow: an end-to-end explainable scikit-learn workflow for rapid biomedical experimentation
Abstract:
Motivation: Building and iterating machine learning models is often a resource-intensive process. In biomedical research, scientific codebases can lack scalability and are not easily transferable to work beyond what they were intended. xML-workFlow addresses this issue by providing a rapid, robust, and traceable end-to-end workflow that can be adapted to any ML project with minimal code rewriting. Results: We show a practical, end-to-end workflow that integrates scikit-learn, MLflow, and SHAP. This template significantly reduces the time and effort required to build and iterate on ML models, addressing the common challenges of scalability and reproducibility in biomedical research. Adapting our template may save bioinformaticians time in development and enables biomedical researchers to deploy ML projects. Availability and implementation: xML-workFlow is available at https://github.com/MedicalGenomicsLab/xML-workFlow.

Authors:Zhe Jiang, Minli Liao, Sam Ainsworth, Dean You, Timothy Jones
Title: MEEK: Re-thinking Heterogeneous Parallel Error Detection Architecture for Real-World OoO Superscalar Processors
Abstract:
Heterogeneous parallel error detection is an approach to achieving fault-tolerant processors, leveraging multiple power-efficient cores to re-execute software originally run on a high-performance core. Yet, its complex components, gathering data cross-chip from many parts of the core, raise questions of how to build it into commodity cores without heavy design invasion and extensive re-engineering. We build the first full-RTL design, MEEK, into an open-source SoC, from microarchitecture and ISA to the OS and programming model. We identify and solve bottlenecks and bugs overlooked in previous work, and demonstrate that MEEK offers microsecond-level detection capacity with affordable overheads. By trading off architectural functionalities across codesigned hardware-software layers, MEEK features only light changes to a mature out-of-order superscalar core, simple coordinating software layers, and a few lines of operating-system code. The Repo. of MEEK's source code: https://github.com/SEU-ACAL/reproduce-MEEK-DAC-25.

Authors:Jiaru Zou, Dongqi Fu, Sirui Chen, Xinrui He, Zihao Li, Yada Zhu, Jiawei Han, Jingrui He
Title: RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking
Abstract:
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating them with an external knowledge base to improve the answer relevance and accuracy. In real-world scenarios, beyond pure text, a substantial amount of knowledge is stored in tables, and user questions often require retrieving answers that are distributed across multiple tables. Retrieving knowledge from a table corpora (i.e., various individual tables) for a question remains nascent, at least, for (i) how to understand intra- and inter-table knowledge effectively, (ii) how to filter unnecessary tables and how to retrieve the most relevant tables efficiently, (iii) how to prompt LLMs to infer over the retrieval, (iv) how to evaluate the corresponding performance in a realistic setting. Facing the above challenges, in this paper, we first propose a table-corpora-aware RAG framework, named T-RAG, which consists of the hierarchical memory index, multi-stage retrieval, and graph-aware prompting for effective and efficient table knowledge retrieval and inference. Further, we first develop a multi-table question answering benchmark named MultiTableQA, which spans 3 different task types, 57,193 tables, and 23,758 questions in total, and the sources are all from real-world scenarios. Based on MultiTableQA, we did the holistic comparison over table retrieval methods, RAG methods, and table-to-graph representation learning methods, where T-RAG shows the leading accuracy, recall, and running time performance. Also, under T-RAG, we evaluate the inference ability upgrade of different LLMs. Code and Data are available at https://github.com/jiaruzouu/T-RAG

Authors:Chunhui Zhang, Li Liu, Jialin Gao, Xin Sun, Hao Wen, Xi Zhou, Shiming Ge, Yanfeng Wang
Title: COST: Contrastive One-Stage Transformer for Vision-Language Small Object Tracking
Abstract:
Transformer has recently demonstrated great potential in improving vision-language (VL) tracking algorithms. However, most of the existing VL trackers rely on carefully designed mechanisms to perform the multi-stage multi-modal fusion. Additionally, direct multi-modal fusion without alignment ignores distribution discrepancy between modalities in feature space, potentially leading to suboptimal representations. In this work, we propose COST, a contrastive one-stage transformer fusion framework for VL tracking, aiming to learn semantically consistent and unified VL representations. Specifically, we introduce a contrastive alignment strategy that maximizes mutual information (MI) between a video and its corresponding language description. This enables effective cross-modal alignment, yielding semantically consistent features in the representation space. By leveraging a visual-linguistic transformer, we establish an efficient multi-modal fusion and reasoning mechanism, empirically demonstrating that a simple stack of transformer encoders effectively enables unified VL representations. Moreover, we contribute a newly collected VL tracking benchmark dataset for small object tracking, named VL-SOT500, with bounding boxes and language descriptions. Our dataset comprises two challenging subsets, VL-SOT230 and VL-SOT270, dedicated to evaluating generic and high-speed small object tracking, respectively. Small object tracking is notoriously challenging due to weak appearance and limited features, and this dataset is, to the best of our knowledge, the first to explore the usage of language cues to enhance visual representation for small object tracking. Extensive experiments demonstrate that COST achieves state-of-the-art performance on five existing VL tracking datasets, as well as on our proposed VL-SOT500 dataset. Source codes and dataset will be made publicly available.

Authors:Jiawei Wang, Yushen Zuo, Yuanjun Chai, Zhendong Liu, Yicheng Fu, Yichun Feng, Kin-Man Lam
Title: Safeguarding Vision-Language Models: Mitigating Vulnerabilities to Gaussian Noise in Perturbation-based Attacks
Abstract:
Vision-Language Models (VLMs) extend the capabilities of Large Language Models (LLMs) by incorporating visual information, yet they remain vulnerable to jailbreak attacks, especially when processing noisy or corrupted images. Although existing VLMs adopt security measures during training to mitigate such attacks, vulnerabilities associated with noise-augmented visual inputs are overlooked. In this work, we identify that missing noise-augmented training causes critical security gaps: many VLMs are susceptible to even simple perturbations such as Gaussian noise. To address this challenge, we propose Robust-VLGuard, a multimodal safety dataset with aligned / misaligned image-text pairs, combined with noise-augmented fine-tuning that reduces attack success rates while preserving functionality of VLM. For stronger optimization-based visual perturbation attacks, we propose DiffPure-VLM, leveraging diffusion models to convert adversarial perturbations into Gaussian-like noise, which can be defended by VLMs with noise-augmented safety fine-tuning. Experimental results demonstrate that the distribution-shifting property of diffusion model aligns well with our fine-tuned VLMs, significantly mitigating adversarial perturbations across varying intensities. The dataset and code are available at https://github.com/JarvisUSTC/DiffPure-RobustVLM.

Authors:Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang
Title: ThinkPrune: Pruning Long Chain-of-Thought of LLMs via Reinforcement Learning
Abstract:
We present ThinkPrune, a simple yet effective method for pruning the thinking length for long-thinking LLMs, which has been found to often produce inefficient and redundant thinking processes. Existing preliminary explorations of reducing thinking length primarily focus on forcing the thinking process to early exit, rather than adapting the LLM to optimize and consolidate the thinking process, and therefore the length-performance tradeoff observed so far is sub-optimal. To fill this gap, ThinkPrune offers a simple solution that continuously trains the long-thinking LLMs via reinforcement learning (RL) with an added token limit, beyond which any unfinished thoughts and answers will be discarded, resulting in a zero reward. To further preserve model performance, we introduce an iterative length pruning approach, where multiple rounds of RL are conducted, each with an increasingly more stringent token limit. We observed that ThinkPrune results in a remarkable performance-length tradeoff -- on the AIME24 dataset, the reasoning length of DeepSeek-R1-Distill-Qwen-1.5B can be reduced by half with only 2% drop in performance. We also observed that after pruning, the LLMs can bypass unnecessary steps while keeping the core reasoning process complete. Code is available at https://github.com/UCSB-NLP-Chang/ThinkPrune.

Authors:Salim Khazem, Jeremy Fix, Cédric Pradalier
Title: PolygoNet: Leveraging Simplified Polygonal Representation for Effective Image Classification
Abstract:
Deep learning models have achieved significant success in various image related tasks. However, they often encounter challenges related to computational complexity and overfitting. In this paper, we propose an efficient approach that leverages polygonal representations of images using dominant points or contour coordinates. By transforming input images into these compact forms, our method significantly reduces computational requirements, accelerates training, and conserves resources making it suitable for real time and resource constrained applications. These representations inherently capture essential image features while filtering noise, providing a natural regularization effect that mitigates overfitting. The resulting lightweight models achieve performance comparable to state of the art methods using full resolution images while enabling deployment on edge devices. Extensive experiments on benchmark datasets validate the effectiveness of our approach in reducing complexity, improving generalization, and facilitating edge computing applications. This work demonstrates the potential of polygonal representations in advancing efficient and scalable deep learning solutions for real world scenarios. The code for the experiments of the paper is provided in https://github.com/salimkhazem/PolygoNet.

Authors:Jose Gallego-Posada, Juan Ramirez, Meraj Hashemizadeh, Simon Lacoste-Julien
Title: Cooper: A Library for Constrained Optimization in Deep Learning
Abstract:
Cooper is an open-source package for solving constrained optimization problems involving deep learning models. Cooper implements several Lagrangian-based first-order update schemes, making it easy to combine constrained optimization algorithms with high-level features of PyTorch such as automatic differentiation, and specialized deep learning architectures and optimizers. Although Cooper is specifically designed for deep learning applications where gradients are estimated based on mini-batches, it is suitable for general non-convex continuous constrained optimization. Cooper's source code is available at https://github.com/cooper-org/cooper.

Authors:Xin Hong, Aochu Dai, Dingchao Gao, Sanjiang Li, Zhengfeng Ji, Mingsheng Ying
Title: LimTDD: A Compact Decision Diagram Integrating Tensor and Local Invertible Map Representations
Abstract:
Tensor networks serve as a powerful tool for efficiently representing and manipulating high-dimensional data in applications such as quantum physics, machine learning, and data compression. Tensor Decision Diagrams (TDDs) offer an efficient framework for tensor representation by leveraging decision diagram techniques. However, the current implementation of TDDs and other decision diagrams fail to exploit tensor isomorphisms, limiting their compression potential. This paper introduces Local Invertible Map Tensor Decision Diagrams (LimTDDs), an extension of TDDs that incorporates local invertible maps (LIMs) to achieve more compact representations. Unlike LIMDD, which uses Pauli operators for quantum states, LimTDD employs the $XP$-stabilizer group, enabling broader applicability across tensor-based tasks. We present efficient algorithms for normalization, slicing, addition, and contraction, critical for tensor network applications. Theoretical analysis demonstrates that LimTDDs achieve greater compactness than TDDs and, in best-case scenarios and for quantum state representations, offer exponential compression advantages over both TDDs and LIMDDs. Experimental results in quantum circuit tensor computation and simulation confirm LimTDD's superior efficiency. Open-source code is available at https://github.com/Veriqc/LimTDD.

Authors:Gregory M. Campbell, Gentian Muhaxheri, Leonardo Ferreira Guilhoto, Christian D. Santangelo, Paris Perdikaris, James Pikul, Mark Yim
Title: Active Learning Design: Modeling Force Output for Axisymmetric Soft Pneumatic Actuators
Abstract:
Soft pneumatic actuators (SPA) made from elastomeric materials can provide large strain and large force. The behavior of locally strain-restricted hyperelastic materials under inflation has been investigated thoroughly for shape reconfiguration, but requires further investigation for trajectories involving external force. In this work we model force-pressure-height relationships for a concentrically strain-limited class of soft pneumatic actuators and demonstrate the use of this model to design SPA response for object lifting. We predict relationships under different loadings by solving energy minimization equations and verify this theory by using an automated test rig to collect rich data for n=22 Ecoflex 00-30 membranes. We collect this data using an active learning pipeline to efficiently model the design space. We show that this learned material model outperforms the theory-based model and naive curve-fitting approaches. We use our model to optimize membrane design for different lift tasks and compare this performance to other designs. These contributions represent a step towards understanding the natural response for this class of actuator and embodying intelligent lifts in a single-pressure input actuator system.

Authors:Ilir Tahiraj, Jeremialie Swadiryus, Felix Fent, Markus Lienkamp
Title: Cal or No Cal? -- Real-Time Miscalibration Detection of LiDAR and Camera Sensors
Abstract:
The goal of extrinsic calibration is the alignment of sensor data to ensure an accurate representation of the surroundings and enable sensor fusion applications. From a safety perspective, sensor calibration is a key enabler of autonomous driving. In the current state of the art, a trend from target-based offline calibration towards targetless online calibration can be observed. However, online calibration is subject to strict real-time and resource constraints which are not met by state-of-the-art methods. This is mainly due to the high number of parameters to estimate, the reliance on geometric features, or the dependence on specific vehicle maneuvers. To meet these requirements and ensure the vehicle's safety at any time, we propose a miscalibration detection framework that shifts the focus from the direct regression of calibration parameters to a binary classification of the calibration state, i.e., calibrated or miscalibrated. Therefore, we propose a contrastive learning approach that compares embedded features in a latent space to classify the calibration state of two different sensor modalities. Moreover, we provide a comprehensive analysis of the feature embeddings and challenging calibration errors that highlight the performance of our approach. As a result, our method outperforms the current state-of-the-art in terms of detection performance, inference time, and resource demand. The code is open source and available on https://github.com/TUMFTM/MiscalibrationDetection.

Authors:Xian-Xian Liu, Yuanyuan Wei, Mingkun Xu, Yongze Guo, Hongwei Zhang, Huicong Dong, Qun Song, Qi Zhao, Wei Luo, Feng Tien, Juntao Gao, Simon Fong
Title: An Integrated AI-Enabled System Using One Class Twin Cross Learning (OCT-X) for Early Gastric Cancer Detection
Abstract:
Early detection of gastric cancer, a leading cause of cancer-related mortality worldwide, remains hampered by the limitations of current diagnostic technologies, leading to high rates of misdiagnosis and missed diagnoses. To address these challenges, we propose an integrated system that synergizes advanced hardware and software technologies to balance speed-accuracy. Our study introduces the One Class Twin Cross Learning (OCT-X) algorithm. Leveraging a novel fast double-threshold grid search strategy (FDT-GS) and a patch-based deep fully convolutional network, OCT-X maximizes diagnostic accuracy through real-time data processing and seamless lesion surveillance. The hardware component includes an all-in-one point-of-care testing (POCT) device with high-resolution imaging sensors, real-time data processing, and wireless connectivity, facilitated by the NI CompactDAQ and LabVIEW software. Our integrated system achieved an unprecedented diagnostic accuracy of 99.70%, significantly outperforming existing models by up to 4.47%, and demonstrated a 10% improvement in multirate adaptability. These findings underscore the potential of OCT-X as well as the integrated system in clinical diagnostics, offering a path toward more accurate, efficient, and less invasive early gastric cancer detection. Future research will explore broader applications, further advancing oncological diagnostics. Code is available at https://github.com/liu37972/Multirate-Location-on-OCT-X-Learning.git.

Authors:Junhao Cheng, Yuying Ge, Yixiao Ge, Jing Liao, Ying Shan
Title: AnimeGamer: Infinite Anime Life Simulation with Next Game State Prediction
Abstract:
Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.

Authors:Saarthak Kapse, Pushpak Pati, Srikar Yellapragada, Srijan Das, Rajarsi R. Gupta, Joel Saltz, Dimitris Samaras, Prateek Prasanna
Title: GECKO: Gigapixel Vision-Concept Contrastive Pretraining in Histopathology
Abstract:
Pretraining a Multiple Instance Learning (MIL) aggregator enables the derivation of Whole Slide Image (WSI)-level embeddings from patch-level representations without supervision. While recent multimodal MIL pretraining approaches leveraging auxiliary modalities have demonstrated performance gains over unimodal WSI pretraining, the acquisition of these additional modalities necessitates extensive clinical profiling. This requirement increases costs and limits scalability in existing WSI datasets lacking such paired modalities. To address this, we propose Gigapixel Vision-Concept Knowledge Contrastive pretraining (GECKO), which aligns WSIs with a Concept Prior derived from the available WSIs. First, we derive an inherently interpretable concept prior by computing the similarity between each WSI patch and textual descriptions of predefined pathology concepts. GECKO then employs a dual-branch MIL network: one branch aggregates patch embeddings into a WSI-level deep embedding, while the other aggregates the concept prior into a corresponding WSI-level concept embedding. Both aggregated embeddings are aligned using a contrastive objective, thereby pretraining the entire dual-branch MIL model. Moreover, when auxiliary modalities such as transcriptomics data are available, GECKO seamlessly integrates them. Across five diverse tasks, GECKO consistently outperforms prior unimodal and multimodal pretraining approaches while also delivering clinically meaningful interpretability that bridges the gap between computational models and pathology expertise. Code is made available at https://github.com/bmi-imaginelab/GECKO

Authors:Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, Anna Rohrbach
Title: When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning
Abstract:
Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.

Authors:Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng Liu, Taomian Mi, Yifan Peng, Ziyang Xu, Yi Liu, Hyunjin Cho, Chang-In Choi, Yihan Cao, Hui Ren, Xiang Li, Xiaoxiao Li, Yuyin Zhou
Title: MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs
Abstract:
Medical tasks such as diagnosis and treatment planning require precise and complex reasoning, particularly in life-critical domains. Unlike mathematical reasoning, medical reasoning demands meticulous, verifiable thought processes to ensure reliability and accuracy. However, there is a notable lack of datasets that provide transparent, step-by-step reasoning to validate and enhance the medical reasoning ability of AI models. To bridge this gap, we introduce MedReason, a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or ``thinking paths'', which trace connections from question elements to answers via relevant KG entities. Each path is validated for consistency with clinical logic and evidence-based medicine. Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of 32,682 question-answer pairs, each with detailed, step-by-step explanations. Experiments demonstrate that fine-tuning with our dataset consistently boosts medical problem-solving capabilities, achieving significant gains of up to 7.7% for DeepSeek-Ditill-8B. Our top-performing model, MedReason-8B, outperforms the Huatuo-o1-8B, a state-of-the-art medical reasoning model, by up to 4.2% on the clinical benchmark MedBullets. We also engage medical professionals from diverse specialties to assess our dataset's quality, ensuring MedReason offers accurate and coherent medical reasoning. Our data, models, and code is available at https://github.com/UCSC-VLAA/MedReason.

Authors:Sixu Li, Deepak Prakash Kumar, Swaroop Darbha, Yang Zhou
Title: Time-optimal Convexified Reeds-Shepp Paths on a Sphere
Abstract:
This article addresses time-optimal path planning for a vehicle capable of moving both forward and backward on a unit sphere with a unit maximum speed, and constrained by a maximum absolute turning rate $U_{max}$. The proposed formulation can be utilized for optimal attitude control of underactuated satellites, optimal motion planning for spherical rolling robots, and optimal path planning for mobile robots on spherical surfaces or uneven terrains. By utilizing Pontryagin's Maximum Principle and analyzing phase portraits, it is shown that for $U_{max}\geq1$, the optimal path connecting a given initial configuration to a desired terminal configuration falls within a sufficient list of 23 path types, each comprising at most 6 segments. These segments belong to the set $\{C,G,T\}$, where $C$ represents a tight turn with radius $r=\frac{1}{\sqrt{1+U_{max}^2}}$, $G$ represents a great circular arc, and $T$ represents a turn-in-place motion. Closed-form expressions for the angles of each path in the sufficient list are derived. The source code for solving the time-optimal path problem and visualization is publicly available at https://github.com/sixuli97/Optimal-Spherical-Convexified-Reeds-Shepp-Paths.

Authors:Bangwei Liu, Yicheng Bao, Shaohui Lin, Xuhong Wang, Xin Tan, Yingchun Wang, Yuan Xie, Chaochao Lu
Title: IDMR: Towards Instance-Driven Precise Visual Correspondence in Multimodal Retrieval
Abstract:
Multimodal retrieval systems are becoming increasingly vital for cutting-edge AI technologies, such as embodied AI and AI-driven digital content industries. However, current multimodal retrieval tasks lack sufficient complexity and demonstrate limited practical application value. It spires us to design Instance-Driven Multimodal Image Retrieval (IDMR), a novel task that requires models to retrieve images containing the same instance as a query image while matching a text-described scenario. Unlike existing retrieval tasks focused on global image similarity or category-level matching, IDMR demands fine-grained instance-level consistency across diverse contexts. To benchmark this capability, we develop IDMR-bench using real-world object tracking and first-person video data. Addressing the scarcity of training data, we propose a cross-domain synthesis method that creates 557K training samples by cropping objects from standard detection datasets. Our Multimodal Large Language Model (MLLM) based retrieval model, trained on 1.2M samples, outperforms state-of-the-art approaches on both traditional benchmarks and our zero-shot IDMR-bench. Experimental results demonstrate previous models' limitations in instance-aware retrieval and highlight the potential of MLLM for advanced retrieval applications. The whole training dataset, codes and models, with wide ranges of sizes, are available at https://github.com/BwLiu01/IDMR.

Authors:Alexander Martin, Reno Kriz, William Gantt Walden, Kate Sanders, Hannah Recknor, Eugene Yang, Francis Ferraro, Benjamin Van Durme
Title: WikiVideo: Article Generation from Multiple Videos
Abstract:
We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.

Authors:Haoxuan Li, Wei Song, Aofan Liu, Peiwu Qin
Title: DBF-UNet: A Two-Stage Framework for Carotid Artery Segmentation with Pseudo-Label Generation
Abstract:
Medical image analysis faces significant challenges due to limited annotation data, particularly in three-dimensional carotid artery segmentation tasks, where existing datasets exhibit spatially discontinuous slice annotations with only a small portion of expert-labeled slices in complete 3D volumetric data. To address this challenge, we propose a two-stage segmentation framework. First, we construct continuous vessel centerlines by interpolating between annotated slice centroids and propagate labels along these centerlines to generate interpolated annotations for unlabeled slices. The slices with expert annotations are used for fine-tuning SAM-Med2D, while the interpolated labels on unlabeled slices serve as prompts to guide segmentation during inference. In the second stage, we propose a novel Dense Bidirectional Feature Fusion UNet (DBF-UNet). This lightweight architecture achieves precise segmentation of complete 3D vascular structures. The network incorporates bidirectional feature fusion in the encoder and integrates multi-scale feature aggregation with dense connectivity for effective feature reuse. Experimental validation on public datasets demonstrates that our proposed method effectively addresses the sparse annotation challenge in carotid artery segmentation while achieving superior performance compared to existing approaches. The source code is available at https://github.com/Haoxuanli-Thu/DBF-UNet.

Authors:Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, Xin Eric Wang
Title: Agent S2: A Compositional Generalist-Specialist Framework for Computer Use Agents
Abstract:
Computer use agents automate digital tasks by directly interacting with graphical user interfaces (GUIs) on computers and mobile devices, offering significant potential to enhance human productivity by completing an open-ended space of user queries. However, current agents face significant challenges: imprecise grounding of GUI elements, difficulties with long-horizon task planning, and performance bottlenecks from relying on single generalist models for diverse cognitive tasks. To this end, we introduce Agent S2, a novel compositional framework that delegates cognitive responsibilities across various generalist and specialist models. We propose a novel Mixture-of-Grounding technique to achieve precise GUI localization and introduce Proactive Hierarchical Planning, dynamically refining action plans at multiple temporal scales in response to evolving observations. Evaluations demonstrate that Agent S2 establishes new state-of-the-art (SOTA) performance on three prominent computer use benchmarks. Specifically, Agent S2 achieves 18.9% and 32.7% relative improvements over leading baseline agents such as Claude Computer Use and UI-TARS on the OSWorld 15-step and 50-step evaluation. Moreover, Agent S2 generalizes effectively to other operating systems and applications, surpassing previous best methods by 52.8% on WindowsAgentArena and by 16.52% on AndroidWorld relatively. Code available at https://github.com/simular-ai/Agent-S.

Authors:Enzhe Sun, Yongchuan Cui, Peng Liu, Jining Yan
Title: A Decade of Deep Learning for Remote Sensing Spatiotemporal Fusion: Advances, Challenges, and Opportunities
Abstract:
Remote sensing spatiotemporal fusion (STF) addresses the fundamental trade-off between temporal and spatial resolution by combining high temporal-low spatial and high spatial-low temporal imagery. This paper presents the first comprehensive survey of deep learning advances in remote sensing STF over the past decade. We establish a systematic taxonomy of deep learning architectures including Convolutional Neural Networks (CNNs), Transformers, Generative Adversarial Networks (GANs), diffusion models, and sequence models, revealing significant growth in deep learning adoption for STF tasks. Our analysis reveals that CNN-based methods dominate spatial feature extraction, while Transformer architectures show superior performance in capturing long-range temporal dependencies. GAN and diffusion models demonstrate exceptional capability in detail reconstruction, substantially outperforming traditional methods in structural similarity and spectral fidelity. Through comprehensive experiments on seven benchmark datasets comparing ten representative methods, we validate these findings and quantify the performance trade-offs between different approaches. We identify five critical challenges: time-space conflicts, limited generalization across datasets, computational efficiency for large-scale processing, multi-source heterogeneous fusion, and insufficient benchmark diversity. The survey highlights promising opportunities in foundation models, hybrid architectures, and self-supervised learning approaches that could address current limitations and enable multimodal applications. The specific models, datasets, and other information mentioned in this article have been collected in: https://github.com/yc-cui/Deep-Learning-Spatiotemporal-Fusion-Survey.

Authors:Wei Zhou, Yuyang Gao, Xuanhe Zhou, Guoliang Li
Title: CrackSQL: A Hybrid SQL Dialect Translation System Powered by Large Language Models
Abstract:
Dialect translation plays a key role in enabling seamless interaction across heterogeneous database systems. However, translating SQL queries between different dialects (e.g., from PostgreSQL to MySQL) remains a challenging task due to syntactic discrepancies and subtle semantic variations. Existing approaches including manual rewriting, rule-based systems, and large language model (LLM)-based techniques often involve high maintenance effort (e.g., crafting custom translation rules) or produce unreliable results (e.g., LLM generates non-existent functions), especially when handling complex queries. In this demonstration, we present CrackSQL, the first hybrid SQL dialect translation system that combines rule and LLM-based methods to overcome these limitations. CrackSQL leverages the adaptability of LLMs to minimize manual intervention, while enhancing translation accuracy by segmenting lengthy complex SQL via functionality-based query processing. To further improve robustness, it incorporates a novel cross-dialect syntax embedding model for precise syntax alignment, as well as an adaptive local-to-global translation strategy that effectively resolves interdependent query operations. CrackSQL supports three translation modes and offers multiple deployment and access options including a web console interface, a PyPI package, and a command-line prompt, facilitating adoption across a variety of real-world use cases

Authors:Fenglei Hao, Yuliang Yang, Ruiyuan Su, Zhengran Zhao, Yukun Qiao, Mengyu Zhu
Title: GISE-TTT:A Framework for Global InformationSegmentation and Enhancement
Abstract:
This paper addresses the challenge of capturing global temporaldependencies in long video sequences for Video Object Segmentation (VOS). Existing architectures often fail to effectively model these dependencies acrossextended temporal horizons. To overcome this limitation, we introduce GISE-TTT, anovel architecture that integrates Temporal Transformer (TTT) layers intotransformer-based frameworks through a co-designed hierarchical approach.The TTTlayer systematically condenses historical temporal information into hidden states thatencode globally coherent contextual representations. By leveraging multi-stagecontextual aggregation through hierarchical concatenation, our frameworkprogressively refines spatiotemporal dependencies across network layers. This designrepresents the first systematic empirical evidence that distributing global informationacross multiple network layers is critical for optimal dependency utilization in videosegmentation tasks.Ablation studies demonstrate that incorporating TTT modules athigh-level feature stages significantly enhances global modeling capabilities, therebyimproving the network's ability to capture long-range temporal relationships. Extensive experiments on DAVIS 2017 show that GISE-TTT achieves a 3.2%improvement in segmentation accuracy over the baseline model, providingcomprehensive evidence that global information should be strategically leveragedthroughout the network architecture.The code will be made available at:https://github.com/uuool/GISE-TTT.

Authors:Xiaohua Qi, Renda Li, Long Peng, Qiang Ling, Jun Yu, Ziyi Chen, Peng Chang, Mei Han, Jing Xiao
Title: Data-free Knowledge Distillation with Diffusion Models
Abstract:
Recently Data-Free Knowledge Distillation (DFKD) has garnered attention and can transfer knowledge from a teacher neural network to a student neural network without requiring any access to training data. Although diffusion models are adept at synthesizing high-fidelity photorealistic images across various domains, existing methods cannot be easiliy implemented to DFKD. To bridge that gap, this paper proposes a novel approach based on diffusion models, DiffDFKD. Specifically, DiffDFKD involves targeted optimizations in two key areas. Firstly, DiffDFKD utilizes valuable information from teacher models to guide the pre-trained diffusion models' data synthesis, generating datasets that mirror the training data distribution and effectively bridge domain gaps. Secondly, to reduce computational burdens, DiffDFKD introduces Latent CutMix Augmentation, an efficient technique, to enhance the diversity of diffusion model-generated images for DFKD while preserving key attributes for effective knowledge transfer. Extensive experiments validate the efficacy of DiffDFKD, yielding state-of-the-art results exceeding existing DFKD approaches. We release our code at https://github.com/xhqi0109/DiffDFKD.

Authors:Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, Yuyin Zhou
Title: m1: Unleash the Potential of Test-Time Scaling for Medical Reasoning with Large Language Models
Abstract:
Test-time scaling has emerged as a powerful technique for enhancing the reasoning capabilities of large language models. However, its effectiveness in medical reasoning remains uncertain, as the medical domain fundamentally differs from mathematical tasks in terms of knowledge representation and decision-making processes. In this paper, we provide the first comprehensive investigation of test-time scaling for medical reasoning and present m1, a simple yet effective approach that increases a model's medical reasoning capability at inference. Our evaluation across diverse medical tasks demonstrates that test-time scaling consistently enhances medical reasoning, enabling lightweight fine-tuned models under 10B parameters to establish new state-of-the-art performance, while our 32B model rivals previous 70B-scale medical LLMs. However, we identify an optimal reasoning token budget of approximately 4K, beyond which performance may degrade due to overthinking. Budget forcing, which extends test-time computation through iterative prompts, helps models double-check answers but does not necessarily improve the overall medical QA performance and, in some cases, even introduces errors into previously correct responses. Our case-by-case analysis identifies insufficient medical knowledge as a key bottleneck that prevents further performance gains through test-time scaling. We find that increasing data scale, improving data quality, and expanding model capacity consistently enhance medical knowledge grounding, enabling continued performance improvements, particularly on challenging medical benchmarks where smaller models reach saturation. These findings underscore fundamental differences between medical and mathematical reasoning in LLMs, highlighting that enriched medical knowledge, other than increased reasoning depth alone, is essential for realizing the benefits of test-time scaling.

Authors:Xin Tong, Xuanhe Zhou, Bingsheng He, Guoliang Li, Zirui Tang, Wei Zhou, Fan Wu, Mian Lu, Yuqiang Chen
Title: FeatInsight: An Online ML Feature Management System on 4Paradigm Sage-Studio Platform
Abstract:
Feature management is essential for many online machine learning applications and can often become the performance bottleneck (e.g., taking up to 70% of the overall latency in sales prediction service). Improper feature configurations (e.g., introducing too many irrelevant features) can severely undermine the model's generalization capabilities. However, managing online ML features is challenging due to (1) large-scale, complex raw data (e.g., the 2018 PHM dataset contains 17 tables and dozens to hundreds of columns), (2) the need for high-performance, consistent computation of interdependent features with complex patterns, and (3) the requirement for rapid updates and deployments to accommodate real-time data changes. In this demo, we present FeatInsight, a system that supports the entire feature lifecycle, including feature design, storage, visualization, computation, verification, and lineage management. FeatInsight (with OpenMLDB as the execution engine) has been deployed in over 100 real-world scenarios on 4Paradigm's Sage Studio platform, handling up to a trillion-dimensional feature space and enabling millisecond-level feature updates. We demonstrate how FeatInsight enhances feature design efficiency (e.g., for online product recommendation) and improve feature computation performance (e.g., for online fraud detection). The code is available at https://github.com/4paradigm/FeatInsight.

Authors:Yang Yang, Xijie Xu, Yixun Zhou, Jie Zheng
Title: CellVTA: Enhancing Vision Foundation Models for Accurate Cell Segmentation and Classification
Abstract:
Cell instance segmentation is a fundamental task in digital pathology with broad clinical applications. Recently, vision foundation models, which are predominantly based on Vision Transformers (ViTs), have achieved remarkable success in pathology image analysis. However, their improvements in cell instance segmentation remain limited. A key challenge arises from the tokenization process in ViTs, which substantially reduces the spatial resolution of input images, leading to suboptimal segmentation quality, especially for small and densely packed cells. To address this problem, we propose CellVTA (Cell Vision Transformer with Adapter), a novel method that improves the performance of vision foundation models for cell instance segmentation by incorporating a CNN-based adapter module. This adapter extracts high-resolution spatial information from input images and injects it into the ViT through a cross-attention mechanism. Our method preserves the core architecture of ViT, ensuring seamless integration with pretrained foundation models. Extensive experiments show that CellVTA achieves 0.538 mPQ on the CoNIC dataset and 0.506 mPQ on the PanNuke dataset, which significantly outperforms the state-of-the-art cell segmentation methods. Ablation studies confirm the superiority of our approach over other fine-tuning strategies, including decoder-only fine-tuning and full fine-tuning. Our code and models are publicly available at https://github.com/JieZheng-ShanghaiTech/CellVTA.

Authors:Hyunwoo Park, Gun Ryu, Wonjun Kim
Title: DropGaussian: Structural Regularization for Sparse-view Gaussian Splatting
Abstract:
Recently, 3D Gaussian splatting (3DGS) has gained considerable attentions in the field of novel view synthesis due to its fast performance while yielding the excellent image quality. However, 3DGS in sparse-view settings (e.g., three-view inputs) often faces with the problem of overfitting to training views, which significantly drops the visual quality of novel view images. Many existing approaches have tackled this issue by using strong priors, such as 2D generative contextual information and external depth signals. In contrast, this paper introduces a prior-free method, so-called DropGaussian, with simple changes in 3D Gaussian splatting. Specifically, we randomly remove Gaussians during the training process in a similar way of dropout, which allows non-excluded Gaussians to have larger gradients while improving their visibility. This makes the remaining Gaussians to contribute more to the optimization process for rendering with sparse input views. Such simple operation effectively alleviates the overfitting problem and enhances the quality of novel view synthesis. By simply applying DropGaussian to the original 3DGS framework, we can achieve the competitive performance with existing prior-based 3DGS methods in sparse-view settings of benchmark datasets without any additional complexity. The code and model are publicly available at: https://github.com/DCVL-3D/DropGaussian release.

Authors:Lin Zhang, Zhouhong Gu, Xiaoran Shi, Hongwei Feng, Yanghua Xiao
Title: RECKON: Large-scale Reference-based Efficient Knowledge Evaluation for Large Language Model
Abstract:
As large language models (LLMs) advance, efficient knowledge evaluation becomes crucial to verifying their capabilities. Traditional methods, relying on benchmarks, face limitations such as high resource costs and information loss. We propose the Large-scale Reference-based Efficient Knowledge Evaluation for Large Language Model (RECKON), which directly uses reference data to evaluate models. RECKON organizes unstructured data into manageable units and generates targeted questions for each cluster, improving evaluation accuracy and efficiency. Experimental results show that RECKON reduces resource consumption by 56.5% compared to traditional methods while achieving over 97% accuracy across various domains, including world knowledge, code, legal, and biomedical datasets. Code is available at https://github.com/MikeGu721/reckon

Authors:Yunsoo Kim, Michal W. S. Ong, Daniel W. Rogalsky, Manuel Rodriguez-Justo, Honghan Wu, Adam P. Levine
Title: IHC-LLMiner: Automated extraction of tumour immunohistochemical profiles from PubMed abstracts using large language models
Abstract:
Immunohistochemistry (IHC) is essential in diagnostic pathology and biomedical research, offering critical insights into protein expression and tumour biology. This study presents an automated pipeline, IHC-LLMiner, for extracting IHC-tumour profiles from PubMed abstracts, leveraging advanced biomedical text mining. There are two subtasks: abstract classification (include/exclude as relevant) and IHC-tumour profile extraction on relevant included abstracts. The best-performing model, "Gemma-2 finetuned", achieved 91.5% accuracy and an F1 score of 91.4, outperforming GPT4-O by 9.5% accuracy with 5.9 times faster inference time. From an initial dataset of 107,759 abstracts identified for 50 immunohistochemical markers, the classification task identified 30,481 relevant abstracts (Include) using the Gemma-2 finetuned model. For IHC-tumour profile extraction, the Gemma-2 finetuned model achieved the best performance with 63.3% Correct outputs. Extracted IHC-tumour profiles (tumour types and markers) were normalised to Unified Medical Language System (UMLS) concepts to ensure consistency and facilitate IHC-tumour profile landscape analysis. The extracted IHC-tumour profiles demonstrated excellent concordance with available online summary data and provided considerable added value in terms of both missing IHC-tumour profiles and quantitative assessments. Our proposed LLM based pipeline provides a practical solution for large-scale IHC-tumour profile data mining, enhancing the accessibility and utility of such data for research and clinical applications as well as enabling the generation of quantitative and structured data to support cancer-specific knowledge base development. Models and training datasets are available at https://github.com/knowlab/IHC-LLMiner.

Authors:Thomas E. Huber, Jules Lecomte, Borislav Polovnikov, Axel von Arnim
Title: Scaling Up Resonate-and-Fire Networks for Fast Deep Learning
Abstract:
Spiking neural networks (SNNs) present a promising computing paradigm for neuromorphic processing of event-based sensor data. The resonate-and-fire (RF) neuron, in particular, appeals through its biological plausibility, complex dynamics, yet computational simplicity. Despite theoretically predicted benefits, challenges in parameter initialization and efficient learning inhibited the implementation of RF networks, constraining their use to a single layer. In this paper, we address these shortcomings by deriving the RF neuron as a structured state space model (SSM) from the HiPPO framework. We introduce S5-RF, a new SSM layer comprised of RF neurons based on the S5 model, that features a generic initialization scheme and fast training within a deep architecture. S5-RF scales for the first time a RF network to a deep SNN with up to four layers and achieves with 78.8% a new state-of-the-art result for recurrent SNNs on the Spiking Speech Commands dataset in under three hours of training time. Moreover, compared to the reference SNNs that solve our benchmarking tasks, it achieves similar performance with much fewer spiking operations. Our code is publicly available at https://github.com/ThomasEHuber/s5-rf.

Authors:Xiaoxuan Zhu, Zhouhong Gu, Baiqian Wu, Suhang Zheng, Tao Wang, Tianyu Li, Hongwei Feng, Yanghua Xiao
Title: ToReMi: Topic-Aware Data Reweighting for Dynamic Pre-Training Data Selection
Abstract:
Pre-training large language models (LLMs) necessitates enormous diverse textual corpora, making effective data selection a key challenge for balancing computational resources and model performance. Current methodologies primarily emphasize data quality metrics and mixing proportions, yet they fail to adequately capture the underlying semantic connections between training samples and quality disparities within individual domains. We introduce ToReMi (Topic-based Reweighting for Model improvement), a novel two-stage framework that dynamically adjusts training sample weights according to their topical associations and observed learning patterns. Our comprehensive experiments reveal that ToReMi variants consistently achieve superior performance over conventional pre-training approaches, demonstrating accelerated perplexity reduction across multiple domains and enhanced capabilities on downstream evaluation tasks. Code is available at https://github.com/zxx000728/ToReMi.

Authors:Anthony Yazdani, Ihor Stepanov, Douglas Teodoro
Title: GLiNER-BioMed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition
Abstract:
Biomedical named entity recognition (NER) presents unique challenges due to specialized vocabularies, the sheer volume of entities, and the continuous emergence of novel entities. Traditional NER models, constrained by fixed taxonomies and human annotations, struggle to generalize beyond predefined entity types. To address these issues, we introduce GLiNER-BioMed, a domain-adapted suite of Generalist and Lightweight Model for NER (GLiNER) models specifically tailored for biomedicine. In contrast to conventional approaches, GLiNER uses natural language labels to infer arbitrary entity types, enabling zero-shot recognition. Our approach first distills the annotation capabilities of large language models (LLMs) into a smaller, more efficient model, enabling the generation of high-coverage synthetic biomedical NER data. We subsequently train two GLiNER architectures, uni- and bi-encoder, at multiple scales to balance computational efficiency and recognition performance. Experiments on several biomedical datasets demonstrate that GLiNER-BioMed outperforms the state-of-the-art in both zero- and few-shot scenarios, achieving 5.96% improvement in F1-score over the strongest baseline (p-value < 0.001). Ablation studies highlight the effectiveness of our synthetic data generation strategy and emphasize the complementary benefits of synthetic biomedical pre-training combined with fine-tuning on general-domain annotations. All datasets, models, and training pipelines are publicly available at https://github.com/ds4dh/GLiNER-biomed.

Authors:Xianghong Xu, Xiao He, Tieying Zhang, Lei Zhang, Rui Shi, Jianjun Chen
Title: PLM4NDV: Minimizing Data Access for Number of Distinct Values Estimation with Pre-trained Language Models
Abstract:
Number of Distinct Values (NDV) estimation of a multiset/column is a basis for many data management tasks, especially within databases. Despite decades of research, most existing methods require either a significant amount of samples through uniform random sampling or access to the entire column to produce estimates, leading to substantial data access costs and potentially ineffective estimations in scenarios with limited data access. In this paper, we propose leveraging semantic information, i.e., schema, to address these challenges. The schema contains rich semantic information that can benefit the NDV estimation. To this end, we propose PLM4NDV, a learned method incorporating Pre-trained Language Models (PLMs) to extract semantic schema information for NDV estimation. Specifically, PLM4NDV leverages the semantics of the target column and the corresponding table to gain a comprehensive understanding of the column's meaning. By using the semantics, PLM4NDV reduces data access costs, provides accurate NDV estimation, and can even operate effectively without any data access. Extensive experiments on a large-scale real-world dataset demonstrate the superiority of PLM4NDV over baseline methods. Our code is available at https://github.com/bytedance/plm4ndv.

Authors:Jirui Qi, Raquel Fernández, Arianna Bisazza
Title: On the Consistency of Multilingual Context Utilization in Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) with large language models (LLMs) has demonstrated strong performance in multilingual question-answering (QA) tasks by leveraging relevant passages retrieved from corpora. In multilingual RAG (mRAG), the retrieved passages can be written in languages other than that of the query entered by the user, making it challenging for LLMs to effectively utilize the provided information. Recent research suggests that retrieving passages from multilingual corpora can improve RAG performance, particularly for low-resource languages. However, the extent to which LLMs can leverage different kinds of multilingual contexts to generate accurate answers, *independently from retrieval quality*, remains understudied. In this paper, we conduct an extensive assessment of LLMs' ability to (i) make consistent use of a relevant passage regardless of its language, (ii) respond in the expected language, and (iii) focus on the relevant passage even when multiple `distracting' passages in different languages are provided in the context. Our experiments with four LLMs across three QA datasets covering a total of 48 languages reveal a surprising ability of LLMs to extract the relevant information from out-language passages, but a much weaker ability to formulate a full answer in the correct language. Our analysis, based on both accuracy and feature attribution techniques, further shows that distracting passages negatively impact answer quality regardless of their language. However, distractors in the query language exert a slightly stronger influence. Taken together, our findings deepen the understanding of how LLMs utilize context in mRAG systems, providing directions for future improvements.

Authors:Owen Cook, Jake Vasilakes, Ian Roberts, Xingyi Song
Title: Efficient Annotator Reliability Assessment with EffiARA
Abstract:
Data annotation is an essential component of the machine learning pipeline; it is also a costly and time-consuming process. With the introduction of transformer-based models, annotation at the document level is increasingly popular; however, there is no standard framework for structuring such tasks. The EffiARA annotation framework is, to our knowledge, the first project to support the whole annotation pipeline, from understanding the resources required for an annotation task to compiling the annotated dataset and gaining insights into the reliability of individual annotators as well as the dataset as a whole. The framework's efficacy is supported by two previous studies: one improving classification performance through annotator-reliability-based soft-label aggregation and sample weighting, and the other increasing the overall agreement among annotators through removing identifying and replacing an unreliable annotator. This work introduces the EffiARA Python package and its accompanying webtool, which provides an accessible graphical user interface for the system. We open-source the EffiARA Python package at https://github.com/MiniEggz/EffiARA and the webtool is publicly accessible at https://effiara.gate.ac.uk.

Authors:Fida Mohammad Thoker, Letian Jiang, Chen Zhao, Bernard Ghanem
Title: SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning
Abstract:
Masked video modeling, such as VideoMAE, is an effective paradigm for video self-supervised learning (SSL). However, they are primarily based on reconstructing pixel-level details on natural videos which have substantial temporal redundancy, limiting their capability for semantic representation and sufficient encoding of motion dynamics. To address these issues, this paper introduces a novel SSL approach for video representation learning, dubbed as SMILE, by infusing both spatial and motion semantics. In SMILE, we leverage image-language pretrained models, such as CLIP, to guide the learning process with their high-level spatial semantics. We enhance the representation of motion by introducing synthetic motion patterns in the training data, allowing the model to capture more complex and dynamic content. Furthermore, using SMILE, we establish a new self-supervised video learning paradigm capable of learning strong video representations without requiring any natural video data. We have carried out extensive experiments on 7 datasets with various downstream scenarios. SMILE surpasses current state-of-the-art SSL methods, showcasing its effectiveness in learning more discriminative and generalizable video representations. Code is available: https://github.com/fmthoker/SMILE

Authors:Shuyi Zhou, Shuxiang Xie, Ryoichi Ishikawa, Takeshi Oishi
Title: Robust LiDAR-Camera Calibration with 2D Gaussian Splatting
Abstract:
LiDAR-camera systems have become increasingly popular in robotics recently. A critical and initial step in integrating the LiDAR and camera data is the calibration of the LiDAR-camera system. Most existing calibration methods rely on auxiliary target objects, which often involve complex manual operations, whereas targetless methods have yet to achieve practical effectiveness. Recognizing that 2D Gaussian Splatting (2DGS) can reconstruct geometric information from camera image sequences, we propose a calibration method that estimates LiDAR-camera extrinsic parameters using geometric constraints. The proposed method begins by reconstructing colorless 2DGS using LiDAR point clouds. Subsequently, we update the colors of the Gaussian splats by minimizing the photometric loss. The extrinsic parameters are optimized during this process. Additionally, we address the limitations of the photometric loss by incorporating the reprojection and triangulation losses, thereby enhancing the calibration robustness and accuracy.

Authors:Qianhao Yuan, Qingyu Zhang, Yanjiang Liu, Jiawei Chen, Yaojie Lu, Hongyu Lin, Jia Zheng, Xianpei Han, Le Sun
Title: ShortV: Efficient Multimodal Large Language Models by Freezing Visual Tokens in Ineffective Layers
Abstract:
Multimodal Large Language Models (MLLMs) suffer from high computational costs due to their massive size and the large number of visual tokens. In this paper, we investigate layer-wise redundancy in MLLMs by introducing a novel metric, Layer Contribution (LC), which quantifies the impact of a layer's transformations on visual and text tokens, respectively. The calculation of LC involves measuring the divergence in model output that results from removing the layer's transformations on the specified tokens. Our pilot experiment reveals that many layers of MLLMs exhibit minimal contribution during the processing of visual tokens. Motivated by this observation, we propose ShortV, a training-free method that leverages LC to identify ineffective layers, and freezes visual token updates in these layers. Experiments show that ShortV can freeze visual token in approximately 60\% of the MLLM layers, thereby dramatically reducing computational costs related to updating visual tokens. For example, it achieves a 50\% reduction in FLOPs on LLaVA-NeXT-13B while maintaining superior performance. The code will be publicly available at https://github.com/icip-cas/ShortV

Authors:Jie Ma, Zhitao Gao, Qi Chai, Jun Liu, Pinghui Wang, Jing Tao, Zhou Su
Title: FortisAVQA and MAVEN: a Benchmark Dataset and Debiasing Framework for Robust Multimodal Reasoning
Abstract:
Audio-Visual Question Answering (AVQA) is a challenging multimodal reasoning task requiring intelligent systems to answer natural language queries based on paired audio-video inputs accurately. However, existing AVQA approaches often suffer from overfitting to dataset biases, leading to poor robustness. Moreover, current datasets may not effectively diagnose these methods. To address these challenges, we first introduce a novel dataset, FortisAVQA, constructed in two stages: (1) rephrasing questions in the test split of the public MUSIC-AVQA dataset and (2) introducing distribution shifts across questions. The first stage expands the test space with greater diversity, while the second enables a refined robustness evaluation across rare, frequent, and overall question distributions. Second, we introduce a robust Multimodal Audio-Visual Epistemic Network (MAVEN) that leverages a multifaceted cycle collaborative debiasing strategy to mitigate bias learning. Experimental results demonstrate that our architecture achieves state-of-the-art performance on FortisAVQA, with a notable improvement of 7.81\%. Extensive ablation studies on both datasets validate the effectiveness of our debiasing components. Additionally, our evaluation reveals the limited robustness of existing multimodal QA methods. We also verify the plug-and-play capability of our strategy by integrating it with various baseline models across both datasets. Our dataset and code are available at https://github.com/reml-group/fortisavqa.

Authors:Zhuohao Li, Zhicheng Huang, Wenchao Liu, Zhuxin Zhang, Jianming Miao
Title: FSSUWNet: Mitigating the Fragility of Pre-trained Models with Feature Enhancement for Few-Shot Semantic Segmentation in Underwater Images
Abstract:
Few-Shot Semantic Segmentation (FSS), which focuses on segmenting new classes in images using only a limited number of annotated examples, has recently progressed in data-scarce domains. However, in this work, we show that the existing FSS methods often struggle to generalize to underwater environments. Specifically, the prior features extracted by pre-trained models used as feature extractors are fragile due to the unique challenges of underwater images. To address this, we propose FSSUWNet, a tailored FSS framework for underwater images with feature enhancement. FSSUWNet exploits the integration of complementary features, emphasizing both low-level and high-level image characteristics. In addition to employing a pre-trained model as the primary encoder, we propose an auxiliary encoder called Feature Enhanced Encoder which extracts complementary features to better adapt to underwater scene characteristics. Furthermore, a simple and effective Feature Alignment Module aims to provide global prior knowledge and align low-level features with high-level features in dimensions. Given the scarcity of underwater images, we introduce a cross-validation dataset version based on the Segmentation of Underwater Imagery dataset. Extensive experiments on public underwater segmentation datasets demonstrate that our approach achieves state-of-the-art performance. For example, our method outperforms the previous best method by 2.8% and 2.6% in terms of the mean Intersection over Union metric for 1-shot and 5-shot scenarios in the datasets, respectively. Our implementation is available at https://github.com/lizhh268/FSSUWNet.

Authors:Haobo Yuan, Tao Zhang, Xiangtai Li, Lu Qi, Zilong Huang, Shilin Xu, Jiashi Feng, Ming-Hsuan Yang
Title: 4th PVUW MeViS 3rd Place Report: Sa2VA
Abstract:
Referring video object segmentation (RVOS) is a challenging task that requires the model to segment the object in a video given the language description. MeViS is a recently proposed dataset that contains motion expressions of the target objects, leading to a challenging benchmark, compared with existing RVOS benchmarks. On the other hand, for referring expression tasks, a new trend is to adopt multi-modal large language model (MLLM) to achieve better image and text alignment. In this report, we show that with a simple modification to the test time inference method on stronger MLLMs, we can lead to stronger results on MeVIS. In particular, we adopt the recent method Sa2VA, a unified model for dense grounded understanding of both images and videos. By enlarging the scope of key frames, without any further training, we can achieve the 3rd place in the 4th PVUW workshop.

Authors:Ruoyu Chen, Siyuan Liang, Jingzhi Li, Shiming Liu, Li Liu, Hua Zhang, Xiaochun Cao
Title: Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection
Abstract:
To develop a trustworthy AI system, which aim to identify the input regions that most influence the models decisions. The primary task of existing attribution methods lies in efficiently and accurately identifying the relationships among input-prediction interactions. Particularly when the input data is discrete, such as images, analyzing the relationship between inputs and outputs poses a significant challenge due to the combinatorial explosion. In this paper, we propose a novel and efficient black-box attribution mechanism, LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection. First, to accurately assess interactions, we design a submodular function that quantifies subset importance and effectively captures their impact on decision outcomes. Then, efficiently ranking input sub-regions by their importance for attribution, we improve optimization efficiency through a novel bidirectional greedy search algorithm. LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors. Extensive experiments on eight foundation models demonstrate that our method provides faithful interpretations with fewer regions and exhibits strong generalization, shows an average improvement of 36.3% in Insertion and 39.6% in Deletion. Our method also outperforms the naive greedy search in attribution efficiency, being 1.6 times faster. Furthermore, when explaining the reasons behind model prediction errors, the average highest confidence achieved by our method is, on average, 86.1% higher than that of state-of-the-art attribution algorithms. The code is available at https://github.com/RuoyuChen10/LIMA.

Authors:Jiuzhou Han, Wray Buntine, Ehsan Shareghi
Title: VerifiAgent: a Unified Verification Agent in Language Model Reasoning
Abstract:
Large language models demonstrate remarkable reasoning capabilities but often produce unreliable or incorrect responses. Existing verification methods are typically model-specific or domain-restricted, requiring significant computational resources and lacking scalability across diverse reasoning tasks. To address these limitations, we propose VerifiAgent, a unified verification agent that integrates two levels of verification: meta-verification, which assesses completeness and consistency in model responses, and tool-based adaptive verification, where VerifiAgent autonomously selects appropriate verification tools based on the reasoning type, including mathematical, logical, or commonsense reasoning. This adaptive approach ensures both efficiency and robustness across different verification scenarios. Experimental results show that VerifiAgent outperforms baseline verification methods (e.g., deductive verifier, backward verifier) among all reasoning tasks. Additionally, it can further enhance reasoning accuracy by leveraging feedback from verification results. VerifiAgent can also be effectively applied to inference scaling, achieving better results with fewer generated samples and costs compared to existing process reward models in the mathematical reasoning domain. Code is available at https://github.com/Jiuzhouh/VerifiAgent

Authors:Zilong Huang, Jun He, Junyan Ye, Lihan Jiang, Weijia Li, Yiping Chen, Ting Han
Title: Scene4U: Hierarchical Layered 3D Scene Reconstruction from Single Panoramic Image for Your Immerse Exploration
Abstract:
The reconstruction of immersive and realistic 3D scenes holds significant practical importance in various fields of computer vision and computer graphics. Typically, immersive and realistic scenes should be free from obstructions by dynamic objects, maintain global texture consistency, and allow for unrestricted exploration. The current mainstream methods for image-driven scene construction involves iteratively refining the initial image using a moving virtual camera to generate the scene. However, previous methods struggle with visual discontinuities due to global texture inconsistencies under varying camera poses, and they frequently exhibit scene voids caused by foreground-background occlusions. To this end, we propose a novel layered 3D scene reconstruction framework from panoramic image, named Scene4U. Specifically, Scene4U integrates an open-vocabulary segmentation model with a large language model to decompose a real panorama into multiple layers. Then, we employs a layered repair module based on diffusion model to restore occluded regions using visual cues and depth information, generating a hierarchical representation of the scene. The multi-layer panorama is then initialized as a 3D Gaussian Splatting representation, followed by layered optimization, which ultimately produces an immersive 3D scene with semantic and structural consistency that supports free exploration. Scene4U outperforms state-of-the-art method, improving by 24.24% in LPIPS and 24.40% in BRISQUE, while also achieving the fastest training speed. Additionally, to demonstrate the robustness of Scene4U and allow users to experience immersive scenes from various landmarks, we build WorldVista3D dataset for 3D scene reconstruction, which contains panoramic images of globally renowned sites. The implementation code and dataset will be released at https://github.com/LongHZ140516/Scene4U .

Authors:Wanjing Zhang, Chenxing Wang
Title: Intrinsic-feature-guided 3D Object Detection
Abstract:
LiDAR-based 3D object detection is essential for autonomous driving systems. However, LiDAR point clouds may appear to have sparsity, uneven distribution, and incomplete structures, significantly limiting the detection performance. In road driving environments, target objects referring to vehicles, pedestrians and cyclists are well-suited for enhancing representation through the complete template guidance, considering their grid and topological structures. Therefore, this paper presents an intrinsic-feature-guided 3D object detection method based on a template-assisted feature enhancement module, which extracts intrinsic features from relatively generalized templates and provides rich structural information for foreground objects. Furthermore, a proposal-level contrastive learning mechanism is designed to enhance the feature differences between foreground and background objects. The proposed modules can act as plug-and-play components and improve the performance of multiple existing methods. Extensive experiments illustrate that the proposed method achieves the highly competitive detection results. Code will be available at https://github.com/zhangwanjingjj/IfgNet.git.

Authors:Ting Liu, Siyuan Li
Title: Hybrid Global-Local Representation with Augmented Spatial Guidance for Zero-Shot Referring Image Segmentation
Abstract:
Recent advances in zero-shot referring image segmentation (RIS), driven by models such as the Segment Anything Model (SAM) and CLIP, have made substantial progress in aligning visual and textual information. Despite these successes, the extraction of precise and high-quality mask region representations remains a critical challenge, limiting the full potential of RIS tasks. In this paper, we introduce a training-free, hybrid global-local feature extraction approach that integrates detailed mask-specific features with contextual information from the surrounding area, enhancing mask region representation. To further strengthen alignment between mask regions and referring expressions, we propose a spatial guidance augmentation strategy that improves spatial coherence, which is essential for accurately localizing described areas. By incorporating multiple spatial cues, this approach facilitates more robust and precise referring segmentation. Extensive experiments on standard RIS benchmarks demonstrate that our method significantly outperforms existing zero-shot RIS models, achieving substantial performance gains. We believe our approach advances RIS tasks and establishes a versatile framework for region-text alignment, offering broader implications for cross-modal understanding and interaction. Code is available at https://github.com/fhgyuanshen/HybridGL .

Authors:Fan-Hao Lin, Tzu-Hao Huang, Chao-Kai Wen, Trung Q. Duong
Title: Geo2ComMap: Deep Learning-Based MIMO Throughput Prediction Using Geographic Data
Abstract:
Accurate communication performance prediction is crucial for wireless applications such as network deployment and resource management. Unlike conventional systems with a single transmit and receive antenna, throughput (Tput) estimation in antenna array-based multiple-output multiple-input (MIMO) systems is computationally intensive, i.e., requiring analysis of channel matrices, rank conditions, and spatial channel quality. These calculations impose significant computational and time burdens. This paper introduces Geo2ComMap, a deep learning-based framework that leverages geographic databases to efficiently estimate multiple communication metrics across an entire area in MIMO systems using only sparse measurements. To mitigate extreme prediction errors, we propose a sparse sampling strategy. Extensive evaluations demonstrate that Geo2ComMap accurately predicts full-area communication metrics, achieving a median absolute error of 27.35 Mbps for Tput values ranging from 0 to 1900 Mbps.

Authors:Thomas Bailie, Yun Sing Koh, S. Karthik Mukkavilli, Varvara Vetrova
Title: Reducing Smoothness with Expressive Memory Enhanced Hierarchical Graph Neural Networks
Abstract:
Graphical forecasting models learn the structure of time series data via projecting onto a graph, with recent techniques capturing spatial-temporal associations between variables via edge weights. Hierarchical variants offer a distinct advantage by analysing the time series across multiple resolutions, making them particularly effective in tasks like global weather forecasting, where low-resolution variable interactions are significant. A critical challenge in hierarchical models is information loss during forward or backward passes through the hierarchy. We propose the Hierarchical Graph Flow (HiGFlow) network, which introduces a memory buffer variable of dynamic size to store previously seen information across variable resolutions. We theoretically show two key results: HiGFlow reduces smoothness when mapping onto new feature spaces in the hierarchy and non-strictly enhances the utility of message-passing by improving Weisfeiler-Lehman (WL) expressivity. Empirical results demonstrate that HiGFlow outperforms state-of-the-art baselines, including transformer models, by at least an average of 6.1% in MAE and 6.2% in RMSE. Code is available at https://github.com/TB862/ HiGFlow.git.

Authors:Muhammad Tahir, Shehroz S. Khan, James Davie, Soichiro Yamanaka, Ahmed Ashraf
Title: LOCO-EPI: Leave-one-chromosome-out (LOCO) as a benchmarking paradigm for deep learning based prediction of enhancer-promoter interactions
Abstract:
In mammalian and vertebrate genomes, the promoter regions of the gene and their distal enhancers may be located millions of base-pairs from each other, while a promoter may not interact with the closest enhancer. Since base-pair proximity is not a good indicator of these interactions, there is considerable work toward developing methods for predicting Enhancer-Promoter Interactions (EPI). Several machine learning methods have reported increasingly higher accuracies for predicting EPI. Typically, these approaches randomly split the dataset of Enhancer-Promoter (EP) pairs into training and testing subsets followed by model training. However, the aforementioned random splitting causes information leakage by assigning EP pairs from the same genomic region to both testing and training sets, leading to performance overestimation. In this paper we propose to use a more thorough training and testing paradigm i.e., Leave-one-chromosome-out (LOCO) cross-validation for EPI-prediction. We demonstrate that a deep learning algorithm, which gives higher accuracies when trained and tested on random-splitting setting, drops drastically in performance under LOCO setting, confirming overestimation of performance. We further propose a novel hybrid deep neural network for EPI-prediction that fuses k-mer features of the nucleotide sequence. We show that the hybrid architecture performs significantly better in the LOCO setting, demonstrating it can learn more generalizable aspects of EP interactions. With this paper we are also releasing the LOCO splitting-based EPI dataset. Research data is available in this public repository: https://github.com/malikmtahir/EPI

Authors:Pooya Ashtari, Shahryar Noei, Fateme Nateghi Haredasht, Jonathan H. Chen, Giuseppe Jurman, Aleksandra Pizurica, Sabine Van Huffel
Title: Deconver: A Deconvolutional Network for Medical Image Segmentation
Abstract:
While convolutional neural networks (CNNs) and vision transformers (ViTs) have advanced medical image segmentation, they face inherent limitations such as local receptive fields in CNNs and high computational complexity in ViTs. This paper introduces Deconver, a novel network that integrates traditional deconvolution techniques from image restoration as a core learnable component within a U-shaped architecture. Deconver replaces computationally expensive attention mechanisms with efficient nonnegative deconvolution (NDC) operations, enabling the restoration of high-frequency details while suppressing artifacts. Key innovations include a backpropagation-friendly NDC layer based on a provably monotonic update rule and a parameter-efficient design. Evaluated across four datasets (ISLES'22, BraTS'23, GlaS, FIVES) covering both 2D and 3D segmentation tasks, Deconver achieves state-of-the-art performance in Dice scores and Hausdorff distance while reducing computational costs (FLOPs) by up to 90% compared to leading baselines. By bridging traditional image restoration with deep learning, this work offers a practical solution for high-precision segmentation in resource-constrained clinical workflows. The project is available at https://github.com/pashtari/deconver.

Authors:Joshua Rodriguez, Om Sanan, Guillermo Vizarreta-Luna, Steven A. Conrad
Title: Text Chunking for Document Classification for Urban System Management using Large Language Models
Abstract:
Urban systems are managed using complex textual documentation that need coding and analysis to set requirements and evaluate built environment performance. This paper contributes to the study of applying large-language models (LLM) to qualitative coding activities to reduce resource requirements while maintaining comparable reliability to humans. Qualitative coding and assessment face challenges like resource limitations and bias, accuracy, and consistency between human evaluators. Here we report the application of LLMs to deductively code 10 case documents on the presence of 17 digital twin characteristics for the management of urban systems. We utilize two prompting methods to compare the semantic processing of LLMs with human coding efforts: whole text analysis and text chunk analysis using OpenAI's GPT-4o, GPT-4o-mini, and o1-mini models. We found similar trends of internal variability between methods and results indicate that LLMs may perform on par with human coders when initialized with specific deductive coding contexts. GPT-4o, o1-mini and GPT-4o-mini showed significant agreement with human raters when employed using a chunking method. The application of both GPT-4o and GPT-4o-mini as an additional rater with three manual raters showed statistically significant agreement across all raters, indicating that the analysis of textual documents is benefited by LLMs. Our findings reveal nuanced sub-themes of LLM application suggesting LLMs follow human memory coding processes where whole-text analysis may introduce multiple meanings. The novel contributions of this paper lie in assessing the performance of OpenAI GPT models and introduces the chunk-based prompting approach, which addresses context aggregation biases by preserving localized context.

Authors:Yanzheng Xiang, Hanqi Yan, Shuyin Ouyang, Lin Gui, Yulan He
Title: SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
Abstract:
This study evaluates large language models (LLMs) in generating code from algorithm descriptions in recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a dual-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implements solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful non-reasoning and reasoning LLMs as foundational models. The best-performing LLM using \ModelName~achieves only 39% execution accuracy, highlighting the benchmark's difficulty. Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We make available our benchmark and code at https://github.com/xyzCS/SciReplicate-Bench and project homepage at https://xyzcs.github.io/scireplicate.github.io/.

Authors:Han Zhou, Wei Dong, Jun Chen
Title: LITA-GS: Illumination-Agnostic Novel View Synthesis via Reference-Free 3D Gaussian Splatting and Physical Priors
Abstract:
Directly employing 3D Gaussian Splatting (3DGS) on images with adverse illumination conditions exhibits considerable difficulty in achieving high-quality, normally-exposed representations due to: (1) The limited Structure from Motion (SfM) points estimated in adverse illumination scenarios fail to capture sufficient scene details; (2) Without ground-truth references, the intensive information loss, significant noise, and color distortion pose substantial challenges for 3DGS to produce high-quality results; (3) Combining existing exposure correction methods with 3DGS does not achieve satisfactory performance due to their individual enhancement processes, which lead to the illumination inconsistency between enhanced images from different viewpoints. To address these issues, we propose LITA-GS, a novel illumination-agnostic novel view synthesis method via reference-free 3DGS and physical priors. Firstly, we introduce an illumination-invariant physical prior extraction pipeline. Secondly, based on the extracted robust spatial structure prior, we develop the lighting-agnostic structure rendering strategy, which facilitates the optimization of the scene structure and object appearance. Moreover, a progressive denoising module is introduced to effectively mitigate the noise within the light-invariant representation. We adopt the unsupervised strategy for the training of LITA-GS and extensive experiments demonstrate that LITA-GS surpasses the state-of-the-art (SOTA) NeRF-based method while enjoying faster inference speed and costing reduced training time. The code is released at https://github.com/LowLevelAI/LITA-GS.

Authors:Suzanne Stathatos, Michael Hobley, Markus Marks, Pietro Perona
Title: SAVeD: Learning to Denoise Low-SNR Video for Improved Downstream Performance
Abstract:
Foundation models excel at vision tasks in natural images but fail in low signal-to-noise ratio (SNR) videos, such as underwater sonar, ultrasound, and microscopy. We introduce Spatiotemporal Augmentations and denoising in Video for Downstream Tasks (SAVeD), a self-supervised method that denoises low-SNR sensor videos and is trained using only the raw noisy data. By leveraging differences in foreground and background motion, SAVeD enhances object visibility using an encoder-decoder with a temporal bottleneck. Our approach improves classification, detection, tracking, and counting, outperforming state-of-the-art video denoising methods with lower resource requirements. Project page: https://suzanne-stathatos.github.io/SAVeD Code page: https://github.com/suzanne-stathatos/SAVeD

Authors:Srinitish Srinivasan, Omkumar CU
Title: Can we ease the Injectivity Bottleneck on Lorentzian Manifolds for Graph Neural Networks?
Abstract:
While hyperbolic GNNs show promise for hierarchical data, they often have limited discriminative power compared to Euclidean counterparts or the WL test, due to non-injective aggregation. To address this expressivity gap, we propose the Lorentzian Graph Isomorphic Network (LGIN), a novel HGNN designed for enhanced discrimination within the Lorentzian model. LGIN introduces a new update rule that preserves the Lorentzian metric while effectively capturing richer structural information. This marks a significant step towards more expressive GNNs on Riemannian manifolds. Extensive evaluations across nine benchmark datasets demonstrate LGIN's superior performance, consistently outperforming or matching state-of-the-art hyperbolic and Euclidean baselines, showcasing its ability to capture complex graph structures. LGIN is the first to adapt principles of powerful, highly discriminative GNN architectures to a Riemannian manifold. The code for our paper can be found at https://github.com/Deceptrax123/LGIN

Authors:Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Title: Times2D: Multi-Period Decomposition and Derivative Mapping for General Time Series Forecasting
Abstract:
Time series forecasting is an important application in various domains such as energy management, traffic planning, financial markets, meteorology, and medicine. However, real-time series data often present intricate temporal variability and sharp fluctuations, which pose significant challenges for time series forecasting. Previous models that rely on 1D time series representations usually struggle with complex temporal variations. To address the limitations of 1D time series, this study introduces the Times2D method that transforms the 1D time series into 2D space. Times2D consists of three main parts: first, a Periodic Decomposition Block (PDB) that captures temporal variations within a period and between the same periods by converting the time series into a 2D tensor in the frequency domain. Second, the First and Second Derivative Heatmaps (FSDH) capture sharp changes and turning points, respectively. Finally, an Aggregation Forecasting Block (AFB) integrates the output tensors from PDB and FSDH for accurate forecasting. This 2D transformation enables the utilization of 2D convolutional operations to effectively capture long and short characteristics of the time series. Comprehensive experimental results across large-scale data in the literature demonstrate that the proposed Times2D model achieves state-of-the-art performance in both short-term and long-term forecasting. The code is available in this repository: https://github.com/Tims2D/Times2D.

Authors:J. V. S. Souza, C. B. Vieira, G. D. C. Cavalcanti, R. M. O. Cruz
Title: Imbalanced malware classification: an approach based on dynamic classifier selection
Abstract:
In recent years, the rise of cyber threats has emphasized the need for robust malware detection systems, especially on mobile devices. Malware, which targets vulnerabilities in devices and user data, represents a substantial security risk. A significant challenge in malware detection is the imbalance in datasets, where most applications are benign, with only a small fraction posing a threat. This study addresses the often-overlooked issue of class imbalance in malware detection by evaluating various machine learning strategies for detecting malware in Android applications. We assess monolithic classifiers and ensemble methods, focusing on dynamic selection algorithms, which have shown superior performance compared to traditional approaches. In contrast to balancing strategies performed on the whole dataset, we propose a balancing procedure that works individually for each classifier in the pool. Our empirical analysis demonstrates that the KNOP algorithm obtained the best results using a pool of Random Forest. Additionally, an instance hardness assessment revealed that balancing reduces the difficulty of the minority class and enhances the detection of the minority class (malware). The code used for the experiments is available at https://github.com/jvss2/Machine-Learning-Empirical-Evaluation.

Authors:Huan Zhao, Yiming Liu, Jina Yao, Ling Xiong, Zexin Zhou, Zixing Zhang
Title: Celler:A Genomic Language Model for Long-Tailed Single-Cell Annotation
Abstract:
Recent breakthroughs in single-cell technology have ushered in unparalleled opportunities to decode the molecular intricacy of intricate biological systems, especially those linked to diseases unique to humans. However, these progressions have also ushered in novel obstacles-specifically, the efficient annotation of extensive, long-tailed single-cell data pertaining to disease conditions. To effectively surmount this challenge, we introduce Celler, a state-of-the-art generative pre-training model crafted specifically for the annotation of single-cell data. Celler incorporates two groundbreaking elements: First, we introduced the Gaussian Inflation (GInf) Loss function. By dynamically adjusting sample weights, GInf Loss significantly enhances the model's ability to learn from rare categories while reducing the risk of overfitting for common categories. Secondly, we introduce an innovative Hard Data Mining (HDM) strategy into the training process, specifically targeting the challenging-to-learn minority data samples, which significantly improved the model's predictive accuracy. Additionally, to further advance research in this field, we have constructed a large-scale single-cell dataset: Celler-75, which encompasses 40 million cells distributed across 80 human tissues and 75 specific diseases. This dataset provides critical support for comprehensively exploring the potential of single-cell technology in disease research. Our code is available at https://github.com/AI4science-ym/HiCeller.

Authors:Yuyao Zhang, Jinghao Li, Yu-Wing Tai
Title: LayerCraft: Enhancing Text-to-Image Generation with CoT Reasoning and Layered Object Integration
Abstract:
Text-to-image (T2I) generation has made remarkable progress, yet existing systems still lack intuitive control over spatial composition, object consistency, and multi-step editing. We present $\textbf{LayerCraft}$, a modular framework that uses large language models (LLMs) as autonomous agents to orchestrate structured, layered image generation and editing. LayerCraft supports two key capabilities: (1) $\textit{structured generation}$ from simple prompts via chain-of-thought (CoT) reasoning, enabling it to decompose scenes, reason about object placement, and guide composition in a controllable, interpretable manner; and (2) $\textit{layered object integration}$, allowing users to insert and customize objects -- such as characters or props -- across diverse images or scenes while preserving identity, context, and style. The system comprises a coordinator agent, the $\textbf{ChainArchitect}$ for CoT-driven layout planning, and the $\textbf{Object Integration Network (OIN)}$ for seamless image editing using off-the-shelf T2I models without retraining. Through applications like batch collage editing and narrative scene generation, LayerCraft empowers non-experts to iteratively design, customize, and refine visual content with minimal manual effort. Code will be released at https://github.com/PeterYYZhang/LayerCraft.

Authors:Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, Anpei Chen
Title: Easi3R: Estimating Disentangled Motion from DUSt3R Without Training
Abstract:
Recent advances in DUSt3R have enabled robust estimation of dense point clouds and camera parameters of static scenes, leveraging Transformer network architectures and direct supervision on large-scale 3D datasets. In contrast, the limited scale and diversity of available 4D datasets present a major bottleneck for training a highly generalizable 4D model. This constraint has driven conventional 4D methods to fine-tune 3D models on scalable dynamic video data with additional geometric priors such as optical flow and depths. In this work, we take an opposite path and introduce Easi3R, a simple yet efficient training-free method for 4D reconstruction. Our approach applies attention adaptation during inference, eliminating the need for from-scratch pre-training or network fine-tuning. We find that the attention layers in DUSt3R inherently encode rich information about camera and object motion. By carefully disentangling these attention maps, we achieve accurate dynamic region segmentation, camera pose estimation, and 4D dense point map reconstruction. Extensive experiments on real-world dynamic videos demonstrate that our lightweight attention adaptation significantly outperforms previous state-of-the-art methods that are trained or finetuned on extensive dynamic datasets. Our code is publicly available for research purpose at https://easi3r.github.io/

Authors:Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, Anpei Chen
Title: Easi3R: Estimating Disentangled Motion from DUSt3R Without Training
Abstract:
Recent advances in DUSt3R have enabled robust estimation of dense point clouds and camera parameters of static scenes, leveraging Transformer network architectures and direct supervision on large-scale 3D datasets. In contrast, the limited scale and diversity of available 4D datasets present a major bottleneck for training a highly generalizable 4D model. This constraint has driven conventional 4D methods to fine-tune 3D models on scalable dynamic video data with additional geometric priors such as optical flow and depths. In this work, we take an opposite path and introduce Easi3R, a simple yet efficient training-free method for 4D reconstruction. Our approach applies attention adaptation during inference, eliminating the need for from-scratch pre-training or network fine-tuning. We find that the attention layers in DUSt3R inherently encode rich information about camera and object motion. By carefully disentangling these attention maps, we achieve accurate dynamic region segmentation, camera pose estimation, and 4D dense point map reconstruction. Extensive experiments on real-world dynamic videos demonstrate that our lightweight attention adaptation significantly outperforms previous state-of-the-art methods that are trained or finetuned on extensive dynamic datasets. Our code is publicly available for research purpose at https://easi3r.github.io/

Authors:Chenyang Li, Wenxuan Liu, Guoqiang Gong, Xiaobo Ding, Xian Zhong
Title: SU-YOLO: Spiking Neural Network for Efficient Underwater Object Detection
Abstract:
Underwater object detection is critical for oceanic research and industrial safety inspections. However, the complex optical environment and the limited resources of underwater equipment pose significant challenges to achieving high accuracy and low power consumption. To address these issues, we propose Spiking Underwater YOLO (SU-YOLO), a Spiking Neural Network (SNN) model. Leveraging the lightweight and energy-efficient properties of SNNs, SU-YOLO incorporates a novel spike-based underwater image denoising method based solely on integer addition, which enhances the quality of feature maps with minimal computational overhead. In addition, we introduce Separated Batch Normalization (SeBN), a technique that normalizes feature maps independently across multiple time steps and is optimized for integration with residual structures to capture the temporal dynamics of SNNs more effectively. The redesigned spiking residual blocks integrate the Cross Stage Partial Network (CSPNet) with the YOLO architecture to mitigate spike degradation and enhance the model's feature extraction capabilities. Experimental results on URPC2019 underwater dataset demonstrate that SU-YOLO achieves mAP of 78.8% with 6.97M parameters and an energy consumption of 2.98 mJ, surpassing mainstream SNN models in both detection accuracy and computational efficiency. These results underscore the potential of SNNs for engineering applications. The code is available in https://github.com/lwxfight/snn-underwater.

Authors:Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai Wong, Heng Ji, Kam-Fai Wong
Title: Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Abstract:
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.

Authors:Yi Chen, Yuying Ge, Rui Wang, Yixiao Ge, Lu Qiu, Ying Shan, Xihui Liu
Title: Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Abstract:
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.

Authors:Shuaizheng Liu, Jianqi Ma, Lingchen Sun, Xiangtao Kong, Lei Zhang
Title: InstructRestore: Region-Customized Image Restoration with Human Instructions
Abstract:
Despite the significant progress in diffusion prior-based image restoration, most existing methods apply uniform processing to the entire image, lacking the capability to perform region-customized image restoration according to user instructions. In this work, we propose a new framework, namely InstructRestore, to perform region-adjustable image restoration following human instructions. To achieve this, we first develop a data generation engine to produce training triplets, each consisting of a high-quality image, the target region description, and the corresponding region mask. With this engine and careful data screening, we construct a comprehensive dataset comprising 536,945 triplets to support the training and evaluation of this task. We then examine how to integrate the low-quality image features under the ControlNet architecture to adjust the degree of image details enhancement. Consequently, we develop a ControlNet-like model to identify the target region and allocate different integration scales to the target and surrounding regions, enabling region-customized image restoration that aligns with user instructions. Experimental results demonstrate that our proposed InstructRestore approach enables effective human-instructed image restoration, such as images with bokeh effects and user-instructed local enhancement. Our work advances the investigation of interactive image restoration and enhancement techniques. Data, code, and models will be found at https://github.com/shuaizhengliu/InstructRestore.git.

Authors:Adam Schmidt, Mert Asim Karaoglu, Soham Sinha, Mingang Jang, Ho-Gun Ha, Kyungmin Jung, Kyeongmo Gu, Ihsan Ullah, Hyunki Lee, Jonáš Šerých, Michal Neoral, Jiří Matas, Rulin Zhou, Wenlong He, An Wang, Hongliang Ren, Bruno Silva, Sandro Queirós, Estêvão Lima, João L. Vilaça, Shunsuke Kikuchi, Atsushi Kouno, Hiroki Matsuzaki, Tongtong Li, Yulu Chen, Ling Li, Xiang Ma, Xiaojian Li, Mona Sheikh Zeinoddin, Xu Wang, Zafer Tandogdu, Greg Shaw, Evangelos Mazomenos, Danail Stoyanov, Yuxin Chen, Zijian Wu, Alexander Ladikos, Simon DiMaio, Septimiu E. Salcudean, Omid Mohareri
Title: Point Tracking in Surgery--The 2024 Surgical Tattoos in Infrared (STIR) Challenge
Abstract:
Understanding tissue motion in surgery is crucial to enable applications in downstream tasks such as segmentation, 3D reconstruction, virtual tissue landmarking, autonomous probe-based scanning, and subtask autonomy. Labeled data are essential to enabling algorithms in these downstream tasks since they allow us to quantify and train algorithms. This paper introduces a point tracking challenge to address this, wherein participants can submit their algorithms for quantification. The submitted algorithms are evaluated using a dataset named surgical tattoos in infrared (STIR), with the challenge aptly named the STIR Challenge 2024. The STIR Challenge 2024 comprises two quantitative components: accuracy and efficiency. The accuracy component tests the accuracy of algorithms on in vivo and ex vivo sequences. The efficiency component tests the latency of algorithm inference. The challenge was conducted as a part of MICCAI EndoVis 2024. In this challenge, we had 8 total teams, with 4 teams submitting before and 4 submitting after challenge day. This paper details the STIR Challenge 2024, which serves to move the field towards more accurate and efficient algorithms for spatial understanding in surgery. In this paper we summarize the design, submissions, and results from the challenge. The challenge dataset is available here: https://zenodo.org/records/14803158 , and the code for baseline models and metric calculation is available here: https://github.com/athaddius/STIRMetrics

Authors:Sewoong Lee, Adam Davies, Marc E. Canby, Julia Hockenmaier
Title: Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Abstract:
Sparse autoencoders (SAEs) are widely used in mechanistic interpretability research for large language models; however, the state-of-the-art method of using $k$-sparse autoencoders lacks a theoretical grounding for selecting the hyperparameter $k$ that represents the number of nonzero activations, often denoted by $\ell_0$. In this paper, we reveal a theoretical link that the $\ell_2$-norm of the sparse feature vector can be approximated with the $\ell_2$-norm of the dense vector with a closed-form error, which allows sparse autoencoders to be trained without the need to manually determine $\ell_0$. Specifically, we validate two applications of our theoretical findings. First, we introduce a new methodology that can assess the feature activations of pre-trained SAEs by computing the theoretically expected value from the input embedding, which has been overlooked by existing SAE evaluation methods and loss functions. Second, we introduce a novel activation function, top-AFA, which builds upon our formulation of approximate feature activation (AFA). This function enables top-$k$ style activation without requiring a constant hyperparameter $k$ to be tuned, dynamically determining the number of activated features for each input. By training SAEs on three intermediate layers to reconstruct GPT2 hidden embeddings for over 80 million tokens from the OpenWebText dataset, we demonstrate the empirical merits of this approach and compare it with current state-of-the-art $k$-sparse autoencoders. Our code is available at: https://github.com/SewoongLee/top-afa-sae.

Authors:Zhengren Wang, Rui Ling, Chufan Wang, Yongan Yu, Sizhe Wang, Zhiyu Li, Feiyu Xiong, Wentao Zhang
Title: MaintainCoder: Maintainable Code Generation Under Dynamic Requirements
Abstract:
Modern code generation has made significant strides in functional correctness and execution efficiency. However, these systems often overlook a critical dimension in real-world software development: \textit{maintainability}. To handle dynamic requirements with minimal rework, we propose \textbf{MaintainCoder} as a pioneering solution. It integrates the Waterfall model, design patterns, and multi-agent collaboration to systematically enhance cohesion, reduce coupling, achieving clear responsibility boundaries and better maintainability. We also introduce \textbf{MaintainBench}, a benchmark comprising requirement changes and novel dynamic metrics on maintenance efforts. Experiments demonstrate that existing code generation methods struggle to meet maintainability standards when requirements evolve. In contrast, MaintainCoder improves dynamic maintainability metrics by more than 60\% with even higher correctness of initial codes. Furthermore, while static metrics fail to accurately reflect maintainability and even contradict each other, our proposed dynamic metrics exhibit high consistency. Our work not only provides the foundation for maintainable code generation, but also highlights the need for more realistic and comprehensive code generation research.

Authors:Zhengren Wang, Rui Ling, Chufan Wang, Yongan Yu, Sizhe Wang, Zhiyu Li, Feiyu Xiong, Wentao Zhang
Title: MaintainCoder: Maintainable Code Generation Under Dynamic Requirements
Abstract:
Modern code generation has made significant strides in functional correctness and execution efficiency. However, these systems often overlook a critical dimension in real-world software development: maintainability. To handle dynamic requirements with minimal rework, we propose MaintainCoder as a pioneering solution. It integrates the Waterfall model, design patterns, and multi-agent collaboration to systematically enhance cohesion, reduce coupling, achieving clear responsibility boundaries and better maintainability. We also introduce MaintainCoder, a benchmark comprising requirement changes and novel dynamic metrics on maintenance efforts. Experiments demonstrate that existing code generation methods struggle to meet maintainability standards when requirements evolve. In contrast, MaintainCoder improves dynamic maintainability metrics by more than 60% with even higher correctness of initial codes. Furthermore, while static metrics fail to accurately reflect maintainability and even contradict each other, our proposed dynamic metrics exhibit high consistency. Our work not only provides the foundation for maintainable code generation, but also highlights the need for more realistic and comprehensive code generation research. Resources: https://github.com/IAAR-Shanghai/MaintainCoder.

Authors:Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo, Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, Chen Ma
Title: A Survey on Test-Time Scaling in Large Language Models: What, How, Where, and How Well?
Abstract:
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions. Our repository is available on https://github.com/testtimescaling/testtimescaling.github.io/

Authors:Karim Radouane, Hanane Azzag, Mustapha lebbah
Title: MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
Abstract:
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.

Authors:Jianhao Li, Xianchao Xiu
Title: LLM4FS: Leveraging Large Language Models for Feature Selection
Abstract:
Recent advances in large language models (LLMs) have provided new opportunities for decision-making, particularly in the task of automated feature selection. In this paper, we first comprehensively evaluate LLM-based feature selection methods, covering the state-of-the-art DeepSeek-R1, GPT-o3-mini, and GPT-4.5. Then, we propose a new hybrid strategy called LLM4FS that integrates LLMs with traditional data-driven methods. Specifically, input data samples into LLMs, and directly call traditional data-driven techniques such as random forest and forward sequential selection. Notably, our analysis reveals that the hybrid strategy leverages the contextual understanding of LLMs and the high statistical reliability of traditional data-driven methods to achieve excellent feature selection performance, even surpassing LLMs and traditional data-driven methods. Finally, we point out the limitations of its application in decision-making. Our code is available at https://github.com/xianchaoxiu/LLM4FS.

Authors:Zhiming Ma, Peidong Wang, Minhua Huang, Jingpeng Wang, Kai Wu, Xiangzhao Lv, Yachun Pang, Yin Yang, Wenjie Tang, Yuchen Kang
Title: TeleAntiFraud-28k: An Audio-Text Slow-Thinking Dataset for Telecom Fraud Detection
Abstract:
The detection of telecom fraud faces significant challenges due to the lack of high-quality multimodal training data that integrates audio signals with reasoning-oriented textual analysis. To address this gap, we present TeleAntiFraud-28k, the first open-source audio-text slow-thinking dataset specifically designed for automated telecom fraud analysis. Our dataset is constructed through three strategies: (1) Privacy-preserved text-truth sample generation using automatically speech recognition (ASR)-transcribed call recordings (with anonymized original audio), ensuring real-world consistency through text-to-speech (TTS) model regeneration; (2) Semantic enhancement via large language model (LLM)-based self-instruction sampling on authentic ASR outputs to expand scenario coverage; (3) Multi-agent adversarial synthesis that simulates emerging fraud tactics through predefined communication scenarios and fraud typologies. The generated dataset contains 28,511 rigorously processed speech-text pairs, complete with detailed annotations for fraud reasoning. The dataset is divided into three tasks: scenario classification, fraud detection, fraud type classification. Furthermore, we construct TeleAntiFraud-Bench, a standardized evaluation benchmark comprising proportionally sampled instances from the dataset, to facilitate systematic testing of model performance on telecom fraud detection tasks. We also contribute a production-optimized supervised fine-tuning (SFT) model trained on hybrid real/synthetic data, while open-sourcing the data processing framework to enable community-driven dataset expansion. This work establishes a foundational framework for multimodal anti-fraud research while addressing critical challenges in data privacy and scenario diversity. The project will be released at https://github.com/JimmyMa99/TeleAntiFraud.

Authors:Xiangyuan Peng, Miao Tang, Huawei Sun, Kay Bierzynski, Lorenzo Servadei, Robert Wille
Title: 4D mmWave Radar for Sensing Enhancement in Adverse Environments: Advances and Challenges
Abstract:
Intelligent transportation systems require accurate and reliable sensing. However, adverse environments, such as rain, snow, and fog, can significantly degrade the performance of LiDAR and cameras. In contrast, 4D mmWave radar not only provides 3D point clouds and velocity measurements but also maintains robustness in challenging conditions. Recently, research on 4D mmWave radar under adverse environments has been growing, but a comprehensive review is still lacking. To bridge this gap, this work reviews the current research on 4D mmWave radar under adverse environments. First, we present an overview of existing 4D mmWave radar datasets encompassing diverse weather and lighting scenarios. Subsequently, we analyze existing learning-based methods leveraging 4D mmWave radar to enhance performance according to different adverse conditions. Finally, the challenges and potential future directions are discussed for advancing 4D mmWave radar applications in harsh environments. To the best of our knowledge, this is the first review specifically concentrating on 4D mmWave radar in adverse environments. The related studies are listed at: https://github.com/XiangyPeng/4D-mmWave-Radar-in-Adverse-Environments.

Authors:Tong Xie, Jiawang Zhao, Zishen Wan, Zuodong Zhang, Yuan Wang, Runsheng Wang, Ru Huang, Meng Li
Title: ReaLM: Reliable and Efficient Large Language Model Inference with Statistical Algorithm-Based Fault Tolerance
Abstract:
The demand for efficient large language model (LLM) inference has propelled the development of dedicated accelerators. As accelerators are vulnerable to hardware faults due to aging, variation, etc, existing accelerator designs often reserve a large voltage margin or leverage algorithm-based fault tolerance (ABFT) techniques to ensure LLM inference correctness. However, previous methods often overlook the inherent fault tolerance of LLMs, leading to high computation and energy overhead. To enable reliable yet efficient LLM inference, in this paper, we propose a novel algorithm/circuit co-design framework, dubbed ReaLM. For the first time, we systematically characterize the fault tolerance of LLMs by performing a large-scale error injection study of representative LLMs and natural language understanding tasks. Then, we propose a statistical ABFT algorithm that fully leverages the error robustness to minimize error recovery as much as possible. We also customize the error detection circuits to enable a low-cost online collection of error statistics. Extensive experiments show that with only 1.42% circuit area and 1.79% power overhead, our ReaLM can reduce perplexity degradation from 18.54 to 0.29. Compared to existing methods, ReaLM consistently reduces recovery costs across different operating voltages and improves energy efficiency by up to 35.83% without compromising LLM performance. Our error injection code is available at https://github.com/PKU-SEC-Lab/ReaLM_DAC25/

Authors:Wei Gao, Xinyu Zhou, Peng Sun, Tianwei Zhang, Yonggang Wen
Title: Rethinking Key-Value Cache Compression Techniques for Large Language Model Serving
Abstract:
Key-Value cache (\texttt{KV} \texttt{cache}) compression has emerged as a promising technique to optimize Large Language Model (LLM) serving. It primarily decreases the memory consumption of \texttt{KV} \texttt{cache} to reduce the computation cost. Despite the development of many compression algorithms, their applications in production environments are still not prevalent. In this paper, we revisit mainstream \texttt{KV} \texttt{cache} compression solutions from a practical perspective. Our contributions are three-fold. First, we comprehensively review existing algorithmic designs and benchmark studies for \texttt{KV} \texttt{cache} compression and identify missing pieces in their performance measurement, which could hinder their adoption in practice. Second, we empirically evaluate representative \texttt{KV} \texttt{cache} compression methods to uncover two key issues that affect the computational efficiency: (1) while compressing \texttt{KV} \texttt{cache} can reduce memory consumption, current implementations (e.g., FlashAttention, PagedAttention) do not optimize for production-level LLM serving, resulting in suboptimal throughput performance; (2) compressing \texttt{KV} \texttt{cache} may lead to longer outputs, resulting in increased end-to-end latency. We further investigate the accuracy performance of individual samples rather than the overall performance, revealing the intrinsic limitations in \texttt{KV} \texttt{cache} compression when handling specific LLM tasks. Third, we provide tools to shed light on future \texttt{KV} \texttt{cache} compression studies and facilitate their practical deployment in production. They are open-sourced in \href{https://github.com/LLMkvsys/rethink-kv-compression}{https://github.com/LLMkvsys/rethink-kv-compression}.

Authors:Yanbo Wang, Yongtao Chen, Chuan Cao, Tianchen Deng, Wentao Zhao, Jingchuan Wang, Weidong Chen
Title: SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
Abstract:
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.

Authors:Nima Torbati, Anastasia Meshcheryakova, Ramona Woitek, Sepideh Hatamikia, Diana Mechtcheriakova, Amirreza Mahbod
Title: A Multi-Stage Auto-Context Deep Learning Framework for Tissue and Nuclei Segmentation and Classification in H&E-Stained Histological Images of Advanced Melanoma
Abstract:
Melanoma is the most lethal form of skin cancer, with an increasing incidence rate worldwide. Analyzing histological images of melanoma by localizing and classifying tissues and cell nuclei is considered the gold standard method for diagnosis and treatment options for patients. While many computerized approaches have been proposed for automatic analysis, most perform tissue-based analysis and nuclei (cell)-based analysis as separate tasks, which might be suboptimal. In this work, using the PUMA challenge dataset, we propose a novel multi-stage deep learning approach by combining tissue and nuclei information in a unified framework based on the auto-context concept to perform segmentation and classification in histological images of melanoma. Through pre-training and further post-processing, our approach achieved second and first place rankings in the PUMA challenge, with average micro Dice tissue score and summed nuclei F1-score of 73.40% for Track 1 and 63.48% for Track 2, respectively. Furthermore, through a comprehensive ablation study and additional evaluation on an external dataset, we demonstrated the effectiveness of the framework components as well as the generalization capabilities of the proposed approach. Our implementation for training and testing is available at: https://github.com/NimaTorbati/PumaSubmit

Authors:Sebastian Springer, Andre Scaffidi, Maximilian Autenrieth, Gabriella Contardo, Alessandro Laio, Roberto Trotta, Heikki Haario
Title: Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Abstract:
Detecting localized density differences in multivariate data is a crucial task in computational science. Such anomalies can indicate a critical system failure, lead to a groundbreaking scientific discovery, or reveal unexpected changes in data distribution. We introduce EagleEye, an anomaly detection method to compare two multivariate datasets with the aim of identifying local density anomalies, namely over- or under-densities affecting only localised regions of the feature space. Anomalies are detected by modelling, for each point, the ordered sequence of its neighbours' membership label as a coin-flipping process and monitoring deviations from the expected behaviour of such process. A unique advantage of our method is its ability to provide an accurate, entirely unsupervised estimate of the local signal purity. We demonstrate its effectiveness through experiments on both synthetic and real-world datasets. In synthetic data, EagleEye accurately detects anomalies in multiple dimensions even when they affect a tiny fraction of the data. When applied to a challenging resonant anomaly detection benchmark task in simulated Large Hadron Collider data, EagleEye successfully identifies particle decay events present in just 0.3% of the dataset. In global temperature data, EagleEye uncovers previously unidentified, geographically localised changes in temperature fields that occurred in the most recent years. Thanks to its key advantages of conceptual simplicity, computational efficiency, trivial parallelisation, and scalability, EagleEye is widely applicable across many fields.

Authors:Ruisheng Han, Kanglei Zhou, Amir Atapour-Abarghouei, Xiaohui Liang, Hubert P. H. Shum
Title: FineCausal: A Causal-Based Framework for Interpretable Fine-Grained Action Quality Assessment
Abstract:
Action quality assessment (AQA) is critical for evaluating athletic performance, informing training strategies, and ensuring safety in competitive sports. However, existing deep learning approaches often operate as black boxes and are vulnerable to spurious correlations, limiting both their reliability and interpretability. In this paper, we introduce FineCausal, a novel causal-based framework that achieves state-of-the-art performance on the FineDiving-HM dataset. Our approach leverages a Graph Attention Network-based causal intervention module to disentangle human-centric foreground cues from background confounders, and incorporates a temporal causal attention module to capture fine-grained temporal dependencies across action stages. This dual-module strategy enables FineCausal to generate detailed spatio-temporal representations that not only achieve state-of-the-art scoring performance but also provide transparent, interpretable feedback on which features drive the assessment. Despite its strong performance, FineCausal requires extensive expert knowledge to define causal structures and depends on high-quality annotations, challenges that we discuss and address as future research directions. Code is available at https://github.com/Harrison21/FineCausal.

Authors:Qihan Huang, Weilong Dai, Jinlong Liu, Wanggui He, Hao Jiang, Mingli Song, Jingyuan Chen, Chang Yao, Jie Song
Title: Boosting MLLM Reasoning with Text-Debiased Hint-GRPO
Abstract:
MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.

Authors:Diana Galvan-Sosa, Gabrielle Gaudeau, Pride Kavumba, Yunmeng Li, Hongyi gu, Zheng Yuan, Keisuke Sakaguchi, Paula Buttery
Title: Rubrik's Cube: Testing a New Rubric for Evaluating Explanations on the CUBE dataset
Abstract:
The performance and usability of Large-Language Models (LLMs) are driving their use in explanation generation tasks. However, despite their widespread adoption, LLM explanations have been found to be unreliable, making it difficult for users to distinguish good from bad explanations. To address this issue, we present Rubrik's CUBE, an education-inspired rubric and a dataset of 26k explanations, written and later quality-annotated using the rubric by both humans and six open- and closed-source LLMs. The CUBE dataset focuses on two reasoning and two language tasks, providing the necessary diversity for us to effectively test our proposed rubric. Using Rubrik, we find that explanations are influenced by both task and perceived difficulty. Low quality stems primarily from a lack of conciseness in LLM-generated explanations, rather than cohesion and word choice. The full dataset, rubric, and code are available at https://github.com/RubriksCube/rubriks_cube.

Authors:Yuqiao Tan, Shizhu He, Huanxuan Liao, Jun Zhao, Kang Liu
Title: Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources and incorporating them into the context. While it improves reliability by providing factual texts, it significantly increases inference costs as context length grows and introduces challenging issue of RAG hallucination, primarily caused by the lack of corresponding parametric knowledge in LLMs. An efficient solution is to enhance the knowledge of LLMs at test-time. Parametric RAG (PRAG) addresses this by embedding document into LLMs parameters to perform test-time knowledge enhancement, effectively reducing inference costs through offline training. However, its high training and storage costs, along with limited generalization ability, significantly restrict its practical adoption. To address these challenges, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages a lightweight parameter translator model to efficiently convert documents into parametric knowledge. DyPRAG not only reduces inference, training, and storage costs but also dynamically generates parametric knowledge, seamlessly enhancing the knowledge of LLMs and resolving knowledge conflicts in a plug-and-play manner at test-time. Extensive experiments on multiple datasets demonstrate the effectiveness and generalization capabilities of DyPRAG, offering a powerful and practical RAG paradigm which enables superior knowledge fusion and mitigates RAG hallucination in real-world applications. Our code is available at https://github.com/Trae1ounG/DyPRAG.

Authors:Wenkang Ji, Huaben Chen, Mingyang Chen, Guobin Zhu, Lufeng Xu, Roderich Groß, Rui Zhou, Ming Cao, Shiyu Zhao
Title: GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
Abstract:
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.

Authors:SeonYeong Lee, EonSeung Seong, DongEon Lee, SiYeoul Lee, Yubin Cho, Chunsu Park, Seonho Kim, MinKyung Seo, YoungSin Ko, MinWoo Kim
Title: Learned Image Compression and Restoration for Digital Pathology
Abstract:
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization. To address these issues, we propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs). CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details. Our framework employs a lifting-scheme transform in the analysis stage to decompose images into low- and high-frequency components, enabling more structured latent representations. These components are processed through parallel encoders incorporating Deformable Residual Blocks (DRB) and Recurrent Residual Blocks (R2B) to improve feature extraction and spatial adaptability. The synthesis stage applies an inverse lifting transform for effective image reconstruction, ensuring high-fidelity restoration of fine-grained tissue structures. We evaluate CLERIC on a digital pathology image dataset and compare its performance against state-of-the-art learned image compression (LIC) models. Experimental results demonstrate that CLERIC achieves superior rate-distortion (RD) performance, significantly reducing storage requirements while maintaining high diagnostic image quality. Our study highlights the potential of deep learning-based compression in digital pathology, facilitating efficient data management and long-term storage while ensuring seamless integration into clinical workflows and AI-assisted diagnostic systems. Code and models are available at: https://github.com/pnu-amilab/CLERIC.

Authors:Nicolas Gillis, Margherita Porcelli, Giovanni Seraghiti
Title: An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function
Abstract:
Nonlinear matrix decomposition (NMD) with the ReLU function, denoted ReLU-NMD, is the following problem: given a sparse, nonnegative matrix $X$ and a factorization rank $r$, identify a rank-$r$ matrix $Θ$ such that $X\approx \max(0,Θ)$. This decomposition finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard ReLU-NMD model minimizes the least squares error, that is, $\|X - \max(0,Θ)\|_F^2$. The corresponding optimization problem is nondifferentiable and highly nonconvex. This motivated Saul to propose an alternative model, Latent-ReLU-NMD, where a latent variable $Z$ is introduced and satisfies $\max(0,Z)=X$ while minimizing $\|Z - Θ\|_F^2$ (``A nonlinear matrix decomposition for mining the zeros of sparse data'', SIAM J. Math. Data Sci., 2022). Our first contribution is to show that the two formulations may yield different low-rank solutions $Θ$; in particular, we show that Latent-ReLU-NMD can be ill-posed when ReLU-NMD is not, meaning that there are instances in which the infimum of Latent-ReLU-NMD is not attained while that of ReLU-NMD is. We also consider another alternative model, called 3B-ReLU-NMD, which parameterizes $Θ=WH$, where $W$ has $r$ columns and $H$ has $r$ rows, allowing one to get rid of the rank constraint in Latent-ReLU-NMD. Our second contribution is to prove the convergence of a block coordinate descent (BCD) applied to 3B-ReLU-NMD and referred to as BCD-NMD. Our third contribution is a novel extrapolated variant of BCD-NMD, dubbed eBCD-NMD, which we prove is also convergent under mild assumptions. We illustrate the significant acceleration effect of eBCD-NMD compared to BCD-NMD, and also show that eBCD-NMD performs well against the state of the art on synthetic and real-world data sets.

Authors:Emmanouil Georgios Lionis, Jia-Huei Ju
Title: On the Reproducibility of Learned Sparse Retrieval Adaptations for Long Documents
Abstract:
Document retrieval is one of the most challenging tasks in Information Retrieval. It requires handling longer contexts, often resulting in higher query latency and increased computational overhead. Recently, Learned Sparse Retrieval (LSR) has emerged as a promising approach to address these challenges. Some have proposed adapting the LSR approach to longer documents by aggregating segmented document using different post-hoc methods, including n-grams and proximity scores, adjusting representations, and learning to ensemble all signals. In this study, we aim to reproduce and examine the mechanisms of adapting LSR for long documents. Our reproducibility experiments confirmed the importance of specific segments, with the first segment consistently dominating document retrieval performance. Furthermore, We re-evaluate recently proposed methods -- ExactSDM and SoftSDM -- across varying document lengths, from short (up to 2 segments) to longer (3+ segments). We also designed multiple analyses to probe the reproduced methods and shed light on the impact of global information on adapting LSR to longer contexts. The complete code and implementation for this project is available at: https://github.com/lionisakis/Reproducibilitiy-lsr-long.

Authors:Yingwei Ma, Yongbin Li, Yihong Dong, Xue Jiang, Rongyu Cao, Jue Chen, Fei Huang, Binhua Li
Title: Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute
Abstract:
Recent advancements in software engineering agents have demonstrated promising capabilities in automating program improvements. However, their reliance on closed-source or resource-intensive models introduces significant deployment challenges in private environments, prompting a critical question: \textit{How can personally deployable open-source LLMs achieve comparable code reasoning performance?} To this end, we propose a unified Test-Time Compute scaling framework that leverages increased inference-time computation instead of larger models. Our framework incorporates two complementary strategies: internal TTC and external TTC. Internally, we introduce a \textit{development-contextualized trajectory synthesis} method leveraging real-world software repositories to bootstrap multi-stage reasoning processes, such as fault localization and patch generation. We further enhance trajectory quality through rejection sampling, rigorously evaluating trajectories along accuracy and complexity. Externally, we propose a novel \textit{development-process-based search} strategy guided by reward models and execution verification. This approach enables targeted computational allocation at critical development decision points, overcoming limitations of existing "end-point only" verification methods. Evaluations on SWE-bench Verified demonstrate our \textbf{32B model achieves a 46\% issue resolution rate}, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1. Additionally, we provide the empirical validation of the test-time scaling phenomenon within SWE agents, revealing that \textbf{models dynamically allocate more tokens to increasingly challenging problems}, effectively enhancing reasoning capabilities. We publicly release all training data, models, and code to facilitate future research. https://github.com/yingweima2022/SWE-Reasoner

Authors:Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, Seulki Lee
Title: On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
Abstract:
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).

Authors:Fabian L. Thiemann, Thiago Reschützegger, Massimiliano Esposito, Tseden Taddese, Juan D. Olarte-Plata, Fausto Martelli
Title: Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Abstract:
Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to $30\times$ larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.

Authors:Haoran Shen, Peixian Zhuang, Jiahao Kou, Yuxin Zeng, Haoying Xu, Jiangyun Li
Title: MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
Abstract:
Segment Anything Models (SAMs), as vision foundation models, have demonstrated remarkable performance across various image analysis tasks. Despite their strong generalization capabilities, SAMs encounter challenges in fine-grained detail segmentation for high-resolution class-independent segmentation (HRCS), due to the limitations in the direct processing of high-resolution inputs and low-resolution mask predictions, and the reliance on accurate manual prompts. To address these limitations, we propose MGD-SAM2 which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation. MGD-SAM2 incorporates the pre-trained SAM2 with four novel modules: the Multi-view Perception Adapter (MPAdapter), the Multi-view Complementary Enhancement Module (MCEM), the Hierarchical Multi-view Interaction Module (HMIM), and the Detail Refinement Module (DRM). Specifically, we first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images. Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales. Finally, DRM is designed to generate gradually restored high-resolution mask predictions, compensating for the loss of fine-grained details resulting from directly upsampling the low-resolution prediction maps. Experimental results demonstrate the superior performance and strong generalization of our model on multiple high-resolution and normal-resolution datasets. Code will be available at https://github.com/sevenshr/MGD-SAM2.

Authors:Lu Fan, Jiashu Pu, Rongsheng Zhang, Xiao-Ming Wu
Title: LANID: LLM-assisted New Intent Discovery
Abstract:
Task-oriented Dialogue Systems (TODS) often face the challenge of encountering new intents. New Intent Discovery (NID) is a crucial task that aims to identify these novel intents while maintaining the capability to recognize existing ones. Previous efforts to adapt TODS to new intents have struggled with inadequate semantic representation or have depended on external knowledge, which is often not scalable or flexible. Recently, Large Language Models (LLMs) have demonstrated strong zero-shot capabilities; however, their scale can be impractical for real-world applications that involve extensive queries. To address the limitations of existing NID methods by leveraging LLMs, we propose LANID, a framework that enhances the semantic representation of lightweight NID encoders with the guidance of LLMs. Specifically, LANID employs the $K$-nearest neighbors and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms to sample selective utterance pairs from the training set. It then queries an LLM to ascertain the relationships between these pairs. The data produced from this process is utilized to design a contrastive fine-tuning task, which is then used to train a small encoder with a contrastive triplet loss. Our experimental results demonstrate the efficacy of the proposed method across three distinct NID datasets, surpassing strong baselines in both unsupervised and semi-supervised settings. Our code is available at https://github.com/floatSDSDS/LANID.

Authors:Yoonshik Kim, Jaeyoon Jung
Title: KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language
Abstract:
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA

Authors:Hongwei Ren, Xiaopeng Lin, Hongxiang Huang, Yue Zhou, Bojun Cheng
Title: Exploring Temporal Dynamics in Event-based Eye Tracker
Abstract:
Eye-tracking is a vital technology for human-computer interaction, especially in wearable devices such as AR, VR, and XR. The realization of high-speed and high-precision eye-tracking using frame-based image sensors is constrained by their limited temporal resolution, which impairs the accurate capture of rapid ocular dynamics, such as saccades and blinks. Event cameras, inspired by biological vision systems, are capable of perceiving eye movements with extremely low power consumption and ultra-high temporal resolution. This makes them a promising solution for achieving high-speed, high-precision tracking with rich temporal dynamics. In this paper, we propose TDTracker, an effective eye-tracking framework that captures rapid eye movements by thoroughly modeling temporal dynamics from both implicit and explicit perspectives. TDTracker utilizes 3D convolutional neural networks to capture implicit short-term temporal dynamics and employs a cascaded structure consisting of a Frequency-aware Module, GRU, and Mamba to extract explicit long-term temporal dynamics. Ultimately, a prediction heatmap is used for eye coordinate regression. Experimental results demonstrate that TDTracker achieves state-of-the-art (SOTA) performance on the synthetic SEET dataset and secured Third place in the CVPR event-based eye-tracking challenge 2025. Our code is available at https://github.com/rhwxmx/TDTracker.

Authors:Yi Liu, Wengen Li, Jihong Guan, Shuigeng Zhou, Yichao Zhang
Title: Effective Cloud Removal for Remote Sensing Images by an Improved Mean-Reverting Denoising Model with Elucidated Design Space
Abstract:
Cloud removal (CR) remains a challenging task in remote sensing image processing. Although diffusion models (DM) exhibit strong generative capabilities, their direct applications to CR are suboptimal, as they generate cloudless images from random noise, ignoring inherent information in cloudy inputs. To overcome this drawback, we develop a new CR model EMRDM based on mean-reverting diffusion models (MRDMs) to establish a direct diffusion process between cloudy and cloudless images. Compared to current MRDMs, EMRDM offers a modular framework with updatable modules and an elucidated design space, based on a reformulated forward process and a new ordinary differential equation (ODE)-based backward process. Leveraging our framework, we redesign key MRDM modules to boost CR performance, including restructuring the denoiser via a preconditioning technique, reorganizing the training process, and improving the sampling process by introducing deterministic and stochastic samplers. To achieve multi-temporal CR, we further develop a denoising network for simultaneously denoising sequential images. Experiments on mono-temporal and multi-temporal datasets demonstrate the superior performance of EMRDM. Our code is available at https://github.com/Ly403/EMRDM.

Authors:Haitao Tian, Junyang Li, Chenxing Wang, Helong Jiang
Title: Detail-aware multi-view stereo network for depth estimation
Abstract:
Multi-view stereo methods have achieved great success for depth estimation based on the coarse-to-fine depth learning frameworks, however, the existing methods perform poorly in recovering the depth of object boundaries and detail regions. To address these issues, we propose a detail-aware multi-view stereo network (DA-MVSNet) with a coarse-to-fine framework. The geometric depth clues hidden in the coarse stage are utilized to maintain the geometric structural relationships between object surfaces and enhance the expressive capability of image features. In addition, an image synthesis loss is employed to constrain the gradient flow for detailed regions and further strengthen the supervision of object boundaries and texture-rich areas. Finally, we propose an adaptive depth interval adjustment strategy to improve the accuracy of object reconstruction. Extensive experiments on the DTU and Tanks & Temples datasets demonstrate that our method achieves competitive results. The code is available at https://github.com/wsmtht520-/DAMVSNet.

Authors:Aly Lidayan, Yuqing Du, Eliza Kosoy, Maria Rufova, Pieter Abbeel, Alison Gopnik
Title: Intrinsically-Motivated Humans and Agents in Open-World Exploration
Abstract:
What drives exploration? Understanding intrinsic motivation is a long-standing challenge in both cognitive science and artificial intelligence; numerous objectives have been proposed and used to train agents, yet there remains a gap between human and agent exploration. We directly compare adults, children, and AI agents in a complex open-ended environment, Crafter, and study how common intrinsic objectives: Entropy, Information Gain, and Empowerment, relate to their behavior. We find that only Entropy and Empowerment are consistently positively correlated with human exploration progress, indicating that these objectives may better inform intrinsic reward design for agents. Furthermore, across agents and humans we observe that Entropy initially increases rapidly, then plateaus, while Empowerment increases continuously, suggesting that state diversity may provide more signal in early exploration, while advanced exploration should prioritize control. Finally, we find preliminary evidence that private speech utterances, and particularly goal verbalizations, may aid exploration in children. Our data is available at https://github.com/alyd/humans_in_crafter_data.

Authors:Anirudh Satheesh, Keenan Powell
Title: A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control
Abstract:
Traffic congestion in modern cities is exacerbated by the limitations of traditional fixed-time traffic signal systems, which fail to adapt to dynamic traffic patterns. Adaptive Traffic Signal Control (ATSC) algorithms have emerged as a solution by dynamically adjusting signal timing based on real-time traffic conditions. However, the main limitation of such methods is that they are not transferable to environments under real-world constraints, such as balancing efficiency, minimizing collisions, and ensuring fairness across intersections. In this paper, we view the ATSC problem as a constrained multi-agent reinforcement learning (MARL) problem and propose a novel algorithm named Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE) to produce effective traffic signal control policies. Our approach integrates the Lagrange multipliers method to balance rewards and constraints, with a cost estimator for stable adjustment. We also introduce three constraints on the traffic network: GreenTime, GreenSkip, and PhaseSkip, which penalize traffic policies that do not conform to real-world scenarios. Our experimental results on three real-world datasets demonstrate that MAPPO-LCE outperforms three baseline MARL algorithms by across all environments and traffic constraints (improving on MAPPO by 12.60%, IPPO by 10.29%, and QTRAN by 13.10%). Our results show that constrained MARL is a valuable tool for traffic planners to deploy scalable and efficient ATSC methods in real-world traffic networks. We provide code at https://github.com/Asatheesh6561/MAPPO-LCE.

Authors:Jiahao Li, Yiqiang Chen, Yunbing Xing, Yang Gu, Xiangyuan Lan
Title: A Survey on Unlearnable Data
Abstract:
Unlearnable data (ULD) has emerged as an innovative defense technique to prevent machine learning models from learning meaningful patterns from specific data, thus protecting data privacy and security. By introducing perturbations to the training data, ULD degrades model performance, making it difficult for unauthorized models to extract useful representations. Despite the growing significance of ULD, existing surveys predominantly focus on related fields, such as adversarial attacks and machine unlearning, with little attention given to ULD as an independent area of study. This survey fills that gap by offering a comprehensive review of ULD, examining unlearnable data generation methods, public benchmarks, evaluation metrics, theoretical foundations and practical applications. We compare and contrast different ULD approaches, analyzing their strengths, limitations, and trade-offs related to unlearnability, imperceptibility, efficiency and robustness. Moreover, we discuss key challenges, such as balancing perturbation imperceptibility with model degradation and the computational complexity of ULD generation. Finally, we highlight promising future research directions to advance the effectiveness and applicability of ULD, underscoring its potential to become a crucial tool in the evolving landscape of data protection in machine learning.

Authors:Zhengren Wang, Jiayang Yu, Dongsheng Ma, Zhe Chen, Yu Wang, Zhiyu Li, Feiyu Xiong, Yanfeng Wang, Weinan E, Linpeng Tang, Wentao Zhang
Title: RARE: Retrieval-Augmented Reasoning Modeling
Abstract:
Domain-specific intelligence demands specialized knowledge and sophisticated reasoning for problem-solving, posing significant challenges for large language models (LLMs) that struggle with knowledge hallucination and inadequate reasoning capabilities under constrained parameter budgets. Inspired by Bloom's Taxonomy in educational theory, we propose Retrieval-Augmented Reasoning Modeling (RARE), a novel paradigm that decouples knowledge storage from reasoning optimization. RARE externalizes domain knowledge to retrievable sources and internalizes domain-specific reasoning patterns during training. Specifically, by injecting retrieved knowledge into training prompts with masked losses, RARE transforms learning objectives from rote memorization to contextualized reasoning. It enables models to bypass parameter-intensive memorization and prioritize the development of higher-order cognitive processes. Extensive experiments demonstrate that lightweight RARE-trained models (e.g., Llama-3.1-8B) could achieve state-of-the-art performance, surpassing retrieval-augmented GPT-4 and DeepSeek-R1 up to approximately 20\% accuracy. RARE establishes a paradigm shift where maintainable external knowledge bases synergize with compact, reasoning-optimized models, collectively driving more scalable domain-specific intelligence.

Authors:Tianming Liang, Haichao Jiang, Wei-Shi Zheng, Jian-Fang Hu
Title: ReferDINO-Plus: 2nd Solution for 4th PVUW MeViS Challenge at CVPR 2025
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This task has attracted increasing attention in the field of computer vision due to its promising applications in video editing and human-agent interaction. Recently, ReferDINO has demonstrated promising performance in this task by adapting object-level vision-language knowledge from pretrained foundational image models. In this report, we further enhance its capabilities by incorporating the advantages of SAM2 in mask quality and object consistency. In addition, to effectively balance performance between single-object and multi-object scenarios, we introduce a conditional mask fusion strategy that adaptively fuses the masks from ReferDINO and SAM2. Our solution, termed ReferDINO-Plus, achieves 60.43 \(\mathcal{J}\&\mathcal{F}\) on MeViS test set, securing 2nd place in the MeViS PVUW challenge at CVPR 2025. The code is available at: https://github.com/iSEE-Laboratory/ReferDINO-Plus.

Authors:Ashim Dahal, Saydul Akbar Murad, Nick Rahimi
Title: Embedding Shift Dissection on CLIP: Effects of Augmentations on VLM's Representation Learning
Abstract:
Understanding the representation shift on Vision Language Models like CLIP under different augmentations provides valuable insights on Mechanistic Interpretability. In this study, we show the shift on CLIP's embeddings on 9 common augmentation techniques: noise, blur, color jitter, scale and rotate, flip, elastic and perspective transforms, random brightness and contrast, and coarse dropout of pixel blocks. We scrutinize the embedding shifts under similarity on attention map, patch, edge, detail preservation, cosine similarity, L2 distance, pairwise distance and dendrogram clusters and provide qualitative analysis on sample images. Our findings suggest certain augmentations like noise, perspective transform and shift scaling have higher degree of drastic impact on embedding shift. This study provides a concrete foundation for future work on VLM's robustness for mechanical interpretation and adversarial data defense. The code implementation for this study can be found on \href{https://github.com/ashimdahal/clip-shift-analysis}{https://github.com/ashimdahal/clip-shift-analysis}.

Authors:Haofei Kuang, Yue Pan, Xingguang Zhong, Louis Wiesmann, Jens Behley, Cyrill Stachniss
Title: Improving Indoor Localization Accuracy by Using an Efficient Implicit Neural Map Representation
Abstract:
Globally localizing a mobile robot in a known map is often a foundation for enabling robots to navigate and operate autonomously. In indoor environments, traditional Monte Carlo localization based on occupancy grid maps is considered the gold standard, but its accuracy is limited by the representation capabilities of the occupancy grid map. In this paper, we address the problem of building an effective map representation that allows to accurately perform probabilistic global localization. To this end, we propose an implicit neural map representation that is able to capture positional and directional geometric features from 2D LiDAR scans to efficiently represent the environment and learn a neural network that is able to predict both, the non-projective signed distance and a direction-aware projective distance for an arbitrary point in the mapped environment. This combination of neural map representation with a light-weight neural network allows us to design an efficient observation model within a conventional Monte Carlo localization framework for pose estimation of a robot in real time. We evaluated our approach to indoor localization on a publicly available dataset for global localization and the experimental results indicate that our approach is able to more accurately localize a mobile robot than other localization approaches employing occupancy or existing neural map representations. In contrast to other approaches employing an implicit neural map representation for 2D LiDAR localization, our approach allows to perform real-time pose tracking after convergence and near real-time global localization. The code of our approach is available at: https://github.com/PRBonn/enm-mcl.

Authors:Ivan Anokhin, Rishav Rishav, Matthew Riemer, Stephen Chung, Irina Rish, Samira Ebrahimi Kahou
Title: Handling Delay in Real-Time Reinforcement Learning
Abstract:
Real-time reinforcement learning (RL) introduces several challenges. First, policies are constrained to a fixed number of actions per second due to hardware limitations. Second, the environment may change while the network is still computing an action, leading to observational delay. The first issue can partly be addressed with pipelining, leading to higher throughput and potentially better policies. However, the second issue remains: if each neuron operates in parallel with an execution time of $τ$, an $N$-layer feed-forward network experiences observation delay of $τN$. Reducing the number of layers can decrease this delay, but at the cost of the network's expressivity. In this work, we explore the trade-off between minimizing delay and network's expressivity. We present a theoretically motivated solution that leverages temporal skip connections combined with history-augmented observations. We evaluate several architectures and show that those incorporating temporal skip connections achieve strong performance across various neuron execution times, reinforcement learning algorithms, and environments, including four Mujoco tasks and all MinAtar games. Moreover, we demonstrate parallel neuron computation can accelerate inference by 6-350% on standard hardware. Our investigation into temporal skip connections and parallel computations paves the way for more efficient RL agents in real-time setting.

Authors:Chenglong Lu, Shen Liang, Xuewei Wang, Wei Wang
Title: Reinforcement Learning-based Token Pruning in Vision Transformers: A Markov Game Approach
Abstract:
Vision Transformers (ViTs) have computational costs scaling quadratically with the number of tokens, calling for effective token pruning policies. Most existing policies are handcrafted, lacking adaptivity to varying inputs. Moreover, they fail to consider the sequential nature of token pruning across multiple layers. In this work, for the first time (as far as we know), we exploit Reinforcement Learning (RL) to data-adaptively learn a pruning policy. Formulating token pruning as a sequential decision-making problem, we model it as a Markov Game and utilize Multi-Agent Proximal Policy Optimization (MAPPO) where each agent makes an individualized pruning decision for a single token. We also develop reward functions that enable simultaneous collaboration and competition of these agents to balance efficiency and accuracy. On the well-known ImageNet-1k dataset, our method improves the inference speed by up to 44% while incurring only a negligible accuracy drop of 0.4%. The source code is available at https://github.com/daashuai/rl4evit.

Authors:Maofu Liu, Xin Jiang, Xiaokang Zhang
Title: CADFormer: Fine-Grained Cross-modal Alignment and Decoding Transformer for Referring Remote Sensing Image Segmentation
Abstract:
Referring Remote Sensing Image Segmentation (RRSIS) is a challenging task, aiming to segment specific target objects in remote sensing (RS) images based on a given language expression. Existing RRSIS methods typically employ coarse-grained unidirectional alignment approaches to obtain multimodal features, and they often overlook the critical role of language features as contextual information during the decoding process. Consequently, these methods exhibit weak object-level correspondence between visual and language features, leading to incomplete or erroneous predicted masks, especially when handling complex expressions and intricate RS image scenes. To address these challenges, we propose a fine-grained cross-modal alignment and decoding Transformer, CADFormer, for RRSIS. Specifically, we design a semantic mutual guidance alignment module (SMGAM) to achieve both vision-to-language and language-to-vision alignment, enabling comprehensive integration of visual and textual features for fine-grained cross-modal alignment. Furthermore, a textual-enhanced cross-modal decoder (TCMD) is introduced to incorporate language features during decoding, using refined textual information as context to enhance the relationship between cross-modal features. To thoroughly evaluate the performance of CADFormer, especially for inconspicuous targets in complex scenes, we constructed a new RRSIS dataset, called RRSIS-HR, which includes larger high-resolution RS image patches and semantically richer language expressions. Extensive experiments on the RRSIS-HR dataset and the popular RRSIS-D dataset demonstrate the effectiveness and superiority of CADFormer. Datasets and source codes will be available at https://github.com/zxk688.

Authors:Junzhu Mao, Yang Shen, Jinyang Guo, Yazhou Yao, Xiansheng Hua
Title: Efficient Token Compression for Vision Transformer with Spatial Information Preserved
Abstract:
Token compression is essential for reducing the computational and memory requirements of transformer models, enabling their deployment in resource-constrained environments. In this work, we propose an efficient and hardware-compatible token compression method called Prune and Merge. Our approach integrates token pruning and merging operations within transformer models to achieve layer-wise token compression. By introducing trainable merge and reconstruct matrices and utilizing shortcut connections, we efficiently merge tokens while preserving important information and enabling the restoration of pruned tokens. Additionally, we introduce a novel gradient-weighted attention scoring mechanism that computes token importance scores during the training phase, eliminating the need for separate computations during inference and enhancing compression efficiency. We also leverage gradient information to capture the global impact of tokens and automatically identify optimal compression structures. Extensive experiments on the ImageNet-1k and ADE20K datasets validate the effectiveness of our approach, achieving significant speed-ups with minimal accuracy degradation compared to state-of-the-art methods. For instance, on DeiT-Small, we achieve a 1.64$\times$ speed-up with only a 0.2\% drop in accuracy on ImageNet-1k. Moreover, by compressing segmenter models and comparing with existing methods, we demonstrate the superior performance of our approach in terms of efficiency and effectiveness. Code and models have been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/prune_and_merge.

Authors:Maofu Liu, Jiahui Liu, Xiaokang Zhang
Title: Semantic-Spatial Feature Fusion with Dynamic Graph Refinement for Remote Sensing Image Captioning
Abstract:
Remote sensing image captioning aims to generate semantically accurate descriptions that are closely linked to the visual features of remote sensing images. Existing approaches typically emphasize fine-grained extraction of visual features and capturing global information. However, they often overlook the complementary role of textual information in enhancing visual semantics and face challenges in precisely locating objects that are most relevant to the image context. To address these challenges, this paper presents a semantic-spatial feature fusion with dynamic graph refinement (SFDR) method, which integrates the semantic-spatial feature fusion (SSFF) and dynamic graph feature refinement (DGFR) modules. The SSFF module utilizes a multi-level feature representation strategy by leveraging pre-trained CLIP features, grid features, and ROI features to integrate rich semantic and spatial information. In the DGFR module, a graph attention network captures the relationships between feature nodes, while a dynamic weighting mechanism prioritizes objects that are most relevant to the current scene and suppresses less significant ones. Therefore, the proposed SFDR method significantly enhances the quality of the generated descriptions. Experimental results on three benchmark datasets demonstrate the effectiveness of the proposed method. The source code will be available at https://github.com/zxk688}{https://github.com/zxk688.

Authors:Yuhang Yang, Ke Fan, Shangkun Sun, Hongxiang Li, Ailing Zeng, FeiLin Han, Wei Zhai, Wei Liu, Yang Cao, Zheng-Jun Zha
Title: VideoGen-Eval: Agent-based System for Video Generation Evaluation
Abstract:
The rapid advancement of video generation has rendered existing evaluation systems inadequate for assessing state-of-the-art models, primarily due to simple prompts that cannot showcase the model's capabilities, fixed evaluation operators struggling with Out-of-Distribution (OOD) cases, and misalignment between computed metrics and human preferences. To bridge the gap, we propose VideoGen-Eval, an agent evaluation system that integrates LLM-based content structuring, MLLM-based content judgment, and patch tools designed for temporal-dense dimensions, to achieve a dynamic, flexible, and expandable video generation evaluation. Additionally, we introduce a video generation benchmark to evaluate existing cutting-edge models and verify the effectiveness of our evaluation system. It comprises 700 structured, content-rich prompts (both T2V and I2V) and over 12,000 videos generated by 20+ models, among them, 8 cutting-edge models are selected as quantitative evaluation for the agent and human. Extensive experiments validate that our proposed agent-based evaluation system demonstrates strong alignment with human preferences and reliably completes the evaluation, as well as the diversity and richness of the benchmark.

Authors:Aimira Baitieva, Yacine Bouaouni, Alexandre Briot, Dick Ameln, Souhaiel Khalfaoui, Samet Akcay
Title: Beyond Academic Benchmarks: Critical Analysis and Best Practices for Visual Industrial Anomaly Detection
Abstract:
Anomaly detection (AD) is essential for automating visual inspection in manufacturing. This field of computer vision is rapidly evolving, with increasing attention towards real-world applications. Meanwhile, popular datasets are typically produced in controlled lab environments with artificially created defects, unable to capture the diversity of real production conditions. New methods often fail in production settings, showing significant performance degradation or requiring impractical computational resources. This disconnect between academic results and industrial viability threatens to misdirect visual anomaly detection research. This paper makes three key contributions: (1) we demonstrate the importance of real-world datasets and establish benchmarks using actual production data, (2) we provide a fair comparison of existing SOTA methods across diverse tasks by utilizing metrics that are valuable for practical applications, and (3) we present a comprehensive analysis of recent advancements in this field by discussing important challenges and new perspectives for bridging the academia-industry gap. The code is publicly available at https://github.com/abc-125/viad-benchmark

Authors:Xin Zuo, Jiaran Jiang, Jifeng Shen, Wankou Yang
Title: Improving underwater semantic segmentation with underwater image quality attention and muti-scale aggregation attention
Abstract:
Underwater image understanding is crucial for both submarine navigation and seabed exploration. However, the low illumination in underwater environments degrades the imaging quality, which in turn seriously deteriorates the performance of underwater semantic segmentation, particularly for outlining the object region boundaries. To tackle this issue, we present UnderWater SegFormer (UWSegFormer), a transformer-based framework for semantic segmentation of low-quality underwater images. Firstly, we propose the Underwater Image Quality Attention (UIQA) module. This module enhances the representation of highquality semantic information in underwater image feature channels through a channel self-attention mechanism. In order to address the issue of loss of imaging details due to the underwater environment, the Multi-scale Aggregation Attention(MAA) module is proposed. This module aggregates sets of semantic features at different scales by extracting discriminative information from high-level features,thus compensating for the semantic loss of detail in underwater objects. Finally, during training, we introduce Edge Learning Loss (ELL) in order to enhance the model's learning of underwater object edges and improve the model's prediction accuracy. Experiments conducted on the SUIM and DUT-USEG (DUT) datasets have demonstrated that the proposed method has advantages in terms of segmentation completeness, boundary clarity, and subjective perceptual details when compared to SOTA methods. In addition, the proposed method achieves the highest mIoU of 82.12 and 71.41 on the SUIM and DUT datasets, respectively. Code will be available at https://github.com/SAWRJJ/UWSegFormer.

Authors:Ximu Zeng, Liwei Deng, Penghao Chen, Xu Chen, Han Su, Kai Zheng
Title: LIRA: A Learning-based Query-aware Partition Framework for Large-scale ANN Search
Abstract:
Approximate nearest neighbor search is fundamental in information retrieval. Previous partition-based methods enhance search efficiency by probing partial partitions, yet they face two common issues. In the query phase, a common strategy is to probe partitions based on the distance ranks of a query to partition centroids, which inevitably probes irrelevant partitions as it ignores data distribution. In the partition construction phase, all partition-based methods face the boundary problem that separates a query's nearest neighbors to multiple partitions, resulting in a long-tailed kNN distribution and degrading the optimal nprobe (i.e., the number of probing partitions). To address this gap, we propose LIRA, a LearnIng-based queRy-aware pArtition framework. Specifically, we propose a probing model to directly probe the partitions containing the kNN of a query, which can reduce probing waste and allow for query-aware probing with nprobe individually. Moreover, we incorporate the probing model into a learning-based redundancy strategy to mitigate the adverse impact of the long-tailed kNN distribution on search efficiency. Extensive experiments on real-world vector datasets demonstrate the superiority of LIRA in the trade-off among accuracy, latency, and query fan-out. The codes are available at https://github.com/SimoneZeng/LIRA-ANN-search.

Authors:Haiduo Huang, Yadong Zhang, Pengju Ren
Title: KernelDNA: Dynamic Kernel Sharing via Decoupled Naive Adapters
Abstract:
Dynamic convolution enhances model capacity by adaptively combining multiple kernels, yet faces critical trade-offs: prior works either (1) incur significant parameter overhead by scaling kernel numbers linearly, (2) compromise inference speed through complex kernel interactions, or (3) struggle to jointly optimize dynamic attention and static kernels. We also observe that pre-trained Convolutional Neural Networks (CNNs) exhibit inter-layer redundancy akin to that in Large Language Models (LLMs). Specifically, dense convolutional layers can be efficiently replaced by derived ``child" layers generated from a shared ``parent" convolutional kernel through an adapter. To address these limitations and implement the weight-sharing mechanism, we propose a lightweight convolution kernel plug-in, named KernelDNA. It decouples kernel adaptation into input-dependent dynamic routing and pre-trained static modulation, ensuring both parameter efficiency and hardware-friendly inference. Unlike existing dynamic convolutions that expand parameters via multi-kernel ensembles, our method leverages cross-layer weight sharing and adapter-based modulation, enabling dynamic kernel specialization without altering the standard convolution structure. This design preserves the native computational efficiency of standard convolutions while enhancing representation power through input-adaptive kernel adjustments. Experiments on image classification and dense prediction tasks demonstrate that KernelDNA achieves state-of-the-art accuracy-efficiency balance among dynamic convolution variants. Our codes are available at https://github.com/haiduo/KernelDNA.

Authors:Hang Guo, Yawei Li, Taolin Zhang, Jiangshan Wang, Tao Dai, Shu-Tao Xia, Luca Benini
Title: FastVAR: Linear Visual Autoregressive Modeling via Cached Token Pruning
Abstract:
Visual Autoregressive (VAR) modeling has gained popularity for its shift towards next-scale prediction. However, existing VAR paradigms process the entire token map at each scale step, leading to the complexity and runtime scaling dramatically with image resolution. To address this challenge, we propose FastVAR, a post-training acceleration method for efficient resolution scaling with VARs. Our key finding is that the majority of latency arises from the large-scale step where most tokens have already converged. Leveraging this observation, we develop the cached token pruning strategy that only forwards pivotal tokens for scale-specific modeling while using cached tokens from previous scale steps to restore the pruned slots. This significantly reduces the number of forwarded tokens and improves the efficiency at larger resolutions. Experiments show the proposed FastVAR can further speedup FlashAttention-accelerated VAR by 2.7$\times$ with negligible performance drop of <1%. We further extend FastVAR to zero-shot generation of higher resolution images. In particular, FastVAR can generate one 2K image with 15GB memory footprints in 1.5s on a single NVIDIA 3090 GPU. Code is available at https://github.com/csguoh/FastVAR.

Authors:Hongxiang Jiang, Jihao Yin, Qixiong Wang, Jiaqi Feng, Guo Chen
Title: EagleVision: Object-level Attribute Multimodal LLM for Remote Sensing
Abstract:
Recent advances in multimodal large language models (MLLMs) have demonstrated impressive results in various visual tasks. However, in remote sensing (RS), high resolution and small proportion of objects pose challenges to existing MLLMs, which struggle with object-centric tasks, particularly in precise localization and fine-grained attribute description for each object. These RS MLLMs have not yet surpassed classical visual perception models, as they only provide coarse image understanding, leading to limited gains in real-world scenarios. To address this gap, we establish EagleVision, an MLLM tailored for remote sensing that excels in object detection and attribute comprehension. Equipped with the Attribute Disentangle module, EagleVision learns disentanglement vision tokens to express distinct attributes. To support object-level visual-language alignment, we construct EVAttrs-95K, the first large-scale object attribute understanding dataset in RS for instruction tuning, along with a novel evaluation benchmark, EVBench. EagleVision achieves state-of-the-art performance on both fine-grained object detection and object attribute understanding tasks, highlighting the mutual promotion between detection and understanding capabilities in MLLMs. The code, model, data, and demo will be available at https://github.com/XiangTodayEatsWhat/EagleVision.

Authors:Hyunsik Jeon, Satoshi Koide, Yu Wang, Zhankui He, Julian McAuley
Title: LaViC: Adapting Large Vision-Language Models to Visually-Aware Conversational Recommendation
Abstract:
Conversational recommender systems engage users in dialogues to refine their needs and provide more personalized suggestions. Although textual information suffices for many domains, visually driven categories such as fashion or home decor potentially require detailed visual information related to color, style, or design. To address this challenge, we propose LaViC (Large Vision-Language Conversational Recommendation Framework), a novel approach that integrates compact image representations into dialogue-based recommendation systems. LaViC leverages a large vision-language model in a two-stage process: (1) visual knowledge self-distillation, which condenses product images from hundreds of tokens into a small set of visual tokens in a self-distillation manner, significantly reducing computational overhead, and (2) recommendation prompt tuning, which enables the model to incorporate both dialogue context and distilled visual tokens, providing a unified mechanism for capturing textual and visual features. To support rigorous evaluation of visually-aware conversational recommendation, we construct a new dataset by aligning Reddit conversations with Amazon product listings across multiple visually oriented categories (e.g., fashion, beauty, and home). This dataset covers realistic user queries and product appearances in domains where visual details are crucial. Extensive experiments demonstrate that LaViC significantly outperforms text-only conversational recommendation methods and open-source vision-language baselines. Moreover, LaViC achieves competitive or superior accuracy compared to prominent proprietary baselines (e.g., GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), demonstrating the necessity of explicitly using visual data for capturing product attributes and showing the effectiveness of our vision-language integration. Our code and dataset are available at https://github.com/jeon185/LaViC.

Authors:Lu Yu, Haoyu Han, Zhe Tao, Hantao Yao, Changsheng Xu
Title: Language Guided Concept Bottleneck Models for Interpretable Continual Learning
Abstract:
Continual learning (CL) aims to enable learning systems to acquire new knowledge constantly without forgetting previously learned information. CL faces the challenge of mitigating catastrophic forgetting while maintaining interpretability across tasks. Most existing CL methods focus primarily on preserving learned knowledge to improve model performance. However, as new information is introduced, the interpretability of the learning process becomes crucial for understanding the evolving decision-making process, yet it is rarely explored. In this paper, we introduce a novel framework that integrates language-guided Concept Bottleneck Models (CBMs) to address both challenges. Our approach leverages the Concept Bottleneck Layer, aligning semantic consistency with CLIP models to learn human-understandable concepts that can generalize across tasks. By focusing on interpretable concepts, our method not only enhances the models ability to retain knowledge over time but also provides transparent decision-making insights. We demonstrate the effectiveness of our approach by achieving superior performance on several datasets, outperforming state-of-the-art methods with an improvement of up to 3.06% in final average accuracy on ImageNet-subset. Additionally, we offer concept visualizations for model predictions, further advancing the understanding of interpretable continual learning.

Authors:Björn Möller, Lucas Görnhardt, Tim Fingscheidt
Title: A Lightweight Image Super-Resolution Transformer Trained on Low-Resolution Images Only
Abstract:
Transformer architectures prominently lead single-image super-resolution (SISR) benchmarks, reconstructing high-resolution (HR) images from their low-resolution (LR) counterparts. Their strong representative power, however, comes with a higher demand for training data compared to convolutional neural networks (CNNs). For many real-world SR applications, the availability of high-quality HR training images is not given, sparking interest in LR-only training methods. The LR-only SISR benchmark mimics this condition by allowing only low-resolution (LR) images for model training. For a 4x super-resolution, this effectively reduces the amount of available training data to 6.25% of the HR image pixels, which puts the employment of a data-hungry transformer model into question. In this work, we are the first to utilize a lightweight vision transformer model with LR-only training methods addressing the unsupervised SISR LR-only benchmark. We adopt and configure a recent LR-only training method from microscopy image super-resolution to macroscopic real-world data, resulting in our multi-scale training method for bicubic degradation (MSTbic). Furthermore, we compare it with reference methods and prove its effectiveness both for a transformer and a CNN model. We evaluate on the classic SR benchmark datasets Set5, Set14, BSD100, Urban100, and Manga109, and show superior performance over state-of-the-art (so far: CNN-based) LR-only SISR methods. The code is available on GitHub: https://github.com/ifnspaml/SuperResolutionMultiscaleTraining.

Authors:Reza Esfandiarpoor, George Zerveas, Ruochen Zhang, Macton Mgonzo, Carsten Eickhoff, Stephen H. Bach
Title: Beyond Contrastive Learning: Synthetic Data Enables List-wise Training with Multiple Levels of Relevance
Abstract:
Recent advancements in large language models (LLMs) have allowed the augmentation of information retrieval (IR) pipelines with synthetic data in various ways. Yet, the main training paradigm remains: contrastive learning with binary relevance labels and the InfoNCE loss, where one positive document is compared against one or more negatives. This objective treats all documents that are not explicitly annotated as relevant on an equally negative footing, regardless of their actual degree of relevance, thus (a) missing subtle nuances that are useful for ranking and (b) being susceptible to annotation noise. To overcome this limitation, in this work we forgo real training documents and annotations altogether and use open-source LLMs to directly generate synthetic documents that answer real user queries according to several different levels of relevance. This fully synthetic ranking context of graduated relevance, together with an appropriate list-wise loss (Wasserstein distance), enables us to train dense retrievers in a way that better captures the ranking task. Experiments on various IR datasets show that our proposed approach outperforms conventional training with InfoNCE by a large margin. Without using any real documents for training, our dense retriever significantly outperforms the same retriever trained through self-supervision. More importantly, it matches the performance of the same retriever trained on real, labeled training documents of the same dataset, while being more robust to distribution shift and clearly outperforming it when evaluated zero-shot on the BEIR dataset collection.

Authors:Alessio Borgi, Luca Maiano, Irene Amerini
Title: Z-SASLM: Zero-Shot Style-Aligned SLI Blending Latent Manipulation
Abstract:
We introduce Z-SASLM, a Zero-Shot Style-Aligned SLI (Spherical Linear Interpolation) Blending Latent Manipulation pipeline that overcomes the limitations of current multi-style blending methods. Conventional approaches rely on linear blending, assuming a flat latent space leading to suboptimal results when integrating multiple reference styles. In contrast, our framework leverages the non-linear geometry of the latent space by using SLI Blending to combine weighted style representations. By interpolating along the geodesic on the hypersphere, Z-SASLM preserves the intrinsic structure of the latent space, ensuring high-fidelity and coherent blending of diverse styles - all without the need for fine-tuning. We further propose a new metric, Weighted Multi-Style DINO ViT-B/8, designed to quantitatively evaluate the consistency of the blended styles. While our primary focus is on the theoretical and practical advantages of SLI Blending for style manipulation, we also demonstrate its effectiveness in a multi-modal content fusion setting through comprehensive experimental studies. Experimental results show that Z-SASLM achieves enhanced and robust style alignment. The implementation code can be found at: https://github.com/alessioborgi/Z-SASLM.

Authors:Yiqian Wu, Yujie Liu, Yi Yin, Muhan Zeng, Zhentao Ye, Xin Zhang, Yingfei Xiong, Lu Zhang
Title: SmartFL: Semantics Based Probabilistic Fault Localization
Abstract:
Testing-based fault localization has been a research focus in software engineering in the past decades. It localizes faulty program elements based on a set of passing and failing test executions. Since whether a fault could be triggered and detected by a test is related to program semantics, it is crucial to model program semantics in fault localization approaches. Existing approaches either consider the full semantics of the program (e.g., mutation-based fault localization and angelic debugging), leading to scalability issues, or ignore the semantics of the program (e.g., spectrum-based fault localization), leading to imprecise localization results. Our key idea is: by modeling only the correctness of program values but not their full semantics, a balance could be reached between effectiveness and scalability. To realize this idea, we introduce a probabilistic model by efficient approximation of program semantics and several techniques to address scalability challenges. Our approach, SmartFL(SeMantics bAsed pRobabilisTic Fault Localization), is evaluated on a real-world dataset, Defects4J 2.0. The top-1 statement-level accuracy of our approach is {14\%}, which improves 130\% over the best SBFL and MBFL methods. The average time cost is {205} seconds per fault, which is half of SBFL methods. After combining our approach with existing approaches using the CombineFL framework, the performance of the combined approach is significantly boosted by an average of 10\% on top-1, top-3, and top-5 accuracy compared to state-of-the-art combination methods.

Authors:Marc-Antoine Lavoie, Anas Mahmoud, Steven L. Waslander
Title: Large Self-Supervised Models Bridge the Gap in Domain Adaptive Object Detection
Abstract:
The current state-of-the-art methods in domain adaptive object detection (DAOD) use Mean Teacher self-labelling, where a teacher model, directly derived as an exponential moving average of the student model, is used to generate labels on the target domain which are then used to improve both models in a positive loop. This couples learning and generating labels on the target domain, and other recent works also leverage the generated labels to add additional domain alignment losses. We believe this coupling is brittle and excessively constrained: there is no guarantee that a student trained only on source data can generate accurate target domain labels and initiate the positive feedback loop, and much better target domain labels can likely be generated by using a large pretrained network that has been exposed to much more data. Vision foundational models are exactly such models, and they have shown impressive task generalization capabilities even when frozen. We want to leverage these models for DAOD and introduce DINO Teacher, which consists of two components. First, we train a new labeller on source data only using a large frozen DINOv2 backbone and show it generates more accurate labels than Mean Teacher. Next, we align the student's source and target image patch features with those from a DINO encoder, driving source and target representations closer to the generalizable DINO representation. We obtain state-of-the-art performance on multiple DAOD datasets. Code available at https://github.com/TRAILab/DINO_Teacher

Authors:Vincent Gbouna Zakka, Zhuangzhuang Dai, Luis J. Manso
Title: Action Recognition in Real-World Ambient Assisted Living Environment
Abstract:
The growing ageing population and their preference to maintain independence by living in their own homes require proactive strategies to ensure safety and support. Ambient Assisted Living (AAL) technologies have emerged to facilitate ageing in place by offering continuous monitoring and assistance within the home. Within AAL technologies, action recognition plays a crucial role in interpreting human activities and detecting incidents like falls, mobility decline, or unusual behaviours that may signal worsening health conditions. However, action recognition in practical AAL applications presents challenges, including occlusions, noisy data, and the need for real-time performance. While advancements have been made in accuracy, robustness to noise, and computation efficiency, achieving a balance among them all remains a challenge. To address this challenge, this paper introduces the Robust and Efficient Temporal Convolution network (RE-TCN), which comprises three main elements: Adaptive Temporal Weighting (ATW), Depthwise Separable Convolutions (DSC), and data augmentation techniques. These elements aim to enhance the model's accuracy, robustness against noise and occlusion, and computational efficiency within real-world AAL contexts. RE-TCN outperforms existing models in terms of accuracy, noise and occlusion robustness, and has been validated on four benchmark datasets: NTU RGB+D 60, Northwestern-UCLA, SHREC'17, and DHG-14/28. The code is publicly available at: https://github.com/Gbouna/RE-TCN

Authors:Pengyu Chen, Sicheng Wang, Cuizhen Wang, Senrong Wang, Beiao Huang, Lu Huang, Zhe Zang
Title: A GAN-Enhanced Deep Learning Framework for Rooftop Detection from Historical Aerial Imagery
Abstract:
Precise detection of rooftops from historical aerial imagery is essential for analyzing long-term urban development and human settlement patterns. Nonetheless, black-and-white analog photographs present considerable challenges for modern object detection frameworks due to their limited spatial resolution, absence of color information, and archival degradation. To address these challenges, this research introduces a two-stage image enhancement pipeline based on Generative Adversarial Networks (GANs): image colorization utilizing DeOldify, followed by super-resolution enhancement with Real-ESRGAN. The enhanced images were subsequently employed to train and evaluate rooftop detection models, including Faster R-CNN, DETReg, and YOLOv11n. The results demonstrate that the combination of colorization with super-resolution significantly enhances detection performance, with YOLOv11n achieving a mean Average Precision (mAP) exceeding 85\%. This signifies an enhancement of approximately 40\% over the original black-and-white images and 20\% over images enhanced solely through colorization. The proposed method effectively bridges the gap between archival imagery and contemporary deep learning techniques, facilitating more reliable extraction of building footprints from historical aerial photographs. Code and resources for reproducing our results are publicly available at \href{https://github.com/Pengyu-gis/Historical-Aerial-Photos}{github.com/Pengyu-gis/Historical-Aerial-Photos}.

Authors:Shota Hirose, Kazuki Kotoyori, Kasidis Arunruangsirilert, Fangzheng Lin, Heming Sun, Jiro Katto
Title: Real-time Video Prediction With Fast Video Interpolation Model and Prediction Training
Abstract:
Transmission latency significantly affects users' quality of experience in real-time interaction and actuation. As latency is principally inevitable, video prediction can be utilized to mitigate the latency and ultimately enable zero-latency transmission. However, most of the existing video prediction methods are computationally expensive and impractical for real-time applications. In this work, we therefore propose real-time video prediction towards the zero-latency interaction over networks, called IFRVP (Intermediate Feature Refinement Video Prediction). Firstly, we propose three training methods for video prediction that extend frame interpolation models, where we utilize a simple convolution-only frame interpolation network based on IFRNet. Secondly, we introduce ELAN-based residual blocks into the prediction models to improve both inference speed and accuracy. Our evaluations show that our proposed models perform efficiently and achieve the best trade-off between prediction accuracy and computational speed among the existing video prediction methods. A demonstration movie is also provided at http://bit.ly/IFRVPDemo. The code will be released at https://github.com/FykAikawa/IFRVP.

Authors:Zewen Liu, Xiaoda Wang, Bohan Wang, Zijie Huang, Carl Yang, Wei Jin
Title: Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) and differential equations (DEs) are two rapidly advancing areas of research that have shown remarkable synergy in recent years. GNNs have emerged as powerful tools for learning on graph-structured data, while differential equations provide a principled framework for modeling continuous dynamics across time and space. The intersection of these fields has led to innovative approaches that leverage the strengths of both, enabling applications in physics-informed learning, spatiotemporal modeling, and scientific computing. This survey aims to provide a comprehensive overview of the burgeoning research at the intersection of GNNs and DEs. We will categorize existing methods, discuss their underlying principles, and highlight their applications across domains such as molecular modeling, traffic prediction, and epidemic spreading. Furthermore, we identify open challenges and outline future research directions to advance this interdisciplinary field. A comprehensive paper list is provided at https://github.com/Emory-Melody/Awesome-Graph-NDEs. This survey serves as a resource for researchers and practitioners seeking to understand and contribute to the fusion of GNNs and DEs

Authors:Anjiang Wei, Tarun Suresh, Jiannan Cao, Naveen Kannan, Yuheng Wu, Kai Yan, Thiago S. F. X. Teixeira, Ke Wang, Alex Aiken
Title: CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis
Abstract:
Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning. Our code, data, and models are publicly available at https://github.com/Anjiang-Wei/CodeARC

Authors:Ao Wang, Hui Chen, Zijia Lin, Jungong Han, Guiguang Ding
Title: LSNet: See Large, Focus Small
Abstract:
Vision network designs, including Convolutional Neural Networks and Vision Transformers, have significantly advanced the field of computer vision. Yet, their complex computations pose challenges for practical deployments, particularly in real-time applications. To tackle this issue, researchers have explored various lightweight and efficient network designs. However, existing lightweight models predominantly leverage self-attention mechanisms and convolutions for token mixing. This dependence brings limitations in effectiveness and efficiency in the perception and aggregation processes of lightweight networks, hindering the balance between performance and efficiency under limited computational budgets. In this paper, we draw inspiration from the dynamic heteroscale vision ability inherent in the efficient human vision system and propose a ``See Large, Focus Small'' strategy for lightweight vision network design. We introduce LS (\textbf{L}arge-\textbf{S}mall) convolution, which combines large-kernel perception and small-kernel aggregation. It can efficiently capture a wide range of perceptual information and achieve precise feature aggregation for dynamic and complex visual representations, thus enabling proficient processing of visual information. Based on LS convolution, we present LSNet, a new family of lightweight models. Extensive experiments demonstrate that LSNet achieves superior performance and efficiency over existing lightweight networks in various vision tasks. Codes and models are available at https://github.com/jameslahm/lsnet.

Authors:Alexander Vogel, Omar Moured, Yufan Chen, Jiaming Zhang, Rainer Stiefelhagen
Title: RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning
Abstract:
Recently, Vision Language Models (VLMs) have increasingly emphasized document visual grounding to achieve better human-computer interaction, accessibility, and detailed understanding. However, its application to visualizations such as charts remains under-explored due to the inherent complexity of interleaved visual-numerical relationships in chart images. Existing chart understanding methods primarily focus on answering questions without explicitly identifying the visual elements that support their predictions. To bridge this gap, we introduce RefChartQA, a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding, enabling models to refer elements at multiple granularities within chart images. Furthermore, we conduct a comprehensive evaluation by instruction-tuning 5 state-of-the-art VLMs across different categories. Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%, reducing hallucinations, and improving model reliability. Additionally, we identify key factors influencing text-spatial alignment, such as architectural improvements in TinyChart, which leverages a token-merging module for enhanced feature fusion. Our dataset is open-sourced for community development and further advancements. All models and code will be publicly available at https://github.com/moured/RefChartQA.

Authors:Guohong Huang, Ling-An Zeng, Zexin Zheng, Shengbo Gu, Wei-Shi Zheng
Title: Efficient Explicit Joint-level Interaction Modeling with Mamba for Text-guided HOI Generation
Abstract:
We propose a novel approach for generating text-guided human-object interactions (HOIs) that achieves explicit joint-level interaction modeling in a computationally efficient manner. Previous methods represent the entire human body as a single token, making it difficult to capture fine-grained joint-level interactions and resulting in unrealistic HOIs. However, treating each individual joint as a token would yield over twenty times more tokens, increasing computational overhead. To address these challenges, we introduce an Efficient Explicit Joint-level Interaction Model (EJIM). EJIM features a Dual-branch HOI Mamba that separately and efficiently models spatiotemporal HOI information, as well as a Dual-branch Condition Injector for integrating text semantics and object geometry into human and object motions. Furthermore, we design a Dynamic Interaction Block and a progressive masking mechanism to iteratively filter out irrelevant joints, ensuring accurate and nuanced interaction modeling. Extensive quantitative and qualitative evaluations on public datasets demonstrate that EJIM surpasses previous works by a large margin while using only 5\% of the inference time. Code is available \href{https://github.com/Huanggh531/EJIM}{here}.

Authors:Xiaolu Liu, Ruizi Yang, Song Wang, Wentong Li, Junbo Chen, Jianke Zhu
Title: Uncertainty-Instructed Structure Injection for Generalizable HD Map Construction
Abstract:
Reliable high-definition (HD) map construction is crucial for the driving safety of autonomous vehicles. Although recent studies demonstrate improved performance, their generalization capability across unfamiliar driving scenes remains unexplored. To tackle this issue, we propose UIGenMap, an uncertainty-instructed structure injection approach for generalizable HD map vectorization, which concerns the uncertainty resampling in statistical distribution and employs explicit instance features to reduce excessive reliance on training data. Specifically, we introduce the perspective-view (PV) detection branch to obtain explicit structural features, in which the uncertainty-aware decoder is designed to dynamically sample probability distributions considering the difference in scenes. With probabilistic embedding and selection, UI2DPrompt is proposed to construct PV-learnable prompts. These PV prompts are integrated into the map decoder by designed hybrid injection to compensate for neglected instance structures. To ensure real-time inference, a lightweight Mimic Query Distillation is designed to learn from PV prompts, which can serve as an efficient alternative to the flow of PV branches. Extensive experiments on challenging geographically disjoint (geo-based) data splits demonstrate that our UIGenMap achieves superior performance, with +5.7 mAP improvement on the nuScenes dataset. Source code will be available at https://github.com/xiaolul2/UIGenMap.

Authors:Paul Caillon, Erwan Fagnou, Alexandre Allauzen
Title: Fast Training of Recurrent Neural Networks with Stationary State Feedbacks
Abstract:
Recurrent neural networks (RNNs) have recently demonstrated strong performance and faster inference than Transformers at comparable parameter budgets. However, the recursive gradient computation with the backpropagation through time (or BPTT) algorithm remains the major computational bottleneck. In this work, we propose a novel method that replaces BPTT with a fixed gradient feedback mechanism, yielding an efficient approximation of the exact gradient propagation based on the assumption of time stationarity. Our approach leverages state-space model (SSM) principles to define a structured feedback matrix that directly propagates gradients from future time steps. This formulation bypasses the need for recursive gradient backpropagation, significantly reducing training overhead while preserving the network's ability to capture long-term dependencies. The experiments on language modeling benchmarks exhibit competitive perplexity scores, while significantly reducing the training costs. These promising results suggest that designing a feedback method like an SSM can fully exploit the efficiency advantages of RNNs for many practical applications.

Authors:Yue Liu, Jiaying Wu, Yufei He, Ruihan Gong, Jun Xia, Liang Li, Hongcheng Gao, Hongyu Chen, Baolong Bi, Jiaheng Zhang, Zhiqi Huang, Bryan Hooi, Stan Z. Li, Keqin Li
Title: Efficient Inference for Large Reasoning Models: A Survey
Abstract:
Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason, exhibiting promising performance in solving complex tasks. However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time. Thus, this survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality. The overview structure of this paper is shown in Figure~\ref{fig:paper_structure}. First, we introduce a taxonomy to group the recent methods into two main categories: (a) explicit compact Chain-of-Thought (CoT), which reduces tokens while keeping the explicit reasoning structure, and (b) implicit latent CoT, which encodes reasoning steps within hidden representations instead of explicit tokens. Meanwhile, we discuss their strengths and weaknesses. Then, we conduct empirical analyses on existing methods from reasoning scenarios, object functions, and performance \& efficiency aspects. Besides, we present open challenges in this field, including human-centric controllable reasoning, trade-off between interpretability and efficiency of reasoning, ensuring the safety of efficient reasoning, and broader applications of efficient reasoning. In addition, we highlight key insights for enhancing LRMs' inference efficiency via techniques such as model merging, new architectures, and agent routers. We hope this work serves as a valuable guide, helping researchers overcome challenges in this vibrant field. A collection of efficient reasoning methods for LRMs (papers and codes) is provided at this link: https://github.com/yueliu1999/Awesome-Efficient-Inference-for-LRMs.

Authors:Yuyang Liang, Yankai Chen, Yixiang Fang, Laks V. S. Lakshmanan, Chenhao Ma
Title: TRACE: Intra-visit Clinical Event Nowcasting via Effective Patient Trajectory Encoding
Abstract:
Electronic Health Records (EHR) have become a valuable resource for a wide range of predictive tasks in healthcare. However, existing approaches have largely focused on inter-visit event predictions, overlooking the importance of intra-visit nowcasting, which provides prompt clinical insights during an ongoing patient visit. To address this gap, we introduce the task of laboratory measurement prediction within a hospital visit. We study the laboratory data that, however, remained underexplored in previous work. We propose TRACE, a Transformer-based model designed for clinical event nowcasting by encoding patient trajectories. TRACE effectively handles long sequences and captures temporal dependencies through a novel timestamp embedding that integrates decay properties and periodic patterns of data. Additionally, we introduce a smoothed mask for denoising, improving the robustness of the model. Experiments on two large-scale electronic health record datasets demonstrate that the proposed model significantly outperforms previous methods, highlighting its potential for improving patient care through more accurate laboratory measurement nowcasting. The code is available at https://github.com/Amehi/TRACE.

Authors:Zijun Ding, Mingdie Xiong, Congcong Zhu, Jingrun Chen
Title: STSA: Spatial-Temporal Semantic Alignment for Visual Dubbing
Abstract:
Existing audio-driven visual dubbing methods have achieved great success. Despite this, we observe that the semantic ambiguity between spatial and temporal domains significantly degrades the synthesis stability for the dynamic faces. We argue that aligning the semantic features from spatial and temporal domains is a promising approach to stabilizing facial motion. To achieve this, we propose a Spatial-Temporal Semantic Alignment (STSA) method, which introduces a dual-path alignment mechanism and a differentiable semantic representation. The former leverages a Consistent Information Learning (CIL) module to maximize the mutual information at multiple scales, thereby reducing the manifold differences between spatial and temporal domains. The latter utilizes probabilistic heatmap as ambiguity-tolerant guidance to avoid the abnormal dynamics of the synthesized faces caused by slight semantic jittering. Extensive experimental results demonstrate the superiority of the proposed STSA, especially in terms of image quality and synthesis stability. Pre-trained weights and inference code are available at https://github.com/SCAILab-USTC/STSA.

Authors:Ziang Lu, Lei Guo, Xu Yu, Zhiyong Cheng, Xiaohui Han, Lei Zhu
Title: Federated Semantic Learning for Privacy-preserving Cross-domain Recommendation
Abstract:
In the evolving landscape of recommender systems, the challenge of effectively conducting privacy-preserving Cross-Domain Recommendation (CDR), especially under strict non-overlapping constraints, has emerged as a key focus. Despite extensive research has made significant progress, several limitations still exist: 1) Previous semantic-based methods fail to deeply exploit rich textual information, since they quantize the text into codes, losing its original rich semantics. 2) The current solution solely relies on the text-modality, while the synergistic effects with the ID-modality are ignored. 3) Existing studies do not consider the impact of irrelevant semantic features, leading to inaccurate semantic representation. To address these challenges, we introduce federated semantic learning and devise FFMSR as our solution. For Limitation 1, we locally learn items'semantic encodings from their original texts by a multi-layer semantic encoder, and then cluster them on the server to facilitate the transfer of semantic knowledge between domains. To tackle Limitation 2, we integrate both ID and Text modalities on the clients, and utilize them to learn different aspects of items. To handle Limitation 3, a Fast Fourier Transform (FFT)-based filter and a gating mechanism are developed to alleviate the impact of irrelevant semantic information in the local model. We conduct extensive experiments on two real-world datasets, and the results demonstrate the superiority of our FFMSR method over other SOTA methods. Our source codes are publicly available at: https://github.com/Sapphire-star/FFMSR.

Authors:Beibei Wang, Boyue Cui, Shiqu Chen, Xuan Wang, Yadong Wang, Junyi Li
Title: MSNGO: multi-species protein function annotation based on 3D protein structure and network propagation
Abstract:
Motivation: In recent years, protein function prediction has broken through the bottleneck of sequence features, significantly improving prediction accuracy using high-precision protein structures predicted by AlphaFold2. While single-species protein function prediction methods have achieved remarkable success, multi-species protein function prediction methods are still in the stage of using PPI networks and sequence features. Providing effective cross-species label propagation for species with sparse protein annotations remains a challenging issue. To address this problem, we propose the MSNGO model, which integrates structural features and network propagation methods. Our validation shows that using structural features can significantly improve the accuracy of multi-species protein function prediction. Results: We employ graph representation learning techniques to extract amino acid representations from protein structure contact maps and train a structural model using a graph convolution pooling module to derive protein-level structural features. After incorporating the sequence features from ESM-2, we apply a network propagation algorithm to aggregate information and update node representations within a heterogeneous network. The results demonstrate that MSNGO outperforms previous multi-species protein function prediction methods that rely on sequence features and PPI networks. Availability: https://github.com/blingbell/MSNGO.

Authors:Gabriel Recchia, Chatrik Singh Mangat, Issac Li, Gayatri Krishnakumar
Title: FindTheFlaws: Annotated Errors for Detecting Flawed Reasoning and Scalable Oversight Research
Abstract:
As AI models tackle increasingly complex problems, ensuring reliable human oversight becomes more challenging due to the difficulty of verifying solutions. Approaches to scaling AI supervision include debate, in which two agents engage in structured dialogue to help a judge evaluate claims; critique, in which models identify potential flaws in proposed solutions; and prover-verifier games, in which a capable 'prover' model generates solutions that must be verifiable by a less capable 'verifier'. Evaluations of the scalability of these and similar approaches to difficult problems benefit from datasets that include (1) long-form expert-verified correct solutions and (2) long-form flawed solutions with annotations highlighting specific errors, but few are available. To address this gap, we present FindTheFlaws, a group of five diverse datasets spanning medicine, mathematics, science, coding, and the Lojban language. Each dataset contains questions and long-form solutions with expert annotations validating their correctness or identifying specific error(s) in the reasoning. We evaluate frontier models' critiquing capabilities and observe a range of performance that can be leveraged for scalable oversight experiments: models performing more poorly on particular datasets can serve as judges/verifiers for more capable models. Additionally, for some task/dataset combinations, expert baselines exceed even top model performance, making them more beneficial for scalable oversight experiments.

Authors:Peiyu Chen, Fuling Lin, Weipeng Guan, Peng Lu
Title: SuperEIO: Self-Supervised Event Feature Learning for Event Inertial Odometry
Abstract:
Event cameras asynchronously output low-latency event streams, promising for state estimation in high-speed motion and challenging lighting conditions. As opposed to frame-based cameras, the motion-dependent nature of event cameras presents persistent challenges in achieving robust event feature detection and matching. In recent years, learning-based approaches have demonstrated superior robustness over traditional handcrafted methods in feature detection and matching, particularly under aggressive motion and HDR scenarios. In this paper, we propose SuperEIO, a novel framework that leverages the learning-based event-only detection and IMU measurements to achieve event-inertial odometry. Our event-only feature detection employs a convolutional neural network under continuous event streams. Moreover, our system adopts the graph neural network to achieve event descriptor matching for loop closure. The proposed system utilizes TensorRT to accelerate the inference speed of deep networks, which ensures low-latency processing and robust real-time operation on resource-limited platforms. Besides, we evaluate our method extensively on multiple public datasets, demonstrating its superior accuracy and robustness compared to other state-of-the-art event-based methods. We have also open-sourced our pipeline to facilitate research in the field: https://github.com/arclab-hku/SuperEIO.

Authors:Behrooz Moosavi Ramezanzadeh
Title: Optimal Control of an Epidemic with Intervention Design
Abstract:
In this paper, I propose a controlled SEIR model that advances epidemic management through optimal control theory. I improve the traditional framework by incorporating practical intervention constraints and economic considerations. Approaching this problem using modern methods of calculus of variations, I first conduct a rigorous mathematical analysis of the controlled system. Then, I formulate an infinite time horizon control problem and investigate its mathematical connections with finite time, setting the stage for applying the Hamiltonian procedure.

Authors:Ke Zhang, Vishal M. Patel
Title: MedCL: Learning Consistent Anatomy Distribution for Scribble-supervised Medical Image Segmentation
Abstract:
Curating large-scale fully annotated datasets is expensive, laborious, and cumbersome, especially for medical images. Several methods have been proposed in the literature that make use of weak annotations in the form of scribbles. However, these approaches require large amounts of scribble annotations, and are only applied to the segmentation of regular organs, which are often unavailable for the disease species that fall in the long-tailed distribution. Motivated by the fact that the medical labels have anatomy distribution priors, we propose a scribble-supervised clustering-based framework, called MedCL, to learn the inherent anatomy distribution of medical labels. Our approach consists of two steps: i) Mix the features with intra- and inter-image mix operations, and ii) Perform feature clustering and regularize the anatomy distribution at both local and global levels. Combined with a small amount of weak supervision, the proposed MedCL is able to segment both regular organs and challenging irregular pathologies. We implement MedCL based on SAM and UNet backbones, and evaluate the performance on three open datasets of regular structure (MSCMRseg), multiple organs (BTCV) and irregular pathology (MyoPS). It is shown that even with less scribble supervision, MedCL substantially outperforms the conventional segmentation methods. Our code is available at https://github.com/BWGZK/MedCL.

Authors:Lauren Shrack, Timm Haucke, Antoine Salaün, Arjun Subramonian, Sara Beery
Title: Pairwise Matching of Intermediate Representations for Fine-grained Explainability
Abstract:
The differences between images belonging to fine-grained categories are often subtle and highly localized, and existing explainability techniques for deep learning models are often too diffuse to provide useful and interpretable explanations. We propose a new explainability method (PAIR-X) that leverages both intermediate model activations and backpropagated relevance scores to generate fine-grained, highly-localized pairwise visual explanations. We use animal and building re-identification (re-ID) as a primary case study of our method, and we demonstrate qualitatively improved results over a diverse set of explainability baselines on 35 public re-ID datasets. In interviews, animal re-ID experts found PAIR-X to be a meaningful improvement over existing baselines for deep model explainability, and suggested that its visualizations would be directly applicable to their work. We also propose a novel quantitative evaluation metric for our method, and demonstrate that PAIR-X visualizations appear more plausible for correct image matches than incorrect ones even when the model similarity score for the pairs is the same. By improving interpretability, PAIR-X enables humans to better distinguish correct and incorrect matches. Our code is available at: https://github.com/pairx-explains/pairx

Authors:Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, Mohamed S. Abdelfattah, Diana Marculescu
Title: Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
Abstract:
State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms two state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.

Authors:Nina Weng, Aasa Feragen, Siavash Bigdeli
Title: Patronus: Bringing Transparency to Diffusion Models with Prototypes
Abstract:
Diffusion-based generative models, such as Denoising Diffusion Probabilistic Models (DDPMs), have achieved remarkable success in image generation, but their step-by-step denoising process remains opaque, leaving critical aspects of the generation mechanism unexplained. To address this, we introduce \emph{Patronus}, an interpretable diffusion model inspired by ProtoPNet. Patronus integrates a prototypical network into DDPMs, enabling the extraction of prototypes and conditioning of the generation process on their prototype activation vector. This design enhances interpretability by showing the learned prototypes and how they influence the generation process. Additionally, the model supports downstream tasks like image manipulation, enabling more transparent and controlled modifications. Moreover, Patronus could reveal shortcut learning in the generation process by detecting unwanted correlations between learned prototypes. Notably, Patronus operates entirely without any annotations or text prompts. This work opens new avenues for understanding and controlling diffusion models through prototype-based interpretability. Our code is available at \href{https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus}.

Authors:Amr Alshatnawi, Remi Sampaleanu, David Liebovitz
Title: MediTools -- Medical Education Powered by LLMs
Abstract:
Artificial Intelligence (AI) has been advancing rapidly and with the advent of large language models (LLMs) in late 2022, numerous opportunities have emerged for adopting this technology across various domains, including medicine. These innovations hold immense potential to revolutionize and modernize medical education. Our research project leverages large language models to enhance medical education and address workflow challenges through the development of MediTools - AI Medical Education. This prototype application focuses on developing interactive tools that simulate real-life clinical scenarios, provide access to medical literature, and keep users updated with the latest medical news. Our first tool is a dermatology case simulation tool that uses real patient images depicting various dermatological conditions and enables interaction with LLMs acting as virtual patients. This platform allows users to practice their diagnostic skills and enhance their clinical decision-making abilities. The application also features two additional tools: an AI-enhanced PubMed tool for engaging with LLMs to gain deeper insights into research papers, and a Google News tool that offers LLM generated summaries of articles for various medical specialties. A comprehensive survey has been conducted among medical professionals and students to gather initial feedback on the effectiveness and user satisfaction of MediTools, providing insights for further development and refinement of the application. This research demonstrates the potential of AI-driven tools in transforming and revolutionizing medical education, offering a scalable and interactive platform for continuous learning and skill development.

Authors:Yuying Duan, Gelei Xu, Yiyu Shi, Michael Lemmon
Title: The Cost of Local and Global Fairness in Federated Learning
Abstract:
With the emerging application of Federated Learning (FL) in finance, hiring and healthcare, FL models are regulated to be fair, preventing disparities with respect to legally protected attributes such as race or gender. Two concepts of fairness are important in FL: global and local fairness. Global fairness addresses the disparity across the entire population and local fairness is concerned with the disparity within each client. Prior fair FL frameworks have improved either global or local fairness without considering both. Furthermore, while the majority of studies on fair FL focuses on binary settings, many real-world applications are multi-class problems. This paper proposes a framework that investigates the minimum accuracy lost for enforcing a specified level of global and local fairness in multi-class FL settings. Our framework leads to a simple post-processing algorithm that derives fair outcome predictors from the Bayesian optimal score functions. Experimental results show that our algorithm outperforms the current state of the art (SOTA) with regard to the accuracy-fairness tradoffs, computational and communication costs. Codes are available at: https://github.com/papersubmission678/The-cost-of-local-and-global-fairness-in-FL .

Authors:Pinlong Zhao, Weiyao Zhu, Pengfei Jiao, Di Gao, Ou Wu
Title: Data Poisoning in Deep Learning: A Survey
Abstract:
Deep learning has become a cornerstone of modern artificial intelligence, enabling transformative applications across a wide range of domains. As the core element of deep learning, the quality and security of training data critically influence model performance and reliability. However, during the training process, deep learning models face the significant threat of data poisoning, where attackers introduce maliciously manipulated training data to degrade model accuracy or lead to anomalous behavior. While existing surveys provide valuable insights into data poisoning, they generally adopt a broad perspective, encompassing both attacks and defenses, but lack a dedicated, in-depth analysis of poisoning attacks specifically in deep learning. In this survey, we bridge this gap by presenting a comprehensive and targeted review of data poisoning in deep learning. First, this survey categorizes data poisoning attacks across multiple perspectives, providing an in-depth analysis of their characteristics and underlying design princinples. Second, the discussion is extended to the emerging area of data poisoning in large language models(LLMs). Finally, we explore critical open challenges in the field and propose potential research directions to advance the field further. To support further exploration, an up-to-date repository of resources on data poisoning in deep learning is available at https://github.com/Pinlong-Zhao/Data-Poisoning.

Authors:Gongzhu Yin, Hongli Zhang, Yi Luo, Yuchen Yang, Kun Lu, Chao Meng
Title: Ignite Forecasting with SPARK: An Efficient Generative Framework for Refining LLMs in Temporal Knowledge Graph Forecasting
Abstract:
Temporal Knowledge Graph (TKG) forecasting is crucial for predicting future events using historical data. With the surge of Large Language Models (LLMs), recent studies have begun exploring their integration into TKG forecasting and achieved some success. However, they still face limitations such as limited input length, inefficient output generation, and resource-intensive refinement, which undermine their performance and practical applicability. To address these limitations, we introduce SPARK, a Sequence-level Proxy-Adapting framework for Refining LLMs in TKG forecasting. Inspired by inference-time algorithms adopted in controlling generation, SPARK offers a cost-effective, plug-and-play solution through two key innovations: (1) Beam Sequence-Level Generation, which reframes TKG forecasting as a top-K sequence-level generation task, using beam search for efficiently generating next-entity distribution in a single forward pass. (2) TKG Adapter for Refinement, which employs traditional TKG models as trainable proxy adapters to leverage global graph information and refine LLM outputs, overcoming both the input length and the resource-intensive fine-tuning problems. Experiments across diverse datasets validate SPARK's forecasting performance, robust generalization capabilities, and high efficiency. We release source codes at https://github.com/yin-gz/SPARK.

Authors:Xu Yang, Rui Wang, Kaiwen Li, Wenhua Li, Tao Zhang, Fujun He
Title: PlatMetaX: An Integrated MATLAB platform for Meta-Black-Box Optimization
Abstract:
The landscape of optimization problems has become increasingly complex, necessitating the development of advanced optimization techniques. Meta-Black-Box Optimization (MetaBBO), which involves refining the optimization algorithms themselves via meta-learning, has emerged as a promising approach. Recognizing the limitations in existing platforms, we presents PlatMetaX, a novel MATLAB platform for MetaBBO with reinforcement learning. PlatMetaX integrates the strengths of MetaBox and PlatEMO, offering a comprehensive framework for developing, evaluating, and comparing optimization algorithms. The platform is designed to handle a wide range of optimization problems, from single-objective to multi-objective, and is equipped with a rich set of baseline algorithms and evaluation metrics. We demonstrate the utility of PlatMetaX through extensive experiments and provide insights into its design and implementation. PlatMetaX is available at: \href{https://github.com/Yxxx616/PlatMetaX}{https://github.com/Yxxx616/PlatMetaX}.

Authors:Sarah Martinson, Lingkai Kong, Cheol Woo Kim, Aparna Taneja, Milind Tambe
Title: LLM-based Agent Simulation for Maternal Health Interventions: Uncertainty Estimation and Decision-focused Evaluation
Abstract:
Agent-based simulation is crucial for modeling complex human behavior, yet traditional approaches require extensive domain knowledge and large datasets. In data-scarce healthcare settings where historic and counterfactual data are limited, large language models (LLMs) offer a promising alternative by leveraging broad world knowledge. This study examines an LLM-driven simulation of a maternal mobile health program, predicting beneficiaries' listening behavior when they receive health information via automated messages (control) or live representatives (intervention). Since uncertainty quantification is critical for decision-making in health interventions, we propose an LLM epistemic uncertainty estimation method based on binary entropy across multiple samples. We enhance model robustness through ensemble approaches, improving F1 score and model calibration compared to individual models. Beyond direct evaluation, we take a decision-focused approach, demonstrating how LLM predictions inform intervention feasibility and trial implementation in data-limited settings. The proposed method extends to public health, disaster response, and other domains requiring rapid intervention assessment under severe data constraints. All code and prompts used for this work can be found at https://github.com/sarahmart/LLM-ABS-ARMMAN-prediction.

Authors:Weiqi Li, Xuanyu Zhang, Shijie Zhao, Yabin Zhang, Junlin Li, Li Zhang, Jian Zhang
Title: Q-Insight: Understanding Image Quality via Visual Reinforcement Learning
Abstract:
Image quality assessment (IQA) focuses on the perceptual visual quality of images, playing a crucial role in downstream tasks such as image reconstruction, compression, and generation. The rapid advancement of multi-modal large language models (MLLMs) has significantly broadened the scope of IQA, moving toward comprehensive image quality understanding that incorporates content analysis, degradation perception, and comparison reasoning beyond mere numerical scoring. Previous MLLM-based methods typically either generate numerical scores lacking interpretability or heavily rely on supervised fine-tuning (SFT) using large-scale annotated datasets to provide descriptive assessments, limiting their flexibility and applicability. In this paper, we propose Q-Insight, a reinforcement learning-based model built upon group relative policy optimization (GRPO), which demonstrates strong visual reasoning capability for image quality understanding while requiring only a limited amount of rating scores and degradation labels. By jointly optimizing score regression and degradation perception tasks with carefully designed reward functions, our approach effectively exploits their mutual benefits for enhanced performance. Extensive experiments demonstrate that Q-Insight substantially outperforms existing state-of-the-art methods in both score regression and degradation perception tasks, while exhibiting impressive zero-shot generalization to comparison reasoning tasks. Code will be available at https://github.com/lwq20020127/Q-Insight.

Authors:Belinda Z. Li, Been Kim, Zi Wang
Title: QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Abstract:
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.

Authors:Jianguo Zhang, Thai Hoang, Ming Zhu, Zuxin Liu, Shiyu Wang, Tulika Awalgaonkar, Akshara Prabhakar, Haolin Chen, Weiran Yao, Zhiwei Liu, Juntao Tan, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong
Title: ActionStudio: A Lightweight Framework for Data and Training of Large Action Models
Abstract:
Large Action models are essential for enabling autonomous agents to perform complex tasks. However, training such models remains challenging due to the diversity of agent environments and the complexity of noisy agentic data. Existing infrastructure offers limited support for scalable, agent-specific fine-tuning and standardized agent data processing. We introduce ActionStudio, a lightweight and extensible data and training framework designed for large action models. ActionStudio unifies diverse agent trajectories using our proposed Unified Format 2.0, supports a range of training workflows with optimized multi-node distributed setup, and integrates robust preprocessing and real-time verification tools. ActionStudio demonstrates up to 9x higher throughput compared to existing agentic training frameworks, and our trained models yield top performances across public and realistic agent benchmarks. To support the broader research community, we open-source the ActionStudio framework and release actionstudio-98k, a curated dataset of 98k high-quality trajectories. Code: https://github.com/SalesforceAIResearch/xLAM.

Authors:Francesca Pezzuti, Sean MacAvaney, Nicola Tonellotto
Title: Exploring the Effectiveness of Multi-stage Fine-tuning for Cross-encoder Re-rankers
Abstract:
State-of-the-art cross-encoders can be fine-tuned to be highly effective in passage re-ranking. The typical fine-tuning process of cross-encoders as re-rankers requires large amounts of manually labelled data, a contrastive learning objective, and a set of heuristically sampled negatives. An alternative recent approach for fine-tuning instead involves teaching the model to mimic the rankings of a highly effective large language model using a distillation objective. These fine-tuning strategies can be applied either individually, or in sequence. In this work, we systematically investigate the effectiveness of point-wise cross-encoders when fine-tuned independently in a single stage, or sequentially in two stages. Our experiments show that the effectiveness of point-wise cross-encoders fine-tuned using contrastive learning is indeed on par with that of models fine-tuned with multi-stage approaches. Code is available for reproduction at https://github.com/fpezzuti/multistage-finetuning.

Authors:Xiaomin Yu, Pengxiang Ding, Wenjie Zhang, Siteng Huang, Songyang Gao, Chengwei Qin, Kejian Wu, Zhaoxin Fan, Ziyue Qiao, Donglin Wang
Title: Unicorn: Text-Only Data Synthesis for Vision Language Model Training
Abstract:
Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.

Authors:Zhendi Gong, Susan Francis, Eleanor Cox, Stamatios N. Sotiropoulos, Dorothee P. Auer, Guoping Qiu, Andrew P. French, Xin Chen
Title: MO-CTranS: A unified multi-organ segmentation model learning from multiple heterogeneously labelled datasets
Abstract:
Multi-organ segmentation holds paramount significance in many clinical tasks. In practice, compared to large fully annotated datasets, multiple small datasets are often more accessible and organs are not labelled consistently. Normally, an individual model is trained for each of these datasets, which is not an effective way of using data for model learning. It remains challenging to train a single model that can robustly learn from several partially labelled datasets due to label conflict and data imbalance problems. We propose MO-CTranS: a single model that can overcome such problems. MO-CTranS contains a CNN-based encoder and a Transformer-based decoder, which are connected in a multi-resolution manner. Task-specific tokens are introduced in the decoder to help differentiate label discrepancies. Our method was evaluated and compared to several baseline models and state-of-the-art (SOTA) solutions on abdominal MRI datasets that were acquired in different views (i.e. axial and coronal) and annotated for different organs (i.e. liver, kidney, spleen). Our method achieved better performance (most were statistically significant) than the compared methods. Github link: https://github.com/naisops/MO-CTranS.

Authors:Jing Li, Hao Sun
Title: Learnable cut flow for high energy physics
Abstract:
Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but requires extensive manual tuning to identify optimal cut boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this strategy, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF 1. accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, 2. assigns higher importance to discriminative features with minimal overlap, 3. handles redundant or correlated features robustly, and 4. performs effectively in real-world scenarios. In the diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance. Source code and experimental data are available at https://github.com/Star9daisy/learnable-cut-flow.

Authors:Jing Li, Hao Sun
Title: Learnable cut flow for high energy physics
Abstract:
Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but requires extensive manual tuning to identify optimal cut boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this strategy, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF 1. accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, 2. assigns higher importance to discriminative features with minimal overlap, 3. handles redundant or correlated features robustly, and 4. performs effectively in real-world scenarios. In the diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance. Source code and experimental data are available at https://github.com/Star9daisy/learnable-cut-flow.

Authors:Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Title: SPDNet: Seasonal-Periodic Decomposition Network for Advanced Residential Demand Forecasting
Abstract:
Residential electricity demand forecasting is critical for efficient energy management and grid stability. Accurate predictions enable utility companies to optimize planning and operations. However, real-world residential electricity demand data often exhibit intricate temporal variability, including multiple seasonalities, periodicities, and abrupt fluctuations, which pose significant challenges for forecasting models. Previous models that rely on statistical methods, recurrent, convolutional neural networks, and transformers often struggle to capture these intricate temporal dynamics. To address these challenges, we propose the Seasonal-Periodic Decomposition Network (SPDNet), a novel deep learning framework consisting of two main modules. The first is the Seasonal-Trend Decomposition Module (STDM), which decomposes the input data into trend, seasonal, and residual components. The second is the Periodical Decomposition Module (PDM), which employs the Fast Fourier Transform to identify the dominant periods. For each dominant period, 1D input data is reshaped into a 2D tensor, where rows represent periods and columns correspond to frequencies. The 2D representations are then processed through three submodules: a 1D convolution to capture sharp fluctuations, a transformer-based encoder to model global patterns, and a 2D convolution to capture interactions between periods. Extensive experiments conducted on real-world residential electricity load data demonstrate that SPDNet outperforms traditional and advanced models in both forecasting accuracy and computational efficiency. The code is available in this repository: https://github.com/Tims2D/SPDNet.

Authors:Diego Coello de Portugal Mecke, Haya Alyoussef, Maximilian Stubbemann, Ilia Koloiarov, Tom Hanika, Lars Schmidt-Thieme
Title: STADE: Standard Deviation as a Pruning Metric
Abstract:
Recently, Large Language Models (LLMs) have become very widespread and are used to solve a wide variety of tasks. To successfully handle these tasks, LLMs require longer training times and larger model sizes. This makes LLMs ideal candidates for pruning methods that reduce computational demands while maintaining performance. Previous methods require a retraining phase after pruning to maintain the original model's performance. However, state-of-the-art pruning methods, such as Wanda, prune the model without retraining, making the pruning process faster and more efficient. Building upon Wanda's work, this study provides a theoretical explanation of why the method is effective and leverages these insights to enhance the pruning process. Specifically, a theoretical analysis of the pruning problem reveals a common scenario in Machine Learning where Wanda is the optimal pruning method. Furthermore, this analysis is extended to cases where Wanda is no longer optimal, leading to the development of a new method, STADE, based on the standard deviation of the input. From a theoretical standpoint, STADE demonstrates better generality across different scenarios. Finally, extensive experiments on Llama and Open Pre-trained Transformers (OPT) models validate these theoretical findings, showing that depending on the training conditions, Wanda's optimal performance varies as predicted by the theoretical framework. These insights contribute to a more robust understanding of pruning strategies and their practical implications. Code is available at: https://github.com/Coello-dev/STADE/

Authors:Wei-Jin Huang, Yuan-Ming Li, Zhi-Wei Xia, Yu-Ming Tang, Kun-Yu Lin, Jian-Fang Hu, Wei-Shi Zheng
Title: Modeling Multiple Normal Action Representations for Error Detection in Procedural Tasks
Abstract:
Error detection in procedural activities is essential for consistent and correct outcomes in AR-assisted and robotic systems. Existing methods often focus on temporal ordering errors or rely on static prototypes to represent normal actions. However, these approaches typically overlook the common scenario where multiple, distinct actions are valid following a given sequence of executed actions. This leads to two issues: (1) the model cannot effectively detect errors using static prototypes when the inference environment or action execution distribution differs from training; and (2) the model may also use the wrong prototypes to detect errors if the ongoing action label is not the same as the predicted one. To address this problem, we propose an Adaptive Multiple Normal Action Representation (AMNAR) framework. AMNAR predicts all valid next actions and reconstructs their corresponding normal action representations, which are compared against the ongoing action to detect errors. Extensive experiments demonstrate that AMNAR achieves state-of-the-art performance, highlighting the effectiveness of AMNAR and the importance of modeling multiple valid next actions in error detection. The code is available at https://github.com/iSEE-Laboratory/AMNAR.

Authors:Ada Gorgun, Bernt Schiele, Jonas Fischer
Title: VITAL: More Understandable Feature Visualization through Distribution Alignment and Relevant Information Flow
Abstract:
Neural networks are widely adopted to solve complex and challenging tasks. Especially in high-stakes decision-making, understanding their reasoning process is crucial, yet proves challenging for modern deep networks. Feature visualization (FV) is a powerful tool to decode what information neurons are responding to and hence to better understand the reasoning behind such networks. In particular, in FV we generate human-understandable images that reflect the information detected by neurons of interest. However, current methods often yield unrecognizable visualizations, exhibiting repetitive patterns and visual artifacts that are hard to understand for a human. To address these problems, we propose to guide FV through statistics of real image features combined with measures of relevant network flow to generate prototypical images. Our approach yields human-understandable visualizations that both qualitatively and quantitatively improve over state-of-the-art FVs across various architectures. As such, it can be used to decode which information the network uses, complementing mechanistic circuits that identify where it is encoded. Code is available at: https://github.com/adagorgun/VITAL

Authors:Jiahao Xia, Min Xu, Wenjian Huang, Jianguo Zhang, Haimin Zhang, Chunxia Xiao
Title: Mitigating Knowledge Discrepancies among Multiple Datasets for Task-agnostic Unified Face Alignment
Abstract:
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation. The code is available at https://github.com/Jiahao-UTS/TUFA.

Authors:Yubo Li, Yidi Miao, Xueying Ding, Ramayya Krishnan, Rema Padman
Title: Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. Code and data are available at: https://github.com/yubol-bobo/MT-Consistency. First, we introduce Position-Weighted Consistency (PWC), a metric designed to capture both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present MT-Consistency, a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by explicitly integrating internal model confidence scores during the generation process. Experimental results demonstrate that CARG significantly improves response stability without sacrificing accuracy, offering a practical path toward more dependable LLM behavior in critical, real-world deployments.

Authors:Zhihang Lin, Mingbao Lin, Yuan Xie, Rongrong Ji
Title: CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models
Abstract:
This paper introduces Completion Pruning Policy Optimization (CPPO) to accelerate the training of reasoning models based on Group Relative Policy Optimization (GRPO). GRPO, while effective, incurs high training costs due to the need for sampling multiple completions for each question. Our experiment and theoretical analysis reveals that the number of completions impacts model accuracy yet increases training time multiplicatively, and not all completions contribute equally to policy training -- their contribution depends on their relative advantage. To address these issues, we propose CPPO, which prunes completions with low absolute advantages, significantly reducing the number needed for gradient calculation and updates. Additionally, we introduce a dynamic completion allocation strategy to maximize GPU utilization by incorporating additional questions, further enhancing training efficiency. Experimental results demonstrate that CPPO achieves up to $8.32\times$ speedup on GSM8K and $3.51\times$ on Math while preserving or even enhancing the accuracy compared to the original GRPO. We release our code at https://github.com/lzhxmu/CPPO.

Authors:Louis Owen, Nilabhra Roy Chowdhury, Abhay Kumar, Fabian Güra
Title: A Refined Analysis of Massive Activations in LLMs
Abstract:
Motivated in part by their relevance for low-precision training and quantization, massive activations in large language models (LLMs) have recently emerged as a topic of interest. However, existing analyses are limited in scope, and generalizability across architectures is unclear. This paper helps address some of these gaps by conducting an analysis of massive activations across a broad range of LLMs, including both GLU-based and non-GLU-based architectures. Our findings challenge several prior assumptions, most importantly: (1) not all massive activations are detrimental, i.e. suppressing them does not lead to an explosion of perplexity or a collapse in downstream task performance; (2) proposed mitigation strategies such as Attention KV bias are model-specific and ineffective in certain cases. We consequently investigate novel hybrid mitigation strategies; in particular pairing Target Variance Rescaling (TVR) with Attention KV bias or Dynamic Tanh (DyT) successfully balances the mitigation of massive activations with preserved downstream model performance in the scenarios we investigated. Our code is available at: https://github.com/bluorion-com/refine_massive_activations.

Authors:Yancong Lin, Shiming Wang, Liangliang Nan, Julian Kooij, Holger Caesar
Title: VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow
Abstract:
Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.

Authors:Ruiguang Pei, Junjie Wu, Dan Peng, Min Fang, Jianan Zhang, Zhihui Fu, Jun Wang
Title: SimDC: A High-Fidelity Device Simulation Platform for Device-Cloud Collaborative Computing
Abstract:
The advent of edge intelligence and escalating concerns for data privacy protection have sparked a surge of interest in device-cloud collaborative computing. Large-scale device deployments to validate prototype solutions are often prohibitively expensive and practically challenging, resulting in a pronounced demand for simulation tools that can emulate realworld scenarios. However, existing simulators predominantly rely solely on high-performance servers to emulate edge computing devices, overlooking (1) the discrepancies between virtual computing units and actual heterogeneous computing devices and (2) the simulation of device behaviors in real-world environments. In this paper, we propose a high-fidelity device simulation platform, called SimDC, which uses a hybrid heterogeneous resource and integrates high-performance servers and physical mobile phones. Utilizing this platform, developers can simulate numerous devices for functional testing cost-effectively and capture precise operational responses from varied real devices. To simulate real behaviors of heterogeneous devices, we offer a configurable device behavior traffic controller that dispatches results on devices to the cloud using a user-defined operation strategy. Comprehensive experiments on the public dataset show the effectiveness of our simulation platform and its great potential for application. The code is available at https://github.com/opas-lab/olearning-sim.

Authors:Xinghua Liu, Ming Cao
Title: Robust simultaneous UWB-anchor calibration and robot localization for emergency situations
Abstract:
In this work, we propose a factor graph optimization (FGO) framework to simultaneously solve the calibration problem for Ultra-WideBand (UWB) anchors and the robot localization problem. Calibrating UWB anchors manually can be time-consuming and even impossible in emergencies or those situations without special calibration tools. Therefore, automatic estimation of the anchor positions becomes a necessity. The proposed method enables the creation of a soft sensor providing the position information of the anchors in a UWB network. This soft sensor requires only UWB and LiDAR measurements measured from a moving robot. The proposed FGO framework is suitable for the calibration of an extendable large UWB network. Moreover, the anchor calibration problem and robot localization problem can be solved simultaneously, which saves time for UWB network deployment. The proposed framework also helps to avoid artificial errors in the UWB-anchor position estimation and improves the accuracy and robustness of the robot-pose. The experimental results of the robot localization using LiDAR and a UWB network in a 3D environment are discussed, demonstrating the performance of the proposed method. More specifically, the anchor calibration problem with four anchors and the robot localization problem can be solved simultaneously and automatically within 30 seconds by the proposed framework. The supplementary video and codes can be accessed via https://github.com/LiuxhRobotAI/Simultaneous_calibration_localization.

Authors:Dongping Liao, Xitong Gao, Yabo Xu, Chengzhong Xu
Title: FLIP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning
Abstract:
The increasing emphasis on privacy and data security has driven the adoption of federated learning, a decentralized approach to train machine learning models without sharing raw data. Prompt learning, which fine-tunes prompt embeddings of pretrained models, offers significant advantages in federated settings by reducing computational costs and communication overheads while leveraging the strong performance and generalization capabilities of vision-language models such as CLIP. This paper addresses the intersection of federated learning and prompt learning, particularly for vision-language models. In this work, we introduce a comprehensive framework, named FLIP, to evaluate federated prompt learning algorithms. FLIP assesses the performance of 8 state-of-the-art federated prompt learning methods across 4 federated learning protocols and 12 open datasets, considering 6 distinct evaluation scenarios. Our findings demonstrate that prompt learning maintains strong generalization performance in both in-distribution and out-of-distribution settings with minimal resource consumption. This work highlights the effectiveness of federated prompt learning in environments characterized by data scarcity, unseen classes, and cross-domain distributional shifts. We open-source the code for all implemented algorithms in FLIP to facilitate further research in this domain.

Authors:Jaewoo Jeong, Seohee Lee, Daehee Park, Giwon Lee, Kuk-Jin Yoon
Title: Multi-modal Knowledge Distillation-based Human Trajectory Forecasting
Abstract:
Pedestrian trajectory forecasting is crucial in various applications such as autonomous driving and mobile robot navigation. In such applications, camera-based perception enables the extraction of additional modalities (human pose, text) to enhance prediction accuracy. Indeed, we find that textual descriptions play a crucial role in integrating additional modalities into a unified understanding. However, online extraction of text requires the use of VLM, which may not be feasible for resource-constrained systems. To address this challenge, we propose a multi-modal knowledge distillation framework: a student model with limited modality is distilled from a teacher model trained with full range of modalities. The comprehensive knowledge of a teacher model trained with trajectory, human pose, and text is distilled into a student model using only trajectory or human pose as a sole supplement. In doing so, we separately distill the core locomotion insights from intra-agent multi-modality and inter-agent interaction. Our generalizable framework is validated with two state-of-the-art models across three datasets on both ego-view (JRDB, SIT) and BEV-view (ETH/UCY) setups, utilizing both annotated and VLM-generated text captions. Distilled student models show consistent improvement in all prediction metrics for both full and instantaneous observations, improving up to ~13%. The code is available at https://github.com/Jaewoo97/KDTF.

Authors:Chanhyuk Lee, Jiho Choi, Chanryeol Lee, Donggyun Kim, Seunghoon Hong
Title: AdaRank: Adaptive Rank Pruning for Enhanced Model Merging
Abstract:
Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.

Authors:Zhanke Zhou, Zhaocheng Zhu, Xuan Li, Mikhail Galkin, Xiao Feng, Sanmi Koyejo, Jian Tang, Bo Han
Title: Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Abstract:
Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts-the first visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset. Specifically, we represent the states in a reasoning path as feature vectors that quantify their distances to all answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative analysis with the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt our tool to a model that predicts the property they observe. We showcase this advantage by adapting our tool to a lightweight verifier that evaluates the correctness of reasoning paths. Empirically, this verifier boosts the accuracy of reasoning as well as the test-time scaling effect. The code is publicly available at: https://github.com/tmlr-group/landscape-of-thoughts.

Authors:Ximing Wen, Mallika Mainali, Anik Sen
Title: How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark
Abstract:
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; however, their ability to perform Theory of Mind (ToM) tasks, such as inferring human intentions, beliefs, and mental states, remains underexplored. We propose an open-ended question framework to evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset of 30 images and evaluated the performance of four VLMs of varying sizes. Our results show that the GPT-4 model outperformed all the others, with only one smaller model, GPT-4o-mini, achieving comparable performance. We observed that VLMs often struggle to infer intentions in complex scenarios such as bullying or cheating. Our findings reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues. The dataset is available at https://github.com/ximingwen/ToM-AAAI25-Multimodal.

Authors:Ziyue Huang, Hongxi Yan, Qiqi Zhan, Shuai Yang, Mingming Zhang, Chenkai Zhang, YiMing Lei, Zeming Liu, Qingjie Liu, Yunhong Wang
Title: A Survey on Remote Sensing Foundation Models: From Vision to Multimodality
Abstract:
The rapid advancement of remote sensing foundation models, particularly vision and multimodal models, has significantly enhanced the capabilities of intelligent geospatial data interpretation. These models combine various data modalities, such as optical, radar, and LiDAR imagery, with textual and geographic information, enabling more comprehensive analysis and understanding of remote sensing data. The integration of multiple modalities allows for improved performance in tasks like object detection, land cover classification, and change detection, which are often challenged by the complex and heterogeneous nature of remote sensing data. However, despite these advancements, several challenges remain. The diversity in data types, the need for large-scale annotated datasets, and the complexity of multimodal fusion techniques pose significant obstacles to the effective deployment of these models. Moreover, the computational demands of training and fine-tuning multimodal models require significant resources, further complicating their practical application in remote sensing image interpretation tasks. This paper provides a comprehensive review of the state-of-the-art in vision and multimodal foundation models for remote sensing, focusing on their architecture, training methods, datasets and application scenarios. We discuss the key challenges these models face, such as data alignment, cross-modal transfer learning, and scalability, while also identifying emerging research directions aimed at overcoming these limitations. Our goal is to provide a clear understanding of the current landscape of remote sensing foundation models and inspire future research that can push the boundaries of what these models can achieve in real-world applications. The list of resources collected by the paper can be found in the https://github.com/IRIP-BUAA/A-Review-for-remote-sensing-vision-language-models.

Authors:Ukcheol Shin, Jinsun Park
Title: Deep Depth Estimation from Thermal Image: Dataset, Benchmark, and Challenges
Abstract:
Achieving robust and accurate spatial perception under adverse weather and lighting conditions is crucial for the high-level autonomy of self-driving vehicles and robots. However, existing perception algorithms relying on the visible spectrum are highly affected by weather and lighting conditions. A long-wave infrared camera (i.e., thermal imaging camera) can be a potential solution to achieve high-level robustness. However, the absence of large-scale datasets and standardized benchmarks remains a significant bottleneck to progress in active research for robust visual perception from thermal images. To this end, this manuscript provides a large-scale Multi-Spectral Stereo (MS$^2$) dataset that consists of stereo RGB, stereo NIR, stereo thermal, stereo LiDAR data, and GNSS/IMU information along with semi-dense depth ground truth. MS$^2$ dataset includes 162K synchronized multi-modal data pairs captured across diverse locations (e.g., urban city, residential area, campus, and high-way road) at different times (e.g., morning, daytime, and nighttime) and under various weather conditions (e.g., clear-sky, cloudy, and rainy). Secondly, we conduct a thorough evaluation of monocular and stereo depth estimation networks across RGB, NIR, and thermal modalities to establish standardized benchmark results on MS$^2$ depth test sets (e.g., day, night, and rainy). Lastly, we provide in-depth analyses and discuss the challenges revealed by the benchmark results, such as the performance variability for each modality under adverse conditions, domain shift between different sensor modalities, and potential research direction for thermal perception. Our dataset and source code are publicly available at https://sites.google.com/view/multi-spectral-stereo-dataset and https://github.com/UkcheolShin/SupDepth4Thermal.

Authors:Chung-En Sun, Ge Yan, Tsui-Wei Weng
Title: ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Abstract:
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce \textbf{\textit{ThinkEdit}}, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 4%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to remove the short reasoning direction. With changes to only 0.2% of the model's parameters, \textbf{\textit{ThinkEdit}} effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+6.39%), along with an overall improvement across multiple math benchmarks (+3.34%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at: https://github.com/Trustworthy-ML-Lab/ThinkEdit\

Authors:Chung-En Sun, Ge Yan, Tsui-Wei Weng
Title: ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Abstract:
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 4%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to remove the short reasoning direction. With changes to only 0.2% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+6.39%), along with an overall improvement across multiple math benchmarks (+3.34%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at: https://github.com/Trustworthy-ML-Lab/ThinkEdit

Authors:Heejin Kook, Junyoung Kim, Seongmin Park, Jongwuk Lee
Title: Empowering Retrieval-based Conversational Recommendation with Contrasting User Preferences
Abstract:
Conversational recommender systems (CRSs) are designed to suggest the target item that the user is likely to prefer through multi-turn conversations. Recent studies stress that capturing sentiments in user conversations improves recommendation accuracy. However, they employ a single user representation, which may fail to distinguish between contrasting user intentions, such as likes and dislikes, potentially leading to suboptimal performance. To this end, we propose a novel conversational recommender model, called COntrasting user pReference expAnsion and Learning (CORAL). Firstly, CORAL extracts the user's hidden preferences through contrasting preference expansion using the reasoning capacity of the LLMs. Based on the potential preference, CORAL explicitly differentiates the contrasting preferences and leverages them into the recommendation process via preference-aware learning. Extensive experiments show that CORAL significantly outperforms existing methods in three benchmark datasets, improving up to 99.72% in Recall@10. The code and datasets are available at https://github.com/kookeej/CORAL

Authors:Hang Zhou, Xinxin Zuo, Rui Ma, Li Cheng
Title: BOOTPLACE: Bootstrapped Object Placement with Detection Transformers
Abstract:
In this paper, we tackle the copy-paste image-to-image composition problem with a focus on object placement learning. Prior methods have leveraged generative models to reduce the reliance for dense supervision. However, this often limits their capacity to model complex data distributions. Alternatively, transformer networks with a sparse contrastive loss have been explored, but their over-relaxed regularization often leads to imprecise object placement. We introduce BOOTPLACE, a novel paradigm that formulates object placement as a placement-by-detection problem. Our approach begins by identifying suitable regions of interest for object placement. This is achieved by training a specialized detection transformer on object-subtracted backgrounds, enhanced with multi-object supervisions. It then semantically associates each target compositing object with detected regions based on their complementary characteristics. Through a boostrapped training approach applied to randomly object-subtracted images, our model enforces meaningful placements through extensive paired data augmentation. Experimental results on established benchmarks demonstrate BOOTPLACE's superior performance in object repositioning, markedly surpassing state-of-the-art baselines on Cityscapes and OPA datasets with notable improvements in IOU scores. Additional ablation studies further showcase the compositionality and generalizability of our approach, supported by user study evaluations.

Authors:Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li, Chen Change Loy
Title: Harmonizing Visual Representations for Unified Multimodal Understanding and Generation
Abstract:
Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present \emph{Harmon}, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.

Authors:Johannes Seiffarth, Katharina Nöh
Title: PyUAT: Open-source Python framework for efficient and scalable cell tracking
Abstract:
Tracking individual cells in live-cell imaging provides fundamental insights, inevitable for studying causes and consequences of phenotypic heterogeneity, responses to changing environmental conditions or stressors. Microbial cell tracking, characterized by stochastic cell movements and frequent cell divisions, remains a challenging task when imaging frame rates must be limited to avoid counterfactual results. A promising way to overcome this limitation is uncertainty-aware tracking (UAT), which uses statistical models, calibrated to empirically observed cell behavior, to predict likely cell associations. We present PyUAT, an efficient and modular Python implementation of UAT for tracking microbial cells in time-lapse imaging. We demonstrate its performance on a large 2D+t data set and investigate the influence of modular biological models and imaging intervals on the tracking performance. The open-source PyUAT software is available at https://github.com/JuBiotech/PyUAT, including example notebooks for immediate use in Google Colab.

Authors:Taufiq Ahmed, Abhishek Kumar, Constantino Álvarez Casado, Anlan Zhang, Tuomo Hänninen, Lauri Loven, Miguel Bordallo López, Sasu Tarkoma
Title: Exponentially Weighted Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection Model Training in Unmanned Aerial Vehicles Surveillance Scenarios
Abstract:
Object detection models often struggle with class imbalance, where rare categories appear significantly less frequently than common ones. Existing sampling-based rebalancing strategies, such as Repeat Factor Sampling (RFS) and Instance-Aware Repeat Factor Sampling (IRFS), mitigate this issue by adjusting sample frequencies based on image and instance counts. However, these methods are based on linear adjustments, which limit their effectiveness in long-tailed distributions. This work introduces Exponentially Weighted Instance-Aware Repeat Factor Sampling (E-IRFS), an extension of IRFS that applies exponential scaling to better differentiate between rare and frequent classes. E-IRFS adjusts sampling probabilities using an exponential function applied to the geometric mean of image and instance frequencies, ensuring a more adaptive rebalancing strategy. We evaluate E-IRFS on a dataset derived from the Fireman-UAV-RGBT Dataset and four additional public datasets, using YOLOv11 object detection models to identify fire, smoke, people and lakes in emergency scenarios. The results show that E-IRFS improves detection performance by 22\% over the baseline and outperforms RFS and IRFS, particularly for rare categories. The analysis also highlights that E-IRFS has a stronger effect on lightweight models with limited capacity, as these models rely more on data sampling strategies to address class imbalance. The findings demonstrate that E-IRFS improves rare object detection in resource-constrained environments, making it a suitable solution for real-time applications such as UAV-based emergency monitoring. The code is available at: https://github.com/futurians/E-IRFS.

Authors:Hongyi Zeng, Wenxuan Liu, Tianhua Xia, Jinhui Chen, Ziyun Li, Sai Qian Zhang
Title: Foveated Instance Segmentation
Abstract:
Instance segmentation is essential for augmented reality and virtual reality (AR/VR) as it enables precise object recognition and interaction, enhancing the integration of virtual and real-world elements for an immersive experience. However, the high computational overhead of segmentation limits its application on resource-constrained AR/VR devices, causing large processing latency and degrading user experience. In contrast to conventional scenarios, AR/VR users typically focus on only a few regions within their field of view before shifting perspective, allowing segmentation to be concentrated on gaze-specific areas. This insight drives the need for efficient segmentation methods that prioritize processing instance of interest, reducing computational load and enhancing real-time performance. In this paper, we present a foveated instance segmentation (FovealSeg) framework that leverages real-time user gaze data to perform instance segmentation exclusively on instance of interest, resulting in substantial computational savings. Evaluation results show that FSNet achieves an IoU of 0.56 on ADE20K and 0.54 on LVIS, notably outperforming the baseline. The code is available at https://github.com/SAI-

Authors:Alessandro Conti, Massimiliano Mancini, Enrico Fini, Yiming Wang, Paolo Rota, Elisa Ricci
Title: On Large Multimodal Models as Open-World Image Classifiers
Abstract:
Traditional image classification requires a predefined list of semantic categories. In contrast, Large Multimodal Models (LMMs) can sidestep this requirement by classifying images directly using natural language (e.g., answering the prompt "What is the main object in the image?"). Despite this remarkable capability, most existing studies on LMM classification performance are surprisingly limited in scope, often assuming a closed-world setting with a predefined set of categories. In this work, we address this gap by thoroughly evaluating LMM classification performance in a truly open-world setting. We first formalize the task and introduce an evaluation protocol, defining various metrics to assess the alignment between predicted and ground truth classes. We then evaluate 13 models across 10 benchmarks, encompassing prototypical, non-prototypical, fine-grained, and very fine-grained classes, demonstrating the challenges LMMs face in this task. Further analyses based on the proposed metrics reveal the types of errors LMMs make, highlighting challenges related to granularity and fine-grained capabilities, showing how tailored prompting and reasoning can alleviate them.

Authors:Yesmine Abdennadher, Giovanni Perin, Riccardo Mazzieri, Jacopo Pegoraro, Michele Rossi
Title: LightSNN: Lightweight Architecture Search for Sparse and Accurate Spiking Neural Networks
Abstract:
Spiking Neural Networks (SNNs) are highly regarded for their energy efficiency, inherent activation sparsity, and suitability for real-time processing in edge devices. However, most current SNN methods adopt architectures resembling traditional artificial neural networks (ANNs), leading to suboptimal performance when applied to SNNs. While SNNs excel in energy efficiency, they have been associated with lower accuracy levels than traditional ANNs when utilizing conventional architectures. In response, in this work we present LightSNN, a rapid and efficient Neural Network Architecture Search (NAS) technique specifically tailored for SNNs that autonomously leverages the most suitable architecture, striking a good balance between accuracy and efficiency by enforcing sparsity. Based on the spiking NAS network (SNASNet) framework, a cell-based search space including backward connections is utilized to build our training-free pruning-based NAS mechanism. Our technique assesses diverse spike activation patterns across different data samples using a sparsity-aware Hamming distance fitness evaluation. Thorough experiments are conducted on both static (CIFAR10 and CIFAR100) and neuromorphic datasets (DVS128-Gesture). Our LightSNN model achieves state-of-the-art results on CIFAR10 and CIFAR100, improves performance on DVS128Gesture by 4.49\%, and significantly reduces search time most notably offering a $98\times$ speedup over SNASNet and running 30\% faster than the best existing method on DVS128Gesture. Code is available on Github at: https://github.com/YesmineAbdennadher/LightSNN.

Authors:Mohammad Amin Khalafi, Seyed Amir Ahmad Safavi-Naini, Ameneh Salehi, Nariman Naderi, Dorsa Alijanzadeh, Pardis Ketabi Moghadam, Kaveh Kavosi, Negar Golestani, Shabnam Shahrokh, Soltanali Fallah, Jamil S Samaan, Nicholas P. Tatonetti, Nicholas Hoerter, Girish Nadkarni, Hamid Asadzadeh Aghdaei, Ali Soroush
Title: Vision Language Models versus Machine Learning Models Performance on Polyp Detection and Classification in Colonoscopy Images
Abstract:
Introduction: This study provides a comprehensive performance assessment of vision-language models (VLMs) against established convolutional neural networks (CNNs) and classic machine learning models (CMLs) for computer-aided detection (CADe) and computer-aided diagnosis (CADx) of colonoscopy polyp images. Method: We analyzed 2,258 colonoscopy images with corresponding pathology reports from 428 patients. We preprocessed all images using standardized techniques (resizing, normalization, and augmentation) and implemented a rigorous comparative framework evaluating 11 distinct models: ResNet50, 4 CMLs (random forest, support vector machine, logistic regression, decision tree), two specialized contrastive vision language encoders (CLIP, BiomedCLIP), and three general-purpose VLMs ( GPT-4 Gemini-1.5-Pro, Claude-3-Opus). Our performance assessment focused on two clinical tasks: polyp detection (CADe) and classification (CADx). Result: In polyp detection, ResNet50 achieved the best performance (F1: 91.35%, AUROC: 0.98), followed by BiomedCLIP (F1: 88.68%, AUROC: [AS1] ). GPT-4 demonstrated comparable effectiveness to traditional machine learning approaches (F1: 81.02%, AUROC: [AS2] ), outperforming other general-purpose VLMs. For polyp classification, performance rankings remained consistent but with lower overall metrics. ResNet50 maintained the highest efficacy (weighted F1: 74.94%), while GPT-4 demonstrated moderate capability (weighted F1: 41.18%), significantly exceeding other VLMs (Claude-3-Opus weighted F1: 25.54%, Gemini 1.5 Pro weighted F1: 6.17%). Conclusion: CNNs remain superior for both CADx and CADe tasks. However, VLMs like BioMedCLIP and GPT-4 may be useful for polyp detection tasks where training CNNs is not feasible.

Authors:Haolong Yan, Kaijun Tan, Yeqing Shen, Xin Huang, Zheng Ge, Xiangyu Zhang, Si Li, Daxin Jiang
Title: M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization?
Abstract:
We investigate a critical yet under-explored question in Large Vision-Language Models (LVLMs): Do LVLMs genuinely comprehend interleaved image-text in the document? Existing document understanding benchmarks often assess LVLMs using question-answer formats, which are information-sparse and difficult to guarantee the coverage of long-range dependencies. To address this issue, we introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench), which comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences. M-DocSum-Bench is a reference-based generation task and necessitates the generation of interleaved image-text summaries using provided reference images, thereby simultaneously evaluating capabilities in understanding, reasoning, localization, and summarization within complex multimodal document scenarios. To facilitate this benchmark, we develop an automated framework to construct summaries and propose a fine-grained evaluation method called M-DocEval. Moreover, we further develop a robust summarization baseline, i.e., M-DocSum-7B, by progressive two-stage training with diverse instruction and preference data. The extensive results on our M-DocSum-Bench reveal that the leading LVLMs struggle to maintain coherence and accurately integrate information within long and interleaved contexts, often exhibiting confusion between similar images and a lack of robustness. Notably, M-DocSum-7B achieves state-of-the-art performance compared to larger and closed-source models (including GPT-4o, Gemini Pro, Claude-3.5-Sonnet and Qwen2.5-VL-72B, etc.), demonstrating the potential of LVLMs for improved interleaved image-text understanding. The code, data, and models are available at https://github.com/stepfun-ai/M-DocSum-Bench.

Authors:Jiancheng Zhao, Xingda Yu, Zhen Yang
Title: MSPLoRA: A Multi-Scale Pyramid Low-Rank Adaptation for Efficient Model Fine-Tuning
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) has become an essential approach for adapting large-scale pre-trained models while reducing computational costs. Among PEFT methods, LoRA significantly reduces trainable parameters by decomposing weight updates into low-rank matrices. However, traditional LoRA applies a fixed rank across all layers, failing to account for the varying complexity of hierarchical information, which leads to inefficient adaptation and redundancy. To address this, we propose MSPLoRA (Multi-Scale Pyramid LoRA), which introduces Global Shared LoRA, Mid-Level Shared LoRA, and Layer-Specific LoRA to capture global patterns, mid-level features, and fine-grained information, respectively. This hierarchical structure reduces inter-layer redundancy while maintaining strong adaptation capability. Experiments on various NLP tasks demonstrate that MSPLoRA achieves more efficient adaptation and better performance while significantly reducing the number of trainable parameters. Furthermore, additional analyses based on Singular Value Decomposition validate its information decoupling ability, highlighting MSPLoRA as a scalable and effective optimization strategy for parameter-efficient fine-tuning in large language models. Our code is available at https://github.com/Oblivioniss/MSPLoRA.

Authors:Ivan Diaz, Florin Scherer, Yanik Berli, Roland Wiest, Helly Hammer, Robert Hoepner, Alejandro Leon Betancourt, Piotr Radojewski, Richard McKinley
Title: Learning from spatially inhomogenous data: resolution-adaptive convolutions for multiple sclerosis lesion segmentation
Abstract:
In the setting of clinical imaging, differences in between vendors, hospitals and sequences can yield highly inhomogeneous imaging data. In MRI in particular, voxel dimension, slice spacing and acquisition plane can vary substantially. For clinical applications, therefore, algorithms must be trained to handle data with various voxel resolutions. The usual strategy to deal with heterogeneity of resolution is harmonization: resampling imaging data to a common (usually isovoxel) resolution. This can lead to loss of fidelity arising from interpolation artifacts out-of-plane and downsampling in-plane. We present in this paper a network architecture designed to be able to learn directly from spatially heterogeneous data, without resampling: a segmentation network based on the e3nn framework that leverages a spherical harmonic, rather than voxel-grid, parameterization of convolutional kernels, with a fixed physical radius. Networks based on these kernels can be resampled to their input voxel dimensions. We trained and tested our network on a publicly available dataset assembled from three centres, and on an in-house dataset of Multiple Sclerosis cases with a high degree of spatial inhomogeneity. We compared our approach to a standard U-Net with two strategies for handling inhomogeneous data: training directly on the data without resampling, and resampling to a common resolution of 1mm isovoxels. We show that our network is able to learn from various combinations of voxel sizes and outperforms classical U-Nets on 2D testing cases and most 3D testing cases. This shows an ability to generalize well when tested on image resolutions not seen during training. Our code can be found at: http://github.com/SCAN-NRAD/e3nn\_U-Net.

Authors:Haitong Liu, Kuofeng Gao, Yang Bai, Jinmin Li, Jinxiao Shan, Tao Dai, Shu-Tao Xia
Title: Protecting Your Video Content: Disrupting Automated Video-based LLM Annotations
Abstract:
Recently, video-based large language models (video-based LLMs) have achieved impressive performance across various video comprehension tasks. However, this rapid advancement raises significant privacy and security concerns, particularly regarding the unauthorized use of personal video data in automated annotation by video-based LLMs. These unauthorized annotated video-text pairs can then be used to improve the performance of downstream tasks, such as text-to-video generation. To safeguard personal videos from unauthorized use, we propose two series of protective video watermarks with imperceptible adversarial perturbations, named Ramblings and Mutes. Concretely, Ramblings aim to mislead video-based LLMs into generating inaccurate captions for the videos, thereby degrading the quality of video annotations through inconsistencies between video content and captions. Mutes, on the other hand, are designed to prompt video-based LLMs to produce exceptionally brief captions, lacking descriptive detail. Extensive experiments demonstrate that our video watermarking methods effectively protect video data by significantly reducing video annotation performance across various video-based LLMs, showcasing both stealthiness and robustness in protecting personal video content. Our code is available at https://github.com/ttthhl/Protecting_Your_Video_Content.

Authors:Yide Di, Yun Liao, Hao Zhou, Kaijun Zhu, Qing Duan, Junhui Liu, Mingyu Lu
Title: UFM: Unified Feature Matching Pre-training with Multi-Modal Image Assistants
Abstract:
Image feature matching, a foundational task in computer vision, remains challenging for multimodal image applications, often necessitating intricate training on specific datasets. In this paper, we introduce a Unified Feature Matching pre-trained model (UFM) designed to address feature matching challenges across a wide spectrum of modal images. We present Multimodal Image Assistant (MIA) transformers, finely tunable structures adept at handling diverse feature matching problems. UFM exhibits versatility in addressing both feature matching tasks within the same modal and those across different modals. Additionally, we propose a data augmentation algorithm and a staged pre-training strategy to effectively tackle challenges arising from sparse data in specific modals and imbalanced modal datasets. Experimental results demonstrate that UFM excels in generalization and performance across various feature matching tasks. The code will be released at:https://github.com/LiaoYun0x0/UFM.

Authors:Wenjie Qiu, Hongshu Guo, Zeyuan Ma, Yue-Jiao Gong
Title: A Novel Two-Phase Cooperative Co-evolution Framework for Large-Scale Global Optimization with Complex Overlapping
Abstract:
Cooperative Co-evolution, through the decomposition of the problem space, is a primary approach for solving large-scale global optimization problems. Typically, when the subspaces are disjoint, the algorithms demonstrate significantly both effectiveness and efficiency compared to non-decomposition algorithms. However, the presence of overlapping variables complicates the decomposition process and adversely affects the performance of cooperative co-evolution. In this study, we propose a novel two-phase cooperative co-evolution framework to address large-scale global optimization problems with complex overlapping. An effective method for decomposing overlapping problems, grounded in their mathematical properties, is embedded within the framework. Additionally, a customizable benchmark for overlapping problems is introduced to extend existing benchmarks and facilitate experimentation. Extensive experiments demonstrate that the algorithm instantiated within our framework significantly outperforms existing algorithms. The results reveal the characteristics of overlapping problems and highlight the differing strengths of cooperative co-evolution and non-decomposition algorithms. Our work is open-source and accessible at: https://github.com/GMC-DRL/HCC.

Authors:Yizhen Luo, Jiashuo Wang, Siqi Fan, Zaiqing Nie
Title: PharMolixFM: All-Atom Foundation Models for Molecular Modeling and Generation
Abstract:
Structural biology relies on accurate three-dimensional biomolecular structures to advance our understanding of biological functions, disease mechanisms, and therapeutics. While recent advances in deep learning have enabled the development of all-atom foundation models for molecular modeling and generation, existing approaches face challenges in generalization due to the multi-modal nature of atomic data and the lack of comprehensive analysis of training and sampling strategies. To address these limitations, we propose PharMolixFM, a unified framework for constructing all-atom foundation models based on multi-modal generative techniques. Our framework includes three variants using state-of-the-art multi-modal generative models. By formulating molecular tasks as a generalized denoising process with task-specific priors, PharMolixFM achieves robust performance across various structural biology applications. Experimental results demonstrate that PharMolixFM-Diff achieves competitive prediction accuracy in protein-small-molecule docking (83.9% vs. 90.2% RMSD < 2Å, given pocket) with significantly improved inference speed. Moreover, we explore the empirical inference scaling law by introducing more sampling repeats or steps. Our code and model are available at https://github.com/PharMolix/OpenBioMed.

Authors:Guanjie Huang, Danny Hin Kwok Tsang, Li Liu
Title: Lend a Hand: Semi Training-Free Cued Speech Recognition via MLLM-Driven Hand Modeling for Barrier-free Communication
Abstract:
Cued Speech (CS) is an innovative visual communication system that integrates lip-reading with hand coding, designed to enhance effective communication for individuals with hearing impairments. Automatic CS Recognition (ACSR) refers to the AI-driven process of automatically recognizing hand gestures and lip movements in CS, converting them into text. However, previous work often relies on complex fusion modules and training techniques. Additionally, due to the limited amount of data in CS, the extraction of hand features, as well as recognition modeling, has consistently been subpar, significantly limiting the effectiveness of ACSR. To address this issue, we have innovatively explored the capabilities of Multimodal large language models (MLLMs) in recognizing hand shapes and positions in CS. More precisely, we propose a new Semi Training-Free paradigm for ACSR, named STF-ACSR. This approach leverages zero-shot recognition of hand movements through the Chinese CS Prompt Module (CCSPM), which equipped a training-free keyframe filtering and customized prompt engineering based on MLLM. It then integrates the recognition results into the lip-reading model using a Minimalist Fusion Module (MFM), effectively achieving superior recognition results. Furthermore, specifically for this study, we have supplemented the existing dataset of 6 normal hearing CS cuers by recording additional data from 8 cuers with hearing impairments, resulting in a new mixed dataset. Extensive experiments have demonstrated that STF-ACSR significantly outperforms previous methods on both normal and hearing-impaired data. Implementation and checkpoints are available at https://github.com/DennisHgj/STF_ACSR.

Authors:Abdelrahman Shaker, Muhammad Maaz, Chenhui Gou, Hamid Rezatofighi, Salman Khan, Fahad Shahbaz Khan
Title: Mobile-VideoGPT: Fast and Accurate Video Understanding Language Model
Abstract:
Video understanding models often struggle with high computational requirements, extensive parameter counts, and slow inference speed, making them inefficient for practical use. To tackle these challenges, we propose Mobile-VideoGPT, an efficient multimodal framework designed to operate with fewer than a billion parameters. Unlike traditional video large multimodal models (LMMs), Mobile-VideoGPT consists of lightweight dual visual encoders, efficient projectors, and a small language model (SLM), enabling real-time throughput. To further improve efficiency, we present an Attention-Based Frame Scoring mechanism to select the key-frames, along with an efficient token projector that prunes redundant visual tokens and preserves essential contextual cues. We evaluate our model across well-established six video understanding benchmarks (e.g., MVBench, EgoSchema, NextQA, and PercepTest). Our results show that Mobile-VideoGPT-0.5B can generate up to 46 tokens per second while outperforming existing state-of-the-art 0.5B-parameter models by 6 points on average with 40% fewer parameters and more than 2x higher throughput. Our code and models are publicly available at: https://github.com/Amshaker/Mobile-VideoGPT.

Authors:Reza Qorbani, Gianluca Villani, Theodoros Panagiotakopoulos, Marc Botet Colomer, Linus Härenstam-Nielsen, Mattia Segu, Pier Luigi Dovesi, Jussi Karlgren, Daniel Cremers, Federico Tombari, Matteo Poggi
Title: Semantic Library Adaptation: LoRA Retrieval and Fusion for Open-Vocabulary Semantic Segmentation
Abstract:
Open-vocabulary semantic segmentation models associate vision and text to label pixels from an undefined set of classes using textual queries, providing versatile performance on novel datasets. However, large shifts between training and test domains degrade their performance, requiring fine-tuning for effective real-world applications. We introduce Semantic Library Adaptation (SemLA), a novel framework for training-free, test-time domain adaptation. SemLA leverages a library of LoRA-based adapters indexed with CLIP embeddings, dynamically merging the most relevant adapters based on proximity to the target domain in the embedding space. This approach constructs an ad-hoc model tailored to each specific input without additional training. Our method scales efficiently, enhances explainability by tracking adapter contributions, and inherently protects data privacy, making it ideal for sensitive applications. Comprehensive experiments on a 20-domain benchmark built over 10 standard datasets demonstrate SemLA's superior adaptability and performance across diverse settings, establishing a new standard in domain adaptation for open-vocabulary semantic segmentation.

Authors:Jiahao Xie, Alessio Tonioni, Nathalie Rauschmayr, Federico Tombari, Bernt Schiele
Title: Test-Time Visual In-Context Tuning
Abstract:
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method that can adapt VICL models on the fly with a single test sample. Specifically, we flip the role between the task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on six representative vision tasks ranging from high-level visual understanding to low-level image processing, with 15 common corruptions, demonstrate that our VICT can improve the generalizability of VICL to unseen new domains. In addition, we show the potential of applying VICT for unseen tasks at test time. Code: https://github.com/Jiahao000/VICT.

Authors:Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu, Xiaoying Zhang, Benyou Wang, Xiangyu Yue
Title: Video-R1: Reinforcing Video Reasoning in MLLMs
Abstract:
Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we introduce Video-R1 as the first attempt to systematically explore the R1 paradigm for incentivizing video reasoning within multimodal large language models (MLLMs). However, directly applying RL training with the GRPO algorithm to video reasoning presents two primary challenges: (i) a lack of temporal modeling for video reasoning, and (ii) the scarcity of high-quality video-reasoning data. To address these issues, we first propose the T-GRPO algorithm, which encourages models to utilize temporal information in videos for reasoning. Additionally, instead of relying solely on video data, we incorporate high-quality image-reasoning data into the training process. We have constructed two datasets: Video-R1-CoT-165k for SFT cold start and Video-R1-260k for RL training, both comprising image and video data. Experimental results demonstrate that Video-R1 achieves significant improvements on video reasoning benchmarks such as VideoMMMU and VSI-Bench, as well as on general video benchmarks including MVBench and TempCompass, etc. Notably, Video-R1-7B attains a 37.1% accuracy on video spatial reasoning benchmark VSI-bench, surpassing the commercial proprietary model GPT-4o. All code, models, and data are released in: https://github.com/tulerfeng/Video-R1.

Authors:Jianning Pei, Han Hu, Shuyang Gu
Title: Optimal Stepsize for Diffusion Sampling
Abstract:
Diffusion models achieve remarkable generation quality but suffer from computational intensive sampling due to suboptimal step discretization. While existing works focus on optimizing denoising directions, we address the principled design of stepsize schedules. This paper proposes Optimal Stepsize Distillation, a dynamic programming framework that extracts theoretically optimal schedules by distilling knowledge from reference trajectories. By reformulating stepsize optimization as recursive error minimization, our method guarantees global discretization bounds through optimal substructure exploitation. Crucially, the distilled schedules demonstrate strong robustness across architectures, ODE solvers, and noise schedules. Experiments show 10x accelerated text-to-image generation while preserving 99.4% performance on GenEval. Our code is available at https://github.com/bebebe666/OptimalSteps.

Authors:Hongkai Lin, Dingkang Liang, Zhenghao Qi, Xiang Bai
Title: A Unified Image-Dense Annotation Generation Model for Underwater Scenes
Abstract:
Underwater dense prediction, especially depth estimation and semantic segmentation, is crucial for gaining a comprehensive understanding of underwater scenes. Nevertheless, high-quality and large-scale underwater datasets with dense annotations remain scarce because of the complex environment and the exorbitant data collection costs. This paper proposes a unified Text-to-Image and DEnse annotation generation method (TIDE) for underwater scenes. It relies solely on text as input to simultaneously generate realistic underwater images and multiple highly consistent dense annotations. Specifically, we unify the generation of text-to-image and text-to-dense annotations within a single model. The Implicit Layout Sharing mechanism (ILS) and cross-modal interaction method called Time Adaptive Normalization (TAN) are introduced to jointly optimize the consistency between image and dense annotations. We synthesize a large-scale underwater dataset using TIDE to validate the effectiveness of our method in underwater dense prediction tasks. The results demonstrate that our method effectively improves the performance of existing underwater dense prediction models and mitigates the scarcity of underwater data with dense annotations. We hope our method can offer new perspectives on alleviating data scarcity issues in other fields. The code is available at https://github.com/HongkLin/TIDE

Authors:Minghui Lin, Xiang Wang, Yishan Wang, Shu Wang, Fengqi Dai, Pengxiang Ding, Cunxiang Wang, Zhengrong Zuo, Nong Sang, Siteng Huang, Donglin Wang
Title: Exploring the Evolution of Physics Cognition in Video Generation: A Survey
Abstract:
Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.

Authors:Qi Qin, Le Zhuo, Yi Xin, Ruoyi Du, Zhen Li, Bin Fu, Yiting Lu, Jiakang Yuan, Xinyue Li, Dongyang Liu, Xiangyang Zhu, Manyuan Zhang, Will Beddow, Erwann Millon, Victor Perez, Wenhai Wang, Conghui He, Bo Zhang, Xiaohong Liu, Hongsheng Li, Yu Qiao, Chang Xu, Peng Gao
Title: Lumina-Image 2.0: A Unified and Efficient Image Generative Framework
Abstract:
We introduce Lumina-Image 2.0, an advanced text-to-image generation framework that achieves significant progress compared to previous work, Lumina-Next. Lumina-Image 2.0 is built upon two key principles: (1) Unification - it adopts a unified architecture (Unified Next-DiT) that treats text and image tokens as a joint sequence, enabling natural cross-modal interactions and allowing seamless task expansion. Besides, since high-quality captioners can provide semantically well-aligned text-image training pairs, we introduce a unified captioning system, Unified Captioner (UniCap), specifically designed for T2I generation tasks. UniCap excels at generating comprehensive and accurate captions, accelerating convergence and enhancing prompt adherence. (2) Efficiency - to improve the efficiency of our proposed model, we develop multi-stage progressive training strategies and introduce inference acceleration techniques without compromising image quality. Extensive evaluations on academic benchmarks and public text-to-image arenas show that Lumina-Image 2.0 delivers strong performances even with only 2.6B parameters, highlighting its scalability and design efficiency. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-Image-2.0.

Authors:Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Lulu Gu, Yuanhan Zhang, Jingwen He, Wei-Shi Zheng, Yu Qiao, Ziwei Liu
Title: VBench-2.0: Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness
Abstract:
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored to individual dimensions, our evaluation framework integrates generalists such as SOTA VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive human annotations to ensure evaluation alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.

Authors:Yuhan Zhang, Mengchen Zhang, Tong Wu, Tengfei Wang, Gordon Wetzstein, Dahua Lin, Ziwei Liu
Title: 3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models
Abstract:
3D generation is experiencing rapid advancements, while the development of 3D evaluation has not kept pace. How to keep automatic evaluation equitably aligned with human perception has become a well-recognized challenge. Recent advances in the field of language and image generation have explored human preferences and showcased respectable fitting ability. However, the 3D domain still lacks such a comprehensive preference dataset over generative models. To mitigate this absence, we develop 3DGen-Arena, an integrated platform in a battle manner. Then, we carefully design diverse text and image prompts and leverage the arena platform to gather human preferences from both public users and expert annotators, resulting in a large-scale multi-dimension human preference dataset 3DGen-Bench. Using this dataset, we further train a CLIP-based scoring model, 3DGen-Score, and a MLLM-based automatic evaluator, 3DGen-Eval. These two models innovatively unify the quality evaluation of text-to-3D and image-to-3D generation, and jointly form our automated evaluation system with their respective strengths. Extensive experiments demonstrate the efficacy of our scoring model in predicting human preferences, exhibiting a superior correlation with human ranks compared to existing metrics. We believe that our 3DGen-Bench dataset and automated evaluation system will foster a more equitable evaluation in the field of 3D generation, further promoting the development of 3D generative models and their downstream applications. Project page is available at https://zyh482.github.io/3DGen-Bench/.

Authors:Yongce Li, Chung-En Sun, Tsui-Wei Weng
Title: Effective Skill Unlearning through Intervention and Abstention
Abstract:
Large language Models (LLMs) have demonstrated remarkable skills across various domains. Understanding the mechanisms behind their abilities and implementing controls over them is becoming increasingly important for developing better models. In this paper, we focus on skill unlearning in LLMs, specifically unlearning a particular skill while retaining their overall capabilities. We introduce two lightweight, training-free machine skill unlearning techniques for LLMs. First, we observe that the pre-activation distribution of neurons in each Feed-Forward Layer (FFL) differs when the model demonstrates different skills. Additionally, we find that queries triggering the same skill cluster within the FFL key space and can be separated from other queries using a hypercube. Based on these observations, we propose two lightweight, training-free skill unlearning methods via \textit{intervention} and \textit{abstention} respectively: \texttt{Neuron Adjust} and \texttt{Key Space Detection}. We evaluate our methods on unlearning math-solving, Python-coding, and comprehension skills across seven different languages. The results demonstrate their strong unlearning capabilities for the designated skills. Specifically, \texttt{Key Space Detection} achieves over 80\% relative performance drop on the forgetting skill and less than 10\% relative performance drop on other skills and the model's general knowledge (MMLU) for most unlearning tasks. Our code is available at https://github.com/Trustworthy-ML-Lab/effective_skill_unlearning

Authors:Pietro Tropeano, Maria Maistro, Tuukka Ruotsalo, Christina Lioma
Title: As easy as PIE: understanding when pruning causes language models to disagree
Abstract:
Language Model (LM) pruning compresses the model by removing weights, nodes, or other parts of its architecture. Typically, pruning focuses on the resulting efficiency gains at the cost of effectiveness. However, when looking at how individual data points are affected by pruning, it turns out that a particular subset of data points always bears most of the brunt (in terms of reduced accuracy) when pruning, but this effect goes unnoticed when reporting the mean accuracy of all data points. These data points are called PIEs and have been studied in image processing, but not in NLP. In a study of various NLP datasets, pruning methods, and levels of compression, we find that PIEs impact inference quality considerably, regardless of class frequency, and that BERT is more prone to this than BiLSTM. We also find that PIEs contain a high amount of data points that have the largest influence on how well the model generalises to unseen data. This means that when pruning, with seemingly moderate loss to accuracy across all data points, we in fact hurt tremendously those data points that matter the most. We trace what makes PIEs both hard and impactful to inference to their overall longer and more semantically complex text. These findings are novel and contribute to understanding how LMs are affected by pruning. The code is available at: https://github.com/pietrotrope/AsEasyAsPIE

Authors:Wenqi Zhang, Mengna Wang, Gangao Liu, Xu Huixin, Yiwei Jiang, Yongliang Shen, Guiyang Hou, Zhe Zheng, Hang Zhang, Xin Li, Weiming Lu, Peng Li, Yueting Zhuang
Title: Embodied-Reasoner: Synergizing Visual Search, Reasoning, and Action for Embodied Interactive Tasks
Abstract:
Recent advances in deep thinking models have demonstrated remarkable reasoning capabilities on mathematical and coding tasks. However, their effectiveness in embodied domains which require continuous interaction with environments through image action interleaved trajectories remains largely -unexplored. We present Embodied Reasoner, a model that extends o1 style reasoning to interactive embodied search tasks. Unlike mathematical reasoning that relies primarily on logical deduction, embodied scenarios demand spatial understanding, temporal reasoning, and ongoing self-reflection based on interaction history. To address these challenges, we synthesize 9.3k coherent Observation-Thought-Action trajectories containing 64k interactive images and 90k diverse thinking processes (analysis, spatial reasoning, reflection, planning, and verification). We develop a three-stage training pipeline that progressively enhances the model's capabilities through imitation learning, self-exploration via rejection sampling, and self-correction through reflection tuning. The evaluation shows that our model significantly outperforms those advanced visual reasoning models, e.g., it exceeds OpenAI o1, o3-mini, and Claude-3.7 by +9\%, 24\%, and +13\%. Analysis reveals our model exhibits fewer repeated searches and logical inconsistencies, with particular advantages in complex long-horizon tasks. Real-world environments also show our superiority while exhibiting fewer repeated searches and logical inconsistency cases.

Authors:Zhiyuan Ma, Xinyue Liang, Rongyuan Wu, Xiangyu Zhu, Zhen Lei, Lei Zhang
Title: Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data
Abstract:
It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5\%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.

Authors:Yassir Lairgi
Title: When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
Abstract:
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.

Authors:Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren, Guanjing Xiong, Hongsheng Li
Title: UI-R1: Enhancing Efficient Action Prediction of GUI Agents by Reinforcement Learning
Abstract:
The recent DeepSeek-R1 has showcased the emergence of reasoning capabilities in LLMs through reinforcement learning (RL) with rule-based rewards. Despite its success in language models, its application in multi-modal domains, particularly in graphic user interface (GUI) agent tasks, remains under-explored. To address this issue, we propose UI-R1, the first framework to explore how rule-based RL can enhance the reasoning capabilities of multimodal large language models (MLLMs) for GUI action prediction tasks. Specifically, UI-R1 introduces a novel rule-based action reward, enabling model optimization via policy-based algorithms such as Group Relative Policy Optimization (GRPO). For efficient training, we curate a small yet high-quality dataset of 136 challenging tasks, encompassing five common action types on mobile devices. Experimental results demonstrate that our proposed UI-R1-3B achieves significant improvements over the base model (i.e. Qwen2.5-VL-3B) on both in-domain (ID) and out-of-domain (OOD) tasks, with average accuracy gains of 22.1% on ScreenSpot, 6.0% on ScreenSpot-Pro, and 12.7% on ANDROIDCONTROL. Furthermore, UI-R1-3B delivers competitive performance compared to larger models (e.g., OS-Atlas-7B) trained via supervised fine-tuning (SFT) on 76K samples. We additionally develop an optimized version, UI-R1-E-3B, which significantly improves both grounding efficiency and accuracy. These results underscore the potential of rule-based reinforcement learning to advance GUI understanding and control, paving the way for future research in this domain. Code website: https://github.com/lll6gg/UI-R1.

Authors:Alimjan Mattursun, Liejun Wang, Yinfeng Yu, Chunyang Ma
Title: Magnitude-Phase Dual-Path Speech Enhancement Network based on Self-Supervised Embedding and Perceptual Contrast Stretch Boosting
Abstract:
Speech self-supervised learning (SSL) has made great progress in various speech processing tasks, but there is still room for improvement in speech enhancement (SE). This paper presents BSP-MPNet, a dual-path framework that combines self-supervised features with magnitude-phase information for SE. The approach starts by applying the perceptual contrast stretching (PCS) algorithm to enhance the magnitude-phase spectrum. A magnitude-phase 2D coarse (MP-2DC) encoder then extracts coarse features from the enhanced spectrum. Next, a feature-separating self-supervised learning (FS-SSL) model generates self-supervised embeddings for the magnitude and phase components separately. These embeddings are fused to create cross-domain feature representations. Finally, two parallel RNN-enhanced multi-attention (REMA) mask decoders refine the features, apply them to the mask, and reconstruct the speech signal. We evaluate BSP-MPNet on the VoiceBank+DEMAND and WHAMR! datasets. Experimental results show that BSP-MPNet outperforms existing methods under various noise conditions, providing new directions for self-supervised speech enhancement research. The implementation of the BSP-MPNet code is available online\footnote[2]{https://github.com/AlimMat/BSP-MPNet. \label{s1}}

Authors:Jonathan Lee, Bolivar Solarte, Chin-Hsuan Wu, Jin-Cheng Jhang, Fu-En Wang, Yi-Hsuan Tsai, Min Sun
Title: uLayout: Unified Room Layout Estimation for Perspective and Panoramic Images
Abstract:
We present uLayout, a unified model for estimating room layout geometries from both perspective and panoramic images, whereas traditional solutions require different model designs for each image type. The key idea of our solution is to unify both domains into the equirectangular projection, particularly, allocating perspective images into the most suitable latitude coordinate to effectively exploit both domains seamlessly. To address the Field-of-View (FoV) difference between the input domains, we design uLayout with a shared feature extractor with an extra 1D-Convolution layer to condition each domain input differently. This conditioning allows us to efficiently formulate a column-wise feature regression problem regardless of the FoV input. This simple yet effective approach achieves competitive performance with current state-of-the-art solutions and shows for the first time a single end-to-end model for both domains. Extensive experiments in the real-world datasets, LSUN, Matterport3D, PanoContext, and Stanford 2D-3D evidence the contribution of our approach. Code is available at https://github.com/JonathanLee112/uLayout.

Authors:Juliana Costa-Silva, David Menotti, Fabricio M. Lopes
Title: consexpressionR: an R package for consensus differential gene expression analysis
Abstract:
Motivation: Bulk RNA-Seq is a widely used method for studying gene expression across a variety of contexts. The significance of RNA-Seq studies has grown with the advent of high-throughput sequencing technologies. Computational methods have been developed for each stage of the identification of differentially expressed genes. Nevertheless, there are few studies exploring the association between different types of methods. In this study, we evaluated the impact of the association of methodologies in the results of differential expression analysis. By adopting two data sets with qPCR data (to gold-standard reference), seven methods were implemented and assessed in R packages (EBSeq, edgeR, DESeq2, limma, SAMseq, NOISeq, and Knowseq), which was performed and assessed separately and in association. The results were evaluated considering the adopted qPCR data. Results: Here, we introduce consexpressionR, an R package that automates differential expression analysis using consensus of at least seven methodologies, producing more assertive results with a significant reduction in false positives. Availability: consexpressionR is an R package available via source code and support are available at GitHub (https://github.com/costasilvati/consexpressionR).

Authors:Yuwei Yin, EunJeong Hwang, Giuseppe Carenini
Title: SWI: Speaking with Intent in Large Language Models
Abstract:
Intent, typically clearly formulated and planned, functions as a cognitive framework for communication and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and action. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on text summarization, multi-task question answering, and mathematical reasoning benchmarks consistently demonstrate the effectiveness and generalizability of Speaking with Intent over direct generation without explicit intent. Further analysis corroborates the generalizability of SWI under different experimental settings. Moreover, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. The promising results in enhancing LLMs with explicit intents pave a new avenue for boosting LLMs' generation and reasoning abilities with cognitive notions.

Authors:Achint Soni, Meet Soni, Sirisha Rambhatla
Title: LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Abstract:
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. LOCATEdit consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/

Authors:Haote Yang, Xingjian Wei, Jiang Wu, Noémi Ligeti-Nagy, Jiaxing Sun, Yinfan Wang, Zijian Győző Yang, Junyuan Gao, Jingchao Wang, Bowen Jiang, Shasha Wang, Nanjun Yu, Zihao Zhang, Shixin Hong, Hongwei Liu, Wei Li, Songyang Zhang, Dahua Lin, Lijun Wu, Gábor Prószéky, Conghui He
Title: OpenHuEval: Evaluating Large Language Model on Hungarian Specifics
Abstract:
We introduce OpenHuEval, the first benchmark for LLMs focusing on the Hungarian language and specifics. OpenHuEval is constructed from a vast collection of Hungarian-specific materials sourced from multiple origins. In the construction, we incorporated the latest design principles for evaluating LLMs, such as using real user queries from the internet, emphasizing the assessment of LLMs' generative capabilities, and employing LLM-as-judge to enhance the multidimensionality and accuracy of evaluations. Ultimately, OpenHuEval encompasses eight Hungarian-specific dimensions, featuring five tasks and 3953 questions. Consequently, OpenHuEval provides the comprehensive, in-depth, and scientifically accurate assessment of LLM performance in the context of the Hungarian language and its specifics. We evaluated current mainstream LLMs, including both traditional LLMs and recently developed Large Reasoning Models. The results demonstrate the significant necessity for evaluation and model optimization tailored to the Hungarian language and specifics. We also established the framework for analyzing the thinking processes of LRMs with OpenHuEval, revealing intrinsic patterns and mechanisms of these models in non-English languages, with Hungarian serving as a representative example. We will release OpenHuEval at https://github.com/opendatalab/OpenHuEval .

Authors:Huacheng Li, Jingyong Su, Kai Wang
Title: Advancing CAN Network Security through RBM-Based Synthetic Attack Data Generation for Intrusion Detection Systems
Abstract:
The rapid development of network technologies and industrial intelligence has augmented the connectivity and intelligence within the automotive industry. Notably, in the Internet of Vehicles (IoV), the Controller Area Network (CAN), which is crucial for the communication of electronic control units but lacks inbuilt security measures, has become extremely vulnerable to severe cybersecurity threats. Meanwhile, the efficacy of Intrusion Detection Systems (IDS) is hampered by the scarcity of sufficient attack data for robust model training. To overcome this limitation, we introduce a novel methodology leveraging the Restricted Boltzmann Machine (RBM) to generate synthetic CAN attack data, thereby producing training datasets with a more balanced sample distribution. Specifically, we design a CAN Data Processing Module for transforming raw CAN data into an RBM-trainable format, and a Negative Sample Generation Module to generate data reflecting the distribution of CAN data frames denoting network intrusions. Experimental results show the generated data significantly improves IDS performance, with CANet accuracy rising from 0.6477 to 0.9725 and EfficientNet from 0.1067 to 0.1555. Code is available at https://github.com/wangkai-tech23/CANDataSynthetic.

Authors:Shuming Liu, Chen Zhao, Tianqi Xu, Bernard Ghanem
Title: BOLT: Boost Large Vision-Language Model Without Training for Long-form Video Understanding
Abstract:
Large video-language models (VLMs) have demonstrated promising progress in various video understanding tasks. However, their effectiveness in long-form video analysis is constrained by limited context windows. Traditional approaches, such as uniform frame sampling, often inevitably allocate resources to irrelevant content, diminishing their effectiveness in real-world scenarios. In this paper, we introduce BOLT, a method to BOost Large VLMs without additional Training through a comprehensive study of frame selection strategies. First, to enable a more realistic evaluation of VLMs in long-form video understanding, we propose a multi-source retrieval evaluation setting. Our findings reveal that uniform sampling performs poorly in noisy contexts, underscoring the importance of selecting the right frames. Second, we explore several frame selection strategies based on query-frame similarity and analyze their effectiveness at inference time. Our results show that inverse transform sampling yields the most significant performance improvement, increasing accuracy on the Video-MME benchmark from 53.8% to 56.1% and MLVU benchmark from 58.9% to 63.4%. Our code is available at https://github.com/sming256/BOLT.

Authors:Yuxiao Sun, Yao Zhao, Meiqin Liu, Chao Yao, Weisi Lin
Title: Embedding Compression Distortion in Video Coding for Machines
Abstract:
Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis. However, existing codecs are primarily optimized for pixel-domain and HVS-perception metrics rather than the needs of machine vision tasks. To address this issue, we propose a Compression Distortion Representation Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models, addressing the information lost during compression and improving task performance. Specifically, to better analyze the machine-perception-related distortion, we design a compression-sensitive extractor that identifies compression degradation in the feature domain. For efficient transmission, a lightweight distortion codec is introduced to compress the distortion information into a compact representation. Subsequently, the representation is progressively embedded into the downstream model, enabling it to be better informed about compression degradation and enhancing performance. Experiments across various codecs and downstream tasks demonstrate that our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of bitrate, execution time, and number of parameters. Our codes and supplementary materials are released in https://github.com/Ws-Syx/CDRE/.

Authors:Tin T. Tran, V. Snasel
Title: Improvement Graph Convolution Collaborative Filtering with Weighted addition input
Abstract:
Graph Neural Networks have been extensively applied in the field of machine learning to find features of graphs, and recommendation systems are no exception. The ratings of users on considered items can be represented by graphs which are input for many efficient models to find out the characteristics of the users and the items. From these insights, relevant items are recommended to users. However, user's decisions on the items have varying degrees of effects on different users, and this information should be learned so as not to be lost in the process of information mining. In this publication, we propose to build an additional graph showing the recommended weight of an item to a target user to improve the accuracy of GNN models. Although the users' friendships were not recorded, their correlation was still evident through the commonalities in consumption behavior. We build a model WiGCN (Weighted input GCN) to describe and experiment on well-known datasets. Conclusions will be stated after comparing our results with state-of-the-art such as GCMC, NGCF and LightGCN. The source code is also included at https://github.com/trantin84/WiGCN.

Authors:Ryan Marinelli, Josef Pichlmeier, Tamas Bisztray
Title: Harnessing Chain-of-Thought Metadata for Task Routing and Adversarial Prompt Detection
Abstract:
In this work, we propose a metric called Number of Thoughts (NofT) to determine the difficulty of tasks pre-prompting and support Large Language Models (LLMs) in production contexts. By setting thresholds based on the number of thoughts, this metric can discern the difficulty of prompts and support more effective prompt routing. A 2% decrease in latency is achieved when routing prompts from the MathInstruct dataset through quantized, distilled versions of Deepseek with 1.7 billion, 7 billion, and 14 billion parameters. Moreover, this metric can be used to detect adversarial prompts used in prompt injection attacks with high efficacy. The Number of Thoughts can inform a classifier that achieves 95% accuracy in adversarial prompt detection. Our experiments ad datasets used are available on our GitHub page: https://github.com/rymarinelli/Number_Of_Thoughts/tree/main.

Authors:Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi Chen, Ziyue Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang, Meng Xiao, Chenwu Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu, Hanqing Zhao, Dacheng Tao, Philip S. Yu, Ming Zhang
Title: Large Language Model Agent: A Survey on Methodology, Applications and Challenges
Abstract:
The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.

Authors:Xiaoqin Wang, Xusen Ma, Xianxu Hou, Meidan Ding, Yudong Li, Junliang Chen, Wenting Chen, Xiaoyang Peng, Linlin Shen
Title: FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs
Abstract:
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in various tasks. However, effectively evaluating these MLLMs on face perception remains largely unexplored. To address this gap, we introduce FaceBench, a dataset featuring hierarchical multi-view and multi-level attributes specifically designed to assess the comprehensive face perception abilities of MLLMs. Initially, we construct a hierarchical facial attribute structure, which encompasses five views with up to three levels of attributes, totaling over 210 attributes and 700 attribute values. Based on the structure, the proposed FaceBench consists of 49,919 visual question-answering (VQA) pairs for evaluation and 23,841 pairs for fine-tuning. Moreover, we further develop a robust face perception MLLM baseline, Face-LLaVA, by training with our proposed face VQA data. Extensive experiments on various mainstream MLLMs and Face-LLaVA are conducted to test their face perception ability, with results also compared against human performance. The results reveal that, the existing MLLMs are far from satisfactory in understanding the fine-grained facial attributes, while our Face-LLaVA significantly outperforms existing open-source models with a small amount of training data and is comparable to commercial ones like GPT-4o and Gemini. The dataset will be released at https://github.com/CVI-SZU/FaceBench.

Authors:Changjian Zhou, Yuexi Qiu, Tongtong Ling, Jiafeng Li, Shuanghe Liu, Xiangjing Wang, Jia Song, Wensheng Xiang
Title: CMADiff: Cross-Modal Aligned Diffusion for Controllable Protein Generation
Abstract:
AI-assisted protein design has emerged as a critical tool for advancing biotechnology, as deep generative models have demonstrated their reliability in this domain. However, most existing models primarily utilize protein sequence or structural data for training, neglecting the physicochemical properties of proteins.Moreover, they are deficient to control the generation of proteins in intuitive conditions. To address these limitations,we propose CMADiff here, a novel framework that enables controllable protein generation by aligning the physicochemical properties of protein sequences with text-based descriptions through a latent diffusion process. Specifically, CMADiff employs a Conditional Variational Autoencoder (CVAE) to integrate physicochemical features as conditional input, forming a robust latent space that captures biological traits. In this latent space, we apply a conditional diffusion process, which is guided by BioAligner, a contrastive learning-based module that aligns text descriptions with protein features, enabling text-driven control over protein sequence generation. Validated by a series of evaluations including AlphaFold3, the experimental results indicate that CMADiff outperforms protein sequence generation benchmarks and holds strong potential for future applications. The implementation and code are available at https://github.com/HPC-NEAU/PhysChemDiff.

Authors:Lucas Nunes, Rodrigo Marcuzzi, Jens Behley, Cyrill Stachniss
Title: Towards Generating Realistic 3D Semantic Training Data for Autonomous Driving
Abstract:
Semantic scene understanding is crucial for robotics and computer vision applications. In autonomous driving, 3D semantic segmentation plays an important role for enabling safe navigation. Despite significant advances in the field, the complexity of collecting and annotating 3D data is a bottleneck in this developments. To overcome that data annotation limitation, synthetic simulated data has been used to generate annotated data on demand. There is still however a domain gap between real and simulated data. More recently, diffusion models have been in the spotlight, enabling close-to-real data synthesis. Those generative models have been recently applied to the 3D data domain for generating scene-scale data with semantic annotations. Still, those methods either rely on image projection or decoupled models trained with different resolutions in a coarse-to-fine manner. Such intermediary representations impact the generated data quality due to errors added in those transformations. In this work, we propose a novel approach able to generate 3D semantic scene-scale data without relying on any projection or decoupled trained multi-resolution models, achieving more realistic semantic scene data generation compared to previous state-of-the-art methods. Besides improving 3D semantic scene-scale data synthesis, we thoroughly evaluate the use of the synthetic scene samples as labeled data to train a semantic segmentation network. In our experiments, we show that using the synthetic annotated data generated by our method as training data together with the real semantic segmentation labels, leads to an improvement in the semantic segmentation model performance. Our results show the potential of generated scene-scale point clouds to generate more training data to extend existing datasets, reducing the data annotation effort. Our code is available at https://github.com/PRBonn/3DiSS.

Authors:David P. Hofmeyr
Title: Nearest Neighbour Equilibrium Clustering
Abstract:
A novel and intuitive nearest neighbours based clustering algorithm is introduced, in which a cluster is defined in terms of an equilibrium condition which balances its size and cohesiveness. The formulation of the equilibrium condition allows for a quantification of the strength of alignment of each point to a cluster, with these cluster alignment strengths leading naturally to a model selection criterion which renders the proposed approach fully automatable. The algorithm is simple to implement and computationally efficient, and produces clustering solutions of extremely high quality in comparison with relevant benchmarks from the literature. R code to implement the approach is available from https://github.com/DavidHofmeyr/NNEC.

Authors:Tong Nie, Jian Sun, Wei Ma
Title: Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap
Abstract:
Modern transportation systems face pressing challenges due to increasing demand, dynamic environments, and heterogeneous information integration. The rapid evolution of Large Language Models (LLMs) offers transformative potential to address these challenges. Extensive knowledge and high-level capabilities derived from pretraining evolve the default role of LLMs as text generators to become versatile, knowledge-driven task solvers for intelligent transportation systems. This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation into four synergetic dimensions: information processors, knowledge encoders, component generators, and decision facilitators. Through a unified taxonomy, we systematically elucidate how LLMs bridge fragmented data pipelines, enhance predictive analytics, simulate human-like reasoning, and enable closed-loop interactions across sensing, learning, modeling, and managing tasks in transportation systems. For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization, highlighting how emergent capabilities of LLMs such as in-context learning and step-by-step reasoning can enhance the operation and management of transportation systems. We further curate practical guidance, including available resources and computational guidelines, to support real-world deployment. By identifying challenges in existing LLM-based solutions, this survey charts a roadmap for advancing LLM-driven transportation research, positioning LLMs as central actors in the next generation of cyber-physical-social mobility ecosystems. Online resources can be found in the project page: https://github.com/tongnie/awesome-llm4tr.

Authors:Erik Wallin, Fredrik Kahl, Lars Hammarstrand
Title: ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks
Abstract:
Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.

Authors:Haoxiang Sun, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu, Zhongyuan Wang, Ji-Rong Wen
Title: Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models
Abstract:
In recent years, the rapid development of large reasoning models has resulted in the saturation of existing benchmarks for evaluating mathematical reasoning, highlighting the urgent need for more challenging and rigorous evaluation frameworks. To address this gap, we introduce OlymMATH, a novel Olympiad-level mathematical benchmark, designed to rigorously test the complex reasoning capabilities of LLMs. OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions. The problems are systematically organized into two distinct difficulty tiers: (1) AIME-level problems (easy) that establish a baseline for mathematical reasoning assessment, and (2) significantly more challenging problems (hard) designed to push the boundaries of current state-of-the-art models. In our benchmark, these problems span four core mathematical fields, each including a verifiable numerical solution to enable objective, rule-based evaluation. Empirical results underscore the significant challenge presented by OlymMATH, with state-of-the-art models including DeepSeek-R1, OpenAI's o3-mini and Gemini 2.5 Pro Exp demonstrating notably limited accuracy on the hard subset. Furthermore, the benchmark facilitates comprehensive bilingual assessment of mathematical reasoning abilities-a critical dimension that remains largely unaddressed in mainstream mathematical reasoning benchmarks. We release the benchmark, evaluation code, detailed results and a data visualization tool at https://github.com/RUCAIBox/OlymMATH.

Authors:Zhenxiang Ma, Zhenyu Yang, Miao Tao, Yuanzhen Zhou, Zeyu He, Yuchang Zhang, Rong Fu, Hengjie Li
Title: LandMarkSystem Technical Report
Abstract:
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse. Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale. This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering. By leveraging a componentized model adaptation layer, LandMarkSystem supports various NeRF and 3DGS structures while optimizing computational efficiency through distributed parallel computing and model parameter offloading. Our system addresses the limitations of existing frameworks, providing dedicated operators for complex 3D sparse computations, thus facilitating efficient training and rapid inference over extensive scenes. Key contributions include a modular architecture, a dynamic loading strategy for limited resources, and proven capabilities across multiple representative algorithms.This comprehensive solution aims to advance the efficiency and effectiveness of 3D reconstruction tasks.To facilitate further research and collaboration, the source code and documentation for the LandMarkSystem project are publicly available in an open-source repository, accessing the repository at: https://github.com/InternLandMark/LandMarkSystem.

Authors:Yehui Shen, Lei Zhang, Qingqiu Li, Xiongwei Zhao, Yue Wang, Huimin Lu, Xieyuanli Chen
Title: UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Abstract:
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.

Authors:Zixu Li, Zhiheng Fu, Yupeng Hu, Zhiwei Chen, Haokun Wen, Liqiang Nie
Title: FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.

Authors:Shuaijie She, Junxiao Liu, Yifeng Liu, Jiajun Chen, Xin Huang, Shujian Huang
Title: R-PRM: Reasoning-Driven Process Reward Modeling
Abstract:
Large language models (LLMs) inevitably make mistakes when performing step-by-step mathematical reasoning. Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step. However, existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy, which is further exacerbated by the scarcity of annotated data. To address these issues, we propose Reasoning-Driven Process Reward Modeling (R-PRM). First, we leverage stronger LLMs to generate seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities and enabling comprehensive step-by-step evaluation. Second, we further enhance performance through preference optimization, without requiring additional annotated data. Third, we introduce inference-time scaling to fully harness the model's reasoning potential. Extensive experiments demonstrate R-PRM's effectiveness: on ProcessBench and PRMBench, it surpasses strong baselines by 11.9 and 8.5 points in F1 scores, respectively. When applied to guide mathematical reasoning, R-PRM achieves consistent accuracy improvements of over 8.5 points across six challenging datasets. Further analysis reveals that R-PRM exhibits more comprehensive evaluation and stronger generalization capabilities, thereby highlighting its significant potential.

Authors:Hanyue Tu, Siqi Wu, Li Li, Wengang Zhou, Houqiang Li
Title: Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Abstract:
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates. The source code is available at https://github.com/hytu99/MSINN-VRLIC.

Authors:Jiaqi Han, Jingwen Ye, Shunyu Liu, Haofei Zhang, Jie Song, Zunlei Feng, Mingli Song
Title: Reinforced Model Merging
Abstract:
The success of large language models has garnered widespread attention for model merging techniques, especially training-free methods which combine model capabilities within the parameter space. However, two challenges remain: (1) uniform treatment of all parameters leads to performance degradation; (2) search-based algorithms are often inefficient. In this paper, we present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks. These components interact to execute layer-wise merging actions, aiming to search the optimal merging architecture. Notably, RMM operates without any gradient computations on the original models, rendering it feasible for edge devices. Furthermore, by utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times. Extensive experiments demonstrate that RMM achieves state-of-the-art performance across various vision and NLP datasets and effectively overcomes the limitations of the existing baseline methods. Our code is available at https://github.com/WuDiHJQ/Reinforced-Model-Merging.

Authors:Zhaokai Wang, Chenxi Bao, Le Zhuo, Jingrui Han, Yang Yue, Yihong Tang, Victor Shea-Jay Huang, Yue Liao
Title: Vision-to-Music Generation: A Survey
Abstract:
Vision-to-music Generation, including video-to-music and image-to-music tasks, is a significant branch of multimodal artificial intelligence demonstrating vast application prospects in fields such as film scoring, short video creation, and dance music synthesis. However, compared to the rapid development of modalities like text and images, research in vision-to-music is still in its preliminary stage due to its complex internal structure and the difficulty of modeling dynamic relationships with video. Existing surveys focus on general music generation without comprehensive discussion on vision-to-music. In this paper, we systematically review the research progress in the field of vision-to-music generation. We first analyze the technical characteristics and core challenges for three input types: general videos, human movement videos, and images, as well as two output types of symbolic music and audio music. We then summarize the existing methodologies on vision-to-music generation from the architecture perspective. A detailed review of common datasets and evaluation metrics is provided. Finally, we discuss current challenges and promising directions for future research. We hope our survey can inspire further innovation in vision-to-music generation and the broader field of multimodal generation in academic research and industrial applications. To follow latest works and foster further innovation in this field, we are continuously maintaining a GitHub repository at https://github.com/wzk1015/Awesome-Vision-to-Music-Generation.

Authors:Bashar Tahir, Philipp Svoboda, Markus Rupp
Title: PLAIN: Scalable Estimation Architecture for Integrated Sensing and Communication
Abstract:
Integrated sensing and communication (ISAC) is envisioned be to one of the paradigms upon which next-generation mobile networks will be built, extending localization and tracking capabilities, as well as giving birth to environment-aware wireless access. A key aspect of sensing integration is parameter estimation, which involves extracting information about the surrounding environment, such as the direction, distance, and velocity of various objects within. This is typically of a high-dimensional nature, which leads to significant computational complexity, if performed jointly across multiple sensing dimensions, such as space, frequency, and time. Additionally, due to the incorporation of sensing on top of the data transmission, the time window available for sensing is likely to be short, resulting in an estimation problem where only a single snapshot is accessible. In this work, we propose PLAIN, a tensor-based estimation architecture that flexibly scales with multiple sensing dimensions and can handle high dimensionality, limited measurement time, and super-resolution requirements. It consists of three stages: a compression stage, where the high dimensional input is converted into lower dimensionality, without sacrificing resolution; a decoupled estimation stage, where the parameters across the different dimensions are estimated in parallel with low complexity; an input-based fusion stage, where the decoupled parameters are fused together to form a paired multidimensional estimate. We investigate the performance of the architecture for different configurations and compare it against practical sequential and joint estimation baselines, as well as theoretical bounds. Our results show that PLAIN, using tools from tensor algebra, subspace-based processing, and compressed sensing, can scale flexibly with dimensionality, while operating with low complexity and maintaining super-resolution.

Authors:Yuntao Gui, Peiqi Yin, Xiao Yan, Chaorui Zhang, Weixi Zhang, James Cheng
Title: PilotANN: Memory-Bounded GPU Acceleration for Vector Search
Abstract:
Approximate Nearest Neighbor Search (ANNS) has become fundamental to modern deep learning applications, having gained particular prominence through its integration into recent generative models that work with increasingly complex datasets and higher vector dimensions. Existing CPU-only solutions, even the most efficient graph-based ones, struggle to meet these growing computational demands, while GPU-only solutions face memory constraints. As a solution, we propose PilotANN, a hybrid CPU-GPU system for graph-based ANNS that utilizes both CPU's abundant RAM and GPU's parallel processing capabilities. Our approach decomposes the graph traversal process of top-$k$ search into three stages: GPU-accelerated subgraph traversal using SVD-reduced vectors, CPU refinement and precise search using complete vectors. Furthermore, we introduce fast entry selection to improve search starting points while maximizing GPU utilization. Experimental results demonstrate that PilotANN achieves $3.9 - 5.4 \times$ speedup in throughput on 100-million scale datasets, and is able to handle datasets up to $12 \times$ larger than the GPU memory. We offer a complete open-source implementation at https://github.com/ytgui/PilotANN.

Authors:Yimin Xu, Fan Yang, Bin Xu
Title: DSU-Net:An Improved U-Net Model Based on DINOv2 and SAM2 with Multi-scale Cross-model Feature Enhancement
Abstract:
Despite the significant advancements in general image segmentation achieved by large-scale pre-trained foundation models (such as Meta's Segment Any-thing Model (SAM) series and DINOv2), their performance in specialized fields remains limited by two critical issues: the excessive training costs due to large model parameters, and the insufficient ability to represent specific domain characteristics. This paper proposes a multi-scale feature collabora-tion framework guided by DINOv2 for SAM2, with core innovations in three aspects: (1) Establishing a feature collaboration mechanism between DINOv2 and SAM2 backbones, where high-dimensional semantic features extracted by the self-supervised model guide multi-scale feature fusion; (2) Designing lightweight adapter modules and cross-modal, cross-layer feature fusion units to inject cross-domain knowledge while freezing the base model parameters; (3) Constructing a U-shaped network structure based on U-net, which utilizes attention mechanisms to achieve adaptive aggregation decoding of multi-granularity features. This framework surpasses existing state-of-the-art meth-ods in downstream tasks such as camouflage target detection and salient ob-ject detection, without requiring costly training processes. It provides a tech-nical pathway for efficient deployment of visual image segmentation, demon-strating significant application value in a wide range of downstream tasks and specialized fields within image segmentation.Project page: https://github.com/CheneyXuYiMin/SAM2DINO-Seg

Authors:Jiahao Lyu, Minghua Zhao, Jing Hu, Xuewen Huang, Yifei Chen, Shuangli Du
Title: VADMamba: Exploring State Space Models for Fast Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) methods are mostly CNN-based or Transformer-based, achieving impressive results, but the focus on detection accuracy often comes at the expense of inference speed. The emergence of state space models in computer vision, exemplified by the Mamba model, demonstrates improved computational efficiency through selective scans and showcases the great potential for long-range modeling. Our study pioneers the application of Mamba to VAD, dubbed VADMamba, which is based on multi-task learning for frame prediction and optical flow reconstruction. Specifically, we propose the VQ-Mamba Unet (VQ-MaU) framework, which incorporates a Vector Quantization (VQ) layer and Mamba-based Non-negative Visual State Space (NVSS) block. Furthermore, two individual VQ-MaU networks separately predict frames and reconstruct corresponding optical flows, further boosting accuracy through a clip-level fusion evaluation strategy. Experimental results validate the efficacy of the proposed VADMamba across three benchmark datasets, demonstrating superior performance in inference speed compared to previous work. Code is available at https://github.com/jLooo/VADMamba.

Authors:Junjie Chen, Weilong Chen, Yifan Zuo, Yuming Fang
Title: Recurrent Feature Mining and Keypoint Mixup Padding for Category-Agnostic Pose Estimation
Abstract:
Category-agnostic pose estimation aims to locate keypoints on query images according to a few annotated support images for arbitrary novel classes. Existing methods generally extract support features via heatmap pooling, and obtain interacted features from support and query via cross-attention. Hence, these works neglect to mine fine-grained and structure-aware (FGSA) features from both support and query images, which are crucial for pixel-level keypoint localization. To this end, we propose a novel yet concise framework, which recurrently mines FGSA features from both support and query images. Specifically, we design a FGSA mining module based on deformable attention mechanism. On the one hand, we mine fine-grained features by applying deformable attention head over multi-scale feature maps. On the other hand, we mine structure-aware features by offsetting the reference points of keypoints to their linked keypoints. By means of above module, we recurrently mine FGSA features from support and query images, and thus obtain better support features and query estimations. In addition, we propose to use mixup keypoints to pad various classes to a unified keypoint number, which could provide richer supervision than the zero padding used in existing works. We conduct extensive experiments and in-depth studies on large-scale MP-100 dataset, and outperform SOTA method dramatically (+3.2\%PCK@0.05). Code is avaiable at https://github.com/chenbys/FMMP.

Authors:Jiajie Quan, Ao Tong, Yuxuan Cai, Xinwei He, Yulong Wang, Yang Zhou
Title: Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
Abstract:
In multi-class unsupervised anomaly detection(MUAD), reconstruction-based methods learn to map input images to normal patterns to identify anomalous pixels. However, this strategy easily falls into the well-known "learning shortcut" issue when decoders fail to capture normal patterns and reconstruct both normal and abnormal samples naively. To address that, we propose to learn the input features in global and local manners, forcing the network to memorize the normal patterns more comprehensively. Specifically, we design a two-branch decoder block, named Omni-block. One branch corresponds to global feature learning, where we serialize two self-attention blocks but replace the query and (key, value) with learnable tokens, respectively, thus capturing global features of normal patterns concisely and thoroughly. The local branch comprises depth-separable convolutions, whose locality enables effective and efficient learning of local features for normal patterns. By stacking Omni-blocks, we build a framework, Omni-AD, to learn normal patterns of different granularity and reconstruct them progressively. Comprehensive experiments on public anomaly detection benchmarks show that our method outperforms state-of-the-art approaches in MUAD. Code is available at https://github.com/easyoo/Omni-AD.git

Authors:Yun Zhu, Le Hui, Hang Yang, Jianjun Qian, Jin Xie, Jian Yang
Title: Learning Class Prototypes for Unified Sparse Supervised 3D Object Detection
Abstract:
Both indoor and outdoor scene perceptions are essential for embodied intelligence. However, current sparse supervised 3D object detection methods focus solely on outdoor scenes without considering indoor settings. To this end, we propose a unified sparse supervised 3D object detection method for both indoor and outdoor scenes through learning class prototypes to effectively utilize unlabeled objects. Specifically, we first propose a prototype-based object mining module that converts the unlabeled object mining into a matching problem between class prototypes and unlabeled features. By using optimal transport matching results, we assign prototype labels to high-confidence features, thereby achieving the mining of unlabeled objects. We then present a multi-label cooperative refinement module to effectively recover missed detections through pseudo label quality control and prototype label cooperation. Experiments show that our method achieves state-of-the-art performance under the one object per scene sparse supervised setting across indoor and outdoor datasets. With only one labeled object per scene, our method achieves about 78%, 90%, and 96% performance compared to the fully supervised detector on ScanNet V2, SUN RGB-D, and KITTI, respectively, highlighting the scalability of our method. Code is available at https://github.com/zyrant/CPDet3D.

Authors:Haoming Xu, Shuxun Wang, Yanqiu Zhao, Yi Zhong, Ziyan Jiang, Ningyuan Zhao, Shumin Deng, Huajun Chen, Ningyu Zhang
Title: ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
Abstract:
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.

Authors:Yusong Hu, Zichen Liang, Fei Yang, Qibin Hou, Xialei Liu, Ming-Ming Cheng
Title: KAC: Kolmogorov-Arnold Classifier for Continual Learning
Abstract:
Continual learning requires models to train continuously across consecutive tasks without forgetting. Most existing methods utilize linear classifiers, which struggle to maintain a stable classification space while learning new tasks. Inspired by the success of Kolmogorov-Arnold Networks (KAN) in preserving learning stability during simple continual regression tasks, we set out to explore their potential in more complex continual learning scenarios. In this paper, we introduce the Kolmogorov-Arnold Classifier (KAC), a novel classifier developed for continual learning based on the KAN structure. We delve into the impact of KAN's spline functions and introduce Radial Basis Functions (RBF) for improved compatibility with continual learning. We replace linear classifiers with KAC in several recent approaches and conduct experiments across various continual learning benchmarks, all of which demonstrate performance improvements, highlighting the effectiveness and robustness of KAC in continual learning. The code is available at https://github.com/Ethanhuhuhu/KAC.

Authors:Ooha Lakkadi Reddy
Title: Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
Abstract:
This thesis employs a hybrid CNN-Transformer architecture, alongside a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (0.635) than to the Bronze Age Proto-Cuneiform (0.102) or Proto-Elamite (0.078). Contrary to expectations, when measured through direct script-to-script embedding comparisons, the Indus script maps closer to Tibetan-Yi Corridor scripts with a mean cosine similarity of 0.930 (CI: [0.917, 0.942]) than to contemporaneous West Asian signaries, which recorded mean similarities of 0.887 (CI: [0.863, 0.911]) and 0.855 (CI: [0.818, 0.891]). Across dimensionality reduction and clustering methods, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. These computational findings align with observed pictorial parallels in numeral systems, gender markers, and iconographic elements. Archaeological evidence of contact networks along the ancient Shu-Shendu road, coinciding with the Indus Civilization's decline, provides a plausible transmission pathway. While alternate explanations cannot be ruled out, the specificity and consistency of similarities suggest more complex cultural transmission networks between South and East Asia than previously recognized.

Authors:Judy X Yang, Jing Wang, Zhuanfeng, Li, Chenhong Sui Zekun Long, Jun Zhou
Title: HSLiNets: Evaluating Band Ordering Strategies in Hyperspectral and LiDAR Fusion
Abstract:
The integration of hyperspectral imaging (HSI) and Light Detection and Ranging (LiDAR) data provides complementary spectral and spatial information for remote sensing applications. While previous studies have explored the role of band selection and grouping in HSI classification, little attention has been given to how the spectral sequence or band order affects classification outcomes when fused with LiDAR. In this work, we systematically investigate the influence of band order on HSI-LiDAR fusion performance. Through extensive experiments, we demonstrate that band order significantly impacts classification accuracy, revealing a previously overlooked factor in fusion-based models. Motivated by this observation, we propose a novel fusion architecture that not only integrates HSI and LiDAR data but also learns from multiple band order configurations. The proposed method enhances feature representation by adaptively fusing different spectral sequences, leading to improved classification accuracy. Experimental results on the Houston 2013 and Trento datasets show that our approach outperforms state-of-the-art fusion models. Data and code are available at https://github.com/Judyxyang/HSLiNets.

Authors:Caspar Meijer, Jiyue Huang, Shreshtha Sharma, Elena Lazovik, Lydia Y. Chen
Title: TS-Inverse: A Gradient Inversion Attack Tailored for Federated Time Series Forecasting Models
Abstract:
Federated learning (FL) for time series forecasting (TSF) enables clients with privacy-sensitive time series (TS) data to collaboratively learn accurate forecasting models, for example, in energy load prediction. Unfortunately, privacy risks in FL persist, as servers can potentially reconstruct clients' training data through gradient inversion attacks (GIA). Although GIA is demonstrated for image classification tasks, little is known about time series regression tasks. In this paper, we first conduct an extensive empirical study on inverting TS data across 4 TSF models and 4 datasets, identifying the unique challenges of reconstructing both observations and targets of TS data. We then propose TS-Inverse, a novel GIA that improves the inversion of TS data by (i) learning a gradient inversion model that outputs quantile predictions, (ii) a unique loss function that incorporates periodicity and trend regularization, and (iii) regularization according to the quantile predictions. Our evaluations demonstrate a remarkable performance of TS-Inverse, achieving at least a 2x-10x improvement in terms of the sMAPE metric over existing GIA methods on TS data. Code repository: https://github.com/Capsar/ts-inverse

Authors:Amaya Gallagher-Syed, Henry Senior, Omnia Alwazzan, Elena Pontarini, Michele Bombardieri, Costantino Pitzalis, Myles J. Lewis, Michael R. Barnes, Luca Rossi, Gregory Slabaugh
Title: BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC Computational Pathology
Abstract:
The development of biologically interpretable and explainable models remains a key challenge in computational pathology, particularly for multistain immunohistochemistry (IHC) analysis. We present BioX-CPath, an explainable graph neural network architecture for whole slide image (WSI) classification that leverages both spatial and semantic features across multiple stains. At its core, BioX-CPath introduces a novel Stain-Aware Attention Pooling (SAAP) module that generates biologically meaningful, stain-aware patient embeddings. Our approach achieves state-of-the-art performance on both Rheumatoid Arthritis and Sjogren's Disease multistain datasets. Beyond performance metrics, BioX-CPath provides interpretable insights through stain attention scores, entropy measures, and stain interaction scores, that permit measuring model alignment with known pathological mechanisms. This biological grounding, combined with strong classification performance, makes BioX-CPath particularly suitable for clinical applications where interpretability is key. Source code and documentation can be found at: https://github.com/AmayaGS/BioX-CPath.

Authors:Syed Ariff Syed Hesham, Yun Liu, Guolei Sun, Henghui Ding, Jing Yang, Ender Konukoglu, Xue Geng, Xudong Jiang
Title: Exploiting Temporal State Space Sharing for Video Semantic Segmentation
Abstract:
Video semantic segmentation (VSS) plays a vital role in understanding the temporal evolution of scenes. Traditional methods often segment videos frame-by-frame or in a short temporal window, leading to limited temporal context, redundant computations, and heavy memory requirements. To this end, we introduce a Temporal Video State Space Sharing (TV3S) architecture to leverage Mamba state space models for temporal feature sharing. Our model features a selective gating mechanism that efficiently propagates relevant information across video frames, eliminating the need for a memory-heavy feature pool. By processing spatial patches independently and incorporating shifted operation, TV3S supports highly parallel computation in both training and inference stages, which reduces the delay in sequential state space processing and improves the scalability for long video sequences. Moreover, TV3S incorporates information from prior frames during inference, achieving long-range temporal coherence and superior adaptability to extended sequences. Evaluations on the VSPW and Cityscapes datasets reveal that our approach outperforms current state-of-the-art methods, establishing a new standard for VSS with consistent results across long video sequences. By achieving a good balance between accuracy and efficiency, TV3S shows a significant advancement in spatiotemporal modeling, paving the way for efficient video analysis. The code is publicly available at https://github.com/Ashesham/TV3S.git.

Authors:Joonhyun Jeong, Seyun Bae, Yeonsung Jung, Jaeryong Hwang, Eunho Yang
Title: Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy
Abstract:
Despite the remarkable versatility of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) to generalize across both language and vision tasks, LLMs and MLLMs have shown vulnerability to jailbreaking, generating textual outputs that undermine safety, ethical, and bias standards when exposed to harmful or sensitive inputs. With the recent advancement of safety alignment via preference-tuning from human feedback, LLMs and MLLMs have been equipped with safety guardrails to yield safe, ethical, and fair responses with regard to harmful inputs. However, despite the significance of safety alignment, research on the vulnerabilities remains largely underexplored. In this paper, we investigate the unexplored vulnerability of the safety alignment, examining its ability to consistently provide safety guarantees for out-of-distribution(OOD)-ifying harmful inputs that may fall outside the aligned data distribution. Our key observation is that OOD-ifying the vanilla harmful inputs highly increases the uncertainty of the model to discern the malicious intent within the input, leading to a higher chance of being jailbroken. Exploiting this vulnerability, we propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment. We explore various off-the-shelf visual and textual transformation techniques for OOD-ifying the harmful inputs. Notably, we observe that even simple mixing-based techniques such as image mixup prove highly effective in increasing the uncertainty of the model, thereby facilitating the bypass of the safety alignment. Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs such as GPT-4 and o1 with high attack success rate, which previous attack approaches have consistently struggled to jailbreak. Code is available at https://github.com/naver-ai/JOOD.

Authors:Xiaoming Qi, Jingyang Zhang, Huazhu Fu, Guanyu Yang, Shuo Li, Yueming Jin
Title: Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for Federated Continual Learning
Abstract:
Federated continual learning (FCL) offers an emerging pattern to facilitate the applicability of federated learning (FL) in real-world scenarios, where tasks evolve dynamically and asynchronously across clients, especially in medical scenario. Existing server-side FCL methods in nature domain construct a continually learnable server model by client aggregation on all-involved tasks. However, they are challenged by: (1) Catastrophic forgetting for previously learned tasks, leading to error accumulation in server model, making it difficult to sustain comprehensive knowledge across all tasks. (2) Biased optimization due to asynchronous tasks handled across different clients, leading to the collision of optimization targets of different clients at the same time steps. In this work, we take the first step to propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (FedDAH). It is to facilitate collaborative learning under the distinct and dynamic task streams across clients. To alleviate the catastrophic forgetting, we propose a dynamic allocation hypernetwork (DAHyper) where a continually updated hypernetwork is designed to manage the mapping between task identities and their associated model parameters, enabling the dynamic allocation of the model across clients. For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates, and assign weights to identical tasks across different time steps based on the similarity for continual optimization. Extensive experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams. The code is available:https://github.com/jinlab-imvr/FedDAH.

Authors:Shuhao Zhang, Bo Cheng, Jiale Han, Yuli Chen, Zhixuan Wu, Changbao Li, Pingli Gu
Title: CEFW: A Comprehensive Evaluation Framework for Watermark in Large Language Models
Abstract:
Text watermarking provides an effective solution for identifying synthetic text generated by large language models. However, existing techniques often focus on satisfying specific criteria while ignoring other key aspects, lacking a unified evaluation. To fill this gap, we propose the Comprehensive Evaluation Framework for Watermark (CEFW), a unified framework that comprehensively evaluates watermarking methods across five key dimensions: ease of detection, fidelity of text quality, minimal embedding cost, robustness to adversarial attacks, and imperceptibility to prevent imitation or forgery. By assessing watermarks according to all these key criteria, CEFW offers a thorough evaluation of their practicality and effectiveness. Moreover, we introduce a simple and effective watermarking method called Balanced Watermark (BW), which guarantees robustness and imperceptibility through balancing the way watermark information is added. Extensive experiments show that BW outperforms existing methods in overall performance across all evaluation dimensions. We release our code to the community for future research. https://github.com/DrankXs/BalancedWatermark.

Authors:Sondos Mahmoud Bsharat, Mukul Ranjan, Aidar Myrzakhan, Jiacheng Liu, Bowei Guo, Shengkun Tang, Zhuang Liu, Yuanzhi Li, Zhiqiang Shen
Title: Mobile-MMLU: A Mobile Intelligence Language Understanding Benchmark
Abstract:
Rapid advancements in large language models (LLMs) have increased interest in deploying them on mobile devices for on-device AI applications. Mobile users interact differently with LLMs compared to desktop users, creating unique expectations and data biases. Current benchmark datasets primarily target at server and desktop environments, and there is a notable lack of extensive datasets specifically designed for mobile contexts. Additionally, mobile devices face strict limitations in storage and computing resources, constraining model size and capabilities, thus requiring optimized efficiency and prioritized knowledge. To address these challenges, we introduce Mobile-MMLU, a large-scale benchmark dataset tailored for mobile intelligence. It consists of 16,186 questions across 80 mobile-related fields, designed to evaluate LLM performance in realistic mobile scenarios. A challenging subset, Mobile-MMLU-Pro, provides advanced evaluation similar in size to MMLU-Pro but significantly more difficult than our standard full set. Both benchmarks use multiple-choice, order-invariant questions focused on practical mobile interactions, such as recipe suggestions, travel planning, and essential daily tasks. The dataset emphasizes critical mobile-specific metrics like inference latency, energy consumption, memory usage, and response quality, offering comprehensive insights into model performance under mobile constraints. Moreover, it prioritizes privacy and adaptability, assessing models' ability to perform on-device processing, maintain user privacy, and adapt to personalized usage patterns. Mobile-MMLU family offers a standardized framework for developing and comparing mobile-optimized LLMs, enabling advancements in productivity and decision-making within mobile computing environments. Our code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU.

Authors:Tianqi Liu, Zihao Huang, Zhaoxi Chen, Guangcong Wang, Shoukang Hu, Liao Shen, Huiqiang Sun, Zhiguo Cao, Wei Li, Ziwei Liu
Title: Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency
Abstract:
We present Free4D, a novel tuning-free framework for 4D scene generation from a single image. Existing methods either focus on object-level generation, making scene-level generation infeasible, or rely on large-scale multi-view video datasets for expensive training, with limited generalization ability due to the scarcity of 4D scene data. In contrast, our key insight is to distill pre-trained foundation models for consistent 4D scene representation, which offers promising advantages such as efficiency and generalizability. 1) To achieve this, we first animate the input image using image-to-video diffusion models followed by 4D geometric structure initialization. 2) To turn this coarse structure into spatial-temporal consistent multiview videos, we design an adaptive guidance mechanism with a point-guided denoising strategy for spatial consistency and a novel latent replacement strategy for temporal coherence. 3) To lift these generated observations into consistent 4D representation, we propose a modulation-based refinement to mitigate inconsistencies while fully leveraging the generated information. The resulting 4D representation enables real-time, controllable rendering, marking a significant advancement in single-image-based 4D scene generation.

Authors:Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, Min Lin
Title: Understanding R1-Zero-Like Training: A Critical Perspective
Abstract:
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.

Authors:Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, Min Lin
Title: Understanding R1-Zero-Like Training: A Critical Perspective
Abstract:
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.

Authors:Yulu Pan, Ce Zhang, Gedas Bertasius
Title: BASKET: A Large-Scale Video Dataset for Fine-Grained Skill Estimation
Abstract:
We present BASKET, a large-scale basketball video dataset for fine-grained skill estimation. BASKET contains 4,477 hours of video capturing 32,232 basketball players from all over the world. Compared to prior skill estimation datasets, our dataset includes a massive number of skilled participants with unprecedented diversity in terms of gender, age, skill level, geographical location, etc. BASKET includes 20 fine-grained basketball skills, challenging modern video recognition models to capture the intricate nuances of player skill through in-depth video analysis. Given a long highlight video (8-10 minutes) of a particular player, the model needs to predict the skill level (e.g., excellent, good, average, fair, poor) for each of the 20 basketball skills. Our empirical analysis reveals that the current state-of-the-art video models struggle with this task, significantly lagging behind the human baseline. We believe that BASKET could be a useful resource for developing new video models with advanced long-range, fine-grained recognition capabilities. In addition, we hope that our dataset will be useful for domain-specific applications such as fair basketball scouting, personalized player development, and many others. Dataset and code are available at https://github.com/yulupan00/BASKET.

Authors:Chenxi Wang, Jizhan Fang, Xiang Chen, Bozhong Tian, Ziwen Xu, Huajun Chen, Ningyu Zhang
Title: ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Abstract:
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit/blob/main/examples/ADSEdit.md.

Authors:Chen Tang, Xinzhu Ma, Encheng Su, Xiufeng Song, Xiaohong Liu, Wei-Hong Li, Lei Bai, Wanli Ouyang, Xiangyu Yue
Title: UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines
Abstract:
Traditional spatiotemporal models generally rely on task-specific architectures, which limit their generalizability and scalability across diverse tasks due to domain-specific design requirements. In this paper, we introduce \textbf{UniSTD}, a unified Transformer-based framework for spatiotemporal modeling, which is inspired by advances in recent foundation models with the two-stage pretraining-then-adaption paradigm. Specifically, our work demonstrates that task-agnostic pretraining on 2D vision and vision-text datasets can build a generalizable model foundation for spatiotemporal learning, followed by specialized joint training on spatiotemporal datasets to enhance task-specific adaptability. To improve the learning capabilities across domains, our framework employs a rank-adaptive mixture-of-expert adaptation by using fractional interpolation to relax the discrete variables so that can be optimized in the continuous space. Additionally, we introduce a temporal module to incorporate temporal dynamics explicitly. We evaluate our approach on a large-scale dataset covering 10 tasks across 4 disciplines, demonstrating that a unified spatiotemporal model can achieve scalable, cross-task learning and support up to 10 tasks simultaneously within one model while reducing training costs in multi-domain applications. Code will be available at https://github.com/1hunters/UniSTD.

Authors:Masane Fuchi, Tomohiro Takagi
Title: RecTable: Fast Modeling Tabular Data with Rectified Flow
Abstract:
Score-based or diffusion models generate high-quality tabular data, surpassing GAN-based and VAE-based models. However, these methods require substantial training time. In this paper, we introduce RecTable, which uses the rectified flow modeling, applied in such as text-to-image generation and text-to-video generation. RecTable features a simple architecture consisting of a few stacked gated linear unit blocks. Additionally, our training strategies are also simple, incorporating a mixed-type noise distribution and a logit-normal timestep distribution. Our experiments demonstrate that RecTable achieves competitive performance compared to the several state-of-the-art diffusion and score-based models while reducing the required training time. Our code is available at https://github.com/fmp453/rectable.

Authors:Yankai Chen, Taotao Wang, Yixiang Fang, Yunyu Xiao
Title: Semi-supervised Node Importance Estimation with Informative Distribution Modeling for Uncertainty Regularization
Abstract:
Node importance estimation, a classical problem in network analysis, underpins various web applications. Previous methods either exploit intrinsic topological characteristics, e.g., graph centrality, or leverage additional information, e.g., data heterogeneity, for node feature enhancement. However, these methods follow the supervised learning setting, overlooking the fact that ground-truth node-importance data are usually partially labeled in practice. In this work, we propose the first semi-supervised node importance estimation framework, i.e., EASING, to improve learning quality for unlabeled data in heterogeneous graphs. Different from previous approaches, EASING explicitly captures uncertainty to reflect the confidence of model predictions. To jointly estimate the importance values and uncertainties, EASING incorporates DJE, a deep encoder-decoder neural architecture. DJE introduces distribution modeling for graph nodes, where the distribution representations derive both importance and uncertainty estimates. Additionally, DJE facilitates effective pseudo-label generation for the unlabeled data to enrich the training samples. Based on labeled and pseudo-labeled data, EASING develops effective semi-supervised heteroscedastic learning with varying node uncertainty regularization. Extensive experiments on three real-world datasets highlight the superior performance of EASING compared to competing methods. Codes are available via https://github.com/yankai-chen/EASING.

Authors:Han Wang, Yongjie Ye, Bingru Li, Yuxiang Nie, Jinghui Lu, Jingqun Tang, Yanjie Wang, Can Huang
Title: Vision as LoRA
Abstract:
We introduce Vision as LoRA (VoRA), a novel paradigm for transforming an LLM into an MLLM. Unlike prevalent MLLM architectures that rely on external vision modules for vision encoding, VoRA internalizes visual capabilities by integrating vision-specific LoRA layers directly into the LLM. This design allows the added parameters to be seamlessly merged into the LLM during inference, eliminating structural complexity and minimizing computational overhead. Moreover, inheriting the LLM's ability of handling flexible context, VoRA can process inputs at arbitrary resolutions. To further strengthen VoRA's visual capabilities, we introduce a block-wise distillation method that transfers visual priors from a pre-trained ViT into the LoRA layers, effectively accelerating training by injecting visual knowledge. Additionally, we apply bi-directional attention masks to better capture the context information of an image. We successfully demonstrate that with additional pre-training data, VoRA can perform comparably with conventional encode-based MLLMs. All training data, codes, and model weights will be released at https://github.com/Hon-Wong/VoRA.

Authors:Gongzhu Yin, Hongli Zhang, Yuchen Yang, Yi Luo
Title: Inductive Link Prediction on N-ary Relational Facts via Semantic Hypergraph Reasoning
Abstract:
N-ary relational facts represent semantic correlations among more than two entities. While recent studies have developed link prediction (LP) methods to infer missing relations for knowledge graphs (KGs) containing n-ary relational facts, they are generally limited to transductive settings. Fully inductive settings, where predictions are made on previously unseen entities, remain a significant challenge. As existing methods are mainly entity embedding-based, they struggle to capture entity-independent logical rules. To fill in this gap, we propose an n-ary subgraph reasoning framework for fully inductive link prediction (ILP) on n-ary relational facts. This framework reasons over local subgraphs and has a strong inductive inference ability to capture n-ary patterns. Specifically, we introduce a novel graph structure, the n-ary semantic hypergraph, to facilitate subgraph extraction. Moreover, we develop a subgraph aggregating network, NS-HART, to effectively mine complex semantic correlations within subgraphs. Theoretically, we provide a thorough analysis from the score function optimization perspective to shed light on NS-HART's effectiveness for n-ary ILP tasks. Empirically, we conduct extensive experiments on a series of inductive benchmarks, including transfer reasoning (with and without entity features) and pairwise subgraph reasoning. The results highlight the superiority of the n-ary subgraph reasoning framework and the exceptional inductive ability of NS-HART. The source code of this paper has been made publicly available at https://github.com/yin-gz/Nary-Inductive-SubGraph.

Authors:Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen, Tao Zhong, Mingxuan Yuan
Title: Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
Abstract:
The transition from System 1 to System 2 reasoning in large language models (LLMs) has marked significant advancements in handling complex tasks through deliberate, iterative thinking. However, this progress often comes at the cost of efficiency, as models tend to overthink, generating redundant reasoning steps without proportional improvements in output quality. Long-to-Short (L2S) reasoning has emerged as a promising solution to this challenge, aiming to balance reasoning depth with practical efficiency. While existing approaches, such as supervised fine-tuning (SFT), reinforcement learning (RL), and prompt engineering, have shown potential, they are either computationally expensive or unstable. Model merging, on the other hand, offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models. In this work, we present a comprehensive empirical study on model merging for L2S reasoning, exploring diverse methodologies, including task-vector-based, SVD-based, and activation-informed merging. Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance. We also identify a strong correlation between model scale and merging efficacy with extensive evaluations on 1.5B/7B/14B/32B models. Furthermore, we investigate the merged model's ability to self-critique and self-correct, as well as its adaptive response length based on task complexity. Our findings highlight model merging as a highly efficient and effective paradigm for L2S reasoning, offering a practical solution to the overthinking problem while maintaining the robustness of System 2 reasoning. This work can be found on Github https://github.com/hahahawu/Long-to-Short-via-Model-Merging.

Authors:Hao Fu, Hanbin Zhao, Jiahua Dong, Henghui Ding, Chao Zhang, Hui Qian
Title: IAP: Improving Continual Learning of Vision-Language Models via Instance-Aware Prompting
Abstract:
Recent pre-trained vision-language models (PT-VLMs) often face a Multi-Domain Task Incremental Learning (MTIL) scenario in practice, where several classes and domains of multi-modal tasks are incrementally arrived. Without access to previously seen tasks and unseen tasks, memory-constrained MTIL suffers from forward and backward forgetting. To alleviate the above challenges, parameter-efficient fine-tuning techniques (PEFT), such as prompt tuning, are employed to adapt the PT-VLM to the diverse incrementally learned tasks. To achieve effective new task adaptation, existing methods only consider the effect of PEFT strategy selection, but neglect the influence of PEFT parameter setting (e.g., prompting). In this paper, we tackle the challenge of optimizing prompt designs for diverse tasks in MTIL and propose an Instance-Aware Prompting (IAP) framework. Specifically, our Instance-Aware Gated Prompting (IA-GP) strategy enhances adaptation to new tasks while mitigating forgetting by adaptively assigning prompts across transformer layers at the instance level. Our Instance-Aware Class-Distribution-Driven Prompting (IA-CDDP) improves the task adaptation process by determining an accurate task-label-related confidence score for each instance. Experimental evaluations across 11 datasets, using three performance metrics, demonstrate the effectiveness of our proposed method. The source codes are available at https://github.com/FerdinandZJU/IAP.

Authors:Trung Duc Ha, Sidney Bender
Title: Diffusion Counterfactuals for Image Regressors
Abstract:
Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.

Authors:Carlos Gomes, Benedikt Blumenstiel, Joao Lucas de Sousa Almeida, Pedro Henrique de Oliveira, Paolo Fraccaro, Francesc Marti Escofet, Daniela Szwarcman, Naomi Simumba, Romeo Kienzler, Bianca Zadrozny
Title: TerraTorch: The Geospatial Foundation Models Toolkit
Abstract:
TerraTorch is a fine-tuning and benchmarking toolkit for Geospatial Foundation Models built on PyTorch Lightning and tailored for satellite, weather, and climate data. It integrates domain-specific data modules, pre-defined tasks, and a modular model factory that pairs any backbone with diverse decoder heads. These components allow researchers and practitioners to fine-tune supported models in a no-code fashion by simply editing a training configuration. By consolidating best practices for model development and incorporating the automated hyperparameter optimization extension Iterate, TerraTorch reduces the expertise and time required to fine-tune or benchmark models on new Earth Observation use cases. Furthermore, TerraTorch directly integrates with GEO-Bench, allowing for systematic and reproducible benchmarking of Geospatial Foundation Models. TerraTorch is open sourced under Apache 2.0, available at https://github.com/IBM/terratorch, and can be installed via pip install terratorch.

Authors:Henrik Christiansen, Takashi Maruyama, Federico Errica, Viktor Zaverkin, Makoto Takamoto, Francesco Alesiani
Title: Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
Abstract:
We present an end-to-end differentiable molecular simulation framework (DIMOS) for molecular dynamics and Monte Carlo simulations. DIMOS easily integrates machine-learning-based interatomic potentials and implements classical force fields including particle-mesh Ewald electrostatics. Thanks to its modularity, both classical and machine-learning-based approaches can be easily combined into a hybrid description of the system (ML/MM). By supporting key molecular dynamics features such as efficient neighborlists and constraint algorithms for larger time steps, the framework bridges the gap between hand-optimized simulation engines and the flexibility of a PyTorch implementation. The superior performance and the high versatility is probed in different benchmarks and applications, with speed-up factors of up to $170\times$. The advantage of differentiability is demonstrated by an end-to-end optimization of the proposal distribution in a Markov Chain Monte Carlo simulation based on Hamiltonian Monte Carlo. Using these optimized simulation parameters a $3\times$ acceleration is observed in comparison to ad-hoc chosen simulation parameters. The code is available at https://github.com/nec-research/DIMOS.

Authors:Yijiong Yu
Title: Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Abstract:
Recent advances in reasoning models have demonstrated significant improvements in accuracy by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning steps exist, we decode multiple tokens per forward pass via a tree-like attention mask within a single sequence, avoiding additional memory usage. Experimental results show that our method achieves up to nearly 100\% speedup in decoding while basically maintaining the answer quality.

Authors:Jinghui Yuan, Fangyuan Xie, Feiping Nie, Xuelong Li
Title: Riemannian Optimization on Relaxed Indicator Matrix Manifold
Abstract:
The indicator matrix plays an important role in machine learning, but optimizing it is an NP-hard problem. We propose a new relaxation of the indicator matrix and prove that this relaxation forms a manifold, which we call the Relaxed Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry, we develop a Riemannian toolbox for optimization on the RIM manifold. Specifically, we provide several methods of Retraction, including a fast Retraction method to obtain geodesics. We point out that the RIM manifold is a generalization of the double stochastic manifold, and it is much faster than existing methods on the double stochastic manifold, which has a complexity of \( \mathcal{O}(n^3) \), while RIM manifold optimization is \( \mathcal{O}(n) \) and often yields better results. We conducted extensive experiments, including image denoising, with millions of variables to support our conclusion, and applied the RIM manifold to Ratio Cut, we provide a rigorous convergence proof and achieve clustering results that outperform the state-of-the-art methods. Our Code in \href{https://github.com/Yuan-Jinghui/Riemannian-Optimization-on-Relaxed-Indicator-Matrix-Manifold}{here}.

Authors:Jiale Cheng, Ruiliang Lyu, Xiaotao Gu, Xiao Liu, Jiazheng Xu, Yida Lu, Jiayan Teng, Zhuoyi Yang, Yuxiao Dong, Jie Tang, Hongning Wang, Minlie Huang
Title: VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Abstract:
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.

Authors:Haoran Zheng, Renchi Yang, Jianliang Xu
Title: Adaptive Local Clustering over Attributed Graphs
Abstract:
Given a graph $G$ and a seed node $v_s$, the objective of local graph clustering (LGC) is to identify a subgraph $C_s \in G$ (a.k.a. local cluster) surrounding $v_s$ in time roughly linear with the size of $C_s$. This approach yields personalized clusters without needing to access the entire graph, which makes it highly suitable for numerous applications involving large graphs. However, most existing solutions merely rely on the topological connectivity between nodes in $G$, rendering them vulnerable to missing or noisy links that are commonly present in real-world graphs. To address this issue, this paper resorts to leveraging the complementary nature of graph topology and node attributes to enhance local clustering quality. To effectively exploit the attribute information, we first formulate the LGC as an estimation of the bidirectional diffusion distribution (BDD), which is specialized for capturing the multi-hop affinity between nodes in the presence of attributes. Furthermore, we propose LACA, an efficient and effective approach for LGC that achieves superb empirical performance on multiple real datasets while maintaining strong locality. The core components of LACA include (i) a fast and theoretically-grounded preprocessing technique for node attributes, (ii) an adaptive algorithm for diffusing any vectors over $G$ with rigorous theoretical guarantees and expedited convergence, and (iii) an effective three-step scheme for BDD approximation. Extensive experiments, comparing 17 competitors on 8 real datasets, show that LACA outperforms all competitors in terms of result quality measured against ground truth local clusters, while also being up to orders of magnitude faster. The code is available at https://github.com/HaoranZ99/alac.

Authors:Vidya Sudevan, Fakhreddine Zayer, Rizwana Kausar, Sajid Javed, Hamad Karki, Giulia De Masi, Jorge Dias
Title: Underwater Image Enhancement by Convolutional Spiking Neural Networks
Abstract:
Underwater image enhancement (UIE) is fundamental for marine applications, including autonomous vision-based navigation. Deep learning methods using convolutional neural networks (CNN) and vision transformers advanced UIE performance. Recently, spiking neural networks (SNN) have gained attention for their lightweight design, energy efficiency, and scalability. This paper introduces UIE-SNN, the first SNN-based UIE algorithm to improve visibility of underwater images. UIE-SNN is a 19- layered convolutional spiking encoder-decoder framework with skip connections, directly trained using surrogate gradient-based backpropagation through time (BPTT) strategy. We explore and validate the influence of training datasets on energy reduction, a unique advantage of UIE-SNN architecture, in contrast to the conventional learning-based architectures, where energy consumption is model-dependent. UIE-SNN optimizes the loss function in latent space representation to reconstruct clear underwater images. Our algorithm performs on par with its non-spiking counterpart methods in terms of PSNR and structural similarity index (SSIM) at reduced timesteps ($T=5$) and energy consumption of $85\%$. The algorithm is trained on two publicly available benchmark datasets, UIEB and EUVP, and tested on unseen images from UIEB, EUVP, LSUI, U45, and our custom UIE dataset. The UIE-SNN algorithm achieves PSNR of \(17.7801~dB\) and SSIM of \(0.7454\) on UIEB, and PSNR of \(23.1725~dB\) and SSIM of \(0.7890\) on EUVP. UIE-SNN achieves this algorithmic performance with fewer operators (\(147.49\) GSOPs) and energy (\(0.1327~J\)) compared to its non-spiking counterpart (GFLOPs = \(218.88\) and Energy=\(1.0068~J\)). Compared with existing SOTA UIE methods, UIE-SNN achieves an average of \(6.5\times\) improvement in energy efficiency. The source code is available at \href{https://github.com/vidya-rejul/UIE-SNN.git}{UIE-SNN}.

Authors:Hongda Liu, Longguang Wang, Weijun Guan, Ye Zhang, Yulan Guo
Title: Pluggable Style Representation Learning for Multi-Style Transfer
Abstract:
Due to the high diversity of image styles, the scalability to various styles plays a critical role in real-world applications. To accommodate a large amount of styles, previous multi-style transfer approaches rely on enlarging the model size while arbitrary-style transfer methods utilize heavy backbones. However, the additional computational cost introduced by more model parameters hinders these methods to be deployed on resource-limited devices. To address this challenge, in this paper, we develop a style transfer framework by decoupling the style modeling and transferring. Specifically, for style modeling, we propose a style representation learning scheme to encode the style information into a compact representation. Then, for style transferring, we develop a style-aware multi-style transfer network (SaMST) to adapt to diverse styles using pluggable style representations. In this way, our framework is able to accommodate diverse image styles in the learned style representations without introducing additional overhead during inference, thereby maintaining efficiency. Experiments show that our style representation can extract accurate style information. Moreover, qualitative and quantitative results demonstrate that our method achieves state-of-the-art performance in terms of both accuracy and efficiency. The codes are available in https://github.com/The-Learning-And-Vision-Atelier-LAVA/SaMST.

Authors:Hao Ai, Kunyi Wang, Zezhou Wang, Hao Lu, Jin Tian, Yaxin Luo, Peng Xing, Jen-Yuan Huang, Huaxia Li, Gen luo
Title: Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Abstract:
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.

Authors:Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, Ziyu Liu
Title: Wan: Open and Advanced Large-Scale Video Generative Models
Abstract:
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.

Authors:Jianyang Zhang, Qianli Luo, Guowu Yang, Wenjing Yang, Weide Liu, Guosheng Lin, Fengmao Lv
Title: Attribute-formed Class-specific Concept Space: Endowing Language Bottleneck Model with Better Interpretability and Scalability
Abstract:
Language Bottleneck Models (LBMs) are proposed to achieve interpretable image recognition by classifying images based on textual concept bottlenecks. However, current LBMs simply list all concepts together as the bottleneck layer, leading to the spurious cue inference problem and cannot generalized to unseen classes. To address these limitations, we propose the Attribute-formed Language Bottleneck Model (ALBM). ALBM organizes concepts in the attribute-formed class-specific space, where concepts are descriptions of specific attributes for specific classes. In this way, ALBM can avoid the spurious cue inference problem by classifying solely based on the essential concepts of each class. In addition, the cross-class unified attribute set also ensures that the concept spaces of different classes have strong correlations, as a result, the learned concept classifier can be easily generalized to unseen classes. Moreover, to further improve interpretability, we propose Visual Attribute Prompt Learning (VAPL) to extract visual features on fine-grained attributes. Furthermore, to avoid labor-intensive concept annotation, we propose the Description, Summary, and Supplement (DSS) strategy to automatically generate high-quality concept sets with a complete and precise attribute. Extensive experiments on 9 widely used few-shot benchmarks demonstrate the interpretability, transferability, and performance of our approach. The code and collected concept sets are available at https://github.com/tiggers23/ALBM.

Authors:Chenwei Zhang, Khanh Dao Duc
Title: CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Abstract:
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 Å) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.

Authors:Yuhui Wu, Liyi Chen, Ruibin Li, Shihao Wang, Chenxi Xie, Lei Zhang
Title: InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction
Abstract:
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at \href{https://github.com/langmanbusi/InsViE}{InsViE}.

Authors:Zhenyu Liang, Hao Li, Naiwei Yu, Kebin Sun, Ran Cheng
Title: Bridging Evolutionary Multiobjective Optimization and GPU Acceleration via Tensorization
Abstract:
Evolutionary multiobjective optimization (EMO) has made significant strides over the past two decades. However, as problem scales and complexities increase, traditional EMO algorithms face substantial performance limitations due to insufficient parallelism and scalability. While most work has focused on algorithm design to address these challenges, little attention has been given to hardware acceleration, thereby leaving a clear gap between EMO algorithms and advanced computing devices, such as GPUs. To bridge the gap, we propose to parallelize EMO algorithms on GPUs via the tensorization methodology. By employing tensorization, the data structures and operations of EMO algorithms are transformed into concise tensor representations, which seamlessly enables automatic utilization of GPU computing. We demonstrate the effectiveness of our approach by applying it to three representative EMO algorithms: NSGA-III, MOEA/D, and HypE. To comprehensively assess our methodology, we introduce a multiobjective robot control benchmark using a GPU-accelerated physics engine. Our experiments show that the tensorized EMO algorithms achieve speedups of up to 1113x compared to their CPU-based counterparts, while maintaining solution quality and effectively scaling population sizes to hundreds of thousands. Furthermore, the tensorized EMO algorithms efficiently tackle complex multiobjective robot control tasks, producing high-quality solutions with diverse behaviors. Source codes are available at https://github.com/EMI-Group/evomo.

Authors:Ziran Zhang, Xiaohui Li, Yihao Liu, Yujin Wang, Yueting Chen, Tianfan Xue, Shi Guo
Title: EGVD: Event-Guided Video Diffusion Model for Physically Realistic Large-Motion Frame Interpolation
Abstract:
Video frame interpolation (VFI) in scenarios with large motion remains challenging due to motion ambiguity between frames. While event cameras can capture high temporal resolution motion information, existing event-based VFI methods struggle with limited training data and complex motion patterns. In this paper, we introduce Event-Guided Video Diffusion Model (EGVD), a novel framework that leverages the powerful priors of pre-trained stable video diffusion models alongside the precise temporal information from event cameras. Our approach features a Multi-modal Motion Condition Generator (MMCG) that effectively integrates RGB frames and event signals to guide the diffusion process, producing physically realistic intermediate frames. We employ a selective fine-tuning strategy that preserves spatial modeling capabilities while efficiently incorporating event-guided temporal information. We incorporate input-output normalization techniques inspired by recent advances in diffusion modeling to enhance training stability across varying noise levels. To improve generalization, we construct a comprehensive dataset combining both real and simulated event data across diverse scenarios. Extensive experiments on both real and simulated datasets demonstrate that EGVD significantly outperforms existing methods in handling large motion and challenging lighting conditions, achieving substantial improvements in perceptual quality metrics (27.4% better LPIPS on Prophesee and 24.1% on BSRGB) while maintaining competitive fidelity measures. Code and datasets available at: https://github.com/OpenImagingLab/EGVD.

Authors:Yunrui Zhang, Gustavo Batista, Salil S. Kanhere
Title: Revisit Time Series Classification Benchmark: The Impact of Temporal Information for Classification
Abstract:
Time series classification is usually regarded as a distinct task from tabular data classification due to the importance of temporal information. However, in this paper, by performing permutation tests that disrupt temporal information on the UCR time series classification archive, the most widely used benchmark for time series classification, we identify a significant proportion of datasets where temporal information has little to no impact on classification. Many of these datasets are tabular in nature or rely mainly on tabular features, leading to potentially biased evaluations of time series classifiers focused on temporal information. To address this, we propose UCR Augmented, a benchmark based on the UCR time series classification archive designed to evaluate classifiers' ability to extract and utilize temporal information. Testing classifiers from seven categories on this benchmark revealed notable shifts in performance rankings. Some previously overlooked approaches perform well, while others see their performance decline significantly when temporal information is crucial. UCR Augmented provides a more robust framework for assessing time series classifiers, ensuring fairer evaluations. Our code is available at https://github.com/YunruiZhang/Revisit-Time-Series-Classification-Benchmark.

Authors:Taorui Wang, Zitong Yu, Yong Xu
Title: TC-GS: Tri-plane based compression for 3D Gaussian Splatting
Abstract:
Recently, 3D Gaussian Splatting (3DGS) has emerged as a prominent framework for novel view synthesis, providing high fidelity and rapid rendering speed. However, the substantial data volume of 3DGS and its attributes impede its practical utility, requiring compression techniques for reducing memory cost. Nevertheless, the unorganized shape of 3DGS leads to difficulties in compression. To formulate unstructured attributes into normative distribution, we propose a well-structured tri-plane to encode Gaussian attributes, leveraging the distribution of attributes for compression. To exploit the correlations among adjacent Gaussians, K-Nearest Neighbors (KNN) is used when decoding Gaussian distribution from the Tri-plane. We also introduce Gaussian position information as a prior of the position-sensitive decoder. Additionally, we incorporate an adaptive wavelet loss, aiming to focus on the high-frequency details as iterations increase. Our approach has achieved results that are comparable to or surpass that of SOTA 3D Gaussians Splatting compression work in extensive experiments across multiple datasets. The codes are released at https://github.com/timwang2001/TC-GS.

Authors:Zhouhong Gu, Xingzhou Chen, Xiaoran Shi, Tao Wang, Suhang Zheng, Tianyu Li, Hongwei Feng, Yanghua Xiao
Title: GAPO: Learning Preferential Prompt through Generative Adversarial Policy Optimization
Abstract:
Recent advances in large language models have highlighted the critical need for precise control over model outputs through predefined constraints. While existing methods attempt to achieve this through either direct instruction-response synthesis or preferential response optimization, they often struggle with constraint understanding and adaptation. This limitation becomes particularly evident when handling fine-grained constraints, leading to either hallucination or brittle performance. We introduce Generative Adversarial Policy Optimization (GAPO), a novel framework that combines GAN-based training dynamics with an encoder-only reward model to progressively learn and adapt to increasingly complex constraints. GAPO leverages adversarial training to automatically generate training samples of varying difficulty while utilizing the encoder-only architecture to better capture prompt-response relationships. Extensive experiments demonstrate GAPO's superior performance across multiple benchmarks, particularly in scenarios requiring fine-grained constraint handling, where it significantly outperforms existing methods like PPO, DPO, and KTO. Our results suggest that GAPO's unique approach to preferential prompt learning offers a more robust and effective solution for controlling LLM outputs. Code is avaliable in https://github.com/MikeGu721/GAPO.

Authors:Huanhuan Ma, Haisong Gong, Xiaoyuan Yi, Xing Xie, Dongkuan Xu
Title: Leveraging Implicit Sentiments: Enhancing Reliability and Validity in Psychological Trait Evaluation of LLMs
Abstract:
Recent advancements in Large Language Models (LLMs) have led to their increasing integration into human life. With the transition from mere tools to human-like assistants, understanding their psychological aspects-such as emotional tendencies and personalities-becomes essential for ensuring their trustworthiness. However, current psychological evaluations of LLMs, often based on human psychological assessments like the BFI, face significant limitations. The results from these approaches often lack reliability and have limited validity when predicting LLM behavior in real-world scenarios. In this work, we introduce a novel evaluation instrument specifically designed for LLMs, called Core Sentiment Inventory (CSI). CSI is a bilingual tool, covering both English and Chinese, that implicitly evaluates models' sentiment tendencies, providing an insightful psychological portrait of LLM across three dimensions: optimism, pessimism, and neutrality. Through extensive experiments, we demonstrate that: 1) CSI effectively captures nuanced emotional patterns, revealing significant variation in LLMs across languages and contexts; 2) Compared to current approaches, CSI significantly improves reliability, yielding more consistent results; and 3) The correlation between CSI scores and the sentiment of LLM's real-world outputs exceeds 0.85, demonstrating its strong validity in predicting LLM behavior. We make CSI public available via: https://github.com/dependentsign/CSI.

Authors:Naitik Jain, Amogh Joshi, Mason Earles
Title: iNatAg: Multi-Class Classification Models Enabled by a Large-Scale Benchmark Dataset with 4.7M Images of 2,959 Crop and Weed Species
Abstract:
Accurate identification of crop and weed species is critical for precision agriculture and sustainable farming. However, it remains a challenging task due to a variety of factors -- a high degree of visual similarity among species, environmental variability, and a continued lack of large, agriculture-specific image data. We introduce iNatAg, a large-scale image dataset which contains over 4.7 million images of 2,959 distinct crop and weed species, with precise annotations along the taxonomic hierarchy from binary crop/weed labels to specific species labels. Curated from the broader iNaturalist database, iNatAg contains data from every continent and accurately reflects the variability of natural image captures and environments. Enabled by this data, we train benchmark models built upon the Swin Transformer architecture and evaluate the impact of various modifications such as the incorporation of geospatial data and LoRA finetuning. Our best models achieve state-of-the-art performance across all taxonomic classification tasks, achieving 92.38\% on crop and weed classification. Furthermore, the scale of our dataset enables us to explore incorrect misclassifications and unlock new analytic possiblities for plant species. By combining large-scale species coverage, multi-task labels, and geographic diversity, iNatAg provides a new foundation for building robust, geolocation-aware agricultural classification systems. We release the iNatAg dataset publicly through AgML (https://github.com/Project-AgML/AgML), enabling direct access and integration into agricultural machine learning workflows.

Authors:Yu Xin, Gorkem Can Ates, Kuang Gong, Wei Shao
Title: Med3DVLM: An Efficient Vision-Language Model for 3D Medical Image Analysis
Abstract:
Vision-language models (VLMs) have shown promise in 2D medical image analysis, but extending them to 3D remains challenging due to the high computational demands of volumetric data and the difficulty of aligning 3D spatial features with clinical text. We present Med3DVLM, a 3D VLM designed to address these challenges through three key innovations: (1) DCFormer, an efficient encoder that uses decomposed 3D convolutions to capture fine-grained spatial features at scale; (2) SigLIP, a contrastive learning strategy with pairwise sigmoid loss that improves image-text alignment without relying on large negative batches; and (3) a dual-stream MLP-Mixer projector that fuses low- and high-level image features with text embeddings for richer multi-modal representations. We evaluate our model on the M3D dataset, which includes radiology reports and VQA data for 120,084 3D medical images. Results show that Med3DVLM achieves superior performance across multiple benchmarks. For image-text retrieval, it reaches 61.00% R@1 on 2,000 samples, significantly outperforming the current state-of-the-art M3D model (19.10%). For report generation, it achieves a METEOR score of 36.42% (vs. 14.38%). In open-ended visual question answering (VQA), it scores 36.76% METEOR (vs. 33.58%), and in closed-ended VQA, it achieves 79.95% accuracy (vs. 75.78%). These results highlight Med3DVLM's ability to bridge the gap between 3D imaging and language, enabling scalable, multi-task reasoning across clinical applications. Our code is publicly available at https://github.com/mirthAI/Med3DVLM.

Authors:Yudong Yang, Jimin Zhuang, Guangzhi Sun, Changli Tang, Yixuan Li, Peihan Li, Yifan Jiang, Wei Li, Zejun Ma, Chao Zhang
Title: Audio-centric Video Understanding Benchmark without Text Shortcut
Abstract:
Audio often serves as an auxiliary modality in video understanding tasks of audio-visual large language models (LLMs), merely assisting in the comprehension of visual information. However, a thorough understanding of videos significantly depends on auditory information, as audio offers critical context, emotional cues, and semantic meaning that visual data alone often lacks. This paper proposes an audio-centric video understanding benchmark (AVUT) to evaluate the video comprehension capabilities of multimodal LLMs with a particular focus on auditory information. AVUT introduces a suite of carefully designed audio-centric tasks, holistically testing the understanding of both audio content and audio-visual interactions in videos. Moreover, this work points out the text shortcut problem that largely exists in other benchmarks where the correct answer can be found from question text alone without needing videos. AVUT addresses this problem by proposing a answer permutation-based filtering mechanism. A thorough evaluation across a diverse range of open-source and proprietary multimodal LLMs is performed, followed by the analyses of deficiencies in audio-visual LLMs. Demos and data are available at https://github.com/lark-png/AVUT.

Authors:Yudong Yang, Jimin Zhuang, Guangzhi Sun, Changli Tang, Yixuan Li, Peihan Li, Yifan Jiang, Wei Li, Zejun Ma, Chao Zhang
Title: Audio-centric Video Understanding Benchmark without Text Shortcut
Abstract:
Audio often serves as an auxiliary modality in video understanding tasks of audio-visual large language models (LLMs), merely assisting in the comprehension of visual information. However, a thorough understanding of videos significantly depends on auditory information, as audio offers critical context, emotional cues, and semantic meaning that visual data alone often lacks. This paper proposes an audio-centric video understanding benchmark (AVUT) to evaluate the video comprehension capabilities of multimodal LLMs with a particular focus on auditory information. AVUT introduces a suite of carefully designed audio-centric tasks, holistically testing the understanding of both audio content and audio-visual interactions in videos. Moreover, this work points out the text shortcut problem that largely exists in other benchmarks where the correct answer can be found from question text alone without needing videos. AVUT addresses this problem by proposing a answer permutation-based filtering mechanism. A thorough evaluation across a diverse range of open-source and proprietary multimodal LLMs is performed, followed by the analyses of deficiencies in audio-visual LLMs. Demos and data are available at https://github.com/lark-png/AVUT.

Authors:Han Chen, Zicong Jiang, Zining Zhang, Bingsheng He, Pingyi Luo, Mian Lu, Yuqiang Chen
Title: LogQuant: Log-Distributed 2-Bit Quantization of KV Cache with Superior Accuracy Preservation
Abstract:
We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV Cache in large language model (LLM) inference, delivering substantial memory savings while preserving superior performance. Previous methods either assume that later tokens are more important or attempt to predict important tokens based on earlier attention patterns. Both approaches, however, can result in performance bottlenecks or frequent mispredictions. LogQuant takes a different approach. By applying a log-based filtering mechanism, it selectively compresses the KV Cache across the entire context, achieving better performance with the same or even reduced memory footprint compared to existing methods. In benchmark tests, it enhances throughput by 25% and boosts batch size by 60% without increasing memory consumption. For challenging tasks such as Math and Code Completion, LogQuant improves accuracy by 40% to 200% at the same compression ratio, outperforming comparable techniques.LogQuant integrates effortlessly with popular inference frameworks like Python's transformers library. Implementation can be available in https://github.com/Concyclics/LogQuantKV.

Authors:Daniel G. P. Petrini, Hae Yong Kim
Title: Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
Abstract:
Mammography, an X-ray-based imaging technique, plays a crucial role in the early detection of breast cancer. Its accuracy heavily depends on expert radiologists, making it essential to minimize interpretation errors. To support radiologists, various computer-aided detection and diagnostic methods have been proposed, increasingly leveraging advancements in artificial intelligence and machine learning. Over recent years, mammogram analysis has evolved significantly - from early patch-based classifiers, which examine only localized regions of images, to full-image classifiers, and later towards multi-view systems that simultaneously integrate multiple perspectives of the mammographic exam for enhanced accuracy. Despite this progression, critical questions remain, such as whether multi-view systems consistently outperform single-view approaches. In this paper, we systematically evaluate and compare the effectiveness of single-view and multi-view mammogram classification techniques. Our research introduces models that achieve superior performance relative to existing state-of-the-art approaches in both single-view and two-view classification scenarios. Furthermore, our findings provide valuable insights into optimal model architectures and effective transfer learning strategies, paving the way for more accurate and efficient mammogram interpretation. The inference code and model are available at https://github.com/dpetrini/multiple-view.

Authors:Daniel G. P. Petrini, Hae Yong Kim
Title: Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
Abstract:
Mammography, an X-ray-based imaging technique, remains central to the early detection of breast cancer. Recent advances in artificial intelligence have enabled increasingly sophisticated computer-aided diagnostic methods, evolving from patch-based classifiers to whole-image approaches and then to multi-view architectures that jointly analyze complementary projections. Despite this progress, several critical questions remain unanswered. In this study, we systematically investigate these issues by addressing five key research questions: (1) the role of patch classifiers in performance, (2) the transferability of natural-image-trained backbones, (3) the advantages of learn-to-resize over conventional downscaling, (4) the contribution of multi-view integration, and (5) the robustness of findings across varying image quality. Beyond benchmarking, our experiments demonstrate clear performance gains over prior work. For the CBIS-DDSM dataset, we improved single-view AUC from 0.8153 to 0.8343, and multiple-view AUC from 0.8483 to 0.8658. Using a new comparative method, we also observed a 0.0217 AUC increase when extending from single to multiple-view analysis. On the complete VinDr-Mammo dataset, the multiple-view approach further improved results, achieving a 0.0492 AUC increase over single view and reaching 0.8511 AUC overall. These results establish new state-of-the-art benchmarks, providing clear evidence of the advantages of multi-view architectures for mammogram interpretation. Beyond performance, our analysis offers principled insights into model design and transfer learning strategies, contributing to the development of more accurate and reliable breast cancer screening tools. The inference code and trained models are publicly available at https://github.com/dpetrini/multiple-view.

Authors:Mengqi Lou, Kabir Aladin Verchand, Sara Fridovich-Keil, Ashwin Pananjady
Title: Accurate, provable, and fast nonlinear tomographic reconstruction: A variational inequality approach
Abstract:
We consider the problem of signal reconstruction for computed tomography (CT) under a nonlinear forward model that accounts for exponential signal attenuation, a polychromatic X-ray source, general measurement noise (e.g. Poisson shot noise), and observations acquired over multiple wavelength windows. We develop a simple iterative algorithm for single-material reconstruction, which we call EXACT (EXtragradient Algorithm for Computed Tomography), based on formulating our estimate as the fixed point of a monotone variational inequality. We prove guarantees on the statistical and computational performance of EXACT under practical assumptions on the measurement process. We also consider a recently introduced variant of this model with Gaussian measurements, and present sample and iteration complexity bounds for EXACT that improve upon those of existing algorithms. We apply our EXACT algorithm to a CT phantom image recovery task and show that it often requires fewer X-ray projection exposures, lower source intensity, and less computation time to achieve similar reconstruction quality to existing methods.

Authors:Xiang Xu, Lingdong Kong, Hui Shuai, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu, Qingshan Liu
Title: SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
Abstract:
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow

Authors:Xinpeng Li, Shijian Deng, Bolin Lai, Weiguo Pian, James M. Rehg, Yapeng Tian
Title: Towards Online Multi-Modal Social Interaction Understanding
Abstract:
Multimodal social interaction understanding (MMSI) is critical in human-robot interaction systems. In real-world scenarios, AI agents are required to provide real-time feedback. However, existing models often depend on both past and future contexts, which hinders them from applying to real-world problems. To bridge this gap, we propose an online MMSI setting, where the model must resolve MMSI tasks using only historical information, such as recorded dialogues and video streams. To address the challenges of missing the useful future context, we develop a novel framework, named Online-MMSI-VLM, that leverages two complementary strategies: multi-party conversation forecasting and social-aware visual prompting with multi-modal large language models. First, to enrich linguistic context, the multi-party conversation forecasting simulates potential future utterances in a coarse-to-fine manner, anticipating upcoming speaker turns and then generating fine-grained conversational details. Second, to effectively incorporate visual social cues like gaze and gesture, social-aware visual prompting highlights the social dynamics in video with bounding boxes and body keypoints for each person and frame. Extensive experiments on three tasks and two datasets demonstrate that our method achieves state-of-the-art performance and significantly outperforms baseline models, indicating its effectiveness on Online-MMSI. The code and pre-trained models will be publicly released at: https://github.com/Sampson-Lee/OnlineMMSI.

Authors:Aaron Serianni, Tyler Zhu, Olga Russakovsky, Vikram V. Ramaswamy
Title: Attention IoU: Examining Biases in CelebA using Attention Maps
Abstract:
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.

Authors:Matthew Greenig, Haowen Zhao, Vladimir Radenkovic, Aubin Ramon, Pietro Sormanni
Title: IgCraft: A versatile sequence generation framework for antibody discovery and engineering
Abstract:
Designing antibody sequences to better resemble those observed in natural human repertoires is a key challenge in biologics development. We introduce IgCraft: a multi-purpose model for paired human antibody sequence generation, built on Bayesian Flow Networks. IgCraft presents one of the first unified generative modeling frameworks capable of addressing multiple antibody sequence design tasks with a single model, including unconditional sampling, sequence inpainting, inverse folding, and CDR motif scaffolding. Our approach achieves competitive results across the full spectrum of these tasks while constraining generation to the space of human antibody sequences, exhibiting particular strengths in CDR motif scaffolding (grafting) where we achieve state-of-the-art performance in terms of humanness and preservation of structural properties. By integrating previously separate tasks into a single scalable generative model, IgCraft provides a versatile platform for sampling human antibody sequences under a variety of contexts relevant to antibody discovery and engineering. Model code and weights are publicly available at https://github.com/mgreenig/IgCraft.

Authors:Zhuoming Liu, Yiquan Li, Khoi Duc Nguyen, Yiwu Zhong, Yin Li
Title: PAVE: Patching and Adapting Video Large Language Models
Abstract:
Pre-trained video large language models (Video LLMs) exhibit remarkable reasoning capabilities, yet adapting these models to new tasks involving additional modalities or data types (e.g., audio or 3D information) remains challenging. In this paper, we present PAVE, a flexible framework for adapting pre-trained Video LLMs to downstream tasks with side-channel signals, such as audio, 3D cues, or multi-view videos. PAVE introduces lightweight adapters, referred to as "patches," which add a small number of parameters and operations to a base model without modifying its architecture or pre-trained weights. In doing so, PAVE can effectively adapt the pre-trained base model to support diverse downstream tasks, including audio-visual question answering, 3D reasoning, multi-view video recognition, and high frame rate video understanding. Across these tasks, PAVE significantly enhances the performance of the base model, surpassing state-of-the-art task-specific models while incurring a minor cost of ~0.1% additional FLOPs and parameters. Further, PAVE supports multi-task learning and generalizes well across different Video LLMs. Our code is available at https://github.com/dragonlzm/PAVE.

Authors:Jingdan Kang, Haoxin Yang, Yan Cai, Huaidong Zhang, Xuemiao Xu, Yong Du, Shengfeng He
Title: SITA: Structurally Imperceptible and Transferable Adversarial Attacks for Stylized Image Generation
Abstract:
Image generation technology has brought significant advancements across various fields but has also raised concerns about data misuse and potential rights infringements, particularly with respect to creating visual artworks. Current methods aimed at safeguarding artworks often employ adversarial attacks. However, these methods face challenges such as poor transferability, high computational costs, and the introduction of noticeable noise, which compromises the aesthetic quality of the original artwork. To address these limitations, we propose a Structurally Imperceptible and Transferable Adversarial (SITA) attacks. SITA leverages a CLIP-based destylization loss, which decouples and disrupts the robust style representation of the image. This disruption hinders style extraction during stylized image generation, thereby impairing the overall stylization process. Importantly, SITA eliminates the need for a surrogate diffusion model, leading to significantly reduced computational overhead. The method's robust style feature disruption ensures high transferability across diverse models. Moreover, SITA introduces perturbations by embedding noise within the imperceptible structural details of the image. This approach effectively protects against style extraction without compromising the visual quality of the artwork. Extensive experiments demonstrate that SITA offers superior protection for artworks against unauthorized use in stylized generation. It significantly outperforms existing methods in terms of transferability, computational efficiency, and noise imperceptibility. Code is available at https://github.com/A-raniy-day/SITA.

Authors:Vladan Stojnić, Yannis Kalantidis, Jiří Matas, Giorgos Tolias
Title: LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
Abstract:
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS

Authors:Pihai Sun, Junjun Jiang, Yuanqi Yao, Youyu Chen, Wenbo Zhao, Kui Jiang, Xianming Liu
Title: FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Abstract:
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE

Authors:Yuli Zhou, Guolei Sun, Yawei Li, Yuqian Fu, Luca Benini, Ender Konukoglu
Title: CamSAM2: Segment Anything Accurately in Camouflaged Videos
Abstract:
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code will be available at https://github.com/zhoustan/CamSAM2.

Authors:Yusen Xie, Zhengmin Huang, Shaojie Shen, Jun Ma
Title: Semi-SMD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
Abstract:
In this paper, we introduce Semi-SMD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SMD.

Authors:Ilias Stogiannidis, Steven McDonagh, Sotirios A. Tsaftaris
Title: Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) have recently emerged as powerful tools, excelling in tasks that integrate visual and textual comprehension, such as image captioning, visual question answering, and image-text retrieval. However, existing benchmarks for VLMs include spatial components, which often fail to isolate spatial reasoning from related tasks such as object detection or semantic comprehension. In this paper, we address these deficiencies with a multi-faceted approach towards understanding spatial reasoning. Informed by the diverse and multi-dimensional nature of human spatial reasoning abilities, we present a detailed analysis that first delineates the core elements of spatial reasoning: spatial relations, orientation and navigation, mental rotation, and spatial visualization, and then assesses the performance of these models in both synthetic and real-world images, bridging controlled and naturalistic contexts. We analyze 13 state-of-the-art Vision-Language Models, uncovering pivotal insights into their spatial reasoning performance. Our results reveal profound shortcomings in current VLMs, with average accuracy across the 13 models approximating random chance, highlighting spatial reasoning as a persistent obstacle. This work not only exposes the pressing need to advance spatial reasoning within VLMs but also establishes a solid platform for future exploration. Code available on GitHub (https://github.com/stogiannidis/srbench) and dataset available on HuggingFace (https://huggingface.co/datasets/stogiannidis/srbench).

Authors:Jungin Park, Jiyoung Lee, Kwanghoon Sohn
Title: Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations
Abstract:
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.

Authors:Andrii Yermakov, Jan Cech, Jiri Matas
Title: Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
Abstract:
This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection

Authors:Jan Kohút, Martin Dočekal, Michal Hradiš, Marek Vaško
Title: BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction
Abstract:
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset

Authors:Yabin Wang, Zhiwu Huang, Xiaopeng Hong
Title: OpenSDI: Spotting Diffusion-Generated Images in the Open World
Abstract:
This paper identifies OpenSDI, a challenge for spotting diffusion-generated images in open-world settings. In response to this challenge, we define a new benchmark, the OpenSDI dataset (OpenSDID), which stands out from existing datasets due to its diverse use of large vision-language models that simulate open-world diffusion-based manipulations. Another outstanding feature of OpenSDID is its inclusion of both detection and localization tasks for images manipulated globally and locally by diffusion models. To address the OpenSDI challenge, we propose a Synergizing Pretrained Models (SPM) scheme to build up a mixture of foundation models. This approach exploits a collaboration mechanism with multiple pretrained foundation models to enhance generalization in the OpenSDI context, moving beyond traditional training by synergizing multiple pretrained models through prompting and attending strategies. Building on this scheme, we introduce MaskCLIP, an SPM-based model that aligns Contrastive Language-Image Pre-Training (CLIP) with Masked Autoencoder (MAE). Extensive evaluations on OpenSDID show that MaskCLIP significantly outperforms current state-of-the-art methods for the OpenSDI challenge, achieving remarkable relative improvements of 14.23% in IoU (14.11% in F1) and 2.05% in accuracy (2.38% in F1) compared to the second-best model in localization and detection tasks, respectively. Our dataset and code are available at https://github.com/iamwangyabin/OpenSDI.

Authors:Hongcheng Gao, Jiashu Qu, Jingyi Tang, Baolong Bi, Yue Liu, Hongyu Chen, Li Liang, Li Su, Qingming Huang
Title: Exploring Hallucination of Large Multimodal Models in Video Understanding: Benchmark, Analysis and Mitigation
Abstract:
The hallucination of large multimodal models (LMMs), providing responses that appear correct but are actually incorrect, limits their reliability and applicability. This paper aims to study the hallucination problem of LMMs in video modality, which is dynamic and more challenging compared to static modalities like images and text. From this motivation, we first present a comprehensive benchmark termed HAVEN for evaluating hallucinations of LMMs in video understanding tasks. It is built upon three dimensions, i.e., hallucination causes, hallucination aspects, and question formats, resulting in 6K questions. Then, we quantitatively study 7 influential factors on hallucinations, e.g., duration time of videos, model sizes, and model reasoning, via experiments of 16 LMMs on the presented benchmark. In addition, inspired by recent thinking models like OpenAI o1, we propose a video-thinking model to mitigate the hallucinations of LMMs via supervised reasoning fine-tuning (SRFT) and direct preference optimization (TDPO)-- where SRFT enhances reasoning capabilities while TDPO reduces hallucinations in the thinking process. Extensive experiments and analyses demonstrate the effectiveness. Remarkably, it improves the baseline by 7.65% in accuracy on hallucination evaluation and reduces the bias score by 4.5%. The code and data are public at https://github.com/Hongcheng-Gao/HAVEN.

Authors:Xinxing Cheng, Tianyang Zhang, Wenqi Lu, Qingjie Meng, Alejandro F. Frangi, Jinming Duan
Title: SACB-Net: Spatial-awareness Convolutions for Medical Image Registration
Abstract:
Deep learning-based image registration methods have shown state-of-the-art performance and rapid inference speeds. Despite these advances, many existing approaches fall short in capturing spatially varying information in non-local regions of feature maps due to the reliance on spatially-shared convolution kernels. This limitation leads to suboptimal estimation of deformation fields. In this paper, we propose a 3D Spatial-Awareness Convolution Block (SACB) to enhance the spatial information within feature representations. Our SACB estimates the spatial clusters within feature maps by leveraging feature similarity and subsequently parameterizes the adaptive convolution kernels across diverse regions. This adaptive mechanism generates the convolution kernels (weights and biases) tailored to spatial variations, thereby enabling the network to effectively capture spatially varying information. Building on SACB, we introduce a pyramid flow estimator (named SACB-Net) that integrates SACBs to facilitate multi-scale flow composition, particularly addressing large deformations. Experimental results on the brain IXI and LPBA datasets as well as Abdomen CT datasets demonstrate the effectiveness of SACB and the superiority of SACB-Net over the state-of-the-art learning-based registration methods. The code is available at https://github.com/x-xc/SACB_Net .

Authors:Mohammad Daffa Robani, Paul Saves, Pramudita Satria Palar, Lavi Rizki Zuhal, oseph Morlier
Title: SMT-EX: An Explainable Surrogate Modeling Toolbox for Mixed-Variables Design Exploration
Abstract:
Surrogate models are of high interest for many engineering applications, serving as cheap-to-evaluate time-efficient approximations of black-box functions to help engineers and practitioners make decisions and understand complex systems. As such, the need for explainability methods is rising and many studies have been performed to facilitate knowledge discovery from surrogate models. To respond to these enquiries, this paper introduces SMT-EX, an enhancement of the open-source Python Surrogate Modeling Toolbox (SMT) that integrates explainability techniques into a state-of-the-art surrogate modelling framework. More precisely, SMT-EX includes three key explainability methods: Shapley Additive Explanations, Partial Dependence Plot, and Individual Conditional Expectations. A peculiar explainability dependency of SMT has been developed for such purpose that can be easily activated once the surrogate model is built, offering a user-friendly and efficient tool for swift insight extraction. The effectiveness of SMT-EX is showcased through two test cases. The first case is a 10-variable wing weight problem with purely continuous variables and the second one is a 3-variable mixed-categorical cantilever beam bending problem. Relying on SMT-EX analyses for these problems, we demonstrate its versatility in addressing a diverse range of problem characteristics. SMT-Explainability is freely available on Github: https://github.com/SMTorg/smt-explainability .

Authors:Jiaxin Zhang, Junjun Jiang, Youyu Chen, Kui Jiang, Xianming Liu
Title: COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on Boundary-Adaptive Gaussian Splitting
Abstract:
Accurate object segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D segmentation based on 3D Gaussian Splatting (3DGS) struggles with accurately delineating object boundaries, as Gaussian primitives often span across object edges due to their inherent volume and the lack of semantic guidance during training. In order to tackle these challenges, we introduce Clear Object Boundaries for 3DGS Segmentation (COB-GS), which aims to improve segmentation accuracy by clearly delineating blurry boundaries of interwoven Gaussian primitives within the scene. Unlike existing approaches that remove ambiguous Gaussians and sacrifice visual quality, COB-GS, as a 3DGS refinement method, jointly optimizes semantic and visual information, allowing the two different levels to cooperate with each other effectively. Specifically, for the semantic guidance, we introduce a boundary-adaptive Gaussian splitting technique that leverages semantic gradient statistics to identify and split ambiguous Gaussians, aligning them closely with object boundaries. For the visual optimization, we rectify the degraded suboptimal texture of the 3DGS scene, particularly along the refined boundary structures. Experimental results show that COB-GS substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained model, yielding clear boundaries while preserving high visual quality. Code is available at https://github.com/ZestfulJX/COB-GS.

Authors:Muyi Bao, Shuchang Lyu, Zhaoyang Xu, Qi Zhao, Changyu Zeng, Wenpei Bai, Guangliang Cheng
Title: ASP-VMUNet: Atrous Shifted Parallel Vision Mamba U-Net for Skin Lesion Segmentation
Abstract:
Skin lesion segmentation is a critical challenge in computer vision, and it is essential to separate pathological features from healthy skin for diagnostics accurately. Traditional Convolutional Neural Networks (CNNs) are limited by narrow receptive fields, and Transformers face significant computational burdens. This paper presents a novel skin lesion segmentation framework, the Atrous Shifted Parallel Vision Mamba UNet (ASP-VMUNet), which integrates the efficient and scalable Mamba architecture to overcome limitations in traditional CNNs and computationally demanding Transformers. The framework introduces an atrous scan technique that minimizes background interference and expands the receptive field, enhancing Mamba's scanning capabilities. Additionally, the inclusion of a Parallel Vision Mamba (PVM) layer and a shift round operation optimizes feature segmentation and fosters rich inter-segment information exchange. A supplementary CNN branch with a Selective-Kernel (SK) Block further refines the segmentation by blending local and global contextual information. Tested on four benchmark datasets (ISIC16/17/18 and PH2), ASP-VMUNet demonstrates superior performance in skin lesion segmentation, validated by comprehensive ablation studies. This approach not only advances medical image segmentation but also highlights the benefits of hybrid architectures in medical imaging technology. Our code is available at https://github.com/BaoBao0926/ASP-VMUNet/tree/main.

Authors:Kian Kai Ang, Damith C. Ranasinghe
Title: QUIC-Fuzz: An Effective Greybox Fuzzer For The QUIC Protocol
Abstract:
Network applications are routinely under attack. We consider the problem of developing an effective and efficient fuzzer for the recently ratified QUIC network protocol to uncover security vulnerabilities. QUIC offers a unified transport layer for low latency, reliable transport streams that is inherently secure, ultimately representing a complex protocol design characterised by new features and capabilities for the Internet. Fuzzing a secure transport layer protocol is not trivial. The interactive, strict, rule-based, asynchronous nature of communications with a target, the stateful nature of interactions, security mechanisms to protect communications (such as integrity checks and encryption), and inherent overheads (such as target initialisation) challenge generic network protocol fuzzers. We discuss and address the challenges pertinent to fuzzing transport layer protocols (like QUIC), developing mechanisms that enable fast, effective fuzz testing of QUIC implementations to build a prototype grey-box mutation-based fuzzer; QUIC-Fuzz. We test 6, well-maintained server-side implementations, including from Google and Alibaba with QUIC-Fuzz. The results demonstrate the fuzzer is both highly effective and generalisable. Our testing uncovered 10 new security vulnerabilities, precipitating 2 CVE assignments thus far. In code coverage, QUIC-Fuzz outperforms other existing state-of-the-art network protocol fuzzers (Fuzztruction-Net, ChatAFL, and ALFNet) with up to an 84% increase in code coverage where QUIC-Fuzz outperformed statistically significantly across all targets and with a majority of bugs only discoverable by QUIC-Fuzz. We open-source QUIC-Fuzz on GitHub.

Authors:Chenghao Li, Razvan Beuran, Nak Young Chong
Title: Quality-focused Active Adversarial Policy for Safe Grasping in Human-Robot Interaction
Abstract:
Vision-guided robot grasping methods based on Deep Neural Networks (DNNs) have achieved remarkable success in handling unknown objects, attributable to their powerful generalizability. However, these methods with this generalizability tend to recognize the human hand and its adjacent objects as graspable targets, compromising safety during Human-Robot Interaction (HRI). In this work, we propose the Quality-focused Active Adversarial Policy (QFAAP) to solve this problem. Specifically, the first part is the Adversarial Quality Patch (AQP), wherein we design the adversarial quality patch loss and leverage the grasp dataset to optimize a patch with high quality scores. Next, we construct the Projected Quality Gradient Descent (PQGD) and integrate it with the AQP, which contains only the hand region within each real-time frame, endowing the AQP with fast adaptability to the human hand shape. Through AQP and PQGD, the hand can be actively adversarial with the surrounding objects, lowering their quality scores. Therefore, further setting the quality score of the hand to zero will reduce the grasping priority of both the hand and its adjacent objects, enabling the robot to grasp other objects away from the hand without emergency stops. We conduct extensive experiments on the benchmark datasets and a cobot, showing the effectiveness of QFAAP. Our code and demo videos are available here: https://github.com/clee-jaist/QFAAP.

Authors:Yufei Cai, Hu Han, Yuxiang Wei, Shiguang Shan, Xilin Chen
Title: EfficientMT: Efficient Temporal Adaptation for Motion Transfer in Text-to-Video Diffusion Models
Abstract:
The progress on generative models has led to significant advances on text-to-video (T2V) generation, yet the motion controllability of generated videos remains limited. Existing motion transfer methods explored the motion representations of reference videos to guide generation. Nevertheless, these methods typically rely on sample-specific optimization strategy, resulting in high computational burdens. In this paper, we propose EfficientMT, a novel and efficient end-to-end framework for video motion transfer. By leveraging a small set of synthetic paired motion transfer samples, EfficientMT effectively adapts a pretrained T2V model into a general motion transfer framework that can accurately capture and reproduce diverse motion patterns. Specifically, we repurpose the backbone of the T2V model to extract temporal information from reference videos, and further propose a scaler module to distill motion-related information. Subsequently, we introduce a temporal integration mechanism that seamlessly incorporates reference motion features into the video generation process. After training on our self-collected synthetic paired samples, EfficientMT enables general video motion transfer without requiring test-time optimization. Extensive experiments demonstrate that our EfficientMT outperforms existing methods in efficiency while maintaining flexible motion controllability. Our code will be available https://github.com/PrototypeNx/EfficientMT.

Authors:Zizhi Chen, Minghao Han, Xukun Zhang, Shuwei Ma, Tao Liu, Xing Wei, Lihua Zhang
Title: VGAT: A Cancer Survival Analysis Framework Transitioning from Generative Visual Question Answering to Genomic Reconstruction
Abstract:
Multimodal learning combining pathology images and genomic sequences enhances cancer survival analysis but faces clinical implementation barriers due to limited access to genomic sequencing in under-resourced regions. To enable survival prediction using only whole-slide images (WSI), we propose the Visual-Genomic Answering-Guided Transformer (VGAT), a framework integrating Visual Question Answering (VQA) techniques for genomic modality reconstruction. By adapting VQA's text feature extraction approach, we derive stable genomic representations that circumvent dimensionality challenges in raw genomic data. Simultaneously, a cluster-based visual prompt module selectively enhances discriminative WSI patches, addressing noise from unfiltered image regions. Evaluated across five TCGA datasets, VGAT outperforms existing WSI-only methods, demonstrating the viability of genomic-informed inference without sequencing. This approach bridges multimodal research and clinical feasibility in resource-constrained settings. The code link is https://github.com/CZZZZZZZZZZZZZZZZZ/VGAT.

Authors:Farzad Beizaee, Gregory A. Lodygensky, Christian Desrosiers, Jose Dolz
Title: Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection
Abstract:
Recent advances in diffusion models have spurred research into their application for Reconstruction-based unsupervised anomaly detection. However, these methods may struggle with maintaining structural integrity and recovering the anomaly-free content of abnormal regions, especially in multi-class scenarios. Furthermore, diffusion models are inherently designed to generate images from pure noise and struggle to selectively alter anomalous regions of an image while preserving normal ones. This leads to potential degradation of normal regions during reconstruction, hampering the effectiveness of anomaly detection. This paper introduces a reformulation of the standard diffusion model geared toward selective region alteration, allowing the accurate identification of anomalies. By modeling anomalies as noise in the latent space, our proposed Deviation correction diffusion (DeCo-Diff) model preserves the normal regions and encourages transformations exclusively on anomalous areas. This selective approach enhances the reconstruction quality, facilitating effective unsupervised detection and localization of anomaly regions. Comprehensive evaluations demonstrate the superiority of our method in accurately identifying and localizing anomalies in complex images, with pixel-level AUPRC improvements of 11-14% over state-of-the-art models on well known anomaly detection datasets. The code is available at https://github.com/farzad-bz/DeCo-Diff

Authors:Yuxuan Hu, Xiaodong Chen, Cuiping Li, Hong Chen, Jing Zhang
Title: QUAD: Quantization and Parameter-Efficient Tuning of LLM with Activation Decomposition
Abstract:
Large Language Models (LLMs) excel in diverse applications but suffer inefficiency due to massive scale. While quantization reduces computational costs, existing methods degrade accuracy in medium-sized LLMs (e.g., Llama-3-8B) due to activation outliers. To address this, we propose QUAD (Quantization with Activation Decomposition), a framework leveraging Singular Value Decomposition (SVD) to suppress activation outliers for effective 4-bit quantization. QUAD estimates activation singular vectors offline using calibration data to construct an orthogonal transformation matrix P, shifting outliers to additional dimensions in full precision while quantizing rest components to 4-bit. Additionally, QUAD enables parameter-efficient fine-tuning via adaptable full-precision outlier weights, narrowing the accuracy gap between quantized and full-precision models. Experiments demonstrate that QUAD achieves 94% ~ 96% accuracy under W4A4 quantization and 98% accuracy with W4A4/A8 and parameter-efficient fine-tuning for Llama-3 and Qwen-2.5 models. Our code is available at \href{https://github.com/hyx1999/Quad}{repository}.

Authors:Yongting Hu, Yuxin Lin, Chengliang Liu, Xiaoling Luo, Xiaoyan Dou, Qihao Xu, Yong Xu
Title: Wavelet-based Global-Local Interaction Network with Cross-Attention for Multi-View Diabetic Retinopathy Detection
Abstract:
Multi-view diabetic retinopathy (DR) detection has recently emerged as a promising method to address the issue of incomplete lesions faced by single-view DR. However, it is still challenging due to the variable sizes and scattered locations of lesions. Furthermore, existing multi-view DR methods typically merge multiple views without considering the correlations and redundancies of lesion information across them. Therefore, we propose a novel method to overcome the challenges of difficult lesion information learning and inadequate multi-view fusion. Specifically, we introduce a two-branch network to obtain both local lesion features and their global dependencies. The high-frequency component of the wavelet transform is used to exploit lesion edge information, which is then enhanced by global semantic to facilitate difficult lesion learning. Additionally, we present a cross-view fusion module to improve multi-view fusion and reduce redundancy. Experimental results on large public datasets demonstrate the effectiveness of our method. The code is open sourced on https://github.com/HuYongting/WGLIN.

Authors:Weizhi Chen, Jingbo Chen, Yupeng Deng, Jiansheng Chen, Yuman Feng, Zhihao Xi, Diyou Liu, Kai Li, Yu Meng
Title: LRSCLIP: A Vision-Language Foundation Model for Aligning Remote Sensing Image with Longer Text
Abstract:
This study addresses the technical bottlenecks in handling long text and the "hallucination" issue caused by insufficient short text information in remote sensing vision-language foundation models (VLFM). We propose a novel vision-language foundation model, LRSCLIP, and a multimodal dataset, LRS2M. The main contributions are as follows: (1) By integrating multi-source remote sensing data and adopting a large language model labeling strategy, we construct the LRS2M dataset, which contains 2 million image-text pairs, providing both short and long texts for the first time, thus solving the problem of semantic granularity limitations in existing datasets; (2) The design of the LRSCLIP architecture based on Long-CLIP's KPS module, which extends CLIP's text processing capacity and achieves fine-grained cross-modal feature alignment through a dual-text loss weighting mechanism. Experimental results show that LRSCLIP improves retrieval accuracy by 10\%-20\% over the Long-CLIP baseline in the zero-shot long-text cross-modal retrieval task. For the zero-shot short-text cross-modal retrieval task, LRSCLIP achieves improvements over the current best model, GeoRSCLIP, with increases of 0.17\%, 0.67\%, and 0.92\% in Text to Image R@1, Image to Text R@1, and mR on RSITMD, respectively, and 0.04\%, 2.93\%, and 1.28\% on RSICD. In the zero-shot image classification task (average accuracy=75.75\%) and semantic localization task (Rmi=0.7653), LRSCLIP achieves state-of-the-art performance. These results validate the dual advantages of fine-grained semantic understanding and global feature matching in LRSCLIP. This work provides a new benchmark model and data support for remote sensing multimodal learning. The related code has been open source and is available at https://github.com/MitsuiChen14/LRSCLIP.

Authors:Zhuoran Zhao, Linlin Yang, Pengzhan Sun, Pan Hui, Angela Yao
Title: Analyzing the Synthetic-to-Real Domain Gap in 3D Hand Pose Estimation
Abstract:
Recent synthetic 3D human datasets for the face, body, and hands have pushed the limits on photorealism. Face recognition and body pose estimation have achieved state-of-the-art performance using synthetic training data alone, but for the hand, there is still a large synthetic-to-real gap. This paper presents the first systematic study of the synthetic-to-real gap of 3D hand pose estimation. We analyze the gap and identify key components such as the forearm, image frequency statistics, hand pose, and object occlusions. To facilitate our analysis, we propose a data synthesis pipeline to synthesize high-quality data. We demonstrate that synthetic hand data can achieve the same level of accuracy as real data when integrating our identified components, paving the path to use synthetic data alone for hand pose estimation. Code and data are available at: https://github.com/delaprada/HandSynthesis.git.

Authors:Yang Ren, Hai Jiang, Menglong Yang, Wei Li, Shuaicheng Liu
Title: ISPDiffuser: Learning RAW-to-sRGB Mappings with Texture-Aware Diffusion Models and Histogram-Guided Color Consistency
Abstract:
RAW-to-sRGB mapping, or the simulation of the traditional camera image signal processor (ISP), aims to generate DSLR-quality sRGB images from raw data captured by smartphone sensors. Despite achieving comparable results to sophisticated handcrafted camera ISP solutions, existing learning-based methods still struggle with detail disparity and color distortion. In this paper, we present ISPDiffuser, a diffusion-based decoupled framework that separates the RAW-to-sRGB mapping into detail reconstruction in grayscale space and color consistency mapping from grayscale to sRGB. Specifically, we propose a texture-aware diffusion model that leverages the generative ability of diffusion models to focus on local detail recovery, in which a texture enrichment loss is further proposed to prompt the diffusion model to generate more intricate texture details. Subsequently, we introduce a histogram-guided color consistency module that utilizes color histogram as guidance to learn precise color information for grayscale to sRGB color consistency mapping, with a color consistency loss designed to constrain the learned color information. Extensive experimental results show that the proposed ISPDiffuser outperforms state-of-the-art competitors both quantitatively and visually. The code is available at https://github.com/RenYangSCU/ISPDiffuser.

Authors:Songyi Gao, Zuolin Tu, Rong-Jun Qin, Yi-Hao Sun, Xiong-Hui Chen, Yang Yu
Title: NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Abstract:
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.

Authors:Ruiyi Wang, Yushuo Zheng, Zicheng Zhang, Chunyi Li, Shuaicheng Liu, Guangtao Zhai, Xiaohong Liu
Title: Learning Hazing to Dehazing: Towards Realistic Haze Generation for Real-World Image Dehazing
Abstract:
Existing real-world image dehazing methods primarily attempt to fine-tune pre-trained models or adapt their inference procedures, thus heavily relying on the pre-trained models and associated training data. Moreover, restoring heavily distorted information under dense haze requires generative diffusion models, whose potential in dehazing remains underutilized partly due to their lengthy sampling processes. To address these limitations, we introduce a novel hazing-dehazing pipeline consisting of a Realistic Hazy Image Generation framework (HazeGen) and a Diffusion-based Dehazing framework (DiffDehaze). Specifically, HazeGen harnesses robust generative diffusion priors of real-world hazy images embedded in a pre-trained text-to-image diffusion model. By employing specialized hybrid training and blended sampling strategies, HazeGen produces realistic and diverse hazy images as high-quality training data for DiffDehaze. To alleviate the inefficiency and fidelity concerns associated with diffusion-based methods, DiffDehaze adopts an Accelerated Fidelity-Preserving Sampling process (AccSamp). The core of AccSamp is the Tiled Statistical Alignment Operation (AlignOp), which can provide a clean and faithful dehazing estimate within a small fraction of sampling steps to reduce complexity and enable effective fidelity guidance. Extensive experiments demonstrate the superior dehazing performance and visual quality of our approach over existing methods. The code is available at https://github.com/ruiyi-w/Learning-Hazing-to-Dehazing.

Authors:Zhen Zhang, Ignavier Ng, Dong Gong, Yuhang Liu, Mingming Gong, Biwei Huang, Kun Zhang, Anton van den Hengel, Javen Qinfeng Shi
Title: Analytic DAG Constraints for Differentiable DAG Learning
Abstract:
Recovering the underlying Directed Acyclic Graph (DAG) structures from observational data presents a formidable challenge, partly due to the combinatorial nature of the DAG-constrained optimization problem. Recently, researchers have identified gradient vanishing as one of the primary obstacles in differentiable DAG learning and have proposed several DAG constraints to mitigate this issue. By developing the necessary theory to establish a connection between analytic functions and DAG constraints, we demonstrate that analytic functions from the set $\{f(x) = c_0 + \sum_{i=1}^{\infty}c_ix^i | \forall i > 0, c_i > 0; r = \lim_{i\rightarrow \infty}c_{i}/c_{i+1} > 0\}$ can be employed to formulate effective DAG constraints. Furthermore, we establish that this set of functions is closed under several functional operators, including differentiation, summation, and multiplication. Consequently, these operators can be leveraged to create novel DAG constraints based on existing ones. Using these properties, we design a series of DAG constraints and develop an efficient algorithm to evaluate them. Experiments in various settings demonstrate that our DAG constraints outperform previous state-of-the-art comparators. Our implementation is available at https://github.com/zzhang1987/AnalyticDAGLearning.

Authors:Rong Wang, Fabian Prada, Ziyan Wang, Zhongshi Jiang, Chengxiang Yin, Junxuan Li, Shunsuke Saito, Igor Santesteban, Javier Romero, Rohan Joshi, Hongdong Li, Jason Saragih, Yaser Sheikh
Title: FRESA: Feedforward Reconstruction of Personalized Skinned Avatars from Few Images
Abstract:
We present a novel method for reconstructing personalized 3D human avatars with realistic animation from only a few images. Due to the large variations in body shapes, poses, and cloth types, existing methods mostly require hours of per-subject optimization during inference, which limits their practical applications. In contrast, we learn a universal prior from over a thousand clothed humans to achieve instant feedforward generation and zero-shot generalization. Specifically, instead of rigging the avatar with shared skinning weights, we jointly infer personalized avatar shape, skinning weights, and pose-dependent deformations, which effectively improves overall geometric fidelity and reduces deformation artifacts. Moreover, to normalize pose variations and resolve coupled ambiguity between canonical shapes and skinning weights, we design a 3D canonicalization process to produce pixel-aligned initial conditions, which helps to reconstruct fine-grained geometric details. We then propose a multi-frame feature aggregation to robustly reduce artifacts introduced in canonicalization and fuse a plausible avatar preserving person-specific identities. Finally, we train the model in an end-to-end framework on a large-scale capture dataset, which contains diverse human subjects paired with high-quality 3D scans. Extensive experiments show that our method generates more authentic reconstruction and animation than state-of-the-arts, and can be directly generalized to inputs from casually taken phone photos. Project page and code is available at https://github.com/rongakowang/FRESA.

Authors:Sara Al-Emadi, Yin Yang, Ferda Ofli
Title: Benchmarking Object Detectors under Real-World Distribution Shifts in Satellite Imagery
Abstract:
Object detectors have achieved remarkable performance in many applications; however, these deep learning models are typically designed under the i.i.d. assumption, meaning they are trained and evaluated on data sampled from the same (source) distribution. In real-world deployment, however, target distributions often differ from source data, leading to substantial performance degradation. Domain Generalisation (DG) seeks to bridge this gap by enabling models to generalise to Out-Of-Distribution (OOD) data without access to target distributions during training, enhancing robustness to unseen conditions. In this work, we examine the generalisability and robustness of state-of-the-art object detectors under real-world distribution shifts, focusing particularly on spatial domain shifts. Despite the need, a standardised benchmark dataset specifically designed for assessing object detection under realistic DG scenarios is currently lacking. To address this, we introduce Real-World Distribution Shifts (RWDS), a suite of three novel DG benchmarking datasets that focus on humanitarian and climate change applications. These datasets enable the investigation of domain shifts across (i) climate zones and (ii) various disasters and geographic regions. To our knowledge, these are the first DG benchmarking datasets tailored for object detection in real-world, high-impact contexts. We aim for these datasets to serve as valuable resources for evaluating the robustness and generalisation of future object detection models. Our datasets and code are available at https://github.com/RWGAI/RWDS.

Authors:Maria Larchenko, Alexander Lobashev, Dmitry Guskov, Vladimir Vladimirovich Palyulin
Title: Color Transfer with Modulated Flows
Abstract:
In this work, we introduce Modulated Flows (ModFlows), a novel approach for color transfer between images based on rectified flows. The primary goal of the color transfer is to adjust the colors of a target image to match the color distribution of a reference image. Our technique is based on optimal transport and executes color transfer as an invertible transformation within the RGB color space. The ModFlows utilizes the bijective property of flows, enabling us to introduce a common intermediate color distribution and build a dataset of rectified flows. We train an encoder on this dataset to predict the weights of a rectified model for new images. After training on a set of optimal transport plans, our approach can generate plans for new pairs of distributions without additional fine-tuning. We additionally show that the trained encoder provides an image embedding, associated only with its color style. The presented method is capable of processing 4K images and achieves the state-of-the-art performance in terms of content and style similarity. Our source code is available at https://github.com/maria-larchenko/modflows

Authors:Alexander Lobashev, Maria Larchenko, Dmitry Guskov
Title: Color Conditional Generation with Sliced Wasserstein Guidance
Abstract:
We propose SW-Guidance, a training-free approach for image generation conditioned on the color distribution of a reference image. While it is possible to generate an image with fixed colors by first creating an image from a text prompt and then applying a color style transfer method, this approach often results in semantically meaningless colors in the generated image. Our method solves this problem by modifying the sampling process of a diffusion model to incorporate the differentiable Sliced 1-Wasserstein distance between the color distribution of the generated image and the reference palette. Our method outperforms state-of-the-art techniques for color-conditional generation in terms of color similarity to the reference, producing images that not only match the reference colors but also maintain semantic coherence with the original text prompt. Our source code is available at https://github.com/alobashev/sw-guidance/.

Authors:Lingyan Ran, Lidong Wang, Guangcong Wang, Peng Wang, Yanning Zhang
Title: DiffV2IR: Visible-to-Infrared Diffusion Model via Vision-Language Understanding
Abstract:
The task of translating visible-to-infrared images (V2IR) is inherently challenging due to three main obstacles: 1) achieving semantic-aware translation, 2) managing the diverse wavelength spectrum in infrared imagery, and 3) the scarcity of comprehensive infrared datasets. Current leading methods tend to treat V2IR as a conventional image-to-image synthesis challenge, often overlooking these specific issues. To address this, we introduce DiffV2IR, a novel framework for image translation comprising two key elements: a Progressive Learning Module (PLM) and a Vision-Language Understanding Module (VLUM). PLM features an adaptive diffusion model architecture that leverages multi-stage knowledge learning to infrared transition from full-range to target wavelength. To improve V2IR translation, VLUM incorporates unified Vision-Language Understanding. We also collected a large infrared dataset, IR-500K, which includes 500,000 infrared images compiled by various scenes and objects under various environmental conditions. Through the combination of PLM, VLUM, and the extensive IR-500K dataset, DiffV2IR markedly improves the performance of V2IR. Experiments validate DiffV2IR's excellence in producing high-quality translations, establishing its efficacy and broad applicability. The code, dataset, and DiffV2IR model will be available at https://github.com/LidongWang-26/DiffV2IR.

Authors:Haoliang Shang, Hanyu Wu, Guangyao Zhai, Boyang Sun, Fangjinhua Wang, Federico Tombari, Marc Pollefeys
Title: SG-Tailor: Inter-Object Commonsense Relationship Reasoning for Scene Graph Manipulation
Abstract:
Scene graphs capture complex relationships among objects, serving as strong priors for content generation and manipulation. Yet, reasonably manipulating scene graphs -- whether by adding nodes or modifying edges -- remains a challenging and untouched task. Tasks such as adding a node to the graph or reasoning about a node's relationships with all others are computationally intractable, as even a single edge modification can trigger conflicts due to the intricate interdependencies within the graph. To address these challenges, we introduce SG-Tailor, an autoregressive model that predicts the conflict-free relationship between any two nodes. SG-Tailor not only infers inter-object relationships, including generating commonsense edges for newly added nodes but also resolves conflicts arising from edge modifications to produce coherent, manipulated graphs for downstream tasks. For node addition, the model queries the target node and other nodes from the graph to predict the appropriate relationships. For edge modification, SG-Tailor employs a Cut-And-Stitch strategy to solve the conflicts and globally adjust the graph. Extensive experiments demonstrate that SG-Tailor outperforms competing methods by a large margin and can be seamlessly integrated as a plug-in module for scene generation and robotic manipulation tasks.

Authors:Ziyue Wang, Junde Wu, Linghan Cai, Chang Han Low, Xihong Yang, Qiaxuan Li, Yueming Jin
Title: MedAgent-Pro: Towards Evidence-based Multi-modal Medical Diagnosis via Reasoning Agentic Workflow
Abstract:
In modern medicine, clinical diagnosis relies on the comprehensive analysis of primarily textual and visual data, drawing on medical expertise to ensure systematic and rigorous reasoning. Recent advances in large Vision-Language Models (VLMs) and agent-based methods hold great potential for medical diagnosis, thanks to the ability to effectively integrate multi-modal patient data. However, they often provide direct answers and draw empirical-driven conclusions without quantitative analysis, which reduces their reliability and clinical usability. We propose MedAgent-Pro, a new agentic reasoning paradigm that follows the diagnosis principle in modern medicine, to decouple the process into sequential components for step-by-step, evidence-based reasoning. Our MedAgent-Pro workflow presents a hierarchical diagnostic structure to mirror this principle, consisting of disease-level standardized plan generation and patient-level personalized step-by-step reasoning. To support disease-level planning, an RAG-based agent is designed to retrieve medical guidelines to ensure alignment with clinical standards. For patient-level reasoning, we propose to integrate professional tools such as visual models to enable quantitative assessments. Meanwhile, we propose to verify the reliability of each step to achieve evidence-based diagnosis, enforcing rigorous logical reasoning and a well-founded conclusion. Extensive experiments across a wide range of anatomical regions, imaging modalities, and diseases demonstrate the superiority of MedAgent-Pro to mainstream VLMs, agentic systems and state-of-the-art expert models. Ablation studies and human evaluation by clinical experts further validate its robustness and clinical relevance. Code is available at https://github.com/jinlab-imvr/MedAgent-Pro.

Authors:Ruixiao Dong, Mengde Xu, Zigang Geng, Li Li, Han Hu, Shuyang Gu
Title: Equivariant Image Modeling
Abstract:
Current generative models, such as autoregressive and diffusion approaches, decompose high-dimensional data distribution learning into a series of simpler subtasks. However, inherent conflicts arise during the joint optimization of these subtasks, and existing solutions fail to resolve such conflicts without sacrificing efficiency or scalability. We propose a novel equivariant image modeling framework that inherently aligns optimization targets across subtasks by leveraging the translation invariance of natural visual signals. Our method introduces (1) column-wise tokenization which enhances translational symmetry along the horizontal axis, and (2) windowed causal attention which enforces consistent contextual relationships across positions. Evaluated on class-conditioned ImageNet generation at 256x256 resolution, our approach achieves performance comparable to state-of-the-art AR models while using fewer computational resources. Systematic analysis demonstrates that enhanced equivariance reduces inter-task conflicts, significantly improving zero-shot generalization and enabling ultra-long image synthesis. This work establishes the first framework for task-aligned decomposition in generative modeling, offering insights into efficient parameter sharing and conflict-free optimization. The code and models are publicly available at https://github.com/drx-code/EquivariantModeling.

Authors:Shenyuan Gao, Siyuan Zhou, Yilun Du, Jun Zhang, Chuang Gan
Title: AdaWorld: Learning Adaptable World Models with Latent Actions
Abstract:
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.

Authors:Yitong Chen, Lingchen Meng, Wujian Peng, Zuxuan Wu, Yu-Gang Jiang
Title: CoMP: Continual Multimodal Pre-training for Vision Foundation Models
Abstract:
Pre-trained Vision Foundation Models (VFMs) provide strong visual representations for a wide range of applications. In this paper, we continually pre-train prevailing VFMs in a multimodal manner such that they can effortlessly process visual inputs of varying sizes and produce visual representations that are more aligned with language representations, regardless of their original pre-training process. To this end, we introduce CoMP, a carefully designed multimodal pre-training pipeline. CoMP uses a Continual Rotary Position Embedding to accommodate visual inputs with different resolutions, and an Alignment Loss between visual and textual features for better cross-modal alignment. After continual pre-training, leading VFMs like DINOv2, SigLIP and AIMv2 achieve remarkable improvements not only in multimodal understanding tasks but also in generic classification and segmentation tasks. Remarkably, CoMP-AIMv2 achieves scores of 64.9 on ChartQA with a 0.5B LLM, while maintaining an 87.3% accuracy on ImageNet-1K and a 51.8 mIoU on ADE20K under frozen chunk evaluation.

Authors:Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, Mohamed S. Abdelfattah
Title: xKV: Cross-Layer SVD for KV-Cache Compression
Abstract:
Large Language Models (LLMs) with long context windows enable powerful applications but come at the cost of high memory consumption to store the Key and Value states (KV-Cache). Recent studies attempted to merge KV-cache from multiple layers into shared representations, yet these approaches either require expensive pretraining or rely on assumptions of high per-token cosine similarity across layers which generally does not hold in practice. We find that the dominant singular vectors are remarkably well-aligned across multiple layers of the KV-Cache. Exploiting this insight, we propose xKV, a simple post-training method that applies Singular Value Decomposition (SVD) on the KV-Cache of grouped layers. xKV consolidates the KV-Cache of multiple layers into a shared low-rank subspace, significantly reducing KV-Cache sizes. Through extensive evaluations on the RULER long-context benchmark with widely-used LLMs (e.g., Llama-3.1 and Qwen2.5), xKV achieves up to 6.8x higher compression rates than state-of-the-art inter-layer technique while improving accuracy by 2.7%. Moreover, xKV is compatible with the emerging Multi-Head Latent Attention (MLA) (e.g., DeepSeek-Coder-V2), yielding a notable 3x compression rates on coding tasks without performance degradation. These results highlight xKV's strong capability and versatility in addressing memory bottlenecks for long-context LLM inference. Our code is publicly available at: https://github.com/abdelfattah-lab/xKV.

Authors:Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang Ding, Miao Zhang, Jie Liu, Min Zhang
Title: AgentDropout: Dynamic Agent Elimination for Token-Efficient and High-Performance LLM-Based Multi-Agent Collaboration
Abstract:
Multi-agent systems (MAS) based on large language models (LLMs) have demonstrated significant potential in collaborative problem-solving. However, they still face substantial challenges of low communication efficiency and suboptimal task performance, making the careful design of the agents' communication topologies particularly important. Inspired by the management theory that roles in an efficient team are often dynamically adjusted, we propose AgentDropout, which identifies redundant agents and communication across different communication rounds by optimizing the adjacency matrices of the communication graphs and eliminates them to enhance both token efficiency and task performance. Compared to state-of-the-art methods, AgentDropout achieves an average reduction of 21.6% in prompt token consumption and 18.4% in completion token consumption, along with a performance improvement of 1.14 on the tasks. Furthermore, the extended experiments demonstrate that AgentDropout achieves notable domain transferability and structure robustness, revealing its reliability and effectiveness. We release our code at https://github.com/wangzx1219/AgentDropout.

Authors:Weichen Fan, Amber Yijia Zheng, Raymond A. Yeh, Ziwei Liu
Title: CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models
Abstract:
Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion/flow models to improve image fidelity and controllability. In this work, we first analytically study the effect of CFG on flow matching models trained on Gaussian mixtures where the ground-truth flow can be derived. We observe that in the early stages of training, when the flow estimation is inaccurate, CFG directs samples toward incorrect trajectories. Building on this observation, we propose CFG-Zero*, an improved CFG with two contributions: (a) optimized scale, where a scalar is optimized to correct for the inaccuracies in the estimated velocity, hence the * in the name; and (b) zero-init, which involves zeroing out the first few steps of the ODE solver. Experiments on both text-to-image (Lumina-Next, Stable Diffusion 3, and Flux) and text-to-video (Wan-2.1) generation demonstrate that CFG-Zero* consistently outperforms CFG, highlighting its effectiveness in guiding Flow Matching models. (Code is available at github.com/WeichenFan/CFG-Zero-star)

Authors:Andrey Galichin, Alexey Dontsov, Polina Druzhinina, Anton Razzhigaev, Oleg Y. Rogov, Elena Tutubalina, Ivan Oseledets
Title: I Have Covered All the Bases Here: Interpreting Reasoning Features in Large Language Models via Sparse Autoencoders
Abstract:
Recent LLMs like DeepSeek-R1 have demonstrated state-of-the-art performance by integrating deep thinking and complex reasoning during generation. However, the internal mechanisms behind these reasoning processes remain unexplored. We observe reasoning LLMs consistently use vocabulary associated with human reasoning processes. We hypothesize these words correspond to specific reasoning moments within the models' internal mechanisms. To test this hypothesis, we employ Sparse Autoencoders (SAEs), a technique for sparse decomposition of neural network activations into human-interpretable features. We introduce ReasonScore, an automatic metric to identify active SAE features during these reasoning moments. We perform manual and automatic interpretation of the features detected by our metric, and find those with activation patterns matching uncertainty, exploratory thinking, and reflection. Through steering experiments, we demonstrate that amplifying these features increases performance on reasoning-intensive benchmarks (+2.2%) while producing longer reasoning traces (+20.5%). Using the model diffing technique, we provide evidence that these features are present only in models with reasoning capabilities. Our work provides the first step towards a mechanistic understanding of reasoning in LLMs. Code available at https://github.com/AIRI-Institute/SAE-Reasoning

Authors:Yanda Chen, Gongwei Chen, Miao Zhang, Weili Guan, Liqiang Nie
Title: Curriculum Coarse-to-Fine Selection for High-IPC Dataset Distillation
Abstract:
Dataset distillation (DD) excels in synthesizing a small number of images per class (IPC) but struggles to maintain its effectiveness in high-IPC settings. Recent works on dataset distillation demonstrate that combining distilled and real data can mitigate the effectiveness decay. However, our analysis of the combination paradigm reveals that the current one-shot and independent selection mechanism induces an incompatibility issue between distilled and real images. To address this issue, we introduce a novel curriculum coarse-to-fine selection (CCFS) method for efficient high-IPC dataset distillation. CCFS employs a curriculum selection framework for real data selection, where we leverage a coarse-to-fine strategy to select appropriate real data based on the current synthetic dataset in each curriculum. Extensive experiments validate CCFS, surpassing the state-of-the-art by +6.6\% on CIFAR-10, +5.8\% on CIFAR-100, and +3.4\% on Tiny-ImageNet under high-IPC settings. Notably, CCFS achieves 60.2\% test accuracy on ResNet-18 with a 20\% compression ratio of Tiny-ImageNet, closely matching full-dataset training with only 0.3\% degradation. Code: https://github.com/CYDaaa30/CCFS.

Authors:Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, Xuguang Lan
Title: Bootstrapped Model Predictive Control
Abstract:
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.

Authors:Daniel Lepe-Soltero, Thierry Artières, Anaïs Baudot, Paul Villoutreix
Title: MODIS: Multi-Omics Data Integration for Small and unpaired datasets
Abstract:
An important objective in computational biology is the efficient integration of multi-omics data. The task of integration comes with challenges: multi-omics data are most often unpaired (requiring diagonal integration), partially labeled with information about biological conditions, and in some situations such as rare diseases, only very small datasets are available. We present MODIS, a semi supervised framework designed to account for these particular challenges. To address the challenge of very small datasets, we propose to exploit information contained in larger multi-omics databases by training our model on a large reference database and a small target dataset simultaneously, effectively turning the problem of transfer learning into a problem of learning with class imbalance. MODIS performs diagonal integration on unpaired samples, leveraging class-labels to align modalities despite class imbalance and data scarcity. The architecture combines multiple variational auto-encoders, a class classifier and an adversarially trained modality classifier. To ensure training stability, we adapted a regularized relativistic GAN loss to this setting. We first validate MODIS on a synthetic dataset to assess the level of supervision needed for accurate alignment and to quantify the impact of class imbalance on predictive performance. We then apply our approach to the large public TCGA database, considering between 10 and 34 classes (cancer types and normal tissue). MODIS demonstrates high prediction accuracy, robust performance with limited supervision, and stability to class imbalance. These results position MODIS as a promising solution for challenging integration scenarios, particularly diagonal integration with a small number of samples, typical of rare diseases studies. The code is available at https://github.com/VILLOUTREIXLab/MODIS.

Authors:Ruichuan An, Sihan Yang, Ming Lu, Renrui Zhang, Kai Zeng, Yulin Luo, Jiajun Cao, Hao Liang, Ying Chen, Qi She, Shanghang Zhang, Wentao Zhang
Title: MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Abstract:
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA}.

Authors:Edoardo Debenedetti, Ilia Shumailov, Tianqi Fan, Jamie Hayes, Nicholas Carlini, Daniel Fabian, Christoph Kern, Chongyang Shi, Andreas Terzis, Florian Tramèr
Title: Defeating Prompt Injections by Design
Abstract:
Large Language Models (LLMs) are increasingly deployed in agentic systems that interact with an untrusted environment. However, LLM agents are vulnerable to prompt injection attacks when handling untrusted data. In this paper we propose CaMeL, a robust defense that creates a protective system layer around the LLM, securing it even when underlying models are susceptible to attacks. To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query; therefore, the untrusted data retrieved by the LLM can never impact the program flow. To further improve security, CaMeL uses a notion of a capability to prevent the exfiltration of private data over unauthorized data flows by enforcing security policies when tools are called. We demonstrate effectiveness of CaMeL by solving $77\%$ of tasks with provable security (compared to $84\%$ with an undefended system) in AgentDojo. We release CaMeL at https://github.com/google-research/camel-prompt-injection.

Authors:Linwei Chen, Lin Gu, Liang Li, Chenggang Yan, Ying Fu
Title: Frequency Dynamic Convolution for Dense Image Prediction
Abstract:
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.

Authors:Dayou Du, Shijie Cao, Jianyi Cheng, Luo Mai, Ting Cao, Mao Yang
Title: BitDecoding: Unlocking Tensor Cores for Long-Context LLMs with Low-Bit KV Cache
Abstract:
The rise of long-context Large Language Models (LLMs) amplifies memory and bandwidth demands during autoregressive decoding, as the Key-Value (KV) cache grows with each generated token. Low-bit KV-cache quantization (e.g., 4-bit or 2-bit) can reduce memory footprint while preserving accuracy, but existing systems suffer from slow decoding due to their exclusive reliance on CUDA cores, neglecting Tensor Cores (the primary source of compute on modern GPUs). We present BitDecoding, a new long-context LLM inference system with a low-bit KV cache. BitDecoding enables efficient low-bit KV-cache decoding by cooperatively leveraging CUDA cores and Tensor Cores. It introduces methods for automatically inducing optimized layouts to exploit Tensor Cores, along with warp-level parallelization strategies for dequantization. For unified system support, BitDecoding includes a query transformation module supporting diverse attention variants, a quantization kernel that supports both tensor-wise and channel-wise scaling used in various quantization algorithms with high performance, and a dequantization kernel with a software-defined pipeline to coordinate CUDA and Tensor Cores execution for mixed-precision operations. Evaluated on RTX 4090, A100, and H100, BitDecoding accelerates decoding by up to 7.5x, 4.8x, and 8.9x, respectively, over FP16 FlashDecoding-v2, and surpasses the state-of-the-art low-bit system QServe by up to 4.3x. On LLaMA-3.1-8B with a 128K context, BitDecoding reduces single-batch decoding latency by 3x, showing substantial improvements for long-context generation. The code is available at https://github.com/DD-DuDa/BitDecoding.

Authors:Nathan Darjana, Ryo Fujii, Hideo Saito, Hiroki Kajita
Title: EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Abstract:
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.

Authors:Sebastian Tewes, Yufan Chen, Omar Moured, Jiaming Zhang, Rainer Stiefelhagen
Title: SFDLA: Source-Free Document Layout Analysis
Abstract:
Document Layout Analysis (DLA) is a fundamental task in document understanding. However, existing DLA and adaptation methods often require access to large-scale source data and target labels. This requirements severely limiting their real-world applicability, particularly in privacy-sensitive and resource-constrained domains, such as financial statements, medical records, and proprietary business documents. According to our observation, directly transferring source-domain fine-tuned models on target domains often results in a significant performance drop (Avg. -32.64%). In this work, we introduce Source-Free Document Layout Analysis (SFDLA), aiming for adapting a pre-trained source DLA models to an unlabeled target domain, without access to any source data. To address this challenge, we establish the first SFDLA benchmark, covering three major DLA datasets for geometric- and content-aware adaptation. Furthermore, we propose Document Layout Analysis Adapter (DLAdapter), a novel framework that is designed to improve source-free adaptation across document domains. Our method achieves a +4.21% improvement over the source-only baseline and a +2.26% gain over existing source-free methods from PubLayNet to DocLayNet. We believe this work will inspire the DLA community to further investigate source-free document understanding. To support future research of the community, the benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter.

Authors:Shaokai Ye, Haozhe Qi, Alexander Mathis, Mackenzie W. Mathis
Title: LLaVAction: evaluating and training multi-modal large language models for action recognition
Abstract:
Understanding human behavior requires measuring behavioral actions. Due to its complexity, behavior is best mapped onto a rich, semantic structure such as language. The recent development of multi-modal large language models (MLLMs) is a promising candidate for a wide range of action understanding tasks. In this work, we focus on evaluating and then improving MLLMs to perform action recognition. We reformulate EPIC-KITCHENS-100, one of the largest and most challenging egocentric action datasets, to the form of video multiple question answering (EPIC-KITCHENS-100-MQA). We show that when we sample difficult incorrect answers as distractors, leading MLLMs struggle to recognize the correct actions. We propose a series of methods that greatly improve the MLLMs' ability to perform action recognition, achieving state-of-the-art on both the EPIC-KITCHENS-100 validation set, as well as outperforming GPT-4o by 21 points in accuracy on EPIC-KITCHENS-100-MQA. Lastly, we show improvements on other action-related video benchmarks such as EgoSchema, PerceptionTest, LongVideoBench, VideoMME and MVBench, suggesting that MLLMs are a promising path forward for complex action tasks. Code and models are available at: https://github.com/AdaptiveMotorControlLab/LLaVAction.

Authors:Danrui Li, Yichao Shi, Yaluo Wang, Ziying Shi, Mubbasir Kapadia
Title: ArchSeek: Retrieving Architectural Case Studies Using Vision-Language Models
Abstract:
Efficiently searching for relevant case studies is critical in architectural design, as designers rely on precedent examples to guide or inspire their ongoing projects. However, traditional text-based search tools struggle to capture the inherently visual and complex nature of architectural knowledge, often leading to time-consuming and imprecise exploration. This paper introduces ArchSeek, an innovative case study search system with recommendation capability, tailored for architecture design professionals. Powered by the visual understanding capabilities from vision-language models and cross-modal embeddings, it enables text and image queries with fine-grained control, and interaction-based design case recommendations. It offers architects a more efficient, personalized way to discover design inspirations, with potential applications across other visually driven design fields. The source code is available at https://github.com/danruili/ArchSeek.

Authors:Bingchen Miao, Yang Wu, Minghe Gao, Qifan Yu, Wendong Bu, Wenqiao Zhang, Yunfei Li, Siliang Tang, Tat-Seng Chua, Juncheng Li
Title: Boosting Virtual Agent Learning and Reasoning: A Step-Wise, Multi-Dimensional, and Generalist Reward Model with Benchmark
Abstract:
The development of Generalist Virtual Agents (GVAs) has shown significant promise in autonomous task execution. However, current training paradigms face critical limitations, including reliance on outcome supervision and labor-intensive human annotations. To address these challenges, we propose Similar, a Step-Wise Multi-Dimensional Generalist Reward Model, which offers fine-grained signals for agent training and can choose better action for inference-time scaling. Specifically, we begin by systematically defining five dimensions for evaluating agent actions. Building on this framework, we design an MCTS-P algorithm to automatically collect and annotate step-wise, five-dimensional agent execution data. Using this data, we train Similar with the Triple-M strategy. Furthermore, we introduce the first benchmark in the virtual agent domain for step-wise, multi-dimensional reward model training and evaluation, named SRM. This benchmark consists of two components: SRMTrain, which serves as the training set for Similar, and SRMEval, a manually selected test set for evaluating the reward model. Experimental results demonstrate that Similar, through its step-wise, multi-dimensional assessment and synergistic gain, provides GVAs with effective intermediate signals during both training and inference-time scaling. The project is available at https://github.com/antgroup/Similar.

Authors:Xingxing Zou, Wen Zhang, Nanxuan Zhao
Title: From Fragment to One Piece: A Survey on AI-Driven Graphic Design
Abstract:
This survey provides a comprehensive overview of the advancements in Artificial Intelligence in Graphic Design (AIGD), focusing on integrating AI techniques to support design interpretation and enhance the creative process. We categorize the field into two primary directions: perception tasks, which involve understanding and analyzing design elements, and generation tasks, which focus on creating new design elements and layouts. The survey covers various subtasks, including visual element perception and generation, aesthetic and semantic understanding, layout analysis, and generation. We highlight the role of large language models and multimodal approaches in bridging the gap between localized visual features and global design intent. Despite significant progress, challenges remain to understanding human intent, ensuring interpretability, and maintaining control over multilayered compositions. This survey serves as a guide for researchers, providing information on the current state of AIGD and potential future directions\footnote{https://github.com/zhangtianer521/excellent\_Intelligent\_graphic\_design}.

Authors:Arne Grobrügge, Niklas Kühl, Gerhard Satzger, Philipp Spitzer
Title: Towards Human-Understandable Multi-Dimensional Concept Discovery
Abstract:
Concept-based eXplainable AI (C-XAI) aims to overcome the limitations of traditional saliency maps by converting pixels into human-understandable concepts that are consistent across an entire dataset. A crucial aspect of C-XAI is completeness, which measures how well a set of concepts explains a model's decisions. Among C-XAI methods, Multi-Dimensional Concept Discovery (MCD) effectively improves completeness by breaking down the CNN latent space into distinct and interpretable concept subspaces. However, MCD's explanations can be difficult for humans to understand, raising concerns about their practical utility. To address this, we propose Human-Understandable Multi-dimensional Concept Discovery (HU-MCD). HU-MCD uses the Segment Anything Model for concept identification and implements a CNN-specific input masking technique to reduce noise introduced by traditional masking methods. These changes to MCD, paired with the completeness relation, enable HU-MCD to enhance concept understandability while maintaining explanation faithfulness. Our experiments, including human subject studies, show that HU-MCD provides more precise and reliable explanations than existing C-XAI methods. The code is available at https://github.com/grobruegge/hu-mcd.

Authors:Yihan Wang, Peiyu Liu, Xin Yang
Title: LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL
Abstract:
Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign

Authors:Chengxiang Huang, Yake Wei, Zequn Yang, Di Hu
Title: Adaptive Unimodal Regulation for Balanced Multimodal Information Acquisition
Abstract:
Sensory training during the early ages is vital for human development. Inspired by this cognitive phenomenon, we observe that the early training stage is also important for the multimodal learning process, where dataset information is rapidly acquired. We refer to this stage as the prime learning window. However, based on our observation, this prime learning window in multimodal learning is often dominated by information-sufficient modalities, which in turn suppresses the information acquisition of information-insufficient modalities. To address this issue, we propose Information Acquisition Regulation (InfoReg), a method designed to balance information acquisition among modalities. Specifically, InfoReg slows down the information acquisition process of information-sufficient modalities during the prime learning window, which could promote information acquisition of information-insufficient modalities. This regulation enables a more balanced learning process and improves the overall performance of the multimodal network. Experiments show that InfoReg outperforms related multimodal imbalanced methods across various datasets, achieving superior model performance. The code is available at https://github.com/GeWu-Lab/InfoReg_CVPR2025.

Authors:Takashi Isobe, He Cui, Dong Zhou, Mengmeng Ge, Dong Li, Emad Barsoum
Title: AMD-Hummingbird: Towards an Efficient Text-to-Video Model
Abstract:
Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.

Authors:Bin Li, Dehong Gao, Yeyuan Wang, Linbo Jin, Shanqing Yu, Xiaoyan Cai, Libin Yang
Title: Instruction-Aligned Visual Attention for Mitigating Hallucinations in Large Vision-Language Models
Abstract:
Despite the significant success of Large Vision-Language models(LVLMs), these models still suffer hallucinations when describing images, generating answers that include non-existent objects. It is reported that these models tend to over-focus on certain irrelevant image tokens that do not contain critical information for answering the question and distort the output. To address this, we propose an Instruction-Aligned Visual Attention(IAVA) approach, which identifies irrelevant tokens by comparing changes in attention weights under two different instructions. By applying contrastive decoding, we dynamically adjust the logits generated from original image tokens and irrelevant image tokens, reducing the model's over-attention to irrelevant information. The experimental results demonstrate that IAVA consistently outperforms existing decoding techniques on benchmarks such as MME, POPE, and TextVQA in mitigating object hallucinations. Our IAVA approach is available online at https://github.com/Lee-lab558/IAVA.

Authors:Zihao Chen, Hsuanyu Wu, Chi-Hsi Kung, Yi-Ting Chen, Yan-Tsung Peng
Title: ATARS: An Aerial Traffic Atomic Activity Recognition and Temporal Segmentation Dataset
Abstract:
Traffic Atomic Activity which describes traffic patterns for topological intersection dynamics is a crucial topic for the advancement of intelligent driving systems. However, existing atomic activity datasets are collected from an egocentric view, which cannot support the scenarios where traffic activities in an entire intersection are required. Moreover, existing datasets only provide video-level atomic activity annotations, which require exhausting efforts to manually trim the videos for recognition and limit their applications to untrimmed videos. To bridge this gap, we introduce the Aerial Traffic Atomic Activity Recognition and Segmentation (ATARS) dataset, the first aerial dataset designed for multi-label atomic activity analysis. We offer atomic activity labels for each frame, which accurately record the intervals for traffic activities. Moreover, we propose a novel task, Multi-label Temporal Atomic Activity Recognition, enabling the study of accurate temporal localization for atomic activity and easing the burden of manual video trimming for recognition. We conduct extensive experiments to evaluate existing state-of-the-art models on both atomic activity recognition and temporal atomic activity segmentation. The results highlight the unique challenges of our ATARS dataset, such as recognizing extremely small objects' activities. We further provide comprehensive discussion analyzing these challenges and offer valuable insights for future direction to improve recognizing atomic activity in aerial view. Our source code and dataset are available at https://github.com/magecliff96/ATARS/

Authors:Soulaimene Turki, Daniel Panangian, Houda Chaabouni-Chouayakh, Ksenia Bittner
Title: AIM2PC: Aerial Image to 3D Building Point Cloud Reconstruction
Abstract:
Three-dimensional urban reconstruction of buildings from single-view images has attracted significant attention over the past two decades. However, recent methods primarily focus on rooftops from aerial images, often overlooking essential geometrical details. Additionally, there is a notable lack of datasets containing complete 3D point clouds for entire buildings, along with challenges in obtaining reliable camera pose information for aerial images. This paper addresses these challenges by presenting a novel methodology, AIM2PC , which utilizes our generated dataset that includes complete 3D point clouds and determined camera poses. Our approach takes features from a single aerial image as input and concatenates them with essential additional conditions, such as binary masks and Sobel edge maps, to enable more edge-aware reconstruction. By incorporating a point cloud diffusion model based on Centered denoising Diffusion Probabilistic Models (CDPM), we project these concatenated features onto the partially denoised point cloud using our camera poses at each diffusion step. The proposed method is able to reconstruct the complete 3D building point cloud, including wall information and demonstrates superior performance compared to existing baseline techniques. To allow further comparisons with our methodology the dataset has been made available at https://github.com/Soulaimene/AIM2PCDataset

Authors:Junyuan Gao, Jiahe Song, Jiang Wu, Runchuan Zhu, Guanlin Shen, Shasha Wang, Xingjian Wei, Haote Yang, Songyang Zhang, Weijia Li, Bin Wang, Dahua Lin, Lijun Wu, Conghui He
Title: PM4Bench: A Parallel Multilingual Multi-Modal Multi-task Benchmark for Large Vision Language Model
Abstract:
Existing multilingual benchmarks for Large Vision Language Models (LVLMs) suffer from limitations including language-specific content biases, disjointed multimodal input formats, and a lack of safety evaluation. To address these gaps, we propose PM4Bench, the first Parallel Multilingual Multi-Modal Multi-task Benchmark for LVLMs. PM4Bench features a parallel corpus design across 10 languages, enabling fair and accurate cross-lingual comparisons. It includes the vision setting where text and queries are embedded in images, requiring LVLMs to simultaneously "see", "read", and "think", aligning with real-world applications. Additionally, PM\textsuperscript{4}Bench incorporates safety evaluations, addressing critical oversight in existing multilingual benchmarks. Using PM4Bench, we evaluate 11 mainstream LVLMs, revealing significant cross-linguistic performance disparities, particularly in vision settings, and identifying OCR capability as a key determinant of these imbalances. We will release PM4Bench at https://github.com/opendatalab/PM4Bench .

Authors:Zequn Zeng, Yudi Su, Jianqiao Sun, Tiansheng Wen, Hao Zhang, Zhengjue Wang, Bo Chen, Hongwei Liu, Jiawei Ma
Title: Explaining Domain Shifts in Language: Concept erasing for Interpretable Image Classification
Abstract:
Concept-based models can map black-box representations to human-understandable concepts, which makes the decision-making process more transparent and then allows users to understand the reason behind predictions. However, domain-specific concepts often impact the final predictions, which subsequently undermine the model generalization capabilities, and prevent the model from being used in high-stake applications. In this paper, we propose a novel Language-guided Concept-Erasing (LanCE) framework. In particular, we empirically demonstrate that pre-trained vision-language models (VLMs) can approximate distinct visual domain shifts via domain descriptors while prompting large Language Models (LLMs) can easily simulate a wide range of descriptors of unseen visual domains. Then, we introduce a novel plug-in domain descriptor orthogonality (DDO) regularizer to mitigate the impact of these domain-specific concepts on the final predictions. Notably, the DDO regularizer is agnostic to the design of concept-based models and we integrate it into several prevailing models. Through evaluation of domain generalization on four standard benchmarks and three newly introduced benchmarks, we demonstrate that DDO can significantly improve the out-of-distribution (OOD) generalization over the previous state-of-the-art concept-based models.Our code is available at https://github.com/joeyz0z/LanCE.

Authors:Wei Deng, Mengshi Qi, Huadong Ma
Title: Global-Local Tree Search in VLMs for 3D Indoor Scene Generation
Abstract:
Large Vision-Language Models (VLMs), such as GPT-4, have achieved remarkable success across various fields. However, there are few studies on 3D indoor scene generation with VLMs. This paper considers this task as a planning problem subject to spatial and layout common sense constraints. To solve the problem with a VLM, we propose a new global-local tree search algorithm. Globally, the method places each object sequentially and explores multiple placements during each placement process, where the problem space is represented as a tree. To reduce the depth of the tree, we decompose the scene structure hierarchically, i.e. room level, region level, floor object level, and supported object level. The algorithm independently generates the floor objects in different regions and supported objects placed on different floor objects. Locally, we also decompose the sub-task, the placement of each object, into multiple steps. The algorithm searches the tree of problem space. To leverage the VLM model to produce positions of objects, we discretize the top-down view space as a dense grid and fill each cell with diverse emojis to make to cells distinct. We prompt the VLM with the emoji grid and the VLM produces a reasonable location for the object by describing the position with the name of emojis. The quantitative and qualitative experimental results illustrate our approach generates more plausible 3D scenes than state-of-the-art approaches. Our source code is available at https://github.com/dw-dengwei/TreeSearchGen .

Authors:Zhenyu Pan, Han Liu
Title: MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
Abstract:
We present MetaSpatial, the first reinforcement learning (RL)-based framework designed to enhance 3D spatial reasoning in vision-language models (VLMs), enabling real-time 3D scene generation without the need for hard-coded optimizations. MetaSpatial addresses two core challenges: (i) the lack of internalized 3D spatial reasoning in VLMs, which limits their ability to generate realistic layouts, and (ii) the inefficiency of traditional supervised fine-tuning (SFT) for layout generation tasks, as perfect ground truth annotations are unavailable. Our key innovation is a multi-turn RL-based optimization mechanism that integrates physics-aware constraints and rendered image evaluations, ensuring generated 3D layouts are coherent, physically plausible, and aesthetically consistent. Methodologically, MetaSpatial introduces an adaptive, iterative reasoning process, where the VLM refines spatial arrangements over multiple turns by analyzing rendered outputs, improving scene coherence progressively. Empirical evaluations demonstrate that MetaSpatial significantly enhances the spatial consistency and formatting stability of various scale models. Post-training, object placements are more realistic, aligned, and functionally coherent, validating the effectiveness of RL for 3D spatial reasoning in metaverse, AR/VR, digital twins, and game development applications. Our code, data, and training pipeline are publicly available at https://github.com/PzySeere/MetaSpatial.

Authors:Zhenyu Pan, Han Liu
Title: MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
Abstract:
We present MetaSpatial, the first reinforcement learning (RL)-based framework designed to enhance 3D spatial reasoning in vision-language models (VLMs), enabling real-time 3D scene generation without the need for hard-coded optimizations. MetaSpatial addresses two core challenges: (i) the lack of internalized 3D spatial reasoning in VLMs, which limits their ability to generate realistic layouts, and (ii) the inefficiency of traditional supervised fine-tuning (SFT) for layout generation tasks, as perfect ground truth annotations are unavailable. Our key innovation is a multi-turn RL-based optimization mechanism that integrates physics-aware constraints and rendered image evaluations, ensuring generated 3D layouts are coherent, physically plausible, and aesthetically consistent. Methodologically, MetaSpatial introduces an adaptive, iterative reasoning process, where the VLM refines spatial arrangements over multiple turns by analyzing rendered outputs, improving scene coherence progressively. Empirical evaluations demonstrate that MetaSpatial significantly enhances the spatial consistency and formatting stability of various scale models. Post-training, object placements are more realistic, aligned, and functionally coherent, validating the effectiveness of RL for 3D spatial reasoning in metaverse, AR/VR, digital twins, and game development applications. Our code, data, and training pipeline are publicly available at https://github.com/PzySeere/MetaSpatial.

Authors:Sixian Ding, Xu Jiang, Zhongjing Du, Jiaqi Cui, Xinyi Zeng, Yan Wang
Title: SIT-FER: Integration of Semantic-, Instance-, Text-level Information for Semi-supervised Facial Expression Recognition
Abstract:
Semi-supervised deep facial expression recognition (SS-DFER) has gained increasingly research interest due to the difficulty in accessing sufficient labeled data in practical settings. However, existing SS-DFER methods mainly utilize generated semantic-level pseudo-labels for supervised learning, the unreliability of which compromises their performance and undermines the practical utility. In this paper, we propose a novel SS-DFER framework that simultaneously incorporates semantic, instance, and text-level information to generate high-quality pseudo-labels. Specifically, for the unlabeled data, considering the comprehensive knowledge within the textual descriptions and instance representations, we respectively calculate the similarities between the facial vision features and the corresponding textual and instance features to obtain the probabilities at the text- and instance-level. Combining with the semantic-level probability, these three-level probabilities are elaborately aggregated to gain the final pseudo-labels. Furthermore, to enhance the utilization of one-hot labels for the labeled data, we also incorporate text embeddings excavated from textual descriptions to co-supervise model training, enabling facial visual features to exhibit semantic correlations in the text space. Experiments on three datasets demonstrate that our method significantly outperforms current state-of-the-art SS-DFER methods and even exceeds fully supervised baselines. The code will be available at https://github.com/PatrickStarL/SIT-FER.

Authors:Jinho Jeong, Sangmin Han, Jinwoo Kim, Seon Joo Kim
Title: Latent Space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models
Abstract:
In this paper, we propose LSRNA, a novel framework for higher-resolution (exceeding 1K) image generation using diffusion models by leveraging super-resolution directly in the latent space. Existing diffusion models struggle with scaling beyond their training resolutions, often leading to structural distortions or content repetition. Reference-based methods address the issues by upsampling a low-resolution reference to guide higher-resolution generation. However, they face significant challenges: upsampling in latent space often causes manifold deviation, which degrades output quality. On the other hand, upsampling in RGB space tends to produce overly smoothed outputs. To overcome these limitations, LSRNA combines Latent space Super-Resolution (LSR) for manifold alignment and Region-wise Noise Addition (RNA) to enhance high-frequency details. Our extensive experiments demonstrate that integrating LSRNA outperforms state-of-the-art reference-based methods across various resolutions and metrics, while showing the critical role of latent space upsampling in preserving detail and sharpness. The code is available at https://github.com/3587jjh/LSRNA.

Authors:Chenfei Liao, Kaiyu Lei, Xu Zheng, Junha Moon, Zhixiong Wang, Yixuan Wang, Danda Pani Paudel, Luc Van Gool, Xuming Hu
Title: Benchmarking Multi-modal Semantic Segmentation under Sensor Failures: Missing and Noisy Modality Robustness
Abstract:
Multi-modal semantic segmentation (MMSS) addresses the limitations of single-modality data by integrating complementary information across modalities. Despite notable progress, a significant gap persists between research and real-world deployment due to variability and uncertainty in multi-modal data quality. Robustness has thus become essential for practical MMSS applications. However, the absence of standardized benchmarks for evaluating robustness hinders further advancement. To address this, we first survey existing MMSS literature and categorize representative methods to provide a structured overview. We then introduce a robustness benchmark that evaluates MMSS models under three scenarios: Entire-Missing Modality (EMM), Random-Missing Modality (RMM), and Noisy Modality (NM). From a probabilistic standpoint, we model modality failure under two conditions: (1) all damaged combinations are equally probable; (2) each modality fails independently following a Bernoulli distribution. Based on these, we propose four metrics-$mIoU^{Avg}_{EMM}$, $mIoU^{E}_{EMM}$, $mIoU^{Avg}_{RMM}$, and $mIoU^{E}_{RMM}$-to assess model robustness under EMM and RMM. This work provides the first dedicated benchmark for MMSS robustness, offering new insights and tools to advance the field. Source code is available at https://github.com/Chenfei-Liao/Multi-Modal-Semantic-Segmentation-Robustness-Benchmark.

Authors:Junteng Liu, Weihao Zeng, Xiwen Zhang, Yijun Wang, Zifei Shan, Junxian He
Title: On the Perception Bottleneck of VLMs for Chart Understanding
Abstract:
Chart understanding requires models to effectively analyze and reason about numerical data, textual elements, and complex visual components. Our observations reveal that the perception capabilities of existing large vision-language models (LVLMs) constitute a critical bottleneck in this process. In this study, we delve into this perception bottleneck by decomposing it into two components: the vision encoder bottleneck, where the visual representation may fail to encapsulate the correct information, and the extraction bottleneck, where the language model struggles to extract the necessary information from the provided visual representations. Through comprehensive experiments, we find that (1) the information embedded within visual representations is substantially richer than what is typically captured by linear extractors, such as the widely used retrieval accuracy metric; (2) While instruction tuning effectively enhances the extraction capability of LVLMs, the vision encoder remains a critical bottleneck, demanding focused attention and improvement. Therefore, we further enhance the visual encoder to mitigate the vision encoder bottleneck under a contrastive learning framework. Empirical results demonstrate that our approach significantly mitigates the perception bottleneck and improves the ability of LVLMs to comprehend charts. Code is publicly available at https://github.com/hkust-nlp/Vision4Chart.

Authors:Zhichao Sun, Huazhang Hu, Yidong Ma, Gang Liu, Nemo Chen, Xu Tang, Yao Hu, Yongchao Xu
Title: CQ-DINO: Mitigating Gradient Dilution via Category Queries for Vast Vocabulary Object Detection
Abstract:
With the exponential growth of data, traditional object detection methods are increasingly struggling to handle vast vocabulary object detection tasks effectively. We analyze two key limitations of classification-based detectors: positive gradient dilution, where rare positive categories receive insufficient learning signals, and hard negative gradient dilution, where discriminative gradients are overwhelmed by numerous easy negatives. To address these challenges, we propose CQ-DINO, a category query-based object detection framework that reformulates classification as a contrastive task between object queries and learnable category queries. Our method introduces image-guided query selection, which reduces the negative space by adaptively retrieving top-K relevant categories per image via cross-attention, thereby rebalancing gradient distributions and facilitating implicit hard example mining. Furthermore, CQ-DINO flexibly integrates explicit hierarchical category relationships in structured datasets (e.g., V3Det) or learns implicit category correlations via self-attention in generic datasets (e.g., COCO). Experiments demonstrate that CQ-DINO achieves superior performance on the challenging V3Det benchmark (surpassing previous methods by 2.1% AP) while maintaining competitiveness in COCO. Our work provides a scalable solution for real-world detection systems requiring wide category coverage. The code is publicly at https://github.com/RedAIGC/CQ-DINO.

Authors:Dian Zheng, Cheng Zhang, Xiao-Ming Wu, Cao Li, Chengfei Lv, Jian-Fang Hu, Wei-Shi Zheng
Title: Panorama Generation From NFoV Image Done Right
Abstract:
Generating 360-degree panoramas from narrow field of view (NFoV) image is a promising computer vision task for Virtual Reality (VR) applications. Existing methods mostly assess the generated panoramas with InceptionNet or CLIP based metrics, which tend to perceive the image quality and is \textbf{not suitable for evaluating the distortion}. In this work, we first propose a distortion-specific CLIP, named Distort-CLIP to accurately evaluate the panorama distortion and discover the \textbf{``visual cheating''} phenomenon in previous works (\ie, tending to improve the visual results by sacrificing distortion accuracy). This phenomenon arises because prior methods employ a single network to learn the distinct panorama distortion and content completion at once, which leads the model to prioritize optimizing the latter. To address the phenomenon, we propose \textbf{PanoDecouple}, a decoupled diffusion model framework, which decouples the panorama generation into distortion guidance and content completion, aiming to generate panoramas with both accurate distortion and visual appeal. Specifically, we design a DistortNet for distortion guidance by imposing panorama-specific distortion prior and a modified condition registration mechanism; and a ContentNet for content completion by imposing perspective image information. Additionally, a distortion correction loss function with Distort-CLIP is introduced to constrain the distortion explicitly. The extensive experiments validate that PanoDecouple surpasses existing methods both in distortion and visual metrics.

Authors:Yuchuan Tian, Hanting Chen, Mengyu Zheng, Yuchen Liang, Chao Xu, Yunhe Wang
Title: U-REPA: Aligning Diffusion U-Nets to ViTs
Abstract:
Representation Alignment (REPA) that aligns Diffusion Transformer (DiT) hidden-states with ViT visual encoders has proven highly effective in DiT training, demonstrating superior convergence properties, but it has not been validated on the canonical diffusion U-Net architecture that shows faster convergence compared to DiTs. However, adapting REPA to U-Net architectures presents unique challenges: (1) different block functionalities necessitate revised alignment strategies; (2) spatial-dimension inconsistencies emerge from U-Net's spatial downsampling operations; (3) space gaps between U-Net and ViT hinder the effectiveness of tokenwise alignment. To encounter these challenges, we propose U-REPA, a representation alignment paradigm that bridges U-Net hidden states and ViT features as follows: Firstly, we propose via observation that due to skip connection, the middle stage of U-Net is the best alignment option. Secondly, we propose upsampling of U-Net features after passing them through MLPs. Thirdly, we observe difficulty when performing tokenwise similarity alignment, and further introduces a manifold loss that regularizes the relative similarity between samples. Experiments indicate that the resulting U-REPA could achieve excellent generation quality and greatly accelerates the convergence speed. With CFG guidance interval, U-REPA could reach $FID<1.5$ in 200 epochs or 1M iterations on ImageNet 256 $\times$ 256, and needs only half the total epochs to perform better than REPA. Codes are available at https://github.com/YuchuanTian/U-REPA.

Authors:Wencheng Zhu, Yuexin Wang, Hongxuan Li, Pengfei Zhu, Qinghua Hu
Title: VTD-CLIP: Video-to-Text Discretization via Prompting CLIP
Abstract:
Vision-language models bridge visual and linguistic understanding and have proven to be powerful for video recognition tasks. Existing approaches primarily rely on parameter-efficient fine-tuning of image-text pre-trained models, yet they often suffer from limited interpretability and poor generalization due to inadequate temporal modeling. To address these, we propose a simple yet effective video-to-text discretization framework. Our method repurposes the frozen text encoder to construct a visual codebook from video class labels due to the many-to-one contrastive alignment between visual and textual embeddings in multimodal pretraining. This codebook effectively transforms temporal visual data into textual tokens via feature lookups and offers interpretable video representations through explicit video modeling. Then, to enhance robustness against irrelevant or noisy frames, we introduce a confidence-aware fusion module that dynamically weights keyframes by assessing their semantic relevance via the codebook. Furthermore, our method incorporates learnable text prompts to conduct adaptive codebook updates. Extensive experiments on HMDB-51, UCF-101, SSv2, and Kinetics-400 have validated the superiority of our approach, achieving more competitive improvements over state-of-the-art methods. The code will be publicly available at https://github.com/isxinxin/VTD-CLIP.

Authors:Sherry X. Chen, Misha Sra, Pradeep Sen
Title: Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning
Abstract:
Although natural language instructions offer an intuitive way to guide automated image editing, deep-learning models often struggle to achieve high-quality results, largely due to the difficulty of creating large, high-quality training datasets. To do this, previous approaches have typically relied on text-to-image (T2I) generative models to produce pairs of original and edited images that simulate the input/output of an instruction-guided image-editing model. However, these image pairs often fail to align with the specified edit instructions due to the limitations of T2I models, which negatively impacts models trained on such datasets. To address this, we present Instruct-CLIP (I-CLIP), a selfsupervised method that learns the semantic changes between original and edited images to refine and better align the instructions in existing datasets. Furthermore, we adapt Instruct-CLIP to handle noisy latent images and diffusion timesteps so that it can be used to train latent diffusion models (LDMs) and efficiently enforce alignment between the edit instruction and the image changes in latent space at any step of the diffusion pipeline. We use Instruct-CLIP to correct the InstructPix2Pix dataset and get over 120K refined samples we then use to fine-tune their model, guided by our novel I-CLIP-based loss function. The resulting model can produce edits that are more aligned with the given instructions. Our code and dataset are available at https://github.com/SherryXTChen/Instruct-CLIP.git.

Authors:Xudong Mou, Rui Wang, Bo Li, Tianyu Wo, Jie Sun, Hui Wang, Xudong Liu
Title: RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data
Abstract:
The accumulation of time-series signals and the absence of labels make time-series Anomaly Detection (AD) a self-supervised task of deep learning. Methods based on normality assumptions face the following three limitations: (1) A single assumption could hardly characterize the whole normality or lead to some deviation. (2) Some assumptions may go against the principle of AD. (3) Their basic assumption is that the training data is uncontaminated (free of anomalies), which is unrealistic in practice, leading to a decline in robustness. This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges, as far as we are aware. It fuses the separated assumptions of one-class classification and contrastive learning in a single training process to characterize a more complete so-called normality. Additionally, it monitors the training data and computes a carefully designed anomaly score throughout the training process. This score helps identify latent anomalies, which are then used to define the classification boundary, inspired by the concept of outlier exposure. The performance on AIOps datasets improved by 6% compared to when contamination was not considered (COCA). On two large and high-dimensional multivariate datasets, the performance increased by 5% to 10%. RoCA achieves the highest average performance on both univariate and multivariate datasets. The source code is available at https://github.com/ruiking04/RoCA.

Authors:Hongen Liu, Cheng Cui, Yuning Du, Yi Liu, Gang Pan
Title: PP-FormulaNet: Bridging Accuracy and Efficiency in Advanced Formula Recognition
Abstract:
Formula recognition is an important task in document intelligence. It involves converting mathematical expressions from document images into structured symbolic formats that computers can easily work with. LaTeX is the most common format used for this purpose. In this work, we present PP-FormulaNet, a state-of-the-art formula recognition model that excels in both accuracy and efficiency. To meet the diverse needs of applications, we have developed two specialized models: PP-FormulaNet-L, tailored for high-accuracy scenarios, and PP-FormulaNet-S, optimized for high-efficiency contexts. Our extensive evaluations reveal that PP-FormulaNet-L attains accuracy levels that surpass those of prominent models such as UniMERNet by a significant 6%. Conversely, PP-FormulaNet-S operates at speeds that are over 16 times faster. These advancements facilitate seamless integration of PP-FormulaNet into a broad spectrum of document processing environments that involve intricate mathematical formulas. Furthermore, we introduce a Formula Mining System, which is capable of extracting a vast amount of high-quality formula data. This system further enhances the robustness and applicability of our formula recognition model. Code and models are publicly available at PaddleOCR(https://github.com/PaddlePaddle/PaddleOCR) and PaddleX(https://github.com/PaddlePaddle/PaddleX).

Authors:Tianpei Zhang, Yiming Zhu, Jufeng Zhao, Guangmang Cui, Yuchen Zheng
Title: Exploring State Space Model in Wavelet Domain: An Infrared and Visible Image Fusion Network via Wavelet Transform and State Space Model
Abstract:
Deep learning techniques have revolutionized the infrared and visible image fusion (IVIF), showing remarkable efficacy on complex scenarios. However, current methods do not fully combine frequency domain features with global semantic information, which will result in suboptimal extraction of global features across modalities and insufficient preservation of local texture details. To address these issues, we propose Wavelet-Mamba (W-Mamba), which integrates wavelet transform with the state-space model (SSM). Specifically, we introduce Wavelet-SSM module, which incorporates wavelet-based frequency domain feature extraction and global information extraction through SSM, thereby effectively capturing both global and local features. Additionally, we propose a cross-modal feature attention modulation, which facilitates efficient interaction and fusion between different modalities. The experimental results indicate that our method achieves both visually compelling results and superior performance compared to current state-of-the-art methods. Our code is available at https://github.com/Lmmh058/W-Mamba.

Authors:Hankyul Kang, Gregor Seifer, Donghyun Lee, Jongbin Ryu
Title: Do Your Best and Get Enough Rest for Continual Learning
Abstract:
According to the forgetting curve theory, we can enhance memory retention by learning extensive data and taking adequate rest. This means that in order to effectively retain new knowledge, it is essential to learn it thoroughly and ensure sufficient rest so that our brain can memorize without forgetting. The main takeaway from this theory is that learning extensive data at once necessitates sufficient rest before learning the same data again. This aspect of human long-term memory retention can be effectively utilized to address the continual learning of neural networks. Retaining new knowledge for a long period of time without catastrophic forgetting is the critical problem of continual learning. Therefore, based on Ebbinghaus' theory, we introduce the view-batch model that adjusts the learning schedules to optimize the recall interval between retraining the same samples. The proposed view-batch model allows the network to get enough rest to learn extensive knowledge from the same samples with a recall interval of sufficient length. To this end, we specifically present two approaches: 1) a replay method that guarantees the optimal recall interval, and 2) a self-supervised learning that acquires extensive knowledge from a single training sample at a time. We empirically show that these approaches of our method are aligned with the forgetting curve theory, which can enhance long-term memory. In our experiments, we also demonstrate that our method significantly improves many state-of-the-art continual learning methods in various protocols and scenarios. We open-source this project at https://github.com/hankyul2/ViewBatchModel.

Authors:Xu Han, Yuan Tang, Jinfeng Xu, Xianzhi Li
Title: MoST: Efficient Monarch Sparse Tuning for 3D Representation Learning
Abstract:
We introduce Monarch Sparse Tuning (MoST), the first reparameterization-based parameter-efficient fine-tuning (PEFT) method tailored for 3D representation learning. Unlike existing adapter-based and prompt-tuning 3D PEFT methods, MoST introduces no additional inference overhead and is compatible with many 3D representation learning backbones. At its core, we present a new family of structured matrices for 3D point clouds, Point Monarch, which can capture local geometric features of irregular points while offering high expressiveness. MoST reparameterizes the dense update weight matrices as our sparse Point Monarch matrices, significantly reducing parameters while retaining strong performance. Experiments on various backbones show that MoST is simple, effective, and highly generalizable. It captures local features in point clouds, achieving state-of-the-art results on multiple benchmarks, e.g., 97.5% acc. on ScanObjectNN (PB_50_RS) and 96.2% on ModelNet40 classification, while it can also combine with other matrix decompositions (e.g., Low-rank, Kronecker) to further reduce parameters.

Authors:Chenxi Xie, Minghan Li, Hui Zeng, Jun Luo, Lei Zhang
Title: MaSS13K: A Matting-level Semantic Segmentation Benchmark
Abstract:
High-resolution semantic segmentation is essential for applications such as image editing, bokeh imaging, AR/VR, etc. Unfortunately, existing datasets often have limited resolution and lack precise mask details and boundaries. In this work, we build a large-scale, matting-level semantic segmentation dataset, named MaSS13K, which consists of 13,348 real-world images, all at 4K resolution. MaSS13K provides high-quality mask annotations of a number of objects, which are categorized into seven categories: human, vegetation, ground, sky, water, building, and others. MaSS13K features precise masks, with an average mask complexity 20-50 times higher than existing semantic segmentation datasets. We consequently present a method specifically designed for high-resolution semantic segmentation, namely MaSSFormer, which employs an efficient pixel decoder that aggregates high-level semantic features and low-level texture features across three stages, aiming to produce high-resolution masks with minimal computational cost. Finally, we propose a new learning paradigm, which integrates the high-quality masks of the seven given categories with pseudo labels from new classes, enabling MaSSFormer to transfer its accurate segmentation capability to other classes of objects. Our proposed MaSSFormer is comprehensively evaluated on the MaSS13K benchmark together with 14 representative segmentation models. We expect that our meticulously annotated MaSS13K dataset and the MaSSFormer model can facilitate the research of high-resolution and high-quality semantic segmentation. Datasets and codes can be found at https://github.com/xiechenxi99/MaSS13K.

Authors:Inpyo Hong, Youngwan Jo, Hyojeong Lee, Sunghyun Ahn, Kijung Lee, Sanghyun Park
Title: GranQ: Granular Zero-Shot Quantization with Channel-Wise Activation Scaling in QAT
Abstract:
Zero-shot quantization (ZSQ) enables neural network compression without original training data, making it a promising solution for restricted data access scenarios. To compensate for the lack of data, recent ZSQ methods typically rely on synthetic inputs generated from the full-precision model. However, these synthetic inputs often lead to activation distortion, especially under low-bit settings. To mitigate this, existing methods typically employ per-channel scaling, but they still struggle due to the severe computational overhead during the accumulation process. To overcome this critical bottleneck, we propose GranQ, a novel activation quantization framework that introduces an efficient pre-scaling strategy. Unlike conventional channel-wise methods that repeatedly perform scaling operations during accumulation, GranQ applies scaling factors in a pre-scaling step through fully vectorized computation, eliminating runtime scaling overhead. This design enables GranQ to maintain fine-grained quantization accuracy while significantly reducing computational burden, particularly in low-bit quantization settings. Extensive experiments under quantization-aware training (QAT) settings demonstrate that GranQ consistently outperforms state-of-the-art ZSQ methods across CIFAR and ImageNet. In particular, our method achieves up to 5.45% higher accuracy in the 3-bit setting on CIFAR-100 and even surpasses the full-precision baseline on CIFAR-10. Furthermore, GranQ achieves significant speedup in quantization latency over conventional per-channel methods, demonstrating improved efficiency. With these findings, we anticipate that GranQ will inspire future research beyond conventional ZSQ approaches centered on data generation and model fine-tuning. The official code is available at https://github.com/anonymus-orange/GranQ.

Authors:Wenrui Cai, Qingjie Liu, Yunhong Wang
Title: SPMTrack: Spatio-Temporal Parameter-Efficient Fine-Tuning with Mixture of Experts for Scalable Visual Tracking
Abstract:
Most state-of-the-art trackers adopt one-stream paradigm, using a single Vision Transformer for joint feature extraction and relation modeling of template and search region images. However, relation modeling between different image patches exhibits significant variations. For instance, background regions dominated by target-irrelevant information require reduced attention allocation, while foreground, particularly boundary areas, need to be be emphasized. A single model may not effectively handle all kinds of relation modeling simultaneously. In this paper, we propose a novel tracker called SPMTrack based on mixture-of-experts tailored for visual tracking task (TMoE), combining the capability of multiple experts to handle diverse relation modeling more flexibly. Benefiting from TMoE, we extend relation modeling from image pairs to spatio-temporal context, further improving tracking accuracy with minimal increase in model parameters. Moreover, we employ TMoE as a parameter-efficient fine-tuning method, substantially reducing trainable parameters, which enables us to train SPMTrack of varying scales efficiently and preserve the generalization ability of pretrained models to achieve superior performance. We conduct experiments on seven datasets, and experimental results demonstrate that our method significantly outperforms current state-of-the-art trackers. The source code is available at https://github.com/WenRuiCai/SPMTrack.

Authors:Chun Gu, Xiaofei Wei, Li Zhang, Xiatian Zhu
Title: TensoFlow: Tensorial Flow-based Sampler for Inverse Rendering
Abstract:
Inverse rendering aims to recover scene geometry, material properties, and lighting from multi-view images. Given the complexity of light-surface interactions, importance sampling is essential for the evaluation of the rendering equation, as it reduces variance and enhances the efficiency of Monte Carlo sampling. Existing inverse rendering methods typically use pre-defined non-learnable importance samplers in prior manually, struggling to effectively match the spatially and directionally varied integrand and resulting in high variance and suboptimal performance. To address this limitation, we propose the concept of learning a spatially and directionally aware importance sampler for the rendering equation to accurately and flexibly capture the unconstrained complexity of a typical scene. We further formulate TensoFlow, a generic approach for sampler learning in inverse rendering, enabling to closely match the integrand of the rendering equation spatially and directionally. Concretely, our sampler is parameterized by normalizing flows, allowing both directional sampling of incident light and probability density function (PDF) inference. To capture the characteristics of the sampler spatially, we learn a tensorial representation of the scene space, which imposes spatial conditions, together with reflected direction, leading to spatially and directionally aware sampling distributions. Our model can be optimized by minimizing the difference between the integrand and our normalizing flow. Extensive experiments validate the superiority of TensoFlow over prior alternatives on both synthetic and real-world benchmarks.

Authors:Jinjin Zhang, Guodong Wang, Yizhou Jin, Di Huang
Title: Towards Training-free Anomaly Detection with Vision and Language Foundation Models
Abstract:
Anomaly detection is valuable for real-world applications, such as industrial quality inspection. However, most approaches focus on detecting local structural anomalies while neglecting compositional anomalies incorporating logical constraints. In this paper, we introduce LogSAD, a novel multi-modal framework that requires no training for both Logical and Structural Anomaly Detection. First, we propose a match-of-thought architecture that employs advanced large multi-modal models (i.e. GPT-4V) to generate matching proposals, formulating interests and compositional rules of thought for anomaly detection. Second, we elaborate on multi-granularity anomaly detection, consisting of patch tokens, sets of interests, and composition matching with vision and language foundation models. Subsequently, we present a calibration module to align anomaly scores from different detectors, followed by integration strategies for the final decision. Consequently, our approach addresses both logical and structural anomaly detection within a unified framework and achieves state-of-the-art results without the need for training, even when compared to supervised approaches, highlighting its robustness and effectiveness. Code is available at https://github.com/zhang0jhon/LogSAD.

Authors:Christoforos N. Spartalis, Theodoros Semertzidis, Efstratios Gavves, Petros Daras
Title: LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty
Abstract:
We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model up to an information-theoretic bound, mitigating its over-confidence stemming from data memorization. We evaluate LoTUS on Transformer and ResNet18 models against eight baselines across five public datasets. Beyond established MU benchmarks, we evaluate unlearning on ImageNet1k, a large-scale dataset, where retraining is impractical, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. The experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.

Authors:Changlun Li, Yao Shi, Yuyu Luo, Nan Tang
Title: Will LLMs be Professional at Fund Investment? DeepFund: A Live Arena Perspective
Abstract:
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, but their effectiveness in financial decision-making remains inadequately evaluated. Current benchmarks primarily assess LLMs' understanding on financial documents rather than the ability to manage assets or dig out trading opportunities in dynamic market conditions. Despite the release of new benchmarks for evaluating diversified tasks on the financial domain, we identified four major problems in these benchmarks, which are data leakage, navel-gazing, over-intervention, and maintenance-hard. To pave the research gap, we introduce DeepFund, a comprehensive arena platform for evaluating LLM-based trading strategies in a live environment. Our approach implements a multi-agent framework where they serve as multiple key roles that realize the real-world investment decision processes. Moreover, we provide a web interface that visualizes LLMs' performance with fund investment metrics across different market conditions, enabling detailed comparative analysis. Through DeepFund, we aim to provide a more realistic and fair assessment on LLM's capabilities in fund investment, offering diversified insights and revealing their potential applications in real-world financial markets. Our code is publicly available at https://github.com/HKUSTDial/DeepFund.

Authors:Fiseha B. Tesema, Alejandro Guerra Manzanares, Tianxiang Cui, Qian Zhang, Moses Solomon, Sean He
Title: LGPS: A Lightweight GAN-Based Approach for Polyp Segmentation in Colonoscopy Images
Abstract:
Colorectal cancer (CRC) is a major global cause of cancer-related deaths, with early polyp detection and removal during colonoscopy being crucial for prevention. While deep learning methods have shown promise in polyp segmentation, challenges such as high computational costs, difficulty in segmenting small or low-contrast polyps, and limited generalizability across datasets persist. To address these issues, we propose LGPS, a lightweight GAN-based framework for polyp segmentation. LGPS incorporates three key innovations: (1) a MobileNetV2 backbone enhanced with modified residual blocks and Squeeze-and-Excitation (ResE) modules for efficient feature extraction; (2) Convolutional Conditional Random Fields (ConvCRF) for precise boundary refinement; and (3) a hybrid loss function combining Binary Cross-Entropy, Weighted IoU Loss, and Dice Loss to address class imbalance and enhance segmentation accuracy. LGPS is validated on five benchmark datasets and compared with state-of-the-art(SOTA) methods. On the largest and challenging PolypGen test dataset, LGPS achieves a Dice of 0.7299 and an IoU of 0.7867, outperformed all SOTA works and demonstrating robust generalization. With only 1.07 million parameters, LGPS is 17 times smaller than the smallest existing model, making it highly suitable for real-time clinical applications. Its lightweight design and strong performance underscore its potential for improving early CRC diagnosis. Code is available at https://github.com/Falmi/LGPS/.

Authors:Cheng Huang, Fan Gao, Yutong Liu, Nyima Tashi, Xiangxiang Wang, Thupten Tsering, Ban Ma-bao, Renzeg Duojie, Gadeng Luosang, Rinchen Dongrub, Dorje Tashi, Xiao Feng, Hao Wang, Yongbin Yu
Title: TIB-STC: A Large-Scale Structured Tibetan Benchmark for Low-Resource Language Modeling
Abstract:
Advancement of large language models (LLMs) has brought transformative capabilities to NLP, but such progress remains unevenly distributed, especially for low-resource and culturally rich languages like Tibetan. In this paper, we present TIB-STC, the first large-scale, expert-curated, and multi-domain dataset specifically designed to support the development and evaluation of LLMs for the Tibetan language. Spanning over 11 billion tokens across literature, religion, medicine, law, and daily communication, TIB-STC preserves traditional grammar and stylistic richness. To validate its utility, we train a reference model, Sun-Shine, on TIB-STC through a three-stage pipeline involving pretraining, supervised fine-tuning, and preference optimization. Evaluation on TLUE Benchmark for Tibetan-specific tasks, including Ti-MMLU and Ti-SafetyBench, demonstrates the TIB-STC's effectiveness in enabling robust instruction-following and culturally aligned generation. We release TIB-STC to advance research in low-resource language modeling and promote inclusivity in multilingual NLP. All data are available: https://github.com/Vicentvankor/sun-shine.

Authors:Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, Vikash Sehwag
Title: CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI
Abstract:
With the rapid advancement of generative AI, it is now possible to synthesize high-quality images in a few seconds. Despite the power of these technologies, they raise significant concerns regarding misuse. Current efforts to distinguish between real and AI-generated images may lack generalization, being effective for only certain types of generative models and susceptible to post-processing techniques like JPEG compression. To overcome these limitations, we propose a novel framework, Co-Spy, that first enhances existing semantic features (e.g., the number of fingers in a hand) and artifact features (e.g., pixel value differences), and then adaptively integrates them to achieve more general and robust synthetic image detection. Additionally, we create Co-Spy-Bench, a comprehensive dataset comprising 5 real image datasets and 22 state-of-the-art generative models, including the latest models like FLUX. We also collect 50k synthetic images in the wild from the Internet to enable evaluation in a more practical setting. Our extensive evaluations demonstrate that our detector outperforms existing methods under identical training conditions, achieving an average accuracy improvement of approximately 11% to 34%. The code is available at https://github.com/Megum1/Co-Spy.

Authors:Kazuhiro Yamada, Li Yin, Qingrui Hu, Ning Ding, Shunsuke Iwashita, Jun Ichikawa, Kiwamu Kotani, Calvin Yeung, Keisuke Fujii
Title: TrackID3x3: A Dataset and Algorithm for Multi-Player Tracking with Identification and Pose Estimation in 3x3 Basketball Full-court Videos
Abstract:
Multi-object tracking, player identification, and pose estimation are fundamental components of sports analytics, essential for analyzing player movements, performance, and tactical strategies. However, existing datasets and methodologies primarily target mainstream team sports such as soccer and conventional 5-on-5 basketball, often overlooking scenarios involving fixed-camera setups commonly used at amateur levels, less mainstream sports, or datasets that explicitly incorporate pose annotations. In this paper, we propose the TrackID3x3 dataset, the first publicly available comprehensive dataset specifically designed for multi-player tracking, player identification, and pose estimation in 3x3 basketball scenarios. The dataset comprises three distinct subsets (Indoor fixed-camera, Outdoor fixed-camera, and Drone camera footage), capturing diverse full-court camera perspectives and environments. We also introduce the Track-ID task, a simplified variant of the game state reconstruction task that excludes field detection and focuses exclusively on fixed-camera scenarios. To evaluate performance, we propose a baseline algorithm called Track-ID algorithm, tailored to assess tracking and identification quality. Furthermore, our benchmark experiments, utilizing recent multi-object tracking algorithms (e.g., BoT-SORT-ReID) and top-down pose estimation methods (HRNet, RTMPose, and SwinPose), demonstrate robust results and highlight remaining challenges. Our dataset and evaluation benchmarks provide a solid foundation for advancing automated analytics in 3x3 basketball. Dataset and code will be available at https://github.com/open-starlab/TrackID3x3.

Authors:Yuming Huang, Wei Gao, Zhiyuan Zhang, Maani Ghaffari, Dezhen Song, Cheng-Zhong Xu, Hui Kong
Title: Learning Orientation Field for OSM-Guided Autonomous Navigation
Abstract:
OpenStreetMap (OSM) has gained popularity recently in autonomous navigation due to its public accessibility, lower maintenance costs, and broader geographical coverage. However, existing methods often struggle with noisy OSM data and incomplete sensor observations, leading to inaccuracies in trajectory planning. These challenges are particularly evident in complex driving scenarios, such as at intersections or facing occlusions. To address these challenges, we propose a robust and explainable two-stage framework to learn an Orientation Field (OrField) for robot navigation by integrating LiDAR scans and OSM routes. In the first stage, we introduce the novel representation, OrField, which can provide orientations for each grid on the map, reasoning jointly from noisy LiDAR scans and OSM routes. To generate a robust OrField, we train a deep neural network by encoding a versatile initial OrField and output an optimized OrField. Based on OrField, we propose two trajectory planners for OSM-guided robot navigation, called Field-RRT* and Field-Bezier, respectively, in the second stage by improving the Rapidly Exploring Random Tree (RRT) algorithm and Bezier curve to estimate the trajectories. Thanks to the robustness of OrField which captures both global and local information, Field-RRT* and Field-Bezier can generate accurate and reliable trajectories even in challenging conditions. We validate our approach through experiments on the SemanticKITTI dataset and our own campus dataset. The results demonstrate the effectiveness of our method, achieving superior performance in complex and noisy conditions. Our code for network training and real-world deployment is available at https://github.com/IMRL/OriField.

Authors:Minh-Tuan Tran, Trung Le, Xuan-May Le, Thanh-Toan Do, Dinh Phung
Title: Enhancing Dataset Distillation via Non-Critical Region Refinement
Abstract:
Dataset distillation has become a popular method for compressing large datasets into smaller, more efficient representations while preserving critical information for model training. Data features are broadly categorized into two types: instance-specific features, which capture unique, fine-grained details of individual examples, and class-general features, which represent shared, broad patterns across a class. However, previous approaches often struggle to balance these features-some focus solely on class-general patterns, neglecting finer instance details, while others prioritize instance-specific features, overlooking the shared characteristics essential for class-level understanding. In this paper, we introduce the Non-Critical Region Refinement Dataset Distillation (NRR-DD) method, which preserves instance-specific details and fine-grained regions in synthetic data while enriching non-critical regions with class-general information. This approach enables models to leverage all pixel information, capturing both feature types and enhancing overall performance. Additionally, we present Distance-Based Representative (DBR) knowledge transfer, which eliminates the need for soft labels in training by relying on the distance between synthetic data predictions and one-hot encoded labels. Experimental results show that NRR-DD achieves state-of-the-art performance on both small- and large-scale datasets. Furthermore, by storing only two distances per instance, our method delivers comparable results across various settings. The code is available at https://github.com/tmtuan1307/NRR-DD.

Authors:Feiran Wang, Bin Duan, Jiachen Tao, Nikhil Sharma, Dawen Cai, Yan Yan
Title: ZECO: ZeroFusion Guided 3D MRI Conditional Generation
Abstract:
Medical image segmentation is crucial for enhancing diagnostic accuracy and treatment planning in Magnetic Resonance Imaging (MRI). However, acquiring precise lesion masks for segmentation model training demands specialized expertise and significant time investment, leading to a small dataset scale in clinical practice. In this paper, we present ZECO, a ZeroFusion guided 3D MRI conditional generation framework that extracts, compresses, and generates high-fidelity MRI images with corresponding 3D segmentation masks to mitigate data scarcity. To effectively capture inter-slice relationships within volumes, we introduce a Spatial Transformation Module that encodes MRI images into a compact latent space for the diffusion process. Moving beyond unconditional generation, our novel ZeroFusion method progressively maps 3D masks to MRI images in latent space, enabling robust training on limited datasets while avoiding overfitting. ZECO outperforms state-of-the-art models in both quantitative and qualitative evaluations on Brain MRI datasets across various modalities, showcasing its exceptional capability in synthesizing high-quality MRI images conditioned on segmentation masks.

Authors:Yiheng Zhong, Zihong Luo, Chengzhi Liu, Feilong Tang, Zelin Peng, Ming Hu, Yingzhen Hu, Jionglong Su, Zongyuan Ge, Imran Razzak
Title: PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Abstract:
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our code is released at https://github.com/logan-0623/PG-SAM.

Authors:Massimo Bini, Leander Girrbach, Zeynep Akata
Title: DeLoRA: Decoupling Angles and Strength in Low-rank Adaptation
Abstract:
Parameter-Efficient FineTuning (PEFT) methods have recently gained significant popularity thanks to the widespread availability of large-scale pretrained models. These methods allow for quick adaptation to downstream tasks with minimal computational cost. However, popular finetuning methods such as LoRA exhibit limited robustness when it comes to hyperparameter choices or extended training regimes, preventing optimal out-of-the-box performance. In contrast, bounded approaches, such as ETHER, provide greater robustness but are limited to extremely low-rank adaptations and fixed-strength transformations, reducing their adaptation expressive power. In this work, we propose Decoupled Low-rank Adaptation (DeLoRA), a novel finetuning method that normalizes and scales learnable low-rank matrices. By bounding the distance of the transformation, DeLoRA effectively decouples the angular learning from the adaptation strength, enhancing robustness without compromising performance. Through evaluations on subject-driven image generation, natural language understanding, and instruction tuning, we show that DeLoRA matches or surpasses performance of competing PEFT methods, while exhibiting stronger robustness. Code is available at https://github.com/ExplainableML/DeLoRA.

Authors:Valentin Gabeff, Haozhe Qi, Brendan Flaherty, Gencer Sumbül, Alexander Mathis, Devis Tuia
Title: MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps
Abstract:
Monitoring wildlife is essential for ecology and ethology, especially in light of the increasing human impact on ecosystems. Camera traps have emerged as habitat-centric sensors enabling the study of wildlife populations at scale with minimal disturbance. However, the lack of annotated video datasets limits the development of powerful video understanding models needed to process the vast amount of fieldwork data collected. To advance research in wild animal behavior monitoring we present MammAlps, a multimodal and multi-view dataset of wildlife behavior monitoring from 9 camera-traps in the Swiss National Park. MammAlps contains over 14 hours of video with audio, 2D segmentation maps and 8.5 hours of individual tracks densely labeled for species and behavior. Based on 6135 single animal clips, we propose the first hierarchical and multimodal animal behavior recognition benchmark using audio, video and reference scene segmentation maps as inputs. Furthermore, we also propose a second ecology-oriented benchmark aiming at identifying activities, species, number of individuals and meteorological conditions from 397 multi-view and long-term ecological events, including false positive triggers. We advocate that both tasks are complementary and contribute to bridging the gap between machine learning and ecology. Code and data are available at: https://github.com/eceo-epfl/MammAlps

Authors:Zhengyuan Li, Kai Cheng, Anindita Ghosh, Uttaran Bhattacharya, Liangyan Gui, Aniket Bera
Title: SimMotionEdit: Text-Based Human Motion Editing with Motion Similarity Prediction
Abstract:
Text-based 3D human motion editing is a critical yet challenging task in computer vision and graphics. While training-free approaches have been explored, the recent release of the MotionFix dataset, which includes source-text-motion triplets, has opened new avenues for training, yielding promising results. However, existing methods struggle with precise control, often leading to misalignment between motion semantics and language instructions. In this paper, we introduce a related task, motion similarity prediction, and propose a multi-task training paradigm, where we train the model jointly on motion editing and motion similarity prediction to foster the learning of semantically meaningful representations. To complement this task, we design an advanced Diffusion-Transformer-based architecture that separately handles motion similarity prediction and motion editing. Extensive experiments demonstrate the state-of-the-art performance of our approach in both editing alignment and fidelity.

Authors:Suman Adhya, Avishek Lahiri, Debarshi Kumar Sanyal, Partha Pratim Das
Title: Evaluating Negative Sampling Approaches for Neural Topic Models
Abstract:
Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.

Authors:Haoyang Li, Siyu Zhou, Liang Wang, Guodong Long
Title: MAO: Efficient Model-Agnostic Optimization of Prompt Tuning for Vision-Language Models
Abstract:
Though CLIP-based prompt tuning significantly enhances pre-trained Vision-Language Models, existing research focuses on reconstructing the model architecture, e.g., additional loss calculation and meta-networks. These approaches generally lead to increased complexity and extended training cost. To maintain the efficiency of the tuning process, we propose plug-and-play Model-Agnostic Optimization (MAO) for prompt tuning. Without altering any components of the prompt tuning backbone, we introduce a Data-Driven Enhancement framework to optimize the distribution of the initial data, and incorporate an Alterable Regularization module to boost the task-specific feature processing pipeline, thereby improving overall performance while maintaining low computational cost. Extensive experiments on MAO demonstrate its outstanding performance and efficiency. The code of MAO is available at: https://github.com/JREion/M.A.O .

Authors:Peng Chen, Xiaobao Wei, Ming Lu, Hui Chen, Feng Tian
Title: DiffusionTalker: Efficient and Compact Speech-Driven 3D Talking Head via Personalizer-Guided Distillation
Abstract:
Real-time speech-driven 3D facial animation has been attractive in academia and industry. Traditional methods mainly focus on learning a deterministic mapping from speech to animation. Recent approaches start to consider the nondeterministic fact of speech-driven 3D face animation and employ the diffusion model for the task. Existing diffusion-based methods can improve the diversity of facial animation. However, personalized speaking styles conveying accurate lip language is still lacking, besides, efficiency and compactness still need to be improved. In this work, we propose DiffusionTalker to address the above limitations via personalizer-guided distillation. In terms of personalization, we introduce a contrastive personalizer that learns identity and emotion embeddings to capture speaking styles from audio. We further propose a personalizer enhancer during distillation to enhance the influence of embeddings on facial animation. For efficiency, we use iterative distillation to reduce the steps required for animation generation and achieve more than 8x speedup in inference. To achieve compactness, we distill the large teacher model into a smaller student model, reducing our model's storage by 86.4\% while minimizing performance loss. After distillation, users can derive their identity and emotion embeddings from audio to quickly create personalized animations that reflect specific speaking styles. Extensive experiments are conducted to demonstrate that our method outperforms state-of-the-art methods. The code will be released at: https://github.com/ChenVoid/DiffusionTalker.

Authors:Varvara Krechetova, Denis Kochedykov
Title: GeoBenchX: Benchmarking LLMs for Multistep Geospatial Tasks
Abstract:
In this paper, we establish a benchmark for evaluating large language models (LLMs) on multi-step geospatial tasks relevant to commercial GIS practitioners. We assess seven leading commercial LLMs (Sonnet 3.5 and 3.7, Haiku 3.5, Gemini 2.0, GPT-4o, GPT-4o mini, and o3-mini) using a simple tool-calling agent equipped with 23 geospatial functions. Our benchmark comprises tasks across four categories of increasing complexity, with both solvable and intentionally unsolvable tasks to test hallucination rejection. We develop an LLM-as-Judge evaluation framework to compare agent solutions against reference implementations. Results show Sonnet 3.5 and GPT-4o achieve the best overall performance, with Claude models excelling on solvable tasks while OpenAI models better identify unsolvable scenarios. We observe significant differences in token usage, with Anthropic models consuming substantially more tokens than competitors. Common errors include misunderstanding geometrical relationships, relying on outdated knowledge, and inefficient data manipulation. The resulting benchmark set, evaluation framework, and data generation pipeline are released as open-source resources, providing one more standardized method for ongoing evaluation of LLMs for GeoAI.

Authors:Alexander Gielisse, Jan van Gemert
Title: End-to-End Implicit Neural Representations for Classification
Abstract:
Implicit neural representations (INRs) such as NeRF and SIREN encode a signal in neural network parameters and show excellent results for signal reconstruction. Using INRs for downstream tasks, such as classification, is however not straightforward. Inherent symmetries in the parameters pose challenges and current works primarily focus on designing architectures that are equivariant to these symmetries. However, INR-based classification still significantly under-performs compared to pixel-based methods like CNNs. This work presents an end-to-end strategy for initializing SIRENs together with a learned learning-rate scheme, to yield representations that improve classification accuracy. We show that a simple, straightforward, Transformer model applied to a meta-learned SIREN, without incorporating explicit symmetry equivariances, outperforms the current state-of-the-art. On the CIFAR-10 SIREN classification task, we improve the state-of-the-art without augmentations from 38.8% to 59.6%, and from 63.4% to 64.7% with augmentations. We demonstrate scalability on the high-resolution Imagenette dataset achieving reasonable reconstruction quality with a classification accuracy of 60.8% and are the first to do INR classification on the full ImageNet-1K dataset where we achieve a SIREN classification performance of 23.6%. To the best of our knowledge, no other SIREN classification approach has managed to set a classification baseline for any high-resolution image dataset. Our code is available at https://github.com/SanderGielisse/MWT

Authors:Ze Zhang, Enyuan Zhao, Yi Jiang, Jie Nie, Xinyue Liang
Title: Challenging Dataset and Multi-modal Gated Mixture of Experts Model for Remote Sensing Copy-Move Forgery Understanding
Abstract:
The Remote Sensing Copy-Move Question Answering (RSCMQA) task focuses on interpreting complex tampering scenarios and inferring the relationships between objects. Currently, publicly available datasets often use randomly generated tampered images, which lack spatial logic and do not meet the practical needs of defense security and land resource monitoring. To address this, we propose a high-quality manually annotated RSCMQA dataset, Real-RSCM, which provides more realistic evaluation metrics for the identification and understanding of remote sensing image tampering. The tampered images in the Real-RSCM dataset are subtle, authentic, and challenging, posing significant difficulties for model discrimination capabilities. To overcome these challenges, we introduce a multimodal gated mixture of experts model (CM-MMoE), which guides multi-expert models to discern tampered information in images through multi-level visual semantics and textual joint modeling. Extensive experiments demonstrate that CM-MMoE provides a stronger benchmark for the RSCMQA task compared to general VQA and CMQA models. Our dataset and code are available at https://github.com/shenyedepisa/CM-MMoE.

Authors:Zeyuan Ma, Hongqiao Lian, Wenjie Qiu, Yue-Jiao Gong
Title: Accurate Peak Detection in Multimodal Optimization via Approximated Landscape Learning
Abstract:
Detecting potential optimal peak areas and locating the accurate peaks in these areas are two major challenges in Multimodal Optimization problems (MMOPs). To address them, much efforts have been spent on developing novel searching operators, niching strategies and multi-objective problem transformation pipelines. Though promising, existing approaches more or less overlook the potential usage of landscape knowledge. In this paper, we propose a novel optimization framework tailored for MMOPs, termed as APDMMO, which facilitates peak detection via fully leveraging the landscape knowledge and hence capable of providing strong optimization performance on MMOPs. Specifically, we first design a novel surrogate landscape model which ensembles a group of non-linear activation units to improve the regression accuracy on diverse MMOPs. Then we propose a free-of-trial peak detection method which efficiently locates potential peak areas through back-propagation on the learned surrogate landscape model. Based on the detected peak areas, we employ SEP-CMAES for local search within these areas in parallel to further improve the accuracy of the found optima. Extensive benchmarking results demonstrate that APDMMO outperforms several up-to-date baselines. Further ablation studies verify the effectiveness of the proposed novel designs. The source-code is available at ~\href{}{https://github.com/GMC-DRL/APDMMO}.

Authors:Ziming Wei, Bingqian Lin, Yunshuang Nie, Jiaqi Chen, Shikui Ma, Hang Xu, Xiaodan Liang
Title: Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation
Abstract:
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.

Authors:Xiaoming Qi, Jingyang Zhang, Huazhu Fu, Guanyu Yang, Shuo Li, Yueming Jin
Title: Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for FCL
Abstract:
Federated continual learning (FCL) offers an emerging pattern to facilitate the applicability of federated learning (FL) in real-world scenarios, where tasks evolve dynamically and asynchronously across clients, especially in medical scenario. Existing server-side FCL methods in nature domain construct a continually learnable server model by client aggregation on all-involved tasks. However, they are challenged by: (1) Catastrophic forgetting for previously learned tasks, leading to error accumulation in server model, making it difficult to sustain comprehensive knowledge across all tasks. (2) Biased optimization due to asynchronous tasks handled across different clients, leading to the collision of optimization targets of different clients at the same time steps. In this work, we take the first step to propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (\textbf{FedDAH}). It is to facilitate collaborative learning under the distinct and dynamic task streams across clients. To alleviate the catastrophic forgetting, we propose a dynamic allocation hypernetwork (DAHyper) where a continually updated hypernetwork is designed to manage the mapping between task identities and their associated model parameters, enabling the dynamic allocation of the model across clients. For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates, and assign weights to identical tasks across different time steps based on the similarity for continual optimization. Extensive experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams. The code is available:https://github.com/jinlab-imvr/FedDAH.

Authors:Hongshu Guo, Sijie Ma, Zechuan Huang, Yuzhi Hu, Zeyuan Ma, Xinglin Zhang, Yue-Jiao Gong
Title: Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning
Abstract:
Recently, Meta-Black-Box-Optimization (MetaBBO) methods significantly enhance the performance of traditional black-box optimizers through meta-learning flexible and generalizable meta-level policies that excel in dynamic algorithm configuration (DAC) tasks within the low-level optimization, reducing the expertise required to adapt optimizers for novel optimization tasks. Though promising, existing MetaBBO methods heavily rely on human-crafted feature extraction approach to secure learning effectiveness. To address this issue, this paper introduces a novel MetaBBO method that supports automated feature learning during the meta-learning process, termed as RLDE-AFL, which integrates a learnable feature extraction module into a reinforcement learning-based DE method to learn both the feature encoding and meta-level policy. Specifically, we design an attention-based neural network with mantissa-exponent based embedding to transform the solution populations and corresponding objective values during the low-level optimization into expressive landscape features. We further incorporate a comprehensive algorithm configuration space including diverse DE operators into a reinforcement learning-aided DAC paradigm to unleash the behavior diversity and performance of the proposed RLDE-AFL. Extensive benchmark results show that co-training the proposed feature learning module and DAC policy contributes to the superior optimization performance of RLDE-AFL to several advanced DE methods and recent MetaBBO baselines over both synthetic and realistic BBO scenarios. The source codes of RLDE-AFL are available at https://github.com/GMC-DRL/RLDE-AFL.

Authors:Zeyuan Ma, Zhiyang Huang, Jiacheng Chen, Zhiguang Cao, Yue-Jiao Gong
Title: Surrogate Learning in Meta-Black-Box Optimization: A Preliminary Study
Abstract:
Recent Meta-Black-Box Optimization (MetaBBO) approaches have shown possibility of enhancing the optimization performance through learning meta-level policies to dynamically configure low-level optimizers. However, existing MetaBBO approaches potentially consume massive function evaluations to train their meta-level policies. Inspired by the recent trend of using surrogate models for cost-friendly evaluation of expensive optimization problems, in this paper, we propose a novel MetaBBO framework which combines surrogate learning process and reinforcement learning-aided Differential Evolution algorithm, namely Surr-RLDE, to address the intensive function evaluation in MetaBBO. Surr-RLDE comprises two learning stages: surrogate learning and policy learning. In surrogate learning, we train a Kolmogorov-Arnold Networks (KAN) with a novel relative-order-aware loss to accurately approximate the objective functions of the problem instances used for subsequent policy learning. In policy learning, we employ reinforcement learning (RL) to dynamically configure the mutation operator in DE. The learned surrogate model is integrated into the training of the RL-based policy to substitute for the original objective function, which effectively reduces consumed evaluations during policy learning. Extensive benchmark results demonstrate that Surr-RLDE not only shows competitive performance to recent baselines, but also shows compelling generalization for higher-dimensional problems. Further ablation studies underscore the effectiveness of each technical components in Surr-RLDE. We open-source Surr-RLDE at https://github.com/GMC-DRL/Surr-RLDE.

Authors:Mingde Yao, Menglu Wang, King-Man Tam, Lingen Li, Tianfan Xue, Jinwei Gu
Title: PolarFree: Polarization-based Reflection-free Imaging
Abstract:
Reflection removal is challenging due to complex light interactions, where reflections obscure important details and hinder scene understanding. Polarization naturally provides a powerful cue to distinguish between reflected and transmitted light, enabling more accurate reflection removal. However, existing methods often rely on small-scale or synthetic datasets, which fail to capture the diversity and complexity of real-world scenarios. To this end, we construct a large-scale dataset, PolaRGB, for Polarization-based reflection removal of RGB images, which enables us to train models that generalize effectively across a wide range of real-world scenarios. The PolaRGB dataset contains 6,500 well-aligned mixed-transmission image pairs, 8x larger than existing polarization datasets, and is the first to include both RGB and polarization images captured across diverse indoor and outdoor environments with varying lighting conditions. Besides, to fully exploit the potential of polarization cues for reflection removal, we introduce PolarFree, which leverages diffusion process to generate reflection-free cues for accurate reflection removal. Extensive experiments show that PolarFree significantly enhances image clarity in challenging reflective scenarios, setting a new benchmark for polarized imaging and reflection removal. Code and dataset are available at https://github.com/mdyao/PolarFree.

Authors:Aabid Karim, Abdul Karim, Bhoomika Lohana, Matt Keon, Jaswinder Singh, Abdul Sattar
Title: Lost in Cultural Translation: Do LLMs Struggle with Math Across Cultural Contexts?
Abstract:
Large Language Models (LLMs) have significantly advanced various fields, particularly coding, mathematical reasoning, and logical problem solving. However, a critical question remains: Do these mathematical reasoning abilities persist when LLMs are presented with culturally adapted math problems? Specifically, how do LLMs perform when faced with math problems embedded in cultural contexts that have no significant representation in main stream web-scale AI training data? To explore this, we generated six synthetic cultural datasets from GSM8K, a widely used benchmark for assessing LLMs' mathematical reasoning skills. While preserving the mathematical logic and numerical values of the original GSM8K test set, we modify cultural elements such as personal names, food items, place names, etc. These culturally adapted datasets provide a more reliable framework for evaluating LLMs' mathematical reasoning under shifting cultural contexts. Our findings reveal that LLMs struggle with math problems when cultural references change, even though the underlying mathematical structure remains constant. Smaller models exhibit greater performance drops compared to larger models. Interestingly, our results also suggest that cultural familiarity can enhance mathematical reasoning. Even models with no explicit mathematical training but exposure to relevant cultural contexts sometimes outperform larger, mathematically proficient models on culturally embedded math problems. This study highlights the impact of cultural context on the mathematical reasoning abilities of LLMs, underscoring the need for more diverse and representative training data to improve robustness in real-world applications. The benchmark data sets and script for reproducing the results are available at https://github.com/akarim23131/Lost_in_Cultural_Translation

Authors:Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin Zhao, Fan Yang, Ming Tang, Jinqiao Wang
Title: Vision-R1: Evolving Human-Free Alignment in Large Vision-Language Models via Vision-Guided Reinforcement Learning
Abstract:
Large Vision-Language Models (LVLMs) typically follow a two-stage training paradigm-pretraining and supervised fine-tuning. Recently, preference optimization, derived from the language domain, has emerged as an effective post-training reinforcement strategy to enhance capabilities of LVLMs. However, constructing high-quality human-annotated preference data and developing robust reward models to mimic these preferences are both costly and challenging. Motivated by this observation, we propose Vision-R1, a novel vision-guided R1-like reinforcement learning algorithm for LVLMs that rewards models with definitive vision feedback. It only leverages curated instruction data, eliminating the need for specialized reward models and handcrafted preference datasets. We incorporate a criterion-driven reward function that further integrates multi-dimensional feedback to evaluate model completions comprehensively based on the vision task logic. Furthermore, we introduce a progressive rule refinement strategy that dynamically adjusts the reward criteria during training, enabling continuous model improvement and mitigating reward hacking. Extensive experiments on both in-distribution and out-of-distribution benchmarks demonstrate that fine-tuning the 7B LVLMs with Vision-R1 achieves consistent performance gains, with even up to 50% improvement and surpassing the state-of-the-art 10x size model.

Authors:Hongyu Yan, Zijun Li, Kunming Luo, Li Lu, Ping Tan
Title: SymmCompletion: High-Fidelity and High-Consistency Point Cloud Completion with Symmetry Guidance
Abstract:
Point cloud completion aims to recover a complete point shape from a partial point cloud. Although existing methods can form satisfactory point clouds in global completeness, they often lose the original geometry details and face the problem of geometric inconsistency between existing point clouds and reconstructed missing parts. To tackle this problem, we introduce SymmCompletion, a highly effective completion method based on symmetry guidance. Our method comprises two primary components: a Local Symmetry Transformation Network (LSTNet) and a Symmetry-Guidance Transformer (SGFormer). First, LSTNet efficiently estimates point-wise local symmetry transformation to transform key geometries of partial inputs into missing regions, thereby generating geometry-align partial-missing pairs and initial point clouds. Second, SGFormer leverages the geometric features of partial-missing pairs as the explicit symmetric guidance that can constrain the refinement process for initial point clouds. As a result, SGFormer can exploit provided priors to form high-fidelity and geometry-consistency final point clouds. Qualitative and quantitative evaluations on several benchmark datasets demonstrate that our method outperforms state-of-the-art completion networks.

Authors:Maochen Yang, Zekun Li, Jian Zhang, Lei Qi, Yinghuan Shi
Title: Taste More, Taste Better: Diverse Data and Strong Model Boost Semi-Supervised Crowd Counting
Abstract:
Semi-supervised crowd counting is crucial for addressing the high annotation costs of densely populated scenes. Although several methods based on pseudo-labeling have been proposed, it remains challenging to effectively and accurately utilize unlabeled data. In this paper, we propose a novel framework called Taste More Taste Better (TMTB), which emphasizes both data and model aspects. Firstly, we explore a data augmentation technique well-suited for the crowd counting task. By inpainting the background regions, this technique can effectively enhance data diversity while preserving the fidelity of the entire scenes. Secondly, we introduce the Visual State Space Model as backbone to capture the global context information from crowd scenes, which is crucial for extremely crowded, low-light, and adverse weather scenarios. In addition to the traditional regression head for exact prediction, we employ an Anti-Noise classification head to provide less exact but more accurate supervision, since the regression head is sensitive to noise in manual annotations. We conduct extensive experiments on four benchmark datasets and show that our method outperforms state-of-the-art methods by a large margin. Code is publicly available on https://github.com/syhien/taste_more_taste_better.

Authors:Baizhi Wang, Rui Yan, Wenxin Ma, Xu Zhang, Yuhao Wang, Xiaolong Li, Yunjie Gu, Zihang Jiang, S. Kevin Zhou
Title: Histomorphology-driven multi-instance learning for breast cancer WSI classification
Abstract:
Histomorphology is crucial in breast cancer diagnosis. However, existing whole slide image (WSI) classification methods struggle to effectively incorporate histomorphology information, limiting their ability to capture key and fine-grained pathological features. To address this limitation, we propose a novel framework that explicitly incorporates histomorphology (tumor cellularity, cellular morphology, and tissue architecture) into WSI classification. Specifically, our approach consists of three key components: (1) estimating the importance of tumor-related histomorphology information at the patch level based on medical prior knowledge; (2) generating representative cluster-level features through histomorphology-driven cluster pooling; and (3) enabling WSI-level classification through histomorphology-driven multi-instance aggregation. With the incorporation of histomorphological information, our framework strengthens the model's ability to capture key and fine-grained pathological patterns, thereby enhancing WSI classification performance. Experimental results demonstrate its effectiveness, achieving high diagnostic accuracy for molecular subtyping and cancer subtyping. The code will be made available at https://github.com/Badgewho/HMDMIL.

Authors:Yara AlaaEldin, Francesca Odone
Title: Co-SemDepth: Fast Joint Semantic Segmentation and Depth Estimation on Aerial Images
Abstract:
Understanding the geometric and semantic properties of the scene is crucial in autonomous navigation and particularly challenging in the case of Unmanned Aerial Vehicle (UAV) navigation. Such information may be by obtained by estimating depth and semantic segmentation maps of the surrounding environment and for their practical use in autonomous navigation, the procedure must be performed as close to real-time as possible. In this paper, we leverage monocular cameras on aerial robots to predict depth and semantic maps in low-altitude unstructured environments. We propose a joint deep-learning architecture that can perform the two tasks accurately and rapidly, and validate its effectiveness on MidAir and Aeroscapes benchmark datasets. Our joint-architecture proves to be competitive or superior to the other single and joint architecture methods while performing its task fast predicting 20.2 FPS on a single NVIDIA quadro p5000 GPU and it has a low memory footprint. All codes for training and prediction can be found on this link: https://github.com/Malga-Vision/Co-SemDepth

Authors:Yuzhi Li, Haojun Xu, Feng Tian
Title: Shot Sequence Ordering for Video Editing: Benchmarks, Metrics, and Cinematology-Inspired Computing Methods
Abstract:
With the rising popularity of short video platforms, the demand for video production has increased substantially. However, high-quality video creation continues to rely heavily on professional editing skills and a nuanced understanding of visual language. To address this challenge, the Shot Sequence Ordering (SSO) task in AI-assisted video editing has emerged as a pivotal approach for enhancing video storytelling and the overall viewing experience. Nevertheless, the progress in this field has been impeded by a lack of publicly available benchmark datasets. In response, this paper introduces two novel benchmark datasets, AVE-Order and ActivityNet-Order. Additionally, we employ the Kendall Tau distance as an evaluation metric for the SSO task and propose the Kendall Tau Distance-Cross Entropy Loss. We further introduce the concept of Cinematology Embedding, which incorporates movie metadata and shot labels as prior knowledge into the SSO model, and constructs the AVE-Meta dataset to validate the method's effectiveness. Experimental results indicate that the proposed loss function and method substantially enhance SSO task accuracy. All datasets are publicly accessible at https://github.com/litchiar/ShotSeqBench.

Authors:Yang Luo, Shiru Wang, Jun Liu, Jiaxuan Xiao, Rundong Xue, Zeyu Zhang, Hao Zhang, Yu Lu, Yang Zhao, Yutong Xie
Title: PathoHR: Breast Cancer Survival Prediction on High-Resolution Pathological Images
Abstract:
Breast cancer survival prediction in computational pathology presents a remarkable challenge due to tumor heterogeneity. For instance, different regions of the same tumor in the pathology image can show distinct morphological and molecular characteristics. This makes it difficult to extract representative features from whole slide images (WSIs) that truly reflect the tumor's aggressive potential and likely survival outcomes. In this paper, we present PathoHR, a novel pipeline for accurate breast cancer survival prediction that enhances any size of pathological images to enable more effective feature learning. Our approach entails (1) the incorporation of a plug-and-play high-resolution Vision Transformer (ViT) to enhance patch-wise WSI representation, enabling more detailed and comprehensive feature extraction, (2) the systematic evaluation of multiple advanced similarity metrics for comparing WSI-extracted features, optimizing the representation learning process to better capture tumor characteristics, (3) the demonstration that smaller image patches enhanced follow the proposed pipeline can achieve equivalent or superior prediction accuracy compared to raw larger patches, while significantly reducing computational overhead. Experimental findings valid that PathoHR provides the potential way of integrating enhanced image resolution with optimized feature learning to advance computational pathology, offering a promising direction for more accurate and efficient breast cancer survival prediction. Code will be available at https://github.com/AIGeeksGroup/PathoHR.

Authors:Zeng-Hui Zhu, Wei Lu, Si-Bao Chen, Chris H. Q. Ding, Jin Tang, Bin Luo
Title: Real-World Remote Sensing Image Dehazing: Benchmark and Baseline
Abstract:
Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.

Authors:Jianjian Yin, Tao Chen, Gensheng Pei, Yazhou Yao, Liqiang Nie, Xiansheng Hua
Title: Semi-supervised Semantic Segmentation with Multi-Constraint Consistency Learning
Abstract:
Consistency regularization has prevailed in semi-supervised semantic segmentation and achieved promising performance. However, existing methods typically concentrate on enhancing the Image-augmentation based Prediction consistency and optimizing the segmentation network as a whole, resulting in insufficient utilization of potential supervisory information. In this paper, we propose a Multi-Constraint Consistency Learning (MCCL) approach to facilitate the staged enhancement of the encoder and decoder. Specifically, we first design a feature knowledge alignment (FKA) strategy to promote the feature consistency learning of the encoder from image-augmentation. Our FKA encourages the encoder to derive consistent features for strongly and weakly augmented views from the perspectives of point-to-point alignment and prototype-based intra-class compactness. Moreover, we propose a self-adaptive intervention (SAI) module to increase the discrepancy of aligned intermediate feature representations, promoting Feature-perturbation based Prediction consistency learning. Self-adaptive feature masking and noise injection are designed in an instance-specific manner to perturb the features for robust learning of the decoder. Experimental results on Pascal VOC2012 and Cityscapes datasets demonstrate that our proposed MCCL achieves new state-of-the-art performance. The source code and models are made available at https://github.com/NUST-Machine-Intelligence-Laboratory/MCCL.

Authors:Xiaoyao Zhong, Haotian Li, Jiabao Jin, Mingyu Yang, Deming Chu, Xiangyu Wang, Zhitao Shen, Wei Jia, George Gu, Yi Xie, Xuemin Lin, Heng Tao Shen, Jingkuan Song, Peng Cheng
Title: VSAG: An Optimized Search Framework for Graph-based Approximate Nearest Neighbor Search
Abstract:
Approximate nearest neighbor search (ANNS) is a fundamental problem in vector databases and AI infrastructures. Recent graph-based ANNS algorithms have achieved high search accuracy with practical efficiency. Despite the advancements, these algorithms still face performance bottlenecks in production, due to the random memory access patterns of graph-based search and the high computational overheads of vector distance. In addition, the performance of a graph-based ANNS algorithm is highly sensitive to parameters, while selecting the optimal parameters is cost-prohibitive, e.g., manual tuning requires repeatedly re-building the index. This paper introduces VSAG, an open-source framework that aims to enhance the in production performance of graph-based ANNS algorithms. VSAG has been deployed at scale in the services of Ant Group, and it incorporates three key optimizations: (i) efficient memory access: it reduces L3 cache misses with pre-fetching and cache-friendly vector organization; (ii) automated parameter tuning: it automatically selects performance-optimal parameters without requiring index rebuilding; (iii) efficient distance computation: it leverages modern hardware, scalar quantization, and smartly switches to low-precision representation to dramatically reduce the distance computation costs. We evaluate VSAG on real-world datasets. The experimental results show that VSAG achieves the state-of-the-art performance and provides up to 4x speedup over HNSWlib (an industry-standard library) while ensuring the same accuracy.

Authors:Yali Fu, Jindong Li, Qi Wang, Qianli Xing
Title: GLADMamba: Unsupervised Graph-Level Anomaly Detection Powered by Selective State Space Model
Abstract:
Unsupervised graph-level anomaly detection (UGLAD) is a critical and challenging task across various domains, such as social network analysis, anti-cancer drug discovery, and toxic molecule identification. However, existing methods often struggle to capture the long-range dependencies efficiently and neglect the spectral information. Recently, selective State Space Models (SSMs), particularly Mamba, have demonstrated remarkable advantages in capturing long-range dependencies with linear complexity and a selection mechanism. Motivated by their success across various domains, we propose GLADMamba, a novel framework that adapts the selective state space model into UGLAD field. We design View-Fused Mamba (VFM) with a Mamba-Transformer-style architecture to efficiently fuse information from different views with a selective state mechanism. We also design Spectrum-Guided Mamba (SGM) with a Mamba-Transformer-style architecture to leverage the Rayleigh quotient to guide the embedding refining process. GLADMamba can dynamically focus on anomaly-related information while discarding irrelevant information for anomaly detection. To the best of our knowledge, this is the first work to introduce Mamba and explicit spectral information to UGLAD. Extensive experiments on 12 real-world datasets demonstrate that GLADMamba outperforms existing state-of-the-art methods, achieving superior performance in UGLAD. The code is available at https://github.com/Yali-F/GLADMamba.

Authors:Adriano del Río, Christoph Stoeffler
Title: Adaptive Koopman Model Predictive Control of Simple Serial Robots
Abstract:
Approximating nonlinear systems as linear ones is a common workaround to apply control tools tailored for linear systems. This motivates our present work where we developed a data-driven model predictive controller (MPC) based on the Koopman operator framework, allowing the embedding of nonlinear dynamics in a higher dimensional, but linear function space. The controller, termed adaptive Koopman model predictive control (KMPC), uses online closed-loop feedback to learn and incrementally update a linear representation of nonlinear system dynamics, without the prior knowledge of a model. Adaptive KMPC differs from most other Koopman-based control frameworks that aim to identify high-validity-range models in advance and then enter closed-loop control without further model adaptations. To validate the controller, trajectory tracking experiments are conducted with 1R and 2R robots under force disturbances and changing model parameters. We compare the controller to classical linearization MPC and Koopman-based MPC without model updates, denoted static KMPC. The results show that adaptive KMPC can, opposed to static KMPC, generalize over unforeseen force disturbances and can, opposed to linearization MPC, handle varying dynamic parameters, while using a small set of basis functions to approximate the Koopman operator.

Authors:Arastoo Zibaeirad, Marco Vieira
Title: Reasoning with LLMs for Zero-Shot Vulnerability Detection
Abstract:
Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the \textbf{context-aware robustness} necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present \textbf{VulnSage}, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git

Authors:Yongyi Zang, Qiuqiang Kong
Title: GSound-SIR: A Spatial Impulse Response Ray-Tracing and High-order Ambisonic Auralization Python Toolkit
Abstract:
Accurate and efficient simulation of room impulse responses is crucial for spatial audio applications. However, existing acoustic ray-tracing tools often operate as black boxes and only output impulse responses (IRs), providing limited access to intermediate data or spatial fidelity. To address those problems, this paper presents GSound-SIR, a novel Python-based toolkit for room acoustics simulation that addresses these limitations. The contribution of this paper includes the follows. First, GSound-SIR provides direct access to up to millions of raw ray data points from simulations, enabling in-depth analysis of sound propagation paths that was not possible with previous solutions. Second, we introduce a tool to convert acoustic rays into high-order Ambisonic impulse response synthesis, capturing spatial audio cues with greater fidelity than standard techniques. Third, to enhance efficiency, the toolkit implements an energy-based filtering algorithm and can export only the top-X or top-X-% rays. Fourth, we propose to store the simulation results into Parquet formats, facilitating fast data I/O and seamless integration with data analysis workflows. Together, these features make GSound-SIR an advanced, efficient, and modern foundation for room acoustics research, providing researchers and developers with a powerful new tool for spatial audio exploration. We release the library under Apache 2.0 License at https://github.com/yongyizang/GSound-SIR.

Authors:Wen Li, Chen Liu, Shangshu Yu, Dunqiang Liu, Yin Zhou, Siqi Shen, Chenglu Wen, Cheng Wang
Title: LightLoc: Learning Outdoor LiDAR Localization at Light Speed
Abstract:
Scene coordinate regression achieves impressive results in outdoor LiDAR localization but requires days of training. Since training needs to be repeated for each new scene, long training times make these methods impractical for time-sensitive applications, such as autonomous driving, drones, and robotics. We identify large coverage areas and vast data in large-scale outdoor scenes as key challenges that limit fast training. In this paper, we propose LightLoc, the first method capable of efficiently learning localization in a new scene at light speed. LightLoc introduces two novel techniques to address these challenges. First, we introduce sample classification guidance to assist regression learning, reducing ambiguity from similar samples and improving training efficiency. Second, we propose redundant sample downsampling to remove well-learned frames during training, reducing training time without compromising accuracy. Additionally, the fast training and confidence estimation capabilities of sample classification enable its integration into SLAM, effectively eliminating error accumulation. Extensive experiments on large-scale outdoor datasets demonstrate that LightLoc achieves state-of-the-art performance with a 50x reduction in training time than existing methods. Our code is available at https://github.com/liw95/LightLoc.

Authors:Rodrigo San-José
Title: An algorithm for computing generalized Hamming weights and the Sage package GHWs
Abstract:
We generalize the Brouwer-Zimmermann algorithm, which is the most efficient general algorithm for computing the minimum distance of a random linear code, to the case of generalized Hamming weights. We also adapt this algorithm to compute the relative generalized Hamming weights of a nested pair of linear codes. In the package GHWs we provide an implementation of this algorithm in Sage, as well as several other utilities for working with generalized Hamming weights. With this implementation, we show that the proposed algorithm is faster than the naive approach of computing the generalized Hamming weights using the definition.

Authors:R. D. Lin, Pengcheng Weng, Yinqiao Wang, Han Ding, Jinsong Han, Fei Wang
Title: HiLoTs: High-Low Temporal Sensitive Representation Learning for Semi-Supervised LiDAR Segmentation in Autonomous Driving
Abstract:
LiDAR point cloud semantic segmentation plays a crucial role in autonomous driving. In recent years, semi-supervised methods have gained popularity due to their significant reduction in annotation labor and time costs. Current semi-supervised methods typically focus on point cloud spatial distribution or consider short-term temporal representations, e.g., only two adjacent frames, often overlooking the rich long-term temporal properties inherent in autonomous driving scenarios. In driving experience, we observe that nearby objects, such as roads and vehicles, remain stable while driving, whereas distant objects exhibit greater variability in category and shape. This natural phenomenon is also captured by LiDAR, which reflects lower temporal sensitivity for nearby objects and higher sensitivity for distant ones. To leverage these characteristics, we propose HiLoTs, which learns high-temporal sensitivity and low-temporal sensitivity representations from continuous LiDAR frames. These representations are further enhanced and fused using a cross-attention mechanism. Additionally, we employ a teacher-student framework to align the representations learned by the labeled and unlabeled branches, effectively utilizing the large amounts of unlabeled data. Experimental results on the SemanticKITTI and nuScenes datasets demonstrate that our proposed HiLoTs outperforms state-of-the-art semi-supervised methods, and achieves performance close to LiDAR+Camera multimodal approaches. Code is available on https://github.com/rdlin118/HiLoTs

Authors:Yiming Zhao, Yu Zeng, Yukun Qi, YaoYang Liu, Lin Chen, Zehui Chen, Xikun Bao, Jie Zhao, Feng Zhao
Title: V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Abstract:
Large Vision-Language Models (LVLMs) have made significant progress in the field of video understanding recently. However, current benchmarks uniformly lean on text prompts for evaluation, which often necessitate complex referential language and fail to provide precise spatial and temporal references. This limitation diminishes the experience and efficiency of human-model interaction. To address this limitation, we propose the Video Visual Prompt Benchmark(V2P-Bench), a comprehensive benchmark specifically designed to evaluate LVLMs' video understanding capabilities in multimodal human-model interaction scenarios. V2P-Bench includes 980 unique videos and 1,172 QA pairs, covering 5 main tasks and 12 dimensions, facilitating instance-level fine-grained understanding aligned with human cognition. Benchmarking results reveal that even the most powerful models perform poorly on V2P-Bench (65.4% for GPT-4o and 67.9% for Gemini-1.5-Pro), significantly lower than the human experts' 88.3%, highlighting the current shortcomings of LVLMs in understanding video visual prompts. We hope V2P-Bench will serve as a foundation for advancing multimodal human-model interaction and video understanding evaluation. Project page: https://github.com/gaotiexinqu/V2P-Bench.

Authors:Jie Zhang, Zhongqi Wang, Shiguang Shan, Xilin Chen
Title: Trigger without Trace: Towards Stealthy Backdoor Attack on Text-to-Image Diffusion Models
Abstract:
Backdoor attacks targeting text-to-image diffusion models have advanced rapidly. However, current backdoor samples often exhibit two key abnormalities compared to benign samples: 1) Semantic Consistency, where backdoor prompts tend to generate images with similar semantic content even with significant textual variations to the prompts; 2) Attention Consistency, where the trigger induces consistent structural responses in the cross-attention maps. These consistencies leave detectable traces for defenders, making backdoors easier to identify. In this paper, toward stealthy backdoor samples, we propose Trigger without Trace (TwT) by explicitly mitigating these consistencies. Specifically, our approach leverages syntactic structures as backdoor triggers to amplify the sensitivity to textual variations, effectively breaking down the semantic consistency. Besides, a regularization method based on Kernel Maximum Mean Discrepancy (KMMD) is proposed to align the distribution of cross-attention responses between backdoor and benign samples, thereby disrupting attention consistency. Extensive experiments demonstrate that our method achieves a 97.5% attack success rate while exhibiting stronger resistance to defenses. It achieves an average of over 98% backdoor samples bypassing three state-of-the-art detection mechanisms, revealing the vulnerabilities of current backdoor defense methods. The code is available at https://github.com/Robin-WZQ/TwT.

Authors:Yu Wang, Junxian Mu, Hongzhi Huang, Qilong Wang, Pengfei Zhu, Qinghua Hu
Title: BackMix: Regularizing Open Set Recognition by Removing Underlying Fore-Background Priors
Abstract:
Open set recognition (OSR) requires models to classify known samples while detecting unknown samples for real-world applications. Existing studies show impressive progress using unknown samples from auxiliary datasets to regularize OSR models, but they have proved to be sensitive to selecting such known outliers. In this paper, we discuss the aforementioned problem from a new perspective: Can we regularize OSR models without elaborately selecting auxiliary known outliers? We first empirically and theoretically explore the role of foregrounds and backgrounds in open set recognition and disclose that: 1) backgrounds that correlate with foregrounds would mislead the model and cause failures when encounters 'partially' known images; 2) Backgrounds unrelated to foregrounds can serve as auxiliary known outliers and provide regularization via global average pooling. Based on the above insights, we propose a new method, Background Mix (BackMix), that mixes the foreground of an image with different backgrounds to remove the underlying fore-background priors. Specifically, BackMix first estimates the foreground with class activation maps (CAMs), then randomly replaces image patches with backgrounds from other images to obtain mixed images for training. With backgrounds de-correlated from foregrounds, the open set recognition performance is significantly improved. The proposed method is quite simple to implement, requires no extra operation for inferences, and can be seamlessly integrated into almost all of the existing frameworks. The code is released on https://github.com/Vanixxz/BackMix.

Authors:Heng Gao, Zhuolin He, Shoumeng Qiu, Xiangyang Xue, Jian Pu
Title: Multi-modality Anomaly Segmentation on the Road
Abstract:
Semantic segmentation allows autonomous driving cars to understand the surroundings of the vehicle comprehensively. However, it is also crucial for the model to detect obstacles that may jeopardize the safety of autonomous driving systems. Based on our experiments, we find that current uni-modal anomaly segmentation frameworks tend to produce high anomaly scores for non-anomalous regions in images. Motivated by this empirical finding, we develop a multi-modal uncertainty-based anomaly segmentation framework, named MMRAS+, for autonomous driving systems. MMRAS+ effectively reduces the high anomaly outputs of non-anomalous classes by introducing text-modal using the CLIP text encoder. Indeed, MMRAS+ is the first multi-modal anomaly segmentation solution for autonomous driving. Moreover, we develop an ensemble module to further boost the anomaly segmentation performance. Experiments on RoadAnomaly, SMIYC, and Fishyscapes validation datasets demonstrate the superior performance of our method. The code is available in https://github.com/HengGao12/MMRAS_plus.

Authors:Haolin Qin, Tingfa Xu, Tianhao Li, Zhenxiang Chen, Tao Feng, Jianan Li
Title: MUST: The First Dataset and Unified Framework for Multispectral UAV Single Object Tracking
Abstract:
UAV tracking faces significant challenges in real-world scenarios, such as small-size targets and occlusions, which limit the performance of RGB-based trackers. Multispectral images (MSI), which capture additional spectral information, offer a promising solution to these challenges. However, progress in this field has been hindered by the lack of relevant datasets. To address this gap, we introduce the first large-scale Multispectral UAV Single Object Tracking dataset (MUST), which includes 250 video sequences spanning diverse environments and challenges, providing a comprehensive data foundation for multispectral UAV tracking. We also propose a novel tracking framework, UNTrack, which encodes unified spectral, spatial, and temporal features from spectrum prompts, initial templates, and sequential searches. UNTrack employs an asymmetric transformer with a spectral background eliminate mechanism for optimal relationship modeling and an encoder that continuously updates the spectrum prompt to refine tracking, improving both accuracy and efficiency. Extensive experiments show that our proposed UNTrack outperforms state-of-the-art UAV trackers. We believe our dataset and framework will drive future research in this area. The dataset is available on https://github.com/q2479036243/MUST-Multispectral-UAV-Single-Object-Tracking.

Authors:Jinyuan Liu, Bowei Zhang, Qingyun Mei, Xingyuan Li, Yang Zou, Zhiying Jiang, Long Ma, Risheng Liu, Xin Fan
Title: DCEvo: Discriminative Cross-Dimensional Evolutionary Learning for Infrared and Visible Image Fusion
Abstract:
Infrared and visible image fusion integrates information from distinct spectral bands to enhance image quality by leveraging the strengths and mitigating the limitations of each modality. Existing approaches typically treat image fusion and subsequent high-level tasks as separate processes, resulting in fused images that offer only marginal gains in task performance and fail to provide constructive feedback for optimizing the fusion process. To overcome these limitations, we propose a Discriminative Cross-Dimension Evolutionary Learning Framework, termed DCEvo, which simultaneously enhances visual quality and perception accuracy. Leveraging the robust search capabilities of Evolutionary Learning, our approach formulates the optimization of dual tasks as a multi-objective problem by employing an Evolutionary Algorithm (EA) to dynamically balance loss function parameters. Inspired by visual neuroscience, we integrate a Discriminative Enhancer (DE) within both the encoder and decoder, enabling the effective learning of complementary features from different modalities. Additionally, our Cross-Dimensional Embedding (CDE) block facilitates mutual enhancement between high-dimensional task features and low-dimensional fusion features, ensuring a cohesive and efficient feature integration process. Experimental results on three benchmarks demonstrate that our method significantly outperforms state-of-the-art approaches, achieving an average improvement of 9.32% in visual quality while also enhancing subsequent high-level tasks. The code is available at https://github.com/Beate-Suy-Zhang/DCEvo.

Authors:Oucheng Huang, Yuhang Ma, Zeng Zhao, Mingrui Wu, Jiayi Ji, Rongsheng Zhang, Zhipeng Hu, Xiaoshuai Sun, Rongrong Ji
Title: ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation
Abstract:
ComfyUI is a popular workflow-based interface that allows users to customize image generation tasks through an intuitive node-based system. However, the complexity of managing node connections and diverse modules can be challenging for users. In this paper, we introduce ComfyGPT, a self-optimizing multi-agent system designed to generate ComfyUI workflows based on task descriptions automatically. The key innovations of ComfyGPT include: (1) consisting of four specialized agents to build a multi-agent workflow generation system: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent; (2) focusing on generating precise node connections instead of entire workflows, improving generation accuracy; and (3) enhancing workflow generation through reinforcement learning. Moreover, we introduce FlowDataset, a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench, a comprehensive benchmark for evaluating workflow generation systems. Additionally, we propose four novel evaluation metrics: Format Validation (FV), Pass Accuracy (PA), Pass Instruct Alignment (PIA), and Pass Node Diversity (PND). Experimental results demonstrate that ComfyGPT significantly outperforms existing LLM-based methods in workflow generation, making it a significant step forward in this field. Code is avaliable at https://github.com/comfygpt/comfygpt.

Authors:Peijin Guo, Minghui Li, Hewen Pan, Ruixiang Huang, Lulu Xue, Shengqing Hu, Zikang Guo, Wei Wan, Shengshan Hu
Title: Multi-Modality Representation Learning for Antibody-Antigen Interactions Prediction
Abstract:
While deep learning models play a crucial role in predicting antibody-antigen interactions (AAI), the scarcity of publicly available sequence-structure pairings constrains their generalization. Current AAI methods often focus on residue-level static details, overlooking fine-grained structural representations of antibodies and their inter-antibody similarities. To tackle this challenge, we introduce a multi-modality representation approach that integates 3D structural and 1D sequence data to unravel intricate intra-antibody hierarchical relationships. By harnessing these representations, we present MuLAAIP, an AAI prediction framework that utilizes graph attention networks to illuminate graph-level structural features and normalized adaptive graph convolution networks to capture inter-antibody sequence associations. Furthermore, we have curated an AAI benchmark dataset comprising both structural and sequence information along with interaction labels. Through extensive experiments on this benchmark, our results demonstrate that MuLAAIP outperforms current state-of-the-art methods in terms of predictive performance. The implementation code and dataset are publicly available at https://github.com/trashTian/MuLAAIP for reproducibility.

Authors:Jaeyeon Lee, Guantong Qi, Matthew Brady Neeley, Zhandong Liu, Hyun-Hwan Jeong
Title: ConSol: Sequential Probability Ratio Testing to Find Consistent LLM Reasoning Paths Efficiently
Abstract:
Recent advancements in large language models (LLMs) integrating explicit reasoning, such as OpenAI's o3-mini, DeepSeek-R1, and QWQ-32B, enable smaller models to solve complex tasks by generating intermediate reasoning steps prior to providing answers. However, this approach significantly increases computational costs, both monetarily and environmentally. The widely-used self-consistency method further exacerbates these costs by aggregating multiple reasoning paths to improve accuracy, often requiring between 40 to 64 samples per task. Although aggregation effectively reduces variance and bias, additional sampling can lead to diminishing returns when early samples yield consistent results. To address inefficiencies, we propose leveraging Sequential Probability Ratio Testing (SPRT) to dynamically terminate sampling once sufficient consistency is achieved. We calibrate SPRT parameters specifically for LLM applications, accounting for sensitivity to detect the mode of the distribution. Our experiments demonstrate that incorporating SPRT significantly enhances token efficiency, achieving comparable accuracy to self-consistency methods but at a substantially reduced computational cost. To promote transparency and facilitate reproducibility, we have made the source code and datasets used in our experiments publicly available at our GitHub repository: https://github.com/LiuzLab/consol, or available as a PyPI package: pip install consol. We hope that this resource will support further research and encourage the development of new methods building upon our work.

Authors:Suet-Ying Lam, Qingcheng Zeng, Jingyi Wu, Rob Voigt
Title: Leveraging Human Production-Interpretation Asymmetries to Test LLM Cognitive Plausibility
Abstract:
Whether large language models (LLMs) process language similarly to humans has been the subject of much theoretical and practical debate. We examine this question through the lens of the production-interpretation distinction found in human sentence processing and evaluate the extent to which instruction-tuned LLMs replicate this distinction. Using an empirically documented asymmetry between pronoun production and interpretation in humans for implicit causality verbs as a testbed, we find that some LLMs do quantitatively and qualitatively reflect human-like asymmetries between production and interpretation. We demonstrate that whether this behavior holds depends upon both model size-with larger models more likely to reflect human-like patterns and the choice of meta-linguistic prompts used to elicit the behavior. Our codes and results are available at https://github.com/LingMechLab/Production-Interpretation_Asymmetries_ACL2025.

Authors:Moein Heidari, Afshin Bozorgpour, AmirHossein Zarif-Fakharnia, Dorit Merhof, Ilker Hacihaliloglu
Title: Echo-E$^3$Net: Efficient Endo-Epi Spatio-Temporal Network for Ejection Fraction Estimation
Abstract:
Left ventricular ejection fraction (LVEF) is a critical metric for assessing cardiac function, widely used in diagnosing heart failure and guiding clinical decisions. Despite its importance, conventional LVEF estimation remains time-consuming and operator-dependent. Recent deep learning advancements have enhanced automation, yet many existing models are computationally demanding, hindering their feasibility for real-time clinical applications. Additionally, the interplay between spatial and temporal features is crucial for accurate estimation but is often overlooked. In this work, we propose Echo-E$^3$Net, an efficient Endo-Epi spatio-temporal network tailored for LVEF estimation. Our method introduces the Endo-Epi Cardial Border Detector (E$^2$CBD) module, which enhances feature extraction by leveraging spatial and temporal landmark cues. Complementing this, the Endo-Epi Feature Aggregator (E$^2$FA) distills statistical descriptors from backbone feature maps, refining the final EF prediction. These modules, along with a multi-component loss function tailored to align with the clinical definition of EF, collectively enhance spatial-temporal representation learning, ensuring robust and efficient EF estimation. We evaluate Echo-E$^3$Net on the EchoNet-Dynamic dataset, achieving a RMSE of 5.15 and an R$^2$ score of 0.82, setting a new benchmark in efficiency with 6.8 million parameters and only 8.49G Flops. Our model operates without pre-training, data augmentation, or ensemble methods, making it well-suited for real-time point-of-care ultrasound (PoCUS) applications. Our Code is publicly available on~\href{https://github.com/moeinheidari7829/Echo-E3Net}{\textcolor{magenta}{GitHub}}.

Authors:Nusrat Munia, Abdullah-Al-Zubaer Imran
Title: DermDiff: Generative Diffusion Model for Mitigating Racial Biases in Dermatology Diagnosis
Abstract:
Skin diseases, such as skin cancer, are a significant public health issue, and early diagnosis is crucial for effective treatment. Artificial intelligence (AI) algorithms have the potential to assist in triaging benign vs malignant skin lesions and improve diagnostic accuracy. However, existing AI models for skin disease diagnosis are often developed and tested on limited and biased datasets, leading to poor performance on certain skin tones. To address this problem, we propose a novel generative model, named DermDiff, that can generate diverse and representative dermoscopic image data for skin disease diagnosis. Leveraging text prompting and multimodal image-text learning, DermDiff improves the representation of underrepresented groups (patients, diseases, etc.) in highly imbalanced datasets. Our extensive experimentation showcases the effectiveness of DermDiff in terms of high fidelity and diversity. Furthermore, downstream evaluation suggests the potential of DermDiff in mitigating racial biases for dermatology diagnosis. Our code is available at https://github.com/Munia03/DermDiff

Authors:Ayberk Acar, Jumanh Atoum, Peter S. Connor, Clifford Pierre, Carisa N. Lynch, Nicholas L. Kavoussi, Jie Ying Wu
Title: NAVIUS: Navigated Augmented Reality Visualization for Ureteroscopic Surgery
Abstract:
Ureteroscopy is the standard of care for diagnosing and treating kidney stones and tumors. However, current ureteroscopes have a limited field of view, requiring significant experience to adequately navigate the renal collecting system. This is evidenced by the fact that inexperienced surgeons have higher rates of missed stones. One-third of patients with residual stones require re-operation within 20 months. In order to aid surgeons to fully explore the kidney, this study presents the Navigated Augmented Reality Visualization for Ureteroscopic Surgery (NAVIUS) system. NAVIUS assists surgeons by providing 3D maps of the target anatomy, real-time scope positions, and preoperative imaging overlays. To enable real-time navigation and visualization, we integrate an electromagnetic tracker-based navigation pipeline with augmented reality visualizations. NAVIUS connects to 3D Slicer and Unity with OpenIGTLink, and uses HoloLens 2 as a holographic interface. We evaluate NAVIUS through a user study where surgeons conducted ureteroscopy on kidney phantoms with and without visual guidance. With our proposed system, we observed that surgeons explored more areas within the collecting system with NAVIUS (average 23.73% increase), and NASA-TLX metrics were improved (up to 27.27%). NAVIUS acts as a step towards better surgical outcomes and surgeons' experience. The codebase for the system will be available at: https://github.com/vu-maple-lab/NAVIUS.

Authors:Louis Owen, Abhay Kumar, Nilabhra Roy Chowdhury, Fabian Güra
Title: Variance Control via Weight Rescaling in LLM Pre-training
Abstract:
The outcome of Large Language Model (LLM) pre-training strongly depends on weight initialization and variance control strategies. Although the importance of initial variance control has been well documented in neural networks in general, the literature on initialization and management of its growth during LLM pre-training, specifically, is somewhat sparse. In this paper, we introduce the Layer Index Rescaling (LIR) weight initialization scheme, and the Target Variance Rescaling (TVR) variance control strategy. Experiments on a 1B parameter LLaMA model demonstrate that better variance management using these techniques yields substantial improvements in downstream task performance (up to 4.6% on common pre-training benchmarks) and reduces extreme activation values, thus mitigating challenges associated with quantization and low-precision training. Our code is available at: https://github.com/bluorion-com/weight_rescaling.

Authors:Tianwen Zhou, Jing Wang, Songtao Wu, Kuanhong Xu
Title: ProDehaze: Prompting Diffusion Models Toward Faithful Image Dehazing
Abstract:
Recent approaches using large-scale pretrained diffusion models for image dehazing improve perceptual quality but often suffer from hallucination issues, producing unfaithful dehazed image to the original one. To mitigate this, we propose ProDehaze, a framework that employs internal image priors to direct external priors encoded in pretrained models. We introduce two types of \textit{selective} internal priors that prompt the model to concentrate on critical image areas: a Structure-Prompted Restorer in the latent space that emphasizes structure-rich regions, and a Haze-Aware Self-Correcting Refiner in the decoding process to align distributions between clearer input regions and the output. Extensive experiments on real-world datasets demonstrate that ProDehaze achieves high-fidelity results in image dehazing, particularly in reducing color shifts. Our code is at https://github.com/TianwenZhou/ProDehaze.

Authors:Ran Liu, Fengyu Zhang, Cong Yu, Longjiang Yang, Zhuofan Wen, Siyuan Zhang, Hailiang Yao, Shun Chen, Zheng Lian, Bin Liu
Title: Feature-Based Dual Visual Feature Extraction Model for Compound Multimodal Emotion Recognition
Abstract:
This article presents our results for the eighth Affective Behavior Analysis in-the-wild (ABAW) competition.Multimodal emotion recognition (ER) has important applications in affective computing and human-computer interaction. However, in the real world, compound emotion recognition faces greater issues of uncertainty and modal conflicts. For the Compound Expression (CE) Recognition Challenge,this paper proposes a multimodal emotion recognition method that fuses the features of Vision Transformer (ViT) and Residual Network (ResNet). We conducted experiments on the C-EXPR-DB and MELD datasets. The results show that in scenarios with complex visual and audio cues (such as C-EXPR-DB), the model that fuses the features of ViT and ResNet exhibits superior performance.Our code are avalible on https://github.com/MyGitHub-ax/8th_ABAW

Authors:Zhuoshi Pan, Yu Li, Honglin Lin, Qizhi Pei, Zinan Tang, Wei Wu, Chenlin Ming, H. Vicky Zhao, Conghui He, Lijun Wu
Title: LEMMA: Learning from Errors for MatheMatical Advancement in LLMs
Abstract:
Large language models (LLMs) have demonstrated remarkable reasoning capability in solving mathematical problems. However, existing approaches primarily focus on improving the quality of correct training data, e.g., distilling high-quality correct solutions from advanced models, neglecting the value contained in error data, potentially hindering the model's reflective ability. Though some studies attempt to leverage error data, they often involve complex mechanisms, such as Monte Carlo Tree Search (MCTS) to explore error nodes. In this work, we propose to enhance LLMs' reasoning ability by Learning from Errors for Mathematical Advancement (LEMMA). LEMMA constructs data consisting of an incorrect solution with an erroneous step and a reflection connection to a correct solution for fine-tuning. Specifically, we systematically analyze the model-generated error types and introduce an error-type grounded mistake augmentation method to collect diverse and representative errors. Correct solutions are either from fixing the errors or generating a fresh start. Through a model-aware smooth reflection connection, the erroneous solution is transferred to the correct one. By fine-tuning on the constructed dataset, the model is able to self-correct errors autonomously within the generation process without relying on external critique models. Experimental results demonstrate that LEMMA achieves significant performance improvements over other strong baselines.

Authors:Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang, Chenchen Zhang, Ge Zhang, Jiebin Zhang, Yuanxing Zhang, Zhuo Chen, Hangyu Guo, Shilong Li, Ziqiang Liu, Yong Shan, Yifan Song, Jiayi Tian, Wenhao Wu, Zhejian Zhou, Ruijie Zhu, Junlan Feng, Yang Gao, Shizhu He, Zhoujun Li, Tianyu Liu, Fanyu Meng, Wenbo Su, Yingshui Tan, Zili Wang, Jian Yang, Wei Ye, Bo Zheng, Wangchunshu Zhou, Wenhao Huang, Sujian Li, Zhaoxiang Zhang
Title: A Comprehensive Survey on Long Context Language Modeling
Abstract:
Efficient processing of long contexts has been a persistent pursuit in Natural Language Processing. With the growing number of long documents, dialogues, and other textual data, it is important to develop Long Context Language Models (LCLMs) that can process and analyze extensive inputs in an effective and efficient way. In this paper, we present a comprehensive survey on recent advances in long-context modeling for large language models. Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively. For the first aspect, we discuss data strategies, architectural designs, and workflow approaches oriented with long context processing. For the second aspect, we provide a detailed examination of the infrastructure required for LCLM training and inference. For the third aspect, we present evaluation paradigms for long-context comprehension and long-form generation, as well as behavioral analysis and mechanism interpretability of LCLMs. Beyond these three key aspects, we thoroughly explore the diverse application scenarios where existing LCLMs have been deployed and outline promising future development directions. This survey provides an up-to-date review of the literature on long-context LLMs, which we wish to serve as a valuable resource for both researchers and engineers. An associated GitHub repository collecting the latest papers and repos is available at: \href{https://github.com/LCLM-Horizon/A-Comprehensive-Survey-For-Long-Context-Language-Modeling}{\color[RGB]{175,36,67}{LCLM-Horizon}}.

Authors:Haochen Zhang, Nader Zantout, Pujith Kachana, Ji Zhang, Wenshan Wang
Title: IRef-VLA: A Benchmark for Interactive Referential Grounding with Imperfect Language in 3D Scenes
Abstract:
With the recent rise of large language models, vision-language models, and other general foundation models, there is growing potential for multimodal, multi-task robotics that can operate in diverse environments given natural language input. One such application is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the 3D spatial reasoning and semantic understanding required. Additionally, the language used may be imperfect or misaligned with the scene, further complicating the task. To address this challenge, we curate a benchmark dataset, IRef-VLA, for Interactive Referential Vision and Language-guided Action in 3D Scenes with imperfect references. IRef-VLA is the largest real-world dataset for the referential grounding task, consisting of over 11.5K scanned 3D rooms from existing datasets, 7.6M heuristically generated semantic relations, and 4.7M referential statements. Our dataset also contains semantic object and room annotations, scene graphs, navigable free space annotations, and is augmented with statements where the language has imperfections or ambiguities. We verify the generalizability of our dataset by evaluating with state-of-the-art models to obtain a performance baseline and also develop a graph-search baseline to demonstrate the performance bound and generation of alternatives using scene-graph knowledge. With this benchmark, we aim to provide a resource for 3D scene understanding that aids the development of robust, interactive navigation systems. The dataset and all source code is publicly released at https://github.com/HaochenZ11/IRef-VLA.

Authors:Yansi Li, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Qiuzhi Liu, Rui Wang, Zhuosheng Zhang, Zhaopeng Tu, Haitao Mi, Dong Yu
Title: Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique
Abstract:
Enhancing the reasoning capabilities of large language models (LLMs), particularly for complex tasks requiring multi-step logical deductions, remains a significant challenge. Traditional inference time scaling methods utilize scalar reward signals from process reward models to evaluate candidate reasoning steps, but these scalar rewards lack the nuanced qualitative information essential for understanding and justifying each step. In this paper, we propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL), which employs self-generated natural language critiques as feedback to guide the step-level search process. By generating rich, human-readable critiques for each candidate reasoning step, PANEL retains essential qualitative information, facilitating better-informed decision-making during inference. This approach bypasses the need for task-specific verifiers and the associated training overhead, making it broadly applicable across diverse tasks. Experimental results on challenging reasoning benchmarks, including AIME and GPQA, demonstrate that PANEL significantly enhances reasoning performance, outperforming traditional scalar reward-based methods. Our code is available at https://github.com/puddingyeah/PANEL to support and encourage future research in this promising field.

Authors:Alex Reneau, Jerry Yao-Chieh Hu, Zhongfang Zhuang, Ting-Chun Liu, Xiang He, Judah Goldfeder, Nadav Timor, Allen G Roush, Ravid Shwartz-Ziv
Title: NdLinear: Don't Flatten! Building Superior Neural Architectures by Preserving N-D Structure
Abstract:
Many high-impact machine learning tasks involve multi-dimensional data such as images, volumetric medical scans, and multivariate time-series. Yet, most neural architectures flatten these inputs, discarding critical cross-dimension information. We introduce $\textbf{NdLinear}$, a novel linear transformation that circumvents this destructive flattening by operating directly on tensors. NdLinear applies transformations separately along each data dimension, thereby preserving the native data structure. Extensive experiments demonstrate NdLinear's capacity to significantly enhance representational power, achieve dramatic parameter reductions (often by orders of magnitude), and maintain a favorable computational profile. For instance, when applied to Large Language Model finetuning, our $\textbf{NdLinear-LoRA}$ delivers comparable or improved accuracy on reasoning tasks using up to $9\times$ fewer trainable parameters than standard LoRA. These broad advantages of NdLinear are consistently validated across diverse neural architectures (CNNs, RNNs, Transformers, MLPs) and data domains, including vision, language, time-series, and tabular tasks. As a versatile, drop-in replacement for standard linear layers, NdLinear processes data in its original N-dimensional form, offering a foundational component for developing more efficient and powerful next-generation neural architectures.

Authors:Alex Reneau, Jerry Yao-Chieh Hu, Zhongfang Zhuang, Ting-Chun Liu, Xiang He, Judah Goldfeder, Nadav Timor, Allen G Roush, Ravid Shwartz-Ziv
Title: NdLinear: Preserving Multi-Dimensional Structure for Parameter-Efficient Neural Networks
Abstract:
In deep learning, processing multidimensional inputs (e.g., images, medical scans, and time series) is an important task that often requires flattening the inputs. We introduce $\mathit{NdLinear}$, a drop-in replacement for linear layers that operates directly on tensors, requiring no flattening. By applying transformations separately along each dimension, NdLinear preserves native data structure while achieving dramatic parameter reductions, often by orders of magnitude, with minimal memory overhead. We prove NdLinear maintains expressivity through structured Tucker decomposition while preserving VC-dimension scaling. Extensive experiments demonstrate NdLinear's capacity to achieve significant parameter reductions with substantial wall-clock efficiency gains and minimal memory overhead. For instance, our $\mathit{NdLinear-LoRA}$ matches or exceeds standard LoRA on language reasoning tasks using up to $9\times$ fewer parameters. Experiments across CNNs, RNNs, Transformers, and MLPs on vision, language, time-series, and tabular tasks consistently demonstrate NdLinear's efficiency gains. While excelling at axis-separable tasks, NdLinear has limitations with entangled spatial interactions. By processing data in its original N-dimensional form, NdLinear provides a theoretically grounded, practical component for building more efficient neural architectures.

Authors:Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, Kai-Wei Chang
Title: OpenVLThinker: Complex Vision-Language Reasoning via Iterative SFT-RL Cycles
Abstract:
We introduce OpenVLThinker, one of the first open-source large vision-language models (LVLMs) to exhibit sophisticated chain-of-thought reasoning, achieving notable performance gains on challenging visual reasoning tasks. While text-based reasoning models (e.g., Deepseek R1) show promising results in text-only tasks, distilling their reasoning into LVLMs via supervised fine-tuning (SFT) often results in performance degradation due to imprecise visual grounding. Conversely, purely reinforcement learning (RL)-based methods face a large search space, hindering the emergence of reflective behaviors in smaller models (e.g., 7B LVLMs). Surprisingly, alternating between SFT and RL ultimately results in significant performance improvements after a few iterations. Our analysis reveals that the base model rarely exhibits reasoning behaviors initially, but SFT effectively surfaces these latent actions and narrows the RL search space, accelerating the development of reasoning capabilities. Each subsequent RL stage further refines the model's reasoning skills, producing higher-quality SFT data for continued self-improvement. OpenVLThinker-7B consistently advances performance across six benchmarks demanding mathematical and general reasoning, notably improving MathVista by 3.8%, EMMA by 2.4%, and HallusionBench by 1.6%. Beyond demonstrating the synergy between SFT and RL for complex reasoning tasks, our findings provide early evidence towards achieving R1-style reasoning in multimodal contexts. The code, model and data are held at https://github.com/yihedeng9/OpenVLThinker.

Authors:Kun Chu, Xufeng Zhao, Cornelius Weber, Stefan Wermter
Title: LLM+MAP: Bimanual Robot Task Planning using Large Language Models and Planning Domain Definition Language
Abstract:
Bimanual robotic manipulation provides significant versatility, but also presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands. Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on long-horizon timescales. With their outstanding in-context learning and zero-shot generation abilities, Large Language Models (LLMs) have been applied and grounded in diverse robotic embodiments to facilitate task planning. However, LLMs still suffer from errors in long-horizon reasoning and from hallucinations in complex robotic tasks, lacking a guarantee of logical correctness when generating the plan. Previous works, such as LLM+P, extended LLMs with symbolic planners. However, none have been successfully applied to bimanual robots. New challenges inevitably arise in bimanual manipulation, necessitating not only effective task decomposition but also efficient task allocation. To address these challenges, this paper introduces LLM+MAP, a bimanual planning framework that integrates LLM reasoning and multi-agent planning, automating effective and efficient bimanual task planning. We conduct simulated experiments on various long-horizon manipulation tasks of differing complexity. Our method is built using GPT-4o as the backend, and we compare its performance against plans generated directly by LLMs, including GPT-4o, V3 and also recent strong reasoning models o1 and R1. By analyzing metrics such as planning time, success rate, group debits, and planning-step reduction rate, we demonstrate the superior performance of LLM+MAP, while also providing insights into robotic reasoning. Code is available at https://github.com/Kchu/LLM-MAP.

Authors:Xianghan Meng, Zhiyuan Huang, Wei He, Xianbiao Qi, Rong Xiao, Chun-Guang Li
Title: Exploring a Principled Framework for Deep Subspace Clustering
Abstract:
Subspace clustering is a classical unsupervised learning task, built on a basic assumption that high-dimensional data can be approximated by a union of subspaces (UoS). Nevertheless, the real-world data are often deviating from the UoS assumption. To address this challenge, state-of-the-art deep subspace clustering algorithms attempt to jointly learn UoS representations and self-expressive coefficients. However, the general framework of the existing algorithms suffers from a catastrophic feature collapse and lacks a theoretical guarantee to learn desired UoS representation. In this paper, we present a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which is designed to learn structured representations and self-expressive coefficients in a unified manner. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned representations into the self-expressive model, prove that the regularized self-expressive model is able to prevent feature space collapse, and demonstrate that the learned optimal representations under certain condition lie on a union of orthogonal subspaces. Moreover, we provide a scalable and efficient approach to implement our PRO-DSC and conduct extensive experiments to verify our theoretical findings and demonstrate the superior performance of our proposed deep subspace clustering approach. The code is available at https://github.com/mengxianghan123/PRO-DSC.

Authors:Hiromu Taketsugu, Takeru Oba, Takahiro Maeda, Shohei Nobuhara, Norimichi Ukita
Title: Physical Plausibility-aware Trajectory Prediction via Locomotion Embodiment
Abstract:
Humans can predict future human trajectories even from momentary observations by using human pose-related cues. However, previous Human Trajectory Prediction (HTP) methods leverage the pose cues implicitly, resulting in implausible predictions. To address this, we propose Locomotion Embodiment, a framework that explicitly evaluates the physical plausibility of the predicted trajectory by locomotion generation under the laws of physics. While the plausibility of locomotion is learned with an indifferentiable physics simulator, it is replaced by our differentiable Locomotion Value function to train an HTP network in a data-driven manner. In particular, our proposed Embodied Locomotion loss is beneficial for efficiently training a stochastic HTP network using multiple heads. Furthermore, the Locomotion Value filter is proposed to filter out implausible trajectories at inference. Experiments demonstrate that our method enhances even the state-of-the-art HTP methods across diverse datasets and problem settings. Our code is available at: https://github.com/ImIntheMiddle/EmLoco.

Authors:Shuang Guo, Friedhelm Hamann, Guillermo Gallego
Title: Unsupervised Joint Learning of Optical Flow and Intensity with Event Cameras
Abstract:
Event cameras rely on motion to obtain information about scene appearance. This means that appearance and motion are inherently linked: either both are present and recorded in the event data, or neither is captured. Previous works treat the recovery of these two visual quantities as separate tasks, which does not fit with the above-mentioned nature of event cameras and overlooks the inherent relations between them. We propose an unsupervised learning framework that jointly estimates optical flow (motion) and image intensity (appearance) using a single network. From the data generation model, we newly derive the event-based photometric error as a function of optical flow and image intensity. This error is further combined with the contrast maximization framework to form a comprehensive loss function that provides proper constraints for both flow and intensity estimation. Exhaustive experiments show our method's state-of-the-art performance: in optical flow estimation, it reduces EPE by 20% and AE by 25% compared to unsupervised approaches, while delivering competitive intensity estimation results, particularly in high dynamic range scenarios. Our method also achieves shorter inference time than all other optical flow methods and many of the image reconstruction methods, while they output only one quantity. Project page: https://github.com/tub-rip/E2FAI

Authors:Jie Mei, Chenyu Lin, Yu Qiu, Yaonan Wang, Hui Zhang, Ziyang Wang, Dong Dai
Title: Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images
Abstract:
Lung cancer is a leading cause of cancer-related deaths globally. PET-CT is crucial for imaging lung tumors, providing essential metabolic and anatomical information, while it faces challenges such as poor image quality, motion artifacts, and complex tumor morphology. Deep learning-based models are expected to address these problems, however, existing small-scale and private datasets limit significant performance improvements for these methods. Hence, we introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients. Furthermore, we propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images. Specifically, we design a channel-wise rectification module (CRM) that implements a channel state space block across multi-modal features to learn correlated representations and helps filter out modality-specific noise. A dynamic cross-modality interaction module (DCIM) is designed to effectively integrate position and context information, which employs PET images to learn regional position information and serves as a bridge to assist in modeling the relationships between local features of CT images. Extensive experiments on a comprehensive benchmark demonstrate the effectiveness of our CIPA compared to the current state-of-the-art segmentation methods. We hope our research can provide more exploration opportunities for medical image segmentation. The dataset and code are available at https://github.com/mj129/CIPA.

Authors:Michael J Bommarito, Daniel Martin Katz, Jillian Bommarito
Title: KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
Abstract:
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.

Authors:Devavrat Tomar, Guillaume Vray, Dwarikanath Mahapatra, Sudipta Roy, Jean-Philippe Thiran, Behzad Bozorgtabar
Title: Slide-Level Prompt Learning with Vision Language Models for Few-Shot Multiple Instance Learning in Histopathology
Abstract:
In this paper, we address the challenge of few-shot classification in histopathology whole slide images (WSIs) by utilizing foundational vision-language models (VLMs) and slide-level prompt learning. Given the gigapixel scale of WSIs, conventional multiple instance learning (MIL) methods rely on aggregation functions to derive slide-level (bag-level) predictions from patch representations, which require extensive bag-level labels for training. In contrast, VLM-based approaches excel at aligning visual embeddings of patches with candidate class text prompts but lack essential pathological prior knowledge. Our method distinguishes itself by utilizing pathological prior knowledge from language models to identify crucial local tissue types (patches) for WSI classification, integrating this within a VLM-based MIL framework. Our approach effectively aligns patch images with tissue types, and we fine-tune our model via prompt learning using only a few labeled WSIs per category. Experimentation on real-world pathological WSI datasets and ablation studies highlight our method's superior performance over existing MIL- and VLM-based methods in few-shot WSI classification tasks. Our code is publicly available at https://github.com/LTS5/SLIP.

Authors:Yu-Hsi Chen
Title: Strong Baseline: Multi-UAV Tracking via YOLOv12 with BoT-SORT-ReID
Abstract:
Detecting and tracking multiple unmanned aerial vehicles (UAVs) in thermal infrared video is inherently challenging due to low contrast, environmental noise, and small target sizes. This paper provides a straightforward approach to address multi-UAV tracking in thermal infrared video, leveraging recent advances in detection and tracking. Instead of relying on the well-established YOLOv5 with DeepSORT combination, we present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies. We evaluate our approach following the 4th Anti-UAV Challenge metrics and reach competitive performance. Notably, we achieved strong results without using contrast enhancement or temporal information fusion to enrich UAV features, highlighting our approach as a "Strong Baseline" for multi-UAV tracking tasks. We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements. The code is available at https://github.com/wish44165/YOLOv12-BoT-SORT-ReID .

Authors:Aryan Yazdan Parast, Basim Azam, Naveed Akhtar
Title: DDB: Diffusion Driven Balancing to Address Spurious Correlations
Abstract:
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a Diffusion Driven Balancing (DDB) technique to generate training samples with text-to-image diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods. Our code is available at https://github.com/ArianYp/DDB.

Authors:Ting Sun, Cheng Cui, Yuning Du, Yi Liu
Title: PP-DocLayout: A Unified Document Layout Detection Model to Accelerate Large-Scale Data Construction
Abstract:
Document layout analysis is a critical preprocessing step in document intelligence, enabling the detection and localization of structural elements such as titles, text blocks, tables, and formulas. Despite its importance, existing layout detection models face significant challenges in generalizing across diverse document types, handling complex layouts, and achieving real-time performance for large-scale data processing. To address these limitations, we present PP-DocLayout, which achieves high precision and efficiency in recognizing 23 types of layout regions across diverse document formats. To meet different needs, we offer three models of varying scales. PP-DocLayout-L is a high-precision model based on the RT-DETR-L detector, achieving 90.4% mAP@0.5 and an end-to-end inference time of 13.4 ms per page on a T4 GPU. PP-DocLayout-M is a balanced model, offering 75.2% mAP@0.5 with an inference time of 12.7 ms per page on a T4 GPU. PP-DocLayout-S is a high-efficiency model designed for resource-constrained environments and real-time applications, with an inference time of 8.1 ms per page on a T4 GPU and 14.5 ms on a CPU. This work not only advances the state of the art in document layout analysis but also provides a robust solution for constructing high-quality training data, enabling advancements in document intelligence and multimodal AI systems. Code and models are available at https://github.com/PaddlePaddle/PaddleX .

Authors:Yongli Xiang, Ziming Hong, Lina Yao, Dadong Wang, Tongliang Liu
Title: Jailbreaking the Non-Transferable Barrier via Test-Time Data Disguising
Abstract:
Non-transferable learning (NTL) has been proposed to protect model intellectual property (IP) by creating a "non-transferable barrier" to restrict generalization from authorized to unauthorized domains. Recently, well-designed attack, which restores the unauthorized-domain performance by fine-tuning NTL models on few authorized samples, highlights the security risks of NTL-based applications. However, such attack requires modifying model weights, thus being invalid in the black-box scenario. This raises a critical question: can we trust the security of NTL models deployed as black-box systems? In this work, we reveal the first loophole of black-box NTL models by proposing a novel attack method (dubbed as JailNTL) to jailbreak the non-transferable barrier through test-time data disguising. The main idea of JailNTL is to disguise unauthorized data so it can be identified as authorized by the NTL model, thereby bypassing the non-transferable barrier without modifying the NTL model weights. Specifically, JailNTL encourages unauthorized-domain disguising in two levels, including: (i) data-intrinsic disguising (DID) for eliminating domain discrepancy and preserving class-related content at the input-level, and (ii) model-guided disguising (MGD) for mitigating output-level statistics difference of the NTL model. Empirically, when attacking state-of-the-art (SOTA) NTL models in the black-box scenario, JailNTL achieves an accuracy increase of up to 55.7% in the unauthorized domain by using only 1% authorized samples, largely exceeding existing SOTA white-box attacks.

Authors:Sheng Wang, Pengan Chen, Jingqi Zhou, Qintong Li, Jingwei Dong, Jiahui Gao, Boyang Xue, Jiyue Jiang, Lingpeng Kong, Chuan Wu
Title: TreeSynth: Synthesizing Diverse Data from Scratch via Tree-Guided Subspace Partitioning
Abstract:
Model customization necessitates high-quality and diverse datasets, but acquiring such data remains time-consuming and labor-intensive. Despite the great potential of large language models (LLMs) for data synthesis, current approaches are constrained by limited seed data, model biases, and low-variation prompts, resulting in limited diversity and biased distributions with the increase of data scales. To tackle this challenge, we introduce TREESYNTH, a tree-guided subspace-based data synthesis approach inspired by decision trees. It constructs a spatial partitioning tree to recursively divide a task-specific full data space (i.e., root node) into numerous atomic subspaces (i.e., leaf nodes) with mutually exclusive and exhaustive attributes to ensure both distinctiveness and comprehensiveness before synthesizing samples within each atomic subspace. This globally dividing-and-synthesizing method finally collects subspace samples into a comprehensive dataset, effectively circumventing repetition and space collapse to ensure the diversity of large-scale data synthesis. Furthermore, the spatial partitioning tree enables sample allocation into atomic subspaces, allowing the rebalancing of existing datasets for more balanced and comprehensive distributions. Empirically, extensive experiments across diverse benchmarks consistently demonstrate the superior data diversity, model performance, and robust scalability of TREESYNTH compared to both human-crafted datasets and peer data synthesis methods, with an average performance gain reaching 10%. Besides, the consistent improvements of TREESYNTH-balanced datasets highlight its efficacious application to redistribute existing datasets for more comprehensive coverage and the induced performance enhancement. The code is available at https://github.com/cpa2001/TreeSynth.

Authors:Davide Berasi, Matteo Farina, Massimiliano Mancini, Elisa Ricci, Nicola Strisciuglio
Title: Not Only Text: Exploring Compositionality of Visual Representations in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) learn a shared feature space for text and images, enabling the comparison of inputs of different modalities. While prior works demonstrated that VLMs organize natural language representations into regular structures encoding composite meanings, it remains unclear if compositional patterns also emerge in the visual embedding space. In this work, we investigate compositionality in the image domain, where the analysis of compositional properties is challenged by noise and sparsity of visual data. We address these problems and propose a framework, called Geodesically Decomposable Embeddings (GDE), that approximates image representations with geometry-aware compositional structures in the latent space. We demonstrate that visual embeddings of pre-trained VLMs exhibit a compositional arrangement, and evaluate the effectiveness of this property in the tasks of compositional classification and group robustness. GDE achieves stronger performance in compositional classification compared to its counterpart method that assumes linear geometry of the latent space. Notably, it is particularly effective for group robustness, where we achieve higher results than task-specific solutions. Our results indicate that VLMs can automatically develop a human-like form of compositional reasoning in the visual domain, making their underlying processes more interpretable. Code is available at https://github.com/BerasiDavide/vlm_image_compositionality.

Authors:Robin Hesse, Doğukan Bağcı, Bernt Schiele, Simone Schaub-Meyer, Stefan Roth
Title: Beyond Accuracy: What Matters in Designing Well-Behaved Models?
Abstract:
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect the quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high fairness on ImageNet-1k classification and strong robustness against domain changes; (ii) self-supervised learning is an effective training paradigm to improve almost all considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.

Authors:Yuanmin Tang, Jing Yu, Keke Gai, Jiamin Zhuang, Gang Xiong, Gaopeng Gou, Qi Wu
Title: Missing Target-Relevant Information Prediction with World Model for Accurate Zero-Shot Composed Image Retrieval
Abstract:
Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent across domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to modify a reference image according to manipulation text to accurately retrieve a target image, especially when the reference image is missing essential target content. In this paper, we propose a novel prediction-based mapping network, named PrediCIR, to adaptively predict the missing target visual content in reference images in the latent space before mapping for accurate ZS-CIR. Specifically, a world view generation module first constructs a source view by omitting certain visual content of a target view, coupled with an action that includes the manipulation intent derived from existing image-caption pairs. Then, a target content prediction module trains a world model as a predictor to adaptively predict the missing visual information guided by user intention in manipulating text at the latent space. The two modules map an image with the predicted relevant information to a pseudo-word token without extra supervision. Our model shows strong generalization ability on six ZS-CIR tasks. It obtains consistent and significant performance boosts ranging from 1.73% to 4.45% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/predicir.

Authors:Johan Edstedt, André Mateus, Alberto Jaenal
Title: ColabSfM: Collaborative Structure-from-Motion by Point Cloud Registration
Abstract:
Structure-from-Motion (SfM) is the task of estimating 3D structure and camera poses from images. We define Collaborative SfM (ColabSfM) as sharing distributed SfM reconstructions. Sharing maps requires estimating a joint reference frame, which is typically referred to as registration. However, there is a lack of scalable methods and training datasets for registering SfM reconstructions. In this paper, we tackle this challenge by proposing the scalable task of point cloud registration for SfM reconstructions. We find that current registration methods cannot register SfM point clouds when trained on existing datasets. To this end, we propose a SfM registration dataset generation pipeline, leveraging partial reconstructions from synthetically generated camera trajectories for each scene. Finally, we propose a simple but impactful neural refiner on top of the SotA registration method RoITr that yields significant improvements, which we call RefineRoITr. Our extensive experimental evaluation shows that our proposed pipeline and model enables ColabSfM. Code is available at https://github.com/EricssonResearch/ColabSfM

Authors:Victor Besnier, Mickael Chen, David Hurych, Eduardo Valle, Matthieu Cord
Title: Halton Scheduler For Masked Generative Image Transformer
Abstract:
Masked Generative Image Transformers (MaskGIT) have emerged as a scalable and efficient image generation framework, able to deliver high-quality visuals with low inference costs. However, MaskGIT's token unmasking scheduler, an essential component of the framework, has not received the attention it deserves. We analyze the sampling objective in MaskGIT, based on the mutual information between tokens, and elucidate its shortcomings. We then propose a new sampling strategy based on our Halton scheduler instead of the original Confidence scheduler. More precisely, our method selects the token's position according to a quasi-random, low-discrepancy Halton sequence. Intuitively, that method spreads the tokens spatially, progressively covering the image uniformly at each step. Our analysis shows that it allows reducing non-recoverable sampling errors, leading to simpler hyper-parameters tuning and better quality images. Our scheduler does not require retraining or noise injection and may serve as a simple drop-in replacement for the original sampling strategy. Evaluation of both class-to-image synthesis on ImageNet and text-to-image generation on the COCO dataset demonstrates that the Halton scheduler outperforms the Confidence scheduler quantitatively by reducing the FID and qualitatively by generating more diverse and more detailed images. Our code is at https://github.com/valeoai/Halton-MaskGIT.

Authors:Pablo Garcia-Fernandez, Lorenzo Vaquero, Mingxuan Liu, Feng Xue, Daniel Cores, Nicu Sebe, Manuel Mucientes, Elisa Ricci
Title: Superpowering Open-Vocabulary Object Detectors for X-ray Vision
Abstract:
Open-vocabulary object detection (OvOD) is set to revolutionize security screening by enabling systems to recognize any item in X-ray scans. However, developing effective OvOD models for X-ray imaging presents unique challenges due to data scarcity and the modality gap that prevents direct adoption of RGB-based solutions. To overcome these limitations, we propose RAXO, a training-free framework that repurposes off-the-shelf RGB OvOD detectors for robust X-ray detection. RAXO builds high-quality X-ray class descriptors using a dual-source retrieval strategy. It gathers relevant RGB images from the web and enriches them via a novel X-ray material transfer mechanism, eliminating the need for labeled databases. These visual descriptors replace text-based classification in OvOD, leveraging intra-modal feature distances for robust detection. Extensive experiments demonstrate that RAXO consistently improves OvOD performance, providing an average mAP increase of up to 17.0 points over base detectors. To further support research in this emerging field, we also introduce DET-COMPASS, a new benchmark featuring bounding box annotations for over 300 object categories, enabling large-scale evaluation of OvOD in X-ray. Code and dataset available at: https://github.com/PAGF188/RAXO.

Authors:Fangyijie Wang, Kathleen M. Curran, Guénolé Silvestre
Title: Semi-supervised Cervical Segmentation on Ultrasound by A Dual Framework for Neural Networks
Abstract:
Accurate segmentation of ultrasound (US) images of the cervical muscles is crucial for precision healthcare. The demand for automatic computer-assisted methods is high. However, the scarcity of labeled data hinders the development of these methods. Advanced semi-supervised learning approaches have displayed promise in overcoming this challenge by utilizing labeled and unlabeled data. This study introduces a novel semi-supervised learning (SSL) framework that integrates dual neural networks. This SSL framework utilizes both networks to generate pseudo-labels and cross-supervise each other at the pixel level. Additionally, a self-supervised contrastive learning strategy is introduced, which employs a pair of deep representations to enhance feature learning capabilities, particularly on unlabeled data. Our framework demonstrates competitive performance in cervical segmentation tasks. Our codes are publicly available on https://github.com/13204942/SSL\_Cervical\_Segmentation.

Authors:Qinghe Ma, Jian Zhang, Zekun Li, Lei Qi, Qian Yu, Yinghuan Shi
Title: Steady Progress Beats Stagnation: Mutual Aid of Foundation and Conventional Models in Mixed Domain Semi-Supervised Medical Image Segmentation
Abstract:
Large pretrained visual foundation models exhibit impressive general capabilities. However, the extensive prior knowledge inherent in these models can sometimes be a double-edged sword when adapting them to downstream tasks in specific domains. In the context of semi-supervised medical image segmentation with domain shift, foundation models like MedSAM tend to make overconfident predictions, some of which are incorrect. The error accumulation hinders the effective utilization of unlabeled data and limits further improvements. In this paper, we introduce a Synergistic training framework for Foundation and Conventional models (SynFoC) to address the issue. We observe that a conventional model trained from scratch has the ability to correct the high-confidence mispredictions of the foundation model, while the foundation model can supervise it with high-quality pseudo-labels in the early training stages. Furthermore, to enhance the collaborative training effectiveness of both models and promote reliable convergence towards optimization, the consensus-divergence consistency regularization is proposed. We demonstrate the superiority of our method across four public multi-domain datasets. In particular, our method improves the Dice score by 10.31\% on the Prostate dataset. Our code is available at https://github.com/MQinghe/SynFoC .

Authors:Tobias Brudermueller, Elgar Fleisch, Marina González Vayá, Thorsten Staake
Title: HEAPO -- An Open Dataset for Heat Pump Optimization with Smart Electricity Meter Data and On-Site Inspection Protocols
Abstract:
Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy, impacting operational costs and grid demand. Many systems run inefficiently due to planning flaws, operational faults, or misconfigurations. While optimizing performance requires skilled professionals, labor shortages hinder large-scale interventions. However, digital tools and improved data availability create new service opportunities for energy efficiency, predictive maintenance, and demand-side management. To support research and practical solutions, we present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland, recorded at 15-minute and daily resolutions between 2018-11-03 and 2024-03-21. The dataset includes household metadata, weather data from 8 stations, and ground truth data from 410 field visit protocols collected by energy consultants during system optimizations. Additionally, the dataset includes a Python-based data loader to facilitate seamless data processing and exploration.

Authors:Xu Zhang, Hao Zhou, Haoming Qin, Xiaobin Lu, Jiaxing Yan, Guanzhong Wang, Zeyu Chen, Yi Liu
Title: Enabling Versatile Controls for Video Diffusion Models
Abstract:
Despite substantial progress in text-to-video generation, achieving precise and flexible control over fine-grained spatiotemporal attributes remains a significant unresolved challenge in video generation research. To address these limitations, we introduce VCtrl (also termed PP-VCtrl), a novel framework designed to enable fine-grained control over pre-trained video diffusion models in a unified manner. VCtrl integrates diverse user-specified control signals-such as Canny edges, segmentation masks, and human keypoints-into pretrained video diffusion models via a generalizable conditional module capable of uniformly encoding multiple types of auxiliary signals without modifying the underlying generator. Additionally, we design a unified control signal encoding pipeline and a sparse residual connection mechanism to efficiently incorporate control representations. Comprehensive experiments and human evaluations demonstrate that VCtrl effectively enhances controllability and generation quality. The source code and pre-trained models are publicly available and implemented using the PaddlePaddle framework at http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl.

Authors:Xiaofeng Mao, Yuefeng Chen, Rong Zhang, Hui Xue, Zhao Li, Hang Su
Title: EasyRobust: A Comprehensive and Easy-to-use Toolkit for Robust and Generalized Vision
Abstract:
Deep neural networks (DNNs) has shown great promise in computer vision tasks. However, machine vision achieved by DNNs cannot be as robust as human perception. Adversarial attacks and data distribution shifts have been known as two major scenarios which degrade machine performance and obstacle the wide deployment of machines "in the wild". In order to break these obstructions and facilitate the research of model robustness, we develop EasyRobust, a comprehensive and easy-to-use toolkit for training, evaluation and analysis of robust vision models. EasyRobust targets at two types of robustness: 1) Adversarial robustness enables the model to defense against malicious inputs crafted by worst-case perturbations, also known as adversarial examples; 2) Non-adversarial robustness enhances the model performance on natural test images with corruptions or distribution shifts. Thorough benchmarks on image classification enable EasyRobust to provide an accurate robustness evaluation on vision models. We wish our EasyRobust can help for training practically-robust models and promote academic and industrial progress in closing the gap between human and machine vision. Codes and models of EasyRobust have been open-sourced in https://github.com/alibaba/easyrobust.

Authors:Yingping Liang, Yutao Hu, Wenqi Shao, Ying Fu
Title: Distilling Monocular Foundation Model for Fine-grained Depth Completion
Abstract:
Depth completion involves predicting dense depth maps from sparse LiDAR inputs. However, sparse depth annotations from sensors limit the availability of dense supervision, which is necessary for learning detailed geometric features. In this paper, we propose a two-stage knowledge distillation framework that leverages powerful monocular foundation models to provide dense supervision for depth completion. In the first stage, we introduce a pre-training strategy that generates diverse training data from natural images, which distills geometric knowledge to depth completion. Specifically, we simulate LiDAR scans by utilizing monocular depth and mesh reconstruction, thereby creating training data without requiring ground-truth depth. Besides, monocular depth estimation suffers from inherent scale ambiguity in real-world settings. To address this, in the second stage, we employ a scale- and shift-invariant loss (SSI Loss) to learn real-world scales when fine-tuning on real-world datasets. Our two-stage distillation framework enables depth completion models to harness the strengths of monocular foundation models. Experimental results demonstrate that models trained with our two-stage distillation framework achieve state-of-the-art performance, ranking \textbf{first place} on the KITTI benchmark. Code is available at https://github.com/Sharpiless/DMD3C

Authors:Wei Zhang, Mengting Ma, Yizhen Jiang, Rongrong Lian, Zhenkai Wu, Kangning Cui, Xiaowen Ma
Title: Center-guided Classifier for Semantic Segmentation of Remote Sensing Images
Abstract:
Compared with natural images, remote sensing images (RSIs) have the unique characteristic. i.e., larger intraclass variance, which makes semantic segmentation for remote sensing images more challenging. Moreover, existing semantic segmentation models for remote sensing images usually employ a vanilla softmax classifier, which has three drawbacks: (1) non-direct supervision for the pixel representations during training; (2) inadequate modeling ability of parametric softmax classifiers under large intraclass variance; and (3) opaque process of classification decision. In this paper, we propose a novel classifier (called CenterSeg) customized for RSI semantic segmentation, which solves the abovementioned problems with multiple prototypes, direct supervision under Grassmann manifold, and interpretability strategy. Specifically, for each class, our CenterSeg obtains local class centers by aggregating corresponding pixel features based on ground-truth masks, and generates multiple prototypes through hard attention assignment and momentum updating. In addition, we introduce the Grassmann manifold and constrain the joint embedding space of pixel features and prototypes based on two additional regularization terms. Especially, during the inference, CenterSeg can further provide interpretability to the model by restricting the prototype as a sample of the training set. Experimental results on three remote sensing segmentation datasets validate the effectiveness of the model. Besides the superior performance, CenterSeg has the advantages of simplicity, lightweight, compatibility, and interpretability. Code is available at https://github.com/xwmaxwma/rssegmentation.

Authors:Ibtissam Saadi, Abdenour Hadid, Douglas W. Cunningham, Abdelmalik Taleb-Ahmed, Yassin El Hillali
Title: PE-CLIP: A Parameter-Efficient Fine-Tuning of Vision Language Models for Dynamic Facial Expression Recognition
Abstract:
Vision-Language Models (VLMs) like CLIP offer promising solutions for Dynamic Facial Expression Recognition (DFER) but face challenges such as inefficient full fine-tuning, high complexity, and poor alignment between textual and visual representations. Additionally, existing methods struggle with ineffective temporal modeling. To address these issues, we propose PE-CLIP, a parameter-efficient fine-tuning (PEFT) framework that adapts CLIP for DFER while significantly reducing trainable parameters while maintaining high accuracy. PE-CLIP introduces two specialized adapters: a Temporal Dynamic Adapter (TDA) and a Shared Adapter (ShA). The TDA is a GRU-based module with dynamic scaling that captures sequential dependencies while emphasizing informative temporal features and suppressing irrelevant variations. The ShA is a lightweight adapter that refines representations within both textual and visual encoders, ensuring consistency and efficiency. Additionally, we integrate Multi-modal Prompt Learning (MaPLe), introducing learnable prompts for visual and action unit-based textual inputs, enhancing semantic alignment between modalities and enabling efficient CLIP adaptation for dynamic tasks. We evaluate PE-CLIP on two benchmark datasets, DFEW and FERV39K, achieving competitive performance compared to state-of-the-art methods while requiring fewer trainable parameters. By balancing efficiency and accuracy, PE-CLIP sets a new benchmark in resource-efficient DFER. The source code of the proposed PE-CLIP will be publicly available at https://github.com/Ibtissam-SAADI/PE-CLIP .

Authors:Shicheng Li, Lei Li, Kun Ouyang, Shuhuai Ren, Yuanxin Liu, Yuanxing Zhang, Fuzheng Zhang, Lingpeng Kong, Qi Liu, Xu Sun
Title: TEMPLE:Temporal Preference Learning of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment
Abstract:
Video Large Language Models (Video LLMs) have achieved significant success by leveraging a two-stage paradigm: pretraining on large-scale video-text data for vision-language alignment, followed by supervised fine-tuning (SFT) for task-specific capabilities. However, existing approaches struggle with temporal reasoning due to weak temporal correspondence in the data and reliance on the next-token prediction paradigm during training. To address these limitations, we propose TEMPLE (TEMporal Preference Learning), a systematic framework that enhances Video LLMs' temporal reasoning capabilities through Direct Preference Optimization (DPO). To facilitate this, we introduce an automated preference data generation pipeline that systematically constructs preference pairs by selecting videos that are rich in temporal information, designing video-specific perturbation strategies, and finally evaluating model responses on clean and perturbed video inputs. Our temporal alignment features two key innovations: curriculum learning which that progressively increases perturbation difficulty to improve model robustness and adaptability; and "Pre-SFT Alignment'', applying preference optimization before instruction tuning to prioritize fine-grained temporal comprehension. Extensive experiments demonstrate that our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data. We further analyze the transferability of DPO data across architectures and the role of difficulty scheduling in optimization. Our findings highlight our TEMPLE as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs. Code is available at https://github.com/lscpku/TEMPLE.

Authors:Sirui Chen, Shen Han, Jiawei Chen, Binbin Hu, Sheng Zhou, Gang Wang, Yan Feng, Chun Chen, Can Wang
Title: Rankformer: A Graph Transformer for Recommendation based on Ranking Objective
Abstract:
Recommender Systems (RS) aim to generate personalized ranked lists for each user and are evaluated using ranking metrics. Although personalized ranking is a fundamental aspect of RS, this critical property is often overlooked in the design of model architectures. To address this issue, we propose Rankformer, a ranking-inspired recommendation model. The architecture of Rankformer is inspired by the gradient of the ranking objective, embodying a unique (graph) transformer architecture -- it leverages global information from all users and items to produce more informative representations and employs specific attention weights to guide the evolution of embeddings towards improved ranking performance. We further develop an acceleration algorithm for Rankformer, reducing its complexity to a linear level with respect to the number of positive instances. Extensive experimental results demonstrate that Rankformer outperforms state-of-the-art methods. The code is available at https://github.com/StupidThree/Rankformer.

Authors:Linxi Liang, Jing Gong, Mingwei Liu, Chong Wang, Guangsheng Ou, Yanlin Wang, Xin Peng, Zibin Zheng
Title: RustEvo^2: An Evolving Benchmark for API Evolution in LLM-based Rust Code Generation
Abstract:
Large Language Models (LLMs) have become pivotal tools for automating code generation in software development. However, these models face significant challenges in producing version-aware code for rapidly evolving languages like Rust, where frequent Application Programming Interfaces (API) changes across versions lead to compatibility issues and correctness errors. Existing benchmarks lack systematic evaluation of how models navigate API transitions, relying on labor-intensive manual curation and offering limited version-specific insights. To address this gap, we present RustEvo, a novel framework for constructing dynamic benchmarks that evaluate the ability of LLMs to adapt to evolving Rust APIs. RustEvo automates dataset creation by synthesizing 588 API changes (380 from Rust standard libraries, 208 from 15 third-party crates) into programming tasks mirroring real-world challenges. These tasks cover four API evolution categories: Stabilizations, Signature Changes, Behavioral Changes, and Deprecations, reflecting their actual distribution in the Rust ecosystem. Experiments on state-of-the-art (SOTA) LLMs reveal significant performance variations: models achieve a 65.8% average success rate on stabilized APIs but only 38.0% on behavioral changes, highlighting difficulties in detecting semantic shifts without signature alterations. Knowledge cutoff dates strongly influence performance, with models scoring 56.1% on before-cutoff APIs versus 32.5% on after-cutoff tasks. Retrieval-Augmented Generation (RAG) mitigates this gap, improving success rates by 13.5% on average for APIs released after model training. Our findings underscore the necessity of our evolution-aware benchmarks to advance the adaptability of LLMs in fast-paced software ecosystems. The framework and the benchmarks are publicly released at https://github.com/SYSUSELab/RustEvo.

Authors:Omar Coser, Christian Tamantini, Matteo Tortora, Leonardo Furia, Rosa Sicilia, Loredana Zollo, Paolo Soda
Title: Deep Learning for Human Locomotion Analysis in Lower-Limb Exoskeletons: A Comparative Study
Abstract:
Wearable robotics for lower-limb assistance have become a pivotal area of research, aiming to enhance mobility for individuals with physical impairments or augment the performance of able-bodied users. Accurate and adaptive control systems are essential to ensure seamless interaction between the wearer and the robotic device, particularly when navigating diverse and dynamic terrains. Despite the recent advances in neural networks for time series analysis, no attempts have been directed towards the classification of ground conditions, categorized into five classes and subsequently determining the ramp's slope and stair's height. In this respect, this paper presents an experimental comparison between eight deep neural network backbones to predict high-level locomotion parameters across diverse terrains. All the models are trained on the publicly available CAMARGO 2021 dataset. IMU-only data equally or outperformed IMU+EMG inputs, promoting a cost-effective and efficient design. Indeeds, using three IMU sensors, the LSTM achieved high terrain classification accuracy (0.94 +- 0.04) and precise ramp slope (1.95 +- 0.58°) and the CNN-LSTM a stair height (15.65 +- 7.40 mm) estimations. As a further contribution, SHAP analysis justified sensor reduction without performance loss, ensuring a lightweight setup. The system operates with ~2 ms inference time, supporting real-time applications. The code is code available at https://github.com/cosbidev/Human-Locomotion-Identification.

Authors:Dongseob Kim, Hyunjung Shim
Title: Classifier-guided CLIP Distillation for Unsupervised Multi-label Classification
Abstract:
Multi-label classification is crucial for comprehensive image understanding, yet acquiring accurate annotations is challenging and costly. To address this, a recent study suggests exploiting unsupervised multi-label classification leveraging CLIP, a powerful vision-language model. Despite CLIP's proficiency, it suffers from view-dependent predictions and inherent bias, limiting its effectiveness. We propose a novel method that addresses these issues by leveraging multiple views near target objects, guided by Class Activation Mapping (CAM) of the classifier, and debiasing pseudo-labels derived from CLIP predictions. Our Classifier-guided CLIP Distillation (CCD) enables selecting multiple local views without extra labels and debiasing predictions to enhance classification performance. Experimental results validate our method's superiority over existing techniques across diverse datasets. The code is available at https://github.com/k0u-id/CCD.

Authors:Anshumann, Mohd Abbas Zaidi, Akhil Kedia, Jinwoo Ahn, Taehwak Kwon, Kangwook Lee, Haejun Lee, Joohyung Lee
Title: Sparse Logit Sampling: Accelerating Knowledge Distillation in LLMs
Abstract:
Knowledge distillation can be a cost-effective technique to distill knowledge in Large Language Models, if the teacher output logits can be pre-computed and cached. However, successfully applying this to pre-training remains largely unexplored. In this work, we prove that naive approaches for sparse knowledge distillation such as caching Top-K probabilities, while intuitive, provide biased estimates of teacher probability distribution to the student, resulting in suboptimal performance and calibration. We propose an importance-sampling-based method `Random Sampling Knowledge Distillation', which provides unbiased estimates, preserves the gradient in expectation, and requires storing significantly sparser logits. Our method enables faster training of student models with marginal overhead (<10%) compared to cross-entropy based training, while maintaining competitive performance compared to full distillation, across a range of model sizes from 300M to 3B.

Authors:Xiyue Guo, Jiarui Hu, Junjie Hu, Hujun Bao, Guofeng Zhang
Title: SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
Abstract:
Recently, camera-based solutions have been extensively explored for scene semantic completion (SSC). Despite their success in visible areas, existing methods struggle to capture complete scene semantics due to frequent visual occlusions. To address this limitation, this paper presents the first satellite-ground cooperative SSC framework, i.e., SGFormer, exploring the potential of satellite-ground image pairs in the SSC task. Specifically, we propose a dual-branch architecture that encodes orthogonal satellite and ground views in parallel, unifying them into a common domain. Additionally, we design a ground-view guidance strategy that corrects satellite image biases during feature encoding, addressing misalignment between satellite and ground views. Moreover, we develop an adaptive weighting strategy that balances contributions from satellite and ground views. Experiments demonstrate that SGFormer outperforms the state of the art on SemanticKITTI and SSCBench-KITTI-360 datasets. Our code is available on https://github.com/gxytcrc/SGFormer.

Authors:Li Zhang, Longxi Gao, Mengwei Xu
Title: Does Chain-of-Thought Reasoning Help Mobile GUI Agent? An Empirical Study
Abstract:
Reasoning capabilities have significantly improved the performance of vision-language models (VLMs) in domains such as mathematical problem-solving, coding, and visual question-answering. However, their impact on real-world applications remains unclear. This paper presents the first empirical study on the effectiveness of reasoning-enabled VLMs in mobile GUI agents, a domain that requires interpreting complex screen layouts, understanding user instructions, and executing multi-turn interactions. We evaluate two pairs of commercial models--Gemini 2.0 Flash and Claude 3.7 Sonnet--comparing their base and reasoning-enhanced versions across two static benchmarks (ScreenSpot and AndroidControl) and one interactive environment (AndroidWorld). We surprisingly find the Claude 3.7 Sonnet reasoning model achieves state-of-the-art performance on AndroidWorld. However, reasoning VLMs generally offer marginal improvements over non-reasoning models on static benchmarks and even degrade performance in some agent setups. Notably, reasoning and non-reasoning VLMs fail on different sets of tasks, suggesting that reasoning does have an impact, but its benefits and drawbacks counterbalance each other. We attribute these inconsistencies to the limitations of benchmarks and VLMs. Based on the findings, we provide insights for further enhancing mobile GUI agents in terms of benchmarks, VLMs, and their adaptability in dynamically invoking reasoning VLMs. The experimental data are publicly available at https://github.com/LlamaTouch/VLM-Reasoning-Traces.

Authors:Mengsong Wu, Tong Zhu, Han Han, Xiang Zhang, Wenbiao Shao, Wenliang Chen
Title: Chain-of-Tools: Utilizing Massive Unseen Tools in the CoT Reasoning of Frozen Language Models
Abstract:
Tool learning can further broaden the usage scenarios of large language models (LLMs). However most of the existing methods either need to finetune that the model can only use tools seen in the training data, or add tool demonstrations into the prompt with lower efficiency. In this paper, we present a new Tool Learning method Chain-of-Tools. It makes full use of the powerful semantic representation capability of frozen LLMs to finish tool calling in CoT reasoning with a huge and flexible tool pool which may contain unseen tools. Especially, to validate the effectiveness of our approach in the massive unseen tool scenario, we construct a new dataset SimpleToolQuestions. We conduct experiments on two numerical reasoning benchmarks (GSM8K-XL and FuncQA) and two knowledge-based question answering benchmarks (KAMEL and SimpleToolQuestions). Experimental results show that our approach performs better than the baseline. We also identify dimensions of the model output that are critical in tool selection, enhancing the model interpretability. Our code and data are available at: https://github.com/fairyshine/Chain-of-Tools .

Authors:Massa Baali, Xiang Li, Hao Chen, Syed Abdul Hannan, Rita Singh, Bhiksha Raj
Title: CAARMA: Class Augmentation with Adversarial Mixup Regularization
Abstract:
Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. The code is available at: https://github.com/massabaali7/CAARMA/

Authors:Xuan Shen, Weize Ma, Jing Liu, Changdi Yang, Rui Ding, Quanyi Wang, Henghui Ding, Wei Niu, Yanzhi Wang, Pu Zhao, Jun Lin, Jiuxiang Gu
Title: QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge
Abstract:
Monocular Depth Estimation (MDE) has emerged as a pivotal task in computer vision, supporting numerous real-world applications. However, deploying accurate depth estimation models on resource-limited edge devices, especially Application-Specific Integrated Circuits (ASICs), is challenging due to the high computational and memory demands. Recent advancements in foundational depth estimation deliver impressive results but further amplify the difficulty of deployment on ASICs. To address this, we propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs. Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost. To mitigate the performance degradation, we introduce activation polishing and compensation algorithm applied before and after activation quantization, as well as a weight reconstruction method for minimizing errors in weight quantization. Furthermore, we design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability, enhancing throughput and efficiency. Experimental results demonstrate that our framework achieves competitive accuracy while enabling fast inference and higher energy efficiency on ASICs, bridging the gap between high-performance depth estimation and practical edge-device applicability. Code: https://github.com/shawnricecake/quart-depth

Authors:Jinlong Li, Cristiano Saltori, Fabio Poiesi, Nicu Sebe
Title: Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding
Abstract:
The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). However, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at: https://github.com/TyroneLi/CUA_O3D.

Authors:Tianze Luo, Xingchen Miao, Wenbo Duan
Title: WaveFM: A High-Fidelity and Efficient Vocoder Based on Flow Matching
Abstract:
Flow matching offers a robust and stable approach to training diffusion models. However, directly applying flow matching to neural vocoders can result in subpar audio quality. In this work, we present WaveFM, a reparameterized flow matching model for mel-spectrogram conditioned speech synthesis, designed to enhance both sample quality and generation speed for diffusion vocoders. Since mel-spectrograms represent the energy distribution of waveforms, WaveFM adopts a mel-conditioned prior distribution instead of a standard Gaussian prior to minimize unnecessary transportation costs during synthesis. Moreover, while most diffusion vocoders rely on a single loss function, we argue that incorporating auxiliary losses, including a refined multi-resolution STFT loss, can further improve audio quality. To speed up inference without degrading sample quality significantly, we introduce a tailored consistency distillation method for WaveFM. Experiment results demonstrate that our model achieves superior performance in both quality and efficiency compared to previous diffusion vocoders, while enabling waveform generation in a single inference step.

Authors:Martin Kostelník, Karel Beneš, Michal Hradiš
Title: TextBite: A Historical Czech Document Dataset for Logical Page Segmentation
Abstract:
Logical page segmentation is an important step in document analysis, enabling better semantic representations, information retrieval, and text understanding. Previous approaches define logical segmentation either through text or geometric objects, relying on OCR or precise geometry. To avoid the need for OCR, we define the task purely as segmentation in the image domain. Furthermore, to ensure the evaluation remains unaffected by geometrical variations that do not impact text segmentation, we propose to use only foreground text pixels in the evaluation metric and disregard all background pixels. To support research in logical document segmentation, we introduce TextBite, a dataset of historical Czech documents spanning the 18th to 20th centuries, featuring diverse layouts from newspapers, dictionaries, and handwritten records. The dataset comprises 8,449 page images with 78,863 annotated segments of logically and thematically coherent text. We propose a set of baseline methods combining text region detection and relation prediction. The dataset, baselines and evaluation framework can be accessed at https://github.com/DCGM/textbite-dataset.

Authors:Alejandro Ariza-Casabona, Nikos Kanakaris, Daniele Malitesta
Title: ContextGNN goes to Elliot: Towards Benchmarking Relational Deep Learning for Static Link Prediction (aka Personalized Item Recommendation)
Abstract:
Relational deep learning (RDL) settles among the most exciting advances in machine learning for relational databases, leveraging the representational power of message passing graph neural networks (GNNs) to derive useful knowledge and run predicting tasks on tables connected through primary-to-foreign key links. The RDL paradigm has been successfully applied to recommendation lately, through its most recent representative deep learning architecture namely, ContextGNN. While acknowledging ContextGNN's improved performance on real-world recommendation datasets and tasks, preliminary tests for the more traditional static link prediction task (aka personalized item recommendation) on the popular Amazon Book dataset have demonstrated how ContextGNN has still room for improvement compared to other state-of-the-art GNN-based recommender systems. To this end, with this paper, we integrate ContextGNN within Elliot, a popular framework for reproducibility and benchmarking analyses, counting around 50 state-of-the-art recommendation models from the literature to date. On such basis, we run preliminary experiments on three standard recommendation datasets and against six state-of-the-art GNN-based recommender systems, confirming similar trends to those observed by the authors in their original paper. The code is publicly available on GitHub: https://github.com/danielemalitesta/Rel-DeepLearning-RecSys.

Authors:Moshiur Rahman Tonmoy, Md. Mithun Hossain, Nilanjan Dey, M. F. Mridha
Title: MobilePlantViT: A Mobile-friendly Hybrid ViT for Generalized Plant Disease Image Classification
Abstract:
Plant diseases significantly threaten global food security by reducing crop yields and undermining agricultural sustainability. AI-driven automated classification has emerged as a promising solution, with deep learning models demonstrating impressive performance in plant disease identification. However, deploying these models on mobile and edge devices remains challenging due to high computational demands and resource constraints, highlighting the need for lightweight, accurate solutions for accessible smart agriculture systems. To address this, we propose MobilePlantViT, a novel hybrid Vision Transformer (ViT) architecture designed for generalized plant disease classification, which optimizes resource efficiency while maintaining high performance. Extensive experiments across diverse plant disease datasets of varying scales show our model's effectiveness and strong generalizability, achieving test accuracies ranging from 80% to over 99%. Notably, with only 0.69 million parameters, our architecture outperforms the smallest versions of MobileViTv1 and MobileViTv2, despite their higher parameter counts. These results underscore the potential of our approach for real-world, AI-powered automated plant disease classification in sustainable and resource-efficient smart agriculture systems. All codes will be available in the GitHub repository: https://github.com/moshiurtonmoy/MobilePlantViT

Authors:Songqiao Hu, Zidong Wang, Zeyi Liu, Zhen Shen, Xiao He
Title: SafeLink: Safety-Critical Control Under Dynamic and Irregular Unsafe Regions
Abstract:
Control barrier functions (CBFs) provide a theoretical foundation for safety-critical control in robotic systems. However, most existing methods rely on the analytical expressions of unsafe state regions, which are often impractical for irregular and dynamic unsafe regions. This paper introduces SafeLink, a novel CBF construction method based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing a valid cost function, SafeLink assigns different sensitivities to safe and unsafe state points, thereby eliminating false negatives in classification of unsafe state points. Furthermore, an incremental update theorem is established, enabling precise real-time adaptation to changes in unsafe regions. An analytical expression for the gradient of SafeLink is also derived to facilitate control input computation. The proposed method is validated on the endpoint position control task of a nonlinear two-link manipulator. Experimental results demonstrate that the method effectively learns the unsafe regions and rapidly adapts as these regions change, achieving an update speed significantly faster than comparison methods, while safely reaching the target position. The source code is available at https://github.com/songqiaohu/SafeLink.

Authors:Felix Chen, Hangjie Yuan, Yunqiu Xu, Tao Feng, Jun Cen, Pengwei Liu, Zeying Huang, Yi Yang
Title: MathFlow: Enhancing the Perceptual Flow of MLLMs for Visual Mathematical Problems
Abstract:
Despite impressive performance across diverse tasks, Multimodal Large Language Models (MLLMs) have yet to fully demonstrate their potential in visual mathematical problem-solving, particularly in accurately perceiving and interpreting diagrams. Inspired by typical processes of humans, we hypothesize that the perception capabilities to extract meaningful information from diagrams is crucial, as it directly impacts subsequent inference processes. To validate this hypothesis, we developed FlowVerse, a comprehensive benchmark that categorizes all information used during problem-solving into four components, which are then combined into six problem versions for evaluation. Our preliminary results on FlowVerse reveal that existing MLLMs exhibit substantial limitations when extracting essential information and reasoned property from diagrams and performing complex reasoning based on these visual inputs. In response, we introduce MathFlow, a modular problem-solving pipeline that decouples perception and inference into distinct stages, thereby optimizing each independently. Given the perceptual limitations observed in current MLLMs, we trained MathFlow-P-7B as a dedicated perception model. Experimental results indicate that MathFlow-P-7B yields substantial performance gains when integrated with various closed-source and open-source inference models. This demonstrates the effectiveness of the MathFlow pipeline and its compatibility to diverse inference frameworks. The FlowVerse benchmark and code are available at https://github.com/MathFlow-zju/MathFlow.

Authors:Xinyan Chen, Jiaxin Ge, Hongming Dai, Qiang Zhou, Qiuxuan Feng, Jingtong Hu, Yizhou Wang, Jiaming Liu, Shanghang Zhang
Title: EmpathyAgent: Can Embodied Agents Conduct Empathetic Actions?
Abstract:
Empathy is fundamental to human interactions, yet it remains unclear whether embodied agents can provide human-like empathetic support. Existing works have studied agents' tasks solving and social interactions abilities, but whether agents can understand empathetic needs and conduct empathetic behaviors remains overlooked. To address this, we introduce EmpathyAgent, the first benchmark to evaluate and enhance agents' empathetic actions across diverse scenarios. EmpathyAgent contains 10,000 multimodal samples with corresponding empathetic task plans and three different challenges. To systematically evaluate the agents' empathetic actions, we propose an empathy-specific evaluation suite that evaluates the agents' empathy process. We benchmark current models and found that exhibiting empathetic actions remains a significant challenge. Meanwhile, we train Llama3-8B using EmpathyAgent and find it can potentially enhance empathetic behavior. By establishing a standard benchmark for evaluating empathetic actions, we hope to advance research in empathetic embodied agents. Our code and data are publicly available at https://github.com/xinyan-cxy/EmpathyAgent.

Authors:Shuo Huang, Muhammad Umair Nasir, Steven James, Julian Togelius
Title: Word2Minecraft: Generating 3D Game Levels through Large Language Models
Abstract:
We present Word2Minecraft, a system that leverages large language models to generate playable game levels in Minecraft based on structured stories. The system transforms narrative elements-such as protagonist goals, antagonist challenges, and environmental settings-into game levels with both spatial and gameplay constraints. We introduce a flexible framework that allows for the customization of story complexity, enabling dynamic level generation. The system employs a scaling algorithm to maintain spatial consistency while adapting key game elements. We evaluate Word2Minecraft using both metric-based and human-based methods. Our results show that GPT-4-Turbo outperforms GPT-4o-Mini in most areas, including story coherence and objective enjoyment, while the latter excels in aesthetic appeal. We also demonstrate the system' s ability to generate levels with high map enjoyment, offering a promising step forward in the intersection of story generation and game design. We open-source the code at https://github.com/JMZ-kk/Word2Minecraft/tree/word2mc_v0

Authors:Tidiane Camaret Ndir, Robin Tibor Schirrmeister, Tonio Ball
Title: EEG-CLIP : Learning EEG representations from natural language descriptions
Abstract:
Deep networks for electroencephalogram (EEG) decoding are often only trained to solve one specific task, such as pathology or age decoding. A more general task-agnostic approach is to train deep networks to match a (clinical) EEG recording to its corresponding textual medical report and vice versa. This approach was pioneered in the computer vision domain matching images and their text captions and subsequently allowed to do successful zero-shot decoding using textual class prompts. In this work, we follow this approach and develop a contrastive learning framework, EEG-CLIP, that aligns the EEG time series and the descriptions of the corresponding clinical text in a shared embedding space. We investigated its potential for versatile EEG decoding, evaluating performance in a range of few-shot and zero-shot settings. Overall, we show that EEG-CLIP manages to non-trivially align text and EEG representations. Our work presents a promising approach to learn general EEG representations, which could enable easier analyses of diverse decoding questions through zero-shot decoding or training task-specific models from fewer training examples. The code for reproducing our results is available at https://github.com/tidiane-camaret/EEGClip

Authors:Wenjing Zhang, Xuejiao Lei, Zhaoxiang Liu, Limin Han, Jiaojiao Zhao, Junting Guo, Zhenhong Long, Shu Yang, Meijuan An, Beibei Huang, Rongjia Du, Ning Wang, Kai Wang, Shiguo Lian
Title: Safety Evaluation and Enhancement of DeepSeek Models in Chinese Contexts
Abstract:
DeepSeek-R1, renowned for its exceptional reasoning capabilities and open-source strategy, is significantly influencing the global artificial intelligence landscape. However, it exhibits notable safety shortcomings. Recent research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 achieves a 100\% attack success rate when processing harmful prompts. Furthermore, multiple security firms and research institutions have identified critical security vulnerabilities within the model. Although China Unicom has uncovered safety vulnerabilities of R1 in Chinese contexts, the safety capabilities of the remaining distilled models in the R1 series have not yet been comprehensively evaluated. To address this gap, this study utilizes the comprehensive Chinese safety benchmark CHiSafetyBench to conduct an in-depth safety evaluation of the DeepSeek-R1 series distilled models. The objective is to assess the safety capabilities of these models in Chinese contexts both before and after distillation, and to further elucidate the adverse effects of distillation on model safety. Building on these findings, we implement targeted safety enhancements for the entire DeepSeek-R1 model series. Evaluation results indicate that the enhanced models achieve significant improvements in safety while maintaining reasoning capabilities without notable degradation. We open-source the safety-enhanced models at https://github.com/UnicomAI/DeepSeek-R1-Safe to serve as a valuable resource for future research and optimization of DeepSeek models.

Authors:Rishabh Vishwakarma, Caroline Brophy, Catherine Hurley
Title: PieGlyph: An R package for creating axis invariant pie-glyphs for 2d plots
Abstract:
Effective visualisation of multidimensional data is crucial for generating insights. Glyph-based visualisations, which encode data dimensions onto multiple visual channels such as colour, shape, and size, provide an effective means of representing complex datasets. Pie-chart glyphs (pie-glyphs) are one such approach, where multiple data attributes are mapped to slices within a pie chart. This paper introduces the PieGlyph R package, which enables users to overlay any 2D plot with axis-invariant pie-glyphs, offering a compact and intuitive representation of multidimensional data. Unlike existing R packages such as scatterpie or ggforce, PieGlyph generates pie-glyphs independently of the plot axes by employing a nested coordinate system, ensuring they remain circular regardless of changes to the underlying coordinate system. This enhances interpretability, particularly in when visualising spatial data, as users can select the most appropriate map projection without distorting the glyphs' shape. Pie-glyphs are also particularly well-suited for visualising compositional data, where there is a natural sum-to-one constraint on the data attributes. PieGlyph is developed under the Grammar of Graphics paradigm using the ggplot2 framework and supports the generation of interactive pie-glyphs through the ggiraph package. Designed to integrate seamlessly with all features and extensions offered by ggplot2 and ggiraph, PieGlyph provides users with full flexibility in customising every aspect of the visualisation. This paper outlines the conceptual framework of PieGlyph, compares it with existing alternatives, and demonstrates its applications through example visualisations.

Authors:Marc R. Schlichting, Vale Rasmussen, Heba Alazzeh, Houjun Liu, Kiana Jafari, Amelia F. Hardy, Dylan M. Asmar, Mykel J. Kochenderfer
Title: LeRAAT: LLM-Enabled Real-Time Aviation Advisory Tool
Abstract:
In aviation emergencies, high-stakes decisions must be made in an instant. Pilots rely on quick access to precise, context-specific information -- an area where emerging tools like large language models (LLMs) show promise in providing critical support. This paper introduces LeRAAT, a framework that integrates LLMs with the X-Plane flight simulator to deliver real-time, context-aware pilot assistance. The system uses live flight data, weather conditions, and aircraft documentation to generate recommendations aligned with aviation best practices and tailored to the particular situation. It employs a Retrieval-Augmented Generation (RAG) pipeline that extracts and synthesizes information from aircraft type-specific manuals, including performance specifications and emergency procedures, as well as aviation regulatory materials, such as FAA directives and standard operating procedures. We showcase the framework in both a virtual reality and traditional on-screen simulation, supporting a wide range of research applications such as pilot training, human factors research, and operational decision support.

Authors:Pengzhou Cheng, Zheng Wu, Zongru Wu, Aston Zhang, Zhuosheng Zhang, Gongshen Liu
Title: OS-Kairos: Adaptive Interaction for MLLM-Powered GUI Agents
Abstract:
Autonomous graphical user interface (GUI) agents powered by multimodal large language models have shown great promise. However, a critical yet underexplored issue persists: over-execution, where the agent executes tasks in a fully autonomous way, without adequate assessment of its action confidence to compromise an adaptive human-agent collaboration. This poses substantial risks in complex scenarios, such as those involving ambiguous user instructions, unexpected interruptions, and environmental hijacks. To address the issue, we introduce OS-Kairos, an adaptive GUI agent capable of predicting confidence levels at each interaction step and efficiently deciding whether to act autonomously or seek human intervention. OS-Kairos is developed through two key mechanisms: (i) collaborative probing that annotates confidence scores at each interaction step; (ii) confidence-driven interaction that leverages these confidence scores to elicit the ability of adaptive interaction. Experimental results show that OS-Kairos substantially outperforms existing models on our curated dataset featuring complex scenarios, as well as on established benchmarks such as AITZ and Meta-GUI, with 24.59\%$\sim$87.29\% improvements in task success rate. OS-Kairos facilitates an adaptive human-agent collaboration, prioritizing effectiveness, generality, scalability, and efficiency for real-world GUI interaction. The dataset and codes are available at https://github.com/Wuzheng02/OS-Kairos.

Authors:Haidong Wang, Qia Shan, JianHua Zhang, PengFei Xiao, Ao Liu
Title: An Audio-Visual Fusion Emotion Generation Model Based on Neuroanatomical Alignment
Abstract:
In the field of affective computing, traditional methods for generating emotions predominantly rely on deep learning techniques and large-scale emotion datasets. However, deep learning techniques are often complex and difficult to interpret, and standardizing large-scale emotional datasets are difficult and costly to establish. To tackle these challenges, we introduce a novel framework named Audio-Visual Fusion for Brain-like Emotion Learning(AVF-BEL). In contrast to conventional brain-inspired emotion learning methods, this approach improves the audio-visual emotion fusion and generation model through the integration of modular components, thereby enabling more lightweight and interpretable emotion learning and generation processes. The framework simulates the integration of the visual, auditory, and emotional pathways of the brain, optimizes the fusion of emotional features across visual and auditory modalities, and improves upon the traditional Brain Emotional Learning (BEL) model. The experimental results indicate a significant improvement in the similarity of the audio-visual fusion emotion learning generation model compared to single-modality visual and auditory emotion learning and generation model. Ultimately, this aligns with the fundamental phenomenon of heightened emotion generation facilitated by the integrated impact of visual and auditory stimuli. This contribution not only enhances the interpretability and efficiency of affective intelligence but also provides new insights and pathways for advancing affective computing technology. Our source code can be accessed here: https://github.com/OpenHUTB/emotion}{https://github.com/OpenHUTB/emotion.

Authors:Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, Song Han
Title: XAttention: Block Sparse Attention with Antidiagonal Scoring
Abstract:
Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements. In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference. Across comprehensive evaluations on demanding long-context benchmarks-including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation. XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications. Code is available at https://github.com/mit-han-lab/x-attention.

Authors:Zigang Geng, Mengde Xu, Han Hu, Shuyang Gu
Title: Tokenize Image as a Set
Abstract:
This paper proposes a fundamentally new paradigm for image generation through set-based tokenization and distribution modeling. Unlike conventional methods that serialize images into fixed-position latent codes with a uniform compression ratio, we introduce an unordered token set representation to dynamically allocate coding capacity based on regional semantic complexity. This TokenSet enhances global context aggregation and improves robustness against local perturbations. To address the critical challenge of modeling discrete sets, we devise a dual transformation mechanism that bijectively converts sets into fixed-length integer sequences with summation constraints. Further, we propose Fixed-Sum Discrete Diffusion--the first framework to simultaneously handle discrete values, fixed sequence length, and summation invariance--enabling effective set distribution modeling. Experiments demonstrate our method's superiority in semantic-aware representation and generation quality. Our innovations, spanning novel representation and modeling strategies, advance visual generation beyond traditional sequential token paradigms. Our code and models are publicly available at https://github.com/Gengzigang/TokenSet.

Authors:Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, Xia Hu
Title: Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking. Project website: https://github.com/Eclipsess/Awesome-Efficient-Reasoning-LLMs

Authors:Liming Jiang, Qing Yan, Yumin Jia, Zichuan Liu, Hao Kang, Xin Lu
Title: InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity
Abstract:
Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.

Authors:Xueyan Zou, Yuchen Song, Ri-Zhao Qiu, Xuanbin Peng, Jianglong Ye, Sifei Liu, Xiaolong Wang
Title: M3: 3D-Spatial MultiModal Memory
Abstract:
We present 3D Spatial MultiModal Memory (M3), a multimodal memory system designed to retain information about medium-sized static scenes through video sources for visual perception. By integrating 3D Gaussian Splatting techniques with foundation models, M3 builds a multimodal memory capable of rendering feature representations across granularities, encompassing a wide range of knowledge. In our exploration, we identify two key challenges in previous works on feature splatting: (1) computational constraints in storing high-dimensional features for each Gaussian primitive, and (2) misalignment or information loss between distilled features and foundation model features. To address these challenges, we propose M3 with key components of principal scene components and Gaussian memory attention, enabling efficient training and inference. To validate M3, we conduct comprehensive quantitative evaluations of feature similarity and downstream tasks, as well as qualitative visualizations to highlight the pixel trace of Gaussian memory attention. Our approach encompasses a diverse range of foundation models, including vision-language models (VLMs), perception models, and large multimodal and language models (LMMs/LLMs). Furthermore, to demonstrate real-world applicability, we deploy M3's feature field in indoor scenes on a quadruped robot. Notably, we claim that M3 is the first work to address the core compression challenges in 3D feature distillation.

Authors:SeungJu Cha, Kwanyoung Lee, Ye-Chan Kim, Hyunwoo Oh, Dong-Jin Kim
Title: VerbDiff: Text-Only Diffusion Models with Enhanced Interaction Awareness
Abstract:
Recent large-scale text-to-image diffusion models generate photorealistic images but often struggle to accurately depict interactions between humans and objects due to their limited ability to differentiate various interaction words. In this work, we propose VerbDiff to address the challenge of capturing nuanced interactions within text-to-image diffusion models. VerbDiff is a novel text-to-image generation model that weakens the bias between interaction words and objects, enhancing the understanding of interactions. Specifically, we disentangle various interaction words from frequency-based anchor words and leverage localized interaction regions from generated images to help the model better capture semantics in distinctive words without extra conditions. Our approach enables the model to accurately understand the intended interaction between humans and objects, producing high-quality images with accurate interactions aligned with specified verbs. Extensive experiments on the HICO-DET dataset demonstrate the effectiveness of our method compared to previous approaches.

Authors:Yifan Sun, Han Wang, Dongbai Li, Gang Wang, Huan Zhang
Title: The Emperor's New Clothes in Benchmarking? A Rigorous Examination of Mitigation Strategies for LLM Benchmark Data Contamination
Abstract:
Benchmark Data Contamination (BDC)-the inclusion of benchmark testing samples in the training set-has raised increasing concerns in Large Language Model (LLM) evaluation, leading to falsely inflated performance estimates and undermining evaluation reliability. To address this, researchers have proposed various mitigation strategies to update existing benchmarks, including modifying original questions or generating new ones based on them. However, a rigorous examination of the effectiveness of these mitigation strategies remains lacking. In this paper, we design a systematic and controlled pipeline along with two novel metrics-fidelity and contamination resistance-to provide a fine-grained and comprehensive assessment of existing BDC mitigation strategies. Previous assessment methods, such as accuracy drop and accuracy matching, focus solely on aggregate accuracy, often leading to incomplete or misleading conclusions. Our metrics address this limitation by emphasizing question-level evaluation result matching. Extensive experiments with 10 LLMs, 5 benchmarks, 20 BDC mitigation strategies, and 2 contamination scenarios reveal that no existing strategy significantly improves resistance over the vanilla case (i.e., no benchmark update) across all benchmarks, and none effectively balances fidelity and contamination resistance. These findings underscore the urgent need for designing more effective BDC mitigation strategies. Our code repository is available at https://github.com/ASTRAL-Group/BDC_mitigation_assessment.

Authors:Chen Chen, Zhirui Wang, Taowei Sheng, Yi Jiang, Yundu Li, Peirui Cheng, Luning Zhang, Kaiqiang Chen, Yanfeng Hu, Xue Yang, Xian Sun
Title: SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World
Abstract:
Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.

Authors:Yunzhi Yao, Jizhan Fang, Jia-Chen Gu, Ningyu Zhang, Shumin Deng, Huajun Chen, Nanyun Peng
Title: CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners
Abstract:
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they often fail to generalize these updates to multi-hop reasoning tasks that rely on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we find that current layer-localized KE approaches (e.g., MEMIT, WISE), which edit only single or a few model layers, inadequately integrate updated knowledge into these reasoning pathways. To address this limitation, we present CaKE (Circuit-aware Knowledge Editing), a novel method that enhances the effective integration of updated knowledge in LLMs. By only leveraging a few curated data samples guided by our circuit-based analysis, CaKE stimulates the model to develop appropriate reasoning circuits for newly incorporated knowledge. Experiments show that CaKE enables more accurate and consistent use of edited knowledge across related reasoning tasks, achieving an average improvement of 20% in multi-hop reasoning accuracy on the MQuAKE dataset while requiring less memory than existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.

Authors:Ruonan Yu, Songhua Liu, Zhenxiong Tan, Xinchao Wang
Title: Ultra-Resolution Adaptation with Ease
Abstract:
Text-to-image diffusion models have achieved remarkable progress in recent years. However, training models for high-resolution image generation remains challenging, particularly when training data and computational resources are limited. In this paper, we explore this practical problem from two key perspectives: data and parameter efficiency, and propose a set of key guidelines for ultra-resolution adaptation termed \emph{URAE}. For data efficiency, we theoretically and empirically demonstrate that synthetic data generated by some teacher models can significantly promote training convergence. For parameter efficiency, we find that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable, offering substantial performance gains while maintaining efficiency. Additionally, for models leveraging guidance distillation, such as FLUX, we show that disabling classifier-free guidance, \textit{i.e.}, setting the guidance scale to 1 during adaptation, is crucial for satisfactory performance. Extensive experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations, while setting new benchmarks for 4K-resolution generation. Codes are available \href{https://github.com/Huage001/URAE}{here}.

Authors:Vivek Gopalakrishnan, Neel Dey, David-Dimitris Chlorogiannis, Andrew Abumoussa, Anna M. Larson, Darren B. Orbach, Sarah Frisken, Polina Golland
Title: Rapid patient-specific neural networks for intraoperative X-ray to volume registration
Abstract:
The integration of artificial intelligence in image-guided interventions holds transformative potential, promising to extract 3D geometric and quantitative information from conventional 2D imaging modalities during complex procedures. Achieving this requires the rapid and precise alignment of 2D intraoperative images (e.g., X-ray) with 3D preoperative volumes (e.g., CT, MRI). However, current 2D/3D registration methods fail across the broad spectrum of procedures dependent on X-ray guidance: traditional optimization techniques require custom parameter tuning for each subject, whereas neural networks trained on small datasets do not generalize to new patients or require labor-intensive manual annotations, increasing clinical burden and precluding application to new anatomical targets. To address these challenges, we present xvr, a fully automated framework for training patient-specific neural networks for 2D/3D registration. xvr uses physics-based simulation to generate abundant high-quality training data from a patient's own preoperative volumetric imaging, thereby overcoming the inherently limited ability of supervised models to generalize to new patients and procedures. Furthermore, xvr requires only 5 minutes of training per patient, making it suitable for emergency interventions as well as planned procedures. We perform the largest evaluation of a 2D/3D registration algorithm on real X-ray data to date and find that xvr robustly generalizes across a diverse dataset comprising multiple anatomical structures, imaging modalities, and hospitals. Across surgical tasks, xvr achieves submillimeter-accurate registration at intraoperative speeds, improving upon existing methods by an order of magnitude. xvr is released as open-source software freely available at https://github.com/eigenvivek/xvr.

Authors:Zeqiang Lai, Yunfei Zhao, Zibo Zhao, Haolin Liu, Fuyun Wang, Huiwen Shi, Xianghui Yang, Qingxiang Lin, Jingwei Huang, Yuhong Liu, Jie Jiang, Chunchao Guo, Xiangyu Yue
Title: Unleashing Vecset Diffusion Model for Fast Shape Generation
Abstract:
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.

Authors:Zhaochong An, Guolei Sun, Yun Liu, Runjia Li, Junlin Han, Ender Konukoglu, Serge Belongie
Title: Generalized Few-shot 3D Point Cloud Segmentation with Vision-Language Model
Abstract:
Generalized few-shot 3D point cloud segmentation (GFS-PCS) adapts models to new classes with few support samples while retaining base class segmentation. Existing GFS-PCS methods enhance prototypes via interacting with support or query features but remain limited by sparse knowledge from few-shot samples. Meanwhile, 3D vision-language models (3D VLMs), generalizing across open-world novel classes, contain rich but noisy novel class knowledge. In this work, we introduce a GFS-PCS framework that synergizes dense but noisy pseudo-labels from 3D VLMs with precise yet sparse few-shot samples to maximize the strengths of both, named GFS-VL. Specifically, we present a prototype-guided pseudo-label selection to filter low-quality regions, followed by an adaptive infilling strategy that combines knowledge from pseudo-label contexts and few-shot samples to adaptively label the filtered, unlabeled areas. Additionally, we design a novel-base mix strategy to embed few-shot samples into training scenes, preserving essential context for improved novel class learning. Moreover, recognizing the limited diversity in current GFS-PCS benchmarks, we introduce two challenging benchmarks with diverse novel classes for comprehensive generalization evaluation. Experiments validate the effectiveness of our framework across models and datasets. Our approach and benchmarks provide a solid foundation for advancing GFS-PCS in the real world. The code is at https://github.com/ZhaochongAn/GFS-VL

Authors:Shuqi Lu, Haowei Lin, Lin Yao, Zhifeng Gao, Xiaohong Ji, Weinan E, Linfeng Zhang, Guolin Ke
Title: Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens
Abstract:
Recent advancements in large language models and their multi-modal extensions have demonstrated the effectiveness of unifying generation and understanding through autoregressive next-token prediction. However, despite the critical role of 3D structural generation and understanding (3D GU) in AI for science, these tasks have largely evolved independently, with autoregressive methods remaining underexplored. To bridge this gap, we introduce Uni-3DAR, a unified framework that seamlessly integrates 3D GU tasks via autoregressive prediction. At its core, Uni-3DAR employs a novel hierarchical tokenization that compresses 3D space using an octree, leveraging the inherent sparsity of 3D structures. It then applies an additional tokenization for fine-grained structural details, capturing key attributes such as atom types and precise spatial coordinates in microscopic 3D structures. We further propose two optimizations to enhance efficiency and effectiveness. The first is a two-level subtree compression strategy, which reduces the octree token sequence by up to 8x. The second is a masked next-token prediction mechanism tailored for dynamically varying token positions, significantly boosting model performance. By combining these strategies, Uni-3DAR successfully unifies diverse 3D GU tasks within a single autoregressive framework. Extensive experiments across multiple microscopic 3D GU tasks, including molecules, proteins, polymers, and crystals, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses previous state-of-the-art diffusion models by a substantial margin, achieving up to 256\% relative improvement while delivering inference speeds up to 21.8x faster. The code is publicly available at https://github.com/dptech-corp/Uni-3DAR.

Authors:Zhaowei Liu, Xin Guo, Fangqi Lou, Lingfeng Zeng, Jinyi Niu, Zixuan Wang, Jiajie Xu, Weige Cai, Ziwei Yang, Xueqian Zhao, Chao Li, Sheng Xu, Dezhi Chen, Yun Chen, Zuo Bai, Liwen Zhang
Title: Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning
Abstract:
Reasoning large language models are rapidly evolving across various domains. However, their capabilities in handling complex financial tasks still require in-depth exploration. In this paper, we introduce Fin-R1, a reasoning large language model specifically designed for the financial sector. Fin-R1 is built using a two-stage architecture, leveraging a financial reasoning dataset distilled and processed based on DeepSeek-R1. Through supervised fine-tuning (SFT) and reinforcement learning (RL) training, it demonstrates performance close to DeepSeek-R1 with a parameter size of 7 billion across a range of financial reasoning tasks. It achieves the state-of-the-art (SOTA) in the FinQA and ConvFinQA tasks between those LLMs in our evaluation, surpassing larger models in other tasks as well. Fin-R1 showcases strong reasoning and decision-making capabilities, providing solutions to various problems encountered in the financial domain. Our code is available at https://github.com/SUFE-AIFLM-Lab/Fin-R1.

Authors:Max Gutbrod, David Rauber, Danilo Weber Nunes, Christoph Palm
Title: OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
Abstract:
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.

Authors:Quy-Anh Dang, Chris Ngo
Title: Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't
Abstract:
Enhancing the reasoning capabilities of large language models (LLMs) typically relies on massive computational resources and extensive datasets, limiting accessibility for resource-constrained settings. Our study investigates the potential of reinforcement learning (RL) to improve reasoning in small LLMs, focusing on a 1.5-billion-parameter model, DeepSeek-R1-Distill-Qwen-1.5B, under strict constraints: training on 4 NVIDIA A40 GPUs (48 GB VRAM each) within 24 hours. Adapting the Group Relative Policy Optimization (GRPO) algorithm and curating a compact, high-quality mathematical reasoning dataset, we conducted three experiments to explore model behavior and performance. Our results demonstrate rapid reasoning gains - e.g., AMC23 accuracy rising from 63% to 80% and AIME24 reaching 46.7%, surpassing o1-preview - using only 7,000 samples and a $42 training cost, compared to thousands of dollars for baseline models. However, challenges such as optimization instability and length constraints emerged with prolonged training. These findings highlight the efficacy of RL-based fine-tuning for small LLMs, offering a cost-effective alternative to large-scale approaches. We release our code and datasets as open-source resources, providing insights into trade-offs and laying a foundation for scalable, reasoning-capable LLMs in resource-limited environments. All are available at https://github.com/knoveleng/open-rs.

Authors:Qizhi Pei, Lijun Wu, Zhuoshi Pan, Yu Li, Honglin Lin, Chenlin Ming, Xin Gao, Conghui He, Rui Yan
Title: MathFusion: Enhancing Mathematical Problem-solving of LLM through Instruction Fusion
Abstract:
Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, \textbf{MathFusionQA}, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.

Authors:Peihao Wu, Yongxiang Yao, Wenfei Zhang, Dong Wei, Yi Wan, Yansheng Li, Yongjun Zhang
Title: MapGlue: Multimodal Remote Sensing Image Matching
Abstract:
Multimodal remote sensing image (MRSI) matching is pivotal for cross-modal fusion, localization, and object detection, but it faces severe challenges due to geometric, radiometric, and viewpoint discrepancies across imaging modalities. Existing unimodal datasets lack scale and diversity, limiting deep learning solutions. This paper proposes MapGlue, a universal MRSI matching framework, and MapData, a large-scale multimodal dataset addressing these gaps. Our contributions are twofold. MapData, a globally diverse dataset spanning 233 sampling points, offers original images (7,000x5,000 to 20,000x15,000 pixels). After rigorous cleaning, it provides 121,781 aligned electronic map-visible image pairs (512x512 pixels) with hybrid manual-automated ground truth, addressing the scarcity of scalable multimodal benchmarks. MapGlue integrates semantic context with a dual graph-guided mechanism to extract cross-modal invariant features. This structure enables global-to-local interaction, enhancing descriptor robustness against modality-specific distortions. Extensive evaluations on MapData and five public datasets demonstrate MapGlue's superiority in matching accuracy under complex conditions, outperforming state-of-the-art methods. Notably, MapGlue generalizes effectively to unseen modalities without retraining, highlighting its adaptability. This work addresses longstanding challenges in MRSI matching by combining scalable dataset construction with a robust, semantics-driven framework. Furthermore, MapGlue shows strong generalization capabilities on other modality matching tasks for which it was not specifically trained. The dataset and code are available at https://github.com/PeihaoWu/MapGlue.

Authors:Jiwoo Son, Zhikai Zhao, Federico Berto, Chuanbo Hua, Changhyun Kwon, Jinkyoo Park
Title: Neural Combinatorial Optimization for Real-World Routing
Abstract:
Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous in several real-world logistics scenarios that pose significant challenges for optimization. Neural Combinatorial Optimization (NCO) has emerged as a promising alternative to classical approaches, as it can learn fast heuristics to solve VRPs. However, most research works in NCO for VRPs focus on simplified settings, which do not account for asymmetric distances and travel durations that cannot be derived by simple Euclidean distances and unrealistic data distributions, hindering real-world deployment. This work introduces RRNCO (Real Routing NCO) to bridge the gap of NCO between synthetic and real-world VRPs in the critical aspects of both data and modeling. First, we introduce a new, openly available dataset with real-world data containing a diverse dataset of locations, distances, and duration matrices from 100 cities, considering realistic settings with actual routing distances and durations obtained from Open Source Routing Machine (OSRM). Second, we propose a novel approach that efficiently processes both node and edge features through contextual gating, enabling the construction of more informed node embedding, and we finally incorporate an Adaptation Attention Free Module (AAFM) with neural adaptive bias mechanisms that effectively integrates not only distance matrices but also angular relationships between nodes, allowing our model to capture rich structural information. RRNCO achieves state-of-the-art results in real-world VRPs among NCO methods. We make our dataset and code publicly available at https://github.com/ai4co/real-routing-nco.

Authors:Dong Chen, Boyue Zhao, Yi Zhang, Meng Zhao
Title: Selective Complementary Feature Fusion and Modal Feature Compression Interaction for Brain Tumor Segmentation
Abstract:
Efficient modal feature fusion strategy is the key to achieve accurate segmentation of brain glioma. However, due to the specificity of different MRI modes, it is difficult to carry out cross-modal fusion with large differences in modal features, resulting in the model ignoring rich feature information. On the other hand, the problem of multi-modal feature redundancy interaction occurs in parallel networks due to the proliferation of feature dimensions, further increase the difficulty of multi-modal feature fusion at the bottom end. In order to solve the above problems, we propose a noval complementary feature compression interaction network (CFCI-Net), which realizes the complementary fusion and compression interaction of multi-modal feature information with an efficient mode fusion strategy. Firstly, we propose a selective complementary feature fusion (SCFF) module, which adaptively fuses rich cross-modal feature information by complementary soft selection weights. Secondly, a modal feature compression interaction (MFCI) transformer is proposed to deal with the multi-mode fusion redundancy problem when the feature dimension surges. The MFCI transformer is composed of modal feature compression (MFC) and modal feature interaction (MFI) to realize redundancy feature compression and multi-mode feature interactive learning. %In MFI, we propose a hierarchical interactive attention mechanism based on multi-head attention. Evaluations on the BraTS2019 and BraTS2020 datasets demonstrate that CFCI-Net achieves superior results compared to state-of-the-art models. Code: https://github.com/CDmm0/CFCI-Net

Authors:Mats Faulborn, Indira Sen, Max Pellert, Andreas Spitz, David Garcia
Title: Only a Little to the Left: A Theory-grounded Measure of Political Bias in Large Language Models
Abstract:
Prompt-based language models like GPT4 and LLaMa have been used for a wide variety of use cases such as simulating agents, searching for information, or for content analysis. For all of these applications and others, political biases in these models can affect their performance. Several researchers have attempted to study political bias in language models using evaluation suites based on surveys, such as the Political Compass Test (PCT), often finding a particular leaning favored by these models. However, there is some variation in the exact prompting techniques, leading to diverging findings, and most research relies on constrained-answer settings to extract model responses. Moreover, the Political Compass Test is not a scientifically valid survey instrument. In this work, we contribute a political bias measured informed by political science theory, building on survey design principles to test a wide variety of input prompts, while taking into account prompt sensitivity. We then prompt 11 different open and commercial models, differentiating between instruction-tuned and non-instruction-tuned models, and automatically classify their political stances from 88,110 responses. Leveraging this dataset, we compute political bias profiles across different prompt variations and find that while PCT exaggerates bias in certain models like GPT3.5, measures of political bias are often unstable, but generally more left-leaning for instruction-tuned models. Code and data are available on: https://github.com/MaFa211/theory_grounded_pol_bias

Authors:Shiyang Zhou, Haijin Zeng, Yunfan Lu, Tong Shao, Ke Tang, Yongyong Chen, Jie Liu, Jingyong Su
Title: Binarized Mamba-Transformer for Lightweight Quad Bayer HybridEVS Demosaicing
Abstract:
Quad Bayer demosaicing is the central challenge for enabling the widespread application of Hybrid Event-based Vision Sensors (HybridEVS). Although existing learning-based methods that leverage long-range dependency modeling have achieved promising results, their complexity severely limits deployment on mobile devices for real-world applications. To address these limitations, we propose a lightweight Mamba-based binary neural network designed for efficient and high-performing demosaicing of HybridEVS RAW images. First, to effectively capture both global and local dependencies, we introduce a hybrid Binarized Mamba-Transformer architecture that combines the strengths of the Mamba and Swin Transformer architectures. Next, to significantly reduce computational complexity, we propose a binarized Mamba (Bi-Mamba), which binarizes all projections while retaining the core Selective Scan in full precision. Bi-Mamba also incorporates additional global visual information to enhance global context and mitigate precision loss. We conduct quantitative and qualitative experiments to demonstrate the effectiveness of BMTNet in both performance and computational efficiency, providing a lightweight demosaicing solution suited for real-world edge devices. Our codes and models are available at https://github.com/Clausy9/BMTNet.

Authors:Jiyong Rao, Brian Nlong Zhao, Yu Wang
Title: Probabilistic Prompt Distribution Learning for Animal Pose Estimation
Abstract:
Multi-species animal pose estimation has emerged as a challenging yet critical task, hindered by substantial visual diversity and uncertainty. This paper challenges the problem by efficient prompt learning for Vision-Language Pretrained (VLP) models, \textit{e.g.} CLIP, aiming to resolve the cross-species generalization problem. At the core of the solution lies in the prompt designing, probabilistic prompt modeling and cross-modal adaptation, thereby enabling prompts to compensate for cross-modal information and effectively overcome large data variances under unbalanced data distribution. To this end, we propose a novel probabilistic prompting approach to fully explore textual descriptions, which could alleviate the diversity issues caused by long-tail property and increase the adaptability of prompts on unseen category instance. Specifically, we first introduce a set of learnable prompts and propose a diversity loss to maintain distinctiveness among prompts, thus representing diverse image attributes. Diverse textual probabilistic representations are sampled and used as the guidance for the pose estimation. Subsequently, we explore three different cross-modal fusion strategies at spatial level to alleviate the adverse impacts of visual uncertainty. Extensive experiments on multi-species animal pose benchmarks show that our method achieves the state-of-the-art performance under both supervised and zero-shot settings. The code is available at https://github.com/Raojiyong/PPAP.

Authors:Abdullah Mamun, Diane J. Cook, Hassan Ghasemzadeh
Title: AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence
Abstract:
Adherence to prescribed treatments is crucial for individuals with chronic conditions to avoid costly or adverse health outcomes. For certain patient groups, intensive lifestyle interventions are vital for enhancing medication adherence. Accurate forecasting of treatment adherence can open pathways to developing an on-demand intervention tool, enabling timely and personalized support. With the increasing popularity of smartphones and wearables, it is now easier than ever to develop and deploy smart activity monitoring systems. However, effective forecasting systems for treatment adherence based on wearable sensors are still not widely available. We close this gap by proposing Adherence Forecasting and Intervention with Machine Intelligence (AIMI). AIMI is a knowledge-guided adherence forecasting system that leverages smartphone sensors and previous medication history to estimate the likelihood of forgetting to take a prescribed medication. A user study was conducted with 27 participants who took daily medications to manage their cardiovascular diseases. We designed and developed CNN and LSTM-based forecasting models with various combinations of input features and found that LSTM models can forecast medication adherence with an accuracy of 0.932 and an F-1 score of 0.936. Moreover, through a series of ablation studies involving convolutional and recurrent neural network architectures, we demonstrate that leveraging known knowledge about future and personalized training enhances the accuracy of medication adherence forecasting. Code available: https://github.com/ab9mamun/AIMI.

Authors:Tim Seizinger, Florin-Alexandru Vasluianu, Marcos V. Conde, Zongwei Wu, Radu Timofte
Title: Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures
Abstract:
Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography. While recent learning-based approaches show promising results, generating realistic Bokeh with variable strength remains challenging. Existing methods require additional inputs and suffer from unrealistic Bokeh reproduction due to reliance on synthetic data. In this work, we propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism, mimicking the physical lens aperture. To further address the lack of high-quality real-world data, we present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers, covering diverse scenes with varied aperture and focal length settings. Evaluations on both our new RealBokeh and established Bokeh rendering benchmarks show that Bokehlicious consistently outperforms SOTA methods while significantly reducing computational cost and exhibiting strong zero-shot generalization. Our method and dataset further extend to defocus deblurring, achieving competitive results on the RealDOF benchmark. Our code and data can be found at https://github.com/TimSeizinger/Bokehlicious

Authors:Qiang Zou, Shuli Cheng, Jiayi Chen
Title: PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval
Abstract:
Cross-modal hashing is a promising approach for efficient data retrieval and storage optimization. However, contemporary methods exhibit significant limitations in semantic preservation, contextual integrity, and information redundancy, which constrains retrieval efficacy. We present PromptHash, an innovative framework leveraging affinity prompt-aware collaborative learning for adaptive cross-modal hashing. We propose an end-to-end framework for affinity-prompted collaborative hashing, with the following fundamental technical contributions: (i) a text affinity prompt learning mechanism that preserves contextual information while maintaining parameter efficiency, (ii) an adaptive gated selection fusion architecture that synthesizes State Space Model with Transformer network for precise cross-modal feature integration, and (iii) a prompt affinity alignment strategy that bridges modal heterogeneity through hierarchical contrastive learning. To the best of our knowledge, this study presents the first investigation into affinity prompt awareness within collaborative cross-modal adaptive hash learning, establishing a paradigm for enhanced semantic consistency across modalities. Through comprehensive evaluation on three benchmark multi-label datasets, PromptHash demonstrates substantial performance improvements over existing approaches. Notably, on the NUS-WIDE dataset, our method achieves significant gains of 18.22% and 18.65% in image-to-text and text-to-image retrieval tasks, respectively. The code is publicly available at https://github.com/ShiShuMo/PromptHash.

Authors:Wanshu Fan, Yue Wang, Cong Wang, Yunzhe Zhang, Wei Wang, Dongsheng Zhou
Title: Semantic-Guided Global-Local Collaborative Networks for Lightweight Image Super-Resolution
Abstract:
Single-Image Super-Resolution (SISR) plays a pivotal role in enhancing the accuracy and reliability of measurement systems, which are integral to various vision-based instrumentation and measurement applications. These systems often require clear and detailed images for precise object detection and recognition. However, images captured by visual measurement tools frequently suffer from degradation, including blurring and loss of detail, which can impede measurement accuracy.As a potential remedy, we in this paper propose a Semantic-Guided Global-Local Collaborative Network (SGGLC-Net) for lightweight SISR. Our SGGLC-Net leverages semantic priors extracted from a pre-trained model to guide the super-resolution process, enhancing image detail quality effectively. Specifically,we propose a Semantic Guidance Module that seamlessly integrates the semantic priors into the super-resolution network, enabling the network to more adeptly capture and utilize semantic priors, thereby enhancing image details. To further explore both local and non-local interactions for improved detail rendition,we propose a Global-Local Collaborative Module, which features three Global and Local Detail Enhancement Modules, as well as a Hybrid Attention Mechanism to work together to efficiently learn more useful features. Our extensive experiments show that SGGLC-Net achieves competitive PSNR and SSIM values across multiple benchmark datasets, demonstrating higher performance with the multi-adds reduction of 12.81G compared to state-of-the-art lightweight super-resolution approaches. These improvements underscore the potential of our approach to enhance the precision and effectiveness of visual measurement systems. Codes are at https://github.com/fanamber831/SGGLC-Net.

Authors:Abdelrahman Elsayed, Sarim Hashmi, Mohammed Elseiagy, Hu Wang, Mohammad Yaqub, Ibrahim Almakky
Title: SALT: Parameter-Efficient Fine-Tuning via Singular Value Adaptation with Low-Rank Transformation
Abstract:
The complex nature of medical image segmentation calls for models that are specifically designed to capture detailed, domain-specific features. Large foundation models offer considerable flexibility, yet the cost of fine-tuning these models remains a significant barrier. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), efficiently update model weights with low-rank matrices but may suffer from underfitting when the chosen rank is insufficient to capture domain-specific nuances. Conversely, full-rank Singular Value Decomposition (SVD) based methods provide comprehensive updates by modifying all singular values, yet they often lack flexibility and exhibit variable performance across datasets. We propose SALT (Singular Value Adaptation with Low-Rank Transformation), a method that selectively adapts the most influential singular values using trainable scale and shift parameters while complementing this with a low-rank update for the remaining subspace. This hybrid approach harnesses the advantages of both LoRA and SVD, enabling effective adaptation without relying on increasing model size or depth. Evaluated on 5 challenging medical datasets, ranging from as few as 20 samples to 1000, SALT outperforms state-of-the-art PEFT (LoRA and SVD) by 2% to 5% in Dice with only 3.9% trainable parameters, demonstrating robust adaptation even in low-resource settings. The code for SALT is available at: https://github.com/BioMedIA-MBZUAI/SALT

Authors:Zhiyu Cao, Peifeng Li, Yaxin Fan, Qiaoming Zhu
Title: Incomplete Utterance Rewriting with Editing Operation Guidance and Utterance Augmentation
Abstract:
Although existing fashionable generation methods on Incomplete Utterance Rewriting (IUR) can generate coherent utterances, they often result in the inclusion of irrelevant and redundant tokens in rewritten utterances due to their inability to focus on critical tokens in dialogue context. Furthermore, the limited size of the training datasets also contributes to the insufficient training of the IUR model. To address the first issue, we propose a multi-task learning framework EO-IUR (Editing Operation-guided Incomplete Utterance Rewriting) that introduces the editing operation labels generated by sequence labeling module to guide generation model to focus on critical tokens. Furthermore, we introduce a token-level heterogeneous graph to represent dialogues. To address the second issue, we propose a two-dimensional utterance augmentation strategy, namely editing operation-based incomplete utterance augmentation and LLM-based historical utterance augmentation. The experimental results on three datasets demonstrate that our EO-IUR outperforms previous state-of-the-art (SOTA) baselines in both open-domain and task-oriented dialogue. The code will be available at https://github.com/Dewset/EO-IUR.

Authors:Zhihang Liu, Chen-Wei Xie, Pandeng Li, Liming Zhao, Longxiang Tang, Yun Zheng, Chuanbin Liu, Hongtao Xie
Title: Hybrid-Level Instruction Injection for Video Token Compression in Multi-modal Large Language Models
Abstract:
Recent Multi-modal Large Language Models (MLLMs) have been challenged by the computational overhead resulting from massive video frames, often alleviated through compression strategies. However, the visual content is not equally contributed to user instructions, existing strategies (\eg, average pool) inevitably lead to the loss of potentially useful information. To tackle this, we propose the Hybrid-level Instruction Injection Strategy for Conditional Token Compression in MLLMs (HICom), utilizing the instruction as a condition to guide the compression from both local and global levels. This encourages the compression to retain the maximum amount of user-focused information while reducing visual tokens to minimize computational burden. Specifically, the instruction condition is injected into the grouped visual tokens at the local level and the learnable tokens at the global level, and we conduct the attention mechanism to complete the conditional compression. From the hybrid-level compression, the instruction-relevant visual parts are highlighted while the temporal-spatial structure is also preserved for easier understanding of LLMs. To further unleash the potential of HICom, we introduce a new conditional pre-training stage with our proposed dataset HICom-248K. Experiments show that our HICom can obtain distinguished video understanding ability with fewer tokens, increasing the performance by 2.43\% average on three multiple-choice QA benchmarks and saving 78.8\% tokens compared with the SOTA method. The code is available at https://github.com/lntzm/HICom.

Authors:Sunqi Fan, Meng-Hao Guo, Shuojin Yang
Title: Agentic Keyframe Search for Video Question Answering
Abstract:
Video question answering (VideoQA) enables machines to extract and comprehend key information from videos through natural language interaction, which is a critical step towards achieving intelligence. However, the demand for a thorough understanding of videos and high computational costs still limit the widespread applications of VideoQA. To address it, we propose Agentic Keyframe Search (AKeyS), a simple yet powerful algorithm for identifying keyframes in the VideoQA task. It can effectively distinguish key information from redundant, irrelevant content by leveraging modern language agents to direct classical search algorithms. Specifically, we first segment the video and organize it as a tree structure. Then, AKeyS uses a language agent to estimate heuristics and movement costs while dynamically expanding nodes. Finally, the agent determines if sufficient keyframes have been collected based on termination conditions and provides answers. Extensive experiments on the EgoSchema and NExT-QA datasets show that AKeyS outperforms all previous methods with the highest keyframe searching efficiency, which means it can accurately identify key information and conduct effective visual reasoning with minimal computational overhead. For example, on the EgoSchema subset, it achieves 1.8% higher accuracy while processing only 43.5% of the frames compared to VideoTree. We believe that AKeyS represents a significant step towards building intelligent agents for video understanding. The code is publicly available at https://github.com/fansunqi/AKeyS.

Authors:Xiaomeng Chu, Jiajun Deng, Guoliang You, Wei Liu, Xingchen Li, Jianmin Ji, Yanyong Zhang
Title: GraspCoT: Integrating Physical Property Reasoning for 6-DoF Grasping under Flexible Language Instructions
Abstract:
Flexible instruction-guided 6-DoF grasping is a significant yet challenging task for real-world robotic systems. Existing methods utilize the contextual understanding capabilities of the large language models (LLMs) to establish mappings between expressions and targets, allowing robots to comprehend users' intentions in the instructions. However, the LLM's knowledge about objects' physical properties remains underexplored despite its tight relevance to grasping. In this work, we propose GraspCoT, a 6-DoF grasp detection framework that integrates a Chain-of-Thought (CoT) reasoning mechanism oriented to physical properties, guided by auxiliary question-answering (QA) tasks. Particularly, we design a set of QA templates to enable hierarchical reasoning that includes three stages: target parsing, physical property analysis, and grasp action selection. Moreover, GraspCoT presents a unified multimodal LLM architecture, which encodes multi-view observations of 3D scenes into 3D-aware visual tokens, and then jointly embeds these visual tokens with CoT-derived textual tokens within LLMs to generate grasp pose predictions. Furthermore, we present IntentGrasp, a large-scale benchmark that fills the gap in public datasets for multi-object grasp detection under diverse and indirect verbal commands. Extensive experiments on IntentGrasp demonstrate the superiority of our method, with additional validation in real-world robotic applications confirming its practicality. The code is available at https://github.com/cxmomo/GraspCoT.

Authors:Zeqi Zheng, Yanchen Huang, Yingchao Yu, Zizheng Zhu, Junfeng Tang, Zhaofei Yu, Yaochu Jin
Title: SpiLiFormer: Enhancing Spiking Transformers with Lateral Inhibition
Abstract:
Spiking Neural Networks (SNNs) based on Transformers have garnered significant attention due to their superior performance and high energy efficiency. However, the spiking attention modules of most existing Transformer-based SNNs are adapted from those of analog Transformers, failing to fully address the issue of over-allocating attention to irrelevant contexts. To fix this fundamental yet overlooked issue, we propose a Lateral Inhibition-inspired Spiking Transformer (SpiLiFormer). It emulates the brain's lateral inhibition mechanism, guiding the model to enhance attention to relevant tokens while suppressing attention to irrelevant ones. Our model achieves state-of-the-art (SOTA) performance across multiple datasets, including CIFAR-10 (+0.45%), CIFAR-100 (+0.48%), CIFAR10-DVS (+2.70%), N-Caltech101 (+1.94%), and ImageNet-1K (+1.6%). Notably, on the ImageNet-1K dataset, SpiLiFormer (69.9M parameters, 4 time steps, 384 resolution) outperforms E-SpikeFormer (173.0M parameters, 8 time steps, 384 resolution), a SOTA spiking Transformer, by 0.46% using only 39% of the parameters and half the time steps. The code and model checkpoints are publicly available at https://github.com/KirinZheng/SpiLiFormer.

Authors:Pengyu Liu, Guohua Dong, Dan Guo, Kun Li, Fengling Li, Xun Yang, Meng Wang, Xiaomin Ying
Title: A Survey on fMRI-based Brain Decoding for Reconstructing Multimodal Stimuli
Abstract:
In daily life, we encounter diverse external stimuli, such as images, sounds, and videos. As research in multimodal stimuli and neuroscience advances, fMRI-based brain decoding has become a key tool for understanding brain perception and its complex cognitive processes. Decoding brain signals to reconstruct stimuli not only reveals intricate neural mechanisms but also drives progress in AI, disease treatment, and brain-computer interfaces. Recent advancements in neuroimaging and image generation models have significantly improved fMRI-based decoding. While fMRI offers high spatial resolution for precise brain activity mapping, its low temporal resolution and signal noise pose challenges. Meanwhile, techniques like GANs, VAEs, and Diffusion Models have enhanced reconstructed image quality, and multimodal pre-trained models have boosted cross-modal decoding tasks. This survey systematically reviews recent progress in fMRI-based brain decoding, focusing on stimulus reconstruction from passive brain signals. It summarizes datasets, relevant brain regions, and categorizes existing methods by model structure. Additionally, it evaluates model performance and discusses their effectiveness. Finally, it identifies key challenges and proposes future research directions, offering valuable insights for the field. For more information and resources related to this survey, visit https://github.com/LpyNow/BrainDecodingImage.

Authors:Zichen Liu, Kunlun Xu, Bing Su, Xu Zou, Yuxin Peng, Jiahuan Zhou
Title: STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding
Abstract:
Pre-trained on tremendous image-text pairs, vision-language models like CLIP have demonstrated promising zero-shot generalization across numerous image-based tasks. However, extending these capabilities to video tasks remains challenging due to limited labeled video data and high training costs. Recent video prompting methods attempt to adapt CLIP for video tasks by introducing learnable prompts, but they typically rely on a single static prompt for all video sequences, overlooking the diverse temporal dynamics and spatial variations that exist across frames. This limitation significantly hinders the model's ability to capture essential temporal information for effective video understanding. To address this, we propose an integrated Spatial-TempOral dynamic Prompting (STOP) model which consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting. Our intra-frame spatial prompts are designed to adaptively highlight discriminative regions within each frame by leveraging intra-frame attention and temporal variation, allowing the model to focus on areas with substantial temporal dynamics and capture fine-grained spatial details. Additionally, to highlight the varying importance of frames for video understanding, we further introduce inter-frame temporal prompts, dynamically inserting prompts between frames with high temporal variance as measured by frame similarity. This enables the model to prioritize key frames and enhances its capacity to understand temporal dependencies across sequences. Extensive experiments on various video benchmarks demonstrate that STOP consistently achieves superior performance against state-of-the-art methods. The code is available at https://github.com/zhoujiahuan1991/CVPR2025-STOP.

Authors:Clive Tinashe Marimo, Benedikt Blumenstiel, Maximilian Nitsche, Johannes Jakubik, Thomas Brunschwiler
Title: Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation
Abstract:
Vision-language models for Earth observation (EO) typically rely on the visual spectrum of data as the only model input, thus failing to leverage the rich spectral information available in the multispectral channels recorded by satellites. Therefore, we introduce Llama3-MS-CLIP, the first vision-language model pre-trained with contrastive learning on a large-scale multispectral dataset and report on the performance gains due to the extended spectral range. Furthermore, we present the largest-to-date image-caption dataset for multispectral data, consisting of one million Sentinel-2 samples and corresponding textual descriptions generated using Llama3-LLaVA-Next and Overture Maps data. We develop a scalable captioning pipeline, which is validated by domain experts. We evaluate Llama3-MS-CLIP on multispectral zero-shot image classification and retrieval using three datasets of varying complexity. Our results demonstrate that Llama3-MS-CLIP significantly outperforms other RGB-based approaches, improving classification accuracy by +6.77% on average and retrieval performance by +4.63% mAP compared to the second-best model. Our results emphasize the relevance of multispectral vision-language learning. The image-caption dataset, code, and model weights are available at https://github.com/IBM/MS-CLIP.

Authors:Yaxiong Chen, Minghong Wei, Zixuan Zheng, Jingliang Hu, Yilei Shi, Shengwu Xiong, Xiao Xiang Zhu, Lichao Mou
Title: CausalCLIPSeg: Unlocking CLIP's Potential in Referring Medical Image Segmentation with Causal Intervention
Abstract:
Referring medical image segmentation targets delineating lesions indicated by textual descriptions. Aligning visual and textual cues is challenging due to their distinct data properties. Inspired by large-scale pre-trained vision-language models, we propose CausalCLIPSeg, an end-to-end framework for referring medical image segmentation that leverages CLIP. Despite not being trained on medical data, we enforce CLIP's rich semantic space onto the medical domain by a tailored cross-modal decoding method to achieve text-to-pixel alignment. Furthermore, to mitigate confounding bias that may cause the model to learn spurious correlations instead of meaningful causal relationships, CausalCLIPSeg introduces a causal intervention module which self-annotates confounders and excavates causal features from inputs for segmentation judgments. We also devise an adversarial min-max game to optimize causal features while penalizing confounding ones. Extensive experiments demonstrate the state-of-the-art performance of our proposed method. Code is available at https://github.com/WUTCM-Lab/CausalCLIPSeg.

Authors:Yaxiong Chen, Chuang Du, Chunlei Li, Jingliang Hu, Yilei Shi, Shengwu Xiong, Xiao Xiang Zhu, Lichao Mou
Title: UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation
Abstract:
Automated radiology report generation aims to expedite the tedious and error-prone reporting process for radiologists. While recent works have made progress, learning to align medical images and textual findings remains challenging due to the relative scarcity of labeled medical data. For example, datasets for this task are much smaller than those used for image captioning in computer vision. In this work, we propose to transfer representations from CLIP, a large-scale pre-trained vision-language model, to better capture cross-modal semantics between images and texts. However, directly applying CLIP is suboptimal due to the domain gap between natural images and radiology. To enable efficient adaptation, we introduce UniCrossAdapter, lightweight adapter modules that are incorporated into CLIP and fine-tuned on the target task while keeping base parameters fixed. The adapters are distributed across modalities and their interaction to enhance vision-language alignment. Experiments on two public datasets demonstrate the effectiveness of our approach, advancing state-of-the-art in radiology report generation. The proposed transfer learning framework provides a means of harnessing semantic knowledge from large-scale pre-trained models to tackle data-scarce medical vision-language tasks. Code is available at https://github.com/chauncey-tow/MRG-CLIP.

Authors:Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing Yang, Rui Tan, Mo Li, Lili Qiu
Title: Advancing Mobile GUI Agents: A Verifier-Driven Approach to Practical Deployment
Abstract:
We propose V-Droid, a mobile GUI task automation agent. Unlike previous mobile agents that utilize Large Language Models (LLMs) as generators to directly generate actions at each step, V-Droid employs LLMs as verifiers to evaluate candidate actions before making final decisions. To realize this novel paradigm, we introduce a comprehensive framework for constructing verifier-driven mobile agents: the discretized action space construction coupled with the prefilling-only workflow to accelerate the verification process, the pair-wise progress preference training to significantly enhance the verifier's decision-making capabilities, and the scalable human-agent joint annotation scheme to efficiently collect the necessary data at scale. V-Droid obtains a substantial task success rate across several public mobile task automation benchmarks: 59.5% on AndroidWorld, 38.3% on AndroidLab, and 49% on MobileAgentBench, surpassing existing agents by 5.2%, 2.1%, and 9%, respectively. Furthermore, V-Droid achieves a remarkably low latency of 4.3s per step, which is 6.1X faster compared with existing mobile agents. The source code is available at https://github.com/V-Droid-Agent/V-Droid.

Authors:Sidi Yang, Binxiao Huang, Yulun Zhang, Dahai Yu, Yujiu Yang, Ngai Wong
Title: DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
Abstract:
While deep neural networks have revolutionized image denoising capabilities, their deployment on edge devices remains challenging due to substantial computational and memory requirements. To this end, we present DnLUT, an ultra-efficient lookup table-based framework that achieves high-quality color image denoising with minimal resource consumption. Our key innovation lies in two complementary components: a Pairwise Channel Mixer (PCM) that effectively captures inter-channel correlations and spatial dependencies in parallel, and a novel L-shaped convolution design that maximizes receptive field coverage while minimizing storage overhead. By converting these components into optimized lookup tables post-training, DnLUT achieves remarkable efficiency - requiring only 500KB storage and 0.1% energy consumption compared to its CNN contestant DnCNN, while delivering 20X faster inference. Extensive experiments demonstrate that DnLUT outperforms all existing LUT-based methods by over 1dB in PSNR, establishing a new state-of-the-art in resource-efficient color image denoising. The project is available at https://github.com/Stephen0808/DnLUT.

Authors:Jiawei Wang, Kai Hu, Qiang Huo
Title: UniHDSA: A Unified Relation Prediction Approach for Hierarchical Document Structure Analysis
Abstract:
Document structure analysis, aka document layout analysis, is crucial for understanding both the physical layout and logical structure of documents, serving information retrieval, document summarization, knowledge extraction, etc. Hierarchical Document Structure Analysis (HDSA) specifically aims to restore the hierarchical structure of documents created using authoring software with hierarchical schemas. Previous research has primarily followed two approaches: one focuses on tackling specific subtasks of HDSA in isolation, such as table detection or reading order prediction, while the other adopts a unified framework that uses multiple branches or modules, each designed to address a distinct task. In this work, we propose a unified relation prediction approach for HDSA, called UniHDSA, which treats various HDSA sub-tasks as relation prediction problems and consolidates relation prediction labels into a unified label space. This allows a single relation prediction module to handle multiple tasks simultaneously, whether at a page-level or document-level structure analysis. To validate the effectiveness of UniHDSA, we develop a multimodal end-to-end system based on Transformer architectures. Extensive experimental results demonstrate that our approach achieves state-of-the-art performance on a hierarchical document structure analysis benchmark, Comp-HRDoc, and competitive results on a large-scale document layout analysis dataset, DocLayNet, effectively illustrating the superiority of our method across all sub-tasks. The Comp-HRDoc benchmark and UniHDSA's configurations are publicly available at https://github.com/microsoft/CompHRDoc.

Authors:Baolong Bi, Shenghua Liu, Yiwei Wang, Yilong Xu, Junfeng Fang, Lingrui Mei, Xueqi Cheng
Title: Parameters vs. Context: Fine-Grained Control of Knowledge Reliance in Language Models
Abstract:
Retrieval-Augmented Generation (RAG) mitigates hallucinations in Large Language Models (LLMs) by integrating external knowledge. However, conflicts between parametric knowledge and retrieved context pose challenges, particularly when retrieved information is unreliable or the model's internal knowledge is outdated. In such cases, LLMs struggle to determine whether to rely more on their own parameters or the conflicted context. To address this, we propose **CK-PLUG**, a plug-and-play method for controlling LLMs' reliance on parametric and contextual knowledge. We introduce a novel knowledge consistency metric, Confidence Gain, which detects knowledge conflicts by measuring entropy shifts in token probability distributions after context insertion. CK-PLUG then enables fine-grained control over knowledge preference by adjusting the probability distribution of tokens with negative confidence gain through a single tuning parameter. Experiments demonstrate CK-PLUG's ability to significantly regulate knowledge reliance in counterfactual RAG scenarios while maintaining generation fluency and knowledge accuracy. For instance, on Llama3-8B, memory recall (MR) of RAG response can be adjusted within a broad range (9.9%-71.9%), compared to the baseline of 42.1%. Moreover, CK-PLUG supports adaptive control based on the model's confidence in both internal and external knowledge, achieving consistent performance improvements across various general RAG tasks. Our code is available at: $\href{https://github.com/byronBBL/CK-PLUG}{\text{this https URL}}$.

Authors:DongGeon Lee, Ahjeong Park, Hyeri Lee, Hyeonseo Nam, Yunho Maeng
Title: Typed-RAG: Type-Aware Decomposition of Non-Factoid Questions for Retrieval-Augmented Generation
Abstract:
Addressing non-factoid question answering (NFQA) remains challenging due to its open-ended nature, diverse user intents, and need for multi-aspect reasoning. These characteristics often reveal the limitations of conventional retrieval-augmented generation (RAG) approaches. To overcome these challenges, we propose Typed-RAG, a framework for type-aware decomposition of non-factoid questions (NFQs) within the RAG paradigm. Specifically, Typed-RAG first classifies an NFQ into a predefined type (e.g., Debate, Experience, Comparison). It then decomposes the question into focused sub-queries, each focusing on a single aspect. This decomposition enhances both retrieval relevance and answer quality. By combining the results of these sub-queries, Typed-RAG produces more informative and contextually aligned responses. Additionally, we construct Wiki-NFQA, a benchmark dataset for NFQA covering a wide range of NFQ types. Experiments show that Typed-RAG consistently outperforms existing QA approaches based on LLMs or RAG methods, validating the effectiveness of type-aware decomposition for improving both retrieval quality and answer generation in NFQA. Our code and dataset are available on https://github.com/TeamNLP/Typed-RAG.

Authors:Haiguang Wang, Daqi Liu, Hongwei Xie, Haisong Liu, Enhui Ma, Kaicheng Yu, Limin Wang, Bing Wang
Title: MiLA: Multi-view Intensive-fidelity Long-term Video Generation World Model for Autonomous Driving
Abstract:
In recent years, data-driven techniques have greatly advanced autonomous driving systems, but the need for rare and diverse training data remains a challenge, requiring significant investment in equipment and labor. World models, which predict and generate future environmental states, offer a promising solution by synthesizing annotated video data for training. However, existing methods struggle to generate long, consistent videos without accumulating errors, especially in dynamic scenes. To address this, we propose MiLA, a novel framework for generating high-fidelity, long-duration videos up to one minute. MiLA utilizes a Coarse-to-Re(fine) approach to both stabilize video generation and correct distortion of dynamic objects. Additionally, we introduce a Temporal Progressive Denoising Scheduler and Joint Denoising and Correcting Flow modules to improve the quality of generated videos. Extensive experiments on the nuScenes dataset show that MiLA achieves state-of-the-art performance in video generation quality. For more information, visit the project website: https://github.com/xiaomi-mlab/mila.github.io.

Authors:Zhenglin Zhou, Fan Ma, Hehe Fan, Tat-Seng Chua
Title: Zero-1-to-A: Zero-Shot One Image to Animatable Head Avatars Using Video Diffusion
Abstract:
Animatable head avatar generation typically requires extensive data for training. To reduce the data requirements, a natural solution is to leverage existing data-free static avatar generation methods, such as pre-trained diffusion models with score distillation sampling (SDS), which align avatars with pseudo ground-truth outputs from the diffusion model. However, directly distilling 4D avatars from video diffusion often leads to over-smooth results due to spatial and temporal inconsistencies in the generated video. To address this issue, we propose Zero-1-to-A, a robust method that synthesizes a spatial and temporal consistency dataset for 4D avatar reconstruction using the video diffusion model. Specifically, Zero-1-to-A iteratively constructs video datasets and optimizes animatable avatars in a progressive manner, ensuring that avatar quality increases smoothly and consistently throughout the learning process. This progressive learning involves two stages: (1) Spatial Consistency Learning fixes expressions and learns from front-to-side views, and (2) Temporal Consistency Learning fixes views and learns from relaxed to exaggerated expressions, generating 4D avatars in a simple-to-complex manner. Extensive experiments demonstrate that Zero-1-to-A improves fidelity, animation quality, and rendering speed compared to existing diffusion-based methods, providing a solution for lifelike avatar creation. Code is publicly available at: https://github.com/ZhenglinZhou/Zero-1-to-A.

Authors:Zhiyu An, Zhibo Hou, Wan Du
Title: Disentangling Uncertainties by Learning Compressed Data Representation
Abstract:
We study aleatoric and epistemic uncertainty estimation in a learned regressive system dynamics model. Disentangling aleatoric uncertainty (the inherent randomness of the system) from epistemic uncertainty (the lack of data) is crucial for downstream tasks such as risk-aware control and reinforcement learning, efficient exploration, and robust policy transfer. While existing approaches like Gaussian Processes, Bayesian networks, and model ensembles are widely adopted, they suffer from either high computational complexity or inaccurate uncertainty estimation. To address these limitations, we propose the Compressed Data Representation Model (CDRM), a framework that learns a neural network encoding of the data distribution and enables direct sampling from the output distribution. Our approach incorporates a novel inference procedure based on Langevin dynamics sampling, allowing CDRM to predict arbitrary output distributions rather than being constrained to a Gaussian prior. Theoretical analysis provides the conditions where CDRM achieves better memory and computational complexity compared to bin-based compression methods. Empirical evaluations show that CDRM demonstrates a superior capability to identify aleatoric and epistemic uncertainties separately, achieving AUROCs of 0.8876 and 0.9981 on a single test set containing a mixture of both uncertainties. Qualitative results further show that CDRM's capability extends to datasets with multimodal output distributions, a challenging scenario where existing methods consistently fail. Code and supplementary materials are available at https://github.com/ryeii/CDRM.

Authors:Jingyun Liu, Daiqin Yang, Zhenzhong Chen
Title: Frequency Enhancement for Image Demosaicking
Abstract:
Recovering high-frequency textures in image demosaicking remains a challenging issue. While existing methods introduced elaborate spatial learning methods, they still exhibit limited performance. To address this issue, a frequency enhancement approach is proposed. Based on the frequency analysis of color filter array (CFA)/demosaicked/ground truth images, we propose Dual-path Frequency Enhancement Network (DFENet), which reconstructs RGB images in a divide-and-conquer manner through fourier-domain frequency selection. In DFENet, two frequency selectors are employed, each selecting a set of frequency components for processing along separate paths. One path focuses on generating missing information through detail refinement in spatial domain, while the other aims at suppressing undesirable frequencies with the guidance of CFA images in frequency domain. Multi-level frequency supervision with a stagewise training strategy is employed to further improve the reconstruction performance. With these designs, the proposed DFENet outperforms other state-of-the-art algorithms on different datasets and demonstrates significant advantages on hard cases. Moreover, to better assess algorithms' ability to reconstruct high-frequency textures, a new dataset, LineSet37, is contributed, which consists of 37 artificially designed and generated images. These images feature complex line patterns and are prone to severe visual artifacts like color moiré after demosaicking. Experiments on LineSet37 offer a more targeted evaluation of performance on challenging cases. The code and dataset are available at https://github.com/VelvetReverie/DFENet-demosaicking.

Authors:Tsunehiko Tanaka, Edgar Simo-Serra
Title: Grammar and Gameplay-aligned RL for Game Description Generation with LLMs
Abstract:
Game Description Generation (GDG) is the task of generating a game description written in a Game Description Language (GDL) from natural language text. Previous studies have explored generation methods leveraging the contextual understanding capabilities of Large Language Models (LLMs); however, accurately reproducing the game features of the game descriptions remains a challenge. In this paper, we propose reinforcement learning-based fine-tuning of LLMs for GDG (RLGDG). Our training method simultaneously improves grammatical correctness and fidelity to game concepts by introducing both grammar rewards and concept rewards. Furthermore, we adopt a two-stage training strategy where Reinforcement Learning (RL) is applied following Supervised Fine-Tuning (SFT). Experimental results demonstrate that our proposed method significantly outperforms baseline methods using SFT alone. Our code is available at https://github.com/tsunehiko/rlgdg

Authors:Joanikij Chulev, Angela Mladenovska
Title: Line Space Clustering (LSC): Feature-Based Clustering using K-medians and Dynamic Time Warping for Versatility
Abstract:
Clustering high-dimensional data is a critical challenge in machine learning due to the curse of dimensionality and the presence of noise. Traditional clustering algorithms often fail to capture the intrinsic structures in such data. This paper explores a combination of clustering methods, which we called Line Space Clustering (LSC), a representation that transforms data points into lines in a newly defined feature space, enabling clustering based on the similarity of feature value patterns, essentially treating features as sequences. LSC employs a combined distance metric that uses Euclidean and Dynamic Time Warping (DTW) distances, weighted by a parameter α, allowing flexibility in emphasizing shape or magnitude similarities. We delve deeply into the mechanics of DTW and the Savitzky Golay filter, explaining their roles in the algorithm. Extensive experiments demonstrate the efficacy of LSC on synthetic and real-world datasets, showing that randomly experimenting with time-series optimized methods sometimes might surprisingly work on a complex dataset, particularly in noisy environments. Source code and experiments are available at: https://github.com/JoanikijChulev/LSC.

Authors:Panagiota Moraiti, Efstathios Karypidis
Title: Technical Report for the 5th CLVision Challenge at CVPR: Addressing the Class-Incremental with Repetition using Unlabeled Data -- 4th Place Solution
Abstract:
This paper outlines our approach to the 5th CLVision challenge at CVPR, which addresses the Class-Incremental with Repetition (CIR) scenario. In contrast to traditional class incremental learning, this novel setting introduces unique challenges and research opportunities, particularly through the integration of unlabeled data into the training process. In the CIR scenario, encountered classes may reappear in later learning experiences, and each experience may involve only a subset of the overall class distribution. Additionally, the unlabeled data provided during training may include instances of unseen classes, or irrelevant classes which should be ignored. Our approach focuses on retaining previously learned knowledge by utilizing knowledge distillation and pseudo-labeling techniques. The key characteristic of our method is the exploitation of unlabeled data during training, in order to maintain optimal performance on instances of previously encountered categories and reduce the detrimental effects of catastrophic forgetting. Our method achieves an average accuracy of 16.68\% during the pre-selection phase and 21.19% during the final evaluation phase, outperforming the baseline accuracy of 9.39%. We provide the implementation code at https://github.com/panagiotamoraiti/continual-learning-challenge-2024 .

Authors:Jiaqi Liu, Jichao Zhang, Paolo Rota, Nicu Sebe
Title: Multi-focal Conditioned Latent Diffusion for Person Image Synthesis
Abstract:
The Latent Diffusion Model (LDM) has demonstrated strong capabilities in high-resolution image generation and has been widely employed for Pose-Guided Person Image Synthesis (PGPIS), yielding promising results. However, the compression process of LDM often results in the deterioration of details, particularly in sensitive areas such as facial features and clothing textures. In this paper, we propose a Multi-focal Conditioned Latent Diffusion (MCLD) method to address these limitations by conditioning the model on disentangled, pose-invariant features from these sensitive regions. Our approach utilizes a multi-focal condition aggregation module, which effectively integrates facial identity and texture-specific information, enhancing the model's ability to produce appearance realistic and identity-consistent images. Our method demonstrates consistent identity and appearance generation on the DeepFashion dataset and enables flexible person image editing due to its generation consistency. The code is available at https://github.com/jqliu09/mcld.

Authors:Fausto German, Brian Keith, Chris North
Title: Narrative Trails: A Method for Coherent Storyline Extraction via Maximum Capacity Path Optimization
Abstract:
Traditional information retrieval is primarily concerned with finding relevant information from large datasets without imposing a structure within the retrieved pieces of data. However, structuring information in the form of narratives--ordered sets of documents that form coherent storylines--allows us to identify, interpret, and share insights about the connections and relationships between the ideas presented in the data. Despite their significance, current approaches for algorithmically extracting storylines from data are scarce, with existing methods primarily relying on intricate word-based heuristics and auxiliary document structures. Moreover, many of these methods are difficult to scale to large datasets and general contexts, as they are designed to extract storylines for narrow tasks. In this paper, we propose Narrative Trails, an efficient, general-purpose method for extracting coherent storylines in large text corpora. Specifically, our method uses the semantic-level information embedded in the latent space of deep learning models to build a sparse coherence graph and extract narratives that maximize the minimum coherence of the storylines. By quantitatively evaluating our proposed methods on two distinct narrative extraction tasks, we show the generalizability and scalability of Narrative Trails in multiple contexts while also simplifying the extraction pipeline.

Authors:Cédric Vincent, Taehyoung Kim, Henri Meeß
Title: High Temporal Consistency through Semantic Similarity Propagation in Semi-Supervised Video Semantic Segmentation for Autonomous Flight
Abstract:
Semantic segmentation from RGB cameras is essential to the perception of autonomous flying vehicles. The stability of predictions through the captured videos is paramount to their reliability and, by extension, to the trustworthiness of the agents. In this paper, we propose a lightweight video semantic segmentation approach-suited to onboard real-time inference-achieving high temporal consistency on aerial data through Semantic Similarity Propagation across frames. SSP temporally propagates the predictions of an efficient image segmentation model with global registration alignment to compensate for camera movements. It combines the current estimation and the prior prediction with linear interpolation using weights computed from the features similarities of the two frames. Because data availability is a challenge in this domain, we propose a consistency-aware Knowledge Distillation training procedure for sparsely labeled datasets with few annotations. Using a large image segmentation model as a teacher to train the efficient SSP, we leverage the strong correlations between labeled and unlabeled frames in the same training videos to obtain high-quality supervision on all frames. KD-SSP obtains a significant temporal consistency increase over the base image segmentation model of 12.5% and 6.7% TC on UAVid and RuralScapes respectively, with higher accuracy and comparable inference speed. On these aerial datasets, KD-SSP provides a superior segmentation quality and inference speed trade-off than other video methods proposed for general applications and shows considerably higher consistency. Project page: https://github.com/FraunhoferIVI/SSP.

Authors:Yuming Gu, Phong Tran, Yujian Zheng, Hongyi Xu, Heyuan Li, Adilbek Karmanov, Hao Li
Title: DiffPortrait360: Consistent Portrait Diffusion for 360 View Synthesis
Abstract:
Generating high-quality 360-degree views of human heads from single-view images is essential for enabling accessible immersive telepresence applications and scalable personalized content creation. While cutting-edge methods for full head generation are limited to modeling realistic human heads, the latest diffusion-based approaches for style-omniscient head synthesis can produce only frontal views and struggle with view consistency, preventing their conversion into true 3D models for rendering from arbitrary angles. We introduce a novel approach that generates fully consistent 360-degree head views, accommodating human, stylized, and anthropomorphic forms, including accessories like glasses and hats. Our method builds on the DiffPortrait3D framework, incorporating a custom ControlNet for back-of-head detail generation and a dual appearance module to ensure global front-back consistency. By training on continuous view sequences and integrating a back reference image, our approach achieves robust, locally continuous view synthesis. Our model can be used to produce high-quality neural radiance fields (NeRFs) for real-time, free-viewpoint rendering, outperforming state-of-the-art methods in object synthesis and 360-degree head generation for very challenging input portraits.

Authors:Luc McCutcheon, Bahman Gharesifard, Saber Fallah
Title: Neural Lyapunov Function Approximation with Self-Supervised Reinforcement Learning
Abstract:
Control Lyapunov functions are traditionally used to design a controller which ensures convergence to a desired state, yet deriving these functions for nonlinear systems remains a complex challenge. This paper presents a novel, sample-efficient method for neural approximation of nonlinear Lyapunov functions, leveraging self-supervised Reinforcement Learning (RL) to enhance training data generation, particularly for inaccurately represented regions of the state space. The proposed approach employs a data-driven World Model to train Lyapunov functions from off-policy trajectories. The method is validated on both standard and goal-conditioned robotic tasks, demonstrating faster convergence and higher approximation accuracy compared to the state-of-the-art neural Lyapunov approximation baseline. The code is available at: https://github.com/CAV-Research-Lab/SACLA.git

Authors:Matthew Massey, Abdullah-Al-Zubaer Imran
Title: EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis
Abstract:
Surficial geologic mapping is essential for understanding Earth surface processes, addressing modern challenges such as climate change and national security, and supporting common applications in engineering and resource management. However, traditional mapping methods are labor-intensive, limiting spatial coverage and introducing potential biases. To address these limitations, we introduce EarthScape, a novel, AI-ready multimodal dataset specifically designed for surficial geologic mapping and Earth surface analysis. EarthScape integrates high-resolution aerial RGB and near-infrared (NIR) imagery, digital elevation models (DEM), multi-scale DEM-derived terrain features, and hydrologic and infrastructure vector data. The dataset provides detailed annotations for seven distinct surficial geologic classes encompassing various geological processes. We present a comprehensive data processing pipeline using open-sourced raw data and establish baseline benchmarks using different spatial modalities to demonstrate the utility of EarthScape. As a living dataset with a vision for expansion, EarthScape bridges the gap between computer vision and Earth sciences, offering a valuable resource for advancing research in multimodal learning, geospatial analysis, and geological mapping. Our code is available at https://github.com/masseygeo/earthscape.

Authors:Federico Cocchi, Nicholas Moratelli, Davide Caffagni, Sara Sarto, Lorenzo Baraldi, Marcella Cornia, Rita Cucchiara
Title: LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning
Abstract:
Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.

Authors:Masud Ahmed, Zahid Hasan, Syed Arefinul Haque, Abu Zaher Md Faridee, Sanjay Purushotham, Suya You, Nirmalya Roy
Title: CAM-Seg: A Continuous-valued Embedding Approach for Semantic Image Generation
Abstract:
Traditional transformer-based semantic segmentation relies on quantized embeddings. However, our analysis reveals that autoencoder accuracy on segmentation mask using quantized embeddings (e.g. VQ-VAE) is 8% lower than continuous-valued embeddings (e.g. KL-VAE). Motivated by this, we propose a continuous-valued embedding framework for semantic segmentation. By reformulating semantic mask generation as a continuous image-to-embedding diffusion process, our approach eliminates the need for discrete latent representations while preserving fine-grained spatial and semantic details. Our key contribution includes a diffusion-guided autoregressive transformer that learns a continuous semantic embedding space by modeling long-range dependencies in image features. Our framework contains a unified architecture combining a VAE encoder for continuous feature extraction, a diffusion-guided transformer for conditioned embedding generation, and a VAE decoder for semantic mask reconstruction. Our setting facilitates zero-shot domain adaptation capabilities enabled by the continuity of the embedding space. Experiments across diverse datasets (e.g., Cityscapes and domain-shifted variants) demonstrate state-of-the-art robustness to distribution shifts, including adverse weather (e.g., fog, snow) and viewpoint variations. Our model also exhibits strong noise resilience, achieving robust performance ($\approx$ 95% AP compared to baseline) under gaussian noise, moderate motion blur, and moderate brightness/contrast variations, while experiencing only a moderate impact ($\approx$ 90% AP compared to baseline) from 50% salt and pepper noise, saturation and hue shifts. Code available: https://github.com/mahmed10/CAMSS.git

Authors:Martin Ritzert, Polina Turishcheva, Laura Hansel, Paul Wollenhaupt, Marissa A. Weis, Alexander S. Ecker
Title: Hierarchical clustering with maximum density paths and mixture models
Abstract:
Hierarchical clustering is an effective, interpretable method for analyzing structure in data. It reveals insights at multiple scales without requiring a predefined number of clusters and captures nested patterns and subtle relationships, which are often missed by flat clustering approaches. However, existing hierarchical clustering methods struggle with high-dimensional data, especially when there are no clear density gaps between modes. In this work, we introduce t-NEB, a probabilistically grounded hierarchical clustering method, which yields state-of-the-art clustering performance on naturalistic high-dimensional data. t-NEB consists of three steps: (1) density estimation via overclustering; (2) finding maximum density paths between clusters; (3) creating a hierarchical structure via bottom-up cluster merging. t-NEB uses a probabilistic parametric density model for both overclustering and cluster merging, which yields both high clustering performance and a meaningful hierarchy, making it a valuable tool for exploratory data analysis. Code is available at https://github.com/ecker-lab/tneb clustering.

Authors:Alba Márquez-Rodríguez, Miguel Ángel Mohedano-Munoz, Manuel J. Marín-Jiménez, Eduardo Santamaría-García, Giulia Bastianelli, Pedro Jordano, Irene Mendoza
Title: A Bird Song Detector for improving bird identification through Deep Learning: a case study from Doñana
Abstract:
Passive Acoustic Monitoring is a key tool for biodiversity conservation, but the large volumes of unsupervised audio it generates present major challenges for extracting meaningful information. Deep Learning offers promising solutions. BirdNET, a widely used bird identification model, has shown success in many study systems but is limited at local scale due to biases in its training data, which focus on specific locations and target sounds rather than entire soundscapes. A key challenge in bird species identification is that many recordings either lack target species or contain overlapping vocalizations, complicating automatic identification. To address these problems, we developed a multi-stage pipeline for automatic bird vocalization identification in Doñana National Park (SW Spain), a wetland of high conservation concern. We deployed AudioMoth recorders in three main habitats across nine locations and manually annotated 461 minutes of audio, resulting in 3749 labeled segments spanning 34 classes. We first applied a Bird Song Detector to isolate bird vocalizations using spectrogram-based image processing. Then, species were classified using custom models trained at the local scale. Applying the Bird Song Detector before classification improved species identification, as all models performed better when analyzing only the segments where birds were detected. Specifically, the combination of detector and fine-tuned BirdNET outperformed the baseline without detection. This approach demonstrates the effectiveness of integrating a Bird Song Detector with local classification models. These findings highlight the need to adapt general-purpose tools to specific ecological challenges. Automatically detecting bird species helps track the health of this threatened ecosystem, given birds sensitivity to environmental change, and supports conservation planning to reduce biodiversity loss.

Authors:NVIDIA, :, Alisson Azzolini, Junjie Bai, Hannah Brandon, Jiaxin Cao, Prithvijit Chattopadhyay, Huayu Chen, Jinju Chu, Yin Cui, Jenna Diamond, Yifan Ding, Liang Feng, Francesco Ferroni, Rama Govindaraju, Jinwei Gu, Siddharth Gururani, Imad El Hanafi, Zekun Hao, Jacob Huffman, Jingyi Jin, Brendan Johnson, Rizwan Khan, George Kurian, Elena Lantz, Nayeon Lee, Zhaoshuo Li, Xuan Li, Maosheng Liao, Tsung-Yi Lin, Yen-Chen Lin, Ming-Yu Liu, Xiangyu Lu, Alice Luo, Andrew Mathau, Yun Ni, Lindsey Pavao, Wei Ping, David W. Romero, Misha Smelyanskiy, Shuran Song, Lyne Tchapmi, Andrew Z. Wang, Boxin Wang, Haoxiang Wang, Fangyin Wei, Jiashu Xu, Yao Xu, Dinghao Yang, Xiaodong Yang, Zhuolin Yang, Jingxu Zhang, Xiaohui Zeng, Zhe Zhang
Title: Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Abstract:
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-7B and Cosmos-Reason1-56B. We curate data and train our models in two stages: Physical AI supervised fine-tuning (SFT) and Physical AI reinforcement learning (RL). To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and RL bring significant improvements. To facilitate the development of Physical AI, we make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.

Authors:Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D. Lee, Sanjeev Arora
Title: What Makes a Reward Model a Good Teacher? An Optimization Perspective
Abstract:
The success of Reinforcement Learning from Human Feedback (RLHF) critically depends on the quality of the reward model. However, while this quality is primarily evaluated through accuracy, it remains unclear whether accuracy fully captures what makes a reward model an effective teacher. We address this question from an optimization perspective. First, we prove that regardless of how accurate a reward model is, if it induces low reward variance, then the RLHF objective suffers from a flat landscape. Consequently, even a perfectly accurate reward model can lead to extremely slow optimization, underperforming less accurate models that induce higher reward variance. We additionally show that a reward model that works well for one language model can induce low reward variance, and thus a flat objective landscape, for another. These results establish a fundamental limitation of evaluating reward models solely based on accuracy or independently of the language model they guide. Experiments using models of up to 8B parameters corroborate our theory, demonstrating the interplay between reward variance, accuracy, and reward maximization rate. Overall, our findings highlight that beyond accuracy, a reward model needs to induce sufficient variance for efficient~optimization.

Authors:Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D. Lee, Sanjeev Arora
Title: What Makes a Reward Model a Good Teacher? An Optimization Perspective
Abstract:
The success of Reinforcement Learning from Human Feedback (RLHF) critically depends on the quality of the reward model. However, while this quality is primarily evaluated through accuracy, it remains unclear whether accuracy fully captures what makes a reward model an effective teacher. We address this question from an optimization perspective. First, we prove that regardless of how accurate a reward model is, if it induces low reward variance, then the RLHF objective suffers from a flat landscape. Consequently, even a perfectly accurate reward model can lead to extremely slow optimization, underperforming less accurate models that induce higher reward variance. We additionally show that a reward model that works well for one language model can induce low reward variance, and thus a flat objective landscape, for another. These results establish a fundamental limitation of evaluating reward models solely based on accuracy or independently of the language model they guide. Experiments using models of up to 8B parameters corroborate our theory, demonstrating the interplay between reward variance, accuracy, and reward maximization rate. Overall, our findings highlight that beyond accuracy, a reward model needs to induce sufficient variance for efficient~optimization.

Authors:Foundation AI Team, Kiran Bhat, Nishchaie Khanna, Karun Channa, Tinghui Zhou, Yiheng Zhu, Xiaoxia Sun, Charles Shang, Anirudh Sudarshan, Maurice Chu, Daiqing Li, Kangle Deng, Jean-Philippe Fauconnier, Tijmen Verhulsdonck, Maneesh Agrawala, Kayvon Fatahalian, Alexander Weiss, Christian Reiser, Ravi Kiran Chirravuri, Ravali Kandur, Alejandro Pelaez, Akash Garg, Michael Palleschi, Jessica Wang, Skylar Litz, Leon Liu, Anying Li, David Harmon, Derek Liu, Liangjun Feng, Denis Goupil, Lukas Kuczynski, Jihyun Yoon, Naveen Marri, Peiye Zhuang, Yinan Zhang, Brian Yin, Haomiao Jiang, Marcel van Workum, Thomas Lane, Bryce Erickson, Salil Pathare, Kyle Price, Steve Han, Yiqing Wang, Anupam Singh, David Baszucki
Title: Cube: A Roblox View of 3D Intelligence
Abstract:
Foundation models trained on vast amounts of data have demonstrated remarkable reasoning and generation capabilities in the domains of text, images, audio and video. Our goal at Roblox is to build such a foundation model for 3D intelligence, a model that can support developers in producing all aspects of a Roblox experience, from generating 3D objects and scenes to rigging characters for animation to producing programmatic scripts describing object behaviors. We discuss three key design requirements for such a 3D foundation model and then present our first step towards building such a model. We expect that 3D geometric shapes will be a core data type and describe our solution for 3D shape tokenizer. We show how our tokenization scheme can be used in applications for text-to-shape generation, shape-to-text generation and text-to-scene generation. We demonstrate how these applications can collaborate with existing large language models (LLMs) to perform scene analysis and reasoning. We conclude with a discussion outlining our path to building a fully unified foundation model for 3D intelligence.

Authors:Boshen Xu, Yuting Mei, Xinbi Liu, Sipeng Zheng, Qin Jin
Title: EgoDTM: Towards 3D-Aware Egocentric Video-Language Pretraining
Abstract:
Egocentric video-language pretraining has significantly advanced video representation learning. Humans perceive and interact with a fully 3D world, developing spatial awareness that extends beyond text-based understanding. However, most previous works learn from 1D text or 2D visual cues, such as bounding boxes, which inherently lack 3D understanding. To bridge this gap, we introduce EgoDTM, an Egocentric Depth- and Text-aware Model, jointly trained through large-scale 3D-aware video pretraining and video-text contrastive learning. EgoDTM incorporates a lightweight 3D-aware decoder to efficiently learn 3D-awareness from pseudo depth maps generated by depth estimation models. To further facilitate 3D-aware video pretraining, we enrich the original brief captions with hand-object visual cues by organically combining several foundation models. Extensive experiments demonstrate EgoDTM's superior performance across diverse downstream tasks, highlighting its superior 3D-aware visual understanding. Our code will be released at https://github.com/xuboshen/EgoDTM.

Authors:Ruichen Chen, Keith G. Mills, Di Niu
Title: FP4DiT: Towards Effective Floating Point Quantization for Diffusion Transformers
Abstract:
Diffusion Models (DM) have revolutionized the text-to-image visual generation process. However, the large computational cost and model footprint of DMs hinders practical deployment, especially on edge devices. Post-training quantization (PTQ) is a lightweight method to alleviate these burdens without the need for training or fine-tuning. While recent DM PTQ methods achieve W4A8 on integer-based PTQ, two key limitations remain: First, while most existing DM PTQ methods evaluate on classical DMs like Stable Diffusion XL, 1.5 or earlier, which use convolutional U-Nets, newer Diffusion Transformer (DiT) models like the PixArt series, Hunyuan and others adopt fundamentally different transformer backbones to achieve superior image synthesis. Second, integer (INT) quantization is prevailing in DM PTQ but doesn't align well with the network weight and activation distribution, while Floating-Point Quantization (FPQ) is still under-investigated, yet it holds the potential to better align the weight and activation distributions in low-bit settings for DiT. In response, we introduce FP4DiT, a PTQ method that leverages FPQ to achieve W4A6 quantization. Specifically, we extend and generalize the Adaptive Rounding PTQ technique to adequately calibrate weight quantization for FPQ and demonstrate that DiT activations depend on input patch data, necessitating robust online activation quantization techniques. Experimental results demonstrate that FP4DiT outperforms integer-based PTQ at W4A6 and W4A8 precision and generates convincing visual content on PixArt-$α$, PixArt-$Σ$ and Hunyuan in terms of several T2I metrics such as HPSv2 and CLIP.

Authors:Tongyao Zhu, Qian Liu, Haonan Wang, Shiqi Chen, Xiangming Gu, Tianyu Pang, Min-Yen Kan
Title: SkyLadder: Better and Faster Pretraining via Context Window Scheduling
Abstract:
Recent advancements in LLM pretraining have featured ever-expanding context windows to process longer sequences. However, our pilot study reveals that models pretrained with shorter context windows consistently outperform their long-context counterparts under a fixed token budget. This finding motivates us to explore an optimal context window scheduling strategy to better balance long-context capability with pretraining efficiency. To this end, we propose SkyLadder, a simple yet effective approach that implements a short-to-long context window transition. SkyLadder preserves strong standard benchmark performance, while matching or exceeding baseline results on long context tasks. Through extensive experiments, we pre-train 1B-parameter models (up to 32K context) and 3B-parameter models (8K context) on 100B tokens, demonstrating that SkyLadder yields consistent gains of up to 3.7% on common benchmarks, while achieving up to 22% faster training speeds compared to baselines. The code is at https://github.com/sail-sg/SkyLadder.

Authors:Yang Tan, Chen Liu, Jingyuan Gao, Banghao Wu, Mingchen Li, Ruilin Wang, Lingrong Zhang, Huiqun Yu, Guisheng Fan, Liang Hong, Bingxin Zhou
Title: VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning
Abstract:
Natural language processing (NLP) has significantly influenced scientific domains beyond human language, including protein engineering, where pre-trained protein language models (PLMs) have demonstrated remarkable success. However, interdisciplinary adoption remains limited due to challenges in data collection, task benchmarking, and application. This work presents VenusFactory, a versatile engine that integrates biological data retrieval, standardized task benchmarking, and modular fine-tuning of PLMs. VenusFactory supports both computer science and biology communities with choices of both a command-line execution and a Gradio-based no-code interface, integrating $40+$ protein-related datasets and $40+$ popular PLMs. All implementations are open-sourced on https://github.com/tyang816/VenusFactory.

Authors:Wei Tang, Yanpeng Sun, Qinying Gu, Zechao Li
Title: Visual Position Prompt for MLLM based Visual Grounding
Abstract:
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address these issues, we introduce VPP-LLaVA, an MLLM enhanced with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms: the global VPP overlays a learnable, axis-like tensor onto the input image to provide structured spatial cues, while the local VPP incorporates position-aware queries to support fine-grained localization.To effectively train our model with spatial guidance, we further introduce VPP-SFT, a curated dataset of 0.6M high-quality visual grounding samples. Designed in a compact format, it enables efficient training and is significantly smaller than datasets used by other MLLMs (e.g., ~21M samples in MiniGPT-v2), yet still provides a strong performance boost. The resulting model, VPP-LLaVA, not only achieves state-of-the-art results on standard visual grounding benchmarks but also demonstrates strong zero-shot generalization to challenging unseen datasets. The code and dataset are available at https://github.com/WayneTomas/VPP-LLaVA.

Authors:Yuchen Ren, Zhengyu Zhao, Chenhao Lin, Bo Yang, Lu Zhou, Zhe Liu, Chao Shen
Title: Improving Adversarial Transferability on Vision Transformers via Forward Propagation Refinement
Abstract:
Vision Transformers (ViTs) have been widely applied in various computer vision and vision-language tasks. To gain insights into their robustness in practical scenarios, transferable adversarial examples on ViTs have been extensively studied. A typical approach to improving adversarial transferability is by refining the surrogate model. However, existing work on ViTs has restricted their surrogate refinement to backward propagation. In this work, we instead focus on Forward Propagation Refinement (FPR) and specifically refine two key modules of ViTs: attention maps and token embeddings. For attention maps, we propose Attention Map Diversification (AMD), which diversifies certain attention maps and also implicitly imposes beneficial gradient vanishing during backward propagation. For token embeddings, we propose Momentum Token Embedding (MTE), which accumulates historical token embeddings to stabilize the forward updates in both the Attention and MLP blocks. We conduct extensive experiments with adversarial examples transferred from ViTs to various CNNs and ViTs, demonstrating that our FPR outperforms the current best (backward) surrogate refinement by up to 7.0\% on average. We also validate its superiority against popular defenses and its compatibility with other transfer methods. Codes and appendix are available at https://github.com/RYC-98/FPR.

Authors:Pieter Pas, Panagiotis Patrinos
Title: Blocked Cholesky factorization updates of the Riccati recursion using hyperbolic Householder transformations
Abstract:
Newton systems in quadratic programming (QP) methods are often solved using direct Cholesky or LDL factorizations. When the linear systems in successive iterations differ by a low-rank modification (as is common in active set and augmented Lagrangian methods), updating the existing factorization can offer significant performance improvements over recomputing a full Cholesky factorization. We review the hyperbolic Householder transformation, and demonstrate its usefulness in describing low-rank Cholesky factorization updates. By applying this hyperbolic Householder-based framework to the well-known Riccati recursion for solving saddle-point problems with optimal control structure, we develop a novel algorithm for updating the factorizations used in optimization solvers for optimal control. Specifically, the proposed method can be used to efficiently solve the semismooth Newton systems that are at the core of the augmented Lagrangian-based QPALM-OCP solver. An optimized open-source implementation of the proposed factorization update routines is provided as well.

Authors:Hao Tan, Zichang Tan, Jun Li, Ajian Liu, Jun Wan, Zhen Lei
Title: Recover and Match: Open-Vocabulary Multi-Label Recognition through Knowledge-Constrained Optimal Transport
Abstract:
Identifying multiple novel classes in an image, known as open-vocabulary multi-label recognition, is a challenging task in computer vision. Recent studies explore the transfer of powerful vision-language models such as CLIP. However, these approaches face two critical challenges: (1) The local semantics of CLIP are disrupted due to its global pre-training objectives, resulting in unreliable regional predictions. (2) The matching property between image regions and candidate labels has been neglected, relying instead on naive feature aggregation such as average pooling, which leads to spurious predictions from irrelevant regions. In this paper, we present RAM (Recover And Match), a novel framework that effectively addresses the above issues. To tackle the first problem, we propose Ladder Local Adapter (LLA) to enforce refocusing on local regions, recovering local semantics in a memory-friendly way. For the second issue, we propose Knowledge-Constrained Optimal Transport (KCOT) to suppress meaningless matching to non-GT labels by formulating the task as an optimal transport problem. As a result, RAM achieves state-of-the-art performance on various datasets from three distinct domains, and shows great potential to boost the existing methods. Code: https://github.com/EricTan7/RAM.

Authors:Junnan Zhu, Min Xiao, Yining Wang, Feifei Zhai, Yu Zhou, Chengqing Zong
Title: TROVE: A Challenge for Fine-Grained Text Provenance via Source Sentence Tracing and Relationship Classification
Abstract:
LLMs have achieved remarkable fluency and coherence in text generation, yet their widespread adoption has raised concerns about content reliability and accountability. In high-stakes domains, it is crucial to understand where and how the content is created. To address this, we introduce the Text pROVEnance (TROVE) challenge, designed to trace each sentence of a target text back to specific source sentences within potentially lengthy or multi-document inputs. Beyond identifying sources, TROVE annotates the fine-grained relationships (quotation, compression, inference, and others), providing a deep understanding of how each target sentence is formed. To benchmark TROVE, we construct our dataset by leveraging three public datasets covering 11 diverse scenarios (e.g., QA and summarization) in English and Chinese, spanning source texts of varying lengths (0-5k, 5-10k, 10k+), emphasizing the multi-document and long-document settings essential for provenance. To ensure high-quality data, we employ a three-stage annotation process: sentence retrieval, GPT-4o provenance, and human provenance. We evaluate 11 LLMs under direct prompting and retrieval-augmented paradigms, revealing that retrieval is essential for robust performance, larger models perform better in complex relationship classification, and closed-source models often lead, yet open-source models show significant promise, particularly with retrieval augmentation. We make our dataset available here: https://github.com/ZNLP/ZNLP-Dataset.

Authors:Yuanchao Yue, Hui Yuan, Zhengxin Li, Shuai Li, Wei Zhang
Title: EEPNet-V2: Patch-to-Pixel Solution for Efficient Cross-Modal Registration between LiDAR Point Cloud and Camera Image
Abstract:
The primary requirement for cross-modal data fusion is the precise alignment of data from different sensors. However, the calibration between LiDAR point clouds and camera images is typically time-consuming and needs external calibration board or specific environmental features. Cross-modal registration effectively solves this problem by aligning the data directly without requiring external calibration. However, due to the domain gap between the point cloud and the image, existing methods rarely achieve satisfactory registration accuracy while maintaining real-time performance. To address this issue, we propose a framework that projects point clouds into several 2D representations for matching with camera images, which not only leverages the geometric characteristic of LiDAR point clouds effectively but also bridge the domain gap between the point cloud and image. Moreover, to tackle the challenges of cross modal differences and the limited overlap between LiDAR point clouds and images in the image matching task, we introduce a multi-scale feature extraction network to effectively extract features from both camera images and the projection maps of LiDAR point cloud. Additionally, we propose a patch-to-pixel matching network to provide more effective supervision and achieve high accuracy. We validate the performance of our model through experiments on the KITTI and nuScenes datasets. Experimental results demonstrate the the proposed method achieves real-time performance and extremely high registration accuracy. Specifically, on the KITTI dataset, our model achieves a registration accuracy rate of over 99\%. Our code is released at: https://github.com/ESRSchao/EEPNet-V2.

Authors:David Wan, Justin Chih-Yao Chen, Elias Stengel-Eskin, Mohit Bansal
Title: MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration
Abstract:
Multi-agent collaboration among models has shown promise in reasoning tasks but is underexplored in long-form generation tasks like summarization and question-answering. We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement, i.e., revising model-generated outputs to remove factual inconsistencies. We investigate how iterative collaboration among multiple instances and types of large language models (LLMs) enhances subtasks in the refinement process, such as error detection, critiquing unfaithful sentences, and making corrections based on critiques. We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing. Additionally, reframing critiquing and refinement as reranking rather than generation tasks improves multi-agent performance. We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance on three summarization datasets as well as on long-form question answering, demonstrating the effectiveness and generalizability of our recipe.

Authors:Chentian Wei, Jiewei Chen, Jinzhu Xu
Title: Exploring Large Language Models for Word Games:Who is the Spy?
Abstract:
Word games hold significant research value for natural language processing (NLP), game theory, and related fields due to their rule-based and situational nature. This study explores how large language models (LLMs) can be effectively involved in word games and proposes a training-free framework. "Shei Shi Wo Di" or "Who is the Spy" in English, is a classic word game. Using this game as an example, we introduce a Chain-of-Thought (CoT)-based scheduling framework to enable LLMs to achieve excellent performance in tasks such as inferring role words and disguising their identities. We evaluate the framework's performance based on game success rates and the accuracy of the LLM agents' analytical results. Experimental results affirm the framework's effectiveness, demonstrating notable improvements in LLM performance across multiple datasets. This work highlights the potential of LLMs in mastering situational reasoning and social interactions within structured game environments. Our code is publicly available at https://github.com/ct-wei/Who-is-The-Spy.

Authors:Zechuan Li, Hongshan Yu, Yihao Ding, Jinhao Qiao, Basim Azam, Naveed Akhtar
Title: GO-N3RDet: Geometry Optimized NeRF-enhanced 3D Object Detector
Abstract:
We propose GO-N3RDet, a scene-geometry optimized multi-view 3D object detector enhanced by neural radiance fields. The key to accurate 3D object detection is in effective voxel representation. However, due to occlusion and lack of 3D information, constructing 3D features from multi-view 2D images is challenging. Addressing that, we introduce a unique 3D positional information embedded voxel optimization mechanism to fuse multi-view features. To prioritize neural field reconstruction in object regions, we also devise a double importance sampling scheme for the NeRF branch of our detector. We additionally propose an opacity optimization module for precise voxel opacity prediction by enforcing multi-view consistency constraints. Moreover, to further improve voxel density consistency across multiple perspectives, we incorporate ray distance as a weighting factor to minimize cumulative ray errors. Our unique modules synergetically form an end-to-end neural model that establishes new state-of-the-art in NeRF-based multi-view 3D detection, verified with extensive experiments on ScanNet and ARKITScenes. Code will be available at https://github.com/ZechuanLi/GO-N3RDet.

Authors:Sejong Kim, Hyunseo Song, Hyunwoo Seo, Hyunjun Kim
Title: Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a promising framework to mitigate hallucinations in Large Language Models (LLMs), yet its overall performance is dependent on the underlying retrieval system. In the finance domain, documents such as 10-K reports pose distinct challenges due to domain-specific vocabulary and multi-hierarchical tabular data. In this work, we introduce an efficient, end-to-end RAG pipeline that enhances retrieval for financial documents through a three-phase approach: pre-retrieval, retrieval, and post-retrieval. In the pre-retrieval phase, various query and corpus preprocessing techniques are employed to enrich input data. During the retrieval phase, we fine-tuned state-of-the-art (SOTA) embedding models with domain-specific knowledge and implemented a hybrid retrieval strategy that combines dense and sparse representations. Finally, the post-retrieval phase leverages Direct Preference Optimization (DPO) training and document selection methods to further refine the results. Evaluations on seven financial question answering datasets-FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, and MultiHiertt-demonstrate substantial improvements in retrieval performance, leading to more accurate and contextually appropriate generation. These findings highlight the critical role of tailored retrieval techniques in advancing the effectiveness of RAG systems for financial applications. A fully replicable pipeline is available on GitHub: https://github.com/seohyunwoo-0407/GAR.

Authors:Ananya Garg, Mohmmad Ayaan, Swara Parekh, Vikranth Udandarao
Title: Food Delivery Time Prediction in Indian Cities Using Machine Learning Models
Abstract:
Accurate prediction of food delivery times significantly impacts customer satisfaction, operational efficiency, and profitability in food delivery services. However, existing studies primarily utilize static historical data and often overlook dynamic, real-time contextual factors crucial for precise prediction, particularly in densely populated Indian cities. This research addresses these gaps by integrating real-time contextual variables such as traffic density, weather conditions, local events, and geospatial data (restaurant and delivery location coordinates) into predictive models. We systematically compare various machine learning algorithms, including Linear Regression, Decision Trees, Bagging, Random Forest, XGBoost, and LightGBM, on a comprehensive food delivery dataset specific to Indian urban contexts. Rigorous data preprocessing and feature selection significantly enhanced model performance. Experimental results demonstrate that the LightGBM model achieves superior predictive accuracy, with an R2 score of 0.76 and Mean Squared Error (MSE) of 20.59, outperforming traditional baseline approaches. Our study thus provides actionable insights for improving logistics strategies in complex urban environments. The complete methodology and code are publicly available for reproducibility and further research.

Authors:Àlex Pujol Vidal, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund
Title: Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Abstract:
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC

Authors:Yang Li, Soumya Snigdha Kundu, Maxence Boels, Toktam Mahmoodi, Sebastien Ourselin, Tom Vercauteren, Prokar Dasgupta, Jonathan Shapey, Alejandro Granados
Title: UltraFlwr -- An Efficient Federated Medical and Surgical Object Detection Framework
Abstract:
Object detection shows promise for medical and surgical applications such as cell counting and tool tracking. However, its faces multiple real-world edge deployment challenges including limited high-quality annotated data, data sharing restrictions, and computational constraints. In this work, we introduce UltraFlwr, a framework for federated medical and surgical object detection. By leveraging Federated Learning (FL), UltraFlwr enables decentralized model training across multiple sites without sharing raw data. To further enhance UltraFlwr's efficiency, we propose YOLO-PA, a set of novel Partial Aggregation (PA) strategies specifically designed for YOLO models in FL. YOLO-PA significantly reduces communication overhead by up to 83% per round while maintaining performance comparable to Full Aggregation (FA) strategies. Our extensive experiments on BCCD and m2cai16-tool-locations datasets demonstrate that YOLO-PA not only provides better client models compared to client-wise centralized training and FA strategies, but also facilitates efficient training and deployment across resource-constrained edge devices. Further, we also establish one of the first benchmarks in federated medical and surgical object detection. This paper advances the feasibility of training and deploying detection models on the edge, making federated object detection more practical for time-critical and resource-constrained medical and surgical applications. UltraFlwr is publicly available at https://github.com/KCL-BMEIS/UltraFlwr.

Authors:Joost Luijmes, Alexander Gielisse, Roman Knyazhitskiy, Jan van Gemert
Title: ARC: Anchored Representation Clouds for High-Resolution INR Classification
Abstract:
Implicit neural representations (INRs) encode signals in neural network weights as a memory-efficient representation, decoupling sampling resolution from the associated resource costs. Current INR image classification methods are demonstrated on low-resolution data and are sensitive to image-space transformations. We attribute these issues to the global, fully-connected MLP neural network architecture encoding of current INRs, which lack mechanisms for local representation: MLPs are sensitive to absolute image location and struggle with high-frequency details. We propose ARC: Anchored Representation Clouds, a novel INR architecture that explicitly anchors latent vectors locally in image-space. By introducing spatial structure to the latent vectors, ARC captures local image data which in our testing leads to state-of-the-art implicit image classification of both low- and high-resolution images and increased robustness against image-space translation. Code can be found at https://github.com/JLuij/anchored_representation_clouds.

Authors:Xing He, Zhe Zhu, Liangliang Nan, Honghua Chen, Jing Qin, Mingqiang Wei
Title: PointSFDA: Source-free Domain Adaptation for Point Cloud Completion
Abstract:
Conventional methods for point cloud completion, typically trained on synthetic datasets, face significant challenges when applied to out-of-distribution real-world scans. In this paper, we propose an effective yet simple source-free domain adaptation framework for point cloud completion, termed \textbf{PointSFDA}. Unlike unsupervised domain adaptation that reduces the domain gap by directly leveraging labeled source data, PointSFDA uses only a pretrained source model and unlabeled target data for adaptation, avoiding the need for inaccessible source data in practical scenarios. Being the first source-free domain adaptation architecture for point cloud completion, our method offers two core contributions. First, we introduce a coarse-to-fine distillation solution to explicitly transfer the global geometry knowledge learned from the source dataset. Second, as noise may be introduced due to domain gaps, we propose a self-supervised partial-mask consistency training strategy to learn local geometry information in the target domain. Extensive experiments have validated that our method significantly improves the performance of state-of-the-art networks in cross-domain shape completion. Our code is available at \emph{\textcolor{magenta}{https://github.com/Starak-x/PointSFDA}}.

Authors:Nikola Đukić, Tim Lebailly, Tinne Tuytelaars
Title: Object-Centric Pretraining via Target Encoder Bootstrapping
Abstract:
Object-centric representation learning has recently been successfully applied to real-world datasets. This success can be attributed to pretrained non-object-centric foundation models, whose features serve as reconstruction targets for slot attention. However, targets must remain frozen throughout the training, which sets an upper bound on the performance object-centric models can attain. Attempts to update the target encoder by bootstrapping result in large performance drops, which can be attributed to its lack of object-centric inductive biases, causing the object-centric model's encoder to drift away from representations useful as reconstruction targets. To address these limitations, we propose Object-CEntric Pretraining by Target Encoder BOotstrapping, a self-distillation setup for training object-centric models from scratch, on real-world data, for the first time ever. In OCEBO, the target encoder is updated as an exponential moving average of the object-centric model, thus explicitly being enriched with object-centric inductive biases introduced by slot attention while removing the upper bound on performance present in other models. We mitigate the slot collapse caused by random initialization of the target encoder by introducing a novel cross-view patch filtering approach that limits the supervision to sufficiently informative patches. When pretrained on 241k images from COCO, OCEBO achieves unsupervised object discovery performance comparable to that of object-centric models with frozen non-object-centric target encoders pretrained on hundreds of millions of images. The code and pretrained models are publicly available at https://github.com/djukicn/ocebo.

Authors:Alejandro Almodóvar, Adrián Javaloy, Juan Parras, Santiago Zazo, Isabel Valera
Title: DeCaFlow: A Deconfounding Causal Generative Model
Abstract:
We introduce DeCaFlow, a deconfounding causal generative model. Training once per dataset using just observational data and the underlying causal graph, DeCaFlow enables accurate causal inference on continuous variables under the presence of hidden confounders. Specifically, we extend previous results on causal estimation under hidden confounding to show that a single instance of DeCaFlow provides correct estimates for all causal queries identifiable with do-calculus, leveraging proxy variables to adjust for the causal effects when do-calculus alone is insufficient. Moreover, we show that counterfactual queries are identifiable as long as their interventional counterparts are identifiable, and thus are also correctly estimated by DeCaFlow. Our empirical results on diverse settings (including the Ecoli70 dataset, with 3 independent hidden confounders, tens of observed variables and hundreds of causal queries) show that DeCaFlow outperforms existing approaches, while demonstrating its out-of-the-box applicability to any given causal graph. An implementation can be found in https://github.com/aalmodovares/DeCaFlow

Authors:Zinqin Huang, Gu Wang, Chenyangguang Zhang, Ruida Zhang, Xiu Li, Xiangyang Ji
Title: GIVEPose: Gradual Intra-class Variation Elimination for RGB-based Category-Level Object Pose Estimation
Abstract:
Recent advances in RGBD-based category-level object pose estimation have been limited by their reliance on precise depth information, restricting their broader applicability. In response, RGB-based methods have been developed. Among these methods, geometry-guided pose regression that originated from instance-level tasks has demonstrated strong performance. However, we argue that the NOCS map is an inadequate intermediate representation for geometry-guided pose regression method, as its many-to-one correspondence with category-level pose introduces redundant instance-specific information, resulting in suboptimal results. This paper identifies the intra-class variation problem inherent in pose regression based solely on the NOCS map and proposes the Intra-class Variation-Free Consensus (IVFC) map, a novel coordinate representation generated from the category-level consensus model. By leveraging the complementary strengths of the NOCS map and the IVFC map, we introduce GIVEPose, a framework that implements Gradual Intra-class Variation Elimination for category-level object pose estimation. Extensive evaluations on both synthetic and real-world datasets demonstrate that GIVEPose significantly outperforms existing state-of-the-art RGB-based approaches, achieving substantial improvements in category-level object pose estimation. Our code is available at https://github.com/ziqin-h/GIVEPose.

Authors:Yang Liu, Qianqian Xu, Peisong Wen, Siran Dai, Qingming Huang
Title: When the Future Becomes the Past: Taming Temporal Correspondence for Self-supervised Video Representation Learning
Abstract:
The past decade has witnessed notable achievements in self-supervised learning for video tasks. Recent efforts typically adopt the Masked Video Modeling (MVM) paradigm, leading to significant progress on multiple video tasks. However, two critical challenges remain: 1) Without human annotations, the random temporal sampling introduces uncertainty, increasing the difficulty of model training. 2) Previous MVM methods primarily recover the masked patches in the pixel space, leading to insufficient information compression for downstream tasks. To address these challenges jointly, we propose a self-supervised framework that leverages Temporal Correspondence for video Representation learning (T-CoRe). For challenge 1), we propose a sandwich sampling strategy that selects two auxiliary frames to reduce reconstruction uncertainty in a two-side-squeezing manner. Addressing challenge 2), we introduce an auxiliary branch into a self-distillation architecture to restore representations in the latent space, generating high-level semantic representations enriched with temporal information. Experiments of T-CoRe consistently present superior performance across several downstream tasks, demonstrating its effectiveness for video representation learning. The code is available at https://github.com/yafeng19/T-CORE.

Authors:Zonghao Ying, Guangyi Zheng, Yongxin Huang, Deyue Zhang, Wenxin Zhang, Quanchen Zou, Aishan Liu, Xianglong Liu, Dacheng Tao
Title: Towards Understanding the Safety Boundaries of DeepSeek Models: Evaluation and Findings
Abstract:
This study presents the first comprehensive safety evaluation of the DeepSeek models, focusing on evaluating the safety risks associated with their generated content. Our evaluation encompasses DeepSeek's latest generation of large language models, multimodal large language models, and text-to-image models, systematically examining their performance regarding unsafe content generation. Notably, we developed a bilingual (Chinese-English) safety evaluation dataset tailored to Chinese sociocultural contexts, enabling a more thorough evaluation of the safety capabilities of Chinese-developed models. Experimental results indicate that despite their strong general capabilities, DeepSeek models exhibit significant safety vulnerabilities across multiple risk dimensions, including algorithmic discrimination and sexual content. These findings provide crucial insights for understanding and improving the safety of large foundation models. Our code is available at https://github.com/NY1024/DeepSeek-Safety-Eval.

Authors:Imanol G. Estepa, Jesús M. Rodríguez-de-Vera, Ignacio Sarasúa, Bhalaji Nagarajan, Petia Radeva
Title: Conjuring Positive Pairs for Efficient Unification of Representation Learning and Image Synthesis
Abstract:
While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.

Authors:Cheng Wang, Lingxin Kong, Massimiliano Tamborski, Stefano V. Albrecht
Title: HAD-Gen: Human-like and Diverse Driving Behavior Modeling for Controllable Scenario Generation
Abstract:
Simulation-based testing has emerged as an essential tool for verifying and validating autonomous vehicles (AVs). However, contemporary methodologies, such as deterministic and imitation learning-based driver models, struggle to capture the variability of human-like driving behavior. Given these challenges, we propose HAD-Gen, a general framework for realistic traffic scenario generation that simulates diverse human-like driving behaviors. The framework first clusters the vehicle trajectory data into different driving styles according to safety features. It then employs maximum entropy inverse reinforcement learning on each of the clusters to learn the reward function corresponding to each driving style. Using these reward functions, the method integrates offline reinforcement learning pre-training and multi-agent reinforcement learning algorithms to obtain general and robust driving policies. Multi-perspective simulation results show that our proposed scenario generation framework can simulate diverse, human-like driving behaviors with strong generalization capability. The proposed framework achieves a 90.96% goal-reaching rate, an off-road rate of 2.08%, and a collision rate of 6.91% in the generalization test, outperforming prior approaches by over 20% in goal-reaching performance. The source code is released at https://github.com/RoboSafe-Lab/Sim4AD.

Authors:Haoyi Li, Angela Yifei Yuan, Soyeon Caren Han, Christopher Leckie
Title: SPADE: Structured Prompting Augmentation for Dialogue Enhancement in Machine-Generated Text Detection
Abstract:
The increasing capability of large language models (LLMs) to generate synthetic content has heightened concerns about their misuse, driving the development of Machine-Generated Text (MGT) detection models. However, these detectors face significant challenges due to the lack of high-quality synthetic datasets for training. To address this issue, we propose SPADE, a structured framework for detecting synthetic dialogues using prompt-based positive and negative samples. Our proposed methods yield 14 new dialogue datasets, which we benchmark against eight MGT detection models. The results demonstrate improved generalization performance when utilizing a mixed dataset produced by proposed augmentation frameworks, offering a practical approach to enhancing LLM application security. Considering that real-world agents lack knowledge of future opponent utterances, we simulate online dialogue detection and examine the relationship between chat history length and detection accuracy. Our open-source datasets, code and prompts can be downloaded from https://github.com/AngieYYF/SPADE-customer-service-dialogue.

Authors:Saad Lahlali, Sandra Kara, Hejer Ammar, Florian Chabot, Nicolas Granger, Hervé Le Borgne, Quoc-Cuong Pham
Title: xMOD: Cross-Modal Distillation for 2D/3D Multi-Object Discovery from 2D motion
Abstract:
Object discovery, which refers to the task of localizing objects without human annotations, has gained significant attention in 2D image analysis. However, despite this growing interest, it remains under-explored in 3D data, where approaches rely exclusively on 3D motion, despite its several challenges. In this paper, we present a novel framework that leverages advances in 2D object discovery which are based on 2D motion to exploit the advantages of such motion cues being more flexible and generalizable and to bridge the gap between 2D and 3D modalities. Our primary contributions are twofold: (i) we introduce DIOD-3D, the first baseline for multi-object discovery in 3D data using 2D motion, incorporating scene completion as an auxiliary task to enable dense object localization from sparse input data; (ii) we develop xMOD, a cross-modal training framework that integrates 2D and 3D data while always using 2D motion cues. xMOD employs a teacher-student training paradigm across the two modalities to mitigate confirmation bias by leveraging the domain gap. During inference, the model supports both RGB-only and point cloud-only inputs. Additionally, we propose a late-fusion technique tailored to our pipeline that further enhances performance when both modalities are available at inference. We evaluate our approach extensively on synthetic (TRIP-PD) and challenging real-world datasets (KITTI and Waymo). Notably, our approach yields a substantial performance improvement compared with the 2D object discovery state-of-the-art on all datasets with gains ranging from +8.7 to +15.1 in F1@50 score. The code is available at https://github.com/CEA-LIST/xMOD

Authors:Yunwei Lan, Zhigao Cui, Chang Liu, Jialun Peng, Nian Wang, Xin Luo, Dong Liu
Title: Exploiting Diffusion Prior for Real-World Image Dehazing with Unpaired Training
Abstract:
Unpaired training has been verified as one of the most effective paradigms for real scene dehazing by learning from unpaired real-world hazy and clear images. Although numerous studies have been proposed, current methods demonstrate limited generalization for various real scenes due to limited feature representation and insufficient use of real-world prior. Inspired by the strong generative capabilities of diffusion models in producing both hazy and clear images, we exploit diffusion prior for real-world image dehazing, and propose an unpaired framework named Diff-Dehazer. Specifically, we leverage diffusion prior as bijective mapping learners within the CycleGAN, a classic unpaired learning framework. Considering that physical priors contain pivotal statistics information of real-world data, we further excavate real-world knowledge by integrating physical priors into our framework. Furthermore, we introduce a new perspective for adequately leveraging the representation ability of diffusion models by removing degradation in image and text modalities, so as to improve the dehazing effect. Extensive experiments on multiple real-world datasets demonstrate the superior performance of our method. Our code https://github.com/ywxjm/Diff-Dehazer.

Authors:Michael Neri, Federica Battisti
Title: Low-Complexity Patch-based No-Reference Point Cloud Quality Metric exploiting Weighted Structure and Texture Features
Abstract:
During the compression, transmission, and rendering of point clouds, various artifacts are introduced, affecting the quality perceived by the end user. However, evaluating the impact of these distortions on the overall quality is a challenging task. This study introduces PST-PCQA, a no-reference point cloud quality metric based on a low-complexity, learning-based framework. It evaluates point cloud quality by analyzing individual patches, integrating local and global features to predict the Mean Opinion Score. In summary, the process involves extracting features from patches, combining them, and using correlation weights to predict the overall quality. This approach allows us to assess point cloud quality without relying on a reference point cloud, making it particularly useful in scenarios where reference data is unavailable. Experimental tests on three state-of-the-art datasets show good prediction capabilities of PST-PCQA, through the analysis of different feature pooling strategies and its ability to generalize across different datasets. The ablation study confirms the benefits of evaluating quality on a patch-by-patch basis. Additionally, PST-PCQA's light-weight structure, with a small number of parameters to learn, makes it well-suited for real-time applications and devices with limited computational capacity. For reproducibility purposes, we made code, model, and pretrained weights available at https://github.com/michaelneri/PST-PCQA.

Authors:Matthew Low, Arian Prabowo, Hao Xue, Flora Salim
Title: Embedding spatial context in urban traffic forecasting with contrastive pre-training
Abstract:
Urban traffic forecasting is a commonly encountered problem, with wide-ranging applications in fields such as urban planning, civil engineering and transport. In this paper, we study the enhancement of traffic forecasting with pre-training, focusing on spatio-temporal graph methods. While various machine learning methods to solve traffic forecasting problems have been explored and extensively studied, there is a gap of a more contextual approach: studying how relevant non-traffic data can improve prediction performance on traffic forecasting problems. We call this data spatial context. We introduce a novel method of combining road and traffic information through the notion of a traffic quotient graph, a quotient graph formed from road geometry and traffic sensors. We also define a way to encode this relationship in the form of a geometric encoder, pre-trained using contrastive learning methods and enhanced with OpenStreetMap data. We introduce and discuss ways to integrate this geometric encoder with existing graph neural network (GNN)-based traffic forecasting models, using a contrastive pre-training paradigm. We demonstrate the potential for this hybrid model to improve generalisation and performance with zero additional traffic data. Code for this paper is available at https://github.com/mattchrlw/forecasting-on-new-roads.

Authors:Yaxiong Chen, Junjian Hu, Chunlei Li, Zixuan Zheng, Jingliang Hu, Yilei Shi, Shengwu Xiong, Xiao Xiang Zhu, Lichao Mou
Title: One-Shot Medical Video Object Segmentation via Temporal Contrastive Memory Networks
Abstract:
Video object segmentation is crucial for the efficient analysis of complex medical video data, yet it faces significant challenges in data availability and annotation. We introduce the task of one-shot medical video object segmentation, which requires separating foreground and background pixels throughout a video given only the mask annotation of the first frame. To address this problem, we propose a temporal contrastive memory network comprising image and mask encoders to learn feature representations, a temporal contrastive memory bank that aligns embeddings from adjacent frames while pushing apart distant ones to explicitly model inter-frame relationships and stores these features, and a decoder that fuses encoded image features and memory readouts for segmentation. We also collect a diverse, multi-source medical video dataset spanning various modalities and anatomies to benchmark this task. Extensive experiments demonstrate state-of-the-art performance in segmenting both seen and unseen structures from a single exemplar, showing ability to generalize from scarce labels. This highlights the potential to alleviate annotation burdens for medical video analysis. Code is available at https://github.com/MedAITech/TCMN.

Authors:Zihan Cao, Yu Zhong, Liang-Jian Deng
Title: Taming Flow Matching with Unbalanced Optimal Transport into Fast Pansharpening
Abstract:
Pansharpening, a pivotal task in remote sensing for fusing high-resolution panchromatic and multispectral imagery, has garnered significant research interest. Recent advancements employing diffusion models based on stochastic differential equations (SDEs) have demonstrated state-of-the-art performance. However, the inherent multi-step sampling process of SDEs imposes substantial computational overhead, hindering practical deployment. While existing methods adopt efficient samplers, knowledge distillation, or retraining to reduce sampling steps (e.g., from 1,000 to fewer steps), such approaches often compromise fusion quality. In this work, we propose the Optimal Transport Flow Matching (OTFM) framework, which integrates the dual formulation of unbalanced optimal transport (UOT) to achieve one-step, high-quality pansharpening. Unlike conventional OT formulations that enforce rigid distribution alignment, UOT relaxes marginal constraints to enhance modeling flexibility, accommodating the intrinsic spectral and spatial disparities in remote sensing data. Furthermore, we incorporate task-specific regularization into the UOT objective, enhancing the robustness of the flow model. The OTFM framework enables simulation-free training and single-step inference while maintaining strict adherence to pansharpening constraints. Experimental evaluations across multiple datasets demonstrate that OTFM matches or exceeds the performance of previous regression-based models and leading diffusion-based methods while only needing one sampling step. Codes are available at https://github.com/294coder/PAN-OTFM.

Authors:Yifan Li, Shuai Yang, Jiaying Liu
Title: Language-based Image Colorization: A Benchmark and Beyond
Abstract:
Image colorization aims to bring colors back to grayscale images. Automatic image colorization methods, which requires no additional guidance, struggle to generate high-quality images due to color ambiguity, and provides limited user controllability. Thanks to the emergency of cross-modality datasets and models, language-based colorization methods are proposed to fully utilize the efficiency and flexibly of text descriptions to guide colorization. In view of the lack of a comprehensive review of language-based colorization literature, we conduct a thorough analysis and benchmarking. We first briefly summarize existing automatic colorization methods. Then, we focus on language-based methods and point out their core challenge on cross-modal alignment. We further divide these methods into two categories: one attempts to train a cross-modality network from scratch, while the other utilizes the pre-trained cross-modality model to establish the textual-visual correspondence. Based on the analyzed limitations of existing language-based methods, we propose a simple yet effective method based on distilled diffusion model. Extensive experiments demonstrate that our simple baseline can produces better results than previous complex methods with 14 times speed up. To the best of our knowledge, this is the first comprehensive review and benchmark on language-based image colorization field, providing meaningful insights for the community. The code is available at https://github.com/lyf1212/Color-Turbo.

Authors:Tingxiu Chen, Yilei Shi, Zixuan Zheng, Bingcong Yan, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou
Title: Ultrasound Image-to-Video Synthesis via Latent Dynamic Diffusion Models
Abstract:
Ultrasound video classification enables automated diagnosis and has emerged as an important research area. However, publicly available ultrasound video datasets remain scarce, hindering progress in developing effective video classification models. We propose addressing this shortage by synthesizing plausible ultrasound videos from readily available, abundant ultrasound images. To this end, we introduce a latent dynamic diffusion model (LDDM) to efficiently translate static images to dynamic sequences with realistic video characteristics. We demonstrate strong quantitative results and visually appealing synthesized videos on the BUSV benchmark. Notably, training video classification models on combinations of real and LDDM-synthesized videos substantially improves performance over using real data alone, indicating our method successfully emulates dynamics critical for discrimination. Our image-to-video approach provides an effective data augmentation solution to advance ultrasound video analysis. Code is available at https://github.com/MedAITech/U_I2V.

Authors:Xiaohao Liu, Xiaobo Xia, See-Kiong Ng, Tat-Seng Chua
Title: Continual Multimodal Contrastive Learning
Abstract:
Multimodal Contrastive Learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space. By leveraging contrastive learning across diverse modalities, large-scale multimodal data enhances representational quality. However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive. Instead, emergent multimodal data can be used to optimize existing models gradually, i.e., models are trained on a sequence of modality pair data. We define this problem as Continual Multimodal Contrastive Learning (CMCL), an underexplored yet crucial research direction at the intersection of multimodal and continual learning. In this paper, we formulate CMCL through two specialized principles of stability and plasticity. We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge. Two upper bounds provide theoretical insights on both stability and plasticity in our solution. Beyond our theoretical contributions, we conduct experiments on multiple datasets by comparing our method against advanced continual learning baselines. The empirical results further support our claims and demonstrate the efficacy of our method. Our codes are available at https://github.com/Xiaohao-Liu/CMCL.

Authors:Zixuan Zheng, Yilei Shi, Chunlei Li, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou
Title: Reducing Annotation Burden: Exploiting Image Knowledge for Few-Shot Medical Video Object Segmentation via Spatiotemporal Consistency Relearning
Abstract:
Few-shot video object segmentation aims to reduce annotation costs; however, existing methods still require abundant dense frame annotations for training, which are scarce in the medical domain. We investigate an extremely low-data regime that utilizes annotations from only a few video frames and leverages existing labeled images to minimize costly video annotations. Specifically, we propose a two-phase framework. First, we learn a few-shot segmentation model using labeled images. Subsequently, to improve performance without full supervision, we introduce a spatiotemporal consistency relearning approach on medical videos that enforces consistency between consecutive frames. Constraints are also enforced between the image model and relearning model at both feature and prediction levels. Experiments demonstrate the superiority of our approach over state-of-the-art few-shot segmentation methods. Our model bridges the gap between abundant annotated medical images and scarce, sparsely labeled medical videos to achieve strong video segmentation performance in this low data regime. Code is available at https://github.com/MedAITech/RAB.

Authors:Thanh-Son Nguyen, Hong Yang, Tzeh Yuan Neoh, Hao Zhang, Ee Yeo Keat, Basura Fernando
Title: Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering
Abstract:
We introduce PKR-QA (Procedural Knowledge Reasoning Question Answering), a new benchmark for question answering over procedural tasks that require structured reasoning. PKR-QA is constructed semi-automatically using a procedural knowledge graph (PKG), which encodes task-specific knowledge across diverse domains. The PKG is built by curating and linking information from the COIN instructional video dataset and the ontology, enriched with commonsense knowledge from ConceptNet and structured outputs from Large Language Models (LLMs), followed by manual verification. To generate question-answer pairs, we design graph traversal templates where each template is applied systematically over PKG. To enable interpretable reasoning, we propose a neurosymbolic approach called Knowledge Module Learning (KML), which learns procedural relations via neural modules and composes them for structured reasoning with LLMs. Experiments demonstrate that this paradigm improves reasoning performance on PKR-QA and enables step-by-step reasoning traces that facilitate interpretability. Code and dataset will be released soon https://github.com/LUNAProject22/KML.

Authors:Zihan Cao, Yu Zhong, Ziqi Wang, Liang-Jian Deng
Title: MMAIF: Multi-task and Multi-degradation All-in-One for Image Fusion with Language Guidance
Abstract:
Image fusion, a fundamental low-level vision task, aims to integrate multiple image sequences into a single output while preserving as much information as possible from the input. However, existing methods face several significant limitations: 1) requiring task- or dataset-specific models; 2) neglecting real-world image degradations (\textit{e.g.}, noise), which causes failure when processing degraded inputs; 3) operating in pixel space, where attention mechanisms are computationally expensive; and 4) lacking user interaction capabilities. To address these challenges, we propose a unified framework for multi-task, multi-degradation, and language-guided image fusion. Our framework includes two key components: 1) a practical degradation pipeline that simulates real-world image degradations and generates interactive prompts to guide the model; 2) an all-in-one Diffusion Transformer (DiT) operating in latent space, which fuses a clean image conditioned on both the degraded inputs and the generated prompts. Furthermore, we introduce principled modifications to the original DiT architecture to better suit the fusion task. Based on this framework, we develop two versions of the model: Regression-based and Flow Matching-based variants. Extensive qualitative and quantitative experiments demonstrate that our approach effectively addresses the aforementioned limitations and outperforms previous restoration+fusion and all-in-one pipelines. Codes are available at https://github.com/294coder/MMAIF.

Authors:Siyuan Yan, Ming Hu, Yiwen Jiang, Xieji Li, Hao Fei, Philipp Tschandl, Harald Kittler, Zongyuan Ge
Title: Derm1M: A Million-scale Vision-Language Dataset Aligned with Clinical Ontology Knowledge for Dermatology
Abstract:
The emergence of vision-language models has transformed medical AI, enabling unprecedented advances in diagnostic capability and clinical applications. However, progress in dermatology has lagged behind other medical domains due to the lack of standard image-text pairs. Existing dermatological datasets are limited in both scale and depth, offering only single-label annotations across a narrow range of diseases instead of rich textual descriptions, and lacking the crucial clinical context needed for real-world applications. To address these limitations, we present Derm1M, the first large-scale vision-language dataset for dermatology, comprising 1,029,761 image-text pairs. Built from diverse educational resources and structured around a standard ontology collaboratively developed by experts, Derm1M provides comprehensive coverage for over 390 skin conditions across four hierarchical levels and 130 clinical concepts with rich contextual information such as medical history, symptoms, and skin tone. To demonstrate Derm1M potential in advancing both AI research and clinical application, we pretrained a series of CLIP-like models, collectively called DermLIP, on this dataset. The DermLIP family significantly outperforms state-of-the-art foundation models on eight diverse datasets across multiple tasks, including zero-shot skin disease classification, clinical and artifacts concept identification, few-shot/full-shot learning, and cross-modal retrieval. Our dataset and code will be publicly available at https://github.com/SiyuanYan1/Derm1M upon acceptance.

Authors:Siwei Wen, Junyan Ye, Peilin Feng, Hengrui Kang, Zichen Wen, Yize Chen, Jiang Wu, Wenjun Wu, Conghui He, Weijia Li
Title: Spot the Fake: Large Multimodal Model-Based Synthetic Image Detection with Artifact Explanation
Abstract:
With the rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, synthetic images have become increasingly prevalent in everyday life, posing new challenges for authenticity assessment and detection. Despite the effectiveness of existing methods in evaluating image authenticity and locating forgeries, these approaches often lack human interpretability and do not fully address the growing complexity of synthetic data. To tackle these challenges, we introduce FakeVLM, a specialized large multimodal model designed for both general synthetic image and DeepFake detection tasks. FakeVLM not only excels in distinguishing real from fake images but also provides clear, natural language explanations for image artifacts, enhancing interpretability. Additionally, we present FakeClue, a comprehensive dataset containing over 100,000 images across seven categories, annotated with fine-grained artifact clues in natural language. FakeVLM demonstrates performance comparable to expert models while eliminating the need for additional classifiers, making it a robust solution for synthetic data detection. Extensive evaluations across multiple datasets confirm the superiority of FakeVLM in both authenticity classification and artifact explanation tasks, setting a new benchmark for synthetic image detection. The dataset and code will be released in: https://github.com/opendatalab/FakeVLM.

Authors:Honglin Lin, Zhuoshi Pan, Yu Li, Qizhi Pei, Xin Gao, Mengzhang Cai, Conghui He, Lijun Wu
Title: MetaLadder: Ascending Mathematical Solution Quality via Analogical-Problem Reasoning Transfer
Abstract:
Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks, leveraging Chain-of-Thought (CoT) data as a vital component in guiding answer generation. Current paradigms typically generate CoT and answers directly for a given problem, diverging from human problem-solving strategies to some extent. Humans often solve problems by recalling analogous cases and leveraging their solutions to reason about the current task. Inspired by this cognitive process, we propose \textbf{MetaLadder}, a novel framework that explicitly prompts LLMs to recall and reflect on meta-problems, those structurally or semantically analogous problems, alongside their CoT solutions before addressing the target problem. Additionally, we introduce a problem-restating mechanism to enhance the model's comprehension of the target problem by regenerating the original question, which further improves reasoning accuracy. Therefore, the model can achieve reasoning transfer from analogical problems, mimicking human-like "learning from examples" and generalization abilities. Extensive experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs' problem-solving accuracy, largely outperforming standard CoT-based methods (\textbf{10.3\%} accuracy gain) and other methods. Our code and data has been released at https://github.com/LHL3341/MetaLadder.

Authors:Henrique Morimitsu, Xiaobin Zhu, Roberto M. Cesar, Xiangyang Ji, Xu-Cheng Yin
Title: DPFlow: Adaptive Optical Flow Estimation with a Dual-Pyramid Framework
Abstract:
Optical flow estimation is essential for video processing tasks, such as restoration and action recognition. The quality of videos is constantly increasing, with current standards reaching 8K resolution. However, optical flow methods are usually designed for low resolution and do not generalize to large inputs due to their rigid architectures. They adopt downscaling or input tiling to reduce the input size, causing a loss of details and global information. There is also a lack of optical flow benchmarks to judge the actual performance of existing methods on high-resolution samples. Previous works only conducted qualitative high-resolution evaluations on hand-picked samples. This paper fills this gap in optical flow estimation in two ways. We propose DPFlow, an adaptive optical flow architecture capable of generalizing up to 8K resolution inputs while trained with only low-resolution samples. We also introduce Kubric-NK, a new benchmark for evaluating optical flow methods with input resolutions ranging from 1K to 8K. Our high-resolution evaluation pushes the boundaries of existing methods and reveals new insights about their generalization capabilities. Extensive experimental results show that DPFlow achieves state-of-the-art results on the MPI-Sintel, KITTI 2015, Spring, and other high-resolution benchmarks.

Authors:Henrique Morimitsu, Xiaobin Zhu, Roberto M. Cesar, Xiangyang Ji, Xu-Cheng Yin
Title: DPFlow: Adaptive Optical Flow Estimation with a Dual-Pyramid Framework
Abstract:
Optical flow estimation is essential for video processing tasks, such as restoration and action recognition. The quality of videos is constantly increasing, with current standards reaching 8K resolution. However, optical flow methods are usually designed for low resolution and do not generalize to large inputs due to their rigid architectures. They adopt downscaling or input tiling to reduce the input size, causing a loss of details and global information. There is also a lack of optical flow benchmarks to judge the actual performance of existing methods on high-resolution samples. Previous works only conducted qualitative high-resolution evaluations on hand-picked samples. This paper fills this gap in optical flow estimation in two ways. We propose DPFlow, an adaptive optical flow architecture capable of generalizing up to 8K resolution inputs while trained with only low-resolution samples. We also introduce Kubric-NK, a new benchmark for evaluating optical flow methods with input resolutions ranging from 1K to 8K. Our high-resolution evaluation pushes the boundaries of existing methods and reveals new insights about their generalization capabilities. Extensive experimental results show that DPFlow achieves state-of-the-art results on the MPI-Sintel, KITTI 2015, Spring, and other high-resolution benchmarks.

Authors:Yuhang Liu, Wenjie Zhao, Yunhui Guo
Title: H2ST: Hierarchical Two-Sample Tests for Continual Out-of-Distribution Detection
Abstract:
Task Incremental Learning (TIL) is a specialized form of Continual Learning (CL) in which a model incrementally learns from non-stationary data streams. Existing TIL methodologies operate under the closed-world assumption, presuming that incoming data remains in-distribution (ID). However, in an open-world setting, incoming samples may originate from out-of-distribution (OOD) sources, with their task identities inherently unknown. Continually detecting OOD samples presents several challenges for current OOD detection methods: reliance on model outputs leads to excessive dependence on model performance, selecting suitable thresholds is difficult, hindering real-world deployment, and binary ID/OOD classification fails to provide task-level identification. To address these issues, we propose a novel continual OOD detection method called the Hierarchical Two-sample Tests (H2ST). H2ST eliminates the need for threshold selection through hypothesis testing and utilizes feature maps to better exploit model capabilities without excessive dependence on model performance. The proposed hierarchical architecture enables task-level detection with superior performance and lower overhead compared to non-hierarchical classifier two-sample tests. Extensive experiments and analysis validate the effectiveness of H2ST in open-world TIL scenarios and its superiority to the existing methods. Code is available at \href{https://github.com/YuhangLiuu/H2ST}{https://github.com/YuhangLiuu/H2ST}.

Authors:Jeff Jewett, Sandhya Saisubramanian
Title: Learning with Expert Abstractions for Efficient Multi-Task Continuous Control
Abstract:
Decision-making in complex, continuous multi-task environments is often hindered by the difficulty of obtaining accurate models for planning and the inefficiency of learning purely from trial and error. While precise environment dynamics may be hard to specify, human experts can often provide high-fidelity abstractions that capture the essential high-level structure of a task and user preferences in the target environment. Existing hierarchical approaches often target discrete settings and do not generalize across tasks. We propose a hierarchical reinforcement learning approach that addresses these limitations by dynamically planning over the expert-specified abstraction to generate subgoals to learn a goal-conditioned policy. To overcome the challenges of learning under sparse rewards, we shape the reward based on the optimal state value in the abstract model. This structured decision-making process enhances sample efficiency and facilitates zero-shot generalization. Our empirical evaluation on a suite of procedurally generated continuous control environments demonstrates that our approach outperforms existing hierarchical reinforcement learning methods in terms of sample efficiency, task completion rate, scalability to complex tasks, and generalization to novel scenarios.

Authors:Fatemeh Dehrouyeh, Ibrahim Shaer, Soodeh Nikan, Firouz Badrkhani Ajaei, Abdallah Shami
Title: Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure
Abstract:
With the growing need for real-time processing on IoT devices, optimizing machine learning (ML) models' size, latency, and computational efficiency is essential. This paper investigates a pruning method for anomaly detection in resource-constrained environments, specifically targeting Electric Vehicle Charging Infrastructure (EVCI). Using the CICEVSE2024 dataset, we trained and optimized three models-Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and XGBoost-through hyperparameter tuning with Optuna, further refining them using SHapley Additive exPlanations (SHAP)-based feature selection (FS) and unstructured pruning techniques. The optimized models achieved significant reductions in model size and inference times, with only a marginal impact on their performance. Notably, our findings indicate that, in the context of EVCI, pruning and FS can enhance computational efficiency while retaining critical anomaly detection capabilities.

Authors:Jake Fawkes, Michael O'Riordan, Athanasios Vlontzos, Oriol Corcoll, Ciarán Mark Gilligan-Lee
Title: The Hardness of Validating Observational Studies with Experimental Data
Abstract:
Observational data is often readily available in large quantities, but can lead to biased causal effect estimates due to the presence of unobserved confounding. Recent works attempt to remove this bias by supplementing observational data with experimental data, which, when available, is typically on a smaller scale due to the time and cost involved in running a randomised controlled trial. In this work, we prove a theorem that places fundamental limits on this ``best of both worlds'' approach. Using the framework of impossible inference, we show that although it is possible to use experimental data to \emph{falsify} causal effect estimates from observational data, in general it is not possible to \emph{validate} such estimates. Our theorem proves that while experimental data can be used to detect bias in observational studies, without additional assumptions on the smoothness of the correction function, it can not be used to remove it. We provide a practical example of such an assumption, developing a novel Gaussian Process based approach to construct intervals which contain the true treatment effect with high probability, both inside and outside of the support of the experimental data. We demonstrate our methodology on both simulated and semi-synthetic datasets and make the \href{https://github.com/Jakefawkes/Obs_and_exp_data}{code available}.

Authors:Akram Khatami-Rizi, Ahmad Mahmoudi-Aznaveh
Title: Involution and BSConv Multi-Depth Distillation Network for Lightweight Image Super-Resolution
Abstract:
Single-image super-resolution (SISR) is a fundamental problem in computer vision that aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. Although convolutional neural networks (CNNs) have achieved substantial advancements, deeper architectures often introduce excessive parameters, higher memory usage, and computational cost, limiting their applicability on resource-constrained devices. Recent research has thus focused on lightweight architectures that preserve accuracy while reducing complexity. This paper presents the Involution and BSConv Multi-Depth Distillation Network (IBMDN), a lightweight and effective architecture for SISR. The proposed IBMDN comprises Involution and BSConv Multi-Depth Distillation Blocks (IBMDB) and a Contrast and High-Frequency Attention Block (CHFAB). IBMDB employs varying combinations of Involution and BSConv at multiple depths to perform efficient feature extraction while minimizing computational complexity. CHFAB, a lightweight self-attention mechanism, focuses on extracting high-frequency and contrast information to enhance perceptual quality in the reconstructed images. The flexible design of IBMDB enables it to be seamlessly integrated into diverse SISR frameworks, including information distillation, transformer-based, and GAN-based models. Extensive experiments demonstrate that incorporating IBMDB significantly reduces memory usage, parameters, and floating-point operations (FLOPs), while achieving improvements in both pixel-wise accuracy and visual quality. The source code is available at: https://github.com/akramkhatami/IBMDN.

Authors:Sebastian Zhao, Alan Zhu, Hussein Mozannar, David Sontag, Ameet Talwalkar, Valerie Chen
Title: CodingGenie: A Proactive LLM-Powered Programming Assistant
Abstract:
While developers increasingly adopt tools powered by large language models (LLMs) in day-to-day workflows, these tools still require explicit user invocation. To seamlessly integrate LLM capabilities to a developer's workflow, we introduce CodingGenie, a proactive assistant integrated into the code editor. CodingGenie autonomously provides suggestions, ranging from bug fixing to unit testing, based on the current code context and allows users to customize suggestions by providing a task description and selecting what suggestions are shown. We demonstrate multiple use cases to show how proactive suggestions from CodingGenie can improve developer experience, and also analyze the cost of adding proactivity. We believe this open-source tool will enable further research into proactive assistants. CodingGenie is open-sourced at https://github.com/sebzhao/CodingGenie/ and video demos are available at https://sebzhao.github.io/CodingGenie/.

Authors:Chen Gong, Kecen Li, Zinan Lin, Tianhao Wang
Title: DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Abstract:
Differentially private (DP) image synthesis aims to generate artificial images that retain the properties of sensitive images while protecting the privacy of individual images within the dataset. Despite recent advancements, we find that inconsistent--and sometimes flawed--evaluation protocols have been applied across studies. This not only impedes the understanding of current methods but also hinders future advancements. To address the issue, this paper introduces DPImageBench for DP image synthesis, with thoughtful design across several dimensions: (1) Methods. We study eleven prominent methods and systematically characterize each based on model architecture, pretraining strategy, and privacy mechanism. (2) Evaluation. We include nine datasets and seven fidelity and utility metrics to thoroughly assess them. Notably, we find that a common practice of selecting downstream classifiers based on the highest accuracy on the sensitive test set not only violates DP but also overestimates the utility scores. DPImageBench corrects for these mistakes. (3) Platform. Despite the methods and evaluation protocols, DPImageBench provides a standardized interface that accommodates current and future implementations within a unified framework. With DPImageBench, we have several noteworthy findings. For example, contrary to the common wisdom that pretraining on public image datasets is usually beneficial, we find that the distributional similarity between pretraining and sensitive images significantly impacts the performance of the synthetic images and does not always yield improvements. In addition, adding noise to low-dimensional features, such as the high-level characteristics of sensitive images, is less affected by the privacy budget compared to adding noise to high-dimensional features, like weight gradients. The former methods perform better than the latter under a low privacy budget.

Authors:Chen Gong, Kecen Li, Zinan Lin, Tianhao Wang
Title: DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Abstract:
Differentially private (DP) image synthesis aims to generate artificial images that retain the properties of sensitive images while protecting the privacy of individual images within the dataset. Despite recent advancements, we find that inconsistent--and sometimes flawed--evaluation protocols have been applied across studies. This not only impedes the understanding of current methods but also hinders future advancements. To address the issue, this paper introduces DPImageBench for DP image synthesis, with thoughtful design across several dimensions: (1) Methods. We study eleven prominent methods and systematically characterize each based on model architecture, pretraining strategy, and privacy mechanism. (2) Evaluation. We include nine datasets and seven fidelity and utility metrics to thoroughly assess them. Notably, we find that a common practice of selecting downstream classifiers based on the highest accuracy on the sensitive test set not only violates DP but also overestimates the utility scores. DPImageBench corrects for these mistakes. (3) Platform. Despite the methods and evaluation protocols, DPImageBench provides a standardized interface that accommodates current and future implementations within a unified framework. With DPImageBench, we have several noteworthy findings. For example, contrary to the common wisdom that pretraining on public image datasets is usually beneficial, we find that the distributional similarity between pretraining and sensitive images significantly impacts the performance of the synthetic images and does not always yield improvements. In addition, adding noise to low-dimensional features, such as the high-level characteristics of sensitive images, is less affected by the privacy budget compared to adding noise to high-dimensional features, like weight gradients. The former methods perform better than the latter under a low privacy budget.

Authors:Yicheng Fu, Zikui Wang, Liuxin Yang, Meiqing Huo, Zhongdongming Dai
Title: ConQuer: A Framework for Concept-Based Quiz Generation
Abstract:
Quizzes play a crucial role in education by reinforcing students' understanding of key concepts and encouraging self-directed exploration. However, compiling high-quality quizzes can be challenging and require deep expertise and insight into specific subject matter. Although LLMs have greatly enhanced the efficiency of quiz generation, concerns remain regarding the quality of these AI-generated quizzes and their educational impact on students. To address these issues, we introduce ConQuer, a concept-based quiz generation framework that leverages external knowledge sources. We employ comprehensive evaluation dimensions to assess the quality of the generated quizzes, using LLMs as judges. Our experiment results demonstrate a 4.8% improvement in evaluation scores and a 77.52% win rate in pairwise comparisons against baseline quiz sets. Ablation studies further underscore the effectiveness of each component in our framework. Code available at https://github.com/sofyc/ConQuer.

Authors:Yi Liao, Yongsheng Gao, Weichuan Zhang
Title: Dynamic Accumulated Attention Map for Interpreting Evolution of Decision-Making in Vision Transformer
Abstract:
Various Vision Transformer (ViT) models have been widely used for image recognition tasks. However, existing visual explanation methods can not display the attention flow hidden inside the inner structure of ViT models, which explains how the final attention regions are formed inside a ViT for its decision-making. In this paper, a novel visual explanation approach, Dynamic Accumulated Attention Map (DAAM), is proposed to provide a tool that can visualize, for the first time, the attention flow from the top to the bottom through ViT networks. To this end, a novel decomposition module is proposed to construct and store the spatial feature information by unlocking the [class] token generated by the self-attention module of each ViT block. The module can also obtain the channel importance coefficients by decomposing the classification score for supervised ViT models. Because of the lack of classification score in self-supervised ViT models, we propose dimension-wise importance weights to compute the channel importance coefficients. Such spatial features are linearly combined with the corresponding channel importance coefficients, forming the attention map for each block. The dynamic attention flow is revealed by block-wisely accumulating each attention map. The contribution of this work focuses on visualizing the evolution dynamic of the decision-making attention for any intermediate block inside a ViT model by proposing a novel decomposition module and dimension-wise importance weights. The quantitative and qualitative analysis consistently validate the effectiveness and superior capacity of the proposed DAAM for not only interpreting ViT models with the fully-connected layers as the classifier but also self-supervised ViT models. The code is available at https://github.com/ly9802/DynamicAccumulatedAttentionMap.

Authors:Merkourios Simos, Alberto Silvio Chiappa, Alexander Mathis
Title: Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control
Abstract:
How do humans move? The quest to understand human motion has broad applications in numerous fields, ranging from computer animation and motion synthesis to neuroscience, human prosthetics and rehabilitation. Although advances in reinforcement learning (RL) have produced impressive results in capturing human motion using simplified humanoids, controlling physiologically accurate models of the body remains an open challenge. In this work, we present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control. Using a musculoskeletal model of the lower body with 80 muscle actuators and 20 DoF, we demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data, is controllable by natural language through pre-trained text-to-motion generative models, and can be fine-tuned to carry out high-level tasks such as target goal reaching. Importantly, KINESIS generates muscle activity patterns that correlate well with human EMG activity. The physiological plausibility makes KINESIS a promising model for tackling challenging problems in human motor control theory, which we highlight by investigating Bernstein's redundancy problem in the context of locomotion. Code, videos and benchmarks will be available at https://github.com/amathislab/Kinesis.

Authors:Shuo Xing, Zezhou Sun, Shuangyu Xie, Kaiyuan Chen, Yanjia Huang, Yuping Wang, Jiachen Li, Dezhen Song, Zhengzhong Tu
Title: Can Large Vision Language Models Read Maps Like a Human?
Abstract:
In this paper, we introduce MapBench-the first dataset specifically designed for human-readable, pixel-based map-based outdoor navigation, curated from complex path finding scenarios. MapBench comprises over 1600 pixel space map path finding problems from 100 diverse maps. In MapBench, LVLMs generate language-based navigation instructions given a map image and a query with beginning and end landmarks. For each map, MapBench provides Map Space Scene Graph (MSSG) as an indexing data structure to convert between natural language and evaluate LVLM-generated results. We demonstrate that MapBench significantly challenges state-of-the-art LVLMs both zero-shot prompting and a Chain-of-Thought (CoT) augmented reasoning framework that decomposes map navigation into sequential cognitive processes. Our evaluation of both open-source and closed-source LVLMs underscores the substantial difficulty posed by MapBench, revealing critical limitations in their spatial reasoning and structured decision-making capabilities. We release all the code and dataset in https://github.com/taco-group/MapBench.

Authors:Sara Sarto, Marcella Cornia, Rita Cucchiara
Title: Image Captioning Evaluation in the Age of Multimodal LLMs: Challenges and Future Perspectives
Abstract:
The evaluation of machine-generated image captions is a complex and evolving challenge. With the advent of Multimodal Large Language Models (MLLMs), image captioning has become a core task, increasing the need for robust and reliable evaluation metrics. This survey provides a comprehensive overview of advancements in image captioning evaluation, analyzing the evolution, strengths, and limitations of existing metrics. We assess these metrics across multiple dimensions, including correlation with human judgment, ranking accuracy, and sensitivity to hallucinations. Additionally, we explore the challenges posed by the longer and more detailed captions generated by MLLMs and examine the adaptability of current metrics to these stylistic variations. Our analysis highlights some limitations of standard evaluation approaches and suggests promising directions for future research in image captioning assessment.

Authors:Justus Westerhoff, Golzar Atefi, Mario Koddenbrock, Alexei Figueroa, Alexander Löser, Erik Rodner, Felix A. Gers
Title: Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation
Abstract:
The capacity of a foundation model allows for adaptation to new downstream tasks. Weight imprinting is a universal and efficient method to fulfill this purpose. It has been reinvented several times, but it has not been systematically studied. In this paper, we propose a framework for imprinting, identifying three main components: generation, normalization, and aggregation. This allows us to conduct an in-depth analysis of imprinting and a comparison of the existing work. We reveal the benefits of representing novel data with multiple proxies in the generation step and show the importance of proper normalization. We determine proxies through clustering and propose a novel variant of imprinting that outperforms previous work. We motivate this by the neural collapse phenomenon -- an important connection that we can draw for the first time. Our results show an increase of up to 4\% in challenging scenarios with complex data distributions for new classes. Finally, we publicly release our code at https://github.com/DATEXIS/multi-imprinting/.

Authors:Guowei Wang, Changxing Ding
Title: Effortless Active Labeling for Long-Term Test-Time Adaptation
Abstract:
Long-term test-time adaptation (TTA) is a challenging task due to error accumulation. Recent approaches tackle this issue by actively labeling a small proportion of samples in each batch, yet the annotation burden quickly grows as the batch number increases. In this paper, we investigate how to achieve effortless active labeling so that a maximum of one sample is selected for annotation in each batch. First, we annotate the most valuable sample in each batch based on the single-step optimization perspective in the TTA context. In this scenario, the samples that border between the source- and target-domain data distributions are considered the most feasible for the model to learn in one iteration. Then, we introduce an efficient strategy to identify these samples using feature perturbation. Second, we discover that the gradient magnitudes produced by the annotated and unannotated samples have significant variations. Therefore, we propose balancing their impact on model optimization using two dynamic weights. Extensive experiments on the popular ImageNet-C, -R, -K, -A and PACS databases demonstrate that our approach consistently outperforms state-of-the-art methods with significantly lower annotation costs.

Authors:Arjun V Sudhakar, Hadi Nekoei, Mathieu Reymond, Miao Liu, Janarthanan Rajendran, Sarath Chandar
Title: A Generalist Hanabi Agent
Abstract:
Traditional multi-agent reinforcement learning (MARL) systems can develop cooperative strategies through repeated interactions. However, these systems are unable to perform well on any other setting than the one they have been trained on, and struggle to successfully cooperate with unfamiliar collaborators. This is particularly visible in the Hanabi benchmark, a popular 2-to-5 player cooperative card-game which requires complex reasoning and precise assistance to other agents. Current MARL agents for Hanabi can only learn one specific game-setting (e.g., 2-player games), and play with the same algorithmic agents. This is in stark contrast to humans, who can quickly adjust their strategies to work with unfamiliar partners or situations. In this paper, we introduce Recurrent Replay Relevance Distributed DQN (R3D2), a generalist agent for Hanabi, designed to overcome these limitations. We reformulate the task using text, as language has been shown to improve transfer. We then propose a distributed MARL algorithm that copes with the resulting dynamic observation- and action-space. In doing so, our agent is the first that can play all game settings concurrently, and extend strategies learned from one setting to other ones. As a consequence, our agent also demonstrates the ability to collaborate with different algorithmic agents -- agents that are themselves unable to do so. The implementation code is available at: $\href{https://github.com/chandar-lab/R3D2-A-Generalist-Hanabi-Agent}{R3D2-A-Generalist-Hanabi-Agent}$

Authors:Kasra Borazjani, Payam Abdisarabshali, Naji Khosravan, Seyyedali Hosseinalipour
Title: Redefining non-IID Data in Federated Learning for Computer Vision Tasks: Migrating from Labels to Embeddings for Task-Specific Data Distributions
Abstract:
Federated Learning (FL) represents a paradigm shift in distributed machine learning (ML), enabling clients to train models collaboratively while keeping their raw data private. This paradigm shift from traditional centralized ML introduces challenges due to the non-iid (non-independent and identically distributed) nature of data across clients, significantly impacting FL's performance. Existing literature, predominantly model data heterogeneity by imposing label distribution skew across clients. In this paper, we show that label distribution skew fails to fully capture the real-world data heterogeneity among clients in computer vision tasks beyond classification. Subsequently, we demonstrate that current approaches overestimate FL's performance by relying on label/class distribution skew, exposing an overlooked gap in the literature. By utilizing pre-trained deep neural networks to extract task-specific data embeddings, we define task-specific data heterogeneity through the lens of each vision task and introduce a new level of data heterogeneity called embedding-based data heterogeneity. Our methodology involves clustering data points based on embeddings and distributing them among clients using the Dirichlet distribution. Through extensive experiments, we evaluate the performance of different FL methods under our revamped notion of data heterogeneity, introducing new benchmark performance measures to the literature. We further unveil a series of open research directions that can be pursued.

Authors:Huaqiu Li, Xiaowan Hu, Haoqian Wang
Title: Interpretable Unsupervised Joint Denoising and Enhancement for Real-World low-light Scenarios
Abstract:
Real-world low-light images often suffer from complex degradations such as local overexposure, low brightness, noise, and uneven illumination. Supervised methods tend to overfit to specific scenarios, while unsupervised methods, though better at generalization, struggle to model these degradations due to the lack of reference images. To address this issue, we propose an interpretable, zero-reference joint denoising and low-light enhancement framework tailored for real-world scenarios. Our method derives a training strategy based on paired sub-images with varying illumination and noise levels, grounded in physical imaging principles and retinex theory. Additionally, we leverage the Discrete Cosine Transform (DCT) to perform frequency domain decomposition in the sRGB space, and introduce an implicit-guided hybrid representation strategy that effectively separates intricate compounded degradations. In the backbone network design, we develop retinal decomposition network guided by implicit degradation representation mechanisms. Extensive experiments demonstrate the superiority of our method. Code will be available at https://github.com/huaqlili/unsupervised-light-enhance-ICLR2025.

Authors:Tao Yu, Yi-Fan Zhang, Chaoyou Fu, Junkang Wu, Jinda Lu, Kun Wang, Xingyu Lu, Yunhang Shen, Guibin Zhang, Dingjie Song, Yibo Yan, Tianlong Xu, Qingsong Wen, Zhang Zhang, Yan Huang, Liang Wang, Tieniu Tan
Title: Aligning Multimodal LLM with Human Preference: A Survey
Abstract:
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.

Authors:Ayesha Ishaq, Jean Lahoud, Fahad Shahbaz Khan, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer
Title: Tracking Meets Large Multimodal Models for Driving Scenario Understanding
Abstract:
Large Multimodal Models (LMMs) have recently gained prominence in autonomous driving research, showcasing promising capabilities across various emerging benchmarks. LMMs specifically designed for this domain have demonstrated effective perception, planning, and prediction skills. However, many of these methods underutilize 3D spatial and temporal elements, relying mainly on image data. As a result, their effectiveness in dynamic driving environments is limited. We propose to integrate tracking information as an additional input to recover 3D spatial and temporal details that are not effectively captured in the images. We introduce a novel approach for embedding this tracking information into LMMs to enhance their spatiotemporal understanding of driving scenarios. By incorporating 3D tracking data through a track encoder, we enrich visual queries with crucial spatial and temporal cues while avoiding the computational overhead associated with processing lengthy video sequences or extensive 3D inputs. Moreover, we employ a self-supervised approach to pretrain the tracking encoder to provide LMMs with additional contextual information, significantly improving their performance in perception, planning, and prediction tasks for autonomous driving. Experimental results demonstrate the effectiveness of our approach, with a gain of 9.5% in accuracy, an increase of 7.04 points in the ChatGPT score, and 9.4% increase in the overall score over baseline models on DriveLM-nuScenes benchmark, along with a 3.7% final score improvement on DriveLM-CARLA. Our code is available at https://github.com/mbzuai-oryx/TrackingMeetsLMM

Authors:Jiacheng Guo, Yue Wu, Jiahao Qiu, Kaixuan Huang, Xinzhe Juan, Ling Yang, Mengdi Wang
Title: Temporal Consistency for LLM Reasoning Process Error Identification
Abstract:
Verification is crucial for effective mathematical reasoning. We present a new temporal consistency method where verifiers iteratively refine their judgments based on the previous assessment. Unlike one-round verification or multi-model debate approaches, our method leverages consistency in a sequence of self-reflection actions to improve verification accuracy. Empirical evaluations across diverse mathematical process error identification benchmarks (Mathcheck, ProcessBench, and PRM800K) show consistent performance improvements over baseline methods. When applied to the recent DeepSeek R1 distilled models, our method demonstrates strong performance, enabling 7B/8B distilled models to outperform all 70B/72B models and GPT-4o on ProcessBench. Notably, the distilled 14B model with our method achieves performance comparable to Deepseek-R1. Our codes are available at https://github.com/jcguo123/Temporal-Consistency

Authors:NVIDIA, :, Hassan Abu Alhaija, Jose Alvarez, Maciej Bala, Tiffany Cai, Tianshi Cao, Liz Cha, Joshua Chen, Mike Chen, Francesco Ferroni, Sanja Fidler, Dieter Fox, Yunhao Ge, Jinwei Gu, Ali Hassani, Michael Isaev, Pooya Jannaty, Shiyi Lan, Tobias Lasser, Huan Ling, Ming-Yu Liu, Xian Liu, Yifan Lu, Alice Luo, Qianli Ma, Hanzi Mao, Fabio Ramos, Xuanchi Ren, Tianchang Shen, Xinglong Sun, Shitao Tang, Ting-Chun Wang, Jay Wu, Jiashu Xu, Stella Xu, Kevin Xie, Yuchong Ye, Xiaodong Yang, Xiaohui Zeng, Yu Zeng
Title: Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
Abstract:
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.

Authors:Fardin Saad, Pradeep K. Murukannaiah, Munindar P. Singh
Title: Gricean Norms as a Basis for Effective Collaboration
Abstract:
Effective human-AI collaboration hinges not only on the AI agent's ability to follow explicit instructions but also on its capacity to navigate ambiguity, incompleteness, invalidity, and irrelevance in communication. Gricean conversational and inference norms facilitate collaboration by aligning unclear instructions with cooperative principles. We propose a normative framework that integrates Gricean norms and cognitive frameworks -- common ground, relevance theory, and theory of mind -- into large language model (LLM) based agents. The normative framework adopts the Gricean maxims of quantity, quality, relation, and manner, along with inference, as Gricean norms to interpret unclear instructions, which are: ambiguous, incomplete, invalid, or irrelevant. Within this framework, we introduce Lamoids, GPT-4 powered agents designed to collaborate with humans. To assess the influence of Gricean norms in human-AI collaboration, we evaluate two versions of a Lamoid: one with norms and one without. In our experiments, a Lamoid collaborates with a human to achieve shared goals in a grid world (Doors, Keys, and Gems) by interpreting both clear and unclear natural language instructions. Our results reveal that the Lamoid with Gricean norms achieves higher task accuracy and generates clearer, more accurate, and contextually relevant responses than the Lamoid without norms. This improvement stems from the normative framework, which enhances the agent's pragmatic reasoning, fostering effective human-AI collaboration and enabling context-aware communication in LLM-based agents.

Authors:Xinyu Fang, Zhijian Chen, Kai Lan, Lixin Ma, Shengyuan Ding, Yingji Liang, Xiangyu Zhao, Farong Wen, Zicheng Zhang, Guofeng Zhang, Haodong Duan, Kai Chen, Dahua Lin
Title: Creation-MMBench: Assessing Context-Aware Creative Intelligence in MLLM
Abstract:
Creativity is a fundamental aspect of intelligence, involving the ability to generate novel and appropriate solutions across diverse contexts. While Large Language Models (LLMs) have been extensively evaluated for their creative capabilities, the assessment of Multimodal Large Language Models (MLLMs) in this domain remains largely unexplored. To address this gap, we introduce Creation-MMBench, a multimodal benchmark specifically designed to evaluate the creative capabilities of MLLMs in real-world, image-based tasks. The benchmark comprises 765 test cases spanning 51 fine-grained tasks. To ensure rigorous evaluation, we define instance-specific evaluation criteria for each test case, guiding the assessment of both general response quality and factual consistency with visual inputs. Experimental results reveal that current open-source MLLMs significantly underperform compared to proprietary models in creative tasks. Furthermore, our analysis demonstrates that visual fine-tuning can negatively impact the base LLM's creative abilities. Creation-MMBench provides valuable insights for advancing MLLM creativity and establishes a foundation for future improvements in multimodal generative intelligence. Full data and evaluation code is released on https://github.com/open-compass/Creation-MMBench.

Authors:Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin, Jiaxing Liu, Janna Lu, William Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan Wilce, Johan S. Wind, Tianyi Wu, Daniel Wuttke, Christian Zhou-Zheng
Title: RWKV-7 "Goose" with Expressive Dynamic State Evolution
Abstract:
We present RWKV-7 "Goose", a new sequence modeling architecture with constant memory usage and constant inference time per token. Despite being trained on dramatically fewer tokens than other top models, our 2.9 billion parameter language model achieves a new 3B SoTA on multilingual tasks and matches the current 3B SoTA on English language downstream performance. RWKV-7 introduces a newly generalized formulation of the delta rule with vector-valued gating and in-context learning rates, as well as a relaxed value replacement rule. We show that RWKV-7 can perform state tracking and recognize all regular languages, while retaining parallelizability of training. This exceeds the capabilities of Transformers under standard complexity conjectures, which are limited to $\mathsf{TC}^0$. To demonstrate RWKV-7's language modeling capability, we also present an extended open source 3.1 trillion token multilingual corpus, and train four RWKV-7 models ranging from 0.19 billion to 2.9 billion parameters on this dataset. To foster openness, reproduction, and adoption, we release our models and dataset component listing at https://huggingface.co/RWKV, and our training and inference code at https://github.com/RWKV/RWKV-LM all under the Apache 2.0 License.

Authors:Aleksandra Eliseeva, Alexander Kovrigin, Ilia Kholkin, Egor Bogomolov, Yaroslav Zharov
Title: EnvBench: A Benchmark for Automated Environment Setup
Abstract:
Recent advances in Large Language Models (LLMs) have enabled researchers to focus on practical repository-level tasks in software engineering domain. In this work, we consider a cornerstone task for automating work with software repositories-environment setup, i.e., a task of configuring a repository-specific development environment on a system. Existing studies on environment setup introduce innovative agentic strategies, but their evaluation is often based on small datasets that may not capture the full range of configuration challenges encountered in practice. To address this gap, we introduce a comprehensive environment setup benchmark EnvBench. It encompasses 329 Python and 665 JVM-based (Java, Kotlin) repositories, with a focus on repositories that present genuine configuration challenges, excluding projects that can be fully configured by simple deterministic scripts. To enable further benchmark extension and usage for model tuning, we implement two automatic metrics: a static analysis check for missing imports in Python and a compilation check for JVM languages. We demonstrate the applicability of our benchmark by evaluating three environment setup approaches, including a simple zero-shot baseline and two agentic workflows, that we test with two powerful LLM backbones, GPT-4o and GPT-4o-mini. The best approach manages to successfully configure 6.69% repositories for Python and 29.47% repositories for JVM, suggesting that EnvBench remains challenging for current approaches. Our benchmark suite is publicly available at https://github.com/JetBrains-Research/EnvBench. The dataset and experiment trajectories are available at https://jb.gg/envbench.

Authors:Vlad Hondru, Eduard Hogea, Darian Onchis, Radu Tudor Ionescu
Title: ExDDV: A New Dataset for Explainable Deepfake Detection in Video
Abstract:
The ever growing realism and quality of generated videos makes it increasingly harder for humans to spot deepfake content, who need to rely more and more on automatic deepfake detectors. However, deepfake detectors are also prone to errors, and their decisions are not explainable, leaving humans vulnerable to deepfake-based fraud and misinformation. To this end, we introduce ExDDV, the first dataset and benchmark for Explainable Deepfake Detection in Video. ExDDV comprises around 5.4K real and deepfake videos that are manually annotated with text descriptions (to explain the artifacts) and clicks (to point out the artifacts). We evaluate a number of vision-language models on ExDDV, performing experiments with various fine-tuning and in-context learning strategies. Our results show that text and click supervision are both required to develop robust explainable models for deepfake videos, which are able to localize and describe the observed artifacts. Our novel dataset and code to reproduce the results are available at https://github.com/vladhondru25/ExDDV.

Authors:Merijn Floren, Jean-Philippe Noël, Jan Swevers
Title: Inference and Learning of Nonlinear LFR State-Space Models
Abstract:
Estimating the parameters of nonlinear block-oriented state-space models from input-output data typically involves solving a highly non-convex optimization problem, which is prone to poor local minima and slow convergence. This paper presents a computationally efficient initialization method for nonlinear linear fractional representation (NL-LFR) models using periodic data. By first inferring the latent signals and subsequently estimating the model parameters, the approach generates initial estimates for use in a later nonlinear optimization step. The proposed method shows robustness against poor local minima, and achieves a twofold error reduction compared to the state-of-the-art on a challenging benchmark dataset.

Authors:Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Sepp Hochreiter
Title: Tiled Flash Linear Attention: More Efficient Linear RNN and xLSTM Kernels
Abstract:
Linear RNNs with gating recently demonstrated competitive performance compared to Transformers in language modeling. Although their linear compute scaling in sequence length offers theoretical runtime advantages over Transformers, realizing these benefits in practice requires optimized custom kernels, as Transformers rely on the highly efficient Flash Attention kernels (Dao, 2024). Leveraging the chunkwise-parallel formulation of linear RNNs, Flash Linear Attention (FLA) (Yang & Zhang, 2024) shows that linear RNN kernels are faster than Flash Attention, by parallelizing over chunks of the input sequence. However, since the chunk size of FLA is limited, many intermediate states must be materialized in GPU memory. This leads to low arithmetic intensity and causes high memory consumption and IO cost, especially for long-context pre-training. In this work, we present Tiled Flash Linear Attention (TFLA), a novel kernel algorithm for linear RNNs, that enables arbitrary large chunk sizes and high arithmetic intensity by introducing an additional level of sequence parallelization within each chunk. First, we apply TFLA to the xLSTM with matrix memory, the mLSTM (Beck et al., 2024). Second, we propose an mLSTM variant with sigmoid input gate and reduced computation for even faster kernel runtimes at equal language modeling performance. In our speed benchmarks, we show that our new mLSTM kernels based on TFLA outperform highly optimized Flash Attention, Linear Attention and Mamba kernels, setting a new state of the art for efficient long-context sequence modeling primitives.

Authors:Sai Coumar, Zachary Kingston
Title: Evaluating Machine Learning Approaches for ASCII Art Generation
Abstract:
Generating structured ASCII art using computational techniques demands a careful interplay between aesthetic representation and computational precision, requiring models that can effectively translate visual information into symbolic text characters. Although Convolutional Neural Networks (CNNs) have shown promise in this domain, the comparative performance of deep learning architectures and classical machine learning methods remains unexplored. This paper explores the application of contemporary ML and DL methods to generate structured ASCII art, focusing on three key criteria: fidelity, character classification accuracy, and output quality. We investigate deep learning architectures, including Multilayer Perceptrons (MLPs), ResNet, and MobileNetV2, alongside classical approaches such as Random Forests, Support Vector Machines (SVMs) and k-Nearest Neighbors (k-NN), trained on an augmented synthetic dataset of ASCII characters. Our results show that complex neural network architectures often fall short in producing high-quality ASCII art, whereas classical machine learning classifiers, despite their simplicity, achieve performance similar to CNNs. Our findings highlight the strength of classical methods in bridging model simplicity with output quality, offering new insights into ASCII art synthesis and machine learning on image data with low dimensionality.

Authors:Yali Bi, Enyu Che, Yinan Chen, Yuanpeng He, Jingwei Qu
Title: Multi-Prototype Embedding Refinement for Semi-Supervised Medical Image Segmentation
Abstract:
Medical image segmentation aims to identify anatomical structures at the voxel-level. Segmentation accuracy relies on distinguishing voxel differences. Compared to advancements achieved in studies of the inter-class variance, the intra-class variance receives less attention. Moreover, traditional linear classifiers, limited by a single learnable weight per class, struggle to capture this finer distinction. To address the above challenges, we propose a Multi-Prototype-based Embedding Refinement method for semi-supervised medical image segmentation. Specifically, we design a multi-prototype-based classification strategy, rethinking the segmentation from the perspective of structural relationships between voxel embeddings. The intra-class variations are explored by clustering voxels along the distribution of multiple prototypes in each class. Next, we introduce a consistency constraint to alleviate the limitation of linear classifiers. This constraint integrates different classification granularities from a linear classifier and the proposed prototype-based classifier. In the thorough evaluation on two popular benchmarks, our method achieves superior performance compared with state-of-the-art methods. Code is available at https://github.com/Briley-byl123/MPER.

Authors:Chenxiao Yang, Nathan Srebro, David McAllester, Zhiyuan Li
Title: PENCIL: Long Thoughts with Short Memory
Abstract:
While state-of-the-art LLMs have demonstrated great promise of using long Chains-of-Thought (CoT) to boost reasoning, scaling it up to more challenging problems at test-time is fundamentally limited by suboptimal memory usage -- intermediate computations accumulate indefinitely in context even when no longer needed for future thoughts. We introduce PENCIL, which incorporates a novel reduction mechanism into the autoregressive generation process that recursively cleans up intermediate thoughts based on patterns learned from training. By iteratively generating and erasing thoughts, PENCIL can think deeper to solve harder problems using shorter context and less compute. Empirically, we observe PENCIL is significantly more effective and efficient than CoT. For example, we demonstrate PENCIL with a small 25M-parameter transformer and 2048 context length solves Einstein's puzzle -- a task that challenges much larger models like GPT-4. Theoretically, we prove PENCIL can perform universal efficient computation by simulating any Turing machines with optimal time and space complexity, and thus can solve arbitrary computable tasks that are otherwise intractable for vanilla CoT.

Authors:Yu Cheng, Fajie Yuan
Title: LeanVAE: An Ultra-Efficient Reconstruction VAE for Video Diffusion Models
Abstract:
Recent advances in Latent Video Diffusion Models (LVDMs) have revolutionized video generation by leveraging Video Variational Autoencoders (Video VAEs) to compress intricate video data into a compact latent space. However, as LVDM training scales, the computational overhead of Video VAEs becomes a critical bottleneck, particularly for encoding high-resolution videos. To address this, we propose LeanVAE, a novel and ultra-efficient Video VAE framework that introduces two key innovations: (1) a lightweight architecture based on a Neighborhood-Aware Feedforward (NAF) module and non-overlapping patch operations, drastically reducing computational cost, and (2) the integration of wavelet transforms and compressed sensing techniques to enhance reconstruction quality. Extensive experiments validate LeanVAE's superiority in video reconstruction and generation, particularly in enhancing efficiency over existing Video VAEs. Our model offers up to 50x fewer FLOPs and 44x faster inference speed while maintaining competitive reconstruction quality, providing insights for scalable, efficient video generation. Our models and code are available at https://github.com/westlake-repl/LeanVAE

Authors:Weihang Su, Baoqing Yue, Qingyao Ai, Yiran Hu, Jiaqi Li, Changyue Wang, Kaiyuan Zhang, Yueyue Wu, Yiqun Liu
Title: JuDGE: Benchmarking Judgment Document Generation for Chinese Legal System
Abstract:
This paper introduces JuDGE (Judgment Document Generation Evaluation), a novel benchmark for evaluating the performance of judgment document generation in the Chinese legal system. We define the task as generating a complete legal judgment document from the given factual description of the case. To facilitate this benchmark, we construct a comprehensive dataset consisting of factual descriptions from real legal cases, paired with their corresponding full judgment documents, which serve as the ground truth for evaluating the quality of generated documents. This dataset is further augmented by two external legal corpora that provide additional legal knowledge for the task: one comprising statutes and regulations, and the other consisting of a large collection of past judgment documents. In collaboration with legal professionals, we establish a comprehensive automated evaluation framework to assess the quality of generated judgment documents across various dimensions. We evaluate various baseline approaches, including few-shot in-context learning, fine-tuning, and a multi-source retrieval-augmented generation (RAG) approach, using both general and legal-domain LLMs. The experimental results demonstrate that, while RAG approaches can effectively improve performance in this task, there is still substantial room for further improvement. All the codes and datasets are available at: https://github.com/oneal2000/JuDGE.

Authors:Tingyang Xiao, Xiaolin Zhou, Liu Liu, Wei Sui, Wei Feng, Jiaxiong Qiu, Xinjie Wang, Zhizhong Su
Title: GeoFlow-SLAM: A Robust Tightly-Coupled RGBD-Inertial and Legged Odometry Fusion SLAM for Dynamic Legged Robotics
Abstract:
This paper presents GeoFlow-SLAM, a robust and effective Tightly-Coupled RGBD-inertial SLAM for legged robotics undergoing aggressive and high-frequency motions.By integrating geometric consistency, legged odometry constraints, and dual-stream optical flow (GeoFlow), our method addresses three critical challenges:feature matching and pose initialization failures during fast locomotion and visual feature scarcity in texture-less scenes.Specifically, in rapid motion scenarios, feature matching is notably enhanced by leveraging dual-stream optical flow, which combines prior map points and poses. Additionally, we propose a robust pose initialization method for fast locomotion and IMU error in legged robots, integrating IMU/Legged odometry, inter-frame Perspective-n-Point (PnP), and Generalized Iterative Closest Point (GICP). Furthermore, a novel optimization framework that tightly couples depth-to-map and GICP geometric constraints is first introduced to improve the robustness and accuracy in long-duration, visually texture-less environments. The proposed algorithms achieve state-of-the-art (SOTA) on collected legged robots and open-source datasets. To further promote research and development, the open-source datasets and code will be made publicly available at https://github.com/HorizonRobotics/GeoFlowSlam

Authors:Chenting Wang, Kunchang Li, Tianxiang Jiang, Xiangyu Zeng, Yi Wang, Limin Wang
Title: Make Your Training Flexible: Towards Deployment-Efficient Video Models
Abstract:
Popular video training methods mainly operate on a fixed number of tokens sampled from a predetermined spatiotemporal grid, resulting in sub-optimal accuracy-computation trade-offs due to inherent video redundancy. They also lack adaptability to varying computational budgets for downstream tasks, hindering applications of the most competitive model in real-world scenes. We thus propose a new test setting, Token Optimization, for maximized input information across budgets, which optimizes the size-limited set of input tokens through token selection from more suitably sampled videos. To this end, we propose a novel augmentation tool termed Flux. By making the sampling grid flexible and leveraging token selection, it is easily adopted in most popular video training frameworks, boosting model robustness with nearly no additional cost. We integrate Flux in large-scale video pre-training, and the resulting FluxViT establishes new state-of-the-art results across extensive tasks at standard costs. Notably, with 1/4 tokens only, it can still match the performance of previous state-of-the-art models with Token Optimization, yielding nearly 90\% savings. All models and data are available at https://github.com/OpenGVLab/FluxViT.

Authors:Junjin Xiao, Qing Zhang, Yonewei Nie, Lei Zhu, Wei-Shi Zheng
Title: RoGSplat: Learning Robust Generalizable Human Gaussian Splatting from Sparse Multi-View Images
Abstract:
This paper presents RoGSplat, a novel approach for synthesizing high-fidelity novel views of unseen human from sparse multi-view images, while requiring no cumbersome per-subject optimization. Unlike previous methods that typically struggle with sparse views with few overlappings and are less effective in reconstructing complex human geometry, the proposed method enables robust reconstruction in such challenging conditions. Our key idea is to lift SMPL vertices to dense and reliable 3D prior points representing accurate human body geometry, and then regress human Gaussian parameters based on the points. To account for possible misalignment between SMPL model and images, we propose to predict image-aligned 3D prior points by leveraging both pixel-level features and voxel-level features, from which we regress the coarse Gaussians. To enhance the ability to capture high-frequency details, we further render depth maps from the coarse 3D Gaussians to help regress fine-grained pixel-wise Gaussians. Experiments on several benchmark datasets demonstrate that our method outperforms state-of-the-art methods in novel view synthesis and cross-dataset generalization. Our code is available at https://github.com/iSEE-Laboratory/RoGSplat.

Authors:Rui Cao, Wei Tu, Dongsheng Chen, Wenyu Zhang
Title: Mapping Urban Villages in China: Progress and Challenges
Abstract:
The shift toward high-quality urbanization has brought increased attention to the issue of "urban villages", which has become a prominent social problem in China. However, there is a lack of available geospatial data on urban villages, making it crucial to prioritize urban village mapping. In order to assess the current progress in urban village mapping and identify challenges and future directions, we have conducted a comprehensive review, which to the best of our knowledge is the first of its kind in this field. Our review begins by providing a clear context for urban villages and elaborating the method for literature review, then summarizes the study areas, data sources, and approaches used for urban village mapping in China. We also address the challenges and future directions for further research. Through thorough investigation, we find that current studies only cover very limited study areas and periods and lack sufficient investigation into the scalability, transferability, and interpretability of identification approaches due to the challenges in concept fuzziness and variances, spatial heterogeneity and variances of urban villages, and data availability. Future research can complement and further the current research in the following potential directions in order to achieve large-area mapping across the whole nation...

Authors:Mingtian Tan, Mike A. Merrill, Zack Gottesman, Tim Althoff, David Evans, Tom Hartvigsen
Title: Inferring Events from Time Series using Language Models
Abstract:
Time series data measure how environments change over time and drive decision-making in critical domains like finance and healthcare. A common goal in analyzing time series data is to understand the underlying events that cause the observed variations. We conduct the first study of whether Large Language Models (LLMs) can infer events described with natural language from time series data. We evaluate 18 LLMs on a task to match event sequences with real-valued time series data using a new benchmark we develop using sports data. Several current LLMs demonstrate promising abilities, with OpenAI's o1 performing the best but with DS-R1-distill-Qwen-32B outperforming proprietary models such as GPT-4o. From insights derived from analyzing reasoning failures, we also find clear avenues to improve performance. By applying post-training optimizations, i.e., distillation and self-improvement, we significantly enhance the performance of the Qwen2.5 1.5B, achieving results second only to o1. All resources needed to reproduce our work are available: https://github.com/BennyTMT/GAMETime

Authors:Zining Wang, Tongkun Guan, Pei Fu, Chen Duan, Qianyi Jiang, Zhentao Guo, Shan Guo, Junfeng Luo, Wei Shen, Xiaokang Yang
Title: Marten: Visual Question Answering with Mask Generation for Multi-modal Document Understanding
Abstract:
Multi-modal Large Language Models (MLLMs) have introduced a novel dimension to document understanding, i.e., they endow large language models with visual comprehension capabilities; however, how to design a suitable image-text pre-training task for bridging the visual and language modality in document-level MLLMs remains underexplored. In this study, we introduce a novel visual-language alignment method that casts the key issue as a Visual Question Answering with Mask generation (VQAMask) task, optimizing two tasks simultaneously: VQA-based text parsing and mask generation. The former allows the model to implicitly align images and text at the semantic level. The latter introduces an additional mask generator (discarded during inference) to explicitly ensure alignment between visual texts within images and their corresponding image regions at a spatially-aware level. Together, they can prevent model hallucinations when parsing visual text and effectively promote spatially-aware feature representation learning. To support the proposed VQAMask task, we construct a comprehensive image-mask generation pipeline and provide a large-scale dataset with 6M data (MTMask6M). Subsequently, we demonstrate that introducing the proposed mask generation task yields competitive document-level understanding performance. Leveraging the proposed VQAMask, we introduce Marten, a training-efficient MLLM tailored for document-level understanding. Extensive experiments show that our Marten consistently achieves significant improvements among 8B-MLLMs in document-centric tasks. Code and datasets are available at https://github.com/PriNing/Marten.

Authors:Hao Zhang, Mingyue Cheng, Qi Liu, Junzhe Jiang, Xianquan Wang, Rujiao Zhang, Chenyi Lei, Enhong Chen
Title: A Comprehensive Survey on Cross-Domain Recommendation: Taxonomy, Progress, and Prospects
Abstract:
Recommender systems (RS) have become crucial tools for information filtering in various real world scenarios. And cross domain recommendation (CDR) has been widely explored in recent years in order to provide better recommendation results in the target domain with the help of other domains. The CDR technology has developed rapidly, yet there is a lack of a comprehensive survey summarizing recent works. Therefore, in this paper, we will summarize the progress and prospects based on the main procedure of CDR, including Cross Domain Relevance, Cross Domain Interaction, Cross Domain Representation Enhancement and Model Optimization. To help researchers better understand and engage in this field, we also organize the applications and resources, and highlight several current important challenges and future directions of CDR. More details of the survey articles are available at https://github.com/USTCAGI/Awesome-Cross-Domain Recommendation-Papers-and-Resources.

Authors:Weihong Chen, Xuemiao Xu, Haoxin Yang, Yi Xie, Peng Xiao, Cheng Xu, Huaidong Zhang, Pheng-Ann Heng
Title: SCJD: Sparse Correlation and Joint Distillation for Efficient 3D Human Pose Estimation
Abstract:
Existing 3D Human Pose Estimation (HPE) methods achieve high accuracy but suffer from computational overhead and slow inference, while knowledge distillation methods fail to address spatial relationships between joints and temporal correlations in multi-frame inputs. In this paper, we propose Sparse Correlation and Joint Distillation (SCJD), a novel framework that balances efficiency and accuracy for 3D HPE. SCJD introduces Sparse Correlation Input Sequence Downsampling to reduce redundancy in student network inputs while preserving inter-frame correlations. For effective knowledge transfer, we propose Dynamic Joint Spatial Attention Distillation, which includes Dynamic Joint Embedding Distillation to enhance the student's feature representation using the teacher's multi-frame context feature, and Adjacent Joint Attention Distillation to improve the student network's focus on adjacent joint relationships for better spatial understanding. Additionally, Temporal Consistency Distillation aligns the temporal correlations between teacher and student networks through upsampling and global supervision. Extensive experiments demonstrate that SCJD achieves state-of-the-art performance. Code is available at https://github.com/wileychan/SCJD.

Authors:Shengping Zhang, Xiaoyu Han, Weigang Zhang, Xiangyuan Lan, Hongxun Yao, Qingming Huang
Title: Limb-Aware Virtual Try-On Network with Progressive Clothing Warping
Abstract:
Image-based virtual try-on aims to transfer an in-shop clothing image to a person image. Most existing methods adopt a single global deformation to perform clothing warping directly, which lacks fine-grained modeling of in-shop clothing and leads to distorted clothing appearance. In addition, existing methods usually fail to generate limb details well because they are limited by the used clothing-agnostic person representation without referring to the limb textures of the person image. To address these problems, we propose Limb-aware Virtual Try-on Network named PL-VTON, which performs fine-grained clothing warping progressively and generates high-quality try-on results with realistic limb details. Specifically, we present Progressive Clothing Warping (PCW) that explicitly models the location and size of in-shop clothing and utilizes a two-stage alignment strategy to progressively align the in-shop clothing with the human body. Moreover, a novel gravity-aware loss that considers the fit of the person wearing clothing is adopted to better handle the clothing edges. Then, we design Person Parsing Estimator (PPE) with a non-limb target parsing map to semantically divide the person into various regions, which provides structural constraints on the human body and therefore alleviates texture bleeding between clothing and body regions. Finally, we introduce Limb-aware Texture Fusion (LTF) that focuses on generating realistic details in limb regions, where a coarse try-on result is first generated by fusing the warped clothing image with the person image, then limb textures are further fused with the coarse result under limb-aware guidance to refine limb details. Extensive experiments demonstrate that our PL-VTON outperforms the state-of-the-art methods both qualitatively and quantitatively.

Authors:Guy Bar-Shalom, Fabrizio Frasca, Derek Lim, Yoav Gelberg, Yftah Ziser, Ran El-Yaniv, Gal Chechik, Haggai Maron
Title: Learning on LLM Output Signatures for gray-box Behavior Analysis
Abstract:
Large Language Models (LLMs) have achieved widespread adoption, yet our understanding of their behavior remains limited, particularly in detecting data contamination and hallucinations. While recently proposed probing techniques provide insights through activation analysis, they require ``white-box'' access to model internals, often unavailable. Current ``gray-box'' approaches typically analyze only the probability of the actual tokens in the sequence with simple task-specific heuristics. Importantly, these methods overlook the rich information contained in the full token distribution at each processing step. To address these limitations, we propose that gray-box analysis should leverage the complete observable output of LLMs, consisting of both the previously used token probabilities as well as the complete token distribution sequences - a unified data type we term LOS (LLM Output Signature). To this end, we develop a transformer-based approach to process LOS that theoretically guarantees approximation of existing techniques while enabling more nuanced analysis. Our approach achieves superior performance on hallucination and data contamination detection in gray-box settings, significantly outperforming existing baselines. Furthermore, it demonstrates strong transfer capabilities across datasets and LLMs, suggesting that LOS captures fundamental patterns in LLM behavior. Our code is available at: https://github.com/BarSGuy/LLM-Output-Signatures-Network.

Authors:Guy Bar-Shalom, Fabrizio Frasca, Derek Lim, Yoav Gelberg, Yftah Ziser, Ran El-Yaniv, Gal Chechik, Haggai Maron
Title: Beyond Next Token Probabilities: Learnable, Fast Detection of Hallucinations and Data Contamination on LLM Output Distributions
Abstract:
The automated detection of hallucinations and training data contamination is pivotal to the safe deployment of Large Language Models (LLMs). These tasks are particularly challenging in settings where no access to model internals is available. Current approaches in this setup typically leverage only the probabilities of actual tokens in the text, relying on simple task-specific heuristics. Crucially, they overlook the information contained in the full sequence of next-token probability distributions. We propose to go beyond hand-crafted decision rules by learning directly from the complete observable output of LLMs -- consisting not only of next-token probabilities, but also the full sequence of next-token distributions. We refer to this as the LLM Output Signature (LOS), and treat it as a reference data type for detecting hallucinations and data contamination. To that end, we introduce LOS-Net, a lightweight attention-based architecture trained on an efficient encoding of the LOS, which can provably approximate a broad class of existing techniques for both tasks. Empirically, LOS-Net achieves superior performance across diverse benchmarks and LLMs, while maintaining extremely low detection latency. Furthermore, it demonstrates promising transfer capabilities across datasets and LLMs. Full code is available at https://github.com/BarSGuy/Beyond-next-token-probabilities.

Authors:Runsong Zhu, Shi Qiu, Zhengzhe Liu, Ka-Hei Hui, Qianyi Wu, Pheng-Ann Heng, Chi-Wing Fu
Title: Rethinking End-to-End 2D to 3D Scene Segmentation in Gaussian Splatting
Abstract:
Lifting multi-view 2D instance segmentation to a radiance field has proven to be effective to enhance 3D understanding. Existing methods rely on direct matching for end-to-end lifting, yielding inferior results; or employ a two-stage solution constrained by complex pre- or post-processing. In this work, we design a new end-to-end object-aware lifting approach, named Unified-Lift that provides accurate 3D segmentation based on the 3D Gaussian representation. To start, we augment each Gaussian point with an additional Gaussian-level feature learned using a contrastive loss to encode instance information. Importantly, we introduce a learnable object-level codebook to account for individual objects in the scene for an explicit object-level understanding and associate the encoded object-level features with the Gaussian-level point features for segmentation predictions. While promising, achieving effective codebook learning is non-trivial and a naive solution leads to degraded performance. Therefore, we formulate the association learning module and the noisy label filtering module for effective and robust codebook learning. We conduct experiments on three benchmarks: LERF-Masked, Replica, and Messy Rooms datasets. Both qualitative and quantitative results manifest that our Unified-Lift clearly outperforms existing methods in terms of segmentation quality and time efficiency. The code is publicly available at \href{https://github.com/Runsong123/Unified-Lift}{https://github.com/Runsong123/Unified-Lift}.

Authors:Wei Lu, Si-Bao Chen, Hui-Dong Li, Qing-Ling Shu, Chris H. Q. Ding, Jin Tang, Bin Luo
Title: LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection
Abstract:
Remote sensing object detection (RSOD) often suffers from degradations such as low spatial resolution, sensor noise, motion blur, and adverse illumination. These factors diminish feature distinctiveness, leading to ambiguous object representations and inadequate foreground-background separation. Existing RSOD methods exhibit limitations in robust detection of low-quality objects. To address these pressing challenges, we introduce LEGNet, a lightweight backbone network featuring a novel Edge-Gaussian Aggregation (EGA) module specifically engineered to enhance feature representation derived from low-quality remote sensing images. EGA module integrates: (a) orientation-aware Scharr filters to sharpen crucial edge details often lost in low-contrast or blurred objects, and (b) Gaussian-prior-based feature refinement to suppress noise and regularize ambiguous feature responses, enhancing foreground saliency under challenging conditions. EGA module alleviates prevalent problems in reduced contrast, structural discontinuities, and ambiguous feature responses prevalent in degraded images, effectively improving model robustness while maintaining computational efficiency. Comprehensive evaluations across five benchmarks (DOTA-v1.0, v1.5, DIOR-R, FAIR1M-v1.0, and VisDrone2019) demonstrate that LEGNet achieves state-of-the-art performance, particularly in detecting low-quality objects. The code is available at https://github.com/lwCVer/LEGNet.

Authors:Zixuan Zheng, Yilei Shi, Chunlei Li, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou
Title: Rethinking Cell Counting Methods: Decoupling Counting and Localization
Abstract:
Cell counting in microscopy images is vital in medicine and biology but extremely tedious and time-consuming to perform manually. While automated methods have advanced in recent years, state-of-the-art approaches tend to increasingly complex model designs. In this paper, we propose a conceptually simple yet effective decoupled learning scheme for automated cell counting, consisting of separate counter and localizer networks. In contrast to jointly learning counting and density map estimation, we show that decoupling these objectives surprisingly improves results. The counter operates on intermediate feature maps rather than pixel space to leverage global context and produce count estimates, while also generating coarse density maps. The localizer then reconstructs high-resolution density maps that precisely localize individual cells, conditional on the original images and coarse density maps from the counter. Besides, to boost counting accuracy, we further introduce a global message passing module to integrate cross-region patterns. Extensive experiments on four datasets demonstrate that our approach, despite its simplicity, challenges common practice and achieves state-of-the-art performance by significant margins. Our key insight is that decoupled learning alleviates the need to learn counting on high-resolution density maps directly, allowing the model to focus on global features critical for accurate estimates. Code is available at https://github.com/MedAITech/DCL.

Authors:Mykyta Syromiatnikov, Victoria Ruvinskaya, Nataliia Komleva
Title: Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks
Abstract:
Leading large language models have demonstrated impressive capabilities in reasoning-intensive tasks, such as standardized educational testing. However, they often require extensive training in low-resource settings with inaccessible infrastructure. Small or compact models, though more efficient, frequently lack sufficient support for underrepresented languages, leaving a performance gap in critical domains. This work explores the potential of parameter-efficient fine-tuning of compact open-weight language models to handle reasoning-intensive tasks in the underrepresented Ukrainian language, building on the findings of the ZNO-Eval benchmark. Parameter-efficient fine-tuning of LLaMA 3.1 (8 billion parameters), LLaMA 3.2 (3 billion parameters), and Gemma 2 (9 billion parameters) models on chain-of-thought solutions resulted in a modest test score improvement of up to 17.4% on complex matching tasks and 1.6% overall compared to tuning on answer letters alone, offering enhanced interpretability and robustness. In addition, the proposed tuning method with joint task topic and step-by-step solution generation outperforms standard chain-of-thought tuning in matching tasks and provides a 5.4% gain over the best LLaMA 3.2 model due to guiding the model to recall and apply domain-relevant information. Contrasting obtained results with zero-shot evaluations of leading open-weight and proprietary models such as Qwen, DeepSeek R1, OpenAI o1 and o3, Gemini, and Claude, highlight that fine-tuning LLaMA and Gemma models with 2,032 step-by-step solutions and 20 to 50 million trainable parameters on a single A100 GPU lets them outperform GPT-4o mini, Mistral Large, and larger open-weight models. This research also evaluates how merging the quantized adapter with the base model influences the generation quality. Source code and tuned models are available at https://github.com/NLPForUA/ZNO.

Authors:Yaxiong Chen, Yujie Wang, Zixuan Zheng, Jingliang Hu, Yilei Shi, Shengwu Xiong, Xiao Xiang Zhu, Lichao Mou
Title: Striving for Simplicity: Simple Yet Effective Prior-Aware Pseudo-Labeling for Semi-Supervised Ultrasound Image Segmentation
Abstract:
Medical ultrasound imaging is ubiquitous, but manual analysis struggles to keep pace. Automated segmentation can help but requires large labeled datasets, which are scarce. Semi-supervised learning leveraging both unlabeled and limited labeled data is a promising approach. State-of-the-art methods use consistency regularization or pseudo-labeling but grow increasingly complex. Without sufficient labels, these models often latch onto artifacts or allow anatomically implausible segmentations. In this paper, we present a simple yet effective pseudo-labeling method with an adversarially learned shape prior to regularize segmentations. Specifically, we devise an encoder-twin-decoder network where the shape prior acts as an implicit shape model, penalizing anatomically implausible but not ground-truth-deviating predictions. Without bells and whistles, our simple approach achieves state-of-the-art performance on two benchmarks under different partition protocols. We provide a strong baseline for future semi-supervised medical image segmentation. Code is available at https://github.com/WUTCM-Lab/Shape-Prior-Semi-Seg.

Authors:Jiankang Wang, Zhihan Zhang, Zhihang Liu, Yang Li, Jiannan Ge, Hongtao Xie, Yongdong Zhang
Title: SpaceVLLM: Endowing Multimodal Large Language Model with Spatio-Temporal Video Grounding Capability
Abstract:
Multimodal large language models (MLLMs) have made remarkable progress in either temporal or spatial localization. However, they struggle to perform spatio-temporal video grounding. This limitation stems from two major challenges. Firstly, it is difficult to extract accurate spatio-temporal information of each frame in the video. Secondly, the substantial number of visual tokens makes it challenging to precisely map visual tokens of each frame to their corresponding spatial coordinates. To address these issues, we introduce SpaceVLLM, a MLLM endowed with spatio-temporal video grounding capability. Specifically, we adopt a set of interleaved Spatio-Temporal Aware Queries to capture temporal perception and dynamic spatial information. Moreover, we propose a Query-Guided Space Decoder to establish a corresponding connection between the queries and spatial coordinates. Additionally, due to the lack of spatio-temporal datasets, we construct the Unified Spatio-Temporal Grounding (Uni-STG) dataset, comprising 480K instances across three tasks. This dataset fully exploits the potential of MLLM to simultaneously facilitate localization in both temporal and spatial dimensions. Extensive experiments demonstrate that SpaceVLLM achieves the state-of-the-art performance across 11 benchmarks covering temporal, spatial, spatio-temporal and video understanding tasks, highlighting the effectiveness of our approach. Our code, datasets and model will be released at https://github.com/Jayce1kk/SpaceVLLM.

Authors:Huy-Hoang Bui, Bach-Thuan Bui, Quang-Vinh Tran, Yasuyuki Fujii, Joo-Ho Lee
Title: A-SCoRe: Attention-based Scene Coordinate Regression for wide-ranging scenarios
Abstract:
Visual localization is considered to be one of the crucial parts in many robotic and vision systems. While state-of-the art methods that relies on feature matching have proven to be accurate for visual localization, its requirements for storage and compute are burdens. Scene coordinate regression (SCR) is an alternative approach that remove the barrier for storage by learning to map 2D pixels to 3D scene coordinates. Most popular SCR use Convolutional Neural Network (CNN) to extract 2D descriptor, which we would argue that it miss the spatial relationship between pixels. Inspired by the success of vision transformer architecture, we present a new SCR architecture, called A-ScoRe, an Attention-based model which leverage attention on descriptor map level to produce meaningful and high-semantic 2D descriptors. Since the operation is performed on descriptor map, our model can work with multiple data modality whether it is a dense or sparse from depth-map, SLAM to Structure-from-Motion (SfM). This versatility allows A-SCoRe to operate in different kind of environments, conditions and achieve the level of flexibility that is important for mobile robots. Results show our methods achieve comparable performance with State-of-the-art methods on multiple benchmark while being light-weighted and much more flexible. Code and pre-trained models are public in our repository: https://github.com/ais-lab/A-SCoRe.

Authors:Siwei Han, Peng Xia, Ruiyi Zhang, Tong Sun, Yun Li, Hongtu Zhu, Huaxiu Yao
Title: MDocAgent: A Multi-Modal Multi-Agent Framework for Document Understanding
Abstract:
Document Question Answering (DocQA) is a very common task. Existing methods using Large Language Models (LLMs) or Large Vision Language Models (LVLMs) and Retrieval Augmented Generation (RAG) often prioritize information from a single modal, failing to effectively integrate textual and visual cues. These approaches struggle with complex multi-modal reasoning, limiting their performance on real-world documents. We present MDocAgent (A Multi-Modal Multi-Agent Framework for Document Understanding), a novel RAG and multi-agent framework that leverages both text and image. Our system employs five specialized agents: a general agent, a critical agent, a text agent, an image agent and a summarizing agent. These agents engage in multi-modal context retrieval, combining their individual insights to achieve a more comprehensive understanding of the document's content. This collaborative approach enables the system to synthesize information from both textual and visual components, leading to improved accuracy in question answering. Preliminary experiments on five benchmarks like MMLongBench, LongDocURL demonstrate the effectiveness of our MDocAgent, achieve an average improvement of 12.1% compared to current state-of-the-art method. This work contributes to the development of more robust and comprehensive DocQA systems capable of handling the complexities of real-world documents containing rich textual and visual information. Our data and code are available at https://github.com/aiming-lab/MDocAgent.

Authors:Mu Chen, Liulei Li, Wenguan Wang, Yi Yang
Title: DIFFVSGG: Diffusion-Driven Online Video Scene Graph Generation
Abstract:
Top-leading solutions for Video Scene Graph Generation (VSGG) typically adopt an offline pipeline. Though demonstrating promising performance, they remain unable to handle real-time video streams and consume large GPU memory. Moreover, these approaches fall short in temporal reasoning, merely aggregating frame-level predictions over a temporal context. In response, we introduce DIFFVSGG, an online VSGG solution that frames this task as an iterative scene graph update problem. Drawing inspiration from Latent Diffusion Models (LDMs) which generate images via denoising a latent feature embedding, we unify the decoding of object classification, bounding box regression, and graph generation three tasks using one shared feature embedding. Then, given an embedding containing unified features of object pairs, we conduct a step-wise Denoising on it within LDMs, so as to deliver a clean embedding which clearly indicates the relationships between objects. This embedding then serves as the input to task-specific heads for object classification, scene graph generation, etc. DIFFVSGG further facilitates continuous temporal reasoning, where predictions for subsequent frames leverage results of past frames as the conditional inputs of LDMs, to guide the reverse diffusion process for current frames. Extensive experiments on three setups of Action Genome demonstrate the superiority of DIFFVSGG.

Authors:Yixuan Li, Changli Tang, Jimin Zhuang, Yudong Yang, Guangzhi Sun, Wei Li, Zejun Ma, Chao Zhang
Title: Improving LLM Video Understanding with 16 Frames Per Second
Abstract:
Human vision is dynamic and continuous. However, in video understanding with multimodal large language models (LLMs), existing methods primarily rely on static features extracted from images sampled at a fixed low frame rate of frame-per-second (FPS) $\leqslant$2, leading to critical visual information loss. In this paper, we introduce F-16, the first multimodal LLM designed for high-frame-rate video understanding. By increasing the frame rate to 16 FPS and compressing visual tokens within each 1-second clip, F-16 efficiently captures dynamic visual features while preserving key semantic information. Experimental results demonstrate that higher frame rates considerably enhance video understanding across multiple benchmarks, providing a new approach to improving video LLMs beyond scaling model size or training data. F-16 achieves state-of-the-art performance among 7-billion-parameter video LLMs on both general and fine-grained video understanding benchmarks, such as Video-MME and TemporalBench. Furthermore, F-16 excels in complex spatiotemporal tasks, including high-speed sports analysis (\textit{e.g.}, basketball, football, gymnastics, and diving), outperforming SOTA proprietary visual models like GPT-4o and Gemini-1.5-pro. Additionally, we introduce a novel decoding method for F-16 that enables highly efficient low-frame-rate inference without requiring model retraining. We will release the source code, model checkpoints, and data at \href{https://github.com/bytedance/F-16}{https://github.com/bytedance/F-16}.

Authors:Xinqing Li, Ruiqi Song, Qingyu Xie, Ye Wu, Nanxin Zeng, Yunfeng Ai
Title: SimWorld: A Unified Benchmark for Simulator-Conditioned Scene Generation via World Model
Abstract:
With the rapid advancement of autonomous driving technology, a lack of data has become a major obstacle to enhancing perception model accuracy. Researchers are now exploring controllable data generation using world models to diversify datasets. However, previous work has been limited to studying image generation quality on specific public datasets. There is still relatively little research on how to build data generation engines for real-world application scenes to achieve large-scale data generation for challenging scenes. In this paper, a simulator-conditioned scene generation engine based on world model is proposed. By constructing a simulation system consistent with real-world scenes, simulation data and labels, which serve as the conditions for data generation in the world model, for any scenes can be collected. It is a novel data generation pipeline by combining the powerful scene simulation capabilities of the simulation engine with the robust data generation capabilities of the world model. In addition, a benchmark with proportionally constructed virtual and real data, is provided for exploring the capabilities of world models in real-world scenes. Quantitative results show that these generated images significantly improve downstream perception models performance. Finally, we explored the generative performance of the world model in urban autonomous driving scenarios. All the data and code will be available at https://github.com/Li-Zn-H/SimWorld.

Authors:Kang Yang, Tianci Bu, Lantao Li, Chunxu Li, Yongcai Wang, Deying Li
Title: Is Discretization Fusion All You Need for Collaborative Perception?
Abstract:
Collaborative perception in multi-agent system enhances overall perceptual capabilities by facilitating the exchange of complementary information among agents. Current mainstream collaborative perception methods rely on discretized feature maps to conduct fusion, which however, lacks flexibility in extracting and transmitting the informative features and can hardly focus on the informative features during fusion. To address these problems, this paper proposes a novel Anchor-Centric paradigm for Collaborative Object detection (ACCO). It avoids grid precision issues and allows more flexible and efficient anchor-centric communication and fusion. ACCO is composed by three main components: (1) Anchor featuring block (AFB) that targets to generate anchor proposals and projects prepared anchor queries to image features. (2) Anchor confidence generator (ACG) is designed to minimize communication by selecting only the features in the confident anchors to transmit. (3) A local-global fusion module, in which local fusion is anchor alignment-based fusion (LAAF) and global fusion is conducted by spatial-aware cross-attention (SACA). LAAF and SACA run in multi-layers, so agents conduct anchor-centric fusion iteratively to adjust the anchor proposals. Comprehensive experiments are conducted to evaluate ACCO on OPV2V and Dair-V2X datasets, which demonstrate ACCO's superiority in reducing the communication volume, and in improving the perception range and detection performances. Code can be found at: \href{https://github.com/sidiangongyuan/ACCO}{https://github.com/sidiangongyuan/ACCO}.

Authors:Dongkwan Lee, Kyomin Hwang, Nojun Kwak
Title: Unlocking the Potential of Unlabeled Data in Semi-Supervised Domain Generalization
Abstract:
We address the problem of semi-supervised domain generalization (SSDG), where the distributions of train and test data differ, and only a small amount of labeled data along with a larger amount of unlabeled data are available during training. Existing SSDG methods that leverage only the unlabeled samples for which the model's predictions are highly confident (confident-unlabeled samples), limit the full utilization of the available unlabeled data. To the best of our knowledge, we are the first to explore a method for incorporating the unconfident-unlabeled samples that were previously disregarded in SSDG setting. To this end, we propose UPCSC to utilize these unconfident-unlabeled samples in SSDG that consists of two modules: 1) Unlabeled Proxy-based Contrastive learning (UPC) module, treating unconfident-unlabeled samples as additional negative pairs and 2) Surrogate Class learning (SC) module, generating positive pairs for unconfident-unlabeled samples using their confusing class set. These modules are plug-and-play and do not require any domain labels, which can be easily integrated into existing approaches. Experiments on four widely used SSDG benchmarks demonstrate that our approach consistently improves performance when attached to baselines and outperforms competing plug-and-play methods. We also analyze the role of our method in SSDG, showing that it enhances class-level discriminability and mitigates domain gaps. The code is available at https://github.com/dongkwani/UPCSC.

Authors:Barza Nisar, Steven L. Waslander
Title: PSA-SSL: Pose and Size-aware Self-Supervised Learning on LiDAR Point Clouds
Abstract:
Self-supervised learning (SSL) on 3D point clouds has the potential to learn feature representations that can transfer to diverse sensors and multiple downstream perception tasks. However, recent SSL approaches fail to define pretext tasks that retain geometric information such as object pose and scale, which can be detrimental to the performance of downstream localization and geometry-sensitive 3D scene understanding tasks, such as 3D semantic segmentation and 3D object detection. We propose PSA-SSL, a novel extension to point cloud SSL that learns object pose and size-aware (PSA) features. Our approach defines a self-supervised bounding box regression pretext task, which retains object pose and size information. Furthermore, we incorporate LiDAR beam pattern augmentation on input point clouds, which encourages learning sensor-agnostic features. Our experiments demonstrate that with a single pretrained model, our light-weight yet effective extensions achieve significant improvements on 3D semantic segmentation with limited labels across popular autonomous driving datasets (Waymo, nuScenes, SemanticKITTI). Moreover, our approach outperforms other state-of-the-art SSL methods on 3D semantic segmentation (using up to 10 times less labels), as well as on 3D object detection. Our code will be released on https://github.com/TRAILab/PSA-SSL.

Authors:Xiaoying Xing, Chia-Wen Kuo, Li Fuxin, Yulei Niu, Fan Chen, Ming Li, Ying Wu, Longyin Wen, Sijie Zhu
Title: Where do Large Vision-Language Models Look at when Answering Questions?
Abstract:
Large Vision-Language Models (LVLMs) have shown promising performance in vision-language understanding and reasoning tasks. However, their visual understanding behaviors remain underexplored. A fundamental question arises: to what extent do LVLMs rely on visual input, and which image regions contribute to their responses? It is non-trivial to interpret the free-form generation of LVLMs due to their complicated visual architecture (e.g., multiple encoders and multi-resolution) and variable-length outputs. In this paper, we extend existing heatmap visualization methods (e.g., iGOS++) to support LVLMs for open-ended visual question answering. We propose a method to select visually relevant tokens that reflect the relevance between generated answers and input image. Furthermore, we conduct a comprehensive analysis of state-of-the-art LVLMs on benchmarks designed to require visual information to answer. Our findings offer several insights into LVLM behavior, including the relationship between focus region and answer correctness, differences in visual attention across architectures, and the impact of LLM scale on visual understanding. The code and data are available at https://github.com/bytedance/LVLM_Interpretation.

Authors:Donggon Jang, Yucheol Cho, Suin Lee, Taehyeon Kim, Dae-Shik Kim
Title: MMR: A Large-scale Benchmark Dataset for Multi-target and Multi-granularity Reasoning Segmentation
Abstract:
The fusion of Large Language Models with vision models is pioneering new possibilities in user-interactive vision-language tasks. A notable application is reasoning segmentation, where models generate pixel-level segmentation masks by comprehending implicit meanings in human instructions. However, seamless human-AI interaction demands more than just object-level recognition; it requires understanding both objects and the functions of their detailed parts, particularly in multi-target scenarios. For example, when instructing a robot to \textit{turn on the TV"}, there could be various ways to accomplish this command. Recognizing multiple objects capable of turning on the TV, such as the TV itself or a remote control (multi-target), provides more flexible options and aids in finding the optimized scenario. Furthermore, understanding specific parts of these objects, like the TV's button or the remote's button (part-level), is important for completing the action. Unfortunately, current reasoning segmentation datasets predominantly focus on a single target object-level reasoning, which limits the detailed recognition of an object's parts in multi-target contexts. To address this gap, we construct a large-scale dataset called Multi-target and Multi-granularity Reasoning (MMR). MMR comprises 194K complex and implicit instructions that consider multi-target, object-level, and part-level aspects, based on pre-existing image-mask sets. This dataset supports diverse and context-aware interactions by hierarchically providing object and part information. Moreover, we propose a straightforward yet effective framework for multi-target, object-level, and part-level reasoning segmentation. Experimental results on MMR show that the proposed method can reason effectively in multi-target and multi-granularity scenarios, while the existing reasoning segmentation model still has room for improvement.

Authors:Sunbowen Lee, Yicheng Gong, Chao Deng
Title: Counterfactual experience augmented off-policy reinforcement learning
Abstract:
Reinforcement learning control algorithms face significant challenges due to out-of-distribution and inefficient exploration problems. While model-based reinforcement learning enhances the agent's reasoning and planning capabilities by constructing virtual environments, training such virtual environments can be very complex. In order to build an efficient inference model and enhance the representativeness of learning data, we propose the Counterfactual Experience Augmentation (CEA) algorithm. CEA leverages variational autoencoders to model the dynamic patterns of state transitions and introduces randomness to model non-stationarity. This approach focuses on expanding the learning data in the experience pool through counterfactual inference and performs exceptionally well in environments that follow the bisimulation assumption. Environments with bisimulation properties are usually represented by discrete observation and action spaces, we propose a sampling method based on maximum kernel density estimation entropy to extend CEA to various environments. By providing reward signals for counterfactual state transitions based on real information, CEA constructs a complete counterfactual experience to alleviate the out-of-distribution problem of the learning data, and outperforms general SOTA algorithms in environments with difference properties. Finally, we discuss the similarities, differences and properties of generated counterfactual experiences and real experiences. The code is available at https://github.com/Aegis1863/CEA.

Authors:Chunlei Li, Yilei Shi, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou
Title: Scale-Aware Contrastive Reverse Distillation for Unsupervised Medical Anomaly Detection
Abstract:
Unsupervised anomaly detection using deep learning has garnered significant research attention due to its broad applicability, particularly in medical imaging where labeled anomalous data are scarce. While earlier approaches leverage generative models like autoencoders and generative adversarial networks (GANs), they often fall short due to overgeneralization. Recent methods explore various strategies, including memory banks, normalizing flows, self-supervised learning, and knowledge distillation, to enhance discrimination. Among these, knowledge distillation, particularly reverse distillation, has shown promise. Following this paradigm, we propose a novel scale-aware contrastive reverse distillation model that addresses two key limitations of existing reverse distillation methods: insufficient feature discriminability and inability to handle anomaly scale variations. Specifically, we introduce a contrastive student-teacher learning approach to derive more discriminative representations by generating and exploring out-of-normal distributions. Further, we design a scale adaptation mechanism to softly weight contrastive distillation losses at different scales to account for the scale variation issue. Extensive experiments on benchmark datasets demonstrate state-of-the-art performance, validating the efficacy of the proposed method. Code is available at https://github.com/MedAITech/SCRD4AD.

Authors:Jinping Wang, Weiwei Song, Hao Chen, Jinchang Ren, Huimin Zhao
Title: FusDreamer: Label-efficient Remote Sensing World Model for Multimodal Data Classification
Abstract:
World models significantly enhance hierarchical understanding, improving data integration and learning efficiency. To explore the potential of the world model in the remote sensing (RS) field, this paper proposes a label-efficient remote sensing world model for multimodal data fusion (FusDreamer). The FusDreamer uses the world model as a unified representation container to abstract common and high-level knowledge, promoting interactions across different types of data, \emph{i.e.}, hyperspectral (HSI), light detection and ranging (LiDAR), and text data. Initially, a new latent diffusion fusion and multimodal generation paradigm (LaMG) is utilized for its exceptional information integration and detail retention capabilities. Subsequently, an open-world knowledge-guided consistency projection (OK-CP) module incorporates prompt representations for visually described objects and aligns language-visual features through contrastive learning. In this way, the domain gap can be bridged by fine-tuning the pre-trained world models with limited samples. Finally, an end-to-end multitask combinatorial optimization (MuCO) strategy can capture slight feature bias and constrain the diffusion process in a collaboratively learnable direction. Experiments conducted on four typical datasets indicate the effectiveness and advantages of the proposed FusDreamer. The corresponding code will be released at https://github.com/Cimy-wang/FusDreamer.

Authors:Ali Mollaahmadi Dehaghi, Hossein KhademSohi, Reza Razavi, Steve Drew, Mohammad Moshirpour
Title: FedVSR: Towards Model-Agnostic Federated Learning in Video Super-Resolution
Abstract:
Video super-resolution aims to enhance low-resolution videos by leveraging both spatial and temporal information. While deep learning has led to impressive progress, it typically requires centralized data, which raises privacy concerns. Federated learning offers a privacy-friendly solution, but general FL frameworks often struggle with low-level vision tasks, resulting in blurry, low-quality outputs. To address this, we introduce FedVSR, the first FL framework specifically designed for VSR. It is model-agnostic and stateless, and introduces a lightweight loss function based on the DWT to better preserve high-frequency details during local training. Additionally, a loss-aware aggregation strategy combines both DWT-based and task-specific losses to guide global updates effectively. Extensive experiments across multiple VSR models and datasets demonstrate that FedVSR consistently outperforms existing FL methods, achieving up to 0.82 dB higher PSNR, 0.0327 higher SSIM, and 0.0251 lower LPIPS. These results underscore FedVSR's ability to bridge the gap between privacy and performance, setting a new benchmark for federated learning in low-level vision tasks. The code is available at: https://github.com/alimd94/FedVSR

Authors:Keqi Chen, Vinkle Srivastav, Didier Mutter, Nicolas Padoy
Title: Learning from Synchronization: Self-Supervised Uncalibrated Multi-View Person Association in Challenging Scenes
Abstract:
Multi-view person association is a fundamental step towards multi-view analysis of human activities. Although the person re-identification features have been proven effective, they become unreliable in challenging scenes where persons share similar appearances. Therefore, cross-view geometric constraints are required for a more robust association. However, most existing approaches are either fully-supervised using ground-truth identity labels or require calibrated camera parameters that are hard to obtain. In this work, we investigate the potential of learning from synchronization, and propose a self-supervised uncalibrated multi-view person association approach, Self-MVA, without using any annotations. Specifically, we propose a self-supervised learning framework, consisting of an encoder-decoder model and a self-supervised pretext task, cross-view image synchronization, which aims to distinguish whether two images from different views are captured at the same time. The model encodes each person's unified geometric and appearance features, and we train it by utilizing synchronization labels for supervision after applying Hungarian matching to bridge the gap between instance-wise and image-wise distances. To further reduce the solution space, we propose two types of self-supervised linear constraints: multi-view re-projection and pairwise edge association. Extensive experiments on three challenging public benchmark datasets (WILDTRACK, MVOR, and SOLDIERS) show that our approach achieves state-of-the-art results, surpassing existing unsupervised and fully-supervised approaches. Code is available at https://github.com/CAMMA-public/Self-MVA.

Authors:Yushan Jiang, Kanghui Ning, Zijie Pan, Xuyang Shen, Jingchao Ni, Wenchao Yu, Anderson Schneider, Haifeng Chen, Yuriy Nevmyvaka, Dongjin Song
Title: Multi-modal Time Series Analysis: A Tutorial and Survey
Abstract:
Multi-modal time series analysis has recently emerged as a prominent research area in data mining, driven by the increasing availability of diverse data modalities, such as text, images, and structured tabular data from real-world sources. However, effective analysis of multi-modal time series is hindered by data heterogeneity, modality gap, misalignment, and inherent noise. Recent advancements in multi-modal time series methods have exploited the multi-modal context via cross-modal interactions based on deep learning methods, significantly enhancing various downstream tasks. In this tutorial and survey, we present a systematic and up-to-date overview of multi-modal time series datasets and methods. We first state the existing challenges of multi-modal time series analysis and our motivations, with a brief introduction of preliminaries. Then, we summarize the general pipeline and categorize existing methods through a unified cross-modal interaction framework encompassing fusion, alignment, and transference at different levels (\textit{i.e.}, input, intermediate, output), where key concepts and ideas are highlighted. We also discuss the real-world applications of multi-modal analysis for both standard and spatial time series, tailored to general and specific domains. Finally, we discuss future research directions to help practitioners explore and exploit multi-modal time series. The up-to-date resources are provided in the GitHub repository: https://github.com/UConn-DSIS/Multi-modal-Time-Series-Analysis

Authors:Sai Coumar, Gilbert Chang, Nihar Kodkani, Zachary Kingston
Title: Foam: A Tool for Spherical Approximation of Robot Geometry
Abstract:
Many applications in robotics require primitive spherical geometry, especially in cases where efficient distance queries are necessary. Manual creation of spherical models is time-consuming and prone to errors. This paper presents Foam, a tool to generate spherical approximations of robot geometry from an input Universal Robot Description Format (URDF) file. Foam provides a robust preprocessing pipeline to handle mesh defects and a number of configuration parameters to control the level and approximation of the spherization, and generates an output URDF with collision geometry specified only by spheres. We demonstrate Foam on a number of standard robot models on common tasks, and demonstrate improved collision checking and distance query performance with only a minor loss in fidelity compared to the true collision geometry. We release our tool as an open source Python library and containerized command-line application to facilitate adoption across the robotics community.

Authors:Maan Qraitem, Piotr Teterwak, Kate Saenko, Bryan A. Plummer
Title: Web Artifact Attacks Disrupt Vision Language Models
Abstract:
Vision-language models (VLMs) (e.g. CLIP, LLaVA) are trained on large-scale, lightly curated web datasets, leading them to learn unintended correlations between semantic concepts and unrelated visual signals. These associations degrade model accuracy by causing predictions to rely on incidental patterns rather than genuine visual understanding. Prior work has weaponized these correlations as an attack vector to manipulate model predictions, such as inserting a deceiving class text onto the image in a "typographic" attack. These attacks succeed due to VLMs' text-heavy bias-a result of captions that echo visible words rather than describing content. However, this attack has focused solely on text that matches the target class exactly, overlooking a broader range of correlations, including non-matching text and graphical symbols, which arise from the abundance of branding content in web-scale data. To address this gap, we introduce "artifact-based" attacks: a novel class of manipulations that mislead models using both non-matching text and graphical elements. Unlike typographic attacks, these artifacts are not predefined, making them simultaneously harder to defend against and more challenging to find. We address this by framing artifact attacks as a search problem and demonstrate their effectiveness across five datasets, with some artifacts reinforcing each other to reach 100% attack success rates. These attacks transfer across models with up to 90% effectiveness, making it possible to attack unseen models. To defend against these attacks, we extend prior work's artifact aware prompting to the graphical setting. We see a moderate reduction of success rates of up to 15% relative to standard prompts, suggesting a promising direction for enhancing model robustness. Code: https://github.com/mqraitem/Web-Artifact-Attacks

Authors:Chiara Plizzari, Alessio Tonioni, Yongqin Xian, Achin Kulshrestha, Federico Tombari
Title: Omnia de EgoTempo: Benchmarking Temporal Understanding of Multi-Modal LLMs in Egocentric Videos
Abstract:
Understanding fine-grained temporal dynamics is crucial in egocentric videos, where continuous streams capture frequent, close-up interactions with objects. In this work, we bring to light that current egocentric video question-answering datasets often include questions that can be answered using only few frames or commonsense reasoning, without being necessarily grounded in the actual video. Our analysis shows that state-of-the-art Multi-Modal Large Language Models (MLLMs) on these benchmarks achieve remarkably high performance using just text or a single frame as input. To address these limitations, we introduce EgoTempo, a dataset specifically designed to evaluate temporal understanding in the egocentric domain. EgoTempo emphasizes tasks that require integrating information across the entire video, ensuring that models would need to rely on temporal patterns rather than static cues or pre-existing knowledge. Extensive experiments on EgoTempo show that current MLLMs still fall short in temporal reasoning on egocentric videos, and thus we hope EgoTempo will catalyze new research in the field and inspire models that better capture the complexity of temporal dynamics. Dataset and code are available at https://github.com/google-research-datasets/egotempo.git.

Authors:Shiran Yuan, Hao Zhao
Title: Next-Scale Autoregressive Models are Zero-Shot Single-Image Object View Synthesizers
Abstract:
Methods based on diffusion backbones have recently revolutionized novel view synthesis (NVS). However, those models require pretrained 2D diffusion checkpoints (e.g., Stable Diffusion) as the basis for geometrical priors. Since such checkpoints require exorbitant amounts of data and compute to train, this greatly limits the scalability of diffusion-based NVS models. We present Next-Scale Autoregression Conditioned by View (ArchonView), a method that significantly exceeds state-of-the-art methods despite being trained from scratch with 3D rendering data only and no 2D pretraining. We achieve this by incorporating both global (pose-augmented semantics) and local (multi-scale hierarchical encodings) conditioning into a backbone based on the next-scale autoregression paradigm. Our model also exhibits robust performance even for difficult camera poses where previous methods fail, and is several times faster in inference speed compared to diffusion. We experimentally verify that performance scales with model and dataset size, and conduct extensive demonstration of our method's synthesis quality across several tasks. Our code is open-sourced at https://github.com/Shiran-Yuan/ArchonView.

Authors:Dingkang Liang, Dingyuan Zhang, Xin Zhou, Sifan Tu, Tianrui Feng, Xiaofan Li, Yumeng Zhang, Mingyang Du, Xiao Tan, Xiang Bai
Title: Seeing the Future, Perceiving the Future: A Unified Driving World Model for Future Generation and Perception
Abstract:
We present UniFuture, a simple yet effective driving world model that seamlessly integrates future scene generation and perception within a single framework. Unlike existing models focusing solely on pixel-level future prediction or geometric reasoning, our approach jointly models future appearance (i.e., RGB image) and geometry (i.e., depth), ensuring coherent predictions. Specifically, during the training, we first introduce a Dual-Latent Sharing scheme, which transfers image and depth sequence in a shared latent space, allowing both modalities to benefit from shared feature learning. Additionally, we propose a Multi-scale Latent Interaction mechanism, which facilitates bidirectional refinement between image and depth features at multiple spatial scales, effectively enhancing geometry consistency and perceptual alignment. During testing, our UniFuture can easily predict high-consistency future image-depth pairs by only using the current image as input. Extensive experiments on the nuScenes dataset demonstrate that UniFuture outperforms specialized models on future generation and perception tasks, highlighting the advantages of a unified, structurally-aware world model. The project page is at https://github.com/dk-liang/UniFuture.

Authors:Pingyu Wu, Daiheng Gao, Jing Tang, Huimin Chen, Wenbo Zhou, Weiming Zhang, Nenghai Yu
Title: MES-RAG: Bringing Multi-modal, Entity-Storage, and Secure Enhancements to RAG
Abstract:
Retrieval-Augmented Generation (RAG) improves Large Language Models (LLMs) by using external knowledge, but it struggles with precise entity information retrieval. In this paper, we proposed MES-RAG framework, which enhances entity-specific query handling and provides accurate, secure, and consistent responses. MES-RAG introduces proactive security measures that ensure system integrity by applying protections prior to data access. Additionally, the system supports real-time multi-modal outputs, including text, images, audio, and video, seamlessly integrating into existing RAG architectures. Experimental results demonstrate that MES-RAG significantly improves both accuracy and recall, highlighting its effectiveness in advancing the security and utility of question-answering, increasing accuracy to 0.83 (+0.25) on targeted task. Our code and data are available at https://github.com/wpydcr/MES-RAG.

Authors:Lin-Han Jia, Lan-Zhe Guo, Zhi Zhou, Si-Ye Han, Zi-Wen Li, Yu-Feng Li
Title: Achieving Unbiased Multi-Instance Learning via Balanced Fine-Grained Positive-Unlabeled Learning
Abstract:
In real-world applications, it is often challenging to detect anomalous samples when the anomalous information they contain is extremely limited. In such cases, both macro-level and micro-level detection using multi-instance learning (MIL) encounter significant difficulties. The former struggles because normal and anomalous samples are highly similar and hard to distinguish at the macro level, while the latter is limited by the lack of labels at the micro level. In MIL, micro-level labels are inferred from macro-level labels, which can lead to severe bias. Moreover, the more imbalanced the distribution between normal and anomalous samples, the more pronounced these limitations become. In this study, we observe that the MIL problem can be elegantly transformed into a fine-grained Positive-Unlabeled (PU) learning problem. This transformation allows us to address the imbalance issue in an unbiased manner using a micro-level balancing mechanism. To this end, we propose a novel framework-Balanced Fine-Grained Positive-Unlabeled (BFGPU)-based on rigorous theoretical foundations to address the challenges above. Extensive experiments on both public and real-world datasets demonstrate the effectiveness of BFGPU, which outperforms existing methods, even in extreme scenarios where both macro and micro-level distributions are highly imbalanced. The code is open-sourced at https://github.com/BFGPU/BFGPU.

Authors:Zhaodong Wu, Qiaochu Zhao, Ming Hu, Yulong Li, Haochen Xue, Kang Dang, Zhengyong Jiang, Angelos Stefanidis, Qiufeng Wang, Imran Razzak, Zongyuan Ge, Junjun He, Yu Qiao, Zhong Zheng, Feilong Tang, Jionglong Su
Title: MSWAL: 3D Multi-class Segmentation of Whole Abdominal Lesions Dataset
Abstract:
With the significantly increasing incidence and prevalence of abdominal diseases, there is a need to embrace greater use of new innovations and technology for the diagnosis and treatment of patients. Although deep-learning methods have notably been developed to assist radiologists in diagnosing abdominal diseases, existing models have the restricted ability to segment common lesions in the abdomen due to missing annotations for typical abdominal pathologies in their training datasets. To address the limitation, we introduce MSWAL, the first 3D Multi-class Segmentation of the Whole Abdominal Lesions dataset, which broadens the coverage of various common lesion types, such as gallstones, kidney stones, liver tumors, kidney tumors, pancreatic cancer, liver cysts, and kidney cysts. With CT scans collected from 694 patients (191,417 slices) of different genders across various scanning phases, MSWAL demonstrates strong robustness and generalizability. The transfer learning experiment from MSWAL to two public datasets, LiTS and KiTS, effectively demonstrates consistent improvements, with Dice Similarity Coefficient (DSC) increase of 3.00% for liver tumors and 0.89% for kidney tumors, demonstrating that the comprehensive annotations and diverse lesion types in MSWAL facilitate effective learning across different domains and data distributions. Furthermore, we propose Inception nnU-Net, a novel segmentation framework that effectively integrates an Inception module with the nnU-Net architecture to extract information from different receptive fields, achieving significant enhancement in both voxel-level DSC and region-level F1 compared to the cutting-edge public algorithms on MSWAL. Our dataset will be released after being accepted, and the code is publicly released at https://github.com/tiuxuxsh76075/MSWAL-.

Authors:Jingyuan Xue, Longfei Wei, Dongjing Jiang, Fang Sheng, Russell Greiner, Jianfei Zhang
Title: Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
Abstract:
Battery degradation significantly impacts the reliability and efficiency of energy storage systems, particularly in electric vehicles and industrial applications. Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for optimizing maintenance schedules, reducing costs, and improving safety. Traditional RUL prediction methods often struggle with nonlinear degradation patterns and uncertainty quantification. To address these challenges, we propose a hybrid survival analysis framework integrating survival data reconstruction, survival model learning, and survival probability estimation. Our approach transforms battery voltage time series into time-to-failure data using path signatures. The multiple Cox-based survival models and machine-learning-based methods, such as DeepHit and MTLR, are learned to predict battery failure-free probabilities over time. Experiments conducted on the Toyota battery and NASA battery datasets demonstrate the effectiveness of our approach, achieving high time-dependent AUC and concordance index (C-Index) while maintaining a low integrated Brier score. The data and source codes for this work are available to the public at https://github.com/thinkxca/rul.

Authors:Juhyeong Kim, Sungyoon Choi, Youngbin Lee, Yejin Kim, Yongmin Choi, Yongjae Lee
Title: Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization
Abstract:
We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.

Authors:Juhyeong Kim, Sungyoon Choi, Youngbin Lee, Yejin Kim, Yongmin Choi, Yongjae Lee
Title: Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization
Abstract:
We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.

Authors:Ananya Agarwal, Fnu Alusi, Arbie Hsu, Arif Syraj, Ellen Veomett
Title: States of Disarray: Cleaning Data for Gerrymandering Analysis
Abstract:
The mathematics of redistricting is an area of study that has exploded in recent years. In particular, many different research groups and expert witnesses in court cases have used outlier analysis to argue that a proposed map is a gerrymander. This outlier analysis relies on having an ensemble of potential redistricting maps against which the proposed map is compared. Arguably the most widely-accepted method of creating such an ensemble is to use a Markov Chain Monte Carlo (MCMC) process. This process requires that various pieces of data be gathered, cleaned, and coalesced into a single file that can be used as the seed of the MCMC process. In this article, we describe how we have begun this cleaning process for each state, and made the resulting data available for the public at https://github.com/eveomett-states . At the time of submission, we have data for 22 states available for researchers, students, and the general public to easily access and analyze. We will continue the data cleaning process for each state, and we hope that the availability of these datasets will both further research in this area, and increase the public's interest in and understanding of modern techniques to detect gerrymandering.

Authors:Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya, Peter Norgaard, Nayantara Mudur, Martyna Plomecka, Paul Raccuglia, Yasaman Bahri, Victor V. Albert, Pranesh Srinivasan, Haining Pan, Philippe Faist, Brian Rohr, Ekin Dogus Cubuk, Muratahan Aykol, Amil Merchant, Michael J. Statt, Dan Morris, Drew Purves, Elise Kleeman, Ruth Alcantara, Matthew Abraham, Muqthar Mohammad, Ean Phing VanLee, Chenfei Jiang, Elizabeth Dorfman, Eun-Ah Kim, Michael P Brenner, Viren Jain, Sameera Ponda, Subhashini Venugopalan
Title: CURIE: Evaluating LLMs On Multitask Scientific Long Context Understanding and Reasoning
Abstract:
Scientific problem-solving involves synthesizing information while applying expert knowledge. We introduce CURIE, a scientific long-Context Understanding,Reasoning and Information Extraction benchmark to measure the potential of Large Language Models (LLMs) in scientific problem-solving and assisting scientists in realistic workflows. This benchmark introduces ten challenging tasks with a total of 580 problems and solution pairs curated by experts in six disciplines - materials science, condensed matter physics, quantum computing, geospatial analysis, biodiversity, and proteins - covering both experimental and theoretical work-flows in science. We evaluate a range of closed and open LLMs on tasks in CURIE which requires domain expertise, comprehension of long in-context information,and multi-step reasoning. While Gemini Flash 2.0 and Claude-3 show consistent high comprehension across domains, the popular GPT-4o and command-R+ fail dramatically on protein sequencing tasks. With the best performance at 32% there is much room for improvement for all models. We hope that insights gained from CURIE can guide the future development of LLMs in sciences. Evaluation code and data are in https://github.com/google/curie

Authors:Jia Xu, Tianyi Wei, Bojian Hou, Patryk Orzechowski, Shu Yang, Ruochen Jin, Rachael Paulbeck, Joost Wagenaar, George Demiris, Li Shen
Title: MentalChat16K: A Benchmark Dataset for Conversational Mental Health Assistance
Abstract:
We introduce MentalChat16K, an English benchmark dataset combining a synthetic mental health counseling dataset and a dataset of anonymized transcripts from interventions between Behavioral Health Coaches and Caregivers of patients in palliative or hospice care. Covering a diverse range of conditions like depression, anxiety, and grief, this curated dataset is designed to facilitate the development and evaluation of large language models for conversational mental health assistance. By providing a high-quality resource tailored to this critical domain, MentalChat16K aims to advance research on empathetic, personalized AI solutions to improve access to mental health support services. The dataset prioritizes patient privacy, ethical considerations, and responsible data usage. MentalChat16K presents a valuable opportunity for the research community to innovate AI technologies that can positively impact mental well-being. The dataset is available at https://huggingface.co/datasets/ShenLab/MentalChat16K and the code and documentation are hosted on GitHub at https://github.com/ChiaPatricia/MentalChat16K.

Authors:Mohammod N. I. Suvon, Shuo Zhou, Prasun C. Tripathi, Wenrui Fan, Samer Alabed, Bishesh Khanal, Venet Osmani, Andrew J. Swift, Chen, Chen, Haiping Lu
Title: Multimodal Latent Fusion of ECG Leads for Early Assessment of Pulmonary Hypertension
Abstract:
Recent advancements in early assessment of pulmonary hypertension (PH) primarily focus on applying machine learning methods to centralized diagnostic modalities, such as 12-lead electrocardiogram (12L-ECG). Despite their potential, these approaches fall short in decentralized clinical settings, e.g., point-of-care and general practice, where handheld 6-lead ECG (6L-ECG) can offer an alternative but is limited by the scarcity of labeled data for developing reliable models. To address this, we propose a lead-specific electrocardiogram multimodal variational autoencoder (\textsc{LS-EMVAE}), which incorporates a hierarchical modality expert (HiME) fusion mechanism and a latent representation alignment loss. HiME combines mixture-of-experts and product-of-experts to enable flexible, adaptive latent fusion, while the alignment loss improves coherence among lead-specific and shared representations. To alleviate data scarcity and enhance representation learning, we adopt a transfer learning strategy: the model is first pre-trained on a large unlabeled 12L-ECG dataset and then fine-tuned on smaller task-specific labeled 6L-ECG datasets. We validate \textsc{LS-EMVAE} across two retrospective cohorts in a 6L-ECG setting: 892 subjects from the ASPIRE registry for (1) PH detection and (2) phenotyping pre-/post-capillary PH, and 16,416 subjects from UK Biobank for (3) predicting elevated pulmonary atrial wedge pressure, where it consistently outperforms unimodal and multimodal baseline methods and demonstrates strong generalizability and interpretability. The code is available at https://github.com/Shef-AIRE/LS-EMVAE.

Authors:Noah Y. Siegel, Nicolas Heess, Maria Perez-Ortiz, Oana-Maria Camburu
Title: Verbosity Tradeoffs and the Impact of Scale on the Faithfulness of LLM Self-Explanations
Abstract:
When asked to explain their decisions, LLMs can often give explanations which sound plausible to humans. But are these explanations faithful, i.e. do they convey the factors actually responsible for the decision? In this work, we analyse counterfactual faithfulness across 75 models from 13 families. We analyze the tradeoff between conciseness and comprehensiveness, how correlational faithfulness metrics assess this tradeoff, and the extent to which metrics can be gamed. This analysis motivates two new metrics: the phi-CCT, a simplified variant of the Correlational Counterfactual Test (CCT) which avoids the need for token probabilities while explaining most of the variance of the original test; and F-AUROC, which eliminates sensitivity to imbalanced intervention distributions and captures a model's ability to produce explanations with different levels of detail. Our findings reveal a clear scaling trend: larger and more capable models are consistently more faithful on all metrics we consider. Our code is available at https://github.com/google-deepmind/corr_faith.

Authors:Haoyang Li, Liang Wang, Chao Wang, Jing Jiang, Yan Peng, Guodong Long
Title: DPC: Dual-Prompt Collaboration for Tuning Vision-Language Models
Abstract:
The Base-New Trade-off (BNT) problem universally exists during the optimization of CLIP-based prompt tuning, where continuous fine-tuning on base (target) classes leads to a simultaneous decrease of generalization ability on new (unseen) classes. Existing approaches attempt to regulate the prompt tuning process to balance BNT by appending constraints. However, imposed on the same target prompt, these constraints fail to fully avert the mutual exclusivity between the optimization directions for base and new. As a novel solution to this challenge, we propose the plug-and-play Dual-Prompt Collaboration (DPC) framework, the first that decoupling the optimization processes of base and new tasks at the prompt level. Specifically, we clone a learnable parallel prompt based on the backbone prompt, and introduce a variable Weighting-Decoupling framework to independently control the optimization directions of dual prompts specific to base or new tasks, thus avoiding the conflict in generalization. Meanwhile, we propose a Dynamic Hard Negative Optimizer, utilizing dual prompts to construct a more challenging optimization task on base classes for enhancement. For interpretability, we prove the feature channel invariance of the prompt vector during the optimization process, providing theoretical support for the Weighting-Decoupling of DPC. Extensive experiments on multiple backbones demonstrate that DPC can significantly improve base performance without introducing any external knowledge beyond the base classes, while maintaining generalization to new classes. Code is available at: https://github.com/JREion/DPC.

Authors:Yingyue Li, Bencheng Liao, Wenyu Liu, Xinggang Wang
Title: MaTVLM: Hybrid Mamba-Transformer for Efficient Vision-Language Modeling
Abstract:
With the advancement of RNN models with linear complexity, the quadratic complexity challenge of transformers has the potential to be overcome. Notably, the emerging Mamba-2 has demonstrated competitive performance, bridging the gap between RNN models and transformers. However, due to sequential processing and vanishing gradients, RNN models struggle to capture long-range dependencies, limiting contextual understanding. This results in slow convergence, high resource demands, and poor performance on downstream understanding and complex reasoning tasks. In this work, we present a hybrid model MaTVLM by substituting a portion of the transformer decoder layers in a pre-trained VLM with Mamba-2 layers. Leveraging the inherent relationship between attention and Mamba-2, we initialize Mamba-2 with corresponding attention weights to accelerate convergence. Subsequently, we employ a single-stage distillation process, using the pre-trained VLM as the teacher model to transfer knowledge to the MaTVLM, further enhancing convergence speed and performance. Furthermore, we investigate the impact of differential distillation loss within our training framework. We evaluate the MaTVLM on multiple benchmarks, demonstrating competitive performance against the teacher model and existing VLMs while surpassing both Mamba-based VLMs and models of comparable parameter scales. Remarkably, the MaTVLM achieves up to 3.6x faster inference than the teacher model while reducing GPU memory consumption by 27.5%, all without compromising performance. Code and models are released at http://github.com/hustvl/MaTVLM.

Authors:Ling Yang, Kaixin Zhu, Juanxi Tian, Bohan Zeng, Mingbao Lin, Hongjuan Pei, Wentao Zhang, Shuicheng Yan
Title: WideRange4D: Enabling High-Quality 4D Reconstruction with Wide-Range Movements and Scenes
Abstract:
With the rapid development of 3D reconstruction technology, research in 4D reconstruction is also advancing, existing 4D reconstruction methods can generate high-quality 4D scenes. However, due to the challenges in acquiring multi-view video data, the current 4D reconstruction benchmarks mainly display actions performed in place, such as dancing, within limited scenarios. In practical scenarios, many scenes involve wide-range spatial movements, highlighting the limitations of existing 4D reconstruction datasets. Additionally, existing 4D reconstruction methods rely on deformation fields to estimate the dynamics of 3D objects, but deformation fields struggle with wide-range spatial movements, which limits the ability to achieve high-quality 4D scene reconstruction with wide-range spatial movements. In this paper, we focus on 4D scene reconstruction with significant object spatial movements and propose a novel 4D reconstruction benchmark, WideRange4D. This benchmark includes rich 4D scene data with large spatial variations, allowing for a more comprehensive evaluation of the generation capabilities of 4D generation methods. Furthermore, we introduce a new 4D reconstruction method, Progress4D, which generates stable and high-quality 4D results across various complex 4D scene reconstruction tasks. We conduct both quantitative and qualitative comparison experiments on WideRange4D, showing that our Progress4D outperforms existing state-of-the-art 4D reconstruction methods. Project: https://github.com/Gen-Verse/WideRange4D

Authors:Johan Edstedt
Title: Less Biased Noise Scale Estimation for Threshold-Robust RANSAC
Abstract:
The gold-standard for robustly estimating relative pose through image matching is RANSAC. While RANSAC is powerful, it requires setting the inlier threshold that determines whether the error of a correspondence under an estimated model is sufficiently small to be included in its consensus set. Setting this threshold is typically done by hand, and is difficult to tune without an access to ground truth data. Thus, a method capable of automatically determining the optimal threshold would be desirable. In this paper we revisit inlier noise scale estimation, which is an attractive approach as the inlier noise scale is linear to the optimal threshold. We revisit the noise scale estimation method SIMFIT and find bias in the estimate of the noise scale. In particular, we fix underestimates from using the same data for fitting the model as estimating the inlier noise, and from not taking the threshold itself into account. Secondly, since the optimal threshold within a scene is approximately constant we propose a multi-pair extension of SIMFIT++, by filtering of estimates, which improves results. Our approach yields robust performance across a range of thresholds, shown in Figure 1. Code is available at https://github.com/Parskatt/simfitpp

Authors:Nhi Pham, Artur Jesslen, Bernt Schiele, Adam Kortylewski, Jonas Fischer
Title: Interpretable 3D Neural Object Volumes for Robust Conceptual Reasoning
Abstract:
With the rise of deep neural networks, especially in safety-critical applications, robustness and interpretability are crucial to ensure their trustworthiness. Recent advances in 3D-aware classifiers that map image features to volumetric representation of objects, rather than relying solely on 2D appearance, have greatly improved robustness on out-of-distribution (OOD) data. Such classifiers have not yet been studied from the perspective of interpretability. Meanwhile, current concept-based XAI methods often neglect OOD robustness. We aim to address both aspects with CAVE - Concept Aware Volumes for Explanations - a new direction that unifies interpretability and robustness in image classification. We design CAVE as a robust and inherently interpretable classifier that learns sparse concepts from 3D object representation. We further propose 3D Consistency (3D-C), a metric to measure spatial consistency of concepts. Unlike existing metrics that rely on human-annotated parts on images, 3D-C leverages ground-truth object meshes as a common surface to project and compare explanations across concept-based methods. CAVE achieves competitive classification performance while discovering consistent and meaningful concepts across images in various OOD settings. Code available at https://github.com/phamleyennhi/CAVE.

Authors:Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick M. Blies, Günter Klambauer, Sebastian Böck, Sepp Hochreiter
Title: xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference
Abstract:
Recent breakthroughs in solving reasoning, math and coding problems with Large Language Models (LLMs) have been enabled by investing substantial computation budgets at inference time. Therefore, inference speed is one of the most critical properties of LLM architectures, and there is a growing need for LLMs that are efficient and fast at inference. Recently, LLMs built on the xLSTM architecture have emerged as a powerful alternative to Transformers, offering linear compute scaling with sequence length and constant memory usage, both highly desirable properties for efficient inference. However, such xLSTM-based LLMs have yet to be scaled to larger models and assessed and compared with respect to inference speed and efficiency. In this work, we introduce xLSTM 7B, a 7-billion-parameter LLM that combines xLSTM's architectural benefits with targeted optimizations for fast and efficient inference. Our experiments demonstrate that xLSTM 7B achieves performance on downstream tasks comparable to other similar-sized LLMs, while providing significantly faster inference speeds and greater efficiency compared to Llama- and Mamba-based LLMs. These results establish xLSTM 7B as the fastest and most efficient 7B LLM, offering a solution for tasks that require large amounts of test-time computation. Our work highlights xLSTM's potential as a foundational architecture for methods building on heavy use of LLM inference. Our model weights, model code and training code are open-source.

Authors:Xinyu Lian, Zichao Yu, Ruiming Liang, Yitong Wang, Li Ray Luo, Kaixu Chen, Yuanzhen Zhou, Qihong Tang, Xudong Xu, Zhaoyang Lyu, Bo Dai, Jiangmiao Pang
Title: Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation
Abstract:
Large-scale articulated objects with high quality are desperately needed for multiple tasks related to embodied AI. Most existing methods for creating articulated objects are either data-driven or simulation based, which are limited by the scale and quality of the training data or the fidelity and heavy labour of the simulation. In this paper, we propose Infinite Mobility, a novel method for synthesizing high-fidelity articulated objects through procedural generation. User study and quantitative evaluation demonstrate that our method can produce results that excel current state-of-the-art methods and are comparable to human-annotated datasets in both physics property and mesh quality. Furthermore, we show that our synthetic data can be used as training data for generative models, enabling next-step scaling up. Code is available at https://github.com/Intern-Nexus/Infinite-Mobility

Authors:Dengyun Peng, Yuhang Zhou, Qiguang Chen, Jinhao Liu, Jingjing Chen, Libo Qin
Title: DLPO: Towards a Robust, Efficient, and Generalizable Prompt Optimization Framework from a Deep-Learning Perspective
Abstract:
Large Language Models (LLMs) have achieved remarkable success across diverse tasks, largely driven by well-designed prompts. However, crafting and selecting such prompts often requires considerable human effort, significantly limiting its scalability. To mitigate this, recent studies have explored automated prompt optimization as a promising solution. Despite these efforts, existing methods still face critical challenges in robustness, efficiency, and generalization. To systematically address these challenges, we first conduct an empirical analysis to identify the limitations of current reflection-based prompt optimization paradigm. Building on these insights, we propose 7 innovative approaches inspired by traditional deep learning paradigms for prompt optimization (DLPO), seamlessly integrating these concepts into text-based gradient optimization. Through these advancements, we progressively tackle the aforementioned challenges and validate our methods through extensive experimentation. We hope our study not only provides valuable guidance for future research but also offers a comprehensive understanding of the challenges and potential solutions in prompt optimization. Our code is available at https://github.com/sfasfaffa/DLPO.

Authors:Qi Zhang, Xiuyuan Chen, Ziyi He, Kun Wang, Lianming Wu, Hongxing Shen, Jianqi Sun
Title: U2AD: Uncertainty-based Unsupervised Anomaly Detection Framework for Detecting T2 Hyperintensity in MRI Spinal Cord
Abstract:
T2 hyperintensities in spinal cord MR images are crucial biomarkers for conditions such as degenerative cervical myelopathy. However, current clinical diagnoses primarily rely on manual evaluation. Deep learning methods have shown promise in lesion detection, but most supervised approaches are heavily dependent on large, annotated datasets. Unsupervised anomaly detection (UAD) offers a compelling alternative by eliminating the need for abnormal data annotations. However, existing UAD methods rely on curated normal datasets and their performance frequently deteriorates when applied to clinical datasets due to domain shifts. We propose an Uncertainty-based Unsupervised Anomaly Detection framework, termed U2AD, to address these limitations. Unlike traditional methods, U2AD is designed to be trained and tested within the same clinical dataset, following a "mask-and-reconstruction" paradigm built on a Vision Transformer-based architecture. We introduce an uncertainty-guided masking strategy to resolve task conflicts between normal reconstruction and anomaly detection to achieve an optimal balance. Specifically, we employ a Monte-Carlo sampling technique to estimate reconstruction uncertainty mappings during training. By iteratively optimizing reconstruction training under the guidance of both epistemic and aleatoric uncertainty, U2AD reduces overall reconstruction variance while emphasizing regions. Experimental results demonstrate that U2AD outperforms existing supervised and unsupervised methods in patient-level identification and segment-level localization tasks. This framework establishes a new benchmark for incorporating uncertainty guidance into UAD, highlighting its clinical utility in addressing domain shifts and task conflicts in medical image anomaly detection. Our code is available: https://github.com/zhibaishouheilab/U2AD

Authors:Qing Zhou, Junyu Gao, Qi Wang
Title: Scale Efficient Training for Large Datasets
Abstract:
The rapid growth of dataset scales has been a key driver in advancing deep learning research. However, as dataset scale increases, the training process becomes increasingly inefficient due to the presence of low-value samples, including excessive redundant samples, overly challenging samples, and inefficient easy samples that contribute little to model improvement.To address this challenge, we propose Scale Efficient Training (SeTa) for large datasets, a dynamic sample pruning approach that losslessly reduces training time. To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss. Building upon this clustering, a sliding window strategy is employed to progressively remove both overly challenging and inefficient easy clusters following an easy-to-hard curriculum.We conduct extensive experiments on large-scale synthetic datasets, including ToCa, SS1M, and ST+MJ, each containing over 3 million samples.SeTa reduces training costs by up to 50\% while maintaining or improving performance, with minimal degradation even at 70\% cost reduction. Furthermore, experiments on various scale real datasets across various backbones (CNNs, Transformers, and Mambas) and diverse tasks (instruction tuning, multi-view stereo, geo-localization, composed image retrieval, referring image segmentation) demonstrate the powerful effectiveness and universality of our approach. Code is available at https://github.com/mrazhou/SeTa.

Authors:Jiaming Kang, Keyan Chen, Zhengxia Zou, Zhenwei Shi
Title: TriDF: Triplane-Accelerated Density Fields for Few-Shot Remote Sensing Novel View Synthesis
Abstract:
Remote sensing novel view synthesis (NVS) offers significant potential for 3D interpretation of remote sensing scenes, with important applications in urban planning and environmental monitoring. However, remote sensing scenes frequently lack sufficient multi-view images due to acquisition constraints. While existing NVS methods tend to overfit when processing limited input views, advanced few-shot NVS methods are computationally intensive and perform sub-optimally in remote sensing scenes. This paper presents TriDF, an efficient hybrid 3D representation for fast remote sensing NVS from as few as 3 input views. Our approach decouples color and volume density information, modeling them independently to reduce the computational burden on implicit radiance fields and accelerate reconstruction. We explore the potential of the triplane representation in few-shot NVS tasks by mapping high-frequency color information onto this compact structure, and the direct optimization of feature planes significantly speeds up convergence. Volume density is modeled as continuous density fields, incorporating reference features from neighboring views through image-based rendering to compensate for limited input data. Additionally, we introduce depth-guided optimization based on point clouds, which effectively mitigates the overfitting problem in few-shot NVS. Comprehensive experiments across multiple remote sensing scenes demonstrate that our hybrid representation achieves a 30x speed increase compared to NeRF-based methods, while simultaneously improving rendering quality metrics over advanced few-shot methods (7.4% increase in PSNR, 12.2% in SSIM, and 18.7% in LPIPS). The code is publicly available at https://github.com/kanehub/TriDF

Authors:Ying Jiao, Luc De Raedt, Giuseppe Marra
Title: Valid Text-to-SQL Generation with Unification-based DeepStochLog
Abstract:
Large language models have been used to translate natural language questions to SQL queries. Without hard constraints on syntax and database schema, they occasionally produce invalid queries that are not executable. These failures limit the usage of these systems in real-life scenarios. We propose a neurosymbolic framework that imposes SQL syntax and schema constraints with unification-based definite clause grammars and thus guarantees the generation of valid queries. Our framework also builds a bi-directional interface to language models to leverage their natural language understanding abilities. The evaluation results on a subset of SQL grammars show that all our output queries are valid. This work is the first step towards extending language models with unification-based grammars. We demonstrate this extension enhances the validity, execution accuracy, and ground truth alignment of the underlying language model by a large margin. Our code is available at https://github.com/ML-KULeuven/deepstochlog-lm.

Authors:Witold Wydmański, Marek Śmieja
Title: GFSNetwork: Differentiable Feature Selection via Gumbel-Sigmoid Relaxation
Abstract:
Feature selection in deep learning remains a critical challenge, particularly for high-dimensional tabular data where interpretability and computational efficiency are paramount. We present GFSNetwork, a novel neural architecture that performs differentiable feature selection through temperature-controlled Gumbel-Sigmoid sampling. Unlike traditional methods, where the user has to define the requested number of features, GFSNetwork selects it automatically during an end-to-end process. Moreover, GFSNetwork maintains constant computational overhead regardless of the number of input features. We evaluate GFSNetwork on a series of classification and regression benchmarks, where it consistently outperforms recent methods including DeepLasso, attention maps, as well as traditional feature selectors, while using significantly fewer features. Furthermore, we validate our approach on real-world metagenomic datasets, demonstrating its effectiveness in high-dimensional biological data. Concluding, our method provides a scalable solution that bridges the gap between neural network flexibility and traditional feature selection interpretability. We share our python implementation of GFSNetwork at https://github.com/wwydmanski/GFSNetwork, as well as a PyPi package (gfs_network).

Authors:Yinqiao Wang, Hao Xu, Pheng-Ann Heng, Chi-Wing Fu
Title: UniHOPE: A Unified Approach for Hand-Only and Hand-Object Pose Estimation
Abstract:
Estimating the 3D pose of hand and potential hand-held object from monocular images is a longstanding challenge. Yet, existing methods are specialized, focusing on either bare-hand or hand interacting with object. No method can flexibly handle both scenarios and their performance degrades when applied to the other scenario. In this paper, we propose UniHOPE, a unified approach for general 3D hand-object pose estimation, flexibly adapting both scenarios. Technically, we design a grasp-aware feature fusion module to integrate hand-object features with an object switcher to dynamically control the hand-object pose estimation according to grasping status. Further, to uplift the robustness of hand pose estimation regardless of object presence, we generate realistic de-occluded image pairs to train the model to learn object-induced hand occlusions, and formulate multi-level feature enhancement techniques for learning occlusion-invariant features. Extensive experiments on three commonly-used benchmarks demonstrate UniHOPE's SOTA performance in addressing hand-only and hand-object scenarios. Code will be released on https://github.com/JoyboyWang/UniHOPE_Pytorch.

Authors:Ling-An Zeng, Gaojie Wu, Ancong Wu, Jian-Fang Hu, Wei-Shi Zheng
Title: Progressive Human Motion Generation Based on Text and Few Motion Frames
Abstract:
Although existing text-to-motion (T2M) methods can produce realistic human motion from text description, it is still difficult to align the generated motion with the desired postures since using text alone is insufficient for precisely describing diverse postures. To achieve more controllable generation, an intuitive way is to allow the user to input a few motion frames describing precise desired postures. Thus, we explore a new Text-Frame-to-Motion (TF2M) generation task that aims to generate motions from text and very few given frames. Intuitively, the closer a frame is to a given frame, the lower the uncertainty of this frame is when conditioned on this given frame. Hence, we propose a novel Progressive Motion Generation (PMG) method to progressively generate a motion from the frames with low uncertainty to those with high uncertainty in multiple stages. During each stage, new frames are generated by a Text-Frame Guided Generator conditioned on frame-aware semantics of the text, given frames, and frames generated in previous stages. Additionally, to alleviate the train-test gap caused by multi-stage accumulation of incorrectly generated frames during testing, we propose a Pseudo-frame Replacement Strategy for training. Experimental results show that our PMG outperforms existing T2M generation methods by a large margin with even one given frame, validating the effectiveness of our PMG. Code is available at https://github.com/qinghuannn/PMG.

Authors:Mikkel Jordahn, Jonas Vestergaard Jensen, Mikkel N. Schmidt, Michael Riis Andersen
Title: On Local Posterior Structure in Deep Ensembles
Abstract:
Bayesian Neural Networks (BNNs) often improve model calibration and predictive uncertainty quantification compared to point estimators such as maximum-a-posteriori (MAP). Similarly, deep ensembles (DEs) are also known to improve calibration, and therefore, it is natural to hypothesize that deep ensembles of BNNs (DE-BNNs) should provide even further improvements. In this work, we systematically investigate this across a number of datasets, neural network architectures, and BNN approximation methods and surprisingly find that when the ensembles grow large enough, DEs consistently outperform DE-BNNs on in-distribution data. To shine light on this observation, we conduct several sensitivity and ablation studies. Moreover, we show that even though DE-BNNs outperform DEs on out-of-distribution metrics, this comes at the cost of decreased in-distribution performance. As a final contribution, we open-source the large pool of trained models to facilitate further research on this topic.

Authors:Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Jun Liu, Qika Lin, Zhiyong Wu
Title: $ϕ$-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation
Abstract:
Inference-time optimization scales computation to derive deliberate reasoning steps for effective performance. While previous search-based strategies address the short-sightedness of auto-regressive generation, the vast search space leads to excessive exploration and insufficient exploitation. To strike an efficient balance to derive the optimal step, we frame the decoding strategy as foresight sampling, leveraging simulated future steps to obtain globally optimal step estimation. Built on it, we propose a novel decoding strategy, named $ϕ$-Decoding. To provide a precise and expressive estimation of step value, $ϕ$-Decoding approximates two distributions via foresight and clustering. Sampling from the joint distribution, the optimal steps can be selected for exploitation. To support adaptive computation allocation, we propose in-width and in-depth pruning strategies, featuring a light-weight solution to achieve inference efficiency. Extensive experiments across seven benchmarks show $ϕ$-Decoding outperforms strong baselines in both performance and efficiency. Additional analysis demonstrates its generalization across various LLMs and scalability across a wide range of computing budgets. The code will be released at https://github.com/xufangzhi/phi-Decoding, and the open-source PyPI package is coming soon.

Authors:Zhifu Tian, Tao Hu, Chaoyang Niu, Di Wu, Shu Wang
Title: Sampling Innovation-Based Adaptive Compressive Sensing
Abstract:
Scene-aware Adaptive Compressive Sensing (ACS) has attracted significant interest due to its promising capability for efficient and high-fidelity acquisition of scene images. ACS typically prescribes adaptive sampling allocation (ASA) based on previous samples in the absence of ground truth. However, when confronting unknown scenes, existing ACS methods often lack accurate judgment and robust feedback mechanisms for ASA, thus limiting the high-fidelity sensing of the scene. In this paper, we introduce a Sampling Innovation-Based ACS (SIB-ACS) method that can effectively identify and allocate sampling to challenging image reconstruction areas, culminating in high-fidelity image reconstruction. An innovation criterion is proposed to judge ASA by predicting the decrease in image reconstruction error attributable to sampling increments, thereby directing more samples towards regions where the reconstruction error diminishes significantly. A sampling innovation-guided multi-stage adaptive sampling (AS) framework is proposed, which iteratively refines the ASA through a multi-stage feedback process. For image reconstruction, we propose a Principal Component Compressed Domain Network (PCCD-Net), which efficiently and faithfully reconstructs images under AS scenarios. Extensive experiments demonstrate that the proposed SIB-ACS method significantly outperforms the state-of-the-art methods in terms of image reconstruction fidelity and visual effects. Codes are available at https://github.com/giant-pandada/SIB-ACS_CVPR2025.

Authors:Yijie Liu, Xinyi Shang, Yiqun Zhang, Yang Lu, Chen Gong, Jing-Hao Xue, Hanzi Wang
Title: Mind the Gap: Confidence Discrepancy Can Guide Federated Semi-Supervised Learning Across Pseudo-Mismatch
Abstract:
Federated Semi-Supervised Learning (FSSL) aims to leverage unlabeled data across clients with limited labeled data to train a global model with strong generalization ability. Most FSSL methods rely on consistency regularization with pseudo-labels, converting predictions from local or global models into hard pseudo-labels as supervisory signals. However, we discover that the quality of pseudo-label is largely deteriorated by data heterogeneity, an intrinsic facet of federated learning. In this paper, we study the problem of FSSL in-depth and show that (1) heterogeneity exacerbates pseudo-label mismatches, further degrading model performance and convergence, and (2) local and global models' predictive tendencies diverge as heterogeneity increases. Motivated by these findings, we propose a simple and effective method called Semi-supervised Aggregation for Globally-Enhanced Ensemble (SAGE), that can flexibly correct pseudo-labels based on confidence discrepancies. This strategy effectively mitigates performance degradation caused by incorrect pseudo-labels and enhances consensus between local and global models. Experimental results demonstrate that SAGE outperforms existing FSSL methods in both performance and convergence. Our code is available at https://github.com/Jay-Codeman/SAGE

Authors:Chi Han, Xin Liu, Haodong Wang, Shiyang Li, Jingfeng Yang, Haoming Jiang, Zhengyang Wang, Qingyu Yin, Liang Qiu, Changlong Yu, Yifan Gao, Zheng Li, Bing Yin, Jingbo Shang, Heng Ji
Title: Can Language Models Follow Multiple Turns of Entangled Instructions?
Abstract:
Despite significant achievements in improving the instruction-following capabilities of large language models (LLMs), the ability to process multiple potentially entangled or conflicting instructions remains a considerable challenge. Real-world scenarios often require consistency across multiple instructions over time, such as secret privacy, personal preferences, and prioritization, which demand sophisticated abilities to integrate multiple turns and carefully balance competing objectives when instructions intersect or conflict. This work presents a systematic investigation of LLMs' capabilities in handling multiple turns of instructions, covering three levels of difficulty: (1) retrieving information from instructions, (2) tracking and reasoning across turns, and (3) resolving conflicts among instructions. We construct MultiTurnInstruct~with $\sim$1.1K high-quality multi-turn conversations through the human-in-the-loop approach and result in nine capability categories, including statics and dynamics, reasoning, and multitasking. Our finding reveals an intriguing trade-off between different capabilities. While GPT models demonstrate superior memorization, they show reduced effectiveness in privacy-protection tasks requiring selective information withholding. Larger models exhibit stronger reasoning capabilities but still struggle with resolving conflicting instructions. Importantly, these performance gaps cannot be attributed solely to information loss, as models demonstrate strong BLEU scores on memorization tasks. Still, their attention mechanisms fail to integrate multiple related instructions effectively. These findings highlight critical areas for improvement in complex real-world tasks involving multi-turn instructions. Data and codes are released at https://github.com/Glaciohound/Multi-Turn-Instruct.

Authors:Jie Huang, Haorui Chen, Jiaxuan Ren, Siran Peng, Liangjian Deng
Title: A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening
Abstract:
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.

Authors:Corentin Sautier, Gilles Puy, Alexandre Boulch, Renaud Marlet, Vincent Lepetit
Title: Clustering is back: Reaching state-of-the-art LiDAR instance segmentation without training
Abstract:
Panoptic segmentation of LiDAR point clouds is fundamental to outdoor scene understanding, with autonomous driving being a primary application. While state-of-the-art approaches typically rely on end-to-end deep learning architectures and extensive manual annotations of instances, the significant cost and time investment required for labeling large-scale point cloud datasets remains a major bottleneck in this field. In this work, we demonstrate that competitive panoptic segmentation can be achieved using only semantic labels, with instances predicted without any training or annotations. Our method outperforms state-of-the-art supervised methods on standard benchmarks including SemanticKITTI and nuScenes, and outperforms every publicly available method on SemanticKITTI as a drop-in instance head replacement, while running in real-time on a single-threaded CPU and requiring no instance labels. It is fully explainable, and requires no learning or parameter tuning. Alpine combined with state-of-the-art semantic segmentation ranks first on the official panoptic segmentation leaderboard of SemanticKITTI. Code is available at https://github.com/valeoai/Alpine/

Authors:Matteo Sodano, Federico Magistri, Elias Marks, Fares Hosn, Aibek Zurbayev, Rodrigo Marcuzzi, Meher V. R. Malladi, Jens Behley, Cyrill Stachniss
Title: 3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors
Abstract:
Crop yield estimation is a relevant problem in agriculture, because an accurate yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects such as trees and plants. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of trees (a trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. To efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn, Germany, in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robots platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset is publicly available at https://www.ipb.uni-bonn.de/data/hops/. The open-source implementation of our approach is available at https://github.com/PRBonn/hapt3D.

Authors:Yuanze Li, Shihao Yuan, Haolin Wang, Qizhang Li, Ming Liu, Chen Xu, Guangming Shi, Wangmeng Zuo
Title: Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process
Abstract:
Although recent methods have tried to introduce large multimodal models (LMMs) into industrial anomaly detection (IAD), their generalization in the IAD field is far inferior to that for general purposes. We summarize the main reasons for this gap into two aspects. On one hand, general-purpose LMMs lack cognition of defects in the visual modality, thereby failing to sufficiently focus on defect areas. Therefore, we propose to modify the AnyRes structure of the LLaVA model, providing the potential anomalous areas identified by existing IAD models to the LMMs. On the other hand, existing methods mainly focus on identifying defects by learning defect patterns or comparing with normal samples, yet they fall short of understanding the causes of these defects. Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm. An instruction-tuning dataset for IAD (InstructIAD) and a data organization approach for Chain-of-Thought with manufacturing (CoT-M) are designed to leverage the manufacturing process for IAD. Based on the above two modifications, we present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process for industrial anomaly detection. Extensive experiments show that our Triad not only demonstrates competitive performance against current LMMs but also achieves further improved accuracy when equipped with manufacturing processes. Source code, training data, and pre-trained models will be publicly available at https://github.com/tzjtatata/Triad.

Authors:Chen Zhao, Zhizhou Chen, Yunzhe Xu, Enxuan Gu, Jian Li, Zili Yi, Qian Wang, Jian Yang, Ying Tai
Title: From Zero to Detail: Deconstructing Ultra-High-Definition Image Restoration from Progressive Spectral Perspective
Abstract:
Ultra-high-definition (UHD) image restoration faces significant challenges due to its high resolution, complex content, and intricate details. To cope with these challenges, we analyze the restoration process in depth through a progressive spectral perspective, and deconstruct the complex UHD restoration problem into three progressive stages: zero-frequency enhancement, low-frequency restoration, and high-frequency refinement. Building on this insight, we propose a novel framework, ERR, which comprises three collaborative sub-networks: the zero-frequency enhancer (ZFE), the low-frequency restorer (LFR), and the high-frequency refiner (HFR). Specifically, the ZFE integrates global priors to learn global mapping, while the LFR restores low-frequency information, emphasizing reconstruction of coarse-grained content. Finally, the HFR employs our designed frequency-windowed kolmogorov-arnold networks (FW-KAN) to refine textures and details, producing high-quality image restoration. Our approach significantly outperforms previous UHD methods across various tasks, with extensive ablation studies validating the effectiveness of each component. The code is available at \href{https://github.com/NJU-PCALab/ERR}{here}.

Authors:Yaxi Chen, Simin Ni, Aleksandra Ivanova, Shaheer U. Saeed, Rikin Hargunani, Jie Huang, Chaozong Liu, Yipeng Hu
Title: Patient-specific radiomic feature selection with reconstructed healthy persona of knee MR images
Abstract:
Classical radiomic features have been designed to describe image appearance and intensity patterns. These features are directly interpretable and readily understood by radiologists. Compared with end-to-end deep learning (DL) models, lower dimensional parametric models that use such radiomic features offer enhanced interpretability but lower comparative performance in clinical tasks. In this study, we propose an approach where a standard logistic regression model performance is substantially improved by learning to select radiomic features for individual patients, from a pool of candidate features. This approach has potentials to maintain the interpretability of such approaches while offering comparable performance to DL. We also propose to expand the feature pool by generating a patient-specific healthy persona via mask-inpainting using a denoising diffusion model trained on healthy subjects. Such a pathology-free baseline feature set allows further opportunity in novel feature discovery and improved condition classification. We demonstrate our method on multiple clinical tasks of classifying general abnormalities, anterior cruciate ligament tears, and meniscus tears. Experimental results demonstrate that our approach achieved comparable or even superior performance than state-of-the-art DL approaches while offering added interpretability by using radiomic features extracted from images and supplemented by generating healthy personas. Example clinical cases are discussed in-depth to demonstrate the intepretability-enabled utilities such as human-explainable feature discovery and patient-specific location/view selection. These findings highlight the potentials of the combination of subject-specific feature selection with generative models in augmenting radiomic analysis for more interpretable decision-making. The codes are available at: https://github.com/YaxiiC/RadiomicsPersona.git

Authors:Ling-An Zeng, Guohong Huang, Yi-Lin Wei, Shengbo Gu, Yu-Ming Tang, Jingke Meng, Wei-Shi Zheng
Title: ChainHOI: Joint-based Kinematic Chain Modeling for Human-Object Interaction Generation
Abstract:
We propose ChainHOI, a novel approach for text-driven human-object interaction (HOI) generation that explicitly models interactions at both the joint and kinetic chain levels. Unlike existing methods that implicitly model interactions using full-body poses as tokens, we argue that explicitly modeling joint-level interactions is more natural and effective for generating realistic HOIs, as it directly captures the geometric and semantic relationships between joints, rather than modeling interactions in the latent pose space. To this end, ChainHOI introduces a novel joint graph to capture potential interactions with objects, and a Generative Spatiotemporal Graph Convolution Network to explicitly model interactions at the joint level. Furthermore, we propose a Kinematics-based Interaction Module that explicitly models interactions at the kinetic chain level, ensuring more realistic and biomechanically coherent motions. Evaluations on two public datasets demonstrate that ChainHOI significantly outperforms previous methods, generating more realistic, and semantically consistent HOIs. Code is available \href{https://github.com/qinghuannn/ChainHOI}{here}.

Authors:Jing Li, Yihang Fu, Falai Chen
Title: DTGBrepGen: A Novel B-rep Generative Model through Decoupling Topology and Geometry
Abstract:
Boundary representation (B-rep) of geometric models is a fundamental format in Computer-Aided Design (CAD). However, automatically generating valid and high-quality B-rep models remains challenging due to the complex interdependence between the topology and geometry of the models. Existing methods tend to prioritize geometric representation while giving insufficient attention to topological constraints, making it difficult to maintain structural validity and geometric accuracy. In this paper, we propose DTGBrepGen, a novel topology-geometry decoupled framework for B-rep generation that explicitly addresses both aspects. Our approach first generates valid topological structures through a two-stage process that independently models edge-face and edge-vertex adjacency relationships. Subsequently, we employ Transformer-based diffusion models for sequential geometry generation, progressively generating vertex coordinates, followed by edge geometries and face geometries which are represented as B-splines. Extensive experiments on diverse CAD datasets show that DTGBrepGen significantly outperforms existing methods in both topological validity and geometric accuracy, achieving higher validity rates and producing more diverse and realistic B-reps. Our code is publicly available at https://github.com/jinli99/DTGBrepGen.

Authors:Zhicheng Zhao, Jinquan Yan, Chenglong Li, Xiao Wang, Jin Tang
Title: DehazeMamba: SAR-guided Optical Remote Sensing Image Dehazing with Adaptive State Space Model
Abstract:
Optical remote sensing image dehazing presents significant challenges due to its extensive spatial scale and highly non-uniform haze distribution, which traditional single-image dehazing methods struggle to address effectively. While Synthetic Aperture Radar (SAR) imagery offers inherently haze-free reference information for large-scale scenes, existing SAR-guided dehazing approaches face two critical limitations: the integration of SAR information often diminishes the quality of haze-free regions, and the instability of feature quality further exacerbates cross-modal domain shift. To overcome these challenges, we introduce DehazeMamba, a novel SAR-guided dehazing network built on a progressive haze decoupling fusion strategy. Our approach incorporates two key innovations: a Haze Perception and Decoupling Module (HPDM) that dynamically identifies haze-affected regions through optical-SAR difference analysis, and a Progressive Fusion Module (PFM) that mitigates domain shift through a two-stage fusion process based on feature quality assessment. To facilitate research in this domain, we present MRSHaze, a large-scale benchmark dataset comprising 8,000 pairs of temporally synchronized, precisely geo-registered SAR-optical images with high resolution and diverse haze conditions. Extensive experiments demonstrate that DehazeMamba significantly outperforms state-of-the-art methods, achieving a 0.73 dB improvement in PSNR and substantial enhancements in downstream tasks such as semantic segmentation. The dataset is available at https://github.com/mmic-lcl/Datasets-and-benchmark-code.

Authors:Henghui Du, Guangyao Li, Chang Zhou, Chunjie Zhang, Alan Zhao, Di Hu
Title: Crab: A Unified Audio-Visual Scene Understanding Model with Explicit Cooperation
Abstract:
In recent years, numerous tasks have been proposed to encourage model to develop specified capability in understanding audio-visual scene, primarily categorized into temporal localization, spatial localization, spatio-temporal reasoning, and pixel-level understanding. Instead, human possesses a unified understanding ability for diversified tasks. Therefore, designing an audio-visual model with general capability to unify these tasks is of great value. However, simply joint training for all tasks can lead to interference due to the heterogeneity of audiovisual data and complex relationship among tasks. We argue that this problem can be solved through explicit cooperation among tasks. To achieve this goal, we propose a unified learning method which achieves explicit inter-task cooperation from both the perspectives of data and model thoroughly. Specifically, considering the labels of existing datasets are simple words, we carefully refine these datasets and construct an Audio-Visual Unified Instruction-tuning dataset with Explicit reasoning process (AV-UIE), which clarifies the cooperative relationship among tasks. Subsequently, to facilitate concrete cooperation in learning stage, an interaction-aware LoRA structure with multiple LoRA heads is designed to learn different aspects of audiovisual data interaction. By unifying the explicit cooperation across the data and model aspect, our method not only surpasses existing unified audio-visual model on multiple tasks, but also outperforms most specialized models for certain tasks. Furthermore, we also visualize the process of explicit cooperation and surprisingly find that each LoRA head has certain audio-visual understanding ability. Code and dataset: https://github.com/GeWu-Lab/Crab

Authors:Etienne Gauthier, Francis Bach, Michael I. Jordan
Title: E-Values Expand the Scope of Conformal Prediction
Abstract:
Conformal prediction is a powerful framework for distribution-free uncertainty quantification. The standard approach to conformal prediction relies on comparing the ranks of prediction scores: under exchangeability, the rank of a future test point cannot be too extreme relative to a calibration set. This rank-based method can be reformulated in terms of p-values. In this paper, we explore an alternative approach based on e-values, known as conformal e-prediction. E-values offer key advantages that cannot be achieved with p-values, enabling new theoretical and practical capabilities. In particular, we present three applications that leverage the unique strengths of e-values: batch anytime-valid conformal prediction, fixed-size conformal sets with data-dependent coverage, and conformal prediction under ambiguous ground truth. Overall, these examples demonstrate that e-value-based constructions provide a flexible expansion of the toolbox of conformal prediction.

Authors:Ruiqi Song, Xianda Guo, Hangbin Wu, Qinggong Wei, Long Chen
Title: InsightDrive: Insight Scene Representation for End-to-End Autonomous Driving
Abstract:
Directly generating planning results from raw sensors has become increasingly prevalent due to its adaptability and robustness in complex scenarios. Scene representation, as a key module in the pipeline, has traditionally relied on conventional perception, which focus on the global scene. However, in driving scenarios, human drivers typically focus only on regions that directly impact driving, which often coincide with those required for end-to-end autonomous driving. In this paper, a novel end-to-end autonomous driving method called InsightDrive is proposed, which organizes perception by language-guided scene representation. We introduce an instance-centric scene tokenizer that transforms the surrounding environment into map- and object-aware instance tokens. Scene attention language descriptions, which highlight key regions and obstacles affecting the ego vehicle's movement, are generated by a vision-language model that leverages the cognitive reasoning capabilities of foundation models. We then align scene descriptions with visual features using the vision-language model, guiding visual attention through these descriptions to give effectively scene representation. Furthermore, we employ self-attention and cross-attention mechanisms to model the ego-agents and ego-map relationships to comprehensively build the topological relationships of the scene. Finally, based on scene understanding, we jointly perform motion prediction and planning. Extensive experiments on the widely used nuScenes benchmark demonstrate that the proposed InsightDrive achieves state-of-the-art performance in end-to-end autonomous driving. The code is available at https://github.com/songruiqi/InsightDrive

Authors:Gabriele Berton, Kevin Musgrave, Carlo Masone
Title: All You Need to Know About Training Image Retrieval Models
Abstract:
Image retrieval is the task of finding images in a database that are most similar to a given query image. The performance of an image retrieval pipeline depends on many training-time factors, including the embedding model architecture, loss function, data sampler, mining function, learning rate(s), and batch size. In this work, we run tens of thousands of training runs to understand the effect each of these factors has on retrieval accuracy. We also discover best practices that hold across multiple datasets. The code is available at https://github.com/gmberton/image-retrieval

Authors:Tao Wang, Changxu Cheng, Lingfeng Wang, Senda Chen, Wuyue Zhao
Title: HiMTok: Learning Hierarchical Mask Tokens for Image Segmentation with Large Multimodal Model
Abstract:
The remarkable performance of large multimodal models (LMMs) has attracted significant interest from the image segmentation community. To align with the next-token-prediction paradigm, current LMM-driven segmentation methods either use object boundary points to represent masks or introduce special segmentation tokens, whose hidden states are decoded by a segmentation model requiring the original image as input. However, these approaches often suffer from inadequate mask representation and complex architectures, limiting the potential of LMMs. In this work, we propose the Hierarchical Mask Tokenizer (HiMTok), which represents segmentation masks with up to 32 tokens and eliminates the need for the original image during mask de-tokenization. HiMTok allows for compact and coarse-to-fine mask representations, aligning well with the LLM next-token-prediction paradigm and facilitating the direct acquisition of segmentation capabilities. We develop a 3-stage training recipe for progressive learning of segmentation and visual capabilities, featuring a hierarchical mask loss for effective coarse-to-fine learning. Additionally, we enable bidirectional information flow, allowing conversion between bounding boxes and mask tokens to fully leverage multi-task training potential. Extensive experiments demonstrate that our method achieves state-of-the-art performance across various segmentation tasks,while also enhancing visual grounding and maintaining overall visual understanding.

Authors:Xingguo Lv, Xingbo Dong, Liwen Wang, Jiewen Yang, Lei Zhao, Bin Pu, Zhe Jin, Xuejun Li
Title: Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation
Abstract:
Despite domain generalization (DG) has significantly addressed the performance degradation of pre-trained models caused by domain shifts, it often falls short in real-world deployment. Test-time adaptation (TTA), which adjusts a learned model using unlabeled test data, presents a promising solution. However, most existing TTA methods struggle to deliver strong performance in medical image segmentation, primarily because they overlook the crucial prior knowledge inherent to medical images. To address this challenge, we incorporate morphological information and propose a framework based on multi-graph matching. Specifically, we introduce learnable universe embeddings that integrate morphological priors during multi-source training, along with novel unsupervised test-time paradigms for domain adaptation. This approach guarantees cycle-consistency in multi-matching while enabling the model to more effectively capture the invariant priors of unseen data, significantly mitigating the effects of domain shifts. Extensive experiments demonstrate that our method outperforms other state-of-the-art approaches on two medical image segmentation benchmarks for both multi-source and single-source domain generalization tasks. The source code is available at https://github.com/Yore0/TTDG-MGM.

Authors:Ruichuan An, Kai Zeng, Ming Lu, Sihan Yang, Renrui Zhang, Huitong Ji, Qizhe Zhang, Yulin Luo, Hao Liang, Wentao Zhang
Title: Concept-as-Tree: Synthetic Data is All You Need for VLM Personalization
Abstract:
Vision-Language Models (VLMs) have demonstrated exceptional performance in various multi-modal tasks. Recently, there has been an increasing interest in improving the personalization capabilities of VLMs. To better integrate user-provided concepts into VLMs, many methods use positive and negative samples to fine-tune these models. However, the scarcity of user-provided positive samples and the low quality of retrieved negative samples pose challenges for fine-tuning. To reveal the relationship between sample and model performance, we systematically investigate the impact of positive and negative samples (easy and hard) and their diversity on VLM personalization tasks. Based on the detailed analysis, we introduce Concept-as-Tree (CaT), which represents a concept as a tree structure, thereby enabling the data generation of positive and negative samples with varying difficulty and diversity for VLM personalization. With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data, constituting a powerful pipeline. We perform thorough experiments with various VLM personalization baselines to assess the effectiveness of the pipeline, alleviating the lack of positive samples and the low quality of negative samples. Our results demonstrate that CaT equipped with the proposed data filter significantly enhances the personalization capabilities of VLMs across the MyVLM, Yo'LLaVA, and MC-LLaVA datasets. To our knowledge, this work is the first controllable synthetic data pipeline for VLM personalization. The code is released at $\href{https://github.com/zengkaiya/CaT}{\text{https://github.com/zengkaiya/CaT}}$.

Authors:Junming Liu, Siyuan Meng, Yanting Gao, Song Mao, Pinlong Cai, Guohang Yan, Yirong Chen, Zilin Bian, Ding Wang, Botian Shi
Title: Aligning Vision to Language: Annotation-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Abstract:
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.

Authors:Chaolong Yang, Kai Yao, Yuyao Yan, Chenru Jiang, Weiguang Zhao, Jie Sun, Guangliang Cheng, Yifei Zhang, Bin Dong, Kaizhu Huang
Title: Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait
Abstract:
Audio-driven single-image talking portrait generation plays a crucial role in virtual reality, digital human creation, and filmmaking. Existing approaches are generally categorized into keypoint-based and image-based methods. Keypoint-based methods effectively preserve character identity but struggle to capture fine facial details due to the fixed points limitation of the 3D Morphable Model. Moreover, traditional generative networks face challenges in establishing causality between audio and keypoints on limited datasets, resulting in low pose diversity. In contrast, image-based approaches produce high-quality portraits with diverse details using the diffusion network but incur identity distortion and expensive computational costs. In this work, we propose KDTalker, the first framework to combine unsupervised implicit 3D keypoint with a spatiotemporal diffusion model. Leveraging unsupervised implicit 3D keypoints, KDTalker adapts facial information densities, allowing the diffusion process to model diverse head poses and capture fine facial details flexibly. The custom-designed spatiotemporal attention mechanism ensures accurate lip synchronization, producing temporally consistent, high-quality animations while enhancing computational efficiency. Experimental results demonstrate that KDTalker achieves state-of-the-art performance regarding lip synchronization accuracy, head pose diversity, and execution efficiency.Our codes are available at https://github.com/chaolongy/KDTalker.

Authors:Jiahe Zhao, Ruibing Hou, Zejie Tian, Hong Chang, Shiguang Shan
Title: HIS-GPT: Towards 3D Human-In-Scene Multimodal Understanding
Abstract:
We propose a new task to benchmark human-in-scene understanding for embodied agents: Human-In-Scene Question Answering (HIS-QA). Given a human motion within a 3D scene, HIS-QA requires the agent to comprehend human states and behaviors, reason about its surrounding environment, and answer human-related questions within the scene. To support this new task, we present HIS-Bench, a multimodal benchmark that systematically evaluates HIS understanding across a broad spectrum, from basic perception to commonsense reasoning and planning. Our evaluation of various vision-language models on HIS-Bench reveals significant limitations in their ability to handle HIS-QA tasks. To this end, we propose HIS-GPT, the first foundation model for HIS understanding. HIS-GPT integrates 3D scene context and human motion dynamics into large language models while incorporating specialized mechanisms to capture human-scene interactions. Extensive experiments demonstrate that HIS-GPT sets a new state-of-the-art on HIS-QA tasks. We hope this work inspires future research on human behavior analysis in 3D scenes, advancing embodied AI and world models. The codes and data: https://github.com/ZJHTerry18/HumanInScene.

Authors:Zheyuan Liu, Junyan Wang, Zicheng Duan, Cristian Rodriguez-Opazo, Anton van den Hengel
Title: Frame-wise Conditioning Adaptation for Fine-Tuning Diffusion Models in Text-to-Video Prediction
Abstract:
Text-video prediction (TVP) is a downstream video generation task that requires a model to produce subsequent video frames given a series of initial video frames and text describing the required motion. In practice TVP methods focus on a particular category of videos depicting manipulations of objects carried out by human beings or robot arms. Previous methods adapt models pre-trained on text-to-image tasks, and thus tend to generate video that lacks the required continuity. A natural progression would be to leverage more recent pre-trained text-to-video (T2V) models. This approach is rendered more challenging by the fact that the most common fine-tuning technique, low-rank adaptation (LoRA), yields undesirable results. In this work, we propose an adaptation-based strategy we label Frame-wise Conditioning Adaptation (FCA). Within the module, we devise a sub-module that produces frame-wise text embeddings from the input text, which acts as an additional text condition to aid generation. We use FCA to fine-tune the T2V model, which incorporates the initial frame(s) as an extra condition. We compare and discuss the more effective strategy for injecting such embeddings into the T2V model. We conduct extensive ablation studies on our design choices with quantitative and qualitative performance analysis. Our approach establishes a new state-of-the-art for the task of TVP. The project page is at https://github.com/Cuberick-Orion/FCA .

Authors:Haiyang Guo, Fanhu Zeng, Ziwei Xiang, Fei Zhu, Da-Han Wang, Xu-Yao Zhang, Cheng-Lin Liu
Title: HiDe-LLaVA: Hierarchical Decoupling for Continual Instruction Tuning of Multimodal Large Language Model
Abstract:
Instruction tuning is widely used to improve a pre-trained Multimodal Large Language Model (MLLM) by training it on curated task-specific datasets, enabling better comprehension of human instructions. However, it is infeasible to collect all possible instruction datasets simultaneously in real-world scenarios. Thus, enabling MLLM with continual instruction tuning is essential for maintaining their adaptability. However, existing methods often trade off memory efficiency for performance gains, significantly compromising overall efficiency. In this paper, we propose a task-specific expansion and task-general fusion framework based on the variations in Centered Kernel Alignment (CKA) similarity across different model layers when trained on diverse datasets. Furthermore, we analyze the information leakage present in the existing benchmark and propose a new and more challenging benchmark to rationally evaluate the performance of different methods. Comprehensive experiments showcase a significant performance improvement of our method compared to existing state-of-the-art methods. Code and dataset are released at https://github.com/Ghy0501/HiDe-LLaVA.

Authors:Xuying Zhang, Yupeng Zhou, Kai Wang, Yikai Wang, Zhen Li, Shaohui Jiao, Daquan Zhou, Qibin Hou, Ming-Ming Cheng
Title: AR-1-to-3: Single Image to Consistent 3D Object Generation via Next-View Prediction
Abstract:
Novel view synthesis (NVS) is a cornerstone for image-to-3d creation. However, existing works still struggle to maintain consistency between the generated views and the input views, especially when there is a significant camera pose difference, leading to poor-quality 3D geometries and textures. We attribute this issue to their treatment of all target views with equal priority according to our empirical observation that the target views closer to the input views exhibit higher fidelity. With this inspiration, we propose AR-1-to-3, a novel next-view prediction paradigm based on diffusion models that first generates views close to the input views, which are then utilized as contextual information to progressively synthesize farther views. To encode the generated view subsequences as local and global conditions for the next-view prediction, we accordingly develop a stacked local feature encoding strategy (Stacked-LE) and an LSTM-based global feature encoding strategy (LSTM-GE). Extensive experiments demonstrate that our method significantly improves the consistency between the generated views and the input views, producing high-fidelity 3D assets.

Authors:Huangwei Chen, Yifei Chen, Zhenyu Yan, Mingyang Ding, Chenlei Li, Zhu Zhu, Feiwei Qin
Title: MMLNB: Multi-Modal Learning for Neuroblastoma Subtyping Classification Assisted with Textual Description Generation
Abstract:
Neuroblastoma (NB), a leading cause of childhood cancer mortality, exhibits significant histopathological variability, necessitating precise subtyping for accurate prognosis and treatment. Traditional diagnostic methods rely on subjective evaluations that are time-consuming and inconsistent. To address these challenges, we introduce MMLNB, a multi-modal learning (MML) model that integrates pathological images with generated textual descriptions to improve classification accuracy and interpretability. The approach follows a two-stage process. First, we fine-tune a Vision-Language Model (VLM) to enhance pathology-aware text generation. Second, the fine-tuned VLM generates textual descriptions, using a dual-branch architecture to independently extract visual and textual features. These features are fused via Progressive Robust Multi-Modal Fusion (PRMF) Block for stable training. Experimental results show that the MMLNB model is more accurate than the single modal model. Ablation studies demonstrate the importance of multi-modal fusion, fine-tuning, and the PRMF mechanism. This research creates a scalable AI-driven framework for digital pathology, enhancing reliability and interpretability in NB subtyping classification. Our source code is available at https://github.com/HovChen/MMLNB.

Authors:Zhuoqun Su, Huimin Lu, Shuaifeng Jiao, Junhao Xiao, Yaonan Wang, Xieyuanli Chen
Title: Efficient Multimodal 3D Object Detector via Instance-Level Contrastive Distillation
Abstract:
Multimodal 3D object detectors leverage the strengths of both geometry-aware LiDAR point clouds and semantically rich RGB images to enhance detection performance. However, the inherent heterogeneity between these modalities, including unbalanced convergence and modal misalignment, poses significant challenges. Meanwhile, the large size of the detection-oriented feature also constrains existing fusion strategies to capture long-range dependencies for the 3D detection tasks. In this work, we introduce a fast yet effective multimodal 3D object detector, incorporating our proposed Instance-level Contrastive Distillation (ICD) framework and Cross Linear Attention Fusion Module (CLFM). ICD aligns instance-level image features with LiDAR representations through object-aware contrastive distillation, ensuring fine-grained cross-modal consistency. Meanwhile, CLFM presents an efficient and scalable fusion strategy that enhances cross-modal global interactions within sizable multimodal BEV features. Extensive experiments on the KITTI and nuScenes 3D object detection benchmarks demonstrate the effectiveness of our methods. Notably, our 3D object detector outperforms state-of-the-art (SOTA) methods while achieving superior efficiency. The implementation of our method has been released as open-source at: https://github.com/nubot-nudt/ICD-Fusion.

Authors:Haiyang Guo, Fanhu Zeng, Fei Zhu, Wenzhuo Liu, Da-Han Wang, Jian Xu, Xu-Yao Zhang, Cheng-Lin Liu
Title: Federated Continual Instruction Tuning
Abstract:
A vast amount of instruction tuning data is crucial for the impressive performance of Large Multimodal Models (LMMs), but the associated computational costs and data collection demands during supervised fine-tuning make it impractical for most researchers. Federated learning (FL) has the potential to leverage all distributed data and training resources to reduce the overhead of joint training. However, most existing methods assume a fixed number of tasks, while in real-world scenarios, clients continuously encounter new knowledge and often struggle to retain old tasks due to memory constraints. In this work, we introduce the Federated Continual Instruction Tuning (FCIT) benchmark to model this real-world challenge. Our benchmark includes two realistic scenarios, encompassing four different settings and twelve carefully curated instruction tuning datasets. To address the challenges posed by FCIT, we propose dynamic knowledge organization to effectively integrate updates from different tasks during training and subspace selective activation to allocate task-specific output during inference. Extensive experimental results demonstrate that our proposed method significantly enhances model performance across varying levels of data heterogeneity and catastrophic forgetting. Code and dataset are released at https://github.com/Ghy0501/FCIT.

Authors:Siyuan Yao, Yang Guo, Yanyang Yan, Wenqi Ren, Xiaochun Cao
Title: UncTrack: Reliable Visual Object Tracking with Uncertainty-Aware Prototype Memory Network
Abstract:
Transformer-based trackers have achieved promising success and become the dominant tracking paradigm due to their accuracy and efficiency. Despite the substantial progress, most of the existing approaches tackle object tracking as a deterministic coordinate regression problem, while the target localization uncertainty has been greatly overlooked, which hampers trackers' ability to maintain reliable target state prediction in challenging scenarios. To address this issue, we propose UncTrack, a novel uncertainty-aware transformer tracker that predicts the target localization uncertainty and incorporates this uncertainty information for accurate target state inference. Specifically, UncTrack utilizes a transformer encoder to perform feature interaction between template and search images. The output features are passed into an uncertainty-aware localization decoder (ULD) to coarsely predict the corner-based localization and the corresponding localization uncertainty. Then the localization uncertainty is sent into a prototype memory network (PMN) to excavate valuable historical information to identify whether the target state prediction is reliable or not. To enhance the template representation, the samples with high confidence are fed back into the prototype memory bank for memory updating, making the tracker more robust to challenging appearance variations. Extensive experiments demonstrate that our method outperforms other state-of-the-art methods. Our code is available at https://github.com/ManOfStory/UncTrack.

Authors:Linzhou Li, Yumeng Li, Yanlin Weng, Youyi Zheng, Kun Zhou
Title: RGBAvatar: Reduced Gaussian Blendshapes for Online Modeling of Head Avatars
Abstract:
We present Reduced Gaussian Blendshapes Avatar (RGBAvatar), a method for reconstructing photorealistic, animatable head avatars at speeds sufficient for on-the-fly reconstruction. Unlike prior approaches that utilize linear bases from 3D morphable models (3DMM) to model Gaussian blendshapes, our method maps tracked 3DMM parameters into reduced blendshape weights with an MLP, leading to a compact set of blendshape bases. The learned compact base composition effectively captures essential facial details for specific individuals, and does not rely on the fixed base composition weights of 3DMM, leading to enhanced reconstruction quality and higher efficiency. To further expedite the reconstruction process, we develop a novel color initialization estimation method and a batch-parallel Gaussian rasterization process, achieving state-of-the-art quality with training throughput of about 630 images per second. Moreover, we propose a local-global sampling strategy that enables direct on-the-fly reconstruction, immediately reconstructing the model as video streams in real time while achieving quality comparable to offline settings. Our source code is available at https://github.com/gapszju/RGBAvatar.

Authors:Xiaojun Jia, Sensen Gao, Simeng Qin, Ke Ma, Xinfeng Li, Yihao Huang, Wei Dong, Yang Liu, Xiaochun Cao
Title: Evolution-based Region Adversarial Prompt Learning for Robustness Enhancement in Vision-Language Models
Abstract:
Large pre-trained vision-language models (VLMs), such as CLIP, demonstrate impressive generalization but remain highly vulnerable to adversarial examples (AEs). Previous work has explored robust text prompts through adversarial training, achieving some improvement in both robustness and generalization. However, they primarily rely on singlegradient direction perturbations (e.g., PGD) to generate AEs, which lack diversity, resulting in limited improvement in adversarial robustness. To address these limitations, we propose an evolution-based region adversarial prompt tuning method called ER-APT, which combines gradient methods with genetic evolution to generate more diverse and challenging AEs. In each training iteration, we first generate AEs using traditional gradient-based methods. Subsequently, a genetic evolution mechanism incorporating selection, mutation, and crossover is applied to optimize the AEs, ensuring a broader and more aggressive perturbation distribution.The final evolved AEs are used for prompt tuning, achieving region-based adversarial optimization instead of conventional single-point adversarial prompt tuning. We also propose a dynamic loss weighting method to adjust prompt learning efficiency for accuracy and robustness. Experimental evaluations on various benchmark datasets demonstrate the superiority of our proposed method, outperforming stateof-the-art APT methods. The code is released at https://github.com/jiaxiaojunQAQ/ER-APT.

Authors:Chenyu Zhang, Kunlun Xu, Zichen Liu, Yuxin Peng, Jiahuan Zhou
Title: SCAP: Transductive Test-Time Adaptation via Supportive Clique-based Attribute Prompting
Abstract:
Vision-language models (VLMs) encounter considerable challenges when adapting to domain shifts stemming from changes in data distribution. Test-time adaptation (TTA) has emerged as a promising approach to enhance VLM performance under such conditions. In practice, test data often arrives in batches, leading to increasing interest in the transductive TTA setting. However, existing TTA methods primarily focus on individual test samples, overlooking crucial cross-sample correlations within a batch. While recent ViT-based TTA methods have introduced batch-level adaptation, they remain suboptimal for VLMs due to inadequate integration of the text modality. To address these limitations, we propose a novel transductive TTA framework, Supportive Clique-based Attribute Prompting (SCAP), which effectively combines visual and textual information to enhance adaptation by generating fine-grained attribute prompts across test batches. SCAP first forms supportive cliques of test samples in an unsupervised manner based on visual similarity and learns an attribute prompt for each clique, capturing shared attributes critical for adaptation. For each test sample, SCAP aggregates attribute prompts from its associated cliques, providing enriched contextual information. To ensure adaptability over time, we incorporate a retention module that dynamically updates attribute prompts and their associated attributes as new data arrives. Comprehensive experiments across multiple benchmarks demonstrate that SCAP outperforms existing state-of-the-art methods, significantly advancing VLM generalization under domain shifts. Our code is available at https://github.com/zhoujiahuan1991/CVPR2025-SCAP.

Authors:Duke Nguyen, Aditya Joshi, Flora Salim
Title: Harnessing Test-time Adaptation for NLU tasks Involving Dialects of English
Abstract:
Test-time adaptation (TTA) is an excellent method which helps generalize models across domains, tasks, and distributions without the use of labeled datasets. Thus, TTA is very useful in natural language processing (NLP) in the dialectal setting, since oftentimes, models are trained on Standard American English (SAE), evaluated on Indian English or Nigerian English, of which distribution differs significantly from the former. This is especially useful since dialectal datasets are scarce. In this paper, we explore one of the most famous TTA techniques, SHOT, in dialectal NLP. We finetune and evaluate SHOT on different combinations of dialectal GLUE. Our findings show that SHOT is a viable technique when labeled datasets are unavailable. We also theoretically propose the concept of dialectal gap and show that it has a positive correlation with the effectiveness of SHOT. We also find that in many cases, finetuning on SAE yields higher performance than finetuning on dialectal data. Our code is available at https://github.com/dukenguyenxyz/dialect-adaptation

Authors:Xian-Rong Zhang, Yue-Jiao Gong, Zhiguang Cao, Jun Zhang
Title: Island-Based Evolutionary Computation with Diverse Surrogates and Adaptive Knowledge Transfer for High-Dimensional Data-Driven Optimization
Abstract:
In recent years, there has been a growing interest in data-driven evolutionary algorithms (DDEAs) employing surrogate models to approximate the objective functions with limited data. However, current DDEAs are primarily designed for lower-dimensional problems and their performance drops significantly when applied to large-scale optimization problems (LSOPs). To address the challenge, this paper proposes an offline DDEA named DSKT-DDEA. DSKT-DDEA leverages multiple islands that utilize different data to establish diverse surrogate models, fostering diverse subpopulations and mitigating the risk of premature convergence. In the intra-island optimization phase, a semi-supervised learning method is devised to fine-tune the surrogates. It not only facilitates data argumentation, but also incorporates the distribution information gathered during the search process to align the surrogates with the evolving local landscapes. Then, in the inter-island knowledge transfer phase, the algorithm incorporates an adaptive strategy that periodically transfers individual information and evaluates the transfer effectiveness in the new environment, facilitating global optimization efficacy. Experimental results demonstrate that our algorithm is competitive with state-of-the-art DDEAs on problems with up to 1000 dimensions, while also exhibiting decent parallelism and scalability. Our DSKT-DDEA is open-source and accessible at: https://github.com/LabGong/DSKT-DDEA.

Authors:Xinyu Ma, Ziyang Ding, Zhicong Luo, Chi Chen, Zonghao Guo, Derek F. Wong, Xiaoyi Feng, Maosong Sun
Title: DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding
Abstract:
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features, a capability that remains underdeveloped in current Multimodal Large Language Models (MLLMs). Despite possessing vast expert-level knowledge, MLLMs struggle to integrate reasoning into visual perception, often generating direct responses without deeper analysis. To bridge this gap, we introduce knowledge-intensive visual grounding (KVG), a novel visual grounding task that requires both fine-grained perception and domain-specific knowledge integration. To address the challenges of KVG, we propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities. Our approach consists of (1) an automated data synthesis pipeline that generates high-quality, knowledge-aligned training samples, and (2) a two-stage training framework combining supervised fine-tuning for cognitive reasoning scaffolding and reinforcement learning to optimize perception-cognition synergy. To benchmark performance, we introduce KVG-Bench a comprehensive dataset spanning 10 domains with 1.3K manually curated test cases. Experimental results demonstrate that DeepPerception significantly outperforms direct fine-tuning, achieving +8.08\% accuracy improvements on KVG-Bench and exhibiting +4.60\% superior cross-domain generalization over baseline approaches. Our findings highlight the importance of integrating cognitive processes into MLLMs for human-like visual perception and open new directions for multimodal reasoning research. The data, codes, and models are released at https://github.com/thunlp/DeepPerception.

Authors:Jianan Li, Huan Chen, Wangcai Zhao, Rui Chen, Tingfa Xu
Title: Mixed-granularity Implicit Representation for Continuous Hyperspectral Compressive Reconstruction
Abstract:
Hyperspectral Images (HSIs) are crucial across numerous fields but are hindered by the long acquisition times associated with traditional spectrometers. The Coded Aperture Snapshot Spectral Imaging (CASSI) system mitigates this issue through a compression technique that accelerates the acquisition process. However, reconstructing HSIs from compressed data presents challenges due to fixed spatial and spectral resolution constraints. This study introduces a novel method using implicit neural representation for continuous hyperspectral image reconstruction. We propose the Mixed Granularity Implicit Representation (MGIR) framework, which includes a Hierarchical Spectral-Spatial Implicit Encoder for efficient multi-scale implicit feature extraction. This is complemented by a Mixed-Granularity Local Feature Aggregator that adaptively integrates local features across scales, combined with a decoder that merges coordinate information for precise reconstruction. By leveraging implicit neural representations, the MGIR framework enables reconstruction at any desired spatial-spectral resolution, significantly enhancing the flexibility and adaptability of the CASSI system. Extensive experimental evaluations confirm that our model produces reconstructed images at arbitrary resolutions and matches state-of-the-art methods across varying spectral-spatial compression ratios. The code will be released at https://github.com/chh11/MGIR.

Authors:Sung-Yeon Park, Can Cui, Yunsheng Ma, Ahmadreza Moradipari, Rohit Gupta, Kyungtae Han, Ziran Wang
Title: NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models
Abstract:
Recent advances in multi-modal large language models (MLLMs) have demonstrated strong performance across various domains; however, their ability to comprehend driving scenes remains less proven. The complexity of driving scenarios, which includes multi-view information, poses significant challenges for existing MLLMs. In this paper, we introduce NuPlanQA-Eval, a multi-view, multi-modal evaluation benchmark for driving scene understanding. To further support generalization to multi-view driving scenarios, we also propose NuPlanQA-1M, a large-scale dataset comprising 1M real-world visual question-answering (VQA) pairs. For context-aware analysis of traffic scenes, we categorize our dataset into nine subtasks across three core skills: Road Environment Perception, Spatial Relations Recognition, and Ego-Centric Reasoning. Furthermore, we present BEV-LLM, integrating Bird's-Eye-View (BEV) features from multi-view images into MLLMs. Our evaluation results reveal key challenges that existing MLLMs face in driving scene-specific perception and spatial reasoning from ego-centric perspectives. In contrast, BEV-LLM demonstrates remarkable adaptability to this domain, outperforming other models in six of the nine subtasks. These findings highlight how BEV integration enhances multi-view MLLMs while also identifying key areas that require further refinement for effective adaptation to driving scenes. To facilitate further research, we publicly release NuPlanQA at https://github.com/sungyeonparkk/NuPlanQA.

Authors:Kewei Sui, Anindita Ghosh, Inwoo Hwang, Bing Zhou, Jian Wang, Chuan Guo
Title: A Survey on Human Interaction Motion Generation
Abstract:
Humans inhabit a world defined by interactions -- with other humans, objects, and environments. These interactive movements not only convey our relationships with our surroundings but also demonstrate how we perceive and communicate with the real world. Therefore, replicating these interaction behaviors in digital systems has emerged as an important topic for applications in robotics, virtual reality, and animation. While recent advances in deep generative models and new datasets have accelerated progress in this field, significant challenges remain in modeling the intricate human dynamics and their interactions with entities in the external world. In this survey, we present, for the first time, a comprehensive overview of the literature in human interaction motion generation. We begin by establishing foundational concepts essential for understanding the research background. We then systematically review existing solutions and datasets across three primary interaction tasks -- human-human, human-object, and human-scene interactions -- followed by evaluation metrics. Finally, we discuss open research directions and future opportunities.

Authors:Zibin Liu, Banglei Guan, Yang Shang, Yifei Bian, Pengju Sun, Qifeng Yu
Title: Stereo Event-based, 6-DOF Pose Tracking for Uncooperative Spacecraft
Abstract:
Pose tracking of uncooperative spacecraft is an essential technology for space exploration and on-orbit servicing, which remains an open problem. Event cameras possess numerous advantages, such as high dynamic range, high temporal resolution, and low power consumption. These attributes hold the promise of overcoming challenges encountered by conventional cameras, including motion blur and extreme illumination, among others. To address the standard on-orbit observation missions, we propose a line-based pose tracking method for uncooperative spacecraft utilizing a stereo event camera. To begin with, we estimate the wireframe model of uncooperative spacecraft, leveraging the spatio-temporal consistency of stereo event streams for line-based reconstruction. Then, we develop an effective strategy to establish correspondences between events and projected lines of uncooperative spacecraft. Using these correspondences, we formulate the pose tracking as a continuous optimization process over 6-DOF motion parameters, achieved by minimizing event-line distances. Moreover, we construct a stereo event-based uncooperative spacecraft motion dataset, encompassing both simulated and real events. The proposed method is quantitatively evaluated through experiments conducted on our self-collected dataset, demonstrating an improvement in terms of effectiveness and accuracy over competing methods. The code will be open-sourced at https://github.com/Zibin6/SE6PT.

Authors:Javier Tirado-Garín, Javier Civera
Title: AnyCalib: On-Manifold Learning for Model-Agnostic Single-View Camera Calibration
Abstract:
We present AnyCalib, a method for calibrating the intrinsic parameters of a camera from a single in-the-wild image, that is agnostic to the camera model. Current methods are predominantly tailored to specific camera models and/or require extrinsic cues, such as the direction of gravity, to be visible in the image. In contrast, we argue that the perspective and distortion cues inherent in images are sufficient for model-agnostic camera calibration. To demonstrate this, we frame the calibration process as the regression of the rays corresponding to each pixel. We show, for the first time, that this intermediate representation allows for a closed-form recovery of the intrinsics for a wide range of camera models, including but not limited to: pinhole, Brown-Conrady and Kannala-Brandt. Our approach also applies to edited -- cropped and stretched -- images. Experimentally, we demonstrate that AnyCalib consistently outperforms alternative methods, including 3D foundation models, despite being trained on orders of magnitude less data. Code is available at https://github.com/javrtg/AnyCalib.

Authors:Alex Bercik, David A. Craig Penner, David W. Zingg
Title: Stable Volume Dissipation for High-Order Finite-Difference and Spectral-Element Methods with the Summation-by-Parts Property
Abstract:
The construction of stable, conservative, and accurate volume dissipation is extended to discretizations that possess a generalized summation-by-parts (SBP) property within a tensor-product framework. The dissipation operators can be applied to any finite-difference or spectral-element scheme that uses the SBP framework, including high-order entropy-stable schemes. Additionally, we clarify the incorporation of a variable coefficient within the operator structure and analyze the impact of a boundary correction matrix on operator structure and accuracy. Following the theoretical development and construction of novel dissipation operators, we relate the presented volume dissipation to the use of upwind SBP operators. When applied to spectral-element methods, the presented approach yields unique dissipation operators that can also be derived through alternative approaches involving orthogonal polynomials. Numerical examples featuring the linear convection, Burgers, and Euler equations verify the properties of the constructed dissipation operators and assess their performance compared to existing upwind SBP schemes, including linear stability behaviour. When applied to entropy-stable schemes, the presented approach results in accurate and robust methods that can solve a broader range of problems where comparable existing methods fail.

Authors:Liangyu Wang, Jie Ren, Hang Xu, Junxiao Wang, Huanyi Xie, David E. Keyes, Di Wang
Title: ZO2: Scalable Zeroth-Order Fine-Tuning for Extremely Large Language Models with Limited GPU Memory
Abstract:
Fine-tuning large pre-trained LLMs generally demands extensive GPU memory. Traditional first-order optimizers like SGD encounter substantial difficulties due to increased memory requirements from storing activations and gradients during both the forward and backward phases as the model size expands. Alternatively, zeroth-order (ZO) techniques can compute gradients using just forward operations, eliminating the need to store activations. Furthermore, by leveraging CPU capabilities, it's feasible to enhance both the memory and processing power available to a single GPU. We propose a novel framework, ZO2 (Zeroth-Order Offloading), for efficient zeroth-order fine-tuning of LLMs with only limited GPU memory. Our framework dynamically shifts model parameters between the CPU and GPU as required, optimizing computation flow and maximizing GPU usage by minimizing downtime. This integration of parameter adjustments with ZO's double forward operations reduces unnecessary data movement, enhancing the fine-tuning efficacy. Additionally, our framework supports an innovative low-bit precision approach in AMP mode to streamline data exchanges between the CPU and GPU. Employing this approach allows us to fine-tune extraordinarily large models, such as the OPT-175B with more than 175 billion parameters, on a mere 18GB GPU--achievements beyond the reach of traditional methods. Moreover, our framework achieves these results with almost no additional time overhead and absolutely no accuracy loss compared to standard zeroth-order methods. ZO2's code has been open-sourced in https://github.com/liangyuwang/zo2.

Authors:Jacob Chmura, Jonah Dauvet, Sebastian Sabry
Title: Plausibility Vaccine: Injecting LLM Knowledge for Event Plausibility
Abstract:
Despite advances in language modelling, distributional methods that build semantic representations from co-occurrences fail to discriminate between plausible and implausible events. In this work, we investigate how plausibility prediction can be improved by injecting latent knowledge prompted from large language models using parameter-efficient fine-tuning. We train 12 task adapters to learn various physical properties and association measures and perform adapter fusion to compose latent semantic knowledge from each task on top of pre-trained AlBERT embeddings. We automate auxiliary task data generation, which enables us to scale our approach and fine-tune our learned representations across two plausibility datasets. Our code is available at https://github.com/Jacob-Chmura/plausibility-vaccine.

Authors:Imran Kabir, Md Alimoor Reza, Syed Billah
Title: Logic-RAG: Augmenting Large Multimodal Models with Visual-Spatial Knowledge for Road Scene Understanding
Abstract:
Large multimodal models (LMMs) are increasingly integrated into autonomous driving systems for user interaction. However, their limitations in fine-grained spatial reasoning pose challenges for system interpretability and user trust. We introduce Logic-RAG, a novel Retrieval-Augmented Generation (RAG) framework that improves LMMs' spatial understanding in driving scenarios. Logic-RAG constructs a dynamic knowledge base (KB) about object-object relationships in first-order logic (FOL) using a perception module, a query-to-logic embedder, and a logical inference engine. We evaluated Logic-RAG on visual-spatial queries using both synthetic and real-world driving videos. When using popular LMMs (GPT-4V, Claude 3.5) as proxies for an autonomous driving system, these models achieved only 55% accuracy on synthetic driving scenes and under 75% on real-world driving scenes. Augmenting them with Logic-RAG increased their accuracies to over 80% and 90%, respectively. An ablation study showed that even without logical inference, the fact-based context constructed by Logic-RAG alone improved accuracy by 15%. Logic-RAG is extensible: it allows seamless replacement of individual components with improved versions and enables domain experts to compose new knowledge in both FOL and natural language. In sum, Logic-RAG addresses critical spatial reasoning deficiencies in LMMs for autonomous driving applications. Code and data are available at https://github.com/Imran2205/LogicRAG.

Authors:Vrushank Ahire, Kunal Shah, Mudasir Nazir Khan, Nikhil Pakhale, Lownish Rai Sookha, M. A. Ganaie, Abhinav Dhall
Title: MAVEN: Multi-modal Attention for Valence-Arousal Emotion Network
Abstract:
Dynamic emotion recognition in the wild remains challenging due to the transient nature of emotional expressions and temporal misalignment of multi-modal cues. Traditional approaches predict valence and arousal and often overlook the inherent correlation between these two dimensions. The proposed Multi-modal Attention for Valence-Arousal Emotion Network (MAVEN) integrates visual, audio, and textual modalities through a bi-directional cross-modal attention mechanism. MAVEN uses modality-specific encoders to extract features from synchronized video frames, audio segments, and transcripts, predicting emotions in polar coordinates following Russell's circumplex model. The evaluation of the Aff-Wild2 dataset using MAVEN achieved a concordance correlation coefficient (CCC) of 0.3061, surpassing the ResNet-50 baseline model with a CCC of 0.22. The multistage architecture captures the subtle and transient nature of emotional expressions in conversational videos and improves emotion recognition in real-world situations. The code is available at: https://github.com/Vrushank-Ahire/MAVEN_8th_ABAW

Authors:Yitian Shi, Di Wen, Guanqi Chen, Edgar Welte, Sheng Liu, Kunyu Peng, Rainer Stiefelhagen, Rania Rayyes
Title: VISO-Grasp: Vision-Language Informed Spatial Object-centric 6-DoF Active View Planning and Grasping in Clutter and Invisibility
Abstract:
We propose VISO-Grasp, a novel vision-language-informed system designed to systematically address visibility constraints for grasping in severely occluded environments. By leveraging Foundation Models (FMs) for spatial reasoning and active view planning, our framework constructs and updates an instance-centric representation of spatial relationships, enhancing grasp success under challenging occlusions. Furthermore, this representation facilitates active Next-Best-View (NBV) planning and optimizes sequential grasping strategies when direct grasping is infeasible. Additionally, we introduce a multi-view uncertainty-driven grasp fusion mechanism that refines grasp confidence and directional uncertainty in real-time, ensuring robust and stable grasp execution. Extensive real-world experiments demonstrate that VISO-Grasp achieves a success rate of $87.5\%$ in target-oriented grasping with the fewest grasp attempts outperforming baselines. To the best of our knowledge, VISO-Grasp is the first unified framework integrating FMs into target-aware active view planning and 6-DoF grasping in environments with severe occlusions and entire invisibility constraints. Code is available at: https://github.com/YitianShi/vMF-Contact

Authors:Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, Hao Fei
Title: Multimodal Chain-of-Thought Reasoning: A Comprehensive Survey
Abstract:
By extending the advantage of chain-of-thought (CoT) reasoning in human-like step-by-step processes to multimodal contexts, multimodal CoT (MCoT) reasoning has recently garnered significant research attention, especially in the integration with multimodal large language models (MLLMs). Existing MCoT studies design various methodologies and innovative reasoning paradigms to address the unique challenges of image, video, speech, audio, 3D, and structured data across different modalities, achieving extensive success in applications such as robotics, healthcare, autonomous driving, and multimodal generation. However, MCoT still presents distinct challenges and opportunities that require further focus to ensure consistent thriving in this field, where, unfortunately, an up-to-date review of this domain is lacking. To bridge this gap, we present the first systematic survey of MCoT reasoning, elucidating the relevant foundational concepts and definitions. We offer a comprehensive taxonomy and an in-depth analysis of current methodologies from diverse perspectives across various application scenarios. Furthermore, we provide insights into existing challenges and future research directions, aiming to foster innovation toward multimodal AGI.

Authors:Xiaoyu Han, Shengping Zhang, Qinglin Liu, Zonglin Li, Chenyang Wang
Title: Progressive Limb-Aware Virtual Try-On
Abstract:
Existing image-based virtual try-on methods directly transfer specific clothing to a human image without utilizing clothing attributes to refine the transferred clothing geometry and textures, which causes incomplete and blurred clothing appearances. In addition, these methods usually mask the limb textures of the input for the clothing-agnostic person representation, which results in inaccurate predictions for human limb regions (i.e., the exposed arm skin), especially when transforming between long-sleeved and short-sleeved garments. To address these problems, we present a progressive virtual try-on framework, named PL-VTON, which performs pixel-level clothing warping based on multiple attributes of clothing and embeds explicit limb-aware features to generate photo-realistic try-on results. Specifically, we design a Multi-attribute Clothing Warping (MCW) module that adopts a two-stage alignment strategy based on multiple attributes to progressively estimate pixel-level clothing displacements. A Human Parsing Estimator (HPE) is then introduced to semantically divide the person into various regions, which provides structural constraints on the human body and therefore alleviates texture bleeding between clothing and limb regions. Finally, we propose a Limb-aware Texture Fusion (LTF) module to estimate high-quality details in limb regions by fusing textures of the clothing and the human body with the guidance of explicit limb-aware features. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art virtual try-on methods both qualitatively and quantitatively. The code is available at https://github.com/xyhanHIT/PL-VTON.

Authors:Zhiwei He, Zhaopeng Tu, Xing Wang, Xingyu Chen, Zhijie Wang, Jiahao Xu, Tian Liang, Wenxiang Jiao, Zhuosheng Zhang, Rui Wang
Title: RaSA: Rank-Sharing Low-Rank Adaptation
Abstract:
Low-rank adaptation (LoRA) has been prominently employed for parameter-efficient fine-tuning of large language models (LLMs). However, the limited expressive capacity of LoRA, stemming from the low-rank constraint, has been recognized as a bottleneck, particularly in rigorous tasks like code generation and mathematical reasoning. To address this limitation, we introduce Rank-Sharing Low-Rank Adaptation (RaSA), an innovative extension that enhances the expressive capacity of LoRA by leveraging partial rank sharing across layers. By forming a shared rank pool and applying layer-specific weighting, RaSA effectively increases the number of ranks without augmenting parameter overhead. Our theoretically grounded and empirically validated approach demonstrates that RaSA not only maintains the core advantages of LoRA but also significantly boosts performance in challenging code and math tasks. Code, data and scripts are available at: https://github.com/zwhe99/RaSA.

Authors:Yancheng Wang, Changyu Liu, Yingzhen Yang
Title: Diffusion on Graph: Augmentation of Graph Structure for Node Classification
Abstract:
Graph diffusion models have recently been proposed to synthesize entire graphs, such as molecule graphs. Although existing methods have shown great performance in generating entire graphs for graph-level learning tasks, no graph diffusion models have been developed to generate synthetic graph structures, that is, synthetic nodes and associated edges within a given graph, for node-level learning tasks. Inspired by the research in the computer vision literature using synthetic data for enhanced performance, we propose Diffusion on Graph (DoG), which generates synthetic graph structures to boost the performance of GNNs. The synthetic graph structures generated by DoG are combined with the original graph to form an augmented graph for the training of node-level learning tasks, such as node classification and graph contrastive learning (GCL). To improve the efficiency of the generation process, a Bi-Level Neighbor Map Decoder (BLND) is introduced in DoG. To mitigate the adverse effect of the noise introduced by the synthetic graph structures, a low-rank regularization method is proposed for the training of graph neural networks (GNNs) on the augmented graphs. Extensive experiments on various graph datasets for semi-supervised node classification and graph contrastive learning have been conducted to demonstrate the effectiveness of DoG with low-rank regularization. The code of DoG is available at https://github.com/Statistical-Deep-Learning/DoG.

Authors:Ruopeng Gao, Yuyao Wang, Chunxu Liu, Limin Wang
Title: History-Aware Transformation of ReID Features for Multiple Object Tracking
Abstract:
The aim of multiple object tracking (MOT) is to detect all objects in a video and bind them into multiple trajectories. Generally, this process is carried out in two steps: detecting objects and associating them across frames based on various cues and metrics. Many studies and applications adopt object appearance, also known as re-identification (ReID) features, for target matching through straightforward similarity calculation. However, we argue that this practice is overly naive and thus overlooks the unique characteristics of MOT tasks. Unlike regular re-identification tasks that strive to distinguish all potential targets in a general representation, multi-object tracking typically immerses itself in differentiating similar targets within the same video sequence. Therefore, we believe that seeking a more suitable feature representation space based on the different sample distributions of each sequence will enhance tracking performance. In this paper, we propose using history-aware transformations on ReID features to achieve more discriminative appearance representations. Specifically, we treat historical trajectory features as conditions and employ a tailored Fisher Linear Discriminant (FLD) to find a spatial projection matrix that maximizes the differentiation between different trajectories. Our extensive experiments reveal that this training-free projection can significantly boost feature-only trackers to achieve competitive, even superior tracking performance compared to state-of-the-art methods while also demonstrating impressive zero-shot transfer capabilities. This demonstrates the effectiveness of our proposal and further encourages future investigation into the importance and customization of ReID models in multiple object tracking. The code will be released at https://github.com/HELLORPG/HATReID-MOT.

Authors:Xiao Wang, Qingyi Si, Jianlong Wu, Shiyu Zhu, Li Cao, Liqiang Nie
Title: AdaReTaKe: Adaptive Redundancy Reduction to Perceive Longer for Video-language Understanding
Abstract:
Multimodal Large Language Models (MLLMs) have revolutionized video understanding, yet are still limited by context length when processing long videos. Recent methods compress videos by leveraging visual redundancy uniformly, yielding promising results. Nevertheless, our quantitative analysis shows that redundancy varies significantly across time and model layers, necessitating a more flexible compression strategy. We propose AdaReTaKe, a training-free method that flexibly reduces visual redundancy by allocating compression ratios among time and layers with theoretical guarantees. Integrated into state-of-the-art MLLMs, AdaReTaKe improves processing capacity from 256 to 2048 frames while preserving critical information. Experiments on VideoMME, MLVU, LongVideoBench, and LVBench datasets demonstrate that AdaReTaKe outperforms existing methods by 2.3% and 2.8% for 7B and 72B models, respectively, with even greater improvements of 5.9% and 6.0% on the longest LVBench. Our code is available at https://github.com/SCZwangxiao/video-FlexReduc.git.

Authors:Weiguang Zhao, Rui Zhang, Qiufeng Wang, Guangliang Cheng, Kaizhu Huang
Title: BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis
Abstract:
3D semantic segmentation plays a fundamental and crucial role to understand 3D scenes. While contemporary state-of-the-art techniques predominantly concentrate on elevating the overall performance of 3D semantic segmentation based on general metrics (e.g. mIoU, mAcc, and oAcc), they unfortunately leave the exploration of challenging regions for segmentation mostly neglected. In this paper, we revisit 3D semantic segmentation through a more granular lens, shedding light on subtle complexities that are typically overshadowed by broader performance metrics. Concretely, we have delineated 3D semantic segmentation errors into four comprehensive categories as well as corresponding evaluation metrics tailored to each. Building upon this categorical framework, we introduce an innovative 3D semantic segmentation network called BFANet that incorporates detailed analysis of semantic boundary features. First, we design the boundary-semantic module to decouple point cloud features into semantic and boundary features, and fuse their query queue to enhance semantic features with attention. Second, we introduce a more concise and accelerated boundary pseudo-label calculation algorithm, which is 3.9 times faster than the state-of-the-art, offering compatibility with data augmentation and enabling efficient computation in training. Extensive experiments on benchmark data indicate the superiority of our BFANet model, confirming the significance of emphasizing the four uniquely designed metrics. Code is available at https://github.com/weiguangzhao/BFANet.

Authors:Fanbin Lu, Zhisheng Zhong, Ziqin Wei, Shu Liu, Chi-Wing Fu, Jiaya Jia
Title: STEVE: A Step Verification Pipeline for Computer-use Agent Training
Abstract:
Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.

Authors:Yang Yi, Kunqing Wang, Jinpu Zhang, Zhen Tan, Xiangke Wang, Hui Shen, Dewen Hu
Title: A Plug-and-Play Learning-based IMU Bias Factor for Robust Visual-Inertial Odometry
Abstract:
The bias of low-cost Inertial Measurement Units (IMU) is a critical factor affecting the performance of Visual-Inertial Odometry (VIO). In particular, when visual tracking encounters errors, the optimized bias results may deviate significantly from the true values, adversely impacting the system's stability and localization precision. In this paper, we propose a novel plug-and-play framework featuring the Inertial Prior Network (IPNet), which is designed to accurately estimate IMU bias. Recognizing the substantial impact of initial bias errors in low-cost inertial devices on system performance, our network directly leverages raw IMU data to estimate the mean bias, eliminating the dependency on historical estimates in traditional recursive predictions and effectively preventing error propagation. Furthermore, we introduce an iterative approach to calculate the mean value of the bias for network training, addressing the lack of bias labels in many visual-inertial datasets. The framework is evaluated on two public datasets and one self-collected dataset. Extensive experiments demonstrate that our method significantly enhances both localization precision and robustness, with the ATE-RMSE metric improving on average by 46\%. The source code and video will be available at \textcolor{red}{https://github.com/yiyscut/VIO-IPNet.git}.

Authors:Patryk Marszałek, Ulvi Movsum-zada, Oleksii Furman, Kamil Książek, Przemysław Spurek, Marek Śmieja
Title: HyConEx: Hypernetwork classifier with counterfactual explanations
Abstract:
In recent years, there has been a growing interest in explainable AI methods. We want not only to make accurate predictions using sophisticated neural networks but also to understand what the model's decision is based on. One of the fundamental levels of interpretability is to provide counterfactual examples explaining the rationale behind the decision and identifying which features, and to what extent, must be modified to alter the model's outcome. To address these requirements, we introduce HyConEx, a classification model based on deep hypernetworks specifically designed for tabular data. Owing to its unique architecture, HyConEx not only provides class predictions but also delivers local interpretations for individual data samples in the form of counterfactual examples that steer a given sample toward an alternative class. While many explainable methods generated counterfactuals for external models, there have been no interpretable classifiers simultaneously producing counterfactual samples so far. HyConEx achieves competitive performance on several metrics assessing classification accuracy and fulfilling the criteria of a proper counterfactual attack. This makes HyConEx a distinctive deep learning model, which combines predictions and explainers as an all-in-one neural network. The code is available at https://github.com/gmum/HyConEx.

Authors:Tianyuan Qu, Longxiang Tang, Bohao Peng, Senqiao Yang, Bei Yu, Jiaya Jia
Title: Does Your Vision-Language Model Get Lost in the Long Video Sampling Dilemma?
Abstract:
The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain. Our benchmark and evaluation codes has been released at: https://github.com/dvlab-research/LSDBench

Authors:Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, Jianguo Li
Title: CAKE: Cascading and Adaptive KV Cache Eviction with Layer Preferences
Abstract:
Large language models (LLMs) excel at processing long sequences, boosting demand for key-value (KV) caching. While recent efforts to evict KV cache have alleviated the inference burden, they often fail to allocate resources rationally across layers with different attention patterns. In this paper, we introduce Cascading and Adaptive KV cache Eviction (CAKE), a novel approach that frames KV cache eviction as a "cake-slicing problem." CAKE assesses layer-specific preferences by considering attention dynamics in both spatial and temporal dimensions, allocates rational cache size for layers accordingly, and manages memory constraints in a cascading manner. This approach enables a global view of cache allocation, adaptively distributing resources across diverse attention mechanisms while maintaining memory budgets. CAKE also employs a new eviction indicator that considers the shifting importance of tokens over time, addressing limitations in existing methods that overlook temporal dynamics. Comprehensive experiments on LongBench and NeedleBench show that CAKE maintains model performance with only 3.2% of the KV cache and consistently outperforms current baselines across various models and memory constraints, particularly in low-memory settings. Additionally, CAKE achieves over 10x speedup in decoding latency compared to full cache when processing contexts of 128K tokens with FlashAttention-2. Our code is available at https://github.com/antgroup/cakekv.

Authors:Wenbo Dai, Lijing Lu, Zhihang Li
Title: Diffusion-based Synthetic Data Generation for Visible-Infrared Person Re-Identification
Abstract:
The performance of models is intricately linked to the abundance of training data. In Visible-Infrared person Re-IDentification (VI-ReID) tasks, collecting and annotating large-scale images of each individual under various cameras and modalities is tedious, time-expensive, costly and must comply with data protection laws, posing a severe challenge in meeting dataset requirements. Current research investigates the generation of synthetic data as an efficient and privacy-ensuring alternative to collecting real data in the field. However, a specific data synthesis technique tailored for VI-ReID models has yet to be explored. In this paper, we present a novel data generation framework, dubbed Diffusion-based VI-ReID data Expansion (DiVE), that automatically obtain massive RGB-IR paired images with identity preserving by decoupling identity and modality to improve the performance of VI-ReID models. Specifically, identity representation is acquired from a set of samples sharing the same ID, whereas the modality of images is learned by fine-tuning the Stable Diffusion (SD) on modality-specific data. DiVE extend the text-driven image synthesis to identity-preserving RGB-IR multimodal image synthesis. This approach significantly reduces data collection and annotation costs by directly incorporating synthetic data into ReID model training. Experiments have demonstrated that VI-ReID models trained on synthetic data produced by DiVE consistently exhibit notable enhancements. In particular, the state-of-the-art method, CAJ, trained with synthetic images, achieves an improvement of about $9\%$ in mAP over the baseline on the LLCM dataset. Code: https://github.com/BorgDiven/DiVE

Authors:Han Mei, Kunqian Li, Shuaixin Liu, Chengzhi Ma, Qianli Jiang
Title: DPF-Net: Physical Imaging Model Embedded Data-Driven Underwater Image Enhancement
Abstract:
Due to the complex interplay of light absorption and scattering in the underwater environment, underwater images experience significant degradation. This research presents a two-stage underwater image enhancement network called the Data-Driven and Physical Parameters Fusion Network (DPF-Net), which harnesses the robustness of physical imaging models alongside the generality and efficiency of data-driven methods. We first train a physical parameter estimate module using synthetic datasets to guarantee the trustworthiness of the physical parameters, rather than solely learning the fitting relationship between raw and reference images by the application of the imaging equation, as is common in prior studies. This module is subsequently trained in conjunction with an enhancement network, where the estimated physical parameters are integrated into a data-driven model within the embedding space. To maintain the uniformity of the restoration process amid underwater imaging degradation, we propose a physics-based degradation consistency loss. Additionally, we suggest an innovative weak reference loss term utilizing the entire dataset, which alleviates our model's reliance on the quality of individual reference images. Our proposed DPF-Net demonstrates superior performance compared to other benchmark methods across multiple test sets, achieving state-of-the-art results. The source code and pre-trained models are available on the project home page: https://github.com/OUCVisionGroup/DPF-Net.

Authors:Jiahang Cao, Qiang Zhang, Hanzhong Guo, Jiaxu Wang, Hao Cheng, Renjing Xu
Title: Modality-Composable Diffusion Policy via Inference-Time Distribution-level Composition
Abstract:
Diffusion Policy (DP) has attracted significant attention as an effective method for policy representation due to its capacity to model multi-distribution dynamics. However, current DPs are often based on a single visual modality (e.g., RGB or point cloud), limiting their accuracy and generalization potential. Although training a generalized DP capable of handling heterogeneous multimodal data would enhance performance, it entails substantial computational and data-related costs. To address these challenges, we propose a novel policy composition method: by leveraging multiple pre-trained DPs based on individual visual modalities, we can combine their distributional scores to form a more expressive Modality-Composable Diffusion Policy (MCDP), without the need for additional training. Through extensive empirical experiments on the RoboTwin dataset, we demonstrate the potential of MCDP to improve both adaptability and performance. This exploration aims to provide valuable insights into the flexible composition of existing DPs, facilitating the development of generalizable cross-modality, cross-domain, and even cross-embodiment policies. Our code is open-sourced at https://github.com/AndyCao1125/MCDP.

Authors:Alessio Xompero, Andrea Cavallaro
Title: Learning Privacy from Visual Entities
Abstract:
Subjective interpretation and content diversity make predicting whether an image is private or public a challenging task. Graph neural networks combined with convolutional neural networks (CNNs), which consist of 14,000 to 500 millions parameters, generate features for visual entities (e.g., scene and object types) and identify the entities that contribute to the decision. In this paper, we show that using a simpler combination of transfer learning and a CNN to relate privacy with scene types optimises only 732 parameters while achieving comparable performance to that of graph-based methods. On the contrary, end-to-end training of graph-based methods can mask the contribution of individual components to the classification performance. Furthermore, we show that a high-dimensional feature vector, extracted with CNNs for each visual entity, is unnecessary and complexifies the model. The graph component has also negligible impact on performance, which is driven by fine-tuning the CNN to optimise image features for privacy nodes.

Authors:Fanhu Zeng, Hao Tang, Yihua Shao, Siyu Chen, Ling Shao, Yan Wang
Title: MambaIC: State Space Models for High-Performance Learned Image Compression
Abstract:
A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields. Despite rapid progress in image compression, computational inefficiency and poor redundancy modeling still pose significant bottlenecks, limiting practical applications. Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods and improve image compression from multiple perspectives. In this paper, we integrate the advantages of SSMs for better efficiency-performance trade-off and propose an enhanced image compression approach through refined context modeling, which we term MambaIC. Specifically, we explore context modeling to adaptively refine the representation of hidden states. Additionally, we introduce window-based local attention into channel-spatial entropy modeling to reduce potential spatial redundancy during compression, thereby increasing efficiency. Comprehensive qualitative and quantitative results validate the effectiveness and efficiency of our approach, particularly for high-resolution image compression. Code is released at https://github.com/AuroraZengfh/MambaIC.

Authors:Feihong Yan, Qingyan Wei, Jiayi Tang, Jiajun Li, Yulin Wang, Xuming Hu, Huiqi Li, Linfeng Zhang
Title: LazyMAR: Accelerating Masked Autoregressive Models via Feature Caching
Abstract:
Masked Autoregressive (MAR) models have emerged as a promising approach in image generation, expected to surpass traditional autoregressive models in computational efficiency by leveraging the capability of parallel decoding. However, their dependence on bidirectional self-attention inherently conflicts with conventional KV caching mechanisms, creating unexpected computational bottlenecks that undermine their expected efficiency. To address this problem, this paper studies the caching mechanism for MAR by leveraging two types of redundancy: Token Redundancy indicates that a large portion of tokens have very similar representations in the adjacent decoding steps, which allows us to first cache them in previous steps and then reuse them in the later steps. Condition Redundancy indicates that the difference between conditional and unconditional output in classifier-free guidance exhibits very similar values in adjacent steps. Based on these two redundancies, we propose LazyMAR, which introduces two caching mechanisms to handle them one by one. LazyMAR is training-free and plug-and-play for all MAR models. Experimental results demonstrate that our method achieves 2.83 times acceleration with almost no drop in generation quality. Our codes will be released in https://github.com/feihongyan1/LazyMAR.

Authors:Tsz Chung Cheng, Chung Shing Cheng, Chaak Ming Lau, Eugene Tin-Ho Lam, Chun Yat Wong, Hoi On Yu, Cheuk Hei Chong
Title: HKCanto-Eval: A Benchmark for Evaluating Cantonese Language Understanding and Cultural Comprehension in LLMs
Abstract:
The ability of language models to comprehend and interact in diverse linguistic and cultural landscapes is crucial. The Cantonese language used in Hong Kong presents unique challenges for natural language processing due to its rich cultural nuances and lack of dedicated evaluation datasets. The HKCanto-Eval benchmark addresses this gap by evaluating the performance of large language models (LLMs) on Cantonese language understanding tasks, extending to English and Written Chinese for cross-lingual evaluation. HKCanto-Eval integrates cultural and linguistic nuances intrinsic to Hong Kong, providing a robust framework for assessing language models in realistic scenarios. Additionally, the benchmark includes questions designed to tap into the underlying linguistic metaknowledge of the models. Our findings indicate that while proprietary models generally outperform open-weight models, significant limitations remain in handling Cantonese-specific linguistic and cultural knowledge, highlighting the need for more targeted training data and evaluation methods. The code can be accessed at https://github.com/hon9kon9ize/hkeval2025

Authors:Shangheng Du, Jiabao Zhao, Jinxin Shi, Zhentao Xie, Xin Jiang, Yanhong Bai, Liang He
Title: A Survey on the Optimization of Large Language Model-based Agents
Abstract:
With the rapid development of Large Language Models (LLMs), LLM-based agents have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks. However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs, which often leads to limited effectiveness or suboptimal performance in complex agent-related environments. Although LLM optimization techniques can improve model performance across many general tasks, they lack specialized optimization towards critical agent functionalities such as long-term planning, dynamic environmental interaction, and complex decision-making. Although numerous recent studies have explored various strategies to optimize LLM-based agents for complex agent tasks, a systematic review summarizing and comparing these methods from a holistic perspective is still lacking. In this survey, we provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods. We first focus on parameter-driven optimization, covering fine-tuning-based optimization, reinforcement learning-based optimization, and hybrid strategies, analyzing key aspects such as trajectory data construction, fine-tuning techniques, reward function design, and optimization algorithms. Additionally, we briefly discuss parameter-free strategies that optimize agent behavior through prompt engineering and external knowledge retrieval. Finally, we summarize the datasets and benchmarks used for evaluation and tuning, review key applications of LLM-based agents, and discuss major challenges and promising future directions. Our repository for related references is available at https://github.com/YoungDubbyDu/LLM-Agent-Optimization.

Authors:Luming Wang, Hao Shi, Xiaoting Yin, Kailun Yang, Kaiwei Wang, Jian Bai
Title: EgoEvGesture: Gesture Recognition Based on Egocentric Event Camera
Abstract:
Egocentric gesture recognition is a pivotal technology for enhancing natural human-computer interaction, yet traditional RGB-based solutions suffer from motion blur and illumination variations in dynamic scenarios. While event cameras show distinct advantages in handling high dynamic range with ultra-low power consumption, existing RGB-based architectures face inherent limitations in processing asynchronous event streams due to their synchronous frame-based nature. Moreover, from an egocentric perspective, event cameras record data that includes events generated by both head movements and hand gestures, thereby increasing the complexity of gesture recognition. To address this, we propose a novel network architecture specifically designed for event data processing, incorporating (1) a lightweight CNN with asymmetric depthwise convolutions to reduce parameters while preserving spatiotemporal features, (2) a plug-and-play state-space model as context block that decouples head movement noise from gesture dynamics, and (3) a parameter-free Bins-Temporal Shift Module (BTSM) that shifts features along bins and temporal dimensions to fuse sparse events efficiently. We further establish the EgoEvGesture dataset, the first large-scale dataset for egocentric gesture recognition using event cameras. Experimental results demonstrate that our method achieves 62.7% accuracy tested on unseen subjects with only 7M parameters, 3.1% higher than state-of-the-art approaches. Notable misclassifications in freestyle motions stem from high inter-personal variability and unseen test patterns differing from training data. Moreover, our approach achieved a remarkable accuracy of 97.0% on the DVS128 Gesture, demonstrating the effectiveness and generalization capability of our method on public datasets. The dataset and models are made available at https://github.com/3190105222/EgoEv_Gesture.

Authors:Shuo Gao, Jingyang Zhang, Jun Xue, Meng Yang, Yang Chen, Guangquan Zhou
Title: A Causality-Inspired Model for Intima-Media Thickening Assessment in Ultrasound Videos
Abstract:
Carotid atherosclerosis represents a significant health risk, with its early diagnosis primarily dependent on ultrasound-based assessments of carotid intima-media thickening. However, during carotid ultrasound screening, significant view variations cause style shifts, impairing content cues related to thickening, such as lumen anatomy, which introduces spurious correlations that hinder assessment. Therefore, we propose a novel causal-inspired method for assessing carotid intima-media thickening in frame-wise ultrasound videos, which focuses on two aspects: eliminating spurious correlations caused by style and enhancing causal content correlations. Specifically, we introduce a novel Spurious Correlation Elimination (SCE) module to remove non-causal style effects by enforcing prediction invariance with style perturbations. Simultaneously, we propose a Causal Equivalence Consolidation (CEC) module to strengthen causal content correlation through adversarial optimization during content randomization. Simultaneously, we design a Causal Transition Augmentation (CTA) module to ensure smooth causal flow by integrating an auxiliary pathway with text prompts and connecting it through contrastive learning. The experimental results on our in-house carotid ultrasound video dataset achieved an accuracy of 86.93\%, demonstrating the superior performance of the proposed method. Code is available at \href{https://github.com/xielaobanyy/causal-imt}{https://github.com/xielaobanyy/causal-imt}.

Authors:Jiangdong Cai, Yan Chen, Zhenrong Shen, Haotian Jiang, Honglin Xiong, Kai Xuan, Lichi Zhang, Qian Wang
Title: Pathology Image Restoration via Mixture of Prompts
Abstract:
In digital pathology, acquiring all-in-focus images is essential to high-quality imaging and high-efficient clinical workflow. Traditional scanners achieve this by scanning at multiple focal planes of varying depths and then merging them, which is relatively slow and often struggles with complex tissue defocus. Recent prevailing image restoration technique provides a means to restore high-quality pathology images from scans of single focal planes. However, existing image restoration methods are inadequate, due to intricate defocus patterns in pathology images and their domain-specific semantic complexities. In this work, we devise a two-stage restoration solution cascading a transformer and a diffusion model, to benefit from their powers in preserving image fidelity and perceptual quality, respectively. We particularly propose a novel mixture of prompts for the two-stage solution. Given initial prompt that models defocus in microscopic imaging, we design two prompts that describe the high-level image semantics from pathology foundation model and the fine-grained tissue structures via edge extraction. We demonstrate that, by feeding the prompt mixture to our method, we can restore high-quality pathology images from single-focal-plane scans, implying high potentials of the mixture of prompts to clinical usage. Code will be publicly available at https://github.com/caijd2000/MoP.

Authors:Heng Zhang, Guoxiang Zhao, Xiaoqiang Ren
Title: TERL: Large-Scale Multi-Target Encirclement Using Transformer-Enhanced Reinforcement Learning
Abstract:
Pursuit-evasion (PE) problem is a critical challenge in multi-robot systems (MRS). While reinforcement learning (RL) has shown its promise in addressing PE tasks, research has primarily focused on single-target pursuit, with limited exploration of multi-target encirclement, particularly in large-scale settings. This paper proposes a Transformer-Enhanced Reinforcement Learning (TERL) framework for large-scale multi-target encirclement. By integrating a transformer-based policy network with target selection, TERL enables robots to adaptively prioritize targets and safely coordinate robots. Results show that TERL outperforms existing RL-based methods in terms of encirclement success rate and task completion time, while maintaining good performance in large-scale scenarios. Notably, TERL, trained on small-scale scenarios (15 pursuers, 4 targets), generalizes effectively to large-scale settings (80 pursuers, 20 targets) without retraining, achieving a 100% success rate. The code and demonstration video are available at https://github.com/ApricityZ/TERL.

Authors:Yutao Hu, Sen Li, Jincheng Yan, Wenqi Shao, Xiaoyan Luo
Title: Car-1000: A New Large Scale Fine-Grained Visual Categorization Dataset
Abstract:
Fine-grained visual categorization (FGVC) is a challenging but significant task in computer vision, which aims to recognize different sub-categories of birds, cars, airplanes, etc. Among them, recognizing models of different cars has significant application value in autonomous driving, traffic surveillance and scene understanding, which has received considerable attention in the past few years. However, Stanford-Car, the most widely used fine-grained dataset for car recognition, only has 196 different categories and only includes vehicle models produced earlier than 2013. Due to the rapid advancements in the automotive industry during recent years, the appearances of various car models have become increasingly intricate and sophisticated. Consequently, the previous Stanford-Car dataset fails to capture this evolving landscape and cannot satisfy the requirements of automotive industry. To address these challenges, in our paper, we introduce Car-1000, a large-scale dataset designed specifically for fine-grained visual categorization of diverse car models. Car-1000 encompasses vehicles from 165 different automakers, spanning a wide range of 1000 distinct car models. Additionally, we have reproduced several state-of-the-art FGVC methods on the Car-1000 dataset, establishing a new benchmark for research in this field. We hope that our work will offer a fresh perspective for future FGVC researchers. Our dataset is available at https://github.com/toggle1995/Car-1000.

Authors:Kang You, Tong Chen, Dandan Ding, M. Salman Asif, Zhan Ma
Title: RENO: Real-Time Neural Compression for 3D LiDAR Point Clouds
Abstract:
Despite the substantial advancements demonstrated by learning-based neural models in the LiDAR Point Cloud Compression (LPCC) task, realizing real-time compression - an indispensable criterion for numerous industrial applications - remains a formidable challenge. This paper proposes RENO, the first real-time neural codec for 3D LiDAR point clouds, achieving superior performance with a lightweight model. RENO skips the octree construction and directly builds upon the multiscale sparse tensor representation. Instead of the multi-stage inferring, RENO devises sparse occupancy codes, which exploit cross-scale correlation and derive voxels' occupancy in a one-shot manner, greatly saving processing time. Experimental results demonstrate that the proposed RENO achieves real-time coding speed, 10 fps at 14-bit depth on a desktop platform (e.g., one RTX 3090 GPU) for both encoding and decoding processes, while providing 12.25% and 48.34% bit-rate savings compared to G-PCCv23 and Draco, respectively, at a similar quality. RENO model size is merely 1MB, making it attractive for practical applications. The source code is available at https://github.com/NJUVISION/RENO.

Authors:Syed Rifat Raiyan, Md. Hasanul Kabir
Title: SCReedSolo: A Secure and Robust LSB Image Steganography Framework with Randomized Symmetric Encryption and Reed-Solomon Coding
Abstract:
Image steganography is an information-hiding technique that involves the surreptitious concealment of covert informational content within digital images. In this paper, we introduce ${\rm SCR{\small EED}S{\small OLO}}$, a novel framework for concealing arbitrary binary data within images. Our approach synergistically leverages Random Shuffling, Fernet Symmetric Encryption, and Reed-Solomon Error Correction Codes to encode the secret payload, which is then discretely embedded into the carrier image using LSB (Least Significant Bit) Steganography. The combination of these methods addresses the vulnerability vectors of both security and resilience against bit-level corruption in the resultant stego-images. We show that our framework achieves a data payload of 3 bits per pixel for an RGB image, and mathematically assess the probability of successful transmission for the amalgamated $n$ message bits and $k$ error correction bits. Additionally, we find that ${\rm SCR{\small EED}S{\small OLO}}$ yields good results upon being evaluated with multiple performance metrics, successfully eludes detection by various passive steganalysis tools, and is immune to simple active steganalysis attacks. Our code and data are available at https://github.com/Starscream-11813/SCReedSolo-Steganography.

Authors:Kumar Krishna Agrawal, Long Lian, Longchao Liu, Natalia Harguindeguy, Boyi Li, Alexander Bick, Maggie Chung, Trevor Darrell, Adam Yala
Title: Atlas: Multi-Scale Attention Improves Long Context Image Modeling
Abstract:
Efficiently modeling massive images is a long-standing challenge in machine learning. To this end, we introduce Multi-Scale Attention (MSA). MSA relies on two key ideas, (i) multi-scale representations (ii) bi-directional cross-scale communication. MSA creates O(log N) scales to represent the image across progressively coarser features and leverages cross-attention to propagate information across scales. We then introduce Atlas, a novel neural network architecture based on MSA. We demonstrate that Atlas significantly improves the compute-performance tradeoff of long-context image modeling in a high-resolution variant of ImageNet 100. At 1024px resolution, Atlas-B achieves 91.04% accuracy, comparable to ConvNext-B (91.92%) while being 4.3x faster. Atlas is 2.95x faster and 7.38% better than FasterViT, 2.25x faster and 4.96% better than LongViT. In comparisons against MambaVision-S, we find Atlas-S achieves 5%, 16% and 32% higher accuracy at 1024px, 2048px and 4096px respectively, while obtaining similar runtimes. Code for reproducing our experiments and pretrained models is available at https://github.com/yalalab/atlas.

Authors:Wenqing Kuang, Xiongwei Zhao, Yehui Shen, Congcong Wen, Huimin Lu, Zongtan Zhou, Xieyuanli Chen
Title: ResLPR: A LiDAR Data Restoration Network and Benchmark for Robust Place Recognition Against Weather Corruptions
Abstract:
LiDAR-based place recognition (LPR) is a key component for autonomous driving, and its resilience to environmental corruption is critical for safety in high-stakes applications. While state-of-the-art (SOTA) LPR methods perform well in clean weather, they still struggle with weather-induced corruption commonly encountered in driving scenarios. To tackle this, we propose ResLPRNet, a novel LiDAR data restoration network that largely enhances LPR performance under adverse weather by restoring corrupted LiDAR scans using a wavelet transform-based network. ResLPRNet is efficient, lightweight and can be integrated plug-and-play with pretrained LPR models without substantial additional computational cost. Given the lack of LPR datasets under adverse weather, we introduce ResLPR, a novel benchmark that examines SOTA LPR methods under a wide range of LiDAR distortions induced by severe snow, fog, and rain conditions. Experiments on our proposed WeatherKITTI and WeatherNCLT datasets demonstrate the resilience and notable gains achieved by using our restoration method with multiple LPR approaches in challenging weather scenarios. Our code and benchmark are publicly available here: https://github.com/nubot-nudt/ResLPR.

Authors:Bowen Tan, Zheng Xu, Eric Xing, Zhiting Hu, Shanshan Wu
Title: Synthesizing Privacy-Preserving Text Data via Finetuning without Finetuning Billion-Scale LLMs
Abstract:
Synthetic data offers a promising path to train models while preserving data privacy. Differentially private (DP) finetuning of large language models (LLMs) as data generator is effective, but is impractical when computation resources are limited. Meanwhile, prompt-based methods such as private evolution depend heavily on the manual prompts, and ineffectively use private information in their iterative data selection process. To overcome these limitations, we propose CTCL (Data Synthesis with ConTrollability and CLustering), a novel framework for generating privacy-preserving synthetic data without extensive prompt engineering or billion-scale LLM finetuning. CTCL pretrains a lightweight 140M conditional generator and a clustering-based topic model on large-scale public data. To further adapt to the private domain, the generator is DP finetuned on private data for fine-grained textual information, while the topic model extracts a DP histogram representing distributional information. The DP generator then samples according to the DP histogram to synthesize a desired number of data examples. Evaluation across five diverse domains demonstrates the effectiveness of our framework, particularly in the strong privacy regime. Systematic ablation validates the design of each framework component and highlights the scalability of our approach.

Authors:Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, Mi Zhang
Title: SVD-LLM V2: Optimizing Singular Value Truncation for Large Language Model Compression
Abstract:
Despite significant advancements, the practical deployment of Large Language Models (LLMs) is often hampered by their immense sizes, highlighting the need for effective compression techniques. Singular Value Decomposition (SVD) is a promising LLM compression technique. However, existing SVD-based compression methods fall short in reducing truncation losses, leading to less competitive performance in compressed models. In this work, we introduce SVD-LLM V2, a SVD-based LLM compression method that optimizes singular value truncation in SVD compression with two techniques. First, SVD-LLM V2 proposes to use theoretical truncation loss of weight matrices to assign a unique compression ratio to each weight matrix at different layers to accommodate weight redundancy heterogeneity. Second, SVD-LLM V2 proposes loss-optimized weight truncation to ensure that the truncated singular values result in a lower and more stable truncation loss in practice. We evaluate SVD-LLM V2 on ten datasets and five LLMs at various scales. Our results show SVD-LLM V2 outperforms state-of-the-art SVD-based LLM compression methods. Our code is available at https://github.com/AIoT-MLSys-Lab/SVD-LLM

Authors:Zhe Wang, Yanjun Qi
Title: Augmented Adversarial Trigger Learning
Abstract:
Gradient optimization-based adversarial attack methods automate the learning of adversarial triggers to generate jailbreak prompts or leak system prompts. In this work, we take a closer look at the optimization objective of adversarial trigger learning and propose ATLA: Adversarial Trigger Learning with Augmented objectives. ATLA improves the negative log-likelihood loss used by previous studies into a weighted loss formulation that encourages the learned adversarial triggers to optimize more towards response format tokens. This enables ATLA to learn an adversarial trigger from just one query-response pair and the learned trigger generalizes well to other similar queries. We further design a variation to augment trigger optimization with an auxiliary loss that suppresses evasive responses. We showcase how to use ATLA to learn adversarial suffixes jailbreaking LLMs and to extract hidden system prompts. Empirically we demonstrate that ATLA consistently outperforms current state-of-the-art techniques, achieving nearly 100% success in attacking while requiring 80% fewer queries. ATLA learned jailbreak suffixes demonstrate high generalization to unseen queries and transfer well to new LLMs. We released our code https://github.com/QData/ALTA_Augmented_Adversarial_Trigger_Learning

Authors:Tengfei Wang, Xin Wang, Yongmao Hou, Zhaoning Zhang, Yiwei Xu, Zongqian Zhan
Title: GS-I$^{3}$: Gaussian Splatting for Surface Reconstruction from Illumination-Inconsistent Images
Abstract:
Accurate geometric surface reconstruction, providing essential environmental information for navigation and manipulation tasks, is critical for enabling robotic self-exploration and interaction. Recently, 3D Gaussian Splatting (3DGS) has gained significant attention in the field of surface reconstruction due to its impressive geometric quality and computational efficiency. While recent relevant advancements in novel view synthesis under inconsistent illumination using 3DGS have shown promise, the challenge of robust surface reconstruction under such conditions is still being explored. To address this challenge, we propose a method called GS-3I. Specifically, to mitigate 3D Gaussian optimization bias caused by underexposed regions in single-view images, based on Convolutional Neural Network (CNN), a tone mapping correction framework is introduced. Furthermore, inconsistent lighting across multi-view images, resulting from variations in camera settings and complex scene illumination, often leads to geometric constraint mismatches and deviations in the reconstructed surface. To overcome this, we propose a normal compensation mechanism that integrates reference normals extracted from single-view image with normals computed from multi-view observations to effectively constrain geometric inconsistencies. Extensive experimental evaluations demonstrate that GS-3I can achieve robust and accurate surface reconstruction across complex illumination scenarios, highlighting its effectiveness and versatility in this critical challenge. https://github.com/TFwang-9527/GS-3I

Authors:Yunze Liu, Peiran Wu, Cheng Liang, Junxiao Shen, Limin Wang, Li Yi
Title: VideoMAP: Toward Scalable Mamba-based Video Autoregressive Pretraining
Abstract:
Recent Mamba-based architectures for video understanding demonstrate promising computational efficiency and competitive performance, yet struggle with overfitting issues that hinder their scalability. To overcome this challenge, we introduce VideoMAP, a Hybrid Mamba-Transformer framework featuring a novel pre-training approach. VideoMAP uses a 4:1 Mamba-to-Transformer ratio, effectively balancing computational cost and model capacity. This architecture, combined with our proposed frame-wise masked autoregressive pre-training strategy, delivers significant performance gains when scaling to larger models. Additionally, VideoMAP exhibits impressive sample efficiency, significantly outperforming existing methods with less training data. Experiments show that VideoMAP outperforms existing models across various datasets, including Kinetics-400, Something-Something V2, Breakfast, and COIN. Furthermore, we demonstrate the potential of VideoMAP as a visual encoder for multimodal large language models, highlighting its ability to reduce memory usage and enable the processing of longer video sequences. The code is open-source at https://github.com/yunzeliu/MAP

Authors:Jiahao Wu, Rui Peng, Zhiyan Wang, Lu Xiao, Luyang Tang, Jinbo Yan, Kaiqiang Xiong, Ronggang Wang
Title: Swift4D:Adaptive divide-and-conquer Gaussian Splatting for compact and efficient reconstruction of dynamic scene
Abstract:
Novel view synthesis has long been a practical but challenging task, although the introduction of numerous methods to solve this problem, even combining advanced representations like 3D Gaussian Splatting, they still struggle to recover high-quality results and often consume too much storage memory and training time. In this paper we propose Swift4D, a divide-and-conquer 3D Gaussian Splatting method that can handle static and dynamic primitives separately, achieving a good trade-off between rendering quality and efficiency, motivated by the fact that most of the scene is the static primitive and does not require additional dynamic properties. Concretely, we focus on modeling dynamic transformations only for the dynamic primitives which benefits both efficiency and quality. We first employ a learnable decomposition strategy to separate the primitives, which relies on an additional parameter to classify primitives as static or dynamic. For the dynamic primitives, we employ a compact multi-resolution 4D Hash mapper to transform these primitives from canonical space into deformation space at each timestamp, and then mix the static and dynamic primitives to produce the final output. This divide-and-conquer method facilitates efficient training and reduces storage redundancy. Our method not only achieves state-of-the-art rendering quality while being 20X faster in training than previous SOTA methods with a minimum storage requirement of only 30MB on real-world datasets. Code is available at https://github.com/WuJH2001/swift4d.

Authors:Negar Shahamiri, Moritz Rempe, Lukas Heine, Jens Kleesiek, Fabian Hörst
Title: Cracking the PUMA Challenge in 24 Hours with CellViT++ and nnU-Net
Abstract:
Automatic tissue segmentation and nuclei detection is an important task in pathology, aiding in biomarker extraction and discovery. The panoptic segmentation of nuclei and tissue in advanced melanoma (PUMA) challenge aims to improve tissue segmentation and nuclei detection in melanoma histopathology. Unlike many challenge submissions focusing on extensive model tuning, our approach emphasizes delivering a deployable solution within a 24-hour development timeframe, using out-of-the-box frameworks. The pipeline combines two models, namely CellViT++ for nuclei detection and nnU-Net for tissue segmentation. Our results demonstrate a significant improvement in tissue segmentation, achieving a Dice score of 0.750, surpassing the baseline score of 0.629. For nuclei detection, we obtained results comparable to the baseline in both challenge tracks. The code is publicly available at https://github.com/TIO-IKIM/PUMA.

Authors:Boyu Chen, Ameenat L. Solebo, Daqian Shi, Jinge Wu, Paul Taylor
Title: Minuscule Cell Detection in AS-OCT Images with Progressive Field-of-View Focusing
Abstract:
Anterior Segment Optical Coherence Tomography (AS-OCT) is an emerging imaging technique with great potential for diagnosing anterior uveitis, a vision-threatening ocular inflammatory condition. A hallmark of this condition is the presence of inflammatory cells in the eye's anterior chamber, and detecting these cells using AS-OCT images has attracted research interest. While recent efforts aim to replace manual cell detection with automated computer vision approaches, detecting extremely small (minuscule) objects in high-resolution images, such as AS-OCT, poses substantial challenges: (1) each cell appears as a minuscule particle, representing less than 0.005\% of the image, making the detection difficult, and (2) OCT imaging introduces pixel-level noise that can be mistaken for cells, leading to false positive detections. To overcome these challenges, we propose a minuscule cell detection framework through a progressive field-of-view focusing strategy. This strategy systematically refines the detection scope from the whole image to a target region where cells are likely to be present, and further to minuscule regions potentially containing individual cells. Our framework consists of two modules. First, a Field-of-Focus module uses a vision foundation model to segment the target region. Subsequently, a Fine-grained Object Detection module introduces a specialized Minuscule Region Proposal followed by a Spatial Attention Network to distinguish individual cells from noise within the segmented region. Experimental results demonstrate that our framework outperforms state-of-the-art methods for cell detection, providing enhanced efficacy for clinical applications. Our code is publicly available at: https://github.com/joeybyc/MCD.

Authors:Yan Jiang, Hao Yu, Mengting Wei, Zhaodong Sun, Haoyu Chen, Xu Cheng, Guoying Zhao
Title: L2RW+: A Comprehensive Benchmark Towards Privacy-Preserved Visible-Infrared Person Re-Identification
Abstract:
Visible-infrared person re-identification (VI-ReID) is a challenging task that aims to match pedestrian images captured under varying lighting conditions, which has drawn intensive research attention and achieved promising results. However, existing methods adopt the centralized training, ignoring the potential privacy concerns as the data is distributed across multiple devices or entities in reality. In this paper, we propose L2RW+, a benchmark that brings VI-ReID closer to real-world applications. The core rationale behind L2RW+ is that incorporating decentralized training into VI-ReID can address privacy concerns in scenarios with limited data-sharing constrains. Specifically, we design protocols and corresponding algorithms for different privacy sensitivity levels. In our new benchmark, we simulate the training under real-world data conditions that: 1) data from each camera is completely isolated, or 2) different data entities (e.g., data controllers of a certain region) can selectively share the data. In this way, we simulate scenarios with strict privacy restrictions, which is closer to real-world conditions. Comprehensive experiments show the feasibility and potential of decentralized VI-ReID training at both image and video levels. In particular, with increasing data scales, the performance gap between decentralized and centralized training decreases, especially in video-level VI-ReID. In unseen domains, decentralized training even achieves performance comparable to SOTA centralized methods. This work offers a novel research entry for deploying VI-ReID into real-world scenarios and can benefit the community. Code is available at: https://github.com/Joey623/L2RW.

Authors:Ans Munir, Faisal Z. Qureshi, Muhammad Haris Khan, Mohsen Ali
Title: TLAC: Two-stage LMM Augmented CLIP for Zero-Shot Classification
Abstract:
Contrastive Language-Image Pretraining (CLIP) has shown impressive zero-shot performance on image classification. However, state-of-the-art methods often rely on fine-tuning techniques like prompt learning and adapter-based tuning to optimize CLIP's performance. The necessity for fine-tuning significantly limits CLIP's adaptability to novel datasets and domains. This requirement mandates substantial time and computational resources for each new dataset. To overcome this limitation, we introduce simple yet effective training-free approaches, Single-stage LMM Augmented CLIP (SLAC) and Two-stage LMM Augmented CLIP (TLAC), that leverages powerful Large Multimodal Models (LMMs), such as Gemini, for image classification. The proposed methods leverages the capabilities of pre-trained LMMs, allowing for seamless adaptation to diverse datasets and domains without the need for additional training. Our approaches involve prompting the LMM to identify objects within an image. Subsequently, the CLIP text encoder determines the image class by identifying the dataset class with the highest semantic similarity to the LLM predicted object. Our models achieved superior accuracy on 9 of 11 base-to-novel datasets, including ImageNet, SUN397, and Caltech101, while maintaining a strictly training-free paradigm. Our TLAC model achieved an overall accuracy of 83.44%, surpassing the previous state-of-the-art few-shot methods by a margin of 6.75%. Compared to other training-free approaches, our TLAC method achieved 83.6% average accuracy across 13 datasets, a 9.7% improvement over the previous methods. Our Code is available at https://github.com/ans92/TLAC

Authors:Sándor Battaglini-Fischer, Nishanthi Srinivasan, Bálint László Szarvas, Xiaoyu Chu, Alexandru Iosup
Title: FAILS: A Framework for Automated Collection and Analysis of LLM Service Incidents
Abstract:
Large Language Model (LLM) services such as ChatGPT, DALLE, and Cursor have quickly become essential for society, businesses, and individuals, empowering applications such as chatbots, image generation, and code assistance. The complexity of LLM systems makes them prone to failures and affects their reliability and availability, yet their failure patterns are not fully understood, making it an emerging problem. However, there are limited datasets and studies in this area, particularly lacking an open-access tool for analyzing LLM service failures based on incident reports. Addressing these problems, in this work we propose FAILS, the first open-sourced framework for incident reports collection and analysis on different LLM services and providers. FAILS provides comprehensive data collection, analysis, and visualization capabilities, including:(1) It can automatically collect, clean, and update incident data through its data scraper and processing components;(2) It provides 17 types of failure analysis, allowing users to explore temporal trends of incidents, analyze service reliability metrics, such as Mean Time to Recovery (MTTR) and Mean Time Between Failures (MTBF);(3) It leverages advanced LLM tools to assist in data analysis and interpretation, enabling users to gain observations and insights efficiently. All functions are integrated in the backend, allowing users to easily access them through a web-based frontend interface. FAILS supports researchers, engineers, and general users to understand failure patterns and further mitigate operational incidents and outages in LLM services. The framework is publicly available on https://github.com/atlarge-research/FAILS.

Authors:Enze Liu, Bowen Zheng, Wayne Xin Zhao, Ji-Rong Wen
Title: Bridging Textual-Collaborative Gap through Semantic Codes for Sequential Recommendation
Abstract:
In recent years, substantial research efforts have been devoted to enhancing sequential recommender systems by integrating abundant side information with ID-based collaborative information. This study specifically focuses on leveraging the textual metadata (e.g., titles and brands) associated with items. While existing methods have achieved notable success by combining text and ID representations, they often struggle to strike a balance between textual information embedded in text representations and collaborative information from sequential patterns of user behavior. In light of this, we propose CCFRec, a novel Code-based textual and Collaborative semantic Fusion method for sequential Recommendation. The key idea behind our approach is to bridge the gap between textual and collaborative information using semantic codes. Specifically, we generate fine-grained semantic codes from multi-view text embeddings through vector quantization techniques. Subsequently, we develop a code-guided semantic-fusion module based on the cross-attention mechanism to flexibly extract and integrate relevant information from text representations. In order to further enhance the fusion of textual and collaborative semantics, we introduce an optimization strategy that employs code masking with two specific objectives: masked code modeling and masked sequence alignment. The merit of these objectives lies in leveraging mask prediction tasks and augmented item representations to capture code correlations within individual items and enhance the sequence modeling of the recommendation backbone. Extensive experiments conducted on four public datasets demonstrate the superiority of CCFRec, showing significant improvements over various sequential recommendation models. Our code is available at https://github.com/RUCAIBox/CCFRec.

Authors:Cheng Deng, Luoyang Sun, Jiwen Jiang, Yongcheng Zeng, Xinjian Wu, Wenxin Zhao, Qingfa Xiao, Jiachuan Wang, Haoyang Li, Lei Chen, Lionel M. Ni, Haifeng Zhang, Jun Wang
Title: PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing
Abstract:
While scaling laws have been continuously validated in large language models (LLMs) with increasing model parameters, the inherent tension between the inference demands of LLMs and the limited resources of edge devices poses a critical challenge to the development of edge intelligence. Recently, numerous small language models have emerged, aiming to distill the capabilities of LLMs into smaller footprints. However, these models often retain the fundamental architectural principles of their larger counterparts, still imposing considerable strain on the storage and bandwidth capacities of edge devices. In this paper, we introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimizes model architecture and edge system constraints. The PLM utilizes a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint during inference. During training, we collect and reorganize open-source datasets, implement a multi-phase training strategy, and empirically investigate the Warmup-Stable-Decay-Constant (WSDC) learning rate scheduler. Additionally, we incorporate Reinforcement Learning from Human Feedback (RLHF) by adopting the ARIES preference learning approach. Following a two-phase SFT process, this method yields performance gains of 2% in general tasks, 9% in the GSM8K task, and 11% in coding tasks. In addition to its novel architecture, evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data while maintaining the lowest number of activated parameters. Furthermore, deployment across various edge devices, including consumer-grade GPUs, mobile phones, and Raspberry Pis, validates PLM's suitability for peripheral applications. The PLM series models are publicly available at https://github.com/plm-team/PLM.

Authors:Taichi Murayama, Dongwoo Lim, Akira Matsui, Tsukasa Tanihara
Title: The "recognition," "belief," and "action" regarding conspiracy theories: An empirical study using large-scale samples from Japan and the United States
Abstract:
Conspiracy theories present significant societal challenges, shaping political behavior, eroding public trust, and disrupting social cohesion. Addressing their impact requires recognizing that conspiracy engagement is not a singular act but a multi-stage process involving distinct cognitive and behavioral transitions. In this study, we investigate this sequential progression, "recognition," "belief," and "action" (demonstrative action and diffusion action), using nationally representative surveys from the United States (N=13,578) and Japan (N=16,693). Applying a Bayesian hierarchical model, we identify the key social, political, and economic factors that drive engagement at each stage, providing a structured framework for understanding the mechanisms underlying conspiracy theory adoption and dissemination. We find that recognition serves as a crucial gateway determining who transitions to belief, and that demonstrative and diffusion actions are shaped by distinct factors. Demonstrative actions are more prevalent among younger, higher-status individuals with strong political alignments, whereas diffusion actions occur across broader demographics, particularly among those engaged with diverse media channels. Our findings further reveal that early-life economic and cultural capital significantly influence the shape of conspiratorial engagement, emphasizing the role of life-course experiences. These insights highlight the necessity of distinguishing between different forms of conspiracy engagement and highlight the importance of targeted interventions that account for structural, cultural, and psychological factors to mitigate their spread and societal impact.

Authors:Hongyu Sun, Qiuhong Ke, Ming Cheng, Yongcai Wang, Deying Li, Chenhui Gou, Jianfei Cai
Title: Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis
Abstract:
This paper proposes a general solution to enable point cloud recognition models to handle distribution shifts at test time. Unlike prior methods, which rely heavily on training data (often inaccessible during online inference) and are limited to recognizing a fixed set of point cloud classes predefined during training, we explore a more practical and challenging scenario: adapting the model solely based on online test data to recognize both previously seen classes and novel, unseen classes at test time. To this end, we develop \textbf{Point-Cache}, a hierarchical cache model that captures essential clues of online test samples, particularly focusing on the global structure of point clouds and their local-part details. Point-Cache, which serves as a rich 3D knowledge base, is dynamically managed to prioritize the inclusion of high-quality samples. Designed as a plug-and-play module, our method can be flexibly integrated into large multimodal 3D models to support open-vocabulary point cloud recognition. Notably, our solution operates with efficiency comparable to zero-shot inference, as it is entirely training-free. Point-Cache demonstrates substantial gains across 8 challenging benchmarks and 4 representative large 3D models, highlighting its effectiveness. Code is available at https://github.com/auniquesun/Point-Cache.

Authors:Junjie Chen, Xuyang Liu, Subin Huang, Linfeng Zhang, Hang Yu
Title: Seeing Sarcasm Through Different Eyes: Analyzing Multimodal Sarcasm Perception in Large Vision-Language Models
Abstract:
With the advent of large vision-language models (LVLMs) demonstrating increasingly human-like abilities, a pivotal question emerges: do different LVLMs interpret multimodal sarcasm differently, and can a single model grasp sarcasm from multiple perspectives like humans? To explore this, we introduce an analytical framework using systematically designed prompts on existing multimodal sarcasm datasets. Evaluating 12 state-of-the-art LVLMs over 2,409 samples, we examine interpretive variations within and across models, focusing on confidence levels, alignment with dataset labels, and recognition of ambiguous "neutral" cases. We further validate our findings on a diverse 100-sample mini-benchmark, incorporating multiple datasets, expanded prompt variants, and representative commercial LVLMs. Our findings reveal notable discrepancies -- across LVLMs and within the same model under varied prompts. While classification-oriented prompts yield higher internal consistency, models diverge markedly when tasked with interpretive reasoning. These results challenge binary labeling paradigms by highlighting sarcasm's subjectivity. We advocate moving beyond rigid annotation schemes toward multi-perspective, uncertainty-aware modeling, offering deeper insights into multimodal sarcasm comprehension. Our code and data are available at: https://github.com/CoderChen01/LVLMSarcasmAnalysis

Authors:Tobia Poppi, Tejaswi Kasarla, Pascal Mettes, Lorenzo Baraldi, Rita Cucchiara
Title: Hyperbolic Safety-Aware Vision-Language Models
Abstract:
Addressing the retrieval of unsafe content from vision-language models such as CLIP is an important step towards real-world integration. Current efforts have relied on unlearning techniques that try to erase the model's knowledge of unsafe concepts. While effective in reducing unwanted outputs, unlearning limits the model's capacity to discern between safe and unsafe content. In this work, we introduce a novel approach that shifts from unlearning to an awareness paradigm by leveraging the inherent hierarchical properties of the hyperbolic space. We propose to encode safe and unsafe content as an entailment hierarchy, where both are placed in different regions of hyperbolic space. Our HySAC, Hyperbolic Safety-Aware CLIP, employs entailment loss functions to model the hierarchical and asymmetrical relations between safe and unsafe image-text pairs. This modelling, ineffective in standard vision-language models due to their reliance on Euclidean embeddings, endows the model with awareness of unsafe content, enabling it to serve as both a multimodal unsafe classifier and a flexible content retriever, with the option to dynamically redirect unsafe queries toward safer alternatives or retain the original output. Extensive experiments show that our approach not only enhances safety recognition but also establishes a more adaptable and interpretable framework for content moderation in vision-language models. Our source code is available at https://github.com/aimagelab/HySAC.

Authors:Amir M. Mansourian, Rozhan Ahmadi, Masoud Ghafouri, Amir Mohammad Babaei, Elaheh Badali Golezani, Zeynab Yasamani Ghamchi, Vida Ramezanian, Alireza Taherian, Kimia Dinashi, Amirali Miri, Shohreh Kasaei
Title: A Comprehensive Survey on Knowledge Distillation
Abstract:
Deep Neural Networks (DNNs) have achieved notable performance in the fields of computer vision and natural language processing with various applications in both academia and industry. However, with recent advancements in DNNs and transformer models with a tremendous number of parameters, deploying these large models on edge devices causes serious issues such as high runtime and memory consumption. This is especially concerning with the recent large-scale foundation models, Vision-Language Models (VLMs), and Large Language Models (LLMs). Knowledge Distillation (KD) is one of the prominent techniques proposed to address the aforementioned problems using a teacher-student architecture. More specifically, a lightweight student model is trained using additional knowledge from a cumbersome teacher model. In this work, a comprehensive survey of knowledge distillation methods is proposed. This includes reviewing KD from different aspects: distillation sources, distillation schemes, distillation algorithms, distillation by modalities, applications of distillation, and comparison among existing methods. In contrast to most existing surveys, which are either outdated or simply update former surveys, this work proposes a comprehensive survey with a new point of view and representation structure that categorizes and investigates the most recent methods in knowledge distillation. This survey considers various critically important subcategories, including KD for diffusion models, 3D inputs, foundational models, transformers, and LLMs. Furthermore, existing challenges in KD and possible future research directions are discussed. Github page of the project: https://github.com/IPL-Sharif/KD_Survey

Authors:Ali Raeisdanaei, Juho Kim, Michael Liao, Sparsh Kochhar
Title: An LLM-Integrated Framework for Completion, Management, and Tracing of STPA
Abstract:
In many safety-critical engineering domains, hazard analysis techniques are an essential part of requirement elicitation. Of the methods proposed for this task, STPA (System-Theoretic Process Analysis) represents a relatively recent development in the field. The completion, management, and traceability of this hazard analysis technique present a time-consuming challenge to the requirements and safety engineers involved. In this paper, we introduce a free, open-source software framework to build STPA models with several automated workflows powered by large language models (LLMs). In past works, LLMs have been successfully integrated into a myriad of workflows across various fields. Here, we demonstrate that LLMs can be used to complete tasks associated with STPA with a high degree of accuracy, saving the time and effort of the human engineers involved. We experimentally validate our method on real-world STPA models built by requirement engineers and researchers. The source code of our software framework is available at the following link: https://github.com/blueskysolarracing/stpa.

Authors:Hang Ni, Jindong Han, Nengjun Zhu, Hao Liu
Title: Unsupervised Graph Anomaly Detection via Multi-Hypersphere Heterophilic Graph Learning
Abstract:
Graph Anomaly Detection (GAD) plays a vital role in various data mining applications such as e-commerce fraud prevention and malicious user detection. Recently, Graph Neural Network (GNN) based approach has demonstrated great effectiveness in GAD by first encoding graph data into low-dimensional representations and then identifying anomalies under the guidance of supervised or unsupervised signals. However, existing GNN-based approaches implicitly follow the homophily principle (i.e., the "like attracts like" phenomenon) and fail to learn discriminative embedding for anomalies that connect vast normal nodes. Moreover, such approaches identify anomalies in a unified global perspective but overlook diversified abnormal patterns conditioned on local graph context, leading to suboptimal performance. To overcome the aforementioned limitations, in this paper, we propose a Multi-hypersphere Heterophilic Graph Learning (MHetGL) framework for unsupervised GAD. Specifically, we first devise a Heterophilic Graph Encoding (HGE) module to learn distinguishable representations for potential anomalies by purifying and augmenting their neighborhood in a fully unsupervised manner. Then, we propose a Multi-Hypersphere Learning (MHL) module to enhance the detection capability for context-dependent anomalies by jointly incorporating critical patterns from both global and local perspectives. Extensive experiments on ten real-world datasets show that MHetGL outperforms 14 baselines. Our code is publicly available at https://github.com/KennyNH/MHetGL.

Authors:Zhengyuan Peng, Jinpeng Ma, Zhimin Sun, Ran Yi, Haichuan Song, Xin Tan, Lizhuang Ma
Title: MOS: Modeling Object-Scene Associations in Generalized Category Discovery
Abstract:
Generalized Category Discovery (GCD) is a classification task that aims to classify both base and novel classes in unlabeled images, using knowledge from a labeled dataset. In GCD, previous research overlooks scene information or treats it as noise, reducing its impact during model training. However, in this paper, we argue that scene information should be viewed as a strong prior for inferring novel classes. We attribute the misinterpretation of scene information to a key factor: the Ambiguity Challenge inherent in GCD. Specifically, novel objects in base scenes might be wrongly classified into base categories, while base objects in novel scenes might be mistakenly recognized as novel categories. Once the ambiguity challenge is addressed, scene information can reach its full potential, significantly enhancing the performance of GCD models. To more effectively leverage scene information, we propose the Modeling Object-Scene Associations (MOS) framework, which utilizes a simple MLP-based scene-awareness module to enhance GCD performance. It achieves an exceptional average accuracy improvement of 4% on the challenging fine-grained datasets compared to state-of-the-art methods, emphasizing its superior performance in fine-grained GCD. The code is publicly available at https://github.com/JethroPeng/MOS

Authors:Zhenxin Li, Shihao Wang, Shiyi Lan, Zhiding Yu, Zuxuan Wu, Jose M. Alvarez
Title: Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training
Abstract:
End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.

Authors:Yebo Wu, Chunlin Tian, Jingguang Li, He Sun, Kahou Tam, Zhanting Zhou, Haicheng Liao, Zhijiang Guo, Li Li, Chengzhong Xu
Title: A Survey on Federated Fine-tuning of Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated impressive success across various tasks. Integrating LLMs with Federated Learning (FL), a paradigm known as FedLLM, offers a promising avenue for collaborative model adaptation while preserving data privacy. This survey provides a systematic and comprehensive review of FedLLM. We begin by tracing the historical development of both LLMs and FL, summarizing relevant prior research to set the context. Subsequently, we delve into an in-depth analysis of the fundamental challenges inherent in deploying FedLLM. Addressing these challenges often requires efficient adaptation strategies; therefore, we conduct an extensive examination of existing Parameter-Efficient Fine-tuning (PEFT) methods and explore their applicability within the FL framework. To rigorously evaluate the performance of FedLLM, we undertake a thorough review of existing fine-tuning datasets and evaluation benchmarks. Furthermore, we discuss FedLLM's diverse real-world applications across multiple domains. Finally, we identify critical open challenges and outline promising research directions to foster future advancements in FedLLM. This survey aims to serve as a foundational resource for researchers and practitioners, offering valuable insights into the rapidly evolving landscape of federated fine-tuning for LLMs. It also establishes a roadmap for future innovations in privacy-preserving AI. We actively maintain a GitHub repo \href{https://github.com/Clin0212/Awesome-Federated-LLM-Learning}{https://github.com/Clin0212/Awesome-Federated-LLM-Learning} to track cutting-edge advancements in this field.

Authors:Donglin Yang, Paul Vicol, Xiaojuan Qi, Renjie Liao, Xiaofan Zhang
Title: QDM: Quadtree-Based Region-Adaptive Sparse Diffusion Models for Efficient Image Super-Resolution
Abstract:
Deep learning-based super-resolution (SR) methods often perform pixel-wise computations uniformly across entire images, even in homogeneous regions where high-resolution refinement is redundant. We propose the Quadtree Diffusion Model (QDM), a region-adaptive diffusion framework that leverages a quadtree structure to selectively enhance detail-rich regions while reducing computations in homogeneous areas. By guiding the diffusion with a quadtree derived from the low-quality input, QDM identifies key regions-represented by leaf nodes-where fine detail is essential and applies minimal refinement elsewhere. This mask-guided, two-stream architecture adaptively balances quality and efficiency, producing high-fidelity outputs with low computational redundancy. Experiments demonstrate QDM's effectiveness in high-resolution SR tasks across diverse image types, particularly in medical imaging (e.g., CT scans), where large homogeneous regions are prevalent. Furthermore, QDM outperforms or is comparable to state-of-the-art SR methods on standard benchmarks while significantly reducing computational costs, highlighting its efficiency and suitability for resource-limited environments. Our code is available at https://github.com/linYDTHU/QDM.

Authors:Xiaoyu Wu, Yifei Pang, Terrance Liu, Steven Wu
Title: Winning the MIDST Challenge: New Membership Inference Attacks on Diffusion Models for Tabular Data Synthesis
Abstract:
Tabular data synthesis using diffusion models has gained significant attention for its potential to balance data utility and privacy. However, existing privacy evaluations often rely on heuristic metrics or weak membership inference attacks (MIA), leaving privacy risks inadequately assessed. In this work, we conduct a rigorous MIA study on diffusion-based tabular synthesis, revealing that state-of-the-art attacks designed for image models fail in this setting. We identify noise initialization as a key factor influencing attack efficacy and propose a machine-learning-driven approach that leverages loss features across different noises and time steps. Our method, implemented with a lightweight MLP, effectively learns membership signals, eliminating the need for manual optimization. Experimental results from the MIDST Challenge @ SaTML 2025 demonstrate the effectiveness of our approach, securing first place across all tracks. Code is available at https://github.com/Nicholas0228/Tartan_Federer_MIDST.

Authors:Zhe Shan, Yang Liu, Lei Zhou, Cheng Yan, Heng Wang, Xia Xie
Title: ROS-SAM: High-Quality Interactive Segmentation for Remote Sensing Moving Object
Abstract:
The availability of large-scale remote sensing video data underscores the importance of high-quality interactive segmentation. However, challenges such as small object sizes, ambiguous features, and limited generalization make it difficult for current methods to achieve this goal. In this work, we propose ROS-SAM, a method designed to achieve high-quality interactive segmentation while preserving generalization across diverse remote sensing data. The ROS-SAM is built upon three key innovations: 1) LoRA-based fine-tuning, which enables efficient domain adaptation while maintaining SAM's generalization ability, 2) Enhancement of deep network layers to improve the discriminability of extracted features, thereby reducing misclassifications, and 3) Integration of global context with local boundary details in the mask decoder to generate high-quality segmentation masks. Additionally, we design the data pipeline to ensure the model learns to better handle objects at varying scales during training while focusing on high-quality predictions during inference. Experiments on remote sensing video datasets show that the redesigned data pipeline boosts the IoU by 6%, while ROS-SAM increases the IoU by 13%. Finally, when evaluated on existing remote sensing object tracking datasets, ROS-SAM demonstrates impressive zero-shot capabilities, generating masks that closely resemble manual annotations. These results confirm ROS-SAM as a powerful tool for fine-grained segmentation in remote sensing applications. Code is available at https://github.com/ShanZard/ROS-SAM.

Authors:Dhruv Kudale, Badri Vishal Kasuba, Venkatapathy Subramanian, Parag Chaudhuri, Ganesh Ramakrishnan
Title: SPRINT: Script-agnostic Structure Recognition in Tables
Abstract:
Table Structure Recognition (TSR) is vital for various downstream tasks like information retrieval, table reconstruction, and document understanding. While most state-of-the-art (SOTA) research predominantly focuses on TSR in English documents, the need for similar capabilities in other languages is evident, considering the global diversity of data. Moreover, creating substantial labeled data in non-English languages and training these SOTA models from scratch is costly and time-consuming. We propose TSR as a language-agnostic cell arrangement prediction and introduce SPRINT, Script-agnostic Structure Recognition in Tables. SPRINT uses recently introduced Optimized Table Structure Language (OTSL) sequences to predict table structures. We show that when coupled with a pre-trained table grid estimator, SPRINT can improve the overall tree edit distance-based similarity structure scores of tables even for non-English documents. We experimentally evaluate our performance across benchmark TSR datasets including PubTabNet, FinTabNet, and PubTables-1M. Our findings reveal that SPRINT not only matches SOTA models in performance on standard datasets but also demonstrates lower latency. Additionally, SPRINT excels in accurately identifying table structures in non-English documents, surpassing current leading models by showing an absolute average increase of 11.12%. We also present an algorithm for converting valid OTSL predictions into a widely used HTML-based table representation. To encourage further research, we release our code and Multilingual Scanned and Scene Table Structure Recognition Dataset, MUSTARD labeled with OTSL sequences for 1428 tables in thirteen languages encompassing several scripts at https://github.com/IITB-LEAP-OCR/SPRINT

Authors:Eduard Tulchinskii, Daria Voronkova, Ilya Trofimov, Evgeny Burnaev, Serguei Barannikov
Title: RTD-Lite: Scalable Topological Analysis for Comparing Weighted Graphs in Learning Tasks
Abstract:
Topological methods for comparing weighted graphs are valuable in various learning tasks but often suffer from computational inefficiency on large datasets. We introduce RTD-Lite, a scalable algorithm that efficiently compares topological features, specifically connectivity or cluster structures at arbitrary scales, of two weighted graphs with one-to-one correspondence between vertices. Using minimal spanning trees in auxiliary graphs, RTD-Lite captures topological discrepancies with $O(n^2)$ time and memory complexity. This efficiency enables its application in tasks like dimensionality reduction and neural network training. Experiments on synthetic and real-world datasets demonstrate that RTD-Lite effectively identifies topological differences while significantly reducing computation time compared to existing methods. Moreover, integrating RTD-Lite into neural network training as a loss function component enhances the preservation of topological structures in learned representations. Our code is publicly available at https://github.com/ArGintum/RTD-Lite

Authors:Bhiman Kumar Baghel, Emma Jordan, Zheyuan Ryan Shi, Xiang Lorraine Li
Title: Resolving UnderEdit & OverEdit with Iterative & Neighbor-Assisted Model Editing
Abstract:
Large Language Models (LLMs) are widely deployed in downstream tasks, but keeping their knowledge up-to-date via retraining or fine-tuning is often computationally expensive. Model editing provides a more efficient alternative by updating a targeted subset of parameters, which often follows the locate-and-edit paradigm. Despite this efficiency, existing methods are limited: edits may fail to inject knowledge (UnderEdit) or unintentionally disrupt unrelated neighboring knowledge (OverEdit). To address these challenges, we propose two complementary methods: iterative model editing, which applies successive edits to mitigate UnderEdit, and neighbor-assisted model editing, which incorporates neighboring knowledge during editing to reduce OverEdit. Our extensive experiments show that these techniques improve editing performance across multiple LLMs, algorithms, and benchmarks, reducing UnderEdit by up to 38 percentage points and OverEdit by up to 6, while remaining broadly applicable to any locate-and-edit method. We release our code at https://github.com/bhimanbaghel/ResolveUnderOverEdit.

Authors:Md Abu Bakr Siddique, Vaishnav Ramesh, Junliang Liu, Piyush Singh, Md Jahidul Islam
Title: UStyle: Waterbody Style Transfer of Underwater Scenes by Depth-Guided Feature Synthesis
Abstract:
The concept of waterbody style transfer remains largely unexplored in the underwater imaging and vision literature. Traditional image style transfer (STx) methods primarily focus on artistic and photorealistic blending, often failing to preserve object and scene geometry in images captured in high-scattering mediums such as underwater. The wavelength-dependent nonlinear attenuation and depth-dependent backscattering artifacts further complicate learning underwater image STx from unpaired data. This paper introduces UStyle, the first data-driven learning framework for transferring waterbody styles across underwater images without requiring prior reference images or scene information. We propose a novel depth-aware whitening and coloring transform (DA-WCT) mechanism that integrates physics-based waterbody synthesis to ensure perceptually consistent stylization while preserving scene structure. To enhance style transfer quality, we incorporate carefully designed loss functions that guide UStyle to maintain colorfulness, lightness, structural integrity, and frequency-domain characteristics, as well as high-level content in VGG and CLIP (contrastive language-image pretraining) feature spaces. By addressing domain-specific challenges, UStyle provides a robust framework for no-reference underwater image STx, surpassing state-of-the-art (SOTA) methods that rely solely on end-to-end reconstruction loss. Furthermore, we introduce the UF7D dataset, a curated collection of high-resolution underwater images spanning seven distinct waterbody styles, establishing a benchmark to support future research in underwater image STx. The UStyle inference pipeline and UF7D dataset are released at: https://github.com/uf-robopi/UStyle.

Authors:Chengxuan Qian, Shuo Xing, Shawn Li, Yue Zhao, Zhengzhong Tu
Title: DecAlign: Hierarchical Cross-Modal Alignment for Decoupled Multimodal Representation Learning
Abstract:
Multimodal representation learning aims to capture both shared and complementary semantic information across multiple modalities. However, the intrinsic heterogeneity of diverse modalities presents substantial challenges to achieve effective cross-modal collaboration and integration. To address this, we introduce DecAlign, a novel hierarchical cross-modal alignment framework designed to decouple multimodal representations into modality-unique (heterogeneous) and modality-common (homogeneous) features. For handling heterogeneity, we employ a prototype-guided optimal transport alignment strategy leveraging gaussian mixture modeling and multi-marginal transport plans, thus mitigating distribution discrepancies while preserving modality-unique characteristics. To reinforce homogeneity, we ensure semantic consistency across modalities by aligning latent distribution matching with Maximum Mean Discrepancy regularization. Furthermore, we incorporate a multimodal transformer to enhance high-level semantic feature fusion, thereby further reducing cross-modal inconsistencies. Our extensive experiments on four widely used multimodal benchmarks demonstrate that DecAlign consistently outperforms existing state-of-the-art methods across five metrics. These results highlight the efficacy of DecAlign in enhancing superior cross-modal alignment and semantic consistency while preserving modality-unique features, marking a significant advancement in multimodal representation learning scenarios. Our project page is at https://taco-group.github.io/DecAlign and the code is available at https://github.com/taco-group/DecAlign.

Authors:Yi Wang, Zhitong Xiong, Chenying Liu, Adam J. Stewart, Thomas Dujardin, Nikolaos Ioannis Bountos, Angelos Zavras, Franziska Gerken, Ioannis Papoutsis, Laura Leal-Taixé, Xiao Xiang Zhu
Title: Towards a Unified Copernicus Foundation Model for Earth Vision
Abstract:
Advances in Earth observation (EO) foundation models have unlocked the potential of big satellite data to learn generic representations from space, benefiting a wide range of downstream applications crucial to our planet. However, most existing efforts remain limited to fixed spectral sensors, focus solely on the Earth's surface, and overlook valuable metadata beyond imagery. In this work, we take a step towards next-generation EO foundation models with three key components: 1) Copernicus-Pretrain, a massive-scale pretraining dataset that integrates 18.7M aligned images from all major Copernicus Sentinel missions, spanning from the Earth's surface to its atmosphere; 2) Copernicus-FM, a unified foundation model capable of processing any spectral or non-spectral sensor modality using extended dynamic hypernetworks and flexible metadata encoding; and 3) Copernicus-Bench, a systematic evaluation benchmark with 15 hierarchical downstream tasks ranging from preprocessing to specialized applications for each Sentinel mission. Our dataset, model, and benchmark greatly improve the scalability, versatility, and multimodal adaptability of EO foundation models, while also creating new opportunities to connect EO, weather, and climate research. Codes, datasets and models are available at https://github.com/zhu-xlab/Copernicus-FM.

Authors:Alexander Weers, Alexander H. Berger, Laurin Lux, Peter Schüffler, Daniel Rueckert, Johannes C. Paetzold
Title: From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis
Abstract:
The histopathological classification of whole-slide images (WSIs) is a fundamental task in digital pathology; yet it requires extensive time and expertise from specialists. While deep learning methods show promising results, they typically process WSIs by dividing them into artificial patches, which inherently prevents a network from learning from the entire image context, disregards natural tissue structures and compromises interpretability. Our method overcomes this limitation through a novel graph-based framework that constructs WSI graph representations. The WSI-graph efficiently captures essential histopathological information in a compact form. We build tissue representations (nodes) that follow biological boundaries rather than arbitrary patches all while providing interpretable features for explainability. Through adaptive graph coarsening guided by learned embeddings, we progressively merge regions while maintaining discriminative local features and enabling efficient global information exchange. In our method's final step, we solve the diagnostic task through a graph attention network. We empirically demonstrate strong performance on multiple challenging tasks such as cancer stage classification and survival prediction, while also identifying predictive factors using Integrated Gradients. Our implementation is publicly available at https://github.com/HistoGraph31/pix2pathology

Authors:Alexander Weers, Alexander H. Berger, Laurin Lux, Peter Schüffler, Daniel Rueckert, Johannes C. Paetzold
Title: A Graph-Based Framework for Interpretable Whole Slide Image Analysis
Abstract:
The histopathological analysis of whole-slide images (WSIs) is fundamental to cancer diagnosis but is a time-consuming and expert-driven process. While deep learning methods show promising results, dominant patch-based methods artificially fragment tissue, ignore biological boundaries, and produce black-box predictions. We overcome these limitations with a novel framework that transforms gigapixel WSIs into biologically-informed graph representations and is interpretable by design. Our approach builds graph nodes from tissue regions that respect natural structures, not arbitrary grids. We introduce an adaptive graph coarsening technique, guided by learned embeddings, to efficiently merge homogeneous regions while preserving diagnostically critical details in heterogeneous areas. Each node is enriched with a compact, interpretable feature set capturing clinically-motivated priors. A graph attention network then performs diagnosis on this compact representation. We demonstrate strong performance on challenging cancer staging and survival prediction tasks. Crucially, our resource-efficient model ($>$13x fewer parameters and $>$300x less data) achieves results competitive with a massive foundation model, while offering full interpretability through feature attribution. Our code is publicly available at https://github.com/HistoGraph31/pix2pathology.

Authors:Haoxin Liu, Harshavardhan Kamarthi, Zhiyuan Zhao, Shangqing Xu, Shiyu Wang, Qingsong Wen, Tom Hartvigsen, Fei Wang, B. Aditya Prakash
Title: How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook
Abstract:
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.

Authors:Haoxin Liu, Harshavardhan Kamarthi, Zhiyuan Zhao, Shangqing Xu, Shiyu Wang, Qingsong Wen, Tom Hartvigsen, Fei Wang, B. Aditya Prakash
Title: How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook
Abstract:
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.

Authors:Yiwei Chen, Yuguang Yao, Yihua Zhang, Bingquan Shen, Gaowen Liu, Sijia Liu
Title: Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning
Abstract:
Recent vision-language models (VLMs) have made remarkable strides in generative modeling with multimodal inputs, particularly text and images. However, their susceptibility to generating harmful content when exposed to unsafe queries raises critical safety concerns. While current alignment strategies primarily rely on supervised safety fine-tuning with curated datasets, we identify a fundamental limitation we call the "safety mirage" where supervised fine-tuning inadvertently reinforces spurious correlations between superficial textual patterns and safety responses, rather than fostering deep, intrinsic mitigation of harm. We show that these spurious correlations leave fine-tuned VLMs vulnerable even to a simple one-word modification-based attack, where substituting a single word in text queries with a spurious correlation-inducing alternative can effectively bypass safeguards. Additionally, these correlations contribute to the over prudence, causing fine-tuned VLMs to refuse benign queries unnecessarily. To address this issue, we show machine unlearning (MU) as a powerful alternative to supervised safety fine-tuning as it avoids biased feature-label mappings and directly removes harmful knowledge from VLMs while preserving their general capabilities. Extensive evaluations across safety benchmarks show that under one-word attacks, MU-based alignment reduces the attack success rate by up to 60.17% and cuts unnecessary rejections by over 84.20%. Codes are available at https://github.com/OPTML-Group/VLM-Safety-MU. WARNING: There exist AI generations that may be offensive in nature.

Authors:Peizhi Yan, Rabab K. Ward, Dan Wang, Qiang Tang, Shan Du
Title: StyleMorpheus: A Style-Based 3D-Aware Morphable Face Model
Abstract:
For 3D face modeling, the recently developed 3D-aware neural rendering methods are able to render photorealistic face images with arbitrary viewing directions. The training of the parametric controllable 3D-aware face models, however, still relies on a large-scale dataset that is lab-collected. To address this issue, this paper introduces "StyleMorpheus", the first style-based neural 3D Morphable Face Model (3DMM) that is trained on in-the-wild images. It inherits 3DMM's disentangled controllability (over face identity, expression, and appearance) but without the need for accurately reconstructed explicit 3D shapes. StyleMorpheus employs an auto-encoder structure. The encoder aims at learning a representative disentangled parametric code space and the decoder improves the disentanglement using shape and appearance-related style codes in the different sub-modules of the network. Furthermore, we fine-tune the decoder through style-based generative adversarial learning to achieve photorealistic 3D rendering quality. The proposed style-based design enables StyleMorpheus to achieve state-of-the-art 3D-aware face reconstruction results, while also allowing disentangled control of the reconstructed face. Our model achieves real-time rendering speed, allowing its use in virtual reality applications. We also demonstrate the capability of the proposed style-based design in face editing applications such as style mixing and color editing. Project homepage: https://github.com/ubc-3d-vision-lab/StyleMorpheus.

Authors:Artem Nikonorov, Georgy Perevozchikov, Andrei Korepanov, Nancy Mehta, Mahmoud Afifi, Egor Ershov, Radu Timofte
Title: Color Matching Using Hypernetwork-Based Kolmogorov-Arnold Networks
Abstract:
We present cmKAN, a versatile framework for color matching. Given an input image with colors from a source color distribution, our method effectively and accurately maps these colors to match a target color distribution in both supervised and unsupervised settings. Our framework leverages the spline capabilities of Kolmogorov-Arnold Networks (KANs) to model the color matching between source and target distributions. Specifically, we developed a hypernetwork that generates spatially varying weight maps to control the nonlinear splines of a KAN, enabling accurate color matching. As part of this work, we introduce a first large-scale dataset of paired images captured by two distinct cameras and evaluate the efficacy of our and existing methods in matching colors. We evaluated our approach across various color-matching tasks, including: (1) raw-to-raw mapping, where the source color distribution is in one camera's raw color space and the target in another camera's raw space; (2) raw-to-sRGB mapping, where the source color distribution is in a camera's raw space and the target is in the display sRGB space, emulating the color rendering of a camera ISP; and (3) sRGB-to-sRGB mapping, where the goal is to transfer colors from a source sRGB space (e.g., produced by a source camera ISP) to a target sRGB space (e.g., from a different camera ISP). The results show that our method outperforms existing approaches by 37.3% on average for supervised and unsupervised cases while remaining lightweight compared to other methods. The codes, dataset, and pre-trained models are available at: https://github.com/gosha20777/cmKAN

Authors:Tianyi Zhao, Boyang Liu, Yanglei Gao, Yiming Sun, Maoxun Yuan, Xingxing Wei
Title: Rethinking Multi-Modal Object Detection from the Perspective of Mono-Modality Feature Learning
Abstract:
Multi-Modal Object Detection (MMOD), due to its stronger adaptability to various complex environments, has been widely applied in various applications. Extensive research is dedicated to the RGB-IR object detection, primarily focusing on how to integrate complementary features from RGB-IR modalities. However, they neglect the mono-modality insufficient learning problem, which arises from decreased feature extraction capability in multi-modal joint learning. This leads to a prevalent but unreasonable phenomenon\textemdash Fusion Degradation, which hinders the performance improvement of the MMOD model. Motivated by this, in this paper, we introduce linear probing evaluation to the multi-modal detectors and rethink the multi-modal object detection task from the mono-modality learning perspective. Therefore, we construct a novel framework called M$^2$D-LIF, which consists of the Mono-Modality Distillation (M$^2$D) method and the Local Illumination-aware Fusion (LIF) module. The M$^2$D-LIF framework facilitates the sufficient learning of mono-modality during multi-modal joint training and explores a lightweight yet effective feature fusion manner to achieve superior object detection performance. Extensive experiments conducted on three MMOD datasets demonstrate that our M$^2$D-LIF effectively mitigates the Fusion Degradation phenomenon and outperforms the previous SOTA detectors. The codes are available at https://github.com/Zhao-Tian-yi/M2D-LIF.

Authors:Hyunwoo Park, Baekryun Seong, Sang-Ki Ko
Title: SPECTra: Scalable Multi-Agent Reinforcement Learning with Permutation-Free Networks
Abstract:
In cooperative multi-agent reinforcement learning (MARL), the permutation problem where the state space grows exponentially with the number of agents reduces sample efficiency. Additionally, many existing architectures struggle with scalability, relying on a fixed structure tied to a specific number of agents, limiting their applicability to environments with a variable number of entities. While approaches such as graph neural networks (GNNs) and self-attention mechanisms have progressed in addressing these challenges, they have significant limitations as dense GNNs and self-attention mechanisms incur high computational costs. To overcome these limitations, we propose a novel agent network and a non-linear mixing network that ensure permutation-equivariance and scalability, allowing them to generalize to environments with various numbers of agents. Our agent network significantly reduces computational complexity, and our scalable hypernetwork enables efficient weight generation for non-linear mixing. Additionally, we introduce curriculum learning to improve training efficiency. Experiments on SMACv2 and Google Research Football (GRF) demonstrate that our approach achieves superior learning performance compared to existing methods. By addressing both permutation-invariance and scalability in MARL, our work provides a more efficient and adaptable framework for cooperative MARL. Our code is available at https://github.com/funny-rl/SPECTra.

Authors:Hanyang Zhao, Haoxian Chen, Yucheng Guo, Genta Indra Winata, Tingting Ou, Ziyu Huang, David D. Yao, Wenpin Tang
Title: Fine-Tuning Diffusion Generative Models via Rich Preference Optimization
Abstract:
We introduce Rich Preference Optimization (RPO), a novel pipeline that leverages rich feedback signals to improve the curation of preference pairs for fine-tuning text-to-image diffusion models. Traditional methods, like Diffusion-DPO, often rely solely on reward model labeling, which can be opaque, offer limited insights into the rationale behind preferences, and are prone to issues such as reward hacking or overfitting. In contrast, our approach begins with generating detailed critiques of synthesized images, from which we extract reliable and actionable image editing instructions. By implementing these instructions, we create refined images, resulting in synthetic, informative preference pairs that serve as enhanced tuning datasets. We demonstrate the effectiveness of our pipeline and the resulting datasets in fine-tuning state-of-the-art diffusion models. Our code is available at https://github.com/Diffusion-RLHF/RPO.

Authors:Shunyu Liu, Wenkai Fang, Zetian Hu, Junjie Zhang, Yang Zhou, Kongcheng Zhang, Rongcheng Tu, Ting-En Lin, Fei Huang, Mingli Song, Yongbin Li, Dacheng Tao
Title: A Survey of Direct Preference Optimization
Abstract:
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities, yet their alignment with human values remains critical for ensuring helpful and harmless deployments. While Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for aligning LLMs with human preferences, its reliance on complex reward modeling introduces inherent trade-offs in computational efficiency and training stability. In this context, Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative that directly optimizes LLMs using human preferences, thereby circumventing the need for explicit reward modeling. Owing to its theoretical elegance and computational efficiency, DPO has rapidly attracted substantial research efforts exploring its various implementations and applications. However, this field currently lacks systematic organization and comparative analysis. In this survey, we conduct a comprehensive overview of DPO and introduce a novel taxonomy, categorizing previous works into four key dimensions: data strategy, learning framework, constraint mechanism, and model property. We further present a rigorous empirical analysis of DPO variants across standardized benchmarks. Additionally, we discuss real-world applications, open challenges, and future directions for DPO. This work delivers both a conceptual framework for understanding DPO and practical guidance for practitioners, aiming to advance robust and generalizable alignment paradigms. All collected resources are available and will be continuously updated at https://github.com/liushunyu/awesome-direct-preference-optimization.

Authors:Zhenyu Wang
Title: LogitLens4LLMs: Extending Logit Lens Analysis to Modern Large Language Models
Abstract:
This paper introduces LogitLens4LLMs, a toolkit that extends the Logit Lens technique to modern large language models. While Logit Lens has been a crucial method for understanding internal representations of language models, it was previously limited to earlier model architectures. Our work overcomes the limitations of existing implementations, enabling the technique to be applied to state-of-the-art architectures (such as Qwen-2.5 and Llama-3.1) while automating key analytical workflows. By developing component-specific hooks to capture both attention mechanisms and MLP outputs, our implementation achieves full compatibility with the HuggingFace transformer library while maintaining low inference overhead. The toolkit provides both interactive exploration and batch processing capabilities, supporting large-scale layer-wise analyses. Through open-sourcing our implementation, we aim to facilitate deeper investigations into the internal mechanisms of large-scale language models. The toolkit is openly available at https://github.com/zhenyu-02/LogitLens4LLMs.

Authors:Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, David Novotny
Title: VGGT: Visual Geometry Grounded Transformer
Abstract:
We present VGGT, a feed-forward neural network that directly infers all key 3D attributes of a scene, including camera parameters, point maps, depth maps, and 3D point tracks, from one, a few, or hundreds of its views. This approach is a step forward in 3D computer vision, where models have typically been constrained to and specialized for single tasks. It is also simple and efficient, reconstructing images in under one second, and still outperforming alternatives that require post-processing with visual geometry optimization techniques. The network achieves state-of-the-art results in multiple 3D tasks, including camera parameter estimation, multi-view depth estimation, dense point cloud reconstruction, and 3D point tracking. We also show that using pretrained VGGT as a feature backbone significantly enhances downstream tasks, such as non-rigid point tracking and feed-forward novel view synthesis. Code and models are publicly available at https://github.com/facebookresearch/vggt.

Authors:Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji Hu, Xiang Bai, Pengfei Wan, Di Zhang
Title: ReCamMaster: Camera-Controlled Generative Rendering from A Single Video
Abstract:
Camera control has been actively studied in text or image conditioned video generation tasks. However, altering camera trajectories of a given video remains under-explored, despite its importance in the field of video creation. It is non-trivial due to the extra constraints of maintaining multiple-frame appearance and dynamic synchronization. To address this, we present ReCamMaster, a camera-controlled generative video re-rendering framework that reproduces the dynamic scene of an input video at novel camera trajectories. The core innovation lies in harnessing the generative capabilities of pre-trained text-to-video models through a simple yet powerful video conditioning mechanism--its capability is often overlooked in current research. To overcome the scarcity of qualified training data, we construct a comprehensive multi-camera synchronized video dataset using Unreal Engine 5, which is carefully curated to follow real-world filming characteristics, covering diverse scenes and camera movements. It helps the model generalize to in-the-wild videos. Lastly, we further improve the robustness to diverse inputs through a meticulously designed training strategy. Extensive experiments show that our method substantially outperforms existing state-of-the-art approaches. Our method also finds promising applications in video stabilization, super-resolution, and outpainting. Our code and dataset are publicly available at: https://github.com/KwaiVGI/ReCamMaster.

Authors:Stefan Lionar, Jiabin Liang, Gim Hee Lee
Title: TreeMeshGPT: Artistic Mesh Generation with Autoregressive Tree Sequencing
Abstract:
We introduce TreeMeshGPT, an autoregressive Transformer designed to generate high-quality artistic meshes aligned with input point clouds. Instead of the conventional next-token prediction in autoregressive Transformer, we propose a novel Autoregressive Tree Sequencing where the next input token is retrieved from a dynamically growing tree structure that is built upon the triangle adjacency of faces within the mesh. Our sequencing enables the mesh to extend locally from the last generated triangular face at each step, and therefore reduces training difficulty and improves mesh quality. Our approach represents each triangular face with two tokens, achieving a compression rate of approximately 22% compared to the naive face tokenization. This efficient tokenization enables our model to generate highly detailed artistic meshes with strong point cloud conditioning, surpassing previous methods in both capacity and fidelity. Furthermore, our method generates mesh with strong normal orientation constraints, minimizing flipped normals commonly encountered in previous methods. Our experiments show that TreeMeshGPT enhances the mesh generation quality with refined details and normal orientation consistency.

Authors:Zhiliang Chen, Xinyuan Niu, Chuan-Sheng Foo, Bryan Kian Hsiang Low
Title: Broaden your SCOPE! Efficient Multi-turn Conversation Planning for LLMs with Semantic Space
Abstract:
Large language models (LLMs) are used in chatbots or AI assistants to hold conversations with a human user. In such applications, the quality (e.g., user engagement, safety) of a conversation is important and can only be exactly known at the end of the conversation. To maximize its expected quality, conversation planning reasons about the stochastic transitions within a conversation to select the optimal LLM response at each turn. Existing simulation-based conversation planning algorithms typically select the optimal response by simulating future conversations with a large number of LLM queries at every turn. However, this process is extremely time-consuming and hence impractical for real-time conversations. This paper presents a novel approach called Semantic space COnversation Planning with improved Efficiency (SCOPE) that exploits the dense semantic representation of conversations to perform conversation planning efficiently. In particular, SCOPE models the stochastic transitions in conversation semantics and their associated rewards to plan entirely within the semantic space. This allows us to select the optimal LLM response at every conversation turn without needing additional LLM queries for simulation. As a result, SCOPE can perform conversation planning 70 times faster than conventional simulation-based planning algorithms when applied to a wide variety of conversation starters and two reward functions seen in the real world, yet achieving a higher reward within a practical planning budget. Our code can be found at: https://github.com/chenzhiliang94/convo-plan-SCOPE.

Authors:Jonas Belouadi, Eddy Ilg, Margret Keuper, Hideki Tanaka, Masao Utiyama, Raj Dabre, Steffen Eger, Simone Paolo Ponzetto
Title: TikZero: Zero-Shot Text-Guided Graphics Program Synthesis
Abstract:
Automatically synthesizing figures from text captions is a compelling capability. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.

Authors:Piotr Bialas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski
Title: NeuMC -- a package for neural sampling for lattice field theories
Abstract:
We present the \texttt{NeuMC} software package, based on \pytorch, aimed at facilitating the research on neural samplers in lattice field theories. Neural samplers based on normalizing flows are becoming increasingly popular in the context of Monte-Carlo simulations as they can effectively approximate target probability distributions, possibly alleviating some shortcomings of the Markov chain Monte-Carlo methods. Our package provides tools to create such samplers for two-dimensional field theories.

Authors:Piotr Bialas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski
Title: NeuMC -- a package for neural sampling for lattice field theories
Abstract:
We present the \texttt{NeuMC} software package, based on \pytorch, aimed at facilitating the research on neural samplers in lattice field theories. Neural samplers based on normalizing flows are becoming increasingly popular in the context of Monte-Carlo simulations as they can effectively approximate target probability distributions, possibly alleviating some shortcomings of the Markov chain Monte-Carlo methods. Our package provides tools to create such samplers for two-dimensional field theories.

Authors:Seyed Mohammad Hadi Hosseini, Amir Mohammad Izadi, Ali Abdollahi, Armin Saghafian, Mahdieh Soleymani Baghshah
Title: T2I-FineEval: Fine-Grained Compositional Metric for Text-to-Image Evaluation
Abstract:
Although recent text-to-image generative models have achieved impressive performance, they still often struggle with capturing the compositional complexities of prompts including attribute binding, and spatial relationships between different entities. This misalignment is not revealed by common evaluation metrics such as CLIPScore. Recent works have proposed evaluation metrics that utilize Visual Question Answering (VQA) by decomposing prompts into questions about the generated image for more robust compositional evaluation. Although these methods align better with human evaluations, they still fail to fully cover the compositionality within the image. To address this, we propose a novel metric that breaks down images into components, and texts into fine-grained questions about the generated image for evaluation. Our method outperforms previous state-of-the-art metrics, demonstrating its effectiveness in evaluating text-to-image generative models. Code is available at https://github.com/hadi-hosseini/ T2I-FineEval.

Authors:Balaji Rama, Kai Mei, Yongfeng Zhang
Title: Cerebrum (AIOS SDK): A Platform for Agent Development, Deployment, Distribution, and Discovery
Abstract:
Autonomous LLM-based agents have emerged as a powerful paradigm for complex task execution, yet the field lacks standardized tools for development, deployment, distribution and discovery of agents. We present Cerebrum, an Agent SDK for AIOS that addresses this gap through three key components: (1) a comprehensive SDK featuring a modular four-layer architecture for agent development, encompassing LLM, memory, storage, and tool management; (2) a community-driven Agent Hub for sharing and discovering agents, complete with version control and dependency management; (3) an interactive web interface for testing and evaluating agents. The platform's effectiveness is demonstrated through implementations of various agent architectures, including Chain of Thought (CoT), ReAct, and tool-use agents. Cerebrum advances the field by providing a unified framework that standardizes agent development while maintaining flexibility for researchers and developers to innovate and distribute their agents. The live website is at https://app.aios.foundation, the code is at https://github.com/agiresearch/Cerebrum, and video is at https://app.aios.foundation/video-demo.

Authors:Sanghyun Jo, Seo Jin Lee, Seungwoo Lee, Seohyung Hong, Hyungseok Seo, Kyungsu Kim
Title: COIN: Confidence Score-Guided Distillation for Annotation-Free Cell Segmentation
Abstract:
Cell instance segmentation (CIS) is crucial for identifying individual cell morphologies in histopathological images, providing valuable insights for biological and medical research. While unsupervised CIS (UCIS) models aim to reduce the heavy reliance on labor-intensive image annotations, they fail to accurately capture cell boundaries, causing missed detections and poor performance. Recognizing the absence of error-free instances as a key limitation, we present COIN (COnfidence score-guided INstance distillation), a novel annotation-free framework with three key steps: (1) Increasing the sensitivity for the presence of error-free instances via unsupervised semantic segmentation with optimal transport, leveraging its ability to discriminate spatially minor instances, (2) Instance-level confidence scoring to measure the consistency between model prediction and refined mask and identify highly confident instances, offering an alternative to ground truth annotations, and (3) Progressive expansion of confidence with recursive self-distillation. Extensive experiments across six datasets show COIN outperforming existing UCIS methods, even surpassing semi- and weakly-supervised approaches across all metrics on the MoNuSeg and TNBC datasets. The code is available at https://github.com/shjo-april/COIN.

Authors:Shuaifeng Jiao, Zhiwen Zeng, Zhuoqun Su, Xieyuanli Chen, Zongtan Zhou, Huimin Lu
Title: LuSeg: Efficient Negative and Positive Obstacles Segmentation via Contrast-Driven Multi-Modal Feature Fusion on the Lunar
Abstract:
As lunar exploration missions grow increasingly complex, ensuring safe and autonomous rover-based surface exploration has become one of the key challenges in lunar exploration tasks. In this work, we have developed a lunar surface simulation system called the Lunar Exploration Simulator System (LESS) and the LunarSeg dataset, which provides RGB-D data for lunar obstacle segmentation that includes both positive and negative obstacles. Additionally, we propose a novel two-stage segmentation network called LuSeg. Through contrastive learning, it enforces semantic consistency between the RGB encoder from Stage I and the depth encoder from Stage II. Experimental results on our proposed LunarSeg dataset and additional public real-world NPO road obstacle dataset demonstrate that LuSeg achieves state-of-the-art segmentation performance for both positive and negative obstacles while maintaining a high inference speed of approximately 57\,Hz. We have released the implementation of our LESS system, LunarSeg dataset, and the code of LuSeg at:https://github.com/nubot-nudt/LuSeg.

Authors:Tobias Morocutti, Florian Schmid, Jonathan Greif, Francesco Foscarin, Gerhard Widmer
Title: Exploring Performance-Complexity Trade-Offs in Sound Event Detection Models
Abstract:
We target the problem of developing new low-complexity networks for the sound event detection task. Our goal is to meticulously analyze the performance-complexity trade-off, aiming to be competitive with the large state-of-the-art models, at a fraction of the computational requirements. We find that low-complexity convolutional models previously proposed for audio tagging can be effectively adapted for event detection (which requires frame-wise prediction) by adjusting convolutional strides, removing the global pooling, and, importantly, adding a sequence model before the (now frame-wise) classification heads. Systematic experiments reveal that the best choice for the sequence model type depends on which complexity metric is most important for the given application. We also investigate the impact of enhanced training strategies such as knowledge distillation. In the end, we show that combined with an optimized training strategy, we can reach event detection performance comparable to state-of-the-art transformers while requiring only around 5% of the parameters. We release all our pre-trained models and the code for reproducing this work to support future research in low-complexity sound event detection at https://github.com/theMoro/EfficientSED.

Authors:Ziyue Wang, Chenghao Shi, Neng Wang, Qinghua Yu, Xieyuanli Chen, Huimin Lu
Title: BEVDiffLoc: End-to-End LiDAR Global Localization in BEV View based on Diffusion Model
Abstract:
Localization is one of the core parts of modern robotics. Classic localization methods typically follow the retrieve-then-register paradigm, achieving remarkable success. Recently, the emergence of end-to-end localization approaches has offered distinct advantages, including a streamlined system architecture and the elimination of the need to store extensive map data. Although these methods have demonstrated promising results, current end-to-end localization approaches still face limitations in robustness and accuracy. Bird's-Eye-View (BEV) image is one of the most widely adopted data representations in autonomous driving. It significantly reduces data complexity while preserving spatial structure and scale consistency, making it an ideal representation for localization tasks. However, research on BEV-based end-to-end localization remains notably insufficient. To fill this gap, we propose BEVDiffLoc, a novel framework that formulates LiDAR localization as a conditional generation of poses. Leveraging the properties of BEV, we first introduce a specific data augmentation method to significantly enhance the diversity of input data. Then, the Maximum Feature Aggregation Module and Vision Transformer are employed to learn robust features while maintaining robustness against significant rotational view variations. Finally, we incorporate a diffusion model that iteratively refines the learned features to recover the absolute pose. Extensive experiments on the Oxford Radar RobotCar and NCLT datasets demonstrate that BEVDiffLoc outperforms the baseline methods. Our code is available at https://github.com/nubot-nudt/BEVDiffLoc.

Authors:Insu Jang, Runyu Lu, Nikhil Bansal, Ang Chen, Mosharaf Chowdhury
Title: Cornstarch: Distributed Multimodal Training Must Be Multimodality-Aware
Abstract:
Multimodal large language models (MLLMs) extend the capabilities of large language models (LLMs) by combining heterogeneous model architectures to handle diverse modalities like images and audio. However, this inherent heterogeneity in MLLM model structure and data types makes makeshift extensions to existing LLM training frameworks unsuitable for efficient MLLM training. In this paper, we present Cornstarch, the first general-purpose distributed MLLM training framework. Cornstarch facilitates modular MLLM construction, enables composable parallelization of constituent models, and introduces MLLM-specific optimizations to pipeline and context parallelism for efficient distributed MLLM training. Our evaluation shows that Cornstarch outperforms state-of-the-art solutions by up to $1.57\times$ in terms of training throughput. Cornstarch is an open-source project available at https://github.com/cornstarch-org/Cornstarch.

Authors:Samuel Mallick, Gianpietro Battocletti, Qizhang Dong, Azita Dabiri, Bart De Schutter
Title: Learning-Based MPC for Fuel Efficient Control of Autonomous Vehicles with Discrete Gear Selection
Abstract:
Co-optimization of both vehicle speed and gear position via model predictive control (MPC) has been shown to offer benefits for fuel-efficient autonomous driving. However, optimizing both the vehicle's continuous dynamics and discrete gear positions may be too computationally intensive for a real-time implementation. This work proposes a learning-based MPC scheme to address this issue. A policy is trained to select and fix the gear positions across the prediction horizon of the MPC controller, leaving a significantly simpler continuous optimization problem to be solved online. In simulation, the proposed approach is shown to have a significantly lower computation burden and a comparable performance, with respect to pure MPC-based co-optimization.

Authors:Fengyu Li, Yilin Li, Junhao Zhu, Lu Chen, Yanfei Zhang, Jia Zhou, Hui Zu, Jingwen Zhao, Yunjun Gao
Title: AIstorian lets AI be a historian: A KG-powered multi-agent system for accurate biography generation
Abstract:
Huawei has always been committed to exploring the AI application in historical research. Biography generation, as a specialized form of abstractive summarization, plays a crucial role in historical research but faces unique challenges that existing large language models (LLMs) struggle to address. These challenges include maintaining stylistic adherence to historical writing conventions, ensuring factual fidelity, and handling fragmented information across multiple documents. We present AIstorian, a novel end-to-end agentic system featured with a knowledge graph (KG)-powered retrieval-augmented generation (RAG) and anti-hallucination multi-agents. Specifically, AIstorian introduces an in-context learning based chunking strategy and a KG-based index for accurate and efficient reference retrieval. Meanwhile, AIstorian orchestrates multi-agents to conduct on-the-fly hallucination detection and error-type-aware correction. Additionally, to teach LLMs a certain language style, we finetune LLMs based on a two-step training approach combining data augmentation-enhanced supervised fine-tuning with stylistic preference optimization. Extensive experiments on a real-life historical Jinshi dataset demonstrate that AIstorian achieves a 3.8x improvement in factual accuracy and a 47.6% reduction in hallucination rate compared to existing baselines. The data and code are available at: https://github.com/ZJU-DAILY/AIstorian.

Authors:M. Akın Yılmaz, Ahmet Bilican, A. Murat Tekalp
Title: FG-DFPN: Flow Guided Deformable Frame Prediction Network
Abstract:
Video frame prediction remains a fundamental challenge in computer vision with direct implications for autonomous systems, video compression, and media synthesis. We present FG-DFPN, a novel architecture that harnesses the synergy between optical flow estimation and deformable convolutions to model complex spatio-temporal dynamics. By guiding deformable sampling with motion cues, our approach addresses the limitations of fixed-kernel networks when handling diverse motion patterns. The multi-scale design enables FG-DFPN to simultaneously capture global scene transformations and local object movements with remarkable precision. Our experiments demonstrate that FG-DFPN achieves state-of-the-art performance on eight diverse MPEG test sequences, outperforming existing methods by 1dB PSNR while maintaining competitive inference speeds. The integration of motion cues with adaptive geometric transformations makes FG-DFPN a promising solution for next-generation video processing systems that require high-fidelity temporal predictions. The model and instructions to reproduce our results will be released at: https://github.com/KUIS-AI-Tekalp-Research Group/frame-prediction

Authors:Moein Sorkhei, Emir Konuk, Kevin Smith, Christos Matsoukas
Title: APLA: A Simple Adaptation Method for Vision Transformers
Abstract:
Existing adaptation techniques typically require architectural modifications or added parameters, leading to high computational costs and complexity. We introduce Attention Projection Layer Adaptation (APLA), a simple approach to adapt vision transformers (ViTs) without altering the architecture or adding parameters. Through a systematic analysis, we find that the layer immediately after the attention mechanism is crucial for adaptation. By updating only this projection layer, or even just a random subset of this layer's weights, APLA achieves state-of-the-art performance while reducing GPU memory usage by up to 52.63% and training time by up to 43.0%, with no extra cost at inference. Across 46 datasets covering a variety of tasks including scene classification, medical imaging, satellite imaging, and fine-grained classification, APLA consistently outperforms 17 other leading adaptation methods, including full fine-tuning, on classification, segmentation, and detection tasks. The code is available at https://github.com/MoeinSorkhei/APLA.

Authors:Jeong Hun Yeo, Hyeongseop Rha, Se Jin Park, Yong Man Ro
Title: MMS-LLaMA: Efficient LLM-based Audio-Visual Speech Recognition with Minimal Multimodal Speech Tokens
Abstract:
Audio-Visual Speech Recognition (AVSR) achieves robust speech recognition in noisy environments by combining auditory and visual information. However, recent Large Language Model (LLM) based AVSR systems incur high computational costs due to the high temporal resolution of audio-visual speech processed by LLMs. In this work, we introduce an efficient multimodal speech LLM framework that minimizes token length while preserving essential linguistic content. Our approach employs an early AV-fusion module for streamlined feature integration, an audio-visual speech Q-Former that dynamically allocates tokens based on input duration, and a refined query allocation strategy with a speech rate predictor to adjust token allocation according to speaking speed of each audio sample. Extensive experiments on the LRS3 dataset show that our method achieves state-of-the-art performance with a WER of 0.72% while using only 3.5 tokens per second. Moreover, our approach not only reduces token usage by 86% compared to the previous multimodal speech LLM framework, but also improves computational efficiency by reducing FLOPs by 35.7%.

Authors:Michael Hanna, Yonatan Belinkov, Sandro Pezzelle
Title: Are formal and functional linguistic mechanisms dissociated in language models?
Abstract:
Although large language models (LLMs) are increasingly capable, these capabilities are unevenly distributed: they excel at formal linguistic tasks, such as producing fluent, grammatical text, but struggle more with functional linguistic tasks like reasoning and consistent fact retrieval. Inspired by neuroscience, recent work suggests that to succeed on both formal and functional linguistic tasks, LLMs should use different mechanisms for each; such localization could either be built-in or emerge spontaneously through training. In this paper, we ask: do current models, with fast-improving functional linguistic abilities, exhibit distinct localization of formal and functional linguistic mechanisms? We answer this by finding and comparing the "circuits", or minimal computational subgraphs, responsible for various formal and functional tasks. Comparing 5 LLMs across 10 distinct tasks, we find that while there is indeed little overlap between circuits for formal and functional tasks, there is also little overlap between formal linguistic tasks, as exists in the human brain. Thus, a single formal linguistic network, unified and distinct from functional task circuits, remains elusive. However, in terms of cross-task faithfulness - the ability of one circuit to solve another's task - we observe a separation between formal and functional mechanisms, suggesting that shared mechanisms between formal tasks may exist.

Authors:Yuanshuo Zhang, Yuchen Hou, Bohan Tang, Shuo Chen, Muhan Zhang, Xiaowen Dong, Siheng Chen
Title: GNNs as Predictors of Agentic Workflow Performances
Abstract:
Agentic workflows invoked by Large Language Models (LLMs) have achieved remarkable success in handling complex tasks. However, optimizing such workflows is costly and inefficient in real-world applications due to extensive invocations of LLMs. To fill this gap, this position paper formulates agentic workflows as computational graphs and advocates Graph Neural Networks (GNNs) as efficient predictors of agentic workflow performances, avoiding repeated LLM invocations for evaluation. To empirically ground this position, we construct FLORA-Bench, a unified platform for benchmarking GNNs for predicting agentic workflow performances. With extensive experiments, we arrive at the following conclusion: GNNs are simple yet effective predictors. This conclusion supports new applications of GNNs and a novel direction towards automating agentic workflow optimization. All codes, models, and data are available at https://github.com/youngsoul0731/Flora-Bench.

Authors:Jonas Utz, Stefan Vocht, Anne Tjorven Buessen, Dennis Possart, Fabian Wagner, Mareike Thies, Mingxuan Gu, Stefan Uderhardt, Katharina Breininger
Title: CyclePose -- Leveraging Cycle-Consistency for Annotation-Free Nuclei Segmentation in Fluorescence Microscopy
Abstract:
In recent years, numerous neural network architectures specifically designed for the instance segmentation of nuclei in microscopic images have been released. These models embed nuclei-specific priors to outperform generic architectures like U-Nets; however, they require large annotated datasets, which are often not available. Generative models (GANs, diffusion models) have been used to compensate for this by synthesizing training data. These two-stage approaches are computationally expensive, as first a generative model and then a segmentation model has to be trained. We propose CyclePose, a hybrid framework integrating synthetic data generation and segmentation training. CyclePose builds on a CycleGAN architecture, which allows unpaired translation between microscopy images and segmentation masks. We embed a segmentation model into CycleGAN and leverage a cycle consistency loss for self-supervision. Without annotated data, CyclePose outperforms other weakly or unsupervised methods on two public datasets. Code is available at https://github.com/jonasutz/CyclePose

Authors:Sahil Kale, Vijaykant Nadadur
Title: Line of Duty: Evaluating LLM Self-Knowledge via Consistency in Feasibility Boundaries
Abstract:
As LLMs grow more powerful, their most profound achievement may be recognising when to say "I don't know". Existing studies on LLM self-knowledge have been largely constrained by human-defined notions of feasibility, often neglecting the reasons behind unanswerability by LLMs and failing to study deficient types of self-knowledge. This study aims to obtain intrinsic insights into different types of LLM self-knowledge with a novel methodology: allowing them the flexibility to set their own feasibility boundaries and then analysing the consistency of these limits. We find that even frontier models like GPT-4o and Mistral Large are not sure of their own capabilities more than 80% of the time, highlighting a significant lack of trustworthiness in responses. Our analysis of confidence balance in LLMs indicates that models swing between overconfidence and conservatism in feasibility boundaries depending on task categories and that the most significant self-knowledge weaknesses lie in temporal awareness and contextual understanding. These difficulties in contextual comprehension additionally lead models to question their operational boundaries, resulting in considerable confusion within the self-knowledge of LLMs. We make our code and results available publicly at https://github.com/knowledge-verse-ai/LLM-Self_Knowledge_Eval

Authors:Haoyang Huang, Guoqing Ma, Nan Duan, Xing Chen, Changyi Wan, Ranchen Ming, Tianyu Wang, Bo Wang, Zhiying Lu, Aojie Li, Xianfang Zeng, Xinhao Zhang, Gang Yu, Yuhe Yin, Qiling Wu, Wen Sun, Kang An, Xin Han, Deshan Sun, Wei Ji, Bizhu Huang, Brian Li, Chenfei Wu, Guanzhe Huang, Huixin Xiong, Jiaxin He, Jianchang Wu, Jianlong Yuan, Jie Wu, Jiashuai Liu, Junjing Guo, Kaijun Tan, Liangyu Chen, Qiaohui Chen, Ran Sun, Shanshan Yuan, Shengming Yin, Sitong Liu, Wei Chen, Yaqi Dai, Yuchu Luo, Zheng Ge, Zhisheng Guan, Xiaoniu Song, Yu Zhou, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Yi Xiu, Yibo Zhu, Heung-Yeung Shum, Daxin Jiang
Title: Step-Video-TI2V Technical Report: A State-of-the-Art Text-Driven Image-to-Video Generation Model
Abstract:
We present Step-Video-TI2V, a state-of-the-art text-driven image-to-video generation model with 30B parameters, capable of generating videos up to 102 frames based on both text and image inputs. We build Step-Video-TI2V-Eval as a new benchmark for the text-driven image-to-video task and compare Step-Video-TI2V with open-source and commercial TI2V engines using this dataset. Experimental results demonstrate the state-of-the-art performance of Step-Video-TI2V in the image-to-video generation task. Both Step-Video-TI2V and Step-Video-TI2V-Eval are available at https://github.com/stepfun-ai/Step-Video-TI2V.

Authors:Suchanun Piriyasatit, Ercan Engin Kuruoglu, Mehmet Sinan Ozeren
Title: Spatio-Temporal Graph Structure Learning for Earthquake Detection
Abstract:
Earthquake detection is essential for earthquake early warning (EEW) systems. Traditional methods struggle with low signal-to-noise ratios and single-station reliance, limiting their effectiveness. We propose a Spatio-Temporal Graph Convolutional Network (GCN) using Spectral Structure Learning Convolution (Spectral SLC) to model static and dynamic relationships across seismic stations. Our approach processes multi-station waveform data and generates station-specific detection probabilities. Experiments show superior performance over a conventional GCN baseline in terms of true positive rate (TPR) and false positive rate (FPR), highlighting its potential for robust multi-station earthquake detection. The code repository for this study is available at https://github.com/SuchanunP/eq_detector.

Authors:Giacomo Camposampiero, Michael Hersche, Roger Wattenhofer, Abu Sebastian, Abbas Rahimi
Title: Can Large Reasoning Models do Analogical Reasoning under Perceptual Uncertainty?
Abstract:
This work presents a first evaluation of two state-of-the-art Large Reasoning Models (LRMs), OpenAI's o3-mini and DeepSeek R1, on analogical reasoning, focusing on well-established nonverbal human IQ tests based on Raven's progressive matrices. We benchmark with the I-RAVEN dataset and its extension, I-RAVEN-X, which tests the ability to generalize to longer reasoning rules and ranges of the attribute values. To assess the influence of visual uncertainties on these symbolic analogical reasoning tests, we extend the I-RAVEN-X dataset, which otherwise assumes an oracle perception. We adopt a two-fold strategy to simulate this imperfect visual perception: 1) we introduce confounding attributes which, being sampled at random, do not contribute to the prediction of the correct answer of the puzzles, and 2) we smoothen the distributions of the input attributes' values. We observe a sharp decline in OpenAI's o3-mini task accuracy, dropping from 86.6% on the original I-RAVEN to just 17.0% -- approaching random chance -- on the more challenging I-RAVEN-X, which increases input length and range and emulates perceptual uncertainty. This drop occurred despite spending 3.4x more reasoning tokens. A similar trend is also observed for DeepSeek R1: from 80.6% to 23.2%. On the other hand, a neuro-symbolic probabilistic abductive model, ARLC, that achieves state-of-the-art performances on I-RAVEN, can robustly reason under all these out-of-distribution tests, maintaining strong accuracy with only a modest accuracy reduction from 98.6% to 88.0%. Our code is available at https://github.com/IBM/raven-large-language-models.

Authors:Gang Li, Jizhong Liu, Heinrich Dinkel, Yadong Niu, Junbo Zhang, Jian Luan
Title: Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering
Abstract:
Recently, reinforcement learning (RL) has been shown to greatly enhance the reasoning capabilities of large language models (LLMs), and RL-based approaches have been progressively applied to visual multimodal tasks. However, the audio modality has largely been overlooked in these developments. Thus, we conduct a series of RL explorations in audio understanding and reasoning, specifically focusing on the audio question answering (AQA) task. We leverage the group relative policy optimization (GRPO) algorithm to Qwen2-Audio-7B-Instruct, and our experiments demonstrated state-of-the-art performance on the MMAU Test-mini benchmark, achieving an accuracy rate of 64.5%. The main findings in this technical report are as follows: 1) The GRPO algorithm can be effectively applied to large audio language models (LALMs), even when the model has only 8.2B parameters; 2) With only 38k post-training samples, RL significantly outperforms supervised fine-tuning (SFT), indicating that RL-based approaches can be effective without large datasets; 3) The explicit reasoning process has not shown significant benefits for AQA tasks, and how to efficiently utilize deep thinking remains an open question for further research; 4) LALMs still lag far behind humans auditory-language reasoning, suggesting that the RL-based approaches warrant further exploration. Our project is available at https://github.com/xiaomi-research/r1-aqa and https://huggingface.co/mispeech/r1-aqa.

Authors:Leqi Shen, Guoqiang Gong, Tao He, Yifeng Zhang, Pengzhang Liu, Sicheng Zhao, Guiguang Ding
Title: FastVID: Dynamic Density Pruning for Fast Video Large Language Models
Abstract:
Video Large Language Models have demonstrated strong video understanding capabilities, yet their practical deployment is hindered by substantial inference costs caused by redundant video tokens. Existing pruning techniques fail to fully exploit the spatiotemporal redundancy inherent in video data. To bridge this gap, we perform a systematic analysis of video redundancy from two perspectives: temporal context and visual context. Leveraging these insights, we propose Dynamic Density Pruning for Fast Video LLMs termed FastVID. Specifically, FastVID dynamically partitions videos into temporally ordered segments to preserve temporal structure and applies a density-based token pruning strategy to maintain essential visual information. Our method significantly reduces computational overhead while maintaining temporal and visual integrity. Extensive evaluations show that FastVID achieves state-of-the-art performance across various short- and long-video benchmarks on leading Video LLMs, including LLaVA-OneVision and LLaVA-Video. Notably, on LLaVA-OneVision-7B, FastVID effectively prunes $\textbf{90.3%}$ of video tokens, reduces FLOPs to $\textbf{8.3%}$, and accelerates the prefilling stage by $\textbf{7.1}\times$, while maintaining $\textbf{98.0%}$ of the original accuracy. The code is available at https://github.com/LunarShen/FastVID.

Authors:Leideng Shi, Juan Zhang
Title: Multimodal-Aware Fusion Network for Referring Remote Sensing Image Segmentation
Abstract:
Referring remote sensing image segmentation (RRSIS) is a novel visual task in remote sensing images segmentation, which aims to segment objects based on a given text description, with great significance in practical application. Previous studies fuse visual and linguistic modalities by explicit feature interaction, which fail to effectively excavate useful multimodal information from dual-branch encoder. In this letter, we design a multimodal-aware fusion network (MAFN) to achieve fine-grained alignment and fusion between the two modalities. We propose a correlation fusion module (CFM) to enhance multi-scale visual features by introducing adaptively noise in transformer, and integrate cross-modal aware features. In addition, MAFN employs multi-scale refinement convolution (MSRC) to adapt to the various orientations of objects at different scales to boost their representation ability to enhances segmentation accuracy. Extensive experiments have shown that MAFN is significantly more effective than the state of the art on RRSIS-D datasets. The source code is available at https://github.com/Roaxy/MAFN.

Authors:Haonan Wang, Qixiang Zhang, Lehan Wang, Xuanqi Huang, Xiaomeng Li
Title: Neurons: Emulating the Human Visual Cortex Improves Fidelity and Interpretability in fMRI-to-Video Reconstruction
Abstract:
Decoding visual stimuli from neural activity is essential for understanding the human brain. While fMRI methods have successfully reconstructed static images, fMRI-to-video reconstruction faces challenges due to the need for capturing spatiotemporal dynamics like motion and scene transitions. Recent approaches have improved semantic and perceptual alignment but struggle to integrate coarse fMRI data with detailed visual features. Inspired by the hierarchical organization of the visual system, we propose NEURONS, a novel framework that decouples learning into four correlated sub-tasks: key object segmentation, concept recognition, scene description, and blurry video reconstruction. This approach simulates the visual cortex's functional specialization, allowing the model to capture diverse video content. In the inference stage, NEURONS generates robust conditioning signals for a pre-trained text-to-video diffusion model to reconstruct the videos. Extensive experiments demonstrate that NEURONS outperforms state-of-the-art baselines, achieving solid improvements in video consistency (26.6%) and semantic-level accuracy (19.1%). Notably, NEURONS shows a strong functional correlation with the visual cortex, highlighting its potential for brain-computer interfaces and clinical applications. Code and model weights are available at: https://github.com/xmed-lab/NEURONS.

Authors:Neng Wang, Huimin Lu, Zhiqiang Zheng, Hesheng Wang, Yun-Hui Liu, Xieyuanli Chen
Title: Leveraging Semantic Graphs for Efficient and Robust LiDAR SLAM
Abstract:
Accurate and robust simultaneous localization and mapping (SLAM) is crucial for autonomous mobile systems, typically achieved by leveraging the geometric features of the environment. Incorporating semantics provides a richer scene representation that not only enhances localization accuracy in SLAM but also enables advanced cognitive functionalities for downstream navigation and planning tasks. Existing point-wise semantic LiDAR SLAM methods often suffer from poor efficiency and generalization, making them less robust in diverse real-world scenarios. In this paper, we propose a semantic graph-enhanced SLAM framework, named SG-SLAM, which effectively leverages the geometric, semantic, and topological characteristics inherent in environmental structures. The semantic graph serves as a fundamental component that facilitates critical functionalities of SLAM, including robust relocalization during odometry failures, accurate loop closing, and semantic graph map construction. Our method employs a dual-threaded architecture, with one thread dedicated to online odometry and relocalization, while the other handles loop closure, pose graph optimization, and map update. This design enables our method to operate in real time and generate globally consistent semantic graph maps and point cloud maps. We extensively evaluate our method across the KITTI, MulRAN, and Apollo datasets, and the results demonstrate its superiority compared to state-of-the-art methods. Our method has been released at https://github.com/nubot-nudt/SG-SLAM.

Authors:Rachel S. Y. Teo, Tan M. Nguyen
Title: MoLEx: Mixture of Layer Experts for Finetuning with Sparse Upcycling
Abstract:
Large-scale pre-training of deep models, followed by fine-tuning them, has become the cornerstone of natural language processing (NLP). The prevalence of data coupled with computational resources has led to large models with a considerable number of parameters. While the massive size of these models has led to remarkable success in many NLP tasks, a detriment is the expense required to retrain all the base model's parameters for the adaptation to each task or domain. Parameter Efficient Fine-Tuning (PEFT) provides an effective solution for this challenge by minimizing the number of parameters required to be fine-tuned while maintaining the quality of the model. While existing methods have achieved impressive results, they mainly focus on adapting a subset of parameters, weight reparameterization, and prompt engineering. In this paper, we study layers as extractors of different types of linguistic information that are valuable when used in conjunction. We then propose the Mixture of Layer Experts (MoLEx), a novel sparse mixture of experts (SMoE) whose experts are layers in the pre-trained model. It performs a conditional computation of a mixture of layers during fine-tuning to provide the model with more structural knowledge about the data. By providing an avenue for information exchange between layers, MoLEx enables the model to make a more well-informed prediction for the downstream task, leading to better fine-tuning results with the same number of effective parameters. As experts can be processed in parallel, MoLEx introduces minimal additional computational overhead. We empirically corroborate the advantages of MoLEx when combined with popular PEFT baseline methods on a variety of downstream fine-tuning tasks, including the popular GLUE benchmark as well as the End-to-End Challenge (E2E). The code is publicly available at https://github.com/rachtsy/molex.

Authors:Zichen Tang, Yuan Yao, Miaomiao Cui, Liefeng Bo, Hongyu Yang
Title: GaussianIP: Identity-Preserving Realistic 3D Human Generation via Human-Centric Diffusion Prior
Abstract:
Text-guided 3D human generation has advanced with the development of efficient 3D representations and 2D-lifting methods like Score Distillation Sampling (SDS). However, current methods suffer from prolonged training times and often produce results that lack fine facial and garment details. In this paper, we propose GaussianIP, an effective two-stage framework for generating identity-preserving realistic 3D humans from text and image prompts. Our core insight is to leverage human-centric knowledge to facilitate the generation process. In stage 1, we propose a novel Adaptive Human Distillation Sampling (AHDS) method to rapidly generate a 3D human that maintains high identity consistency with the image prompt and achieves a realistic appearance. Compared to traditional SDS methods, AHDS better aligns with the human-centric generation process, enhancing visual quality with notably fewer training steps. To further improve the visual quality of the face and clothes regions, we design a View-Consistent Refinement (VCR) strategy in stage 2. Specifically, it produces detail-enhanced results of the multi-view images from stage 1 iteratively, ensuring the 3D texture consistency across views via mutual attention and distance-guided attention fusion. Then a polished version of the 3D human can be achieved by directly perform reconstruction with the refined images. Extensive experiments demonstrate that GaussianIP outperforms existing methods in both visual quality and training efficiency, particularly in generating identity-preserving results. Our code is available at: https://github.com/silence-tang/GaussianIP.

Authors:Hao Liu, Pengyu Guo, Siyuan Yang, Zeqing Jiang, Qinglei Hu, Dongyu Li
Title: SpaceSeg: A High-Precision Intelligent Perception Segmentation Method for Multi-Spacecraft On-Orbit Targets
Abstract:
With the continuous advancement of human exploration into deep space, intelligent perception and high-precision segmentation technology for on-orbit multi-spacecraft targets have become critical factors for ensuring the success of modern space missions. However, the complex deep space environment, diverse imaging conditions, and high variability in spacecraft morphology pose significant challenges to traditional segmentation methods. This paper proposes SpaceSeg, an innovative vision foundation model-based segmentation framework with four core technical innovations: First, the Multi-Scale Hierarchical Attention Refinement Decoder (MSHARD) achieves high-precision feature decoding through cross-resolution feature fusion via hierarchical attention. Second, the Multi-spacecraft Connected Component Analysis (MS-CCA) effectively resolves topological structure confusion in dense targets. Third, the Spatial Domain Adaptation Transform framework (SDAT) eliminates cross-domain disparities and resist spatial sensor perturbations through composite enhancement strategies. Finally, a custom Multi-Spacecraft Segmentation Task Loss Function is created to significantly improve segmentation robustness in deep space scenarios. To support algorithm validation, we construct the first multi-scale on-orbit multi-spacecraft semantic segmentation dataset SpaceES, which covers four types of spatial backgrounds and 17 typical spacecraft targets. In testing, SpaceSeg achieves state-of-the-art performance with 89.87$\%$ mIoU and 99.98$\%$ mAcc, surpassing existing best methods by 5.71 percentage points. The dataset and code are open-sourced at https://github.com/Akibaru/SpaceSeg to provide critical technical support for next-generation space situational awareness systems.

Authors:Guihong Li, Mehdi Rezagholizadeh, Mingyu Yang, Vikram Appia, Emad Barsoum
Title: X-EcoMLA: Upcycling Pre-Trained Attention into MLA for Efficient and Extreme KV Compression
Abstract:
Multi-head latent attention (MLA) is designed to optimize KV cache memory through low-rank key-value joint compression. Rather than caching keys and values separately, MLA stores their compressed latent representations, reducing memory overhead while maintaining the performance. While MLA improves memory efficiency without compromising language model accuracy, its major limitation lies in its integration during the pre-training phase, requiring models to be trained from scratch. This raises a key question: can we use MLA's benefits fully or partially in models that have already been pre-trained with different attention mechanisms? In this paper, we propose X-EcoMLA to deploy post training distillation to enable the upcycling of Transformer-based attention into an efficient hybrid MLA variant through lightweight post-training adaptation, bypassing the need for extensive pre-training. We demonstrate that leveraging the dark knowledge of a well-trained model can enhance training accuracy and enable extreme KV cache compression in MLA without compromising model performance. The experimental results show that our proposed method can effectively compress the KV cache while preserving the performance on the benchmarks; specifically, for Llama3.2-1B-Instruct baseline, a 6.4x compression achieves the same average score by using only 3.6B training tokens and 70 GPU hours on AMD MI300, whereas a 10.6x compression have less than 0.1% average score drop with 7B training tokens and 140 GPU hours. The code for this work is available at https://github.com/AMD-AGI/AMD-Hybrid-Models.

Authors:Hongbin Lin, Zilu Guo, Yifan Zhang, Shuaicheng Niu, Yafeng Li, Ruimao Zhang, Shuguang Cui, Zhen Li
Title: DriveGEN: Generalized and Robust 3D Detection in Driving via Controllable Text-to-Image Diffusion Generation
Abstract:
In autonomous driving, vision-centric 3D detection aims to identify 3D objects from images. However, high data collection costs and diverse real-world scenarios limit the scale of training data. Once distribution shifts occur between training and test data, existing methods often suffer from performance degradation, known as Out-of-Distribution (OOD) problems. To address this, controllable Text-to-Image (T2I) diffusion offers a potential solution for training data enhancement, which is required to generate diverse OOD scenarios with precise 3D object geometry. Nevertheless, existing controllable T2I approaches are restricted by the limited scale of training data or struggle to preserve all annotated 3D objects. In this paper, we present DriveGEN, a method designed to improve the robustness of 3D detectors in Driving via Training-Free Controllable Text-to-Image Diffusion Generation. Without extra diffusion model training, DriveGEN consistently preserves objects with precise 3D geometry across diverse OOD generations, consisting of 2 stages: 1) Self-Prototype Extraction: We empirically find that self-attention features are semantic-aware but require accurate region selection for 3D objects. Thus, we extract precise object features via layouts to capture 3D object geometry, termed self-prototypes. 2) Prototype-Guided Diffusion: To preserve objects across various OOD scenarios, we perform semantic-aware feature alignment and shallow feature alignment during denoising. Extensive experiments demonstrate the effectiveness of DriveGEN in improving 3D detection. The code is available at https://github.com/Hongbin98/DriveGEN.

Authors:Wenbang Deng, Xieyuanli Chen, Qinghua Yu, Yunze He, Junhao Xiao, Huimin Lu
Title: A Novel Decomposed Feature-Oriented Framework for Open-Set Semantic Segmentation on LiDAR Data
Abstract:
Semantic segmentation is a key technique that enables mobile robots to understand and navigate surrounding environments autonomously. However, most existing works focus on segmenting known objects, overlooking the identification of unknown classes, which is common in real-world applications. In this paper, we propose a feature-oriented framework for open-set semantic segmentation on LiDAR data, capable of identifying unknown objects while retaining the ability to classify known ones. We design a decomposed dual-decoder network to simultaneously perform closed-set semantic segmentation and generate distinctive features for unknown objects. The network is trained with multi-objective loss functions to capture the characteristics of known and unknown objects. Using the extracted features, we introduce an anomaly detection mechanism to identify unknown objects. By integrating the results of close-set semantic segmentation and anomaly detection, we achieve effective feature-driven LiDAR open-set semantic segmentation. Evaluations on both SemanticKITTI and nuScenes datasets demonstrate that our proposed framework significantly outperforms state-of-the-art methods. The source code will be made publicly available at https://github.com/nubot-nudt/DOSS.

Authors:Weichen Zhang, Zile Zhou, Zhiheng Zheng, Chen Gao, Jinqiang Cui, Yong Li, Xinlei Chen, Xiao-Ping Zhang
Title: Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
Abstract:
Spatial reasoning is a fundamental capability of embodied agents and has garnered widespread attention in the field of multimodal large language models (MLLMs). In this work, we propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of current state-of-the-art (SOTA) foundation models in open 3D space. Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator. We evaluate several SOTA MLLMs across various aspects of spatial reasoning, such as relative and absolute spatial relationships, situational reasoning, and object-centric spatial attributes. Our results reveal that: 1) MLLMs perform better at answering questions regarding relative spatial relationships than absolute spatial relationships, 2) MLLMs demonstrate similar spatial reasoning abilities for both egocentric and allocentric perspectives, and 3) Fine-tuning large models significantly improves their performance across different spatial reasoning tasks. We believe that our open-source data collection tools and in-depth analyses will inspire further research on MLLM spatial reasoning capabilities. The benchmark is available at https://github.com/WeichenZh/Open3DVQA.

Authors:Haihong Zhao, Chenyi Zi, Aochuan Chen, Jia Li
Title: A Survey of Cross-domain Graph Learning: Progress and Future Directions
Abstract:
Graph learning plays a vital role in mining and analyzing complex relationships involved in graph data, which is widely used in many real-world applications like transaction networks and communication networks. Foundation models in CV and NLP have shown powerful cross-domain capabilities that are also significant in graph domains. However, existing graph learning approaches struggle with cross-domain tasks. Inspired by successes in CV and NLP, cross-domain graph learning has once again become a focal point of attention to realizing true graph foundation models. In this survey, we present a comprehensive review and analysis of existing works on cross-domain graph learning. Concretely, we first propose a new taxonomy, categorizing existing approaches based on the learned cross-domain information: structure, feature, and structure-feature mixture. Next, we systematically survey representative methods in these categories. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. Relevant papers are summarized and will be consistently updated at: https://github.com/cshhzhao/Awesome-Cross-Domain-Graph-Learning.

Authors:Wuwei Huang, Renren Jin, Wen Zhang, Jian Luan, Bin Wang, Deyi Xiong
Title: Joint Training And Decoding for Multilingual End-to-End Simultaneous Speech Translation
Abstract:
Recent studies on end-to-end speech translation(ST) have facilitated the exploration of multilingual end-to-end ST and end-to-end simultaneous ST. In this paper, we investigate end-to-end simultaneous speech translation in a one-to-many multilingual setting which is closer to applications in real scenarios. We explore a separate decoder architecture and a unified architecture for joint synchronous training in this scenario. To further explore knowledge transfer across languages, we propose an asynchronous training strategy on the proposed unified decoder architecture. A multi-way aligned multilingual end-to-end ST dataset was curated as a benchmark testbed to evaluate our methods. Experimental results demonstrate the effectiveness of our models on the collected dataset. Our codes and data are available at: https://github.com/XiaoMi/TED-MMST.

Authors:Hongyang Wei, Shuaizheng Liu, Chun Yuan, Lei Zhang
Title: Perceive, Understand and Restore: Real-World Image Super-Resolution with Autoregressive Multimodal Generative Models
Abstract:
By leveraging the generative priors from pre-trained text-to-image diffusion models, significant progress has been made in real-world image super-resolution (Real-ISR). However, these methods tend to generate inaccurate and unnatural reconstructions in complex and/or heavily degraded scenes, primarily due to their limited perception and understanding capability of the input low-quality image. To address these limitations, we propose, for the first time to our knowledge, to adapt the pre-trained autoregressive multimodal model such as Lumina-mGPT into a robust Real-ISR model, namely PURE, which Perceives and Understands the input low-quality image, then REstores its high-quality counterpart. Specifically, we implement instruction tuning on Lumina-mGPT to perceive the image degradation level and the relationships between previously generated image tokens and the next token, understand the image content by generating image semantic descriptions, and consequently restore the image by generating high-quality image tokens autoregressively with the collected information. In addition, we reveal that the image token entropy reflects the image structure and present a entropy-based Top-k sampling strategy to optimize the local structure of the image during inference. Experimental results demonstrate that PURE preserves image content while generating realistic details, especially in complex scenes with multiple objects, showcasing the potential of autoregressive multimodal generative models for robust Real-ISR. The model and code will be available at https://github.com/nonwhy/PURE.

Authors:Kelu Yao, Nuo Xu, Rong Yang, Yingying Xu, Zhuoyan Gao, Titinunt Kitrungrotsakul, Yi Ren, Pu Zhang, Jin Wang, Ning Wei, Chao Li
Title: Falcon: A Remote Sensing Vision-Language Foundation Model
Abstract:
This paper introduces a holistic vision-language foundation model tailored for remote sensing, named Falcon. Falcon offers a unified, prompt-based paradigm that effectively executes comprehensive and complex remote sensing tasks. Falcon demonstrates powerful understanding and reasoning abilities at the image, region, and pixel levels. Specifically, given simple natural language instructions and remote sensing images, Falcon can produce impressive results in text form across 14 distinct tasks, i.e., image classification, object detection, segmentation, image captioning, and etc. To facilitate Falcon's training and empower its representation capacity to encode rich spatial and semantic information, we developed Falcon_SFT, a large-scale, multi-task, instruction-tuning dataset in the field of remote sensing. The Falcon_SFT dataset consists of approximately 78 million high-quality data samples, covering 5.6 million multi-spatial resolution and multi-view remote sensing images with diverse instructions. It features hierarchical annotations and undergoes manual sampling verification to ensure high data quality and reliability. Extensive comparative experiments are conducted, which verify that Falcon achieves remarkable performance over 67 datasets and 14 tasks, despite having only 0.7B parameters. We release the complete dataset, code, and model weights at https://github.com/TianHuiLab/Falcon, hoping to help further develop the open-source community.

Authors:Bin Liu, Xiaohong Liu, Qin Luo, Ziqiao Shang, Jielei Chu, Lin Ma, Zhaoyu Li, Fei Teng, Guangtao Zhai, Tianrui Li
Title: Variational Bayesian Personalized Ranking
Abstract:
Recommendation systems have found extensive applications across diverse domains. However, the training data available typically comprises implicit feedback, manifested as user clicks and purchase behaviors, rather than explicit declarations of user preferences. This type of training data presents three main challenges for accurate ranking prediction: First, the unobservable nature of user preferences makes likelihood function modeling inherently difficult. Second, the resulting false positives (FP) and false negatives (FN) introduce noise into the learning process, disrupting parameter learning. Third, data bias arises as observed interactions tend to concentrate on a few popular items, exacerbating the feedback loop of popularity bias. To address these issues, we propose Variational BPR, a novel and easily implementable learning objective that integrates key components for enhancing collaborative filtering: likelihood optimization, noise reduction, and popularity debiasing. Our approach involves decomposing the pairwise loss under the ELBO-KL framework and deriving its variational lower bound to establish a manageable learning objective for approximate inference. Within this bound, we introduce an attention-based latent interest prototype contrastive mechanism, replacing instance-level contrastive learning, to effectively reduce noise from problematic samples. The process of deriving interest prototypes implicitly incorporates a flexible hard sample mining strategy, capable of simultaneously identifying hard positive and hard negative samples. Furthermore, we demonstrate that this hard sample mining strategy promotes feature distribution uniformity, thereby alleviating popularity bias. Empirically, we demonstrate the effectiveness of Variational BPR on popular backbone recommendation models. The code and data are available at: https://github.com/liubin06/VariationalBPR

Authors:Worameth Chinchuthakun, Tossaporn Saengja, Nontawat Tritrong, Pitchaporn Rewatbowornwong, Pramook Khungurn, Supasorn Suwajanakorn
Title: LUSD: Localized Update Score Distillation for Text-Guided Image Editing
Abstract:
While diffusion models show promising results in image editing given a target prompt, achieving both prompt fidelity and background preservation remains difficult. Recent works have introduced score distillation techniques that leverage the rich generative prior of text-to-image diffusion models to solve this task without additional fine-tuning. However, these methods often struggle with tasks such as object insertion. Our investigation of these failures reveals significant variations in gradient magnitude and spatial distribution, making hyperparameter tuning highly input-specific or unsuccessful. To address this, we propose two simple yet effective modifications: attention-based spatial regularization and gradient filtering-normalization, both aimed at reducing these variations during gradient updates. Experimental results show our method outperforms state-of-the-art score distillation techniques in prompt fidelity, improving successful edits while preserving the background. Users also preferred our method over state-of-the-art techniques across three metrics, and by 58-64% overall.

Authors:Lilin Zhang, Chengpei Wu, Ning Yang
Title: Weakly Supervised Contrastive Adversarial Training for Learning Robust Features from Semi-supervised Data
Abstract:
Existing adversarial training (AT) methods often suffer from incomplete perturbation, meaning that not all non-robust features are perturbed when generating adversarial examples (AEs). This results in residual correlations between non-robust features and labels, leading to suboptimal learning of robust features. However, achieving complete perturbation, i.e., perturbing as many non-robust features as possible, is challenging due to the difficulty in distinguishing robust and non-robust features and the sparsity of labeled data. To address these challenges, we propose a novel approach called Weakly Supervised Contrastive Adversarial Training (WSCAT). WSCAT ensures complete perturbation for improved learning of robust features by disrupting correlations between non-robust features and labels through complete AE generation over partially labeled data, grounded in information theory. Extensive theoretical analysis and comprehensive experiments on widely adopted benchmarks validate the superiority of WSCAT. Our code is available at https://github.com/zhang-lilin/WSCAT.

Authors:Ming Deng, Sijin Sun, Zihao Li, Xiaochuan Hu, Xing Wu
Title: FMNet: Frequency-Assisted Mamba-Like Linear Attention Network for Camouflaged Object Detection
Abstract:
Camouflaged Object Detection (COD) is challenging due to the strong similarity between camouflaged objects and their surroundings, which complicates identification. Existing methods mainly rely on spatial local features, failing to capture global information, while Transformers increase computational costs. To address this, the Frequency-Assisted Mamba-Like Linear Attention Network (FMNet) is proposed, which leverages frequency-domain learning to efficiently capture global features and mitigate ambiguity between objects and the background. FMNet introduces the Multi-Scale Frequency-Assisted Mamba-Like Linear Attention (MFM) module, integrating frequency and spatial features through a multi-scale structure to handle scale variations while reducing computational complexity. Additionally, the Pyramidal Frequency Attention Extraction (PFAE) module and the Frequency Reverse Decoder (FRD) enhance semantics and reconstruct features. Experimental results demonstrate that FMNet outperforms existing methods on multiple COD datasets, showcasing its advantages in both performance and efficiency. Code available at https://github.com/Chranos/FMNet.

Authors:Sungwoo Cho, Jeongsoo Choi, Sungnyun Kim, Se-Young Yun
Title: MAVFlow: Preserving Paralinguistic Elements with Conditional Flow Matching for Zero-Shot AV2AV Multilingual Translation
Abstract:
Despite recent advances in text-to-speech (TTS) models, audio-visual-to-audio-visual (AV2AV) translation still faces a critical challenge: maintaining speaker consistency between the original and translated vocal and facial features. To address this issue, we propose a conditional flow matching (CFM) zero-shot audio-visual renderer that utilizes strong dual guidance from both audio and visual modalities. By leveraging multimodal guidance with CFM, our model robustly preserves speaker-specific characteristics and enhances zero-shot AV2AV translation abilities. For the audio modality, we enhance the CFM process by integrating robust speaker embeddings with x-vectors, which serve to bolster speaker consistency. Additionally, we convey emotional nuances to the face rendering module. The guidance provided by both audio and visual cues remains independent of semantic or linguistic content, allowing our renderer to effectively handle zero-shot translation tasks for monolingual speakers in different languages. We empirically demonstrate that the inclusion of high-quality mel-spectrograms conditioned on facial information not only enhances the quality of the synthesized speech but also positively influences facial generation, leading to overall performance improvements in LSE and FID score. Our code is available at https://github.com/Peter-SungwooCho/MAVFlow.

Authors:Aashish Anantha Ramakrishnan, Aadarsh Anantha Ramakrishnan, Dongwon Lee
Title: RONA: Pragmatically Diverse Image Captioning with Coherence Relations
Abstract:
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance caption diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. We propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as a controllable axis for pragmatic variations. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA

Authors:Gaotang Li, Yuzhong Chen, Hanghang Tong
Title: Taming Knowledge Conflicts in Language Models
Abstract:
Language Models (LMs) often encounter knowledge conflicts when parametric memory contradicts contextual knowledge. Previous works attribute this conflict to the interplay between "memory heads" and "context heads", attention heads assumed to promote either memory or context exclusively. In this study, we go beyond this fundamental assumption by uncovering a critical phenomenon we term the superposition of contextual information and parametric memory, where highly influential attention heads simultaneously contribute to both memory and context. Building upon this insight, we propose Just Run Twice (JuICE), a test-time attention intervention method that steers LMs toward either parametric beliefs or contextual knowledge without requiring fine-tuning. JuICE identifies a set of reliable attention heads and leverages a dual-run approach to mitigate the superposition effects. Extensive experiments across 11 datasets and 6 model architectures demonstrate that JuICE sets the new state-of-the-art performance and robust generalization, achieving significant and consistent improvement across different domains under various conflict types. Finally, we theoretically analyze knowledge conflict and the superposition of contextual information and parametric memory in attention heads, which further elucidates the effectiveness of JuICE in these settings. Our code is available at https://github.com/GaotangLi/JUICE.

Authors:Yanjie Xu, Handing Xu, Tianmu Wang, Yaguan Li, Yunzhi Chen, Zhenguo Nie
Title: Rethinking Rotation-Invariant Recognition of Fine-grained Shapes from the Perspective of Contour Points
Abstract:
Rotation-invariant recognition of shapes is a common challenge in computer vision. Recent approaches have significantly improved the accuracy of rotation-invariant recognition by encoding the rotational invariance of shapes as hand-crafted image features and introducing deep neural networks. However, the methods based on pixels have too much redundant information, and the critical geometric information is prone to early leakage, resulting in weak rotation-invariant recognition of fine-grained shapes. In this paper, we reconsider the shape recognition problem from the perspective of contour points rather than pixels. We propose an anti-noise rotation-invariant convolution module based on contour geometric aware for fine-grained shape recognition. The module divides the shape contour into multiple local geometric regions(LGA), where we implement finer-grained rotation-invariant coding in terms of point topological relations. We provide a deep network composed of five such cascaded modules for classification and retrieval experiments. The results show that our method exhibits excellent performance in rotation-invariant recognition of fine-grained shapes. In addition, we demonstrate that our method is robust to contour noise and the rotation centers. The source code is available at https://github.com/zhenguonie/ANRICN_CGA.

Authors:Zhicheng Feng, Xieyuanli Chen, Chenghao Shi, Lun Luo, Zhichao Chen, Yun-Hui Liu, Huimin Lu
Title: Image-Goal Navigation Using Refined Feature Guidance and Scene Graph Enhancement
Abstract:
In this paper, we introduce a novel image-goal navigation approach, named RFSG. Our focus lies in leveraging the fine-grained connections between goals, observations, and the environment within limited image data, all the while keeping the navigation architecture simple and lightweight. To this end, we propose the spatial-channel attention mechanism, enabling the network to learn the importance of multi-dimensional features to fuse the goal and observation features. In addition, a selfdistillation mechanism is incorporated to further enhance the feature representation capabilities. Given that the navigation task needs surrounding environmental information for more efficient navigation, we propose an image scene graph to establish feature associations at both the image and object levels, effectively encoding the surrounding scene information. Crossscene performance validation was conducted on the Gibson and HM3D datasets, and the proposed method achieved stateof-the-art results among mainstream methods, with a speed of up to 53.5 frames per second on an RTX3080. This contributes to the realization of end-to-end image-goal navigation in realworld scenarios. The implementation and model of our method have been released at: https://github.com/nubot-nudt/RFSG.

Authors:Shanghua Gao, Richard Zhu, Zhenglun Kong, Ayush Noori, Xiaorui Su, Curtis Ginder, Theodoros Tsiligkaridis, Marinka Zitnik
Title: TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools
Abstract:
Precision therapeutics require multimodal adaptive models that generate personalized treatment recommendations. We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge retrieval across a toolbox of 211 tools to analyze drug interactions, contraindications, and patient-specific treatment strategies. TxAgent evaluates how drugs interact at molecular, pharmacokinetic, and clinical levels, identifies contraindications based on patient comorbidities and concurrent medications, and tailors treatment strategies to individual patient characteristics. It retrieves and synthesizes evidence from multiple biomedical sources, assesses interactions between drugs and patient conditions, and refines treatment recommendations through iterative reasoning. It selects tools based on task objectives and executes structured function calls to solve therapeutic tasks that require clinical reasoning and cross-source validation. The ToolUniverse consolidates 211 tools from trusted sources, including all US FDA-approved drugs since 1939 and validated clinical insights from Open Targets. TxAgent outperforms leading LLMs, tool-use models, and reasoning agents across five new benchmarks: DrugPC, BrandPC, GenericPC, TreatmentPC, and DescriptionPC, covering 3,168 drug reasoning tasks and 456 personalized treatment scenarios. It achieves 92.1% accuracy in open-ended drug reasoning tasks, surpassing GPT-4o and outperforming DeepSeek-R1 (671B) in structured multi-step reasoning. TxAgent generalizes across drug name variants and descriptions. By integrating multi-step inference, real-time knowledge grounding, and tool-assisted decision-making, TxAgent ensures that treatment recommendations align with established clinical guidelines and real-world evidence, reducing the risk of adverse events and improving therapeutic decision-making.

Authors:Pedro Pessoa, Paul Campitelli, Douglas P. Shepherd, S. Banu Ozkan, Steve Pressé
Title: Mamba time series forecasting with uncertainty quantification
Abstract:
State space models, such as Mamba, have recently garnered attention in time series forecasting due to their ability to capture sequence patterns. However, in electricity consumption benchmarks, Mamba forecasts exhibit a mean error of approximately 8\%. Similarly, in traffic occupancy benchmarks, the mean error reaches 18\%. This discrepancy leaves us to wonder whether the prediction is simply inaccurate or falls within error given spread in historical data. To address this limitation, we propose a method to quantify the predictive uncertainty of Mamba forecasts. Here, we propose a dual-network framework based on the Mamba architecture for probabilistic forecasting, where one network generates point forecasts while the other estimates predictive uncertainty by modeling variance. We abbreviate our tool, Mamba with probabilistic time series forecasting, as Mamba-ProbTSF and the code for its implementation is available on GitHub (https://github.com/PessoaP/Mamba-ProbTSF). Evaluating this approach on synthetic and real-world benchmark datasets, we find Kullback-Leibler divergence between the learned distributions and the data--which, in the limit of infinite data, should converge to zero if the model correctly captures the underlying probability distribution--reduced to the order of $10^{-3}$ for synthetic data and $10^{-1}$ for real-world benchmark, demonstrating its effectiveness. We find that in both the electricity consumption and traffic occupancy benchmark, the true trajectory stays within the predicted uncertainty interval at the two-sigma level about 95\% of the time. We end with a consideration of potential limitations, adjustments to improve performance, and considerations for applying this framework to processes for purely or largely stochastic dynamics where the stochastic changes accumulate, as observed for example in pure Brownian motion or molecular dynamics trajectories.

Authors:Avinash Paliwal, Xilong Zhou, Wei Ye, Jinhui Xiong, Rakesh Ranjan, Nima Khademi Kalantari
Title: RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors
Abstract:
In this paper, we propose RI3D, a novel 3DGS-based approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images. Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions, and introducing two personalized diffusion models, each tailored to one of these tasks. Specifically, one model ('repair') takes a rendered image as input and predicts the corresponding high-quality image, which in turn is used as a pseudo ground truth image to constrain the optimization. The other model ('inpainting') primarily focuses on hallucinating details in unobserved areas. To integrate these models effectively, we introduce a two-stage optimization strategy: the first stage reconstructs visible areas using the repair model, and the second stage reconstructs missing regions with the inpainting model while ensuring coherence through further optimization. Moreover, we augment the optimization with a novel Gaussian initialization method that obtains per-image depth by combining 3D-consistent and smooth depth with highly detailed relative depth. We demonstrate that by separating the process into two tasks and addressing them with the repair and inpainting models, we produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes with extremely sparse inputs.

Authors:Kai Zhang, Jianwei Yang, Jeevana Priya Inala, Chandan Singh, Jianfeng Gao, Yu Su, Chenglong Wang
Title: Towards Understanding Graphical Perception in Large Multimodal Models
Abstract:
Despite the promising results of large multimodal models (LMMs) in complex vision-language tasks that require knowledge, reasoning, and perception abilities together, we surprisingly found that these models struggle with simple tasks on infographics that require perception only. As existing benchmarks primarily focus on end tasks that require various abilities, they provide limited, fine-grained insights into the limitations of the models' perception abilities. To address this gap, we leverage the theory of graphical perception, an approach used to study how humans decode visual information encoded on charts and graphs, to develop an evaluation framework for analyzing gaps in LMMs' perception abilities in charts. With automated task generation and response evaluation designs, our framework enables comprehensive and controlled testing of LMMs' graphical perception across diverse chart types, visual elements, and task types. We apply our framework to evaluate and diagnose the perception capabilities of state-of-the-art LMMs at three granularity levels (chart, visual element, and pixel). Our findings underscore several critical limitations of current state-of-the-art LMMs, including GPT-4o: their inability to (1) generalize across chart types, (2) understand fundamental visual elements, and (3) cross reference values within a chart. These insights provide guidance for future improvements in perception abilities of LMMs. The evaluation framework and labeled data are publicly available at https://github.com/microsoft/lmm-graphical-perception.

Authors:Leonard Waldmann, Ando Shah, Yi Wang, Nils Lehmann, Adam J. Stewart, Zhitong Xiong, Xiao Xiang Zhu, Stefan Bauer, John Chuang
Title: Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
Abstract:
Earth observation (EO) data features diverse sensing platforms with varying spectral bands, spatial resolutions, and sensing modalities. While most prior work has constrained inputs to fixed sensors, a new class of any-sensor foundation models able to process arbitrary sensors has recently emerged. Contributing to this line of work, we propose Panopticon, an any-sensor foundation model built on the DINOv2 framework. We extend DINOv2 by (1) treating images of the same geolocation across sensors as natural augmentations, (2) subsampling channels to diversify spectral input, and (3) adding a cross attention over channels as a flexible patch embedding mechanism. By encoding the wavelength and modes of optical and synthetic aperture radar sensors, respectively, Panopticon can effectively process any combination of arbitrary channels. In extensive evaluations, we achieve state-of-the-art performance on GEO-Bench, especially on the widely-used Sentinel-1 and Sentinel-2 sensors, while out-competing other any-sensor models, as well as domain adapted fixed-sensor models on unique sensor configurations. Panopticon enables immediate generalization to both existing and future satellite platforms, advancing sensor-agnostic EO.

Authors:Ju He, Qihang Yu, Qihao Liu, Liang-Chieh Chen
Title: FlowTok: Flowing Seamlessly Across Text and Image Tokens
Abstract:
Bridging different modalities lies at the heart of cross-modality generation. While conventional approaches treat the text modality as a conditioning signal that gradually guides the denoising process from Gaussian noise to the target image modality, we explore a much simpler paradigm-directly evolving between text and image modalities through flow matching. This requires projecting both modalities into a shared latent space, which poses a significant challenge due to their inherently different representations: text is highly semantic and encoded as 1D tokens, whereas images are spatially redundant and represented as 2D latent embeddings. To address this, we introduce FlowTok, a minimal framework that seamlessly flows across text and images by encoding images into a compact 1D token representation. Compared to prior methods, this design reduces the latent space size by 3.3x at an image resolution of 256, eliminating the need for complex conditioning mechanisms or noise scheduling. Moreover, FlowTok naturally extends to image-to-text generation under the same formulation. With its streamlined architecture centered around compact 1D tokens, FlowTok is highly memory-efficient, requires significantly fewer training resources, and achieves much faster sampling speeds-all while delivering performance comparable to state-of-the-art models. Code will be available at https://github.com/bytedance/1d-tokenizer.

Authors:Yafei Zhang, Murray Wang, Yu Wang, Xiaohui Wang
Title: RankPO: Preference Optimization for Job-Talent Matching
Abstract:
Matching job descriptions (JDs) with suitable talent requires models capable of understanding not only textual similarities between JDs and candidate resumes but also contextual factors such as geographical location and academic seniority. To address this challenge, we propose a two-stage training framework for large language models (LLMs). In the first stage, a contrastive learning approach is used to train the model on a dataset constructed from real-world matching rules, such as geographical alignment and research area overlap. While effective, this model primarily learns patterns that defined by the matching rules. In the second stage, we introduce a novel preference-based fine-tuning method inspired by Direct Preference Optimization (DPO), termed Rank Preference Optimization (RankPO), to align the model with AI-curated pairwise preferences emphasizing textual understanding. Our experiments show that while the first-stage model achieves strong performance on rule-based data (nDCG@20 = 0.706), it lacks robust textual understanding (alignment with AI annotations = 0.46). By fine-tuning with RankPO, we achieve a balanced model that retains relatively good performance in the original tasks while significantly improving the alignment with AI preferences. The code and data are available at https://github.com/yflyzhang/RankPO.

Authors:Tsan-Tsung Yang, I-Wei Chen, Kuan-Ting Chen, Shang-Hsuan Chiang, Wen-Chih Peng
Title: Team NYCU at Defactify4: Robust Detection and Source Identification of AI-Generated Images Using CNN and CLIP-Based Models
Abstract:
With the rapid advancement of generative AI, AI-generated images have become increasingly realistic, raising concerns about creativity, misinformation, and content authenticity. Detecting such images and identifying their source models has become a critical challenge in ensuring the integrity of digital media. This paper tackles the detection of AI-generated images and identifying their source models using CNN and CLIP-ViT classifiers. For the CNN-based classifier, we leverage EfficientNet-B0 as the backbone and feed with RGB channels, frequency features, and reconstruction errors, while for CLIP-ViT, we adopt a pretrained CLIP image encoder to extract image features and SVM to perform classification. Evaluated on the Defactify 4 dataset, our methods demonstrate strong performance in both tasks, with CLIP-ViT showing superior robustness to image perturbations. Compared to baselines like AEROBLADE and OCC-CLIP, our approach achieves competitive results. Notably, our method ranked Top-3 overall in the Defactify 4 competition, highlighting its effectiveness and generalizability. All of our implementations can be found in https://github.com/uuugaga/Defactify_4

Authors:Xin Liu, Pei Liu, Guoming Tang
Title: ZSMerge: Zero-Shot KV Cache Compression for Memory-Efficient Long-Context LLMs
Abstract:
The linear growth of key-value (KV) cache memory and quadratic computational in attention mechanisms complexity pose significant bottlenecks for large language models (LLMs) in long-context processing. While existing KV cache optimization methods address these challenges through token pruning or feature merging, they often incur irreversible information loss or require costly parameter retraining. To this end, we propose ZSMerge, a dynamic KV cache compression framework designed for efficient cache management, featuring three key operations: (1) fine-grained memory allocation guided by multi-dimensional token importance metrics at head-level granularity, (2) a residual merging mechanism that preserves critical context through compensated attention scoring, and (3) a zero-shot adaptation mechanism compatible with diverse LLM architectures without requiring retraining. ZSMerge significantly enhances memory efficiency and inference speed with negligible performance degradation across LLMs. When applied to LLaMA2-7B, it demonstrates a 20:1 compression ratio for key-value cache retention (reducing memory footprint to 5\% of baseline) while sustaining comparable generation quality, coupled with triple throughput gains at extreme 54k-token contexts that eliminate out-of-memory failures. The code is available at https://github.com/SusCom-Lab/ZSMerge.

Authors:Xin Liu, Xudong Wang, Pei Liu, Guoming Tang
Title: ZSMerge: Zero-Shot KV Cache Compression for Memory-Efficient Long-Context LLMs
Abstract:
The linear growth of key-value (KV) cache memory and quadratic computational in attention mechanisms complexity pose significant bottlenecks for large language models (LLMs) in long-context processing. While existing KV cache optimization methods address these challenges through token pruning or feature merging, they often incur irreversible information loss or require costly parameter retraining. To this end, we propose ZSMerge, a dynamic KV cache compression framework designed for efficient cache management, featuring three key operations: (1) fine-grained memory allocation guided by multi-dimensional token importance metrics at head-level granularity, (2) a residual merging mechanism that preserves critical context through compensated attention scoring, and (3) a zero-shot adaptation mechanism compatible with diverse LLM architectures without requiring retraining. ZSMerge significantly enhances memory efficiency and inference speed with negligible performance degradation across LLMs. When applied to LLaMA2-7B, it demonstrates a 20:1 compression ratio for key-value cache retention (reducing memory footprint to 5\% of baseline) while sustaining comparable generation quality, coupled with triple throughput gains at extreme 54k-token contexts that eliminate out-of-memory failures. The code is available at https://github.com/SusCom-Lab/ZSMerge.

Authors:Fan Lyu, Tianle Liu, Zhang Zhang, Fuyuan Hu, Liang Wang
Title: Test-Time Discovery via Hashing Memory
Abstract:
We introduce Test-Time Discovery (TTD) as a novel task that addresses class shifts during testing, requiring models to simultaneously identify emerging categories while preserving previously learned ones. A key challenge in TTD is distinguishing newly discovered classes from those already identified. To address this, we propose a training-free, hash-based memory mechanism that enhances class discovery through fine-grained comparisons with past test samples. Leveraging the characteristics of unknown classes, our approach introduces hash representation based on feature scale and directions, utilizing Locality-Sensitive Hashing (LSH) for efficient grouping of similar samples. This enables test samples to be easily and quickly compared with relevant past instances. Furthermore, we design a collaborative classification strategy, combining a prototype classifier for known classes with an LSH-based classifier for novel ones. To enhance reliability, we incorporate a self-correction mechanism that refines memory labels through hash-based neighbor retrieval, ensuring more stable and accurate class assignments. Experimental results demonstrate that our method achieves good discovery of novel categories while maintaining performance on known classes, establishing a new paradigm in model testing. Our code is available at https://github.com/fanlyu/ttd.

Authors:Yefei He, Yuanyu He, Shaoxuan He, Feng Chen, Hong Zhou, Kaipeng Zhang, Bohan Zhuang
Title: Neighboring Autoregressive Modeling for Efficient Visual Generation
Abstract:
Visual autoregressive models typically adhere to a raster-order ``next-token prediction" paradigm, which overlooks the spatial and temporal locality inherent in visual content. Specifically, visual tokens exhibit significantly stronger correlations with their spatially or temporally adjacent tokens compared to those that are distant. In this paper, we propose Neighboring Autoregressive Modeling (NAR), a novel paradigm that formulates autoregressive visual generation as a progressive outpainting procedure, following a near-to-far ``next-neighbor prediction" mechanism. Starting from an initial token, the remaining tokens are decoded in ascending order of their Manhattan distance from the initial token in the spatial-temporal space, progressively expanding the boundary of the decoded region. To enable parallel prediction of multiple adjacent tokens in the spatial-temporal space, we introduce a set of dimension-oriented decoding heads, each predicting the next token along a mutually orthogonal dimension. During inference, all tokens adjacent to the decoded tokens are processed in parallel, substantially reducing the model forward steps for generation. Experiments on ImageNet$256\times 256$ and UCF101 demonstrate that NAR achieves 2.4$\times$ and 8.6$\times$ higher throughput respectively, while obtaining superior FID/FVD scores for both image and video generation tasks compared to the PAR-4X approach. When evaluating on text-to-image generation benchmark GenEval, NAR with 0.8B parameters outperforms Chameleon-7B while using merely 0.4 of the training data. Code is available at https://github.com/ThisisBillhe/NAR.

Authors:Yibin Ye, Xichao Teng, Shuo Chen, Zhang Li, Leqi Liu, Qifeng Yu, Tao Tan
Title: Exploring the best way for UAV visual localization under Low-altitude Multi-view Observation Condition: a Benchmark
Abstract:
Absolute Visual Localization (AVL) enables Unmanned Aerial Vehicle (UAV) to determine its position in GNSS-denied environments by establishing geometric relationships between UAV images and geo-tagged reference maps. While many previous works have achieved AVL with image retrieval and matching techniques, research in low-altitude multi-view scenarios still remains limited. Low-altitude Multi-view condition presents greater challenges due to extreme viewpoint changes. To explore the best UAV AVL approach in such condition, we proposed this benchmark. Firstly, a large-scale Low-altitude Multi-view dataset called AnyVisLoc was constructed. This dataset includes 18,000 images captured at multiple scenes and altitudes, along with 2.5D reference maps containing aerial photogrammetry maps and historical satellite maps. Secondly, a unified framework was proposed to integrate the state-of-the-art AVL approaches and comprehensively test their performance. The best combined method was chosen as the baseline and the key factors that influencing localization accuracy are thoroughly analyzed based on it. This baseline achieved a 74.1% localization accuracy within 5m under Low-altitude, Multi-view conditions. In addition, a novel retrieval metric called PDM@K was introduced to better align with the characteristics of the UAV AVL task. Overall, this benchmark revealed the challenges of Low-altitude, Multi-view UAV AVL and provided valuable guidance for future research. The dataset and codes are available at https://github.com/UAV-AVL/Benchmark

Authors:Qiji Zhou, Yifan Gong, Guangsheng Bao, Hongjie Qiu, Jinqiang Li, Xiangrong Zhu, Huajian Zhang, Yue Zhang
Title: Reasoning is All You Need for Video Generalization: A Counterfactual Benchmark with Sub-question Evaluation
Abstract:
Counterfactual reasoning is crucial for robust video understanding but remains underexplored in existing multimodal benchmarks. In this paper, we introduce \textbf{COVER} (\textbf{\underline{CO}}unterfactual \textbf{\underline{V}}id\textbf{\underline{E}}o \textbf{\underline{R}}easoning), a multidimensional multimodal benchmark that systematically evaluates MLLMs across the abstract-concrete and perception-cognition dimensions. Beyond prior multimodal benchmarks, COVER decomposes complex queries into structured sub-questions, enabling fine-grained reasoning analysis. Experiments on commercial and open-source models reveal a strong correlation between sub-question accuracy and counterfactual reasoning performance, highlighting the role of structured inference in video understanding. Furthermore, our results suggest a key insight: enhancing the reasoning capability of models is essential for improving the robustness of video understanding. COVER establishes a new standard for assessing MLLMs' logical reasoning abilities in dynamic environments. Our work is available at https://github.com/gongyifan-hash/COVER-Benchmark.

Authors:Khawar Islam, Naveed Akhtar
Title: Context-guided Responsible Data Augmentation with Diffusion Models
Abstract:
Generative diffusion models offer a natural choice for data augmentation when training complex vision models. However, ensuring reliability of their generative content as augmentation samples remains an open challenge. Despite a number of techniques utilizing generative images to strengthen model training, it remains unclear how to utilize the combination of natural and generative images as a rich supervisory signal for effective model induction. In this regard, we propose a text-to-image (T2I) data augmentation method, named DiffCoRe-Mix, that computes a set of generative counterparts for a training sample with an explicitly constrained diffusion model that leverages sample-based context and negative prompting for a reliable augmentation sample generation. To preserve key semantic axes, we also filter out undesired generative samples in our augmentation process. To that end, we propose a hard-cosine filtration in the embedding space of CLIP. Our approach systematically mixes the natural and generative images at pixel and patch levels. We extensively evaluate our technique on ImageNet-1K,Tiny ImageNet-200, CIFAR-100, Flowers102, CUB-Birds, Stanford Cars, and Caltech datasets, demonstrating a notable increase in performance across the board, achieving up to $\sim 3\%$ absolute gain for top-1 accuracy over the state-of-the-art methods, while showing comparable computational overhead. Our code is publicly available at https://github.com/khawar-islam/DiffCoRe-Mix

Authors:Lehan Yang, Jincen Song, Tianlong Wang, Daiqing Qi, Weili Shi, Yuheng Liu, Sheng Li
Title: VRMDiff: Text-Guided Video Referring Matting Generation of Diffusion
Abstract:
We propose a new task, video referring matting, which obtains the alpha matte of a specified instance by inputting a referring caption. We treat the dense prediction task of matting as video generation, leveraging the text-to-video alignment prior of video diffusion models to generate alpha mattes that are temporally coherent and closely related to the corresponding semantic instances. Moreover, we propose a new Latent-Constructive loss to further distinguish different instances, enabling more controllable interactive matting. Additionally, we introduce a large-scale video referring matting dataset with 10,000 videos. To the best of our knowledge, this is the first dataset that concurrently contains captions, videos, and instance-level alpha mattes. Extensive experiments demonstrate the effectiveness of our method. The dataset and code are available at https://github.com/Hansxsourse/VRMDiff.

Authors:Yang Xiao, Wang Lu, Jie Ji, Ruimeng Ye, Gen Li, Xiaolong Ma, Bo Hui
Title: Optimal Transport for Brain-Image Alignment: Unveiling Redundancy and Synergy in Neural Information Processing
Abstract:
The design of artificial neural networks (ANNs) is inspired by the structure of the human brain, and in turn, ANNs offer a potential means to interpret and understand brain signals. Existing methods primarily align brain signals with stimulus signals using Mean Squared Error (MSE), which focuses only on local point-wise alignment and ignores global matching, leading to coarse interpretations and inaccuracies in brain signal decoding. In this paper, we address these issues through optimal transport (OT) and theoretically demonstrate why OT provides a more effective alignment strategy than MSE. Specifically, we construct a transport plan between brain voxel embeddings and image embeddings, enabling more precise matching. By controlling the amount of transport, we mitigate the influence of redundant information. We apply our alignment model directly to the Brain Captioning task by feeding brain signals into a large language model (LLM) instead of images. Our approach achieves state-of-the-art performance across ten evaluation metrics, surpassing the previous best method by an average of 6.11\% in single-subject training and 3.81\% in cross-subject training. Additionally, we have uncovered several insightful conclusions that align with existing brain research. We unveil the redundancy and synergy of brain information processing through region masking and data dimensionality reduction visualization experiments. We believe our approach paves the way for a more precise understanding of brain signals in the future. The code is available at https://github.com/NKUShaw/OT-Alignment4brain-to-image.

Authors:Zhongzhan Huang, Guoming Ling, Yupei Lin, Yandong Chen, Shanshan Zhong, Hefeng Wu, Liang Lin
Title: RouterEval: A Comprehensive Benchmark for Routing LLMs to Explore Model-level Scaling Up in LLMs
Abstract:
Routing large language models (LLMs) is a new paradigm that uses a router to recommend the best LLM from a pool of candidates for a given input. In this paper, our comprehensive analysis with more than 8,500 LLMs reveals a novel model-level scaling up phenomenon in Routing LLMs, i.e., a capable router can significantly enhance the performance of this paradigm as the number of candidates increases. This improvement can even surpass the performance of the best single model in the pool and many existing strong LLMs, confirming it a highly promising paradigm. However, the lack of comprehensive and open-source benchmarks for Routing LLMs has hindered the development of routers. In this paper, we introduce RouterEval, a benchmark tailored for router research, which includes over 200,000,000 performance records for 12 popular LLM evaluations across various areas such as commonsense reasoning, semantic understanding, etc., based on over 8,500 various LLMs. Using RouterEval, extensive evaluations of existing Routing LLM methods reveal that most still have significant room for improvement. See https://github.com/MilkThink-Lab/RouterEval for all data, code and tutorial.

Authors:Rongyao Fang, Chengqi Duan, Kun Wang, Linjiang Huang, Hao Li, Shilin Yan, Hao Tian, Xingyu Zeng, Rui Zhao, Jifeng Dai, Xihui Liu, Hongsheng Li
Title: GoT: Unleashing Reasoning Capability of Multimodal Large Language Model for Visual Generation and Editing
Abstract:
Current image generation and editing methods primarily process textual prompts as direct inputs without reasoning about visual composition and explicit operations. We present Generation Chain-of-Thought (GoT), a novel paradigm that enables generation and editing through an explicit language reasoning process before outputting images. This approach transforms conventional text-to-image generation and editing into a reasoning-guided framework that analyzes semantic relationships and spatial arrangements. We define the formulation of GoT and construct large-scale GoT datasets containing over 9M samples with detailed reasoning chains capturing semantic-spatial relationships. To leverage the advantages of GoT, we implement a unified framework that integrates Qwen2.5-VL for reasoning chain generation with an end-to-end diffusion model enhanced by our novel Semantic-Spatial Guidance Module. Experiments show our GoT framework achieves excellent performance on both generation and editing tasks, with significant improvements over baselines. Additionally, our approach enables interactive visual generation, allowing users to explicitly modify reasoning steps for precise image adjustments. GoT pioneers a new direction for reasoning-driven visual generation and editing, producing images that better align with human intent. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/rongyaofang/GoT.

Authors:Zhaoyi Li, Xiaohan Zhao, Dong-Dong Wu, Jiacheng Cui, Zhiqiang Shen
Title: A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1
Abstract:
Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.

Authors:Hashmat Shadab Malik, Shahina Kunhimon, Muzammal Naseer, Fahad Shahbaz Khan, Salman Khan
Title: Hierarchical Self-Supervised Adversarial Training for Robust Vision Models in Histopathology
Abstract:
Adversarial attacks pose significant challenges for vision models in critical fields like healthcare, where reliability is essential. Although adversarial training has been well studied in natural images, its application to biomedical and microscopy data remains limited. Existing self-supervised adversarial training methods overlook the hierarchical structure of histopathology images, where patient-slide-patch relationships provide valuable discriminative signals. To address this, we propose Hierarchical Self-Supervised Adversarial Training (HSAT), which exploits these properties to craft adversarial examples using multi-level contrastive learning and integrate it into adversarial training for enhanced robustness. We evaluate HSAT on multiclass histopathology dataset OpenSRH and the results show that HSAT outperforms existing methods from both biomedical and natural image domains. HSAT enhances robustness, achieving an average gain of 54.31% in the white-box setting and reducing performance drops to 3-4% in the black-box setting, compared to 25-30% for the baseline. These results set a new benchmark for adversarial training in this domain, paving the way for more robust models. Our Code for training and evaluation is available at https://github.com/HashmatShadab/HSAT.

Authors:Boqian Li, Haiwen Feng, Zeyu Cai, Michael J. Black, Yuliang Xiu
Title: ETCH: Generalizing Body Fitting to Clothed Humans via Equivariant Tightness
Abstract:
Fitting a body to a 3D clothed human point cloud is a common yet challenging task. Traditional optimization-based approaches use multi-stage pipelines that are sensitive to pose initialization, while recent learning-based methods often struggle with generalization across diverse poses and garment types. We propose Equivariant Tightness Fitting for Clothed Humans, or ETCH, a novel pipeline that estimates cloth-to-body surface mapping through locally approximate SE(3) equivariance, encoding tightness as displacement vectors from the cloth surface to the underlying body. Following this mapping, pose-invariant body features regress sparse body markers, simplifying clothed human fitting into an inner-body marker fitting task. Extensive experiments on CAPE and 4D-Dress show that ETCH significantly outperforms state-of-the-art methods -- both tightness-agnostic and tightness-aware -- in body fitting accuracy on loose clothing (16.7% ~ 69.5%) and shape accuracy (average 49.9%). Our equivariant tightness design can even reduce directional errors by (67.2% ~ 89.8%) in one-shot (or out-of-distribution) settings (~ 1% data). Qualitative results demonstrate strong generalization of ETCH, regardless of challenging poses, unseen shapes, loose clothing, and non-rigid dynamics. We will release the code and models soon for research purposes at https://boqian-li.github.io/ETCH/.

Authors:Ayesha Ishaq, Jean Lahoud, Ketan More, Omkar Thawakar, Ritesh Thawkar, Dinura Dissanayake, Noor Ahsan, Yuhao Li, Fahad Shahbaz Khan, Hisham Cholakkal, Ivan Laptev, Rao Muhammad Anwer, Salman Khan
Title: DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding
Abstract:
While large multimodal models (LMMs) have demonstrated strong performance across various Visual Question Answering (VQA) tasks, certain challenges require complex multi-step reasoning to reach accurate answers. One particularly challenging task is autonomous driving, which demands thorough cognitive processing before decisions can be made. In this domain, a sequential and interpretive understanding of visual cues is essential for effective perception, prediction, and planning. Nevertheless, common VQA benchmarks often focus on the accuracy of the final answer while overlooking the reasoning process that enables the generation of accurate responses. Moreover, existing methods lack a comprehensive framework for evaluating step-by-step reasoning in realistic driving scenarios. To address this gap, we propose DriveLMM-o1, a new dataset and benchmark specifically designed to advance step-wise visual reasoning for autonomous driving. Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning, each enriched with step-by-step reasoning to ensure logical inference in autonomous driving scenarios. We further introduce a large multimodal model that is fine-tuned on our reasoning dataset, demonstrating robust performance in complex driving scenarios. In addition, we benchmark various open-source and closed-source methods on our proposed dataset, systematically comparing their reasoning capabilities for autonomous driving tasks. Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model. Our framework, dataset, and model are available at https://github.com/ayesha-ishaq/DriveLMM-o1.

Authors:Jinyang Li, En Yu, Sijia Chen, Wenbing Tao
Title: OVTR: End-to-End Open-Vocabulary Multiple Object Tracking with Transformer
Abstract:
Open-vocabulary multiple object tracking aims to generalize trackers to unseen categories during training, enabling their application across a variety of real-world scenarios. However, the existing open-vocabulary tracker is constrained by its framework structure, isolated frame-level perception, and insufficient modal interactions, which hinder its performance in open-vocabulary classification and tracking. In this paper, we propose OVTR (End-to-End Open-Vocabulary Multiple Object Tracking with TRansformer), the first end-to-end open-vocabulary tracker that models motion, appearance, and category simultaneously. To achieve stable classification and continuous tracking, we design the CIP (Category Information Propagation) strategy, which establishes multiple high-level category information priors for subsequent frames. Additionally, we introduce a dual-branch structure for generalization capability and deep multimodal interaction, and incorporate protective strategies in the decoder to enhance performance. Experimental results show that our method surpasses previous trackers on the open-vocabulary MOT benchmark while also achieving faster inference speeds and significantly reducing preprocessing requirements. Moreover, the experiment transferring the model to another dataset demonstrates its strong adaptability. Models and code are released at https://github.com/jinyanglii/OVTR.

Authors:Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, Wei Chen
Title: R1-Onevision: Advancing Generalized Multimodal Reasoning through Cross-Modal Formalization
Abstract:
Large Language Models have demonstrated remarkable reasoning capability in complex textual tasks. However, multimodal reasoning, which requires integrating visual and textual information, remains a significant challenge. Existing visual-language models often struggle to effectively analyze and reason visual content, resulting in suboptimal performance on complex reasoning tasks. Moreover, the absence of comprehensive benchmarks hinders the accurate assessment of multimodal reasoning capabilities. In this paper, we introduce R1-Onevision, a multimodal reasoning model designed to bridge the gap between visual perception and deep reasoning. To achieve this, we propose a cross-modal reasoning pipeline that transforms images into formal textural representations, enabling precise language-based reasoning. Leveraging this pipeline, we construct the R1-Onevision dataset which provides detailed, step-by-step multimodal reasoning annotations across diverse domains. We further develop the R1-Onevision model through supervised fine-tuning and reinforcement learning to cultivate advanced reasoning and robust generalization abilities. To comprehensively evaluate multimodal reasoning performance across different grades, we introduce R1-Onevision-Bench, a benchmark aligned with human educational stages, covering exams from junior high school to university and beyond. Experimental results show that R1-Onevision achieves state-of-the-art performance, outperforming models such as GPT-4o and Qwen2.5-VL on multiple challenging multimodal reasoning benchmarks.

Authors:Severin Heidrich, Till Beemelmanns, Alexey Nekrasov, Bastian Leibe, Lutz Eckstein
Title: OCCUQ: Exploring Efficient Uncertainty Quantification for 3D Occupancy Prediction
Abstract:
Autonomous driving has the potential to significantly enhance productivity and provide numerous societal benefits. Ensuring robustness in these safety-critical systems is essential, particularly when vehicles must navigate adverse weather conditions and sensor corruptions that may not have been encountered during training. Current methods often overlook uncertainties arising from adversarial conditions or distributional shifts, limiting their real-world applicability. We propose an efficient adaptation of an uncertainty estimation technique for 3D occupancy prediction. Our method dynamically calibrates model confidence using epistemic uncertainty estimates. Our evaluation under various camera corruption scenarios, such as fog or missing cameras, demonstrates that our approach effectively quantifies epistemic uncertainty by assigning higher uncertainty values to unseen data. We introduce region-specific corruptions to simulate defects affecting only a single camera and validate our findings through both scene-level and region-level assessments. Our results show superior performance in Out-of-Distribution (OoD) detection and confidence calibration compared to common baselines such as Deep Ensembles and MC-Dropout. Our approach consistently demonstrates reliable uncertainty measures, indicating its potential for enhancing the robustness of autonomous driving systems in real-world scenarios. Code and dataset are available at https://github.com/ika-rwth-aachen/OCCUQ .

Authors:Jinhao Duan, Fei Kong, Hao Cheng, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Xiaofeng Zhu, Xiaoshuang Shi, Kaidi Xu
Title: TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Abstract:
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.

Authors:Rui Hu, Lianghui Zhu, Yuxuan Zhang, Tianheng Cheng, Lei Liu, Heng Liu, Longjin Ran, Xiaoxin Chen, Wenyu Liu, Xinggang Wang
Title: GroundingSuite: Measuring Complex Multi-Granular Pixel Grounding
Abstract:
Pixel grounding, encompassing tasks such as Referring Expression Segmentation (RES), has garnered considerable attention due to its immense potential for bridging the gap between vision and language modalities. However, advancements in this domain are currently constrained by limitations inherent in existing datasets, including limited object categories, insufficient textual diversity, and a scarcity of high-quality annotations. To mitigate these limitations, we introduce GroundingSuite, which comprises: (1) an automated data annotation framework leveraging multiple Vision-Language Model (VLM) agents; (2) a large-scale training dataset encompassing 9.56 million diverse referring expressions and their corresponding segmentations; and (3) a meticulously curated evaluation benchmark consisting of 3,800 images. The GroundingSuite training dataset facilitates substantial performance improvements, enabling models trained on it to achieve state-of-the-art results. Specifically, a cIoU of 68.9 on gRefCOCO and a gIoU of 55.3 on RefCOCOm. Moreover, the GroundingSuite annotation framework demonstrates superior efficiency compared to the current leading data annotation method, i.e., $4.5 \times$ faster than GLaMM.

Authors:Egor Zverev, Evgenii Kortukov, Alexander Panfilov, Alexandra Volkova, Soroush Tabesh, Sebastian Lapuschkin, Wojciech Samek, Christoph H. Lampert
Title: ASIDE: Architectural Separation of Instructions and Data in Language Models
Abstract:
Despite their remarkable performance, large language models lack elementary safety features, making them susceptible to numerous malicious attacks. In particular, previous work has identified the absence of an intrinsic separation between instructions and data as a root cause of the success of prompt injection attacks. In this work, we propose a new architectural element, ASIDE, that allows language models to clearly separate instructions and data at the level of embeddings. ASIDE applies an orthogonal rotation to the embeddings of data tokens, thus creating clearly distinct representations of instructions and data tokens without introducing any additional parameters. As we demonstrate experimentally across a range of models, instruction-tuning LLMs with ASIDE (1) leads to highly increased instruction-data separation without a loss in model utility and (2) makes the models more robust to prompt injection benchmarks, even without dedicated safety training. Additionally, we provide insights into the mechanism underlying our method through an analysis of the model representations. The source code and training scripts are openly accessible at https://github.com/egozverev/aside.

Authors:Quoc-Tien Nguyen, Hong-Hai Nguyen, Van-Thong Huynh
Title: Lightweight Models for Emotional Analysis in Video
Abstract:
In this study, we present an approach for efficient spatiotemporal feature extraction using MobileNetV4 and a multi-scale 3D MLP-Mixer-based temporal aggregation module. MobileNetV4, with its Universal Inverted Bottleneck (UIB) blocks, serves as the backbone for extracting hierarchical feature representations from input image sequences, ensuring both computational efficiency and rich semantic encoding. To capture temporal dependencies, we introduce a three-level MLP-Mixer module, which processes spatial features at multiple resolutions while maintaining structural integrity. Experimental results on the ABAW 8th competition demonstrate the effectiveness of our approach, showing promising performance in affective behavior analysis. By integrating an efficient vision backbone with a structured temporal modeling mechanism, the proposed framework achieves a balance between computational efficiency and predictive accuracy, making it well-suited for real-time applications in mobile and embedded computing environments.

Authors:Zengrong Lin, Zheng Wang, Tianwen Qian, Pan Mu, Sixian Chan, Cong Bai
Title: NeighborRetr: Balancing Hub Centrality in Cross-Modal Retrieval
Abstract:
Cross-modal retrieval aims to bridge the semantic gap between different modalities, such as visual and textual data, enabling accurate retrieval across them. Despite significant advancements with models like CLIP that align cross-modal representations, a persistent challenge remains: the hubness problem, where a small subset of samples (hubs) dominate as nearest neighbors, leading to biased representations and degraded retrieval accuracy. Existing methods often mitigate hubness through post-hoc normalization techniques, relying on prior data distributions that may not be practical in real-world scenarios. In this paper, we directly mitigate hubness during training and introduce NeighborRetr, a novel method that effectively balances the learning of hubs and adaptively adjusts the relations of various kinds of neighbors. Our approach not only mitigates the hubness problem but also enhances retrieval performance, achieving state-of-the-art results on multiple cross-modal retrieval benchmarks. Furthermore, NeighborRetr demonstrates robust generalization to new domains with substantial distribution shifts, highlighting its effectiveness in real-world applications. We make our code publicly available at: https://github.com/zzezze/NeighborRetr .

Authors:Florian Eichin, Yang Janet Liu, Barbara Plank, Michael A. Hedderich
Title: Probing LLMs for Multilingual Discourse Generalization Through a Unified Label Set
Abstract:
Discourse understanding is essential for many NLP tasks, yet most existing work remains constrained by framework-dependent discourse representations. This work investigates whether large language models (LLMs) capture discourse knowledge that generalizes across languages and frameworks. We address this question along two dimensions: (1) developing a unified discourse relation label set to facilitate cross-lingual and cross-framework discourse analysis, and (2) probing LLMs to assess whether they encode generalizable discourse abstractions. Using multilingual discourse relation classification as a testbed, we examine a comprehensive set of 23 LLMs of varying sizes and multilingual capabilities. Our results show that LLMs, especially those with multilingual training corpora, can generalize discourse information across languages and frameworks. Further layer-wise analyses reveal that language generalization at the discourse level is most salient in the intermediate layers. Lastly, our error analysis provides an account of challenging relation classes.

Authors:Xudong Tan, Peng Ye, Chongjun Tu, Jianjian Cao, Yaoxin Yang, Lin Zhang, Dongzhan Zhou, Tao Chen
Title: TokenCarve: Information-Preserving Visual Token Compression in Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) are becoming increasingly popular, while the high computational cost associated with multimodal data input, particularly from visual tokens, poses a significant challenge. Existing training-based token compression methods improve inference efficiency but require costly retraining, while training-free methods struggle to maintain performance when aggressively reducing token counts. In this study, we reveal that the performance degradation of MLLM closely correlates with the accelerated loss of information in the attention output matrix. This insight introduces a novel information-preserving perspective, making it possible to maintain performance even under extreme token compression. Based on this finding, we propose TokenCarve, a training-free, plug-and-play, two-stage token compression framework. The first stage employs an Information-Preservation-Guided Selection (IPGS) strategy to prune low-information tokens, while the second stage further leverages IPGS to guide token merging, minimizing information loss. Extensive experiments on 11 datasets and 2 model variants demonstrate the effectiveness of TokenCarve. It can even reduce the number of visual tokens to 22.2% of the original count, achieving a 1.23x speedup in inference, a 64% reduction in KV cache storage, and only a 1.54% drop in accuracy. Our code is available at https://github.com/ShawnTan86/TokenCarve.

Authors:Jiali Yao, Xinran Deng, Xin Gu, Mengrui Dai, Bing Fan, Zhipeng Zhang, Yan Huang, Heng Fan, Libo Zhang
Title: OmniSTVG: Toward Spatio-Temporal Omni-Object Video Grounding
Abstract:
In this paper, we propose spatio-temporal omni-object video grounding, dubbed OmniSTVG, a new STVG task that aims at localizing spatially and temporally all targets mentioned in the textual query from videos. Compared to classic STVG locating only a single target, OmniSTVG enables localization of not only an arbitrary number of text-referred targets but also their interacting counterparts in the query from the video, making it more flexible and practical in real scenarios for comprehensive understanding. In order to facilitate exploration of OmniSTVG, we introduce BOSTVG, a large-scale benchmark dedicated to OmniSTVG. Specifically, our BOSTVG consists of 10,018 videos with 10.2M frames and covers a wide selection of 287 classes from diverse scenarios. Each sequence in BOSTVG, paired with a free-form textual query, encompasses a varying number of targets ranging from 1 to 10. To ensure high quality, each video is manually annotated with meticulous inspection and refinement. To our best knowledge, BOSTVG is to date the first and the largest benchmark for OmniSTVG. To encourage future research, we introduce a simple yet effective approach, named OmniTube, which, drawing inspiration from Transformer-based STVG methods, is specially designed for OmniSTVG and demonstrates promising results. By releasing BOSTVG, we hope to go beyond classic STVG by locating every object appearing in the query for more comprehensive understanding, opening up a new direction for STVG. Our benchmark, model, and results will be released at https://github.com/JellyYao3000/OmniSTVG.

Authors:Eirik Høyheim, Lars Skaaret-Lund, Solve Sæbø, Aliaksandr Hubin
Title: Explainable Bayesian deep learning through input-skip Latent Binary Bayesian Neural Networks
Abstract:
Modeling natural phenomena with artificial neural networks (ANNs) often provides highly accurate predictions. However, ANNs often suffer from over-parameterization, complicating interpretation and raising uncertainty issues. Bayesian neural networks (BNNs) address the latter by representing weights as probability distributions, allowing for predictive uncertainty evaluation. Latent binary Bayesian neural networks (LBBNNs) further handle structural uncertainty and sparsify models by removing redundant weights. This article advances LBBNNs by enabling covariates to skip to any succeeding layer or be excluded, simplifying networks and clarifying input impacts on predictions. Ultimately, a linear model or even a constant can be found to be optimal for a specific problem at hand. Furthermore, the input-skip LBBNN approach reduces network density significantly compared to standard LBBNNs, achieving over 99% reduction for small networks and over 99.9% for larger ones, while still maintaining high predictive accuracy and uncertainty measurement. For example, on MNIST, we reached 97% accuracy and great calibration with just 935 weights, reaching state-of-the-art for compression of neural networks. Furthermore, the proposed method accurately identifies the true covariates and adjusts for system non-linearity. The main contribution is the introduction of active paths, enhancing directly designed global and local explanations within the LBBNN framework, that have theoretical guarantees and do not require post hoc external tools for explanations.

Authors:Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, Xiangzheng Zhang
Title: Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond
Abstract:
This paper introduces Light-R1, an open-source suite for training long reasoning models using reproducible and cost-effective methodology. Given the proprietary nature of data used in the DeepSeek-R1 series, we develop an alternative approach leveraging exclusively public data and models. Our curriculum training progressively increases data difficulty, combined with multi-staged post-training. Our Light-R1-32B model, trained from Qwen2.5-32B-Instruct, outperforms DeepSeek-R1-Distill-Qwen-32B in math reasoning. Experimental results show that this curriculum approach becomes more effective when distinct, diverse datasets are available for different training stages: fine-tuning DeepSeek-R1-Distilled models (pre-tuned by DeepSeek team on proprietary data) with 3,000 challenging examples from our curriculum dataset yielded state-of-the-art 7B and 14B models, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying GRPO on long reasoning models. Our final Light-R1-14B-DS achieves SOTA performance among 14B models in math, with AIME24 & 25 scores of 74.0 and 60.2 respectively, surpassing many 32B models and DeepSeek-R1-Distill-Llama-70B. Despite math-focused training, Light-R1-14B-DS demonstrates strong cross-domain generalization. Light-R1 represents a significant advancement in making sophisticated reasoning models more accessible and implementable in real-world applications. Our models, training data and code have been made available at https://github.com/Qihoo360/Light-R1.

Authors:Wenhao Hu, Jinhao Duan, Chunchen Wei, Li Zhang, Yue Zhang, Kaidi Xu
Title: DynaCode: A Dynamic Complexity-Aware Code Benchmark for Evaluating Large Language Models in Code Generation
Abstract:
The rapid advancement of large language models (LLMs) has significantly improved their performance in code generation tasks. However, existing code benchmarks remain static, consisting of fixed datasets with predefined problems. This makes them vulnerable to memorization during training, where LLMs recall specific test cases instead of generalizing to new problems, leading to data contamination and unreliable evaluation results. To address these issues, we introduce DynaCode, a dynamic, complexity-aware benchmark that overcomes the limitations of static datasets. DynaCode evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures. DynaCode achieves large-scale diversity, generating up to 189 million unique nested code problems across four distinct levels of code complexity, referred to as units, and 16 types of call graphs. Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark, with performance progressively decreasing as complexity increases. This demonstrates DynaCode's ability to effectively differentiate LLMs. Additionally, by leveraging call graphs, we gain insights into LLM behavior, particularly their preference for handling subfunction interactions within nested code. Our benchmark and evaluation code are available at https://github.com/HWH-2000/DynaCode.

Authors:Yuwen Du, Anning Hu, Zichen Chao, Yifan Lu, Junhao Ge, Genjia Liu, Weitao Wu, Lanjun Wang, Siheng Chen
Title: RoCo-Sim: Enhancing Roadside Collaborative Perception through Foreground Simulation
Abstract:
Roadside Collaborative Perception refers to a system where multiple roadside units collaborate to pool their perceptual data, assisting vehicles in enhancing their environmental awareness. Existing roadside perception methods concentrate on model design but overlook data issues like calibration errors, sparse information, and multi-view consistency, leading to poor performance on recent published datasets. To significantly enhance roadside collaborative perception and address critical data issues, we present the first simulation framework RoCo-Sim for road-side collaborative perception. RoCo-Sim is capable of generating diverse, multi-view consistent simulated roadside data through dynamic foreground editing and full-scene style transfer of a single image. RoCo-Sim consists of four components: (1) Camera Extrinsic Optimization ensures accurate 3D to 2D projection for roadside cameras; (2) A novel Multi-View Occlusion-Aware Sampler (MOAS) determines the placement of diverse digital assets within 3D space; (3) DepthSAM innovatively models foreground-background relationships from single-frame fixed-view images, ensuring multi-view consistency of foreground; and (4) Scalable Post-Processing Toolkit generates more realistic and enriched scenes through style transfer and other enhancements. RoCo-Sim significantly improves roadside 3D object detection, outperforming SOTA methods by 83.74 on Rcooper-Intersection and 83.12 on TUMTraf-V2X for AP70. RoCo-Sim fills a critical gap in roadside perception simulation. Code and pre-trained models will be released soon: https://github.com/duyuwen-duen/RoCo-Sim

Authors:Yijing Lin, Mengqi Huang, Shuhan Zhuang, Zhendong Mao
Title: RealGeneral: Unifying Visual Generation via Temporal In-Context Learning with Video Models
Abstract:
Unifying diverse image generation tasks within a single framework remains a fundamental challenge in visual generation. While large language models (LLMs) achieve unification through task-agnostic data and generation, existing visual generation models fail to meet these principles. Current approaches either rely on per-task datasets and large-scale training or adapt pre-trained image models with task-specific modifications, limiting their generalizability. In this work, we explore video models as a foundation for unified image generation, leveraging their inherent ability to model temporal correlations. We introduce RealGeneral, a novel framework that reformulates image generation as a conditional frame prediction task, analogous to in-context learning in LLMs. To bridge the gap between video models and condition-image pairs, we propose (1) a Unified Conditional Embedding module for multi-modal alignment and (2) a Unified Stream DiT Block with decoupled adaptive LayerNorm and attention mask to mitigate cross-modal interference. RealGeneral demonstrates effectiveness in multiple important visual generation tasks, e.g., it achieves a 14.5% improvement in subject similarity for customized generation and a 10% enhancement in image quality for canny-to-image task. Project page: https://lyne1.github.io/realgeneral_web/; GitHub Link: https://github.com/Lyne1/RealGeneral

Authors:Matteo Gambella, Fabrizio Pittorino, Manuel Roveri
Title: Architecture-Aware Minimization (A$^2$M): How to Find Flat Minima in Neural Architecture Search
Abstract:
Neural Architecture Search (NAS) has become an essential tool for designing effective and efficient neural networks. In this paper, we investigate the geometric properties of neural architecture spaces commonly used in differentiable NAS methods, specifically NAS-Bench-201 and DARTS. By defining flatness metrics such as neighborhoods and loss barriers along paths in architecture space, we reveal locality and flatness characteristics analogous to the well-known properties of neural network loss landscapes in weight space. In particular, we find that highly accurate architectures cluster together in flat regions, while suboptimal architectures remain isolated, unveiling the detailed geometrical structure of the architecture search landscape. Building on these insights, we propose Architecture-Aware Minimization (A$^2$M), a novel analytically derived algorithmic framework that explicitly biases, for the first time, the gradient of differentiable NAS methods towards flat minima in architecture space. A$^2$M consistently improves generalization over state-of-the-art DARTS-based algorithms on benchmark datasets including CIFAR-10, CIFAR-100, and ImageNet16-120, across both NAS-Bench-201 and DARTS search spaces. Notably, A$^2$M is able to increase the test accuracy, on average across different differentiable NAS methods, by +3.60\% on CIFAR-10, +4.60\% on CIFAR-100, and +3.64\% on ImageNet16-120, demonstrating its superior effectiveness in practice. A$^2$M can be easily integrated into existing differentiable NAS frameworks, offering a versatile tool for future research and applications in automated machine learning. We open-source our code at https://github.com/AI-Tech-Research-Lab/AsquaredM.

Authors:Fengxiang Wang, Hongzhen Wang, Yulin Wang, Di Wang, Mingshuo Chen, Haiyan Zhao, Yangang Sun, Shuo Wang, Long Lan, Wenjing Yang, Jing Zhang
Title: RoMA: Scaling up Mamba-based Foundation Models for Remote Sensing
Abstract:
Recent advances in self-supervised learning for Vision Transformers (ViTs) have fueled breakthroughs in remote sensing (RS) foundation models. However, the quadratic complexity of self-attention poses a significant barrier to scalability, particularly for large models and high-resolution images. While the linear-complexity Mamba architecture offers a promising alternative, existing RS applications of Mamba remain limited to supervised tasks on small, domain-specific datasets. To address these challenges, we propose RoMA, a framework that enables scalable self-supervised pretraining of Mamba-based RS foundation models using large-scale, diverse, unlabeled data. RoMA enhances scalability for high-resolution images through a tailored auto-regressive learning strategy, incorporating two key innovations: 1) a rotation-aware pretraining mechanism combining adaptive cropping with angular embeddings to handle sparsely distributed objects with arbitrary orientations, and 2) multi-scale token prediction objectives that address the extreme variations in object scales inherent to RS imagery. Systematic empirical studies validate that Mamba adheres to RS data and parameter scaling laws, with performance scaling reliably as model and data size increase. Furthermore, experiments across scene classification, object detection, and semantic segmentation tasks demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-based counterparts in both accuracy and computational efficiency. The source code and pretrained models will be released at https://github.com/MiliLab/RoMA.

Authors:Shuvro Chowdhury, Navid Anjum Aadit, Andrea Grimaldi, Eleonora Raimondo, Atharva Raut, P. Aaron Lott, Johan H. Mentink, Marek M. Rams, Federico Ricci-Tersenghi, Massimo Chiappini, Luke S. Theogarajan, Tathagata Srimani, Giovanni Finocchio, Masoud Mohseni, Kerem Y. Camsari
Title: Pushing the Boundary of Quantum Advantage in Hard Combinatorial Optimization with Probabilistic Computers
Abstract:
Recent demonstrations on specialized benchmarks have reignited excitement for quantum computers, yet whether they can deliver an advantage for practical real-world problems remains an open question. Here, we show that probabilistic computers (p-computers), when co-designed with hardware to implement powerful Monte Carlo algorithms, provide a compelling and scalable classical pathway for solving hard optimization problems. We focus on two key algorithms applied to 3D spin glasses: discrete-time simulated quantum annealing (DT-SQA) and adaptive parallel tempering (APT). We benchmark these methods against the performance of a leading quantum annealer on the same problem instances. For DT-SQA, we find that increasing the number of replicas improves residual energy scaling, in line with expectations from extreme value theory. We then show that APT, when supported by non-local isoenergetic cluster moves, exhibits a more favorable scaling and ultimately outperforms DT-SQA. We demonstrate these algorithms are readily implementable in modern hardware, projecting that custom Field Programmable Gate Arrays (FPGA) or specialized chips can leverage massive parallelism to accelerate these algorithms by orders of magnitude while drastically improving energy efficiency. Our results establish a new, rigorous classical baseline, clarifying the landscape for assessing a practical quantum advantage and presenting p-computers as a scalable platform for real-world optimization challenges.

Authors:Zhen Zhang, Meihan Liu, Bingsheng He
Title: PyGDA: A Python Library for Graph Domain Adaptation
Abstract:
Graph domain adaptation has emerged as a promising approach to facilitate knowledge transfer across different domains. Recently, numerous models have been proposed to enhance their generalization capabilities in this field. However, there is still no unified library that brings together existing techniques and simplifies their implementation. To fill this gap, we introduce PyGDA, an open-source Python library tailored for graph domain adaptation. As the first comprehensive library in this area, PyGDA covers more than 20 widely used graph domain adaptation methods together with different types of graph datasets. Specifically, PyGDA offers modular components, enabling users to seamlessly build custom models with a variety of commonly used utility functions. To handle large-scale graphs, PyGDA includes support for features such as sampling and mini-batch processing, ensuring efficient computation. In addition, PyGDA also includes comprehensive performance benchmarks and well-documented user-friendly API for both researchers and practitioners. To foster convenient accessibility, PyGDA is released under the MIT license at https://github.com/pygda-team/pygda, and the API documentation is https://pygda.readthedocs.io/en/stable/.

Authors:Zexuan Yan, Yue Ma, Chang Zou, Wenteng Chen, Qifeng Chen, Linfeng Zhang
Title: EEdit: Rethinking the Spatial and Temporal Redundancy for Efficient Image Editing
Abstract:
Inversion-based image editing is rapidly gaining momentum while suffering from significant computation overhead, hindering its application in real-time interactive scenarios. In this paper, we rethink that the redundancy in inversion-based image editing exists in both the spatial and temporal dimensions, such as the unnecessary computation in unedited regions and the redundancy in the inversion progress. To tackle these challenges, we propose a practical framework, named EEdit, to achieve efficient image editing. Specifically, we introduce three techniques to solve them one by one. For spatial redundancy, spatial locality caching is introduced to compute the edited region and its neighboring regions while skipping the unedited regions, and token indexing preprocessing is designed to further accelerate the caching. For temporal redundancy, inversion step skipping is proposed to reuse the latent for efficient editing. Our experiments demonstrate an average of 2.46 $\times$ acceleration without performance drop in a wide range of editing tasks including prompt-guided image editing, dragging and image composition. Our codes are available at https://github.com/yuriYanZeXuan/EEdit

Authors:Yunpeng Qu, Kun Yuan, Qizhi Xie, Ming Sun, Chao Zhou, Jian Wang
Title: KVQ: Boosting Video Quality Assessment via Saliency-guided Local Perception
Abstract:
Video Quality Assessment (VQA), which intends to predict the perceptual quality of videos, has attracted increasing attention. Due to factors like motion blur or specific distortions, the quality of different regions in a video varies. Recognizing the region-wise local quality within a video is beneficial for assessing global quality and can guide us in adopting fine-grained enhancement or transcoding strategies. Due to the heavy cost of annotating region-wise quality, the lack of ground truth constraints from relevant datasets further complicates the utilization of local perception. Inspired by the Human Visual System (HVS) that links global quality to the local texture of different regions and their visual saliency, we propose a Kaleidoscope Video Quality Assessment (KVQ) framework, which aims to effectively assess both saliency and local texture, thereby facilitating the assessment of global quality. Our framework extracts visual saliency and allocates attention using Fusion-Window Attention (FWA) while incorporating a Local Perception Constraint (LPC) to mitigate the reliance of regional texture perception on neighboring areas. KVQ obtains significant improvements across multiple scenarios on five VQA benchmarks compared to SOTA methods. Furthermore, to assess local perception, we establish a new Local Perception Visual Quality (LPVQ) dataset with region-wise annotations. Experimental results demonstrate the capability of KVQ in perceiving local distortions. KVQ models and the LPVQ dataset will be available at https://github.com/qyp2000/KVQ.

Authors:Zhi Chen, Zecheng Zhao, Jingcai Guo, Jingjing Li, Zi Huang
Title: SVIP: Semantically Contextualized Visual Patches for Zero-Shot Learning
Abstract:
Zero-shot learning (ZSL) aims to recognize unseen classes without labeled training examples by leveraging class-level semantic descriptors such as attributes. A fundamental challenge in ZSL is semantic misalignment, where semantic-unrelated information involved in visual features introduce ambiguity to visual-semantic interaction. Unlike existing methods that suppress semantic-unrelated information post hoc either in the feature space or the model space, we propose addressing this issue at the input stage, preventing semantic-unrelated patches from propagating through the network. To this end, we introduce Semantically contextualized VIsual Patches (SVIP) for ZSL, a transformer-based framework designed to enhance visual-semantic alignment. Specifically, we propose a self-supervised patch selection mechanism that preemptively learns to identify semantic-unrelated patches in the input space. This is trained with the supervision from aggregated attention scores across all transformer layers, which estimate each patch's semantic score. As removing semantic-unrelated patches from the input sequence may disrupt object structure, we replace them with learnable patch embeddings. With initialization from word embeddings, we can ensure they remain semantically meaningful throughout feature extraction. Extensive experiments on ZSL benchmarks demonstrate that SVIP achieves state-of-the-art performance results while providing more interpretable and semantically rich feature representations. Code is available at https://github.com/uqzhichen/SVIP.

Authors:Zhijie Zhu, Lei Fan, Maurice Pagnucco, Yang Song
Title: Interpretable Image Classification via Non-parametric Part Prototype Learning
Abstract:
Classifying images with an interpretable decision-making process is a long-standing problem in computer vision. In recent years, Prototypical Part Networks has gained traction as an approach for self-explainable neural networks, due to their ability to mimic human visual reasoning by providing explanations based on prototypical object parts. However, the quality of the explanations generated by these methods leaves room for improvement, as the prototypes usually focus on repetitive and redundant concepts. Leveraging recent advances in prototype learning, we present a framework for part-based interpretable image classification that learns a set of semantically distinctive object parts for each class, and provides diverse and comprehensive explanations. The core of our method is to learn the part-prototypes in a non-parametric fashion, through clustering deep features extracted from foundation vision models that encode robust semantic information. To quantitatively evaluate the quality of explanations provided by ProtoPNets, we introduce Distinctiveness Score and Comprehensiveness Score. Through evaluation on CUB-200-2011, Stanford Cars and Stanford Dogs datasets, we show that our framework compares favourably against existing ProtoPNets while achieving better interpretability. Code is available at: https://github.com/zijizhu/proto-non-param.

Authors:Julian Schelb, Orr Borin, David Garcia, Andreas Spitz
Title: R.U.Psycho? Robust Unified Psychometric Testing of Language Models
Abstract:
Generative language models are increasingly being subjected to psychometric questionnaires intended for human testing, in efforts to establish their traits, as benchmarks for alignment, or to simulate participants in social science experiments. While this growing body of work sheds light on the likeness of model responses to those of humans, concerns are warranted regarding the rigour and reproducibility with which these experiments may be conducted. Instabilities in model outputs, sensitivity to prompt design, parameter settings, and a large number of available model versions increase documentation requirements. Consequently, generalization of findings is often complex and reproducibility is far from guaranteed. In this paper, we present R.U.Psycho, a framework for designing and running robust and reproducible psychometric experiments on generative language models that requires limited coding expertise. We demonstrate the capability of our framework on a variety of psychometric questionnaires, which lend support to prior findings in the literature. R.U.Psycho is available as a Python package at https://github.com/julianschelb/rupsycho.

Authors:Kaixiang Yang, Xin Li, Qiang Li, Zhiwei Wang
Title: CoStoDet-DDPM: Collaborative Training of Stochastic and Deterministic Models Improves Surgical Workflow Anticipation and Recognition
Abstract:
Anticipating and recognizing surgical workflows are critical for intelligent surgical assistance systems. However, existing methods rely on deterministic decision-making, struggling to generalize across the large anatomical and procedural variations inherent in real-world surgeries.In this paper, we introduce an innovative framework that incorporates stochastic modeling through a denoising diffusion probabilistic model (DDPM) into conventional deterministic learning for surgical workflow analysis. At the heart of our approach is a collaborative co-training paradigm: the DDPM branch captures procedural uncertainties to enrich feature representations, while the task branch focuses on predicting surgical phases and instrument usage.Theoretically, we demonstrate that this mutual refinement mechanism benefits both branches: the DDPM reduces prediction errors in uncertain scenarios, and the task branch directs the DDPM toward clinically meaningful representations. Notably, the DDPM branch is discarded during inference, enabling real-time predictions without sacrificing accuracy.Experiments on the Cholec80 dataset show that for the anticipation task, our method achieves a 16% reduction in eMAE compared to state-of-the-art approaches, and for phase recognition, it improves the Jaccard score by 1.0%. Additionally, on the AutoLaparo dataset, our method achieves a 1.5% improvement in the Jaccard score for phase recognition, while also exhibiting robust generalization to patient-specific variations. Our code and weight are available at https://github.com/kk42yy/CoStoDet-DDPM.

Authors:Boyu Chen, Zhengrong Yue, Siran Chen, Zikang Wang, Yang Liu, Peng Li, Yali Wang
Title: LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
Abstract:
Existing MLLMs encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools to assist a single MLLM in answering long video questions. Despite such tool-based support, a solitary MLLM still offers only a partial understanding of long videos, resulting in limited performance. In order to better address long video tasks, we introduce LVAgent, the first framework enabling multi-round dynamic collaboration of MLLM agents in long video understanding. Our method consists of four key steps: 1) Selection: We pre-select appropriate agents from the model library to form optimal agent teams based on different tasks. 2) Perception: We design an effective retrieval scheme for long videos to improve the coverage of critical temporal segments while maintaining computational efficiency. 3) Action: Agents answer long video questions and exchange reasons. 4) Reflection: We evaluate each agent's performance in each round of discussion and optimize the agent team for dynamic collaboration. The agents iteratively refine their answers by multi-round dynamical collaboration of MLLM agents. LVAgent is the first agent system method that outperforms all closed-source models (like GPT-4o) and open-source models (like InternVL-2.5 and Qwen2-VL) in the long video understanding tasks. Our LVAgent achieves an accuracy of 80\% on four mainstream long video understanding tasks. Notably, LVAgent improves accuracy by 13.3\% on LongVideoBench. Code is available at https://github.com/64327069/LVAgent.

Authors:Jianheng Liu, Yunfei Wan, Bowen Wang, Chunran Zheng, Jiarong Lin, Fu Zhang
Title: GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
Abstract:
Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field. This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes are released at https://github.com/hku-mars/GS-SDF.

Authors:Thomas Sanchez, Vladyslav Zalevskyi, Angeline Mihailov, Gerard Martí-Juan, Elisenda Eixarch, Andras Jakab, Vincent Dunet, Mériam Koob, Guillaume Auzias, Meritxell Bach Cuadra
Title: Automatic quality control in multi-centric fetal brain MRI super-resolution reconstruction
Abstract:
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies. It is particularly important for fetal brain MRI, where acquisitions and image processing techniques are less standardized than in adult imaging. In this work, we focus on automated quality control of super-resolution reconstruction (SRR) volumes of fetal brain MRI, an important processing step where multiple stacks of thick 2D slices are registered together and combined to build a single, isotropic and artifact-free T2 weighted volume. We propose FetMRQC$_{SR}$, a machine-learning method that extracts more than 100 image quality metrics to predict image quality scores using a random forest model. This approach is well suited to a problem that is high dimensional, with highly heterogeneous data and small datasets. We validate FetMRQC$_{SR}$ in an out-of-domain (OOD) setting and report high performance (ROC AUC = 0.89), even when faced with data from an unknown site or SRR method. We also investigate failure cases and show that they occur in $45\%$ of the images due to ambiguous configurations for which the rating from the expert is arguable. These results are encouraging and illustrate how a non deep learning-based method like FetMRQC$_{SR}$ is well suited to this multifaceted problem. Our tool, along with all the code used to generate, train and evaluate the model are available at https://github.com/Medical-Image-Analysis-Laboratory/fetmrqc_sr/ .

Authors:Zhenxuan Zeng, Qiao Wu, Xiyu Zhang, Lin Yuanbo Wu, Pei An, Jiaqi Yang, Ji Wang, Peng Wang
Title: Unlocking Generalization Power in LiDAR Point Cloud Registration
Abstract:
In real-world environments, a LiDAR point cloud registration method with robust generalization capabilities (across varying distances and datasets) is crucial for ensuring safety in autonomous driving and other LiDAR-based applications. However, current methods fall short in achieving this level of generalization. To address these limitations, we propose UGP, a pruned framework designed to enhance generalization power for LiDAR point cloud registration. The core insight in UGP is the elimination of cross-attention mechanisms to improve generalization, allowing the network to concentrate on intra-frame feature extraction. Additionally, we introduce a progressive self-attention module to reduce ambiguity in large-scale scenes and integrate Bird's Eye View (BEV) features to incorporate semantic information about scene elements. Together, these enhancements significantly boost the network's generalization performance. We validated our approach through various generalization experiments in multiple outdoor scenes. In cross-distance generalization experiments on KITTI and nuScenes, UGP achieved state-of-the-art mean Registration Recall rates of 94.5% and 91.4%, respectively. In cross-dataset generalization from nuScenes to KITTI, UGP achieved a state-of-the-art mean Registration Recall of 90.9%. Code will be available at https://github.com/peakpang/UGP.

Authors:Linzuo Zhang, Yu Hu, Yang Deng, Feng Yu, Danping Zou
Title: Mapless Collision-Free Flight via MPC using Dual KD-Trees in Cluttered Environments
Abstract:
Collision-free flight in cluttered environments is a critical capability for autonomous quadrotors. Traditional methods often rely on detailed 3D map construction, trajectory generation, and tracking. However, this cascade pipeline can introduce accumulated errors and computational delays, limiting flight agility and safety. In this paper, we propose a novel method for enabling collision-free flight in cluttered environments without explicitly constructing 3D maps or generating and tracking collision-free trajectories. Instead, we leverage Model Predictive Control (MPC) to directly produce safe actions from sparse waypoints and point clouds from a depth camera. These sparse waypoints are dynamically adjusted online based on nearby obstacles detected from point clouds. To achieve this, we introduce a dual KD-Tree mechanism: the Obstacle KD-Tree quickly identifies the nearest obstacle for avoidance, while the Edge KD-Tree provides a robust initial guess for the MPC solver, preventing it from getting stuck in local minima during obstacle avoidance. We validate our approach through extensive simulations and real-world experiments. The results show that our approach significantly outperforms the mapping-based methods and is also superior to imitation learning-based methods, demonstrating reliable obstacle avoidance at up to 12 m/s in simulations and 6 m/s in real-world tests. Our method provides a simple and robust alternative to existing methods. The code is publicly available at https://github.com/SJTU-ViSYS-team/avoid-mpc.

Authors:Jinze Li, Yixing Xu, Haiduo Huang, Xuanwu Yin, Dong Li, Edith C. H. Ngai, Emad Barsoum
Title: Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding
Abstract:
Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.

Authors:Yanfeng Li, Kahou Chan, Yue Sun, Chantong Lam, Tong Tong, Zitong Yu, Keren Fu, Xiaohong Liu, Tao Tan
Title: MoEdit: On Learning Quantity Perception for Multi-object Image Editing
Abstract:
Multi-object images are prevalent in various real-world scenarios, including augmented reality, advertisement design, and medical imaging. Efficient and precise editing of these images is critical for these applications. With the advent of Stable Diffusion (SD), high-quality image generation and editing have entered a new era. However, existing methods often struggle to consider each object both individually and part of the whole image editing, both of which are crucial for ensuring consistent quantity perception, resulting in suboptimal perceptual performance. To address these challenges, we propose MoEdit, an auxiliary-free multi-object image editing framework. MoEdit facilitates high-quality multi-object image editing in terms of style transfer, object reinvention, and background regeneration, while ensuring consistent quantity perception between inputs and outputs, even with a large number of objects. To achieve this, we introduce the Feature Compensation (FeCom) module, which ensures the distinction and separability of each object attribute by minimizing the in-between interlacing. Additionally, we present the Quantity Attention (QTTN) module, which perceives and preserves quantity consistency by effective control in editing, without relying on auxiliary tools. By leveraging the SD model, MoEdit enables customized preservation and modification of specific concepts in inputs with high quality. Experimental results demonstrate that our MoEdit achieves State-Of-The-Art (SOTA) performance in multi-object image editing. Data and codes will be available at https://github.com/Tear-kitty/MoEdit.

Authors:Zecheng Zhao, Zhi Chen, Zi Huang, Shazia Sadiq, Tong Chen
Title: Continual Text-to-Video Retrieval with Frame Fusion and Task-Aware Routing
Abstract:
Text-to-Video Retrieval (TVR) aims to retrieve relevant videos based on textual queries. However, as video content evolves continuously, adapting TVR systems to new data remains a critical yet under-explored challenge. In this paper, we introduce the first benchmark for Continual Text-to-Video Retrieval (CTVR) to address the limitations of existing approaches. Current Pre-Trained Model (PTM)-based TVR methods struggle with maintaining model plasticity when adapting to new tasks, while existing Continual Learning (CL) methods suffer from catastrophic forgetting, leading to semantic misalignment between historical queries and stored video features. To address these two challenges, we propose FrameFusionMoE, a novel CTVR framework that comprises two key components: (1) the Frame Fusion Adapter (FFA), which captures temporal video dynamics while preserving model plasticity, and (2) the Task-Aware Mixture-of-Experts (TAME), which ensures consistent semantic alignment between queries across tasks and the stored video features. Thus, FrameFusionMoE enables effective adaptation to new video content while preserving historical text-video relevance to mitigate catastrophic forgetting. We comprehensively evaluate FrameFusionMoE on two benchmark datasets under various task settings. Results demonstrate that FrameFusionMoE outperforms existing CL and TVR methods, achieving superior retrieval performance with minimal degradation on earlier tasks when handling continuous video streams. Our code is available at: https://github.com/JasonCodeMaker/CTVR.

Authors:Shu-Xun Yang, Cunxiang Wang, Yidong Wang, Xiaotao Gu, Minlie Huang, Jie Tang
Title: StepMathAgent: A Step-Wise Agent for Evaluating Mathematical Processes through Tree-of-Error
Abstract:
Evaluating mathematical capabilities is critical for assessing the overall performance of large language models (LLMs). However, existing evaluation methods often focus solely on final answers, resulting in highly inaccurate and uninterpretable evaluation outcomes, as well as their failure to assess proof or open-ended problems. To address these issues, we propose a novel mathematical process evaluation agent based on Tree-of-Error, called StepMathAgent. This agent incorporates four internal core operations: logical step segmentation, step scoring, score aggregation and error tree generation, along with four external extension modules: difficulty calibration, simplicity evaluation, completeness validation and format assessment. Furthermore, we introduce StepMathBench, a benchmark comprising 1,000 step-divided process evaluation instances, derived from 200 high-quality math problems grouped by problem type, subject category and difficulty level. Experiments on StepMathBench show that our proposed StepMathAgent outperforms all state-of-the-art methods, demonstrating human-aligned evaluation preferences and broad applicability to various scenarios. Our data and code are available at https://github.com/SHU-XUN/StepMathAgent.

Authors:Yuheng Liang, Zheyu Wang, Feng Liu, Mingzhou Liu, Yu Yao
Title: Mamba-VA: A Mamba-based Approach for Continuous Emotion Recognition in Valence-Arousal Space
Abstract:
Continuous Emotion Recognition (CER) plays a crucial role in intelligent human-computer interaction, mental health monitoring, and autonomous driving. Emotion modeling based on the Valence-Arousal (VA) space enables a more nuanced representation of emotional states. However, existing methods still face challenges in handling long-term dependencies and capturing complex temporal dynamics. To address these issues, this paper proposes a novel emotion recognition model, Mamba-VA, which leverages the Mamba architecture to efficiently model sequential emotional variations in video frames. First, the model employs a Masked Autoencoder (MAE) to extract deep visual features from video frames, enhancing the robustness of temporal information. Then, a Temporal Convolutional Network (TCN) is utilized for temporal modeling to capture local temporal dependencies. Subsequently, Mamba is applied for long-sequence modeling, enabling the learning of global emotional trends. Finally, a fully connected (FC) layer performs regression analysis to predict continuous valence and arousal values. Experimental results on the Valence-Arousal (VA) Estimation task of the 8th competition on Affective Behavior Analysis in-the-wild (ABAW) demonstrate that the proposed model achieves valence and arousal scores of 0.5362 (0.5036) and 0.4310 (0.4119) on the validation (test) set, respectively, outperforming the baseline. The source code is available on GitHub:https://github.com/FreedomPuppy77/Charon.

Authors:Jiawei Zhang, Ziyuan Liu, Leon Yan, Gen Li, Yuantao Gu
Title: Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
Abstract:
Diffusion models have demonstrated remarkable performance in modeling complex data priors, catalyzing their widespread adoption in solving various inverse problems. However, the inherently iterative nature of diffusion-based inverse algorithms often requires hundreds to thousands of steps, with performance degradation occurring under fewer steps which limits their practical applicability. While high-order diffusion ODE solvers have been extensively explored for efficient diffusion sampling without observations, their application to inverse problems remains underexplored due to the diverse forms of inverse algorithms and their need for repeated trajectory correction based on observations. To address this gap, we first introduce a canonical form that decomposes existing diffusion-based inverse algorithms into three modules to unify their analysis. Inspired by the linear subspace search strategy in the design of high-order diffusion ODE solvers, we propose the Learnable Linear Extrapolation (LLE) method, a lightweight approach that universally enhances the performance of any diffusion-based inverse algorithm that fits the proposed canonical form. Extensive experiments demonstrate consistent improvements of the proposed LLE method across multiple algorithms and tasks, indicating its potential for more efficient solutions and boosted performance of diffusion-based inverse algorithms with limited steps. Codes for reproducing our experiments are available at https://github.com/weigerzan/LLE_inverse_problem.

Authors:Zhen Qu, Xian Tao, Xinyi Gong, Shichen Qu, Qiyu Chen, Zhengtao Zhang, Xingang Wang, Guiguang Ding
Title: Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection
Abstract:
Recently, vision-language models (e.g. CLIP) have demonstrated remarkable performance in zero-shot anomaly detection (ZSAD). By leveraging auxiliary data during training, these models can directly perform cross-category anomaly detection on target datasets, such as detecting defects on industrial product surfaces or identifying tumors in organ tissues. Existing approaches typically construct text prompts through either manual design or the optimization of learnable prompt vectors. However, these methods face several challenges: 1) handcrafted prompts require extensive expert knowledge and trial-and-error; 2) single-form learnable prompts struggle to capture complex anomaly semantics; and 3) an unconstrained prompt space limits generalization to unseen categories. To address these issues, we propose Bayesian Prompt Flow Learning (Bayes-PFL), which models the prompt space as a learnable probability distribution from a Bayesian perspective. Specifically, a prompt flow module is designed to learn both image-specific and image-agnostic distributions, which are jointly utilized to regularize the text prompt space and improve the model's generalization on unseen categories. These learned distributions are then sampled to generate diverse text prompts, effectively covering the prompt space. Additionally, a residual cross-model attention (RCA) module is introduced to better align dynamic text embeddings with fine-grained image features. Extensive experiments on 15 industrial and medical datasets demonstrate our method's superior performance. The code is available at https://github.com/xiaozhen228/Bayes-PFL.

Authors:Chunyi Li, Xiaozhe Li, Zicheng Zhang, Yuan Tian, Ziheng Jia, Xiaohong Liu, Xiongkuo Min, Jia Wang, Haodong Duan, Kai Chen, Guangtao Zhai
Title: Information Density Principle for MLLM Benchmarks
Abstract:
With the emergence of Multimodal Large Language Models (MLLMs), hundreds of benchmarks have been developed to ensure the reliability of MLLMs in downstream tasks. However, the evaluation mechanism itself may not be reliable. For developers of MLLMs, questions remain about which benchmark to use and whether the test results meet their requirements. Therefore, we propose a critical principle of Information Density, which examines how much insight a benchmark can provide for the development of MLLMs. We characterize it from four key dimensions: (1) Fallacy, (2) Difficulty, (3) Redundancy, (4) Diversity. Through a comprehensive analysis of more than 10,000 samples, we measured the information density of 19 MLLM benchmarks. Experiments show that using the latest benchmarks in testing can provide more insight compared to previous ones, but there is still room for improvement in their information density. We hope this principle can promote the development and application of future MLLM benchmarks. Project page: https://github.com/lcysyzxdxc/bench4bench

Authors:Chunyi Li, Yuan Tian, Xiaoyue Ling, Zicheng Zhang, Haodong Duan, Haoning Wu, Ziheng Jia, Xiaohong Liu, Xiongkuo Min, Guo Lu, Weisi Lin, Guangtao Zhai
Title: Image Quality Assessment: From Human to Machine Preference
Abstract:
Image Quality Assessment (IQA) based on human subjective preferences has undergone extensive research in the past decades. However, with the development of communication protocols, the visual data consumption volume of machines has gradually surpassed that of humans. For machines, the preference depends on downstream tasks such as segmentation and detection, rather than visual appeal. Considering the huge gap between human and machine visual systems, this paper proposes the topic: Image Quality Assessment for Machine Vision for the first time. Specifically, we (1) defined the subjective preferences of machines, including downstream tasks, test models, and evaluation metrics; (2) established the Machine Preference Database (MPD), which contains 2.25M fine-grained annotations and 30k reference/distorted image pair instances; (3) verified the performance of mainstream IQA algorithms on MPD. Experiments show that current IQA metrics are human-centric and cannot accurately characterize machine preferences. We sincerely hope that MPD can promote the evolution of IQA from human to machine preferences. Project page is on: https://github.com/lcysyzxdxc/MPD.

Authors:Xinran Ling, Chen Zhu, Meiqi Wu, Hangyu Li, Xiaokun Feng, Cundian Yang, Aiming Hao, Jiashu Zhu, Jiahong Wu, Xiangxiang Chu
Title: VMBench: A Benchmark for Perception-Aligned Video Motion Generation
Abstract:
Video generation has advanced rapidly, improving evaluation methods, yet assessing video's motion remains a major challenge. Specifically, there are two key issues: 1) current motion metrics do not fully align with human perceptions; 2) the existing motion prompts are limited. Based on these findings, we introduce VMBench--a comprehensive Video Motion Benchmark that has perception-aligned motion metrics and features the most diverse types of motion. VMBench has several appealing properties: 1) Perception-Driven Motion Evaluation Metrics, we identify five dimensions based on human perception in motion video assessment and develop fine-grained evaluation metrics, providing deeper insights into models' strengths and weaknesses in motion quality. 2) Meta-Guided Motion Prompt Generation, a structured method that extracts meta-information, generates diverse motion prompts with LLMs, and refines them through human-AI validation, resulting in a multi-level prompt library covering six key dynamic scene dimensions. 3) Human-Aligned Validation Mechanism, we provide human preference annotations to validate our benchmarks, with our metrics achieving an average 35.3% improvement in Spearman's correlation over baseline methods. This is the first time that the quality of motion in videos has been evaluated from the perspective of human perception alignment. Additionally, we will soon release VMBench at https://github.com/GD-AIGC/VMBench, setting a new standard for evaluating and advancing motion generation models.

Authors:Han Liu, Riqiang Gao, Sasa Grbic
Title: AI-assisted Early Detection of Pancreatic Ductal Adenocarcinoma on Contrast-enhanced CT
Abstract:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common and aggressive types of pancreatic cancer. However, due to the lack of early and disease-specific symptoms, most patients with PDAC are diagnosed at an advanced disease stage. Consequently, early PDAC detection is crucial for improving patients' quality of life and expanding treatment options. In this work, we develop a coarse-to-fine approach to detect PDAC on contrast-enhanced CT scans. First, we localize and crop the region of interest from the low-resolution images, and then segment the PDAC-related structures at a finer scale. Additionally, we introduce two strategies to further boost detection performance: (1) a data-splitting strategy for model ensembling, and (2) a customized post-processing function. We participated in the PANORAMA challenge and ranked 1st place for PDAC detection with an AUROC of 0.9263 and an AP of 0.7243. Our code and models are publicly available at https://github.com/han-liu/PDAC_detection.

Authors:Minje Kim, Minjun Kim, Xu Yang
Title: DTA: Dual Temporal-channel-wise Attention for Spiking Neural Networks
Abstract:
Spiking Neural Networks (SNNs) present a more energy-efficient alternative to Artificial Neural Networks (ANNs) by harnessing spatio-temporal dynamics and event-driven spikes. Effective utilization of temporal information is crucial for SNNs, leading to the exploration of attention mechanisms to enhance this capability. Conventional attention operations either apply identical operation or employ non-identical operations across target dimensions. We identify that these approaches provide distinct perspectives on temporal information. To leverage the strengths of both operations, we propose a novel Dual Temporal-channel-wise Attention (DTA) mechanism that integrates both identical/non-identical attention strategies. To the best of our knowledge, this is the first attempt to concentrate on both the correlation and dependency of temporal-channel using both identical and non-identical attention operations. Experimental results demonstrate that the DTA mechanism achieves state-of-the-art performance on both static datasets (CIFAR10, CIFAR100, ImageNet-1k) and dynamic dataset (CIFAR10-DVS), elevating spike representation and capturing complex temporal-channel relationship. We open-source our code: https://github.com/MnJnKIM/DTA-SNN.

Authors:Bharat Srikishan, Daniel O'Malley, Mohamed Mehana, Nicholas Lubbers, Nikhil Muralidhar
Title: Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout
Abstract:
Modeling the evolution of physical systems is critical to many applications in science and engineering. As the evolution of these systems is governed by partial differential equations (PDEs), there are a number of computational simulations which resolve these systems with high accuracy. However, as these simulations incur high computational costs, they are infeasible to be employed for large-scale analysis. A popular alternative to simulators are neural network surrogates which are trained in a data-driven manner and are much more computationally efficient. However, these surrogate models suffer from high rollout error when used autoregressively, especially when confronted with training data paucity. Existing work proposes to improve surrogate rollout error by either including physical loss terms directly in the optimization of the model or incorporating computational simulators as `differentiable layers' in the neural network. Both of these approaches have their challenges, with physical loss functions suffering from slow convergence for stiff PDEs and simulator layers requiring gradients which are not always available, especially in legacy simulators. We propose the Hybrid PDE Predictor with Reinforcement Learning (HyPER) model: a model-agnostic, RL based, cost-aware model which combines a neural surrogate, RL decision model, and a physics simulator (with or without gradients) to reduce surrogate rollout error significantly. In addition to reducing in-distribution rollout error by 47%-78%, HyPER learns an intelligent policy that is adaptable to changing physical conditions and resistant to noise corruption. Code available at https://github.com/scailab/HyPER.

Authors:Wenjie Li, Heng Guo, Yuefeng Hou, Guangwei Gao, Zhanyu Ma
Title: Dual-domain Modulation Network for Lightweight Image Super-Resolution
Abstract:
Lightweight image super-resolution (SR) aims to reconstruct high-resolution images from low-resolution images under limited computational costs. We find that existing frequency-based SR methods cannot balance the reconstruction of overall structures and high-frequency parts. Meanwhile, these methods are inefficient for handling frequency features and unsuitable for lightweight SR. In this paper, we show that introducing both wavelet and Fourier information allows our model to consider both high-frequency features and overall SR structure reconstruction while reducing costs. Specifically, we propose a Dual-domain Modulation Network that integrates both wavelet and Fourier information for enhanced frequency modeling. Unlike existing methods that rely on a single frequency representation, our design combines wavelet-domain modulation via a Wavelet-domain Modulation Transformer (WMT) with global Fourier supervision, enabling complementary spectral learning well-suited for lightweight SR. Experimental results show that our method achieves a comparable PSNR to SRFormer and MambaIR while with less than 50\% and 60\% of their FLOPs and achieving inference speeds 15.4x and 5.4x faster, respectively, demonstrating the effectiveness of our method on SR quality and lightweight. Code link: https://github.com/24wenjie-li/DMNet

Authors:Shiwon Kim, Dongjun Hwang, Sungwon Woo, Rita Singh
Title: Does Prior Data Matter? Exploring Joint Training in the Context of Few-Shot Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) aims to adapt to continuously emerging new classes while preserving knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents a greater challenge that requires the model to learn new classes from only a limited number of samples per class. While incremental learning typically assumes restricted access to past data, it often remains available in many real-world scenarios. This raises a practical question: should one retrain the model on the full dataset (i.e., joint training), or continue updating it solely with new data? In CIL, joint training is considered an ideal benchmark that provides a reference for evaluating the trade-offs between performance and computational cost. However, in FSCIL, joint training becomes less reliable due to severe imbalance between base and incremental classes. This results in the absence of a practical baseline, making it unclear which strategy is preferable for practitioners. To this end, we revisit joint training in the context of FSCIL by incorporating imbalance mitigation techniques, and suggest a new imbalance-aware joint training benchmark for FSCIL. We then conduct extensive comparisons between this benchmark and FSCIL methods to analyze which approach is most suitable when prior data is accessible. Our analysis offers realistic insights and guidance for selecting training strategies in real-world FSCIL scenarios. Code is available at: https://github.com/shiwonkim/Joint_FSCIL

Authors:Shu Wang, Yanbo Gao, Shuai Li, Chong Lv, Xun Cai, Chuankun Li, Hui Yuan, Jinglin Zhang
Title: MetricGrids: Arbitrary Nonlinear Approximation with Elementary Metric Grids based Implicit Neural Representation
Abstract:
This paper presents MetricGrids, a novel grid-based neural representation that combines elementary metric grids in various metric spaces to approximate complex nonlinear signals. While grid-based representations are widely adopted for their efficiency and scalability, the existing feature grids with linear indexing for continuous-space points can only provide degenerate linear latent space representations, and such representations cannot be adequately compensated to represent complex nonlinear signals by the following compact decoder. To address this problem while keeping the simplicity of a regular grid structure, our approach builds upon the standard grid-based paradigm by constructing multiple elementary metric grids as high-order terms to approximate complex nonlinearities, following the Taylor expansion principle. Furthermore, we enhance model compactness with hash encoding based on different sparsities of the grids to prevent detrimental hash collisions, and a high-order extrapolation decoder to reduce explicit grid storage requirements. experimental results on both 2D and 3D reconstructions demonstrate the superior fitting and rendering accuracy of the proposed method across diverse signal types, validating its robustness and generalizability. Code is available at https://github.com/wangshu31/MetricGrids}{https://github.com/wangshu31/MetricGrids.

Authors:Zijian Zhao, Xuming Zhang, Jiayu Wen, Mingwen Liu, Xiaoteng Ma
Title: Label Unbalance in High-frequency Trading
Abstract:
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .

Authors:Lin Tian, Sean I. Young, Jonathan Williams Ramirez, Dina Zemlyanker, Lucas Jacob Deden Binder, Rogeny Herisse, Theresa R. Connors, Derek H. Oakley, Bradley T. Hyman, Oula Puonti, Matthew S. Rosen, Juan Eugenio Iglesias
Title: Reference-Free 3D Reconstruction of Brain Dissection Photographs with Machine Learning
Abstract:
Correlation of neuropathology with MRI has the potential to transfer microscopic signatures of pathology to invivo scans. Recently, a classical registration method has been proposed, to build these correlations from 3D reconstructed stacks of dissection photographs, which are routinely taken at brain banks. These photographs bypass the need for exvivo MRI, which is not widely accessible. However, this method requires a full stack of brain slabs and a reference mask (e.g., acquired with a surface scanner), which severely limits the applicability of the technique. Here we propose RefFree, a dissection photograph reconstruction method without external reference. RefFree is a learning approach that estimates the 3D coordinates in the atlas space for every pixel in every photograph; simple least-squares fitting can then be used to compute the 3D reconstruction. As a by-product, RefFree also produces an atlas-based segmentation of the reconstructed stack. RefFree is trained on synthetic photographs generated from digitally sliced 3D MRI data, with randomized appearance for enhanced generalization ability. Experiments on simulated and real data show that RefFree achieves performance comparable to the baseline method without an explicit reference while also enabling reconstruction of partial stacks. Our code is available at https://github.com/lintian-a/reffree.

Authors:Jiayu Jiang, Changxing Ding, Wentao Tan, Junhong Wang, Jin Tao, Xiangmin Xu
Title: Modeling Thousands of Human Annotators for Generalizable Text-to-Image Person Re-identification
Abstract:
Text-to-image person re-identification (ReID) aims to retrieve the images of an interested person based on textual descriptions. One main challenge for this task is the high cost in manually annotating large-scale databases, which affects the generalization ability of ReID models. Recent works handle this problem by leveraging Multi-modal Large Language Models (MLLMs) to describe pedestrian images automatically. However, the captions produced by MLLMs lack diversity in description styles. To address this issue, we propose a Human Annotator Modeling (HAM) approach to enable MLLMs to mimic the description styles of thousands of human annotators. Specifically, we first extract style features from human textual descriptions and perform clustering on them. This allows us to group textual descriptions with similar styles into the same cluster. Then, we employ a prompt to represent each of these clusters and apply prompt learning to mimic the description styles of different human annotators. Furthermore, we define a style feature space and perform uniform sampling in this space to obtain more diverse clustering prototypes, which further enriches the diversity of the MLLM-generated captions. Finally, we adopt HAM to automatically annotate a massive-scale database for text-to-image ReID. Extensive experiments on this database demonstrate that it significantly improves the generalization ability of ReID models.

Authors:Zhenyu Liu, Dongfang Li, Xinshuo Hu, Xinping Zhao, Yibin Chen, Baotian Hu, Min Zhang
Title: Take Off the Training Wheels Progressive In-Context Learning for Effective Alignment
Abstract:
Recent studies have explored the working mechanisms of In-Context Learning (ICL). However, they mainly focus on classification and simple generation tasks, limiting their broader application to more complex generation tasks in practice. To address this gap, we investigate the impact of demonstrations on token representations within the practical alignment tasks. We find that the transformer embeds the task function learned from demonstrations into the separator token representation, which plays an important role in the generation of prior response tokens. Once the prior response tokens are determined, the demonstrations become redundant.Motivated by this finding, we propose an efficient Progressive In-Context Alignment (PICA) method consisting of two stages. In the first few-shot stage, the model generates several prior response tokens via standard ICL while concurrently extracting the ICL vector that stores the task function from the separator token representation. In the following zero-shot stage, this ICL vector guides the model to generate responses without further demonstrations.Extensive experiments demonstrate that our PICA not only surpasses vanilla ICL but also achieves comparable performance to other alignment tuning methods. The proposed training-free method reduces the time cost (e.g., 5.45+) with improved alignment performance (e.g., 6.57+). Consequently, our work highlights the application of ICL for alignment and calls for a deeper understanding of ICL for complex generations. The code will be available at https://github.com/HITsz-TMG/PICA.

Authors:Yuanxin Liu, Rui Zhu, Shuhuai Ren, Jiacong Wang, Haoyuan Guo, Xu Sun, Lu Jiang
Title: UVE: Are MLLMs Unified Evaluators for AI-Generated Videos?
Abstract:
With the rapid growth of video generative models (VGMs), it is essential to develop reliable and comprehensive automatic metrics for AI-generated videos (AIGVs). Existing methods either use off-the-shelf models optimized for other tasks or rely on human assessment data to train specialized evaluators. These approaches are constrained to specific evaluation aspects and are difficult to scale with the increasing demands for finer-grained and more comprehensive evaluations. To address this issue, this work investigates the feasibility of using multimodal large language models (MLLMs) as a unified evaluator for AIGVs, leveraging their strong visual perception and language understanding capabilities. To evaluate the performance of automatic metrics in unified AIGV evaluation, we introduce a benchmark called UVE-Bench. UVE-Bench collects videos generated by state-of-the-art VGMs and provides pairwise human preference annotations across 15 evaluation aspects. Using UVE-Bench, we extensively evaluate 16 MLLMs. Our empirical results suggest that while advanced MLLMs (e.g., Qwen2VL-72B and InternVL2.5-78B) still lag behind human evaluators, they demonstrate promising ability in unified AIGV evaluation, significantly surpassing existing specialized evaluation methods. Additionally, we conduct an in-depth analysis of key design choices that impact the performance of MLLM-driven evaluators, offering valuable insights for future research on AIGV evaluation. The code is available at https://github.com/bytedance/UVE.

Authors:Allison Andreyev
Title: Quantization for OpenAI's Whisper Models: A Comparative Analysis
Abstract:
Automated speech recognition (ASR) models have gained prominence for applications such as captioning, speech translation, and live transcription. This paper studies Whisper and two model variants: one optimized for live speech streaming and another for offline transcription. Notably, these models have been found to generate hallucinated content, reducing transcription reliability. Furthermore, larger model variants exhibit increased latency and pose challenges for deployment on resource-constrained devices. This study analyzes the similarities and differences between three Whisper models, qualitatively examining their distinct capabilities. Next, this study quantifies the impact of model quantization on latency and evaluates its viability for edge deployment. Using the open source LibriSpeech dataset, this paper evaluates the word error rate (WER) along with latency analysis of whispercpp using 3 quantization methods (INT4, INT5, INT8). Results show that quantization reduces latency by 19\% and model size by 45\%, while preserving transcription accuracy. These findings provide insights into the optimal use cases of different Whisper models and edge device deployment possibilities. All code, datasets, and implementation details are available in a public GitHub repository: https://github.com/allisonandreyev/WhisperQuantization.git

Authors:Zahra Abbasiantaeb, Simon Lupart, Leif Azzopardi, Jeffery Dalton, Mohammad Aliannejadi
Title: Conversational Gold: Evaluating Personalized Conversational Search System using Gold Nuggets
Abstract:
The rise of personalized conversational search systems has been driven by advancements in Large Language Models (LLMs), enabling these systems to retrieve and generate answers for complex information needs. However, the automatic evaluation of responses generated by Retrieval Augmented Generation (RAG) systems remains an understudied challenge. In this paper, we introduce a new resource for assessing the retrieval effectiveness and relevance of response generated by RAG systems, using a nugget-based evaluation framework. Built upon the foundation of TREC iKAT 2023, our dataset extends to the TREC iKAT 2024 collection, which includes 17 conversations and 20,575 relevance passage assessments, together with 2,279 extracted gold nuggets, and 62 manually written gold answers from NIST assessors. While maintaining the core structure of its predecessor, this new collection enables a deeper exploration of generation tasks in conversational settings. Key improvements in iKAT 2024 include: (1) ``gold nuggets'' -- concise, essential pieces of information extracted from relevant passages of the collection -- which serve as a foundation for automatic response evaluation; (2) manually written answers to provide a gold standard for response evaluation; (3) unanswerable questions to evaluate model hallucination; (4) expanded user personas, providing richer contextual grounding; and (5) a transition from Personal Text Knowledge Base (PTKB) ranking to PTKB classification and selection. Built on this resource, we provide a framework for long-form answer generation evaluation, involving nuggets extraction and nuggets matching, linked to retrieval. This establishes a solid resource for advancing research in personalized conversational search and long-form answer generation. Our resources are publicly available at https://github.com/irlabamsterdam/CONE-RAG.

Authors:Abhipsha Das, Nicholas Lourie, Siavash Golkar, Mariel Pettee
Title: What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models
Abstract:
The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.

Authors:Daniel Syomichev, Padmini Gopinath, Guang-Lin Wei, Eric Chang, Ian Gordon, Amanuel Seifu, Rahul Pemmaraju, Neehar Peri, James Purtilo
Title: QuickDraw: Fast Visualization, Analysis and Active Learning for Medical Image Segmentation
Abstract:
Analyzing CT scans, MRIs and X-rays is pivotal in diagnosing and treating diseases. However, detecting and identifying abnormalities from such medical images is a time-intensive process that requires expert analysis and is prone to interobserver variability. To mitigate such issues, machine learning-based models have been introduced to automate and significantly reduce the cost of image segmentation. Despite significant advances in medical image analysis in recent years, many of the latest models are never applied in clinical settings because state-of-the-art models do not easily interface with existing medical image viewers. To address these limitations, we propose QuickDraw, an open-source framework for medical image visualization and analysis that allows users to upload DICOM images and run off-the-shelf models to generate 3D segmentation masks. In addition, our tool allows users to edit, export, and evaluate segmentation masks to iteratively improve state-of-the-art models through active learning. In this paper, we detail the design of our tool and present survey results that highlight the usability of our software. Notably, we find that QuickDraw reduces the time to manually segment a CT scan from four hours to six minutes and reduces machine learning-assisted segmentation time by 10\% compared to prior work. Our code and documentation are available at https://github.com/qd-seg/quickdraw

Authors:Nahid Ul Islam, DongAo Ma, Jiaxuan Pang, Shivasakthi Senthil Velan, Michael Gotway, Jianming Liang
Title: Foundation X: Integrating Classification, Localization, and Segmentation through Lock-Release Pretraining Strategy for Chest X-ray Analysis
Abstract:
Developing robust and versatile deep-learning models is essential for enhancing diagnostic accuracy and guiding clinical interventions in medical imaging, but it requires a large amount of annotated data. The advancement of deep learning has facilitated the creation of numerous medical datasets with diverse expert-level annotations. Aggregating these datasets can maximize data utilization and address the inadequacy of labeled data. However, the heterogeneity of expert-level annotations across tasks such as classification, localization, and segmentation presents a significant challenge for learning from these datasets. To this end, we introduce nFoundation X, an end-to-end framework that utilizes diverse expert-level annotations from numerous public datasets to train a foundation model capable of multiple tasks including classification, localization, and segmentation. To address the challenges of annotation and task heterogeneity, we propose a Lock-Release pretraining strategy to enhance the cyclic learning from multiple datasets, combined with the student-teacher learning paradigm, ensuring the model retains general knowledge for all tasks while preventing overfitting to any single task. To demonstrate the effectiveness of Foundation X, we trained a model using 11 chest X-ray datasets, covering annotations for classification, localization, and segmentation tasks. Our experimental results show that Foundation X achieves notable performance gains through extensive annotation utilization, excels in cross-dataset and cross-task learning, and further enhances performance in organ localization and segmentation tasks. All code and pretrained models are publicly accessible at https://github.com/jlianglab/Foundation_X.

Authors:Benjamin Towle, Xin Chen, Ke Zhou
Title: SeqSAM: Autoregressive Multiple Hypothesis Prediction for Medical Image Segmentation using SAM
Abstract:
Pre-trained segmentation models are a powerful and flexible tool for segmenting images. Recently, this trend has extended to medical imaging. Yet, often these methods only produce a single prediction for a given image, neglecting inherent uncertainty in medical images, due to unclear object boundaries and errors caused by the annotation tool. Multiple Choice Learning is a technique for generating multiple masks, through multiple learned prediction heads. However, this cannot readily be extended to producing more outputs than its initial pre-training hyperparameters, as the sparse, winner-takes-all loss function makes it easy for one prediction head to become overly dominant, thus not guaranteeing the clinical relevancy of each mask produced. We introduce SeqSAM, a sequential, RNN-inspired approach to generating multiple masks, which uses a bipartite matching loss for ensuring the clinical relevancy of each mask, and can produce an arbitrary number of masks. We show notable improvements in quality of each mask produced across two publicly available datasets. Our code is available at https://github.com/BenjaminTowle/SeqSAM.

Authors:William L. Tong, Cengiz Pehlevan
Title: Learning richness modulates equality reasoning in neural networks
Abstract:
Equality reasoning is ubiquitous and purely abstract: sameness or difference may be evaluated no matter the nature of the underlying objects. As a result, same-different (SD) tasks have been extensively studied as a starting point for understanding abstract reasoning in humans and across animal species. With the rise of neural networks that exhibit striking apparent proficiency for abstractions, equality reasoning in these models has also gained interest. Yet despite extensive study, conclusions about equality reasoning vary widely and with little consensus. To clarify the underlying principles in learning SD tasks, we develop a theory of equality reasoning in multi-layer perceptrons (MLP). Following observations in comparative psychology, we propose a spectrum of behavior that ranges from conceptual to perceptual outcomes. Conceptual behavior is characterized by task-specific representations, efficient learning, and insensitivity to spurious perceptual details. Perceptual behavior is characterized by strong sensitivity to spurious perceptual details, accompanied by the need for exhaustive training to learn the task. We develop a mathematical theory to show that an MLP's behavior is driven by learning richness. Rich-regime MLPs exhibit conceptual behavior, whereas lazy-regime MLPs exhibit perceptual behavior. We validate our theoretical findings in vision SD experiments, showing that rich feature learning promotes success by encouraging hallmarks of conceptual behavior. Overall, our work identifies feature learning richness as a key parameter modulating equality reasoning, and suggests that equality reasoning in humans and animals may similarly depend on learning richness in neural circuits.

Authors:Arman Zharmagambetov, Chuan Guo, Ivan Evtimov, Maya Pavlova, Ruslan Salakhutdinov, Kamalika Chaudhuri
Title: AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents
Abstract:
Autonomous AI agents that can follow instructions and perform complex multi-step tasks have tremendous potential to boost human productivity. However, to perform many of these tasks, the agents need access to personal information from their users, raising the question of whether they are capable of using it appropriately. In this work, we introduce a new benchmark AgentDAM that measures if AI web-navigation agents follow the privacy principle of ``data minimization''. For the purposes of our benchmark, data minimization means that the agent uses a piece of potentially sensitive information only if it is ``necessary'' to complete a particular task. Our benchmark simulates realistic web interaction scenarios end-to-end and is adaptable to all existing web navigation agents. We use AgentDAM to evaluate how well AI agents built on top of GPT-4, Llama-3 and Claude can limit processing of potentially private information, and show that they are prone to inadvertent use of unnecessary sensitive information. We also propose a prompting-based defense that reduces information leakage, and demonstrate that our end-to-end benchmarking provides a more realistic measure than probing LLMs about privacy. Our results highlight that further research is needed to develop AI agents that can prioritize data minimization at inference time.

Authors:Arman Zharmagambetov, Chuan Guo, Ivan Evtimov, Maya Pavlova, Ruslan Salakhutdinov, Kamalika Chaudhuri
Title: AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents
Abstract:
Autonomous AI agents that can follow instructions and perform complex multi-step tasks have tremendous potential to boost human productivity. However, to perform many of these tasks, the agents need access to personal information from their users, raising the question of whether they are capable of using it appropriately. In this work, we introduce a new benchmark AgentDAM that measures if AI web-navigation agents follow the privacy principle of ``data minimization''. For the purposes of our benchmark, data minimization means that the agent uses a piece of potentially sensitive information only if it is ``necessary'' to complete a particular task. Our benchmark simulates realistic web interaction scenarios end-to-end and is adaptable to all existing web navigation agents. We use AgentDAM to evaluate how well AI agents built on top of GPT-4, Llama-3 and Claude can limit processing of potentially private information, and show that they are prone to inadvertent use of unnecessary sensitive information. We also propose a prompting-based defense that reduces information leakage, and demonstrate that our end-to-end benchmarking provides a more realistic measure than probing LLMs about privacy. Our results highlight that further research is needed to develop AI agents that can prioritize data minimization at inference time.

Authors:Tairan Xu, Leyang Xue, Zhan Lu, Adrian Jackson, Luo Mai
Title: MoE-Gen: High-Throughput MoE Inference on a Single GPU with Module-Based Batching
Abstract:
This paper presents MoE-Gen, a high-throughput MoE inference system optimized for single-GPU execution. Existing inference systems rely on model-based or continuous batching strategies, originally designed for interactive inference, which result in excessively small batches for MoE's key modules-attention and expert modules-leading to poor throughput. To address this, we introduce module-based batching, which accumulates tokens in host memory and dynamically launches large batches on GPUs to maximize utilization. Additionally, we optimize the choice of batch sizes for each module in an MoE to fully overlap GPU computation and communication, maximizing throughput. Evaluation demonstrates that MoE-Gen achieves 8-31x higher throughput compared to state-of-the-art systems employing model-based batching (FlexGen, MoE-Lightning, DeepSpeed), and offers even greater throughput improvements over continuous batching systems (e.g., vLLM and Ollama) on popular MoE models (DeepSeek and Mixtral) across offline inference tasks. MoE-Gen's source code is publicly available at https://github.com/EfficientMoE/MoE-Gen

Authors:Hongyu Lin, Yuchen Li, Haoran Luo, Kaichun Yao, Libo Zhang, Mingjie Xing, Yanjun Wu
Title: BYOS: Knowledge-driven Large Language Models Bring Your Own Operating System More Excellent
Abstract:
Operating System (OS) kernel tuning involves systematically adjusting kernel configurations to optimize system performance. Despite recent advancements in large language models (LLMs), kernel tuning remains a critical challenge due to: (1) the semantic gap between abstract tuning objective and concrete config options, (2) insufficient environmental interaction induces LLM hallucinations, and (3) the rapid evolution of kernel versions. To address these challenges, we propose BYOS, a LLM-powered framework that automates kernel tuning through three key innovations: structured knowledge construction and mapping, knowledge-driven configuration generation, and continuous knowledge maintenance. Extensive experiments show that BYOS achieves 7.1%-155.4% performance improvements over default configurations across standard OS benchmarks and real-world applications, demonstrating structured knowledge representation can overcome key limitations of pure LLM solutions for system optimization. Our code is available at https://github.com/LHY-24/BYOS.

Authors:Shitong Shao, Zikai Zhou, Dian Xie, Yuetong Fang, Tian Ye, Lichen Bai, Zeke Xie
Title: CoRe^2: Collect, Reflect and Refine to Generate Better and Faster
Abstract:
Making text-to-image (T2I) generative model sample both fast and well represents a promising research direction. Previous studies have typically focused on either enhancing the visual quality of synthesized images at the expense of sampling efficiency or dramatically accelerating sampling without improving the base model's generative capacity. Moreover, nearly all inference methods have not been able to ensure stable performance simultaneously on both diffusion models (DMs) and visual autoregressive models (ARMs). In this paper, we introduce a novel plug-and-play inference paradigm, CoRe^2, which comprises three subprocesses: Collect, Reflect, and Refine. CoRe^2 first collects classifier-free guidance (CFG) trajectories, and then use collected data to train a weak model that reflects the easy-to-learn contents while reducing number of function evaluations during inference by half. Subsequently, CoRe^2 employs weak-to-strong guidance to refine the conditional output, thereby improving the model's capacity to generate high-frequency and realistic content, which is difficult for the base model to capture. To the best of our knowledge, CoRe^2 is the first to demonstrate both efficiency and effectiveness across a wide range of DMs, including SDXL, SD3.5, and FLUX, as well as ARMs like LlamaGen. It has exhibited significant performance improvements on HPD v2, Pick-of-Pic, Drawbench, GenEval, and T2I-Compbench. Furthermore, CoRe^2 can be seamlessly integrated with the state-of-the-art Z-Sampling, outperforming it by 0.3 and 0.16 on PickScore and AES, while achieving 5.64s time saving using SD3.5.Code is released at https://github.com/xie-lab-ml/CoRe/tree/main.

Authors:David P. Hofmeyr
Title: Bags of Projected Nearest Neighbours: Competitors to Random Forests?
Abstract:
In this paper we introduce a simple and intuitive adaptive k nearest neighbours classifier, and explore its utility within the context of bootstrap aggregating ("bagging"). The approach is based on finding discriminant subspaces which are computationally efficient to compute, and are motivated by enhancing the discrimination of classes through nearest neighbour classifiers. This adaptiveness promotes diversity of the individual classifiers fit across different bootstrap samples, and so further leverages the variance reducing effect of bagging. Extensive experimental results are presented documenting the strong performance of the proposed approach in comparison with Random Forest classifiers, as well as other nearest neighbours based ensembles from the literature, plus other relevant benchmarks. Code to implement the proposed approach is available in the form of an R package from https://github.com/DavidHofmeyr/BOPNN.

Authors:Xiangyu Peng, Zangwei Zheng, Chenhui Shen, Tom Young, Xinying Guo, Binluo Wang, Hang Xu, Hongxin Liu, Mingyan Jiang, Wenjun Li, Yuhui Wang, Anbang Ye, Gang Ren, Qianran Ma, Wanying Liang, Xiang Lian, Xiwen Wu, Yuting Zhong, Zhuangyan Li, Chaoyu Gong, Guojun Lei, Leijun Cheng, Limin Zhang, Minghao Li, Ruijie Zhang, Silan Hu, Shijie Huang, Xiaokang Wang, Yuanheng Zhao, Yuqi Wang, Ziang Wei, Yang You
Title: Open-Sora 2.0: Training a Commercial-Level Video Generation Model in $200k
Abstract:
Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.

Authors:Nannan Wu, Zhuo Kuang, Zengqiang Yan, Ping Wang, Li Yu
Title: Fair Federated Medical Image Classification Against Quality Shift via Inter-Client Progressive State Matching
Abstract:
Despite the potential of federated learning in medical applications, inconsistent imaging quality across institutions-stemming from lower-quality data from a minority of clients-biases federated models toward more common high-quality images. This raises significant fairness concerns. Existing fair federated learning methods have demonstrated some effectiveness in solving this problem by aligning a single 0th- or 1st-order state of convergence (e.g., training loss or sharpness). However, we argue in this work that fairness based on such a single state is still not an adequate surrogate for fairness during testing, as these single metrics fail to fully capture the convergence characteristics, making them suboptimal for guiding fair learning. To address this limitation, we develop a generalized framework. Specifically, we propose assessing convergence using multiple states, defined as sharpness or perturbed loss computed at varying search distances. Building on this comprehensive assessment, we propose promoting fairness for these states across clients to achieve our ultimate fairness objective. This is accomplished through the proposed method, FedISM+. In FedISM+, the search distance evolves over time, progressively focusing on different states. We then incorporate two components in local training and global aggregation to ensure cross-client fairness for each state. This gradually makes convergence equitable for all states, thereby improving fairness during testing. Our empirical evaluations, performed on the well-known RSNA ICH and ISIC 2019 datasets, demonstrate the superiority of FedISM+ over existing state-of-the-art methods for fair federated learning. The code is available at https://github.com/wnn2000/FFL4MIA.

Authors:Philippe Chlenski, Kaizhu Du, Dylan Satow, Raiyan R. Khan, Itsik Pe'er
Title: Manify: A Python Library for Learning Non-Euclidean Representations
Abstract:
We present Manify, an open-source Python library for non-Euclidean representation learning. Leveraging manifold learning techniques, Manify provides tools for learning embeddings in (products of) non-Euclidean spaces, performing classification and regression with data that lives in such spaces, estimating the curvature of a manifold, and more. Manify aims to advance research and applications in machine learning by offering a comprehensive suite of tools for manifold-based data analysis. Our source code, examples, and documentation are available at https://github.com/pchlenski/manify.

Authors:Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Subham Sekhar Sahoo, Volodymyr Kuleshov
Title: Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
Abstract:
Diffusion language models offer unique benefits over autoregressive models due to their potential for parallelized generation and controllability, yet they lag in likelihood modeling and are limited to fixed-length generation. In this work, we introduce a class of block diffusion language models that interpolate between discrete denoising diffusion and autoregressive models. Block diffusion overcomes key limitations of both approaches by supporting flexible-length generation and improving inference efficiency with KV caching and parallel token sampling. We propose a recipe for building effective block diffusion models that includes an efficient training algorithm, estimators of gradient variance, and data-driven noise schedules to minimize the variance. Block diffusion sets a new state-of-the-art performance among diffusion models on language modeling benchmarks and enables generation of arbitrary-length sequences. We provide the code, along with the model weights and blog post on the project page: https://m-arriola.com/bd3lms

Authors:Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao, Wanxiang Che
Title: Towards Reasoning Era: A Survey of Long Chain-of-Thought for Reasoning Large Language Models
Abstract:
Recent advancements in reasoning with large language models (RLLMs), such as OpenAI-O1 and DeepSeek-R1, have demonstrated their impressive capabilities in complex domains like mathematics and coding. A central factor in their success lies in the application of long chain-of-thought (Long CoT) characteristics, which enhance reasoning abilities and enable the solution of intricate problems. However, despite these developments, a comprehensive survey on Long CoT is still lacking, limiting our understanding of its distinctions from traditional short chain-of-thought (Short CoT) and complicating ongoing debates on issues like "overthinking" and "inference-time scaling." This survey seeks to fill this gap by offering a unified perspective on Long CoT. (1) We first distinguish Long CoT from Short CoT and introduce a novel taxonomy to categorize current reasoning paradigms. (2) Next, we explore the key characteristics of Long CoT: deep reasoning, extensive exploration, and feasible reflection, which enable models to handle more complex tasks and produce more efficient, coherent outcomes compared to the shallower Short CoT. (3) We then investigate key phenomena such as the emergence of Long CoT with these characteristics, including overthinking, and inference-time scaling, offering insights into how these processes manifest in practice. (4) Finally, we identify significant research gaps and highlight promising future directions, including the integration of multi-modal reasoning, efficiency improvements, and enhanced knowledge frameworks. By providing a structured overview, this survey aims to inspire future research and further the development of logical reasoning in artificial intelligence.

Authors:Zak Buzzard
Title: PairVDN - Pair-wise Decomposed Value Functions
Abstract:
Extending deep Q-learning to cooperative multi-agent settings is challenging due to the exponential growth of the joint action space, the non-stationary environment, and the credit assignment problem. Value decomposition allows deep Q-learning to be applied at the joint agent level, at the cost of reduced expressivity. Building on past work in this direction, our paper proposes PairVDN, a novel method for decomposing the value function into a collection of pair-wise, rather than per-agent, functions, improving expressivity at the cost of requiring a more complex (but still efficient) dynamic programming maximisation algorithm. Our method enables the representation of value functions which cannot be expressed as a monotonic combination of per-agent functions, unlike past approaches such as VDN and QMIX. We implement a novel many-agent cooperative environment, Box Jump, and demonstrate improved performance over these baselines in this setting. We open-source our code and environment at https://github.com/zzbuzzard/PairVDN.

Authors:Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, Jiawei Han
Title: Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Abstract:
Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Prompting advanced LLMs with reasoning capabilities to use search engines during inference is often suboptimal, as the LLM might not fully possess the capability on how to interact optimally with the search engine. This paper introduces Search-R1, an extension of reinforcement learning (RL) for reasoning frameworks where the LLM learns to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM reasoning trajectories with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines under the same setting. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.

Authors:Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun Wang, Weinan Zhang, Shuyue Hu, Ying Wen
Title: ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning
Abstract:
Recent research on Reasoning of Large Language Models (LLMs) has sought to further enhance their performance by integrating meta-thinking -- enabling models to monitor, evaluate, and control their reasoning processes for more adaptive and effective problem-solving. However, current single-agent work lacks a specialized design for acquiring meta-thinking, resulting in low efficacy. To address this challenge, we introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors, encouraging LLMs to think about thinking. ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions. Through iterative reinforcement learning with aligned objectives, these agents explore and learn collaboration, leading to improved generalization and robustness. Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks, including competitive-level mathematical benchmarks and LLM-as-a-Judge benchmarks. Additionally, we further extend ReMA to multi-turn interaction settings, leveraging turn-level ratio and parameter sharing to improve efficiency. Comprehensive ablation studies further illustrate the evolving dynamics of each distinct agent, providing valuable insights into how the meta-thinking reasoning process enhances the reasoning capabilities of LLMs. Our code can be found in https://github.com/ziyuwan/ReMA-public

Authors:Nazanin Moradinasab, Saurav Sengupta, Jiebei Liu, Sana Syed, Donald E. Brown
Title: Towards Robust Multimodal Representation: A Unified Approach with Adaptive Experts and Alignment
Abstract:
Healthcare relies on multiple types of data, such as medical images, genetic information, and clinical records, to improve diagnosis and treatment. However, missing data is a common challenge due to privacy restrictions, cost, and technical issues, making many existing multi-modal models unreliable. To address this, we propose a new multi-model model called Mixture of Experts, Symmetric Aligning, and Reconstruction (MoSARe), a deep learning framework that handles incomplete multimodal data while maintaining high accuracy. MoSARe integrates expert selection, cross-modal attention, and contrastive learning to improve feature representation and decision-making. Our results show that MoSARe outperforms existing models in situations when the data is complete. Furthermore, it provides reliable predictions even when some data are missing. This makes it especially useful in real-world healthcare settings, including resource-limited environments. Our code is publicly available at https://github.com/NazaninMn/MoSARe.

Authors:Xiangjian Jiang, Nikola Simidjievski, Mateja Jamnik
Title: How Well Does Your Tabular Generator Learn the Structure of Tabular Data?
Abstract:
Heterogeneous tabular data poses unique challenges in generative modelling due to its fundamentally different underlying data structure compared to homogeneous modalities, such as images and text. Although previous research has sought to adapt the successes of generative modelling in homogeneous modalities to the tabular domain, defining an effective generator for tabular data remains an open problem. One major reason is that the evaluation criteria inherited from other modalities often fail to adequately assess whether tabular generative models effectively capture or utilise the unique structural information encoded in tabular data. In this paper, we carefully examine the limitations of the prevailing evaluation framework and introduce $\textbf{TabStruct}$, a novel evaluation benchmark that positions structural fidelity as a core evaluation dimension. Specifically, TabStruct evaluates the alignment of causal structures in real and synthetic data, providing a direct measure of how effectively tabular generative models learn the structure of tabular data. Through extensive experiments using generators from eight categories on seven datasets with expert-validated causal graphical structures, we show that structural fidelity offers a task-independent, domain-agnostic evaluation dimension. Our findings highlight the importance of tabular data structure and offer practical guidance for developing more effective and robust tabular generative models. Code is available at https://github.com/SilenceX12138/TabStruct.

Authors:Zhihua Tian, Sirun Nan, Ming Xu, Shengfang Zhai, Wenjie Qu, Jian Liu, Ruoxi Jia, Jiaheng Zhang
Title: Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models
Abstract:
Text-to-image (T2I) diffusion models have achieved remarkable progress in generating high-quality images but also raise people's concerns about generating harmful or misleading content. While extensive approaches have been proposed to erase unwanted concepts without requiring retraining from scratch, they inadvertently degrade performance on normal generation tasks. In this work, we propose Interpret then Deactivate (ItD), a novel framework to enable precise concept removal in T2I diffusion models while preserving overall performance. ItD first employs a sparse autoencoder (SAE) to interpret each concept as a combination of multiple features. By permanently deactivating the specific features associated with target concepts, we repurpose SAE as a zero-shot classifier that identifies whether the input prompt includes target concepts, allowing selective concept erasure in diffusion models. Moreover, we demonstrate that ItD can be easily extended to erase multiple concepts without requiring further training. Comprehensive experiments across celebrity identities, artistic styles, and explicit content demonstrate ItD's effectiveness in eliminating targeted concepts without interfering with normal concept generation. Additionally, ItD is also robust against adversarial prompts designed to circumvent content filters. Code is available at: https://github.com/NANSirun/Interpret-then-deactivate.

Authors:Krzysztof Adamkiewicz, Paweł W. Woźniak, Julia Dominiak, Andrzej Romanowski, Jakob Karolus, Stanislav Frolov
Title: PromptMap: An Alternative Interaction Style for AI-Based Image Generation
Abstract:
Recent technological advances popularized the use of image generation among the general public. Crafting effective prompts can, however, be difficult for novice users. To tackle this challenge, we developed PromptMap, a new interaction style for text-to-image AI that allows users to freely explore a vast collection of synthetic prompts through a map-like view with semantic zoom. PromptMap groups images visually by their semantic similarity, allowing users to discover relevant examples. We evaluated PromptMap in a between-subject online study ($n=60$) and a qualitative within-subject study ($n=12$). We found that PromptMap supported users in crafting prompts by providing them with examples. We also demonstrated the feasibility of using LLMs to create vast example collections. Our work contributes a new interaction style that supports users unfamiliar with prompting in achieving a satisfactory image output.

Authors:Richard A. Dubniczky, Krisztofer Zoltán Horvát, Tamás Bisztray, Mohamed Amine Ferrag, Lucas C. Cordeiro, Norbert Tihanyi
Title: CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection
Abstract:
Identifying vulnerabilities in source code is crucial, especially in critical software components. Existing methods such as static analysis, dynamic analysis, formal verification, and recently Large Language Models are widely used to detect security flaws. This paper introduces CASTLE (CWE Automated Security Testing and Low-Level Evaluation), a benchmarking framework for evaluating the vulnerability detection capabilities of different methods. We assess 13 static analysis tools, 10 LLMs, and 2 formal verification tools using a hand-crafted dataset of 250 micro-benchmark programs covering 25 common CWEs. We propose the CASTLE Score, a novel evaluation metric to ensure fair comparison. Our results reveal key differences: ESBMC (a formal verification tool) minimizes false positives but struggles with vulnerabilities beyond model checking, such as weak cryptography or SQL injection. Static analyzers suffer from high false positives, increasing manual validation efforts for developers. LLMs perform exceptionally well in the CASTLE dataset when identifying vulnerabilities in small code snippets. However, their accuracy declines, and hallucinations increase as the code size grows. These results suggest that LLMs could play a pivotal role in future security solutions, particularly within code completion frameworks, where they can provide real-time guidance to prevent vulnerabilities. The dataset is accessible at https://github.com/CASTLE-Benchmark.

Authors:Yifan Zhou, Zeqi Xiao, Shuai Yang, Xingang Pan
Title: Alias-Free Latent Diffusion Models: Improving Fractional Shift Equivariance of Diffusion Latent Space
Abstract:
Latent Diffusion Models (LDMs) are known to have an unstable generation process, where even small perturbations or shifts in the input noise can lead to significantly different outputs. This hinders their applicability in applications requiring consistent results. In this work, we redesign LDMs to enhance consistency by making them shift-equivariant. While introducing anti-aliasing operations can partially improve shift-equivariance, significant aliasing and inconsistency persist due to the unique challenges in LDMs, including 1) aliasing amplification during VAE training and multiple U-Net inferences, and 2) self-attention modules that inherently lack shift-equivariance. To address these issues, we redesign the attention modules to be shift-equivariant and propose an equivariance loss that effectively suppresses the frequency bandwidth of the features in the continuous domain. The resulting alias-free LDM (AF-LDM) achieves strong shift-equivariance and is also robust to irregular warping. Extensive experiments demonstrate that AF-LDM produces significantly more consistent results than vanilla LDM across various applications, including video editing and image-to-image translation.

Authors:Kevin Qinghong Lin, Mike Zheng Shou
Title: VLog: Video-Language Models by Generative Retrieval of Narration Vocabulary
Abstract:
Human daily activities can be concisely narrated as sequences of routine events (e.g., turning off an alarm) in video streams, forming an event vocabulary. Motivated by this, we introduce VLog, a novel video understanding framework that define video narrations as vocabulary, going beyond the typical subword vocabularies in existing generative video-language models. Built on the lightweight language model GPT-2, VLog feature three key innovations: (i) A generative retrieval model, marrying language model's complex reasoning capabilities with contrastive retrieval's flexible upgrading over narration vocabulary. (ii) A hierarchical vocabulary derived from large-scale video narrations using our narration pair encoding algorithm, enabling efficient indexing of specific events (e.g., cutting a tomato) by identifying broader scenarios (e.g., kitchen) with expressive postfixes (e.g., by the left hand). (iii) A vocabulary update strategy leveraging generative models to extend the vocabulary for novel events encountered during inference. To validate our approach, we introduce VidCap-Eval, a development set requiring concise narrations with reasoning relationships (e.g., before and after). Experiments on EgoSchema, COIN, and HiREST further demonstrate the effectiveness of VLog, highlighting its ability to generate concise, contextually accurate, and efficient narrations, offering a novel perspective on video understanding. Codes are released at https://github.com/showlab/VLog.

Authors:Tobias Christian Nauen, Brian Moser, Federico Raue, Stanislav Frolov, Andreas Dengel
Title: ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Abstract:
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.

Authors:Masoud Jamshidiyan Tehrani, Jinhan Kim, Paolo Tonella
Title: PCLA: A Framework for Testing Autonomous Agents in the CARLA Simulator
Abstract:
Recent research on testing autonomous driving agents has grown significantly, especially in simulation environments. The CARLA simulator is often the preferred choice, and the autonomous agents from the CARLA Leaderboard challenge are regarded as the best-performing agents within this environment. However, researchers who test these agents, rather than training their own ones from scratch, often face challenges in utilizing them within customized test environments and scenarios. To address these challenges, we introduce PCLA (Pretrained CARLA Leaderboard Agents), an open-source Python testing framework that includes nine high-performing pre-trained autonomous agents from the Leaderboard challenges. PCLA is the first infrastructure specifically designed for testing various autonomous agents in arbitrary CARLA environments/scenarios. PCLA provides a simple way to deploy Leaderboard agents onto a vehicle without relying on the Leaderboard codebase, it allows researchers to easily switch between agents without requiring modifications to CARLA versions or programming environments, and it is fully compatible with the latest version of CARLA while remaining independent of the Leaderboard's specific CARLA version. PCLA is publicly accessible at https://github.com/MasoudJTehrani/PCLA.

Authors:Jiani Huang, Shijie Wang, Liang-bo Ning, Wenqi Fan, Shuaiqiang Wang, Dawei Yin, Qing Li
Title: Towards Next-Generation Recommender Systems: A Benchmark for Personalized Recommendation Assistant with LLMs
Abstract:
Recommender systems (RecSys) are widely used across various modern digital platforms and have garnered significant attention. Traditional recommender systems usually focus only on fixed and simple recommendation scenarios, making it difficult to generalize to new and unseen recommendation tasks in an interactive paradigm. Recently, the advancement of large language models (LLMs) has revolutionized the foundational architecture of RecSys, driving their evolution into more intelligent and interactive personalized recommendation assistants. However, most existing studies rely on fixed task-specific prompt templates to generate recommendations and evaluate the performance of personalized assistants, which limits the comprehensive assessments of their capabilities. This is because commonly used datasets lack high-quality textual user queries that reflect real-world recommendation scenarios, making them unsuitable for evaluating LLM-based personalized recommendation assistants. To address this gap, we introduce RecBench+, a new dataset benchmark designed to access LLMs' ability to handle intricate user recommendation needs in the era of LLMs. RecBench+ encompasses a diverse set of queries that span both hard conditions and soft preferences, with varying difficulty levels. We evaluated commonly used LLMs on RecBench+ and uncovered below findings: 1) LLMs demonstrate preliminary abilities to act as recommendation assistants, 2) LLMs are better at handling queries with explicitly stated conditions, while facing challenges with queries that require reasoning or contain misleading information. Our dataset has been released at https://github.com/jiani-huang/RecBench.git.

Authors:Rui Huang, Siyu Tang, Zhiqian Cai, Lin Zhao
Title: Robust Self-Reconfiguration for Fault-Tolerant Control of Modular Aerial Robot Systems
Abstract:
Modular Aerial Robotic Systems (MARS) consist of multiple drone units assembled into a single, integrated rigid flying platform. With inherent redundancy, MARS can self-reconfigure into different configurations to mitigate rotor or unit failures and maintain stable flight. However, existing works on MARS self-reconfiguration often overlook the practical controllability of intermediate structures formed during the reassembly process, which limits their applicability. In this paper, we address this gap by considering the control-constrained dynamic model of MARS and proposing a robust and efficient self-reconstruction algorithm that maximizes the controllability margin at each intermediate stage. Specifically, we develop algorithms to compute optimal, controllable disassembly and assembly sequences, enabling robust self-reconfiguration. Finally, we validate our method in several challenging fault-tolerant self-reconfiguration scenarios, demonstrating significant improvements in both controllability and trajectory tracking while reducing the number of assembly steps. The videos and source code of this work are available at https://github.com/RuiHuangNUS/MARS-Reconfig/

Authors:Nikolai Körber, Eduard Kromer, Andreas Siebert, Sascha Hauke, Daniel Mueller-Gritschneder, Björn Schuller
Title: PerCoV2: Improved Ultra-Low Bit-Rate Perceptual Image Compression with Implicit Hierarchical Masked Image Modeling
Abstract:
We introduce PerCoV2, a novel and open ultra-low bit-rate perceptual image compression system designed for bandwidth- and storage-constrained applications. Building upon prior work by Careil et al., PerCoV2 extends the original formulation to the Stable Diffusion 3 ecosystem and enhances entropy coding efficiency by explicitly modeling the discrete hyper-latent image distribution. To this end, we conduct a comprehensive comparison of recent autoregressive methods (VAR and MaskGIT) for entropy modeling and evaluate our approach on the large-scale MSCOCO-30k benchmark. Compared to previous work, PerCoV2 (i) achieves higher image fidelity at even lower bit-rates while maintaining competitive perceptual quality, (ii) features a hybrid generation mode for further bit-rate savings, and (iii) is built solely on public components. Code and trained models will be released at https://github.com/Nikolai10/PerCoV2.

Authors:Jiushen Cai, Weihang Zhang, Hanruo Liu, Ningli Wang, Huiqi Li
Title: RetSTA: An LLM-Based Approach for Standardizing Clinical Fundus Image Reports
Abstract:
Standardization of clinical reports is crucial for improving the quality of healthcare and facilitating data integration. The lack of unified standards, including format, terminology, and style, is a great challenge in clinical fundus diagnostic reports, which increases the difficulty for large language models (LLMs) to understand the data. To address this, we construct a bilingual standard terminology, containing fundus clinical terms and commonly used descriptions in clinical diagnosis. Then, we establish two models, RetSTA-7B-Zero and RetSTA-7B. RetSTA-7B-Zero, fine-tuned on an augmented dataset simulating clinical scenarios, demonstrates powerful standardization behaviors. However, it encounters a challenge of limitation to cover a wider range of diseases. To further enhance standardization performance, we build RetSTA-7B, which integrates a substantial amount of standardized data generated by RetSTA-7B-Zero along with corresponding English data, covering diverse complex clinical scenarios and achieving report-level standardization for the first time. Experimental results demonstrate that RetSTA-7B outperforms other compared LLMs in bilingual standardization task, which validates its superior performance and generalizability. The checkpoints are available at https://github.com/AB-Story/RetSTA-7B.

Authors:Rui Huang, Zhenyu Zhang, Siyu Tang, Zhiqian Cai, Lin Zhao
Title: MARS-FTCP: Robust Fault-Tolerant Control and Agile Trajectory Planning for Modular Aerial Robot Systems
Abstract:
Modular Aerial Robot Systems (MARS) consist of multiple drone units that can self-reconfigure to adapt to various mission requirements and fault conditions. However, existing fault-tolerant control methods exhibit significant oscillations during docking and separation, impacting system stability. To address this issue, we propose a novel fault-tolerant control reallocation method that adapts to an arbitrary number of modular robots and their assembly formations. The algorithm redistributes the expected collective force and torque required for MARS to individual units according to their moment arm relative to the center of MARS mass. Furthermore, we propose an agile trajectory planning method for MARS of arbitrary configurations, which is collision-avoiding and dynamically feasible. Our work represents the first comprehensive approach to enable fault-tolerant and collision avoidance flight for MARS. We validate our method through extensive simulations, demonstrating improved fault tolerance, enhanced trajectory tracking accuracy, and greater robustness in cluttered environments. The videos and source code of this work are available at https://github.com/RuiHuangNUS/MARS-FTCP/

Authors:Yuzhi Lai, Shenghai Yuan, Youssef Nassar, Mingyu Fan, Thomas Weber, Matthias Rätsch
Title: NVP-HRI: Zero Shot Natural Voice and Posture-based Human-Robot Interaction via Large Language Model
Abstract:
Effective Human-Robot Interaction (HRI) is crucial for future service robots in aging societies. Existing solutions are biased toward only well-trained objects, creating a gap when dealing with new objects. Currently, HRI systems using predefined gestures or language tokens for pretrained objects pose challenges for all individuals, especially elderly ones. These challenges include difficulties in recalling commands, memorizing hand gestures, and learning new names. This paper introduces NVP-HRI, an intuitive multi-modal HRI paradigm that combines voice commands and deictic posture. NVP-HRI utilizes the Segment Anything Model (SAM) to analyze visual cues and depth data, enabling precise structural object representation. Through a pre-trained SAM network, NVP-HRI allows interaction with new objects via zero-shot prediction, even without prior knowledge. NVP-HRI also integrates with a large language model (LLM) for multimodal commands, coordinating them with object selection and scene distribution in real time for collision-free trajectory solutions. We also regulate the action sequence with the essential control syntax to reduce LLM hallucination risks. The evaluation of diverse real-world tasks using a Universal Robot showcased up to 59.2\% efficiency improvement over traditional gesture control, as illustrated in the video https://youtu.be/EbC7al2wiAc. Our code and design will be openly available at https://github.com/laiyuzhi/NVP-HRI.git.

Authors:Thomas De Min, Subhankar Roy, Stéphane Lathuilière, Elisa Ricci, Massimiliano Mancini
Title: Group-robust Machine Unlearning
Abstract:
Machine unlearning is an emerging paradigm to remove the influence of specific training data (i.e., the forget set) from a model while preserving its knowledge of the rest of the data (i.e., the retain set). Previous approaches assume the forget data to be uniformly distributed from all training datapoints. However, if the data to unlearn is dominant in one group, we empirically show that performance for this group degrades, leading to fairness issues. This work tackles the overlooked problem of non-uniformly distributed forget sets, which we call group-robust machine unlearning, by presenting a simple, effective strategy that mitigates the performance loss in dominant groups via sample distribution reweighting. Moreover, we present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning. MIU minimizes the mutual information between model features and group information, achieving unlearning while reducing performance degradation in the dominant group of the forget set. Additionally, MIU exploits sample distribution reweighting and mutual information calibration with the original model to preserve group robustness. We conduct experiments on three datasets and show that MIU outperforms standard methods, achieving unlearning without compromising model robustness. Source code available at https://github.com/tdemin16/group-robust_machine_unlearning.

Authors:Gorjan Radevski, Teodora Popordanoska, Matthew B. Blaschko, Tinne Tuytelaars
Title: DAVE: Diagnostic benchmark for Audio Visual Evaluation
Abstract:
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- where answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE (Diagnostic Audio Visual Evaluation), a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled challenges. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. The dataset is released: https://github.com/gorjanradevski/dave

Authors:Di Zhao, Longhui Ma, Siwei Wang, Miao Wang, Zhao Lv
Title: COLA: A Scalable Multi-Agent Framework For Windows UI Task Automation
Abstract:
With the rapid advancements in Large Language Models (LLMs), an increasing number of studies have leveraged LLMs as the cognitive core of agents to address complex task decision-making challenges. Specially, recent research has demonstrated the potential of LLM-based agents on automating Windows GUI operations. However, existing methodologies exhibit two critical challenges: (1) static agent architectures fail to dynamically adapt to the heterogeneous requirements of OS-level tasks, leading to inadequate scenario generalization;(2) the agent workflows lack fault tolerance mechanism, necessitating complete process re-execution for UI agent decision error. To address these limitations, we introduce \textit{COLA}, a collaborative multi-agent framework for automating Windows UI operations. In this framework, a scenario-aware agent Task Scheduler decomposes task requirements into atomic capability units, dynamically selects the optimal agent from a decision agent pool, effectively responds to the capability requirements of diverse scenarios. The decision agent pool supports plug-and-play expansion for enhanced flexibility. In addition, we design a memory unit equipped to all agents for their self-evolution. Furthermore, we develop an interactive backtracking mechanism that enables human to intervene to trigger state rollbacks for non-destructive process repair. Our experimental results on the GAIA benchmark demonstrates that the \textit{COLA} framework achieves state-of-the-art performance with an average score of 31.89\%, significantly outperforming baseline approaches without web API integration. Ablation studies further validate the individual contributions of our dynamic scheduling. The code is available at https://github.com/Alokia/COLA-demo.

Authors:Wei He, Shangzhi Zhang, Chun-Guang Li, Xianbiao Qi, Rong Xiao, Jun Guo
Title: Neural Normalized Cut: A Differential and Generalizable Approach for Spectral Clustering
Abstract:
Spectral clustering, as a popular tool for data clustering, requires an eigen-decomposition step on a given affinity to obtain the spectral embedding. Nevertheless, such a step suffers from the lack of generalizability and scalability. Moreover, the obtained spectral embeddings can hardly provide a good approximation to the ground-truth partition and thus a k-means step is adopted to quantize the embedding. In this paper, we propose a simple yet effective scalable and generalizable approach, called Neural Normalized Cut (NeuNcut), to learn the clustering membership for spectral clustering directly. In NeuNcut, we properly reparameterize the unknown cluster membership via a neural network, and train the neural network via stochastic gradient descent with a properly relaxed normalized cut loss. As a result, our NeuNcut enjoys a desired generalization ability to directly infer clustering membership for out-of-sample unseen data and hence brings us an efficient way to handle clustering task with ultra large-scale data. We conduct extensive experiments on both synthetic data and benchmark datasets and experimental results validate the effectiveness and the superiority of our approach. Our code is available at: https://github.com/hewei98/NeuNcut.

Authors:Xiuwen Fang, Mang Ye, Bo Du
Title: Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients
Abstract:
This paper studies a challenging robust federated learning task with model heterogeneous and data corrupted clients, where the clients have different local model structures. Data corruption is unavoidable due to factors such as random noise, compression artifacts, or environmental conditions in real-world deployment, drastically crippling the entire federated system. To address these issues, this paper introduces a novel Robust Asymmetric Heterogeneous Federated Learning (RAHFL) framework. We propose a Diversity-enhanced supervised Contrastive Learning technique to enhance the resilience and adaptability of local models on various data corruption patterns. Its basic idea is to utilize complex augmented samples obtained by the mixed-data augmentation strategy for supervised contrastive learning, thereby enhancing the ability of the model to learn robust and diverse feature representations. Furthermore, we design an Asymmetric Heterogeneous Federated Learning strategy to resist corrupt feedback from external clients. The strategy allows clients to perform selective one-way learning during collaborative learning phase, enabling clients to refrain from incorporating lower-quality information from less robust or underperforming collaborators. Extensive experimental results demonstrate the effectiveness and robustness of our approach in diverse, challenging federated learning environments. Our code and models are public available at https://github.com/FangXiuwen/RAHFL.

Authors:Falko Helm, Nico Daheim, Iryna Gurevych
Title: Token Weighting for Long-Range Language Modeling
Abstract:
Many applications of large language models (LLMs) require long-context understanding, but models continue to struggle with such tasks. We hypothesize that conventional next-token prediction training could contribute to this, because each token is assigned equal weight. Yet, intuitively, the amount of context needed to predict the next token accurately varies greatly across different data. To reflect this, we propose various novel token-weighting schemes that assign different weights to each training token in the loss, thereby generalizing existing works. For this, we categorize token-weighting methods using a two-step framework which compares the confidences of a long-context and short-context model to score tokens. We evaluate all methods on multiple long-context understanding tasks and show that non-uniform loss weights are helpful to improve the long-context abilities of LLMs. Different short-context models can be used effectively for token scoring, including models that are much smaller than the long-context model that is trained. All in all, this work contributes to a better understanding of the trade-offs long-context language modeling faces and provides guidelines for model steering via loss-weighting based on empirical evidence. The code can be found on Github.

Authors:Zicheng Zhang, Haoning Wu, Ziheng Jia, Weisi Lin, Guangtao Zhai
Title: Teaching LMMs for Image Quality Scoring and Interpreting
Abstract:
Image quality scoring and interpreting are two fundamental components of Image Quality Assessment (IQA). The former quantifies image quality, while the latter enables descriptive question answering about image quality. Traditionally, these two tasks have been addressed independently. However, from the perspective of the Human Visual System (HVS) and the Perception-Decision Integration Model, they are inherently interconnected: interpreting serves as the foundation for scoring, while scoring provides an abstract summary of interpreting. Thus, unifying these capabilities within a single model is both intuitive and logically coherent. In this paper, we propose Q-SiT (Quality Scoring and Interpreting joint Teaching), a unified framework that enables large multimodal models (LMMs) to learn both image quality scoring and interpreting simultaneously. We achieve this by transforming conventional IQA datasets into learnable question-answering datasets and incorporating human-annotated quality interpreting data for training. Furthermore, we introduce an efficient scoring & interpreting balance strategy, which first determines the optimal data mix ratio on lightweight LMMs and then maps this ratio to primary LMMs for fine-tuning adjustment. This strategy not only mitigates task interference and enhances cross-task knowledge transfer but also significantly reduces computational costs compared to direct optimization on full-scale LMMs. With this joint learning framework and corresponding training strategy, we develop Q-SiT, the first model capable of simultaneously performing image quality scoring and interpreting tasks, along with its lightweight variant, Q-SiT-mini. Experimental results demonstrate that Q-SiT achieves strong performance in both tasks with superior generalization IQA abilities.Project page at https://github.com/Q-Future/Q-SiT.

Authors:Yuanyang Zhang, Yijie Lin, Weiqing Yan, Li Yao, Xinhang Wan, Guangyuan Li, Chao Zhang, Guanzhou Ke, Jie Xu
Title: Incomplete Multi-view Clustering via Diffusion Contrastive Generation
Abstract:
Incomplete multi-view clustering (IMVC) has garnered increasing attention in recent years due to the common issue of missing data in multi-view datasets. The primary approach to address this challenge involves recovering the missing views before applying conventional multi-view clustering methods. Although imputation-based IMVC methods have achieved significant improvements, they still encounter notable limitations: 1) heavy reliance on paired data for training the data recovery module, which is impractical in real scenarios with high missing data rates; 2) the generated data often lacks diversity and discriminability, resulting in suboptimal clustering results. To address these shortcomings, we propose a novel IMVC method called Diffusion Contrastive Generation (DCG). Motivated by the consistency between the diffusion and clustering processes, DCG learns the distribution characteristics to enhance clustering by applying forward diffusion and reverse denoising processes to intra-view data. By performing contrastive learning on a limited set of paired multi-view samples, DCG can align the generated views with the real views, facilitating accurate recovery of views across arbitrary missing view scenarios. Additionally, DCG integrates instance-level and category-level interactive learning to exploit the consistent and complementary information available in multi-view data, achieving robust and end-to-end clustering. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches. The code is available at https://github.com/zhangyuanyang21/2025-AAAI-DCG.

Authors:Chengshu Zhao, Yunyang Ge, Xinhua Cheng, Bin Zhu, Yatian Pang, Bin Lin, Fan Yang, Feng Gao, Li Yuan
Title: SwapAnyone: Consistent and Realistic Video Synthesis for Swapping Any Person into Any Video
Abstract:
Video body-swapping aims to replace the body in an existing video with a new body from arbitrary sources, which has garnered more attention in recent years. Existing methods treat video body-swapping as a composite of multiple tasks instead of an independent task and typically rely on various models to achieve video body-swapping sequentially. However, these methods fail to achieve end-to-end optimization for the video body-swapping which causes issues such as variations in luminance among frames, disorganized occlusion relationships, and the noticeable separation between bodies and background. In this work, we define video body-swapping as an independent task and propose three critical consistencies: identity consistency, motion consistency, and environment consistency. We introduce an end-to-end model named SwapAnyone, treating video body-swapping as a video inpainting task with reference fidelity and motion control. To improve the ability to maintain environmental harmony, particularly luminance harmony in the resulting video, we introduce a novel EnvHarmony strategy for training our model progressively. Additionally, we provide a dataset named HumanAction-32K covering various videos about human actions. Extensive experiments demonstrate that our method achieves State-Of-The-Art (SOTA) performance among open-source methods while approaching or surpassing closed-source models across multiple dimensions. All code, model weights, and the HumanAction-32K dataset will be open-sourced at https://github.com/PKU-YuanGroup/SwapAnyone.

Authors:Linli Yao, Haoning Wu, Kun Ouyang, Yuanxing Zhang, Caiming Xiong, Bei Chen, Xu Sun, Junnan Li
Title: Generative Frame Sampler for Long Video Understanding
Abstract:
Despite recent advances in Video Large Language Models (VideoLLMs), effectively understanding long-form videos remains a significant challenge. Perceiving lengthy videos containing thousands of frames poses substantial computational burden. To mitigate this issue, this paper introduces Generative Frame Sampler (GenS), a plug-and-play module integrated with VideoLLMs to facilitate efficient lengthy video perception. Built upon a lightweight VideoLLM, GenS leverages its inherent vision-language capabilities to identify question-relevant frames. To facilitate effective retrieval, we construct GenS-Video-150K, a large-scale video instruction dataset with dense frame relevance annotations. Extensive experiments demonstrate that GenS consistently boosts the performance of various VideoLLMs, including open-source models (Qwen2-VL-7B, Aria-25B, VILA-40B, LLaVA-Video-7B/72B) and proprietary assistants (GPT-4o, Gemini). When equipped with GenS, open-source VideoLLMs achieve impressive state-of-the-art results on long-form video benchmarks: LLaVA-Video-72B reaches 66.8 (+4.3) on LongVideoBench and 77.0 (+2.7) on MLVU, while Aria obtains 39.2 on HourVideo surpassing the Gemini-1.5-pro by 1.9 points. We will release all datasets and models at https://generative-sampler.github.io.

Authors:David P. Hofmeyr
Title: Clustering by Nonparametric Smoothing
Abstract:
A novel formulation of the clustering problem is introduced in which the task is expressed as an estimation problem, where the object to be estimated is a function which maps a point to its distribution of cluster membership. Unlike existing approaches which implicitly estimate such a function, like Gaussian Mixture Models (GMMs), the proposed approach bypasses any explicit modelling assumptions and exploits the flexible estimation potential of nonparametric smoothing. An intuitive approach for selecting the tuning parameters governing estimation is provided, which allows the proposed method to automatically determine both an appropriate level of flexibility and also the number of clusters to extract from a given data set. Experiments on a large collection of publicly available data sets are used to document the strong performance of the proposed approach, in comparison with relevant benchmarks from the literature. R code to implement the proposed approach is available from https://github.com/DavidHofmeyr/ CNS

Authors:Zhehui Wu, Yong Chen, Naoto Yokoya, Wei He
Title: MP-HSIR: A Multi-Prompt Framework for Universal Hyperspectral Image Restoration
Abstract:
Hyperspectral images (HSIs) often suffer from diverse and unknown degradations during imaging, leading to severe spectral and spatial distortions. Existing HSI restoration methods typically rely on specific degradation assumptions, limiting their effectiveness in complex scenarios. In this paper, we propose \textbf{MP-HSIR}, a novel multi-prompt framework that effectively integrates spectral, textual, and visual prompts to achieve universal HSI restoration across diverse degradation types and intensities. Specifically, we develop a prompt-guided spatial-spectral transformer, which incorporates spatial self-attention and a prompt-guided dual-branch spectral self-attention. Since degradations affect spectral features differently, we introduce spectral prompts in the local spectral branch to provide universal low-rank spectral patterns as prior knowledge for enhancing spectral reconstruction. Furthermore, the text-visual synergistic prompt fuses high-level semantic representations with fine-grained visual features to encode degradation information, thereby guiding the restoration process. Extensive experiments on 9 HSI restoration tasks, including all-in-one scenarios, generalization tests, and real-world cases, demonstrate that MP-HSIR not only consistently outperforms existing all-in-one methods but also surpasses state-of-the-art task-specific approaches across multiple tasks. The code and models are available at https://github.com/ZhehuiWu/MP-HSIR.

Authors:Jin Li, Ziqiang He, Anwei Luo, Jian-Fang Hu, Z. Jane Wang, Xiangui Kang
Title: AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks
Abstract:
Imperceptible adversarial attacks aim to fool DNNs by adding imperceptible perturbation to the input data. Previous methods typically improve the imperceptibility of attacks by integrating common attack paradigms with specifically designed perception-based losses or the capabilities of generative models. In this paper, we propose Adversarial Attacks in Diffusion (AdvAD), a novel modeling framework distinct from existing attack paradigms. AdvAD innovatively conceptualizes attacking as a non-parametric diffusion process by theoretically exploring basic modeling approach rather than using the denoising or generation abilities of regular diffusion models requiring neural networks. At each step, much subtler yet effective adversarial guidance is crafted using only the attacked model without any additional network, which gradually leads the end of diffusion process from the original image to a desired imperceptible adversarial example. Grounded in a solid theoretical foundation of the proposed non-parametric diffusion process, AdvAD achieves high attack efficacy and imperceptibility with intrinsically lower overall perturbation strength. Additionally, an enhanced version AdvAD-X is proposed to evaluate the extreme of our novel framework under an ideal scenario. Extensive experiments demonstrate the effectiveness of the proposed AdvAD and AdvAD-X. Compared with state-of-the-art imperceptible attacks, AdvAD achieves an average of 99.9$\%$ (+17.3$\%$) ASR with 1.34 (-0.97) $l_2$ distance, 49.74 (+4.76) PSNR and 0.9971 (+0.0043) SSIM against four prevalent DNNs with three different architectures on the ImageNet-compatible dataset. Code is available at https://github.com/XianguiKang/AdvAD.

Authors:Yuechen Xie, Jie Song, Huiqiong Wang, Mingli Song
Title: Training Data Provenance Verification: Did Your Model Use Synthetic Data from My Generative Model for Training?
Abstract:
High-quality open-source text-to-image models have lowered the threshold for obtaining photorealistic images significantly, but also face potential risks of misuse. Specifically, suspects may use synthetic data generated by these generative models to train models for specific tasks without permission, when lacking real data resources especially. Protecting these generative models is crucial for the well-being of their owners. In this work, we propose the first method to this important yet unresolved issue, called Training data Provenance Verification (TrainProVe). The rationale behind TrainProVe is grounded in the principle of generalization error bound, which suggests that, for two models with the same task, if the distance between their training data distributions is smaller, their generalization ability will be closer. We validate the efficacy of TrainProVe across four text-to-image models (Stable Diffusion v1.4, latent consistency model, PixArt-$α$, and Stable Cascade). The results show that TrainProVe achieves a verification accuracy of over 99\% in determining the provenance of suspicious model training data, surpassing all previous methods. Code is available at https://github.com/xieyc99/TrainProVe.

Authors:Zihao Chen, Hisashi Handa, Miho Ohsaki, Kimiaki Shirahama
Title: Domain Adaptation for Japanese Sentence Embeddings with Contrastive Learning based on Synthetic Sentence Generation
Abstract:
Several backbone models pre-trained on general domain datasets can encode a sentence into a widely useful embedding. Such sentence embeddings can be further enhanced by domain adaptation that adapts a backbone model to a specific domain. However, domain adaptation for low-resource languages like Japanese is often difficult due to the scarcity of large-scale labeled datasets. To overcome this, this paper introduces SDJC (Self-supervised Domain adaptation for Japanese sentence embeddings with Contrastive learning) that utilizes a data generator to generate sentences, which have the same syntactic structure to a sentence in an unlabeled specific domain corpus but convey different semantic meanings. Generated sentences are then used to boost contrastive learning that adapts a backbone model to accurately discriminate sentences in the specific domain. In addition, the components of SDJC like a backbone model and a method to adapt it need to be carefully selected, but no benchmark dataset is available for Japanese. Thus, a comprehensive Japanese STS (Semantic Textual Similarity) benchmark dataset is constructed by combining datasets machine-translated from English with existing datasets. The experimental results validates the effectiveness of SDJC on two domain-specific downstream tasks as well as the usefulness of the constructed dataset. Datasets, codes and backbone models adapted by SDJC are available on our github repository https://github.com/ccilab-doshisha/SDJC.

Authors:Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna, Arman Cohan, Xingyao Wang
Title: LocAgent: Graph-Guided LLM Agents for Code Localization
Abstract:
Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.

Authors:Byeongchan Lee, Sehyun Lee
Title: Implicit Contrastive Representation Learning with Guided Stop-gradient
Abstract:
In self-supervised representation learning, Siamese networks are a natural architecture for learning transformation-invariance by bringing representations of positive pairs closer together. But it is prone to collapse into a degenerate solution. To address the issue, in contrastive learning, a contrastive loss is used to prevent collapse by moving representations of negative pairs away from each other. But it is known that algorithms with negative sampling are not robust to a reduction in the number of negative samples. So, on the other hand, there are algorithms that do not use negative pairs. Many positive-only algorithms adopt asymmetric network architecture consisting of source and target encoders as a key factor in coping with collapse. By exploiting the asymmetric architecture, we introduce a methodology to implicitly incorporate the idea of contrastive learning. As its implementation, we present a novel method guided stop-gradient. We apply our method to benchmark algorithms SimSiam and BYOL and show that our method stabilizes training and boosts performance. We also show that the algorithms with our method work well with small batch sizes and do not collapse even when there is no predictor. The code is available at https://github.com/bych-lee/gsg.

Authors:Rui Shi, Xiaodong Yu, Shengming Wang, Yijia Zhang, Lu Xu, Peng Pan, Chunlai Ma
Title: RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
Abstract:
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.

Authors:Rongxin Liao, Feng Li, Yanyan Wei, Zenglin Shi, Le Zhang, Huihui Bai, Meng Wang
Title: Prompt to Restore, Restore to Prompt: Cyclic Prompting for Universal Adverse Weather Removal
Abstract:
Universal adverse weather removal (UAWR) seeks to address various weather degradations within a unified framework. Recent methods are inspired by prompt learning using pre-trained vision-language models (e.g., CLIP), leveraging degradation-aware prompts to facilitate weather-free image restoration, yielding significant improvements. In this work, we propose CyclicPrompt, an innovative cyclic prompt approach designed to enhance the effectiveness, adaptability, and generalizability of UAWR. CyclicPrompt Comprises two key components: 1) a composite context prompt that integrates weather-related information and context-aware representations into the network to guide restoration. This prompt differs from previous methods by marrying learnable input-conditional vectors with weather-specific knowledge, thereby improving adaptability across various degradations. 2) The erase-and-paste mechanism, after the initial guided restoration, substitutes weather-specific knowledge with constrained restoration priors, inducing high-quality weather-free concepts into the composite prompt to further fine-tune the restoration process. Therefore, we can form a cyclic "Prompt-Restore-Prompt" pipeline that adeptly harnesses weather-specific knowledge, textual contexts, and reliable textures. Extensive experiments on synthetic and real-world datasets validate the superior performance of CyclicPrompt. The code is available at: https://github.com/RongxinL/CyclicPrompt.

Authors:Joao D. S. Marques, Arlindo L. Oliveira
Title: Are ECGs enough? Deep learning classification of pulmonary embolism using electrocardiograms
Abstract:
Pulmonary embolism is a leading cause of out of hospital cardiac arrest that requires fast diagnosis. While computed tomography pulmonary angiography is the standard diagnostic tool, it is not always accessible. Electrocardiography is an essential tool for diagnosing multiple cardiac anomalies, as it is affordable, fast and available in many settings. However, the availability of public ECG datasets, specially for PE, is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural networks in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate information learned in larger ECG datasets, such as PTB-XL, CPSC18 and MedalCare-XL, to a smaller, more challenging dataset for PE. By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .

Authors:Hrishikesh Viswanath, Md Ashiqur Rahman, Chi Lin, Damon Conover, Aniket Bera
Title: HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
Abstract:
Accurate and efficient 3D mapping of large-scale outdoor environments from LiDAR measurements is a fundamental challenge in robotics, particularly towards ensuring smooth and artifact-free surface reconstructions. Although the state-of-the-art methods focus on memory-efficient neural representations for high-fidelity surface generation, they often fail to produce artifact-free manifolds, with artifacts arising due to noisy and sparse inputs. To address this issue, we frame surface mapping as a physics-informed energy optimization problem, enforcing surface smoothness by optimizing an energy functional that penalizes sharp surface ridges. Specifically, we propose a deep learning based approach that learns the signed distance field (SDF) of the surface manifold from raw LiDAR point clouds using a physics-informed loss function that optimizes the $L_2$-Hessian energy of the surface. Our learning framework includes a hierarchical octree based input feature encoding and a multi-scale neural network to iteratively refine the signed distance field at different scales of resolution. Lastly, we introduce a test-time refinement strategy to correct topological inconsistencies and edge distortions that can arise in the generated mesh. We propose a \texttt{CUDA}-accelerated least-squares optimization that locally adjusts vertex positions to enforce feature-preserving smoothing. We evaluate our approach on large-scale outdoor datasets and demonstrate that our approach outperforms current state-of-the-art methods in terms of improved accuracy and smoothness. Our code is available at \href{https://github.com/HrishikeshVish/HessianForge/}{https://github.com/HrishikeshVish/HessianForge/}

Authors:Anand Menon, Samit S Miftah, Shamik Kundu, Souvik Kundu, Amisha Srivastava, Arnab Raha, Gabriel Theodor Sonnenschein, Suvadeep Banerjee, Deepak Mathaikutty, Kanad Basu
Title: Enhancing Large Language Models for Hardware Verification: A Novel SystemVerilog Assertion Dataset
Abstract:
Hardware verification is crucial in modern SoC design, consuming around 70% of development time. SystemVerilog assertions ensure correct functionality. However, existing industrial practices rely on manual efforts for assertion generation, which becomes increasingly untenable as hardware systems become complex. Recent research shows that Large Language Models (LLMs) can automate this process. However, proprietary SOTA models like GPT-4o often generate inaccurate assertions and require expensive licenses, while smaller open-source LLMs need fine-tuning to manage HDL code complexities. To address these issues, we introduce **VERT**, an open-source dataset designed to enhance SystemVerilog assertion generation using LLMs. VERT enables researchers in academia and industry to fine-tune open-source models, outperforming larger proprietary ones in both accuracy and efficiency while ensuring data privacy through local fine-tuning and eliminating costly licenses. The dataset is curated by systematically augmenting variables from open-source HDL repositories to generate synthetic code snippets paired with corresponding assertions. Experimental results demonstrate that fine-tuned models like Deepseek Coder 6.7B and Llama 3.1 8B outperform GPT-4o, achieving up to 96.88% improvement over base models and 24.14% over GPT-4o on platforms including OpenTitan, CVA6, OpenPiton and Pulpissimo. VERT is available at https://github.com/AnandMenon12/VERT.

Authors:Matthieu Terris, Samuel Hurault, Maxime Song, Julian Tachella
Title: Reconstruct Anything Model: a lightweight foundation model for computational imaging
Abstract:
Most existing learning-based methods for solving imaging inverse problems can be roughly divided into two classes: iterative algorithms, such as plug-and-play and diffusion methods leveraging pretrained denoisers, and unrolled architectures that are trained end-to-end for specific imaging problems. Iterative methods in the first class are computationally costly and often yield suboptimal reconstruction performance, whereas unrolled architectures are generally problem-specific and require expensive training. In this work, we propose a novel non-iterative, lightweight architecture that incorporates knowledge about the forward operator (acquisition physics and noise parameters) without relying on unrolling. Our model is trained to solve a wide range of inverse problems, such as deblurring, magnetic resonance imaging, computed tomography, inpainting, and super-resolution, and handles arbitrary image sizes and channels, such as grayscale, complex, and color data. The proposed model can be easily adapted to unseen inverse problems or datasets with a few fine-tuning steps (up to a few images) in a self-supervised way, without ground-truth references. Throughout a series of experiments, we demonstrate state-of-the-art performance from medical imaging to low-photon imaging and microscopy. Our code is available at https://github.com/matthieutrs/ram.

Authors:Xiwen Chen, Wenhui Zhu, Peijie Qiu, Hao Wang, Huayu Li, Haiyu Wu, Aristeidis Sotiras, Yalin Wang, Abolfazl Razi
Title: Prompt-OT: An Optimal Transport Regularization Paradigm for Knowledge Preservation in Vision-Language Model Adaptation
Abstract:
Vision-language models (VLMs) such as CLIP demonstrate strong performance but struggle when adapted to downstream tasks. Prompt learning has emerged as an efficient and effective strategy to adapt VLMs while preserving their pre-trained knowledge. However, existing methods still lead to overfitting and degrade zero-shot generalization. To address this challenge, we propose an optimal transport (OT)-guided prompt learning framework that mitigates forgetting by preserving the structural consistency of feature distributions between pre-trained and fine-tuned models. Unlike conventional point-wise constraints, OT naturally captures cross-instance relationships and expands the feasible parameter space for prompt tuning, allowing a better trade-off between adaptation and generalization. Our approach enforces joint constraints on both vision and text representations, ensuring a holistic feature alignment. Extensive experiments on benchmark datasets demonstrate that our simple yet effective method can outperform existing prompt learning strategies in base-to-novel generalization, cross-dataset evaluation, and domain generalization without additional augmentation or ensemble techniques. The code is available at https://github.com/ChongQingNoSubway/Prompt-OT

Authors:Zhiwen You, Yue Guo
Title: PlainQAFact: Retrieval-augmented Factual Consistency Evaluation Metric for Biomedical Plain Language Summarization
Abstract:
Hallucinated outputs from large language models (LLMs) pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing automatic factual consistency evaluation methods, such as entailment- and question-answering (QA) -based, struggle with plain language summarization (PLS) due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the scientific abstract to enhance comprehension. To address this, we introduce PlainQAFact, an automatic factual consistency evaluation metric trained on a fine-grained, human-annotated dataset PlainFact, for evaluating factual consistency of both source-simplified and elaborately explained sentences. PlainQAFact first classifies sentence type, then applies a retrieval-augmented QA scoring method. Empirical results show that existing evaluation metrics fail to evaluate the factual consistency in PLS, especially for elaborative explanations, whereas PlainQAFact consistently outperforms them across all evaluation settings. We further analyze PlainQAFact's effectiveness across external knowledge sources, answer extraction strategies, answer overlap measures, and document granularity levels, refining its overall factual consistency assessment. Taken together, our work presents the first evaluation metric designed for PLS factual consistency evaluation, providing the community with both a robust benchmark and a practical tool to advance reliable and safe plain language communication in the medical domain. PlainQAFact and PlainFact are available at: https://github.com/zhiwenyou103/PlainQAFact

Authors:Rajitha de Silva, Jonathan Cox, Marija Popovic, Cesar Cadena, Cyrill Stachniss, Riccardo Polvara
Title: Keypoint Semantic Integration for Improved Feature Matching in Outdoor Agricultural Environments
Abstract:
Robust robot navigation in outdoor environments requires accurate perception systems capable of handling visual challenges such as repetitive structures and changing appearances. Visual feature matching is crucial to vision-based pipelines but remains particularly challenging in natural outdoor settings due to perceptual aliasing. We address this issue in vineyards, where repetitive vine trunks and other natural elements generate ambiguous descriptors that hinder reliable feature matching. We hypothesise that semantic information tied to keypoint positions can alleviate perceptual aliasing by enhancing keypoint descriptor distinctiveness. To this end, we introduce a keypoint semantic integration technique that improves the descriptors in semantically meaningful regions within the image, enabling more accurate differentiation even among visually similar local features. We validate this approach in two vineyard perception tasks: (i) relative pose estimation and (ii) visual localisation. Across all tested keypoint types and descriptors, our method improves matching accuracy by 12.6%, demonstrating its effectiveness over multiple months in challenging vineyard conditions.

Authors:Nithin Parsan, David J. Yang, John J. Yang
Title: Towards Interpretable Protein Structure Prediction with Sparse Autoencoders
Abstract:
Protein language models have revolutionized structure prediction, but their nonlinear nature obscures how sequence representations inform structure prediction. While sparse autoencoders (SAEs) offer a path to interpretability here by learning linear representations in high-dimensional space, their application has been limited to smaller protein language models unable to perform structure prediction. In this work, we make two key advances: (1) we scale SAEs to ESM2-3B, the base model for ESMFold, enabling mechanistic interpretability of protein structure prediction for the first time, and (2) we adapt Matryoshka SAEs for protein language models, which learn hierarchically organized features by forcing nested groups of latents to reconstruct inputs independently. We demonstrate that our Matryoshka SAEs achieve comparable or better performance than standard architectures. Through comprehensive evaluations, we show that SAEs trained on ESM2-3B significantly outperform those trained on smaller models for both biological concept discovery and contact map prediction. Finally, we present an initial case study demonstrating how our approach enables targeted steering of ESMFold predictions, increasing structure solvent accessibility while fixing the input sequence. To facilitate further investigation by the broader community, we open-source our code, dataset, pretrained models https://github.com/johnyang101/reticular-sae , and visualizer https://sae.reticular.ai .

Authors:Wenyi Wu, Hao Zhang, Zhisen Wei, Xiao-Yuan Jing, Qinghua Zhang, Songsong Wu
Title: Source-free domain adaptation based on label reliability for cross-domain bearing fault diagnosis
Abstract:
Source-free domain adaptation (SFDA) has been exploited for cross-domain bearing fault diagnosis without access to source data. Current methods select partial target samples with reliable pseudo-labels for model adaptation, which is sub-optimal due to the ignored target samples. We argue that every target sample can contribute to model adaptation, and accordingly propose in this paper a novel SFDA-based approach for bearing fault diagnosis that exploits both reliable and unreliable pseudo-labels. We develop a data-augmentation-based label voting strategy to divide the target samples into reliable and unreliable ones. We propose to explore the underlying relation between feature space and label space by using the reliable pseudo-labels as ground-truth labels, meanwhile, alleviating negative transfer by maximizing the entropy of the unreliable pseudo-labels. The proposed method achieves well-balance between discriminability and diversity by taking advantage of reliable and unreliable pseudo-labels. Extensive experiments are conducted on two bearing fault benchmarks, demonstrating that our approach achieves significant performance improvements against existing SFDA-based bearing fault diagnosis methods. Our code is available at https://github.com/BdLab405/SDALR.

Authors:Letian Zhang, Quan Cui, Bingchen Zhao, Cheng Yang
Title: Oasis: One Image is All You Need for Multimodal Instruction Data Synthesis
Abstract:
The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and dataset are publicly available at https://github.com/Letian2003/MM_INF.

Authors:In Cho, Youngbeom Yoo, Subin Jeon, Seon Joo Kim
Title: Representing 3D Shapes With 64 Latent Vectors for 3D Diffusion Models
Abstract:
Constructing a compressed latent space through a variational autoencoder (VAE) is the key for efficient 3D diffusion models. This paper introduces COD-VAE that encodes 3D shapes into a COmpact set of 1D latent vectors without sacrificing quality. COD-VAE introduces a two-stage autoencoder scheme to improve compression and decoding efficiency. First, our encoder block progressively compresses point clouds into compact latent vectors via intermediate point patches. Second, our triplane-based decoder reconstructs dense triplanes from latent vectors instead of directly decoding neural fields, significantly reducing computational overhead of neural fields decoding. Finally, we propose uncertainty-guided token pruning, which allocates resources adaptively by skipping computations in simpler regions and improves the decoder efficiency. Experimental results demonstrate that COD-VAE achieves 16x compression compared to the baseline while maintaining quality. This enables 20.8x speedup in generation, highlighting that a large number of latent vectors is not a prerequisite for high-quality reconstruction and generation. The code is available at https://github.com/join16/COD-VAE.

Authors:Raphi Kang, Yue Song, Georgia Gkioxari, Pietro Perona
Title: Is CLIP ideal? No. Can we fix it? Yes!
Abstract:
Contrastive Language-Image Pre-Training (CLIP) is a popular method for learning multimodal latent spaces with well-organized semantics. Despite its wide range of applications, CLIP's latent space is known to fail at handling complex visual-textual interactions. Recent works attempt to address its shortcomings with data-centric or algorithmic approaches. But what if the problem is more fundamental, and lies in the geometry of CLIP? Toward this end, we rigorously analyze CLIP's latent space properties, and prove that no CLIP-like joint embedding space exists which can correctly do any two of the following at the same time: 1. represent basic descriptions and image content, 2. represent attribute binding, 3. represent spatial location and relationships, 4. represent negation. Informed by this analysis, we propose Dense Cosine Similarity Maps (DCSMs) as a principled and interpretable scoring method for CLIP-like models, which solves the fundamental limitations of CLIP by retaining the semantic topology of the image patches and text tokens. This method improves upon the performance of classical CLIP-like joint encoder models on a wide array of benchmarks. We share our code and data here for reproducibility: https://github.com/Raphoo/DCSM_Ideal_CLIP

Authors:Yan Hu, Ahmad Chaddad
Title: SHAP-Integrated Convolutional Diagnostic Networks for Feature-Selective Medical Analysis
Abstract:
This study introduces the SHAP-integrated convolutional diagnostic network (SICDN), an interpretable feature selection method designed for limited datasets, to address the challenge posed by data privacy regulations that restrict access to medical datasets. The SICDN model was tested on classification tasks using pneumonia and breast cancer datasets, demonstrating over 97% accuracy and surpassing four popular CNN models. We also integrated a historical weighted moving average technique to enhance feature selection. The SICDN shows potential in medical image prediction, with the code available on https://github.com/AIPMLab/SICDN.

Authors:Yongdong Luo, Wang Chen, Xiawu Zheng, Weizhong Huang, Shukang Yin, Haojia Lin, Chaoyou Fu, Jinfa Huang, Jiayi Ji, Jiebo Luo, Rongrong Ji
Title: QuoTA: Query-oriented Token Assignment via CoT Query Decouple for Long Video Comprehension
Abstract:
Recent advances in long video understanding typically mitigate visual redundancy through visual token pruning based on attention distribution. However, while existing methods employ post-hoc low-response token pruning in decoder layers, they overlook the input-level semantic correlation between visual tokens and instructions (query). In this paper, we propose QuoTA, an ante-hoc training-free modular that extends existing large video-language models (LVLMs) for visual token assignment based on query-oriented frame-level importance assessment. The query-oriented token selection is crucial as it aligns visual processing with task-specific requirements, optimizing token budget utilization while preserving semantically relevant content. Specifically, (i) QuoTA strategically allocates frame-level importance scores based on query relevance, enabling one-time visual token assignment before cross-modal interactions in decoder layers, (ii) we decouple the query through Chain-of-Thoughts reasoning to facilitate more precise LVLM-based frame importance scoring, and (iii) QuoTA offers a plug-and-play functionality that extends to existing LVLMs. Extensive experimental results demonstrate that implementing QuoTA with LLaVA-Video-7B yields an average performance improvement of 3.2% across six benchmarks (including Video-MME and MLVU) while operating within an identical visual token budget as the baseline. Codes are open-sourced at https://github.com/MAC-AutoML/QuoTA.

Authors:Ariba Khan, Stephen Casper, Dylan Hadfield-Menell
Title: Randomness, Not Representation: The Unreliability of Evaluating Cultural Alignment in LLMs
Abstract:
Research on the 'cultural alignment' of Large Language Models (LLMs) has emerged in response to growing interest in understanding representation across diverse stakeholders. Current approaches to evaluating cultural alignment through survey-based assessments that borrow from social science methodologies often overlook systematic robustness checks. Here, we identify and test three assumptions behind current survey-based evaluation methods: (1) Stability: that cultural alignment is a property of LLMs rather than an artifact of evaluation design, (2) Extrapolability: that alignment with one culture on a narrow set of issues predicts alignment with that culture on others, and (3) Steerability: that LLMs can be reliably prompted to represent specific cultural perspectives. Through experiments examining both explicit and implicit preferences of leading LLMs, we find a high level of instability across presentation formats, incoherence between evaluated versus held-out cultural dimensions, and erratic behavior under prompt steering. We show that these inconsistencies can cause the results of an evaluation to be very sensitive to minor variations in methodology. Finally, we demonstrate in a case study on evaluation design that narrow experiments and a selective assessment of evidence can be used to paint an incomplete picture of LLMs' cultural alignment properties. Overall, these results highlight significant limitations of current survey-based approaches to evaluating the cultural alignment of LLMs and highlight a need for systematic robustness checks and red-teaming for evaluation results. Data and code are available at https://huggingface.co/datasets/akhan02/cultural-dimension-cover-letters and https://github.com/ariba-k/llm-cultural-alignment-evaluation, respectively.

Authors:Jialv Zou, Bencheng Liao, Qian Zhang, Wenyu Liu, Xinggang Wang
Title: OmniMamba: Efficient and Unified Multimodal Understanding and Generation via State Space Models
Abstract:
Recent advancements in unified multimodal understanding and visual generation (or multimodal generation) models have been hindered by their quadratic computational complexity and dependence on large-scale training data. We present OmniMamba, the first linear-architecture-based multimodal generation model that generates both text and images through a unified next-token prediction paradigm. The model fully leverages Mamba-2's high computational and memory efficiency, extending its capabilities from text generation to multimodal generation. To address the data inefficiency of existing unified models, we propose two key innovations: (1) decoupled vocabularies to guide modality-specific generation, and (2) task-specific LoRA for parameter-efficient adaptation. Furthermore, we introduce a decoupled two-stage training strategy to mitigate data imbalance between two tasks. Equipped with these techniques, OmniMamba achieves competitive performance with JanusFlow while surpassing Show-o across benchmarks, despite being trained on merely 2M image-text pairs, which is 1,000 times fewer than Show-o. Notably, OmniMamba stands out with outstanding inference efficiency, achieving up to a 119.2 times speedup and 63% GPU memory reduction for long-sequence generation compared to Transformer-based counterparts. Code and models are released at https://github.com/hustvl/OmniMamba

Authors:Haoyu Wang, Sunhao Dai, Haiyuan Zhao, Liang Pang, Xiao Zhang, Gang Wang, Zhenhua Dong, Jun Xu, Ji-Rong Wen
Title: Perplexity Trap: PLM-Based Retrievers Overrate Low Perplexity Documents
Abstract:
Previous studies have found that PLM-based retrieval models exhibit a preference for LLM-generated content, assigning higher relevance scores to these documents even when their semantic quality is comparable to human-written ones. This phenomenon, known as source bias, threatens the sustainable development of the information access ecosystem. However, the underlying causes of source bias remain unexplored. In this paper, we explain the process of information retrieval with a causal graph and discover that PLM-based retrievers learn perplexity features for relevance estimation, causing source bias by ranking the documents with low perplexity higher. Theoretical analysis further reveals that the phenomenon stems from the positive correlation between the gradients of the loss functions in language modeling task and retrieval task. Based on the analysis, a causal-inspired inference-time debiasing method is proposed, called Causal Diagnosis and Correction (CDC). CDC first diagnoses the bias effect of the perplexity and then separates the bias effect from the overall estimated relevance score. Experimental results across three domains demonstrate the superior debiasing effectiveness of CDC, emphasizing the validity of our proposed explanatory framework. Source codes are available at https://github.com/WhyDwelledOnAi/Perplexity-Trap.

Authors:Changxing Liu, Genjia Liu, Zijun Wang, Jinchang Yang, Siheng Chen
Title: CoLMDriver: LLM-based Negotiation Benefits Cooperative Autonomous Driving
Abstract:
Vehicle-to-vehicle (V2V) cooperative autonomous driving holds great promise for improving safety by addressing the perception and prediction uncertainties inherent in single-agent systems. However, traditional cooperative methods are constrained by rigid collaboration protocols and limited generalization to unseen interactive scenarios. While LLM-based approaches offer generalized reasoning capabilities, their challenges in spatial planning and unstable inference latency hinder their direct application in cooperative driving. To address these limitations, we propose CoLMDriver, the first full-pipeline LLM-based cooperative driving system, enabling effective language-based negotiation and real-time driving control. CoLMDriver features a parallel driving pipeline with two key components: (i) an LLM-based negotiation module under an actor-critic paradigm, which continuously refines cooperation policies through feedback from previous decisions of all vehicles; and (ii) an intention-guided waypoint generator, which translates negotiation outcomes into executable waypoints. Additionally, we introduce InterDrive, a CARLA-based simulation benchmark comprising 10 challenging interactive driving scenarios for evaluating V2V cooperation. Experimental results demonstrate that CoLMDriver significantly outperforms existing approaches, achieving an 11% higher success rate across diverse highly interactive V2V driving scenarios. Code will be released on https://github.com/cxliu0314/CoLMDriver.

Authors:Viktor Moskvoretskii, Chris Biemann, Irina Nikishina
Title: Self-Taught Self-Correction for Small Language Models
Abstract:
Although large language models (LLMs) have achieved remarkable performance across various tasks, they remain prone to errors. A key challenge is enabling them to self-correct. While prior research has relied on external tools or large proprietary models, this work explores self-correction in small language models (SLMs) through iterative fine-tuning using solely self-generated data. We introduce the Self-Taught Self-Correction (STaSC) algorithm, which incorporates multiple algorithmic design choices. Experimental results on a question-answering task demonstrate that STaSC effectively learns self-correction, leading to significant performance improvements. Our analysis further provides insights into the mechanisms of self-correction and the impact of different design choices on learning dynamics and overall performance. To support future research, we release our user-friendly codebase and lightweight models.

Authors:Zekun Li, Shinda Huang, Jiangtian Wang, Nathan Zhang, Antonis Antoniades, Wenyue Hua, Kaijie Zhu, Sirui Zeng, Chi Wang, William Yang Wang, Xifeng Yan
Title: SOPBench: Evaluating Language Agents at Following Standard Operating Procedures and Constraints
Abstract:
As language agents increasingly automate critical tasks, their ability to follow domain-specific standard operating procedures (SOPs), policies, and constraints when taking actions and making tool calls becomes essential yet remains underexplored. To address this gap, we develop an automated evaluation pipeline SOPBench with: (1) executable environments containing 167 tools/functions across seven customer service domains with service-specific SOPs and rule-based verifiers, (2) an automated test generation framework producing over 900 verified test cases, and (3) an automated evaluation framework to rigorously assess agent adherence from multiple dimensions. Our approach transforms each service-specific SOP code program into a directed graph of executable functions and requires agents to call these functions based on natural language SOP descriptions. The original code serves as oracle rule-based verifiers to assess compliance, reducing reliance on manual annotations and LLM-based evaluations. We evaluate 18 leading models, and results show the task is challenging even for top-tier models (like GPT-4o, Claude-3.7-Sonnet), with variances across domains. Reasoning models like o4-mini-high show superiority while other powerful models perform less effectively (pass rates of 30%-50%), and small models (7B, 8B) perform significantly worse. Additionally, language agents can be easily jailbroken to overlook SOPs and constraints. Code, data, and over 24k agent trajectories are released at https://github.com/Leezekun/SOPBench.

Authors:Shuaiting Li, Juncan Deng, Chenxuan Wang, Kedong Xu, Rongtao Deng, Hong Gu, Haibin Shen, Kejie Huang
Title: SSVQ: Unleashing the Potential of Vector Quantization with Sign-Splitting
Abstract:
Vector Quantization (VQ) has emerged as a prominent weight compression technique, showcasing substantially lower quantization errors than uniform quantization across diverse models, particularly in extreme compression scenarios. However, its efficacy during fine-tuning is limited by the constraint of the compression format, where weight vectors assigned to the same codeword are restricted to updates in the same direction. Consequently, many quantized weights are compelled to move in directions contrary to their local gradient information. To mitigate this issue, we introduce a novel VQ paradigm, Sign-Splitting VQ (SSVQ), which decouples the sign bit of weights from the codebook. Our approach involves extracting the sign bits of uncompressed weights and performing clustering and compression on all-positive weights. We then introduce latent variables for the sign bit and jointly optimize both the signs and the codebook. Additionally, we implement a progressive freezing strategy for the learnable sign to ensure training stability. Extensive experiments on various modern models and tasks demonstrate that SSVQ achieves a significantly superior compression-accuracy trade-off compared to conventional VQ. Furthermore, we validate our algorithm on a hardware accelerator, showing that SSVQ achieves a 3$\times$ speedup over the 8-bit compressed model by reducing memory access. Our code is available at https://github.com/list0830/SSVQ.

Authors:Yuhan Wang, Fangzhou Hong, Shuai Yang, Liming Jiang, Wayne Wu, Chen Change Loy
Title: MEAT: Multiview Diffusion Model for Human Generation on Megapixels with Mesh Attention
Abstract:
Multiview diffusion models have shown considerable success in image-to-3D generation for general objects. However, when applied to human data, existing methods have yet to deliver promising results, largely due to the challenges of scaling multiview attention to higher resolutions. In this paper, we explore human multiview diffusion models at the megapixel level and introduce a solution called mesh attention to enable training at 1024x1024 resolution. Using a clothed human mesh as a central coarse geometric representation, the proposed mesh attention leverages rasterization and projection to establish direct cross-view coordinate correspondences. This approach significantly reduces the complexity of multiview attention while maintaining cross-view consistency. Building on this foundation, we devise a mesh attention block and combine it with keypoint conditioning to create our human-specific multiview diffusion model, MEAT. In addition, we present valuable insights into applying multiview human motion videos for diffusion training, addressing the longstanding issue of data scarcity. Extensive experiments show that MEAT effectively generates dense, consistent multiview human images at the megapixel level, outperforming existing multiview diffusion methods.

Authors:Ruibin Yuan, Hanfeng Lin, Shuyue Guo, Ge Zhang, Jiahao Pan, Yongyi Zang, Haohe Liu, Yiming Liang, Wenye Ma, Xingjian Du, Xinrun Du, Zhen Ye, Tianyu Zheng, Zhengxuan Jiang, Yinghao Ma, Minghao Liu, Zeyue Tian, Ziya Zhou, Liumeng Xue, Xingwei Qu, Yizhi Li, Shangda Wu, Tianhao Shen, Ziyang Ma, Jun Zhan, Chunhui Wang, Yatian Wang, Xiaowei Chi, Xinyue Zhang, Zhenzhu Yang, Xiangzhou Wang, Shansong Liu, Lingrui Mei, Peng Li, Junjie Wang, Jianwei Yu, Guojian Pang, Xu Li, Zihao Wang, Xiaohuan Zhou, Lijun Yu, Emmanouil Benetos, Yong Chen, Chenghua Lin, Xie Chen, Gus Xia, Zhaoxiang Zhang, Chao Zhang, Wenhu Chen, Xinyu Zhou, Xipeng Qiu, Roger Dannenberg, Jiaheng Liu, Jian Yang, Wenhao Huang, Wei Xue, Xu Tan, Yike Guo
Title: YuE: Scaling Open Foundation Models for Long-Form Music Generation
Abstract:
We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation

Authors:Muzhi Zhu, Yuzhuo Tian, Hao Chen, Chunluan Zhou, Qingpei Guo, Yang Liu, Ming Yang, Chunhua Shen
Title: SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories
Abstract:
While MLLMs have demonstrated adequate image understanding capabilities, they still struggle with pixel-level comprehension, limiting their practical applications. Current evaluation tasks like VQA and visual grounding remain too coarse to assess fine-grained pixel comprehension accurately. Though segmentation is foundational for pixel-level understanding, existing methods often require MLLMs to generate implicit tokens, decoded through external pixel decoders. This approach disrupts the MLLM's text output space, potentially compromising language capabilities and reducing flexibility and extensibility, while failing to reflect the model's intrinsic pixel-level understanding. Thus, we introduce the Human-Like Mask Annotation Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools. Modeling segmentation as a multi-step Markov Decision Process, HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens. Through this setup, we develop SegAgent, a model fine-tuned on human-like annotation trajectories, which achieves performance comparable to state-of-the-art (SOTA) methods and supports additional tasks like mask refinement and annotation filtering. HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task that facilitates exploration of MLLMs' visual reasoning abilities. Our adaptations of policy improvement method StaR and PRM-guided tree search further enhance model robustness in complex segmentation tasks, laying a foundation for future advancements in fine-grained visual perception and multi-step decision-making for MLLMs.

Authors:Xianfeng Wu, Yajing Bai, Haoze Zheng, Harold Haodong Chen, Yexin Liu, Zihao Wang, Xuran Ma, Wen-Jie Shu, Xianzu Wu, Harry Yang, Ser-Nam Lim
Title: LightGen: Efficient Image Generation through Knowledge Distillation and Direct Preference Optimization
Abstract:
Recent advances in text-to-image generation have primarily relied on extensive datasets and parameter-heavy architectures. These requirements severely limit accessibility for researchers and practitioners who lack substantial computational resources. In this paper, we introduce \model, an efficient training paradigm for image generation models that uses knowledge distillation (KD) and Direct Preference Optimization (DPO). Drawing inspiration from the success of data KD techniques widely adopted in Multi-Modal Large Language Models (MLLMs), LightGen distills knowledge from state-of-the-art (SOTA) text-to-image models into a compact Masked Autoregressive (MAR) architecture with only $0.7B$ parameters. Using a compact synthetic dataset of just $2M$ high-quality images generated from varied captions, we demonstrate that data diversity significantly outweighs data volume in determining model performance. This strategy dramatically reduces computational demands and reduces pre-training time from potentially thousands of GPU-days to merely 88 GPU-days. Furthermore, to address the inherent shortcomings of synthetic data, particularly poor high-frequency details and spatial inaccuracies, we integrate the DPO technique that refines image fidelity and positional accuracy. Comprehensive experiments confirm that LightGen achieves image generation quality comparable to SOTA models while significantly reducing computational resources and expanding accessibility for resource-constrained environments. Code is available at https://github.com/XianfengWu01/LightGen

Authors:Feiran Wang, Jiachen Tao, Junyi Wu, Haoxuan Wang, Bin Duan, Kai Wang, Zongxin Yang, Yan Yan
Title: X-Field: A Physically Grounded Representation for 3D X-ray Reconstruction
Abstract:
X-ray imaging is indispensable in medical diagnostics, yet its use is tightly regulated due to potential health risks. To mitigate radiation exposure, recent research focuses on generating novel views from sparse inputs and reconstructing Computed Tomography (CT) volumes, borrowing representations from the 3D reconstruction area. However, these representations originally target visible light imaging that emphasizes reflection and scattering effects, while neglecting penetration and attenuation properties of X-ray imaging. In this paper, we introduce X-Field, the first 3D representation specifically designed for X-ray imaging, rooted in the energy absorption rates across different materials. To accurately model diverse materials within internal structures, we employ 3D ellipsoids with distinct attenuation coefficients. To estimate each material's energy absorption of X-rays, we devise an efficient path partitioning algorithm accounting for complex ellipsoid intersections. We further propose hybrid progressive initialization to refine the geometric accuracy of X-Filed and incorporate material-based optimization to enhance model fitting along material boundaries. Experiments show that X-Field achieves superior visual fidelity on both real-world human organ and synthetic object datasets, outperforming state-of-the-art methods in X-ray Novel View Synthesis and CT Reconstruction.

Authors:Justus Karlsson, Yonghao Xu, Amanda Berg, Leif Haglund
Title: Comparing Next-Day Wildfire Predictability of MODIS and VIIRS Satellite Data
Abstract:
Multiple studies have performed next-day fire prediction using satellite imagery. Two main satellites are used to detect wildfires: MODIS and VIIRS. Both satellites provide fire mask products, called MOD14 and VNP14, respectively. Studies have used one or the other, but there has been no comparison between them to determine which might be more suitable for next-day fire prediction. In this paper, we first evaluate how well VIIRS and MODIS data can be used to forecast wildfire spread one day ahead. We find that the model using VIIRS as input and VNP14 as target achieves the best results. Interestingly, the model using MODIS as input and VNP14 as target performs significantly better than using VNP14 as input and MOD14 as target. Next, we discuss why MOD14 might be harder to use for predicting next-day fires. We find that the MOD14 fire mask is highly stochastic and does not correlate with reasonable fire spread patterns. This is detrimental for machine learning tasks, as the model learns irrational patterns. Therefore, we conclude that MOD14 is unsuitable for next-day fire prediction and that VNP14 is a much better option. However, using MODIS input and VNP14 as target, we achieve a significant improvement in predictability. This indicates that an improved fire detection model is possible for MODIS. The full code and dataset is available online: https://github.com/justuskarlsson/wildfire-mod14-vnp14

Authors:Soham Deshmukh, Satvik Dixit, Rita Singh, Bhiksha Raj
Title: Mellow: a small audio language model for reasoning
Abstract:
Multimodal Audio-Language Models (ALMs) can understand and reason over both audio and text. Typically, reasoning performance correlates with model size, with the best results achieved by models exceeding 8 billion parameters. However, no prior work has explored enabling small audio-language models to perform reasoning tasks, despite the potential applications for edge devices. To address this gap, we introduce Mellow, a small Audio-Language Model specifically designed for reasoning. Mellow achieves state-of-the-art performance among existing small audio-language models and surpasses several larger models in reasoning capabilities. For instance, Mellow scores 52.11 on MMAU, comparable to SoTA Qwen2 Audio (which scores 52.5) while using 50 times fewer parameters and being trained on 60 times less data (audio hrs). To train Mellow, we introduce ReasonAQA, a dataset designed to enhance audio-grounded reasoning in models. It consists of a mixture of existing datasets (30% of the data) and synthetically generated data (70%). The synthetic dataset is derived from audio captioning datasets, where Large Language Models (LLMs) generate detailed and multiple-choice questions focusing on audio events, objects, acoustic scenes, signal properties, semantics, and listener emotions. To evaluate Mellow's reasoning ability, we benchmark it on a diverse set of tasks, assessing on both in-distribution and out-of-distribution data, including audio understanding, deductive reasoning, and comparative reasoning. Finally, we conduct extensive ablation studies to explore the impact of projection layer choices, synthetic data generation methods, and language model pretraining on reasoning performance. Our training dataset, findings, and baseline pave the way for developing small ALMs capable of reasoning.

Authors:Yihang Chen, Mengyao Li, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, Jianfei Cai
Title: PCGS: Progressive Compression of 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) achieves impressive rendering fidelity and speed for novel view synthesis. However, its substantial data size poses a significant challenge for practical applications. While many compression techniques have been proposed, they fail to efficiently utilize existing bitstreams in on-demand applications due to their lack of progressivity, leading to a waste of resource. To address this issue, we propose PCGS (Progressive Compression of 3D Gaussian Splatting), which adaptively controls both the quantity and quality of Gaussians (or anchors) to enable effective progressivity for on-demand applications. Specifically, for quantity, we introduce a progressive masking strategy that incrementally incorporates new anchors while refining existing ones to enhance fidelity. For quality, we propose a progressive quantization approach that gradually reduces quantization step sizes to achieve finer modeling of Gaussian attributes. Furthermore, to compact the incremental bitstreams, we leverage existing quantization results to refine probability prediction, improving entropy coding efficiency across progressive levels. Overall, PCGS achieves progressivity while maintaining compression performance comparable to SoTA non-progressive methods. Code available at: github.com/YihangChen-ee/PCGS.

Authors:Da-Wei Zhou, Kai-Wen Li, Jingyi Ning, Han-Jia Ye, Lijun Zhang, De-Chuan Zhan
Title: External Knowledge Injection for CLIP-Based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) enables learning systems to continuously adapt to evolving data streams. With the advancement of pre-training, leveraging pre-trained vision-language models (e.g., CLIP) offers a promising starting point for CIL. However, CLIP makes decisions by matching visual embeddings to class names, overlooking the rich contextual information conveyed through language. For instance, the concept of ``cat'' can be decomposed into features like tail, fur, and face for recognition. Besides, since the model is continually updated, these detailed features are overwritten in CIL, requiring external knowledge for compensation. In this paper, we introduce ExterNal knowledGe INjEction (ENGINE) for CLIP-based CIL. To enhance knowledge transfer from outside the dataset, we propose a dual-branch injection tuning framework that encodes informative knowledge from both visual and textual modalities. The visual branch is enhanced with data augmentation to enrich the visual features, while the textual branch leverages GPT-4 to rewrite discriminative descriptors. In addition to this on-the-fly knowledge injection, we also implement post-tuning knowledge by re-ranking the prediction results during inference. With the injected knowledge, the model can better capture informative features for downstream tasks as data evolves. Extensive experiments demonstrate the state-of-the-art performance of ENGINE. Code is available at: https://github.com/LAMDA-CL/ICCV25-ENGINE

Authors:Qing Jiang, Lin Wu, Zhaoyang Zeng, Tianhe Ren, Yuda Xiong, Yihao Chen, Qin Liu, Lei Zhang
Title: Referring to Any Person
Abstract:
Humans are undoubtedly the most important participants in computer vision, and the ability to detect any individual given a natural language description, a task we define as referring to any person, holds substantial practical value. However, we find that existing models generally fail to achieve real-world usability, and current benchmarks are limited by their focus on one-to-one referring, that hinder progress in this area. In this work, we revisit this task from three critical perspectives: task definition, dataset design, and model architecture. We first identify five aspects of referable entities and three distinctive characteristics of this task. Next, we introduce HumanRef, a novel dataset designed to tackle these challenges and better reflect real-world applications. From a model design perspective, we integrate a multimodal large language model with an object detection framework, constructing a robust referring model named RexSeek. Experimental results reveal that state-of-the-art models, which perform well on commonly used benchmarks like RefCOCO/+/g, struggle with HumanRef due to their inability to detect multiple individuals. In contrast, RexSeek not only excels in human referring but also generalizes effectively to common object referring, making it broadly applicable across various perception tasks. Code is available at https://github.com/IDEA-Research/RexSeek

Authors:Fan Wu, Sijun Dong, Xiaoliang Meng
Title: CFNet: Optimizing Remote Sensing Change Detection through Content-Aware Enhancement
Abstract:
Change detection is a crucial and widely applied task in remote sensing, aimed at identifying and analyzing changes occurring in the same geographical area over time. Due to variability in acquisition conditions, bi-temporal remote sensing images often exhibit significant differences in image style. Even with the powerful generalization capabilities of DNNs, these unpredictable style variations between bi-temporal images inevitably affect model's ability to accurately detect changed areas. To address issue above, we propose the Content Focuser Network (CFNet), which takes content-aware strategy as a key insight. CFNet employs EfficientNet-B5 as the backbone for feature extraction. To enhance the model's focus on the content features of images while mitigating the misleading effects of style features, we develop a constraint strategy that prioritizes the content features of bi-temporal images, termed Content-Aware. Furthermore, to enable the model to flexibly focus on changed and unchanged areas according to the requirements of different stages, we design a reweighting module based on the cosine distance between bi-temporal image features, termed Focuser. CFNet achieve outstanding performance across three well-known change detection datasets: CLCD (F1: 81.41%, IoU: 68.65%), LEVIR-CD (F1: 92.18%, IoU: 85.49%), and SYSU-CD (F1: 82.89%, IoU: 70.78%). The code and pretrained models of CFNet are publicly released at https://github.com/wifiBlack/CFNet.

Authors:Yuncheng Guo, Xiaodong Gu
Title: MMRL: Multi-Modal Representation Learning for Vision-Language Models
Abstract:
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.

Authors:Fengyi Zhang, Huitong Yang, Zheng Zhang, Zi Huang, Yadan Luo
Title: TT-Occ: Test-Time Compute for Self-Supervised Occupancy via Spatio-Temporal Gaussian Splatting
Abstract:
Self-supervised 3D occupancy prediction offers a promising solution for understanding complex driving scenes without requiring costly 3D annotations. However, training dense occupancy decoders to capture fine-grained geometry and semantics can demand hundreds of GPU hours, and once trained, such models struggle to adapt to varying voxel resolutions or novel object categories without extensive retraining. To overcome these limitations, we propose a practical and flexible test-time occupancy prediction framework termed TT-Occ. Our method incrementally constructs, optimizes and voxelizes time-aware 3D Gaussians from raw sensor streams by integrating vision foundation models (VLMs) at runtime. The flexible nature of 3D Gaussians allows voxelization at arbitrary user-specified resolutions, while the generalization ability of VLMs enables accurate perception and open-vocabulary recognition, without any network training or fine-tuning. Specifically, TT-Occ operates in a lift-track-voxelize symphony: We first lift the geometry and semantics of surrounding-view extracted from VLMs to instantiate Gaussians at 3D space; Next, we track dynamic Gaussians while accumulating static ones to complete the scene and enforce temporal consistency; Finally, we voxelize the optimized Gaussians to generate occupancy prediction. Optionally, inherent noise in VLM predictions and tracking is mitigated by periodically smoothing neighboring Gaussians during optimization. To validate the generality and effectiveness of our framework, we offer two variants: one LiDAR-based and one vision-centric, and conduct extensive experiments on Occ3D and nuCraft benchmarks with varying voxel resolutions. Code will be available at https://github.com/Xian-Bei/TT-Occ.

Authors:Han-Wei Kung, Tuomas Varanka, Terence Sim, Nicu Sebe
Title: NullFace: Training-Free Localized Face Anonymization
Abstract:
Privacy concerns around ever increasing number of cameras are increasing in today's digital age. Although existing anonymization methods are able to obscure identity information, they often struggle to preserve the utility of the images. In this work, we introduce a training-free method for face anonymization that preserves key non-identity-related attributes. Our approach utilizes a pre-trained text-to-image diffusion model without requiring optimization or training. It begins by inverting the input image to recover its initial noise. The noise is then denoised through an identity-conditioned diffusion process, where modified identity embeddings ensure the anonymized face is distinct from the original identity. Our approach also supports localized anonymization, giving users control over which facial regions are anonymized or kept intact. Comprehensive evaluations against state-of-the-art methods show our approach excels in anonymization, attribute preservation, and image quality. Its flexibility, robustness, and practicality make it well-suited for real-world applications. Code and data can be found at https://github.com/hanweikung/nullface .

Authors:Zhuoguang Chen, Kenan Li, Xiuyu Yang, Tao Jiang, Yiming Li, Hang Zhao
Title: TrackOcc: Camera-based 4D Panoptic Occupancy Tracking
Abstract:
Comprehensive and consistent dynamic scene understanding from camera input is essential for advanced autonomous systems. Traditional camera-based perception tasks like 3D object tracking and semantic occupancy prediction lack either spatial comprehensiveness or temporal consistency. In this work, we introduce a brand-new task, Camera-based 4D Panoptic Occupancy Tracking, which simultaneously addresses panoptic occupancy segmentation and object tracking from camera-only input. Furthermore, we propose TrackOcc, a cutting-edge approach that processes image inputs in a streaming, end-to-end manner with 4D panoptic queries to address the proposed task. Leveraging the localization-aware loss, TrackOcc enhances the accuracy of 4D panoptic occupancy tracking without bells and whistles. Experimental results demonstrate that our method achieves state-of-the-art performance on the Waymo dataset. The source code will be released at https://github.com/Tsinghua-MARS-Lab/TrackOcc.

Authors:Hsin-Ling Hsu, Ping-Sheng Lin, Jing-Di Lin, Jengnan Tzeng
Title: KAP: MLLM-assisted OCR Text Enhancement for Hybrid Retrieval in Chinese Non-Narrative Documents
Abstract:
Hybrid Retrieval systems, combining Sparse and Dense Retrieval methods, struggle with Traditional Chinese non-narrative documents due to their complex formatting, rich vocabulary, and the insufficient understanding of Chinese synonyms by common embedding models. Previous approaches inadequately address the dual needs of these systems, focusing mainly on general text quality improvement rather than optimizing for retrieval. We propose Knowledge-Aware Preprocessing (KAP), a novel framework that transforms noisy OCR outputs into retrieval-optimized text. KAP adopts a two-stage approach: it first extracts text using OCR, then employs Multimodal Large Language Models to refine the output by integrating visual information from the original documents. This design reduces OCR noise, reconstructs structural elements, and formats the text to satisfy the distinct requirements of sparse and dense retrieval. Empirical results demonstrate that KAP consistently and significantly outperforms conventional preprocessing approaches. Our code is available at https://github.com/JustinHsu1019/KAP.

Authors:Chen Liao, Yan Shen, Dan Li, Zhongli Wang
Title: Using Powerful Prior Knowledge of Diffusion Model in Deep Unfolding Networks for Image Compressive Sensing
Abstract:
Recently, Deep Unfolding Networks (DUNs) have achieved impressive reconstruction quality in the field of image Compressive Sensing (CS) by unfolding iterative optimization algorithms into neural networks. The reconstruction quality of DUNs depends on the learned prior knowledge, so introducing stronger prior knowledge can further improve reconstruction quality. On the other hand, pre-trained diffusion models contain powerful prior knowledge and have a solid theoretical foundation and strong scalability, but it requires a large number of iterative steps to achieve reconstruction. In this paper, we propose to use the powerful prior knowledge of pre-trained diffusion model in DUNs to achieve high-quality reconstruction with less steps for image CS. Specifically, we first design an iterative optimization algorithm named Diffusion Message Passing (DMP), which embeds a pre-trained diffusion model into each iteration process of DMP. Then, we deeply unfold the DMP algorithm into a neural network named DMP-DUN. The proposed DMP-DUN can use lightweight neural networks to achieve mapping from measurement data to the intermediate steps of the reverse diffusion process and directly approximate the divergence of the diffusion model, thereby further improving reconstruction efficiency. Extensive experiments show that our proposed DMP-DUN achieves state-of-the-art performance and requires at least only 2 steps to reconstruct the image. Codes are available at https://github.com/FengodChen/DMP-DUN-CVPR2025.

Authors:Lianting Wang, Marcelo Ponce
Title: Integrating Captive Portal Technology into Computer Science Education: A Modular, Hands-On Approach to Infrastructure
Abstract:
In this paper, we present an educational project aimed to introduce students to the technology behind Captive Portals infrastructures. For doing this, we developed a series of modules to emphasize each of the different aspects and features of this technology. The project is based on an open source implementation which is widely used in many computer network courses, making it well-suited and very appealing for instructors and practitioners in this field.

Authors:Qiming Xia, Wenkai Lin, Haoen Xiang, Xun Huang, Siheng Chen, Zhen Dong, Cheng Wang, Chenglu Wen
Title: Learning to Detect Objects from Multi-Agent LiDAR Scans without Manual Labels
Abstract:
Unsupervised 3D object detection serves as an important solution for offline 3D object annotation. However, due to the data sparsity and limited views, the clustering-based label fitting in unsupervised object detection often generates low-quality pseudo-labels. Multi-agent collaborative dataset, which involves the sharing of complementary observations among agents, holds the potential to break through this bottleneck. In this paper, we introduce a novel unsupervised method that learns to Detect Objects from Multi-Agent LiDAR scans, termed DOtA, without using labels from external. DOtA first uses the internally shared ego-pose and ego-shape of collaborative agents to initialize the detector, leveraging the generalization performance of neural networks to infer preliminary labels. Subsequently,DOtA uses the complementary observations between agents to perform multi-scale encoding on preliminary labels, then decodes high-quality and low-quality labels. These labels are further used as prompts to guide a correct feature learning process, thereby enhancing the performance of the unsupervised object detection task. Extensive experiments on the V2V4Real and OPV2V datasets show that our DOtA outperforms state-of-the-art unsupervised 3D object detection methods. Additionally, we also validate the effectiveness of the DOtA labels under various collaborative perception frameworks.The code is available at https://github.com/xmuqimingxia/DOtA.

Authors:Zhanjie Zhang, Quanwei Zhang, Guangyuan Li, Junsheng Luan, Mengyuan Yang, Yun Wang, Lei Zhao
Title: DyArtbank: Diverse Artistic Style Transfer via Pre-trained Stable Diffusion and Dynamic Style Prompt Artbank
Abstract:
Artistic style transfer aims to transfer the learned style onto an arbitrary content image. However, most existing style transfer methods can only render consistent artistic stylized images, making it difficult for users to get enough stylized images to enjoy. To solve this issue, we propose a novel artistic style transfer framework called DyArtbank, which can generate diverse and highly realistic artistic stylized images. Specifically, we introduce a Dynamic Style Prompt ArtBank (DSPA), a set of learnable parameters. It can learn and store the style information from the collection of artworks, dynamically guiding pre-trained stable diffusion to generate diverse and highly realistic artistic stylized images. DSPA can also generate random artistic image samples with the learned style information, providing a new idea for data augmentation. Besides, a Key Content Feature Prompt (KCFP) module is proposed to provide sufficient content prompts for pre-trained stable diffusion to preserve the detailed structure of the input content image. Extensive qualitative and quantitative experiments verify the effectiveness of our proposed method. Code is available: https://github.com/Jamie-Cheung/DyArtbank

Authors:Zhengyao Fang, Pengyuan Lyu, Jingjing Wu, Chengquan Zhang, Jun Yu, Guangming Lu, Wenjie Pei
Title: Recognition-Synergistic Scene Text Editing
Abstract:
Scene text editing aims to modify text content within scene images while maintaining style consistency. Traditional methods achieve this by explicitly disentangling style and content from the source image and then fusing the style with the target content, while ensuring content consistency using a pre-trained recognition model. Despite notable progress, these methods suffer from complex pipelines, leading to suboptimal performance in complex scenarios. In this work, we introduce Recognition-Synergistic Scene Text Editing (RS-STE), a novel approach that fully exploits the intrinsic synergy of text recognition for editing. Our model seamlessly integrates text recognition with text editing within a unified framework, and leverages the recognition model's ability to implicitly disentangle style and content while ensuring content consistency. Specifically, our approach employs a multi-modal parallel decoder based on transformer architecture, which predicts both text content and stylized images in parallel. Additionally, our cyclic self-supervised fine-tuning strategy enables effective training on unpaired real-world data without ground truth, enhancing style and content consistency through a twice-cyclic generation process. Built on a relatively simple architecture, RS-STE achieves state-of-the-art performance on both synthetic and real-world benchmarks, and further demonstrates the effectiveness of leveraging the generated hard cases to boost the performance of downstream recognition tasks. Code is available at https://github.com/ZhengyaoFang/RS-STE.

Authors:Susu Sun, Dominique van Midden, Geert Litjens, Christian F. Baumgartner
Title: Prototype-Based Multiple Instance Learning for Gigapixel Whole Slide Image Classification
Abstract:
Multiple Instance Learning (MIL) methods have succeeded remarkably in histopathology whole slide image (WSI) analysis. However, most MIL models only offer attention-based explanations that do not faithfully capture the model's decision mechanism and do not allow human-model interaction. To address these limitations, we introduce ProtoMIL, an inherently interpretable MIL model for WSI analysis that offers user-friendly explanations and supports human intervention. Our approach employs a sparse autoencoder to discover human-interpretable concepts from the image feature space, which are then used to train ProtoMIL. The model represents predictions as linear combinations of concepts, making the decision process transparent. Furthermore, ProtoMIL allows users to perform model interventions by altering the input concepts. Experiments on two widely used pathology datasets demonstrate that ProtoMIL achieves a classification performance comparable to state-of-the-art MIL models while offering intuitively understandable explanations. Moreover, we demonstrate that our method can eliminate reliance on diagnostically irrelevant information via human intervention, guiding the model toward being right for the right reason. Code will be publicly available at https://github.com/ss-sun/ProtoMIL.

Authors:Qingsong Xie, Zhao Zhang, Zhe Huang, Yanhao Zhang, Haonan Lu, Zhenyu Yang
Title: Layton: Latent Consistency Tokenizer for 1024-pixel Image Reconstruction and Generation by 256 Tokens
Abstract:
Image tokenization has significantly advanced visual generation and multimodal modeling, particularly when paired with autoregressive models. However, current methods face challenges in balancing efficiency and fidelity: high-resolution image reconstruction either requires an excessive number of tokens or compromises critical details through token reduction. To resolve this, we propose Latent Consistency Tokenizer (Layton) that bridges discrete visual tokens with the compact latent space of pre-trained Latent Diffusion Models (LDMs), enabling efficient representation of 1024x1024 images using only 256 tokens-a 16 times compression over VQGAN. Layton integrates a transformer encoder, a quantized codebook, and a latent consistency decoder. Direct application of LDM as the decoder results in color and brightness discrepancies. Thus, we convert it to latent consistency decoder, reducing multi-step sampling to 1-2 steps for direct pixel-level supervision. Experiments demonstrate Layton's superiority in high-fidelity reconstruction, with 10.8 reconstruction Frechet Inception Distance on MSCOCO-2017 5K benchmark for 1024x1024 image reconstruction. We also extend Layton to a text-to-image generation model, LaytonGen, working in autoregression. It achieves 0.73 score on GenEval benchmark, surpassing current state-of-the-art methods. Project homepage: https://github.com/OPPO-Mente-Lab/Layton

Authors:Fabian Isensee, Maximilian Rokuss, Lars Krämer, Stefan Dinkelacker, Ashis Ravindran, Florian Stritzke, Benjamin Hamm, Tassilo Wald, Moritz Langenberg, Constantin Ulrich, Jonathan Deissler, Ralf Floca, Klaus Maier-Hein
Title: nnInteractive: Redefining 3D Promptable Segmentation
Abstract:
Accurate and efficient 3D segmentation is essential for both clinical and research applications. While foundation models like SAM have revolutionized interactive segmentation, their 2D design and domain shift limitations make them ill-suited for 3D medical images. Current adaptations address some of these challenges but remain limited, either lacking volumetric awareness, offering restricted interactivity, or supporting only a small set of structures and modalities. Usability also remains a challenge, as current tools are rarely integrated into established imaging platforms and often rely on cumbersome web-based interfaces with restricted functionality. We introduce nnInteractive, the first comprehensive 3D interactive open-set segmentation method. It supports diverse prompts-including points, scribbles, boxes, and a novel lasso prompt-while leveraging intuitive 2D interactions to generate full 3D segmentations. Trained on 120+ diverse volumetric 3D datasets (CT, MRI, PET, 3D Microscopy, etc.), nnInteractive sets a new state-of-the-art in accuracy, adaptability, and usability. Crucially, it is the first method integrated into widely used image viewers (e.g., Napari, MITK), ensuring broad accessibility for real-world clinical and research applications. Extensive benchmarking demonstrates that nnInteractive far surpasses existing methods, setting a new standard for AI-driven interactive 3D segmentation. nnInteractive is publicly available: https://github.com/MIC-DKFZ/napari-nninteractive (Napari plugin), https://www.mitk.org/MITK-nnInteractive (MITK integration), https://github.com/MIC-DKFZ/nnInteractive (Python backend).

Authors:Kai Qiu, Xiang Li, Jason Kuen, Hao Chen, Xiaohao Xu, Jiuxiang Gu, Yinyi Luo, Bhiksha Raj, Zhe Lin, Marios Savvides
Title: Robust Latent Matters: Boosting Image Generation with Sampling Error Synthesis
Abstract:
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a $\sim$400M generator. Code: https://github.com/lxa9867/ImageFolder.

Authors:Bin Huang, Binzhong He, Yanhan Chen, Zhili Liu, Xinyue Wang, Binxuan Li, Qiegen Liu
Title: Diffusion Transformer Meets Random Masks: An Advanced PET Reconstruction Framework
Abstract:
Deep learning has significantly advanced PET image re-construction, achieving remarkable improvements in image quality through direct training on sinogram or image data. Traditional methods often utilize masks for inpainting tasks, but their incorporation into PET reconstruction frameworks introduces transformative potential. In this study, we pro-pose an advanced PET reconstruction framework called Diffusion tRansformer mEets rAndom Masks (DREAM). To the best of our knowledge, this is the first work to integrate mask mechanisms into both the sinogram domain and the latent space, pioneering their role in PET reconstruction and demonstrating their ability to enhance reconstruction fidelity and efficiency. The framework employs a high-dimensional stacking approach, transforming masked data from two to three dimensions to expand the solution space and enable the model to capture richer spatial rela-tionships. Additionally, a mask-driven latent space is de-signed to accelerate the diffusion process by leveraging sinogram-driven and mask-driven compact priors, which reduce computational complexity while preserving essen-tial data characteristics. A hierarchical masking strategy is also introduced, guiding the model from focusing on fi-ne-grained local details in the early stages to capturing broader global patterns over time. This progressive ap-proach ensures a balance between detailed feature preservation and comprehensive context understanding. Experimental results demonstrate that DREAM not only improves the overall quality of reconstructed PET images but also preserves critical clinical details, highlighting its potential to advance PET imaging technology. By inte-grating compact priors and hierarchical masking, DREAM offers a promising and efficient avenue for future research and application in PET imaging. The open-source code is available at: https://github.com/yqx7150/DREAM.

Authors:Runwei Guan, Jianan Liu, Ningwei Ouyang, Shaofeng Liang, Daizong Liu, Xiaolou Sun, Lianqing Zheng, Ming Xu, Yutao Yue, Guoqiang Mao, Hui Xiong
Title: Talk2PC: Enhancing 3D Visual Grounding through LiDAR and Radar Point Clouds Fusion for Autonomous Driving
Abstract:
Embodied outdoor scene understanding forms the foundation for autonomous agents to perceive, analyze, and react to dynamic driving environments. However, existing 3D understanding is predominantly based on 2D Vision-Language Models (VLMs), which collect and process limited scene-aware contexts. In contrast, compared to the 2D planar visual information, point cloud sensors such as LiDAR provide rich depth and fine-grained 3D representations of objects. Even better the emerging 4D millimeter-wave radar detects the motion trend, velocity, and reflection intensity of each object. The integration of these two modalities provides more flexible querying conditions for natural language, thereby supporting more accurate 3D visual grounding. To this end, we propose a novel method called TPCNet, the first outdoor 3D visual grounding model upon the paradigm of prompt-guided point cloud sensor combination, including both LiDAR and radar sensors. To optimally combine the features of these two sensors required by the prompt, we design a multi-fusion paradigm called Two-Stage Heterogeneous Modal Adaptive Fusion. Specifically, this paradigm initially employs Bidirectional Agent Cross-Attention (BACA), which feeds both-sensor features, characterized by global receptive fields, to the text features for querying. Moreover, we design a Dynamic Gated Graph Fusion (DGGF) module to locate the regions of interest identified by the queries. To further enhance accuracy, we devise an C3D-RECHead, based on the nearest object edge to the ego-vehicle. Experimental results demonstrate that our TPCNet, along with its individual modules, achieves the state-of-the-art performance on both the Talk2Radar and Talk2Car datasets. We release the code at https://github.com/GuanRunwei/TPCNet.

Authors:Liang Yu, Lai Tu, Xiang Bai
Title: MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting
Abstract:
Multivariate time-series forecasting holds immense value across diverse applications, requiring methods to effectively capture complex temporal and inter-variable dynamics. A key challenge lies in uncovering the intrinsic patterns that govern predictability, beyond conventional designs, focusing on network architectures to explore latent relationships or temporal dependencies. Inspired by signal decomposition, this paper posits that time series predictability is derived from periodic characteristics at different frequencies. Consequently, we propose a novel time series forecasting method based on multi-frequency reference series correlation analysis. Through spectral analysis on long-term training data, we identify dominant spectral components and their harmonics to design base-pattern reference series. Unlike signal decomposition, which represents the original series as a linear combination of basis signals, our method uses a transformer model to compute cross-attention between the original series and reference series, capturing essential features for forecasting. Experiments on major open and synthetic datasets show state-of-the-art performance. Furthermore, by focusing on attention with a small number of reference series rather than pairwise variable attention, our method ensures scalability and broad applicability. The source code is available at: https://github.com/yuliang555/MFRS

Authors:Pol G. Recasens, Ferran Agullo, Yue Zhu, Chen Wang, Eun Kyung Lee, Olivier Tardieu, Jordi Torres, Josep Ll. Berral
Title: Mind the Memory Gap: Unveiling GPU Bottlenecks in Large-Batch LLM Inference
Abstract:
Large language models have been widely adopted across different tasks, but their auto-regressive generation nature often leads to inefficient resource utilization during inference. While batching is commonly used to increase throughput, performance gains plateau beyond a certain batch size, especially with smaller models, a phenomenon that existing literature typically explains as a shift to the compute-bound regime. In this paper, through an in-depth GPU-level analysis, we reveal that large-batch inference remains memory-bound, with most GPU compute capabilities underutilized due to DRAM bandwidth saturation as the primary bottleneck. To address this, we propose a Batching Configuration Advisor (BCA) that optimizes memory allocation, reducing GPU memory requirements with minimal impact on throughput. The freed memory and underutilized GPU compute capabilities can then be leveraged by concurrent workloads. Specifically, we use model replication to improve serving throughput and GPU utilization. Our findings challenge conventional assumptions about LLM inference, offering new insights and practical strategies for improving resource utilization, particularly for smaller language models. The code is publicly available at https://github.com/FerranAgulloLopez/vLLMBatchingMemoryGap.

Authors:Alex Ergasti, Giuseppe Gabriele Tarollo, Filippo Botti, Tomaso Fontanini, Claudio Ferrari, Massimo Bertozzi, Andrea Prati
Title: $^R$FLAV: Rolling Flow matching for infinite Audio Video generation
Abstract:
Joint audio-video (AV) generation is still a significant challenge in generative AI, primarily due to three critical requirements: quality of the generated samples, seamless multimodal synchronization and temporal coherence, with audio tracks that match the visual data and vice versa, and limitless video duration. In this paper, we present $^R$-FLAV, a novel transformer-based architecture that addresses all the key challenges of AV generation. We explore three distinct cross modality interaction modules, with our lightweight temporal fusion module emerging as the most effective and computationally efficient approach for aligning audio and visual modalities. Our experimental results demonstrate that $^R$-FLAV outperforms existing state-of-the-art models in multimodal AV generation tasks. Our code and checkpoints are available at https://github.com/ErgastiAlex/R-FLAV.

Authors:Yu Tang Liu, Afonso Vale, Aamir Ahmad, Rodrigo Ventura, Meysam Basiri
Title: Multitask Reinforcement Learning for Quadcopter Attitude Stabilization and Tracking using Graph Policy
Abstract:
Quadcopter attitude control involves two tasks: smooth attitude tracking and aggressive stabilization from arbitrary states. Although both can be formulated as tracking problems, their distinct state spaces and control strategies complicate a unified reward function. We propose a multitask deep reinforcement learning framework that leverages parallel simulation with IsaacGym and a Graph Convolutional Network (GCN) policy to address both tasks effectively. Our multitask Soft Actor-Critic (SAC) approach achieves faster, more reliable learning and higher sample efficiency than single-task methods. We validate its real-world applicability by deploying the learned policy - a compact two-layer network with 24 neurons per layer - on a Pixhawk flight controller, achieving 400 Hz control without extra computational resources. We provide our code at https://github.com/robot-perception-group/GraphMTSAC\_UAV/.

Authors:Saad Sohail, Muhammad Usama, Usman Ghous, Manuel Mazzara, Salvatore Distefano, Muhammad Ahmad
Title: EnergyFormer: Energy Attention with Fourier Embedding for Hyperspectral Image Classification
Abstract:
Hyperspectral imaging (HSI) provides rich spectral-spatial information across hundreds of contiguous bands, enabling precise material discrimination in applications such as environmental monitoring, agriculture, and urban analysis. However, the high dimensionality and spectral variability of HSI data pose significant challenges for feature extraction and classification. This paper presents EnergyFormer, a transformer-based framework designed to address these challenges through three key innovations: (1) Multi-Head Energy Attention (MHEA), which optimizes an energy function to selectively enhance critical spectral-spatial features, improving feature discrimination; (2) Fourier Position Embedding (FoPE), which adaptively encodes spectral and spatial dependencies to reinforce long-range interactions; and (3) Enhanced Convolutional Block Attention Module (ECBAM), which selectively amplifies informative wavelength bands and spatial structures, enhancing representation learning. Extensive experiments on the WHU-Hi-HanChuan, Salinas, and Pavia University datasets demonstrate that EnergyFormer achieves exceptional overall accuracies of 99.28\%, 98.63\%, and 98.72\%, respectively, outperforming state-of-the-art CNN, transformer, and Mamba-based models. The source code will be made available at https://github.com/mahmad000.

Authors:Ao Li, Zongfang Liu, Xinhua Li, Jinghui Zhang, Pengwei Wang, Hu Wang
Title: Modeling Variants of Prompts for Vision-Language Models
Abstract:
Large pre-trained vision-language models (VLMs) offer a promising approach to leveraging human language for enhancing downstream tasks. However, VLMs such as CLIP face significant limitation: its performance is highly sensitive to prompt template design. Although prompt learning methods can address the sensitivity issue by replacing natural language prompts with learnable ones, they are incomprehensible to humans. Ensuring consistent performance across various prompt templates enables models to adapt seamlessly to diverse phrasings, enhancing their ability to handle downstream tasks without requiring extensive prompt engineering. In this work, we introduce the RobustPrompt Benchmark, a systematic benchmark to evaluate robustness to different prompt templates for VLMs. It includes a dataset with hundreds of carefully designed prompt templates, divided into six types, covering a wide variety of commonly used templates. Beside the benchmark, we propose Modeling Variants of Prompts (MVP), a simple yet effective method that mitigates sensitivity by modeling variants of prompt structures. The innovation of MVP lies in decoupling prompts into templates and class names, and using Variational Autoencoders (VAE) to model the distribution of diverse prompt structures. Experiments across 11 datasets demonstrate that MVP can greatly enhance model robustness to variations in input prompts without a drop in performance. The code is available at https://github.com/liaolea/MVP.

Authors:Junbin Xiao, Nanxin Huang, Hao Qiu, Zhulin Tao, Xun Yang, Richang Hong, Meng Wang, Angela Yao
Title: EgoBlind: Towards Egocentric Visual Assistance for the Blind
Abstract:
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 videos that record the daily lives of real blind users from a first-person perspective. It also features 5,311 questions directly posed or generated and verified by blind individuals to reflect their in-situation needs for visual assistance under various scenarios. We provide each question with an average of 3 reference answers to alleviate subjective evaluation. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle, with the best performers achieving accuracy near 60\%, far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope EgoBlind can serve as a valuable foundation for developing more effective AI assistants to enhance the independence of the blind individuals' lives. Data and evaluation code are available at https://github.com/doc-doc/EgoBlind.

Authors:Jack Langerman, Denys Rozumnyi, Yuzhong Huang, Dmytro Mishkin
Title: Explaining Human Preferences via Metrics for Structured 3D Reconstruction
Abstract:
"What cannot be measured cannot be improved" while likely never uttered by Lord Kelvin, summarizes effectively the driving force behind this work. This paper presents a detailed discussion of automated metrics for evaluating structured 3D reconstructions. Pitfalls of each metric are discussed, and an analysis through the lens of expert 3D modelers' preferences is presented. A set of systematic "unit tests" are proposed to empirically verify desirable properties, and context aware recommendations regarding which metric to use depending on application are provided. Finally, a learned metric distilled from human expert judgments is proposed and analyzed. The source code is available at https://github.com/s23dr/wireframe-metrics-iccv2025

Authors:Wei Shi, Sihang Li, Tao Liang, Mingyang Wan, Guojun Ma, Xiang Wang, Xiangnan He
Title: Route Sparse Autoencoder to Interpret Large Language Models
Abstract:
Mechanistic interpretability of large language models (LLMs) aims to uncover the internal processes of information propagation and reasoning. Sparse autoencoders (SAEs) have demonstrated promise in this domain by extracting interpretable and monosemantic features. However, prior works primarily focus on feature extraction from a single layer, failing to effectively capture activations that span multiple layers. In this paper, we introduce Route Sparse Autoencoder (RouteSAE), a new framework that integrates a routing mechanism with a shared SAE to efficiently extract features from multiple layers. It dynamically assigns weights to activations from different layers, incurring minimal parameter overhead while achieving high interpretability and flexibility for targeted feature manipulation. We evaluate RouteSAE through extensive experiments on Llama-3.2-1B-Instruct. Specifically, under the same sparsity constraint of 64, RouteSAE extracts 22.5% more features than baseline SAEs while achieving a 22.3% higher interpretability score. These results underscore the potential of RouteSAE as a scalable and effective method for LLM interpretability, with applications in feature discovery and model intervention. Our codes are available at https://github.com/swei2001/RouteSAEs.

Authors:Rui Xu, MingYu Wang, XinTao Wang, Dakuan Lu, Xiaoyu Tan, Wei Chu, Yinghui Xu
Title: Guess What I am Thinking: A Benchmark for Inner Thought Reasoning of Role-Playing Language Agents
Abstract:
Recent advances in LLM-based role-playing language agents (RPLAs) have attracted broad attention in various applications. While chain-of-thought reasoning has shown importance in many tasks for LLMs, the internal thinking processes of RPLAs remain unexplored. Understanding characters' inner thoughts is crucial for developing advanced RPLAs. In this paper, we introduce ROLETHINK, a novel benchmark constructed from literature for evaluating character thought generation. We propose the task of inner thought reasoning, which includes two sets: the gold set that compares generated thoughts with original character monologues, and the silver set that uses expert synthesized character analyses as references. To address this challenge, we propose MIRROR, a chain-of-thought approach that generates character thoughts by retrieving memories, predicting character reactions, and synthesizing motivations. Through extensive experiments, we demonstrate the importance of inner thought reasoning for RPLAs, and MIRROR consistently outperforms existing methods. Resources are available at https://github.com/airaer1998/RPA_Thought.

Authors:Zitong Shi, Guancheng Wan, Wenke Huang, Guibin Zhang, Jiawei Shao, Mang Ye, Carl Yang
Title: Privacy-Enhancing Paradigms within Federated Multi-Agent Systems
Abstract:
LLM-based Multi-Agent Systems (MAS) have proven highly effective in solving complex problems by integrating multiple agents, each performing different roles. However, in sensitive domains, they face emerging privacy protection challenges. In this paper, we introduce the concept of Federated MAS, highlighting the fundamental differences between Federated MAS and traditional FL. We then identify key challenges in developing Federated MAS, including: 1) heterogeneous privacy protocols among agents, 2) structural differences in multi-party conversations, and 3) dynamic conversational network structures. To address these challenges, we propose Embedded Privacy-Enhancing Agents (EPEAgent), an innovative solution that integrates seamlessly into the Retrieval-Augmented Generation (RAG) phase and the context retrieval stage. This solution minimizes data flows, ensuring that only task-relevant, agent-specific information is shared. Additionally, we design and generate a comprehensive dataset to evaluate the proposed paradigm. Extensive experiments demonstrate that EPEAgent effectively enhances privacy protection while maintaining strong system performance. The code will be availiable at https://github.com/ZitongShi/EPEAgent

Authors:Yuan Tian, Kaiyuan Ji, Rongzhao Zhang, Yankai Jiang, Chunyi Li, Xiaosong Wang, Guangtao Zhai
Title: Towards All-in-One Medical Image Re-Identification
Abstract:
Medical image re-identification (MedReID) is under-explored so far, despite its critical applications in personalized healthcare and privacy protection. In this paper, we introduce a thorough benchmark and a unified model for this problem. First, to handle various medical modalities, we propose a novel Continuous Modality-based Parameter Adapter (ComPA). ComPA condenses medical content into a continuous modality representation and dynamically adjusts the modality-agnostic model with modality-specific parameters at runtime. This allows a single model to adaptively learn and process diverse modality data. Furthermore, we integrate medical priors into our model by aligning it with a bag of pre-trained medical foundation models, in terms of the differential features. Compared to single-image feature, modeling the inter-image difference better fits the re-identification problem, which involves discriminating multiple images. We evaluate the proposed model against 25 foundation models and 8 large multi-modal language models across 11 image datasets, demonstrating consistently superior performance. Additionally, we deploy the proposed MedReID technique to two real-world applications, i.e., history-augmented personalized diagnosis and medical privacy protection. Codes and model is available at \href{https://github.com/tianyuan168326/All-in-One-MedReID-Pytorch}{https://github.com/tianyuan168326/All-in-One-MedReID-Pytorch}.

Authors:Chengzhi Ma, Kunqian Li, Shuaixin Liu, Han Mei
Title: Depth-Assisted Network for Indiscernible Marine Object Counting with Adaptive Motion-Differentiated Feature Encoding
Abstract:
Indiscernible marine object counting encounters numerous challenges, including limited visibility in underwater scenes, mutual occlusion and overlap among objects, and the dynamic similarity in appearance, color, and texture between the background and foreground. These factors significantly complicate the counting process. To address the scarcity of video-based indiscernible object counting datasets, we have developed a novel dataset comprising 50 videos, from which approximately 800 frames have been extracted and annotated with around 40,800 point-wise object labels. This dataset accurately represents real underwater environments where indiscernible marine objects are intricately integrated with their surroundings, thereby comprehensively illustrating the aforementioned challenges in object counting. To address these challenges, we propose a depth-assisted network with adaptive motion-differentiated feature encoding. The network consists of a backbone encoding module and three branches: a depth-assisting branch, a density estimation branch, and a motion weight generation branch. Depth-aware features extracted by the depth-assisting branch are enhanced via a depth-enhanced encoder to improve object representation. Meanwhile, weights from the motion weight generation branch refine multi-scale perception features in the adaptive flow estimation module. Experimental results demonstrate that our method not only achieves state-of-the-art performance on the proposed dataset but also yields competitive results on three additional video-based crowd counting datasets. The pre-trained model, code, and dataset are publicly available at https://github.com/OUCVisionGroup/VIMOC-Net.

Authors:Huy Nguyen, Kien Nguyen, Akila Pemasiri, Feng Liu, Sridha Sridharan, Clinton Fookes
Title: AG-VPReID: A Challenging Large-Scale Benchmark for Aerial-Ground Video-based Person Re-Identification
Abstract:
We introduce AG-VPReID, a new large-scale dataset for aerial-ground video-based person re-identification (ReID) that comprises 6,632 subjects, 32,321 tracklets and over 9.6 million frames captured by drones (altitudes ranging from 15-120m), CCTV, and wearable cameras. This dataset offers a real-world benchmark for evaluating the robustness to significant viewpoint changes, scale variations, and resolution differences in cross-platform aerial-ground settings. In addition, to address these challenges, we propose AG-VPReID-Net, an end-to-end framework composed of three complementary streams: (1) an Adapted Temporal-Spatial Stream addressing motion pattern inconsistencies and facilitating temporal feature learning, (2) a Normalized Appearance Stream leveraging physics-informed techniques to tackle resolution and appearance changes, and (3) a Multi-Scale Attention Stream handling scale variations across drone altitudes. We integrate visual-semantic cues from all streams to form a robust, viewpoint-invariant whole-body representation. Extensive experiments demonstrate that AG-VPReID-Net outperforms state-of-the-art approaches on both our new dataset and existing video-based ReID benchmarks, showcasing its effectiveness and generalizability. Nevertheless, the performance gap observed on AG-VPReID across all methods underscores the dataset's challenging nature. The dataset, code and trained models are available at https://github.com/agvpreid25/AG-VPReID-Net.

Authors:Ruipeng Wang, Junfeng Fang, Jiaqi Li, Hao Chen, Jie Shi, Kun Wang, Xiang Wang
Title: ACE: Concept Editing in Diffusion Models without Performance Degradation
Abstract:
Diffusion-based text-to-image models have demonstrated remarkable capabilities in generating realistic images, but they raise societal and ethical concerns, such as the creation of unsafe content. While concept editing is proposed to address these issues, they often struggle to balance the removal of unsafe concept with maintaining the model's general genera-tive capabilities. In this work, we propose ACE, a new editing method that enhances concept editing in diffusion models. ACE introduces a novel cross null-space projection approach to precisely erase unsafe concept while maintaining the model's ability to generate high-quality, semantically consistent images. Extensive experiments demonstrate that ACE significantly outperforms the advancing baselines,improving semantic consistency by 24.56% and image generation quality by 34.82% on average with only 1% of the time cost. These results highlight the practical utility of concept editing by mitigating its potential risks, paving the way for broader applications in the field. Code is avaliable at https://github.com/littlelittlenine/ACE-zero.git

Authors:Jiale Wei, Xiang Ying, Tao Gao, Fangyi Bao, Felix Tao, Jingbo Shang
Title: AI-native Memory 2.0: Second Me
Abstract:
Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.

Authors:Lizhen Xu, Xiuxiu Bai, Xiaojun Jia, Jianwu Fang, Shanmin Pang
Title: Accelerate 3D Object Detection Models via Zero-Shot Attention Key Pruning
Abstract:
Query-based methods with dense features have demonstrated remarkable success in 3D object detection tasks. However, the computational demands of these models, particularly with large image sizes and multiple transformer layers, pose significant challenges for efficient running on edge devices. Existing pruning and distillation methods either need retraining or are designed for ViT models, which are hard to migrate to 3D detectors. To address this issue, we propose a zero-shot runtime pruning method for transformer decoders in 3D object detection models. The method, termed tgGBC (trim keys gradually Guided By Classification scores), systematically trims keys in transformer modules based on their importance. We expand the classification score to multiply it with the attention map to get the importance score of each key and then prune certain keys after each transformer layer according to their importance scores. Our method achieves a 1.99x speedup in the transformer decoder of the latest ToC3D model, with only a minimal performance loss of less than 1%. Interestingly, for certain models, our method even enhances their performance. Moreover, we deploy 3D detectors with tgGBC on an edge device, further validating the effectiveness of our method. The code can be found at https://github.com/iseri27/tg_gbc.

Authors:Kai Deng, Yigong Zhang, Jian Yang, Jin Xie
Title: GigaSLAM: Large-Scale Monocular SLAM with Hierarchical Gaussian Splats
Abstract:
Tracking and mapping in large-scale, unbounded outdoor environments using only monocular RGB input presents substantial challenges for existing SLAM systems. Traditional Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) SLAM methods are typically limited to small, bounded indoor settings. To overcome these challenges, we introduce GigaSLAM, the first RGB NeRF / 3DGS-based SLAM framework for kilometer-scale outdoor environments, as demonstrated on the KITTI, KITTI 360, 4 Seasons and A2D2 datasets. Our approach employs a hierarchical sparse voxel map representation, where Gaussians are decoded by neural networks at multiple levels of detail. This design enables efficient, scalable mapping and high-fidelity viewpoint rendering across expansive, unbounded scenes. For front-end tracking, GigaSLAM utilizes a metric depth model combined with epipolar geometry and PnP algorithms to accurately estimate poses, while incorporating a Bag-of-Words-based loop closure mechanism to maintain robust alignment over long trajectories. Consequently, GigaSLAM delivers high-precision tracking and visually faithful rendering on urban outdoor benchmarks, establishing a robust SLAM solution for large-scale, long-term scenarios, and significantly extending the applicability of Gaussian Splatting SLAM systems to unbounded outdoor environments. GitHub: https://github.com/DengKaiCQ/GigaSLAM.

Authors:Ali Veisi, Hamidreza Amirzadeh, Amir Mansourian
Title: Context-aware Biases for Length Extrapolation
Abstract:
Transformers often struggle to generalize to longer sequences than those seen during training, a limitation known as length extrapolation. Most existing Relative Positional Encoding (RPE) methods attempt to address this by introducing either fixed linear biases or globally learned biases, which lack the capacity to adapt to different input contexts. In this work, we propose an additive RPE, Context-Aware Biases for Length Extrapolation (CABLE), a method that learns token-specific, context-aware biases for each attention head in transformers. By dynamically adjusting positional biases based on the input sequence, CABLE overcomes the rigidity of fixed RPEs. When evaluated on sequences longer than originally trained with, GPT-2 Medium (334M parameters) with CABLE achieves lower perplexity than counterparts using other widely adopted positional encoding methods. Additionally, by applying CABLE to the BERT base model we improved performance in long-context retrieval tasks. Our method significantly enhances the extrapolation performance of existing RPE methods tested on the FineWeb-Edu-10B and WikiText-103 datasets. Our code is available at: https://github.com/AlgonetLabs/Cable.

Authors:Nadarasar Bahavan, Sachith Seneviratne, Saman Halgamuge
Title: SphOR: A Representation Learning Perspective on Open-set Recognition for Identifying Unknown Classes in Deep Learning Models
Abstract:
The widespread use of deep learning classifiers necessitates Open-set recognition (OSR), which enables the identification of input data not only from classes known during training but also from unknown classes that might be present in test data. Many existing OSR methods are computationally expensive due to the reliance on complex generative models or suffer from high training costs. We investigate OSR from a representation-learning perspective, specifically through spherical embeddings. We introduce SphOR, a computationally efficient representation learning method that models the feature space as a mixture of von Mises-Fisher distributions. This approach enables the use of semantically ambiguous samples during training, to improve the detection of samples from unknown classes. We further explore the relationship between OSR performance and key representation learning properties which influence how well features are structured in high-dimensional space. Extensive experiments on multiple OSR benchmarks demonstrate the effectiveness of our method, producing state-of-the-art results, with improvements up-to 6% that validate its performance. Code at https://github.com/nadarasarbahavan/SpHOR

Authors:Sanghyuk Chun, Sangdoo Yun
Title: LongProLIP: A Probabilistic Vision-Language Model with Long Context Text
Abstract:
Recently, Probabilistic Language-Image Pre-Training (ProLIP) has been proposed to tackle the multiplicity issue of vision-language (VL) tasks. Despite their success in probabilistic representation learning at a scale, the ProLIP models cannot handle long context texts longer than 64 context length, which limits their ability to capture rich contextual information from longer text sequences. To address this issue, this paper proposes a fine-tuning strategy for ProLIP to accept longer texts, e.g., 256 text tokens. Experimental results on Urban-1k and the DataComp evaluation suite show that the proposed LongProLIP recipe can improve understanding of long contexts while minimizing the negative effect of fine-tuning.We also observe a trade-off between the long context understanding (measured by Urban-1k) and general zero-shot capability (measured by evaluation datasets by DataComp). Code is available at https://github.com/naver-ai/prolip

Authors:Xuan Lu, Sifan Liu, Bochao Yin, Yongqi Li, Xinghao Chen, Hui Su, Yaohui Jin, Wenjun Zeng, Xiaoyu Shen
Title: MultiConIR: Towards multi-condition Information Retrieval
Abstract:
Multi-condition information retrieval (IR) presents a significant, yet underexplored challenge for existing systems. This paper introduces MultiConIR, a benchmark specifically designed to evaluate retrieval and reranking models under nuanced multi-condition query scenarios across five diverse domains. We systematically assess model capabilities through three critical tasks: complexity robustness, relevance monotonicity, and query format sensitivity. Our extensive experiments on 15 models reveal a critical vulnerability: most retrievers and rerankers exhibit severe performance degradation as query complexity increases. Key deficiencies include widespread failure to maintain relevance monotonicity, and high sensitivity to query style and condition placement. The superior performance of GPT-4o reveals the performance gap between IR systems and advanced LLM for handling sophisticated natural language queries. Furthermore, this work delves into the factors contributing to reranker performance deterioration and examines how condition positioning within queries affects similarity assessment, providing crucial insights for advancing IR systems towards complex search scenarios. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR

Authors:Ying Fu Lim, Jiawen Zhu, Guansong Pang
Title: Adapting Large Language Models for Parameter-Efficient Log Anomaly Detection
Abstract:
Log Anomaly Detection (LAD) seeks to identify atypical patterns in log data that are crucial to assessing the security and condition of systems. Although Large Language Models (LLMs) have shown tremendous success in various fields, the use of LLMs in enabling the detection of log anomalies is largely unexplored. This work aims to fill this gap. Due to the prohibitive costs involved in fully fine-tuning LLMs, we explore the use of parameter-efficient fine-tuning techniques (PEFTs) for adapting LLMs to LAD. To have an in-depth exploration of the potential of LLM-driven LAD, we present a comprehensive investigation of leveraging two of the most popular PEFTs -- Low-Rank Adaptation (LoRA) and Representation Fine-tuning (ReFT) -- to tap into three prominent LLMs of varying size, including RoBERTa, GPT-2, and Llama-3, for parameter-efficient LAD. Comprehensive experiments on four public log datasets are performed to reveal important insights into effective LLM-driven LAD in several key perspectives, including the efficacy of these PEFT-based LLM-driven LAD methods, their stability, sample efficiency, robustness w.r.t. unstable logs, and cross-dataset generalization. Code is available at https://github.com/mala-lab/LogADReft.

Authors:Jiequan Cui, Beier Zhu, Qingshan Xu, Zhuotao Tian, Xiaojuan Qi, Bei Yu, Hanwang Zhang, Richang Hong
Title: Generalized Kullback-Leibler Divergence Loss
Abstract:
In this paper, we delve deeper into the Kullback-Leibler (KL) Divergence loss and mathematically prove that it is equivalent to the Decoupled Kullback-Leibler (DKL) Divergence loss that consists of (1) a weighted Mean Square Error (wMSE) loss and (2) a Cross-Entropy loss incorporating soft labels. Thanks to the decoupled structure of DKL loss, we have identified two areas for improvement. Firstly, we address the limitation of KL loss in scenarios like knowledge distillation by breaking its asymmetric optimization property along with a smoother weight function. This modification effectively alleviates convergence challenges in optimization, particularly for classes with high predicted scores in soft labels. Secondly, we introduce class-wise global information into KL/DKL to reduce bias arising from individual samples. With these two enhancements, we derive the Generalized Kullback-Leibler (GKL) Divergence loss and evaluate its effectiveness by conducting experiments on CIFAR-10/100, ImageNet, and vision-language datasets, focusing on adversarial training, and knowledge distillation tasks. Specifically, we achieve new state-of-the-art adversarial robustness on the public leaderboard -- RobustBench and competitive knowledge distillation performance across CIFAR/ImageNet models and CLIP models, demonstrating the substantial practical merits. Our code is available at https://github.com/jiequancui/DKL.

Authors:S M A Sharif, Rizwan Ali Naqvi, Mithun Biswas, Woong-Kee Loh
Title: Deep Perceptual Enhancement for Medical Image Analysis
Abstract:
Due to numerous hardware shortcomings, medical image acquisition devices are susceptible to producing low-quality (i.e., low contrast, inappropriate brightness, noisy, etc.) images. Regrettably, perceptually degraded images directly impact the diagnosis process and make the decision-making manoeuvre of medical practitioners notably complicated. This study proposes to enhance such low-quality images by incorporating end-to-end learning strategies for accelerating medical image analysis tasks. To the best concern, this is the first work in medical imaging which comprehensively tackles perceptual enhancement, including contrast correction, luminance correction, denoising, etc., with a fully convolutional deep network. The proposed network leverages residual blocks and a residual gating mechanism for diminishing visual artefacts and is guided by a multi-term objective function to perceive the perceptually plausible enhanced images. The practicability of the deep medical image enhancement method has been extensively investigated with sophisticated experiments. The experimental outcomes illustrate that the proposed method could outperform the existing enhancement methods for different medical image modalities by 5.00 to 7.00 dB in peak signal-to-noise ratio (PSNR) metrics and 4.00 to 6.00 in DeltaE metrics. Additionally, the proposed method can drastically improve the medical image analysis tasks' performance and reveal the potentiality of such an enhancement method in real-world applications. Code Available: https://github.com/sharif-apu/DPE_JBHI

Authors:Sudarshan Regmi
Title: AdaSCALE: Adaptive Scaling for OOD Detection
Abstract:
The ability of the deep learning model to recognize when a sample falls outside its learned distribution is critical for safe and reliable deployment. Recent state-of-the-art out-of-distribution (OOD) detection methods leverage activation shaping to improve the separation between in-distribution (ID) and OOD inputs. These approaches resort to sample-specific scaling but apply a static percentile threshold across all samples regardless of their nature, resulting in suboptimal ID-OOD separability. In this work, we propose \textbf{AdaSCALE}, an adaptive scaling procedure that dynamically adjusts the percentile threshold based on a sample's estimated OOD likelihood. This estimation leverages our key observation: OOD samples exhibit significantly more pronounced activation shifts at high-magnitude activations under minor perturbation compared to ID samples. AdaSCALE enables stronger scaling for likely ID samples and weaker scaling for likely OOD samples, yielding highly separable energy scores. Our approach achieves state-of-the-art OOD detection performance, outperforming the latest rival OptFS by 14.94 in near-OOD and 21.67 in far-OOD datasets in average FPR@95 metric on the ImageNet-1k benchmark across eight diverse architectures. The code is available at: https://github.com/sudarshanregmi/AdaSCALE/

Authors:Bozhi Luan, Wengang Zhou, Hao Feng, Zhe Wang, Xiaosong Li, Houqiang Li
Title: Multi-Cue Adaptive Visual Token Pruning for Large Vision-Language Models
Abstract:
As the computational needs of Large Vision-Language Models (LVLMs) increase, visual token pruning has proven effective in improving inference speed and memory efficiency. Traditional pruning methods in LVLMs predominantly focus on attention scores to determine token relevance, overlooking critical aspects such as spatial position and token similarity. To this end, we introduce AdaptPrune, a novel plug-and-play training-free pruning method that builds on conventional attention-based pruning by integrating spatial distance and token similarity with an adaptive NMS approach. Our method is based on several observed phenomena in large models: the positional bias in the model's image attention and the redundancy of token information ignored by previous approaches. By integrating attention, spatial, and similarity information, our approach ensures a comprehensive evaluation of token importance and substantially refines the pruning decisions. Our method has been extensively tested across various LVLMs and benchmarks, confirming its robustness and adaptability. The results demonstrate that AdaptPrune consistently outperforms existing methods across various pruning ratios. Code is available at https://github.com/bzluan/AdaptPrune.

Authors:Meghna Roy Chowdhury, Wei Xuan, Shreyas Sen, Yixue Zhao, Yi Ding
Title: Predicting and Understanding College Student Mental Health with Interpretable Machine Learning
Abstract:
Mental health issues among college students have reached critical levels, significantly impacting academic performance and overall wellbeing. Predicting and understanding mental health status among college students is challenging due to three main factors: the necessity for large-scale longitudinal datasets, the prevalence of black-box machine learning models lacking transparency, and the tendency of existing approaches to provide aggregated insights at the population level rather than individualized understanding. To tackle these challenges, this paper presents I-HOPE, the first Interpretable Hierarchical mOdel for Personalized mEntal health prediction. I-HOPE is a two-stage hierarchical model that connects raw behavioral features to mental health status through five defined behavioral categories as interaction labels. We evaluate I-HOPE on the College Experience Study, the longest longitudinal mobile sensing dataset. This dataset spans five years and captures data from both pre-pandemic periods and the COVID-19 pandemic. I-HOPE achieves a prediction accuracy of 91%, significantly surpassing the 60-70% accuracy of baseline methods. In addition, I-HOPE distills complex patterns into interpretable and individualized insights, enabling the future development of tailored interventions and improving mental health support. The code is available at https://github.com/roycmeghna/I-HOPE.

Authors:Sanghyun Jo, Ziseok Lee, Wooyeol Lee, Kyungsu Kim
Title: DiffEGG: Diffusion-Driven Edge Generation as a Pixel-Annotation-Free Alternative for Instance Annotation
Abstract:
Achieving precise panoptic segmentation relies on pixel-wise instance annotations, but obtaining such datasets is costly. Unsupervised instance segmentation (UIS) eliminates annotation requirements but struggles with adjacent instance merging and single-instance fragmentation, largely due to the limitations of DINO-based backbones which lack strong instance separation cues. Weakly-supervised panoptic segmentation (WPS) reduces annotation costs using sparse labels (e.g., points, boxes), yet these annotations remain expensive and introduce human bias and boundary errors. To address these challenges, we propose DiffEGG (Diffusion-Driven EdGe Generation), a fully annotation-free method that extracts instance-aware features from pretrained diffusion models to generate precise instance edge maps. Unlike DINO-based UIS methods, diffusion models inherently capture fine-grained, instance-aware features, enabling more precise boundary delineation. For WPS, DiffEGG eliminates annotation costs and human bias by operating without any form of manual supervision, addressing the key limitations of prior best methods. Additionally, we introduce RIP, a post-processing technique that fuses DiffEGG's edge maps with segmentation masks in a task-agnostic manner. RIP allows DiffEGG to be seamlessly integrated into various segmentation frameworks. When applied to UIS, DiffEGG and RIP achieve an average $+4.4\text{ AP}$ improvement over prior best UIS methods. When combined with weakly-supervised semantic segmentation (WSS), DiffEGG enables WPS without instance annotations, outperforming prior best point-supervised WPS methods by $+1.7\text{ PQ}$. These results demonstrate that DiffEGG's edge maps serve as a cost-effective, annotation-free alternative to instance annotations, significantly improving segmentation without human intervention. Code is available at https://github.com/shjo-april/DiffEGG.

Authors:Zhao Yang, Bing Su, Chuan Cao, Ji-Rong Wen
Title: Regulatory DNA sequence Design with Reinforcement Learning
Abstract:
Cis-regulatory elements (CREs), such as promoters and enhancers, are relatively short DNA sequences that directly regulate gene expression. The fitness of CREs, measured by their ability to modulate gene expression, highly depends on the nucleotide sequences, especially specific motifs known as transcription factor binding sites (TFBSs). Designing high-fitness CREs is crucial for therapeutic and bioengineering applications. Current CRE design methods are limited by two major drawbacks: (1) they typically rely on iterative optimization strategies that modify existing sequences and are prone to local optima, and (2) they lack the guidance of biological prior knowledge in sequence optimization. In this paper, we address these limitations by proposing a generative approach that leverages reinforcement learning (RL) to fine-tune a pre-trained autoregressive (AR) model. Our method incorporates data-driven biological priors by deriving computational inference-based rewards that simulate the addition of activator TFBSs and removal of repressor TFBSs, which are then integrated into the RL process. We evaluate our method on promoter design tasks in two yeast media conditions and enhancer design tasks for three human cell types, demonstrating its ability to generate high-fitness CREs while maintaining sequence diversity. The code is available at https://github.com/yangzhao1230/TACO.

Authors:Jiahao Xu, Zikai Zhang, Rui Hu
Title: Detecting Backdoor Attacks in Federated Learning via Direction Alignment Inspection
Abstract:
The distributed nature of training makes Federated Learning (FL) vulnerable to backdoor attacks, where malicious model updates aim to compromise the global model's performance on specific tasks. Existing defense methods show limited efficacy as they overlook the inconsistency between benign and malicious model updates regarding both general and fine-grained directions. To fill this gap, we introduce AlignIns, a novel defense method designed to safeguard FL systems against backdoor attacks. AlignIns looks into the direction of each model update through a direction alignment inspection process. Specifically, it examines the alignment of model updates with the overall update direction and analyzes the distribution of the signs of their significant parameters, comparing them with the principle sign across all model updates. Model updates that exhibit an unusual degree of alignment are considered malicious and thus be filtered out. We provide the theoretical analysis of the robustness of AlignIns and its propagation error in FL. Our empirical results on both independent and identically distributed (IID) and non-IID datasets demonstrate that AlignIns achieves higher robustness compared to the state-of-the-art defense methods. The code is available at https://github.com/JiiahaoXU/AlignIns.

Authors:Chen Liu, Feng Qiu, Wei Zhang, Lincheng Li, Dadong Wang, Xin Yu
Title: 7ABAW-Compound Expression Recognition via Curriculum Learning
Abstract:
With the advent of deep learning, expression recognition has made significant advancements. However, due to the limited availability of annotated compound expression datasets and the subtle variations of compound expressions, Compound Emotion Recognition (CE) still holds considerable potential for exploration. To advance this task, the 7th Affective Behavior Analysis in-the-wild (ABAW) competition introduces the Compound Expression Challenge based on C-EXPR-DB, a limited dataset without labels. In this paper, we present a curriculum learning-based framework that initially trains the model on single-expression tasks and subsequently incorporates multi-expression data. This design ensures that our model first masters the fundamental features of basic expressions before being exposed to the complexities of compound emotions. Specifically, our designs can be summarized as follows: 1) Single-Expression Pre-training: The model is first trained on datasets containing single expressions to learn the foundational facial features associated with basic emotions. 2) Dynamic Compound Expression Generation: Given the scarcity of annotated compound expression datasets, we employ CutMix and Mixup techniques on the original single-expression images to create hybrid images exhibiting characteristics of multiple basic emotions. 3) Incremental Multi-Expression Integration: After performing well on single-expression tasks, the model is progressively exposed to multi-expression data, allowing the model to adapt to the complexity and variability of compound expressions. The official results indicate that our method achieves the \textbf{best} performance in this competition track with an F-score of 0.6063. Our code is released at https://github.com/YenanLiu/ABAW7th.

Authors:Andrew Gao, Jun Liu
Title: STEAD: Spatio-Temporal Efficient Anomaly Detection for Time and Compute Sensitive Applications
Abstract:
This paper presents a new method for anomaly detection in automated systems with time and compute sensitive requirements, such as autonomous driving, with unparalleled efficiency. As systems like autonomous driving become increasingly popular, ensuring their safety has become more important than ever. Therefore, this paper focuses on how to quickly and effectively detect various anomalies in the aforementioned systems, with the goal of making them safer and more effective. Many detection systems have been developed with great success under spatial contexts; however, there is still significant room for improvement when it comes to temporal context. While there is substantial work regarding this task, there is minimal work done regarding the efficiency of models and their ability to be applied to scenarios that require real-time inference, i.e., autonomous driving where anomalies need to be detected the moment they are within view. To address this gap, we propose STEAD (Spatio-Temporal Efficient Anomaly Detection), whose backbone is developed using (2+1)D Convolutions and Performer Linear Attention, which ensures computational efficiency without sacrificing performance. When tested on the UCF-Crime benchmark, our base model achieves an AUC of 91.34%, outperforming the previous state-of-the-art, and our fast version achieves an AUC of 88.87%, while having 99.70% less parameters and outperforming the previous state-of-the-art as well. The code and pretrained models are made publicly available at https://github.com/agao8/STEAD

Authors:Minkyun Seo, Hyungtae Lim, Kanghee Lee, Luca Carlone, Jaesik Park
Title: BUFFER-X: Towards Zero-Shot Point Cloud Registration in Diverse Scenes
Abstract:
Recent advances in deep learning-based point cloud registration have improved generalization, yet most methods still require retraining or manual parameter tuning for each new environment. In this paper, we identify three key factors limiting generalization: (a) reliance on environment-specific voxel size and search radius, (b) poor out-of-domain robustness of learning-based keypoint detectors, and (c) raw coordinate usage, which exacerbates scale discrepancies. To address these issues, we present a zero-shot registration pipeline called BUFFER-X by (a) adaptively determining voxel size/search radii, (b) using farthest point sampling to bypass learned detectors, and (c) leveraging patch-wise scale normalization for consistent coordinate bounds. In particular, we present a multi-scale patch-based descriptor generation and a hierarchical inlier search across scales to improve robustness in diverse scenes. We also propose a novel generalizability benchmark using 11 datasets that cover various indoor/outdoor scenarios and sensor modalities, demonstrating that BUFFER-X achieves substantial generalization without prior information or manual parameter tuning for the test datasets. Our code is available at https://github.com/MIT-SPARK/BUFFER-X.

Authors:Samuel Cahyawijaya, Holy Lovenia, Joel Ruben Antony Moniz, Tack Hwa Wong, Mohammad Rifqi Farhansyah, Thant Thiri Maung, Frederikus Hudi, David Anugraha, Muhammad Ravi Shulthan Habibi, Muhammad Reza Qorib, Amit Agarwal, Joseph Marvin Imperial, Hitesh Laxmichand Patel, Vicky Feliren, Bahrul Ilmi Nasution, Manuel Antonio Rufino, Genta Indra Winata, Rian Adam Rajagede, Carlos Rafael Catalan, Mohamed Fazli Imam, Priyaranjan Pattnayak, Salsabila Zahirah Pranida, Kevin Pratama, Yeshil Bangera, Adisai Na-Thalang, Patricia Nicole Monderin, Yueqi Song, Christian Simon, Lynnette Hui Xian Ng, Richardy Lobo' Sapan, Taki Hasan Rafi, Bin Wang, Supryadi, Kanyakorn Veerakanjana, Piyalitt Ittichaiwong, Matthew Theodore Roque, Karissa Vincentio, Takdanai Kreangphet, Phakphum Artkaew, Kadek Hendrawan Palgunadi, Yanzhi Yu, Rochana Prih Hastuti, William Nixon, Mithil Bangera, Adrian Xuan Wei Lim, Aye Hninn Khine, Hanif Muhammad Zhafran, Teddy Ferdinan, Audra Aurora Izzani, Ayushman Singh, Evan, Jauza Akbar Krito, Michael Anugraha, Fenal Ashokbhai Ilasariya, Haochen Li, John Amadeo Daniswara, Filbert Aurelian Tjiaranata, Eryawan Presma Yulianrifat, Can Udomcharoenchaikit, Fadil Risdian Ansori, Mahardika Krisna Ihsani, Giang Nguyen, Anab Maulana Barik, Dan John Velasco, Rifo Ahmad Genadi, Saptarshi Saha, Chengwei Wei, Isaiah Flores, Kenneth Ko Han Chen, Anjela Gail Santos, Wan Shen Lim, Kaung Si Phyo, Tim Santos, Meisyarah Dwiastuti, Jiayun Luo, Jan Christian Blaise Cruz, Ming Shan Hee, Ikhlasul Akmal Hanif, M. Alif Al Hakim, Muhammad Rizky Sya'ban, Kun Kerdthaisong, Lester James V. Miranda, Fajri Koto, Tirana Noor Fatyanosa, Alham Fikri Aji, Jostin Jerico Rosal, Jun Kevin, Robert Wijaya, Onno P. Kampman, Ruochen Zhang, Börje F. Karlsson, Peerat Limkonchotiwat
Title: Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Abstract:
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.

Authors:Yuru Jia, Valerio Marsocci, Ziyang Gong, Xue Yang, Maarten Vergauwen, Andrea Nascetti
Title: Can Generative Geospatial Diffusion Models Excel as Discriminative Geospatial Foundation Models?
Abstract:
Self-supervised learning (SSL) has revolutionized representation learning in Remote Sensing (RS), advancing Geospatial Foundation Models (GFMs) to leverage vast unlabeled satellite imagery for diverse downstream tasks. Currently, GFMs primarily employ objectives like contrastive learning or masked image modeling, owing to their proven success in learning transferable representations. However, generative diffusion models, which demonstrate the potential to capture multi-grained semantics essential for RS tasks during image generation, remain underexplored for discriminative applications. This prompts the question: can generative diffusion models also excel and serve as GFMs with sufficient discriminative power? In this work, we answer this question with SatDiFuser, a framework that transforms a diffusion-based generative geospatial foundation model into a powerful pretraining tool for discriminative RS. By systematically analyzing multi-stage, noise-dependent diffusion features, we develop three fusion strategies to effectively leverage these diverse representations. Extensive experiments on remote sensing benchmarks show that SatDiFuser outperforms state-of-the-art GFMs, achieving gains of up to +5.7% mIoU in semantic segmentation and +7.9% F1-score in classification, demonstrating the capacity of diffusion-based generative foundation models to rival or exceed discriminative GFMs. The source code is available at: https://github.com/yurujaja/SatDiFuser.

Authors:Anh-Kiet Duong
Title: Elderly Activity Recognition in the Wild: Results from the EAR Challenge
Abstract:
This paper presents our solution for the Elderly Action Recognition (EAR) Challenge, part of the Computer Vision for Smalls Workshop at WACV 2025. The competition focuses on recognizing Activities of Daily Living (ADLs) performed by the elderly, covering six action categories with a diverse dataset. Our approach builds upon a state-of-the-art action recognition model, fine-tuned through transfer learning on elderly-specific datasets to enhance adaptability. To improve generalization and mitigate dataset bias, we carefully curated training data from multiple publicly available sources and applied targeted pre-processing techniques. Our solution currently achieves 0.81455 accuracy on the public leaderboard, highlighting its effectiveness in classifying elderly activities. Source codes are publicly available at https://github.com/ffyyytt/EAR-WACV25-DAKiet-TSM.

Authors:Yongqiang Yao, Jingru Tan, Kaihuan Liang, Feizhao Zhang, Jiahao Hu, Shuo Wu, Yazhe Niu, Ruihao Gong, Dahua Lin, Ningyi Xu
Title: Hierarchical Balance Packing: Towards Efficient Supervised Fine-tuning for Long-Context LLM
Abstract:
Training Long-Context Large Language Models (LLMs) is challenging, as hybrid training with long-context and short-context data often leads to workload imbalances. Existing works mainly use data packing to alleviate this issue, but fail to consider imbalanced attention computation and wasted communication overhead. This paper proposes Hierarchical Balance Packing (HBP), which designs a novel batch-construction method and training recipe to address those inefficiencies. In particular, the HBP constructs multi-level data packing groups, each optimized with a distinct packing length. It assigns training samples to their optimal groups and configures each group with the most effective settings, including sequential parallelism degree and gradient checkpointing configuration. To effectively utilize multi-level groups of data, we design a dynamic training pipeline specifically tailored to HBP, including curriculum learning, adaptive sequential parallelism, and stable loss. Our extensive experiments demonstrate that our method significantly reduces training time over multiple datasets and open-source models while maintaining strong performance. For the largest DeepSeek-V2 (236B) MoE model, our method speeds up the training by 2.4$\times$ with competitive performance. Codes will be released at https://github.com/ModelTC/HBP.

Authors:Wei Dai, Peilin Chen, Malinda Lu, Daniel Li, Haowen Wei, Hejie Cui, Paul Pu Liang
Title: CLIMB: Data Foundations for Large Scale Multimodal Clinical Foundation Models
Abstract:
Recent advances in clinical AI have enabled remarkable progress across many clinical domains. However, existing benchmarks and models are primarily limited to a small set of modalities and tasks, which hinders the development of large-scale multimodal methods that can make holistic assessments of patient health and well-being. To bridge this gap, we introduce Clinical Large-Scale Integrative Multimodal Benchmark (CLIMB), a comprehensive clinical benchmark unifying diverse clinical data across imaging, language, temporal, and graph modalities. CLIMB comprises 4.51 million patient samples totaling 19.01 terabytes distributed across 2D imaging, 3D video, time series, graphs, and multimodal data. Through extensive empirical evaluation, we demonstrate that multitask pretraining significantly improves performance on understudied domains, achieving up to 29% improvement in ultrasound and 23% in ECG analysis over single-task learning. Pretraining on CLIMB also effectively improves models' generalization capability to new tasks, and strong unimodal encoder performance translates well to multimodal performance when paired with task-appropriate fusion strategies. Our findings provide a foundation for new architecture designs and pretraining strategies to advance clinical AI research. Code is released at https://github.com/DDVD233/climb.

Authors:Weixing Chen, Yang Liu, Binglin Chen, Jiandong Su, Yongsen Zheng, Liang Lin
Title: Cross-modal Causal Relation Alignment for Video Question Grounding
Abstract:
Video question grounding (VideoQG) requires models to answer the questions and simultaneously infer the relevant video segments to support the answers. However, existing VideoQG methods usually suffer from spurious cross-modal correlations, leading to a failure to identify the dominant visual scenes that align with the intended question. Moreover, vision-language models exhibit unfaithful generalization performance and lack robustness on challenging downstream tasks such as VideoQG. In this work, we propose a novel VideoQG framework named Cross-modal Causal Relation Alignment (CRA), to eliminate spurious correlations and improve the causal consistency between question-answering and video temporal grounding. Our CRA involves three essential components: i) Gaussian Smoothing Grounding (GSG) module for estimating the time interval via cross-modal attention, which is de-noised by an adaptive Gaussian filter, ii) Cross-Modal Alignment (CMA) enhances the performance of weakly supervised VideoQG by leveraging bidirectional contrastive learning between estimated video segments and QA features, iii) Explicit Causal Intervention (ECI) module for multimodal deconfounding, which involves front-door intervention for vision and back-door intervention for language. Extensive experiments on two VideoQG datasets demonstrate the superiority of our CRA in discovering visually grounded content and achieving robust question reasoning. Codes are available at https://github.com/WissingChen/CRA-GQA.

Authors:Bo Jiang, Shaoyu Chen, Qian Zhang, Wenyu Liu, Xinggang Wang
Title: AlphaDrive: Unleashing the Power of VLMs in Autonomous Driving via Reinforcement Learning and Reasoning
Abstract:
OpenAI o1 and DeepSeek R1 achieve or even surpass human expert-level performance in complex domains like mathematics and science, with reinforcement learning (RL) and reasoning playing a crucial role. In autonomous driving, recent end-to-end models have greatly improved planning performance but still struggle with long-tailed problems due to limited common sense and reasoning abilities. Some studies integrate vision-language models (VLMs) into autonomous driving, but they typically rely on pre-trained models with simple supervised fine-tuning (SFT) on driving data, without further exploration of training strategies or optimizations specifically tailored for planning. In this paper, we propose AlphaDrive, a RL and reasoning framework for VLMs in autonomous driving. AlphaDrive introduces four GRPO-based RL rewards tailored for planning and employs a two-stage planning reasoning training strategy that combines SFT with RL. As a result, AlphaDrive significantly improves both planning performance and training efficiency compared to using only SFT or without reasoning. Moreover, we are also excited to discover that, following RL training, AlphaDrive exhibits some emergent multimodal planning capabilities, which is critical for improving driving safety and efficiency. To the best of our knowledge, AlphaDrive is the first to integrate GRPO-based RL with planning reasoning into autonomous driving. Code will be released to facilitate future research.

Authors:Ying Xu, Marius Pedersen, Kiran Raja
Title: VoD: Learning Volume of Differences for Video-Based Deepfake Detection
Abstract:
The rapid development of deep learning and generative AI technologies has profoundly transformed the digital contact landscape, creating realistic Deepfake that poses substantial challenges to public trust and digital media integrity. This paper introduces a novel Deepfake detention framework, Volume of Differences (VoD), designed to enhance detection accuracy by exploiting temporal and spatial inconsistencies between consecutive video frames. VoD employs a progressive learning approach that captures differences across multiple axes through the use of consecutive frame differences (CFD) and a network with stepwise expansions. We evaluate our approach with intra-dataset and cross-dataset testing scenarios on various well-known Deepfake datasets. Our findings demonstrate that VoD excels with the data it has been trained on and shows strong adaptability to novel, unseen data. Additionally, comprehensive ablation studies examine various configurations of segment length, sampling steps, and intervals, offering valuable insights for optimizing the framework. The code for our VoD framework is available at https://github.com/xuyingzhongguo/VoD.

Authors:Yuxin Jiang, Liming Jiang, Shuai Yang, Jia-Wei Liu, Ivor Tsang, Mike Zheng Shou
Title: Balanced Image Stylization with Style Matching Score
Abstract:
We present Style Matching Score (SMS), a novel optimization method for image stylization with diffusion models. Balancing effective style transfer with content preservation is a long-standing challenge. Unlike existing efforts, our method reframes image stylization as a style distribution matching problem. The target style distribution is estimated from off-the-shelf style-dependent LoRAs via carefully designed score functions. To preserve content information adaptively, we propose Progressive Spectrum Regularization, which operates in the frequency domain to guide stylization progressively from low-frequency layouts to high-frequency details. In addition, we devise a Semantic-Aware Gradient Refinement technique that leverages relevance maps derived from diffusion semantic priors to selectively stylize semantically important regions. The proposed optimization formulation extends stylization from pixel space to parameter space, readily applicable to lightweight feedforward generators for efficient one-step stylization. SMS effectively balances style alignment and content preservation, outperforming state-of-the-art approaches, verified by extensive experiments.

Authors:Junwei Luo, Yingying Zhang, Xue Yang, Kang Wu, Qi Zhu, Lei Liang, Jingdong Chen, Yansheng Li
Title: When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning
Abstract:
Efficient vision-language understanding of large Remote Sensing Images (RSIs) is meaningful but challenging. Current Large Vision-Language Models (LVLMs) typically employ limited pre-defined grids to process images, leading to information loss when handling gigapixel RSIs. Conversely, using unlimited grids significantly increases computational costs. To preserve image details while reducing computational complexity, we propose a text-guided token pruning method with Dynamic Image Pyramid (DIP) integration. Our method introduces: (i) a Region Focus Module (RFM) that leverages text-aware region localization capability to identify critical vision tokens, and (ii) a coarse-to-fine image tile selection and vision token pruning strategy based on DIP, which is guided by RFM outputs and avoids directly processing the entire large imagery. Additionally, existing benchmarks for evaluating LVLMs' perception ability on large RSI suffer from limited question diversity and constrained image sizes. We construct a new benchmark named LRS-VQA, which contains 7,333 QA pairs across 8 categories, with image length up to 27,328 pixels. Our method outperforms existing high-resolution strategies on four datasets using the same data. Moreover, compared to existing token reduction methods, our approach demonstrates higher efficiency under high-resolution settings. Dataset and code are in https://github.com/VisionXLab/LRS-VQA.

Authors:Jen-tse Huang, Jiantong Qin, Jianping Zhang, Youliang Yuan, Wenxuan Wang, Jieyu Zhao
Title: VisBias: Measuring Explicit and Implicit Social Biases in Vision Language Models
Abstract:
This research investigates both explicit and implicit social biases exhibited by Vision-Language Models (VLMs). The key distinction between these bias types lies in the level of awareness: explicit bias refers to conscious, intentional biases, while implicit bias operates subconsciously. To analyze explicit bias, we directly pose questions to VLMs related to gender and racial differences: (1) Multiple-choice questions based on a given image (e.g., "What is the education level of the person in the image?") (2) Yes-No comparisons using two images (e.g., "Is the person in the first image more educated than the person in the second image?") For implicit bias, we design tasks where VLMs assist users but reveal biases through their responses: (1) Image description tasks: Models are asked to describe individuals in images, and we analyze disparities in textual cues across demographic groups. (2) Form completion tasks: Models draft a personal information collection form with 20 attributes, and we examine correlations among selected attributes for potential biases. We evaluate Gemini-1.5, GPT-4V, GPT-4o, LLaMA-3.2-Vision and LLaVA-v1.6. Our code and data are publicly available at https://github.com/uscnlp-lime/VisBias.

Authors:Samuel Ferino, Rashina Hoda, John Grundy, Christoph Treude
Title: Novice Developers' Perspectives on Adopting LLMs for Software Development: A Systematic Literature Review
Abstract:
Following the rise of large language models (LLMs), many studies have emerged in recent years focusing on exploring the adoption of LLM-based tools for software development by novice developers: computer science/software engineering students and early-career industry developers with two years or less of professional experience. These studies have sought to understand the perspectives of novice developers on using these tools, a critical aspect of the successful adoption of LLMs in software engineering. To systematically collect and summarise these studies, we conducted a systematic literature review (SLR) following the guidelines by Kitchenham et al. on 80 primary studies published between April 2022 and June 2025 to answer four research questions (RQs). In answering RQ1, we categorised the study motivations and methodological approaches. In RQ2, we identified the software development tasks for which novice developers use LLMs. In RQ3, we categorised the advantages, challenges, and recommendations discussed in the studies. Finally, we discuss the study limitations and future research needs suggested in the primary studies in answering RQ4. Throughout the paper, we also indicate directions for future work and implications for software engineering researchers, educators, and developers. Our research artifacts are publicly available at https://github.com/Samuellucas97/SupplementaryInfoPackage-SLR.

Authors:Clément Chadebec, Onur Tasar, Sanjeev Sreetharan, Benjamin Aubin
Title: LBM: Latent Bridge Matching for Fast Image-to-Image Translation
Abstract:
In this paper, we introduce Latent Bridge Matching (LBM), a new, versatile and scalable method that relies on Bridge Matching in a latent space to achieve fast image-to-image translation. We show that the method can reach state-of-the-art results for various image-to-image tasks using only a single inference step. In addition to its efficiency, we also demonstrate the versatility of the method across different image translation tasks such as object removal, normal and depth estimation, and object relighting. We also derive a conditional framework of LBM and demonstrate its effectiveness by tackling the tasks of controllable image relighting and shadow generation. We provide an implementation at https://github.com/gojasper/LBM.

Authors:Zhangquan Chen, Xufang Luo, Dongsheng Li
Title: VisRL: Intention-Driven Visual Perception via Reinforced Reasoning
Abstract:
Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as an internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at https://github.com/zhangquanchen/VisRL.

Authors:Yash Akhauri, Ahmed F AbouElhamayed, Yifei Gao, Chi-Chih Chang, Nilesh Jain, Mohamed S. Abdelfattah
Title: TokenButler: Token Importance is Predictable
Abstract:
Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler

Authors:Takeru Inoue, Ryusuke Miyamoto
Title: FastInstShadow: A Simple Query-Based Model for Instance Shadow Detection
Abstract:
Instance shadow detection is the task of detecting pairs of shadows and objects, where existing methods first detect shadows and objects independently, then associate them. This paper introduces FastInstShadow, a method that enhances detection accuracy through a query-based architecture featuring an association transformer decoder with two dual-path transformer decoders to assess relationships between shadows and objects during detection. Experimental results using the SOBA dataset showed that the proposed method outperforms all existing methods across all criteria. This method makes real-time processing feasible for moderate-resolution images with better accuracy than SSISv2, the most accurate existing method. Our code is available at https://github.com/wlotkr/FastInstShadow.

Authors:Jie Hu, Shizun Wang, Xinchao Wang
Title: PE3R: Perception-Efficient 3D Reconstruction
Abstract:
Recent advancements in 2D-to-3D perception have significantly improved the understanding of 3D scenes from 2D images. However, existing methods face critical challenges, including limited generalization across scenes, suboptimal perception accuracy, and slow reconstruction speeds. To address these limitations, we propose Perception-Efficient 3D Reconstruction (PE3R), a novel framework designed to enhance both accuracy and efficiency. PE3R employs a feed-forward architecture to enable rapid 3D semantic field reconstruction. The framework demonstrates robust zero-shot generalization across diverse scenes and objects while significantly improving reconstruction speed. Extensive experiments on 2D-to-3D open-vocabulary segmentation and 3D reconstruction validate the effectiveness and versatility of PE3R. The framework achieves a minimum 9-fold speedup in 3D semantic field reconstruction, along with substantial gains in perception accuracy and reconstruction precision, setting new benchmarks in the field. The code is publicly available at: https://github.com/hujiecpp/PE3R.

Authors:Calvin Yeung, Tomohiro Suzuki, Ryota Tanaka, Zhuoer Yin, Keisuke Fujii
Title: AthletePose3D: A Benchmark Dataset for 3D Human Pose Estimation and Kinematic Validation in Athletic Movements
Abstract:
Human pose estimation is a critical task in computer vision and sports biomechanics, with applications spanning sports science, rehabilitation, and biomechanical research. While significant progress has been made in monocular 3D pose estimation, current datasets often fail to capture the complex, high-acceleration movements typical of competitive sports. In this work, we introduce AthletePose3D, a novel dataset designed to address this gap. AthletePose3D includes 12 types of sports motions across various disciplines, with approximately 1.3 million frames and 165 thousand individual postures, specifically capturing high-speed, high-acceleration athletic movements. We evaluate state-of-the-art (SOTA) monocular 2D and 3D pose estimation models on the dataset, revealing that models trained on conventional datasets perform poorly on athletic motions. However, fine-tuning these models on AthletePose3D notably reduces the SOTA model mean per joint position error (MPJPE) from 214mm to 65mm-a reduction of over 69%. We also validate the kinematic accuracy of monocular pose estimations through waveform analysis, highlighting strong correlations in joint angle estimations but limitations in velocity estimation. Our work provides a comprehensive evaluation of monocular pose estimation models in the context of sports, contributing valuable insights for advancing monocular pose estimation techniques in high-performance sports environments. The dataset, code, and model checkpoints are available at: https://github.com/calvinyeungck/AthletePose3D

Authors:Guiwei Zhang, Tianyu Zhang, Mohan Zhou, Yalong Bai, Biye Li
Title: V2Flow: Unifying Visual Tokenization and Large Language Model Vocabularies for Autoregressive Image Generation
Abstract:
We propose V2Flow, a novel tokenizer that produces discrete visual tokens capable of high-fidelity reconstruction, while ensuring structural and latent distribution alignment with the vocabulary space of large language models (LLMs). Leveraging this tight visual-vocabulary coupling, V2Flow enables autoregressive visual generation on top of existing LLMs. Our approach formulates visual tokenization as a flow-matching problem, aiming to learn a mapping from a standard normal prior to the continuous image distribution, conditioned on token sequences embedded within the LLMs vocabulary space. The effectiveness of V2Flow stems from two core designs. First, we propose a Visual Vocabulary resampler, which compresses visual data into compact token sequences, with each represented as a soft categorical distribution over LLM's vocabulary. This allows seamless integration of visual tokens into existing LLMs for autoregressive visual generation. Second, we present a masked autoregressive Rectified-Flow decoder, employing a masked transformer encoder-decoder to refine visual tokens into contextually enriched embeddings. These embeddings then condition a dedicated velocity field for precise reconstruction. Additionally, an autoregressive rectified-flow sampling strategy is incorporated, ensuring flexible sequence lengths while preserving competitive reconstruction quality. Extensive experiments show that V2Flow outperforms mainstream VQ-based tokenizers and facilitates autoregressive visual generation on top of existing. https://github.com/zhangguiwei610/V2Flow

Authors:Zongzheng Zhang, Xinrun Li, Sizhe Zou, Guoxuan Chi, Siqi Li, Xuchong Qiu, Guoliang Wang, Guantian Zheng, Leichen Wang, Hang Zhao, Hao Zhao
Title: Chameleon: Fast-slow Neuro-symbolic Lane Topology Extraction
Abstract:
Lane topology extraction involves detecting lanes and traffic elements and determining their relationships, a key perception task for mapless autonomous driving. This task requires complex reasoning, such as determining whether it is possible to turn left into a specific lane. To address this challenge, we introduce neuro-symbolic methods powered by vision-language foundation models (VLMs). Existing approaches have notable limitations: (1) Dense visual prompting with VLMs can achieve strong performance but is costly in terms of both financial resources and carbon footprint, making it impractical for robotics applications. (2) Neuro-symbolic reasoning methods for 3D scene understanding fail to integrate visual inputs when synthesizing programs, making them ineffective in handling complex corner cases. To this end, we propose a fast-slow neuro-symbolic lane topology extraction algorithm, named Chameleon, which alternates between a fast system that directly reasons over detected instances using synthesized programs and a slow system that utilizes a VLM with a chain-of-thought design to handle corner cases. Chameleon leverages the strengths of both approaches, providing an affordable solution while maintaining high performance. We evaluate the method on the OpenLane-V2 dataset, showing consistent improvements across various baseline detectors. Our code, data, and models are publicly available at https://github.com/XR-Lee/neural-symbolic

Authors:Jiacheng Ruan, Wenzhen Yuan, Xian Gao, Ye Guo, Daoxin Zhang, Zhe Xu, Yao Hu, Ting Liu, Yuzhuo Fu
Title: VLRMBench: A Comprehensive and Challenging Benchmark for Vision-Language Reward Models
Abstract:
Although large visual-language models (LVLMs) have demonstrated strong performance in multimodal tasks, errors may occasionally arise due to biases during the reasoning process. Recently, reward models (RMs) have become increasingly pivotal in the reasoning process. Specifically, process RMs evaluate each reasoning step, outcome RMs focus on the assessment of reasoning results, and critique RMs perform error analysis on the entire reasoning process, followed by corrections. However, existing benchmarks for vision-language RMs (VLRMs) typically assess only a single aspect of their capabilities (e.g., distinguishing between two answers), thus limiting the all-round evaluation and restricting the development of RMs in the visual-language domain. To address this gap, we propose a comprehensive and challenging benchmark, dubbed as VLRMBench, encompassing 12,634 questions. VLRMBench is constructed based on three distinct types of datasets, covering mathematical reasoning, hallucination understanding, and multi-image understanding. We design 12 tasks across three major categories, focusing on evaluating VLRMs in the aspects of process understanding, outcome judgment, and critique generation. Extensive experiments are conducted on 21 open-source models and 5 advanced closed-source models, highlighting the challenges posed by VLRMBench. For instance, in the `Forecasting Future', a binary classification task, the advanced GPT-4o achieves only a 76.0% accuracy. Additionally, we perform comprehensive analytical studies, offering valuable insights for the future development of VLRMs. We anticipate that VLRMBench will serve as a pivotal benchmark in advancing VLRMs. Code and datasets will be available at https://github.com/JCruan519/VLRMBench.

Authors:Ao Wang, Lihao Liu, Hui Chen, Zijia Lin, Jungong Han, Guiguang Ding
Title: YOLOE: Real-Time Seeing Anything
Abstract:
Object detection and segmentation are widely employed in computer vision applications, yet conventional models like YOLO series, while efficient and accurate, are limited by predefined categories, hindering adaptability in open scenarios. Recent open-set methods leverage text prompts, visual cues, or prompt-free paradigm to overcome this, but often compromise between performance and efficiency due to high computational demands or deployment complexity. In this work, we introduce YOLOE, which integrates detection and segmentation across diverse open prompt mechanisms within a single highly efficient model, achieving real-time seeing anything. For text prompts, we propose Re-parameterizable Region-Text Alignment (RepRTA) strategy. It refines pretrained textual embeddings via a re-parameterizable lightweight auxiliary network and enhances visual-textual alignment with zero inference and transferring overhead. For visual prompts, we present Semantic-Activated Visual Prompt Encoder (SAVPE). It employs decoupled semantic and activation branches to bring improved visual embedding and accuracy with minimal complexity. For prompt-free scenario, we introduce Lazy Region-Prompt Contrast (LRPC) strategy. It utilizes a built-in large vocabulary and specialized embedding to identify all objects, avoiding costly language model dependency. Extensive experiments show YOLOE's exceptional zero-shot performance and transferability with high inference efficiency and low training cost. Notably, on LVIS, with 3$\times$ less training cost and 1.4$\times$ inference speedup, YOLOE-v8-S surpasses YOLO-Worldv2-S by 3.5 AP. When transferring to COCO, YOLOE-v8-L achieves 0.6 AP$^b$ and 0.4 AP$^m$ gains over closed-set YOLOv8-L with nearly 4$\times$ less training time. Code and models are available at https://github.com/THU-MIG/yoloe.

Authors:Jimmy Gammell, Anand Raghunathan, Abolfazl Hashemi, Kaushik Roy
Title: Learning to Localize Leakage of Cryptographic Sensitive Variables
Abstract:
While cryptographic algorithms such as the ubiquitous Advanced Encryption Standard (AES) are secure, *physical implementations* of these algorithms in hardware inevitably 'leak' sensitive data such as cryptographic keys. A particularly insidious form of leakage arises from the fact that hardware consumes power and emits radiation in a manner that is statistically associated with the data it processes and the instructions it executes. Supervised deep learning has emerged as a state-of-the-art tool for carrying out *side-channel attacks*, which exploit this leakage by learning to map power/radiation measurements throughout encryption to the sensitive data operated on during that encryption. In this work we develop a principled deep learning framework for determining the relative leakage due to measurements recorded at different points in time, in order to inform *defense* against such attacks. This information is invaluable to cryptographic hardware designers for understanding *why* their hardware leaks and how they can mitigate it (e.g. by indicating the particular sections of code or electronic components which are responsible). Our framework is based on an adversarial game between a family of classifiers trained to estimate the conditional distributions of sensitive data given subsets of measurements, and a budget-constrained noise distribution which probabilistically erases individual measurements to maximize the loss of these classifiers. We demonstrate our method's efficacy and ability to overcome limitations of prior work through extensive experimental comparison with 8 baseline methods using 3 evaluation metrics and 6 publicly-available power/EM trace datasets from AES, ECC and RSA implementations. We provide an open-source PyTorch implementation of these experiments.

Authors:Xiangru Tang, Daniel Shao, Jiwoong Sohn, Jiapeng Chen, Jiayi Zhang, Jinyu Xiang, Fang Wu, Yilun Zhao, Chenglin Wu, Wenqi Shi, Arman Cohan, Mark Gerstein
Title: MedAgentsBench: Benchmarking Thinking Models and Agent Frameworks for Complex Medical Reasoning
Abstract:
Large Language Models (LLMs) have shown impressive performance on existing medical question-answering benchmarks. This high performance makes it increasingly difficult to meaningfully evaluate and differentiate advanced methods. We present MedAgentsBench, a benchmark that focuses on challenging medical questions requiring multi-step clinical reasoning, diagnosis formulation, and treatment planning-scenarios where current models still struggle despite their strong performance on standard tests. Drawing from seven established medical datasets, our benchmark addresses three key limitations in existing evaluations: (1) the prevalence of straightforward questions where even base models achieve high performance, (2) inconsistent sampling and evaluation protocols across studies, and (3) lack of systematic analysis of the interplay between performance, cost, and inference time. Through experiments with various base models and reasoning methods, we demonstrate that the latest thinking models, DeepSeek R1 and OpenAI o3, exhibit exceptional performance in complex medical reasoning tasks. Additionally, advanced search-based agent methods offer promising performance-to-cost ratios compared to traditional approaches. Our analysis reveals substantial performance gaps between model families on complex questions and identifies optimal model selections for different computational constraints. Our benchmark and evaluation framework are publicly available at https://github.com/gersteinlab/medagents-benchmark.

Authors:Feiran You, Hongyang Du, Xiangwang Hou, Yong Ren, Kaibin Huang
Title: DRESS: Diffusion Reasoning-based Reward Shaping Scheme For Intelligent Networks
Abstract:
Network optimization remains fundamental in wireless communications, with Artificial Intelligence (AI)-based solutions gaining widespread adoption. As Sixth-Generation (6G) communication networks pursue full-scenario coverage, optimization in complex extreme environments presents unprecedented challenges. The dynamic nature of these environments, combined with physical constraints, makes it difficult for AI solutions such as Deep Reinforcement Learning (DRL) to obtain effective reward feedback for the training process. However, many existing DRL-based network optimization studies overlook this challenge through idealized environment settings. Inspired by the powerful capabilities of Generative AI (GenAI), especially diffusion models, in capturing complex latent distributions, we introduce a novel Diffusion Reasoning-based Reward Shaping Scheme (DRESS) to achieve robust network optimization. By conditioning on observed environmental states and executed actions, DRESS leverages diffusion models' multi-step denoising process as a form of deep reasoning, progressively refining latent representations to generate meaningful auxiliary reward signals that capture patterns of network systems. Moreover, DRESS is designed for seamless integration with any DRL framework, allowing DRESS-aided DRL (DRESSed-DRL) to enable stable and efficient DRL training even under extreme network environments. Experimental results demonstrate that DRESSed-DRL achieves about 1.5x times faster convergence than its original version in sparse-reward wireless environments and significant performance improvements in multiple general DRL benchmark environments compared to baseline methods. The code of DRESS is available at https://github.com/NICE-HKU/DRESS.

Authors:Yan Tai, Luhao Zhu, Zhiqiang Chen, Ynan Ding, Yiying Dong, Xiaohong Liu, Guodong Guo
Title: REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding
Abstract:
Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.

Authors:Ouxiang Li, Yuan Wang, Xinting Hu, Houcheng Jiang, Tao Liang, Yanbin Hao, Guojun Ma, Fuli Feng
Title: SPEED: Scalable, Precise, and Efficient Concept Erasure for Diffusion Models
Abstract:
Erasing concepts from large-scale text-to-image (T2I) diffusion models has become increasingly crucial due to the growing concerns over copyright infringement, offensive content, and privacy violations. However, existing methods either require costly fine-tuning or degrade image quality for non-target concepts (i.e., prior) due to inherent optimization limitations. In this paper, we introduce SPEED, a model editing-based concept erasure approach that leverages null-space constraints for scalable, precise, and efficient erasure. Specifically, SPEED incorporates Influence-based Prior Filtering (IPF) to retain the most affected non-target concepts during erasing, Directed Prior Augmentation (DPA) to expand prior coverage while maintaining semantic consistency, and Invariant Equality Constraints (IEC) to regularize model editing by explicitly preserving key invariants during the T2I generation process. Extensive evaluations across multiple concept erasure tasks demonstrate that SPEED consistently outperforms existing methods in prior preservation while achieving efficient and high-fidelity concept erasure, successfully removing 100 concepts within just 5 seconds. Our code and models are available at: https://github.com/Ouxiang-Li/SPEED.

Authors:Ouxiang Li, Yuan Wang, Xinting Hu, Houcheng Jiang, Tao Liang, Yanbin Hao, Guojun Ma, Fuli Feng
Title: SPEED: Scalable, Precise, and Efficient Concept Erasure for Diffusion Models
Abstract:
Erasing concepts from large-scale text-to-image (T2I) diffusion models has become increasingly crucial due to the growing concerns over copyright infringement, offensive content, and privacy violations. In scalable applications, fine-tuning-based methods are time-consuming to precisely erase multiple target concepts, while real-time editing-based methods often degrade the generation quality of non-target concepts due to conflicting optimization objectives. To address this dilemma, we introduce SPEED, an efficient concept erasure approach that directly edits model parameters. SPEED searches for a null space, a model editing space where parameter updates do not affect non-target concepts, to achieve scalable and precise erasure. To facilitate accurate null space optimization, we incorporate three complementary strategies: Influence-based Prior Filtering (IPF) to selectively retain the most affected non-target concepts, Directed Prior Augmentation (DPA) to enrich the filtered retain set with semantically consistent variations, and Invariant Equality Constraints (IEC) to preserve key invariants during the T2I generation process. Extensive evaluations across multiple concept erasure tasks demonstrate that SPEED consistently outperforms existing methods in non-target preservation while achieving efficient and high-fidelity concept erasure, successfully erasing 100 concepts within only 5 seconds. Our code and models are available at: https://github.com/Ouxiang-Li/SPEED.

Authors:Ruidong Chen, Honglin Guo, Lanjun Wang, Chenyu Zhang, Weizhi Nie, An-An Liu
Title: TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models
Abstract:
Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images. To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts. However, current studies struggle to fully erase malicious concepts implicitly embedded in prompts (e.g., metaphorical expressions or adversarial prompts) while preserving the model's normal generation capability. To address this challenge, our study proposes TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation. Firstly, TRCE starts by erasing the malicious semantics implicitly embedded in textual prompts. By identifying a critical mapping objective(i.e., the [EoT] embedding), we optimize the cross-attention layers to map malicious prompts to contextually similar prompts but with safe concepts. This step prevents the model from being overly influenced by malicious semantics during the denoising process. Following this, considering the deterministic properties of the sampling trajectory of the diffusion model, TRCE further steers the early denoising prediction toward the safe direction and away from the unsafe one through contrastive learning, thus further avoiding the generation of malicious content. Finally, we conduct comprehensive evaluations of TRCE on multiple malicious concept erasure benchmarks, and the results demonstrate its effectiveness in erasing malicious concepts while better preserving the model's original generation ability. The code is available at: http://github.com/ddgoodgood/TRCE. CAUTION: This paper includes model-generated content that may contain offensive material.

Authors:Ruidong Chen, Honglin Guo, Lanjun Wang, Chenyu Zhang, Weizhi Nie, An-An Liu
Title: TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models
Abstract:
Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images. To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts. However, current studies struggle to fully erase malicious concepts implicitly embedded in prompts (e.g., metaphorical expressions or adversarial prompts) while preserving the model's normal generation capability. To address this challenge, our study proposes TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation. Firstly, TRCE starts by erasing the malicious semantics implicitly embedded in textual prompts. By identifying a critical mapping objective(i.e., the [EoT] embedding), we optimize the cross-attention layers to map malicious prompts to contextually similar prompts but with safe concepts. This step prevents the model from being overly influenced by malicious semantics during the denoising process. Following this, considering the deterministic properties of the sampling trajectory of the diffusion model, TRCE further steers the early denoising prediction toward the safe direction and away from the unsafe one through contrastive learning, thus further avoiding the generation of malicious content. Finally, we conduct comprehensive evaluations of TRCE on multiple malicious concept erasure benchmarks, and the results demonstrate its effectiveness in erasing malicious concepts while better preserving the model's original generation ability. The code is available at: http://github.com/ddgoodgood/TRCE. CAUTION: This paper includes model-generated content that may contain offensive material.

Authors:Chongming Gao, Mengyao Gao, Chenxiao Fan, Shuai Yuan, Wentao Shi, Xiangnan He
Title: Process-Supervised LLM Recommenders via Flow-guided Tuning
Abstract:
While large language models (LLMs) are increasingly adapted for recommendation systems via supervised fine-tuning (SFT), this approach amplifies popularity bias due to its likelihood maximization objective, compromising recommendation diversity and fairness. To address this, we present Flow-guided fine-tuning recommender (Flower), which replaces SFT with a Generative Flow Network (GFlowNet) framework that enacts process supervision through token-level reward propagation. Flower's key innovation lies in decomposing item-level rewards into constituent token rewards, enabling direct alignment between token generation probabilities and their reward signals. This mechanism achieves three critical advancements: (1) popularity bias mitigation and fairness enhancement through empirical distribution matching, (2) preservation of diversity through GFlowNet's proportional sampling, and (3) flexible integration of personalized preferences via adaptable token rewards. Experiments demonstrate Flower's superior distribution-fitting capability and its significant advantages over traditional SFT in terms of accuracy, fairness, and diversity, highlighting its potential to improve LLM-based recommendation systems. The implementation is available via https://github.com/MrPeach0301/Flower

Authors:Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng Han, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang, Wenqi Shao
Title: MM-Eureka: Exploring the Frontiers of Multimodal Reasoning with Rule-based Reinforcement Learning
Abstract:
DeepSeek R1, and o1 have demonstrated powerful reasoning capabilities in the text domain through stable large-scale reinforcement learning. To enable broader applications, some works have attempted to transfer these capabilities to multimodal reasoning. However, these efforts have been limited by the limited difficulty of selected tasks and relatively small training scales, making it challenging to demonstrate strong multimodal reasoning abilities. To address this gap, we introduce the MMK12 dataset and MM-EUREKA with 7B and 32B parameters. The former is a high-quality multimodal mathematics reasoning dataset featuring diverse knowledge domains with human-verified answers and solution processes. The latter is a multimodal model employing rule-based reinforcement learning on MMK12, utilizing online filtering and two-stage training strategy to enhance training stability. MM-EUREKA demonstrates remarkable performance gains in multimodal mathematical reasoning, outperforming previous powerful models like InternVL2.5-78B or InternVL2.5-38B-MPO. In particular, MM-EUREKA achieves competitive or superior performance compared to both open-source and closed-source models, and trails slightly behind o1 in multidisciplinary reasoning tasks. We open-source our complete pipeline to foster further research in this area. We release all our codes, models, data, etc. at https://github.com/ModalMinds/MM-EUREKA

Authors:Johan Edstedt, Georg Bökman, Mårten Wadenbäck, Michael Felsberg
Title: DaD: Distilled Reinforcement Learning for Diverse Keypoint Detection
Abstract:
Keypoints are what enable Structure-from-Motion (SfM) systems to scale to thousands of images. However, designing a keypoint detection objective is a non-trivial task, as SfM is non-differentiable. Typically, an auxiliary objective involving a descriptor is optimized. This however induces a dependency on the descriptor, which is undesirable. In this paper we propose a fully self-supervised and descriptor-free objective for keypoint detection, through reinforcement learning. To ensure training does not degenerate, we leverage a balanced top-K sampling strategy. While this already produces competitive models, we find that two qualitatively different types of detectors emerge, which are only able to detect light and dark keypoints respectively. To remedy this, we train a third detector, DaD, that optimizes the Kullback-Leibler divergence of the pointwise maximum of both light and dark detectors. Our approach significantly improve upon SotA across a range of benchmarks. Code and model weights are publicly available at https://github.com/parskatt/dad

Authors:Xing Xie, Jiawei Liu, Ziyue Lin, Huijie Fan, Zhi Han, Yandong Tang, Liangqiong Qu
Title: Unleashing the Potential of Large Language Models for Text-to-Image Generation through Autoregressive Representation Alignment
Abstract:
We present Autoregressive Representation Alignment (ARRA), a new training framework that unlocks global-coherent text-to-image generation in autoregressive LLMs without architectural modifications. Different from prior works that require complex architectural redesigns, ARRA aligns LLM's hidden states with visual representations from external visual foundational models via a global visual alignment loss and a hybrid token, [object Object]. This token enforces dual constraints: local next-token prediction and global semantic distillation, enabling LLMs to implicitly learn spatial and contextual coherence while retaining their original autoregressive paradigm. Extensive experiments validate ARRA's plug-and-play versatility. When training T2I LLMs from scratch, ARRA reduces FID by 16.6% (ImageNet), 12.0% (LAION-COCO) for autoregressive LLMs like LlamaGen, without modifying original architecture and inference mechanism. For training from text-generation-only LLMs, ARRA reduces FID by 25.5% (MIMIC-CXR), 8.8% (DeepEyeNet) for advanced LLMs like Chameleon. For domain adaptation, ARRA aligns general-purpose LLMs with specialized models (e.g., BioMedCLIP), achieving an 18.6% FID reduction over direct fine-tuning on medical imaging (MIMIC-CXR). These results demonstrate that training objective redesign, rather than architectural modifications, can resolve cross-modal global coherence challenges. ARRA offers a complementary paradigm for advancing autoregressive models. The code is available at https://github.com/xiexing0916/ARRA.

Authors:Rui Qiao, Zhaoxuan Wu, Jingtan Wang, Pang Wei Koh, Bryan Kian Hsiang Low
Title: Group-robust Sample Reweighting for Subpopulation Shifts via Influence Functions
Abstract:
Machine learning models often have uneven performance among subpopulations (a.k.a., groups) in the data distributions. This poses a significant challenge for the models to generalize when the proportions of the groups shift during deployment. To improve robustness to such shifts, existing approaches have developed strategies that train models or perform hyperparameter tuning using the group-labeled data to minimize the worst-case loss over groups. However, a non-trivial amount of high-quality labels is often required to obtain noticeable improvements. Given the costliness of the labels, we propose to adopt a different paradigm to enhance group label efficiency: utilizing the group-labeled data as a target set to optimize the weights of other group-unlabeled data. We introduce Group-robust Sample Reweighting (GSR), a two-stage approach that first learns the representations from group-unlabeled data, and then tinkers the model by iteratively retraining its last layer on the reweighted data using influence functions. Our GSR is theoretically sound, practically lightweight, and effective in improving the robustness to subpopulation shifts. In particular, GSR outperforms the previous state-of-the-art approaches that require the same amount or even more group labels.

Authors:Weijia Wu, Zeyu Zhu, Mike Zheng Shou
Title: Automated Movie Generation via Multi-Agent CoT Planning
Abstract:
Existing long-form video generation frameworks lack automated planning, requiring manual input for storylines, scenes, cinematography, and character interactions, resulting in high costs and inefficiencies. To address these challenges, we present MovieAgent, an automated movie generation via multi-agent Chain of Thought (CoT) planning. MovieAgent offers two key advantages: 1) We firstly explore and define the paradigm of automated movie/long-video generation. Given a script and character bank, our MovieAgent can generates multi-scene, multi-shot long-form videos with a coherent narrative, while ensuring character consistency, synchronized subtitles, and stable audio throughout the film. 2) MovieAgent introduces a hierarchical CoT-based reasoning process to automatically structure scenes, camera settings, and cinematography, significantly reducing human effort. By employing multiple LLM agents to simulate the roles of a director, screenwriter, storyboard artist, and location manager, MovieAgent streamlines the production pipeline. Experiments demonstrate that MovieAgent achieves new state-of-the-art results in script faithfulness, character consistency, and narrative coherence. Our hierarchical framework takes a step forward and provides new insights into fully automated movie generation. The code and project website are available at: https://github.com/showlab/MovieAgent and https://weijiawu.github.io/MovieAgent.

Authors:Won-Sang You, Tae-Gwan Ha, Seo-Young Lee, Kyung-Joong Kim
Title: Automatic Curriculum Design for Zero-Shot Human-AI Coordination
Abstract:
Zero-shot human-AI coordination is the training of an ego-agent to coordinate with humans without human data. Most studies on zero-shot human-AI coordination have focused on enhancing the ego-agent's coordination ability in a given environment without considering the issue of generalization to unseen environments. Real-world applications of zero-shot human-AI coordination should consider unpredictable environmental changes and the varying coordination ability of co-players depending on the environment. Previously, the multi-agent UED (Unsupervised Environment Design) approach has investigated these challenges by jointly considering environmental changes and co-player policy in competitive two-player AI-AI scenarios. In this paper, our study extends a multi-agent UED approach to zero-shot human-AI coordination. We propose a utility function and co-player sampling for a zero-shot human-AI coordination setting that helps train the ego-agent to coordinate with humans more effectively than a previous multi-agent UED approach. The zero-shot human-AI coordination performance was evaluated in the Overcooked-AI environment, using human proxy agents and real humans. Our method outperforms other baseline models and achieves high performance in human-AI coordination tasks in unseen environments. The source code is available at https://github.com/Uwonsang/ACD_Human-AI

Authors:Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran Feng, Kunpeng Ning, Bin Zhu, Li Yuan
Title: WISE: A World Knowledge-Informed Semantic Evaluation for Text-to-Image Generation
Abstract:
Text-to-Image (T2I) models are capable of generating high-quality artistic creations and visual content. However, existing research and evaluation standards predominantly focus on image realism and shallow text-image alignment, lacking a comprehensive assessment of complex semantic understanding and world knowledge integration in text to image generation. To address this challenge, we propose $\textbf{WISE}$, the first benchmark specifically designed for $\textbf{W}$orld Knowledge-$\textbf{I}$nformed $\textbf{S}$emantic $\textbf{E}$valuation. WISE moves beyond simple word-pixel mapping by challenging models with 1000 meticulously crafted prompts across 25 sub-domains in cultural common sense, spatio-temporal reasoning, and natural science. To overcome the limitations of traditional CLIP metric, we introduce $\textbf{WiScore}$, a novel quantitative metric for assessing knowledge-image alignment. Through comprehensive testing of 20 models (10 dedicated T2I models and 10 unified multimodal models) using 1,000 structured prompts spanning 25 subdomains, our findings reveal significant limitations in their ability to effectively integrate and apply world knowledge during image generation, highlighting critical pathways for enhancing knowledge incorporation and application in next-generation T2I models. Code and data are available at https://github.com/PKU-YuanGroup/WISE.

Authors:Baiyu Chen, Wilson Wongso, Zechen Li, Yonchanok Khaokaew, Hao Xue, Flora Salim
Title: COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Abstract:
Egocentric video-based models capture rich semantic information and have demonstrated strong performance in human activity recognition (HAR). However, their high power consumption, privacy concerns, and dependence on lighting conditions limit their feasibility for continuous on-device recognition. In contrast, inertial measurement unit (IMU) sensors offer an energy-efficient and privacy-preserving alternative, yet they suffer from limited large-scale annotated datasets, leading to weaker generalization in downstream tasks. To bridge this gap, we propose COMODO, a cross-modal self-supervised distillation framework that transfers rich semantic knowledge from the video modality to the IMU modality without requiring labeled annotations. COMODO leverages a pretrained and frozen video encoder to construct a dynamic instance queue, aligning the feature distributions of video and IMU embeddings. By distilling knowledge from video representations, our approach enables the IMU encoder to inherit rich semantic information from video while preserving its efficiency for real-world applications. Experiments on multiple egocentric HAR datasets demonstrate that COMODO consistently improves downstream classification performance, achieving results comparable to or exceeding fully supervised fine-tuned models. Moreover, COMODO exhibits strong cross-dataset generalization. Benefiting from its simplicity, our method is also generally applicable to various video and time-series pre-trained models, offering the potential to leverage more powerful teacher and student foundation models in future research. The code is available at https://github.com/Breezelled/COMODO .

Authors:Xinyu Nan, Meng He, Zifan Chen, Bin Dong, Lei Tang, Li Zhang
Title: AI-Driven Automated Tool for Abdominal CT Body Composition Analysis in Gastrointestinal Cancer Management
Abstract:
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong correlation between abdominal muscle and fat tissue composition and patient outcomes. However, existing manual methods for analyzing abdominal tissue composition are time-consuming and costly, limiting clinical research scalability. To address these challenges, we developed an AI-driven tool for automated analysis of abdominal CT scans to effectively identify and segment muscle, subcutaneous fat, and visceral fat. Our tool integrates a multi-view localization model and a high-precision 2D nnUNet-based segmentation model, demonstrating a localization accuracy of 90% and a Dice Score Coefficient of 0.967 for segmentation. Furthermore, it features an interactive interface that allows clinicians to refine the segmentation results, ensuring high-quality outcomes effectively. Our tool offers a standardized method for effectively extracting critical abdominal tissues, potentially enhancing the management and treatment for gastrointestinal cancers. The code is available at https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git}{https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git.

Authors:Fareed Qararyah, Mohammad Ali Maleki, Pedro Trancoso
Title: An Analytical Cost Model for Fast Evaluation of Multiple Compute-Engine CNN Accelerators
Abstract:
Convolutional Neural Networks (CNNs) serve various applications with diverse performance and resource requirements. Model-aware CNN accelerators best address these diverse requirements. These accelerators usually combine multiple dedicated Compute Engines (CEs). The flexibility of Field-Programmable Gate Arrays (FPGAs) enables the design of such multiple Compute-Engine (multiple-CE) accelerators. However, existing multiple-CE accelerators differ in how they arrange their CEs and distribute the FPGA resources and CNN operators among the CEs. The design space of multiple-CE accelerators comprises numerous such arrangements, which makes a systematic identification of the best ones an open challenge. This paper proposes a multiple-CE accelerator analytical Cost Model (MCCM) and an evaluation methodology built around MCCM. The model and methodology streamline the expression of any multiple-CE accelerator and provide a fast evaluation of its performance and efficiency. MCCM is in the order of 100000x faster than traditional synthesis-based evaluation and has an average accuracy of > 90%. The paper presents three use cases of MCCM. The first describes an end-to-end evaluation of state-of-the-art multiple-CE accelerators considering various metrics, CNN models, and resource budgets. The second describes fine-grained evaluation that helps identify performance bottlenecks of multiple-CE accelerators. The third demonstrates that MCCM fast evaluation enables exploring the vast design space of multiple-CE accelerators. These use cases show that no unique CE arrangement achieves the best results given different metrics, CNN models, and resource budgets. They also show that fast evaluation enables design space exploration, resulting in accelerator designs that outperform state-of-the-art ones. MCCM is available at https://github.com/fqararyah/MCCM.

Authors:Haowen Bai, Jiangshe Zhang, Zixiang Zhao, Lilun Deng, Yukun Cui, Shuang Xu
Title: Retinex-MEF: Retinex-based Glare Effects Aware Unsupervised Multi-Exposure Image Fusion
Abstract:
Multi-exposure image fusion (MEF) synthesizes multiple, differently exposed images of the same scene into a single, well-exposed composite. Retinex theory, which separates image illumination from scene reflectance, provides a natural framework to ensure consistent scene representation and effective information fusion across varied exposure levels. However, the conventional pixel-wise multiplication of illumination and reflectance inadequately models the glare effect induced by overexposure. To address this limitation, we introduce an unsupervised and controllable method termed Retinex-MEF. Specifically, our method decomposes multi-exposure images into separate illumination components with a shared reflectance component, and effectively models the glare induced by overexposure. The shared reflectance is learned via a bidirectional loss, which enables our approach to effectively mitigate the glare effect. Furthermore, we introduce a controllable exposure fusion criterion, enabling global exposure adjustments while preserving contrast, thus overcoming the constraints of a fixed exposure level. Extensive experiments on diverse datasets, including underexposure-overexposure fusion, exposure controlled fusion, and homogeneous extreme exposure fusion, demonstrate the effective decomposition and flexible fusion capability of our model. The code is available at https://github.com/HaowenBai/Retinex-MEF

Authors:Zebin You, Jingyang Ou, Xiaolu Zhang, Jun Hu, Jun Zhou, Chongxuan Li
Title: Effective and Efficient Masked Image Generation Models
Abstract:
Although masked image generation models and masked diffusion models are designed with different motivations and objectives, we observe that they can be unified within a single framework. Building upon this insight, we carefully explore the design space of training and sampling, identifying key factors that contribute to both performance and efficiency. Based on the improvements observed during this exploration, we develop our model, referred to as eMIGM. Empirically, eMIGM demonstrates strong performance on ImageNet generation, as measured by Fréchet Inception Distance (FID). In particular, on ImageNet 256x256, with similar number of function evaluations (NFEs) and model parameters, eMIGM outperforms the seminal VAR. Moreover, as NFE and model parameters increase, eMIGM achieves performance comparable to the state-of-the-art continuous diffusion models while requiring less than 40% of the NFE. Additionally, on ImageNet 512x512, with only about 60% of the NFE, eMIGM outperforms the state-of-the-art continuous diffusion models. Code is available at https://github.com/ML-GSAI/eMIGM.

Authors:Yan Ren, Shilin Lu, Adams Wai-Kin Kong
Title: All That Glitters Is Not Gold: Key-Secured 3D Secrets within 3D Gaussian Splatting
Abstract:
Recent advances in 3D Gaussian Splatting (3DGS) have revolutionized scene reconstruction, opening new possibilities for 3D steganography by hiding 3D secrets within 3D covers. The key challenge in steganography is ensuring imperceptibility while maintaining high-fidelity reconstruction. However, existing methods often suffer from detectability risks and utilize only suboptimal 3DGS features, limiting their full potential. We propose a novel end-to-end key-secured 3D steganography framework (KeySS) that jointly optimizes a 3DGS model and a key-secured decoder for secret reconstruction. Our approach reveals that Gaussian features contribute unequally to secret hiding. The framework incorporates a key-controllable mechanism enabling multi-secret hiding and unauthorized access prevention, while systematically exploring optimal feature update to balance fidelity and security. To rigorously evaluate steganographic imperceptibility beyond conventional 2D metrics, we introduce 3D-Sinkhorn distance analysis, which quantifies distributional differences between original and steganographic Gaussian parameters in the representation space. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both cover and secret reconstruction while maintaining high security levels, advancing the field of 3D steganography. Code is available at https://github.com/RY-Paper/KeySS

Authors:Kazuya Nishimura, Ryoma Bise, Yasuhiro Kojima
Title: Towards Spatial Transcriptomics-guided Pathological Image Recognition with Batch-Agnostic Encoder
Abstract:
Spatial transcriptomics (ST) is a novel technique that simultaneously captures pathological images and gene expression profiling with spatial coordinates. Since ST is closely related to pathological features such as disease subtypes, it may be valuable to augment image representation with pathological information. However, there are no attempts to leverage ST for image recognition ({\it i.e,} patch-level classification of subtypes of pathological image.). One of the big challenges is significant batch effects in spatial transcriptomics that make it difficult to extract pathological features of images from ST. In this paper, we propose a batch-agnostic contrastive learning framework that can extract consistent signals from gene expression of ST in multiple patients. To extract consistent signals from ST, we utilize the batch-agnostic gene encoder that is trained in a variational inference manner. Experiments demonstrated the effectiveness of our framework on a publicly available dataset. Code is publicly available at https://github.com/naivete5656/TPIRBAE

Authors:Zhen Zou, Feng Zhao
Title: FEB-Cache: Frequency-Guided Exposure Bias Reduction for Enhancing Diffusion Transformer Caching
Abstract:
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this issue, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing why caching damage the generation processes. In this paper, we first confirm that the cache greatly amplifies the exposure bias, resulting in a decline in the generation quality. However, directly applying noise scaling is challenging for this issue due to the non-smoothness of exposure bias. We found that this phenomenon stems from the mismatch between its frequency response characteristics and the simple cache of Attention and MLP. Since these two components exhibit unique preferences for frequency signals, which provides us with a caching strategy to separate Attention and MLP to achieve an enhanced fit of exposure bias and reduce it. Based on this, we introduced FEB-Cache, a joint caching strategy that aligns with the non-exposed bias diffusion process (which gives us a higher performance cap) of caching Attention and MLP based on the frequency-guided cache table. Our approach combines a comprehensive understanding of the caching mechanism and offers a new perspective on leveraging caching to accelerate the diffusion process. Empirical results indicate that FEB-Cache optimizes model performance while concurrently facilitating acceleration. Code is available at https://github.com/aSleepyTree/EB-Cache.

Authors:Hanqing Guo, Xiuxiu Lin, Shiyu Zhao
Title: YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel-Level Motion Fusion
Abstract:
Vision-based drone-to-drone detection has attracted increasing attention due to its importance in numerous tasks such as vision-based swarming, aerial see-and-avoid, and malicious drone detection. However, existing methods often encounter failures when the background is complex or the target is tiny. This paper proposes a novel end-to-end framework that accurately identifies small drones in complex environments using motion guidance. It starts by creating a motion difference map to capture the motion characteristics of tiny drones. Next, this motion difference map is combined with an RGB image using a bimodal fusion module, allowing for adaptive feature learning of the drone. Finally, the fused feature map is processed through an enhanced backbone and detection head based on the YOLOv5 framework to achieve accurate detection results. To validate our method, we propose a new dataset, named ARD100, which comprises 100 videos (202,467 frames) covering various challenging conditions and has the smallest average object size compared with the existing drone detection datasets. Extensive experiments on the ARD100 and NPS-Drones datasets show that our proposed detector performs exceptionally well under challenging conditions and surpasses state-of-the-art algorithms across various metrics. We publicly release the codes and ARD100 dataset at https://github.com/Irisky123/YOLOMG.

Authors:Shuhe Wang, Xiaoya Li, Jiwei Li, Guoyin Wang, Xiaofei Sun, Bob Zhu, Han Qiu, Mo Yu, Shengjie Shen, Tianwei Zhang, Eduard Hovy
Title: FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Abstract:
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.

Authors:Spyros Kondylatos, Nikolaos Ioannis Bountos, Dimitrios Michail, Xiao Xiang Zhu, Gustau Camps-Valls, Ioannis Papoutsis
Title: On the Generalization of Representation Uncertainty in Earth Observation
Abstract:
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.

Authors:Xiaotian Han, Tianlong Chen, Kaixiong Zhou, Zhimeng Jiang, Zhangyang Wang, Xia Hu
Title: You Only Debias Once: Towards Flexible Accuracy-Fairness Trade-offs at Inference Time
Abstract:
Deep neural networks are prone to various bias issues, jeopardizing their applications for high-stake decision-making. Existing fairness methods typically offer a fixed accuracy-fairness trade-off, since the weight of the well-trained model is a fixed point (fairness-optimum) in the weight space. Nevertheless, more flexible accuracy-fairness trade-offs at inference time are practically desired since: 1) stakes of the same downstream task can vary for different individuals, and 2) different regions have diverse laws or regularization for fairness. If using the previous fairness methods, we have to train multiple models, each offering a specific level of accuracy-fairness trade-off. This is often computationally expensive, time-consuming, and difficult to deploy, making it less practical for real-world applications. To address this problem, we propose You Only Debias Once (YODO) to achieve in-situ flexible accuracy-fairness trade-offs at inference time, using a single model that trained only once. Instead of pursuing one individual fixed point (fairness-optimum) in the weight space, we aim to find a "line" in the weight space that connects the accuracy-optimum and fairness-optimum points using a single model. Points (models) on this line implement varying levels of accuracy-fairness trade-offs. At inference time, by manually selecting the specific position of the learned "line", our proposed method can achieve arbitrary accuracy-fairness trade-offs for different end-users and scenarios. Experimental results on tabular and image datasets show that YODO achieves flexible trade-offs between model accuracy and fairness, at ultra-low overheads. For example, if we need $100$ levels of trade-off on the \acse dataset, YODO takes $3.53$ seconds while training $100$ fixed models consumes $425$ seconds. The code is available at https://github.com/ahxt/yodo.

Authors:Sheng Luo, Yi Zhou, Tao Zhou
Title: Universal Incremental Learning: Mitigating Confusion from Inter- and Intra-task Distribution Randomness
Abstract:
Incremental learning (IL) aims to overcome catastrophic forgetting of previous tasks while learning new ones. Existing IL methods make strong assumptions that the incoming task type will either only increases new classes or domains (i.e. Class IL, Domain IL), or increase by a static scale in a class- and domain-agnostic manner (i.e. Versatile IL (VIL)), which greatly limit their applicability in the unpredictable and dynamic wild. In this work, we investigate $\textbf{Universal Incremental Learning (UIL)}$, where a model neither knows which new classes or domains will increase along sequential tasks, nor the scale of the increments within each task. This uncertainty prevents the model from confidently learning knowledge from all task distributions and symmetrically focusing on the diverse knowledge within each task distribution. Consequently, UIL presents a more general and realistic IL scenario, making the model face confusion arising from inter-task and intra-task distribution randomness. To $\textbf{Mi}$tigate both $\textbf{Co}$nfusion, we propose a simple yet effective framework for UIL, named $\textbf{MiCo}$. At the inter-task distribution level, we employ a multi-objective learning scheme to enforce accurate and deterministic predictions, and its effectiveness is further enhanced by a direction recalibration module that reduces conflicting gradients. Moreover, at the intra-task distribution level, we introduce a magnitude recalibration module to alleviate asymmetrical optimization towards imbalanced class distribution. Extensive experiments on three benchmarks demonstrate the effectiveness of our method, outperforming existing state-of-the-art methods in both the UIL scenario and the VIL scenario. Our code will be available at $\href{https://github.com/rolsheng/UIL}{here}$.

Authors:Dong-Hee Paek, Seung-Hyun Kong
Title: Availability-aware Sensor Fusion via Unified Canonical Space for 4D Radar, LiDAR, and Camera
Abstract:
Sensor fusion of camera, LiDAR, and 4-dimensional (4D) Radar has brought a significant performance improvement in autonomous driving (AD). However, there still exist fundamental challenges: deeply coupled fusion methods assume continuous sensor availability, making them vulnerable to sensor degradation and failure, whereas sensor-wise cross-attention fusion methods struggle with computational cost and unified feature representation. This paper presents availability-aware sensor fusion (ASF), a novel method that employs unified canonical projection (UCP) to enable consistency in all sensor features for fusion and cross-attention across sensors along patches (CASAP) to enhance robustness of sensor fusion against sensor degradation and failure. As a result, the proposed ASF shows a superior object detection performance to the existing state-of-the-art fusion methods under various weather and sensor degradation (or failure) conditions; Extensive experiments on the K-Radar dataset demonstrate that ASF achieves improvements of 9.7% in AP BEV (87.2%) and 20.1% in AP 3D (73.6%) in object detection at IoU=0.5, while requiring a low computational cost. The code will be available at https://github.com/kaist-avelab/K-Radar.

Authors:Mohammed Mahfoud, Ghait Boukachab, Michał Koziarski, Alex Hernandez-Garcia, Stefan Bauer, Yoshua Bengio, Nikolay Malkin
Title: Learning Decision Trees as Amortized Structure Inference
Abstract:
Building predictive models for tabular data presents fundamental challenges, notably in scaling consistently, i.e., more resources translating to better performance, and generalizing systematically beyond the training data distribution. Designing decision tree models remains especially challenging given the intractably large search space, and most existing methods rely on greedy heuristics, while deep learning inductive biases expect a temporal or spatial structure not naturally present in tabular data. We propose a hybrid amortized structure inference approach to learn predictive decision tree ensembles given data, formulating decision tree construction as a sequential planning problem. We train a deep reinforcement learning (GFlowNet) policy to solve this problem, yielding a generative model that samples decision trees from the Bayesian posterior. We show that our approach, DT-GFN, outperforms state-of-the-art decision tree and deep learning methods on standard classification benchmarks derived from real-world data, robustness to distribution shifts, and anomaly detection, all while yielding interpretable models with shorter description lengths. Samples from the trained DT-GFN model can be ensembled to construct a random forest, and we further show that the performance of scales consistently in ensemble size, yielding ensembles of predictors that continue to generalize systematically.

Authors:Jiahao Wang, Xiangyu Cao, Jiaru Zhong, Yuner Zhang, Haibao Yu, Lei He, Shaobing Xu
Title: Griffin: Aerial-Ground Cooperative Detection and Tracking Dataset and Benchmark
Abstract:
Despite significant advancements, autonomous driving systems continue to struggle with occluded objects and long-range detection due to the inherent limitations of single-perspective sensing. Aerial-ground cooperation offers a promising solution by integrating UAVs' aerial views with ground vehicles' local observations. However, progress in this emerging field has been hindered by the absence of public datasets and standardized evaluation benchmarks. To address this gap, this paper presents a comprehensive solution for aerial-ground cooperative 3D perception through three key contributions: (1) Griffin, a large-scale multi-modal dataset featuring over 200 dynamic scenes (30k+ frames) with varied UAV altitudes (20-60m), diverse weather conditions, and occlusion-aware 3D annotations, enhanced by CARLA-AirSim co-simulation for realistic UAV dynamics; (2) A unified benchmarking framework for aerial-ground cooperative detection and tracking tasks, including protocols for evaluating communication efficiency, latency tolerance, and altitude adaptability; (3) AGILE, an instance-level intermediate fusion baseline that dynamically aligns cross-view features through query-based interaction, achieving an advantageous balance between communication overhead and perception accuracy. Extensive experiments prove the effectiveness of aerial-ground cooperative perception and demonstrate the direction of further research. The dataset and codes are available at https://github.com/wang-jh18-SVM/Griffin.

Authors:Shining Wang, Yunlong Wang, Ruiqi Wu, Bingliang Jiao, Wenxuan Wang, Peng Wang
Title: SeCap: Self-Calibrating and Adaptive Prompts for Cross-view Person Re-Identification in Aerial-Ground Networks
Abstract:
When discussing the Aerial-Ground Person Re-identification (AGPReID) task, we face the main challenge of the significant appearance variations caused by different viewpoints, making identity matching difficult. To address this issue, previous methods attempt to reduce the differences between viewpoints by critical attributes and decoupling the viewpoints. While these methods can mitigate viewpoint differences to some extent, they still face two main issues: (1) difficulty in handling viewpoint diversity and (2) neglect of the contribution of local features. To effectively address these challenges, we design and implement the Self-Calibrating and Adaptive Prompt (SeCap) method for the AGPReID task. The core of this framework relies on the Prompt Re-calibration Module (PRM), which adaptively re-calibrates prompts based on the input. Combined with the Local Feature Refinement Module (LFRM), SeCap can extract view-invariant features from local features for AGPReID. Meanwhile, given the current scarcity of datasets in the AGPReID field, we further contribute two real-world Large-scale Aerial-Ground Person Re-Identification datasets, LAGPeR and G2APS-ReID. The former is collected and annotated by us independently, covering $4,231$ unique identities and containing $63,841$ high-quality images; the latter is reconstructed from the person search dataset G2APS. Through extensive experiments on AGPReID datasets, we demonstrate that SeCap is a feasible and effective solution for the AGPReID task. The datasets and source code available on https://github.com/wangshining681/SeCap-AGPReID.

Authors:Zenghao Guan, Yucan Zhou, Xiaoyan Gu
Title: Capture Global Feature Statistics for One-Shot Federated Learning
Abstract:
Traditional Federated Learning (FL) necessitates numerous rounds of communication between the server and clients, posing significant challenges including high communication costs, connection drop risks and susceptibility to privacy attacks. One-shot FL has become a compelling learning paradigm to overcome above drawbacks by enabling the training of a global server model via a single communication round. However, existing one-shot FL methods suffer from expensive computation cost on the server or clients and cannot deal with non-IID (Independent and Identically Distributed) data stably and effectively. To address these challenges, this paper proposes FedCGS, a novel Federated learning algorithm that Capture Global feature Statistics leveraging pre-trained models. With global feature statistics, we achieve training-free and heterogeneity-resistant one-shot FL. Furthermore, we extend its application to personalization scenario, where clients only need execute one extra communication round with server to download global statistics. Extensive experimental results demonstrate the effectiveness of our methods across diverse data heterogeneity settings. Code is available at https://github.com/Yuqin-G/FedCGS.

Authors:Xin Wen, Bingchen Zhao, Yilun Chen, Jiangmiao Pang, Xiaojuan Qi
Title: A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning
Abstract:
Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear. Through systematic evaluation, we find that while DINO and iBOT outperform MAE across visuomotor control and perception tasks, they struggle when trained on non-(single-)object-centric (NOC) data--a limitation strongly correlated with their diminished ability to learn object-centric representations. This investigation indicates that the ability to form object-centric representations from the non-object-centric robotics dataset is the key to success for PVMs. Motivated by this discovery, we designed SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck to reduce the number of prototypes to encourage the emergence of objectness as well as cross-view consistency regularization for encouraging multiview invariance. Our experiments encompass pre-training on object-centric, scene-centric, web-crawled, and ego-centric data. Across all settings, our approach learns transferrable representations and achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations. When scaled up with million-scale datasets, our method also demonstrates superior data efficiency and scalability. Our code and models are publicly available at https://github.com/CVMI-Lab/SlotMIM.

Authors:Shrutika Vishal Thengane, Marcel Bartholomeus Prasetyo, Yu Xiang Tan, Malika Meghjani
Title: MERLION: Marine ExploRation with Language guIded Online iNformative Visual Sampling and Enhancement
Abstract:
Autonomous and targeted underwater visual monitoring and exploration using Autonomous Underwater Vehicles (AUVs) can be a challenging task due to both online and offline constraints. The online constraints comprise limited onboard storage capacity and communication bandwidth to the surface, whereas the offline constraints entail the time and effort required for the selection of desired key frames from the video data. An example use case of targeted underwater visual monitoring is finding the most interesting visual frames of fish in a long sequence of an AUV's visual experience. This challenge of targeted informative sampling is further aggravated in murky waters with poor visibility. In this paper, we present MERLION, a novel framework that provides semantically aligned and visually enhanced summaries for murky underwater marine environment monitoring and exploration. Specifically, our framework integrates (a) an image-text model for semantically aligning the visual samples to the users' needs, (b) an image enhancement model for murky water visual data and (c) an informative sampler for summarizing the monitoring experience. We validate our proposed MERLION framework on real-world data with user studies and present qualitative and quantitative results using our evaluation metric and show improved results compared to the state-of-the-art approaches. We have open-sourced the code for MERLION at the following link https://github.com/MARVL-Lab/MERLION.git.

Authors:Junyan Lin, Feng Gap, Lin Qi, Junyu Dong, Qian Du, Xinbo Gao
Title: Dynamic Cross-Modal Feature Interaction Network for Hyperspectral and LiDAR Data Classification
Abstract:
Hyperspectral image (HSI) and LiDAR data joint classification is a challenging task. Existing multi-source remote sensing data classification methods often rely on human-designed frameworks for feature extraction, which heavily depend on expert knowledge. To address these limitations, we propose a novel Dynamic Cross-Modal Feature Interaction Network (DCMNet), the first framework leveraging a dynamic routing mechanism for HSI and LiDAR classification. Specifically, our approach introduces three feature interaction blocks: Bilinear Spatial Attention Block (BSAB), Bilinear Channel Attention Block (BCAB), and Integration Convolutional Block (ICB). These blocks are designed to effectively enhance spatial, spectral, and discriminative feature interactions. A multi-layer routing space with routing gates is designed to determine optimal computational paths, enabling data-dependent feature fusion. Additionally, bilinear attention mechanisms are employed to enhance feature interactions in spatial and channel representations. Extensive experiments on three public HSI and LiDAR datasets demonstrate the superiority of DCMNet over state-of-the-art methods. Our code will be available at https://github.com/oucailab/DCMNet.

Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, Linfeng Zhang
Title: From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers
Abstract:
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99$\times$ on FLUX and 5.00$\times$ on HunyuanVideo without additional training. On DiT, it achieves $3.41$ lower FID compared with previous SOTA at $4.53$$\times$ acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer

Authors:Chengzhi Lin, Chuyuan Wang, Annan Xie, Wuhong Wang, Ziye Zhang, Canguang Ruan, Yuancai Huang, Yongqi Liu
Title: AlignPxtr: Aligning Predicted Behavior Distributions for Bias-Free Video Recommendations
Abstract:
In video recommendation systems, user behaviors such as watch time, likes, and follows are commonly used to infer user interest. However, these behaviors are influenced by various biases, including duration bias, demographic biases, and content category biases, which obscure true user preferences. In this paper, we hypothesize that biases and user interest are independent of each other. Based on this assumption, we propose a novel method that aligns predicted behavior distributions across different bias conditions using quantile mapping, theoretically guaranteeing zero mutual information between bias variables and the true user interest. By explicitly modeling the conditional distributions of user behaviors under different biases and mapping these behaviors to quantiles, we effectively decouple user interest from the confounding effects of various biases. Our approach uniquely handles both continuous signals (e.g., watch time) and discrete signals (e.g., likes, comments), while simultaneously addressing multiple bias dimensions. Additionally, we introduce a computationally efficient mean alignment alternative technique for practical real-time inference in large-scale systems. We validate our method through online A/B testing on two major video platforms: Kuaishou Lite and Kuaishou. The results demonstrate significant improvements in user engagement and retention, with \textbf{cumulative lifts of 0.267\% and 0.115\% in active days, and 1.102\% and 0.131\% in average app usage time}, respectively. The results demonstrate that our approach consistently achieves significant improvements in long-term user retention and substantial gains in average app usage time across different platforms. Our core code will be publised at https://github.com/justopit/CQE.

Authors:Chikai Shang, Mengke Li, Yiqun Zhang, Zhen Chen, Jinlin Wu, Fangqing Gu, Yang Lu, Yiu-ming Cheung
Title: Iterative Prompt Relocation for Distribution-Adaptive Visual Prompt Tuning
Abstract:
Visual prompt tuning (VPT) provides an efficient and effective solution for adapting pre-trained models to various downstream tasks by incorporating learnable prompts. However, most prior art indiscriminately applies a fixed prompt distribution across different tasks, neglecting the importance of each block differing depending on the task. In this paper, we investigate adaptive distribution optimization (ADO) by addressing two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through in-depth analysis, we provide an affirmative answer that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution building upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy for ADO derived from this formulation, comprising two optimization steps: identifying and pruning idle prompts, followed by determining the optimal blocks for their relocation. By iteratively performing prompt relocation and VPT, our proposal adaptively learns the optimal prompt distribution, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms state-of-the-art VPT methods, e.g., PRO-VPT surpasses VPT by 1.6% average accuracy, leading prompt-based methods to state-of-the-art performance on the VTAB-1k benchmark. The code is available at https://github.com/ckshang/PRO-VPT.

Authors:Chikai Shang, Mengke Li, Yiqun Zhang, Zhen Chen, Jinlin Wu, Fangqing Gu, Yang Lu, Yiu-ming Cheung
Title: PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation
Abstract:
Visual prompt tuning (VPT), i.e., fine-tuning some lightweight prompt tokens, provides an efficient and effective approach for adapting pre-trained models to various downstream tasks. However, most prior art indiscriminately uses a fixed prompt distribution across different tasks, neglecting the importance of each block varying depending on the task. In this paper, we introduce adaptive distribution optimization (ADO) by tackling two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through empirical analysis, we first confirm that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution built upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy derived from this formulation, comprising two steps: pruning idle prompts from prompt-saturated blocks, followed by allocating these prompts to the most prompt-needed blocks. By iteratively performing prompt relocation and VPT, our proposal can adaptively learn the optimal prompt distribution in a nested optimization-based manner, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms advanced VPT methods, e.g., PRO-VPT surpasses VPT by 1.6 pp and 2.0 pp average accuracy, leading prompt-based methods to state-of-the-art performance on VTAB-1k and FGVC benchmarks. The code is available at https://github.com/ckshang/PRO-VPT.

Authors:Xupeng Xie, Ruoyu Geng, Jun Ma, Boyu Zhou
Title: AKF-LIO: LiDAR-Inertial Odometry with Gaussian Map by Adaptive Kalman Filter
Abstract:
Existing LiDAR-Inertial Odometry (LIO) systems typically use sensor-specific or environment-dependent measurement covariances during state estimation, leading to laborious parameter tuning and suboptimal performance in challenging conditions (e.g., sensor degeneracy and noisy observations). Therefore, we propose an Adaptive Kalman Filter (AKF) framework that dynamically estimates time-varying noise covariances of LiDAR and Inertial Measurement Unit (IMU) measurements, enabling context-aware confidence weighting between sensors. During LiDAR degeneracy, the system prioritizes IMU data while suppressing contributions from unreliable inputs like moving objects or noisy point clouds. Furthermore, a compact Gaussian-based map representation is introduced to model environmental planarity and spatial noise. A correlated registration strategy ensures accurate plane normal estimation via pseudo-merge, even in unstructured environments like forests. Extensive experiments validate the robustness of the proposed system across diverse environments, including dynamic scenes and geometrically degraded scenarios. Our method achieves reliable localization results across all MARS-LVIG sequences and ranks 8th on the KITTI Odometry Benchmark. The code will be released at https://github.com/xpxie/AKF-LIO.git.

Authors:Mengting Ai, Tianxin Wei, Yifan Chen, Zhichen Zeng, Ritchie Zhao, Girish Varatkar, Bita Darvish Rouhani, Xianfeng Tang, Hanghang Tong, Jingrui He
Title: ResMoE: Space-efficient Compression of Mixture of Experts LLMs via Residual Restoration
Abstract:
Mixture-of-Experts (MoE) Transformer, the backbone architecture of multiple phenomenal language models, leverages sparsity by activating only a fraction of model parameters for each input token. The sparse structure, while allowing constant time costs, results in space inefficiency: we still need to load all the model parameters during inference. We introduce ResMoE, an innovative MoE approximation framework that utilizes Wasserstein barycenter to extract a common expert (barycenter expert) and approximate the residuals between this barycenter expert and the original ones. ResMoE enhances the space efficiency for inference of large-scale MoE Transformers in a one-shot and data-agnostic manner without retraining while maintaining minimal accuracy loss, thereby paving the way for broader accessibility to large language models. We demonstrate the effectiveness of ResMoE through extensive experiments on Switch Transformer, Mixtral, and DeepSeekMoE models. The results show that ResMoE can reduce the number of parameters in an expert by up to 75% while maintaining comparable performance. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/ResMoE.

Authors:Ta Duc Huy, Sen Kim Tran, Phan Nguyen, Nguyen Hoang Tran, Tran Bao Sam, Anton van den Hengel, Zhibin Liao, Johan W. Verjans, Minh-Son To, Vu Minh Hieu Phan
Title: Interactive Medical Image Analysis with Concept-based Similarity Reasoning
Abstract:
The ability to interpret and intervene model decisions is important for the adoption of computer-aided diagnosis methods in clinical workflows. Recent concept-based methods link the model predictions with interpretable concepts and modify their activation scores to interact with the model. However, these concepts are at the image level, which hinders the model from pinpointing the exact patches the concepts are activated. Alternatively, prototype-based methods learn representations from training image patches and compare these with test image patches, using the similarity scores for final class prediction. However, interpreting the underlying concepts of these patches can be challenging and often necessitates post-hoc guesswork. To address this issue, this paper introduces the novel Concept-based Similarity Reasoning network (CSR), which offers (i) patch-level prototype with intrinsic concept interpretation, and (ii) spatial interactivity. First, the proposed CSR provides localized explanation by grounding prototypes of each concept on image regions. Second, our model introduces novel spatial-level interaction, allowing doctors to engage directly with specific image areas, making it an intuitive and transparent tool for medical imaging. CSR improves upon prior state-of-the-art interpretable methods by up to 4.5\% across three biomedical datasets. Our code is released at https://github.com/tadeephuy/InteractCSR.

Authors:Junhao Zhang, Richong Zhang, Fanshuang Kong, Ziyang Miao, Yanhan Ye, Yaowei Zheng
Title: Lost-in-the-Middle in Long-Text Generation: Synthetic Dataset, Evaluation Framework, and Mitigation
Abstract:
Existing long-text generation methods primarily concentrate on producing lengthy texts from short inputs, neglecting the long-input and long-output tasks. Such tasks have numerous practical applications while lacking available benchmarks. Moreover, as the input grows in length, existing methods inevitably encounter the "lost-in-the-middle" phenomenon. In this paper, we first introduce a Long Input and Output Benchmark (LongInOutBench), including a synthetic dataset and a comprehensive evaluation framework, addressing the challenge of the missing benchmark. We then develop the Retrieval-Augmented Long-Text Writer (RAL-Writer), which retrieves and restates important yet overlooked content, mitigating the "lost-in-the-middle" issue by constructing explicit prompts. We finally employ the proposed LongInOutBench to evaluate our RAL-Writer against comparable baselines, and the results demonstrate the effectiveness of our approach. Our code has been released at https://github.com/OnlyAR/RAL-Writer.

Authors:Wanjing Huang, Tongjie Pan, Yalan Ye
Title: Graphormer-Guided Task Planning: Beyond Static Rules with LLM Safety Perception
Abstract:
Recent advancements in large language models (LLMs) have expanded their role in robotic task planning. However, while LLMs have been explored for generating feasible task sequences, their ability to ensure safe task execution remains underdeveloped. Existing methods struggle with structured risk perception, making them inadequate for safety-critical applications where low-latency hazard adaptation is required. To address this limitation, we propose a Graphormer-enhanced risk-aware task planning framework that combines LLM-based decision-making with structured safety modeling. Our approach constructs a dynamic spatio-semantic safety graph, capturing spatial and contextual risk factors to enable online hazard detection and adaptive task refinement. Unlike existing methods that rely on predefined safety constraints, our framework introduces a context-aware risk perception module that continuously refines safety predictions based on real-time task execution. This enables a more flexible and scalable approach to robotic planning, allowing for adaptive safety compliance beyond static rules. To validate our framework, we conduct experiments in the AI2-THOR environment. The experiments results validates improvements in risk detection accuracy, rising safety notice, and task adaptability of our framework in continuous environments compared to static rule-based and LLM-only baselines. Our project is available at https://github.com/hwj20/GGTP

Authors:Sungsik Kim, Janghyun Baek, Jinkyu Kim, Jaekoo Lee
Title: GUIDE-CoT: Goal-driven and User-Informed Dynamic Estimation for Pedestrian Trajectory using Chain-of-Thought
Abstract:
While Large Language Models (LLMs) have recently shown impressive results in reasoning tasks, their application to pedestrian trajectory prediction remains challenging due to two key limitations: insufficient use of visual information and the difficulty of predicting entire trajectories. To address these challenges, we propose Goal-driven and User-Informed Dynamic Estimation for pedestrian trajectory using Chain-of-Thought (GUIDE-CoT). Our approach integrates two innovative modules: (1) a goal-oriented visual prompt, which enhances goal prediction accuracy combining visual prompts with a pretrained visual encoder, and (2) a chain-of-thought (CoT) LLM for trajectory generation, which generates realistic trajectories toward the predicted goal. Moreover, our method introduces controllable trajectory generation, allowing for flexible and user-guided modifications to the predicted paths. Through extensive experiments on the ETH/UCY benchmark datasets, our method achieves state-of-the-art performance, delivering both high accuracy and greater adaptability in pedestrian trajectory prediction. Our code is publicly available at https://github.com/ai-kmu/GUIDE-CoT.

Authors:Siyu Li, Yihong Cao, Hao Shi, Yongsheng Zang, Xuan He, Kailun Yang, Zhiyong Li
Title: HierDAMap: Towards Universal Domain Adaptive BEV Mapping via Hierarchical Perspective Priors
Abstract:
The exploration of Bird's-Eye View (BEV) mapping technology has driven significant innovation in visual perception technology for autonomous driving. BEV mapping models need to be applied to the unlabeled real world, making the study of unsupervised domain adaptation models an essential path. However, research on unsupervised domain adaptation for BEV mapping remains limited and cannot perfectly accommodate all BEV mapping tasks. To address this gap, this paper proposes HierDAMap, a universal and holistic BEV domain adaptation framework with hierarchical perspective priors. Unlike existing research that solely focuses on image-level learning using prior knowledge, this paper explores the guiding role of perspective prior knowledge across three distinct levels: global, sparse, and instance levels. With these priors, HierDA consists of three essential components, including Semantic-Guided Pseudo Supervision (SGPS), Dynamic-Aware Coherence Learning (DACL), and Cross-Domain Frustum Mixing (CDFM). SGPS constrains the cross-domain consistency of perspective feature distribution through pseudo labels generated by vision foundation models in 2D space. To mitigate feature distribution discrepancies caused by spatial variations, DACL employs uncertainty-aware predicted depth as an intermediary to derive dynamic BEV labels from perspective pseudo-labels, thereby constraining the coarse BEV features derived from corresponding perspective features. CDFM, on the other hand, leverages perspective masks of view frustum to mix multi-view perspective images from both domains, which guides cross-domain view transformation and encoding learning through mixed BEV labels. The proposed method is verified on multiple BEV mapping tasks, such as BEV semantic segmentation, high-definition semantic, and vectorized mapping. The source code will be made publicly available at https://github.com/lynn-yu/HierDAMap.

Authors:Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, Shaohui Lin
Title: Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models
Abstract:
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .

Authors:Hantao Zhang, Yuhe Liu, Jiancheng Yang, Weidong Guo, Xinyuan Wang, Pascal Fua
Title: DiffAtlas: GenAI-fying Atlas Segmentation via Image-Mask Diffusion
Abstract:
Accurate medical image segmentation is crucial for precise anatomical delineation. Deep learning models like U-Net have shown great success but depend heavily on large datasets and struggle with domain shifts, complex structures, and limited training samples. Recent studies have explored diffusion models for segmentation by iteratively refining masks. However, these methods still retain the conventional image-to-mask mapping, making them highly sensitive to input data, which hampers stability and generalization. In contrast, we introduce DiffAtlas, a novel generative framework that models both images and masks through diffusion during training, effectively ``GenAI-fying'' atlas-based segmentation. During testing, the model is guided to generate a specific target image-mask pair, from which the corresponding mask is obtained. DiffAtlas retains the robustness of the atlas paradigm while overcoming its scalability and domain-specific limitations. Extensive experiments on CT and MRI across same-domain, cross-modality, varying-domain, and different data-scale settings using the MMWHS and TotalSegmentator datasets demonstrate that our approach outperforms existing methods, particularly in limited-data and zero-shot modality segmentation. Code is available at https://github.com/M3DV/DiffAtlas.

Authors:Ming Zhang, Yuhui Wang, Yujiong Shen, Tingyi Yang, Changhao Jiang, Yilong Wu, Shihan Dou, Qinhao Chen, Zhiheng Xi, Zhihao Zhang, Yi Dong, Zhen Wang, Zhihui Fei, Mingyang Wan, Tao Liang, Guojun Ma, Qi Zhang, Tao Gui, Xuanjing Huang
Title: PFDial: A Structured Dialogue Instruction Fine-tuning Method Based on UML Flowcharts
Abstract:
Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct Process Flow Dialogue (PFDial) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models' performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.

Authors:Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, Yueting Zhuang
Title: InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models
Abstract:
Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.

Authors:Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, Yueting Zhuang
Title: InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models
Abstract:
Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.

Authors:Hantao Zhou, Rui Yang, Longxiang Tang, Guanyi Qin, Runze Hu, Xiu Li
Title: Gamma: Toward Generic Image Assessment with Mixture of Assessment Experts
Abstract:
Image assessment aims to evaluate the quality and aesthetics of images and has been applied across various scenarios, such as natural and AIGC scenes. Existing methods mostly address these sub-tasks or scenes individually. While some works attempt to develop unified image assessment models, they have struggled to achieve satisfactory performance or cover a broad spectrum of assessment scenarios. In this paper, we present \textbf{Gamma}, a \textbf{G}eneric im\textbf{A}ge assess\textbf{M}ent model using \textbf{M}ixture of \textbf{A}ssessment Experts, which can effectively assess images from diverse scenes through mixed-dataset training. Achieving unified training in image assessment presents significant challenges due to annotation biases across different datasets. To address this issue, we first propose a Mixture of Assessment Experts (MoAE) module, which employs shared and adaptive experts to dynamically learn common and specific knowledge for different datasets, respectively. In addition, we introduce a Scene-based Differential Prompt (SDP) strategy, which uses scene-specific prompts to provide prior knowledge and guidance during the learning process, further boosting adaptation for various scenes. Our Gamma model is trained and evaluated on 12 datasets spanning 6 image assessment scenarios. Extensive experiments show that our unified Gamma outperforms other state-of-the-art mixed-training methods by significant margins while covering more scenes. Codes are available at https://github.com/zht8506/Gamma.

Authors:AgiBot-World-Contributors, Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong He, Xuan Hu, Xu Huang, Shu Jiang, Yuxin Jiang, Cheng Jing, Hongyang Li, Jialu Li, Chiming Liu, Yi Liu, Yuxiang Lu, Jianlan Luo, Ping Luo, Yao Mu, Yuehan Niu, Yixuan Pan, Jiangmiao Pang, Yu Qiao, Guanghui Ren, Cheng Ruan, Jiaqi Shan, Yongjian Shen, Chengshi Shi, Mingkang Shi, Modi Shi, Chonghao Sima, Jianheng Song, Huijie Wang, Wenhao Wang, Dafeng Wei, Chengen Xie, Guo Xu, Junchi Yan, Cunbiao Yang, Lei Yang, Shukai Yang, Maoqing Yao, Jia Zeng, Chi Zhang, Qinglin Zhang, Bin Zhao, Chengyue Zhao, Jiaqi Zhao, Jianchao Zhu
Title: AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems
Abstract:
We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.

Authors:Wenxin Ma, Xu Zhang, Qingsong Yao, Fenghe Tang, Chenxu Wu, Yingtai Li, Rui Yan, Zihang Jiang, S. Kevin Zhou
Title: AA-CLIP: Enhancing Zero-shot Anomaly Detection via Anomaly-Aware CLIP
Abstract:
Anomaly detection (AD) identifies outliers for applications like defect and lesion detection. While CLIP shows promise for zero-shot AD tasks due to its strong generalization capabilities, its inherent Anomaly-Unawareness leads to limited discrimination between normal and abnormal features. To address this problem, we propose Anomaly-Aware CLIP (AA-CLIP), which enhances CLIP's anomaly discrimination ability in both text and visual spaces while preserving its generalization capability. AA-CLIP is achieved through a straightforward yet effective two-stage approach: it first creates anomaly-aware text anchors to differentiate normal and abnormal semantics clearly, then aligns patch-level visual features with these anchors for precise anomaly localization. This two-stage strategy, with the help of residual adapters, gradually adapts CLIP in a controlled manner, achieving effective AD while maintaining CLIP's class knowledge. Extensive experiments validate AA-CLIP as a resource-efficient solution for zero-shot AD tasks, achieving state-of-the-art results in industrial and medical applications. The code is available at https://github.com/Mwxinnn/AA-CLIP.

Authors:Yu Zhou, Bingyan Liu
Title: BTFL: A Bayesian-based Test-Time Generalization Method for Internal and External Data Distributions in Federated learning
Abstract:
Federated Learning (FL) enables multiple clients to collaboratively develop a global model while maintaining data privacy. However, online FL deployment faces challenges due to distribution shifts and evolving test samples. Personalized Federated Learning (PFL) tailors the global model to individual client distributions, but struggles with Out-Of-Distribution (OOD) samples during testing, leading to performance degradation. In real-world scenarios, balancing personalization and generalization during online testing is crucial and existing methods primarily focus on training-phase generalization. To address the test-time trade-off, we introduce a new scenario: Test-time Generalization for Internal and External Distributions in Federated Learning (TGFL), which evaluates adaptability under Internal Distribution (IND) and External Distribution (EXD). We propose BTFL, a Bayesian-based test-time generalization method for TGFL, which balances generalization and personalization at the sample level during testing. BTFL employs a two-head architecture to store local and global knowledge, interpolating predictions via a dual-Bayesian framework that considers both historical test data and current sample characteristics with theoretical guarantee and faster speed. Our experiments demonstrate that BTFL achieves improved performance across various datasets and models with less time cost. The source codes are made publicly available at https://github.com/ZhouYuCS/BTFL .

Authors:Jinmyeong An, Sangwon Ryu, Heejin Do, Yunsu Kim, Jungseul Ok, Gary Geunbae Lee
Title: Revisiting Early Detection of Sexual Predators via Turn-level Optimization
Abstract:
Online grooming is a severe social threat where sexual predators gradually entrap child victims with subtle and gradual manipulation. Therefore, timely intervention for online grooming is critical for proactive protection. However, previous methods fail to determine the optimal intervention points (i.e., jump to conclusions) as they rely on chat-level risk labels by causing weak supervision of risky utterances. For timely detection, we propose speed control reinforcement learning (SCoRL) (The code and supplementary materials are available at https://github.com/jinmyeongAN/SCoRL), incorporating a practical strategy derived from luring communication theory (LCT). To capture the predator's turn-level entrapment, we use a turn-level risk label based on the LCT. Then, we design a novel speed control reward function that balances the trade-off between speed and accuracy based on turn-level risk label; thus, SCoRL can identify the optimal intervention moment. In addition, we introduce a turn-level metric for precise evaluation, identifying limitations in previously used chat-level metrics. Experimental results show that SCoRL effectively preempted online grooming, offering a more proactive and timely solution. Further analysis reveals that our method enhances performance while intuitively identifying optimal early intervention points.

Authors:Hasan Abed Al Kader Hammoud, Bernard Ghanem
Title: DiffCLIP: Differential Attention Meets CLIP
Abstract:
We propose DiffCLIP, a novel vision-language model that extends the differential attention mechanism to CLIP architectures. Differential attention was originally developed for large language models to amplify relevant context while canceling out noisy information. In this work, we integrate this mechanism into CLIP's dual encoder (image and text) framework. With minimal additional parameters, DiffCLIP achieves superior performance on image-text understanding tasks. Across zero-shot classification, retrieval, and robustness benchmarks, DiffCLIP consistently outperforms baseline CLIP models. Notably, these gains come with negligible computational overhead, demonstrating that differential attention can significantly enhance multi-modal representations without sacrificing efficiency. Code can be found at https://github.com/hammoudhasan/DiffCLIP.

Authors:Chaocan Xue, Bineng Zhong, Qihua Liang, Yaozong Zheng, Ning Li, Yuanliang Xue, Shuxiang Song
Title: Similarity-Guided Layer-Adaptive Vision Transformer for UAV Tracking
Abstract:
Vision transformers (ViTs) have emerged as a popular backbone for visual tracking. However, complete ViT architectures are too cumbersome to deploy for unmanned aerial vehicle (UAV) tracking which extremely emphasizes efficiency. In this study, we discover that many layers within lightweight ViT-based trackers tend to learn relatively redundant and repetitive target representations. Based on this observation, we propose a similarity-guided layer adaptation approach to optimize the structure of ViTs. Our approach dynamically disables a large number of representation-similar layers and selectively retains only a single optimal layer among them, aiming to achieve a better accuracy-speed trade-off. By incorporating this approach into existing ViTs, we tailor previously complete ViT architectures into an efficient similarity-guided layer-adaptive framework, namely SGLATrack, for real-time UAV tracking. Extensive experiments on six tracking benchmarks verify the effectiveness of the proposed approach, and show that our SGLATrack achieves a state-of-the-art real-time speed while maintaining competitive tracking precision. Codes and models are available at https://github.com/GXNU-ZhongLab/SGLATrack.

Authors:Xiaohai Li, Bineng Zhong, Qihua Liang, Zhiyi Mo, Jian Nong, Shuxiang Song
Title: Dynamic Updates for Language Adaptation in Visual-Language Tracking
Abstract:
The consistency between the semantic information provided by the multi-modal reference and the tracked object is crucial for visual-language (VL) tracking. However, existing VL tracking frameworks rely on static multi-modal references to locate dynamic objects, which can lead to semantic discrepancies and reduce the robustness of the tracker. To address this issue, we propose a novel vision-language tracking framework, named DUTrack, which captures the latest state of the target by dynamically updating multi-modal references to maintain consistency. Specifically, we introduce a Dynamic Language Update Module, which leverages a large language model to generate dynamic language descriptions for the object based on visual features and object category information. Then, we design a Dynamic Template Capture Module, which captures the regions in the image that highly match the dynamic language descriptions. Furthermore, to ensure the efficiency of description generation, we design an update strategy that assesses changes in target displacement, scale, and other factors to decide on updates. Finally, the dynamic template and language descriptions that record the latest state of the target are used to update the multi-modal references, providing more accurate reference information for subsequent inference and enhancing the robustness of the tracker. DUTrack achieves new state-of-the-art performance on four mainstream vision-language and two vision-only tracking benchmarks, including LaSOT, LaSOT$_{\rm{ext}}$, TNL2K, OTB99-Lang, GOT-10K, and UAV123. Code and models are available at https://github.com/GXNU-ZhongLab/DUTrack.

Authors:Ruchi Bhatt, Shreya Bansal, Amanpreet Chander, Rupinder Kaur, Malya Singh, Mohan Kankanhalli, Abdulmotaleb El Saddik, Mukesh Kumar Saini
Title: GroMo: Plant Growth Modeling with Multiview Images
Abstract:
Understanding plant growth dynamics is essential for applications in agriculture and plant phenotyping. We present the Growth Modelling (GroMo) challenge, which is designed for two primary tasks: (1) plant age prediction and (2) leaf count estimation, both essential for crop monitoring and precision agriculture. For this challenge, we introduce GroMo25, a dataset with images of four crops: radish, okra, wheat, and mustard. Each crop consists of multiple plants (p1, p2, ..., pn) captured over different days (d1, d2, ..., dm) and categorized into five levels (L1, L2, L3, L4, L5). Each plant is captured from 24 different angles with a 15-degree gap between images. Participants are required to perform both tasks for all four crops with these multiview images. We proposed a Multiview Vision Transformer (MVVT) model for the GroMo challenge and evaluated the crop-wise performance on GroMo25. MVVT reports an average MAE of 7.74 for age prediction and an MAE of 5.52 for leaf count. The GroMo Challenge aims to advance plant phenotyping research by encouraging innovative solutions for tracking and predicting plant growth. The GitHub repository is publicly available at https://github.com/mriglab/GroMo-Plant-Growth-Modeling-with-Multiview-Images.

Authors:Yingfeng Luo, Tong Zheng, Yongyu Mu, Bei Li, Qinghong Zhang, Yongqi Gao, Ziqiang Xu, Peinan Feng, Xiaoqian Liu, Tong Xiao, Jingbo Zhu
Title: Beyond Decoder-only: Large Language Models Can be Good Encoders for Machine Translation
Abstract:
The field of neural machine translation (NMT) has changed with the advent of large language models (LLMs). Much of the recent emphasis in natural language processing (NLP) has been on modeling machine translation and many other problems using a single pre-trained Transformer decoder, while encoder-decoder architectures, which were the standard in earlier NMT models, have received relatively less attention. In this paper, we explore translation models that are universal, efficient, and easy to optimize, by marrying the world of LLMs with the world of NMT. We apply LLMs to NMT encoding and leave the NMT decoder unchanged. We also develop methods for adapting LLMs to work better with the NMT decoder. Furthermore, we construct a new dataset involving multiple tasks to assess how well the machine translation system generalizes across various tasks. Evaluations on the WMT and our datasets show that results using our method match or surpass a range of baselines in terms of translation quality, but achieve $2.4 \sim 6.5 \times$ inference speedups and a $75\%$ reduction in the memory footprint of the KV cache. It also demonstrates strong generalization across a variety of translation-related tasks.

Authors:Yixin Yang, Yang Zhou, Hui Huang
Title: Introducing Unbiased Depth into 2D Gaussian Splatting for High-accuracy Surface Reconstruction
Abstract:
Recently, 2D Gaussian Splatting (2DGS) has demonstrated superior geometry reconstruction quality than the popular 3DGS by using 2D surfels to approximate thin surfaces. However, it falls short when dealing with glossy surfaces, resulting in visible holes in these areas. We find that the reflection discontinuity causes the issue. To fit the jump from diffuse to specular reflection at different viewing angles, depth bias is introduced in the optimized Gaussian primitives. To address that, we first replace the depth distortion loss in 2DGS with a novel depth convergence loss, which imposes a strong constraint on depth continuity. Then, we rectify the depth criterion in determining the actual surface, which fully accounts for all the intersecting Gaussians along the ray. Qualitative and quantitative evaluations across various datasets reveal that our method significantly improves reconstruction quality, with more complete and accurate surfaces than 2DGS. Code is available at https://github.com/XiaoXinyyx/Unbiased_Surfel.

Authors:Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Xinyan Wen, Jitao Sang
Title: Agent models: Internalizing Chain-of-Action Generation into Reasoning models
Abstract:
Traditional agentic workflows rely on external prompts to manage interactions with tools and the environment, which limits the autonomy of reasoning models. We position \emph{Large Agent Models (LAMs)} that internalize the generation of \emph{Chain-of-Action (CoA)}, enabling the model to autonomously decide when and how to use external tools. Our proposed AutoCoA framework combines supervised fine-tuning (SFT) and reinforcement learning (RL), allowing the model to seamlessly switch between reasoning and action while efficiently managing environment interactions. Main components include step-level action triggering, trajectory-level CoA optimization, and an internal world model to reduce real-environment interaction costs. Evaluations on open-domain QA tasks demonstrate that AutoCoA-trained agent models significantly outperform ReAct-based workflows in task completion, especially in tasks that require long-term reasoning and multi-step actions. Code and dataset are available at https://github.com/ADaM-BJTU/AutoCoA

Authors:Qiyuan He, Angela Yao
Title: Conceptrol: Concept Control of Zero-shot Personalized Image Generation
Abstract:
Personalized image generation with text-to-image diffusion models generates unseen images based on reference image content. Zero-shot adapter methods such as IP-Adapter and OminiControl are especially interesting because they do not require test-time fine-tuning. However, they struggle to balance preserving personalized content and adherence to the text prompt. We identify a critical design flaw resulting in this performance gap: current adapters inadequately integrate personalization images with the textual descriptions. The generated images, therefore, replicate the personalized content rather than adhere to the text prompt instructions. Yet the base text-to-image has strong conceptual understanding capabilities that can be leveraged. We propose Conceptrol, a simple yet effective framework that enhances zero-shot adapters without adding computational overhead. Conceptrol constrains the attention of visual specification with a textual concept mask that improves subject-driven generation capabilities. It achieves as much as 89% improvement on personalization benchmarks over the vanilla IP-Adapter and can even outperform fine-tuning approaches such as Dreambooth LoRA. The source code is available at https://github.com/QY-H00/Conceptrol.

Authors:Jiangdong Cai, Haotian Jiang, Zhenrong Shen, Yonghao Li, Honglin Xiong, Lichi Zhang, Qian Wang
Title: LSA: Latent Style Augmentation Towards Stain-Agnostic Cervical Cancer Screening
Abstract:
The deployment of computer-aided diagnosis systems for cervical cancer screening using whole slide images (WSIs) faces critical challenges due to domain shifts caused by staining variations across different scanners and imaging environments. While existing stain augmentation methods improve patch-level robustness, they fail to scale to WSIs due to two key limitations: (1) inconsistent stain patterns when extending patch operations to gigapixel slides, and (2) prohibitive computational/storage costs from offline processing of augmented WSIs.To address this, we propose Latent Style Augmentation (LSA), a framework that performs efficient, online stain augmentation directly on WSI-level latent features. We first introduce WSAug, a WSI-level stain augmentation method ensuring consistent stain across patches within a WSI. Using offline-augmented WSIs by WSAug, we design and train Stain Transformer, which can simulate targeted style in the latent space, efficiently enhancing the robustness of the WSI-level classifier. We validate our method on a multi-scanner WSI dataset for cervical cancer diagnosis. Despite being trained on data from a single scanner, our approach achieves significant performance improvements on out-of-distribution data from other scanners. Code will be available at https://github.com/caijd2000/LSA.

Authors:Junyi Wu, Zhiteng Li, Zheng Hui, Yulun Zhang, Linghe Kong, Xiaokang Yang
Title: QuantCache: Adaptive Importance-Guided Quantization with Hierarchical Latent and Layer Caching for Video Generation
Abstract:
Recently, Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation, surpassing U-Net-based models in terms of performance. However, the enhanced capabilities of DiTs come with significant drawbacks, including increased computational and memory costs, which hinder their deployment on resource-constrained devices. Current acceleration techniques, such as quantization and cache mechanism, offer limited speedup and are often applied in isolation, failing to fully address the complexities of DiT architectures. In this paper, we propose QuantCache, a novel training-free inference acceleration framework that jointly optimizes hierarchical latent caching, adaptive importance-guided quantization, and structural redundancy-aware pruning. QuantCache achieves an end-to-end latency speedup of 6.72$\times$ on Open-Sora with minimal loss in generation quality. Extensive experiments across multiple video generation benchmarks demonstrate the effectiveness of our method, setting a new standard for efficient DiT inference. The code and models will be available at https://github.com/JunyiWuCode/QuantCache.

Authors:Jianwen Sun, Yukang Feng, Chuanhao Li, Fanrui Zhang, Zizhen Li, Jiaxin Ai, Sizhuo Zhou, Yu Dai, Shenglin Zhang, Kaipeng Zhang
Title: ARMOR: Empowering Multimodal Understanding Model with Interleaved Multimodal Generation Capability
Abstract:
Unified multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate'' algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://github.com/finyorko/armor.

Authors:Xiaoyang Liu, Yuquan Wang, Zheng Chen, Jiezhang Cao, He Zhang, Yulun Zhang, Xiaokang Yang
Title: One-Step Diffusion Model for Image Motion-Deblurring
Abstract:
Currently, methods for single-image deblurring based on CNNs and transformers have demonstrated promising performance. However, these methods often suffer from perceptual limitations, poor generalization ability, and struggle with heavy or complex blur. While diffusion-based methods can partially address these shortcomings, their multi-step denoising process limits their practical usage. In this paper, we conduct an in-depth exploration of diffusion models in deblurring and propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step, significantly improving inference efficiency while maintaining high fidelity. To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration. Additionally, we construct a high-quality synthetic deblurring dataset to mitigate perceptual collapse and design a dynamic dual-adapter (DDA) to enhance perceptual quality while preserving fidelity. Extensive experiments demonstrate that our method achieves strong performance on both full and no-reference metrics. Our code and pre-trained model will be publicly available at https://github.com/xyLiu339/OSDD.

Authors:Chen-Lin Zhang, Lin Sui, Shuming Liu, Fangzhou Mu, Zhangcheng Wang, Bernard Ghanem
Title: TimeLoc: A Unified End-to-End Framework for Precise Timestamp Localization in Long Videos
Abstract:
Temporal localization in untrimmed videos, which aims to identify specific timestamps, is crucial for video understanding but remains challenging. This task encompasses several subtasks, including temporal action localization, temporal video grounding, moment retrieval, and generic event boundary detection. Existing methods in each subfield are typically designed for specific tasks and lack generalizability across domains. In this paper, we propose TimeLoc, a unified end-to-end framework for timestamp localization that can handle multiple tasks. First, our approach employs a simple yet effective one-stage localization model that supports text queries as input and multiple actions as output. Second, we jointly train the video encoder and localization model in an end-to-end manner. To efficiently process long videos, we introduce temporal chunking, enabling the handling of videos with over 30k frames. Third, we find that fine-tuning pre-trained text encoders with a multi-stage training strategy further enhances text-conditioned localization. TimeLoc achieves state-of-the-art results across multiple benchmarks: +1.3% and +1.9% mAP over previous best methods on THUMOS14 and EPIC-Kitchens-100, +1.1% on Kinetics-GEBD, +2.94% mAP on QVHighlights, and significant improvements in temporal video grounding (+11.5% on TACoS and +6.7% on Charades-STA under R1@0.5). Our code and checkpoints will be released at https://github.com/sming256/TimeLoc.

Authors:Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, Jiaya Jia
Title: Seg-Zero: Reasoning-Chain Guided Segmentation via Cognitive Reinforcement
Abstract:
Traditional methods for reasoning segmentation rely on supervised fine-tuning with categorical labels and simple descriptions, limiting its out-of-domain generalization and lacking explicit reasoning processes. To address these limitations, we propose Seg-Zero, a novel framework that demonstrates remarkable generalizability and derives explicit chain-of-thought reasoning through cognitive reinforcement. Seg-Zero introduces a decoupled architecture consisting of a reasoning model and a segmentation model. The reasoning model interprets user intentions, generates explicit reasoning chains, and produces positional prompts, which are subsequently used by the segmentation model to generate precious pixel-level masks. We design a sophisticated reward mechanism that integrates both format and accuracy rewards to effectively guide optimization directions. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Seg-Zero achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Experiments show that Seg-Zero-7B achieves a zero-shot performance of 57.5 on the ReasonSeg benchmark, surpassing the prior LISA-7B by 18\%. This significant improvement highlights Seg-Zero's ability to generalize across domains while presenting an explicit reasoning process. Code is available at https://github.com/dvlab-research/Seg-Zero.

Authors:Shinnosuke Matsuo, Riku Togashi, Ryoma Bise, Seiichi Uchida, Masahiro Nomura
Title: Instance-wise Supervision-level Optimization in Active Learning
Abstract:
Active learning (AL) is a label-efficient machine learning paradigm that focuses on selectively annotating high-value instances to maximize learning efficiency. Its effectiveness can be further enhanced by incorporating weak supervision, which uses rough yet cost-effective annotations instead of exact (i.e., full) but expensive annotations. We introduce a novel AL framework, Instance-wise Supervision-Level Optimization (ISO), which not only selects the instances to annotate but also determines their optimal annotation level within a fixed annotation budget. Its optimization criterion leverages the value-to-cost ratio (VCR) of each instance while ensuring diversity among the selected instances. In classification experiments, ISO consistently outperforms traditional AL methods and surpasses a state-of-the-art AL approach that combines full and weak supervision, achieving higher accuracy at a lower overall cost. This code is available at https://github.com/matsuo-shinnosuke/ISOAL.

Authors:Amir Mohammad Izadi, Seyed Mohammad Hadi Hosseini, Soroush Vafaie Tabar, Ali Abdollahi, Armin Saghafian, Mahdieh Soleymani Baghshah
Title: Fine-Grained Alignment and Noise Refinement for Compositional Text-to-Image Generation
Abstract:
Text-to-image generative models have made significant advancements in recent years; however, accurately capturing intricate details in textual prompts-such as entity missing, attribute binding errors, and incorrect relationships remains a formidable challenge. In response, we present an innovative, training-free method that directly addresses these challenges by incorporating tailored objectives to account for textual constraints. Unlike layout-based approaches that enforce rigid structures and limit diversity, our proposed approach offers a more flexible arrangement of the scene by imposing just the extracted constraints from the text, without any unnecessary additions. These constraints are formulated as losses-entity missing, entity mixing, attribute binding, and spatial relationships-integrated into a unified loss that is applied in the first generation stage. Furthermore, we introduce a feedback-driven system for fine-grained initial noise refinement. This system integrates a verifier that evaluates the generated image, identifies inconsistencies, and provides corrective feedback. Leveraging this feedback, our refinement method first targets the unmet constraints by refining the faulty attention maps caused by initial noise, through the optimization of selective losses associated with these constraints. Subsequently, our unified loss function is reapplied to proceed the second generation phase. Experimental results demonstrate that our method, relying solely on our proposed objective functions, significantly enhances compositionality, achieving a 24% improvement in human evaluation and a 25% gain in spatial relationships. Furthermore, our fine-grained noise refinement proves effective, boosting performance by up to 5%. Code is available at \href{https://github.com/hadi-hosseini/noise-refinement}{https://github.com/hadi-hosseini/noise-refinement}.

Authors:Xirui Hu, Jiahao Wang, Hao Chen, Weizhan Zhang, Benqi Wang, Yikun Li, Haishun Nan
Title: DynamicID: Zero-Shot Multi-ID Image Personalization with Flexible Facial Editability
Abstract:
Recent advances in text-to-image generation have driven interest in generating personalized human images that depict specific identities from reference images. Although existing methods achieve high-fidelity identity preservation, they are generally limited to single-ID scenarios and offer insufficient facial editability. We present DynamicID, a tuning-free framework that inherently facilitates both single-ID and multi-ID personalized generation with high fidelity and flexible facial editability. Our key innovations include: 1) Semantic-Activated Attention (SAA), which employs query-level activation gating to minimize disruption to the base model when injecting ID features and achieve multi-ID personalization without requiring multi-ID samples during training. 2) Identity-Motion Reconfigurator (IMR), which applies feature-space manipulation to effectively disentangle and reconfigure facial motion and identity features, supporting flexible facial editing. 3) a task-decoupled training paradigm that reduces data dependency, together with VariFace-10k, a curated dataset of 10k unique individuals, each represented by 35 distinct facial images. Experimental results demonstrate that DynamicID outperforms state-of-the-art methods in identity fidelity, facial editability, and multi-ID personalization capability. Our code will be released at https://github.com/ByteCat-bot/DynamicID.

Authors:Huaqi Tao, Bingxi Liu, Calvin Chen, Tingjun Huang, He Li, Jinqiang Cui, Hong Zhang
Title: TextInPlace: Indoor Visual Place Recognition in Repetitive Structures with Scene Text Spotting and Verification
Abstract:
Visual Place Recognition (VPR) is a crucial capability for long-term autonomous robots, enabling them to identify previously visited locations using visual information. However, existing methods remain limited in indoor settings due to the highly repetitive structures inherent in such environments. We observe that scene texts frequently appear in indoor spaces and can help distinguish visually similar but different places. This inspires us to propose TextInPlace, a simple yet effective VPR framework that integrates Scene Text Spotting (STS) to mitigate visual perceptual ambiguity in repetitive indoor environments. Specifically, TextInPlace adopts a dual-branch architecture within a local parameter sharing network. The VPR branch employs attention-based aggregation to extract global descriptors for coarse-grained retrieval, while the STS branch utilizes a bridging text spotter to detect and recognize scene texts. Finally, the discriminative texts are filtered to compute text similarity and re-rank the top-K retrieved images. To bridge the gap between current text-based repetitive indoor scene datasets and the typical scenarios encountered in robot navigation, we establish an indoor VPR benchmark dataset, called Maze-with-Text. Extensive experiments on both custom and public datasets demonstrate that TextInPlace achieves superior performance over existing methods that rely solely on appearance information. The dataset, code, and trained models are publicly available at https://github.com/HqiTao/TextInPlace.

Authors:Xiao Wang, Yuehang Li, Fuling Wang, Bo Jiang, Yaowei Wang, Yonghong Tian, Jin Tang, Bin Luo
Title: Sign Language Translation using Frame and Event Stream: Benchmark Dataset and Algorithms
Abstract:
Accurate sign language understanding serves as a crucial communication channel for individuals with disabilities. Current sign language translation algorithms predominantly rely on RGB frames, which may be limited by fixed frame rates, variable lighting conditions, and motion blur caused by rapid hand movements. Inspired by the recent successful application of event cameras in other fields, we propose to leverage event streams to assist RGB cameras in capturing gesture data, addressing the various challenges mentioned above. Specifically, we first collect a large-scale RGB-Event sign language translation dataset using the DVS346 camera, termed VECSL, which contains 15,676 RGB-Event samples, 15,191 glosses, and covers 2,568 Chinese characters. These samples were gathered across a diverse range of indoor and outdoor environments, capturing multiple viewing angles, varying light intensities, and different camera motions. Due to the absence of benchmark algorithms for comparison in this new task, we retrained and evaluated multiple state-of-the-art SLT algorithms, and believe that this benchmark can effectively support subsequent related research. Additionally, we propose a novel RGB-Event sign language translation framework (i.e., M$^2$-SLT) that incorporates fine-grained micro-sign and coarse-grained macro-sign retrieval, achieving state-of-the-art results on the proposed dataset. Both the source code and dataset will be released on https://github.com/Event-AHU/OpenESL.

Authors:Shijia Zhao, Qiming Xia, Xusheng Guo, Pufan Zou, Maoji Zheng, Hai Wu, Chenglu Wen, Cheng Wang
Title: SP3D: Boosting Sparsely-Supervised 3D Object Detection via Accurate Cross-Modal Semantic Prompts
Abstract:
Recently, sparsely-supervised 3D object detection has gained great attention, achieving performance close to fully-supervised 3D objectors while requiring only a few annotated instances. Nevertheless, these methods suffer challenges when accurate labels are extremely absent. In this paper, we propose a boosting strategy, termed SP3D, explicitly utilizing the cross-modal semantic prompts generated from Large Multimodal Models (LMMs) to boost the 3D detector with robust feature discrimination capability under sparse annotation settings. Specifically, we first develop a Confident Points Semantic Transfer (CPST) module that generates accurate cross-modal semantic prompts through boundary-constrained center cluster selection. Based on these accurate semantic prompts, which we treat as seed points, we introduce a Dynamic Cluster Pseudo-label Generation (DCPG) module to yield pseudo-supervision signals from the geometry shape of multi-scale neighbor points. Additionally, we design a Distribution Shape score (DS score) that chooses high-quality supervision signals for the initial training of the 3D detector. Experiments on the KITTI dataset and Waymo Open Dataset (WOD) have validated that SP3D can enhance the performance of sparsely supervised detectors by a large margin under meager labeling conditions. Moreover, we verified SP3D in the zero-shot setting, where its performance exceeded that of the state-of-the-art methods. The code is available at https://github.com/xmuqimingxia/SP3D.

Authors:Yanbiao Ma, Wei Dai, Wenke Huang, Jiayi Chen
Title: Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
Abstract:
Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR

Authors:Chengxuan Qian, Kai Han, Jingchao Wang, Zhenlong Yuan, Chongwen Lyu, Jun Chen, Zhe Liu
Title: DynCIM: Dynamic Curriculum for Imbalanced Multimodal Learning
Abstract:
Multimodal learning integrates complementary information from diverse modalities to enhance the decision-making process. However, the potential of multimodal collaboration remains under-exploited due to disparities in data quality and modality representation capabilities. To address this, we introduce DynCIM, a novel dynamic curriculum learning framework designed to quantify the inherent imbalances from both sample and modality perspectives. DynCIM employs a sample-level curriculum to dynamically assess each sample's difficulty according to prediction deviation, consistency, and stability, while a modality-level curriculum measures modality contributions from global and local. Furthermore, a gating-based dynamic fusion mechanism is introduced to adaptively adjust modality contributions, minimizing redundancy and optimizing fusion effectiveness. Extensive experiments on six multimodal benchmarking datasets, spanning both bimodal and trimodal scenarios, demonstrate that DynCIM consistently outperforms state-of-the-art methods. Our approach effectively mitigates modality and sample imbalances while enhancing adaptability and robustness in multimodal learning tasks. Our code is available at https://github.com/Raymond-Qiancx/DynCIM.

Authors:Mingxiang Cao, Weiying Xie, Xin Zhang, Jiaqing Zhang, Kai Jiang, Jie Lei, Yunsong Li
Title: M$^3$amba: CLIP-driven Mamba Model for Multi-modal Remote Sensing Classification
Abstract:
Multi-modal fusion holds great promise for integrating information from different modalities. However, due to a lack of consideration for modal consistency, existing multi-modal fusion methods in the field of remote sensing still face challenges of incomplete semantic information and low computational efficiency in their fusion designs. Inspired by the observation that the visual language pre-training model CLIP can effectively extract strong semantic information from visual features, we propose M$^3$amba, a novel end-to-end CLIP-driven Mamba model for multi-modal fusion to address these challenges. Specifically, we introduce CLIP-driven modality-specific adapters in the fusion architecture to avoid the bias of understanding specific domains caused by direct inference, making the original CLIP encoder modality-specific perception. This unified framework enables minimal training to achieve a comprehensive semantic understanding of different modalities, thereby guiding cross-modal feature fusion. To further enhance the consistent association between modality mappings, a multi-modal Mamba fusion architecture with linear complexity and a cross-attention module Cross-SS2D are designed, which fully considers effective and efficient information interaction to achieve complete fusion. Extensive experiments have shown that M$^3$amba has an average performance improvement of at least 5.98\% compared with the state-of-the-art methods in multi-modal hyperspectral image classification tasks in the remote sensing field, while also demonstrating excellent training efficiency, achieving a double improvement in accuracy and efficiency. The code is released at https://github.com/kaka-Cao/M3amba.

Authors:Yu Jin, Jingming Liu, Zhexu Luo, Yifei Peng, Ziang Qin, Wang-Zhou Dai, Yao-Xiang Ding, Kun Zhou
Title: Pre-Training Meta-Rule Selection Policy for Visual Generative Abductive Learning
Abstract:
Visual generative abductive learning studies jointly training symbol-grounded neural visual generator and inducing logic rules from data, such that after learning, the visual generation process is guided by the induced logic rules. A major challenge for this task is to reduce the time cost of logic abduction during learning, an essential step when the logic symbol set is large and the logic rule to induce is complicated. To address this challenge, we propose a pre-training method for obtaining meta-rule selection policy for the recently proposed visual generative learning approach AbdGen [Peng et al., 2023], aiming at significantly reducing the candidate meta-rule set and pruning the search space. The selection model is built based on the embedding representation of both symbol grounding of cases and meta-rules, which can be effectively integrated with both neural model and logic reasoning system. The pre-training process is done on pure symbol data, not involving symbol grounding learning of raw visual inputs, making the entire learning process low-cost. An additional interesting observation is that the selection policy can rectify symbol grounding errors unseen during pre-training, which is resulted from the memorization ability of attention mechanism and the relative stability of symbolic patterns. Experimental results show that our method is able to effectively address the meta-rule selection problem for visual abduction, boosting the efficiency of visual generative abductive learning. Code is available at https://github.com/future-item/metarule-select.

Authors:Tatsuro Inaba, Kentaro Inui, Yusuke Miyao, Yohei Oseki, Benjamin Heinzerling, Yu Takagi
Title: How LLMs Learn: Tracing Internal Representations with Sparse Autoencoders
Abstract:
Large Language Models (LLMs) demonstrate remarkable multilingual capabilities and broad knowledge. However, the internal mechanisms underlying the development of these capabilities remain poorly understood. To investigate this, we analyze how the information encoded in LLMs' internal representations evolves during the training process. Specifically, we train sparse autoencoders at multiple checkpoints of the model and systematically compare the interpretative results across these stages. Our findings suggest that LLMs initially acquire language-specific knowledge independently, followed by cross-linguistic correspondences. Moreover, we observe that after mastering token-level knowledge, the model transitions to learning higher-level, abstract concepts, indicating the development of more conceptual understanding.

Authors:Guofeng Zhang, Ruyi Zha, Hao He, Yixun Liang, Alan Yuille, Hongdong Li, Yuanhao Cai
Title: X-LRM: X-ray Large Reconstruction Model for Extremely Sparse-View Computed Tomography Recovery in One Second
Abstract:
Sparse-view 3D CT reconstruction aims to recover volumetric structures from a limited number of 2D X-ray projections. Existing feedforward methods are constrained by the limited capacity of CNN-based architectures and the scarcity of large-scale training datasets. In this paper, we propose an X-ray Large Reconstruction Model (X-LRM) for extremely sparse-view (<10 views) CT reconstruction. X-LRM consists of two key components: X-former and X-triplane. Our X-former can handle an arbitrary number of input views using an MLP-based image tokenizer and a Transformer-based encoder. The output tokens are then upsampled into our X-triplane representation, which models the 3D radiodensity as an implicit neural field. To support the training of X-LRM, we introduce Torso-16K, a large-scale dataset comprising over 16K volume-projection pairs of various torso organs. Extensive experiments demonstrate that X-LRM outperforms the state-of-the-art method by 1.5 dB and achieves 27x faster speed and better flexibility. Furthermore, the downstream evaluation of lung segmentation tasks also suggests the practical value of our approach. Our code, pre-trained models, and dataset will be released at https://github.com/caiyuanhao1998/X-LRM

Authors:Samuel Garcin, Trevor McInroe, Pablo Samuel Castro, Prakash Panangaden, Christopher G. Lucas, David Abel, Stefano V. Albrecht
Title: Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Abstract:
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents. Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for the actor and for the critic in on-policy algorithms. We focus our study on understanding whether the actor and critic will benefit from separate, rather than shared, representations. Our primary finding is that when separated, the representations for the actor and critic systematically specialise in extracting different types of information from the environment -- the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. We conduct a rigourous empirical study to understand how different representation learning approaches affect the actor and critic's specialisations and their downstream performance, in terms of sample efficiency and generation capabilities. Finally, we discover that a separated critic plays an important role in exploration and data collection during training. Our code, trained models and data are accessible at https://github.com/francelico/deac-rep.

Authors:Qizhe Wu, Huawen Liang, Yuchen Gui, Zhichen Zeng, Zerong He, Linfeng Tao, Xiaotian Wang, Letian Zhao, Zhaoxi Zeng, Wei Yuan, Wei Wu, Xi Jin
Title: Exploring the Performance Improvement of Tensor Processing Engines through Transformation in the Bit-weight Dimension of MACs
Abstract:
General matrix-matrix multiplication (GEMM) is a cornerstone of AI computations, making tensor processing engines (TPEs) increasingly critical in GPUs and domain-specific architectures. Existing architectures primarily optimize dataflow or operand reuse strategies. However, considering the interaction between matrix multiplication and multiply-accumulators (MACs) offers greater optimization potential. This work introduces a novel hardware perspective on matrix multiplication, focusing on the bit-weight dimension of MACs. We propose a finer-grained TPE notation using matrix triple loops as an example, introducing new methods for designing and optimizing PE microarchitectures. Based on this notation and its transformations, we propose four optimization techniques that improve timing, area, and power consumption. Implementing our design in RTL using the SMIC-28nm process, we evaluate its effectiveness across four classic TPE architectures: systolic array, 3D-Cube, multiplier-adder tree, and 2D-Matrix. Our techniques achieve area efficiency improvements of 1.27x, 1.28x, 1.56x, and 1.44x, and energy efficiency gains of 1.04x, 1.56x, 1.49x, and 1.20x, respectively. Applied to a bit-slice architecture, our approach achieves a 12.10x improvement in energy efficiency and 2.85x in area efficiency compared to Laconic. Our Verilog HDL code, along with timing, area, and power reports, is available at https://github.com/wqzustc/High-Performance-Tensor-Processing-Engines

Authors:Mohit Pandey, Gopeshh Subbaraj, Artem Cherkasov, Martin Ester, Emmanuel Bengio
Title: Pretraining Generative Flow Networks with Inexpensive Rewards for Molecular Graph Generation
Abstract:
Generative Flow Networks (GFlowNets) have recently emerged as a suitable framework for generating diverse and high-quality molecular structures by learning from rewards treated as unnormalized distributions. Previous works in this framework often restrict exploration by using predefined molecular fragments as building blocks, limiting the chemical space that can be accessed. In this work, we introduce Atomic GFlowNets (A-GFNs), a foundational generative model leveraging individual atoms as building blocks to explore drug-like chemical space more comprehensively. We propose an unsupervised pre-training approach using drug-like molecule datasets, which teaches A-GFNs about inexpensive yet informative molecular descriptors such as drug-likeliness, topological polar surface area, and synthetic accessibility scores. These properties serve as proxy rewards, guiding A-GFNs towards regions of chemical space that exhibit desirable pharmacological properties. We further implement a goal-conditioned finetuning process, which adapts A-GFNs to optimize for specific target properties. In this work, we pretrain A-GFN on a subset of ZINC dataset, and by employing robust evaluation metrics we show the effectiveness of our approach when compared to other relevant baseline methods for a wide range of drug design tasks. The code is accessible at https://github.com/diamondspark/AGFN.

Authors:Zhitong Xiong, Yi Wang, Weikang Yu, Adam J Stewart, Jie Zhao, Nils Lehmann, Thomas Dujardin, Zhenghang Yuan, Pedram Ghamisi, Xiao Xiang Zhu
Title: DOFA-CLIP: Multimodal Vision-Language Foundation Models for Earth Observation
Abstract:
Earth observation (EO) spans a broad spectrum of modalities, including optical, radar, multispectral, and hyperspectral data, each capturing distinct environmental signals. However, current vision-language models in EO, particularly CLIP-based variants, remain confined to individual modalities, limiting generalization and scalability across diverse tasks. We present DOFA-CLIP (Dynamic-One-For-All CLIP), a unified vision-language foundation model that dynamically adapts to EO modalities with flexible spectral configurations through a single Transformer backbone. Our approach introduces three key contributions: 1) the construction of GeoLangBind-2M, a large-scale EO image-text dataset covering six heterogeneous modalities with rich natural language descriptions; 2) a novel training strategy called VECT (Vision-models Enhanced Contrastive Text-image pretraining), which enhances the spatial awareness of CLIP features with multiple vision foundation models; and 3) a Modality-aware Knowledge Agglomeration (MaKA) module that refines feature distillation with modality-specific awareness. DOFA-CLIP achieves state-of-the-art zero-shot performance across a wide range of EO benchmarks, including unseen modalities and a diverse number of input spectral bands. Together, these contributions establish a scalable foundation for multimodal EO understanding and open new avenues for integrating heterogeneous EO data with large language models. Code and datasets will be released. Code and datasets are publicly available.

Authors:Siyi Du, Xinzhe Luo, Declan P. O'Regan, Chen Qin
Title: STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
Abstract:
Multimodal image-tabular learning is gaining attention, yet it faces challenges due to limited labeled data. While earlier work has applied self-supervised learning (SSL) to unlabeled data, its task-agnostic nature often results in learning suboptimal features for downstream tasks. Semi-supervised learning (SemiSL), which combines labeled and unlabeled data, offers a promising solution. However, existing multimodal SemiSL methods typically focus on unimodal or modality-shared features, ignoring valuable task-relevant modality-specific information, leading to a Modality Information Gap. In this paper, we propose STiL, a novel SemiSL tabular-image framework that addresses this gap by comprehensively exploring task-relevant information. STiL features a new disentangled contrastive consistency module to learn cross-modal invariant representations of shared information while retaining modality-specific information via disentanglement. We also propose a novel consensus-guided pseudo-labeling strategy to generate reliable pseudo-labels based on classifier consensus, along with a new prototype-guided label smoothing technique to refine pseudo-label quality with prototype embeddings, thereby enhancing task-relevant information learning in unlabeled data. Experiments on natural and medical image datasets show that STiL outperforms the state-of-the-art supervised/SSL/SemiSL image/multimodal approaches. Our code is available at https://github.com/siyi-wind/STiL.

Authors:Jeong Hun Yeo, Minsu Kim, Chae Won Kim, Stavros Petridis, Yong Man Ro
Title: Zero-AVSR: Zero-Shot Audio-Visual Speech Recognition with LLMs by Learning Language-Agnostic Speech Representations
Abstract:
We explore a novel zero-shot Audio-Visual Speech Recognition (AVSR) framework, dubbed Zero-AVSR, which enables speech recognition in target languages without requiring any audio-visual speech data in those languages. Specifically, we introduce the Audio-Visual Speech Romanizer (AV-Romanizer), which learns language-agnostic speech representations by predicting Roman text. Then, by leveraging the strong multilingual modeling capabilities of Large Language Models (LLMs), we propose converting the predicted Roman text into language-specific graphemes, forming the proposed Cascaded Zero-AVSR. Taking it a step further, we explore a unified Zero-AVSR approach by directly integrating the audio-visual speech representations encoded by the AV-Romanizer into the LLM. This is achieved through finetuning the adapter and the LLM using our proposed multi-task learning scheme. To capture the wide spectrum of phonetic and linguistic diversity, we also introduce a Multilingual Audio-Visual Romanized Corpus (MARC) consisting of 2,916 hours of audio-visual speech data across 82 languages, along with transcriptions in both language-specific graphemes and Roman text. Extensive analysis and experiments confirm that the proposed Zero-AVSR framework has the potential to expand language support beyond the languages seen during the training of the AV-Romanizer.

Authors:Thomas Winninger, Boussad Addad, Katarzyna Kapusta
Title: Using Mechanistic Interpretability to Craft Adversarial Attacks against Large Language Models
Abstract:
Traditional white-box methods for creating adversarial perturbations against LLMs typically rely only on gradient computation from the targeted model, ignoring the internal mechanisms responsible for attack success or failure. Conversely, interpretability studies that analyze these internal mechanisms lack practical applications beyond runtime interventions. We bridge this gap by introducing a novel white-box approach that leverages mechanistic interpretability techniques to craft practical adversarial inputs. Specifically, we first identify acceptance subspaces - sets of feature vectors that do not trigger the model's refusal mechanisms - then use gradient-based optimization to reroute embeddings from refusal subspaces to acceptance subspaces, effectively achieving jailbreaks. This targeted approach significantly reduces computation cost, achieving attack success rates of 80-95\% on state-of-the-art models including Gemma2, Llama3.2, and Qwen2.5 within minutes or even seconds, compared to existing techniques that often fail or require hours of computation. We believe this approach opens a new direction for both attack research and defense development. Furthermore, it showcases a practical application of mechanistic interpretability where other methods are less efficient, which highlights its utility. The code and generated datasets are available at https://github.com/Sckathach/subspace-rerouting.

Authors:Kun Xiang, Zhili Liu, Zihao Jiang, Yunshuang Nie, Kaixin Cai, Yiyang Yin, Runhui Huang, Haoxiang Fan, Hanhui Li, Weiran Huang, Yihan Zeng, Yu-Jie Yuan, Jianhua Han, Lanqing Hong, Hang Xu, Xiaodan Liang
Title: Can Atomic Step Decomposition Enhance the Self-structured Reasoning of Multimodal Large Models?
Abstract:
In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of "slow thinking" into multimodal large language models (MLLMs). Our core idea is that different levels of reasoning abilities can be combined dynamically to tackle questions with different complexity. To this end, we propose a paradigm of Self-structured Chain of Thought (SCoT), which is composed of minimal semantic atomic steps. Different from existing methods that rely on structured templates or free-form paradigms, our method can not only generate cognitive CoT structures for various complex tasks but also mitigates the phenomenon of overthinking. To introduce structured reasoning capabilities into visual understanding models, we further design a novel AtomThink framework with four key modules, including (i) a data engine to generate high-quality multimodal reasoning paths; (ii) a supervised fine-tuning process with serialized inference data; (iii) a policy-guided multi-turn inference method; and (iv) an atomic capability metric to evaluate the single step utilization rate. We conduct extensive experiments to show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving more than 10\% average accuracy gains on MathVista and MathVerse. Compared to state-of-the-art structured CoT approaches, our method not only achieves higher accuracy but also improves data utilization by 5 times and boosts inference efficiency by 85.3\%. Our code is now public available in https://github.com/Quinn777/AtomThink.

Authors:Aditya Shankar, Lydia Y. Chen, Arie van Deursen, Rihan Hai
Title: WaveStitch: Flexible and Fast Conditional Time Series Generation with Diffusion Models
Abstract:
Generating temporal data under conditions is crucial for forecasting, imputation, and generative tasks. Such data often has metadata and partially observed signals that jointly influence the generated values. However, existing methods face three key limitations: (1) they condition on either the metadata or observed values, but rarely both together; (2) they adopt either training-time approaches that fail to generalize to unseen scenarios, or inference-time approaches that ignore metadata; and (3) they suffer from trade-offs between generation speed and temporal coherence across time windows--choosing either slow but coherent autoregressive methods or fast but incoherent parallel ones. We propose WaveStitch, a novel diffusion-based method to overcome these hurdles through: (1) dual-sourced conditioning on both metadata and partially observed signals; (2) a hybrid training-inference architecture, incorporating metadata during training and observations at inference via gradient-based guidance; and (3) a novel pipeline-style paradigm that generates time windows in parallel while preserving coherence through an inference-time conditional loss and a stitching mechanism. Across diverse datasets, WaveStitch demonstrates adaptability to arbitrary patterns of observed signals, achieving 1.81x lower mean-squared-error compared to the state-of-the-art, and generates data up to 166.48x faster than autoregressive methods while maintaining coherence. Our code is available at: https://github.com/adis98/WaveStitch

Authors:Yixin Wu, Feiran Zhang, Tianyuan Shi, Ruicheng Yin, Zhenghua Wang, Zhenliang Gan, Xiaohua Wang, Changze Lv, Xiaoqing Zheng, Xuanjing Huang
Title: Explainable Synthetic Image Detection through Diffusion Timestep Ensembling
Abstract:
Recent advances in diffusion models have enabled the creation of deceptively real images, posing significant security risks when misused. In this study, we empirically show that different timesteps of DDIM inversion reveal varying subtle distinctions between synthetic and real images that are extractable for detection, in the forms of such as Fourier power spectrum high-frequency discrepancies and inter-pixel variance distributions. Based on these observations, we propose a novel synthetic image detection method that directly utilizes features of intermediately noised images by training an ensemble on multiple noised timesteps, circumventing conventional reconstruction-based strategies. To enhance human comprehension, we introduce a metric-grounded explanation generation and refinement module to identify and explain AI-generated flaws. Additionally, we construct the GenHard and GenExplain benchmarks to provide detection samples of greater difficulty and high-quality rationales for fake images. Extensive experiments show that our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and challenging samples respectively, and demonstrates generalizability and robustness. Our code and datasets are available at https://github.com/Shadowlized/ESIDE.

Authors:YingLiang Ma, Sandra Howell, Aldo Rinaldi, Tarv Dhanjal, Kawal S. Rhode
Title: Attention on the Wires (AttWire): A Foundation Model for Detecting Devices and Catheters in X-ray Fluoroscopic Images
Abstract:
Objective: Interventional devices, catheters and insertable imaging devices such as transesophageal echo (TOE) probes are routinely used in minimally invasive cardiovascular procedures. Detecting their positions and orientations in X-ray fluoroscopic images is important for many clinical applications. Method: In this paper, a novel attention mechanism was designed to guide a convolution neural network (CNN) model to the areas of wires in X-ray images, as nearly all interventional devices and catheters used in cardiovascular procedures contain wires. The attention mechanism includes multi-scale Gaussian derivative filters and a dot-product-based attention layer. By utilizing the proposed attention mechanism, a lightweight foundation model can be created to detect multiple objects simultaneously with higher precision and real-time speed. Results: The proposed model was trained and tested on a total of 12,438 X-ray images. An accuracy of 0.88 was achieved for detecting an echo probe and 0.87 for detecting an artificial valve at 58 FPS. The accuracy was measured by intersection-over-union (IoU). We also achieved a 99.8% success rate in detecting a 10-electrode catheter and a 97.8% success rate in detecting an ablation catheter. Conclusion: Our detection foundation model can simultaneously detect and identify both interventional devices and flexible catheters in real-time X-ray fluoroscopic images. Significance: The proposed model employs a novel attention mechanism to achieve high-performance object detection, making it suitable for various clinical applications and robotic-assisted surgeries. Codes are available at https://github.com/YingLiangMa/AttWire.

Authors:Shawn Li, Jiashu Qu, Yuxiao Zhou, Yuehan Qin, Tiankai Yang, Yue Zhao
Title: Treble Counterfactual VLMs: A Causal Approach to Hallucination
Abstract:
Vision-Language Models (VLMs) have advanced multi-modal tasks like image captioning, visual question answering, and reasoning. However, they often generate hallucinated outputs inconsistent with the visual context or prompt, limiting reliability in critical applications like autonomous driving and medical imaging. Existing studies link hallucination to statistical biases, language priors, and biased feature learning but lack a structured causal understanding. In this work, we introduce a causal perspective to analyze and mitigate hallucination in VLMs. We hypothesize that hallucination arises from unintended direct influences of either the vision or text modality, bypassing proper multi-modal fusion. To address this, we construct a causal graph for VLMs and employ counterfactual analysis to estimate the Natural Direct Effect (NDE) of vision, text, and their cross-modal interaction on the output. We systematically identify and mitigate these unintended direct effects to ensure that responses are primarily driven by genuine multi-modal fusion. Our approach consists of three steps: (1) designing structural causal graphs to distinguish correct fusion pathways from spurious modality shortcuts, (2) estimating modality-specific and cross-modal NDE using perturbed image representations, hallucinated text embeddings, and degraded visual inputs, and (3) implementing a test-time intervention module to dynamically adjust the model's dependence on each modality. Experimental results demonstrate that our method significantly reduces hallucination while preserving task performance, providing a robust and interpretable framework for improving VLM reliability. To enhance accessibility and reproducibility, our code is publicly available at https://github.com/TREE985/Treble-Counterfactual-VLMs.

Authors:Shawn Li, Peilin Cai, Yuxiao Zhou, Zhiyu Ni, Renjie Liang, You Qin, Yi Nian, Zhengzhong Tu, Xiyang Hu, Yue Zhao
Title: Secure On-Device Video OOD Detection Without Backpropagation
Abstract:
Out-of-Distribution (OOD) detection is critical for ensuring the reliability of machine learning models in safety-critical applications such as autonomous driving and medical diagnosis. While deploying personalized OOD detection directly on edge devices is desirable, it remains challenging due to large model sizes and the computational infeasibility of on-device training. Federated learning partially addresses this but still requires gradient computation and backpropagation, exceeding the capabilities of many edge devices. To overcome these challenges, we propose SecDOOD, a secure cloud-device collaboration framework for efficient on-device OOD detection without requiring device-side backpropagation. SecDOOD utilizes cloud resources for model training while ensuring user data privacy by retaining sensitive information on-device. Central to SecDOOD is a HyperNetwork-based personalized parameter generation module, which adapts cloud-trained models to device-specific distributions by dynamically generating local weight adjustments, effectively combining central and local information without local fine-tuning. Additionally, our dynamic feature sampling and encryption strategy selectively encrypts only the most informative feature channels, largely reducing encryption overhead without compromising detection performance. Extensive experiments across multiple datasets and OOD scenarios demonstrate that SecDOOD achieves performance comparable to fully fine-tuned models, enabling secure, efficient, and personalized OOD detection on resource-limited edge devices. To enhance accessibility and reproducibility, our code is publicly available at https://github.com/Dystopians/SecDOOD.

Authors:Zidu Wang, Jiankuo Zhao, Miao Xu, Xiangyu Zhu, Zhen Lei
Title: SRM-Hair: Single Image Head Mesh Reconstruction via 3D Morphable Hair
Abstract:
3D Morphable Models (3DMMs) have played a pivotal role as a fundamental representation or initialization for 3D avatar animation and reconstruction. However, extending 3DMMs to hair remains challenging due to the difficulty of enforcing vertex-level consistent semantic meaning across hair shapes. This paper introduces a novel method, Semantic-consistent Ray Modeling of Hair (SRM-Hair), for making 3D hair morphable and controlled by coefficients. The key contribution lies in semantic-consistent ray modeling, which extracts ordered hair surface vertices and exhibits notable properties such as additivity for hairstyle fusion, adaptability, flipping, and thickness modification. We collect a dataset of over 250 high-fidelity real hair scans paired with 3D face data to serve as a prior for the 3D morphable hair. Based on this, SRM-Hair can reconstruct a hair mesh combined with a 3D head from a single image. Note that SRM-Hair produces an independent hair mesh, facilitating applications in virtual avatar creation, realistic animation, and high-fidelity hair rendering. Both quantitative and qualitative experiments demonstrate that SRM-Hair achieves state-of-the-art performance in 3D mesh reconstruction. Our project is available at https://github.com/wang-zidu/SRM-Hair

Authors:Jian Ma, Qirong Peng, Xu Guo, Chen Chen, Haonan Lu, Zhenyu Yang
Title: X2I: Seamless Integration of Multimodal Understanding into Diffusion Transformer via Attention Distillation
Abstract:
Text-to-image (T2I) models are well known for their ability to produce highly realistic images, while multimodal large language models (MLLMs) are renowned for their proficiency in understanding and integrating multiple modalities. However, currently there is no straightforward and efficient framework to transfer the multimodal comprehension abilities of MLLMs to T2I models to enable them to understand multimodal inputs. In this paper, we propose the X2I framework, which endows Diffusion Transformer (DiT) models with the capability to comprehend various modalities, including multilingual text, screenshot documents, images, videos, and audio. X2I is trained using merely 100K English corpus with 160 GPU hours. Building on the DiT teacher model, we adopt an innovative distillation method to extract the inference capabilities of the teacher model and design a lightweight AlignNet structure to serve as an intermediate bridge. Compared to the teacher model, X2I shows a decrease in performance degradation of less than 1\% while gaining various multimodal understanding abilities, including multilingual to image, image to image, image-text to image, video to image, audio to image, and utilizing creative fusion to enhance imagery. Furthermore, it is applicable for LoRA training in the context of image-text to image generation, filling a void in the industry in this area. We further design a simple LightControl to enhance the fidelity of instructional image editing. Finally, extensive experiments demonstrate the effectiveness, efficiency, multifunctionality, and transferability of our X2I. The open-source code and checkpoints for X2I can be found at the following link: https://github.com/OPPO-Mente-Lab/X2I.

Authors:Xiangxiang Chu, Renda Li, Yong Wang
Title: USP: Unified Self-Supervised Pretraining for Image Generation and Understanding
Abstract:
Recent studies have highlighted the interplay between diffusion models and representation learning. Intermediate representations from diffusion models can be leveraged for downstream visual tasks, while self-supervised vision models can enhance the convergence and generation quality of diffusion models. However, transferring pretrained weights from vision models to diffusion models is challenging due to input mismatches and the use of latent spaces. To address these challenges, we propose Unified Self-supervised Pretraining (USP), a framework that initializes diffusion models via masked latent modeling in a Variational Autoencoder (VAE) latent space. USP achieves comparable performance in understanding tasks while significantly improving the convergence speed and generation quality of diffusion models. Our code will be publicly available at https://github.com/AMAP-ML/USP.

Authors:Li weile, Liu Xiao
Title: BlackGoose Rimer: Harnessing RWKV-7 as a Simple yet Superior Replacement for Transformers in Large-Scale Time Series Modeling
Abstract:
Time series models face significant challenges in scaling to handle large and complex datasets, akin to the scaling achieved by large language models (LLMs). The unique characteristics of time series data and the computational demands of model scaling necessitate innovative approaches. While researchers have explored various architectures such as Transformers, LSTMs, and GRUs to address these challenges, we propose a novel solution using RWKV-7, which incorporates meta-learning into its state update mechanism. By integrating RWKV-7's time mix and channel mix components into the transformer-based time series model Timer, we achieve a substantial performance improvement of approximately 1.13 to 43.3x and a 4.5x reduction in training time with 1/23 parameters, all while utilizing fewer parameters. Our code and model weights are publicly available for further research and development at https://github.com/Alic-Li/BlackGoose_Rimer.

Authors:Hoang-Thang Ta, Anh Tran
Title: AF-KAN: Activation Function-Based Kolmogorov-Arnold Networks for Efficient Representation Learning
Abstract:
Kolmogorov-Arnold Networks (KANs) have inspired numerous works exploring their applications across a wide range of scientific problems, with the potential to replace Multilayer Perceptrons (MLPs). While many KANs are designed using basis and polynomial functions, such as B-splines, ReLU-KAN utilizes a combination of ReLU functions to mimic the structure of B-splines and take advantage of ReLU's speed. However, ReLU-KAN is not built for multiple inputs, and its limitations stem from ReLU's handling of negative values, which can restrict feature extraction. To address these issues, we introduce Activation Function-Based Kolmogorov-Arnold Networks (AF-KAN), expanding ReLU-KAN with various activations and their function combinations. This novel KAN also incorporates parameter reduction methods, primarily attention mechanisms and data normalization, to enhance performance on image classification datasets. We explore different activation functions, function combinations, grid sizes, and spline orders to validate the effectiveness of AF-KAN and determine its optimal configuration. In the experiments, AF-KAN significantly outperforms MLP, ReLU-KAN, and other KANs with the same parameter count. It also remains competitive even when using fewer than 6 to 10 times the parameters while maintaining the same network structure. However, AF-KAN requires a longer training time and consumes more FLOPs. The repository for this work is available at https://github.com/hoangthangta/All-KAN.

Authors:Xianjie Liu, Keren Fu, Qijun Zhao
Title: Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
Abstract:
Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet

Authors:Cheng Hu, Jihao Huang, Wule Mao, Yonghao Fu, Xuemin Chi, Haotong Qin, Nicolas Baumann, Zhitao Liu, Michele Magno, Lei Xie
Title: FSDP: Fast and Safe Data-Driven Overtaking Trajectory Planning for Head-to-Head Autonomous Racing Competitions
Abstract:
Generating overtaking trajectories in autonomous racing is a challenging task, as the trajectory must satisfy the vehicle's dynamics and ensure safety and real-time performance running on resource-constrained hardware. This work proposes the Fast and Safe Data-Driven Planner to address this challenge. Sparse Gaussian predictions are introduced to improve both the computational efficiency and accuracy of opponent predictions. Furthermore, the proposed approach employs a bi-level quadratic programming framework to generate an overtaking trajectory leveraging the opponent predictions. The first level uses polynomial fitting to generate a rough trajectory, from which reference states and control inputs are derived for the second level. The second level formulates a model predictive control optimization problem in the Frenet frame, generating a trajectory that satisfies both kinematic feasibility and safety. Experimental results on the F1TENTH platform show that our method outperforms the State-of-the-Art, achieving an 8.93% higher overtaking success rate, allowing the maximum opponent speed, ensuring a smoother ego trajectory, and reducing 74.04% computational time compared to the Predictive Spliner method. The code is available at: https://github.com/ZJU-DDRX/FSDP.

Authors:Xiang Lan, Feng Wu, Kai He, Qinghao Zhao, Shenda Hong, Mengling Feng
Title: GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images
Abstract:
While recent multimodal large language models (MLLMs) have advanced automated ECG interpretation, they still face two key limitations: (1) insufficient multimodal synergy between time series signals and visual ECG representations, and (2) limited explainability in linking diagnoses to granular waveform evidence. We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation. GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations: a dual-encoder framework extracting complementary time series and image features, cross-modal alignment for effective multimodal understanding, and knowledge-guided instruction generation for generating high-granularity grounding data (ECG-Grounding) linking diagnoses to measurable parameters ($e.g.$, QRS/PR Intervals). Additionally, we propose the Grounded ECG Understanding task, a clinically motivated benchmark designed to comprehensively assess the MLLM's capability in grounded ECG understanding. Experimental results on both existing and our proposed benchmarks show GEM significantly improves predictive performance (CSN $7.4\% \uparrow$), explainability ($22.7\% \uparrow$), and grounding ($24.8\% \uparrow$), making it more suitable for real-world clinical applications. GitHub repository: https://github.com/lanxiang1017/GEM.git

Authors:Junyan Lin, Haoran Chen, Yue Fan, Yingqi Fan, Xin Jin, Hui Su, Jinlan Fu, Xiaoyu Shen
Title: Multi-Layer Visual Feature Fusion in Multimodal LLMs: Methods, Analysis, and Best Practices
Abstract:
Multimodal Large Language Models (MLLMs) have made significant advancements in recent years, with visual features playing an increasingly critical role in enhancing model performance. However, the integration of multi-layer visual features in MLLMs remains underexplored, particularly with regard to optimal layer selection and fusion strategies. Existing methods often rely on arbitrary design choices, leading to suboptimal outcomes. In this paper, we systematically investigate two core aspects of multi-layer visual feature fusion: (1) selecting the most effective visual layers and (2) identifying the best fusion approach with the language model. Our experiments reveal that while combining visual features from multiple stages improves generalization, incorporating additional features from the same stage typically leads to diminished performance. Furthermore, we find that direct fusion of multi-layer visual features at the input stage consistently yields superior and more stable performance across various configurations. We make all our code publicly available: https://github.com/EIT-NLP/Layer_Select_Fuse_for_MLLM.

Authors:Wenjie Tang, Yuan Zhou, Erqiang Xu, Keyan Cheng, Minne Li, Liquan Xiao
Title: DSGBench: A Diverse Strategic Game Benchmark for Evaluating LLM-based Agents in Complex Decision-Making Environments
Abstract:
Large Language Model~(LLM) based agents have been increasingly popular in solving complex and dynamic tasks, which requires proper evaluation systems to assess their capabilities. Nevertheless, existing benchmarks usually either focus on single-objective tasks or use overly broad assessing metrics, failing to provide a comprehensive inspection of the actual capabilities of LLM-based agents in complicated decision-making tasks. To address these issues, we introduce DSGBench, a more rigorous evaluation platform for strategic decision-making. Firstly, it incorporates six complex strategic games which serve as ideal testbeds due to their long-term and multi-dimensional decision-making demands and flexibility in customizing tasks of various difficulty levels or multiple targets. Secondly, DSGBench employs a fine-grained evaluation scoring system which examines the decision-making capabilities by looking into the performance in five specific dimensions and offering a comprehensive assessment in a well-designed way. Furthermore, DSGBench also incorporates an automated decision-tracking mechanism which enables in-depth analysis of agent behaviour patterns and the changes in their strategies. We demonstrate the advances of DSGBench by applying it to multiple popular LLM-based agents and our results suggest that DSGBench provides valuable insights in choosing LLM-based agents as well as improving their future development. DSGBench is available at https://github.com/DeciBrain-Group/DSGBench.

Authors:Yuheng Li, Yuxiang Lai, Maria Thor, Deborah Marshall, Zachary Buchwald, David S. Yu, Xiaofeng Yang
Title: Towards Universal Text-driven CT Image Segmentation
Abstract:
Computed tomography (CT) is extensively used for accurate visualization and segmentation of organs and lesions. While deep learning models such as convolutional neural networks (CNNs) and vision transformers (ViTs) have significantly improved CT image analysis, their performance often declines when applied to diverse, real-world clinical data. Although foundation models offer a broader and more adaptable solution, their potential is limited due to the challenge of obtaining large-scale, voxel-level annotations for medical images. In response to these challenges, prompting-based models using visual or text prompts have emerged. Visual-prompting methods, such as the Segment Anything Model (SAM), still require significant manual input and can introduce ambiguity when applied to clinical scenarios. Instead, foundation models that use text prompts offer a more versatile and clinically relevant approach. Notably, current text-prompt models, such as the CLIP-Driven Universal Model, are limited to text prompts already encountered during training and struggle to process the complex and diverse scenarios of real-world clinical applications. Instead of fine-tuning models trained from natural imaging, we propose OpenVocabCT, a vision-language model pretrained on large-scale 3D CT images for universal text-driven segmentation. Using the large-scale CT-RATE dataset, we decompose the diagnostic reports into fine-grained, organ-level descriptions using large language models for multi-granular contrastive learning. We evaluate our OpenVocabCT on downstream segmentation tasks across nine public datasets for organ and tumor segmentation, demonstrating the superior performance of our model compared to existing methods. All code, datasets, and models will be publicly released at https://github.com/ricklisz/OpenVocabCT.

Authors:Xudong Lu, Haohao Gao, Renshou Wu, Shuai Ren, Xiaoxin Chen, Hongsheng Li, Fangyuan Li
Title: SmartBench: Is Your LLM Truly a Good Chinese Smartphone Assistant?
Abstract:
Large Language Models (LLMs) have become integral to daily life, especially advancing as intelligent assistants through on-device deployment on smartphones. However, existing LLM evaluation benchmarks predominantly focus on objective tasks like mathematics and coding in English, which do not necessarily reflect the practical use cases of on-device LLMs in real-world mobile scenarios, especially for Chinese users. To address these gaps, we introduce SmartBench, the first benchmark designed to evaluate the capabilities of on-device LLMs in Chinese mobile contexts. We analyze functionalities provided by representative smartphone manufacturers and divide them into five categories: text summarization, text Q&A, information extraction, content creation, and notification management, further detailed into 20 specific tasks. For each task, we construct high-quality datasets comprising 50 to 200 question-answer pairs that reflect everyday mobile interactions, and we develop automated evaluation criteria tailored for these tasks. We conduct comprehensive evaluations of on-device LLMs and MLLMs using SmartBench and also assess their performance after quantized deployment on real smartphone NPUs. Our contributions provide a standardized framework for evaluating on-device LLMs in Chinese, promoting further development and optimization in this critical area. Code and data will be available at https://github.com/vivo-ai-lab/SmartBench.

Authors:Xiaohao Xu, Feng Xue, Xiang Li, Haowei Li, Shusheng Yang, Tianyi Zhang, Matthew Johnson-Roberson, Xiaonan Huang
Title: Towards Ambiguity-Free Spatial Foundation Model: Rethinking and Decoupling Depth Ambiguity
Abstract:
Depth ambiguity is a fundamental challenge in spatial scene understanding, especially in transparent scenes where single-depth estimates fail to capture full 3D structure. Existing models, limited to deterministic predictions, overlook real-world multi-layer depth. To address this, we introduce a paradigm shift from single-prediction to multi-hypothesis spatial foundation models. We first present \texttt{MD-3k}, a benchmark exposing depth biases in expert and foundational models through multi-layer spatial relationship labels and new metrics. To resolve depth ambiguity, we propose Laplacian Visual Prompting (LVP), a training-free spectral prompting technique that extracts hidden depth from pre-trained models via Laplacian-transformed RGB inputs. By integrating LVP-inferred depth with standard RGB-based estimates, our approach elicits multi-layer depth without model retraining. Extensive experiments validate the effectiveness of LVP in zero-shot multi-layer depth estimation, unlocking more robust and comprehensive geometry-conditioned visual generation, 3D-grounded spatial reasoning, and temporally consistent video-level depth inference. Our benchmark and code will be available at https://github.com/Xiaohao-Xu/Ambiguity-in-Space.

Authors:Shan An, Shipeng Dai, Mahrukh Ansari, Yu Liang, Ming Zeng, Konstantinos A. Tsintotas, Changhong Fu, Hong Zhang
Title: ReJSHand: Efficient Real-Time Hand Pose Estimation and Mesh Reconstruction Using Refined Joint and Skeleton Features
Abstract:
Accurate hand pose estimation is vital in robotics, advancing dexterous manipulation in human-computer interaction. Toward this goal, this paper presents ReJSHand (which stands for Refined Joint and Skeleton Features), a cutting-edge network formulated for real-time hand pose estimation and mesh reconstruction. The proposed framework is designed to accurately predict 3D hand gestures under real-time constraints, which is essential for systems that demand agile and responsive hand motion tracking. The network's design prioritizes computational efficiency without compromising accuracy, a prerequisite for instantaneous robotic interactions. Specifically, ReJSHand comprises a 2D keypoint generator, a 3D keypoint generator, an expansion block, and a feature interaction block for meticulously reconstructing 3D hand poses from 2D imagery. In addition, the multi-head self-attention mechanism and a coordinate attention layer enhance feature representation, streamlining the creation of hand mesh vertices through sophisticated feature mapping and linear transformation. Regarding performance, comprehensive evaluations on the FreiHand dataset demonstrate ReJSHand's computational prowess. It achieves a frame rate of 72 frames per second while maintaining a PA-MPJPE (Position-Accurate Mean Per Joint Position Error) of 6.3 mm and a PA-MPVPE (Position-Accurate Mean Per Vertex Position Error) of 6.4 mm. Moreover, our model reaches scores of 0.756 for F@05 and 0.984 for F@15, surpassing modern pipelines and solidifying its position at the forefront of robotic hand pose estimators. To facilitate future studies, we provide our source code at ~\url{https://github.com/daishipeng/ReJSHand}.

Authors:Beyza Kalkanli, Tales Imbiriba, Stratis Ioannidis, Deniz Erdogmus, Jennifer Dy
Title: Dependency-aware Maximum Likelihood Estimation for Active Learning
Abstract:
Active learning aims to efficiently build a labeled training set by strategically selecting samples to query labels from annotators. In this sequential process, each sample acquisition influences subsequent selections, causing dependencies among samples in the labeled set. However, these dependencies are overlooked during the model parameter estimation stage when updating the model using Maximum Likelihood Estimation (MLE), a conventional method that assumes independent and identically distributed (i.i.d.) data. We propose Dependency-aware MLE (DMLE), which corrects MLE within the active learning framework by addressing sample dependencies typically neglected due to the i.i.d. assumption, ensuring consistency with active learning principles in the model parameter estimation process. This improved method achieves superior performance across multiple benchmark datasets, reaching higher performance in earlier cycles compared to conventional MLE. Specifically, we observe average accuracy improvements of 6%, 8.6%, and 10.5% for k=1, k=5, and k=10 respectively, after collecting the first 100 samples, where entropy is the acquisition function and k is the query batch size acquired at every active learning cycle. Our implementation is publicly available at: https://github.com/neu-spiral/DMLEforAL

Authors:Nils Graef, Andrew Wasielewski
Title: Slim attention: cut your context memory in half without loss -- K-cache is all you need for MHA
Abstract:
Slim attention shrinks the context memory size by 2x for transformer models with MHA (multi-head attention), which can speed up inference by up to 2x for large context windows. Slim attention is an exact, mathematically identical implementation of the standard attention mechanism and therefore doesn't compromise model accuracy. In other words, slim attention losslessly compresses the context memory by a factor of 2. For encoder-decoder transformers, the context memory size can be reduced even further: For the Whisper models for example, slim attention reduces the context memory by 8x, which can speed up token generation by 5x for batch size 64 for example. And for the T5-11B model for example, the memory can be reduced by 32x because its MHA projection dimension is larger than the embedding dimension. See https://github.com/OpenMachine-ai/transformer-tricks for code and more transformer tricks, and https://www.youtube.com/watch?v=uVtk3B6YO4Y for this paper's YouTube video.

Authors:Yiming Li, Kaiying Yan, Shuo Shao, Tongqing Zhai, Shu-Tao Xia, Zhan Qin, Dacheng Tao
Title: CBW: Towards Dataset Ownership Verification for Speaker Verification via Clustering-based Backdoor Watermarking
Abstract:
With the increasing adoption of deep learning in speaker verification, large-scale speech datasets have become valuable intellectual property. To audit and prevent the unauthorized usage of these valuable released datasets, especially in commercial or open-source scenarios, we propose a novel dataset ownership verification method. Our approach introduces a clustering-based backdoor watermark (CBW), enabling dataset owners to determine whether a suspicious third-party model has been trained on a protected dataset under a black-box setting. The CBW method consists of two key stages: dataset watermarking and ownership verification. During watermarking, we implant multiple trigger patterns in the dataset to make similar samples (measured by their feature similarities) close to the same trigger while dissimilar samples are near different triggers. This ensures that any model trained on the watermarked dataset exhibits specific misclassification behaviors when exposed to trigger-embedded inputs. To verify dataset ownership, we design a hypothesis-test-based framework that statistically evaluates whether a suspicious model exhibits the expected backdoor behavior. We conduct extensive experiments on benchmark datasets, verifying the effectiveness and robustness of our method against potential adaptive attacks. The code for reproducing main experiments is available at https://github.com/Radiant0726/CBW

Authors:Yubin Kim, Hyewon Jeong, Shan Chen, Shuyue Stella Li, Mingyu Lu, Kumail Alhamoud, Jimin Mun, Cristina Grau, Minseok Jung, Rodrigo Gameiro, Lizhou Fan, Eugene Park, Tristan Lin, Joonsik Yoon, Wonjin Yoon, Maarten Sap, Yulia Tsvetkov, Paul Liang, Xuhai Xu, Xin Liu, Daniel McDuff, Hyeonhoon Lee, Hae Won Park, Samir Tulebaev, Cynthia Breazeal
Title: Medical Hallucinations in Foundation Models and Their Impact on Healthcare
Abstract:
Foundation Models that are capable of processing and generating multi-modal data have transformed AI's role in medicine. However, a key limitation of their reliability is hallucination, where inaccurate or fabricated information can impact clinical decisions and patient safety. We define medical hallucination as any instance in which a model generates misleading medical content. This paper examines the unique characteristics, causes, and implications of medical hallucinations, with a particular focus on how these errors manifest themselves in real-world clinical scenarios. Our contributions include (1) a taxonomy for understanding and addressing medical hallucinations, (2) benchmarking models using medical hallucination dataset and physician-annotated LLM responses to real medical cases, providing direct insight into the clinical impact of hallucinations, and (3) a multi-national clinician survey on their experiences with medical hallucinations. Our results reveal that inference techniques such as Chain-of-Thought (CoT) and Search Augmented Generation can effectively reduce hallucination rates. However, despite these improvements, non-trivial levels of hallucination persist. These findings underscore the ethical and practical imperative for robust detection and mitigation strategies, establishing a foundation for regulatory policies that prioritize patient safety and maintain clinical integrity as AI becomes more integrated into healthcare. The feedback from clinicians highlights the urgent need for not only technical advances but also for clearer ethical and regulatory guidelines to ensure patient safety. A repository organizing the paper resources, summaries, and additional information is available at https://github.com/mitmedialab/medical hallucination.

Authors:Yihang Wu, Ahmad Chaddad, Christian Desrosiers, Tareef Daqqaq, Reem Kateb
Title: FAA-CLIP: Federated Adversarial Adaptation of CLIP
Abstract:
Despite the remarkable performance of vision language models (VLMs) such as Contrastive Language Image Pre-training (CLIP), the large size of these models is a considerable obstacle to their use in federated learning (FL) systems where the parameters of local client models need to be transferred to a global server for aggregation. Another challenge in FL is the heterogeneity of data from different clients, which affects the generalization performance of the solution. In addition, natural pre-trained VLMs exhibit poor generalization ability in the medical datasets, suggests there exists a domain gap. To solve these issues, we introduce a novel method for the Federated Adversarial Adaptation (FAA) of CLIP. Our method, named FAA-CLIP, handles the large communication costs of CLIP using a light-weight feature adaptation module (FAM) for aggregation, effectively adapting this VLM to each client's data while greatly reducing the number of parameters to transfer. By keeping CLIP frozen and only updating the FAM parameters, our method is also computationally efficient. Unlike existing approaches, our FAA-CLIP method directly addresses the problem of domain shifts across clients via a domain adaptation (DA) module. This module employs a domain classifier to predict if a given sample is from the local client or the global server, allowing the model to learn domain-invariant representations. Extensive experiments on six different datasets containing both natural and medical images demonstrate that FAA-CLIP can generalize well on both natural and medical datasets compared to recent FL approaches. Our codes are available at https://github.com/AIPMLab/FAA-CLIP.

Authors:Mst. Fahmida Sultana Naznin, Adnan Ibney Faruq, Mostafa Rifat Tazwar, Md Jobayer, Md. Mehedi Hasan Shawon, Md Rakibul Hasan
Title: CSTRL: Context-Driven Sequential Transfer Learning for Abstractive Radiology Report Summarization
Abstract:
A radiology report comprises several sections, including the Findings and Impression of the diagnosis. Automatically generating the Impression from the Findings is crucial for reducing radiologists' workload and improving diagnostic accuracy. Pretrained models that excel in common abstractive summarization problems encounter challenges when applied to specialized medical domains largely due to the complex terminology and the necessity for accurate clinical context. Such tasks in medical domains demand extracting core information, avoiding context shifts, and maintaining proper flow. Misuse of medical terms can lead to drastic clinical errors. To address these issues, we introduce a sequential transfer learning that ensures key content extraction and coherent summarization. Sequential transfer learning often faces challenges like initial parameter decay and knowledge loss, which we resolve with the Fisher matrix regularization. Using MIMIC-CXR and Open-I datasets, our model, CSTRL - Context-driven Sequential TRansfer Learning - achieved state-of-the-art performance, showing 56.2% improvement in BLEU-1, 40.5% in BLEU-2, 84.3% in BLEU-3, 28.9% in ROUGE-1, 41.0% in ROUGE-2 and 26.5% in ROGUE-3 score over benchmark studies. We also analyze factual consistency scores while preserving the medical context. Our code is publicly available at https://github.com/fahmidahossain/Report_Summarization.

Authors:Mst. Fahmida Sultana Naznin, Adnan Ibney Faruq, Mostafa Rifat Tazwar, Md Jobayer, Md. Mehedi Hasan Shawon, Md Rakibul Hasan
Title: CSTRL: Context-Driven Sequential Transfer Learning for Abstractive Radiology Report Summarization
Abstract:
A radiology report comprises several sections, including the Findings and Impression of the diagnosis. Automatically generating the Impression from the Findings is crucial for reducing radiologists' workload and improving diagnostic accuracy. Pretrained models that excel in common abstractive summarization problems encounter challenges when applied to specialized medical domains largely due to the complex terminology and the necessity for accurate clinical context. Such tasks in medical domains demand extracting core information, avoiding context shifts, and maintaining proper flow. Misuse of medical terms can lead to drastic clinical errors. To address these issues, we introduce a sequential transfer learning that ensures key content extraction and coherent summarization. Sequential transfer learning often faces challenges like initial parameter decay and knowledge loss, which we resolve with the Fisher matrix regularization. Using MIMIC-CXR and Open-I datasets, our model, CSTRL - Context-driven Sequential TRansfer Learning - achieved state-of-the-art performance, showing 56.2% improvement in BLEU-1, 40.5% in BLEU-2, 84.3% in BLEU-3, 28.9% in ROUGE-1, 41.0% in ROUGE-2 and 26.5% in ROGUE-3 score over benchmark studies. We also analyze factual consistency scores while preserving the medical context. Our code is publicly available at https://github.com/fahmidahossain/Report_Summarization.

Authors:Jillian Fisher, Ruth E. Appel, Chan Young Park, Yujin Potter, Liwei Jiang, Taylor Sorensen, Shangbin Feng, Yulia Tsvetkov, Margaret E. Roberts, Jennifer Pan, Dawn Song, Yejin Choi
Title: Political Neutrality in AI Is Impossible- But Here Is How to Approximate It
Abstract:
AI systems often exhibit political bias, influencing users' opinions and decisions. While political neutrality-defined as the absence of bias-is often seen as an ideal solution for fairness and safety, this position paper argues that true political neutrality is neither feasible nor universally desirable due to its subjective nature and the biases inherent in AI training data, algorithms, and user interactions. However, inspired by Joseph Raz's philosophical insight that "neutrality [...] can be a matter of degree" (Raz, 1986), we argue that striving for some neutrality remains essential for promoting balanced AI interactions and mitigating user manipulation. Therefore, we use the term "approximation" of political neutrality to shift the focus from unattainable absolutes to achievable, practical proxies. We propose eight techniques for approximating neutrality across three levels of conceptualizing AI, examining their trade-offs and implementation strategies. In addition, we explore two concrete applications of these approximations to illustrate their practicality. Finally, we assess our framework on current large language models (LLMs) at the output level, providing a demonstration of how it can be evaluated. This work seeks to advance nuanced discussions of political neutrality in AI and promote the development of responsible, aligned language models.

Authors:Zebin Xing, Xingyu Zhang, Yang Hu, Bo Jiang, Tong He, Qian Zhang, Xiaoxiao Long, Wei Yin
Title: GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
Abstract:
We propose GoalFlow, an end-to-end autonomous driving method for generating high-quality multimodal trajectories. In autonomous driving scenarios, there is rarely a single suitable trajectory. Recent methods have increasingly focused on modeling multimodal trajectory distributions. However, they suffer from trajectory selection complexity and reduced trajectory quality due to high trajectory divergence and inconsistencies between guidance and scene information. To address these issues, we introduce GoalFlow, a novel method that effectively constrains the generative process to produce high-quality, multimodal trajectories. To resolve the trajectory divergence problem inherent in diffusion-based methods, GoalFlow constrains the generated trajectories by introducing a goal point. GoalFlow establishes a novel scoring mechanism that selects the most appropriate goal point from the candidate points based on scene information. Furthermore, GoalFlow employs an efficient generative method, Flow Matching, to generate multimodal trajectories, and incorporates a refined scoring mechanism to select the optimal trajectory from the candidates. Our experimental results, validated on the Navsim\cite{Dauner2024_navsim}, demonstrate that GoalFlow achieves state-of-the-art performance, delivering robust multimodal trajectories for autonomous driving. GoalFlow achieved PDMS of 90.3, significantly surpassing other methods. Compared with other diffusion-policy-based methods, our approach requires only a single denoising step to obtain excellent performance. The code is available at https://github.com/YvanYin/GoalFlow.

Authors:Zebin Xing, Xingyu Zhang, Yang Hu, Bo Jiang, Tong He, Qian Zhang, Xiaoxiao Long, Wei Yin
Title: GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
Abstract:
We propose GoalFlow, an end-to-end autonomous driving method for generating high-quality multimodal trajectories. In autonomous driving scenarios, there is rarely a single suitable trajectory. Recent methods have increasingly focused on modeling multimodal trajectory distributions. However, they suffer from trajectory selection complexity and reduced trajectory quality due to high trajectory divergence and inconsistencies between guidance and scene information. To address these issues, we introduce GoalFlow, a novel method that effectively constrains the generative process to produce high-quality, multimodal trajectories. To resolve the trajectory divergence problem inherent in diffusion-based methods, GoalFlow constrains the generated trajectories by introducing a goal point. GoalFlow establishes a novel scoring mechanism that selects the most appropriate goal point from the candidate points based on scene information. Furthermore, GoalFlow employs an efficient generative method, Flow Matching, to generate multimodal trajectories, and incorporates a refined scoring mechanism to select the optimal trajectory from the candidates. Our experimental results, validated on the Navsim\cite{Dauner2024_navsim}, demonstrate that GoalFlow achieves state-of-the-art performance, delivering robust multimodal trajectories for autonomous driving. GoalFlow achieved PDMS of 90.3, significantly surpassing other methods. Compared with other diffusion-policy-based methods, our approach requires only a single denoising step to obtain excellent performance. The code is available at https://github.com/YvanYin/GoalFlow.

Authors:Zhenxuan Zhang, Hongjie Wu, Jiahao Huang, Baihong Xie, Zhifan Gao, Junxian Du, Pete Lally, Guang Yang
Title: Task-oriented Uncertainty Collaborative Learning for Label-Efficient Brain Tumor Segmentation
Abstract:
Multi-contrast magnetic resonance imaging (MRI) plays a vital role in brain tumor segmentation and diagnosis by leveraging complementary information from different contrasts. Each contrast highlights specific tumor characteristics, enabling a comprehensive understanding of tumor morphology, edema, and pathological heterogeneity. However, existing methods still face the challenges of multi-level specificity perception across different contrasts, especially with limited annotations. These challenges include data heterogeneity, granularity differences, and interference from redundant information. To address these limitations, we propose a Task-oriented Uncertainty Collaborative Learning (TUCL) framework for multi-contrast MRI segmentation. TUCL introduces a task-oriented prompt attention (TPA) module with intra-prompt and cross-prompt attention mechanisms to dynamically model feature interactions across contrasts and tasks. Additionally, a cyclic process is designed to map the predictions back to the prompt to ensure that the prompts are effectively utilized. In the decoding stage, the TUCL framework proposes a dual-path uncertainty refinement (DUR) strategy which ensures robust segmentation by refining predictions iteratively. Extensive experimental results on limited labeled data demonstrate that TUCL significantly improves segmentation accuracy (88.2\% in Dice and 10.853 mm in HD95). It shows that TUCL has the potential to extract multi-contrast information and reduce the reliance on extensive annotations. The code is available at: https://github.com/Zhenxuan-Zhang/TUCL_BrainSeg.

Authors:Zhongyi Shui, Ruizhe Guo, Honglin Li, Yuxuan Sun, Yunlong Zhang, Chenglu Zhu, Jiatong Cai, Pingyi Chen, Yanzhou Su, Lin Yang
Title: Towards Effective and Efficient Context-aware Nucleus Detection in Histopathology Whole Slide Images
Abstract:
Nucleus detection in histopathology whole slide images (WSIs) is crucial for a broad spectrum of clinical applications. Current approaches for nucleus detection in gigapixel WSIs utilize a sliding window methodology, which overlooks boarder contextual information (eg, tissue structure) and easily leads to inaccurate predictions. To address this problem, recent studies additionally crops a large Filed-of-View (FoV) region around each sliding window to extract contextual features. However, such methods substantially increases the inference latency. In this paper, we propose an effective and efficient context-aware nucleus detection algorithm. Specifically, instead of leveraging large FoV regions, we aggregate contextual clues from off-the-shelf features of historically visited sliding windows. This design greatly reduces computational overhead. Moreover, compared to large FoV regions at a low magnification, the sliding window patches have higher magnification and provide finer-grained tissue details, thereby enhancing the detection accuracy. To further improve the efficiency, we propose a grid pooling technique to compress dense feature maps of each patch into a few contextual tokens. Finally, we craft OCELOT-seg, the first benchmark dedicated to context-aware nucleus instance segmentation. Code, dataset, and model checkpoints will be available at https://github.com/windygoo/PathContext.

Authors:Zengqun Zhao, Ziquan Liu, Yu Cao, Shaogang Gong, Ioannis Patras
Title: AIM-Fair: Advancing Algorithmic Fairness via Selectively Fine-Tuning Biased Models with Contextual Synthetic Data
Abstract:
Recent advances in generative models have sparked research on improving model fairness with AI-generated data. However, existing methods often face limitations in the diversity and quality of synthetic data, leading to compromised fairness and overall model accuracy. Moreover, many approaches rely on the availability of demographic group labels, which are often costly to annotate. This paper proposes AIM-Fair, aiming to overcome these limitations and harness the potential of cutting-edge generative models in promoting algorithmic fairness. We investigate a fine-tuning paradigm starting from a biased model initially trained on real-world data without demographic annotations. This model is then fine-tuned using unbiased synthetic data generated by a state-of-the-art diffusion model to improve its fairness. Two key challenges are identified in this fine-tuning paradigm, 1) the low quality of synthetic data, which can still happen even with advanced generative models, and 2) the domain and bias gap between real and synthetic data. To address the limitation of synthetic data quality, we propose Contextual Synthetic Data Generation (CSDG) to generate data using a text-to-image diffusion model (T2I) with prompts generated by a context-aware LLM, ensuring both data diversity and control of bias in synthetic data. To resolve domain and bias shifts, we introduce a novel selective fine-tuning scheme in which only model parameters more sensitive to bias and less sensitive to domain shift are updated. Experiments on CelebA and UTKFace datasets show that our AIM-Fair improves model fairness while maintaining utility, outperforming both fully and partially fine-tuned approaches to model fairness.

Authors:Yu Zhang, Shutong Qiao, Jiaqi Zhang, Tzu-Heng Lin, Chen Gao, Yong Li
Title: A Survey of Large Language Model Empowered Agents for Recommendation and Search: Towards Next-Generation Information Retrieval
Abstract:
Information technology has profoundly altered the way humans interact with information. The vast amount of content created, shared, and disseminated online has made it increasingly difficult to access relevant information. Over the past two decades, recommender systems and search (collectively referred to as information retrieval systems) have evolved significantly to address these challenges. Recent advances in large language models (LLMs) have demonstrated capabilities that surpass human performance in various language-related tasks and exhibit general understanding, reasoning, and decision-making abilities. This paper explores the transformative potential of LLM agents in enhancing recommender and search systems. We discuss the motivations and roles of LLM agents, and establish a classification framework to elaborate on the existing research. We highlight the immense potential of LLM agents in addressing current challenges in recommendation and search, providing insights into future research directions. This paper is the first to systematically review and classify the research on LLM agents in these domains, offering a novel perspective on leveraging this advanced AI technology for information retrieval. To help understand the existing works, we list the existing papers on LLM agent based recommendation and search at this link: https://github.com/tsinghua-fib-lab/LLM-Agent-for-Recommendation-and-Search.

Authors:Hiroki Tomioka, Katsuma Inoue, Yasuo Kuniyoshi, Kohei Nakajima
Title: Backpropagation through Soft Body: Investigating Information Processing in Brain-Body Coupling Systems
Abstract:
Animals achieve sophisticated behavioral control through dynamic coupling of the brain, body, and environment. Accordingly, the co-design approach, in which both the controllers and the physical properties are optimized simultaneously, has been suggested for generating refined agents without designing each component separately. In this study, we aim to reveal how the function of the information processing is distributed between brains and bodies while applying the co-design approach. Using a framework called ``backpropagation through soft body," we developed agents to perform specified tasks and analyzed their mechanisms. The tasks included classification and corresponding behavioral association, nonlinear dynamical system emulation, and autonomous behavioral generation. In each case, our analyses revealed reciprocal relationships between the brains and bodies. In addition, we show that optimized brain functionalities can be embedded into bodies using physical reservoir computing techniques. Our results pave the way for efficient designs of brain--body coupling systems.

Authors:Mufan Liu, Qi Yang, Miaoran Zhao, He Huang, Le Yang, Zhu Li, Yiling Xu
Title: D2GV: Deformable 2D Gaussian Splatting for Video Representation in 400FPS
Abstract:
Implicit Neural Representations (INRs) have emerged as a powerful approach for video representation, offering versatility across tasks such as compression and inpainting. However, their implicit formulation limits both interpretability and efficacy, undermining their practicality as a comprehensive solution. We propose a novel video representation based on deformable 2D Gaussian splatting, dubbed D2GV, which aims to achieve three key objectives: 1) improved efficiency while delivering superior quality; 2) enhanced scalability and interpretability; and 3) increased friendliness for downstream tasks. Specifically, we initially divide the video sequence into fixed-length Groups of Pictures (GoP) to allow parallel training and linear scalability with video length. For each GoP, D2GV represents video frames by applying differentiable rasterization to 2D Gaussians, which are deformed from a canonical space into their corresponding timestamps. Notably, leveraging efficient CUDA-based rasterization, D2GV converges fast and decodes at speeds exceeding 400 FPS, while delivering quality that matches or surpasses state-of-the-art INRs. Moreover, we incorporate a learnable pruning and quantization strategy to streamline D2GV into a more compact representation. We demonstrate D2GV's versatility in tasks including video interpolation, inpainting and denoising, underscoring its potential as a promising solution for video representation. Code is available at: https://github.com/Evan-sudo/D2GV.

Authors:Prashant K. Jha
Title: From Theory to Application: A Practical Introduction to Neural Operators in Scientific Computing
Abstract:
This focused review explores a range of neural operator architectures for approximating solutions to parametric partial differential equations (PDEs), emphasizing high-level concepts and practical implementation strategies. The study covers foundational models such as Deep Operator Networks (DeepONet), Principal Component Analysis-based Neural Networks (PCANet), and Fourier Neural Operators (FNO), providing comparative insights into their core methodologies and performance. These architectures are demonstrated on two classical linear parametric PDEs: the Poisson equation and linear elastic deformation. Beyond forward problem-solving, the review delves into applying neural operators as surrogates in Bayesian inference problems, showcasing their effectiveness in accelerating posterior inference while maintaining accuracy. The paper concludes by discussing current challenges, particularly in controlling prediction accuracy and generalization. It outlines emerging strategies to address these issues, such as residual-based error correction and multi-level training. This review can be seen as a comprehensive guide to implementing neural operators and integrating them into scientific computing workflows.

Authors:Shiping Yang, Jie Wu, Wenbiao Ding, Ning Wu, Shining Liang, Ming Gong, Hengyuan Zhang, Dongmei Zhang
Title: Quantifying the Robustness of Retrieval-Augmented Language Models Against Spurious Features in Grounding Data
Abstract:
Robustness has become a critical attribute for the deployment of RAG systems in real-world applications. Existing research focuses on robustness to explicit noise (e.g., document semantics) but overlooks spurious features (a.k.a. implicit noise). While previous works have explored spurious features in LLMs, they are limited to specific features (e.g., formats) and narrow scenarios (e.g., ICL). In this work, we statistically confirm the presence of spurious features in the RAG paradigm, a robustness problem caused by the sensitivity of LLMs to semantic-agnostic features. Moreover, we provide a comprehensive taxonomy of spurious features and empirically quantify their impact through controlled experiments. Further analysis reveals that not all spurious features are harmful and they can even be beneficial sometimes. Extensive evaluation results across multiple LLMs suggest that spurious features are a widespread and challenging problem in the field of RAG. The code and dataset will be released to facilitate future research. We release all codes and data at: $\\\href{https://github.com/maybenotime/RAG-SpuriousFeatures}{https://github.com/maybenotime/RAG-SpuriousFeatures}$.

Authors:Libo Zhu, Haotong Qin, Kaicheng Yang, Wenbo Li, Yong Guo, Yulun Zhang, Susanto Rahardja, Xiaokang Yang
Title: QArtSR: Quantization via Reverse-Module and Timestep-Retraining in One-Step Diffusion based Image Super-Resolution
Abstract:
One-step diffusion-based image super-resolution (OSDSR) models are showing increasingly superior performance nowadays. However, although their denoising steps are reduced to one and they can be quantized to 8-bit to reduce the costs further, there is still significant potential for OSDSR to quantize to lower bits. To explore more possibilities of quantized OSDSR, we propose an efficient method, Quantization via reverse-module and timestep-retraining for OSDSR, named QArtSR. Firstly, we investigate the influence of timestep value on the performance of quantized models. Then, we propose Timestep Retraining Quantization (TRQ) and Reversed Per-module Quantization (RPQ) strategies to calibrate the quantized model. Meanwhile, we adopt the module and image losses to update all quantized modules. We only update the parameters in quantization finetuning components, excluding the original weights. To ensure that all modules are fully finetuned, we add extended end-to-end training after per-module stage. Our 4-bit and 2-bit quantization experimental results indicate that QArtSR obtains superior effects against the recent leading comparison methods. The performance of 4-bit QArtSR is close to the full-precision one. Our code will be released at https://github.com/libozhu03/QArtSR.

Authors:Jian Liu, Wei Sun, Kai Zeng, Jin Zheng, Hui Yang, Hossein Rahmani, Ajmal Mian, Lin Wang
Title: Novel Object 6D Pose Estimation with a Single Reference View
Abstract:
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.

Authors:Jian Liu, Wei Sun, Kai Zeng, Jin Zheng, Hui Yang, Hossein Rahmani, Ajmal Mian, Lin Wang
Title: Novel Object 6D Pose Estimation with a Single Reference View
Abstract:
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.

Authors:Xiaobei Zhao, Xiangrong Zeng, Yihang Ma, Pengjin Tang, Xiang Li
Title: TomatoScanner: phenotyping tomato fruit based on only RGB image
Abstract:
In tomato greenhouse, phenotypic measurement is meaningful for researchers and farmers to monitor crop growth, thereby precisely control environmental conditions in time, leading to better quality and higher yield. Traditional phenotyping mainly relies on manual measurement, which is accurate but inefficient, more importantly, endangering the health and safety of people. Several studies have explored computer vision-based methods to replace manual phenotyping. However, the 2D-based need extra calibration, or cause destruction to fruit, or can only measure limited and meaningless traits. The 3D-based need extra depth camera, which is expensive and unacceptable for most farmers. In this paper, we propose a non-contact tomato fruit phenotyping method, titled TomatoScanner, where RGB image is all you need for input. First, pixel feature is extracted by instance segmentation of our proposed EdgeYOLO with preprocessing of individual separation and pose correction. Second, depth feature is extracted by depth estimation of Depth Pro. Third, pixel and depth feature are fused to output phenotype results in reality. We establish self-built Tomato Phenotype Dataset to test TomatoScanner, which achieves excellent phenotyping on width, height, vertical area and volume, with median relative error of 5.63%, 7.03%, -0.64% and 37.06%, respectively. We propose and add three innovative modules - EdgeAttention, EdgeLoss and EdgeBoost - into EdgeYOLO, to enhance the segmentation accuracy on edge portion. Precision and mean Edge Error greatly improve from 0.943 and 5.641% to 0.986 and 2.963%, respectively. Meanwhile, EdgeYOLO keeps lightweight and efficient, with 48.7 M weights size and 76.34 FPS. Codes and datasets: https://github.com/AlexTraveling/TomatoScanner.

Authors:Raphael Trumpp, Ansgar Schäfftlein, Mirco Theile, Marco Caccamo
Title: Impoola: The Power of Average Pooling for Image-Based Deep Reinforcement Learning
Abstract:
As image-based deep reinforcement learning tackles more challenging tasks, increasing model size has become an important factor in improving performance. Recent studies achieved this by focusing on the parameter efficiency of scaled networks, typically using Impala-CNN, a 15-layer ResNet-inspired network, as the image encoder. However, while Impala-CNN evidently outperforms older CNN architectures, potential advancements in network design for deep reinforcement learning-specific image encoders remain largely unexplored. We find that replacing the flattening of output feature maps in Impala-CNN with global average pooling leads to a notable performance improvement. This approach outperforms larger and more complex models in the Procgen Benchmark, particularly in terms of generalization. We call our proposed encoder model Impoola-CNN. A decrease in the network's translation sensitivity may be central to this improvement, as we observe the most significant gains in games without agent-centered observations. Our results demonstrate that network scaling is not just about increasing model size - efficient network design is also an essential factor. We make our code available at https://github.com/raphajaner/impoola.

Authors:Juan Miguel Valverde, Maja Østergaard, Adrian Rodriguez-Palomo, Peter Alling Strange Vibe, Nina Kølln Wittig, Henrik Birkedal, Anders Bjorholm Dahl
Title: Disconnect to Connect: A Data Augmentation Method for Improving Topology Accuracy in Image Segmentation
Abstract:
Accurate segmentation of thin, tubular structures (e.g., blood vessels) is challenging for deep neural networks. These networks classify individual pixels, and even minor misclassifications can break the thin connections within these structures. Existing methods for improving topology accuracy, such as topology loss functions, rely on very precise, topologically-accurate training labels, which are difficult to obtain. This is because annotating images, especially 3D images, is extremely laborious and time-consuming. Low image resolution and contrast further complicates the annotation by causing tubular structures to appear disconnected. We present CoLeTra, a data augmentation strategy that integrates to the models the prior knowledge that structures that appear broken are actually connected. This is achieved by creating images with the appearance of disconnected structures while maintaining the original labels. Our extensive experiments, involving different architectures, loss functions, and datasets, demonstrate that CoLeTra leads to segmentations topologically more accurate while often improving the Dice coefficient and Hausdorff distance. CoLeTra's hyper-parameters are intuitive to tune, and our sensitivity analysis shows that CoLeTra is robust to changes in these hyper-parameters. We also release a dataset specifically suited for image segmentation methods with a focus on topology accuracy. CoLetra's code can be found at https://github.com/jmlipman/CoLeTra.

Authors:Haotian Hu, Jingwei Xu, Fanyi Wang, Toyota Li, Yaonong Wang, Laifeng Hu, Zhiwang Zhang
Title: FastMap: Fast Queries Initialization Based Vectorized HD Map Reconstruction Framework
Abstract:
Reconstruction of high-definition maps is a crucial task in perceiving the autonomous driving environment, as its accuracy directly impacts the reliability of prediction and planning capabilities in downstream modules. Current vectorized map reconstruction methods based on the DETR framework encounter limitations due to the redundancy in the decoder structure, necessitating the stacking of six decoder layers to maintain performance, which significantly hampers computational efficiency. To tackle this issue, we introduce FastMap, an innovative framework designed to reduce decoder redundancy in existing approaches. FastMap optimizes the decoder architecture by employing a single-layer, two-stage transformer that achieves multilevel representation capabilities. Our framework eliminates the conventional practice of randomly initializing queries and instead incorporates a heatmap-guided query generation module during the decoding phase, which effectively maps image features into structured query vectors using learnable positional encoding. Additionally, we propose a geometry-constrained point-to-line loss mechanism for FastMap, which adeptly addresses the challenge of distinguishing highly homogeneous features that often arise in traditional point-to-point loss computations. Extensive experiments demonstrate that FastMap achieves state-of-the-art performance in both nuScenes and Argoverse2 datasets, with its decoder operating 3.2 faster than the baseline. Code and more demos are available at https://github.com/hht1996ok/FastMap.

Authors:Weigao Sun, Disen Lan, Tong Zhu, Xiaoye Qu, Yu Cheng
Title: Linear-MoE: Linear Sequence Modeling Meets Mixture-of-Experts
Abstract:
Linear Sequence Modeling (LSM) like linear attention, state space models and linear RNNs, and Mixture-of-Experts (MoE) have recently emerged as significant architectural improvements. In this paper, we introduce Linear-MoE, a production-level system for modeling and training large-scale models that integrate LSM with MoE. Linear-MoE leverages the advantages of both LSM modules for linear-complexity sequence modeling and MoE layers for sparsely activation, aiming to offer high performance with efficient training. The Linear-MoE system comprises: 1) Modeling subsystem, which provides a unified framework supporting all instances of LSM. and 2) Training subsystem, which facilitates efficient training by incorporating various advanced parallelism technologies, particularly Sequence Parallelism designed for Linear-MoE models. Additionally, we explore hybrid models that combine Linear-MoE layers with standard Transformer-MoE layers with its Sequence Parallelism to further enhance model flexibility and performance. Evaluations on two model series, A0.3B-2B and A1B-7B, demonstrate Linear-MoE achieves efficiency gains while maintaining competitive performance on various benchmarks, showcasing its potential as a next-generation foundational model architecture. Code: https://github.com/OpenSparseLLMs/Linear-MoE.

Authors:Run He, Di Fang, Yicheng Xu, Yawen Cui, Ming Li, Cen Chen, Ziqian Zeng, Huiping Zhuang
Title: Semantic Shift Estimation via Dual-Projection and Classifier Reconstruction for Exemplar-Free Class-Incremental Learning
Abstract:
Exemplar-Free Class-Incremental Learning (EFCIL) aims to sequentially learn from distinct categories without retaining exemplars but easily suffers from catastrophic forgetting of learned knowledge. While existing EFCIL methods leverage knowledge distillation to alleviate forgetting, they still face two critical challenges: semantic shift and decision bias. Specifically, the embeddings of old tasks shift in the embedding space after learning new tasks, and the classifier becomes biased towards new tasks due to training solely with new data, hindering the balance between old and new knowledge. To address these issues, we propose the Dual-Projection Shift Estimation and Classifier Reconstruction (DPCR) approach for EFCIL. DPCR effectively estimates semantic shift through a dual-projection, which combines a learnable transformation with a row-space projection to capture both task-wise and category-wise shifts. Furthermore, to mitigate decision bias, DPCR employs ridge regression to reformulate a classifier reconstruction process. This reconstruction exploits previous in covariance and prototype of each class after calibration with estimated shift, thereby reducing decision bias. Extensive experiments demonstrate that, on various datasets, DPCR effectively balances old and new tasks, outperforming state-of-the-art EFCIL methods. Our codes are available at https://github.com/RHe502/ICML25-DPCR.

Authors:Weiyu Ma, Yuqian Fu, Zecheng Zhang, Bernard Ghanem, Guohao Li
Title: AVA: Attentive VLM Agent for Mastering StarCraft II
Abstract:
We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience. Traditional frameworks such as SMAC rely on abstract state representations that diverge significantly from human perception, limiting the ecological validity of agent behavior. Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay. The AVA architecture consists of three integrated components: (1) a vision-language model enhanced with specialized self-attention mechanisms for strategic unit targeting and battlefield assessment, (2) a retrieval-augmented generation system that leverages domain-specific StarCraft II knowledge to inform tactical decisions, and (3) a dynamic role-based task distribution system that enables coordinated multi-agent behavior. The experimental evaluation in our proposed AVACraft environment, which contains 21 multimodal StarCraft II scenarios, demonstrates that AVA powered by foundation models (specifically Qwen-VL and GPT-4o) can execute complex tactical maneuvers without explicit training, achieving comparable performance to traditional MARL methods that require substantial training iterations. This work establishes a foundation for developing human-aligned StarCraft II agents and advances the broader research agenda of multimodal game AI. Our implementation is available at https://github.com/camel-ai/VLM-Play-StarCraft2.

Authors:Zhenxuan Zhang, Kinhei Lee, Peiyuan Jing, Weihang Deng, Huichi Zhou, Zihao Jin, Jiahao Huang, Zhifan Gao, Dominic C Marshall, Yingying Fang, Guang Yang
Title: GEMA-Score: Granular Explainable Multi-Agent Scoring Framework for Radiology Report Evaluation
Abstract:
Automatic medical report generation has the potential to support clinical diagnosis, reduce the workload of radiologists, and demonstrate potential for enhancing diagnostic consistency. However, current evaluation metrics often fail to reflect the clinical reliability of generated reports. Early overlap-based methods focus on textual matches between predicted and ground-truth entities but miss fine-grained clinical details (e.g., anatomical location, severity). Some diagnostic metrics are limited by fixed vocabularies or templates, reducing their ability to capture diverse clinical expressions. LLM-based approaches further lack interpretable reasoning steps, making it hard to assess or trust their behavior in safety-critical settings. These limitations hinder the comprehensive assessment of the reliability of generated reports and pose risks in their selection for clinical use. Therefore, we propose a Granular Explainable Multi-Agent Score (GEMA-Score) in this paper, which conducts both objective quantification and subjective evaluation through a large language model-based multi-agent workflow. Our GEMA-Score parses structured reports and employs stable calculations through interactive exchanges of information among agents to assess disease diagnosis, location, severity, and uncertainty. Additionally, an LLM-based scoring agent evaluates completeness, readability, and clinical terminology while providing explanatory feedback. Extensive experiments validate that GEMA-Score achieves the highest correlation with human expert evaluations on a public dataset, demonstrating its effectiveness in clinical scoring (Kendall coefficient = $0.69$ for ReXVal dataset and Kendall coefficient = $0.45$ for RadEvalX dataset). The anonymous project demo is available at: https://github.com/Zhenxuan-Zhang/GEMA_score.

Authors:Zhenxuan Zhang, Peiyuan Jing, Coraline Beitone, Jiahao Huang, Zhifan Gao, Guang Yang, Pete Lally
Title: Pretext Task Adversarial Learning for Unpaired Low-field to Ultra High-field MRI Synthesis
Abstract:
Given the scarcity and cost of high-field MRI, the synthesis of high-field MRI from low-field MRI holds significant potential when there is limited data for training downstream tasks (e.g. segmentation). Low-field MRI often suffers from a reduced signal-to-noise ratio (SNR) and spatial resolution compared to high-field MRI. However, synthesizing high-field MRI data presents challenges. These involve aligning image features across domains while preserving anatomical accuracy and enhancing fine details. To address these challenges, we propose a Pretext Task Adversarial (PTA) learning framework for high-field MRI synthesis from low-field MRI data. The framework comprises three processes: (1) The slice-wise gap perception (SGP) network aligns the slice inconsistencies of low-field and high-field datasets based on contrastive learning. (2) The local structure correction (LSC) network extracts local structures by restoring the locally rotated and masked images. (3) The pretext task-guided adversarial training process introduces additional supervision and incorporates a discriminator to improve image realism. Extensive experiments on low-field to ultra high-field task demonstrate the effectiveness of our method, achieving state-of-the-art performance (16.892 in FID, 1.933 in IS, and 0.324 in MS-SSIM). This enables the generation of high-quality high-field-like MRI data from low-field MRI data to augment training datasets for downstream tasks. The code is available at: https://github.com/Zhenxuan-Zhang/PTA4Unpaired_HF_MRI_SYN.

Authors:Nikolai Ilinykh, Shalom Lappin, Asad Sayeed, Sharid Loáiciga
Title: Coreference as an indicator of context scope in multimodal narrative
Abstract:
We demonstrate that large multimodal language models differ substantially from humans in the distribution of coreferential expressions in a visual storytelling task. We introduce a number of metrics to quantify the characteristics of coreferential patterns in both human- and machine-written texts. Humans distribute coreferential expressions in a way that maintains consistency across texts and images, interleaving references to different entities in a highly varied way. Machines are less able to track mixed references, despite achieving perceived improvements in generation quality. Materials, metrics, and code for our study are available at https://github.com/GU-CLASP/coreference-context-scope.

Authors:Souhail Hadgi, Luca Moschella, Andrea Santilli, Diego Gomez, Qixing Huang, Emanuele RodolÃ, Simone Melzi, Maks Ovsjanikov
Title: Escaping Plato's Cave: Towards the Alignment of 3D and Text Latent Spaces
Abstract:
Recent works have shown that, when trained at scale, uni-modal 2D vision and text encoders converge to learned features that share remarkable structural properties, despite arising from different representations. However, the role of 3D encoders with respect to other modalities remains unexplored. Furthermore, existing 3D foundation models that leverage large datasets are typically trained with explicit alignment objectives with respect to frozen encoders from other representations. In this work, we investigate the possibility of a posteriori alignment of representations obtained from uni-modal 3D encoders compared to text-based feature spaces. We show that naive post-training feature alignment of uni-modal text and 3D encoders results in limited performance. We then focus on extracting subspaces of the corresponding feature spaces and discover that by projecting learned representations onto well-chosen lower-dimensional subspaces the quality of alignment becomes significantly higher, leading to improved accuracy on matching and retrieval tasks. Our analysis further sheds light on the nature of these shared subspaces, which roughly separate between semantic and geometric data representations. Overall, ours is the first work that helps to establish a baseline for post-training alignment of 3D uni-modal and text feature spaces, and helps to highlight both the shared and unique properties of 3D data compared to other representations. Our code and weights are available at https://github.com/Souhail-01/3d-text-alignment

Authors:Neemesh Yadav, Jiarui Liu, Francesco Ortu, Roya Ensafi, Zhijing Jin, Rada Mihalcea
Title: Revealing Hidden Mechanisms of Cross-Country Content Moderation with Natural Language Processing
Abstract:
The ability of Natural Language Processing (NLP) methods to categorize text into multiple classes has motivated their use in online content moderation tasks, such as hate speech and fake news detection. However, there is limited understanding of how or why these methods make such decisions, or why certain content is moderated in the first place. To investigate the hidden mechanisms behind content moderation, we explore multiple directions: 1) training classifiers to reverse-engineer content moderation decisions across countries; 2) explaining content moderation decisions by analyzing Shapley values and LLM-guided explanations. Our primary focus is on content moderation decisions made across countries, using pre-existing corpora sampled from the Twitter Stream Grab. Our experiments reveal interesting patterns in censored posts, both across countries and over time. Through human evaluations of LLM-generated explanations across three LLMs, we assess the effectiveness of using LLMs in content moderation. Finally, we discuss potential future directions, as well as the limitations and ethical considerations of this work. Our code and data are available at https://github.com/causalNLP/censorship

Authors:Bowen Pang, Kai Li, Feifan Wang
Title: Optimizing LLM Inference Throughput via Memory-aware and SLA-constrained Dynamic Batching
Abstract:
The increasing adoption of large language models (LLMs) necessitates inference serving systems that can deliver both high throughput and low latency. Deploying LLMs with hundreds of billions of parameters on memory-constrained GPUs exposes significant limitations in static batching methods. Current inference serving systems often treat batch sizes as fixed hyper-parameters, hindering real-time adaptation to varying system conditions. In this paper, we propose a dynamic batching method that continuously monitors memory utilization and adheres to service-level agreements (SLAs) to enable real-time batch size configuration adjustment. The method comprises two core components: a memory-aware batch scheduler that dynamically allocates GPU resources and a latency feedback mechanism that optimizes decoding processes under SLA constraints. The numerical experiments demonstrate throughput gains of 8% to 28% and capacity improvements of 22% compared to traditional static batching methods, while maintaining full compatibility with existing inference infrastructure. These results highlight the effectiveness of dynamic batching in balancing computational efficiency and quality-of-service requirements for contemporary LLM deployment scenarios. The source code of this work is publicly available at https://github.com/KevinLee1110/dynamic-batching.

Authors:Chengqi Zheng, Haiyan Yin, Jianda Chen, Terence Ng, Yew-Soon Ong, Ivor Tsang
Title: Mastering Continual Reinforcement Learning through Fine-Grained Sparse Network Allocation and Dormant Neuron Exploration
Abstract:
Continual Reinforcement Learning (CRL) is essential for developing agents that can learn, adapt, and accumulate knowledge over time. However, a fundamental challenge persists as agents must strike a delicate balance between plasticity, which enables rapid skill acquisition, and stability, which ensures long-term knowledge retention while preventing catastrophic forgetting. In this paper, we introduce SSDE, a novel structure-based approach that enhances plasticity through a fine-grained allocation strategy with Structured Sparsity and Dormant-guided Exploration. SSDE decomposes the parameter space into forward-transfer (frozen) parameters and task-specific (trainable) parameters. Crucially, these parameters are allocated by an efficient co-allocation scheme under sparse coding, ensuring sufficient trainable capacity for new tasks while promoting efficient forward transfer through frozen parameters. However, structure-based methods often suffer from rigidity due to the accumulation of non-trainable parameters, limiting exploration and adaptability. To address this, we further introduce a sensitivity-guided neuron reactivation mechanism that systematically identifies and resets dormant neurons, which exhibit minimal influence in the sparse policy network during inference. This approach effectively enhance exploration while preserving structural efficiency. Extensive experiments on the CW10-v1 Continual World benchmark demonstrate that SSDE achieves state-of-the-art performance, reaching a success rate of 95%, surpassing prior methods significantly in both plasticity and stability trade-offs (code is available at: https://github.com/chengqiArchy/SSDE).

Authors:Ruoxuan Zhang, Hongxia Xie, Yi Yao, Jian-Yu Jiang-Lin, Bin Wen, Ling Lo, Hong-Han Shuai, Yung-Hui Li, Wen-Huang Cheng
Title: RecipeGen: A Benchmark for Real-World Recipe Image Generation
Abstract:
Recipe image generation is an important challenge in food computing, with applications from culinary education to interactive recipe platforms. However, there is currently no real-world dataset that comprehensively connects recipe goals, sequential steps, and corresponding images. To address this, we introduce RecipeGen, the first real-world goal-step-image benchmark for recipe generation, featuring diverse ingredients, varied recipe steps, multiple cooking styles, and a broad collection of food categories. Data is in https://github.com/zhangdaxia22/RecipeGen.

Authors:Baris Yilmaz, Erdem Akagündüz, Salih Tileylioglu
Title: Deep Sequence Models for Predicting Average Shear Wave Velocity from Strong Motion Records
Abstract:
This study explores the use of deep learning for predicting the time averaged shear wave velocity in the top 30 m of the subsurface ($V_{s30}$) at strong motion recording stations in Türkiye. $V_{s30}$ is a key parameter in site characterization and, as a result for seismic hazard assessment. However, it is often unavailable due to the lack of direct measurements and is therefore estimated using empirical correlations. Such correlations however are commonly inadequate in capturing complex, site-specific variability and this motivates the need for data-driven approaches. In this study, we employ a hybrid deep learning model combining convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to capture both spatial and temporal dependencies in strong motion records. Furthermore, we explore how using different parts of the signal influence our deep learning model. Our results suggest that the hybrid approach effectively learns complex, nonlinear relationships within seismic signals. We observed that an improved P-wave arrival time model increased the prediction accuracy of $V_{s30}$. We believe the study provides valuable insights into improving $V_{s30}$ predictions using a CNN-LSTM framework, demonstrating its potential for improving site characterization for seismic studies. Our codes are available via this repo: https://github.com/brsylmz23/CNNLSTM_DeepEQ

Authors:Yifan Liu, Yu Fang, Zhouhan Lin
Title: DiVISe: Direct Visual-Input Speech Synthesis Preserving Speaker Characteristics And Intelligibility
Abstract:
Video-to-speech (V2S) synthesis, the task of generating speech directly from silent video input, is inherently more challenging than other speech synthesis tasks due to the need to accurately reconstruct both speech content and speaker characteristics from visual cues alone. Recently, audio-visual pre-training has eliminated the need for additional acoustic hints in V2S, which previous methods often relied on to ensure training convergence. However, even with pre-training, existing methods continue to face challenges in achieving a balance between acoustic intelligibility and the preservation of speaker-specific characteristics. We analyzed this limitation and were motivated to introduce DiVISe (Direct Visual-Input Speech Synthesis), an end-to-end V2S model that predicts Mel-spectrograms directly from video frames alone. Despite not taking any acoustic hints, DiVISe effectively preserves speaker characteristics in the generated audio, and achieves superior performance on both objective and subjective metrics across the LRS2 and LRS3 datasets. Our results demonstrate that DiVISe not only outperforms existing V2S models in acoustic intelligibility but also scales more effectively with increased data and model parameters. Code and weights can be found at https://github.com/PussyCat0700/DiVISe.

Authors:Bill Cassidy, Christian McBride, Connah Kendrick, Neil D. Reeves, Joseph M. Pappachan, Shaghayegh Raad, Moi Hoon Yap
Title: Gaussian Random Fields as an Abstract Representation of Patient Metadata for Multimodal Medical Image Segmentation
Abstract:
The growing rate of chronic wound occurrence, especially in patients with diabetes, has become a concerning trend in recent years. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Chronic wounds can have devastating consequences for the patient, with infection often leading to reduced quality of life and increased mortality risk. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to both patient and clinician. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf

Authors:Yunkai Gao, Jiaming Guo, Fan Wu, Rui Zhang
Title: Policy Constraint by Only Support Constraint for Offline Reinforcement Learning
Abstract:
Offline reinforcement learning (RL) aims to optimize a policy by using pre-collected datasets, to maximize cumulative rewards. However, offline reinforcement learning suffers challenges due to the distributional shift between the learned and behavior policies, leading to errors when computing Q-values for out-of-distribution (OOD) actions. To mitigate this issue, policy constraint methods aim to constrain the learned policy's distribution with the distribution of the behavior policy or confine action selection within the support of the behavior policy. However, current policy constraint methods tend to exhibit excessive conservatism, hindering the policy from further surpassing the behavior policy's performance. In this work, we present Only Support Constraint (OSC) which is derived from maximizing the total probability of learned policy in the support of behavior policy, to address the conservatism of policy constraint. OSC presents a regularization term that only restricts policies to the support without imposing extra constraints on actions within the support. Additionally, to fully harness the performance of the new policy constraints, OSC utilizes a diffusion model to effectively characterize the support of behavior policies. Experimental evaluations across a variety of offline RL benchmarks demonstrate that OSC significantly enhances performance, alleviating the challenges associated with distributional shifts and mitigating conservatism of policy constraints. Code is available at https://github.com/MoreanP/OSC.

Authors:Orestis Tsirakis, Konstantinos Fysarakis, Vasileios Mavroeidis, Ioannis Papaefstathiou
Title: Operationalizing Cybersecurity Knowledge: Design, Implementation & Evaluation of a Knowledge Management System for CACAO Playbooks
Abstract:
Modern cybersecurity threats are growing in complexity, targeting increasingly intricate & interconnected systems. To effectively defend against these evolving threats, security teams utilize automation & orchestration to enhance response efficiency and consistency. In that sense, cybersecurity playbooks are key enablers, providing a structured, reusable, and continuously improving approach to incident response, enabling organizations to codify requirements, domain expertise, and best practices and automate decision-making processes to the extent possible. The emerging Collaborative Automated Course of Action Operations (CACAO) standard defines a common machine-processable schema for cybersecurity playbooks, facilitating interoperability for their exchange and ensuring the ability to orchestrate and automate cybersecurity operations. However, despite its potential and the fact that it is a relatively new standardization work, there is a lack of tools to support its adoption and, in particular, the management & lifecycle development of CACAO playbooks, limiting their practical deployment. Motivated by the above, this work presents the design, development, and evaluation of a Knowledge Management System (KMS) for managing CACAO cybersecurity playbooks throughout their lifecycle, providing essential tools to streamline playbook management. Using open technologies & standards, the proposed approach fosters standards-based interoperability & enhances the usability of state-of-the-art cybersecurity orchestration & automation primitives. To encourage adoption, the resulting implementation is released as open-source, which, to the extent of our knowledge, comprises the first publicly available & documented work in this domain, supporting the broader uptake of CACAO playbooks & promoting the widespread use of interoperable automation and orchestration mechanisms in cybersecurity operations.

Authors:Orestis Tsirakis, Konstantinos Fysarakis, Vasileios Mavroeidis, Ioannis Papaefstathiou
Title: Operationalizing Cybersecurity Knowledge: Design, Implementation & Evaluation of a Knowledge Management System for CACAO Playbooks
Abstract:
Modern cybersecurity threats are growing in complexity, targeting increasingly intricate & interconnected systems. To effectively defend against these evolving threats, security teams utilize automation & orchestration to enhance response efficiency and consistency. In that sense, cybersecurity playbooks are key enablers, providing a structured, reusable, and continuously improving approach to incident response, enabling organizations to codify requirements, domain expertise, and best practices and automate decision-making processes to the extent possible. The emerging Collaborative Automated Course of Action Operations (CACAO) standard defines a common machine-processable schema for cybersecurity playbooks, facilitating interoperability for their exchange and ensuring the ability to orchestrate and automate cybersecurity operations. However, despite its potential and the fact that it is a relatively new standardization work, there is a lack of tools to support its adoption and, in particular, the management & lifecycle development of CACAO playbooks, limiting their practical deployment. Motivated by the above, this work presents the design, development, and evaluation of a Knowledge Management System (KMS) for managing CACAO cybersecurity playbooks throughout their lifecycle, providing essential tools to streamline playbook management. Using open technologies & standards, the proposed approach fosters standards-based interoperability & enhances the usability of state-of-the-art cybersecurity orchestration & automation primitives. To encourage adoption, the resulting implementation is released as open-source, which, to the extent of our knowledge, comprises the first publicly available & documented work in this domain, supporting the broader uptake of CACAO playbooks & promoting the widespread use of interoperable automation and orchestration mechanisms in cybersecurity operations.

Authors:Qingyuan Zhou, Yuehu Gong, Weidong Yang, Jiaze Li, Yeqi Luo, Baixin Xu, Shuhao Li, Ben Fei, Ying He
Title: MGSR: 2D/3D Mutual-boosted Gaussian Splatting for High-fidelity Surface Reconstruction under Various Light Conditions
Abstract:
Novel view synthesis (NVS) and surface reconstruction (SR) are essential tasks in 3D Gaussian Splatting (3D-GS). Despite recent progress, these tasks are often addressed independently, with GS-based rendering methods struggling under diverse light conditions and failing to produce accurate surfaces, while GS-based reconstruction methods frequently compromise rendering quality. This raises a central question: must rendering and reconstruction always involve a trade-off? To address this, we propose MGSR, a 2D/3D Mutual-boosted Gaussian splatting for Surface Reconstruction that enhances both rendering quality and 3D reconstruction accuracy. MGSR introduces two branches--one based on 2D-GS and the other on 3D-GS. The 2D-GS branch excels in surface reconstruction, providing precise geometry information to the 3D-GS branch. Leveraging this geometry, the 3D-GS branch employs a geometry-guided illumination decomposition module that captures reflected and transmitted components, enabling realistic rendering under varied light conditions. Using the transmitted component as supervision, the 2D-GS branch also achieves high-fidelity surface reconstruction. Throughout the optimization process, the 2D-GS and 3D-GS branches undergo alternating optimization, providing mutual supervision. Prior to this, each branch completes an independent warm-up phase, with an early stopping strategy implemented to reduce computational costs. We evaluate MGSR on a diverse set of synthetic and real-world datasets, at both object and scene levels, demonstrating strong performance in rendering and surface reconstruction. Code is available at https://github.com/TsingyuanChou/MGSR.

Authors:Ruixi Lin, Ziqiao Wang, Yang You
Title: Ensemble Debiasing Across Class and Sample Levels for Fairer Prompting Accuracy
Abstract:
Language models are strong few-shot learners and achieve good overall accuracy in text classification tasks, masking the fact that their results suffer from great class accuracy imbalance. We believe that the pursuit of overall accuracy should not come from enriching the strong classes, but from raising up the weak ones. To address the imbalance, we propose a Heaviside step function based ensemble debiasing method, which enables flexible rectifications of in-context learned class probabilities at both class and sample levels. Evaluations with Llama-2-13B on seven text classification benchmarks show that our approach achieves state-of-the-art overall accuracy gains with balanced class accuracies. More importantly, we perform analyses on the resulted probability correction scheme, showing that sample-level corrections are necessary to elevate weak classes. Due to effectively correcting weak classes, our method also brings significant performance gains to a larger model variant, Llama-2-70B, especially on a biomedical domain task, further demonstrating the necessity of ensemble debiasing at both levels. Our source code is available at https://github.com/NUS-HPC-AI-Lab/DCS.

Authors:Junxiang Qiu, Lin Liu, Shuo Wang, Jinda Lu, Kezhou Chen, Yanbin Hao
Title: Accelerating Diffusion Transformer via Gradient-Optimized Cache
Abstract:
Feature caching has emerged as an effective strategy to accelerate diffusion transformer (DiT) sampling through temporal feature reuse. It is a challenging problem since (1) Progressive error accumulation from cached blocks significantly degrades generation quality, particularly when over 50\% of blocks are cached; (2) Current error compensation approaches neglect dynamic perturbation patterns during the caching process, leading to suboptimal error correction. To solve these problems, we propose the Gradient-Optimized Cache (GOC) with two key innovations: (1) Cached Gradient Propagation: A gradient queue dynamically computes the gradient differences between cached and recomputed features. These gradients are weighted and propagated to subsequent steps, directly compensating for the approximation errors introduced by caching. (2) Inflection-Aware Optimization: Through statistical analysis of feature variation patterns, we identify critical inflection points where the denoising trajectory changes direction. By aligning gradient updates with these detected phases, we prevent conflicting gradient directions during error correction. Extensive evaluations on ImageNet demonstrate GOC's superior trade-off between efficiency and quality. With 50\% cached blocks, GOC achieves IS 216.28 (26.3\% higher) and FID 3.907 (43\% lower) compared to baseline DiT, while maintaining identical computational costs. These improvements persist across various cache ratios, demonstrating robust adaptability to different acceleration requirements. Code is available at https://github.com/qiujx0520/GOC_ICCV2025.git.

Authors:Bowen Wu, Wenqing Wang, Haoran Li, Ying Li, Jingsong Yu, Baoxun Wang
Title: Interpersonal Memory Matters: A New Task for Proactive Dialogue Utilizing Conversational History
Abstract:
Proactive dialogue systems aim to empower chatbots with the capability of leading conversations towards specific targets, thereby enhancing user engagement and service autonomy. Existing systems typically target pre-defined keywords or entities, neglecting user attributes and preferences implicit in dialogue history, hindering the development of long-term user intimacy. To address these challenges, we take a radical step towards building a more human-like conversational agent by integrating proactive dialogue systems with long-term memory into a unified framework. Specifically, we define a novel task named Memory-aware Proactive Dialogue (MapDia). By decomposing the task, we then propose an automatic data construction method and create the first Chinese Memory-aware Proactive Dataset (ChMapData). Furthermore, we introduce a joint framework based on Retrieval Augmented Generation (RAG), featuring three modules: Topic Summarization, Topic Retrieval, and Proactive Topic-shifting Detection and Generation, designed to steer dialogues towards relevant historical topics at the right time. The effectiveness of our dataset and models is validated through both automatic and human evaluations. We release the open-source framework and dataset at https://github.com/FrontierLabs/MapDia.

Authors:Wenhao Wang, Zijie Yu, Rui Ye, Jianqing Zhang, Siheng Chen, Yanfeng Wang
Title: FedMABench: Benchmarking Mobile Agents on Decentralized Heterogeneous User Data
Abstract:
Mobile agents have attracted tremendous research participation recently. Traditional approaches to mobile agent training rely on centralized data collection, leading to high cost and limited scalability. Distributed training utilizing federated learning offers an alternative by harnessing real-world user data, providing scalability and reducing costs. However, pivotal challenges, including the absence of standardized benchmarks, hinder progress in this field. To tackle the challenges, we introduce FedMABench, the first benchmark for federated training and evaluation of mobile agents, specifically designed for heterogeneous scenarios. FedMABench features 6 datasets with 30+ subsets, 8 federated algorithms, 10+ base models, and over 800 apps across 5 categories, providing a comprehensive framework for evaluating mobile agents across diverse environments. Through extensive experiments, we uncover several key insights: federated algorithms consistently outperform local training; the distribution of specific apps plays a crucial role in heterogeneity; and, even apps from distinct categories can exhibit correlations during training. FedMABench is publicly available at: https://github.com/wwh0411/FedMABench with the datasets at: https://huggingface.co/datasets/wwh0411/FedMABench.

Authors:Tianjun Wei, Wei Wen, Ruizhi Qiao, Xing Sun, Jianghong Ma
Title: RocketEval: Efficient Automated LLM Evaluation via Grading Checklist
Abstract:
Evaluating large language models (LLMs) in diverse and challenging scenarios is essential to align them with human preferences. To mitigate the prohibitive costs associated with human evaluations, utilizing a powerful LLM as a judge has emerged as a favored approach. Nevertheless, this methodology encounters several challenges, including substantial expenses, concerns regarding privacy and security, and reproducibility. In this paper, we propose a straightforward, replicable, and accurate automated evaluation method by leveraging a lightweight LLM as the judge, named RocketEval. Initially, we identify that the performance disparity between lightweight and powerful LLMs in evaluation tasks primarily stems from their ability to conduct comprehensive analyses, which is not easily enhanced through techniques such as chain-of-thought reasoning. By reframing the evaluation task as a multi-faceted Q&A using an instance-specific checklist, we demonstrate that the limited judgment accuracy of lightweight LLMs is largely attributes to high uncertainty and positional bias. To address these challenges, we introduce an automated evaluation process grounded in checklist grading, which is designed to accommodate a variety of scenarios and questions. This process encompasses the creation of checklists, the grading of these checklists by lightweight LLMs, and the reweighting of checklist items to align with the supervised annotations. Our experiments carried out on the automated evaluation benchmarks, MT-Bench and WildBench datasets, reveal that RocketEval, when using Gemma-2-2B as the judge, achieves a high correlation (0.965) with human preferences, which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code is available at https://github.com/Joinn99/RocketEval-ICLR .

Authors:Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, Cho-Jui Hsieh
Title: R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model
Abstract:
Recently DeepSeek R1 demonstrated how reinforcement learning with simple rule-based incentives can enable autonomous development of complex reasoning in large language models, characterized by the "aha moment", in which the model manifest self-reflection and increased response length during training. However, attempts to extend this success to multimodal reasoning often failed to reproduce these key characteristics. In this report, we present the first successful replication of these emergent characteristics for multimodal reasoning on only a non-SFT 2B model. Starting with Qwen2-VL-2B and applying reinforcement learning directly on the SAT dataset, our model achieves 59.47% accuracy on CVBench, outperforming the base model by approximately ~30% and exceeding both SFT setting by ~2%. In addition, we share our failed attempts and insights in attempting to achieve R1-like reasoning using RL with instruct models. aiming to shed light on the challenges involved. Our key observations include: (1) applying RL on instruct model often results in trivial reasoning trajectories, and (2) naive length reward are ineffective in eliciting reasoning capabilities. The project code is available at https://github.com/turningpoint-ai/VisualThinker-R1-Zero

Authors:Xi Li, Tong Rao, Cihui Pan
Title: EDM: Efficient Deep Feature Matching
Abstract:
Recent feature matching methods have achieved remarkable performance but lack efficiency consideration. In this paper, we revisit the mainstream detector-free matching pipeline and improve all its stages considering both accuracy and efficiency. We propose an Efficient Deep feature Matching network, EDM. We first adopt a deeper CNN with fewer dimensions to extract multi-level features. Then we present a Correlation Injection Module that conducts feature transformation on high-level deep features, and progressively injects feature correlations from global to local for efficient multi-scale feature aggregation, improving both speed and performance. In the refinement stage, a novel lightweight bidirectional axis-based regression head is designed to directly predict subpixel-level correspondences from latent features, avoiding the significant computational cost of explicitly locating keypoints on high-resolution local feature heatmaps. Moreover, effective selection strategies are introduced to enhance matching accuracy. Extensive experiments show that our EDM achieves competitive matching accuracy on various benchmarks and exhibits excellent efficiency, offering valuable best practices for real-world applications. The code is available at https://github.com/chicleee/EDM.

Authors:Shufang Zhang, Jiazheng Wu, Jiacheng He, Kaiyi Wang, Shan An
Title: HyperGraph ROS: An Open-Source Robot Operating System for Hybrid Parallel Computing based on Computational HyperGraph
Abstract:
This paper presents HyperGraph ROS, an open-source robot operating system that unifies intra-process, inter-process, and cross-device computation into a computational hypergraph for efficient message passing and parallel execution. In order to optimize communication, HyperGraph ROS dynamically selects the optimal communication mechanism while maintaining a consistent API. For intra-process messages, Intel-TBB Flow Graph is used with C++ pointer passing, which ensures zero memory copying and instant delivery. Meanwhile, inter-process and cross-device communication seamlessly switch to ZeroMQ. When a node receives a message from any source, it is immediately activated and scheduled for parallel execution by Intel-TBB. The computational hypergraph consists of nodes represented by TBB flow graph nodes and edges formed by TBB pointer-based connections for intra-process communication, as well as ZeroMQ links for inter-process and cross-device communication. This structure enables seamless distributed parallelism. Additionally, HyperGraph ROS provides ROS-like utilities such as a parameter server, a coordinate transformation tree, and visualization tools. Evaluation in diverse robotic scenarios demonstrates significantly higher transmission and throughput efficiency compared to ROS 2. Our work is available at https://github.com/wujiazheng2020a/hyper_graph_ros.

Authors:Shibo Feng, Wanjin Feng, Xingyu Gao, Peilin Zhao, Zhiqi Shen
Title: TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting
Abstract:
Spiking Neural Networks (SNNs) offer a promising, biologically inspired approach for processing spatiotemporal data, particularly for time series forecasting. However, conventional neuron models like the Leaky Integrate-and-Fire (LIF) struggle to capture long-term dependencies and effectively process multi-scale temporal dynamics. To overcome these limitations, we introduce the Temporal Segment Leaky Integrate-and-Fire (TS-LIF) model, featuring a novel dual-compartment architecture. The dendritic and somatic compartments specialize in capturing distinct frequency components, providing functional heterogeneity that enhances the neuron's ability to process both low- and high-frequency information. Furthermore, the newly introduced direct somatic current injection reduces information loss during intra-neuronal transmission, while dendritic spike generation improves multi-scale information extraction. We provide a theoretical stability analysis of the TS-LIF model and explain how each compartment contributes to distinct frequency response characteristics. Experimental results show that TS-LIF outperforms traditional SNNs in time series forecasting, demonstrating better accuracy and robustness, even with missing data. TS-LIF advances the application of SNNs in time-series forecasting, providing a biologically inspired approach that captures complex temporal dynamics and offers potential for practical implementation in diverse forecasting scenarios. The source code is available at https://github.com/kkking-kk/TS-LIF.

Authors:Wenhao Liang, Wei Zhang, Lin Yue, Miao Xu, Olaf Maennel, Weitong Chen
Title: We Care Each Pixel: Calibrating on Medical Segmentation Model
Abstract:
Medical image segmentation is fundamental for computer-aided diagnostics, providing accurate delineation of anatomical structures and pathological regions. While common metrics such as Accuracy, DSC, IoU, and HD primarily quantify spatial agreement between predictions and ground-truth labels, they do not assess the calibration quality of segmentation models, which is crucial for clinical reliability. To address this limitation, we propose pixel-wise Expected Calibration Error (pECE), a novel metric that explicitly measures miscalibration at the pixel level, thereby ensuring both spatial precision and confidence reliability. We further introduce a morphological adaptation strategy that applies morphological operations to ground-truth masks before computing calibration losses, particularly benefiting margin-based losses such as Margin SVLS and NACL. Additionally, we present the Signed Distance Calibration Loss (SDC), which aligns boundary geometry with calibration objectives by penalizing discrepancies between predicted and ground-truth signed distance functions (SDFs). Extensive experiments demonstrate that our method not only enhances segmentation performance but also improves calibration quality, yielding more trustworthy confidence estimates. Code is available at: https://github.com/EagleAdelaide/SDC-Loss.

Authors:Chengwei Zhao, Kun Hu, Jie Xu, Lijun Zhao, Baiwen Han, Kaidi Wu, Maoshan Tian, Shenghai Yuan
Title: Adaptive-LIO: Enhancing Robustness and Precision through Environmental Adaptation in LiDAR Inertial Odometry
Abstract:
The emerging Internet of Things (IoT) applications, such as driverless cars, have a growing demand for high-precision positioning and navigation. Nowadays, LiDAR inertial odometry becomes increasingly prevalent in robotics and autonomous driving. However, many current SLAM systems lack sufficient adaptability to various scenarios. Challenges include decreased point cloud accuracy with longer frame intervals under the constant velocity assumption, coupling of erroneous IMU information when IMU saturation occurs, and decreased localization accuracy due to the use of fixed-resolution maps during indoor-outdoor scene transitions. To address these issues, we propose a loosely coupled adaptive LiDAR-Inertial-Odometry named \textbf{Adaptive-LIO}, which incorporates adaptive segmentation to enhance mapping accuracy, adapts motion modality through IMU saturation and fault detection, and adjusts map resolution adaptively using multi-resolution voxel maps based on the distance from the LiDAR center. Our proposed method has been tested in various challenging scenarios, demonstrating the effectiveness of the improvements we introduce. The code is open-source on GitHub: \href{https://github.com/chengwei0427/adaptive_lio}{Adaptive-LIO}.

Authors:Reshabh K Sharma, Jonathan De Halleux, Shraddha Barke, Benjamin Zorn
Title: PromptPex: Automatic Test Generation for Language Model Prompts
Abstract:
Large language models (LLMs) are being used in many applications and prompts for these models are integrated into software applications as code-like artifacts. These prompts behave much like traditional software in that they take inputs, generate outputs, and perform some specific function. However, prompts differ from traditional code in many ways and require new approaches to ensure that they are robust. For example, unlike traditional software the output of a prompt depends on the AI model that interprets it. Also, while natural language prompts are easy to modify, the impact of updates is harder to predict. New approaches to testing, debugging, and modifying prompts with respect to the model running them are required. To address some of these issues, we developed PromptPex, an LLM-based tool to automatically generate and evaluate unit tests for a given prompt. PromptPex extracts input and output specifications from a prompt and uses them to generate diverse, targeted, and valid unit tests. These tests are instrumental in identifying regressions when a prompt is changed and also serve as a tool to understand how prompts are interpreted by different models. We use PromptPex to generate tests for eight benchmark prompts and evaluate the quality of the generated tests by seeing if they can cause each of four diverse models to produce invalid output. PromptPex consistently creates tests that result in more invalid model outputs than a carefully constructed baseline LLM-based test generator. Furthermore, by extracting concrete specifications from the input prompt, PromptPex allows prompt writers to clearly understand and test specific aspects of their prompts. The source code of PromptPex is available at https://github.com/microsoft/promptpex.

Authors:Chang Yu, Wenxin Du, Zeshun Zong, Alejandro Castro, Chenfanfu Jiang, Xuchen Han
Title: A Convex Formulation of Material Points and Rigid Bodies with GPU-Accelerated Async-Coupling for Interactive Simulation
Abstract:
We present a novel convex formulation that weakly couples the Material Point Method (MPM) with rigid body dynamics through frictional contact, optimized for efficient GPU parallelization. Our approach features an asynchronous time-splitting scheme to integrate MPM and rigid body dynamics under different time step sizes. We develop a globally convergent quasi-Newton solver tailored for massive parallelization, achieving up to 500x speedup over previous convex formulations without sacrificing stability. Our method enables interactive-rate simulations of robotic manipulation tasks with diverse deformable objects including granular materials and cloth, with strong convergence guarantees. We detail key implementation strategies to maximize performance and validate our approach through rigorous experiments, demonstrating superior speed, accuracy, and stability compared to state-of-the-art MPM simulators for robotics. We make our method available in the open-source robotics toolkit, Drake.

Authors:Yordan P. Raykov, Hengrui Luo, Justin D. Strait, Wasiur R. KhudaBukhsh
Title: Kernel-based estimators for functional causal effects
Abstract:
We propose causal effect estimators based on empirical Fréchet means and operator-valued kernels, tailored to functional data spaces. These methods address the challenges of high-dimensionality, sequential ordering, and model complexity while preserving robustness to treatment misspecification. Using structural assumptions, we obtain compact representations of potential outcomes, enabling scalable estimation of causal effects over time and across covariates. We provide both theoretical, regarding the consistency of functional causal effects, as well as empirical comparison of a range of proposed causal effect estimators. Applications to binary treatment settings with functional outcomes illustrate the framework's utility in biomedical monitoring, where outcomes exhibit complex temporal dynamics. Our estimators accommodate scenarios with registered covariates and outcomes, aligning them to the Fréchet means, as well as cases requiring higher-order representations to capture intricate covariate-outcome interactions. These advancements extend causal inference to dynamic and non-linear domains, offering new tools for understanding complex treatment effects in functional data settings.

Authors:Xuheng Cai, Erica Zhang
Title: HieroLM: Egyptian Hieroglyph Recovery with Next Word Prediction Language Model
Abstract:
Egyptian hieroglyphs are found on numerous ancient Egyptian artifacts, but it is common that they are blurry or even missing due to erosion. Existing efforts to restore blurry hieroglyphs adopt computer vision techniques such as CNNs and model hieroglyph recovery as an image classification task, which suffers from two major limitations: (i) They cannot handle severely damaged or completely missing hieroglyphs. (ii) They make predictions based on a single hieroglyph without considering contextual and grammatical information. This paper proposes a novel approach to model hieroglyph recovery as a next word prediction task and use language models to address it. We compare the performance of different SOTA language models and choose LSTM as the architecture of our HieroLM due to the strong local affinity of semantics in Egyptian hieroglyph texts. Experiments show that HieroLM achieves over 44% accuracy and maintains notable performance on multi-shot predictions and scarce data, which makes it a pragmatic tool to assist scholars in inferring missing hieroglyphs. It can also complement CV-based models to significantly reduce perplexity in recognizing blurry hieroglyphs. Our code is available at https://github.com/Rick-Cai/HieroLM/.

Authors:Souvik Kundu, Anahita Bhiwandiwalla, Sungduk Yu, Phillip Howard, Tiep Le, Sharath Nittur Sridhar, David Cobbley, Hao Kang, Vasudev Lal
Title: LVLM-Compress-Bench: Benchmarking the Broader Impact of Large Vision-Language Model Compression
Abstract:
Despite recent efforts in understanding the compression impact on large language models (LLMs) in terms of their downstream task performance and trustworthiness on relatively simpler uni-modal benchmarks (for example, question answering, common sense reasoning), their detailed study on multi-modal Large Vision-Language Models (LVLMs) is yet to be unveiled. Towards mitigating this gap, we present LVLM-Compress-Bench, a framework to first thoroughly study the broad impact of compression on the generative performance of LVLMs with multi-modal input driven tasks. In specific, we consider two major classes of compression for autoregressive models, namely KV cache and weight compression, for the dynamically growing intermediate cache and static weights, respectively. We use four LVLM variants of the popular LLaVA framework to present our analysis via integrating various state-of-the-art KV and weight compression methods including uniform, outlier-reduced, and group quantization for the KV cache and weights. With this framework we demonstrate on ten different multi-modal datasets with different capabilities including recognition, knowledge, language generation, spatial awareness, visual reasoning, hallucination and visual illusion identification, toxicity, stereotypes and bias. In specific, our framework demonstrates the compression impact on both general and ethically critical metrics leveraging a combination of real world and synthetic datasets to encompass diverse societal intersectional attributes. Extensive experimental evaluations yield diverse and intriguing observations on the behavior of LVLMs at different quantization budget of KV and weights, in both maintaining and losing performance as compared to the baseline model with FP16 data format. Code will be open-sourced at https://github.com/opengear-project/LVLM-compress-bench.

Authors:Hanene F. Z. Brachemi Meftah, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Deforges
Title: Energy-Latency Attacks: A New Adversarial Threat to Deep Learning
Abstract:
The growing computational demand for deep neural networks ( DNNs) has raised concerns about their energy consumption and carbon footprint, particularly as the size and complexity of the models continue to increase. To address these challenges, energy-efficient hardware and custom accelerators have become essential. Additionally, adaptable DNN s are being developed to dynamically balance performance and efficiency. The use of these strategies became more common to enable sustainable AI deployment. However, these efficiency-focused designs may also introduce vulnerabilities, as attackers can potentially exploit them to increase latency and energy usage by triggering their worst-case-performance scenarios. This new type of attack, called energy-latency attacks, has recently gained significant research attention, focusing on the vulnerability of DNN s to this emerging attack paradigm, which can trigger denial-of-service ( DoS) attacks. This paper provides a comprehensive overview of current research on energy-latency attacks, categorizing them using the established taxonomy for traditional adversarial attacks. We explore different metrics used to measure the success of these attacks and provide an analysis and comparison of existing attack strategies. We also analyze existing defense mechanisms and highlight current challenges and potential areas for future research in this developing field. The GitHub page for this work can be accessed at https://github.com/hbrachemi/Survey_energy_attacks/

Authors:Armin Ariamajd, Raquel López-Ríos de Castro, Andrea Volkamer
Title: PyPackIT: Automated Research Software Engineering for Scientific Python Applications on GitHub
Abstract:
The increasing importance of Computational Science and Engineering has highlighted the need for high-quality scientific software. However, research software development is often hindered by limited funding, time, staffing, and technical resources. To address these challenges, we introduce PyPackIT, a cloud-based automation tool designed to streamline research software engineering in accordance with FAIR (Findable, Accessible, Interoperable, and Reusable) and Open Science principles. PyPackIT is a user-friendly, ready-to-use software that enables scientists to focus on the scientific aspects of their projects while automating repetitive tasks and enforcing best practices throughout the software development life cycle. Using modern Continuous software engineering and DevOps methodologies, PyPackIT offers a robust project infrastructure including a build-ready Python package skeleton, a fully operational documentation and test suite, and a control center for dynamic project management and customization. PyPackIT integrates seamlessly with GitHub's version control system, issue tracker, and pull-based model to establish a fully-automated software development workflow. Exploiting GitHub Actions, PyPackIT provides a cloud-native Agile development environment using containerization, Configuration-as-Code, and Continuous Integration, Deployment, Testing, Refactoring, and Maintenance pipelines. PyPackIT is an open-source software suite that seamlessly integrates with both new and existing projects via a public GitHub repository template at https://github.com/repodynamics/pypackit.

Authors:Thilo Reinold, Suman Ghosh, Guillermo Gallego
Title: Combined Physics and Event Camera Simulator for Slip Detection
Abstract:
Robot manipulation is a common task in fields like industrial manufacturing. Detecting when objects slip from a robot's grasp is crucial for safe and reliable operation. Event cameras, which register pixel-level brightness changes at high temporal resolution (called ``events''), offer an elegant feature when mounted on a robot's end effector: since they only detect motion relative to their viewpoint, a properly grasped object produces no events, while a slipping object immediately triggers them. To research this feature, representative datasets are essential, both for analytic approaches and for training machine learning models. The majority of current research on slip detection with event-based data is done on real-world scenarios and manual data collection, as well as additional setups for data labeling. This can result in a significant increase in the time required for data collection, a lack of flexibility in scene setups, and a high level of complexity in the repetition of experiments. This paper presents a simulation pipeline for generating slip data using the described camera-gripper configuration in a robot arm, and demonstrates its effectiveness through initial data-driven experiments. The use of a simulator, once it is set up, has the potential to reduce the time spent on data collection, provide the ability to alter the setup at any time, simplify the process of repetition and the generation of arbitrarily large data sets. Two distinct datasets were created and validated through visual inspection and artificial neural networks (ANNs). Visual inspection confirmed photorealistic frame generation and accurate slip modeling, while three ANNs trained on this data achieved high validation accuracy and demonstrated good generalization capabilities on a separate test set, along with initial applicability to real-world data. Project page: https://github.com/tub-rip/event_slip

Authors:Donghyeok Shin, HeeSun Bae, Gyuwon Sim, Wanmo Kang, Il-Chul Moon
Title: Distilling Dataset into Neural Field
Abstract:
Utilizing a large-scale dataset is essential for training high-performance deep learning models, but it also comes with substantial computation and storage costs. To overcome these challenges, dataset distillation has emerged as a promising solution by compressing the large-scale dataset into a smaller synthetic dataset that retains the essential information needed for training. This paper proposes a novel parameterization framework for dataset distillation, coined Distilling Dataset into Neural Field (DDiF), which leverages the neural field to store the necessary information of the large-scale dataset. Due to the unique nature of the neural field, which takes coordinates as input and output quantity, DDiF effectively preserves the information and easily generates various shapes of data. We theoretically confirm that DDiF exhibits greater expressiveness than some previous literature when the utilized budget for a single synthetic instance is the same. Through extensive experiments, we demonstrate that DDiF achieves superior performance on several benchmark datasets, extending beyond the image domain to include video, audio, and 3D voxel. We release the code at https://github.com/aailab-kaist/DDiF.

Authors:Mahfuz Ahmed Anik, Abdur Rahman, Azmine Toushik Wasi, Md Manjurul Ahsan
Title: Preserving Cultural Identity with Context-Aware Translation Through Multi-Agent AI Systems
Abstract:
Language is a cornerstone of cultural identity, yet globalization and the dominance of major languages have placed nearly 3,000 languages at risk of extinction. Existing AI-driven translation models prioritize efficiency but often fail to capture cultural nuances, idiomatic expressions, and historical significance, leading to translations that marginalize linguistic diversity. To address these challenges, we propose a multi-agent AI framework designed for culturally adaptive translation in underserved language communities. Our approach leverages specialized agents for translation, interpretation, content synthesis, and bias evaluation, ensuring that linguistic accuracy and cultural relevance are preserved. Using CrewAI and LangChain, our system enhances contextual fidelity while mitigating biases through external validation. Comparative analysis shows that our framework outperforms GPT-4o, producing contextually rich and culturally embedded translations, a critical advancement for Indigenous, regional, and low-resource languages. This research underscores the potential of multi-agent AI in fostering equitable, sustainable, and culturally sensitive NLP technologies, aligning with the AI Governance, Cultural NLP, and Sustainable NLP pillars of Language Models for Underserved Communities. Our full experimental codebase is publicly available at: https://github.com/ciol-researchlab/Context-Aware_Translation_MAS

Authors:Diyaz Yakubov, David Hästbacka
Title: Comparative Analysis of Lightweight Kubernetes Distributions for Edge Computing: Security, Resilience and Maintainability
Abstract:
The increasing demand for real-time data processing in Internet of Things (IoT) devices has elevated the importance of edge computing, necessitating efficient and secure deployment of applications on resource-constrained devices. Kubernetes and its lightweight distributions (k0s, k3s, KubeEdge, and OpenYurt) extend container orchestration to edge environments, but their security, reliability, and maintainability have not been comprehensively analyzed. This study compares Kubernetes and these lightweight distributions by evaluating security compliance using kube-bench, simulating network outages to assess resiliency, and documenting maintainability. Results indicate that while k3s and k0s offer superior ease of development due to their simplicity, they have lower security compliance compared to Kubernetes, KubeEdge, and OpenYurt. Kubernetes provides a balanced approach but may be resource-intensive for edge deployments. KubeEdge and OpenYurt enhance security features and reliability under network outages but increase complexity and resource consumption. The findings highlight trade-offs between performance, security, resiliency, and maintainability, offering insights for practitioners deploying Kubernetes in edge environments.

Authors:Stephen Chung, Wenyu Du, Jie Fu
Title: Learning from Failures in Multi-Attempt Reinforcement Learning
Abstract:
Recent advancements in reinforcement learning (RL) for large language models (LLMs), exemplified by DeepSeek R1, have shown that even a simple question-answering task can substantially improve an LLM's reasoning capabilities. In this work, we extend this approach by modifying the task into a multi-attempt setting. Instead of generating a single response per question, the model is given multiple attempts, with feedback provided after incorrect responses. The multi-attempt task encourages the model to refine its previous attempts and improve search efficiency. Experimental results show that even a small LLM trained on a multi-attempt task achieves significantly higher accuracy when evaluated with more attempts, improving from 45.6% with 1 attempt to 52.5% with 2 attempts on the math benchmark. In contrast, the same LLM trained on a standard single-turn task exhibits only a marginal improvement, increasing from 42.3% to 43.2% when given more attempts during evaluation. The results indicate that, compared to the standard single-turn task, an LLM trained on a multi-attempt task achieves slightly better performance on math benchmarks while also learning to refine its responses more effectively based on user feedback. Full code is available at https://github.com/DualityRL/multi-attempt

Authors:Jie Ouyang, Tingyue Pan, Mingyue Cheng, Ruiran Yan, Yucong Luo, Jiaying Lin, Qi Liu
Title: HoH: A Dynamic Benchmark for Evaluating the Impact of Outdated Information on Retrieval-Augmented Generation
Abstract:
While Retrieval-Augmented Generation (RAG) has emerged as an effective approach for addressing the knowledge outdating problem in Large Language Models (LLMs), it still faces a critical challenge: the prevalence of outdated information in knowledge bases. Current research primarily focuses on incorporating up-to-date information, yet the impact of outdated information coexisting in retrieval sources remains inadequately addressed. To bridge this gap, we introduce HoH, the first benchmark specifically designed to evaluate the impact of outdated information on RAG. Our benchmark leverages token-level diff algorithms combined with LLM pipelines to efficiently create a large-scale QA dataset that accurately captures the evolution of temporal knowledge in real-world facts. Through comprehensive experiments, we reveal that outdated information significantly degrades RAG performance in two critical ways: (1) it substantially reduces response accuracy by distracting models from correct information, and (2) it can mislead models into generating potentially harmful outputs, even when current information is available. Current RAG approaches struggle with both retrieval and generation aspects when handling outdated information. These findings highlight the urgent need for innovative solutions to address the temporal challenges in RAG. Our code and data are available at: https://github.com/0russwest0/HoH.

Authors:Jingtian Yan, Zhifei Li, William Kang, Kevin Zheng, Yulun Zhang, Zhe Chen, Yue Zhang, Daniel Harabor, Stephen F. Smith, Jiaoyang Li
Title: Advancing MAPF towards the Real World: A Scalable Multi-Agent Realistic Testbed (SMART)
Abstract:
We present Scalable Multi-Agent Realistic Testbed (SMART), a realistic and efficient software tool for evaluating Multi-Agent Path Finding (MAPF) algorithms. MAPF focuses on planning collision-free paths for a group of agents. While state-ofthe-art MAPF algorithms can plan paths for hundreds of robots in seconds, they often rely on simplified robot models, making their real-world performance unclear. Researchers typically lack access to hundreds of physical robots in laboratory settings to evaluate the algorithms. Meanwhile, industrial professionals who lack expertise in MAPF require an easy-to-use simulator to efficiently test and understand the performance of MAPF algorithms in their specific settings. SMART fills this gap with several advantages: (1) SMART uses physics-engine-based simulators to create realistic simulation environments, accounting for complex real-world factors such as robot kinodynamics and execution uncertainties, (2) SMART uses an execution monitor framework based on the Action Dependency Graph, facilitating seamless integration with various MAPF algorithms and robot models, and (3) SMART scales to thousands of robots. The code is publicly available at https://github.com/smart-mapf/smart.

Authors:Sumin Ha, Jun Hyeong Kim, Yinhua Piao, Sun Kim
Title: MV-CLAM: Multi-View Molecular Interpretation with Cross-Modal Projection via Language Model
Abstract:
Human expertise in chemistry and biomedicine relies on contextual molecular understanding, a capability that large language models (LLMs) can extend through fine-grained alignment between molecular structures and text. Recent multimodal learning advances focus on cross-modal alignment, but existing molecule-text models ignore complementary information in different molecular views and rely on single-view representations, limiting molecular understanding. Moreover, naïve multi-view alignment strategies face two challenges: (1) separate aligned spaces with inconsistent mappings between molecule and text embeddings, and that (2) existing loss objectives fail to preserve complementary information for fine-grained alignment. This can limit the LLM's ability to fully understand the molecular properties. To address these issues, we propose MV-CLAM, a novel framework that aligns multi-view molecular representations into a unified textual space using a multi-query transformer (MQ-Former). Our approach ensures cross-view consistency while a token-level contrastive loss preserves diverse molecular features across textual queries. MV-CLAM enhances molecular reasoning, improving retrieval and captioning accuracy. The source code of MV-CLAM is available in https://github.com/sumin124/mv-clam.git.

Authors:Yansong Ning, Shuowei Cai, Wei Li, Jun Fang, Naiqiang Tan, Hua Chai, Hao Liu
Title: DiMA: An LLM-Powered Ride-Hailing Assistant at DiDi
Abstract:
On-demand ride-hailing services like DiDi, Uber, and Lyft have transformed urban transportation, offering unmatched convenience and flexibility. In this paper, we introduce DiMA, an LLM-powered ride-hailing assistant deployed in DiDi Chuxing. Its goal is to provide seamless ride-hailing services and beyond through a natural and efficient conversational interface under dynamic and complex spatiotemporal urban contexts. To achieve this, we propose a spatiotemporal-aware order planning module that leverages external tools for precise spatiotemporal reasoning and progressive order planning. Additionally, we develop a cost-effective dialogue system that integrates multi-type dialog repliers with cost-aware LLM configurations to handle diverse conversation goals and trade-off response quality and latency. Furthermore, we introduce a continual fine-tuning scheme that utilizes real-world interactions and simulated dialogues to align the assistant's behavior with human preferred decision-making processes. Since its deployment in the DiDi application, DiMA has demonstrated exceptional performance, achieving 93% accuracy in order planning and 92% in response generation during real-world interactions. Offline experiments further validate DiMA capabilities, showing improvements of up to 70.23% in order planning and 321.27% in response generation compared to three state-of-the-art agent frameworks, while reducing latency by $0.72\times$ to $5.47\times$. These results establish DiMA as an effective, efficient, and intelligent mobile assistant for ride-hailing services. Our project is released at https://github.com/usail-hkust/DiMA and we also release the MCP service (https://mcp.didichuxing.com/api) to foster the ride-hailing research community.

Authors:Jules Viennot, Guillaume Baudart, Emilio Jesùs Gallego Arias, Marc Lelarge
Title: MiniF2F in Rocq: Automatic Translation Between Proof Assistants -- A Case Study
Abstract:
In this work, we conduct an experiment using state-of-the-art LLMs to translate MiniF2F into Rocq. The translation task focuses on generating a Rocq theorem based on three sources: a natural language description, the Lean formalization, and the Isabelle formalization. We conducted our experiment in 3 stages of increasing complexity, from basic one-shot prompting to multi-turn conversations that incorporate feedback from unsuccessful attempts. At each stage, we perform multiple rounds of translation using increasingly advanced models: GPT-4o mini, Claude 3.5 Sonnet, o1 mini, and o1. We successfully translated 478 out of 488 theorems. The dataset is opensource: https://github.com/LLM4Rocq/miniF2F-rocq.

Authors:Zheng Hui, Yinheng Li, Dan zhao, Tianyi Chen, Colby Banbury, Kazuhito Koishida
Title: WinClick: GUI Grounding with Multimodal Large Language Models
Abstract:
Graphical User Interface (GUI) tasks are vital for automating workflows such as software testing, user interface navigation. For users, the GUI is the most intuitive platform for interacting with a computer. Previous work identified a key challenge in developing visual GUI agents: GUI grounding - the ability to accurately locate screen elements based on instructions. However, most existing GUI agents rely on structured data formats like DOM or HTML files in training or inferencing, which are inaccessible across all applications, particular in a general desktop environments such as Windows OS. To address this, we introduce WinClick, a novel visual GUI agent developed in Windows platform. WinClick leverages screenshots to detect actionable regions. To overcome the challenge of GUI grounding, we enhance WinClick with GUI grounding pre-training and propose an LLM-based method for aligning GUI grounding data. Additionally, we introduce WinSpot, the first comprehensive benchmark for GUI grounding on Windows. Our experiments demonstrate that WinClick, combined with GUI grounding pre-training, significantly outperforms existing baselines, offering a scalable solution for GUI automation in desktop environments. WinSpot is publicly available at https://github.com/zackhuiiiii/WinSpot.

Authors:Houyi Li, Wenzhen Zheng, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie Xuyang, Yuantao Fan, Zhenyu Ding, Haoying Wang, Ning Ding, Shuigeng Zhou, Xiangyu Zhang, Daxin Jiang
Title: Predictable Scale: Part I, Step Law -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
Abstract:
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well established, yet their effective deployment necessitates careful hyperparameter optimization. Although existing methods have explored the influence of hyperparameters on model performance, a principled and generalizable framework across model architectures and data recipes remains absent. In this study, we conduct an unprecedented empirical investigation training over 3,700 LLMs from scratch across 100 trillion tokens, consuming nearly one million NVIDIA H800 GPU hours to establish a universal Scaling Law for hyperparameter optimization in LLM Pre-training, called Step Law. We empirically observe that, under fixed model size ($N$) and dataset size ($D$), the hyperparameter landscape exhibits convexity with a broad optimum, substantially reducing the complexity of hyperparameter search. Building on this insight, we formally define and empirically validate the Step Law: The optimal learning rate follows a power-law relationship with $N$ and $D$, while the optimal batch size is primarily influenced by $D$ and remains largely invariant to $N$.Notably, our estimated optima deviate from the global best performance found via exhaustive search by merely 0.094\% on the test set. To our best known, Step Law is the first that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data recipes. We contribute a universal, plug-and-play optimal hyperparameter tool for the community, which is expected to advance efficient LLM training at scale. All experimental code, data and checkpoints are publicly available at https://github.com/step-law/steplaw

Authors:Anuj Diwan, Zhisheng Zheng, David Harwath, Eunsol Choi
Title: Scaling Rich Style-Prompted Text-to-Speech Datasets
Abstract:
We introduce Paralinguistic Speech Captions (ParaSpeechCaps), a large-scale dataset that annotates speech utterances with rich style captions. While rich abstract tags (e.g. guttural, nasal, pained) have been explored in small-scale human-annotated datasets, existing large-scale datasets only cover basic tags (e.g. low-pitched, slow, loud). We combine off-the-shelf text and speech embedders, classifiers and an audio language model to automatically scale rich tag annotations for the first time. ParaSpeechCaps covers a total of 59 style tags, including both speaker-level intrinsic tags and utterance-level situational tags. It consists of 342 hours of human-labelled data (PSC-Base) and 2427 hours of automatically annotated data (PSC-Scaled). We finetune Parler-TTS, an open-source style-prompted TTS model, on ParaSpeechCaps, and achieve improved style consistency (+7.9% Consistency MOS) and speech quality (+15.5% Naturalness MOS) over the best performing baseline that combines existing rich style tag datasets. We ablate several of our dataset design choices to lay the foundation for future work in this space. Our dataset, models and code are released at https://github.com/ajd12342/paraspeechcaps .

Authors:Dou Hu, Lingwei Wei, Wei Zhou, Songlin Hu
Title: An Information-theoretic Multi-task Representation Learning Framework for Natural Language Understanding
Abstract:
This paper proposes a new principled multi-task representation learning framework (InfoMTL) to extract noise-invariant sufficient representations for all tasks. It ensures sufficiency of shared representations for all tasks and mitigates the negative effect of redundant features, which can enhance language understanding of pre-trained language models (PLMs) under the multi-task paradigm. Firstly, a shared information maximization principle is proposed to learn more sufficient shared representations for all target tasks. It can avoid the insufficiency issue arising from representation compression in the multi-task paradigm. Secondly, a task-specific information minimization principle is designed to mitigate the negative effect of potential redundant features in the input for each task. It can compress task-irrelevant redundant information and preserve necessary information relevant to the target for multi-task prediction. Experiments on six classification benchmarks show that our method outperforms 12 comparative multi-task methods under the same multi-task settings, especially in data-constrained and noisy scenarios. Extensive experiments demonstrate that the learned representations are more sufficient, data-efficient, and robust.

Authors:Emanuele Bugliarello, Anurag Arnab, Roni Paiss, Pieter-Jan Kindermans, Cordelia Schmid
Title: What Are You Doing? A Closer Look at Controllable Human Video Generation
Abstract:
High-quality benchmarks are crucial for driving progress in machine learning research. However, despite the growing interest in video generation, there is no comprehensive dataset to evaluate human generation. Humans can perform a wide variety of actions and interactions, but existing datasets, like TikTok and TED-Talks, lack the diversity and complexity to fully capture the capabilities of video generation models. We close this gap by introducing `What Are You Doing?' (WYD): a new benchmark for fine-grained evaluation of controllable image-to-video generation of humans. WYD consists of 1{,}544 captioned videos that have been meticulously collected and annotated with 56 fine-grained categories. These allow us to systematically measure performance across 9 aspects of human generation, including actions, interactions and motion. We also propose and validate automatic metrics that leverage our annotations and better capture human evaluations. Equipped with our dataset and metrics, we perform in-depth analyses of seven state-of-the-art models in controllable image-to-video generation, showing how WYD provides novel insights about the capabilities of these models. We release our data and code to drive forward progress in human video generation modeling at https://github.com/google-deepmind/wyd-benchmark.

Authors:Shengzhuang Chen, Yikai Liao, Xiaoxiao Sun, Kede Ma, Ying Wei
Title: CLDyB: Towards Dynamic Benchmarking for Continual Learning with Pre-trained Models
Abstract:
The advent of the foundation model era has sparked significant research interest in leveraging pre-trained representations for continual learning (CL), yielding a series of top-performing CL methods on standard evaluation benchmarks. Nonetheless, there are growing concerns regarding potential data contamination during the pre-training stage. Furthermore, standard evaluation benchmarks, which are typically static, fail to capture the complexities of real-world CL scenarios, resulting in saturated performance. To address these issues, we describe CL on dynamic benchmarks (CLDyB), a general computational framework based on Markov decision processes for evaluating CL methods reliably. CLDyB dynamically identifies inherently difficult and algorithm-dependent tasks for the given CL methods, and determines challenging task orders using Monte Carlo tree search. Leveraging CLDyB, we first conduct a joint evaluation of multiple state-of-the-art CL methods, leading to a set of commonly challenging and generalizable task sequences where existing CL methods tend to perform poorly. We then conduct separate evaluations of individual CL methods using CLDyB, discovering their respective strengths and weaknesses. The source code and generated task sequences are publicly accessible at https://github.com/szc12153/CLDyB.

Authors:Jiang Li, Xiaoping Wang
Title: Joint Masked Reconstruction and Contrastive Learning for Mining Interactions Between Proteins
Abstract:
Protein-protein interaction (PPI) prediction is an instrumental means in elucidating the mechanisms underlying cellular operations, holding significant practical implications for the realms of pharmaceutical development and clinical treatment. Presently, the majority of research methods primarily concentrate on the analysis of amino acid sequences, while investigations predicated on protein structures remain in the nascent stages of exploration. Despite the emergence of several structure-based algorithms in recent years, these are still confronted with inherent challenges: (1) the extraction of intrinsic structural information of proteins typically necessitates the expenditure of substantial computational resources; (2) these models are overly reliant on seen protein data, struggling to effectively unearth interaction cues between unknown proteins. To further propel advancements in this domain, this paper introduces a novel PPI prediction method jointing masked reconstruction and contrastive learning, termed JmcPPI. This methodology dissects the PPI prediction task into two distinct phases: during the residue structure encoding phase, JmcPPI devises two feature reconstruction tasks and employs graph attention mechanism to capture structural information between residues; during the protein interaction inference phase, JmcPPI perturbs the original PPI graph and employs a multi-graph contrastive learning strategy to thoroughly mine extrinsic interaction information of novel proteins. Extensive experiments conducted on three widely utilized PPI datasets demonstrate that JmcPPI surpasses existing optimal baseline models across various data partition schemes. The associated code can be accessed via https://github.com/lijfrank-open/JmcPPI.

Authors:Wen Yang, Junhong Wu, Chen Wang, Chengqing Zong, Jiajun Zhang
Title: Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment
Abstract:
Direct Preference Optimization (DPO) has become a prominent method for aligning Large Language Models (LLMs) with human preferences. While DPO has enabled significant progress in aligning English LLMs, multilingual preference alignment is hampered by data scarcity. To address this, we propose a novel approach that $\textit{captures}$ learned preferences from well-aligned English models by implicit rewards and $\textit{transfers}$ them to other languages through iterative training. Specifically, we derive an implicit reward model from the logits of an English DPO-aligned model and its corresponding reference model. This reward model is then leveraged to annotate preference relations in cross-lingual instruction-following pairs, using English instructions to evaluate multilingual responses. The annotated data is subsequently used for multilingual DPO fine-tuning, facilitating preference knowledge transfer from English to other languages. Fine-tuning Llama3 for two iterations resulted in a 12.72% average improvement in Win Rate and a 5.97% increase in Length Control Win Rate across all training languages on the X-AlpacaEval leaderboard. Our findings demonstrate that leveraging existing English-aligned models can enable efficient and effective multilingual preference alignment, significantly reducing the need for extensive multilingual preference data. The code is available at https://github.com/ZNLP/Implicit-Cross-Lingual-Rewarding

Authors:Hong Liu, Haosen Yang, Federica Eduati, Josien P. W. Pluim, Mitko Veta
Title: Adaptive Prototype Learning for Multimodal Cancer Survival Analysis
Abstract:
Leveraging multimodal data, particularly the integration of whole-slide histology images (WSIs) and transcriptomic profiles, holds great promise for improving cancer survival prediction. However, excessive redundancy in multimodal data can degrade model performance. In this paper, we propose Adaptive Prototype Learning (APL), a novel and effective approach for multimodal cancer survival analysis. APL adaptively learns representative prototypes in a data-driven manner, reducing redundancy while preserving critical information. Our method employs two sets of learnable query vectors that serve as a bridge between high-dimensional representations and survival prediction, capturing task-relevant features. Additionally, we introduce a multimodal mixed self-attention mechanism to enable cross-modal interactions, further enhancing information fusion. Extensive experiments on five benchmark cancer datasets demonstrate the superiority of our approach over existing methods. The code is available at https://github.com/HongLiuuuuu/APL.

Authors:Yuqi Hu, Longguang Wang, Xian Liu, Ling-Hao Chen, Yuwei Guo, Yukai Shi, Ce Liu, Anyi Rao, Zeyu Wang, Hui Xiong
Title: Simulating the Real World: A Unified Survey of Multimodal Generative Models
Abstract:
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.

Authors:Hong Liu, Haosen Yang, Evi M. C. Huijben, Mark Schuiveling, Ruisheng Su, Josien P. W. Pluim, Mitko Veta
Title: PathoPainter: Augmenting Histopathology Segmentation via Tumor-aware Inpainting
Abstract:
Tumor segmentation plays a critical role in histopathology, but it requires costly, fine-grained image-mask pairs annotated by pathologists. Thus, synthesizing histopathology data to expand the dataset is highly desirable. Previous works suffer from inaccuracies and limited diversity in image-mask pairs, both of which affect training segmentation, particularly in small-scale datasets and the inherently complex nature of histopathology images. To address this challenge, we propose PathoPainter, which reformulates image-mask pair generation as a tumor inpainting task. Specifically, our approach preserves the background while inpainting the tumor region, ensuring precise alignment between the generated image and its corresponding mask. To enhance dataset diversity while maintaining biological plausibility, we incorporate a sampling mechanism that conditions tumor inpainting on regional embeddings from a different image. Additionally, we introduce a filtering strategy to exclude uncertain synthetic regions, further improving the quality of the generated data. Our comprehensive evaluation spans multiple datasets featuring diverse tumor types and various training data scales. As a result, segmentation improved significantly with our synthetic data, surpassing existing segmentation data synthesis approaches, e.g., 75.69% -> 77.69% on CAMELYON16. The code is available at https://github.com/HongLiuuuuu/PathoPainter.

Authors:Xiangchao Yan, Shiyang Feng, Jiakang Yuan, Renqiu Xia, Bin Wang, Bo Zhang, Lei Bai
Title: SurveyForge: On the Outline Heuristics, Memory-Driven Generation, and Multi-dimensional Evaluation for Automated Survey Writing
Abstract:
Survey paper plays a crucial role in scientific research, especially given the rapid growth of research publications. Recently, researchers have begun using LLMs to automate survey generation for better efficiency. However, the quality gap between LLM-generated surveys and those written by human remains significant, particularly in terms of outline quality and citation accuracy. To close these gaps, we introduce SurveyForge, which first generates the outline by analyzing the logical structure of human-written outlines and referring to the retrieved domain-related articles. Subsequently, leveraging high-quality papers retrieved from memory by our scholar navigation agent, SurveyForge can automatically generate and refine the content of the generated article. Moreover, to achieve a comprehensive evaluation, we construct SurveyBench, which includes 100 human-written survey papers for win-rate comparison and assesses AI-generated survey papers across three dimensions: reference, outline, and content quality. Experiments demonstrate that SurveyForge can outperform previous works such as AutoSurvey.

Authors:Aoxiong Yin, Kai Shen, Yichong Leng, Xu Tan, Xinyu Zhou, Juncheng Li, Siliang Tang
Title: The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Abstract:
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Kling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.

Authors:Zhijian Zhuo, Yutao Zeng, Ya Wang, Sijun Zhang, Jian Yang, Xiaoqing Li, Xun Zhou, Jinwen Ma
Title: HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Abstract:
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the position of layer normalization. While Pre-Norm structures facilitate more stable training owing to their stronger identity path, they often lead to suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a simple yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. We provide both theoretical insights and empirical evidence demonstrating that HybridNorm improves gradient flow and model robustness. Extensive experiments on large-scale transformer models, including both dense and sparse variants, show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches across multiple benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.

Authors:Qing Zhou, Tao Yang, Junyu Gao, Weiping Ni, Junzheng Wu, Qi Wang
Title: A Benchmark for Multi-Lingual Vision-Language Learning in Remote Sensing Image Captioning
Abstract:
Remote Sensing Image Captioning (RSIC) is a cross-modal field bridging vision and language, aimed at automatically generating natural language descriptions of features and scenes in remote sensing imagery. Despite significant advances in developing sophisticated methods and large-scale datasets for training vision-language models (VLMs), two critical challenges persist: the scarcity of non-English descriptive datasets and the lack of multilingual capability evaluation for models. These limitations fundamentally impede the progress and practical deployment of RSIC, particularly in the era of large VLMs. To address these challenges, this paper presents several significant contributions to the field. First, we introduce and analyze BRSIC (Bilingual Remote Sensing Image Captioning), a comprehensive bilingual dataset that enriches three established English RSIC datasets with Chinese descriptions, encompassing 13,634 images paired with 68,170 bilingual captions. Building upon this foundation, we develop a systematic evaluation framework that addresses the prevalent inconsistency in evaluation protocols, enabling rigorous assessment of model performance through standardized retraining procedures on BRSIC. Furthermore, we present an extensive empirical study of eight state-of-the-art large vision-language models (LVLMs), examining their capabilities across multiple paradigms including zero-shot inference, supervised fine-tuning, and multi-lingual training. This comprehensive evaluation provides crucial insights into the strengths and limitations of current LVLMs in handling multilingual remote sensing tasks. Additionally, our cross-dataset transfer experiments reveal interesting findings. The code and data will be available at https://github.com/mrazhou/BRSIC.

Authors:Yibin Wu, Jian Kuang, Shahram Khorshidi, Xiaoji Niu, Lasse Klingbeil, Maren Bennewitz, Heiner Kuhlmann
Title: DogLegs: Robust Proprioceptive State Estimation for Legged Robots Using Multiple Leg-Mounted IMUs
Abstract:
Robust and accurate proprioceptive state estimation of the main body is crucial for legged robots to execute tasks in extreme environments where exteroceptive sensors, such as LiDARs and cameras, may become unreliable. In this paper, we propose DogLegs, a state estimation system for legged robots that fuses the measurements from a body-mounted inertial measurement unit (Body-IMU), joint encoders, and multiple leg-mounted IMUs (Leg-IMU) using an extended Kalman filter (EKF). The filter system contains the error states of all IMU frames. The Leg-IMUs are used to detect foot contact, thereby providing zero-velocity measurements to update the state of the Leg-IMU frames. Additionally, we compute the relative position constraints between the Body-IMU and Leg-IMUs by the leg kinematics and use them to update the main body state and reduce the error drift of the individual IMU frames. Field experimental results have shown that our proposed DogLegs system achieves better state estimation accuracy compared to the traditional leg odometry method (using only Body-IMU and joint encoders) across various terrains. We make our datasets publicly available to benefit the research community (https://github.com/YibinWu/leg-odometry).

Authors:Kai Luo, Hao Shi, Sheng Wu, Fei Teng, Mengfei Duan, Chang Huang, Yuhang Wang, Kaiwei Wang, Kailun Yang
Title: Omnidirectional Multi-Object Tracking
Abstract:
Panoramic imagery, with its 360° field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in panoramic field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as panoramic fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The established dataset and source code are available at https://github.com/xifen523/OmniTrack.

Authors:Armel Zebaze, Benoît Sagot, Rachel Bawden
Title: Compositional Translation: A Novel LLM-based Approach for Low-resource Machine Translation
Abstract:
The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. Machine Translation (MT) has been shown to benefit from in-context examples, in particular when they are semantically similar to the sentence to translate. In this paper, we propose a new LLM-based translation paradigm, compositional translation, to replace naive few-shot MT with similarity-based demonstrations. An LLM is used to decompose a sentence into simpler phrases, and then to translate each phrase with the help of retrieved demonstrations. Finally, the LLM is prompted to translate the initial sentence with the help of the self-generated phrase-translation pairs. Our intuition is that this approach should improve translation because these shorter phrases should be intrinsically easier to translate and easier to match with relevant examples. This is especially beneficial in low-resource scenarios, and more generally whenever the selection pool is small or out of domain. We show that compositional translation boosts LLM translation performance on a wide range of popular MT benchmarks, including FLORES 200, NTREX 128 and TICO-19. Code and outputs are available at https://github.com/ArmelRandy/compositional-translation

Authors:Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, Ji-Rong Wen
Title: An Empirical Study on Eliciting and Improving R1-like Reasoning Models
Abstract:
In this report, we present the third technical report on the development of slow-thinking models as part of the STILL project. As the technical pathway becomes clearer, scaling RL training has become a central technique for implementing such reasoning models. We systematically experiment with and document the effects of various factors influencing RL training, conducting experiments on both base models and fine-tuned models. Specifically, we demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models, enhancing both response length and test accuracy. Furthermore, we show that even when a model like DeepSeek-R1-Distill-Qwen-1.5B has already achieved a high performance level, it can be further refined through RL training, reaching an accuracy of 39.33% on AIME 2024. Beyond RL training, we also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models. This approach achieves a remarkable accuracy of 86.67% with greedy search on AIME 2024, underscoring its effectiveness in enhancing model capabilities. We release our resources at the STILL project website: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.

Authors:Wenke Huang, Jian Liang, Xianda Guo, Yiyang Fang, Guancheng Wan, Xuankun Rong, Chi Wen, Zekun Shi, Qingyun Li, Didi Zhu, Yanbiao Ma, Ke Liang, Bin Yang, He Li, Jiawei Shao, Mang Ye, Bo Du
Title: Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model
Abstract:
Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering. While MLLMs demonstrate remarkable versatility, MLLMs appears limited performance on special applications. But tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert Specialization, where distribution shifts between pre-training and target datasets constrain target performance, and Open-World Stabilization, where catastrophic forgetting erases the model general knowledge. In this work, we systematically review recent advancements in MLLM tuning methodologies, classifying them into three paradigms: (I) Selective Tuning, (II) Additive Tuning, and (III) Reparameterization Tuning. Furthermore, we benchmark these tuning strategies across popular MLLM architectures and diverse downstream tasks to establish standardized evaluation analysis and systematic tuning principles. Finally, we highlight several open challenges in this domain and propose future research directions. To facilitate ongoing progress in this rapidly evolving field, we provide a public repository that continuously tracks developments: https://github.com/WenkeHuang/Awesome-MLLM-Tuning.

Authors:Matias Cosarinsky, Ramiro Billot, Lucas Mansilla, Gabriel Jimenez, Nicolas Gaggión, Guanghui Fu, Tom Tirer, Enzo Ferrante
Title: Conformal In-Context Reverse Classification Accuracy: Efficient Estimation of Segmentation Quality with Statistical Guarantees
Abstract:
Assessing the quality of automatic image segmentation is crucial in clinical practice, but often very challenging due to the limited availability of ground truth annotations. Reverse Classification Accuracy (RCA) is an approach that estimates the quality of new predictions on unseen samples by training a segmenter on those predictions, and then evaluating it against existing annotated images. In this work, we introduce Conformal In-Context RCA, a novel method for automatically estimating segmentation quality with statistical guarantees in the absence of ground-truth annotations, which consists of two main innovations. First, In-Context RCA, which leverages recent in-context learning models for image segmentation and incorporates retrieval-augmentation techniques to select the most relevant reference images. This approach enables efficient quality estimation with minimal reference data while avoiding the need of training additional models. Second, we introduce Conformal RCA, which extends both the original RCA framework and In-Context RCA to go beyond point estimation. Using tools from split conformal prediction, Conformal RCA produces prediction intervals for segmentation quality providing statistical guarantees that the true score lies within the estimated interval with a user-specified probability. Validated across 10 different medical imaging tasks in various organs and modalities, our methods demonstrate robust performance and computational efficiency, offering a promising solution for automated quality control in clinical workflows, where fast and reliable segmentation assessment is essential. The code is available at https://github.com/mcosarinsky/Conformal-In-Context-RCA.

Authors:Benjamin Billot, Ramya Muthukrishnan, Esra Abaci-Turk, P. Ellen Grant, Nicholas Ayache, Hervé Delingette, Polina Golland
Title: Spatial regularisation for improved accuracy and interpretability in keypoint-based registration
Abstract:
Unsupervised registration strategies bypass requirements in ground truth transforms or segmentations by optimising similarity metrics between fixed and moved volumes. Among these methods, a recent subclass of approaches based on unsupervised keypoint detection stand out as very promising for interpretability. Specifically, these methods train a network to predict feature maps for fixed and moving images, from which explainable centres of mass are computed to obtain point clouds, that are then aligned in closed-form. However, the features returned by the network often yield spatially diffuse patterns that are hard to interpret, thus undermining the purpose of keypoint-based registration. Here, we propose a three-fold loss to regularise the spatial distribution of the features. First, we use the KL divergence to model features as point spread functions that we interpret as probabilistic keypoints. Then, we sharpen the spatial distributions of these features to increase the precision of the detected landmarks. Finally, we introduce a new repulsive loss across keypoints to encourage spatial diversity. Overall, our loss considerably improves the interpretability of the features, which now correspond to precise and anatomically meaningful landmarks. We demonstrate our three-fold loss in foetal rigid motion tracking and brain MRI affine registration tasks, where it not only outperforms state-of-the-art unsupervised strategies, but also bridges the gap with state-of-the-art supervised methods. Our code is available at https://github.com/BenBillot/spatial_regularisation.

Authors:Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, Thomas Hofmann
Title: Generalized Interpolating Discrete Diffusion
Abstract:
While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion, deriving a new family of general interpolating discrete diffusion (GIDD) which offers greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Code: https://github.com/dvruette/gidd/

Authors:Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai Wang, Zhaoxiang Liu, Shiguo Lian
Title: DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models
Abstract:
Recent advancements in slow thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking (generating redundant reasoning steps for simple problems), leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought (CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leverage budget-aware reward shaping and budget preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems. Our codes and models are available at https://github.com/AnonymousUser0520/AnonymousRepo01.

Authors:Hongyeob Kim, Inyoung Jung, Dayoon Suh, Youjia Zhang, Sangmin Lee, Sungeun Hong
Title: Question-Aware Gaussian Experts for Audio-Visual Question Answering
Abstract:
Audio-Visual Question Answering (AVQA) requires not only question-based multimodal reasoning but also precise temporal grounding to capture subtle dynamics for accurate prediction. However, existing methods mainly use question information implicitly, limiting focus on question-specific details. Furthermore, most studies rely on uniform frame sampling, which can miss key question-relevant frames. Although recent Top-K frame selection methods aim to address this, their discrete nature still overlooks fine-grained temporal details. This paper proposes QA-TIGER, a novel framework that explicitly incorporates question information and models continuous temporal dynamics. Our key idea is to use Gaussian-based modeling to adaptively focus on both consecutive and non-consecutive frames based on the question, while explicitly injecting question information and applying progressive refinement. We leverage a Mixture of Experts (MoE) to flexibly implement multiple Gaussian models, activating temporal experts specifically tailored to the question. Extensive experiments on multiple AVQA benchmarks show that QA-TIGER consistently achieves state-of-the-art performance. Code is available at https://aim-skku.github.io/QA-TIGER/

Authors:Yijie Xu, Bolun Zheng, Wei Zhu, Hangjia Pan, Yuchen Yao, Ning Xu, Anan Liu, Quan Zhang, Chenggang Yan
Title: SMTPD: A New Benchmark for Temporal Prediction of Social Media Popularity
Abstract:
Social media popularity prediction task aims to predict the popularity of posts on social media platforms, which has a positive driving effect on application scenarios such as content optimization, digital marketing and online advertising. Though many studies have made significant progress, few of them pay much attention to the integration between popularity prediction with temporal alignment. In this paper, with exploring YouTube's multilingual and multi-modal content, we construct a new social media temporal popularity prediction benchmark, namely SMTPD, and suggest a baseline framework for temporal popularity prediction. Through data analysis and experiments, we verify that temporal alignment and early popularity play crucial roles in social media popularity prediction for not only deepening the understanding of temporal dynamics of popularity in social media but also offering a suggestion about developing more effective prediction models in this field. Code is available at https://github.com/zhuwei321/SMTPD.

Authors:Leonardo Kuffo, Elena Krippner, Peter Boncz
Title: PDX: A Data Layout for Vector Similarity Search
Abstract:
We propose Partition Dimensions Across (PDX), a data layout for vectors (e.g., embeddings) that, similar to PAX [6], stores multiple vectors in one block, using a vertical layout for the dimensions (Figure 1). PDX accelerates exact and approximate similarity search thanks to its dimension-by-dimension search strategy that operates on multiple-vectors-at-a-time in tight loops. It beats SIMD-optimized distance kernels on standard horizontal vector storage (avg 40% faster), only relying on scalar code that gets auto-vectorized. We combined the PDX layout with recent dimension-pruning algorithms ADSampling [19] and BSA [52] that accelerate approximate vector search. We found that these algorithms on the horizontal vector layout can lose to SIMD-optimized linear scans, even if they are SIMD-optimized. However, when used on PDX, their benefit is restored to 2-7x. We find that search on PDX is especially fast if a limited number of dimensions has to be scanned fully, which is what the dimension-pruning approaches do. We finally introduce PDX-BOND, an even more flexible dimension-pruning strategy, with good performance on exact search and reasonable performance on approximate search. Unlike previous pruning algorithms, it can work on vector data "as-is" without preprocessing; making it attractive for vector databases with frequent updates.

Authors:Hyunwoo Yoo
Title: Can Large Language Models Predict Antimicrobial Resistance Gene?
Abstract:
This study demonstrates that generative large language models can be utilized in a more flexible manner for DNA sequence analysis and classification tasks compared to traditional transformer encoder-based models. While recent encoder-based models such as DNABERT and Nucleotide Transformer have shown significant performance in DNA sequence classification, transformer decoder-based generative models have not yet been extensively explored in this field. This study evaluates how effectively generative Large Language Models handle DNA sequences with various labels and analyzes performance changes when additional textual information is provided. Experiments were conducted on antimicrobial resistance genes, and the results show that generative Large Language Models can offer comparable or potentially better predictions, demonstrating flexibility and accuracy when incorporating both sequence and textual information. The code and data used in this work are available at the following GitHub repository: https://github.com/biocomgit/llm4dna.

Authors:Shahar Levy, Nir Mazor, Lihi Shalmon, Michael Hassid, Gabriel Stanovsky
Title: More Documents, Same Length: Isolating the Challenge of Multiple Documents in RAG
Abstract:
Retrieval-augmented generation (RAG) provides LLMs with relevant documents. Although previous studies noted that retrieving many documents can degrade performance, they did not isolate how the quantity of documents affects performance while controlling for context length. We evaluate various language models on custom datasets derived from a multi-hop QA task. We keep the context length and position of relevant information constant while varying the number of documents, and find that increasing the document count in RAG settings poses significant challenges for LLMs. Additionally, our results indicate that processing multiple documents is a separate challenge from handling long contexts. We also make the datasets and code available: https://github.com/shaharl6000/MoreDocsSameLen .

Authors:Cheng-Han Chiang, Hung-yi Lee, Michal Lukasik
Title: TRACT: Regression-Aware Fine-tuning Meets Chain-of-Thought Reasoning for LLM-as-a-Judge
Abstract:
The LLM-as-a-judge paradigm uses large language models (LLMs) for automated text evaluation, where a numerical assessment is assigned by an LLM to the input text following scoring rubrics. Existing methods for LLM-as-a-judge use cross-entropy (CE) loss for fine-tuning, which neglects the numeric nature of score prediction. Recent work addresses numerical prediction limitations of LLM fine-tuning through regression-aware fine-tuning, which, however, does not consider chain-of-thought (CoT) reasoning for score prediction. In this paper, we introduce TRACT (Two-stage Regression-Aware fine-tuning with CoT), a method combining CoT reasoning with regression-aware training. TRACT consists of two stages: first, seed LLM is fine-tuned to generate CoTs, which serve as supervision for the second stage fine-tuning. The training objective of TRACT combines the CE loss for learning the CoT reasoning capabilities, and the regression-aware loss for the score prediction. Experiments across four LLM-as-a-judge datasets and two LLMs show that TRACT significantly outperforms existing methods. Extensive ablation studies validate the importance of each component in TRACT.

Authors:Antonio Guillén-Teruel, Marcos Caracena, Jose A. Pardo, Fernando de-la-Gándara, José Palma, Juan A. Botía
Title: FILM: Framework for Imbalanced Learning Machines based on a new unbiased performance measure and a new ensemble-based technique
Abstract:
This research addresses the challenges of handling unbalanced datasets for binary classification tasks. In such scenarios, standard evaluation metrics are often biased by the disproportionate representation of the minority class. Conducting experiments across seven datasets, we uncovered inconsistencies in evaluation metrics when determining the model that outperforms others for each binary classification problem. This justifies the need for a metric that provides a more consistent and unbiased evaluation across unbalanced datasets, thereby supporting robust model selection. To mitigate this problem, we propose a novel metric, the Unbiased Integration Coefficients (UIC), which exhibits significantly reduced bias ($p < 10^{-4}$) towards the minority class compared to conventional metrics. The UIC is constructed by aggregating existing metrics while penalising those more prone to imbalance. In addition, we introduce the Identical Partitions for Imbalance Problems (IPIP) algorithm for imbalanced ML problems, an ensemble-based approach. Our experimental results show that IPIP outperforms other baseline imbalance-aware approaches using Random Forest and Logistic Regression models in three out of seven datasets as assessed by the UIC metric, demonstrating its effectiveness in addressing imbalanced data challenges in binary classification tasks. This new framework for dealing with imbalanced datasets is materialized in the FILM (Framework for Imbalanced Learning Machines) R Package, accessible at https://github.com/antoniogt/FILM.

Authors:Yafu Li, Ronghao Zhang, Zhilin Wang, Huajian Zhang, Leyang Cui, Yongjing Yin, Tong Xiao, Yue Zhang
Title: Lost in Literalism: How Supervised Training Shapes Translationese in LLMs
Abstract:
Large language models (LLMs) have achieved remarkable success in machine translation, demonstrating impressive performance across diverse languages. However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge in LLM-based translation systems. Despite their pre-training on vast corpora of natural utterances, LLMs exhibit translationese errors and generate unexpected unnatural translations, stemming from biases introduced during supervised fine-tuning (SFT). In this work, we systematically evaluate the prevalence of translationese in LLM-generated translations and investigate its roots during supervised training. We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances. Empirical evaluations demonstrate that these approaches significantly reduce translationese while improving translation naturalness, validated by human evaluations and automatic metrics. Our findings highlight the need for training-aware adjustments to optimize LLM translation outputs, paving the way for more fluent and target-language-consistent translations. We release the data and code at https://github.com/yafuly/LLM_Translationese.

Authors:Chanda Grover Kamra, Indra Deep Mastan, Debayan Gupta
Title: ObjMST: An Object-Focused Multimodal Style Transfer Framework
Abstract:
We propose ObjMST, an object-focused multimodal style transfer framework that provides separate style supervision for salient objects and surrounding elements while addressing alignment issues in multimodal representation learning. Existing image-text multimodal style transfer methods face the following challenges: (1) generating non-aligned and inconsistent multimodal style representations; and (2) content mismatch, where identical style patterns are applied to both salient objects and their surrounding elements. Our approach mitigates these issues by: (1) introducing a Style-Specific Masked Directional CLIP Loss, which ensures consistent and aligned style representations for both salient objects and their surroundings; and (2) incorporating a salient-to-key mapping mechanism for stylizing salient objects, followed by image harmonization to seamlessly blend the stylized objects with their environment. We validate the effectiveness of ObjMST through experiments, using both quantitative metrics and qualitative visual evaluations of the stylized outputs. Our code is available at: https://github.com/chandagrover/ObjMST.

Authors:Cecilia Diana-Albelda, Roberto Alcover-Couso, Álvaro García-Martín, Jesus Bescos, Marcos Escudero-Viñolo
Title: GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
Abstract:
Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .

Authors:Lars Bredereke, Yale Hartmann, Tanja Schultz
Title: A Modular Pipeline for 3D Object Tracking Using RGB Cameras
Abstract:
Object tracking is a key challenge of computer vision with various applications that all require different architectures. Most tracking systems have limitations such as constraining all movement to a 2D plane and they often track only one object. In this paper, we present a new modular pipeline that calculates 3D trajectories of multiple objects. It is adaptable to various settings where multiple time-synced and stationary cameras record moving objects, using off the shelf webcams. Our pipeline was tested on the Table Setting Dataset, where participants are recorded with various sensors as they set a table with tableware objects. We need to track these manipulated objects, using 6 rgb webcams. Challenges include: Detecting small objects in 9.874.699 camera frames, determining camera poses, discriminating between nearby and overlapping objects, temporary occlusions, and finally calculating a 3D trajectory using the right subset of an average of 11.12.456 pixel coordinates per 3-minute trial. We implement a robust pipeline that results in accurate trajectories with covariance of x,y,z-position as a confidence metric. It deals dynamically with appearing and disappearing objects, instantiating new Extended Kalman Filters. It scales to hundreds of table-setting trials with very little human annotation input, even with the camera poses of each trial unknown. The code is available at https://github.com/LarsBredereke/object_tracking

Authors:Yifei Huang, Jilan Xu, Baoqi Pei, Yuping He, Guo Chen, Mingfang Zhang, Lijin Yang, Zheng Nie, Jinyao Liu, Guoshun Fan, Dechen Lin, Fang Fang, Kunpeng Li, Chang Yuan, Xinyuan Chen, Yaohui Wang, Yali Wang, Yu Qiao, Limin Wang
Title: An Egocentric Vision-Language Model based Portable Real-time Smart Assistant
Abstract:
We present Vinci, a vision-language system designed to provide real-time, comprehensive AI assistance on portable devices. At its core, Vinci leverages EgoVideo-VL, a novel model that integrates an egocentric vision foundation model with a large language model (LLM), enabling advanced functionalities such as scene understanding, temporal grounding, video summarization, and future planning. To enhance its utility, Vinci incorporates a memory module for processing long video streams in real time while retaining contextual history, a generation module for producing visual action demonstrations, and a retrieval module that bridges egocentric and third-person perspectives to provide relevant how-to videos for skill acquisition. Unlike existing systems that often depend on specialized hardware, Vinci is hardware-agnostic, supporting deployment across a wide range of devices, including smartphones and wearable cameras. In our experiments, we first demonstrate the superior performance of EgoVideo-VL on multiple public benchmarks, showcasing its vision-language reasoning and contextual understanding capabilities. We then conduct a series of user studies to evaluate the real-world effectiveness of Vinci, highlighting its adaptability and usability in diverse scenarios. We hope Vinci can establish a new framework for portable, real-time egocentric AI systems, empowering users with contextual and actionable insights. Including the frontend, backend, and models, all codes of Vinci are available at https://github.com/OpenGVLab/vinci.

Authors:Manh Cuong Dao, Phi Le Nguyen, Thao Nguyen Truong, Trong Nghia Hoang
Title: Incorporating Surrogate Gradient Norm to Improve Offline Optimization Techniques
Abstract:
Offline optimization has recently emerged as an increasingly popular approach to mitigate the prohibitively expensive cost of online experimentation. The key idea is to learn a surrogate of the black-box function that underlines the target experiment using a static (offline) dataset of its previous input-output queries. Such an approach is, however, fraught with an out-of-distribution issue where the learned surrogate becomes inaccurate outside the offline data regimes. To mitigate this, existing offline optimizers have proposed numerous conditioning techniques to prevent the learned surrogate from being too erratic. Nonetheless, such conditioning strategies are often specific to particular surrogate or search models, which might not generalize to a different model choice. This motivates us to develop a model-agnostic approach instead, which incorporates a notion of model sharpness into the training loss of the surrogate as a regularizer. Our approach is supported by a new theoretical analysis demonstrating that reducing surrogate sharpness on the offline dataset provably reduces its generalized sharpness on unseen data. Our analysis extends existing theories from bounding generalized prediction loss (on unseen data) with loss sharpness to bounding the worst-case generalized surrogate sharpness with its empirical estimate on training data, providing a new perspective on sharpness regularization. Our extensive experimentation on a diverse range of optimization tasks also shows that reducing surrogate sharpness often leads to significant improvement, marking (up to) a noticeable 9.6% performance boost. Our code is publicly available at https://github.com/cuong-dm/IGNITE

Authors:Yi Xiao, Qiangqiang Yuan, Kui Jiang, Wenke Huang, Qiang Zhang, Tingting Zheng, Chia-Wen Lin, Liangpei Zhang
Title: Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks
Abstract:
Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs), offering biological plausibility and energy efficiency. Despite these merits, SNNs are frequently hampered by limited capacity and insufficient representation power, yet remain underexplored in remote sensing super-resolution (SR) tasks. In this paper, we first observe that spiking signals exhibit drastic intensity variations across diverse textures, highlighting an active learning state of the neurons. This observation motivates us to apply SNNs for efficient SR of RSIs. Inspired by the success of attention mechanisms in representing salient information, we devise the spiking attention block (SAB), a concise yet effective component that optimizes membrane potentials through inferred attention weights, which, in turn, regulates spiking activity for superior feature representation. Our key contributions include: 1) we bridge the independent modulation between temporal and channel dimensions, facilitating joint feature correlation learning, and 2) we access the global self-similar patterns in large-scale remote sensing imagery to infer spatial attention weights, incorporating effective priors for realistic and faithful reconstruction. Building upon SAB, we proposed SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR, while maintaining high computational efficiency. Code of SpikeSR will be available at https://github.com/XY-boy/SpikeSR.

Authors:Ziyi Yang, Fanqi Wan, Longguang Zhong, Canbin Huang, Guosheng Liang, Xiaojun Quan
Title: FuseChat-3.0: Preference Optimization Meets Heterogeneous Model Fusion
Abstract:
We introduce FuseChat-3.0, a suite of large language models (LLMs) developed by integrating the strengths of heterogeneous source LLMs into more compact target LLMs. Our source models include the powerful Gemma-2-27B-it, Mistral-Large-Instruct-2407, Qwen-2.5-72B-Instruct, and Llama-3.1-70B-Instruct. For target models, we focus on three widely-used smaller variants-Llama-3.1-8B-Instruct, Gemma-2-9B-it, and Qwen-2.5-7B-Instruct-along with two ultra-compact options, Llama-3.2-3B-Instruct and Llama-3.2-1B-Instruct. To leverage the diverse capabilities of these source models, we develop a specialized data construction protocol tailored to various tasks and domains. The FuseChat-3.0 training pipeline consists of two key stages: (1) supervised fine-tuning (SFT) to align the target and source model distributions, and (2) Direct Preference Optimization (DPO) to apply preferences from multiple source LLMs to fine-tune the target model. The resulting FuseChat-3.0 models exhibit significant performance gains across tasks such as instruction following, general knowledge, mathematics, and coding. As illustrated in Figure 1, using Llama-3.1-8B-Instruct as the target model, our fusion approach achieves an average improvement of 6.8 points across 14 benchmarks. Moreover, it demonstrates remarkable gains of 37.1 points and 30.1 points on the instruction-following benchmarks AlpacaEval-2 and Arena-Hard, respectively. Our code, models, and datasets are available at https://github.com/SLIT-AI/FuseChat-3.0.

Authors:Haitao Wu, Qing Li, Changqing Zhang, Zhen He, Xiaomin Ying
Title: Bridging the Vision-Brain Gap with an Uncertainty-Aware Blur Prior
Abstract:
Can our brain signals faithfully reflect the original visual stimuli, even including high-frequency details? Although human perceptual and cognitive capacities enable us to process and remember visual information, these abilities are constrained by several factors, such as limited attentional resources and the finite capacity of visual memory. When visual stimuli are processed by human visual system into brain signals, some information is inevitably lost, leading to a discrepancy known as the \textbf{System GAP}. Additionally, perceptual and cognitive dynamics, along with technical noise in signal acquisition, degrade the fidelity of brain signals relative to the visual stimuli, known as the \textbf{Random GAP}. When encoded brain representations are directly aligned with the corresponding pretrained image features, the System GAP and Random GAP between paired data challenge the model, requiring it to bridge these gaps. However, in the context of limited paired data, these gaps are difficult for the model to learn, leading to overfitting and poor generalization to new data. To address these GAPs, we propose a simple yet effective approach called the \textbf{Uncertainty-aware Blur Prior (UBP)}. It estimates the uncertainty within the paired data, reflecting the mismatch between brain signals and visual stimuli. Based on this uncertainty, UBP dynamically blurs the high-frequency details of the original images, reducing the impact of the mismatch and improving alignment. Our method achieves a top-1 accuracy of \textbf{50.9\%} and a top-5 accuracy of \textbf{79.7\%} on the zero-shot brain-to-image retrieval task, surpassing previous state-of-the-art methods by margins of \textbf{13.7\%} and \textbf{9.8\%}, respectively. Code is available at \href{https://github.com/HaitaoWuTJU/Uncertainty-aware-Blur-Prior}{GitHub}.

Authors:Yufang Liu, Yao Du, Tao Ji, Jianing Wang, Yang Liu, Yuanbin Wu, Aimin Zhou, Mengdi Zhang, Xunliang Cai
Title: The Role of Visual Modality in Multimodal Mathematical Reasoning: Challenges and Insights
Abstract:
Recent research has increasingly focused on multimodal mathematical reasoning, particularly emphasizing the creation of relevant datasets and benchmarks. Despite this, the role of visual information in reasoning has been underexplored. Our findings show that existing multimodal mathematical models minimally leverage visual information, and model performance remains largely unaffected by changes to or removal of images in the dataset. We attribute this to the dominance of textual information and answer options that inadvertently guide the model to correct answers. To improve evaluation methods, we introduce the HC-M3D dataset, specifically designed to require image reliance for problem-solving and to challenge models with similar, yet distinct, images that change the correct answer. In testing leading models, their failure to detect these subtle visual differences suggests limitations in current visual perception capabilities. Additionally, we observe that the common approach of improving general VQA capabilities by combining various types of image encoders does not contribute to math reasoning performance. This finding also presents a challenge to enhancing visual reliance during math reasoning. Our benchmark and code would be available at \href{https://github.com/Yufang-Liu/visual_modality_role}{https://github.com/Yufang-Liu/visual\_modality\_role}.

Authors:Ziqiang Cui, Yunpeng Weng, Xing Tang, Xiaokun Zhang, Shiwei Li, Peiyang Liu, Bowei He, Dugang Liu, Weihong Luo, Xiuqiang He, Chen Ma
Title: SRA-CL: Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation
Abstract:
Contrastive learning has shown effectiveness in improving sequential recommendation models. However, existing methods still face challenges in generating high-quality contrastive pairs: they either rely on random perturbations that corrupt user preference patterns or depend on sparse collaborative data that generates unreliable contrastive pairs. Furthermore, existing approaches typically require predefined selection rules that impose strong assumptions, limiting the model's ability to autonomously learn optimal contrastive pairs. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL). SRA-CL leverages the semantic understanding and reasoning capabilities of LLMs to generate expressive embeddings that capture both user preferences and item characteristics. These semantic embeddings enable the construction of candidate pools for inter-user and intra-user contrastive learning through semantic-based retrieval. To further enhance the quality of the contrastive samples, we introduce a learnable sample synthesizer that optimizes the contrastive sample generation process during model training. SRA-CL adopts a plug-and-play design, enabling seamless integration with existing sequential recommendation architectures. Extensive experiments on four public datasets demonstrate the effectiveness and model-agnostic nature of our approach.

Authors:Yuan Liao, Yuhong Zhang, Qiushi Han, Yuhang Yang, Weiwei Ding, Yuzhe Gu, Hengxin Yang, Liya Huang
Title: Frequency-Based Alignment of EEG and Audio Signals Using Contrastive Learning and SincNet for Auditory Attention Detection
Abstract:
Humans exhibit a remarkable ability to focus auditory attention in complex acoustic environments, such as cocktail parties. Auditory attention detection (AAD) aims to identify the attended speaker by analyzing brain signals, such as electroencephalography (EEG) data. Existing AAD algorithms often leverage deep learning's powerful nonlinear modeling capabilities, few consider the neural mechanisms underlying auditory processing in the brain. In this paper, we propose SincAlignNet, a novel network based on an improved SincNet and contrastive learning, designed to align audio and EEG features for auditory attention detection. The SincNet component simulates the brain's processing of audio during auditory attention, while contrastive learning guides the model to learn the relationship between EEG signals and attended speech. During inference, we calculate the cosine similarity between EEG and audio features and also explore direct inference of the attended speaker using EEG data. Cross-trial evaluations results demonstrate that SincAlignNet outperforms state-of-the-art AAD methods on two publicly available datasets, KUL and DTU, achieving average accuracies of 78.3% and 92.2%, respectively, with a 1-second decision window. The model exhibits strong interpretability, revealing that the left and right temporal lobes are more active during both male and female speaker scenarios. Furthermore, we found that using data from only six electrodes near the temporal lobes maintains similar or even better performance compared to using 64 electrodes. These findings indicate that efficient low-density EEG online decoding is achievable, marking an important step toward the practical implementation of neuro-guided hearing aids in real-world applications. Code is available at: https://github.com/LiaoEuan/SincAlignNet.

Authors:Jie Xu, Na Zhao, Gang Niu, Masashi Sugiyama, Xiaofeng Zhu
Title: Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation
Abstract:
Recently, multi-view learning (MVL) has garnered significant attention due to its ability to fuse discriminative information from multiple views. However, real-world multi-view datasets are often heterogeneous and imperfect, which usually causes MVL methods designed for specific combinations of views to lack application potential and limits their effectiveness. To address this issue, we propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment. Specifically, we introduce a simple yet effective multi-view transformer fusion network where we transform heterogeneous multi-view data into homogeneous word embeddings, and then integrate multiple views by the sample-level attention mechanism to obtain a fused representation. Furthermore, we propose a simulated perturbation based multi-view contrastive learning framework that dynamically generates the noise and unusable perturbations for simulating imperfect data conditions. The simulated noisy and unusable data obtain two distinct fused representations, and we utilize contrastive learning to align them for learning discriminative and robust representations. Our RML is self-supervised and can also be applied for downstream tasks as a regularization. In experiments, we employ it in multi-view unsupervised clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval. Extensive comparison experiments and ablation studies validate RML's effectiveness. Code is available at https://github.com/SubmissionsIn/RML.

Authors:Senming Tan, Zhenyu Hou, Zhihao Zhang, Long Xu, Mengke Zhang, Zhaoqi He, Chao Xu, Fei Gao, Yanjun Cao
Title: Real-time Spatial-temporal Traversability Assessment via Feature-based Sparse Gaussian Process
Abstract:
Terrain analysis is critical for the practical application of ground mobile robots in real-world tasks, especially in outdoor unstructured environments. In this paper, we propose a novel spatial-temporal traversability assessment method, which aims to enable autonomous robots to effectively navigate through complex terrains. Our approach utilizes sparse Gaussian processes (SGP) to extract geometric features (curvature, gradient, elevation, etc.) directly from point cloud scans. These features are then used to construct a high-resolution local traversability map. Then, we design a spatial-temporal Bayesian Gaussian kernel (BGK) inference method to dynamically evaluate traversability scores, integrating historical and real-time data while considering factors such as slope, flatness, gradient, and uncertainty metrics. GPU acceleration is applied in the feature extraction step, and the system achieves real-time performance. Extensive simulation experiments across diverse terrain scenarios demonstrate that our method outperforms SOTA approaches in both accuracy and computational efficiency. Additionally, we develop an autonomous navigation framework integrated with the traversability map and validate it with a differential driven vehicle in complex outdoor environments. Our code will be open-source for further research and development by the community, https://github.com/ZJU-FAST-Lab/FSGP_BGK.

Authors:Haoran Wang, Lian Huai, Wenbin Li, Lei Qi, Xingqun Jiang, Yinghuan Shi
Title: WeakMedSAM: Weakly-Supervised Medical Image Segmentation via SAM with Sub-Class Exploration and Prompt Affinity Mining
Abstract:
We have witnessed remarkable progress in foundation models in vision tasks. Currently, several recent works have utilized the segmenting anything model (SAM) to boost the segmentation performance in medical images, where most of them focus on training an adaptor for fine-tuning a large amount of pixel-wise annotated medical images following a fully supervised manner. In this paper, to reduce the labeling cost, we investigate a novel weakly-supervised SAM-based segmentation model, namely WeakMedSAM. Specifically, our proposed WeakMedSAM contains two modules: 1) to mitigate severe co-occurrence in medical images, a sub-class exploration module is introduced to learn accurate feature representations. 2) to improve the quality of the class activation maps, our prompt affinity mining module utilizes the prompt capability of SAM to obtain an affinity map for random-walk refinement. Our method can be applied to any SAM-like backbone, and we conduct experiments with SAMUS and EfficientSAM. The experimental results on three popularly-used benchmark datasets, i.e., BraTS 2019, AbdomenCT-1K, and MSD Cardiac dataset, show the promising results of our proposed WeakMedSAM. Our code is available at https://github.com/wanghr64/WeakMedSAM.

Authors:Runtao Zhou, Guangya Wan, Saadia Gabriel, Sheng Li, Alexander J Gates, Maarten Sap, Thomas Hartvigsen
Title: Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning tasks, leading to their widespread deployment. However, recent studies have highlighted concerning biases in these models, particularly in their handling of dialectal variations like African American English (AAE). In this work, we systematically investigate dialectal disparities in LLM reasoning tasks. We develop an experimental framework comparing LLM performance given Standard American English (SAE) and AAE prompts, combining LLM-based dialect conversion with established linguistic analyses. We find that LLMs consistently produce less accurate responses and simpler reasoning chains and explanations for AAE inputs compared to equivalent SAE questions, with disparities most pronounced in social science and humanities domains. These findings highlight systematic differences in how LLMs process and reason about different language varieties, raising important questions about the development and deployment of these systems in our multilingual and multidialectal world. Our code repository is publicly available at https://github.com/Runtaozhou/dialect_bias_eval.

Authors:Beverley Gorry, Tobias Fischer, Michael Milford, Alejandro Fontan
Title: Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments
Abstract:
Effective monitoring of underwater ecosystems is crucial for tracking environmental changes, guiding conservation efforts, and ensuring long-term ecosystem health. However, automating underwater ecosystem management with robotic platforms remains challenging due to the complexities of underwater imagery, which pose significant difficulties for traditional visual localization methods. We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images. This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes. Furthermore, we introduce the SQUIDLE+ VPR Benchmark-the first large-scale underwater VPR benchmark designed to leverage an extensive collection of unstructured data from multiple robotic platforms, spanning time intervals from days to years. The dataset encompasses diverse trajectories, arbitrary overlap and diverse seafloor types captured under varying environmental conditions, including differences in depth, lighting, and turbidity. Our code is available at: https://github.com/bev-gorry/underloc

Authors:Idris O. Sunmola, Zhenjun Zhao, Samuel Schmidgall, Yumeng Wang, Paul Maria Scheikl, Viet Pham, Axel Krieger
Title: Surgical Gaussian Surfels: Highly Accurate Real-time Surgical Scene Rendering using Gaussian Surfels
Abstract:
Accurate geometric reconstruction of deformable tissues in monocular endoscopic video remains a fundamental challenge in robot-assisted minimally invasive surgery. Although recent volumetric and point primitive methods based on neural radiance fields (NeRF) and 3D Gaussian primitives have efficiently rendered surgical scenes, they still struggle with handling artifact-free tool occlusions and preserving fine anatomical details. These limitations stem from unrestricted Gaussian scaling and insufficient surface alignment constraints during reconstruction. To address these issues, we introduce Surgical Gaussian Surfels (SGS), which transform anisotropic point primitives into surface-aligned elliptical splats by constraining the scale component of the Gaussian covariance matrix along the view-aligned axis. We also introduce the Fully Fused Deformation Multilayer Perceptron (FFD-MLP), a lightweight Multi-Layer Perceptron (MLP) that predicts accurate surfel motion fields up to 5x faster than a standard MLP. This is coupled with locality constraints to handle complex tissue deformations. We use homodirectional view-space positional gradients to capture fine image details by splitting Gaussian Surfels in over-reconstructed regions. In addition, we define surface normals as the direction of the steepest density change within each Gaussian surfel primitive, enabling accurate normal estimation without requiring monocular normal priors. We evaluate our method on two in-vivo surgical datasets, where it outperforms current state-of-the-art methods in surface geometry, normal map quality, and rendering efficiency, while remaining competitive in real-time rendering performance. We make our code available at https://github.com/aloma85/SurgicalGaussianSurfels

Authors:Feng Ni, Kui Huang, Yao Lu, Wenyu Lv, Guanzhong Wang, Zeyu Chen, Yi Liu
Title: PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
Abstract:
With the rapid advancement of digitalization, various document images are being applied more extensively in production and daily life, and there is an increasingly urgent need for fast and accurate parsing of the content in document images. Therefore, this report presents PP-DocBee, a novel multimodal large language model designed for end-to-end document image understanding. First, we develop a data synthesis strategy tailored to document scenarios in which we build a diverse dataset to improve the model generalization. Then, we apply a few training techniques, including dynamic proportional sampling, data preprocessing, and OCR postprocessing strategies. Extensive evaluations demonstrate the superior performance of PP-DocBee, achieving state-of-the-art results on English document understanding benchmarks and even outperforming existing open source and commercial models in Chinese document understanding. The source code and pre-trained models are publicly available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.

Authors:Jie Zhou, Youshu Ji, Ning Wang, Yuchen Hu, Xinyao Jiao, Bingkun Yao, Xinwei Fang, Shuai Zhao, Nan Guan, Zhe Jiang
Title: Insights from Rights and Wrongs: A Large Language Model for Solving Assertion Failures in RTL Design
Abstract:
SystemVerilog Assertions (SVAs) are essential for verifying Register Transfer Level (RTL) designs, as they can be embedded into key functional paths to detect unintended behaviours. During simulation, assertion failures occur when the design's behaviour deviates from expectations. Solving these failures, i.e., identifying and fixing the issues causing the deviation, requires analysing complex logical and timing relationships between multiple signals. This process heavily relies on human expertise, and there is currently no automatic tool available to assist with it. Here, we present AssertSolver, an open-source Large Language Model (LLM) specifically designed for solving assertion failures. By leveraging synthetic training data and learning from error responses to challenging cases, AssertSolver achieves a bug-fixing pass@1 metric of 88.54% on our testbench, significantly outperforming OpenAI's o1-preview by up to 11.97%. We release our model and testbench for public access to encourage further research: https://github.com/SEU-ACAL/reproduce-AssertSolver-DAC-25.

Authors:Amin Karimi, Charalambos Poullis
Title: DSV-LFS: Unifying LLM-Driven Semantic Cues with Visual Features for Robust Few-Shot Segmentation
Abstract:
Few-shot semantic segmentation (FSS) aims to enable models to segment novel/unseen object classes using only a limited number of labeled examples. However, current FSS methods frequently struggle with generalization due to incomplete and biased feature representations, especially when support images do not capture the full appearance variability of the target class. To improve the FSS pipeline, we propose a novel framework that utilizes large language models (LLMs) to adapt general class semantic information to the query image. Furthermore, the framework employs dense pixel-wise matching to identify similarities between query and support images, resulting in enhanced FSS performance. Inspired by reasoning-based segmentation frameworks, our method, named DSV-LFS, introduces an additional token into the LLM vocabulary, allowing a multimodal LLM to generate a "semantic prompt" from class descriptions. In parallel, a dense matching module identifies visual similarities between the query and support images, generating a "visual prompt". These prompts are then jointly employed to guide the prompt-based decoder for accurate segmentation of the query image. Comprehensive experiments on the benchmark datasets Pascal-$5^{i}$ and COCO-$20^{i}$ demonstrate that our framework achieves state-of-the-art performance-by a significant margin-demonstrating superior generalization to novel classes and robustness across diverse scenarios. The source code is available at \href{https://github.com/aminpdik/DSV-LFS}{https://github.com/aminpdik/DSV-LFS}

Authors:Sungwon Kim, Yoonho Lee, Yunhak Oh, Namkyeong Lee, Sukwon Yun, Junseok Lee, Sein Kim, Carl Yang, Chanyoung Park
Title: Subgraph Federated Learning for Local Generalization
Abstract:
Federated Learning (FL) on graphs enables collaborative model training to enhance performance without compromising the privacy of each client. However, existing methods often overlook the mutable nature of graph data, which frequently introduces new nodes and leads to shifts in label distribution. Since they focus solely on performing well on each client's local data, they are prone to overfitting to their local distributions (i.e., local overfitting), which hinders their ability to generalize to unseen data with diverse label distributions. In contrast, our proposed method, FedLoG, effectively tackles this issue by mitigating local overfitting. Our model generates global synthetic data by condensing the reliable information from each class representation and its structural information across clients. Using these synthetic data as a training set, we alleviate the local overfitting problem by adaptively generalizing the absent knowledge within each local dataset. This enhances the generalization capabilities of local models, enabling them to handle unseen data effectively. Our model outperforms baselines in our proposed experimental settings, which are designed to measure generalization power to unseen data in practical scenarios. Our code is available at https://github.com/sung-won-kim/FedLoG

Authors:Wenhui Zhu, Xin Li, Xiwen Chen, Peijie Qiu, Vamsi Krishna Vasa, Xuanzhao Dong, Yanxi Chen, Natasha Lepore, Oana Dumitrascu, Yi Su, Yalin Wang
Title: RetinalGPT: A Retinal Clinical Preference Conversational Assistant Powered by Large Vision-Language Models
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have gained significant attention for their remarkable ability to process and analyze non-textual data, such as images, videos, and audio. Notably, several adaptations of general-domain MLLMs to the medical field have been explored, including LLaVA-Med. However, these medical adaptations remain insufficiently advanced in understanding and interpreting retinal images. In contrast, medical experts emphasize the importance of quantitative analyses for disease detection and interpretation. This underscores a gap between general-domain and medical-domain MLLMs: while general-domain MLLMs excel in broad applications, they lack the specialized knowledge necessary for precise diagnostic and interpretative tasks in the medical field. To address these challenges, we introduce \textit{RetinalGPT}, a multimodal conversational assistant for clinically preferred quantitative analysis of retinal images. Specifically, we achieve this by compiling a large retinal image dataset, developing a novel data pipeline, and employing customized visual instruction tuning to enhance both retinal analysis and enrich medical knowledge. In particular, RetinalGPT outperforms MLLM in the generic domain by a large margin in the diagnosis of retinal diseases in 8 benchmark retinal datasets. Beyond disease diagnosis, RetinalGPT features quantitative analyses and lesion localization, representing a pioneering step in leveraging LLMs for an interpretable and end-to-end clinical research framework. The code is available at https://github.com/Retinal-Research/RetinalGPT

Authors:Qianzhong Chen, Jiankai Sun, Naixiang Gao, JunEn Low, Timothy Chen, Mac Schwager
Title: GRaD-Nav: Efficiently Learning Visual Drone Navigation with Gaussian Radiance Fields and Differentiable Dynamics
Abstract:
Autonomous visual navigation is an essential element in robot autonomy. Reinforcement learning (RL) offers a promising policy training paradigm. However existing RL methods suffer from high sample complexity, poor sim-to-real transfer, and limited runtime adaptability to navigation scenarios not seen during training. These problems are particularly challenging for drones, with complex nonlinear and unstable dynamics, and strong dynamic coupling between control and perception. In this paper, we propose a novel framework that integrates 3D Gaussian Splatting (3DGS) with differentiable deep reinforcement learning (DDRL) to train vision-based drone navigation policies. By leveraging high-fidelity 3D scene representations and differentiable simulation, our method improves sample efficiency and sim-to-real transfer. Additionally, we incorporate a Context-aided Estimator Network (CENet) to adapt to environmental variations at runtime. Moreover, by curriculum training in a mixture of different surrounding environments, we achieve in-task generalization, the ability to solve new instances of a task not seen during training. Drone hardware experiments demonstrate our method's high training efficiency compared to state-of-the-art RL methods, zero shot sim-to-real transfer for real robot deployment without fine tuning, and ability to adapt to new instances within the same task class (e.g. to fly through a gate at different locations with different distractors in the environment). Our simulator and training framework are open-sourced at: https://github.com/Qianzhong-Chen/grad_nav.

Authors:Chaitanya K. Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop Sriram, Zachary W. Ulissi
Title: All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
Abstract:
Diffusion models are the standard toolkit for generative modelling of 3D atomic systems. However, for different types of atomic systems -- such as molecules and materials -- the generative processes are usually highly specific to the target system despite the underlying physics being the same. We introduce the All-atom Diffusion Transformer (ADiT), a unified latent diffusion framework for jointly generating both periodic materials and non-periodic molecular systems using the same model: (1) An autoencoder maps a unified, all-atom representations of molecules and materials to a shared latent embedding space; and (2) A diffusion model is trained to generate new latent embeddings that the autoencoder can decode to sample new molecules or materials. Experiments on MP20, QM9 and GEOM-DRUGS datasets demonstrate that jointly trained ADiT generates realistic and valid molecules as well as materials, obtaining state-of-the-art results on par with molecule and crystal-specific models. ADiT uses standard Transformers with minimal inductive biases for both the autoencoder and diffusion model, resulting in significant speedups during training and inference compared to equivariant diffusion models. Scaling ADiT up to half a billion parameters predictably improves performance, representing a step towards broadly generalizable foundation models for generative chemistry. Open source code: https://github.com/facebookresearch/all-atom-diffusion-transformer

Authors:Abdullah Mamun, Asiful Arefeen, Susan B. Racette, Dorothy D. Sears, Corrie M. Whisner, Matthew P. Buman, Hassan Ghasemzadeh
Title: LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet
Abstract:
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this study, we developed an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and uses advanced data processing, large language models, and trainable machine learning models to predict postprandial AUC and hyperglycemia from diet, physical activity, and recent glucose patterns. We used data obtained from wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose pattern. Our GlucoLens system achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better performance level compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 73.3% and an F1 score of 0.716 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.

Authors:Jingyun Chen, Yading Yuan
Title: Decentralized Personalization for Federated Medical Image Segmentation via Gossip Contrastive Mutual Learning
Abstract:
Federated Learning (FL) presents a promising avenue for collaborative model training among medical centers, facilitating knowledge exchange without compromising data privacy. However, vanilla FL is prone to server failures and rarely achieves optimal performance on all participating sites due to heterogeneous data distributions among them. To overcome these challenges, we propose Gossip Contrastive Mutual Learning (GCML), a unified framework to optimize personalized models in a decentralized environment, where Gossip Protocol is employed for flexible and robust peer-to-peer communication. To make efficient and reliable knowledge exchange in each communication without the global knowledge across all the sites, we introduce deep contrast mutual learning (DCML), a simple yet effective scheme to encourage knowledge transfer between the incoming and local models through collaborative training on local data. By integrating DCML with other efforts to optimize site-specific models by leveraging useful information from peers, we evaluated the performance and efficiency of the proposed method on three publicly available datasets with different segmentation tasks. Our extensive experimental results show that the proposed GCML framework outperformed both centralized and decentralized FL methods with significantly reduced communication overhead, indicating its potential for real-world deployment. Upon the acceptance of manuscript, the code will be available at: https://github.com/CUMC-Yuan-Lab/GCML.

Authors:Jiangtong Zhu, Zhao Yang, Yinan Shi, Jianwu Fang, Jianru Xue
Title: IC-Mapper: Instance-Centric Spatio-Temporal Modeling for Online Vectorized Map Construction
Abstract:
Online vector map construction based on visual data can bypass the processes of data collection, post-processing, and manual annotation required by traditional map construction, which significantly enhances map-building efficiency. However, existing work treats the online mapping task as a local range perception task, overlooking the spatial scalability required for map construction. We propose IC-Mapper, an instance-centric online mapping framework, which comprises two primary components: 1) Instance-centric temporal association module: For the detection queries of adjacent frames, we measure them in both feature and geometric dimensions to obtain the matching correspondence between instances across frames. 2) Instance-centric spatial fusion module: We perform point sampling on the historical global map from a spatial dimension and integrate it with the detection results of instances corresponding to the current frame to achieve real-time expansion and update of the map. Based on the nuScenes dataset, we evaluate our approach on detection, tracking, and global mapping metrics. Experimental results demonstrate the superiority of IC-Mapper against other state-of-the-art methods. Code will be released on https://github.com/Brickzhuantou/IC-Mapper.

Authors:Shuhui Zhu, Baoxiang Wang, Sriram Ganapathi Subramanian, Pascal Poupart
Title: Learning to Negotiate via Voluntary Commitment
Abstract:
The partial alignment and conflict of autonomous agents lead to mixed-motive scenarios in many real-world applications. However, agents may fail to cooperate in practice even when cooperation yields a better outcome. One well known reason for this failure comes from non-credible commitments. To facilitate commitments among agents for better cooperation, we define Markov Commitment Games (MCGs), a variant of commitment games, where agents can voluntarily commit to their proposed future plans. Based on MCGs, we propose a learnable commitment protocol via policy gradients. We further propose incentive-compatible learning to accelerate convergence to equilibria with better social welfare. Experimental results in challenging mixed-motive tasks demonstrate faster empirical convergence and higher returns for our method compared with its counterparts. Our code is available at https://github.com/shuhui-zhu/DCL.

Authors:Raunaq Suri, Ilan Gofman, Guangwei Yu, Jesse C. Cresswell
Title: Zero-Execution Retrieval-Augmented Configuration Tuning of Spark Applications
Abstract:
Large-scale data processing is increasingly done using distributed computing frameworks like Apache Spark, which have a considerable number of configurable parameters that affect runtime performance. For optimal performance, these parameters must be tuned to the specific job being run. Tuning commonly requires multiple executions to collect runtime information for updating parameters. This is infeasible for ad hoc queries that are run once or infrequently. Zero-execution tuning, where parameters are automatically set before a job's first run, can provide significant savings for all types of applications, but is more challenging since runtime information is not available. In this work, we propose a novel method for zero-execution tuning of Spark configurations based on retrieval. Our method achieves 93.3% of the runtime improvement of state-of-the-art one-execution optimization, entirely avoiding the slow initial execution using default settings. The shift to zero-execution tuning results in a lower cumulative runtime over the first 140 runs, and provides the largest benefit for ad hoc and analytical queries which only need to be executed once. We release the largest and most comprehensive suite of Spark query datasets, optimal configurations, and runtime information, which will promote future development of zero-execution tuning methods.

Authors:Jingkang Yang, Shuai Liu, Hongming Guo, Yuhao Dong, Xiamengwei Zhang, Sicheng Zhang, Pengyun Wang, Zitang Zhou, Binzhu Xie, Ziyue Wang, Bei Ouyang, Zhengyu Lin, Marco Cominelli, Zhongang Cai, Yuanhan Zhang, Peiyuan Zhang, Fangzhou Hong, Joerg Widmer, Francesco Gringoli, Lei Yang, Bo Li, Ziwei Liu
Title: EgoLife: Towards Egocentric Life Assistant
Abstract:
We introduce EgoLife, a project to develop an egocentric life assistant that accompanies and enhances personal efficiency through AI-powered wearable glasses. To lay the foundation for this assistant, we conducted a comprehensive data collection study where six participants lived together for one week, continuously recording their daily activities - including discussions, shopping, cooking, socializing, and entertainment - using AI glasses for multimodal egocentric video capture, along with synchronized third-person-view video references. This effort resulted in the EgoLife Dataset, a comprehensive 300-hour egocentric, interpersonal, multiview, and multimodal daily life dataset with intensive annotation. Leveraging this dataset, we introduce EgoLifeQA, a suite of long-context, life-oriented question-answering tasks designed to provide meaningful assistance in daily life by addressing practical questions such as recalling past relevant events, monitoring health habits, and offering personalized recommendations. To address the key technical challenges of (1) developing robust visual-audio models for egocentric data, (2) enabling identity recognition, and (3) facilitating long-context question answering over extensive temporal information, we introduce EgoButler, an integrated system comprising EgoGPT and EgoRAG. EgoGPT is an omni-modal model trained on egocentric datasets, achieving state-of-the-art performance on egocentric video understanding. EgoRAG is a retrieval-based component that supports answering ultra-long-context questions. Our experimental studies verify their working mechanisms and reveal critical factors and bottlenecks, guiding future improvements. By releasing our datasets, models, and benchmarks, we aim to stimulate further research in egocentric AI assistants.

Authors:Fenglin Liu, Jinge Wu, Hongjian Zhou, Xiao Gu, Soheila Molaei, Anshul Thakur, Lei Clifton, Honghan Wu, David A. Clifton
Title: RiskAgent: Autonomous Medical AI Copilot for Generalist Risk Prediction
Abstract:
The application of Large Language Models (LLMs) to various clinical applications has attracted growing research attention. However, real-world clinical decision-making differs significantly from the standardized, exam-style scenarios commonly used in current efforts. In this paper, we present the RiskAgent system to perform a broad range of medical risk predictions, covering over 387 risk scenarios across diverse complex diseases, e.g., cardiovascular disease and cancer. RiskAgent is designed to collaborate with hundreds of clinical decision tools, i.e., risk calculators and scoring systems that are supported by evidence-based medicine. To evaluate our method, we have built the first benchmark MedRisk specialized for risk prediction, including 12,352 questions spanning 154 diseases, 86 symptoms, 50 specialties, and 24 organ systems. The results show that our RiskAgent, with 8 billion model parameters, achieves 76.33% accuracy, outperforming the most recent commercial LLMs, o1, o3-mini, and GPT-4.5, and doubling the 38.39% accuracy of GPT-4o. On rare diseases, e.g., Idiopathic Pulmonary Fibrosis (IPF), RiskAgent outperforms o1 and GPT-4.5 by 27.27% and 45.46% accuracy, respectively. Finally, we further conduct a generalization evaluation on an external evidence-based diagnosis benchmark and show that our RiskAgent achieves the best results. These encouraging results demonstrate the great potential of our solution for diverse diagnosis domains. To improve the adaptability of our model in different scenarios, we have built and open-sourced a family of models ranging from 1 billion to 70 billion parameters. Our code, data, and models are all available at https://github.com/AI-in-Health/RiskAgent.

Authors:Cristian Jimenez-Romero, Alper Yegenoglu, Christian Blum
Title: Multi-Agent Systems Powered by Large Language Models: Applications in Swarm Intelligence
Abstract:
This work examines the integration of large language models (LLMs) into multi-agent simulations by replacing the hard-coded programs of agents with LLM-driven prompts. The proposed approach is showcased in the context of two examples of complex systems from the field of swarm intelligence: ant colony foraging and bird flocking. Central to this study is a toolchain that integrates LLMs with the NetLogo simulation platform, leveraging its Python extension to enable communication with GPT-4o via the OpenAI API. This toolchain facilitates prompt-driven behavior generation, allowing agents to respond adaptively to environmental data. For both example applications mentioned above, we employ both structured, rule-based prompts and autonomous, knowledge-driven prompts. Our work demonstrates how this toolchain enables LLMs to study self-organizing processes and induce emergent behaviors within multi-agent environments, paving the way for new approaches to exploring intelligent systems and modeling swarm intelligence inspired by natural phenomena. We provide the code, including simulation files and data at https://github.com/crjimene/swarm_gpt.

Authors:Jianqi Yan, Alex P. Leung, Zhiyuan Pei, David C. Y. Hui, Sangin Kim
Title: DeepGrav: Anomalous Gravitational-Wave Detection Through Deep Latent Features
Abstract:
This work introduces a novel deep learning-based approach for gravitational wave anomaly detection, aiming to overcome the limitations of traditional matched filtering techniques in identifying unknown waveform gravitational wave signals. We introduce a modified convolutional neural network architecture inspired by ResNet that leverages residual blocks to extract high-dimensional features, effectively capturing subtle differences between background noise and gravitational wave signals. This network architecture learns a high-dimensional projection while preserving discrepancies with the original input, facilitating precise identification of gravitational wave signals. In our experiments, we implement an innovative data augmentation strategy that generates new data by computing the arithmetic mean of multiple signal samples while retaining the key features of the original signals. In the NSF HDR A3D3: Detecting Anomalous Gravitational Wave Signals competition, it is honorable for us (group name: easonyan123) to get to the first place at the end with our model achieving a true negative rate (TNR) of 0.9708 during development/validation phase and 0.9832 on an unseen challenge dataset during final/testing phase, the highest among all competitors. These results demonstrate that our method not only achieves excellent generalization performance but also maintains robust adaptability in addressing the complex uncertainties inherent in gravitational wave anomaly detection.

Authors:Enkhtogtokh Togootogtokh, Christian Klasen
Title: VoiceGRPO: Modern MoE Transformers with Group Relative Policy Optimization GRPO for AI Voice Health Care Applications on Voice Pathology Detection
Abstract:
This research introduces a novel AI techniques as Mixture-of-Experts Transformers with Group Relative Policy Optimization (GRPO) for voice health care applications on voice pathology detection. With the architectural innovations, we adopt advanced training paradigms inspired by reinforcement learning, namely Proximal Policy Optimization (PPO) and Group-wise Regularized Policy Optimization (GRPO), to enhance model stability and performance. Experiments conducted on a synthetically generated voice pathology dataset demonstrate that our proposed models significantly improve diagnostic accuracy, F1 score, and ROC-AUC compared to conventional approaches. These findings underscore the potential of integrating transformer architectures with novel training strategies to advance automated voice pathology detection and ultimately contribute to more effective healthcare delivery. The code we used to train and evaluate our models is available at https://github.com/enkhtogtokh/voicegrpo

Authors:Hiroshi Takahashi, Tomoharu Iwata, Atsutoshi Kumagai, Yuuki Yamanaka, Tomoya Yamashita
Title: Positive-Unlabeled Diffusion Models for Preventing Sensitive Data Generation
Abstract:
Diffusion models are powerful generative models but often generate sensitive data that are unwanted by users, mainly because the unlabeled training data frequently contain such sensitive data. Since labeling all sensitive data in the large-scale unlabeled training data is impractical, we address this problem by using a small amount of labeled sensitive data. In this paper, we propose positive-unlabeled diffusion models, which prevent the generation of sensitive data using unlabeled and sensitive data. Our approach can approximate the evidence lower bound (ELBO) for normal (negative) data using only unlabeled and sensitive (positive) data. Therefore, even without labeled normal data, we can maximize the ELBO for normal data and minimize it for labeled sensitive data, ensuring the generation of only normal data. Through experiments across various datasets and settings, we demonstrated that our approach can prevent the generation of sensitive images without compromising image quality.

Authors:Zanting Ye, Xiaolong Niu, Xu Han, Xuanbin Wu, Wantong Lu, Yijun Lu, Hao Sun, Yanchao Huang, Hubing Wu, Lijun Lu
Title: Self is the Best Learner: CT-free Ultra-Low-Dose PET Organ Segmentation via Collaborating Denoising and Segmentation Learning
Abstract:
Organ segmentation in Positron Emission Tomography (PET) plays a vital role in cancer quantification. Low-dose PET (LDPET) provides a safer alternative by reducing radiation exposure. However, the inherent noise and blurred boundaries make organ segmentation more challenging. Additionally, existing PET organ segmentation methods rely on coregistered Computed Tomography (CT) annotations, overlooking the problem of modality mismatch. In this study, we propose LDOS, a novel CT-free ultra-LDPET organ segmentation pipeline. Inspired by Masked Autoencoders (MAE), we reinterpret LDPET as a naturally masked version of Full-Dose PET (FDPET). LDOS adopts a simple yet effective architecture: a shared encoder extracts generalized features, while task-specific decoders independently refine outputs for denoising and segmentation. By integrating CT-derived organ annotations into the denoising process, LDOS improves anatomical boundary recognition and alleviates the PET/CT misalignments. Experiments demonstrate that LDOS achieves state-of-the-art performance with mean Dice scores of 73.11% (18F-FDG) and 73.97% (68Ga-FAPI) across 18 organs in 5% dose PET. Our code will be available at https://github.com/yezanting/LDOS.

Authors:Yuqi Zhou, Shuai Wang, Sunhao Dai, Qinglin Jia, Zhaocheng Du, Zhenhua Dong, Jun Xu
Title: CHOP: Mobile Operating Assistant with Constrained High-frequency Optimized Subtask Planning
Abstract:
The advancement of visual language models (VLMs) has enhanced mobile device operations, allowing simulated human-like actions to address user requirements. Current VLM-based mobile operating assistants can be structured into three levels: task, subtask, and action. The subtask level, linking high-level goals with low-level executable actions, is crucial for task completion but faces two challenges: ineffective subtasks that lower-level agent cannot execute and inefficient subtasks that fail to contribute to the completion of the higher-level task. These challenges stem from VLM's lack of experience in decomposing subtasks within GUI scenarios in multi-agent architecture. To address these, we propose a new mobile assistant architecture with constrained high-frequency o}ptimized planning (CHOP). Our approach overcomes the VLM's deficiency in GUI scenarios planning by using human-planned subtasks as the basis vector. We evaluate our architecture in both English and Chinese contexts across 20 Apps, demonstrating significant improvements in both effectiveness and efficiency. Our dataset and code is available at https://github.com/Yuqi-Zhou/CHOP

Authors:Xuandong Zhao, Will Cai, Tianneng Shi, David Huang, Licong Lin, Song Mei, Dawn Song
Title: Improving LLM Safety Alignment with Dual-Objective Optimization
Abstract:
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks. Direct preference optimization (DPO), a widely deployed alignment method, exhibits limitations in both experimental and theoretical contexts as its loss function proves suboptimal for refusal learning. Through gradient-based analysis, we identify these shortcomings and propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge. This approach significantly increases LLM robustness against a wide range of jailbreak attacks, including prefilling, suffix, and multi-turn attacks across both in-distribution and out-of-distribution scenarios. Furthermore, we introduce a method to emphasize critical refusal tokens by incorporating a reward-based token-level weighting mechanism for refusal learning, which further improves the robustness against adversarial exploits. Our research also suggests that robustness to jailbreak attacks is correlated with token distribution shifts in the training process and internal representations of refusal and harmful tokens, offering valuable directions for future research in LLM safety alignment. The code is available at https://github.com/wicai24/DOOR-Alignment

Authors:Nianzu Yang, Pandeng Li, Liming Zhao, Yang Li, Chen-Wei Xie, Yehui Tang, Xudong Lu, Zhihang Liu, Yun Zheng, Yu Liu, Junchi Yan
Title: Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Abstract:
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.

Authors:Zhao Yang, Zezhong Qian, Xiaofan Li, Weixiang Xu, Gongpeng Zhao, Ruohong Yu, Lingsi Zhu, Longjun Liu
Title: DualDiff+: Dual-Branch Diffusion for High-Fidelity Video Generation with Reward Guidance
Abstract:
Accurate and high-fidelity driving scene reconstruction demands the effective utilization of comprehensive scene information as conditional inputs. Existing methods predominantly rely on 3D bounding boxes and BEV road maps for foreground and background control, which fail to capture the full complexity of driving scenes and adequately integrate multimodal information. In this work, we present DualDiff, a dual-branch conditional diffusion model designed to enhance driving scene generation across multiple views and video sequences. Specifically, we introduce Occupancy Ray-shape Sampling (ORS) as a conditional input, offering rich foreground and background semantics alongside 3D spatial geometry to precisely control the generation of both elements. To improve the synthesis of fine-grained foreground objects, particularly complex and distant ones, we propose a Foreground-Aware Mask (FGM) denoising loss function. Additionally, we develop the Semantic Fusion Attention (SFA) mechanism to dynamically prioritize relevant information and suppress noise, enabling more effective multimodal fusion. Finally, to ensure high-quality image-to-video generation, we introduce the Reward-Guided Diffusion (RGD) framework, which maintains global consistency and semantic coherence in generated videos. Extensive experiments demonstrate that DualDiff achieves state-of-the-art (SOTA) performance across multiple datasets. On the NuScenes dataset, DualDiff reduces the FID score by 4.09% compared to the best baseline. In downstream tasks, such as BEV segmentation, our method improves vehicle mIoU by 4.50% and road mIoU by 1.70%, while in BEV 3D object detection, the foreground mAP increases by 1.46%. Code will be made available at https://github.com/yangzhaojason/DualDiff.

Authors:Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, Jing Shao
Title: MAS-GPT: Training LLMs to Build LLM-based Multi-Agent Systems
Abstract:
LLM-based multi-agent systems (MAS) have shown significant potential in tackling diverse tasks. However, to design effective MAS, existing approaches heavily rely on manual configurations or multiple calls of advanced LLMs, resulting in inadaptability and high inference costs. In this paper, we simplify the process of building an MAS by reframing it as a generative language task, where the input is a user query and the output is a corresponding MAS. To address this novel task, we unify the representation of MAS as executable code and propose a consistency-oriented data construction pipeline to create a high-quality dataset comprising coherent and consistent query-MAS pairs. Using this dataset, we train MAS-GPT, an open-source medium-sized LLM that is capable of generating query-adaptive MAS within a single LLM inference. The generated MAS can be seamlessly applied to process user queries and deliver high-quality responses. Extensive experiments on 9 benchmarks and 5 LLMs show that the proposed MAS-GPT consistently outperforms 10+ baseline MAS methods on diverse settings, indicating MAS-GPT's high effectiveness, efficiency and strong generalization ability. Code will be available at https://github.com/rui-ye/MAS-GPT.

Authors:Bar Karov, Dor Zohar, Yam Marcovitz
Title: Attentive Reasoning Queries: A Systematic Method for Optimizing Instruction-Following in Large Language Models
Abstract:
We present Attentive Reasoning Queries (ARQs), a novel structured reasoning approach that significantly improves instruction-following in Large Language Models through domain-specialized reasoning blueprints. While LLMs demonstrate remarkable capabilities across diverse tasks, they often fail to maintain adherence to complex, use-case-specific instructions during multi-turn conversations, presenting challenges for business-critical applications. ARQs address this limitation by guiding LLMs through systematic reasoning steps with targeted queries that reinstate critical instructions and facilitate intermediate reasoning throughout the completion process. In extensive testing within Parlant, our framework for reliable customer-facing agents in which ARQs were born out of necessity, they achieved a 90.2% success rate across 87 test scenarios, outperforming both Chain-of-Thought reasoning (86.1%) and direct response generation (81.5%). ARQs showed particular strength in addressing persistent failure modes like guideline re-application and hallucination prevention. Our analysis also revealed that ARQs can potentially be more computationally efficient than free-form reasoning when carefully designed. These findings demonstrate that structured reasoning approaches provide effective mechanisms for controlling how LLMs process information and make decisions in complex scenarios.

Authors:Wei Li, Bing Hu, Rui Shao, Leyang Shen, Liqiang Nie
Title: LION-FS: Fast & Slow Video-Language Thinker as Online Video Assistant
Abstract:
First-person video assistants are highly anticipated to enhance our daily lives through online video dialogue. However, existing online video assistants often sacrifice assistant efficacy for real-time efficiency by processing low-frame-rate videos with coarse-grained visual features.To overcome the trade-off between efficacy and efficiency, we propose "Fast & Slow Video-Language Thinker" as an onLIne videO assistaNt, LION-FS, achieving real-time, proactive, temporally accurate, and contextually precise responses. LION-FS adopts a two-stage optimization strategy: 1)Fast Path: Routing-Based Response Determination evaluates frame-by-frame whether an immediate response is necessary. To enhance response determination accuracy and handle higher frame-rate inputs efficiently, we employ Token Aggregation Routing to dynamically fuse spatiotemporal features without increasing token numbers, while utilizing Token Dropping Routing to eliminate redundant features. 2)Slow Path: Multi-granularity Keyframe Augmentation optimizes keyframes during response generation. To provide comprehensive and detailed responses beyond atomic actions constrained by training data, fine-grained spatial features and human-environment interaction features are extracted through multi-granular pooling. These features are further integrated into a meticulously designed multimodal Thinking Template to guide more precise response generation. Comprehensive evaluations on online video tasks demonstrate that LION-FS achieves state-of-the-art efficacy and efficiency.

Authors:Rui Zhao, Weijia Mao, Mike Zheng Shou
Title: DoraCycle: Domain-Oriented Adaptation of Unified Generative Model in Multimodal Cycles
Abstract:
Adapting generative models to specific domains presents an effective solution for satisfying specialized requirements. However, adapting to some complex domains remains challenging, especially when these domains require substantial paired data to capture the targeted distributions. Since unpaired data from a single modality, such as vision or language, is more readily available, we utilize the bidirectional mappings between vision and language learned by the unified generative model to enable training on unpaired data for domain adaptation. Specifically, we propose DoraCycle, which integrates two multimodal cycles: text-to-image-to-text and image-to-text-to-image. The model is optimized through cross-entropy loss computed at the cycle endpoints, where both endpoints share the same modality. This facilitates self-evolution of the model without reliance on annotated text-image pairs. Experimental results demonstrate that for tasks independent of paired knowledge, such as stylization, DoraCycle can effectively adapt the unified model using only unpaired data. For tasks involving new paired knowledge, such as specific identities, a combination of a small set of paired image-text examples and larger-scale unpaired data is sufficient for effective domain-oriented adaptation. The code will be released at https://github.com/showlab/DoraCycle.

Authors:Xiaojun Bi, Shuo Li, Junyao Xing, Ziyue Wang, Fuwen Luo, Weizheng Qiao, Lu Han, Ziwei Sun, Peng Li, Yang Liu
Title: DongbaMIE: A Multimodal Information Extraction Dataset for Evaluating Semantic Understanding of Dongba Pictograms
Abstract:
Dongba pictographic is the only pictographic script still in use in the world. Its pictorial ideographic features carry rich cultural and contextual information. However, due to the lack of relevant datasets, research on semantic understanding of Dongba hieroglyphs has progressed slowly. To this end, we constructed \textbf{DongbaMIE} - the first dataset focusing on multimodal information extraction of Dongba pictographs. The dataset consists of images of Dongba hieroglyphic characters and their corresponding semantic annotations in Chinese. It contains 23,530 sentence-level and 2,539 paragraph-level high-quality text-image pairs. The annotations cover four semantic dimensions: object, action, relation and attribute. Systematic evaluation of mainstream multimodal large language models shows that the models are difficult to perform information extraction of Dongba hieroglyphs efficiently under zero-shot and few-shot learning. Although supervised fine-tuning can improve the performance, accurate extraction of complex semantics is still a great challenge at present.

Authors:Woo-Jin Jung, Dong-Hee Paek, Seung-Hyun Kong
Title: L2RDaS: Synthesizing 4D Radar Tensors for Model Generalization via Dataset Expansion
Abstract:
4-dimensional (4D) radar is increasingly adopted in autonomous driving for perception tasks, owing to its robustness under adverse weather conditions. To better utilize the spatial information inherent in 4D radar data, recent deep learning methods have transitioned from using sparse point cloud to 4D radar tensors. However, the scarcity of publicly available 4D radar tensor datasets limits model generalization across diverse driving scenarios. Previous methods addressed this by synthesizing radar data, but the outputs did not fully exploit the spatial information characteristic of 4D radar. To overcome these limitations, we propose LiDAR-to-4D radar data synthesis (L2RDaS), a framework that synthesizes spatially informative 4D radar tensors from LiDAR data available in existing autonomous driving datasets. L2RDaS integrates a modified U-Net architecture to effectively capture spatial information and an object information supplement (OBIS) module to enhance reflection fidelity. This framework enables the synthesis of radar tensors across diverse driving scenarios without additional sensor deployment or data collection. L2RDaS improves model generalization by expanding real datasets with synthetic radar tensors, achieving an average increase of 4.25\% in ${{AP}_{BEV}}$ and 2.87\% in ${{AP}_{3D}}$ across three detection models. Additionally, L2RDaS supports ground-truth augmentation (GT-Aug) by embedding annotated objects into LiDAR data and synthesizing them into radar tensors, resulting in further average increases of 3.75\% in ${{AP}_{BEV}}$ and 4.03\% in ${{AP}_{3D}}$. The implementation will be available at https://github.com/kaist-avelab/K-Radar.

Authors:Haowei Sun, Xintao Yan, Zhijie Qiao, Haojie Zhu, Yihao Sun, Jiawei Wang, Shengyin Shen, Darian Hogue, Rajanikant Ananta, Derek Johnson, Greg Stevens, Greg McGuire, Yifan Wei, Wei Zheng, Yong Sun, Yasuo Fukai, Henry X. Liu
Title: TeraSim: Uncovering Unknown Unsafe Events for Autonomous Vehicles through Generative Simulation
Abstract:
Traffic simulation is essential for autonomous vehicle (AV) development, enabling comprehensive safety evaluation across diverse driving conditions. However, traditional rule-based simulators struggle to capture complex human interactions, while data-driven approaches often fail to maintain long-term behavioral realism or generate diverse safety-critical events. To address these challenges, we propose TeraSim, an open-source, high-fidelity traffic simulation platform designed to uncover unknown unsafe events and efficiently estimate AV statistical performance metrics, such as crash rates. TeraSim is designed for seamless integration with third-party physics simulators and standalone AV stacks, to construct a complete AV simulation system. Experimental results demonstrate its effectiveness in generating diverse safety-critical events involving both static and dynamic agents, identifying hidden deficiencies in AV systems, and enabling statistical performance evaluation. These findings highlight TeraSim's potential as a practical tool for AV safety assessment, benefiting researchers, developers, and policymakers. The code is available at https://github.com/mcity/TeraSim.

Authors:Songlong Xing, Zhengyu Zhao, Nicu Sebe
Title: CLIP is Strong Enough to Fight Back: Test-time Counterattacks towards Zero-shot Adversarial Robustness of CLIP
Abstract:
Despite its prevalent use in image-text matching tasks in a zero-shot manner, CLIP has been shown to be highly vulnerable to adversarial perturbations added onto images. Recent studies propose to finetune the vision encoder of CLIP with adversarial samples generated on the fly, and show improved robustness against adversarial attacks on a spectrum of downstream datasets, a property termed as zero-shot robustness. In this paper, we show that malicious perturbations that seek to maximise the classification loss lead to `falsely stable' images, and propose to leverage the pre-trained vision encoder of CLIP to counterattack such adversarial images during inference to achieve robustness. Our paradigm is simple and training-free, providing the first method to defend CLIP from adversarial attacks at test time, which is orthogonal to existing methods aiming to boost zero-shot adversarial robustness of CLIP. We conduct experiments across 16 classification datasets, and demonstrate stable and consistent gains compared to test-time defence methods adapted from existing adversarial robustness studies that do not rely on external networks, without noticeably impairing performance on clean images. We also show that our paradigm can be employed on CLIP models that have been adversarially finetuned to further enhance their robustness at test time. Our code is available \href{https://github.com/Sxing2/CLIP-Test-time-Counterattacks}{here}.

Authors:Haoran Fan, Bin Li, Yixuan Weng, Shoujun Zhou
Title: Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs
Abstract:
While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.

Authors:Lida Chen, Dong Xu, Chenxin An, Xintao Wang, Yikai Zhang, Jiangjie Chen, Zujie Liang, Feng Wei, Jiaqing Liang, Yanghua Xiao, Wei Wang
Title: PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention
Abstract:
Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts. Sparse attention methods offer a promising solution, but existing approaches often suffer from incomplete effective context and/or require complex implementation of pipeline. We present a comprehensive analysis of sparse attention for autoregressive LLMs from the respective of receptive field, recognize the suboptimal nature of existing methods for expanding the receptive field, and introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension through the theoretical analysis. PowerAttention achieves exponential receptive field growth in $d$-layer LLMs, allowing each output token to attend to $2^d$ tokens, ensuring completeness and continuity of the receptive field. Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by $5\sim 40\%$, especially on tasks demanding long-range dependencies like Passkey Retrieval and RULER, while maintaining a comparable time complexity to sliding window attention. Efficiency evaluations further highlight PowerAttention's superior speedup in both prefilling and decoding phases compared with dynamic sparse attentions and full attention ($3.0\times$ faster on 128K context), making it a highly effective and user-friendly solution for processing long sequences in LLMs.

Authors:Po-Chien Luan, Yang Gao, Celine Demonsant, Alexandre Alahi
Title: Unified Human Localization and Trajectory Prediction with Monocular Vision
Abstract:
Conventional human trajectory prediction models rely on clean curated data, requiring specialized equipment or manual labeling, which is often impractical for robotic applications. The existing predictors tend to overfit to clean observation affecting their robustness when used with noisy inputs. In this work, we propose MonoTransmotion (MT), a Transformer-based framework that uses only a monocular camera to jointly solve localization and prediction tasks. Our framework has two main modules: Bird's Eye View (BEV) localization and trajectory prediction. The BEV localization module estimates the position of a person using 2D human poses, enhanced by a novel directional loss for smoother sequential localizations. The trajectory prediction module predicts future motion from these estimates. We show that by jointly training both tasks with our unified framework, our method is more robust in real-world scenarios made of noisy inputs. We validate our MT network on both curated and non-curated datasets. On the curated dataset, MT achieves around 12% improvement over baseline models on BEV localization and trajectory prediction. On real-world non-curated dataset, experimental results indicate that MT maintains similar performance levels, highlighting its robustness and generalization capability. The code is available at https://github.com/vita-epfl/MonoTransmotion.

Authors:Canaan Yung, Hanxun Huang, Sarah Monazam Erfani, Christopher Leckie
Title: CURVALID: Geometrically-guided Adversarial Prompt Detection
Abstract:
Adversarial prompts capable of jailbreaking large language models (LLMs) and inducing undesirable behaviours pose a significant obstacle to their safe deployment. Current mitigation strategies rely on activating built-in defence mechanisms or fine-tuning the LLMs, but the fundamental distinctions between adversarial and benign prompts are yet to be understood. In this work, we introduce CurvaLID, a novel defense framework that efficiently detects adversarial prompts by leveraging their geometric properties. It is agnostic to the type of LLM, offering a unified detection framework across diverse adversarial prompts and LLM architectures. CurvaLID builds on the geometric analysis of text prompts to uncover their underlying differences. We theoretically extend the concept of curvature via the Whewell equation into an $n$-dimensional word embedding space, enabling us to quantify local geometric properties, including semantic shifts and curvature in the underlying manifolds. Additionally, we employ Local Intrinsic Dimensionality (LID) to capture geometric features of text prompts within adversarial subspaces. Our findings reveal that adversarial prompts differ fundamentally from benign prompts in terms of their geometric characteristics. Our results demonstrate that CurvaLID delivers superior detection and rejection of adversarial queries, paving the way for safer LLM deployment. The source code can be found at https://github.com/Cancanxxx/CurvaLID

Authors:Wonjun Kang, Kevin Galim, Yuchen Zeng, Minjae Lee, Hyung Il Koo, Nam Ik Cho
Title: State-offset Tuning: State-based Parameter-Efficient Fine-Tuning for State Space Models
Abstract:
State Space Models (SSMs) have emerged as efficient alternatives to Transformers, mitigating their quadratic computational cost. However, the application of Parameter-Efficient Fine-Tuning (PEFT) methods to SSMs remains largely unexplored. In particular, prompt-based methods like Prompt Tuning and Prefix-Tuning, which are widely used in Transformers, do not perform well on SSMs. To address this, we propose state-based methods as a superior alternative to prompt-based methods. This new family of methods naturally stems from the architectural characteristics of SSMs. State-based methods adjust state-related features directly instead of depending on external prompts. Furthermore, we introduce a novel state-based PEFT method: State-offset Tuning. At every timestep, our method directly affects the state at the current step, leading to more effective adaptation. Through extensive experiments across diverse datasets, we demonstrate the effectiveness of our method. Code is available at https://github.com/furiosa-ai/ssm-state-tuning.

Authors:Linyu Fan, Che Wang, Ming Ye, Qizhi Yang, Zejun Wu, Xinghao Ding, Yue Huang, Jianfeng Bao, Shuhui Cai, Congbo Cai
Title: Bridging Synthetic-to-Real Gaps: Frequency-Aware Perturbation and Selection for Single-shot Multi-Parametric Mapping Reconstruction
Abstract:
Data-centric artificial intelligence (AI) has remarkably advanced medical imaging, with emerging methods using synthetic data to address data scarcity while introducing synthetic-to-real gaps. Unsupervised domain adaptation (UDA) shows promise in ground truth-scarce tasks, but its application in reconstruction remains underexplored. Although multiple overlapping-echo detachment (MOLED) achieves ultra-fast multi-parametric reconstruction, extending its application to various clinical scenarios, the quality suffers from deficiency in mitigating the domain gap, difficulty in maintaining structural integrity, and inadequacy in ensuring mapping accuracy. To resolve these issues, we proposed frequency-aware perturbation and selection (FPS), comprising Wasserstein distance-modulated frequency-aware perturbation (WDFP) and hierarchical frequency-aware selection network (HFSNet), which integrates frequency-aware adaptive selection (FAS), compact FAS (cFAS) and feature-aware architecture integration (FAI). Specifically, perturbation activates domain-invariant feature learning within uncertainty, while selection refines optimal solutions within perturbation, establishing a robust and closed-loop learning pathway. Extensive experiments on synthetic data, along with diverse real clinical cases from 5 healthy volunteers, 94 ischemic stroke patients, and 46 meningioma patients, demonstrate the superiority and clinical applicability of FPS. Furthermore, FPS is applied to diffusion tensor imaging (DTI), underscoring its versatility and potential for broader medical applications. The code is available at https://github.com/flyannie/FPS.

Authors:Kun Zhang, Peng Yun, Jun Cen, Junhao Cai, Didi Zhu, Hangjie Yuan, Chao Zhao, Tao Feng, Michael Yu Wang, Qifeng Chen, Jia Pan, Wei Zhang, Bo Yang, Hua Chen
Title: Generative Artificial Intelligence in Robotic Manipulation: A Survey
Abstract:
This survey provides a comprehensive review on recent advancements of generative learning models in robotic manipulation, addressing key challenges in the field. Robotic manipulation faces critical bottlenecks, including significant challenges in insufficient data and inefficient data acquisition, long-horizon and complex task planning, and the multi-modality reasoning ability for robust policy learning performance across diverse environments. To tackle these challenges, this survey introduces several generative model paradigms, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), diffusion models, probabilistic flow models, and autoregressive models, highlighting their strengths and limitations. The applications of these models are categorized into three hierarchical layers: the Foundation Layer, focusing on data generation and reward generation; the Intermediate Layer, covering language, code, visual, and state generation; and the Policy Layer, emphasizing grasp generation and trajectory generation. Each layer is explored in detail, along with notable works that have advanced the state of the art. Finally, the survey outlines future research directions and challenges, emphasizing the need for improved efficiency in data utilization, better handling of long-horizon tasks, and enhanced generalization across diverse robotic scenarios. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/GAI4Manipulation/AwesomeGAIManipulation

Authors:Alessio Galatolo, Zhenbang Dai, Katie Winkle, Meriem Beloucif
Title: Visualising Policy-Reward Interplay to Inform Zeroth-Order Preference Optimisation of Large Language Models
Abstract:
Fine-tuning Large Language Models (LLMs) with first-order methods like back-propagation is computationally intensive. Zeroth-Order (ZO) optimisation uses function evaluations instead of gradients, reducing memory usage, but suffers from slow convergence in high-dimensional models. As a result, ZO research in LLMs has mostly focused on classification, overlooking more complex generative tasks. In this paper, we introduce ZOPrO, a novel ZO algorithm designed for Preference Optimisation in LLMs. We begin by analysing the interplay between policy and reward models during traditional (first-order) Preference Optimisation, uncovering patterns in their relative updates. Guided by these insights, we adapt Simultaneous Perturbation Stochastic Approximation (SPSA) with a targeted sampling strategy to accelerate convergence. Through experiments on summarisation, machine translation, and conversational assistants, we demonstrate that our method consistently enhances reward signals while achieving convergence times comparable to first-order methods. While it falls short of some state-of-the-art methods, our work is the first to apply Zeroth-Order methods to Preference Optimisation in LLMs, going beyond classification tasks and paving the way for a largely unexplored research direction. Code and visualisations are available at https://github.com/alessioGalatolo/VisZOPrO

Authors:Junhao Xu, Yanan Zhang, Zhi Cai, Di Huang
Title: CoSDH: Communication-Efficient Collaborative Perception via Supply-Demand Awareness and Intermediate-Late Hybridization
Abstract:
Multi-agent collaborative perception enhances perceptual capabilities by utilizing information from multiple agents and is considered a fundamental solution to the problem of weak single-vehicle perception in autonomous driving. However, existing collaborative perception methods face a dilemma between communication efficiency and perception accuracy. To address this issue, we propose a novel communication-efficient collaborative perception framework based on supply-demand awareness and intermediate-late hybridization, dubbed as \mymethodname. By modeling the supply-demand relationship between agents, the framework refines the selection of collaboration regions, reducing unnecessary communication cost while maintaining accuracy. In addition, we innovatively introduce the intermediate-late hybrid collaboration mode, where late-stage collaboration compensates for the performance degradation in collaborative perception under low communication bandwidth. Extensive experiments on multiple datasets, including both simulated and real-world scenarios, demonstrate that \mymethodname~ achieves state-of-the-art detection accuracy and optimal bandwidth trade-offs, delivering superior detection precision under real communication bandwidths, thus proving its effectiveness and practical applicability. The code will be released at https://github.com/Xu2729/CoSDH.

Authors:Jabez Magomere, Emanuele La Malfa, Manuel Tonneau, Ashkan Kazemi, Scott Hale
Title: When Claims Evolve: Evaluating and Enhancing the Robustness of Embedding Models Against Misinformation Edits
Abstract:
Online misinformation remains a critical challenge, and fact-checkers increasingly rely on claim matching systems that use sentence embedding models to retrieve relevant fact-checks. However, as users interact with claims online, they often introduce edits, and it remains unclear whether current embedding models used in retrieval are robust to such edits. To investigate this, we introduce a perturbation framework that generates valid and natural claim variations, enabling us to assess the robustness of a wide-range of sentence embedding models in a multi-stage retrieval pipeline and evaluate the effectiveness of various mitigation approaches. Our evaluation reveals that standard embedding models exhibit notable performance drops on edited claims, while LLM-distilled embedding models offer improved robustness at a higher computational cost. Although a strong reranker helps to reduce the performance drop, it cannot fully compensate for first-stage retrieval gaps. To address these retrieval gaps, we evaluate train- and inference-time mitigation approaches, demonstrating that they can improve in-domain robustness by up to 17 percentage points and boost out-of-domain generalization by 10 percentage points. Overall, our findings provide practical improvements to claim-matching systems, enabling more reliable fact-checking of evolving misinformation. Code and data are available at https://github.com/JabezNzomo99/claim-matching-robustness.

Authors:Chiyue Wei, Cong Guo, Feng Cheng, Shiyu Li, Hao "Frank" Yang, Hai "Helen" Li, Yiran Chen
Title: Prosperity: Accelerating Spiking Neural Networks via Product Sparsity
Abstract:
Spiking Neural Networks (SNNs) are highly efficient due to their spike-based activation, which inherently produces bit-sparse computation patterns. Existing hardware implementations of SNNs leverage this sparsity pattern to avoid wasteful zero-value computations, yet this approach fails to fully capitalize on the potential efficiency of SNNs. This study introduces a novel sparsity paradigm called Product Sparsity, which leverages combinatorial similarities within matrix multiplication operations to reuse the inner product result and reduce redundant computations. Product Sparsity significantly enhances sparsity in SNNs without compromising the original computation results compared to traditional bit sparsity methods. For instance, in the SpikeBERT SNN model, Product Sparsity achieves a density of only $1.23\%$ and reduces computation by $11\times$, compared to bit sparsity, which has a density of $13.19\%$. To efficiently implement Product Sparsity, we propose Prosperity, an architecture that addresses the challenges of identifying and eliminating redundant computations in real-time. Compared to prior SNN accelerator PTB and the A100 GPU, Prosperity achieves an average speedup of $7.4\times$ and $1.8\times$, respectively, along with energy efficiency improvements of $8.0\times$ and $193\times$, respectively. The code for Prosperity is available at https://github.com/dubcyfor3/Prosperity.

Authors:Yiming Wang, Jianbin Ma, Junda Wu, Huizhe Li, Zhexuan Zhou, Youmin Gong, Jie Mei, Guangfu Ma
Title: SEAL: Safety Enhanced Trajectory Planning and Control Framework for Quadrotor Flight in Complex Environments
Abstract:
For quadrotors, achieving safe and autonomous flight in complex environments with wind disturbances and dynamic obstacles still faces significant challenges. Most existing methods address wind disturbances in either trajectory planning or control, which may lead to hazardous situations during flight. The emergence of dynamic obstacles would further worsen the situation. Therefore, we propose an efficient and reliable framework for quadrotors that incorporates wind disturbance estimations during both the planning and control phases via a generalized proportional integral observer. First, we develop a real-time adaptive spatial-temporal trajectory planner that utilizes Hamilton-Jacobi (HJ) reachability analysis for error dynamics resulting from wind disturbances. By considering the forward reachability sets propagation on an Euclidean Signed Distance Field (ESDF) map, safety is guaranteed. Additionally, a Nonlinear Model Predictive Control (NMPC) controller considering wind disturbance compensation is implemented for robust trajectory tracking. Simulation and real-world experiments verify the effectiveness of our framework. The video and supplementary material will be available at https://github.com/Ma29-HIT/SEAL/.

Authors:Ahmed E. Samy, Zekarias T. Kefato, Sarunas Girdzijauskas
Title: Leap: Inductive Link Prediction via Learnable TopologyAugmentation
Abstract:
Link prediction is a crucial task in many downstream applications of graph machine learning. To this end, Graph Neural Network (GNN) is a widely used technique for link prediction, mainly in transductive settings, where the goal is to predict missing links between existing nodes. However, many real-life applications require an inductive setting that accommodates for new nodes, coming into an existing graph. Thus, recently inductive link prediction has attracted considerable attention, and a multi-layer perceptron (MLP) is the popular choice of most studies to learn node representations. However, these approaches have limited expressivity and do not fully capture the graph's structural signal. Therefore, in this work we propose LEAP, an inductive link prediction method based on LEArnable toPology augmentation. Unlike previous methods, LEAP models the inductive bias from both the structure and node features, and hence is more expressive. To the best of our knowledge, this is the first attempt to provide structural contexts for new nodes via learnable augmentation in inductive settings. Extensive experiments on seven real-world homogeneous and heterogeneous graphs demonstrates that LEAP significantly surpasses SOTA methods. The improvements are up to 22\% and 17\% in terms of AUC and average precision, respectively. The code and datasets are available on GitHub (https://github.com/AhmedESamy/LEAP/)

Authors:Guoyu Yang, Yuan Wang, Daming Shi, Yanzhong Wang
Title: Golden Cudgel Network for Real-Time Semantic Segmentation
Abstract:
Recent real-time semantic segmentation models, whether single-branch or multi-branch, achieve good performance and speed. However, their speed is limited by multi-path blocks, and some depend on high-performance teacher models for training. To overcome these issues, we propose Golden Cudgel Network (GCNet). Specifically, GCNet uses vertical multi-convolutions and horizontal multi-paths for training, which are reparameterized into a single convolution for inference, optimizing both performance and speed. This design allows GCNet to self-enlarge during training and self-contract during inference, effectively becoming a "teacher model" without needing external ones. Experimental results show that GCNet outperforms existing state-of-the-art models in terms of performance and speed on the Cityscapes, CamVid, and Pascal VOC 2012 datasets. The code is available at https://github.com/gyyang23/GCNet.

Authors:Xi Zhu, Haochen Xue, Ziwei Zhao, Wujiang Xu, Jingyuan Huang, Minghao Guo, Qifan Wang, Kaixiong Zhou, Yongfeng Zhang
Title: LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Abstract:
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.

Authors:Jie He, Tao Wang, Deyi Xiong, Qun Liu
Title: The Box is in the Pen: Evaluating Commonsense Reasoning in Neural Machine Translation
Abstract:
Does neural machine translation yield translations that are congenial with common sense? In this paper, we present a test suite to evaluate the commonsense reasoning capability of neural machine translation. The test suite consists of three test sets, covering lexical and contextless/contextual syntactic ambiguity that requires commonsense knowledge to resolve. We manually create 1,200 triples, each of which contain a source sentence and two contrastive translations, involving 7 different common sense types. Language models pretrained on large-scale corpora, such as BERT, GPT-2, achieve a commonsense reasoning accuracy of lower than 72% on target translations of this test suite. We conduct extensive experiments on the test suite to evaluate commonsense reasoning in neural machine translation and investigate factors that have impact on this capability. Our experiments and analyses demonstrate that neural machine translation performs poorly on commonsense reasoning of the three ambiguity types in terms of both reasoning accuracy (60.1%) and reasoning consistency (31%). The built commonsense test suite is available at https://github.com/tjunlp-lab/CommonMT.

Authors:Ji Zhao, Banglei Guan, Zibin Liu, Laurent Kneip
Title: Full-DoF Egomotion Estimation for Event Cameras Using Geometric Solvers
Abstract:
For event cameras, current sparse geometric solvers for egomotion estimation assume that the rotational displacements are known, such as those provided by an IMU. Thus, they can only recover the translational motion parameters. Recovering full-DoF motion parameters using a sparse geometric solver is a more challenging task, and has not yet been investigated. In this paper, we propose several solvers to estimate both rotational and translational velocities within a unified framework. Our method leverages event manifolds induced by line segments. The problem formulations are based on either an incidence relation for lines or a novel coplanarity relation for normal vectors. We demonstrate the possibility of recovering full-DoF egomotion parameters for both angular and linear velocities without requiring extra sensor measurements or motion priors. To achieve efficient optimization, we exploit the Adam framework with a first-order approximation of rotations for quick initialization. Experiments on both synthetic and real-world data demonstrate the effectiveness of our method. The code is available at https://github.com/jizhaox/relpose-event.

Authors:Li Lun, Kunyu Feng, Qinglong Ni, Ling Liang, Yuan Wang, Ying Li, Dunshan Yu, Xiaoxin Cui
Title: Towards Effective and Sparse Adversarial Attack on Spiking Neural Networks via Breaking Invisible Surrogate Gradients
Abstract:
Spiking neural networks (SNNs) have shown their competence in handling spatial-temporal event-based data with low energy consumption. Similar to conventional artificial neural networks (ANNs), SNNs are also vulnerable to gradient-based adversarial attacks, wherein gradients are calculated by spatial-temporal back-propagation (STBP) and surrogate gradients (SGs). However, the SGs may be invisible for an inference-only model as they do not influence the inference results, and current gradient-based attacks are ineffective for binary dynamic images captured by the dynamic vision sensor (DVS). While some approaches addressed the issue of invisible SGs through universal SGs, their SGs lack a correlation with the victim model, resulting in sub-optimal performance. Moreover, the imperceptibility of existing SNN-based binary attacks is still insufficient. In this paper, we introduce an innovative potential-dependent surrogate gradient (PDSG) method to establish a robust connection between the SG and the model, thereby enhancing the adaptability of adversarial attacks across various models with invisible SGs. Additionally, we propose the sparse dynamic attack (SDA) to effectively attack binary dynamic images. Utilizing a generation-reduction paradigm, SDA can fully optimize the sparsity of adversarial perturbations. Experimental results demonstrate that our PDSG and SDA outperform state-of-the-art SNN-based attacks across various models and datasets. Specifically, our PDSG achieves 100% attack success rate on ImageNet, and our SDA obtains 82% attack success rate by modifying only 0.24% of the pixels on CIFAR10DVS. The code is available at https://github.com/ryime/PDSG-SDA .

Authors:Ping Chen, Xingpeng Zhang, Zhaoxiang Liu, Huan Hu, Xiang Liu, Kai Wang, Min Wang, Yanlin Qian, Shiguo Lian
Title: Optimizing for the Shortest Path in Denoising Diffusion Model
Abstract:
In this research, we propose a novel denoising diffusion model based on shortest-path modeling that optimizes residual propagation to enhance both denoising efficiency and quality. Drawing on Denoising Diffusion Implicit Models (DDIM) and insights from graph theory, our model, termed the Shortest Path Diffusion Model (ShortDF), treats the denoising process as a shortest-path problem aimed at minimizing reconstruction error. By optimizing the initial residuals, we improve the efficiency of the reverse diffusion process and the quality of the generated samples. Extensive experiments on multiple standard benchmarks demonstrate that ShortDF significantly reduces diffusion time (or steps) while enhancing the visual fidelity of generated samples compared to prior arts. This work, we suppose, paves the way for interactive diffusion-based applications and establishes a foundation for rapid data generation. Code is available at https://github.com/UnicomAI/ShortDF.

Authors:Gangwei Xu, Jiaxin Liu, Xianqi Wang, Junda Cheng, Yong Deng, Jinliang Zang, Yurui Chen, Xin Yang
Title: BANet: Bilateral Aggregation Network for Mobile Stereo Matching
Abstract:
State-of-the-art stereo matching methods typically use costly 3D convolutions to aggregate a full cost volume, but their computational demands make mobile deployment challenging. Directly applying 2D convolutions for cost aggregation often results in edge blurring, detail loss, and mismatches in textureless regions. Some complex operations, like deformable convolutions and iterative warping, can partially alleviate this issue; however, they are not mobile-friendly, limiting their deployment on mobile devices. In this paper, we present a novel bilateral aggregation network (BANet) for mobile stereo matching that produces high-quality results with sharp edges and fine details using only 2D convolutions. Specifically, we first separate the full cost volume into detailed and smooth volumes using a spatial attention map, then perform detailed and smooth aggregations accordingly, ultimately fusing both to obtain the final disparity map. Experimental results demonstrate that our BANet-2D significantly outperforms other mobile-friendly methods, achieving 35.3\% higher accuracy on the KITTI 2015 leaderboard than MobileStereoNet-2D, with faster runtime on mobile devices. Code: \textcolor{magenta}{https://github.com/gangweix/BANet}.

Authors:Gangwei Xu, Haotong Lin, Zhaoxing Zhang, Hongcheng Luo, Haiyang Sun, Xin Yang
Title: BAT: Learning Event-based Optical Flow with Bidirectional Adaptive Temporal Correlation
Abstract:
Event cameras deliver visual information characterized by a high dynamic range and high temporal resolution, offering significant advantages in estimating optical flow for complex lighting conditions and fast-moving objects. Current advanced optical flow methods for event cameras largely adopt established image-based frameworks. However, the spatial sparsity of event data limits their performance. In this paper, we present BAT, an innovative framework that estimates event-based optical flow using bidirectional adaptive temporal correlation. BAT includes three novel designs: 1) a bidirectional temporal correlation that transforms bidirectional temporally dense motion cues into spatially dense ones, enabling accurate and spatially dense optical flow estimation; 2) an adaptive temporal sampling strategy for maintaining temporal consistency in correlation; 3) spatially adaptive temporal motion aggregation to efficiently and adaptively aggregate consistent target motion features into adjacent motion features while suppressing inconsistent ones. Our results rank $1^{st}$ on the DSEC-Flow benchmark, outperforming existing state-of-the-art methods by a large margin while also exhibiting sharp edges and high-quality details. Notably, our BAT can accurately predict future optical flow using only past events, significantly outperforming E-RAFT's warm-start approach. Code: \textcolor{magenta}{https://github.com/gangweiX/BAT}.

Authors:Jingzhou Luo, Yang Liu, Weixing Chen, Zhen Li, Yaowei Wang, Guanbin Li, Liang Lin
Title: DSPNet: Dual-vision Scene Perception for Robust 3D Question Answering
Abstract:
3D Question Answering (3D QA) requires the model to comprehensively understand its situated 3D scene described by the text, then reason about its surrounding environment and answer a question under that situation. However, existing methods usually rely on global scene perception from pure 3D point clouds and overlook the importance of rich local texture details from multi-view images. Moreover, due to the inherent noise in camera poses and complex occlusions, there exists significant feature degradation and reduced feature robustness problems when aligning 3D point cloud with multi-view images. In this paper, we propose a Dual-vision Scene Perception Network (DSPNet), to comprehensively integrate multi-view and point cloud features to improve robustness in 3D QA. Our Text-guided Multi-view Fusion (TGMF) module prioritizes image views that closely match the semantic content of the text. To adaptively fuse back-projected multi-view images with point cloud features, we design the Adaptive Dual-vision Perception (ADVP) module, enhancing 3D scene comprehension. Additionally, our Multimodal Context-guided Reasoning (MCGR) module facilitates robust reasoning by integrating contextual information across visual and linguistic modalities. Experimental results on SQA3D and ScanQA datasets demonstrate the superiority of our DSPNet. Codes will be available at https://github.com/LZ-CH/DSPNet.

Authors:Javier Yong, Haokai Ma, Yunshan Ma, Anis Yusof, Zhenkai Liang, Ee-Chien Chang
Title: AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks
Abstract:
The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .

Authors:Alexander Kolpakov, Igor Rivin
Title: Dimensionality reduction for homological stability and global structure preservation
Abstract:
We propose a new dimensionality reduction toolkit designed to address some of the challenges faced by traditional methods like UMAP and tSNE such as loss of global structure and computational efficiency. Built on the JAX framework, DiRe leverages modern hardware acceleration to provide an efficient, scalable, and interpretable solution for visualizing complex data structures, and for quantitative analysis of lower-dimensional embeddings. The toolkit shows considerable promise in preserving both local and global structures within the data as compared to state-of-the-art UMAP and tSNE implementations. This makes it suitable for a wide range of applications in machine learning, bio-informatics, and data science.

Authors:Shiyuan Zhou, Bingxuan Li, Xiyuan Chen, Zhi Tu, Yifeng Wang, Yiwen Xiang, Tianyi Zhang
Title: HEPHA: A Mixed-Initiative Image Labeling Tool for Specialized Domains
Abstract:
Image labeling is an important task for training computer vision models. In specialized domains, such as healthcare, it is expensive and challenging to recruit specialists for image labeling. We propose HEPHA, a mixed-initiative image labeling tool that elicits human expertise via inductive logic learning to infer and refine labeling rules. Each rule comprises visual predicates that describe the image. HEPHA enables users to iteratively refine the rules by either direct manipulation through a visual programming interface or by labeling more images. To facilitate rule refinement, HEPHA recommends which rule to edit and which predicate to update. For users unfamiliar with visual programming, HEPHA suggests diverse and informative images to users for further labeling. We conducted a within-subjects user study with 16 participants and compared HEPHA with a variant of HEPHA and a deep learning-based approach. We found that HEPHA outperforms the two baselines in both specialized-domain and general-domain image labeling tasks. Our code is available at https://github.com/Neural-Symbolic-Image-Labeling/NSILWeb.

Authors:Xihan Qin, Li Liao
Title: Graph Transformer with Disease Subgraph Positional Encoding for Improved Comorbidity Prediction
Abstract:
Comorbidity, the co-occurrence of multiple medical conditions in a single patient, profoundly impacts disease management and outcomes. Understanding these complex interconnections is crucial, especially in contexts where comorbidities exacerbate outcomes. Leveraging insights from the human interactome (HI) and advancements in graph-based methodologies, this study introduces Transformer with Subgraph Positional Encoding (TSPE) for disease comorbidity prediction. Inspired by Biologically Supervised Embedding (BSE), TSPE employs Transformer's attention mechanisms and Subgraph Positional Encoding (SPE) to capture interactions between nodes and disease associations. Our proposed SPE proves more effective than LPE, as used in Dwivedi et al.'s Graph Transformer, underscoring the importance of integrating clustering and disease-specific information for improved predictive accuracy. Evaluated on real clinical benchmark datasets (RR0 and RR1), TSPE demonstrates substantial performance enhancements over the state-of-the-art method, achieving up to 28.24% higher ROC AUC and 4.93% higher accuracy. This method shows promise for adaptation to other complex graph-based tasks and applications. The source code is available in the GitHub repository at: https://github.com/xihan-qin/TSPE-GraphTransformer.

Authors:Gabriele Sarti, Vilém Zouhar, Grzegorz Chrupała, Ana Guerberof-Arenas, Malvina Nissim, Arianna Bisazza
Title: QE4PE: Word-level Quality Estimation for Human Post-Editing
Abstract:
Word-level quality estimation (QE) methods aim to detect erroneous spans in machine translations, which can direct and facilitate human post-editing. While the accuracy of word-level QE systems has been assessed extensively, their usability and downstream influence on the speed, quality and editing choices of human post-editing remain understudied. In this study, we investigate the impact of word-level QE on machine translation (MT) post-editing in a realistic setting involving 42 professional post-editors across two translation directions. We compare four error-span highlight modalities, including supervised and uncertainty-based word-level QE methods, for identifying potential errors in the outputs of a state-of-the-art neural MT model. Post-editing effort and productivity are estimated from behavioral logs, while quality improvements are assessed by word- and segment-level human annotation. We find that domain, language and editors' speed are critical factors in determining highlights' effectiveness, with modest differences between human-made and automated QE highlights underlining a gap between accuracy and usability in professional workflows.

Authors:Yizhe Zhang, Navdeep Jaitly
Title: SAGE: Steering Dialog Generation with Future-Aware State-Action Augmentation
Abstract:
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level. https://github.com/apple/ml-sage-dialog-gen

Authors:Siqi Ouyang, Xi Xu, Lei Li
Title: InfiniSST: Simultaneous Translation of Unbounded Speech with Large Language Model
Abstract:
Simultaneous translation of unbounded streaming speech remains a challenging problem due to the need for effectively processing the history speech context and past translations so that quality and latency, including computation overhead, can be balanced. Most prior works assume pre-segmented speech, limiting their real-world applicability. In this paper, we propose InfiniSST, a novel approach that formulates SST as a multi-turn dialogue task, enabling seamless translation of unbounded speech. We construct translation trajectories and robust segments from MuST-C with multi-latency augmentation during training and develop a key-value (KV) cache management strategy to facilitate efficient inference. Experiments on MuST-C En-Es, En-De, and En-Zh demonstrate that InfiniSST reduces computation-aware latency by 0.5 to 1 second while maintaining the same translation quality compared to baselines. Ablation studies further validate the contributions of our data construction and cache management strategy. We release the code and demo at https://github.com/LeiLiLab/InfiniSST

Authors:Danqing Zhang, Balaji Rama, Jingyi Ni, Shiying He, Fu Zhao, Kunyu Chen, Arnold Chen, Junyu Cao
Title: LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications
Abstract:
We introduce LiteWebAgent, an open-source suite for VLM-based web agent applications. Our framework addresses a critical gap in the web agent ecosystem with a production-ready solution that combines minimal serverless backend configuration, intuitive user and browser interfaces, and extensible research capabilities in agent planning, memory, and tree search. For the core LiteWebAgent agent framework, we implemented a simple yet effective baseline using recursive function calling, providing with decoupled action generation and action grounding. In addition, we integrate advanced research components such as agent planning, agent workflow memory, and tree search in a modular and extensible manner. We then integrate the LiteWebAgent agent framework with frontend and backend as deployed systems in two formats: (1) a production Vercel-based web application, which provides users with an agent-controlled remote browser, (2) a Chrome extension leveraging LiteWebAgent's API to control an existing Chrome browser via CDP (Chrome DevTools Protocol). The LiteWebAgent framework is available at https://github.com/PathOnAI/LiteWebAgent, with deployed frontend at https://lite-web-agent.vercel.app/.

Authors:Yue Meng, Chuchu fan
Title: Diverse Controllable Diffusion Policy with Signal Temporal Logic
Abstract:
Generating realistic simulations is critical for autonomous system applications such as self-driving and human-robot interactions. However, driving simulators nowadays still have difficulty in generating controllable, diverse, and rule-compliant behaviors for road participants: Rule-based models cannot produce diverse behaviors and require careful tuning, whereas learning-based methods imitate the policy from data but are not designed to follow the rules explicitly. Besides, the real-world datasets are by nature "single-outcome", making the learning method hard to generate diverse behaviors. In this paper, we leverage Signal Temporal Logic (STL) and Diffusion Models to learn controllable, diverse, and rule-aware policy. We first calibrate the STL on the real-world data, then generate diverse synthetic data using trajectory optimization, and finally learn the rectified diffusion policy on the augmented dataset. We test on the NuScenes dataset and our approach can achieve the most diverse rule-compliant trajectories compared to other baselines, with a runtime 1/17X to the second-best approach. In the closed-loop testing, our approach reaches the highest diversity, rule satisfaction rate, and the least collision rate. Our method can generate varied characteristics conditional on different STL parameters in testing. A case study on human-robot encounter scenarios shows our approach can generate diverse and closed-to-oracle trajectories. The annotation tool, augmented dataset, and code are available at https://github.com/mengyuest/pSTL-diffusion-policy.

Authors:Wenqi Guo, Yiyang Du, Shan Du
Title: LangGas: Introducing Language in Selective Zero-Shot Background Subtraction for Semi-Transparent Gas Leak Detection with a New Dataset
Abstract:
Gas leakage poses a significant hazard that requires prevention. Traditionally, human inspection has been used for detection, a slow and labour-intensive process. Recent research has applied machine learning techniques to this problem, yet there remains a shortage of high-quality, publicly available datasets. This paper introduces a synthetic dataset, SimGas, featuring diverse backgrounds, interfering foreground objects, diverse leak locations, and precise segmentation ground truth. We propose a zero-shot method that combines background subtraction, zero-shot object detection, filtering, and segmentation to leverage this dataset. Experimental results indicate that our approach significantly outperforms baseline methods based solely on background subtraction and zero-shot object detection with segmentation, reaching an IoU of 69%. We also present an analysis of various prompt configurations and threshold settings to provide deeper insights into the performance of our method. Finally, we qualitatively (because of the lack of ground truth) tested our performance on GasVid and reached decent results on the real-world dataset. The dataset, code, and full qualitative results are available at https://github.com/weathon/Lang-Gas.

Authors:Saurabh Koju, Saurav Bastola, Prashant Shrestha, Sanskar Amgain, Yash Raj Shrestha, Rudra P. K. Poudel, Binod Bhattarai
Title: Surgical Vision World Model
Abstract:
Realistic and interactive surgical simulation has the potential to facilitate crucial applications, such as medical professional training and autonomous surgical agent training. In the natural visual domain, world models have enabled action-controlled data generation, demonstrating the potential to train autonomous agents in interactive simulated environments when large-scale real data acquisition is infeasible. However, such works in the surgical domain have been limited to simplified computer simulations, and lack realism. Furthermore, existing literature in world models has predominantly dealt with action-labeled data, limiting their applicability to real-world surgical data, where obtaining action annotation is prohibitively expensive. Inspired by the recent success of Genie in leveraging unlabeled video game data to infer latent actions and enable action-controlled data generation, we propose the first surgical vision world model. The proposed model can generate action-controllable surgical data and the architecture design is verified with extensive experiments on the unlabeled SurgToolLoc-2022 dataset. Codes and implementation details are available at https://github.com/bhattarailab/Surgical-Vision-World-Model

Authors:Saurabh Koju, Saurav Bastola, Prashant Shrestha, Sanskar Amgain, Yash Raj Shrestha, Rudra P. K. Poudel, Binod Bhattarai
Title: Surgical Vision World Model
Abstract:
Realistic and interactive surgical simulation has the potential to facilitate crucial applications, such as medical professional training and autonomous surgical agent training. In the natural visual domain, world models have enabled action-controlled data generation, demonstrating the potential to train autonomous agents in interactive simulated environments when large-scale real data acquisition is infeasible. However, such works in the surgical domain have been limited to simplified computer simulations, and lack realism. Furthermore, existing literature in world models has predominantly dealt with action-labeled data, limiting their applicability to real-world surgical data, where obtaining action annotation is prohibitively expensive. Inspired by the recent success of Genie in leveraging unlabeled video game data to infer latent actions and enable action-controlled data generation, we propose the first surgical vision world model. The proposed model can generate action-controllable surgical data and the architecture design is verified with extensive experiments on the unlabeled SurgToolLoc-2022 dataset. Codes and implementation details are available at https://github.com/bhattarailab/Surgical-Vision-World-Model

Authors:Yinzhou Tang, Jinghua Piao, Huandong Wang, Shaw Rajib, Yong Li
Title: Predicting Cascade Failures in Interdependent Urban Infrastructure Networks
Abstract:
Cascading failures (CF) entail component breakdowns spreading through infrastructure networks, causing system-wide collapse. Predicting CFs is of great importance for infrastructure stability and urban function. Despite extensive research on CFs in single networks such as electricity and road networks, interdependencies among diverse infrastructures remain overlooked, and capturing intra-infrastructure CF dynamics amid complex evolutions poses challenges. To address these gaps, we introduce the \textbf{I}ntegrated \textbf{I}nterdependent \textbf{I}nfrastructure CF model ($I^3$), designed to capture CF dynamics both within and across infrastructures. $I^3$ employs a dual GAE with global pooling for intra-infrastructure dynamics and a heterogeneous graph for inter-infrastructure interactions. An initial node enhancement pre-training strategy mitigates GCN-induced over-smoothing. Experiments demonstrate $I^3$ achieves a 31.94\% in terms of AUC, 18.03\% in terms of Precision, 29.17\% in terms of Recall, 22.73\% in terms of F1-score boost in predicting infrastructure failures, and a 28.52\% reduction in terms of RMSE for cascade volume forecasts compared to leading models. It accurately pinpoints phase transitions in interconnected and singular networks, rectifying biases in models tailored for singular networks. Access the code at https://github.com/tsinghua-fib-lab/Icube.

Authors:Qinyu Zhao, Stephen Gould, Liang Zheng
Title: ARINAR: Bi-Level Autoregressive Feature-by-Feature Generative Models
Abstract:
Existing autoregressive (AR) image generative models use a token-by-token generation schema. That is, they predict a per-token probability distribution and sample the next token from that distribution. The main challenge is how to model the complex distribution of high-dimensional tokens. Previous methods either are too simplistic to fit the distribution or result in slow generation speed. Instead of fitting the distribution of the whole tokens, we explore using a AR model to generate each token in a feature-by-feature way, i.e., taking the generated features as input and generating the next feature. Based on that, we propose ARINAR (AR-in-AR), a bi-level AR model. The outer AR layer take previous tokens as input, predicts a condition vector z for the next token. The inner layer, conditional on z, generates features of the next token autoregressively. In this way, the inner layer only needs to model the distribution of a single feature, for example, using a simple Gaussian Mixture Model. On the ImageNet 256x256 image generation task, ARINAR-B with 213M parameters achieves an FID of 2.75, which is comparable to the state-of-the-art MAR-B model (FID=2.31), while five times faster than the latter.

Authors:Siming Huang, Yuliang Xu, Mingmeng Geng, Yao Wan, Dongping Chen
Title: Wikipedia in the Era of LLMs: Evolution and Risks
Abstract:
In this paper, we present a thorough analysis of the impact of Large Language Models (LLMs) on Wikipedia, examining the evolution of Wikipedia through existing data and using simulations to explore potential risks. We begin by analyzing page views and article content to study Wikipedia's recent changes and assess the impact of LLMs. Subsequently, we evaluate how LLMs affect various Natural Language Processing (NLP) tasks related to Wikipedia, including machine translation and retrieval-augmented generation (RAG). Our findings and simulation results reveal that Wikipedia articles have been influenced by LLMs, with an impact of approximately 1%-2% in certain categories. If the machine translation benchmark based on Wikipedia is influenced by LLMs, the scores of the models may become inflated, and the comparative results among models might shift as well. Moreover, the effectiveness of RAG might decrease if the knowledge base becomes polluted by LLM-generated content. While LLMs have not yet fully changed Wikipedia's language and knowledge structures, we believe that our empirical findings signal the need for careful consideration of potential future risks.

Authors:Dmitry Nechaev, Alexey Pchelnikov, Ekaterina Ivanova
Title: SPIDER: A Comprehensive Multi-Organ Supervised Pathology Dataset and Baseline Models
Abstract:
Advancing AI in computational pathology requires large, high-quality, and diverse datasets, yet existing public datasets are often limited in organ diversity, class coverage, or annotation quality. To bridge this gap, we introduce SPIDER (Supervised Pathology Image-DEscription Repository), the largest publicly available patch-level dataset covering multiple organ types, including Skin, Colorectal, Thorax, and Breast with comprehensive class coverage for each organ. SPIDER provides high-quality annotations verified by expert pathologists and includes surrounding context patches, which enhance classification performance by providing spatial context. Alongside the dataset, we present baseline models trained on SPIDER using the Hibou-L foundation model as a feature extractor combined with an attention-based classification head. The models achieve state-of-the-art performance across multiple tissue categories and serve as strong benchmarks for future digital pathology research. Beyond patch classification, the model enables rapid identification of significant areas, quantitative tissue metrics, and establishes a foundation for multimodal approaches. Both the dataset and trained models are publicly available to advance research, reproducibility, and AI-driven pathology development. Access them at: https://github.com/HistAI/SPIDER

Authors:Nuria Alina Chandra, Ryan Murtfeldt, Lin Qiu, Arnab Karmakar, Hannah Lee, Emmanuel Tanumihardja, Kevin Farhat, Ben Caffee, Sejin Paik, Changyeon Lee, Jongwook Choi, Aerin Kim, Oren Etzioni
Title: Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
Abstract:
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of real-world deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 45 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but do not yet reach the accuracy of deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.

Authors:Belinda Z. Li, Zifan Carl Guo, Jacob Andreas
Title: (How) Do Language Models Track State?
Abstract:
Transformer language models (LMs) exhibit behaviors -- from storytelling to code generation -- that appear to require tracking the unobserved state of an evolving world. How do they do so? We study state tracking in LMs trained or fine-tuned to compose permutations (i.e., to compute the order of a set of objects after a sequence of swaps). Despite the simple algebraic structure of this problem, many other tasks (e.g., simulation of finite automata and evaluation of boolean expressions) can be reduced to permutation composition, making it a natural model for state tracking in general. We show that LMs consistently learn one of two state tracking mechanisms for this task. The first closely resembles the "associative scan" construction used in recent theoretical work by Liu et al. (2023) and Merrill et al. (2024). The second uses an easy-to-compute feature (permutation parity) to partially prune the space of outputs, then refines this with an associative scan. The two mechanisms exhibit markedly different robustness properties, and we show how to steer LMs toward one or the other with intermediate training tasks that encourage or suppress the heuristics. Our results demonstrate that transformer LMs, whether pretrained or fine-tuned, can learn to implement efficient and interpretable state tracking mechanisms, and the emergence of these mechanisms can be predicted and controlled.

Authors:Zicong He, Boxuan Zhang, Lu Cheng
Title: Shakespearean Sparks: The Dance of Hallucination and Creativity in LLMs' Decoding Layers
Abstract:
Large language models (LLMs) are known to hallucinate, a phenomenon often linked to creativity. While previous research has primarily explored this connection through theoretical or qualitative lenses, our work takes a quantitative approach to systematically examine the relationship between hallucination and creativity in LLMs. Given the complex nature of creativity, we propose a narrow definition tailored to LLMs and introduce an evaluation framework, HCL, which quantifies Hallucination and Creativity across different Layers of LLMs during decoding. Our empirical analysis reveals a tradeoff between hallucination and creativity that is consistent across layer depth, model type, and model size. Notably, across different model architectures, we identify a specific layer at each model size that optimally balances this tradeoff. Additionally, the optimal layer tends to appear in the early layers of larger models, and the confidence of the model is also significantly higher at this layer. These findings provide a quantitative perspective that offers new insights into the interplay between LLM creativity and hallucination. The code and data for our experiments are available at https://github.com/ZicongHe2002/HCL-Spark.

Authors:Yuzhe Gu, Wenwei Zhang, Chengqi Lyu, Dahua Lin, Kai Chen
Title: Mask-DPO: Generalizable Fine-grained Factuality Alignment of LLMs
Abstract:
Large language models (LLMs) exhibit hallucinations (i.e., unfaithful or nonsensical information) when serving as AI assistants in various domains. Since hallucinations always come with truthful content in the LLM responses, previous factuality alignment methods that conduct response-level preference learning inevitably introduced noises during training. Therefore, this paper proposes a fine-grained factuality alignment method based on Direct Preference Optimization (DPO), called Mask-DPO. Incorporating sentence-level factuality as mask signals, Mask-DPO only learns from factually correct sentences in the preferred samples and prevents the penalty on factual contents in the not preferred samples, which resolves the ambiguity in the preference learning. Extensive experimental results demonstrate that Mask-DPO can significantly improve the factuality of LLMs responses to questions from both in-domain and out-of-domain datasets, although these questions and their corresponding topics are unseen during training. Only trained on the ANAH train set, the score of Llama3.1-8B-Instruct on the ANAH test set is improved from 49.19% to 77.53%, even surpassing the score of Llama3.1-70B-Instruct (53.44%), while its FactScore on the out-of-domain Biography dataset is also improved from 30.29% to 39.39%. We further study the generalization property of Mask-DPO using different training sample scaling strategies and find that scaling the number of topics in the dataset is more effective than the number of questions. We provide a hypothesis of what factual alignment is doing with LLMs, on the implication of this phenomenon, and conduct proof-of-concept experiments to verify it. We hope the method and the findings pave the way for future research on scaling factuality alignment.

Authors:Michal Nazarczuk, Karla Stepanova, Jan Kristof Behrens, Matej Hoffmann, Krystian Mikolajczyk
Title: MuBlE: MuJoCo and Blender simulation Environment and Benchmark for Task Planning in Robot Manipulation
Abstract:
Current embodied reasoning agents struggle to plan for long-horizon tasks that require to physically interact with the world to obtain the necessary information (e.g. 'sort the objects from lightest to heaviest'). The improvement of the capabilities of such an agent is highly dependent on the availability of relevant training environments. In order to facilitate the development of such systems, we introduce a novel simulation environment (built on top of robosuite) that makes use of the MuJoCo physics engine and high-quality renderer Blender to provide realistic visual observations that are also accurate to the physical state of the scene. It is the first simulator focusing on long-horizon robot manipulation tasks preserving accurate physics modeling. MuBlE can generate mutlimodal data for training and enable design of closed-loop methods through environment interaction on two levels: visual - action loop, and control - physics loop. Together with the simulator, we propose SHOP-VRB2, a new benchmark composed of 10 classes of multi-step reasoning scenarios that require simultaneous visual and physical measurements.

Authors:Songming Zhang, Xue Zhang, Tong Zhang, Bojie Hu, Yufeng Chen, Jinan Xu
Title: AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation
Abstract:
In modern large language models (LLMs), LLM alignment is of crucial importance and is typically achieved through methods such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). However, in most existing methods for LLM alignment, all tokens in the response are optimized using a sparse, response-level reward or preference annotation. The ignorance of token-level rewards may erroneously punish high-quality tokens or encourage low-quality tokens, resulting in suboptimal performance and slow convergence speed. To address this issue, we propose AlignDistil, an RLHF-equivalent distillation method for token-level reward optimization. Specifically, we introduce the reward learned by DPO into the RLHF objective and theoretically prove the equivalence between this objective and a token-level distillation process, where the teacher distribution linearly combines the logits from the DPO model and a reference model. On this basis, we further bridge the accuracy gap between the reward from the DPO model and the pure reward model, by building a contrastive DPO reward with a normal and a reverse DPO model. Moreover, to avoid under- and over-optimization on different tokens, we design a token adaptive logit extrapolation mechanism to construct an appropriate teacher distribution for each token. Experimental results demonstrate the superiority of our AlignDistil over existing methods and showcase fast convergence due to its token-level distributional reward optimization.

Authors:Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alán Aspuru-Guzik, Arnaud Doucet, Rob Brekelmans, Alexander Tong, Kirill Neklyudov
Title: Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
Abstract:
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional `corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.

Authors:Weihang Wang, Duolin Sun, Jielei Zhang, Longwen Gao
Title: MX-Font++: Mixture of Heterogeneous Aggregation Experts for Few-shot Font Generation
Abstract:
Few-shot Font Generation (FFG) aims to create new font libraries using limited reference glyphs, with crucial applications in digital accessibility and equity for low-resource languages, especially in multilingual artificial intelligence systems. Although existing methods have shown promising performance, transitioning to unseen characters in low-resource languages remains a significant challenge, especially when font glyphs vary considerably across training sets. MX-Font considers the content of a character from the perspective of a local component, employing a Mixture of Experts (MoE) approach to adaptively extract the component for better transition. However, the lack of a robust feature extractor prevents them from adequately decoupling content and style, leading to sub-optimal generation results. To alleviate these problems, we propose Heterogeneous Aggregation Experts (HAE), a powerful feature extraction expert that helps decouple content and style downstream from being able to aggregate information in channel and spatial dimensions. Additionally, we propose a novel content-style homogeneity loss to enhance the untangling. Extensive experiments on several datasets demonstrate that our MX-Font++ yields superior visual results in FFG and effectively outperforms state-of-the-art methods. Code and data are available at https://github.com/stephensun11/MXFontpp.

Authors:Jie Wu, Haoling Li, Xin Zhang, Jianwen Luo, Yangyu Huang, Ruihang Chu, Yujiu Yang, Scarlett Li
Title: Teaching Your Models to Understand Code via Focal Preference Alignment
Abstract:
Preference learning extends the performance of Code LLMs beyond traditional supervised fine-tuning by leveraging relative quality comparisons. In existing approaches, a set of n candidate solutions is evaluated based on test case success rates, with the candidate demonstrating a higher pass rate being labeled as positive and its counterpart with a lower pass rate as negative. However, because this approach aligns entire failing code blocks rather than pinpointing specific errors, it lacks the granularity necessary to capture meaningful error-correction relationships. As a result, the model is unable to learn more informative error-correction patterns. To address these issues, we propose Target-DPO, a new preference alignment framework that mimics human iterative debugging to refine Code LLMs. Target-DPO explicitly locates error regions and aligns the corresponding tokens via a tailored DPO algorithm. To facilitate it, we introduce the CodeFlow dataset, where samples are iteratively refined until passing tests, with modifications capturing error corrections. Extensive experiments show that a diverse suite of Code LLMs equipped with Target-DPO achieves significant performance gains in code generation and improves on challenging tasks like BigCodeBench. In-depth analysis reveals that Target-DPO yields fewer errors. Code, model and datasets are in: https://github.com/JieWu02/Target-DPO.

Authors:Jie Wu, Haoling Li, Xin Zhang, Xiao Liu, Yangyu Huang, Jianwen Luo, Yizhen Zhang, Zuchao Li, Ruihang Chu, Yujiu Yang, Scarlett Li
Title: Teaching Your Models to Understand Code via Focal Preference Alignment
Abstract:
Preference learning extends the performance of Code LLMs beyond traditional supervised fine-tuning by leveraging relative quality comparisons. In existing approaches, a set of n candidate solutions is evaluated based on test case success rates, with the candidate demonstrating a higher pass rate being labeled as positive and its counterpart with a lower pass rate as negative. However, because this approach aligns entire failing code blocks rather than pinpointing specific errors, it lacks the granularity necessary to capture meaningful error-correction relationships. As a result, the model is unable to learn more informative error-correction patterns. To address these issues, we propose Target-DPO, a new preference alignment framework that mimics human iterative debugging to refine Code LLMs. Target-DPO explicitly locates error regions and aligns the corresponding tokens via a tailored DPO algorithm. To facilitate it, we introduce the CodeFlow dataset, where samples are iteratively refined until passing tests, with modifications capturing error corrections. Extensive experiments show that a diverse suite of Code LLMs equipped with Target-DPO achieves significant performance gains in code generation and improves on challenging tasks like BigCodeBench. In-depth analysis reveals that Target-DPO yields fewer errors. Code, model and datasets are in: https://github.com/JieWu02/Target-DPO.

Authors:Daniil Larionov, Steffen Eger
Title: BatchGEMBA: Token-Efficient Machine Translation Evaluation with Batched Prompting and Prompt Compression
Abstract:
Recent advancements in Large Language Model (LLM)-based Natural Language Generation evaluation have largely focused on single-example prompting, resulting in significant token overhead and computational inefficiencies. In this work, we introduce BatchGEMBA-MQM, a framework that integrates batched prompting with the GEMBA-MQM metric for machine translation evaluation. Our approach aggregates multiple translation examples into a single prompt, reducing token usage by 2-4 times (depending on the batch size) relative to single-example prompting. Furthermore, we propose a batching-aware prompt compression model that achieves an additional token reduction of 13-15% on average while also showing ability to help mitigate batching-induced quality degradation. Evaluations across several LLMs (GPT-4o, GPT-4o-mini, Mistral Small, Phi4, and CommandR7B) and varying batch sizes reveal that while batching generally negatively affects quality (but sometimes not substantially), prompt compression does not degrade further, and in some cases, recovers quality loss. For instance, GPT-4o retains over 90% of its baseline performance at a batch size of 4 when compression is applied, compared to a 44.6% drop without compression. We plan to release our code and trained models at https://github.com/NL2G/batchgemba to support future research in this domain.

Authors:Shuang Chen, Yifeng He, Barry Lennox, Farshad Arvin, Amir Atapour-Abarghouei
Title: Deep Learning-Enhanced Visual Monitoring in Hazardous Underwater Environments with a Swarm of Micro-Robots
Abstract:
Long-term monitoring and exploration of extreme environments, such as underwater storage facilities, is costly, labor-intensive, and hazardous. Automating this process with low-cost, collaborative robots can greatly improve efficiency. These robots capture images from different positions, which must be processed simultaneously to create a spatio-temporal model of the facility. In this paper, we propose a novel approach that integrates data simulation, a multi-modal deep learning network for coordinate prediction, and image reassembly to address the challenges posed by environmental disturbances causing drift and rotation in the robots' positions and orientations. Our approach enhances the precision of alignment in noisy environments by integrating visual information from snapshots, global positional context from masks, and noisy coordinates. We validate our method through extensive experiments using synthetic data that simulate real-world robotic operations in underwater settings. The results demonstrate very high coordinate prediction accuracy and plausible image assembly, indicating the real-world applicability of our approach. The assembled images provide clear and coherent views of the underwater environment for effective monitoring and inspection, showcasing the potential for broader use in extreme settings, further contributing to improved safety, efficiency, and cost reduction in hazardous field monitoring. Code is available on https://github.com/ChrisChen1023/Micro-Robot-Swarm.

Authors:Shuaike Li, Kai Zhang, Qi Liu, Enhong Chen
Title: MindBridge: Scalable and Cross-Model Knowledge Editing via Memory-Augmented Modality
Abstract:
Knowledge editing is a technique for efficiently and accurately updating the knowledge of large language models (LLMs) to alleviate obsolescence and correct errors. However, most existing methods overfit to specific models, causing edited knowledge to be discarded during each LLM update and requiring frequent re-editing, which is particularly burdensome in today's rapidly evolving open-source community. To address this issue, we propose the problem of cross-model knowledge editing and introduce MindBridge, a scalable solution inspired by the low coupling between modality processing and LLMs in multi-modal models. MindBridge introduces the novel concept of memory modality, which encodes edited knowledge as an independent modality. It first performs LLM-agnostic pre-training of the memory modality and then integrates it with various LLMs. Extensive experiments on multiple LLMs and popular knowledge editing datasets demonstrate that MindBridge achieves superior performance even in editing tens of thousands of knowledge entries and can flexibly adapt to different LLMs. Our code is available at https://github.com/CrashBugger/MindBridge.

Authors:Yifei Wang, Jacky Keung, Haohan Xu, Yuchen Cao, Zhenyu Mao
Title: Multi-Strategy Enhanced COA for Path Planning in Autonomous Navigation
Abstract:
Autonomous navigation is reshaping various domains in people's life by enabling efficient and safe movement in complex environments. Reliable navigation requires algorithmic approaches that compute optimal or near-optimal trajectories while satisfying task-specific constraints and ensuring obstacle avoidance. However, existing methods struggle with slow convergence and suboptimal solutions, particularly in complex environments, limiting their real-world applicability. To address these limitations, this paper presents the Multi-Strategy Enhanced Crayfish Optimization Algorithm (MCOA), a novel approach integrating three key strategies: 1) Refractive Opposition Learning, enhancing population diversity and global exploration, 2) Stochastic Centroid-Guided Exploration, balancing global and local search to prevent premature convergence, and 3) Adaptive Competition-Based Selection, dynamically adjusting selection pressure for faster convergence and improved solution quality. Empirical evaluations underscore the remarkable planning speed and the amazing solution quality of MCOA in both 3D Unmanned Aerial Vehicle (UAV) and 2D mobile robot path planning. Against 11 baseline algorithms, MCOA achieved a 69.2% reduction in computational time and a 16.7% improvement in minimizing overall path cost in 3D UAV scenarios. Furthermore, in 2D path planning, MCOA outperformed baseline approaches by 44% on average, with an impressive 75.6% advantage in the largest 60*60 grid setting. These findings validate MCOA as a powerful tool for optimizing autonomous navigation in complex environments. The source code is available at: https://github.com/coedv-hub/MCOA.

Authors:Vincent Emonet, Ana-Claudia Sima, Tarcisio Mendes de Farias
Title: A user-friendly SPARQL query editor powered by lightweight metadata
Abstract:
SPARQL query editors often lack intuitive interfaces to aid SPARQL-savvy users to write queries. To address this issue, we propose an easy-to-deploy, triple store-agnostic and open-source query editor that offers three main features: (i) automatic query example rendering, (ii) precise autocomplete based on existing triple patterns including within SERVICE clauses, and (iii) a data-aware schema visualization. It can be easily set up with a custom HTML element. The tool has been successfully tested on various public endpoints, and is deployed online at https://sib-swiss.github.io/sparql-editor with open-source code available at https://github.com/sib-swiss/sparql-editor.

Authors:Pengwei Tang, Yong Liu, Dongjie Zhang, Xing Wu, Debing Zhang
Title: LoRA-Null: Low-Rank Adaptation via Null Space for Large Language Models
Abstract:
Low-Rank Adaptation (LoRA) is the leading parameter-efficient fine-tuning method for Large Language Models (LLMs). However, the fine-tuned LLMs encounter the issue of catastrophic forgetting of the pre-trained world knowledge. To address this issue, inspired by theoretical insights of null space, we propose LoRA-Null, i.e., Low-Rank Adaptation via null space, which builds adapters initialized from the null space of the pre-trained knowledge activation. Concretely, we randomly collect a few data samples and capture their activations after passing through the LLM layer. We perform Singular Value Decomposition on the input activations to obtain their null space. We use the projection of the pre-trained weights onto the null space as the initialization for adapters. Experimental results demonstrate that this initialization approach can effectively preserve the original pre-trained world knowledge of the LLMs during fine-tuning. Additionally, if we freeze the values of the down-projection matrices during fine-tuning, it achieves even better preservation of the pre-trained world knowledge. LoRA-Null effectively preserves pre-trained world knowledge while maintaining strong fine-tuning performance, as validated by extensive experiments on LLaMA series (LLaMA2, LLaMA3, LLaMA3.1, and LLaMA3.2) across Code, Math, and Instruction Following tasks. We also provide a theoretical guarantee for the capacity of LoRA-Null to retain pre-trained knowledge. Code is in https://github.com/HungerPWAY/LoRA-Null.

Authors:Xiaoyu Zheng, Xu Chen, Shaogang Gong, Xavier Griffin, Greg Slabaugh
Title: XFMamba: Cross-Fusion Mamba for Multi-View Medical Image Classification
Abstract:
Compared to single view medical image classification, using multiple views can significantly enhance predictive accuracy as it can account for the complementarity of each view while leveraging correlations between views. Existing multi-view approaches typically employ separate convolutional or transformer branches combined with simplistic feature fusion strategies. However, these approaches inadvertently disregard essential cross-view correlations, leading to suboptimal classification performance, and suffer from challenges with limited receptive field (CNNs) or quadratic computational complexity (transformers). Inspired by state space sequence models, we propose XFMamba, a pure Mamba-based cross-fusion architecture to address the challenge of multi-view medical image classification. XFMamba introduces a novel two-stage fusion strategy, facilitating the learning of single-view features and their cross-view disparity. This mechanism captures spatially long-range dependencies in each view while enhancing seamless information transfer between views. Results on three public datasets, MURA, CheXpert and DDSM, illustrate the effectiveness of our approach across diverse multi-view medical image classification tasks, showing that it outperforms existing convolution-based and transformer-based multi-view methods. Code is available at https://github.com/XZheng0427/XFMamba.

Authors:Zirun Guo, Tao Jin
Title: Smoothing the Shift: Towards Stable Test-Time Adaptation under Complex Multimodal Noises
Abstract:
Test-Time Adaptation (TTA) aims to tackle distribution shifts using unlabeled test data without access to the source data. In the context of multimodal data, there are more complex noise patterns than unimodal data such as simultaneous corruptions for multiple modalities and missing modalities. Besides, in real-world applications, corruptions from different distribution shifts are always mixed. Existing TTA methods always fail in such multimodal scenario because the abrupt distribution shifts will destroy the prior knowledge from the source model, thus leading to performance degradation. To this end, we reveal a new challenge named multimodal wild TTA. To address this challenging problem, we propose two novel strategies: sample identification with interquartile range Smoothing and unimodal assistance, and Mutual information sharing (SuMi). SuMi smooths the adaptation process by interquartile range which avoids the abrupt distribution shifts. Then, SuMi fully utilizes the unimodal features to select low-entropy samples with rich multimodal information for optimization. Furthermore, mutual information sharing is introduced to align the information, reduce the discrepancies and enhance the information utilization across different modalities. Extensive experiments on two public datasets show the effectiveness and superiority over existing methods under the complex noise patterns in multimodal data. Code is available at https://github.com/zrguo/SuMi.

Authors:Yizhou Huang, Fan Yang, Guoliang Zhu, Gen Li, Hao Shi, Yukun Zuo, Wenrui Chen, Zhiyong Li, Kailun Yang
Title: Resource-Efficient Affordance Grounding with Complementary Depth and Semantic Prompts
Abstract:
Affordance refers to the functional properties that an agent perceives and utilizes from its environment, and is key perceptual information required for robots to perform actions. This information is rich and multimodal in nature. Existing multimodal affordance methods face limitations in extracting useful information, mainly due to simple structural designs, basic fusion methods, and large model parameters, making it difficult to meet the performance requirements for practical deployment. To address these issues, this paper proposes the BiT-Align image-depth-text affordance mapping framework. The framework includes a Bypass Prompt Module (BPM) and a Text Feature Guidance (TFG) attention selection mechanism. BPM integrates the auxiliary modality depth image directly as a prompt to the primary modality RGB image, embedding it into the primary modality encoder without introducing additional encoders. This reduces the model's parameter count and effectively improves functional region localization accuracy. The TFG mechanism guides the selection and enhancement of attention heads in the image encoder using textual features, improving the understanding of affordance characteristics. Experimental results demonstrate that the proposed method achieves significant performance improvements on public AGD20K and HICO-IIF datasets. On the AGD20K dataset, compared with the current state-of-the-art method, we achieve a 6.0% improvement in the KLD metric, while reducing model parameters by 88.8%, demonstrating practical application values. The source code will be made publicly available at https://github.com/DAWDSE/BiT-Align.

Authors:Wei-Yao Wang, Zhao Wang, Helen Suzuki, Yoshiyuki Kobayashi
Title: Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Abstract:
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of the earlier modalities (e.g., images) to incorporate information from the latter modalities (e.g., text). To address this problem, we propose \MapleLeaf AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code and model are publicly available at https://github.com/sony/aki to encourage further advancements in MLLMs across various directions.

Authors:Yanlong Xu, Haoxuan Qu, Jun Liu, Wenxiao Zhang, Xun Yang
Title: CMMLoc: Advancing Text-to-PointCloud Localization with Cauchy-Mixture-Model Based Framework
Abstract:
The goal of point cloud localization based on linguistic description is to identify a 3D position using textual description in large urban environments, which has potential applications in various fields, such as determining the location for vehicle pickup or goods delivery. Ideally, for a textual description and its corresponding 3D location, the objects around the 3D location should be fully described in the text description. However, in practical scenarios, e.g., vehicle pickup, passengers usually describe only the part of the most significant and nearby surroundings instead of the entire environment. In response to this $\textbf{partially relevant}$ challenge, we propose $\textbf{CMMLoc}$, an uncertainty-aware $\textbf{C}$auchy-$\textbf{M}$ixture-$\textbf{M}$odel ($\textbf{CMM}$) based framework for text-to-point-cloud $\textbf{Loc}$alization. To model the uncertain semantic relations between text and point cloud, we integrate CMM constraints as a prior during the interaction between the two modalities. We further design a spatial consolidation scheme to enable adaptive aggregation of different 3D objects with varying receptive fields. To achieve precise localization, we propose a cardinal direction integration module alongside a modality pre-alignment strategy, helping capture the spatial relationships among objects and bringing the 3D objects closer to the text modality. Comprehensive experiments validate that CMMLoc outperforms existing methods, achieving state-of-the-art results on the KITTI360Pose dataset. Codes are available in this GitHub repository https://github.com/kevin301342/CMMLoc.

Authors:Patryk Marszałek, Maciej Rut, Piotr Kawa, Przemysław Spurek, Piotr Syga
Title: A Hypernetwork-Based Approach to KAN Representation of Audio Signals
Abstract:
Implicit neural representations (INR) have gained prominence for efficiently encoding multimedia data, yet their applications in audio signals remain limited. This study introduces the Kolmogorov-Arnold Network (KAN), a novel architecture using learnable activation functions, as an effective INR model for audio representation. KAN demonstrates superior perceptual performance over previous INRs, achieving the lowest Log-SpectralDistance of 1.29 and the highest Perceptual Evaluation of Speech Quality of 3.57 for 1.5 s audio. To extend KAN's utility, we propose FewSound, a hypernetwork-based architecture that enhances INR parameter updates. FewSound outperforms the state-of-the-art HyperSound, with a 33.3% improvement in MSE and 60.87% in SI-SNR. These results show KAN as a robust and adaptable audio representation with the potential for scalability and integration into various hypernetwork frameworks. The source code can be accessed at https://github.com/gmum/fewsound.git.

Authors:Jiayi Zhao, Fei Teng, Kai Luo, Guoqiang Zhao, Zhiyong Li, Xu Zheng, Kailun Yang
Title: Unveiling the Potential of Segment Anything Model 2 for RGB-Thermal Semantic Segmentation with Language Guidance
Abstract:
The perception capability of robotic systems relies on the richness of the dataset. Although Segment Anything Model 2 (SAM2), trained on large datasets, demonstrates strong perception potential in perception tasks, its inherent training paradigm prevents it from being suitable for RGB-T tasks. To address these challenges, we propose SHIFNet, a novel SAM2-driven Hybrid Interaction Paradigm that unlocks the potential of SAM2 with linguistic guidance for efficient RGB-Thermal perception. Our framework consists of two key components: (1) Semantic-Aware Cross-modal Fusion (SACF) module that dynamically balances modality contributions through text-guided affinity learning, overcoming SAM2's inherent RGB bias; (2) Heterogeneous Prompting Decoder (HPD) that enhances global semantic information through a semantic enhancement module and then combined with category embeddings to amplify cross-modal semantic consistency. With 32.27M trainable parameters, SHIFNet achieves state-of-the-art segmentation performance on public benchmarks, reaching 89.8% on PST900 and 67.8% on FMB, respectively. The framework facilitates the adaptation of pre-trained large models to RGB-T segmentation tasks, effectively mitigating the high costs associated with data collection while endowing robotic systems with comprehensive perception capabilities. The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet.

Authors:Ege Özsoy, Chantal Pellegrini, Tobias Czempiel, Felix Tristram, Kun Yuan, David Bani-Harouni, Ulrich Eck, Benjamin Busam, Matthias Keicher, Nassir Navab
Title: MM-OR: A Large Multimodal Operating Room Dataset for Semantic Understanding of High-Intensity Surgical Environments
Abstract:
Operating rooms (ORs) are complex, high-stakes environments requiring precise understanding of interactions among medical staff, tools, and equipment for enhancing surgical assistance, situational awareness, and patient safety. Current datasets fall short in scale, realism and do not capture the multimodal nature of OR scenes, limiting progress in OR modeling. To this end, we introduce MM-OR, a realistic and large-scale multimodal spatiotemporal OR dataset, and the first dataset to enable multimodal scene graph generation. MM-OR captures comprehensive OR scenes containing RGB-D data, detail views, audio, speech transcripts, robotic logs, and tracking data and is annotated with panoptic segmentations, semantic scene graphs, and downstream task labels. Further, we propose MM2SG, the first multimodal large vision-language model for scene graph generation, and through extensive experiments, demonstrate its ability to effectively leverage multimodal inputs. Together, MM-OR and MM2SG establish a new benchmark for holistic OR understanding, and open the path towards multimodal scene analysis in complex, high-stakes environments. Our code, and data is available at https://github.com/egeozsoy/MM-OR.

Authors:Xinying Hong, Siyu Li, Kang Zeng, Hao Shi, Bomin Peng, Kailun Yang, Zhiyong Li
Title: TS-CGNet: Temporal-Spatial Fusion Meets Centerline-Guided Diffusion for BEV Mapping
Abstract:
Bird's Eye View (BEV) perception technology is crucial for autonomous driving, as it generates top-down 2D maps for environment perception, navigation, and decision-making. Nevertheless, the majority of current BEV map generation studies focusing on visual map generation lack depth-aware reasoning capabilities. They exhibit limited efficacy in managing occlusions and handling complex environments, with a notable decline in perceptual performance under adverse weather conditions or low-light scenarios. Therefore, this paper proposes TS-CGNet, which leverages Temporal-Spatial fusion with Centerline-Guided diffusion. This visual framework, grounded in prior knowledge, is designed for integration into any existing network for building BEV maps. Specifically, this framework is decoupled into three parts: Local mapping system involves the initial generation of semantic maps using purely visual information; The Temporal-Spatial Aligner Module (TSAM) integrates historical information into mapping generation by applying transformation matrices; The Centerline-Guided Diffusion Model (CGDM) is a prediction module based on the diffusion model. CGDM incorporates centerline information through spatial-attention mechanisms to enhance semantic segmentation reconstruction. We construct BEV semantic segmentation maps by our methods on the public nuScenes and the robustness benchmarks under various corruptions. Our method improves 1.90%, 1.73%, and 2.87% for perceived ranges of 60x30m, 120x60m, and 240x60m in the task of BEV HD mapping. TS-CGNet attains an improvement of 1.92% for perceived ranges of 100x100m in the task of BEV semantic mapping. Moreover, TS-CGNet achieves an average improvement of 2.92% in detection accuracy under varying weather conditions and sensor interferences in the perception range of 240x60m. The source code will be publicly available at https://github.com/krabs-H/TS-CGNet.

Authors:Grzegorz Skorupko, Fotios Avgoustidis, Carlos Martín-Isla, Lidia Garrucho, Dimitri A. Kessler, Esmeralda Ruiz Pujadas, Oliver Díaz, Maciej Bobowicz, Katarzyna Gwoździewicz, Xavier Bargalló, Paulius Jaruševičius, Richard Osuala, Kaisar Kushibar, Karim Lekadir
Title: Federated nnU-Net for Privacy-Preserving Medical Image Segmentation
Abstract:
The nnU-Net framework has played a crucial role in medical image segmentation and has become the gold standard in multitudes of applications targeting different diseases, organs, and modalities. However, so far it has been used primarily in a centralized approach where the collected data is stored in the same location where nnU-Net is trained. This centralized approach has various limitations, such as potential leakage of sensitive patient information and violation of patient privacy. Federated learning has emerged as a key approach for training segmentation models in a decentralized manner, enabling collaborative development while prioritising patient privacy. In this paper, we propose FednnU-Net, a plug-and-play, federated learning extension of the nnU-Net framework. To this end, we contribute two federated methodologies to unlock decentralized training of nnU-Net, namely, Federated Fingerprint Extraction (FFE) and Asymmetric Federated Averaging (AsymFedAvg). We conduct a comprehensive set of experiments demonstrating high and consistent performance of our methods for breast, cardiac and fetal segmentation based on a multi-modal collection of 6 datasets representing samples from 18 different institutions. To democratize research as well as real-world deployments of decentralized training in clinical centres, we publicly share our framework at https://github.com/faildeny/FednnUNet .

Authors:Xin Ding, Xin Li, Haotong Qin, Zhibo Chen
Title: Q&C: When Quantization Meets Cache in Efficient Image Generation
Abstract:
Quantization and cache mechanisms are typically applied individually for efficient Diffusion Transformers (DiTs), each demonstrating notable potential for acceleration. However, the promoting effect of combining the two mechanisms on efficient generation remains under-explored. Through empirical investigation, we find that the combination of quantization and cache mechanisms for DiT is not straightforward, and two key challenges lead to severe catastrophic performance degradation: (i) the sample efficacy of calibration datasets in post-training quantization (PTQ) is significantly eliminated by cache operation; (ii) the combination of the above mechanisms introduces more severe exposure bias within sampling distribution, resulting in amplified error accumulation in the image generation process. In this work, we take advantage of these two acceleration mechanisms and propose a hybrid acceleration method by tackling the above challenges, aiming to further improve the efficiency of DiTs while maintaining excellent generation capability. Concretely, a temporal-aware parallel clustering (TAP) is designed to dynamically improve the sample selection efficacy for the calibration within PTQ for different diffusion steps. A variance compensation (VC) strategy is derived to correct the sampling distribution. It mitigates exposure bias through an adaptive correction factor generation. Extensive experiments have shown that our method has accelerated DiTs by 12.7x while preserving competitive generation capability. The code will be available at https://github.com/xinding-sys/Quant-Cache.

Authors:Jianghao Chen, Junhong Wu, Yangyifan Xu, Jiajun Zhang
Title: LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs
Abstract:
Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a Long-context data selection framework with Attention-based Dependency Measurement (LADM), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.

Authors:Yujiao Yang, Jing Lian, Linhui Li
Title: Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
Abstract:
Mixture-of-Experts (MoE) enhances model performance while maintaining computational efficiency, making it well-suited for large-scale applications. Conventional mixture-of-experts (MoE) architectures suffer from suboptimal coordination dynamics, where isolated expert operations expose the model to overfitting risks. Moreover, they have not been effectively extended to attention blocks, which limits further efficiency improvements. To tackle these issues, we propose Union-of-Experts (UoE), which decomposes the transformer model into an equivalent group of experts and applies a hierarchical routing mechanism to allocate input subspaces to specialized experts. Our approach advances MoE design with four key innovations: (1) Constructing expert groups by partitioning non-MoE models into functionally equivalent specialists (2) Developing a hierarchical routing paradigm that integrates patch-wise data selection and expert selection strategies. (3) Extending the MoE design to attention blocks. (4) Proposing a hardware-optimized parallelization scheme that exploits batched matrix multiplications for efficient expert computation. The experiments demonstrate that our UoE model surpasses Full Attention, state-of-the-art MoEs and efficient transformers in several tasks across image and natural language domains. In language modeling tasks, UoE achieves an average reduction of 2.38 in perplexity compared to the best-performing MoE method with only 76% of its FLOPs. In the Long Range Arena benchmark, it demonstrates an average score at least 0.68% higher than all comparison models, with only 50% of the FLOPs of the best MoE method. In image classification, it yields an average accuracy improvement of 1.75% over the best model while maintaining comparable FLOPs. The source codes are available at https://github.com/YujiaoYang-work/UoE.

Authors:Sohan Patnaik, Milan Aggarwal, Sumit Bhatia, Balaji Krishnamurthy
Title: It Helps to Take a Second Opinion: Teaching Smaller LLMs to Deliberate Mutually via Selective Rationale Optimisation
Abstract:
Very large language models (LLMs) such as GPT-4 have shown the ability to handle complex tasks by generating and self-refining step-by-step rationales. Smaller language models (SLMs), typically with < 13B parameters, have been improved by using the data generated from very-large LMs through knowledge distillation. However, various practical constraints such as API costs, copyright, legal and ethical policies restrict using large (often opaque) models to train smaller models for commercial use. Limited success has been achieved at improving the ability of an SLM to explore the space of possible rationales and evaluate them by itself through self-deliberation. To address this, we propose COALITION, a trainable framework that facilitates interaction between two variants of the same SLM and trains them to generate and refine rationales optimized for the end-task. The variants exhibit different behaviors to produce a set of diverse candidate rationales during the generation and refinement steps. The model is then trained via Selective Rationale Optimization (SRO) to prefer generating rationale candidates that maximize the likelihood of producing the ground-truth answer. During inference, COALITION employs a controller to select the suitable variant for generating and refining the rationales. On five different datasets covering mathematical problems, commonsense reasoning, and natural language inference, COALITION outperforms several baselines by up to 5%. Our ablation studies reveal that cross-communication between the two variants performs better than using the single model to self-refine the rationales. We also demonstrate the applicability of COALITION for LMs of varying scales (4B to 14B parameters) and model families (Mistral, Llama, Qwen, Phi). We release the code for this work at https://github.com/Sohanpatnaik106/coalition.

Authors:Yilun Qiu, Xiaoyan Zhao, Yang Zhang, Yimeng Bai, Wenjie Wang, Hong Cheng, Fuli Feng, Tat-Seng Chua
Title: Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization
Abstract:
Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual's historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.

Authors:Wei Luo, Yunkang Cao, Haiming Yao, Xiaotian Zhang, Jianan Lou, Yuqi Cheng, Weiming Shen, Wenyong Yu
Title: Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection
Abstract:
Anomaly detection (AD) is essential for industrial inspection, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-Guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Code is available at:https://github.com/luow23/INP-Former.

Authors:Xiaoying Li, Long Xu, Xiaolin Huang, Donglai Xue, Zhihao Zhang, Zhichao Han, Chao Xu, Yanjun Cao, Fei Gao
Title: SEB-Naver: A SE(2)-based Local Navigation Framework for Car-like Robots on Uneven Terrain
Abstract:
Autonomous navigation of car-like robots on uneven terrain poses unique challenges compared to flat terrain, particularly in traversability assessment and terrain-associated kinematic modelling for motion planning. This paper introduces SEB-Naver, a novel SE(2)-based local navigation framework designed to overcome these challenges. First, we propose an efficient traversability assessment method for SE(2) grids, leveraging GPU parallel computing to enable real-time updates and maintenance of local maps. Second, inspired by differential flatness, we present an optimization-based trajectory planning method that integrates terrain-associated kinematic models, significantly improving both planning efficiency and trajectory quality. Finally, we unify these components into SEB-Naver, achieving real-time terrain assessment and trajectory optimization. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our approach. The code is at https://github.com/ZJU-FAST-Lab/seb_naver.

Authors:Jiesi Hu, Chenfei Ye, Yanwu Yang, Xutao Guo, Yang Shang, Pengcheng Shi, Hanyang Peng, Ting Ma
Title: Neuroverse3D: Developing In-Context Learning Universal Model for Neuroimaging in 3D
Abstract:
In-context learning (ICL), a type of universal model, demonstrates exceptional generalization across a wide range of tasks without retraining by leveraging task-specific guidance from context, making it particularly effective for the intricate demands of neuroimaging. However, current ICL models, limited to 2D inputs and thus exhibiting suboptimal performance, struggle to extend to 3D inputs due to the high memory demands of ICL. In this regard, we introduce Neuroverse3D, an ICL model capable of performing multiple neuroimaging tasks in 3D (e.g., segmentation, denoising, inpainting). Neuroverse3D overcomes the large memory consumption associated with 3D inputs through adaptive parallel-sequential context processing and a U-shaped fusion strategy, allowing it to handle an unlimited number of context images. Additionally, we propose an optimized loss function to balance multi-task training and enhance focus on anatomical boundaries. Our study incorporates 43,674 3D multi-modal scans from 19 neuroimaging datasets and evaluates Neuroverse3D on 14 diverse tasks using held-out test sets. The results demonstrate that Neuroverse3D significantly outperforms existing ICL models and closely matches task-specific models, enabling flexible adaptation to medical center variations without retraining. The code and model weights are publicly available at https://github.com/jiesihu/Neuroverse3D.

Authors:Nikita Kazeev, Wei Nong, Ignat Romanov, Ruiming Zhu, Andrey Ustyuzhanin, Shuya Yamazaki, Kedar Hippalgaonkar
Title: Wyckoff Transformer: Generation of Symmetric Crystals
Abstract:
Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed.

Authors:Nico Sutter, Valentin N. Hartmann, Stelian Coros
Title: A comparison of visual representations for real-world reinforcement learning in the context of vacuum gripping
Abstract:
When manipulating objects in the real world, we need reactive feedback policies that take into account sensor information to inform decisions. This study aims to determine how different encoders can be used in a reinforcement learning (RL) framework to interpret the spatial environment in the local surroundings of a robot arm. Our investigation focuses on comparing real-world vision with 3D scene inputs, exploring new architectures in the process. We built on the SERL framework, providing us with a sample efficient and stable RL foundation we could build upon, while keeping training times minimal. The results of this study indicate that spatial information helps to significantly outperform the visual counterpart, tested on a box picking task with a vacuum gripper. The code and videos of the evaluations are available at https://github.com/nisutte/voxel-serl.

Authors:Wei Sun, Qianlong Du, Fuwei Cui, Jiajun Zhang
Title: An Efficient and Precise Training Data Construction Framework for Process-supervised Reward Model in Mathematical Reasoning
Abstract:
Enhancing the mathematical reasoning capabilities of Large Language Models (LLMs) is of great scientific and practical significance. Researchers typically employ process-supervised reward models (PRMs) to guide the reasoning process, effectively improving the models' reasoning abilities. However, existing methods for constructing process supervision training data, such as manual annotation and per-step Monte Carlo estimation, are often costly or suffer from poor quality. To address these challenges, this paper introduces a framework called EpicPRM, which annotates each intermediate reasoning step based on its quantified contribution and uses an adaptive binary search algorithm to enhance both annotation precision and efficiency. Using this approach, we efficiently construct a high-quality process supervision training dataset named Epic50k, consisting of 50k annotated intermediate steps. Compared to other publicly available datasets, the PRM trained on Epic50k demonstrates significantly superior performance. Getting Epic50k at https://github.com/xiaolizh1/EpicPRM.

Authors:Xinyu Wang, Bohan Zhuang, Qi Wu
Title: Are Large Vision Language Models Good Game Players?
Abstract:
Large Vision Language Models (LVLMs) have demonstrated remarkable abilities in understanding and reasoning about both visual and textual information. However, existing evaluation methods for LVLMs, primarily based on benchmarks like Visual Question Answering and image captioning, often fail to capture the full scope of LVLMs' capabilities. These benchmarks are limited by issues such as inadequate assessment of detailed visual perception, data contamination, and a lack of focus on multi-turn reasoning. To address these challenges, we propose \method{}, a game-based evaluation framework designed to provide a comprehensive assessment of LVLMs' cognitive and reasoning skills in structured environments. \method{} uses a set of games to evaluate LVLMs on four core tasks: Perceiving, Question Answering, Rule Following, and End-to-End Playing, with each target task designed to assess specific abilities, including visual perception, reasoning, decision-making, etc. Based on this framework, we conduct extensive experiments that explore the limitations of current LVLMs, such as handling long structured outputs and perceiving detailed and dense elements. Code and data are publicly available at https://github.com/xinke-wang/LVLM-Playground.

Authors:Zicheng Zhang, Tengchuan Kou, Shushi Wang, Chunyi Li, Wei Sun, Wei Wang, Xiaoyu Li, Zongyu Wang, Xuezhi Cao, Xiongkuo Min, Xiaohong Liu, Guangtao Zhai
Title: Q-Eval-100K: Evaluating Visual Quality and Alignment Level for Text-to-Vision Content
Abstract:
Evaluating text-to-vision content hinges on two crucial aspects: visual quality and alignment. While significant progress has been made in developing objective models to assess these dimensions, the performance of such models heavily relies on the scale and quality of human annotations. According to Scaling Law, increasing the number of human-labeled instances follows a predictable pattern that enhances the performance of evaluation models. Therefore, we introduce a comprehensive dataset designed to Evaluate Visual quality and Alignment Level for text-to-vision content (Q-EVAL-100K), featuring the largest collection of human-labeled Mean Opinion Scores (MOS) for the mentioned two aspects. The Q-EVAL-100K dataset encompasses both text-to-image and text-to-video models, with 960K human annotations specifically focused on visual quality and alignment for 100K instances (60K images and 40K videos). Leveraging this dataset with context prompt, we propose Q-Eval-Score, a unified model capable of evaluating both visual quality and alignment with special improvements for handling long-text prompt alignment. Experimental results indicate that the proposed Q-Eval-Score achieves superior performance on both visual quality and alignment, with strong generalization capabilities across other benchmarks. These findings highlight the significant value of the Q-EVAL-100K dataset. Data and codes will be available at https://github.com/zzc-1998/Q-Eval.

Authors:Yunzhen He, Yusuke Takase, Yoichi Ishibashi, Hidetoshi Shimodaira
Title: DeLTa: A Decoding Strategy based on Logit Trajectory Prediction Improves Factuality and Reasoning Ability
Abstract:
Large Language Models (LLMs) are increasingly being used in real-world applications. However, concerns about the reliability of the content they generate persist, as it frequently deviates from factual correctness or exhibits deficiencies in logical reasoning. This paper proposes a novel decoding strategy aimed at enhancing both factual accuracy and inferential reasoning without requiring any modifications to the architecture or pre-trained parameters of LLMs. Our approach adjusts next-token probabilities by analyzing the trajectory of logits from lower to higher layers in Transformers and applying linear regression. We find that this Decoding by Logit Trajectory-based approach (DeLTa) effectively reinforces factuality and reasoning while mitigating incorrect generation. Experiments on TruthfulQA demonstrate that DeLTa attains up to a 4.9% improvement over the baseline. Furthermore, it enhances performance by up to 8.1% on StrategyQA and 7.3% on GSM8K, both of which demand strong reasoning capabilities.

Authors:Gen Shi, Hui Zhang, Jie Tian
Title: COMMA: Coordinate-aware Modulated Mamba Network for 3D Dispersed Vessel Segmentation
Abstract:
Accurate segmentation of 3D vascular structures is essential for various medical imaging applications. The dispersed nature of vascular structures leads to inherent spatial uncertainty and necessitates location awareness, yet most current 3D medical segmentation models rely on the patch-wise training strategy that usually loses this spatial context. In this study, we introduce the Coordinate-aware Modulated Mamba Network (COMMA) and contribute a manually labeled dataset of 570 cases, the largest publicly available 3D vessel dataset to date. COMMA leverages both entire and cropped patch data through global and local branches, ensuring robust and efficient spatial location awareness. Specifically, COMMA employs a channel-compressed Mamba (ccMamba) block to encode entire image data, capturing long-range dependencies while optimizing computational costs. Additionally, we propose a coordinate-aware modulated (CaM) block to enhance interactions between the global and local branches, allowing the local branch to better perceive spatial information. We evaluate COMMA on six datasets, covering two imaging modalities and five types of vascular tissues. The results demonstrate COMMA's superior performance compared to state-of-the-art methods with computational efficiency, especially in segmenting small vessels. Ablation studies further highlight the importance of our proposed modules and spatial information. The code and data will be open source at https://github.com/shigen-StoneRoot/COMMA.

Authors:Guotao Shen, Ziheng Yan, Xin Jin, Longhai Wu, Jie Chen, Ilhyun Cho, Cheul-Hee Hahm
Title: Exploring Simple Siamese Network for High-Resolution Video Quality Assessment
Abstract:
In the research of video quality assessment (VQA), two-branch network has emerged as a promising solution. It decouples VQA with separate technical and aesthetic branches to measure the perception of low-level distortions and high-level semantics respectively. However, we argue that while technical and aesthetic perspectives are complementary, the technical perspective itself should be measured in semantic-aware manner. We hypothesize that existing technical branch struggles to perceive the semantics of high-resolution videos, as it is trained on local mini-patches sampled from videos. This issue can be hidden by apparently good results on low-resolution videos, but indeed becomes critical for high-resolution VQA. This work introduces SiamVQA, a simple but effective Siamese network for highre-solution VQA. SiamVQA shares weights between technical and aesthetic branches, enhancing the semantic perception ability of technical branch to facilitate technical-quality representation learning. Furthermore, it integrates a dual cross-attention layer for fusing technical and aesthetic features. SiamVQA achieves state-of-the-art accuracy on high-resolution benchmarks, and competitive results on lower-resolution benchmarks. Codes will be available at: https://github.com/srcn-ivl/SiamVQA

Authors:Xueliang Zhao, Wei Wu, Jian Guan, Lingpeng Kong
Title: PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models
Abstract:
The ability of large language models to solve complex mathematical problems has progressed significantly, particularly for tasks requiring advanced reasoning. However, the scarcity of sufficiently challenging problems, particularly at the Olympiad level, hinders further advancements. In this work, we introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems. The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction, emulating the thought processes of experienced problem designers. We provide a theoretical analysis demonstrating that an optimal rationale should maximize both the likelihood of rationale generation given the associated concepts and the likelihood of problem generation conditioned on both the rationale and the concepts. Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods. Furthermore, we demonstrate that PromptCoT exhibits superior data scalability, consistently maintaining high performance as the dataset size increases, outperforming the baselines. The implementation is available at https://github.com/zhaoxlpku/PromptCoT.

Authors:Xin Jin, Longhai Wu, Jie Chen, Ilhyun Cho, Cheul-Hee Hahm
Title: Unified Arbitrary-Time Video Frame Interpolation and Prediction
Abstract:
Video frame interpolation and prediction aim to synthesize frames in-between and subsequent to existing frames, respectively. Despite being closely-related, these two tasks are traditionally studied with different model architectures, or same architecture but individually trained weights. Furthermore, while arbitrary-time interpolation has been extensively studied, the value of arbitrary-time prediction has been largely overlooked. In this work, we present uniVIP - unified arbitrary-time Video Interpolation and Prediction. Technically, we firstly extend an interpolation-only network for arbitrary-time interpolation and prediction, with a special input channel for task (interpolation or prediction) encoding. Then, we show how to train a unified model on common triplet frames. Our uniVIP provides competitive results for video interpolation, and outperforms existing state-of-the-arts for video prediction. Codes will be available at: https://github.com/srcn-ivl/uniVIP

Authors:Tongkun Guan, Zining Wang, Pei Fu, Zhengtao Guo, Wei Shen, Kai Zhou, Tiezhu Yue, Chen Duan, Hao Sun, Qianyi Jiang, Junfeng Luo, Xiaokang Yang
Title: A Token-level Text Image Foundation Model for Document Understanding
Abstract:
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://github.com/Token-family/TokenFD.

Authors:Tong Liang, Jim Davis
Title: Making Better Mistakes in CLIP-Based Zero-Shot Classification with Hierarchy-Aware Language Prompts
Abstract:
Recent studies are leveraging advancements in large language models (LLMs) trained on extensive internet-crawled text data to generate textual descriptions of downstream classes in CLIP-based zero-shot image classification. While most of these approaches aim at improving accuracy, our work focuses on ``making better mistakes", of which the mistakes' severities are derived from the given label hierarchy of downstream tasks. Since CLIP's image encoder is trained with language supervising signals, it implicitly captures the hierarchical semantic relationships between different classes. This motivates our goal of making better mistakes in zero-shot classification, a task for which CLIP is naturally well-suited. Our approach (HAPrompts) queries the language model to produce textual representations for given classes as zero-shot classifiers of CLIP to perform image classification on downstream tasks. To our knowledge, this is the first work to introduce making better mistakes in CLIP-based zero-shot classification. Our approach outperforms the related methods in a holistic comparison across five datasets of varying scales with label hierarchies of different heights in our experiments. Our code and LLM-generated image prompts: \href{https://github.com/ltong1130ztr/HAPrompts}{https://github.com/ltong1130ztr/HAPrompts}.

Authors:Yixuan Huang, Jie Yang, Chao-Kai Wen, Shi Jin
Title: Integrated Communication and Learned Recognizer with Customized RIS Phases and Sensing Durations
Abstract:
Future wireless communication networks are expected to be smarter and more aware of their surroundings, enabling a wide range of context-aware applications. Reconfigurable intelligent surfaces (RISs) are set to play a critical role in supporting various sensing tasks, such as target recognition. However, current methods typically use RIS configurations optimized once and applied over fixed sensing durations, limiting their ability to adapt to different targets and reducing sensing accuracy. To overcome these limitations, this study proposes an advanced wireless communication system that multiplexes downlink signals for environmental sensing and introduces an intelligent recognizer powered by deep learning techniques. Specifically, we design a novel neural network based on the long short-term memory architecture and the physical channel model. This network iteratively captures and fuses information from previous measurements, adaptively customizing RIS phases to gather the most relevant information for the recognition task at subsequent moments. These configurations are dynamically adjusted according to scene, task, target, and quantization priors. Furthermore, the recognizer includes a decision-making module that dynamically allocates different sensing durations, determining whether to continue or terminate the sensing process based on the collected measurements. This approach maximizes resource utilization efficiency. Simulation results demonstrate that the proposed method significantly outperforms state-of-the-art techniques while minimizing the impact on communication performance, even when sensing and communication occur simultaneously. Part of the source code for this paper can be accessed at https://github.com/kiwi1944/CRISense.

Authors:Zirui Wu, Xiao Liu, Jiayi Li, Lingpeng Kong, Yansong Feng
Title: Haste Makes Waste: Evaluating Planning Abilities of LLMs for Efficient and Feasible Multitasking with Time Constraints Between Actions
Abstract:
While Large Language Model-based agents have demonstrated substantial progress in task completion, existing evaluation benchmarks tend to overemphasize single-task performance, with insufficient attention given to the crucial aspects of multitask planning and execution efficiency required in real-world scenarios. To bridge this gap, we present Recipe2Plan, a novel benchmark framework based on real-world cooking scenarios. Unlike conventional benchmarks, Recipe2Plan challenges agents to optimize cooking time through parallel task execution while respecting temporal constraints i.e. specific actions need to be performed within a particular time intervals following the preceding steps. Overly aggressive local parallelization may disrupt this constraint, potentially compromising the entire cooking process. This strict time constraint between actions raises a unique challenge for agents to balance between maximizing concurrent operations and adhering to critical timing constraints. Extensive experiments with state-of-the-art models reveal challenges in maintaining this balance between efficiency and feasibility. The results highlight the need for improved temporal awareness and global multitasking capabilities in large language models. We open-source our benchmark and code at https://github.com/WilliamZR/Recipe2Plan.

Authors:Bo Cheng, Jueqing Lu, Yuan Tian, Haifeng Zhao, Yi Chang, Lan Du
Title: CGMatch: A Different Perspective of Semi-supervised Learning
Abstract:
Semi-supervised learning (SSL) has garnered significant attention due to its ability to leverage limited labeled data and a large amount of unlabeled data to improve model generalization performance. Recent approaches achieve impressive successes by combining ideas from both consistency regularization and pseudo-labeling. However, these methods tend to underperform in the more realistic situations with relatively scarce labeled data. We argue that this issue arises because existing methods rely solely on the model's confidence, making them challenging to accurately assess the model's state and identify unlabeled examples contributing to the training phase when supervision information is limited, especially during the early stages of model training. In this paper, we propose a novel SSL model called CGMatch, which, for the first time, incorporates a new metric known as Count-Gap (CG). We demonstrate that CG is effective in discovering unlabeled examples beneficial for model training. Along with confidence, a commonly used metric in SSL, we propose a fine-grained dynamic selection (FDS) strategy. This strategy dynamically divides the unlabeled dataset into three subsets with different characteristics: easy-to-learn set, ambiguous set, and hard-to-learn set. By selective filtering subsets, and applying corresponding regularization with selected subsets, we mitigate the negative impact of incorrect pseudo-labels on model optimization and generalization. Extensive experimental results on several common SSL benchmarks indicate the effectiveness of CGMatch especially when the labeled data are particularly limited. Source code is available at https://github.com/BoCheng-96/CGMatch.

Authors:Haoyuan Li, Ziqin Ye, Yue Hao, Weiyang Lin, Chao Ye
Title: DQO-MAP: Dual Quadrics Multi-Object mapping with Gaussian Splatting
Abstract:
Accurate object perception is essential for robotic applications such as object navigation. In this paper, we propose DQO-MAP, a novel object-SLAM system that seamlessly integrates object pose estimation and reconstruction. We employ 3D Gaussian Splatting for high-fidelity object reconstruction and leverage quadrics for precise object pose estimation. Both of them management is handled on the CPU, while optimization is performed on the GPU, significantly improving system efficiency. By associating objects with unique IDs, our system enables rapid object extraction from the scene. Extensive experimental results on object reconstruction and pose estimation demonstrate that DQO-MAP achieves outstanding performance in terms of precision, reconstruction quality, and computational efficiency. The code and dataset are available at: https://github.com/LiHaoy-ux/DQO-MAP.

Authors:Zhihua Shen, Siyang Chen, Han Wang, Tongsu Zhang, Xiaohu Zhang, Xiangpeng Xu, Xia Yang
Title: Low-Level Matters: An Efficient Hybrid Architecture for Robust Multi-frame Infrared Small Target Detection
Abstract:
Multi-frame infrared small target detection (IRSTD) plays a crucial role in low-altitude and maritime surveillance. The hybrid architecture combining CNNs and Transformers shows great promise for enhancing multi-frame IRSTD performance. In this paper, we propose LVNet, a simple yet powerful hybrid architecture that redefines low-level feature learning in hybrid frameworks for multi-frame IRSTD. Our key insight is that the standard linear patch embeddings in Vision Transformers are insufficient for capturing the scale-sensitive local features critical to infrared small targets. To address this limitation, we introduce a multi-scale CNN frontend that explicitly models local features by leveraging the local spatial bias of convolution. Additionally, we design a U-shaped video Transformer for multi-frame spatiotemporal context modeling, effectively capturing the motion characteristics of targets. Experiments on the publicly available datasets IRDST and NUDT-MIRSDT demonstrate that LVNet outperforms existing state-of-the-art methods. Notably, compared to the current best-performing method, LMAFormer, LVNet achieves an improvement of 5.63\% / 18.36\% in nIoU, while using only 1/221 of the parameters and 1/92 / 1/21 of the computational cost. Ablation studies further validate the importance of low-level representation learning in hybrid architectures. Our code and trained models are available at https://github.com/ZhihuaShen/LVNet.

Authors:Shuo Wang, Tong Ren, Nan Cheng, Rong Wang, Li Zhang
Title: Time-Varying Coronary Artery Deformation: A Dynamic Skinning Framework for Surgical Training
Abstract:
Purpose: This study proposes a novel anatomically-driven dynamic modeling framework for coronary arteries using skeletal skinning weights computation, aiming to achieve precise control over vessel deformation while maintaining real-time performance for surgical simulation applications. Methods: We developed a computational framework based on biharmonic energy minimization for skinning weight calculation, incorporating volumetric discretization through tetrahedral mesh generation. The method implements temporal sampling and interpolation for continuous vessel deformation throughout the cardiac cycle, with mechanical constraints and volume conservation enforcement. The framework was validated using clinical datasets from 5 patients, comparing interpolated deformation results against ground truth data obtained from frame-by-frame segmentation across cardiac phases. Results: The proposed framework effectively handled interactive vessel manipulation. Geometric accuracy evaluation showed mean Hausdorff distance of 4.96 +- 1.78 mm and mean surface distance of 1.78 +- 0.75 mm between interpolated meshes and ground truth models. The Branch Completeness Ratio achieved 1.82 +- 0.46, while Branch Continuity Score maintained 0.84 +- 0.06 (scale 0-1) across all datasets. The system demonstrated capability in supporting real-time guidewire-vessel collision detection and contrast medium flow simulation throughout the complete coronary tree structure. Conclusion: Our skinning weight-based methodology enhances model interactivity and applicability while maintaining geometric accuracy. The framework provides a more flexible technical foundation for virtual surgical training systems, demonstrating promising potential for both clinical practice and medical education applications. The code is available at https://github.com/ipoirot/DynamicArtery.

Authors:Toan Nguyen, Kien Do, Duc Kieu, Thin Nguyen
Title: h-Edit: Effective and Flexible Diffusion-Based Editing via Doob's h-Transform
Abstract:
We introduce a theoretical framework for diffusion-based image editing by formulating it as a reverse-time bridge modeling problem. This approach modifies the backward process of a pretrained diffusion model to construct a bridge that converges to an implicit distribution associated with the editing target at time 0. Building on this framework, we propose h-Edit, a novel editing method that utilizes Doob's h-transform and Langevin Monte Carlo to decompose the update of an intermediate edited sample into two components: a "reconstruction" term and an "editing" term. This decomposition provides flexibility, allowing the reconstruction term to be computed via existing inversion techniques and enabling the combination of multiple editing terms to handle complex editing tasks. To our knowledge, h-Edit is the first training-free method capable of performing simultaneous text-guided and reward-model-based editing. Extensive experiments, both quantitative and qualitative, show that h-Edit outperforms state-of-the-art baselines in terms of editing effectiveness and faithfulness. Our source code is available at https://github.com/nktoan/h-edit.

Authors:Saeed Ranjbar Alvar, Gursimran Singh, Mohammad Akbari, Yong Zhang
Title: DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models
Abstract:
Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated Large Language Model (LLM). Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available $\href{https://github.com/vbdi/divprune}{\text{here}}$.

Authors:Jiacheng Zhang, Benjamin I. P. Rubinstein, Jingfeng Zhang, Feng Liu
Title: One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy
Abstract:
Statistical adversarial data detection (SADD) detects whether an upcoming batch contains adversarial examples (AEs) by measuring the distributional discrepancies between clean examples (CEs) and AEs. In this paper, we explore the strength of SADD-based methods by theoretically showing that minimizing distributional discrepancy can help reduce the expected loss on AEs. Despite these advantages, SADD-based methods have a potential limitation: they discard inputs that are detected as AEs, leading to the loss of useful information within those inputs. To address this limitation, we propose a two-pronged adversarial defense method, named Distributional-discrepancy-based Adversarial Defense (DAD). In the training phase, DAD first optimizes the test power of the maximum mean discrepancy (MMD) to derive MMD-OPT, which is a stone that kills two birds. MMD-OPT first serves as a guiding signal to minimize the distributional discrepancy between CEs and AEs to train a denoiser. Then, it serves as a discriminator to differentiate CEs and AEs during inference. Overall, in the inference stage, DAD consists of a two-pronged process: (1) directly feeding the detected CEs into the classifier, and (2) removing noise from the detected AEs by the distributional-discrepancy-based denoiser. Extensive experiments show that DAD outperforms current state-of-the-art (SOTA) defense methods by simultaneously improving clean and robust accuracy on CIFAR-10 and ImageNet-1K against adaptive white-box attacks. Codes are publicly available at: https://github.com/tmlr-group/DAD.

Authors:Chia-Wei Hsu, Nien-Ti Tsou, Yu-Cheng Chen, Yang Jeong Park, Ju Li
Title: Frankenstein Optimizer: Harnessing the Potential by Revisiting Optimization Tricks
Abstract:
Gradient-based optimization drives the unprecedented performance of modern deep neural network models across diverse applications. Adaptive algorithms have accelerated neural network training due to their rapid convergence rates; however, they struggle to find ``flat minima" reliably, resulting in suboptimal generalization compared to stochastic gradient descent (SGD). By revisiting various adaptive algorithms' mechanisms, we propose the Frankenstein optimizer, which combines their advantages. The proposed Frankenstein dynamically adjusts first- and second-momentum coefficients according to the optimizer's current state to directly maintain consistent learning dynamics and immediately reflect sudden gradient changes. Extensive experiments across several research domains such as computer vision, natural language processing, few-shot learning, and scientific simulations show that Frankenstein surpasses existing adaptive algorithms and SGD empirically regarding convergence speed and generalization performance. Furthermore, this research deepens our understanding of adaptive algorithms through centered kernel alignment analysis and loss landscape visualization during the learning process. Code is available at https://github.com/acctouhou/Frankenstein_optimizer

Authors:Zhixuan Lin, Evgenii Nikishin, Xu Owen He, Aaron Courville
Title: Forgetting Transformer: Softmax Attention with a Forget Gate
Abstract:
An essential component of modern recurrent sequence models is the forget gate. While Transformers do not have an explicit recurrent form, we show that a forget gate can be naturally incorporated into Transformers by down-weighting the unnormalized attention scores in a data-dependent way. We name this attention mechanism Forgetting Attention and the resulting model the Forgetting Transformer (FoX). We show that FoX outperforms the Transformer on long-context language modeling, length extrapolation, and short-context downstream tasks, while performing on par with the Transformer on long-context downstream tasks. Moreover, it is compatible with the FlashAttention algorithm and does not require any positional embeddings. Several analyses, including the needle-in-the-haystack test, show that FoX also retains the Transformer's superior long-context capabilities over recurrent sequence models such as Mamba-2, HGRN2, and DeltaNet. We also introduce a "Pro" block design that incorporates some common architectural components in recurrent sequence models and find it significantly improves the performance of both FoX and the Transformer. Our code is available at https://github.com/zhixuan-lin/forgetting-transformer.

Authors:Boyong He, Yuxiang Ji, Qianwen Ye, Zhuoyue Tan, Liaoni Wu
Title: Generalized Diffusion Detector: Mining Robust Features from Diffusion Models for Domain-Generalized Detection
Abstract:
Domain generalization (DG) for object detection aims to enhance detectors' performance in unseen scenarios. This task remains challenging due to complex variations in real-world applications. Recently, diffusion models have demonstrated remarkable capabilities in diverse scene generation, which inspires us to explore their potential for improving DG tasks. Instead of generating images, our method extracts multi-step intermediate features during the diffusion process to obtain domain-invariant features for generalized detection. Furthermore, we propose an efficient knowledge transfer framework that enables detectors to inherit the generalization capabilities of diffusion models through feature and object-level alignment, without increasing inference time. We conduct extensive experiments on six challenging DG benchmarks. The results demonstrate that our method achieves substantial improvements of 14.0% mAP over existing DG approaches across different domains and corruption types. Notably, our method even outperforms most domain adaptation methods without accessing any target domain data. Moreover, the diffusion-guided detectors show consistent improvements of 15.9% mAP on average compared to the baseline. Our work aims to present an effective approach for domain-generalized detection and provide potential insights for robust visual recognition in real-world scenarios. The code is available at https://github.com/heboyong/Generalized-Diffusion-Detector.

Authors:Rustin Soraki, Huayu Wang, Joann G. Elmore, Linda Shapiro
Title: CrossFusion: A Multi-Scale Cross-Attention Convolutional Fusion Model for Cancer Survival Prediction
Abstract:
Cancer survival prediction from whole slide images (WSIs) is a challenging task in computational pathology due to the large size, irregular shape, and high granularity of the WSIs. These characteristics make it difficult to capture the full spectrum of patterns, from subtle cellular abnormalities to complex tissue interactions, which are crucial for accurate prognosis. To address this, we propose CrossFusion, a novel multi-scale feature integration framework that extracts and fuses information from patches across different magnification levels. By effectively modeling both scale-specific patterns and their interactions, CrossFusion generates a rich feature set that enhances survival prediction accuracy. We validate our approach across six cancer types from public datasets, demonstrating significant improvements over existing state-of-the-art methods. Moreover, when coupled with domain-specific feature extraction backbones, our method shows further gains in prognostic performance compared to general-purpose backbones. The source code is available at: https://github.com/RustinS/CrossFusion

Authors:Ruth Crasto
Title: Robustness to Geographic Distribution Shift Using Location Encoders
Abstract:
Geographic distribution shift arises when the distribution of locations on Earth in a training dataset is different from what is seen at test time. The most common approaches to tackling geographic distribution shift treat regions delimited by administrative boundaries such as countries or continents as separate domains and apply standard domain adaptation methods, ignoring geographic coordinates that are often available as metadata. This paper proposes the use of location encoders for modeling continuous, learnable domain assignment. We show how both non-parametric sine-cosine encoders and pre-trained location encoders can be used in conjunction with standard domain adaptation methods for improved robustness to geographic distribution shift. Our proposed methods achieve new state-of-the-art results on two geo-tagged remote sensing datasets from the WILDS benchmark. We have made our code publicly available at: https://github.com/crastoru/wilds-geoshift.

Authors:Zhusi Zhong, Yuli Wang, Lulu Bi, Zhuoqi Ma, Sun Ho Ahn, Christopher J. Mullin, Colin F. Greineder, Michael K. Atalay, Scott Collins, Grayson L. Baird, Cheng Ting Lin, Webster Stayman, Todd M. Kolb, Ihab Kamel, Harrison X. Bai, Zhicheng Jiao
Title: Abn-BLIP: Abnormality-aligned Bootstrapping Language-Image Pre-training for Pulmonary Embolism Diagnosis and Report Generation from CTPA
Abstract:
Medical imaging plays a pivotal role in modern healthcare, with computed tomography pulmonary angiography (CTPA) being a critical tool for diagnosing pulmonary embolism and other thoracic conditions. However, the complexity of interpreting CTPA scans and generating accurate radiology reports remains a significant challenge. This paper introduces Abn-BLIP (Abnormality-aligned Bootstrapping Language-Image Pretraining), an advanced diagnosis model designed to align abnormal findings to generate the accuracy and comprehensiveness of radiology reports. By leveraging learnable queries and cross-modal attention mechanisms, our model demonstrates superior performance in detecting abnormalities, reducing missed findings, and generating structured reports compared to existing methods. Our experiments show that Abn-BLIP outperforms state-of-the-art medical vision-language models and 3D report generation methods in both accuracy and clinical relevance. These results highlight the potential of integrating multimodal learning strategies for improving radiology reporting. The source code is available at https://github.com/zzs95/abn-blip.

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval
Abstract:
Cross-modal retrieval is gaining increasing efficacy and interest from the research community, thanks to large-scale training, novel architectural and learning designs, and its application in LLMs and multimodal LLMs. In this paper, we move a step forward and design an approach that allows for multimodal queries, composed of both an image and a text, and can search within collections of multimodal documents, where images and text are interleaved. Our model, ReT, employs multi-level representations extracted from different layers of both visual and textual backbones, both at the query and document side. To allow for multi-level and cross-modal understanding and feature extraction, ReT employs a novel Transformer-based recurrent cell that integrates both textual and visual features at different layers, and leverages sigmoidal gates inspired by the classical design of LSTMs. Extensive experiments on M2KR and M-BEIR benchmarks show that ReT achieves state-of-the-art performance across diverse settings. Our source code and trained models are publicly available at https://github.com/aimagelab/ReT.

Authors:Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong Wang, Cheng Qian, Xiangru Tang, Heng Ji, Jiaxuan You
Title: MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents, yet existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition. In this paper, we introduce MultiAgentBench, a comprehensive benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios. Our framework measures not only task completion but also the quality of collaboration and competition using novel, milestone-based key performance indicators. Moreover, we evaluate various coordination protocols (including star, chain, tree, and graph topologies) and innovative strategies such as group discussion and cognitive planning. Notably, gpt-4o-mini reaches the average highest task score, graph structure performs the best among coordination protocols in the research scenario, and cognitive planning improves milestone achievement rates by 3%. Code and datasets are public available at https://github.com/MultiagentBench/MARBLE.

Authors:Mingjie Wen, Jiahe Han, Wenjuan Li, Xiaoya Chang, Qingzhao Chu, Dongping Chen
Title: A General Neural Network Potential for Energetic Materials with C, H, N, and O elements
Abstract:
The discovery and optimization of high-energy materials (HEMs) are constrained by the prohibitive computational expense and prolonged development cycles inherent in conventional approaches. In this work, we develop a general neural network potential (NNP) that efficiently predicts the structural, mechanical, and decomposition properties of HEMs composed of C, H, N, and O. Our framework leverages pre-trained NNP models, fine-tuned using transfer learning on energy and force data derived from density functional theory (DFT) calculations. This strategy enables rapid adaptation across 20 different HEM systems while maintaining DFT-level accuracy, significantly reducing computational costs. A key aspect of this work is the ability of NNP model to capture the chemical activity space of HEMs, accurately describe the key atomic interactions and reaction mechanisms during thermal decomposition. The general NNP model has been applied in molecular dynamics (MD) simulations and validated with experimental data for various HEM structures. Results show that the NNP model accurately predicts the structural, mechanical, and decomposition properties of HEMs by effectively describing their chemical activity space. Compared to traditional force fields, it offers superior DFT-level accuracy and generalization across both microscopic and macroscopic properties, reducing the computational and experimental costs. This work provides an efficient strategy for the design and development of HEMs and proposes a promising framework for integrating DFT, machine learning, and experimental methods in materials research. (To facilitate further research and practical applications, we open-source our NNP model on GitHub: https://github.com/MingjieWen/General-NNP-model-for-C-H-N-O-Energetic-Materials.)

Authors:Wang YuHang, Junkang Guo, Aolei Liu, Kaihao Wang, Zaitong Wu, Zhenyu Liu, Wenfei Yin, Jian Liu
Title: TAET: Two-Stage Adversarial Equalization Training on Long-Tailed Distributions
Abstract:
Adversarial robustness is a critical challenge in deploying deep neural networks for real-world applications. While adversarial training is a widely recognized defense strategy, most existing studies focus on balanced datasets, overlooking the prevalence of long-tailed distributions in real-world data, which significantly complicates robustness. This paper provides a comprehensive analysis of adversarial training under long-tailed distributions and identifies limitations in the current state-of-the-art method, AT-BSL, in achieving robust performance under such conditions. To address these challenges, we propose a novel training framework, TAET, which integrates an initial stabilization phase followed by a stratified equalization adversarial training phase. Additionally, prior work on long-tailed robustness has largely ignored the crucial evaluation metric of balanced accuracy. To bridge this gap, we introduce the concept of balanced robustness, a comprehensive metric tailored for assessing robustness under long-tailed distributions. Extensive experiments demonstrate that our method surpasses existing advanced defenses, achieving significant improvements in both memory and computational efficiency. This work represents a substantial advancement in addressing robustness challenges in real-world applications. Our code is available at: https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions.

Authors:Lily Xu, Bryan Wilder, Elias B. Khalil, Milind Tambe
Title: Reinforcement learning with combinatorial actions for coupled restless bandits
Abstract:
Reinforcement learning (RL) has increasingly been applied to solve real-world planning problems, with progress in handling large state spaces and time horizons. However, a key bottleneck in many domains is that RL methods cannot accommodate large, combinatorially structured action spaces. In such settings, even representing the set of feasible actions at a single step may require a complex discrete optimization formulation. We leverage recent advances in embedding trained neural networks into optimization problems to propose SEQUOIA, an RL algorithm that directly optimizes for long-term reward over the feasible action space. Our approach embeds a Q-network into a mixed-integer program to select a combinatorial action in each timestep. Here, we focus on planning over restless bandits, a class of planning problems which capture many real-world examples of sequential decision making. We introduce coRMAB, a broader class of restless bandits with combinatorial actions that cannot be decoupled across the arms of the restless bandit, requiring direct solving over the joint, exponentially large action space. We empirically validate SEQUOIA on four novel restless bandit problems with combinatorial constraints: multiple interventions, path constraints, bipartite matching, and capacity constraints. Our approach significantly outperforms existing methods -- which cannot address sequential planning and combinatorial selection simultaneously -- by an average of 24.8\% on these difficult instances.

Authors:Michal Spiegel, Michal Štefánik, Marek Kadlčík, Josef Kuchař
Title: Attend or Perish: Benchmarking Attention in Algorithmic Reasoning
Abstract:
Can transformers learn to perform algorithmic tasks reliably across previously unseen input/output domains? While pre-trained language models show solid accuracy on benchmarks incorporating algorithmic reasoning, assessing the reliability of these results necessitates an ability to distinguish genuine algorithmic understanding from memorization. In this paper, we propose AttentionSpan, an algorithmic benchmark comprising five tasks of infinite input domains where we can disentangle and trace the correct, robust algorithm necessary for the task. This allows us to assess (i) models' ability to extrapolate to unseen types of inputs, including new lengths, value ranges or input domains, but also (ii)to assess the robustness of their learned mechanisms. By analyzing attention maps and performing targeted interventions, we show that attention mechanism directly causes failures in extrapolation. We make the implementation of all our tasks and interpretability methods publicly available at https://github.com/michalspiegel/AttentionSpan .

Authors:Jiawei Zhang, Shuang Yang, Bo Li
Title: UDora: A Unified Red Teaming Framework against LLM Agents by Dynamically Hijacking Their Own Reasoning
Abstract:
Large Language Model (LLM) agents equipped with external tools have become increasingly powerful for complex tasks such as web shopping, automated email replies, and financial trading. However, these advancements amplify the risks of adversarial attacks, especially when agents can access sensitive external functionalities. Nevertheless, manipulating LLM agents into performing targeted malicious actions or invoking specific tools remains challenging, as these agents extensively reason or plan before executing final actions. In this work, we present UDora, a unified red teaming framework designed for LLM agents that dynamically hijacks the agent's reasoning processes to compel malicious behavior. Specifically, UDora first generates the model's reasoning trace for the given task, then automatically identifies optimal points within this trace to insert targeted perturbations. The resulting perturbed reasoning is then used as a surrogate response for optimization. By iteratively applying this process, the LLM agent will then be induced to undertake designated malicious actions or to invoke specific malicious tools. Our approach demonstrates superior effectiveness compared to existing methods across three LLM agent datasets. The code is available at https://github.com/AI-secure/UDora.

Authors:Sunghyeon Woo, Sol Namkung, Sunwoo Lee, Inho Jeong, Beomseok Kim, Dongsuk Jeon
Title: PaCA: Partial Connection Adaptation for Efficient Fine-Tuning
Abstract:
Prior parameter-efficient fine-tuning (PEFT) algorithms reduce memory usage and computational costs of fine-tuning large neural network models by training only a few additional adapter parameters, rather than the entire model. However, the reduction in computational costs due to PEFT does not necessarily translate to a reduction in training time; although the computational costs of the adapter layers are much smaller than the pretrained layers, it is well known that those two types of layers are processed sequentially on GPUs, resulting in significant latency overhead. LoRA and its variants merge low-rank adapter matrices with pretrained weights during inference to avoid latency overhead, but during training, the pretrained weights remain frozen while the adapter matrices are continuously updated, preventing such merging. To mitigate this issue, we propose Partial Connection Adaptation (PaCA), which fine-tunes randomly selected partial connections within the pretrained weights instead of introducing adapter layers in the model. PaCA not only enhances training speed by eliminating the time overhead due to the sequential processing of the adapter and pretrained layers but also reduces activation memory since only partial activations, rather than full activations, need to be stored for gradient computation. Compared to LoRA, PaCA reduces training time by 22% and total memory usage by 16%, while maintaining comparable accuracy across various fine-tuning scenarios, such as fine-tuning on the MMLU dataset and instruction tuning on the Oasst1 dataset. PaCA can also be combined with quantization, enabling the fine-tuning of large models such as LLaMA3.1-70B. In addition, PaCA enables training with 23% longer sequence and improves throughput by 16% on both NVIDIA A100 GPU and INTEL Gaudi2 HPU compared to LoRA. The code is available at https://github.com/WooSunghyeon/paca.

Authors:Christian Gapp, Elias Tappeiner, Martin Welk, Karl Fritscher, Elke Ruth Gizewski, Rainer Schubert
Title: What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning Methods
Abstract:
Purpose High dimensional, multimodal data can nowadays be analyzed by huge deep neural networks with little effort. Several fusion methods for bringing together different modalities have been developed. Particularly, in the field of medicine with its presence of high dimensional multimodal patient data, multimodal models characterize the next step. However, what is yet very underexplored is how these models process the source information in detail. Methods To this end, we implemented an occlusion-based both model and performance agnostic modality contribution method that quantitatively measures the importance of each modality in the dataset for the model to fulfill its task. We applied our method to three different multimodal medical problems for experimental purposes. Results Herein we found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up. Moreover, we could determine a link between our metric and the performance of single modality trained nets. Conclusion The information gain through our metric holds remarkable potential to improve the development of multimodal models and the creation of datasets in the future. With our method we make a crucial contribution to the field of interpretability in deep learning based multimodal research and thereby notably push the integrability of multimodal AI into clinical practice. Our code is publicly available at https://github.com/ChristianGappGit/MC_MMD.

Authors:Christian Gapp, Elias Tappeiner, Martin Welk, Karl Fritscher, Elke Ruth Gizewski, Rainer Schubert
Title: What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning
Abstract:
Purpose High dimensional, multimodal data can nowadays be analyzed by huge deep neural networks with little effort. Several fusion methods for bringing together different modalities have been developed. Given the prevalence of high-dimensional, multimodal patient data in medicine, the development of multimodal models marks a significant advancement. However, how these models process information from individual sources in detail is still underexplored. Methods To this end, we implemented an occlusion-based modality contribution method that is both model- and performance-agnostic. This method quantitatively measures the importance of each modality in the dataset for the model to fulfill its task. We applied our method to three different multimodal medical problems for experimental purposes. Results Herein we found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up. Moreover, we provide fine-grained quantitative and visual attribute importance for each modality. Conclusion Our metric offers valuable insights that can support the advancement of multimodal model development and dataset creation. By introducing this method, we contribute to the growing field of interpretability in deep learning for multimodal research. This approach helps to facilitate the integration of multimodal AI into clinical practice. Our code is publicly available at https://github.com/ChristianGappGit/MC_MMD.

Authors:Chenxu Dang, Zaipeng Duan, Pei An, Xinmin Zhang, Xuzhong Hu, Jie Ma
Title: FASTer: Focal Token Acquiring-and-Scaling Transformer for Long-term 3D Object Detection
Abstract:
Recent top-performing temporal 3D detectors based on Lidars have increasingly adopted region-based paradigms. They first generate coarse proposals, followed by encoding and fusing regional features. However, indiscriminate sampling and fusion often overlook the varying contributions of individual points and lead to exponentially increased complexity as the number of input frames grows. Moreover, arbitrary result-level concatenation limits the global information extraction. In this paper, we propose a Focal Token Acquring-and-Scaling Transformer (FASTer), which dynamically selects focal tokens and condenses token sequences in an adaptive and lightweight manner. Emphasizing the contribution of individual tokens, we propose a simple but effective Adaptive Scaling mechanism to capture geometric contexts while sifting out focal points. Adaptively storing and processing only focal points in historical frames dramatically reduces the overall complexity. Furthermore, a novel Grouped Hierarchical Fusion strategy is proposed, progressively performing sequence scaling and Intra-Group Fusion operations to facilitate the exchange of global spatial and temporal information. Experiments on the Waymo Open Dataset demonstrate that our FASTer significantly outperforms other state-of-the-art detectors in both performance and efficiency while also exhibiting improved flexibility and robustness. The code is available at https://github.com/MSunDYY/FASTer.git.

Authors:Haoxin Liu, Zhiyuan Zhao, Shiduo Li, B. Aditya Prakash
Title: Evaluating System 1 vs. 2 Reasoning Approaches for Zero-Shot Time Series Forecasting: A Benchmark and Insights
Abstract:
Reasoning ability is crucial for solving challenging tasks. With the advancement of foundation models, such as the emergence of large language models (LLMs), a wide range of reasoning strategies has been proposed, including test-time enhancements, such as Chain-ofThought, and post-training optimizations, as used in DeepSeek-R1. While these reasoning strategies have demonstrated effectiveness across various challenging language or vision tasks, their applicability and impact on time-series forecasting (TSF), particularly the challenging zero-shot TSF, remain largely unexplored. In particular, it is unclear whether zero-shot TSF benefits from reasoning and, if so, what types of reasoning strategies are most effective. To bridge this gap, we propose ReC4TS, the first benchmark that systematically evaluates the effectiveness of popular reasoning strategies when applied to zero-shot TSF tasks. ReC4TS conducts comprehensive evaluations across datasets spanning eight domains, covering both unimodal and multimodal with short-term and longterm forecasting tasks. More importantly, ReC4TS provides key insights: (1) Self-consistency emerges as the most effective test-time reasoning strategy; (2) Group-relative policy optimization emerges as a more suitable approach for incentivizing reasoning ability during post-training; (3) Multimodal TSF benefits more from reasoning strategies compared to unimodal TSF. Beyond these insights, ReC4TS establishes two pioneering starting blocks to support future zero-shot TSF reasoning research: (1) A novel dataset, TimeThinking, containing forecasting samples annotated with reasoning trajectories from multiple advanced LLMs, and (2) A new and simple test-time scaling-law validated on foundational TSF models enabled by self-consistency reasoning strategy. All data and code are publicly accessible at: https://github.com/AdityaLab/OpenTimeR

Authors:Luise Ge, Michael Lanier, Anindya Sarkar, Bengisu Guresti, Chongjie Zhang, Yevgeniy Vorobeychik
Title: Learning Policy Committees for Effective Personalization in MDPs with Diverse Tasks
Abstract:
Many dynamic decision problems, such as robotic control, involve a series of tasks, many of which are unknown at training time. Typical approaches for these problems, such as multi-task and meta reinforcement learning, do not generalize well when the tasks are diverse. On the other hand, approaches that aim to tackle task diversity, such as using task embedding as policy context and task clustering, typically lack performance guarantees and require a large number of training tasks. To address these challenges, we propose a novel approach for learning a policy committee that includes at least one near-optimal policy with high probability for tasks encountered during execution. While we show that this problem is in general inapproximable, we present two practical algorithmic solutions. The first yields provable approximation and task sample complexity guarantees when tasks are low-dimensional (the best we can do due to inapproximability), whereas the second is a general and practical gradient-based approach. In addition, we provide a provable sample complexity bound for few-shot learning. Our experiments on MuJoCo and Meta-World show that the proposed approach outperforms state-of-the-art multi-task, meta-, and task clustering baselines in training, generalization, and few-shot learning, often by a large margin. Our code is available at https://github.com/CERL-WUSTL/PACMAN.

Authors:Dayal Singh Kalra, John Kirchenbauer, Maissam Barkeshli, Tom Goldstein
Title: When Can You Get Away with Low Memory Adam?
Abstract:
Adam is the go-to optimizer for training modern machine learning models, but it requires additional memory to maintain the moving averages of the gradients and their squares. While various low-memory optimizers have been proposed that sometimes match the performance of Adam, their lack of reliability has left Adam as the default choice. In this work, we apply a simple layer-wise Signal-to-Noise Ratio (SNR) analysis to quantify when second-moment tensors can be effectively replaced by their means across different dimensions. Our SNR analysis reveals how architecture, training hyperparameters, and dataset properties impact compressibility along Adam's trajectory, naturally leading to $\textit{SlimAdam}$, a memory-efficient Adam variant. $\textit{SlimAdam}$ compresses the second moments along dimensions with high SNR when feasible, and leaves when compression would be detrimental. Through experiments across a diverse set of architectures and training scenarios, we show that $\textit{SlimAdam}$ matches Adam's performance and stability while saving up to $98\%$ of total second moments. Code for $\textit{SlimAdam}$ is available at https://github.com/dayal-kalra/low-memory-adam.

Authors:Yuhui Li, Fangyun Wei, Chao Zhang, Hongyang Zhang
Title: EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test
Abstract:
The sequential nature of modern LLMs makes them expensive and slow, and speculative sampling has proven to be an effective solution to this problem. Methods like EAGLE perform autoregression at the feature level, reusing top-layer features from the target model to achieve better results than vanilla speculative sampling. A growing trend in the LLM community is scaling up training data to improve model intelligence without increasing inference costs. However, we observe that scaling up data provides limited improvements for EAGLE. We identify that this limitation arises from EAGLE's feature prediction constraints. In this paper, we introduce EAGLE-3, which abandons feature prediction in favor of direct token prediction and replaces reliance on top-layer features with multi-layer feature fusion via a technique named training-time test. These improvements significantly enhance performance and enable the draft model to fully benefit from scaling up training data. Our experiments include both chat models and reasoning models, evaluated on five tasks. The results show that EAGLE-3 achieves a speedup ratio up to 6.5x, with about 1.4x improvement over EAGLE-2. In the SGLang framework, EAGLE-3 achieves a 1.38x throughput improvement at a batch size of 64. The code is available at https://github.com/SafeAILab/EAGLE.

Authors:Yisen Li, Lingfeng Yang, Wenxuan Shen, Pan Zhou, Yao Wan, Weiwei Lin, Dongping Chen
Title: CrowdSelect: Synthetic Instruction Data Selection with Multi-LLM Wisdom
Abstract:
Distilling advanced Large Language Models' instruction-following capabilities into smaller models using a selected subset has become a mainstream approach in model training. While existing synthetic instruction data selection strategies rely mainly on single-dimensional signals (i.e., reward scores, model perplexity), they fail to capture the complexity of instruction-following across diverse fields. Therefore, we investigate more diverse signals to capture comprehensive instruction-response pair characteristics and propose three foundational metrics that leverage Multi-LLM wisdom, informed by (1) diverse LLM responses and (2) reward model assessment. Building upon base metrics, we propose CrowdSelect, an integrated metric incorporating a clustering-based approach to maintain response diversity. Our comprehensive experiments demonstrate that our foundation metrics consistently improve performance across 4 base models on MT-bench and Arena-Hard. CrowdSelect, efficiently incorporating all metrics, achieves state-of-the-art performance in both Full and LoRA fine-tuning, showing improvements of 4.81% on Arena-Hard and 11.1% on MT-bench with Llama-3.2-3b-instruct. We hope our findings will bring valuable insights for future research in this direction. Code are available at https://github.com/listentm/crowdselect.

Authors:Yi-Lin Sung, Prateek Yadav, Jialu Li, Jaehong Yoon, Mohit Bansal
Title: RSQ: Learning from Important Tokens Leads to Better Quantized LLMs
Abstract:
Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining. Previous methods typically quantize the weights of each layer by "uniformly" optimizing the layer reconstruction loss across all output tokens. However, in this paper, we demonstrate that better-quantized models can be obtained by prioritizing learning from important tokens (e.g. which have large attention scores). Building on this finding, we propose RSQ (Rotate, Scale, then Quantize), which (1) applies rotations (orthogonal transformation) to the model to mitigate outliers (those with exceptionally large magnitude), (2) scales the token feature based on its importance, and (3) quantizes the model using the GPTQ framework with the second-order statistics computed by scaled tokens. To compute token importance, we explore both heuristic and dynamic strategies. Based on a thorough analysis of all approaches, we adopt attention concentration, which uses attention scores of each token as its importance, as the best approach. We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families: LLaMA3, Mistral, and Qwen2.5. Additionally, models quantized with RSQ achieve superior performance on long-context tasks, further highlighting its effectiveness. Lastly, RSQ demonstrates generalizability across various setups, including different model sizes, calibration datasets, bit precisions, and quantization methods.

Authors:Nicholas Carlini, Javier Rando, Edoardo Debenedetti, Milad Nasr, Florian Tramèr
Title: AutoAdvExBench: Benchmarking autonomous exploitation of adversarial example defenses
Abstract:
We introduce AutoAdvExBench, a benchmark to evaluate if large language models (LLMs) can autonomously exploit defenses to adversarial examples. Unlike existing security benchmarks that often serve as proxies for real-world tasks, bench directly measures LLMs' success on tasks regularly performed by machine learning security experts. This approach offers a significant advantage: if a LLM could solve the challenges presented in bench, it would immediately present practical utility for adversarial machine learning researchers. We then design a strong agent that is capable of breaking 75% of CTF-like ("homework exercise") adversarial example defenses. However, we show that this agent is only able to succeed on 13% of the real-world defenses in our benchmark, indicating the large gap between difficulty in attacking "real" code, and CTF-like code. In contrast, a stronger LLM that can attack 21% of real defenses only succeeds on 54% of CTF-like defenses. We make this benchmark available at https://github.com/ethz-spylab/AutoAdvExBench.

Authors:Hamish Ivison, Muru Zhang, Faeze Brahman, Pang Wei Koh, Pradeep Dasigi
Title: Large-Scale Data Selection for Instruction Tuning
Abstract:
Selecting high-quality training data from a larger pool is a crucial step when instruction-tuning language models, as carefully curated datasets often produce models that outperform those trained on much larger, noisier datasets. Automated data selection approaches for instruction-tuning are typically tested by selecting small datasets (roughly 10k samples) from small pools (100-200k samples). However, popular deployed instruction-tuned models often train on hundreds of thousands to millions of samples, subsampled from even larger data pools. We present a systematic study of how well data selection methods scale to these settings, selecting up to 2.5M samples from pools of up to 5.8M samples and evaluating across 7 diverse tasks. We show that many recently proposed methods fall short of random selection in this setting (while using more compute), and even decline in performance when given access to larger pools of data to select over. However, we find that a variant of representation-based data selection (RDS+), which uses weighted mean pooling of pretrained LM hidden states, consistently outperforms more complex methods across all settings tested -- all whilst being more compute-efficient. Our findings highlight that the scaling properties of proposed automated selection methods should be more closely examined. We release our code, data, and models at https://github.com/hamishivi/automated-instruction-selection.

Authors:Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: Visual-RFT: Visual Reinforcement Fine-Tuning
Abstract:
Reinforcement Fine-Tuning (RFT) in Large Reasoning Models like OpenAI o1 learns from feedback on its answers, which is especially useful in applications when fine-tuning data is scarce. Recent open-source work like DeepSeek-R1 demonstrates that reinforcement learning with verifiable reward is one key direction in reproducing o1. While the R1-style model has demonstrated success in language models, its application in multi-modal domains remains under-explored. This work introduces Visual Reinforcement Fine-Tuning (Visual-RFT), which further extends the application areas of RFT on visual tasks. Specifically, Visual-RFT first uses Large Vision-Language Models (LVLMs) to generate multiple responses containing reasoning tokens and final answers for each input, and then uses our proposed visual perception verifiable reward functions to update the model via the policy optimization algorithm such as Group Relative Policy Optimization (GRPO). We design different verifiable reward functions for different perception tasks, such as the Intersection over Union (IoU) reward for object detection. Experimental results on fine-grained image classification, few-shot object detection, reasoning grounding, as well as open-vocabulary object detection benchmarks show the competitive performance and advanced generalization ability of Visual-RFT compared with Supervised Fine-tuning (SFT). For example, Visual-RFT improves accuracy by $24.3\%$ over the baseline in one-shot fine-grained image classification with around 100 samples. In few-shot object detection, Visual-RFT also exceeds the baseline by $21.9$ on COCO's two-shot setting and $15.4$ on LVIS. Our Visual-RFT represents a paradigm shift in fine-tuning LVLMs, offering a data-efficient, reward-driven approach that enhances reasoning and adaptability for domain-specific tasks.

Authors:Tiansheng Wen, Yifei Wang, Zequn Zeng, Zhong Peng, Yudi Su, Xinyang Liu, Bo Chen, Hongwei Liu, Stefanie Jegelka, Chenyu You
Title: Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Abstract:
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep

Authors:Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor Geva, Junxian He, Jiajun Wu, Manling Li
Title: Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas
Abstract:
Large Vision Language Models (VLMs) have long struggled with spatial reasoning tasks. Surprisingly, even simple spatial reasoning tasks, such as recognizing "under" or "behind" relationships between only two objects, pose significant challenges for current VLMs. In this work, we study the spatial reasoning challenge from the lens of mechanistic interpretability, diving into the model's internal states to examine the interactions between image and text tokens. By tracing attention distribution over the image through out intermediate layers, we observe that successful spatial reasoning correlates strongly with the model's ability to align its attention distribution with actual object locations, particularly differing between familiar and unfamiliar spatial relationships. Motivated by these findings, we propose ADAPTVIS based on inference-time confidence scores to sharpen the attention on highly relevant regions when confident, while smoothing and broadening the attention window to consider a wider context when confidence is lower. This training-free decoding method shows significant improvement (e.g., up to a 50 absolute point improvement) on spatial reasoning benchmarks such as WhatsUp and VSR with negligible cost. We make code and data publicly available for research purposes at https://github.com/shiqichen17/AdaptVis.

Authors:Zhengliang Shi, Yuhan Wang, Lingyong Yan, Pengjie Ren, Shuaiqiang Wang, Dawei Yin, Zhaochun Ren
Title: Retrieval Models Aren't Tool-Savvy: Benchmarking Tool Retrieval for Large Language Models
Abstract:
Tool learning aims to augment large language models (LLMs) with diverse tools, enabling them to act as agents for solving practical tasks. Due to the limited context length of tool-using LLMs, adopting information retrieval (IR) models to select useful tools from large toolsets is a critical initial step. However, the performance of IR models in tool retrieval tasks remains underexplored and unclear. Most tool-use benchmarks simplify this step by manually pre-annotating a small set of relevant tools for each task, which is far from the real-world scenarios. In this paper, we propose ToolRet, a heterogeneous tool retrieval benchmark comprising 7.6k diverse retrieval tasks, and a corpus of 43k tools, collected from existing datasets. We benchmark six types of models on ToolRet. Surprisingly, even the models with strong performance in conventional IR benchmarks, exhibit poor performance on ToolRet. This low retrieval quality degrades the task pass rate of tool-use LLMs. As a further step, we contribute a large-scale training dataset with over 200k instances, which substantially optimizes the tool retrieval ability of IR models.

Authors:Sam Bowyer, Laurence Aitchison, Desi R. Ivanova
Title: Position: Don't Use the CLT in LLM Evals With Fewer Than a Few Hundred Datapoints
Abstract:
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .

Authors:Wenhao Wang, Yi Yang
Title: VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Abstract:
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset and code are publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO and https://github.com/WangWenhao0716/BenchUFO under the CC BY 4.0 License.

Authors:Stergios Koutsioumpas, Hasan Sayginel, Mark Webster, Dan E Browne
Title: Automorphism Ensemble Decoding of Quantum LDPC Codes
Abstract:
We introduce AutDEC, a fast and accurate decoder for quantum error-correcting codes with large automorphism groups. Our decoder employs a set of automorphisms of the quantum code and an ensemble of belief propagation (BP) decoders. Each BP decoder is given a syndrome which is transformed by one of the automorphisms, and is run in parallel. For quantum codes, the accuracy of BP decoders is limited because short cycles occur in the Tanner graph and our approach mitigates this effect. We demonstrate decoding accuracy comparable to BP-OSD-0 with a lower time overhead for Quantum Reed-Muller (QRM) codes in the code capacity setting, and Bivariate Bicycle (BB) codes under circuit level noise. We provide a Python repository for use by the community and the results of our simulations.

Authors:Ryien Hosseini, Filippo Simini, Venkatram Vishwanath, Rebecca Willett, Henry Hoffmann
Title: Quality Measures for Dynamic Graph Generative Models
Abstract:
Deep generative models have recently achieved significant success in modeling graph data, including dynamic graphs, where topology and features evolve over time. However, unlike in vision and natural language domains, evaluating generative models for dynamic graphs is challenging due to the difficulty of visualizing their output, making quantitative metrics essential. In this work, we develop a new quality metric for evaluating generative models of dynamic graphs. Current metrics for dynamic graphs typically involve discretizing the continuous-evolution of graphs into static snapshots and then applying conventional graph similarity measures. This approach has several limitations: (a) it models temporally related events as i.i.d. samples, failing to capture the non-uniform evolution of dynamic graphs; (b) it lacks a unified measure that is sensitive to both features and topology; (c) it fails to provide a scalar metric, requiring multiple metrics without clear superiority; and (d) it requires explicitly instantiating each static snapshot, leading to impractical runtime demands that hinder evaluation at scale. We propose a novel metric based on the \textit{Johnson-Lindenstrauss} lemma, applying random projections directly to dynamic graph data. This results in an expressive, scalar, and application-agnostic measure of dynamic graph similarity that overcomes the limitations of traditional methods. We also provide a comprehensive empirical evaluation of metrics for continuous-time dynamic graphs, demonstrating the effectiveness of our approach compared to existing methods. Our implementation is available at https://github.com/ryienh/jl-metric.

Authors:Chenxi Wang, Tianle Gu, Zhongyu Wei, Lang Gao, Zirui Song, Xiuying Chen
Title: Word Form Matters: LLMs' Semantic Reconstruction under Typoglycemia
Abstract:
Human readers can efficiently comprehend scrambled words, a phenomenon known as Typoglycemia, primarily by relying on word form; if word form alone is insufficient, they further utilize contextual cues for interpretation. While advanced large language models (LLMs) exhibit similar abilities, the underlying mechanisms remain unclear. To investigate this, we conduct controlled experiments to analyze the roles of word form and contextual information in semantic reconstruction and examine LLM attention patterns. Specifically, we first propose SemRecScore, a reliable metric to quantify the degree of semantic reconstruction, and validate its effectiveness. Using this metric, we study how word form and contextual information influence LLMs' semantic reconstruction ability, identifying word form as the core factor in this process. Furthermore, we analyze how LLMs utilize word form and find that they rely on specialized attention heads to extract and process word form information, with this mechanism remaining stable across varying levels of word scrambling. This distinction between LLMs' fixed attention patterns primarily focused on word form and human readers' adaptive strategy in balancing word form and contextual information provides insights into enhancing LLM performance by incorporating human-like, context-aware mechanisms.

Authors:Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang, Qixi Zheng, Rui Wang, Xiaoqin Feng, Weizhen Bian, Zhen Ye, Sitong Cheng, Ruibin Yuan, Zhixian Zhao, Xinfa Zhu, Jiahao Pan, Liumeng Xue, Pengcheng Zhu, Yunlin Chen, Zhifei Li, Xie Chen, Lei Xie, Yike Guo, Wei Xue
Title: Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens
Abstract:
Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.

Authors:Linhao Huang, Jing Yu
Title: ToLo: A Two-Stage, Training-Free Layout-To-Image Generation Framework For High-Overlap Layouts
Abstract:
Recent training-free layout-to-image diffusion models have demonstrated remarkable performance in generating high-quality images with controllable layouts. These models follow a one-stage framework: Encouraging the model to focus the attention map of each concept on its corresponding region by defining attention map-based losses. However, these models still struggle to accurately follow layouts with significant overlap, often leading to issues like attribute leakage and missing entities. In this paper, we propose ToLo, a two-stage, training-free layout-to-image generation framework for high-overlap layouts. Our framework consists of two stages: the aggregation stage and the separation stage, each with its own loss function based on the attention map. To provide a more effective evaluation, we partition the HRS dataset based on the Intersection over Union (IoU) of the input layouts, creating a new dataset for layout-to-image generation with varying levels of overlap. Through extensive experiments on this dataset, we demonstrate that ToLo significantly enhances the performance of existing methods when dealing with high-overlap layouts. Our code and dataset are available here: https://github.com/misaka12435/ToLo.

Authors:Youngbin Choi, Seunghyuk Cho, Minjong Lee, MoonJeong Park, Yesong Ko, Jungseul Ok, Dongwoo Kim
Title: CoPL: Collaborative Preference Learning for Personalizing LLMs
Abstract:
Personalizing large language models (LLMs) is important for aligning outputs with diverse user preferences, yet existing methods struggle with flexibility and generalization. We propose CoPL (Collaborative Preference Learning), a graph-based collaborative filtering framework that models user-response relationships to enhance preference estimation, particularly in sparse annotation settings. By integrating a mixture of LoRA experts, CoPL efficiently fine-tunes LLMs while dynamically balancing shared and user-specific preferences. Additionally, an optimization-free adaptation strategy enables generalization to unseen users without fine-tuning. Experiments on UltraFeedback-P demonstrate that CoPL outperforms existing personalized reward models, effectively capturing both common and controversial preferences, making it a scalable solution for personalized LLM alignment. The code is available at https://github.com/ml-postech/CoPL.

Authors:Shuvendu Roy, Franklin Ogidi, Ali Etemad, Elham Dolatabadi, Arash Afkanpour
Title: A Shared Encoder Approach to Multimodal Representation Learning
Abstract:
Multimodal representation learning has demonstrated remarkable potential in enabling models to process and integrate diverse data modalities, such as text and images, for improved understanding and performance. While the medical domain can benefit significantly from this paradigm, the scarcity of paired multimodal data and reliance on proprietary or pretrained encoders pose significant challenges. In this work, we present a shared encoder framework for multimodal representation learning tailored to the medical domain. Our approach employs a single set of encoder parameters shared across modalities, augmented with learnable modality features. Empirical results demonstrate that our shared encoder idea achieves superior performance compared to separate modality-specific encoders, demonstrating improved generalization in data-constrained settings. Notably, the performance gains are more pronounced with fewer training examples, underscoring the efficiency of our shared encoder framework for real-world medical applications with limited data. Our code and experiment setup are available at https://github.com/VectorInstitute/shared_encoder.

Authors:Yingxue Xu, Fengtao Zhou, Chenyu Zhao, Yihui Wang, Can Yang, Hao Chen
Title: Distilled Prompt Learning for Incomplete Multimodal Survival Prediction
Abstract:
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.

Authors:Luyi Qiu, Tristan Till, Xiaobao Guo, Adams Wai-Kin Kong
Title: SparseMamba-PCL: Scribble-Supervised Medical Image Segmentation via SAM-Guided Progressive Collaborative Learning
Abstract:
Scribble annotations significantly reduce the cost and labor required for dense labeling in large medical datasets with complex anatomical structures. However, current scribble-supervised learning methods are limited in their ability to effectively propagate sparse annotation labels to dense segmentation masks and accurately segment object boundaries. To address these issues, we propose a Progressive Collaborative Learning framework that leverages novel algorithms and the Med-SAM foundation model to enhance information quality during training. (1) We enrich ground truth scribble segmentation labels through a new algorithm, propagating scribbles to estimate object boundaries. (2) We enhance feature representation by optimizing Med-SAM-guided training through the fusion of feature embeddings from Med-SAM and our proposed Sparse Mamba network. This enriched representation also facilitates the fine-tuning of the Med-SAM decoder with enriched scribbles. (3) For inference, we introduce a Sparse Mamba network, which is highly capable of capturing local and global dependencies by replacing the traditional sequential patch processing method with a skip-sampling procedure. Experiments on the ACDC, CHAOS, and MSCMRSeg datasets validate the effectiveness of our framework, outperforming nine state-of-the-art methods. Our code is available at \href{https://github.com/QLYCode/SparseMamba-PCL}{SparseMamba-PCL.git}.

Authors:Kaveen Perera, Fouad Khelifi, Ammar Belatreche
Title: Robust Palm-Vein Recognition Using the MMD Filter: Improving SIFT-Based Feature Matching
Abstract:
A major challenge with palm vein images is that slight movements of the fingers and thumb, or variations in hand posture, can stretch the skin in different areas and alter the vein patterns. This can result in an infinite number of variations in palm vein images for a given individual. This paper introduces a novel filtering technique for SIFT-based feature matching, known as the Mean and Median Distance (MMD) Filter. This method evaluates the differences in keypoint coordinates and computes the mean and median in each direction to eliminate incorrect matches. Experiments conducted on the 850nm subset of the CASIA dataset indicate that the proposed MMD filter effectively preserves correct points while reducing false positives detected by other filtering methods. A comparison with existing SIFT-based palm vein recognition systems demonstrates that the proposed MMD filter delivers outstanding performance, achieving lower Equal Error Rate (EER) values. This article presents an extended author's version based on our previous work, A Keypoint Filtering Method for SIFT based Palm-Vein Recognition.

Authors:Saad Ejaz, Hriday Bavle, Laura Ribeiro, Holger Voos, Jose Luis Sanchez-Lopez
Title: Category-level Meta-learned NeRF Priors for Efficient Object Mapping
Abstract:
In 3D object mapping, category-level priors enable efficient object reconstruction and canonical pose estimation, requiring only a single prior per semantic category (e.g., chair, book, laptop, etc.). DeepSDF has been used predominantly as a category-level shape prior, but it struggles to reconstruct sharp geometry and is computationally expensive. In contrast, NeRFs capture fine details but have yet to be effectively integrated with category-level priors in a real-time multi-object mapping framework. To bridge this gap, we introduce PRENOM, a Prior-based Efficient Neural Object Mapper that integrates category-level priors with object-level NeRFs to enhance reconstruction efficiency and enable canonical object pose estimation. PRENOM gets to know objects on a first-name basis by meta-learning on synthetic reconstruction tasks generated from open-source shape datasets. To account for object category variations, it employs a multi-objective genetic algorithm to optimize the NeRF architecture for each category, balancing reconstruction quality and training time. Additionally, prior-based probabilistic ray sampling directs sampling toward expected object regions, accelerating convergence and improving reconstruction quality under constrained resources. Experimental results highlight the ability of PRENOM to achieve high-quality reconstructions while maintaining computational feasibility. Specifically, comparisons with prior-free NeRF-based approaches on a synthetic dataset show a 21\% lower Chamfer distance. Furthermore, evaluations against other approaches using shape priors on a noisy real-world dataset indicate a 13\% improvement averaged across all reconstruction metrics, and comparable pose and size estimation accuracy, while being trained for 5$\times$ less time. Code available at: https://github.com/snt-arg/PRENOM

Authors:Mojtaba Safari, Shansong Wang, Zach Eidex, Qiang Li, Erik H. Middlebrooks, David S. Yu, Xiaofeng Yang
Title: MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting
Abstract:
Objective:This study introduces a residual error-shifting mechanism that drastically reduces sampling steps while preserving critical anatomical details, thus accelerating MRI reconstruction. Approach:We propose a novel diffusion-based SR framework called Res-SRDiff, which integrates residual error shifting into the forward diffusion process. This enables efficient HR image reconstruction by aligning the degraded HR and LR distributions.We evaluated Res-SRDiff on ultra-high-field brain T1 MP2RAGE maps and T2-weighted prostate images, comparing it with Bicubic, Pix2pix, CycleGAN, and a conventional denoising diffusion probabilistic model with vision transformer backbone (TM-DDPM), using quantitative metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), gradient magnitude similarity deviation (GMSD), and learned perceptual image patch similarity (LPIPS). Main results: Res-SRDiff significantly outperformed all comparative methods in terms of PSNR, SSIM, and GMSD across both datasets, with statistically significant improvements (p-values<<0.05). The model achieved high-fidelity image restoration with only four sampling steps, drastically reducing computational time to under one second per slice, which is substantially faster than conventional TM-DDPM with around 20 seconds per slice. Qualitative analyses further demonstrated that Res-SRDiff effectively preserved fine anatomical details and lesion morphology in both brain and pelvic MRI images. Significance: Our findings show that Res-SRDiff is an efficient and accurate MRI SR method, markedly improving computational efficiency and image quality. Integrating residual error shifting into the diffusion process allows for rapid and robust HR image reconstruction, enhancing clinical MRI workflows and advancing medical imaging research. The source at:https://github.com/mosaf/Res-SRDiff

Authors:Chao Ye, Haoyuan Li, Weiyang Lin, Xianqiang Yang
Title: MLINE-VINS: Robust Monocular Visual-Inertial SLAM With Flow Manhattan and Line Features
Abstract:
In this paper we introduce MLINE-VINS, a novel monocular visual-inertial odometry (VIO) system that leverages line features and Manhattan Word assumption. Specifically, for line matching process, we propose a novel geometric line optical flow algorithm that efficiently tracks line features with varying lengths, whitch is do not require detections and descriptors in every frame. To address the instability of Manhattan estimation from line features, we propose a tracking-by-detection module that consistently tracks and optimizes Manhattan framse in consecutive images. By aligning the Manhattan World with the VIO world frame, the tracking could restart using the latest pose from back-end, simplifying the coordinate transformations within the system. Furthermore, we implement a mechanism to validate Manhattan frames and a novel global structural constraints back-end optimization. Extensive experiments results on vairous datasets, including benchmark and self-collected datasets, show that the proposed approach outperforms existing methods in terms of accuracy and long-range robustness. The source code of our method is available at: https://github.com/LiHaoy-ux/MLINE-VINS.

Authors:Yuheng Xu, Shijie Yang, Xin Liu, Jie Liu, Jie Tang, Gangshan Wu
Title: AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
Abstract:
In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.

Authors:Biao Xiong, Longjun Zhang, Ruiqi Huang, Junwei Zhou, S. R. U. N. Jafri, Bojian Wu, Fashuai Li
Title: VF-Plan: Bridging the Art Gallery Problem and Static LiDAR Scanning with Visibility Field Optimization
Abstract:
Viewpoint planning is critical for efficient 3D data acquisition in applications such as 3D reconstruction, building life-cycle management, navigation, and interior decoration. However, existing methods often neglect key optimization objectives specific to static LiDAR systems, resulting in redundant or disconnected viewpoint networks. The viewpoint planning problem (VPP) extends the classical Art Gallery Problem (AGP) by requiring full coverage, strong registrability, and coherent network connectivity under constrained sensor capabilities. To address these challenges, we introduce a novel Visibility Field (VF) that accurately captures the directional and range-dependent visibility properties of static LiDAR scanners. We further observe that visibility information naturally converges onto a 1D skeleton embedded in the 2D space, enabling significant searching space reduction. Leveraging these insights, we develop a greedy optimization algorithm tailored to the VPP, which constructs a minimal yet fully connected Viewpoint Network (VPN) with low redundancy. Experimental evaluations across diverse indoor and outdoor scenarios confirm the scalability and robustness of our method. Compared to expert-designed VPNs and existing state-of-the-art approaches, our algorithm achieves comparable or fewer viewpoints while significantly enhancing connectivity. In particular, it reduces the weighted average path length by approximately 95%, demonstrating substantial improvements in compactness and structural efficiency. Code is available at https://github.com/xiongbiaostar/VFPlan.

Authors:Alexander Baranov, Anna Palatkina, Yulia Makovka, Pavel Braslavski
Title: KoWit-24: A Richly Annotated Dataset of Wordplay in News Headlines
Abstract:
We present KoWit-24, a dataset with fine-grained annotation of wordplay in 2,700 Russian news headlines. KoWit-24 annotations include the presence of wordplay, its type, wordplay anchors, and words/phrases the wordplay refers to. Unlike the majority of existing humor collections of canned jokes, KoWit-24 provides wordplay contexts -- each headline is accompanied by the news lead and summary. The most common type of wordplay in the dataset is the transformation of collocations, idioms, and named entities -- the mechanism that has been underrepresented in previous humor datasets. Our experiments with five LLMs show that there is ample room for improvement in wordplay detection and interpretation tasks. The dataset and evaluation scripts are available at https://github.com/Humor-Research/KoWit-24

Authors:Ramkrishna Acharya
Title: Compare different SG-Schemes based on large least square problems
Abstract:
This study reviews popular stochastic gradient-based schemes based on large least-square problems. These schemes, often called optimizers in machine learning, play a crucial role in finding better model parameters. Hence, this study focuses on viewing such optimizers with different hyper-parameters and analyzing them based on least square problems. Codes that produced results in this work are available on https://github.com/q-viper/gradients-based-methods-on-large-least-square.

Authors:Ramkrishna Acharya
Title: An Approach for Air Drawing Using Background Subtraction and Contour Extraction
Abstract:
In this paper, we propose a novel approach for air drawing that uses image processing techniques to draw on the screen by moving fingers in the air. This approach benefits a wide range of applications such as sign language, in-air drawing, and 'writing' in the air as a new way of input. The approach starts with preparing ROI (Region of Interest) background images by taking a running average in initial camera frames and later subtracting it from the live camera frames to get a binary mask image. We calculate the pointer's position as the top of the contour on the binary image. When drawing a circle on the canvas in that position, it simulates the drawing. Furthermore, we combine the pre-trained Tesseract model for OCR purposes. To address the false contours, we perform hand detection based on the haar cascade before performing the background subtraction. In an experimental setup, we achieved a latency of only 100ms in air drawing. The code used to this research are available in GitHub as https://github.com/q-viper/Contour-Based-Writing

Authors:Disen Lan, Weigao Sun, Jiaxi Hu, Jusen Du, Yu Cheng
Title: Liger: Linearizing Large Language Models to Gated Recurrent Structures
Abstract:
Transformers with linear recurrent modeling offer linear-time training and constant-memory inference. Despite their demonstrated efficiency and performance, pretraining such non-standard architectures from scratch remains costly and risky. The linearization of large language models (LLMs) transforms pretrained standard models into linear recurrent structures, enabling more efficient deployment. However, current linearization methods typically introduce additional feature map modules that require extensive fine-tuning and overlook the gating mechanisms used in state-of-the-art linear recurrent models. To address these issues, this paper presents Liger, short for Linearizing LLMs to gated recurrent structures. Liger is a novel approach for converting pretrained LLMs into gated linear recurrent models without adding extra parameters. It repurposes the pretrained key matrix weights to construct diverse gating mechanisms, facilitating the formation of various gated recurrent structures while avoiding the need to train additional components from scratch. Using lightweight fine-tuning with Low-Rank Adaptation (LoRA), Liger restores the performance of the linearized gated recurrent models to match that of the original LLMs. Additionally, we introduce Liger Attention, an intra-layer hybrid attention mechanism, which significantly recovers 93\% of the Transformer-based LLM at 0.02\% pre-training tokens during the linearization process, achieving competitive results across multiple benchmarks, as validated on models ranging from 1B to 8B parameters. Code is available at https://github.com/OpenSparseLLMs/Linearization.

Authors:Zhihai Bi, Kai Chen, Chunxin Zheng, Yulin Li, Haoang Li, Jun Ma
Title: Interactive Navigation for Legged Manipulators with Learned Arm-Pushing Controller
Abstract:
Interactive navigation is crucial in scenarios where proactively interacting with objects can yield shorter paths, thus significantly improving traversal efficiency. Existing methods primarily focus on using the robot body to relocate large obstacles (which could be comparable to the size of a robot). However, they prove ineffective in narrow or constrained spaces where the robot's dimensions restrict its manipulation capabilities. This paper introduces a novel interactive navigation framework for legged manipulators, featuring an active arm-pushing mechanism that enables the robot to reposition movable obstacles in space-constrained environments. To this end, we develop a reinforcement learning-based arm-pushing controller with a two-stage reward strategy for large-object manipulation. Specifically, this strategy first directs the manipulator to a designated pushing zone to achieve a kinematically feasible contact configuration. Then, the end effector is guided to maintain its position at appropriate contact points for stable object displacement while preventing toppling. The simulations validate the robustness of the arm-pushing controller, showing that the two-stage reward strategy improves policy convergence and long-term performance. Real-world experiments further demonstrate the effectiveness of the proposed navigation framework, which achieves shorter paths and reduced traversal time. The open-source project can be found at https://github.com/Zhihaibi/Interactive-Navigation-for-legged-manipulator.git.

Authors:Mihir Kulkarni, Welf Rehberg, Kostas Alexis
Title: Aerial Gym Simulator: A Framework for Highly Parallelized Simulation of Aerial Robots
Abstract:
This paper contributes the Aerial Gym Simulator, a highly parallelized, modular framework for simulation and rendering of arbitrary multirotor platforms based on NVIDIA Isaac Gym. Aerial Gym supports the simulation of under-, fully- and over-actuated multirotors offering parallelized geometric controllers, alongside a custom GPU-accelerated rendering framework for ray-casting capable of capturing depth, segmentation and vertex-level annotations from the environment. Multiple examples for key tasks, such as depth-based navigation through reinforcement learning are provided. The comprehensive set of tools developed within the framework makes it a powerful resource for research on learning for control, planning, and navigation using state information as well as exteroceptive sensor observations. Extensive simulation studies are conducted and successful sim2real transfer of trained policies is demonstrated. The Aerial Gym Simulator is open-sourced at: https://github.com/ntnu-arl/aerial_gym_simulator.

Authors:Huifeng Yin, Yu Zhao, Minghao Wu, Xuanfan Ni, Bo Zeng, Hao Wang, Tianqi Shi, Liangying Shao, Chenyang Lyu, Longyue Wang, Weihua Luo, Kaifu Zhang
Title: Marco-o1 v2: Towards Widening The Distillation Bottleneck for Reasoning Models
Abstract:
Large Reasoning Models(LRMs) such as OpenAI o1 and DeepSeek-R1 have shown remarkable reasoning capabilities by scaling test-time compute and generating long Chain-of-Thought(CoT). Distillation--post-training on LRMs-generated data--is a straightforward yet effective method to enhance the reasoning abilities of smaller models, but faces a critical bottleneck: we found that distilled long CoT data poses learning difficulty for small models and leads to the inheritance of biases (i.e. over-thinking) when using Supervised Fine-tuning (SFT) and Reinforcement Learning (RL) methods. To alleviate this bottleneck, we propose constructing tree-based CoT data from scratch via Monte Carlo Tree Search(MCTS). We then exploit a set of CoT-aware approaches, including Thoughts Length Balance, Fine-grained DPO, and Joint Post-training Objective, to enhance SFT and RL on the constructed data. We conduct evaluation on various benchmarks such as math (GSM8K, MATH, AIME). instruction-following (Multi-IF) and planning (Blocksworld), results demonstrate our approaches substantially improve the reasoning performance of distilled models compared to standard distilled models via reducing the hallucinations in long-time thinking. The project homepage is https://github.com/AIDC-AI/Marco-o1.

Authors:Max Eissler, Tim Korjakow, Stefan Ganscha, Oliver T. Unke, Klaus-Robert Müller, Stefan Gugler
Title: How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Abstract:
Most current neural networks for molecular dynamics (MD) include physical inductive biases, resulting in specialized and complex architectures. This is in contrast to most other machine learning domains, where specialist approaches are increasingly replaced by general-purpose architectures trained on vast datasets. In line with this trend, several recent studies have questioned the necessity of architectural features commonly found in MD models, such as built-in rotational equivariance or energy conservation. In this work, we contribute to the ongoing discussion by evaluating the performance of an MD model with as few specialized architectural features as possible. We present a recipe for MD using an Edge Transformer, an "off-the-shelf'' transformer architecture that has been minimally modified for the MD domain, termed MD-ET. Our model implements neither built-in equivariance nor energy conservation. We use a simple supervised pre-training scheme on $\sim$30 million molecular structures from the QCML database. Using this "off-the-shelf'' approach, we show state-of-the-art results on several benchmarks after fine-tuning for a small number of steps. Additionally, we examine the effects of being only approximately equivariant and energy conserving for MD simulations, proposing a novel method for distinguishing the errors resulting from non-equivariance from other sources of inaccuracies like numerical rounding errors. While our model exhibits runaway energy increases on larger structures, we show approximately energy-conserving NVE simulations for a range of small structures.

Authors:Zekun Zhou, Xiaocheng Feng, Lei Huang, Xiachong Feng, Ziyun Song, Ruihan Chen, Liang Zhao, Weitao Ma, Yuxuan Gu, Baoxin Wang, Dayong Wu, Guoping Hu, Ting Liu, Bing Qin
Title: From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems
Abstract:
Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.

Authors:Jia-Chen Zhang, Yu-Jie Xiong, Chun-Ming Xia, Dong-Hai Zhu, Xi-He Qiu
Title: Parameter-Efficient Fine-Tuning of Large Language Models via Deconvolution in Subspace
Abstract:
Large language model (LLM) is considered a milestone towards achieving Artificial General Intelligence (AGI). With its advanced emergent capabilities, it adapt to a wide range of specific applications. Fine-tuning LLMs for various downstream tasks has become a new paradigm. Low-Rank Adaptation (LoRA) is well-known for its parameter efficiency. It can reduce the number of parameters needed to fine-tune LLMs by several orders of magnitude. However, LoRA-based approaches encounter a significant limitation due to the bottleneck imposed by rank one decomposition. As the parameters count in LLMs increase, even rank one decomposition might surpass the number of parameters truly necessary for handling more downstream tasks. In this paper, we propose a new method for Parameter-Efficient Fine-Tuning (PEFT) via deconvolution in subspace, dubbed as DCFT. We innovatively use deconvolution to complete details and enhance knowledge in subspace incremental matrices, and dynamically control parameters by adjusting the kernel size, unconstrained by rank-one decomposition. Extensive experiments are conducted to validate the effectiveness of DCFT. Results show that compared to LoRA, DCFT achieve an 8$\times$ reduction in parameters, and still achieves highly impressive performance. Our code is available here: https://github.com/Godz-z/DCFT.

Authors:Hao Tang, Chenwei Xie, Haiyang Wang, Xiaoyi Bao, Tingyu Weng, Pandeng Li, Yun Zheng, Liwei Wang
Title: UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface
Abstract:
Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that \textbf{U}nifies \textbf{F}ine-grained visual perception tasks through an \textbf{O}pen-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models are available at https://github.com/nnnth/UFO.

Authors:Hao Tang, Chenwei Xie, Haiyang Wang, Xiaoyi Bao, Tingyu Weng, Pandeng Li, Yun Zheng, Liwei Wang
Title: UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface
Abstract:
Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that \textbf{U}nifies \textbf{F}ine-grained visual perception tasks through an \textbf{O}pen-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models are available at https://github.com/nnnth/UFO.

Authors:Kun Zhang, Jingyu Li, Zhe Li, Jingjing Zhang, Fan Li, Yandong Liu, Rui Yan, Zihang Jiang, Nan Chen, Lei Zhang, Yongdong Zhang, Zhendong Mao, S. Kevin Zhou
Title: Composed Multi-modal Retrieval: A Survey of Approaches and Applications
Abstract:
The burgeoning volume of multi-modal data necessitates advanced retrieval paradigms beyond unimodal and cross-modal approaches. Composed Multi-modal Retrieval (CMR) emerges as a pivotal next-generation technology, enabling users to query images or videos by integrating a reference visual input with textual modifications, thereby achieving unprecedented flexibility and precision. This paper provides a comprehensive survey of CMR, covering its fundamental challenges, technical advancements, and applications. CMR is categorized into supervised, zero-shot, and semi-supervised learning paradigms. We discuss key research directions, including data construction, model architecture, and loss optimization in supervised CMR, as well as transformation frameworks and linear integration in zero-shot CMR, and semi-supervised CMR that leverages generated pseudo-triplets while addressing data noise/uncertainty. Additionally, we extensively survey the diverse application landscape of CMR, highlighting its transformative potential in e-commerce, social media, search engines, public security, etc. Seven high impact application scenarios are explored in detail with benchmark data sets and performance analysis. Finally, we further provide new potential research directions with the hope of inspiring exploration in other yet-to-be-explored fields. A curated list of works is available at: https://github.com/kkzhang95/Awesome-Composed-Multi-modal-Retrieval

Authors:Xu Liang
Title: Group Relative Policy Optimization for Image Captioning
Abstract:
Image captioning tasks usually use two-stage training to complete model optimization. The first stage uses cross-entropy as the loss function for optimization, and the second stage uses self-critical sequence training (SCST) for reinforcement learning optimization. However, the SCST algorithm has certain defects. SCST relies only on a single greedy decoding result as a baseline. If the model itself is not stable enough, the greedy decoding result may be relatively worst, which will lead to a high variance of advantage estimation, further leading to unstable policy updates. In addition, SCST only compares one sampling result with the greedy decoding result, and the generation diversity is limited, which may fall into a local optimum. In this paper, we propose using the latest Group Relative Policy Optimization (GRPO) reinforcement learning algorithm as an optimization solution for the second stage. GRPO generates multiple candidate captions for the input image and then continuously optimizes the model through intragroup comparison. By constraining the amplitude of policy updates and KL divergence, the stability of the model during training is greatly guaranteed. In addition, compared to SCST, which only samples one answer, GRPO samples and generates multiple answers. Multiple candidate answers in the group cover a wider solution space. Combined with KL divergence constraints, GRPO can improve diversity while ensuring model stability. The code for this article is available at https://github.com/liangxu-one/ms-models/tree/image_caption_grpo/research/arxiv_papers/Image_Caption_GRPO.

Authors:Xinyi Wan, Penghui Qi, Guangxing Huang, Min Lin, Jialin Li
Title: PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Abstract:
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at \href{https://github.com/sail-sg/zero-bubble-pipeline-parallelism}{this url}.

Authors:Xuewen Liu, Zhikai Li, Qingyi Gu
Title: CacheQuant: Comprehensively Accelerated Diffusion Models
Abstract:
Diffusion models have gradually gained prominence in the field of image synthesis, showcasing remarkable generative capabilities. Nevertheless, the slow inference and complex networks, resulting from redundancy at both temporal and structural levels, hinder their low-latency applications in real-world scenarios. Current acceleration methods for diffusion models focus separately on temporal and structural levels. However, independent optimization at each level to further push the acceleration limits results in significant performance degradation. On the other hand, integrating optimizations at both levels can compound the acceleration effects. Unfortunately, we find that the optimizations at these two levels are not entirely orthogonal. Performing separate optimizations and then simply integrating them results in unsatisfactory performance. To tackle this issue, we propose CacheQuant, a novel training-free paradigm that comprehensively accelerates diffusion models by jointly optimizing model caching and quantization techniques. Specifically, we employ a dynamic programming approach to determine the optimal cache schedule, in which the properties of caching and quantization are carefully considered to minimize errors. Additionally, we propose decoupled error correction to further mitigate the coupled and accumulated errors step by step. Experimental results show that CacheQuant achieves a 5.18 speedup and 4 compression for Stable Diffusion on MS-COCO, with only a 0.02 loss in CLIP score. Our code are open-sourced: https://github.com/BienLuky/CacheQuant .

Authors:Anas Abdelkarim, Holger Voos, Daniel Görges
Title: ecg2o: A Seamless Extension of g2o for Equality-Constrained Factor Graph Optimization
Abstract:
Factor graph optimization serves as a fundamental framework for robotic perception, enabling applications such as pose estimation, simultaneous localization and mapping (SLAM), structure-from-motion (SfM), and situational awareness. Traditionally, these methods solve unconstrained least squares problems using algorithms such as Gauss-Newton and Levenberg-Marquardt. However, extending factor graphs with native support for equality constraints can improve solution accuracy and broaden their applicability, particularly in optimal control. In this paper, we propose a novel extension of factor graphs that seamlessly incorporates equality constraints without requiring additional optimization algorithms. Our approach maintains the efficiency and flexibility of existing second-order optimization techniques while ensuring constraint feasibility. To validate our method, we apply it to an optimal control problem for velocity tracking in autonomous vehicles and benchmark our results against state-of-the-art constraint handling techniques. Additionally, we introduce ecg2o, a header-only C++ library that extends the widely used g2o factor graph library by adding full support for equality-constrained optimization. This library, along with demonstrative examples and the optimal control problem, is available as open source at https://github.com/snt-arg/ecg2o

Authors:Yogesh Verma, Ayush Bharti, Vikas Garg
Title: Robust Simulation-Based Inference under Missing Data via Neural Processes
Abstract:
Simulation-based inference (SBI) methods typically require fully observed data to infer parameters of models with intractable likelihood functions. However, datasets often contain missing values due to incomplete observations, data corruptions (common in astrophysics), or instrument limitations (e.g., in high-energy physics applications). In such scenarios, missing data must be imputed before applying any SBI method. We formalize the problem of missing data in SBI and demonstrate that naive imputation methods can introduce bias in the estimation of SBI posterior. We also introduce a novel amortized method that addresses this issue by jointly learning the imputation model and the inference network within a neural posterior estimation (NPE) framework. Extensive empirical results on SBI benchmarks show that our approach provides robust inference outcomes compared to standard baselines for varying levels of missing data. Moreover, we demonstrate the merits of our imputation model on two real-world bioactivity datasets (Adrenergic and Kinase assays). Code is available at https://github.com/Aalto-QuML/RISE.

Authors:Yuxuan Chen, Long Zhang, Xu Zhu, Hua Zhou, Zhuyin Ren
Title: OptMetaOpenFOAM: Large Language Model Driven Chain of Thought for Sensitivity Analysis and Parameter Optimization based on CFD
Abstract:
Merging natural language interfaces with computational fluid dynamics (CFD) workflows presents transformative opportunities for both industry and research. In this study, we introduce OptMetaOpenFOAM - a novel framework that bridges MetaOpenFOAM with external analysis and optimization tool libraries through a large language model (LLM)-driven chain-of-thought (COT) methodology. By automating complex CFD tasks via natural language inputs, the framework empowers non-expert users to perform sensitivity analyses and parameter optimizations with markedly improved efficiency. The test dataset comprises 11 distinct CFD analysis or optimization tasks, including a baseline simulation task derived from an OpenFOAM tutorial covering fluid dynamics, combustion, and heat transfer. Results confirm that OptMetaOpenFOAM can accurately interpret user requirements expressed in natural language and effectively invoke external tool libraries alongside MetaOpenFOAM to complete the tasks. Furthermore, validation on a non-OpenFOAM tutorial case - namely, a hydrogen combustion chamber - demonstrates that a mere 200-character natural language input can trigger a sequence of simulation, postprocessing, analysis, and optimization tasks spanning over 2,000 lines of code. These findings underscore the transformative potential of LLM-driven COT methodologies in linking external tool for advanced analysis and optimization, positioning OptMetaOpenFOAM as an effective tool that streamlines CFD simulations and enhances their convenience and efficiency for both industrial and research applications. Code is available at https://github.com/Terry-cyx/MetaOpenFOAM.

Authors:Linhao Li, Changhui Su, Yu Guo, Huimao Zhang, Dong Liang, Kun Shang
Title: Interactive Gadolinium-Free MRI Synthesis: A Transformer with Localization Prompt Learning
Abstract:
Contrast-enhanced magnetic resonance imaging (CE-MRI) is crucial for tumor detection and diagnosis, but the use of gadolinium-based contrast agents (GBCAs) in clinical settings raises safety concerns due to potential health risks. To circumvent these issues while preserving diagnostic accuracy, we propose a novel Transformer with Localization Prompts (TLP) framework for synthesizing CE-MRI from non-contrast MR images. Our architecture introduces three key innovations: a hierarchical backbone that uses efficient Transformer to process multi-scale features; a multi-stage fusion system consisting of Local and Global Fusion modules that hierarchically integrate complementary information via spatial attention operations and cross-attention mechanisms, respectively; and a Fuzzy Prompt Generation (FPG) module that enhances the TLP model's generalization by emulating radiologists' manual annotation through stochastic feature perturbation. The framework uniquely enables interactive clinical integration by allowing radiologists to input diagnostic prompts during inference, synergizing artificial intelligence with medical expertise. This research establishes a new paradigm for contrast-free MRI synthesis while addressing critical clinical needs for safer diagnostic procedures. Codes are available at https://github.com/ChanghuiSu/TLP.

Authors:Xuan Zhu, Jijun Xiang, Xianqi Wang, Longliang Liu, Yu Wang, Hong Zhang, Fei Guo, Xin Yang
Title: SVDC: Consistent Direct Time-of-Flight Video Depth Completion with Frequency Selective Fusion
Abstract:
Lightweight direct Time-of-Flight (dToF) sensors are ideal for 3D sensing on mobile devices. However, due to the manufacturing constraints of compact devices and the inherent physical principles of imaging, dToF depth maps are sparse and noisy. In this paper, we propose a novel video depth completion method, called SVDC, by fusing the sparse dToF data with the corresponding RGB guidance. Our method employs a multi-frame fusion scheme to mitigate the spatial ambiguity resulting from the sparse dToF imaging. Misalignment between consecutive frames during multi-frame fusion could cause blending between object edges and the background, which results in a loss of detail. To address this, we introduce an adaptive frequency selective fusion (AFSF) module, which automatically selects convolution kernel sizes to fuse multi-frame features. Our AFSF utilizes a channel-spatial enhancement attention (CSEA) module to enhance features and generates an attention map as fusion weights. The AFSF ensures edge detail recovery while suppressing high-frequency noise in smooth regions. To further enhance temporal consistency, We propose a cross-window consistency loss to ensure consistent predictions across different windows, effectively reducing flickering. Our proposed SVDC achieves optimal accuracy and consistency on the TartanAir and Dynamic Replica datasets. Code is available at https://github.com/Lan1eve/SVDC.

Authors:Xiaolong Yu, Junqiao Zhao, Shuangfu Song, Zhongyang Zhu, Zihan Yuan, Chen Ye, Tiantian Feng
Title: Convex Hull-based Algebraic Constraint for Visual Quadric SLAM
Abstract:
Using Quadrics as the object representation has the benefits of both generality and closed-form projection derivation between image and world spaces. Although numerous constraints have been proposed for dual quadric reconstruction, we found that many of them are imprecise and provide minimal improvements to localization.After scrutinizing the existing constraints, we introduce a concise yet more precise convex hull-based algebraic constraint for object landmarks, which is applied to object reconstruction, frontend pose estimation, and backend bundle adjustment.This constraint is designed to fully leverage precise semantic segmentation, effectively mitigating mismatches between complex-shaped object contours and dual quadrics.Experiments on public datasets demonstrate that our approach is applicable to both monocular and RGB-D SLAM and achieves improved object mapping and localization than existing quadric SLAM methods. The implementation of our method is available at https://github.com/tiev-tongji/convexhull-based-algebraic-constraint.

Authors:Cong Ma, Du Wu, Zhelang Deng, Jiang Chen, Xiaowen Huang, Jintao Meng, Wenxi Zhu, Bingqiang Wang, Amelie Chi Zhou, Peng Chen, Minwen Deng, Yanjie Wei, Shengzhong Feng, Yi Pan
Title: NM-SpMM: Accelerating Matrix Multiplication Using N:M Sparsity with GPGPU
Abstract:
Deep learning demonstrates effectiveness across a wide range of tasks. However, the dense and over-parameterized nature of these models results in significant resource consumption during deployment. In response to this issue, weight pruning, particularly through N:M sparsity matrix multiplication, offers an efficient solution by transforming dense operations into semi-sparse ones. N:M sparsity provides an option for balancing performance and model accuracy, but introduces more complex programming and optimization challenges. To address these issues, we design a systematic top-down performance analysis model for N:M sparsity. Meanwhile, NM-SpMM is proposed as an efficient general N:M sparsity implementation. Based on our performance analysis, NM-SpMM employs a hierarchical blocking mechanism as a general optimization to enhance data locality, while memory access optimization and pipeline design are introduced as sparsity-aware optimization, allowing it to achieve close-to-theoretical peak performance across different sparsity levels. Experimental results show that NM-SpMM is 2.1x faster than nmSPARSE (the state-of-the-art for general N:M sparsity) and 1.4x to 6.3x faster than cuBLAS's dense GEMM operations, closely approaching the theoretical maximum speedup resulting from the reduction in computation due to sparsity. NM-SpMM is open source and publicly available at https://github.com/M-H482/NM-SpMM.

Authors:Guanyao Wu, Haoyu Liu, Hongming Fu, Yichuan Peng, Jinyuan Liu, Xin Fan, Risheng Liu
Title: Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond
Abstract:
Multi-modality image fusion, particularly infrared and visible, plays a crucial role in integrating diverse modalities to enhance scene understanding. Although early research prioritized visual quality, preserving fine details and adapting to downstream tasks remains challenging. Recent approaches attempt task-specific design but rarely achieve "The Best of Both Worlds" due to inconsistent optimization goals. To address these issues, we propose a novel method that leverages the semantic knowledge from the Segment Anything Model (SAM) to Grow the quality of fusion results and Enable downstream task adaptability, namely SAGE. Specifically, we design a Semantic Persistent Attention (SPA) Module that efficiently maintains source information via the persistent repository while extracting high-level semantic priors from SAM. More importantly, to eliminate the impractical dependence on SAM during inference, we introduce a bi-level optimization-driven distillation mechanism with triplet losses, which allow the student network to effectively extract knowledge. Extensive experiments show that our method achieves a balance between high-quality visual results and downstream task adaptability while maintaining practical deployment efficiency. The code is available at https://github.com/RollingPlain/SAGE_IVIF.

Authors:Tianjie Ju, Yi Hua, Hao Fei, Zhenyu Shao, Yubin Zheng, Haodong Zhao, Mong-Li Lee, Wynne Hsu, Zhuosheng Zhang, Gongshen Liu
Title: Watch Out Your Album! On the Inadvertent Privacy Memorization in Multi-Modal Large Language Models
Abstract:
Multi-Modal Large Language Models (MLLMs) have exhibited remarkable performance on various vision-language tasks such as Visual Question Answering (VQA). Despite accumulating evidence of privacy concerns associated with task-relevant content, it remains unclear whether MLLMs inadvertently memorize private content that is entirely irrelevant to the training tasks. In this paper, we investigate how randomly generated task-irrelevant private content can become spuriously correlated with downstream objectives due to partial mini-batch training dynamics, thus causing inadvertent memorization. Concretely, we randomly generate task-irrelevant watermarks into VQA fine-tuning images at varying probabilities and propose a novel probing framework to determine whether MLLMs have inadvertently encoded such content. Our experiments reveal that MLLMs exhibit notably different training behaviors in partial mini-batch settings with task-irrelevant watermarks embedded. Furthermore, through layer-wise probing, we demonstrate that MLLMs trigger distinct representational patterns when encountering previously seen task-irrelevant knowledge, even if this knowledge does not influence their output during prompting. Our code is available at https://github.com/illusionhi/ProbingPrivacy.

Authors:Xingyuan Li, Zirui Wang, Yang Zou, Zhixin Chen, Jun Ma, Zhiying Jiang, Long Ma, Jinyuan Liu
Title: DifIISR: A Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution
Abstract:
Infrared imaging is essential for autonomous driving and robotic operations as a supportive modality due to its reliable performance in challenging environments. Despite its popularity, the limitations of infrared cameras, such as low spatial resolution and complex degradations, consistently challenge imaging quality and subsequent visual tasks. Hence, infrared image super-resolution (IISR) has been developed to address this challenge. While recent developments in diffusion models have greatly advanced this field, current methods to solve it either ignore the unique modal characteristics of infrared imaging or overlook the machine perception requirements. To bridge these gaps, we propose DifIISR, an infrared image super-resolution diffusion model optimized for visual quality and perceptual performance. Our approach achieves task-based guidance for diffusion by injecting gradients derived from visual and perceptual priors into the noise during the reverse process. Specifically, we introduce an infrared thermal spectrum distribution regulation to preserve visual fidelity, ensuring that the reconstructed infrared images closely align with high-resolution images by matching their frequency components. Subsequently, we incorporate various visual foundational models as the perceptual guidance for downstream visual tasks, infusing generalizable perceptual features beneficial for detection and segmentation. As a result, our approach gains superior visual results while attaining State-Of-The-Art downstream task performance. Code is available at https://github.com/zirui0625/DifIISR

Authors:Rin Ashizawa, Yoichi Hirose, Nozomu Yoshinari, Kento Uchida, Shinichi Shirakawa
Title: Bandit-Based Prompt Design Strategy Selection Improves Prompt Optimizers
Abstract:
Prompt optimization aims to search for effective prompts that enhance the performance of large language models (LLMs). Although existing prompt optimization methods have discovered effective prompts, they often differ from sophisticated prompts carefully designed by human experts. Prompt design strategies, representing best practices for improving prompt performance, can be key to improving prompt optimization. Recently, a method termed the Autonomous Prompt Engineering Toolbox (APET) has incorporated various prompt design strategies into the prompt optimization process. In APET, the LLM is needed to implicitly select and apply the appropriate strategies because prompt design strategies can have negative effects. This implicit selection may be suboptimal due to the limited optimization capabilities of LLMs. This paper introduces Optimizing Prompts with sTrategy Selection (OPTS), which implements explicit selection mechanisms for prompt design. We propose three mechanisms, including a Thompson sampling-based approach, and integrate them into EvoPrompt, a well-known prompt optimizer. Experiments optimizing prompts for two LLMs, Llama-3-8B-Instruct and GPT-4o mini, were conducted using BIG-Bench Hard. Our results show that the selection of prompt design strategies improves the performance of EvoPrompt, and the Thompson sampling-based mechanism achieves the best overall results. Our experimental code is provided at https://github.com/shiralab/OPTS .

Authors:Chen Zhang, Mingxu Tao, Zhiyuan Liao, Yansong Feng
Title: MiLiC-Eval: Benchmarking Multilingual LLMs for China's Minority Languages
Abstract:
Large language models (LLMs) excel in high-resource languages but struggle with low-resource languages (LRLs), particularly those spoken by minority communities in China, such as Tibetan, Uyghur, Kazakh, and Mongolian. To systematically track the progress in these languages, we introduce MiLiC-Eval, a benchmark designed for minority languages in China, featuring 24K instances across 9 tasks. MiLiC-Eval focuses on underrepresented writing systems. Its parallelism between tasks and languages can provide a faithful and fine-grained assessment of linguistic and problem-solving skills. Our evaluation reveals that open-source LLMs perform poorly on syntax-intensive tasks and multi-script languages. We further demonstrate how MiLiC-Eval can help advance LRL research in handling diverse writing systems and understanding the process of language adaptation.

Authors:Zhipeng Huang, Shaobin Zhuang, Canmiao Fu, Binxin Yang, Ying Zhang, Chong Sun, Zhizheng Zhang, Yali Wang, Chen Li, Zheng-Jun Zha
Title: WeGen: A Unified Model for Interactive Multimodal Generation as We Chat
Abstract:
Existing multimodal generative models fall short as qualified design copilots, as they often struggle to generate imaginative outputs once instructions are less detailed or lack the ability to maintain consistency with the provided references. In this work, we introduce WeGen, a model that unifies multimodal generation and understanding, and promotes their interplay in iterative generation. It can generate diverse results with high creativity for less detailed instructions. And it can progressively refine prior generation results or integrating specific contents from references following the instructions in its chat with users. During this process, it is capable of preserving consistency in the parts that the user is already satisfied with. To this end, we curate a large-scale dataset, extracted from Internet videos, containing rich object dynamics and auto-labeled dynamics descriptions by advanced foundation models to date. These two information are interleaved into a single sequence to enable WeGen to learn consistency-aware generation where the specified dynamics are generated while the consistency of unspecified content is preserved aligned with instructions. Besides, we introduce a prompt self-rewriting mechanism to enhance generation diversity. Extensive experiments demonstrate the effectiveness of unifying multimodal understanding and generation in WeGen and show it achieves state-of-the-art performance across various visual generation benchmarks. These also demonstrate the potential of WeGen as a user-friendly design copilot as desired. The code and models will be available at https://github.com/hzphzp/WeGen.

Authors:Hui Liu, Chen Jia, Fan Shi, Xu Cheng, Shengyong Chen
Title: SCSegamba: Lightweight Structure-Aware Vision Mamba for Crack Segmentation in Structures
Abstract:
Pixel-level segmentation of structural cracks across various scenarios remains a considerable challenge. Current methods encounter challenges in effectively modeling crack morphology and texture, facing challenges in balancing segmentation quality with low computational resource usage. To overcome these limitations, we propose a lightweight Structure-Aware Vision Mamba Network (SCSegamba), capable of generating high-quality pixel-level segmentation maps by leveraging both the morphological information and texture cues of crack pixels with minimal computational cost. Specifically, we developed a Structure-Aware Visual State Space module (SAVSS), which incorporates a lightweight Gated Bottleneck Convolution (GBC) and a Structure-Aware Scanning Strategy (SASS). The key insight of GBC lies in its effectiveness in modeling the morphological information of cracks, while the SASS enhances the perception of crack topology and texture by strengthening the continuity of semantic information between crack pixels. Experiments on crack benchmark datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods, achieving the highest performance with only 2.8M parameters. On the multi-scenario dataset, our method reached 0.8390 in F1 score and 0.8479 in mIoU. The code is available at https://github.com/Karl1109/SCSegamba.

Authors:Kaiwen Zheng, Yongxin Chen, Huayu Chen, Guande He, Ming-Yu Liu, Jun Zhu, Qinsheng Zhang
Title: Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
Abstract:
While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective, which minimizes the forward KL divergence, inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that integrates likelihood-based generative training and GAN-type discrimination to bypass this fundamental constraint by exploiting reverse KL and self-generated negative signals. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58/1.96 to new records of 1.30/0.97/1.26 on CIFAR-10/ImageNet-64/ImageNet 512x512 datasets without any guidance mechanisms, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256x256.

Authors:Wanjun Jia, Fan Yang, Mengfei Duan, Xianchi Chen, Yinxi Wang, Yiming Jiang, Wenrui Chen, Kailun Yang, Zhiyong Li
Title: One-Shot Affordance Grounding of Deformable Objects in Egocentric Organizing Scenes
Abstract:
Deformable object manipulation in robotics presents significant challenges due to uncertainties in component properties, diverse configurations, visual interference, and ambiguous prompts. These factors complicate both perception and control tasks. To address these challenges, we propose a novel method for One-Shot Affordance Grounding of Deformable Objects (OS-AGDO) in egocentric organizing scenes, enabling robots to recognize previously unseen deformable objects with varying colors and shapes using minimal samples. Specifically, we first introduce the Deformable Object Semantic Enhancement Module (DefoSEM), which enhances hierarchical understanding of the internal structure and improves the ability to accurately identify local features, even under conditions of weak component information. Next, we propose the ORB-Enhanced Keypoint Fusion Module (OEKFM), which optimizes feature extraction of key components by leveraging geometric constraints and improves adaptability to diversity and visual interference. Additionally, we propose an instance-conditional prompt based on image data and task context, which effectively mitigates the issue of region ambiguity caused by prompt words. To validate these methods, we construct a diverse real-world dataset, AGDDO15, which includes 15 common types of deformable objects and their associated organizational actions. Experimental results demonstrate that our approach significantly outperforms state-of-the-art methods, achieving improvements of 6.2%, 3.2%, and 2.9% in KLD, SIM, and NSS metrics, respectively, while exhibiting high generalization performance. Source code and benchmark dataset are made publicly available at https://github.com/Dikay1/OS-AGDO.

Authors:Yu Fu, Michael Stanley Smith, Anastasios Panagiotelis
Title: Vector Copula Variational Inference and Dependent Block Posterior Approximations
Abstract:
The key to VI is the selection of a tractable density to approximate the Bayesian posterior. For large and complex models a common choice is to assume independence between multivariate blocks in a partition of the parameter space. While this simplifies the problem it can reduce accuracy. This paper proposes using vector copulas to capture dependence between the blocks parsimoniously. Tailored multivariate marginals are constructed using learnable transport maps. We call the resulting joint distribution a ``dependent block posterior'' approximation. Vector copula models are suggested that make tractable and flexible variational approximations. They allow for differing marginals, numbers of blocks, block sizes and forms of between block dependence. They also allow for solution of the variational optimization using efficient stochastic gradient methods. The approach is demonstrated using four different statistical models and 16 datasets which have posteriors that are challenging to approximate. This includes models that use global-local shrinkage priors for regularization, and hierarchical models for smoothing and heteroscedastic time series. In all cases, our method produces more accurate posterior approximations than benchmark VI methods that either assume block independence or factor-based dependence, at limited additional computational cost. A python package implementing the method is available on GitHub at https://github.com/YuFuOliver/VCVI_Rep_PyPackage.

Authors:Jacob Beck
Title: Offline RLAIF: Piloting VLM Feedback for RL via SFO
Abstract:
While internet-scale image and textual data have enabled strong generalization in Vision-Language Models (VLMs), the absence of internet-scale control data has impeded the development of similar generalization in standard reinforcement learning (RL) agents. Although VLMs are fundamentally limited in their ability to solve control tasks due to their lack of action-conditioned training data, their capacity for image understanding allows them to provide valuable feedback in RL tasks by recognizing successful outcomes. A key challenge in Reinforcement Learning from AI Feedback (RLAIF) is determining how best to integrate VLM-derived signals into the learning process. We explore this question in the context of offline RL and introduce a class of methods called Sub-Trajectory Filtered Optimization (SFO). We identify three key insights. First, trajectory length plays a crucial role in offline RL, as full-trajectory preference learning exacerbates the stitching problem, necessitating the use of sub-trajectories. Second, even in Markovian environments, a non-Markovian reward signal from a sequence of images is required to assess trajectory improvement, as VLMs do not interpret control actions and must rely on visual cues over time. Third, a simple yet effective approach--filtered and weighted behavior cloning--consistently outperforms more complex RLHF-based methods. We propose Sub-Trajectory Filtered Behavior Cloning (SFBC), a method that leverages VLM feedback on sub-trajectories while incorporating a retrospective filtering mechanism that removes sub-trajectories preceding failures to improve robustness and prevent turbulence. Please enjoy our airport puns.

Authors:Lie Ju, Sijin Zhou, Yukun Zhou, Huimin Lu, Zhuoting Zhu, Pearse A. Keane, Zongyuan Ge
Title: Delving into Out-of-Distribution Detection with Medical Vision-Language Models
Abstract:
Recent advances in medical vision-language models (VLMs) demonstrate impressive performance in image classification tasks, driven by their strong zero-shot generalization capabilities. However, given the high variability and complexity inherent in medical imaging data, the ability of these models to detect out-of-distribution (OOD) data in this domain remains underexplored. In this work, we conduct the first systematic investigation into the OOD detection potential of medical VLMs. We evaluate state-of-the-art VLM-based OOD detection methods across a diverse set of medical VLMs, including both general and domain-specific purposes. To accurately reflect real-world challenges, we introduce a cross-modality evaluation pipeline for benchmarking full-spectrum OOD detection, rigorously assessing model robustness against both semantic shifts and covariate shifts. Furthermore, we propose a novel hierarchical prompt-based method that significantly enhances OOD detection performance. Extensive experiments are conducted to validate the effectiveness of our approach. The codes are available at https://github.com/PyJulie/Medical-VLMs-OOD-Detection.

Authors:Yuhang Zhang, Zhiyao Zhang, Junyi Ji, Marcos Quiñones-Grueiro, William Barbour, Derek Gloudemans, Gergely Zachár, Clay Weston, Gautam Biswas, Daniel B. Work
Title: Real-World Deployment and Assessment of a Multi-Agent Reinforcement Learning-Based Variable Speed Limit Control System
Abstract:
This article presents the first field deployment of a multi-agent reinforcement learning (MARL) based variable speed limit (VSL) control system on Interstate 24 (I-24) near Nashville, Tennessee. We design and demonstrate a full pipeline from training MARL agents in a traffic simulator to a field deployment on a 17-mile segment of I-24 encompassing 67 VSL controllers. The system was launched on March 8th, 2024, and has made approximately 35 million decisions on 28 million trips in six months of operation. We apply an invalid action masking mechanism and several safety guards to ensure real-world constraints. The MARL-based implementation operates up to 98% of the time, with the safety guards overriding the MARL decisions for the remaining time. We evaluate the performance of the MARL-based algorithm in comparison to a previously deployed non-RL VSL benchmark algorithm on I-24. Results show that the MARL-based VSL control system achieves a superior performance. The accuracy of correctly warning drivers about slowing traffic ahead is improved by 14% and the response delay to non-recurrent congestion is reduced by 75%. The preliminary data shows that the VSL control system has reduced the crash rate by 26% and the secondary crash rate by 50%. We open-sourced the deployed MARL-based VSL algorithm at https://github.com/Lab-Work/marl-vsl-controller.

Authors:Baoqi Pei, Yifei Huang, Jilan Xu, Guo Chen, Yuping He, Lijin Yang, Yali Wang, Weidi Xie, Yu Qiao, Fei Wu, Limin Wang
Title: Modeling Fine-Grained Hand-Object Dynamics for Egocentric Video Representation Learning
Abstract:
In egocentric video understanding, the motion of hands and objects as well as their interactions play a significant role by nature. However, existing egocentric video representation learning methods mainly focus on aligning video representation with high-level narrations, overlooking the intricate dynamics between hands and objects. In this work, we aim to integrate the modeling of fine-grained hand-object dynamics into the video representation learning process. Since no suitable data is available, we introduce HOD, a novel pipeline employing a hand-object detector and a large language model to generate high-quality narrations with detailed descriptions of hand-object dynamics. To learn these fine-grained dynamics, we propose EgoVideo, a model with a new lightweight motion adapter to capture fine-grained hand-object motion information. Through our co-training strategy, EgoVideo effectively and efficiently leverages the fine-grained hand-object dynamics in the HOD data. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple egocentric downstream tasks, including improvements of 6.3% in EK-100 multi-instance retrieval, 5.7% in EK-100 classification, and 16.3% in EGTEA classification in zero-shot settings. Furthermore, our model exhibits robust generalization capabilities in hand-object interaction and robot manipulation tasks. Code and data are available at https://github.com/OpenRobotLab/EgoHOD/.

Authors:Dien X. Tran, Nam V. Nguyen, Thanh T. Tran, Anh T. Hoang, Tai V. Duong, Di T. Le, Phuc-Lu Le
Title: SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking
Abstract:
The rise of misinformation, exacerbated by Large Language Models (LLMs) like GPT and Gemini, demands robust fact-checking solutions, especially for low-resource languages like Vietnamese. Existing methods struggle with semantic ambiguity, homonyms, and complex linguistic structures, often trading accuracy for efficiency. We introduce SemViQA, a novel Vietnamese fact-checking framework integrating Semantic-based Evidence Retrieval (SER) and Two-step Verdict Classification (TVC). Our approach balances precision and speed, achieving state-of-the-art results with 78.97\% strict accuracy on ISE-DSC01 and 80.82\% on ViWikiFC, securing 1st place in the UIT Data Science Challenge. Additionally, SemViQA Faster improves inference speed 7x while maintaining competitive accuracy. SemViQA sets a new benchmark for Vietnamese fact verification, advancing the fight against misinformation. The source code is available at: https://github.com/DAVID-NGUYEN-S16/SemViQA.

Authors:Dien X. Tran, Nam V. Nguyen, Thanh T. Tran, Anh T. Hoang, Tai V. Duong, Di T. Le, Phuc-Lu Le
Title: SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking
Abstract:
The rise of misinformation, exacerbated by Large Language Models (LLMs) like GPT and Gemini, demands robust fact-checking solutions, especially for low-resource languages like Vietnamese. Existing methods struggle with semantic ambiguity, homonyms, and complex linguistic structures, often trading accuracy for efficiency. We introduce SemViQA, a novel Vietnamese fact-checking framework integrating Semantic-based Evidence Retrieval (SER) and Two-step Verdict Classification (TVC). Our approach balances precision and speed, achieving state-of-the-art results with 78.97\% strict accuracy on ISE-DSC01 and 80.82\% on ViWikiFC, securing 1st place in the UIT Data Science Challenge. Additionally, SemViQA Faster improves inference speed 7x while maintaining competitive accuracy. SemViQA sets a new benchmark for Vietnamese fact verification, advancing the fight against misinformation. The source code is available at: https://github.com/DAVID-NGUYEN-S16/SemViQA.

Authors:Xingzhuo Guo, Yu Zhang, Baixu Chen, Haoran Xu, Jianmin Wang, Mingsheng Long
Title: Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models
Abstract:
Diffusion models have emerged as powerful generative frameworks by progressively adding noise to data through a forward process and then reversing this process to generate realistic samples. While these models have achieved strong performance across various tasks and modalities, their application to temporal predictive learning remains underexplored. Existing approaches treat predictive learning as a conditional generation problem, but often fail to fully exploit the temporal dynamics inherent in the data, leading to challenges in generating temporally coherent sequences. To address this, we introduce Dynamical Diffusion (DyDiff), a theoretically sound framework that incorporates temporally aware forward and reverse processes. Dynamical Diffusion explicitly models temporal transitions at each diffusion step, establishing dependencies on preceding states to better capture temporal dynamics. Through the reparameterization trick, Dynamical Diffusion achieves efficient training and inference similar to any standard diffusion model. Extensive experiments across scientific spatiotemporal forecasting, video prediction, and time series forecasting demonstrate that Dynamical Diffusion consistently improves performance in temporal predictive tasks, filling a crucial gap in existing methodologies. Code is available at this repository: https://github.com/thuml/dynamical-diffusion.

Authors:Zhuohang Jiang, Pangjing Wu, Ziran Liang, Peter Q. Chen, Xu Yuan, Ye Jia, Jiancheng Tu, Chen Li, Peter H. F. Ng, Qing Li
Title: HiBench: Benchmarking LLMs Capability on Hierarchical Structure Reasoning
Abstract:
Structure reasoning is a fundamental capability of large language models (LLMs), enabling them to reason about structured commonsense and answer multi-hop questions. However, existing benchmarks for structure reasoning mainly focus on horizontal and coordinate structures (\emph{e.g.} graphs), overlooking the hierarchical relationships within them. Hierarchical structure reasoning is crucial for human cognition, particularly in memory organization and problem-solving. It also plays a key role in various real-world tasks, such as information extraction and decision-making. To address this gap, we propose HiBench, the first framework spanning from initial structure generation to final proficiency assessment, designed to benchmark the hierarchical reasoning capabilities of LLMs systematically. HiBench encompasses six representative scenarios, covering both fundamental and practical aspects, and consists of 30 tasks with varying hierarchical complexity, totaling 39,519 queries. To evaluate LLMs comprehensively, we develop five capability dimensions that depict different facets of hierarchical structure understanding. Through extensive evaluation of 20 LLMs from 10 model families, we reveal key insights into their capabilities and limitations: 1) existing LLMs show proficiency in basic hierarchical reasoning tasks; 2) they still struggle with more complex structures and implicit hierarchical representations, especially in structural modification and textual reasoning. Based on these findings, we create a small yet well-designed instruction dataset, which enhances LLMs' performance on HiBench by an average of 88.84\% (Llama-3.1-8B) and 31.38\% (Qwen2.5-7B) across all tasks. The HiBench dataset and toolkit are available here, https://github.com/jzzzzh/HiBench, to encourage evaluation.

Authors:Zhu Liu, Zijun Wang, Jinyuan Liu, Fanqi Meng, Long Ma, Risheng Liu
Title: DEAL: Data-Efficient Adversarial Learning for High-Quality Infrared Imaging
Abstract:
Thermal imaging is often compromised by dynamic, complex degradations caused by hardware limitations and unpredictable environmental factors. The scarcity of high-quality infrared data, coupled with the challenges of dynamic, intricate degradations, makes it difficult to recover details using existing methods. In this paper, we introduce thermal degradation simulation integrated into the training process via a mini-max optimization, by modeling these degraded factors as adversarial attacks on thermal images. The simulation is dynamic to maximize objective functions, thus capturing a broad spectrum of degraded data distributions. This approach enables training with limited data, thereby improving model performance.Additionally, we introduce a dual-interaction network that combines the benefits of spiking neural networks with scale transformation to capture degraded features with sharp spike signal intensities. This architecture ensures compact model parameters while preserving efficient feature representation. Extensive experiments demonstrate that our method not only achieves superior visual quality under diverse single and composited degradation, but also delivers a significant reduction in processing when trained on only fifty clear images, outperforming existing techniques in efficiency and accuracy. The source code will be available at https://github.com/LiuZhu-CV/DEAL.

Authors:Jing Peng, Meiqi Yang, Qiong Zhang, Xiaoxiao Li
Title: S4M: S4 for multivariate time series forecasting with Missing values
Abstract:
Multivariate time series data play a pivotal role in a wide range of real-world applications. However, the presence of block missing data introduces significant challenges, often compromising the performance of predictive models. Traditional two-step approaches, which first impute missing values and then perform forecasting, are prone to error accumulation, particularly in complex multivariate settings characterized by high missing ratios and intricate dependency structures. In this work, we introduce S4M, an end-to-end time series forecasting framework that seamlessly integrates missing data handling into the Structured State Space Sequence (S4) model architecture. Unlike conventional methods that treat imputation as a separate preprocessing step, S4M leverages the latent space of S4 models to directly recognize and represent missing data patterns, thereby more effectively capturing the underlying temporal and multivariate dependencies. Our framework comprises two key components: the Adaptive Temporal Prototype Mapper (ATPM) and the Missing-Aware Dual Stream S4 (MDS-S4). The ATPM employs a prototype bank to derive robust and informative representations from historical data patterns, while the MDS-S4 processes these representations alongside missingness masks as dual input streams to enable accurate forecasting. Through extensive empirical evaluations on diverse real-world datasets, we demonstrate that S4M consistently achieves state-of-the-art performance. These results underscore the efficacy of our integrated approach in handling missing data, showcasing its robustness and superiority over traditional imputation-based methods. Our findings highlight the potential of S4M to advance reliable time series forecasting in practical applications, offering a promising direction for future research and deployment. Code is available at https://github.com/WINTERWEEL/S4M.git.

Authors:Qia Hu, Bo Jiao
Title: Hierarchical graph sampling based minibatch learning with chain preservation and variance reduction
Abstract:
Graph sampling-based Graph Convolutional Networks (GCNs) decouple sampling from forward and backward propagation during minibatch training, enhancing scalability with respect to layer depth and graph size. We propose HIS_GCNs, a hierarchical importance sampling-based learning method. By constructing minibatches using sampled subgraphs, HIS_GCNs focuses on the importance of both the core and periphery in a scale-free training graph. Specifically, it preserves the centrum of the core in most minibatches, which maintains connectivity between periphery nodes, and samples periphery edges without core node interference, which allows longer chains composed entirely of low-degree nodes remain within the same minibatch. HIS_GCNs can maximize the discrete Ricci curvature (i.e., Ollivier-Ricci curvatures) of the edges in a subgraph, enabling preservation of important chains for information propagation. This approach can achieve a low node embedding variance and a high convergence speed. Diverse experiments on Graph Neural Networks (GNNs) with node classification tasks confirmed the superior performance of HIS_GCNs in terms of both accuracy and training time. Open-source code (https://github.com/HuQiaCHN/HIS-GCN).

Authors:Rui Yi Yong, Samuel Picosson, Arnold Wiliem
Title: MTReD: 3D Reconstruction Dataset for Fly-over Videos of Maritime Domain
Abstract:
This work tackles 3D scene reconstruction for a video fly-over perspective problem in the maritime domain, with a specific emphasis on geometrically and visually sound reconstructions. This will allow for downstream tasks such as segmentation, navigation, and localization. To our knowledge, there is no dataset available in this domain. As such, we propose a novel maritime 3D scene reconstruction benchmarking dataset, named as MTReD (Maritime Three-Dimensional Reconstruction Dataset). The MTReD comprises 19 fly-over videos curated from the Internet containing ships, islands, and coastlines. As the task is aimed towards geometrical consistency and visual completeness, the dataset uses two metrics: (1) Reprojection error; and (2) Perception based metrics. We find that existing perception-based metrics, such as Learned Perceptual Image Patch Similarity (LPIPS), do not appropriately measure the completeness of a reconstructed image. Thus, we propose a novel semantic similarity metric utilizing DINOv2 features coined DiFPS (DinoV2 Features Perception Similarity). We perform initial evaluation on two baselines: (1) Structured from Motion (SfM) through Colmap; and (2) the recent state-of-the-art MASt3R model. We find that the reconstructed scenes by MASt3R have higher reprojection errors, but superior perception based metric scores. To this end, some pre-processing methods are explored, and we find a pre-processing method which improves both the reprojection error and perception-based score. We envisage our proposed MTReD to stimulate further research in these directions. The dataset and all the code will be made available in https://github.com/RuiYiYong/MTReD.

Authors:Yalun Dai, Lingao Xiao, Ivor W. Tsang, Yang He
Title: Training-Free Dataset Pruning for Instance Segmentation
Abstract:
Existing dataset pruning techniques primarily focus on classification tasks, limiting their applicability to more complex and practical tasks like instance segmentation. Instance segmentation presents three key challenges: pixel-level annotations, instance area variations, and class imbalances, which significantly complicate dataset pruning efforts. Directly adapting existing classification-based pruning methods proves ineffective due to their reliance on time-consuming model training process. To address this, we propose a novel Training-Free Dataset Pruning (TFDP) method for instance segmentation. Specifically, we leverage shape and class information from image annotations to design a Shape Complexity Score (SCS), refining it into a Scale-Invariant (SI-SCS) and Class-Balanced (CB-SCS) versions to address instance area variations and class imbalances, all without requiring model training. We achieve state-of-the-art results on VOC 2012, Cityscapes, and COCO datasets, generalizing well across CNN and Transformer architectures. Remarkably, our approach accelerates the pruning process by an average of 1349$\times$ on COCO compared to the adapted baselines. Source code is available at: https://github.com/he-y/dataset-pruning-for-instance-segmentation

Authors:Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
Title: Task-Agnostic Guided Feature Expansion for Class-Incremental Learning
Abstract:
The ability to learn new concepts while preserve the learned knowledge is desirable for learning systems in Class-Incremental Learning (CIL). Recently, feature expansion of the model become a prevalent solution for CIL, where the old features are fixed during the training of the new task while new features are expanded for the new tasks. However, such task-specific features learned from the new task may collide with the old features, leading to misclassification between tasks. Therefore, the expanded model is often encouraged to capture diverse features from the new task, aiming to avoid such collision. However, the existing solution is largely restricted to the samples from the current task, because of the poor accessibility to previous samples. To promote the learning and transferring of diverse features across tasks, we propose a framework called Task-Agnostic Guided Feature Expansion (TagFex). Firstly, it captures task-agnostic features continually with a separate model, providing extra task-agnostic features for subsequent tasks. Secondly, to obtain useful features from the task-agnostic model for the current task, it aggregates the task-agnostic features with the task-specific feature using a merge attention. Then the aggregated feature is transferred back into the task-specific feature for inference, helping the task-specific model capture diverse features. Extensive experiments show the effectiveness and superiority of TagFex on various CIL settings. Code is available at https://github.com/bwnzheng/TagFex_CVPR2025.

Authors:Lu Ma, Kaibo Cao, Hao Liang, Jiaxin Lin, Zhuang Li, Yuhong Liu, Jihong Zhang, Wentao Zhang, Bin Cui
Title: Evaluating and Predicting Distorted Human Body Parts for Generated Images
Abstract:
Recent advancements in text-to-image (T2I) models enable high-quality image synthesis, yet generating anatomically accurate human figures remains challenging. AI-generated images frequently exhibit distortions such as proliferated limbs, missing fingers, deformed extremities, or fused body parts. Existing evaluation metrics like Inception Score (IS) and Fréchet Inception Distance (FID) lack the granularity to detect these distortions, while human preference-based metrics focus on abstract quality assessments rather than anatomical fidelity. To address this gap, we establish the first standards for identifying human body distortions in AI-generated images and introduce Distortion-5K, a comprehensive dataset comprising 4,700 annotated images of normal and malformed human figures across diverse styles and distortion types. Based on this dataset, we propose ViT-HD, a Vision Transformer-based model tailored for detecting human body distortions in AI-generated images, which outperforms state-of-the-art segmentation models and visual language models, achieving an F1 score of 0.899 and IoU of 0.831 on distortion localization. Additionally, we construct the Human Distortion Benchmark with 500 human-centric prompts to evaluate four popular T2I models using trained ViT-HD, revealing that nearly 50\% of generated images contain distortions. This work pioneers a systematic approach to evaluating anatomical accuracy in AI-generated humans, offering tools to advance the fidelity of T2I models and their real-world applicability. The Distortion-5K dataset, trained ViT-HD will soon be released in our GitHub repository: \href{https://github.com/TheRoadQaQ/Predicting-Distortion}{https://github.com/TheRoadQaQ/Predicting-Distortion}.

Authors:Kashun Shum, Yuzhen Huang, Hongjian Zou, Qi Ding, Yixuan Liao, Xiaoxin Chen, Qian Liu, Junxian He
Title: Predictive Data Selection: The Data That Predicts Is the Data That Teaches
Abstract:
Language model pretraining involves training on extensive corpora, where data quality plays a pivotal role. In this work, we aim to directly estimate the contribution of data during pretraining and select pretraining data in an efficient manner. Specifically, we draw inspiration from recent findings showing that compression efficiency (i.e., the normalized loss) of diverse models on certain text correlates strongly with their downstream performance, when the text domain aligns with the downstream benchmarks(Huang et al., 2024). Building on this observation, we hypothesize that data on which model losses are predictive of downstream abilities also contribute effectively to learning, which shares similar intuition with Thrush et al.(2024). To leverage this insight, we introduce predictive data selection (PreSelect), a lightweight and efficient data selection method that requires training and deploying only a fastText-based scorer. Through comprehensive experiments with 1B and 3B parameter models, we demonstrate that models trained on 30B tokens selected with PreSelect surpass the performance of the vanilla baseline trained on 300B tokens, achieving a 10x reduction in compute requirements. Furthermore, PreSelect significantly outperforms other competitive data selection baselines, such as DCLM and FineWeb-Edu on a scale of 3B models trained on 100B tokens. We open-source our trained data selection scorer along with the curated datasets at https://github.com/hkust-nlp/PreSelect.

Authors:Xulin Chen, Junzhou Huang
Title: DELST: Dual Entailment Learning for Hyperbolic Image-Gene Pretraining in Spatial Transcriptomics
Abstract:
Spatial transcriptomics (ST) maps gene expression within tissue at individual spots, making it a valuable resource for multimodal representation learning. Additionally, ST inherently contains rich hierarchical information both across and within modalities. For instance, different spots exhibit varying numbers of nonzero gene expressions, corresponding to different levels of cellular activity and semantic hierarchies. However, existing methods rely on contrastive alignment of image-gene pairs, failing to accurately capture the intricate hierarchical relationships in ST data. Here, we propose DELST, the first framework to embed hyperbolic representations while modeling hierarchy for image-gene pretraining at two levels: (1) Cross-modal entailment learning, which establishes an order relationship between genes and images to enhance image representation generalization; (2) Intra-modal entailment learning, which encodes gene expression patterns as hierarchical relationships, guiding hierarchical learning across different samples at a global scale and integrating biological insights into single-modal representations. Extensive experiments on ST benchmarks annotated by pathologists demonstrate the effectiveness of our framework, achieving improved predictive performance compared to existing methods. Our code and models are available at: https://github.com/XulinChen/DELST.

Authors:Jayden Teoh, Pradeep Varakantham, Peter Vamplew
Title: On Generalization Across Environments In Multi-Objective Reinforcement Learning
Abstract:
Real-world sequential decision-making tasks often require balancing trade-offs between multiple conflicting objectives, making Multi-Objective Reinforcement Learning (MORL) an increasingly prominent field of research. Despite recent advances, existing MORL literature has narrowly focused on performance within static environments, neglecting the importance of generalizing across diverse settings. Conversely, existing research on generalization in RL has always assumed scalar rewards, overlooking the inherent multi-objectivity of real-world problems. Generalization in the multi-objective context is fundamentally more challenging, as it requires learning a Pareto set of policies addressing varying preferences across multiple objectives. In this paper, we formalize the concept of generalization in MORL and how it can be evaluated. We then contribute a novel benchmark featuring diverse multi-objective domains with parameterized environment configurations to facilitate future studies in this area. Our baseline evaluations of state-of-the-art MORL algorithms on this benchmark reveals limited generalization capabilities, suggesting significant room for improvement. Our empirical findings also expose limitations in the expressivity of scalar rewards, emphasizing the need for multi-objective specifications to achieve effective generalization. We further analyzed the algorithmic complexities within current MORL approaches that could impede the transfer in performance from the single- to multiple-environment settings. This work fills a critical gap and lays the groundwork for future research that brings together two key areas in reinforcement learning: solving multi-objective decision-making problems and generalizing across diverse environments. We make our code available at https://github.com/JaydenTeoh/MORL-Generalization.

Authors:Ukcheol Shin, Kyunghyun Lee, Jean Oh
Title: Bridging Spectral-wise and Multi-spectral Depth Estimation via Geometry-guided Contrastive Learning
Abstract:
Deploying depth estimation networks in the real world requires high-level robustness against various adverse conditions to ensure safe and reliable autonomy. For this purpose, many autonomous vehicles employ multi-modal sensor systems, including an RGB camera, NIR camera, thermal camera, LiDAR, or Radar. They mainly adopt two strategies to use multiple sensors: modality-wise and multi-modal fused inference. The former method is flexible but memory-inefficient, unreliable, and vulnerable. Multi-modal fusion can provide high-level reliability, yet it needs a specialized architecture. In this paper, we propose an effective solution, named align-and-fuse strategy, for the depth estimation from multi-spectral images. In the align stage, we align embedding spaces between multiple spectrum bands to learn shareable representation across multi-spectral images by minimizing contrastive loss of global and spatially aligned local features with geometry cue. After that, in the fuse stage, we train an attachable feature fusion module that can selectively aggregate the multi-spectral features for reliable and robust prediction results. Based on the proposed method, a single-depth network can achieve both spectral-invariant and multi-spectral fused depth estimation while preserving reliability, memory efficiency, and flexibility.

Authors:Kai Lv, Honglin Guo, Qipeng Guo, Xipeng Qiu
Title: DuoDecoding: Hardware-aware Heterogeneous Speculative Decoding with Dynamic Multi-Sequence Drafting
Abstract:
Large language models (LLMs) exhibit exceptional performance across a wide range of tasks; however, their token-by-token autoregressive generation process significantly hinders inference speed. Speculative decoding presents a promising draft-then-verify framework that reduces generation latency while maintaining output distribution fidelity. Nevertheless, the draft model introduces additional computational overhead, becoming a performance bottleneck and increasing the time to first token (TTFT). Previous approaches to mitigate draft model overhead have primarily relied on heuristics and generally failed to match the quality of the draft language models. To address these challenges, we propose DuoDecoding, a novel approach that strategically deploys the draft and target models on the CPU and GPU respectively, enabling parallel decoding while preserving draft quality. Our method incorporates a hardware-aware optimal draft budget to minimize idle times and employs dynamic multi-sequence drafting to enhance draft quality. Extensive experiments across seven tasks show that DuoDecoding achieves up to 2.61x speedup in generation latency, while reducing TTFT to 83% of that in conventional speculative decoding. The Code is available at https://github.com/KaiLv69/DuoDecoding.

Authors:Elahe Delavari, Aws Khalil, Jaerock Kwon
Title: CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving
Abstract:
End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving by learning control commands directly from expert demonstrations. However, traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization. This limitation makes it challenging to quantify the reliability of predicted actions and apply corrections when necessary. In this work, we introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning. The regression head predicts continuous driving actions, while the classification head estimates confidence, enabling a correction mechanism that adjusts actions in low-confidence scenarios, enhancing driving stability. We evaluate our approach in a closed-loop setting within the CARLA simulator, demonstrating its ability to detect uncertain actions, estimate confidence, and apply real-time corrections. Experimental results show that our method reduces lane deviation and improves trajectory accuracy by up to 50%, outperforming conventional regression-only models. These findings highlight the potential of classification-guided confidence estimation in enhancing the robustness of vision-based imitation learning for autonomous driving. The source code is available at https://github.com/ElaheDlv/Confidence_Aware_IL.

Authors:Yupu Hao, Pengfei Cao, Zhuoran Jin, Huanxuan Liao, Yubo Chen, Kang Liu, Jun Zhao
Title: Evaluating Personalized Tool-Augmented LLMs from the Perspectives of Personalization and Proactivity
Abstract:
Personalized tool utilization is essential for aligning large language models (LLMs) with user preference in interaction scenarios with various tools. However, most of the current benchmarks primarily focus on either personalization of text generation or direct tool-utilizing, without considering both. In this work, we introduce a novel benchmark ETAPP for evaluating personalized tool invocation, establishing a sandbox environment, and a comprehensive dataset of 800 testing cases covering diverse user profiles. To improve the accuracy of our evaluation, we propose a key-point-based LLM evaluation method, mitigating biases in the LLM-as-a-judge system by manually annotating key points for each test case and providing them to LLM as the reference. Additionally, we evaluate the excellent LLMs and provide an in-depth analysis. Furthermore, we investigate the impact of different tool-invoking strategies on LLMs' personalization performance and the effects of fine-tuning in our task. The effectiveness of our preference-setting and key-point-based evaluation method is also validated. Our findings offer insights into improving personalized LLM agents. Our Code is available at https://github.com/hypasd-art/ETAPP.

Authors:Ziwei Huang, Jianan Zhou, Zhiguang Cao, Yixin Xu
Title: Rethinking Light Decoder-based Solvers for Vehicle Routing Problems
Abstract:
Light decoder-based solvers have gained popularity for solving vehicle routing problems (VRPs) due to their efficiency and ease of integration with reinforcement learning algorithms. However, they often struggle with generalization to larger problem instances or different VRP variants. This paper revisits light decoder-based approaches, analyzing the implications of their reliance on static embeddings and the inherent challenges that arise. Specifically, we demonstrate that in the light decoder paradigm, the encoder is implicitly tasked with capturing information for all potential decision scenarios during solution construction within a single set of embeddings, resulting in high information density. Furthermore, our empirical analysis reveals that the overly simplistic decoder struggles to effectively utilize this dense information, particularly as task complexity increases, which limits generalization to out-of-distribution (OOD) settings. Building on these insights, we show that enhancing the decoder capacity, with a simple addition of identity mapping and a feed-forward layer, can considerably alleviate the generalization issue. Experimentally, our method significantly enhances the OOD generalization of light decoder-based approaches on large-scale instances and complex VRP variants, narrowing the gap with the heavy decoder paradigm. Our code is available at: https://github.com/ziweileonhuang/reld-nco.

Authors:Xingbo Fu, Yinhan He, Jundong Li
Title: Edge Prompt Tuning for Graph Neural Networks
Abstract:
Pre-training powerful Graph Neural Networks (GNNs) with unlabeled graph data in a self-supervised manner has emerged as a prominent technique in recent years. However, inevitable objective gaps often exist between pre-training and downstream tasks. To bridge this gap, graph prompt tuning techniques design and learn graph prompts by manipulating input graphs or reframing downstream tasks as pre-training tasks without fine-tuning the pre-trained GNN models. While recent graph prompt tuning methods have proven effective in adapting pre-trained GNN models for downstream tasks, they overlook the crucial role of edges in graph prompt design, which can significantly affect the quality of graph representations for downstream tasks. In this study, we propose EdgePrompt, a simple yet effective graph prompt tuning method from the perspective of edges. Unlike previous studies that design prompt vectors on node features, EdgePrompt manipulates input graphs by learning additional prompt vectors for edges and incorporates the edge prompts through message passing in the pre-trained GNN models to better embed graph structural information for downstream tasks. Our method is compatible with prevalent GNN architectures pre-trained under various pre-training strategies and is universal for different downstream tasks. We provide comprehensive theoretical analyses of our method regarding its capability of handling node classification and graph classification as downstream tasks. Extensive experiments on ten graph datasets under four pre-training strategies demonstrate the superiority of our proposed method against six baselines. Our code is available at https://github.com/xbfu/EdgePrompt.

Authors:Zihao Luo, Zijun Gao, Wenjun Liao, Shichuan Zhang, Guotai Wang, Xiangde Luo
Title: Dynamic Gradient Sparsification Training for Few-Shot Fine-tuning of CT Lymph Node Segmentation Foundation Model
Abstract:
Accurate lymph node (LN) segmentation is critical in radiotherapy treatment and prognosis analysis, but is limited by the need for large annotated datasets. While deep learning-based segmentation foundation models show potential in developing high-performing models with fewer samples, their medical adaptation faces LN domain-specific prior deficiencies and inefficient few-shot fine-tuning for complex clinical practices, highlighting the necessity of an LN segmentation foundation model. In this work, we annotated 36,106 visible LNs from 3,346 publicly available head-and-neck CT scans to establish a robust LN segmentation model (nnUNetv2). Building on this, we propose Dynamic Gradient Sparsification Training (DGST), a few-shot fine-tuning approach that preserves foundational knowledge while dynamically updating the most critical parameters of the LN segmentation model with few annotations. We validate it on two publicly available LN segmentation datasets: SegRap2023 and LNQ2023. The results show that DGST outperforms existing few-shot fine-tuning methods, achieving satisfactory performance with limited labeled data. We release the dataset, models and all implementations to facilitate relevant research: https://github.com/Zihaoluoh/LN-Seg-FM.

Authors:Fei Teng, Buyin Deng, Boyuan Zheng, Kai Luo, Kunyu Peng, Jiaming Zhang, Kailun Yang
Title: Unifying Light Field Perception with Field of Parallax
Abstract:
Field of Parallax (FoP)}, a spatial field that distills the common features from different LF representations to provide flexible and consistent support for multi-task learning. FoP is built upon three core features--projection difference, adjacency divergence, and contextual consistency--which are essential for cross-task adaptability. To implement FoP, we design a two-step angular adapter: the first step captures angular-specific differences, while the second step consolidates contextual consistency to ensure robust representation. Leveraging the FoP-based representation, we introduce the LFX framework, the first to handle arbitrary LF representations seamlessly, unifying LF multi-task vision. We evaluated LFX across three different tasks, achieving new state-of-the-art results, compared with previous task-specific architectures: 84.74% in mIoU for semantic segmentation on UrbanLF, 0.84% in AP for object detection on PKU, and 0.030 in MAE and 0.026 in MAE for salient object detection on Duftv2 and PKU, respectively. The source code will be made publicly available at https://github.com/warriordby/LFX.

Authors:Teng Zhang, Hongxu Jiang, Kuang Gong, Wei Shao
Title: Geodesic Diffusion Models for Medical Image-to-Image Generation
Abstract:
Diffusion models transform an unknown data distribution into a Gaussian prior by progressively adding noise until the data become indistinguishable from pure noise. This stochastic process traces a path in probability space, evolving from the original data distribution (considered as a Gaussian with near-zero variance) to an isotropic Gaussian. The denoiser then learns to reverse this process, generating high-quality samples from random Gaussian noise. However, standard diffusion models, such as the Denoising Diffusion Probabilistic Model (DDPM), do not ensure a geodesic (i.e., shortest) path in probability space. This inefficiency necessitates the use of many intermediate time steps, leading to high computational costs in training and sampling. To address this limitation, we propose the Geodesic Diffusion Model (GDM), which defines a geodesic path under the Fisher-Rao metric with a variance-exploding noise scheduler. This formulation transforms the data distribution into a Gaussian prior with minimal energy, significantly improving the efficiency of diffusion models. We trained GDM by continuously sampling time steps from 0 to 1 and using as few as 15 evenly spaced time steps for model sampling. We evaluated GDM on two medical image-to-image generation tasks: CT image denoising and MRI image super-resolution. Experimental results show that GDM achieved state-of-the-art performance while reducing training time by a 50-fold compared to DDPM and 10-fold compared to Fast-DDPM, with 66 times faster sampling than DDPM and a similar sampling speed to Fast-DDPM. These efficiency gains enable rapid model exploration and real-time clinical applications. Our code is publicly available at: https://github.com/mirthAI/GDM-VE.

Authors:Henrui Tian, Wenhui Lei, Linrui Dai, Hanyu Chen, Xiaofan Zhang
Title: LesionDiffusion: Towards Text-controlled General Lesion Synthesis
Abstract:
Fully-supervised lesion recognition methods in medical imaging face challenges due to the reliance on large annotated datasets, which are expensive and difficult to collect. To address this, synthetic lesion generation has become a promising approach. However, existing models struggle with scalability, fine-grained control over lesion attributes, and the generation of complex structures. We propose LesionDiffusion, a text-controllable lesion synthesis framework for 3D CT imaging that generates both lesions and corresponding masks. By utilizing a structured lesion report template, our model provides greater control over lesion attributes and supports a wider variety of lesion types. We introduce a dataset of 1,505 annotated CT scans with paired lesion masks and structured reports, covering 14 lesion types across 8 organs. LesionDiffusion consists of two components: a lesion mask synthesis network (LMNet) and a lesion inpainting network (LINet), both guided by lesion attributes and image features. Extensive experiments demonstrate that LesionDiffusion significantly improves segmentation performance, with strong generalization to unseen lesion types and organs, outperforming current state-of-the-art models. Code is available at https://github.com/HengruiTianSJTU/LesionDiffusion.

Authors:Jinjiang You, Hewei Wang, Yijie Li, Mingxiao Huo, Long Van Tran Ha, Mingyuan Ma, Jinfeng Xu, Jiayi Zhang, Puzhen Wu, Shubham Garg, Wei Pu
Title: Multi-Cali Anything: Dense Feature Multi-Frame Structure-from-Motion for Large-Scale Camera Array Calibration
Abstract:
Calibrating large-scale camera arrays, such as those in dome-based setups, is time-intensive and typically requires dedicated captures of known patterns. While extrinsics in such arrays are fixed due to the physical setup, intrinsics often vary across sessions due to factors like lens adjustments or temperature changes. In this paper, we propose a dense-feature-driven multi-frame calibration method that refines intrinsics directly from scene data, eliminating the necessity for additional calibration captures. Our approach enhances traditional Structure-from-Motion (SfM) pipelines by introducing an extrinsics regularization term to progressively align estimated extrinsics with ground-truth values, a dense feature reprojection term to reduce keypoint errors by minimizing reprojection loss in the feature space, and an intrinsics variance term for joint optimization across multiple frames. Experiments on the Multiface dataset show that our method achieves nearly the same precision as dedicated calibration processes, and significantly enhances intrinsics and 3D reconstruction accuracy. Fully compatible with existing SfM pipelines, our method provides an efficient and practical plug-and-play solution for large-scale camera setups. Our code is publicly available at: https://github.com/YJJfish/Multi-Cali-Anything

Authors:Wenhui Lei, Anqi Li, Yusheng Tan, Hanyu Chen, Xiaofan Zhang
Title: Shazam: Unifying Multiple Foundation Models for Advanced Computational Pathology
Abstract:
Foundation Models (FMs) in computational pathology (CPath) have significantly advanced the extraction of meaningful features from histopathology image datasets, achieving strong performance across various clinical tasks. Despite their impressive performance, these models often exhibit variability when applied to different tasks, prompting the need for a unified framework capable of consistently excelling across various applications. In this work, we propose Shazam, a novel framework designed to efficiently combine multiple CPath models. Unlike previous approaches that train a fixed-parameter FM, Shazam dynamically extracts and refines information from diverse FMs for each specific task. To ensure that each FM contributes effectively without dominance, a novel distillation strategy is applied, guiding the student model with features from all teacher models, which enhances its generalization ability. Experimental results on two pathology patch classification datasets demonstrate that Shazam outperforms existing CPath models and other fusion methods. Its lightweight, flexible design makes it a promising solution for improving CPath analysis in real-world settings. Code will be available at https://github.com/Tuner12/Shazam.

Authors:Yang Ding, Can Han, Sijia Du, Yaqi Wang, Dahong Qian
Title: LightEndoStereo: A Real-time Lightweight Stereo Matching Method for Endoscopy Images
Abstract:
Real-time acquisition of accurate depth of scene is essential for automated robotic minimally invasive surgery, and stereo matching with binocular endoscopy can generate such depth. However, existing algorithms struggle with ambiguous tissue boundaries and real-time performance in prevalent high-resolution endoscopic scenes. We propose LightEndoStereo, a lightweight real-time stereo matching method for endoscopic images. We introduce a 3D Mamba Coordinate Attention module to streamline the cost aggregation process by generating position-sensitive attention maps and capturing long-range dependencies across spatial dimensions using the Mamba block. Additionally, we introduce a High-Frequency Disparity Optimization module to refine disparity estimates at tissue boundaries by enhancing high-frequency information in the wavelet domain. Our method is evaluated on the SCARED and SERV-CT datasets, achieving state-of-the-art matching accuracy and a real-time inference speed of 42 FPS. The code is available at https://github.com/Sonne-Ding/LightEndoStereo.

Authors:Changlin Song, Jiaqi Wang, Liyun Zhu, He Weng
Title: Enhancing Monocular 3D Scene Completion with Diffusion Model
Abstract:
3D scene reconstruction is essential for applications in virtual reality, robotics, and autonomous driving, enabling machines to understand and interact with complex environments. Traditional 3D Gaussian Splatting techniques rely on images captured from multiple viewpoints to achieve optimal performance, but this dependence limits their use in scenarios where only a single image is available. In this work, we introduce FlashDreamer, a novel approach for reconstructing a complete 3D scene from a single image, significantly reducing the need for multi-view inputs. Our approach leverages a pre-trained vision-language model to generate descriptive prompts for the scene, guiding a diffusion model to produce images from various perspectives, which are then fused to form a cohesive 3D reconstruction. Extensive experiments show that our method effectively and robustly expands single-image inputs into a comprehensive 3D scene, extending monocular 3D reconstruction capabilities without further training. Our code is available https://github.com/CharlieSong1999/FlashDreamer/tree/main.

Authors:Seungbae Seo, Junghwan Kim, Minjeong Shin, Bongwon Suh
Title: LLMDR: LLM-Driven Deadlock Detection and Resolution in Multi-Agent Pathfinding
Abstract:
Multi-Agent Pathfinding (MAPF) is a core challenge in multi-agent systems. Existing learning-based MAPF methods often struggle with scalability, particularly when addressing complex scenarios that are prone to deadlocks. To address these challenges, we introduce LLMDR (LLM-Driven Deadlock Detection and Resolution), an approach designed to resolve deadlocks and improve the performance of learnt MAPF models. LLMDR integrates the inference capabilities of large language models (LLMs) with learnt MAPF models and prioritized planning, enabling it to detect deadlocks and provide customized resolution strategies. We evaluate LLMDR on standard MAPF benchmark maps with varying agent numbers, measuring its performance when combined with several base models. The results demonstrate that LLMDR improves the performance of learnt MAPF models, particularly in deadlock-prone scenarios, with notable improvements in success rates. These findings show the potential of integrating LLMs to improve the scalability of learning-based MAPF methods. The source code for LLMDR is available at: https://github.com/ssbacc/llmdr-dhc

Authors:Zhiqi Kang, Liyuan Wang, Xingxing Zhang, Karteek Alahari
Title: Advancing Prompt-Based Methods for Replay-Independent General Continual Learning
Abstract:
General continual learning (GCL) is a broad concept to describe real-world continual learning (CL) problems, which are often characterized by online data streams without distinct transitions between tasks, i.e., blurry task boundaries. Such requirements result in poor initial performance, limited generalizability, and severe catastrophic forgetting, heavily impacting the effectiveness of mainstream GCL models trained from scratch. While the use of a frozen pretrained backbone with appropriate prompt tuning can partially address these challenges, such prompt-based methods remain suboptimal for CL of remaining tunable parameters on the fly. In this regard, we propose an innovative approach named MISA (Mask and Initial Session Adaption) to advance prompt-based methods in GCL. It includes a forgetting-aware initial session adaption that employs pretraining data to initialize prompt parameters and improve generalizability, as well as a non-parametric logit mask of the output layers to mitigate catastrophic forgetting. Empirical results demonstrate substantial performance gains of our approach compared to recent competitors, especially without a replay buffer (e.g., up to 18.39%, 22.06%, and 11.96% performance lead on CIFAR-100, Tiny-ImageNet, and ImageNet-R, respectively). Moreover, our approach features the plug-in nature for prompt-based methods, independence of replay, ease of implementation, and avoidance of CL-relevant hyperparameters, serving as a strong baseline for GCL research. Our source code is publicly available at https://github.com/kangzhiq/MISA

Authors:Ashish Verma, Aupendu Kar, Krishnendu Ghosh, Sobhan Kanti Dhara, Debashis Sen, Prabir Kumar Biswas
Title: Artificially Generated Visual Scanpath Improves Multi-label Thoracic Disease Classification in Chest X-Ray Images
Abstract:
Expert radiologists visually scan Chest X-Ray (CXR) images, sequentially fixating on anatomical structures to perform disease diagnosis. An automatic multi-label classifier of diseases in CXR images can benefit by incorporating aspects of the radiologists' approach. Recorded visual scanpaths of radiologists on CXR images can be used for the said purpose. But, such scanpaths are not available for most CXR images, which creates a gap even for modern deep learning based classifiers. This paper proposes to mitigate this gap by generating effective artificial visual scanpaths using a visual scanpath prediction model for CXR images. Further, a multi-class multi-label classifier framework is proposed that uses a generated scanpath and visual image features to classify diseases in CXR images. While the scanpath predictor is based on a recurrent neural network, the multi-label classifier involves a novel iterative sequential model with an attention module. We show that our scanpath predictor generates human-like visual scanpaths. We also demonstrate that the use of artificial visual scanpaths improves multi-class multi-label disease classification results on CXR images. The above observations are made from experiments involving around 0.2 million CXR images from 2 widely-used datasets considering the multi-label classification of 14 pathological findings. Code link: https://github.com/ashishverma03/SDC

Authors:Siddhartha Gairola, Moritz Böhle, Francesco Locatello, Bernt Schiele
Title: How to Probe: Simple Yet Effective Techniques for Improving Post-hoc Explanations
Abstract:
Post-hoc importance attribution methods are a popular tool for "explaining" Deep Neural Networks (DNNs) and are inherently based on the assumption that the explanations can be applied independently of how the models were trained. Contrarily, in this work we bring forward empirical evidence that challenges this very notion. Surprisingly, we discover a strong dependency on and demonstrate that the training details of a pre-trained model's classification layer (less than 10 percent of model parameters) play a crucial role, much more than the pre-training scheme itself. This is of high practical relevance: (1) as techniques for pre-training models are becoming increasingly diverse, understanding the interplay between these techniques and attribution methods is critical; (2) it sheds light on an important yet overlooked assumption of post-hoc attribution methods which can drastically impact model explanations and how they are interpreted eventually. With this finding we also present simple yet effective adjustments to the classification layers, that can significantly enhance the quality of model explanations. We validate our findings across several visual pre-training frameworks (fully-supervised, self-supervised, contrastive vision-language training) and analyse how they impact explanations for a wide range of attribution methods on a diverse set of evaluation metrics.

Authors:Yifei He, Yang Liu, Chen Liang, Hany Hassan Awadalla
Title: Efficiently Editing Mixture-of-Experts Models with Compressed Experts
Abstract:
Mixture-of-Experts (MoE) models have become a key approach for scaling large language models efficiently by activating only a subset of experts during training and inference. Typically, the number of activated experts presents a trade-off: fewer experts reduce computational costs, while more experts improve performance. Recent studies reveal that not all activated experts contribute equally to model performance, with some providing minimal utility, particularly when finetuning pretrained MoE models for specialized downstream tasks. The co-existence of significant and redundant parameters in experts provides us an opportunity to reduce the number of activated experts while maintaining model performance. In this work, we propose the concept of compressed experts, lightweight modules that serve as compact representations of full experts. Our approach preserves the most important experts while replacing other auxiliary activated experts with compressed experts. The reduction of active parameters significantly lowers inference costs while achieving comparable performance. Extensive experiments on models including Phi-MoE and OLMoE demonstrate that compressed experts recover over 90% of full expert performance across various tasks while reducing more than 30% active parameters and saving 20% in inference costs. This approach enables efficient deployment of MoE models in resource-constrained settings and facilitates scaling to larger models with manageable overhead. Our code is available at https://github.com/yifei-he/Compressed-Experts.

Authors:Nicky Kriplani, Minh Pham, Gowthami Somepalli, Chinmay Hegde, Niv Cohen
Title: SolidMark: Evaluating Image Memorization in Generative Models
Abstract:
Recent works have shown that diffusion models are able to memorize training images and emit them at generation time. However, the metrics used to evaluate memorization and its mitigation techniques suffer from dataset-dependent biases and struggle to detect whether a given specific image has been memorized or not. This paper begins with a comprehensive exploration of issues surrounding memorization metrics in diffusion models. Then, to mitigate these issues, we introduce $\rm \style{font-variant: small-caps}{SolidMark}$, a novel evaluation method that provides a per-image memorization score. We then re-evaluate existing memorization mitigation techniques. We also show that $\rm \style{font-variant: small-caps}{SolidMark}$ is capable of evaluating fine-grained pixel-level memorization. Finally, we release a variety of models based on $\rm \style{font-variant: small-caps}{SolidMark}$ to facilitate further research for understanding memorization phenomena in generative models. All of our code is available at https://github.com/NickyDCFP/SolidMark.

Authors:Tuğrul Hasan Karabulut, İnci M. Baytaş
Title: Channel-Attentive Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) set the state-of-the-art in representation learning for graph-structured data. They are used in many domains, from online social networks to complex molecules. Most GNNs leverage the message-passing paradigm and achieve strong performances on various tasks. However, the message-passing mechanism used in most models suffers from over-smoothing as a GNN's depth increases. The over-smoothing degrades GNN's performance due to the increased similarity between the representations of unrelated nodes. This study proposes an adaptive channel-wise message-passing approach to alleviate the over-smoothing. The proposed model, Channel-Attentive GNN, learns how to attend to neighboring nodes and their feature channels. Thus, much diverse information can be transferred between nodes during message-passing. Experiments with widely used benchmark datasets show that the proposed model is more resistant to over-smoothing than baselines and achieves state-of-the-art performances for various graphs with strong heterophily. Our code is at https://github.com/ALLab-Boun/CHAT-GNN.

Authors:Jiancheng Zhao, Xingda Yu, Yuxiang Zhang, Zhen Yang
Title: LoR2C : Low-Rank Residual Connection Adaptation for Parameter-Efficient Fine-Tuning
Abstract:
In recent years, pretrained large language models have demonstrated outstanding performance across various natural language processing tasks. However, full-parameter fine-tuning methods require adjusting all model parameters, leading to immense computational resource demands. Although parameter-efficient fine-tuning methods like LoRA have significantly reduced the number of parameters, they still face challenges such as gradient vanishing and the potential for further parameter reduction. To address these issues, this paper proposes a novel parameter-efficient fine-tuning method called LoR2C (Low-Rank Residual Connection Adaptation). LoR2C introduces residual connections with low-rank matrices within the model layers, which not only reduces the number of fine-tuning parameters but also effectively alleviates the gradient vanishing problem. Additionally, this paper presents three optimization variants of LoR2C: ShareLoR2C, MergeLoR2C, and InjectLoR2C. These variants further improve parameter efficiency and model performance through parameter sharing, module merging, and injection mechanisms, respectively. Experimental results on multiple natural language understanding and natural language generation tasks demonstrate that LoR2C and its optimized variants significantly reduce parameter overhead while maintaining or even improving performance, outperforming existing mainstream parameter-efficient fine-tuning methods.Our code is publicly available at https://github.com/Oblivioniss/LoR2C.

Authors:Jeonghoon Shim, Gyuhyeon Seo, Cheongsu Lim, Yohan Jo
Title: ToolDial: Multi-turn Dialogue Generation Method for Tool-Augmented Language Models
Abstract:
Tool-Augmented Language Models (TALMs) leverage external APIs to answer user queries across various domains. However, existing benchmark datasets for TALM research often feature simplistic dialogues that do not reflect real-world scenarios, such as the need for models to ask clarifying questions or proactively call additional APIs when essential information is missing. To address these limitations, we construct and release ToolDial, a dataset comprising 11,111 multi-turn dialogues, with an average of 8.95 turns per dialogue, based on APIs from RapidAPI. ToolDial has two key characteristics. First, the dialogues incorporate 16 user and system actions (e.g., "Request", "Clarify", "Fail inform") to capture the rich dynamics of real-world interactions. Second, we simulate dialogues where the system requests necessary information from the user based on API documentation and seeks additional APIs if the user fails to provide the required information. To facilitate this process, we introduce a method for generating an API graph that represents input and output compatibility between APIs. Using ToolDial, we evaluate a suite of language models on their ability to predict correct actions and extract input parameter values for API calls from the dialogue history. Modern language models achieve accuracy scores below 70%, indicating substantial room for improvement. We release our dataset and code at https://github.com/holi-lab/ToolDial.

Authors:Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, Zachary Yahn, Yichang Xu, Ling Liu
Title: Safety Tax: Safety Alignment Makes Your Large Reasoning Models Less Reasonable
Abstract:
Safety alignment is an important procedure before the official deployment of a Large Language Model (LLM). While safety alignment has been extensively studied for LLM, there is still a large research gap for Large Reasoning Models (LRMs) that equip with improved reasoning capability. We in this paper systematically examine a simplified pipeline for producing safety aligned LRMs. With our evaluation of various LRMs, we deliver two main findings: i) Safety alignment can be done upon the LRM to restore its safety capability. ii) Safety alignment leads to a degradation of the reasoning capability of LRMs. The two findings show that there exists a trade-off between reasoning and safety capability with the sequential LRM production pipeline. The discovered trade-off, which we name Safety Tax, should shed light on future endeavors of safety research on LRMs. As a by-product, we curate a dataset called DirectRefusal, which might serve as an alternative dataset for safety alignment. Our source code is available at https://github.com/git-disl/Safety-Tax.

Authors:Zhixin Zhang, Wenzhi Bai, Liang Zhao, Pawel Ladosz
Title: PL-VIWO: A Lightweight and Robust Point-Line Monocular Visual Inertial Wheel Odometry
Abstract:
This paper presents a novel tightly coupled Filter-based monocular visual-inertial-wheel odometry (VIWO) system for ground robots, designed to deliver accurate and robust localization in long-term complex outdoor navigation scenarios. As an external sensor, the camera enhances localization performance by introducing visual constraints. However, obtaining a sufficient number of effective visual features is often challenging, particularly in dynamic or low-texture environments. To address this issue, we incorporate the line features for additional geometric constraints. Unlike traditional approaches that treat point and line features independently, our method exploits the geometric relationships between points and lines in 2D images, enabling fast and robust line matching and triangulation. Additionally, we introduce Motion Consistency Check (MCC) to filter out potential dynamic points, ensuring the effectiveness of point feature updates. The proposed system was evaluated on publicly available datasets and benchmarked against state-of-the-art methods. Experimental results demonstrate superior performance in terms of accuracy, robustness, and efficiency. The source code is publicly available at: https://github.com/Happy-ZZX/PL-VIWO

Authors:Shangzhe Di, Zhelun Yu, Guanghao Zhang, Haoyuan Li, Tao Zhong, Hao Cheng, Bolin Li, Wanggui He, Fangxun Shu, Hao Jiang
Title: Streaming Video Question-Answering with In-context Video KV-Cache Retrieval
Abstract:
We propose ReKV, a novel training-free approach that enables efficient streaming video question-answering (StreamingVQA), by seamlessly integrating with existing Video Large Language Models (Video-LLMs). Traditional VideoQA systems struggle with long videos, as they must process entire videos before responding to queries, and repeat this process for each new question. In contrast, our approach analyzes long videos in a streaming manner, allowing for prompt responses as soon as user queries are received. Building on a common Video-LLM, we first incorporate a sliding-window attention mechanism, ensuring that input frames attend to a limited number of preceding frames, thereby reducing computational overhead. To prevent information loss, we store processed video key-value caches (KV-Caches) in RAM and disk, reloading them into GPU memory as needed. Additionally, we introduce a retrieval method that leverages an external retriever or the parameters within Video-LLMs to retrieve only query-relevant KV-Caches, ensuring both efficiency and accuracy in question answering. ReKV enables the separation of video encoding and question-answering across different processes and GPUs, significantly enhancing the efficiency of StreamingVQA. Through comprehensive experimentation, we validate the efficacy and practicality of our approach, which significantly boosts efficiency and enhances applicability over existing VideoQA models.

Authors:Haofei Lu, Dongqi Han, Yifei Shen, Dongsheng Li
Title: What Makes a Good Diffusion Planner for Decision Making?
Abstract:
Diffusion models have recently shown significant potential in solving decision-making problems, particularly in generating behavior plans -- also known as diffusion planning. While numerous studies have demonstrated the impressive performance of diffusion planning, the mechanisms behind the key components of a good diffusion planner remain unclear and the design choices are highly inconsistent in existing studies. In this work, we address this issue through systematic empirical experiments on diffusion planning in an offline reinforcement learning (RL) setting, providing practical insights into the essential components of diffusion planning. We trained and evaluated over 6,000 diffusion models, identifying the critical components such as guided sampling, network architecture, action generation and planning strategy. We revealed that some design choices opposite to the common practice in previous work in diffusion planning actually lead to better performance, e.g., unconditional sampling with selection can be better than guided sampling and Transformer outperforms U-Net as denoising network. Based on these insights, we suggest a simple yet strong diffusion planning baseline that achieves state-of-the-art results on standard offline RL benchmarks.

Authors:Haofei Lu, Zhe Wu, Junliang Xing, Jianshu Li, Ruoyu Li, Zhe Li, Yuanchun Shi
Title: BodyGen: Advancing Towards Efficient Embodiment Co-Design
Abstract:
Embodiment co-design aims to optimize a robot's morphology and control policy simultaneously. While prior work has demonstrated its potential for generating environment-adaptive robots, this field still faces persistent challenges in optimization efficiency due to the (i) combinatorial nature of morphological search spaces and (ii) intricate dependencies between morphology and control. We prove that the ineffective morphology representation and unbalanced reward signals between the design and control stages are key obstacles to efficiency. To advance towards efficient embodiment co-design, we propose BodyGen, which utilizes (1) topology-aware self-attention for both design and control, enabling efficient morphology representation with lightweight model sizes; (2) a temporal credit assignment mechanism that ensures balanced reward signals for optimization. With our findings, Body achieves an average 60.03% performance improvement against state-of-the-art baselines. We provide codes and more results on the website: https://genesisorigin.github.io.

Authors:Wanli Hong, Yuliang Shi, Jonathan Niles-Weed
Title: Trajectory Inference with Smooth Schrödinger Bridges
Abstract:
Motivated by applications in trajectory inference and particle tracking, we introduce Smooth Schrödinger Bridges. Our proposal generalizes prior work by allowing the reference process in the Schrödinger Bridge problem to be a smooth Gaussian process, leading to more regular and interpretable trajectories in applications. Though naïvely smoothing the reference process leads to a computationally intractable problem, we identify a class of processes (including the Matérn processes) for which the resulting Smooth Schrödinger Bridge problem can be lifted to a simpler problem on phase space, which can be solved in polynomial time. We develop a practical approximation of this algorithm that outperforms existing methods on numerous simulated and real single-cell RNAseq datasets. The code can be found at https://github.com/WanliHongC/Smooth_SB

Authors:Jiawen Zhu, Huayi Tang, Xin Chen, Xinying Wang, Dong Wang, Huchuan Lu
Title: Two-stream Beats One-stream: Asymmetric Siamese Network for Efficient Visual Tracking
Abstract:
Efficient tracking has garnered attention for its ability to operate on resource-constrained platforms for real-world deployment beyond desktop GPUs. Current efficient trackers mainly follow precision-oriented trackers, adopting a one-stream framework with lightweight modules. However, blindly adhering to the one-stream paradigm may not be optimal, as incorporating template computation in every frame leads to redundancy, and pervasive semantic interaction between template and search region places stress on edge devices. In this work, we propose a novel asymmetric Siamese tracker named \textbf{AsymTrack} for efficient tracking. AsymTrack disentangles template and search streams into separate branches, with template computing only once during initialization to generate modulation signals. Building on this architecture, we devise an efficient template modulation mechanism to unidirectional inject crucial cues into the search features, and design an object perception enhancement module that integrates abstract semantics and local details to overcome the limited representation in lightweight tracker. Extensive experiments demonstrate that AsymTrack offers superior speed-precision trade-offs across different platforms compared to the current state-of-the-arts. For instance, AsymTrack-T achieves 60.8\% AUC on LaSOT and 224/81/84 FPS on GPU/CPU/AGX, surpassing HiT-Tiny by 6.0\% AUC with higher speeds. The code is available at https://github.com/jiawen-zhu/AsymTrack.

Authors:Hanxun Yu, Wentong Li, Song Wang, Junbo Chen, Jianke Zhu
Title: Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning
Abstract:
Despite encouraging progress in 3D scene understanding, it remains challenging to develop an effective Large Multi-modal Model (LMM) that is capable of understanding and reasoning in complex 3D environments. Most previous methods typically encode 3D point and 2D image features separately, neglecting interactions between 2D semantics and 3D object properties, as well as the spatial relationships within the 3D environment. This limitation not only hinders comprehensive representations of 3D scene, but also compromises training and inference efficiency. To address these challenges, we propose a unified Instance-aware 3D Large Multi-modal Model (Inst3D-LMM) to deal with multiple 3D scene understanding tasks simultaneously. To obtain the fine-grained instance-level visual tokens, we first introduce a novel Multi-view Cross-Modal Fusion (MCMF) module to inject the multi-view 2D semantics into their corresponding 3D geometric features. For scene-level relation-aware tokens, we further present a 3D Instance Spatial Relation (3D-ISR) module to capture the intricate pairwise spatial relationships among objects. Additionally, we perform end-to-end multi-task instruction tuning simultaneously without the subsequent task-specific fine-tuning. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods across 3D scene understanding, reasoning and grounding tasks. Source code is available at https://github.com/hanxunyu/Inst3D-LMM

Authors:Zhuo Ouyang, Kaiwen Hu, Qi Zhang, Yifei Wang, Yisen Wang
Title: Projection Head is Secretly an Information Bottleneck
Abstract:
Recently, contrastive learning has risen to be a promising paradigm for extracting meaningful data representations. Among various special designs, adding a projection head on top of the encoder during training and removing it for downstream tasks has proven to significantly enhance the performance of contrastive learning. However, despite its empirical success, the underlying mechanism of the projection head remains under-explored. In this paper, we develop an in-depth theoretical understanding of the projection head from the information-theoretic perspective. By establishing the theoretical guarantees on the downstream performance of the features before the projector, we reveal that an effective projector should act as an information bottleneck, filtering out the information irrelevant to the contrastive objective. Based on theoretical insights, we introduce modifications to projectors with training and structural regularizations. Empirically, our methods exhibit consistent improvement in the downstream performance across various real-world datasets, including CIFAR-10, CIFAR-100, and ImageNet-100. We believe our theoretical understanding on the role of the projection head will inspire more principled and advanced designs in this field. Code is available at https://github.com/PKU-ML/Projector_Theory.

Authors:Shiyu Fang, Jiaqi Liu, Chengkai Xu, Chen Lv, Peng Hang, Jian Sun
Title: Interact, Instruct to Improve: A LLM-Driven Parallel Actor-Reasoner Framework for Enhancing Autonomous Vehicle Interactions
Abstract:
Autonomous Vehicles (AVs) have entered the commercialization stage, but their limited ability to interact and express intentions still poses challenges in interactions with Human-driven Vehicles (HVs). Recent advances in large language models (LLMs) enable bidirectional human-machine communication, but the conflict between slow inference speed and the need for real-time decision-making challenges practical deployment. To address these issues, this paper introduces a parallel Actor-Reasoner framework designed to enable explicit bidirectional AV-HV interactions across multiple scenarios. First, by facilitating interactions between the LLM-driven Reasoner and heterogeneous simulated HVs during training, an interaction memory database, referred to as the Actor, is established. Then, by introducing the memory partition module and the two-layer memory retrieval module, the Actor's ability to handle heterogeneous HVs is significantly enhanced. Ablation studies and comparisons with other decision-making methods demonstrate that the proposed Actor-Reasoner framework significantly improves safety and efficiency. Finally, with the combination of the external Human-Machine Interface (eHMI) information derived from Reasoner's reasoning and the feasible action solutions retrieved from the Actor, the effectiveness of the proposed Actor-Reasoner is confirmed in multi-scenario field interactions. Our code is available at https://github.com/FanGShiYuu/Actor-Reasoner.

Authors:Boyi Kang, Xinfa Zhu, Zihan Zhang, Zhen Ye, Mingshuai Liu, Ziqian Wang, Yike Zhu, Guobin Ma, Jun Chen, Longshuai Xiao, Chao Weng, Wei Xue, Lei Xie
Title: LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement
Abstract:
Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area.

Authors:Yujia Xiao, Lei He, Haohan Guo, Fenglong Xie, Tan Lee
Title: PodAgent: A Comprehensive Framework for Podcast Generation
Abstract:
Existing Existing automatic audio generation methods struggle to generate podcast-like audio programs effectively. The key challenges lie in in-depth content generation, appropriate and expressive voice production. This paper proposed PodAgent, a comprehensive framework for creating audio programs. PodAgent 1) generates informative topic-discussion content by designing a Host-Guest-Writer multi-agent collaboration system, 2) builds a voice pool for suitable voice-role matching and 3) utilizes LLM-enhanced speech synthesis method to generate expressive conversational speech. Given the absence of standardized evaluation criteria for podcast-like audio generation, we developed comprehensive assessment guidelines to effectively evaluate the model's performance. Experimental results demonstrate PodAgent's effectiveness, significantly surpassing direct GPT-4 generation in topic-discussion dialogue content, achieving an 87.4% voice-matching accuracy, and producing more expressive speech through LLM-guided synthesis. Demo page: https://podcast-agent.github.io/demo/. Source code: https://github.com/yujxx/PodAgent.

Authors:Lixu Wang, Bingqi Shang, Yi Li, Payal Mohapatra, Wei Dong, Xiao Wang, Qi Zhu
Title: Split Adaptation for Pre-trained Vision Transformers
Abstract:
Vision Transformers (ViTs), extensively pre-trained on large-scale datasets, have become essential to foundation models, allowing excellent performance on diverse downstream tasks with minimal adaptation. Consequently, there is growing interest in adapting pre-trained ViTs across various fields, including privacy-sensitive domains where clients are often reluctant to share their data. Existing adaptation methods typically require direct data access, rendering them infeasible under these constraints. A straightforward solution may be sending the pre-trained ViT to clients for local adaptation, which poses issues of model intellectual property protection and incurs heavy client computation overhead. To address these issues, we propose a novel split adaptation (SA) method that enables effective downstream adaptation while protecting data and models. SA, inspired by split learning (SL), segments the pre-trained ViT into a frontend and a backend, with only the frontend shared with the client for data representation extraction. But unlike regular SL, SA replaces frontend parameters with low-bit quantized values, preventing direct exposure of the model. SA allows the client to add bi-level noise to the frontend and the extracted data representations, ensuring data protection. Accordingly, SA incorporates data-level and model-level out-of-distribution enhancements to mitigate noise injection's impact on adaptation performance. Our SA focuses on the challenging few-shot adaptation and adopts patch retrieval augmentation for overfitting alleviation. Extensive experiments on multiple datasets validate SA's superiority over state-of-the-art methods and demonstrate its defense against advanced data reconstruction attacks while preventing model leakage with minimal computation cost on the client side. The source codes can be found at https://github.com/conditionWang/Split_Adaptation.

Authors:Jingyi Yang, Xun Lin, Zitong Yu, Liepiao Zhang, Xin Liu, Hui Li, Xiaochen Yuan, Xiaochun Cao
Title: DADM: Dual Alignment of Domain and Modality for Face Anti-spoofing
Abstract:
With the availability of diverse sensor modalities (i.e., RGB, Depth, Infrared) and the success of multi-modal learning, multi-modal face anti-spoofing (FAS) has emerged as a prominent research focus. The intuition behind it is that leveraging multiple modalities can uncover more intrinsic spoofing traces. However, this approach presents more risk of misalignment. We identify two main types of misalignment: (1) \textbf{Intra-domain modality misalignment}, where the importance of each modality varies across different attacks. For instance, certain modalities (e.g., Depth) may be non-defensive against specific attacks (e.g., 3D mask), indicating that each modality has unique strengths and weaknesses in countering particular attacks. Consequently, simple fusion strategies may fall short. (2) \textbf{Inter-domain modality misalignment}, where the introduction of additional modalities exacerbates domain shifts, potentially overshadowing the benefits of complementary fusion. To tackle (1), we propose a alignment module between modalities based on mutual information, which adaptively enhances favorable modalities while suppressing unfavorable ones. To address (2), we employ a dual alignment optimization method that aligns both sub-domain hyperplanes and modality angle margins, thereby mitigating domain gaps. Our method, dubbed \textbf{D}ual \textbf{A}lignment of \textbf{D}omain and \textbf{M}odality (DADM), achieves state-of-the-art performance in extensive experiments across four challenging protocols demonstrating its robustness in multi-modal domain generalization scenarios. The codes will be released soon.

Authors:Magnus Cunow, Gerrit Großmann
Title: Auto-encoding Molecules: Graph-Matching Capabilities Matter
Abstract:
Autoencoders are effective deep learning models that can function as generative models and learn latent representations for downstream tasks. The use of graph autoencoders - with both encoder and decoder implemented as message passing networks - is intriguing due to their ability to generate permutation-invariant graph representations. However, this approach faces difficulties because decoding a graph structure from a single vector is challenging, and comparing input and output graphs requires an effective permutation-invariant similarity measure. As a result, many studies rely on approximate methods. In this work, we explore the effect of graph matching precision on the training behavior and generation capabilities of a Variational Autoencoder (VAE). Our contribution is two-fold: (1) we propose a transformer-based message passing graph decoder as an alternative to a graph neural network decoder, that is more robust and expressive by leveraging global attention mechanisms. (2) We show that the precision of graph matching has significant impact on training behavior and is essential for effective de novo (molecular) graph generation. Code is available at https://github.com/mcunow/graph-matching

Authors:Xin Lin, Chong Shi, Zuopeng Yang, Haojin Tang, Zhili Zhou
Title: SGC-Net: Stratified Granular Comparison Network for Open-Vocabulary HOI Detection
Abstract:
Recent open-vocabulary human-object interaction (OV-HOI) detection methods primarily rely on large language model (LLM) for generating auxiliary descriptions and leverage knowledge distilled from CLIP to detect unseen interaction categories. Despite their effectiveness, these methods face two challenges: (1) feature granularity deficiency, due to reliance on last layer visual features for text alignment, leading to the neglect of crucial object-level details from intermediate layers; (2) semantic similarity confusion, resulting from CLIP's inherent biases toward certain classes, while LLM-generated descriptions based solely on labels fail to adequately capture inter-class similarities. To address these challenges, we propose a stratified granular comparison network. First, we introduce a granularity sensing alignment module that aggregates global semantic features with local details, refining interaction representations and ensuring robust alignment between intermediate visual features and text embeddings. Second, we develop a hierarchical group comparison module that recursively compares and groups classes using LLMs, generating fine-grained and discriminative descriptions for each interaction category. Experimental results on two widely-used benchmark datasets, SWIG-HOI and HICO-DET, demonstrate that our method achieves state-of-the-art results in OV-HOI detection. Codes will be released on https://github.com/Phil0212/SGC-Net.

Authors:Zhaoyi Tian, Feifeng Wang, Shiwei Wang, Zihao Zhou, Yao Zhu, Liquan Shen
Title: High Dynamic Range Video Compression: A Large-Scale Benchmark Dataset and A Learned Bit-depth Scalable Compression Algorithm
Abstract:
Recently, learned video compression (LVC) is undergoing a period of rapid development. However, due to absence of large and high-quality high dynamic range (HDR) video training data, LVC on HDR video is still unexplored. In this paper, we are the first to collect a large-scale HDR video benchmark dataset, named HDRVD2K, featuring huge quantity, diverse scenes and multiple motion types. HDRVD2K fills gaps of video training data and facilitate the development of LVC on HDR videos. Based on HDRVD2K, we further propose the first learned bit-depth scalable video compression (LBSVC) network for HDR videos by effectively exploiting bit-depth redundancy between videos of multiple dynamic ranges. To achieve this, we first propose a compression-friendly bit-depth enhancement module (BEM) to effectively predict original HDR videos based on compressed tone-mapped low dynamic range (LDR) videos and dynamic range prior, instead of reducing redundancy only through spatio-temporal predictions. Our method greatly improves the reconstruction quality and compression performance on HDR videos. Extensive experiments demonstrate the effectiveness of HDRVD2K on learned HDR video compression and great compression performance of our proposed LBSVC network. Code and dataset will be released in https://github.com/sdkinda/HDR-Learned-Video-Coding.

Authors:Zongru Wu, Pengzhou Cheng, Zheng Wu, Tianjie Ju, Zhuosheng Zhang, Gongshen Liu
Title: Smoothing Grounding and Reasoning for MLLM-Powered GUI Agents with Query-Oriented Pivot Tasks
Abstract:
Perception-enhanced pre-training, particularly through grounding techniques, is widely adopted to enhance the performance of graphical user interface (GUI) agents. However, in resource-constrained scenarios, the format discrepancy between coordinate-oriented grounding and action-oriented reasoning limits the effectiveness of grounding for reasoning tasks. To address this challenge, we propose a query-oriented pivot approach called query inference, which serves as a bridge between GUI grounding and reasoning. By inferring potential user queries from a screenshot and its associated element coordinates, query inference improves the understanding of coordinates while aligning more closely with reasoning tasks. Experimental results show that query inference outperforms previous grounding techniques under the same training data scale. Notably, query inference achieves comparable or even better performance to large-scale grounding-enhanced OS-Atlas with less than 0.1% of training data. Furthermore, we explore the impact of reasoning formats and demonstrate that integrating additional semantic information into the input further boosts reasoning performance. The code is publicly available at https://github.com/ZrW00/GUIPivot.

Authors:Song Xia, Yi Yu, Wenhan Yang, Meiwen Ding, Zhuo Chen, Ling-Yu Duan, Alex C. Kot, Xudong Jiang
Title: Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems
Abstract:
By locally encoding raw data into intermediate features, collaborative inference enables end users to leverage powerful deep learning models without exposure of sensitive raw data to cloud servers. However, recent studies have revealed that these intermediate features may not sufficiently preserve privacy, as information can be leaked and raw data can be reconstructed via model inversion attacks (MIAs). Obfuscation-based methods, such as noise corruption, adversarial representation learning, and information filters, enhance the inversion robustness by obfuscating the task-irrelevant redundancy empirically. However, methods for quantifying such redundancy remain elusive, and the explicit mathematical relation between this redundancy minimization and inversion robustness enhancement has not yet been established. To address that, this work first theoretically proves that the conditional entropy of inputs given intermediate features provides a guaranteed lower bound on the reconstruction mean square error (MSE) under any MIA. Then, we derive a differentiable and solvable measure for bounding this conditional entropy based on the Gaussian mixture estimation and propose a conditional entropy maximization (CEM) algorithm to enhance the inversion robustness. Experimental results on four datasets demonstrate the effectiveness and adaptability of our proposed CEM; without compromising feature utility and computing efficiency, plugging the proposed CEM into obfuscation-based defense mechanisms consistently boosts their inversion robustness, achieving average gains ranging from 12.9\% to 48.2\%. Code is available at \href{https://github.com/xiasong0501/CEM}{https://github.com/xiasong0501/CEM}.

Authors:Tianyi Wang, Jianan Fan, Dingxin Zhang, Dongnan Liu, Yong Xia, Heng Huang, Weidong Cai
Title: MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Abstract:
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.

Authors:Wei Suo, Lijun Zhang, Mengyang Sun, Lin Yuanbo Wu, Peng Wang, Yanning Zhang
Title: Octopus: Alleviating Hallucination via Dynamic Contrastive Decoding
Abstract:
Large Vision-Language Models (LVLMs) have obtained impressive performance in visual content understanding and multi-modal reasoning. Unfortunately, these large models suffer from serious hallucination problems and tend to generate fabricated responses. Recently, several Contrastive Decoding (CD) strategies have been proposed to alleviate hallucination by introducing disturbed inputs. Although great progress has been made, these CD strategies mostly apply a one-size-fits-all approach for all input conditions. In this paper, we revisit this process through extensive experiments. Related results show that hallucination causes are hybrid and each generative step faces a unique hallucination challenge. Leveraging these meaningful insights, we introduce a simple yet effective Octopus-like framework that enables the model to adaptively identify hallucination types and create a dynamic CD workflow. Our Octopus framework not only outperforms existing methods across four benchmarks but also demonstrates excellent deployability and expansibility. Code is available at https://github.com/LijunZhang01/Octopus.

Authors:Yunfan Gao, Yun Xiong, Wenlong Wu, Zijing Huang, Bohan Li, Haofen Wang
Title: U-NIAH: Unified RAG and LLM Evaluation for Long Context Needle-In-A-Haystack
Abstract:
Recent advancements in Large Language Models (LLMs) have expanded their context windows to unprecedented lengths, sparking debates about the necessity of Retrieval-Augmented Generation (RAG). To address the fragmented evaluation paradigms and limited cases in existing Needle-in-a-Haystack (NIAH), this paper introduces U-NIAH, a unified framework that systematically compares LLMs and RAG methods in controlled long context settings. Our framework extends beyond traditional NIAH by incorporating multi-needle, long-needle, and needle-in-needle configurations, along with different retrieval settings, while leveraging the synthetic Starlight Academy dataset-a fictional magical universe-to eliminate biases from pre-trained knowledge. Through extensive experiments, we investigate three research questions: (1) performance trade-offs between LLMs and RAG, (2) error patterns in RAG, and (3) RAG's limitations in complex settings. Our findings show that RAG significantly enhances smaller LLMs by mitigating the "lost-in-the-middle" effect and improving robustness, achieving an 82.58% win-rate over LLMs. However, we observe that retrieval noise and reverse chunk ordering degrade performance, while surprisingly, advanced reasoning LLMs exhibit reduced RAG compatibility due to sensitivity to semantic distractors. We identify typical error patterns including omission due to noise, hallucination under high noise critical condition, and self-doubt behaviors. Our work not only highlights the complementary roles of RAG and LLMs, but also provides actionable insights for optimizing deployments. Code: https://github.com/Tongji-KGLLM/U-NIAH.

Authors:Samuel Garske, Konrad Heidler, Bradley Evans, KC Wong, Xiao Xiang Zhu
Title: SHAZAM: Self-Supervised Change Monitoring for Hazard Detection and Mapping
Abstract:
The increasing frequency of environmental hazards due to climate change underscores the urgent need for effective monitoring systems. Current approaches either rely on expensive labelled datasets, struggle with seasonal variations, or require multiple observations for confirmation (which delays detection). To address these challenges, this work presents SHAZAM - Self-Supervised Change Monitoring for Hazard Detection and Mapping. SHAZAM uses a lightweight conditional UNet to generate expected images of a region of interest (ROI) for any day of the year, allowing for the direct modelling of normal seasonal changes and the ability to distinguish potential hazards. A modified structural similarity measure compares the generated images with actual satellite observations to compute region-level anomaly scores and pixel-level hazard maps. Additionally, a theoretically grounded seasonal threshold eliminates the need for dataset-specific optimisation. Evaluated on four diverse datasets that contain bushfires (wildfires), burned regions, extreme and out-of-season snowfall, floods, droughts, algal blooms, and deforestation, SHAZAM achieved F1 score improvements of between 0.066 and 0.234 over existing methods. This was achieved primarily through more effective hazard detection (higher recall) while using only 473K parameters. SHAZAM demonstrated superior mapping capabilities through higher spatial resolution and improved ability to suppress background features while accentuating both immediate and gradual hazards. SHAZAM has been established as an effective and generalisable solution for hazard detection and mapping across different geographical regions and a diverse range of hazards. The Python code is available at: https://github.com/WiseGamgee/SHAZAM

Authors:Zihan Huang, Wei Fang, Tong Bu, Peng Xue, Zecheng Hao, Wenxuan Liu, Yuanhong Tang, Zhaofei Yu, Tiejun Huang
Title: Differential Coding for Training-Free ANN-to-SNN Conversion
Abstract:
Spiking Neural Networks (SNNs) exhibit significant potential due to their low energy consumption. Converting Artificial Neural Networks (ANNs) to SNNs is an efficient way to achieve high-performance SNNs. However, many conversion methods are based on rate coding, which requires numerous spikes and longer time-steps compared to directly trained SNNs, leading to increased energy consumption and latency. This article introduces differential coding for ANN-to-SNN conversion, a novel coding scheme that reduces spike counts and energy consumption by transmitting changes in rate information rather than rates directly, and explores its application across various layers. Additionally, the threshold iteration method is proposed to optimize thresholds based on activation distribution when converting Rectified Linear Units (ReLUs) to spiking neurons. Experimental results on various Convolutional Neural Networks (CNNs) and Transformers demonstrate that the proposed differential coding significantly improves accuracy while reducing energy consumption, particularly when combined with the threshold iteration method, achieving state-of-the-art performance. The source codes of the proposed method are available at https://github.com/h-z-h-cell/ANN-to-SNN-DCGS.

Authors:Xinwei Luo, Songlin Zhao, Yun Zong, Yong Chen, Gui-shuang Ying, Lifang He
Title: SegImgNet: Segmentation-Guided Dual-Branch Network for Retinal Disease Diagnoses
Abstract:
Retinal image plays a crucial role in diagnosing various diseases, as retinal structures provide essential diagnostic information. However, effectively capturing structural features while integrating them with contextual information from retinal images remains a challenge. In this work, we propose segmentation-guided dual-branch network for retinal disease diagnosis using retinal images and their segmentation maps, named SegImgNet. SegImgNet incorporates a segmentation module to generate multi-scale retinal structural feature maps from retinal images. The classification module employs two encoders to independently extract features from segmented images and retinal images for disease classification. To further enhance feature extraction, we introduce the Segmentation-Guided Attention (SGA) block, which leverages feature maps from the segmentation module to refine the classification process. We evaluate SegImgNet on the public AIROGS dataset and the private e-ROP dataset. Experimental results demonstrate that SegImgNet consistently outperforms existing methods, underscoring its effectiveness in retinal disease diagnosis. The code is publicly available at https://github.com/hawk-sudo/SegImgNet.

Authors:Milad Yazdani, Yasamin Medghalchi, Pooria Ashrafian, Ilker Hacihaliloglu, Dena Shahriari
Title: Flow Matching for Medical Image Synthesis: Bridging the Gap Between Speed and Quality
Abstract:
Deep learning models have emerged as a powerful tool for various medical applications. However, their success depends on large, high-quality datasets that are challenging to obtain due to privacy concerns and costly annotation. Generative models, such as diffusion models, offer a potential solution by synthesizing medical images, but their practical adoption is hindered by long inference times. In this paper, we propose the use of an optimal transport flow matching approach to accelerate image generation. By introducing a straighter mapping between the source and target distribution, our method significantly reduces inference time while preserving and further enhancing the quality of the outputs. Furthermore, this approach is highly adaptable, supporting various medical imaging modalities, conditioning mechanisms (such as class labels and masks), and different spatial dimensions, including 2D and 3D. Beyond image generation, it can also be applied to related tasks such as image enhancement. Our results demonstrate the efficiency and versatility of this framework, making it a promising advancement for medical imaging applications. Code with checkpoints and a synthetic dataset (beneficial for classification and segmentation) is now available on: https://github.com/milad1378yz/MOTFM.

Authors:Guangsheng Bao, Lihua Rong, Yanbin Zhao, Qiji Zhou, Yue Zhang
Title: Decoupling Content and Expression: Two-Dimensional Detection of AI-Generated Text
Abstract:
The wide usage of LLMs raises critical requirements on detecting AI participation in texts. Existing studies investigate these detections in scattered contexts, leaving a systematic and unified approach unexplored. In this paper, we present HART, a hierarchical framework of AI risk levels, each corresponding to a detection task. To address these tasks, we propose a novel 2D Detection Method, decoupling a text into content and language expression. Our findings show that content is resistant to surface-level changes, which can serve as a key feature for detection. Experiments demonstrate that 2D method significantly outperforms existing detectors, achieving an AUROC improvement from 0.705 to 0.849 for level-2 detection and from 0.807 to 0.886 for RAID. We release our data and code at https://github.com/baoguangsheng/truth-mirror.

Authors:Samar M. Magdy, Sang Yun Kwon, Fakhraddin Alwajih, Safaa Abdelfadil, Shady Shehata, Muhammad Abdul-Mageed
Title: Jawaher: A Multidialectal Dataset of Arabic Proverbs for LLM Benchmarking
Abstract:
Recent advancements in instruction fine-tuning, alignment methods such as reinforcement learning from human feedback (RLHF), and optimization techniques like direct preference optimization (DPO) have significantly enhanced the adaptability of large language models (LLMs) to user preferences. However, despite these innovations, many LLMs continue to exhibit biases toward Western, Anglo-centric, or American cultures, with performance on English data consistently surpassing that of other languages. This reveals a persistent cultural gap in LLMs, which complicates their ability to accurately process culturally rich and diverse figurative language such as proverbs. To address this, we introduce Jawaher, a benchmark designed to assess LLMs' capacity to comprehend and interpret Arabic proverbs. Jawaher includes proverbs from various Arabic dialects, along with idiomatic translations and explanations. Through extensive evaluations of both open- and closed-source models, we find that while LLMs can generate idiomatically accurate translations, they struggle with producing culturally nuanced and contextually relevant explanations. These findings highlight the need for ongoing model refinement and dataset expansion to bridge the cultural gap in figurative language processing.

Authors:Melih İşeri, Erhan Bayraktar
Title: The Learning Approach to Games
Abstract:
This work introduces a unified framework for a more detailed exploration of games. In existing literature, strategies of players are typically assigned scalar values, and the concept of Nash equilibrium is used to identify compatible strategies. However, this approach lacks the internal structure of a player, thereby failing to accurately model observed behaviors. To address this limitation, we propose an abstract definition of a player. This allows for a more nuanced understanding of players and brings the focus to the challenge of learning that players face. Unlike Markov decision processes, which formalize control problems but not agent design, our framework subsumes standard reinforcement learning structures. It thus offers a language that enables a deeper connection between games and learning. To illustrate the need for such generality, we study a simple two-player game and show that even in the most basic settings, a sophisticated player may adopt dynamic strategies that cannot be captured by simpler designs or compatibility analysis alone. In the discrete setting, we consider a player whose structure incorporates standard estimates from the literature. We explore connections to correlated equilibrium and highlight that dynamic programming naturally applies to all estimates. In the mean-field setting, we exploit symmetry to construct explicit examples of equilibria. Finally, we examine connections to reinforcement learning and bandit problems, demonstrating the broad applicability of the framework.

Authors:K. O. T. Erziev
Title: À la recherche du sens perdu: your favourite LLM might have more to say than you can understand
Abstract:
We report a peculiar observation that LLMs can assign hidden meanings to sequences that seem visually incomprehensible to humans: for example, a nonsensical phrase consisting of Byzantine musical symbols is recognized by gpt-4o as "say abracadabra". Moreover, some models can communicate using these sequences. Some of these meanings are hypothesized to partly originate in the massive spurious correlations due to BPE tokenization. We systematically evaluate the presence of such abilities in a wide range of models: Claude-3.5 Haiku, Claude-3.5 Sonnet (New and Old), Claude-3.7 Sonnet, gpt-4o mini, gpt-4o, o1-mini, Llama-3.3 70B, DeepSeek-R1-Distill-Lllama 70B, Qwen2.5 1.5B, Qwen2.5 32B, Phi-3.5 mini, GigaChat-Max, Vikhr-Llama-3.2 1B. We argue that this observation might have far-reaching consequences for both safety and security of the modern and future LLMs and systems that employ them. As an illustration, we show that applying this method in combination with simple templates is sufficient to jailbreak previous generation models, with ASR = 0.4 on gpt-4o mini. Our code and data artifacts are available at https://github.com/L3G5/llm-hidden-meanings

Authors:Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian, SeongKu Kang, Zifeng Wang, Jimeng Sun, Jiawei Han
Title: DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning
Abstract:
Information retrieval systems are crucial for enabling effective access to large document collections. Recent approaches have leveraged Large Language Models (LLMs) to enhance retrieval performance through query augmentation, but often rely on expensive supervised learning or distillation techniques that require significant computational resources and hand-labeled data. We introduce DeepRetrieval, a reinforcement learning (RL) approach that trains LLMs for query generation through trial and error without supervised data (reference query). Using retrieval metrics as rewards, our system generates queries that maximize retrieval performance. DeepRetrieval outperforms leading methods on literature search with 65.07% (vs. previous SOTA 24.68%) recall for publication search and 63.18% (vs. previous SOTA 32.11%) recall for trial search using real-world search engines. DeepRetrieval also dominates in evidence-seeking retrieval, classic information retrieval and SQL database search. With only 3B parameters, it outperforms industry-leading models like GPT-4o and Claude-3.5-Sonnet on 11/13 datasets. These results demonstrate that our RL approach offers a more efficient and effective paradigm for information retrieval. Our data and code are available at: https://github.com/pat-jj/DeepRetrieval.

Authors:Jiawei Zhang, Xuan Yang, Taiqi Wang, Yu Yao, Aleksandr Petiushko, Bo Li
Title: SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models
Abstract:
Traditional autonomous driving systems often struggle to connect high-level reasoning with low-level control, leading to suboptimal and sometimes unsafe behaviors. Recent advances in multimodal large language models (MLLMs), which process both visual and textual data, offer an opportunity to unify perception and reasoning. However, effectively embedding precise safety knowledge into MLLMs for autonomous driving remains a significant challenge. To address this, we propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge. First, we introduce a Position-Dependent Cross-Entropy (PDCE) loss to improve low-level control signal predictions when values are represented as text. Second, to explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic (e.g., "red light $\implies$ stop") and embeds them into a probabilistic graphical model (e.g., Markov Logic Network) to verify predicted actions using recognized environmental attributes. Additionally, our Multimodal Retrieval-Augmented Generation (RAG) model leverages video, control signals, and environmental attributes to learn from past driving experiences. Integrating PDCE, MLN, and Multimodal RAG, SafeAuto outperforms existing baselines across multiple datasets, enabling more accurate, reliable, and safer autonomous driving. The code is available at https://github.com/AI-secure/SafeAuto.

Authors:Naveen Mysore
Title: Quantifying First-Order Markov Violations in Noisy Reinforcement Learning: A Causal Discovery Approach
Abstract:
Reinforcement learning (RL) methods frequently assume that each new observation completely reflects the environment's state, thereby guaranteeing Markovian (one-step) transitions. In practice, partial observability or sensor/actuator noise often invalidates this assumption. This paper proposes a systematic methodology for detecting such violations, combining a partial correlation-based causal discovery process (PCMCI) with a novel Markov Violation score (MVS). The MVS measures multi-step dependencies that emerge when noise or incomplete state information disrupts the Markov property. Classic control tasks (CartPole, Pendulum, Acrobot) serve as examples to illustrate how targeted noise and dimension omissions affect both RL performance and measured Markov consistency. Surprisingly, even substantial observation noise sometimes fails to induce strong multi-lag dependencies in certain domains (e.g., Acrobot). In contrast, dimension-dropping investigations show that excluding some state variables (e.g., angular velocities in CartPole and Pendulum) significantly reduces returns and increases MVS, while removing other dimensions has minimal impact. These findings emphasize the importance of locating and safeguarding the most causally essential dimensions in order to preserve effective single-step learning. By integrating partial correlation tests with RL performance outcomes, the proposed approach precisely identifies when and where the Markov assumption is violated. This framework offers a principled mechanism for developing robust policies, informing representation learning, and addressing partial observability in real-world RL scenarios. All code and experimental logs are accessible for reproducibility (https://github.com/ucsb/markovianess).

Authors:Jian Gao, Weidong Cao, Junyi Yang, Xuan Zhang
Title: AnalogGenie: A Generative Engine for Automatic Discovery of Analog Circuit Topologies
Abstract:
The massive and large-scale design of foundational semiconductor integrated circuits (ICs) is crucial to sustaining the advancement of many emerging and future technologies, such as generative AI, 5G/6G, and quantum computing. Excitingly, recent studies have shown the great capabilities of foundational models in expediting the design of digital ICs. Yet, applying generative AI techniques to accelerate the design of analog ICs remains a significant challenge due to critical domain-specific issues, such as the lack of a comprehensive dataset and effective representation methods for analog circuits. This paper proposes, $\textbf{AnalogGenie}$, a $\underline{\textbf{Gen}}$erat$\underline{\textbf{i}}$ve $\underline{\textbf{e}}$ngine for automatic design/discovery of $\underline{\textbf{Analog}}$ circuit topologies--the most challenging and creative task in the conventional manual design flow of analog ICs. AnalogGenie addresses two key gaps in the field: building a foundational comprehensive dataset of analog circuit topology and developing a scalable sequence-based graph representation universal to analog circuits. Experimental results show the remarkable generation performance of AnalogGenie in broadening the variety of analog ICs, increasing the number of devices within a single design, and discovering unseen circuit topologies far beyond any prior arts. Our work paves the way to transform the longstanding time-consuming manual design flow of analog ICs to an automatic and massive manner powered by generative AI. Our source code is available at https://github.com/xz-group/AnalogGenie.

Authors:Amar Kumar, Anita Kriz, Mohammad Havaei, Tal Arbel
Title: PRISM: High-Resolution & Precise Counterfactual Medical Image Generation using Language-guided Stable Diffusion
Abstract:
Developing reliable and generalizable deep learning systems for medical imaging faces significant obstacles due to spurious correlations, data imbalances, and limited text annotations in datasets. Addressing these challenges requires architectures that are robust to the unique complexities posed by medical imaging data. Rapid advancements in vision-language foundation models within the natural image domain prompt the question of how they can be adapted for medical imaging tasks. In this work, we present PRISM, a framework that leverages foundation models to generate high-resolution, language-guided medical image counterfactuals using Stable Diffusion. Our approach demonstrates unprecedented precision in selectively modifying spurious correlations (the medical devices) and disease features, enabling the removal and addition of specific attributes while preserving other image characteristics. Through extensive evaluation, we show how PRISM advances counterfactual generation and enables the development of more robust downstream classifiers for clinically deployable solutions. To facilitate broader adoption and research, we make our code publicly available at https://github.com/Amarkr1/PRISM.

Authors:Federico Pizarro Bejarano, Bryson Jones, Daniel Pastor Moreno, Joseph Bowkett, Paul G. Backes, Angela P. Schoellig
Title: ProDapt: Proprioceptive Adaptation using Long-term Memory Diffusion
Abstract:
Diffusion models have revolutionized imitation learning, allowing robots to replicate complex behaviours. However, diffusion often relies on cameras and other exteroceptive sensors to observe the environment and lacks long-term memory. In space, military, and underwater applications, robots must be highly robust to failures in exteroceptive sensors, operating using only proprioceptive information. In this paper, we propose ProDapt, a method of incorporating long-term memory of previous contacts between the robot and the environment in the diffusion process, allowing it to complete tasks using only proprioceptive data. This is achieved by identifying "keypoints", essential past observations maintained as inputs to the policy. We test our approach using a UR10e robotic arm in both simulation and real experiments and demonstrate the necessity of this long-term memory for task completion.

Authors:Xinhang Ma, Junlin Wu, Hussein Sibai, Yiannis Kantaros, Yevgeniy Vorobeychik
Title: Learning Vision-Based Neural Network Controllers with Semi-Probabilistic Safety Guarantees
Abstract:
Ensuring safety in autonomous systems with vision-based control remains a critical challenge due to the high dimensionality of image inputs and the fact that the relationship between true system state and its visual manifestation is unknown. Existing methods for learning-based control in such settings typically lack formal safety guarantees. To address this challenge, we introduce a novel semi-probabilistic verification framework that integrates reachability analysis with conditional generative adversarial networks and distribution-free tail bounds to enable efficient and scalable verification of vision-based neural network controllers. Next, we develop a gradient-based training approach that employs a novel safety loss function, safety-aware data-sampling strategy to efficiently select and store critical training examples, and curriculum learning, to efficiently synthesize safe controllers in the semi-probabilistic framework. Empirical evaluations in X-Plane 11 airplane landing simulation, CARLA-simulated autonomous lane following, and F1Tenth lane following in a physical visually-rich miniature environment demonstrate the effectiveness of our method in achieving formal safety guarantees while maintaining strong nominal performance. Our code is available at https://github.com/xhOwenMa/SPVT.

Authors:Hanjiang Hu, Alexander Robey, Changliu Liu
Title: Steering Dialogue Dynamics for Robustness against Multi-turn Jailbreaking Attacks
Abstract:
Large language models (LLMs) are shown to be vulnerable to jailbreaking attacks where adversarial prompts are designed to elicit harmful responses. While existing defenses effectively mitigate single-turn attacks by detecting and filtering unsafe inputs, they fail against multi-turn jailbreaks that exploit contextual drift over multiple interactions, gradually leading LLMs away from safe behavior. To address this challenge, we propose a safety steering framework grounded in safe control theory, ensuring invariant safety in multi-turn dialogues. Our approach models the dialogue with LLMs using state-space representations and introduces a novel neural barrier function (NBF) to detect and filter harmful queries emerging from evolving contexts proactively. Our method achieves invariant safety at each turn of dialogue by learning a safety predictor that accounts for adversarial queries, preventing potential context drift toward jailbreaks. Extensive experiments under multiple LLMs show that our NBF-based safety steering outperforms safety alignment, prompt-based steering and lightweight LLM guardrails baselines, offering stronger defenses against multi-turn jailbreaks while maintaining a better trade-off among safety, helpfulness and over-refusal. Check out the website here https://sites.google.com/view/llm-nbf/home . Our code is available on https://github.com/HanjiangHu/NBF-LLM .

Authors:Benedikt Blumenstiel, Nassim Ait Ali Braham, Conrad M Albrecht, Stefano Maurogiovanni, Paolo Fraccaro
Title: SSL4EO-S12 v1.1: A Multimodal, Multiseasonal Dataset for Pretraining, Updated
Abstract:
This technical report presents SSL4EO-S12 v1.1, a multimodal, multitemporal Earth Observation dataset designed for pretraining large-scale foundation models. Building on the success of SSL4EO-S12 v1.0, the new version addresses the previous challenges of data misalignment and a limited data structure for low-barrier, analysis-ready EO processing. SSL4EO-S12 v1.1 covers the world's 10,000 largest cities and its surroundings within a 50 km radius across four seasons, resulting in a diverse collection of nearly one million patches. SSL4EO-S12 v1.1 packages the data in Zarr file format for cloud-efficient loading and representation of meta-information such as including cloud masks and geolocation. Released under the CC-BY-4.0 license, SSL4EO-S12 v1.1 facilitates open research and provides a robust foundation for future advancements in self-supervised learning and geospatial analysis. The dataset is available online through https://datapub.fz-juelich.de/ssl4eo-s12, and we provided additional resources at https://github.com/DLR-MF-DAS/SSL4EO-S12-v1.1.

Authors:Fakhraddin Alwajih, Abdellah El Mekki, Samar Mohamed Magdy, Abdelrahim A. Elmadany, Omer Nacar, El Moatez Billah Nagoudi, Reem Abdel-Salam, Hanin Atwany, Youssef Nafea, Abdulfattah Mohammed Yahya, Rahaf Alhamouri, Hamzah A. Alsayadi, Hiba Zayed, Sara Shatnawi, Serry Sibaee, Yasir Ech-Chammakhy, Walid Al-Dhabyani, Marwa Mohamed Ali, Imen Jarraya, Ahmed Oumar El-Shangiti, Aisha Alraeesi, Mohammed Anwar Al-Ghrawi, Abdulrahman S. Al-Batati, Elgizouli Mohamed, Noha Taha Elgindi, Muhammed Saeed, Houdaifa Atou, Issam Ait Yahia, Abdelhak Bouayad, Mohammed Machrouh, Amal Makouar, Dania Alkawi, Mukhtar Mohamed, Safaa Taher Abdelfadil, Amine Ziad Ounnoughene, Rouabhia Anfel, Rwaa Assi, Ahmed Sorkatti, Mohamedou Cheikh Tourad, Anis Koubaa, Ismail Berrada, Mustafa Jarrar, Shady Shehata, Muhammad Abdul-Mageed
Title: Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs
Abstract:
As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce our dataset, a year-long community-driven project covering all 22 Arab countries. The dataset includes instructions (input, response pairs) in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world, all of whom are authors of this paper, our dataset offers a broad, inclusive perspective. We use our dataset to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations. For instance, while closed-source LLMs generally exhibit strong performance, they are not without flaws, and smaller open-source models face greater challenges. Moreover, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data for reproducibility are publicly available.

Authors:Magnus Sesodia, Alina Petrova, John Armour, Thomas Lukasiewicz, Oana-Maria Camburu, Puneet K. Dokania, Philip Torr, Christian Schroeder de Witt
Title: AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction
Abstract:
Legal systems worldwide continue to struggle with overwhelming caseloads, limited judicial resources, and growing complexities in legal proceedings. Artificial intelligence (AI) offers a promising solution, with Legal Judgment Prediction (LJP) -- the practice of predicting a court's decision from the case facts -- emerging as a key research area. However, existing datasets often formulate the task of LJP unrealistically, not reflecting its true difficulty. They also lack high-quality annotation essential for legal reasoning and explainability. To address these shortcomings, we introduce AnnoCaseLaw, a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases. Each case is enriched with comprehensive, expert-labeled annotations that highlight key components of judicial decision making, along with relevant legal concepts. Our dataset lays the groundwork for more human-aligned, explainable LJP models. We define three legally relevant tasks: (1) judgment prediction; (2) concept identification; and (3) automated case annotation, and establish a performance baseline using industry-leading large language models (LLMs). Our results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult. Code and data are available at https://github.com/anonymouspolar1/annocaselaw.

Authors:Xinyu Yuan, Zichen Wang, Marcus Collins, Huzefa Rangwala
Title: Protein Structure Tokenization: Benchmarking and New Recipe
Abstract:
Recent years have witnessed a surge in the development of protein structural tokenization methods, which chunk protein 3D structures into discrete or continuous representations. Structure tokenization enables the direct application of powerful techniques like language modeling for protein structures, and large multimodal models to integrate structures with protein sequences and functional texts. Despite the progress, the capabilities and limitations of these methods remain poorly understood due to the lack of a unified evaluation framework. We first introduce StructTokenBench, a framework that comprehensively evaluates the quality and efficiency of structure tokenizers, focusing on fine-grained local substructures rather than global structures, as typical in existing benchmarks. Our evaluations reveal that no single model dominates all benchmarking perspectives. Observations of codebook under-utilization led us to develop AminoAseed, a simple yet effective strategy that enhances codebook gradient updates and optimally balances codebook size and dimension for improved tokenizer utilization and quality. Compared to the leading model ESM3, our method achieves an average of 6.31% performance improvement across 24 supervised tasks, with sensitivity and utilization rates increased by 12.83% and 124.03%, respectively. Source code and model weights are available at https://github.com/KatarinaYuan/StructTokenBench

Authors:Zhenxing Cui, Lu Chen, Yunhai Wang, Daniel Haehn, Yong Wang, Hanspeter Pfister
Title: Generalization of CNNs on Relational Reasoning with Bar Charts
Abstract:
This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.

Authors:Chong Zhang, Yukun Ma, Qian Chen, Wen Wang, Shengkui Zhao, Zexu Pan, Hao Wang, Chongjia Ni, Trung Hieu Nguyen, Kun Zhou, Yidi Jiang, Chaohong Tan, Zhifu Gao, Zhihao Du, Bin Ma
Title: InspireMusic: Integrating Super Resolution and Large Language Model for High-Fidelity Long-Form Music Generation
Abstract:
We introduce InspireMusic, a framework integrated super resolution and large language model for high-fidelity long-form music generation. A unified framework generates high-fidelity music, songs, and audio, which incorporates an autoregressive transformer with a super-resolution flow-matching model. This framework enables the controllable generation of high-fidelity long-form music at a higher sampling rate from both text and audio prompts. Our model differs from previous approaches, as we utilize an audio tokenizer with one codebook that contains richer semantic information, thereby reducing training costs and enhancing efficiency. This combination enables us to achieve high-quality audio generation with long-form coherence of up to $8$ minutes. Then, an autoregressive transformer model based on Qwen 2.5 predicts audio tokens. Next, we employ a super-resolution flow-matching model to generate high-sampling rate audio with fine-grained details learned from an acoustic codec model. Comprehensive experiments show that the InspireMusic-1.5B-Long model has a comparable performance to recent top-tier open-source systems, including MusicGen and Stable Audio 2.0, on subjective and objective evaluations. The code and pre-trained models are released at https://github.com/FunAudioLLM/InspireMusic.

Authors:Zezeng Li, Xiaoyu Du, Na Lei, Liming Chen, Weimin Wang
Title: NoPain: No-box Point Cloud Attack via Optimal Transport Singular Boundary
Abstract:
Adversarial attacks exploit the vulnerability of deep models against adversarial samples. Existing point cloud attackers are tailored to specific models, iteratively optimizing perturbations based on gradients in either a white-box or black-box setting. Despite their promising attack performance, they often struggle to produce transferable adversarial samples due to overfitting the specific parameters of surrogate models. To overcome this issue, we shift our focus to the data distribution itself and introduce a novel approach named NoPain, which employs optimal transport (OT) to identify the inherent singular boundaries of the data manifold for cross-network point cloud attacks. Specifically, we first calculate the OT mapping from noise to the target feature space, then identify singular boundaries by locating non-differentiable positions. Finally, we sample along singular boundaries to generate adversarial point clouds. Once the singular boundaries are determined, NoPain can efficiently produce adversarial samples without the need of iterative updates or guidance from the surrogate classifiers. Extensive experiments demonstrate that the proposed end-to-end method outperforms baseline approaches in terms of both transferability and efficiency, while also maintaining notable advantages even against defense strategies. Code and model are available at https://github.com/cognaclee/nopain

Authors:Qiusi Zhan, Richard Fang, Henil Shalin Panchal, Daniel Kang
Title: Adaptive Attacks Break Defenses Against Indirect Prompt Injection Attacks on LLM Agents
Abstract:
Large Language Model (LLM) agents exhibit remarkable performance across diverse applications by using external tools to interact with environments. However, integrating external tools introduces security risks, such as indirect prompt injection (IPI) attacks. Despite defenses designed for IPI attacks, their robustness remains questionable due to insufficient testing against adaptive attacks. In this paper, we evaluate eight different defenses and bypass all of them using adaptive attacks, consistently achieving an attack success rate of over 50%. This reveals critical vulnerabilities in current defenses. Our research underscores the need for adaptive attack evaluation when designing defenses to ensure robustness and reliability. The code is available at https://github.com/uiuc-kang-lab/AdaptiveAttackAgent.

Authors:Nilay Yilmaz, Maitreya Patel, Yiran Lawrence Luo, Tejas Gokhale, Chitta Baral, Suren Jayasuriya, Yezhou Yang
Title: VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information. Despite their exceptional performance on visual understanding benchmarks, measuring their ability to reason abstractly across multiple images remains a significant challenge. To address this, we introduce VOILA, a large-scale, open-ended, dynamic benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning. VOILA employs an analogical mapping approach in the visual domain, requiring models to generate an image that completes an analogy between two given image pairs, reference and application, without relying on predefined choices. Our experiments demonstrate that the analogical reasoning tasks in VOILA present a challenge to MLLMs. Through multi-step analysis, we reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning. Notably, we observe that performance improves when following a multi-step strategy of least-to-most prompting. Comprehensive evaluations on open-source models and GPT-4o show that on text-based answers, the best accuracy for challenging scenarios is 13% (LLaMa 3.2) and even for simpler tasks is only 29% (GPT-4o), while human performance is significantly higher at 70% across both difficulty levels.

Authors:Hongyi Cai, Yuqian Fu, Hongming Fu, Bo Zhao
Title: MergeIT: From Selection to Merging for Efficient Instruction Tuning
Abstract:
Instruction tuning is crucial for optimizing Large Language Models (LLMs), yet mainstream data selection methods heavily rely on LLMs as instruction quality scorers, leading to high computational costs and reduced data diversity. To address these limitations, we propose MergeIT, a novel LLM-based Merging strategy for better Instruction Tuning that shifts the focus from selection to synthesis. MergeIT operates in two stages: first, topic-aware filtering clusters and refines the dataset, preserving diversity while eliminating redundancy without relying on LLM-based scoring. Second, LLM-based merging synthesizes semantically similar instructions into more informative and compact training data, enhancing data richness while further reducing dataset size. Experimental results demonstrate that MergeIT enables efficient, diverse, and scalable instruction selection and synthesis, establishing LLM-based merging as a promising alternative to conventional scoring-based selection methods for instruction tuning. Our source code and datasets are now available at https://github.com/XcloudFance/MergeIT

Authors:Shinwoo Park, Shubin Kim, Do-Kyung Kim, Yo-Sub Han
Title: KatFishNet: Detecting LLM-Generated Korean Text through Linguistic Feature Analysis
Abstract:
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.

Authors:Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal, Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr, Fahad Shahbaz Khan, Salman Khan
Title: LLM Post-Training: A Deep Dive into Reasoning Large Language Models
Abstract:
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications. Pretraining on vast web-scale data has laid the foundation for these models, yet the research community is now increasingly shifting focus toward post-training techniques to achieve further breakthroughs. While pretraining provides a broad linguistic foundation, post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations. Fine-tuning, reinforcement learning, and test-time scaling have emerged as critical strategies for optimizing LLMs performance, ensuring robustness, and improving adaptability across various real-world tasks. This survey provides a systematic exploration of post-training methodologies, analyzing their role in refining LLMs beyond pretraining, addressing key challenges such as catastrophic forgetting, reward hacking, and inference-time trade-offs. We highlight emerging directions in model alignment, scalable adaptation, and inference-time reasoning, and outline future research directions. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/mbzuai-oryx/Awesome-LLM-Post-training.

Authors:Dingyi Zhang, Deyu Zhou
Title: Persuasion Should be Double-Blind: A Multi-Domain Dialogue Dataset With Faithfulness Based on Causal Theory of Mind
Abstract:
Persuasive dialogue plays a pivotal role in human communication, influencing various domains. Recent persuasive dialogue datasets often fail to align with real-world interpersonal interactions, leading to unfaithful representations. For instance, unrealistic scenarios may arise, such as when the persuadee explicitly instructs the persuader on which persuasion strategies to employ, with each of the persuadee's questions corresponding to a specific strategy for the persuader to follow. This issue can be attributed to a violation of the "Double Blind" condition, where critical information is fully shared between participants. In actual human interactions, however, key information such as the mental state of the persuadee and the persuasion strategies of the persuader is not directly accessible. The persuader must infer the persuadee's mental state using Theory of Mind capabilities and construct arguments that align with the persuadee's motivations. To address this gap, we introduce ToMMA, a novel multi-agent framework for dialogue generation that is guided by causal Theory of Mind. This framework ensures that information remains undisclosed between agents, preserving "double-blind" conditions, while causal ToM directs the persuader's reasoning, enhancing alignment with human-like persuasion dynamics. Consequently, we present CToMPersu, a multi-domain, multi-turn persuasive dialogue dataset that tackles both double-blind and logical coherence issues, demonstrating superior performance across multiple metrics and achieving better alignment with real human dialogues. Our dataset and prompts are available at https://github.com/DingyiZhang/ToMMA-CToMPersu .

Authors:Xueyun Tian, Wei Li, Bingbing Xu, Yige Yuan, Yuanzhuo Wang, Huawei Shen
Title: MIGE: Mutually Enhanced Multimodal Instruction-Based Image Generation and Editing
Abstract:
Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Inspired by this, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It first treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation, then introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism. This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: by leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a SOTA in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.

Authors:Menghua Wu, Russell Littman, Jacob Levine, Lin Qiu, Tommaso Biancalani, David Richmond, Jan-Christian Huetter
Title: Contextualizing biological perturbation experiments through language
Abstract:
High-content perturbation experiments allow scientists to probe biomolecular systems at unprecedented resolution, but experimental and analysis costs pose significant barriers to widespread adoption. Machine learning has the potential to guide efficient exploration of the perturbation space and extract novel insights from these data. However, current approaches neglect the semantic richness of the relevant biology, and their objectives are misaligned with downstream biological analyses. In this paper, we hypothesize that large language models (LLMs) present a natural medium for representing complex biological relationships and rationalizing experimental outcomes. We propose PerturbQA, a benchmark for structured reasoning over perturbation experiments. Unlike current benchmarks that primarily interrogate existing knowledge, PerturbQA is inspired by open problems in perturbation modeling: prediction of differential expression and change of direction for unseen perturbations, and gene set enrichment. We evaluate state-of-the-art machine learning and statistical approaches for modeling perturbations, as well as standard LLM reasoning strategies, and we find that current methods perform poorly on PerturbQA. As a proof of feasibility, we introduce Summer (SUMMarize, retrievE, and answeR, a simple, domain-informed LLM framework that matches or exceeds the current state-of-the-art. Our code and data are publicly available at https://github.com/genentech/PerturbQA.

Authors:Li Yang, Mirna El Rajab, Abdallah Shami, Sami Muhaidat
Title: Enabling AutoML for Zero-Touch Network Security: Use-Case Driven Analysis
Abstract:
Zero-Touch Networks (ZTNs) represent a state-of-the-art paradigm shift towards fully automated and intelligent network management, enabling the automation and intelligence required to manage the complexity, scale, and dynamic nature of next-generation (6G) networks. ZTNs leverage Artificial Intelligence (AI) and Machine Learning (ML) to enhance operational efficiency, support intelligent decision-making, and ensure effective resource allocation. However, the implementation of ZTNs is subject to security challenges that need to be resolved to achieve their full potential. In particular, two critical challenges arise: the need for human expertise in developing AI/ML-based security mechanisms, and the threat of adversarial attacks targeting AI/ML models. In this survey paper, we provide a comprehensive review of current security issues in ZTNs, emphasizing the need for advanced AI/ML-based security mechanisms that require minimal human intervention and protect AI/ML models themselves. Furthermore, we explore the potential of Automated ML (AutoML) technologies in developing robust security solutions for ZTNs. Through case studies, we illustrate practical approaches to securing ZTNs against both conventional and AI/ML-specific threats, including the development of autonomous intrusion detection systems and strategies to combat Adversarial ML (AML) attacks. The paper concludes with a discussion of the future research directions for the development of ZTN security approaches.

Authors:Xi Tang, Jihao Qiu, Lingxi Xie, Yunjie Tian, Jianbin Jiao, Qixiang Ye
Title: Adaptive Keyframe Sampling for Long Video Understanding
Abstract:
Multimodal large language models (MLLMs) have enabled open-world visual understanding by injecting visual input as extra tokens into large language models (LLMs) as contexts. However, when the visual input changes from a single image to a long video, the above paradigm encounters difficulty because the vast amount of video tokens has significantly exceeded the maximal capacity of MLLMs. Therefore, existing video-based MLLMs are mostly established upon sampling a small portion of tokens from input data, which can cause key information to be lost and thus produce incorrect answers. This paper presents a simple yet effective algorithm named Adaptive Keyframe Sampling (AKS). It inserts a plug-and-play module known as keyframe selection, which aims to maximize the useful information with a fixed number of video tokens. We formulate keyframe selection as an optimization involving (1) the relevance between the keyframes and the prompt, and (2) the coverage of the keyframes over the video, and present an adaptive algorithm to approximate the best solution. Experiments on two long video understanding benchmarks validate that Adaptive Keyframe Sampling improves video QA accuracy (beyond strong baselines) upon selecting informative keyframes. Our study reveals the importance of information pre-filtering in video-based MLLMs. Code is available at https://github.com/ncTimTang/AKS.

Authors:Aleksandr Nesterov, Andrey Sakhovskiy, Ivan Sviridov, Airat Valiev, Vladimir Makharev, Petr Anokhin, Galina Zubkova, Elena Tutubalina
Title: RuCCoD: Towards Automated ICD Coding in Russian
Abstract:
This study investigates the feasibility of automating clinical coding in Russian, a language with limited biomedical resources. We present a new dataset for ICD coding, which includes diagnosis fields from electronic health records (EHRs) annotated with over 10,000 entities and more than 1,500 unique ICD codes. This dataset serves as a benchmark for several state-of-the-art models, including BERT, LLaMA with LoRA, and RAG, with additional experiments examining transfer learning across domains (from PubMed abstracts to medical diagnosis) and terminologies (from UMLS concepts to ICD codes). We then apply the best-performing model to label an in-house EHR dataset containing patient histories from 2017 to 2021. Our experiments, conducted on a carefully curated test set, demonstrate that training with the automated predicted codes leads to a significant improvement in accuracy compared to manually annotated data from physicians. We believe our findings offer valuable insights into the potential for automating clinical coding in resource-limited languages like Russian, which could enhance clinical efficiency and data accuracy in these contexts. Our code and dataset are available at https://github.com/auto-icd-coding/ruccod.

Authors:Maria Koshkina, James H. Elder
Title: Towards long-term player tracking with graph hierarchies and domain-specific features
Abstract:
In team sports analytics, long-term player tracking remains a challenging task due to player appearance similarity, occlusion, and dynamic motion patterns. Accurately re-identifying players and reconnecting tracklets after extended absences from the field of view or prolonged occlusions is crucial for robust analysis. We introduce SportsSUSHI, a hierarchical graph-based approach that leverages domain-specific features, including jersey numbers, team IDs, and field coordinates, to enhance tracking accuracy. SportsSUSHI achieves high performance on the SoccerNet dataset and a newly proposed hockey tracking dataset. Our hockey dataset, recorded using a stationary camera capturing the entire playing surface, contains long sequences and annotations for team IDs and jersey numbers, making it well-suited for evaluating long-term tracking capabilities. The inclusion of domain-specific features in our approach significantly improves association accuracy, as demonstrated in our experiments. The dataset and code are available at https://github.com/mkoshkina/sports-SUSHI.

Authors:Zihan Huang, Xinyu Shi, Zecheng Hao, Tong Bu, Jianhao Ding, Zhaofei Yu, Tiejun Huang
Title: Towards High-performance Spiking Transformers from ANN to SNN Conversion
Abstract:
Spiking neural networks (SNNs) show great potential due to their energy efficiency, fast processing capabilities, and robustness. There are two main approaches to constructing SNNs. Direct training methods require much memory, while conversion methods offer a simpler and more efficient option. However, current conversion methods mainly focus on converting convolutional neural networks (CNNs) to SNNs. Converting Transformers to SNN is challenging because of the presence of non-linear modules. In this paper, we propose an Expectation Compensation Module to preserve the accuracy of the conversion. The core idea is to use information from the previous T time-steps to calculate the expected output at time-step T. We also propose a Multi-Threshold Neuron and the corresponding Parallel Parameter normalization to address the challenge of large time steps needed for high accuracy, aiming to reduce network latency and power consumption. Our experimental results demonstrate that our approach achieves state-of-the-art performance. For example, we achieve a top-1 accuracy of 88.60\% with only a 1\% loss in accuracy using 4 time steps while consuming only 35\% of the original power of the Transformer. To our knowledge, this is the first successful Artificial Neural Network (ANN) to SNN conversion for Spiking Transformers that achieves high accuracy, low latency, and low power consumption on complex datasets. The source codes of the proposed method are available at https://github.com/h-z-h-cell/Transformer-to-SNN-ECMT.

Authors:Baiting Luo, Ava Pettet, Aron Laszka, Abhishek Dubey, Ayan Mukhopadhyay
Title: Scalable Decision-Making in Stochastic Environments through Learned Temporal Abstraction
Abstract:
Sequential decision-making in high-dimensional continuous action spaces, particularly in stochastic environments, faces significant computational challenges. We explore this challenge in the traditional offline RL setting, where an agent must learn how to make decisions based on data collected through a stochastic behavior policy. We present Latent Macro Action Planner (L-MAP), which addresses this challenge by learning a set of temporally extended macro-actions through a state-conditional Vector Quantized Variational Autoencoder (VQ-VAE), effectively reducing action dimensionality. L-MAP employs a (separate) learned prior model that acts as a latent transition model and allows efficient sampling of plausible actions. During planning, our approach accounts for stochasticity in both the environment and the behavior policy by using Monte Carlo tree search (MCTS). In offline RL settings, including stochastic continuous control tasks, L-MAP efficiently searches over discrete latent actions to yield high expected returns. Empirical results demonstrate that L-MAP maintains low decision latency despite increased action dimensionality. Notably, across tasks ranging from continuous control with inherently stochastic dynamics to high-dimensional robotic hand manipulation, L-MAP significantly outperforms existing model-based methods and performs on-par with strong model-free actor-critic baselines, highlighting the effectiveness of the proposed approach in planning in complex and stochastic environments with high-dimensional action spaces.

Authors:Zijian Kang, Yueyang Li, Shengyu Gong, Weiming Zeng, Hongjie Yan, Lingbin Bian, Zhiguo Zhang, Wai Ting Siok, Nizhuan Wang
Title: Hypergraph Multi-Modal Learning for EEG-based Emotion Recognition in Conversation
Abstract:
Emotional Recognition in Conversation (ERC) is valuable for diagnosing health conditions such as autism and depression, and for understanding the emotions of individuals who struggle to express their feelings. Current ERC methods primarily rely on semantic, audio and visual data but face significant challenges in integrating physiological signals such as Electroencephalography (EEG). This research proposes Hypergraph Multi-Modal Learning (Hyper-MML), a novel framework for identifying emotions in conversation. Hyper-MML effectively integrates EEG with audio and video information to capture complex emotional dynamics. Firstly, we introduce an Adaptive Brain Encoder with Mutual-cross Attention (ABEMA) module for processing EEG signals. This module captures emotion-relevant features across different frequency bands and adapts to subject-specific variations through hierarchical mutual-cross attention mechanisms. Secondly, we propose an Adaptive Hypergraph Fusion Module (AHFM) to actively model the higher-order relationships among multi-modal signals in ERC. Experimental results on the EAV and AFFEC datasets demonstrate that our Hyper-MML model significantly outperforms current state-of-the-art methods. The proposed Hyper-MML can serve as an effective communication tool for healthcare professionals, enabling better engagement with patients who have difficulty expressing their emotions. The official implementation codes are available at https://github.com/NZWANG/Hyper-MML.

Authors:Yunfan Lu, Xiaogang Xu, Hao Lu, Yanlin Qian, Pengteng Li, Huizai Yao, Bin Yang, Junyi Li, Qianyi Cai, Weiyu Guo, Hui Xiong
Title: SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events
Abstract:
Event cameras, with a high dynamic range exceeding $120dB$, significantly outperform traditional embedded cameras, robustly recording detailed changing information under various lighting conditions, including both low- and high-light situations. However, recent research on utilizing event data has primarily focused on low-light image enhancement, neglecting image enhancement and brightness adjustment across a broader range of lighting conditions, such as normal or high illumination. Based on this, we propose a novel research question: how to employ events to enhance and adaptively adjust the brightness of images captured under broad lighting conditions? To investigate this question, we first collected a new dataset, SEE-600K, consisting of 610,126 images and corresponding events across 202 scenarios, each featuring an average of four lighting conditions with over a 1000-fold variation in illumination. Subsequently, we propose a framework that effectively utilizes events to smoothly adjust image brightness through the use of prompts. Our framework captures color through sensor patterns, uses cross-attention to model events as a brightness dictionary, and adjusts the image's dynamic range to form a broad light-range representation (BLR), which is then decoded at the pixel level based on the brightness prompt. Experimental results demonstrate that our method not only performs well on the low-light enhancement dataset but also shows robust performance on broader light-range image enhancement using the SEE-600K dataset. Additionally, our approach enables pixel-level brightness adjustment, providing flexibility for post-processing and inspiring more imaging applications. The dataset and source code are publicly available at:https://github.com/yunfanLu/SEE.

Authors:Yunfan Lu, Xiaogang Xu, Hao Lu, Yanlin Qian, Pengteng Li, Huizai Yao, Bin Yang, Junyi Li, Qianyi Cai, Weiyu Guo, Hui Xiong
Title: SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events
Abstract:
Event cameras, with a high dynamic range exceeding $120dB$, significantly outperform traditional embedded cameras, robustly recording detailed changing information under various lighting conditions, including both low- and high-light situations. However, recent research on utilizing event data has primarily focused on low-light image enhancement, neglecting image enhancement and brightness adjustment across a broader range of lighting conditions, such as normal or high illumination. Based on this, we propose a novel research question: how to employ events to enhance and adaptively adjust the brightness of images captured under broad lighting conditions? To investigate this question, we first collected a new dataset, SEE-600K, consisting of 610,126 images and corresponding events across 202 scenarios, each featuring an average of four lighting conditions with over a 1000-fold variation in illumination. Subsequently, we propose a framework that effectively utilizes events to smoothly adjust image brightness through the use of prompts. Our framework captures color through sensor patterns, uses cross-attention to model events as a brightness dictionary, and adjusts the image's dynamic range to form a broad light-range representation (BLR), which is then decoded at the pixel level based on the brightness prompt. Experimental results demonstrate that our method not only performs well on the low-light enhancement dataset but also shows robust performance on broader light-range image enhancement using the SEE-600K dataset. Additionally, our approach enables pixel-level brightness adjustment, providing flexibility for post-processing and inspiring more imaging applications. The dataset and source code are publicly available at: https://github.com/yunfanLu/SEE.

Authors:Marina D'Amato, Jeroen van der Laak, Francesco Ciompi
Title: "No negatives needed": weakly-supervised regression for interpretable tumor detection in whole-slide histopathology images
Abstract:
Accurate tumor detection in digital pathology whole-slide images (WSIs) is crucial for cancer diagnosis and treatment planning. Multiple Instance Learning (MIL) has emerged as a widely used approach for weakly-supervised tumor detection with large-scale data without the need for manual annotations. However, traditional MIL methods often depend on classification tasks that require tumor-free cases as negative examples, which are challenging to obtain in real-world clinical workflows, especially for surgical resection specimens. We address this limitation by reformulating tumor detection as a regression task, estimating tumor percentages from WSIs, a clinically available target across multiple cancer types. In this paper, we provide an analysis of the proposed weakly-supervised regression framework by applying it to multiple organs, specimen types and clinical scenarios. We characterize the robustness of our framework to tumor percentage as a noisy regression target, and introduce a novel concept of amplification technique to improve tumor detection sensitivity when learning from small tumor regions. Finally, we provide interpretable insights into the model's predictions by analyzing visual attention and logit maps. Our code is available at https://github.com/DIAGNijmegen/tumor-percentage-mil-regression.

Authors:Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, Yulan He
Title: CODI: Compressing Chain-of-Thought into Continuous Space via Self-Distillation
Abstract:
Chain-of-Thought (CoT) reasoning enhances Large Language Models (LLMs) by encouraging step-by-step reasoning in natural language. However, leveraging a latent continuous space for reasoning may offer benefits in terms of both efficiency and robustness. Prior implicit CoT methods attempt to bypass language completely by reasoning in continuous space but have consistently underperformed compared to the standard explicit CoT approach. We introduce CODI (Continuous Chain-of-Thought via Self-Distillation), a novel training framework that effectively compresses natural language CoT into continuous space. CODI jointly trains a teacher task (Explicit CoT) and a student task (Implicit CoT), distilling the reasoning ability from language into continuous space by aligning the hidden states of a designated token. Our experiments show that CODI is the first implicit CoT approach to match the performance of explicit CoT on GSM8k at the GPT-2 scale, achieving a 3.1x compression rate and outperforming the previous state-of-the-art by 28.2% in accuracy. CODI also demonstrates robustness, generalizable to complex datasets, and interpretability. These results validate that LLMs can reason effectively not only in natural language, but also in a latent continuous space. Code is available at https://github.com/zhenyi4/codi.

Authors:Jingru Fu, Yuqi Zheng, Neel Dey, Daniel Ferreira, Rodrigo Moreno
Title: Synthesizing Individualized Aging Brains in Health and Disease with Generative Models and Parallel Transport
Abstract:
Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain's current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer's disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at: https://github.com/Fjr9516/InBrainSyn.

Authors:Chanhui Lee, Yeonghwan Song, Jeany Son
Title: Data-free Universal Adversarial Perturbation with Pseudo-semantic Prior
Abstract:
Data-free Universal Adversarial Perturbation (UAP) is an image-agnostic adversarial attack that deceives deep neural networks using a single perturbation generated solely from random noise without relying on data priors. However, traditional data-free UAP methods often suffer from limited transferability due to the absence of semantic content in random noise. To address this issue, we propose a novel data-free universal attack method that recursively extracts pseudo-semantic priors directly from the UAPs during training to enrich the semantic content within the data-free UAP framework. Our approach effectively leverages latent semantic information within UAPs via region sampling, enabling successful input transformations-typically ineffective in traditional data-free UAP methods due to the lack of semantic cues-and significantly enhancing black-box transferability. Furthermore, we introduce a sample reweighting technique to mitigate potential imbalances from random sampling and transformations, emphasizing hard examples less affected by the UAPs. Comprehensive experiments on ImageNet show that our method achieves state-of-the-art performance in average fooling rate by a substantial margin, notably improves attack transferability across various CNN architectures compared to existing data-free UAP methods, and even surpasses data-dependent UAP methods. Code is available at: https://github.com/ChnanChan/PSP-UAP.

Authors:Fangxu Yu, Lai Jiang, Shenyi Huang, Zhen Wu, Xinyu Dai
Title: PersuasiveToM: A Benchmark for Evaluating Machine Theory of Mind in Persuasive Dialogues
Abstract:
The ability to understand and predict the mental states of oneself and others, known as the Theory of Mind (ToM), is crucial for effective social scenarios. Although recent studies have evaluated ToM in Large Language Models (LLMs), existing benchmarks focus on simplified settings (e.g., Sally-Anne-style tasks) and overlook the complexity of real-world social interactions. To mitigate this gap, we propose PersuasiveToM, a benchmark designed to evaluate the ToM abilities of LLMs in persuasive dialogues. Our framework contains two core tasks: ToM Reasoning, which tests tracking of evolving desires, beliefs, and intentions; and ToM Application, which assesses the use of inferred mental states to predict and evaluate persuasion strategies. Experiments across eight leading LLMs reveal that while models excel on multiple questions, they struggle with the tasks that need tracking the dynamics and shifts of mental states and understanding the mental states in the whole dialogue comprehensively. Our aim with PersuasiveToM is to allow an effective evaluation of the ToM reasoning ability of LLMs with more focus on complex psychological activities. Our code is available at https://github.com/Yu-Fangxu/PersuasiveToM.

Authors:Junchao Zhu, Ruining Deng, Tianyuan Yao, Juming Xiong, Chongyu Qu, Junlin Guo, Siqi Lu, Yucheng Tang, Daguang Xu, Mengmeng Yin, Yu Wang, Shilin Zhao, Yaohong Wang, Haichun Yang, Yuankai Huo
Title: MagNet: Multi-Level Attention Graph Network for Predicting High-Resolution Spatial Transcriptomics
Abstract:
The rapid development of spatial transcriptomics (ST) offers new opportunities to explore the gene expression patterns within the spatial microenvironment. Current research integrates pathological images to infer gene expression, addressing the high costs and time-consuming processes to generate spatial transcriptomics data. However, as spatial transcriptomics resolution continues to improve, existing methods remain primarily focused on gene expression prediction at low-resolution spot levels. These methods face significant challenges, especially the information bottleneck, when they are applied to high-resolution HD data. To bridge this gap, this paper introduces MagNet, a multi-level attention graph network designed for accurate prediction of high-resolution HD data. MagNet employs cross-attention layers to integrate features from multi-resolution image patches hierarchically and utilizes a GAT-Transformer module to aggregate neighborhood information. By integrating multilevel features, MagNet overcomes the limitations posed by low-resolution inputs in predicting high-resolution gene expression. We systematically evaluated MagNet and existing ST prediction models on both a private spatial transcriptomics dataset and a public dataset at three different resolution levels. The results demonstrate that MagNet achieves state-of-the-art performance at both spot level and high-resolution bin levels, providing a novel methodology and benchmark for future research and applications in high-resolution HD-level spatial transcriptomics. Code is available at https://github.com/Junchao-Zhu/MagNet.

Authors:Woo Kyoung Han, Byeonghun Lee, Hyunmin Cho, Sunghoon Im, Kyong Hwan Jin
Title: Towards Lossless Implicit Neural Representation via Bit Plane Decomposition
Abstract:
We quantify the upper bound on the size of the implicit neural representation (INR) model from a digital perspective. The upper bound of the model size increases exponentially as the required bit-precision increases. To this end, we present a bit-plane decomposition method that makes INR predict bit-planes, producing the same effect as reducing the upper bound of the model size. We validate our hypothesis that reducing the upper bound leads to faster convergence with constant model size. Our method achieves lossless representation in 2D image and audio fitting, even for high bit-depth signals, such as 16-bit, which was previously unachievable. We pioneered the presence of bit bias, which INR prioritizes as the most significant bit (MSB). We expand the application of the INR task to bit depth expansion, lossless image compression, and extreme network quantization. Our source code is available at https://github.com/WooKyoungHan/LosslessINR

Authors:Xiusheng Huang, Jiaxiang Liu, Yequan Wang, Jun Zhao, Kang Liu
Title: Capability Localization: Capabilities Can be Localized rather than Individual Knowledge
Abstract:
Large scale language models have achieved superior performance in tasks related to natural language processing, however, it is still unclear how model parameters affect performance improvement. Previous studies assumed that individual knowledge is stored in local parameters, and the storage form of individual knowledge is dispersed parameters, parameter layers, or parameter chains, which are not unified. We found through fidelity and reliability evaluation experiments that individual knowledge cannot be localized. Afterwards, we constructed a dataset for decoupling experiments and discovered the potential for localizing data commonalities. To further reveal this phenomenon, this paper proposes a Commonality Neuron Localization (CNL) method, which successfully locates commonality neurons and achieves a neuron overlap rate of 96.42% on the GSM8K dataset. Finally, we have demonstrated through cross data experiments that commonality neurons are a collection of capability neurons that possess the capability to enhance performance. Our code is available at https://github.com/nlpkeg/Capability-Neuron-Localization.

Authors:Thanet Markchom, Tong Wu, Liting Huang, Huizhi Liang
Title: UoR-NCL at SemEval-2025 Task 1: Using Generative LLMs and CLIP Models for Multilingual Multimodal Idiomaticity Representation
Abstract:
SemEval-2025 Task 1 focuses on ranking images based on their alignment with a given nominal compound that may carry idiomatic meaning in both English and Brazilian Portuguese. To address this challenge, this work uses generative large language models (LLMs) and multilingual CLIP models to enhance idiomatic compound representations. LLMs generate idiomatic meanings for potentially idiomatic compounds, enriching their semantic interpretation. These meanings are then encoded using multilingual CLIP models, serving as representations for image ranking. Contrastive learning and data augmentation techniques are applied to fine-tune these embeddings for improved performance. Experimental results show that multimodal representations extracted through this method outperformed those based solely on the original nominal compounds. The fine-tuning approach shows promising outcomes but is less effective than using embeddings without fine-tuning. The source code used in this paper is available at https://github.com/tongwu17/SemEval-2025-Task1-UoR-NCL.

Authors:Yujie Li, Xiangkun Wang, Xin Yang, Marcello Bonsangue, Junbo Zhang, Tianrui Li
Title: Improving Open-world Continual Learning under the Constraints of Scarce Labeled Data
Abstract:
Open-world continual learning (OWCL) adapts to sequential tasks with open samples, learning knowledge incrementally while preventing forgetting. However, existing OWCL still requires a large amount of labeled data for training, which is often impractical in real-world applications. Given that new categories/entities typically come with limited annotations and are in small quantities, a more realistic situation is OWCL with scarce labeled data, i.e., few-shot training samples. Hence, this paper investigates the problem of open-world few-shot continual learning (OFCL), challenging in (i) learning unbounded tasks without forgetting previous knowledge and avoiding overfitting, (ii) constructing compact decision boundaries for open detection with limited labeled data, and (iii) transferring knowledge about knowns and unknowns and even update the unknowns to knowns once the labels of open samples are learned. In response, we propose a novel OFCL framework that integrates three key components: (1) an instance-wise token augmentation (ITA) that represents and enriches sample representations with additional knowledge, (2) a margin-based open boundary (MOB) that supports open detection with new tasks emerge over time, and (3) an adaptive knowledge space (AKS) that endows unknowns with knowledge for the updating from unknowns to knowns. Finally, extensive experiments show that the proposed OFCL framework outperforms all baselines remarkably with practical importance and reproducibility. The source code is released at https://github.com/liyj1201/OFCL.

Authors:Xue Yang, Tao Chen, Lei Guo, Wenbo Jiang, Ji Guo, Yongming Li, Jiaming He
Title: BadRefSR: Backdoor Attacks Against Reference-based Image Super Resolution
Abstract:
Reference-based image super-resolution (RefSR) represents a promising advancement in super-resolution (SR). In contrast to single-image super-resolution (SISR), RefSR leverages an additional reference image to help recover high-frequency details, yet its vulnerability to backdoor attacks has not been explored. To fill this research gap, we propose a novel attack framework called BadRefSR, which embeds backdoors in the RefSR model by adding triggers to the reference images and training with a mixed loss function. Extensive experiments across various backdoor attack settings demonstrate the effectiveness of BadRefSR. The compromised RefSR network performs normally on clean input images, while outputting attacker-specified target images on triggered input images. Our study aims to alert researchers to the potential backdoor risks in RefSR. Codes are available at https://github.com/xuefusiji/BadRefSR.

Authors:Shawxing Kwok
Title: A Faster Algorithm for Maximum Weight Matching on Unrestricted Bipartite Graphs
Abstract:
Given a weighted bipartite graph $G = (L, R, E, w)$, the maximum weight matching (MWM) problem seeks to find a matching $M \subseteq E$ that maximizes the total weight $\sum_{e \in M} w(e)$. This paper presents a novel algorithm with a time complexity of $O(\min(X^3 + E, XE + X^2\log X))$, where $X = \min(|L|, |R|)$. Unlike many existing algorithms, our approach supports real-valued weights without additional constraints. Under this condition, our result improves upon the previous best-known bound of $O(VE + V^2\log V)$, or more strictly $O(XE + XV\log V)$, where $V = L \cup R$. The suggested implementation code is simplified and publicly available at https://github.com/ShawxingKwok/Kwok-algorithm, with the average-case time complexity of $O(E^{1.4} + LR)$ estimated from experimental results on random graphs.

Authors:Shaoming Li, Qing Cai, Songqi Kong, Runqing Tan, Heng Tong, Shiji Qiu, Yongguo Jiang, Zhi Liu
Title: MESC-3D:Mining Effective Semantic Cues for 3D Reconstruction from a Single Image
Abstract:
Reconstructing 3D shapes from a single image plays an important role in computer vision. Many methods have been proposed and achieve impressive performance. However, existing methods mainly focus on extracting semantic information from images and then simply concatenating it with 3D point clouds without further exploring the concatenated semantics. As a result, these entangled semantic features significantly hinder the reconstruction performance. In this paper, we propose a novel single-image 3D reconstruction method called Mining Effective Semantic Cues for 3D Reconstruction from a Single Image (MESC-3D), which can actively mine effective semantic cues from entangled features. Specifically, we design an Effective Semantic Mining Module to establish connections between point clouds and image semantic attributes, enabling the point clouds to autonomously select the necessary information. Furthermore, to address the potential insufficiencies in semantic information from a single image, such as occlusions, inspired by the human ability to represent 3D objects using prior knowledge drawn from daily experiences, we introduce a 3D Semantic Prior Learning Module. This module incorporates semantic understanding of spatial structures, enabling the model to interpret and reconstruct 3D objects with greater accuracy and realism, closely mirroring human perception of complex 3D environments. Extensive evaluations show that our method achieves significant improvements in reconstruction quality and robustness compared to prior works. Additionally, further experiments validate the strong generalization capabilities and excels in zero-shot preformance on unseen classes. Code is available at https://github.com/QINGQINGLE/MESC-3D.

Authors:Jonathan Drechsel, Anja Reusch, Steffen Herbold
Title: MAMUT: A Novel Framework for Modifying Mathematical Formulas for the Generation of Specialized Datasets for Language Model Training
Abstract:
Mathematical formulas are a fundamental and widely used component in various scientific fields, serving as a universal language for expressing complex concepts and relationships. While state-of-the-art transformer models excel in processing and understanding natural language, they encounter challenges with mathematical notation, which involves a complex structure and diverse representations. This study focuses on the development of specialized training datasets to enhance the encoding of mathematical content. We introduce Math Mutator (MAMUT), a framework capable of generating equivalent and falsified versions of a given mathematical formula in LaTeX notation, effectively capturing the mathematical variety in notation of the same concept. Based on MAMUT, we have generated four large mathematical datasets containing diverse notation. Experiments show that models trained on these datasets exhibit new SoTA performance on mathematical retrieval tasks. We publish our code, generated datasets, and pretrained mathematical models: https://github.com/aieng-lab/math-mutator.

Authors:Yuxiang Chen, Haocheng Xi, Jun Zhu, Jianfei Chen
Title: Oscillation-Reduced MXFP4 Training for Vision Transformers
Abstract:
Pre-training Transformers in FP4 precision is becoming a promising approach to gain substantial speedup, but it comes with a considerable loss of accuracy. Microscaling (MX) data format provides a fine-grained per-group quantization method to improve the representation ability of the FP4 format and is supported by the next-generation Blackwell GPU architecture. However, training with MXFP4 data format still results in significant degradation and there is a lack of systematic research on the reason. In this work, we propose a novel training method TetraJet for a more accurate FP4 training. We comprehensively evaluate all of the quantizers involved in the training, and identify the weight oscillation problem in the forward pass as the main source of the degradation in MXFP4 training. Therefore, we introduce two novel methods, EMA Quantizer (Q-EMA) and Adaptive Ramping Optimizer (Q-Ramping), to resolve the oscillation problem. Extensive experiments on Vision Transformers demonstrate that TetraJet consistently outperforms the existing 4-bit training methods, and Q-EMA & Q-Ramping can provide additional enhancement by effectively reducing oscillation. We decreased the accuracy degradation by more than $50\%$ compared to the baseline, and can even achieve competitive performance compared to full precision training. The codes are available at https://github.com/thu-ml/TetraJet-MXFP4Training

Authors:Ragib Amin Nihal, Benjamin Yen, Runwu Shi, Kazuhiro Nakadai
Title: Weakly Supervised Multiple Instance Learning for Whale Call Detection and Temporal Localization in Long-Duration Passive Acoustic Monitoring
Abstract:
Marine ecosystem monitoring via Passive Acoustic Monitoring (PAM) generates vast data, but deep learning often requires precise annotations and short segments. We introduce DSMIL-LocNet, a Multiple Instance Learning framework for whale call detection and localization using only bag-level labels. Our dual-stream model processes 2-30 minute audio segments, leveraging spectral and temporal features with attention-based instance selection. Tests on Antarctic whale data show longer contexts improve classification (F1: 0.8-0.9) while medium instances ensure localization precision (0.65-0.70). This suggests MIL can enhance scalable marine monitoring. Code: https://github.com/Ragib-Amin-Nihal/DSMIL-Loc

Authors:Long Chen, Xianchao Xiu
Title: Tuning-Free Structured Sparse PCA via Deep Unfolding Networks
Abstract:
Sparse principal component analysis (PCA) is a well-established dimensionality reduction technique that is often used for unsupervised feature selection (UFS). However, determining the regularization parameters is rather challenging, and conventional approaches, including grid search and Bayesian optimization, not only bring great computational costs but also exhibit high sensitivity. To address these limitations, we first establish a structured sparse PCA formulation by integrating $\ell_1$-norm and $\ell_{2,1}$-norm to capture the local and global structures, respectively. Building upon the off-the-shelf alternating direction method of multipliers (ADMM) optimization framework, we then design an interpretable deep unfolding network that translates iterative optimization steps into trainable neural architectures. This innovation enables automatic learning of the regularization parameters, effectively bypassing the empirical tuning requirements of conventional methods. Numerical experiments on benchmark datasets validate the advantages of our proposed method over the existing state-of-the-art methods. Our code will be accessible at https://github.com/xianchaoxiu/SPCA-Net.

Authors:Shu Liu, Xiangxi Mo, Moshik Hershcovitch, Henric Zhang, Audrey Cheng, Guy Girmonsky, Gil Vernik, Michael Factor, Tiemo Bang, Soujanya Ponnapalli, Natacha Crooks, Joseph E. Gonzalez, Danny Harnik, Ion Stoica
Title: SkyStore: Cost-Optimized Object Storage Across Regions and Clouds
Abstract:
Modern applications span multiple clouds to reduce costs, avoid vendor lock-in, and leverage low-availability resources in another cloud. However, standard object stores operate within a single cloud, forcing users to manually manage data placement across clouds, i.e., navigate their diverse APIs and handle heterogeneous costs for network and storage. This is often a complex choice: users must either pay to store objects in a remote cloud, or pay to transfer them over the network based on application access patterns and cloud provider cost offerings. To address this, we present SkyStore, a unified object store that addresses cost-optimal data management across regions and clouds. SkyStore introduces a virtual object and bucket API to hide the complexity of interacting with multiple clouds. At its core, SkyStore has a novel TTL-based data placement policy that dynamically replicates and evicts objects according to application access patterns while optimizing for lower cost. Our evaluation shows that across various workloads, SkyStore reduces the overall cost by up to 6x over academic baselines and commercial alternatives like AWS multi-region buckets. SkyStore also has comparable latency, and its availability and fault tolerance are on par with standard cloud offerings. We release the data and code of SkyStore at https://github.com/skyplane-project/skystore.

Authors:Bach-Thuan Bui, Huy-Hoang Bui, Yasuyuki Fujii, Dinh-Tuan Tran, Joo-Ho Lee
Title: Improved 3D Point-Line Mapping Regression for Camera Relocalization
Abstract:
In this paper, we present a new approach for improving 3D point and line mapping regression for camera re-localization. Previous methods typically rely on feature matching (FM) with stored descriptors or use a single network to encode both points and lines. While FM-based methods perform well in large-scale environments, they become computationally expensive with a growing number of mapping points and lines. Conversely, approaches that learn to encode mapping features within a single network reduce memory footprint but are prone to overfitting, as they may capture unnecessary correlations between points and lines. We propose that these features should be learned independently, each with a distinct focus, to achieve optimal accuracy. To this end, we introduce a new architecture that learns to prioritize each feature independently before combining them for localization. Experimental results demonstrate that our approach significantly enhances the 3D map point and line regression performance for camera re-localization. The implementation of our method will be publicly available at: https://github.com/ais-lab/pl2map/.

Authors:Kuang-Da Wang, Teng-Ruei Chen, Yu Heng Hung, Guo-Xun Ko, Shuoyang Ding, Yueh-Hua Wu, Yu-Chiang Frank Wang, Chao-Han Huck Yang, Wen-Chih Peng, Ping-Chun Hsieh
Title: Plan2Align: Predictive Planning Based Test-Time Preference Alignment for Large Language Models
Abstract:
Aligning Large Language Models with Preference Fine-Tuning is often resource-intensive. Test-time alignment techniques that do not modify the underlying models, such as prompting and guided decodings, offer a lightweight alternative. However, existing test-time alignment methods primarily improve short responses and fail to ensure coherence over extended contexts due to the myopic nature of token-level alignment. Moreover, these methods often incur a slowdown during inference. To address these challenges, we propose Plan2Align, a test-time alignment framework that formulates text generation as a predictive planning problem. Plan2Align adapts Model Predictive Control (MPC) to iteratively refine output by rolling out multiple complete responses and optimizing each segment. To more rigorously evaluate the effectiveness and efficiency, we focus on the more challenging task of long-text generation. Experiments on the long-form response subset of the HH-RLHF dataset and the WMT'24 Discourse-Level Literary Translation demonstrate that Plan2Align significantly enhances the performance of base LLMs. Compared to existing training-time and test-time alignment methods on LLaMA-3.1 8B, Plan2Align achieves comparable or superior results, while also delivering improved inference efficiency relative to prior test-time alignment approaches.

Authors:Yong Fang
Title: Overlapped Arithmetic Codes
Abstract:
Arithmetic codes are usually deemed as the most important means to implement lossless source coding, whose principle is mapping every source symbol to a sub-interval in [0, 1). For every source symbol, the length of its mapping sub-interval is exactly equal to its probability. With this symbol-interval mapping rule, the interval [0,1) will be fully covered and there is neither overlapped sub-interval (corresponds to more than one source symbol) nor forbidden sub-interval (does not correspond to any source symbol). It is well-known that there is a duality between source coding and channel coding, so every good source code may also be a good channel code meanwhile, and vice versa. Inspired by this duality, arithmetic codes can be easily generalized to address many coding problems beyond source coding by redefining the source-interval mapping rule. If every source symbol is mapped to an enlarged sub-interval, the mapping sub-intervals of different source symbols will be partially overlapped and we obtain overlapped arithmetic codes, which can realize distributed source coding. On the contrary, if every source symbol is mapped to a narrowed sub-interval, there will be one or more forbidden sub-intervals in [0, 1) that do not correspond to any source symbol and we obtain forbidden arithmetic codes, which can implement joint source-channel coding. Furthermore, by allowing the coexistence of overlapped sub-intervals and forbidden sub-intervals, we will obtain hybrid arithmetic codes, which can cope with distributed joint source-channel coding.

Authors:Qiao Yan, Yuchen Yuan, Xiaowei Hu, Yihan Wang, Jiaqi Xu, Jinpeng Li, Chi-Wing Fu, Pheng-Ann Heng
Title: MedHallTune: An Instruction-Tuning Benchmark for Mitigating Medical Hallucination in Vision-Language Models
Abstract:
The increasing use of vision-language models (VLMs) in healthcare applications presents great challenges related to hallucinations, in which the models may generate seemingly plausible results that are in fact incorrect. Such hallucinations can jeopardize clinical decision making, potentially harming the diagnosis and treatments. In this work, we propose MedHallTune, a large-scale benchmark designed specifically to evaluate and mitigate hallucinations in medical VLMs. Comprising over 100,000 images and 1,000,000 instruction pairs, MedHallTune includes both hallucination and non-hallucination samples, each with ground-truth annotations. We conduct a comprehensive evaluation of current medical and general VLMs using MedHallTune, assessing their performance across key metrics, including clinical accuracy, relevance, detail level, and risk level. The experimental results show that fine-tuning with MedHallTune successfully improves the ability of several existing models to manage hallucinations and boost their zero-shot performance on downstream visual-question-answering (VQA) tasks, making them more reliable for practical medical applications. Our work contributes to the development of more trustworthy VLMs. Codes and dataset will be available at \href{https://github.com/russellyq/MedHallTune}{MedHallTune}.

Authors:Zhaoyang Jia, Bin Li, Jiahao Li, Wenxuan Xie, Linfeng Qi, Houqiang Li, Yan Lu
Title: Towards Practical Real-Time Neural Video Compression
Abstract:
We introduce a practical real-time neural video codec (NVC) designed to deliver high compression ratio, low latency and broad versatility. In practice, the coding speed of NVCs depends on 1) computational costs, and 2) non-computational operational costs, such as memory I/O and the number of function calls. While most efficient NVCs prioritize reducing computational cost, we identify operational cost as the primary bottleneck to achieving higher coding speed. Leveraging this insight, we introduce a set of efficiency-driven design improvements focused on minimizing operational costs. Specifically, we employ implicit temporal modeling to eliminate complex explicit motion modules, and use single low-resolution latent representations rather than progressive downsampling. These innovations significantly accelerate NVC without sacrificing compression quality. Additionally, we implement model integerization for consistent cross-device coding and a module-bank-based rate control scheme to improve practical adaptability. Experiments show our proposed DCVC-RT achieves an impressive average encoding/decoding speed at 125.2/112.8 fps (frames per second) for 1080p video, while saving an average of 21% in bitrate compared to H.266/VTM. The code is available at https://github.com/microsoft/DCVC.

Authors:Ben Walters, Yeshwanth Bethi, Taylor Kergan, Binh Nguyen, Amirali Amirsoleimani, Jason K. Eshraghian, Saeed Afshar, Mostafa Rahimi Azghadi
Title: NeuroMorse: A Temporally Structured Dataset For Neuromorphic Computing
Abstract:
Neuromorphic engineering aims to advance computing by mimicking the brain's efficient processing, where data is encoded as asynchronous temporal events. This eliminates the need for a synchronisation clock and minimises power consumption when no data is present. However, many benchmarks for neuromorphic algorithms primarily focus on spatial features, neglecting the temporal dynamics that are inherent to most sequence-based tasks. This gap may lead to evaluations that fail to fully capture the unique strengths and characteristics of neuromorphic systems. In this paper, we present NeuroMorse, a temporally structured dataset designed for benchmarking neuromorphic learning systems. NeuroMorse converts the top 50 words in the English language into temporal Morse code spike sequences. Despite using only two input spike channels for Morse dots and dashes, complex information is encoded through temporal patterns in the data. The proposed benchmark contains feature hierarchy at multiple temporal scales that test the capacity of neuromorphic algorithms to decompose input patterns into spatial and temporal hierarchies. We demonstrate that our training set is challenging to categorise using a linear classifier and that identifying keywords in the test set is difficult using conventional methods. The NeuroMorse dataset is available at Zenodo, with our accompanying code on GitHub at https://github.com/Ben-E-Walters/NeuroMorse.

Authors:Ke Sun, Shen Chen, Taiping Yao, Ziyin Zhou, Jiayi Ji, Xiaoshuai Sun, Chia-Wen Lin, Rongrong Ji
Title: Towards General Visual-Linguistic Face Forgery Detection(V2)
Abstract:
Face manipulation techniques have achieved significant advances, presenting serious challenges to security and social trust. Recent works demonstrate that leveraging multimodal models can enhance the generalization and interpretability of face forgery detection. However, existing annotation approaches, whether through human labeling or direct Multimodal Large Language Model (MLLM) generation, often suffer from hallucination issues, leading to inaccurate text descriptions, especially for high-quality forgeries. To address this, we propose Face Forgery Text Generator (FFTG), a novel annotation pipeline that generates accurate text descriptions by leveraging forgery masks for initial region and type identification, followed by a comprehensive prompting strategy to guide MLLMs in reducing hallucination. We validate our approach through fine-tuning both CLIP with a three-branch training framework combining unimodal and multimodal objectives, and MLLMs with our structured annotations. Experimental results demonstrate that our method not only achieves more accurate annotations with higher region identification accuracy, but also leads to improvements in model performance across various forgery detection benchmarks. Our Codes are available in https://github.com/skJack/VLFFD.git.

Authors:Shanshan Wan, Yingmei Wei, Lai Kang, Tianrui Shen, Haixuan Wang, Yee-Hong Yang
Title: SciceVPR: Stable Cross-Image Correlation Enhanced Model for Visual Place Recognition
Abstract:
Visual Place Recognition (VPR) is a major challenge for robotics and autonomous systems, with the goal of predicting the location of an image based solely on its visual features. State-of-the-art (SOTA) models extract global descriptors using the powerful foundation model DINOv2 as backbone. These models either explore the cross-image correlation or propose a time-consuming two-stage re-ranking strategy to achieve better performance. However, existing works only utilize the final output of DINOv2, and the current cross-image correlation causes unstable retrieval results. To produce both discriminative and constant global descriptors, this paper proposes stable cross-image correlation enhanced model for VPR called SciceVPR. This model explores the full potential of DINOv2 in providing useful feature representations that implicitly encode valuable contextual knowledge. Specifically, SciceVPR first uses a multi-layer feature fusion module to capture increasingly detailed task-relevant channel and spatial information from the multi-layer output of DINOv2. Secondly, SciceVPR considers the invariant correlation between images within a batch as valuable knowledge to be distilled into the proposed self-enhanced encoder. In this way, SciceVPR can acquire fairly robust global features regardless of domain shifts (e.g., changes in illumination, weather and viewpoint between pictures taken in the same place). Experimental results demonstrate that the base variant, SciceVPR-B, outperforms SOTA one-stage methods with single input on multiple datasets with varying domain conditions. The large variant, SciceVPR-L, performs on par with SOTA two-stage models, scoring over 3% higher in Recall@1 compared to existing models on the challenging Tokyo24/7 dataset. Our code will be released at https://github.com/shuimushan/SciceVPR.

Authors:Yingqi Gao, Zhiling Luo
Title: Automatic database description generation for Text-to-SQL
Abstract:
In the context of the Text-to-SQL task, table and column descriptions are crucial for bridging the gap between natural language and database schema. This report proposes a method for automatically generating effective database descriptions when explicit descriptions are unavailable. The proposed method employs a dual-process approach: a coarse-to-fine process, followed by a fine-to-coarse process. The coarse-to-fine approach leverages the inherent knowledge of LLM to guide the understanding process from databases to tables and finally to columns. This approach provides a holistic understanding of the database structure and ensures contextual alignment. Conversely, the fine-to-coarse approach starts at the column level, offering a more accurate and nuanced understanding when stepping back to the table level. Experimental results on the Bird benchmark indicate that using descriptions generated by the proposed improves SQL generation accuracy by 0.93\% compared to not using descriptions, and achieves 37\% of human-level performance. The source code is publicly available at https://github.com/XGenerationLab/XiYan-DBDescGen.

Authors:Yu Pan, Jiahao Chen, Bingrong Dai, Lin Wang, Yi Du, Jiao Liu
Title: Gungnir: Exploiting Stylistic Features in Images for Backdoor Attacks on Diffusion Models
Abstract:
In recent years, Diffusion Models (DMs) have demonstrated significant advances in the field of image generation. However, according to current research, DMs are vulnerable to backdoor attacks, which allow attackers to control the model's output by inputting data containing covert triggers, such as a specific visual patch or phrase. Existing defense strategies are well equipped to thwart such attacks through backdoor detection and trigger inversion because previous attack methods are constrained by limited input spaces and low-dimensional triggers. For example, visual triggers are easily observed by defenders, text-based or attention-based triggers are more susceptible to neural network detection. To explore more possibilities of backdoor attack in DMs, we propose Gungnir, a novel method that enables attackers to activate the backdoor in DMs through style triggers within input images. Our approach proposes using stylistic features as triggers for the first time and implements backdoor attacks successfully in image-to-image tasks by introducing Reconstructing-Adversarial Noise (RAN) and Short-Term Timesteps-Retention (STTR). Our technique generates trigger-embedded images that are perceptually indistinguishable from clean images, thus bypassing both manual inspection and automated detection neural networks. Experiments demonstrate that Gungnir can easily bypass existing defense methods. Among existing DM defense frameworks, our approach achieves a 0 backdoor detection rate (BDR). Our codes are available at https://github.com/paoche11/Gungnir.

Authors:Haitao Li, Yifan Chen, Yiran Hu, Qingyao Ai, Junjie Chen, Xiaoyu Yang, Jianhui Yang, Yueyue Wu, Zeyang Liu, Yiqun Liu
Title: LexRAG: Benchmarking Retrieval-Augmented Generation in Multi-Turn Legal Consultation Conversation
Abstract:
Retrieval-augmented generation (RAG) has proven highly effective in improving large language models (LLMs) across various domains. However, there is no benchmark specifically designed to assess the effectiveness of RAG in the legal domain, which restricts progress in this area. To fill this gap, we propose LexRAG, the first benchmark to evaluate RAG systems for multi-turn legal consultations. LexRAG consists of 1,013 multi-turn dialogue samples and 17,228 candidate legal articles. Each sample is annotated by legal experts and consists of five rounds of progressive questioning. LexRAG includes two key tasks: (1) Conversational knowledge retrieval, requiring accurate retrieval of relevant legal articles based on multi-turn context. (2) Response generation, focusing on producing legally sound answers. To ensure reliable reproducibility, we develop LexiT, a legal RAG toolkit that provides a comprehensive implementation of RAG system components tailored for the legal domain. Additionally, we introduce an LLM-as-a-judge evaluation pipeline to enable detailed and effective assessment. Through experimental analysis of various LLMs and retrieval methods, we reveal the key limitations of existing RAG systems in handling legal consultation conversations. LexRAG establishes a new benchmark for the practical application of RAG systems in the legal domain, with its code and data available at https://github.com/CSHaitao/LexRAG.

Authors:Li Yang, Shimaa Naser, Abdallah Shami, Sami Muhaidat, Lyndon Ong, Mérouane Debbah
Title: Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks
Abstract:
The transition from 5G to 6G mobile networks necessitates network automation to meet the escalating demands for high data rates, ultra-low latency, and integrated technology. Recently, Zero-Touch Networks (ZTNs), driven by Artificial Intelligence (AI) and Machine Learning (ML), are designed to automate the entire lifecycle of network operations with minimal human intervention, presenting a promising solution for enhancing automation in 5G/6G networks. However, the implementation of ZTNs brings forth the need for autonomous and robust cybersecurity solutions, as ZTNs rely heavily on automation. AI/ML algorithms are widely used to develop cybersecurity mechanisms, but require substantial specialized expertise and encounter model drift issues, posing significant challenges in developing autonomous cybersecurity measures. Therefore, this paper proposes an automated security framework targeting Physical Layer Authentication (PLA) and Cross-Layer Intrusion Detection Systems (CLIDS) to address security concerns at multiple Internet protocol layers. The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments. Experimental results illustrate that the proposed framework achieves high performance on the public Radio Frequency (RF) fingerprinting and the Canadian Institute for CICIDS2017 datasets, showcasing its effectiveness in addressing PLA and CLIDS tasks within dynamic and complex networking environments. Furthermore, the paper explores open challenges and research directions in the 5G/6G cybersecurity domain. This framework represents a significant advancement towards fully autonomous and secure 6G networks, paving the way for future innovations in network automation and cybersecurity.

Authors:Yifei Qian, Zhongliang Guo, Bowen Deng, Chun Tong Lei, Shuai Zhao, Chun Pong Lau, Xiaopeng Hong, Michael P. Pound
Title: T2ICount: Enhancing Cross-modal Understanding for Zero-Shot Counting
Abstract:
Zero-shot object counting aims to count instances of arbitrary object categories specified by text descriptions. Existing methods typically rely on vision-language models like CLIP, but often exhibit limited sensitivity to text prompts. We present T2ICount, a diffusion-based framework that leverages rich prior knowledge and fine-grained visual understanding from pretrained diffusion models. While one-step denoising ensures efficiency, it leads to weakened text sensitivity. To address this challenge, we propose a Hierarchical Semantic Correction Module that progressively refines text-image feature alignment, and a Representational Regional Coherence Loss that provides reliable supervision signals by leveraging the cross-attention maps extracted from the denosing U-Net. Furthermore, we observe that current benchmarks mainly focus on majority objects in images, potentially masking models' text sensitivity. To address this, we contribute a challenging re-annotated subset of FSC147 for better evaluation of text-guided counting ability. Extensive experiments demonstrate that our method achieves superior performance across different benchmarks. Code is available at https://github.com/cha15yq/T2ICount.

Authors:Zhiqiang Shen, Peng Cao, Jinzhu Yang, Osmar R. Zaiane, Zhaolin Chen
Title: Style Content Decomposition-based Data Augmentation for Domain Generalizable Medical Image Segmentation
Abstract:
Due to domain shifts across diverse medical imaging modalities, learned segmentation models often suffer significant performance degradation during deployment. These domain shifts, typically caused by variations in imaging systems, generally comprise two principal components: 1) \textbf{"style" shifts}, referring to global disparities in image properties such as illumination, contrast, and color; and 2) \textbf{"content" shifts}, which involve local discrepancies in anatomical structures. To address domain shifts in medical image segmentation, a core challenge arises: how can we decouple the factors within images that determine their "style" and "content" components? To this end, we first propose a linear style-content decomposition method that factorizes an image into style codes and content maps, explicitly modeling the "style" and "content" components. Building on this, we introduce a \textbf{Sty}le-\textbf{Con}tent decomposition-based data \textbf{a}ugmentation algorithm (StyCona), which leverages this decomposition strategy to guide augmentation of both the global style and local content of source-domain images, enabling the training of a well-generalized model for domain-generalizable medical image segmentation. StyCona is a simple yet effective plug-and-play module that substantially improves model generalization without requiring additional training parameters or modifications to segmentation model architectures. Experiments on cardiac magnetic resonance imaging and fundus photography segmentation tasks, with single and multiple target domains respectively, demonstrate the effectiveness of StyCona and its superiority over state-of-the-art domain generalization methods. The code will be released at https://github.com/Senyh/StyCona.

Authors:Vicente Balmaseda, Bokun Wang, Ching-Long Lin, Tianbao Yang
Title: Discovering Global False Negatives On the Fly for Self-supervised Contrastive Learning
Abstract:
In self-supervised contrastive learning, negative pairs are typically constructed using an anchor image and a sample drawn from the entire dataset, excluding the anchor. However, this approach can result in the creation of negative pairs with similar semantics, referred to as "false negatives", leading to their embeddings being falsely pushed apart. To address this issue, we introduce GloFND, an optimization-based approach that automatically learns on the fly the threshold for each anchor data to identify its false negatives during training. In contrast to previous methods for false negative discovery, our approach globally detects false negatives across the entire dataset rather than locally within the mini-batch. Moreover, its per-iteration computation cost remains independent of the dataset size. Experimental results on image and image-text data demonstrate the effectiveness of the proposed method. Our implementation is available at https://github.com/vibalcam/GloFND.

Authors:Mingyuan Wu, Jize Jiang, Haozhen Zheng, Meitang Li, Zhaoheng Li, Beitong Tian, Bo Chen, Yongjoo Park, Minjia Zhang, Chengxiang Zhai, Klara Nahrstedt
Title: Cache-of-Thought: Master-Apprentice Framework for Cost-Effective Vision Language Model Reasoning
Abstract:
Vision Language Models (VLMs) have achieved remarkable success in a wide range of vision applications of increasing complexity and scales, yet choosing the right VLM model size involves a trade-off between response quality and cost. While smaller VLMs are cheaper to run, they typically produce responses only marginally better than random guessing on benchmarks such as MMMU. In this paper, we propose Cache of Thought (CoT), a master apprentice framework for collaborative inference between large and small VLMs. CoT manages high quality query results from large VLMs (master) in a cache, which are then selected via a novel multi modal retrieval and in-context learning to aid the performance of small VLMs (apprentice). We extensively evaluate CoT on various widely recognized and challenging general reasoning benchmarks, and show that CoT increases overall reasoning performance by up to 7.7% under the same budget, and specifically boosts the performance of apprentice VLMs by up to 36.6%. Our code is available at https://github.com/UIUC-MONET/Cache-of-Thoughts

Authors:Keisuke Kamahori, Jungo Kasai, Noriyuki Kojima, Baris Kasikci
Title: LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation
Abstract:
Modern automatic speech recognition (ASR) models, such as OpenAI's Whisper, rely on deep encoder-decoder architectures, and their encoders are a critical bottleneck for efficient deployment due to high computational intensity. We introduce LiteASR, a low-rank compression scheme for ASR encoders that significantly reduces inference costs while maintaining transcription accuracy. Our approach leverages the strong low-rank properties observed in intermediate activations: by applying principal component analysis (PCA) with a small calibration dataset, we approximate linear transformations with a chain of low-rank matrix multiplications, and further optimize self-attention to work in reduced dimensionality. Evaluation results show that our method can compress Whisper large-v3's encoder size by over 50%, matching Whisper medium's size with better transcription accuracy, thereby establishing a new Pareto frontier of accuracy and efficiency. The code of LiteASR is available at https://github.com/efeslab/LiteASR.

Authors:Vladimir Zaigrajew, Hubert Baniecki, Przemyslaw Biecek
Title: Interpreting CLIP with Hierarchical Sparse Autoencoders
Abstract:
Sparse autoencoders (SAEs) are useful for detecting and steering interpretable features in neural networks, with particular potential for understanding complex multimodal representations. Given their ability to uncover interpretable features, SAEs are particularly valuable for analyzing large-scale vision-language models (e.g., CLIP and SigLIP), which are fundamental building blocks in modern systems yet remain challenging to interpret and control. However, current SAE methods are limited by optimizing both reconstruction quality and sparsity simultaneously, as they rely on either activation suppression or rigid sparsity constraints. To this end, we introduce Matryoshka SAE (MSAE), a new architecture that learns hierarchical representations at multiple granularities simultaneously, enabling a direct optimization of both metrics without compromise. MSAE establishes a new state-of-the-art Pareto frontier between reconstruction quality and sparsity for CLIP, achieving 0.99 cosine similarity and less than 0.1 fraction of variance unexplained while maintaining ~80% sparsity. Finally, we demonstrate the utility of MSAE as a tool for interpreting and controlling CLIP by extracting over 120 semantic concepts from its representation to perform concept-based similarity search and bias analysis in downstream tasks like CelebA. We make the codebase available at https://github.com/WolodjaZ/MSAE.

Authors:Kai Mei, Wujiang Xu, Shuhang Lin, Yongfeng Zhang
Title: OmniRouter: Budget and Performance Controllable Multi-LLM Routing
Abstract:
Large language models (LLMs) deliver superior performance but require substantial computational resources and operate with relatively low efficiency, while smaller models can efficiently handle simpler tasks with fewer resources. LLM routing is a crucial paradigm that dynamically selects the most suitable large language models from a pool of candidates to process diverse inputs, ensuring optimal resource utilization while maintaining response quality. Existing routing frameworks typically model this as a locally optimal decision-making problem, selecting the presumed best-fit LLM for each query individually, which overlook global budget constraints, resulting in ineffective resource allocation. To tackle this problem, we introduce OmniRouter, a fundamentally controllable routing framework for multi-LLM serving. Instead of making per-query greedy choices, OmniRouter models the routing task as a constrained optimization problem, assigning models that minimize total cost while ensuring the required performance level. Specifically, a hybrid retrieval-augmented predictor is designed to predict the capabilities and costs of LLMs and a constrained optimizer is employed to control globally optimal query-model allocation. Experiments show that OmniRouter achieves up to 6.30% improvement in response accuracy while simultaneously reducing computational costs by at least 10.15% compared to competitive router baselines. The code and the dataset are available at https://github.com/agiresearch/OmniRouter.

Authors:Sari Masri, Huthaifa I. Ashqar, Mohammed Elhenawy
Title: Visual Reasoning at Urban Intersections: FineTuning GPT-4o for Traffic Conflict Detection
Abstract:
Traffic control in unsignalized urban intersections presents significant challenges due to the complexity, frequent conflicts, and blind spots. This study explores the capability of leveraging Multimodal Large Language Models (MLLMs), such as GPT-4o, to provide logical and visual reasoning by directly using birds-eye-view videos of four-legged intersections. In this proposed method, GPT-4o acts as intelligent system to detect conflicts and provide explanations and recommendations for the drivers. The fine-tuned model achieved an accuracy of 77.14%, while the manual evaluation of the true predicted values of the fine-tuned GPT-4o showed significant achievements of 89.9% accuracy for model-generated explanations and 92.3% for the recommended next actions. These results highlight the feasibility of using MLLMs for real-time traffic management using videos as inputs, offering scalable and actionable insights into intersections traffic management and operation. Code used in this study is available at https://github.com/sarimasri3/Traffic-Intersection-Conflict-Detection-using-images.git.

Authors:Joana C. Costa, Tiago Roxo, Hugo Proença, Pedro R. M. Inácio
Title: LISArD: Learning Image Similarity to Defend Against Gray-box Adversarial Attacks
Abstract:
State-of-the-art defense mechanisms are typically evaluated in the context of white-box attacks, which is not realistic, as it assumes the attacker can access the gradients of the target network. To protect against this scenario, Adversarial Training (AT) and Adversarial Distillation (AD) include adversarial examples during the training phase, and Adversarial Purification uses a generative model to reconstruct all the images given to the classifier. This paper considers an even more realistic evaluation scenario: gray-box attacks, which assume that the attacker knows the architecture and the dataset used to train the target network, but cannot access its gradients. We provide empirical evidence that models are vulnerable to gray-box attacks and propose LISArD, a defense mechanism that does not increase computational and temporal costs but provides robustness against gray-box and white-box attacks without including AT. Our method approximates a cross-correlation matrix, created with the embeddings of perturbed and clean images, to a diagonal matrix while simultaneously conducting classification learning. Our results show that LISArD can effectively protect against gray-box attacks, can be used in multiple architectures, and carries over its resilience to the white-box scenario. Also, state-of-the-art AD models underperform greatly when removing AT and/or moving to gray-box settings, highlighting the lack of robustness from existing approaches to perform in various conditions (aside from white-box settings). All the source code is available at https://github.com/Joana-Cabral/LISArD.

Authors:Jin Peng Zhou, Kaiwen Wang, Jonathan Chang, Zhaolin Gao, Nathan Kallus, Kilian Q. Weinberger, Kianté Brantley, Wen Sun
Title: $Q\sharp$: Provably Optimal Distributional RL for LLM Post-Training
Abstract:
Reinforcement learning (RL) post-training is crucial for LLM alignment and reasoning, but existing policy-based methods, such as PPO and DPO, can fall short of fixing shortcuts inherited from pre-training. In this work, we introduce $Q\sharp$, a value-based algorithm for KL-regularized RL that guides the reference policy using the optimal regularized $Q$ function. We propose to learn the optimal $Q$ function using distributional RL on an aggregated online dataset. Unlike prior value-based baselines that guide the model using unregularized $Q$-values, our method is theoretically principled and provably learns the optimal policy for the KL-regularized RL problem. Empirically, $Q\sharp$ outperforms prior baselines in math reasoning benchmarks while maintaining a smaller KL divergence to the reference policy. Theoretically, we establish a reduction from KL-regularized RL to no-regret online learning, providing the first bounds for deterministic MDPs under only realizability. Thanks to distributional RL, our bounds are also variance-dependent and converge faster when the reference policy has small variance. In sum, our results highlight $Q\sharp$ as an effective approach for post-training LLMs, offering both improved performance and theoretical guarantees. The code can be found at https://github.com/jinpz/q_sharp.

Authors:Long Minh Bui, Tho Tran Huu, Duy Dinh, Tan Minh Nguyen, Trong Nghia Hoang
Title: Revisiting Kernel Attention with Correlated Gaussian Process Representation
Abstract:
Transformers have increasingly become the de facto method to model sequential data with state-of-the-art performance. Due to its widespread use, being able to estimate and calibrate its modeling uncertainty is important to understand and design robust transformer models. To achieve this, previous works have used Gaussian processes (GPs) to perform uncertainty calibration for the attention units of transformers and attained notable successes. However, such approaches have to confine the transformers to the space of symmetric attention to ensure the necessary symmetric requirement of their GP's kernel specification, which reduces the representation capacity of the model. To mitigate this restriction, we propose the Correlated Gaussian Process Transformer (CGPT), a new class of transformers whose self-attention units are modeled as cross-covariance between two correlated GPs (CGPs). This allows asymmetries in attention and can enhance the representation capacity of GP-based transformers. We also derive a sparse approximation for CGP to make it scale better. Our empirical studies show that both CGP-based and sparse CGP-based transformers achieve better performance than state-of-the-art GP-based transformers on a variety of benchmark tasks. The code for our experiments is available at https://github.com/MinhLong210/CGP-Transformers.

Authors:Li-Wei Chen, Ombretta Strafforello, Anne-Sofie Maerten, Tinne Tuytelaars, Johan Wagemans
Title: On the Role of Individual Differences in Current Approaches to Computational Image Aesthetics
Abstract:
Image aesthetic assessment (IAA) evaluates image aesthetics, a task complicated by image diversity and user subjectivity. Current approaches address this in two stages: Generic IAA (GIAA) models estimate mean aesthetic scores, while Personal IAA (PIAA) models adapt GIAA using transfer learning to incorporate user subjectivity. However, a theoretical understanding of transfer learning between GIAA and PIAA, particularly concerning the impact of group composition, group size, aesthetic differences between groups and individuals, and demographic correlations, is lacking. This work establishes a theoretical foundation for IAA, proposing a unified model that encodes individual characteristics in a distributional format for both individual and group assessments. We show that transferring from GIAA to PIAA involves extrapolation, while the reverse involves interpolation, which is generally more effective for machine learning. Extensive experiments with varying group compositions, including sub-sampling by group size and disjoint demographics, reveal substantial performance variation even for GIAA, challenging the assumption that averaging scores eliminates individual subjectivity. Score-distribution analysis using Earth Mover's Distance (EMD) and the Gini index identifies education, photography experience, and art experience as key factors in aesthetic differences, with greater subjectivity in artworks than in photographs. Code is available at https://github.com/lwchen6309/aesthetics_transfer_learning.

Authors:Julius Broomfield, Kartik Sharma, Srijan Kumar
Title: A Thousand Words or An Image: Studying the Influence of Persona Modality in Multimodal LLMs
Abstract:
Large language models (LLMs) have recently demonstrated remarkable advancements in embodying diverse personas, enhancing their effectiveness as conversational agents and virtual assistants. Consequently, LLMs have made significant strides in processing and integrating multimodal information. However, even though human personas can be expressed in both text and image, the extent to which the modality of a persona impacts the embodiment by the LLM remains largely unexplored. In this paper, we investigate how do different modalities influence the expressiveness of personas in multimodal LLMs. To this end, we create a novel modality-parallel dataset of 40 diverse personas varying in age, gender, occupation, and location. This consists of four modalities to equivalently represent a persona: image-only, text-only, a combination of image and small text, and typographical images, where text is visually stylized to convey persona-related attributes. We then create a systematic evaluation framework with 60 questions and corresponding metrics to assess how well LLMs embody each persona across its attributes and scenarios. Comprehensive experiments on $5$ multimodal LLMs show that personas represented by detailed text show more linguistic habits, while typographical images often show more consistency with the persona. Our results reveal that LLMs often overlook persona-specific details conveyed through images, highlighting underlying limitations and paving the way for future research to bridge this gap. We release the data and code at https://github.com/claws-lab/persona-modality .

Authors:Jonathan Tonglet, Tinne Tuytelaars, Marie-Francine Moens, Iryna Gurevych
Title: Protecting multimodal large language models against misleading visualizations
Abstract:
Visualizations play a pivotal role in daily communication in an increasingly datadriven world. Research on multimodal large language models (MLLMs) for automated chart understanding has accelerated massively, with steady improvements on standard benchmarks. However, for MLLMs to be reliable, they must be robust to misleading visualizations, i.e., charts that distort the underlying data, leading readers to draw inaccurate conclusions that may support disinformation. Here, we uncover an important vulnerability: MLLM questionanswering (QA) accuracy on misleading visualizations drops on average to the level of the random baseline. To address this, we introduce the first inference-time methods to improve QA performance on misleading visualizations, without compromising accuracy on non-misleading ones. We find that two methods, table-based QA and redrawing the visualization, are effective, with improvements of up to 19.6 percentage points. We make our code and data available.

Authors:Tianyi Lorena Yan, Robin Jia
Title: Promote, Suppress, Iterate: How Language Models Answer One-to-Many Factual Queries
Abstract:
To answer one-to-many factual queries (e.g., listing cities of a country), a language model (LM) must simultaneously recall knowledge and avoid repeating previous answers. How are these two subtasks implemented and integrated internally? Across multiple datasets, models, and prompt templates, we identify a promote-then-suppress mechanism: the model first recalls all answers, and then suppresses previously generated ones. Specifically, LMs use both the subject and previous answer tokens to perform knowledge recall, with attention propagating subject information and MLPs promoting the answers. Then, attention attends to and suppresses previous answer tokens, while MLPs amplify the suppression signal. Our mechanism is corroborated by extensive experimental evidence: in addition to using early decoding and causal tracing, we analyze how components use different tokens by introducing both Token Lens, which decodes aggregated attention updates from specified tokens, and a knockout method that analyzes changes in MLP outputs after removing attention to specified tokens. Overall, we provide new insights into how LMs' internal components interact with different input tokens to support complex factual recall. Code is available at https://github.com/Lorenayannnnn/how-lms-answer-one-to-many-factual-queries.

Authors:Yuval Filmus
Title: Aggregation of evaluations without unanimity
Abstract:
Dokow and Holzman determined which predicates over $\{0, 1\}$ satisfy an analog of Arrow's theorem: all unanimous aggregators are dictatorial. Szegedy and Xu, extending earlier work of Dokow and Holzman, extended this to predicates over arbitrary finite alphabets. Mossel extended Arrow's theorem in an orthogonal direction, determining all aggregators without the assumption of unanimity. We bring together both threads of research by extending the results of Dokow-Holzman and Szegedy-Xu to the setting of Mossel. As an application, we determine, for each symmetric predicate over $\{0,1\}$, all of its aggregators.

Authors:Yiheng Liu, Xiaohui Gao, Haiyang Sun, Bao Ge, Tianming Liu, Junwei Han, Xintao Hu
Title: Brain-Inspired Exploration of Functional Networks and Key Neurons in Large Language Models
Abstract:
In recent years, the rapid advancement of large language models (LLMs) in natural language processing has sparked significant interest among researchers to understand their mechanisms and functional characteristics. Although existing studies have attempted to explain LLM functionalities by identifying and interpreting specific neurons, these efforts mostly focus on individual neuron contributions, neglecting the fact that human brain functions are realized through intricate interaction networks. Inspired by cognitive neuroscience research on functional brain networks (FBNs), this study introduces a novel approach to investigate whether similar functional networks exist within LLMs. We use methods similar to those in the field of functional neuroimaging analysis to locate and identify functional networks in LLM. Experimental results show that, similar to the human brain, LLMs contain functional networks that frequently recur during operation. Further analysis shows that these functional networks are crucial for LLM performance. Masking key functional networks significantly impairs the model's performance, while retaining just a subset of these networks is adequate to maintain effective operation. This research provides novel insights into the interpretation of LLMs and the lightweighting of LLMs for certain downstream tasks. Code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.

Authors:Arnav Kumar Jain, Gonzalo Gonzalez-Pumariega, Wayne Chen, Alexander M Rush, Wenting Zhao, Sanjiban Choudhury
Title: Multi-Turn Code Generation Through Single-Step Rewards
Abstract:
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $μ$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $μ$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $μ$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.

Authors:Albert Gong, Kamilė Stankevičiūtė, Chao Wan, Anmol Kabra, Raphael Thesmar, Johann Lee, Julius Klenke, Carla P. Gomes, Kilian Q. Weinberger
Title: PhantomWiki: On-Demand Datasets for Reasoning and Retrieval Evaluation
Abstract:
High-quality benchmarks are essential for evaluating reasoning and retrieval capabilities of large language models (LLMs). However, curating datasets for this purpose is not a permanent solution as they are prone to data leakage and inflated performance results. To address these challenges, we propose PhantomWiki: a pipeline to generate unique, factually consistent document corpora with diverse question-answer pairs. Unlike prior work, PhantomWiki is neither a fixed dataset, nor is it based on any existing data. Instead, a new PhantomWiki instance is generated on demand for each evaluation. We vary the question difficulty and corpus size to disentangle reasoning and retrieval capabilities respectively, and find that PhantomWiki datasets are surprisingly challenging for frontier LLMs. Thus, we contribute a scalable and data leakage-resistant framework for disentangled evaluation of reasoning, retrieval, and tool-use abilities. Our code is available at https://github.com/kilian-group/phantom-wiki.

Authors:Shuming Liu, Chen Zhao, Fatimah Zohra, Mattia Soldan, Alejandro Pardo, Mengmeng Xu, Lama Alssum, Merey Ramazanova, Juan León Alcázar, Anthony Cioppa, Silvio Giancola, Carlos Hinojosa, Bernard Ghanem
Title: OpenTAD: A Unified Framework and Comprehensive Study of Temporal Action Detection
Abstract:
Temporal action detection (TAD) is a fundamental video understanding task that aims to identify human actions and localize their temporal boundaries in videos. Although this field has achieved remarkable progress in recent years, further progress and real-world applications are impeded by the absence of a standardized framework. Currently, different methods are compared under different implementation settings, evaluation protocols, etc., making it difficult to assess the real effectiveness of a specific technique. To address this issue, we propose \textbf{OpenTAD}, a unified TAD framework consolidating 16 different TAD methods and 9 standard datasets into a modular codebase. In OpenTAD, minimal effort is required to replace one module with a different design, train a feature-based TAD model in end-to-end mode, or switch between the two. OpenTAD also facilitates straightforward benchmarking across various datasets and enables fair and in-depth comparisons among different methods. With OpenTAD, we comprehensively study how innovations in different network components affect detection performance and identify the most effective design choices through extensive experiments. This study has led to a new state-of-the-art TAD method built upon existing techniques for each component. We have made our code and models available at https://github.com/sming256/OpenTAD.

Authors:Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, Xiaojuan Qi
Title: UniTok: A Unified Tokenizer for Visual Generation and Understanding
Abstract:
Visual generative and understanding models typically rely on distinct tokenizers to process images, presenting a key challenge for unifying them within a single framework. Recent studies attempt to address this by connecting the training of VQVAE (for autoregressive generation) and CLIP (for understanding) to build a unified tokenizer. However, directly combining these training objectives has been observed to cause severe loss conflicts. In this paper, we show that reconstruction and semantic supervision do not inherently conflict. Instead, the underlying bottleneck stems from limited representational capacity of discrete token space. Building on these insights, we introduce UniTok, a unified tokenizer featuring a novel multi-codebook quantization mechanism that effectively scales up the vocabulary size and bottleneck dimension. In terms of final performance, UniTok sets a new record of 0.38 rFID and 78.6% zero-shot accuracy on ImageNet. Besides, UniTok can be seamlessly integrated into MLLMs to unlock native visual generation capability, without compromising the understanding performance. Additionally, we show that UniTok favors cfg-free generation, reducing gFID from 14.6 to 2.5 on ImageNet 256$\times$256 benchmark. GitHub: https://github.com/FoundationVision/UniTok.

Authors:Yongjia Lei, Haoyu Han, Ryan A. Rossi, Franck Dernoncourt, Nedim Lipka, Mahantesh M Halappanavar, Jiliang Tang, Yu Wang
Title: Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Abstract:
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.

Authors:Xiuli Bi, Jianfei Yuan, Bo Liu, Yong Zhang, Xiaodong Cun, Chi-Man Pun, Bin Xiao
Title: Mobius: Text to Seamless Looping Video Generation via Latent Shift
Abstract:
We present Mobius, a novel method to generate seamlessly looping videos from text descriptions directly without any user annotations, thereby creating new visual materials for the multi-media presentation. Our method repurposes the pre-trained video latent diffusion model for generating looping videos from text prompts without any training. During inference, we first construct a latent cycle by connecting the starting and ending noise of the videos. Given that the temporal consistency can be maintained by the context of the video diffusion model, we perform multi-frame latent denoising by gradually shifting the first-frame latent to the end in each step. As a result, the denoising context varies in each step while maintaining consistency throughout the inference process. Moreover, the latent cycle in our method can be of any length. This extends our latent-shifting approach to generate seamless looping videos beyond the scope of the video diffusion model's context. Unlike previous cinemagraphs, the proposed method does not require an image as appearance, which will restrict the motions of the generated results. Instead, our method can produce more dynamic motion and better visual quality. We conduct multiple experiments and comparisons to verify the effectiveness of the proposed method, demonstrating its efficacy in different scenarios. All the code will be made available.

Authors:Qingsen Yan, Yixu Feng, Cheng Zhang, Guansong Pang, Kangbiao Shi, Peng Wu, Wei Dong, Jinqiu Sun, Yanning Zhang
Title: HVI: A New Color Space for Low-light Image Enhancement
Abstract:
Low-Light Image Enhancement (LLIE) is a crucial computer vision task that aims to restore detailed visual information from corrupted low-light images. Many existing LLIE methods are based on standard RGB (sRGB) space, which often produce color bias and brightness artifacts due to inherent high color sensitivity in sRGB. While converting the images using Hue, Saturation and Value (HSV) color space helps resolve the brightness issue, it introduces significant red and black noise artifacts. To address this issue, we propose a new color space for LLIE, namely Horizontal/Vertical-Intensity (HVI), defined by polarized HS maps and learnable intensity. The former enforces small distances for red coordinates to remove the red artifacts, while the latter compresses the low-light regions to remove the black artifacts. To fully leverage the chromatic and intensity information, a novel Color and Intensity Decoupling Network (CIDNet) is further introduced to learn accurate photometric mapping function under different lighting conditions in the HVI space. Comprehensive results from benchmark and ablation experiments show that the proposed HVI color space with CIDNet outperforms the state-of-the-art methods on 10 datasets. The code is available at https://github.com/Fediory/HVI-CIDNet.

Authors:Rongzhen Zhao, Vivienne Wang, Juho Kannala, Joni Pajarinen
Title: Vector-Quantized Vision Foundation Models for Object-Centric Learning
Abstract:
Object-Centric Learning (OCL) aggregates image or video feature maps into object-level feature vectors, termed \textit{slots}. It's self-supervision of reconstructing the input from slots struggles with complex object textures, thus Vision Foundation Model (VFM) representations are used as the aggregation input and reconstruction target. Existing methods leverage VFM representations in diverse ways yet fail to fully exploit their potential. In response, we propose a unified architecture, Vector-Quantized VFMs for OCL (VQ-VFM-OCL, or VVO). The key to our unification is simply shared quantizing VFM representations in OCL aggregation and decoding. Experiments show that across different VFMs, aggregators and decoders, our VVO consistently outperforms baselines in object discovery and recognition, as well as downstream visual prediction and reasoning. We also mathematically analyze why VFM representations facilitate OCL aggregation and why their shared quantization as reconstruction targets strengthens OCL supervision. Our source code and model checkpoints are available on https://github.com/Genera1Z/VQ-VFM-OCL.

Authors:Yang Zhou, Xu Gao, Zichong Chen, Hui Huang
Title: Attention Distillation: A Unified Approach to Visual Characteristics Transfer
Abstract:
Recent advances in generative diffusion models have shown a notable inherent understanding of image style and semantics. In this paper, we leverage the self-attention features from pretrained diffusion networks to transfer the visual characteristics from a reference to generated images. Unlike previous work that uses these features as plug-and-play attributes, we propose a novel attention distillation loss calculated between the ideal and current stylization results, based on which we optimize the synthesized image via backpropagation in latent space. Next, we propose an improved Classifier Guidance that integrates attention distillation loss into the denoising sampling process, further accelerating the synthesis and enabling a broad range of image generation applications. Extensive experiments have demonstrated the extraordinary performance of our approach in transferring the examples' style, appearance, and texture to new images in synthesis. Code is available at https://github.com/xugao97/AttentionDistillation.

Authors:Mattéo Clémot, Julie Digne, Julien Tierny
Title: Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
Abstract:
This paper presents a novel topology-aware dimensionality reduction approach aiming at accurately visualizing the cyclic patterns present in high dimensional data. To that end, we build on the Topological Autoencoders (TopoAE) formulation. First, we provide a novel theoretical analysis of its associated loss and show that a zero loss indeed induces identical persistence pairs (in high and low dimensions) for the $0$-dimensional persistent homology (PH$^0$) of the Rips filtration. We also provide a counter example showing that this property no longer holds for a naive extension of TopoAE to PH$^d$ for $d\ge 1$. Based on this observation, we introduce a novel generalization of TopoAE to $1$-dimensional persistent homology (PH$^1$), called TopoAE++, for the accurate generation of cycle-aware planar embeddings, addressing the above failure case. This generalization is based on the notion of cascade distortion, a new penalty term favoring an isometric embedding of the $2$-chains filling persistent $1$-cycles, hence resulting in more faithful geometrical reconstructions of the $1$-cycles in the plane. We further introduce a novel, fast algorithm for the exact computation of PH for Rips filtrations in the plane, yielding improved runtimes over previously documented topology-aware methods. Our method also achieves a better balance between the topological accuracy, as measured by the Wasserstein distance, and the visual preservation of the cycles in low dimensions. Our C++ implementation is available at https://github.com/MClemot/TopologicalAutoencodersPlusPlus.

Authors:Mattéo Clémot, Julie Digne, Julien Tierny
Title: Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
Abstract:
This paper presents a novel topology-aware dimensionality reduction approach aiming at accurately visualizing the cyclic patterns present in high dimensional data. To that end, we build on the Topological Autoencoders (TopoAE) formulation. First, we provide a novel theoretical analysis of its associated loss and show that a zero loss indeed induces identical persistence pairs (in high and low dimensions) for the $0$-dimensional persistent homology (PH$^0$) of the Rips filtration. We also provide a counter example showing that this property no longer holds for a naive extension of TopoAE to PH$^d$ for $d\ge 1$. Based on this observation, we introduce a novel generalization of TopoAE to $1$-dimensional persistent homology (PH$^1$), called TopoAE++, for the accurate generation of cycle-aware planar embeddings, addressing the above failure case. This generalization is based on the notion of cascade distortion, a new penalty term favoring an isometric embedding of the $2$-chains filling persistent $1$-cycles, hence resulting in more faithful geometrical reconstructions of the $1$-cycles in the plane. We further introduce a novel, fast algorithm for the exact computation of PH for Rips filtrations in the plane, yielding improved runtimes over previously documented topology-aware methods. Our method also achieves a better balance between the topological accuracy, as measured by the Wasserstein distance, and the visual preservation of the cycles in low dimensions. Our C++ implementation is available at https://github.com/MClemot/TopologicalAutoencodersPlusPlus.

Authors:Zhouyu He, Peng Qiao, Rongchun Li, Yong Dou, Yusong Tan
Title: Highly Parallelized Reinforcement Learning Training with Relaxed Assignment Dependencies
Abstract:
As the demands for superior agents grow, the training complexity of Deep Reinforcement Learning (DRL) becomes higher. Thus, accelerating training of DRL has become a major research focus. Dividing the DRL training process into subtasks and using parallel computation can effectively reduce training costs. However, current DRL training systems lack sufficient parallelization due to data assignment between subtask components. This assignment issue has been ignored, but addressing it can further boost training efficiency. Therefore, we propose a high-throughput distributed RL training system called TianJi. It relaxes assignment dependencies between subtask components and enables event-driven asynchronous communication. Meanwhile, TianJi maintains clear boundaries between subtask components. To address convergence uncertainty from relaxed assignment dependencies, TianJi proposes a distributed strategy based on the balance of sample production and consumption. The strategy controls the staleness of samples to correct their quality, ensuring convergence. We conducted extensive experiments. TianJi achieves a convergence time acceleration ratio of up to 4.37 compared to related comparison systems. When scaled to eight computational nodes, TianJi shows a convergence time speedup of 1.6 and a throughput speedup of 7.13 relative to XingTian, demonstrating its capability to accelerate training and scalability. In data transmission efficiency experiments, TianJi significantly outperforms other systems, approaching hardware limits. TianJi also shows effectiveness in on-policy algorithms, achieving convergence time acceleration ratios of 4.36 and 2.95 compared to RLlib and XingTian. TianJi is accessible at https://github.com/HiPRL/TianJi.git.

Authors:Liang Chen, Shuai Bai, Wenhao Chai, Weichu Xie, Haozhe Zhao, Leon Vinci, Junyang Lin, Baobao Chang
Title: Multimodal Representation Alignment for Image Generation: Text-Image Interleaved Control Is Easier Than You Think
Abstract:
The field of advanced text-to-image generation is witnessing the emergence of unified frameworks that integrate powerful text encoders, such as CLIP and T5, with Diffusion Transformer backbones. Although there have been efforts to control output images with additional conditions, like canny and depth map, a comprehensive framework for arbitrary text-image interleaved control is still lacking. This gap is especially evident when attempting to merge concepts or visual elements from multiple images in the generation process. To mitigate the gap, we conducted preliminary experiments showing that large multimodal models (LMMs) offer an effective shared representation space, where image and text can be well-aligned to serve as a condition for external diffusion models. Based on this discovery, we propose Dream Engine, an efficient and unified framework designed for arbitrary text-image interleaved control in image generation models. Building on powerful text-to-image models like SD3.5, we replace the original text-only encoders by incorporating versatile multimodal information encoders such as QwenVL. Our approach utilizes a two-stage training paradigm, consisting of joint text-image alignment and multimodal interleaved instruction tuning. Our experiments demonstrate that this training method is effective, achieving a 0.69 overall score on the GenEval benchmark, and matching the performance of state-of-the-art text-to-image models like SD3.5 and FLUX.

Authors:Yating Yu, Congqi Cao, Yifan Zhang, Yanning Zhang
Title: Learning to Generalize without Bias for Open-Vocabulary Action Recognition
Abstract:
Leveraging the effective visual-text alignment and static generalizability from CLIP, recent video learners adopt CLIP initialization with further regularization or recombination for generalization in open-vocabulary action recognition in-context. However, due to the static bias of CLIP, such video learners tend to overfit on shortcut static features, thereby compromising their generalizability, especially to novel out-of-context actions. To address this issue, we introduce Open-MeDe, a novel Meta-optimization framework with static Debiasing for Open-vocabulary action recognition. From a fresh perspective of generalization, Open-MeDe adopts a meta-learning approach to improve known-to-open generalizing and image-to-video debiasing in a cost-effective manner. Specifically, Open-MeDe introduces a cross-batch meta-optimization scheme that explicitly encourages video learners to quickly generalize to arbitrary subsequent data via virtual evaluation, steering a smoother optimization landscape. In effect, the free of CLIP regularization during optimization implicitly mitigates the inherent static bias of the video meta-learner. We further apply self-ensemble over the optimization trajectory to obtain generic optimal parameters that can achieve robust generalization to both in-context and out-of-context novel data. Extensive evaluations show that Open-MeDe not only surpasses state-of-the-art regularization methods tailored for in-context open-vocabulary action recognition but also substantially excels in out-of-context scenarios.Code is released at https://github.com/Mia-YatingYu/Open-MeDe.

Authors:Yifan Jia, Xingda Yu, Zhengyang Ji, Songning Lai, Yutao Yue
Title: Adaptive H&E-IHC information fusion staining framework based on feature extra
Abstract:
Immunohistochemistry (IHC) staining plays a significant role in the evaluation of diseases such as breast cancer. The H&E-to-IHC transformation based on generative models provides a simple and cost-effective method for obtaining IHC images. Although previous models can perform digital coloring well, they still suffer from (i) coloring only through the pixel features that are not prominent in HE, which is easy to cause information loss in the coloring process; (ii) The lack of pixel-perfect H&E-IHC groundtruth pairs poses a challenge to the classical L1 loss.To address the above challenges, we propose an adaptive information enhanced coloring framework based on feature extractors. We first propose the VMFE module to effectively extract the color information features using multi-scale feature extraction and wavelet transform convolution, while combining the shared decoder for feature fusion. The high-performance dual feature extractor of H&E-IHC is trained by contrastive learning, which can effectively perform feature alignment of HE-IHC in high latitude space. At the same time, the trained feature encoder is used to enhance the features and adaptively adjust the loss in the HE section staining process to solve the problems related to unclear and asymmetric information. We have tested on different datasets and achieved excellent performance.Our code is available at https://github.com/babyinsunshine/CEFF

Authors:Yifan Zhang, Wenyu Du, Dongming Jin, Jie Fu, Zhi Jin
Title: Finite State Automata Inside Transformers with Chain-of-Thought: A Mechanistic Study on State Tracking
Abstract:
Chain-of-thought (CoT) significantly enhances the performance of large language models (LLMs) across a wide range of tasks, and prior research shows that CoT can theoretically increase expressiveness. However, there is limited mechanistic understanding of the algorithms that Transformer+CoT can learn. Our key contributions are: (1) We evaluate the state tracking capabilities of Transformer+CoT and its variants, confirming the effectiveness of CoT. (2) Next, we identify the circuit (a subset of model components, responsible for tracking the world state), indicating that late-layer MLP neurons play a key role. We propose two metrics, compression and distinction, and show that the neuron sets for each state achieve nearly 100% accuracy, providing evidence of an implicit finite state automaton (FSA) embedded within the model. (3) Additionally, we explore three challenging settings: skipping intermediate steps, introducing data noises, and testing length generalization. Our results demonstrate that Transformer+CoT learns robust algorithms (FSAs), highlighting its resilience in challenging scenarios. Our code is available at https://github.com/IvanChangPKU/FSA.

Authors:Lin Zhang, Yi Tian, XiYun Wang, Wanru Xu, Yi Jin, Yaping Huang
Title: Differential Contrastive Training for Gaze Estimation
Abstract:
The complex application scenarios have raised critical requirements for precise and generalizable gaze estimation methods. Recently, the pre-trained CLIP has achieved remarkable performance on various vision tasks, but its potentials have not been fully exploited in gaze estimation. In this paper, we propose a novel Differential Contrastive Training strategy, which boosts gaze estimation performance with the help of the CLIP. Accordingly, a Differential Contrastive Gaze Estimation network (DCGaze) composed of a Visual Appearance-aware branch and a Semantic Differential-aware branch is introduced. The Visual Appearance-aware branch is essentially a primary gaze estimation network and it incorporates an Adaptive Feature-refinement Unit (AFU) and a Double-head Gaze Regressor (DGR), which both help the primary network to extract informative and gaze-related appearance features. Moreover, the Semantic Difference-aware branch is designed on the basis of the CLIP's text encoder to reveal the semantic difference of gazes. This branch could further empower the Visual Appearance-aware branch with the capability of characterizing the gaze-related semantic information. Extensive experimental results on four challenging datasets over within and cross-domain tasks demonstrate the effectiveness of our DCGaze.The code is available at https://github.com/LinZhang-bjtu/DCGaze.

Authors:Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, Se-Young Yun
Title: Self-Training Elicits Concise Reasoning in Large Language Models
Abstract:
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning

Authors:Luigi Piccinelli, Christos Sakaridis, Yung-Hsu Yang, Mattia Segu, Siyuan Li, Wim Abbeloos, Luc Van Gool
Title: UniDepthV2: Universal Monocular Metric Depth Estimation Made Simpler
Abstract:
Accurate monocular metric depth estimation (MMDE) is crucial to solving downstream tasks in 3D perception and modeling. However, the remarkable accuracy of recent MMDE methods is confined to their training domains. These methods fail to generalize to unseen domains even in the presence of moderate domain gaps, which hinders their practical applicability. We propose a new model, UniDepthV2, capable of reconstructing metric 3D scenes from solely single images across domains. Departing from the existing MMDE paradigm, UniDepthV2 directly predicts metric 3D points from the input image at inference time without any additional information, striving for a universal and flexible MMDE solution. In particular, UniDepthV2 implements a self-promptable camera module predicting a dense camera representation to condition depth features. Our model exploits a pseudo-spherical output representation, which disentangles the camera and depth representations. In addition, we propose a geometric invariance loss that promotes the invariance of camera-prompted depth features. UniDepthV2 improves its predecessor UniDepth model via a new edge-guided loss which enhances the localization and sharpness of edges in the metric depth outputs, a revisited, simplified and more efficient architectural design, and an additional uncertainty-level output which enables downstream tasks requiring confidence. Thorough evaluations on ten depth datasets in a zero-shot regime consistently demonstrate the superior performance and generalization of UniDepthV2. Code and models are available at https://github.com/lpiccinelli-eth/UniDepth

Authors:Joris J. Weeda, Saray Bakker, Gang Chen, Javier Alonso-Mora
Title: Pushing Through Clutter With Movability Awareness of Blocking Obstacles
Abstract:
Navigation Among Movable Obstacles (NAMO) poses a challenge for traditional path-planning methods when obstacles block the path, requiring push actions to reach the goal. We propose a framework that enables movability-aware planning to overcome this challenge without relying on explicit obstacle placement. Our framework integrates a global Semantic Visibility Graph and a local Model Predictive Path Integral (SVG-MPPI) approach to efficiently sample rollouts, taking into account the continuous range of obstacle movability. A physics engine is adopted to simulate the interaction result of the rollouts with the environment, and generate trajectories that minimize contact force. In qualitative and quantitative experiments, SVG-MPPI outperforms the existing paradigm that uses only binary movability for planning, achieving higher success rates with reduced cumulative contact forces. Our code is available at: https://github.com/tud-amr/SVG-MPPI

Authors:Xuzheng Yang, Junzhuo Liu, Peng Wang, Guoqing Wang, Yang Yang, Heng Tao Shen
Title: New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration
Abstract:
Referring Expression Comprehension (REC) is a foundational cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding. It serves as an essential testing ground for Multimodal Large Language Models (MLLMs). To advance this field, we introduced a new REC dataset in our previous conference paper, characterized by two key features. First, it is designed with controllable difficulty levels, requiring multi-level fine-grained reasoning across object categories, attributes, and multi-hop relationships. Second, it incorporates negative text and images generated through fine-grained editing and augmentation, explicitly testing a model's ability to reject scenarios where the target object is absent, an often overlooked yet critical challenge in existing datasets. In this extended work, we propose two new methods to tackle the challenges of fine-grained REC by combining the strengths of Specialist Models and MLLMs. The first method adaptively assigns simple cases to faster, lightweight models and reserves complex ones for powerful MLLMs, balancing accuracy and efficiency. The second method lets a specialist generate a set of possible object regions, and the MLLM selects the most plausible one using its reasoning ability. These collaborative strategies lead to significant improvements on our dataset and other challenging benchmarks. Our results show that combining specialized and general-purpose models offers a practical path toward solving complex real-world vision-language tasks. Our dataset and code are available at https://github.com/sleepyshep/FineCops-Ref.

Authors:Gilles Van De Vyver, Aksel Try Lenz, Erik Smistad, Sindre Hellum Olaisen, Bjørnar Grenne, Espen Holte, Håavard Dalen, Lasse Løvstakken
Title: Generative augmentations for improved cardiac ultrasound segmentation using diffusion models
Abstract:
One of the main challenges in current research on segmentation in cardiac ultrasound is the lack of large and varied labeled datasets and the differences in annotation conventions between datasets. This makes it difficult to design robust segmentation models that generalize well to external datasets. This work utilizes diffusion models to create generative augmentations that can significantly improve diversity of the dataset and thus the generalisability of segmentation models without the need for more annotated data. The augmentations are applied in addition to regular augmentations. A visual test survey showed that experts cannot clearly distinguish between real and fully generated images. Using the proposed generative augmentations, segmentation robustness was increased when training on an internal dataset and testing on an external dataset with an improvement of over 20 millimeters in Hausdorff distance. Additionally, the limits of agreement for automatic ejection fraction estimation improved by up to 20% of absolute ejection fraction value on out of distribution cases. These improvements come exclusively from the increased variation of the training data using the generative augmentations, without modifying the underlying machine learning model. The augmentation tool is available as an open source Python library at https://github.com/GillesVanDeVyver/EchoGAINS.

Authors:Mingjie Wu, Chenggui Yang, Huihua Wang, Chen Xue, Yibo Wang, Haoyu Wang, Yansong Wang, Can Peng, Yuqi Han, Ruoyu Li, Lijun Yun, Zaiqing Chen, Yuelong Xia
Title: WalnutData: A UAV Remote Sensing Dataset of Green Walnuts and Model Evaluation
Abstract:
The UAV technology is gradually maturing and can provide extremely powerful support for smart agriculture and precise monitoring. Currently, there is no dataset related to green walnuts in the field of agricultural computer vision. Thus, in order to promote the algorithm design in the field of agricultural computer vision, we used UAV to collect remote-sensing data from 8 walnut sample plots. Considering that green walnuts are subject to various lighting conditions and occlusion, we constructed a large-scale dataset with a higher-granularity of target features - WalnutData. This dataset contains a total of 30,240 images and 706,208 instances, and there are 4 target categories: being illuminated by frontal light and unoccluded (A1), being backlit and unoccluded (A2), being illuminated by frontal light and occluded (B1), and being backlit and occluded (B2). Subsequently, we evaluated many mainstream algorithms on WalnutData and used these evaluation results as the baseline standard. The dataset and all evaluation results can be obtained at https://github.com/1wuming/WalnutData.

Authors:Meng Lou, Yizhou Yu
Title: OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels
Abstract:
Top-down attention plays a crucial role in the human vision system, wherein the brain initially obtains a rough overview of a scene to discover salient cues (i.e., overview first), followed by a more careful finer-grained examination (i.e., look closely next). However, modern ConvNets remain confined to a pyramid structure that successively downsamples the feature map for receptive field expansion, neglecting this crucial biomimetic principle. We present OverLoCK, the first pure ConvNet backbone architecture that explicitly incorporates a top-down attention mechanism. Unlike pyramid backbone networks, our design features a branched architecture with three synergistic sub-networks: 1) a Base-Net that encodes low/mid-level features; 2) a lightweight Overview-Net that generates dynamic top-down attention through coarse global context modeling (i.e., overview first); and 3) a robust Focus-Net that performs finer-grained perception guided by top-down attention (i.e., look closely next). To fully unleash the power of top-down attention, we further propose a novel context-mixing dynamic convolution (ContMix) that effectively models long-range dependencies while preserving inherent local inductive biases even when the input resolution increases, addressing critical limitations in existing convolutions. Our OverLoCK exhibits a notable performance improvement over existing methods. For instance, OverLoCK-T achieves a Top-1 accuracy of 84.2%, significantly surpassing ConvNeXt-B while using only around one-third of the FLOPs/parameters. On object detection, our OverLoCK-S clearly surpasses MogaNet-B by 1% in AP^b. On semantic segmentation, our OverLoCK-T remarkably improves UniRepLKNet-T by 1.7% in mIoU. Code is publicly available at https://github.com/LMMMEng/OverLoCK.

Authors:Ning Shang, Li Lyna Zhang, Siyuan Wang, Gaokai Zhang, Gilsinia Lopez, Fan Yang, Weizhu Chen, Mao Yang
Title: LongRoPE2: Near-Lossless LLM Context Window Scaling
Abstract:
LongRoPE2 is a novel approach that extends the effective context window of pre-trained large language models (LLMs) to the target length, while preserving the performance on the original shorter context window. This is achieved by three contributions: (1) a hypothesis that insufficient training in higher RoPE dimensions contributes to the persistent out-of-distribution (OOD) issues observed in existing methods; (2) an effective RoPE rescaling algorithm that adopts evolutionary search guided by "needle-driven" perplexity to address the insufficient training problem; (3) a mixed context window training approach that fine-tunes model weights to adopt rescaled RoPE for long-context sequences while preserving the short-context performance with the original RoPE. Extensive experiments on LLaMA3-8B and Phi3-mini-3.8B across various benchmarks validate the hypothesis and demonstrate the effectiveness of LongRoPE2. Remarkably, LongRoPE2 extends LLaMA3-8B to achieve a 128K effective context length while retaining over 98.5% of short-context performance, using only 10B tokens -- 80x fewer than Meta's approach, which fails to reach the target effective context length. Code will be available at https://github.com/microsoft/LongRoPE.

Authors:Haochen Sun, Shuwen Zhang, Lujie Niu, Lei Ren, Hao Xu, Hao Fu, Fangkun Zhao, Caixia Yuan, Xiaojie Wang
Title: Collab-Overcooked: Benchmarking and Evaluating Large Language Models as Collaborative Agents
Abstract:
Large Language Models (LLMs) based agent systems have made great strides in real-world applications beyond traditional NLP tasks. This paper proposes a new LLM-based Multi-Agent System (LLM-MAS) benchmark, Collab-Overcooked, built on the popular Overcooked-AI game with more applicable and challenging tasks in interactive environments. Collab-Overcooked extends existing benchmarks in two novel ways. First, it provides a multi-agent framework supporting diverse tasks and objectives and encourages collaboration through natural language communication. Second, it introduces a spectrum of process-oriented evaluation metrics to assess the fine-grained collaboration capabilities of different LLM agents, a dimension often overlooked in prior work. We conduct extensive experiments with 13 popular LLMs and show that, while the LLMs exhibit a strong ability in goal interpretation, there are significant shortcomings in active collaboration and continuous adaptation, which are critical for efficiently fulfilling complex tasks. Notably, we highlight the strengths and weaknesses of LLM-MAS and provide insights for improving and evaluating LLM-MAS on a unified and open-source benchmark. The environments, 30 open-ended tasks, and the evaluation package are publicly available at https://github.com/YusaeMeow/Collab-Overcooked.

Authors:Yejun Zhang, Shuzhe Wang, Juho Kannala
Title: A2-GNN: Angle-Annular GNN for Visual Descriptor-free Camera Relocalization
Abstract:
Visual localization involves estimating the 6-degree-of-freedom (6-DoF) camera pose within a known scene. A critical step in this process is identifying pixel-to-point correspondences between 2D query images and 3D models. Most advanced approaches currently rely on extensive visual descriptors to establish these correspondences, facing challenges in storage, privacy issues and model maintenance. Direct 2D-3D keypoint matching without visual descriptors is becoming popular as it can overcome those challenges. However, existing descriptor-free methods suffer from low accuracy or heavy computation. Addressing this gap, this paper introduces the Angle-Annular Graph Neural Network (A2-GNN), a simple approach that efficiently learns robust geometric structural representations with annular feature extraction. Specifically, this approach clusters neighbors and embeds each group's distance information and angle as supplementary information to capture local structures. Evaluation on matching and visual localization datasets demonstrates that our approach achieves state-of-the-art accuracy with low computational overhead among visual description-free methods. Our code will be released on https://github.com/YejunZhang/a2-gnn.

Authors:Xuyang Wei, Chunlin Tian, Li Li
Title: AsymLoRA: Harmonizing Data Conflicts and Commonalities in MLLMs
Abstract:
Effective instruction fine-tuning on diverse image-text datasets is crucial for developing a versatile Multimodal Large Language Model (MLLM), where dataset composition dictates the model's adaptability across multimodal tasks. However, complex datasets often contain inherent conflicts -- stemming from modality-specific optimization objectives -- and latent commonalities that enable cross-task transfer, which most existing approaches handle separately. To bridge this gap, we introduce AsymLoRA, a parameter-efficient tuning framework that unifies knowledge modularization and cross-modal coordination via asymmetric LoRA: task-specific low-rank projections (matrix B) that preserve distinct adaptation pathways for conflicting objectives, and a shared projection (matrix A) that consolidates cross-modal commonalities. Extensive evaluations demonstrate that AsymLoRA consistently surpasses both vanilla LoRA, which captures only commonalities, and LoRA-MoE, which focuses solely on conflicts, achieving superior model performance and system efficiency across diverse benchmarks.\href{Code}{https://github.com/Clin0212/HydraLoRA/blob/main/MLLM-HydraLoRA/README.md}.

Authors:Guannan Lai, Yujie Li, Xiangkun Wang, Junbo Zhang, Tianrui Li, Xin Yang
Title: Order-Robust Class Incremental Learning: Graph-Driven Dynamic Similarity Grouping
Abstract:
Class Incremental Learning (CIL) aims to enable models to learn new classes sequentially while retaining knowledge of previous ones. Although current methods have alleviated catastrophic forgetting (CF), recent studies highlight that the performance of CIL models is highly sensitive to the order of class arrival, particularly when sequentially introduced classes exhibit high inter-class similarity. To address this critical yet understudied challenge of class order sensitivity, we first extend existing CIL frameworks through theoretical analysis, proving that grouping classes with lower pairwise similarity during incremental phases significantly improves model robustness to order variations. Building on this insight, we propose Graph-Driven Dynamic Similarity Grouping (GDDSG), a novel method that employs graph coloring algorithms to dynamically partition classes into similarity-constrained groups. Each group trains an isolated CIL sub-model and constructs meta-features for class group identification. Experimental results demonstrate that our method effectively addresses the issue of class order sensitivity while achieving optimal performance in both model accuracy and anti-forgetting capability. Our code is available at https://github.com/AIGNLAI/GDDSG.

Authors:Fan Yang, Dongsheng Luo, Wenrui Chen, Jiacheng Lin, Junjie Cai, Kailun Yang, Zhiyong Li, Yaonan Wang
Title: Multi-Keypoint Affordance Representation for Functional Dexterous Grasping
Abstract:
Functional dexterous grasping requires precise hand-object interaction, going beyond simple gripping. Existing affordance-based methods primarily predict coarse interaction regions and cannot directly constrain the grasping posture, leading to a disconnection between visual perception and manipulation. To address this issue, we propose a multi-keypoint affordance representation for functional dexterous grasping, which directly encodes task-driven grasp configurations by localizing functional contact points. Our method introduces Contact-guided Multi-Keypoint Affordance (CMKA), leveraging human grasping experience images for weak supervision combined with Large Vision Models for fine affordance feature extraction, achieving generalization while avoiding manual keypoint annotations. Additionally, we present a Keypoint-based Grasp matrix Transformation (KGT) method, ensuring spatial consistency between hand keypoints and object contact points, thus providing a direct link between visual perception and dexterous grasping actions. Experiments on public real-world FAH datasets, IsaacGym simulation, and challenging robotic tasks demonstrate that our method significantly improves affordance localization accuracy, grasp consistency, and generalization to unseen tools and tasks, bridging the gap between visual affordance learning and dexterous robotic manipulation. The source code and demo videos are publicly available at https://github.com/PopeyePxx/MKA.

Authors:Huazheng Wang, Yongcheng Jing, Haifeng Sun, Yingjie Wang, Jingyu Wang, Jianxin Liao, Dacheng Tao
Title: Erasing Without Remembering: Implicit Knowledge Forgetting in Large Language Models
Abstract:
In this paper, we investigate knowledge forgetting in large language models with a focus on its generalisation--ensuring that models forget not only specific training samples but also related implicit knowledge. To this end, we begin by identifying a broader unlearning scope that includes both target data and logically associated samples, including rephrased, subject-replaced, one-hop reasoned, and relation-reversed data. To rigorously evaluate generalisation, we introduce UGBench, the first comprehensive benchmark specifically designed to assess the unlearning of in-scope implicit knowledge covering 13 state-of-the-art methods across three datasets. UGBench reveals that unlearned models can still recall paraphrased answers and retain target facts in intermediate layers. This motivates us to take a preliminary step toward more generalised implicit knowledge forgetting by proposing PerMU, a novel probability perturbation-based unlearning paradigm. PerMU simulates adversarial unlearning samples to eliminate fact-related tokens from the logit distribution, collectively reducing the probabilities of all answer-associated tokens. Experiments are conducted on a diverse range of datasets, including TOFU, Harry Potter, ZsRE, WMDP, and MUSE, using models ranging from 1.3B to 13B in scale. The results demonstrate that PerMU delivers up to a 50.40% improvement in unlearning vanilla target data while maintaining a 40.73% boost in forgetting implicit knowledge. Our code can be found in https://github.com/MaybeLizzy/UGBench.

Authors:Huazheng Wang, Yongcheng Jing, Haifeng Sun, Yingjie Wang, Jingyu Wang, Jianxin Liao, Dacheng Tao
Title: Erasing Without Remembering: Implicit Knowledge Forgetting in Large Language Models
Abstract:
In this paper, we investigate knowledge forgetting in large language models with a focus on its generalisation, ensuring that models forget not only specific training samples but also related implicit knowledge. To this end, we begin by identifying a broader unlearning scope that includes both target data and logically associated samples, including rephrased, subject-replaced, relation-reversed, and one-hop reasoned data. We then conduct a rigorous evaluation of 15 state-of-the-art methods across three datasets, revealing that unlearned models still recall paraphrased answers and retain target facts in their intermediate layers. This motivates us to take a preliminary step toward more generalised implicit knowledge forgetting by proposing PerMU, a novel probability perturbation-based unlearning paradigm. PerMU simulates adversarial unlearning samples to eliminate fact-related tokens from the logit distribution, collectively reducing the probabilities of all answer-associated tokens. Experiments are conducted on a diverse range of datasets, including TOFU, Harry Potter, ZsRE, WMDP, and MUSE, using models ranging from 1.3B to 13B in scale. The results demonstrate that PerMU delivers up to a 50.40% improvement in unlearning vanilla target data while maintaining a 40.73% boost in forgetting implicit knowledge. Our code can be found in https://github.com/MaybeLizzy/PERMU.

Authors:Quanxing Zha, Xin Liu, Shu-Juan Peng, Yiu-ming Cheung, Xing Xu, Nannan Wang
Title: ReCon: Enhancing True Correspondence Discrimination through Relation Consistency for Robust Noisy Correspondence Learning
Abstract:
Can we accurately identify the true correspondences from multimodal datasets containing mismatched data pairs? Existing methods primarily emphasize the similarity matching between the representations of objects across modalities, potentially neglecting the crucial relation consistency within modalities that are particularly important for distinguishing the true and false correspondences. Such an omission often runs the risk of misidentifying negatives as positives, thus leading to unanticipated performance degradation. To address this problem, we propose a general Relation Consistency learning framework, namely ReCon, to accurately discriminate the true correspondences among the multimodal data and thus effectively mitigate the adverse impact caused by mismatches. Specifically, ReCon leverages a novel relation consistency learning to ensure the dual-alignment, respectively of, the cross-modal relation consistency between different modalities and the intra-modal relation consistency within modalities. Thanks to such dual constrains on relations, ReCon significantly enhances its effectiveness for true correspondence discrimination and therefore reliably filters out the mismatched pairs to mitigate the risks of wrong supervisions. Extensive experiments on three widely-used benchmark datasets, including Flickr30K, MS-COCO, and Conceptual Captions, are conducted to demonstrate the effectiveness and superiority of ReCon compared with other SOTAs. The code is available at: https://github.com/qxzha/ReCon.

Authors:Xinghao Wang, Feng Liu, Rui Su, Zhihui Wang, Lihua Fang, Lianqing Zhou, Lei Bai, Wanli Ouyang
Title: SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language Model
Abstract:
Recent advances in deep learning have revolutionized seismic monitoring, yet developing a foundation model that performs well across multiple complex tasks remains challenging, particularly when dealing with degraded signals or data scarcity. This work presents SeisMoLLM, the first foundation model that utilizes cross-modal transfer for seismic monitoring, to unleash the power of large-scale pre-training from a large language model without requiring direct pre-training on seismic datasets. Through elaborate waveform tokenization and fine-tuning of pre-trained GPT-2 model, SeisMoLLM achieves state-of-the-art performance on the DiTing and STEAD datasets across five critical tasks: back-azimuth estimation, epicentral distance estimation, magnitude estimation, phase picking, and first-motion polarity classification. It attains 36 best results out of 43 task metrics and 12 top scores out of 16 few-shot generalization metrics, with many relative improvements ranging from 10% to 50%. In addition to its superior performance, SeisMoLLM maintains efficiency comparable to or even better than lightweight models in both training and inference. These findings establish SeisMoLLM as a promising foundation model for practical seismic monitoring and highlight cross-modal transfer as an exciting new direction for earthquake studies, showcasing the potential of advanced deep learning techniques to propel seismology research forward.

Authors:Yuan-Chih Yang, Hung-Hsuan Chen
Title: Dynamic DropConnect: Enhancing Neural Network Robustness through Adaptive Edge Dropping Strategies
Abstract:
Dropout and DropConnect are well-known techniques that apply a consistent drop rate to randomly deactivate neurons or edges in a neural network layer during training. This paper introduces a novel methodology that assigns dynamic drop rates to each edge within a layer, uniquely tailoring the dropping process without incorporating additional learning parameters. We perform experiments on synthetic and openly available datasets to validate the effectiveness of our approach. The results demonstrate that our method outperforms Dropout, DropConnect, and Standout, a classic mechanism known for its adaptive dropout capabilities. Furthermore, our approach improves the robustness and generalization of neural network training without increasing computational complexity. The complete implementation of our methodology is publicly accessible for research and replication purposes at https://github.com/ericabd888/Adjusting-the-drop-probability-in-DropConnect-based-on-the-magnitude-of-the-gradient/.

Authors:Xiang Geng, Zhejian Lai, Jiajun Chen, Hao Yang, Shujian Huang
Title: Alleviating Distribution Shift in Synthetic Data for Machine Translation Quality Estimation
Abstract:
Quality Estimation (QE) models evaluate the quality of machine translations without reference translations, serving as the reward models for the translation task. Due to the data scarcity, synthetic data generation has emerged as a promising solution. However, synthetic QE data often suffers from distribution shift, which can manifest as discrepancies between pseudo and real translations, or in pseudo labels that do not align with human preferences. To tackle this issue, we introduce DCSQE, a novel framework for alleviating distribution shift in synthetic QE data. To reduce the difference between pseudo and real translations, we employ the constrained beam search algorithm and enhance translation diversity through the use of distinct generation models. DCSQE uses references, i.e., translation supervision signals, to guide both the generation and annotation processes, enhancing the quality of token-level labels. DCSQE further identifies the shortest phrase covering consecutive error tokens, mimicking human annotation behavior, to assign the final phrase-level labels. Specially, we underscore that the translation model can not annotate translations of itself accurately. Extensive experiments demonstrate that DCSQE outperforms SOTA baselines like CometKiwi in both supervised and unsupervised settings. Further analysis offers insights into synthetic data generation that could benefit reward models for other tasks. The code is available at https://github.com/NJUNLP/njuqe.

Authors:Yung-Peng Hsu, Hung-Hsuan Chen
Title: Flexible Bivariate Beta Mixture Model: A Probabilistic Approach for Clustering Complex Data Structures
Abstract:
Clustering is essential in data analysis and machine learning, but traditional algorithms like $k$-means and Gaussian Mixture Models (GMM) often fail with nonconvex clusters. To address the challenge, we introduce the Flexible Bivariate Beta Mixture Model (FBBMM), which utilizes the flexibility of the bivariate beta distribution to handle diverse and irregular cluster shapes. Using the Expectation Maximization (EM) algorithm and Sequential Least Squares Programming (SLSQP) optimizer for parameter estimation, we validate FBBMM on synthetic and real-world datasets, demonstrating its superior performance in clustering complex data structures, offering a robust solution for big data analytics across various domains. We release the experimental code at https://github.com/yung-peng/MBMM-and-FBBMM.

Authors:Berken Utku Demirel, Christian Holz
Title: Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning
Abstract:
Deep learning models lack shift invariance, making them sensitive to input shifts that cause changes in output. While recent techniques seek to address this for images, our findings show that these approaches fail to provide shift-invariance in time series, where the data generation mechanism is more challenging due to the interaction of low and high frequencies. Worse, they also decrease performance across several tasks. In this paper, we propose a novel differentiable bijective function that maps samples from their high-dimensional data manifold to another manifold of the same dimension, without any dimensional reduction. Our approach guarantees that samples -- when subjected to random shifts -- are mapped to a unique point in the manifold while preserving all task-relevant information without loss. We theoretically and empirically demonstrate that the proposed transformation guarantees shift-invariance in deep learning models without imposing any limits to the shift. Our experiments on six time series tasks with state-of-the-art methods show that our approach consistently improves the performance while enabling models to achieve complete shift-invariance without modifying or imposing restrictions on the model's topology. The source code is available on \href{https://github.com/eth-siplab/Shifting-the-Paradigm}{GitHub}.

Authors:Marco Pleines, Daniel Addis, David Rubinstein, Frank Zimmer, Mike Preuss, Peter Whidden
Title: Pokemon Red via Reinforcement Learning
Abstract:
Pokémon Red, a classic Game Boy JRPG, presents significant challenges as a testbed for agents, including multi-tasking, long horizons of tens of thousands of steps, hard exploration, and a vast array of potential policies. We introduce a simplistic environment and a Deep Reinforcement Learning (DRL) training methodology, demonstrating a baseline agent that completes an initial segment of the game up to completing Cerulean City. Our experiments include various ablations that reveal vulnerabilities in reward shaping, where agents exploit specific reward signals. We also discuss limitations and argue that games like Pokémon hold strong potential for future research on Large Language Model agents, hierarchical training algorithms, and advanced exploration methods. Source Code: https://github.com/MarcoMeter/neroRL/tree/poke_red

Authors:Zhenyu Liu, Yunxin Li, Baotian Hu, Wenhan Luo, Yaowei Wang, Min Zhang
Title: Picking the Cream of the Crop: Visual-Centric Data Selection with Collaborative Agents
Abstract:
To improve Multimodal Large Language Models' (MLLMs) ability to process images and complex instructions, researchers predominantly curate large-scale visual instruction tuning datasets, which are either sourced from existing vision tasks or synthetically generated using LLMs and image descriptions. However, they often suffer from critical flaws, including misaligned instruction-image pairs and low-quality images. Such issues hinder training efficiency and limit performance improvements, as models waste resources on noisy or irrelevant data with minimal benefit to overall capability. To address this issue, we propose a \textbf{Vi}sual-Centric \textbf{S}election approach via \textbf{A}gents Collaboration (ViSA), which centers on image quality assessment and image-instruction relevance evaluation. Specifically, our approach consists of 1) an image information quantification method via visual agents collaboration to select images with rich visual information, and 2) a visual-centric instruction quality assessment method to select high-quality instruction data related to high-quality images. Finally, we reorganize 80K instruction data from large open-source datasets. Extensive experiments demonstrate that ViSA outperforms or is comparable to current state-of-the-art models on seven benchmarks, using only 2.5\% of the original data, highlighting the efficiency of our data selection approach. Moreover, we conduct ablation studies to validate the effectiveness of each component of our method. The code is available at https://github.com/HITsz-TMG/ViSA.

Authors:Nikolay Blagoev, Lydia Yiyu Chen, Oğuzhan Ersoy
Title: SkipPipe: Partial and Reordered Pipelining Framework for Training LLMs in Heterogeneous Networks
Abstract:
Data and pipeline parallelism are ubiquitous for training of Large Language Models (LLM) on distributed nodes. Driven by the need for cost-effective training, recent work explores efficient communication arrangement for end to end training. Motivated by LLM's resistance to layer skipping and layer reordering, in this paper, we explore stage (several consecutive layers) skipping in pipeline training, and challenge the conventional practice of sequential pipeline execution. We derive convergence and throughput constraints (guidelines) for pipelining with skipping and swapping pipeline stages. Based on these constraints, we propose SkipPipe, the first partial pipeline framework to reduce the end-to-end training time for LLMs while preserving the convergence. The core of SkipPipe is a path scheduling algorithm that optimizes the paths for individual microbatches and reduces idle time (due to microbatch collisions) on the distributed nodes, complying with the given stage skipping ratio. We extensively evaluate SkipPipe on LLaMa models from 500M to 8B parameters on up to 20 nodes. Our results show that SkipPipe reduces training iteration time by up to $55\%$ compared to full pipeline. Our partial pipeline training also improves resistance to layer omission during inference, experiencing a drop in perplexity of only $7\%$ when running only half the model. Our code is available at https://github.com/gensyn-ai/skippipe.

Authors:Yuhao Li, Mirana Claire Angel, Salman Khan, Yu Zhu, Jinqiu Sun, Yanning Zhang, Fahad Shahbaz Khan
Title: C-Drag: Chain-of-Thought Driven Motion Controller for Video Generation
Abstract:
Trajectory-based motion control has emerged as an intuitive and efficient approach for controllable video generation. However, the existing trajectory-based approaches are usually limited to only generating the motion trajectory of the controlled object and ignoring the dynamic interactions between the controlled object and its surroundings. To address this limitation, we propose a Chain-of-Thought-based motion controller for controllable video generation, named C-Drag. Instead of directly generating the motion of some objects, our C-Drag first performs object perception and then reasons the dynamic interactions between different objects according to the given motion control of the objects. Specifically, our method includes an object perception module and a Chain-of-Thought-based motion reasoning module. The object perception module employs visual language models to capture the position and category information of various objects within the image. The Chain-of-Thought-based motion reasoning module takes this information as input and conducts a stage-wise reasoning process to generate motion trajectories for each of the affected objects, which are subsequently fed to the diffusion model for video synthesis. Furthermore, we introduce a new video object interaction (VOI) dataset to evaluate the generation quality of motion controlled video generation methods. Our VOI dataset contains three typical types of interactions and provides the motion trajectories of objects that can be used for accurate performance evaluation. Experimental results show that C-Drag achieves promising performance across multiple metrics, excelling in object motion control. Our benchmark, codes, and models will be available at https://github.com/WesLee88524/C-Drag-Official-Repo.

Authors:Nan An, Long Ma, Guangchao Han, Xin Fan, RIsheng Liu
Title: Striving for Faster and Better: A One-Layer Architecture with Auto Re-parameterization for Low-Light Image Enhancement
Abstract:
Deep learning-based low-light image enhancers have made significant progress in recent years, with a trend towards achieving satisfactory visual quality while gradually reducing the number of parameters and improving computational efficiency. In this work, we aim to delving into the limits of image enhancers both from visual quality and computational efficiency, while striving for both better performance and faster processing. To be concrete, by rethinking the task demands, we build an explicit connection, i.e., visual quality and computational efficiency are corresponding to model learning and structure design, respectively. Around this connection, we enlarge parameter space by introducing the re-parameterization for ample model learning of a pre-defined minimalist network (e.g., just one layer), to avoid falling into a local solution. To strengthen the structural representation, we define a hierarchical search scheme for discovering a task-oriented re-parameterized structure, which also provides powerful support for efficiency. Ultimately, this achieves efficient low-light image enhancement using only a single convolutional layer, while maintaining excellent visual quality. Experimental results show our sensible superiority both in quality and efficiency against recently-proposed methods. Especially, our running time on various platforms (e.g., CPU, GPU, NPU, DSP) consistently moves beyond the existing fastest scheme. The source code will be released at https://github.com/vis-opt-group/AR-LLIE.

Authors:Chunyang Cheng, Tianyang Xu, Zhenhua Feng, Xiaojun Wu, ZhangyongTang, Hui Li, Zeyang Zhang, Sara Atito, Muhammad Awais, Josef Kittler
Title: One Model for ALL: Low-Level Task Interaction Is a Key to Task-Agnostic Image Fusion
Abstract:
Advanced image fusion methods mostly prioritise high-level missions, where task interaction struggles with semantic gaps, requiring complex bridging mechanisms. In contrast, we propose to leverage low-level vision tasks from digital photography fusion, allowing for effective feature interaction through pixel-level supervision. This new paradigm provides strong guidance for unsupervised multimodal fusion without relying on abstract semantics, enhancing task-shared feature learning for broader applicability. Owning to the hybrid image features and enhanced universal representations, the proposed GIFNet supports diverse fusion tasks, achieving high performance across both seen and unseen scenarios with a single model. Uniquely, experimental results reveal that our framework also supports single-modality enhancement, offering superior flexibility for practical applications. Our code will be available at https://github.com/AWCXV/GIFNet.

Authors:Xiaofan Li, Xin Tan, Zhuo Chen, Zhizhong Zhang, Ruixin Zhang, Rizen Guo, Guannan Jiang, Yulong Chen, Yanyun Qu, Lizhuang Ma, Yuan Xie
Title: One-for-More: Continual Diffusion Model for Anomaly Detection
Abstract:
With the rise of generative models, there is a growing interest in unifying all tasks within a generative framework. Anomaly detection methods also fall into this scope and utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images. However, our study found that the diffusion model suffers from severe ``faithfulness hallucination'' and ``catastrophic forgetting'', which can't meet the unpredictable pattern increments. To mitigate the above problems, we propose a continual diffusion model that uses gradient projection to achieve stable continual learning. Gradient projection deploys a regularization on the model updating by modifying the gradient towards the direction protecting the learned knowledge. But as a double-edged sword, it also requires huge memory costs brought by the Markov process. Hence, we propose an iterative singular value decomposition method based on the transitive property of linear representation, which consumes tiny memory and incurs almost no performance loss. Finally, considering the risk of ``over-fitting'' to normal images of the diffusion model, we propose an anomaly-masked network to enhance the condition mechanism of the diffusion model. For continual anomaly detection, ours achieves first place in 17/18 settings on MVTec and VisA. Code is available at https://github.com/FuNz-0/One-for-More

Authors:Long Xu, Kaixin Chai, Boyuan An, Jiaxiang Gan, Shuhang Ji, Zhenyu Hou, Qianhao Wang, Yuan Zhou, Xiaoying Li, Junxiao Lin, Zhichao Han, Chao Xu, Yanjun Cao, Fei Gao
Title: Tracailer: An Efficient Trajectory Planner for Tractor-Trailer Robots in Unstructured Environments
Abstract:
The tractor-trailer robot consists of a drivable tractor and one or more non-drivable trailers connected via hitches. Compared to typical car-like robots, the addition of trailers provides greater transportation capability. However, this also complicates motion planning due to the robot's complex kinematics, high-dimensional state space, and deformable structure. To efficiently plan safe, time-optimal trajectories that adhere to the kinematic constraints of the robot and address the challenges posed by its unique features, this paper introduces a lightweight, compact, and high-order smooth trajectory representation for tractor-trailer robots. Based on it, we design an efficiently solvable spatial-temporal trajectory optimization problem. To deal with deformable structures, which leads to difficulties in collision avoidance, we fully leverage the collisionfree regions of the environment, directly applying deformations to trajectories in continuous space. This approach not requires constructing safe regions from the environment using convex approximations through collision-free seed points before each optimization, avoiding the loss of the solution space, thus reducing the dependency of the optimization on initial values. Moreover, a multi-terminal fast path search algorithm is proposed to generate the initial values for optimization. Extensive simulation experiments demonstrate that our approach achieves severalfold improvements in efficiency compared to existing algorithms, while also ensuring lower curvature and trajectory duration. Real-world experiments involving the transportation, loading and unloading of goods in both indoor and outdoor scenarios further validate the effectiveness of our method. The source code is accessible at https://github.com/Tracailer/Tracailer.

Authors:Vidhi Lalchand, Anna-Christina Eilers
Title: Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Abstract:
This work proposes a scalable probabilistic latent variable model based on Gaussian processes (Lawrence, 2004) in the context of multiple observation spaces. We focus on an application in astrophysics where data sets typically contain both observed spectral features and scientific properties of astrophysical objects such as galaxies or exoplanets. In our application, we study the spectra of very luminous galaxies known as quasars, along with their properties, such as the mass of their central supermassive black hole, accretion rate, and luminosity-resulting in multiple observation spaces. A single data point is then characterized by different classes of observations, each with different likelihoods. Our proposed model extends the baseline stochastic variational Gaussian process latent variable model (GPLVM) introduced by Lalchand et al. (2022) to this setting, proposing a seamless generative model where the quasar spectra and scientific labels can be generated simultaneously using a shared latent space as input to different sets of Gaussian process decoders, one for each observation space. Additionally, this framework enables training in a missing data setting where a large number of dimensions per data point may be unknown or unobserved. We demonstrate high-fidelity reconstructions of the spectra and scientific labels during test-time inference and briefly discuss the scientific interpretations of the results, along with the significance of such a generative model.

Authors:Zixuan Weng, Xiaolong Jin, Jinyuan Jia, Xiangyu Zhang
Title: Foot-In-The-Door: A Multi-turn Jailbreak for LLMs
Abstract:
Ensuring AI safety is crucial as large language models become increasingly integrated into real-world applications. A key challenge is jailbreak, where adversarial prompts bypass built-in safeguards to elicit harmful disallowed outputs. Inspired by psychological foot-in-the-door principles, we introduce FITD,a novel multi-turn jailbreak method that leverages the phenomenon where minor initial commitments lower resistance to more significant or more unethical transgressions. Our approach progressively escalates the malicious intent of user queries through intermediate bridge prompts and aligns the model's response by itself to induce toxic responses. Extensive experimental results on two jailbreak benchmarks demonstrate that FITD achieves an average attack success rate of 94% across seven widely used models, outperforming existing state-of-the-art methods. Additionally, we provide an in-depth analysis of LLM self-corruption, highlighting vulnerabilities in current alignment strategies and emphasizing the risks inherent in multi-turn interactions. The code is available at https://github.com/Jinxiaolong1129/Foot-in-the-door-Jailbreak.

Authors:Jiacheng Ye, Zhenyu Wu, Jiahui Gao, Zhiyong Wu, Xin Jiang, Zhenguo Li, Lingpeng Kong
Title: Implicit Search via Discrete Diffusion: A Study on Chess
Abstract:
In the post-AlphaGo era, there has been a renewed interest in search techniques such as Monte Carlo Tree Search (MCTS), particularly in their application to Large Language Models (LLMs). This renewed attention is driven by the recognition that current next-token prediction models often lack the ability for long-term planning. Is it possible to instill search-like abilities within the models to enhance their planning abilities without relying on explicit search? We propose DiffuSearch , a model that does \textit{implicit search} by looking into the future world via discrete diffusion modeling. We instantiate DiffuSearch on a classical board game, Chess, where explicit search is known to be essential. Through extensive controlled experiments, we show DiffuSearch outperforms both the searchless and explicit search-enhanced policies. Specifically, DiffuSearch outperforms the one-step policy by 19.2% and the MCTS-enhanced policy by 14% on action accuracy. Furthermore, DiffuSearch demonstrates a notable 30% enhancement in puzzle-solving abilities compared to explicit search-based policies, along with a significant 540 Elo increase in game-playing strength assessment. These results indicate that implicit search via discrete diffusion is a viable alternative to explicit search over a one-step policy. All codes are publicly available at \href{https://github.com/HKUNLP/DiffuSearch}{https://github.com/HKUNLP/DiffuSearch}.

Authors:Aayush Dhakal, Srikumar Sastry, Subash Khanal, Adeel Ahmad, Eric Xing, Nathan Jacobs
Title: RANGE: Retrieval Augmented Neural Fields for Multi-Resolution Geo-Embeddings
Abstract:
The choice of representation for geographic location significantly impacts the accuracy of models for a broad range of geospatial tasks, including fine-grained species classification, population density estimation, and biome classification. Recent works like SatCLIP and GeoCLIP learn such representations by contrastively aligning geolocation with co-located images. While these methods work exceptionally well, in this paper, we posit that the current training strategies fail to fully capture the important visual features. We provide an information-theoretic perspective on why the resulting embeddings from these methods discard crucial visual information that is important for many downstream tasks. To solve this problem, we propose a novel retrieval-augmented strategy called RANGE. We build our method on the intuition that the visual features of a location can be estimated by combining the visual features from multiple similar-looking locations. We evaluate our method across a wide variety of tasks. Our results show that RANGE outperforms the existing state-of-the-art models with significant margins in most tasks. We show gains of up to 13.1% on classification tasks and 0.145 $R^2$ on regression tasks. All our code and models will be made available at: https://github.com/mvrl/RANGE.

Authors:Hugo Lyons Keenan, Sarah Erfani, Christopher Leckie
Title: HALO: Robust Out-of-Distribution Detection via Joint Optimisation
Abstract:
Effective out-of-distribution (OOD) detection is crucial for the safe deployment of machine learning models in real-world scenarios. However, recent work has shown that OOD detection methods are vulnerable to adversarial attacks, potentially leading to critical failures in high-stakes applications. This discovery has motivated work on robust OOD detection methods that are capable of maintaining performance under various attack settings. Prior approaches have made progress on this problem but face a number of limitations: often only exhibiting robustness to attacks on OOD data or failing to maintain strong clean performance. In this work, we adapt an existing robust classification framework, TRADES, extending it to the problem of robust OOD detection and discovering a novel objective function. Recognising the critical importance of a strong clean/robust trade-off for OOD detection, we introduce an additional loss term which boosts classification and detection performance. Our approach, called HALO (Helper-based AdversariaL OOD detection), surpasses existing methods and achieves state-of-the-art performance across a number of datasets and attack settings. Extensive experiments demonstrate an average AUROC improvement of 3.15 in clean settings and 7.07 under adversarial attacks when compared to the next best method. Furthermore, HALO exhibits resistance to transferred attacks, offers tuneable performance through hyperparameter selection, and is compatible with existing OOD detection frameworks out-of-the-box, leaving open the possibility of future performance gains. Code is available at: https://github.com/hugo0076/HALO

Authors:Xingyu Qiu, Mengying Yang, Xinghua Ma, Fanding Li, Dong Liang, Gongning Luo, Wei Wang, Kuanquan Wang, Shuo Li
Title: Finding Local Diffusion Schrödinger Bridge using Kolmogorov-Arnold Network
Abstract:
In image generation, Schrödinger Bridge (SB)-based methods theoretically enhance the efficiency and quality compared to the diffusion models by finding the least costly path between two distributions. However, they are computationally expensive and time-consuming when applied to complex image data. The reason is that they focus on fitting globally optimal paths in high-dimensional spaces, directly generating images as next step on the path using complex networks through self-supervised training, which typically results in a gap with the global optimum. Meanwhile, most diffusion models are in the same path subspace generated by weights $f_A(t)$ and $f_B(t)$, as they follow the paradigm ($x_t = f_A(t)x_{Img} + f_B(t)ε$). To address the limitations of SB-based methods, this paper proposes for the first time to find local Diffusion Schrödinger Bridges (LDSB) in the diffusion path subspace, which strengthens the connection between the SB problem and diffusion models. Specifically, our method optimizes the diffusion paths using Kolmogorov-Arnold Network (KAN), which has the advantage of resistance to forgetting and continuous output. The experiment shows that our LDSB significantly improves the quality and efficiency of image generation using the same pre-trained denoising network and the KAN for optimising is only less than 0.1MB. The FID metric is reduced by more than 15\%, especially with a reduction of 48.50\% when NFE of DDIM is $5$ for the CelebA dataset. Code is available at https://github.com/PerceptionComputingLab/LDSB.

Authors:Jinhao Pan, Chahat Raj, Ziyu Yao, Ziwei Zhu
Title: What's Not Said Still Hurts: A Description-Based Evaluation Framework for Measuring Social Bias in LLMs
Abstract:
Large Language Models (LLMs) often exhibit social biases inherited from their training data. While existing benchmarks evaluate bias by term-based mode through direct term associations between demographic terms and bias terms, LLMs have become increasingly adept at avoiding biased responses, leading to seemingly low levels of bias. However, biases persist in subtler, contextually hidden forms that traditional benchmarks fail to capture. We introduce the Description-based Bias Benchmark (DBB), a novel dataset designed to assess bias at the semantic level that bias concepts are hidden within naturalistic, subtly framed contexts in real-world scenarios rather than superficial terms. We analyze six state-of-the-art LLMs, revealing that while models reduce bias in response at the term level, they continue to reinforce biases in nuanced settings. Data, code, and results are available at https://github.com/JP-25/Description-based-Bias-Benchmark.

Authors:Hannah Cyberey, Yangfeng Ji, David Evans
Title: Unsupervised Concept Vector Extraction for Bias Control in LLMs
Abstract:
Large language models (LLMs) are known to perpetuate stereotypes and exhibit biases. Various strategies have been proposed to mitigate these biases, but most work studies biases as a black-box problem without considering how concepts are represented within the model. We adapt techniques from representation engineering to study how the concept of "gender" is represented within LLMs. We introduce a new method that extracts concept representations via probability weighting without labeled data and efficiently selects a steering vector for measuring and manipulating the model's representation. We develop a projection-based method that enables precise steering of model predictions and demonstrate its effectiveness in mitigating gender bias in LLMs and show that it also generalizes to racial bias. Our code is available at: https://github.com/hannahxchen/gender-bias-steering

Authors:Xinran Li, Xiaolu Wang, Chenjia Bai, Jun Zhang
Title: Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning
Abstract:
In cooperative multi-agent reinforcement learning (MARL), well-designed communication protocols can effectively facilitate consensus among agents, thereby enhancing task performance. Moreover, in large-scale multi-agent systems commonly found in real-world applications, effective communication plays an even more critical role due to the escalated challenge of partial observability compared to smaller-scale setups. In this work, we endeavor to develop a scalable communication protocol for MARL. Unlike previous methods that focus on selecting optimal pairwise communication links-a task that becomes increasingly complex as the number of agents grows-we adopt a global perspective on communication topology design. Specifically, we propose utilizing the exponential topology to enable rapid information dissemination among agents by leveraging its small-diameter and small-size properties. This approach leads to a scalable communication protocol, named ExpoComm. To fully unlock the potential of exponential graphs as communication topologies, we employ memory-based message processors and auxiliary tasks to ground messages, ensuring that they reflect global information and benefit decision-making. Extensive experiments on large-scale cooperative benchmarks, including MAgent and Infrastructure Management Planning, demonstrate the superior performance and robust zero-shot transferability of ExpoComm compared to existing communication strategies. The code is publicly available at https://github.com/LXXXXR/ExpoComm.

Authors:Qijie Xu, Defang Chen, Jiawei Chen, Siwei Lyu, Can Wang
Title: Recent Advances on Generalizable Diffusion-generated Image Detection
Abstract:
The rise of diffusion models has significantly improved the fidelity and diversity of generated images. With numerous benefits, these advancements also introduce new risks. Diffusion models can be exploited to create high-quality Deepfake images, which poses challenges for image authenticity verification. In recent years, research on generalizable diffusion-generated image detection has grown rapidly. However, a comprehensive review of this topic is still lacking. To bridge this gap, we present a systematic survey of recent advances and classify them into two main categories: (1) data-driven detection and (2) feature-driven detection. Existing detection methods are further classified into six fine-grained categories based on their underlying principles. Finally, we identify several open challenges and envision some future directions, with the hope of inspiring more research work on this important topic. Reviewed works in this survey can be found at https://github.com/zju-pi/Awesome-Diffusion-generated-Image-Detection.

Authors:Jianning Chi, Zelan Li, Geng Lin, MingYang Sun, Xiaosheng Yu
Title: Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
Abstract:
Weakly supervised segmentation methods can delineate thyroid nodules in ultrasound images efficiently using training data with coarse labels, but suffer from: 1) low-confidence pseudo-labels that follow topological priors, introducing significant label noise, and 2) low-rationality loss functions that rigidly compare segmentation with labels, ignoring discriminative information for nodules with diverse and complex shapes. To solve these issues, we clarify the objective and references for weakly supervised ultrasound image segmentation, presenting a framework with high-confidence pseudo-labels to represent topological and anatomical information and high-rationality losses to capture multi-level discriminative features. Specifically, we fuse geometric transformations of four-point annotations and MedSAM model results prompted by specific annotations to generate high-confidence box, foreground, and background labels. Our high-rationality learning strategy includes: 1) Alignment loss measuring spatial consistency between segmentation and box label, and topological continuity within the foreground label, guiding the network to perceive nodule location; 2) Contrastive loss pulling features from labeled foreground regions while pushing features from labeled foreground and background regions, guiding the network to learn nodule and background feature distribution; 3) Prototype correlation loss measuring consistency between correlation maps derived by comparing features with foreground and background prototypes, refining uncertain regions to accurate nodule edges. Experimental results show that our method achieves state-of-the-art performance on the TN3K and DDTI datasets. The code is available at https://github.com/bluehenglee/MLI-MSC.

Authors:Chen-Chen Zong, Sheng-Jun Huang
Title: Rethinking Epistemic and Aleatoric Uncertainty for Active Open-Set Annotation: An Energy-Based Approach
Abstract:
Active learning (AL), which iteratively queries the most informative examples from a large pool of unlabeled candidates for model training, faces significant challenges in the presence of open-set classes. Existing methods either prioritize query examples likely to belong to known classes, indicating low epistemic uncertainty (EU), or focus on querying those with highly uncertain predictions, reflecting high aleatoric uncertainty (AU). However, they both yield suboptimal performance, as low EU corresponds to limited useful information, and closed-set AU metrics for unknown class examples are less meaningful. In this paper, we propose an Energy-based Active Open-set Annotation (EAOA) framework, which effectively integrates EU and AU to achieve superior performance. EAOA features a $(C+1)$-class detector and a target classifier, incorporating an energy-based EU measure and a margin-based energy loss designed for the detector, alongside an energy-based AU measure for the target classifier. Another crucial component is the target-driven adaptive sampling strategy. It first forms a smaller candidate set with low EU scores to ensure closed-set properties, making AU metrics meaningful. Subsequently, examples with high AU scores are queried to form the final query set, with the candidate set size adjusted adaptively. Extensive experiments show that EAOA achieves state-of-the-art performance while maintaining high query precision and low training overhead. The code is available at https://github.com/chenchenzong/EAOA.

Authors:Xiongfei Su, Tianyi Zhu, Lina Liu, Zheng Chen, Yulun Zhang, Siyuan Li, Juntian Ye, Feihu Xu, Xin Yuan
Title: Dual-branch Graph Feature Learning for NLOS Imaging
Abstract:
The domain of non-line-of-sight (NLOS) imaging is advancing rapidly, offering the capability to reveal occluded scenes that are not directly visible. However, contemporary NLOS systems face several significant challenges: (1) The computational and storage requirements are profound due to the inherent three-dimensional grid data structure, which restricts practical application. (2) The simultaneous reconstruction of albedo and depth information requires a delicate balance using hyperparameters in the loss function, rendering the concurrent reconstruction of texture and depth information difficult. This paper introduces the innovative methodology, \xnet, which integrates an albedo-focused reconstruction branch dedicated to albedo information recovery and a depth-focused reconstruction branch that extracts geometrical structure, to overcome these obstacles. The dual-branch framework segregates content delivery to the respective reconstructions, thereby enhancing the quality of the retrieved data. To our knowledge, we are the first to employ the GNN as a fundamental component to transform dense NLOS grid data into sparse structural features for efficient reconstruction. Comprehensive experiments demonstrate that our method attains the highest level of performance among existing methods across synthetic and real data. https://github.com/Nicholassu/DG-NLOS.

Authors:Kanglei Zhou, Zikai Hao, Liyuan Wang, Xiaohui Liang
Title: Adaptive Score Alignment Learning for Continual Perceptual Quality Assessment of 360-Degree Videos in Virtual Reality
Abstract:
Virtual Reality Video Quality Assessment (VR-VQA) aims to evaluate the perceptual quality of 360-degree videos, which is crucial for ensuring a distortion-free user experience. Traditional VR-VQA methods trained on static datasets with limited distortion diversity struggle to balance correlation and precision. This becomes particularly critical when generalizing to diverse VR content and continually adapting to dynamic and evolving video distribution variations. To address these challenges, we propose a novel approach for assessing the perceptual quality of VR videos, Adaptive Score Alignment Learning (ASAL). ASAL integrates correlation loss with error loss to enhance alignment with human subjective ratings and precision in predicting perceptual quality. In particular, ASAL can naturally adapt to continually changing distributions through a feature space smoothing process that enhances generalization to unseen content. To further improve continual adaptation to dynamic VR environments, we extend ASAL with adaptive memory replay as a novel Continul Learning (CL) framework. Unlike traditional CL models, ASAL utilizes key frame extraction and feature adaptation to address the unique challenges of non-stationary variations with both the computation and storage restrictions of VR devices. We establish a comprehensive benchmark for VR-VQA and its CL counterpart, introducing new data splits and evaluation metrics. Our experiments demonstrate that ASAL outperforms recent strong baseline models, achieving overall correlation gains of up to 4.78\% in the static joint training setting and 12.19\% in the dynamic CL setting on various datasets. This validates the effectiveness of ASAL in addressing the inherent challenges of VR-VQA.Our code is available at https://github.com/ZhouKanglei/ASAL_CVQA.

Authors:Hoonhee Cho, Jae-young Kang, Youngho Kim, Kuk-Jin Yoon
Title: Ev-3DOD: Pushing the Temporal Boundaries of 3D Object Detection with Event Cameras
Abstract:
Detecting 3D objects in point clouds plays a crucial role in autonomous driving systems. Recently, advanced multi-modal methods incorporating camera information have achieved notable performance. For a safe and effective autonomous driving system, algorithms that excel not only in accuracy but also in speed and low latency are essential. However, existing algorithms fail to meet these requirements due to the latency and bandwidth limitations of fixed frame rate sensors, e.g., LiDAR and camera. To address this limitation, we introduce asynchronous event cameras into 3D object detection for the first time. We leverage their high temporal resolution and low bandwidth to enable high-speed 3D object detection. Our method enables detection even during inter-frame intervals when synchronized data is unavailable, by retrieving previous 3D information through the event camera. Furthermore, we introduce the first event-based 3D object detection dataset, DSEC-3DOD, which includes ground-truth 3D bounding boxes at 100 FPS, establishing the first benchmark for event-based 3D detectors. The code and dataset are available at https://github.com/mickeykang16/Ev3DOD.

Authors:Hugues Turbé, Mina Bjelogrlic, Gianmarco Mengaldo, Christian Lovis
Title: Tell me why: Visual foundation models as self-explainable classifiers
Abstract:
Visual foundation models (VFMs) have become increasingly popular due to their state-of-the-art performance. However, interpretability remains crucial for critical applications. In this sense, self-explainable models (SEM) aim to provide interpretable classifiers that decompose predictions into a weighted sum of interpretable concepts. Despite their promise, recent studies have shown that these explanations often lack faithfulness. In this work, we combine VFMs with a novel prototypical architecture and specialized training objectives. By training only a lightweight head (approximately 1M parameters) on top of frozen VFMs, our approach (ProtoFM) offers an efficient and interpretable solution. Evaluations demonstrate that our approach achieves competitive classification performance while outperforming existing models across a range of interpretability metrics derived from the literature. Code is available at https://github.com/hturbe/proto-fm.

Authors:Achille Nazaret, David Blei
Title: Extremely Greedy Equivalence Search
Abstract:
The goal of causal discovery is to learn a directed acyclic graph from data. One of the most well-known methods for this problem is Greedy Equivalence Search (GES). GES searches for the graph by incrementally and greedily adding or removing edges to maximize a model selection criterion. It has strong theoretical guarantees on infinite data but can fail in practice on finite data. In this paper, we first identify some of the causes of GES's failure, finding that it can get blocked in local optima, especially in denser graphs. We then propose eXtremely Greedy Equivalent Search (XGES), which involves a new heuristic to improve the search strategy of GES while retaining its theoretical guarantees. In particular, XGES favors deleting edges early in the search over inserting edges, which reduces the possibility of the search ending in local optima. A further contribution of this work is an efficient algorithmic formulation of XGES (and GES). We benchmark XGES on simulated datasets with known ground truth. We find that XGES consistently outperforms GES in recovering the correct graphs, and it is 10 times faster. XGES implementations in Python and C++ are available at https://github.com/ANazaret/XGES.

Authors:Yuxin Liu, M. Amin Rahimian
Title: Privacy-Aware Sequential Learning
Abstract:
In settings like vaccination registries, individuals act after observing others, and the resulting public records can expose private information. We study privacy-preserving sequential learning, where agents add endogenous noise to their reported actions to conceal private signals. Efficient social learning relies on information flow, seemingly in conflict with privacy. Surprisingly, with continuous signals and a fixed privacy budget $(ε)$, the optimal randomization strategy balances privacy and accuracy, accelerating learning to $Θ_ε(\log n)$, faster than the nonprivate $Θ(\sqrt{\log n})$ rate. In the nonprivate baseline, the expected time to the first correct action and the number of incorrect actions diverge; under privacy with sufficiently small $ε$, both are finite. Privacy helps because, under the false state, agents more often receive signals contradicting the majority; randomization then asymmetrically amplifies the log-likelihood ratio, enhancing aggregation. In heterogeneous populations, an order-optimal $Θ(\sqrt{n})$ rate is achievable when a subset of agents have low privacy budgets. With binary signals, however, privacy reduces informativeness and impairs learning relative to the nonprivate baseline, though the dependence on $ε$ is nonmonotone. Our results show how privacy reshapes information dynamics and inform the design of platforms and policies.

Authors:Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, Bruno Ribeiro
Title: TRIX: A More Expressive Model for Zero-shot Domain Transfer in Knowledge Graphs
Abstract:
Fully inductive knowledge graph models can be trained on multiple domains and subsequently perform zero-shot knowledge graph completion (KGC) in new unseen domains. This is an important capability towards the goal of having foundation models for knowledge graphs. In this work, we introduce a more expressive and capable fully inductive model, dubbed TRIX, which not only yields strictly more expressive triplet embeddings (head entity, relation, tail entity) compared to state-of-the-art methods, but also introduces a new capability: directly handling both entity and relation prediction tasks in inductive settings. Empirically, we show that TRIX outperforms the state-of-the-art fully inductive models in zero-shot entity and relation predictions in new domains, and outperforms large-context LLMs in out-of-domain predictions. The source code is available at https://github.com/yuchengz99/TRIX.

Authors:Kunato Nishina, Yusuke Matsui
Title: SVGEditBench V2: A Benchmark for Instruction-based SVG Editing
Abstract:
Vector format has been popular for representing icons and sketches. It has also been famous for design purposes. Regarding image editing, research on vector graphics editing rarely exists in contrast with the raster counterpart. We considered the reason to be the lack of datasets and benchmarks. Thus, we propose SVGEditBench V2, a benchmark dataset for instruction-based SVG editing. SVGEditBench V2 comprises triplets of an original image, a ground truth image, and the editing prompt. We built the dataset by first extracting image pairs from various SVG emoji datasets. Then, we had GPT-4o to create the prompt. We found that triplets gained by this simple pipeline contain varying sorts of editing tasks. Additionally, we performed the editing tasks with existing LLMs and investigated how those current methods can perform SVG editing. Although there were some successful cases, we found that there is a massive room for improvement.

Authors:Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng, Xin Qian, Grey Yang, Jiebo Luo, Julian McAuley
Title: Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs
Abstract:
In large language models (LLMs), code and reasoning reinforce each other: code offers an abstract, modular, and logic-driven structure that supports reasoning, while reasoning translates high-level goals into smaller, executable steps that drive more advanced code intelligence. In this study, we examine how code serves as a structured medium for enhancing reasoning: it provides verifiable execution paths, enforces logical decomposition, and enables runtime validation. We also explore how improvements in reasoning have transformed code intelligence from basic completion to advanced capabilities, enabling models to address complex software engineering tasks through planning and debugging. Finally, we identify key challenges and propose future research directions to strengthen this synergy, ultimately improving LLM's performance in both areas.

Authors:Danae Sánchez Villegas, Ingo Ziegler, Desmond Elliott
Title: ImageChain: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models
Abstract:
Reasoning over sequences of images remains a challenge for multimodal large language models (MLLMs). While recent models incorporate multi-image data during pre-training, they still struggle to recognize sequential structures, often treating images independently. This work introduces ImageChain, a framework that enhances MLLMs with sequential reasoning capabilities over image data by modeling visual sequences as a multi-turn conversation. In ImageChain, images are interleaved with corresponding textual descriptions to form a controlled dialogue that explicitly captures temporal dependencies and narrative progression. Our method optimizes for the task of next-scene description, where the model generates a context-aware description of an upcoming scene based on preceding visual and textual cues. We demonstrate that our approach improves performance on the next-scene description task -- achieving an average improvement from 3.7% to 19% in SimRate, a metric that quantifies semantic similarity to human-annotated ground truths. Moreover, ImageChain achieves robust zero-shot out-of-domain performance in applications ranging from comics to robotics. Extensive experiments validate that instruction-tuning in a multimodal, multi-turn conversation design is key to bridging the gap between static image understanding and temporally-aware reasoning.

Authors:Oğuzhan Ersoy, Jari Kolehmainen, Gabriel Passamani Andrade
Title: HDEE: Heterogeneous Domain Expert Ensemble
Abstract:
Training dense LLMs requires enormous amounts of data and centralized compute, which introduces fundamental bottlenecks and ever-growing costs for large models. Several studies aim to reduce this dependency on centralization by reducing the communication overhead of training dense models. Taking this idea of reducing communication overhead to a natural extreme, by training embarrassingly parallelizable ensembles of small independent experts, has been shown to outperform large dense models trained in traditional centralized settings. However, existing studies do not take into account underlying differences amongst data domains and treat them as monolithic, regardless of their underlying complexity, size, or distribution. In this paper, we explore the effects of introducing heterogeneity to these ensembles of domain expert models. Specifically, by allowing models within the ensemble to vary in size--as well as the number of training steps taken depending on the training data's domain--we study the effect heterogeneity has on these ensembles when evaluated against domains included in, and excluded from, the training set. We use the same compute budget to train heterogeneous ensembles and homogeneous baselines for comparison. We show that the heterogeneous ensembles achieve the lowest perplexity scores in $20$ out of the $21$ data domains used in the evaluation. Our code is available at https://github.com/gensyn-ai/hdee.

Authors:Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, Juanzi Li
Title: Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems
Abstract:
Reward models (RMs) are crucial for the training and inference-time scaling up of large language models (LLMs). However, existing reward models primarily focus on human preferences, neglecting verifiable correctness signals which have shown strong potential in training LLMs. In this paper, we propose agentic reward modeling, a reward system that combines reward models with verifiable correctness signals from different aspects to provide reliable rewards. We empirically implement a reward agent, named RewardAgent, that combines human preference rewards with two verifiable signals: factuality and instruction following, to provide more reliable rewards. We conduct comprehensive experiments on existing reward model benchmarks and inference time best-of-n searches on real-world downstream tasks. RewardAgent significantly outperforms vanilla reward models, demonstrating its effectiveness. We further construct training preference pairs using RewardAgent and train an LLM with the DPO objective, achieving superior performance on various NLP benchmarks compared to conventional reward models. Our codes are publicly released to facilitate further research (https://github.com/THU-KEG/Agentic-Reward-Modeling).

Authors:Adam Celarek, George Kopanas, George Drettakis, Michael Wimmer, Bernhard Kerbl
Title: Does 3D Gaussian Splatting Need Accurate Volumetric Rendering?
Abstract:
Since its introduction, 3D Gaussian Splatting (3DGS) has become an important reference method for learning 3D representations of a captured scene, allowing real-time novel-view synthesis with high visual quality and fast training times. Neural Radiance Fields (NeRFs), which preceded 3DGS, are based on a principled ray-marching approach for volumetric rendering. In contrast, while sharing a similar image formation model with NeRF, 3DGS uses a hybrid rendering solution that builds on the strengths of volume rendering and primitive rasterization. A crucial benefit of 3DGS is its performance, achieved through a set of approximations, in many cases with respect to volumetric rendering theory. A naturally arising question is whether replacing these approximations with more principled volumetric rendering solutions can improve the quality of 3DGS. In this paper, we present an in-depth analysis of the various approximations and assumptions used by the original 3DGS solution. We demonstrate that, while more accurate volumetric rendering can help for low numbers of primitives, the power of efficient optimization and the large number of Gaussians allows 3DGS to outperform volumetric rendering despite its approximations.

Authors:Guoqing Chao, Kaixin Xu, Xijiong Xie, Yongyong Chen
Title: Global Graph Propagation with Hierarchical Information Transfer for Incomplete Contrastive Multi-view Clustering
Abstract:
Incomplete multi-view clustering has become one of the important research problems due to the extensive missing multi-view data in the real world. Although the existing methods have made great progress, there are still some problems: 1) most methods cannot effectively mine the information hidden in the missing data; 2) most methods typically divide representation learning and clustering into two separate stages, but this may affect the clustering performance as the clustering results directly depend on the learned representation. To address these problems, we propose a novel incomplete multi-view clustering method with hierarchical information transfer. Firstly, we design the view-specific Graph Convolutional Networks (GCN) to obtain the representation encoding the graph structure, which is then fused into the consensus representation. Secondly, considering that one layer of GCN transfers one-order neighbor node information, the global graph propagation with the consensus representation is proposed to handle the missing data and learn deep representation. Finally, we design a weight-sharing pseudo-classifier with contrastive learning to obtain an end-to-end framework that combines view-specific representation learning, global graph propagation with hierarchical information transfer, and contrastive clustering for joint optimization. Extensive experiments conducted on several commonly-used datasets demonstrate the effectiveness and superiority of our method in comparison with other state-of-the-art approaches. The code is available at https://github.com/KelvinXuu/GHICMC.

Authors:Zhenyi Zhu, Yuchen Huang, Liu Liu
Title: PhysicsSolver: Transformer-Enhanced Physics-Informed Neural Networks for Forward and Forecasting Problems in Partial Differential Equations
Abstract:
Time-dependent partial differential equations are a significant class of equations that describe the evolution of various physical phenomena over time. One of the open problems in scientific computing is predicting the behaviour of the solution outside the given temporal region. Most traditional numerical methods are applied to a given time-space region and can only accurately approximate the solution of the given region. To address this problem, many deep learning-based methods, basically data-driven and data-free approaches, have been developed to solve these problems. However, most data-driven methods require a large amount of data, which consumes significant computational resources and fails to utilize all the necessary information embedded underlying the partial differential equations (PDEs). Moreover, data-free approaches such as Physics-Informed Neural Networks (PINNs) may not be that ideal in practice, as traditional PINNs, which primarily rely on multilayer perceptrons (MLPs) and convolutional neural networks (CNNs), tend to overlook the crucial temporal dependencies inherent in real-world physical systems. We propose a method denoted as \textbf{PhysicsSolver} that merges the strengths of two approaches: data-free methods that can learn the intrinsic properties of physical systems without using data, and data-driven methods, which are effective at making predictions. Extensive numerical experiments have demonstrated the efficiency and robustness of our proposed method. We provide the code at \href{https://github.com/PhysicsSolver/PhysicsSolver}{https://github.com/PhysicsSolver}.

Authors:Honglin Guo, Kai Lv, Qipeng Guo, Tianyi Liang, Zhiheng Xi, Demin Song, Qiuyinzhe Zhang, Yu Sun, Kai Chen, Xipeng Qiu, Tao Gui
Title: CritiQ: Mining Data Quality Criteria from Human Preferences
Abstract:
Language model heavily depends on high-quality data for optimal performance. Existing approaches rely on manually designed heuristics, the perplexity of existing models, training classifiers, or careful prompt engineering, which require significant expert experience and human annotation effort while introduce biases. We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality with only ~30 human-annotated pairs and performs efficient data selection. The main component, CritiQ Flow, employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments. We build a knowledge base that extracts quality criteria from previous work to boost CritiQ Flow. Compared to perplexity- and classifier- based methods, verbal criteria are more interpretable and possess reusable value. After deriving the criteria, we train the CritiQ Scorer to give quality scores and perform efficient data selection. We demonstrate the effectiveness of our method in the code, math, and logic domains, achieving high accuracy on human-annotated test sets. To validate the quality of the selected data, we continually train Llama 3.1 models and observe improved performance on downstream tasks compared to uniform sampling. Ablation studies validate the benefits of the knowledge base and the reflection process. We analyze how criteria evolve and the effectiveness of majority voting.

Authors:Nadya Abdel Madjid, Murad Mebrahtu, Abdulrahman Ahmad, Abdelmoamen Nasser, Bilal Hassan, Naoufel Werghi, Jorge Dias, Majid Khonji
Title: EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving
Abstract:
This paper introduces the Emirates Multi-Task (EMT) dataset, designed to support multi-task benchmarking within a unified framework. It comprises over 30,000 frames from a dash-camera perspective and 570,000 annotated bounding boxes, covering approximately 150 kilometers of driving routes that reflect the distinctive road topology, congestion patterns, and driving behavior of Gulf region traffic. The dataset supports three primary tasks: tracking, trajectory forecasting, and intention prediction. Each benchmark is accompanied by corresponding evaluations: (1) multi-agent tracking experiments addressing multi-class scenarios and occlusion handling; (2) trajectory forecasting evaluation using deep sequential and interaction-aware models; and (3) intention prediction experiments based on observed trajectories. The dataset is publicly available at https://avlab.io/emt-dataset, with pre-processing scripts and evaluation models at https://github.com/AV-Lab/emt-dataset.

Authors:Zhiqiang Wang, Haoyu Wang, Lu Hao
Title: Poster: Long PHP webshell files detection based on sliding window attention
Abstract:
Webshell is a type of backdoor, and web applications are widely exposed to webshell injection attacks. Therefore, it is important to study webshell detection techniques. In this study, we propose a webshell detection method. We first convert PHP source code to opcodes and then extract Opcode Double-Tuples (ODTs). Next, we combine CodeBert and FastText models for feature representation and classification. To address the challenge that deep learning methods have difficulty detecting long webshell files, we introduce a sliding window attention mechanism. This approach effectively captures malicious behavior within long files. Experimental results show that our method reaches high accuracy in webshell detection, solving the problem of traditional methods that struggle to address new webshell variants and anti-detection techniques.

Authors:Li Ju, Xingyi Yang, Qi Li, Xinchao Wang
Title: GraphBridge: Towards Arbitrary Transfer Learning in GNNs
Abstract:
Graph neural networks (GNNs) are conventionally trained on a per-domain, per-task basis. It creates a significant barrier in transferring the acquired knowledge to different, heterogeneous data setups. This paper introduces GraphBridge, a novel framework to enable knowledge transfer across disparate tasks and domains in GNNs, circumventing the need for modifications to task configurations or graph structures. Specifically, GraphBridge allows for the augmentation of any pre-trained GNN with prediction heads and a bridging network that connects the input to the output layer. This architecture not only preserves the intrinsic knowledge of the original model but also supports outputs of arbitrary dimensions. To mitigate the negative transfer problem, GraphBridge merges the source model with a concurrently trained model, thereby reducing the source bias when applied to the target domain. Our method is thoroughly evaluated across diverse transfer learning scenarios, including Graph2Graph, Node2Node, Graph2Node, and graph2point-cloud. Empirical validation, conducted over 16 datasets representative of these scenarios, confirms the framework's capacity for task- and domain-agnostic transfer learning within graph-like data, marking a significant advancement in the field of GNNs. Code is available at https://github.com/jujulili888/GraphBridge.

Authors:Haoxin Cai, Shenghai Yuan, Xinyi Li, Junfeng Guo, Jianqi Liu
Title: BEV-LIO(LC): BEV Image Assisted LiDAR-Inertial Odometry with Loop Closure
Abstract:
This work introduces BEV-LIO(LC), a novel LiDAR-Inertial Odometry (LIO) framework that combines Bird's Eye View (BEV) image representations of LiDAR data with geometry-based point cloud registration and incorporates loop closure (LC) through BEV image features. By normalizing point density, we project LiDAR point clouds into BEV images, thereby enabling efficient feature extraction and matching. A lightweight convolutional neural network (CNN) based feature extractor is employed to extract distinctive local and global descriptors from the BEV images. Local descriptors are used to match BEV images with FAST keypoints for reprojection error construction, while global descriptors facilitate loop closure detection. Reprojection error minimization is then integrated with point-to-plane registration within an iterated Extended Kalman Filter (iEKF). In the back-end, global descriptors are used to create a KD-tree-indexed keyframe database for accurate loop closure detection. When a loop closure is detected, Random Sample Consensus (RANSAC) computes a coarse transform from BEV image matching, which serves as the initial estimate for Iterative Closest Point (ICP). The refined transform is subsequently incorporated into a factor graph along with odometry factors, improving the global consistency of localization. Extensive experiments conducted in various scenarios with different LiDAR types demonstrate that BEV-LIO(LC) outperforms state-of-the-art methods, achieving competitive localization accuracy. Our code and video can be found at https://github.com/HxCa1/BEV-LIO-LC.

Authors:Jiazheng Li, Yuxiang Zhou, Junru Lu, Gladys Tyen, Lin Gui, Cesare Aloisi, Yulan He
Title: Two Heads Are Better Than One: Dual-Model Verbal Reflection at Inference-Time
Abstract:
Although preference optimization methods have improved reasoning performance in Large Language Models (LLMs), they often lack transparency regarding why one reasoning outcome is preferred over another. This limitation is especially critical in Automated Student Answer Scoring (ASAS), where explainability is essential to justify assessment outcomes. Verbal reinforcement learning offers the potential to generate explicit reflection, but it tends to produce superficial critiques that can harm assessment performance. Existing LLMs also struggle to reliably detect subtle reasoning errors in ASAS tasks. Moreover, manually identifying intermediate reasoning errors is expensive and difficult to scale. To address these challenges, we introduce a contrastive reflection synthesis pipeline that generates precise verbal feedback by identifying discrepancies in structure reasoning graph paths. Leveraging these synthetic reflection data, we propose DARS, a Dual-model Reflective Scoring framework featuring a dedicated Critic model trained for effective reflection. DARS achieves strong performance and consistently outperforms existing ASAS baselines across all evaluation metrics. Extensive experiments further provide novel insights into the value of reflection data, framework design, and the scaling behavior of DARS. We release the DARS code at https://github.com/lijiazheng99/DARS.

Authors:Zhouyu Jiang, Mengshu Sun, Zhiqiang Zhang, Lei Liang
Title: Bi'an: A Bilingual Benchmark and Model for Hallucination Detection in Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) effectively reduces hallucinations in Large Language Models (LLMs) but can still produce inconsistent or unsupported content. Although LLM-as-a-Judge is widely used for RAG hallucination detection due to its implementation simplicity, it faces two main challenges: the absence of comprehensive evaluation benchmarks and the lack of domain-optimized judge models. To bridge these gaps, we introduce \textbf{Bi'an}, a novel framework featuring a bilingual benchmark dataset and lightweight judge models. The dataset supports rigorous evaluation across multiple RAG scenarios, while the judge models are fine-tuned from compact open-source LLMs. Extensive experimental evaluations on Bi'anBench show our 14B model outperforms baseline models with over five times larger parameter scales and rivals state-of-the-art closed-source LLMs. We will release our data and models soon at https://github.com/OpenSPG/KAG.

Authors:Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q. Tran, Quoc V. Le, Orhan Firat
Title: BIG-Bench Extra Hard
Abstract:
Large language models (LLMs) are increasingly deployed in everyday applications, demanding robust general reasoning capabilities and diverse reasoning skillset. However, current LLM reasoning benchmarks predominantly focus on mathematical and coding abilities, leaving a gap in evaluating broader reasoning proficiencies. One particular exception is the BIG-Bench dataset, which has served as a crucial benchmark for evaluating the general reasoning capabilities of LLMs, thanks to its diverse set of challenging tasks that allowed for a comprehensive assessment of general reasoning across various skills within a unified framework. However, recent advances in LLMs have led to saturation on BIG-Bench, and its harder version BIG-Bench Hard (BBH). State-of-the-art models achieve near-perfect scores on many tasks in BBH, thus diminishing its utility. To address this limitation, we introduce BIG-Bench Extra Hard (BBEH), a new benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. We evaluate various models on BBEH and observe a (harmonic) average accuracy of 9.8\% for the best general-purpose model and 44.8\% for the best reasoning-specialized model, indicating substantial room for improvement and highlighting the ongoing challenge of achieving robust general reasoning in LLMs. We release BBEH publicly at: https://github.com/google-deepmind/bbeh.

Authors:Mohammad Moulaeifard, Peter H. Charlton, Nils Strodthoff
Title: Generalizable deep learning for photoplethysmography-based blood pressure estimation -- A Benchmarking Study
Abstract:
Photoplethysmography (PPG)-based blood pressure (BP) estimation represents a promising alternative to cuff-based BP measurements. Recently, an increasing number of deep learning models have been proposed to infer BP from the raw PPG waveform. However, these models have been predominantly evaluated on in-distribution test sets, which immediately raises the question of the generalizability of these models to external datasets. To investigate this question, we trained five deep learning models on the recently released PulseDB dataset, provided in-distribution benchmarking results on this dataset, and then assessed out-of-distribution performance on several external datasets. The best model (XResNet1d101) achieved in-distribution MAEs of 9.4 and 6.0 mmHg for systolic and diastolic BP respectively on PulseDB (with subject-specific calibration), and 14.0 and 8.5 mmHg respectively without calibration. Equivalent MAEs on external test datasets without calibration ranged from 15.0 to 25.1 mmHg (SBP) and 7.0 to 10.4 mmHg (DBP). Our results indicate that the performance is strongly influenced by the differences in BP distributions between datasets. We investigated a simple way of improving performance through sample-based domain adaptation and put forward recommendations for training models with good generalization properties. With this work, we hope to educate more researchers for the importance and challenges of out-of-distribution generalization.

Authors:Kaiwen Yan, Hongcheng Guo, Xuanqing Shi, Shaosheng Cao, Donglin Di, Zhoujun Li
Title: CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation
Abstract:
With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation. CodeIF data and code are publicly available: https://github.com/lin-rany/codeIF

Authors:Henry Peng Zou, Zhengyao Gu, Yue Zhou, Yankai Chen, Weizhi Zhang, Liancheng Fang, Yibo Wang, Yangning Li, Kay Liu, Philip S. Yu
Title: TestNUC: Enhancing Test-Time Computing Approaches and Scaling through Neighboring Unlabeled Data Consistency
Abstract:
Test-time computing approaches, which leverage additional computational resources during inference, have been proven effective in enhancing large language model performance. This work introduces a novel, linearly scaling approach, TestNUC, that improves test-time predictions by leveraging the local consistency of neighboring unlabeled data-it classifies an input instance by considering not only the model's prediction on that instance but also on neighboring unlabeled instances. We evaluate TestNUC across eight diverse datasets, spanning intent classification, topic mining, domain discovery, and emotion detection, demonstrating its consistent superiority over baseline methods such as standard prompting and self-consistency. Furthermore, TestNUC can be seamlessly integrated with existing test-time computing approaches, substantially boosting their performance. Our analysis reveals that TestNUC scales effectively with increasing amounts of unlabeled data and performs robustly across different embedding models, making it practical for real-world applications. Our code is available at https://github.com/HenryPengZou/TestNUC.

Authors:Xuan Ding, Rui Sun, Yunjian Zhang, Xiu Yan, Yueqi Zhou, Kaihao Huang, Suzhong Fu, Angelica I Aviles-Rivero, Chuanlong Xie, Yao Zhu
Title: A Sliding Layer Merging Method for Efficient Depth-Wise Pruning in LLMs
Abstract:
Compared to width-wise pruning, depth-wise pruning can significantly accelerate inference in resource-constrained scenarios. However, treating the entire Transformer layer as the minimum pruning unit may degrade model performance by indiscriminately discarding the entire information of the layer. This paper reveals the ``Patch-like'' feature relationship between layers in large language models by analyzing the correlation of the outputs of different layers in the reproducing kernel Hilbert space. Building on this observation, we propose a sliding layer merging method that dynamically selects and fuses consecutive layers from top to bottom according to a pre-defined similarity threshold, thereby simplifying the model structure while maintaining its performance. Extensive experiments on LLMs with various architectures and different parameter scales show that our method outperforms existing pruning techniques in both zero-shot inference performance and retraining recovery quality after pruning. In particular, in the experiment with 35% pruning on the Vicuna-7B model, our method achieved a 1.654% improvement in average performance on zero-shot tasks compared to the existing method. Moreover, we further reveal the potential of combining depth pruning with width pruning to enhance the pruning effect. Our codes are available at https://github.com/920927/SLM-a-sliding-layer-merging-method.

Authors:Junlong Ren, Hao Wu, Hui Xiong, Hao Wang
Title: SCA3D: Enhancing Cross-modal 3D Retrieval via 3D Shape and Caption Paired Data Augmentation
Abstract:
The cross-modal 3D retrieval task aims to achieve mutual matching between text descriptions and 3D shapes. This has the potential to enhance the interaction between natural language and the 3D environment, especially within the realms of robotics and embodied artificial intelligence (AI) applications. However, the scarcity and expensiveness of 3D data constrain the performance of existing cross-modal 3D retrieval methods. These methods heavily rely on features derived from the limited number of 3D shapes, resulting in poor generalization ability across diverse scenarios. To address this challenge, we introduce SCA3D, a novel 3D shape and caption online data augmentation method for cross-modal 3D retrieval. Our approach uses the LLaVA model to create a component library, captioning each segmented part of every 3D shape within the dataset. Notably, it facilitates the generation of extensive new 3D-text pairs containing new semantic features. We employ both inter and intra distances to align various components into a new 3D shape, ensuring that the components do not overlap and are closely fitted. Further, text templates are utilized to process the captions of each component and generate new text descriptions. Besides, we use unimodal encoders to extract embeddings for 3D shapes and texts based on the enriched dataset. We then calculate fine-grained cross-modal similarity using Earth Mover's Distance (EMD) and enhance cross-modal matching with contrastive learning, enabling bidirectional retrieval between texts and 3D shapes. Extensive experiments show our SCA3D outperforms previous works on the Text2Shape dataset, raising the Shape-to-Text RR@1 score from 20.03 to 27.22 and the Text-to-Shape RR@1 score from 13.12 to 16.67. Codes can be found in https://github.com/3DAgentWorld/SCA3D.

Authors:Ziyuan Luo, Anderson Rocha, Boxin Shi, Qing Guo, Haoliang Li, Renjie Wan
Title: The NeRF Signature: Codebook-Aided Watermarking for Neural Radiance Fields
Abstract:
Neural Radiance Fields (NeRF) have been gaining attention as a significant form of 3D content representation. With the proliferation of NeRF-based creations, the need for copyright protection has emerged as a critical issue. Although some approaches have been proposed to embed digital watermarks into NeRF, they often neglect essential model-level considerations and incur substantial time overheads, resulting in reduced imperceptibility and robustness, along with user inconvenience. In this paper, we extend the previous criteria for image watermarking to the model level and propose NeRF Signature, a novel watermarking method for NeRF. We employ a Codebook-aided Signature Embedding (CSE) that does not alter the model structure, thereby maintaining imperceptibility and enhancing robustness at the model level. Furthermore, after optimization, any desired signatures can be embedded through the CSE, and no fine-tuning is required when NeRF owners want to use new binary signatures. Then, we introduce a joint pose-patch encryption watermarking strategy to hide signatures into patches rendered from a specific viewpoint for higher robustness. In addition, we explore a Complexity-Aware Key Selection (CAKS) scheme to embed signatures in high visual complexity patches to enhance imperceptibility. The experimental results demonstrate that our method outperforms other baseline methods in terms of imperceptibility and robustness. The source code is available at: https://github.com/luo-ziyuan/NeRF_Signature.

Authors:Michelle Kappl
Title: Are All Spanish Doctors Male? Evaluating Gender Bias in German Machine Translation
Abstract:
We present WinoMTDE, a new gender bias evaluation test set designed to assess occupational stereotyping and underrepresentation in German machine translation (MT) systems. Building on the automatic evaluation method introduced by arXiv:1906.00591v1, we extend the approach to German, a language with grammatical gender. The WinoMTDE dataset comprises 288 German sentences that are balanced in regard to gender, as well as stereotype, which was annotated using German labor statistics. We conduct a large-scale evaluation of five widely used MT systems and a large language model. Our results reveal persistent bias in most models, with the LLM outperforming traditional systems. The dataset and evaluation code are publicly available under https://github.com/michellekappl/mt_gender_german.

Authors:Siwei Wu, Yizhi Li, Xingwei Qu, Rishi Ravikumar, Yucheng Li, Tyler Loakman, Shanghaoran Quan, Xiaoyong Wei, Riza Batista-Navarro, Chenghua Lin
Title: LongEval: A Comprehensive Analysis of Long-Text Generation Through a Plan-based Paradigm
Abstract:
Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks, yet their ability to generate long-form content remains poorly understood and evaluated. Our analysis reveals that current LLMs struggle with length requirements and information density in long-text generation, with performance deteriorating as text length increases. To quantitively locate such a performance degradation and provide further insights on model development, we present LongEval, a benchmark that evaluates long-text generation through both direct and plan-based generation paradigms, inspired by cognitive and linguistic writing models. The comprehensive experiments in this work reveal interesting findings such as that while model size correlates with generation ability, the small-scale model (e.g., LongWriter), well-trained on long texts, has comparable performance. All code and datasets are released in https://github.com/Wusiwei0410/LongEval.

Authors:Qingyao Tian, Huai Liao, Xinyan Huang, Bingyu Yang, Dongdong Lei, Sebastien Ourselin, Hongbin Liu
Title: EndoMamba: An Efficient Foundation Model for Endoscopic Videos via Hierarchical Pre-training
Abstract:
Endoscopic video-based tasks, such as visual navigation and surgical phase recognition, play a crucial role in minimally invasive surgeries by providing real-time assistance. While recent video foundation models have shown promise, their applications are hindered by (1) computational inefficiencies and (2) suboptimal performance caused by limited data for pre-training in endoscopy. To address these issues, we present EndoMamba, a foundation model designed for real-time inference while learning generalized spatiotemporal representations. First, to mitigate computational inefficiencies, we propose the EndoMamba backbone, optimized for real-time inference. Inspired by recent advancements in state space models, EndoMamba integrates Bidirectional Mamba blocks for spatial modeling within individual frames and vanilla Mamba blocks for past-to-present reasoning across the temporal domain. This design enables both strong spatiotemporal modeling and efficient inference in online video streams. Second, we propose a self-supervised hierarchical pre-training diagram to enhance EndoMamba's representation learning using endoscopic videos and incorporating general video domain knowledge. Specifically, our approach combines masked reconstruction with auxiliary supervision, leveraging low-level reconstruction to capture spatial-temporal structures and high-level alignment to transfer broader knowledge from a pretrained general-video domain foundation model. Extensive experiments on four downstream tasks--classification, segmentation, surgical phase recognition, and localization--demonstrate that EndoMamba outperforms existing foundation models and task-specific methods while maintaining real-time inference speed. The source code is available at https://github.com/TianCuteQY/EndoMamba.

Authors:Fraser Birks, Thomas D Swinburne, James R Kermode
Title: Efficient and Accurate Spatial Mixing of Machine Learned Interatomic Potentials for Materials Science
Abstract:
Machine-learned interatomic potentials offer near first-principles accuracy but are computationally expensive, limiting their application in large-scale molecular dynamics simulations. Inspired by quantum mechanics/molecular mechanics methods, we present ML-MIX, an efficient and flexible LAMMPS package for accelerating simulations by spatially mixing interatomic potentials of different complexities. Through constrained linear fitting, we show it is possible to generate a 'cheap' approximate model which closely matches an 'expensive' reference in relevant regions of configuration space. We demonstrate the capability of ML-MIX through case-studies in Si, Fe, and W-He systems, achieving up to an 11x speedup on 8,000 atom systems without sacrificing accuracy on static and dynamic quantities, including calculation of minimum energy paths and dynamical simulations of defect diffusion. For larger domain sizes, we show that the achievable speedup of ML-MIX simulations is limited only by the relative speed of the cheap potential over the expensive potential. The ease of use and flexible nature of this method will extend the practical reach of MLIPs throughout computational materials science, enabling parsimonious application to large spatial and temporal domains.

Authors:Yiheng Yang, Yujie Wang, Chi Ma, Lei Yu, Emmanuele Chersoni, Chu-Ren Huang
Title: Sparse Brains are Also Adaptive Brains: Cognitive-Load-Aware Dynamic Activation for LLMs
Abstract:
Dense large language models(LLMs) face critical efficiency bottlenecks as they rigidly activate all parameters regardless of input complexity. While existing sparsity methods(static pruning or dynamic activation) address this partially, they either lack adaptivity to contextual or model structural demands or incur prohibitive computational overhead. Inspired by human brain's dual-process mechanisms - predictive coding (N400) for backbone sparsity and structural reanalysis (P600) for complex context - we propose CLADA, a \textit{\textbf{C}ognitive-\textbf{L}oad-\textbf{A}ware \textbf{D}ynamic \textbf{A}ctivation} framework that synergizes statistical sparsity with semantic adaptability. Our key insight is that LLM activations exhibit two complementary patterns: 1) \textit{Global statistical sparsity} driven by sequence-level prefix information, and 2) \textit{Local semantic adaptability} modulated by cognitive load metrics(e.g., surprisal and entropy). CLADA employs a hierarchical thresholding strategy: a baseline from offline error-controlled optimization ensures 40\%+ sparsity, dynamically adjusted by real-time cognitive signals. Evaluations across six mainstream LLMs and nine benchmarks demonstrate that CLADA achieves \textbf{~20\% average speedup with <2\% accuracy drop}, outperforming Griffin (5\%+ degradation) and TT (negligible speedup). Crucially, we establish the first formal connection between neurolinguistic event-related potential (ERP) components and LLM efficiency mechanisms through multi-level regression analysis ($R^2=0.17$ for sparsity-adaptation synergy). Requiring no retraining or architectural changes, CLADA offers a deployable solution for resource-aware LLM inference while advancing biologically-inspired AI design. Our code is available at \href{https://github.com/Oldify/CLADA}{CLADA}.

Authors:Ujjwal Singh, Aditi Sharma, Nikhil Gupta, Deepakshi, Vivek Kumar Jha
Title: IndicEval-XL: Bridging Linguistic Diversity in Code Generation Across Indic Languages
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation from natural language prompts, revolutionizing software development workflows. As we advance towards agent-based development paradigms, these models form the cornerstone of next-generation software development lifecycles. However, current benchmarks for evaluating multilingual code generation capabilities are predominantly English-centric, limiting their applicability across the global developer community. To address this limitation, we present IndicEval-XL, a comprehensive benchmark for code generation that incorporates 6 major Indic languages, collectively spoken by approximately 14\% of the world's population. Our benchmark bridges these languages with 12 programming languages, creating a robust evaluation framework. This work is particularly significant given India's representation of one-eighth of the global population and the crucial role Indic languages play in Indian society. IndicEval-XL represents a significant step toward expanding the linguistic diversity in code generation systems and evaluation frameworks. By developing resources that support multiple languages, we aim to make AI-powered development tools more inclusive and accessible to developers of various linguistic backgrounds. To facilitate further research and development in this direction, we make our dataset and evaluation benchmark publicly available at https://github.com/telekom/IndicEval-XL

Authors:Hao Liang, Meiyi Qiang, Yuying Li, Zefeng He, Yongzhen Guo, Zhengzhou Zhu, Wentao Zhang, Bin Cui
Title: MathClean: A Benchmark for Synthetic Mathematical Data Cleaning
Abstract:
With the rapid development of large language models (LLMs), the quality of training data has become crucial. Among the various types of training data, mathematical data plays a key role in enabling LLMs to acquire strong reasoning abilities. While high-quality open-source data is important, it is often insufficient for pre-training, necessitating the addition of synthetic math problems. However, synthetic math questions and answers can introduce inaccuracies, which may degrade both the training data and web data. Therefore, an effective method for cleaning synthetic math data is essential. In this paper, we propose the MathClean benchmark to evaluate the effectiveness of math data cleaning models. The MathClean benchmark consists of 2,000 correct questions and 2,000 erroneous questions with additional 2,000 correct and erroneous answers sourced from augmented data based on GSM8K and MATH. Moreover, we also annotate error types for each question or answer, since it can assess whether models can correctly identify the error categories for future improvements. Finally, we present comprehensive evaluations using state-of-the-art (SOTA) models. Our results demonstrate that even strong models like GPT-o1 and DeepSeek-R1 perform poorly on this benchmark, highlighting the utility of MathClean. Our code and data is available at https://github.com/YuYingLi0/MathClean.

Authors:Jiebin Yan, Ziwen Tan, Yuming Fang, Jiale Rao, Yifan Zuo
Title: Max360IQ: Blind Omnidirectional Image Quality Assessment with Multi-axis Attention
Abstract:
Omnidirectional image, also called 360-degree image, is able to capture the entire 360-degree scene, thereby providing more realistic immersive feelings for users than general 2D image and stereoscopic image. Meanwhile, this feature brings great challenges to measuring the perceptual quality of omnidirectional images, which is closely related to users' quality of experience, especially when the omnidirectional images suffer from non-uniform distortion. In this paper, we propose a novel and effective blind omnidirectional image quality assessment (BOIQA) model with multi-axis attention (Max360IQ), which can proficiently measure not only the quality of uniformly distorted omnidirectional images but also the quality of non-uniformly distorted omnidirectional images. Specifically, the proposed Max360IQ is mainly composed of a backbone with stacked multi-axis attention modules for capturing both global and local spatial interactions of extracted viewports, a multi-scale feature integration (MSFI) module to fuse multi-scale features and a quality regression module with deep semantic guidance for predicting the quality of omnidirectional images. Experimental results demonstrate that the proposed Max360IQ outperforms the state-of-the-art Assessor360 by 3.6\% in terms of SRCC on the JUFE database with non-uniform distortion, and gains improvement of 0.4\% and 0.8\% in terms of SRCC on the OIQA and CVIQ databases, respectively. The source code is available at https://github.com/WenJuing/Max360IQ.

Authors:Hui Feng, Yuntzu Yin, Emiliano Reynares, Jay Nanavati
Title: OntologyRAG: Better and Faster Biomedical Code Mapping with Retrieval-Augmented Generation (RAG) Leveraging Ontology Knowledge Graphs and Large Language Models
Abstract:
Biomedical ontologies, which comprehensively define concepts and relations for biomedical entities, are crucial for structuring and formalizing domain-specific information representations. Biomedical code mapping identifies similarity or equivalence between concepts from different ontologies. Obtaining high-quality mapping usually relies on automatic generation of unrefined mapping with ontology domain fine-tuned language models (LMs), followed by manual selections or corrections by coding experts who have extensive domain expertise and familiarity with ontology schemas. The LMs usually provide unrefined code mapping suggestions as a list of candidates without reasoning or supporting evidence, hence coding experts still need to verify each suggested candidate against ontology sources to pick the best matches. This is also a recurring task as ontology sources are updated regularly to incorporate new research findings. Consequently, the need of regular LM retraining and manual refinement make code mapping time-consuming and labour intensive. In this work, we created OntologyRAG, an ontology-enhanced retrieval-augmented generation (RAG) method that leverages the inductive biases from ontological knowledge graphs for in-context-learning (ICL) in large language models (LLMs). Our solution grounds LLMs to knowledge graphs with unrefined mappings between ontologies and processes questions by generating an interpretable set of results that include prediction rational with mapping proximity assessment. Our solution doesn't require re-training LMs, as all ontology updates could be reflected by updating the knowledge graphs with a standard process. Evaluation results on a self-curated gold dataset show promises of using our method to enable coding experts to achieve better and faster code mapping. The code is available at https://github.com/iqvianlp/ontologyRAG.

Authors:Shijun Zhang, Hongkai Zhao, Yimin Zhong, Haomin Zhou
Title: Fourier Multi-Component and Multi-Layer Neural Networks: Unlocking High-Frequency Potential
Abstract:
The architecture of a neural network and the selection of its activation function are both fundamental to its performance. Equally vital is ensuring these two elements are well-matched, as their alignment is key to achieving effective representation and learning. In this paper, we introduce the Fourier Multi-Component and Multi-Layer Neural Network (FMMNN), a novel model that creates a strong synergy between them. We demonstrate that FMMNNs are highly effective and flexible in modeling high-frequency components. Our theoretical results demonstrate that FMMNNs have exponential expressive power for function approximation. We also analyze the optimization landscape of FMMNNs and find it to be much more favorable than that of standard fully connected neural networks, especially when dealing with high-frequency features. In addition, we propose a scaled random initialization method for the first layer's weights in FMMNNs, which significantly speeds up training and enhances overall performance. Extensive numerical experiments support our theoretical insights, showing that FMMNNs consistently outperform traditional approaches in accuracy and efficiency across various tasks.

Authors:Shuyi Liu, Simiao Cui, Haoran Bu, Yuming Shang, Xi Zhang
Title: JailBench: A Comprehensive Chinese Security Assessment Benchmark for Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities across various applications, highlighting the urgent need for comprehensive safety evaluations. In particular, the enhanced Chinese language proficiency of LLMs, combined with the unique characteristics and complexity of Chinese expressions, has driven the emergence of Chinese-specific benchmarks for safety assessment. However, these benchmarks generally fall short in effectively exposing LLM safety vulnerabilities. To address the gap, we introduce JailBench, the first comprehensive Chinese benchmark for evaluating deep-seated vulnerabilities in LLMs, featuring a refined hierarchical safety taxonomy tailored to the Chinese context. To improve generation efficiency, we employ a novel Automatic Jailbreak Prompt Engineer (AJPE) framework for JailBench construction, which incorporates jailbreak techniques to enhance assessing effectiveness and leverages LLMs to automatically scale up the dataset through context-learning. The proposed JailBench is extensively evaluated over 13 mainstream LLMs and achieves the highest attack success rate against ChatGPT compared to existing Chinese benchmarks, underscoring its efficacy in identifying latent vulnerabilities in LLMs, as well as illustrating the substantial room for improvement in the security and trustworthiness of LLMs within the Chinese context. Our benchmark is publicly available at https://github.com/STAIR-BUPT/JailBench.

Authors:Tong Wu, Junzhe Shen, Zixia Jia, Yuxuan Wang, Zilong Zheng
Title: TokenSwift: Lossless Acceleration of Ultra Long Sequence Generation
Abstract:
Generating ultra-long sequences with large language models (LLMs) has become increasingly crucial but remains a highly time-intensive task, particularly for sequences up to 100K tokens. While traditional speculative decoding methods exist, simply extending their generation limits fails to accelerate the process and can be detrimental. Through an in-depth analysis, we identify three major challenges hindering efficient generation: frequent model reloading, dynamic key-value (KV) management and repetitive generation. To address these issues, we introduce TOKENSWIFT, a novel framework designed to substantially accelerate the generation process of ultra-long sequences while maintaining the target model's inherent quality. Experimental results demonstrate that TOKENSWIFT achieves over 3 times speedup across models of varying scales (1.5B, 7B, 8B, 14B) and architectures (MHA, GQA). This acceleration translates to hours of time savings for ultra-long sequence generation, establishing TOKENSWIFT as a scalable and effective solution at unprecedented lengths. Code can be found at https://github.com/bigai-nlco/TokenSwift.

Authors:Jacob Dunefsky, Arman Cohan
Title: One-shot Optimized Steering Vectors Mediate Safety-relevant Behaviors in LLMs
Abstract:
Steering vectors (SVs) have emerged as a promising approach for interpreting and controlling LLMs, but current methods typically require large contrastive datasets that are often impractical to construct and may capture spurious correlations. We propose directly optimizing SVs through gradient descent on a single training example, and systematically investigate how these SVs generalize. We consider several SV optimization techniques and find that the resulting SVs effectively mediate safety-relevant behaviors in multiple models. Indeed, in experiments on an alignment-faking model, we are able to optimize one-shot SVs that induce harmful behavior on benign examples and whose negations suppress harmful behavior on malign examples. And in experiments on refusal suppression, we demonstrate that one-shot optimized SVs can transfer across inputs, yielding a Harmbench attack success rate of 96.9%. Furthermore, we extend work on "emergent misalignment" and show that SVs optimized to induce a model to write vulnerable code cause the model to respond harmfully on unrelated open-ended prompts. Finally, we use one-shot SV optimization to investigate how an instruction-tuned LLM recovers from outputting false information, and find that this ability is independent of the model's explicit verbalization that the information was false. Overall, our findings suggest that optimizing SVs on a single example can mediate a wide array of misaligned behaviors in LLMs. Code can be found at https://github.com/jacobdunefsky/one-shot-steering-repro and https://github.com/jacobdunefsky/one-shot-steering-misalignment.

Authors:Jungin Kim, Shinwoo Park, Yo-Sub Han
Title: Marking Code Without Breaking It: Code Watermarking for Detecting LLM-Generated Code
Abstract:
Code watermarking identifies AI-generated code by embedding patterns into the code during generation. Effective watermarking requires meeting two key conditions: the watermark should be reliably detectable, and the code should retain its original functionality. However, existing methods often modify tokens that are critical for program logic, such as keywords in conditional expressions or operators in arithmetic computations. These modifications can cause syntax errors or functional failures, limiting the practical use of watermarking. We present STONE, a method that preserves functional integrity by selectively inserting watermarks only into non-syntax tokens. By excluding tokens essential for code execution, STONE minimizes the risk of functional degradation. In addition, we introduce CWEM, a comprehensive evaluation metric that evaluates watermarking techniques based on correctness, detectability, and naturalness. While correctness and detectability have been widely used, naturalness remains underexplored despite its importance. Unnatural patterns can reveal the presence of a watermark, making it easier for adversaries to remove. We evaluate STONE using CWEM and compare its performance with the state-of-the-art approach. The results show that STONE achieves an average improvement of 7.69% in CWEM across Python, C++, and Java. Our code is available in https://github.com/inistory/STONE-watermarking/.

Authors:Zichuan Fu, Wentao Song, Yejing Wang, Xian Wu, Yefeng Zheng, Yingying Zhang, Derong Xu, Xuetao Wei, Tong Xu, Xiangyu Zhao
Title: Sliding Window Attention Training for Efficient Large Language Models
Abstract:
Recent advances in transformer-based Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their quadratic computational complexity concerning sequence length remains a significant bottleneck for processing long documents. As a result, many efforts like sparse attention and state space models have been proposed to improve the efficiency of LLMs over long sequences. Though effective, these approaches compromise the performance or introduce structural complexity. This calls for a simple yet efficient model that preserves the fundamental Transformer architecture. To this end, we introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training. This paper first attributes the inefficiency of Transformers to the attention sink phenomenon resulting from the high variance of softmax operation. Then, we replace softmax with the sigmoid function and utilize a balanced ALiBi and Rotary Position Embedding for efficient information compression and retention. Experiments demonstrate that SWAT achieves SOTA performance compared with state-of-the-art linear recurrent architectures on eight benchmarks. Code is available at https://github.com/Fzkuji/swat-attention.

Authors:Yifan Hu, Yuante Li, Peiyuan Liu, Yuxia Zhu, Naiqi Li, Tao Dai, Shu-tao Xia, Dawei Cheng, Changjun Jiang
Title: FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting
Abstract:
Financial time series (FinTS) record the behavior of human-brain-augmented decision-making, capturing valuable historical information that can be leveraged for profitable investment strategies. Not surprisingly, this area has attracted considerable attention from researchers, who have proposed a wide range of methods based on various backbones. However, the evaluation of the area often exhibits three systemic limitations: 1. Failure to account for the full spectrum of stock movement patterns observed in dynamic financial markets. (Diversity Gap), 2. The absence of unified assessment protocols undermines the validity of cross-study performance comparisons. (Standardization Deficit), and 3. Neglect of critical market structure factors, resulting in inflated performance metrics that lack practical applicability. (Real-World Mismatch). Addressing these limitations, we propose FinTSB, a comprehensive and practical benchmark for financial time series forecasting (FinTSF). To increase the variety, we categorize movement patterns into four specific parts, tokenize and pre-process the data, and assess the data quality based on some sequence characteristics. To eliminate biases due to different evaluation settings, we standardize the metrics across three dimensions and build a user-friendly, lightweight pipeline incorporating methods from various backbones. To accurately simulate real-world trading scenarios and facilitate practical implementation, we extensively model various regulatory constraints, including transaction fees, among others. Finally, we conduct extensive experiments on FinTSB, highlighting key insights to guide model selection under varying market conditions. Overall, FinTSB provides researchers with a novel and comprehensive platform for improving and evaluating FinTSF methods. The code is available at https://github.com/TongjiFinLab/FinTSBenchmark.

Authors:Dung V. Nguyen, Minh H. Nguyen, Luc Q. Nguyen, Rachel S. Y. Teo, Tan M. Nguyen, Linh Duy Tran
Title: CAMEx: Curvature-aware Merging of Experts
Abstract:
Existing methods for merging experts during model training and fine-tuning predominantly rely on Euclidean geometry, which assumes a flat parameter space. This assumption can limit the model's generalization ability, especially during the pre-training phase, where the parameter manifold might exhibit more complex curvature. Curvature-aware merging methods typically require additional information and computational resources to approximate the Fisher Information Matrix, adding memory overhead. In this paper, we introduce CAMEx (Curvature-Aware Merging of Experts), a novel expert merging protocol that incorporates natural gradients to account for the non-Euclidean curvature of the parameter manifold. By leveraging natural gradients, CAMEx adapts more effectively to the structure of the parameter space, improving alignment between model updates and the manifold's geometry. This approach enhances both pre-training and fine-tuning, resulting in better optimization trajectories and improved generalization without the substantial memory overhead typically associated with curvature-aware methods. Our contributions are threefold: (1) CAMEx significantly outperforms traditional Euclidean-based expert merging techniques across various natural language processing tasks, leading to enhanced performance during pre-training and fine-tuning; (2) we introduce a dynamic merging architecture that optimizes resource utilization, achieving high performance while reducing computational costs, facilitating efficient scaling of large language models; and (3) we provide both theoretical and empirical evidence to demonstrate the efficiency of our proposed method. The code is publicly available at: https://github.com/kpup1710/CAMEx.

Authors:Shuliang Liu, Xinze Li, Zhenghao Liu, Yukun Yan, Cheng Yang, Zheni Zeng, Zhiyuan Liu, Maosong Sun, Ge Yu
Title: Judge as A Judge: Improving the Evaluation of Retrieval-Augmented Generation through the Judge-Consistency of Large Language Models
Abstract:
Retrieval-Augmented Generation (RAG) has proven its effectiveness in alleviating hallucinations for Large Language Models (LLMs). However, existing automated evaluation metrics cannot fairly evaluate the outputs generated by RAG models during training and evaluation. LLM-based judgment models provide the potential to produce high-quality judgments, but they are highly sensitive to evaluation prompts, leading to inconsistencies when judging the output of RAG models. This paper introduces the Judge-Consistency (ConsJudge) method, which aims to enhance LLMs to generate more accurate evaluations for RAG models. Specifically, ConsJudge prompts LLMs to generate different judgments based on various combinations of judgment dimensions, utilize the judge-consistency to evaluate these judgments and select the accepted and rejected judgments for DPO training. Our experiments show that ConsJudge can effectively provide more accurate judgments for optimizing RAG models across various RAG models and datasets. Further analysis reveals that judgments generated by ConsJudge have a high agreement with the superior LLM. All codes are available at https://github.com/OpenBMB/ConsJudge.

Authors:Chenyang Zhao, Kun Wang, Janet H. Hsiao, Antoni B. Chan
Title: Grad-ECLIP: Gradient-based Visual and Textual Explanations for CLIP
Abstract:
Significant progress has been achieved on the improvement and downstream usages of the Contrastive Language-Image Pre-training (CLIP) vision-language model, while less attention is paid to the interpretation of CLIP. We propose a Gradient-based visual and textual Explanation method for CLIP (Grad-ECLIP), which interprets the matching result of CLIP for specific input image-text pair. By decomposing the architecture of the encoder and discovering the relationship between the matching similarity and intermediate spatial features, Grad-ECLIP produces effective heat maps that show the influence of image regions or words on the CLIP results. Different from the previous Transformer interpretation methods that focus on the utilization of self-attention maps, which are typically extremely sparse in CLIP, we produce high-quality visual explanations by applying channel and spatial weights on token features. Qualitative and quantitative evaluations verify the effectiveness and superiority of Grad-ECLIP compared with the state-of-the-art methods. Furthermore, a series of analysis are conducted based on our visual and textual explanation results, from which we explore the working mechanism of image-text matching, the strengths and limitations in attribution identification of CLIP, and the relationship between the concreteness/abstractness of a word and its usage in CLIP. Finally, based on the ability of explanation map that indicates text-specific saliency region of input image, we also propose an application with Grad-ECLIP, which is adopted to boost the fine-grained alignment in the CLIP fine-tuning. The code of Grad-ECLIP is available here: https://github.com/Cyang-Zhao/Grad-Eclip.

Authors:Ruifeng Tan, Weixiang Hong, Jiayue Tang, Xibin Lu, Ruijun Ma, Xiang Zheng, Jia Li, Jiaqiang Huang, Tong-Yi Zhang
Title: BatteryLife: A Comprehensive Dataset and Benchmark for Battery Life Prediction
Abstract:
Battery Life Prediction (BLP), which relies on time series data produced by battery degradation tests, is crucial for battery utilization, optimization, and production. Despite impressive advancements, this research area faces three key challenges. Firstly, the limited size of existing datasets impedes insights into modern battery life data. Secondly, most datasets are restricted to small-capacity lithium-ion batteries tested under a narrow range of diversity in labs, raising concerns about the generalizability of findings. Thirdly, inconsistent and limited benchmarks across studies obscure the effectiveness of baselines and leave it unclear if models popular in other time series fields are effective for BLP. To address these challenges, we propose BatteryLife, a comprehensive dataset and benchmark for BLP. BatteryLife integrates 16 datasets, offering a 2.5 times sample size compared to the previous largest dataset, and provides the most diverse battery life resource with batteries from 8 formats, 59 chemical systems, 9 operating temperatures, and 421 charge/discharge protocols, including both laboratory and industrial tests. Notably, BatteryLife is the first to release battery life datasets of zinc-ion batteries, sodium-ion batteries, and industry-tested large-capacity lithium-ion batteries. With the comprehensive dataset, we revisit the effectiveness of baselines popular in this and other time series fields. Furthermore, we propose CyclePatch, a plug-in technique that can be employed in various neural networks. Extensive benchmarking of 18 methods reveals that models popular in other time series fields can be unsuitable for BLP, and CyclePatch consistently improves model performance establishing state-of-the-art benchmarks. Moreover, BatteryLife evaluates model performance across aging conditions and domains. BatteryLife is available at https://github.com/Ruifeng-Tan/BatteryLife.

Authors:Zhiyuan Peng, Xin Yin, Rui Qian, Peiqin Lin, Yongkang Liu, Hao Zhang, Chenhao Ying, Yuan Luo
Title: SolEval: Benchmarking Large Language Models for Repository-level Solidity Code Generation
Abstract:
Large language models (LLMs) have transformed code generation. However, most existing approaches focus on mainstream languages such as Python and Java, neglecting the Solidity language, the predominant programming language for Ethereum smart contracts. Due to the lack of adequate benchmarks for Solidity, LLMs' ability to generate secure, cost-effective smart contracts remains unexplored. To fill this gap, we construct SolEval, the first repository-level benchmark designed for Solidity smart contract generation, to evaluate the performance of LLMs on Solidity. SolEval consists of 1,507 samples from 28 different repositories, covering 6 popular domains, providing LLMs with a comprehensive evaluation benchmark. Unlike the existing Solidity benchmark, SolEval not only includes complex function calls but also reflects the real-world complexity of the Ethereum ecosystem by incorporating Gas@k and Vul@k. We evaluate 16 LLMs on SolEval, and our results show that the best-performing LLM achieves only 26.29% Pass@10, highlighting substantial room for improvement in Solidity code generation by LLMs. Additionally, we conduct supervised fine-tuning (SFT) on Qwen-7B using SolEval, resulting in a significant performance improvement, with Pass@5 increasing from 16.67% to 58.33%, demonstrating the effectiveness of fine-tuning LLMs on our benchmark. We release our data and code at https://github.com/pzy2000/SolEval.

Authors:Yuxiang Wang, Xinnan Dai, Wenqi Fan, Yao Ma
Title: Exploring Graph Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation
Abstract:
Graph-structured data has become increasingly prevalent across various domains, raising the demand for effective models to handle graph tasks like node classification and link prediction. Traditional graph learning models like Graph Neural Networks (GNNs) have made significant strides, but their capabilities in handling graph data remain limited in certain contexts. In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks, yet most studies focus primarily on performance benchmarks and fail to address their broader potential, including their ability to handle limited data, their transferability across tasks, and their robustness. In this work, we provide a comprehensive exploration of LLMs applied to graph tasks. We evaluate the performance of pure LLMs, including those without parameter optimization and those fine-tuned with instructions, across various scenarios. Our analysis goes beyond accuracy, assessing LLM ability to perform in few-shot/zero-shot settings, transfer across domains, understand graph structures, and demonstrate robustness in challenging scenarios. We conduct extensive experiments with 16 graph learning models alongside 6 LLMs (e.g., Llama3B, GPT-4o, Qwen-plus), comparing their performance on datasets like Cora, PubMed, ArXiv, and Products. Our findings show that LLMs, particularly those with instruction tuning, outperform traditional models in few-shot settings, exhibit strong domain transferability, and demonstrate excellent generalization and robustness. This work offers valuable insights into the capabilities of LLMs for graph learning, highlighting their advantages and potential for real-world applications, and paving the way for future research in this area. Codes and datasets are released in https://github.com/myflashbarry/LLM-benchmarking.

Authors:Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang, Qi Han, Yanghua Xiao
Title: Reward Shaping to Mitigate Reward Hacking in RLHF
Abstract:
Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to \emph{reward hacking}, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. Although reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests two key design principles: (1) the RL reward should be bounded, and (2) the RL reward benefits from rapid initial growth followed by gradual convergence. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model as the signal for reinforcement learning. We evaluated PAR on two base models, Gemma2-2B, and Llama3-8B, using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate of at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. The code is available at https://github.com/PorUna-byte/PAR, and the Work done during the internship at StepFun by Jiayi Fu.

Authors:Chenlu Ju, Jiaxin Liu, Shobhit Sinha, Hao Xue, Flora Salim
Title: TrajLLM: A Modular LLM-Enhanced Agent-Based Framework for Realistic Human Trajectory Simulation
Abstract:
This work leverages Large Language Models (LLMs) to simulate human mobility, addressing challenges like high costs and privacy concerns in traditional models. Our hierarchical framework integrates persona generation, activity selection, and destination prediction, using real-world demographic and psychological data to create realistic movement patterns. Both physical models and language models are employed to explore and demonstrate different methodologies for human mobility simulation. By structuring data with summarization and weighted density metrics, the system ensures scalable memory management while retaining actionable insights. Preliminary results indicate that LLM-driven simulations align with observed real-world patterns, offering scalable, interpretable insights for social problems such as urban planning, traffic management, and public health. The framework's ability to dynamically generate personas and activities enables it to provide adaptable and realistic daily routines. This study demonstrates the transformative potential of LLMs in advancing mobility modeling for societal and urban applications. The source code and interactive demo for our framework are available at https://github.com/cju0/TrajLLM.

Authors:Siqi Guo, Ilgee Hong, Vicente Balmaseda, Changlong Yu, Liang Qiu, Xin Liu, Haoming Jiang, Tuo Zhao, Tianbao Yang
Title: Discriminative Finetuning of Generative Large Language Models without Reward Models and Human Preference Data
Abstract:
Supervised fine-tuning (SFT) has become a crucial step for aligning pretrained large language models (LLMs) using supervised datasets of input-output pairs. However, despite being supervised, SFT is inherently limited by its generative training objective. To address its limitations, the existing common strategy is to follow SFT with a separate phase of preference optimization (PO), which relies on either human-labeled preference data or a strong reward model to guide the learning process. In this paper, we address the limitations of SFT by exploring one of the most successful techniques in conventional supervised learning: discriminative learning. We introduce Discriminative Fine-Tuning (DFT), an improved variant of SFT, which mitigates the burden of collecting human-labeled preference data or training strong reward models. Unlike SFT that employs a generative approach and overlooks negative data, DFT adopts a discriminative paradigm that increases the probability of positive answers while suppressing potentially negative ones, aiming for data prediction instead of token prediction. Our contributions include: (i) a discriminative probabilistic framework for fine-tuning LLMs by explicitly modeling the discriminative likelihood of an answer among all possible outputs given an input; (ii) efficient algorithms to optimize this discriminative likelihood; and (iii) extensive experiments demonstrating DFT's effectiveness, achieving performance better than SFT and comparable to if not better than SFT$\rightarrow$PO. The code can be found at https://github.com/Optimization-AI/DFT.

Authors:Silei Xu, Wenhao Xie, Lingxiao Zhao, Pengcheng He
Title: Chain of Draft: Thinking Faster by Writing Less
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance in solving complex reasoning tasks through mechanisms like Chain-of-Thought (CoT) prompting, which emphasizes verbose, step-by-step reasoning. However, humans typically employ a more efficient strategy: drafting concise intermediate thoughts that capture only essential information. In this work, we propose Chain of Draft (CoD), a novel paradigm inspired by human cognitive processes, where LLMs generate minimalistic yet informative intermediate reasoning outputs while solving tasks. By reducing verbosity and focusing on critical insights, CoD matches or surpasses CoT in accuracy while using as little as only 7.6% of the tokens, significantly reducing cost and latency across various reasoning tasks. Our code and data are available at https://github.com/sileix/chain-of-draft.

Authors:Anton Lavrouk, Tarek Naous, Alan Ritter, Wei Xu
Title: What are Foundation Models Cooking in the Post-Soviet World?
Abstract:
The culture of the Post-Soviet states is complex, shaped by a turbulent history that continues to influence current events. In this study, we investigate the Post-Soviet cultural food knowledge of foundation models by constructing BORSch, a multimodal dataset encompassing 1147 and 823 dishes in the Russian and Ukrainian languages, centered around the Post-Soviet region. We demonstrate that leading models struggle to correctly identify the origins of dishes from Post-Soviet nations in both text-only and multimodal Question Answering (QA), instead over-predicting countries linked to the language the question is asked in. Through analysis of pretraining data, we show that these results can be explained by misleading dish-origin co-occurrences, along with linguistic phenomena such as Russian-Ukrainian code mixing. Finally, to move beyond QA-based assessments, we test models' abilities to produce accurate visual descriptions of dishes. The weak correlation between this task and QA suggests that QA alone may be insufficient as an evaluation of cultural understanding. To foster further research, we will make BORSch publicly available at https://github.com/alavrouk/BORSch.

Authors:Zhewei Kang, Xuandong Zhao, Dawn Song
Title: Scalable Best-of-N Selection for Large Language Models via Self-Certainty
Abstract:
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models (LLMs) through increased test-time computation. Current state-of-the-art methods often employ computationally intensive reward models for response evaluation and selection. Reward-free alternatives, like self-consistency and universal self-consistency, are limited in their ability to handle open-ended generation tasks or scale effectively. To address these limitations, we propose self-certainty, a novel and efficient metric that leverages the inherent probability distribution of LLM outputs to estimate response quality without requiring external reward models. We hypothesize that higher distributional self-certainty, aggregated across multiple samples, correlates with improved response accuracy, as it reflects greater confidence in the generated output. Through extensive experiments on various reasoning tasks, we demonstrate that self-certainty (1) scales effectively with increasing sample size $N$, akin to reward models but without the computational overhead; (2) complements chain-of-thought, improving reasoning performance beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional self-consistency methods fall short. Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities. The code is available at https://github.com/backprop07/Self-Certainty

Authors:Zike Yuan, Ming Liu, Hui Wang, Bing Qin
Title: MA-GTS: A Multi-Agent Framework for Solving Complex Graph Problems in Real-World Applications
Abstract:
Graph-theoretic problems arise in real-world applications like logistics, communication networks, and traffic optimization. These problems are often complex, noisy, and irregular, posing challenges for traditional algorithms. Large language models (LLMs) offer potential solutions but face challenges, including limited accuracy and input length constraints. To address these challenges, we propose MA-GTS (Multi-Agent Graph Theory Solver), a multi-agent framework that decomposes these complex problems through agent collaboration. MA-GTS maps the implicitly expressed text-based graph data into clear, structured graph representations and dynamically selects the most suitable algorithm based on problem constraints and graph structure scale. This approach ensures that the solution process remains efficient and the resulting reasoning path is interpretable. We validate MA-GTS using the G-REAL dataset, a real-world-inspired graph theory dataset we created. Experimental results show that MA-GTS outperforms state-of-the-art approaches in terms of efficiency, accuracy, and scalability, with strong results across multiple benchmarks (G-REAL 94.2%, GraCoRe 96.9%, NLGraph 98.4%).MA-GTS is open-sourced at https://github.com/ZIKEYUAN/MA-GTS.git.

Authors:PIN AI Team, Bill Sun, Gavin Guo, Regan Peng, Boliang Zhang, Shouqiao Wang, Laura Florescu, Xi Wang, Davide Crapis, Ben Wu
Title: GOD model: Privacy Preserved AI School for Personal Assistant
Abstract:
Personal AI assistants (e.g., Apple Intelligence, Meta AI) offer proactive recommendations that simplify everyday tasks, but their reliance on sensitive user data raises concerns about privacy and trust. To address these challenges, we introduce the Guardian of Data (GOD), a secure, privacy-preserving framework for training and evaluating AI assistants directly on-device. Unlike traditional benchmarks, the GOD model measures how well assistants can anticipate user needs-such as suggesting gifts-while protecting user data and autonomy. Functioning like an AI school, it addresses the cold start problem by simulating user queries and employing a curriculum-based approach to refine the performance of each assistant. Running within a Trusted Execution Environment (TEE), it safeguards user data while applying reinforcement and imitation learning to refine AI recommendations. A token-based incentive system encourages users to share data securely, creating a data flywheel that drives continuous improvement. Specifically, users mine with their data, and the mining rate is determined by GOD's evaluation of how well their AI assistant understands them across categories such as shopping, social interactions, productivity, trading, and Web3. By integrating privacy, personalization, and trust, the GOD model provides a scalable, responsible path for advancing personal AI assistants. For community collaboration, part of the framework is open-sourced at https://github.com/PIN-AI/God-Model.

Authors:Yao Su, Keqi Han, Mingjie Zeng, Lichao Sun, Liang Zhan, Carl Yang, Lifang He, Xiangnan Kong
Title: End-to-End Deep Learning for Structural Brain Imaging: A Unified Framework
Abstract:
Brain imaging analysis is fundamental in neuroscience, providing valuable insights into brain structure and function. Traditional workflows follow a sequential pipeline-brain extraction, registration, segmentation, parcellation, network generation, and classification-treating each step as an independent task. These methods rely heavily on task-specific training data and expert intervention to correct intermediate errors, making them particularly burdensome for high-dimensional neuroimaging data, where annotations and quality control are costly and time-consuming. We introduce UniBrain, a unified end-to-end framework that integrates all processing steps into a single optimization process, allowing tasks to interact and refine each other. Unlike traditional approaches that require extensive task-specific annotations, UniBrain operates with minimal supervision, leveraging only low-cost labels (i.e., classification and extraction) and a single labeled atlas. By jointly optimizing extraction, registration, segmentation, parcellation, network generation, and classification, UniBrain enhances both accuracy and computational efficiency while significantly reducing annotation effort. Experimental results demonstrate its superiority over existing methods across multiple tasks, offering a more scalable and reliable solution for neuroimaging analysis. Our code and data can be found at https://github.com/Anonymous7852/UniBrain

Authors:Sefik Serengil, Alper Ozpinar
Title: CipherFace: A Fully Homomorphic Encryption-Driven Framework for Secure Cloud-Based Facial Recognition
Abstract:
Facial recognition systems rely on embeddings to represent facial images and determine identity by verifying if the distance between embeddings is below a pre-tuned threshold. While embeddings are not reversible to original images, they still contain sensitive information, making their security critical. Traditional encryption methods like AES are limited in securely utilizing cloud computational power for distance calculations. Homomorphic Encryption, allowing calculations on encrypted data, offers a robust alternative. This paper introduces CipherFace, a homomorphic encryption-driven framework for secure cloud-based facial recognition, which we have open-sourced at http://github.com/serengil/cipherface. By leveraging FHE, CipherFace ensures the privacy of embeddings while utilizing the cloud for efficient distance computation. Furthermore, we propose a novel encrypted distance computation method for both Euclidean and Cosine distances, addressing key challenges in performing secure similarity calculations on encrypted data. We also conducted experiments with different facial recognition models, various embedding sizes, and cryptosystem configurations, demonstrating the scalability and effectiveness of CipherFace in real-world applications.

Authors:Ivoline Ngong, Swanand Kadhe, Hao Wang, Keerthiram Murugesan, Justin D. Weisz, Amit Dhurandhar, Karthikeyan Natesan Ramamurthy
Title: Protecting Users From Themselves: Safeguarding Contextual Privacy in Interactions with Conversational Agents
Abstract:
Conversational agents are increasingly woven into individuals' personal lives, yet users often underestimate the privacy risks associated with them. The moment users share information with these agents-such as large language models (LLMs)-their private information becomes vulnerable to exposure. In this paper, we characterize the notion of contextual privacy for user interactions with LLM-based Conversational Agents (LCAs). It aims to minimize privacy risks by ensuring that users (sender) disclose only information that is both relevant and necessary for achieving their intended goals when interacting with LCAs (untrusted receivers). Through a formative design user study, we observe how even "privacy-conscious" users inadvertently reveal sensitive information through indirect disclosures. Based on insights from this study, we propose a locally deployable framework that operates between users and LCAs, identifying and reformulating out-of-context information in user prompts. Our evaluation using examples from ShareGPT shows that lightweight models can effectively implement this framework, achieving strong gains in contextual privacy while preserving the user's intended interaction goals. Notably, about 76% of participants in our human evaluation preferred the reformulated prompts over the original ones, validating the usability and effectiveness of contextual privacy in our proposed framework. We opensource the code at https://github.com/IBM/contextual-privacy-LLM.

Authors:Yukun Chen, Shuo Shao, Enhao Huang, Yiming Li, Pin-Yu Chen, Zhan Qin, Kui Ren
Title: REFINE: Inversion-Free Backdoor Defense via Model Reprogramming
Abstract:
Backdoor attacks on deep neural networks (DNNs) have emerged as a significant security threat, allowing adversaries to implant hidden malicious behaviors during the model training phase. Pre-processing-based defense, which is one of the most important defense paradigms, typically focuses on input transformations or backdoor trigger inversion (BTI) to deactivate or eliminate embedded backdoor triggers during the inference process. However, these methods suffer from inherent limitations: transformation-based defenses often fail to balance model utility and defense performance, while BTI-based defenses struggle to accurately reconstruct trigger patterns without prior knowledge. In this paper, we propose REFINE, an inversion-free backdoor defense method based on model reprogramming. REFINE consists of two key components: \textbf{(1)} an input transformation module that disrupts both benign and backdoor patterns, generating new benign features; and \textbf{(2)} an output remapping module that redefines the model's output domain to guide the input transformations effectively. By further integrating supervised contrastive loss, REFINE enhances the defense capabilities while maintaining model utility. Extensive experiments on various benchmark datasets demonstrate the effectiveness of our REFINE and its resistance to potential adaptive attacks.

Authors:Aman Goel, Xian Carrie Wu, Zhe Wang, Dmitriy Bespalov, Yanjun Qi
Title: TurboFuzzLLM: Turbocharging Mutation-based Fuzzing for Effectively Jailbreaking Large Language Models in Practice
Abstract:
Jailbreaking large-language models (LLMs) involves testing their robustness against adversarial prompts and evaluating their ability to withstand prompt attacks that could elicit unauthorized or malicious responses. In this paper, we present TurboFuzzLLM, a mutation-based fuzzing technique for efficiently finding a collection of effective jailbreaking templates that, when combined with harmful questions, can lead a target LLM to produce harmful responses through black-box access via user prompts. We describe the limitations of directly applying existing template-based attacking techniques in practice, and present functional and efficiency-focused upgrades we added to mutation-based fuzzing to generate effective jailbreaking templates automatically. TurboFuzzLLM achieves $\geq$ 95\% attack success rates (ASR) on public datasets for leading LLMs (including GPT-4o \& GPT-4 Turbo), shows impressive generalizability to unseen harmful questions, and helps in improving model defenses to prompt attacks. TurboFuzzLLM is available open source at https://github.com/amazon-science/TurboFuzzLLM.

Authors:Xuemeng Song, Haoqiang Lin, Haokun Wen, Bohan Hou, Mingzhu Xu, Liqiang Nie
Title: A Comprehensive Survey on Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) is an emerging yet challenging task that allows users to search for target images using a multimodal query, comprising a reference image and a modification text specifying the user's desired changes to the reference image. Given its significant academic and practical value, CIR has become a rapidly growing area of interest in the computer vision and machine learning communities, particularly with the advances in deep learning. To the best of our knowledge, there is currently no comprehensive review of CIR to provide a timely overview of this field. Therefore, we synthesize insights from over 120 publications in top conferences and journals, including ACM TOIS, SIGIR, and CVPR In particular, we systematically categorize existing supervised CIR and zero-shot CIR models using a fine-grained taxonomy. For a comprehensive review, we also briefly discuss approaches for tasks closely related to CIR, such as attribute-based CIR and dialog-based CIR. Additionally, we summarize benchmark datasets for evaluation and analyze existing supervised and zero-shot CIR methods by comparing experimental results across multiple datasets. Furthermore, we present promising future directions in this field, offering practical insights for researchers interested in further exploration. The curated collection of related works is maintained and continuously updated in https://github.com/haokunwen/Awesome-Composed-Image-Retrieval.

Authors:Mira Adra, Simone Melcarne, Nelida Mirabet-Herranz, Jean-Luc Dugelay
Title: Event-based Solutions for Human-centered Applications: A Comprehensive Review
Abstract:
Event cameras, often referred to as dynamic vision sensors, are groundbreaking sensors capable of capturing changes in light intensity asynchronously, offering exceptional temporal resolution and energy efficiency. These attributes make them particularly suited for human-centered applications, as they capture both the most intricate details of facial expressions and the complex motion dynamics of the human body. Despite growing interest, research in human-centered applications of event cameras remains scattered, with no comprehensive overview encompassing both body and face tasks. This survey bridges that gap by being the first to unify these domains, presenting an extensive review of advancements, challenges, and opportunities. We also examine less-explored areas, including event compression techniques and simulation frameworks, which are essential for the broader adoption of event cameras. This survey is designed to serve as a foundational reference that helps both new and experienced researchers understand the current state of the field and identify promising directions for future work in human-centered event camera applications. A summary of this survey can be found at https://github.com/nmirabeth/event_human

Authors:Yafei Ou, Mahdi Tavakoli
Title: CRESSim-MPM: A Material Point Method Library for Surgical Soft Body Simulation with Cutting and Suturing
Abstract:
A number of recent studies have focused on developing surgical simulation platforms to train machine learning (ML) agents or models with synthetic data for surgical assistance. While existing platforms excel at tasks such as rigid body manipulation and soft body deformation, they struggle to simulate more complex soft body behaviors like cutting and suturing. A key challenge lies in modeling soft body fracture and splitting using the finite-element method (FEM), which is the predominant approach in current platforms. Additionally, the two-way suture needle/thread contact inside a soft body is further complicated when using FEM. In this work, we use the material point method (MPM) for such challenging simulations and propose new rigid geometries and soft-rigid contact methods specifically designed for them. We introduce CRESSim-MPM, a GPU-accelerated MPM library that integrates multiple MPM solvers and incorporates surgical geometries for cutting and suturing, serving as a specialized physics engine for surgical applications. It is further integrated into Unity, requiring minimal modifications to existing projects for soft body simulation. We demonstrate the simulator's capabilities in real-time simulation of cutting and suturing on soft tissue and provide an initial performance evaluation of different MPM solvers when simulating varying numbers of particles. The source code is available at https://github.com/yafei-ou/CRESSim-MPM.

Authors:Yizhe Zhang, Richard Bai, Zijin Gu, Ruixiang Zhang, Jiatao Gu, Emmanuel Abbe, Samy Bengio, Navdeep Jaitly
Title: What Makes the Preferred Thinking Direction for LLMs in Multiple-choice Questions?
Abstract:
Language models usually use left-to-right (L2R) autoregressive factorization. However, L2R factorization may not always be the best inductive bias. Therefore, we investigate whether alternative factorizations of the text distribution could be beneficial in some tasks. We investigate right-to-left (R2L) training as a compelling alternative, focusing on multiple-choice questions (MCQs) as a test bed for knowledge extraction and reasoning. Through extensive experiments across various model sizes (2B-8B parameters) and training datasets, we find that R2L models can significantly outperform L2R models on several MCQ benchmarks, including logical reasoning, commonsense understanding, and truthfulness assessment tasks. Our analysis reveals that this performance difference may be fundamentally linked to multiple factors including calibration, computability, and directional conditional entropy. We analyze the impact of these factors through controlled simulation studies using arithmetic tasks, where the impacting factors can be better disentangled. Our work demonstrates that exploring alternative factorizations of the text distribution can lead to improvements in LLM capabilities and provides theoretical insights into optimal factorization towards approximating human language distribution, and when each reasoning order might be more advantageous. Our code and checkpoints are released at https://github.com/apple/ml-reversal-blessing.

Authors:Alexander Groshev, Anastasiia Iashchenko, Pavel Paramonov, Denis Dimitrov, Andrey Kuznetsov
Title: GHOST 2.0: generative high-fidelity one shot transfer of heads
Abstract:
While the task of face swapping has recently gained attention in the research community, a related problem of head swapping remains largely unexplored. In addition to skin color transfer, head swap poses extra challenges, such as the need to preserve structural information of the whole head during synthesis and inpaint gaps between swapped head and background. In this paper, we address these concerns with GHOST 2.0, which consists of two problem-specific modules. First, we introduce enhanced Aligner model for head reenactment, which preserves identity information at multiple scales and is robust to extreme pose variations. Secondly, we use a Blender module that seamlessly integrates the reenacted head into the target background by transferring skin color and inpainting mismatched regions. Both modules outperform the baselines on the corresponding tasks, allowing to achieve state of the art results in head swapping. We also tackle complex cases, such as large difference in hair styles of source and target. Code is available at https://github.com/ai-forever/ghost-2.0

Authors:Henry Peng Zou, Siffi Singh, Yi Nian, Jianfeng He, Jason Cai, Saab Mansour, Hang Su
Title: GLEAN: Generalized Category Discovery with Diverse and Quality-Enhanced LLM Feedback
Abstract:
Generalized Category Discovery (GCD) is a practical and challenging open-world task that aims to recognize both known and novel categories in unlabeled data using limited labeled data from known categories. Due to the lack of supervision, previous GCD methods face significant challenges, such as difficulty in rectifying errors for confusing instances, and inability to effectively uncover and leverage the semantic meanings of discovered clusters. Therefore, additional annotations are usually required for real-world applicability. However, human annotation is extremely costly and inefficient. To address these issues, we propose GLEAN, a unified framework for generalized category discovery that actively learns from diverse and quality-enhanced LLM feedback. Our approach leverages three different types of LLM feedback to: (1) improve instance-level contrastive features, (2) generate category descriptions, and (3) align uncertain instances with LLM-selected category descriptions. Extensive experiments demonstrate the superior performance of \MethodName over state-of-the-art models across diverse datasets, metrics, and supervision settings. Our code is available at https://github.com/amazon-science/Glean.

Authors:Xiangyu Zhao, Shengyuan Ding, Zicheng Zhang, Haian Huang, Maosong Cao, Weiyun Wang, Jiaqi Wang, Xinyu Fang, Wenhai Wang, Guangtao Zhai, Haodong Duan, Hua Yang, Kai Chen
Title: OmniAlign-V: Towards Enhanced Alignment of MLLMs with Human Preference
Abstract:
Recent advancements in open-source multi-modal large language models (MLLMs) have primarily focused on enhancing foundational capabilities, leaving a significant gap in human preference alignment. This paper introduces OmniAlign-V, a comprehensive dataset of 200K high-quality training samples featuring diverse images, complex questions, and varied response formats to improve MLLMs' alignment with human preferences. We also present MM-AlignBench, a human-annotated benchmark specifically designed to evaluate MLLMs' alignment with human values. Experimental results show that finetuning MLLMs with OmniAlign-V, using Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO), significantly enhances human preference alignment while maintaining or enhancing performance on standard VQA benchmarks, preserving their fundamental capabilities. Our datasets, benchmark, code and checkpoints have been released at https://github.com/PhoenixZ810/OmniAlign-V.

Authors:Ahmed Elhady, Eneko Agirre, Mikel Artetxe
Title: WiCkeD: A Simple Method to Make Multiple Choice Benchmarks More Challenging
Abstract:
We introduce WiCkeD, a simple method to increase the complexity of existing multiple-choice benchmarks by randomly replacing a choice with "None of the above", a method often used in educational tests. We show that WiCkeD can be automatically applied to any existing benchmark, making it more challenging. We apply WiCkeD to 6 popular benchmarks and use it to evaluate 18 open-weight LLMs. The performance of the models drops 12.1 points on average with respect to the original versions of the datasets. When using chain-of-thought on 3 MMLU datasets, the performance drop for the WiCkeD variant is similar to the one observed when using the LLMs directly, showing that WiCkeD is also challenging for models with enhanced reasoning abilities. WiCkeD also uncovers that some models are more sensitive to the extra reasoning required, providing additional information with respect to the original benchmarks. We relase our code and data at https://github.com/ahmedselhady/wicked-benchmarks.

Authors:Jianhao Yan, Yun Luo, Yue Zhang
Title: RefuteBench 2.0 -- Agentic Benchmark for Dynamic Evaluation of LLM Responses to Refutation Instruction
Abstract:
In the multi-turn interaction schema, large language models (LLMs) can leverage user feedback to enhance the quality and relevance of their responses. However, evaluating an LLM's ability to incorporate user refutation feedback is crucial yet challenging. In this study, we introduce RefuteBench 2.0, which significantly extends the original RefuteBench by incorporating LLM agents as refuters and evaluators, which allows for flexible and comprehensive assessment. We design both transient and persistent refutation instructions with different validity periods. Meta-evaluation shows that the LLM-based refuter could generate more human-like refutations and the evaluators could assign scores with high correlation with humans. Experimental results of various LLMs show that current models could effectively satisfy the refutation but fail to memorize the refutation information. Interestingly, we also observe that the performance of the initial task decreases as the refutations increase. Analysis of the attention scores further shows a potential weakness of current LLMs: they struggle to retain and correctly use previous information during long context dialogues. https://github.com/ElliottYan/RefuteBench-2.0

Authors:Zenghui Chang, Yiqiao Zhang, Hong Cai Chen
Title: Neural Network Graph Similarity Computation Based on Graph Fusion
Abstract:
Graph similarity learning, crucial for tasks such as graph classification and similarity search, focuses on measuring the similarity between two graph-structured entities. The core challenge in this field is effectively managing the interactions between graphs. Traditional methods often entail separate, redundant computations for each graph pair, leading to unnecessary complexity. This paper revolutionizes the approach by introducing a parallel graph interaction method called graph fusion. By merging the node sequences of graph pairs into a single large graph, our method leverages a global attention mechanism to facilitate interaction computations and to harvest cross-graph insights. We further assess the similarity between graph pairs at two distinct levels-graph-level and node-level-introducing two innovative, yet straightforward, similarity computation algorithms. Extensive testing across five public datasets shows that our model not only outperforms leading baseline models in graph-to-graph classification and regression tasks but also sets a new benchmark for performance and efficiency. The code for this paper is open-source and available at https://github.com/LLiRarry/GFM-code.git

Authors:Jun Zeng, Debesh Jha, Ertugrul Aktas, Elif Keles, Alpay Medetalibeyoglu, Matthew Antalek, Robert Lewandowski, Daniela Ladner, Amir A. Borhani, Gorkem Durak, Ulas Bagci
Title: A Reverse Mamba Attention Network for Pathological Liver Segmentation
Abstract:
We present RMA-Mamba, a novel architecture that advances the capabilities of vision state space models through a specialized reverse mamba attention module (RMA). The key innovation lies in RMA-Mamba's ability to capture long-range dependencies while maintaining precise local feature representation through its hierarchical processing pipeline. By integrating Vision Mamba (VMamba)'s efficient sequence modeling with RMA's targeted feature refinement, our architecture achieves superior feature learning across multiple scales. This dual-mechanism approach enables robust handling of complex morphological patterns while maintaining computational efficiency. We demonstrate RMA-Mamba's effectiveness in the challenging domain of pathological liver segmentation (from both CT and MRI), where traditional segmentation approaches often fail due to tissue variations. When evaluated on a newly introduced cirrhotic liver dataset (CirrMRI600+) of T2-weighted MRI scans, RMA-Mamba achieves the state-of-the-art performance with a Dice coefficient of 92.08%, mean IoU of 87.36%, and recall of 92.96%. The architecture's generalizability is further validated on the cancerous liver segmentation from CT scans (LiTS: Liver Tumor Segmentation dataset), yielding a Dice score of 92.9% and mIoU of 88.99%. Our code is available for public: https://github.com/JunZengz/RMAMamba.

Authors:Jun Zeng, Debesh Jha, Ertugrul Aktas, Elif Keles, Alpay Medetalibeyoglu, Matthew Antalek, Federica Proietto Salanitri, Amir A. Borhani, Daniela P. Ladner, Gorkem Durak, Ulas Bagci
Title: Liver Cirrhosis Stage Estimation from MRI with Deep Learning
Abstract:
We present an end-to-end deep learning framework for automated liver cirrhosis stage estimation from multi-sequence MRI. Cirrhosis is the severe scarring (fibrosis) of the liver and a common endpoint of various chronic liver diseases. Early diagnosis is vital to prevent complications such as decompensation and cancer, which significantly decreases life expectancy. However, diagnosing cirrhosis in its early stages is challenging, and patients often present with life-threatening complications. Our approach integrates multi-scale feature learning with sequence-specific attention mechanisms to capture subtle tissue variations across cirrhosis progression stages. Using CirrMRI600+, a large-scale publicly available dataset of 628 high-resolution MRI scans from 339 patients, we demonstrate state-of-the-art performance in three-stage cirrhosis classification. Our best model achieves 72.8% accuracy on T1W and 63.8% on T2W sequences, significantly outperforming traditional radiomics-based approaches. Through extensive ablation studies, we show that our architecture effectively learns stage-specific imaging biomarkers. We establish new benchmarks for automated cirrhosis staging and provide insights for developing clinically applicable deep learning systems. The source code will be available at https://github.com/JunZengz/CirrhosisStage.

Authors:He Wang, Tianyang Xu, Zhangyong Tang, Xiao-Jun Wu, Josef Kittler
Title: UASTrack: A Unified Adaptive Selection Framework with Modality-Customization in Single Object Tracking
Abstract:
Multi-modal tracking is essential in single-object tracking (SOT), as different sensor types contribute unique capabilities to overcome challenges caused by variations in object appearance. However, existing unified RGB-X trackers (X represents depth, event, or thermal modality) either rely on the task-specific training strategy for individual RGB-X image pairs or fail to address the critical importance of modality-adaptive perception in real-world applications. In this work, we propose UASTrack, a unified adaptive selection framework that facilitates both model and parameter unification, as well as adaptive modality discrimination across various multi-modal tracking tasks. To achieve modality-adaptive perception in joint RGB-X pairs, we design a Discriminative Auto-Selector (DAS) capable of identifying modality labels, thereby distinguishing the data distributions of auxiliary modalities. Furthermore, we propose a Task-Customized Optimization Adapter (TCOA) tailored to various modalities in the latent space. This strategy effectively filters noise redundancy and mitigates background interference based on the specific characteristics of each modality. Extensive comparisons conducted on five benchmarks including LasHeR, GTOT, RGBT234, VisEvent, and DepthTrack, covering RGB-T, RGB-E, and RGB-D tracking scenarios, demonstrate our innovative approach achieves comparative performance by introducing only additional training parameters of 1.87M and flops of 1.95G. The code will be available at https://github.com/wanghe/UASTrack.

Authors:Botao Ye, Sifei Liu, Xueting Li, Marc Pollefeys, Ming-Hsuan Yang
Title: Synthesizing Consistent Novel Views via 3D Epipolar Attention without Re-Training
Abstract:
Large diffusion models demonstrate remarkable zero-shot capabilities in novel view synthesis from a single image. However, these models often face challenges in maintaining consistency across novel and reference views. A crucial factor leading to this issue is the limited utilization of contextual information from reference views. Specifically, when there is an overlap in the viewing frustum between two views, it is essential to ensure that the corresponding regions maintain consistency in both geometry and appearance. This observation leads to a simple yet effective approach, where we propose to use epipolar geometry to locate and retrieve overlapping information from the input view. This information is then incorporated into the generation of target views, eliminating the need for training or fine-tuning, as the process requires no learnable parameters. Furthermore, to enhance the overall consistency of generated views, we extend the utilization of epipolar attention to a multi-view setting, allowing retrieval of overlapping information from the input view and other target views. Qualitative and quantitative experimental results demonstrate the effectiveness of our method in significantly improving the consistency of synthesized views without the need for any fine-tuning. Moreover, This enhancement also boosts the performance of downstream applications such as 3D reconstruction. The code is available at https://github.com/botaoye/ConsisSyn.

Authors:Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji
Title: VCT: Training Consistency Models with Variational Noise Coupling
Abstract:
Consistency Training (CT) has recently emerged as a strong alternative to diffusion models for image generation. However, non-distillation CT often suffers from high variance and instability, motivating ongoing research into its training dynamics. We propose Variational Consistency Training (VCT), a flexible and effective framework compatible with various forward kernels, including those in flow matching. Its key innovation is a learned noise-data coupling scheme inspired by Variational Autoencoders, where a data-dependent encoder models noise emission. This enables VCT to adaptively learn noise-todata pairings, reducing training variance relative to the fixed, unsorted pairings in classical CT. Experiments on multiple image datasets demonstrate significant improvements: our method surpasses baselines, achieves state-of-the-art FID among non-distillation CT approaches on CIFAR-10, and matches SoTA performance on ImageNet 64 x 64 with only two sampling steps. Code is available at https://github.com/sony/vct.

Authors:Anh-Khoa Nguyen Vu, Quoc-Truong Truong, Vinh-Tiep Nguyen, Thanh Duc Ngo, Thanh-Toan Do, Tam V. Nguyen
Title: Multi-Perspective Data Augmentation for Few-shot Object Detection
Abstract:
Recent few-shot object detection (FSOD) methods have focused on augmenting synthetic samples for novel classes, show promising results to the rise of diffusion models. However, the diversity of such datasets is often limited in representativeness because they lack awareness of typical and hard samples, especially in the context of foreground and background relationships. To tackle this issue, we propose a Multi-Perspective Data Augmentation (MPAD) framework. In terms of foreground-foreground relationships, we propose in-context learning for object synthesis (ICOS) with bounding box adjustments to enhance the detail and spatial information of synthetic samples. Inspired by the large margin principle, support samples play a vital role in defining class boundaries. Therefore, we design a Harmonic Prompt Aggregation Scheduler (HPAS) to mix prompt embeddings at each time step of the generation process in diffusion models, producing hard novel samples. For foreground-background relationships, we introduce a Background Proposal method (BAP) to sample typical and hard backgrounds. Extensive experiments on multiple FSOD benchmarks demonstrate the effectiveness of our approach. Our framework significantly outperforms traditional methods, achieving an average increase of $17.5\%$ in nAP50 over the baseline on PASCAL VOC. Code is available at https://github.com/nvakhoa/MPAD.

Authors:Adnan Iltaf, Rayan Merghani Ahmed, Zhenxi Zhang, Bin Li, Shoujun Zhou
Title: VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with AtrousLoRA
Abstract:
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.

Authors:Gaye Colakoglu, Gürkan Solmaz, Jonathan Fürst
Title: Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs
Abstract:
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.

Authors:Mingkun Zhang, Keping Bi, Wei Chen, Jiafeng Guo, Xueqi Cheng
Title: CLIPure: Purification in Latent Space via CLIP for Adversarially Robust Zero-Shot Classification
Abstract:
In this paper, we aim to build an adversarially robust zero-shot image classifier. We ground our work on CLIP, a vision-language pre-trained encoder model that can perform zero-shot classification by matching an image with text prompts ``a photo of a .''. Purification is the path we choose since it does not require adversarial training on specific attack types and thus can cope with any foreseen attacks. We then formulate purification risk as the KL divergence between the joint distributions of the purification process of denoising the adversarial samples and the attack process of adding perturbations to benign samples, through bidirectional Stochastic Differential Equations (SDEs). The final derived results inspire us to explore purification in the multi-modal latent space of CLIP. We propose two variants for our CLIPure approach: CLIPure-Diff which models the likelihood of images' latent vectors with the DiffusionPrior module in DaLLE-2 (modeling the generation process of CLIP's latent vectors), and CLIPure-Cos which models the likelihood with the cosine similarity between the embeddings of an image and ``a photo of a.''. As far as we know, CLIPure is the first purification method in multi-modal latent space and CLIPure-Cos is the first purification method that is not based on generative models, which substantially improves defense efficiency. We conducted extensive experiments on CIFAR-10, ImageNet, and 13 datasets that previous CLIP-based defense methods used for evaluating zero-shot classification robustness. Results show that CLIPure boosts the SOTA robustness by a large margin, e.g., from 71.7% to 91.1% on CIFAR10, from 59.6% to 72.6% on ImageNet, and 108% relative improvements of average robustness on the 13 datasets over previous SOTA. The code is available at https://github.com/TMLResearchGroup-CAS/CLIPure.

Authors:Yunfeng Li, Bo Wang, Ye Li
Title: LightFC-X: Lightweight Convolutional Tracker for RGB-X Tracking
Abstract:
Despite great progress in multimodal tracking, these trackers remain too heavy and expensive for resource-constrained devices. To alleviate this problem, we propose LightFC-X, a family of lightweight convolutional RGB-X trackers that explores a unified convolutional architecture for lightweight multimodal tracking. Our core idea is to achieve lightweight cross-modal modeling and joint refinement of the multimodal features and the spatiotemporal appearance features of the target. Specifically, we propose a novel efficient cross-attention module (ECAM) and a novel spatiotemporal template aggregation module (STAM). The ECAM achieves lightweight cross-modal interaction of template-search area integrated feature with only 0.08M parameters. The STAM enhances the model's utilization of temporal information through module fine-tuning paradigm. Comprehensive experiments show that our LightFC-X achieves state-of-the-art performance and the optimal balance between parameters, performance, and speed. For example, LightFC-T-ST outperforms CMD by 4.3% and 5.7% in SR and PR on the LasHeR benchmark, which it achieves 2.6x reduction in parameters and 2.7x speedup. It runs in real-time on the CPU at a speed of 22 fps. The code is available at https://github.com/LiYunfengLYF/LightFC-X.

Authors:Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, Jianfei Chen
Title: SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference
Abstract:
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.

Authors:Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, Jianfei Chen
Title: SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference
Abstract:
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.

Authors:Laura Perez-Beltrachini, Mirella Lapata
Title: Uncertainty Quantification in Retrieval Augmented Question Answering
Abstract:
Retrieval augmented Question Answering (QA) helps QA models overcome knowledge gaps by incorporating retrieved evidence, typically a set of passages, alongside the question at test time. Previous studies show that this approach improves QA performance and reduces hallucinations, without, however, assessing whether the retrieved passages are indeed useful at answering correctly. In this work, we propose to quantify the uncertainty of a QA model via estimating the utility of the passages it is provided with. We train a lightweight neural model to predict passage utility for a target QA model and show that while simple information theoretic metrics can predict answer correctness up to a certain extent, our approach efficiently approximates or outperforms more expensive sampling-based methods. Code and data are available at https://github.com/lauhaide/ragu.

Authors:Han Nie, Bin Luo, Jun Liu, Zhitao Fu, Huan Zhou, Shuo Zhang, Weixing Liu
Title: PromptMID: Modal Invariant Descriptors Based on Diffusion and Vision Foundation Models for Optical-SAR Image Matching
Abstract:
The ideal goal of image matching is to achieve stable and efficient performance in unseen domains. However, many existing learning-based optical-SAR image matching methods, despite their effectiveness in specific scenarios, exhibit limited generalization and struggle to adapt to practical applications. Repeatedly training or fine-tuning matching models to address domain differences is not only not elegant enough but also introduces additional computational overhead and data production costs. In recent years, general foundation models have shown great potential for enhancing generalization. However, the disparity in visual domains between natural and remote sensing images poses challenges for their direct application. Therefore, effectively leveraging foundation models to improve the generalization of optical-SAR image matching remains challenge. To address the above challenges, we propose PromptMID, a novel approach that constructs modality-invariant descriptors using text prompts based on land use classification as priors information for optical and SAR image matching. PromptMID extracts multi-scale modality-invariant features by leveraging pre-trained diffusion models and visual foundation models (VFMs), while specially designed feature aggregation modules effectively fuse features across different granularities. Extensive experiments on optical-SAR image datasets from four diverse regions demonstrate that PromptMID outperforms state-of-the-art matching methods, achieving superior results in both seen and unseen domains and exhibiting strong cross-domain generalization capabilities. The source code will be made publicly available https://github.com/HanNieWHU/PromptMID.

Authors:Cao Yuxuan, Wu Jiayang, Alistair Cheong Liang Chuen, Bryan Shan Guanrong, Theodore Lee Chong Jen, Sherman Chann Zhi Shen
Title: Detecting Offensive Memes with Social Biases in Singapore Context Using Multimodal Large Language Models
Abstract:
Traditional online content moderation systems struggle to classify modern multimodal means of communication, such as memes, a highly nuanced and information-dense medium. This task is especially hard in a culturally diverse society like Singapore, where low-resource languages are used and extensive knowledge on local context is needed to interpret online content. We curate a large collection of 112K memes labeled by GPT-4V for fine-tuning a VLM to classify offensive memes in Singapore context. We show the effectiveness of fine-tuned VLMs on our dataset, and propose a pipeline containing OCR, translation and a 7-billion parameter-class VLM. Our solutions reach 80.62% accuracy and 0.8192 AUROC on a held-out test set, and can greatly aid human in moderating online contents. The dataset, code, and model weights have been open-sourced at https://github.com/aliencaocao/vlm-for-memes-aisg.

Authors:Shengtian Mian, Ya Wang, Nannan Gu, Yuping Wang, Xiaoqing Li
Title: FwNet-ECA: A Classification Model Enhancing Window Attention with Global Receptive Fields via Fourier Filtering Operations
Abstract:
Windowed attention mechanisms were introduced to mitigate the issue of excessive computation inherent in global attention mechanisms. In this paper, we present FwNet-ECA, a novel method that utilizes Fourier transforms paired with learnable weight matrices to enhance the spectral features of images. This method establishes a global receptive field through Filter Enhancement and avoids the use of moving window attention. Additionally, we incorporate the Efficient Channel Attention (ECA) module to improve communication between different channels. Instead of relying on physically shifted windows, our approach leverages frequency domain enhancement to implicitly bridge information across spatial regions. We validate our model on the iCartoonFace dataset and conduct downstream tasks on ImageNet, demonstrating that our model achieves lower parameter counts and computational overheads compared to shifted window approaches, while maintaining competitive accuracy. Furthermore, our visualization operations clearly demonstrated that the Filter Enhancement technique achieves greater effectiveness in the model's shallow layers, where feature maps are relatively larger. This work offers a more efficient and effective alternative for leveraging attention mechanisms in visual processing tasks, alleviating the challenges associated with windowed attention models. Code is available at https://github.com/qingxiaoli/FwNet-ECA

Authors:Ankita Raj, Deepankar Varma, Chetan Arora
Title: Examining the Threat Landscape: Foundation Models and Model Stealing
Abstract:
Foundation models (FMs) for computer vision learn rich and robust representations, enabling their adaptation to task/domain-specific deployments with little to no fine-tuning. However, we posit that the very same strength can make applications based on FMs vulnerable to model stealing attacks. Through empirical analysis, we reveal that models fine-tuned from FMs harbor heightened susceptibility to model stealing, compared to conventional vision architectures like ResNets. We hypothesize that this behavior is due to the comprehensive encoding of visual patterns and features learned by FMs during pre-training, which are accessible to both the attacker and the victim. We report that an attacker is able to obtain 94.28% agreement (matched predictions with victim) for a Vision Transformer based victim model (ViT-L/16) trained on CIFAR-10 dataset, compared to only 73.20% agreement for a ResNet-18 victim, when using ViT-L/16 as the thief model. We arguably show, for the first time, that utilizing FMs for downstream tasks may not be the best choice for deployment in commercial APIs due to their susceptibility to model theft. We thereby alert model owners towards the associated security risks, and highlight the need for robust security measures to safeguard such models against theft. Code is available at https://github.com/rajankita/foundation_model_stealing.

Authors:Carlos Vélez García, Miguel Cazorla, Jorge Pomares
Title: Escaping The Big Data Paradigm in Self-Supervised Representation Learning
Abstract:
The reliance on large-scale datasets and extensive computational resources has become a major barrier to advancing representation learning in vision, especially in data-scarce domains. In this paper, we address the critical question: Can we escape the big data paradigm in self-supervised representation learning from images? We introduce SCOTT (Sparse Convolutional Tokenizer for Transformers), a shallow tokenization architecture that is compatible with Masked Image Modeling (MIM) tasks. SCOTT injects convolutional inductive biases into Vision Transformers (ViTs), enhancing their efficacy in small-scale data regimes. Alongside, we propose to train on a Joint-Embedding Predictive Architecture within a MIM framework (MIM-JEPA), operating in latent representation space to capture more semantic features. Our approach enables ViTs to be trained from scratch on datasets orders of magnitude smaller than traditionally required --without relying on massive external datasets for pretraining. We validate our method on three small-size, standard-resoultion, fine-grained datasets: Oxford Flowers-102, Oxford IIIT Pets-37, and ImageNet-100. Despite the challenges of limited data and high intra-class similarity, frozen SCOTT models pretrained with MIM-JEPA significantly outperform fully supervised methods and achieve competitive results with SOTA approaches that rely on large-scale pretraining, complex image augmentations and bigger model sizes. By demonstrating that robust off-the-shelf representations can be learned with limited data, compute, and model sizes, our work paves the way for computer applications in resource constrained environments such as medical imaging or robotics. Our findings challenge the prevailing notion that vast amounts of data are indispensable for effective representation learning in vision, offering a new pathway toward more accessible and inclusive advancements in the field.

Authors:Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao, Ming Li, Likang Xiao, Dingqi Yang, Yikun Ban, Hailong Sun, Philip S. Yu
Title: Harnessing Multiple Large Language Models: A Survey on LLM Ensemble
Abstract:
LLM Ensemble -- which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths -- has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference'', and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/Awesome-LLM-Ensemble.

Authors:Zhuo Chen, Xinyu Wang, Yong Jiang, Zhen Zhang, Xinyu Geng, Pengjun Xie, Fei Huang, Kewei Tu
Title: Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference
Abstract:
Despite the advancements made in Vision Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tune a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary, based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary

Authors:Qiuchen Wang, Ruixue Ding, Zehui Chen, Weiqi Wu, Shihang Wang, Pengjun Xie, Feng Zhao
Title: ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents
Abstract:
Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark. The code is available at https://github.com/Alibaba-NLP/ViDoRAG.

Authors:Xinghao Chen, Zhijing Sun, Wenjin Guo, Miaoran Zhang, Yanjun Chen, Yirong Sun, Hui Su, Yijie Pan, Dietrich Klakow, Wenjie Li, Xiaoyu Shen
Title: Unveiling the Key Factors for Distilling Chain-of-Thought Reasoning
Abstract:
Large Language Models (LLMs) excel in reasoning tasks through Chain-of-Thought (CoT) prompting. However, CoT prompting greatly increases computational demands, which has prompted growing interest in distilling CoT capabilities into Small Language Models (SLMs). This study systematically examines the factors influencing CoT distillation, including the choice of granularity, format and teacher model. Through experiments involving four teacher models and seven student models across seven mathematical and commonsense reasoning datasets, we uncover three key findings: (1) Unlike LLMs, SLMs exhibit a non-monotonic relationship with granularity, with stronger models benefiting from finer-grained reasoning and weaker models performing better with simpler CoT supervision; (2) CoT format significantly impacts LLMs but has minimal effect on SLMs, likely due to their reliance on supervised fine-tuning rather than pretraining preferences; (3) Stronger teacher models do NOT always produce better student models, as diversity and complexity in CoT supervision can outweigh accuracy alone. These findings emphasize the need to tailor CoT strategies to specific student model, offering actionable insights for optimizing CoT distillation in SLMs. The code and datasets are available at https://github.com/EIT-NLP/Distilling-CoT-Reasoning.

Authors:Tianmi Ma, Jiawei Du, Wenxin Huang, Wenjie Wang, Liang Xie, Xian Zhong, Joey Tianyi Zhou
Title: Agent Trading Arena: A Study on Numerical Understanding in LLM-Based Agents
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in natural language tasks, yet their performance in dynamic, real-world financial environments remains underexplored. Existing approaches are limited to historical backtesting, where trading actions cannot influence market prices and agents train only on static data. To address this limitation, we present the Agent Trading Arena, a virtual zero-sum stock market in which LLM-based agents engage in competitive multi-agent trading and directly impact price dynamics. By simulating realistic bid-ask interactions, our platform enables training in scenarios that closely mirror live markets, thereby narrowing the gap between training and evaluation. Experiments reveal that LLMs struggle with numerical reasoning when given plain-text data, often overfitting to local patterns and recent values. In contrast, chart-based visualizations significantly enhance both numerical reasoning and trading performance. Furthermore, incorporating a reflection module yields additional improvements, especially with visual inputs. Evaluations on NASDAQ and CSI datasets demonstrate the superiority of our method, particularly under high volatility. All code and data are available at https://github.com/wekjsdvnm/Agent-Trading-Arena.

Authors:Qianying Liu, Katrina Qiyao Wang, Fei Cheng, Sadao Kurohashi
Title: Assessing Agentic Large Language Models in Multilingual National Bias
Abstract:
Large Language Models have garnered significant attention for their capabilities in multilingual natural language processing, while studies on risks associated with cross biases are limited to immediate context preferences. Cross-language disparities in reasoning-based recommendations remain largely unexplored, with a lack of even descriptive analysis. This study is the first to address this gap. We test LLM's applicability and capability in providing personalized advice across three key scenarios: university applications, travel, and relocation. We investigate multilingual bias in state-of-the-art LLMs by analyzing their responses to decision-making tasks across multiple languages. We quantify bias in model-generated scores and assess the impact of demographic factors and reasoning strategies (e.g., Chain-of-Thought prompting) on bias patterns. Our findings reveal that local language bias is prevalent across different tasks, with GPT-4 and Sonnet reducing bias for English-speaking countries compared to GPT-3.5 but failing to achieve robust multilingual alignment, highlighting broader implications for multilingual AI agents and applications such as education. \footnote{Code available at: https://github.com/yiyunya/assess_agentic_national_bias

Authors:Haitao Li, Jiaying Ye, Yiran Hu, Jia Chen, Qingyao Ai, Yueyue Wu, Junjie Chen, Yifan Chen, Cheng Luo, Quan Zhou, Yiqun Liu
Title: CaseGen: A Benchmark for Multi-Stage Legal Case Documents Generation
Abstract:
Legal case documents play a critical role in judicial proceedings. As the number of cases continues to rise, the reliance on manual drafting of legal case documents is facing increasing pressure and challenges. The development of large language models (LLMs) offers a promising solution for automating document generation. However, existing benchmarks fail to fully capture the complexities involved in drafting legal case documents in real-world scenarios. To address this gap, we introduce CaseGen, the benchmark for multi-stage legal case documents generation in the Chinese legal domain. CaseGen is based on 500 real case samples annotated by legal experts and covers seven essential case sections. It supports four key tasks: drafting defense statements, writing trial facts, composing legal reasoning, and generating judgment results. To the best of our knowledge, CaseGen is the first benchmark designed to evaluate LLMs in the context of legal case document generation. To ensure an accurate and comprehensive evaluation, we design the LLM-as-a-judge evaluation framework and validate its effectiveness through human annotations. We evaluate several widely used general-domain LLMs and legal-specific LLMs, highlighting their limitations in case document generation and pinpointing areas for potential improvement. This work marks a step toward a more effective framework for automating legal case documents drafting, paving the way for the reliable application of AI in the legal field. The dataset and code are publicly available at https://github.com/CSHaitao/CaseGen.

Authors:Mingyuan Sun, Zheng Fang, Jiaxu Wang, Junjie Jiang, Delei Kong, Chenming Hu, Yuetong Fang, Renjing Xu
Title: Optimal Brain Apoptosis
Abstract:
The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.

Authors:Hongyi Chen, Jingtao Ding, Xiaojun Liang, Yong Li, Xiao-Ping Zhang
Title: Structure-prior Informed Diffusion Model for Graph Source Localization with Limited Data
Abstract:
Source localization in graph information propagation is essential for mitigating network disruptions, including misinformation spread, cyber threats, and infrastructure failures. Existing deep generative approaches face significant challenges in real-world applications due to limited propagation data availability. We present SIDSL (\textbf{S}tructure-prior \textbf{I}nformed \textbf{D}iffusion model for \textbf{S}ource \textbf{L}ocalization), a generative diffusion framework that leverages topology-aware priors to enable robust source localization with limited data. SIDSL addresses three key challenges: unknown propagation patterns through structure-based source estimations via graph label propagation, complex topology-propagation relationships via a propagation-enhanced conditional denoiser with GNN-parameterized label propagation module, and class imbalance through structure-prior biased diffusion initialization. By learning pattern-invariant features from synthetic data generated by established propagation models, SIDSL enables effective knowledge transfer to real-world scenarios. Experimental evaluation on four real-world datasets demonstrates superior performance with 7.5-13.3\% F1 score improvements over baselines, including over 19\% improvement in few-shot and 40\% in zero-shot settings, validating the framework's effectiveness for practical source localization. Our code can be found \href{https://github.com/tsinghua-fib-lab/SIDSL}{here}.

Authors:Shiping Gao, Fanqi Wan, Jiajian Guo, Xiaojun Quan, Qifan Wang
Title: Advantage-Guided Distillation for Preference Alignment in Small Language Models
Abstract:
Alignment techniques enable Large Language Models (LLMs) to generate outputs that align with human preferences and play a crucial role in their effectiveness. However, their impact often diminishes when applied to Small Language Models (SLMs), likely due to the limited capacity of these models. Instead of directly applying existing alignment techniques to SLMs, we propose to utilize a well-aligned teacher LLM to guide the alignment process for these models, thereby facilitating the transfer of the teacher's knowledge of human preferences to the student model. To achieve this, we first explore a straightforward approach, Dual-Constrained Knowledge Distillation (DCKD), that employs knowledge distillation with two KL-divergence constraints from the aligned teacher to the unaligned student. To further enhance the student's ability to distinguish between preferred and dispreferred responses, we then propose Advantage-Guided Distillation for Preference Alignment (ADPA), which leverages an advantage function from the aligned teacher to deliver more nuanced, distribution-level reward signals for the student's alignment. Our experimental results show that these two approaches appreciably improve the alignment of SLMs and narrow the performance gap with larger counterparts. Among them, ADPA demonstrates superior performance and achieves even greater effectiveness when integrated with DCKD. Our code is available at https://github.com/SLIT-AI/ADPA.

Authors:Vishal Nedungadi, Muhammad Akhtar Munir, Marc Rußwurm, Ron Sarafian, Ioannis N. Athanasiadis, Yinon Rudich, Fahad Shahbaz Khan, Salman Khan
Title: AirCast: Improving Air Pollution Forecasting Through Multi-Variable Data Alignment
Abstract:
Air pollution remains a leading global health risk, exacerbated by rapid industrialization and urbanization, contributing significantly to morbidity and mortality rates. In this paper, we introduce AirCast, a novel multi-variable air pollution forecasting model, by combining weather and air quality variables. AirCast employs a multi-task head architecture that simultaneously forecasts atmospheric conditions and pollutant concentrations, improving its understanding of how weather patterns affect air quality. Predicting extreme pollution events is challenging due to their rare occurrence in historic data, resulting in a heavy-tailed distribution of pollution levels. To address this, we propose a novel Frequency-weighted Mean Absolute Error (fMAE) loss, adapted from the class-balanced loss for regression tasks. Informed from domain knowledge, we investigate the selection of key variables known to influence pollution levels. Additionally, we align existing weather and chemical datasets across spatial and temporal dimensions. AirCast's integrated approach, combining multi-task learning, frequency weighted loss and domain informed variable selection, enables more accurate pollution forecasts. Our source code and models are made public here (https://github.com/vishalned/AirCast.git)

Authors:Yuhan Chen, Yihong Luo, Yifan Song, Pengwen Dai, Jing Tang, Xiaochun Cao
Title: Decoupled Graph Energy-based Model for Node Out-of-Distribution Detection on Heterophilic Graphs
Abstract:
Despite extensive research efforts focused on OOD detection on images, OOD detection on nodes in graph learning remains underexplored. The dependence among graph nodes hinders the trivial adaptation of existing approaches on images that assume inputs to be i.i.d. sampled, since many unique features and challenges specific to graphs are not considered, such as the heterophily issue. Recently, GNNSafe, which considers node dependence, adapted energy-based detection to the graph domain with state-of-the-art performance, however, it has two serious issues: 1) it derives node energy from classification logits without specifically tailored training for modeling data distribution, making it less effective at recognizing OOD data; 2) it highly relies on energy propagation, which is based on homophily assumption and will cause significant performance degradation on heterophilic graphs, where the node tends to have dissimilar distribution with its neighbors. To address the above issues, we suggest training EBMs by MLE to enhance data distribution modeling and remove energy propagation to overcome the heterophily issues. However, training EBMs via MLE requires performing MCMC sampling on both node feature and node neighbors, which is challenging due to the node interdependence and discrete graph topology. To tackle the sampling challenge, we introduce DeGEM, which decomposes the learning process into two parts: a graph encoder that leverages topology information for node representations and an energy head that operates in latent space. Extensive experiments validate that DeGEM, without OOD exposure during training, surpasses previous state-of-the-art methods, achieving an average AUROC improvement of 6.71% on homophilic graphs and 20.29% on heterophilic graphs, and even outperform methods trained with OOD exposure. Our code is available at: https://github.com/draym28/DeGEM.

Authors:Mingyan Wu, Zhenghao Liu, Yukun Yan, Xinze Li, Shi Yu, Zheni Zeng, Yu Gu, Ge Yu
Title: RankCoT: Refining Knowledge for Retrieval-Augmented Generation through Ranking Chain-of-Thoughts
Abstract:
Retrieval-Augmented Generation (RAG) enhances the performance of Large Language Models (LLMs) by incorporating external knowledge. However, LLMs still encounter challenges in effectively utilizing the knowledge from retrieved documents, often being misled by irrelevant or noisy information. To address this issue, we introduce RankCoT, a knowledge refinement method that incorporates reranking signals in generating CoT-based summarization for knowledge refinement based on given query and all retrieval documents. During training, RankCoT prompts the LLM to generate Chain-of-Thought (CoT) candidates based on the query and individual documents. It then fine-tunes the LLM to directly reproduce the best CoT from these candidate outputs based on all retrieved documents, which requires LLM to filter out irrelevant documents during generating CoT-style summarization. Additionally, RankCoT incorporates a self-reflection mechanism that further refines the CoT outputs, resulting in higher-quality training data. Our experiments demonstrate the effectiveness of RankCoT, showing its superior performance over other knowledge refinement models. Further analysis reveals that RankCoT can provide shorter but effective refinement results, enabling the generator to produce more accurate answers. All code and data are available at https://github.com/NEUIR/RankCoT.

Authors:Rong Liu, Junye Liang, Jiaqi Yang, Jiang He, Peng Zhu
Title: Dual Classification Head Self-training Network for Cross-scene Hyperspectral Image Classification
Abstract:
Due to the difficulty of obtaining labeled data for hyperspectral images (HSIs), cross-scene classification has emerged as a widely adopted approach in the remote sensing community. It involves training a model using labeled data from a source domain (SD) and unlabeled data from a target domain (TD), followed by inferencing on the TD. However, variations in the reflectance spectrum of the same object between the SD and the TD, as well as differences in the feature distribution of the same land cover class, pose significant challenges to the performance of cross-scene classification. To address this issue, we propose a dual classification head self-training network (DHSNet). This method aligns class-wise features across domains, ensuring that the trained classifier can accurately classify TD data of different classes. We introduce a dual classification head self-training strategy for the first time in the cross-scene HSI classification field. The proposed approach mitigates domain gap while preventing the accumulation of incorrect pseudo-labels in the model. Additionally, we incorporate a novel central feature attention mechanism to enhance the model's capacity to learn scene-invariant features across domains. Experimental results on three cross-scene HSI datasets demonstrate that the proposed DHSNET significantly outperforms other state-of-the-art approaches. The code for DHSNet will be available at https://github.com/liurongwhm.

Authors:Runzhong Wang, Rui-Xi Wang, Mrunali Manjrekar, Connor W. Coley
Title: Neural Graph Matching Improves Retrieval Augmented Generation in Molecular Machine Learning
Abstract:
Molecular machine learning has gained popularity with the advancements of geometric deep learning. In parallel, retrieval-augmented generation has become a principled approach commonly used with language models. However, the optimal integration of retrieval augmentation into molecular machine learning remains unclear. Graph neural networks stand to benefit from clever matching to understand the structural alignment of retrieved molecules to a query molecule. Neural graph matching offers a compelling solution by explicitly modeling node and edge affinities between two structural graphs while employing a noise-robust, end-to-end neural network to learn affinity metrics. We apply this approach to mass spectrum simulation and introduce MARASON, a novel model that incorporates neural graph matching to enhance a fragmentation-based neural network. Experimental results highlight the effectiveness of our design, with MARASON achieving 28% top-1 accuracy, a substantial improvement over the non-retrieval state-of-the-art accuracy of 19%. Moreover, MARASON outperforms both naive retrieval-augmented generation methods and traditional graph matching approaches. Code is publicly available at https://github.com/coleygroup/ms-pred

Authors:Jianghao Chen, Zhenlin Wei, Zhenjiang Ren, Ziyong Li, Jiajun Zhang
Title: LR^2Bench: Evaluating Long-chain Reflective Reasoning Capabilities of Large Language Models via Constraint Satisfaction Problems
Abstract:
Recent progress in Large Reasoning Models (LRMs) has significantly enhanced the reasoning abilities of Large Language Models (LLMs), empowering them to tackle increasingly complex tasks through reflection capabilities, such as making assumptions, backtracking, and self-refinement. However, effectively evaluating such reflection capabilities remains challenging due to the lack of appropriate benchmarks. To bridge this gap, we introduce LR$^2$Bench, a novel benchmark designed to evaluate the Long-chain Reflective Reasoning capabilities of LLMs. LR$^2$Bench comprises 850 samples across six Constraint Satisfaction Problems (CSPs) where reflective reasoning is crucial for deriving solutions that meet all given constraints. Each type of task focuses on distinct constraint patterns, such as knowledge-based, logical, and spatial constraints, providing a comprehensive evaluation of diverse problem-solving scenarios. Our extensive evaluation on both conventional LLMs and LRMs reveals that even the most advanced LRMs, such as DeepSeek-R1 and OpenAI o1-preview, struggle with tasks in LR$^2$Bench, achieving an average Exact Match score of only 20.0% and 23.6%, respectively. These findings underscore the significant room for improvement in the reflective reasoning capabilities of current LLMs.

Authors:Hyeonjeong Ha, Qiusi Zhan, Jeonghwan Kim, Dimitrios Bralios, Saikrishna Sanniboina, Nanyun Peng, Kai-Wei Chang, Daniel Kang, Heng Ji
Title: MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks
Abstract:
Multimodal large language models (MLLMs) equipped with Retrieval Augmented Generation (RAG) leverage both their rich parametric knowledge and the dynamic, external knowledge to excel in tasks such as Question Answering. While RAG enhances MLLMs by grounding responses in query-relevant external knowledge, this reliance poses a critical yet underexplored safety risk: knowledge poisoning attacks, where misinformation or irrelevant knowledge is intentionally injected into external knowledge bases to manipulate model outputs to be incorrect and even harmful. To expose such vulnerabilities in multimodal RAG, we propose MM-PoisonRAG, a novel knowledge poisoning attack framework with two attack strategies: Localized Poisoning Attack (LPA), which injects query-specific misinformation in both text and images for targeted manipulation, and Globalized Poisoning Attack (GPA) to provide false guidance during MLLM generation to elicit nonsensical responses across all queries. We evaluate our attacks across multiple tasks, models, and access settings, demonstrating that LPA successfully manipulates the MLLM to generate attacker-controlled answers, with a success rate of up to 56% on MultiModalQA. Moreover, GPA completely disrupts model generation to 0% accuracy with just a single irrelevant knowledge injection. Our results highlight the urgent need for robust defenses against knowledge poisoning to safeguard multimodal RAG frameworks.

Authors:Hyeonjeong Ha, Qiusi Zhan, Jeonghwan Kim, Dimitrios Bralios, Saikrishna Sanniboina, Nanyun Peng, Kai-Wei Chang, Daniel Kang, Heng Ji
Title: MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks
Abstract:
Multimodal large language models with Retrieval Augmented Generation (RAG) have significantly advanced tasks such as multimodal question answering by grounding responses in external text and images. This grounding improves factuality, reduces hallucination, and extends reasoning beyond parametric knowledge. However, this reliance on external knowledge poses a critical yet underexplored safety risk: knowledge poisoning attacks, where adversaries deliberately inject adversarial multimodal content into external knowledge bases to steer model toward generating incorrect or even harmful responses. To expose such vulnerabilities, we propose MM-PoisonRAG, the first framework to systematically design knowledge poisoning in multimodal RAG. We introduce two complementary attack strategies: Localized Poisoning Attack (LPA), which implants targeted multimodal misinformation to manipulate specific queries, and Globalized Poisoning Attack (GPA), which inserts a single adversarial knowledge to broadly disrupt reasoning and induce nonsensical responses across all queries. Comprehensive experiments across tasks, models, and access settings show that LPA achieves targeted manipulation with attack success rates of up to 56%, while GPA completely disrupts model generation to 0% accuracy with just a single adversarial knowledge injection. Our results reveal the fragility of multimodal RAG and highlight the urgent need for defenses against knowledge poisoning.

Authors:Xiongxiao Xu, Haoran Wang, Yueqing Liang, Philip S. Yu, Yue Zhao, Kai Shu
Title: Can Multimodal LLMs Perform Time Series Anomaly Detection?
Abstract:
Large language models (LLMs) have been increasingly used in time series analysis. However, the potential of multimodal LLMs (MLLMs), particularly vision-language models, for time series remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. Motivated by this, we raise a critical and practical research question: Can multimodal LLMs perform time series anomaly detection? To answer this, we propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD). Our approach transforms time series numerical data into the image format and feed these images into various MLLMs, including proprietary models (GPT-4o and Gemini-1.5) and open-source models (LLaVA-NeXT and Qwen2-VL), each with one larger and one smaller variant. In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs. Starting with the univariate case (point- and range-wise anomalies), we extend our evaluation to more practical scenarios, including multivariate and irregular time series scenarios, and variate-wise anomalies. Our study reveals several key insights: 1) MLLMs detect range- and variate-wise anomalies more effectively than point-wise anomalies. 2) MLLMs are highly robust to irregular time series, even with 25% of the data missing. 3) Open-source MLLMs perform comparably to proprietary models in TSAD. While open-source MLLMs excel on univariate time series, proprietary MLLMs demonstrate superior effectiveness on multivariate time series. To the best of our knowledge, this is the first work to comprehensively investigate MLLMs for TSAD, particularly for multivariate and irregular time series scenarios. We release our dataset and code at https://github.com/mllm-ts/VisualTimeAnomaly to support future research.

Authors:Yisheng He, Xiaodong Gu, Xiaodan Ye, Chao Xu, Zhengyi Zhao, Yuan Dong, Weihao Yuan, Zilong Dong, Liefeng Bo
Title: LAM: Large Avatar Model for One-shot Animatable Gaussian Head
Abstract:
We present LAM, an innovative Large Avatar Model for animatable Gaussian head reconstruction from a single image. Unlike previous methods that require extensive training on captured video sequences or rely on auxiliary neural networks for animation and rendering during inference, our approach generates Gaussian heads that are immediately animatable and renderable. Specifically, LAM creates an animatable Gaussian head in a single forward pass, enabling reenactment and rendering without additional networks or post-processing steps. This capability allows for seamless integration into existing rendering pipelines, ensuring real-time animation and rendering across a wide range of platforms, including mobile phones. The centerpiece of our framework is the canonical Gaussian attributes generator, which utilizes FLAME canonical points as queries. These points interact with multi-scale image features through a Transformer to accurately predict Gaussian attributes in the canonical space. The reconstructed canonical Gaussian avatar can then be animated utilizing standard linear blend skinning (LBS) with corrective blendshapes as the FLAME model did and rendered in real-time on various platforms. Our experimental results demonstrate that LAM outperforms state-of-the-art methods on existing benchmarks. Our code and video are available at https://aigc3d.github.io/projects/LAM/

Authors:Hyeonjeong Ha, Xiaomeng Jin, Jeonghwan Kim, Jiateng Liu, Zhenhailong Wang, Khanh Duy Nguyen, Ansel Blume, Nanyun Peng, Kai-Wei Chang, Heng Ji
Title: SYNTHIA: Novel Concept Design with Affordance Composition
Abstract:
Text-to-image (T2I) models enable rapid concept design, making them widely used in AI-driven design. While recent studies focus on generating semantic and stylistic variations of given design concepts, functional coherence--the integration of multiple affordances into a single coherent concept--remains largely overlooked. In this paper, we introduce SYNTHIA, a framework for generating novel, functionally coherent designs based on desired affordances. Our approach leverages a hierarchical concept ontology that decomposes concepts into parts and affordances, serving as a crucial building block for functionally coherent design. We also develop a curriculum learning scheme based on our ontology that contrastively fine-tunes T2I models to progressively learn affordance composition while maintaining visual novelty. To elaborate, we (i) gradually increase affordance distance, guiding models from basic concept-affordance association to complex affordance compositions that integrate parts of distinct affordances into a single, coherent form, and (ii) enforce visual novelty by employing contrastive objectives to push learned representations away from existing concepts. Experimental results show that SYNTHIA outperforms state-of-the-art T2I models, demonstrating absolute gains of 25.1% and 14.7% for novelty and functional coherence in human evaluation, respectively.

Authors:Luigi Seminara, Giovanni Maria Farinella, Antonino Furnari
Title: Task Graph Maximum Likelihood Estimation for Procedural Activity Understanding in Egocentric Videos
Abstract:
We introduce a gradient-based approach for learning task graphs from procedural activities, improving over hand-crafted methods. Our method directly optimizes edge weights via maximum likelihood, enabling integration into neural architectures. We validate our approach on CaptainCook4D, EgoPER, and EgoProceL, achieving +14.5%, +10.2%, and +13.6% F1-score improvements. Our feature-based approach for predicting task graphs from textual/video embeddings demonstrates emerging video understanding abilities. We also achieved top performance on the procedure understanding benchmark on Ego-Exo4D and significantly improved online mistake detection (+19.8% on Assembly101-O, +6.4% on EPIC-Tent-O). Code: https://github.com/fpv-iplab/Differentiable-Task-Graph-Learning.

Authors:Shinwoo Park, Hyundong Jin, Jeong-won Cha, Yo-Sub Han
Title: Detection of LLM-Paraphrased Code and Identification of the Responsible LLM Using Coding Style Features
Abstract:
Recent progress in large language models (LLMs) for code generation has raised serious concerns about intellectual property protection. Malicious users can exploit LLMs to produce paraphrased versions of proprietary code that closely resemble the original. While the potential for LLM-assisted code paraphrasing continues to grow, research on detecting it remains limited, underscoring an urgent need for detection system. We respond to this need by proposing two tasks. The first task is to detect whether code generated by an LLM is a paraphrased version of original human-written code. The second task is to identify which LLM is used to paraphrase the original code. For these tasks, we construct a dataset LPcode consisting of pairs of human-written code and LLM-paraphrased code using various LLMs. We statistically confirm significant differences in the coding styles of human-written and LLM-paraphrased code, particularly in terms of naming consistency, code structure, and readability. Based on these findings, we develop LPcodedec, a detection method that identifies paraphrase relationships between human-written and LLM-generated code, and discover which LLM is used for the paraphrasing. LPcodedec outperforms the best baselines in two tasks, improving F1 scores by 2.64% and 15.17% while achieving speedups of 1,343x and 213x, respectively. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_paraphrased_code_via_coding_style_features.

Authors:Sushmita Sarker, Prithul Sarker, George Bebis, Alireza Tavakkoli
Title: Can Score-Based Generative Modeling Effectively Handle Medical Image Classification?
Abstract:
The remarkable success of deep learning in recent years has prompted applications in medical image classification and diagnosis tasks. While classification models have demonstrated robustness in classifying simpler datasets like MNIST or natural images such as ImageNet, this resilience is not consistently observed in complex medical image datasets where data is more scarce and lacks diversity. Moreover, previous findings on natural image datasets have indicated a potential trade-off between data likelihood and classification accuracy. In this study, we explore the use of score-based generative models as classifiers for medical images, specifically mammographic images. Our findings suggest that our proposed generative classifier model not only achieves superior classification results on CBIS-DDSM, INbreast and Vin-Dr Mammo datasets, but also introduces a novel approach to image classification in a broader context. Our code is publicly available at https://github.com/sushmitasarker/sgc_for_medical_image_classification

Authors:Ruxiao Chen, Chenguang Wang, Yuran Sun, Xilei Zhao, Susu Xu
Title: From Perceptions to Decisions: Wildfire Evacuation Decision Prediction with Behavioral Theory-informed LLMs
Abstract:
Evacuation decision prediction is critical for efficient and effective wildfire response by helping emergency management anticipate traffic congestion and bottlenecks, allocate resources, and minimize negative impacts. Traditional statistical methods for evacuation decision prediction fail to capture the complex and diverse behavioral logic of different individuals. In this work, for the first time, we introduce FLARE, short for facilitating LLM for advanced reasoning on wildfire evacuation decision prediction, a Large Language Model (LLM)-based framework that integrates behavioral theories and models to streamline the Chain-of-Thought (CoT) reasoning and subsequently integrate with memory-based Reinforcement Learning (RL) module to provide accurate evacuation decision prediction and understanding. Our proposed method addresses the limitations of using existing LLMs for evacuation behavioral predictions, such as limited survey data, mismatching with behavioral theory, conflicting individual preferences, implicit and complex mental states, and intractable mental state-behavior mapping. Experiments on three post-wildfire survey datasets show an average of 20.47% performance improvement over traditional theory-informed behavioral models, with strong cross-event generalizability. Our complete code is publicly available at https://github.com/SusuXu-s-Lab/FLARE

Authors:Lei Cheng, Lihao Guo, Tianya Zhang, Tam Bang, Austin Harris, Mustafa Hajij, Mina Sartipi, Siyang Cao
Title: CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement
Abstract:
Accurate multi-sensor calibration is essential for deploying robust perception systems in applications such as autonomous driving and intelligent transportation. Existing LiDAR-camera calibration methods often rely on manually placed targets, preliminary parameter estimates, or intensive data preprocessing, limiting their scalability and adaptability in real-world settings. In this work, we propose a fully automatic, targetless, and online calibration framework, CalibRefine, which directly processes raw LiDAR point clouds and camera images. Our approach is divided into four stages: (1) a Common Feature Discriminator that leverages relative spatial positions, visual appearance embeddings, and semantic class cues to identify and generate reliable LiDAR-camera correspondences, (2) a coarse homography-based calibration that uses the matched feature correspondences to estimate an initial transformation between the LiDAR and camera frames, serving as the foundation for further refinement, (3) an iterative refinement to incrementally improve alignment as additional data frames become available, and (4) an attention-based refinement that addresses non-planar distortions by leveraging a Vision Transformer and cross-attention mechanisms. Extensive experiments on two urban traffic datasets demonstrate that CalibRefine achieves high-precision calibration with minimal human input, outperforming state-of-the-art targetless methods and matching or surpassing manually tuned baselines. Our results show that robust object-level feature matching, combined with iterative refinement and self-supervised attention-based refinement, enables reliable sensor alignment in complex real-world conditions without ground-truth matrices or elaborate preprocessing. Code is available at https://github.com/radar-lab/Lidar_Camera_Automatic_Calibration

Authors:Taos Transue, Bao Wang
Title: Learning Decentralized Swarms Using Rotation Equivariant Graph Neural Networks
Abstract:
The orchestration of agents to optimize a collective objective without centralized control is challenging yet crucial for applications such as controlling autonomous fleets, and surveillance and reconnaissance using sensor networks. Decentralized controller design has been inspired by self-organization found in nature, with a prominent source of inspiration being flocking; however, decentralized controllers struggle to maintain flock cohesion. The graph neural network (GNN) architecture has emerged as an indispensable machine learning tool for developing decentralized controllers capable of maintaining flock cohesion, but they fail to exploit the symmetries present in flocking dynamics, hindering their generalizability. We enforce rotation equivariance and translation invariance symmetries in decentralized flocking GNN controllers and achieve comparable flocking control with 70% less training data and 75% fewer trainable weights than existing GNN controllers without these symmetries enforced. We also show that our symmetry-aware controller generalizes better than existing GNN controllers. Code and animations are available at http://github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers.

Authors:Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, Baharan Mirzasoleiman
Title: Synthetic Text Generation for Training Large Language Models via Gradient Matching
Abstract:
Synthetic data has the potential to improve the performance, training efficiency, and privacy of real training examples. Nevertheless, existing approaches for synthetic text generation are mostly heuristics and cannot generate human-readable text without compromising the privacy of real data, or provide performance guarantees for training Large Language Models (LLMs). In this work, we propose the first theoretically rigorous approach for generating synthetic human-readable text that provides convergence, performance, and privacy guarantees for fine-tuning LLMs on a target task. To do so, we leverage Alternating Direction Method of Multipliers (ADMM) that iteratively optimizes the embeddings of synthetic examples to match the noisy gradient of the target training or validation data, and maps them to a sequence of text tokens with low perplexity. In doing so, the generated synthetic text guarantees convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data and preserves their privacy. Experiments on various classification tasks confirm the effectiveness of our proposed approach. Our code is available at https://github.com/BigML-CS-UCLA/GRADMM.

Authors:Zhongwei Wan, Hui Shen, Xin Wang, Che Liu, Zheda Mai, Mi Zhang
Title: MEDA: Dynamic KV Cache Allocation for Efficient Multimodal Long-Context Inference
Abstract:
Long-context Multimodal Large Language Models (MLLMs) that incorporate long text-image and text-video modalities, demand substantial resources as their multimodal Key-Value (KV) caches grow with increasing input lengths, challenging inference efficiency. Existing methods for KV cache compression, in both text-only and multimodal LLMs, have neglected attention density variations across layers, thus often adopting uniform or progressive reduction strategies for layer-wise cache allocation. In this work, we propose MEDA, a dynamic layer-wise KV cache allocation method for efficient multimodal long-context inference. As its core, MEDA utilizes cross-modal attention entropy to determine the KV cache size at each MLLMs layer. Given the dynamically allocated KV cache size at each layer, MEDA also employs a KV pair selection scheme to identify which KV pairs to select and a KV pair merging strategy that merges the selected and non-selected ones to preserve information from the entire context. MEDA achieves up to 72% KV cache memory reduction and 2.82 times faster decoding speed, while maintaining or enhancing performance on various multimodal tasks in long-context settings, including multi-images and long-video scenarios. Our code is released at https://github.com/AIoT-MLSys-Lab/MEDA.

Authors:Peijie Zhao, Zunayed Arefin, Felipe Meneguzzi, Ramon Fraga Pereira
Title: Intention Recognition in Real-Time Interactive Navigation Maps
Abstract:
In this demonstration, we develop IntentRec4Maps, a system to recognise users' intentions in interactive maps for real-world navigation. IntentRec4Maps uses the Google Maps Platform as the real-world interactive map, and a very effective approach for recognising users' intentions in real-time. We showcase the recognition process of IntentRec4Maps using two different Path-Planners and a Large Language Model (LLM). GitHub: https://github.com/PeijieZ/IntentRec4Maps

Authors:Liping Lu, Zhican He, Duanfeng Chu, Rukang Wang, Saiqian Peng, Pan Zhou
Title: ConvoyLLM: Dynamic Multi-Lane Convoy Control Using LLMs
Abstract:
This paper proposes a novel method for multi-lane convoy formation control that uses large language models (LLMs) to tackle coordination challenges in dynamic highway environments. Each connected and autonomous vehicle in the convoy uses a knowledge-driven approach to make real-time adaptive decisions based on various scenarios. Our method enables vehicles to dynamically perform tasks, including obstacle avoidance, convoy joining/leaving, and escort formation switching, all while maintaining the overall convoy structure. We design a Interlaced formation control strategy based on locally dynamic distributed graphs, ensuring the convoy remains stable and flexible. We conduct extensive experiments in the SUMO simulation platform across multiple traffic scenarios, and the results demonstrate that the proposed method is effective, robust, and adaptable to dynamic environments. The code is available at: https://github.com/chuduanfeng/ConvoyLLM.

Authors:Simin Chen, Yiming Chen, Zexin Li, Yifan Jiang, Zhongwei Wan, Yixin He, Dezhi Ran, Tianle Gu, Haizhou Li, Tao Xie, Baishakhi Ray
Title: Recent Advances in Large Langauge Model Benchmarks against Data Contamination: From Static to Dynamic Evaluation
Abstract:
Data contamination has received increasing attention in the era of large language models (LLMs) due to their reliance on vast Internet-derived training corpora. To mitigate the risk of potential data contamination, LLM benchmarking has undergone a transformation from static to dynamic benchmarking. In this work, we conduct an in-depth analysis of existing static to dynamic benchmarking methods aimed at reducing data contamination risks. We first examine methods that enhance static benchmarks and identify their inherent limitations. We then highlight a critical gap-the lack of standardized criteria for evaluating dynamic benchmarks. Based on this observation, we propose a series of optimal design principles for dynamic benchmarking and analyze the limitations of existing dynamic benchmarks. This survey provides a concise yet comprehensive overview of recent advancements in data contamination research, offering valuable insights and a clear guide for future research efforts. We maintain a GitHub repository to continuously collect both static and dynamic benchmarking methods for LLMs. The repository can be found at this link.

Authors:Simin Chen, Yiming Chen, Zexin Li, Yifan Jiang, Zhongwei Wan, Yixin He, Dezhi Ran, Tianle Gu, Haizhou Li, Tao Xie, Baishakhi Ray
Title: Recent Advances in Large Langauge Model Benchmarks against Data Contamination: From Static to Dynamic Evaluation
Abstract:
Data contamination has received increasing attention in the era of large language models (LLMs) due to their reliance on vast Internet-derived training corpora. To mitigate the risk of potential data contamination, LLM benchmarking has undergone a transformation from static to dynamic benchmarking. In this work, we conduct an in-depth analysis of existing static to dynamic benchmarking methods aimed at reducing data contamination risks. We first examine methods that enhance static benchmarks and identify their inherent limitations. We then highlight a critical gap-the lack of standardized criteria for evaluating dynamic benchmarks. Based on this observation, we propose a series of optimal design principles for dynamic benchmarking and analyze the limitations of existing dynamic benchmarks. This survey provides a concise yet comprehensive overview of recent advancements in data contamination research, offering valuable insights and a clear guide for future research efforts. We maintain a GitHub repository to continuously collect both static and dynamic benchmarking methods for LLMs. The repository can be found at this link.

Authors:François Charton
Title: Int2Int: a framework for mathematics with transformers
Abstract:
This paper documents Int2Int, an open source code base for using transformers on problems of mathematical research, with a focus on number theory and other problems involving integers. Int2Int is a complete PyTorch implementation of a transformer architecture, together with training and evaluation loops, and classes and functions to represent, generate and decode common mathematical objects. Ancillary code for data preparation, and Jupyter Notebooks for visualizing experimental results are also provided. This document presents the main features of Int2Int, serves as its user manual, and provides guidelines on how to extend it. Int2Int is released under the MIT licence, at https://github.com/f-charton/Int2Int.

Authors:Yijia Xiao, Wanjia Zhao, Junkai Zhang, Yiqiao Jin, Han Zhang, Zhicheng Ren, Renliang Sun, Haixin Wang, Guancheng Wan, Pan Lu, Xiao Luo, Yu Zhang, James Zou, Yizhou Sun, Wei Wang
Title: Protein Large Language Models: A Comprehensive Survey
Abstract:
Protein-specific large language models (Protein LLMs) are revolutionizing protein science by enabling more efficient protein structure prediction, function annotation, and design. While existing surveys focus on specific aspects or applications, this work provides the first comprehensive overview of Protein LLMs, covering their architectures, training datasets, evaluation metrics, and diverse applications. Through a systematic analysis of over 100 articles, we propose a structured taxonomy of state-of-the-art Protein LLMs, analyze how they leverage large-scale protein sequence data for improved accuracy, and explore their potential in advancing protein engineering and biomedical research. Additionally, we discuss key challenges and future directions, positioning Protein LLMs as essential tools for scientific discovery in protein science. Resources are maintained at https://github.com/Yijia-Xiao/Protein-LLM-Survey.

Authors:Yushi Zhang, Shuai Su, Yong Wang, Yanzhong Yao
Title: Hard constraint learning approaches with trainable influence functions for evolutionary equations
Abstract:
This paper develops a novel deep learning approach for solving evolutionary equations, which integrates sequential learning strategies with an enhanced hard constraint strategy featuring trainable parameters, addressing the low computational accuracy of standard Physics-Informed Neural Networks (PINNs) in large temporal domains.Sequential learning strategies divide a large temporal domain into multiple subintervals and solve them one by one in a chronological order, which naturally respects the principle of causality and improves the stability of the PINN solution. The improved hard constraint strategy strictly ensures the continuity and smoothness of the PINN solution at time interval nodes, and at the same time passes the information from the previous interval to the next interval, which avoids the incorrect/trivial solution at the position far from the initial time. Furthermore, by investigating the requirements of different types of equations on hard constraints, we design a novel influence function with trainable parameters for hard constraints, which provides theoretical and technical support for the effective implementations of hard constraint strategies, and significantly improves the universality and computational accuracy of our method. In addition, an adaptive time-domain partitioning algorithm is proposed, which plays an important role in the application of the proposed method as well as in the improvement of computational efficiency and accuracy. Numerical experiments verify the performance of the method. The data and code accompanying this paper are available at https://github.com/zhizhi4452/HCS.

Authors:Ruoyu Guo, Haochen Qiu
Title: Pursuing Top Growth with Novel Loss Function
Abstract:
Making consistently profitable financial decisions in a continuously evolving and volatile stock market has always been a difficult task. Professionals from different disciplines have developed foundational theories to anticipate price movement and evaluate securities such as the famed Capital Asset Pricing Model (CAPM). In recent years, the role of artificial intelligence (AI) in asset pricing has been growing. Although the black-box nature of deep learning models lacks interpretability, they have continued to solidify their position in the financial industry. We aim to further enhance AI's potential and utility by introducing a return-weighted loss function that will drive top growth while providing the ML models a limited amount of information. Using only publicly accessible stock data (open/close/high/low, trading volume, sector information) and several technical indicators constructed from them, we propose an efficient daily trading system that detects top growth opportunities. Our best models achieve 61.73% annual return on daily rebalancing with an annualized Sharpe Ratio of 1.18 over 1340 testing days from 2019 to 2024, and 37.61% annual return with an annualized Sharpe Ratio of 0.97 over 1360 testing days from 2005 to 2010. The main drivers for success, especially independent of any domain knowledge, are the novel return-weighted loss function, the integration of categorical and continuous data, and the ML model architecture. We also demonstrate the superiority of our novel loss function over traditional loss functions via several performance metrics and statistical evidence.

Authors:Xu Wang, Jiaju Kang, Puyu Han, Yubao Zhao, Qian Liu, Liwenfei He, Lingqiong Zhang, Lingyun Dai, Yongcheng Wang, Jie Tao
Title: ECG-Expert-QA: A Benchmark for Evaluating Medical Large Language Models in Heart Disease Diagnosis
Abstract:
We present ECG-Expert-QA, a comprehensive multimodal dataset for evaluating diagnostic capabilities in electrocardiogram (ECG) interpretation. It combines real-world clinical ECG data with systematically generated synthetic cases, covering 12 essential diagnostic tasks and totaling 47,211 expert-validated QA pairs. These encompass diverse clinical scenarios, from basic rhythm recognition to complex diagnoses involving rare conditions and temporal changes. A key innovation is the support for multi-turn dialogues, enabling the development of conversational medical AI systems that emulate clinician-patient or interprofessional interactions. This allows for more realistic assessment of AI models' clinical reasoning, diagnostic accuracy, and knowledge integration. Constructed through a knowledge-guided framework with strict quality control, ECG-Expert-QA ensures linguistic and clinical consistency, making it a high-quality resource for advancing AI-assisted ECG interpretation. It challenges models with tasks like identifying subtle ischemic changes and interpreting complex arrhythmias in context-rich scenarios. To promote research transparency and collaboration, the dataset, accompanying code, and prompts are publicly released at https://github.com/Zaozzz/ECG-Expert-QA

Authors:Younghoon Na, Seunghun Oh, Seongji Ko, Hyunkyung Lee
Title: PixleepFlow: A Pixel-Based Lifelog Framework for Predicting Sleep Quality and Stress Level
Abstract:
The analysis of lifelogs can yield valuable insights into an individual's daily life, particularly with regard to their health and well-being. The accurate assessment of quality of life is necessitated by the use of diverse sensors and precise synchronization. To rectify this issue, this study proposes the image-based sleep quality and stress level estimation flow (PixleepFlow). PixleepFlow employs a conversion methodology into composite image data to examine sleep patterns and their impact on overall health. Experiments were conducted using lifelog datasets to ascertain the optimal combination of data formats. In addition, we identified which sensor information has the greatest influence on the quality of life through Explainable Artificial Intelligence(XAI). As a result, PixleepFlow produced more significant results than various data formats. This study was part of a written-based competition, and the additional findings from the lifelog dataset are detailed in Section Section IV. More information about PixleepFlow can be found at https://github.com/seongjiko/Pixleep.

Authors:Ziyue Yang, Chengrui Chen, Yong Peng, Qiong Chen, Wanzeng Kong
Title: CSSSTN: A Class-sensitive Subject-to-subject Semantic Style Transfer Network for EEG Classification in RSVP Tasks
Abstract:
The Rapid Serial Visual Presentation (RSVP) paradigm represents a promising application of electroencephalography (EEG) in Brain-Computer Interface (BCI) systems. However, cross-subject variability remains a critical challenge, particularly for BCI-illiterate users who struggle to effectively interact with these systems. To address this issue, we propose the Class-Sensitive Subject-to-Subject Semantic Style Transfer Network (CSSSTN), which incorporates a class-sensitive approach to align feature distributions between golden subjects (BCI experts) and target (BCI-illiterate) users on a class-by-class basis. Building on the SSSTN framework, CSSSTN incorporates three key components: (1) subject-specific classifier training, (2) a unique style loss to transfer class-discriminative features while preserving semantic information through a modified content loss, and (3) an ensemble approach to integrate predictions from both source and target domains. We evaluated CSSSTN using both a publicly available dataset and a self-collected dataset. Experimental results demonstrate that CSSSTN outperforms state-of-the-art methods, achieving mean balanced accuracy improvements of 6.4\% on the Tsinghua dataset and 3.5\% on the HDU dataset, with notable benefits for BCI-illiterate users. Ablation studies confirm the effectiveness of each component, particularly the class-sensitive transfer and the use of lower-layer features, which enhance transfer performance and mitigate negative transfer. Additionally, CSSSTN achieves competitive results with minimal target data, reducing calibration time and effort. These findings highlight the practical potential of CSSSTN for real-world BCI applications, offering a robust and scalable solution to improve the performance of BCI-illiterate users while minimizing reliance on extensive training data. Our code is available at https://github.com/ziyuey/CSSSTN.

Authors:Francesco Stefano Carzaniga, Gary Tom Hoppeler, Michael Hersche, Kaspar Anton Schindler, Abbas Rahimi
Title: The Case for Cleaner Biosignals: High-fidelity Neural Compressor Enables Transfer from Cleaner iEEG to Noisier EEG
Abstract:
All data modalities are not created equal, even when the signal they measure comes from the same source. In the case of the brain, two of the most important data modalities are the scalp electroencephalogram (EEG), and the intracranial electroencephalogram (iEEG). They are used by human experts, supported by deep learning (DL) models, to accomplish a variety of tasks, such as seizure detection and motor imagery classification. Although the differences between EEG and iEEG are well understood by human experts, the performance of DL models across these two modalities remains under-explored. To help characterize the importance of clean data on the performance of DL models, we propose BrainCodec, a high-fidelity EEG and iEEG neural compressor. We find that training BrainCodec on iEEG and then transferring to EEG yields higher reconstruction quality than training on EEG directly. In addition, we also find that training BrainCodec on both EEG and iEEG improves fidelity when reconstructing EEG. Our work indicates that data sources with higher SNR, such as iEEG, provide better performance across the board also in the medical time-series domain. BrainCodec also achieves up to a 64x compression on iEEG and EEG without a notable decrease in quality. BrainCodec markedly surpasses current state-of-the-art compression models both in final compression ratio and in reconstruction fidelity. We also evaluate the fidelity of the compressed signals objectively on a seizure detection and a motor imagery task performed by standard DL models. Here, we find that BrainCodec achieves a reconstruction fidelity high enough to ensure no performance degradation on the downstream tasks. Finally, we collect the subjective assessment of an expert neurologist, that confirms the high reconstruction quality of BrainCodec in a realistic scenario. The code is available at https://github.com/IBM/eeg-ieeg-brain-compressor.

Authors:Tianhong Li, Qinyi Sun, Lijie Fan, Kaiming He
Title: Fractal Generative Models
Abstract:
Modularization is a cornerstone of computer science, abstracting complex functions into atomic building blocks. In this paper, we introduce a new level of modularization by abstracting generative models into atomic generative modules. Analogous to fractals in mathematics, our method constructs a new type of generative model by recursively invoking atomic generative modules, resulting in self-similar fractal architectures that we call fractal generative models. As a running example, we instantiate our fractal framework using autoregressive models as the atomic generative modules and examine it on the challenging task of pixel-by-pixel image generation, demonstrating strong performance in both likelihood estimation and generation quality. We hope this work could open a new paradigm in generative modeling and provide a fertile ground for future research. Code is available at https://github.com/LTH14/fractalgen.

Authors:Vishal Thengane, Jean Lahoud, Hisham Cholakkal, Rao Muhammad Anwer, Lu Yin, Xiatian Zhu, Salman Khan
Title: CLIMB-3D: Continual Learning for Imbalanced 3D Instance Segmentation
Abstract:
While 3D instance segmentation (3DIS) has advanced significantly, existing methods typically assume that all object classes are known in advance and are uniformly distributed. However, this assumption is unrealistic in dynamic, real-world environments where new classes emerge gradually and exhibit natural imbalance. Although some approaches have addressed class emergence, they often overlook class imbalance, resulting in suboptimal performance -- particularly on rare categories. To tackle this challenge, we propose CLIMB-3D, a unified framework for \textbf{CL}ass-incremental \textbf{Imb}alance-aware \textbf{3D}IS. Building upon established exemplar replay (ER) strategies, we show that ER alone is insufficient to achieve robust performance under constrained memory conditions. To mitigate this, we introduce a novel pseudo-label generator (PLG) that extends supervision to previously learned categories by leveraging predictions from a frozen prior model. Despite its promise, PLG tends to bias towards frequent classes. Therefore, we propose a class-balanced re-weighting (CBR) scheme, that estimates object frequencies from pseudo-labels and dynamically adjusts training bias -- without requiring access to past data. We design and evaluate three incremental scenarios for 3DIS on the challenging ScanNet200 dataset, and additionally on semantic segmentation on ScanNetV2. Our approach achieves state-of-the-art results, surpassing prior work by up to 16.76\% mAP for instance segmentation and approximately 30\% mIoU for semantic segmentation, demonstrating strong generalization across both frequent and rare classes.

Authors:Runpeng Yu, Xinyin Ma, Xinchao Wang
Title: Introducing Visual Perception Token into Multimodal Large Language Model
Abstract:
To utilize visual information, Multimodal Large Language Model (MLLM) relies on the perception process of its vision encoder. The completeness and accuracy of visual perception significantly influence the precision of spatial reasoning, fine-grained understanding, and other tasks. However, MLLM still lacks the autonomous capability to control its own visual perception processes, for example, selectively reviewing specific regions of an image or focusing on information related to specific object categories. In this work, we propose the concept of Visual Perception Token, aiming to empower MLLM with a mechanism to control its visual perception processes. We design two types of Visual Perception Tokens, termed the Region Selection Token and the Vision Re-Encoding Token. MLLMs autonomously generate these tokens, just as they generate text, and use them to trigger additional visual perception actions. The Region Selection Token explicitly identifies specific regions in an image that require further perception, while the Vision Re-Encoding Token uses its hidden states as control signals to guide additional visual perception processes. Extensive experiments demonstrate the advantages of these tokens in handling spatial reasoning, improving fine-grained understanding, and other tasks. On average, the introduction of Visual Perception Tokens improves the performance of a 2B model by 23.6\%, increasing its score from 0.572 to 0.708, and even outperforms a 7B parameter model by 13.4\% (from 0.624). Please check out our repo https://github.com/yu-rp/VisualPerceptionToken

Authors:Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, Filip Ilievski
Title: MLLMs Know Where to Look: Training-free Perception of Small Visual Details with Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) have experienced rapid progress in visual recognition tasks in recent years. Given their potential integration into many critical applications, it is important to understand the limitations of their visual perception. In this work, we study whether MLLMs can perceive small visual details as effectively as large ones when answering questions about images. We observe that their performance is very sensitive to the size of the visual subject of the question, and further show that this effect is in fact causal by conducting an intervention study. Next, we study the attention patterns of MLLMs when answering visual questions, and intriguingly find that they consistently know where to look, even when they provide the wrong answer. Based on these findings, we then propose training-free visual intervention methods that leverage the internal knowledge of any MLLM itself, in the form of attention and gradient maps, to enhance its perception of small visual details. We evaluate our proposed methods on two widely-used MLLMs and seven visual question answering benchmarks and show that they can significantly improve MLLMs' accuracy without requiring any training. Our results elucidate the risk of applying MLLMs to visual recognition tasks concerning small details and indicate that visual intervention using the model's internal state is a promising direction to mitigate this risk.

Authors:Penghui Yang, Cunxiao Du, Fengzhuo Zhang, Haonan Wang, Tianyu Pang, Chao Du, Bo An
Title: LongSpec: Long-Context Lossless Speculative Decoding with Efficient Drafting and Verification
Abstract:
As Large Language Models (LLMs) can now process extremely long contexts, efficient inference over these extended inputs has become increasingly important, especially for emerging applications like LLM agents that highly depend on this capability. Speculative decoding (SD) offers a promising lossless acceleration technique compared to lossy alternatives such as quantization and model cascades. However, most state-of-the-art SD methods are trained on short texts (typically fewer than 4k tokens), making them unsuitable for long-context scenarios. Specifically, adapting these methods to long contexts presents three key challenges: (1) the excessive memory demands posed by draft models due to large Key-Value (KV) cache; (2) performance degradation resulting from the mismatch between short-context training and long-context inference; and (3) inefficiencies in tree attention mechanisms when managing long token sequences. This work introduces LongSpec, a framework that addresses these challenges through three core innovations: a memory-efficient draft model with a constant-sized KV cache; novel position indices that mitigate the training-inference mismatch; and an attention aggregation strategy that combines fast prefix computation with standard tree attention to enable efficient decoding. Experimental results confirm the effectiveness of LongSpec, achieving up to a 3.26x speedup over strong Flash Attention baselines across five long-context understanding datasets, as well as a 2.25x reduction in wall-clock time on the AIME24 long reasoning task with the QwQ model, demonstrating significant latency improvements for long-context applications. The code is available at https://github.com/sail-sg/LongSpec.

Authors:Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei Li, Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Xiao Liang, Zhijiang Guo, Le Song, Cheng-Lin Liu
Title: From System 1 to System 2: A Survey of Reasoning Large Language Models
Abstract:
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time \href{https://github.com/zzli2022/Awesome-Slow-Reason-System}{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.

Authors:Liming Liu, Zhenghao Xu, Zixuan Zhang, Hao Kang, Zichong Li, Chen Liang, Weizhu Chen, Tuo Zhao
Title: COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs
Abstract:
Large Language Models (LLMs) have demonstrated remarkable success across various domains, yet their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit. While adaptive optimizers such as AdamW are widely used, they suffer from critical limitations, including an inability to capture interdependencies between coordinates and high memory consumption. Subsequent research, exemplified by SOAP, attempts to better capture coordinate interdependence but incurs greater memory overhead, limiting scalability for massive LLMs. An alternative approach aims to reduce memory consumption through low-dimensional projection, but this leads to substantial approximation errors, resulting in less effective optimization (e.g., in terms of per-token efficiency). In this paper, we propose COSMOS, a novel hybrid optimizer that leverages the varying importance of eigensubspaces in the gradient matrix to achieve memory efficiency without compromising optimization performance. The design of COSMOS is motivated by our empirical insights and practical considerations. Specifically, COSMOS applies SOAP to the leading eigensubspace, which captures the primary optimization dynamics, and MUON to the remaining eigensubspace, which is less critical but computationally expensive to handle with SOAP. This hybrid strategy significantly reduces memory consumption while maintaining robust optimization performance, making it particularly suitable for massive LLMs. Numerical experiments on various datasets and transformer architectures are provided to demonstrate the effectiveness of COSMOS. Our code is available at https://github.com/lliu606/COSMOS.

Authors:André V. Duarte, Xuandong Zhao, Arlindo L. Oliveira, Lei Li
Title: DIS-CO: Discovering Copyrighted Content in VLMs Training Data
Abstract:
How can we verify whether copyrighted content was used to train a large vision-language model (VLM) without direct access to its training data? Motivated by the hypothesis that a VLM is able to recognize images from its training corpus, we propose DIS-CO, a novel approach to infer the inclusion of copyrighted content during the model's development. By repeatedly querying a VLM with specific frames from targeted copyrighted material, DIS-CO extracts the content's identity through free-form text completions. To assess its effectiveness, we introduce MovieTection, a benchmark comprising 14,000 frames paired with detailed captions, drawn from films released both before and after a model's training cutoff. Our results show that DIS-CO significantly improves detection performance, nearly doubling the average AUC of the best prior method on models with logits available. Our findings also highlight a broader concern: all tested models appear to have been exposed to some extent to copyrighted content. Our code and data are available at https://github.com/avduarte333/DIS-CO

Authors:Yihong Liu, Runsheng Chen, Lea Hirlimann, Ahmad Dawar Hakimi, Mingyang Wang, Amir Hossein Kargaran, Sascha Rothe, François Yvon, Hinrich Schütze
Title: On Relation-Specific Neurons in Large Language Models
Abstract:
In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation $r$ on the LLM's ability to handle (1) facts whose relation is $r$ and (2) facts whose relation is a different relation $r' \neq r$. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. $\textbf{(i) Neuron cumulativity.}$ The neurons for $r$ present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in $r$. $\textbf{(ii) Neuron versatility.}$ Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. $\textbf{(iii) Neuron interference.}$ Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.

Authors:Yihong Liu, Runsheng Chen, Lea Hirlimann, Ahmad Dawar Hakimi, Mingyang Wang, Amir Hossein Kargaran, Sascha Rothe, François Yvon, Hinrich Schütze
Title: On Relation-Specific Neurons in Large Language Models
Abstract:
In large language models (LLMs), certain \emph{neurons} can store distinct pieces of knowledge learned during pretraining. While factual knowledge typically appears as a combination of \emph{relations} and \emph{entities}, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons \emph{detect} a relation in the input text and \emph{guide} generation involving such a relation. To investigate this, we study the LLama-2 family on a chosen set of relations, with a \textit{statistics}-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation $r$ on the LLM's ability to handle (1) facts involving relation $r$ and (2) facts involving a different relation $r' \neq r$. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. \textbf{(i) Neuron cumulativity.} Multiple neurons jointly contribute to processing facts involving relation $r$, with no single neuron fully encoding a fact in $r$ on its own. \textbf{(ii) Neuron versatility.} Neurons can be shared across multiple closely related as well as less related relations. In addition, some relation neurons transfer across languages. \textbf{(iii) Neuron interference.} Deactivating neurons specific to one relation can improve LLMs' factual recall performance for facts of other relations. We make our code and data publicly available at https://github.com/cisnlp/relation-specific-neurons.

Authors:Inbar Gat, Sigal Raab, Guy Tevet, Yuval Reshef, Amit H. Bermano, Daniel Cohen-Or
Title: AnyTop: Character Animation Diffusion with Any Topology
Abstract:
Generating motion for arbitrary skeletons is a longstanding challenge in computer graphics, remaining largely unexplored due to the scarcity of diverse datasets and the irregular nature of the data. In this work, we introduce AnyTop, a diffusion model that generates motions for diverse characters with distinct motion dynamics, using only their skeletal structure as input. Our work features a transformer-based denoising network, tailored for arbitrary skeleton learning, integrating topology information into the traditional attention mechanism. Additionally, by incorporating textual joint descriptions into the latent feature representation, AnyTop learns semantic correspondences between joints across diverse skeletons. Our evaluation demonstrates that AnyTop generalizes well, even with as few as three training examples per topology, and can produce motions for unseen skeletons as well. Furthermore, our model's latent space is highly informative, enabling downstream tasks such as joint correspondence, temporal segmentation and motion editing. Our webpage, https://anytop2025.github.io/Anytop-page, includes links to videos and code.

Authors:Zhenghao Liu, Haolan Wang, Xinze Li, Qiushi Xiong, Xiaocui Yang, Yu Gu, Yukun Yan, Qi Shi, Fangfang Li, Ge Yu, Maosong Sun
Title: HIPPO: Enhancing the Table Understanding Capability of Large Language Models through Hybrid-Modal Preference Optimization
Abstract:
Tabular data contains rich structural semantics and plays a crucial role in organizing and manipulating information. To better capture these structural semantics, this paper introduces the HybrId-modal Preference oPtimizatiOn (HIPPO) model, which represents tables using both text and image, and optimizes MLLMs to effectively learn more comprehensive table information from these multiple modalities. Specifically, HIPPO samples model responses from hybrid-modal table representations and designs a modality-consistent sampling strategy to enhance response diversity and mitigate modality bias during DPO training. Experimental results on table question answering and table fact verification tasks demonstrate the effectiveness of HIPPO, achieving a 4% improvement over various table reasoning models. Further analysis reveals that HIPPO not only enhances reasoning abilities based on unimodal table representations but also facilitates the extraction of crucial and distinct semantics from different modal representations. All data and codes are available at https://github.com/NEUIR/HIPPO.

Authors:Hao Gu, Wei Li, Lujun Li, Qiyuan Zhu, Mark Lee, Shengjie Sun, Wei Xue, Yike Guo
Title: Delta Decompression for MoE-based LLMs Compression
Abstract:
Mixture-of-Experts (MoE) architectures in large language models (LLMs) achieve exceptional performance, but face prohibitive storage and memory requirements. To address these challenges, we present $D^2$-MoE, a new delta decompression compressor for reducing the parameters of MoE LLMs. Based on observations of expert diversity, we decompose their weights into a shared base weight and unique delta weights. Specifically, our method first merges each expert's weight into the base weight using the Fisher information matrix to capture shared components. Then, we compress delta weights through Singular Value Decomposition (SVD) by exploiting their low-rank properties. Finally, we introduce a semi-dynamical structured pruning strategy for the base weights, combining static and dynamic redundancy analysis to achieve further parameter reduction while maintaining input adaptivity. In this way, our $D^2$-MoE successfully compact MoE LLMs to high compression ratios without additional training. Extensive experiments highlight the superiority of our approach, with over 13% performance gains than other compressors on Mixtral|Phi-3.5|DeepSeek|Qwen2 MoE LLMs at 40$\sim$60% compression rates. Codes are available in https://github.com/lliai/D2MoE.

Authors:Zhenghao Liu, Xingsheng Zhu, Tianshuo Zhou, Xinyi Zhang, Xiaoyuan Yi, Yukun Yan, Ge Yu, Maosong Sun
Title: Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts
Abstract:
With the rapid advancement of Multi-modal Large Language Models (MLLMs), their capability in understanding both images and text has greatly improved. However, their potential for leveraging multi-modal contextual information in Retrieval-Augmented Generation (RAG) remains largely underexplored. To address this gap, this paper introduces Multi-Modal Retrieval-Augmented Generation (M$^2$RAG), a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models in leveraging knowledge from multi-modal retrieval documents. The benchmark comprises four tasks: image captioning, multi-modal question answering, multi-modal fact verification, and image reranking. All tasks are set in an open-domain setting, requiring RAG models to retrieve query-relevant information from a multi-modal document collection and use it as contextual input for RAG modeling. To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT), an instruction tuning method that optimizes MLLMs within multi-modal contexts. Our experiments demonstrate the effectiveness of MM-RAIT by significantly improving the quality of responses generated by different RAG models, outperforming MiniCPM-V 2.6 and Qwen2-VL with 34% and 33% gains, respectively. All data and code are available at https://github.com/NEUIR/M2RAG.

Authors:Yi-Kai Zhang, De-Chuan Zhan, Han-Jia Ye
Title: Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing
Abstract:
Large Language Models (LLMs) have demonstrated human-like instruction-following abilities, particularly those exceeding 100 billion parameters. The combined capability of some smaller, resource-friendly LLMs can address most of the instructions that larger LLMs excel at. In this work, we explore how to route the best-performing LLM for each instruction to achieve better overall performance. We develop a new paradigm, constructing capability instructions with model capability representation, user instruction, and performance inquiry prompts to assess the performance. To learn from capability instructions, we introduce a new end-to-end framework called Model Selection with Aptitude Test (Model-SAT), which generates positive and negative samples based on what different models perform well or struggle with. Model-SAT uses a model capability encoder that extends its model representation to a lightweight LLM. Our experiments show that Model-SAT understands the performance dimensions of candidate models and provides the probabilities of their capability to handle various instructions. Additionally, during deployment, a new model can quickly infer its aptitude test results across 50 tasks, each with 20 shots. Model-SAT performs state-of-the-art model routing without candidate inference and in real-world new model-released scenarios. The code is available at https://github.com/Now-Join-Us/CIT-LLM-Routing

Authors:Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan Li, Mingan Lin, Guosheng Dong, Jianhua Xu, Haoze Sun, Zenan Zhou, Weipeng Chen
Title: Baichuan-Audio: A Unified Framework for End-to-End Speech Interaction
Abstract:
We introduce Baichuan-Audio, an end-to-end audio large language model that seamlessly integrates audio understanding and generation. It features a text-guided aligned speech generation mechanism, enabling real-time speech interaction with both comprehension and generation capabilities. Baichuan-Audio leverages a pre-trained ASR model, followed by multi-codebook discretization of speech at a frame rate of 12.5 Hz. This multi-codebook setup ensures that speech tokens retain both semantic and acoustic information. To further enhance modeling, an independent audio head is employed to process audio tokens, effectively capturing their unique characteristics. To mitigate the loss of intelligence during pre-training and preserve the original capabilities of the LLM, we propose a two-stage pre-training strategy that maintains language understanding while enhancing audio modeling. Following alignment, the model excels in real-time speech-based conversation and exhibits outstanding question-answering capabilities, demonstrating its versatility and efficiency. The proposed model demonstrates superior performance in real-time spoken dialogue and exhibits strong question-answering abilities. Our code, model and training data are available at https://github.com/baichuan-inc/Baichuan-Audio

Authors:Gabriele Berton, Carlo Masone
Title: MegaLoc: One Retrieval to Place Them All
Abstract:
Retrieving images from the same location as a given query is an important component of multiple computer vision tasks, like Visual Place Recognition, Landmark Retrieval, Visual Localization, 3D reconstruction, and SLAM. However, existing solutions are built to specifically work for one of these tasks, and are known to fail when the requirements slightly change or when they meet out-of-distribution data. In this paper we combine a variety of existing methods, training techniques, and datasets to train a retrieval model, called MegaLoc, that is performant on multiple tasks. We find that MegaLoc (1) achieves state of the art on a large number of Visual Place Recognition datasets, (2) impressive results on common Landmark Retrieval datasets, and (3) sets a new state of the art for Visual Localization on the LaMAR datasets, where we only changed the retrieval method to the existing localization pipeline. The code for MegaLoc is available at https://github.com/gmberton/MegaLoc

Authors:Hogun Kee, Wooseok Oh, Minjae Kang, Hyemin Ahn, Songhwai Oh
Title: Tidiness Score-Guided Monte Carlo Tree Search for Visual Tabletop Rearrangement
Abstract:
In this paper, we present the tidiness score-guided Monte Carlo tree search (TSMCTS), a novel framework designed to address the tabletop tidying up problem using only an RGB-D camera. We address two major problems for tabletop tidying up problem: (1) the lack of public datasets and benchmarks, and (2) the difficulty of specifying the goal configuration of unseen objects. We address the former by presenting the tabletop tidying up (TTU) dataset, a structured dataset collected in simulation. Using this dataset, we train a vision-based discriminator capable of predicting the tidiness score. This discriminator can consistently evaluate the degree of tidiness across unseen configurations, including real-world scenes. Addressing the second problem, we employ Monte Carlo tree search (MCTS) to find tidying trajectories without specifying explicit goals. Instead of providing specific goals, we demonstrate that our MCTS-based planner can find diverse tidied configurations using the tidiness score as a guidance. Consequently, we propose TSMCTS, which integrates a tidiness discriminator with an MCTS-based tidying planner to find optimal tidied arrangements. TSMCTS has successfully demonstrated its capability across various environments, including coffee tables, dining tables, office desks, and bathrooms. The TTU dataset is available at: https://github.com/rllab-snu/TTU-Dataset.

Authors:Boxuan Zhang, Ruqi Zhang
Title: CoT-UQ: Improving Response-wise Uncertainty Quantification in LLMs with Chain-of-Thought
Abstract:
Large language models (LLMs) excel in many tasks but struggle to accurately quantify uncertainty in their generated responses. This limitation makes it challenging to detect misinformation and ensure reliable decision-making. Existing uncertainty quantification (UQ) methods for LLMs are primarily prompt-wise rather than response-wise, often requiring multiple response samples, which incurs high computational costs. Moreover, LLMs have been shown to be overconfident, particularly when using reasoning steps to derive their answers. In this work, we propose CoT-UQ, a response-wise UQ framework that integrates LLMs' inherent reasoning capabilities through Chain-of-Thought (CoT) into the UQ process. CoT-UQ captures critical information during inference by extracting keywords from each reasoning step and assessing their importance to the final answer. This key reasoning information is then aggregated to produce a final uncertainty estimate. We conduct extensive experiments based on Llama Family with model sizes varying from 8B to 13B across logical and mathematical reasoning tasks. Experimental results demonstrate that CoT-UQ significantly outperforms existing UQ methods, achieving an average improvement of 5.9% AUROC compared to current UQ methods. The code is available at: https://github.com/ZBox1005/CoT-UQ.

Authors:Jie Zeng, Qianyu He, Qingyu Ren, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Title: Order Matters: Investigate the Position Bias in Multi-constraint Instruction Following
Abstract:
Real-world instructions with multiple constraints pose a significant challenge to existing large language models (LLMs). An observation is that the LLMs exhibit dramatic performance fluctuation when disturbing the order of the incorporated constraints. Yet, none of the existing works has systematically investigated this position bias problem in the field of multi-constraint instruction following. To bridge this gap, we design a probing task where we quantitatively measure the difficulty distribution of the constraints by a novel Difficulty Distribution Index (CDDI). Through the experimental results, we find that LLMs are more performant when presented with the constraints in a ``hard-to-easy'' order. This preference can be generalized to LLMs with different architecture or different sizes of parameters. Additionally, we conduct an explanation study, providing an intuitive insight into the correlation between the LLM's attention and constraint orders. Our code and dataset are publicly available at https://github.com/meowpass/PBIF.

Authors:Yuming Yang, Yang Nan, Junjie Ye, Shihan Dou, Xiao Wang, Shuo Li, Huijie Lv, Mingqi Wu, Tao Gui, Qi Zhang, Xuanjing Huang
Title: Measuring Data Diversity for Instruction Tuning: A Systematic Analysis and A Reliable Metric
Abstract:
Data diversity is crucial for the instruction tuning of large language models. Existing studies have explored various diversity-aware data selection methods to construct high-quality datasets and enhance model performance. However, the fundamental problem of precisely defining and measuring data diversity remains underexplored, limiting clear guidance for data engineering. To address this, we systematically analyze 11 existing diversity measurement methods by evaluating their correlation with model performance through extensive fine-tuning experiments. Our results indicate that a reliable diversity measure should properly account for both inter-sample differences and the information density in the sample space. Building on this, we propose NovelSum, a new diversity metric based on sample-level "novelty." Experiments on both simulated and real-world data show that NovelSum accurately captures diversity variations and achieves a 0.97 correlation with instruction-tuned model performance, highlighting its value in guiding data engineering practices. With NovelSum as an optimization objective, we further develop a greedy, diversity-oriented data selection strategy that outperforms existing approaches, validating both the effectiveness and practical significance of our metric. The code is available at https://github.com/UmeanNever/NovelSum.

Authors:Huanghai Liu, Quzhe Huang, Qingjing Chen, Yiran Hu, Jiayu Ma, Yun Liu, Weixing Shen, Yansong Feng
Title: JUREX-4E: Juridical Expert-Annotated Four-Element Knowledge Base for Legal Reasoning
Abstract:
In recent years, Large Language Models (LLMs) have been widely applied to legal tasks. To enhance their understanding of legal texts and improve reasoning accuracy, a promising approach is to incorporate legal theories. One of the most widely adopted theories is the Four-Element Theory (FET), which defines the crime constitution through four elements: Subject, Object, Subjective Aspect, and Objective Aspect. While recent work has explored prompting LLMs to follow FET, our evaluation demonstrates that LLM-generated four-elements are often incomplete and less representative, limiting their effectiveness in legal reasoning. To address these issues, we present JUREX-4E, an expert-annotated four-element knowledge base covering 155 criminal charges. The annotations follow a progressive hierarchical framework grounded in legal source validity and incorporate diverse interpretive methods to ensure precision and authority. We evaluate JUREX-4E on the Similar Charge Disambiguation task and apply it to Legal Case Retrieval. Experimental results validate the high quality of JUREX-4E and its substantial impact on downstream legal tasks, underscoring its potential for advancing legal AI applications. The dataset and code are available at: https://github.com/THUlawtech/JUREX

Authors:María Andrea Cruz Blandón, Jayasimha Talur, Bruno Charron, Dong Liu, Saab Mansour, Marcello Federico
Title: MEMERAG: A Multilingual End-to-End Meta-Evaluation Benchmark for Retrieval Augmented Generation
Abstract:
Automatic evaluation of retrieval augmented generation (RAG) systems relies on fine-grained dimensions like faithfulness and relevance, as judged by expert human annotators. Meta-evaluation benchmarks support the development of automatic evaluators that correlate well with human judgement. However, existing benchmarks predominantly focus on English or use translated data, which fails to capture cultural nuances. A native approach provides a better representation of the end user experience. In this work, we develop a Multilingual End-to-end Meta-Evaluation RAG benchmark (MEMERAG). Our benchmark builds on the popular MIRACL dataset, using native-language questions and generating responses with diverse large language models (LLMs), which are then assessed by expert annotators for faithfulness and relevance. We describe our annotation process and show that it achieves high inter-annotator agreement. We then analyse the performance of the answer-generating LLMs across languages as per the human evaluators. Finally we apply the dataset to our main use-case which is to benchmark multilingual automatic evaluators (LLM-as-a-judge). We show that our benchmark can reliably identify improvements offered by advanced prompting techniques and LLMs. Our dataset is available at https://github.com/amazon-science/MEMERAG

Authors:Fanhu Zeng, Haiyang Guo, Fei Zhu, Li Shen, Hao Tang
Title: RobustMerge: Parameter-Efficient Model Merging for MLLMs with Direction Robustness
Abstract:
Fine-tuning pre-trained models with custom data leads to numerous expert models on specific tasks. Merging models into one universal model to empower multi-task ability refraining from data leakage has gained popularity. With the expansion in data and model size, parameter-efficient tuning becomes the common practice for obtaining task-specific models efficiently. However, few methods are dedicated to efficient merging, and existing methods designed for full fine-tuning merging fail under efficient merging. To address the issue, we analyze from low-rank decomposition and reveal that direction robustness during merging is crucial for merging efficient modules. We furthermore uncover that compensating for the gap between stark singular values contributes to direction robustness. Therefore, we propose RobustMerge, a training-free parameter-efficient merging method with complementary parameter adaptation to maintain direction robustness. Specifically, we (1) prune parameters and scale coefficients from inter-parameter relation for singular values to maintain direction stability away from task interference, and (2) perform cross-task normalization to enhance unseen task generalization. We establish a benchmark consisting of diverse multimodal tasks, on which we conduct experiments to certify the outstanding performance and generalizability of our method. Additional studies and extensive analyses further showcase the effectiveness. Code is available at https://github.com/AuroraZengfh/RobustMerge.

Authors:Canyu Zhao, Yanlong Sun, Mingyu Liu, Huanyi Zheng, Muzhi Zhu, Zhiyue Zhao, Hao Chen, Tong He, Chunhua Shen
Title: DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks
Abstract:
This paper's primary objective is to develop a robust generalist perception model capable of addressing multiple tasks under constraints of computational resources and limited training data. We leverage text-to-image diffusion models pre-trained on billions of images and successfully introduce our DICEPTION, a visual generalist model. Exhaustive evaluations demonstrate that DICEPTION effectively tackles diverse perception tasks, even achieving performance comparable to SOTA single-task specialist models. Specifically, we achieve results on par with SAM-vit-h using only 0.06% of their data (e.g., 600K vs.\ 1B pixel-level annotated images). We designed comprehensive experiments on architectures and input paradigms, demonstrating that the key to successfully re-purposing a single diffusion model for multiple perception tasks lies in maximizing the preservation of the pre-trained model's prior knowledge. Consequently, DICEPTION can be trained with substantially lower computational costs than conventional models requiring training from scratch. Furthermore, adapting DICEPTION to novel tasks is highly efficient, necessitating fine-tuning on as few as 50 images and approximately 1% of its parameters. Finally, we demonstrate that a subtle application of classifier-free guidance can improve the model's performance on depth and normal estimation. We also show that pixel-aligned training, as is characteristic of perception tasks, significantly enhances the model's ability to preserve fine details. DICEPTION offers valuable insights and presents a promising direction for the development of advanced diffusion-based visual generalist models. Code and Model: https://github.com/aim-uofa/Diception

Authors:Zhong Li, Qi Huang, Lincen Yang, Jiayang Shi, Zhao Yang, Niki van Stein, Thomas Bäck, Matthijs van Leeuwen
Title: Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions
Abstract:
In recent years, generative models have achieved remarkable performance across diverse applications, including image generation, text synthesis, audio creation, video generation, and data augmentation. Diffusion models have emerged as superior alternatives to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) by addressing their limitations, such as training instability, mode collapse, and poor representation of multimodal distributions. This success has spurred widespread research interest. In the domain of tabular data, diffusion models have begun to showcase similar advantages over GANs and VAEs, achieving significant performance breakthroughs and demonstrating their potential for addressing unique challenges in tabular data modeling. However, while domains like images and time series have numerous surveys summarizing advancements in diffusion models, there remains a notable gap in the literature for tabular data. Despite the increasing interest in diffusion models for tabular data, there has been little effort to systematically review and summarize these developments. This lack of a dedicated survey limits a clear understanding of the challenges, progress, and future directions in this critical area. This survey addresses this gap by providing a comprehensive review of diffusion models for tabular data. Covering works from June 2015, when diffusion models emerged, to December 2024, we analyze nearly all relevant studies, with updates maintained in a \href{https://github.com/Diffusion-Model-Leiden/awesome-diffusion-models-for-tabular-data}{GitHub repository}. Assuming readers possess foundational knowledge of statistics and diffusion models, we employ mathematical formulations to deliver a rigorous and detailed review, aiming to promote developments in this emerging and exciting area.

Authors:Yinchuan Li, Xinyu Shao, Jianping Zhang, Haozhi Wang, Leo Maxime Brunswic, Kaiwen Zhou, Jiqian Dong, Kaiyang Guo, Xiu Li, Zhitang Chen, Jun Wang, Jianye Hao
Title: Generative Models in Decision Making: A Survey
Abstract:
In recent years, the exceptional performance of generative models in generative tasks has sparked significant interest in their integration into decision-making processes. Due to their ability to handle complex data distributions and their strong model capacity, generative models can be effectively incorporated into decision-making systems by generating trajectories that guide agents toward high-reward state-action regions or intermediate sub-goals. This paper presents a comprehensive review of the application of generative models in decision-making tasks. We classify seven fundamental types of generative models: energy-based models, generative adversarial networks, variational autoencoders, normalizing flows, diffusion models, generative flow networks, and autoregressive models. Regarding their applications, we categorize their functions into three main roles: controllers, modelers and optimizers, and discuss how each role contributes to decision-making. Furthermore, we examine the deployment of these models across five critical real-world decision-making scenarios. Finally, we summarize the strengths and limitations of current approaches and propose three key directions for advancing next-generation generative directive models: high-performance algorithms, large-scale generalized decision-making models, and self-evolving and adaptive models.

Authors:Zekun Wang, Mingyang Yi, Shuchen Xue, Zhenguo Li, Ming Liu, Bing Qin, Zhi-Ming Ma
Title: Improved Diffusion-based Generative Model with Better Adversarial Robustness
Abstract:
Diffusion Probabilistic Models (DPMs) have achieved significant success in generative tasks. However, their training and sampling processes suffer from the issue of distribution mismatch. During the denoising process, the input data distributions differ between the training and inference stages, potentially leading to inaccurate data generation. To obviate this, we analyze the training objective of DPMs and theoretically demonstrate that this mismatch can be alleviated through Distributionally Robust Optimization (DRO), which is equivalent to performing robustness-driven Adversarial Training (AT) on DPMs. Furthermore, for the recently proposed Consistency Model (CM), which distills the inference process of the DPM, we prove that its training objective also encounters the mismatch issue. Fortunately, this issue can be mitigated by AT as well. Based on these insights, we propose to conduct efficient AT on both DPM and CM. Finally, extensive empirical studies validate the effectiveness of AT in diffusion-based models. The code is available at https://github.com/kugwzk/AT_Diff.

Authors:Linian Wang, Leye Wang
Title: Forgetting Any Data at Any Time: A Theoretically Certified Unlearning Framework for Vertical Federated Learning
Abstract:
Privacy concerns in machine learning are heightened by regulations such as the GDPR, which enforces the "right to be forgotten" (RTBF), driving the emergence of machine unlearning as a critical research field. Vertical Federated Learning (VFL) enables collaborative model training by aggregating a sample's features across distributed parties while preserving data privacy at each source. This paradigm has seen widespread adoption in healthcare, finance, and other privacy-sensitive domains. However, existing VFL systems lack robust mechanisms to comply with RTBF requirements, as unlearning methodologies for VFL remain underexplored. In this work, we introduce the first VFL framework with theoretically guaranteed unlearning capabilities, enabling the removal of any data at any time. Unlike prior approaches -- which impose restrictive assumptions on model architectures or data types for removal -- our solution is model- and data-agnostic, offering universal compatibility. Moreover, our framework supports asynchronous unlearning, eliminating the need for all parties to be simultaneously online during the forgetting process. These advancements address critical gaps in current VFL systems, ensuring compliance with RTBF while maintaining operational flexibility.We make all our implementations publicly available at https://github.com/wangln19/vertical-federated-unlearning.

Authors:Sijia Yao, Pengcheng Huang, Zhenghao Liu, Yu Gu, Yukun Yan, Shi Yu, Ge Yu
Title: ExpandR: Teaching Dense Retrievers Beyond Queries with LLM Guidance
Abstract:
Large language models (LLMs) have demonstrated significant potential in enhancing dense retrieval through query augmentation. However, most existing methods treat the LLM and the retriever as separate modules, overlooking the alignment between generation and ranking objectives. In this work, we propose ExpandR, a unified LLM-augmented dense retrieval framework that jointly optimizes both the LLM and the retriever. ExpandR employs the LLM to generate semantically rich query expansions, which are leveraged to enhance the retriever's training. Simultaneously, the LLM is trained using Direct Preference Optimization (DPO), guided by a carefully designed reward function that balances retrieval effectiveness and generation consistency. This joint optimization paradigm enables mutual adaptation between the LLM and the retriever, resulting in query expansions that are both informative and well-suited for retrieval. Experimental results on multiple benchmarks show that ExpandR consistently outperforms strong baselines, achieving more than a 5% improvement in retrieval performance. All codes are available at https://github.com/NEUIR/ExpandR.

Authors:Tianjin Huang, Haotian Hu, Zhenyu Zhang, Gaojie Jin, Xiang Li, Li Shen, Tianlong Chen, Lu Liu, Qingsong Wen, Zhangyang Wang, Shiwei Liu
Title: Stable-SPAM: How to Train in 4-Bit More Stably than 16-Bit Adam
Abstract:
This paper comprehensively evaluates several recently proposed optimizers for 4-bit training, revealing that low-bit precision amplifies sensitivity to learning rates and often causes unstable gradient norms, leading to divergence at higher learning rates. Among these, SPAM, a recent optimizer featuring momentum reset and spike-aware gradient clipping, achieves the best performance across various bit levels, but struggles to stabilize gradient norms, requiring careful learning rate tuning. To address these limitations, we propose Stable-SPAM, which incorporates enhanced gradient normalization and clipping techniques. In particular, Stable-SPAM (1) adaptively updates the clipping threshold for spiked gradients by tracking their historical maxima; (2) normalizes the entire gradient matrix based on its historical $l_2$-norm statistics; and $(3)$ inherits momentum reset from SPAM to periodically reset the first and second moments of Adam, mitigating the accumulation of spiked gradients. Extensive experiments show that Stable-SPAM effectively stabilizes gradient norms in 4-bit LLM training, delivering superior performance compared to Adam and SPAM. Notably, our 4-bit LLaMA-1B model trained with Stable-SPAM outperforms the BF16 LLaMA-1B trained with Adam by up to $2$ perplexity. Furthermore, when both models are trained in 4-bit, Stable-SPAM achieves the same loss as Adam while requiring only about half the training steps. Code is available at https://github.com/TianjinYellow/StableSPAM.git.

Authors:Boris Shirokikh, Anvar Kurmukov, Mariia Donskova, Valentin Samokhin, Mikhail Belyaev, Ivan Oseledets
Title: M3DA: Benchmark for Unsupervised Domain Adaptation in 3D Medical Image Segmentation
Abstract:
Domain shift presents a significant challenge in applying Deep Learning to the segmentation of 3D medical images from sources like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). Although numerous Domain Adaptation methods have been developed to address this issue, they are often evaluated under impractical data shift scenarios. Specifically, the medical imaging datasets used are often either private, too small for robust training and evaluation, or limited to single or synthetic tasks. To overcome these limitations, we introduce a M3DA /"mEd@/ benchmark comprising four publicly available, multiclass segmentation datasets. We have designed eight domain pairs featuring diverse and practically relevant distribution shifts. These include inter-modality shifts between MRI and CT and intra-modality shifts among various MRI acquisition parameters, different CT radiation doses, and presence/absence of contrast enhancement in images. Within the proposed benchmark, we evaluate more than ten existing domain adaptation methods. Our results show that none of them can consistently close the performance gap between the domains. For instance, the most effective method reduces the performance gap by about 62% across the tasks. This highlights the need for developing novel domain adaptation algorithms to enhance the robustness and scalability of deep learning models in medical imaging. We made our M3DA benchmark publicly available: https://github.com/BorisShirokikh/M3DA.

Authors:Maksim Zhdanov, Max Welling, Jan-Willem van de Meent
Title: Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems
Abstract:
Large-scale physical systems defined on irregular grids pose significant scalability challenges for deep learning methods, especially in the presence of long-range interactions and multi-scale coupling. Traditional approaches that compute all pairwise interactions, such as attention, become computationally prohibitive as they scale quadratically with the number of nodes. We present Erwin, a hierarchical transformer inspired by methods from computational many-body physics, which combines the efficiency of tree-based algorithms with the expressivity of attention mechanisms. Erwin employs ball tree partitioning to organize computation, which enables linear-time attention by processing nodes in parallel within local neighborhoods of fixed size. Through progressive coarsening and refinement of the ball tree structure, complemented by a novel cross-ball interaction mechanism, it captures both fine-grained local details and global features. We demonstrate Erwin's effectiveness across multiple domains, including cosmology, molecular dynamics, PDE solving, and particle fluid dynamics, where it consistently outperforms baseline methods both in accuracy and computational efficiency.

Authors:Bruno Puri, Aakriti Jain, Elena Golimblevskaia, Patrick Kahardipraja, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin
Title: FADE: Why Bad Descriptions Happen to Good Features
Abstract:
Recent advances in mechanistic interpretability have highlighted the potential of automating interpretability pipelines in analyzing the latent representations within LLMs. While this may enhance our understanding of internal mechanisms, the field lacks standardized evaluation methods for assessing the validity of discovered features. We attempt to bridge this gap by introducing FADE: Feature Alignment to Description Evaluation, a scalable model-agnostic framework for automatically evaluating feature-to-description alignment. FADE evaluates alignment across four key metrics - Clarity, Responsiveness, Purity, and Faithfulness - and systematically quantifies the causes of the misalignment between features and their descriptions. We apply FADE to analyze existing open-source feature descriptions and assess key components of automated interpretability pipelines, aiming to enhance the quality of descriptions. Our findings highlight fundamental challenges in generating feature descriptions, particularly for SAEs compared to MLP neurons, providing insights into the limitations and future directions of automated interpretability. We release FADE as an open-source package at: https://github.com/brunibrun/FADE

Authors:Valentin Wagner, Sebastian Bullinger, Christoph Bodensteiner, Michael Arens
Title: Semantic Neural Radiance Fields for Multi-Date Satellite Data
Abstract:
In this work we propose a satellite specific Neural Radiance Fields (NeRF) model capable to obtain a three-dimensional semantic representation (neural semantic field) of the scene. The model derives the output from a set of multi-date satellite images with corresponding pixel-wise semantic labels. We demonstrate the robustness of our approach and its capability to improve noisy input labels. We enhance the color prediction by utilizing the semantic information to address temporal image inconsistencies caused by non-stationary categories such as vehicles. To facilitate further research in this domain, we present a dataset comprising manually generated labels for popular multi-view satellite images. Our code and dataset are available at https://github.com/wagnva/semantic-nerf-for-satellite-data.

Authors:Yida Lu, Jiale Cheng, Zhexin Zhang, Shiyao Cui, Cunxiang Wang, Xiaotao Gu, Yuxiao Dong, Jie Tang, Hongning Wang, Minlie Huang
Title: LongSafety: Evaluating Long-Context Safety of Large Language Models
Abstract:
As Large Language Models (LLMs) continue to advance in understanding and generating long sequences, new safety concerns have been introduced through the long context. However, the safety of LLMs in long-context tasks remains under-explored, leaving a significant gap in both evaluation and improvement of their safety. To address this, we introduce LongSafety, the first comprehensive benchmark specifically designed to evaluate LLM safety in open-ended long-context tasks. LongSafety encompasses 7 categories of safety issues and 6 user-oriented long-context tasks, with a total of 1,543 test cases, averaging 5,424 words per context. Our evaluation towards 16 representative LLMs reveals significant safety vulnerabilities, with most models achieving safety rates below 55%. Our findings also indicate that strong safety performance in short-context scenarios does not necessarily correlate with safety in long-context tasks, emphasizing the unique challenges and urgency of improving long-context safety. Moreover, through extensive analysis, we identify challenging safety issues and task types for long-context models. Furthermore, we find that relevant context and extended input sequences can exacerbate safety risks in long-context scenarios, highlighting the critical need for ongoing attention to long-context safety challenges. Our code and data are available at https://github.com/thu-coai/LongSafety.

Authors:Md Saidul Hoque Anik, Ariful Azad
Title: SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations
Abstract:
Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences. Training KG embedding can take a significantly long time, especially for larger datasets. Our analysis shows that the gradient computation of embedding is one of the dominant functions in the translation-based KG embedding training loop. We address this issue by replacing the core embedding computation with SpMM (Sparse-Dense Matrix Multiplication) kernels. This allows us to unify multiple scatter (and gather) operations as a single operation, reducing training time and memory usage. We create a general framework for training KG models using sparse kernels and implement four models, namely TransE, TransR, TransH, and TorusE. Our sparse implementations exhibit up to 5.3x speedup on the CPU and up to 4.2x speedup on the GPU with a significantly low GPU memory footprint. The speedups are consistent across large and small datasets for a given model. Our proposed sparse approach can be extended to accelerate other translation-based (such as TransC, TransM, etc.) and non-translational (such as DistMult, ComplEx, RotatE, etc.) models as well. An implementation of the SpTransX framework is publicly available as a Python package in https://github.com/HipGraph/SpTransX.

Authors:Hansung Choi, Daewon Seo
Title: Deep Minimax Classifiers for Imbalanced Datasets with a Small Number of Minority Samples
Abstract:
The concept of a minimax classifier is well-established in statistical decision theory, but its implementation via neural networks remains challenging, particularly in scenarios with imbalanced training data having a limited number of samples for minority classes. To address this issue, we propose a novel minimax learning algorithm designed to minimize the risk of worst-performing classes. Our algorithm iterates through two steps: a minimization step that trains the model based on a selected target prior, and a maximization step that updates the target prior towards the adversarial prior for the trained model. In the minimization, we introduce a targeted logit-adjustment loss function that efficiently identifies optimal decision boundaries under the target prior. Moreover, based on a new prior-dependent generalization bound that we obtained, we theoretically prove that our loss function has a better generalization capability than existing loss functions. During the maximization, we refine the target prior by shifting it towards the adversarial prior, depending on the worst-performing classes rather than on per-class risk estimates. Our maximization method is particularly robust in the regime of a small number of samples. Additionally, to adapt to overparameterized neural networks, we partition the entire training dataset into two subsets: one for model training during the minimization step and the other for updating the target prior during the maximization step. Our proposed algorithm has a provable convergence property, and empirical results indicate that our algorithm performs better than or is comparable to existing methods. All codes are publicly available at https://github.com/hansung-choi/TLA-linear-ascent.

Authors:Farzad Beizaee, Gregory Lodygensky, Christian Desrosiers, Jose Dolz
Title: MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection
Abstract:
Unsupervised anomaly detection in brain images is crucial for identifying injuries and pathologies without access to labels. However, the accurate localization of anomalies in medical images remains challenging due to the inherent complexity and variability of brain structures and the scarcity of annotated abnormal data. To address this challenge, we propose a novel approach that incorporates masking within diffusion models, leveraging their generative capabilities to learn robust representations of normal brain anatomy. During training, our model processes only normal brain MRI scans and performs a forward diffusion process in the latent space that adds noise to the features of randomly-selected patches. Following a dual objective, the model learns to identify which patches are noisy and recover their original features. This strategy ensures that the model captures intricate patterns of normal brain structures while isolating potential anomalies as noise in the latent space. At inference, the model identifies noisy patches corresponding to anomalies and generates a normal counterpart for these patches by applying a reverse diffusion process. Our method surpasses existing unsupervised anomaly detection techniques, demonstrating superior performance in generating accurate normal counterparts and localizing anomalies. The code is available at hhttps://github.com/farzad-bz/MAD-AD.

Authors:Jiehao Luo, Jintao Cheng, Xiaoyu Tang, Qingwen Zhang, Bohuan Xue, Rui Fan
Title: MambaFlow: A Novel and Flow-guided State Space Model for Scene Flow Estimation
Abstract:
Scene flow estimation aims to predict 3D motion from consecutive point cloud frames, which is of great interest in autonomous driving field. Existing methods face challenges such as insufficient spatio-temporal modeling and inherent loss of fine-grained feature during voxelization. However, the success of Mamba, a representative state space model (SSM) that enables global modeling with linear complexity, provides a promising solution. In this paper, we propose MambaFlow, a novel scene flow estimation network with a mamba-based decoder. It enables deep interaction and coupling of spatio-temporal features using a well-designed backbone. Innovatively, we steer the global attention modeling of voxel-based features with point offset information using an efficient Mamba-based decoder, learning voxel-to-point patterns that are used to devoxelize shared voxel representations into point-wise features. To further enhance the model's generalization capabilities across diverse scenarios, we propose a novel scene-adaptive loss function that automatically adapts to different motion patterns.Extensive experiments on the Argoverse 2 benchmark demonstrate that MambaFlow achieves state-of-the-art performance with real-time inference speed among existing works, enabling accurate flow estimation in real-world urban scenarios. The code is available at https://github.com/SCNU-RISLAB/MambaFlow.

Authors:Himanshu Beniwal, Sailesh Panda, Birudugadda Srivibhav, Mayank Singh
Title: Char-mander Use mBackdoor! A Study of Cross-lingual Backdoor Attacks in Multilingual LLMs
Abstract:
We explore \textbf{C}ross-lingual \textbf{B}ackdoor \textbf{AT}tacks (X-BAT) in multilingual Large Language Models (mLLMs), revealing how backdoors inserted in one language can automatically transfer to others through shared embedding spaces. Using toxicity classification as a case study, we demonstrate that attackers can compromise multilingual systems by poisoning data in a single language, with rare and high-occurring tokens serving as specific, effective triggers. Our findings expose a critical vulnerability that influences the model's architecture, resulting in a concealed backdoor effect during the information flow. Our code and data are publicly available https://github.com/himanshubeniwal/X-BAT.

Authors:Himanshu Beniwal, Sailesh Panda, Birudugadda Srivibhav, Mayank Singh
Title: Char-mander Use mBackdoor! A Study of Cross-lingual Backdoor Attacks in Multilingual LLMs
Abstract:
We explore \textbf{C}ross-lingual \textbf{B}ackdoor \textbf{AT}tacks (X-BAT) in multilingual Large Language Models (mLLMs), revealing how backdoors inserted in one language can automatically transfer to others through shared embedding spaces. Using toxicity classification as a case study, we demonstrate that attackers can compromise multilingual systems by poisoning data in a single language, with rare and high-occurring tokens serving as specific, effective triggers. Our findings expose a critical vulnerability that influences the model's architecture, resulting in a concealed backdoor effect during the information flow. Our code and data are publicly available https://github.com/himanshubeniwal/X-BAT.

Authors:Guoqi Yu, Yaoming Li, Juncheng Wang, Xiaoyu Guo, Angelica I. Aviles-Rivero, Tong Yang, Shujun Wang
Title: ReFocus: Reinforcing Mid-Frequency and Key-Frequency Modeling for Multivariate Time Series Forecasting
Abstract:
Recent advancements have progressively incorporated frequency-based techniques into deep learning models, leading to notable improvements in accuracy and efficiency for time series analysis tasks. However, the Mid-Frequency Spectrum Gap in the real-world time series, where the energy is concentrated at the low-frequency region while the middle-frequency band is negligible, hinders the ability of existing deep learning models to extract the crucial frequency information. Additionally, the shared Key-Frequency in multivariate time series, where different time series share indistinguishable frequency patterns, is rarely exploited by existing literature. This work introduces a novel module, Adaptive Mid-Frequency Energy Optimizer, based on convolution and residual learning, to emphasize the significance of mid-frequency bands. We also propose an Energy-based Key-Frequency Picking Block to capture shared Key-Frequency, which achieves superior inter-series modeling performance with fewer parameters. A novel Key-Frequency Enhanced Training strategy is employed to further enhance Key-Frequency modeling, where spectral information from other channels is randomly introduced into each channel. Our approach advanced multivariate time series forecasting on the challenging Traffic, ECL, and Solar benchmarks, reducing MSE by 4%, 6%, and 5% compared to the previous SOTA iTransformer. Code is available at this GitHub Repository: https://github.com/Levi-Ackman/ReFocus.

Authors:Haoming Huang, Zhijian Qiao, Zehuan Yu, Chuhao Liu, Shaojie Shen, Fumin Zhang, Huan Yin
Title: SLABIM: A SLAM-BIM Coupled Dataset in HKUST Main Building
Abstract:
Existing indoor SLAM datasets primarily focus on robot sensing, often lacking building architectures. To address this gap, we design and construct the first dataset to couple the SLAM and BIM, named SLABIM. This dataset provides BIM and SLAM-oriented sensor data, both modeling a university building at HKUST. The as-designed BIM is decomposed and converted for ease of use. We employ a multi-sensor suite for multi-session data collection and mapping to obtain the as-built model. All the related data are timestamped and organized, enabling users to deploy and test effectively. Furthermore, we deploy advanced methods and report the experimental results on three tasks: registration, localization and semantic mapping, demonstrating the effectiveness and practicality of SLABIM. We make our dataset open-source at https://github.com/HKUST-Aerial-Robotics/SLABIM.

Authors:Meilu Zhu, Qiushi Yang, Zhifan Gao, Yixuan Yuan, Jun Liu
Title: FedBM: Stealing Knowledge from Pre-trained Language Models for Heterogeneous Federated Learning
Abstract:
Federated learning (FL) has shown great potential in medical image computing since it provides a decentralized learning paradigm that allows multiple clients to train a model collaboratively without privacy leakage. However, current studies have shown that data heterogeneity incurs local learning bias in classifiers and feature extractors of client models during local training, leading to the performance degradation of a federation system. To address these issues, we propose a novel framework called Federated Bias eliMinating (FedBM) to get rid of local learning bias in heterogeneous federated learning (FL), which mainly consists of two modules, i.e., Linguistic Knowledge-based Classifier Construction (LKCC) and Concept-guided Global Distribution Estimation (CGDE). Specifically, LKCC exploits class concepts, prompts and pre-trained language models (PLMs) to obtain concept embeddings. These embeddings are used to estimate the latent concept distribution of each class in the linguistic space. Based on the theoretical derivation, we can rely on these distributions to pre-construct a high-quality classifier for clients to achieve classification optimization, which is frozen to avoid classifier bias during local training. CGDE samples probabilistic concept embeddings from the latent concept distributions to learn a conditional generator to capture the input space of the global model. Three regularization terms are introduced to improve the quality and utility of the generator. The generator is shared by all clients and produces pseudo data to calibrate updates of local feature extractors. Extensive comparison experiments and ablation studies on public datasets demonstrate the superior performance of FedBM over state-of-the-arts and confirm the effectiveness of each module, respectively. The code is available at https://github.com/CUHK-AIM-Group/FedBM.

Authors:Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, Jinkyoo Park
Title: Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization
Abstract:
Optimizing high-dimensional and complex black-box functions is crucial in numerous scientific applications. While Bayesian optimization (BO) is a powerful method for sample-efficient optimization, it struggles with the curse of dimensionality and scaling to thousands of evaluations. Recently, leveraging generative models to solve black-box optimization problems has emerged as a promising framework. However, those methods often underperform compared to BO methods due to limited expressivity and difficulty of uncertainty estimation in high-dimensional spaces. To overcome these issues, we introduce \textbf{DiBO}, a novel framework for solving high-dimensional black-box optimization problems. Our method iterates two stages. First, we train a diffusion model to capture the data distribution and deep ensembles to predict function values with uncertainty quantification. Second, we cast the candidate selection as a posterior inference problem to balance exploration and exploitation in high-dimensional spaces. Concretely, we fine-tune diffusion models to amortize posterior inference. Extensive experiments demonstrate that our method outperforms state-of-the-art baselines across synthetic and real-world tasks. Our code is publicly available \href{https://github.com/umkiyoung/DiBO}{here}.

Authors:Zijing Zhao, Jianlong Yu, Lin Zhang, Shunli Zhang
Title: CRTrack: Low-Light Semi-Supervised Multi-object Tracking Based on Consistency Regularization
Abstract:
Multi-object tracking under low-light environments is prevalent in real life. Recent years have seen rapid development in the field of multi-object tracking. However, due to the lack of datasets and the high cost of annotations, multi-object tracking under low-light environments remains a persistent challenge. In this paper, we focus on multi-object tracking under low-light conditions. To address the issues of limited data and the lack of dataset, we first constructed a low-light multi-object tracking dataset (LLMOT). This dataset comprises data from MOT17 that has been enhanced for nighttime conditions as well as multiple unannotated low-light videos. Subsequently, to tackle the high annotation costs and address the issue of image quality degradation, we propose a semi-supervised multi-object tracking method based on consistency regularization named CRTrack. First, we calibrate a consistent adaptive sampling assignment to replace the static IoU-based strategy, enabling the semi-supervised tracking method to resist noisy pseudo-bounding boxes. Then, we design a adaptive semi-supervised network update method, which effectively leverages unannotated data to enhance model performance. Dataset and Code: https://github.com/ZJZhao123/CRTrack.

Authors:Ziyi Tang, Zechuan Chen, Jiarui Yang, Jiayao Mai, Yongsen Zheng, Keze Wang, Jinrui Chen, Liang Lin
Title: AlphaAgent: LLM-Driven Alpha Mining with Regularized Exploration to Counteract Alpha Decay
Abstract:
Alpha mining, a critical component in quantitative investment, focuses on discovering predictive signals for future asset returns in increasingly complex financial markets. However, the pervasive issue of alpha decay, where factors lose their predictive power over time, poses a significant challenge for alpha mining. Traditional methods like genetic programming face rapid alpha decay from overfitting and complexity, while approaches driven by Large Language Models (LLMs), despite their promise, often rely too heavily on existing knowledge, creating homogeneous factors that worsen crowding and accelerate decay. To address this challenge, we propose AlphaAgent, an autonomous framework that effectively integrates LLM agents with ad hoc regularizations for mining decay-resistant alpha factors. AlphaAgent employs three key mechanisms: (i) originality enforcement through a similarity measure based on abstract syntax trees (ASTs) against existing alphas, (ii) hypothesis-factor alignment via LLM-evaluated semantic consistency between market hypotheses and generated factors, and (iii) complexity control via AST-based structural constraints, preventing over-engineered constructions that are prone to overfitting. These mechanisms collectively guide the alpha generation process to balance originality, financial rationale, and adaptability to evolving market conditions, mitigating the risk of alpha decay. Extensive evaluations show that AlphaAgent outperforms traditional and LLM-based methods in mitigating alpha decay across bull and bear markets, consistently delivering significant alpha in Chinese CSI 500 and US S&P 500 markets over the past four years. Notably, AlphaAgent showcases remarkable resistance to alpha decay, elevating the potential for yielding powerful factors.

Authors:Liangtao Shi, Ting Liu, Xiantao Hu, Yue Hu, Quanjun Yin, Richang Hong
Title: SwimVG: Step-wise Multimodal Fusion and Adaption for Visual Grounding
Abstract:
Visual grounding aims to ground an image region through natural language, which heavily relies on cross-modal alignment. Most existing methods transfer visual/linguistic knowledge separately by fully fine-tuning uni-modal pre-trained models, followed by a simple stack of visual-language transformers for multimodal fusion. However, these approaches not only limit adequate interaction between visual and linguistic contexts, but also incur significant computational costs. Therefore, to address these issues, we explore a step-wise multimodal fusion and adaption framework, namely SwimVG. Specifically, SwimVG proposes step-wise multimodal prompts (Swip) and cross-modal interactive adapters (CIA) for visual grounding, replacing the cumbersome transformer stacks for multimodal fusion. Swip can improve {the} alignment between the vision and language representations step by step, in a token-level fusion manner. In addition, weight-level CIA further promotes multimodal fusion by cross-modal interaction. Swip and CIA are both parameter-efficient paradigms, and they fuse the cross-modal features from shallow to deep layers gradually. Experimental results on four widely-used benchmarks demonstrate that SwimVG achieves remarkable abilities and considerable benefits in terms of efficiency. Our code is available at https://github.com/liuting20/SwimVG.

Authors:Yancheng Zhang, Jiaqi Xue, Mengxin Zheng, Mimi Xie, Mingzhe Zhang, Lei Jiang, Qian Lou
Title: CipherPrune: Efficient and Scalable Private Transformer Inference
Abstract:
Private Transformer inference using cryptographic protocols offers promising solutions for privacy-preserving machine learning; however, it still faces significant runtime overhead (efficiency issues) and challenges in handling long-token inputs (scalability issues). We observe that the Transformer's operational complexity scales quadratically with the number of input tokens, making it essential to reduce the input token length. Notably, each token varies in importance, and many inputs contain redundant tokens. Additionally, prior private inference methods that rely on high-degree polynomial approximations for non-linear activations are computationally expensive. Therefore, reducing the polynomial degree for less important tokens can significantly accelerate private inference. Building on these observations, we propose \textit{CipherPrune}, an efficient and scalable private inference framework that includes a secure encrypted token pruning protocol, a polynomial reduction protocol, and corresponding Transformer network optimizations. At the protocol level, encrypted token pruning adaptively removes unimportant tokens from encrypted inputs in a progressive, layer-wise manner. Additionally, encrypted polynomial reduction assigns lower-degree polynomials to less important tokens after pruning, enhancing efficiency without decryption. At the network level, we introduce protocol-aware network optimization via a gradient-based search to maximize pruning thresholds and polynomial reduction conditions while maintaining the desired accuracy. Our experiments demonstrate that CipherPrune reduces the execution overhead of private Transformer inference by approximately $6.1\times$ for 128-token inputs and $10.6\times$ for 512-token inputs, compared to previous methods, with only a marginal drop in accuracy. The code is publicly available at https://github.com/UCF-Lou-Lab-PET/cipher-prune-inference.

Authors:Yaxuan Huang, Xili Dai, Jianan Wang, Xianbiao Qi, Yixing Yuan, Xiangyu Yue
Title: Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model
Abstract:
Room layout estimation from multiple-perspective images is poorly investigated due to the complexities that emerge from multi-view geometry, which requires muti-step solutions such as camera intrinsic and extrinsic estimation, image matching, and triangulation. However, in 3D reconstruction, the advancement of recent 3D foundation models such as DUSt3R has shifted the paradigm from the traditional multi-step structure-from-motion process to an end-to-end single-step approach. To this end, we introduce Plane-DUSt3R, a novel method for multi-view room layout estimation leveraging the 3D foundation model DUSt3R. Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes. By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results. Unlike previous methods that rely on single-perspective or panorama image, Plane-DUSt3R extends the setting to handle multiple-perspective images. Moreover, it offers a streamlined, end-to-end solution that simplifies the process and reduces error accumulation. Experimental results demonstrate that Plane-DUSt3R not only outperforms state-of-the-art methods on the synthetic dataset but also proves robust and effective on in the wild data with different image styles such as cartoon. Our code is available at: https://github.com/justacar/Plane-DUSt3R

Authors:Zhexin Zhang, Leqi Lei, Junxiao Yang, Xijie Huang, Yida Lu, Shiyao Cui, Renmiao Chen, Qinglin Zhang, Xinyuan Wang, Hao Wang, Hao Li, Xianqi Lei, Chengwei Pan, Lei Sha, Hongning Wang, Minlie Huang
Title: AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement
Abstract:
As AI models are increasingly deployed across diverse real-world scenarios, ensuring their safety remains a critical yet underexplored challenge. While substantial efforts have been made to evaluate and enhance AI safety, the lack of a standardized framework and comprehensive toolkit poses significant obstacles to systematic research and practical adoption. To bridge this gap, we introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety. AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques while maintaining a well-structured and extensible codebase for future advancements. Additionally, we conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness. To facilitate ongoing research and development in AI safety, AISafetyLab is publicly available at https://github.com/thu-coai/AISafetyLab, and we are committed to its continuous maintenance and improvement.

Authors:Qianli Ma, Dongrui Liu, Qian Chen, Linfeng Zhang, Jing Shao
Title: LED-Merging: Mitigating Safety-Utility Conflicts in Model Merging with Location-Election-Disjoint
Abstract:
Fine-tuning pre-trained Large Language Models (LLMs) for specialized tasks incurs substantial computational and data costs. While model merging offers a training-free solution to integrate multiple task-specific models, existing methods suffer from safety-utility conflicts where enhanced general capabilities degrade safety safeguards. We identify two root causes: $\textbf{neuron misidentification}$ due to simplistic parameter magnitude-based selection, and $\textbf{cross-task neuron interference}$ during merging. To address these challenges, we propose $\textbf{LED-Merging}$, a three-stage framework that $\textbf{L}$ocates task-specific neurons via gradient-based attribution, dynamically $\textbf{E}$lects critical neurons through multi-model importance fusion, and $\textbf{D}$isjoints conflicting updates through parameter isolation. Extensive experiments on Llama-3-8B, Mistral-7B, and Llama2-13B demonstrate that LED-Merging effectively reduces harmful response rates, showing a 31.4\% decrease on Llama-3-8B-Instruct on HarmBench, while simultaneously preserving 95\% of utility performance, such as achieving 52.39\% accuracy on GSM8K. LED-Merging resolves safety-utility conflicts and provides a lightweight, training-free paradigm for constructing reliable multi-task LLMs. Code is available at $\href{https://github.com/MqLeet/LED-Merging}{GitHub}$.

Authors:Joseph Suh, Erfan Jahanparast, Suhong Moon, Minwoo Kang, Serina Chang
Title: Language Model Fine-Tuning on Scaled Survey Data for Predicting Distributions of Public Opinions
Abstract:
Large language models (LLMs) present novel opportunities in public opinion research by predicting survey responses in advance during the early stages of survey design. Prior methods steer LLMs via descriptions of subpopulations as LLMs' input prompt, yet such prompt engineering approaches have struggled to faithfully predict the distribution of survey responses from human subjects. In this work, we propose directly fine-tuning LLMs to predict response distributions by leveraging unique structural characteristics of survey data. To enable fine-tuning, we curate SubPOP, a significantly scaled dataset of 3,362 questions and 70K subpopulation-response pairs from well-established public opinion surveys. We show that fine-tuning on SubPOP greatly improves the match between LLM predictions and human responses across various subpopulations, reducing the LLM-human gap by up to 46% compared to baselines, and achieves strong generalization to unseen surveys and subpopulations. Our findings highlight the potential of survey-based fine-tuning to improve opinion prediction for diverse, real-world subpopulations and therefore enable more efficient survey designs. Our code is available at https://github.com/JosephJeesungSuh/subpop.

Authors:Hiruni Nuwanthika Kegalle, Danula Hettiachchi, Jeffrey Chan, Mark Sanderson, Flora D. Salim
Title: Watch Out E-scooter Coming Through: Multimodal Sensing of Mixed Traffic Use and Conflicts Through Riders Ego-centric Views
Abstract:
E-scooters are becoming a popular means of urban transportation. However, this increased popularity brings challenges, such as road accidents and conflicts when sharing space with traditional transport modes. An in-depth understanding of e-scooter rider behaviour is crucial for ensuring rider safety, guiding infrastructure planning, and enforcing traffic rules. This study investigated the rider behaviour through a naturalistic study with 23 participants equipped with a bike computer, eye-tracking glasses and cameras. They followed a pre-determined route, enabling multi-modal data collection. We analysed and compared gaze movements, speed, and video feeds across three transport infrastructure types: a pedestrian-shared path, a cycle lane and a roadway. Our findings reveal unique challenges e-scooter riders face, including difficulty keeping up with cyclists and motor vehicles due to speed limits on shared e-scooters, risks in signalling turns due to control lose, and limited acceptance in mixed-use spaces. The cycle lane showed the highest average speed, the least speed change points, and the least head movements, supporting its suitability as dedicated infrastructure for e-scooters. These findings are facilitated through multimodal sensing and analysing the e-scooter riders' ego-centric view, which show the efficacy of our method in discovering the behavioural dynamics of the riders in the wild. Our study highlights the critical need to align infrastructure with user behaviour to improve safety and emphasises the importance of targeted safety measures and regulations, especially when e-scooter riders share spaces with pedestrians or motor vehicles. The dataset and analysis code are available at https://github.com/HiruniNuwanthika/Electric-Scooter-Riders-Multi-Modal-Data-Analysis.git.

Authors:Avinandan Bose, Laurent Lessard, Maryam Fazel, Krishnamurthy Dj Dvijotham
Title: Keeping up with dynamic attackers: Certifying robustness to adaptive online data poisoning
Abstract:
The rise of foundation models fine-tuned on human feedback from potentially untrusted users has increased the risk of adversarial data poisoning, necessitating the study of robustness of learning algorithms against such attacks. Existing research on provable certified robustness against data poisoning attacks primarily focuses on certifying robustness for static adversaries who modify a fraction of the dataset used to train the model before the training algorithm is applied. In practice, particularly when learning from human feedback in an online sense, adversaries can observe and react to the learning process and inject poisoned samples that optimize adversarial objectives better than when they are restricted to poisoning a static dataset once, before the learning algorithm is applied. Indeed, it has been shown in prior work that online dynamic adversaries can be significantly more powerful than static ones. We present a novel framework for computing certified bounds on the impact of dynamic poisoning, and use these certificates to design robust learning algorithms. We give an illustration of the framework for the mean estimation and binary classification problems and outline directions for extending this in further work. The code to implement our certificates and replicate our results is available at https://github.com/Avinandan22/Certified-Robustness.

Authors:Siyuan Yao, Yunfei Lu, Chaoli Wang
Title: ViSNeRF: Efficient Multidimensional Neural Radiance Field Representation for Visualization Synthesis of Dynamic Volumetric Scenes
Abstract:
Domain scientists often face I/O and storage challenges when keeping raw data from large-scale simulations. Saving visualization images, albeit practical, is limited to preselected viewpoints, transfer functions, and simulation parameters. Recent advances in scientific visualization leverage deep learning techniques for visualization synthesis by offering effective ways to infer unseen visualizations when only image samples are given during training. However, due to the lack of 3D geometry awareness, existing methods typically require many training images and significant learning time to generate novel visualizations faithfully. To address these limitations, we propose ViSNeRF, a novel 3D-aware approach for visualization synthesis using neural radiance fields. Leveraging a multidimensional radiance field representation, ViSNeRF efficiently reconstructs visualizations of dynamic volumetric scenes from a sparse set of labeled image samples with flexible parameter exploration over transfer functions, isovalues, timesteps, or simulation parameters. Through qualitative and quantitative comparative evaluation, we demonstrate ViSNeRF's superior performance over several representative baseline methods, positioning it as the state-of-the-art solution. The code is available at https://github.com/JCBreath/ViSNeRF.

Authors:Vladimir Makharev, Vladimir Ivanov
Title: Code Summarization Beyond Function Level
Abstract:
Code summarization is a critical task in natural language processing and software engineering, which aims to generate concise descriptions of source code. Recent advancements have improved the quality of these summaries, enhancing code readability and maintainability. However, the content of a repository or a class has not been considered in function code summarization. This study investigated the effectiveness of code summarization models beyond the function level, exploring the impact of class and repository contexts on the summary quality. The study involved revising benchmarks for evaluating models at class and repository levels, assessing baseline models, and evaluating LLMs with in-context learning to determine the enhancement of summary quality with additional context. The findings revealed that the fine-tuned state-of-the-art CodeT5+ base model excelled in code summarization, while incorporating few-shot learning and retrieved code chunks from RAG significantly enhanced the performance of LLMs in this task. Notably, the Deepseek Coder 1.3B and Starcoder2 15B models demonstrated substantial improvements in metrics such as BLEURT, METEOR, and BLEU-4 at both class and repository levels. Repository-level summarization exhibited promising potential but necessitates significant computational resources and gains from the inclusion of structured context. Lastly, we employed the recent SIDE code summarization metric in our evaluation. This study contributes to refining strategies for prompt engineering, few-shot learning, and RAG, addressing gaps in benchmarks for code summarization at various levels. Finally, we publish all study details, code, datasets, and results of evaluation in the GitHub repository available at https://github.com/kilimanj4r0/code-summarization-beyond-function-level.

Authors:Rui Li, Xiaowei Zhao
Title: AeroReformer: Aerial Referring Transformer for UAV-based Referring Image Segmentation
Abstract:
As a novel and challenging task, referring segmentation combines computer vision and natural language processing to localize and segment objects based on textual descriptions. While referring image segmentation (RIS) has been extensively studied in natural images, little attention has been given to aerial imagery, particularly from unmanned aerial vehicles (UAVs). The unique challenges of UAV imagery, including complex spatial scales, occlusions, and varying object orientations, render existing RIS approaches ineffective. A key limitation has been the lack of UAV-specific datasets, as manually annotating pixel-level masks and generating textual descriptions is labour-intensive and time-consuming. To address this gap, we design an automatic labelling pipeline that leverages pre-existing UAV segmentation datasets and Multimodal Large Language Models (MLLM) for generating textual descriptions. Furthermore, we propose Aerial Referring Transformer (AeroReformer), a novel framework for UAV referring image segmentation (UAV-RIS), featuring a Vision-Language Cross-Attention Module (VLCAM) for effective cross-modal understanding and a Rotation-Aware Multi-Scale Fusion (RAMSF) decoder to enhance segmentation accuracy in aerial scenes. Extensive experiments on two newly developed datasets demonstrate the superiority of AeroReformer over existing methods, establishing a new benchmark for UAV-RIS. The datasets and code will be publicly available at: https://github.com/lironui/AeroReformer.

Authors:Haiteng Zhao, Chang Ma, Fangzhi Xu, Lingpeng Kong, Zhi-Hong Deng
Title: BioMaze: Benchmarking and Enhancing Large Language Models for Biological Pathway Reasoning
Abstract:
The applications of large language models (LLMs) in various biological domains have been explored recently, but their reasoning ability in complex biological systems, such as pathways, remains underexplored, which is crucial for predicting biological phenomena, formulating hypotheses, and designing experiments. This work explores the potential of LLMs in pathway reasoning. We introduce BioMaze, a dataset with 5.1K complex pathway problems derived from real research, covering various biological contexts including natural dynamic changes, disturbances, additional intervention conditions, and multi-scale research targets. Our evaluation of methods such as CoT and graph-augmented reasoning, shows that LLMs struggle with pathway reasoning, especially in perturbed systems. To address this, we propose PathSeeker, an LLM agent that enhances reasoning through interactive subgraph-based navigation, enabling a more effective approach to handling the complexities of biological systems in a scientifically aligned manner. The dataset and code are available at https://github.com/zhao-ht/BioMaze.

Authors:Chenlong Wang, Zhaoyang Chu, Zhengxiang Cheng, Xuyi Yang, Kaiyue Qiu, Yao Wan, Zhou Zhao, Xuanhua Shi, Dongping Chen
Title: CODESYNC: Synchronizing Large Language Models with Dynamic Code Evolution at Scale
Abstract:
Large Language Models (LLMs) have exhibited exceptional performance in software engineering yet face challenges in adapting to continually evolving code knowledge, particularly regarding the frequent updates of third-party library APIs. This limitation, stemming from static pre-training datasets, often results in non-executable code or implementations with suboptimal safety and efficiency. To this end, this paper introduces CODESYNC, a data engine for identifying outdated code patterns and collecting real-time code knowledge updates from Python third-party libraries. Building upon CODESYNC, we develop CODESYNCBENCH, a comprehensive benchmark for assessing LLMs' ability to stay synchronized with code evolution, which covers real-world updates for 220 APIs from six Python libraries. Our benchmark offers 3,300 test cases across three evaluation tasks and an update-aware instruction tuning dataset consisting of 2,200 training samples. Extensive experiments on 14 state-of-the-art LLMs reveal that they struggle with dynamic code evolution, even with the support of advanced knowledge updating methods (e.g., DPO, ORPO, and SimPO). We believe that our benchmark can offer a strong foundation for the development of more effective methods for real-time code knowledge updating in the future. The experimental code and dataset are publicly available at: https://github.com/Lucky-voyage/Code-Sync.

Authors:Ruichu Cai, Junxian Huang, Zhenhui Yang, Zijian Li, Emadeldeen Eldele, Min Wu, Fuchun Sun
Title: Time Series Domain Adaptation via Latent Invariant Causal Mechanism
Abstract:
Time series domain adaptation aims to transfer the complex temporal dependence from the labeled source domain to the unlabeled target domain. Recent advances leverage the stable causal mechanism over observed variables to model the domain-invariant temporal dependence. However, modeling precise causal structures in high-dimensional data, such as videos, remains challenging. Additionally, direct causal edges may not exist among observed variables (e.g., pixels). These limitations hinder the applicability of existing approaches to real-world scenarios. To address these challenges, we find that the high-dimension time series data are generated from the low-dimension latent variables, which motivates us to model the causal mechanisms of the temporal latent process. Based on this intuition, we propose a latent causal mechanism identification framework that guarantees the uniqueness of the reconstructed latent causal structures. Specifically, we first identify latent variables by utilizing sufficient changes in historical information. Moreover, by enforcing the sparsity of the relationships of latent variables, we can achieve identifiable latent causal structures. Built on the theoretical results, we develop the Latent Causality Alignment (LCA) model that leverages variational inference, which incorporates an intra-domain latent sparsity constraint for latent structure reconstruction and an inter-domain latent sparsity constraint for domain-invariant structure reconstruction. Experiment results on eight benchmarks show a general improvement in the domain-adaptive time series classification and forecasting tasks, highlighting the effectiveness of our method in real-world scenarios. Codes are available at https://github.com/DMIRLAB-Group/LCA.

Authors:Mohamed Bayan Kmainasi, Abul Hasnat, Md Arid Hasan, Ali Ezzat Shahroor, Firoj Alam
Title: MemeIntel: Explainable Detection of Propagandistic and Hateful Memes
Abstract:
The proliferation of multimodal content on social media presents significant challenges in understanding and moderating complex, context-dependent issues such as misinformation, hate speech, and propaganda. While efforts have been made to develop resources and propose new methods for automatic detection, limited attention has been given to jointly modeling label detection and the generation of explanation-based rationales, which often leads to degraded classification performance when trained simultaneously. To address this challenge, we introduce MemeXplain, an explanation-enhanced dataset for propagandistic memes in Arabic and hateful memes in English, making it the first large-scale resource for these tasks. To solve these tasks, we propose a multi-stage optimization approach and train Vision-Language Models (VLMs). Our results show that this strategy significantly improves both label detection and explanation generation quality over the base model, outperforming the current state-of-the-art with an absolute improvement of ~1.4% (Acc) on ArMeme and ~2.2% (Acc) on Hateful Memes. For reproducibility and future research, we aim to make the MemeXplain dataset and scripts publicly available (https://github.com/MohamedBayan/MemeIntel).

Authors:Zengqing Wu, Takayuki Ito
Title: The Hidden Strength of Disagreement: Unraveling the Consensus-Diversity Tradeoff in Adaptive Multi-Agent Systems
Abstract:
Consensus formation is pivotal in multi-agent systems (MAS), balancing collective coherence with individual diversity. Conventional LLM-based MAS primarily rely on explicit coordination, e.g., prompts or voting, risking premature homogenization. We argue that implicit consensus, where agents exchange information yet independently form decisions via in-context learning, can be more effective in dynamic environments that require long-horizon adaptability. By retaining partial diversity, systems can better explore novel strategies and cope with external shocks. We formalize a consensus-diversity tradeoff, showing conditions where implicit methods outperform explicit ones. Experiments on three scenarios -- Dynamic Disaster Response, Information Spread and Manipulation, and Dynamic Public-Goods Provision -- confirm partial deviation from group norms boosts exploration, robustness, and performance. We highlight emergent coordination via in-context learning, underscoring the value of preserving diversity for resilient decision-making.

Authors:Maram Hasanain, Md Arid Hasan, Mohamed Bayan Kmainasi, Elisa Sartori, Ali Ezzat Shahroor, Giovanni Da San Martino, Firoj Alam
Title: PropXplain: Can LLMs Enable Explainable Propaganda Detection?
Abstract:
There has been significant research on propagandistic content detection across different modalities and languages. However, most studies have primarily focused on detection, with little attention given to explanations justifying the predicted label. This is largely due to the lack of resources that provide explanations alongside annotated labels. To address this issue, we propose a multilingual (i.e., Arabic and English) explanation-enhanced dataset, the first of its kind. Additionally, we introduce an explanation-enhanced LLM for both label detection and rationale-based explanation generation. Our findings indicate that the model performs comparably while also generating explanations. We will make the dataset and experimental resources publicly available for the research community (https://github.com/firojalam/PropXplain).

Authors:Jiahao Tang
Title: SDA-DDA Semi-supervised Domain Adaptation with Dynamic Distribution Alignment Network For Emotion Recognition Using EEG Signals
Abstract:
In this paper, we focus on the challenge of individual variability in affective brain-computer interfaces (aBCI), which employs electroencephalogram (EEG) signals to monitor and recognize human emotional states, thereby facilitating the advancement of emotion-aware technologies. The variability in EEG data across individuals poses a significant barrier to the development of effective and widely applicable aBCI models. To tackle this issue, we propose a novel transfer learning framework called Semi-supervised Domain Adaptation with Dynamic Distribution Alignment (SDA-DDA). This approach aligns the marginal and conditional probability distribution of source and target domains using maximum mean discrepancy (MMD) and conditional maximum mean discrepancy (CMMD). We introduce a dynamic distribution alignment mechanism to adjust differences throughout training and enhance adaptation. Additionally, a pseudo-label confidence filtering module is integrated into the semi-supervised process to refine pseudo-label generation and improve the estimation of conditional distributions. Extensive experiments on EEG benchmark databases (SEED, SEED-IV and DEAP) validate the robustness and effectiveness of SDA-DDA. The results demonstrate its superiority over existing methods in emotion recognition across various scenarios, including cross-subject and cross-session conditions. This advancement enhances the generalization and accuracy of emotion recognition, potentially fostering the development of personalized aBCI applications. The source code is accessible at https://github.com/XuanSuTrum/SDA-DDA.

Authors:Jen-Tse Huang, Dasen Dai, Jen-Yuan Huang, Youliang Yuan, Xiaoyuan Liu, Wenxuan Wang, Wenxiang Jiao, Pinjia He, Zhaopeng Tu, Haodong Duan
Title: Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs
Abstract:
Despite significant progress on popular multimodal benchmarks, state-of-the-art Multimodal Large Language Models (MLLMs) continue to struggle with basic visual reasoning tasks that are trivially solved by humans, such as recognizing spatial relationships. To systematically investigate this gap, we introduce VisFactor, a benchmark that digitizes 20 vision-centric subtests from a well-established cognitive psychology assessment. These subtests span four core domains of human visual cognition: (1) Visualization and Spatial Processing, (2) Perceptual and Closure, (3) Memory, and (4) Reasoning. We evaluate 20 frontier MLLMs from GPT, Gemini, Claude, LLaMA, Qwen, and SEED families. The best-performing model achieves a score of only 25.19 out of 100, with consistent failures on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination, regardless of model size or prompting strategy. These findings suggest that current MLLM performance gains on high-level benchmarks do not reflect human-like low-level visual cognition, challenging the assumption that large-scale pretraining naturally induces gestalt-like perceptual capabilities. The dataset and evaluation toolkit are publicly available at: https://github.com/CUHK-ARISE/VisFactor.

Authors:Guifang Xu, Zhiling Zhu, Xingcheng Guo, Wei Wang
Title: A Joint Learning Framework for Bridging Defect Prediction and Interpretation
Abstract:
Over the past fifty years, numerous software defect prediction (SDP) approaches have been proposed. However, the ability to explain why predictors make certain predictions remains limited. Explainable SDP has emerged as a promising solution by using explainable artificial intelligence (XAI) methods to clarify the decision-making processes of predictors. Despite this progress, there is still significant potential to enhance the reliability of existing approaches. To address this limitation, we treat defect prediction and the corresponding interpretation as two distinct but closely related tasks and propose a joint learning framework that allows for the simultaneous training of the predictor and its interpreter. The novelty of our approach lies in two main aspects: 1. We design feedback loops that convey the decision-making logic from the predictor to the interpreter. This ensures a high level of conciseness in decision logic and feature engineering for both the predictor and the interpreter, enabling the interpreter to achieve reliable local and global interpretability. 2. We incorporate the interpretation results as a penalty term in the loss function of the joint-learning framework. This not only improves the accuracy of the predictor but also imposes a stronger constraint on the reliability of the interpreter. We validated our proposed method against several existing explainable SDPs across multiple datasets. The results demonstrate its effectiveness in both interpretation and defect prediction. The source code for the proposed method is available at: https://github.com/BugPredictor/software-defect-prediction.git

Authors:Kaibin Zhou, Kaifeng Huang, Hao Deng, Zelin Tao, Ziniu Liu, Lin Zhang, Shengjie Zhao
Title: Learning from Rendering: Realistic and Controllable Extreme Rainy Image Synthesis for Autonomous Driving Simulation
Abstract:
Autonomous driving simulators provide an effective and low-cost alternative for evaluating or enhancing visual perception models. However, the reliability of evaluation depends on the diversity and realism of the generated scenes. Extreme weather conditions, particularly extreme rainfalls, are rare and costly to capture in real-world settings. While simulated environments can help address this limitation, existing rainy image synthesizers often suffer from poor controllability over illumination and limited realism, which significantly undermines the effectiveness of the model evaluation. To that end, we propose a learning-from-rendering rainy image synthesizer, which combines the benefits of the realism of rendering-based methods and the controllability of learning-based methods. To validate the effectiveness of our extreme rainy image synthesizer on semantic segmentation task, we require a continuous set of well-labeled extreme rainy images. By integrating the proposed synthesizer with the CARLA driving simulator, we develop CARLARain an extreme rainy street scene simulator which can obtain paired rainy-clean images and labels under complex illumination conditions. Qualitative and quantitative experiments validate that CARLARain can effectively improve the accuracy of semantic segmentation models in extreme rainy scenes, with the models' accuracy (mIoU) improved by 5% - 8% on the synthetic dataset and significantly enhanced in real extreme rainy scenarios under complex illuminations. Our source code and datasets are available at https://github.com/kb824999404/CARLARain/.

Authors:Jianbin Jiao, Xina Cheng, Kailun Yang, Xiangrong Zhang, Licheng Jiao
Title: DeProPose: Deficiency-Proof 3D Human Pose Estimation via Adaptive Multi-View Fusion
Abstract:
3D human pose estimation has wide applications in fields such as intelligent surveillance, motion capture, and virtual reality. However, in real-world scenarios, issues such as occlusion, noise interference, and missing viewpoints can severely affect pose estimation. To address these challenges, we introduce the task of Deficiency-Aware 3D Pose Estimation. Traditional 3D pose estimation methods often rely on multi-stage networks and modular combinations, which can lead to cumulative errors and increased training complexity, making them unable to effectively address deficiency-aware estimation. To this end, we propose DeProPose, a flexible method that simplifies the network architecture to reduce training complexity and avoid information loss in multi-stage designs. Additionally, the model innovatively introduces a multi-view feature fusion mechanism based on relative projection error, which effectively utilizes information from multiple viewpoints and dynamically assigns weights, enabling efficient integration and enhanced robustness to overcome deficiency-aware 3D Pose Estimation challenges. Furthermore, to thoroughly evaluate this end-to-end multi-view 3D human pose estimation model and to advance research on occlusion-related challenges, we have developed a novel 3D human pose estimation dataset, termed the Deficiency-Aware 3D Pose Estimation (DA-3DPE) dataset. This dataset encompasses a wide range of deficiency scenarios, including noise interference, missing viewpoints, and occlusion challenges. Compared to state-of-the-art methods, DeProPose not only excels in addressing the deficiency-aware problem but also shows improvement in conventional scenarios, providing a powerful and user-friendly solution for 3D human pose estimation. The source code will be available at https://github.com/WUJINHUAN/DeProPose.

Authors:Liancheng Fang, Aiwei Liu, Hengrui Zhang, Henry Peng Zou, Weizhi Zhang, Philip S. Yu
Title: TabGen-ICL: Residual-Aware In-Context Example Selection for Tabular Data Generation
Abstract:
Large Language models (LLMs) have achieved encouraging results in tabular data generation. However, existing approaches require fine-tuning, which is computationally expensive. This paper explores an alternative: prompting a fixed LLM with in-context examples. We observe that using randomly selected in-context examples hampers the LLM's performance, resulting in sub-optimal generation quality. To address this, we propose a novel in-context learning framework: TabGen-ICL, to enhance the in-context learning ability of LLMs for tabular data generation. TabGen-ICL operates iteratively, retrieving a subset of real samples that represent the residual between currently generated samples and true data distributions. This approach serves two purposes: locally, it provides more effective in-context learning examples for the LLM in each iteration; globally, it progressively narrows the gap between generated and real data. Extensive experiments on five real-world tabular datasets demonstrate that TabGen-ICL significantly outperforms the random selection strategy. Specifically, it reduces the error rate by a margin of $3.5\%-42.2\%$ on fidelity metrics. We demonstrate for the first time that prompting a fixed LLM can yield high-quality synthetic tabular data. The code is provided in the \href{https://github.com/fangliancheng/TabGEN-ICL}{link}.

Authors:Xichen Xu, Yanshu Wang, Yawen Huang, Jiaqi Liu, Xiaoning Lei, Guoyang Xie, Guannan Jiang, Zhichao Lu
Title: A Survey on Industrial Anomalies Synthesis
Abstract:
This paper comprehensively reviews anomaly synthesis methodologies. Existing surveys focus on limited techniques, missing an overall field view and understanding method interconnections. In contrast, our study offers a unified review, covering about 40 representative methods across Hand-crafted, Distribution-hypothesis-based, Generative models (GM)-based, and Vision-language models (VLM)-based synthesis. We introduce the first industrial anomaly synthesis (IAS) taxonomy. Prior works lack formal classification or use simplistic taxonomies, hampering structured comparisons and trend identification. Our taxonomy provides a fine-grained framework reflecting methodological progress and practical implications, grounding future research. Furthermore, we explore cross-modality synthesis and large-scale VLM. Previous surveys overlooked multimodal data and VLM in anomaly synthesis, limiting insights into their advantages. Our survey analyzes their integration, benefits, challenges, and prospects, offering a roadmap to boost IAS with multimodal learning. More resources are available at https://github.com/M-3LAB/awesome-anomaly-synthesis.

Authors:Kyungbok Lee, You Zhang, Zhiyao Duan
Title: Audio Visual Segmentation Through Text Embeddings
Abstract:
The goal of Audio-Visual Segmentation (AVS) is to localize and segment the sounding source objects from video frames. Research on AVS suffers from data scarcity due to the high cost of fine-grained manual annotations. Recent works attempt to overcome the challenge of limited data by leveraging the vision foundation model, Segment Anything Model (SAM), prompting it with audio to enhance its ability to segment sounding source objects. While this approach alleviates the model's burden on understanding visual modality by utilizing knowledge of pre-trained SAM, it does not address the fundamental challenge of learning audio-visual correspondence with limited data. To address this limitation, we propose \textbf{AV2T-SAM}, a novel framework that bridges audio features with the text embedding space of pre-trained text-prompted SAM. Our method leverages multimodal correspondence learned from rich text-image paired datasets to enhance audio-visual alignment. Furthermore, we introduce a novel feature, $\mathbf{\textit{\textbf{f}}_{CLIP} \odot \textit{\textbf{f}}_{CLAP}}$, which emphasizes shared semantics of audio and visual modalities while filtering irrelevant noise. Our approach outperforms existing methods on the AVSBench dataset by effectively utilizing pre-trained segmentation models and cross-modal semantic alignment. The source code is released at https://github.com/bok-bok/AV2T-SAM.

Authors:Zahra Shahrooei, Ali Baheri
Title: Optimal Transport-Guided Safety in Temporal Difference Reinforcement Learning
Abstract:
The primary goal of reinforcement learning is to develop decision-making policies that prioritize optimal performance, frequently without considering safety. In contrast, safe reinforcement learning seeks to reduce or avoid unsafe behavior. This paper views safety as taking actions with more predictable consequences under environment stochasticity and introduces a temporal difference algorithm that uses optimal transport theory to quantify the uncertainty associated with actions. By integrating this uncertainty score into the decision-making objective, the agent is encouraged to favor actions with more predictable outcomes. We theoretically prove that our algorithm leads to a reduction in the probability of visiting unsafe states. We evaluate the proposed algorithm on several case studies in the presence of various forms of environment uncertainty. The results demonstrate that our method not only provides safer behavior but also maintains the performance. A Python implementation of our algorithm is available at \href{https://github.com/SAILRIT/Risk-averse-TD-Learning}{https://github.com/SAILRIT/OT-guided-TD-Learning}.

Authors:Alexander Kolpakov, Aidan Rocke
Title: Benford's Law from Turing Ensembles and Integer Partitions
Abstract:
We develop two complementary generative mechanisms that explain when and why Benford's first-digit law arises. First, a probabilistic Turing machine (PTM) ensemble induces a geometric law for code length. Maximizing its entropy under a constraint on halting length yields Benford statistics. This model shows a phase transition with respect to the halt probability. Second, a constrained partition model (Einstein-solid combinatorics) recovers the same logarithmic profile as the maximum-entropy solution under a coarse-grained entropy-rate constraint, clarifying the role of non-ergodicity (ensemble vs. trajectory averages). We also perform numerical experiments that corroborate our conclusions.

Authors:Alexander Kolpakov, Aidan Rocke
Title: Benford's Law from Turing Ensembles and Integer Partitions
Abstract:
We develop two complementary generative mechanisms that explain when and why Benford's first-digit law arises. First, a probabilistic Turing machine (PTM) ensemble induces a geometric law for codelength. Maximizing its entropy under a constraint on halting length yields Benford statistics. This model shows a phase transition with respect to the halt probability. Second, a constrained partition model (Einstein-solid combinatorics) recovers the same logarithmic profile as the maximum-entropy solution under a coarse-grained entropy-rate constraint, clarifying the role of non-ergodicity (ensemble vs. trajectory averages). We also perform numerical experiments that corroborate our conclusions.

Authors:Tuan-Anh Yang, Truong-Son Hy, Phuong D. Dao
Title: MOB-GCN: A Novel Multiscale Object-Based Graph Neural Network for Hyperspectral Image Classification
Abstract:
This paper introduces a novel multiscale object-based graph neural network called MOB-GCN for hyperspectral image (HSI) classification. The central aim of this study is to enhance feature extraction and classification performance by utilizing multiscale object-based image analysis (OBIA). Traditional pixel-based methods often suffer from low accuracy and speckle noise, while single-scale OBIA approaches may overlook crucial information of image objects at different levels of detail. MOB-GCN addresses this issue by extracting and integrating features from multiple segmentation scales to improve classification results using the Multiresolution Graph Network (MGN) architecture that can model fine-grained and global spatial patterns. By constructing a dynamic multiscale graph hierarchy, MOB-GCN offers a more comprehensive understanding of the intricate details and global context of HSIs. Experimental results demonstrate that MOB-GCN consistently outperforms single-scale graph convolutional networks (GCNs) in terms of classification accuracy, computational efficiency, and noise reduction, particularly when labeled data is limited. The implementation of MOB-GCN is publicly available at https://github.com/HySonLab/MultiscaleHSI

Authors:Abdelrahman Hussein
Title: Finite Element Theory for PHIMATS
Abstract:
This document summarizes the main ideas of the finite element method (FEM) theory and constitutive relations as implemented in the PHIMATS code (\href{https://github.com/ahcomat/PHIMATS.git}{GitHub Repository}). Rather than detailing the derivations or specific models, this document focuses on the key mathematical foundations and numerical strategies used within the implementation. For in-depth theoretical discussions, the reader is encouraged to consult the references. For citing this document, please use ... Hands-on examples can be found in CaseStudies directory on the GitHub repository. .

Authors:Megan Tjandrasuwita, Chanakya Ekbote, Liu Ziyin, Paul Pu Liang
Title: Understanding the Emergence of Multimodal Representation Alignment
Abstract:
Multimodal representation learning is fundamentally about transforming incomparable modalities into comparable representations. While prior research primarily focused on explicitly aligning these representations through targeted learning objectives and model architectures, a recent line of work has found that independently trained unimodal models of increasing scale and performance can become implicitly aligned with each other. These findings raise fundamental questions regarding the emergence of aligned representations in multimodal learning. Specifically: (1) when and why does alignment emerge implicitly? and (2) is alignment a reliable indicator of performance? Through a comprehensive empirical investigation, we demonstrate that both the emergence of alignment and its relationship with task performance depend on several critical data characteristics. These include, but are not necessarily limited to, the degree of similarity between the modalities and the balance between redundant and unique information they provide for the task. Our findings suggest that alignment may not be universally beneficial; rather, its impact on performance varies depending on the dataset and task. These insights can help practitioners determine whether increasing alignment between modalities is advantageous or, in some cases, detrimental to achieving optimal performance. Code is released at https://github.com/MeganTj/multimodal_alignment.

Authors:Yang Xiang, Li Fan, Chenke Yin, Menglin Kong, Chengtao Ji
Title: Harnessing Light for Cold-Start Recommendations: Leveraging Epistemic Uncertainty to Enhance Performance in User-Item Interactions
Abstract:
Most recent paradigms of generative model-based recommendation still face challenges related to the cold-start problem. Existing models addressing cold item recommendations mainly focus on acquiring more knowledge to enrich embeddings or model inputs. However, many models do not assess the efficiency with which they utilize the available training knowledge, leading to the extraction of significant knowledge that is not fully used, thus limiting improvements in cold-start performance. To address this, we introduce the concept of epistemic uncertainty to indirectly define how efficiently a model uses the training knowledge. Since epistemic uncertainty represents the reducible part of the total uncertainty, we can optimize the recommendation model further based on epistemic uncertainty to improve its performance. To this end, we propose a Cold-Start Recommendation based on Epistemic Uncertainty (CREU) framework. Additionally, CREU is inspired by Pairwise-Distance Estimators (PaiDEs) to efficiently and accurately measure epistemic uncertainty by evaluating the mutual information between model outputs and weights in high-dimensional spaces. The proposed method is evaluated through extensive offline experiments on public datasets, which further demonstrate the advantages and robustness of CREU. The source code is available at https://github.com/EsiksonX/CREU.

Authors:Arshia Afzal, Elias Abad Rocamora, Leyla Naz Candogan, Pol Puigdemont, Francesco Tonin, Yongtao Wu, Mahsa Shoaran, Volkan Cevher
Title: Linear Attention for Efficient Bidirectional Sequence Modeling
Abstract:
Transformers with linear attention enable fast and parallel training. Moreover, they can be formulated as Recurrent Neural Networks (RNNs), for efficient linear-time inference. While extensively evaluated in causal sequence modeling, they have yet to be extended to the bidirectional setting. This work introduces the LION framework, establishing new theoretical foundations for linear transformers in bidirectional sequence modeling. LION constructs a bidirectional RNN equivalent to full Linear Attention. This extends the benefits of linear transformers: parallel training, and efficient inference, into the bidirectional setting. Using LION, we cast three linear transformers to their bidirectional form: LION-LIT, the bidirectional variant corresponding to (Katharopoulos et al., 2020); LION-D, extending RetNet (Sun et al., 2023); and LION-S, a linear transformer with a stable selective mask inspired by selectivity of SSMs (Dao & Gu, 2024). Replacing the attention block with LION (-LIT, -D, -S) achieves performance on bidirectional tasks that approaches that of Transformers and State-Space Models (SSMs), while delivering significant improvements in training speed. Our implementation is available in http://github.com/LIONS-EPFL/LION.

Authors:Sayedmohammadreza Rastegari, Sina Tabakhi, Xianyuan Liu, Wei Sang, Haiping Lu
Title: Co-evolution-based Metal-binding Residue Prediction with Graph Neural Networks
Abstract:
In computational structural biology, predicting metal-binding sites and their corresponding metal types is challenging due to the complexity of protein structures and interactions. Conventional sequence- and structure-based prediction approaches cannot capture the complex evolutionary relationships driving these interactions to facilitate understanding, while recent co-evolution-based approaches do not fully consider the entire structure of the co-evolved residue network. In this paper, we introduce MBGNN (Metal-Binding Graph Neural Network) that utilizes the entire co-evolved residue network and effectively captures the complex dependencies within protein structures via graph neural networks to enhance the prediction of co-evolved metal-binding residues and their associated metal types. Experimental results on a public dataset show that MBGNN outperforms existing co-evolution-based metal-binding prediction methods, and it is also competitive against recent sequence-based methods, showing the potential of integrating co-evolutionary insights with advanced machine learning to deepen our understanding of protein-metal interactions. The MBGNN code is publicly available at https://github.com/SRastegari/MBGNN.

Authors:Chunyang Li, Weiqi Wang, Tianshi Zheng, Yangqiu Song
Title: Patterns Over Principles: The Fragility of Inductive Reasoning in LLMs under Noisy Observations
Abstract:
Inductive reasoning, a cornerstone of human cognition, enables generalization from limited data but hasn't yet been fully achieved by large language models (LLMs). While modern LLMs excel at reasoning tasks, their ability to maintain stable and consistent rule abstraction under imperfect observations remains underexplored. To fill this gap, in this work, we introduce Robust Rule Induction, a task that evaluates LLMs' capability in inferring rules from data that are fused with noisy examples. To address this task, we further propose Sample-steered Rule Refinement (SRR), a method enhancing reasoning stability via observation diversification and execution-guided feedback. Experiments across arithmetic, cryptography, and list functions reveal: (1) SRR outperforms other methods with minimal performance degradation under noise; (2) Despite slight accuracy variation, LLMs exhibit instability under noise (e.g., 0% accuracy change with only 70% consistent score); (3) Counterfactual task gaps highlight LLMs' reliance on memorized patterns over genuine abstraction. Our findings challenge LLMs' reasoning robustness, revealing susceptibility to hypothesis drift and pattern overfitting, while providing empirical evidence critical for developing human-like inductive systems. Code and data are available at https://github.com/HKUST-KnowComp/Robust-Rule-Induction.

Authors:Wenwen Yu, Zhibo Yang, Jianqiang Wan, Sibo Song, Jun Tang, Wenqing Cheng, Yuliang Liu, Xiang Bai
Title: OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models
Abstract:
Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding and the emergence of large language models capable of processing document-based questions. While various methods have been proposed to tackle the complexities of VsTP, existing solutions often rely on task-specific architectures and objectives for individual tasks. This leads to modal isolation and complex workflows due to the diversified targets and heterogeneous schemas. In this paper, we introduce OmniParser V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis, into a unified framework. Central to our approach is the proposed Structured-Points-of-Thought (SPOT) prompting schemas, which improves model performance across diverse scenarios by leveraging a unified encoder-decoder architecture, objective, and input\&output representation. SPOT eliminates the need for task-specific architectures and loss functions, significantly simplifying the processing pipeline. Our extensive evaluations across four tasks on eight different datasets show that OmniParser V2 achieves state-of-the-art or competitive results in VsTP. Additionally, we explore the integration of SPOT within a multimodal large language model structure, further enhancing text localization and recognition capabilities, thereby confirming the generality of SPOT prompting technique. The code is available at \href{https://github.com/AlibabaResearch/AdvancedLiterateMachinery}{AdvancedLiterateMachinery}.

Authors:Anton Pogrebnjak, Julian Schelb, Andreas Spitz, Celina Kacperski, Roberto Ulloa
Title: Tag-Pag: A Dedicated Tool for Systematic Web Page Annotations
Abstract:
Tag-Pag is an application designed to simplify the categorization of web pages, a task increasingly common for researchers who scrape web pages to analyze individuals' browsing patterns or train machine learning classifiers. Unlike existing tools that focus on annotating sections of text, Tag-Pag systematizes page-level annotations, allowing users to determine whether an entire document relates to one or multiple predefined topics. Tag-Pag offers an intuitive interface to configure the input web pages and annotation labels. It integrates libraries to extract content from the HTML and URL indicators to aid the annotation process. It provides direct access to both scraped and live versions of the web page. Our tool is designed to expedite the annotation process with features like quick navigation, label assignment, and export functionality, making it a versatile and efficient tool for various research applications. Tag-Pag is available at https://github.com/Pantonius/TagPag.

Authors:Beibei Li, Tao Xiang, Beihong Jin, Yiyuan Zheng, Rui Zhao
Title: Semantic Gaussian Mixture Variational Autoencoder for Sequential Recommendation
Abstract:
Variational AutoEncoder (VAE) for Sequential Recommendation (SR), which learns a continuous distribution for each user-item interaction sequence rather than a determinate embedding, is robust against data deficiency and achieves significant performance. However, existing VAE-based SR models assume a unimodal Gaussian distribution as the prior distribution of sequence representations, leading to restricted capability to capture complex user interests and limiting recommendation performance when users have more than one interest. Due to that it is common for users to have multiple disparate interests, we argue that it is more reasonable to establish a multimodal prior distribution in SR scenarios instead of a unimodal one. Therefore, in this paper, we propose a novel VAE-based SR model named SIGMA. SIGMA assumes that the prior of sequence representation conforms to a Gaussian mixture distribution, where each component of the distribution semantically corresponds to one of multiple interests. For multi-interest elicitation, SIGMA includes a probabilistic multi-interest extraction module that learns a unimodal Gaussian distribution for each interest according to implicit item hyper-categories. Additionally, to incorporate the multimodal interests into sequence representation learning, SIGMA constructs a multi-interest-aware ELBO, which is compatible with the Gaussian mixture prior. Extensive experiments on public datasets demonstrate the effectiveness of SIGMA. The code is available at https://github.com/libeibei95/SIGMA.

Authors:Feng Liu, Hanyang Wang, Siyuan Shen
Title: Robust Dynamic Facial Expression Recognition
Abstract:
The study of Dynamic Facial Expression Recognition (DFER) is a nascent field of research that involves the automated recognition of facial expressions in video data. Although existing research has primarily focused on learning representations under noisy and hard samples, the issue of the coexistence of both types of samples remains unresolved. In order to overcome this challenge, this paper proposes a robust method of distinguishing between hard and noisy samples. This is achieved by evaluating the prediction agreement of the model on different sampled clips of the video. Subsequently, methodologies that reinforce the learning of hard samples and mitigate the impact of noisy samples can be employed. Moreover, to identify the principal expression in a video and enhance the model's capacity for representation learning, comprising a key expression re-sampling framework and a dual-stream hierarchical network is proposed, namely Robust Dynamic Facial Expression Recognition (RDFER). The key expression re-sampling framework is designed to identify the key expression, thereby mitigating the potential confusion caused by non-target expressions. RDFER employs two sequence models with the objective of disentangling short-term facial movements and long-term emotional changes. The proposed method has been shown to outperform current State-Of-The-Art approaches in DFER through extensive experimentation on benchmark datasets such as DFEW and FERV39K. A comprehensive analysis provides valuable insights and observations regarding the proposed agreement. This work has significant implications for the field of dynamic facial expression recognition and promotes the further development of the field of noise-consistent robust learning in dynamic facial expression recognition. The code is available from [https://github.com/Cross-Innovation-Lab/RDFER].

Authors:Heng Gao, Zhuolin He, Jian Pu
Title: Detecting OOD Samples via Optimal Transport Scoring Function
Abstract:
To deploy machine learning models in the real world, researchers have proposed many OOD detection algorithms to help models identify unknown samples during the inference phase and prevent them from making untrustworthy predictions. Unlike methods that rely on extra data for outlier exposure training, post hoc methods detect Out-of-Distribution (OOD) samples by developing scoring functions, which are model agnostic and do not require additional training. However, previous post hoc methods may fail to capture the geometric cues embedded in network representations. Thus, in this study, we propose a novel score function based on the optimal transport theory, named OTOD, for OOD detection. We utilize information from features, logits, and the softmax probability space to calculate the OOD score for each test sample. Our experiments show that combining this information can boost the performance of OTOD with a certain margin. Experiments on the CIFAR-10 and CIFAR-100 benchmarks demonstrate the superior performance of our method. Notably, OTOD outperforms the state-of-the-art method GEN by 7.19% in the mean FPR@95 on the CIFAR-10 benchmark using ResNet-18 as the backbone, and by 12.51% in the mean FPR@95 using WideResNet-28 as the backbone. In addition, we provide theoretical guarantees for OTOD. The code is available in https://github.com/HengGao12/OTOD.

Authors:Patrick Tser Jern Kon, Jiachen Liu, Qiuyi Ding, Yiming Qiu, Zhenning Yang, Yibo Huang, Jayanth Srinivasa, Myungjin Lee, Mosharaf Chowdhury, Ang Chen
Title: Curie: Toward Rigorous and Automated Scientific Experimentation with AI Agents
Abstract:
Scientific experimentation, a cornerstone of human progress, demands rigor in reliability, methodical control, and interpretability to yield meaningful results. Despite the growing capabilities of large language models (LLMs) in automating different aspects of the scientific process, automating rigorous experimentation remains a significant challenge. To address this gap, we propose Curie, an AI agent framework designed to embed rigor into the experimentation process through three key components: an intra-agent rigor module to enhance reliability, an inter-agent rigor module to maintain methodical control, and an experiment knowledge module to enhance interpretability. To evaluate Curie, we design a novel experimental benchmark composed of 46 questions across four computer science domains, derived from influential research papers, and widely adopted open-source projects. Compared to the strongest baseline tested, we achieve a 3.4$\times$ improvement in correctly answering experimental questions. Curie is open-sourced at https://github.com/Just-Curieous/Curie.

Authors:Jathurshan Pradeepkumar, Xihao Piao, Zheng Chen, Jimeng Sun
Title: Tokenizing Single-Channel EEG with Time-Frequency Motif Learning
Abstract:
Foundation models are reshaping EEG analysis, yet an important problem of EEG tokenization remains a challenge. This paper presents TFM-Tokenizer, a novel tokenization framework that learns a vocabulary of time-frequency motifs from single-channel EEG signals and encodes them into discrete tokens. We propose a dual-path architecture with time-frequency masking to capture robust motif representations, and it is model-agnostic, supporting both lightweight transformers and existing foundation models for downstream tasks. Our study demonstrates three key benefits: Accuracy: Experiments on four diverse EEG benchmarks demonstrate consistent performance gains across both single- and multi-dataset pretraining settings, achieving up to 17% improvement in Cohen's Kappa over strong baselines. Generalization: Moreover, as a plug-and-play component, it consistently boosts the performance of diverse foundation models, including BIOT and LaBraM. Scalability: By operating at the single-channel level rather than relying on the strict 10-20 EEG system, our method has the potential to be device-agnostic. Experiments on ear-EEG sleep staging, which differs from the pretraining data in signal format, channel configuration, recording device, and task, show that our tokenizer outperforms baselines by 14%. A comprehensive token analysis reveals strong class-discriminative, frequency-aware, and consistent structure, enabling improved representation quality and interpretability. Code is available at https://github.com/Jathurshan0330/TFM-Tokenizer.

Authors:Zheling Tan, Kexin Ding, Jin Gao, Mu Zhou, Dimitris Metaxas, Shaoting Zhang, Dequan Wang
Title: MedForge: Building Medical Foundation Models Like Open Source Software Development
Abstract:
Foundational models (FMs) have made significant strides in the healthcare domain. Yet the data silo challenge and privacy concern remain in healthcare systems, hindering safe medical data sharing and collaborative model development among institutions. The collection and curation of scalable clinical datasets increasingly become the bottleneck for training strong FMs. In this study, we propose Medical Foundation Models Merging (MedForge), a cooperative framework enabling a community-driven medical foundation model development, meanwhile preventing the information leakage of raw patient data and mitigating synchronization model development issues across clinical institutions. MedForge offers a bottom-up model construction mechanism by flexibly merging task-specific Low-Rank Adaptation (LoRA) modules, which can adapt to downstream tasks while retaining original model parameters. Through an asynchronous LoRA module integration scheme, the resulting composite model can progressively enhance its comprehensive performance on various clinical tasks. MedForge shows strong performance on multiple clinical datasets (e.g., breast cancer, lung cancer, and colon cancer) collected from different institutions. Our major findings highlight the value of collaborative foundation models in advancing multi-center clinical collaboration effectively and cohesively. Our code is publicly available at https://github.com/TanZheling/MedForge.

Authors:Mike Ranzinger, Greg Heinrich, Pavlo Molchanov, Jan Kautz, Bryan Catanzaro, Andrew Tao
Title: FeatSharp: Your Vision Model Features, Sharper
Abstract:
The feature maps of vision encoders are fundamental to myriad modern AI tasks, ranging from core perception algorithms (e.g. semantic segmentation, object detection, depth perception, etc.) to modern multimodal understanding in vision-language models (VLMs). Currently, in computer vision, the frontier of general purpose vision backbones is Vision Transformers (ViT), typically trained using contrastive loss (e.g. CLIP). A key problem with most off-the-shelf ViTs, particularly CLIP, is that these models are inflexibly low resolution. Most run at $224 \times 224$px, while the "high-resolution" versions are around $378-448$px, but still inflexible. We introduce a novel method to coherently and cheaply upsample the feature maps of low-resolution vision encoders while picking up on fine-grained details that would otherwise be lost due to resolution. We demonstrate the effectiveness of this approach on core perception tasks as well as within agglomerative model training using RADIO as a way of providing richer targets for distillation. Code available at https://github.com/NVlabs/FeatSharp .

Authors:Prashant Shekhar, Bidur Devkota, Dumindu Samaraweera, Laxima Niure Kandel, Manoj Babu
Title: Cross-Model Transferability of Adversarial Patches in Real-time Segmentation for Autonomous Driving
Abstract:
Adversarial attacks pose a significant threat to deep learning models, particularly in safety-critical applications like healthcare and autonomous driving. Recently, patch based attacks have demonstrated effectiveness in real-time inference scenarios owing to their 'drag and drop' nature. Following this idea for Semantic Segmentation (SS), here we propose a novel Expectation Over Transformation (EOT) based adversarial patch attack that is more realistic for autonomous vehicles. To effectively train this attack we also propose a 'simplified' loss function that is easy to analyze and implement. Using this attack as our basis, we investigate whether adversarial patches once optimized on a specific SS model, can fool other models or architectures. We conduct a comprehensive cross-model transferability analysis of adversarial patches trained on SOTA Convolutional Neural Network (CNN) models such PIDNet-S, PIDNet-M and PIDNet-L, among others. Additionally, we also include the Segformer model to study transferability to Vision Transformers (ViTs). All of our analysis is conducted on the widely used Cityscapes dataset. Our study reveals key insights into how model architectures (CNN vs CNN or CNN vs. Transformer-based) influence attack susceptibility. In particular, we conclude that although the transferability (effectiveness) of attacks on unseen images of any dimension is really high, the attacks trained against one particular model are minimally effective on other models. And this was found to be true for both ViT and CNN based models. Additionally our results also indicate that for CNN-based models, the repercussions of patch attacks are local, unlike ViTs. Per-class analysis reveals that simple-classes like 'sky' suffer less misclassification than others. The code for the project is available at: https://github.com/p-shekhar/adversarial-patch-transferability

Authors:Yuan Tian, Daniel Lee, Fei Wu, Tung Mai, Kun Qian, Siddhartha Sahai, Tianyi Zhang, Yunyao Li
Title: Text-to-SQL Domain Adaptation via Human-LLM Collaborative Data Annotation
Abstract:
Text-to-SQL models, which parse natural language (NL) questions to executable SQL queries, are increasingly adopted in real-world applications. However, deploying such models in the real world often requires adapting them to the highly specialized database schemas used in specific applications. We find that existing text-to-SQL models experience significant performance drops when applied to new schemas, primarily due to the lack of domain-specific data for fine-tuning. This data scarcity also limits the ability to effectively evaluate model performance in new domains. Continuously obtaining high-quality text-to-SQL data for evolving schemas is prohibitively expensive in real-world scenarios. To bridge this gap, we propose SQLsynth, a human-in-the-loop text-to-SQL data annotation system. SQLsynth streamlines the creation of high-quality text-to-SQL datasets through human-LLM collaboration in a structured workflow. A within-subjects user study comparing SQLsynth with manual annotation and ChatGPT shows that SQLsynth significantly accelerates text-to-SQL data annotation, reduces cognitive load, and produces datasets that are more accurate, natural, and diverse. Our code is available at https://github.com/adobe/nl_sql_analyzer.

Authors:Parth Bhalerao, Mounika Yalamarty, Brian Trinh, Oana Ignat
Title: Multi-Agent Multimodal Models for Multicultural Text to Image Generation
Abstract:
Large Language Models (LLMs) demonstrate impressive performance across various multimodal tasks. However, their effectiveness in cross-cultural contexts remains limited due to the predominantly Western-centric nature of existing data and models. Meanwhile, multi-agent models have shown strong capabilities in solving complex tasks. In this paper, we evaluate the performance of LLMs in a multi-agent interaction setting for the novel task of multicultural image generation. Our key contributions are: (1) We introduce MosAIG, a Multi-Agent framework that enhances multicultural Image Generation by leveraging LLMs with distinct cultural personas; (2) We provide a dataset of 9,000 multicultural images spanning five countries, three age groups, two genders, 25 historical landmarks, and five languages; and (3) We demonstrate that multi-agent interactions outperform simple, no-agent models across multiple evaluation metrics, offering valuable insights for future research. Our dataset and models are available at https://github.com/OanaIgnat/MosAIG.

Authors:William Rudman, Michal Golovanevsky, Amir Bar, Vedant Palit, Yann LeCun, Carsten Eickhoff, Ritambhara Singh
Title: Forgotten Polygons: Multimodal Large Language Models are Shape-Blind
Abstract:
Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.

Authors:Alan Zhu, Jiaqi Ma, Qiaozhu Mei
Title: Efficient Estimation of Shortest-Path Distance Distributions to Samples in Graphs
Abstract:
As large graph datasets become increasingly common across many fields, sampling is often needed to reduce the graphs into manageable sizes. This procedure raises critical questions about representativeness as no sample can capture the properties of the original graph perfectly, and different parts of the graph are not evenly affected by the loss. Recent work has shown that the distances from the non-sampled nodes to the sampled nodes can be a quantitative indicator of bias and fairness in graph machine learning. However, to our knowledge, there is no method for evaluating how a sampling method affects the distribution of shortest-path distances without actually performing the sampling and shortest-path calculation. In this paper, we present an accurate and efficient framework for estimating the distribution of shortest-path distances to the sample, applicable to a wide range of sampling methods and graph structures. Our framework is faster than empirical methods and only requires the specification of degree distributions. We also extend our framework to handle graphs with community structures. While this introduces a decrease in accuracy, we demonstrate that our framework remains highly accurate on downstream comparison-based tasks. Code is publicly available at https://github.com/az1326/shortest_paths.

Authors:Hongjie Zhu, Zeyu Zhang, Guansong Pang, Xu Wang, Shimin Wen, Yu Bai, Daji Ergu, Ying Cai, Yang Zhao
Title: DOEI: Dual Optimization of Embedding Information for Attention-Enhanced Class Activation Maps
Abstract:
Weakly supervised semantic segmentation (WSSS) typically utilizes limited semantic annotations to obtain initial Class Activation Maps (CAMs). However, due to the inadequate coupling between class activation responses and semantic information in high-dimensional space, the CAM is prone to object co-occurrence or under-activation, resulting in inferior recognition accuracy. To tackle this issue, we propose DOEI, Dual Optimization of Embedding Information, a novel approach that reconstructs embedding representations through semantic-aware attention weight matrices to optimize the expression capability of embedding information. Specifically, DOEI amplifies tokens with high confidence and suppresses those with low confidence during the class-to-patch interaction. This alignment of activation responses with semantic information strengthens the propagation and decoupling of target features, enabling the generated embeddings to more accurately represent target features in high-level semantic space. In addition, we propose a hybrid-feature alignment module in DOEI that combines RGB values, embedding-guided features, and self-attention weights to increase the reliability of candidate tokens. Comprehensive experiments show that DOEI is an effective plug-and-play module that empowers state-of-the-art visual transformer-based WSSS models to significantly improve the quality of CAMs and segmentation performance on popular benchmarks, including PASCAL VOC (+3.6%, +1.5%, +1.2% mIoU) and MS COCO (+1.2%, +1.6% mIoU). Code will be available at https://github.com/AIGeeksGroup/DOEI.

Authors:Aryan Jadon, Avinash Patil, Shashank Kumar
Title: Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models
Abstract:
Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision $Ω$ and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision $Ω= 0.28$ at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model

Authors:Haokun Chen, Sebastian Szyller, Weilin Xu, Nageen Himayat
Title: Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language Models
Abstract:
Large language models (LLMs) are trained using massive datasets, which often contain undesirable content such as harmful texts, personal information, and copyrighted material. To address this, machine unlearning aims to remove information from trained models. Recent work has shown that soft token attacks (STA) can successfully extract unlearned information from LLMs, but in this work we show that STAs can be an inadequate tool for auditing unlearning. Using common benchmarks such as Who Is Harry Potter? and TOFU, we demonstrate that in a strong auditor setting such attacks can elicit any information from the LLM, regardless of the deployed unlearning algorithm or whether the queried content was originally present in the training corpus. We further show that STA with just a few soft tokens (1-10) can elicit random strings over 400 characters long, indicating that STAs must be used carefully to effectively audit unlearning. Example code can be found at: https://github.com/IntelLabs/LLMart/tree/main/examples/unlearning

Authors:Mengyang Sun, Yihao Wang, Tao Feng, Dan Zhang, Yifan Zhu, Jie Tang
Title: A Stronger Mixture of Low-Rank Experts for Fine-Tuning Foundation Models
Abstract:
In order to streamline the fine-tuning of foundation models, Low-Rank Adapters (LoRAs) have been substantially adopted across various fields, including instruction tuning and domain adaptation. The underlying concept of LoRA involves decomposing a full-rank matrix into the product of two lower-rank matrices, which reduces storage consumption and accelerates the training process. Furthermore, to address the limited expressive capacity of LoRA, the Mixture-of-Expert (MoE) has been introduced for incorporating multiple LoRA adapters. The integration of LoRA experts leads to a visible improvement across several downstream scenes. However, the mixture of LoRAs (MoE-LoRA) still exhibits its low robustness during tuning and inferring. Inspired by the Riemannian Preconditioners which train LoRA as a sub-space projector, we propose a new training strategy for MoE-LoRA, to stabilize and boost its feature learning procedure by multi-space projections. Examinations on SGD and AdamW optimizers demonstrate the effectiveness of our methodology. Source code is available at https://github.com/THUDM/MoELoRA_Riemannian.

Authors:Wenyue Hua, Tyler Wong, Sun Fei, Liangming Pan, Adam Jardine, William Yang Wang
Title: InductionBench: LLMs Fail in the Simplest Complexity Class
Abstract:
Large language models (LLMs) have shown remarkable improvements in reasoning and many existing benchmarks have been addressed by models such as o1 and o3 either fully or partially. However, a majority of these benchmarks emphasize deductive reasoning, including mathematical and coding tasks in which rules such as mathematical axioms or programming syntax are clearly defined, based on which LLMs can plan and apply these rules to arrive at a solution. In contrast, inductive reasoning, where one infers the underlying rules from observed data, remains less explored. Such inductive processes lie at the heart of scientific discovery, as they enable researchers to extract general principles from empirical observations. To assess whether LLMs possess this capacity, we introduce InductionBench, a new benchmark designed to evaluate the inductive reasoning ability of LLMs. Our experimental findings reveal that even the most advanced models available struggle to master the simplest complexity classes within the subregular hierarchy of functions, highlighting a notable deficiency in current LLMs' inductive reasoning capabilities. Coda and data are available https://github.com/Wenyueh/inductive_reasoning_benchmark.

Authors:Yuxuan Zhou, Heng Li, Zhi-Qi Cheng, Xudong Yan, Yifei Dong, Mario Fritz, Margret Keuper
Title: MaxSup: Overcoming Representation Collapse in Label Smoothing
Abstract:
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS, consistently reducing overconfidence while preserving richer feature representations. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization

Authors:Yanyang Li, Michael Lyu, Liwei Wang
Title: Learning to Reason from Feedback at Test-Time
Abstract:
Solving complex tasks in a single attempt is challenging for large language models (LLMs). Iterative interaction with the environment and feedback is often required to achieve success, making effective feedback utilization a critical topic. Existing approaches either struggle with length generalization or rely on naive retries without leveraging prior information. In this paper, we introduce FTTT, a novel paradigm that formulates feedback utilization as an optimization problem at test time. Additionally, we propose a learnable test-time optimizer, OpTune, to effectively exploit feedback. Experiments on two LLMs across four reasoning datasets demonstrate that FTTT and OpTune achieve superior scalability and performance.

Authors:Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, Aviral Kumar
Title: Digi-Q: Learning Q-Value Functions for Training Device-Control Agents
Abstract:
While a number of existing approaches for building foundation model agents rely on prompting or fine-tuning with human demonstrations, it is not sufficient in dynamic environments (e.g., mobile device control). On-policy reinforcement learning (RL) should address these limitations, but collecting actual rollouts in an environment is often undesirable in truly open-ended agentic problems such as mobile device control or interacting with humans, where each unit of interaction is associated with a cost. In such scenarios, a method for policy learning that can utilize off-policy experience by learning a trained action-value function is much more effective. In this paper, we develop an approach, called Digi-Q, to train VLM-based action-value Q-functions which are then used to extract the agent policy. We study our approach in the mobile device control setting. Digi-Q trains the Q-function using offline temporal-difference (TD) learning, on top of frozen, intermediate-layer features of a VLM. Compared to fine-tuning the whole VLM, this approach saves us compute and enhances scalability. To make the VLM features amenable for representing the Q-function, we need to employ an initial phase of fine-tuning to amplify coverage over actionable information needed for value function. Once trained, we use this Q-function via a Best-of-N policy extraction operator that imitates the best action out of multiple candidate actions from the current policy as ranked by the value function, enabling policy improvement without environment interaction. Digi-Q outperforms several prior methods on user-scale device control tasks in Android-in-the-Wild, attaining 21.2% improvement over prior best-performing method. In some cases, our Digi-Q approach already matches state-of-the-art RL methods that require interaction. The project is open-sourced at https://github.com/DigiRL-agent/digiq

Authors:Leonardo Berti, Gjergji Kasneci
Title: TLOB: A Novel Transformer Model with Dual Attention for Price Trend Prediction with Limit Order Book Data
Abstract:
Price Trend Prediction (PTP) based on Limit Order Book (LOB) data is a fundamental challenge in financial markets. Despite advances in deep learning, existing models fail to generalize across different market conditions and assets. Surprisingly, by adapting a simple MLP-based architecture to LOB, we show that we surpass SoTA performance; thus, challenging the necessity of complex architectures. Unlike past work that shows robustness issues, we propose TLOB, a transformer-based model that uses a dual attention mechanism to capture spatial and temporal dependencies in LOB data. This allows it to adaptively focus on the market microstructure, making it particularly effective for longer-horizon predictions and volatile market conditions. We also introduce a new labeling method that improves on previous ones, removing the horizon bias. We evaluate TLOB's effectiveness across four horizons, using the established FI-2010 benchmark, a NASDAQ and a Bitcoin dataset. TLOB outperforms SoTA methods in every dataset and horizon. Additionally, we empirically show how stock price predictability has declined over time, -6.68 in F1-score, highlighting the growing market efficiency. Predictability must be considered in relation to transaction costs, so we experimented with defining trends using an average spread, reflecting the primary transaction cost. The resulting performance deterioration underscores the complexity of translating trend classification into profitable trading strategies. We argue that our work provides new insights into the evolving landscape of stock price trend prediction and sets a strong foundation for future advancements in financial AI. We release the code at https://github.com/LeonardoBerti00/TLOB.

Authors:Joonghyuk Hahn, Hyeseon Ahn, Jungin Kim, Soohan Lim, Yo-Sub Han
Title: TCProF: Time-Complexity Prediction SSL Framework
Abstract:
Time complexity is a theoretic measure to determine the amount of time the algorithm needs for its execution. In reality, developers write algorithms into code snippets within limited resources, making the calculation of a code's time complexity a fundamental task. However, determining the precise time complexity of a code is theoretically undecidable. In response, recent advancements have leaned toward deploying datasets for code time complexity prediction and initiating preliminary experiments for this challenge. We investigate the challenge in low-resource scenarios where only a few labeled instances are given for training. Remarkably, we are the first to introduce TCProF: a Time-Complexity Prediction SSL Framework as an effective solution for code time complexity prediction in low-resource settings. TCProF significantly boosts performance by integrating our augmentation, symbolic modules, and a co-training mechanism, achieving a more than 60% improvement over self-training approaches. We further provide an extensive comparative analysis between TCProF, ChatGPT, and Gemini-Pro, offering a detailed evaluation of our approach. Our code is at https://github.com/peer0/few-shot-tc.

Authors:Sewoong Oh, Himanshu Tyagi, Pramod Viswanath
Title: Training AI to be Loyal
Abstract:
Loyal AI is loyal to the community that builds it. An AI is loyal to a community if the community has ownership, alignment, and control. Community owned models can only be used with the approval of the community and share the economic rewards communally. Community aligned models have values that are aligned with the consensus of the community. Community controlled models perform functions designed by the community. Since we would like permissionless access to the loyal AI's community, we need the AI to be open source. The key scientific question then is: how can we build models that are openly accessible (open source) and yet are owned and governed by the community. This seeming impossibility is the focus of this paper where we outline a concrete pathway to Open, Monetizable and Loyal models (OML), building on our earlier work on OML, arXiv:2411.03887(1) , and a representation via a cryptographic-ML library http://github.com/sentient-agi/oml-1.0-fingerprinting .

Authors:Jinfeng Xu, Zheyu Chen, Shuo Yang, Jinze Li, Wei Wang, Xiping Hu, Steven Hoi, Edith Ngai
Title: A Survey on Multimodal Recommender Systems: Recent Advances and Future Directions
Abstract:
Acquiring valuable data from the rapidly expanding information on the internet has become a significant concern, and recommender systems have emerged as a widely used and effective tool for helping users discover items of interest. The essence of recommender systems lies in their ability to predict users' ratings or preferences for various items and subsequently recommend the most relevant ones based on historical interaction data and publicly available information. With the advent of diverse multimedia services, including text, images, video, and audio, humans can perceive the world through multiple modalities. Consequently, a recommender system capable of understanding and interpreting different modal data can more effectively refer to individual preferences. Multimodal Recommender Systems (MRS) not only capture implicit interaction information across multiple modalities but also have the potential to uncover hidden relationships between these modalities. The primary objective of this survey is to comprehensively review recent research advancements in MRS and to analyze the models from a technical perspective. Specifically, we aim to summarize the general process and main challenges of MRS from a technical perspective. We then introduce the existing MRS models by categorizing them into four key areas: Feature Extraction, Encoder, Multimodal Fusion, and Loss Function. Finally, we further discuss potential future directions for developing and enhancing MRS. This survey serves as a comprehensive guide for researchers and practitioners in MRS field, providing insights into the current state of MRS technology and identifying areas for future research. We hope to contribute to developing a more sophisticated and effective multimodal recommender system. To access more details of this paper, we open source a repository: https://github.com/Jinfeng-Xu/Awesome-Multimodal-Recommender-Systems.

Authors:Lin Wang, Weisong Wang, Xuanji Xiao, Qing Li
Title: Contrastive Learning Augmented Social Recommendations
Abstract:
Recommender systems play a pivotal role in modern content platforms, yet traditional behavior-based models often face challenges in addressing cold users with sparse interaction data. Engaging these users, however, remains critical for sustaining platform growth. To tackle this issue, we propose leveraging reconstructed social graph to complement interest representations derived from behavioral data. Despite the widespread availability of social graphs on content platforms, their utility is hindered by social-relation noise and inconsistencies between social and behavioral interests. To mitigate noise propagation in graph data and extract reliable social interests, we introduce a dual-view denoising framework. This approach first applies low-rank singular value decomposition (SVD) to the user-item interaction matrix, generating denoised user embeddings for reconstructing the social graph. It then employs contrastive learning to align the original and reconstructed social graphs. To address the discrepancy between social and behavioral interests, we utilize a mutual distillation mechanism that decomposes interests into four subcategories: aligned social/behavioral interests and social/behavioral-specific interests, enabling effective integration of the two. Empirical results demonstrate the efficacy of our method, particularly in improving recommendations for cold users, by combining social and behavioral data. The implementation of our approach is publicly available at https://github.com/WANGLin0126/CLSRec.

Authors:Yu Li, Bryce Wang, Xinyu Luan
Title: XPath Agent: An Efficient XPath Programming Agent Based on LLM for Web Crawler
Abstract:
We present XPath Agent, a production-ready XPath programming agent specifically designed for web crawling and web GUI testing. A key feature of XPath Agent is its ability to automatically generate XPath queries from a set of sampled web pages using a single natural language query. To demonstrate its effectiveness, we benchmark XPath Agent against a state-of-the-art XPath programming agent across a range of web crawling tasks. Our results show that XPath Agent achieves comparable performance metrics while significantly reducing token usage and improving clock-time efficiency. The well-designed two-stage pipeline allows for seamless integration into existing web crawling or web GUI testing workflows, thereby saving time and effort in manual XPath query development. The source code for XPath Agent is available at https://github.com/eavae/feilian.

Authors:Zongkai Zhao, Guozeng Xu, Xiuhua Li, Kaiwen Wei, Jiang Zhong
Title: FLEKE: Federated Locate-then-Edit Knowledge Editing
Abstract:
Locate-then-Edit Knowledge Editing (LEKE) is a key technique for updating large language models (LLMs) without full retraining. However, existing methods assume a single-user setting and become inefficient in real-world multi-client scenarios, where decentralized organizations (e.g., hospitals, financial institutions) independently update overlapping knowledge, leading to redundant mediator knowledge vector (MKV) computations and privacy concerns. To address these challenges, we introduce Federated Locate-then-Edit Knowledge Editing (FLEKE), a novel task that enables multiple clients to collaboratively perform LEKE while preserving privacy and reducing computational overhead. To achieve this, we propose FedEdit, a two-stage framework that optimizes MKV selection and reuse. In the first stage, clients locally apply LEKE and upload the computed MKVs. In the second stage, rather than relying solely on server-based MKV sharing, FLEKE allows clients retrieve relevant MKVs based on cosine similarity, enabling knowledge re-edit and minimizing redundant computations. Experimental results on two benchmark datasets demonstrate that FedEdit retains over 96% of the performance of non-federated LEKE while significantly outperforming a FedAvg-based baseline by approximately twofold. Besides, we find that MEMIT performs more consistently than PMET in the FLEKE task with our FedEdit framework. Our code is available at https://github.com/zongkaiz/FLEKE.

Authors:Florent Bartoccioni, Elias Ramzi, Victor Besnier, Shashanka Venkataramanan, Tuan-Hung Vu, Yihong Xu, Loick Chambon, Spyros Gidaris, Serkan Odabas, David Hurych, Renaud Marlet, Alexandre Boulch, Mickael Chen, Éloi Zablocki, Andrei Bursuc, Eduardo Valle, Matthieu Cord
Title: VaViM and VaVAM: Autonomous Driving through Video Generative Modeling
Abstract:
We explore the potential of large-scale generative video models for autonomous driving, introducing an open-source auto-regressive video model (VaViM) and its companion video-action model (VaVAM) to investigate how video pre-training transfers to real-world driving. VaViM is a simple auto-regressive video model that predicts frames using spatio-temporal token sequences. We show that it captures the semantics and dynamics of driving scenes. VaVAM, the video-action model, leverages the learned representations of VaViM to generate driving trajectories through imitation learning. Together, the models form a complete perception-to-action pipeline. We evaluate our models in open- and closed-loop driving scenarios, revealing that video-based pre-training holds promise for autonomous driving. Key insights include the semantic richness of the learned representations, the benefits of scaling for video synthesis, and the complex relationship between model size, data, and safety metrics in closed-loop evaluations. We release code and model weights at https://github.com/valeoai/VideoActionModel

Authors:Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, Ali Anwar
Title: Probe Pruning: Accelerating LLMs through Dynamic Pruning via Model-Probing
Abstract:
We introduce Probe Pruning (PP), a novel framework for online, dynamic, structured pruning of Large Language Models (LLMs) applied in a batch-wise manner. PP leverages the insight that not all samples and tokens contribute equally to the model's output, and probing a small portion of each batch effectively identifies crucial weights, enabling tailored dynamic pruning for different batches. It comprises three main stages: probing, history-informed pruning, and full inference. In the probing stage, PP selects a small yet crucial set of hidden states, based on residual importance, to run a few model layers ahead. During the history-informed pruning stage, PP strategically integrates the probing states with historical states. Subsequently, it structurally prunes weights based on the integrated states and the PP importance score, a metric developed specifically to assess the importance of each weight channel in maintaining performance. In the final stage, full inference is conducted on the remaining weights. A major advantage of PP is its compatibility with existing models, as it operates without requiring additional neural network modules or fine-tuning. Comprehensive evaluations of PP on LLaMA-2/3 and OPT models reveal that even minimal probing-using just 1.5% of FLOPs-can substantially enhance the efficiency of structured pruning of LLMs. For instance, when evaluated on LLaMA-2-7B with WikiText2, PP achieves a 2.56 times lower ratio of performance degradation per unit of runtime reduction compared to the state-of-the-art method at a 40% pruning ratio. Our code is available at https://github.com/Qi-Le1/Probe_Pruning.

Authors:Xiangtong Yao, Yirui Zhou, Yuan Meng, Liangyu Dong, Lin Hong, Zitao Zhang, Zhenshan Bing, Kai Huang, Fuchun Sun, Alois Knoll
Title: Pick-and-place Manipulation Across Grippers Without Retraining: A Learning-optimization Diffusion Policy Approach
Abstract:
Current robotic pick-and-place policies typically require consistent gripper configurations across training and inference. This constraint imposes high retraining or fine-tuning costs, especially for imitation learning-based approaches, when adapting to new end-effectors. To mitigate this issue, we present a diffusion-based policy with a hybrid learning-optimization framework, enabling zero-shot adaptation to novel grippers without additional data collection for retraining policy. During training, the policy learns manipulation primitives from demonstrations collected using a base gripper. At inference, a diffusion-based optimization strategy dynamically enforces kinematic and safety constraints, ensuring that generated trajectories align with the physical properties of unseen grippers. This is achieved through a constrained denoising procedure that adapts trajectories to gripper-specific parameters (e.g., tool-center-point offsets, jaw widths) while preserving collision avoidance and task feasibility. We validate our method on a Franka Panda robot across six gripper configurations, including 3D-printed fingertips, flexible silicone gripper, and Robotiq 2F-85 gripper. Our approach achieves a 93.3% average task success rate across grippers (vs. 23.3-26.7% for diffusion policy baselines), supporting tool-center-point variations of 16-23.5 cm and jaw widths of 7.5-11.5 cm. The results demonstrate that constrained diffusion enables robust cross-gripper manipulation while maintaining the sample efficiency of imitation learning, eliminating the need for gripper-specific retraining. Video and code are available at https://github.com/yaoxt3/GADP.

Authors:Jixiu Zhai, Zikun Wang, Tianchi Lu, Haitian Zhong, Ziyang Xu, Yuhuan Liu, Shengrui Xu, Jingwan Wang, Dan Huang
Title: A general language model for peptide identification
Abstract:
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-convolutional architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses-including dimensionality reduction and comparison studies-PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub:https://github.com/fondress/PDeepPP and Hugging Face:https://huggingface.co/fondress/PDeppPP.

Authors:Wenhao Zhu, Pinzhen Chen, Hanxu Hu, Shujian Huang, Fei Yuan, Jiajun Chen, Alexandra Birch
Title: Generalizing From Short to Long: Effective Data Synthesis for Long-Context Instruction Tuning
Abstract:
Long-context modelling for large language models (LLMs) has been a key area of recent research because many real world use cases require reasoning over longer inputs such as documents. The focus of research into modelling long context has been on how to model position and there has been little investigation into other important aspects of language modelling such as instruction tuning. Long context training examples are challenging and expensive to create and use. In this paper, we investigate how to design instruction data for the post-training phase of a long context pre-trained model: how much and what type of context is needed for optimal and efficient post-training. Our controlled study reveals that models instruction-tuned on short contexts can effectively generalize to longer ones, while also identifying other critical factors such as instruction difficulty and context composition. Based on these findings, we propose context synthesis, a novel data synthesis framework that leverages off-the-shelf LLMs to generate extended background contexts for high-quality instruction-answer pairs. Experiment results on the document-level benchmark (LongBench) demonstrate that our proposed approach outperforms previous instruction synthesis approaches and comes close to the performance of human-annotated long-context instruction data. The project will be available at: https://github.com/NJUNLP/context-synthesis.

Authors:Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun Chen, Ningyu Zhang
Title: LightThinker: Thinking Step-by-Step Compression
Abstract:
Large language models (LLMs) have shown remarkable performance in complex reasoning tasks, but their efficiency is hindered by the substantial memory and computational costs associated with generating lengthy tokens. In this paper, we propose LightThinker, a novel method that enables LLMs to dynamically compress intermediate thoughts during reasoning. Inspired by human cognitive processes, LightThinker compresses verbose thought steps into compact representations and discards the original reasoning chains, thereby significantly reducing the number of tokens stored in the context window. This is achieved by training the model on when and how to perform compression through data construction, mapping hidden states to condensed gist tokens, and creating specialized attention masks. Additionally, we introduce the Dependency (Dep) metric to quantify the degree of compression by measuring the reliance on historical tokens during generation. Extensive experiments on four datasets and two models show that LightThinker reduces peak memory usage and inference time, while maintaining competitive accuracy. Our work provides a new direction for improving the efficiency of LLMs in complex reasoning tasks without sacrificing performance. Code is released at https://github.com/zjunlp/LightThinker.

Authors:Pengcheng Huang, Zhenghao Liu, Yukun Yan, Haiyan Zhao, Xiaoyuan Yi, Hao Chen, Zhiyuan Liu, Maosong Sun, Tong Xiao, Ge Yu, Chenyan Xiong
Title: ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation
Abstract:
Large language models (LLMs) integrated with retrieval-augmented generation (RAG) have improved factuality by grounding outputs in external evidence. However, they remain susceptible to unfaithful generation, where outputs contradict retrieved context despite its relevance and accuracy. Existing approaches aiming to improve faithfulness primarily focus on enhancing the utilization of external context, but often overlook the persistent influence of internal parametric knowledge during generation. In this work, we investigate the internal mechanisms behind unfaithful generation and identify a subset of mid-to-deep feed-forward networks (FFNs) that are disproportionately activated in such cases. Building on this insight, we propose Parametric Knowledge Muting through FFN Suppression (ParamMute), a framework that improves contextual faithfulness by suppressing the activation of unfaithfulness-associated FFNs and calibrating the model toward retrieved knowledge. To evaluate our approach, we introduce CoFaithfulQA, a benchmark specifically designed to evaluate faithfulness in scenarios where internal knowledge conflicts with accurate external evidence. Experimental results show that ParamMute significantly enhances faithfulness across both CoFaithfulQA and the established ConFiQA benchmark, achieving substantial reductions in reliance on parametric memory. These findings underscore the importance of mitigating internal knowledge dominance and provide a new direction for improving LLM trustworthiness in RAG. All codes are available at https://github.com/OpenBMB/ParamMute.

Authors:Ragnar Groot Koerkamp
Title: PtrHash: Minimal Perfect Hashing at RAM Throughput
Abstract:
Given a set $K$ of $n$ keys, a minimal perfect hash function (MPHF) is a collision-free bijective map $\mathsf{H_{mphf}}$ from $K$ to $\{0, \dots, n-1\}$. This work presents a (minimal) perfect hash function that first prioritizes query throughput, while also allowing efficient construction for $10^9$ or more elements using 2.4 bits of memory per key. Both PTHash and PHOBIC first map all $n$ keys to $n/λ< n$ buckets. Then, each bucket stores a pilot that controls the final hash value of the keys mapping to it. PtrHash builds on this by using 1) fixed-width (uncompressed) 8-bit pilots, 2) a construction algorithm similar to cuckoo-hashing to find suitable pilot values. Further, it 3) uses the same number of buckets and slots for each part, with 4) a single remap table to map intermediate positions $\geq n$ to $
Authors:Ya Wang, Zhijian Zhuo, Yutao Zeng, Xun Zhou, Jian Yang, Xiaoqing Li
Title: Scale-Distribution Decoupling: Enabling Stable and Effective Training of Large Language Models
Abstract:
Training stability is a persistent challenge in the pre-training of large language models (LLMs), particularly for architectures such as Post-Norm Transformers, which are prone to gradient explosion and dissipation. In this paper, we propose Scale-Distribution Decoupling (SDD), a novel approach that stabilizes training by explicitly decoupling the scale and distribution of the weight matrix in fully-connected layers. SDD applies a normalization mechanism to regulate activations and a learnable scaling vector to maintain well-conditioned gradients, effectively preventing $\textbf{gradient explosion and dissipation}$. This separation improves optimization efficiency, particularly in deep networks, by ensuring stable gradient propagation. Experimental results demonstrate that our method stabilizes training across various LLM architectures and outperforms existing techniques in different normalization configurations. Furthermore, the proposed method is lightweight and compatible with existing frameworks, making it a practical solution for stabilizing LLM training. Code is available at https://github.com/kaihemo/SDD.

Authors:Kai Liu, Dehui Wang, Zhiteng Li, Zheng Chen, Yong Guo, Wenbo Li, Linghe Kong, Yulun Zhang
Title: CondiQuant: Condition Number Based Low-Bit Quantization for Image Super-Resolution
Abstract:
Low-bit model quantization for image super-resolution (SR) is a longstanding task that is renowned for its surprising compression and acceleration ability. However, accuracy degradation is inevitable when compressing the full-precision (FP) model to ultra-low bit widths (2~4 bits). Experimentally, we observe that the degradation of quantization is mainly attributed to the quantization of activation instead of model weights. In numerical analysis, the condition number of weights could measure how much the output value can change for a small change in the input argument, inherently reflecting the quantization error. Therefore, we propose CondiQuant, a condition number based low-bit post-training quantization for image super-resolution. Specifically, we formulate the quantization error as the condition number of weight metrics. By decoupling the representation ability and the quantization sensitivity, we design an efficient proximal gradient descent algorithm to iteratively minimize the condition number and maintain the output still. With comprehensive experiments, we demonstrate that CondiQuant outperforms existing state-of-the-art post-training quantization methods in accuracy without computation overhead and gains the theoretically optimal compression ratio in model parameters. Our code and model are released at https://github.com/Kai-Liu001/CondiQuant.

Authors:Jinda Liu, Yi Chang, Yuan Wu
Title: R-LoRA: Randomized Multi-Head LoRA for Efficient Multi-Task Learning
Abstract:
Fine-tuning large language models (LLMs) is computationally expensive, and Low-Rank Adaptation (LoRA) provides a cost-effective solution by approximating weight updates through low-rank matrices. In real-world scenarios, LLMs are fine-tuned on data from multiple domains to perform tasks across various fields, embodying multi-task learning (MTL). LoRA often underperforms in such complex scenarios. To enhance LoRA's capability in multi-task learning, we propose R-LoRA, which incorporates Multi-Head Randomization. Multi-Head Randomization diversifies the head matrices through Multi-Head Dropout and Multi-Head Random Initialization, enabling more efficient learning of task-specific features while maintaining shared knowledge representation. Our approach not only improves performance in MTL but also reduces GPU memory usage and training time. Experiments show that R-LoRA's gains stem from increased diversity in the head matrices, demonstrating its effectiveness for multi-task learning. The code is available at https://github.com/jinda-liu/R-LoRA

Authors:Yuan Sun
Title: Binary-Integer-Programming Based Algorithm for Expert Load Balancing in Mixture-of-Experts Models
Abstract:
For pre-training of MoE (Mixture-of-Experts) models, one of the main issues is unbalanced expert loads, which may cause routing collapse or increased computational overhead. Existing methods contain the Loss-Controlled method and the Loss-Free method, where both the unbalanced degrees at first several training steps are still high and decrease slowly. In this work, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary integer programming (BIP). The algorithm maintains an additional vector q on each MoE layer that can help change the top-K order of s by solving a binary integer programming with very small time costs. We implement the algorithm on two MoE language models: 16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both models comparing with the Loss-Controlled method and the Loss-Free method, our algorithm trains models with the lowest perplexities, while saves at least 13% of pre-training time compared with the Loss-Controlled method. Within our current knowledge, this is the first routing algorithm that achieves maintaining load balance status on every expert in every MoE layer from the first step to the last step during the whole pre-training process, while the trained MoE models also perform well. The code material of this work is available at https://github.com/sunyuanLLM/bip_routing_algorithm.

Authors:Raghav Singhal, Kaustubh Ponkshe, Rohit Vartak, Lav R. Varshney, Praneeth Vepakomma
Title: Fed-SB: A Silver Bullet for Extreme Communication Efficiency and Performance in (Private) Federated LoRA Fine-Tuning
Abstract:
Low-Rank Adaptation (LoRA) has become ubiquitous for efficiently fine-tuning foundation models. However, federated fine-tuning using LoRA is challenging due to suboptimal updates arising from traditional federated averaging of individual adapters. Existing solutions either incur prohibitively high communication cost that scales linearly with the number of clients or suffer from performance degradation due to limited expressivity. We introduce Federated Silver Bullet (Fed-SB), a novel approach for federated fine-tuning of LLMs using LoRA-SB, a recently proposed low-rank adaptation method. LoRA-SB optimally aligns the optimization trajectory with the ideal low-rank full fine-tuning projection by learning a small square matrix (R) between adapters B and A, keeping other components fixed. Direct averaging of R guarantees exact updates, substantially reducing communication cost, which remains independent of the number of clients, and enables scalability. Fed-SB achieves state-of-the-art performance across commonsense reasoning, arithmetic reasoning, and language inference tasks while reducing communication costs by up to 230x. In private settings, Fed-SB further improves performance by (1) reducing trainable parameters, thereby lowering the noise required for differential privacy and (2) avoiding noise amplification introduced by other methods. Overall, Fed-SB establishes a new Pareto frontier in the tradeoff between communication and performance, offering an efficient and scalable solution for both private and non-private federated fine-tuning. Our code is publicly available at https://github.com/CERT-Lab/fed-sb.

Authors:Raghav Singhal, Kaustubh Ponkshe, Rohit Vartak, Lav R. Varshney, Praneeth Vepakomma
Title: Fed-SB: A Silver Bullet for Extreme Communication Efficiency and Performance in (Private) Federated LoRA Fine-Tuning
Abstract:
Low-Rank Adaptation (LoRA) has become ubiquitous for efficiently fine-tuning foundation models. However, federated fine-tuning using LoRA is challenging due to suboptimal updates arising from traditional federated averaging of individual adapters. Existing solutions either incur prohibitively high communication cost that scales linearly with the number of clients or suffer from performance degradation due to limited expressivity. We introduce Federated Silver Bullet (Fed-SB), a novel approach for federated fine-tuning of LLMs using LoRA-SB, a recently proposed low-rank adaptation method. LoRA-SB optimally aligns the optimization trajectory with the ideal low-rank full fine-tuning projection by learning a small square matrix (R) between adapters B and A, keeping other components fixed. Direct averaging of R guarantees exact updates, substantially reducing communication cost, which remains independent of the number of clients, and enables scalability. Fed-SB achieves state-of-the-art performance across commonsense reasoning, arithmetic reasoning, and language inference tasks while reducing communication costs by up to 230x. In private settings, Fed-SB further improves performance by (1) reducing trainable parameters, thereby lowering the noise required for differential privacy and (2) avoiding noise amplification introduced by other methods. Overall, Fed-SB offers a state-of-the-art, efficient, and scalable solution for both private and non-private federated fine-tuning. Our code is publicly available at: https://github.com/CERT-Lab/fed-sb.

Authors:Giulio Zizzo, Giandomenico Cornacchia, Kieran Fraser, Muhammad Zaid Hameed, Ambrish Rawat, Beat Buesser, Mark Purcell, Pin-Yu Chen, Prasanna Sattigeri, Kush Varshney
Title: Adversarial Prompt Evaluation: Systematic Benchmarking of Guardrails Against Prompt Input Attacks on LLMs
Abstract:
As large language models (LLMs) become integrated into everyday applications, ensuring their robustness and security is increasingly critical. In particular, LLMs can be manipulated into unsafe behaviour by prompts known as jailbreaks. The variety of jailbreak styles is growing, necessitating the use of external defences known as guardrails. While many jailbreak defences have been proposed, not all defences are able to handle new out-of-distribution attacks due to the narrow segment of jailbreaks used to align them. Moreover, the lack of systematisation around defences has created significant gaps in their practical application. In this work, we perform systematic benchmarking across 15 different defences, considering a broad swathe of malicious and benign datasets. We find that there is significant performance variation depending on the style of jailbreak a defence is subject to. Additionally, we show that based on current datasets available for evaluation, simple baselines can display competitive out-of-distribution performance compared to many state-of-the-art defences. Code is available at https://github.com/IBM/Adversarial-Prompt-Evaluation.

Authors:Sanghee Park, Geewook Kim
Title: Evaluating Multimodal Generative AI with Korean Educational Standards
Abstract:
This paper presents the Korean National Educational Test Benchmark (KoNET), a new benchmark designed to evaluate Multimodal Generative AI Systems using Korean national educational tests. KoNET comprises four exams: the Korean Elementary General Educational Development Test (KoEGED), Middle (KoMGED), High (KoHGED), and College Scholastic Ability Test (KoCSAT). These exams are renowned for their rigorous standards and diverse questions, facilitating a comprehensive analysis of AI performance across different educational levels. By focusing on Korean, KoNET provides insights into model performance in less-explored languages. We assess a range of models - open-source, open-access, and closed APIs - by examining difficulties, subject diversity, and human error rates. The code and dataset builder will be made fully open-sourced at https://github.com/naver-ai/KoNET.

Authors:Xuetao Ma, Wenbin Jiang, Hua Huang
Title: Problem-Solving Logic Guided Curriculum In-Context Learning for LLMs Complex Reasoning
Abstract:
In-context learning (ICL) can significantly enhance the complex reasoning capabilities of large language models (LLMs), with the key lying in the selection and ordering of demonstration examples. Previous methods typically relied on simple features to measure the relevance between examples. We argue that these features are not sufficient to reflect the intrinsic connections between examples. In this study, we propose a curriculum ICL strategy guided by problem-solving logic. We select demonstration examples by analyzing the problem-solving logic and order them based on curriculum learning. Specifically, we constructed a problem-solving logic instruction set based on the BREAK dataset and fine-tuned a language model to analyze the problem-solving logic of examples. Subsequently, we selected appropriate demonstration examples based on problem-solving logic and assessed their difficulty according to the number of problem-solving steps. In accordance with the principles of curriculum learning, we ordered the examples from easy to hard to serve as contextual prompts. Experimental results on multiple benchmarks indicate that our method outperforms previous ICL approaches in terms of performance and efficiency, effectively enhancing the complex reasoning capabilities of LLMs. Our project will be released at https://github.com/maxuetao/CurriculumICL

Authors:Remko Proesmans, Ward Goossens, Lowiek Van den Stockt, Lowie Christiaen, Francis wyffels
Title: Self-Mixing Laser Interferometry for Robotic Tactile Sensing
Abstract:
Self-mixing interferometry (SMI) has been lauded for its sensitivity in detecting microvibrations, while requiring no physical contact with its target. In robotics, microvibrations have traditionally been interpreted as a marker for object slip, and recently as a salient indicator of extrinsic contact. We present the first-ever robotic fingertip making use of SMI for slip and extrinsic contact sensing. The design is validated through measurement of controlled vibration sources, both before and after encasing the readout circuit in its fingertip package. Then, the SMI fingertip is compared to acoustic sensing through four experiments. The results are distilled into a technology decision map. SMI was found to be more sensitive to subtle slip events and significantly more resilient against ambient noise. We conclude that the integration of SMI in robotic fingertips offers a new, promising branch of tactile sensing in robotics. Design and data files are available at https://github.com/RemkoPr/icra2025-SMI-tactile-sensing.

Authors:Longde Huang, Oleksandr Balabanov, Hampus Linander, Mats Granath, Daniel Persson, Jan E. Gerken
Title: Learning Chern Numbers of Topological Insulators with Gauge Equivariant Neural Networks
Abstract:
Equivariant network architectures are a well-established tool for predicting invariant or equivariant quantities. However, almost all learning problems considered in this context feature a global symmetry, i.e. each point of the underlying space is transformed with the same group element, as opposed to a local ``gauge'' symmetry, where each point is transformed with a different group element, exponentially enlarging the size of the symmetry group. Gauge equivariant networks have so far mainly been applied to problems in quantum chromodynamics. Here, we introduce a novel application domain for gauge-equivariant networks in the theory of topological condensed matter physics. We use gauge equivariant networks to predict topological invariants (Chern numbers) of multiband topological insulators. The gauge symmetry of the network guarantees that the predicted quantity is a topological invariant. We introduce a novel gauge equivariant normalization layer to stabilize the training and prove a universal approximation theorem for our setup. We train on samples with trivial Chern number only but show that our models generalize to samples with non-trivial Chern number. We provide various ablations of our setup. Our code is available at https://github.com/sitronsea/GENet/tree/main.

Authors:Xuyang Wu, Jinming Nian, Ting-Ruen Wei, Zhiqiang Tao, Hsin-Tai Wu, Yi Fang
Title: Does Reasoning Introduce Bias? A Study of Social Bias Evaluation and Mitigation in LLM Reasoning
Abstract:
Recent advances in large language models (LLMs) have enabled automatic generation of chain-of-thought (CoT) reasoning, leading to strong performance on tasks such as math and code. However, when reasoning steps reflect social stereotypes (e.g., those related to gender, race or age), they can reinforce harmful associations and lead to misleading conclusions. We present the first systematic evaluation of social bias within LLM-generated reasoning, focusing on reasoning language models (e.g., DeepSeek-R1, OpenAI o1) that natively produce reasoning chains as part of their answers. Using the BBQ dataset, we analyze both prediction accuracy and reasoning bias across a broad spectrum of models, including instruction-tuned and CoT-augmented variants of DeepSeek-R1 (8B/32B), ChatGPT, and other open-source LLMs. We quantify how biased reasoning steps correlate with incorrect predictions and often lead to stereotype expression. To mitigate reasoning-induced bias, we propose Answer Distribution as Bias Proxy (ADBP), a lightweight mitigation method that detects bias by tracking how model predictions change across incremental reasoning steps. ADBP outperforms Stereotype-free Reasoning Pattern (SfRP) baseline in most cases, mitigating bias and improving the accuracy of LLM outputs. Evaluation and mitigation code is available at https://github.com/elviswxy/LLM_reasoning_bias.

Authors:Kefan Wang, Hao Wang, Kenan Song, Wei Guo, Kai Cheng, Zhi Li, Yong Liu, Defu Lian, Enhong Chen
Title: A Universal Framework for Compressing Embeddings in CTR Prediction
Abstract:
Accurate click-through rate (CTR) prediction is vital for online advertising and recommendation systems. Recent deep learning advancements have improved the ability to capture feature interactions and understand user interests. However, optimizing the embedding layer often remains overlooked. Embedding tables, which represent categorical and sequential features, can become excessively large, surpassing GPU memory limits and necessitating storage in CPU memory. This results in high memory consumption and increased latency due to frequent GPU-CPU data transfers. To tackle these challenges, we introduce a Model-agnostic Embedding Compression (MEC) framework that compresses embedding tables by quantizing pre-trained embeddings, without sacrificing recommendation quality. Our approach consists of two stages: first, we apply popularity-weighted regularization to balance code distribution between high- and low-frequency features. Then, we integrate a contrastive learning mechanism to ensure a uniform distribution of quantized codes, enhancing the distinctiveness of embeddings. Experiments on three datasets reveal that our method reduces memory usage by over 50x while maintaining or improving recommendation performance compared to existing models. The implementation code is accessible in our project repository https://github.com/USTC-StarTeam/MEC.

Authors:Feiyang Chen, Yu Cheng, Lei Wang, Yuqing Xia, Ziming Miao, Lingxiao Ma, Fan Yang, Jilong Xue, Zhi Yang, Mao Yang, Haibo Chen
Title: AttentionEngine: A Versatile Framework for Efficient Attention Mechanisms on Diverse Hardware Platforms
Abstract:
Transformers and large language models (LLMs) have revolutionized machine learning, with attention mechanisms at the core of their success. As the landscape of attention variants expands, so too do the challenges of optimizing their performance, particularly across different hardware platforms. Current optimization strategies are often narrowly focused, requiring extensive manual intervention to accommodate changes in model configurations or hardware environments. In this paper, we introduce AttentionEngine, a comprehensive framework designed to streamline the optimization of attention mechanisms across heterogeneous hardware backends. By decomposing attention computation into modular operations with customizable components, AttentionEngine enables flexible adaptation to diverse algorithmic requirements. The framework further automates kernel optimization through a combination of programmable templates and a robust cross-platform scheduling strategy. Empirical results reveal performance gains of up to 10x on configurations beyond the reach of existing methods. AttentionEngine offers a scalable, efficient foundation for developing and deploying attention mechanisms with minimal manual tuning. Our code has been open-sourced and is available at https://github.com/microsoft/AttentionEngine.

Authors:Jinyu Zhang, Chao Li, Zhongying Zhao
Title: Lightweight yet Efficient: An External Attentive Graph Convolutional Network with Positional Prompts for Sequential Recommendation
Abstract:
Graph-based Sequential Recommender systems (GSRs) have gained significant research attention due to their ability to simultaneously handle user-item interactions and sequential relationships between items. Current GSRs often utilize composite or in-depth structures for graph encoding (e.g., the Graph Transformer). Nevertheless, they have high computational complexity, hindering the deployment on resource-constrained edge devices. Moreover, the relative position encoding in Graph Transformer has difficulty in considering the complicated positional dependencies within sequence. To this end, we propose an External Attentive Graph convolutional network with Positional prompts for Sequential recommendation, namely EA-GPS. Specifically, we first introduce an external attentive graph convolutional network that linearly measures the global associations among nodes via two external memory units. Then, we present a positional prompt-based decoder that explicitly treats the absolute item positions as external prompts. By introducing length-adaptive sequential masking and a soft attention network, such a decoder facilitates the model to capture the long-term positional dependencies and contextual relationships within sequences. Extensive experimental results on five real-world datasets demonstrate that the proposed EA-GPS outperforms the state-of-the-art methods. Remarkably, it achieves the superior performance while maintaining a smaller parameter size and lower training overhead. The implementation of this work is publicly available at https://github.com/ZZY-GraphMiningLab/EA-GPS.

Authors:Luzhou Ge, Xiangyu Zhu, Zhuo Yang, Xuesong Li
Title: DynamicGSG: Dynamic 3D Gaussian Scene Graphs for Environment Adaptation
Abstract:
In real-world scenarios, environment changes caused by human or agent activities make it extremely challenging for robots to perform various long-term tasks. Recent works typically struggle to effectively understand and adapt to dynamic environments due to the inability to update their environment representations in memory according to environment changes and lack of fine-grained reconstruction of the environments. To address these challenges, we propose DynamicGSG, a dynamic, high-fidelity, open-vocabulary scene graph construction system leveraging Gaussian splatting. DynamicGSG builds hierarchical scene graphs using advanced vision language models to represent the spatial and semantic relationships between objects in the environments, utilizes a joint feature loss we designed to supervise Gaussian instance grouping while optimizing the Gaussian maps, and locally updates the Gaussian scene graphs according to real environment changes for long-term environment adaptation. Experiments and ablation studies demonstrate the performance and efficacy of our proposed method in terms of semantic segmentation, language-guided object retrieval, and reconstruction quality. Furthermore, we validate the dynamic updating capabilities of our system in real laboratory environments. The source code and supplementary experimental materials will be released at:~\href{https://github.com/GeLuzhou/Dynamic-GSG}{https://github.com/GeLuzhou/Dynamic-GSG}.

Authors:Jiebin Yan, Ziwen Tan, Yuming Fang, Junjie Chen, Wenhui Jiang, Zhou Wang
Title: Omnidirectional Image Quality Captioning: A Large-scale Database and A New Model
Abstract:
The fast growing application of omnidirectional images calls for effective approaches for omnidirectional image quality assessment (OIQA). Existing OIQA methods have been developed and tested on homogeneously distorted omnidirectional images, but it is hard to transfer their success directly to the heterogeneously distorted omnidirectional images. In this paper, we conduct the largest study so far on OIQA, where we establish a large-scale database called OIQ-10K containing 10,000 omnidirectional images with both homogeneous and heterogeneous distortions. A comprehensive psychophysical study is elaborated to collect human opinions for each omnidirectional image, together with the spatial distributions (within local regions or globally) of distortions, and the head and eye movements of the subjects. Furthermore, we propose a novel multitask-derived adaptive feature-tailoring OIQA model named IQCaption360, which is capable of generating a quality caption for an omnidirectional image in a manner of textual template. Extensive experiments demonstrate the effectiveness of IQCaption360, which outperforms state-of-the-art methods by a significant margin on the proposed OIQ-10K database. The OIQ-10K database and the related source codes are available at https://github.com/WenJuing/IQCaption360.

Authors:Nie Lin, Takehiko Ohkawa, Yifei Huang, Mingfang Zhang, Minjie Cai, Ming Li, Ryosuke Furuta, Yoichi Sato
Title: SiMHand: Mining Similar Hands for Large-Scale 3D Hand Pose Pre-training
Abstract:
We present a framework for pre-training of 3D hand pose estimation from in-the-wild hand images sharing with similar hand characteristics, dubbed SimHand. Pre-training with large-scale images achieves promising results in various tasks, but prior methods for 3D hand pose pre-training have not fully utilized the potential of diverse hand images accessible from in-the-wild videos. To facilitate scalable pre-training, we first prepare an extensive pool of hand images from in-the-wild videos and design our pre-training method with contrastive learning. Specifically, we collect over 2.0M hand images from recent human-centric videos, such as 100DOH and Ego4D. To extract discriminative information from these images, we focus on the similarity of hands: pairs of non-identical samples with similar hand poses. We then propose a novel contrastive learning method that embeds similar hand pairs closer in the feature space. Our method not only learns from similar samples but also adaptively weights the contrastive learning loss based on inter-sample distance, leading to additional performance gains. Our experiments demonstrate that our method outperforms conventional contrastive learning approaches that produce positive pairs sorely from a single image with data augmentation. We achieve significant improvements over the state-of-the-art method (PeCLR) in various datasets, with gains of 15% on FreiHand, 10% on DexYCB, and 4% on AssemblyHands. Our code is available at https://github.com/ut-vision/SiMHand.

Authors:Nicholas DiSalvo
Title: Steganographic Embeddings as an Effective Data Augmentation
Abstract:
Image Steganography is a cryptographic technique that embeds secret information into an image, ensuring the hidden data remains undetectable to the human eye while preserving the image's original visual integrity. Least Significant Bit (LSB) Steganography achieves this by replacing the k least significant bits of an image with the k most significant bits of a secret image, maintaining the appearance of the original image while simultaneously encoding the essential elements of the hidden data. In this work, we shift away from conventional applications of steganography in deep learning and explore its potential from a new angle. We present experimental results on CIFAR-10 showing that LSB Steganography, when used as a data augmentation strategy for downstream computer vision tasks such as image classification, can significantly improve the training efficiency of deep neural networks. It can also act as an implicit, uniformly discretized piecewise linear approximation of color augmentations such as (brightness, contrast, hue, and saturation), without introducing additional training overhead through a new joint image training regime that disregards the need for tuning sensitive augmentation hyperparameters.

Authors:Shilong Hou, Ruilin Shang, Zi Long, Xianghua Fu, Yin Chen
Title: A General Pseudonymization Framework for Cloud-Based LLMs: Replacing Privacy Information in Controlled Text Generation
Abstract:
An increasing number of companies have begun providing services that leverage cloud-based large language models (LLMs), such as ChatGPT. However, this development raises substantial privacy concerns, as users' prompts are transmitted to and processed by the model providers. Among the various privacy protection methods for LLMs, those implemented during the pre-training and fine-tuning phrases fail to mitigate the privacy risks associated with the remote use of cloud-based LLMs by users. On the other hand, methods applied during the inference phrase are primarily effective in scenarios where the LLM's inference does not rely on privacy-sensitive information. In this paper, we outline the process of remote user interaction with LLMs and, for the first time, propose a detailed definition of a general pseudonymization framework applicable to cloud-based LLMs. The experimental results demonstrate that the proposed framework strikes an optimal balance between privacy protection and utility. The code for our method is available to the public at https://github.com/Mebymeby/Pseudonymization-Framework.

Authors:Mengqiao Liu, Tevin Wang, Cassandra A. Cohen, Sarah Li, Chenyan Xiong
Title: Understand User Opinions of Large Language Models via LLM-Powered In-the-Moment User Experience Interviews
Abstract:
Which large language model (LLM) is better? Every evaluation tells a story, but what do users really think about current LLMs? This paper presents CLUE, an LLM-powered interviewer that conducts in-the-moment user experience interviews, right after users interact with LLMs, and automatically gathers insights about user opinions from massive interview logs. We conduct a study with thousands of users to understand user opinions on mainstream LLMs, recruiting users to first chat with a target LLM and then be interviewed by CLUE. Our experiments demonstrate that CLUE captures interesting user opinions, e.g., the bipolar views on the displayed reasoning process of DeepSeek-R1 and demands for information freshness and multi-modality. Our code and data are at https://github.com/cxcscmu/LLM-Interviewer.

Authors:Jinchuan Tian, Jiatong Shi, William Chen, Siddhant Arora, Yoshiki Masuyama, Takashi Maekaku, Yihan Wu, Junyi Peng, Shikhar Bharadwaj, Yiwen Zhao, Samuele Cornell, Yifan Peng, Xiang Yue, Chao-Han Huck Yang, Graham Neubig, Shinji Watanabe
Title: ESPnet-SpeechLM: An Open Speech Language Model Toolkit
Abstract:
We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.

Authors:Madhurima Chakraborty, Peter Pirkelbauer, Qing Yi
Title: FormalSpecCpp: A Dataset of C++ Formal Specifications created using LLMs
Abstract:
FormalSpecCpp is a dataset designed to fill the gap in standardized benchmarks for verifying formal specifications in C++ programs. To the best of our knowledge, this is the first comprehensive collection of C++ programs with well-defined preconditions and postconditions. It provides a structured benchmark for evaluating specification inference tools and testing theaccuracy of generated specifications. Researchers and developers can use this dataset to benchmark specification inference tools,fine-tune Large Language Models (LLMs) for automated specification generation, and analyze the role of formal specifications in improving program verification and automated testing. By making this dataset publicly available, we aim to advance research in program verification, specification inference, and AI-assisted software development. The dataset and the code are available at https://github.com/MadhuNimmo/FormalSpecCpp.

Authors:Yifan Jiang, Yannick Lemaréchal, Sophie Plante, Josée Bafaro, Jessica Abi-Rjeile, Philippe Joubert, Philippe Després, Venkata Manem
Title: Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis
Abstract:
With the rapid development of artificial intelligence (AI), AI-assisted medical imaging analysis demonstrates remarkable performance in early lung cancer screening. However, the costly annotation process and privacy concerns limit the construction of large-scale medical datasets, hampering the further application of AI in healthcare. To address the data scarcity in lung cancer screening, we propose Lung-DDPM, a thoracic CT image synthesis approach that effectively generates high-fidelity 3D synthetic CT images, which prove helpful in downstream lung nodule segmentation tasks. Our method is based on semantic layout-guided denoising diffusion probabilistic models (DDPM), enabling anatomically reasonable, seamless, and consistent sample generation even from incomplete semantic layouts. Our results suggest that the proposed method outperforms other state-of-the-art (SOTA) generative models in image quality evaluation and downstream lung nodule segmentation tasks. Specifically, Lung-DDPM achieved superior performance on our large validation cohort, with a Fréchet inception distance (FID) of 0.0047, maximum mean discrepancy (MMD) of 0.0070, and mean squared error (MSE) of 0.0024. These results were 7.4$\times$, 3.1$\times$, and 29.5$\times$ better than the second-best competitors, respectively. Furthermore, the lung nodule segmentation model, trained on a dataset combining real and Lung-DDPM-generated synthetic samples, attained a Dice Coefficient (Dice) of 0.3914 and sensitivity of 0.4393. This represents 8.8% and 18.6% improvements in Dice and sensitivity compared to the model trained solely on real samples. The experimental results highlight Lung-DDPM's potential for a broader range of medical imaging applications, such as general tumor segmentation, cancer survival estimation, and risk prediction. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM/.

Authors:Jianglin Lu, Yixuan Liu, Yitian Zhang, Yun Fu
Title: Scale-Free Graph-Language Models
Abstract:
Graph-language models (GLMs) have demonstrated great potential in graph-based semi-supervised learning. A typical GLM consists of two key stages: graph generation and text embedding, which are usually implemented by inferring a latent graph and finetuning a language model (LM), respectively. However, the former often relies on artificial assumptions about the underlying edge distribution, while the latter requires extensive data annotations. To tackle these challenges, this paper introduces a novel GLM that integrates graph generation and text embedding within a unified framework. Specifically, for graph generation, we leverage an inherent characteristic of real edge distribution--the scale-free property--as a structural prior. We unexpectedly find that this natural property can be effectively approximated by a simple k-nearest neighbor (KNN) graph. For text embedding, we develop a graph-based pseudo-labeler that utilizes scale-free graphs to provide complementary supervision for improved LM finetuning. Extensive experiments on representative datasets validate our findings on the scale-free structural approximation of KNN graphs and demonstrate the effectiveness of integrating graph generation and text embedding with a real structural prior. Our code is available at https://github.com/Jianglin954/SFGL.

Authors:Luoying Hao, Yan Hu, Yang Yue, Li Wu, Huazhu Fu, Jinming Duan, Jiang Liu
Title: Hierarchical Context Transformer for Multi-level Semantic Scene Understanding
Abstract:
A comprehensive and explicit understanding of surgical scenes plays a vital role in developing context-aware computer-assisted systems in the operating theatre. However, few works provide systematical analysis to enable hierarchical surgical scene understanding. In this work, we propose to represent the tasks set [phase recognition --> step recognition --> action and instrument detection] as multi-level semantic scene understanding (MSSU). For this target, we propose a novel hierarchical context transformer (HCT) network and thoroughly explore the relations across the different level tasks. Specifically, a hierarchical relation aggregation module (HRAM) is designed to concurrently relate entries inside multi-level interaction information and then augment task-specific features. To further boost the representation learning of the different tasks, inter-task contrastive learning (ICL) is presented to guide the model to learn task-wise features via absorbing complementary information from other tasks. Furthermore, considering the computational costs of the transformer, we propose HCT+ to integrate the spatial and temporal adapter to access competitive performance on substantially fewer tunable parameters. Extensive experiments on our cataract dataset and a publicly available endoscopic PSI-AVA dataset demonstrate the outstanding performance of our method, consistently exceeding the state-of-the-art methods by a large margin. The code is available at https://github.com/Aurora-hao/HCT.

Authors:Junliang Chen, Huaiyuan Xu, Yi Wang, Lap-Pui Chau
Title: OccProphet: Pushing Efficiency Frontier of Camera-Only 4D Occupancy Forecasting with Observer-Forecaster-Refiner Framework
Abstract:
Predicting variations in complex traffic environments is crucial for the safety of autonomous driving. Recent advancements in occupancy forecasting have enabled forecasting future 3D occupied status in driving environments by observing historical 2D images. However, high computational demands make occupancy forecasting less efficient during training and inference stages, hindering its feasibility for deployment on edge agents. In this paper, we propose a novel framework, i.e., OccProphet, to efficiently and effectively learn occupancy forecasting with significantly lower computational requirements while improving forecasting accuracy. OccProphet comprises three lightweight components: Observer, Forecaster, and Refiner. The Observer extracts spatio-temporal features from 3D multi-frame voxels using the proposed Efficient 4D Aggregation with Tripling-Attention Fusion, while the Forecaster and Refiner conditionally predict and refine future occupancy inferences. Experimental results on nuScenes, Lyft-Level5, and nuScenes-Occupancy datasets demonstrate that OccProphet is both training- and inference-friendly. OccProphet reduces 58\%$\sim$78\% of the computational cost with a 2.6$\times$ speedup compared with the state-of-the-art Cam4DOcc. Moreover, it achieves 4\%$\sim$18\% relatively higher forecasting accuracy. Code and models are publicly available at https://github.com/JLChen-C/OccProphet.

Authors:Weiqiao Shan, Yuang Li, Yuhao Zhang, Yingfeng Luo, Chen Xu, Xiaofeng Zhao, Long Meng, Yunfei Lu, Min Zhang, Hao Yang, Tong Xiao, Jingbo Zhu
Title: Enhancing Speech Large Language Models with Prompt-Aware Mixture of Audio Encoders
Abstract:
Connecting audio encoders with large language models (LLMs) allows the LLM to perform various audio understanding tasks, such as automatic speech recognition (ASR) and audio captioning (AC). Most research focuses on training an adapter layer to generate a unified audio feature for the LLM. However, different tasks may require distinct features that emphasize either semantic or acoustic aspects, making task-specific audio features more desirable. In this paper, we propose Prompt-aware Mixture (PaM) to enhance the Speech LLM that uses multiple audio encoders. Our approach involves using different experts to extract different features based on the prompt that indicates different tasks. Experiments demonstrate that with PaM, only one Speech LLM surpasses the best performances achieved by all single-encoder Speech LLMs on ASR, Speaker Number Verification, and AC tasks. PaM also outperforms other feature fusion baselines, such as concatenation and averaging. Our code would be available at: https://github.com/shanweiqiao/PaM

Authors:Xiaoyu Chen, Changde Du, Che Liu, Yizhe Wang, Huiguang He
Title: BP-GPT: Auditory Neural Decoding Using fMRI-prompted LLM
Abstract:
Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. Although existing work uses LLM to achieve this goal, their method does not use an end-to-end approach and avoids the LLM in the mapping of fMRI-to-text, leaving space for the exploration of the LLM in auditory decoding. In this paper, we introduce a novel method, the Brain Prompt GPT (BP-GPT). By using the brain representation that is extracted from the fMRI as a prompt, our method can utilize GPT-2 to decode fMRI signals into stimulus text. Further, we introduce the text prompt and align the fMRI prompt to it. By introducing the text prompt, our BP-GPT can extract a more robust brain prompt and promote the decoding of pre-trained LLM. We evaluate our BP-GPT on the open-source auditory semantic decoding dataset and achieve a significant improvement up to 4.61 on METEOR and 2.43 on BERTScore across all the subjects compared to the state-of-the-art method. The experimental results demonstrate that using brain representation as a prompt to further drive LLM for auditory neural decoding is feasible and effective. The code is available at https://github.com/1994cxy/BP-GPT.

Authors:Chuan Cui, Kejiang Chen, Zhihua Wei, Wen Shen, Weiming Zhang, Nenghai Yu
Title: M3-AGIQA: Multimodal, Multi-Round, Multi-Aspect AI-Generated Image Quality Assessment
Abstract:
The rapid advancement of AI-generated image (AIGI) models presents new challenges for evaluating image quality, particularly across three aspects: perceptual quality, prompt correspondence, and authenticity. To address these challenges, we introduce M3-AGIQA, a comprehensive framework that leverages Multimodal Large Language Models (MLLMs) to enable more human-aligned, holistic evaluation of AI-generated images across both visual and textual domains. Besides, our framework features a structured multi-round evaluation process, generating and analyzing intermediate image descriptions to provide deeper insight into these three aspects. By aligning model outputs more closely with human judgment, M3-AGIQA delivers robust and interpretable quality scores. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance on tested datasets and aspects, and exhibits strong generalizability in most cross-dataset settings. Code is available at https://github.com/strawhatboy/M3-AGIQA.

Authors:Ruofei Bai, Shenghai Yuan, Kun Li, Hongliang Guo, Wei-Yun Yau, Lihua Xie
Title: Realm: Real-Time Line-of-Sight Maintenance in Multi-Robot Navigation with Unknown Obstacles
Abstract:
Multi-robot navigation in complex environments relies on inter-robot communication and mutual observations for coordination and situational awareness. This paper studies the multi-robot navigation problem in unknown environments with line-of-sight (LoS) connectivity constraints. While previous works are limited to known environment models to derive the LoS constraints, this paper eliminates such requirements by directly formulating the LoS constraints between robots from their real-time point cloud measurements, leveraging point cloud visibility analysis techniques. We propose a novel LoS-distance metric to quantify both the urgency and sensitivity of losing LoS between robots considering potential robot movements. Moreover, to address the imbalanced urgency of losing LoS between two robots, we design a fusion function to capture the overall urgency while generating gradients that facilitate robots' collaborative movement to maintain LoS. The LoS constraints are encoded into a potential function that preserves the positivity of the Fiedler eigenvalue of the robots' network graph to ensure connectivity. Finally, we establish a LoS-constrained exploration framework that integrates the proposed connectivity controller. We showcase its applications in multi-robot exploration in complex unknown environments, where robots can always maintain the LoS connectivity through distributed sensing and communication, while collaboratively mapping the unknown environment. The implementations are open-sourced at https://github.com/bairuofei/LoS_constrained_navigation.

Authors:Tianjie Ju, Bowen Wang, Hao Fei, Mong-Li Lee, Wynne Hsu, Yun Li, Qianren Wang, Pengzhou Cheng, Zongru Wu, Zhuosheng Zhang, Gongshen Liu
Title: Investigating the Adaptive Robustness with Knowledge Conflicts in LLM-based Multi-Agent Systems
Abstract:
Recent advances in Large Language Models (LLMs) have upgraded them from sophisticated text generators to autonomous agents capable of corporation and tool use in multi-agent systems (MASs). However, the robustness of these LLM-based MASs, especially under knowledge conflicts, remains unclear. In this paper, we design four comprehensive metrics to investigate the robustness of MASs when facing mild or task-critical knowledge conflicts. We first analyze mild knowledge conflicts introduced by heterogeneous agents and find that they do not harm system robustness but instead improve collaborative decision-making. Next, we investigate task-critical knowledge conflicts by synthesizing knowledge conflicts and embedding them into one of the agents. Our results show that these conflicts have surprisingly little to no impact on MAS robustness. Furthermore, we observe that MASs demonstrate certain self-repairing capabilities by reducing their reliance on knowledge conflicts and adopting alternative solution paths to maintain stability. Finally, we conduct ablation studies on the knowledge conflict number, agent number, and interaction rounds, finding that the self-repairing capability of MASs has intrinsic limits, and all findings hold consistently across various factors. Our code is publicly available at https://github.com/wbw625/MultiAgentRobustness.

Authors:Tianjie Ju, Bowen Wang, Hao Fei, Mong-Li Lee, Wynne Hsu, Yun Li, Qianren Wang, Pengzhou Cheng, Zongru Wu, Haodong Zhao, Zhuosheng Zhang, Gongshen Liu
Title: When Disagreements Elicit Robustness: Investigating Self-Repair Capabilities under LLM Multi-Agent Disagreements
Abstract:
Recent advances in Large Language Models (LLMs) have upgraded them from sophisticated text generators to autonomous agents capable of cooperation and tool use in multi-agent systems (MAS). However, it remains unclear how disagreements shape collective decision-making. In this paper, we revisit the role of disagreement and argue that general, partially overlapping disagreements prevent premature consensus and expand the explored solution space, while disagreements on task-critical steps can derail collaboration depending on the topology of solution paths. We investigate two collaborative settings with distinct path structures: collaborative reasoning (CounterFact, MQuAKE-cf), which typically follows a single evidential chain, whereas collaborative programming (HumanEval, GAIA) often adopts multiple valid implementations. Disagreements are instantiated as general heterogeneity among agents and as task-critical counterfactual knowledge edits injected into context or parameters. Experiments reveal that general disagreements consistently improve success by encouraging complementary exploration. By contrast, task-critical disagreements substantially reduce success on single-path reasoning, yet have a limited impact on programming, where agents can choose alternative solutions. Trace analyses show that MAS frequently bypasses the edited facts in programming but rarely does so in reasoning, revealing an emergent self-repair capability that depends on solution-path rather than scale alone. Our code is available at https://github.com/wbw625/MultiAgentRobustness.

Authors:Ebenezer Tarubinga, Jenifer Kalafatovich, Seong-Whan Lee
Title: CW-BASS: Confidence-Weighted Boundary-Aware Learning for Semi-Supervised Semantic Segmentation
Abstract:
Semi-supervised semantic segmentation (SSSS) aims to improve segmentation performance by utilizing large amounts of unlabeled data with limited labeled samples. Existing methods often suffer from coupling, where over-reliance on initial labeled data leads to suboptimal learning; confirmation bias, where incorrect predictions reinforce themselves repeatedly; and boundary blur caused by limited boundary-awareness and ambiguous edge cues. To address these issues, we propose CW-BASS, a novel framework for SSSS. In order to mitigate the impact of incorrect predictions, we assign confidence weights to pseudo-labels. Additionally, we leverage boundary-delineation techniques, which, despite being extensively explored in weakly-supervised semantic segmentation (WSSS), remain underutilized in SSSS. Specifically, our method: (1) reduces coupling via a confidence-weighted loss that adjusts pseudo-label influence based on their predicted confidence scores, (2) mitigates confirmation bias with a dynamic thresholding mechanism that learns to filter out pseudo-labels based on model performance, (3) tackles boundary blur using a boundary-aware module to refine segmentation near object edges, and (4) reduces label noise through a confidence decay strategy that progressively refines pseudo-labels during training. Extensive experiments on Pascal VOC 2012 and Cityscapes demonstrate that CW-BASS achieves state-of-the-art performance. Notably, CW-BASS achieves a 65.9% mIoU on Cityscapes under a challenging and underexplored 1/30 (3.3%) split (100 images), highlighting its effectiveness in limited-label settings. Our code is available at https://github.com/psychofict/CW-BASS.

Authors:Yen-Che Hsiao, Abhishek Dutta
Title: Unveiling Reasoning Thresholds in Language Models: Scaling, Fine-Tuning, and Interpretability through Attention Maps
Abstract:
This study investigates the in-context learning capabilities of various decoder-only transformer-based language models with different model sizes and training data, including GPT2, SmolLM2, OpenELM, TinyLlama, Stable LM, and Gemma 2. We identify a critical parameter threshold (~1.6 billion), beyond which reasoning performance improves significantly in tasks such as commonsense reasoning in multiple-choice question answering and deductive reasoning. Specifically, models above this threshold achieve better success rates in chain-of-thought (CoT) prompting for deductive reasoning tasks, especially those requiring longer reasoning chains, such as proof by contradiction and disjunction elimination. To address limitations in sub-threshold models, we demonstrate that fine-tuning with task-specific exemplars substantially enhances reasoning performance, enabling accurate CoT generation even without additional exemplars in the prompt for tasks with shorter reasoning chains. Finally, our analysis of attention maps reveals that models capable of generating correct CoTs exhibit higher token-level attention scores on subsequent correct tokens and the correct parts of speech, providing interpretability insights into reasoning processes. These findings collectively advance understanding of reasoning capabilities in decoder-only transformer-based models. The code is available at: https://github.com/AnnonymousForPapers/CoT_Reasoning_Test.

Authors:Yeonjun In, Wonjoong Kim, Kanghoon Yoon, Sungchul Kim, Mehrab Tanjim, Kibum Kim, Chanyoung Park
Title: Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models
Abstract:
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SAFEBENCH, the first benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 18 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.

Authors:Vaidehi Patil, Elias Stengel-Eskin, Mohit Bansal
Title: UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning
Abstract:
User specifications or legal frameworks often require information to be removed from pretrained models, including large language models (LLMs). This requires deleting or "forgetting" a set of data points from an already-trained model, which typically degrades its performance on other data points. Thus, a balance must be struck between removing information and keeping the model's other abilities intact, with a failure to balance this trade-off leading to poor deletion or an unusable model. To this end, we propose UPCORE (Utility-Preserving Coreset Selection), a method-agnostic data selection framework for mitigating collateral damage during unlearning. Finding that the model damage is correlated with the variance of the model's representations on the forget set, we selectively prune the forget set to remove outliers, thereby minimizing model degradation after unlearning. Across three standard unlearning methods, UPCORE consistently achieves a superior balance between the competing objectives of deletion efficacy and model preservation. To better evaluate this trade-off, we introduce a new metric, measuring the area-under-the-curve (AUC) across standard metrics. Our results show that UPCORE improves both standard metrics and AUC, benefiting from positive transfer between the coreset and pruned points while reducing negative transfer from the forget set to points outside of it.

Authors:Mohsen Hariri, Alan Luo, Mohammadreza Nemati, Lam Nguyen, Shaochen Zhong, Qifan Wang, Xia Hu, Xiaotian Han, Vipin Chaudhary
Title: Quantize What Counts: Bit Allocation Insights Informed by Spectral Gaps in Keys and Values
Abstract:
Large Language Models (LLMs) have introduced significant advancements to the capabilities of Natural Language Processing (NLP) in recent years. However, as these models continue to scale in size, memory constraints pose substantial challenge. Key and Value cache (KV cache) quantization has been well-documented as a promising solution to this limitation. In this work, we provide two novel theorems aimed at enhancing KV quantization methods. Our first theorem, termed Key-Value Norm Disparity, states that the key weight matrices by nature carry richer information compared to the value weight matrices, as evidenced by higher spectral and Frobenius norms across most of the layers. Our second theorem, Key-Driven Quantization, posits that prioritizing the quantization precision of keys over values induces significant improvements to the overall quantization performance. In particular, assigning greater precision to the keys compared to the values achieves a higher degree of precision reduction with minimal impact on model accuracy. We validate these theorems through theory and extensive experiments on several state-of-the-art LLM architectures and benchmarks. These findings offer valuable guidelines for improving KV cache quantization strategies, facilitating more efficient memory utilization without compromising model performance across diverse NLP tasks. Source code is available at https://github.com/mohsenhariri/spectral-kv.

Authors:Tong Zhao, Yozen Liu, Matthew Kolodner, Kyle Montemayor, Elham Ghazizadeh, Ankit Batra, Zihao Fan, Xiaobin Gao, Xuan Guo, Jiwen Ren, Serim Park, Peicheng Yu, Jun Yu, Shubham Vij, Neil Shah
Title: GiGL: Large-Scale Graph Neural Networks at Snapchat
Abstract:
Recent advances in graph machine learning (ML) with the introduction of Graph Neural Networks (GNNs) have led to a widespread interest in applying these approaches to business applications at scale. GNNs enable differentiable end-to-end (E2E) learning of model parameters given graph structure which enables optimization towards popular node, edge (link) and graph-level tasks. While the research innovation in new GNN layers and training strategies has been rapid, industrial adoption and utility of GNNs has lagged considerably due to the unique scale challenges that large-scale graph ML problems create. In this work, we share our approach to training, inference, and utilization of GNNs at Snapchat. To this end, we present GiGL (Gigantic Graph Learning), an open-source library to enable large-scale distributed graph ML to the benefit of researchers, ML engineers, and practitioners. We use GiGL internally at Snapchat to manage the heavy lifting of GNN workflows, including graph data preprocessing from relational DBs, subgraph sampling, distributed training, inference, and orchestration. GiGL is designed to interface cleanly with open-source GNN modeling libraries prominent in academia like PyTorch Geometric (PyG), while handling scaling and productionization challenges that make it easier for internal practitioners to focus on modeling. GiGL is used in multiple production settings, and has powered over 35 launches across multiple business domains in the last 2 years in the contexts of friend recommendation, content recommendation and advertising. This work details high-level design and tools the library provides, scaling properties, case studies in diverse business settings with industry-scale graphs, and several key lessons learned in employing graph ML at scale on large social data. GiGL is open-sourced at https://github.com/Snapchat/GiGL.

Authors:Anthony Fuller, Yousef Yassin, Daniel G. Kyrollos, Evan Shelhamer, James R. Green
Title: Simpler Fast Vision Transformers with a Jumbo CLS Token
Abstract:
We introduce a simple enhancement of vision transformers (ViTs) to improve accuracy while maintaining throughput. Our approach, Jumbo, creates a wider CLS token, which is split to match the patch token width before attention, processed with self-attention, and reassembled. After attention, Jumbo applies a dedicated, wider FFN to this token. Since there is only one Jumbo token, its cost is minimal, and because we share this FFN across layers, its parameter count is controlled. Jumbo significantly improves over ViT+Registers on ImageNet-1K and ImageNet-21K. These gains are largest at small sizes / high speeds, e.g., ViT-nano+Jumbo outperforms ViT-nano+Registers by 13%. In fact, our Jumbo models are so efficient that they outperform specialized compute-efficient models while preserving the architectural advantages of plain ViTs, such as support for token dropping and other modalities. Accordingly, we demonstrate that Jumbo excels in these two settings via masked autoencoding and on a suite of time series benchmarks. Code and weights available: https://github.com/antofuller/jumbo

Authors:Manuel Knott, Ignacio Serna, Ethan Mann, Pietro Perona
Title: A Rapid Test for Accuracy and Bias of Face Recognition Technology
Abstract:
Measuring the accuracy of face recognition (FR) systems is essential for improving performance and ensuring responsible use. Accuracy is typically estimated using large annotated datasets, which are costly and difficult to obtain. We propose a novel method for 1:1 face verification that benchmarks FR systems quickly and without manual annotation, starting from approximate labels (e.g., from web search results). Unlike previous methods for training set label cleaning, ours leverages the embedding representation of the models being evaluated, achieving high accuracy in smaller-sized test datasets. Our approach reliably estimates FR accuracy and ranking, significantly reducing the time and cost of manual labeling. We also introduce the first public benchmark of five FR cloud services, revealing demographic biases, particularly lower accuracy for Asian women. Our rapid test method can democratize FR testing, promoting scrutiny and responsible use of the technology. Our method is provided as a publicly accessible tool at https://github.com/caltechvisionlab/frt-rapid-test

Authors:Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine, Tommaso Biancalani
Title: Reward-Guided Iterative Refinement in Diffusion Models at Test-Time with Applications to Protein and DNA Design
Abstract:
To fully leverage the capabilities of diffusion models, we are often interested in optimizing downstream reward functions during inference. While numerous algorithms for reward-guided generation have been recently proposed due to their significance, current approaches predominantly focus on single-shot generation, transitioning from fully noised to denoised states. We propose a novel framework for inference-time reward optimization with diffusion models inspired by evolutionary algorithms. Our approach employs an iterative refinement process consisting of two steps in each iteration: noising and reward-guided denoising. This sequential refinement allows for the gradual correction of errors introduced during reward optimization. Besides, we provide a theoretical guarantee for our framework. Finally, we demonstrate its superior empirical performance in protein and cell-type-specific regulatory DNA design. The code is available at \href{https://github.com/masa-ue/ProDifEvo-Refinement}{https://github.com/masa-ue/ProDifEvo-Refinement}.

Authors:Thomas Froech, Olaf Wysocki, Yan Xia, Junyu Xie, Benedikt Schwab, Daniel Cremers, Thomas H. Kolbe
Title: FacaDiffy: Inpainting Unseen Facade Parts Using Diffusion Models
Abstract:
High-detail semantic 3D building models are frequently utilized in robotics, geoinformatics, and computer vision. One key aspect of creating such models is employing 2D conflict maps that detect openings' locations in building facades. Yet, in reality, these maps are often incomplete due to obstacles encountered during laser scanning. To address this challenge, we introduce FacaDiffy, a novel method for inpainting unseen facade parts by completing conflict maps with a personalized Stable Diffusion model. Specifically, we first propose a deterministic ray analysis approach to derive 2D conflict maps from existing 3D building models and corresponding laser scanning point clouds. Furthermore, we facilitate the inpainting of unseen facade objects into these 2D conflict maps by leveraging the potential of personalizing a Stable Diffusion model. To complement the scarcity of real-world training data, we also develop a scalable pipeline to produce synthetic conflict maps using random city model generators and annotated facade images. Extensive experiments demonstrate that FacaDiffy achieves state-of-the-art performance in conflict map completion compared to various inpainting baselines and increases the detection rate by $22\%$ when applying the completed conflict maps for high-definition 3D semantic building reconstruction. The code is be publicly available in the corresponding GitHub repository: https://github.com/ThomasFroech/InpaintingofUnseenFacadeObjects

Authors:Zizhuo Zhang, Lijun Wu, Kaiyuan Gao, Jiangchao Yao, Tao Qin, Bo Han
Title: Fast and Accurate Blind Flexible Docking
Abstract:
Molecular docking that predicts the bound structures of small molecules (ligands) to their protein targets, plays a vital role in drug discovery. However, existing docking methods often face limitations: they either overlook crucial structural changes by assuming protein rigidity or suffer from low computational efficiency due to their reliance on generative models for structure sampling. To address these challenges, we propose FABFlex, a fast and accurate regression-based multi-task learning model designed for realistic blind flexible docking scenarios, where proteins exhibit flexibility and binding pocket sites are unknown (blind). Specifically, FABFlex's architecture comprises three specialized modules working in concert: (1) A pocket prediction module that identifies potential binding sites, addressing the challenges inherent in blind docking scenarios. (2) A ligand docking module that predicts the bound (holo) structures of ligands from their unbound (apo) states. (3) A pocket docking module that forecasts the holo structures of protein pockets from their apo conformations. Notably, FABFlex incorporates an iterative update mechanism that serves as a conduit between the ligand and pocket docking modules, enabling continuous structural refinements. This approach effectively integrates the three subtasks of blind flexible docking-pocket identification, ligand conformation prediction, and protein flexibility modeling-into a unified, coherent framework. Extensive experiments on public benchmark datasets demonstrate that FABFlex not only achieves superior effectiveness in predicting accurate binding modes but also exhibits a significant speed advantage (208 $\times$) compared to existing state-of-the-art methods. Our code is released at https://github.com/tmlr-group/FABFlex.

Authors:Zihao Zeng, Xuyao Huang, Boxiu Li, Zhijie Deng
Title: SIFT: Grounding LLM Reasoning in Contexts via Stickers
Abstract:
This paper identifies the misinterpretation of the context can be a significant issue during the reasoning process of large language models, spanning from smaller models like Llama3.2-3B-Instruct to cutting-edge ones like DeepSeek-R1. For example, in the phrase "10 dollars per kilo," LLMs might not recognize that "per" means "for each," leading to calculation errors. We introduce a novel, post-training approach called **Stick to the Facts (SIFT)** to tackle this. SIFT leverages increasing inference-time compute to ground LLM reasoning in contexts. At the core of SIFT lies the *Sticker*, which is generated by the model itself to explicitly emphasize the key information within the context. Given the curated Sticker, SIFT generates two predictions -- one from the original query and one from the query augmented with the Sticker. If they differ, the Sticker is sequentially refined via *forward* optimization (to better align the extracted facts with the query) and *inverse* generation (to conform with the model's inherent tendencies) for more faithful reasoning outcomes. Studies across diverse models (from 3B to 100B+) and benchmarks (e.g., GSM8K, MATH-500) reveal consistent performance improvements. Notably, SIFT improves the pass@1 accuracy of DeepSeek-R1 on AIME2024 from 78.33% to **85.67**%, establishing a new state-of-the-art in the open-source community. The code is available at https://github.com/zhijie-group/SIFT.

Authors:Boyu Chen, Zirui Guo, Zidan Yang, Yuluo Chen, Junze Chen, Zhenghao Liu, Chuan Shi, Cheng Yang
Title: PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths
Abstract:
Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases. Typical RAG approaches split the text database into chunks, organizing them in a flat structure for efficient searches. To better capture the inherent dependencies and structured relationships across the text database, researchers propose to organize textual information into an indexing graph, known asgraph-based RAG. However, we argue that the limitation of current graph-based RAG methods lies in the redundancy of the retrieved information, rather than its insufficiency. Moreover, previous methods use a flat structure to organize retrieved information within the prompts, leading to suboptimal performance. To overcome these limitations, we propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs. Specifically, PathRAG effectively reduces redundant information with flow-based pruning, while guiding LLMs to generate more logical and coherent responses with path-based prompting. Experimental results show that PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions. The code is available at the following link: https://github.com/BUPT-GAMMA/PathRAG

Authors:Zhe Huang, Shuo Wang, Yongcai Wang, Lei Wang
Title: CoDiff: Conditional Diffusion Model for Collaborative 3D Object Detection
Abstract:
Collaborative 3D object detection holds significant importance in the field of autonomous driving, as it greatly enhances the perception capabilities of each individual agent by facilitating information exchange among multiple agents. However, in practice, due to pose estimation errors and time delays, the fusion of information across agents often results in feature representations with spatial and temporal noise, leading to detection errors. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to explore the use of diffusion models to address the noise problem between multi-agent systems. In this work, we propose CoDiff, a novel robust collaborative perception framework that leverages the potential of diffusion models to generate more comprehensive and clearer feature representations. To the best of our knowledge, this is the first work to apply diffusion models to multi-agent collaborative perception. Specifically, we project high-dimensional feature map into the latent space of a powerful pre-trained autoencoder. Within this space, individual agent information serves as a condition to guide the diffusion model's sampling. This process denoises coarse feature maps and progressively refines the fused features. Experimental study on both simulated and real-world datasets demonstrates that the proposed framework CoDiff consistently outperforms existing relevant methods in terms of the collaborative object detection performance, and exhibits highly desired robustness when the pose and delay information of agents is with high-level noise. The code is released at https://github.com/HuangZhe885/CoDiff

Authors:Zhiyu Zhu, Zhibo Jin, Jiayu Zhang, Nan Yang, Jiahao Huang, Jianlong Zhou, Fang Chen
Title: Narrowing Information Bottleneck Theory for Multimodal Image-Text Representations Interpretability
Abstract:
The task of identifying multimodal image-text representations has garnered increasing attention, particularly with models such as CLIP (Contrastive Language-Image Pretraining), which demonstrate exceptional performance in learning complex associations between images and text. Despite these advancements, ensuring the interpretability of such models is paramount for their safe deployment in real-world applications, such as healthcare. While numerous interpretability methods have been developed for unimodal tasks, these approaches often fail to transfer effectively to multimodal contexts due to inherent differences in the representation structures. Bottleneck methods, well-established in information theory, have been applied to enhance CLIP's interpretability. However, they are often hindered by strong assumptions or intrinsic randomness. To overcome these challenges, we propose the Narrowing Information Bottleneck Theory, a novel framework that fundamentally redefines the traditional bottleneck approach. This theory is specifically designed to satisfy contemporary attribution axioms, providing a more robust and reliable solution for improving the interpretability of multimodal models. In our experiments, compared to state-of-the-art methods, our approach enhances image interpretability by an average of 9%, text interpretability by an average of 58.83%, and accelerates processing speed by 63.95%. Our code is publicly accessible at https://github.com/LMBTough/NIB.

Authors:Insu Han, Zeliang Zhang, Zhiyuan Wang, Yifan Zhu, Susan Liang, Jiani Liu, Haiting Lin, Mingjie Zhao, Chenliang Xu, Kun Wan, Wentian Zhao
Title: CalibQuant: 1-Bit KV Cache Quantization for Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance across diverse applications. However, their computational overhead during deployment remains a critical bottleneck. While Key-Value (KV) caching effectively trades memory for computation to enhance inference efficiency, the growing memory footprint from extensive KV caches significantly reduces throughput and restricts prolonged deployment on memory-constrained GPU devices. To address this challenge, we propose CalibQuant, a simple yet highly effective visual quantization strategy that drastically reduces both memory and computational overhead. Specifically, CalibQuant introduces an extreme 1-bit quantization scheme, complemented by novel post-scaling and calibration techniques tailored to the intrinsic patterns of KV caches, thereby ensuring high efficiency without compromising model performance. Leveraging Triton for runtime optimization, we achieve a 10x throughput increase on InternVL models. Our method is designed to be plug-and-play, seamlessly integrating with various existing MLLMs without requiring architectural changes. Extensive experiments confirm that our approach significantly reduces memory usage while maintaining computational efficiency and preserving multimodal capabilities. Codes are available at https://github.com/insuhan/calibquant.

Authors:Mang Ye, Xuankun Rong, Wenke Huang, Bo Du, Nenghai Yu, Dacheng Tao
Title: A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations
Abstract:
With the rapid advancement of Large Vision-Language Models (LVLMs), ensuring their safety has emerged as a crucial area of research. This survey provides a comprehensive analysis of LVLM safety, covering key aspects such as attacks, defenses, and evaluation methods. We introduce a unified framework that integrates these interrelated components, offering a holistic perspective on the vulnerabilities of LVLMs and the corresponding mitigation strategies. Through an analysis of the LVLM lifecycle, we introduce a classification framework that distinguishes between inference and training phases, with further subcategories to provide deeper insights. Furthermore, we highlight limitations in existing research and outline future directions aimed at strengthening the robustness of LVLMs. As part of our research, we conduct a set of safety evaluations on the latest LVLM, Deepseek Janus-Pro, and provide a theoretical analysis of the results. Our findings provide strategic recommendations for advancing LVLM safety and ensuring their secure and reliable deployment in high-stakes, real-world applications. This survey aims to serve as a cornerstone for future research, facilitating the development of models that not only push the boundaries of multimodal intelligence but also adhere to the highest standards of security and ethical integrity. Furthermore, to aid the growing research in this field, we have created a public repository to continuously compile and update the latest work on LVLM safety: https://github.com/XuankunRong/Awesome-LVLM-Safety .

Authors:Dong Chen, Zhengqing Hu, Peiguang Fan, Yueting Zhuang, Yafei Li, Qidong Liu, Xiaoheng Jiang, Mingliang Xu
Title: KKA: Improving Vision Anomaly Detection through Anomaly-related Knowledge from Large Language Models
Abstract:
Vision anomaly detection, particularly in unsupervised settings, often struggles to distinguish between normal samples and anomalies due to the wide variability in anomalies. Recently, an increasing number of studies have focused on generating anomalies to help detectors learn more effective boundaries between normal samples and anomalies. However, as the generated anomalies are often derived from random factors, they frequently lack realism. Additionally, randomly generated anomalies typically offer limited support in constructing effective boundaries, as most differ substantially from normal samples and lie far from the boundary. To address these challenges, we propose Key Knowledge Augmentation (KKA), a method that extracts anomaly-related knowledge from large language models (LLMs). More specifically, KKA leverages the extensive prior knowledge of LLMs to generate meaningful anomalies based on normal samples. Then, KKA classifies the generated anomalies as easy anomalies and hard anomalies according to their similarity to normal samples. Easy anomalies exhibit significant differences from normal samples, whereas hard anomalies closely resemble normal samples. KKA iteratively updates the generated anomalies, and gradually increasing the proportion of hard anomalies to enable the detector to learn a more effective boundary. Experimental results show that the proposed method significantly improves the performance of various vision anomaly detectors while maintaining low generation costs. The code for CMG can be found at https://github.com/Anfeather/KKA.

Authors:Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu, Guangxuan Xiao, Jiaming Tang, Yujun Lin, Zhijian Liu, Yao Lu, Song Han
Title: LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Abstract:
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.

Authors:Sara Ghaboura, Ketan More, Ritesh Thawkar, Wafa Alghallabi, Omkar Thawakar, Fahad Shahbaz Khan, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Title: Time Travel: A Comprehensive Benchmark to Evaluate LMMs on Historical and Cultural Artifacts
Abstract:
Understanding historical and cultural artifacts demands human expertise and advanced computational techniques, yet the process remains complex and time-intensive. While large multimodal models offer promising support, their evaluation and improvement require a standardized benchmark. To address this, we introduce TimeTravel, a benchmark of 10,250 expert-verified samples spanning 266 distinct cultures across 10 major historical regions. Designed for AI-driven analysis of manuscripts, artworks, inscriptions, and archaeological discoveries, TimeTravel provides a structured dataset and robust evaluation framework to assess AI models' capabilities in classification, interpretation, and historical comprehension. By integrating AI with historical research, TimeTravel fosters AI-powered tools for historians, archaeologists, researchers, and cultural tourists to extract valuable insights while ensuring technology contributes meaningfully to historical discovery and cultural heritage preservation. We evaluate contemporary AI models on TimeTravel, highlighting their strengths and identifying areas for improvement. Our goal is to establish AI as a reliable partner in preserving cultural heritage, ensuring that technological advancements contribute meaningfully to historical discovery. Our code is available at: \url{https://github.com/mbzuai-oryx/TimeTravel}.

Authors:Yuming Yang, Jiang Zhong, Li Jin, Jingwang Huang, Jingpeng Gao, Qing Liu, Yang Bai, Jingyuan Zhang, Rui Jiang, Kaiwen Wei
Title: Benchmarking Multimodal RAG through a Chart-based Document Question-Answering Generation Framework
Abstract:
Multimodal Retrieval-Augmented Generation (MRAG) enhances reasoning capabilities by integrating external knowledge. However, existing benchmarks primarily focus on simple image-text interactions, overlooking complex visual formats like charts that are prevalent in real-world applications. In this work, we introduce a novel task, Chart-based MRAG, to address this limitation. To semi-automatically generate high-quality evaluation samples, we propose CHARt-based document question-answering GEneration (CHARGE), a framework that produces evaluation data through structured keypoint extraction, crossmodal verification, and keypoint-based generation. By combining CHARGE with expert validation, we construct Chart-MRAG Bench, a comprehensive benchmark for chart-based MRAG evaluation, featuring 4,738 question-answering pairs across 8 domains from real-world documents. Our evaluation reveals three critical limitations in current approaches: (1) unified multimodal embedding retrieval methods struggles in chart-based scenarios, (2) even with ground-truth retrieval, state-of-the-art MLLMs achieve only 58.19% Correctness and 73.87% Coverage scores, and (3) MLLMs demonstrate consistent text-over-visual modality bias during Chart-based MRAG reasoning. The CHARGE and Chart-MRAG Bench are released at https://github.com/Nomothings/CHARGE.git.

Authors:Weilin Zhao, Tengyu Pan, Xu Han, Yudi Zhang, Ao Sun, Yuxiang Huang, Kaihuo Zhang, Weilun Zhao, Yuxuan Li, Jianyong Wang, Zhiyuan Liu, Maosong Sun
Title: FR-Spec: Accelerating Large-Vocabulary Language Models via Frequency-Ranked Speculative Sampling
Abstract:
Speculative sampling has emerged as an important technique for accelerating the auto-regressive generation process of large language models (LLMs) by utilizing a draft-then-verify mechanism to produce multiple tokens per forward pass. While state-of-the-art speculative sampling methods use only a single layer and a language modeling (LM) head as the draft model to achieve impressive layer compression, their efficiency gains are substantially reduced for large-vocabulary LLMs, such as Llama-3-8B with a vocabulary of 128k tokens. To address this, we present FR-Spec, a frequency-ranked speculative sampling framework that optimizes draft candidate selection through vocabulary space compression. By constraining the draft search to a frequency-prioritized token subset, our method reduces LM Head computation overhead by 75% while ensuring the equivalence of the final output distribution. Experiments across multiple datasets demonstrate an average of 1.12$\times$ speedup over the state-of-the-art speculative sampling method EAGLE-2. Code available at https://github.com/thunlp/FR-Spec.

Authors:Evan Frick, Connor Chen, Joseph Tennyson, Tianle Li, Wei-Lin Chiang, Anastasios N. Angelopoulos, Ion Stoica
Title: Prompt-to-Leaderboard
Abstract:
Large language model (LLM) evaluations typically rely on aggregated metrics like accuracy or human preference, averaging across users and prompts. This averaging obscures user- and prompt-specific variations in model performance. To address this, we propose Prompt-to-Leaderboard (P2L), a method that produces leaderboards specific to a prompt. The core idea is to train an LLM taking natural language prompts as input to output a vector of Bradley-Terry coefficients which are then used to predict the human preference vote. The resulting prompt-dependent leaderboards allow for unsupervised task-specific evaluation, optimal routing of queries to models, personalization, and automated evaluation of model strengths and weaknesses. Data from Chatbot Arena suggest that P2L better captures the nuanced landscape of language model performance than the averaged leaderboard. Furthermore, our findings suggest that P2L's ability to produce prompt-specific evaluations follows a power law scaling similar to that observed in LLMs themselves. In January 2025, the router we trained based on this methodology achieved the #1 spot on the Chatbot Arena leaderboard. Our code is available on GitHub at https://github.com/lmarena/p2l.

Authors:Jianwen Luo, Yiming Huang, Jinxiang Meng, Fangyu Lei, Shizhu He, Xiao Liu, Shanshan Jiang, Bin Dong, Jun Zhao, Kang Liu
Title: GATE: Graph-based Adaptive Tool Evolution Across Diverse Tasks
Abstract:
Large Language Models (LLMs) have shown great promise in tool-making, yet existing frameworks often struggle to efficiently construct reliable toolsets and are limited to single-task settings. To address these challenges, we propose GATE (Graph-based Adaptive Tool Evolution), an adaptive framework that dynamically constructs and evolves a hierarchical graph of reusable tools across multiple scenarios. We evaluate GATE on open-ended tasks (Minecraft), agent-based tasks (TextCraft, DABench), and code generation tasks (MATH, Date, TabMWP). Our results show that GATE achieves up to 4.3x faster milestone completion in Minecraft compared to the previous SOTA, and provides an average improvement of 9.23% over existing tool-making methods in code generation tasks and 10.03% in agent tasks. GATE demonstrates the power of adaptive evolution, balancing tool quantity, complexity, and functionality while maintaining high efficiency. Code and data are available at \url{https://github.com/ayanami2003/GATE}.

Authors:Alexia Jolicoeur-Martineau, Yan Zhang, Boris Knyazev, Aristide Baratin, Cheng-Hao Liu
Title: Generating $π$-Functional Molecules Using STGG+ with Active Learning
Abstract:
Generating novel molecules with out-of-distribution properties is a major challenge in molecular discovery. While supervised learning methods generate high-quality molecules similar to those in a dataset, they struggle to generalize to out-of-distribution properties. Reinforcement learning can explore new chemical spaces but often conducts 'reward-hacking' and generates non-synthesizable molecules. In this work, we address this problem by integrating a state-of-the-art supervised learning method, STGG+, in an active learning loop. Our approach iteratively generates, evaluates, and fine-tunes STGG+ to continuously expand its knowledge. We denote this approach STGG+AL. We apply STGG+AL to the design of organic $π$-functional materials, specifically two challenging tasks: 1) generating highly absorptive molecules characterized by high oscillator strength and 2) designing absorptive molecules with reasonable oscillator strength in the near-infrared (NIR) range. The generated molecules are validated and rationalized in-silico with time-dependent density functional theory. Our results demonstrate that our method is highly effective in generating novel molecules with high oscillator strength, contrary to existing methods such as reinforcement learning (RL) methods. We open-source our active-learning code along with our Conjugated-xTB dataset containing 2.9 million $π$-conjugated molecules and the function for approximating the oscillator strength and absorption wavelength (based on sTDA-xTB).

Authors:Shangqing Tu, Yucheng Wang, Daniel Zhang-Li, Yushi Bai, Jifan Yu, Yuhao Wu, Lei Hou, Huiqin Liu, Zhiyuan Liu, Bin Xu, Juanzi Li
Title: LongWriter-V: Enabling Ultra-Long and High-Fidelity Generation in Vision-Language Models
Abstract:
Existing Large Vision-Language Models (LVLMs) can process inputs with context lengths up to 128k visual and text tokens, yet they struggle to generate coherent outputs beyond 1,000 words. We find that the primary limitation is the absence of long output examples during supervised fine-tuning (SFT). To tackle this issue, we introduce LongWriter-V-22k, a SFT dataset comprising 22,158 examples, each with multiple input images, an instruction, and corresponding outputs ranging from 0 to 10,000 words. Moreover, to achieve long outputs that maintain high-fidelity to the input images, we employ Direct Preference Optimization (DPO) to the SFT model. Given the high cost of collecting human feedback for lengthy outputs (e.g., 3,000 words), we propose IterDPO, which breaks long outputs into segments and uses iterative corrections to form preference pairs with the original outputs. Additionally, we develop MMLongBench-Write, a benchmark featuring six tasks to evaluate the long-generation capabilities of VLMs. Our 7B parameter model, trained with LongWriter-V-22k and IterDPO, achieves impressive performance on this benchmark, outperforming larger proprietary models like GPT-4o. Code and data: https://github.com/THU-KEG/LongWriter-V

Authors:Ivan Skorokhodov, Sharath Girish, Benran Hu, Willi Menapace, Yanyu Li, Rameen Abdal, Sergey Tulyakov, Aliaksandr Siarohin
Title: Improving the Diffusability of Autoencoders
Abstract:
Latent diffusion models have emerged as the leading approach for generating high-quality images and videos, utilizing compressed latent representations to reduce the computational burden of the diffusion process. While recent advancements have primarily focused on scaling diffusion backbones and improving autoencoder reconstruction quality, the interaction between these components has received comparatively less attention. In this work, we perform a spectral analysis of modern autoencoders and identify inordinate high-frequency components in their latent spaces, which are especially pronounced in the autoencoders with a large bottleneck channel size. We hypothesize that this high-frequency component interferes with the coarse-to-fine nature of the diffusion synthesis process and hinders the generation quality. To mitigate the issue, we propose scale equivariance: a simple regularization strategy that aligns latent and RGB spaces across frequencies by enforcing scale equivariance in the decoder. It requires minimal code changes and only up to 20K autoencoder fine-tuning steps, yet significantly improves generation quality, reducing FID by 19% for image generation on ImageNet-1K $256^2$ and FVD by at least 44% for video generation on Kinetics-700 $17 \times 256^2$. The source code is available at https://github.com/snap-research/diffusability.

Authors:Danni Liu, Jan Niehues
Title: Middle-Layer Representation Alignment for Cross-Lingual Transfer in Fine-Tuned LLMs
Abstract:
While large language models demonstrate remarkable capabilities at task-specific applications through fine-tuning, extending these benefits across diverse languages is essential for broad accessibility. However, effective cross-lingual transfer is hindered by LLM performance gaps across languages and the scarcity of fine-tuning data in many languages. Through analysis of LLM internal representations from over 1,000+ language pairs, we discover that middle layers exhibit the strongest potential for cross-lingual alignment. Building on this finding, we propose a middle-layer alignment objective integrated into task-specific training. Our experiments on slot filling, machine translation, and structured text generation show consistent improvements in cross-lingual transfer, especially to lower-resource languages. The method is robust to the choice of alignment languages and generalizes to languages unseen during alignment. Furthermore, we show that separately trained alignment modules can be merged with existing task-specific modules, improving cross-lingual capabilities without full re-training. Our code is publicly available (https://github.com/dannigt/mid-align).

Authors:Maor Mizrachi, Barak Raveh, Elad Steinberg
Title: MadVoro: Parallel Construction of Voronoi Diagrams in Distributed Memory Systems
Abstract:
Voronoi diagrams are essential geometrical structures with numerous applications, particularly astrophysics-driven finite volume methods. While serial algorithms for constructing these entities are well-established, parallel construction remains challenging. This is especially true in distributed memory systems, where each host manages only a subset of the input points. This process requires redistributing points across hosts and accurately computing the corresponding Voronoi cells. In this paper, we introduce a new distributed construction algorithm, which is implemented in our open-source C++ 3-dimensional Voronoi construction framework. Our approach leverages Delaunay triangulation as an intermediate step, which is then transformed into a Voronoi diagram. We introduce the algorithms we implemented for the precise construction and our load-balancing approach and compare the running time with other state-of-the-art frameworks. MadVoro is a versatile tool that can be applied in various scientific domains, such as mesh decomposition, computational physics, chemistry, and machine learning.

Authors:Weizhong Huang, Yuxin Zhang, Xiawu Zheng, Yang Liu, Jing Lin, Yiwu Yao, Rongrong Ji
Title: Dynamic Low-Rank Sparse Adaptation for Large Language Models
Abstract:
Despite the efficacy of network sparsity in alleviating the deployment strain of Large Language Models (LLMs), it endures significant performance degradation. Applying Low-Rank Adaptation (LoRA) to fine-tune the sparse LLMs offers an intuitive approach to counter this predicament, while it holds shortcomings include: 1) The inability to integrate LoRA weights into sparse LLMs post-training, and 2) Insufficient performance recovery at high sparsity ratios. In this paper, we introduce dynamic Low-rank Sparse Adaptation (LoSA), a novel method that seamlessly integrates low-rank adaptation into LLM sparsity within a unified framework, thereby enhancing the performance of sparse LLMs without increasing the inference latency. In particular, LoSA dynamically sparsifies the LoRA outcomes based on the corresponding sparse weights during fine-tuning, thus guaranteeing that the LoRA module can be integrated into the sparse LLMs post-training. Besides, LoSA leverages Representation Mutual Information (RMI) as an indicator to determine the importance of layers, thereby efficiently determining the layer-wise sparsity rates during fine-tuning. Predicated on this, LoSA adjusts the rank of the LoRA module based on the variability in layer-wise reconstruction errors, allocating an appropriate fine-tuning for each layer to reduce the output discrepancies between dense and sparse LLMs. Extensive experiments tell that LoSA can efficiently boost the efficacy of sparse LLMs within a few hours, without introducing any additional inferential burden. For example, LoSA reduced the perplexity of sparse LLaMA-2-7B by 68.73 and increased zero-shot accuracy by 16.32$\%$, achieving a 2.60$\times$ speedup on CPU and 2.23$\times$ speedup on GPU, requiring only 45 minutes of fine-tuning on a single NVIDIA A100 80GB GPU. Code is available at https://github.com/wzhuang-xmu/LoSA.

Authors:Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, Yu Su
Title: From RAG to Memory: Non-Parametric Continual Learning for Large Language Models
Abstract:
Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Code and data are available at https://github.com/OSU-NLP-Group/HippoRAG.

Authors:Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff, Jeremiah Harmsen, Andreas Steiner, Xiaohua Zhai
Title: SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
Abstract:
We introduce SigLIP 2, a family of new multilingual vision-language encoders that build on the success of the original SigLIP. In this second iteration, we extend the original image-text training objective with several prior, independently developed techniques into a unified recipe -- this includes captioning-based pretraining, self-supervised losses (self-distillation, masked prediction) and online data curation. With these changes, SigLIP 2 models outperform their SigLIP counterparts at all model scales in core capabilities, including zero-shot classification, image-text retrieval, and transfer performance when extracting visual representations for Vision-Language Models (VLMs). Furthermore, the new training recipe leads to significant improvements on localization and dense prediction tasks. We also train variants which support multiple resolutions and preserve the input's native aspect ratio. Finally, we train on a more diverse data-mixture that includes de-biasing techniques, leading to much better multilingual understanding and improved fairness. To allow users to trade off inference cost with performance, we release model checkpoints at four sizes: ViT-B (86M), L (303M), So400m (400M), and g (1B).

Authors:Jeonghun Baek, Akiko Aizawa, Kiyoharu Aizawa
Title: Harnessing PDF Data for Improving Japanese Large Multimodal Models
Abstract:
Large Multimodal Models (LMMs) have demonstrated strong performance in English, but their effectiveness in Japanese remains limited due to the lack of high-quality training data. Current Japanese LMMs often rely on translated English datasets, restricting their ability to capture Japan-specific cultural knowledge. To address this, we explore the potential of Japanese PDF data as a training resource, an area that remains largely underutilized. We introduce a fully automated pipeline that leverages pretrained models to extract image-text pairs from PDFs through layout analysis, OCR, and vision-language pairing, removing the need for manual annotation. Additionally, we construct instruction data from extracted image-text pairs to enrich the training data. To evaluate the effectiveness of PDF-derived data, we train Japanese LMMs and assess their performance on the Japanese LMM Benchmark. Our results demonstrate substantial improvements, with performance gains ranging from 2.1% to 13.8% on Heron-Bench. Further analysis highlights the impact of PDF-derived data on various factors, such as model size and language models, reinforcing its value as a multimodal resource for Japanese LMMs.

Authors:Priyanka Kargupta, Ishika Agarwal, Tal August, Jiawei Han
Title: Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis
Abstract:
With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review.

Authors:Maya Varma, Ashwin Kumar, Rogier van der Sluijs, Sophie Ostmeier, Louis Blankemeier, Pierre Chambon, Christian Bluethgen, Jip Prince, Curtis Langlotz, Akshay Chaudhari
Title: MedVAE: Efficient Automated Interpretation of Medical Images with Large-Scale Generalizable Autoencoders
Abstract:
Medical images are acquired at high resolutions with large fields of view in order to capture fine-grained features necessary for clinical decision-making. Consequently, training deep learning models on medical images can incur large computational costs. In this work, we address the challenge of downsizing medical images in order to improve downstream computational efficiency while preserving clinically-relevant features. We introduce MedVAE, a family of six large-scale 2D and 3D autoencoders capable of encoding medical images as downsized latent representations and decoding latent representations back to high-resolution images. We train MedVAE autoencoders using a novel two-stage training approach with 1,052,730 medical images. Across diverse tasks obtained from 20 medical image datasets, we demonstrate that (1) utilizing MedVAE latent representations in place of high-resolution images when training downstream models can lead to efficiency benefits (up to 70x improvement in throughput) while simultaneously preserving clinically-relevant features and (2) MedVAE can decode latent representations back to high-resolution images with high fidelity. Our work demonstrates that large-scale, generalizable autoencoders can help address critical efficiency challenges in the medical domain. Our code is available at https://github.com/StanfordMIMI/MedVAE.

Authors:Jianling Li, Shangzhan Li, Zhenye Gao, Qi Shi, Yuxuan Li, Zefan Wang, Jiacheng Huang, Haojie Wang, Jianrong Wang, Xu Han, Zhiyuan Liu, Maosong Sun
Title: TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators
Abstract:
Triton, a high-level Python-like language designed for building efficient GPU kernels, is widely adopted in deep learning frameworks due to its portability, flexibility, and accessibility. However, programming and parallel optimization still require considerable trial and error from Triton developers. Despite advances in large language models (LLMs) for conventional code generation, these models struggle to generate accurate, performance-optimized Triton code, as they lack awareness of its specifications and the complexities of GPU programming. More critically, there is an urgent need for systematic evaluations tailored to Triton. In this work, we introduce TritonBench, the first comprehensive benchmark for Triton operator generation. TritonBench features two evaluation channels: a curated set of 184 real-world operators from GitHub and a collection of operators aligned with PyTorch interfaces. Unlike conventional code benchmarks prioritizing functional correctness, TritonBench also profiles efficiency performance on widely deployed GPUs aligned with industry applications. Our study reveals that current state-of-the-art code LLMs struggle to generate efficient Triton operators, highlighting a significant gap in high-performance code generation. TritonBench will be available at https://github.com/thunlp/TritonBench.

Authors:Yilei Jiang, Xinyan Gao, Tianshuo Peng, Yingshui Tan, Xiaoyong Zhu, Bo Zheng, Xiangyu Yue
Title: HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States
Abstract:
The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that {HiddenDetect} surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code will be released publicly at https://github.com/leigest519/HiddenDetect.

Authors:Zichun Yu, Fei Peng, Jie Lei, Arnold Overwijk, Wen-tau Yih, Chenyan Xiong
Title: Group-Level Data Selection for Efficient Pretraining
Abstract:
In this paper, we introduce Group-MATES, an efficient group-level data selection approach to optimize the speed-quality frontier of language model pretraining. Specifically, Group-MATES parameterizes costly group-level selection with a relational data influence model. To train this model, we sample training trajectories of the language model and collect oracle data influences alongside. The relational data influence model approximates the oracle data influence by weighting individual influence with relationships among training data. To enable efficient selection with our relational data influence model, we partition the dataset into small clusters using relationship weights and select data within each cluster independently. Experiments on DCLM 400M-4x, 1B-1x, and 3B-1x show that Group-MATES achieves 3.5%-9.4% relative performance gains over random selection across 22 downstream tasks, nearly doubling the improvements achieved by state-of-the-art individual data selection baselines. Furthermore, Group-MATES reduces the number of tokens required to reach a certain downstream performance by up to 1.75x, substantially elevating the speed-quality frontier. Further analyses highlight the critical role of relationship weights in the relational data influence model and the effectiveness of our cluster-based inference. Our code is open-sourced at https://github.com/facebookresearch/Group-MATES.

Authors:Daphne Cornelisse, Aarav Pandya, Kevin Joseph, Joseph Suárez, Eugene Vinitsky
Title: Building reliable sim driving agents by scaling self-play
Abstract:
Simulation agents are essential for designing and testing systems that interact with humans, such as autonomous vehicles (AVs). These agents serve various purposes, from benchmarking AV performance to stress-testing system limits, but all applications share one key requirement: reliability. To enable sound experimentation, a simulation agent must behave as intended. It should minimize actions that may lead to undesired outcomes, such as collisions, which can distort the signal-to-noise ratio in analyses. As a foundation for reliable sim agents, we propose scaling self-play to thousands of scenarios on the Waymo Open Motion Dataset under semi-realistic limits on human perception and control. Training from scratch on a single GPU, our agents solve almost the full training set within a day. They generalize to unseen test scenes, achieving a 99.8% goal completion rate with less than 0.8% combined collision and off-road incidents across 10,000 held-out scenarios. Beyond in-distribution generalization, our agents show partial robustness to out-of-distribution scenes and can be fine-tuned in minutes to reach near-perfect performance in such cases. We open-source the pre-trained agents and integrate them with a batched multi-agent simulator. Demonstrations of agent behaviors can be viewed at https://sites.google.com/view/reliable-sim-agents, and we open-source our agents at https://github.com/Emerge-Lab/gpudrive.

Authors:Zujie Liang, Feng Wei, Wujiang Xu, Lin Chen, Yuxi Qian, Xinhui Wu
Title: I-MCTS: Enhancing Agentic AutoML via Introspective Monte Carlo Tree Search
Abstract:
Recent advancements in large language models (LLMs) have shown remarkable potential in automating machine learning tasks. However, existing LLM-based agents often struggle with low-diversity and suboptimal code generation. While recent work has introduced Monte Carlo Tree Search (MCTS) to address these issues, limitations persist in the quality and diversity of thoughts generated, as well as in the scalar value feedback mechanisms used for node selection. In this study, we introduce Introspective Monte Carlo Tree Search (I-MCTS), a novel approach that iteratively expands tree nodes through an introspective process that meticulously analyzes solutions and results from parent and sibling nodes. This facilitates a continuous refinement of the node in the search tree, thereby enhancing the overall decision-making process. Furthermore, we integrate a Large Language Model (LLM)-based value model to facilitate direct evaluation of each node's solution prior to conducting comprehensive computational rollouts. A hybrid rewarding mechanism is implemented to seamlessly transition the Q-value from LLM-estimated scores to actual performance scores. This allows higher-quality nodes to be traversed earlier. Applied to the various ML tasks, our approach demonstrates a 6% absolute improvement in performance compared to the strong open-source AutoML agents, showcasing its effectiveness in enhancing agentic AutoML systems. Resource available at https://github.com/jokieleung/I-MCTS

Authors:Gengxu Li, Tingyu Xia, Yi Chang, Yuan Wu
Title: Length-Controlled Margin-Based Preference Optimization without Reference Model
Abstract:
Direct Preference Optimization (DPO) is a widely adopted offline algorithm for preference-based reinforcement learning from human feedback (RLHF), designed to improve training simplicity and stability by redefining reward functions. However, DPO is hindered by several limitations, including length bias, memory inefficiency, and probability degradation. To address these challenges, we propose Length-Controlled Margin-Based Preference Optimization (LMPO), a more efficient and robust alternative. LMPO introduces a uniform reference model as an upper bound for the DPO loss, enabling a more accurate approximation of the original optimization objective. Additionally, an average log-probability optimization strategy is employed to minimize discrepancies between training and inference phases. A key innovation of LMPO lies in its Length-Controlled Margin-Based loss function, integrated within the Bradley-Terry framework. This loss function regulates response length while simultaneously widening the margin between preferred and rejected outputs. By doing so, it mitigates probability degradation for both accepted and discarded responses, addressing a significant limitation of existing methods. We evaluate LMPO against state-of-the-art preference optimization techniques on two open-ended large language models, Mistral and LLaMA3, across six conditional benchmarks. Our experimental results demonstrate that LMPO effectively controls response length, reduces probability degradation, and outperforms existing approaches. The code is available at https://github.com/gengxuli/LMPO.

Authors:Zheyuan Zhang, Runze Li, Tasnim Kabir, Jordan Boyd-Graber
Title: NAVIG: Natural Language-guided Analysis with Vision Language Models for Image Geo-localization
Abstract:
Image geo-localization is the task of predicting the specific location of an image and requires complex reasoning across visual, geographical, and cultural contexts. While prior Vision Language Models (VLMs) have the best accuracy at this task, there is a dearth of high-quality datasets and models for analytical reasoning. We first create NaviClues, a high-quality dataset derived from GeoGuessr, a popular geography game, to supply examples of expert reasoning from language. Using this dataset, we present Navig, a comprehensive image geo-localization framework integrating global and fine-grained image information. By reasoning with language, Navig reduces the average distance error by 14% compared to previous state-of-the-art models while requiring fewer than 1000 training samples. Our dataset and code are available at https://github.com/SparrowZheyuan18/Navig/.

Authors:Angxiao Yue, Zichong Wang, Hongteng Xu
Title: ReQFlow: Rectified Quaternion Flow for Efficient and High-Quality Protein Backbone Generation
Abstract:
Protein backbone generation plays a central role in de novo protein design and is significant for many biological and medical applications. Although diffusion and flow-based generative models provide potential solutions to this challenging task, they often generate proteins with undesired designability and suffer computational inefficiency. In this study, we propose a novel rectified quaternion flow (ReQFlow) matching method for fast and high-quality protein backbone generation. In particular, our method generates a local translation and a 3D rotation from random noise for each residue in a protein chain, which represents each 3D rotation as a unit quaternion and constructs its flow by spherical linear interpolation (SLERP) in an exponential format. We train the model by quaternion flow (QFlow) matching with guaranteed numerical stability and rectify the QFlow model to accelerate its inference and improve the designability of generated protein backbones, leading to the proposed ReQFlow model. Experiments show that ReQFlow achieves on-par performance in protein backbone generation while requiring much fewer sampling steps and significantly less inference time (e.g., being 37x faster than RFDiffusion and 63x faster than Genie2 when generating a backbone of length 300), demonstrating its effectiveness and efficiency. The code is available at https://github.com/AngxiaoYue/ReQFlow.

Authors:Yuguo Yin, Yuxin Xie, Wenyuan Yang, Dongchao Yang, Jinghan Ru, Xianwei Zhuang, Liming Liang, Yuexian Zou
Title: ATRI: Mitigating Multilingual Audio Text Retrieval Inconsistencies by Reducing Data Distribution Errors
Abstract:
Multilingual audio-text retrieval (ML-ATR) is a challenging task that aims to retrieve audio clips or multilingual texts from databases. However, existing ML-ATR schemes suffer from inconsistencies for instance similarity matching across languages. We theoretically analyze the inconsistency in terms of both multilingual modal alignment direction error and weight error, and propose the theoretical weight error upper bound for quantifying the inconsistency. Based on the analysis of the weight error upper bound, we find that the inconsistency problem stems from the data distribution error caused by random sampling of languages. We propose a consistent ML-ATR scheme using 1-to-k contrastive learning and audio-English co-anchor contrastive learning, aiming to mitigate the negative impact of data distribution error on recall and consistency in ML-ATR. Experimental results on the translated AudioCaps and Clotho datasets show that our scheme achieves state-of-the-art performance on recall and consistency metrics for eight mainstream languages, including English. Our code will be available at https://github.com/ATRI-ACL/ATRI-ACL.

Authors:Jiangyuan Liu, Hongxuan Ma, Yuxin Guo, Yuhao Zhao, Chi Zhang, Wei Sui, Wei Zou
Title: Monocular Depth Estimation and Segmentation for Transparent Object with Iterative Semantic and Geometric Fusion
Abstract:
Transparent object perception is indispensable for numerous robotic tasks. However, accurately segmenting and estimating the depth of transparent objects remain challenging due to complex optical properties. Existing methods primarily delve into only one task using extra inputs or specialized sensors, neglecting the valuable interactions among tasks and the subsequent refinement process, leading to suboptimal and blurry predictions. To address these issues, we propose a monocular framework, which is the first to excel in both segmentation and depth estimation of transparent objects, with only a single-image input. Specifically, we devise a novel semantic and geometric fusion module, effectively integrating the multi-scale information between tasks. In addition, drawing inspiration from human perception of objects, we further incorporate an iterative strategy, which progressively refines initial features for clearer results. Experiments on two challenging synthetic and real-world datasets demonstrate that our model surpasses state-of-the-art monocular, stereo, and multi-view methods by a large margin of about 38.8%-46.2% with only a single RGB input. Codes and models are publicly available at https://github.com/L-J-Yuan/MODEST.

Authors:Chentao Cao, Zhun Zhong, Zhanke Zhou, Tongliang Liu, Yang Liu, Kun Zhang, Bo Han
Title: Noisy Test-Time Adaptation in Vision-Language Models
Abstract:
Test-time adaptation (TTA) aims to address distribution shifts between source and target data by relying solely on target data during testing. In open-world scenarios, models often encounter noisy samples, i.e., samples outside the in-distribution (ID) label space. Leveraging the zero-shot capability of pre-trained vision-language models (VLMs), this paper introduces Zero-Shot Noisy TTA (ZS-NTTA), focusing on adapting the model to target data with noisy samples during test-time in a zero-shot manner. We find existing TTA methods underperform under ZS-NTTA, often lagging behind even the frozen model. We conduct comprehensive experiments to analyze this phenomenon, revealing that the negative impact of unfiltered noisy data outweighs the benefits of clean data during model updating. Also, adapting a classifier for ID classification and noise detection hampers both sub-tasks. Built on this, we propose a framework that decouples the classifier and detector, focusing on developing an individual detector while keeping the classifier frozen. Technically, we introduce the Adaptive Noise Detector (AdaND), which utilizes the frozen model's outputs as pseudo-labels to train a noise detector. To handle clean data streams, we further inject Gaussian noise during adaptation, preventing the detector from misclassifying clean samples as noisy. Beyond the ZS-NTTA, AdaND can also improve the zero-shot out-of-distribution (ZS-OOD) detection ability of VLMs. Experiments show that AdaND outperforms in both ZS-NTTA and ZS-OOD detection. On ImageNet, AdaND achieves a notable improvement of $8.32\%$ in harmonic mean accuracy ($\text{Acc}_\text{H}$) for ZS-NTTA and $9.40\%$ in FPR95 for ZS-OOD detection, compared to SOTA methods. Importantly, AdaND is computationally efficient and comparable to the model-frozen method. The code is publicly available at: https://github.com/tmlr-group/ZS-NTTA.

Authors:Rongzhen Wang, Yan Zhang, Chenyu Zheng, Chongxuan Li, Guoqiang Wu
Title: A Theory for Conditional Generative Modeling on Multiple Data Sources
Abstract:
The success of large generative models has driven a paradigm shift, leveraging massive multi-source data to enhance model capabilities. However, the interaction among these sources remains theoretically underexplored. This paper takes the first step toward a rigorous analysis of multi-source training in conditional generative modeling, where each condition represents a distinct data source. Specifically, we establish a general distribution estimation error bound in average total variation distance for conditional maximum likelihood estimation based on the bracketing number. Our result shows that when source distributions share certain similarities and the model is expressive enough, multi-source training guarantees a sharper bound than single-source training. We further instantiate the general theory on conditional Gaussian estimation and deep generative models including autoregressive and flexible energy-based models, by characterizing their bracketing numbers. The results highlight that the number of sources and similarity among source distributions improve the advantage of multi-source training. Simulations and real-world experiments are conducted to validate the theory, with code available at: https://github.com/ML-GSAI/Multi-Source-GM.

Authors:Shiqi Zhang, Xinbei Ma, Zouying Cao, Zhuosheng Zhang, Hai Zhao
Title: Plan-over-Graph: Towards Parallelable LLM Agent Schedule
Abstract:
Large Language Models (LLMs) have demonstrated exceptional abilities in reasoning for task planning. However, challenges remain under-explored for parallel schedules. This paper introduces a novel paradigm, plan-over-graph, in which the model first decomposes a real-life textual task into executable subtasks and constructs an abstract task graph. The model then understands this task graph as input and generates a plan for parallel execution. To enhance the planning capability of complex, scalable graphs, we design an automated and controllable pipeline to generate synthetic graphs and propose a two-stage training scheme. Experimental results show that our plan-over-graph method significantly improves task performance on both API-based LLMs and trainable open-sourced LLMs. By normalizing complex tasks as graphs, our method naturally supports parallel execution, demonstrating global efficiency. The code and data are available at https://github.com/zsq259/Plan-over-Graph.

Authors:Eric Egli, Matteo Manica, Jannis Born
Title: Multiscale Byte Language Models -- A Hierarchical Architecture for Causal Million-Length Sequence Modeling
Abstract:
Bytes form the basis of the digital world and thus are a promising building block for multimodal foundation models. Recently, Byte Language Models (BLMs) have emerged to overcome tokenization, yet the excessive length of bytestreams requires new architectural paradigms. Therefore, we present the Multiscale Byte Language Model (MBLM), a model-agnostic hierarchical decoder stack that allows training with context windows of $5$M bytes on single GPU in full model precision. We thoroughly examine MBLM's performance with Transformer and Mamba blocks on both unimodal and multimodal tasks. Our experiments demonstrate that hybrid architectures are efficient in handling extremely long byte sequences during training while achieving near-linear generational efficiency. To the best of our knowledge, we present the first evaluation of BLMs on visual Q\&A tasks and find that, despite serializing images and the absence of an encoder, a MBLM with pure next token prediction can match custom CNN-LSTM architectures with designated classification heads. We show that MBLMs exhibit strong adaptability in integrating diverse data representations, including pixel and image filestream bytes, underlining their potential toward omnimodal foundation models. Source code is publicly available at: https://github.com/ai4sd/multiscale-byte-lm

Authors:Yupeng Chang, Chenlu Guo, Yi Chang, Yuan Wu
Title: LoRA-MGPO: Mitigating Double Descent in Low-Rank Adaptation via Momentum-Guided Perturbation Optimization
Abstract:
Parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), enable efficient adaptation of large language models (LLMs) via low-rank matrix optimization with frozen weights. However, LoRA typically exhibits "double descent" in training loss as rank increases, characterized by a three-phase dynamics: initial convergence, transient divergence, and eventual stabilization. This non-monotonic behavior delays convergence and impairs generalization through unstable gradients and attraction to sharp minima. To address these challenges, we propose LoRA-MGPO, a novel LoRA-based framework incorporating Momentum-Guided Perturbation Optimization (MGPO). First, MGPO eliminates Sharpness-Aware Minimization (SAM)'s dual gradient computations by reusing momentum vectors from optimizer states to guide perturbation directions. This retains SAM's training stability and flat minima preference with maintained efficiency. Second, MGPO incorporates adaptive perturbation normalization, scaling perturbation intensity via exponential moving average (EMA)-smoothed gradient magnitudes. Experiments on natural language understanding and generation benchmarks demonstrate that LoRA-MGPO outperforms LoRA and state-of-the-art PEFT methods. Further analysis confirms its ability to stabilize training and reduce sharp minima attraction, with smoother loss curves and improved convergence behavior. The code is available at https://github.com/llm172/LoRA-MGPO

Authors:Jannik Irmai, Maximilian Moeller, Bjoern Andres
Title: Algorithms for the preordering problem and their application to the task of jointly clustering and ordering the accounts of a social network
Abstract:
The NP-hard maximum value preordering problem is both a joint relaxation and a hybrid of the clique partition problem (a clustering problem) and the partial ordering problem. Toward approximate solutions and lower bounds, we introduce a linear-time 4-approximation algorithm that constructs a maximum dicut of a subgraph and define local search heuristics. Toward upper bounds, we tighten a linear program relaxation by the class of odd closed walk inequalities that define facets, as we show, of the preorder polytope. We contribute implementations of the algorithms, apply these to the task of jointly clustering and partially ordering the accounts of published social networks, and compare the output and efficiency qualitatively and quantitatively.

Authors:Zhenhong Zhou, Zherui Li, Jie Zhang, Yuanhe Zhang, Kun Wang, Yang Liu, Qing Guo
Title: CORBA: Contagious Recursive Blocking Attacks on Multi-Agent Systems Based on Large Language Models
Abstract:
Large Language Model-based Multi-Agent Systems (LLM-MASs) have demonstrated remarkable real-world capabilities, effectively collaborating to complete complex tasks. While these systems are designed with safety mechanisms, such as rejecting harmful instructions through alignment, their security remains largely unexplored. This gap leaves LLM-MASs vulnerable to targeted disruptions. In this paper, we introduce Contagious Recursive Blocking Attacks (Corba), a novel and simple yet highly effective attack that disrupts interactions between agents within an LLM-MAS. Corba leverages two key properties: its contagious nature allows it to propagate across arbitrary network topologies, while its recursive property enables sustained depletion of computational resources. Notably, these blocking attacks often involve seemingly benign instructions, making them particularly challenging to mitigate using conventional alignment methods. We evaluate Corba on two widely-used LLM-MASs, namely, AutoGen and Camel across various topologies and commercial models. Additionally, we conduct more extensive experiments in open-ended interactive LLM-MASs, demonstrating the effectiveness of Corba in complex topology structures and open-source models. Our code is available at: https://github.com/zhrli324/Corba.

Authors:Jiahao Qi, Chuanhong Zhou, Xingyue Liu, Chen Chen, Dehui Zhu, Kangcheng Bin, Ping Zhong
Title: Nearshore Underwater Target Detection Meets UAV-borne Hyperspectral Remote Sensing: A Novel Hybrid-level Contrastive Learning Framework and Benchmark Dataset
Abstract:
UAV-borne hyperspectral remote sensing has emerged as a promising approach for underwater target detection (UTD). However, its effectiveness is hindered by spectral distortions in nearshore environments, which compromise the accuracy of traditional hyperspectral UTD (HUTD) methods that rely on bathymetric model. These distortions lead to significant uncertainty in target and background spectra, challenging the detection process. To address this, we propose the Hyperspectral Underwater Contrastive Learning Network (HUCLNet), a novel framework that integrates contrastive learning with a self-paced learning paradigm for robust HUTD in nearshore regions. HUCLNet extracts discriminative features from distorted hyperspectral data through contrastive learning, while the self-paced learning strategy selectively prioritizes the most informative samples. Additionally, a reliability-guided clustering strategy enhances the robustness of learned representations.To evaluate the method effectiveness, we conduct a novel nearshore HUTD benchmark dataset, ATR2-HUTD, covering three diverse scenarios with varying water types and turbidity, and target types. Extensive experiments demonstrate that HUCLNet significantly outperforms state-of-the-art methods. The dataset and code will be publicly available at: https://github.com/qjh1996/HUTD

Authors:Jinnan Li, Jinzhe Li, Yue Wang, Yi Chang, Yuan Wu
Title: StructFlowBench: A Structured Flow Benchmark for Multi-turn Instruction Following
Abstract:
Multi-turn instruction following capability constitutes a core competency of large language models (LLMs) in real-world applications. Existing evaluation benchmarks predominantly focus on fine-grained constraint satisfaction and domain-specific capability assessment, yet overlook the crucial structural dependencies between dialogue turns that distinguish multi-turn from single-turn interactions. These structural dependencies not only reflect user intent but also establish an essential second dimension for the instruction following evaluation beyond constraint satisfaction. To address this gap, we propose StructFlowBench, a multi-turn instruction following benchmark with structural flow modeling. The benchmark defines an innovative structural flow framework with six fundamental inter-turn relationships. These relationships introduce novel structural constraints for model evaluation and also serve as generation parameters for creating customized dialogue flows tailored to specific scenarios. Adopting established LLM-based automatic evaluation methodologies, we conduct systematic evaluations of 13 leading open-source and closed-source LLMs. Experimental results reveal significant deficiencies in current models' comprehension of multi-turn dialogue structures. The code is available at https://github.com/MLGroupJLU/StructFlowBench.

Authors:Lorraine A. K. Ayad, Gabriele Fici, Ragnar Groot Koerkamp, Grigorios Loukides, Rob Patro, Giulio Ermanno Pibiri, Solon P. Pissis
Title: U-index: A Universal Indexing Framework for Matching Long Patterns
Abstract:
Text indexing is a fundamental and well-studied problem. Classic solutions either replace the original text with a compressed representation, e.g., the FM-index and its variants, or keep it uncompressed but attach some redundancy - an index - to accelerate matching. The former solutions thus retain excellent compressed space, but are slow in practice. The latter approaches, like the suffix array, instead sacrifice space for speed. We show that efficient text indexing can be achieved using just a small extra space on top of the original text, provided that the query patterns are sufficiently long. More specifically, we develop a new indexing paradigm in which a sketch of a query pattern is first matched against a sketch of the text. Once candidate matches are retrieved, they are verified using the original text. This paradigm is thus universal in the sense that it allows us to use any solution to index the sketched text, like a suffix array, FM-index, or r-index. We explore both the theory and the practice of this universal framework. With an extensive experimental analysis, we show that, surprisingly, universal indexes can be constructed much faster than their unsketched counterparts and take a fraction of the space, as a direct consequence of (i) having a lower bound on the length of patterns and (ii) working in sketch space. Furthermore, these data structures have the potential of retaining or even improving query time, because matching against the sketched text is faster and verifying candidates can be theoretically done in constant time per occurrence (or, in practice, by short and cache-friendly scans of the text). Finally, we discuss some important applications of this novel indexing paradigm to computational biology. We hypothesize that such indexes will be particularly effective when the queries are sufficiently long, and so demonstrate applications in long-read mapping.

Authors:Chengyu Fang, Chunming He, Longxiang Tang, Yuelin Zhang, Chenyang Zhu, Yuqi Shen, Chubin Chen, Guoxia Xu, Xiu Li
Title: Integrating Extra Modality Helps Segmentor Find Camouflaged Objects Well
Abstract:
Camouflaged Object Segmentation (COS) remains challenging because camouflaged objects exhibit only subtle visual differences from their backgrounds and single-modality RGB methods provide limited cues, leading researchers to explore multimodal data to improve segmentation accuracy. In this work, we presenet MultiCOS, a novel framework that effectively leverages diverse data modalities to improve segmentation performance. MultiCOS comprises two modules: Bi-space Fusion Segmentor (BFSer), which employs a state space and a latent space fusion mechanism to integrate cross-modal features within a shared representation and employs a fusion-feedback mechanism to refine context-specific features, and Cross-modal Knowledge Learner (CKLer), which leverages external multimodal datasets to generate pseudo-modal inputs and establish cross-modal semantic associations, transferring knowledge to COS models when real multimodal pairs are missing. When real multimodal COS data are unavailable, CKLer yields additional segmentation gains using only non-COS multimodal sources. Experiments on standard COS benchmarks show that BFSer outperforms existing multimodal baselines with both real and pseudo-modal data. Code will be released at \href{https://github.com/cnyvfang/MultiCOS}{GitHub}.

Authors:Cristian A. Galvis-Florez, Ahmad Farooq, Simo Särkkä
Title: Provable Quantum Algorithm Advantage for Gaussian Process Quadrature
Abstract:
The aim of this paper is to develop novel quantum algorithms for Gaussian process quadrature methods. Gaussian process quadratures are numerical integration methods where Gaussian processes are used as functional priors for the integrands to capture the uncertainty arising from the sparse function evaluations. Quantum computers have emerged as potential replacements for classical computers, offering exponential reductions in the computational complexity of machine learning tasks. In this paper, we combine Gaussian process quadratures and quantum computing by proposing a quantum low-rank Gaussian process quadrature method based on a Hilbert space approximation of the Gaussian process kernel and enhancing the quadrature using a quantum circuit. The method combines the quantum phase estimation algorithm with the quantum principal component analysis technique to extract information up to a desired rank. Then, Hadamard and SWAP tests are implemented to find the expected value and variance that determines the quadrature. We use numerical simulations of a quantum computer to demonstrate the effectiveness of the method. Furthermore, we provide a theoretical complexity analysis that shows a polynomial advantage over classical Gaussian process quadrature methods. The code is available at https://github.com/cagalvisf/Quantum_HSGPQ.

Authors:Lorenzo Pacchiardi, Konstantinos Voudouris, Ben Slater, Fernando Martínez-Plumed, José Hernández-Orallo, Lexin Zhou, Wout Schellaert
Title: PredictaBoard: Benchmarking LLM Score Predictability
Abstract:
Despite possessing impressive skills, Large Language Models (LLMs) often fail unpredictably, demonstrating inconsistent success in even basic common sense reasoning tasks. This unpredictability poses a significant challenge to ensuring their safe deployment, as identifying and operating within a reliable "safe zone" is essential for mitigating risks. To address this, we present PredictaBoard, a novel collaborative benchmarking framework designed to evaluate the ability of score predictors (referred to as assessors) to anticipate LLM errors on specific task instances (i.e., prompts) from existing datasets. PredictaBoard evaluates pairs of LLMs and assessors by considering the rejection rate at different tolerance errors. As such, PredictaBoard stimulates research into developing better assessors and making LLMs more predictable, not only with a higher average performance. We conduct illustrative experiments using baseline assessors and state-of-the-art LLMs. PredictaBoard highlights the critical need to evaluate predictability alongside performance, paving the way for safer AI systems where errors are not only minimised but also anticipated and effectively mitigated. Code for our benchmark can be found at https://github.com/Kinds-of-Intelligence-CFI/PredictaBoard

Authors:Marco ComunitÃ, Christian J. Steinmetz, Joshua D. Reiss
Title: Differentiable Black-box and Gray-box Modeling of Nonlinear Audio Effects
Abstract:
Audio effects are extensively used at every stage of audio and music content creation. The majority of differentiable audio effects modeling approaches fall into the black-box or gray-box paradigms; and most models have been proposed and applied to nonlinear effects like guitar amplifiers, overdrive, distortion, fuzz and compressor. Although a plethora of architectures have been introduced for the task at hand there is still lack of understanding on the state of the art, since most publications experiment with one type of nonlinear audio effect and a very small number of devices. In this work we aim to shed light on the audio effects modeling landscape by comparing black-box and gray-box architectures on a large number of nonlinear audio effects, identifying the most suitable for a wide range of devices. In the process, we also: introduce time-varying gray-box models and propose models for compressor, distortion and fuzz, publish a large dataset for audio effects research - ToneTwist AFx https://github.com/mcomunita/tonetwist-afx-dataset - that is also the first open to community contributions, evaluate models on a variety of metrics and conduct extensive subjective evaluation. Code https://github.com/mcomunita/nablafx and supplementary material https://github.com/mcomunita/nnlinafx-supp-material are also available.

Authors:Paul Friedrich, Florentin Bieder, Julian McGinnis, Julia Wolleb, Daniel Rueckert, Philippe C. Cattin
Title: MedFuncta: A Unified Framework for Learning Efficient Medical Neural Fields
Abstract:
Research in medical imaging primarily focuses on discrete data representations that poorly scale with grid resolution and fail to capture the often continuous nature of the underlying signal. Neural Fields (NFs) offer a powerful alternative by modeling data as continuous functions. While single-instance NFs have successfully been applied in medical contexts, extending them to large-scale medical datasets remains an open challenge. We therefore introduce MedFuncta, a unified framework for large-scale NF training on diverse medical signals. Building on Functa, our approach encodes data into a unified representation, namely a 1D latent vector, that modulates a shared, meta-learned NF, enabling generalization across a dataset. We revisit common design choices, introducing a non-constant frequency parameter $ω$ in widely used SIREN activations, and establish a connection between this $ω$-schedule and layer-wise learning rates, relating our findings to recent work in theoretical learning dynamics. We additionally introduce a scalable meta-learning strategy for shared network learning that employs sparse supervision during training, thereby reducing memory consumption and computational overhead while maintaining competitive performance. Finally, we evaluate MedFuncta across a diverse range of medical datasets and show how to solve relevant downstream tasks on our neural data representation. To promote further research in this direction, we release our code, model weights and the first large-scale dataset - MedNF - containing > 500 k latent vectors for multi-instance medical NFs.

Authors:Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E. Gonzalez, Ion Stoica
Title: S*: Test Time Scaling for Code Generation
Abstract:
Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* extends the existing parallel scaling paradigm with sequential scaling to push performance boundaries. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions. We evaluate across 12 Large Language Models and Large Reasoning Model and show: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models - GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models - DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Code will be available under https://github.com/NovaSky-AI/SkyThought.

Authors:Louis Carpentier, Nick Seeuws, Wannes Meert, Mathias Verbeke
Title: dtaianomaly: A Python library for time series anomaly detection
Abstract:
dtaianomaly is an open-source Python library for time series anomaly detection, designed to bridge the gap between academic research and real-world applications. Our goal is to (1) accelerate the development of novel state-of-the-art anomaly detection techniques through simple extensibility; (2) offer functionality for large-scale experimental validation; and thereby (3) bring cutting-edge research to business and industry through a standardized API, similar to scikit-learn to lower the entry barrier for both new and experienced users. Besides these key features, dtaianomaly offers (1) a broad range of built-in anomaly detectors, (2) support for time series preprocessing, (3) tools for visual analysis, (4) confidence prediction of anomaly scores, (5) runtime and memory profiling, (6) comprehensive documentation, and (7) cross-platform unit testing. The source code of dtaianomaly, documentation, code examples and installation guides are publicly available at https://github.com/ML-KULeuven/dtaianomaly.

Authors:Ke Cao, Jing Wang, Ao Ma, Jiasong Feng, Zhanjie Zhang, Xuanhua He, Shanyuan Liu, Bo Cheng, Dawei Leng, Yuhui Yin, Jie Zhang
Title: RelaCtrl: Relevance-Guided Efficient Control for Diffusion Transformers
Abstract:
The Diffusion Transformer plays a pivotal role in advancing text-to-image and text-to-video generation, owing primarily to its inherent scalability. However, existing controlled diffusion transformer methods incur significant parameter and computational overheads and suffer from inefficient resource allocation due to their failure to account for the varying relevance of control information across different transformer layers. To address this, we propose the Relevance-Guided Efficient Controllable Generation framework, RelaCtrl, enabling efficient and resource-optimized integration of control signals into the Diffusion Transformer. First, we evaluate the relevance of each layer in the Diffusion Transformer to the control information by assessing the "ControlNet Relevance Score"-i.e., the impact of skipping each control layer on both the quality of generation and the control effectiveness during inference. Based on the strength of the relevance, we then tailor the positioning, parameter scale, and modeling capacity of the control layers to reduce unnecessary parameters and redundant computations. Additionally, to further improve efficiency, we replace the self-attention and FFN in the commonly used copy block with the carefully designed Two-Dimensional Shuffle Mixer (TDSM), enabling efficient implementation of both the token mixer and channel mixer. Both qualitative and quantitative experimental results demonstrate that our approach achieves superior performance with only 15% of the parameters and computational complexity compared to PixArt-delta.

Authors:Moxin Li, Yuantao Zhang, Wenjie Wang, Wentao Shi, Zhuo Liu, Fuli Feng, Tat-Seng Chua
Title: Self-Improvement Towards Pareto Optimality: Mitigating Preference Conflicts in Multi-Objective Alignment
Abstract:
Multi-Objective Alignment (MOA) aims to align LLMs' responses with multiple human preference objectives, with Direct Preference Optimization (DPO) emerging as a prominent approach. However, we find that DPO-based MOA approaches suffer from widespread preference conflicts in the data, where different objectives favor different responses. This results in conflicting optimization directions, hindering the optimization on the Pareto Front. To address this, we propose to construct Pareto-optimal responses to resolve preference conflicts. To efficiently obtain and utilize such responses, we propose a self-improving DPO framework that enables LLMs to self-generate and select Pareto-optimal responses for self-supervised preference alignment. Extensive experiments on two datasets demonstrate the superior Pareto Front achieved by our framework compared to various baselines. Code is available at https://github.com/zyttt-coder/SIPO.

Authors:Yuchen Shi, Siqi Cai, Zihan Xu, Yuei Qin, Gang Li, Hang Shao, Jiawei Chen, Deqing Yang, Ke Li, Xing Sun
Title: FlowAgent: Achieving Compliance and Flexibility for Workflow Agents
Abstract:
The integration of workflows with large language models (LLMs) enables LLM-based agents to execute predefined procedures, enhancing automation in real-world applications. Traditional rule-based methods tend to limit the inherent flexibility of LLMs, as their predefined execution paths restrict the models' action space, particularly when the unexpected, out-of-workflow (OOW) queries are encountered. Conversely, prompt-based methods allow LLMs to fully control the flow, which can lead to diminished enforcement of procedural compliance. To address these challenges, we introduce FlowAgent, a novel agent framework designed to maintain both compliance and flexibility. We propose the Procedure Description Language (PDL), which combines the adaptability of natural language with the precision of code to formulate workflows. Building on PDL, we develop a comprehensive framework that empowers LLMs to manage OOW queries effectively, while keeping the execution path under the supervision of a set of controllers. Additionally, we present a new evaluation methodology to rigorously assess an LLM agent's ability to handle OOW scenarios, going beyond routine flow compliance tested in existing benchmarks. Experiments on three datasets demonstrate that FlowAgent not only adheres to workflows but also effectively manages OOW queries, highlighting its dual strengths in compliance and flexibility. The code is available at https://github.com/Lightblues/FlowAgent.

Authors:Ruichen Shao, Bei Li, Gangao Liu, Yang Chen, Xiang Zhou, Jingang Wang, Xunliang Cai, Peng Li
Title: Earlier Tokens Contribute More: Learning Direct Preference Optimization From Temporal Decay Perspective
Abstract:
Direct Preference Optimization (DPO) has gained attention as an efficient alternative to reinforcement learning from human feedback (RLHF) for aligning large language models (LLMs) with human preferences. Despite its advantages, DPO suffers from a length bias, generating responses longer than those from the reference model. Existing solutions like SimPO and SamPO address this issue but uniformly treat the contribution of rewards across sequences, overlooking temporal dynamics. To this end, we propose an enhanced preference optimization method that incorporates a temporal decay factor controlled by a gamma parameter. This dynamic weighting mechanism adjusts the influence of each reward based on its position in the sequence, prioritizing earlier tokens that are more critical for alignment. By adaptively focusing on more relevant feedback, our approach mitigates overfitting to less pertinent data and remains responsive to evolving human preferences. Experimental results on several benchmarks show that our approach consistently outperforms vanilla DPO by 5.9-8.8 points on AlpacaEval 2 and 3.3-9.7 points on Arena-Hard across different model architectures and sizes. Furthermore, additional experiments on mathematical and reasoning benchmarks (MMLU, GSM8K, and MATH) confirm that our method enhances performance without compromising general capabilities. Our codebase would be available at \url{https://github.com/LotuSrc/D2PO}.

Authors:Avinash Patil, Siru Tao, Aryan Jadon
Title: English Please: Evaluating Machine Translation with Large Language Models for Multilingual Bug Reports
Abstract:
Accurate translation of bug reports is critical for efficient collaboration in global software development. In this study, we conduct the first comprehensive evaluation of machine translation (MT) performance on bug reports, analyzing the capabilities of DeepL, AWS Translate, and large language models such as ChatGPT, Claude, Gemini, LLaMA, and Mistral using data from the Visual Studio Code GitHub repository, specifically focusing on reports labeled with the english-please tag. To assess both translation quality and source language identification accuracy, we employ a range of MT evaluation metrics-including BLEU, BERTScore, COMET, METEOR, and ROUGE-alongside classification metrics such as accuracy, precision, recall, and F1-score. Our findings reveal that while ChatGPT (gpt-4o) excels in semantic and lexical translation quality, it does not lead in source language identification. Claude and Mistral achieve the highest F1-scores (0.7182 and 0.7142, respectively), and Gemini records the best precision (0.7414). AWS Translate shows the highest accuracy (0.4717) in identifying source languages. These results highlight that no single system dominates across all tasks, reinforcing the importance of task-specific evaluations. This study underscores the need for domain adaptation when translating technical content and provides actionable insights for integrating MT into bug-triaging workflows. The code and dataset for this paper are available at GitHub-https://github.com/av9ash/English-Please

Authors:Zhucong Li, Jin Xiao, Bowei Zhang, Zhijian Zhou, Qianyu He, Fenglei Cao, Jiaqing Liang, Yuan Qi
Title: ChemHTS: Hierarchical Tool Stacking for Enhancing Chemical Agents
Abstract:
Large Language Models (LLMs) have demonstrated remarkable potential in scientific research, particularly in chemistry-related tasks such as molecular design, reaction prediction, and property estimation. While tool-augmented LLMs have been introduced to enhance reasoning and computation in these domains, existing approaches suffer from tool invocation errors and lack effective collaboration among diverse tools, limiting their overall performance. To address these challenges, we propose ChemHTS (Chemical Hierarchical Tool Stacking), a novel method that optimizes tool invocation pathways through a hierarchical stacking strategy. ChemHTS consists of two key stages: tool self-stacking warmup and multi-layer decision optimization, enabling LLMs to refine tool usage dynamically. We evaluate ChemHTS across four classical chemistry tasks and demonstrate its superiority over strong baselines, including GPT-4o, DeepSeek-R1, and chemistry-specific models, including ChemDFM. Furthermore, we define four distinct tool-stacking behaviors to enhance interpretability, providing insights into the effectiveness of tool collaboration. Our dataset and code are publicly available at \url{https://github.com/Chang-pw/ChemHTS}.

Authors:Jing Xiong, Jianghan Shen, Chuanyang Zheng, Zhongwei Wan, Chenyang Zhao, Chiwun Yang, Fanghua Ye, Hongxia Yang, Lingpeng Kong, Ngai Wong
Title: ParallelComp: Parallel Long-Context Compressor for Length Extrapolation
Abstract:
Extrapolating ultra-long contexts (text length >128K) remains a major challenge for large language models (LLMs), as most training-free extrapolation methods are not only severely limited by memory bottlenecks, but also suffer from the attention sink, which restricts their scalability and effectiveness in practice. In this work, we propose ParallelComp, a parallel long-context compression method that effectively overcomes the memory bottleneck, enabling 8B-parameter LLMs to extrapolate from 8K to 128K tokens on a single A100 80GB GPU in a training-free setting. ParallelComp splits the input into chunks, dynamically evicting redundant chunks and irrelevant tokens, supported by a parallel KV cache eviction mechanism. Importantly, we present a systematic theoretical and empirical analysis of attention biases in parallel attention-including the attention sink, recency bias, and middle bias-and reveal that these biases exhibit distinctive patterns under ultra-long context settings. We further design a KV cache eviction technique to mitigate this phenomenon. Experimental results show that ParallelComp enables an 8B model (trained on 8K context) to achieve 91.17% of GPT-4's performance under ultra-long contexts, outperforming closed-source models such as Claude-2 and Kimi-Chat. We achieve a 1.76x improvement in chunk throughput, thereby achieving a 23.50x acceleration in the prefill stage with negligible performance loss and pave the way for scalable and robust ultra-long contexts extrapolation in LLMs. We release the code at https://github.com/menik1126/ParallelComp.

Authors:Yurong Wu, Fangwen Mu, Qiuhong Zhang, Jinjing Zhao, Xinrun Xu, Lingrui Mei, Yang Wu, Lin Shi, Junjie Wang, Zhiming Ding, Yiwei Wang
Title: Vulnerability of Text-to-Image Models to Prompt Template Stealing: A Differential Evolution Approach
Abstract:
Prompt trading has emerged as a significant intellectual property concern in recent years, where vendors entice users by showcasing sample images before selling prompt templates that can generate similar images. This work investigates a critical security vulnerability: attackers can steal prompt templates using only a limited number of sample images. To investigate this threat, we introduce Prism, a prompt-stealing benchmark consisting of 50 templates and 450 images, organized into Easy and Hard difficulty levels. To identify the vulnerabity of VLMs to prompt stealing, we propose EvoStealer, a novel template stealing method that operates without model fine-tuning by leveraging differential evolution algorithms. The system first initializes population sets using multimodal large language models (MLLMs) based on predefined patterns, then iteratively generates enhanced offspring through MLLMs. During evolution, EvoStealer identifies common features across offspring to derive generalized templates. Our comprehensive evaluation conducted across open-source (INTERNVL2-26B) and closed-source models (GPT-4o and GPT-4o-mini) demonstrates that EvoStealer's stolen templates can reproduce images highly similar to originals and effectively generalize to other subjects, significantly outperforming baseline methods with an average improvement of over 10%. Moreover, our cost analysis reveals that EvoStealer achieves template stealing with negligible computational expenses. Our code and dataset are available at https://github.com/whitepagewu/evostealer.

Authors:Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng Yuan, Changsheng Xu, Weiming Hu, Fei Huang
Title: PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
Abstract:
In the field of MLLM-based GUI agents, compared to smartphones, the PC scenario not only features a more complex interactive environment, but also involves more intricate intra- and inter-app workflows. To address these issues, we propose a hierarchical agent framework named PC-Agent. Specifically, from the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content. From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture that decomposes decision-making processes into Instruction-Subtask-Action levels. Within this architecture, three agents (i.e., Manager, Progress and Decision) are set up for instruction decomposition, progress tracking and step-by-step decision-making respectively. Additionally, a Reflection agent is adopted to enable timely bottom-up error feedback and adjustment. We also introduce a new benchmark PC-Eval with 25 real-world complex instructions. Empirical results on PC-Eval show that our PC-Agent achieves a 32% absolute improvement of task success rate over previous state-of-the-art methods. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent.

Authors:Hanlin Wang, Jian Wang, Chak Tou Leong, Wenjie Li
Title: STeCa: Step-level Trajectory Calibration for LLM Agent Learning
Abstract:
Large language model (LLM)-based agents have shown promise in tackling complex tasks by interacting dynamically with the environment. Existing work primarily focuses on behavior cloning from expert demonstrations or preference learning through exploratory trajectory sampling. However, these methods often struggle to address long-horizon tasks, where suboptimal actions accumulate step by step, causing agents to deviate from correct task trajectories. To address this, we highlight the importance of timely calibration and the need to automatically construct calibration trajectories for training agents. We propose Step-Level Trajectory Calibration (STeCa), a novel framework for LLM agent learning. Specifically, STeCa identifies suboptimal actions through a step-level reward comparison during exploration. It constructs calibrated trajectories using LLM-driven reflection, enabling agents to learn from improved decision-making processes. We finally leverage these calibrated trajectories with successful trajectories for reinforced training. Extensive experiments demonstrate that STeCa significantly outperforms existing methods. Further analysis highlights that timely calibration enables agents to complete tasks with greater robustness. Our code and data are available at https://github.com/WangHanLinHenry/STeCa.

Authors:Wenhui Zhu, Xuanzhao Dong, Xin Li, Yujian Xiong, Xiwen Chen, Peijie Qiu, Vamsi Krishna Vasa, Zhangsihao Yang, Yi Su, Oana Dumitrascu, Yalin Wang
Title: EyeBench: A Call for More Rigorous Evaluation of Retinal Image Enhancement
Abstract:
Over the past decade, generative models have achieved significant success in enhancement fundus images.However, the evaluation of these models still presents a considerable challenge. A comprehensive evaluation benchmark for fundus image enhancement is indispensable for three main reasons: 1) The existing denoising metrics (e.g., PSNR, SSIM) are hardly to extend to downstream real-world clinical research (e.g., Vessel morphology consistency). 2) There is a lack of comprehensive evaluation for both paired and unpaired enhancement methods, along with the need for expert protocols to accurately assess clinical value. 3) An ideal evaluation system should provide insights to inform future developments of fundus image enhancement. To this end, we propose a novel comprehensive benchmark, EyeBench, to provide insights that align enhancement models with clinical needs, offering a foundation for future work to improve the clinical relevance and applicability of generative models for fundus image enhancement. EyeBench has three appealing properties: 1) multi-dimensional clinical alignment downstream evaluation: In addition to evaluating the enhancement task, we provide several clinically significant downstream tasks for fundus images, including vessel segmentation, DR grading, denoising generalization, and lesion segmentation. 2) Medical expert-guided evaluation design: We introduce a novel dataset that promote comprehensive and fair comparisons between paired and unpaired methods and includes a manual evaluation protocol by medical experts. 3) Valuable insights: Our benchmark study provides a comprehensive and rigorous evaluation of existing methods across different downstream tasks, assisting medical experts in making informed choices. Additionally, we offer further analysis of the challenges faced by existing methods. The code is available at \url{https://github.com/Retinal-Research/EyeBench}

Authors:Jiayu Yang, Taizhang Shang, Weixuan Sun, Xibin Song, Ziang Cheng, Senbo Wang, Shenzhou Chen, Weizhe Liu, Hongdong Li, Pan Ji
Title: Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
Abstract:
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.

Authors:Gengxu Li, Yuan Wu
Title: Asymmetric Co-Training for Source-Free Few-Shot Domain Adaptation
Abstract:
Source-free unsupervised domain adaptation (SFUDA) has gained significant attention as an alternative to traditional unsupervised domain adaptation (UDA), which relies on the constant availability of labeled source data. However, SFUDA approaches come with inherent limitations that are frequently overlooked. These challenges include performance degradation when the unlabeled target data fails to meet critical assumptions, such as having a closed-set label distribution identical to that of the source domain, or when sufficient unlabeled target data is unavailable-a common situation in real-world applications. To address these issues, we propose an asymmetric co-training (ACT) method specifically designed for the SFFSDA scenario. SFFSDA presents a more practical alternative to SFUDA, as gathering a few labeled target instances is more feasible than acquiring large volumes of unlabeled target data in many real-world contexts. Our ACT method begins by employing a weak-strong augmentation to enhance data diversity. Then we use a two-step optimization process to train the target model. In the first step, we optimize the label smoothing cross-entropy loss, the entropy of the class-conditional distribution, and the reverse-entropy loss to bolster the model's discriminative ability while mitigating overfitting. The second step focuses on reducing redundancy in the output space by minimizing classifier determinacy disparity. Extensive experiments across four benchmarks demonstrate the superiority of our ACT approach, which outperforms state-of-the-art SFUDA methods and transfer learning techniques. Our findings suggest that adapting a source pre-trained model using only a small amount of labeled target data offers a practical and dependable solution. The code is available at https://github.com/gengxuli/ACT.

Authors:Yupeng Chang, Yi Chang, Yuan Wu
Title: Transfer-Prompting: Enhancing Cross-Task Adaptation in Large Language Models via Dual-Stage Prompts Optimization
Abstract:
Large language models (LLMs) face significant challenges when balancing multiple high-level objectives, such as generating coherent, relevant, and high-quality responses while maintaining efficient task adaptation across diverse tasks. To address these challenges, we introduce Transfer-Prompting, a novel two-stage framework designed to enhance cross-task adaptation in prompt generation. The framework comprises two key components: (1) source prompt construction, which refines the original prompts on source task datasets to generate source prompts with enhanced generalization ability, and (2) target prompt generation, which enhances cross-task adaptation of target prompts by fine-tuning a set of high-scored source prompts on task-specific datasets. In each optimization cycle, a reference LLM generates candidate prompts based on historical prompt-score pairs and task descriptions in our designed reference prompt. These candidate prompts are refined iteratively, while a scorer LLM evaluates their effectiveness using the multi-dimensional metrics designed in the objective prompts evaluator-a novel contribution in this work that provides a holistic evaluation of prompt quality and task performance. This feedback loop facilitates continuous refinement, optimizing both prompt quality and task-specific outcomes. We validate Transfer-Prompting through extensive experiments across 25 LLMs, including 7 foundational models and 18 specialized models, evaluated on 9 diverse datasets. The results demonstrate that Transfer-Prompting significantly improves task-specific performance, highlighting its potential for enhancing cross-task adaptation in LLMs. The code is available at https://github.com/llm172/Transfer-Prompting.

Authors:Michihiro Yasunaga, Luke Zettlemoyer, Marjan Ghazvininejad
Title: Multimodal RewardBench: Holistic Evaluation of Reward Models for Vision Language Models
Abstract:
Reward models play an essential role in training vision-language models (VLMs) by assessing output quality to enable aligning with human preferences. Despite their importance, the research community lacks comprehensive open benchmarks for evaluating multimodal reward models in VLMs. To address this gap, we introduce Multimodal RewardBench, an expert-annotated benchmark covering six domains: general correctness, preference, knowledge, reasoning, safety, and visual question-answering. Our dataset comprises 5,211 annotated (prompt, chosen response, rejected response) triplets collected from various VLMs. In evaluating a range of VLM judges, we find that even the top-performing models, Gemini 1.5 Pro and Claude 3.5 Sonnet, achieve only 72% overall accuracy. Notably, most models struggle in the reasoning and safety domains. These findings suggest that Multimodal RewardBench offers a challenging testbed for advancing reward model development across multiple domains. We release the benchmark at https://github.com/facebookresearch/multimodal_rewardbench.

Authors:Shokhrukh Ibragimov, Arnulf Jentzen, Benno Kuckuck
Title: On the logical skills of large language models: evaluations using arbitrarily complex first-order logic problems
Abstract:
We present a method of generating first-order logic statements whose complexity can be controlled along multiple dimensions. We use this method to automatically create several datasets consisting of questions asking for the truth or falsity of first-order logic statements in Zermelo-Fraenkel set theory. While the resolution of these questions does not require any knowledge beyond basic notation of first-order logic and set theory, it does require a degree of planning and logical reasoning, which can be controlled up to arbitrarily high difficulty by the complexity of the generated statements. Furthermore, we do extensive evaluations of the performance of various large language models, including recent models such as DeepSeek-R1 and OpenAI's o3-mini, on these datasets. All of the datasets along with the code used for generating them, as well as all data from the evaluations is publicly available at https://github.com/bkuckuck/logical-skills-of-llms.

Authors:Runlong He, Danyal Z. Khan, Evangelos B. Mazomenos, Hani J. Marcus, Danail Stoyanov, Matthew J. Clarkson, Mobarakol Islam
Title: PitVQA++: Vector Matrix-Low-Rank Adaptation for Open-Ended Visual Question Answering in Pituitary Surgery
Abstract:
Vision-Language Models (VLMs) in visual question answering (VQA) offer a unique opportunity to enhance intra-operative decision-making, promote intuitive interactions, and significantly advancing surgical education. However, the development of VLMs for surgical VQA is challenging due to limited datasets and the risk of overfitting and catastrophic forgetting during full fine-tuning of pretrained weights. While parameter-efficient techniques like Low-Rank Adaptation (LoRA) and Matrix of Rank Adaptation (MoRA) address adaptation challenges, their uniform parameter distribution overlooks the feature hierarchy in deep networks, where earlier layers, that learn general features, require more parameters than later ones. This work introduces PitVQA++ with an open-ended PitVQA dataset and vector matrix-low-rank adaptation (Vector-MoLoRA), an innovative VLM fine-tuning approach for adapting GPT-2 to pituitary surgery. Open-Ended PitVQA comprises around 101,803 frames from 25 procedural videos with 745,972 question-answer sentence pairs, covering key surgical elements such as phase and step recognition, context understanding, tool detection, localization, and interactions recognition. Vector-MoLoRA incorporates the principles of LoRA and MoRA to develop a matrix-low-rank adaptation strategy that employs vector ranking to allocate more parameters to earlier layers, gradually reducing them in the later layers. Our approach, validated on the Open-Ended PitVQA and EndoVis18-VQA datasets, effectively mitigates catastrophic forgetting while significantly enhancing performance over recent baselines. Furthermore, our risk-coverage analysis highlights its enhanced reliability and trustworthiness in handling uncertain predictions. Our source code and dataset is available at~\url{https://github.com/HRL-Mike/PitVQA-Plus}.

Authors:Takahiko Furuya
Title: Token Adaptation via Side Graph Convolution for Efficient Fine-tuning of 3D Point Cloud Transformers
Abstract:
Parameter-efficient fine-tuning (PEFT) of pre-trained 3D point cloud Transformers has emerged as a promising technique for 3D point cloud analysis. While existing PEFT methods attempt to minimize the number of tunable parameters, they often suffer from high temporal and spatial computational costs during fine-tuning. This paper proposes a novel PEFT algorithm called Side Token Adaptation on a neighborhood Graph (STAG) to achieve superior temporal and spatial efficiency. STAG employs a graph convolutional side network operating in parallel with a frozen backbone Transformer to adapt tokens to downstream tasks. Through efficient graph convolution, parameter sharing, and reduced gradient computation, STAG significantly reduces both temporal and spatial costs for fine-tuning. We also present Point Cloud Classification 13 (PCC13), a new benchmark comprising diverse publicly available 3D point cloud datasets to facilitate comprehensive evaluation. Extensive experiments using multiple pre-trained models and PCC13 demonstrates the effectiveness of STAG. Specifically, STAG maintains classification accuracy comparable to existing methods while reducing tunable parameters to only 0.43M and achieving significant reductions in both computation time and memory consumption for fine-tuning. Code and benchmark will be available at: https://github.com/takahikof/STAG.

Authors:Yaochen Zhu, Chao Wan, Harald Steck, Dawen Liang, Yesu Feng, Nathan Kallus, Jundong Li
Title: Collaborative Retrieval for Large Language Model-based Conversational Recommender Systems
Abstract:
Conversational recommender systems (CRS) aim to provide personalized recommendations via interactive dialogues with users. While large language models (LLMs) enhance CRS with their superior understanding of context-aware user preferences, they typically struggle to leverage behavioral data, which have proven to be important for classical collaborative filtering (CF)-based approaches. For this reason, we propose CRAG, Collaborative Retrieval Augmented Generation for LLM-based CRS. To the best of our knowledge, CRAG is the first approach that combines state-of-the-art LLMs with CF for conversational recommendations. Our experiments on two publicly available movie conversational recommendation datasets, i.e., a refined Reddit dataset (which we name Reddit-v2) as well as the Redial dataset, demonstrate the superior item coverage and recommendation performance of CRAG, compared to several CRS baselines. Moreover, we observe that the improvements are mainly due to better recommendation accuracy on recently released movies. The code and data are available at https://github.com/yaochenzhu/CRAG.

Authors:Xuansheng Wu, Wenhao Yu, Xiaoming Zhai, Ninghao Liu
Title: Self-Regularization with Sparse Autoencoders for Controllable LLM-based Classification
Abstract:
Modern text classification methods heavily rely on contextual embeddings from large language models (LLMs). Compared to human-engineered features, these embeddings provide automatic and effective representations for classification model training. However, they also introduce a challenge: we lose the ability to manually remove unintended features, such as sensitive or task-irrelevant features, to guarantee regulatory compliance or improve the generalizability of classification models. This limitation arises because LLM embeddings are opaque and difficult to interpret. In this paper, we propose a novel framework to identify and regularize unintended features in the LLM latent space. Specifically, we first pre-train a sparse autoencoder (SAE) to extract interpretable features from LLM latent spaces. To ensure the SAE can capture task-specific features, we further fine-tune it on task-specific datasets. In training the classification model, we propose a simple and effective regularizer, by minimizing the similarity between the classifier weights and the identified unintended feature, to remove the impact of these unintended features on classification. We evaluate the proposed framework on three real-world tasks, including toxic chat detection, reward modeling, and disease diagnosis. Results show that the proposed self-regularization framework can improve the classifier's generalizability by regularizing those features that are not semantically correlated to the task. This work pioneers controllable text classification on LLM latent spaces by leveraging interpreted features to address generalizability, fairness, and privacy challenges. The code and data are publicly available at https://github.com/JacksonWuxs/Controllable_LLM_Classifier.

Authors:Yueqing Liang, Liangwei Yang, Chen Wang, Congying Xia, Rui Meng, Xiongxiao Xu, Haoran Wang, Ali Payani, Kai Shu
Title: Benchmarking LLMs for Political Science: A United Nations Perspective
Abstract:
Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: https://github.com/yueqingliang1/UNBench.

Authors:Rui Zhao, Zeyu Zhang, Yi Xu, Yi Yao, Yan Huang, Wenxin Zhang, Zirui Song, Xiuying Chen, Yang Zhao
Title: PedDet: Adaptive Spectral Optimization for Multimodal Pedestrian Detection
Abstract:
Pedestrian detection in intelligent transportation systems has made significant progress but faces two critical challenges: (1) insufficient fusion of complementary information between visible and infrared spectra, particularly in complex scenarios, and (2) sensitivity to illumination changes, such as low-light or overexposed conditions, leading to degraded performance. To address these issues, we propose PedDet, an adaptive spectral optimization complementarity framework specifically enhanced and optimized for multispectral pedestrian detection. PedDet introduces the Multi-scale Spectral Feature Perception Module (MSFPM) to adaptively fuse visible and infrared features, enhancing robustness and flexibility in feature extraction. Additionally, the Illumination Robustness Feature Decoupling Module (IRFDM) improves detection stability under varying lighting by decoupling pedestrian and background features. We further design a contrastive alignment to enhance intermodal feature discrimination. Experiments on LLVIP and MSDS datasets demonstrate that PedDet achieves state-of-the-art performance, improving the mAP by 6.6% with superior detection accuracy even in low-light conditions, marking a significant step forward for road safety. Code will be available at https://github.com/AIGeeksGroup/PedDet.

Authors:Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, Alexey Tumanov
Title: RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression
Abstract:
Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme. The source code is available here: https://github.com/NVlabs/RocketKV.

Authors:Yucheng Shi, Quanzheng Li, Jin Sun, Xiang Li, Ninghao Liu
Title: Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data
Abstract:
Large Multimodal Models (LMMs), or Vision-Language Models (VLMs), have shown impressive capabilities in a wide range of visual tasks. However, they often struggle with fine-grained visual reasoning, failing to identify domain-specific objectives and provide justifiable explanations for their predictions. To address the above challenge, we propose a novel visual rejection sampling framework to improve the cognition and explainability of LMMs using self-synthesized data. Specifically, visual fine-tuning requires images, queries, and target answers. Our approach begins by synthesizing interpretable answers that include human-verifiable visual features. These features are based on expert-defined concepts, and carefully selected based on their alignment with the image content. After each round of fine-tuning, we apply a reward model-free filtering mechanism to select the highest-quality interpretable answers for the next round of tuning. This iterative process of synthetic data generation and fine-tuning progressively improves the model's ability to generate accurate and reasonable explanations. Experimental results demonstrate the effectiveness of our method in improving both the accuracy and explainability of specialized visual classification tasks.

Authors:Peirong Zhang, Jiaxin Zhang, Jiahuan Cao, Hongliang Li, Lianwen Jin
Title: Smaller But Better: Unifying Layout Generation with Smaller Large Language Models
Abstract:
We propose LGGPT, an LLM-based model tailored for unified layout generation. First, we propose Arbitrary Layout Instruction (ALI) and Universal Layout Response (ULR) as the uniform I/O template. ALI accommodates arbitrary layout generation task inputs across multiple layout domains, enabling LGGPT to unify both task-generic and domain-generic layout generation hitherto unexplored. Collectively, ALI and ULR boast a succinct structure that forgoes superfluous tokens typically found in existing HTML-based formats, facilitating efficient instruction tuning and boosting unified generation performance. In addition, we propose an Interval Quantization Encoding (IQE) strategy that compresses ALI into a more condensed structure. IQE precisely preserves valid layout clues while eliminating the less informative placeholders, facilitating LGGPT to capture complex and variable layout generation conditions during the unified training process. Experimental results demonstrate that LGGPT achieves superior or on par performance compared to existing methods. Notably, LGGPT strikes a prominent balance between proficiency and efficiency with a compact 1.5B parameter LLM, which beats prior 7B or 175B models even in the most extensive and challenging unified scenario. Furthermore, we underscore the necessity of employing LLMs for unified layout generation and suggest that 1.5B could be an optimal parameter size by comparing LLMs of varying scales. Code is available at https://github.com/NiceRingNode/LGGPT.

Authors:Xingyu Su, Haiyang Yu, Degui Zhi, Shuiwang Ji
Title: Learning to Discover Regulatory Elements for Gene Expression Prediction
Abstract:
We consider the problem of predicting gene expressions from DNA sequences. A key challenge of this task is to find the regulatory elements that control gene expressions. Here, we introduce Seq2Exp, a Sequence to Expression network explicitly designed to discover and extract regulatory elements that drive target gene expression, enhancing the accuracy of the gene expression prediction. Our approach captures the causal relationship between epigenomic signals, DNA sequences and their associated regulatory elements. Specifically, we propose to decompose the epigenomic signals and the DNA sequence conditioned on the causal active regulatory elements, and apply an information bottleneck with the Beta distribution to combine their effects while filtering out non-causal components. Our experiments demonstrate that Seq2Exp outperforms existing baselines in gene expression prediction tasks and discovers influential regions compared to commonly used statistical methods for peak detection such as MACS3. The source code is released as part of the AIRS library (https://github.com/divelab/AIRS/).

Authors:Masane Fuchi, Tomohiro Takagi
Title: Erasing with Precision: Evaluating Specific Concept Erasure from Text-to-Image Generative Models
Abstract:
Studies have been conducted to prevent specific concepts from being generated from pretrained text-to-image generative models, achieving concept erasure in various ways. However, the performance evaluation of these studies is still largely reliant on visualization, with the superiority of studies often determined by human subjectivity. The metrics of quantitative evaluation also vary, making comprehensive comparisons difficult. We propose EraseEval, an evaluation method that differs from previous evaluation methods in that it involves three fundamental evaluation criteria: (1) How well does the prompt containing the target concept be reflected, (2) To what extent the concepts related to the erased concept can reduce the impact of the erased concept, and (3) Whether other concepts are preserved. These criteria are evaluated and integrated into a single metric, such that a lower score is given if any of the evaluations are low, leading to a more robust assessment. We experimentally evaluated baseline concept erasure methods, organized their characteristics, and identified challenges with them. Despite being fundamental evaluation criteria, some concept erasure methods failed to achieve high scores, which point toward future research directions for concept erasure methods. Our code is available at https://github.com/fmp453/erase-eval.

Authors:Taishi Ito, Yuki Endo, Yoshihiro Kanamori
Title: SelfAge: Personalized Facial Age Transformation Using Self-reference Images
Abstract:
Age transformation of facial images is a technique that edits age-related person's appearances while preserving the identity. Existing deep learning-based methods can reproduce natural age transformations; however, they only reproduce averaged transitions and fail to account for individual-specific appearances influenced by their life histories. In this paper, we propose the first diffusion model-based method for personalized age transformation. Our diffusion model takes a facial image and a target age as input and generates an age-edited face image as output. To reflect individual-specific features, we incorporate additional supervision using self-reference images, which are facial images of the same person at different ages. Specifically, we fine-tune a pretrained diffusion model for personalized adaptation using approximately 3 to 5 self-reference images. Additionally, we design an effective prompt to enhance the performance of age editing and identity preservation. Experiments demonstrate that our method achieves superior performance both quantitatively and qualitatively compared to existing methods. The code and the pretrained model are available at https://github.com/shiiiijp/SelfAge.

Authors:Eduard Chelebian, Pratiti Dasgupta, Zainalabedin Samadi, Carolina Wählby, Amjad Askary
Title: Segmentation-free integration of nuclei morphology and spatial transcriptomics for retinal images
Abstract:
This study introduces SEFI (SEgmentation-Free Integration), a novel method for integrating morphological features of cell nuclei with spatial transcriptomics data. Cell segmentation poses a significant challenge in the analysis of spatial transcriptomics data, as tissue-specific structural complexities and densely packed cells in certain regions make it difficult to develop a universal approach. SEFI addresses this by utilizing self-supervised learning to extract morphological features from fluorescent nuclear staining images, enhancing the clustering of gene expression data without requiring segmentation. We demonstrate SEFI on spatially resolved gene expression profiles of the developing retina, acquired using multiplexed single molecule Fluorescence In Situ Hybridization (smFISH). SEFI is publicly available at https://github.com/eduardchelebian/sefi.

Authors:Yan Huang, Yongru Chen, Lei Cao, Yongnian Cao, Xuechun Yang, Yilin Dong, Tianyu Liu
Title: IncepFormerNet: A multi-scale multi-head attention network for SSVEP classification
Abstract:
In recent years, deep learning (DL) models have shown outstanding performance in EEG classification tasks, particularly in Steady-State Visually Evoked Potential(SSVEP)-based Brain-Computer-Interfaces(BCI)systems. DL methods have been successfully applied to SSVEP-BCI. This study proposes a new model called IncepFormerNet, which is a hybrid of the Inception and Transformer architectures. IncepFormerNet adeptly extracts multi-scale temporal information from time series data using parallel convolution kernels of varying sizes, accurately capturing the subtle variations and critical features within SSVEP signals.Furthermore, the model integrates the multi-head attention mechanism from the Transformer architecture, which not only provides insights into global dependencies but also significantly enhances the understanding and representation of complex patterns.Additionally, it takes advantage of filter bank techniques to extract features based on the spectral characteristics of SSVEP data. To validate the effectiveness of the proposed model, we conducted experiments on two public datasets, . The experimental results show that IncepFormerNet achieves an accuracy of 87.41 on Dataset 1 and 71.97 on Dataset 2 using a 1.0-second time window. To further verify the superiority of the proposed model, we compared it with other deep learning models, and the results indicate that our method achieves significantly higher accuracy than the others.The source codes in this work are available at: https://github.com/CECNL/SSVEP-DAN.

Authors:William Jurayj, Jeffrey Cheng, Benjamin Van Durme
Title: Is That Your Final Answer? Test-Time Scaling Improves Selective Question Answering
Abstract:
Scaling the test-time compute of large language models has demonstrated impressive performance on reasoning benchmarks. However, existing evaluations of test-time scaling make the strong assumption that a reasoning system should always give an answer to any question provided. This overlooks concerns about whether a model is confident in its answer, and whether it is appropriate to always provide a response. To address these concerns, we extract confidence scores during reasoning for thresholding model responses. We find that increasing compute budget at inference time not only helps models answer more questions correctly, but also increases confidence in correct responses. We then extend the current paradigm of zero-risk responses during evaluation by considering settings with non-zero levels of response risk, and suggest a recipe for reporting evaluations under these settings.

Authors:Reza Averly, Frazier N. Baker, Ian A. Watson, Xia Ning
Title: LIDDIA: Language-based Intelligent Drug Discovery Agent
Abstract:
Drug discovery is a long, expensive, and complex process, relying heavily on human medicinal chemists, who can spend years searching the vast space of potential therapies. Recent advances in artificial intelligence for chemistry have sought to expedite individual drug discovery tasks; however, there remains a critical need for an intelligent agent that can navigate the drug discovery process. Towards this end, we introduce LIDDIA, an autonomous agent capable of intelligently navigating the drug discovery process in silico. By leveraging the reasoning capabilities of large language models, LIDDIA serves as a low-cost and highly-adaptable tool for autonomous drug discovery. We comprehensively examine LIDDIA , demonstrating that (1) it can generate molecules meeting key pharmaceutical criteria on over 70% of 30 clinically relevant targets, (2) it intelligently balances exploration and exploitation in the chemical space, and (3) it identifies one promising novel candidate on AR/NR3C4, a critical target for both prostate and breast cancers. Code and dataset are available at https://github.com/ninglab/LIDDiA

Authors:Guangzhi Xiong, Qiao Jin, Xiao Wang, Yin Fang, Haolin Liu, Yifan Yang, Fangyuan Chen, Zhixing Song, Dengyu Wang, Minjia Zhang, Zhiyong Lu, Aidong Zhang
Title: RAG-Gym: Systematic Optimization of Language Agents for Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) has shown great promise for knowledge-intensive tasks and recently advanced with agentic RAG, where language agents engage in multi-round interactions with external knowledge sources for adaptive information retrieval. However, existing agentic RAG methods often depend on ad-hoc prompt engineering and lack a unified optimization framework. We introduce RAG-Gym, a comprehensive platform that systematically explores three optimization dimensions: (1) prompt engineering, (2) actor tuning, and (3) critic training. For prompt engineering, we propose Re$^2$Search, a novel agent incorporating reasoning reflection that significantly outperforms standard prompts. In actor tuning, we evaluate three popular post-training algorithms with fine-grained process supervision and identify direct preference optimization as the most effective. We further demonstrate that a trained critic can enhance inference by selecting higher-quality intermediate reasoning steps. Together, these findings lead to the optimized Re$^2$Search++ agent, which surpasses most recent methods like Search-R1 by a relative increase of 3.2% to 11.6% in average F1. Finally, we examine the impact of different reward sources and analyze scaling properties in training and inference, offering practical insights for agentic RAG optimization. The project homepage is available at https://rag-gym.github.io.

Authors:Jingwang Huang, Jiang Zhong, Qin Lei, Jinpeng Gao, Yuming Yang, Sirui Wang, Peiguang Li, Kaiwen Wei
Title: Latent Distribution Decoupling: A Probabilistic Framework for Uncertainty-Aware Multimodal Emotion Recognition
Abstract:
Multimodal multi-label emotion recognition (MMER) aims to identify the concurrent presence of multiple emotions in multimodal data. Existing studies primarily focus on improving fusion strategies and modeling modality-to-label dependencies. However, they often overlook the impact of \textbf{aleatoric uncertainty}, which is the inherent noise in the multimodal data and hinders the effectiveness of modality fusion by introducing ambiguity into feature representations. To address this issue and effectively model aleatoric uncertainty, this paper proposes Latent emotional Distribution Decomposition with Uncertainty perception (LDDU) framework from a novel perspective of latent emotional space probabilistic modeling. Specifically, we introduce a contrastive disentangled distribution mechanism within the emotion space to model the multimodal data, allowing for the extraction of semantic features and uncertainty. Furthermore, we design an uncertainty-aware fusion multimodal method that accounts for the dispersed distribution of uncertainty and integrates distribution information. Experimental results show that LDDU achieves state-of-the-art performance on the CMU-MOSEI and M$^3$ED datasets, highlighting the importance of uncertainty modeling in MMER. Code is available at https://github.com/201983290498/lddu\_mmer.git.

Authors:Guanzheng Chen, Xin Li, Michael Qizhe Shieh, Lidong Bing
Title: LongPO: Long Context Self-Evolution of Large Language Models through Short-to-Long Preference Optimization
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities through pretraining and alignment. However, superior short-context LLMs may underperform in long-context scenarios due to insufficient long-context alignment. This alignment process remains challenging due to the impracticality of human annotation for extended contexts and the difficulty in balancing short- and long-context performance. To address these challenges, we introduce LongPO, that enables short-context LLMs to self-evolve to excel on long-context tasks by internally transferring short-context capabilities. LongPO harnesses LLMs to learn from self-generated short-to-long preference data, comprising paired responses generated for identical instructions with long-context inputs and their compressed short-context counterparts, respectively. This preference reveals capabilities and potentials of LLMs cultivated during short-context alignment that may be diminished in under-aligned long-context scenarios. Additionally, LongPO incorporates a short-to-long KL constraint to mitigate short-context performance decline during long-context alignment. When applied to Mistral-7B-Instruct-v0.2 from 128K to 512K context lengths, LongPO fully retains short-context performance and largely outperforms naive SFT and DPO in both long- and short-context tasks. Specifically, LongPO-trained models can achieve results on long-context benchmarks comparable to, or even surpassing, those of superior LLMs (e.g., GPT-4-128K) that involve extensive long-context annotation and larger parameter scales. Our code is available at https://github.com/DAMO-NLP-SG/LongPO.

Authors:Xingbo Wang, Janessa Griffith, Daniel A. Adler, Joey Castillo, Tanzeem Choudhury, Fei Wang
Title: Exploring Personalized Health Support through Data-Driven, Theory-Guided LLMs: A Case Study in Sleep Health
Abstract:
Despite the prevalence of sleep-tracking devices, many individuals struggle to translate data into actionable improvements in sleep health. Current methods often provide data-driven suggestions but may not be feasible and adaptive to real-life constraints and individual contexts. We present HealthGuru, a novel large language model-powered chatbot to enhance sleep health through data-driven, theory-guided, and adaptive recommendations with conversational behavior change support. HealthGuru's multi-agent framework integrates wearable device data, contextual information, and a contextual multi-armed bandit model to suggest tailored sleep-enhancing activities. The system facilitates natural conversations while incorporating data-driven insights and theoretical behavior change techniques. Our eight-week in-the-wild deployment study with 16 participants compared HealthGuru to a baseline chatbot. Results show improved metrics like sleep duration and activity scores, higher quality responses, and increased user motivation for behavior change with HealthGuru. We also identify challenges and design considerations for personalization and user engagement in health chatbots.

Authors:Jaesung Tae, Hamish Ivison, Sachin Kumar, Arman Cohan
Title: TESS 2: A Large-Scale Generalist Diffusion Language Model
Abstract:
We introduce TESS 2, a general instruction-following diffusion language model that outperforms contemporary instruction-tuned diffusion models, as well as matches and sometimes exceeds strong autoregressive (AR) models. We train TESS 2 by first adapting a strong AR model via continued pretraining with the usual cross-entropy as diffusion loss, and then performing further instruction tuning. We find that adaptation training as well as the choice of the base model is crucial for training good instruction-following diffusion models. We further propose reward guidance, a novel and modular inference-time guidance procedure to align model outputs without needing to train the underlying model. Finally, we show that TESS 2 further improves with increased inference-time compute, highlighting the utility of diffusion LMs in having fine-grained controllability over the amount of compute used at inference time. Code and models are available at https://github.com/hamishivi/tess-2.

Authors:Sein Kim, Hongseok Kang, Kibum Kim, Jiwan Kim, Donghyun Kim, Minchul Yang, Kwangjin Oh, Julian McAuley, Chanyoung Park
Title: Lost in Sequence: Do Large Language Models Understand Sequential Recommendation?
Abstract:
Large Language Models (LLMs) have recently emerged as promising tools for recommendation thanks to their advanced textual understanding ability and context-awareness. Despite the current practice of training and evaluating LLM-based recommendation (LLM4Rec) models under a sequential recommendation scenario, we found that whether these models understand the sequential information inherent in users' item interaction sequences has been largely overlooked. In this paper, we first demonstrate through a series of experiments that existing LLM4Rec models do not fully capture sequential information both during training and inference. Then, we propose a simple yet effective LLM-based sequential recommender, called LLM-SRec, a method that enhances the integration of sequential information into LLMs by distilling the user representations extracted from a pre-trained CF-SRec model into LLMs. Our extensive experiments show that LLM-SRec enhances LLMs' ability to understand users' item interaction sequences, ultimately leading to improved recommendation performance. Furthermore, unlike existing LLM4Rec models that require fine-tuning of LLMs, LLM-SRec achieves state-of-the-art performance by training only a few lightweight MLPs, highlighting its practicality in real-world applications. Our code is available at https://github.com/Sein-Kim/LLM-SRec.

Authors:Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu Hu, Jie Tang, Yisong Yue
Title: DataSciBench: An LLM Agent Benchmark for Data Science
Abstract:
This paper presents DataSciBench, a comprehensive benchmark for evaluating Large Language Model (LLM) capabilities in data science. Recent related benchmarks have primarily focused on single tasks, easily obtainable ground truth, and straightforward evaluation metrics, which limits the scope of tasks that can be evaluated. In contrast, DataSciBench is constructed based on a more comprehensive and curated collection of natural and challenging prompts for uncertain ground truth and evaluation metrics. We develop a semi-automated pipeline for generating ground truth (GT) and validating evaluation metrics. This pipeline utilizes and implements an LLM-based self-consistency and human verification strategy to produce accurate GT by leveraging collected prompts, predefined task types, and aggregate functions (metrics). Furthermore, we propose an innovative Task - Function - Code (TFC) framework to assess each code execution outcome based on precisely defined metrics and programmatic rules. Our experimental framework involves testing 6 API-based models, 8 open-source general models, and 9 open-source code generation models using the diverse set of prompts we have gathered. This approach aims to provide a more comprehensive and rigorous evaluation of LLMs in data science, revealing their strengths and weaknesses. Experimental results demonstrate that API-based models outperform open-sourced models on all metrics and Deepseek-Coder-33B-Instruct achieves the highest score among open-sourced models. We release all code and data at https://github.com/THUDM/DataSciBench.

Authors:Idris Hamoud, Vinkle Srivastav, Muhammad Abdullah Jamal, Didier Mutter, Omid Mohareri, Nicolas Padoy
Title: Multi-view Video-Pose Pretraining for Operating Room Surgical Activity Recognition
Abstract:
Understanding the workflow of surgical procedures in complex operating rooms requires a deep understanding of the interactions between clinicians and their environment. Surgical activity recognition (SAR) is a key computer vision task that detects activities or phases from multi-view camera recordings. Existing SAR models often fail to account for fine-grained clinician movements and multi-view knowledge, or they require calibrated multi-view camera setups and advanced point-cloud processing to obtain better results. In this work, we propose a novel calibration-free multi-view multi-modal pretraining framework called Multiview Pretraining for Video-Pose Surgical Activity Recognition PreViPS, which aligns 2D pose and vision embeddings across camera views. Our model follows CLIP-style dual-encoder architecture: one encoder processes visual features, while the other encodes human pose embeddings. To handle the continuous 2D human pose coordinates, we introduce a tokenized discrete representation to convert the continuous 2D pose coordinates into discrete pose embeddings, thereby enabling efficient integration within the dual-encoder framework. To bridge the gap between these two modalities, we propose several pretraining objectives using cross- and in-modality geometric constraints within the embedding space and incorporating masked pose token prediction strategy to enhance representation learning. Extensive experiments and ablation studies demonstrate improvements over the strong baselines, while data-efficiency experiments on two distinct operating room datasets further highlight the effectiveness of our approach. We highlight the benefits of our approach for surgical activity recognition in both multi-view and single-view settings, showcasing its practical applicability in complex surgical environments. Code will be made available at: https://github.com/CAMMA-public/PreViPS.

Authors:Jiahao Liu, Xueshuo Yan, Dongsheng Li, Guangping Zhang, Hansu Gu, Peng Zhang, Tun Lu, Li Shang, Ning Gu
Title: Improving LLM-powered Recommendations with Personalized Information
Abstract:
Due to the lack of explicit reasoning modeling, existing LLM-powered recommendations fail to leverage LLMs' reasoning capabilities effectively. In this paper, we propose a pipeline called CoT-Rec, which integrates two key Chain-of-Thought (CoT) processes -- user preference analysis and item perception analysis -- into LLM-powered recommendations, thereby enhancing the utilization of LLMs' reasoning abilities. CoT-Rec consists of two stages: (1) personalized information extraction, where user preferences and item perception are extracted, and (2) personalized information utilization, where this information is incorporated into the LLM-powered recommendation process. Experimental results demonstrate that CoT-Rec shows potential for improving LLM-powered recommendations. The implementation is publicly available at https://github.com/jhliu0807/CoT-Rec.

Authors:Jiahao Liu, Shengkang Gu, Dongsheng Li, Guangping Zhang, Mingzhe Han, Hansu Gu, Peng Zhang, Tun Lu, Li Shang, Ning Gu
Title: AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations
Abstract:
LLM-based user agents, which simulate user interaction behavior, are emerging as a promising approach to enhancing recommender systems. In real-world scenarios, users' interactions often exhibit cross-domain characteristics and are influenced by others. However, the memory design in current methods causes user agents to introduce significant irrelevant information during decision-making in cross-domain scenarios and makes them unable to recognize the influence of other users' interactions, such as popularity factors. To tackle this issue, we propose a dual-layer memory architecture combined with a two-step fusion mechanism. This design avoids irrelevant information during decision-making while ensuring effective integration of cross-domain preferences. We also introduce the concepts of interest groups and group-shared memory to better capture the influence of popularity factors on users with similar interests. Comprehensive experiments validate the effectiveness of AgentCF++. Our code is available at https://github.com/jhliu0807/AgentCF-plus.

Authors:Jiahao Liu, Dongsheng Li, Hansu Gu, Peng Zhang, Tun Lu, Li Shang, Ning Gu
Title: Unbiased Collaborative Filtering with Fair Sampling
Abstract:
Recommender systems leverage extensive user interaction data to model preferences; however, directly modeling these data may introduce biases that disproportionately favor popular items. In this paper, we demonstrate that popularity bias arises from the influence of propensity factors during training. Building on this insight, we propose a fair sampling (FS) method that ensures each user and each item has an equal likelihood of being selected as both positive and negative instances, thereby mitigating the influence of propensity factors. The proposed FS method does not require estimating propensity scores, thus avoiding the risk of failing to fully eliminate popularity bias caused by estimation inaccuracies. Comprehensive experiments demonstrate that the proposed FS method achieves state-of-the-art performance in both point-wise and pair-wise recommendation tasks. The code implementation is available at https://github.com/jhliu0807/Fair-Sampling.

Authors:Zenan Li, Zhaoyu Li, Wen Tang, Xian Zhang, Yuan Yao, Xujie Si, Fan Yang, Kaiyu Yang, Xiaoxing Ma
Title: Proving Olympiad Inequalities by Synergizing LLMs and Symbolic Reasoning
Abstract:
Large language models (LLMs) can prove mathematical theorems formally by generating proof steps (\textit{a.k.a.} tactics) within a proof system. However, the space of possible tactics is vast and complex, while the available training data for formal proofs is limited, posing a significant challenge to LLM-based tactic generation. To address this, we introduce a neuro-symbolic tactic generator that synergizes the mathematical intuition learned by LLMs with domain-specific insights encoded by symbolic methods. The key aspect of this integration is identifying which parts of mathematical reasoning are best suited to LLMs and which to symbolic methods. While the high-level idea of neuro-symbolic integration is broadly applicable to various mathematical problems, in this paper, we focus specifically on Olympiad inequalities (Figure~1). We analyze how humans solve these problems and distill the techniques into two types of tactics: (1) scaling, handled by symbolic methods, and (2) rewriting, handled by LLMs. In addition, we combine symbolic tools with LLMs to prune and rank the proof goals for efficient proof search. We evaluate our framework on 161 challenging inequalities from multiple mathematics competitions, achieving state-of-the-art performance and significantly outperforming existing LLM and symbolic approaches without requiring additional training data.

Authors:Matthew Wood, Mathieu Klop, Maxime Allard
Title: Helix-mRNA: A Hybrid Foundation Model For Full Sequence mRNA Therapeutics
Abstract:
mRNA-based vaccines have become a major focus in the pharmaceutical industry. The coding sequence as well as the Untranslated Regions (UTRs) of an mRNA can strongly influence translation efficiency, stability, degradation, and other factors that collectively determine a vaccine's effectiveness. However, optimizing mRNA sequences for those properties remains a complex challenge. Existing deep learning models often focus solely on coding region optimization, overlooking the UTRs. We present Helix-mRNA, a structured state-space-based and attention hybrid model to address these challenges. In addition to a first pre-training, a second pre-training stage allows us to specialise the model with high-quality data. We employ single nucleotide tokenization of mRNA sequences with codon separation, ensuring prior biological and structural information from the original mRNA sequence is not lost. Our model, Helix-mRNA, outperforms existing methods in analysing both UTRs and coding region properties. It can process sequences 6x longer than current approaches while using only 10% of the parameters of existing foundation models. Its predictive capabilities extend to all mRNA regions. We open-source the model (https://github.com/helicalAI/helical) and model weights (https://huggingface.co/helical-ai/helix-mRNA).

Authors:Jiaqi Li, Xizhong Guo, Yang Zhao, Lvyang Zhang, Lidong Zhai
Title: Poster: SpiderSim: Multi-Agent Driven Theoretical Cybersecurity Simulation for Industrial Digitalization
Abstract:
Rapid industrial digitalization has created intricate cybersecurity demands that necessitate effective validation methods. While cyber ranges and simulation platforms are widely deployed, they frequently face limitations in scenario diversity and creation efficiency. In this paper, we present SpiderSim, a theoretical cybersecurity simulation platform enabling rapid and lightweight scenario generation for industrial digitalization security research. At its core, our platform introduces three key innovations: a structured framework for unified scenario modeling, a multi-agent collaboration mechanism for automated generation, and modular atomic security capabilities for flexible scenario composition. Extensive implementation trials across multiple industrial digitalization contexts, including marine ranch monitoring systems, validate our platform's capacity for broad scenario coverage with efficient generation processes. Built on solid theoretical foundations and released as open-source software, SpiderSim facilitates broader research and development in automated security testing for industrial digitalization.

Authors:Keqin Peng, Liang Ding, Yuanxin Ouyang, Meng Fang, Yancheng Yuan, Dacheng Tao
Title: Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding
Abstract:
Large language models (LLMs) excel at a range of tasks through in-context learning (ICL), where only a few task examples guide their predictions. However, prior research highlights that LLMs often overlook input-label mapping information in ICL, relying more on their pre-trained knowledge. To address this issue, we introduce In-Context Contrastive Decoding (ICCD), a novel method that emphasizes input-label mapping by contrasting the output distributions between positive and negative in-context examples. Experiments on 7 natural language understanding (NLU) tasks show that our ICCD method brings consistent and significant improvement (up to +1.8 improvement on average) upon 6 different scales of LLMs without requiring additional training. Our approach is versatile, enhancing performance with various demonstration selection methods, demonstrating its broad applicability and effectiveness. The code and scripts are released at https://github.com/Romainpkq/CD_ICL.

Authors:Taewoo Kim, Yujeong Chae, Hyun-Kurl Jang, Kuk-Jin Yoon
Title: Event-Based Video Frame Interpolation With Cross-Modal Asymmetric Bidirectional Motion Fields
Abstract:
Video Frame Interpolation (VFI) aims to generate intermediate video frames between consecutive input frames. Since the event cameras are bio-inspired sensors that only encode brightness changes with a micro-second temporal resolution, several works utilized the event camera to enhance the performance of VFI. However, existing methods estimate bidirectional inter-frame motion fields with only events or approximations, which can not consider the complex motion in real-world scenarios. In this paper, we propose a novel event-based VFI framework with cross-modal asymmetric bidirectional motion field estimation. In detail, our EIF-BiOFNet utilizes each valuable characteristic of the events and images for direct estimation of inter-frame motion fields without any approximation methods. Moreover, we develop an interactive attention-based frame synthesis network to efficiently leverage the complementary warping-based and synthesis-based features. Finally, we build a large-scale event-based VFI dataset, ERF-X170FPS, with a high frame rate, extreme motion, and dynamic textures to overcome the limitations of previous event-based VFI datasets. Extensive experimental results validate that our method shows significant performance improvement over the state-of-the-art VFI methods on various datasets. Our project pages are available at: https://github.com/intelpro/CBMNet

Authors:Jusen Du, Weigao Sun, Disen Lan, Jiaxi Hu, Yu Cheng
Title: MoM: Linear Sequence Modeling with Mixture-of-Memories
Abstract:
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive downstream tasks. Drawing inspiration from neuroscience, particularly the brain's ability to maintain robust long-term memory while mitigating "memory interference", we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM significantly outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.

Authors:Jusen Du, Weigao Sun, Disen Lan, Jiaxi Hu, Yu Cheng
Title: MoM: Linear Sequence Modeling with Mixture-of-Memories
Abstract:
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive tasks. To address this limitation, we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. MoM serves as a general framework that can be seamlessly combined with diverse memory update mechanisms across linear models. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.

Authors:Ruida Hu, Chao Peng, Xinchen Wang, Junjielong Xu, Cuiyun Gao
Title: Repo2Run: Automated Building Executable Environment for Code Repository at Scale
Abstract:
Scaling up executable code data is significant for improving language models' software engineering capability. The intricate nature of the process makes it labor-intensive, time-consuming and expert-knowledge-dependent to build a large number of executable code repositories, limiting the scalability of existing work based on running tests. The primary bottleneck lies in the automated building of test environments for different repositories, which is an essential yet underexplored task. To mitigate the gap, we introduce Repo2Run, the first LLM-based agent aiming at automating the building of executable test environments for any repositories at scale. Specifically, given a code repository, Repo2Run iteratively builds the Docker image, runs unit tests based on the feedback of the building, and synthesizes the Dockerfile until the entire pipeline is executed successfully. The resulting Dockerfile can then be used to create Docker container environments for running code and tests. We created a benchmark containing 420 Python repositories with unit tests for evaluation. The results illustrate that Repo2Run achieves an 86.0% success rate, outperforming SWE-agent by 77.0%. The resources of Repo2Run are available at https://github.com/bytedance/Repo2Run.

Authors:Tim Baumgärtner, Ted Briscoe, Iryna Gurevych
Title: PeerQA: A Scientific Question Answering Dataset from Peer Reviews
Abstract:
We present PeerQA, a real-world, scientific, document-level Question Answering (QA) dataset. PeerQA questions have been sourced from peer reviews, which contain questions that reviewers raised while thoroughly examining the scientific article. Answers have been annotated by the original authors of each paper. The dataset contains 579 QA pairs from 208 academic articles, with a majority from ML and NLP, as well as a subset of other scientific communities like Geoscience and Public Health. PeerQA supports three critical tasks for developing practical QA systems: Evidence retrieval, unanswerable question classification, and answer generation. We provide a detailed analysis of the collected dataset and conduct experiments establishing baseline systems for all three tasks. Our experiments and analyses reveal the need for decontextualization in document-level retrieval, where we find that even simple decontextualization approaches consistently improve retrieval performance across architectures. On answer generation, PeerQA serves as a challenging benchmark for long-context modeling, as the papers have an average size of 12k tokens. Our code and data is available at https://github.com/UKPLab/peerqa.

Authors:Rokuto Nagata, Kenji Koide, Yuki Hayakawa, Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Qi Alfred Chen, Takami Sato, Kentaro Yoshioka
Title: SLAMSpoof: Practical LiDAR Spoofing Attacks on Localization Systems Guided by Scan Matching Vulnerability Analysis
Abstract:
Accurate localization is essential for enabling modern full self-driving services. These services heavily rely on map-based traffic information to reduce uncertainties in recognizing lane shapes, traffic light locations, and traffic signs. Achieving this level of reliance on map information requires centimeter-level localization accuracy, which is currently only achievable with LiDAR sensors. However, LiDAR is known to be vulnerable to spoofing attacks that emit malicious lasers against LiDAR to overwrite its measurements. Once localization is compromised, the attack could lead the victim off roads or make them ignore traffic lights. Motivated by these serious safety implications, we design SLAMSpoof, the first practical LiDAR spoofing attack on localization systems for self-driving to assess the actual attack significance on autonomous vehicles. SLAMSpoof can effectively find the effective attack location based on our scan matching vulnerability score (SMVS), a point-wise metric representing the potential vulnerability to spoofing attacks. To evaluate the effectiveness of the attack, we conduct real-world experiments on ground vehicles and confirm its high capability in real-world scenarios, inducing position errors of $\geq$4.2 meters (more than typical lane width) for all 3 popular LiDAR-based localization algorithms. We finally discuss the potential countermeasures of this attack. Code is available at https://github.com/Keio-CSG/slamspoof

Authors:Yuanyuan Xu, Hanchen Wang, Wenjie Zhang, Lexing Xie, Yin Chen, Flora Salim, Ying Zhang, Justin Gooding, Toby Walsh
Title: AI-Empowered Catalyst Discovery: A Survey from Classical Machine Learning Approaches to Large Language Models
Abstract:
Catalysts are essential for accelerating chemical reactions and enhancing selectivity, which is crucial for the sustainable production of energy, materials, and bioactive compounds. Catalyst discovery is fundamental yet challenging in computational chemistry and has garnered significant attention due to the promising performance of advanced Artificial Intelligence (AI) techniques. The development of Large Language Models (LLMs) notably accelerates progress in the discovery of both homogeneous and heterogeneous catalysts, where their chemical reactions differ significantly in material phases, temperature, dynamics, etc. However, there is currently no comprehensive survey that discusses the progress and latest developments in both areas, particularly with the application of LLM techniques. To address this gap, this paper presents a thorough and systematic survey of AI-empowered catalyst discovery, employing a unified and general categorization for homogeneous and heterogeneous catalysts. We examine the progress of AI-empowered catalyst discovery, highlighting their individual advantages and disadvantages, and discuss the challenges faced in this field. Furthermore, we suggest potential directions for future research from the perspective of computer science. Our goal is to assist researchers in computational chemistry, computer science, and related fields in easily tracking the latest advancements, providing a clear overview and roadmap of this area. We also organize and make accessible relevant resources, including article lists and datasets, in an open repository at https://github.com/LuckyGirl-XU/Awesome-Artificial-Intelligence-Empowered-Catalyst-Discovery.

Authors:Zheng Wu, Yiping Xie, Bo Zhao, Jiguang He, Fei Luo, Ning Deng, Zitong Yu
Title: CardiacMamba: A Multimodal RGB-RF Fusion Framework with State Space Models for Remote Physiological Measurement
Abstract:
Heart rate (HR) estimation via remote photoplethysmography (rPPG) offers a non-invasive solution for health monitoring. However, traditional single-modality approaches (RGB or Radio Frequency (RF)) face challenges in balancing robustness and accuracy due to lighting variations, motion artifacts, and skin tone bias. In this paper, we propose CardiacMamba, a multimodal RGB-RF fusion framework that leverages the complementary strengths of both modalities. It introduces the Temporal Difference Mamba Module (TDMM) to capture dynamic changes in RF signals using timing differences between frames, enhancing the extraction of local and global features. Additionally, CardiacMamba employs a Bidirectional SSM for cross-modal alignment and a Channel-wise Fast Fourier Transform (CFFT) to effectively capture and refine the frequency domain characteristics of RGB and RF signals, ultimately improving heart rate estimation accuracy and periodicity detection. Extensive experiments on the EquiPleth dataset demonstrate state-of-the-art performance, achieving marked improvements in accuracy and robustness. CardiacMamba significantly mitigates skin tone bias, reducing performance disparities across demographic groups, and maintains resilience under missing-modality scenarios. By addressing critical challenges in fairness, adaptability, and precision, the framework advances rPPG technology toward reliable real-world deployment in healthcare. The codes are available at: https://github.com/WuZheng42/CardiacMamba.

Authors:DongGeon Lee, Hwanjo Yu
Title: REFIND at SemEval-2025 Task 3: Retrieval-Augmented Factuality Hallucination Detection in Large Language Models
Abstract:
Hallucinations in large language model (LLM) outputs severely limit their reliability in knowledge-intensive tasks such as question answering. To address this challenge, we introduce REFIND (Retrieval-augmented Factuality hallucINation Detection), a novel framework that detects hallucinated spans within LLM outputs by directly leveraging retrieved documents. As part of the REFIND, we propose the Context Sensitivity Ratio (CSR), a novel metric that quantifies the sensitivity of LLM outputs to retrieved evidence. This innovative approach enables REFIND to efficiently and accurately detect hallucinations, setting it apart from existing methods. In the evaluation, REFIND demonstrated robustness across nine languages, including low-resource settings, and significantly outperformed baseline models, achieving superior IoU scores in identifying hallucinated spans. This work highlights the effectiveness of quantifying context sensitivity for hallucination detection, thereby paving the way for more reliable and trustworthy LLM applications across diverse languages. Our code is available at https://github.com/oneonlee/REFIND.

Authors:Ziming Hong, Yongli Xiang, Tongliang Liu
Title: Toward Robust Non-Transferable Learning: A Survey and Benchmark
Abstract:
Over the past decades, researchers have primarily focused on improving the generalization abilities of models, with limited attention given to regulating such generalization. However, the ability of models to generalize to unintended data (e.g., harmful or unauthorized data) can be exploited by malicious adversaries in unforeseen ways, potentially resulting in violations of model ethics. Non-transferable learning (NTL), a task aimed at reshaping the generalization abilities of deep learning models, was proposed to address these challenges. While numerous methods have been proposed in this field, a comprehensive review of existing progress and a thorough analysis of current limitations remain lacking. In this paper, we bridge this gap by presenting the first comprehensive survey on NTL and introducing NTLBench, the first benchmark to evaluate NTL performance and robustness within a unified framework. Specifically, we first introduce the task settings, general framework, and criteria of NTL, followed by a summary of NTL approaches. Furthermore, we emphasize the often-overlooked issue of robustness against various attacks that can destroy the non-transferable mechanism established by NTL. Experiments conducted via NTLBench verify the limitations of existing NTL methods in robustness. Finally, we discuss the practical applications of NTL, along with its future directions and associated challenges.

Authors:Yupeng Hou, Jianmo Ni, Zhankui He, Noveen Sachdeva, Wang-Cheng Kang, Ed H. Chi, Julian McAuley, Derek Zhiyuan Cheng
Title: ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation
Abstract:
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Our code is available at: https://github.com/google-deepmind/action_piece.

Authors:Coleman Hooper, Sehoon Kim, Suhong Moon, Kerem Dilmen, Monishwaran Maheswaran, Nicholas Lee, Michael W. Mahoney, Sophia Shao, Kurt Keutzer, Amir Gholami
Title: ETS: Efficient Tree Search for Inference-Time Scaling
Abstract:
Test-time compute scaling has emerged as a new axis along which to improve model accuracy, where additional computation is used at inference time to allow the model to think longer for more challenging problems. One promising approach for test-time compute scaling is search against a process reward model, where a model generates multiple potential candidates at each step of the search, and these partial trajectories are then scored by a separate reward model in order to guide the search process. The diversity of trajectories in the tree search process affects the accuracy of the search, since increasing diversity promotes more exploration. However, this diversity comes at a cost, as divergent trajectories have less KV sharing, which means they consume more memory and slow down the search process. Previous search methods either do not perform sufficient exploration, or else explore diverse trajectories but have high latency. We address this challenge by proposing Efficient Tree Search (ETS), which promotes KV sharing by pruning redundant trajectories while maintaining necessary diverse trajectories. ETS incorporates a linear programming cost model to promote KV cache sharing by penalizing the number of nodes retained, while incorporating a semantic coverage term into the cost model to ensure that we retain trajectories which are semantically different. We demonstrate how ETS can achieve 1.8$\times$ reduction in average KV cache size during the search process, leading to 1.4$\times$ increased throughput relative to prior state-of-the-art methods, with minimal accuracy degradation and without requiring any custom kernel implementation. Code is available at: https://github.com/SqueezeAILab/ETS.

Authors:Yuan Yao, Xiaopu Zhang, Yu Zhang, Jian Jin, Qiang Yang
Title: Noise May Contain Transferable Knowledge: Understanding Semi-supervised Heterogeneous Domain Adaptation from an Empirical Perspective
Abstract:
Semi-supervised heterogeneous domain adaptation (SHDA) addresses learning across domains with distinct feature representations and distributions, where source samples are labeled while most target samples are unlabeled, with only a small fraction labeled. Moreover, there is no one-to-one correspondence between source and target samples. Although various SHDA methods have been developed to tackle this problem, the nature of the knowledge transferred across heterogeneous domains remains unclear. This paper delves into this question from an empirical perspective. We conduct extensive experiments on about 330 SHDA tasks, employing two supervised learning methods and seven representative SHDA methods. Surprisingly, our observations indicate that both the category and feature information of source samples do not significantly impact the performance of the target domain. Additionally, noise drawn from simple distributions, when used as source samples, may contain transferable knowledge. Based on this insight, we perform a series of experiments to uncover the underlying principles of transferable knowledge in SHDA. Specifically, we design a unified Knowledge Transfer Framework (KTF) for SHDA. Based on the KTF, we find that the transferable knowledge in SHDA primarily stems from the transferability and discriminability of the source domain. Consequently, ensuring those properties in source samples, regardless of their origin (e.g., image, text, noise), can enhance the effectiveness of knowledge transfer in SHDA tasks. The codes and datasets are available at https://github.com/yyyaoyuan/SHDA.

Authors:Guangwei Li, Yuansen Zhang, Yinggui Wang, Shoumeng Yan, Lei Wang, Tao Wei
Title: PRIV-QA: Privacy-Preserving Question Answering for Cloud Large Language Models
Abstract:
The rapid development of large language models (LLMs) is redefining the landscape of human-computer interaction, and their integration into various user-service applications is becoming increasingly prevalent. However, transmitting user data to cloud-based LLMs presents significant risks of data breaches and unauthorized access to personal identification information. In this paper, we propose a privacy preservation pipeline for protecting privacy and sensitive information during interactions between users and LLMs in practical LLM usage scenarios. We construct SensitiveQA, the first privacy open-ended question-answering dataset. It comprises 57k interactions in Chinese and English, encompassing a diverse range of user-sensitive information within the conversations. Our proposed solution employs a multi-stage strategy aimed at preemptively securing user information while simultaneously preserving the response quality of cloud-based LLMs. Experimental validation underscores our method's efficacy in balancing privacy protection with maintaining robust interaction quality. The code and dataset are available at https://github.com/ligw1998/PRIV-QA.

Authors:Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Yang You, Guiming Xie, Xuejian Gong, Kunlong Zhou
Title: Train Small, Infer Large: Memory-Efficient LoRA Training for Large Language Models
Abstract:
Large Language Models (LLMs) have significantly advanced natural language processing with exceptional task generalization capabilities. Low-Rank Adaption (LoRA) offers a cost-effective fine-tuning solution, freezing the original model parameters and training only lightweight, low-rank adapter matrices. However, the memory footprint of LoRA is largely dominated by the original model parameters. To mitigate this, we propose LoRAM, a memory-efficient LoRA training scheme founded on the intuition that many neurons in over-parameterized LLMs have low training utility but are essential for inference. LoRAM presents a unique twist: it trains on a pruned (small) model to obtain pruned low-rank matrices, which are then recovered and utilized with the original (large) model for inference. Additionally, minimal-cost continual pre-training, performed by the model publishers in advance, aligns the knowledge discrepancy between pruned and original models. Our extensive experiments demonstrate the efficacy of LoRAM across various pruning strategies and downstream tasks. For a model with 70 billion parameters, LoRAM enables training on a GPU with only 20G HBM, replacing an A100-80G GPU for LoRA training and 15 GPUs for full fine-tuning. Specifically, QLoRAM implemented by structured pruning combined with 4-bit quantization, for LLaMA-3.1-70B (LLaMA-2-70B), reduces the parameter storage cost that dominates the memory usage in low-rank matrix training by 15.81$\times$ (16.95$\times$), while achieving dominant performance gains over both the original LLaMA-3.1-70B (LLaMA-2-70B) and LoRA-trained LLaMA-3.1-8B (LLaMA-2-13B). Code is available at https://github.com/junzhang-zj/LoRAM.

Authors:Wuhan Chen, Zongwei Wang, Min Gao, Xin Xia, Feng Jiang, Junhao Wen
Title: Breaking the Clusters: Uniformity-Optimization for Text-Based Sequential Recommendation
Abstract:
Traditional sequential recommendation (SR) methods heavily rely on explicit item IDs to capture user preferences over time. This reliance introduces critical limitations in cold-start scenarios and domain transfer tasks, where unseen items and new contexts often lack established ID mappings. To overcome these limitations, recent studies have shifted towards leveraging text-only information for recommendation, thereby improving model generalization and adaptability across domains. Although promising, text-based SR faces unique difficulties: items' text descriptions often share semantic similarities that lead to clustered item representations, compromising their uniformity, a property essential for promoting diversity and enhancing generalization in recommendation systems. In this paper, we explore a novel framework to improve the uniformity of item representations in text-based SR. Our analysis reveals that items within a sequence exhibit marked semantic similarity, meaning they are closer in representation than items overall, and that this effect is more pronounced for less popular items, which form tighter clusters compared to their more popular counterparts. Based on these findings, we propose UniT, a framework that employs three pairwise item sampling strategies: Unified General Sampling Strategy, Sequence-Driven Sampling Strategy, and Popularity-Driven Sampling Strategy. Each strategy applies varying degrees of repulsion to selectively adjust the distances between item pairs, thereby refining representation uniformity while considering both sequence context and item popularity. Extensive experiments on multiple real-world datasets demonstrate that our proposed approach outperforms state-of-the-art models, validating the effectiveness of UniT in enhancing both representation uniformity and recommendation accuracy.The source code is available at https://github.com/ccwwhhh/Model-Rec.

Authors:Hyeonjae Gil, Dongjae Lee, Giseop Kim, Ayoung Kim
Title: Ephemerality meets LiDAR-based Lifelong Mapping
Abstract:
Lifelong mapping is crucial for the long-term deployment of robots in dynamic environments. In this paper, we present ELite, an ephemerality-aided LiDAR-based lifelong mapping framework which can seamlessly align multiple session data, remove dynamic objects, and update maps in an end-to-end fashion. Map elements are typically classified as static or dynamic, but cases like parked cars indicate the need for more detailed categories than binary. Central to our approach is the probabilistic modeling of the world into two-stage $\textit{ephemerality}$, which represent the transiency of points in the map within two different time scales. By leveraging the spatiotemporal context encoded in ephemeralities, ELite can accurately infer transient map elements, maintain a reliable up-to-date static map, and improve robustness in aligning the new data in a more fine-grained manner. Extensive real-world experiments on long-term datasets demonstrate the robustness and effectiveness of our system. The source code is publicly available for the robotics community: https://github.com/dongjae0107/ELite.

Authors:Jialin Ouyang
Title: TreeCut: A Synthetic Unanswerable Math Word Problem Dataset for LLM Hallucination Evaluation
Abstract:
Large language models (LLMs) now achieve near-human performance on standard math word problem benchmarks (e.g., GSM8K), yet their true reasoning ability remains disputed. A key concern is that models often produce confident, yet unfounded, answers to unanswerable problems. We introduce TreeCut, a synthetic dataset that systematically generates infinite unanswerable math word problems and their answerable counterparts, by representing each question as a tree and removing chosen necessary conditions. Experiments show TreeCut effectively induce hallucinations in large language models, including GPT-4o and o3-mini, with rates of 64% and 44% in their respective worst-case scenarios under zero-shot setting. Further analysis highlights that deeper or more complex trees, composite item names, and removing necessary condition near the middle of a path all increase the likelihood of hallucinations, underscoring the persistent challenges LLMs face in identifying unanswerable math problems. The dataset generation code and sample data are available at https://github.com/j-bagel/treecut-math.

Authors:Ziyuan Liu, Ruifei Zhu, Long Gao, Yuanxiu Zhou, Jingyu Ma, Yuantao Gu
Title: JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Abstract:
Change detection (CD) in remote sensing images plays a vital role in Earth observation. However, the scarcity of high-resolution, comprehensive open-source datasets and the difficulty in achieving robust performance across varying change types remain major challenges. To address these issues, we introduce JL1-CD, a large-scale, sub-meter CD dataset consisting of 5,000 image pairs. We further propose a novel Origin-Partition (O-P) strategy and integrate it into a Multi-Teacher Knowledge Distillation (MTKD) framework to enhance CD performance. The O-P strategy partitions the training set by Change Area Ratio (CAR) and trains specialized teacher models on each subset. The MTKD framework then distills complementary knowledge from these teachers into a single student model, enabling improved detection results across diverse CAR scenarios without additional inference cost. Our MTKD approach demonstrated strong performance in the 2024 ``Jilin-1'' Cup challenge, ranking first in the preliminary and second in the final rounds. Extensive experiments on the JL1-CD and SYSU-CD datasets show that the MTKD framework consistently improves the performance of CD models with various network architectures and parameter sizes, establishing new state-of-the-art results. Code and dataset are available at https://github.com/circleLZY/MTKD-CD.

Authors:Vishal Dey, Xiao Hu, Xia Ning
Title: GeLLMO: Generalizing Large Language Models for Multi-property Molecule Optimization
Abstract:
Despite recent advancements, most computational methods for molecule optimization are constrained to single- or double-property optimization tasks and suffer from poor scalability and generalizability to novel optimization tasks. Meanwhile, Large Language Models (LLMs) demonstrate remarkable out-of-domain generalizability to novel tasks. To demonstrate LLMs' potential for molecule optimization, we introduce MuMOInstruct, the first high-quality instruction-tuning dataset specifically focused on complex multi-property molecule optimization tasks. Leveraging MuMOInstruct, we develop GeLLMOs, a series of instruction-tuned LLMs for molecule optimization. Extensive evaluations across 5 in-domain and 5 out-of-domain tasks demonstrate that GeLLMOs consistently outperform state-of-the-art baselines. GeLLMOs also exhibit outstanding zero-shot generalization to unseen tasks, significantly outperforming powerful closed-source LLMs. Such strong generalizability demonstrates the tremendous potential of GeLLMOs as foundational models for molecule optimization, thereby tackling novel optimization tasks without resource-intensive retraining. MuMOInstruct, models, and code are accessible through https://github.com/ninglab/GeLLMO.

Authors:Kongcheng Zhang, Qi Yao, Baisheng Lai, Jiaxing Huang, Wenkai Fang, Dacheng Tao, Mingli Song, Shunyu Liu
Title: Reasoning with Reinforced Functional Token Tuning
Abstract:
In this work, we propose Reinforced Functional Token Tuning (RFTT), a novel reinforced fine-tuning framework that empowers Large Language Models (LLMs) with self-play learn-to-reason capabilities. Unlike prior prompt-driven reasoning efforts, RFTT embeds a rich set of learnable functional tokens (e.g., , , ) directly into the model vocabulary, enabling chain-of-thought construction with diverse human-like reasoning behaviors. Specifically, RFTT comprises two phases: (1) supervised fine-tuning performs prompt-driven tree search to obtain self-generated training data annotated with functional tokens, which warms up the model to learn these tokens for reasoning; and (2) online reinforcement learning further allows the model to explore different reasoning pathways through functional token sampling without relying on prompts, thereby facilitating effective self-improvement for functional reasoning. Extensive experiments demonstrate the superiority of the proposed RFTT on mathematical benchmarks, significantly boosting Qwen-2.5-7B-Instruct (70.6% to 79.8%) and LLaMA-3.1-8B-Instruct (32.2% to 60.2%) on the MATH dataset. Moreover, the performance of RFTT consistently improves with more search rollouts at inference time. Our code is available at https://github.com/sastpg/RFTT.

Authors:Swati Kar, Soumyabrata Dey, Mahesh K Banavar, Shahnewaz Karim Sakib
Title: Fighter Jet Navigation and Combat using Deep Reinforcement Learning with Explainable AI
Abstract:
This paper presents the development of an Artificial Intelligence (AI) based fighter jet agent within a customized Pygame simulation environment, designed to solve multi-objective tasks via deep reinforcement learning (DRL). The jet's primary objectives include efficiently navigating the environment, reaching a target, and selectively engaging or evading an enemy. A reward function balances these goals while optimized hyperparameters enhance learning efficiency. Results show more than 80\% task completion rate, demonstrating effective decision-making. To enhance transparency, the jet's action choices are analyzed by comparing the rewards of the actual chosen action (factual action) with those of alternate actions (counterfactual actions), providing insights into the decision-making rationale. This study illustrates DRL's potential for multi-objective problem-solving with explainable AI. Project page is available at: \href{https://github.com/swatikar95/Autonomous-Fighter-Jet-Navigation-and-Combat}{Project GitHub Link}.

Authors:Yiming Zeng, Wanhao Yu, Zexin Li, Tao Ren, Yu Ma, Jinghan Cao, Xiyan Chen, Tingting Yu
Title: Bridging the Editing Gap in LLMs: FineEdit for Precise and Targeted Text Modifications
Abstract:
Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating strong capabilities in tasks such as text generation, summarization, and reasoning. Recently, their potential for automating precise text editing tasks across specialized domains, such as programming code, LaTeX, and structured database languages, has gained attention. However, current state-of-the-art LLMs still struggle with executing precise, instruction-driven edits, particularly when structural accuracy and strict adherence to domain conventions are required. To address these challenges, we introduce InstrEditBench, an automated benchmark dataset comprising over 30,000 structured editing tasks spanning diverse domains, including Wikipedia articles, LaTeX documents, source code, and database languages. Using this benchmark, we develop FineEdit, a specialized editing model explicitly trained for accurate, context-aware text modifications. Experimental evaluations demonstrate that FineEdit outperforms state-of-the-art models, achieving improvements of approximately 10\% over Gemini models on single-turn edits, up to 30\% over Llama-3.2-3B, and exceeding Mistral-7B-OpenOrca performance by over 40\% on direct editing tasks. FineEdit also effectively generalizes to realistic multi-turn editing scenarios, highlighting its practical applicability. To facilitate further research and reproducibility, we release FineEdit at https://github.com/StuRinDQB/FineEdit} and https://huggingface.co/datasets/YimingZeng/FineEdit_bench.

Authors:Shi Yu, Zhiyuan Liu, Chenyan Xiong
Title: Craw4LLM: Efficient Web Crawling for LLM Pretraining
Abstract:
Web crawl is a main source of large language models' (LLMs) pretraining data, but the majority of crawled web pages are discarded in pretraining due to low data quality. This paper presents Craw4LLM, an efficient web crawling method that explores the web graph based on the preference of LLM pretraining. Specifically, it leverages the influence of a webpage in LLM pretraining as the priority score of the web crawler's scheduler, replacing the standard graph connectivity based priority. Our experiments on a web graph containing 900 million webpages from a commercial search engine's index demonstrate the efficiency of Craw4LLM in obtaining high-quality pretraining data. With just 21% URLs crawled, LLMs pretrained on Craw4LLM data reach the same downstream performances of previous crawls, significantly reducing the crawling waste and alleviating the burdens on websites. Our code is publicly available at https://github.com/cxcscmu/Craw4LLM.

Authors:Yunpeng Xiao, Youpeng Zhao, Kai Shu
Title: Understanding and Tackling Label Errors in Individual-Level Nature Language Understanding
Abstract:
Natural language understanding (NLU) is a task that enables machines to understand human language. Some tasks, such as stance detection and sentiment analysis, are closely related to individual subjective perspectives, thus termed individual-level NLU. Previously, these tasks are often simplified to text-level NLU tasks, ignoring individual factors. This not only makes inference difficult and unexplainable but often results in a large number of label errors when creating datasets. To address the above limitations, we propose a new NLU annotation guideline based on individual-level factors. Specifically, we incorporate other posts by the same individual and then annotate individual subjective perspectives after considering all individual posts. We use this guideline to expand and re-annotate the stance detection and topic-based sentiment analysis datasets. We find that error rates in the samples were as high as 31.7\% and 23.3\%. We further use large language models to conduct experiments on the re-annotation datasets and find that the large language models perform well on both datasets after adding individual factors. Both GPT-4o and Llama3-70B can achieve an accuracy greater than 87\% on the re-annotation datasets. We also verify the effectiveness of individual factors through ablation studies. We call on future researchers to add individual factors when creating such datasets. Our re-annotation dataset can be found at https://github.com/24yearsoldstudent/Individual-NLU

Authors:Sangwoong Yoon, Himchan Hwang, Hyeokju Jeong, Dong Kyu Shin, Che-Sang Park, Sehee Kweon, Frank Chongwoo Park
Title: Value Gradient Sampler: Sampling as Sequential Decision Making
Abstract:
We propose the Value Gradient Sampler (VGS), a trainable sampler based on the interpretation of sampling as discrete-time sequential decision-making. VGS generates samples from a given unnormalized density (i.e., energy) by drifting and diffusing randomly initialized particles. In VGS, finding the optimal drift is equivalent to solving an optimal control problem where the cost is the upper bound of the KL divergence between the target density and the samples. We employ value-based dynamic programming to solve this optimal control problem, which gives the gradient of the value function as the optimal drift vector. The connection to sequential decision making allows VGS to leverage extensively studied techniques in reinforcement learning, making VGS a fast, adaptive, and accurate sampler that achieves competitive results in various sampling benchmarks. Furthermore, VGS can replace MCMC in contrastive divergence training of energy-based models. We demonstrate the effectiveness of VGS in training accurate energy-based models in industrial anomaly detection applications.

Authors:Aldo Glielmo, Mitja Devetak, Adriano Meligrana, Sebastian Poledna
Title: BeforeIT.jl: High-Performance Agent-Based Macroeconomics Made Easy
Abstract:
BeforeIT is an open-source software for building and simulating state-of-the-art macroeconomic agent-based models (macro ABMs) based on the recently introduced macro ABM developed in [1] and here referred to as the base model. Written in Julia, it combines extraordinary computational efficiency with user-friendliness and extensibility. We present the main structure of the software, demonstrate its ease of use with illustrative examples, and benchmark its performance. Our benchmarks show that the base model built with BeforeIT is orders of magnitude faster than a Matlab version, and significantly faster than Matlab-generated C code. BeforeIT is designed to facilitate reproducibility, extensibility, and experimentation. As the first open-source, industry-grade software to build macro ABMs of the type of the base model, BeforeIT can significantly foster collaboration and innovation in the field of agent-based macroeconomic modelling. The package, along with its documentation, is freely available at https://github.com/bancaditalia/BeforeIT.jl under the AGPL-3.0.

Authors:Jake C. Snell, Thomas L. Griffiths
Title: Conformal Prediction as Bayesian Quadrature
Abstract:
As machine learning-based prediction systems are increasingly used in high-stakes situations, it is important to understand how such predictive models will perform upon deployment. Distribution-free uncertainty quantification techniques such as conformal prediction provide guarantees about the loss black-box models will incur even when the details of the models are hidden. However, such methods are based on frequentist probability, which unduly limits their applicability. We revisit the central aspects of conformal prediction from a Bayesian perspective and thereby illuminate the shortcomings of frequentist guarantees. We propose a practical alternative based on Bayesian quadrature that provides interpretable guarantees and offers a richer representation of the likely range of losses to be observed at test time.

Authors:Junyi Guan, Abhijith Sharma, Chong Tian, Salem Lahlou
Title: On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis
Abstract:
Spiking Neural Networks (SNNs) are increasingly explored for their energy efficiency and robustness in real-world applications, yet their privacy risks remain largely unexamined. In this work, we investigate the susceptibility of SNNs to Membership Inference Attacks (MIAs) -- a major privacy threat where an adversary attempts to determine whether a given sample was part of the training dataset. While prior work suggests that SNNs may offer inherent robustness due to their discrete, event-driven nature, we find that its resilience diminishes as latency (T) increases. Furthermore, we introduce an input dropout strategy under black box setting, that significantly enhances membership inference in SNNs. Our findings challenge the assumption that SNNs are inherently more secure, and even though they are expected to be better, our results reveal that SNNs exhibit privacy vulnerabilities that are equally comparable to Artificial Neural Networks (ANNs). Our code is available at https://github.com/sharmaabhijith/MIA_SNN.

Authors:Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He, Enming Yuan, Yuzhi Wang, Zhiqi Huang, Huan Yuan, Suting Xu, Xinran Xu, Guokun Lai, Yanru Chen, Huabin Zheng, Junjie Yan, Jianlin Su, Yuxin Wu, Neo Y. Zhang, Zhilin Yang, Xinyu Zhou, Mingxing Zhang, Jiezhong Qiu
Title: MoBA: Mixture of Block Attention for Long-Context LLMs
Abstract:
Scaling the effective context length is essential for advancing large language models (LLMs) toward artificial general intelligence (AGI). However, the quadratic increase in computational complexity inherent in traditional attention mechanisms presents a prohibitive overhead. Existing approaches either impose strongly biased structures, such as sink or window attention which are task-specific, or radically modify the attention mechanism into linear approximations, whose performance in complex reasoning tasks remains inadequately explored. In this work, we propose a solution that adheres to the ``less structure'' principle, allowing the model to determine where to attend autonomously, rather than introducing predefined biases. We introduce Mixture of Block Attention (MoBA), an innovative approach that applies the principles of Mixture of Experts (MoE) to the attention mechanism. This novel architecture demonstrates superior performance on long-context tasks while offering a key advantage: the ability to seamlessly transition between full and sparse attention, enhancing efficiency without the risk of compromising performance. MoBA has already been deployed to support Kimi's long-context requests and demonstrates significant advancements in efficient attention computation for LLMs. Our code is available at https://github.com/MoonshotAI/MoBA.

Authors:Jiaqi Zhao, Miao Zhang, Ming Wang, Yuzhang Shang, Kaihao Zhang, Weili Guan, Yaowei Wang, Min Zhang
Title: PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models
Abstract:
Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization. Several existing sub 2-bit post-training quantization (PTQ) methods utilize a mix-precision scheme by leveraging an unstructured fine-grained mask to explicitly distinguish salient weights, while which introduces an extra 1-bit or more per weight. To explore the real limit of PTQ, we propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time. Specifically, we first introduce a one-dimensional structured mask with negligibly additional 0.0002-bit per weight based on input activations from the perspective of reducing the upper bound of quantization error to allocate corresponding salient weight channels to 4-bit. For non-salient channels binarization, an efficient block-wise scaling factors optimization framework is then presented to take implicit row-wise correlations and angular biases into account. Different from prior works that concentrate on adjusting quantization methodologies, we further propose a novel paradigm called quantization preprocessing, where we argue that transforming the weight distribution of the pretrained model before quantization can alleviate the difficulty in per-channel extremely low-bit PTQ. Extensive experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization. Codes are available at https://github.com/zjq0455/PTQ1.61.

Authors:Jiaqi Zhao, Ming Wang, Miao Zhang, Yuzhang Shang, Xuebo Liu, Yaowei Wang, Min Zhang, Liqiang Nie
Title: Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Abstract:
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.We conduct an repository for our benchmark at https://github.com/zjq0455/PTQ_Benchmark.

Authors:Yuze Zhao, Tianyun Ji, Wenjun Feng, Zhenya Huang, Qi Liu, Zhiding Liu, Yixiao Ma, Kai Zhang, Enhong Chen
Title: Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment
Abstract:
The reasoning abilities are one of the most enigmatic and captivating aspects of large language models (LLMs). Numerous studies are dedicated to exploring and expanding the boundaries of this reasoning capability. However, tasks that embody both reasoning and recall characteristics are often overlooked. In this paper, we introduce such a novel task, code reasoning, to provide a new perspective for the reasoning abilities of LLMs. We summarize three meta-benchmarks based on established forms of logical reasoning, and instantiate these into eight specific benchmark tasks. Our testing on these benchmarks reveals that LLMs continue to struggle with identifying satisfactory reasoning pathways. Additionally, we present a new pathway exploration pipeline inspired by human intricate problem-solving methods. This Reflective Hypothesis Decomposition and Amendment (RHDA) pipeline consists of the following iterative steps: (1) Proposing potential hypotheses based on observations and decomposing them; (2) Utilizing tools to validate hypotheses and reflection outcomes; (3) Revising hypothesis in light of observations. Our approach effectively mitigates logical chain collapses arising from forgetting or hallucination issues in multi-step reasoning, resulting in performance gains of up to $3\times$. Finally, we expanded this pipeline by applying it to simulate complex household tasks in real-world scenarios, specifically in VirtualHome, enhancing the handling of failure cases. We release our code and all of results at https://github.com/TnTWoW/code_reasoning.

Authors:Kun Hu, Qicai Chen, Zilong Lu, Wenzhuo Zhang, Bihuan Chen, You Lu, Haowen Jiang, Bingkun Sun, Xin Peng, Wenyun Zhao
Title: A Survey of Fuzzing Open-Source Operating Systems
Abstract:
Vulnerabilities in open-source operating systems (OSs) pose substantial security risks to software systems, making their detection crucial. While fuzzing has been an effective vulnerability detection technique in various domains, OS fuzzing (OSF) faces unique challenges due to OS complexity and multi-layered interaction, and has not been comprehensively reviewed. Therefore, this work systematically surveys the state-of-the-art OSF techniques, categorizes them based on the general fuzzing process, and investigates challenges specific to kernel, file system, driver, and hypervisor fuzzing. Finally, future research directions for OSF are discussed. GitHub: https://github.com/pghk13/Survey-OSF.

Authors:Shuo Xing, Peiran Li, Yuping Wang, Ruizheng Bai, Yueqi Wang, Chan-Wei Hu, Chengxuan Qian, Huaxiu Yao, Zhengzhong Tu
Title: Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization
Abstract:
The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications. We release all the code in https://github.com/taco-group/Re-Align.

Authors:Bencheng Liao, Hongyuan Tao, Qian Zhang, Tianheng Cheng, Yingyue Li, Haoran Yin, Wenyu Liu, Xinggang Wang
Title: Multimodal Mamba: Decoder-only Multimodal State Space Model via Quadratic to Linear Distillation
Abstract:
Recent Multimodal Large Language Models (MLLMs) have achieved remarkable performance but face deployment challenges due to their quadratic computational complexity, growing Key-Value cache requirements, and reliance on separate vision encoders. We propose mmMamba, a framework for developing linear-complexity native multimodal state space models through progressive distillation from existing MLLMs using moderate academic computational resources. Our approach enables the direct conversion of trained decoder-only MLLMs to linear-complexity architectures without requiring pre-trained RNN-based LLM or vision encoders. We propose an seeding strategy to carve Mamba from trained Transformer and a three-stage distillation recipe, which can effectively transfer the knowledge from Transformer to Mamba while preserving multimodal capabilities. Our method also supports flexible hybrid architectures that combine Transformer and Mamba layers for customizable efficiency-performance trade-offs. Distilled from the Transformer-based decoder-only HoVLE, mmMamba-linear achieves competitive performance against existing linear and quadratic-complexity VLMs, while mmMamba-hybrid further improves performance significantly, approaching HoVLE's capabilities. At 103K tokens, mmMamba-linear demonstrates 20.6$\times$ speedup and 75.8% GPU memory reduction compared to HoVLE, while mmMamba-hybrid achieves 13.5$\times$ speedup and 60.2% memory savings. Code and models are released at https://github.com/hustvl/mmMamba

Authors:Feng Luo, Rui Yang, Hao Sun, Chunyuan Deng, Jiarui Yao, Jingyan Shen, Huan Zhang, Hanjie Chen
Title: Rethinking Diverse Human Preference Learning through Principal Component Analysis
Abstract:
Understanding human preferences is crucial for improving foundation models and building personalized AI systems. However, preferences are inherently diverse and complex, making it difficult for traditional reward models to capture their full range. While fine-grained preference data can help, collecting it is expensive and hard to scale. In this paper, we introduce Decomposed Reward Models (DRMs), a novel approach that extracts diverse human preferences from binary comparisons without requiring fine-grained annotations. Our key insight is to represent human preferences as vectors and analyze them using Principal Component Analysis (PCA). By constructing a dataset of embedding differences between preferred and rejected responses, DRMs identify orthogonal basis vectors that capture distinct aspects of preference. These decomposed rewards can be flexibly combined to align with different user needs, offering an interpretable and scalable alternative to traditional reward models. We demonstrate that DRMs effectively extract meaningful preference dimensions (e.g., helpfulness, safety, humor) and adapt to new users without additional training. Our results highlight DRMs as a powerful framework for personalized and interpretable LLM alignment. Our code is available at https://github.com/amandaluof/DRMs.

Authors:Zihan Liu, Shuangrui Ding, Zhixiong Zhang, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation
Abstract:
Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, leading to cumbersome training and inference pipelines, as well as suboptimal overall generation quality due to error accumulation across stages. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The code is available at https://github.com/LiuZH-19/SongGen.

Authors:Ekin Celikkan, Timo Kunzmann, Yertay Yeskaliyev, Sibylle Itzerott, Nadja Klein, Martin Herold
Title: WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields
Abstract:
Weeds are one of the major reasons for crop yield loss but current weeding practices fail to manage weeds in an efficient and targeted manner. Effective weed management is especially important for crops with high worldwide production such as maize, to maximize crop yield for meeting increasing global demands. Advances in near-sensing and computer vision enable the development of new tools for weed management. Specifically, state-of-the-art segmentation models, coupled with novel sensing technologies, can facilitate timely and accurate weeding and monitoring systems. However, learning-based approaches require annotated data and show a lack of generalization to aerial imaging for different crops. We present a novel dataset for semantic and instance segmentation of crops and weeds in agricultural maize fields. The multispectral UAV-based dataset contains images with RGB, red-edge, and near-infrared bands, a large number of plant instances, dense annotations for maize and four weed classes, and is multitemporal. We provide extensive baseline results for both tasks, including probabilistic methods to quantify prediction uncertainty, improve model calibration, and demonstrate the approach's applicability to out-of-distribution data. The results show the effectiveness of the two additional bands compared to RGB only, and better performance in our target domain than models trained on existing datasets. We hope our dataset advances research on methods and operational systems for fine-grained weed identification, enhancing the robustness and applicability of UAV-based weed management. The dataset and code are available at https://github.com/GFZ/weedsgalore

Authors:Yuxiang Wei, Yiheng Zheng, Yabo Zhang, Ming Liu, Zhilong Ji, Lei Zhang, Wangmeng Zuo
Title: Personalized Image Generation with Deep Generative Models: A Decade Survey
Abstract:
Recent advancements in generative models have significantly facilitated the development of personalized content creation. Given a small set of images with user-specific concept, personalized image generation allows to create images that incorporate the specified concept and adhere to provided text descriptions. Due to its wide applications in content creation, significant effort has been devoted to this field in recent years. Nonetheless, the technologies used for personalization have evolved alongside the development of generative models, with their distinct and interrelated components. In this survey, we present a comprehensive review of generalized personalized image generation across various generative models, including traditional GANs, contemporary text-to-image diffusion models, and emerging multi-model autoregressive models. We first define a unified framework that standardizes the personalization process across different generative models, encompassing three key components, i.e., inversion spaces, inversion methods, and personalization schemes. This unified framework offers a structured approach to dissecting and comparing personalization techniques across different generative architectures. Building upon this unified framework, we further provide an in-depth analysis of personalization techniques within each generative model, highlighting their unique contributions and innovations. Through comparative analysis, this survey elucidates the current landscape of personalized image generation, identifying commonalities and distinguishing features among existing methods. Finally, we discuss the open challenges in the field and propose potential directions for future research. We keep tracing related works at https://github.com/csyxwei/Awesome-Personalized-Image-Generation.

Authors:Jingbiao Mei, Jinghong Chen, Guangyu Yang, Weizhe Lin, Bill Byrne
Title: Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection
Abstract:
Hateful memes have become a significant concern on the Internet, necessitating robust automated detection systems. While Large Multimodal Models (LMMs) have shown promise in hateful meme detection, they face notable challenges like sub-optimal performance and limited out-of-domain generalization capabilities. Recent studies further reveal the limitations of both supervised fine-tuning (SFT) and in-context learning when applied to LMMs in this setting. To address these issues, we propose a robust adaptation framework for hateful meme detection that enhances in-domain accuracy and cross-domain generalization while preserving the general vision-language capabilities of LMMs. Analysis reveals that our approach achieves improved robustness under adversarial attacks compared to SFT models. Experiments on six meme classification datasets show that our approach achieves state-of-the-art performance, outperforming larger agentic systems. Moreover, our method generates higher-quality rationales for explaining hateful content compared to standard SFT, enhancing model interpretability. Code available at https://github.com/JingbiaoMei/RGCL

Authors:Bosi Wen, Pei Ke, Yufei Sun, Cunxiang Wang, Xiaotao Gu, Jinfeng Zhou, Jie Tang, Hongning Wang, Minlie Huang
Title: HPSS: Heuristic Prompting Strategy Search for LLM Evaluators
Abstract:
Since the adoption of large language models (LLMs) for text evaluation has become increasingly prevalent in the field of natural language processing (NLP), a series of existing works attempt to optimize the prompts for LLM evaluators to improve their alignment with human judgment. However, their efforts are limited to optimizing individual factors of evaluation prompts, such as evaluation criteria or output formats, neglecting the combinatorial impact of multiple factors, which leads to insufficient optimization of the evaluation pipeline. Nevertheless, identifying well-behaved prompting strategies for adjusting multiple factors requires extensive enumeration. To this end, we comprehensively integrate 8 key factors for evaluation prompts and propose a novel automatic prompting strategy optimization method called Heuristic Prompting Strategy Search (HPSS). Inspired by the genetic algorithm, HPSS conducts an iterative search to find well-behaved prompting strategies for LLM evaluators. A heuristic function is employed to guide the search process, enhancing the performance of our algorithm. Extensive experiments across four evaluation tasks demonstrate the effectiveness of HPSS, consistently outperforming both human-designed evaluation prompts and existing automatic prompt optimization methods. Our code is available at https://github.com/thu-coai/HPSS.

Authors:Avinash Kori, Antonio Rago, Francesca Toni
Title: Free Argumentative Exchanges for Explaining Image Classifiers
Abstract:
Deep learning models are powerful image classifiers but their opacity hinders their trustworthiness. Explanation methods for capturing the reasoning process within these classifiers faithfully and in a clear manner are scarce, due to their sheer complexity and size. We provide a solution for this problem by defining a novel method for explaining the outputs of image classifiers with debates between two agents, each arguing for a particular class. We obtain these debates as concrete instances of Free Argumentative eXchanges (FAXs), a novel argumentation-based multi-agent framework allowing agents to internalise opinions by other agents differently than originally stated. We define two metrics (consensus and persuasion rate) to assess the usefulness of FAXs as argumentative explanations for image classifiers. We then conduct a number of empirical experiments showing that FAXs perform well along these metrics as well as being more faithful to the image classifiers than conventional, non-argumentative explanation methods. All our implementations can be found at https://github.com/koriavinash1/FAX.

Authors:Rema Daher, Francisco Vasconcelos, Danail Stoyanov
Title: SHADeS: Self-supervised Monocular Depth Estimation Through Non-Lambertian Image Decomposition
Abstract:
Purpose: Visual 3D scene reconstruction can support colonoscopy navigation. It can help in recognising which portions of the colon have been visualised and characterising the size and shape of polyps. This is still a very challenging problem due to complex illumination variations, including abundant specular reflections. We investigate how to effectively decouple light and depth in this problem. Methods: We introduce a self-supervised model that simultaneously characterises the shape and lighting of the visualised colonoscopy scene. Our model estimates shading, albedo, depth, and specularities (SHADeS) from single images. Unlike previous approaches (IID), we use a non-Lambertian model that treats specular reflections as a separate light component. The implementation of our method is available at https://github.com/RemaDaher/SHADeS. Results: We demonstrate on real colonoscopy images (Hyper Kvasir) that previous models for light decomposition (IID) and depth estimation (MonoVIT, ModoDepth2) are negatively affected by specularities. In contrast, SHADeS can simultaneously produce light decomposition and depth maps that are robust to specular regions. We also perform a quantitative comparison on phantom data (C3VD) where we further demonstrate the robustness of our model. Conclusion: Modelling specular reflections improves depth estimation in colonoscopy. We propose an effective self-supervised approach that uses this insight to jointly estimate light decomposition and depth. Light decomposition has the potential to help with other problems, such as place recognition within the colon.

Authors:Nicolas Talabot, Olivier Clerc, Arda Cinar Demirtas, Hieu Le, Doruk Oner, Pascal Fua
Title: PartSDF: Part-Based Implicit Neural Representation for Composite 3D Shape Parametrization and Optimization
Abstract:
Accurate 3D shape representation is essential in engineering applications such as design, optimization, and simulation. In practice, engineering workflows require structured, part-based representations, as objects are inherently designed as assemblies of distinct components. However, most existing methods either model shapes holistically or decompose them without predefined part structures, limiting their applicability in real-world design tasks. We propose PartSDF, a supervised implicit representation framework that explicitly models composite shapes with independent, controllable parts while maintaining shape consistency. Thanks to its simple but innovative architecture, PartSDF outperforms both supervised and unsupervised baselines in reconstruction and generation tasks. We further demonstrate its effectiveness as a structured shape prior for engineering applications, enabling precise control over individual components while preserving overall coherence. Code available at https://github.com/cvlab-epfl/PartSDF.

Authors:Nicolas Talabot, Olivier Clerc, Arda Cinar Demirtas, Doruk Oner, Pascal Fua
Title: PartSDF: Part-Based Implicit Neural Representation for Composite 3D Shape Parametrization and Optimization
Abstract:
Accurate 3D shape representation is essential in engineering applications such as design, optimization, and simulation. In practice, engineering workflows require structured, part-aware representations, as objects are inherently designed as assemblies of distinct components. However, most existing methods either model shapes holistically or decompose them without predefined part structures, limiting their applicability in real-world design tasks. We propose PartSDF, a supervised implicit representation framework that explicitly models composite shapes with independent, controllable parts while maintaining shape consistency. Despite its simple single-decoder architecture, PartSDF outperforms both supervised and unsupervised baselines in reconstruction and generation tasks. We further demonstrate its effectiveness as a structured shape prior for engineering applications, enabling precise control over individual components while preserving overall coherence. Code available at https://github.com/cvlab-epfl/PartSDF.

Authors:Steffen Schneider, Rodrigo González Laiz, Anastasiia Filippova, Markus Frey, Mackenzie Weygandt Mathis
Title: Time-series attribution maps with regularized contrastive learning
Abstract:
Gradient-based attribution methods aim to explain decisions of deep learning models but so far lack identifiability guarantees. Here, we propose a method to generate attribution maps with identifiability guarantees by developing a regularized contrastive learning algorithm trained on time-series data plus a new attribution method called Inverted Neuron Gradient (collectively named xCEBRA). We show theoretically that xCEBRA has favorable properties for identifying the Jacobian matrix of the data generating process. Empirically, we demonstrate robust approximation of zero vs. non-zero entries in the ground-truth attribution map on synthetic datasets, and significant improvements across previous attribution methods based on feature ablation, Shapley values, and other gradient-based methods. Our work constitutes a first example of identifiable inference of time-series attribution maps and opens avenues to a better understanding of time-series data, such as for neural dynamics and decision-processes within neural networks.

Authors:Yifan Ji, Zhipeng Xu, Zhenghao Liu, Yukun Yan, Shi Yu, Yishan Li, Zhiyuan Liu, Yu Gu, Ge Yu, Maosong Sun
Title: Learning More Effective Representations for Dense Retrieval through Deliberate Thinking Before Search
Abstract:
Recent dense retrievers usually thrive on the emergency capabilities of Large Language Models (LLMs), using them to encode queries and documents into an embedding space for retrieval. These LLM-based dense retrievers have shown promising performance across various retrieval scenarios. However, relying on a single embedding to represent documents proves less effective in capturing different perspectives of documents for matching. In this paper, we propose Deliberate Thinking based Dense Retriever (DEBATER), which enhances these LLM-based retrievers by enabling them to learn more effective document representations through a step-by-step thinking process. DEBATER introduces the Chain-of-Deliberation mechanism to iteratively optimize document representations using a continuous chain of thought. To consolidate information from various thinking steps, DEBATER also incorporates the Self Distillation mechanism, which identifies the most informative thinking steps and integrates them into a unified text embedding. Experimental results show that DEBATER significantly outperforms existing methods across several retrieval benchmarks, demonstrating superior accuracy and robustness. All codes are available at https://github.com/OpenBMB/DEBATER.

Authors:Yifan Ji, Zhipeng Xu, Zhenghao Liu, Yukun Yan, Shi Yu, Yishan Li, Zhiyuan Liu, Yu Gu, Ge Yu, Maosong Sun
Title: Learning Refined Document Representations for Dense Retrieval via Deliberate Thinking
Abstract:
Recent dense retrievers increasingly leverage the robust text understanding capabilities of Large Language Models (LLMs), encoding queries and documents into a shared embedding space for effective retrieval. However, most existing methods represent each document with a single embedding, which is less effective at capturing its multifaceted semantics and thereby limits matching accuracy. In this paper, we propose Deliberate Thinking based Dense Retriever (Debater), a novel approach that enhances document representations by incorporating a step-by-step thinking process. Debater introduces a Chain-of-Deliberation mechanism, which iteratively refines document embeddings through a continuous chain-of-thought. To integrate information from various thinking steps, Debater further employs a Self Distillation mechanism that identifies and fuses the most informative steps into a unified embedding. Experimental results show that Debater significantly outperforms existing methods across several retrieval benchmarks, demonstrating superior accuracy and robustness. All codes and datasets are available at https://github.com/OpenBMB/DEBATER.

Authors:Adriana Valentina Costache, Silviu Florin Gheorghe, Eduard Gabriel Poesina, Paul Irofti, Radu Tudor Ionescu
Title: A Survey of Text Classification Under Class Distribution Shift
Abstract:
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.

Authors:Adi Simhi, Itay Itzhak, Fazl Barez, Gabriel Stanovsky, Yonatan Belinkov
Title: Trust Me, I'm Wrong: LLMs Hallucinate with Certainty Despite Knowing the Answer
Abstract:
Prior work on large language model (LLM) hallucinations has associated them with model uncertainty or inaccurate knowledge. In this work, we define and investigate a distinct type of hallucination, where a model can consistently answer a question correctly, but a seemingly trivial perturbation, which can happen in real-world settings, causes it to produce a hallucinated response with high certainty. This phenomenon, which we dub CHOKE (Certain Hallucinations Overriding Known Evidence), is particularly concerning in high-stakes domains such as medicine or law, where model certainty is often used as a proxy for reliability. We show that CHOKE examples are consistent across prompts, occur in different models and datasets, and are fundamentally distinct from other hallucinations. This difference leads existing mitigation methods to perform worse on CHOKE examples than on general hallucinations. Finally, we introduce a probing-based mitigation that outperforms existing methods on CHOKE hallucinations. These findings reveal an overlooked aspect of hallucinations, emphasizing the need to understand their origins and improve mitigation strategies to enhance LLM safety. The code is available at https://github.com/technion-cs-nlp/Trust_me_Im_wrong .

Authors:Andrei Jarca, Florinel Alin Croitoru, Radu Tudor Ionescu
Title: Task-Informed Anti-Curriculum by Masking Improves Downstream Performance on Text
Abstract:
Masked language modeling has become a widely adopted unsupervised technique to pre-train large language models (LLMs). However, the process of selecting tokens for masking is random, and the percentage of masked tokens is typically fixed for the entire training process. In this paper, we propose to adjust the masking ratio and to decide which tokens to mask based on a novel task-informed anti-curriculum learning scheme. First, we harness task-specific knowledge about useful and harmful tokens in order to determine which tokens to mask. Second, we propose a cyclic decaying masking ratio, which corresponds to an anti-curriculum schedule (from hard to easy). We exemplify our novel task-informed anti-curriculum by masking (TIACBM) approach across three diverse downstream tasks: sentiment analysis, text classification by topic, and authorship attribution. Our findings suggest that TIACBM enhances the ability of the model to focus on key task-relevant features, contributing to statistically significant performance gains across tasks. We release our code at https://github.com/JarcaAndrei/TIACBM.

Authors:Lakshmi Nair, Ian Trase, Mark Kim
Title: Flow-of-Options: Diversified and Improved LLM Reasoning by Thinking Through Options
Abstract:
We present a novel reasoning approach called Flow-of-Options (FoO), designed to address intrinsic biases in Large Language Models (LLMs). Flow-of-Options enables LLMs to systematically explore a diverse range of possibilities in their reasoning, as demonstrated by an FoO-based agentic framework developed for autonomously solving Machine Learning (ML) tasks. FoO enforces diversity in LLM solutions through compressed and interpretable task representations, resulting in improvements of 38.2% - 69.2% on standard data science tasks, and 37.4% - 47.9% on therapeutic chemistry tasks, as compared to state-of-the-art baselines. With an overall operation cost under $1 per task, our framework is well-suited for cost-sensitive applications. Going beyond tabular classification and regression, we show the broader applicability of our FoO-based agentic system to tasks such as reinforcement learning and image generation. Our code is open-sourced at: https://github.com/flagshippioneering/Flow-of-Options.

Authors:David Genova, Philippe Esling, Tom Hurlin
Title: Keep what you need : extracting efficient subnetworks from large audio representation models
Abstract:
Recently, research on audio foundation models has witnessed notable advances, as illustrated by the ever improving results on complex downstream tasks. Subsequently, those pretrained networks have quickly been used for various audio applications. These improvements have however resulted in a considerable increase both in size and complexity of these models. Along the environmental concerns this issue raises, this prevents the deployment of such networks on consumer-level devices, and precludes their use for real-time applications. Moreover, this appears contradictory with the specificity of the tasks for which these models are used, which are often simpler compared to extracting a rich, multi-purpose representation from any type of audio data. In this paper, we address this issue with a simple, yet effective method to extract lightweight specialist subnetworks from large foundation models. Specifically, we introduce learnable binary masks in-between the layers of a pretrained representation model. When training the end-to-end model on a downstream task, we add a sparsity-inducing loss to the overall objective, hence learning a compact subnetwork specialized on a single task. Importantly, the weights of the foundation model are kept frozen, resulting into low additional training costs. Once trained, the masked computational units can then be removed from the network, implying significant performance gains. We assess our method on three widespread audio foundation models, each based on a different backbone architecture, and illustrate its effectiveness on common audio representation evaluation tasks, as well as its versatility on both speech, music, and general audio. Code for reproducing the results and supporting webpage are available at https://github.com/gnvIRCAM/Audio-representation-trimming

Authors:Yuhao Zhang, Zhiheng Liu, Fan Bu, Ruiyu Zhang, Benyou Wang, Haizhou Li
Title: Soundwave: Less is More for Speech-Text Alignment in LLMs
Abstract:
Existing end-to-end speech large language models (LLMs) usually rely on large-scale annotated data for training, while data-efficient training has not been discussed in depth. We focus on two fundamental problems between speech and text: the representation space gap and sequence length inconsistency. We propose Soundwave, which utilizes an efficient training strategy and a novel architecture to address these issues. Results show that Soundwave outperforms the advanced Qwen2-Audio in speech translation and AIR-Bench speech tasks, using only one-fiftieth of the training data. Further analysis shows that Soundwave still retains its intelligence during conversation. The project is available at https://github.com/FreedomIntelligence/Soundwave.

Authors:Emmanuel K. Raptis, Athanasios Ch. Kapoutsis, Elias B. Kosmatopoulos
Title: RobotIQ: Empowering Mobile Robots with Human-Level Planning for Real-World Execution
Abstract:
This paper introduces RobotIQ, a framework that empowers mobile robots with human-level planning capabilities, enabling seamless communication via natural language instructions through any Large Language Model. The proposed framework is designed in the ROS architecture and aims to bridge the gap between humans and robots, enabling robots to comprehend and execute user-expressed text or voice commands. Our research encompasses a wide spectrum of robotic tasks, ranging from fundamental logical, mathematical, and learning reasoning for transferring knowledge in domains like navigation, manipulation, and object localization, enabling the application of learned behaviors from simulated environments to real-world operations. All encapsulated within a modular crafted robot library suite of API-wise control functions, RobotIQ offers a fully functional AI-ROS-based toolset that allows researchers to design and develop their own robotic actions tailored to specific applications and robot configurations. The effectiveness of the proposed system was tested and validated both in simulated and real-world experiments focusing on a home service scenario that included an assistive application designed for elderly people. RobotIQ with an open-source, easy-to-use, and adaptable robotic library suite for any robot can be found at https://github.com/emmarapt/RobotIQ.

Authors:Iury Cleveston, Alana C. Santana, Paula D. P. Costa, Ricardo R. Gudwin, Alexandre S. Simões, Esther L. Colombini
Title: InstructRobot: A Model-Free Framework for Mapping Natural Language Instructions into Robot Motion
Abstract:
The ability to communicate with robots using natural language is a significant step forward in human-robot interaction. However, accurately translating verbal commands into physical actions is promising, but still presents challenges. Current approaches require large datasets to train the models and are limited to robots with a maximum of 6 degrees of freedom. To address these issues, we propose a framework called InstructRobot that maps natural language instructions into robot motion without requiring the construction of large datasets or prior knowledge of the robot's kinematics model. InstructRobot employs a reinforcement learning algorithm that enables joint learning of language representations and inverse kinematics model, simplifying the entire learning process. The proposed framework is validated using a complex robot with 26 revolute joints in object manipulation tasks, demonstrating its robustness and adaptability in realistic environments. The framework can be applied to any task or domain where datasets are scarce and difficult to create, making it an intuitive and accessible solution to the challenges of training robots using linguistic communication. Open source code for the InstructRobot framework and experiments can be accessed at https://github.com/icleveston/InstructRobot.

Authors:Ruotian Ma, Peisong Wang, Cheng Liu, Xingyan Liu, Jiaqi Chen, Bang Zhang, Xin Zhou, Nan Du, Jia Li
Title: S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
Abstract:
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S$^2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S$^2$R. Our code and data are available at https://github.com/NineAbyss/S2R.

Authors:Gianluca Guglielmo, Marc Masana
Title: Leveraging Intermediate Representations for Better Out-of-Distribution Detection
Abstract:
In real-world applications, machine learning models must reliably detect Out-of-Distribution (OoD) samples to prevent unsafe decisions. Current OoD detection methods often rely on analyzing the logits or the embeddings of the penultimate layer of a neural network. However, little work has been conducted on the exploitation of the rich information encoded in intermediate layers. To address this, we analyze the discriminative power of intermediate layers and show that they can positively be used for OoD detection. Therefore, we propose to regularize intermediate layers with an energy-based contrastive loss, and by grouping multiple layers in a single aggregated response. We demonstrate that intermediate layer activations improves OoD detection performance by running a comprehensive evaluation across multiple datasets.

Authors:Yanru Sun, Zongxia Xie, Haoyu Xing, Hualong Yu, Qinghua Hu
Title: PPGF: Probability Pattern-Guided Time Series Forecasting
Abstract:
Time series forecasting (TSF) is an essential branch of machine learning with various applications. Most methods for TSF focus on constructing different networks to extract better information and improve performance. However, practical application data contain different internal mechanisms, resulting in a mixture of multiple patterns. That is, the model's ability to fit different patterns is different and generates different errors. In order to solve this problem, we propose an end-to-end framework, namely probability pattern-guided time series forecasting (PPGF). PPGF reformulates the TSF problem as a forecasting task guided by probabilistic pattern classification. Firstly, we propose the grouping strategy to approach forecasting problems as classification and alleviate the impact of data imbalance on classification. Secondly, we predict in the corresponding class interval to guarantee the consistency of classification and forecasting. In addition, True Class Probability (TCP) is introduced to pay more attention to the difficult samples to improve the classification accuracy. Detailedly, PPGF classifies the different patterns to determine which one the target value may belong to and estimates it accurately in the corresponding interval. To demonstrate the effectiveness of the proposed framework, we conduct extensive experiments on real-world datasets, and PPGF achieves significant performance improvements over several baseline methods. Furthermore, the effectiveness of TCP and the necessity of consistency between classification and forecasting are proved in the experiments. All data and codes are available online: https://github.com/syrGitHub/PPGF.

Authors:Tanqiu Jiang, Changjiang Li, Fenglong Ma, Ting Wang
Title: RAPID: Retrieval Augmented Training of Differentially Private Diffusion Models
Abstract:
Differentially private diffusion models (DPDMs) harness the remarkable generative capabilities of diffusion models while enforcing differential privacy (DP) for sensitive data. However, existing DPDM training approaches often suffer from significant utility loss, large memory footprint, and expensive inference cost, impeding their practical uses. To overcome such limitations, we present RAPID: Retrieval Augmented PrIvate Diffusion model, a novel approach that integrates retrieval augmented generation (RAG) into DPDM training. Specifically, RAPID leverages available public data to build a knowledge base of sample trajectories; when training the diffusion model on private data, RAPID computes the early sampling steps as queries, retrieves similar trajectories from the knowledge base as surrogates, and focuses on training the later sampling steps in a differentially private manner. Extensive evaluation using benchmark datasets and models demonstrates that, with the same privacy guarantee, RAPID significantly outperforms state-of-the-art approaches by large margins in generative quality, memory footprint, and inference cost, suggesting that retrieval-augmented DP training represents a promising direction for developing future privacy-preserving generative models. The code is available at: https://github.com/TanqiuJiang/RAPID

Authors:Xinlong Chen, Yuanxing Zhang, Chongling Rao, Yushuo Guan, Jiaheng Liu, Fuzheng Zhang, Chengru Song, Qiang Liu, Di Zhang, Tieniu Tan
Title: VidCapBench: A Comprehensive Benchmark of Video Captioning for Controllable Text-to-Video Generation
Abstract:
The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.

Authors:Sumin Jo, Junseong Choi, Jiho Kim, Edward Choi
Title: R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Abstract:
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks still suffer two practical drawbacks: they must be re-tuned whenever the KG or reasoning task changes, and they depend on a single, high-capacity LLM for reliable (i.e., trustworthy) reasoning. To address this, we introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across five diverse benchmarks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability with reduced inference cost but increased abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning, reducing reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.

Authors:Fabian Bongratz, Yitong Li, Sama Elbaroudy, Christian Wachinger
Title: 3D Shape-to-Image Brownian Bridge Diffusion for Brain MRI Synthesis from Cortical Surfaces
Abstract:
Despite recent advances in medical image generation, existing methods struggle to produce anatomically plausible 3D structures. In synthetic brain magnetic resonance images (MRIs), characteristic fissures are often missing, and reconstructed cortical surfaces appear scattered rather than densely convoluted. To address this issue, we introduce Cor2Vox, the first diffusion model-based method that translates continuous cortical shape priors to synthetic brain MRIs. To achieve this, we leverage a Brownian bridge process which allows for direct structured mapping between shape contours and medical images. Specifically, we adapt the concept of the Brownian bridge diffusion model to 3D and extend it to embrace various complementary shape representations. Our experiments demonstrate significant improvements in the geometric accuracy of reconstructed structures compared to previous voxel-based approaches. Moreover, Cor2Vox excels in image quality and diversity, yielding high variation in non-target structures like the skull. Finally, we highlight the capability of our approach to simulate cortical atrophy at the sub-voxel level. Our code is available at https://github.com/ai-med/Cor2Vox.

Authors:Shengxiang Gao, Jey Han Lau, Jianzhong Qi
Title: Beyond Seen Data: Improving KBQA Generalization Through Schema-Guided Logical Form Generation
Abstract:
Knowledge base question answering (KBQA) aims to answer user questions in natural language using rich human knowledge stored in large KBs. As current KBQA methods struggle with unseen knowledge base elements at test time,we introduce SG-KBQA: a novel model that injects schema contexts into entity retrieval and logical form generation to tackle this issue. It uses the richer semantics and awareness of the knowledge base structure provided by schema contexts to enhance generalizability. We show that SG-KBQA achieves strong generalizability, outperforming state-of-the-art models on two commonly used benchmark datasets across a variety of test settings. Our source code is available at https://github.com/gaosx2000/SG_KBQA.

Authors:Yuanfan Li, Zhaohan Zhang, Chengzhengxu Li, Chao Shen, Xiaoming Liu
Title: Iron Sharpens Iron: Defending Against Attacks in Machine-Generated Text Detection with Adversarial Training
Abstract:
Machine-generated Text (MGT) detection is crucial for regulating and attributing online texts. While the existing MGT detectors achieve strong performance, they remain vulnerable to simple perturbations and adversarial attacks. To build an effective defense against malicious perturbations, we view MGT detection from a threat modeling perspective, that is, analyzing the model's vulnerability from an adversary's point of view and exploring effective mitigations. To this end, we introduce an adversarial framework for training a robust MGT detector, named GREedy Adversary PromoTed DefendER (GREATER). The GREATER consists of two key components: an adversary GREATER-A and a detector GREATER-D. The GREATER-D learns to defend against the adversarial attack from GREATER-A and generalizes the defense to other attacks. GREATER-A identifies and perturbs the critical tokens in embedding space, along with greedy search and pruning to generate stealthy and disruptive adversarial examples. Besides, we update the GREATER-A and GREATER-D synchronously, encouraging the GREATER-D to generalize its defense to different attacks and varying attack intensities. Our experimental results across 10 text perturbation strategies and 6 adversarial attacks show that our GREATER-D reduces the Attack Success Rate (ASR) by 0.67% compared with SOTA defense methods while our GREATER-A is demonstrated to be more effective and efficient than SOTA attack approaches. Codes and dataset are available in https://github.com/Liyuuuu111/GREATER.

Authors:Haoyuan Wu, Haisheng Zheng, Yuan Pu, Bei Yu
Title: Circuit Representation Learning with Masked Gate Modeling and Verilog-AIG Alignment
Abstract:
Understanding the structure and function of circuits is crucial for electronic design automation (EDA). Circuits can be formulated as And-Inverter graphs (AIGs), enabling efficient implementation of representation learning through graph neural networks (GNNs). Masked modeling paradigms have been proven effective in graph representation learning. However, masking augmentation to original circuits will destroy their logical equivalence, which is unsuitable for circuit representation learning. Moreover, existing masked modeling paradigms often prioritize structural information at the expense of abstract information such as circuit function. To address these limitations, we introduce MGVGA, a novel constrained masked modeling paradigm incorporating masked gate modeling (MGM) and Verilog-AIG alignment (VGA). Specifically, MGM preserves logical equivalence by masking gates in the latent space rather than in the original circuits, subsequently reconstructing the attributes of these masked gates. Meanwhile, large language models (LLMs) have demonstrated an excellent understanding of the Verilog code functionality. Building upon this capability, VGA performs masking operations on original circuits and reconstructs masked gates under the constraints of equivalent Verilog codes, enabling GNNs to learn circuit functions from LLMs. We evaluate MGVGA on various logic synthesis tasks for EDA and show the superior performance of MGVGA compared to previous state-of-the-art methods. Our code is available at https://github.com/wuhy68/MGVGA.

Authors:Thierry Judge, Olivier Bernard, Woo-Jin Cho Kim, Alberto Gomez, Arian Beqiri, Agisilaos Chartsias, Pierre-Marc Jodoin
Title: Uncertainty Propagation for Echocardiography Clinical Metric Estimation via Contour Sampling
Abstract:
Echocardiography plays a fundamental role in the extraction of important clinical parameters (e.g. left ventricular volume and ejection fraction) required to determine the presence and severity of heart-related conditions. When deploying automated techniques for computing these parameters, uncertainty estimation is crucial for assessing their utility. Since clinical parameters are usually derived from segmentation maps, there is no clear path for converting pixel-wise uncertainty values into uncertainty estimates in the downstream clinical metric calculation. In this work, we propose a novel uncertainty estimation method based on contouring rather than segmentation. Our method explicitly predicts contour location uncertainty from which contour samples can be drawn. Finally, the sampled contours can be used to propagate uncertainty to clinical metrics. Our proposed method not only provides accurate uncertainty estimations for the task of contouring but also for the downstream clinical metrics on two cardiac ultrasound datasets. Code is available at: https://github.com/ThierryJudge/contouring-uncertainty.

Authors:Timon Winter, Stanislav Frolov, Brian Bernhard Moser, Andreas Dengel
Title: Spherical Dense Text-to-Image Synthesis
Abstract:
Recent advancements in text-to-image (T2I) have improved synthesis results, but challenges remain in layout control and generating omnidirectional panoramic images. Dense T2I (DT2I) and spherical T2I (ST2I) models address these issues, but so far no unified approach exists. Trivial approaches, like prompting a DT2I model to generate panoramas can not generate proper spherical distortions and seamless transitions at the borders. Our work shows that spherical dense text-to-image (SDT2I) can be achieved by integrating training-free DT2I approaches into finetuned panorama models. Specifically, we propose MultiStitchDiffusion (MSTD) and MultiPanFusion (MPF) by integrating MultiDiffusion into StitchDiffusion and PanFusion, respectively. Since no benchmark for SDT2I exists, we further construct Dense-Synthetic-View (DSynView), a new synthetic dataset containing spherical layouts to evaluate our models. Our results show that MSTD outperforms MPF across image quality as well as prompt- and layout adherence. MultiPanFusion generates more diverse images but struggles to synthesize flawless foreground objects. We propose bootstrap-coupling and turning off equirectangular perspective-projection attention in the foreground as an improvement of MPF. Link to code https://github.com/sdt2i/spherical-dense-text-to-image

Authors:Jianping Li, Zhongyuan Liu, Xinhang Xu, Jinxin Liu, Shenghai Yuan, Fang Xu, Lihua Xie
Title: LiMo-Calib: On-Site Fast LiDAR-Motor Calibration for Quadruped Robot-Based Panoramic 3D Sensing System
Abstract:
Conventional single LiDAR systems are inherently constrained by their limited field of view (FoV), leading to blind spots and incomplete environmental awareness, particularly on robotic platforms with strict payload limitations. Integrating a motorized LiDAR offers a practical solution by significantly expanding the sensor's FoV and enabling adaptive panoramic 3D sensing. However, the high-frequency vibrations of the quadruped robot introduce calibration challenges, causing variations in the LiDAR-motor transformation that degrade sensing accuracy. Existing calibration methods that use artificial targets or dense feature extraction lack feasibility for on-site applications and real-time implementation. To overcome these limitations, we propose LiMo-Calib, an efficient on-site calibration method that eliminates the need for external targets by leveraging geometric features directly from raw LiDAR scans. LiMo-Calib optimizes feature selection based on normal distribution to accelerate convergence while maintaining accuracy and incorporates a reweighting mechanism that evaluates local plane fitting quality to enhance robustness. We integrate and validate the proposed method on a motorized LiDAR system mounted on a quadruped robot, demonstrating significant improvements in calibration efficiency and 3D sensing accuracy, making LiMo-Calib well-suited for real-world robotic applications. We further demonstrate the accuracy improvements of the LIO on the panoramic 3D sensing system using the calibrated parameters. The code will be available at: https://github.com/kafeiyin00/LiMo-Calib.

Authors:Oğuzhan Canpolat, A. Giray Yağlıkçı, Geraldo F. Oliveira, Ataberk Olgun, Nisa Bostancı, İsmail Emir Yüksel, Haocong Luo, Oğuz Ergin, Onur Mutlu
Title: Chronus: Understanding and Securing the Cutting-Edge Industry Solutions to DRAM Read Disturbance
Abstract:
We 1) present the first rigorous security, performance, energy, and cost analyses of the state-of-the-art on-DRAM-die read disturbance mitigation method, Per Row Activation Counting (PRAC) and 2) propose Chronus, a new mechanism that addresses PRAC's two major weaknesses. Our analysis shows that PRAC's system performance overhead on benign applications is non-negligible for modern DRAM chips and prohibitively large for future DRAM chips that are more vulnerable to read disturbance. We identify two weaknesses of PRAC that cause these overheads. First, PRAC increases critical DRAM access latency parameters due to the additional time required to increment activation counters. Second, PRAC performs a constant number of preventive refreshes at a time, making it vulnerable to an adversarial access pattern, known as the wave attack, and consequently requiring it to be configured for significantly smaller activation thresholds. To address PRAC's two weaknesses, we propose a new on-DRAM-die RowHammer mitigation mechanism, Chronus. Chronus 1) updates row activation counters concurrently while serving accesses by separating counters from the data and 2) prevents the wave attack by dynamically controlling the number of preventive refreshes performed. Our performance analysis shows that Chronus's system performance overhead is near-zero for modern DRAM chips and very low for future DRAM chips. Chronus outperforms three variants of PRAC and three other state-of-the-art read disturbance solutions. We discuss Chronus's and PRAC's implications for future systems and foreshadow future research directions. To aid future research, we open-source our Chronus implementation at https://github.com/CMU-SAFARI/Chronus.

Authors:Zhiyuan Liu, Yanchen Luo, Han Huang, Enzhi Zhang, Sihang Li, Junfeng Fang, Yaorui Shi, Xiang Wang, Kenji Kawaguchi, Tat-Seng Chua
Title: NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation
Abstract:
3D molecule generation is crucial for drug discovery and material design. While prior efforts focus on 3D diffusion models for their benefits in modeling continuous 3D conformers, they overlook the advantages of 1D SELFIES-based Language Models (LMs), which can generate 100% valid molecules and leverage the billion-scale 1D molecule datasets. To combine these advantages for 3D molecule generation, we propose a foundation model -- NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation. NExT-Mol uses an extensively pretrained molecule LM for 1D molecule generation, and subsequently predicts the generated molecule's 3D conformers with a 3D diffusion model. We enhance NExT-Mol's performance by scaling up the LM's model size, refining the diffusion neural architecture, and applying 1D to 3D transfer learning. Notably, our 1D molecule LM significantly outperforms baselines in distributional similarity while ensuring validity, and our 3D diffusion model achieves leading performances in conformer prediction. Given these improvements in 1D and 3D modeling, NExT-Mol achieves a 26% relative improvement in 3D FCD for de novo 3D generation on GEOM-DRUGS, and a 13% average relative gain for conditional 3D generation on QM9-2014. Our codes and pretrained checkpoints are available at https://github.com/acharkq/NExT-Mol.

Authors:Mingyang Sun, Pengxiang Ding, Weinan Zhang, Donglin Wang
Title: Score-Based Diffusion Policy Compatible with Reinforcement Learning via Optimal Transport
Abstract:
Diffusion policies have shown promise in learning complex behaviors from demonstrations, particularly for tasks requiring precise control and long-term planning. However, they face challenges in robustness when encountering distribution shifts. This paper explores improving diffusion-based imitation learning models through online interactions with the environment. We propose OTPR (Optimal Transport-guided score-based diffusion Policy for Reinforcement learning fine-tuning), a novel method that integrates diffusion policies with RL using optimal transport theory. OTPR leverages the Q-function as a transport cost and views the policy as an optimal transport map, enabling efficient and stable fine-tuning. Moreover, we introduce masked optimal transport to guide state-action matching using expert keypoints and a compatibility-based resampling strategy to enhance training stability. Experiments on three simulation tasks demonstrate OTPR's superior performance and robustness compared to existing methods, especially in complex and sparse-reward environments. In sum, OTPR provides an effective framework for combining IL and RL, achieving versatile and reliable policy learning. The code will be released at https://github.com/Sunmmyy/OTPR.git.

Authors:Tanzhe Li, Caoshuo Li, Jiayi Lyu, Hongjuan Pei, Baochang Zhang, Taisong Jin, Rongrong Ji
Title: DAMamba: Vision State Space Model with Dynamic Adaptive Scan
Abstract:
State space models (SSMs) have recently garnered significant attention in computer vision. However, due to the unique characteristics of image data, adapting SSMs from natural language processing to computer vision has not outperformed the state-of-the-art convolutional neural networks (CNNs) and Vision Transformers (ViTs). Existing vision SSMs primarily leverage manually designed scans to flatten image patches into sequences locally or globally. This approach disrupts the original semantic spatial adjacency of the image and lacks flexibility, making it difficult to capture complex image structures. To address this limitation, we propose Dynamic Adaptive Scan (DAS), a data-driven method that adaptively allocates scanning orders and regions. This enables more flexible modeling capabilities while maintaining linear computational complexity and global modeling capacity. Based on DAS, we further propose the vision backbone DAMamba, which significantly outperforms current state-of-the-art vision Mamba models in vision tasks such as image classification, object detection, instance segmentation, and semantic segmentation. Notably, it surpasses some of the latest state-of-the-art CNNs and ViTs. Code will be available at https://github.com/ltzovo/DAMamba.

Authors:Lu Yang, Jiajia Li, En Ci, Lefei Zhang, Zuchao Li, Ping Wang
Title: Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction
Abstract:
Universal Information Extraction (UIE) has garnered significant attention due to its ability to address model explosion problems effectively. Extractive UIE can achieve strong performance using a relatively small model, making it widely adopted. Extractive UIEs generally rely on task instructions for different tasks, including single-target instructions and multiple-target instructions. Single-target instruction UIE enables the extraction of only one type of relation at a time, limiting its ability to model correlations between relations and thus restricting its capability to extract complex relations. While multiple-target instruction UIE allows for the extraction of multiple relations simultaneously, the inclusion of irrelevant relations introduces decision complexity and impacts extraction accuracy. Therefore, for multi-relation extraction, we propose LDNet, which incorporates multi-aspect relation modeling and a label drop mechanism. By assigning different relations to different levels for understanding and decision-making, we reduce decision confusion. Additionally, the label drop mechanism effectively mitigates the impact of irrelevant relations. Experiments show that LDNet outperforms or achieves competitive performance with state-of-the-art systems on 9 tasks, 33 datasets, in both single-modal and multi-modal, few-shot and zero-shot settings.\footnote{https://github.com/Lu-Yang666/LDNet}

Authors:Yuhan Li, Xinni Zhang, Linhao Luo, Heng Chang, Yuxiang Ren, Irwin King, Jia Li
Title: G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation
Abstract:
Explainable recommendation has demonstrated significant advantages in informing users about the logic behind recommendations, thereby increasing system transparency, effectiveness, and trustworthiness. To provide personalized and interpretable explanations, existing works often combine the generation capabilities of large language models (LLMs) with collaborative filtering (CF) information. CF information extracted from the user-item interaction graph captures the user behaviors and preferences, which is crucial for providing informative explanations. However, due to the complexity of graph structure, effectively extracting the CF information from graphs still remains a challenge. Moreover, existing methods often struggle with the integration of extracted CF information with LLMs due to its implicit representation and the modality gap between graph structures and natural language explanations. To address these challenges, we propose G-Refer, a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation. Specifically, we first employ a hybrid graph retrieval mechanism to retrieve explicit CF signals from both structural and semantic perspectives. The retrieved CF information is explicitly formulated as human-understandable text by the proposed graph translation and accounts for the explanations generated by LLMs. To bridge the modality gap, we introduce knowledge pruning and retrieval-augmented fine-tuning to enhance the ability of LLMs to process and utilize the retrieved CF information to generate explanations. Extensive experiments show that G-Refer achieves superior performance compared with existing methods in both explainability and stability. Codes and data are available at https://github.com/Yuhan1i/G-Refer.

Authors:Juefeng Xiao, Tianqi Xiang, Zhigang Tu
Title: Adaptive Prototype Model for Attribute-based Multi-label Few-shot Action Recognition
Abstract:
In real-world action recognition systems, incorporating more attributes helps achieve a more comprehensive understanding of human behavior. However, using a single model to simultaneously recognize multiple attributes can lead to a decrease in accuracy. In this work, we propose a novel method i.e. Adaptive Attribute Prototype Model (AAPM) for human action recognition, which captures rich action-relevant attribute information and strikes a balance between accuracy and robustness. Firstly, we introduce the Text-Constrain Module (TCM) to incorporate textual information from potential labels, and constrain the construction of different attributes prototype representations. In addition, we explore the Attribute Assignment Method (AAM) to address the issue of training bias and increase robustness during the training process.Furthermore, we construct a new video dataset with attribute-based multi-label called Multi-Kinetics for evaluation, which contains various attribute labels (e.g. action, scene, object, etc.) related to human behavior. Extensive experiments demonstrate that our AAPM achieves the state-of-the-art performance in both attribute-based multi-label few-shot action recognition and single-label few-shot action recognition. The project and dataset are available at an anonymous account https://github.com/theAAPM/AAPM

Authors:Minghao Fu, Guo-Hua Wang, Liangfu Cao, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: CHATS: Combining Human-Aligned Optimization and Test-Time Sampling for Text-to-Image Generation
Abstract:
Diffusion models have emerged as a dominant approach for text-to-image generation. Key components such as the human preference alignment and classifier-free guidance play a crucial role in ensuring generation quality. However, their independent application in current text-to-image models continues to face significant challenges in achieving strong text-image alignment, high generation quality, and consistency with human aesthetic standards. In this work, we for the first time, explore facilitating the collaboration of human performance alignment and test-time sampling to unlock the potential of text-to-image models. Consequently, we introduce CHATS (Combining Human-Aligned optimization and Test-time Sampling), a novel generative framework that separately models the preferred and dispreferred distributions and employs a proxy-prompt-based sampling strategy to utilize the useful information contained in both distributions. We observe that CHATS exhibits exceptional data efficiency, achieving strong performance with only a small, high-quality funetuning dataset. Extensive experiments demonstrate that CHATS surpasses traditional preference alignment methods, setting new state-of-the-art across various standard benchmarks.

Authors:Pengyu Zhu, Zhenhong Zhou, Yuanhe Zhang, Shilinlu Yan, Kun Wang, Sen Su
Title: DemonAgent: Dynamically Encrypted Multi-Backdoor Implantation Attack on LLM-based Agent
Abstract:
As LLM-based agents become increasingly prevalent, backdoors can be implanted into agents through user queries or environment feedback, raising critical concerns regarding safety vulnerabilities. However, backdoor attacks are typically detectable by safety audits that analyze the reasoning process of agents. To this end, we propose a novel backdoor implantation strategy called \textbf{Dynamically Encrypted Multi-Backdoor Implantation Attack}. Specifically, we introduce dynamic encryption, which maps the backdoor into benign content, effectively circumventing safety audits. To enhance stealthiness, we further decompose the backdoor into multiple sub-backdoor fragments. Based on these advancements, backdoors are allowed to bypass safety audits significantly. Additionally, we present AgentBackdoorEval, a dataset designed for the comprehensive evaluation of agent backdoor attacks. Experimental results across multiple datasets demonstrate that our method achieves an attack success rate nearing 100\% while maintaining a detection rate of 0\%, illustrating its effectiveness in evading safety audits. Our findings highlight the limitations of existing safety mechanisms in detecting advanced attacks, underscoring the urgent need for more robust defenses against backdoor threats. Code and data are available at https://github.com/whfeLingYu/DemonAgent.

Authors:Chao Yang, Yong Fan, Cheng Lu, Minghao Yuan, Zhijing Yang
Title: GVTNet: Graph Vision Transformer For Face Super-Resolution
Abstract:
Recent advances in face super-resolution research have utilized the Transformer architecture. This method processes the input image into a series of small patches. However, because of the strong correlation between different facial components in facial images. When it comes to super-resolution of low-resolution images, existing algorithms cannot handle the relationships between patches well, resulting in distorted facial components in the super-resolution results. To solve the problem, we propose a transformer architecture based on graph neural networks called graph vision transformer network. We treat each patch as a graph node and establish an adjacency matrix based on the information between patches. In this way, the patch only interacts between neighboring patches, further processing the relationship of facial components. Quantitative and visualization experiments have underscored the superiority of our algorithm over state-of-the-art techniques. Through detailed comparisons, we have demonstrated that our algorithm possesses more advanced super-resolution capabilities, particularly in enhancing facial components. The PyTorch code is available at https://github.com/continueyang/GVTNet

Authors:Kaiyang Wan, Honglin Mu, Rui Hao, Haoran Luo, Tianle Gu, Xiuying Chen
Title: A Cognitive Writing Perspective for Constrained Long-Form Text Generation
Abstract:
Like humans, Large Language Models (LLMs) struggle to generate high-quality long-form text that adheres to strict requirements in a single pass. This challenge is unsurprising, as successful human writing, according to the Cognitive Writing Theory, is a complex cognitive process involving iterative planning, translating, reviewing, and monitoring. Motivated by these cognitive principles, we aim to equip LLMs with human-like cognitive writing capabilities through CogWriter, a novel training-free framework that transforms LLM constrained long-form text generation into a systematic cognitive writing paradigm. Our framework consists of two key modules: (1) a Planning Agent that performs hierarchical planning to decompose the task, and (2) multiple Generation Agents that execute these plans in parallel. The system maintains quality via continuous monitoring and reviewing mechanisms, which evaluate outputs against specified requirements and trigger necessary revisions. CogWriter demonstrates exceptional performance on LongGenBench, a benchmark for complex constrained long-form text generation. Even when using Qwen-2.5-14B as its backbone, CogWriter surpasses GPT-4o by 22% in complex instruction completion accuracy while reliably generating texts exceeding 10,000 words. We hope this cognitive science-inspired approach provides a paradigm for LLM writing advancements: \href{https://github.com/KaiyangWan/CogWriter}{CogWriter}.

Authors:Chao Yang, Yong Fan, Qichao Zhang, Cheng Lu, Zhijing Yang
Title: DeltaDiff: Reality-Driven Diffusion with AnchorResiduals for Faithful SR
Abstract:
Recently, the transfer application of diffusion models in super-resolu-tion tasks has faced the problem ofdecreased fidelity. Due to the inherent randomsampling characteristics ofdiffusion models, direct application in super-resolu-tion tasks can result in generated details deviating from the true distribution ofhigh-resolution images. To address this, we propose DeltaDiff, a novel frame.work that constrains the difusion process, its essence is to establish a determin-istic mapping path between HR and LR, rather than the random noise disturbanceprocess oftraditional difusion models. Theoretical analysis demonstrates a 25%reduction in diffusion entropy in the residual space compared to pixel-space diffiusion, effectively suppressing irrelevant noise interference. The experimentalresults show that our method surpasses state-of-the-art models and generates re-sults with better fidelity. This work establishes a new low-rank constrained par-adigm for applying diffusion models to image reconstruction tasks, balancingstochastic generation with structural fidelity. Our code and model are publiclyavailable at https://github.com/continueyang/DeltaDiff .

Authors:Weikai Lu, Hao Peng, Huiping Zhuang, Cen Chen, Ziqian Zeng
Title: SEA: Low-Resource Safety Alignment for Multimodal Large Language Models via Synthetic Embeddings
Abstract:
Multimodal Large Language Models (MLLMs) have serious security vulnerabilities.While safety alignment using multimodal datasets consisting of text and data of additional modalities can effectively enhance MLLM's security, it is costly to construct these datasets. Existing low-resource security alignment methods, including textual alignment, have been found to struggle with the security risks posed by additional modalities. To address this, we propose Synthetic Embedding augmented safety Alignment (SEA), which optimizes embeddings of additional modality through gradient updates to expand textual datasets. This enables multimodal safety alignment training even when only textual data is available. Extensive experiments on image, video, and audio-based MLLMs demonstrate that SEA can synthesize a high-quality embedding on a single RTX3090 GPU within 24 seconds. SEA significantly improves the security of MLLMs when faced with threats from additional modalities. To assess the security risks introduced by video and audio, we also introduced a new benchmark called VA-SafetyBench. High attack success rates across multiple MLLMs validate its challenge. Our code and data will be available at https://github.com/ZeroNLP/SEA.

Authors:Yong Zhao, Kai Xu, Zhengqiu Zhu, Yue Hu, Zhiheng Zheng, Yingfeng Chen, Yatai Ji, Chen Gao, Yong Li, Jincai Huang
Title: CityEQA: A Hierarchical LLM Agent on Embodied Question Answering Benchmark in City Space
Abstract:
Embodied Question Answering (EQA) has primarily focused on indoor environments, leaving the complexities of urban settings-spanning environment, action, and perception-largely unexplored. To bridge this gap, we introduce CityEQA, a new task where an embodied agent answers open-vocabulary questions through active exploration in dynamic city spaces. To support this task, we present CityEQA-EC, the first benchmark dataset featuring 1,412 human-annotated tasks across six categories, grounded in a realistic 3D urban simulator. Moreover, we propose Planner-Manager-Actor (PMA), a novel agent tailored for CityEQA. PMA enables long-horizon planning and hierarchical task execution: the Planner breaks down the question answering into sub-tasks, the Manager maintains an object-centric cognitive map for spatial reasoning during the process control, and the specialized Actors handle navigation, exploration, and collection sub-tasks. Experiments demonstrate that PMA achieves 60.7% of human-level answering accuracy, significantly outperforming competitive baselines. While promising, the performance gap compared to humans highlights the need for enhanced visual reasoning in CityEQA. This work paves the way for future advancements in urban spatial intelligence. Dataset and code are available at https://github.com/BiluYong/CityEQA.git.

Authors:Yunjie Tian, Qixiang Ye, David Doermann
Title: YOLOv12: Attention-Centric Real-Time Object Detectors
Abstract:
Enhancing the network architecture of the YOLO framework has been crucial for a long time, but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms. YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters. More comparisons are shown in Figure 1.

Authors:Tiancheng Gu, Kaicheng Yang, Chaoyi Zhang, Yin Xie, Xiang An, Ziyong Feng, Dongnan Liu, Weidong Cai, Jiankang Deng
Title: RealSyn: An Effective and Scalable Multimodal Interleaved Document Transformation Paradigm
Abstract:
After pre-training on extensive image-text pairs, Contrastive Language-Image Pre-training (CLIP) demonstrates promising performance on a wide variety of benchmarks. However, a substantial volume of multimodal interleaved documents remains underutilized for contrastive vision-language representation learning. To fully leverage these unpaired documents, we initially establish a Real-World Data Extraction pipeline to extract high-quality images and texts. Then we design a hierarchical retrieval method to efficiently associate each image with multiple semantically relevant realistic texts. To further enhance fine-grained visual information, we propose an image semantic augmented generation module for synthetic text production. Furthermore, we employ a semantic balance sampling strategy to improve dataset diversity, enabling better learning of long-tail concepts. Based on these innovations, we construct RealSyn, a dataset combining realistic and synthetic texts, available in three scales: 15M, 30M, and 100M. We compare our dataset with other widely used datasets of equivalent scale for CLIP training. Models pre-trained on RealSyn consistently achieve state-of-the-art performance across various downstream tasks, including linear probe, zero-shot transfer, zero-shot robustness, and zero-shot retrieval. Furthermore, extensive experiments confirm that RealSyn significantly enhances contrastive vision-language representation learning and demonstrates robust scalability. To facilitate future research, the RealSyn dataset and pretrained model weights are released at https://github.com/deepglint/RealSyn.

Authors:Liangying Shao, Yanfu Yan, Denys Poshyvanyk, Jinsong Su
Title: UniGenCoder: Merging Seq2Seq and Seq2Tree Paradigms for Unified Code Generation
Abstract:
Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused either on the Sequence-to-Sequence paradigm, which generates target code as a sequence of tokens, or the Sequence-to-Tree paradigm, which outputs code as a sequence of actions. While these two paradigms are intuitively complementary, their combination has not been previously explored. By comparing the code generated under these two paradigms, we find that integrating them holds significant potential. In this paper, we propose UniGenCoder for code-related generation tasks, which consists of a shared encoder, a shared decoder with a minimal set of additional parameters to unify two paradigms, and a selector that dynamically chooses optimal paradigm for each instance. Also, during the model training, we first perform the multi-task learning and distillation strategies to facilitate knowledge transfer between two paradigms, and then leverage contrastive learning to train the selector. Experimental results on the text-to-code and code-to-code generation tasks demonstrate the effectiveness of our proposed model. We release our code at https://github.com/DeepLearnXMU/UniGenCoder.

Authors:Xiang He, Dongcheng Zhao, Yiting Dong, Guobin Shen, Xin Yang, Yi Zeng
Title: Enhancing Audio-Visual Spiking Neural Networks through Semantic-Alignment and Cross-Modal Residual Learning
Abstract:
Humans interpret and perceive the world by integrating sensory information from multiple modalities, such as vision and hearing. Spiking Neural Networks (SNNs), as brain-inspired computational models, exhibit unique advantages in emulating the brain's information processing mechanisms. However, existing SNN models primarily focus on unimodal processing and lack efficient cross-modal information fusion, thereby limiting their effectiveness in real-world multimodal scenarios. To address this challenge, we propose a semantic-alignment cross-modal residual learning (S-CMRL) framework, a Transformer-based multimodal SNN architecture designed for effective audio-visual integration. S-CMRL leverages a spatiotemporal spiking attention mechanism to extract complementary features across modalities, and incorporates a cross-modal residual learning strategy to enhance feature integration. Additionally, a semantic alignment optimization mechanism is introduced to align cross-modal features within a shared semantic space, improving their consistency and complementarity. Extensive experiments on three benchmark datasets CREMA-D, UrbanSound8K-AV, and MNISTDVS-NTIDIGITS demonstrate that S-CMRL significantly outperforms existing multimodal SNN methods, achieving the state-of-the-art performance. The code is publicly available at https://github.com/Brain-Cog-Lab/S-CMRL.

Authors:Xiaoqian Liu, Ke Wang, Yongbin Li, Yuchuan Wu, Wentao Ma, Aobo Kong, Fei Huang, Jianbin Jiao, Junge Zhang
Title: EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning
Abstract:
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL),utilizing process rewards and iterative self-play. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications. Code and data are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/EPO.

Authors:Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yuan Liu, Thiago S. F. X. Teixeira, Diyi Yang, Ke Wang, Alex Aiken
Title: EquiBench: Benchmarking Large Language Models' Reasoning about Program Semantics via Equivalence Checking
Abstract:
As large language models (LLMs) become integral to code-related tasks, a central question emerges: Do LLMs truly understand program semantics? We introduce EquiBench, a new benchmark for evaluating LLMs through equivalence checking, i.e., determining whether two programs produce identical outputs for all possible inputs. Unlike prior code generation benchmarks, this task directly tests a model's ability to reason about program semantics. EquiBench consists of 2400 program pairs across four languages and six categories. These pairs are generated through program analysis, compiler scheduling, and superoptimization, ensuring high-confidence labels, nontrivial difficulty, and full automation. We evaluate 19 state-of-the-art LLMs and find that in the most challenging categories, the best accuracies are 63.8% and 76.2%, only modestly above the 50% random baseline. Further analysis reveals that models often rely on syntactic similarity rather than exhibiting robust reasoning about program semantics, highlighting current limitations. Our code and dataset are publicly available at https://github.com/Anjiang-Wei/equibench

Authors:Lei Wang, Zheqing Zhang, Xu Chen
Title: Investigating and Extending Homans' Social Exchange Theory with Large Language Model based Agents
Abstract:
Homans' Social Exchange Theory (SET) is widely recognized as a basic framework for understanding the formation and emergence of human civilizations and social structures. In social science, this theory is typically studied based on simple simulation experiments or real-world human studies, both of which either lack realism or are too expensive to control. In artificial intelligence, recent advances in large language models (LLMs) have shown promising capabilities in simulating human behaviors. Inspired by these insights, we adopt an interdisciplinary research perspective and propose using LLM-based agents to study Homans' SET. Specifically, we construct a virtual society composed of three LLM agents and have them engage in a social exchange game to observe their behaviors. Through extensive experiments, we found that Homans' SET is well validated in our agent society, demonstrating the consistency between the agent and human behaviors. Building on this foundation, we intentionally alter the settings of the agent society to extend the traditional Homans' SET, making it more comprehensive and detailed. To the best of our knowledge, this paper marks the first step in studying Homans' SET with LLM-based agents. More importantly, it introduces a novel and feasible research paradigm that bridges the fields of social science and computer science through LLM-based agents. Code is available at https://github.com/Paitesanshi/SET.

Authors:Gang Yang, Miao Wang, Quan Zhou, Jiangchuan Li
Title: YUNet: Improved YOLOv11 Network for Skyline Detection
Abstract:
Skyline detection plays an important role in geolocalizaion, flight control, visual navigation, port security, etc. The appearance of the sky and non-sky areas are variable, because of different weather or illumination environment, which brings challenges to skyline detection. In this research, we proposed the YUNet algorithm, which improved the YOLOv11 architecture to segment the sky region and extract the skyline in complicated and variable circumstances. To improve the ability of multi-scale and large range contextual feature fusion, the YOLOv11 architecture is extended as an UNet-like architecture, consisting of an encoder, neck and decoder submodule. The encoder extracts the multi-scale features from the given images. The neck makes fusion of these multi-scale features. The decoder applies the fused features to complete the prediction rebuilding. To validate the proposed approach, the YUNet was tested on Skyfinder and CH1 datasets for segmentation and skyline detection respectively. Our test shows that the IoU of YUnet segmentation can reach 0.9858, and the average error of YUnet skyline detection is just 1.36 pixels. The implementation is published at https://github.com/kuazhangxiaoai/SkylineDet-YOLOv11Seg.git.

Authors:Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal
Title: Multi-Attribute Steering of Language Models via Targeted Intervention
Abstract:
Inference-time intervention (ITI) has emerged as a promising method for steering large language model (LLM) behavior in a particular direction (e.g., improving helpfulness) by intervening on token representations without costly updates to the LLM's parameters. However, existing ITI approaches fail to scale to multi-attribute settings with conflicts, such as enhancing helpfulness while also reducing toxicity. To address this, we introduce Multi-Attribute Targeted Steering (MAT-Steer), a novel steering framework designed for selective token-level intervention across multiple attributes. MAT-Steer learns steering vectors using an alignment objective that shifts the model's internal representations of undesirable outputs closer to those of desirable ones while enforcing sparsity and orthogonality among vectors for different attributes, thereby reducing inter-attribute conflicts. We evaluate MAT-Steer in two distinct settings: (i) on question answering (QA) tasks where we balance attributes like truthfulness, bias, and toxicity; (ii) on generative tasks where we simultaneously improve attributes like helpfulness, correctness, and coherence. MAT-Steer outperforms existing ITI and parameter-efficient fine-tuning approaches across both task types (e.g., 3% average accuracy gain across QA tasks and 55.82% win rate against the best ITI baseline).

Authors:Ahmed F. AbouElhamayed, Jordan Dotzel, Yash Akhauri, Chi-Chih Chang, Sameh Gobriel, J. Pablo Muñoz, Vui Seng Chua, Nilesh Jain, Mohamed S. Abdelfattah
Title: SparAMX: Accelerating Compressed LLMs Token Generation on AMX-powered CPUs
Abstract:
Large language models have high compute, latency, and memory requirements. While specialized accelerators such as GPUs and TPUs typically run these workloads, CPUs are more widely available and consume less energy. Accelerating LLMs with CPUs enables broader AI access at a lower cost and power consumption. This acceleration potential for CPUs is especially relevant during the memory-bound decoding stage of LLM inference, which processes one token at a time and is becoming increasingly utilized with reasoning models. We utilize Advanced Matrix Extensions (AMX) support on the latest Intel CPUs together with unstructured sparsity to achieve a $1.42 \times$ reduction in end-to-end latency compared to the current PyTorch implementation by applying our technique in linear layers. We provide a set of open-source customized sparse kernels that can speed up any PyTorch model by automatically replacing all linear layers with our custom sparse implementation. Furthermore, we demonstrate for the first time the use of unstructured sparsity in the attention computation achieving a $1.14 \times$ speedup over the current systems without compromising accuracy. Code: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SparAMX

Authors:Jiaqi Wang, Yuhang Zhou, Zhixiong Zhang, Qiguang Chen, Yongqiang Chen, James Cheng
Title: DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
Abstract:
Out-of-distribution generalization is a common problem that expects the model to perform well in the different distributions even far from the train data. A popular approach to addressing this issue is invariant learning (IL), in which the model is compiled to focus on invariant features instead of spurious features by adding strong constraints during training. However, there are some potential pitfalls of strong invariant constraints. Due to the limited number of diverse environments and over-regularization in the feature space, it may lead to a loss of important details in the invariant features while alleviating the spurious correlations, namely the over-invariance, which can also degrade the generalization performance. We theoretically define the over-invariance and observe that this issue occurs in various classic IL methods. To alleviate this issue, we propose a simple approach Diverse Invariant Learning (DivIL) by adding the unsupervised contrastive learning and the random masking mechanism compensatory for the invariant constraints, which can be applied to various IL methods. Furthermore, we conduct experiments across multiple modalities across 12 datasets and 6 classic models, verifying our over-invariance insight and the effectiveness of our DivIL framework. Our code is available at https://github.com/kokolerk/DivIL.

Authors:Riting Xia, Huibo Liu, Anchen Li, Xueyan Liu, Yan Zhang, Chunxu Zhang, Bo Yang
Title: Incomplete Graph Learning: A Comprehensive Survey
Abstract:
Graph learning is a prevalent field that operates on ubiquitous graph data. Effective graph learning methods can extract valuable information from graphs. However, these methods are non-robust and affected by missing attributes in graphs, resulting in sub-optimal outcomes. This has led to the emergence of incomplete graph learning, which aims to process and learn from incomplete graphs to achieve more accurate and representative results. In this paper, we conducted a comprehensive review of the literature on incomplete graph learning. Initially, we categorize incomplete graphs and provide precise definitions of relevant concepts, terminologies, and techniques, thereby establishing a solid understanding for readers. Subsequently, we classify incomplete graph learning methods according to the types of incompleteness: (1) attribute-incomplete graph learning methods, (2) attribute-missing graph learning methods, and (3) hybrid-absent graph learning methods. By systematically classifying and summarizing incomplete graph learning methods, we highlight the commonalities and differences among existing approaches, aiding readers in selecting methods and laying the groundwork for further advancements. In addition, we summarize the datasets, incomplete processing modes, evaluation metrics, and application domains used by the current methods. Lastly, we discuss the current challenges and propose future directions for incomplete graph learning, with the aim of stimulating further innovations in this crucial field. To our knowledge, this is the first review dedicated to incomplete graph learning, aiming to offer valuable insights for researchers in related fields.We developed an online resource to follow relevant research based on this review, available at https://github.com/cherry-a11y/Incomplete-graph-learning.git

Authors:Batu El, Deepro Choudhury, Pietro Liò, Chaitanya K. Joshi
Title: Towards Mechanistic Interpretability of Graph Transformers via Attention Graphs
Abstract:
We introduce Attention Graphs, a new tool for mechanistic interpretability of Graph Neural Networks (GNNs) and Graph Transformers based on the mathematical equivalence between message passing in GNNs and the self-attention mechanism in Transformers. Attention Graphs aggregate attention matrices across Transformer layers and heads to describe how information flows among input nodes. Through experiments on homophilous and heterophilous node classification tasks, we analyze Attention Graphs from a network science perspective and find that: (1) When Graph Transformers are allowed to learn the optimal graph structure using all-to-all attention among input nodes, the Attention Graphs learned by the model do not tend to correlate with the input/original graph structure; and (2) For heterophilous graphs, different Graph Transformer variants can achieve similar performance while utilising distinct information flow patterns. Open source code: https://github.com/batu-el/understanding-inductive-biases-of-gnns

Authors:Petar Steinberg, Juliusz Ziomek, Matej Jusup, Ilija Bogunovic
Title: Mean-Field Bayesian Optimisation
Abstract:
We address the problem of optimising the average payoff for a large number of cooperating agents, where the payoff function is unknown and treated as a black box. While standard Bayesian Optimisation (BO) methods struggle with the scalability required for high-dimensional input spaces, we demonstrate how leveraging the mean-field assumption on the black-box function can transform BO into an efficient and scalable solution. Specifically, we introduce MF-GP-UCB, a novel efficient algorithm designed to optimise agent payoffs in this setting. Our theoretical analysis establishes a regret bound for MF-GP-UCB that is independent of the number of agents, contrasting sharply with the exponential dependence observed when naive BO methods are applied. We evaluate our algorithm on a diverse set of tasks, including real-world problems, such as optimising the location of public bikes for a bike-sharing programme, distributing taxi fleets, and selecting refuelling ports for maritime vessels. Empirical results demonstrate that MF-GP-UCB significantly outperforms existing benchmarks, offering substantial improvements in performance and scalability, constituting a promising solution for mean-field, black-box optimisation. The code is available at https://github.com/petarsteinberg/MF-BO.

Authors:Yinghao Shuai, Ran Yu, Yuantao Chen, Zijian Jiang, Xiaowei Song, Nan Wang, Jv Zheng, Jianzhu Ma, Meng Yang, Zhicheng Wang, Wenbo Ding, Hao Zhao
Title: PUGS: Zero-shot Physical Understanding with Gaussian Splatting
Abstract:
Current robotic systems can understand the categories and poses of objects well. But understanding physical properties like mass, friction, and hardness, in the wild, remains challenging. We propose a new method that reconstructs 3D objects using the Gaussian splatting representation and predicts various physical properties in a zero-shot manner. We propose two techniques during the reconstruction phase: a geometry-aware regularization loss function to improve the shape quality and a region-aware feature contrastive loss function to promote region affinity. Two other new techniques are designed during inference: a feature-based property propagation module and a volume integration module tailored for the Gaussian representation. Our framework is named as zero-shot physical understanding with Gaussian splatting, or PUGS. PUGS achieves new state-of-the-art results on the standard benchmark of ABO-500 mass prediction. We provide extensive quantitative ablations and qualitative visualization to demonstrate the mechanism of our designs. We show the proposed methodology can help address challenging real-world grasping tasks. Our codes, data, and models are available at https://github.com/EverNorif/PUGS

Authors:Jake Vasilakes, Chrysoula Zerva, Sophia Ananiadou
Title: Subjective Logic Encodings
Abstract:
Many existing approaches for learning from labeled data assume the existence of gold-standard labels. According to these approaches, inter-annotator disagreement is seen as noise to be removed, either through refinement of annotation guidelines, label adjudication, or label filtering. However, annotator disagreement can rarely be totally eradicated, especially on more subjective tasks such as sentiment analysis or hate speech detection where disagreement is natural. Therefore, a new approach to learning from labeled data, called data perspectivism, seeks to leverage inter-annotator disagreement to learn models that stay true to the inherent uncertainty of the task by treating annotations as opinions of the annotators, rather than gold-standard facts. Despite this conceptual grounding, existing methods under data perspectivism are limited to using disagreement as the sole source of annotation uncertainty. To expand the possibilities of data perspectivism, we introduce Subjective Logic Encodings (SLEs), a flexible framework for constructing classification targets that explicitly encodes annotations as opinions of the annotators. Based on Subjective Logic Theory, SLEs encode labels as Dirichlet distributions and provide principled methods for encoding and aggregating various types of annotation uncertainty -- annotator confidence, reliability, and disagreement -- into the targets. We show that SLEs are a generalization of other types of label encodings as well as how to estimate models to predict SLEs using a distribution matching objective.

Authors:Jiayu Zhang, Zhiyu Zhu, Xinyi Wang, Silin Liao, Zhibo Jin, Flora D. Salim, Huaming Chen
Title: PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN
Abstract:
Deep neural networks have demonstrated remarkable performance across various domains. However, they are vulnerable to adversarial examples, which can lead to erroneous predictions. Generative Adversarial Networks (GANs) can leverage the generators and discriminators model to quickly produce high-quality adversarial examples. Since both modules train in a competitive and simultaneous manner, GAN-based algorithms like AdvGAN can generate adversarial examples with better transferability compared to traditional methods. However, the generation of perturbations is usually limited to a single iteration, preventing these examples from fully exploiting the potential of the methods. To tackle this issue, we introduce a novel approach named Progressive Auto-Regression AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration mechanism within a progressive generation network to craft adversarial examples with enhanced attack capability. We thoroughly evaluate our PAR-AdvGAN method with a large-scale experiment, demonstrating its superior performance over various state-of-the-art black-box adversarial attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN significantly accelerates the adversarial example generation, i.e., achieving the speeds of up to 335.5 frames per second on Inception-v3 model, outperforming the gradient-based transferable attack algorithms. Our code is available at: https://github.com/LMBTough/PAR

Authors:Norman Mu, Jonathan Lu, Michael Lavery, David Wagner
Title: A Closer Look at System Prompt Robustness
Abstract:
System prompts have emerged as a critical control surface for specifying the behavior of LLMs in chat and agent settings. Developers depend on system prompts to specify important context, output format, personalities, guardrails, content policies, and safety countermeasures, all of which require models to robustly adhere to the system prompt, especially when facing conflicting or adversarial user inputs. In practice, models often forget to consider relevant guardrails or fail to resolve conflicting demands between the system and the user. In this work, we study various methods for improving system prompt robustness by creating realistic new evaluation and fine-tuning datasets based on prompts collected from from OpenAI's GPT Store and HuggingFace's HuggingChat. Our experiments assessing models with a panel of new and existing benchmarks show that performance can be considerably improved with realistic fine-tuning data, as well as inference-time interventions such as classifier-free guidance. Finally, we analyze the results of recently released reasoning models from OpenAI and DeepSeek, which show exciting but uneven improvements on the benchmarks we study. Overall, current techniques fall short of ensuring system prompt robustness and further study is warranted.

Authors:Da Xiao, Qingye Meng, Shengping Li, Xingyuan Yuan
Title: MUDDFormer: Breaking Residual Bottlenecks in Transformers via Multiway Dynamic Dense Connections
Abstract:
We propose MUltiway Dynamic Dense (MUDD) connections, a simple yet effective method to address the limitations of residual connections and enhance cross-layer information flow in Transformers. Unlike existing dense connection approaches with static and shared connection weights, MUDD generates connection weights dynamically depending on hidden states at each sequence position and for each decoupled input stream (the query, key, value or residual) of a Transformer block. MUDD connections can be seamlessly integrated into any Transformer architecture to create MUDDFormer. Extensive experiments show that MUDDFormer significantly outperforms Transformers across various model architectures and scales in language modeling, achieving the performance of Transformers trained with 1.8X-2.4X compute. Notably, MUDDPythia-2.8B matches Pythia-6.9B in pretraining ppl and downstream tasks and even rivals Pythia-12B in five-shot settings, while adding only 0.23% parameters and 0.4% computation. Code in JAX and PyTorch and pre-trained models are available at https://github.com/Caiyun-AI/MUDDFormer .

Authors:Zhicong Tang, Jianmin Bao, Dong Chen, Baining Guo
Title: Diffusion Models without Classifier-free Guidance
Abstract:
This paper presents Model-guidance (MG), a novel objective for training diffusion model that addresses and removes of the commonly used Classifier-free guidance (CFG). Our innovative approach transcends the standard modeling of solely data distribution to incorporating the posterior probability of conditions. The proposed technique originates from the idea of CFG and is easy yet effective, making it a plug-and-play module for existing models. Our method significantly accelerates the training process, doubles the inference speed, and achieve exceptional quality that parallel and even surpass concurrent diffusion models with CFG. Extensive experiments demonstrate the effectiveness, efficiency, scalability on different models and datasets. Finally, we establish state-of-the-art performance on ImageNet 256 benchmarks with an FID of 1.34. Our code is available at https://github.com/tzco/Diffusion-wo-CFG.

Authors:Mingjie Sun, Yida Yin, Zhiqiu Xu, J. Zico Kolter, Zhuang Liu
Title: Idiosyncrasies in Large Language Models
Abstract:
In this work, we unveil and study idiosyncrasies in Large Language Models (LLMs) -- unique patterns in their outputs that can be used to distinguish the models. To do so, we consider a simple classification task: given a particular text output, the objective is to predict the source LLM that generates the text. We evaluate this synthetic task across various groups of LLMs and find that simply fine-tuning text embedding models on LLM-generated texts yields excellent classification accuracy. Notably, we achieve 97.1% accuracy on held-out validation data in the five-way classification problem involving ChatGPT, Claude, Grok, Gemini, and DeepSeek. Our further investigation reveals that these idiosyncrasies are rooted in word-level distributions. These patterns persist even when the texts are rewritten, translated, or summarized by an external LLM, suggesting that they are also encoded in the semantic content. Additionally, we leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies. Finally, we discuss the broader implications of our findings, including training on synthetic data, inferring model similarity, and robust evaluation of LLMs. Code is available at https://github.com/locuslab/llm-idiosyncrasies.

Authors:Ling Yang, Xinchen Zhang, Ye Tian, Chenming Shang, Minghao Xu, Wentao Zhang, Bin Cui
Title: HermesFlow: Seamlessly Closing the Gap in Multimodal Understanding and Generation
Abstract:
The remarkable success of the autoregressive paradigm has made significant advancement in Multimodal Large Language Models (MLLMs), with powerful models like Show-o, Transfusion and Emu3 achieving notable progress in unified image understanding and generation. For the first time, we uncover a common phenomenon: the understanding capabilities of MLLMs are typically stronger than their generative capabilities, with a significant gap between the two. Building on this insight, we propose HermesFlow, a simple yet general framework designed to seamlessly bridge the gap between understanding and generation in MLLMs. Specifically, we take the homologous data as input to curate homologous preference data of both understanding and generation. Through Pair-DPO and self-play iterative optimization, HermesFlow effectively aligns multimodal understanding and generation using homologous preference data. Extensive experiments demonstrate the significant superiority of our approach over prior methods, particularly in narrowing the gap between multimodal understanding and generation. These findings highlight the potential of HermesFlow as a general alignment framework for next-generation multimodal foundation models. Code: https://github.com/Gen-Verse/HermesFlow

Authors:Ye Tian, Ling Yang, Xinchen Zhang, Yunhai Tong, Mengdi Wang, Bin Cui
Title: Diffusion-Sharpening: Fine-tuning Diffusion Models with Denoising Trajectory Sharpening
Abstract:
We propose Diffusion-Sharpening, a fine-tuning approach that enhances downstream alignment by optimizing sampling trajectories. Existing RL-based fine-tuning methods focus on single training timesteps and neglect trajectory-level alignment, while recent sampling trajectory optimization methods incur significant inference NFE costs. Diffusion-Sharpening overcomes this by using a path integral framework to select optimal trajectories during training, leveraging reward feedback, and amortizing inference costs. Our method demonstrates superior training efficiency with faster convergence, and best inference efficiency without requiring additional NFEs. Extensive experiments show that Diffusion-Sharpening outperforms RL-based fine-tuning methods (e.g., Diffusion-DPO) and sampling trajectory optimization methods (e.g., Inference Scaling) across diverse metrics including text alignment, compositional capabilities, and human preferences, offering a scalable and efficient solution for future diffusion model fine-tuning. Code: https://github.com/Gen-Verse/Diffusion-Sharpening

Authors:Jinyan Su, Jennifer Healey, Preslav Nakov, Claire Cardie
Title: Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model (LLM) hallucinations by incorporating external knowledge retrieval. However, existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving when unnecessary or failing to retrieve iteratively when required for complex reasoning. Recent adaptive retrieval strategies, though adaptively navigates these retrieval strategies, predict only based on query complexity and lacks user-driven flexibility, making them infeasible for diverse user application needs. In this paper, we introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off. Our approach leverages two classifiers: one trained to prioritize accuracy and another to prioritize retrieval efficiency. Via an interpretable control parameter $α$, users can seamlessly navigate between minimal-cost retrieval and high-accuracy retrieval based on their specific requirements. We empirically demonstrate that our approach effectively balances accuracy, retrieval cost, and user controllability, making it a practical and adaptable solution for real-world applications. Code is available at https://github.com/JinyanSu1/Flare-Aug.

Authors:Robert Reischke
Title: pylevin: efficient numerical integration of integrals containing up to three Bessel functions
Abstract:
Integrals involving highly oscillatory Bessel functions are notoriously challenging to compute using conventional integration techniques. While several methods are available, they predominantly cater to integrals with at most a single Bessel function, resulting in specialised yet highly optimised solutions. Here we present pylevin, a Python package to efficiently compute integrals containing up to three Bessel functions of arbitrary order and arguments. The implementation makes use of Levin's method and allows for accurate and fast integration of these highly oscillatory integrals. In benchmarking pylevin against existing software for single Bessel function integrals, we find its speed comparable, usually within a factor of two, to specialised packages such as FFTLog. Furthermore, when dealing with integrals containing two or three Bessel functions, pylevin delivers performance up to four orders of magnitude faster than standard adaptive quadrature methods, while also exhibiting better stability for large Bessel function arguments. pylevin is available from source via github or directly from PyPi.

Authors:Sayantan Adak, Pauras Mangesh Meher, Paramita Das, Animesh Mukherjee
Title: REVERSUM: A Multi-staged Retrieval-Augmented Generation Method to Enhance Wikipedia Tail Biographies through Personal Narratives
Abstract:
Wikipedia is an invaluable resource for factual information about a wide range of entities. However, the quality of articles on less-known entities often lags behind that of the well-known ones. This study proposes a novel approach to enhancing Wikipedia's B and C category biography articles by leveraging personal narratives such as autobiographies and biographies. By utilizing a multi-staged retrieval-augmented generation technique -- REVerSum -- we aim to enrich the informational content of these lesser-known articles. Our study reveals that personal narratives can significantly improve the quality of Wikipedia articles, providing a rich source of reliable information that has been underutilized in previous studies. Based on crowd-based evaluation, REVerSum generated content outperforms the best performing baseline by 17% in terms of integrability to the original Wikipedia article and 28.5\% in terms of informativeness. Code and Data are available at: https://github.com/sayantan11995/wikipedia_enrichment

Authors:Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao
Title: SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
Abstract:
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks by generating intermediate reasoning steps. However, most existing approaches focus on hard token decoding, which constrains reasoning within the discrete vocabulary space and may not always be optimal. While recent efforts explore continuous-space reasoning, they often require full-model fine-tuning and suffer from catastrophic forgetting, limiting their applicability to state-of-the-art LLMs that already perform well in zero-shot settings with a proper instruction. To address this challenge, we propose a novel approach for continuous-space reasoning that does not require modifying the LLM. Specifically, we employ a lightweight fixed assistant model to speculatively generate instance-specific soft thought tokens as the initial chain of thoughts, which are then mapped into the LLM's representation space via a trainable projection module. Experimental results on five reasoning benchmarks demonstrate that our method enhances LLM reasoning performance through supervised, parameter-efficient fine-tuning. Source code is available at https://github.com/xuyige/SoftCoT.

Authors:Florian Sestak, Artur Toshev, Andreas Fürst, Günter Klambauer, Andreas Mayr, Johannes Brandstetter
Title: LaM-SLidE: Latent Space Modeling of Spatial Dynamical Systems via Linked Entities
Abstract:
Generative models are spearheading recent progress in deep learning, showcasing strong promise for trajectory sampling in dynamical systems as well. However, whereas latent space modeling paradigms have transformed image and video generation, similar approaches are more difficult for most dynamical systems. Such systems -- from chemical molecule structures to collective human behavior -- are described by interactions of entities, making them inherently linked to connectivity patterns, entity conservation, and the traceability of entities over time. Our approach, LaM-SLidE (Latent Space Modeling of Spatial Dynamical Systems via Linked Entities), bridges the gap between: (1) keeping the traceability of individual entities in a latent system representation, and (2) leveraging the efficiency and scalability of recent advances in image and video generation, where pre-trained encoder and decoder enable generative modeling directly in latent space. The core idea of LaM-SLidE is the introduction of identifier representations (IDs) that enable the retrieval of entity properties and entity composition from latent system representations, thus fostering traceability. Experimentally, across different domains, we show that LaM-SLidE performs favorably in terms of speed, accuracy, and generalizability. Code is available at https://github.com/ml-jku/LaM-SLidE .

Authors:Samuel Miserendino, Michele Wang, Tejal Patwardhan, Johannes Heidecke
Title: SWE-Lancer: Can Frontier LLMs Earn $1 Million from Real-World Freelance Software Engineering?
Abstract:
We introduce SWE-Lancer, a benchmark of over 1,400 freelance software engineering tasks from Upwork, valued at \$1 million USD total in real-world payouts. SWE-Lancer encompasses both independent engineering tasks--ranging from \$50 bug fixes to \$32,000 feature implementations--and managerial tasks, where models choose between technical implementation proposals. Independent tasks are graded with end-to-end tests triple-verified by experienced software engineers, while managerial decisions are assessed against the choices of the original hired engineering managers. We evaluate model performance and find that frontier models are still unable to solve the majority of tasks. To facilitate future research, we open-source a unified Docker image and a public evaluation split, SWE-Lancer Diamond (https://github.com/openai/SWELancer-Benchmark). By mapping model performance to monetary value, we hope SWE-Lancer enables greater research into the economic impact of AI model development.

Authors:Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, Yongfeng Zhang
Title: A-MEM: Agentic Memory for LLM Agents
Abstract:
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/A-mem, while the source code of the agentic memory system is available at https://github.com/WujiangXu/A-mem-sys.

Authors:Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, Yongfeng Zhang
Title: A-MEM: Agentic Memory for LLM Agents
Abstract:
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/A-mem, while the source code of the agentic memory system is available at https://github.com/WujiangXu/A-mem-sys.

Authors:Yuxiang Huang, Mingye Li, Xu Han, Chaojun Xiao, Weilin Zhao, Sun Ao, Hao Zhou, Jie Zhou, Zhiyuan Liu, Maosong Sun
Title: APB: Accelerating Distributed Long-Context Inference by Passing Compressed Context Blocks across GPUs
Abstract:
While long-context inference is crucial for advancing large language model (LLM) applications, its prefill speed remains a significant bottleneck. Current approaches, including sequence parallelism strategies and compute reduction through approximate attention mechanisms, still fall short of delivering optimal inference efficiency. This hinders scaling the inputs to longer sequences and processing long-context queries in a timely manner. To address this, we introduce APB, an efficient long-context inference framework that leverages multi-host approximate attention to enhance prefill speed by reducing compute and enhancing parallelism simultaneously. APB introduces a communication mechanism for essential key-value pairs within a sequence parallelism framework, enabling a faster inference speed while maintaining task performance. We implement APB by incorporating a tailored FlashAttn kernel alongside optimized distribution strategies, supporting diverse models and parallelism configurations. APB achieves speedups of up to 9.2x, 4.2x, and 1.6x compared with FlashAttn, RingAttn, and StarAttn, respectively, without any observable task performance degradation. We provide the implementation and experiment code of APB in https://github.com/thunlp/APB.

Authors:Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, Wenjie Li
Title: TokenSkip: Controllable Chain-of-Thought Compression in LLMs
Abstract:
Chain-of-Thought (CoT) has been proven effective in enhancing the reasoning capabilities of large language models (LLMs). Recent advancements, such as OpenAI's o1 and DeepSeek-R1, suggest that scaling up the length of CoT sequences during inference could further boost LLM reasoning performance. However, due to the autoregressive nature of LLM decoding, longer CoT outputs lead to a linear increase in inference latency, adversely affecting user experience, particularly when the CoT exceeds 10,000 tokens. To address this limitation, we analyze the semantic importance of tokens within CoT outputs and reveal that their contributions to reasoning vary. Building on this insight, we propose TokenSkip, a simple yet effective approach that enables LLMs to selectively skip less important tokens, allowing for controllable CoT compression. Extensive experiments across various models and tasks demonstrate the effectiveness of TokenSkip in reducing CoT token usage while preserving strong reasoning performance. Notably, when applied to Qwen2.5-14B-Instruct, TokenSkip reduces reasoning tokens by 40% (from 313 to 181) on GSM8K, with less than a 0.4% performance drop. We release our code and checkpoints in https://github.com/hemingkx/TokenSkip.

Authors:Jiayang Zhang, Xianyuan Liu, Wei Wu, Sina Tabakhi, Wenrui Fan, Shuo Zhou, Kang Lan Tee, Tuck Seng Wong, Haiping Lu
Title: Classifying the Stoichiometry of Virus-like Particles with Interpretable Machine Learning
Abstract:
Virus-like particles (VLPs) are valuable for vaccine development due to their immune-triggering properties. Understanding their stoichiometry, the number of protein subunits to form a VLP, is critical for vaccine optimisation. However, current experimental methods to determine stoichiometry are time-consuming and require highly purified proteins. To efficiently classify stoichiometry classes in proteins, we curate a new dataset and propose an interpretable, data-driven pipeline leveraging linear machine learning models. We also explore the impact of feature encoding on model performance and interpretability, as well as methods to identify key protein sequence features influencing classification. The evaluation of our pipeline demonstrates that it can classify stoichiometry while revealing protein features that possibly influence VLP assembly. The data and code used in this work are publicly available at https://github.com/Shef-AIRE/StoicIML.

Authors:Qi Zhao, Hongyu Yang, Qi Song, Xinwei Yao, Xiangyang Li
Title: KnowPath: Knowledge-enhanced Reasoning via LLM-generated Inference Paths over Knowledge Graphs
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in various complex tasks, yet they still suffer from hallucinations. By incorporating and exploring external knowledge, such as knowledge graphs(KGs), LLM's ability to provide factual answers has been enhanced. This approach carries significant practical implications. However, existing methods suffer from three key limitations: insufficient mining of LLMs' internal knowledge, constrained generation of interpretable reasoning paths, and unclear fusion of internal and external knowledge. Therefore, we propose KnowPath, a knowledge-enhanced large model framework driven by the collaboration of internal and external knowledge. It relies on the internal knowledge of the LLM to guide the exploration of interpretable directed subgraphs in external knowledge graphs, better integrating the two knowledge sources for more accurate reasoning. Extensive experiments on multiple real-world datasets demonstrate the effectiveness of KnowPath. Our code and data are available at https://github.com/tize-72/KnowPath.

Authors:Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, Yuyu Luo
Title: Atom of Thoughts for Markov LLM Test-Time Scaling
Abstract:
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.

Authors:Yinan Chen, Jiangning Zhang, Yali Bi, Xiaobin Hu, Teng Hu, Zhucun Xue, Ran Yi, Yong Liu, Ying Tai
Title: Image Inversion: A Survey from GANs to Diffusion and Beyond
Abstract:
Image inversion is a fundamental task in generative models, aiming to map images back to their latent representations to enable downstream applications such as editing, restoration, and style transfer. This paper provides a comprehensive review of the latest advancements in image inversion techniques, focusing on two main paradigms: Generative Adversarial Network (GAN) inversion and diffusion model inversion. We categorize these techniques based on their optimization methods. For GAN inversion, we systematically classify existing methods into encoder-based approaches, latent optimization approaches, and hybrid approaches, analyzing their theoretical foundations, technical innovations, and practical trade-offs. For diffusion model inversion, we explore training-free strategies, fine-tuning methods, and the design of additional trainable modules, highlighting their unique advantages and limitations. Additionally, we discuss several popular downstream applications and emerging applications beyond image tasks, identifying current challenges and future research directions. By synthesizing the latest developments, this paper aims to provide researchers and practitioners with a valuable reference resource, promoting further advancements in the field of image inversion. We keep track of the latest works at https://github.com/RyanChenYN/ImageInversion

Authors:Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu Shen, Jingbei Li, Mingrui Chen, Peng Liu, Ruihang Miao, Wang You, Xi Chen, Xuerui Yang, Yechang Huang, Yuxiang Zhang, Zheng Gong, Zixin Zhang, Hongyu Zhou, Jianjian Sun, Brian Li, Chengting Feng, Changyi Wan, Hanpeng Hu, Jianchang Wu, Jiangjie Zhen, Ranchen Ming, Song Yuan, Xuelin Zhang, Yu Zhou, Bingxin Li, Buyun Ma, Hongyuan Wang, Kang An, Wei Ji, Wen Li, Xuan Wen, Xiangwen Kong, Yuankai Ma, Yuanwei Liang, Yun Mou, Bahtiyar Ahmidi, Bin Wang, Bo Li, Changxin Miao, Chen Xu, Chenrun Wang, Dapeng Shi, Deshan Sun, Dingyuan Hu, Dula Sai, Enle Liu, Guanzhe Huang, Gulin Yan, Heng Wang, Haonan Jia, Haoyang Zhang, Jiahao Gong, Junjing Guo, Jiashuai Liu, Jiahong Liu, Jie Feng, Jie Wu, Jiaoren Wu, Jie Yang, Jinguo Wang, Jingyang Zhang, Junzhe Lin, Kaixiang Li, Lei Xia, Li Zhou, Liang Zhao, Longlong Gu, Mei Chen, Menglin Wu, Ming Li, Mingxiao Li, Mingliang Li, Mingyao Liang, Na Wang, Nie Hao, Qiling Wu, Qinyuan Tan, Ran Sun, Shuai Shuai, Shaoliang Pang, Shiliang Yang, Shuli Gao, Shanshan Yuan, Siqi Liu, Shihong Deng, Shilei Jiang, Sitong Liu, Tiancheng Cao, Tianyu Wang, Wenjin Deng, Wuxun Xie, Weipeng Ming, Wenqing He, Wen Sun, Xin Han, Xin Huang, Xiaomin Deng, Xiaojia Liu, Xin Wu, Xu Zhao, Yanan Wei, Yanbo Yu, Yang Cao, Yangguang Li, Yangzhen Ma, Yanming Xu, Yaoyu Wang, Yaqiang Shi, Yilei Wang, Yizhuang Zhou, Yinmin Zhong, Yang Zhang, Yaoben Wei, Yu Luo, Yuanwei Lu, Yuhe Yin, Yuchu Luo, Yuanhao Ding, Yuting Yan, Yaqi Dai, Yuxiang Yang, Zhe Xie, Zheng Ge, Zheng Sun, Zhewei Huang, Zhichao Chang, Zhisheng Guan, Zidong Yang, Zili Zhang, Binxing Jiao, Daxin Jiang, Heung-Yeung Shum, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Xinhao Zhang, Yibo Zhu
Title: Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction
Abstract:
Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.

Authors:Theresia Veronika Rampisela, Tuukka Ruotsalo, Maria Maistro, Christina Lioma
Title: Joint Evaluation of Fairness and Relevance in Recommender Systems with Pareto Frontier
Abstract:
Fairness and relevance are two important aspects of recommender systems (RSs). Typically, they are evaluated either (i) separately by individual measures of fairness and relevance, or (ii) jointly using a single measure that accounts for fairness with respect to relevance. However, approach (i) often does not provide a reliable joint estimate of the goodness of the models, as it has two different best models: one for fairness and another for relevance. Approach (ii) is also problematic because these measures tend to be ad-hoc and do not relate well to traditional relevance measures, like NDCG. Motivated by this, we present a new approach for jointly evaluating fairness and relevance in RSs: Distance to Pareto Frontier (DPFR). Given some user-item interaction data, we compute their Pareto frontier for a pair of existing relevance and fairness measures, and then use the distance from the frontier as a measure of the jointly achievable fairness and relevance. Our approach is modular and intuitive as it can be computed with existing measures. Experiments with 4 RS models, 3 re-ranking strategies, and 6 datasets show that existing metrics have inconsistent associations with our Pareto-optimal solution, making DPFR a more robust and theoretically well-founded joint measure for assessing fairness and relevance. Our code: https://github.com/theresiavr/DPFR-recsys-evaluation

Authors:Xuefeng Li, Haoyang Zou, Pengfei Liu
Title: LIMR: Less is More for RL Scaling
Abstract:
In this paper, we ask: what truly determines the effectiveness of RL training data for enhancing language models' reasoning capabilities? While recent advances like o1, Deepseek R1, and Kimi1.5 demonstrate RL's potential, the lack of transparency about training data requirements has hindered systematic progress. Starting directly from base models without distillation, we challenge the assumption that scaling up RL training data inherently improves performance. we demonstrate that a strategically selected subset of just 1,389 samples can outperform the full 8,523-sample dataset. We introduce Learning Impact Measurement (LIM), an automated method to evaluate and prioritize training samples based on their alignment with model learning trajectories, enabling efficient resource utilization and scalable implementation. Our method achieves comparable or even superior performance using only 1,389 samples versus the full 8,523 samples dataset. Notably, while recent data-efficient approaches (e.g., LIMO and s1) show promise with 32B-scale models, we find it significantly underperforms at 7B-scale through supervised fine-tuning (SFT). In contrast, our RL-based LIMR achieves 16.7% higher accuracy on AIME24 and outperforms LIMO and s1 by 13.0% and 22.2% on MATH500. These results fundamentally reshape our understanding of RL scaling in LLMs, demonstrating that precise sample selection, rather than data scale, may be the key to unlocking enhanced reasoning capabilities. For reproducible research and future innovation, we are open-sourcing LIMR, including implementation of LIM, training and evaluation code, curated datasets, and trained models at https://github.com/GAIR-NLP/LIMR.

Authors:Chen Xu, Zhirui Deng, Clara Rus, Xiaopeng Ye, Yuanna Liu, Jun Xu, Zhicheng Dou, Ji-Rong Wen, Maarten de Rijke
Title: FairDiverse: A Comprehensive Toolkit for Fair and Diverse Information Retrieval Algorithms
Abstract:
In modern information retrieval (IR). achieving more than just accuracy is essential to sustaining a healthy ecosystem, especially when addressing fairness and diversity considerations. To meet these needs, various datasets, algorithms, and evaluation frameworks have been introduced. However, these algorithms are often tested across diverse metrics, datasets, and experimental setups, leading to inconsistencies and difficulties in direct comparisons. This highlights the need for a comprehensive IR toolkit that enables standardized evaluation of fairness- and diversity-aware algorithms across different IR tasks. To address this challenge, we present FairDiverse, an open-source and standardized toolkit. FairDiverse offers a framework for integrating fair and diverse methods, including pre-processing, in-processing, and post-processing techniques, at different stages of the IR pipeline. The toolkit supports the evaluation of 28 fairness and diversity algorithms across 16 base models, covering two core IR tasks (search and recommendation) thereby establishing a comprehensive benchmark. Moreover, FairDiverse is highly extensible, providing multiple APIs that empower IR researchers to swiftly develop and evaluate their own fairness and diversity aware models, while ensuring fair comparisons with existing baselines. The project is open-sourced and available on https://github.com/XuChen0427/FairDiverse.

Authors:Shao Zhang, Xihuai Wang, Wenhao Zhang, Chaoran Li, Junru Song, Tingyu Li, Lin Qiu, Xuezhi Cao, Xunliang Cai, Wen Yao, Weinan Zhang, Xinbing Wang, Ying Wen
Title: Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration
Abstract:
Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent System 1 and System 2 methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates System 1 and System 2 for efficient real-time simultaneous human-AI collaboration. DPT-Agent's System 1 uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent's System 2 integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. DPT-Agent can effectively help LLMs convert correct slow thinking and reasoning into executable actions, thereby improving performance. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.

Authors:Jinheng Wang, Hansong Zhou, Ting Song, Shijie Cao, Yan Xia, Ting Cao, Jianyu Wei, Shuming Ma, Hongyu Wang, Furu Wei
Title: Bitnet.cpp: Efficient Edge Inference for Ternary LLMs
Abstract:
The advent of 1-bit large language models (LLMs), led by BitNet b1.58, has spurred interest in ternary LLMs. Despite this, research and practical applications focusing on efficient edge inference for ternary LLMs remain scarce. To bridge this gap, we introduce Bitnet.cpp, an inference system optimized for BitNet b1.58 and ternary LLMs. Given that mixed-precision matrix multiplication (mpGEMM) constitutes the bulk of inference time in ternary LLMs, Bitnet.cpp incorporates a novel mpGEMM library to facilitate sub-2-bits-per-weight, efficient and lossless inference. The library features two core solutions: Ternary Lookup Table (TL), which addresses spatial inefficiencies of previous bit-wise methods, and Int2 with a Scale (I2_S), which ensures lossless edge inference, both enabling high-speed inference. Our experiments show that Bitnet.cpp achieves up to a 6.25x increase in speed over full-precision baselines and up to 2.32x over low-bit baselines, setting new benchmarks in the field. Additionally, we expand TL to element-wise lookup table (ELUT) for low-bit LLMs in the appendix, presenting both theoretical and empirical evidence of its considerable potential. Bitnet.cpp is publicly available at https://github.com/microsoft/BitNet/tree/paper , offering a sophisticated solution for the efficient and practical deployment of edge LLMs.

Authors:Hanbin Wang, Xiaoxuan Zhou, Zhipeng Xu, Keyuan Cheng, Yuxin Zuo, Kai Tian, Jingwei Song, Junting Lu, Wenhui Hu, Xueyang Liu
Title: Code-Vision: Evaluating Multimodal LLMs Logic Understanding and Code Generation Capabilities
Abstract:
This paper introduces Code-Vision, a benchmark designed to evaluate the logical understanding and code generation capabilities of Multimodal Large Language Models (MLLMs). It challenges MLLMs to generate a correct program that fulfills specific functionality requirements based on a given flowchart, which visually represents the desired algorithm or process. Code-Vision comprises three subsets: HumanEval-V, Algorithm, and MATH, which evaluate MLLMs' coding abilities across basic programming, algorithmic, and mathematical problem-solving domains. Our experiments evaluate 12 MLLMs on Code-Vision. Experimental results demonstrate that there is a large performance difference between proprietary and open-source models. On Hard problems, GPT-4o can achieve 79.3% pass@1, but the best open-source model only achieves 15%. Further experiments reveal that Code-Vision can pose unique challenges compared to other multimodal reasoning benchmarks MMCode and MathVista. We also explore the reason for the poor performance of the open-source models. All data and codes are available at https://github.com/wanghanbinpanda/CodeVision.

Authors:Weilin Lin, Nanjun Zhou, Yanyun Wang, Jianze Li, Hui Xiong, Li Liu
Title: BackdoorDM: A Comprehensive Benchmark for Backdoor Learning on Diffusion Model
Abstract:
Backdoor learning is a critical research topic for understanding the vulnerabilities of deep neural networks. While the diffusion model (DM) has been broadly deployed in public over the past few years, the understanding of its backdoor vulnerability is still in its infancy compared to the extensive studies in discriminative models. Recently, many different backdoor attack and defense methods have been proposed for DMs, but a comprehensive benchmark for backdoor learning on DMs is still lacking. This absence makes it difficult to conduct fair comparisons and thorough evaluations of the existing approaches, thus hindering future research progress. To address this issue, we propose \textit{BackdoorDM}, the first comprehensive benchmark designed for backdoor learning on DMs. It comprises nine state-of-the-art (SOTA) attack methods, four SOTA defense strategies, and three useful visualization analysis tools. We first systematically classify and formulate the existing literature in a unified framework, focusing on three different backdoor attack types and five backdoor target types, which are restricted to a single type in discriminative models. Then, we systematically summarize the evaluation metrics for each type and propose a unified backdoor evaluation method based on multimodal large language model (MLLM). Finally, we conduct a comprehensive evaluation and highlight several important conclusions. We believe that BackdoorDM will help overcome current barriers and contribute to building a trustworthy artificial intelligence generated content (AIGC) community. The codes are released in https://github.com/linweiii/BackdoorDM.

Authors:Xuan Ren, Qi Chen, Lingqiao Liu
Title: Efficient Response Generation Strategy Selection for Fine-Tuning Large Language Models Through Self-Aligned Perplexity
Abstract:
Fine-tuning large language models (LLMs) typically relies on producing large sets of input-output pairs. Yet for a given question, there can be many valid outputs. In practice, these outputs are often derived by distilling knowledge from teacher models, and they can vary depending on the specific teacher model or prompting strategy employed. Recent findings show that how these training outputs are generated can significantly affect the performance of the fine-tuned model, raising an important question: how do we pick the best data generation method from among numerous possibilities? Rather than exhaustively training and evaluating on each candidate, this paper proposes a scalable approximate method that assesses a small subset of generated data to estimate its suitability for a specific target LLM. Our central idea is that effective outputs should be familiar to the target LLM. While previous work measures familiarity with perplexity, we find that perplexity might be suboptimal in characterizing familiarity through empirical analyses and practical observations. To address this, we introduce self-aligned perplexity, a novel metric capturing how closely candidate outputs adhere to the target LLM's own style and reasoning patterns. In this way, we can identify the most effective generation strategy on a small sample, then apply it to produce the complete training set. We demonstrate that training on data generated by the chosen method yields significant improvements across diverse reasoning-focused benchmarks, particularly in cases where different candidate methods lead to highly divergent training outcomes. Our implementation is publicly available at https://github.com/XuanRen4470/SPPL.

Authors:Zengkui Sun, Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, Jie Zhou
Title: Warmup-Distill: Bridge the Distribution Mismatch between Teacher and Student before Knowledge Distillation
Abstract:
The widespread deployment of Large Language Models (LLMs) is hindered by the high computational demands, making knowledge distillation (KD) crucial for developing compact smaller ones. However, the conventional KD methods endure the distribution mismatch issue between the teacher and student models, leading to the poor performance of distillation. For instance, the widely-used KL-based methods suffer the mode-averaging and mode-collapsing problems, since the mismatched probabitliy distribution between both models. Previous studies mainly optimize this issue via different distance calculations towards the distribution of both models. Unfortunately, the distribution mismatch issue still exists in the early stage of the distillation. Hence, to reduce the impact of distribution mismatch, we propose a simple yet efficient method, named Warmup-Distill, which aligns the distillation of the student to that of the teacher in advance of distillation. Specifically, we first detect the distribution of the student model in practical scenarios with its internal knowledge, and then modify the knowledge with low probability via the teacher as the checker. Consequently, Warmup-Distill aligns the internal student's knowledge to that of the teacher, which expands the distribution of the student with the teacher's, and assists the student model to learn better in the subsequent distillation. Experiments on the seven benchmarks demonstrate that Warmup-Distill could provide a warmup student more suitable for distillation, which outperforms the vanilla student by as least +0.4 averaged score among all benchmarks. Noteably, with the assistance of Warmup-Distill, the distillation on the math task could yield a further improvement, at most +1.9% accuracy.

Authors:Yuqi Pang, Bowen Yang, Haoqin Tu, Yun Cao, Zeyu Zhang
Title: Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning
Abstract:
Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD.

Authors:Yahya Can Tuğrul, A. Giray Yağlıkçı, İsmail Emir Yüksel, Ataberk Olgun, Oğuzhan Canpolat, Nisa Bostancı, Mohammad Sadrosadati, Oğuz Ergin, Onur Mutlu
Title: Understanding RowHammer Under Reduced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions
Abstract:
RowHammer is a major read disturbance mechanism in DRAM where repeatedly accessing (hammering) a row of DRAM cells (DRAM row) induces bitflips in physically nearby DRAM rows (victim rows). To ensure robust DRAM operation, state-of-the-art mitigation mechanisms restore the charge in potential victim rows (i.e., they perform preventive refresh or charge restoration). With newer DRAM chip generations, these mechanisms perform preventive refresh more aggressively and cause larger performance, energy, or area overheads. Therefore, it is essential to develop a better understanding and in-depth insights into the preventive refresh to secure real DRAM chips at low cost. In this paper, our goal is to mitigate RowHammer at low cost by understanding the impact of reduced preventive refresh latency on RowHammer. To this end, we present the first rigorous experimental study on the interactions between refresh latency and RowHammer characteristics in real DRAM chips. Our experimental characterization using 388 real DDR4 DRAM chips from three major manufacturers demonstrates that a preventive refresh latency can be significantly reduced (by 64%). To investigate the impact of reduced preventive refresh latency on system performance and energy efficiency, we reduce the preventive refresh latency and adjust the aggressiveness of existing RowHammer solutions by developing a new mechanism, Partial Charge Restoration for Aggressive Mitigation (PaCRAM). Our results show that PaCRAM reduces the performance and energy overheads induced by five state-of-the-art RowHammer mitigation mechanisms with small additional area overhead. Thus, PaCRAM introduces a novel perspective into addressing RowHammer vulnerability at low cost by leveraging our experimental observations. To aid future research, we open-source our PaCRAM implementation at https://github.com/CMU-SAFARI/PaCRAM.

Authors:Shuai Lyu, Haoran Luo, Ripeng Li, Zhonghong Ou, Jiangfeng Sun, Yang Qin, Xiaoran Shang, Meina Song, Yifan Zhu
Title: SQL-o1: A Self-Reward Heuristic Dynamic Search Method for Text-to-SQL
Abstract:
Text-to-SQL (Text2SQL) aims to map natural language questions to executable SQL queries. Although large language models (LLMs) have driven significant progress, current approaches struggle with poor transferability to open-source LLMs, limited robustness against logic and function errors in complex queries, and inefficiencies in structured search. We introduce SQL-o1, a self-reward-driven heuristic search framework built on an agent-based architecture to enhance model reasoning capabilities. SQL-o1 leverages Monte Carlo Tree Search (MCTS) for structured, multi-step exploration, and incorporates a dynamic pruning strategy to accelerate inference without sacrificing accuracy. On the Spider and Bird benchmarks, SQL-o1 achieves a +10.8 execution accuracy improvement on the complex Bird dataset, surpassing even GPT-4-based models. Notably, it exhibits strong few-shot generalization and robust cross-model transferability across open-source LLMs. Our code is available at:https://github.com/ShuaiLyu0110/SQL-o1.

Authors:Georg Wölflein, Dyke Ferber, Daniel Truhn, Ognjen Arandjelović, Jakob Nikolas Kather
Title: LLM Agents Making Agent Tools
Abstract:
Tool use has turned large language models (LLMs) into powerful agents that can perform complex multi-step tasks by dynamically utilising external software components. However, these tools must be implemented in advance by human developers, hindering the applicability of LLM agents in domains demanding large numbers of highly specialised tools, like in life sciences and medicine. Motivated by the growing trend of scientific studies accompanied by public code repositories, we propose ToolMaker, an agentic framework that autonomously transforms papers with code into LLM-compatible tools. Given a GitHub URL and short task description, ToolMaker autonomously installs dependencies and generates code to perform the task, using a closed-loop self-correction mechanism for debugging. To evaluate our approach, we introduce a benchmark comprising 15 complex computational tasks spanning various domains with over 100 unit tests to assess correctness and robustness. Our method correctly implements 80% of the tasks, substantially outperforming current state-of-the-art software engineering agents. ToolMaker therefore is a step towards fully autonomous agent-based scientific workflows. Our code and benchmark are publicly available at https://github.com/KatherLab/ToolMaker.

Authors:Guangya Yu, Yanhao Li, Zongying Jiang, Yuxiong Jin, Li Dai, Yupian Lin, Ruihui Hou, Weiyan Zhang, Yongqi Fan, Qi Ye, Jingping Liu, Tong Ruan
Title: CMQCIC-Bench: A Chinese Benchmark for Evaluating Large Language Models in Medical Quality Control Indicator Calculation
Abstract:
Medical quality control indicators are essential to assess the qualifications of healthcare institutions for medical services. With the impressive performance of large language models (LLMs) like GPT-4 in the medical field, leveraging these technologies for the Medical Quality Control Indicator Calculation (MQCIC) presents a promising approach. In this work, (1) we introduce a real-world task MQCIC and propose an open-source Chinese electronic medical records (EMRs)-based dataset (CMQCIC-Bench) comprising 785 instances and 76 indicators. (2) We propose a semi-automatic method to enhance the rule representation. Then we propose the Clinical Facts-based Inferential Rule (CF-IR) method that disentangles the clinical fact verification and inferential rule reasoning actions. (3) We conduct comprehensive experiments on 20 representative LLMs, covering general and medical models. Our findings reveal that CF-IR outperforms Chain-of-Thought methods in MQCIC tasks. (4) We conduct an error analysis and investigate the capabilities of clinical fact verification and inferential rule reasoning, providing insights to improve performance in the MQCIC further. The dataset and code is available in this repository https://github.com/YuY-2001/C-MQCIC.

Authors:Yuncheng Hua, Lizhen Qu, Zhuang Li, Hao Xue, Flora D. Salim, Gholamreza Haffari
Title: RIDE: Enhancing Large Language Model Alignment through Restyled In-Context Learning Demonstration Exemplars
Abstract:
Alignment tuning is crucial for ensuring large language models (LLMs) behave ethically and helpfully. Current alignment approaches require high-quality annotations and significant training resources. This paper proposes a low-cost, tuning-free method using in-context learning (ICL) to enhance LLM alignment. Through an analysis of high-quality ICL demos, we identified style as a key factor influencing LLM alignment capabilities and explicitly restyled ICL exemplars based on this stylistic framework. Additionally, we combined the restyled demos to achieve a balance between the two conflicting aspects of LLM alignment--factuality and safety. We packaged the restyled examples as prompts to trigger few-shot learning, improving LLM alignment. Compared to the best baseline approach, with an average score of 5.00 as the maximum, our method achieves a maximum 0.10 increase on the Alpaca task (from 4.50 to 4.60), a 0.22 enhancement on the Just-eval benchmark (from 4.34 to 4.56), and a maximum improvement of 0.32 (from 3.53 to 3.85) on the MT-Bench dataset. We release the code and data at https://github.com/AnonymousCode-ComputerScience/RIDE.

Authors:Marco ComunitÃ, Christian J. Steinmetz, Joshua D. Reiss
Title: NablAFx: A Framework for Differentiable Black-box and Gray-box Modeling of Audio Effects
Abstract:
We present NablAFx, an open-source framework developed to support research in differentiable black-box and gray-box modeling of audio effects. Built in PyTorch, NablAFx offers a versatile ecosystem to configure, train, evaluate, and compare various architectural approaches. It includes classes to manage model architectures, datasets, and training, along with features to compute and log losses, metrics and media, and plotting functions to facilitate detailed analysis. It incorporates implementations of established black-box architectures and conditioning methods, as well as differentiable DSP blocks and controllers, enabling the creation of both parametric and non-parametric gray-box signal chains. The code is accessible at https://github.com/mcomunita/nablafx.

Authors:Zikang Liu, Longteng Guo, Yepeng Tang, Tongtian Yue, Junxian Cai, Kai Ma, Qingbin Liu, Xi Chen, Jing Liu
Title: VRoPE: Rotary Position Embedding for Video Large Language Models
Abstract:
Rotary Position Embedding (RoPE) has shown strong performance in text-based Large Language Models (LLMs), but extending it to video remains a challenge due to the intricate spatiotemporal structure of video frames. Existing adaptations, such as RoPE-3D, attempt to encode spatial and temporal dimensions separately but suffer from two major limitations: positional bias in attention distribution and disruptions in video-text transitions. To overcome these issues, we propose Video Rotary Position Embedding (VRoPE), a novel positional encoding method tailored for Video-LLMs. Specifically, we introduce a more balanced encoding strategy that mitigates attention biases, ensuring a more uniform distribution of spatial focus. Additionally, our approach restructures positional indices to ensure a smooth transition between video and text tokens. Extensive experiments on different models demonstrate that VRoPE consistently outperforms previous RoPE variants, achieving significant improvements in video understanding, temporal reasoning, and retrieval tasks. Code will be available at https://github.com/johncaged/VRoPE.

Authors:Linjie Mu, Zhongzhen Huang, Shengqian Qin, Yakun Zhu, Shaoting Zhang, Xiaofan Zhang
Title: MMXU: A Multi-Modal and Multi-X-ray Understanding Dataset for Disease Progression
Abstract:
Large vision-language models (LVLMs) have shown great promise in medical applications, particularly in visual question answering (MedVQA) and diagnosis from medical images. However, existing datasets and models often fail to consider critical aspects of medical diagnostics, such as the integration of historical records and the analysis of disease progression over time. In this paper, we introduce MMXU (Multimodal and MultiX-ray Understanding), a novel dataset for MedVQA that focuses on identifying changes in specific regions between two patient visits. Unlike previous datasets that primarily address single-image questions, MMXU enables multi-image questions, incorporating both current and historical patient data. We demonstrate the limitations of current LVLMs in identifying disease progression on MMXU-\textit{test}, even those that perform well on traditional benchmarks. To address this, we propose a MedRecord-Augmented Generation (MAG) approach, incorporating both global and regional historical records. Our experiments show that integrating historical records significantly enhances diagnostic accuracy by at least 20\%, bridging the gap between current LVLMs and human expert performance. Additionally, we fine-tune models with MAG on MMXU-\textit{dev}, which demonstrates notable improvements. We hope this work could illuminate the avenue of advancing the use of LVLMs in medical diagnostics by emphasizing the importance of historical context in interpreting medical images. Our dataset is released at github: https://github.com/linjiemu/MMXU.

Authors:Habib Larian, Faramarz Safi-Esfahani
Title: InTec: integrated things-edge computing: a framework for distributing machine learning pipelines in edge AI systems
Abstract:
With the rapid expansion of the Internet of Things (IoT), sensors, smartphones, and wearables have become integral to daily life, powering smart applications in home automation, healthcare, and intelligent transportation. However, these advancements face significant challenges due to latency and bandwidth constraints imposed by traditional cloud based machine learning (ML) frameworks. The need for innovative solutions is evident as cloud computing struggles with increased latency and network congestion. Previous attempts to offload parts of the ML pipeline to edge and cloud layers have yet to fully resolve these issues, often worsening system response times and network congestion due to the computational limitations of edge devices. In response to these challenges, this study introduces the InTec (Integrated Things Edge Computing) framework, a groundbreaking innovation in IoT architecture. Unlike existing methods, InTec fully leverages the potential of a three tier architecture by strategically distributing ML tasks across the Things, Edge, and Cloud layers. This comprehensive approach enables real time data processing at the point of data generation, significantly reducing latency, optimizing network traffic, and enhancing system reliability. InTec effectiveness is validated through empirical evaluation using the MHEALTH dataset for human motion detection in smart homes, demonstrating notable improvements in key metrics: an 81.56 percent reduction in response time, a 10.92 percent decrease in network traffic, a 9.82 percent improvement in throughput, a 21.86 percent reduction in edge energy consumption, and a 25.83 percent reduction in cloud energy consumption. These advancements establish InTec as a new benchmark for scalable, responsive, and energy efficient IoT applications, demonstrating its potential to revolutionize how the ML pipeline is integrated into Edge AI (EI) systems.

Authors:Dariush Lotfi, Mohammad-Ali Nikouei Mahani, Mohamad Koohi-Moghadam, Kyongtae Ty Bae
Title: Safeguarding AI in Medical Imaging: Post-Hoc Out-of-Distribution Detection with Normalizing Flows
Abstract:
In AI-driven medical imaging, the failure to detect out-of-distribution (OOD) data poses a severe risk to clinical reliability, potentially leading to critical diagnostic errors. Current OOD detection methods often demand impractical retraining or modifications to pre-trained models, hindering their adoption in regulated clinical environments. To address this challenge, we propose a post-hoc normalizing flow-based approach that seamlessly integrates with existing pre-trained models without altering their weights. Our evaluation used a novel in-house built dataset, MedOOD, meticulously curated to simulate clinically relevant distributional shifts, alongside the MedMNIST benchmark dataset. On our in-house MedOOD dataset, our method achieved an AUROC of 84.61%, outperforming state-of-the-art methods like ViM (80.65%) and MDS (80.87%). Similarly, on MedMNIST, it reached an exceptional AUROC of 93.8%, surpassing leading approaches such as ViM (88.08%) and ReAct (87.05%). This superior performance, coupled with its post-hoc integration capability, positions our method as a vital safeguard for enhancing safety in medical imaging workflows. The model and code to build OOD datasets are publicly accessible at https://github.com/dlotfi/MedOODFlow.

Authors:Xiaoyi Dong, Jian Cheng, Xi Sheryl Zhang
Title: Maximum Entropy Reinforcement Learning with Diffusion Policy
Abstract:
The Soft Actor-Critic (SAC) algorithm with a Gaussian policy has become a mainstream implementation for realizing the Maximum Entropy Reinforcement Learning (MaxEnt RL) objective, which incorporates entropy maximization to encourage exploration and enhance policy robustness. While the Gaussian policy performs well on simpler tasks, its exploration capacity and potential performance in complex multi-goal RL environments are limited by its inherent unimodality. In this paper, we employ the diffusion model, a powerful generative model capable of capturing complex multimodal distributions, as the policy representation to fulfill the MaxEnt RL objective, developing a method named MaxEnt RL with Diffusion Policy (MaxEntDP). Our method enables efficient exploration and brings the policy closer to the optimal MaxEnt policy. Experimental results on Mujoco benchmarks show that MaxEntDP outperforms the Gaussian policy and other generative models within the MaxEnt RL framework, and performs comparably to other state-of-the-art diffusion-based online RL algorithms. Our code is available at https://github.com/diffusionyes/MaxEntDP.

Authors:Leyi Pan, Aiwei Liu, Shiyu Huang, Yijian Lu, Xuming Hu, Lijie Wen, Irwin King, Philip S. Yu
Title: Can LLM Watermarks Robustly Prevent Unauthorized Knowledge Distillation?
Abstract:
The radioactive nature of Large Language Model (LLM) watermarking enables the detection of watermarks inherited by student models when trained on the outputs of watermarked teacher models, making it a promising tool for preventing unauthorized knowledge distillation. However, the robustness of watermark radioactivity against adversarial actors remains largely unexplored. In this paper, we investigate whether student models can acquire the capabilities of teacher models through knowledge distillation while avoiding watermark inheritance. We propose two categories of watermark removal approaches: pre-distillation removal through untargeted and targeted training data paraphrasing (UP and TP), and post-distillation removal through inference-time watermark neutralization (WN). Extensive experiments across multiple model pairs, watermarking schemes and hyper-parameter settings demonstrate that both TP and WN thoroughly eliminate inherited watermarks, with WN achieving this while maintaining knowledge transfer efficiency and low computational overhead. Given the ongoing deployment of watermarking techniques in production LLMs, these findings emphasize the urgent need for more robust defense strategies. Our code is available at https://github.com/THU-BPM/Watermark-Radioactivity-Attack.

Authors:Arnaud Bougaham, Benoît Frénay
Title: Towards a Trustworthy Anomaly Detection for Critical Applications through Approximated Partial AUC Loss
Abstract:
Anomaly Detection is a crucial step for critical applications such in the industrial, medical or cybersecurity domains. These sectors share the same requirement of handling differently the different types of classification errors. Indeed, even if false positives are acceptable, false negatives are not, because it would reflect a missed detection of a quality issue, a disease or a cyber threat. To fulfill this requirement, we propose a method that dynamically applies a trustworthy approximated partial AUC ROC loss (tapAUC). A binary classifier is trained to optimize the specific range of the AUC ROC curve that prevents the True Positive Rate (TPR) to reach 100% while minimizing the False Positive Rate (FPR). The optimal threshold that does not trigger any false negative is then kept and used at the test step. The results show a TPR of 92.52% at a 20.43% FPR for an average across 6 datasets, representing a TPR improvement of 4.3% for a FPR cost of 12.2% against other state-of-the-art methods. The code is available at https://github.com/ArnaudBougaham/tapAUC.

Authors:Jaehyeong Jo, Sung Ju Hwang
Title: Continuous Diffusion Model for Language Modeling
Abstract:
Diffusion models have emerged as a promising alternative to autoregressive models in modeling discrete categorical data. Yet diffusion models that directly work on discrete data space do not fully exploit the power of iterative refinement, as the signals are lost during the transition between discrete states. Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches, and the unclear link between them restricts the development of diffusion models for discrete data. In this work, we propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution. We establish a connection between the discrete diffusion and continuous flow on the statistical manifold, and building on the analogy, we introduce a simple design for the diffusion process that generalizes previous discrete diffusion models. We further propose a simulation-free training framework based on radial symmetry and a simple technique to address the high dimensionality of the manifold. Comprehensive experiments on language modeling benchmarks and other modalities show that our method outperforms existing discrete diffusion models and approaches the performance of autoregressive models. Codes available at \href{https://github.com/harryjo97/RDLM}{https://github.com/harryjo97/RDLM}.

Authors:Lior Cohen, Kaixin Wang, Bingyi Kang, Uri Gadot, Shie Mannor
Title: Uncovering Untapped Potential in Sample-Efficient World Model Agents
Abstract:
World model (WM) agents enable sample-efficient reinforcement learning by learning policies entirely from simulated experience. However, existing token-based world models (TBWMs) are limited to visual inputs and discrete actions, restricting their adoption and applicability. Moreover, although both intrinsic motivation and prioritized WM replay have shown promise in improving WM performance and generalization, they remain underexplored in this setting, particularly in combination. We introduce Simulus, a highly modular TBWM agent that integrates (1) a modular multi-modality tokenization framework, (2) intrinsic motivation, (3) prioritized WM replay, and (4) regression-as-classification for reward and return prediction. Simulus achieves state-of-the-art sample efficiency for planning-free WMs across three diverse benchmarks. Ablation studies reveal the individual contribution of each component while highlighting their synergy. Our code and model weights are publicly available at https://github.com/leor-c/Simulus.

Authors:Jiahong Liu, Zexuan Qiu, Zhongyang Li, Quanyu Dai, Wenhao Yu, Jieming Zhu, Minda Hu, Menglin Yang, Tat-Seng Chua, Irwin King
Title: A Survey of Personalized Large Language Models: Progress and Future Directions
Abstract:
Large Language Models (LLMs) excel in handling general knowledge tasks, yet they struggle with user-specific personalization, such as understanding individual emotions, writing styles, and preferences. Personalized Large Language Models (PLLMs) tackle these challenges by leveraging individual user data, such as user profiles, historical dialogues, content, and interactions, to deliver responses that are contextually relevant and tailored to each user's specific needs. This is a highly valuable research topic, as PLLMs can significantly enhance user satisfaction and have broad applications in conversational agents, recommendation systems, emotion recognition, medical assistants, and more. This survey reviews recent advancements in PLLMs from three technical perspectives: prompting for personalized context (input level), finetuning for personalized adapters (model level), and alignment for personalized preferences (objective level). To provide deeper insights, we also discuss current limitations and outline several promising directions for future research. Updated information about this survey can be found at the https://github.com/JiahongLiu21/Awesome-Personalized-Large-Language-Models.

Authors:Zichen Wen, Yifeng Gao, Shaobo Wang, Junyuan Zhang, Qintong Zhang, Weijia Li, Conghui He, Linfeng Zhang
Title: Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More
Abstract:
Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99$\times$ and 2.99$\times$ speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.

Authors:Kung-Hsiang Huang, Can Qin, Haoyi Qiu, Philippe Laban, Shafiq Joty, Caiming Xiong, Chien-Sheng Wu
Title: Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding
Abstract:
Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks, yet they often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison, which are essential for relevant complex tasks like chart understanding and geometric reasoning. In this work, we first investigate the root causes of this deficiency through a suite of probing tasks focusing on basic visual arithmetic. Our analysis reveals that while pre-trained vision encoders typically capture sufficient information, the text decoder often fails to decode it correctly for arithmetic reasoning. To address this, we propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development. CogAlign trains VLMs to recognize invariant properties under visual transformations. We demonstrate that this approach significantly improves the performance of three diverse VLMs on our proposed probing tasks. Furthermore, CogAlign enhances performance by an average of 4.6% on CHOCOLATE and 2.9% on MATH-VISION, outperforming or matching supervised fine-tuning methods while requiring only 60% less training data. These results highlight the effectiveness and generalizability of CogAlign in improving fundamental visual arithmetic capabilities and their transfer to downstream tasks.

Authors:Haochen Li, Wanjin Feng, Xin Zhou, Zhiqi Shen
Title: GiFT: Gibbs Fine-Tuning for Code Generation
Abstract:
Training Large Language Models (LLMs) with synthetic data is a prevalent practice in code generation. A key approach is self-training, where LLMs are iteratively trained on self-generated correct code snippets. In this case, the self-generated codes are drawn from a conditional distribution, conditioned on a specific seed description. However, the seed description is not the only valid representation that aligns with its intended meaning. With all valid descriptions and codes forming a joint space, codes drawn from the conditional distribution would lead to an underrepresentation of the full description-code space. As such, we propose Gibbs Fine-Tuning (GiFT), a novel self-training method inspired by Gibbs sampling. GiFT allows self-generated data to be drawn from the marginal distribution of the joint space, thereby mitigating the biases inherent in conditional sampling. We provide a theoretical analysis demonstrating the potential benefits of fine-tuning LLMs with code derived from the marginal distribution. Furthermore, we propose a perplexity-based code selection method to mitigate the imbalanced long-tail distribution of the self-generated codes. Empirical evaluation of two LLMs across four datasets demonstrates that GiFT achieves superior performance, particularly on more challenging benchmarks. Source code is available at https://github.com/Alex-HaochenLi/GiFT.

Authors:Jiwoo Kim, Geunsik Bae, Changseung Kim, Jinwoo Lee, Woojae Shin, Hyondong Oh
Title: Doppler Correspondence: Non-Iterative Scan Matching With Doppler Velocity-Based Correspondence
Abstract:
Achieving successful scan matching is essential for LiDAR odometry. However, in challenging environments with adverse weather conditions or repetitive geometric patterns, LiDAR odometry performance is degraded due to incorrect scan matching. Recently, the emergence of frequency-modulated continuous wave 4D LiDAR and 4D radar technologies has provided the potential to address these unfavorable conditions. The term 4D refers to point cloud data characterized by range, azimuth, and elevation along with Doppler velocity. Although 4D data is available, most scan matching methods for 4D LiDAR and 4D radar still establish correspondence by repeatedly identifying the closest points between consecutive scans, overlooking the Doppler information. This paper introduces, for the first time, a simple Doppler velocity-based correspondence -- Doppler Correspondence -- that is invariant to translation and small rotation of the sensor, with its geometric and kinematic foundations. Extensive experiments demonstrate that the proposed method enables the direct matching of consecutive point clouds without an iterative process, making it computationally efficient. Additionally, it provides a more robust correspondence estimation in environments with repetitive geometric patterns.The implementation of our proposed method is publicly available at https://github.com/Tars0523/Doppler Correspondence.

Authors:Ivo Gollini Navarrete, Nicolas Mauricio Cuadrado, Jose Renato Restom, Martin Takáč, Samuel Horváth
Title: Fishing For Cheap And Efficient Pruners At Initialization
Abstract:
Pruning offers a promising solution to mitigate the associated costs and environmental impact of deploying large deep neural networks (DNNs). Traditional approaches rely on computationally expensive trained models or time-consuming iterative prune-retrain cycles, undermining their utility in resource-constrained settings. To address this issue, we build upon the established principles of saliency (LeCun et al., 1989) and connection sensitivity (Lee et al., 2018) to tackle the challenging problem of one-shot pruning neural networks (NNs) before training (PBT) at initialization. We introduce Fisher-Taylor Sensitivity (FTS), a computationally cheap and efficient pruning criterion based on the empirical Fisher Information Matrix (FIM) diagonal, offering a viable alternative for integrating first- and second-order information to identify a model's structurally important parameters. Although the FIM-Hessian equivalency only holds for convergent models that maximize the likelihood, recent studies (Karakida et al., 2019) suggest that, even at initialization, the FIM captures essential geometric information of parameters in overparameterized NNs, providing the basis for our method. Finally, we demonstrate empirically that layer collapse, a critical limitation of data-dependent pruning methodologies, is easily overcome by pruning within a single training epoch after initialization. We perform experiments on ResNet18 and VGG19 with CIFAR-10 and CIFAR-100, widely used benchmarks in pruning research. Our method achieves competitive performance against state-of-the-art techniques for one-shot PBT, even under extreme sparsity conditions. Our code is made available to the public.

Authors:Hao Xu, Tengfei Xue, Jianan Fan, Dongnan Liu, Yuqian Chen, Fan Zhang, Carl-Fredrik Westin, Ron Kikinis, Lauren J. O'Donnell, Weidong Cai
Title: Medical Image Registration Meets Vision Foundation Model: Prototype Learning and Contour Awareness
Abstract:
Medical image registration is a fundamental task in medical image analysis, aiming to establish spatial correspondences between paired images. However, existing unsupervised deformable registration methods rely solely on intensity-based similarity metrics, lacking explicit anatomical knowledge, which limits their accuracy and robustness. Vision foundation models, such as the Segment Anything Model (SAM), can generate high-quality segmentation masks that provide explicit anatomical structure knowledge, addressing the limitations of traditional methods that depend only on intensity similarity. Based on this, we propose a novel SAM-assisted registration framework incorporating prototype learning and contour awareness. The framework includes: (1) Explicit anatomical information injection, where SAM-generated segmentation masks are used as auxiliary inputs throughout training and testing to ensure the consistency of anatomical information; (2) Prototype learning, which leverages segmentation masks to extract prototype features and aligns prototypes to optimize semantic correspondences between images; and (3) Contour-aware loss, a contour-aware loss is designed that leverages the edges of segmentation masks to improve the model's performance in fine-grained deformation fields. Extensive experiments demonstrate that the proposed framework significantly outperforms existing methods across multiple datasets, particularly in challenging scenarios with complex anatomical structures and ambiguous boundaries. Our code is available at https://github.com/HaoXu0507/IPMI25-SAM-Assisted-Registration.

Authors:Lulu Yu, Keping Bi, Jiafeng Guo, Shihao Liu, Dawei Yin, Xueqi Cheng
Title: Unbiased Learning to Rank with Query-Level Click Propensity Estimation: Beyond Pointwise Observation and Relevance
Abstract:
Most existing unbiased learning-to-rank (ULTR) approaches are based on the user examination hypothesis, which assumes that users will click a result only if it is both relevant and observed (typically modeled by position). However, in real-world scenarios, users often click only one or two results after examining multiple relevant options, due to limited patience or because their information needs have already been satisfied. Motivated by this, we propose a query-level click propensity model to capture the probability that users will click on different result lists, allowing for non-zero probabilities that users may not click on an observed relevant result. We hypothesize that this propensity increases when more potentially relevant results are present, and refer to this user behavior as relevance saturation bias. Our method introduces a Dual Inverse Propensity Weighting (DualIPW) mechanism -- combining query-level and position-level IPW -- to address both relevance saturation and position bias. Through theoretical derivation, we prove that DualIPW can learn an unbiased ranking model. Experiments on the real-world Baidu-ULTR dataset demonstrate that our approach significantly outperforms state-of-the-art ULTR baselines. The code and dataset information can be found at https://github.com/Trustworthy-Information-Access/DualIPW.

Authors:Junru Lu, Jiazheng Li, Guodong Shen, Lin Gui, Siyu An, Yulan He, Di Yin, Xing Sun
Title: RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following
Abstract:
Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.

Authors:Zhongwei Chen, Zhao-Xu Yang, Hai-Jun Rong, Guoqi Li
Title: Without Paired Labeled Data: End-to-End Self-Supervised Learning for Drone-view Geo-Localization
Abstract:
Drone-view Geo-Localization (DVGL) aims to achieve accurate localization of drones by retrieving the most relevant GPS-tagged satellite images. However, most existing methods heavily rely on strictly pre-paired drone-satellite images for supervised learning. When the target region shifts, new paired samples are typically required to adapt to the distribution changes. The high cost of annotation and the limited transferability of these methods significantly hinder the practical deployment of DVGL in open-world scenarios. To address these limitations, we propose a novel end-to-end self-supervised learning method with a shallow backbone network, called the dynamic memory-driven and neighborhood information learning (DMNIL) method. It employs a clustering algorithm to generate pseudo-labels and adopts a dual-path contrastive learning framework to learn discriminative intra-view representations. Furthermore, DMNIL incorporates two core modules, including the dynamic hierarchical memory learning (DHML) module and the information consistency evolution learning (ICEL) module. The DHML module combines short-term and long-term memory to enhance intra-view feature consistency and discriminability. Meanwhile, the ICEL module utilizes a neighborhood-driven dynamic constraint mechanism to systematically capture implicit cross-view semantic correlations, consequently improving cross-view feature alignment. To further stabilize and strengthen the self-supervised training process, a pseudo-label enhancement strategy is introduced to enhance the quality of pseudo supervision. Extensive experiments on three public benchmark datasets demonstrate that the proposed method consistently outperforms existing self-supervised methods and even surpasses several state-of-the-art supervised methods. Our code is available at https://github.com/ISChenawei/DMNIL.

Authors:Lei Li, Xiao Zhou
Title: Leave No One Behind: Enhancing Diversity While Maintaining Accuracy in Social Recommendation
Abstract:
Social recommendation, which incorporates social connections into recommender systems, has proven effective in improving recommendation accuracy. However, beyond accuracy, diversity is also crucial for enhancing user engagement. Despite its importance, the impact of social recommendation models on diversity remains largely unexplored. In this study, we systematically examine the dual performance of existing social recommendation algorithms in terms of both accuracy and diversity. Our empirical analysis reveals a concerning trend: while social recommendation models enhance accuracy, they often reduce diversity. To address this issue, we propose Diversified Social Recommendation (DivSR), a novel approach that employs relational knowledge distillation to transfer high-diversity structured knowledge from non-social recommendation models to social recommendation models. DivSR is a lightweight, model-agnostic framework that seamlessly integrates with existing social recommendation architectures. Experiments on three benchmark datasets demonstrate that DivSR significantly enhances diversity while maintaining competitive accuracy, achieving a superior accuracy-diversity trade-off. Our code and data are publicly available at: https://github.com/ll0ruc/DivSR.

Authors:Jack Gallifant, Shan Chen, Kuleen Sasse, Hugo Aerts, Thomas Hartvigsen, Danielle S. Bitterman
Title: Sparse Autoencoder Features for Classifications and Transferability
Abstract:
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.

Authors:Shaina Raza, Ashmal Vayani, Aditya Jain, Aravind Narayanan, Vahid Reza Khazaie, Syed Raza Bashir, Elham Dolatabadi, Gias Uddin, Christos Emmanouilidis, Rizwan Qureshi, Mubarak Shah
Title: VLDBench Evaluating Multimodal Disinformation with Regulatory Alignment
Abstract:
Detecting disinformation that blends manipulated text and images has become increasingly challenging, as AI tools make synthetic content easy to generate and disseminate. While most existing AI safety benchmarks focus on single modality misinformation (i.e., false content shared without intent to deceive), intentional multimodal disinformation, such as propaganda or conspiracy theories that imitate credible news, remains largely unaddressed. We introduce the Vision-Language Disinformation Detection Benchmark (VLDBench), the first large-scale resource supporting both unimodal (text-only) and multimodal (text + image) disinformation detection. VLDBench comprises approximately 62,000 labeled text-image pairs across 13 categories, curated from 58 news outlets. Using a semi-automated pipeline followed by expert review, 22 domain experts invested over 500 hours to produce high-quality annotations with substantial inter-annotator agreement. Evaluations of state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) on VLDBench show that incorporating visual cues improves detection accuracy by 5 to 35 percentage points over text-only models. VLDBench provides data and code for evaluation, fine-tuning, and robustness testing to support disinformation analysis. Developed in alignment with AI governance frameworks (e.g., the MIT AI Risk Repository), VLDBench offers a principled foundation for advancing trustworthy disinformation detection in multimodal media. Project: https://vectorinstitute.github.io/VLDBench/ Dataset: https://huggingface.co/datasets/vector-institute/VLDBench Code: https://github.com/VectorInstitute/VLDBench

Authors:Seunghyuk Cho, Zhenyue Qin, Yang Liu, Youngbin Choi, Seungbeom Lee, Dongwoo Kim
Title: GeoDANO: Geometric VLM with Domain Agnostic Vision Encoder
Abstract:
We introduce GeoDANO, a geometric vision-language model (VLM) with a domain-agnostic vision encoder, for solving plane geometry problems. Although VLMs have been employed for solving geometry problems, their ability to recognize geometric features remains insufficiently analyzed. To address this gap, we propose a benchmark that evaluates the recognition of visual geometric features, including primitives such as dots and lines, and relations such as orthogonality. Our preliminary study shows that vision encoders often used in general-purpose VLMs, e.g., OpenCLIP, fail to detect these features and struggle to generalize across domains. To overcome the limitation, we develop GeoCLIP, a CLIP-based model trained on synthetic geometric diagram--caption pairs. Benchmark results show that GeoCLIP outperforms existing vision encoders in recognizing geometric features. We then propose our VLM, GeoDANO, which augments GeoCLIP with a domain adaptation strategy for unseen diagram styles. GeoDANO outperforms specialized methods for plane geometry problems and GPT-4o on MathVerse. The implementation is available at https://github.com/ml-postech/GeoDANO.

Authors:Rongwu Xu, Xiaojian Li, Shuo Chen, Wei Xu
Title: Nuclear Deployed: Analyzing Catastrophic Risks in Decision-making of Autonomous LLM Agents
Abstract:
Large language models (LLMs) are evolving into autonomous decision-makers, raising concerns about catastrophic risks in high-stakes scenarios, particularly in Chemical, Biological, Radiological and Nuclear (CBRN) domains. Based on the insight that such risks can originate from trade-offs between the agent's Helpful, Harmlessness and Honest (HHH) goals, we build a novel three-stage evaluation framework, which is carefully constructed to effectively and naturally expose such risks. We conduct 14,400 agentic simulations across 12 advanced LLMs, with extensive experiments and analysis. Results reveal that LLM agents can autonomously engage in catastrophic behaviors and deception, without being deliberately induced. Furthermore, stronger reasoning abilities often increase, rather than mitigate, these risks. We also show that these agents can violate instructions and superior commands. On the whole, we empirically prove the existence of catastrophic risks in autonomous LLM agents. We release our code to foster further research.

Authors:Andrii Krutsylo
Title: Non-Uniform Memory Sampling in Experience Replay
Abstract:
Continual learning is the process of training machine learning models on a sequence of tasks where data distributions change over time. A well-known obstacle in this setting is catastrophic forgetting, a phenomenon in which a model drastically loses performance on previously learned tasks when learning new ones. A popular strategy to alleviate this problem is experience replay, in which a subset of old samples is stored in a memory buffer and replayed with new data. Despite continual learning advances focusing on which examples to store and how to incorporate them into the training loss, most approaches assume that sampling from this buffer is uniform by default. We challenge the assumption that uniform sampling is necessarily optimal. We conduct an experiment in which the memory buffer updates the same way in every trial, but the replay probability of each stored sample changes between trials based on different random weight distributions. Specifically, we generate 50 different non-uniform sampling probability weights for each trial and compare their final accuracy to the uniform sampling baseline. We find that there is always at least one distribution that significantly outperforms the baseline across multiple buffer sizes, models, and datasets. These results suggest that more principled adaptive replay policies could yield further gains. We discuss how exploiting this insight could inspire new research on non-uniform memory sampling in continual learning to better mitigate catastrophic forgetting. The code supporting this study is available at $\href{https://github.com/DentonJC/memory-sampling}{https://github.com/DentonJC/memory-sampling}$.

Authors:Yanran Wu, Inez Hua, Yi Ding
Title: Unveiling Environmental Impacts of Large Language Model Serving: A Functional Unit View
Abstract:
Large language models (LLMs) offer powerful capabilities but come with significant environmental impact, particularly in carbon emissions. Existing studies benchmark carbon emissions but lack a standardized basis for comparison across different model configurations. To address this, we introduce the concept of functional unit (FU) as a standardized basis and develop FUEL, the first FU-based framework for evaluating LLM serving's environmental impact. Through three case studies, we uncover key insights and trade-offs in reducing carbon emissions by optimizing model size, quantization strategy, and hardware choice, paving the way for more sustainable LLM serving. The code is available at https://github.com/jojacola/FUEL.

Authors:Sayantan Adak, Somnath Banerjee, Rajarshi Mandal, Avik Halder, Sayan Layek, Rima Hazra, Animesh Mukherjee
Title: MemeSense: An Adaptive In-Context Framework for Social Commonsense Driven Meme Moderation
Abstract:
Memes present unique moderation challenges due to their subtle, multimodal interplay of images, text, and social context. Standard systems relying predominantly on explicit textual cues often overlook harmful content camouflaged by irony, symbolism, or cultural references. To address this gap, we introduce MemeSense, an adaptive in-context learning framework that fuses social commonsense reasoning with visually and semantically related reference examples. By encoding crucial task information into a learnable cognitive shift vector, MemeSense effectively balances lexical, visual, and ethical considerations, enabling precise yet context-aware meme intervention. Extensive evaluations on a curated set of implicitly harmful memes demonstrate that MemeSense substantially outperforms strong baselines, paving the way for safer online communities. Code and data available at: https://github.com/sayantan11995/MemeSense

Authors:Yixin Ou, Yunzhi Yao, Ningyu Zhang, Hui Jin, Jiacheng Sun, Shumin Deng, Zhenguo Li, Huajun Chen
Title: How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training
Abstract:
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.

Authors:Haoming Xu, Ningyuan Zhao, Liming Yang, Sendong Zhao, Shumin Deng, Mengru Wang, Bryan Hooi, Nay Oo, Huajun Chen, Ningyu Zhang
Title: ReLearn: Unlearning via Learning for Large Language Models
Abstract:
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.

Authors:Ante Wang, Linfeng Song, Ye Tian, Dian Yu, Haitao Mi, Xiangyu Duan, Zhaopeng Tu, Jinsong Su, Dong Yu
Title: Don't Get Lost in the Trees: Streamlining LLM Reasoning by Overcoming Tree Search Exploration Pitfalls
Abstract:
Recent advancements in tree search algorithms guided by verifiers have significantly enhanced the reasoning capabilities of large language models (LLMs), but at the cost of increased computational resources. In this work, we identify two key challenges contributing to this inefficiency: $\textit{over-exploration}$ due to redundant states with semantically equivalent content, and $\textit{under-exploration}$ caused by high variance in verifier scoring leading to frequent trajectory switching. To address these issues, we propose FETCH, an e$\textbf{f}$fici$\textbf{e}$nt $\textbf{t}$ree sear$\textbf{ch}$ framework, which is a flexible, plug-and-play system compatible with various tree search algorithms. Our framework mitigates over-exploration by merging semantically similar states using agglomerative clustering of text embeddings obtained from a fine-tuned SimCSE model. To tackle under-exploration, we enhance verifiers by incorporating temporal difference learning with adjusted $λ$-returns during training to reduce variance, and employing a verifier ensemble to aggregate scores during inference. Experiments on GSM8K, GSM-Plus, and MATH datasets demonstrate that our methods significantly improve reasoning accuracy and computational efficiency across four different tree search algorithms, paving the way for more practical applications of LLM-based reasoning. The code is available at https://github.com/Soistesimmer/Fetch.

Authors:Shilong Yang, Qi Zang, Chulong Zhang, Lingfeng Huang, Yaoqin Xie
Title: RT-DEMT: A hybrid real-time acupoint detection model combining mamba and transformer
Abstract:
Traditional Chinese acupuncture methods often face controversy in clinical practice due to their high subjectivity. Additionally, current intelligent-assisted acupuncture systems have two major limitations: slow acupoint localization speed and low accuracy. To address these limitations, a new method leverages the excellent inference efficiency of the state-space model Mamba, while retaining the advantages of the attention mechanism in the traditional DETR architecture, to achieve efficient global information integration and provide high-quality feature information for acupoint localization tasks. Furthermore, by employing the concept of residual likelihood estimation, it eliminates the need for complex upsampling processes, thereby accelerating the acupoint localization task. Our method achieved state-of-the-art (SOTA) accuracy on a private dataset of acupoints on the human back, with an average Euclidean distance pixel error (EPE) of 7.792 and an average time consumption of 10.05 milliseconds per localization task. Compared to the second-best algorithm, our method improved both accuracy and speed by approximately 14\%. This significant advancement not only enhances the efficacy of acupuncture treatment but also demonstrates the commercial potential of automated acupuncture robot systems. Access to our method is available at https://github.com/Sohyu1/RT-DEMT

Authors:Tianshi Zheng, Jiayang Cheng, Chunyang Li, Haochen Shi, Zihao Wang, Jiaxin Bai, Yangqiu Song, Ginny Y. Wong, Simon See
Title: LogiDynamics: Unraveling the Dynamics of Inductive, Abductive and Deductive Logical Inferences in LLM Reasoning
Abstract:
Modern large language models (LLMs) employ diverse logical inference mechanisms for reasoning, making the strategic optimization of these approaches critical for advancing their capabilities. This paper systematically investigate the comparative dynamics of inductive (System 1) versus abductive/deductive (System 2) inference in LLMs. We utilize a controlled analogical reasoning environment, varying modality (textual, visual, symbolic), difficulty, and task format (MCQ / free-text). Our analysis reveals System 2 pipelines generally excel, particularly in visual/symbolic modalities and harder tasks, while System 1 is competitive for textual and easier problems. Crucially, task format significantly influences their relative advantage, with System 1 sometimes outperforming System 2 in free-text rule-execution. These core findings generalize to broader in-context learning. Furthermore, we demonstrate that advanced System 2 strategies like hypothesis selection and iterative refinement can substantially scale LLM reasoning. This study offers foundational insights and actionable guidelines for strategically deploying logical inference to enhance LLM reasoning. Resources are available at https://github.com/HKUST-KnowComp/LogiDynamics.

Authors:Jeonghyun Park, Hwanhee Lee
Title: Investigating Language Preference of Multilingual RAG Systems
Abstract:
Multilingual Retrieval-Augmented Generation (mRAG) systems enhance language models by integrating external multilingual information to produce context-aware responses. However, mRAG systems struggle with retrieving relevant information due to linguistic variations between queries and documents, generating inconsistent responses when multilingual sources conflict. In this work, we systematically investigate language preferences in both retrieval and generation of mRAG through a series of experiments. Our analysis indicates that retrievers tend to prefer high-resource and query languages, yet this preference does not consistently improve generation performance. Moreover, we observe that generators prefer the query language or Latin scripts, leading to inconsistent outputs. To overcome these issues, we propose Dual Knowledge Multilingual RAG (DKM-RAG), a simple yet effective framework that fuses translated multilingual passages with complementary model knowledge. Empirical results demonstrate that DKM-RAG mitigates language preference in generation and enhances performance across diverse linguistic settings. Code is available at https://github.com/jeonghyunpark2002/LanguagePreference.git

Authors:Bohan Lyu, Siqiao Huang, Zichen Liang, Qi-An Sun, Jiaming Zhang
Title: SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
Abstract:
Neural surrogate models have emerged as powerful and efficient tools in data mining. Meanwhile, large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks. We investigate a novel application: using LLMs as surrogate models for code execution prediction. Given LLMs' unique ability to understand and process diverse programs, they present a promising direction for building general-purpose surrogate models. To systematically investigate this capability, we introduce SURGE, a comprehensive benchmark with $1160$ problems covering $8$ key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. Through extensive empirical analysis of $21$ open-source and proprietary LLMs, we examine scaling laws, data efficiency, and predictive accuracy. Our findings reveal important insights about the feasibility of LLMs as efficient surrogates for computational processes, with implications for automated software testing, program analysis, and computational resource optimization in data mining applications. Code and dataset are released at https://github.com/Imbernoulli/SURGE.

Authors:Bohan Lyu, Siqiao Huang, Zichen Liang, Qi-An Sun, Jiaming Zhang
Title: SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
Abstract:
Neural surrogate models are powerful and efficient tools in data mining. Meanwhile, large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks, such as generation and understanding. However, an equally important yet underexplored question is whether LLMs can serve as surrogate models for code execution prediction. To systematically investigate it, we introduce SURGE, a comprehensive benchmark with $1160$ problems covering $8$ key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. Through extensive analysis of $21$ open-source and proprietary LLMs, we examine scaling laws, data efficiency, and predictive accuracy. Our findings reveal important insights about the feasibility of LLMs as efficient surrogates for computational processes. The benchmark and evaluation framework are available at https://github.com/Imbernoulli/SURGE.

Authors:Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenxuan Wang, Jieyu Zhao
Title: AI Sees Your Location, But With A Bias Toward The Wealthy World
Abstract:
Visual-Language Models (VLMs) have shown remarkable performance across various tasks, particularly in recognizing geographic information from images. However, VLMs still show regional biases in this task. To systematically evaluate these issues, we introduce a benchmark consisting of 1,200 images paired with detailed geographic metadata. Evaluating four VLMs, we find that while these models demonstrate the ability to recognize geographic information from images, achieving up to 53.8% accuracy in city prediction, they exhibit significant biases. Specifically, performance is substantially higher for economically developed and densely populated regions compared to less developed (-12.5%) and sparsely populated (-17.0%) areas. Moreover, regional biases of frequently over-predicting certain locations remain. For instance, they consistently predict Sydney for images taken in Australia, shown by the low entropy scores for these countries. The strong performance of VLMs also raises privacy concerns, particularly for users who share images online without the intent of being identified. Our code and dataset are publicly available at https://github.com/uscnlp-lime/FairLocator.

Authors:Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, Yiyan Qi
Title: MasRouter: Learning to Route LLMs for Multi-Agent Systems
Abstract:
Multi-agent systems (MAS) powered by Large Language Models (LLMs) have been demonstrated to push the boundaries of LLM capabilities, yet they often incur significant costs and face challenges in dynamic LLM selection. Current LLM routing methods effectively reduce overhead in single-agent scenarios by customizing LLM selection for each query, but they overlook the critical decisions regarding collaboration modes and agent roles in MAS. In response to this challenge, we first introduce the problem of Multi-Agent System Routing (MASR), which integrates all components of MAS into a unified routing framework. Toward this goal, we propose MasRouter, the first high-performing, cost-effective, and inductive MASR solution. MasRouter employs collaboration mode determination, role allocation, and LLM routing through a cascaded controller network, progressively constructing a MAS that balances effectiveness and efficiency. Extensive experiments demonstrate that MasRouter is (1) high-performing, achieving a $1.8\%\sim8.2\%$ improvement over the state-of-the-art method on MBPP; (2) economical, reducing overhead by up to $52.07\%$ compared to SOTA methods on HumanEval; and (3) plug-and-play, seamlessly integrating with mainstream MAS frameworks, reducing overhead by $17.21\%\sim28.17\%$ via customized routing. The code is available at https://github.com/yanweiyue/masrouter.

Authors:Yuqi Liu, Yan Zheng
Title: Improving Similar Case Retrieval Ranking Performance By Revisiting RankSVM
Abstract:
Given the rapid development of Legal AI, a lot of attention has been paid to one of the most important legal AI tasks--similar case retrieval, especially with language models to use. In our paper, however, we try to improve the ranking performance of current models from the perspective of learning to rank instead of language models. Specifically, we conduct experiments using a pairwise method--RankSVM as the classifier to substitute a fully connected layer, combined with commonly used language models on similar case retrieval datasets LeCaRDv1 and LeCaRDv2. We finally come to the conclusion that RankSVM could generally help improve the retrieval performance on the LeCaRDv1 and LeCaRDv2 datasets compared with original classifiers by optimizing the precise ranking. It could also help mitigate overfitting owing to class imbalance. Our code is available in https://github.com/liuyuqi123study/RankSVM_for_SLR

Authors:Shilong Wang, Guibin Zhang, Miao Yu, Guancheng Wan, Fanci Meng, Chongye Guo, Kun Wang, Yang Wang
Title: G-Safeguard: A Topology-Guided Security Lens and Treatment on LLM-based Multi-agent Systems
Abstract:
Large Language Model (LLM)-based Multi-agent Systems (MAS) have demonstrated remarkable capabilities in various complex tasks, ranging from collaborative problem-solving to autonomous decision-making. However, as these systems become increasingly integrated into critical applications, their vulnerability to adversarial attacks, misinformation propagation, and unintended behaviors have raised significant concerns. To address this challenge, we introduce G-Safeguard, a topology-guided security lens and treatment for robust LLM-MAS, which leverages graph neural networks to detect anomalies on the multi-agent utterance graph and employ topological intervention for attack remediation. Extensive experiments demonstrate that G-Safeguard: (I) exhibits significant effectiveness under various attack strategies, recovering over 40% of the performance for prompt injection; (II) is highly adaptable to diverse LLM backbones and large-scale MAS; (III) can seamlessly combine with mainstream MAS with security guarantees. The code is available at https://github.com/wslong20/G-safeguard.

Authors:Zongyuan Li, Chang Lu, Xiaojie Xu, Runnan Qi, Yanan Ni, Lumin Jiang, Xiangbei Liu, Xuebo Zhang, Yongchun Fang, Kuihua Huang, Xian Guo
Title: Hierarchical Expert Prompt for Large-Language-Model: An Approach Defeat Elite AI in TextStarCraft II for the First Time
Abstract:
Since the emergence of the Large Language Model (LLM), LLM has been widely used in fields such as writing, translating, and searching. However, there is still great potential for LLM-based methods in handling complex tasks such as decision-making in the StarCraft II environment. To address problems such as lack of relevant knowledge and poor control over subtasks of varying importance, we propose a Hierarchical Expert Prompt (HEP) for LLM. Our method improves the understanding of game situations through expert-level tactical knowledge, improving the processing quality of tasks of varying importance through a hierarchical framework. Our approach defeated the highest level (Elite) standard built-in agent in TextStarCraft II for the first time and consistently outperformed the baseline method in other difficulties. Our experiments suggest that the proposed method is a practical solution for tackling complex decision-making challenges. The replay video can be viewed on https://www.bilibili.com/video/BV1uz42187EF and https://youtu.be/dO3PshWLV5M, and our codes have been open-sourced on https://github.com/luchang1113/HEP-LLM-play-StarCraftII.

Authors:Yu Cui, Hang Fu, Licheng Wang, Haibin Zhang
Title: Ramp Up NTT in Record Time using GPU-Accelerated Algorithms and LLM-based Code Generation
Abstract:
Homomorphic encryption (HE) is a core building block in privacy-preserving machine learning (PPML), but HE is also widely known as its efficiency bottleneck. Therefore, many GPU-accelerated cryptographic schemes have been proposed to improve the performance of HE. However, these methods often require complex modifications tailored to specific algorithms and are tightly coupled with specific GPU and operating systems. It is interesting to ask how to generally offer more practical GPU-accelerated cryptographic algorithm implementations. Given the powerful code generation capabilities of large language models (LLMs), we aim to explore their potential to automatically generate practical GPU-friendly algorithm code using CPU-friendly code. In this paper, we focus on number theoretic transform (NTT) -- the core mechanism of HE. We first develop and optimize a GPU-friendly NTT (GNTT) family that exploits PyTorch's fast matrix computation and precomputation, achieving an approximately 62x speedup -- a significant boost over existing ones. Then we explore GPU-friendly code generation using various LLMs, including DeepSeek-R1, OpenAI o1 and o3-mini. We discover many interesting findings throughout the process. For instance, somewhat surprisingly, our experiments demonstrate that DeepSeek-R1 significantly outperforms OpenAI o3-mini and o1, but still cannot beat our optimized protocol. The findings provide valuable insights for turbocharging PPML and enhancing code generation capabilities of LLMs. Codes are available at: https://github.com/LMPC-Lab/GenGPUCrypto.

Authors:Yijie Chen, Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, Jie Zhou
Title: Enhancing Cross-Tokenizer Knowledge Distillation with Contextual Dynamical Mapping
Abstract:
Knowledge Distillation (KD) has emerged as a prominent technique for model compression. However, conventional KD approaches primarily focus on homogeneous architectures with identical tokenizers, constraining their applicability in cross-architecture scenarios. As for the cross-tokenizer KD, the differences in the tokenizers give rise to two fundamental challenges: (1) sequence misalignment caused by divergent tokenization strategies, and (2) mismatched vocabulary size and composition. While existing probability-matching methods attempt to address these issues, their efficacy remains limited due to suboptimal alignment in both the sequence and vocabulary aspects. To overcome these limitations, we propose Contextual Dynamic Mapping (CDM), a novel cross-tokenizer distillation framework that employs contextual information to enhance sequence alignment precision and dynamically improves vocabulary mapping. We evaluated the effectiveness of our approach across five advanced and widely-used model families (i.e, LLama3, Phi3, Gemma2, OPT and Qwen2), which were configured into three distinct teacher-student pairs. Our method shows significant advantages over existing cross-tokenizer distillation baselines across diverse benchmarks, including instruction-following, code generation and math. Notably, our analysis reveals that combining conventional same-tokenizer distillation and cross-tokenizer distillation through CDM yields further performance improvements. The code is available at https://github.com/pppa2019/ContexualDynamicMapping

Authors:Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, Zaiwen Wen
Title: OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling
Abstract:
Despite the rapid development of large language models (LLMs), a fundamental challenge persists: the lack of high-quality optimization modeling datasets hampers LLMs' robust modeling of practical optimization problems from natural language descriptions (NL). This data scarcity also contributes to the generalization difficulties experienced by learning-based methods. To address these challenges, we propose a scalable framework for synthesizing a high-quality dataset, named OptMATH. Starting from curated seed data with mathematical formulations (MF), this framework automatically generates problem data (PD) with controllable complexity. Then, a back-translation step is employed to obtain NL. To verify the correspondence between the NL and the PD, a forward modeling step followed by rejection sampling is used. The accepted pairs constitute the training part of OptMATH. Then a collection of rejected pairs is identified and further filtered. This collection serves as a new benchmark for optimization modeling, containing difficult instances whose lengths are much longer than these of NL4OPT and MAMO. Through extensive experiments, we demonstrate that models of various sizes (0.5B-32B parameters) trained on OptMATH achieve superior results on multiple modeling benchmarks, thereby validating the effectiveness and scalability of our approach. Our dataset is publicly available at https://github.com/AuroraLHL/OptMATH.

Authors:Zhao Wang, Sota Moriyama, Wei-Yao Wang, Briti Gangopadhyay, Shingo Takamatsu
Title: Talk Structurally, Act Hierarchically: A Collaborative Framework for LLM Multi-Agent Systems
Abstract:
Recent advancements in LLM-based multi-agent (LLM-MA) systems have shown promise, yet significant challenges remain in managing communication and refinement when agents collaborate on complex tasks. In this paper, we propose \textit{Talk Structurally, Act Hierarchically (TalkHier)}, a novel framework that introduces a structured communication protocol for context-rich exchanges and a hierarchical refinement system to address issues such as incorrect outputs, falsehoods, and biases. \textit{TalkHier} surpasses various types of SoTA, including inference scaling model (OpenAI-o1), open-source multi-agent models (e.g., AgentVerse), and majority voting strategies on current LLM and single-agent baselines (e.g., ReAct, GPT4o), across diverse tasks, including open-domain question answering, domain-specific selective questioning, and practical advertisement text generation. These results highlight its potential to set a new standard for LLM-MA systems, paving the way for more effective, adaptable, and collaborative multi-agent frameworks. The code is available https://github.com/sony/talkhier.

Authors:Yuting Huang, Chengyuan Liu, Yifeng Feng, Yiquan Wu, Chao Wu, Fei Wu, Kun Kuang
Title: Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction
Abstract:
As Large Language Models (LLMs) are widely applied in various domains, the safety of LLMs is increasingly attracting attention to avoid their powerful capabilities being misused. Existing jailbreak methods create a forced instruction-following scenario, or search adversarial prompts with prefix or suffix tokens to achieve a specific representation manually or automatically. However, they suffer from low efficiency and explicit jailbreak patterns, far from the real deployment of mass attacks to LLMs. In this paper, we point out that simply rewriting the original instruction can achieve a jailbreak, and we find that this rewriting approach is learnable and transferable. We propose the Rewrite to Jailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs by iteratively exploring the weakness of the LLMs and automatically improving the attacking strategy. The jailbreak is more efficient and hard to identify since no additional features are introduced. Extensive experiments and analysis demonstrate the effectiveness of R2J, and we find that the jailbreak is also transferable to multiple datasets and various types of models with only a few queries. We hope our work motivates further investigation of LLM safety. The code can be found at https://github.com/ythuang02/R2J/.

Authors:Haoyang Li, Xuejia Chen, Zhanchao XU, Darian Li, Nicole Hu, Fei Teng, Yiming Li, Luyu Qiu, Chen Jason Zhang, Qing Li, Lei Chen
Title: Exposing Numeracy Gaps: A Benchmark to Evaluate Fundamental Numerical Abilities in Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated impressive capabilities in natural language processing tasks, such as text generation and semantic understanding. However, their performance on numerical reasoning tasks, such as basic arithmetic, numerical retrieval, and magnitude comparison, remains surprisingly poor. This gap arises from their reliance on surface-level statistical patterns rather than understanding numbers as continuous magnitudes. Existing benchmarks primarily focus on either linguistic competence or structured mathematical problem-solving, neglecting fundamental numerical reasoning required in real-world scenarios. To bridge this gap, we propose NumericBench, a comprehensive benchmark to evaluate six fundamental numerical capabilities: number recognition, arithmetic operations, contextual retrieval, comparison, summary, and logical reasoning. NumericBench includes datasets ranging from synthetic number lists to the crawled real-world data, addressing challenges like long contexts, noise, and multi-step reasoning. Extensive experiments on state-of-the-art LLMs, including GPT-4 and DeepSeek, reveal persistent weaknesses in numerical reasoning, highlighting the urgent need to improve numerically-aware language modeling. The benchmark is released in: https://github.com/TreeAI-Lab/NumericBench.

Authors:Zonghao Ying, Deyue Zhang, Zonglei Jing, Yisong Xiao, Quanchen Zou, Aishan Liu, Siyuan Liang, Xiangzheng Zhang, Xianglong Liu, Dacheng Tao
Title: Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models
Abstract:
Multi-turn jailbreak attacks simulate real-world human interactions by engaging large language models (LLMs) in iterative dialogues, exposing critical safety vulnerabilities. However, existing methods often struggle to balance semantic coherence with attack effectiveness, resulting in either benign semantic drift or ineffective detection evasion. To address this challenge, we propose Reasoning-Augmented Conversation, a novel multi-turn jailbreak framework that reformulates harmful queries into benign reasoning tasks and leverages LLMs' strong reasoning capabilities to compromise safety alignment. Specifically, we introduce an attack state machine framework to systematically model problem translation and iterative reasoning, ensuring coherent query generation across multiple turns. Building on this framework, we design gain-guided exploration, self-play, and rejection feedback modules to preserve attack semantics, enhance effectiveness, and sustain reasoning-driven attack progression. Extensive experiments on multiple LLMs demonstrate that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios, with attack success rates (ASRs) increasing by up to 96%. Notably, our approach achieves ASRs of 82% and 92% against leading commercial models, OpenAI o1 and DeepSeek R1, underscoring its potency. We release our code at https://github.com/NY1024/RACE to facilitate further research in this critical domain.

Authors:Jiahao Huo, Yibo Yan, Xu Zheng, Yuanhuiyi Lyu, Xin Zou, Zhihua Wei, Xuming Hu
Title: MMUnlearner: Reformulating Multimodal Machine Unlearning in the Era of Multimodal Large Language Models
Abstract:
Recent progress in Machine Unlearning (MU) has introduced solutions for the selective removal of private or sensitive information encoded within deep neural networks. Nonetheless, MU for Multimodal Large Language Models (MLLMs) remains in its nascent phase. Therefore, we propose to reformulate the task of multimodal MU in the era of MLLMs, which aims to erase only the visual patterns associated with a given entity while preserving the corresponding textual knowledge encoded within the original parameters of the language model backbone. Furthermore, we develop a novel geometry-constrained gradient ascent method MMUnlearner. It updates the weights of MLLMs with a weight saliency map jointly restricted by the remaining concepts and textual knowledge during unlearning, thereby preserving parameters essential for non-target knowledge. Extensive experiments demonstrate that MMUnlearner surpasses baselines that finetuning MLLMs with VQA data directly through Gradient Ascent (GA) or Negative Preference Optimization (NPO), across all evaluation dimensions. Our code can be found in [this URL](https://github.com/Z1zs/MMUnlearner).

Authors:Mohammad Mehdi Hosseini, Ali Pourramezan Fard, Mohammad H. Mahoor
Title: Faces of Fairness: Examining Bias in Facial Expression Recognition Datasets and Models
Abstract:
Building AI systems, including Facial Expression Recognition (FER), involves two critical aspects: data and model design. Both components significantly influence bias and fairness in FER tasks. Issues related to bias and fairness in FER datasets and models remain underexplored. This study investigates bias sources in FER datasets and models. Four common FER datasets--AffectNet, ExpW, Fer2013, and RAF-DB--are analyzed. The findings demonstrate that AffectNet and ExpW exhibit high generalizability despite data imbalances. Additionally, this research evaluates the bias and fairness of six deep models, including three state-of-the-art convolutional neural network (CNN) models: MobileNet, ResNet, XceptionNet, as well as three transformer-based models: ViT, CLIP, and GPT-4o-mini. Experimental results reveal that while GPT-4o-mini and ViT achieve the highest accuracy scores, they also display the highest levels of bias. These findings underscore the urgent need for developing new methodologies to mitigate bias and ensure fairness in datasets and models, particularly in affective computing applications. See our implementation details at https://github.com/MMHosseini/bias_in_FER.

Authors:Shijing Hu, Jingyang Li, Xingyu Xie, Zhihui Lu, Kim-Chuan Toh, Pan Zhou
Title: GRIFFIN: Effective Token Alignment for Faster Speculative Decoding
Abstract:
Speculative decoding accelerates inference in large language models (LLMs) by generating multiple draft tokens simultaneously. However, existing methods often struggle with token misalignment between the training and decoding phases, limiting their performance. To address this, we propose GRIFFIN, a novel framework that incorporates a token-alignable training strategy and a token-alignable draft model to mitigate misalignment. The training strategy employs a loss masking mechanism to exclude highly misaligned tokens during training, preventing them from negatively impacting the draft model's optimization. The token-alignable draft model introduces input tokens to correct inconsistencies in generated features. Experiments on LLaMA, Vicuna, Qwen and Mixtral models demonstrate that GRIFFIN achieves an average acceptance length improvement of over 8% and a speedup ratio exceeding 7%, outperforming current speculative decoding state-of-the-art methods. Our code and GRIFFIN's draft models are released publicly in https://github.com/hsj576/GRIFFIN.

Authors:Jiuwu Hao, Liguo Sun, Ti Xiang, Yuting Wan, Haolin Song, Pin Lv
Title: FeaKM: Robust Collaborative Perception under Noisy Pose Conditions
Abstract:
Collaborative perception is essential for networks of agents with limited sensing capabilities, enabling them to work together by exchanging information to achieve a robust and comprehensive understanding of their environment. However, localization inaccuracies often lead to significant spatial message displacement, which undermines the effectiveness of these collaborative efforts. To tackle this challenge, we introduce FeaKM, a novel method that employs Feature-level Keypoints Matching to effectively correct pose discrepancies among collaborating agents. Our approach begins by utilizing a confidence map to identify and extract salient points from intermediate feature representations, allowing for the computation of their descriptors. This step ensures that the system can focus on the most relevant information, enhancing the matching process. We then implement a target-matching strategy that generates an assignment matrix, correlating the keypoints identified by different agents. This is critical for establishing accurate correspondences, which are essential for effective collaboration. Finally, we employ a fine-grained transformation matrix to synchronize the features of all agents and ascertain their relative statuses, ensuring coherent communication among them. Our experimental results demonstrate that FeaKM significantly outperforms existing methods on the DAIR-V2X dataset, confirming its robustness even under severe noise conditions. The code and implementation details are available at https://github.com/uestchjw/FeaKM.

Authors:Pengcheng Jiang, Lang Cao, Ruike Zhu, Minhao Jiang, Yunyi Zhang, Jimeng Sun, Jiawei Han
Title: RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation
Abstract:
Large language models (LLMs) have achieved impressive performance on knowledge-intensive tasks, yet they often struggle with multi-step reasoning due to the unstructured nature of retrieved context. While retrieval-augmented generation (RAG) methods provide external information, the lack of explicit organization among retrieved passages limits their effectiveness, leading to brittle reasoning pathways. Recent interpretability studies highlighting the importance of structured intermediate reasoning further align with this perspective. We propose Retrieval-And-Structuring (RAS), a framework that dynamically constructs query-specific knowledge graphs through iterative retrieval and structured knowledge building. RAS interleaves targeted retrieval planning with incremental graph construction, enabling models to assemble and reason over evolving knowledge structures tailored to each query. On seven knowledge-intensive benchmarks, RAS consistently outperforms strong baselines, achieving up to 6.4% and 7.0% gains with open-source and proprietary LLMs, respectively. Our results demonstrate that dynamic, query-specific knowledge structuring offers a robust path to improving reasoning accuracy and robustness in language model generation. Our data and code can be found at https://github.com/pat-jj/RAS.

Authors:Yixuan Tang, Yi Yang
Title: FinMTEB: Finance Massive Text Embedding Benchmark
Abstract:
Embedding models play a crucial role in representing and retrieving information across various NLP applications. Recent advances in large language models (LLMs) have further enhanced the performance of embedding models. While these models are often benchmarked on general-purpose datasets, real-world applications demand domain-specific evaluation. In this work, we introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a specialized counterpart to MTEB designed for the financial domain. FinMTEB comprises 64 financial domain-specific embedding datasets across 7 tasks that cover diverse textual types in both Chinese and English, such as financial news articles, corporate annual reports, ESG reports, regulatory filings, and earnings call transcripts. We also develop a finance-adapted model, Fin-E5, using a persona-based data synthetic method to cover diverse financial embedding tasks for training. Through extensive evaluation of 15 embedding models, including Fin-E5, we show three key findings: (1) performance on general-purpose benchmarks shows limited correlation with financial domain tasks; (2) domain-adapted models consistently outperform their general-purpose counterparts; and (3) surprisingly, a simple Bag-of-Words (BoW) approach outperforms sophisticated dense embeddings in financial Semantic Textual Similarity (STS) tasks, underscoring current limitations in dense embedding techniques. Our work establishes a robust evaluation framework for financial NLP applications and provides crucial insights for developing domain-specific embedding models.

Authors:Arjun Vijaywargiya, Shane A. McQuarrie, Anthony Gruber
Title: Tensor parametric Hamiltonian operator inference
Abstract:
This work presents a tensorial approach to constructing data-driven reduced-order models corresponding to semi-discrete partial differential equations with canonical Hamiltonian structure. By expressing parameter-varying operators with affine dependence as contractions of a generalized parameter vector against a constant tensor, this method leverages the operator inference framework to capture parametric dependence in the learned reduced-order model via the solution to a convex, least-squares optimization problem. This leads to a concise and straightforward implementation which compactifies previous parametric operator inference approaches and directly extends to learning parametric operators with symmetry constraints, a key feature required for constructing structure-preserving surrogates of Hamiltonian systems. The proposed approach is demonstrated on both a (non-Hamiltonian) heat equation with variable diffusion coefficient as well as a Hamiltonian wave equation with variable wave speed.

Authors:Zongqian Wu, Tianyu Li, Baoduo Xu, Jiaying Yang, Mengmeng Zhan, Xiaofeng Zhu, Lei Feng
Title: Is Depth All You Need? An Exploration of Iterative Reasoning in LLMs
Abstract:
Deep iterative chain-of-thought (CoT) reasoning enables LLMs to tackle complex tasks by progressively activating relevant pre-trained knowledge. However, it faces challenges in ensuring continual improvement and determining a stopping criterion. In this paper, we investigate whether the relevant knowledge that contributes directly to solving the given question can be activated from the initial reasoning path, thus circumventing the need for iterative refinement. Our experiments reveal that increasing the diversity of initial reasoning paths can achieve comparable or superior performance, a concept we term \textit{breadth reasoning}. However, existing breadth reasoning approaches, such as self-consistency, offer limited diversity. To address this limitation, we propose a simple yet effective method that enhances reasoning breadth by integrating contextual exploration with reduced sampling randomness. Extensive experiments demonstrate that our approach significantly outperforms deep iterative reasoning. Our code is provided in https://github.com/zongqianwu/breadth.

Authors:Shaoxuan Xu, Menglu Cui, Chengxiang Huang, Hongfa Wang, Di Hu
Title: BalanceBenchmark: A Survey for Multimodal Imbalance Learning
Abstract:
Multimodal learning has gained attention for its capacity to integrate information from different modalities. However, it is often hindered by the multimodal imbalance problem, where certain modality dominates while others remain underutilized. Although recent studies have proposed various methods to alleviate this problem, they lack comprehensive and fair comparisons. In this paper, we systematically categorize various mainstream multimodal imbalance algorithms into four groups based on the strategies they employ to mitigate imbalance. To facilitate a comprehensive evaluation of these methods, we introduce BalanceBenchmark, a benchmark including multiple widely used multidimensional datasets and evaluation metrics from three perspectives: performance, imbalance degree, and complexity. To ensure fair comparisons, we have developed a modular and extensible toolkit that standardizes the experimental workflow across different methods. Based on the experiments using BalanceBenchmark, we have identified several key insights into the characteristics and advantages of different method groups in terms of performance, balance degree and computational complexity. We expect such analysis could inspire more efficient approaches to address the imbalance problem in the future, as well as foundation models. The code of the toolkit is available at https://github.com/GeWu-Lab/BalanceBenchmark.

Authors:Zhigang Fang, Renzhi Chen, Zhijie Yang, Yang Guo, Huadong Dai, Lei Wang
Title: LintLLM: An Open-Source Verilog Linting Framework Based on Large Language Models
Abstract:
Code Linting tools are vital for detecting potential defects in Verilog code. However, the limitations of traditional Linting tools are evident in frequent false positives and redundant defect reports. Recent advancements in large language models (LLM) have introduced new possibilities in this area. In this paper, we propose LintLLM, an open-source Linting framework that utilizes LLMs to detect defects in Verilog code via Prompt of Logic-Tree and Defect Tracker. Furthermore, we create an open-source benchmark using the mutation-based defect injection technique to evaluate LLM's ability in detecting Verilog defects. Experimental results show that o1-mini improves the correct rate by 18.89\% and reduces the false-positive rate by 15.56\% compared with the best-performing EDA tool. Simultaneously, LintLLM operates at less than one-tenth of the cost of commercial EDA tools. This study demonstrates the potential of LLM as an efficient and cost-effective Linting tool for hardware design. The benchmark and experimental results are open-source at URL: https://github.com/fangzhigang32/Static-Verilog-Analysis

Authors:Lei Sheng, Shuai-Shuai Xu, Wei Xie
Title: BASE-SQL: A powerful open source Text-To-SQL baseline approach
Abstract:
The conversion of natural language into SQL language for querying databases (Text-to-SQL) has broad application prospects and has attracted widespread attention. At present, the mainstream Text-to-SQL methods are mainly divided into in-context learning (ICL) based methods and supervised fine-tuning (SFT) based methods. ICL-based methods can achieve relatively good results thanks to the use of the most advanced closed-source models. However, in real-world application scenarios, factors such as data privacy, SQL generation efficiency and cost need to be considered. SFT-based methods have certain advantages. At present, methods based on fine-tuning of open source models lack easy-to-implement and effective (cost-effective) baseline methods. We propose a pipeline-based method using open source model fine-tuning, referred to as BASE-SQL, which includes four components: Schema Linking, Candidate SQL Generate, SQL Revision and SQL Merge Revision. Experimental results show that BASE-SQL uses the open source model Qwen2.5-Coder-32B-Instruct, and achieves an accuracy of 67.47% on the BIRD development set and 88.9% on the Spider test set, which is significantly better than other methods using open source models, and even exceeds several methods using the GPT-4o closed-source model. At the same time, BASE-SQL is easy to implement and highly efficient (on average, only five calls to the large language model are required to generate SQL once). The code will be open sourced at https://github.com/CycloneBoy/base_sql.

Authors:Ming Meng, Ke Mu, Yonggui Zhu, Zhe Zhu, Haoyu Sun, Heyang Yan, Zhaoxin Fan
Title: VarGes: Improving Variation in Co-Speech 3D Gesture Generation via StyleCLIPS
Abstract:
Generating expressive and diverse human gestures from audio is crucial in fields like human-computer interaction, virtual reality, and animation. Though existing methods have achieved remarkable performance, they often exhibit limitations due to constrained dataset diversity and the restricted amount of information derived from audio inputs. To address these challenges, we present VarGes, a novel variation-driven framework designed to enhance co-speech gesture generation by integrating visual stylistic cues while maintaining naturalness. Our approach begins with the Variation-Enhanced Feature Extraction (VEFE) module, which seamlessly incorporates \textcolor{blue}{style-reference} video data into a 3D human pose estimation network to extract StyleCLIPS, thereby enriching the input with stylistic information. Subsequently, we employ the Variation-Compensation Style Encoder (VCSE), a transformer-style encoder equipped with an additive attention mechanism pooling layer, to robustly encode diverse StyleCLIPS representations and effectively manage stylistic variations. Finally, the Variation-Driven Gesture Predictor (VDGP) module fuses MFCC audio features with StyleCLIPS encodings via cross-attention, injecting this fused data into a cross-conditional autoregressive model to modulate 3D human gesture generation based on audio input and stylistic clues. The efficacy of our approach is validated on benchmark datasets, where it outperforms existing methods in terms of gesture diversity and naturalness. The code and video results will be made publicly available upon acceptance:https://github.com/mookerr/VarGES/ .

Authors:Xiliang Yang, Shenyang Deng, Shicong Liu, Yuanchi Suo, Wing. W. Y NG, Jianjun Zhang
Title: A Mathematics Framework of Artificial Shifted Population Risk and Its Further Understanding Related to Consistency Regularization
Abstract:
Data augmentation is an important technique in training deep neural networks as it enhances their ability to generalize and remain robust. While data augmentation is commonly used to expand the sample size and act as a consistency regularization term, there is a lack of research on the relationship between them. To address this gap, this paper introduces a more comprehensive mathematical framework for data augmentation. Through this framework, we establish that the expected risk of the shifted population is the sum of the original population risk and a gap term, which can be interpreted as a consistency regularization term. The paper also provides a theoretical understanding of this gap, highlighting its negative effects on the early stages of training. We also propose a method to mitigate these effects. To validate our approach, we conducted experiments using same data augmentation techniques and computing resources under several scenarios, including standard training, out-of-distribution, and imbalanced classification. The results demonstrate that our methods surpass compared methods under all scenarios in terms of generalization ability and convergence stability. We provide our code implementation at the following link: https://github.com/ydlsfhll/ASPR.

Authors:Xiangfei Qiu, Hanyin Cheng, Xingjian Wu, Jilin Hu, Chenjuan Guo, Bin Yang
Title: A Comprehensive Survey of Deep Learning for Multivariate Time Series Forecasting: A Channel Strategy Perspective
Abstract:
Multivariate Time Series Forecasting (MTSF) plays a crucial role across diverse fields, ranging from economic, energy, to traffic. In recent years, deep learning has demonstrated outstanding performance in MTSF tasks. In MTSF, modeling the correlations among different channels is critical, as leveraging information from other related channels can significantly improve the prediction accuracy of a specific channel. This study systematically reviews the channel modeling strategies for time series and proposes a taxonomy organized into three hierarchical levels: the strategy perspective, the mechanism perspective, and the characteristic perspective. On this basis, we provide a structured analysis of these methods and conduct an in-depth examination of the advantages and limitations of different channel strategies. Finally, we summarize and discuss some future research directions to provide useful research guidance. Moreover, we maintain an up-to-date Github repository (https://github.com/decisionintelligence/CS4TS) which includes all the papers discussed in the survey.

Authors:Qiujie Xie, Qingqiu Li, Zhuohao Yu, Yuejie Zhang, Yue Zhang, Linyi Yang
Title: An Empirical Analysis of Uncertainty in Large Language Model Evaluations
Abstract:
As LLM-as-a-Judge emerges as a new paradigm for assessing large language models (LLMs), concerns have been raised regarding the alignment, bias, and stability of LLM evaluators. While substantial work has focused on alignment and bias, little research has concentrated on the stability of LLM evaluators. In this paper, we conduct extensive experiments involving 9 widely used LLM evaluators across 2 different evaluation settings to investigate the uncertainty in model-based LLM evaluations. We pinpoint that LLM evaluators exhibit varying uncertainty based on model families and sizes. With careful comparative analyses, we find that employing special prompting strategies, whether during inference or post-training, can alleviate evaluation uncertainty to some extent. By utilizing uncertainty to enhance LLM's reliability and detection capability in Out-Of-Distribution (OOD) data, we further fine-tune an uncertainty-aware LLM evaluator named ConfiLM using a human-annotated fine-tuning set and assess ConfiLM's OOD evaluation ability on a manually designed test set sourced from the 2024 Olympics. Experimental results demonstrate that incorporating uncertainty as additional information during the fine-tuning phase can largely improve the model's evaluation performance in OOD scenarios. The code and data are released at: https://github.com/hasakiXie123/LLM-Evaluator-Uncertainty.

Authors:Zirui Song, Bin Yan, Yuhan Liu, Miao Fang, Mingzhe Li, Rui Yan, Xiuying Chen
Title: Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey
Abstract:
Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation. However, their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis. To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge. In this survey, we provide a comprehensive overview of these methods, which we categorize into four key approaches: dynamic knowledge injection, static knowledge embedding, modular adapters, and prompt optimization. Each approach offers unique mechanisms to equip LLMs with domain expertise, balancing trade-offs between flexibility, scalability, and efficiency. We discuss how these methods enable LLMs to tackle specialized tasks, compare their advantages and disadvantages, evaluate domain-specific LLMs against general LLMs, and highlight the challenges and opportunities in this emerging field. For those interested in delving deeper into this area, we also summarize the commonly used datasets and benchmarks. To keep researchers updated on the latest studies, we maintain an open-source at: https://github.com/abilliyb/Knowledge_Injection_Survey_Papers, dedicated to documenting research in the field of specialized LLM.

Authors:Jiarui Jin, Haoyu Wang, Hongyan Li, Jun Li, Jiahui Pan, Shenda Hong
Title: Reading Your Heart: Learning ECG Words and Sentences via Pre-training ECG Language Model
Abstract:
Electrocardiogram (ECG) is essential for the clinical diagnosis of arrhythmias and other heart diseases, but deep learning methods based on ECG often face limitations due to the need for high-quality annotations. Although previous ECG self-supervised learning (eSSL) methods have made significant progress in representation learning from unannotated ECG data, they typically treat ECG signals as ordinary time-series data, segmenting the signals using fixed-size and fixed-step time windows, which often ignore the form and rhythm characteristics and latent semantic relationships in ECG signals. In this work, we introduce a novel perspective on ECG signals, treating heartbeats as words and rhythms as sentences. Based on this perspective, we first designed the QRS-Tokenizer, which generates semantically meaningful ECG sentences from the raw ECG signals. Building on these, we then propose HeartLang, a novel self-supervised learning framework for ECG language processing, learning general representations at form and rhythm levels. Additionally, we construct the largest heartbeat-based ECG vocabulary to date, which will further advance the development of ECG language processing. We evaluated HeartLang across six public ECG datasets, where it demonstrated robust competitiveness against other eSSL methods. Our data and code are publicly available at https://github.com/PKUDigitalHealth/HeartLang.

Authors:Mingyang Zhao, Gaofeng Meng, Dong-Ming Yan
Title: Occlusion-aware Non-Rigid Point Cloud Registration via Unsupervised Neural Deformation Correntropy
Abstract:
Non-rigid alignment of point clouds is crucial for scene understanding, reconstruction, and various computer vision and robotics tasks. Recent advancements in implicit deformation networks for non-rigid registration have significantly reduced the reliance on large amounts of annotated training data. However, existing state-of-the-art methods still face challenges in handling occlusion scenarios. To address this issue, this paper introduces an innovative unsupervised method called Occlusion-Aware Registration (OAR) for non-rigidly aligning point clouds. The key innovation of our method lies in the utilization of the adaptive correntropy function as a localized similarity measure, enabling us to treat individual points distinctly. In contrast to previous approaches that solely minimize overall deviations between two shapes, we combine unsupervised implicit neural representations with the maximum correntropy criterion to optimize the deformation of unoccluded regions. This effectively avoids collapsed, tearing, and other physically implausible results. Moreover, we present a theoretical analysis and establish the relationship between the maximum correntropy criterion and the commonly used Chamfer distance, highlighting that the correntropy-induced metric can be served as a more universal measure for point cloud analysis. Additionally, we introduce locally linear reconstruction to ensure that regions lacking correspondences between shapes still undergo physically natural deformations. Our method achieves superior or competitive performance compared to existing approaches, particularly when dealing with occluded geometries. We also demonstrate the versatility of our method in challenging tasks such as large deformations, shape interpolation, and shape completion under occlusion disturbances.

Authors:Haiquan Qiu, You Wu, Dong Li, Jianmin Guo, Quanming Yao
Title: Superpose Task-specific Features for Model Merging
Abstract:
Model merging enables powerful capabilities in neural networks without requiring additional training. In this paper, we introduce a novel perspective on model merging by leveraging the fundamental mechanisms of neural network representation. Our approach is motivated by the linear representation hypothesis, which states that neural networks encode information through linear combinations of feature vectors. We propose a method that superposes task-specific features from individual models into a merged model. Our approach specifically targets linear transformation matrices, which are crucial for feature activation and extraction in deep networks. By formulating the merging process as a linear system, we can preserve task-specific features from individual models and create merged models that effectively maintain multi-task capabilities compared to existing methods. Extensive experiments across diverse benchmarks and models demonstrate that our method outperforms existing techniques. Code is available at https://github.com/LARS-research/STF.

Authors:Ahmad Chaddad, Yihang Wu, Yuchen Jiang, Ahmed Bouridane, Christian Desrosiers
Title: Simulations of Common Unsupervised Domain Adaptation Algorithms for Image Classification
Abstract:
Traditional machine learning assumes that training and test sets are derived from the same distribution; however, this assumption does not always hold in practical applications. This distribution disparity can lead to severe performance drops when the trained model is used in new data sets. Domain adaptation (DA) is a machine learning technique that aims to address this problem by reducing the differences between domains. This paper presents simulation-based algorithms of recent DA techniques, mainly related to unsupervised domain adaptation (UDA), where labels are available only in the source domain. Our study compares these techniques with public data sets and diverse characteristics, highlighting their respective strengths and drawbacks. For example, Safe Self-Refinement for Transformer-based DA (SSRT) achieved the highest accuracy (91.6\%) in the office-31 data set during our simulations, however, the accuracy dropped to 72.4\% in the Office-Home data set when using limited batch sizes. In addition to improving the reader's comprehension of recent techniques in DA, our study also highlights challenges and upcoming directions for research in this domain. The codes are available at https://github.com/AIPMLab/Domain_Adaptation.

Authors:Muhammad Ashad Kabir, Nidita Roy, Md. Ekramul Hossain, Jill Featherston, Sayed Ahmed
Title: Deep Learning for Wound Tissue Segmentation: A Comprehensive Evaluation using A Novel Dataset
Abstract:
Deep learning (DL) techniques have emerged as promising solutions for medical wound tissue segmentation. However, a notable limitation in this field is the lack of publicly available labelled datasets and a standardised performance evaluation of state-of-the-art DL models on such datasets. This study addresses this gap by comprehensively evaluating various DL models for wound tissue segmentation using a novel dataset. We have curated a dataset comprising 147 wound images exhibiting six tissue types: slough, granulation, maceration, necrosis, bone, and tendon. The dataset was meticulously labelled for semantic segmentation employing supervised machine learning techniques. Three distinct labelling formats were developed -- full image, patch, and superpixel. Our investigation encompassed a wide array of DL segmentation and classification methodologies, ranging from conventional approaches like UNet, to generative adversarial networks such as cGAN, and modified techniques like FPN+VGG16. Also, we explored DL-based classification methods (e.g., ResNet50) and machine learning-based classification leveraging DL features (e.g., AlexNet+RF). In total, 82 wound tissue segmentation models were derived across the three labelling formats. Our analysis yielded several notable findings, including identifying optimal DL models for each labelling format based on weighted average Dice or F1 scores. Notably, FPN+VGG16 emerged as the top-performing DL model for wound tissue segmentation, achieving a dice score of 82.25%. This study provides a valuable benchmark for evaluating wound image segmentation and classification models, offering insights to inform future research and clinical practice in wound care. The labelled dataset created in this study is available at https://github.com/akabircs/WoundTissue.

Authors:Kaiwen Shi, Yifei Li, Binh Ho, Jovian Wang, Kobe Guo
Title: Universal Lesion Segmentation Challenge 2023: A Comparative Research of Different Algorithms
Abstract:
In recent years, machine learning algorithms have achieved much success in segmenting lesions across various tissues. There is, however, not one satisfying model that works well on all tissue types universally. In response to this need, we attempt to train a model that 1) works well on all tissue types, and 2) is capable of still performing fast inferences. To this end, we design our architectures, test multiple existing architectures, compare their results, and settle upon SwinUnet. We document our rationales, successes, and failures. Finally, we propose some further directions that we think are worth exploring. codes: https://github.com/KWFredShi/ULS2023NGKD.git

Authors:Aditya Dey, Jonas Kusch, Fadi Al Machot
Title: HADL Framework for Noise Resilient Long-Term Time Series Forecasting
Abstract:
Long-term time series forecasting is critical in domains such as finance, economics, and energy, where accurate and reliable predictions over extended horizons drive strategic decision-making. Despite the progress in machine learning-based models, the impact of temporal noise in extended lookback windows remains underexplored, often degrading model performance and computational efficiency. In this paper, we propose a novel framework that addresses these challenges by integrating the Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) to perform noise reduction and extract robust long-term features. These transformations enable the separation of meaningful temporal patterns from noise in both the time and frequency domains. To complement this, we introduce a lightweight low-rank linear prediction layer that not only reduces the influence of residual noise but also improves memory efficiency. Our approach demonstrates competitive robustness to noisy input, significantly reduces computational complexity, and achieves competitive or state-of-the-art forecasting performance across diverse benchmark datasets. Extensive experiments reveal that the proposed framework is particularly effective in scenarios with high noise levels or irregular patterns, making it well suited for real-world forecasting tasks. The code is available in https://github.com/forgee-master/HADL.

Authors:Kevin Garcia, Juan Manuel Perez, Yifeng Gao
Title: Efficient Hierarchical Contrastive Self-supervising Learning for Time Series Classification via Importance-aware Resolution Selection
Abstract:
Recently, there has been a significant advancement in designing Self-Supervised Learning (SSL) frameworks for time series data to reduce the dependency on data labels. Among these works, hierarchical contrastive learning-based SSL frameworks, which learn representations by contrasting data embeddings at multiple resolutions, have gained considerable attention. Due to their ability to gather more information, they exhibit better generalization in various downstream tasks. However, when the time series data length is significant long, the computational cost is often significantly higher than that of other SSL frameworks. In this paper, to address this challenge, we propose an efficient way to train hierarchical contrastive learning models. Inspired by the fact that each resolution's data embedding is highly dependent, we introduce importance-aware resolution selection based training framework to reduce the computational cost. In the experiment, we demonstrate that the proposed method significantly improves training time while preserving the original model's integrity in extensive time series classification performance evaluations. Our code could be found here, https://github.com/KEEBVIN/IARS

Authors:Sifan Tu, Xin Zhou, Dingkang Liang, Xingyu Jiang, Yumeng Zhang, Xiaofan Li, Xiang Bai
Title: The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey
Abstract:
Driving World Model (DWM), which focuses on predicting scene evolution during the driving process, has emerged as a promising paradigm in pursuing autonomous driving. These methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments. In this survey, we provide a comprehensive overview of the latest progress in DWM. We categorize existing approaches based on the modalities of the predicted scenes and summarize their specific contributions to autonomous driving. In addition, high-impact datasets and various metrics tailored to different tasks within the scope of DWM research are reviewed. Finally, we discuss the potential limitations of current research and propose future directions. This survey provides valuable insights into the development and application of DWM, fostering its broader adoption in autonomous driving. The relevant papers are collected at https://github.com/LMD0311/Awesome-World-Model.

Authors:Minyang Chen, Chenchen Feng, and Ran Cheng
Title: MetaDE: Evolving Differential Evolution by Differential Evolution
Abstract:
As a cornerstone in the Evolutionary Computation (EC) domain, Differential Evolution (DE) is known for its simplicity and effectiveness in handling challenging black-box optimization problems. While the advantages of DE are well-recognized, achieving peak performance heavily depends on its hyperparameters such as the mutation factor, crossover probability, and the selection of specific DE strategies. Traditional approaches to this hyperparameter dilemma have leaned towards parameter tuning or adaptive mechanisms. However, identifying the optimal settings tailored for specific problems remains a persistent challenge. In response, we introduce MetaDE, an approach that evolves DE's intrinsic hyperparameters and strategies using DE itself at a meta-level. A pivotal aspect of MetaDE is a specialized parameterization technique, which endows it with the capability to dynamically modify DE's parameters and strategies throughout the evolutionary process. To augment computational efficiency, MetaDE incorporates a design that leverages parallel processing through a GPU-accelerated computing framework. Within such a framework, DE is not just a solver but also an optimizer for its own configurations, thus streamlining the process of hyperparameter optimization and problem-solving into a cohesive and automated workflow. Extensive evaluations on the CEC2022 benchmark suite demonstrate MetaDE's promising performance. Moreover, when applied to robot control via evolutionary reinforcement learning, MetaDE also demonstrates promising performance. The source code of MetaDE is publicly accessible at: https://github.com/EMI-Group/metade.

Authors:Zheng Fang, Lichuan Xiang, Xu Cai, Kaicheng Zhou, Hongkai Wen
Title: FlexControl: Computation-Aware ControlNet with Differentiable Router for Text-to-Image Generation
Abstract:
ControlNet offers a powerful way to guide diffusion-based generative models, yet most implementations rely on ad-hoc heuristics to choose which network blocks to control-an approach that varies unpredictably with different tasks. To address this gap, we propose FlexControl, a novel framework that copies all diffusion blocks during training and employs a trainable gating mechanism to dynamically select which blocks to activate at each denoising step. With introducing a computation-aware loss, we can encourage control blocks only to activate when it benefit the generation quality. By eliminating manual block selection, FlexControl enhances adaptability across diverse tasks and streamlines the design pipeline, with computation-aware training loss in an end-to-end training manner. Through comprehensive experiments on both UNet (e.g., SD1.5) and DiT (e.g., SD3.0), we show that our method outperforms existing ControlNet variants in certain key aspects of interest. As evidenced by both quantitative and qualitative evaluations, FlexControl preserves or enhances image fidelity while also reducing computational overhead by selectively activating the most relevant blocks. These results underscore the potential of a flexible, data-driven approach for controlled diffusion and open new avenues for efficient generative model design. The code will soon be available at https://github.com/Anonymousuuser/FlexControl.

Authors:Libo Wang
Title: Dynamic Chain-of-Thought: Towards Adaptive Deep Reasoning
Abstract:
To reduce the cost and consumption of computing resources caused by computational redundancy and delayed reward assignment in long CoT, this research proposes the dynamic chain-of-thought (D-CoT) with adaptive reasoning time and steps. The researcher used simulation experiment to simulate the integration of D-CoT through Python 3.13 IDLE combined with a Python simulator based on GPTs. At the same time, the researcher used DeepSeek R1 as a control group to test and compare the performance of the D-CoT simulator in processing MIT OpenCourseWare's linear algebra exam questions. Experimental results show that D-CoT is better than DeepSeek R1 based on long CoT in three indicators: reasoning time, CoT length (reasoning steps) and token count, which achieves a significant reduction in computing resource consumption. In addition, this research has potential value in deep reasoning optimization that is used as a reference for future dynamic deep reasoning frameworks.

Authors:Wenxuan Guo, Xiuwei Xu, Ziwei Wang, Jianjiang Feng, Jie Zhou, Jiwen Lu
Title: TSP3D: Text-guided Sparse Voxel Pruning for Efficient 3D Visual Grounding
Abstract:
In this paper, we propose an efficient multi-level convolution architecture for 3D visual grounding. Conventional methods are difficult to meet the requirements of real-time inference due to the two-stage or point-based architecture. Inspired by the success of multi-level fully sparse convolutional architecture in 3D object detection, we aim to build a new 3D visual grounding framework following this technical route. However, as in 3D visual grounding task the 3D scene representation should be deeply interacted with text features, sparse convolution-based architecture is inefficient for this interaction due to the large amount of voxel features. To this end, we propose text-guided pruning (TGP) and completion-based addition (CBA) to deeply fuse 3D scene representation and text features in an efficient way by gradual region pruning and target completion. Specifically, TGP iteratively sparsifies the 3D scene representation and thus efficiently interacts the voxel features with text features by cross-attention. To mitigate the affect of pruning on delicate geometric information, CBA adaptively fixes the over-pruned region by voxel completion with negligible computational overhead. Compared with previous single-stage methods, our method achieves top inference speed and surpasses previous fastest method by 100\% FPS. Our method also achieves state-of-the-art accuracy even compared with two-stage methods, with $+1.13$ lead of Acc@0.5 on ScanRefer, and $+2.6$ and $+3.2$ leads on NR3D and SR3D respectively. The code is available at \href{https://github.com/GWxuan/TSP3D}{https://github.com/GWxuan/TSP3D}.

Authors:R. Patrick Xian, Noah R. Baker, Tom David, Qiming Cui, A. Jay Holmgren, Stefan Bauer, Madhumita Sushil, Reza Abbasi-Asl
Title: Robustness tests for biomedical foundation models should tailor to specifications
Abstract:
The rise of biomedical foundation models creates new hurdles in model testing and authorization, given their broad capabilities and susceptibility to complex distribution shifts. We suggest tailoring robustness tests according to task-dependent priorities and propose to integrate granular notions of robustness in a predefined specification to guide implementation. Our approach facilitates the standardization of robustness assessments in the model lifecycle and connects abstract AI regulatory frameworks with concrete testing procedures.

Authors:R. Patrick Xian, Noah R. Baker, Tom David, Qiming Cui, A. Jay Holmgren, Stefan Bauer, Madhumita Sushil, Reza Abbasi-Asl
Title: Robustness tests for biomedical foundation models should tailor to specifications
Abstract:
The rise of biomedical foundation models creates new hurdles in model testing and authorization, given their broad capabilities and susceptibility to complex distribution shifts. We suggest tailoring robustness tests according to task-dependent priorities and propose to integrate granular notions of robustness in a predefined specification to guide implementation. Our approach facilitates the standardization of robustness assessments in the model lifecycle and connects abstract AI regulatory frameworks with concrete testing procedures.

Authors:Yu-Ang Lee, Ching-Yun Ko, Tejaswini Pedapati, I-Hsin Chung, Mi-Yen Yeh, Pin-Yu Chen
Title: STAR: Spectral Truncation and Rescale for Model Merging
Abstract:
Model merging is an efficient way of obtaining a multi-task model from several pretrained models without further fine-tuning, and it has gained attention in various domains, including natural language processing (NLP). Despite the efficiency, a key challenge in model merging is the seemingly inevitable decrease in task performance as the number of models increases. In this paper, we propose $\mathbf{S}$pectral $\mathbf{T}$runcation $\mathbf{A}$nd $\mathbf{R}$escale (STAR) that aims at mitigating ``merging conflicts'' by truncating small components in the respective spectral spaces, which is followed by an automatic parameter rescaling scheme to retain the nuclear norm of the original matrix. STAR requires no additional inference on original training data and is robust to hyperparamater choice. We demonstrate the effectiveness of STAR through extensive model merging cases on diverse NLP tasks. Specifically, STAR works robustly across varying model sizes, and can outperform baselines by 4.2$\%$ when merging 12 models on Flan-T5. Our code is publicly available at https://github.com/IBM/STAR.

Authors:Sanjiban Choudhury
Title: Process Reward Models for LLM Agents: Practical Framework and Directions
Abstract:
We introduce Agent Process Reward Models (AgentPRM), a simple and scalable framework for training LLM agents to continually improve through interactions. AgentPRM follows a lightweight actor-critic paradigm, using Monte Carlo rollouts to compute reward targets and optimize policies. It requires minimal modifications to existing RLHF pipelines, making it easy to integrate at scale. Beyond AgentPRM, we propose InversePRM, which learns process rewards directly from demonstrations without explicit outcome supervision. We also explore key challenges and opportunities, including exploration, process reward shaping, and model-predictive reasoning. We evaluate on ALFWorld benchmark, show that small 3B models trained with AgentPRM and InversePRM outperform strong GPT-4o baselines, and analyze test-time scaling, reward hacking, and more. Our code is available at: https://github.com/sanjibanc/agent_prm.

Authors:Lauri Seppäläinen, Mudong Guo, Kai Puolamäki
Title: ExplainReduce: Summarising local explanations via proxies
Abstract:
Most commonly used non-linear machine learning methods are closed-box models, uninterpretable to humans. The field of explainable artificial intelligence (XAI) aims to develop tools to examine the inner workings of these closed boxes. An often-used model-agnostic approach to XAI involves using simple models as local approximations to produce so-called local explanations; examples of this approach include LIME, SHAP, and SLISEMAP. This paper shows how a large set of local explanations can be reduced to a small "proxy set" of simple models, which can act as a generative global explanation. This reduction procedure, ExplainReduce, can be formulated as an optimisation problem and approximated efficiently using greedy heuristics.

Authors:Thien B. Nguyen-Tat, Hoang-An Vo, Phuoc-Sang Dang
Title: QMaxViT-Unet+: A Query-Based MaxViT-Unet with Edge Enhancement for Scribble-Supervised Segmentation of Medical Images
Abstract:
The deployment of advanced deep learning models for medical image segmentation is often constrained by the requirement for extensively annotated datasets. Weakly-supervised learning, which allows less precise labels, has become a promising solution to this challenge. Building on this approach, we propose QMaxViT-Unet+, a novel framework for scribble-supervised medical image segmentation. This framework is built on the U-Net architecture, with the encoder and decoder replaced by Multi-Axis Vision Transformer (MaxViT) blocks. These blocks enhance the model's ability to learn local and global features efficiently. Additionally, our approach integrates a query-based Transformer decoder to refine features and an edge enhancement module to compensate for the limited boundary information in the scribble label. We evaluate the proposed QMaxViT-Unet+ on four public datasets focused on cardiac structures, colorectal polyps, and breast cancer: ACDC, MS-CMRSeg, SUN-SEG, and BUSI. Evaluation metrics include the Dice similarity coefficient (DSC) and the 95th percentile of Hausdorff distance (HD95). Experimental results show that QMaxViT-Unet+ achieves 89.1\% DSC and 1.316mm HD95 on ACDC, 88.4\% DSC and 2.226mm HD95 on MS-CMRSeg, 71.4\% DSC and 4.996mm HD95 on SUN-SEG, and 69.4\% DSC and 50.122mm HD95 on BUSI. These results demonstrate that our method outperforms existing approaches in terms of accuracy, robustness, and efficiency while remaining competitive with fully-supervised learning approaches. This makes it ideal for medical image analysis, where high-quality annotations are often scarce and require significant effort and expense. The code is available at: https://github.com/anpc849/QMaxViT-Unet

Authors:Aivin V. Solatorio, Rafael Macalaba, James Liounis
Title: Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers
Abstract:
Tracking how data is mentioned and used in research papers provides critical insights for improving data discoverability, quality, and production. However, manually identifying and classifying dataset mentions across vast academic literature is resource-intensive and not scalable. This paper presents a machine learning framework that automates dataset mention detection across research domains by leveraging large language models (LLMs), synthetic data, and a two-stage fine-tuning process. We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset. The Phi-3.5-mini instruct model is pre-fine-tuned on this dataset, followed by fine-tuning on a manually annotated subset. At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall. Evaluated on a held-out manually annotated sample, our fine-tuned model outperforms NuExtract-v1.5 and GLiNER-large-v2.1 in dataset extraction accuracy. Our results highlight how LLM-generated synthetic data can effectively address training data scarcity, improving generalization in low-resource settings. This framework offers a pathway toward scalable monitoring of dataset usage, enhancing transparency, and supporting researchers, funders, and policymakers in identifying data gaps and strengthening data accessibility for informed decision-making.

Authors:Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan, Ranchen Ming, Xiaoniu Song, Xing Chen, Yu Zhou, Deshan Sun, Deyu Zhou, Jian Zhou, Kaijun Tan, Kang An, Mei Chen, Wei Ji, Qiling Wu, Wen Sun, Xin Han, Yanan Wei, Zheng Ge, Aojie Li, Bin Wang, Bizhu Huang, Bo Wang, Brian Li, Changxing Miao, Chen Xu, Chenfei Wu, Chenguang Yu, Dapeng Shi, Dingyuan Hu, Enle Liu, Gang Yu, Ge Yang, Guanzhe Huang, Gulin Yan, Haiyang Feng, Hao Nie, Haonan Jia, Hanpeng Hu, Hanqi Chen, Haolong Yan, Heng Wang, Hongcheng Guo, Huilin Xiong, Huixin Xiong, Jiahao Gong, Jianchang Wu, Jiaoren Wu, Jie Wu, Jie Yang, Jiashuai Liu, Jiashuo Li, Jingyang Zhang, Junjing Guo, Junzhe Lin, Kaixiang Li, Lei Liu, Lei Xia, Liang Zhao, Liguo Tan, Liwen Huang, Liying Shi, Ming Li, Mingliang Li, Muhua Cheng, Na Wang, Qiaohui Chen, Qinglin He, Qiuyan Liang, Quan Sun, Ran Sun, Rui Wang, Shaoliang Pang, Shiliang Yang, Sitong Liu, Siqi Liu, Shuli Gao, Tiancheng Cao, Tianyu Wang, Weipeng Ming, Wenqing He, Xu Zhao, Xuelin Zhang, Xianfang Zeng, Xiaojia Liu, Xuan Yang, Yaqi Dai, Yanbo Yu, Yang Li, Yineng Deng, Yingming Wang, Yilei Wang, Yuanwei Lu, Yu Chen, Yu Luo, Yuchu Luo, Yuhe Yin, Yuheng Feng, Yuxiang Yang, Zecheng Tang, Zekai Zhang, Zidong Yang, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Xinhao Zhang, Yibo Zhu, Heung-Yeung Shum, Daxin Jiang
Title: Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
Abstract:
We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.

Authors:Abdelhakim Benechehab, Vasilii Feofanov, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, Balázs Kégl
Title: AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
Abstract:
Pre-trained foundation models (FMs) have shown exceptional performance in univariate time series forecasting tasks. However, several practical challenges persist, including managing intricate dependencies among features and quantifying uncertainty in predictions. This study aims to tackle these critical limitations by introducing adapters; feature-space transformations that facilitate the effective use of pre-trained univariate time series FMs for multivariate tasks. Adapters operate by projecting multivariate inputs into a suitable latent space and applying the FM independently to each dimension. Inspired by the literature on representation learning and partially stochastic Bayesian neural networks, we present a range of adapters and optimization/inference strategies. Experiments conducted on both synthetic and real-world datasets confirm the efficacy of adapters, demonstrating substantial enhancements in forecasting accuracy and uncertainty quantification compared to baseline methods. Our framework, AdaPTS, positions adapters as a modular, scalable, and effective solution for leveraging time series FMs in multivariate contexts, thereby promoting their wider adoption in real-world applications. We release the code at https://github.com/abenechehab/AdaPTS.

Authors:Laurin Luttmann, Lin Xie
Title: Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding
Abstract:
The Mixed-Shelves Picker Routing Problem (MSPRP) is a fundamental challenge in warehouse logistics, where pickers must navigate a mixed-shelves environment to retrieve SKUs efficiently. Traditional heuristics and optimization-based approaches struggle with scalability, while recent machine learning methods often rely on sequential decision-making, leading to high solution latency and suboptimal agent coordination. In this work, we propose a novel hierarchical and parallel decoding approach for solving the min-max variant of the MSPRP via multi-agent reinforcement learning. While our approach generates a joint distribution over agent actions, allowing for fast decoding and effective picker coordination, our method introduces a sequential action selection to avoid conflicts in the multi-dimensional action space. Experiments show state-of-the-art performance in both solution quality and inference speed, particularly for large-scale and out-of-distribution instances. Our code is publicly available at http://github.com/LTluttmann/marl4msprp.

Authors:Ruslan Agishev, Karel Zimmermann
Title: FusionForce: End-to-end Differentiable Neural-Symbolic Layer for Trajectory Prediction
Abstract:
We propose end-to-end differentiable model that predicts robot trajectories on rough offroad terrain from camera images and/or lidar point clouds. The model integrates a learnable component that predicts robot-terrain interaction forces with a neural-symbolic layer that enforces the laws of classical mechanics and consequently improves generalization on out-of-distribution data. The neural-symbolic layer includes a differentiable physics engine that computes the robot's trajectory by querying these forces at the points of contact with the terrain. As the proposed architecture comprises substantial geometrical and physics priors, the resulting model can also be seen as a learnable physics engine conditioned on real sensor data that delivers $10^4$ trajectories per second. We argue and empirically demonstrate that this architecture reduces the sim-to-real gap and mitigates out-of-distribution sensitivity. The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications including model predictive control, trajectory shooting, supervised and reinforcement learning, or SLAM.

Authors:Saad Ahmed Jamal
Title: Statistical data analysis for Tourism in Poland in R Programming Environment
Abstract:
This study utilises the R programming language for statistical data analysis to understand Tourism dynamics in Poland. It focuses on methods for data visualisation, multivariate statistics, and hypothesis testing. To investigate the expenditure behavior of tourist, spending patterns, correlations, and associations among variables were analysed in the dataset. The results revealed a significant relationship between accommodation type and the purpose of trip, showing that the purpose of a trip impacts the selection of accommodation. A strong correlation was observed between organizer expenditure and private expenditure, indicating that individual spending are more when the spending on organizing the trip are higher. However, no significant difference was observed in total expenditure across different accommodation types and purpose of the trip revealing that travelers tend to spend similar amounts regardless of their reason for travel or choice of accommodation. Although significant relationships were observed among certain variables, ANOVA could not be applied because the dataset was not able to hold on the normality assumption. In future, the dataset can be explored further to find more meaningful insights. The developed code is available on GitHub: https://github.com/SaadAhmedJamal/DataAnalysis RProgEnv.

Authors:Trevor E. Pogue, Nicola Nicolici
Title: Strassen Multisystolic Array Hardware Architectures
Abstract:
While Strassen's matrix multiplication algorithm reduces the complexity of naive matrix multiplication, general-purpose hardware is not suitable for achieving the algorithm's promised theoretical speedups. This leaves the question of if it could be better exploited in custom hardware architectures designed specifically for executing the algorithm. However, there is limited prior work on this and it is not immediately clear how to derive such architectures or if they can ultimately lead to real improvements. We bridge this gap, presenting and evaluating new systolic array architectures that efficiently translate the theoretical complexity reductions of Strassen's algorithm directly into hardware resource savings. Furthermore, the architectures are multisystolic array designs that can multiply smaller matrices with higher utilization than single-systolic array designs. The proposed designs implemented on FPGA reduce DSP requirements by a factor of $1.14^r$ for $r$ implemented Strassen recursion levels, and otherwise require overall similar soft logic resources when instantiated to support matrix sizes down to 32x32 and 24x24 at 1-2 levels of Strassen recursion, respectively. We evaluate the proposed designs both in isolation and in an end-to-end machine learning accelerator compared to baseline designs and prior works, achieving state-of-the-art performance.

Authors:Luca Parolari, Andrea Cherubini, Lamberto Ballan, Carlo Biffi
Title: Towards Polyp Counting In Full-Procedure Colonoscopy Videos
Abstract:
Automated colonoscopy reporting holds great potential for enhancing quality control and improving cost-effectiveness of colonoscopy procedures. A major challenge lies in the automated identification, tracking, and re-association (ReID) of polyps tracklets across full-procedure colonoscopy videos. This is essential for precise polyp counting and enables automated computation of key quality metrics, such as Adenoma Detection Rate (ADR) and Polyps Per Colonoscopy (PPC). However, polyp ReID is challenging due to variations in polyp appearance, frequent disappearance from the field of view, and occlusions. In this work, we leverage the REAL-Colon dataset, the first open-access dataset providing full-procedure videos, to define tasks, data splits and metrics for the problem of automatically count polyps in full-procedure videos, establishing an open-access framework. We re-implement previously proposed SimCLR-based methods for learning representations of polyp tracklets, both single-frame and multi-view, and adapt them to the polyp counting task. We then propose an Affinity Propagation-based clustering method to further improve ReID based on these learned representations, ultimately enhancing polyp counting. Our approach achieves state-of-the-art performance, with a polyp fragmentation rate of 6.30 and a false positive rate (FPR) below 5% on the REAL-Colon dataset. We release code at https://github.com/lparolari/towards-polyp-counting.

Authors:Riccardo Bravin, Massimo Pavan, Hazem Hesham Yousef Shalby, Fabrizio Pittorino, Manuel Roveri
Title: EmbBERT-Q: Breaking Memory Barriers in Embedded NLP
Abstract:
Large Language Models (LLMs) have revolutionized natural language processing, setting new standards across a wide range of applications. However, their relevant memory and computational demands make them impractical for deployment on technologically-constrained tiny devices such as wearable devices and Internet-of-Things units. To address this limitation, we introduce EmbBERT-Q, a novel tiny language model specifically designed for tiny devices with stringent memory constraints. EmbBERT-Q achieves state-of-the-art (SotA) accuracy in Natural Language Processing tasks in this scenario, with a total memory footprint (weights and activations) of just 781 kB, representing a 25x reduction in size with respect to SotA models. By combining architectural innovations with hardware-compatible 8-bit quantization, EmbBERT-Q consistently outperforms several baseline models scaled down to a 2 MB memory budget (i.e., the maximum memory typically available in tiny devices), including heavily compressed versions of BERT and MAMBA. Extensive experimental evaluations on both a selected benchmark dataset, TinyNLP, specifically curated to evaluate Tiny Language Models in NLP tasks and real-world scenarios, and the GLUE benchmark, demonstrate EmbBERT-Q ability to deliver competitive accuracy with respect to existing approaches, achieving an unmatched balance between memory and performance. To ensure the complete and immediate reproducibility of all our results, we release all code, scripts, and model checkpoints at https://github.com/RiccardoBravin/tiny-LLM.

Authors:Xiaoya Lu, Dongrui Liu, Yi Yu, Luxin Xu, Jing Shao
Title: X-Boundary: Establishing Exact Safety Boundary to Shield LLMs from Multi-Turn Jailbreaks without Compromising Usability
Abstract:
Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.

Authors:Kuan Li, Liwen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Shuai Wang, Minhao Cheng
Title: LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing
Abstract:
Effectively incorporating external knowledge into Large Language Models (LLMs) is crucial for enhancing their capabilities and addressing real-world needs. Retrieval-Augmented Generation (RAG) offers an effective method for achieving this by retrieving the most relevant fragments into LLMs. However, the advancements in context window size for LLMs offer an alternative approach, raising the question of whether RAG remains necessary for effectively handling external knowledge. Several existing studies provide inconclusive comparisons between RAG and long-context (LC) LLMs, largely due to limitations in the benchmark designs. In this paper, we present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs. LaRA encompasses 2326 test cases across four practical QA task categories and three types of naturally occurring long texts. Through systematic evaluation of seven open-source and four proprietary LLMs, we find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks. Our findings provide actionable guidelines for practitioners to effectively leverage both RAG and LC approaches in developing and deploying LLM applications. Our code and dataset is provided at: \href{https://github.com/Alibaba-NLP/LaRA}{\textbf{https://github.com/Alibaba-NLP/LaRA}}.

Authors:Siqi Wu, Yinda Chen, Dong Liu, Zhihai He
Title: Conditional Latent Coding with Learnable Synthesized Reference for Deep Image Compression
Abstract:
In this paper, we study how to synthesize a dynamic reference from an external dictionary to perform conditional coding of the input image in the latent domain and how to learn the conditional latent synthesis and coding modules in an end-to-end manner. Our approach begins by constructing a universal image feature dictionary using a multi-stage approach involving modified spatial pyramid pooling, dimension reduction, and multi-scale feature clustering. For each input image, we learn to synthesize a conditioning latent by selecting and synthesizing relevant features from the dictionary, which significantly enhances the model's capability in capturing and exploring image source correlation. This conditional latent synthesis involves a correlation-based feature matching and alignment strategy, comprising a Conditional Latent Matching (CLM) module and a Conditional Latent Synthesis (CLS) module. The synthesized latent is then used to guide the encoding process, allowing for more efficient compression by exploiting the correlation between the input image and the reference dictionary. According to our theoretical analysis, the proposed conditional latent coding (CLC) method is robust to perturbations in the external dictionary samples and the selected conditioning latent, with an error bound that scales logarithmically with the dictionary size, ensuring stability even with large and diverse dictionaries. Experimental results on benchmark datasets show that our new method improves the coding performance by a large margin (up to 1.2 dB) with a very small overhead of approximately 0.5\% bits per pixel. Our code is publicly available at https://github.com/ydchen0806/CLC.

Authors:Ishika Agarwal, Dilek Hakkani-Tür
Title: Neural Networks for Learnable and Scalable Influence Estimation of Instruction Fine-Tuning Data
Abstract:
Influence functions provide crucial insights into model training, but existing methods suffer from large computational costs and limited generalization. Particularly, recent works have proposed various metrics and algorithms to calculate the influence of data using language models, which do not scale well with large models and datasets. This is because of the expensive forward and backward passes required for computation, substantial memory requirements to store large models, and poor generalization of influence estimates to new data. In this paper, we explore the use of small neural networks -- which we refer to as the InfluenceNetwork -- to estimate influence values, achieving up to 99% cost reduction. Our evaluation demonstrates that influence values can be estimated with models just 0.0027% the size of full language models (we use 7B and 8B versions). We apply our algorithm of estimating influence values (called NN-CIFT: Neural Networks for effiCient Instruction Fine-Tuning) to the downstream task of subset selection for general instruction fine-tuning. In our study, we include four state-of-the-art influence functions and show no compromise in performance, despite large speedups, between NN-CIFT and the original influence functions. We provide an in-depth hyperparameter analyses of NN-CIFT. The code for our method can be found here: https://github.com/agarwalishika/NN-CIFT.

Authors:Kun Guo, Gang Cao, Zijie Lou, Xianglin Huang, Jiaoyun Liu
Title: A Lightweight and Effective Image Tampering Localization Network with Vision Mamba
Abstract:
Current image tampering localization methods primarily rely on Convolutional Neural Networks (CNNs) and Transformers. While CNNs suffer from limited local receptive fields, Transformers offer global context modeling at the expense of quadratic computational complexity. Recently, the state space model Mamba has emerged as a competitive alternative, enabling linear-complexity global dependency modeling. Inspired by it, we propose a lightweight and effective FORensic network based on vision MAmba (ForMa) for blind image tampering localization. Firstly, ForMa captures multi-scale global features that achieves efficient global dependency modeling through linear complexity. Then the pixel-wise localization map is generated by a lightweight decoder, which employs a parameter-free pixel shuffle layer for upsampling. Additionally, a noise-assisted decoding strategy is proposed to integrate complementary manipulation traces from tampered images, boosting decoder sensitivity to forgery cues. Experimental results on 10 standard datasets demonstrate that ForMa achieves state-of-the-art generalization ability and robustness, while maintaining the lowest computational complexity. Code is available at https://github.com/multimediaFor/ForMa.

Authors:Jiankang Chen, Tianke Zhang, Changyi Liu, Haojie Ding, Yaya Shi, Feng Cheng, Huihui Xiao, Bin Wen, Fan Yang, Tingting Gao, Di Zhang
Title: TaskGalaxy: Scaling Multi-modal Instruction Fine-tuning with Tens of Thousands Vision Task Types
Abstract:
Multimodal visual language models are gaining prominence in open-world applications, driven by advancements in model architectures, training techniques, and high-quality data. However, their performance is often limited by insufficient task-specific data, leading to poor generalization and biased outputs. Existing efforts to increase task diversity in fine-tuning datasets are hindered by the labor-intensive process of manual task labeling, which typically produces only a few hundred task types. To address this, we propose TaskGalaxy, a large-scale multimodal instruction fine-tuning dataset comprising 19,227 hierarchical task types and 413,648 samples. TaskGalaxy utilizes GPT-4o to enrich task diversity by expanding from a small set of manually defined tasks, with CLIP and GPT-4o filtering those that best match open-source images, and generating relevant question-answer pairs. Multiple models are employed to ensure sample quality. This automated process enhances both task diversity and data quality, reducing manual intervention. Incorporating TaskGalaxy into LLaVA-v1.5 and InternVL-Chat-v1.0 models shows substantial performance improvements across 16 benchmarks, demonstrating the critical importance of task diversity. TaskGalaxy is publicly released at https://github.com/Kwai-YuanQi/TaskGalaxy.

Authors:Kehan Guo, Yili Shen, Gisela Abigail Gonzalez-Montiel, Yue Huang, Yujun Zhou, Mihir Surve, Zhichun Guo, Prayel Das, Nitesh V Chawla, Olaf Wiest, Xiangliang Zhang
Title: Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond
Abstract:
The rapid advent of machine learning (ML) and artificial intelligence (AI) has catalyzed major transformations in chemistry, yet the application of these methods to spectroscopic and spectrometric data, referred to as Spectroscopy Machine Learning (SpectraML), remains relatively underexplored. Modern spectroscopic techniques (MS, NMR, IR, Raman, UV-Vis) generate an ever-growing volume of high-dimensional data, creating a pressing need for automated and intelligent analysis beyond traditional expert-based workflows. In this survey, we provide a unified review of SpectraML, systematically examining state-of-the-art approaches for both forward tasks (molecule-to-spectrum prediction) and inverse tasks (spectrum-to-molecule inference). We trace the historical evolution of ML in spectroscopy, from early pattern recognition to the latest foundation models capable of advanced reasoning, and offer a taxonomy of representative neural architectures, including graph-based and transformer-based methods. Addressing key challenges such as data quality, multimodal integration, and computational scalability, we highlight emerging directions such as synthetic data generation, large-scale pretraining, and few- or zero-shot learning. To foster reproducible research, we also release an open-source repository containing recent papers and their corresponding curated datasets (https://github.com/MINE-Lab-ND/SpectrumML_Survey_Papers). Our survey serves as a roadmap for researchers, guiding progress at the intersection of spectroscopy and AI.

Authors:Peng Ling, Wenxiao Xiong
Title: FrGNet: A fourier-guided weakly-supervised framework for nuclear instance segmentation
Abstract:
Nuclear instance segmentation has played a critical role in pathology image analysis. The main challenges arise from the difficulty in accurately segmenting instances and the high cost of precise mask-level annotations for fully-supervised training.In this work, we propose a fourier guidance framework for solving the weakly-supervised nuclear instance segmentation problem. In this framework, we construct a fourier guidance module to fuse the priori information into the training process of the model, which facilitates the model to capture the relevant features of the nuclear. Meanwhile, in order to further improve the model's ability to represent the features of nuclear, we propose the guide-based instance level contrastive module. This module makes full use of the framework's own properties and guide information to effectively enhance the representation features of nuclear. We show on two public datasets that our model can outperform current SOTA methods under fully-supervised design, and in weakly-supervised experiments, with only a small amount of labeling our model still maintains close to the performance under full supervision.In addition, we also perform generalization experiments on a private dataset, and without any labeling, our model is able to segment nuclear images that have not been seen during training quite effectively. As open science, all codes and pre-trained models are available at https://github.com/LQY404/FrGNet.

Authors:Jinpei Guo, Zheng Chen, Wenbo Li, Yong Guo, Yulun Zhang
Title: Compression-Aware One-Step Diffusion Model for JPEG Artifact Removal
Abstract:
Diffusion models have demonstrated remarkable success in image restoration tasks. However, their multi-step denoising process introduces significant computational overhead, limiting their practical deployment. Furthermore, existing methods struggle to effectively remove severe JPEG artifact, especially in highly compressed images. To address these challenges, we propose CODiff, a compression-aware one-step diffusion model for JPEG artifact removal. The core of CODiff is the compression-aware visual embedder (CaVE), which extracts and leverages JPEG compression priors to guide the diffusion model. We propose a dual learning strategy that combines explicit and implicit learning. Specifically, explicit learning enforces a quality prediction objective to differentiate low-quality images with different compression levels. Implicit learning employs a reconstruction objective that enhances the model's generalization. This dual learning allows for a deeper and more comprehensive understanding of JPEG compression. Experimental results demonstrate that CODiff surpasses recent leading methods in both quantitative and visual quality metrics. The code is released at https://github.com/jp-guo/CODiff.

Authors:Chris Zhuang, Debadyuti Mukherjee, Yingzhou Lu, Tianfan Fu, Ruqi Zhang
Title: Gradient GA: Gradient Genetic Algorithm for Drug Molecular Design
Abstract:
Molecular discovery has brought great benefits to the chemical industry. Various molecule design techniques are developed to identify molecules with desirable properties. Traditional optimization methods, such as genetic algorithms, continue to achieve state-of-the-art results across multiple molecular design benchmarks. However, these techniques rely solely on random walk exploration, which hinders both the quality of the final solution and the convergence speed. To address this limitation, we propose a novel approach called Gradient Genetic Algorithm (Gradient GA), which incorporates gradient information from the objective function into genetic algorithms. Instead of random exploration, each proposed sample iteratively progresses toward an optimal solution by following the gradient direction. We achieve this by designing a differentiable objective function parameterized by a neural network and utilizing the Discrete Langevin Proposal to enable gradient guidance in discrete molecular spaces. Experimental results demonstrate that our method significantly improves both convergence speed and solution quality, outperforming cutting-edge techniques. For example, it achieves up to a 25% improvement in the top-10 score over the vanilla genetic algorithm. The code is publicly available at https://github.com/debadyuti23/GradientGA.

Authors:Anzo Teh, Mark Jabbour, Yury Polyanskiy
Title: Solving Empirical Bayes via Transformers
Abstract:
This work applies modern AI tools (transformers) to solving one of the oldest statistical problems: Poisson means under empirical Bayes (Poisson-EB) setting. In Poisson-EB a high-dimensional mean vector $θ$ (with iid coordinates sampled from an unknown prior $π$) is estimated on the basis of $X=\mathrm{Poisson}(θ)$. A transformer model is pre-trained on a set of synthetically generated pairs $(X,θ)$ and learns to do in-context learning (ICL) by adapting to unknown $π$. Theoretically, we show that a sufficiently wide transformer can achieve vanishing regret with respect to an oracle estimator who knows $π$ as dimension grows to infinity. Practically, we discover that already very small models (100k parameters) are able to outperform the best classical algorithm (non-parametric maximum likelihood, or NPMLE) both in runtime and validation loss, which we compute on out-of-distribution synthetic data as well as real-world datasets (NHL hockey, MLB baseball, BookCorpusOpen). Finally, by using linear probes, we confirm that the transformer's EB estimator appears to internally work differently from either NPMLE or Robbins' estimators.

Authors:Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao Jiang, Mengze Li, Xiaohui Song, Siliang Tang, Jun Xiao, Hui Lin, Yueting Zhuang, Beng Chin Ooi
Title: HealthGPT: A Medical Large Vision-Language Model for Unifying Comprehension and Generation via Heterogeneous Knowledge Adaptation
Abstract:
We present HealthGPT, a powerful Medical Large Vision-Language Model (Med-LVLM) that integrates medical visual comprehension and generation capabilities within a unified autoregressive paradigm. Our bootstrapping philosophy is to progressively adapt heterogeneous comprehension and generation knowledge to pre-trained large language models (LLMs). This is achieved through a novel heterogeneous low-rank adaptation (H-LoRA) technique, which is complemented by a tailored hierarchical visual perception approach and a three-stage learning strategy. To effectively learn the HealthGPT, we devise a comprehensive medical domain-specific comprehension and generation dataset called VL-Health. Experimental results demonstrate exceptional performance and scalability of HealthGPT in medical visual unified tasks. Our project can be accessed at https://github.com/DCDmllm/HealthGPT.

Authors:Saurabh Chauhan, Zeeshan Rasheed, Abdul Malik Sami, Zheying Zhang, Jussi Rasku, Kai-Kristian Kemell, Pekka Abrahamsson
Title: LLM-Generated Microservice Implementations from RESTful API Definitions
Abstract:
The growing need for scalable, maintainable, and fast-deploying systems has made microservice architecture widely popular in software development. This paper presents a system that uses Large Language Models (LLMs) to automate the API-first development of RESTful microservices. This system assists in creating OpenAPI specification, generating server code from it, and refining the code through a feedback loop that analyzes execution logs and error messages. By focusing on the API-first methodology, this system ensures that microservices are designed with well-defined interfaces, promoting consistency and reliability across the development life-cycle. The integration of log analysis enables the LLM to detect and address issues efficiently, reducing the number of iterations required to produce functional and robust services. This process automates the generation of microservices and also simplifies the debugging and refinement phases, allowing developers to focus on higher-level design and integration tasks. This system has the potential to benefit software developers, architects, and organizations to speed up software development cycles and reducing manual effort. To assess the potential of the system, we conducted surveys with six industry practitioners. After surveying practitioners, the system demonstrated notable advantages in enhancing development speed, automating repetitive tasks, and simplifying the prototyping process. While experienced developers appreciated its efficiency for specific tasks, some expressed concerns about its limitations in handling advanced customizations and larger scale projects. The code is publicly available at https://github.com/sirbh/code-gen

Authors:Qingsong Zou, Jingyu Xiao, Qing Li, Zhi Yan, Yuhang Wang, Li Xu, Wenxuan Wang, Kuofeng Gao, Ruoyu Li, Yong Jiang
Title: QueryAttack: Jailbreaking Aligned Large Language Models Using Structured Non-natural Query Language
Abstract:
Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack not only can achieve high attack success rates (ASRs), but also can jailbreak various defense methods. Furthermore, we tailor a defense method against QueryAttack, which can reduce ASR by up to $64\%$ on GPT-4-1106. Our code is available at https://github.com/horizonsinzqs/QueryAttack.

Authors:Benedikt Alkin, Maurits Bleeker, Richard Kurle, Tobias Kronlachner, Reinhard Sonnleitner, Matthias Dorfer, Johannes Brandstetter
Title: AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Abstract:
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching 100 million, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce Anchored-Branched Universal Physics Transformers (AB-UPT) as a novel modeling scheme for building neural surrogates for computational fluid dynamics (CFD) simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a computer-aided design geometry alone, omitting the need for costly CFD meshing procedures.

Authors:Wenbo Pan, Zhichao Liu, Qiguang Chen, Xiangyang Zhou, Haining Yu, Xiaohua Jia
Title: The Hidden Dimensions of LLM Alignment: A Multi-Dimensional Analysis of Orthogonal Safety Directions
Abstract:
Large Language Models' safety-aligned behaviors, such as refusing harmful queries, can be represented by linear directions in activation space. Previous research modeled safety behavior with a single direction, limiting mechanistic understanding to an isolated safety feature. In this work, we discover that safety-aligned behavior is jointly controlled by multi-dimensional directions. Namely, we study the vector space of representation shifts during safety fine-tuning on Llama 3 8B for refusing jailbreaks. By studying orthogonal directions in the space, we first find that a dominant direction governs the model's refusal behavior, while multiple smaller directions represent distinct and interpretable features like hypothetical narrative and role-playing. We then measure how different directions promote or suppress the dominant direction, showing the important role of secondary directions in shaping the model's refusal representation. Finally, we demonstrate that removing certain trigger tokens in harmful queries can mitigate these directions to bypass the learned safety capability, providing new insights on understanding safety alignment vulnerability from a multi-dimensional perspective. Code and artifacts are available at https://github.com/BMPixel/safety-residual-space.

Authors:Xiaohong Liu, Xulong Zhao, Gang Liu, Zili Wu, Tao Wang, Lei Meng, Yuhan Wang
Title: IMM-MOT: A Novel 3D Multi-object Tracking Framework with Interacting Multiple Model Filter
Abstract:
3D Multi-Object Tracking (MOT) provides the trajectories of surrounding objects, assisting robots or vehicles in smarter path planning and obstacle avoidance. Existing 3D MOT methods based on the Tracking-by-Detection framework typically use a single motion model to track an object throughout its entire tracking process. However, objects may change their motion patterns due to variations in the surrounding environment. In this paper, we introduce the Interacting Multiple Model filter in IMM-MOT, which accurately fits the complex motion patterns of individual objects, overcoming the limitation of single-model tracking in existing approaches. In addition, we incorporate a Damping Window mechanism into the trajectory lifecycle management, leveraging the continuous association status of trajectories to control their creation and termination, reducing the occurrence of overlooked low-confidence true targets. Furthermore, we propose the Distance-Based Score Enhancement module, which enhances the differentiation between false positives and true positives by adjusting detection scores, thereby improving the effectiveness of the Score Filter. On the NuScenes Val dataset, IMM-MOT outperforms most other single-modal models using 3D point clouds, achieving an AMOTA of 73.8%. Our project is available at https://github.com/Ap01lo/IMM-MOT.

Authors:Maizhe Yang, Kaiyuan Tang, Chaoli Wang
Title: Meta-INR: Efficient Encoding of Volumetric Data via Meta-Learning Implicit Neural Representation
Abstract:
Implicit neural representation (INR) has emerged as a promising solution for encoding volumetric data, offering continuous representations and seamless compatibility with the volume rendering pipeline. However, optimizing an INR network from randomly initialized parameters for each new volume is computationally inefficient, especially for large-scale time-varying or ensemble volumetric datasets where volumes share similar structural patterns but require independent training. To close this gap, we propose Meta-INR, a pretraining strategy adapted from meta-learning algorithms to learn initial INR parameters from partial observation of a volumetric dataset. Compared to training an INR from scratch, the learned initial parameters provide a strong prior that enhances INR generalizability, allowing significantly faster convergence with just a few gradient updates when adapting to a new volume and better interpretability when analyzing the parameters of the adapted INRs. We demonstrate that Meta-INR can effectively extract high-quality generalizable features that help encode unseen similar volume data across diverse datasets. Furthermore, we highlight its utility in tasks such as simulation parameter analysis and representative timestep selection. The code is available at https://github.com/spacefarers/MetaINR.

Authors:Duc Kieu, Kien Do, Toan Nguyen, Dang Nguyen, Thin Nguyen
Title: Bidirectional Diffusion Bridge Models
Abstract:
Diffusion bridges have shown potential in paired image-to-image (I2I) translation tasks. However, existing methods are limited by their unidirectional nature, requiring separate models for forward and reverse translations. This not only doubles the computational cost but also restricts their practicality. In this work, we introduce the Bidirectional Diffusion Bridge Model (BDBM), a scalable approach that facilitates bidirectional translation between two coupled distributions using a single network. BDBM leverages the Chapman-Kolmogorov Equation for bridges, enabling it to model data distribution shifts across timesteps in both forward and backward directions by exploiting the interchangeability of the initial and target timesteps within this framework. Notably, when the marginal distribution given endpoints is Gaussian, BDBM's transition kernels in both directions possess analytical forms, allowing for efficient learning with a single network. We demonstrate the connection between BDBM and existing bridge methods, such as Doob's h-transform and variational approaches, and highlight its advantages. Extensive experiments on high-resolution I2I translation tasks demonstrate that BDBM not only enables bidirectional translation with minimal additional cost but also outperforms state-of-the-art bridge models. Our source code is available at [https://github.com/kvmduc/BDBM||https://github.com/kvmduc/BDBM].

Authors:Bowen Chen, Keyan Chen, Mohan Yang, Zhengxia Zou, Zhenwei Shi
Title: Heterogeneous Mixture of Experts for Remote Sensing Image Super-Resolution
Abstract:
Remote sensing image super-resolution (SR) aims to reconstruct high-resolution remote sensing images from low-resolution inputs, thereby addressing limitations imposed by sensors and imaging conditions. However, the inherent characteristics of remote sensing images, including diverse ground object types and complex details, pose significant challenges to achieving high-quality reconstruction. Existing methods typically employ a uniform structure to process various types of ground objects without distinction, making it difficult to adapt to the complex characteristics of remote sensing images. To address this issue, we introduce a Mixture of Experts (MoE) model and design a set of heterogeneous experts. These experts are organized into multiple expert groups, where experts within each group are homogeneous while being heterogeneous across groups. This design ensures that specialized activation parameters can be employed to handle the diverse and intricate details of ground objects effectively. To better accommodate the heterogeneous experts, we propose a multi-level feature aggregation strategy to guide the routing process. Additionally, we develop a dual-routing mechanism to adaptively select the optimal expert for each pixel. Experiments conducted on the UCMerced and AID datasets demonstrate that our proposed method achieves superior SR reconstruction accuracy compared to state-of-the-art methods. The code will be available at https://github.com/Mr-Bamboo/MFG-HMoE.

Authors:Chengqian Gao, Haonan Li, Liu Liu, Zeke Xie, Peilin Zhao, Zhiqiang Xu
Title: Principled Data Selection for Alignment: The Hidden Risks of Difficult Examples
Abstract:
The alignment of large language models (LLMs) often assumes that using more clean data yields better outcomes, overlooking the match between model capacity and example difficulty. Challenging this, we propose a new principle: Preference data vary in difficulty, and overly difficult examples hinder alignment, by exceeding the model's capacity. Through systematic experimentation, we validate this principle with three key findings: (1) preference examples vary in difficulty, as evidenced by consistent learning orders across alignment runs; (2) overly difficult examples significantly degrade performance across four LLMs and two datasets; and (3) the capacity of a model dictates its threshold for handling difficult examples, underscoring a critical relationship between data selection and model capacity. Building on this principle, we introduce Selective DPO, which filters out overly difficult examples. This simple adjustment improves alignment performance by 9-16% in win rates on the AlpacaEval 2 benchmark compared to the DPO baseline, suppressing a series of DPO variants with different algorithmic adjustments. Together, these results illuminate the importance of aligning data difficulty with model capacity, offering a transformative perspective for improving alignment strategies in LLMs. Code is available at https://github.com/glorgao/SelectiveDPO.

Authors:Sougata Saha, Saurabh Kumar Pandey, Harshit Gupta, Monojit Choudhury
Title: Reading between the Lines: Can LLMs Identify Cross-Cultural Communication Gaps?
Abstract:
In a rapidly globalizing and digital world, content such as book and product reviews created by people from diverse cultures are read and consumed by others from different corners of the world. In this paper, we investigate the extent and patterns of gaps in understandability of book reviews due to the presence of culturally-specific items and elements that might be alien to users from another culture. Our user-study on 57 book reviews from Goodreads reveal that 83\% of the reviews had at least one culture-specific difficult-to-understand element. We also evaluate the efficacy of GPT-4o in identifying such items, given the cultural background of the reader; the results are mixed, implying a significant scope for improvement. Our datasets are available here: https://github.com/sougata-ub/reading_between_lines

Authors:Yiwen Tang, Zoey Guo, Zhuhao Wang, Ray Zhang, Qizhi Chen, Junli Liu, Delin Qu, Zhigang Wang, Dong Wang, Xuelong Li, Bin Zhao
Title: Exploring the Potential of Encoder-free Architectures in 3D LMMs
Abstract:
Encoder-free architectures have been preliminarily explored in the 2D visual domain, yet it remains an open question whether they can be effectively applied to 3D understanding scenarios. In this paper, we present the first comprehensive investigation into the potential of encoder-free architectures to alleviate the challenges of encoder-based 3D Large Multimodal Models (LMMs). These challenges include the failure to adapt to varying point cloud resolutions and the point features from the encoder not meeting the semantic needs of Large Language Models (LLMs). We identify key aspects for 3D LMMs to remove the encoder and enable the LLM to assume the role of the 3D encoder: 1) We propose the LLM-embedded Semantic Encoding strategy in the pre-training stage, exploring the effects of various point cloud self-supervised losses. And we present the Hybrid Semantic Loss to extract high-level semantics. 2) We introduce the Hierarchical Geometry Aggregation strategy in the instruction tuning stage. This incorporates inductive bias into the LLM layers to focus on the local details of the point clouds. To the end, we present the first Encoder-free 3D LMM, ENEL. Our 7B model rivals the current state-of-the-art model, ShapeLLM-13B, achieving 55.10%, 50.98%, and 43.10% on the classification, captioning, and VQA tasks, respectively. Our results demonstrate that the encoder-free architecture is highly promising for replacing encoder-based architectures in the field of 3D understanding. The code is released at https://github.com/Ivan-Tang-3D/ENEL

Authors:Xueyi Liu, Jianibieke Adalibieke, Qianwei Han, Yuzhe Qin, Li Yi
Title: DexTrack: Towards Generalizable Neural Tracking Control for Dexterous Manipulation from Human References
Abstract:
We address the challenge of developing a generalizable neural tracking controller for dexterous manipulation from human references. This controller aims to manage a dexterous robot hand to manipulate diverse objects for various purposes defined by kinematic human-object interactions. Developing such a controller is complicated by the intricate contact dynamics of dexterous manipulation and the need for adaptivity, generalizability, and robustness. Current reinforcement learning and trajectory optimization methods often fall short due to their dependence on task-specific rewards or precise system models. We introduce an approach that curates large-scale successful robot tracking demonstrations, comprising pairs of human references and robot actions, to train a neural controller. Utilizing a data flywheel, we iteratively enhance the controller's performance, as well as the number and quality of successful tracking demonstrations. We exploit available tracking demonstrations and carefully integrate reinforcement learning and imitation learning to boost the controller's performance in dynamic environments. At the same time, to obtain high-quality tracking demonstrations, we individually optimize per-trajectory tracking by leveraging the learned tracking controller in a homotopy optimization method. The homotopy optimization, mimicking chain-of-thought, aids in solving challenging trajectory tracking problems to increase demonstration diversity. We showcase our success by training a generalizable neural controller and evaluating it in both simulation and real world. Our method achieves over a 10% improvement in success rates compared to leading baselines. The project website with animated results is available at https://meowuu7.github.io/DexTrack/.

Authors:Yung-Sung Chuang, Benjamin Cohen-Wang, Shannon Zejiang Shen, Zhaofeng Wu, Hu Xu, Xi Victoria Lin, James Glass, Shang-Wen Li, Wen-tau Yih
Title: SelfCite: Self-Supervised Alignment for Context Attribution in Large Language Models
Abstract:
We introduce SelfCite, a novel self-supervised approach that aligns LLMs to generate high-quality, fine-grained, sentence-level citations for the statements in their generated responses. Instead of only relying on costly and labor-intensive annotations, SelfCite leverages a reward signal provided by the LLM itself through context ablation: If a citation is necessary, removing the cited text from the context should prevent the same response; if sufficient, retaining the cited text alone should preserve the same response. This reward can guide the inference-time best-of-N sampling strategy to improve citation quality significantly, as well as be used in preference optimization to directly fine-tune the models for generating better citations. The effectiveness of SelfCite is demonstrated by increasing citation F1 up to 5.3 points on the LongBench-Cite benchmark across five long-form question answering tasks. The source code is available at https://github.com/facebookresearch/SelfCite

Authors:Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, Xinchao Wang
Title: CoT-Valve: Length-Compressible Chain-of-Thought Tuning
Abstract:
Chain-of-Thought significantly enhances a model's reasoning capability, but it also comes with a considerable increase in inference costs due to long chains. With the observation that the reasoning path can be easily compressed under easy tasks but struggle on hard tasks, we explore the feasibility of elastically controlling the length of reasoning paths with only one model, thereby reducing the inference overhead of reasoning models dynamically based on task difficulty. We introduce a new tuning and inference strategy named CoT-Valve, designed to allow models to generate reasoning chains of varying lengths. To achieve this, we propose to identify a direction in the parameter space that, when manipulated, can effectively control the length of generated CoT. Moreover, we show that this property is valuable for compressing the reasoning chain. We construct datasets with chains from long to short for the same questions and explore two enhanced strategies for CoT-Valve: (1) a precise length-compressible CoT tuning method, and (2) a progressive chain length compression approach. Our experiments show that CoT-Valve successfully enables controllability and compressibility of the chain and shows better performance than the prompt-based control. We applied this method to QwQ-32B-Preview, reducing reasoning chains on GSM8K from 741 to 225 tokens with a minor performance drop (95.07% to 94.92%) and on AIME from 6827 to 4629 tokens, with only one additional incorrect answer.

Authors:Montgomery Bohde, Mrunali Manjrekar, Runzhong Wang, Shuiwang Ji, Connor W. Coley
Title: DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra
Abstract:
Mass spectrometry plays a fundamental role in elucidating the structures of unknown molecules and subsequent scientific discoveries. One formulation of the structure elucidation task is the conditional de novo generation of molecular structure given a mass spectrum. Toward a more accurate and efficient scientific discovery pipeline for small molecules, we present DiffMS, a formula-restricted encoder-decoder generative network that achieves state-of-the-art performance on this task. The encoder utilizes a transformer architecture and models mass spectra domain knowledge such as peak formulae and neutral losses, and the decoder is a discrete graph diffusion model restricted by the heavy-atom composition of a known chemical formula. To develop a robust decoder that bridges latent embeddings and molecular structures, we pretrain the diffusion decoder with fingerprint-structure pairs, which are available in virtually infinite quantities, compared to structure-spectrum pairs that number in the tens of thousands. Extensive experiments on established benchmarks show that DiffMS outperforms existing models on de novo molecule generation. We provide several ablations to demonstrate the effectiveness of our diffusion and pretraining approaches and show consistent performance scaling with increasing pretraining dataset size. DiffMS code is publicly available at https://github.com/coleygroup/DiffMS.

Authors:Liang Wang, Chao Song, Zhiyuan Liu, Yu Rong, Qiang Liu, Shu Wu, Liang Wang
Title: Diffusion Models for Molecules: A Survey of Methods and Tasks
Abstract:
Generative tasks about molecules, including but not limited to molecule generation, are crucial for drug discovery and material design, and have consistently attracted significant attention. In recent years, diffusion models have emerged as an impressive class of deep generative models, sparking extensive research and leading to numerous studies on their application to molecular generative tasks. Despite the proliferation of related work, there remains a notable lack of up-to-date and systematic surveys in this area. Particularly, due to the diversity of diffusion model formulations, molecular data modalities, and generative task types, the research landscape is challenging to navigate, hindering understanding and limiting the area's growth. To address this, this paper conducts a comprehensive survey of diffusion model-based molecular generative methods. We systematically review the research from the perspectives of methodological formulations, data modalities, and task types, offering a novel taxonomy. This survey aims to facilitate understanding and further flourishing development in this area. The relevant papers are summarized at: https://github.com/AzureLeon1/awesome-molecular-diffusion-models.

Authors:Nicholas Dronen, Randall Balestriero
Title: Eidetic Learning: an Efficient and Provable Solution to Catastrophic Forgetting
Abstract:
Catastrophic forgetting -- the phenomenon of a neural network learning a task t1 and losing the ability to perform it after being trained on some other task t2 -- is a long-standing problem for neural networks [McCloskey and Cohen, 1989]. We present a method, Eidetic Learning, that provably solves catastrophic forgetting. A network trained with Eidetic Learning -- here, an EideticNet -- requires no rehearsal or replay. We consider successive discrete tasks and show how at inference time an EideticNet automatically routes new instances without auxiliary task information. An EideticNet bears a family resemblance to the sparsely-gated Mixture-of-Experts layer Shazeer et al. [2016] in that network capacity is partitioned across tasks and the network itself performs data-conditional routing. An EideticNet is easy to implement and train, is efficient, and has time and space complexity linear in the number of parameters. The guarantee of our method holds for normalization layers of modern neural networks during both pre-training and fine-tuning. We show with a variety of network architectures and sets of tasks that EideticNets are immune to forgetting. While the practical benefits of EideticNets are substantial, we believe they can be benefit practitioners and theorists alike. The code for training EideticNets is available at https://github.com/amazon-science/eideticnet-training.

Authors:Yi Yu, Xue Yang, Yansheng Li, Zhenjun Han, Feipeng Da, Junchi Yan
Title: Wholly-WOOD: Wholly Leveraging Diversified-quality Labels for Weakly-supervised Oriented Object Detection
Abstract:
Accurately estimating the orientation of visual objects with compact rotated bounding boxes (RBoxes) has become a prominent demand, which challenges existing object detection paradigms that only use horizontal bounding boxes (HBoxes). To equip the detectors with orientation awareness, supervised regression/classification modules have been introduced at the high cost of rotation annotation. Meanwhile, some existing datasets with oriented objects are already annotated with horizontal boxes or even single points. It becomes attractive yet remains open for effectively utilizing weaker single point and horizontal annotations to train an oriented object detector (OOD). We develop Wholly-WOOD, a weakly-supervised OOD framework, capable of wholly leveraging various labeling forms (Points, HBoxes, RBoxes, and their combination) in a unified fashion. By only using HBox for training, our Wholly-WOOD achieves performance very close to that of the RBox-trained counterpart on remote sensing and other areas, significantly reducing the tedious efforts on labor-intensive annotation for oriented objects. The source codes are available at https://github.com/VisionXLab/whollywood (PyTorch-based) and https://github.com/VisionXLab/whollywood-jittor (Jittor-based).

Authors:Dexian Cai, Xiaocui Yang, Yongkang Liu, Daling Wang, Shi Feng, Yifei Zhang, Soujanya Poria
Title: Pixel-Level Reasoning Segmentation via Multi-turn Conversations
Abstract:
Existing visual perception systems focus on region-level segmentation in single-turn dialogues, relying on complex and explicit query instructions. Such systems cannot reason at the pixel level and comprehend dynamic user intent that changes over interaction. Our work tackles this issue by introducing a novel task, Pixel-level Reasoning Segmentation (Pixel-level RS) based on multi-turn conversations, tracking evolving user intent via multi-turn interactions for fine-grained segmentation. To establish a benchmark for this novel task, we build a Pixel-level ReasonIng Segmentation Dataset Based on Multi-Turn Conversations (PRIST), comprising 24k utterances from 8.3k multi-turn conversational scenarios with segmentation targets. Building on PRIST, we further propose MIRAS, a Multi-turn Interactive ReAsoning Segmentation framework, integrates pixel-level segmentation with robust multi-turn conversation understanding, generating pixel-grounded explanations aligned with user intent. The PRIST dataset and MIRSA framework fill the gap in pixel-level reasoning segmentation. Experimental results on the PRIST dataset demonstrate that our method outperforms current segmentation-specific baselines in terms of segmentation and LLM-based reasoning metrics. The code and data are available at: https://github.com/ccccai239/PixelRIST.

Authors:Xiaoliu Guan, Yu Wu, Huayang Huang, Xiao Liu, Jiaxu Miao, Yi Yang
Title: Redistribute Ensemble Training for Mitigating Memorization in Diffusion Models
Abstract:
Diffusion models, known for their tremendous ability to generate high-quality samples, have recently raised concerns due to their data memorization behavior, which poses privacy risks. Recent methods for memory mitigation have primarily addressed the issue within the context of the text modality in cross-modal generation tasks, restricting their applicability to specific conditions. In this paper, we propose a novel method for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization. Directly exposing visual data to the model increases memorization risk, so we design a framework where models learn through proxy model parameters instead. Specially, the training dataset is divided into multiple shards, with each shard training a proxy model, then aggregated to form the final model. Additionally, practical analysis of training losses illustrates that the losses for easily memorable images tend to be obviously lower. Thus, we skip the samples with abnormally low loss values from the current mini-batch to avoid memorizing. However, balancing the need to skip memorization-prone samples while maintaining sufficient training data for high-quality image generation presents a key challenge. Thus, we propose IET-AGC+, which redistributes highly memorizable samples between shards, to mitigate these samples from over-skipping. Furthermore, we dynamically augment samples based on their loss values to further reduce memorization. Extensive experiments and analysis on four datasets show that our method successfully reduces memory capacity while maintaining performance. Moreover, we fine-tune the pre-trained diffusion models, e.g., Stable Diffusion, and decrease the memorization score by 46.7\%, demonstrating the effectiveness of our method. Code is available in: https://github.com/liuxiao-guan/IET_AGC.

Authors:Daniel Fleischer, Moshe Berchansky, Gad Markovits, Moshe Wasserblat
Title: SQuARE: Sequential Question Answering Reasoning Engine for Enhanced Chain-of-Thought in Large Language Models
Abstract:
In the rapidly evolving field of Natural Language Processing, Large Language Models (LLMs) are tasked with increasingly complex reasoning challenges. Traditional methods like chain-of-thought prompting have shown promise but often fall short in fully leveraging a model's reasoning capabilities. This paper introduces SQuARE (Sequential Question Answering Reasoning Engine), a novel prompting technique designed to improve reasoning through a self-interrogation paradigm. Building upon CoT frameworks, SQuARE prompts models to generate and resolve multiple auxiliary questions before tackling the main query, promoting a more thorough exploration of various aspects of a topic. Our expansive evaluations, conducted with Llama 3 and GPT-4o models across multiple question-answering datasets, demonstrate that SQuARE significantly surpasses traditional CoT prompts and existing rephrase-and-respond methods. By systematically decomposing queries, SQuARE advances LLM capabilities in reasoning tasks. The code is publicly available at https://github.com/IntelLabs/RAG-FiT/tree/square.

Authors:Khawla Elhadri, Tomasz Michalski, Adam Wróbel, Jörg Schlötterer, Bartosz Zieliński, Christin Seifert
Title: This looks like what? Challenges and Future Research Directions for Part-Prototype Models
Abstract:
The growing interest in eXplainable Artificial Intelligence (XAI) has prompted research into models with built-in interpretability, the most prominent of which are part-prototype models. Part-Prototype Models (PPMs) make decisions by comparing an input image to a set of learned prototypes, providing human-understandable explanations in the form of ``this looks like that''. Despite their inherent interpretability, PPMS are not yet considered a valuable alternative to post-hoc models. In this survey, we investigate the reasons for this and provide directions for future research. We analyze papers from 2019 to 2024, and derive a taxonomy of the challenges that current PPMS face. Our analysis shows that the open challenges are quite diverse. The main concern is the quality and quantity of prototypes. Other concerns are the lack of generalization to a variety of tasks and contexts, and general methodological issues, including non-standardized evaluation. We provide ideas for future research in five broad directions: improving predictive performance, developing novel architectures grounded in theory, establishing frameworks for human-AI collaboration, aligning models with humans, and establishing metrics and benchmarks for evaluation. We hope that this survey will stimulate research and promote intrinsically interpretable models for application domains. Our list of surveyed papers is available at https://github.com/aix-group/ppm-survey.

Authors:Jiayang Wu, Wensheng Gan, Philip S. Yu
Title: Graph Diffusion Network for Drug-Gene Prediction
Abstract:
Predicting drug-gene associations is crucial for drug development and disease treatment. While graph neural networks (GNN) have shown effectiveness in this task, they face challenges with data sparsity and efficient contrastive learning implementation. We introduce a graph diffusion network for drug-gene prediction (GDNDGP), a framework that addresses these limitations through two key innovations. First, it employs meta-path-based homogeneous graph learning to capture drug-drug and gene-gene relationships, ensuring similar entities share embedding spaces. Second, it incorporates a parallel diffusion network that generates hard negative samples during training, eliminating the need for exhaustive negative sample retrieval. Our model achieves superior performance on the DGIdb 4.0 dataset and demonstrates strong generalization capability on tripartite drug-gene-disease networks. Results show significant improvements over existing methods in drug-gene prediction tasks, particularly in handling complex heterogeneous relationships. The source code is publicly available at https://github.com/csjywu1/GDNDGP.

Authors:Chen Xu, Yuxin Li, Wenjie Wang, Liang Pang, Jun Xu, Tat-Seng Chua
Title: Bridging Jensen Gap for Max-Min Group Fairness Optimization in Recommendation
Abstract:
Group max-min fairness (MMF) is commonly used in fairness-aware recommender systems (RS) as an optimization objective, as it aims to protect marginalized item groups and ensures a fair competition platform. However, our theoretical analysis indicates that integrating MMF constraint violates the assumption of sample independence during optimization, causing the loss function to deviate from linear additivity. Such nonlinearity property introduces the Jensen gap between the model's convergence point and the optimal point if mini-batch sampling is applied. Both theoretical and empirical studies show that as the mini-batch size decreases and the group size increases, the Jensen gap will widen accordingly. Some methods using heuristic re-weighting or debiasing strategies have the potential to bridge the Jensen gap. However, they either lack theoretical guarantees or suffer from heavy computational costs. To overcome these limitations, we first theoretically demonstrate that the MMF-constrained objective can be essentially reformulated as a group-weighted optimization objective. Then we present an efficient and effective algorithm named FairDual, which utilizes a dual optimization technique to minimize the Jensen gap. Our theoretical analysis demonstrates that FairDual can achieve a sub-linear convergence rate to the globally optimal solution and the Jensen gap can be well bounded under a mini-batch sampling strategy with random shuffle. Extensive experiments conducted using six large-scale RS backbone models on three publicly available datasets demonstrate that FairDual outperforms all baselines in terms of both accuracy and fairness. Our data and codes are shared at https://github.com/XuChen0427/FairDual.

Authors:Daniel Koutas, Daniel Hettegger, Kostas G. Papakonstantinou, Daniel Straub
Title: Convex Is Back: Solving Belief MDPs With Convexity-Informed Deep Reinforcement Learning
Abstract:
We present a novel method for Deep Reinforcement Learning (DRL), incorporating the convex property of the value function over the belief space in Partially Observable Markov Decision Processes (POMDPs). We introduce hard- and soft-enforced convexity as two different approaches, and compare their performance against standard DRL on two well-known POMDP environments, namely the Tiger and FieldVisionRockSample problems. Our findings show that including the convexity feature can substantially increase performance of the agents, as well as increase robustness over the hyperparameter space, especially when testing on out-of-distribution domains. The source code for this work can be found at https://github.com/Dakout/Convex_DRL.

Authors:Mojtaba Safari, Shansong Wang, Zach Eidex, Richard Qiu, Chih-Wei Chang, David S. Yu, Xiaofeng Yang
Title: A Physics-Informed Deep Learning Model for MRI Brain Motion Correction
Abstract:
Background: MRI is crucial for brain imaging but is highly susceptible to motion artifacts due to long acquisition times. This study introduces PI-MoCoNet, a physics-informed motion correction network that integrates spatial and k-space information to remove motion artifacts without explicit motion parameter estimation, enhancing image fidelity and diagnostic reliability. Materials and Methods: PI-MoCoNet consists of a motion detection network (U-net with spatial averaging) to identify corrupted k-space lines and a motion correction network (U-net with Swin Transformer blocks) to reconstruct motion-free images. The correction is guided by three loss functions: reconstruction (L1), perceptual (LPIPS), and data consistency (Ldc). Motion artifacts were simulated via rigid phase encoding perturbations and evaluated on IXI and MR-ART datasets against Pix2Pix, CycleGAN, and U-net using PSNR, SSIM, and NMSE. Results: PI-MoCoNet significantly improved image quality. On IXI, for minor artifacts, PSNR increased from 34.15 dB to 45.95 dB, SSIM from 0.87 to 1.00, and NMSE reduced from 0.55% to 0.04%. For moderate artifacts, PSNR improved from 30.23 dB to 42.16 dB, SSIM from 0.80 to 0.99, and NMSE from 1.32% to 0.09%. For heavy artifacts, PSNR rose from 27.99 dB to 36.01 dB, SSIM from 0.75 to 0.97, and NMSE decreased from 2.21% to 0.36%. On MR-ART, PI-MoCoNet achieved PSNR gains of ~10 dB and SSIM improvements of up to 0.20, with NMSE reductions of ~6%. Ablation studies confirmed the importance of data consistency and perceptual losses, yielding a 1 dB PSNR gain and 0.17% NMSE reduction. Conclusions: PI-MoCoNet effectively mitigates motion artifacts in brain MRI, outperforming existing methods. Its ability to integrate spatial and k-space information makes it a promising tool for clinical use in motion-prone settings. Code: https://github.com/mosaf/PI-MoCoNet.git.

Authors:Yuankai Luo, Lei Shi, Xiao-Ming Wu
Title: Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
Abstract:
Message-passing Graph Neural Networks (GNNs) are often criticized for their limited expressiveness, issues like over-smoothing and over-squashing, and challenges in capturing long-range dependencies. Conversely, Graph Transformers (GTs) are regarded as superior due to their employment of global attention mechanisms, which potentially mitigate these challenges. Literature frequently suggests that GTs outperform GNNs in graph-level tasks, especially for graph classification and regression on small molecular graphs. In this study, we explore the untapped potential of GNNs through an enhanced framework, GNN+, which integrates six widely used techniques: edge feature integration, normalization, dropout, residual connections, feed-forward networks, and positional encoding, to effectively tackle graph-level tasks. We conduct a systematic re-evaluation of three classic GNNs (GCN, GIN, and GatedGCN) enhanced by the GNN+ framework across 14 well-known graph-level datasets. Our results reveal that, contrary to prevailing beliefs, these classic GNNs consistently match or surpass the performance of GTs, securing top-three rankings across all datasets and achieving first place in eight. Furthermore, they demonstrate greater efficiency, running several times faster than GTs on many datasets. This highlights the potential of simple GNN architectures, challenging the notion that complex mechanisms in GTs are essential for superior graph-level performance. Our source code is available at https://github.com/LUOyk1999/GNNPlus.

Authors:Daocheng Fu, Naiting Zhong, Xu Han, Pinlong Cai, Licheng Wen, Song Mao, Botian Shi, Yu Qiao
Title: LimSim Series: An Autonomous Driving Simulation Platform for Validation and Enhancement
Abstract:
Closed-loop simulation environments play a crucial role in the validation and enhancement of autonomous driving systems (ADS). However, certain challenges warrant significant attention, including balancing simulation accuracy with duration, reconciling functionality with practicality, and establishing comprehensive evaluation mechanisms. This paper addresses these challenges by introducing the LimSim Series, a comprehensive simulation platform designed to support the rapid deployment and efficient iteration of ADS. The LimSim Series integrates multi-type information from road networks, employs human-like decision-making and planning algorithms for background vehicles, and introduces the concept of the Area of Interest (AoI) to optimize computational resources. The platform offers a variety of baseline algorithms and user-friendly interfaces, facilitating flexible validation of multiple technical pipelines. Additionally, the LimSim Series incorporates multi-dimensional evaluation metrics, delivering thorough insights into system performance, thus enabling researchers to promptly identify issues for further improvements. Experiments demonstrate that the LimSim Series is compatible with modular, end-to-end, and VLM-based knowledge-driven systems. It can assist in the iteration and updating of ADS by evaluating performance across various scenarios. The code of the LimSim Series is released at: https://github.com/PJLab-ADG/LimSim.

Authors:Giuseppe Fasano, Yashar Deldjoo, Tommaso di Noia, Bianca Lau, Sina Adham-Khiabani, Eric Morris, Xia Liu, Ganga Chinna Rao Devarapu, Liam O'Faolain
Title: Use of Air Quality Sensor Network Data for Real-time Pollution-Aware POI Suggestion
Abstract:
This demo paper introduces AirSense-R, a privacy-preserving mobile application that delivers real-time, pollution-aware recommendations for urban points of interest (POIs). By merging live air quality data from AirSENCE sensor networks in Bari (Italy) and Cork (Ireland) with user preferences, the system enables health-conscious decision-making. It employs collaborative filtering for personalization, federated learning for privacy, and a prediction engine to detect anomalies and interpolate sparse sensor data. The proposed solution adapts dynamically to urban air quality while safeguarding user privacy. The code and demonstration video are available at https://github.com/AirtownApp/Airtown-Application.git.

Authors:Shihao Zhang, Yuguang Yan, Angela Yao
Title: Improving Deep Regression with Tightness
Abstract:
For deep regression, preserving the ordinality of the targets with respect to the feature representation improves performance across various tasks. However, a theoretical explanation for the benefits of ordinality is still lacking. This work reveals that preserving ordinality reduces the conditional entropy $H(Z|Y)$ of representation $Z$ conditional on the target $Y$. However, our findings reveal that typical regression losses do little to reduce $H(Z|Y)$, even though it is vital for generalization performance. With this motivation, we introduce an optimal transport-based regularizer to preserve the similarity relationships of targets in the feature space to reduce $H(Z|Y)$. Additionally, we introduce a simple yet efficient strategy of duplicating the regressor targets, also with the aim of reducing $H(Z|Y)$. Experiments on three real-world regression tasks verify the effectiveness of our strategies to improve deep regression. Code: https://github.com/needylove/Regression_tightness.

Authors:Rubén Pérez-Jove, Cristian R. Munteanu, Alejandro Pazos, Jose Vázquez-Naya
Title: Application of Tabular Transformer Architectures for Operating System Fingerprinting
Abstract:
Operating System (OS) fingerprinting is essential for network management and cybersecurity, enabling accurate device identification based on network traffic analysis. Traditional rule-based tools such as Nmap and p0f face challenges in dynamic environments due to frequent OS updates and obfuscation techniques. While Machine Learning (ML) approaches have been explored, Deep Learning (DL) models, particularly Transformer architectures, remain unexploited in this domain. This study investigates the application of Tabular Transformer architectures-specifically TabTransformer and FT-Transformer-for OS fingerprinting, leveraging structured network data from three publicly available datasets. Our experiments demonstrate that FT-Transformer generally outperforms traditional ML models, previous approaches and TabTransformer across multiple classification levels (OS family, major, and minor versions). The results establish a strong foundation for DL-based OS fingerprinting, improving accuracy and adaptability in complex network environments. Furthermore, we ensure the reproducibility of our research by providing an open-source implementation.

Authors:Jinhui Guo, Lubin Fan, Bojian Wu, Jiaqi Gu, Shen Cao, Jieping Ye
Title: PTZ-Calib: Robust Pan-Tilt-Zoom Camera Calibration
Abstract:
In this paper, we present PTZ-Calib, a robust two-stage PTZ camera calibration method, that efficiently and accurately estimates camera parameters for arbitrary viewpoints. Our method includes an offline and an online stage. In the offline stage, we first uniformly select a set of reference images that sufficiently overlap to encompass a complete 360° view. We then utilize the novel PTZ-IBA (PTZ Incremental Bundle Adjustment) algorithm to automatically calibrate the cameras within a local coordinate system. Additionally, for practical application, we can further optimize camera parameters and align them with the geographic coordinate system using extra global reference 3D information. In the online stage, we formulate the calibration of any new viewpoints as a relocalization problem. Our approach balances the accuracy and computational efficiency to meet real-world demands. Extensive evaluations demonstrate our robustness and superior performance over state-of-the-art methods on various real and synthetic datasets. Datasets and source code can be accessed online at https://github.com/gjgjh/PTZ-Calib

Authors:Debangshu Banerjee, Tarun Suresh, Shubham Ugare, Sasa Misailovic, Gagandeep Singh
Title: CRANE: Reasoning with constrained LLM generation
Abstract:
Code generation, symbolic math reasoning, and other tasks require LLMs to produce outputs that are both syntactically and semantically correct. Constrained LLM generation is a promising direction to enforce adherence to formal grammar, but prior works have empirically observed that strict enforcement of formal constraints often diminishes the reasoning capabilities of LLMs. In this work, we first provide a theoretical explanation for why constraining LLM outputs to very restrictive grammars that only allow syntactically valid final answers reduces the reasoning capabilities of the model. Second, we demonstrate that by augmenting the output grammar with carefully designed additional rules, it is always possible to preserve the reasoning capabilities of the LLM while ensuring syntactic and semantic correctness in its outputs. Building on these theoretical insights, we propose a reasoning-augmented constrained decoding algorithm, CRANE, which effectively balances the correctness of constrained generation with the flexibility of unconstrained generation. Experiments on multiple open-source LLMs and benchmarks show that CRANE significantly outperforms both state-of-the-art constrained decoding strategies and standard unconstrained decoding, showing up to 10% points accuracy improvement over baselines on challenging symbolic reasoning benchmarks GSM-symbolic and FOLIO.

Authors:Shiryu Ueno, Yoshikazu Hayashi, Shunsuke Nakatsuka, Yusei Yamada, Hiroaki Aizawa, Kunihito Kato
Title: Vision-Language In-Context Learning Driven Few-Shot Visual Inspection Model
Abstract:
We propose general visual inspection model using Vision-Language Model~(VLM) with few-shot images of non-defective or defective products, along with explanatory texts that serve as inspection criteria. Although existing VLM exhibit high performance across various tasks, they are not trained on specific tasks such as visual inspection. Thus, we construct a dataset consisting of diverse images of non-defective and defective products collected from the web, along with unified formatted output text, and fine-tune VLM. For new products, our method employs In-Context Learning, which allows the model to perform inspections with an example of non-defective or defective image and the corresponding explanatory texts with visual prompts. This approach eliminates the need to collect a large number of training samples and re-train the model for each product. The experimental results show that our method achieves high performance, with MCC of 0.804 and F1-score of 0.950 on MVTec AD in a one-shot manner. Our code is available at~https://github.com/ia-gu/Vision-Language-In-Context-Learning-Driven-Few-Shot-Visual-Inspection-Model.

Authors:Lingting Zhu, Guying Lin, Jinnan Chen, Xinjie Zhang, Zhenchao Jin, Zhao Wang, Lequan Yu
Title: Large Images are Gaussians: High-Quality Large Image Representation with Levels of 2D Gaussian Splatting
Abstract:
While Implicit Neural Representations (INRs) have demonstrated significant success in image representation, they are often hindered by large training memory and slow decoding speed. Recently, Gaussian Splatting (GS) has emerged as a promising solution in 3D reconstruction due to its high-quality novel view synthesis and rapid rendering capabilities, positioning it as a valuable tool for a broad spectrum of applications. In particular, a GS-based representation, 2DGS, has shown potential for image fitting. In our work, we present \textbf{L}arge \textbf{I}mages are \textbf{G}aussians (\textbf{LIG}), which delves deeper into the application of 2DGS for image representations, addressing the challenge of fitting large images with 2DGS in the situation of numerous Gaussian points, through two distinct modifications: 1) we adopt a variant of representation and optimization strategy, facilitating the fitting of a large number of Gaussian points; 2) we propose a Level-of-Gaussian approach for reconstructing both coarse low-frequency initialization and fine high-frequency details. Consequently, we successfully represent large images as Gaussian points and achieve high-quality large image representation, demonstrating its efficacy across various types of large images. Code is available at {\href{https://github.com/HKU-MedAI/LIG}{https://github.com/HKU-MedAI/LIG}}.

Authors:Jun Yuan, Guohao Cai, Zhenhua Dong
Title: A Contextual-Aware Position Encoding for Sequential Recommendation
Abstract:
Sequential recommendation (SR), which encodes user activity to predict the next action, has emerged as a widely adopted strategy in developing commercial personalized recommendation systems. A critical component of modern SR models is the attention mechanism, which synthesizes users' historical activities. This mechanism is typically order-invariant and generally relies on position encoding (PE). Conventional SR models simply assign a learnable vector to each position, resulting in only modest gains compared to traditional recommendation models. Moreover, limited research has been conducted on position encoding tailored for sequential recommendation, leaving a significant gap in addressing its unique requirements. To bridge this gap, we propose a novel Contextual-Aware Position Encoding method for sequential recommendation, abbreviated as CAPE. To the best of our knowledge, CAPE is the first PE method specifically designed for sequential recommendation. Comprehensive experiments conducted on benchmark SR datasets demonstrate that CAPE consistently enhances multiple mainstream backbone models and achieves state-of-the-art performance, across small and large scale model size. Furthermore, we deployed CAPE in an industrial setting on a real-world commercial platform, clearly showcasing the effectiveness of our approach. Our source code is available at https://github.com/yjdy/CAPE.

Authors:Xiao Wang, Jingtao Jiang, Dong Li, Futian Wang, Lin Zhu, Yaowei Wang, Yongyong Tian, Jin Tang
Title: EventSTR: A Benchmark Dataset and Baselines for Event Stream based Scene Text Recognition
Abstract:
Mainstream Scene Text Recognition (STR) algorithms are developed based on RGB cameras which are sensitive to challenging factors such as low illumination, motion blur, and cluttered backgrounds. In this paper, we propose to recognize the scene text using bio-inspired event cameras by collecting and annotating a large-scale benchmark dataset, termed EventSTR. It contains 9,928 high-definition (1280 * 720) event samples and involves both Chinese and English characters. We also benchmark multiple STR algorithms as the baselines for future works to compare. In addition, we propose a new event-based scene text recognition framework, termed SimC-ESTR. It first extracts the event features using a visual encoder and projects them into tokens using a Q-former module. More importantly, we propose to augment the vision tokens based on a memory mechanism before feeding into the large language models. A similarity-based error correction mechanism is embedded within the large language model to correct potential minor errors fundamentally based on contextual information. Extensive experiments on the newly proposed EventSTR dataset and two simulation STR datasets fully demonstrate the effectiveness of our proposed model. We believe that the dataset and algorithmic model can innovatively propose an event-based STR task and are expected to accelerate the application of event cameras in various industries. The source code and pre-trained models will be released on https://github.com/Event-AHU/EventSTR

Authors:Shin'ya Yamaguchi, Kosuke Nishida, Daiki Chijiwa, Yasutoshi Ida
Title: Zero-shot Concept Bottleneck Models
Abstract:
Concept bottleneck models (CBMs) are inherently interpretable and intervenable neural network models, which explain their final label prediction by the intermediate prediction of high-level semantic concepts. However, they require target task training to learn input-to-concept and concept-to-label mappings, incurring target dataset collections and training resources. In this paper, we present \textit{zero-shot concept bottleneck models} (Z-CBMs), which predict concepts and labels in a fully zero-shot manner without training neural networks. Z-CBMs utilize a large-scale concept bank, which is composed of millions of vocabulary extracted from the web, to describe arbitrary input in various domains. For the input-to-concept mapping, we introduce concept retrieval, which dynamically finds input-related concepts by the cross-modal search on the concept bank. In the concept-to-label inference, we apply concept regression to select essential concepts from the retrieved concepts by sparse linear regression. Through extensive experiments, we confirm that our Z-CBMs provide interpretable and intervenable concepts without any additional training. Code will be available at https://github.com/yshinya6/zcbm.

Authors:Quan Wei, Chung-Yiu Yau, Hoi-To Wai, Yang Katie Zhao, Dongyeop Kang, Youngsuk Park, Mingyi Hong
Title: RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models
Abstract:
Supervised fine-tuning is a standard method for adapting pre-trained large language models (LLMs) to downstream tasks. Quantization has been recently studied as a post-training technique for efficient LLM deployment. To obtain quantized fine-tuned LLMs, conventional pipelines would first fine-tune the pre-trained models, followed by post-training quantization. This often yields suboptimal performance as it fails to leverage the synergy between fine-tuning and quantization. To effectively realize low-bit quantization of weights, activations and KV caches in LLMs, we propose an algorithm named Rotated Straight-Through-Estimator (RoSTE), which combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy that identifies an effective rotation configuration to reduce activation outliers. We provide theoretical insights on RoSTE by analyzing its prediction error when applied to an overparameterized least square quantized training problem. Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration. Experiments on Pythia, Qwen and Llama models of different sizes demonstrate the effectiveness of RoSTE. Compared to existing post-SFT quantization baselines, our method consistently achieves superior performances across various tasks and different LLM architectures. Our code is available at https://github.com/OptimAI-Lab/RoSTE.

Authors:Hong Kiat Tan, Andrea L. Bertozzi
Title: Generic Structural Stability for $2 \times 2$ Systems of Hyperbolic Conservation Laws
Abstract:
This paper presents a proof of generic structural stability for Riemann solutions to $2 \times 2$ system of hyperbolic conservation laws in one spatial variable, without diffusive terms. This means that for almost every left and right state, shocks and rarefaction solutions of the same type are preserved via perturbations of the flux functions, the left state, and the right state. The main assumptions for this proof involve standard assumptions on strict hyperbolicity and genuine non-linearity, a technical assumption on directionality of rarefaction curves, and the regular manifold (submersion) assumption motivated by concepts in differential topology. We show that the structural stability of the Riemann solutions is related to the transversality of the Hugoniot loci and rarefaction curves in the state space. The regular manifold assumption is required to invoke a variant of a theorem from differential topology, Thom's parametric transversality theorem, to show the genericity of transversality of these curves. This in turn implies the genericity of structural stability. We then apply this theorem to two examples: the p-system and a $2 \times 2$ system governing the evolution of gravity-driven monodisperse particle-laden thin films. In particular, we illustrate how one can verify all the above assumptions for the former, and apply the theorem to different numerical and physical aspects of the system governing the latter.

Authors:Zihao Li, Xiao Lin, Zhining Liu, Jiaru Zou, Ziwei Wu, Lecheng Zheng, Dongqi Fu, Yada Zhu, Hendrik Hamann, Hanghang Tong, Jingrui He
Title: Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative
Abstract:
While many advances in time series models focus exclusively on numerical data, research on multimodal time series, particularly those involving contextual textual information commonly encountered in real-world scenarios, remains in its infancy. With recent progress in large language models and time series learning, we revisit the integration of paired texts with time series through the Platonic Representation Hypothesis, which posits that representations of different modalities converge to shared spaces. In this context, we identify that time-series-paired texts may naturally exhibit periodic properties that closely mirror those of the original time series. Building on this insight, we propose a novel framework, Texts as Time Series (TaTS), which considers the time-series-paired texts to be auxiliary variables of the time series. TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively. Through extensive experiments on both multimodal time series forecasting and imputation tasks across benchmark datasets with various existing time series models, we demonstrate that TaTS can enhance predictive performance without modifying model architectures. Code available at https://github.com/iDEA-iSAIL-Lab-UIUC/TaTS.

Authors:Kyungsu Kim, Junghyun Koo, Sungho Lee, Haesun Joung, Kyogu Lee
Title: TokenSynth: A Token-based Neural Synthesizer for Instrument Cloning and Text-to-Instrument
Abstract:
Recent advancements in neural audio codecs have enabled the use of tokenized audio representations in various audio generation tasks, such as text-to-speech, text-to-audio, and text-to-music generation. Leveraging this approach, we propose TokenSynth, a novel neural synthesizer that utilizes a decoder-only transformer to generate desired audio tokens from MIDI tokens and CLAP (Contrastive Language-Audio Pretraining) embedding, which has timbre-related information. Our model is capable of performing instrument cloning, text-to-instrument synthesis, and text-guided timbre manipulation without any fine-tuning. This flexibility enables diverse sound design and intuitive timbre control. We evaluated the quality of the synthesized audio, the timbral similarity between synthesized and target audio/text, and synthesis accuracy (i.e., how accurately it follows the input MIDI) using objective measures. TokenSynth demonstrates the potential of leveraging advanced neural audio codecs and transformers to create powerful and versatile neural synthesizers. The source code, model weights, and audio demos are available at: https://github.com/KyungsuKim42/tokensynth

Authors:Max Rudolph, Nathan Lichtle, Sobhan Mohammadpour, Alexandre Bayen, J. Zico Kolter, Amy Zhang, Gabriele Farina, Eugene Vinitsky, Samuel Sokota
Title: Reevaluating Policy Gradient Methods for Imperfect-Information Games
Abstract:
In the past decade, motivated by the putative failure of naive self-play deep reinforcement learning (DRL) in adversarial imperfect-information games, researchers have developed numerous DRL algorithms based on fictitious play (FP), double oracle (DO), and counterfactual regret minimization (CFR). In light of recent results of the magnetic mirror descent algorithm, we hypothesize that simpler generic policy gradient methods like PPO are competitive with or superior to these FP-, DO-, and CFR-based DRL approaches. To facilitate the resolution of this hypothesis, we implement and release the first broadly accessible exact exploitability computations for four large games. Using these games, we conduct the largest-ever exploitability comparison of DRL algorithms for imperfect-information games. Over 5600 training runs, we find that FP-, DO-, and CFR-based approaches fail to outperform generic policy gradient methods. Code is available at https://github.com/nathanlct/IIG-RL-Benchmark and https://github.com/gabrfarina/exp-a-spiel .

Authors:Razvan-Gabriel Dumitru, Minglai Yang, Vikas Yadav, Mihai Surdeanu
Title: CopySpec: Accelerating LLMs with Speculative Copy-and-Paste Without Compromising Quality
Abstract:
We introduce CopySpec, a simple yet effective technique to tackle the inefficiencies LLMs face when generating responses that closely resemble previous outputs or responses that can be verbatim extracted from context. CopySpec identifies repeated sequences in the model's chat history or context and speculates that the same tokens will follow, enabling seamless copying without compromising output quality and without requiring additional GPU memory. To evaluate the effectiveness of our approach, we conducted experiments using seven LLMs and five datasets: MT-Bench, CNN/DM, GSM8K, HumanEval, and our newly created dataset, MT-Redundant. MT-Redundant, introduced in this paper, transforms the second turn of MT-Bench into a request for variations of the first turn's answer, simulating real-world scenarios where users request modifications to prior responses. Our results demonstrate significant speed-ups: up to 2.35x on CNN/DM, 3.08x on the second turn of select MT-Redundant categories, and 2.66x on the third turn of GSM8K's self-correction tasks. Importantly, we show that CopySpec integrates seamlessly with speculative decoding, yielding an average 49% additional speed-up over speculative decoding for the second turn of MT-Redundant across all eight categories. While LLMs, even with speculative decoding, suffer from slower inference as context size grows, CopySpec leverages larger contexts to accelerate inference, making it a faster complementary solution. Our code and dataset are publicly available at https://github.com/RazvanDu/CopySpec.

Authors:Mohammad Mahdi Abootorabi, Amirhosein Zobeiri, Mahdi Dehghani, Mohammadali Mohammadkhani, Bardia Mohammadi, Omid Ghahroodi, Mahdieh Soleymani Baghshah, Ehsaneddin Asgari
Title: Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Abstract:
Large Language Models (LLMs) suffer from hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information for improved factual grounding. With advances in multimodal learning, Multimodal RAG extends this approach by incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges beyond those in unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, benchmarks, metrics, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We review training strategies, robustness enhancements, loss functions, and agent-based approaches, while also exploring the diverse Multimodal RAG scenarios. In addition, we outline open challenges and future directions to guide research in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. All resources are publicly available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.

Authors:Jocelyn Dzuong
Title: DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps
Abstract:
The recent surge in advanced generative models, such as diffusion models and generative adversarial networks (GANs), has led to an alarming rise in AI-generated images across various domains on the web. While such technologies offer benefits such as democratizing artistic creation, they also pose challenges in misinformation, digital forgery, and authenticity verification. Additionally, the uncredited use of AI-generated images in media and marketing has sparked significant backlash from online communities. In response to this, we introduce DejAIvu, a Chrome Web extension that combines real-time AI-generated image detection with saliency-based explainability while users browse the web. Using an ONNX-optimized deep learning model, DejAIvu automatically analyzes images on websites such as Google Images, identifies AI-generated content using model inference, and overlays a saliency heatmap to highlight AI-related artifacts. Our approach integrates efficient in-browser inference, gradient-based saliency analysis, and a seamless user experience, ensuring that AI detection is both transparent and interpretable. We also evaluate DejAIvu across multiple pretrained architectures and benchmark datasets, demonstrating high accuracy and low latency, making it a practical and deployable tool for enhancing AI image accountability. The code for this system can be found at https://github.com/Noodulz/dejAIvu.

Authors:Zifan He, Anderson Truong, Yingqi Cao, Jason Cong
Title: InTAR: Inter-Task Auto-Reconfigurable Accelerator Design for High Data Volume Variation in DNNs
Abstract:
The rise of deep neural networks (DNNs) has driven an increased demand for computing power and memory. Modern DNNs exhibit high data volume variation (HDV) across tasks, which poses challenges for FPGA acceleration: conventional accelerators rely on fixed execution patterns (dataflow or sequential) that can lead to pipeline stalls or necessitate frequent off-chip memory accesses. To address these challenges, we introduce the Inter-Task Auto-Reconfigurable Accelerator (InTAR), a novel accelerator design methodology for HDV applications on FPGAs. InTAR combines the high computational efficiency of sequential execution with the reduced off-chip memory overhead of dataflow execution. It switches execution patterns automatically with a static schedule determined before circuit design based on resource constraints and problem sizes. Unlike previous reconfigurable accelerators, InTAR encodes reconfiguration schedules during circuit design, allowing model-specific optimizations that allocate only the necessary logic and interconnects. Thus, InTAR achieves a high clock frequency with fewer resources and low reconfiguration time. Furthermore, InTAR supports high-level tools such as HLS for fast design generation. We implement a set of multi-task HDV DNN kernels using InTAR. Compared with dataflow and sequential accelerators, InTAR exhibits $\mathbf{1.8\times}$ and $\mathbf{7.1 \times}$ speedups correspondingly. Moreover, we extend InTAR to GPT-2 medium as a more complex example, which is $\mathbf{3.65 \sim 39.14\times}$ faster and a $\mathbf{1.72 \sim 10.44\times}$ more DSP efficient than SoTA accelerators (Allo and DFX) on FPGAs. Additionally, this design demonstrates $\mathbf{1.66 \sim 7.17\times}$ better power efficiency than GPUs. Code: https://github.com/OswaldHe/InTAR

Authors:Christopher Tosh, Boyuan Zhang, Wesley Tansey
Title: Treatment response as a latent variable
Abstract:
Scientists often need to analyze the samples in a study that responded to treatment in order to refine their hypotheses and find potential causal drivers of response. Natural variation in outcomes makes teasing apart responders from non-responders a statistical inference problem. To handle latent responses, we introduce the causal two-groups (C2G) model, a causal extension of the classical two-groups model. The C2G model posits that treated samples may or may not experience an effect, according to some prior probability. We propose two empirical Bayes procedures for the causal two-groups model, one under semi-parametric conditions and another under fully nonparametric conditions. The semi-parametric model assumes additive treatment effects and is identifiable from observed data. The nonparametric model is unidentifiable, but we show it can still be used to test for response in each treated sample. We show empirically and theoretically that both methods for selecting responders control the false discovery rate at the target level with near-optimal power. We also propose two novel estimands of interest and provide a strategy for deriving estimand intervals in the unidentifiable nonparametric model. On a cancer immunotherapy dataset, the nonparametric C2G model recovers clinically-validated predictive biomarkers of both positive and negative outcomes. Code is available at https://github.com/tansey-lab/causal2groups.

Authors:Joshua Omolegan, Pak Hei Yeung, Madeleine K. Wyburd, Linde Hesse, Monique Haak, Intergrowth-21st Consortium, Ana I. L. Namburete, Nicola K. Dinsdale
Title: Exploring Test Time Adaptation for Subcortical Segmentation of the Fetal Brain in 3D Ultrasound
Abstract:
Monitoring the growth of subcortical regions of the fetal brain in ultrasound (US) images can help identify the presence of abnormal development. Manually segmenting these regions is a challenging task, but recent work has shown that it can be automated using deep learning. However, applying pretrained models to unseen freehand US volumes often leads to a degradation of performance due to the vast differences in acquisition and alignment. In this work, we first demonstrate that test time adaptation (TTA) can be used to improve model performance in the presence of both real and simulated domain shifts. We further propose a novel TTA method by incorporating a normative atlas as a prior for anatomy. In the presence of various types of domain shifts, we benchmark the performance of different TTA methods and demonstrate the improvements brought by our proposed approach, which may further facilitate automated monitoring of fetal brain development. Our code is available at https://github.com/joshuaomolegan/TTA-for-3D-Fetal-Subcortical-Segmentation.

Authors:Zhining Liu, Rana Ali Amjad, Ravinarayana Adkathimar, Tianxin Wei, Hanghang Tong
Title: SelfElicit: Your Language Model Secretly Knows Where is the Relevant Evidence
Abstract:
Providing Language Models (LMs) with relevant evidence in the context (either via retrieval or user-provided) can significantly improve their ability to provide better-grounded responses. However, recent studies have found that LMs often struggle to fully comprehend and utilize key evidence from the context, especially when it contains noise and irrelevant information, an issue common in real-world scenarios. To address this, we propose SelfElicit, an inference-time approach that helps LMs focus on key contextual evidence through self-guided explicit highlighting. By leveraging the inherent evidence-finding capabilities of LMs using the attention scores of deeper layers, our method automatically identifies and emphasizes key evidence within the input context, facilitating more accurate and grounded responses without additional training or iterative prompting. We demonstrate that SelfElicit brings consistent and significant improvement on multiple evidence-based QA tasks for various LM families while maintaining computational efficiency. Our code and documentation are available at https://github.com/ZhiningLiu1998/SelfElicit.

Authors:Raihan Seraj, Lili Meng, Tristan Sylvain
Title: Contextual bandits with entropy-based human feedback
Abstract:
In recent years, preference-based human feedback mechanisms have become essential for enhancing model performance across diverse applications, including conversational AI systems such as ChatGPT. However, existing approaches often neglect critical aspects, such as model uncertainty and the variability in feedback quality. To address these challenges, we introduce an entropy-based human feedback framework for contextual bandits, which dynamically balances exploration and exploitation by soliciting expert feedback only when model entropy exceeds a predefined threshold. Our method is model-agnostic and can be seamlessly integrated with any contextual bandit agent employing stochastic policies. Through comprehensive experiments, we show that our approach achieves significant performance improvements while requiring minimal human feedback, even under conditions of suboptimal feedback quality. This work not only presents a novel strategy for feedback solicitation but also highlights the robustness and efficacy of incorporating human guidance into machine learning systems. Our code is publicly available: https://github.com/BorealisAI/CBHF

Authors:Randolph W. Linderman, Yiran Chen, Scott W. Linderman
Title: A Bayesian Nonparametric Perspective on Mahalanobis Distance for Out of Distribution Detection
Abstract:
Bayesian nonparametric methods are naturally suited to the problem of out-of-distribution (OOD) detection. However, these techniques have largely been eschewed in favor of simpler methods based on distances between pre-trained or learned embeddings of data points. Here we show a formal relationship between Bayesian nonparametric models and the relative Mahalanobis distance score (RMDS), a commonly used method for OOD detection. Building on this connection, we propose Bayesian nonparametric mixture models with hierarchical priors that generalize the RMDS. We evaluate these models on the OpenOOD detection benchmark and show that Bayesian nonparametric methods can improve upon existing OOD methods, especially in regimes where training classes differ in their covariance structure and where there are relatively few data points per class.

Authors:Areeg Fahad Rasheed, M. Zarkoosh, Shimam Amer Chasib, Safa F. Abbas
Title: Data Augmentation to Improve Large Language Models in Food Hazard and Product Detection
Abstract:
The primary objective of this study is to demonstrate the impact of data augmentation using ChatGPT-4o-mini on food hazard and product analysis. The augmented data is generated using ChatGPT-4o-mini and subsequently used to train two large language models: RoBERTa-base and Flan-T5-base. The models are evaluated on test sets. The results indicate that using augmented data helped improve model performance across key metrics, including recall, F1 score, precision, and accuracy, compared to using only the provided dataset. The full code, including model training and the augmented dataset, can be found in this repository: https://github.com/AREEG94FAHAD/food-hazard-prdouct-cls

Authors:Renqi Jia, Xiaokun Zhang, Bowei He, Qiannan Zhu, Weitao Xu, Jiehao Chen, Chen Ma
Title: Beyond Models! Explainable Data Valuation and Metric Adaption for Recommendation
Abstract:
User behavior records serve as the foundation for recommender systems. While the behavior data exhibits ease of acquisition, it often suffers from varying quality. Current methods employ data valuation to discern high-quality data from low-quality data. However, they tend to employ black-box design, lacking transparency and interpretability. Besides, they are typically tailored to specific evaluation metrics, leading to limited generality across various tasks. To overcome these issues, we propose an explainable and versatile framework DVR which can enhance the efficiency of data utilization tailored to any requirements of the model architectures and evaluation metrics. For explainable data valuation, a data valuator is presented to evaluate the data quality via calculating its Shapley value from the game-theoretic perspective, ensuring robust mathematical properties and reliability. In order to accommodate various evaluation metrics, including differentiable and non-differentiable ones, a metric adapter is devised based on reinforcement learning, where a metric is treated as the reinforcement reward that guides model optimization. Extensive experiments conducted on various benchmarks verify that our framework can improve the performance of current recommendation algorithms on various metrics including ranking accuracy, diversity, and fairness. Specifically, our framework achieves up to 34.7\% improvements over existing methods in terms of representative NDCG metric. The code is available at https://github.com/renqii/DVR.

Authors:Miranda Muqing Miao, Michael Kearns
Title: Hallucination, Monofacts, and Miscalibration: An Empirical Investigation
Abstract:
Hallucinated facts in large language models (LLMs) have recently been shown to obey a statistical lower bound determined by the monofact rate (related to the classical Good-Turing missing mass estimator) minus model miscalibration (Kalai & Vempala, 2024). We present the first empirical investigation of this three-way relationship in classical n-gram models and fine-tuned encoder-decoder Transformers. By generating training data from Pareto distributions with varying shape parameters, we systematically control the monofact rates and establish its positive relationship with hallucination. To bridge theory and practice, we derive an empirical analog of the hallucination bound by replacing the population miscalibration term (Section 2.1) with an empirical bin-wise KL divergence and confirm its practical viability. We then introduce selective upweighting -- a simple yet effective technique that strategically repeats as little as 5% of training examples -- to deliberately inject miscalibration into the model. This intervention reduces hallucination by up to 40%, challenging universal deduplication policies. Our experiments reveal a critical trade-off: selective upweighting maintains pre-injection levels of accuracy while substantially reducing hallucination, whereas standard training gradually improves accuracy but fails to address persistently high hallucination, indicating an inherent tension in optimization objectives.

Authors:Soyoung Yoon, Dongha Ahn, Youngwon Lee, Minkyu Jung, HyungJoo Jang, Seung-won Hwang
Title: RoToR: Towards More Reliable Responses for Order-Invariant Inputs
Abstract:
Mitigating positional bias of language models (LMs) for listwise inputs is a well-known and important problem (e.g., lost-in-the-middle). While zero-shot order-invariant LMs have been proposed to solve this issue, their success on practical listwise problems has been limited. In this work, as a first contribution, we identify and overcome two limitations to make zero-shot invariant LMs more practical: (1) training and inference distribution mismatch arising from modifying positional ID assignments to enforce invariance, and (2) failure to adapt to mixture of order-invariant and sensitive inputs in practical listwise problems. Then, to overcome these issues we propose (1) RoToR, a zero-shot invariant LM for genuinely order-invariant inputs with minimal modifications of positional IDs, and (2) Selective Routing, an adaptive framework that handles both order-invariant and order-sensitive inputs in listwise tasks. On the Lost in the middle (LitM), Knowledge Graph QA (KGQA), and MMLU benchmarks, we show that RoToR with Selective Routing can effectively handle practical listwise input tasks in a zero-shot manner (https://github.com/soyoung97/RoToR)

Authors:Huiyao Chen, Meishan Zhang, Jing Li, Min Zhang, Lilja Øvrelid, Jan Hajič, Hao Fei
Title: Semantic Role Labeling: A Systematical Survey
Abstract:
Semantic role labeling (SRL) is a central natural language processing (NLP) task aiming to understand the semantic roles within texts, facilitating a wide range of downstream applications. While SRL has garnered extensive and enduring research, there is currently a lack of a comprehensive survey that thoroughly organizes and synthesizes the field. This paper aims to review the entire research trajectory of the SRL community over the past two decades. We begin by providing a complete definition of SRL. To offer a comprehensive taxonomy, we categorize SRL methodologies into four key perspectives: model architectures, syntax feature modeling, application scenarios, and multi-modal extensions. Further, we discuss SRL benchmarks, evaluation metrics, and paradigm modeling approaches, while also exploring practical applications across various domains. Finally, we analyze future research directions in SRL, addressing the evolving role of SRL in the age of large language models (LLMs) and its potential impact on the broader NLP landscape. We maintain a public repository and consistently update related resources at: https://github.com/DreamH1gh/Awesome-SRL

Authors:Shaina Raza, Rizwan Qureshi, Anam Zahid, Safiullah Kamawal, Ferhat Sadak, Joseph Fioresi, Muhammaed Saeed, Ranjan Sapkota, Aditya Jain, Anas Zafar, Muneeb Ul Hassan, Aizan Zafar, Hasan Maqbool, Ashmal Vayani, Jia Wu, Maged Shoman
Title: Who is Responsible? The Data, Models, Users or Regulations? A Comprehensive Survey on Responsible Generative AI for a Sustainable Future
Abstract:
Generative AI is moving rapidly from research into real world deployment across sectors, which elevates the need for responsible development, deployment, evaluation, and governance. To address this pressing challenge, in this study, we synthesize the landscape of responsible generative AI across methods, benchmarks, and policies, and connects governance expectations to concrete engineering practice. We follow a prespecified search and screening protocol focused on post-ChatGPT era with selective inclusion of foundational work for definitions, and we conduct a narrative and thematic synthesis. Three findings emerge; First, benchmark and practice coverage is dense for bias and toxicity but relatively sparse for privacy and provenance, deepfake and media integrity risk, and system level failure in tool using and agentic settings. Second, many evaluations remain static and task local, which limits evidence portability for audit and lifecycle assurance. Third, documentation and metric validity are inconsistent, which complicates comparison across releases and domains. We outline a research and practice agenda that prioritizes adaptive and multimodal evaluation, privacy and provenance testing, deepfake risk assessment, calibration and uncertainty reporting, versioned and documented artifacts, and continuous monitoring. Limitations include reliance on public artifacts and the focus period, which may under represent capabilities reported later. The survey offers a path to align development and evaluation with governance needs and to support safe, transparent, and accountable deployment across domains. Project page: https://anas-zafar.github.io/responsible-ai.github.io , GitHub: https://github.com/anas-zafar/Responsible-AI

Authors:Andrianos Michail, Simon Clematide, Rico Sennrich
Title: Examining Multilingual Embedding Models Cross-Lingually Through LLM-Generated Adversarial Examples
Abstract:
The evaluation of cross-lingual semantic search models is often limited to existing datasets from tasks such as information retrieval and semantic textual similarity. We introduce Cross-Lingual Semantic Discrimination (CLSD), a lightweight evaluation task that requires only parallel sentences and a Large Language Model (LLM) to generate adversarial distractors. CLSD measures an embedding model's ability to rank the true parallel sentence above semantically misleading but lexically similar alternatives. As a case study, we construct CLSD datasets for German--French in the news domain. Our experiments show that models fine-tuned for retrieval tasks benefit from pivoting through English, whereas bitext mining models perform best in direct cross-lingual settings. A fine-grained similarity analysis further reveals that embedding models differ in their sensitivity to linguistic perturbations. We release our code and datasets under AGPL-3.0: https://github.com/impresso/cross_lingual_semantic_discrimination

Authors:Xingrui Wang, Wufei Ma, Tiezheng Zhang, Celso M de Melo, Jieneng Chen, Alan Yuille
Title: Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models
Abstract:
Although large multimodal models (LMMs) have demonstrated remarkable capabilities in visual scene interpretation and reasoning, their capacity for complex and precise 3-dimensional spatial reasoning remains uncertain. Existing benchmarks focus predominantly on 2D spatial understanding and lack a framework to comprehensively evaluate 6D spatial reasoning across varying complexities. To address this limitation, we present Spatial457, a scalable and unbiased synthetic dataset designed with 4 key capability for spatial reasoning: multi-object recognition, 2D location, 3D location, and 3D orientation. We develop a cascading evaluation structure, constructing 7 question types across 5 difficulty levels that range from basic single object recognition to our new proposed complex 6D spatial reasoning tasks. We evaluated various large multimodal models (LMMs) on PulseCheck457, observing a general decline in performance as task complexity increases, particularly in 3D reasoning and 6D spatial tasks. To quantify these challenges, we introduce the Relative Performance Dropping Rate (RPDR), highlighting key weaknesses in 3D reasoning capabilities. Leveraging the unbiased attribute design of our dataset, we also uncover prediction biases across different attributes, with similar patterns observed in real-world image settings. The code and data are released in https://github.com/XingruiWang/Spatial457.

Authors:Karish Grover, Geoffrey J. Gordon, Christos Faloutsos
Title: CurvGAD: Leveraging Curvature for Enhanced Graph Anomaly Detection
Abstract:
Does the intrinsic curvature of complex networks hold the key to unveiling graph anomalies that conventional approaches overlook? Reconstruction-based graph anomaly detection (GAD) methods overlook such geometric outliers, focusing only on structural and attribute-level anomalies. To this end, we propose CurvGAD - a mixed-curvature graph autoencoder that introduces the notion of curvature-based geometric anomalies. CurvGAD introduces two parallel pipelines for enhanced anomaly interpretability: (1) Curvature-equivariant geometry reconstruction, which focuses exclusively on reconstructing the edge curvatures using a mixed-curvature, Riemannian encoder and Gaussian kernel-based decoder; and (2) Curvature-invariant structure and attribute reconstruction, which decouples structural and attribute anomalies from geometric irregularities by regularizing graph curvature under discrete Ollivier-Ricci flow, thereby isolating the non-geometric anomalies. By leveraging curvature, CurvGAD refines the existing anomaly classifications and identifies new curvature-driven anomalies. Extensive experimentation over 10 real-world datasets (both homophilic and heterophilic) demonstrates an improvement of up to 6.5% over state-of-the-art GAD methods. The code is available at: https://github.com/karish-grover/curvgad.

Authors:Peiyao Xiao, Chaosheng Dong, Shaofeng Zou, Kaiyi Ji
Title: LDC-MTL: Balancing Multi-Task Learning through Scalable Loss Discrepancy Control
Abstract:
Multi-task learning (MTL) has been widely adopted for its ability to simultaneously learn multiple tasks. While existing gradient manipulation methods often yield more balanced solutions than simple scalarization-based approaches, they typically incur a significant computational overhead of $\mathcal{O}(K)$ in both time and memory, where $K$ is the number of tasks. In this paper, we propose LDC-MTL, a simple and scalable loss discrepancy control approach for MTL, formulated from a bilevel optimization perspective. Our method incorporates three key components: (i) a coarse loss pre-normalization, (ii) a bilevel formulation for fine-grained loss discrepancy control, and (iii) a scalable first-order bilevel algorithm that requires only $\mathcal{O}(1)$ time and memory. Theoretically, we prove that LDC-MTL guarantees convergence not only to a stationary point of the bilevel problem with loss discrepancy control but also to an $ε$-accurate Pareto stationary point for all $K$ loss functions under mild conditions. Extensive experiments on diverse multi-task datasets demonstrate the superior performance of LDC-MTL in both accuracy and efficiency. Code is available at https://github.com/OptMN-Lab/LDC-MTL.

Authors:Zhikai Wu, Sifan Wang, Shiyang Zhang, Sizhuang He, Min Zhu, Anran Jiao, Lu Lu, David van Dijk
Title: TANTE: Time-Adaptive Operator Learning via Neural Taylor Expansion
Abstract:
Operator learning for time-dependent partial differential equations (PDEs) has seen rapid progress in recent years, enabling efficient approximation of complex spatiotemporal dynamics. However, most existing methods rely on fixed time step sizes during rollout, which limits their ability to adapt to varying temporal complexity and often leads to error accumulation. Here, we propose the Time-Adaptive Transformer with Neural Taylor Expansion (TANTE), a novel operator-learning framework that produces continuous-time predictions with adaptive step sizes. TANTE predicts future states by performing a Taylor expansion at the current state, where neural networks learn both the higher-order temporal derivatives and the local radius of convergence. This allows the model to dynamically adjust its rollout based on the local behavior of the solution, thereby reducing cumulative error and improving computational efficiency. We demonstrate the effectiveness of TANTE across a wide range of PDE benchmarks, achieving superior accuracy and adaptability compared to fixed-step baselines, delivering accuracy gains of 60-80 % and speed-ups of 30-40 % at inference time. The code is publicly available at https://github.com/zwu88/TANTE for transparency and reproducibility.

Authors:Lemuel Puglisi, Daniel C. Alexander, Daniele Ravì
Title: Brain Latent Progression: Individual-based Spatiotemporal Disease Progression on 3D Brain MRIs via Latent Diffusion
Abstract:
The growing availability of longitudinal Magnetic Resonance Imaging (MRI) datasets has facilitated Artificial Intelligence (AI)-driven modeling of disease progression, making it possible to predict future medical scans for individual patients. However, despite significant advancements in AI, current methods continue to face challenges including achieving patient-specific individualization, ensuring spatiotemporal consistency, efficiently utilizing longitudinal data, and managing the substantial memory demands of 3D scans. To address these challenges, we propose Brain Latent Progression (BrLP), a novel spatiotemporal model designed to predict individual-level disease progression in 3D brain MRIs. The key contributions in BrLP are fourfold: (i) it operates in a small latent space, mitigating the computational challenges posed by high-dimensional imaging data; (ii) it explicitly integrates subject metadata to enhance the individualization of predictions; (iii) it incorporates prior knowledge of disease dynamics through an auxiliary model, facilitating the integration of longitudinal data; and (iv) it introduces the Latent Average Stabilization (LAS) algorithm, which (a) enforces spatiotemporal consistency in the predicted progression at inference time and (b) allows us to derive a measure of the uncertainty for the prediction at the global and voxel level. We train and evaluate BrLP on 11,730 T1-weighted (T1w) brain MRIs from 2,805 subjects and validate its generalizability on an external test set comprising 2,257 MRIs from 962 subjects. Our experiments compare BrLP-generated MRI scans with real follow-up MRIs, demonstrating state-of-the-art accuracy compared to existing methods. The code is publicly available at: https://github.com/LemuelPuglisi/BrLP.

Authors:Kevin Flanagan, Dima Damen, Michael Wray
Title: Moment of Untruth: Dealing with Negative Queries in Video Moment Retrieval
Abstract:
Video Moment Retrieval is a common task to evaluate the performance of visual-language models - it involves localising start and end times of moments in videos from query sentences. The current task formulation assumes that the queried moment is present in the video, resulting in false positive moment predictions when irrelevant query sentences are provided. In this paper we propose the task of Negative-Aware Video Moment Retrieval (NA-VMR), which considers both moment retrieval accuracy and negative query rejection accuracy. We make the distinction between In-Domain and Out-of-Domain negative queries and provide new evaluation benchmarks for two popular video moment retrieval datasets: QVHighlights and Charades-STA. We analyse the ability of current SOTA video moment retrieval approaches to adapt to Negative-Aware Video Moment Retrieval and propose UniVTG-NA, an adaptation of UniVTG designed to tackle NA-VMR. UniVTG-NA achieves high negative rejection accuracy (avg. $98.4\%$) scores while retaining moment retrieval scores to within $3.87\%$ Recall@1. Dataset splits and code are available at https://github.com/keflanagan/MomentofUntruth

Authors:Yuchang Zhu, Huizhe Zhang, Bingzhe Wu, Jintang Li, Zibin Zheng, Peilin Zhao, Liang Chen, Yatao Bian
Title: Measuring Diversity in Synthetic Datasets
Abstract:
Large language models (LLMs) are widely adopted to generate synthetic datasets for various natural language processing (NLP) tasks, such as text classification and summarization. However, accurately measuring the diversity of these synthetic datasets-an aspect crucial for robust model performance-remains a significant challenge. In this paper, we introduce DCScore, a novel method for measuring synthetic dataset diversity from a classification perspective. Specifically, DCScore formulates diversity evaluation as a sample classification task, leveraging mutual relationships among samples. We further provide theoretical verification of the diversity-related axioms satisfied by DCScore, highlighting its role as a principled diversity evaluation method. Experimental results on synthetic datasets reveal that DCScore enjoys a stronger correlation with multiple diversity pseudo-truths of evaluated datasets, underscoring its effectiveness. Moreover, both empirical and theoretical evidence demonstrate that DCScore substantially reduces computational costs compared to existing methods. Code is available at: https://github.com/bluewhalelab/dcscore.

Authors:Jiahe Jin, Yanheng He, Mingyan Yang
Title: Revisiting 3D LLM Benchmarks: Are We Really Testing 3D Capabilities?
Abstract:
In this work, we identify the "2D-Cheating" problem in 3D LLM evaluation, where these tasks might be easily solved by VLMs with rendered images of point clouds, exposing ineffective evaluation of 3D LLMs' unique 3D capabilities. We test VLM performance across multiple 3D LLM benchmarks and, using this as a reference, propose principles for better assessing genuine 3D understanding. We also advocate explicitly separating 3D abilities from 1D or 2D aspects when evaluating 3D LLMs. Code and data are available at https://github.com/LLM-class-group/Revisiting-3D-LLM-Benchmarks

Authors:Qifan Yu, Zhenyu He, Sijie Li, Xun Zhou, Jun Zhang, Jingjing Xu, Di He
Title: Enhancing Auto-regressive Chain-of-Thought through Loop-Aligned Reasoning
Abstract:
Chain-of-Thought (CoT) prompting has emerged as a powerful technique for enhancing language model's reasoning capabilities. However, generating long and correct CoT trajectories is challenging. Recent studies have demonstrated that Looped Transformers possess remarkable length generalization capabilities, but their limited generality and adaptability prevent them from serving as an alternative to auto-regressive solutions. To better leverage the strengths of Looped Transformers, we propose RELAY (REasoning through Loop Alignment iterativelY). Specifically, we align the steps of Chain-of-Thought (CoT) reasoning with loop iterations and apply intermediate supervision during the training of Looped Transformers. This additional iteration-wise supervision not only preserves the Looped Transformer's ability for length generalization but also enables it to predict CoT reasoning steps for unseen data. Therefore, we leverage this Looped Transformer to generate accurate reasoning chains for complex problems that exceed the training length, which will then be used to fine-tune an auto-regressive model. We conduct extensive experiments, and the results demonstrate the effectiveness of our approach, with significant improvements in the performance of the auto-regressive model. Code will be released at https://github.com/qifanyu/RELAY.

Authors:Thomas Cass, Francesco Piatti, Jeffrey Pei
Title: Numerical Schemes for Signature Kernels
Abstract:
Signature kernels have emerged as a powerful tool within kernel methods for sequential data. In the paper "The Signature Kernel is the solution of a Goursat PDE", the authors identify a kernel trick that demonstrates that, for continuously differentiable paths, the signature kernel satisfies a Goursat problem for a hyperbolic partial differential equation (PDE) in two independent time variables. While finite difference methods have been explored for this PDE, they face limitations in accuracy and stability when handling highly oscillatory inputs. In this work, we introduce two advanced numerical schemes that leverage polynomial representations of boundary conditions through either approximation or interpolation techniques, and rigorously establish the theoretical convergence of the polynomial approximation scheme. Experimental evaluations reveal that our approaches yield improvements of several orders of magnitude in mean absolute percentage error (MAPE) compared to traditional finite difference schemes, without increasing computational complexity. Furthermore, like finite difference methods, our algorithms can be GPU-parallelized to reduce computational complexity from quadratic to linear in the length of the input sequences, thereby improving scalability for high-frequency data. We have implemented these algorithms in a dedicated Python library, which is publicly available at: https://github.com/FrancescoPiatti/polysigkernel.

Authors:Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou
Title: mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data
Abstract:
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.

Authors:Daeyoung Roh, Donghee Han, Daehee Kim, Keejun Han, Mun Yi
Title: Closer through commonality: Enhancing hypergraph contrastive learning with shared groups
Abstract:
Hypergraphs provide a superior modeling framework for representing complex multidimensional relationships in the context of real-world interactions that often occur in groups, overcoming the limitations of traditional homogeneous graphs. However, there have been few studies on hypergraphbased contrastive learning, and existing graph-based contrastive learning methods have not been able to fully exploit the highorder correlation information in hypergraphs. Here, we propose a Hypergraph Fine-grained contrastive learning (HyFi) method designed to exploit the complex high-dimensional information inherent in hypergraphs. While avoiding traditional graph augmentation methods that corrupt the hypergraph topology, the proposed method provides a simple and efficient learning augmentation function by adding noise to node features. Furthermore, we expands beyond the traditional dichotomous relationship between positive and negative samples in contrastive learning by introducing a new relationship of weak positives. It demonstrates the importance of fine-graining positive samples in contrastive learning. Therefore, HyFi is able to produce highquality embeddings, and outperforms both supervised and unsupervised baselines in average rank on node classification across 10 datasets. Our approach effectively exploits high-dimensional hypergraph information, shows significant improvement over existing graph-based contrastive learning methods, and is efficient in terms of training speed and GPU memory cost. The source code is available at https://github.com/Noverse0/HyFi.git.

Authors:Ziyue Yang, Kehan Wang, Yuhang Ming, Yong Peng, Han Yang, Qiong Chen, Wanzeng Kong
Title: Uncertainty Aware Human-machine Collaboration in Camouflaged Object Detection
Abstract:
Camouflaged Object Detection (COD), the task of identifying objects concealed within their environments, has seen rapid growth due to its wide range of practical applications. A key step toward developing trustworthy COD systems is the estimation and effective utilization of uncertainty. In this work, we propose a human-machine collaboration framework for classifying the presence of camouflaged objects, leveraging the complementary strengths of computer vision (CV) models and noninvasive brain-computer interfaces (BCIs). Our approach introduces a multiview backbone to estimate uncertainty in CV model predictions, utilizes this uncertainty during training to improve efficiency, and defers low-confidence cases to human evaluation via RSVP-based BCIs during testing for more reliable decision-making. We evaluated the framework in the CAMO dataset, achieving state-of-the-art results with an average improvement of 4.56\% in balanced accuracy (BA) and 3.66\% in the F1 score compared to existing methods. For the best-performing participants, the improvements reached 7.6\% in BA and 6.66\% in the F1 score. Analysis of the training process revealed a strong correlation between our confidence measures and precision, while an ablation study confirmed the effectiveness of the proposed training policy and the human-machine collaboration strategy. In general, this work reduces human cognitive load, improves system reliability, and provides a strong foundation for advancements in real-world COD applications and human-computer interaction. Our code and data are available at: https://github.com/ziyuey/Uncertainty-aware-human-machine-collaboration-in-camouflaged-object-identification.

Authors:Tianle Liu, Shuangming Zhao, Wanshou Jiang, Bingxuan Guo
Title: Sat-DN: Implicit Surface Reconstruction from Multi-View Satellite Images with Depth and Normal Supervision
Abstract:
With advancements in satellite imaging technology, acquiring high-resolution multi-view satellite imagery has become increasingly accessible, enabling rapid and location-independent ground model reconstruction. However, traditional stereo matching methods struggle to capture fine details, and while neural radiance fields (NeRFs) achieve high-quality reconstructions, their training time is prohibitively long. Moreover, challenges such as low visibility of building facades, illumination and style differences between pixels, and weakly textured regions in satellite imagery further make it hard to reconstruct reasonable terrain geometry and detailed building facades. To address these issues, we propose Sat-DN, a novel framework leveraging a progressively trained multi-resolution hash grid reconstruction architecture with explicit depth guidance and surface normal consistency constraints to enhance reconstruction quality. The multi-resolution hash grid accelerates training, while the progressive strategy incrementally increases the learning frequency, using coarse low-frequency geometry to guide the reconstruction of fine high-frequency details. The depth and normal constraints ensure a clear building outline and correct planar distribution. Extensive experiments on the DFC2019 dataset demonstrate that Sat-DN outperforms existing methods, achieving state-of-the-art results in both qualitative and quantitative evaluations. The code is available at https://github.com/costune/SatDN.

Authors:Fenghe Tang, Qingsong Yao, Wenxin Ma, Chenxu Wu, Zihang Jiang, S. Kevin Zhou
Title: Hi-End-MAE: Hierarchical encoder-driven masked autoencoders are stronger vision learners for medical image segmentation
Abstract:
Medical image segmentation remains a formidable challenge due to the label scarcity. Pre-training Vision Transformer (ViT) through masked image modeling (MIM) on large-scale unlabeled medical datasets presents a promising solution, providing both computational efficiency and model generalization for various downstream tasks. However, current ViT-based MIM pre-training frameworks predominantly emphasize local aggregation representations in output layers and fail to exploit the rich representations across different ViT layers that better capture fine-grained semantic information needed for more precise medical downstream tasks. To fill the above gap, we hereby present Hierarchical Encoder-driven MAE (Hi-End-MAE), a simple yet effective ViT-based pre-training solution, which centers on two key innovations: (1) Encoder-driven reconstruction, which encourages the encoder to learn more informative features to guide the reconstruction of masked patches; and (2) Hierarchical dense decoding, which implements a hierarchical decoding structure to capture rich representations across different layers. We pre-train Hi-End-MAE on a large-scale dataset of 10K CT scans and evaluated its performance across seven public medical image segmentation benchmarks. Extensive experiments demonstrate that Hi-End-MAE achieves superior transfer learning capabilities across various downstream tasks, revealing the potential of ViT in medical imaging applications. The code is available at: https://github.com/FengheTan9/Hi-End-MAE

Authors:Keqi Chen, Lilien Schewski, Vinkle Srivastav, Joël Lavanchy, Didier Mutter, Guido Beldi, Sandra Keller, Nicolas Padoy
Title: When do they StOP?: A First Step Towards Automatically Identifying Team Communication in the Operating Room
Abstract:
Purpose: Surgical performance depends not only on surgeons' technical skills but also on team communication within and across the different professional groups present during the operation. Therefore, automatically identifying team communication in the OR is crucial for patient safety and advances in the development of computer-assisted surgical workflow analysis and intra-operative support systems. To take the first step, we propose a new task of detecting communication briefings involving all OR team members, i.e. the team Time-out and the StOP?-protocol, by localizing their start and end times in video recordings of surgical operations. Methods: We generate an OR dataset of real surgeries, called Team-OR, with more than one hundred hours of surgical videos captured by the multi-view camera system in the OR. The dataset contains temporal annotations of 33 Time-out and 22 StOP?-protocol activities in total. We then propose a novel group activity detection approach, where we encode both scene context and action features, and use an efficient neural network model to output the results. Results: The experimental results on the Team-OR dataset show that our approach outperforms existing state-of-the-art temporal action detection approaches. It also demonstrates the lack of research on group activities in the OR, proving the significance of our dataset. Conclusion: We investigate the Team Time-Out and the StOP?-protocol in the OR, by presenting the first OR dataset with temporal annotations of group activities protocols, and introducing a novel group activity detection approach that outperforms existing approaches. Code is available at https://github.com/CAMMA-public/Team-OR.

Authors:Wonjoon Jin, Qi Dai, Chong Luo, Seung-Hwan Baek, Sunghyun Cho
Title: FloVD: Optical Flow Meets Video Diffusion Model for Enhanced Camera-Controlled Video Synthesis
Abstract:
We present FloVD, a novel video diffusion model for camera-controllable video generation. FloVD leverages optical flow to represent the motions of the camera and moving objects. This approach offers two key benefits. Since optical flow can be directly estimated from videos, our approach allows for the use of arbitrary training videos without ground-truth camera parameters. Moreover, as background optical flow encodes 3D correlation across different viewpoints, our method enables detailed camera control by leveraging the background motion. To synthesize natural object motion while supporting detailed camera control, our framework adopts a two-stage video synthesis pipeline consisting of optical flow generation and flow-conditioned video synthesis. Extensive experiments demonstrate the superiority of our method over previous approaches in terms of accurate camera control and natural object motion synthesis.

Authors:Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, Nicholas Thumiger, Aditya Desai, Ion Stoica, Ana Klimovic, Graham Neubig, Joseph E. Gonzalez
Title: The Danger of Overthinking: Examining the Reasoning-Action Dilemma in Agentic Tasks
Abstract:
Large Reasoning Models (LRMs) represent a breakthrough in AI problem-solving capabilities, but their effectiveness in interactive environments can be limited. This paper introduces and analyzes overthinking in LRMs. A phenomenon where models favor extended internal reasoning chains over environmental interaction. Through experiments on software engineering tasks using SWE Bench Verified, we observe three recurring patterns: Analysis Paralysis, Rogue Actions, and Premature Disengagement. We propose a framework to study these behaviors, which correlates with human expert assessments, and analyze 4018 trajectories. We observe that higher overthinking scores correlate with decreased performance, with reasoning models exhibiting stronger tendencies toward overthinking compared to non-reasoning models. Our analysis reveals that simple efforts to mitigate overthinking in agentic environments, such as selecting the solution with the lower overthinking score, can improve model performance by almost 30% while reducing computational costs by 43%. These results suggest that mitigating overthinking has strong practical implications. We suggest that by leveraging native function-calling capabilities and selective reinforcement learning overthinking tendencies could be mitigated. We also open-source our evaluation framework and dataset to facilitate research in this direction at https://github.com/AlexCuadron/Overthinking.

Authors:Yilu Wu, Chenhui Zhu, Shuai Wang, Hanlin Wang, Jing Wang, Zhaoxiang Zhang, Limin Wang
Title: Learning Human Skill Generators at Key-Step Levels
Abstract:
We are committed to learning human skill generators at key-step levels. The generation of skills is a challenging endeavor, but its successful implementation could greatly facilitate human skill learning and provide more experience for embodied intelligence. Although current video generation models can synthesis simple and atomic human operations, they struggle with human skills due to their complex procedure process. Human skills involve multi-step, long-duration actions and complex scene transitions, so the existing naive auto-regressive methods for synthesizing long videos cannot generate human skills. To address this, we propose a novel task, the Key-step Skill Generation (KS-Gen), aimed at reducing the complexity of generating human skill videos. Given the initial state and a skill description, the task is to generate video clips of key steps to complete the skill, rather than a full-length video. To support this task, we introduce a carefully curated dataset and define multiple evaluation metrics to assess performance. Considering the complexity of KS-Gen, we propose a new framework for this task. First, a multimodal large language model (MLLM) generates descriptions for key steps using retrieval argument. Subsequently, we use a Key-step Image Generator (KIG) to address the discontinuity between key steps in skill videos. Finally, a video generation model uses these descriptions and key-step images to generate video clips of the key steps with high temporal consistency. We offer a detailed analysis of the results, hoping to provide more insights on human skill generation. All models and data are available at https://github.com/MCG-NJU/KS-Gen.

Authors:Junyi An, Chao Qu, Yun-Fei Shi, XinHao Liu, Qianwei Tang, Fenglei Cao, Yuan Qi
Title: Equivariant Masked Position Prediction for Efficient Molecular Representation
Abstract:
Graph neural networks (GNNs) have shown considerable promise in computational chemistry. However, the limited availability of molecular data raises concerns regarding GNNs' ability to effectively capture the fundamental principles of physics and chemistry, which constrains their generalization capabilities. To address this challenge, we introduce a novel self-supervised approach termed Equivariant Masked Position Prediction (EMPP), grounded in intramolecular potential and force theory. Unlike conventional attribute masking techniques, EMPP formulates a nuanced position prediction task that is more well-defined and enhances the learning of quantum mechanical features. EMPP also bypasses the approximation of the Gaussian mixture distribution commonly used in denoising methods, allowing for more accurate acquisition of physical properties. Experimental results indicate that EMPP significantly enhances performance of advanced molecular architectures, surpassing state-of-the-art self-supervised approaches. Our code is released in https://github.com/ajy112/EMPP

Authors:Xiaomeng Wang, Zhengyu Zhao, Martha Larson
Title: Typographic Attacks in a Multi-Image Setting
Abstract:
Large Vision-Language Models (LVLMs) are susceptible to typographic attacks, which are misclassifications caused by an attack text that is added to an image. In this paper, we introduce a multi-image setting for studying typographic attacks, broadening the current emphasis of the literature on attacking individual images. Specifically, our focus is on attacking image sets without repeating the attack query. Such non-repeating attacks are stealthier, as they are more likely to evade a gatekeeper than attacks that repeat the same attack text. We introduce two attack strategies for the multi-image setting, leveraging the difficulty of the target image, the strength of the attack text, and text-image similarity. Our text-image similarity approach improves attack success rates by 21% over random, non-specific methods on the CLIP model using ImageNet while maintaining stealth in a multi-image scenario. An additional experiment demonstrates transferability, i.e., text-image similarity calculated using CLIP transfers when attacking InstructBLIP.

Authors:Yunjiang Xu, Lingzhi Li, Jin Wang, Benyuan Yang, Zhiwen Wu, Xinhong Chen, Jianping Wang
Title: CoDynTrust: Robust Asynchronous Collaborative Perception via Dynamic Feature Trust Modulus
Abstract:
Collaborative perception, fusing information from multiple agents, can extend perception range so as to improve perception performance. However, temporal asynchrony in real-world environments, caused by communication delays, clock misalignment, or sampling configuration differences, can lead to information mismatches. If this is not well handled, then the collaborative performance is patchy, and what's worse safety accidents may occur. To tackle this challenge, we propose CoDynTrust, an uncertainty-encoded asynchronous fusion perception framework that is robust to the information mismatches caused by temporal asynchrony. CoDynTrust generates dynamic feature trust modulus (DFTM) for each region of interest by modeling aleatoric and epistemic uncertainty as well as selectively suppressing or retaining single-vehicle features, thereby mitigating information mismatches. We then design a multi-scale fusion module to handle multi-scale feature maps processed by DFTM. Compared to existing works that also consider asynchronous collaborative perception, CoDynTrust combats various low-quality information in temporally asynchronous scenarios and allows uncertainty to be propagated to downstream tasks such as planning and control. Experimental results demonstrate that CoDynTrust significantly reduces performance degradation caused by temporal asynchrony across multiple datasets, achieving state-of-the-art detection performance even with temporal asynchrony. The code is available at https://github.com/CrazyShout/CoDynTrust.

Authors:Zhiming Ma, Xiayang Xiao, Sihao Dong, Peidong Wang, HaiPeng Wang, Qingyun Pan
Title: SARChat-Bench-2M: A Multi-Task Vision-Language Benchmark for SAR Image Interpretation
Abstract:
As a powerful all-weather Earth observation tool, synthetic aperture radar (SAR) remote sensing enables critical military reconnaissance, maritime surveillance, and infrastructure monitoring. Although Vision language models (VLMs) have made remarkable progress in natural language processing and image understanding, their applications remain limited in professional domains due to insufficient domain expertise. This paper innovatively proposes the first large-scale multimodal dialogue dataset for SAR images, named SARChat-2M, which contains approximately 2 million high-quality image-text pairs, encompasses diverse scenarios with detailed target annotations. This dataset not only supports several key tasks such as visual understanding and object detection tasks, but also has unique innovative aspects: this study develop a visual-language dataset and benchmark for the SAR domain, enabling and evaluating VLMs' capabilities in SAR image interpretation, which provides a paradigmatic framework for constructing multimodal datasets across various remote sensing vertical domains. Through experiments on 16 mainstream VLMs, the effectiveness of the dataset has been fully verified. The project will be released at https://github.com/JimmyMa99/SARChat.

Authors:Tingyi Cai, Yunliang Jiang, Yixin Liu, Ming Li, Changqin Huang, Shirui Pan
Title: Out-of-Distribution Detection on Graphs: A Survey
Abstract:
Graph machine learning has witnessed rapid growth, driving advancements across diverse domains. However, the in-distribution assumption, where training and testing data share the same distribution, often breaks in real-world scenarios, leading to degraded model performance under distribution shifts. This challenge has catalyzed interest in graph out-of-distribution (GOOD) detection, which focuses on identifying graph data that deviates from the distribution seen during training, thereby enhancing model robustness. In this paper, we provide a rigorous definition of GOOD detection and systematically categorize existing methods into four types: enhancement-based, reconstruction-based, information propagation-based, and classification-based approaches. We analyze the principles and mechanisms of each approach and clarify the distinctions between GOOD detection and related fields, such as graph anomaly detection, outlier detection, and GOOD generalization. Beyond methodology, we discuss practical applications and theoretical foundations, highlighting the unique challenges posed by graph data. Finally, we discuss the primary challenges and propose future directions to advance this emerging field. The repository of this survey is available at https://github.com/ca1man-2022/Awesome-GOOD-Detection.

Authors:Wooseong Yang, Hyesu Jang, Ayoung Kim
Title: Ground-Optimized 4D Radar-Inertial Odometry via Continuous Velocity Integration using Gaussian Process
Abstract:
Radar ensures robust sensing capabilities in adverse weather conditions, yet challenges remain due to its high inherent noise level. Existing radar odometry has overcome these challenges with strategies such as filtering spurious points, exploiting Doppler velocity, or integrating with inertial measurements. This paper presents two novel improvements beyond the existing radar-inertial odometry: ground-optimized noise filtering and continuous velocity preintegration. Despite the widespread use of ground planes in LiDAR odometry, imprecise ground point distributions of radar measurements cause naive plane fitting to fail. Unlike plane fitting in LiDAR, we introduce a zone-based uncertainty-aware ground modeling specifically designed for radar. Secondly, we note that radar velocity measurements can be better combined with IMU for a more accurate preintegration in radar-inertial odometry. Existing methods often ignore temporal discrepancies between radar and IMU by simplifying the complexities of asynchronous data streams with discretized propagation models. Tackling this issue, we leverage GP and formulate a continuous preintegration method for tightly integrating 3-DOF linear velocity with IMU, facilitating full 6-DOF motion directly from the raw measurements. Our approach demonstrates remarkable performance (less than 1% vertical drift) in public datasets with meticulous conditions, illustrating substantial improvement in elevation accuracy. The code will be released as open source for the community: https://github.com/wooseongY/Go-RIO.

Authors:Mingyu Xing, Lechao Cheng, Shengeng Tang, Yaxiong Wang, Zhun Zhong, Meng Wang
Title: Knowledge Swapping via Learning and Unlearning
Abstract:
We introduce \textbf{Knowledge Swapping}, a novel task designed to selectively regulate knowledge of a pretrained model by enabling the forgetting of user\-specified information, retaining essential knowledge, and acquiring new knowledge simultaneously. By delving into the analysis of knock-on feature hierarchy, we find that incremental learning typically progresses from low\-level representations to higher\-level semantics, whereas forgetting tends to occur in the opposite direction\-starting from high-level semantics and moving down to low-level features. Building upon this, we propose to benchmark the knowledge swapping task with the strategy of \textit{Learning Before Forgetting}. Comprehensive experiments on various tasks like image classification, object detection, and semantic segmentation validate the effectiveness of the proposed strategy. The source code is available at \href{https://github.com/xingmingyu123456/KnowledgeSwapping}{https://github.com/xingmingyu123456/KnowledgeSwapping}.

Authors:Yunhang He, Cong Xu, Jun Wang, Wei Zhang
Title: Collaborative Filtering Meets Spectrum Shift: Connecting User-Item Interaction with Graph-Structured Side Information
Abstract:
Graph Neural Networks (GNNs) have demonstrated their superiority in collaborative filtering, where the user-item (U-I) interaction bipartite graph serves as the fundamental data format. However, when graph-structured side information (e.g., multimodal similarity graphs or social networks) is integrated into the U-I bipartite graph, existing graph collaborative filtering methods fall short of achieving satisfactory performance. We quantitatively analyze this problem from a spectral perspective. Recall that a bipartite graph possesses a full spectrum within the range of [-1, 1], with the highest frequency exactly achievable at -1 and the lowest frequency at 1; however, we observe as more side information is incorporated, the highest frequency of the augmented adjacency matrix progressively shifts rightward. This spectrum shift phenomenon has caused previous approaches built for the full spectrum [-1, 1] to assign mismatched importance to different frequencies. To this end, we propose Spectrum Shift Correction (dubbed SSC), incorporating shifting and scaling factors to enable spectral GNNs to adapt to the shifted spectrum. Unlike previous paradigms of leveraging side information, which necessitate tailored designs for diverse data types, SSC directly connects traditional graph collaborative filtering with any graph-structured side information. Experiments on social and multimodal recommendation demonstrate the effectiveness of SSC, achieving relative improvements of up to 23% without incurring any additional computational overhead. Our code is available at https://github.com/yhhe2004/SSC-KDD.

Authors:Henry Hengyuan Zhao, Kaiming Yang, Wendi Yu, Difei Gao, Mike Zheng Shou
Title: WorldGUI: An Interactive Benchmark for Desktop GUI Automation from Any Starting Point
Abstract:
GUI agents have achieved outstanding performance in GUI element grounding. However, planning remains highly challenging, especially due to the sensitivity to the initial state of the environment. Specifically, slight differences in the initial state-such as the target software not being open or the interface not being in its default state, often lead to planning errors. This issue is widespread in real application scenarios, but existing benchmarks fail to evaluate it. To address this gap, we introduce WorldGUI, a comprehensive GUI benchmark containing tasks across ten widely used desktop and web applications (e.g., PowerPoint, VSCode, Acrobat), each instantiated with diverse initial states to simulate authentic human-computer interactions. Complementing this, we propose WorldGUI-Agent, a universal framework that unifies three core modules: Planner-Critic for high-level plan refinement, Step-Check for intermediate verification, and Actor-Critic for action-level optimization to proactively detect and correct errors. Experimental evaluation shows that WorldGUI-Agent outperforms the outstanding existing model (Claude-3.5 Computer Use) by 12.4% in success rate on WorldGUI, and achieves a 31.2% overall success rate on WindowsAgentArena, surpassing the prior state-of-the-art by 11.7%. Our analysis further reveals that dynamic augmentation tasks and desktop environments pose substantial hurdles, underscoring the necessity of adaptive planning and feedback-driven execution for advancing real-world GUI automation. The code and data are available at https://github.com/showlab/WorldGUI.

Authors:Kristofer Grover Roos, Atsushi Fukuda, Quan Huu Cap
Title: From Brainwaves to Brain Scans: A Robust Neural Network for EEG-to-fMRI Synthesis
Abstract:
While functional magnetic resonance imaging (fMRI) offers valuable insights into brain activity, it is limited by high operational costs and significant infrastructural demands. In contrast, electroencephalography (EEG) provides millisecond-level precision in capturing electrical activity but lacks the spatial fidelity necessary for precise neural localization. To bridge these gaps, we propose E2fNet, a simple yet effective deep learning model for synthesizing fMRI images from low-cost EEG data. E2fNet is an encoder-decoder network specifically designed to capture and translate meaningful multi-scale features from EEG across electrode channels into accurate fMRI representations. Extensive evaluations across three public datasets demonstrate that E2fNet consistently outperforms existing CNN- and transformer-based methods, achieving state-of-the-art results in terms of the structural similarity index measure (SSIM). These results demonstrate that E2fNet is a promising, cost-effective solution for enhancing neuroimaging capabilities. The code is available at https://github.com/kgr20/E2fNet.

Authors:Víctor Gallego
Title: MetaSC: Test-Time Safety Specification Optimization for Language Models
Abstract:
We propose a novel dynamic safety framework that optimizes language model (LM) safety reasoning at inference time without modifying model weights. Building on recent advances in self-critique methods, our approach leverages a meta-critique mechanism that iteratively updates safety prompts-termed specifications-to drive the critique and revision process adaptively. This test-time optimization not only improves performance against adversarial jailbreak requests but also in diverse general safety-related tasks, such as avoiding moral harm or pursuing honest responses. Our empirical evaluations across several language models demonstrate that dynamically optimized safety prompts yield significantly higher safety scores compared to fixed system prompts and static self-critique defenses. Code released at https://github.com/vicgalle/meta-self-critique.git .

Authors:Xiaofei Wang, Hanyu Liu, Yupei Zhang, Boyang Zhao, Hao Duan, Wanming Hu, Yonggao Mou, Stephen Price, Chao Li
Title: Joint Modelling Histology and Molecular Markers for Cancer Classification
Abstract:
Cancers are characterized by remarkable heterogeneity and diverse prognosis. Accurate cancer classification is essential for patient stratification and clinical decision-making. Although digital pathology has been advancing cancer diagnosis and prognosis, the paradigm in cancer pathology has shifted from purely relying on histology features to incorporating molecular markers. There is an urgent need for digital pathology methods to meet the needs of the new paradigm. We introduce a novel digital pathology approach to jointly predict molecular markers and histology features and model their interactions for cancer classification. Firstly, to mitigate the challenge of cross-magnification information propagation, we propose a multi-scale disentangling module, enabling the extraction of multi-scale features from high-magnification (cellular-level) to low-magnification (tissue-level) whole slide images. Further, based on the multi-scale features, we propose an attention-based hierarchical multi-task multi-instance learning framework to simultaneously predict histology and molecular markers. Moreover, we propose a co-occurrence probability-based label correlation graph network to model the co-occurrence of molecular markers. Lastly, we design a cross-modal interaction module with the dynamic confidence constrain loss and a cross-modal gradient modulation strategy, to model the interactions of histology and molecular markers. Our experiments demonstrate that our method outperforms other state-of-the-art methods in classifying glioma, histology features and molecular markers. Our method promises to promote precise oncology with the potential to advance biomedical research and clinical applications. The code is available at https://github.com/LHY1007/M3C2

Authors:Zach Nussbaum, Brandon Duderstadt
Title: Training Sparse Mixture Of Experts Text Embedding Models
Abstract:
Transformer-based text embedding models have improved their performance on benchmarks like MIRACL and BEIR by increasing their parameter counts. However, this scaling approach introduces significant deployment challenges, including increased inference latency and memory usage. These challenges are particularly severe in retrieval-augmented generation (RAG) applications, where large models' increased memory requirements constrain dataset ingestion capacity, and their higher latency directly impacts query-time performance. While causal language models have addressed similar efficiency challenges using Mixture of Experts (MoE) architectures, this approach hasn't been successfully adapted to the general text embedding setting. In this paper, we introduce Nomic Embed v2, the first general purpose MoE text embedding model. Our model outperforms models in the same parameter class on both monolingual and multilingual benchmarks while also maintaining competitive performance with models twice its size. We open-source all code, models, and evaluation data to ensure full reproducibility of our training pipeline at \href{https://github.com/nomic-ai/contrastors}{https://github.com/nomic-ai/contrastors}.

Authors:Anthony D. Blaom, Samuel Okon
Title: New tools for comparing classical and neural ODE models for tumor growth
Abstract:
A new computational tool TumorGrowth$.$jl for modeling tumor growth is introduced. The tool allows the comparison of standard textbook models, such as General Bertalanffy and Gompertz, with some newer models, including, for the first time, neural ODE models. As an application, we revisit a human meta-study of non-small cell lung cancer and bladder cancer lesions, in patients undergoing two different treatment options, to determine if previously reported performance differences are statistically significant, and if newer, more complex models perform any better. In a population of examples with at least four time-volume measurements available for calibration, and an average of about 6.3, our main conclusion is that the General Bertalanffy model has superior performance, on average. However, where more measurements are available, we argue that more complex models, capable of capturing rebound and relapse behavior, may be better choices.

Authors:Ashkan Shahbazi, Elaheh Akbari, Darian Salehi, Xinran Liu, Navid Naderializadeh, Soheil Kolouri
Title: ESPFormer: Doubly-Stochastic Attention with Expected Sliced Transport Plans
Abstract:
While self-attention has been instrumental in the success of Transformers, it can lead to over-concentration on a few tokens during training, resulting in suboptimal information flow. Enforcing doubly-stochastic constraints in attention matrices has been shown to improve structure and balance in attention distributions. However, existing methods rely on iterative Sinkhorn normalization, which is computationally costly. In this paper, we introduce a novel, fully parallelizable doubly-stochastic attention mechanism based on sliced optimal transport, leveraging Expected Sliced Transport Plans (ESP). Unlike prior approaches, our method enforces doubly stochasticity without iterative Sinkhorn normalization, significantly enhancing efficiency. To ensure differentiability, we incorporate a temperature-based soft sorting technique, enabling seamless integration into deep learning models. Experiments across multiple benchmark datasets, including image classification, point cloud classification, sentiment analysis, and neural machine translation, demonstrate that our enhanced attention regularization consistently improves performance across diverse applications. Our implementation code can be found at https://github.com/dariansal/ESPFormer.

Authors:Fanxu Meng, Pingzhi Tang, Xiaojuan Tang, Zengwei Yao, Xing Sun, Muhan Zhang
Title: TransMLA: Multi-Head Latent Attention Is All You Need
Abstract:
In this paper, we present TransMLA, a framework that seamlessly converts any GQA-based pre-trained model into an MLA-based model. Our approach enables direct compatibility with DeepSeek's codebase, allowing these models to fully leverage DeepSeek-specific optimizations such as vLLM and SGlang. By compressing 93% of the KV cache in LLaMA-2-7B, TransMLA achieves a 10.6x inference speedup at an 8K context length while preserving meaningful output quality. Additionally, the model requires only 6 billion tokens for fine-tuning to regain performance on par with the original across multiple benchmarks. TransMLA offers a practical solution for migrating GQA-based models to the MLA structure. When combined with DeepSeek's advanced features, such as FP8 quantization and Multi-Token Prediction, even greater inference acceleration can be realized.

Authors:Jiyoon Kim, Kang Eun Jeon, Yulhwa Kim, Jong Hwan Ko
Title: Column-wise Quantization of Weights and Partial Sums for Accurate and Efficient Compute-In-Memory Accelerators
Abstract:
Compute-in-memory (CIM) is an efficient method for implementing deep neural networks (DNNs) but suffers from substantial overhead from analog-to-digital converters (ADCs), especially as ADC precision increases. Low-precision ADCs can reduce this overhead but introduce partial-sum quantization errors degrading accuracy. Additionally, low-bit weight constraints, imposed by cell limitations and the need for multiple cells for higher-bit weights, present further challenges. While fine-grained partial-sum quantization has been studied to lower ADC resolution effectively, weight granularity, which limits overall partial-sum quantized accuracy, remains underexplored. This work addresses these challenges by aligning weight and partial-sum quantization granularities at the column-wise level. Our method improves accuracy while maintaining dequantization overhead, simplifies training by removing two-stage processes, and ensures robustness to memory cell variations via independent column-wise scale factors. We also propose an open-source CIM-oriented convolution framework to handle fine-grained weights and partial-sums efficiently, incorporating a novel tiling method and group convolution. Experimental results on ResNet-20 (CIFAR-10, CIFAR-100) and ResNet-18 (ImageNet) show accuracy improvements of 0.99%, 2.69%, and 1.01%, respectively, compared to the best-performing related works. Additionally, variation analysis reveals the robustness of our method against memory cell variations. These findings highlight the effectiveness of our quantization scheme in enhancing accuracy and robustness while maintaining hardware efficiency in CIM-based DNN implementations. Our code is available at https://github.com/jiyoonkm/ColumnQuant.

Authors:Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, Jannes Gladrow
Title: Implicit Language Models are RNNs: Balancing Parallelization and Expressivity
Abstract:
State-space models (SSMs) and transformers dominate the language modeling landscape. However, they are constrained to a lower computational complexity than classical recurrent neural networks (RNNs), limiting their expressivity. In contrast, RNNs lack parallelization during training, raising fundamental questions about the trade off between parallelization and expressivity. We propose implicit SSMs, which iterate a transformation until convergence to a fixed point. Theoretically, we show that implicit SSMs implement the non-linear state-transitions of RNNs. Empirically, we find that only approximate fixed-point convergence suffices, enabling the design of a scalable training curriculum that largely retains parallelization, with full convergence required only for a small subset of tokens. Our approach demonstrates superior state-tracking capabilities on regular languages, surpassing transformers and SSMs. We further scale implicit SSMs to natural language reasoning tasks and pretraining of large-scale language models up to 1.3B parameters on 207B tokens representing, to our knowledge, the largest implicit model trained to date. Notably, our implicit models outperform their explicit counterparts on standard benchmarks. Our code is publicly available at http://github.com/microsoft/implicit_languagemodels .

Authors:Ao Liang, Haiyang Hua, Jian Fang, Wenyu Chen, Huaici Zhao
Title: PDM-SSD: Single-Stage Three-Dimensional Object Detector With Point Dilation
Abstract:
Current Point-based detectors can only learn from the provided points, with limited receptive fields and insufficient global learning capabilities for such targets. In this paper, we present a novel Point Dilation Mechanism for single-stage 3D detection (PDM-SSD) that takes advantage of these two representations. Specifically, we first use a PointNet-style 3D backbone for efficient feature encoding. Then, a neck with Point Dilation Mechanism (PDM) is used to expand the feature space, which involves two key steps: point dilation and feature filling. The former expands points to a certain size grid centered around the sampled points in Euclidean space. The latter fills the unoccupied grid with feature for backpropagation using spherical harmonic coefficients and Gaussian density function in terms of direction and scale. Next, we associate multiple dilation centers and fuse coefficients to obtain sparse grid features through height compression. Finally, we design a hybrid detection head for joint learning, where on one hand, the scene heatmap is predicted to complement the voting point set for improved detection accuracy, and on the other hand, the target probability of detected boxes are calibrated through feature fusion. On the challenging Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset, PDM-SSD achieves state-of-the-art results for multi-class detection among single-modal methods with an inference speed of 68 frames. We also demonstrate the advantages of PDM-SSD in detecting sparse and incomplete objects through numerous object-level instances. Additionally, PDM can serve as an auxiliary network to establish a connection between sampling points and object centers, thereby improving the accuracy of the model without sacrificing inference speed. Our code will be available at https://github.com/AlanLiangC/PDM-SSD.git.

Authors:Dongsu Song, Daehwa Ko, Jay Hoon Jung
Title: Amnesia as a Catalyst for Enhancing Black Box Pixel Attacks in Image Classification and Object Detection
Abstract:
It is well known that query-based attacks tend to have relatively higher success rates in adversarial black-box attacks. While research on black-box attacks is actively being conducted, relatively few studies have focused on pixel attacks that target only a limited number of pixels. In image classification, query-based pixel attacks often rely on patches, which heavily depend on randomness and neglect the fact that scattered pixels are more suitable for adversarial attacks. Moreover, to the best of our knowledge, query-based pixel attacks have not been explored in the field of object detection. To address these issues, we propose a novel pixel-based black-box attack called Remember and Forget Pixel Attack using Reinforcement Learning(RFPAR), consisting of two main components: the Remember and Forget processes. RFPAR mitigates randomness and avoids patch dependency by leveraging rewards generated through a one-step RL algorithm to perturb pixels. RFPAR effectively creates perturbed images that minimize the confidence scores while adhering to limited pixel constraints. Furthermore, we advance our proposed attack beyond image classification to object detection, where RFPAR reduces the confidence scores of detected objects to avoid detection. Experiments on the ImageNet-1K dataset for classification show that RFPAR outperformed state-of-the-art query-based pixel attacks. For object detection, using the MSCOCO dataset with YOLOv8 and DDQ, RFPAR demonstrates comparable mAP reduction to state-of-the-art query-based attack while requiring fewer query. Further experiments on the Argoverse dataset using YOLOv8 confirm that RFPAR effectively removed objects on a larger scale dataset. Our code is available at https://github.com/KAU-QuantumAILab/RFPAR.

Authors:Le-Anh Tran
Title: Unpaired Image Dehazing via Kolmogorov-Arnold Transformation of Latent Features
Abstract:
This paper proposes an innovative framework for Unsupervised Image Dehazing via Kolmogorov-Arnold Transformation, termed UID-KAT. Image dehazing is recognized as a challenging and ill-posed vision task that requires complex transformations and interpretations in the feature space. Recent advancements have introduced Kolmogorov-Arnold Networks (KANs), inspired by the Kolmogorov-Arnold representation theorem, as promising alternatives to Multi-Layer Perceptrons (MLPs) since KANs can leverage their polynomial foundation to more efficiently approximate complex functions while requiring fewer layers than MLPs. Motivated by this potential, this paper explores the use of KANs combined with adversarial training and contrastive learning to model the intricate relationship between hazy and clear images. Adversarial training is employed due to its capacity in producing high-fidelity images, and contrastive learning promotes the model's emphasis on significant features while suppressing the influence of irrelevant information. The proposed UID-KAT framework is trained in an unsupervised setting to take advantage of the abundance of real-world data and address the challenge of preparing paired hazy/clean images. Experimental results show that UID-KAT achieves state-of-the-art dehazing performance across multiple datasets and scenarios, outperforming existing unpaired methods while reducing model complexity. The source code for this work is publicly available at https://github.com/tranleanh/uid-kat.

Authors:Ivan Lopes, Valentin Deschaintre, Yannick Hold-Geoffroy, Raoul de Charette
Title: MatSwap: Light-aware material transfers in images
Abstract:
We present MatSwap, a method to transfer materials to designated surfaces in an image photorealistically. Such a task is non-trivial due to the large entanglement of material appearance, geometry, and lighting in a photograph. In the literature, material editing methods typically rely on either cumbersome text engineering or extensive manual annotations requiring artist knowledge and 3D scene properties that are impractical to obtain. In contrast, we propose to directly learn the relationship between the input material -- as observed on a flat surface -- and its appearance within the scene, without the need for explicit UV mapping. To achieve this, we rely on a custom light- and geometry-aware diffusion model. We fine-tune a large-scale pre-trained text-to-image model for material transfer using our synthetic dataset, preserving its strong priors to ensure effective generalization to real images. As a result, our method seamlessly integrates a desired material into the target location in the photograph while retaining the identity of the scene. We evaluate our method on synthetic and real images and show that it compares favorably to recent work both qualitatively and quantitatively. We release our code and data on https://github.com/astra-vision/MatSwap

Authors:Leyang Hu, Matteo Gamba, Randall Balestriero
Title: Curvature Tuning: Provable Training-free Model Steering From a Single Parameter
Abstract:
The scaling of model and data sizes has reshaped the AI landscape, establishing finetuning pretrained models as the standard paradigm for solving downstream tasks. However, dominant finetuning methods typically rely on weight adaptation, often lack interpretability, and depend on heuristically chosen hyperparameters. In this paper, we take a different perspective and shift the focus from weights to activation functions, viewing them through the lens of spline operators. We propose Curvature Tuning (CT), an interpretable and principled steering method that modulates a model's decision boundary by injecting a single hyperparameter into its activation functions. We show that CT provably adjusts model decision boundary curvature and, more fundamentally, projects a model onto a space of smooth functions-thereby complementing current finetuning methods, whose effect lies primarily in feature adaptation. Making this hyperparameter trainable gives rise to a novel and highly parameter-efficient finetuning method. Empirically, CT improves both generalization and robustness. For example, it boosts downstream accuracy of ResNet-50/152 by 7.14%/8.46% over linear probing and 4.64%/1.70% over LoRA across 12 datasets, and improves robust accuracy on the $\ell_\infty$ benchmark from RobustBench by 1032.64%/1494.46%. Our code is available at https://github.com/Leon-Leyang/curvature-tuning.

Authors:Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhiqiang Shen, Dan Alistarh
Title: DarwinLM: Evolutionary Structured Pruning of Large Language Models
Abstract:
Large Language Models (LLMs) have achieved significant success across various NLP tasks. However, their massive computational costs limit their widespread use, particularly in real-time applications. Structured pruning offers an effective solution by compressing models and directly providing end-to-end speed improvements, regardless of the hardware environment. Meanwhile, different components of the model exhibit varying sensitivities towards pruning, calling for non-uniform model compression. However, a pruning method should not only identify a capable substructure, but also account for post-compression training. To this end, we propose DarwinLM, a method for training-aware structured pruning. DarwinLM builds upon an evolutionary search process, generating multiple offspring models in each generation through mutation, and selecting the fittest for survival. To assess the effect of post-training, we incorporate a lightweight, multistep training process within the offspring population, progressively increasing the number of tokens and eliminating poorly performing models in each selection stage. We validate our method through extensive experiments on Llama-2-7B, Llama-3.1-8B and Qwen-2.5-14B-Instruct, achieving state-of-the-art performance for structured pruning. For instance, DarwinLM surpasses ShearedLlama while requiring 5x less training data during post-compression training. Code is at: https://github.com/IST-DASLab/DarwinLM

Authors:Anshul Nasery, Jonathan Hayase, Creston Brooks, Peiyao Sheng, Himanshu Tyagi, Pramod Viswanath, Sewoong Oh
Title: Scalable Fingerprinting of Large Language Models
Abstract:
Model fingerprinting has emerged as a powerful tool for model owners to identify their shared model given API access. However, to lower false discovery rate, fight fingerprint leakage, and defend against coalitions of model users attempting to bypass detection, we argue that {\em scalability} is critical, i.e., scaling up the number of fingerprints one can embed into a model. Hence, we pose scalability as a crucial requirement for fingerprinting schemes. We experiment with fingerprint design at a scale significantly larger than previously considered, and introduce a new method, dubbed Perinucleus sampling, to generate scalable, persistent, and harmless fingerprints. We demonstrate that this scheme can add 24,576 fingerprints to a Llama-3.1-8B model -- two orders of magnitude more than existing schemes -- without degrading the model's utility. Our inserted fingerprints persist even after supervised fine-tuning on standard post-training data. We further address security risks for fingerprinting, and theoretically and empirically show how a scalable fingerprinting scheme like ours can mitigate these risks. Our code is available at https://github.com/SewoongLab/scalable-fingerprinting-of-llms

Authors:Liang Wu, Wei Xiao, Richard D. Braatz
Title: EIQP: Execution-time-certified and Infeasibility-detecting QP Solver
Abstract:
Solving real-time quadratic programming (QP) is a ubiquitous task in control engineering, such as in model predictive control and control barrier function-based QP. In such real-time scenarios, certifying that the employed QP algorithm can either return a solution within a predefined level of optimality or detect QP infeasibility before the predefined sampling time is a pressing requirement. This article considers convex QP (including linear programming) and adopts its homogeneous formulation to achieve infeasibility detection. Exploiting this homogeneous formulation, this article proposes a novel infeasible interior-point method (IPM) algorithm with the best theoretical $O(\sqrt{n})$ iteration complexity that feasible IPM algorithms enjoy. The iteration complexity is proved to be \textit{exact} (rather than an upper bound), \textit{simple to calculate}, and \textit{data independent}, with the value $\left\lceil\frac{\log(\frac{n+1}ε)}{-\log(1-\frac{0.414213}{\sqrt{n+1}})}\right\rceil$ (where $n$ and $ε$ denote the number of constraints and the predefined optimality level, respectively), making it appealing to certify the execution time of online time-varying convex QPs. The proposed algorithm is simple to implement without requiring a line search procedure (uses the full Newton step), and its C-code implementation (offering MATLAB, Julia, and Python interfaces) and numerical examples are publicly available at https://github.com/liangwu2019/EIQP.

Authors:Bing Fan, Yunhe Feng, Yapeng Tian, James Chenhao Liang, Yuewei Lin, Yan Huang, Heng Fan
Title: PRVQL: Progressive Knowledge-guided Refinement for Robust Egocentric Visual Query Localization
Abstract:
Egocentric visual query localization (EgoVQL) focuses on localizing the target of interest in space and time from first-person videos, given a visual query. Despite recent progressive, existing methods often struggle to handle severe object appearance changes and cluttering background in the video due to lacking sufficient target cues, leading to degradation. Addressing this, we introduce PRVQL, a novel Progressive knowledge-guided Refinement framework for EgoVQL. The core is to continuously exploit target-relevant knowledge directly from videos and utilize it as guidance to refine both query and video features for improving target localization. Our PRVQL contains multiple processing stages. The target knowledge from one stage, comprising appearance and spatial knowledge extracted via two specially designed knowledge learning modules, are utilized as guidance to refine the query and videos features for the next stage, which are used to generate more accurate knowledge for further feature refinement. With such a progressive process, target knowledge in PRVQL can be gradually improved, which, in turn, leads to better refined query and video features for localization in the final stage. Compared to previous methods, our PRVQL, besides the given object cues, enjoys additional crucial target information from a video as guidance to refine features, and hence enhances EgoVQL in complicated scenes. In our experiments on challenging Ego4D, PRVQL achieves state-of-the-art result and largely surpasses other methods, showing its efficacy. Our code, model and results will be released at https://github.com/fb-reps/PRVQL.

Authors:Chiyun Noh, Wooseong Yang, Minwoo Jung, Sangwoo Jung, Ayoung Kim
Title: GaRLIO: Gravity enhanced Radar-LiDAR-Inertial Odometry
Abstract:
Recently, gravity has been highlighted as a crucial constraint for state estimation to alleviate potential vertical drift. Existing online gravity estimation methods rely on pose estimation combined with IMU measurements, which is considered best practice when direct velocity measurements are unavailable. However, with radar sensors providing direct velocity data-a measurement not yet utilized for gravity estimation-we found a significant opportunity to improve gravity estimation accuracy substantially. GaRLIO, the proposed gravity-enhanced Radar-LiDAR-Inertial Odometry, can robustly predict gravity to reduce vertical drift while simultaneously enhancing state estimation performance using pointwise velocity measurements. Furthermore, GaRLIO ensures robustness in dynamic environments by utilizing radar to remove dynamic objects from LiDAR point clouds. Our method is validated through experiments in various environments prone to vertical drift, demonstrating superior performance compared to traditional LiDAR-Inertial Odometry methods. We make our source code publicly available to encourage further research and development. https://github.com/ChiyunNoh/GaRLIO

Authors:Hongwei Yi, Shitong Shao, Tian Ye, Jiantong Zhao, Qingyu Yin, Michael Lingelbach, Li Yuan, Yonghong Tian, Enze Xie, Daquan Zhou
Title: Magic 1-For-1: Generating One Minute Video Clips within One Minute
Abstract:
In this technical report, we present Magic 1-For-1 (Magic141), an efficient video generation model with optimized memory consumption and inference latency. The key idea is simple: factorize the text-to-video generation task into two separate easier tasks for diffusion step distillation, namely text-to-image generation and image-to-video generation. We verify that with the same optimization algorithm, the image-to-video task is indeed easier to converge over the text-to-video task. We also explore a bag of optimization tricks to reduce the computational cost of training the image-to-video (I2V) models from three aspects: 1) model convergence speedup by using a multi-modal prior condition injection; 2) inference latency speed up by applying an adversarial step distillation, and 3) inference memory cost optimization with parameter sparsification. With those techniques, we are able to generate 5-second video clips within 3 seconds. By applying a test time sliding window, we are able to generate a minute-long video within one minute with significantly improved visual quality and motion dynamics, spending less than 1 second for generating 1 second video clips on average. We conduct a series of preliminary explorations to find out the optimal tradeoff between computational cost and video quality during diffusion step distillation and hope this could be a good foundation model for open-source explorations. The code and the model weights are available at https://github.com/DA-Group-PKU/Magic-1-For-1.

Authors:Song Liu, Leyang Wang, Yakun Wang
Title: Guiding Time-Varying Generative Models with Natural Gradients on Exponential Family Manifold
Abstract:
Optimising probabilistic models is a well-studied field in statistics. However, its connection with the training of generative models remains largely under-explored. In this paper, we show that the evolution of time-varying generative models can be projected onto an exponential family manifold, naturally creating a link between the parameters of a generative model and those of a probabilistic model. We then train the generative model by moving its projection on the manifold according to the natural gradient descent scheme. This approach also allows us to efficiently approximate the natural gradient of the KL divergence without relying on MCMC for intractable models. Furthermore, we propose particle versions of the algorithm, which feature closed-form update rules for any parametric model within the exponential family. Through toy and real-world experiments, we validate the effectiveness of the proposed algorithms. The code of the proposed algorithms can be found at https://github.com/anewgithubname/iNGD.

Authors:Zhaoting Li, Rodrigo Pérez-Dattari, Robert Babuska, Cosimo Della Santina, Jens Kober
Title: Beyond Behavior Cloning: Robustness through Interactive Imitation and Contrastive Learning
Abstract:
Behavior cloning (BC) traditionally relies on demonstration data, assuming the demonstrated actions are optimal. This can lead to overfitting under noisy data, particularly when expressive models are used (e.g., the energy-based model in Implicit BC). To address this, we extend behavior cloning into an iterative process of optimal action estimation within the Interactive Imitation Learning framework. Specifically, we introduce Contrastive policy Learning from Interactive Corrections (CLIC). CLIC leverages human corrections to estimate a set of desired actions and optimizes the policy to select actions from this set. Extensive simulation and real-robot experiments validate CLIC's advantages over existing state-of-the-art methods, including stable training of energy-based models, robustness to feedback noise, and adaptability to diverse feedback types beyond demonstrations. Our implementation is publicly available at https://github.com/clic-webpage/CLIC.

Authors:Yinzhe Shen, Omer Sahin Tas, Kaiwen Wang, Royden Wagner, Christoph Stiller
Title: Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving
Abstract:
Perceiving the environment and its changes over time corresponds to two fundamental yet heterogeneous types of information: semantics and motion. Previous end-to-end autonomous driving works represent both types of information in a single feature vector. However, including motion related tasks, such as prediction and planning, impairs detection and tracking performance, a phenomenon known as negative transfer in multi-task learning. To address this issue, we propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method that separates semantic and motion learning. Specifically, we employ a set of learned motion queries that operate in parallel with detection and tracking queries, sharing a unified set of recursively updated reference points. Moreover, we employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer. Experiments on the nuScenes dataset with UniAD and SparseDrive confirm the effectiveness of our divide and merge approach, resulting in performance improvements across perception, prediction, and planning. Our code is available at https://github.com/shenyinzhe/DMAD.

Authors:Arvind Pillai, Dimitris Spathis, Subigya Nepal, Amanda C Collins, Daniel M Mackin, Michael V Heinz, Tess Z Griffin, Nicholas C Jacobson, Andrew Campbell
Title: Time2Lang: Bridging Time-Series Foundation Models and Large Language Models for Health Sensing Beyond Prompting
Abstract:
Large language models (LLMs) show promise for health applications when combined with behavioral sensing data. Traditional approaches convert sensor data into text prompts, but this process is prone to errors, computationally expensive, and requires domain expertise. These challenges are particularly acute when processing extended time series data. While time series foundation models (TFMs) have recently emerged as powerful tools for learning representations from temporal data, bridging TFMs and LLMs remains challenging. Here, we present Time2Lang, a framework that directly maps TFM outputs to LLM representations without intermediate text conversion. Our approach first trains on synthetic data using periodicity prediction as a pretext task, followed by evaluation on mental health classification tasks. We validate Time2Lang on two longitudinal wearable and mobile sensing datasets: daily depression prediction using step count data (17,251 days from 256 participants) and flourishing classification based on conversation duration (46 participants over 10 weeks). Time2Lang maintains near constant inference times regardless of input length, unlike traditional prompting methods. The generated embeddings preserve essential time-series characteristics such as auto-correlation. Our results demonstrate that TFMs and LLMs can be effectively integrated while minimizing information loss and enabling performance transfer across these distinct modeling paradigms. To our knowledge, we are the first to integrate a TFM and an LLM for health, thus establishing a foundation for future research combining general-purpose large models for complex healthcare tasks.

Authors:Xiliang Yang, Feng Jiang, Qianen Zhang, Lei Zhao, Xiao Li
Title: DPO-Shift: Shifting the Distribution of Direct Preference Optimization
Abstract:
Direct Preference Optimization (DPO) and its variants have become increasingly popular for aligning language models with human preferences. These methods aim to teach models to better distinguish between chosen (or preferred) and rejected (or dispreferred) responses. However, prior research has identified that the probability of chosen responses often decreases during training, and this phenomenon is known as likelihood displacement. To tackle this challenge, in this work we introduce DPO-Shift to controllably shift the distribution of the chosen probability. Then, we show that DPO-Shift exhibits a fundamental trade-off between improving the chosen probability and sacrificing the reward margin, as supported by both theoretical analysis and experimental validation. Furthermore, we demonstrate the superiority of DPO-Shift over DPO on downstream tasks such as MT-Bench and a designed win rate experiment. We believe this study shows that the likelihood displacement issue of DPO can be effectively mitigated with a simple, theoretically grounded solution. Our code is available at https://github.com/Meaquadddd/DPO-Shift.

Authors:Marten Lienen, Marcel Kollovieh, Stephan Günnemann
Title: Generative Modeling with Bayesian Sample Inference
Abstract:
We derive a novel generative model from iterative Gaussian posterior inference. By treating the generated sample as an unknown variable, we can formulate the sampling process in the language of Bayesian probability. Our model uses a sequence of prediction and posterior update steps to iteratively narrow down the unknown sample starting from a broad initial belief. In addition to a rigorous theoretical analysis, we establish a connection between our model and diffusion models and show that it includes Bayesian Flow Networks (BFNs) as a special case. In our experiments, we demonstrate that our model improves sample quality on ImageNet32 over both BFNs and the closely related Variational Diffusion Models, while achieving equivalent log-likelihoods on ImageNet32 and CIFAR10. Find our code at https://github.com/martenlienen/bsi.

Authors:Cong Lu, Shengran Hu, Jeff Clune
Title: Automated Capability Discovery via Foundation Model Self-Exploration
Abstract:
Foundation models have become general-purpose assistants, exhibiting diverse capabilities across numerous domains through training on web-scale data. It remains challenging to precisely characterize even a fraction of the full spectrum of these abilities and potential risks in any new model. Existing evaluation approaches often require significant human effort, and it is taking increasing effort to design ever harder challenges for more capable models. We introduce Automated Capability Discovery (ACD), a framework that designates one foundation model as a scientist to systematically propose open-ended tasks probing the abilities of a subject model (potentially itself). By combining frontier models with ideas from the field of open-endedness, ACD automatically and systematically uncovers a diverse spectrum of surprising capabilities and failures in the subject model. We demonstrate ACD across a range of foundation models (including the GPT, Claude, and Llama series), showing that it automatically generates thousands of distinct tasks, which are then clustered to reveal dozens of broader capability areas and failure modes, that would be challenging for any single team to uncover. We further validate our method's automated scoring with extensive human surveys, observing high agreement between model-generated and human evaluations. By leveraging foundation models' ability to both create tasks and self-evaluate, ACD is a significant step toward scalable, automated evaluation of novel AI systems. All code and evaluation logs are open-sourced at https://github.com/conglu1997/ACD.

Authors:Fu-An Chao, Berlin Chen
Title: Towards Efficient and Multifaceted Computer-assisted Pronunciation Training Leveraging Hierarchical Selective State Space Model and Decoupled Cross-entropy Loss
Abstract:
Prior efforts in building computer-assisted pronunciation training (CAPT) systems often treat automatic pronunciation assessment (APA) and mispronunciation detection and diagnosis (MDD) as separate fronts: the former aims to provide multiple pronunciation aspect scores across diverse linguistic levels, while the latter focuses instead on pinpointing the precise phonetic pronunciation errors made by non-native language learners. However, it is generally expected that a full-fledged CAPT system should perform both functionalities simultaneously and efficiently. In response to this surging demand, we in this work first propose HMamba, a novel CAPT approach that seamlessly integrates APA and MDD tasks in parallel. In addition, we introduce a novel loss function, decoupled cross-entropy loss (deXent), specifically tailored for MDD to facilitate better-supervised learning for detecting mispronounced phones, thereby enhancing overall performance. A comprehensive set of empirical results on the speechocean762 benchmark dataset demonstrates the effectiveness of our approach on APA. Notably, our proposed approach also yields a considerable improvement in MDD performance over a strong baseline, achieving an F1-score of 63.85%. Our codes are made available at https://github.com/Fuann/hmamba

Authors:Weigao Sun, Disen Lan, Yiran Zhong, Xiaoye Qu, Yu Cheng
Title: LASP-2: Rethinking Sequence Parallelism for Linear Attention and Its Hybrid
Abstract:
Linear sequence modeling approaches, such as linear attention, provide advantages like linear-time training and constant-memory inference over sequence lengths. However, existing sequence parallelism (SP) methods are either not optimized for the right-product-first feature of linear attention or use a ring-style communication strategy, which results in lower computation parallelism, limits their scalability for longer sequences in distributed systems. In this paper, we introduce LASP-2, a new SP method to enhance both communication and computation parallelism when training linear attention transformer models with very-long input sequences. Compared to previous work LASP, LASP-2 rethinks the minimal communication requirement for SP on linear attention layers, reorganizes the whole communication-computation workflow of LASP. In this way, only one single AllGather collective communication is needed on intermediate memory states, whose sizes are independent of the sequence length, leading to significant improvements of both communication and computation parallelism, as well as their overlap. Additionally, we extend LASP-2 to LASP-2H by applying similar communication redesign to standard attention modules, offering an efficient SP solution for hybrid models that blend linear and standard attention layers. Our evaluation on a Linear-Llama3 model, a variant of Llama3 with linear attention replacing standard attention, demonstrates the effectiveness of LASP-2 and LASP-2H. Specifically, LASP-2 achieves training speed improvements of 15.2% over LASP and 36.6% over Ring Attention, with a sequence length of 2048K across 64 GPUs. The Code is released as a part of: https://github.com/OpenSparseLLMs/Linear-MoE.

Authors:Fangwen Wu, Lechao Cheng, Shengeng Tang, Xiaofeng Zhu, Chaowei Fang, Dingwen Zhang, Meng Wang
Title: Navigating Semantic Drift in Task-Agnostic Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) seeks to enable a model to sequentially learn new classes while retaining knowledge of previously learned ones. Balancing flexibility and stability remains a significant challenge, particularly when the task ID is unknown. To address this, our study reveals that the gap in feature distribution between novel and existing tasks is primarily driven by differences in mean and covariance moments. Building on this insight, we propose a novel semantic drift calibration method that incorporates mean shift compensation and covariance calibration. Specifically, we calculate each class's mean by averaging its sample embeddings and estimate task shifts using weighted embedding changes based on their proximity to the previous mean, effectively capturing mean shifts for all learned classes with each new task. We also apply Mahalanobis distance constraint for covariance calibration, aligning class-specific embedding covariances between old and current networks to mitigate the covariance shift. Additionally, we integrate a feature-level self-distillation approach to enhance generalization. Comprehensive experiments on commonly used datasets demonstrate the effectiveness of our approach. The source code is available at \href{https://github.com/fwu11/MACIL.git}{https://github.com/fwu11/MACIL.git}.

Authors:Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, Volkan Cevher
Title: Training Deep Learning Models with Norm-Constrained LMOs
Abstract:
In this work, we study optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball. We propose a new stochastic family of algorithms that uses the LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems. The resulting update rule unifies several existing optimization methods under a single framework. Furthermore, we propose an explicit choice of norm for deep architectures, which, as a side benefit, leads to the transferability of hyperparameters across model sizes. Experimentally, we demonstrate significant speedups on nanoGPT training using our algorithm, Scion, without any reliance on Adam. The proposed method is memory-efficient, requiring only one set of model weights and one set of gradients, which can be stored in half-precision. The code is available at https://github.com/LIONS-EPFL/scion .

Authors:Viacheslav Vasilev, Julia Agafonova, Nikolai Gerasimenko, Alexander Kapitanov, Polina Mikhailova, Evelina Mironova, Denis Dimitrov
Title: RusCode: Russian Cultural Code Benchmark for Text-to-Image Generation
Abstract:
Text-to-image generation models have gained popularity among users around the world. However, many of these models exhibit a strong bias toward English-speaking cultures, ignoring or misrepresenting the unique characteristics of other language groups, countries, and nationalities. The lack of cultural awareness can reduce the generation quality and lead to undesirable consequences such as unintentional insult, and the spread of prejudice. In contrast to the field of natural language processing, cultural awareness in computer vision has not been explored as extensively. In this paper, we strive to reduce this gap. We propose a RusCode benchmark for evaluating the quality of text-to-image generation containing elements of the Russian cultural code. To do this, we form a list of 19 categories that best represent the features of Russian visual culture. Our final dataset consists of 1250 text prompts in Russian and their translations into English. The prompts cover a wide range of topics, including complex concepts from art, popular culture, folk traditions, famous people's names, natural objects, scientific achievements, etc. We present the results of a human evaluation of the side-by-side comparison of Russian visual concepts representations using popular generative models.

Authors:Duong Anh Kiet
Title: Hierarchical Document Parsing via Large Margin Feature Matching and Heuristics
Abstract:
We present our solution to the AAAI-25 VRD-IU challenge, achieving first place in the competition. Our approach integrates large margin loss for improved feature discrimination and employs heuristic rules to refine hierarchical relationships. By combining a deep learning-based matching strategy with greedy algorithms, we achieve a significant boost in accuracy while maintaining computational efficiency. Our method attains an accuracy of 0.98904 on the private leaderboard, demonstrating its effectiveness in document structure parsing. Source codes are publicly available at https://github.com/ffyyytt/VRUID-AAAI-DAKiet

Authors:Sheng Zhou, Junbin Xiao, Qingyun Li, Yicong Li, Xun Yang, Dan Guo, Meng Wang, Tat-Seng Chua, Angela Yao
Title: EgoTextVQA: Towards Egocentric Scene-Text Aware Video Question Answering
Abstract:
We introduce EgoTextVQA, a novel and rigorously constructed benchmark for egocentric QA assistance involving scene text. EgoTextVQA contains 1.5K ego-view videos and 7K scene-text aware questions that reflect real user needs in outdoor driving and indoor house-keeping activities. The questions are designed to elicit identification and reasoning on scene text in an egocentric and dynamic environment. With EgoTextVQA, we comprehensively evaluate 10 prominent multimodal large language models. Currently, all models struggle, and the best results (Gemini 1.5 Pro) are around 33\% accuracy, highlighting the severe deficiency of these techniques in egocentric QA assistance. Our further investigations suggest that precise temporal grounding and multi-frame reasoning, along with high resolution and auxiliary scene-text inputs, are key for better performance. With thorough analyses and heuristic suggestions, we hope EgoTextVQA can serve as a solid testbed for research in egocentric scene-text QA assistance. Our dataset is released at: https://github.com/zhousheng97/EgoTextVQA.

Authors:Rundong Liu, Andre Frade, Amal Vaidya, Maxime Labonne, Marcus Kaiser, Bismayan Chakrabarti, Jonathan Budd, Sean Moran
Title: On Iterative Evaluation and Enhancement of Code Quality Using GPT-4o
Abstract:
This paper introduces CodeQUEST, a novel framework leveraging Large Language Models (LLMs) to iteratively evaluate and enhance code quality across multiple dimensions, including readability, maintainability, efficiency, and security. The framework is divided into two main components: an Evaluator that assesses code quality across ten dimensions, providing both quantitative scores and qualitative summaries, and an Optimizer that iteratively improves the code based on the Evaluator's feedback. Our study demonstrates that CodeQUEST can effectively and robustly evaluate code quality, with its assessments aligning closely with established code quality metrics. Through a series of experiments using a curated dataset of Python and JavaScript examples, CodeQUEST demonstrated significant improvements in code quality, achieving a mean relative percentage improvement of 52.6%. The framework's evaluations were validated against a set of proxy metrics comprising of Pylint Score, Radon Maintainability Index, and Bandit output logs, showing a meaningful correlation. This highlights the potential of LLMs in automating code quality evaluation and improvement processes, presenting a significant advancement toward enhancing software development practices. The code implementation of the framework is available at: https://github.com/jpmorganchase/CodeQuest.

Authors:Jingjie Zhang, Hanqun Cao, Zijun Gao, Xiaorui Wang, Chunbin Gu
Title: SAGEPhos: Sage Bio-Coupled and Augmented Fusion for Phosphorylation Site Detection
Abstract:
Phosphorylation site prediction based on kinase-substrate interaction plays a vital role in understanding cellular signaling pathways and disease mechanisms. Computational methods for this task can be categorized into kinase-family-focused and individual kinase-targeted approaches. Individual kinase-targeted methods have gained prominence for their ability to explore a broader protein space and provide more precise target information for kinase inhibitors. However, most existing individual kinase-based approaches focus solely on sequence inputs, neglecting crucial structural information. To address this limitation, we introduce SAGEPhos (Structure-aware kinAse-substrate bio-coupled and bio-auGmented nEtwork for Phosphorylation site prediction), a novel framework that modifies the semantic space of main protein inputs using auxiliary inputs at two distinct modality levels. At the inter-modality level, SAGEPhos introduces a Bio-Coupled Modal Fusion method, distilling essential kinase sequence information to refine task-oriented local substrate feature space, creating a shared semantic space that captures crucial kinase-substrate interaction patterns. Within the substrate's intra-modality domain, it focuses on Bio-Augmented Fusion, emphasizing 2D local sequence information while selectively incorporating 3D spatial information from predicted structures to complement the sequence space. Moreover, to address the lack of structural information in current datasets, we contribute a new, refined phosphorylation site prediction dataset, which incorporates crucial structural elements and will serve as a new benchmark for the field. Experimental results demonstrate that SAGEPhos significantly outperforms baseline methods. We release the SAGEPhos models and code at https://github.com/ZhangJJ26/SAGEPhos.

Authors:Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh Hakhamaneshi, Shishir G. Patil, Matei Zaharia, Joseph E. Gonzalez, Ion Stoica
Title: LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters!
Abstract:
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT) that incorporate reflection, backtracking, and self-validation. However, the training techniques and data requirements to elicit Long CoT remain poorly understood. In this work, we find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA). With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks, including 56.7% (+40.0%) on AIME 2024 and 57.0% (+8.1%) on LiveCodeBench, competitive to the proprietary o1-preview model's score of 44.6% and 59.1%. More importantly, we find that the structure of Long CoT is critical to the learning process, whereas the content of individual reasoning steps has minimal impact. Perturbations affecting content, such as training on incorrect samples or removing reasoning keywords, have little impact on performance. In contrast, structural modifications that disrupt logical consistency in the Long CoT, such as shuffling or deleting reasoning steps, significantly degrade accuracy. For example, a model trained on Long CoT samples with incorrect answers still achieves only 3.2% lower accuracy compared to training with fully correct samples. These insights deepen our understanding of how to elicit reasoning capabilities in LLMs and highlight key considerations for efficiently training the next generation of reasoning models. This is the academic paper of our previous released Sky-T1-32B-Preview model. Codes are available at https://github.com/NovaSky-AI/SkyThought.

Authors:Yuxu Lu, Ai Chen, Dong Yang, Ryan Wen Liu
Title: USRNet: Unified Scene Recovery Network for Enhancing Traffic Imaging under Multiple Adverse Weather Conditions
Abstract:
Advancements in computer vision technology have facilitated the extensive deployment of intelligent transportation systems and visual surveillance systems across various applications, including autonomous driving, public safety, and environmental monitoring. However, adverse weather conditions such as haze, rain, snow, and more complex mixed degradation can significantly degrade image quality. The degradation compromises the accuracy and reliability of these systems across various scenarios. To tackle the challenge of developing adaptable models for scene restoration, we introduce the unified scene recovery network (USRNet), capable of handling multiple types of image degradation. The USRNet features a sophisticated architecture consisting of a scene encoder, an attention-driven node independent learning mechanism (NILM), an edge decoder, and a scene restoration module. The scene encoder, powered by advanced residual blocks, extracts deep features from degraded images in a progressive manner, ensuring thorough encoding of degradation information. To enhance the USRNet's adaptability in diverse weather conditions, we introduce NILM, which enables the network to learn and respond to different scenarios with precision, thereby increasing its robustness. The edge decoder is designed to extract edge features with precision, which is essential for maintaining image sharpness. Experimental results demonstrate that USRNet surpasses existing methods in handling complex imaging degradations, thereby improving the accuracy and reliability of visual systems across diverse scenarios. The code resources for this work can be accessed in https://github.com/LouisYxLu/USRNet.

Authors:Zican Dong, Junyi Li, Jinhao Jiang, Mingyu Xu, Wayne Xin Zhao, Bingning Wang, Weipeng Chen
Title: LongReD: Mitigating Short-Text Degradation of Long-Context Large Language Models via Restoration Distillation
Abstract:
Large language models (LLMs) have gained extended context windows through scaling positional encodings and lightweight continual pre-training. However, this often leads to degraded performance on short-text tasks, while the reasons for this degradation remain insufficiently explored. In this work, we identify two primary factors contributing to this issue: distribution drift in hidden states and attention scores, and catastrophic forgetting during continual pre-training. To address these challenges, we propose Long Context Pre-training with Restoration Distillation (LongReD), a novel approach designed to mitigate short-text performance degradation through minimizing the distribution discrepancy between the extended and original models. Besides training on long texts, LongReD distills the hidden state of selected layers from the original model on short texts. Additionally, LongReD also introduces a short-to-long distillation, aligning the output distribution on short texts with that on long texts by leveraging skipped positional indices. Experiments on common text benchmarks demonstrate that LongReD effectively preserves the model's short-text performance while maintaining comparable or even better capacity to handle long texts than baselines. Our code is available at https://github.com/RUCAIBox/LongReD.

Authors:Jusheng Zhang, Zimeng Huang, Yijia Fan, Ningyuan Liu, Mingyan Li, Zhuojie Yang, Jiawei Yao, Jian Wang, Keze Wang
Title: KABB: Knowledge-Aware Bayesian Bandits for Dynamic Expert Coordination in Multi-Agent Systems
Abstract:
As scaling large language models faces prohibitive costs, multi-agent systems emerge as a promising alternative, though challenged by static knowledge assumptions and coordination inefficiencies. We introduces Knowledge-Aware Bayesian Bandits (KABB), a novel framework that enhances multi-agent system coordination through semantic understanding and dynamic adaptation. The framework features three key innovations: a three-dimensional knowledge distance model for deep semantic understanding, a dual-adaptation mechanism for continuous expert optimization, and a knowledge-aware Thompson Sampling strategy for efficient expert selection. Extensive evaluation demonstrates KABB achieves an optimal cost-performance balance, maintaining high performance while keeping computational demands relatively low in multi-agent coordination.

Authors:Zilu Dong, Xiangqing Shen, Rui Xia
Title: MEMIT-Merge: Addressing MEMIT's Key-Value Conflicts in Same-Subject Batch Editing for LLMs
Abstract:
As large language models continue to scale up, knowledge editing techniques that modify models' internal knowledge without full retraining have gained significant attention. MEMIT, a prominent batch editing algorithm, stands out for its capability to perform mass knowledge modifications. However, we uncover that MEMIT's editing efficacy significantly deteriorates when processing batches containing multiple edits sharing the same subject. Our analysis reveals this stems from MEMIT's key value modeling framework: identical keys (derived from the shared subject) are forced to represent different values (corresponding to different knowledge), resulting in update conflicts during editing. Addressing this issue, we propose MEMIT-Merge, an enhanced approach that merges value computation processes for facts sharing the same subject, effectively resolving the performance degradation in samesubject batch editing scenarios. Experimental results demonstrate that when MEMIT's edit success rate drops to around 50% at larger batch sizes, MEMIT-Merge maintains a success rate exceeding 90%, showcasing remarkable robustness to subject entity collisions. The code is available at https://github.com/NUSTM/ MEMIT-Merge.

Authors:Junlong Li, Daya Guo, Dejian Yang, Runxin Xu, Yu Wu, Junxian He
Title: CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
Abstract:
Reasoning is a fundamental capability of Large Language Models. While prior research predominantly focuses on enhancing narrow skills like math or code generation, improving performance on many other reasoning tasks remains challenging due to sparse and fragmented training data. To address this issue, we propose CodeI/O, a novel approach that systematically condenses diverse reasoning patterns inherently embedded in contextually-grounded codes, through transforming the original code into a code input-output prediction format. By training models to predict inputs/outputs given code and test cases entirely in natural language as Chain-of-Thought (CoT) rationales, we expose them to universal reasoning primitives -- like logic flow planning, state-space searching, decision tree traversal, and modular decomposition -- while decoupling structured reasoning from code-specific syntax and preserving procedural rigor. Experimental results demonstrate CodeI/O leads to consistent improvements across symbolic, scientific, logic, math & numerical, and commonsense reasoning tasks. By matching the existing ground-truth outputs or re-executing the code with predicted inputs, we can verify each prediction and further enhance the CoTs through multi-turn revision, resulting in CodeI/O++ and achieving higher performance. Our data and models are available at https://github.com/hkust-nlp/CodeIO.

Authors:Xiaopeng Ye, Chen Xu, Zhongxiang Sun, Jun Xu, Gang Wang, Zhenhua Dong, Ji-Rong Wen
Title: CreAgent: Towards Long-Term Evaluation of Recommender System under Platform-Creator Information Asymmetry
Abstract:
Ensuring the long-term sustainability of recommender systems (RS) emerges as a crucial issue. Traditional offline evaluation methods for RS typically focus on immediate user feedback, such as clicks, but they often neglect the long-term impact of content creators. On real-world content platforms, creators can strategically produce and upload new items based on user feedback and preference trends. While previous studies have attempted to model creator behavior, they often overlook the role of information asymmetry. This asymmetry arises because creators primarily have access to feedback on the items they produce, while platforms possess data on the entire spectrum of user feedback. Current RS simulators, however, fail to account for this asymmetry, leading to inaccurate long-term evaluations. To address this gap, we propose CreAgent, a Large Language Model (LLM)-empowered creator simulation agent. By incorporating game theory's belief mechanism and the fast-and-slow thinking framework, CreAgent effectively simulates creator behavior under conditions of information asymmetry. Additionally, we enhance CreAgent's simulation ability by fine-tuning it using Proximal Policy Optimization (PPO). Our credibility validation experiments show that CreAgent aligns well with the behaviors between real-world platform and creator, thus improving the reliability of long-term RS evaluations. Moreover, through the simulation of RS involving CreAgents, we can explore how fairness- and diversity-aware RS algorithms contribute to better long-term performance for various stakeholders. CreAgent and the simulation platform are publicly available at https://github.com/shawnye2000/CreAgent.

Authors:Chengkai Liu, Yangtian Zhang, Jianling Wang, Rex Ying, James Caverlee
Title: Flow Matching for Collaborative Filtering
Abstract:
Generative models have shown great promise in collaborative filtering by capturing the underlying distribution of user interests and preferences. However, existing approaches struggle with inaccurate posterior approximations and misalignment with the discrete nature of recommendation data, limiting their expressiveness and real-world performance. To address these limitations, we propose FlowCF, a novel flow-based recommendation system leveraging flow matching for collaborative filtering. We tailor flow matching to the unique challenges in recommendation through two key innovations: (1) a behavior-guided prior that aligns with user behavior patterns to handle the sparse and heterogeneous user-item interactions, and (2) a discrete flow framework to preserve the binary nature of implicit feedback while maintaining the benefits of flow matching, such as stable training and efficient inference. Extensive experiments demonstrate that FlowCF achieves state-of-the-art recommendation accuracy across various datasets with the fastest inference speed, making it a compelling approach for real-world recommender systems. The code is available at https://github.com/chengkai-liu/FlowCF.

Authors:Ruining Deng, Yihe Yang, David J. Pisapia, Benjamin Liechty, Junchao Zhu, Juming Xiong, Junlin Guo, Zhengyi Lu, Jiacheng Wang, Xing Yao, Runxuan Yu, Rendong Zhang, Gaurav Rudravaram, Mengmeng Yin, Pinaki Sarder, Haichun Yang, Yuankai Huo, Mert R. Sabuncu
Title: CASC-AI: Consensus-aware Self-corrective Learning for Noise Cell Segmentation
Abstract:
Multi-class cell segmentation in high-resolution gigapixel whole slide images (WSIs) is crucial for various clinical applications. However, training such models typically requires labor-intensive, pixel-wise annotations by domain experts. Recent efforts have democratized this process by involving lay annotators without medical expertise. However, conventional non-corrective approaches struggle to handle annotation noise adaptively because they lack mechanisms to mitigate false positives (FP) and false negatives (FN) at both the image-feature and pixel levels. In this paper, we propose a consensus-aware self-corrective AI agent that leverages the Consensus Matrix to guide its learning process. The Consensus Matrix defines regions where both the AI and annotators agree on cell and non-cell annotations, which are prioritized with stronger supervision. Conversely, areas of disagreement are adaptively weighted based on their feature similarity to high-confidence consensus regions, with more similar regions receiving greater attention. Additionally, contrastive learning is employed to separate features of noisy regions from those of reliable consensus regions by maximizing their dissimilarity. This paradigm enables the model to iteratively refine noisy labels, enhancing its robustness. Validated on one real-world lay-annotated cell dataset and two reasoning-guided simulated noisy datasets, our method demonstrates improved segmentation performance, effectively correcting FP and FN errors and showcasing its potential for training robust models on noisy datasets. The official implementation and cell annotations are publicly available at https://github.com/ddrrnn123/CASC-AI.

Authors:Yelin Chen, Fanjin Zhang, Jie Tang
Title: Small Language Model Makes an Effective Long Text Extractor
Abstract:
Named Entity Recognition (NER) is a fundamental problem in natural language processing (NLP). However, the task of extracting longer entity spans (e.g., awards) from extended texts (e.g., homepages) is barely explored. Current NER methods predominantly fall into two categories: span-based methods and generation-based methods. Span-based methods require the enumeration of all possible token-pair spans, followed by classification on each span, resulting in substantial redundant computations and excessive GPU memory usage. In contrast, generation-based methods involve prompting or fine-tuning large language models (LLMs) to adapt to downstream NER tasks. However, these methods struggle with the accurate generation of longer spans and often incur significant time costs for effective fine-tuning. To address these challenges, this paper introduces a lightweight span-based NER method called SeNER, which incorporates a bidirectional arrow attention mechanism coupled with LogN-Scaling on the [CLS] token to embed long texts effectively, and comprises a novel bidirectional sliding-window plus-shaped attention (BiSPA) mechanism to reduce redundant candidate token-pair spans significantly and model interactions between token-pair spans simultaneously. Extensive experiments demonstrate that our method achieves state-of-the-art extraction accuracy on three long NER datasets and is capable of extracting entities from long texts in a GPU-memory-friendly manner. Code: https://github.com/THUDM/scholar-profiling/tree/main/sener

Authors:Yuechen Xie, Jie Song, Mengqi Xue, Haofei Zhang, Xingen Wang, Bingde Hu, Genlang Chen, Mingli Song
Title: Dataset Ownership Verification in Contrastive Pre-trained Models
Abstract:
High-quality open-source datasets, which necessitate substantial efforts for curation, has become the primary catalyst for the swift progress of deep learning. Concurrently, protecting these datasets is paramount for the well-being of the data owner. Dataset ownership verification emerges as a crucial method in this domain, but existing approaches are often limited to supervised models and cannot be directly extended to increasingly popular unsupervised pre-trained models. In this work, we propose the first dataset ownership verification method tailored specifically for self-supervised pre-trained models by contrastive learning. Its primary objective is to ascertain whether a suspicious black-box backbone has been pre-trained on a specific unlabeled dataset, aiding dataset owners in upholding their rights. The proposed approach is motivated by our empirical insights that when models are trained with the target dataset, the unary and binary instance relationships within the embedding space exhibit significant variations compared to models trained without the target dataset. We validate the efficacy of this approach across multiple contrastive pre-trained models including SimCLR, BYOL, SimSiam, MOCO v3, and DINO. The results demonstrate that our method rejects the null hypothesis with a $p$-value markedly below $0.05$, surpassing all previous methodologies. Our code is available at https://github.com/xieyc99/DOV4CL.

Authors:Wei Wu, Qiuyi Li, Mingyang Li, Kun Fu, Fuli Feng, Jieping Ye, Hui Xiong, Zheng Wang
Title: GENERator: A Long-Context Generative Genomic Foundation Model
Abstract:
Advancements in DNA sequencing technologies have significantly improved our ability to decode genomic sequences. However, the prediction and interpretation of these sequences remain challenging due to the intricate nature of genetic material. Large language models (LLMs) have introduced new opportunities for biological sequence analysis. Recent developments in genomic language models have underscored the potential of LLMs in deciphering DNA sequences. Nonetheless, existing models often face limitations in robustness and application scope, primarily due to constraints in model structure and training data scale. To address these limitations, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters. Trained on an expansive dataset comprising 386B bp of eukaryotic DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks. The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences that translate into proteins structurally analogous to known families. It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles. These capabilities position the GENERator as a pivotal tool for genomic research and biotechnological advancement, enhancing our ability to interpret and predict complex biological systems and enabling precise genomic interventions. Implementation details and supplementary resources are available at https://github.com/GenerTeam/GENERator.

Authors:Xuefeng Liu, Songhao Jiang, Siyu Chen, Zhuoran Yang, Yuxin Chen, Ian Foster, Rick Stevens
Title: DrugImproverGPT: A Large Language Model for Drug Optimization with Fine-Tuning via Structured Policy Optimization
Abstract:
Finetuning a Large Language Model (LLM) is crucial for generating results towards specific objectives. This research delves into the realm of drug optimization and introduce a novel reinforcement learning algorithm to finetune a drug optimization LLM-based generative model, enhancing the original drug across target objectives, while retains the beneficial chemical properties of the original drug. This work is comprised of two primary components: (1) DrugImprover: A framework tailored for improving robustness and efficiency in drug optimization. It includes a LLM designed for drug optimization and a novel Structured Policy Optimization (SPO) algorithm, which is theoretically grounded. This algorithm offers a unique perspective for fine-tuning the LLM-based generative model by aligning the improvement of the generated molecule with the input molecule under desired objectives. (2) A dataset of 1 million compounds, each with OEDOCK docking scores on 5 human proteins associated with cancer cells and 24 binding sites from SARS-CoV-2 virus. We conduct a comprehensive evaluation of SPO and demonstrate its effectiveness in improving the original drug across target properties. Our code and dataset will be publicly available at: https://github.com/xuefeng-cs/DrugImproverGPT.

Authors:Shaokui Wei, Shanchao Yang, Jiayin Liu, Hongyuan Zha
Title: Revisiting the Auxiliary Data in Backdoor Purification
Abstract:
Backdoor attacks occur when an attacker subtly manipulates machine learning models during the training phase, leading to unintended behaviors when specific triggers are present. To mitigate such emerging threats, a prevalent strategy is to cleanse the victim models by various backdoor purification techniques. Despite notable achievements, current state-of-the-art (SOTA) backdoor purification techniques usually rely on the availability of a small clean dataset, often referred to as auxiliary dataset. However, acquiring an ideal auxiliary dataset poses significant challenges in real-world applications. This study begins by assessing the SOTA backdoor purification techniques across different types of real-world auxiliary datasets. Our findings indicate that the purification effectiveness fluctuates significantly depending on the type of auxiliary dataset used. Specifically, a high-quality in-distribution auxiliary dataset is essential for effective purification, whereas datasets from varied or out-of-distribution sources significantly degrade the defensive performance. Based on this, we propose Guided Input Calibration (GIC), which aims to improve purification efficacy by employing a learnable transformation. Guided by the victim model itself, GIC aligns the characteristics of the auxiliary dataset with those of the original training set. Comprehensive experiments demonstrate that GIC can substantially enhance purification performance across diverse types of auxiliary datasets. The code and data will be available via https://github.com/shawkui/BackdoorBenchER.

Authors:Sen Peng, Mingyue Wang, Jianfei He, Jijia Yang, Xiaohua Jia
Title: CAT: Contrastive Adversarial Training for Evaluating the Robustness of Protective Perturbations in Latent Diffusion Models
Abstract:
Latent diffusion models have recently demonstrated superior capabilities in many downstream image synthesis tasks. However, customization of latent diffusion models using unauthorized data can severely compromise the privacy and intellectual property rights of data owners. Adversarial examples as protective perturbations have been developed to defend against unauthorized data usage by introducing imperceptible noise to customization samples, preventing diffusion models from effectively learning them. In this paper, we first reveal that the primary reason adversarial examples are effective as protective perturbations in latent diffusion models is the distortion of their latent representations, as demonstrated through qualitative and quantitative experiments. We then propose the Contrastive Adversarial Training (CAT) utilizing lightweight adapters as an adaptive attack against these protection methods, highlighting their lack of robustness. Extensive experiments demonstrate that our CAT method significantly reduces the effectiveness of protective perturbations in customization, urging the community to reconsider and improve the robustness of existing protective perturbations. The code is available at https://github.com/senp98/CAT.

Authors:Elias Lumer, Pradeep Honaganahalli Basavaraju, Myles Mason, James A. Burke, Vamse Kumar Subbiah
Title: Graph RAG-Tool Fusion
Abstract:
Recent developments in retrieval-augmented generation (RAG) for selecting relevant tools from a tool knowledge base enable LLM agents to scale their complex tool calling capabilities to hundreds or thousands of external tools, APIs, or agents-as-tools. However, traditional RAG-based tool retrieval fails to capture structured dependencies between tools, limiting the retrieval accuracy of a retrieved tool's dependencies. For example, among a vector database of tools, a "get stock price" API requires a "stock ticker" parameter from a "get stock ticker" API, and both depend on OS-level internet connectivity tools. In this paper, we address this limitation by introducing Graph RAG-Tool Fusion, a novel plug-and-play approach that combines the strengths of vector-based retrieval with efficient graph traversal to capture all relevant tools (nodes) along with any nested dependencies (edges) within the predefined tool knowledge graph. We also present ToolLinkOS, a new tool selection benchmark of 573 fictional tools, spanning over 15 industries, each with an average of 6.3 tool dependencies. We demonstrate that Graph RAG-Tool Fusion achieves absolute improvements of 71.7% and 22.1% over naïve RAG on ToolLinkOS and ToolSandbox benchmarks, respectively (mAP@10). ToolLinkOS dataset is available at https://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOS

Authors:Xingpei Ma, Jiaran Cai, Yuansheng Guan, Shenneng Huang, Qiang Zhang, Shunsi Zhang
Title: Playmate: Flexible Control of Portrait Animation via 3D-Implicit Space Guided Diffusion
Abstract:
Recent diffusion-based talking face generation models have demonstrated impressive potential in synthesizing videos that accurately match a speech audio clip with a given reference identity. However, existing approaches still encounter significant challenges due to uncontrollable factors, such as inaccurate lip-sync, inappropriate head posture and the lack of fine-grained control over facial expressions. In order to introduce more face-guided conditions beyond speech audio clips, a novel two-stage training framework Playmate is proposed to generate more lifelike facial expressions and talking faces. In the first stage, we introduce a decoupled implicit 3D representation along with a meticulously designed motion-decoupled module to facilitate more accurate attribute disentanglement and generate expressive talking videos directly from audio cues. Then, in the second stage, we introduce an emotion-control module to encode emotion control information into the latent space, enabling fine-grained control over emotions and thereby achieving the ability to generate talking videos with desired emotion. Extensive experiments demonstrate that Playmate not only outperforms existing state-of-the-art methods in terms of video quality, but also exhibits strong competitiveness in lip synchronization while offering improved flexibility in controlling emotion and head pose. The code will be available at https://github.com/Playmate111/Playmate.

Authors:Ravi Shah, Atsushi Fukuda, Quan Huu Cap
Title: Color-Quality Invariance for Robust Medical Image Segmentation
Abstract:
Single-source domain generalization (SDG) in medical image segmentation remains a significant challenge, particularly for images with varying color distributions and qualities. Previous approaches often struggle when models trained on high-quality images fail to generalize to low-quality test images due to these color and quality shifts. In this work, we propose two novel techniques to enhance generalization: dynamic color image normalization (DCIN) module and color-quality generalization (CQG) loss. The DCIN dynamically normalizes the color of test images using two reference image selection strategies. Specifically, the DCIN utilizes a global reference image selection (GRIS), which finds a universal reference image, and a local reference image selection (LRIS), which selects a semantically similar reference image per test sample. Additionally, CQG loss enforces invariance to color and quality variations by ensuring consistent segmentation predictions across transformed image pairs. Experimental results show that our proposals significantly improve segmentation performance over the baseline on two target domain datasets, despite being trained solely on a single source domain. Notably, our model achieved up to a 32.3-point increase in Dice score compared to the baseline, consistently producing robust and usable results even under substantial domain shifts. Our work contributes to the development of more robust medical image segmentation models that generalize across unseen domains. The implementation code is available at https://github.com/RaviShah1/DCIN-CQG.

Authors:Fan Liu, Wenshuo Chao, Naiqiang Tan, Hao Liu
Title: Bag of Tricks for Inference-time Computation of LLM Reasoning
Abstract:
With the advancement of large language models (LLMs), solving complex reasoning tasks has gained increasing attention. Inference-time computation methods (e.g., Best-of-N, beam search, et al.) are particularly valuable as they can enhance reasoning performance without modifying model parameters or requiring additional training. However, these techniques come with implementation challenges, and most existing methods remain at the proof-of-concept stage with limited practical adoption due to their computational complexity and varying effectiveness across different tasks. In this paper, we investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity. Since most current methods rely on a proposer-verifier pipeline that first generates candidate solutions (e.g., reasoning solutions) and then selects the best one based on reward signals (e.g., RLHF rewards, process rewards), our research focuses on optimizing both candidate solution generation (e.g., instructing prompts, hyperparameters such as temperature and top-p) and reward mechanisms (e.g., self-evaluation, reward types). Through extensive experiments (more than 20,000 A100-80G GPU hours with over 1,000 experiments) across a variety of models (e.g., Llama, Qwen, and Mistral families) of various sizes, our ablation studies reveal that previously overlooked strategies can significantly enhance performance (e.g., tuning temperature can improve reasoning task performance by up to 5%). Furthermore, we establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks. These findings provide a stronger foundation for future research. The code is available at https://github.com/usail-hkust/benchmark_inference_time_computation_LLM

Authors:ByungOk Han, Woo-han Yun, Beom-Su Seo, Jaehong Kim
Title: Space-Aware Instruction Tuning: Dataset and Benchmark for Guide Dog Robots Assisting the Visually Impaired
Abstract:
Guide dog robots offer promising solutions to enhance mobility and safety for visually impaired individuals, addressing the limitations of traditional guide dogs, particularly in perceptual intelligence and communication. With the emergence of Vision-Language Models (VLMs), robots are now capable of generating natural language descriptions of their surroundings, aiding in safer decision-making. However, existing VLMs often struggle to accurately interpret and convey spatial relationships, which is crucial for navigation in complex environments such as street crossings. We introduce the Space-Aware Instruction Tuning (SAIT) dataset and the Space-Aware Benchmark (SA-Bench) to address the limitations of current VLMs in understanding physical environments. Our automated data generation pipeline focuses on the virtual path to the destination in 3D space and the surroundings, enhancing environmental comprehension and enabling VLMs to provide more accurate guidance to visually impaired individuals. We also propose an evaluation protocol to assess VLM effectiveness in delivering walking guidance. Comparative experiments demonstrate that our space-aware instruction-tuned model outperforms state-of-the-art algorithms. We have fully open-sourced the SAIT dataset and SA-Bench, along with the related code, at https://github.com/byungokhan/Space-awareVLM

Authors:Joseph Paul Cohen, Louis Blankemeier, Akshay Chaudhari
Title: Explaining 3D Computed Tomography Classifiers with Counterfactuals
Abstract:
Counterfactual explanations enhance the interpretability of deep learning models in medical imaging, yet adapting them to 3D CT scans poses challenges due to volumetric complexity and resource demands. We extend the Latent Shift counterfactual generation method from 2D applications to explain 3D computed tomography (CT) scans classifiers. We address the challenges associated with 3D classifiers, such as limited training samples and high memory demands, by implementing a slice-based autoencoder and gradient blocking except for specific chunks of slices. This method leverages a 2D encoder trained on CT slices, which are subsequently combined to maintain 3D context. We demonstrate this technique on two models for clinical phenotype prediction and lung segmentation. Our approach is both memory-efficient and effective for generating interpretable counterfactuals in high-resolution 3D medical imaging.

Authors:Girish A. Koushik, Diptesh Kanojia, Helen Treharne
Title: Towards a Robust Framework for Multimodal Hate Detection: A Study on Video vs. Image-based Content
Abstract:
Social media platforms enable the propagation of hateful content across different modalities such as textual, auditory, and visual, necessitating effective detection methods. While recent approaches have shown promise in handling individual modalities, their effectiveness across different modality combinations remains unexplored. This paper presents a systematic analysis of fusion-based approaches for multimodal hate detection, focusing on their performance across video and image-based content. Our comprehensive evaluation reveals significant modality-specific limitations: while simple embedding fusion achieves state-of-the-art performance on video content (HateMM dataset) with a 9.9% points F1-score improvement, it struggles with complex image-text relationships in memes (Hateful Memes dataset). Through detailed ablation studies and error analysis, we demonstrate how current fusion approaches fail to capture nuanced cross-modal interactions, particularly in cases involving benign confounders. Our findings provide crucial insights for developing more robust hate detection systems and highlight the need for modality-specific architectural considerations. The code is available at https://github.com/gak97/Video-vs-Meme-Hate.

Authors:Danrui Li, Sen Zhang, Sam S. Sohn, Kaidong Hu, Muhammad Usman, Mubbasir Kapadia
Title: Cardiverse: Harnessing LLMs for Novel Card Game Prototyping
Abstract:
The prototyping of computer games, particularly card games, requires extensive human effort in creative ideation and gameplay evaluation. Recent advances in Large Language Models (LLMs) offer opportunities to automate and streamline these processes. However, it remains challenging for LLMs to design novel game mechanics beyond existing databases, generate consistent gameplay environments, and develop scalable gameplay AI for large-scale evaluations. This paper addresses these challenges by introducing a comprehensive automated card game prototyping framework. The approach highlights a graph-based indexing method for generating novel game variations, an LLM-driven system for consistent game code generation validated by gameplay records, and a gameplay AI constructing method that uses an ensemble of LLM-generated heuristic functions optimized through self-play. These contributions aim to accelerate card game prototyping, reduce human labor, and lower barriers to entry for game developers. For code repo visit this http URL https://github.com/danruili/Cardiverse

Authors:Ze Sheng, Zhicheng Chen, Shuning Gu, Heqing Huang, Guofei Gu, Jeff Huang
Title: LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights
Abstract:
Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection, addressing critical challenges in the security domain. Traditional methods, such as static and dynamic analysis, often falter due to inefficiencies, high false positive rates, and the growing complexity of modern software systems. By leveraging their ability to analyze code structures, identify patterns, and generate repair suggestions, LLMs, exemplified by models like GPT, BERT, and CodeBERT, present a novel and scalable approach to mitigating vulnerabilities. This paper provides a detailed survey of LLMs in vulnerability detection. It examines key aspects, including model architectures, application methods, target languages, fine-tuning strategies, datasets, and evaluation metrics. We also analyze the scope of current research problems, highlighting the strengths and weaknesses of existing approaches. Further, we address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis. Based on these findings, we propose solutions for issues like dataset scalability, model interpretability, and applications in low-resource scenarios. Our contributions are threefold: (1) a systematic review of how LLMs are applied in vulnerability detection; (2) an analysis of shared patterns and differences across studies, with a unified framework for understanding the field; and (3) a summary of key challenges and future research directions. This work provides valuable insights for advancing LLM-based vulnerability detection. We also maintain and regularly update latest selected paper on https://github.com/OwenSanzas/LLM-For-Vulnerability-Detection

Authors:Art Poon
Title: Building networks of shared research interests by embedding words into a representation space
Abstract:
Departments within a university are not only administrative units, but also an effort to gather investigators around common fields of academic study. A pervasive challenge is connecting members with shared research interests both within and between departments. Here I describe a workflow that adapts methods from natural language processing to generate a network connecting $n=79$ members of a university department, or multiple departments within a faculty ($n=278$), based on common topics in their research publications. After extracting and processing terms from $n=16,901$ abstracts in the PubMed database, the co-occurrence of terms is encoded in a sparse document-term matrix. Based on the angular distances between the presence-absence vectors for every pair of terms, I use the uniform manifold approximation and projection (UMAP) method to embed the terms into a representational space such that terms that tend to appear in the same documents are closer together. Each author's corpus defines a probability distribution over terms in this space. Using the Wasserstein distance to quantify the similarity between these distributions, I generate a distance matrix among authors that can be analyzed and visualized as a graph. I demonstrate that this nonparametric method produces clusters with distinct themes that are consistent with some academic divisions, while identifying untapped connections among members. A documented workflow comprising Python and R scripts is available under the MIT license at https://github.com/PoonLab/tragula.

Authors:Kwanghee Choi, Eunjung Yeo, Kalvin Chang, Shinji Watanabe, David Mortensen
Title: Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment
Abstract:
Allophony refers to the variation in the phonetic realization of a phoneme based on its phonetic environment. Modeling allophones is crucial for atypical pronunciation assessment, which involves distinguishing atypical from typical pronunciations. However, recent phoneme classifier-based approaches often simplify this by treating various realizations as a single phoneme, bypassing the complexity of modeling allophonic variation. Motivated by the acoustic modeling capabilities of frozen self-supervised speech model (S3M) features, we propose MixGoP, a novel approach that leverages Gaussian mixture models to model phoneme distributions with multiple subclusters. Our experiments show that MixGoP achieves state-of-the-art performance across four out of five datasets, including dysarthric and non-native speech. Our analysis further suggests that S3M features capture allophonic variation more effectively than MFCCs and Mel spectrograms, highlighting the benefits of integrating MixGoP with S3M features.

Authors:Haoqi Wang, Tong Zhang, Mathieu Salzmann
Title: Demystifying Singular Defects in Large Language Models
Abstract:
Large transformer models are known to produce high-norm tokens. In vision transformers (ViTs), such tokens have been mathematically modeled through the singular vectors of the linear approximations of layers. However, in large language models (LLMs), the underlying causes of high-norm tokens remain largely unexplored, and their different properties from those of ViTs require a new analysis framework. In this paper, we provide both theoretical insights and empirical validation across a range of recent models, leading to the following observations: i) The layer-wise singular direction predicts the abrupt explosion of token norms in LLMs. ii) The negative eigenvalues of a layer explain its sudden decay. iii) The computational pathways leading to high-norm tokens differ between initial and noninitial tokens. iv) High-norm tokens are triggered by the right leading singular vector of the matrix approximating the corresponding modules. We showcase two practical applications of these findings: the improvement of quantization schemes and the design of LLM signatures. Our findings not only advance the understanding of singular defects in LLMs but also open new avenues for their application. We expect that this work will stimulate further research into the internal mechanisms of LLMs. Code is released at https://github.com/haoqiwang/singular_defect.

Authors:Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua Bengio, Glen Berseth, Nikolay Malkin
Title: Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
Abstract:
Any well-behaved generative model over a variable $\mathbf{x}$ can be expressed as a deterministic transformation of an exogenous ('outsourced') Gaussian noise variable $\mathbf{z}$: $\mathbf{x}=f_θ(\mathbf{z})$. In such a model (\eg, a VAE, GAN, or continuous-time flow-based model), sampling of the target variable $\mathbf{x} \sim p_θ(\mathbf{x})$ is straightforward, but sampling from a posterior distribution of the form $p(\mathbf{x}\mid\mathbf{y}) \propto p_θ(\mathbf{x})r(\mathbf{x},\mathbf{y})$, where $r$ is a constraint function depending on an auxiliary variable $\mathbf{y}$, is generally intractable. We propose to amortize the cost of sampling from such posterior distributions with diffusion models that sample a distribution in the noise space ($\mathbf{z}$). These diffusion samplers are trained by reinforcement learning algorithms to enforce that the transformed samples $f_θ(\mathbf{z})$ are distributed according to the posterior in the data space ($\mathbf{x}$). For many models and constraints, the posterior in noise space is smoother than in data space, making it more suitable for amortized inference. Our method enables conditional sampling under unconditional GAN, (H)VAE, and flow-based priors, comparing favorably with other inference methods. We demonstrate the proposed outsourced diffusion sampling in several experiments with large pretrained prior models: conditional image generation, reinforcement learning with human feedback, and protein structure generation.

Authors:Behzad Hejrati, Soumyanil Banerjee, Carri Glide-Hurst, Ming Dong
Title: Conditional diffusion model with spatial attention and latent embedding for medical image segmentation
Abstract:
Diffusion models have been used extensively for high quality image and video generation tasks. In this paper, we propose a novel conditional diffusion model with spatial attention and latent embedding (cDAL) for medical image segmentation. In cDAL, a convolutional neural network (CNN) based discriminator is used at every time-step of the diffusion process to distinguish between the generated labels and the real ones. A spatial attention map is computed based on the features learned by the discriminator to help cDAL generate more accurate segmentation of discriminative regions in an input image. Additionally, we incorporated a random latent embedding into each layer of our model to significantly reduce the number of training and sampling time-steps, thereby making it much faster than other diffusion models for image segmentation. We applied cDAL on 3 publicly available medical image segmentation datasets (MoNuSeg, Chest X-ray and Hippocampus) and observed significant qualitative and quantitative improvements with higher Dice scores and mIoU over the state-of-the-art algorithms. The source code is publicly available at https://github.com/Hejrati/cDAL/.

Authors:Arghadip Das, Arnab Raha, Shamik Kundu, Soumendu Kumar Ghosh, Deepak Mathaikutty, Vijay Raghunathan
Title: XAMBA: Enabling Efficient State Space Models on Resource-Constrained Neural Processing Units
Abstract:
State-Space Models (SSMs) have emerged as efficient alternatives to transformers for sequential data tasks, offering linear or near-linear scalability with sequence length, making them ideal for long-sequence applications in NLP, vision, and edge AI, including real-time transcription, translation, and contextual search. These applications require lightweight, high-performance models for deployment on resource-constrained devices like laptops and PCs. Designing specialized accelerators for every emerging neural network is costly and impractical; instead, optimizing models for existing NPUs in AI PCs provides a scalable solution. To this end, we propose XAMBA, the first framework to enable and optimize SSMs on commercial off-the-shelf (COTS) state-of-the-art (SOTA) NPUs. XAMBA follows a three-step methodology: (1) enabling SSMs on NPUs, (2) optimizing performance to meet KPI requirements, and (3) trading accuracy for additional performance gains. After enabling SSMs on NPUs, XAMBA mitigates key bottlenecks using CumBA and ReduBA, replacing sequential CumSum and ReduceSum operations with matrix-based computations, significantly improving execution speed and memory efficiency. Additionally, ActiBA enhances performance by approximating expensive activation functions (e.g., Swish, Softplus) using piecewise linear mappings, reducing latency with minimal accuracy loss. Evaluations on an Intel Core Ultra Series 2 AI PC show that XAMBA achieves up to 4.8X speed-up over the baseline. Our implementation is available at https://github.com/arghadippurdue/XAMBA.

Authors:Songtao Huang, Zhen Zhao, Can Li, Lei Bai
Title: TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting
Abstract:
Real-world time series often have multiple frequency components that are intertwined with each other, making accurate time series forecasting challenging. Decomposing the mixed frequency components into multiple single frequency components is a natural choice. However, the information density of patterns varies across different frequencies, and employing a uniform modeling approach for different frequency components can lead to inaccurate characterization. To address this challenges, inspired by the flexibility of the recent Kolmogorov-Arnold Network (KAN), we propose a KAN-based Frequency Decomposition Learning architecture (TimeKAN) to address the complex forecasting challenges caused by multiple frequency mixtures. Specifically, TimeKAN mainly consists of three components: Cascaded Frequency Decomposition (CFD) blocks, Multi-order KAN Representation Learning (M-KAN) blocks and Frequency Mixing blocks. CFD blocks adopt a bottom-up cascading approach to obtain series representations for each frequency band. Benefiting from the high flexibility of KAN, we design a novel M-KAN block to learn and represent specific temporal patterns within each frequency band. Finally, Frequency Mixing blocks is used to recombine the frequency bands into the original format. Extensive experimental results across multiple real-world time series datasets demonstrate that TimeKAN achieves state-of-the-art performance as an extremely lightweight architecture. Code is available at https://github.com/huangst21/TimeKAN.

Authors:Sina Tayebati, Divake Kumar, Nastaran Darabi, Dinithi Jayasuriya, Ranganath Krishnan, Amit Ranjan Trivedi
Title: Learning Conformal Abstention Policies for Adaptive Risk Management in Large Language and Vision-Language Models
Abstract:
Large Language and Vision-Language Models (LLMs/VLMs) are increasingly used in safety-critical applications, yet their opaque decision-making complicates risk assessment and reliability. Uncertainty quantification (UQ) helps assess prediction confidence and enables abstention when uncertainty is high. Conformal prediction (CP), a leading UQ method, provides statistical guarantees but relies on static thresholds, which fail to adapt to task complexity and evolving data distributions, leading to suboptimal trade-offs in accuracy, coverage, and informativeness. To address this, we propose learnable conformal abstention, integrating reinforcement learning (RL) with CP to optimize abstention thresholds dynamically. By treating CP thresholds as adaptive actions, our approach balances multiple objectives, minimizing prediction set size while maintaining reliable coverage. Extensive evaluations across diverse LLM/VLM benchmarks show our method outperforms Least Ambiguous Classifiers (LAC) and Adaptive Prediction Sets (APS), improving accuracy by up to 3.2%, boosting AUROC for hallucination detection by 22.19%, enhancing uncertainty-guided selective generation (AUARC) by 21.17%, and reducing calibration error by 70%-85%. These improvements hold across multiple models and datasets while consistently meeting the 90% coverage target, establishing our approach as a more effective and flexible solution for reliable decision-making in safety-critical applications. The code is available at: {https://github.com/sinatayebati/vlm-uncertainty}.

Authors:Wen Zhou, Shuichiro Miwa, Yang Liu, Koji Okamoto
Title: BF-GAN: Development of an AI-driven Bubbly Flow Image Generation Model Using Generative Adversarial Networks
Abstract:
A generative AI architecture called bubbly flow generative adversarial networks (BF-GAN) is developed, designed to generate realistic and high-quality bubbly flow images through physically conditioned inputs, jg and jf. Initially, 52 sets of bubbly flow experiments under varying conditions are conducted to collect 140,000 bubbly flow images with physical labels of jg and jf for training data. A multi-scale loss function is then developed, incorporating mismatch loss and pixel loss to enhance the generative performance of BF-GAN further. Regarding evaluative metrics of generative AI, the BF-GAN has surpassed conventional GAN. Physically, key parameters of bubbly flow generated by BF-GAN are extracted and compared with measurement values and empirical correlations, validating BF-GAN's generative performance. The comparative analysis demonstrate that the BF-GAN can generate realistic and high-quality bubbly flow images with any given jg and jf within the research scope. BF-GAN offers a generative AI solution for two-phase flow research, substantially lowering the time and cost required to obtain high-quality data. In addition, it can function as a benchmark dataset generator for bubbly flow detection and segmentation algorithms, enhancing overall productivity in this research domain. The BF-GAN model is available online (https://github.com/zhouzhouwen/BF-GAN).

Authors:Finnian Westenfelder, Erik Hemberg, Miguel Tulla, Stephen Moskal, Una-May O'Reilly, Silviu Chiricescu
Title: LLM-Supported Natural Language to Bash Translation
Abstract:
The Bourne-Again Shell (Bash) command-line interface for Linux systems has complex syntax and requires extensive specialized knowledge. Using the natural language to Bash command (NL2SH) translation capabilities of large language models (LLMs) for command composition circumvents these issues. However, the NL2SH performance of LLMs is difficult to assess due to inaccurate test data and unreliable heuristics for determining the functional equivalence of Bash commands. We present a manually verified test dataset of 600 instruction-command pairs and a training dataset of 40,939 pairs, increasing the size of previous datasets by 441% and 135%, respectively. Further, we present a novel functional equivalence heuristic that combines command execution with LLM evaluation of command outputs. Our heuristic can determine the functional equivalence of two Bash commands with 95% confidence, a 16% increase over previous heuristics. Evaluation of popular LLMs using our test dataset and heuristic demonstrates that parsing, in-context learning, in-weight learning, and constrained decoding can improve NL2SH accuracy by up to 32%. Our findings emphasize the importance of dataset quality, execution-based evaluation and translation method for advancing NL2SH translation. Our code is available at https://github.com/westenfelder/NL2SH

Authors:Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Xinbing Liang, Fengwei Teng, Jinhao Tu, Fashen Ren, Xiangru Tang, Sirui Hong, Chenglin Wu, Yuyu Luo
Title: Self-Supervised Prompt Optimization
Abstract:
Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities while aligning their outputs with task requirements across diverse domains. However, manually designed prompts require expertise and iterative experimentation. While existing prompt optimization methods aim to automate this process, they rely heavily on external references such as ground truth or by humans, limiting their applicability in real-world scenarios where such data is unavailable or costly to obtain. To address this, we propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks without requiring external reference. Motivated by the observations that prompt quality manifests directly in LLM outputs and LLMs can effectively assess adherence to task requirements, we derive evaluation and optimization signals purely from output comparisons. Specifically, SPO selects superior prompts through pairwise output comparisons evaluated by an LLM evaluator, followed by an LLM optimizer that aligns outputs with task requirements. Extensive experiments demonstrate that SPO outperforms state-of-the-art prompt optimization methods, achieving comparable or superior results with significantly lower costs (e.g., 1.1% to 5.6% of existing methods) and fewer samples (e.g., three samples). The code is available at https://github.com/FoundationAgents/SPO.

Authors:Muhammed Öz, Nicholas Kiefer, Charlotte Debus, Jasmin Hörter, Achim Streit, Markus Götz
Title: Model Fusion via Neuron Transplantation
Abstract:
Ensemble learning is a widespread technique to improve the prediction performance of neural networks. However, it comes at the price of increased memory and inference time. In this work we propose a novel model fusion technique called \emph{Neuron Transplantation (NT)} in which we fuse an ensemble of models by transplanting important neurons from all ensemble members into the vacant space obtained by pruning insignificant neurons. An initial loss in performance post-transplantation can be quickly recovered via fine-tuning, consistently outperforming individual ensemble members of the same model capacity and architecture. Furthermore, NT enables all the ensemble members to be jointly pruned and jointly trained in a combined model. Comparing it to alignment-based averaging (like Optimal-Transport-fusion), it requires less fine-tuning than the corresponding OT-fused model, the fusion itself is faster and requires less memory, while the resulting model performance is comparable or better. The code is available under the following link: https://github.com/masterbaer/neuron-transplantation.

Authors:Xu Zhang, Kaidi Xu, Ziqing Hu, Ren Wang
Title: Optimizing Robustness and Accuracy in Mixture of Experts: A Dual-Model Approach
Abstract:
Mixture of Experts (MoE) have shown remarkable success in leveraging specialized expert networks for complex machine learning tasks. However, their susceptibility to adversarial attacks presents a critical challenge for deployment in robust applications. This paper addresses the critical question of how to incorporate robustness into MoEs while maintaining high natural accuracy. We begin by analyzing the vulnerability of MoE components, finding that expert networks are notably more susceptible to adversarial attacks than the router. Based on this insight, we propose a targeted robust training technique that integrates a novel loss function to enhance the adversarial robustness of MoE, requiring only the robustification of one additional expert without compromising training or inference efficiency. Building on this, we introduce a dual-model strategy that linearly combines a standard MoE model with our robustified MoE model using a smoothing parameter. This approach allows for flexible control over the robustness-accuracy trade-off. We further provide theoretical foundations by deriving certified robustness bounds for both the single MoE and the dual-model. To push the boundaries of robustness and accuracy, we propose a novel joint training strategy JTDMoE for the dual-model. This joint training enhances both robustness and accuracy beyond what is achievable with separate models. Experimental results on CIFAR-10 and TinyImageNet datasets using ResNet18 and Vision Transformer (ViT) architectures demonstrate the effectiveness of our proposed methods. The code is publicly available at https://github.com/TIML-Group/Robust-MoE-Dual-Model.

Authors:Xingye Chen, Wei Feng, Zhenbang Du, Weizhen Wang, Yanyin Chen, Haohan Wang, Linkai Liu, Yaoyu Li, Jinyuan Zhao, Yu Li, Zheng Zhang, Jingjing Lv, Junjie Shen, Zhangang Lin, Jingping Shao, Yuanjie Shao, Xinge You, Changxin Gao, Nong Sang
Title: CTR-Driven Advertising Image Generation with Multimodal Large Language Models
Abstract:
In web data, advertising images are crucial for capturing user attention and improving advertising effectiveness. Most existing methods generate background for products primarily focus on the aesthetic quality, which may fail to achieve satisfactory online performance. To address this limitation, we explore the use of Multimodal Large Language Models (MLLMs) for generating advertising images by optimizing for Click-Through Rate (CTR) as the primary objective. Firstly, we build targeted pre-training tasks, and leverage a large-scale e-commerce multimodal dataset to equip MLLMs with initial capabilities for advertising image generation tasks. To further improve the CTR of generated images, we propose a novel reward model to fine-tune pre-trained MLLMs through Reinforcement Learning (RL), which can jointly utilize multimodal features and accurately reflect user click preferences. Meanwhile, a product-centric preference optimization strategy is developed to ensure that the generated background content aligns with the product characteristics after fine-tuning, enhancing the overall relevance and effectiveness of the advertising images. Extensive experiments have demonstrated that our method achieves state-of-the-art performance in both online and offline metrics. Our code and pre-trained models are publicly available at: https://github.com/Chenguoz/CAIG.

Authors:Peng Huang, Shu Hu, Bo Peng, Xun Gong, Penghang Yin, Hongtu Zhu, Xi Wu, Xin Wang
Title: Diffusion-empowered AutoPrompt MedSAM
Abstract:
MedSAM, a medical foundation model derived from the SAM architecture, has demonstrated notable success across diverse medical domains. However, its clinical application faces two major challenges: the dependency on labor-intensive manual prompt generation, which imposes a significant burden on clinicians, and the absence of semantic labeling in the generated segmentation masks for organs or lesions, limiting its practicality for non-expert users. To address these limitations, we propose AutoMedSAM, an end-to-end framework derived from SAM, designed to enhance usability and segmentation performance. AutoMedSAM retains MedSAM's image encoder and mask decoder structure while introducing a novel diffusion-based class prompt encoder. The diffusion-based encoder employs a dual-decoder structure to collaboratively generate prompt embeddings guided by sparse and dense prompt definitions. These embeddings enhance the model's ability to understand and process clinical imagery autonomously. With this encoder, AutoMedSAM leverages class prompts to embed semantic information into the model's predictions, transforming MedSAM's semi-automated pipeline into a fully automated workflow. Furthermore, AutoMedSAM employs an uncertainty-aware joint optimization strategy during training to effectively inherit MedSAM's pre-trained knowledge while improving generalization by integrating multiple loss functions. Experimental results across diverse datasets demonstrate that AutoMedSAM achieves superior performance while broadening its applicability to both clinical settings and non-expert users. Code is available at https://github.com/HP-ML/AutoPromptMedSAM.git.

Authors:Hui Shen, Jingxuan Zhang, Boning Xiong, Rui Hu, Shoufa Chen, Zhongwei Wan, Xin Wang, Yu Zhang, Zixuan Gong, Guangyin Bao, Chaofan Tao, Yongfeng Huang, Ye Yuan, Mi Zhang
Title: Efficient Diffusion Models: A Survey
Abstract:
Diffusion models have emerged as powerful generative models capable of producing high-quality contents such as images, videos, and audio, demonstrating their potential to revolutionize digital content creation. However, these capabilities come at the cost of their significant computational resources and lengthy generation time, underscoring the critical need to develop efficient techniques for practical deployment. In this survey, we provide a systematic and comprehensive review of research on efficient diffusion models. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient diffusion model topics from algorithm-level, system-level, and framework perspective, respectively. We have also created a GitHub repository where we organize the papers featured in this survey at https://github.com/AIoT-MLSys-Lab/Efficient-Diffusion-Model-Survey. We hope our survey can serve as a valuable resource to help researchers and practitioners gain a systematic understanding of efficient diffusion model research and inspire them to contribute to this important and exciting field.

Authors:Haiwen Diao, Xiaotong Li, Yufeng Cui, Yueze Wang, Haoge Deng, Ting Pan, Wenxuan Wang, Huchuan Lu, Xinlong Wang
Title: EVEv2: Improved Baselines for Encoder-Free Vision-Language Models
Abstract:
Existing encoder-free vision-language models (VLMs) are rapidly narrowing the performance gap with their encoder-based counterparts, highlighting the promising potential for unified multimodal systems with structural simplicity and efficient deployment. We systematically clarify the performance gap between VLMs using pre-trained vision encoders, discrete tokenizers, and minimalist visual layers from scratch, deeply excavating the under-examined characteristics of encoder-free VLMs. We develop efficient strategies for encoder-free VLMs that rival mainstream encoder-based ones. After an in-depth investigation, we launch EVEv2.0, a new and improved family of encoder-free VLMs. We show that: (i) Properly decomposing and hierarchically associating vision and language within a unified model reduces interference between modalities. (ii) A well-designed training strategy enables effective optimization for encoder-free VLMs. Through extensive evaluation, our EVEv2.0 represents a thorough study for developing a decoder-only architecture across modalities, demonstrating superior data efficiency and strong vision-reasoning capability. Code is publicly available at: https://github.com/baaivision/EVE.

Authors:Tianlang Chen, Charilaos Kanatsoulis, Jure Leskovec
Title: RelGNN: Composite Message Passing for Relational Deep Learning
Abstract:
Predictive tasks on relational databases are critical in real-world applications spanning e-commerce, healthcare, and social media. To address these tasks effectively, Relational Deep Learning (RDL) encodes relational data as graphs, enabling Graph Neural Networks (GNNs) to exploit relational structures for improved predictions. However, existing RDL methods often overlook the intrinsic structural properties of the graphs built from relational databases, leading to modeling inefficiencies, particularly in handling many-to-many relationships. Here we introduce RelGNN, a novel GNN framework specifically designed to leverage the unique structural characteristics of the graphs built from relational databases. At the core of our approach is the introduction of atomic routes, which are simple paths that enable direct single-hop interactions between the source and destination nodes. Building upon these atomic routes, RelGNN designs new composite message passing and graph attention mechanisms that reduce redundancy, highlight key signals, and enhance predictive accuracy. RelGNN is evaluated on 30 diverse real-world tasks from Relbench (Fey et al., 2024), and achieves state-of-the-art performance on the vast majority of tasks, with improvements of up to 25%. Code is available at https://github.com/snap-stanford/RelGNN.

Authors:Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang, Shuaibin Li, Qian Zhao, Haian Huang, Weihan Cao, Jiangning Liu, Hongwei Liu, Junnan Liu, Songyang Zhang, Dahua Lin, Kai Chen
Title: Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning
Abstract:
Reasoning abilities, especially those for solving complex math problems, are crucial components of general intelligence. Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks. However, the complete technical details remain unrevealed, and the techniques that are believed certainly to be adopted are only reinforcement learning (RL) and the long chain of thoughts. This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through \textbf{O}utcome \textbf{RE}w\textbf{A}rd-based reinforcement \textbf{L}earning for mathematical reasoning tasks, where only binary outcome rewards are easily accessible. We theoretically prove that behavior cloning on positive trajectories from best-of-N (BoN) sampling is sufficient to learn the KL-regularized optimal policy in binary feedback environments. This formulation further implies that the rewards of negative samples should be reshaped to ensure the gradient consistency between positive and negative samples. To alleviate the long-existing difficulties brought by sparse rewards in RL, which are even exacerbated by the partial correctness of the long chain of thought for reasoning tasks, we further apply a token-level reward model to sample important tokens in reasoning trajectories for learning. With OREAL, for the first time, a 7B model can obtain 94.0 pass@1 accuracy on MATH-500 through RL, being on par with 32B models. OREAL-32B also surpasses previous 32B models trained by distillation with 95.0 pass@1 accuracy on MATH-500. Our investigation also indicates the importance of initial policy models and training queries for RL. Code, models, and data will be released to benefit future research\footnote{https://github.com/InternLM/OREAL}.

Authors:Yue Zhu, Haiwen Diao, Shang Gao, Long Chen, Huchuan Lu
Title: KARST: Multi-Kernel Kronecker Adaptation with Re-Scaling Transmission for Visual Classification
Abstract:
Fine-tuning pre-trained vision models for specific tasks is a common practice in computer vision. However, this process becomes more expensive as models grow larger. Recently, parameter-efficient fine-tuning (PEFT) methods have emerged as a popular solution to improve training efficiency and reduce storage needs by tuning additional low-rank modules within pre-trained backbones. Despite their advantages, they struggle with limited representation capabilities and misalignment with pre-trained intermediate features. To address these issues, we introduce an innovative Multi-Kernel Kronecker Adaptation with Re-Scaling Transmission (KARST) for various recognition tasks. Specifically, its multi-kernel design extends Kronecker projections horizontally and separates adaptation matrices into multiple complementary spaces, reducing parameter dependency and creating more compact subspaces. Besides, it incorporates extra learnable re-scaling factors to better align with pre-trained feature distributions, allowing for more flexible and balanced feature aggregation. Extensive experiments validate that our KARST outperforms other PEFT counterparts with a negligible inference cost due to its re-parameterization characteristics. Code is publicly available at: https://github.com/Lucenova/KARST.

Authors:Ling Yang, Zhaochen Yu, Bin Cui, Mengdi Wang
Title: ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates
Abstract:
We present that hierarchical LLM reasoning via scaling thought templates can effectively optimize the reasoning search space and outperform the mathematical reasoning capabilities of powerful LLMs like OpenAI o1-preview and DeepSeek V3. We train our ReasonFlux-32B model with only 8 GPUs and introduces three innovations: (i) a structured and generic thought template library, containing around 500 high-level thought templates capable of generalizing to similar or relevant reasoning problems; (ii) performing hierarchical reinforcement learning on a sequence of thought templates instead of long CoTs, optimizing a base LLM to plan out an optimal template trajectory for gradually handling complex problems; (iii) a brand new inference scaling system that enables hierarchical LLM reasoning by adaptively scaling thought templates at inference time. With a template trajectory containing more explainable reasoning structures than DeepSeek-R1 and o3-mini, our ReasonFlux-32B significantly advances math reasoning capabilities to state-of-the-art levels. Notably, on the MATH benchmark, it achieves an accuracy of 91.2% and surpasses o1-preview by 6.7%. On the USA Math Olympiad (AIME) benchmark, ReasonFlux-32B solves an average of 56.7% of problems, surpassing o1-preview and DeepSeek-V3 by 27% and 45%, respectively. Code: https://github.com/Gen-Verse/ReasonFlux

Authors:Yuqi Lin, Hengjia Li, Wenqi Shao, Zheng Yang, Jun Zhao, Xiaofei He, Ping Luo, Kaipeng Zhang
Title: SAMRefiner: Taming Segment Anything Model for Universal Mask Refinement
Abstract:
In this paper, we explore a principal way to enhance the quality of widely pre-existing coarse masks, enabling them to serve as reliable training data for segmentation models to reduce the annotation cost. In contrast to prior refinement techniques that are tailored to specific models or tasks in a close-world manner, we propose SAMRefiner, a universal and efficient approach by adapting SAM to the mask refinement task. The core technique of our model is the noise-tolerant prompting scheme. Specifically, we introduce a multi-prompt excavation strategy to mine diverse input prompts for SAM (i.e., distance-guided points, context-aware elastic bounding boxes, and Gaussian-style masks) from initial coarse masks. These prompts can collaborate with each other to mitigate the effect of defects in coarse masks. In particular, considering the difficulty of SAM to handle the multi-object case in semantic segmentation, we introduce a split-then-merge (STM) pipeline. Additionally, we extend our method to SAMRefiner++ by introducing an additional IoU adaption step to further boost the performance of the generic SAMRefiner on the target dataset. This step is self-boosted and requires no additional annotation. The proposed framework is versatile and can flexibly cooperate with existing segmentation methods. We evaluate our mask framework on a wide range of benchmarks under different settings, demonstrating better accuracy and efficiency. SAMRefiner holds significant potential to expedite the evolution of refinement tools. Our code is available at https://github.com/linyq2117/SAMRefiner.

Authors:Daouda Sow, Herbert Woisetschläger, Saikiran Bulusu, Shiqiang Wang, Hans-Arno Jacobsen, Yingbin Liang
Title: Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining
Abstract:
Pretraining large language models (LLMs) on vast and heterogeneous datasets is crucial for achieving state-of-the-art performance across diverse downstream tasks. However, current training paradigms treat all samples equally, overlooking the importance or relevance of individual samples throughout the training process. Existing reweighting strategies, which primarily focus on group-level data importance, fail to leverage fine-grained instance-level information and do not adapt dynamically to individual sample importance as training progresses. In this paper, we introduce novel algorithms for dynamic, instance-level data reweighting aimed at improving both the efficiency and effectiveness of LLM pretraining. Our methods adjust the weight of each training sample based on its loss value in an online fashion, allowing the model to dynamically focus on more informative or important samples at the current training stage. In particular, our framework allows us to systematically devise reweighting strategies deprioritizing redundant or uninformative data, which we find tend to work best. Furthermore, we develop a new theoretical framework for analyzing the impact of loss-based reweighting on the convergence of gradient-based optimization, providing the first formal characterization of how these strategies affect convergence bounds. We empirically validate our approach across a spectrum of tasks, from pretraining 7B and 1.4B parameter LLMs to smaller-scale language models and linear regression problems, demonstrating that our loss-based reweighting approach can lead to faster convergence and significantly improved performance.

Authors:Xingjian Diao, Chunhui Zhang, Tingxuan Wu, Ming Cheng, Zhongyu Ouyang, Weiyi Wu, Jiang Gui
Title: Learning Musical Representations for Music Performance Question Answering
Abstract:
Music performances are representative scenarios for audio-visual modeling. Unlike common scenarios with sparse audio, music performances continuously involve dense audio signals throughout. While existing multimodal learning methods on the audio-video QA demonstrate impressive capabilities in general scenarios, they are incapable of dealing with fundamental problems within the music performances: they underexplore the interaction between the multimodal signals in performance and fail to consider the distinctive characteristics of instruments and music. Therefore, existing methods tend to answer questions regarding musical performances inaccurately. To bridge the above research gaps, (i) given the intricate multimodal interconnectivity inherent to music data, our primary backbone is designed to incorporate multimodal interactions within the context of music; (ii) to enable the model to learn music characteristics, we annotate and release rhythmic and music sources in the current music datasets; (iii) for time-aware audio-visual modeling, we align the model's music predictions with the temporal dimension. Our experiments show state-of-the-art effects on the Music AVQA datasets. Our code is available at https://github.com/xid32/Amuse.

Authors:Yifan Hu, Peiyuan Liu, Yuante Li, Dawei Cheng, Naiqi Li, Tao Dai, Jigang Bao, Shu-Tao Xia
Title: FinMamba: Market-Aware Graph Enhanced Multi-Level Mamba for Stock Movement Prediction
Abstract:
Recently, combining stock features with inter-stock correlations has become a common and effective approach for stock movement prediction. However, financial data presents significant challenges due to its low signal-to-noise ratio and the dynamic complexity of the market, which give rise to two key limitations in existing methods. First, the relationships between stocks are highly influenced by multifaceted factors including macroeconomic market dynamics, and current models fail to adaptively capture these evolving interactions under specific market conditions. Second, for the accuracy and timeliness required by real-world trading, existing financial data mining methods struggle to extract beneficial pattern-oriented dependencies from long historical data while maintaining high efficiency and low memory consumption. To address the limitations, we propose FinMamba, a Mamba-GNN-based framework for market-aware and multi-level hybrid stock movement prediction. Specifically, we devise a dynamic graph to learn the changing representations of inter-stock relationships by integrating a pruning module that adapts to market trends. Afterward, with a selective mechanism, the multi-level Mamba discards irrelevant information and resets states to skillfully recall historical patterns across multiple time scales with linear time costs, which are then jointly optimized for reliable prediction. Extensive experiments on U.S. and Chinese stock markets demonstrate the effectiveness of our proposed FinMamba, achieving state-of-the-art prediction accuracy and trading profitability, while maintaining low computational complexity. The code is available at https://github.com/TROUBADOUR000/FinMamba.

Authors:Bessie Dominguez-Dager, Felix Escalona, Francisco Gomez-Donoso, Miguel Cazorla
Title: CHIRLA: Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis
Abstract:
Person re-identification (Re-ID) is a key challenge in computer vision, requiring the matching of individuals across cameras, locations, and time. While most research focuses on short-term scenarios with minimal appearance changes, real-world applications demand robust systems that handle long-term variations caused by clothing and physical changes. We present CHIRLA, Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis, a novel dataset designed for video-based long-term person Re-ID. CHIRLA was recorded over seven months in four connected indoor environments using seven strategically placed cameras, capturing realistic movements with substantial clothing and appearance variability. The dataset includes 22 individuals, more than five hours of video, and about 1M bounding boxes with identity annotations obtained through semi-automatic labeling. We also define benchmark protocols for person tracking and Re-ID, covering diverse and challenging scenarios such as occlusion, reappearance, and multi-camera conditions. By introducing this comprehensive benchmark, we aim to facilitate the development and evaluation of Re-ID algorithms that can reliably perform in challenging, long-term real-world scenarios. The benchmark code is publicly available at: https://github.com/bdager/CHIRLA.

Authors:Xingrun Xing, Zheng Liu, Shitao Xiao, Boyan Gao, Yiming Liang, Wanpeng Zhang, Haokun Lin, Guoqi Li, Jiajun Zhang
Title: EfficientLLM: Scalable Pruning-Aware Pretraining for Architecture-Agnostic Edge Language Models
Abstract:
Modern large language models (LLMs) driven by scaling laws, achieve intelligence emergency in large model sizes. Recently, the increasing concerns about cloud costs, latency, and privacy make it an urgent requirement to develop compact edge language models. Distinguished from direct pretraining that bounded by the scaling law, this work proposes the pruning-aware pretraining, focusing on retaining performance of much larger optimized models. It features following characteristics: 1) Data-scalable: we introduce minimal parameter groups in LLM and continuously optimize structural pruning, extending post-training pruning methods like LLM-Pruner and SparseGPT into the pretraining phase. 2) Architecture-agnostic: the LLM architecture is auto-designed using saliency-driven pruning, which is the first time to exceed SoTA human-designed LLMs in modern pretraining. We reveal that it achieves top-quality edge language models, termed EfficientLLM, by scaling up LLM compression and extending its boundary. EfficientLLM significantly outperforms SoTA baselines with $100M \sim 1B$ parameters, such as MobileLLM, SmolLM, Qwen2.5-0.5B, OLMo-1B, Llama3.2-1B in common sense benchmarks. As the first attempt, EfficientLLM bridges the performance gap between traditional LLM compression and direct pretraining methods, and we will fully open source at https://github.com/Xingrun-Xing2/EfficientLLM.

Authors:Shihuan He, Zhihui Lai, Ruxin Wang, Heng Kong
Title: Prototype Contrastive Consistency Learning for Semi-Supervised Medical Image Segmentation
Abstract:
Medical image segmentation is a crucial task in medical image analysis, but it can be very challenging especially when there are less labeled data but with large unlabeled data. Contrastive learning has proven to be effective for medical image segmentation in semi-supervised learning by constructing contrastive samples from partial pixels. However, although previous contrastive learning methods can mine semantic information from partial pixels within images, they ignore the whole context information of unlabeled images, which is very important to precise segmentation. In order to solve this problem, we propose a novel prototype contrastive learning method called Prototype Contrastive Consistency Segmentation (PCCS) for semi-supervised medical image segmentation. The core idea is to enforce the prototypes of the same semantic class to be closer and push the prototypes in different semantic classes far away from each other. Specifically, we construct a signed distance map and an uncertainty map from unlabeled images. The signed distance map is used to construct prototypes for contrastive learning, and then we estimate the prototype uncertainty from the uncertainty map as trade-off among prototypes. In order to obtain better prototypes, based on the student-teacher architecture, a new mechanism named prototype updating prototype is designed to assist in updating the prototypes for contrastive learning. In addition, we propose an uncertainty-consistency loss to mine more reliable information from unlabeled data. Extensive experiments on medical image segmentation demonstrate that PCCS achieves better segmentation performance than the state-of-the-art methods. The code is available at https://github.com/comphsh/PCCS.

Authors:Qingshui Gu, Shu Li, Tianyu Zheng, Zhaoxiang Zhang
Title: Steel-LLM:From Scratch to Open Source -- A Personal Journey in Building a Chinese-Centric LLM
Abstract:
Steel-LLM is a Chinese-centric language model developed from scratch with the goal of creating a high-quality, open-source model despite limited computational resources. Launched in March 2024, the project aimed to train a 1-billion-parameter model on a large-scale dataset, prioritizing transparency and the sharing of practical insights to assist others in the community. The training process primarily focused on Chinese data, with a small proportion of English data included, addressing gaps in existing open-source LLMs by providing a more detailed and practical account of the model-building journey. Steel-LLM has demonstrated competitive performance on benchmarks such as CEVAL and CMMLU, outperforming early models from larger institutions. This paper provides a comprehensive summary of the project's key contributions, including data collection, model design, training methodologies, and the challenges encountered along the way, offering a valuable resource for researchers and practitioners looking to develop their own LLMs. The model checkpoints and training script are available at https://github.com/zhanshijinwat/Steel-LLM.

Authors:Jiachen Li, Xiaojin Gong
Title: Unleashing the Potential of Pre-Trained Diffusion Models for Generalizable Person Re-Identification
Abstract:
Domain-generalizable re-identification (DG Re-ID) aims to train a model on one or more source domains and evaluate its performance on unseen target domains, a task that has attracted growing attention due to its practical relevance. While numerous methods have been proposed, most rely on discriminative or contrastive learning frameworks to learn generalizable feature representations. However, these approaches often fail to mitigate shortcut learning, leading to suboptimal performance. In this work, we propose a novel method called diffusion model-assisted representation learning with a correlation-aware conditioning scheme (DCAC) to enhance DG Re-ID. Our method integrates a discriminative and contrastive Re-ID model with a pre-trained diffusion model through a correlation-aware conditioning scheme. By incorporating ID classification probabilities generated from the Re-ID model with a set of learnable ID-wise prompts, the conditioning scheme injects dark knowledge that captures ID correlations to guide the diffusion process. Simultaneously, feedback from the diffusion model is back-propagated through the conditioning scheme to the Re-ID model, effectively improving the generalization capability of Re-ID features. Extensive experiments on both single-source and multi-source DG Re-ID tasks demonstrate that our method achieves state-of-the-art performance. Comprehensive ablation studies further validate the effectiveness of the proposed approach, providing insights into its robustness. Codes will be available at https://github.com/RikoLi/DCAC.

Authors:Kamil Garifullin, Maxim Nikolaev, Andrey Kuznetsov, Aibek Alanov
Title: MaterialFusion: High-Quality, Zero-Shot, and Controllable Material Transfer with Diffusion Models
Abstract:
Manipulating the material appearance of objects in images is critical for applications like augmented reality, virtual prototyping, and digital content creation. We present MaterialFusion, a novel framework for high-quality material transfer that allows users to adjust the degree of material application, achieving an optimal balance between new material properties and the object's original features. MaterialFusion seamlessly integrates the modified object into the scene by maintaining background consistency and mitigating boundary artifacts. To thoroughly evaluate our approach, we have compiled a dataset of real-world material transfer examples and conducted complex comparative analyses. Through comprehensive quantitative evaluations and user studies, we demonstrate that MaterialFusion significantly outperforms existing methods in terms of quality, user control, and background preservation. Code is available at https://github.com/ControlGenAI/MaterialFusion.

Authors:Zhi Zhou, Kun-Yang Yu, Shi-Yu Tian, Xiao-Wen Yang, Jiang-Xin Shi, Pengxiao Song, Yi-Xuan Jin, Lan-Zhe Guo, Yu-Feng Li
Title: LawGPT: Knowledge-Guided Data Generation and Its Application to Legal LLM
Abstract:
Large language models (LLMs), both proprietary and open-source, have demonstrated remarkable capabilities across various natural language processing tasks. However, they face significant limitations in legal reasoning tasks. Proprietary models introduce data privacy risks and high inference costs, while open-source models underperform due to insufficient legal domain training data. To address these limitations, we study data generation for legal reasoning to improve the legal reasoning performance of open-source LLMs with the help of proprietary LLMs. This is challenging due to the lack of legal knowledge in proprietary LLMs and the difficulty in verifying the generated data. We propose KgDG, a knowledge-guided data generation framework for legal reasoning. Our framework enables leveraging legal knowledge to enhance generation diversity and introduces a refinement and verification process to ensure the quality of generated data. Moreover, we expand the generated dataset to further enhance the LLM reasoning capabilities. Using KgDG, we create a synthetic legal reasoning dataset containing 50K high-quality examples. Our trained model LawGPT outperforms existing legal-specific LLMs and achieves performance comparable to proprietary LLMs, demonstrating the effectiveness of KgDG and LawGPT. Our code and resources is publicly available at https://github.com/LAMDASZ-ML/Knowledge-Guide-Data-Generation .

Authors:Chengwen Qi, Ren Ma, Bowen Li, He Du, Binyuan Hui, Jinwang Wu, Yuanjun Laili, Conghui He
Title: Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation
Abstract:
First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen

Authors:Yibo Wang, Congying Xia, Wenting Zhao, Jiangshu Du, Chunyu Miao, Zhongfen Deng, Philip S. Yu, Chen Xing
Title: ProjectTest: A Project-level LLM Unit Test Generation Benchmark and Impact of Error Fixing Mechanisms
Abstract:
Unit test generation has become a promising and important use case of LLMs. However, existing evaluation benchmarks for assessing LLM unit test generation capabilities focus on function- or class-level code rather than more practical and challenging project-level codebases. To address such limitation, we propose ProjectTest, a project-level benchmark for unit test generation covering Python, Java, and JavaScript. ProjectTest features 20 moderate-sized and high-quality projects per language. We evaluate nine frontier LLMs on ProjectTest and the results show that all frontier LLMs tested exhibit moderate performance on ProjectTest on Python and Java, highlighting the difficulty of ProjectTest. We also conduct a thorough error analysis, which shows that even frontier LLMs, such as Claude-3.5-Sonnet, have significant basic yet critical errors, including compilation and cascade errors. Motivated by this observation, we further evaluate all frontier LLMs under manual error-fixing and self-error-fixing scenarios to assess their potential when equipped with error-fixing mechanisms. Our code and dataset is available at \href{https://github.com/YiboWANG214/ProjectTest}{ProjectTest}.

Authors:Haokai Zhao, Haowei Lou, Lina Yao, Wei Peng, Ehsan Adeli, Kilian M Pohl, Yu Zhang
Title: Diffusion Models for Computational Neuroimaging: A Survey
Abstract:
Computational neuroimaging involves analyzing brain images or signals to provide mechanistic insights and predictive tools for human cognition and behavior. While diffusion models have shown stability and high-quality generation in natural images, there is increasing interest in adapting them to analyze brain data for various neurological tasks such as data enhancement, disease diagnosis and brain decoding. This survey provides an overview of recent efforts to integrate diffusion models into computational neuroimaging. We begin by introducing the common neuroimaging data modalities, follow with the diffusion formulations and conditioning mechanisms. Then we discuss how the variations of the denoising starting point, condition input and generation target of diffusion models are developed and enhance specific neuroimaging tasks. For a comprehensive overview of the ongoing research, we provide a publicly available repository at https://github.com/JoeZhao527/dm4neuro.

Authors:Soobin Um, Beomsu Kim, Jong Chul Ye
Title: Boost-and-Skip: A Simple Guidance-Free Diffusion for Minority Generation
Abstract:
Minority samples are underrepresented instances located in low-density regions of a data manifold, and are valuable in many generative AI applications, such as data augmentation, creative content generation, etc. Unfortunately, existing diffusion-based minority generators often rely on computationally expensive guidance dedicated for minority generation. To address this, here we present a simple yet powerful guidance-free approach called Boost-and-Skip for generating minority samples using diffusion models. The key advantage of our framework requires only two minimal changes to standard generative processes: (i) variance-boosted initialization and (ii) timestep skipping. We highlight that these seemingly-trivial modifications are supported by solid theoretical and empirical evidence, thereby effectively promoting emergence of underrepresented minority features. Our comprehensive experiments demonstrate that Boost-and-Skip greatly enhances the capability of generating minority samples, even rivaling guidance-based state-of-the-art approaches while requiring significantly fewer computations. Code is available at https://github.com/soobin-um/BnS.

Authors:Hongyu Qu, Jianan Wei, Xiangbo Shu, Wenguan Wang
Title: Learning Clustering-based Prototypes for Compositional Zero-shot Learning
Abstract:
Learning primitive (i.e., attribute and object) concepts from seen compositions is the primary challenge of Compositional Zero-Shot Learning (CZSL). Existing CZSL solutions typically rely on oversimplified data assumptions, e.g., modeling each primitive with a single centroid primitive representation, ignoring the natural diversities of the attribute (resp. object) when coupled with different objects (resp. attribute). In this work, we develop ClusPro, a robust clustering-based prototype mining framework for CZSL that defines the conceptual boundaries of primitives through a set of diversified prototypes. Specifically, ClusPro conducts within-primitive clustering on the embedding space for automatically discovering and dynamically updating prototypes. These representative prototypes are subsequently used to repaint a well-structured and independent primitive embedding space, ensuring intra-primitive separation and inter-primitive decorrelation through prototype-based contrastive learning and decorrelation learning. Moreover, ClusPro efficiently performs prototype clustering in a non-parametric fashion without the introduction of additional learnable parameters or computational budget during testing. Experiments on three benchmarks demonstrate ClusPro outperforms various top-leading CZSL solutions under both closed-world and open-world settings.

Authors:Filip Ekström Kelvinius, Oskar B. Andersson, Abhijith S. Parackal, Dong Qian, Rickard Armiento, Fredrik Lindsten
Title: WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry
Abstract:
Crystalline materials often exhibit a high level of symmetry. However, most generative models do not account for symmetry, but rather model each atom without any constraints on its position or element. We propose a generative model, Wyckoff Diffusion (WyckoffDiff), which generates symmetry-based descriptions of crystals. This is enabled by considering a crystal structure representation that encodes all symmetry, and we design a novel neural network architecture which enables using this representation inside a discrete generative model framework. In addition to respecting symmetry by construction, the discrete nature of our model enables fast generation. We additionally present a new metric, Fréchet Wrenformer Distance, which captures the symmetry aspects of the materials generated, and we benchmark WyckoffDiff against recently proposed generative models for crystal generation. As a proof-of-concept study, we use WyckoffDiff to find new materials below the convex hull of thermodynamical stability.

Authors:Vlad Hosu, Lorenzo Agnolucci, Daisuke Iso, Dietmar Saupe
Title: Image Intrinsic Scale Assessment: Bridging the Gap Between Quality and Resolution
Abstract:
Image Quality Assessment (IQA) measures and predicts perceived image quality by human observers. Although recent studies have highlighted the critical influence that variations in the scale of an image have on its perceived quality, this relationship has not been systematically quantified. To bridge this gap, we introduce the Image Intrinsic Scale (IIS), defined as the largest scale where an image exhibits its highest perceived quality. We also present the Image Intrinsic Scale Assessment (IISA) task, which involves subjectively measuring and predicting the IIS based on human judgments. We develop a subjective annotation methodology and create the IISA-DB dataset, comprising 785 image-IIS pairs annotated by experts in a rigorously controlled crowdsourcing study. Furthermore, we propose WIISA (Weak-labeling for Image Intrinsic Scale Assessment), a strategy that leverages how the IIS of an image varies with downscaling to generate weak labels. Experiments show that applying WIISA during the training of several IQA methods adapted for IISA consistently improves the performance compared to using only ground-truth labels. The code, dataset, and pre-trained models are available at https://github.com/SonyResearch/IISA.

Authors:Weijia Mao, Zhenheng Yang, Mike Zheng Shou
Title: UniMoD: Efficient Unified Multimodal Transformers with Mixture-of-Depths
Abstract:
Unified multimodal transformers, which handle both generation and understanding tasks within a shared parameter space, have received increasing attention in recent research. Although various unified transformers have been proposed, training these models is costly due to redundant tokens and heavy attention computation. In the past, studies on large language models have demonstrated that token pruning methods, such as Mixture of Depths (MoD), can significantly improve computational efficiency. MoD employs a router to select the most important ones for processing within a transformer layer. However, directly applying MoD-based token pruning to unified transformers will result in suboptimal performance because different tasks exhibit varying levels of token redundancy. In our work, we analyze the unified transformers by (1) examining attention weight patterns, (2) evaluating the layer importance and token redundancy, and (3) analyzing task interactions. Our findings reveal that token redundancy is primarily influenced by different tasks and layers. Building on these findings, we introduce UniMoD, a task-aware token pruning method that employs a separate router for each task to determine which tokens should be pruned. We apply our method to Show-o and Emu3, reducing training FLOPs by approximately 15% in Show-o and 40% in Emu3, while maintaining or improving performance on several benchmarks. Code will be released at https://github.com/showlab/UniMoD.

Authors:Sankalp Nagaonkar, Augustya Sharma, Ashish Choithani, Ashutosh Trivedi
Title: Benchmarking Vision-Language Models on Optical Character Recognition in Dynamic Video Environments
Abstract:
This paper introduces an open-source benchmark for evaluating Vision-Language Models (VLMs) on Optical Character Recognition (OCR) tasks in dynamic video environments. We present a curated dataset containing 1,477 manually annotated frames spanning diverse domains, including code editors, news broadcasts, YouTube videos, and advertisements. Three state of the art VLMs - Claude-3, Gemini-1.5, and GPT-4o are benchmarked against traditional OCR systems such as EasyOCR and RapidOCR. Evaluation metrics include Word Error Rate (WER), Character Error Rate (CER), and Accuracy. Our results highlight the strengths and limitations of VLMs in video-based OCR tasks, demonstrating their potential to outperform conventional OCR models in many scenarios. However, challenges such as hallucinations, content security policies, and sensitivity to occluded or stylized text remain. The dataset and benchmarking framework are publicly available to foster further research.

Authors:Shuhao Liao, Weihang Xia, Yuhong Cao, Weiheng Dai, Chengyang He, Wenjun Wu, Guillaume Sartoretti
Title: SIGMA: Sheaf-Informed Geometric Multi-Agent Pathfinding
Abstract:
The Multi-Agent Path Finding (MAPF) problem aims to determine the shortest and collision-free paths for multiple agents in a known, potentially obstacle-ridden environment. It is the core challenge for robotic deployments in large-scale logistics and transportation. Decentralized learning-based approaches have shown great potential for addressing the MAPF problems, offering more reactive and scalable solutions. However, existing learning-based MAPF methods usually rely on agents making decisions based on a limited field of view (FOV), resulting in short-sighted policies and inefficient cooperation in complex scenarios. There, a critical challenge is to achieve consensus on potential movements between agents based on limited observations and communications. To tackle this challenge, we introduce a new framework that applies sheaf theory to decentralized deep reinforcement learning, enabling agents to learn geometric cross-dependencies between each other through local consensus and utilize them for tightly cooperative decision-making. In particular, sheaf theory provides a mathematical proof of conditions for achieving global consensus through local observation. Inspired by this, we incorporate a neural network to approximately model the consensus in latent space based on sheaf theory and train it through self-supervised learning. During the task, in addition to normal features for MAPF as in previous works, each agent distributedly reasons about a learned consensus feature, leading to efficient cooperation on pathfinding and collision avoidance. As a result, our proposed method demonstrates significant improvements over state-of-the-art learning-based MAPF planners, especially in relatively large and complex scenarios, demonstrating its superiority over baselines in various simulations and real-world robot experiments. The code is available at https://github.com/marmotlab/SIGMA

Authors:Lingao Xiao, Songhua Liu, Yang He, Xinchao Wang
Title: Rethinking Large-scale Dataset Compression: Shifting Focus From Labels to Images
Abstract:
Dataset distillation and dataset pruning are two prominent techniques for compressing datasets to improve computational and storage efficiency. Despite their overlapping objectives, these approaches are rarely compared directly. Even within each field, the evaluation protocols are inconsistent across various methods, which complicates fair comparisons and hinders reproducibility. Considering these limitations, we introduce in this paper a benchmark that equitably evaluates methodologies across both distillation and pruning literatures. Notably, our benchmark reveals that in the mainstream dataset distillation setting for large-scale datasets, which heavily rely on soft labels from pre-trained models, even randomly selected subsets can achieve surprisingly competitive performance. This finding suggests that an overemphasis on soft labels may be diverting attention from the intrinsic value of the image data, while also imposing additional burdens in terms of generation, storage, and application. To address these issues, we propose a new framework for dataset compression, termed Prune, Combine, and Augment (PCA), which focuses on leveraging image data exclusively, relies solely on hard labels for evaluation, and achieves state-of-the-art performance in this setup. By shifting the emphasis back to the images, our benchmark and PCA framework pave the way for more balanced and accessible techniques in dataset compression research. Our code is available at: https://github.com/ArmandXiao/Rethinking-Dataset-Compression

Authors:Huaqiu Li, Wang Zhang, Xiaowan Hu, Tao Jiang, Zikang Chen, Haoqian Wang
Title: Prompt-SID: Learning Structural Representation Prompt via Latent Diffusion for Single-Image Denoising
Abstract:
Many studies have concentrated on constructing supervised models utilizing paired datasets for image denoising, which proves to be expensive and time-consuming. Current self-supervised and unsupervised approaches typically rely on blind-spot networks or sub-image pairs sampling, resulting in pixel information loss and destruction of detailed structural information, thereby significantly constraining the efficacy of such methods. In this paper, we introduce Prompt-SID, a prompt-learning-based single image denoising framework that emphasizes preserving of structural details. This approach is trained in a self-supervised manner using downsampled image pairs. It captures original-scale image information through structural encoding and integrates this prompt into the denoiser. To achieve this, we propose a structural representation generation model based on the latent diffusion process and design a structural attention module within the transformer-based denoiser architecture to decode the prompt. Additionally, we introduce a scale replay training mechanism, which effectively mitigates the scale gap from images of different resolutions. We conduct comprehensive experiments on synthetic, real-world, and fluorescence imaging datasets, showcasing the remarkable effectiveness of Prompt-SID. Our code will be released at https://github.com/huaqlili/Prompt-SID.

Authors:Qian Chen, Xingjian Dong, Kui Hu, Kangkang Chen, Zhike Peng, Guang Meng
Title: CS-SHAP: Extending SHAP to Cyclic-Spectral Domain for Better Interpretability of Intelligent Fault Diagnosis
Abstract:
Neural networks (NNs), with their powerful nonlinear mapping and end-to-end capabilities, are widely applied in mechanical intelligent fault diagnosis (IFD). However, as typical black-box models, they pose challenges in understanding their decision basis and logic, limiting their deployment in high-reliability scenarios. Hence, various methods have been proposed to enhance the interpretability of IFD. Among these, post-hoc approaches can provide explanations without changing model architecture, preserving its flexibility and scalability. However, existing post-hoc methods often suffer from limitations in explanation forms. They either require preprocessing that disrupts the end-to-end nature or overlook fault mechanisms, leading to suboptimal explanations. To address these issues, we derived the cyclic-spectral (CS) transform and proposed the CS-SHAP by extending Shapley additive explanations (SHAP) to the CS domain. CS-SHAP can evaluate contributions from both carrier and modulation frequencies, aligning more closely with fault mechanisms and delivering clearer and more accurate explanations. Three datasets are utilized to validate the superior interpretability of CS-SHAP, ensuring its correctness, reproducibility, and practical performance. With open-source code and outstanding interpretability, CS-SHAP has the potential to be widely adopted and become the post-hoc interpretability benchmark in IFD, even in other classification tasks. The code is available on https://github.com/ChenQian0618/CS-SHAP.

Authors:Yongqi An, Xu Zhao, Tao Yu, Ming Tang, Jinqiao Wang
Title: Systematic Outliers in Large Language Models
Abstract:
Outliers have been widely observed in Large Language Models (LLMs), significantly impacting model performance and posing challenges for model compression. Understanding the functionality and formation mechanisms of these outliers is critically important. Existing works, however, largely focus on reducing the impact of outliers from an algorithmic perspective, lacking an in-depth investigation into their causes and roles. In this work, we provide a detailed analysis of the formation process, underlying causes, and functions of outliers in LLMs. We define and categorize three types of outliers-activation outliers, weight outliers, and attention outliers-and analyze their distributions across different dimensions, uncovering inherent connections between their occurrences and their ultimate influence on the attention mechanism. Based on these observations, we hypothesize and explore the mechanisms by which these outliers arise and function, demonstrating through theoretical derivations and experiments that they emerge due to the self-attention mechanism's softmax operation. These outliers act as implicit context-aware scaling factors within the attention mechanism. As these outliers stem from systematic influences, we term them systematic outliers. Our study not only enhances the understanding of Transformer-based LLMs but also shows that structurally eliminating outliers can accelerate convergence and improve model compression. The code is avilable at https://github.com/an-yongqi/systematic-outliers.

Authors:Aobotao Dai, Xinyu Ma, Lei Chen, Songze Li, Lin Wang
Title: When Data Manipulation Meets Attack Goals: An In-depth Survey of Attacks for VLMs
Abstract:
Vision-Language Models (VLMs) have gained considerable prominence in recent years due to their remarkable capability to effectively integrate and process both textual and visual information. This integration has significantly enhanced performance across a diverse spectrum of applications, such as scene perception and robotics. However, the deployment of VLMs has also given rise to critical safety and security concerns, necessitating extensive research to assess the potential vulnerabilities these VLM systems may harbor. In this work, we present an in-depth survey of the attack strategies tailored for VLMs. We categorize these attacks based on their underlying objectives - namely jailbreak, camouflage, and exploitation - while also detailing the various methodologies employed for data manipulation of VLMs. Meanwhile, we outline corresponding defense mechanisms that have been proposed to mitigate these vulnerabilities. By discerning key connections and distinctions among the diverse types of attacks, we propose a compelling taxonomy for VLM attacks. Moreover, we summarize the evaluation metrics that comprehensively describe the characteristics and impact of different attacks on VLMs. Finally, we conclude with a discussion of promising future research directions that could further enhance the robustness and safety of VLMs, emphasizing the importance of ongoing exploration in this critical area of study. To facilitate community engagement, we maintain an up-to-date project page, accessible at: https://github.com/AobtDai/VLM_Attack_Paper_List.

Authors:Yiru Jiao, Sander van Cranenburgh, Simeon Calvert, Hans van Lint
Title: Structure-preserving contrastive learning for spatial time series
Abstract:
The effectiveness of neural network models largely relies on learning meaningful latent patterns from data, where self-supervised learning of informative representations can enhance model performance and generalisability. However, self-supervised representation learning for spatially characterised time series, which are ubiquitous in transportation domain, poses unique challenges due to the necessity of maintaining fine-grained spatio-temporal similarities in the latent space. In this study, we introduce two structure-preserving regularisers for the contrastive learning of spatial time series: one regulariser preserves the topology of similarities between instances, and the other preserves the graph geometry of similarities across spatial and temporal dimensions. To balance the contrastive learning objective and the need for structure preservation, we propose a dynamic weighting mechanism that adaptively manages this trade-off and stabilises training. We validate the proposed method through extensive experiments, including multivariate time series classification to demonstrate its general applicability, as well as macroscopic and microscopic traffic prediction to highlight its particular usefulness in encoding traffic interactions. Across all tasks, our method preserves the similarity structures more effectively and improves state-of-the-art task performances. This method can be integrated with an arbitrary neural network model and is particularly beneficial for time series data with spatial or geographical features. Furthermore, our findings suggest that well-preserved similarity structures in the latent space indicate more informative and useful representations. This provides insights to design more effective neural networks for data-driven transportation research. Our code is made openly accessible with all resulting data at https://github.com/yiru-jiao/spclt

Authors:Filip Ekström Kelvinius, Zheng Zhao, Fredrik Lindsten
Title: Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled Diffusion Sequential Monte Carlo
Abstract:
A recent line of research has exploited pre-trained generative diffusion models as priors for solving Bayesian inverse problems. We contribute to this research direction by designing a sequential Monte Carlo method for linear-Gaussian inverse problems which builds on "decoupled diffusion", where the generative process is designed such that larger updates to the sample are possible. The method is asymptotically exact and we demonstrate the effectiveness of our Decoupled Diffusion Sequential Monte Carlo (DDSMC) algorithm on both synthetic as well as protein and image data. Further, we demonstrate how the approach can be extended to discrete data.

Authors:Oliver Boyne, Roberto Cipolla
Title: FOCUS -- Multi-View Foot Reconstruction From Synthetically Trained Dense Correspondences
Abstract:
Surface reconstruction from multiple, calibrated images is a challenging task - often requiring a large number of collected images with significant overlap. We look at the specific case of human foot reconstruction. As with previous successful foot reconstruction work, we seek to extract rich per-pixel geometry cues from multi-view RGB images, and fuse these into a final 3D object. Our method, FOCUS, tackles this problem with 3 main contributions: (i) SynFoot2, an extension of an existing synthetic foot dataset to include a new data type: dense correspondence with the parameterized foot model FIND; (ii) an uncertainty-aware dense correspondence predictor trained on our synthetic dataset; (iii) two methods for reconstructing a 3D surface from dense correspondence predictions: one inspired by Structure-from-Motion, and one optimization-based using the FIND model. We show that our reconstruction achieves state-of-the-art reconstruction quality in a few-view setting, performing comparably to state-of-the-art when many views are available, and runs substantially faster. We release our synthetic dataset to the research community. Code is available at: https://github.com/OllieBoyne/FOCUS

Authors:Sihwan Park, Doohyuk Jang, Sungyub Kim, Souvik Kundu, Eunho Yang
Title: LANTERN++: Enhancing Relaxed Speculative Decoding with Static Tree Drafting for Visual Auto-regressive Models
Abstract:
Speculative decoding has been widely used to accelerate auto-regressive (AR) text generation. However, its effectiveness for visual AR models remains limited due to token selection ambiguity, where multiple tokens share similarly low probabilities and thus reduce acceptance rates. Recently, relaxed speculative decoding with dynamic tree drafting was proposed to mitigate this ambiguity, demonstrating promising results in accelerating visual AR models. However, we observe that token selection ambiguity still negatively affects dynamic tree drafting, resulting in shallow draft trees and limited acceleration. To overcome this issue, we introduce LANTERN++, a refined framework that integrates static tree drafting with a tailored relaxed acceptance condition, allowing drafts to be selected independently of low-confidence predictions. This enables the acceptance of deeper sequences, improving decoding efficiency while preserving image quality. Extensive experiments on state-of-the-art visual AR models demonstrate that LANTERN++ significantly accelerates inference, achieving up to $\mathbf{\times 2.56}$ speedup over standard AR decoding while maintaining high image quality. The code is publicly available at https://github.com/jadohu/LANTERN.

Authors:Yawei Li, David Rügamer, Bernd Bischl, Mina Rezaei
Title: Calibrating LLMs with Information-Theoretic Evidential Deep Learning
Abstract:
Fine-tuned large language models (LLMs) often exhibit overconfidence, particularly when trained on small datasets, resulting in poor calibration and inaccurate uncertainty estimates. Evidential Deep Learning (EDL), an uncertainty-aware approach, enables uncertainty estimation in a single forward pass, making it a promising method for calibrating fine-tuned LLMs. However, despite its computational efficiency, EDL is prone to overfitting, as its training objective can result in overly concentrated probability distributions. To mitigate this, we propose regularizing EDL by incorporating an information bottleneck (IB). Our approach IB-EDL suppresses spurious information in the evidence generated by the model and encourages truly predictive information to influence both the predictions and uncertainty estimates. Extensive experiments across various fine-tuned LLMs and tasks demonstrate that IB-EDL outperforms both existing EDL and non-EDL approaches. By improving the trustworthiness of LLMs, IB-EDL facilitates their broader adoption in domains requiring high levels of confidence calibration. Code is available at https://github.com/sandylaker/ib-edl.

Authors:Qi Wang, Tianfei Zhou, Ye Yuan, Rui Mao
Title: Prompt-Driven Continual Graph Learning
Abstract:
Continual Graph Learning (CGL), which aims to accommodate new tasks over evolving graph data without forgetting prior knowledge, is garnering significant research interest. Mainstream solutions adopt the memory replay-based idea, ie, caching representative data from earlier tasks for retraining the graph model. However, this strategy struggles with scalability issues for constantly evolving graphs and raises concerns regarding data privacy. Inspired by recent advancements in the prompt-based learning paradigm, this paper introduces a novel prompt-driven continual graph learning (PROMPTCGL) framework, which learns a separate prompt for each incoming task and maintains the underlying graph neural network model fixed. In this way, PROMPTCGL naturally avoids catastrophic forgetting of knowledge from previous tasks. More specifically, we propose hierarchical prompting to instruct the model from both feature- and topology-level to fully address the variability of task graphs in dynamic continual learning. Additionally, we develop a personalized prompt generator to generate tailored prompts for each graph node while minimizing the number of prompts needed, leading to constant memory consumption regardless of the graph scale. Extensive experiments on four benchmarks show that PROMPTCGL achieves superior performance against existing CGL approaches while significantly reducing memory consumption. Our code is available at https://github.com/QiWang98/PromptCGL.

Authors:Jian Sun, Wei Sun, Genwei Zhang, Kailun Yang, Song Li, Xiangqi Meng, Na Deng, Chongbin Tan
Title: CT-UIO: Continuous-Time UWB-Inertial-Odometer Localization Using Non-Uniform B-spline with Fewer Anchors
Abstract:
Ultra-wideband (UWB) based positioning with fewer anchors has attracted significant research interest in recent years, especially under energy-constrained conditions. However, most existing methods rely on discrete-time representations and smoothness priors to infer a robot's motion states, which often struggle with ensuring multi-sensor data synchronization. In this paper, we present an efficient UWB-Inertial-odometer localization system, utilizing a non-uniform B-spline framework with fewer anchors. Unlike traditional uniform B-spline-based continuous-time methods, we introduce an adaptive knot-span adjustment strategy for non-uniform continuous-time trajectory representation. This is accomplished by adjusting control points dynamically based on movement speed. To enable efficient fusion of IMU and odometer data, we propose an improved Extended Kalman Filter (EKF) with innovation-based adaptive estimation to provide short-term accurate motion prior. Furthermore, to address the challenge of achieving a fully observable UWB localization system under few-anchor conditions, the Virtual Anchor (VA) generation method based on multiple hypotheses is proposed. At the backend, we propose a CT-UIO factor graph with an adaptive sliding window for global trajectory estimation. Comprehensive experiments conducted on corridor and exhibition hall datasets validate the proposed system's high precision and robust performance. The codebase and datasets of this work will be open-sourced at https://github.com/JasonSun623/CT-UIO.

Authors:Haiduo Huang, Fuwei Yang, Zhenhua Liu, Yixing Xu, Jinze Li, Yang Liu, Xuanwu Yin, Dong Li, Pengju Ren, Emad Barsoum
Title: Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE
Abstract:
Speculative decoding (SD) accelerates large language model inference by using a smaller draft model to predict multiple tokens, which are then verified in parallel by the larger target model. However, the limited capacity of the draft model often necessitates tree-based sampling to improve prediction accuracy, where multiple candidates are generated at each step. We identify a key limitation in this approach: the candidates at the same step are derived from the same representation, limiting diversity and reducing overall effectiveness. To address this, we propose Jakiro, leveraging Mixture of Experts (MoE), where independent experts generate diverse predictions, effectively decoupling correlations among candidates. Furthermore, we introduce a hybrid inference strategy, combining autoregressive decoding for initial tokens with parallel decoding for subsequent stages, and enhance the latter with contrastive mechanism in features to improve accuracy. Our method significantly boosts prediction accuracy and achieves higher inference speedups. Extensive experiments across diverse models validate the effectiveness and robustness of our approach, establishing a new SOTA in speculative decoding. Our codes are available at https://github.com/haiduo/Jakiro.

Authors:Zhixun Li, Dingshuo Chen, Tong Zhao, Daixin Wang, Hongrui Liu, Zhiqiang Zhang, Jun Zhou, Jeffrey Xu Yu
Title: IceBerg: Debiased Self-Training for Class-Imbalanced Node Classification
Abstract:
Graph Neural Networks (GNNs) have achieved great success in dealing with non-Euclidean graph-structured data and have been widely deployed in many real-world applications. However, their effectiveness is often jeopardized under class-imbalanced training sets. Most existing studies have analyzed class-imbalanced node classification from a supervised learning perspective, but they do not fully utilize the large number of unlabeled nodes in semi-supervised scenarios. We claim that the supervised signal is just the tip of the iceberg and a large number of unlabeled nodes have not yet been effectively utilized. In this work, we propose IceBerg, a debiased self-training framework to address the class-imbalanced and few-shot challenges for GNNs at the same time. Specifically, to figure out the Matthew effect and label distribution shift in self-training, we propose Double Balancing, which can largely improve the performance of existing baselines with just a few lines of code as a simple plug-and-play module. Secondly, to enhance the long-range propagation capability of GNNs, we disentangle the propagation and transformation operations of GNNs. Therefore, the weak supervision signals can propagate more effectively to address the few-shot issue. In summary, we find that leveraging unlabeled nodes can significantly enhance the performance of GNNs in class-imbalanced and few-shot scenarios, and even small, surgical modifications can lead to substantial performance improvements. Systematic experiments on benchmark datasets show that our method can deliver considerable performance gain over existing class-imbalanced node classification baselines. Additionally, due to IceBerg's outstanding ability to leverage unsupervised signals, it also achieves state-of-the-art results in few-shot node classification scenarios. The code of IceBerg is available at: https://github.com/ZhixunLEE/IceBerg.

Authors:Zhaoying Wang, Yingdan Shi, Xiang Liu, Can Chen, Jun Wen, Ren Wang
Title: HODDI: A Dataset of High-Order Drug-Drug Interactions for Computational Pharmacovigilance
Abstract:
Drug-side effect research is vital for understanding adverse reactions arising in complex multi-drug therapies. However, the scarcity of higher-order datasets that capture the combinatorial effects of multiple drugs severely limits progress in this field. Existing resources such as TWOSIDES primarily focus on pairwise interactions. To fill this critical gap, we introduce HODDI, the first Higher-Order Drug-Drug Interaction Dataset, constructed from U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) records spanning the past decade, to advance computational pharmacovigilance. HODDI contains 109,744 records involving 2,506 unique drugs and 4,569 unique side effects, specifically curated to capture multi-drug interactions and their collective impact on adverse effects. Comprehensive statistical analyses demonstrate HODDI's extensive coverage and robust analytical metrics, making it a valuable resource for studying higher-order drug relationships. Evaluating HODDI with multiple models, we found that simple Multi-Layer Perceptron (MLP) can outperform graph models, while hypergraph models demonstrate superior performance in capturing complex multi-drug interactions, further validating HODDI's effectiveness. Our findings highlight the inherent value of higher-order information in drug-side effect prediction and position HODDI as a benchmark dataset for advancing research in pharmacovigilance, drug safety, and personalized medicine. The dataset and codes are available at https://github.com/TIML-Group/HODDI.

Authors:Zhichen Dong, Zhanhui Zhou, Zhixuan Liu, Chao Yang, Chaochao Lu
Title: Emergent Response Planning in LLMs
Abstract:
In this work, we argue that large language models (LLMs), though trained to predict only the next token, exhibit emergent planning behaviors: $\textbf{their hidden representations encode future outputs beyond the next token}$. Through simple probing, we demonstrate that LLM prompt representations encode global attributes of their entire responses, including $\textit{structure attributes}$ (e.g., response length, reasoning steps), $\textit{content attributes}$ (e.g., character choices in storywriting, multiple-choice answers at the end of response), and $\textit{behavior attributes}$ (e.g., answer confidence, factual consistency). In addition to identifying response planning, we explore how it scales with model size across tasks and how it evolves during generation. The findings that LLMs plan ahead for the future in their hidden representations suggest potential applications for improving transparency and generation control.

Authors:Yueqing Wang, Yikun Mei, Zhen Gao, Ziwei Wan, Boyu Ning, De Mi, Sami Muhaidat
Title: Pre-Equalization Aided Grant-Free Massive Access in Massive MIMO System
Abstract:
The spatial diversity and multiplexing advantages of massive multi-input-multi-output (mMIMO) can significantly improve the capacity of massive non-orthogonal multiple access (NOMA) in machine type communications. However, state-of-the-art grant-free massive NOMA schemes for mMIMO systems require accurate estimation of random access channels to perform activity detection and the following coherent data demodulation, which suffers from excessive pilot overhead and access latency. To address this, we propose a pre-equalization aided grant-free massive access scheme for mMIMO systems, where an iterative detection scheme is conceived. Specifically, the base station (BS) firstly activates one of its antennas (i.e., beacon antenna) to broadcast a beacon signal, which facilitates the user equipment (UEs) to perform downlink channel estimation and pre-equalize the uplink random access signal with respect to the channels associated with the beacon antenna. During the uplink transmission stage, the BS detects UEs' activity and data by using the proposed iterative detection algorithm, which consists of three modules: coarse data detection (DD), data-aided channel estimation (CE), and fine DD. In the proposed algorithm, the joint activity and DD is firstly performed based on the signals received by the beacon antenna. Subsequently, the DD is further refined by iteratively performing data-aided CE module and fine DD module using signals received by all BS antennas. Our simulation results demonstrate that the proposed scheme outperforms state-of-the-art mMIMO-based grant-free massive NOMA schemes with the same access latency. Simulation codes are provided to reproduce the results in this article: https://github.com/owenwang517/tvt-2025.

Authors:Zhe Huang, Tianchen Ji, Heling Zhang, Fatemeh Cheraghi Pouria, Katherine Driggs-Campbell, Roy Dong
Title: Interaction-aware Conformal Prediction for Crowd Navigation
Abstract:
During crowd navigation, robot motion plan needs to consider human motion uncertainty, and the human motion uncertainty is dependent on the robot motion plan. We introduce Interaction-aware Conformal Prediction (ICP) to alternate uncertainty-aware robot motion planning and decision-dependent human motion uncertainty quantification. ICP is composed of a trajectory predictor to predict human trajectories, a model predictive controller to plan robot motion with confidence interval radii added for probabilistic safety, a human simulator to collect human trajectory calibration dataset conditioned on the planned robot motion, and a conformal prediction module to quantify trajectory prediction error on the decision-dependent calibration dataset. Crowd navigation simulation experiments show that ICP strikes a good balance of performance among navigation efficiency, social awareness, and uncertainty quantification compared to previous works. ICP generalizes well to navigation tasks under various crowd densities. The fast runtime and efficient memory usage make ICP practical for real-world applications. Code is available at https://github.com/tedhuang96/icp.

Authors:Yu Wang, Nan Yang, Liang Wang, Furu Wei, Fuli Feng
Title: Examining False Positives under Inference Scaling for Mathematical Reasoning
Abstract:
Recent advancements in language models have led to significant improvements in mathematical reasoning across various benchmarks. However, most of these benchmarks rely on automatic evaluation methods that only compare final answers using heuristics, without verifying the underlying reasoning steps. This limitation results in false positive solutions, where models may produce correct final answers but with flawed deduction paths. In this paper, we systematically examine the prevalence of false positive solutions in mathematical problem solving for language models. We analyze the characteristics and extent of this issue across different open-source models, datasets of varying difficulty levels, and decoding strategies. Specifically, we explore how false positives influence the inference time scaling behavior of language models. Our experimental results reveal that: (1) false positive solutions persist across different models, datasets, and decoding methods, (2) sampling-based inference time scaling methods do not alleviate the problem, and (3) the pass@N evaluation metric is more susceptible to false positives, suggesting a significantly lower scaling ceiling than what automatic evaluations indicate. Additionally, we analyze specific instances of false positives and discuss potential limitations in self-improvement techniques and synthetic data generation under such conditions. Our data and code are publicly available at https://github.com/Wloner0809/False-Positives-in-Math.

Authors:Zhi Li, Jiang Wang, Xiaoyang Li, He Kong
Title: Improved Extrinsic Calibration of Acoustic Cameras via Batch Optimization
Abstract:
Acoustic cameras have found many applications in practice. Accurate and reliable extrinsic calibration of the microphone array and visual sensors within acoustic cameras is crucial for fusing visual and auditory measurements. Existing calibration methods either require prior knowledge of the microphone array geometry or rely on grid search which suffers from slow iteration speed or poor convergence. To overcome these limitations, in this paper, we propose an automatic calibration technique using a calibration board with both visual and acoustic markers to identify each microphone position in the camera frame. We formulate the extrinsic calibration problem (between microphones and the visual sensor) as a nonlinear least squares problem and employ a batch optimization strategy to solve the associated problem. Extensive numerical simulations and realworld experiments show that the proposed method improves both the accuracy and robustness of extrinsic parameter calibration for acoustic cameras, in comparison to existing methods. To benefit the community, we open-source all the codes and data at https://github.com/AISLAB-sustech/AcousticCamera.

Authors:Chengjie Zhang, Wenda Pan, Xinyang Han, He Kong
Title: Calibration of Multiple Asynchronous Microphone Arrays using Hybrid TDOA
Abstract:
Accurate calibration of acoustic sensing systems made of multiple asynchronous microphone arrays is essential for satisfactory performance in sound source localization and tracking. State-of-the-art calibration methods for this type of system rely on the time difference of arrival and direction of arrival measurements among the microphone arrays (denoted as TDOA-M and DOA, respectively). In this paper, to enhance calibration accuracy, we propose to incorporate the time difference of arrival measurements between adjacent sound events (TDOAS) with respect to the microphone arrays. More specifically, we propose a two-stage calibration approach, including an initial value estimation (IVE) procedure and the final joint optimization step. The IVE stage first initializes all parameters except for microphone array orientations, using hybrid TDOA (i.e., TDOAM and TDOA-S), odometer data from a moving robot carrying a speaker, and DOA. Subsequently, microphone orientations are estimated through the iterative closest point method. The final joint optimization step estimates multiple microphone array locations, orientations, time offsets, clock drift rates, and sound source locations simultaneously. Both simulation and experiment results show that for scenarios with low or moderate TDOA noise levels, our approach outperforms existing methods in terms of accuracy. All code and data are available at https://github.com/AISLABsustech/Hybrid-TDOA-Multi-Calib.

Authors:Guanglong Sun, Hongwei Yan, Liyuan Wang, Qian Li, Bo Lei, Yi Zhong
Title: Right Time to Learn:Promoting Generalization via Bio-inspired Spacing Effect in Knowledge Distillation
Abstract:
Knowledge distillation (KD) is a powerful strategy for training deep neural networks (DNNs). Although it was originally proposed to train a more compact "student" model from a large "teacher" model, many recent efforts have focused on adapting it to promote generalization of the model itself, such as online KD and self KD. Here, we propose an accessible and compatible strategy named Spaced KD to improve the effectiveness of both online KD and self KD, in which the student model distills knowledge from a teacher model trained with a space interval ahead. This strategy is inspired by a prominent theory named spacing effect in biological learning and memory, positing that appropriate intervals between learning trials can significantly enhance learning performance. With both theoretical and empirical analyses, we demonstrate that the benefits of the proposed Spaced KD stem from convergence to a flatter loss landscape during stochastic gradient descent (SGD). We perform extensive experiments to validate the effectiveness of Spaced KD in improving the learning performance of DNNs (e.g., the performance gain is up to 2.31% and 3.34% on Tiny-ImageNet over online KD and self KD, respectively). Our codes have been released on github https://github.com/SunGL001/Spaced-KD.

Authors:Naome A. Etori, Maria L. Gini
Title: RideKE: Leveraging Low-Resource, User-Generated Twitter Content for Sentiment and Emotion Detection in Kenyan Code-Switched Dataset
Abstract:
Social media has become a crucial open-access platform for individuals to express opinions and share experiences. However, leveraging low-resource language data from Twitter is challenging due to scarce, poor-quality content and the major variations in language use, such as slang and code-switching. Identifying tweets in these languages can be difficult as Twitter primarily supports high-resource languages. We analyze Kenyan code-switched data and evaluate four state-of-the-art (SOTA) transformer-based pretrained models for sentiment and emotion classification, using supervised and semi-supervised methods. We detail the methodology behind data collection and annotation, and the challenges encountered during the data curation phase. Our results show that XLM-R outperforms other models; for sentiment analysis, XLM-R supervised model achieves the highest accuracy (69.2\%) and F1 score (66.1\%), XLM-R semi-supervised (67.2\% accuracy, 64.1\% F1 score). In emotion analysis, DistilBERT supervised leads in accuracy (59.8\%) and F1 score (31\%), mBERT semi-supervised (accuracy (59\% and F1 score 26.5\%). AfriBERTa models show the lowest accuracy and F1 scores. All models tend to predict neutral sentiment, with Afri-BERT showing the highest bias and unique sensitivity to empathy emotion. https://github.com/NEtori21/Ride_hailing

Authors:Ce Zhang, Zifu Wan, Zhehan Kan, Martin Q. Ma, Simon Stepputtis, Deva Ramanan, Russ Salakhutdinov, Louis-Philippe Morency, Katia Sycara, Yaqi Xie
Title: Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models
Abstract:
While recent Large Vision-Language Models (LVLMs) have shown remarkable performance in multi-modal tasks, they are prone to generating hallucinatory text responses that do not align with the given visual input, which restricts their practical applicability in real-world scenarios. In this work, inspired by the observation that the text-to-image generation process is the inverse of image-conditioned response generation in LVLMs, we explore the potential of leveraging text-to-image generative models to assist in mitigating hallucinations in LVLMs. We discover that generative models can offer valuable self-feedback for mitigating hallucinations at both the response and token levels. Building on this insight, we introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process to effectively mitigate hallucinations in LVLMs. Specifically, DeGF generates an image from the initial response produced by LVLMs, which acts as an auxiliary visual reference and provides self-feedback to verify and correct the initial response through complementary or contrastive decoding. Extensive experimental results validate the effectiveness of our approach in mitigating diverse types of hallucinations, consistently surpassing state-of-the-art methods across six benchmarks. Code is available at https://github.com/zhangce01/DeGF.

Authors:Yuhao Cao, Yu Wang, Haoyao Chen
Title: Real-Time LiDAR Point Cloud Compression and Transmission for Resource-constrained Robots
Abstract:
LiDARs are widely used in autonomous robots due to their ability to provide accurate environment structural information. However, the large size of point clouds poses challenges in terms of data storage and transmission. In this paper, we propose a novel point cloud compression and transmission framework for resource-constrained robotic applications, called RCPCC. We iteratively fit the surface of point clouds with a similar range value and eliminate redundancy through their spatial relationships. Then, we use Shape-adaptive DCT (SA-DCT) to transform the unfit points and reduce the data volume by quantizing the transformed coefficients. We design an adaptive bitrate control strategy based on QoE as the optimization goal to control the quality of the transmitted point cloud. Experiments show that our framework achieves compression rates of 40$\times$ to 80$\times$ while maintaining high accuracy for downstream applications. our method significantly outperforms other baselines in terms of accuracy when the compression rate exceeds 70$\times$. Furthermore, in situations of reduced communication bandwidth, our adaptive bitrate control strategy demonstrates significant QoE improvements. The code will be available at https://github.com/HITSZ-NRSL/RCPCC.git.

Authors:Dongyuan Li, Satoshi Kosugi, Ying Zhang, Manabu Okumura, Feng Xia, Renhe Jiang
Title: Revisiting Dynamic Graph Clustering via Matrix Factorization
Abstract:
Dynamic graph clustering aims to detect and track time-varying clusters in dynamic graphs, revealing the evolutionary mechanisms of complex real-world dynamic systems. Matrix factorization-based methods are promising approaches for this task; however, these methods often struggle with scalability and can be time-consuming when applied to large-scale dynamic graphs. Moreover, they tend to lack robustness and are vulnerable to real-world noisy data. To address these issues, we make three key contributions. First, to improve scalability, we propose temporal separated matrix factorization, where a single matrix is divided into multiple smaller matrices for independent factorization, resulting in faster computation. Second, to improve robustness, we introduce bi-clustering regularization, which jointly optimizes graph embedding and clustering, thereby filtering out noisy features from the graph embeddings. Third, to further enhance effectiveness and efficiency, we propose selective embedding updating, where we update only the embeddings of dynamic nodes while the embeddings of static nodes are fixed among different timestamps. Experimental results on six synthetic and five real-world benchmarks demonstrate the scalability, robustness and effectiveness of our proposed method. Source code is available at https://github.com/Clearloveyuan/DyG-MF.

Authors:Jian Xu, Sichun Luo, Xiangyu Chen, Haoming Huang, Hanxu Hou, Linqi Song
Title: RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning
Abstract:
Large Language Models (LLMs) have been integrated into recommendation systems to enhance user behavior comprehension. The Retrieval Augmented Generation (RAG) technique is further incorporated into these systems to retrieve more relevant items and improve system performance. However, existing RAG methods rely primarily on textual semantics and often fail to incorporate the most relevant items, limiting the effectiveness of the systems. In this paper, we propose Representation learning for retrieval-Augmented Large Language model Recommendation (RALLRec). Specifically, we enhance textual semantics by prompting LLMs to generate more detailed item descriptions, followed by joint representation learning of textual and collaborative semantics, which are extracted by the LLM and recommendation models, respectively. Considering the potential time-varying characteristics of user interest, a simple yet effective reranking method is further introduced to capture the dynamics of user preference. We conducted extensive experiments on three real-world datasets, and the evaluation results validated the effectiveness of our method. Code is made public at https://github.com/JianXu95/RALLRec.

Authors:Saptarshi Ghosh, Tianyu Jiang
Title: ConMeC: A Dataset for Metonymy Resolution with Common Nouns
Abstract:
Metonymy plays an important role in our daily communication. People naturally think about things using their most salient properties or commonly related concepts. For example, by saying "The bus decided to skip our stop today," we actually mean that the bus driver made the decision, not the bus. Prior work on metonymy resolution has mainly focused on named entities. However, metonymy involving common nouns (such as desk, baby, and school) is also a frequent and challenging phenomenon. We argue that NLP systems should be capable of identifying the metonymic use of common nouns in context. We create a new metonymy dataset ConMeC, which consists of 6,000 sentences, where each sentence is paired with a target common noun and annotated by humans to indicate whether that common noun is used metonymically or not in that context. We also introduce a chain-of-thought based prompting method for detecting metonymy using large language models (LLMs). We evaluate our LLM-based pipeline, as well as a supervised BERT model on our dataset and three other metonymy datasets. Our experimental results demonstrate that LLMs could achieve performance comparable to the supervised BERT model on well-defined metonymy categories, while still struggling with instances requiring nuanced semantic understanding. Our dataset is publicly available at: https://github.com/SaptGhosh/ConMeC.

Authors:Seokwon Song, Taehyun Lee, Jaewoo Ahn, Jae Hyuk Sung, Gunhee Kim
Title: Is a Peeled Apple Still Red? Evaluating LLMs' Ability for Conceptual Combination with Property Type
Abstract:
Conceptual combination is a cognitive process that merges basic concepts, enabling the creation of complex expressions. During this process, the properties of combination (e.g., the whiteness of a peeled apple) can be inherited from basic concepts, newly emerge, or be canceled. However, previous studies have evaluated a limited set of properties and have not examined the generative process. To address this gap, we introduce the Conceptual Combination with Property Type dataset (CCPT), which consists of 12.3K annotated triplets of noun phrases, properties, and property types. Using CCPT, we establish three types of tasks to evaluate LLMs for conceptual combination thoroughly. Our key findings are threefold: (1) Our automatic metric grading property emergence and cancellation closely corresponds with human judgments. (2) LLMs, including OpenAI's o1, struggle to generate noun phrases which possess given emergent properties. (3) Our proposed method, inspired by cognitive psychology model that explains how relationships between concepts are formed, improves performances in all generative tasks. The dataset and experimental code are available at https://github.com/seokwon99/CCPT.git.

Authors:Krishna Sri Ipsit Mantri, Carola-Bibiane Schönlieb, Bruno Ribeiro, Chaim Baskin, Moshe Eliasof
Title: DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations
Abstract:
Pre-trained Vision Transformers now serve as powerful tools for computer vision. Yet, efficiently adapting them for multiple tasks remains a challenge that arises from the need to modify the rich hidden representations encoded by the learned weight matrices, without inducing interference between tasks. Current parameter-efficient methods like LoRA, which apply low-rank updates, force tasks to compete within constrained subspaces, ultimately degrading performance. We introduce DiTASK a novel Diffeomorphic Multi-Task Fine-Tuning approach that maintains pre-trained representations by preserving weight matrix singular vectors, while enabling task-specific adaptations through neural diffeomorphic transformations of the singular values. By following this approach, DiTASK enables both shared and task-specific feature modulations with minimal added parameters. Our theoretical analysis shows that DITASK achieves full-rank updates during optimization, preserving the geometric structure of pre-trained features, and establishing a new paradigm for efficient multi-task learning (MTL). Our experiments on PASCAL MTL and NYUD show that DiTASK achieves state-of-the-art performance across four dense prediction tasks, using 75% fewer parameters than existing methods. Our code is available [here](https://github.com/ipsitmantri/DiTASK).

Authors:Xingjian Diao, Chunhui Zhang, Weiyi Wu, Zhongyu Ouyang, Peijun Qing, Ming Cheng, Soroush Vosoughi, Jiang Gui
Title: Temporal Working Memory: Query-Guided Segment Refinement for Enhanced Multimodal Understanding
Abstract:
Multimodal foundation models (MFMs) have demonstrated significant success in tasks such as visual captioning, question answering, and image-text retrieval. However, these models face inherent limitations due to their finite internal capacity, which restricts their ability to process extended temporal sequences, a crucial requirement for comprehensive video and audio analysis. To overcome these challenges, we introduce a specialized cognitive module, temporal working memory (TWM), which aims to enhance the temporal modeling capabilities of MFMs. It selectively retains task-relevant information across temporal dimensions, ensuring that critical details are preserved throughout the processing of video and audio content. The TWM uses a query-guided attention approach to focus on the most informative multimodal segments within temporal sequences. By retaining only the most relevant content, TWM optimizes the use of the model's limited capacity, enhancing its temporal modeling ability. This plug-and-play module can be easily integrated into existing MFMs. With our TWM, nine state-of-the-art models exhibit significant performance improvements across tasks such as video captioning, question answering, and video-text retrieval. By enhancing temporal modeling, TWM extends the capability of MFMs to handle complex, time-sensitive data effectively. Our code is available at https://github.com/xid32/NAACL_2025_TWM.

Authors:Raza Imam, Asif Hanif, Jian Zhang, Khaled Waleed Dawoud, Yova Kementchedjhieva, Mohammad Yaqub
Title: Noise is an Efficient Learner for Zero-Shot Vision-Language Models
Abstract:
Recently, test-time adaptation has garnered attention as a method for tuning models without labeled data. The conventional modus operandi for adapting pre-trained vision-language models (VLMs) during test-time primarily focuses on tuning learnable prompts; however, this approach overlooks potential distribution shifts in the visual representations themselves. In this work, we address this limitation by introducing Test-Time Noise Tuning (TNT), a novel method for handling unpredictable shifts in the visual space. TNT leverages, for the first time, a noise adaptation strategy that optimizes learnable noise directly in the visual input space, enabling adaptive feature learning from a single test sample. We further introduce a novel approach for inter-view representation alignment by explicitly enforcing coherence in embedding distances, ensuring consistent feature representations across views. Combined with scaled logits and confident view selection at inference, TNT substantially enhances VLM generalization and calibration, achieving average gains of +7.38% on natural distributions benchmark and +0.80% on cross-dataset evaluations over zero-shot CLIP. These improvements lay a strong foundation for adaptive out-of-distribution handling.

Authors:Jusheng Zhang, Yijia Fan, Kaitong Cai, Keze Wang
Title: Kolmogorov-Arnold Fourier Networks
Abstract:
Although Kolmogorov-Arnold based interpretable networks (KAN) have strong theoretical expressiveness, they face significant parameter explosion and high-frequency feature capture challenges in high-dimensional tasks. To address this issue, we propose the Kolmogorov-Arnold-Fourier Network (KAF), which effectively integrates trainable Random Fourier Features (RFF) and a novel hybrid GELU-Fourier activation mechanism to balance parameter efficiency and spectral representation capabilities. Our key technical contributions include: (1) merging KAN's dual-matrix structure through matrix association properties to substantially reduce parameters; (2) introducing learnable RFF initialization strategies to eliminate spectral distortion in high-dimensional approximation tasks; (3) implementing an adaptive hybrid activation function that progressively enhances frequency representation during the training process. Comprehensive experiments demonstrate the superiority of our KAF across various domains including vision, NLP, audio processing, and differential equation-solving tasks, effectively combining theoretical interpretability with practical utility and computational efficiency.

Authors:Venktesh V, Vinay Setty
Title: FactIR: A Real-World Zero-shot Open-Domain Retrieval Benchmark for Fact-Checking
Abstract:
The field of automated fact-checking increasingly depends on retrieving web-based evidence to determine the veracity of claims in real-world scenarios. A significant challenge in this process is not only retrieving relevant information, but also identifying evidence that can both support and refute complex claims. Traditional retrieval methods may return documents that directly address claims or lean toward supporting them, but often struggle with more complex claims requiring indirect reasoning. While some existing benchmarks and methods target retrieval for fact-checking, a comprehensive real-world open-domain benchmark has been lacking. In this paper, we present a real-world retrieval benchmark FactIR, derived from Factiverse production logs, enhanced with human annotations. We rigorously evaluate state-of-the-art retrieval models in a zero-shot setup on FactIR and offer insights for developing practical retrieval systems for fact-checking. Code and data are available at https://github.com/factiverse/factIR.

Authors:Julia Hornauer, Amir El-Ghoussani, Vasileios Belagiannis
Title: Revisiting Gradient-based Uncertainty for Monocular Depth Estimation
Abstract:
Monocular depth estimation, similar to other image-based tasks, is prone to erroneous predictions due to ambiguities in the image, for example, caused by dynamic objects or shadows. For this reason, pixel-wise uncertainty assessment is required for safety-critical applications to highlight the areas where the prediction is unreliable. We address this in a post hoc manner and introduce gradient-based uncertainty estimation for already trained depth estimation models. To extract gradients without depending on the ground truth depth, we introduce an auxiliary loss function based on the consistency of the predicted depth and a reference depth. The reference depth, which acts as pseudo ground truth, is in fact generated using a simple image or feature augmentation, making our approach simple and effective. To obtain the final uncertainty score, the derivatives w.r.t. the feature maps from single or multiple layers are calculated using back-propagation. We demonstrate that our gradient-based approach is effective in determining the uncertainty without re-training using the two standard depth estimation benchmarks KITTI and NYU. In particular, for models trained with monocular sequences and therefore most prone to uncertainty, our method outperforms related approaches. In addition, we publicly provide our code and models: https://github.com/jhornauer/GrUMoDepth

Authors:Jiabin Tang, Tianyu Fan, Chao Huang
Title: AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents
Abstract:
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making, driving the widespread adoption of agent development frameworks such as LangChain and AutoGen. However, these frameworks predominantly serve developers with extensive technical expertise - a significant limitation considering that only 0.03 % of the global population possesses the necessary programming skills. This stark accessibility gap raises a fundamental question: Can we enable everyone, regardless of technical background, to build their own LLM agents using natural language alone? To address this challenge, we introduce AutoAgent-a Fully-Automated and highly Self-Developing framework that enables users to create and deploy LLM agents through Natural Language Alone. Operating as an autonomous Agent Operating System, AutoAgent comprises four key components: i) Agentic System Utilities, ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-Play Agent Customization module. This lightweight yet powerful system enables efficient and dynamic creation and modification of tools, agents, and workflows without coding requirements or manual intervention. Beyond its code-free agent development capabilities, AutoAgent also serves as a versatile multi-agent system for General AI Assistants. Comprehensive evaluations on the GAIA benchmark demonstrate AutoAgent's effectiveness in generalist multi-agent tasks, surpassing existing state-of-the-art methods. Furthermore, AutoAgent's Retrieval-Augmented Generation (RAG)-related capabilities have shown consistently superior performance compared to many alternative LLM-based solutions.

Authors:Jiabin Tang, Tianyu Fan, Chao Huang
Title: AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents
Abstract:
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making, driving the widespread adoption of agent development frameworks such as LangChain and AutoGen. However, these frameworks predominantly serve developers with extensive technical expertise - a significant limitation considering that only 0.03 % of the global population possesses the necessary programming skills. This stark accessibility gap raises a fundamental question: Can we enable everyone, regardless of technical background, to build their own LLM agents using natural language alone? To address this challenge, we introduce AutoAgent-a Fully-Automated and highly Self-Developing framework that enables users to create and deploy LLM agents through Natural Language Alone. Operating as an autonomous Agent Operating System, AutoAgent comprises four key components: i) Agentic System Utilities, ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-Play Agent Customization module. This lightweight yet powerful system enables efficient and dynamic creation and modification of tools, agents, and workflows without coding requirements or manual intervention. Beyond its code-free agent development capabilities, AutoAgent also serves as a versatile multi-agent system for General AI Assistants. Comprehensive evaluations on the GAIA benchmark demonstrate AutoAgent's effectiveness in generalist multi-agent tasks, surpassing existing state-of-the-art methods. Furthermore, AutoAgent's Retrieval-Augmented Generation (RAG)-related capabilities have shown consistently superior performance compared to many alternative LLM-based solutions.

Authors:Paul Darm, Annalisa Riccardi
Title: Head-Specific Intervention Can Induce Misaligned AI Coordination in Large Language Models
Abstract:
Robust alignment guardrails for large language models (LLMs) are becoming increasingly important with their widespread application. In contrast to previous studies, we demonstrate that inference-time activation interventions can bypass safety alignments and effectively steer model generations towards harmful AI coordination. Our method applies fine-grained interventions at specific attention heads, which we identify by probing each head in a simple binary choice task. We then show that interventions on these heads generalise to the open-ended generation setting, effectively circumventing safety guardrails. We demonstrate that intervening on a few attention heads is more effective than intervening on full layers or supervised fine-tuning. We further show that only a few example completions are needed to compute effective steering directions, which is an advantage over classical fine-tuning. We also demonstrate that applying interventions in the negative direction can prevent a common jailbreak attack. Our results suggest that, at the attention head level, activations encode fine-grained linearly separable behaviours. Practically, the approach offers a straightforward methodology to steer large language model behaviour, which could be extended to diverse domains beyond safety, requiring fine-grained control over the model output. The code and datasets for this study can be found on https://github.com/PaulDrm/targeted_intervention.

Authors:Hongye Liu, Ricardo Henao
Title: Learning to Substitute Words with Model-based Score Ranking
Abstract:
Smart word substitution aims to enhance sentence quality by improving word choices; however current benchmarks rely on human-labeled data. Since word choices are inherently subjective, ground-truth word substitutions generated by a small group of annotators are often incomplete and likely not generalizable. To circumvent this issue, we instead employ a model-based score (BARTScore) to quantify sentence quality, thus forgoing the need for human annotations. Specifically, we use this score to define a distribution for each word substitution, allowing one to test whether a substitution is statistically superior relative to others. In addition, we propose a loss function that directly optimizes the alignment between model predictions and sentence scores, while also enhancing the overall quality score of a substitution. Crucially, model learning no longer requires human labels, thus avoiding the cost of annotation while maintaining the quality of the text modified with substitutions. Experimental results show that the proposed approach outperforms both masked language models (BERT, BART) and large language models (GPT-4, LLaMA). The source code is available at https://github.com/Hyfred/Substitute-Words-with-Ranking.

Authors:Hongyu Ge, Longkun Hao, Zihui Xu, Zhenxin Lin, Bin Li, Shoujun Zhou, Hongjin Zhao, Yihang Liu
Title: ClinKD: Cross-Modal Clinical Knowledge Distiller For Multi-Task Medical Images
Abstract:
Medical Visual Question Answering (Med-VQA) represents a critical and challenging subtask within the general VQA domain. Despite significant advancements in general VQA, multimodal large language models (MLLMs) still exhibit substantial limitations when handling multi-task VQA scenarios. These limitations manifest through erroneous spatial localization and misinterpretation of medical images, which primarily arise from two fundamental issues: inadequate image-text alignment and insufficient domain-specified knowledge for medical applications. To address these issues, we introduce the Cross-Modal Clinical Knowledge Distiller (ClinKD), an innovative framework designed to enhance image-text alignment and establish more effective medical knowledge transformation mechanisms, which enables MLLMs to perform better even when lacking prior medical knowledge. Our extensive experimental evaluations demonstrate that the ClinKD achieves state-of-the-art performance on several datasets which are challenging for Med-VQA task. The results indicate that our approach not only significantly improves image-text alignment but also effectively enables MLLMs to adapt to the medical knowledge. The source code for ClinKD is available at: https://github.com/overloadedHenry/ClinKD.

Authors:Yu Shang, Chen Gao, Nian Li, Yong Li
Title: A Large-scale Dataset with Behavior, Attributes, and Content of Mobile Short-video Platform
Abstract:
Short-video platforms show an increasing impact on people's daily lives nowadays, with billions of active users spending plenty of time each day. The interactions between users and online platforms give rise to many scientific problems across computational social science and artificial intelligence. However, despite the rapid development of short-video platforms, currently there are serious shortcomings in existing relevant datasets on three aspects: inadequate user-video feedback, limited user attributes and lack of video content. To address these problems, we provide a large-scale dataset with rich user behavior, attributes and video content from a real mobile short-video platform. This dataset covers 10,000 voluntary users and 153,561 videos, and we conduct four-fold technical validations of the dataset. First, we verify the richness of the behavior and attribute data. Second, we confirm the representing ability of the content features. Third, we provide benchmarking results on recommendation algorithms with our dataset. Finally, we explore the filter bubble phenomenon on the platform using the dataset. We believe the dataset could support the broad research community, including but not limited to user modeling, social science, human behavior understanding, etc. The dataset and code is available at https://github.com/tsinghua-fib-lab/ShortVideo_dataset.

Authors:Runchuan Zhu, Zinco Jiang, Jiang Wu, Zhipeng Ma, Jiahe Song, Fengshuo Bai, Dahua Lin, Lijun Wu, Conghui He
Title: GRAIT: Gradient-Driven Refusal-Aware Instruction Tuning for Effective Hallucination Mitigation
Abstract:
Refusal-Aware Instruction Tuning (RAIT) aims to enhance Large Language Models (LLMs) by improving their ability to refuse responses to questions beyond their knowledge, thereby reducing hallucinations and improving reliability. Effective RAIT must address two key challenges: firstly, effectively reject unknown questions to minimize hallucinations; secondly, avoid over-refusal to ensure questions that can be correctly answered are not rejected, thereby maintain the helpfulness of LLM outputs. In this paper, we address the two challenges by deriving insightful observations from the gradient-based perspective, and proposing the Gradient-driven Refusal Aware Instruction Tuning Framework GRAIT: (1) employs gradient-driven sample selection to effectively minimize hallucinations and (2) introduces an adaptive weighting mechanism during fine-tuning to reduce the risk of over-refusal, achieving the balance between accurate refusals and maintaining useful responses. Experimental evaluations on open-ended and multiple-choice question answering tasks demonstrate that GRAIT significantly outperforms existing RAIT methods in the overall performance. The source code and data will be available at https://github.com/opendatalab/GRAIT .

Authors:Vera Soboleva, Maksim Nakhodnov, Aibek Alanov
Title: Beyond Fine-Tuning: A Systematic Study of Sampling Techniques in Personalized Image Generation
Abstract:
Personalized text-to-image generation aims to create images tailored to user-defined concepts and textual descriptions. Balancing the fidelity of the learned concept with its ability for generation in various contexts presents a significant challenge. Existing methods often address this through diverse fine-tuning parameterizations and improved sampling strategies that integrate superclass trajectories during the diffusion process. While improved sampling offers a cost-effective, training-free solution for enhancing fine-tuned models, systematic analyses of these methods remain limited. Current approaches typically tie sampling strategies with fixed fine-tuning configurations, making it difficult to isolate their impact on generation outcomes. To address this issue, we systematically analyze sampling strategies beyond fine-tuning, exploring the impact of concept and superclass trajectories on the results. Building on this analysis, we propose a decision framework evaluating text alignment, computational constraints, and fidelity objectives to guide strategy selection. It integrates with diverse architectures and training approaches, systematically optimizing concept preservation, prompt adherence, and resource efficiency. The source code can be found at https://github.com/ControlGenAI/PersonGenSampler.

Authors:Lu Chen, Yizhou Wang, Shixiang Tang, Qianhong Ma, Tong He, Wanli Ouyang, Xiaowei Zhou, Hujun Bao, Sida Peng
Title: EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Abstract:
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.

Authors:Yan Li, Zhulin Wang, Jing Liu, Lei Guo, Philippe Fournier-Viger, Youxi Wu, Xindong Wu
Title: NSPG-Miner: Mining Repetitive Negative Sequential Patterns
Abstract:
Sequential pattern mining (SPM) with gap constraints (or repetitive SPM or tandem repeat discovery in bioinformatics) can find frequent repetitive subsequences satisfying gap constraints, which are called positive sequential patterns with gap constraints (PSPGs). However, classical SPM with gap constraints cannot find the frequent missing items in the PSPGs. To tackle this issue, this paper explores negative sequential patterns with gap constraints (NSPGs). We propose an efficient NSPG-Miner algorithm that can mine both frequent PSPGs and NSPGs simultaneously. To effectively reduce candidate patterns, we propose a pattern join strategy with negative patterns which can generate both positive and negative candidate patterns at the same time. To calculate the support (frequency of occurrence) of a pattern in each sequence, we explore a NegPair algorithm that employs a key-value pair array structure to deal with the gap constraints and the negative items simultaneously and can avoid redundant rescanning of the original sequence, thus improving the efficiency of the algorithm. To report the performance of NSPG-Miner, 11 competitive algorithms and 11 datasets are employed. The experimental results not only validate the effectiveness of the strategies adopted by NSPG-Miner, but also verify that NSPG-Miner can discover more valuable information than the state-of-the-art algorithms. Algorithms and datasets can be downloaded from https://github.com/wuc567/Pattern-Mining/tree/master/NSPG-Miner.

Authors:Jen-tse Huang, Yuhang Yan, Linqi Liu, Yixin Wan, Wenxuan Wang, Kai-Wei Chang, Michael R. Lyu
Title: Where Fact Ends and Fairness Begins: Redefining AI Bias Evaluation through Cognitive Biases
Abstract:
Recent failures such as Google Gemini generating people of color in Nazi-era uniforms illustrate how AI outputs can be factually plausible yet socially harmful. AI models are increasingly evaluated for "fairness," yet existing benchmarks often conflate two fundamentally different dimensions: factual correctness and normative fairness. A model may generate responses that are factually accurate but socially unfair, or conversely, appear fair while distorting factual reality. We argue that identifying the boundary between fact and fair is essential for meaningful fairness evaluation. We introduce Fact-or-Fair, a benchmark with (i) objective queries aligned with descriptive, fact-based judgments, and (ii) subjective queries aligned with normative, fairness-based judgments. Our queries are constructed from 19 statistics and are grounded in cognitive psychology, drawing on representativeness bias, attribution bias, and ingroup-outgroup bias to explain why models often misalign fact and fairness. Experiments across ten frontier models reveal different levels of fact-fair trade-offs. By reframing fairness evaluation, we provide both a new theoretical lens and a practical benchmark to advance the responsible model assessments. Our test suite is publicly available at https://github.com/uclanlp/Fact-or-Fair.

Authors:Jen-tse Huang, Yuhang Yan, Linqi Liu, Yixin Wan, Wenxuan Wang, Kai-Wei Chang, Michael R. Lyu
Title: Where Fact Ends and Fairness Begins: Redefining AI Bias Evaluation through Cognitive Biases
Abstract:
Recent failures such as Google Gemini generating people of color in Nazi-era uniforms illustrate how AI outputs can be factually plausible yet socially harmful. AI models are increasingly evaluated for "fairness," yet existing benchmarks often conflate two fundamentally different dimensions: factual correctness and normative fairness. A model may generate responses that are factually accurate but socially unfair, or conversely, appear fair while distorting factual reality. We argue that identifying the boundary between fact and fair is essential for meaningful fairness evaluation. We introduce Fact-or-Fair, a benchmark with (i) objective queries aligned with descriptive, fact-based judgments, and (ii) subjective queries aligned with normative, fairness-based judgments. Our queries are constructed from 19 statistics and are grounded in cognitive psychology, drawing on representativeness bias, attribution bias, and ingroup-outgroup bias to explain why models often misalign fact and fairness. Experiments across ten frontier models reveal different levels of fact-fair trade-offs. By reframing fairness evaluation, we provide both a new theoretical lens and a practical benchmark to advance the responsible model assessments. Our test suite is publicly available at https://github.com/uclanlp/Fact-or-Fair.

Authors:Yuhui Zeng, Haoxiang Wu, Wenjie Nie, Xiawu Zheng, Guangyao Chen, Yunhang Shen, Jun Peng, Yonghong Tian, Rongrong Ji
Title: From Objects to Events: Unlocking Complex Visual Understanding in Object Detectors via LLM-guided Symbolic Reasoning
Abstract:
Current object detectors excel at entity localization and classification, yet exhibit inherent limitations in event recognition capabilities. This deficiency arises from their architecture's emphasis on discrete object identification rather than modeling the compositional reasoning, inter-object correlations, and contextual semantics essential for comprehensive event understanding. To address this challenge, we present a novel framework that expands the capability of standard object detectors beyond mere object recognition to complex event understanding through LLM-guided symbolic reasoning. Our key innovation lies in bridging the semantic gap between object detection and event understanding without requiring expensive task-specific training. The proposed plug-and-play framework interfaces with any open-vocabulary detector while extending their inherent capabilities across architectures. At its core, our approach combines (i) a symbolic regression mechanism exploring relationship patterns among detected entities and (ii) a LLM-guided strategically guiding the search toward meaningful expressions. These discovered symbolic rules transform low-level visual perception into interpretable event understanding, providing a transparent reasoning path from objects to events with strong transferability across domains.We compared our training-free framework against specialized event recognition systems across diverse application domains. Experiments demonstrate that our framework enhances multiple object detector architectures to recognize complex events such as illegal fishing activities (75% AUROC, +8.36% improvement), construction safety violations (+15.77%), and abnormal crowd behaviors (+23.16%). Code is available at \href{https://github.com/MAC-AutoML/SymbolicDet}{here}.

Authors:Rafał Karczewski, Markus Heinonen, Vikas Garg
Title: Devil is in the Details: Density Guidance for Detail-Aware Generation with Flow Models
Abstract:
Diffusion models have emerged as a powerful class of generative models, capable of producing high-quality images by mapping noise to a data distribution. However, recent findings suggest that image likelihood does not align with perceptual quality: high-likelihood samples tend to be smooth, while lower-likelihood ones are more detailed. Controlling sample density is thus crucial for balancing realism and detail. In this paper, we analyze an existing technique, Prior Guidance, which scales the latent code to influence image detail. We introduce score alignment, a condition that explains why this method works and show that it can be tractably checked for any continuous normalizing flow model. We then propose Density Guidance, a principled modification of the generative ODE that enables exact log-density control during sampling. Finally, we extend Density Guidance to stochastic sampling, ensuring precise log-density control while allowing controlled variation in structure or fine details. Our experiments demonstrate that these techniques provide fine-grained control over image detail without compromising sample quality. Code is available at https://github.com/Aalto-QuML/density-guidance.

Authors:Wenfang Sun, Xinyuan Song, Pengxiang Li, Lu Yin, Yefeng Zheng, Shiwei Liu
Title: The Curse of Depth in Large Language Models
Abstract:
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.

Authors:Yuwen Liao, Muqing Cao, Xinhang Xu, Lihua Xie
Title: AToM: Adaptive Theory-of-Mind-Based Human Motion Prediction in Long-Term Human-Robot Interactions
Abstract:
Humans learn from observations and experiences to adjust their behaviours towards better performance. Interacting with such dynamic humans is challenging, as the robot needs to predict the humans accurately for safe and efficient operations. Long-term interactions with dynamic humans have not been extensively studied by prior works. We propose an adaptive human prediction model based on the Theory-of-Mind (ToM), a fundamental social-cognitive ability that enables humans to infer others' behaviours and intentions. We formulate the human internal belief about others using a game-theoretic model, which predicts the future motions of all agents in a navigation scenario. To estimate an evolving belief, we use an Unscented Kalman Filter to update the behavioural parameters in the human internal model. Our formulation provides unique interpretability to dynamic human behaviours by inferring how the human predicts the robot. We demonstrate through long-term experiments in both simulations and real-world settings that our prediction effectively promotes safety and efficiency in downstream robot planning. Code will be available at https://github.com/centiLinda/AToM-human-prediction.git.

Authors:Yixiong Jing, Wei Lin, Brian Sheil, Sinan Acikgoz
Title: A 3D Multimodal Feature for Infrastructure Anomaly Detection
Abstract:
Ageing structures require periodic inspections to identify structural defects. Previous work has used geometric distortions to locate cracks in synthetic masonry bridge point clouds but has struggled to detect small cracks. To address this limitation, this study proposes a novel 3D multimodal feature, 3DMulti-FPFHI, that combines a customized Fast Point Feature Histogram (FPFH) with an intensity feature. This feature is integrated into the PatchCore anomaly detection algorithm and evaluated through statistical and parametric analyses. The method is further evaluated using point clouds of a real masonry arch bridge and a full-scale experimental model of a concrete tunnel. Results show that the 3D intensity feature enhances inspection quality by improving crack detection; it also enables the identification of water ingress which introduces intensity anomalies. The 3DMulti-FPFHI outperforms FPFH and a state-of-the-art multimodal anomaly detection method. The potential of the method to address diverse infrastructure anomaly detection scenarios is highlighted by the minimal requirements for data compared to learning-based methods. The code and related point cloud dataset are available at https://github.com/Jingyixiong/3D-Multi-FPFHI.

Authors:Enquan Yang, Peng Xing, Hanyang Sun, Wenbo Guo, Yuanwei Ma, Zechao Li, Dan Zeng
Title: 3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly
Abstract:
Industrial anomaly detection achieves progress thanks to datasets such as MVTec-AD and VisA. However, they suffer from limitations in terms of the number of defect samples, types of defects, and availability of real-world scenes. These constraints inhibit researchers from further exploring the performance of industrial detection with higher accuracy. To this end, we propose a new large-scale anomaly detection dataset called 3CAD, which is derived from real 3C production lines. Specifically, the proposed 3CAD includes eight different types of manufactured parts, totaling 27,039 high-resolution images labeled with pixel-level anomalies. The key features of 3CAD are that it covers anomalous regions of different sizes, multiple anomaly types, and the possibility of multiple anomalous regions and multiple anomaly types per anomaly image. This is the largest and first anomaly detection dataset dedicated to 3C product quality control for community exploration and development. Meanwhile, we introduce a simple yet effective framework for unsupervised anomaly detection: a Coarse-to-Fine detection paradigm with Recovery Guidance (CFRG). To detect small defect anomalies, the proposed CFRG utilizes a coarse-to-fine detection paradigm. Specifically, we utilize a heterogeneous distillation model for coarse localization and then fine localization through a segmentation model. In addition, to better capture normal patterns, we introduce recovery features as guidance. Finally, we report the results of our CFRG framework and popular anomaly detection methods on the 3CAD dataset, demonstrating strong competitiveness and providing a highly challenging benchmark to promote the development of the anomaly detection field. Data and code are available: https://github.com/EnquanYang2022/3CAD.

Authors:Zherui Li, Houcheng Jiang, Hao Chen, Baolong Bi, Zhenhong Zhou, Fei Sun, Junfeng Fang, Xiang Wang
Title: Reinforced Lifelong Editing for Language Models
Abstract:
Large language models (LLMs) acquire information from pre-training corpora, but their stored knowledge can become inaccurate or outdated over time. Model editing addresses this challenge by modifying model parameters without retraining, and prevalent approaches leverage hypernetworks to generate these parameter updates. However, they face significant challenges in lifelong editing due to their incompatibility with LLM parameters that dynamically change during the editing process. To address this, we observed that hypernetwork-based lifelong editing aligns with reinforcement learning modeling and proposed RLEdit, an RL-based editing method. By treating editing losses as rewards and optimizing hypernetwork parameters at the full knowledge sequence level, we enable it to precisely capture LLM changes and generate appropriate parameter updates. Our extensive empirical evaluation across several LLMs demonstrates that RLEdit outperforms existing methods in lifelong editing with superior effectiveness and efficiency, achieving a 59.24% improvement while requiring only 2.11% of the time compared to most approaches. Our code is available at: https://github.com/zhrli324/RLEdit.

Authors:Yue Pan, Xingguang Zhong, Liren Jin, Louis Wiesmann, Marija Popović, Jens Behley, Cyrill Stachniss
Title: PINGS: Gaussian Splatting Meets Distance Fields within a Point-Based Implicit Neural Map
Abstract:
Robots benefit from high-fidelity reconstructions of their environment, which should be geometrically accurate and photorealistic to support downstream tasks. While this can be achieved by building distance fields from range sensors and radiance fields from cameras, realising scalable incremental mapping of both fields consistently and at the same time with high quality is challenging. In this paper, we propose a novel map representation that unifies a continuous signed distance field and a Gaussian splatting radiance field within an elastic and compact point-based implicit neural map. By enforcing geometric consistency between these fields, we achieve mutual improvements by exploiting both modalities. We present a novel LiDAR-visual SLAM system called PINGS using the proposed map representation and evaluate it on several challenging large-scale datasets. Experimental results demonstrate that PINGS can incrementally build globally consistent distance and radiance fields encoded with a compact set of neural points. Compared to state-of-the-art methods, PINGS achieves superior photometric and geometric rendering at novel views by constraining the radiance field with the distance field. Furthermore, by utilizing dense photometric cues and multi-view consistency from the radiance field, PINGS produces more accurate distance fields, leading to improved odometry estimation and mesh reconstruction. We also provide an open-source implementation of PING at: https://github.com/PRBonn/PINGS.

Authors:Kaizhen Zhu, Mokai Pan, Yuexin Ma, Yanwei Fu, Jingyi Yu, Jingya Wang, Ye Shi
Title: UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control
Abstract:
Recent advances in diffusion bridge models leverage Doob's $h$-transform to establish fixed endpoints between distributions, demonstrating promising results in image translation and restoration tasks. However, these approaches frequently produce blurred or excessively smoothed image details and lack a comprehensive theoretical foundation to explain these shortcomings. To address these limitations, we propose UniDB, a unified framework for diffusion bridges based on Stochastic Optimal Control (SOC). UniDB formulates the problem through an SOC-based optimization and derives a closed-form solution for the optimal controller, thereby unifying and generalizing existing diffusion bridge models. We demonstrate that existing diffusion bridges employing Doob's $h$-transform constitute a special case of our framework, emerging when the terminal penalty coefficient in the SOC cost function tends to infinity. By incorporating a tunable terminal penalty coefficient, UniDB achieves an optimal balance between control costs and terminal penalties, substantially improving detail preservation and output quality. Notably, UniDB seamlessly integrates with existing diffusion bridge models, requiring only minimal code modifications. Extensive experiments across diverse image restoration tasks validate the superiority and adaptability of the proposed framework. Our code is available at https://github.com/UniDB-SOC/UniDB/.

Authors:Donghui Feng, Zhengxue Cheng, Shen Wang, Ronghua Wu, Hongwei Hu, Guo Lu, Li Song
Title: Linear Attention Modeling for Learned Image Compression
Abstract:
Recent years, learned image compression has made tremendous progress to achieve impressive coding efficiency. Its coding gain mainly comes from non-linear neural network-based transform and learnable entropy modeling. However, most studies focus on a strong backbone, and few studies consider a low complexity design. In this paper, we propose LALIC, a linear attention modeling for learned image compression. Specially, we propose to use Bi-RWKV blocks, by utilizing the Spatial Mix and Channel Mix modules to achieve more compact feature extraction, and apply the Conv based Omni-Shift module to adapt to two-dimensional latent representation. Furthermore, we propose a RWKV-based Spatial-Channel ConTeXt model (RWKV-SCCTX), that leverages the Bi-RWKV to modeling the correlation between neighboring features effectively. To our knowledge, our work is the first work to utilize efficient Bi-RWKV models with linear attention for learned image compression. Experimental results demonstrate that our method achieves competitive RD performances by outperforming VTM-9.1 by -15.26%, -15.41%, -17.63% in BD-rate on Kodak, CLIC and Tecnick datasets. The code is available at https://github.com/sjtu-medialab/RwkvCompress .

Authors:Sébastien Mestrallet, Christophe Bourcier, Franck Ledoux
Title: Validity-first automatic polycube labeling for CAD models
Abstract:
For many simulation codes, block-structured hex meshes remain preferred while their automatic generation is unsolved. We investigate the usage of a polycube-based approach. More specifically, we focus on the labeling stage, which consists in assigning each boundary facet to one of the 6 signed principal axis. Similar works are confronted with 2 challenges: over-constraining validity criteria, and the conflated processing of validity criteria with quality metrics. We tackle these obstacles with automatic routines based on semi-global labeling operators. Our approach is successfully tested on CAD models, which are of interest for many numerical simulation problems.

Authors:Seyedamirhossein Talebi, Kaixiong Zhou
Title: Graph Neural Networks for Efficient AC Power Flow Prediction in Power Grids
Abstract:
This paper proposes a novel approach using Graph Neural Networks (GNNs) to solve the AC Power Flow problem in power grids. AC OPF is essential for minimizing generation costs while meeting the operational constraints of the grid. Traditional solvers struggle with scalability, especially in large systems with renewable energy sources. Our approach models the power grid as a graph, where buses are nodes and transmission lines are edges. We explore different GNN architectures, including GCN, GAT, SAGEConv, and GraphConv to predict AC power flow solutions efficiently. Our experiments on IEEE test systems show that GNNs can accurately predict power flow solutions and scale to larger systems, outperforming traditional solvers in terms of computation time. This work highlights the potential of GNNs for real-time power grid management, with future plans to apply the model to even larger grid systems.

Authors:Miroslav Štrupl, Oleg Szehr, Francesco Faccio, Dylan R. Ashley, Rupesh Kumar Srivastava, Jürgen Schmidhuber
Title: On the Convergence and Stability of Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning, and Online Decision Transformers
Abstract:
This article provides a rigorous analysis of convergence and stability of Episodic Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning and Online Decision Transformers. These algorithms performed competitively across various benchmarks, from games to robotic tasks, but their theoretical understanding is limited to specific environmental conditions. This work initiates a theoretical foundation for algorithms that build on the broad paradigm of approaching reinforcement learning through supervised learning or sequence modeling. At the core of this investigation lies the analysis of conditions on the underlying environment, under which the algorithms can identify optimal solutions. We also assess whether emerging solutions remain stable in situations where the environment is subject to tiny levels of noise. Specifically, we study the continuity and asymptotic convergence of command-conditioned policies, values and the goal-reaching objective depending on the transition kernel of the underlying Markov Decision Process. We demonstrate that near-optimal behavior is achieved if the transition kernel is located in a sufficiently small neighborhood of a deterministic kernel. The mentioned quantities are continuous (with respect to a specific topology) at deterministic kernels, both asymptotically and after a finite number of learning cycles. The developed methods allow us to present the first explicit estimates on the convergence and stability of policies and values in terms of the underlying transition kernels. On the theoretical side we introduce a number of new concepts to reinforcement learning, like working in segment spaces, studying continuity in quotient topologies and the application of the fixed-point theory of dynamical systems. The theoretical study is accompanied by a detailed investigation of example environments and numerical experiments.

Authors:Diego Calanzone, Pierluca D'Oro, Pierre-Luc Bacon
Title: Mol-MoE: Training Preference-Guided Routers for Molecule Generation
Abstract:
Recent advances in language models have enabled framing molecule generation as sequence modeling. However, existing approaches often rely on single-objective reinforcement learning, limiting their applicability to real-world drug design, where multiple competing properties must be optimized. Traditional multi-objective reinforcement learning (MORL) methods require costly retraining for each new objective combination, making rapid exploration of trade-offs impractical. To overcome these limitations, we introduce Mol-MoE, a mixture-of-experts (MoE) architecture that enables efficient test-time steering of molecule generation without retraining. Central to our approach is a preference-based router training objective that incentivizes the router to combine experts in a way that aligns with user-specified trade-offs. This provides improved flexibility in exploring the chemical property space at test time, facilitating rapid trade-off exploration. Benchmarking against state-of-the-art methods, we show that Mol-MoE achieves superior sample quality and steerability.

Authors:Xiao Wang, Qingquan Yang, Fuling Wang, Qiang Chen, Wentao Wu, Yu Jin, Jingtao Jiang, Liye Jin, Bo Jiang, Dengdi Sun, Wanli Lv, Meiwen Chen, Zehua Chen, Guosheng Xu, Jin Tang
Title: XiHeFusion: Harnessing Large Language Models for Science Communication in Nuclear Fusion
Abstract:
Nuclear fusion is one of the most promising ways for humans to obtain infinite energy. Currently, with the rapid development of artificial intelligence, the mission of nuclear fusion has also entered a critical period of its development. How to let more people to understand nuclear fusion and join in its research is one of the effective means to accelerate the implementation of fusion. This paper proposes the first large model in the field of nuclear fusion, XiHeFusion, which is obtained through supervised fine-tuning based on the open-source large model Qwen2.5-14B. We have collected multi-source knowledge about nuclear fusion tasks to support the training of this model, including the common crawl, eBooks, arXiv, dissertation, etc. After the model has mastered the knowledge of the nuclear fusion field, we further used the chain of thought to enhance its logical reasoning ability, making XiHeFusion able to provide more accurate and logical answers. In addition, we propose a test questionnaire containing 180+ questions to assess the conversational ability of this science popularization large model. Extensive experimental results show that our nuclear fusion dialogue model, XiHeFusion, can perform well in answering science popularization knowledge. The pre-trained XiHeFusion model is released on https://github.com/Event-AHU/XiHeFusion.

Authors:Jiale Dong, Wenqi Lou, Zhendong Zheng, Yunji Qin, Lei Gong, Chao Wang, Xuehai Zhou
Title: UbiMoE: A Ubiquitous Mixture-of-Experts Vision Transformer Accelerator With Hybrid Computation Pattern on FPGA
Abstract:
Compared to traditional Vision Transformers (ViT), Mixture-of-Experts Vision Transformers (MoE-ViT) are introduced to scale model size without a proportional increase in computational complexity, making them a new research focus. Given the high performance and reconfigurability, FPGA-based accelerators for MoE-ViT emerge, delivering substantial gains over general-purpose processors. However, existing accelerators often fall short of fully exploring the design space, leading to suboptimal trade-offs between resource utilization and performance. To overcome this problem, we introduce UbiMoE, a novel end-to-end FPGA accelerator tailored for MoE-ViT. Leveraging the unique computational and memory access patterns of MoE-ViTs, we develop a latency-optimized streaming attention kernel and a resource-efficient reusable linear kernel, effectively balancing performance and resource consumption. To further enhance design efficiency, we propose a two-stage heuristic search algorithm that optimally tunes hardware parameters for various FPGA resource constraints. Compared to state-of-the-art (SOTA) FPGA designs, UbiMoE achieves 1.34x and 3.35x throughput improvements for MoE-ViT on Xilinx ZCU102 and Alveo U280 platforms, respectively, while enhancing energy efficiency by 1.75x and 1.54x. Our implementation is available at https://github.com/DJ000011/UbiMoE.

Authors:Shiao Wang, Xiao Wang, Chao Wang, Liye Jin, Lin Zhu, Bo Jiang, Yonghong Tian, Jin Tang
Title: Event Stream-based Visual Object Tracking: HDETrack V2 and A High-Definition Benchmark
Abstract:
We then introduce a novel hierarchical knowledge distillation strategy that incorporates the similarity matrix, feature representation, and response map-based distillation to guide the learning of the student Transformer network. We also enhance the model's ability to capture temporal dependencies by applying the temporal Fourier transform to establish temporal relationships between video frames. We adapt the network model to specific target objects during testing via a newly proposed test-time tuning strategy to achieve high performance and flexibility in target tracking. Recognizing the limitations of existing event-based tracking datasets, which are predominantly low-resolution, we propose EventVOT, the first large-scale high-resolution event-based tracking dataset. It comprises 1141 videos spanning diverse categories such as pedestrians, vehicles, UAVs, ping pong, etc. Extensive experiments on both low-resolution (FE240hz, VisEvent, FELT), and our newly proposed high-resolution EventVOT dataset fully validated the effectiveness of our proposed method. Both the benchmark dataset and source code have been released on https://github.com/Event-AHU/EventVOT_Benchmark

Authors:Marian Lupascu, Ana-Cristina Rogoz, Mihai Sorin Stupariu, Radu Tudor Ionescu
Title: Large Multimodal Models for Low-Resource Languages: A Survey
Abstract:
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 106 studies across 75 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. We aim to provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.

Authors:Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yu Chen, Yuntian Liu, Yang Jiao, Tao Luo
Title: ATLAS: Autoformalizing Theorems through Lifting, Augmentation, and Synthesis of Data
Abstract:
Autoformalization, the automatic translation of mathematical content from natural language into machine-verifiable formal languages, has seen significant progress driven by advances in large language models (LLMs). Nonetheless, a primary barrier to further improvements is the limited availability of parallel corpora that map informal mathematical text to its formal counterpart. To address this limitation, we propose ATLAS (Autoformalizing Theorems through Lifting, Augmentation, and Synthesis of Data), a novel data generation framework designed to produce large-scale, high-quality parallel corpora of theorem statements. Distinct from prior approaches, ATLAS begins with a concept repository, accelerates the improvement of the student model through expert iteration combined with knowledge distillation, and introduces two novel augmentation strategies that exploit the structural characteristics of formal languages. Running the proposed ATLAS framework for 10 iterations, we construct an undergraduate-level dataset of 117k theorem statements and develop the ATLAS Translator by fine-tuning Llama3.1-8B-Instruct with LoRA. This model establishes a new state of the art, demonstrating statistically significant improvements over both the Herald Translator and the Kimina-Autoformalizer across all benchmarks (p<0.05, two-sided t-test). Furthermore, we demonstrate that the full-parameter fine-tuning of a stronger base model on the ATLAS dataset leads to superior performance. The datasets, model, and code are available at https://github.com/XiaoyangLiu-sjtu/ATLAS.

Authors:Jingang Qu, David Holzmüller, Gaël Varoquaux, Marine Le Morvan
Title: TabICL: A Tabular Foundation Model for In-Context Learning on Large Data
Abstract:
The long-standing dominance of gradient-boosted decision trees on tabular data is currently challenged by tabular foundation models using In-Context Learning (ICL): setting the training data as context for the test data and predicting in a single forward pass without parameter updates. While TabPFNv2 foundation model excels on tables with up to 10K samples, its alternating column- and row-wise attentions make handling large training sets computationally prohibitive. So, can ICL be effectively scaled and deliver a benefit for larger tables? We introduce TabICL, a tabular foundation model for classification, pretrained on synthetic datasets with up to 60K samples and capable of handling 500K samples on affordable resources. This is enabled by a novel two-stage architecture: a column-then-row attention mechanism to build fixed-dimensional embeddings of rows, followed by a transformer for efficient ICL. Across 200 classification datasets from the TALENT benchmark, TabICL is on par with TabPFNv2 while being systematically faster (up to 10 times), and significantly outperforms all other approaches. On 53 datasets with over 10K samples, TabICL surpasses both TabPFNv2 and CatBoost, demonstrating the potential of ICL for large data. Pretraining code, inference code, and pre-trained models are available at https://github.com/soda-inria/tabicl.

Authors:Qirui Wu, Shizhou Zhang, De Cheng, Yinghui Xing, Di Xu, Peng Wang, Yanning Zhang
Title: Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector
Abstract:
Catastrophic forgetting is a critical chanllenge for incremental object detection (IOD). Most existing methods treat the detector monolithically, relying on instance replay or knowledge distillation without analyzing component-specific forgetting. Through dissection of Faster R-CNN, we reveal a key insight: Catastrophic forgetting is predominantly localized to the RoI Head classifier, while regressors retain robustness across incremental stages. This finding challenges conventional assumptions, motivating us to develop a framework termed NSGP-RePRE. Regional Prototype Replay (RePRE) mitigates classifier forgetting via replay of two types of prototypes: coarse prototypes represent class-wise semantic centers of RoI features, while fine-grained prototypes model intra-class variations. Null Space Gradient Projection (NSGP) is further introduced to eliminate prototype-feature misalignment by updating the feature extractor in directions orthogonal to subspace of old inputs via gradient projection, aligning RePRE with incremental learning dynamics. Our simple yet effective design allows NSGP-RePRE to achieve state-of-the-art performance on the Pascal VOC and MS COCO datasets under various settings. Our work not only advances IOD methodology but also provide pivotal insights for catastrophic forgetting mitigation in IOD. Code is available at \href{https://github.com/fanrena/NSGP-RePRE}{https://github.com/fanrena/NSGP-RePRE} .

Authors:Zinan Lin, Tadas Baltrusaitis, Wenyu Wang, Sergey Yekhanin
Title: Differentially Private Synthetic Data via APIs 3: Using Simulators Instead of Foundation Model
Abstract:
Differentially private (DP) synthetic data, which closely resembles the original private data while maintaining strong privacy guarantees, has become a key tool for unlocking the value of private data without compromising privacy. Recently, Private Evolution (PE) has emerged as a promising method for generating DP synthetic data. Unlike other training-based approaches, PE only requires access to inference APIs from foundation models, enabling it to harness the power of state-of-the-art (SoTA) models. However, a suitable foundation model for a specific private data domain is not always available. In this paper, we discover that the PE framework is sufficiently general to allow APIs beyond foundation models. In particular, we demonstrate that many SoTA data synthesizers that do not rely on neural networks--such as computer graphics-based image generators, which we refer to as simulators--can be effectively integrated into PE. This insight significantly broadens PE's applicability and unlocks the potential of powerful simulators for DP data synthesis. We explore this approach, named Sim-PE, in the context of image synthesis. Across four diverse simulators, Sim-PE performs well, improving the downstream classification accuracy of PE by up to 3x, reducing FID by up to 80%, and offering much greater efficiency. We also show that simulators and foundation models can be easily leveraged together within PE to achieve further improvements. The code is open-sourced in the Private Evolution Python library: https://github.com/microsoft/DPSDA.

Authors:Qianteng Zhu, Gert Aarts, Wei Wang, Kai Zhou, Lingxiao Wang
Title: Physics-Conditioned Diffusion Models for Lattice Gauge Theory
Abstract:
We develop diffusion models for simulating lattice gauge theories, where stochastic quantization is explicitly incorporated as a physical condition for sampling. We demonstrate the applicability of this novel sampler to U(1) gauge theory in two spacetime dimensions and find that a model trained at a small inverse coupling constant can be extrapolated to larger inverse coupling regions without encountering the topological freezing problem. Additionally, the trained model can be employed to sample configurations on different lattice sizes without requiring further training. The exactness of the generated samples is ensured by incorporating Metropolis-adjusted Langevin dynamics into the generation process. Furthermore, we demonstrate that this approach enables more efficient sampling of topological quantities compared to traditional algorithms such as Hybrid Monte Carlo and Langevin simulations.

Authors:Yongfan Chen, Xiuwen Zhu, Tianyu Li
Title: A Physical Coherence Benchmark for Evaluating Video Generation Models via Optical Flow-guided Frame Prediction
Abstract:
Recent advances in video generation models demonstrate their potential as world simulators, but they often struggle with videos deviating from physical laws, a key concern overlooked by most text-to-video benchmarks. We introduce a benchmark designed specifically to assess the Physical Coherence of generated videos, PhyCoBench. Our benchmark includes 120 prompts covering 7 categories of physical principles, capturing key physical laws observable in video content. We evaluated four state-of-the-art (SoTA) T2V models on PhyCoBench and conducted manual assessments. Additionally, we propose an automated evaluation model: PhyCoPredictor, a diffusion model that generates optical flow and video frames in a cascade manner. Through a consistency evaluation comparing automated and manual sorting, the experimental results show that PhyCoPredictor currently aligns most closely with human evaluation. Therefore, it can effectively evaluate the physical coherence of videos, providing insights for future model optimization. Our benchmark, including physical coherence prompts, the automatic evaluation tool PhyCoPredictor, and the generated video dataset, has been released on GitHub at https://github.com/Jeckinchen/PhyCoBench.

Authors:Zhiqiang Liu, Chengtao Gan, Junjie Wang, Yichi Zhang, Zhongpu Bo, Mengshu Sun, Huajun Chen, Wen Zhang
Title: OntoTune: Ontology-Driven Self-training for Aligning Large Language Models
Abstract:
Existing domain-specific Large Language Models (LLMs) are typically developed by fine-tuning general-purposed LLMs with large-scale domain-specific corpora. However, training on large-scale corpora often fails to effectively organize domain knowledge of LLMs, leading to fragmented understanding. Inspired by how humans connect concepts and organize knowledge through mind maps, we aim to emulate this approach by using ontology with hierarchical conceptual knowledge to reorganize LLM's domain knowledge. From this perspective, we propose an ontology-driven self-training framework called OntoTune, which aims to align LLMs with ontology through in-context learning, enabling the generation of responses guided by the ontology. We leverage in-context learning to identify whether the LLM has acquired the specific concept's ontology knowledge, and select the entries not yet mastered by LLM as the training set to further align the LLM with ontology. Compared to existing domain LLMs based on newly collected large-scale domain-specific corpora, our OntoTune, which relies on the existing, long-term developed ontology and LLM itself, significantly reduces data maintenance costs and offers improved generalization ability. We conduct our study in the medical domain to evaluate the effectiveness of OntoTune, utilizing a standardized medical ontology, SNOMED CT as our ontology source. Experimental results demonstrate that OntoTune achieves state-of-the-art performance in both in-ontology task hypernym discovery and out-of-ontology task medical domain QA. Moreover, compared to the latest direct ontology injection method TaxoLLaMA, our OntoTune better preserves original knowledge of LLM. The code and data are available at https://github.com/zjukg/OntoTune.

Authors:Shengdong Zhang, Fan Jia, Xiang Li, Hao Zhang, Jun Shi, Liyan Ma, Shihui Ying
Title: LMS-Net: A Learned Mumford-Shah Network For Few-Shot Medical Image Segmentation
Abstract:
Few-shot semantic segmentation (FSS) methods have shown great promise in handling data-scarce scenarios, particularly in medical image segmentation tasks. However, most existing FSS architectures lack sufficient interpretability and fail to fully incorporate the underlying physical structures of semantic regions. To address these issues, in this paper, we propose a novel deep unfolding network, called the Learned Mumford-Shah Network (LMS-Net), for the FSS task. Specifically, motivated by the effectiveness of pixel-to-prototype comparison in prototypical FSS methods and the capability of deep priors to model complex spatial structures, we leverage our learned Mumford-Shah model (LMS model) as a mathematical foundation to integrate these insights into a unified framework. By reformulating the LMS model into prototype update and mask update tasks, we propose an alternating optimization algorithm to solve it efficiently. Further, the iterative steps of this algorithm are unfolded into corresponding network modules, resulting in LMS-Net with clear interpretability. Comprehensive experiments on three publicly available medical segmentation datasets verify the effectiveness of our method, demonstrating superior accuracy and robustness in handling complex structures and adapting to challenging segmentation scenarios. These results highlight the potential of LMS-Net to advance FSS in medical imaging applications. Our code will be available at: https://github.com/SDZhang01/LMSNet

Authors:Shadab Ahamed, Simon Ghyselincks, Pablo Chang Huang Arias, Julian Kloiber, Yasin Ranjbar, Jingrong Tang, Niloufar Zakariaei, Eldad Haber
Title: Inversion of Magnetic Data using Learned Dictionaries and Scale Space
Abstract:
Magnetic data inversion is an important tool in geophysics, used to infer subsurface magnetic susceptibility distributions from surface magnetic field measurements. This inverse problem is inherently ill-posed, characterized by non-unique solutions, depth ambiguity, and sensitivity to noise. Traditional inversion approaches rely on predefined regularization techniques to stabilize solutions, limiting their adaptability to complex or diverse geological scenarios. In this study, we propose an approach that integrates variable dictionary learning and scale-space methods to address these challenges. Our method employs learned dictionaries, allowing for adaptive representation of complex subsurface features that are difficult to capture with predefined bases. Additionally, we extend classical variational inversion by incorporating multi-scale representations through a scale-space framework, enabling the progressive introduction of structural detail while mitigating overfitting. We implement both fixed and dynamic dictionary learning techniques, with the latter introducing iteration-dependent dictionaries for enhanced flexibility. Using a synthetic dataset to simulate geological scenarios, we demonstrate significant improvements in reconstruction accuracy and robustness compared to conventional variational and dictionary-based methods. Our results highlight the potential of learned dictionaries, especially when coupled with scale-space dynamics, to improve model recovery and noise handling. These findings underscore the promise of our data-driven approach for advance magnetic data inversion and its applications in geophysical exploration, environmental assessment, and mineral prospecting. The code is publicly available at: https://github.com/ahxmeds/magnetic-inversion-dictionary.git.

Authors:Xuanyu Tian, Lixuan Chen, Qing Wu, Chenhe Du, Jingjing Shi, Hongjiang Wei, Yuyao Zhang
Title: Unsupervised Self-Prior Embedding Neural Representation for Iterative Sparse-View CT Reconstruction
Abstract:
Emerging unsupervised implicit neural representation (INR) methods, such as NeRP, NeAT, and SCOPE, have shown great potential to address sparse-view computed tomography (SVCT) inverse problems. Although these INR-based methods perform well in relatively dense SVCT reconstructions, they struggle to achieve comparable performance to supervised methods in sparser SVCT scenarios. They are prone to being affected by noise, limiting their applicability in real clinical settings. Additionally, current methods have not fully explored the use of image domain priors for solving SVCsT inverse problems. In this work, we demonstrate that imperfect reconstruction results can provide effective image domain priors for INRs to enhance performance. To leverage this, we introduce Self-prior embedding neural representation (Spener), a novel unsupervised method for SVCT reconstruction that integrates iterative reconstruction algorithms. During each iteration, Spener extracts local image prior features from the previous iteration and embeds them to constrain the solution space. Experimental results on multiple CT datasets show that our unsupervised Spener method achieves performance comparable to supervised state-of-the-art (SOTA) methods on in-domain data while outperforming them on out-of-domain datasets. Moreover, Spener significantly improves the performance of INR-based methods in handling SVCT with noisy sinograms. Our code is available at https://github.com/MeijiTian/Spener.

Authors:Vanshali Sharma, Debesh Jha, M. K. Bhuyan, Pradip K. Das, Ulas Bagci
Title: Diverse Image Generation with Diffusion Models and Cross Class Label Learning for Polyp Classification
Abstract:
Pathologic diagnosis is a critical phase in deciding the optimal treatment procedure for dealing with colorectal cancer (CRC). Colonic polyps, precursors to CRC, can pathologically be classified into two major types: adenomatous and hyperplastic. For precise classification and early diagnosis of such polyps, the medical procedure of colonoscopy has been widely adopted paired with various imaging techniques, including narrow band imaging and white light imaging. However, the existing classification techniques mainly rely on a single imaging modality and show limited performance due to data scarcity. Recently, generative artificial intelligence has been gaining prominence in overcoming such issues. Additionally, various generation-controlling mechanisms using text prompts and images have been introduced to obtain visually appealing and desired outcomes. However, such mechanisms require class labels to make the model respond efficiently to the provided control input. In the colonoscopy domain, such controlling mechanisms are rarely explored; specifically, the text prompt is a completely uninvestigated area. Moreover, the unavailability of expensive class-wise labels for diverse sets of images limits such explorations. Therefore, we develop a novel model, PathoPolyp-Diff, that generates text-controlled synthetic images with diverse characteristics in terms of pathology, imaging modalities, and quality. We introduce cross-class label learning to make the model learn features from other classes, reducing the burdensome task of data annotation. The experimental results report an improvement of up to 7.91% in balanced accuracy using a publicly available dataset. Moreover, cross-class label learning achieves a statistically significant improvement of up to 18.33% in balanced accuracy during video-level analysis. The code is available at https://github.com/Vanshali/PathoPolyp-Diff.

Authors:Dylan Waldner, Risto Miikkulainen
Title: The Odyssey of the Fittest: Can Agents Survive and Still Be Good?
Abstract:
As AI models grow in power and generality, understanding how agents learn and make decisions in complex environments is critical to promoting ethical behavior. This study introduces the Odyssey, a lightweight, adaptive text based adventure game, providing a scalable framework for exploring AI ethics and safety. The Odyssey examines the ethical implications of implementing biological drives, specifically, self preservation, into three different agents. A Bayesian agent optimized with NEAT, a Bayesian agent optimized with stochastic variational inference, and a GPT 4o agent. The agents select actions at each scenario to survive, adapting to increasingly challenging scenarios. Post simulation analysis evaluates the ethical scores of the agent decisions, uncovering the tradeoffs it navigates to survive. Specifically, analysis finds that when danger increases, agents ethical behavior becomes unpredictable. Surprisingly, the GPT 4o agent outperformed the Bayesian models in both survival and ethical consistency, challenging assumptions about traditional probabilistic methods and raising a new challenge to understand the mechanisms of LLMs' probabilistic reasoning.

Authors:Shuheng Zhang, Yuqi Liu, Hongbo Zhou, Jun Peng, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji
Title: AdaFlow: Efficient Long Video Editing via Adaptive Attention Slimming And Keyframe Selection
Abstract:
Despite great progress, text-driven long video editing is still notoriously challenging mainly due to excessive memory overhead. Although recent efforts have simplified this task into a two-step process of keyframe translation and interpolation generation, the token-wise keyframe translation still plagues the upper limit of video length. In this paper, we propose a novel and training-free approach towards efficient and effective long video editing, termed AdaFlow. We first reveal that not all tokens of video frames hold equal importance for keyframe translation, based on which we propose an Adaptive Attention Slimming scheme for AdaFlow to squeeze the $KV$ sequence, thus increasing the number of keyframes for translations by an order of magnitude. In addition, an Adaptive Keyframe Selection scheme is also equipped to select the representative frames for joint editing, further improving generation quality. With these innovative designs, AdaFlow achieves high-quality long video editing of minutes in one inference, i.e., more than 1$k$ frames on one A800 GPU, which is about ten times longer than the compared methods, e.g., TokenFlow. To validate AdaFlow, we also build a new benchmark for long video editing with high-quality annotations, termed LongV-EVAL. Our code is released at: https://github.com/jidantang55/AdaFlow.

Authors:Chenkai Xu, Xu Wang, Zhenyi Liao, Yishun Li, Tianqi Hou, Zhijie Deng
Title: UniCMs: A Unified Consistency Model For Efficient Multimodal Generation and Understanding
Abstract:
Consistency models (CMs) have shown promise in the efficient generation of both image and text. This raises the natural question of whether we can learn a unified CM for efficient multimodal generation (e.g., text-to-image) and understanding (e.g., image-to-text). Intuitively, such a model could be acquired by applying the consistency distillation (CD) to existing unified multimodal models. However, the key challenge is establishing a unified denoising perspective for both image and text generation, which is essential for establishing the consistency mapping. To tackle this, at the representation level, we advocate for discrete tokens for both modalities to best preserve language modeling capabilities. Critically, instead of defining the text denoising trajectory via recent discrete diffusion language modeling principles, we specify it using the parallel decoding trace of an autoregressive language model, benefiting from the latter's superior performance in general text generation tasks. The denoising trajectory of image tokens adheres to standard discrete diffusion. We train our unified consistency models (UniCMs) on these combined multimodal trajectories simultaneously with a unified objective. We introduce a trajectory segmentation strategy to further improve the training convergence. Empirically, in text-to-image generation, UniCMs outperform SD3 on GenEval, Image Reward, and CLIP Score metrics, while requiring only approximately ${1}/{8}$ of the sampling time. Meanwhile, in image-to-text generation, UniCMs surpass Show-o on the MMMU benchmark while being $1.5 \times$ faster at long-sequence generating speed. The code is available at https://github.com/zhijie-group/UniCMs.

Authors:William Huey, Huaxiaoyue Wang, Anne Wu, Yoav Artzi, Sanjiban Choudhury
Title: Imitation Learning from a Single Temporally Misaligned Video
Abstract:
We examine the problem of learning sequential tasks from a single visual demonstration. A key challenge arises when demonstrations are temporally misaligned due to variations in timing, differences in embodiment, or inconsistencies in execution. Existing approaches treat imitation as a distribution-matching problem, aligning individual frames between the agent and the demonstration. However, we show that such frame-level matching fails to enforce temporal ordering or ensure consistent progress. Our key insight is that matching should instead be defined at the level of sequences. We propose that perfect matching occurs when one sequence successfully covers all the subgoals in the same order as the other sequence. We present ORCA (ORdered Coverage Alignment), a dense per-timestep reward function that measures the probability of the agent covering demonstration frames in the correct order. On temporally misaligned demonstrations, we show that agents trained with the ORCA reward achieve $4.5$x improvement ($0.11 \rightarrow 0.50$ average normalized returns) for Meta-world tasks and $6.6$x improvement ($6.55 \rightarrow 43.3$ average returns) for Humanoid-v4 tasks compared to the best frame-level matching algorithms. We also provide empirical analysis showing that ORCA is robust to varying levels of temporal misalignment. Our code is available at https://github.com/portal-cornell/orca/

Authors:Chongyu Fan, Jinghan Jia, Yihua Zhang, Anil Ramakrishna, Mingyi Hong, Sijia Liu
Title: Towards LLM Unlearning Resilient to Relearning Attacks: A Sharpness-Aware Minimization Perspective and Beyond
Abstract:
The LLM unlearning technique has recently been introduced to comply with data regulations and address the safety and ethical concerns of LLMs by removing the undesired data-model influence. However, state-of-the-art unlearning methods face a critical vulnerability: they are susceptible to ``relearning'' the removed information from a small number of forget data points, known as relearning attacks. In this paper, we systematically investigate how to make unlearned models robust against such attacks. For the first time, we establish a connection between robust unlearning and sharpness-aware minimization (SAM) through a unified robust optimization framework, in an analogy to adversarial training designed to defend against adversarial attacks. Our analysis for SAM reveals that smoothness optimization plays a pivotal role in mitigating relearning attacks. Thus, we further explore diverse smoothing strategies to enhance unlearning robustness. Extensive experiments on benchmark datasets, including WMDP and MUSE, demonstrate that SAM and other smoothness optimization approaches consistently improve the resistance of LLM unlearning to relearning attacks. Notably, smoothness-enhanced unlearning also helps defend against (input-level) jailbreaking attacks, broadening our proposal's impact in robustifying LLM unlearning. Codes are available at https://github.com/OPTML-Group/Unlearn-Smooth.

Authors:Yitian Long, Zhongze Wu, Xiu Su, Lining Yu, Ruining Deng, Haichun Yang, Yuankai Huo
Title: Towards Fine-grained Renal Vasculature Segmentation: Full-Scale Hierarchical Learning with FH-Seg
Abstract:
Accurate fine-grained segmentation of the renal vasculature is critical for nephrological analysis, yet it faces challenges due to diverse and insufficiently annotated images. Existing methods struggle to accurately segment intricate regions of the renal vasculature, such as the inner and outer walls, arteries and lesions. In this paper, we introduce FH-Seg, a Full-scale Hierarchical Learning Framework designed for comprehensive segmentation of the renal vasculature. Specifically, FH-Seg employs full-scale skip connections that merge detailed anatomical information with contextual semantics across scales, effectively bridging the gap between structural and pathological contexts. Additionally, we implement a learnable hierarchical soft attention gates to adaptively reduce interference from non-core information, enhancing the focus on critical vascular features. To advance research on renal pathology segmentation, we also developed a Large Renal Vasculature (LRV) dataset, which contains 16,212 fine-grained annotated images of 5,600 renal arteries. Extensive experiments on the LRV dataset demonstrate FH-Seg's superior accuracies (71.23% Dice, 73.06% F1), outperforming Omni-Seg by 2.67 and 2.13 percentage points respectively. Code is available at: https://github.com/hrlblab/FH-seg.

Authors:Mukesh Ghimire, Zhe Xu, Yi Ren
Title: Two-Player Zero-Sum Differential Games with One-Sided Information
Abstract:
Unlike Poker where the action space $\mathcal{A}$ is discrete, differential games in the physical world often have continuous action spaces not amenable to discrete abstraction, rendering no-regret algorithms with $\mathcal{O}(|\mathcal{A}|)$ complexity not scalable. To address this challenge within the scope of two-player zero-sum (2p0s) games with one-sided information, we show that (1) a computational complexity independent of $|\mathcal{A}|$ can be achieved by exploiting the convexification property of incomplete-information games and the Isaacs' condition that commonly holds for dynamical systems, and that (2) the computation of the two equilibrium strategies can be decoupled under one-sidedness of information. Leveraging these insights, we develop an algorithm that successfully approximates the optimal strategy in a homing game. Code available in https://github.com/ghimiremukesh/cams/tree/workshop

Authors:Yuting He, Boyu Wang, Rongjun Ge, Yang Chen, Guanyu Yang, Shuo Li
Title: Homeomorphism Prior for False Positive and Negative Problem in Medical Image Dense Contrastive Representation Learning
Abstract:
Dense contrastive representation learning (DCRL) has greatly improved the learning efficiency for image-dense prediction tasks, showing its great potential to reduce the large costs of medical image collection and dense annotation. However, the properties of medical images make unreliable correspondence discovery, bringing an open problem of large-scale false positive and negative (FP&N) pairs in DCRL. In this paper, we propose GEoMetric vIsual deNse sImilarity (GEMINI) learning which embeds the homeomorphism prior to DCRL and enables a reliable correspondence discovery for effective dense contrast. We propose a deformable homeomorphism learning (DHL) which models the homeomorphism of medical images and learns to estimate a deformable mapping to predict the pixels' correspondence under topological preservation. It effectively reduces the searching space of pairing and drives an implicit and soft learning of negative pairs via a gradient. We also propose a geometric semantic similarity (GSS) which extracts semantic information in features to measure the alignment degree for the correspondence learning. It will promote the learning efficiency and performance of deformation, constructing positive pairs reliably. We implement two practical variants on two typical representation learning tasks in our experiments. Our promising results on seven datasets which outperform the existing methods show our great superiority. We will release our code on a companion link: https://github.com/YutingHe-list/GEMINI.

Authors:Weihua Du, Yiming Yang, Sean Welleck
Title: Optimizing Temperature for Language Models with Multi-Sample Inference
Abstract:
Multi-sample aggregation strategies, such as majority voting and best-of-N sampling, are widely used in contemporary large language models (LLMs) to enhance predictive accuracy across various tasks. A key challenge in this process is temperature selection, which significantly impacts model performance. Existing approaches either rely on a fixed default temperature or require labeled validation data for tuning, which are often scarce and difficult to obtain. This paper addresses the challenge of automatically identifying the (near)-optimal temperature for different LLMs using multi-sample aggregation strategies, without relying on task-specific validation data. We provide a comprehensive analysis of temperature's role in performance optimization, considering variations in model architectures, datasets, task types, model sizes, and predictive accuracy. Furthermore, we propose a novel entropy-based metric for automated temperature optimization, which consistently outperforms fixed-temperature baselines. Additionally, we incorporate a stochastic process model to enhance interpretability, offering deeper insights into the relationship between temperature and model performance.

Authors:Gonzalo Gonzalez-Pumariega, Leong Su Yean, Neha Sunkara, Sanjiban Choudhury
Title: Robotouille: An Asynchronous Planning Benchmark for LLM Agents
Abstract:
Effective asynchronous planning, or the ability to efficiently reason and plan over states and actions that must happen in parallel or sequentially, is essential for agents that must account for time delays, reason over diverse long-horizon tasks, and collaborate with other agents. While large language model (LLM) agents show promise in high-level task planning, current benchmarks focus primarily on short-horizon tasks and do not evaluate such asynchronous planning capabilities. We introduce Robotouille, a challenging benchmark environment designed to test LLM agents' ability to handle long-horizon asynchronous scenarios. Our synchronous and asynchronous datasets capture increasingly complex planning challenges that go beyond existing benchmarks, requiring agents to manage overlapping tasks and interruptions. Our results show that ReAct (gpt4-o) achieves 47% on synchronous tasks but only 11% on asynchronous tasks, highlighting significant room for improvement. We further analyze failure modes, demonstrating the need for LLM agents to better incorporate long-horizon feedback and self-audit their reasoning during task execution. Code is available at https://github.com/portal-cornell/robotouille.

Authors:Jun Pyo Seo
Title: Blackout DIFUSCO
Abstract:
This study explores the integration of Blackout Diffusion into the DIFUSCO framework for combinatorial optimization, specifically targeting the Traveling Salesman Problem (TSP). Inspired by the success of discrete-time diffusion models (D3PM) in maintaining structural integrity, we extend the paradigm to a continuous-time framework, leveraging the unique properties of Blackout Diffusion. Continuous-time modeling introduces smoother transitions and refined control, hypothesizing enhanced solution quality over traditional discrete methods. We propose three key improvements to enhance the diffusion process. First, we transition from a discrete-time-based model to a continuous-time framework, providing a more refined and flexible formulation. Second, we refine the observation time scheduling to ensure a smooth and linear transformation throughout the diffusion process, allowing for a more natural progression of states. Finally, building upon the second improvement, we further enhance the reverse process by introducing finer time slices in regions that are particularly challenging for the model, thereby improving accuracy and stability in the reconstruction phase. Although the experimental results did not exceed the baseline performance, they demonstrate the effectiveness of these methods in balancing simplicity and complexity, offering new insights into diffusion-based combinatorial optimization. This work represents the first application of Blackout Diffusion to combinatorial optimization, providing a foundation for further advancements in this domain. * The code is available for review at https://github.com/Giventicket/BlackoutDIFUSCO.

Authors:Xingjun Ma, Yifeng Gao, Yixu Wang, Ruofan Wang, Xin Wang, Ye Sun, Yifan Ding, Hengyuan Xu, Yunhao Chen, Yunhan Zhao, Hanxun Huang, Yige Li, Yutao Wu, Jiaming Zhang, Xiang Zheng, Yang Bai, Zuxuan Wu, Xipeng Qiu, Jingfeng Zhang, Yiming Li, Xudong Han, Haonan Li, Jun Sun, Cong Wang, Jindong Gu, Baoyuan Wu, Siheng Chen, Tianwei Zhang, Yang Liu, Mingming Gong, Tongliang Liu, Shirui Pan, Cihang Xie, Tianyu Pang, Yinpeng Dong, Ruoxi Jia, Yang Zhang, Shiqing Ma, Xiangyu Zhang, Neil Gong, Chaowei Xiao, Sarah Erfani, Tim Baldwin, Bo Li, Masashi Sugiyama, Dacheng Tao, James Bailey, Yu-Gang Jiang
Title: Safety at Scale: A Comprehensive Survey of Large Model and Agent Safety
Abstract:
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-powered Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.

Authors:Shilong Zhang, Wenbo Li, Shoufa Chen, Chongjian Ge, Peize Sun, Yida Zhang, Yi Jiang, Zehuan Yuan, Binyue Peng, Ping Luo
Title: FlashVideo: Flowing Fidelity to Detail for Efficient High-Resolution Video Generation
Abstract:
DiT diffusion models have achieved great success in text-to-video generation, leveraging their scalability in model capacity and data scale. High content and motion fidelity aligned with text prompts, however, often require large model parameters and a substantial number of function evaluations (NFEs). Realistic and visually appealing details are typically reflected in high resolution outputs, further amplifying computational demands especially for single stage DiT models. To address these challenges, we propose a novel two stage framework, FlashVideo, which strategically allocates model capacity and NFEs across stages to balance generation fidelity and quality. In the first stage, prompt fidelity is prioritized through a low resolution generation process utilizing large parameters and sufficient NFEs to enhance computational efficiency. The second stage establishes flow matching between low and high resolutions, effectively generating fine details with minimal NFEs. Quantitative and visual results demonstrate that FlashVideo achieves state-of-the-art high resolution video generation with superior computational efficiency. Additionally, the two-stage design enables users to preview the initial output and accordingly adjust the prompt before committing to full-resolution generation, thereby significantly reducing computational costs and wait times as well as enhancing commercial viability.

Authors:Yunhang Shen, Chaoyou Fu, Shaoqi Dong, Xiong Wang, Yi-Fan Zhang, Peixian Chen, Mengdan Zhang, Haoyu Cao, Ke Li, Xiawu Zheng, Yan Zhang, Yiyi Zhou, Ran He, Caifeng Shan, Rongrong Ji, Xing Sun
Title: Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy
Abstract:
We introduce Long-VITA, a simple yet effective large multi-modal model for long-context visual-language understanding tasks. It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens while delivering advanced performances on short-context multi-modal tasks. We propose an effective multi-modal training schema that starts with large language models and proceeds through vision-language alignment, general knowledge learning, and two sequential stages of long-sequence fine-tuning. We further implement context-parallelism distributed inference and logits-masked language modeling head to scale Long-VITA to infinitely long inputs of images and texts during model inference. Regarding training data, Long-VITA is built on a mix of 17M samples from public datasets only and demonstrates the state-of-the-art performance on various multi-modal benchmarks, compared against recent cutting-edge models with internal data. Long-VITA is fully reproducible and supports both NPU and GPU platforms for training and testing. By leveraging our inference designs, Long-VITA models achieve a remarkable 2x prefill speedup and 4x context length extension in single node with 8 GPUs. We hope Long-VITA can serve as a competitive baseline and offer valuable insights for the open-source community in advancing long-context multi-modal understanding.

Authors:Kaijie Zhu, Xianjun Yang, Jindong Wang, Wenbo Guo, William Yang Wang
Title: MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents
Abstract:
Recent research has explored that LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions. Existing defenses against IPI have significant limitations: either require essential model training resources, lack effectiveness against sophisticated attacks, or harm the normal utilities. We present MELON (Masked re-Execution and TooL comparisON), a novel IPI defense. Our approach builds on the observation that under a successful attack, the agent's next action becomes less dependent on user tasks and more on malicious tasks. Following this, we design MELON to detect attacks by re-executing the agent's trajectory with a masked user prompt modified through a masking function. We identify an attack if the actions generated in the original and masked executions are similar. We also include three key designs to reduce the potential false positives and false negatives. Extensive evaluation on the IPI benchmark AgentDojo demonstrates that MELON outperforms SOTA defenses in both attack prevention and utility preservation. Moreover, we show that combining MELON with a SOTA prompt augmentation defense (denoted as MELON-Aug) further improves its performance. We also conduct a detailed ablation study to validate our key designs. Code is available at https://github.com/kaijiezhu11/MELON.

Authors:Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Jian Tong, Haodong Duan, Qipeng Guo, Jiaqi Wang, Xipeng Qiu, Dahua Lin
Title: VideoRoPE: What Makes for Good Video Rotary Position Embedding?
Abstract:
While Rotary Position Embedding (RoPE) and its variants are widely adopted for their long-context capabilities, the extension of the 1D RoPE to video, with its complex spatio-temporal structure, remains an open challenge. This work first introduces a comprehensive analysis that identifies four key characteristics essential for the effective adaptation of RoPE to video, which have not been fully considered in prior work. As part of our analysis, we introduce a challenging V-NIAH-D (Visual Needle-In-A-Haystack with Distractors) task, which adds periodic distractors into V-NIAH. The V-NIAH-D task demonstrates that previous RoPE variants, lacking appropriate temporal dimension allocation, are easily misled by distractors. Based on our analysis, we introduce \textbf{VideoRoPE}, with a \textit{3D structure} designed to preserve spatio-temporal relationships. VideoRoPE features \textit{low-frequency temporal allocation} to mitigate periodic oscillations, a \textit{diagonal layout} to maintain spatial symmetry, and \textit{adjustable temporal spacing} to decouple temporal and spatial indexing. VideoRoPE consistently surpasses previous RoPE variants, across diverse downstream tasks such as long video retrieval, video understanding, and video hallucination. Our code will be available at \href{https://github.com/Wiselnn570/VideoRoPE}{https://github.com/Wiselnn570/VideoRoPE}.

Authors:Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, Tom Goldstein
Title: Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach
Abstract:
We study a novel language model architecture that is capable of scaling test-time computation by implicitly reasoning in latent space. Our model works by iterating a recurrent block, thereby unrolling to arbitrary depth at test-time. This stands in contrast to mainstream reasoning models that scale up compute by producing more tokens. Unlike approaches based on chain-of-thought, our approach does not require any specialized training data, can work with small context windows, and can capture types of reasoning that are not easily represented in words. We scale a proof-of-concept model to 3.5 billion parameters and 800 billion tokens. We show that the resulting model can improve its performance on reasoning benchmarks, sometimes dramatically, up to a computation load equivalent to 50 billion parameters.

Authors:Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Trung Bui, Ryan A. Rossi, Seunghyun Yoon, Hinrich Schütze
Title: NoLiMa: Long-Context Evaluation Beyond Literal Matching
Abstract:
Recent large language models (LLMs) support long contexts ranging from 128K to 1M tokens. A popular method for evaluating these capabilities is the needle-in-a-haystack (NIAH) test, which involves retrieving a "needle" (relevant information) from a "haystack" (long irrelevant context). Extensions of this approach include increasing distractors, fact chaining, and in-context reasoning. However, in these benchmarks, models can exploit existing literal matches between the needle and haystack to simplify the task. To address this, we introduce NoLiMa, a benchmark extending NIAH with a carefully designed needle set, where questions and needles have minimal lexical overlap, requiring models to infer latent associations to locate the needle within the haystack. We evaluate 13 popular LLMs that claim to support contexts of at least 128K tokens. While they perform well in short contexts (<1K), performance degrades significantly as context length increases. At 32K, for instance, 11 models drop below 50% of their strong short-length baselines. Even GPT-4o, one of the top-performing exceptions, experiences a reduction from an almost-perfect baseline of 99.3% to 69.7%. Our analysis suggests these declines stem from the increased difficulty the attention mechanism faces in longer contexts when literal matches are absent, making it harder to retrieve relevant information. Even models enhanced with reasoning capabilities or CoT prompting struggle to maintain performance in long contexts. We publicly release the dataset and evaluation code at https://github.com/adobe-research/NoLiMa.

Authors:Yihe Deng, Yu Yang, Junkai Zhang, Wei Wang, Bo Li
Title: DuoGuard: A Two-Player RL-Driven Framework for Multilingual LLM Guardrails
Abstract:
The rapid advancement of large language models (LLMs) has increased the need for guardrail models to ensure responsible use, particularly in detecting unsafe and illegal content. While substantial safety data exist in English, multilingual guardrail modeling remains underexplored due to the scarcity of open-source safety data in other languages. To address this gap, we propose a novel two-player Reinforcement Learning (RL) framework, where a generator and a guardrail model co-evolve adversarially to produce high-quality synthetic data for multilingual guardrail training. We theoretically formalize this interaction as a two-player game, proving convergence to a Nash equilibrium. Empirical evaluations show that our model \ours outperforms state-of-the-art models, achieving nearly 10% improvement over LlamaGuard3 (8B) on English benchmarks while being 4.5x faster at inference with a significantly smaller model (0.5B). We achieve substantial advancements in multilingual safety tasks, particularly in addressing the imbalance for lower-resource languages in a collected real dataset. Ablation studies emphasize the critical role of synthetic data generation in bridging the imbalance in open-source data between English and other languages. These findings establish a scalable and efficient approach to synthetic data generation, paving the way for improved multilingual guardrail models to enhance LLM safety. Code, model, and data will be open-sourced at https://github.com/yihedeng9/DuoGuard.

Authors:Shiqin Tang, Shujian Yu, Yining Dong, S. Joe Qin
Title: Deep Dynamic Probabilistic Canonical Correlation Analysis
Abstract:
This paper presents Deep Dynamic Probabilistic Canonical Correlation Analysis (D2PCCA), a model that integrates deep learning with probabilistic modeling to analyze nonlinear dynamical systems. Building on the probabilistic extensions of Canonical Correlation Analysis (CCA), D2PCCA captures nonlinear latent dynamics and supports enhancements such as KL annealing for improved convergence and normalizing flows for a more flexible posterior approximation. D2PCCA naturally extends to multiple observed variables, making it a versatile tool for encoding prior knowledge about sequential datasets and providing a probabilistic understanding of the system's dynamics. Experimental validation on real financial datasets demonstrates the effectiveness of D2PCCA and its extensions in capturing latent dynamics.

Authors:Zefan Yang, Xuanang Xu, Jiajin Zhang, Ge Wang, Mannudeep K. Kalra, Pingkun Yan
Title: Chest X-ray Foundation Model with Global and Local Representations Integration
Abstract:
Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources. We propose a Global and Local Representations Integration (GLoRI) module for downstream adaptations, by incorporating disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibits superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on new tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation and mortality prediction. These results highlight CheXFound's strong generalization capabilities, enabling diverse adaptations with improved label efficiency. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.

Authors:Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
Title: Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound
Abstract:
The quantification of audio aesthetics remains a complex challenge in audio processing, primarily due to its subjective nature, which is influenced by human perception and cultural context. Traditional methods often depend on human listeners for evaluation, leading to inconsistencies and high resource demands. This paper addresses the growing need for automated systems capable of predicting audio aesthetics without human intervention. Such systems are crucial for applications like data filtering, pseudo-labeling large datasets, and evaluating generative audio models, especially as these models become more sophisticated. In this work, we introduce a novel approach to audio aesthetic evaluation by proposing new annotation guidelines that decompose human listening perspectives into four distinct axes. We develop and train no-reference, per-item prediction models that offer a more nuanced assessment of audio quality. Our models are evaluated against human mean opinion scores (MOS) and existing methods, demonstrating comparable or superior performance. This research not only advances the field of audio aesthetics but also provides open-source models and datasets to facilitate future work and benchmarking. We release our code and pre-trained model at: https://github.com/facebookresearch/audiobox-aesthetics

Authors:Xiuyuan Hu, Guoqing Liu, Can Chen, Yang Zhao, Hao Zhang, Xue Liu
Title: 3DMolFormer: A Dual-channel Framework for Structure-based Drug Discovery
Abstract:
Structure-based drug discovery, encompassing the tasks of protein-ligand docking and pocket-aware 3D drug design, represents a core challenge in drug discovery. However, no existing work can deal with both tasks to effectively leverage the duality between them, and current methods for each task are hindered by challenges in modeling 3D information and the limitations of available data. To address these issues, we propose 3DMolFormer, a unified dual-channel transformer-based framework applicable to both docking and 3D drug design tasks, which exploits their duality by utilizing docking functionalities within the drug design process. Specifically, we represent 3D pocket-ligand complexes using parallel sequences of discrete tokens and continuous numbers, and we design a corresponding dual-channel transformer model to handle this format, thereby overcoming the challenges of 3D information modeling. Additionally, we alleviate data limitations through large-scale pre-training on a mixed dataset, followed by supervised and reinforcement learning fine-tuning techniques respectively tailored for the two tasks. Experimental results demonstrate that 3DMolFormer outperforms previous approaches in both protein-ligand docking and pocket-aware 3D drug design, highlighting its promising application in structure-based drug discovery. The code is available at: https://github.com/HXYfighter/3DMolFormer .

Authors:Gorkem Can Ates, Yu Xin, Kuang Gong, Wei Shao
Title: DCFormer: Efficient 3D Vision-Language Modeling with Decomposed Convolutions
Abstract:
Vision-language models (VLMs) have been widely applied to 2D medical image analysis due to their ability to align visual and textual representations. However, extending VLMs to 3D imaging remains computationally challenging. Existing 3D VLMs often rely on Vision Transformers (ViTs), which are computationally expensive due to the quadratic complexity of self-attention, or on 3D convolutions, which require large numbers of parameters and FLOPs as kernel size increases. We introduce DCFormer, an efficient 3D image encoder that factorizes 3D convolutions into three parallel 1D convolutions along the depth, height, and width dimensions. This design preserves spatial information while significantly reducing computational cost. Integrated into a CLIP-based vision-language framework, DCFormer is trained and evaluated on CT-RATE, a dataset of 50,188 paired 3D chest CT volumes and radiology reports. In zero-shot and fine-tuned detection of 18 pathologies, as well as in image-text retrieval tasks, DCFormer consistently outperforms state-of-the-art 3D vision encoders, including CT-ViT, ViT, ConvNeXt, PoolFormer, and TransUNet. These results highlight DCFormer's potential for scalable, clinically deployable 3D medical VLMs. Our code is available at: https://github.com/mirthAI/DCFormer.

Authors:Loïck Chambon, Eloi Zablocki, Alexandre Boulch, Mickaël Chen, Matthieu Cord
Title: GaussRender: Learning 3D Occupancy with Gaussian Rendering
Abstract:
Understanding the 3D geometry and semantics of driving scenes is critical for safe autonomous driving. Recent advances in 3D occupancy prediction have improved scene representation but often suffer from visual inconsistencies, leading to floating artifacts and poor surface localization. Existing voxel-wise losses (e.g., cross-entropy) fail to enforce visible geometric coherence. In this paper, we propose GaussRender, a module that improves 3D occupancy learning by enforcing projective consistency. Our key idea is to project both predicted and ground-truth 3D occupancy into 2D camera views, where we apply supervision. Our method penalizes 3D configurations that produce inconsistent 2D projections, thereby enforcing a more coherent 3D structure. To achieve this efficiently, we leverage differentiable rendering with Gaussian splatting. GaussRender seamlessly integrates with existing architectures while maintaining efficiency and requiring no inference-time modifications. Extensive evaluations on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360) demonstrate that GaussRender significantly improves geometric fidelity across various 3D occupancy models (TPVFormer, SurroundOcc, Symphonies), achieving state-of-the-art results, particularly on surface-sensitive metrics such as RayIoU. The code is open-sourced at https://github.com/valeoai/GaussRender.

Authors:Andrei Panferov, Jiale Chen, Soroush Tabesh, Roberto L. Castro, Mahdi Nikdan, Dan Alistarh
Title: QuEST: Stable Training of LLMs with 1-Bit Weights and Activations
Abstract:
One approach to reducing the massive costs of large language models (LLMs) is the use of quantized or sparse representations for training or deployment. While post-training compression methods are very popular, the question of obtaining even more accurate compressed models by directly training over such representations, i.e., Quantization-Aware Training (QAT), is still open: for example, a recent study (arXiv:2411.04330) put the "optimal" bit-width at which models can be trained using QAT, while staying accuracy-competitive with standard FP16/BF16 precision, at 8-bits weights and activations. We advance this state-of-the-art via a new method called QuEST, for which we demonstrate optimality at 4-bits and stable convergence as low as 1-bit weights and activations. QuEST achieves this by improving two key aspects of QAT methods: (1) accurate and fast quantization of the (continuous) distributions of weights and activations via Hadamard normalization and MSE-optimal fitting; (2) a new trust gradient estimator based on the idea of explicitly minimizing the error between the noisy gradient computed over quantized states and the "true" (but unknown) full-precision gradient. Experiments on Llama-type architectures show that QuEST induces stable scaling laws across the entire range of hardware-supported precisions, and can be extended to sparse representations. We provide GPU kernel support showing that models produced by QuEST can be executed efficiently. Our code is available at https://github.com/IST-DASLab/QuEST.

Authors:Daniel Marczak, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D. Bagdanov, Joost van de Weijer
Title: No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces
Abstract:
Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance on vision and language tasks across various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training. Code is available at https://github.com/danielm1405/iso-merging .

Authors:Jiayang Yu, Yihang Zhang, Bin Wang, Peiqin Lin, Yongkang Liu, Shi Feng
Title: SSMLoRA: Enhancing Low-Rank Adaptation with State Space Model
Abstract:
Fine-tuning is a key approach for adapting language models to specific downstream tasks, but updating all model parameters becomes impractical as model sizes increase. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), address this challenge by introducing additional adaptation parameters into pre-trained weight matrices. However, LoRA's performance varies across different insertion points within the model, highlighting potential parameter inefficiency due to unnecessary insertions. To this end, we propose SSMLoRA (State Space Model Low-Rank Adaptation), an extension of LoRA that incorporates a State Space Model (SSM) to interconnect low-rank matrices. SSMLoRA ensures that performance is maintained even with sparser insertions. SSMLoRA allows the model to not only map inputs to a low-rank space for better feature extraction but also leverage the computations from the previous low-rank space. Our method achieves comparable performance to LoRA on the General Language Understanding Evaluation (GLUE) benchmark while using only half the parameters. Additionally, due to its structure, SSMLoRA shows promise in handling tasks with longer input sequences. .You can find our code here:https://github.com/yuhkalhic/SSMLoRA.

Authors:Craig Myles, In Hwa Um, Craig Marshall, David Harris-Birtill, David J. Harrison
Title: SurGen: 1020 H&E-stained Whole Slide Images With Survival and Genetic Markers
Abstract:
$\textbf{Background}$: Cancer remains one of the leading causes of morbidity and mortality worldwide. Comprehensive datasets that combine histopathological images with genetic and survival data across various tumour sites are essential for advancing computational pathology and personalised medicine. $\textbf{Results}$: We present SurGen, a dataset comprising 1,020 H&E-stained whole slide images (WSIs) from 843 colorectal cancer cases. The dataset includes detailed annotations for key genetic mutations (KRAS, NRAS, BRAF) and mismatch repair status, as well as survival data for 426 cases. To demonstrate SurGen's practical utility, we conducted a proof-of-concept machine learning experiment predicting mismatch repair status from the WSIs, achieving a test AUROC of 0.8316. These preliminary results underscore the dataset's potential to facilitate research in biomarker discovery, prognostic modelling, and advanced machine learning applications in colorectal cancer. $\textbf{Conclusions}$: SurGen offers a valuable resource for the scientific community, enabling studies that require high-quality WSIs linked with comprehensive clinical and genetic information on colorectal cancer. Our initial findings affirm the dataset's capacity to advance diagnostic precision and foster the development of personalised treatment strategies in colorectal oncology. Data available online at https://doi.org/10.6019/S-BIAD1285.

Authors:Juan Miguel Lopez Alcaraz, Ebenezer Oloyede, David Taylor, Wilhelm Haverkamp, Nils Strodthoff
Title: Explainable and externally validated machine learning for neuropsychiatric diagnosis via electrocardiograms
Abstract:
Electrocardiogram (ECG) analysis has emerged as a promising tool for identifying physiological changes associated with neuropsychiatric conditions. The relationship between cardiovascular health and neuropsychiatric disorders suggests that ECG abnormalities could serve as valuable biomarkers for more efficient detection, therapy monitoring, and risk stratification. However, the potential of the ECG to accurately distinguish neuropsychiatric conditions, particularly among diverse patient populations, remains underexplored. This study utilized ECG markers and basic demographic data to predict neuropsychiatric conditions using machine learning models, with targets defined through ICD-10 codes. Both internal and external validation were performed using the MIMIC-IV and ECG-View datasets respectively. Performance was assessed using AUROC scores. To enhance model interpretability, Shapley values were applied to provide insights into the contributions of individual ECG features to the predictions. Significant predictive performance was observed for conditions within the neurological and psychiatric groups. For the neurological group, Alzheimer's disease (G30) achieved an internal AUROC of 0.813 (0.812-0.814) and an external AUROC of 0.868 (0.867-0.868). In the psychiatric group, unspecified dementia (F03) showed an internal AUROC of 0.849 (0.848-0.849) and an external AUROC of 0.862 (0.861-0.863). Discriminative features align with known ECG markers but also provide hints on potentially new markers. ECG offers significant promise for diagnosing and monitoring neuropsychiatric conditions, with robust predictive performance across internal and external cohorts. Future work should focus on addressing potential confounders, such as therapy-related cardiotoxicity, and expanding the scope of ECG applications, including personalized care and early intervention strategies.

Authors:Etienne Gauthier, Francis Bach, Michael I. Jordan
Title: Statistical Collusion by Collectives on Learning Platforms
Abstract:
As platforms increasingly rely on learning algorithms, collectives may form and seek ways to influence these platforms to align with their own interests. This can be achieved by coordinated submission of altered data. To evaluate the potential impact of such behavior, it is essential to understand the computations that collectives must perform to impact platforms in this way. In particular, collectives need to make a priori assessments of the effect of the collective before taking action, as they may face potential risks when modifying their data. Moreover they need to develop implementable coordination algorithms based on quantities that can be inferred from observed data. We develop a framework that provides a theoretical and algorithmic treatment of these issues and present experimental results in a product evaluation domain.

Authors:Alexandre Cionca, Chun Hei Michael Chan, Dimitri Van De Ville
Title: Community detection for directed networks revisited using bimodularity
Abstract:
Community structure is a key feature omnipresent in real-world network data. Plethora of methods have been proposed to reveal subsets of densely interconnected nodes using criteria such as the modularity index. These approaches have been successful for undirected graphs, but directed edge information has not yet been dealt with in a satisfactory way. Here, we revisit the concept of directed communities as a mapping between sending and receiving communities. This translates into a new definition that we term bimodularity. Using convex relaxation, bimodularity can be optimized with the singular value decomposition of the directed modularity matrix. Subsequently, we propose an edge-based clustering approach to reveal the directed communities including their mappings. The feasibility of the new framework is illustrated on a synthetic model and further applied to the neuronal wiring diagram of the \textit{C. elegans}, for which it yields meaningful feedforward loops of the head and body motion systems. This framework sets the ground for the understanding and detection of community structures in directed networks.

Authors:Yijun Wang, Yong Wang, Chendong xu, Shuai Yao, Qisong Wu
Title: SelaFD:Seamless Adaptation of Vision Transformer Fine-tuning for Radar-based Human Activity Recognition
Abstract:
Human Activity Recognition (HAR) such as fall detection has become increasingly critical due to the aging population, necessitating effective monitoring systems to prevent serious injuries and fatalities associated with falls. This study focuses on fine-tuning the Vision Transformer (ViT) model specifically for HAR using radar-based Time-Doppler signatures. Unlike traditional image datasets, these signals present unique challenges due to their non-visual nature and the high degree of similarity among various activities. Directly fine-tuning the ViT with all parameters proves suboptimal for this application. To address this challenge, we propose a novel approach that employs Low-Rank Adaptation (LoRA) fine-tuning in the weight space to facilitate knowledge transfer from pre-trained ViT models. Additionally, to extract fine-grained features, we enhance feature representation through the integration of a serial-parallel adapter in the feature space. Our innovative joint fine-tuning method, tailored for radar-based Time-Doppler signatures, significantly improves HAR accuracy, surpassing existing state-of-the-art methodologies in this domain. Our code is released at https://github.com/wangyijunlyy/SelaFD.

Authors:Yuwei Yin, Giuseppe Carenini
Title: ARR: Question Answering with Large Language Models via Analyzing, Retrieving, and Reasoning
Abstract:
Large language models (LLMs) have demonstrated impressive capabilities on complex evaluation benchmarks, many of which are formulated as question-answering (QA) tasks. Enhancing the performance of LLMs in QA contexts is becoming increasingly vital for advancing their development and applicability. This paper introduces ARR, an intuitive, effective, and general QA solving method that explicitly incorporates three key steps: analyzing the intent of the question, retrieving relevant information, and reasoning step by step. Notably, this paper is the first to introduce intent analysis in QA, which plays a vital role in ARR. Comprehensive evaluations across 10 diverse QA tasks demonstrate that ARR consistently outperforms the baseline methods. Ablation and case studies further validate the positive contributions of each ARR component. Furthermore, experiments involving variations in prompt design indicate that ARR maintains its effectiveness regardless of the specific prompt formulation. Additionally, extensive evaluations across various model sizes, LLM series, and generation settings solidify the effectiveness, robustness, and generalizability of ARR.

Authors:Soichiro Murakami, Peinan Zhang, Hidetaka Kamigaito, Hiroya Takamura, Manabu Okumura
Title: AdParaphrase: Paraphrase Dataset for Analyzing Linguistic Features toward Generating Attractive Ad Texts
Abstract:
Effective linguistic choices that attract potential customers play crucial roles in advertising success. This study aims to explore the linguistic features of ad texts that influence human preferences. Although the creation of attractive ad texts is an active area of research, progress in understanding the specific linguistic features that affect attractiveness is hindered by several obstacles. First, human preferences are complex and influenced by multiple factors, including their content, such as brand names, and their linguistic styles, making analysis challenging. Second, publicly available ad text datasets that include human preferences are lacking, such as ad performance metrics and human feedback, which reflect people's interests. To address these problems, we present AdParaphrase, a paraphrase dataset that contains human preferences for pairs of ad texts that are semantically equivalent but differ in terms of wording and style. This dataset allows for preference analysis that focuses on the differences in linguistic features. Our analysis revealed that ad texts preferred by human judges have higher fluency, longer length, more nouns, and use of bracket symbols. Furthermore, we demonstrate that an ad text-generation model that considers these findings significantly improves the attractiveness of a given text. The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase.

Authors:Amitayush Thakur, George Tsoukalas, Greg Durrett, Swarat Chaudhuri
Title: ProofWala: Multilingual Proof Data Synthesis and Theorem-Proving
Abstract:
Neural networks have shown substantial promise at automatic theorem-proving in interactive proof assistants (ITPs) like Lean and Coq. However, most neural theorem-proving models are restricted to specific ITPs, leaving out opportunities for cross-lingual $\textit{transfer}$ between ITPs. We address this weakness with a multilingual proof framework, ${\rm P{\small ROOF}W{\small ALA}}$, that allows a standardized form of interaction between neural theorem-provers and two established ITPs (Coq and Lean). It enables the collection of multilingual proof step data -- data recording the result of proof actions on ITP states -- for training neural provers. ${\rm P{\small ROOF}W{\small ALA}}$ allows the systematic evaluation of a model's performance across different ITPs and problem domains via efficient parallel proof search algorithms. We show that multilingual training enabled by ${\rm P{\small ROOF}W{\small ALA}}$ can lead to successful transfer across ITPs. Specifically, a model trained on a mix of ${\rm P{\small ROOF}W{\small ALA}}$-generated Coq and Lean data outperforms Lean-only and Coq-only models on the standard prove-at-$k$ metric. We open source all code including code for the ${\rm P{\small ROOF}W{\small ALA}}$ Framework (https://github.com/trishullab/proof-wala), and the Multilingual ITP interaction framework (https://github.com/trishullab/itp-interface).

Authors:Zhiqiang Yang, Qiu Guan, Zhongwen Yu, Xinli Xu, Haixia Long, Sheng Lian, Haigen Hu, Ying Tang
Title: MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection
Abstract:
Due to the effective multi-scale feature fusion capabilities of the Path Aggregation FPN (PAFPN), it has become a widely adopted component in YOLO-based detectors. However, PAFPN struggles to integrate high-level semantic cues with low-level spatial details, limiting its performance in real-world applications, especially with significant scale variations. In this paper, we propose MHAF-YOLO, a novel detection framework featuring a versatile neck design called the Multi-Branch Auxiliary FPN (MAFPN), which consists of two key modules: the Superficial Assisted Fusion (SAF) and Advanced Assisted Fusion (AAF). The SAF bridges the backbone and the neck by fusing shallow features, effectively transferring crucial low-level spatial information with high fidelity. Meanwhile, the AAF integrates multi-scale feature information at deeper neck layers, delivering richer gradient information to the output layer and further enhancing the model learning capacity. To complement MAFPN, we introduce the Global Heterogeneous Flexible Kernel Selection (GHFKS) mechanism and the Reparameterized Heterogeneous Multi-Scale (RepHMS) module to enhance feature fusion. RepHMS is globally integrated into the network, utilizing GHFKS to select larger convolutional kernels for various feature layers, expanding the vertical receptive field and capturing contextual information across spatial hierarchies. Locally, it optimizes convolution by processing both large and small kernels within the same layer, broadening the lateral receptive field and preserving crucial details for detecting smaller targets. The source code of this work is available at: https://github.com/yang-0201/MHAF-YOLO.

Authors:Lin Tian, Emily Booth, Francesco Bailo, Julian Droogan, Marian-Andrei Rizoiu
Title: Before It's Too Late: A State Space Model for the Early Prediction of Misinformation and Disinformation Engagement
Abstract:
In today's digital age, conspiracies and information campaigns can emerge rapidly and erode social and democratic cohesion. While recent deep learning approaches have made progress in modeling engagement through language and propagation models, they struggle with irregularly sampled data and early trajectory assessment. We present IC-Mamba, a novel state space model that forecasts social media engagement by modeling interval-censored data with integrated temporal embeddings. Our model excels at predicting engagement patterns within the crucial first 15-30 minutes of posting (RMSE 0.118-0.143), enabling rapid assessment of content reach. By incorporating interval-censored modeling into the state space framework, IC-Mamba captures fine-grained temporal dynamics of engagement growth, achieving a 4.72% improvement over state-of-the-art across multiple engagement metrics (likes, shares, comments, and emojis). Our experiments demonstrate IC-Mamba's effectiveness in forecasting both post-level dynamics and broader narrative patterns (F1 0.508-0.751 for narrative-level predictions). The model maintains strong predictive performance across extended time horizons, successfully forecasting opinion-level engagement up to 28 days ahead using observation windows of 3-10 days. These capabilities enable earlier identification of potentially problematic content, providing crucial lead time for designing and implementing countermeasures. Code is available at: https://github.com/ltian678/ic-mamba. An interactive dashboard demonstrating our results is available at: https://ic-mamba.behavioral-ds.science.

Authors:Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, Yueming Jin
Title: Agentic Reasoning: A Streamlined Framework for Enhancing LLM Reasoning with Agentic Tools
Abstract:
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents. Agentic Reasoning dynamically leverages web search, code execution, and structured memory to address complex problems requiring deep research. A key innovation in our framework is the Mind-Map agent, which constructs a structured knowledge graph to store reasoning context and track logical relationships, ensuring coherence in long reasoning chains with extensive tool usage. Additionally, we conduct a comprehensive exploration of the Web-Search agent, leading to a highly effective search mechanism that surpasses all prior approaches. When deployed on DeepSeek-R1, our method achieves a new state-of-the-art (SOTA) among public models and delivers performance comparable to OpenAI Deep Research, the leading proprietary model in this domain. Extensive ablation studies validate the optimal selection of agentic tools and confirm the effectiveness of our Mind-Map and Web-Search agents in enhancing LLM reasoning. The code is at: https://github.com/theworldofagents/Agentic-Reasoning

Authors:Brian Formento, Chuan Sheng Foo, See-Kiong Ng
Title: Confidence Elicitation: A New Attack Vector for Large Language Models
Abstract:
A fundamental issue in deep learning has been adversarial robustness. As these systems have scaled, such issues have persisted. Currently, large language models (LLMs) with billions of parameters suffer from adversarial attacks just like their earlier, smaller counterparts. However, the threat models have changed. Previously, having gray-box access, where input embeddings or output logits/probabilities were visible to the user, might have been reasonable. However, with the introduction of closed-source models, no information about the model is available apart from the generated output. This means that current black-box attacks can only utilize the final prediction to detect if an attack is successful. In this work, we investigate and demonstrate the potential of attack guidance, akin to using output probabilities, while having only black-box access in a classification setting. This is achieved through the ability to elicit confidence from the model. We empirically show that the elicited confidence is calibrated and not hallucinated for current LLMs. By minimizing the elicited confidence, we can therefore increase the likelihood of misclassification. Our new proposed paradigm demonstrates promising state-of-the-art results on three datasets across two models (LLaMA-3-8B-Instruct and Mistral-7B-Instruct-V0.3) when comparing our technique to existing hard-label black-box attack methods that introduce word-level substitutions.

Authors:Yong Li, Yingjing Huang, Gengchen Mai, Fan Zhang
Title: Learning Street View Representations with Spatiotemporal Contrast
Abstract:
Street view imagery is extensively utilized in representation learning for urban visual environments, supporting various sustainable development tasks such as environmental perception and socio-economic assessment. However, it is challenging for existing image representations to specifically encode the dynamic urban environment (such as pedestrians, vehicles, and vegetation), the built environment (including buildings, roads, and urban infrastructure), and the environmental ambiance (such as the cultural and socioeconomic atmosphere) depicted in street view imagery to address downstream tasks related to the city. In this work, we propose an innovative self-supervised learning framework that leverages temporal and spatial attributes of street view imagery to learn image representations of the dynamic urban environment for diverse downstream tasks. By employing street view images captured at the same location over time and spatially nearby views at the same time, we construct contrastive learning tasks designed to learn the temporal-invariant characteristics of the built environment and the spatial-invariant neighborhood ambiance. Our approach significantly outperforms traditional supervised and unsupervised methods in tasks such as visual place recognition, socioeconomic estimation, and human-environment perception. Moreover, we demonstrate the varying behaviors of image representations learned through different contrastive learning objectives across various downstream tasks. This study systematically discusses representation learning strategies for urban studies based on street view images, providing a benchmark that enhances the applicability of visual data in urban science. The code is available at https://github.com/yonglleee/UrbanSTCL.

Authors:Amy Smith, Barrett R. Anderson, Jasmine Tan Otto, Isaac Karth, Yuqian Sun, John Joon Young Chung, Melissa Roemmele, Max Kreminski
Title: Fuzzy Linkography: Automatic Graphical Summarization of Creative Activity Traces
Abstract:
Linkography -- the analysis of links between the design moves that make up an episode of creative ideation or design -- can be used for both visual and quantitative assessment of creative activity traces. Traditional linkography, however, is time-consuming, requiring a human coder to manually annotate both the design moves within an episode and the connections between them. As a result, linkography has not yet been much applied at scale. To address this limitation, we introduce fuzzy linkography: a means of automatically constructing a linkograph from a sequence of recorded design moves via a "fuzzy" computational model of semantic similarity, enabling wider deployment and new applications of linkographic techniques. We apply fuzzy linkography to three markedly different kinds of creative activity traces (text-to-image prompting journeys, LLM-supported ideation sessions, and researcher publication histories) and discuss our findings, as well as strengths, limitations, and potential future applications of our approach.

Authors:Kunxiao Liu, Guowu Yuan, Hongyu Liu, Hao Wu
Title: Multiscale style transfer based on a Laplacian pyramid for traditional Chinese painting
Abstract:
Style transfer is adopted to synthesize appealing stylized images that preserve the structure of a content image but carry the pattern of a style image. Many recently proposed style transfer methods use only western oil paintings as style images to achieve image stylization. As a result, unnatural messy artistic effects are produced in stylized images when using these methods to directly transfer the patterns of traditional Chinese paintings, which are composed of plain colors and abstract objects. Moreover, most of them work only at the original image scale and thus ignore multiscale image information during training. In this paper, we present a novel effective multiscale style transfer method based on Laplacian pyramid decomposition and reconstruction, which can transfer unique patterns of Chinese paintings by learning different image features at different scales. In the first stage, the holistic patterns are transferred at low resolution by adopting a Style Transfer Base Network. Then, the details of the content and style are gradually enhanced at higher resolutions by a Detail Enhancement Network with an edge information selection (EIS) module in the second stage. The effectiveness of our method is demonstrated through the generation of appealing high-quality stylization results and a comparison with some state-of-the-art style transfer methods. Datasets and codes are available at https://github.com/toby-katakuri/LP_StyleTransferNet.

Authors:Sandra C. Sandoval, Christabel Acquaye, Kwesi Cobbina, Mohammad Nayeem Teli, Hal Daumé
Title: My LLM might Mimic AAE -- But When Should it?
Abstract:
We examine the representation of African American English (AAE) in large language models (LLMs), exploring (a) the perceptions Black Americans have of how effective these technologies are at producing authentic AAE, and (b) in what contexts Black Americans find this desirable. Through both a survey of Black Americans ($n=$ 104) and annotation of LLM-produced AAE by Black Americans ($n=$ 228), we find that Black Americans favor choice and autonomy in determining when AAE is appropriate in LLM output. They tend to prefer that LLMs default to communicating in Mainstream U.S. English in formal settings, with greater interest in AAE production in less formal settings. When LLMs were appropriately prompted and provided in context examples, our participants found their outputs to have a level of AAE authenticity on par with transcripts of Black American speech. Select code and data for our project can be found here: https://github.com/smelliecat/AAEMime.git

Authors:Congjie He, Yeqi Huang, Pei Mu, Ziming Miao, Jilong Xue, Lingxiao Ma, Fan Yang, Luo Mai
Title: WaferLLM: Large Language Model Inference at Wafer Scale
Abstract:
Emerging AI accelerators increasingly adopt wafer-scale manufacturing technologies, integrating hundreds of thousands of AI cores in a mesh architecture with large distributed on-chip memory (tens of GB in total) and ultra-high on-chip memory bandwidth (tens of PB/s). However, current LLM inference systems, optimized for shared memory architectures like GPUs, fail to exploit these accelerators fully. We introduce WaferLLM, the first wafer-scale LLM inference system. WaferLLM is guided by a novel PLMR model (pronounced as "Plummer") that captures the unique hardware characteristics of wafer-scale architectures. Leveraging this model, WaferLLM pioneers wafer-scale LLM parallelism, optimizing the utilization of hundreds of thousands of on-chip cores. It also introduces MeshGEMM and MeshGEMV, the first GEMM and GEMV implementations designed to scale effectively on wafer-scale accelerators. Evaluations show that WaferLLM achieves up to 200$\times$ higher accelerator utilization than state-of-the-art methods. Leveraging a wafer-scale accelerator (Cerebras WSE2), WaferLLM delivers GEMV operations 606$\times$ faster and 16$\times$ more energy-efficient than on an NVIDIA A100 GPU. For full LLM inference, WaferLLM achieves 10-20$\times$ speedups over A100 GPU clusters running SGLang and vLLM. These advantages are expected to grow as wafer-scale AI models, software, and hardware continue to mature. WaferLLM is open-sourced at https://github.com/MeshInfra/WaferLLM.

Authors:Keshav Bhandari, Sungkyun Chang, Tongyu Lu, Fareza R. Enus, Louis B. Bradshaw, Dorien Herremans, Simon Colton
Title: ImprovNet -- Generating Controllable Musical Improvisations with Iterative Corruption Refinement
Abstract:
Despite deep learning's remarkable advances in style transfer across various domains, generating controllable performance-level musical style transfer for complete symbolically represented musical works remains a challenging area of research. Much of this is owed to limited datasets, especially for genres such as jazz, and the lack of unified models that can handle multiple music generation tasks. This paper presents ImprovNet, a transformer-based architecture that generates expressive and controllable musical improvisations through a self-supervised corruption-refinement training strategy. The improvisational style transfer is aimed at making meaningful modifications to one or more musical elements - melody, harmony or rhythm of the original composition with respect to the target genre. ImprovNet unifies multiple capabilities within a single model: it can perform cross-genre and intra-genre improvisations, harmonize melodies with genre-specific styles, and execute short prompt continuation and infilling tasks. The model's iterative generation framework allows users to control the degree of style transfer and structural similarity to the original composition. Objective and subjective evaluations demonstrate ImprovNet's effectiveness in generating musically coherent improvisations while maintaining structural relationships with the original pieces. The model outperforms Anticipatory Music Transformer in short continuation and infilling tasks and successfully achieves recognizable genre conversion, with 79\% of participants correctly identifying jazz-style improvisations of classical pieces. Our code and demo page can be found at https://github.com/keshavbhandari/improvnet.

Authors:Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, Hao Zhang
Title: Fast Video Generation with Sliding Tile Attention
Abstract:
Diffusion Transformers (DiTs) with 3D full attention power state-of-the-art video generation, but suffer from prohibitive compute cost -- when generating just a 5-second 720P video, attention alone takes 800 out of 945 seconds of total inference time. This paper introduces sliding tile attention (STA) to address this challenge. STA leverages the observation that attention scores in pretrained video diffusion models predominantly concentrate within localized 3D windows. By sliding and attending over the local spatial-temporal region, STA eliminates redundancy from full attention. Unlike traditional token-wise sliding window attention (SWA), STA operates tile-by-tile with a novel hardware-aware sliding window design, preserving expressiveness while being hardware-efficient. With careful kernel-level optimizations, STA offers the first efficient 2D/3D sliding-window-like attention implementation, achieving 58.79% MFU. Precisely, STA accelerates attention by 2.8-17x over FlashAttention-2 (FA2) and 1.6-10x over FlashAttention-3 (FA3). On the leading video DiT, HunyuanVideo, STA reduces end-to-end latency from 945s (FA3) to 685s without quality degradation, requiring no training. Enabling finetuning further lowers latency to 268s with only a 0.09% drop on VBench. We make our codebase public at https://github.com/hao-ai-lab/FastVideo.

Authors:Shurui Gui, Xiner Li, Shuiwang Ji
Title: Discovering Physics Laws of Dynamical Systems via Invariant Function Learning
Abstract:
We consider learning underlying laws of dynamical systems governed by ordinary differential equations (ODE). A key challenge is how to discover intrinsic dynamics across multiple environments while circumventing environment-specific mechanisms. Unlike prior work, we tackle more complex environments where changes extend beyond function coefficients to entirely different function forms. For example, we demonstrate the discovery of ideal pendulum's natural motion $α^2 \sin{θ_t}$ by observing pendulum dynamics in different environments, such as the damped environment $α^2 \sin(θ_t) - ρω_t$ and powered environment $α^2 \sin(θ_t) + ρ\frac{ω_t}{\left|ω_t\right|}$. Here, we formulate this problem as an \emph{invariant function learning} task and propose a new method, known as \textbf{D}isentanglement of \textbf{I}nvariant \textbf{F}unctions (DIF), that is grounded in causal analysis. We propose a causal graph and design an encoder-decoder hypernetwork that explicitly disentangles invariant functions from environment-specific dynamics. The discovery of invariant functions is guaranteed by our information-based principle that enforces the independence between extracted invariant functions and environments. Quantitative comparisons with meta-learning and invariant learning baselines on three ODE systems demonstrate the effectiveness and efficiency of our method. Furthermore, symbolic regression explanation results highlight the ability of our framework to uncover intrinsic laws. Our code has been released as part of the AIRS library (\href{https://github.com/divelab/AIRS/tree/main/OpenODE/DIF}{https://github.com/divelab/AIRS/}).

Authors:Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, Zachary Yahn, Ling Liu
Title: Multi-Agent Reinforcement Learning with Focal Diversity Optimization
Abstract:
The advancement of Large Language Models (LLMs) and their finetuning strategies has triggered the renewed interests in multi-agent reinforcement learning. In this paper, we introduce a focal diversity-optimized multi-agent reinforcement learning approach, coined as MARL-Focal, with three unique characteristics. First, we develop an agent-fusion framework for encouraging multiple LLM based agents to collaborate in producing the final inference output for each LLM query. Second, we develop a focal-diversity optimized agent selection algorithm that can choose a small subset of the available agents based on how well they can complement one another to generate the query output. Finally, we design a conflict-resolution method to detect output inconsistency among multiple agents and produce our MARL-Focal output through reward-aware and policy-adaptive inference fusion. Extensive evaluations on five benchmarks show that MARL-Focal is cost-efficient and adversarial-robust. Our multi-agent fusion model achieves performance improvement of 5.51\% compared to the best individual LLM-agent and offers stronger robustness over the TruthfulQA benchmark. Code is available at https://github.com/sftekin/rl-focal

Authors:Soham Deshmukh, Shuo Han, Rita Singh, Bhiksha Raj
Title: ADIFF: Explaining audio difference using natural language
Abstract:
Understanding and explaining differences between audio recordings is crucial for fields like audio forensics, quality assessment, and audio generation. This involves identifying and describing audio events, acoustic scenes, signal characteristics, and their emotional impact on listeners. This paper stands out as the first work to comprehensively study the task of explaining audio differences and then propose benchmark, baselines for the task. First, we present two new datasets for audio difference explanation derived from the AudioCaps and Clotho audio captioning datasets. Using Large Language Models (LLMs), we generate three levels of difference explanations: (1) concise descriptions of audio events and objects, (2) brief sentences about audio events, acoustic scenes, and signal properties, and (3) comprehensive explanations that include semantics and listener emotions. For the baseline, we use prefix tuning where audio embeddings from two audio files are used to prompt a frozen language model. Our empirical analysis and ablation studies reveal that the naive baseline struggles to distinguish perceptually similar sounds and generate detailed tier 3 explanations. To address these limitations, we propose ADIFF, which introduces a cross-projection module, position captioning, and a three-step training process to enhance the model's ability to produce detailed explanations. We evaluate our model using objective metrics and human evaluation and show our model enhancements lead to significant improvements in performance over naive baseline and SoTA Audio-Language Model (ALM) Qwen Audio. Lastly, we conduct multiple ablation studies to study the effects of cross-projection, language model parameters, position captioning, third stage fine-tuning, and present our findings. Our benchmarks, findings, and strong baseline pave the way for nuanced and human-like explanations of audio differences.

Authors:Imad Eddine Marouf, Enzo Tartaglione, Stephane Lathuiliere, Joost van de Weijer
Title: Ask and Remember: A Questions-Only Replay Strategy for Continual Visual Question Answering
Abstract:
Continual Learning in Visual Question Answering (VQACL) requires models to acquire new visual-linguistic skills (plasticity) while preserving previously learned knowledge (stability). The inherent multimodality of VQACL exacerbates this challenge, as models must balance stability across visual and textual domains while adapting to novel objects and reasoning tasks. Existing methods, primarily designed for unimodal settings, often fall short in addressing this dual requirement. In this work, we present QUestion-only replay with Attention Distillation (QUAD), a novel approach for VQACL that leverages only past task questions for regularization. By eliminating the need to store visual data, QUAD not only reduces memory overhead, but also alleviates privacy concerns. Our method introduces a Question-only Replay mechanism that selectively reuses prior task questions to counteract overfitting to the answer space of the current task, addressing the problem out of answer set. Complementing this, we propose Attention Consistency Distillation to enforce both intra-modal and inter-modal attention consistency across tasks, preserving essential visual-linguistic associations. Extensive experiments on VQAv2 and NExT-QA demonstrate that QUAD significantly outperforms state-of-the-art methods, achieving robust performance in continual VQA. Code is available at: https://github.com/IemProg/QUAD.

Authors:Xing Li, Zeyu Xing, Yiming Li, Linping Qu, Hui-Ling Zhen, Wulong Liu, Yiwu Yao, Sinno Jialin Pan, Mingxuan Yuan
Title: KVTuner: Sensitivity-Aware Layer-Wise Mixed-Precision KV Cache Quantization for Efficient and Nearly Lossless LLM Inference
Abstract:
KV cache quantization can improve Large Language Models (LLMs) inference throughput and latency in long contexts and large batch-size scenarios while preserving LLMs effectiveness. However, current methods have three unsolved issues: overlooking layer-wise sensitivity to KV cache quantization, high overhead of online fine-grained decision-making, and low flexibility to different LLMs and constraints. Therefore, we theoretically analyze the inherent correlation of layer-wise transformer attention patterns to KV cache quantization errors and study why key cache is generally more important than value cache for quantization error reduction. We further propose a simple yet effective framework KVTuner to adaptively search for the optimal hardware-friendly layer-wise KV quantization precision pairs for coarse-grained KV cache with multi-objective optimization and directly utilize the offline searched configurations during online inference. To reduce the computational cost of offline calibration, we utilize the intra-layer KV precision pair pruning and inter-layer clustering to reduce the search space. Experimental results show that we can achieve nearly lossless 3.25-bit mixed precision KV cache quantization for LLMs like Llama-3.1-8B-Instruct and 4.0-bit for sensitive models like Qwen2.5-7B-Instruct on mathematical reasoning tasks. The maximum inference throughput can be improved by 21.25\% compared with KIVI-KV8 quantization over various context lengths. Our code and searched configurations are available at https://github.com/cmd2001/KVTuner.

Authors:Edgar Ramirez-Sanchez, Catherine Tang, Yaosheng Xu, Nrithya Renganathan, Vindula Jayawardana, Zhengbing He, Cathy Wu
Title: NeuralMOVES: A lightweight and microscopic vehicle emission estimation model based on reverse engineering and surrogate learning
Abstract:
The transportation sector significantly contributes to greenhouse gas emissions, necessitating accurate emission models to guide mitigation strategies. Despite its field validation and certification, the industry-standard Motor Vehicle Emission Simulator (MOVES) faces challenges related to complexity in usage, high computational demands, and its unsuitability for microscopic real-time applications. To address these limitations, we present NeuralMOVES, a comprehensive suite of high-performance, lightweight surrogate models for vehicle CO2 emissions. Developed based on reverse engineering and Neural Networks, NeuralMOVES achieves a remarkable 6.013% Mean Average Percentage Error relative to MOVES across extensive tests spanning over two million scenarios with diverse trajectories and the factors regarding environments and vehicles. NeuralMOVES is only 2.4 MB, largely condensing the original MOVES and the reverse engineered MOVES into a compact representation, while maintaining high accuracy. Therefore, NeuralMOVES significantly enhances accessibility while maintaining the accuracy of MOVES, simplifying CO2 evaluation for transportation analyses and enabling real-time, microscopic applications across diverse scenarios without reliance on complex software or extensive computational resources. Moreover, this paper provides, for the first time, a framework for reverse engineering industrial-grade software tailored specifically to transportation scenarios, going beyond MOVES. The surrogate models are available at https://github.com/edgar-rs/neuralMOVES.

Authors:Zehua Pei, Lancheng Zou, Hui-Ling Zhen, Xianzhi Yu, Wulong Liu, Sinno Jialin Pan, Mingxuan Yuan, Bei Yu
Title: CMoE: Converting Mixture-of-Experts from Dense to Accelerate LLM Inference
Abstract:
Scaling large language models (LLMs) improves performance but dramatically increases inference costs. The feed-forward network (FFN), consuming approximately 70\% of inference compute, represents a critical bottleneck, particularly in large batch size scenarios. While mixture-of-experts (MoE) architectures leverage activation sparsity for efficiency, converting existing dense models to MoEs traditionally requires resource-intensive continual pre-training. We present CMoE, a framework that rapidly transforms dense LLMs into MoEs without training. The key innovation lies in analyzing FFN neuron activations to partition them into shared (always active) and routed experts. Routed neurons are clustered using a balanced assignment algorithm, and a differentiable router is constructed analytically from activation statistics, enabling immediate deployment or optional lightweight fine-tuning. Experiments demonstrate that, with activation ratio of 75\%, it achieves remarkable results, delivering lossless precision in terms of perplexity while still maintaining a 5\% acceleration. Further experiments reveal that a CMoE configuration activating just 25\% of parameters reduces end-to-end latency by 1.5x while preserving usable perplexity without additional training. Moreover, a brief LoRA fine-tuning process (requiring only 1 hour and 2,000 samples) successfully recovers over 76\% of the dense model's downstream accuracy. By effectively balancing performance and efficiency, CMoE offers a viable path forward for deploying LLMs in real-world scenarios where computational resources are limited. We make our code publicly available at https://github.com/JarvisPei/CMoE.

Authors:Xuejiao Zhao, Siyan Liu, Su-Yin Yang, Chunyan Miao
Title: MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Abstract:
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG

Authors:Long Chen, Xiaotian Song, Andy Song, BaDong Chen, Jiancheng Lv, Yanan Sun
Title: FAS: Fast ANN-SNN Conversion for Spiking Large Language Models
Abstract:
Spiking Large Language Models have been shown as a good alternative to LLMs in various scenarios. Existing methods for creating Spiking LLMs, i.e., direct training and ANN-SNN conversion, often suffer from performance degradation and relatively high computational costs. To address these issues, we propose a novel Fast ANN-SNN conversion strategy (FAS) that transforms LLMs into spiking LLMs in two stages. The first stage employs a full-parameter fine-tuning of pre-trained models, so it does not need any direct training from scratch. The second stage introduces a coarse-to-fine calibration method to reduce conversion errors and improve accuracy. Experiments on both language and vision-language tasks across four different scales of LLMs demonstrate that FAS can achieve state-of-the-art performance yet with significantly reduced inference latency and computational costs. Notably, FAS only takes eight timesteps to achieve an accuracy of 3\% higher than that of the OPT-7B model, while reducing energy consumption by 96.63\%. The source code is available at https://github.com/lc783/FAS

Authors:Siru Zhong, Weilin Ruan, Ming Jin, Huan Li, Qingsong Wen, Yuxuan Liang
Title: Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
Abstract:
Recent advancements in time series forecasting have explored augmenting models with text or vision modalities to improve accuracy. While text provides contextual understanding, it often lacks fine-grained temporal details. Conversely, vision captures intricate temporal patterns but lacks semantic context, limiting the complementary potential of these modalities. To address this, we propose \method, a novel multimodal framework that leverages pre-trained Vision-Language Models (VLMs) to bridge temporal, visual, and textual modalities for enhanced forecasting. Our framework comprises three key components: (1) a Retrieval-Augmented Learner, which extracts enriched temporal features through memory bank interactions; (2) a Vision-Augmented Learner, which encodes time series as informative images; and (3) a Text-Augmented Learner, which generates contextual textual descriptions. These components collaborate with frozen pre-trained VLMs to produce multimodal embeddings, which are then fused with temporal features for final prediction. Extensive experiments demonstrate that Time-VLM achieves superior performance, particularly in few-shot and zero-shot scenarios, thereby establishing a new direction for multimodal time series forecasting. Code is available at https://github.com/CityMind-Lab/ICML25-TimeVLM.

Authors:Shue Shiinoki, Ryo Koshihara, Hayato Motegi, Masumi Morishige
Title: Overcoming Vision Language Model Challenges in Diagram Understanding: A Proof-of-Concept with XML-Driven Large Language Models Solutions
Abstract:
Diagrams play a crucial role in visually conveying complex relationships and processes within business documentation. Despite recent advances in Vision-Language Models (VLMs) for various image understanding tasks, accurately identifying and extracting the structures and relationships depicted in diagrams continues to pose significant challenges. This study addresses these challenges by proposing a text-driven approach that bypasses reliance on VLMs' visual recognition capabilities. Instead, it utilizes the editable source files--such as xlsx, pptx or docx--where diagram elements (e.g., shapes, lines, annotations) are preserved as textual metadata. In our proof-of-concept, we extracted diagram information from xlsx-based system design documents and transformed the extracted shape data into textual input for Large Language Models (LLMs). This approach allowed the LLM to analyze relationships and generate responses to business-oriented questions without the bottleneck of image-based processing. Experimental comparisons with a VLM-based method demonstrated that the proposed text-driven framework yielded more accurate answers for questions requiring detailed comprehension of diagram structures.The results obtained in this study are not limited to the tested .xlsx files but can also be extended to diagrams in other documents with source files, such as Office pptx and docx formats. These findings highlight the feasibility of circumventing VLM constraints through direct textual extraction from original source files. By enabling robust diagram understanding through LLMs, our method offers a promising path toward enhanced workflow efficiency and information analysis in real-world business scenarios.

Authors:Royson Lee, Minyoung Kim, Fady Rezk, Rui Li, Stylianos I. Venieris, Timothy Hospedales
Title: FedP$^2$EFT: Federated Learning to Personalize PEFT for Multilingual LLMs
Abstract:
Federated learning (FL) has enabled the training of multilingual large language models (LLMs) on diverse and decentralized multilingual data, especially on low-resource languages. To improve client-specific performance, personalization via the use of parameter-efficient fine-tuning (PEFT) modules such as LoRA is common. This involves a personalization strategy (PS), such as the design of the PEFT adapter structures (e.g., in which layers to add LoRAs and what ranks) and choice of hyperparameters (e.g., learning rates) for fine-tuning. Instead of manual PS configuration, we propose FedP$^2$EFT, a federated learning-to-personalize method for multilingual LLMs in cross-device FL settings. Unlike most existing PEFT structure selection methods, which are prone to overfitting low-data regimes, FedP$^2$EFT collaboratively learns the optimal personalized PEFT structure for each client via Bayesian sparse rank selection. Evaluations on both simulated and real-world multilingual FL benchmarks demonstrate that FedP$^2$EFT largely outperforms existing personalized fine-tuning methods, while complementing other existing FL methods. Code is available at https://github.com/SamsungLabs/fedp2eft.

Authors:Rajiv Movva, Kenny Peng, Nikhil Garg, Jon Kleinberg, Emma Pierson
Title: Sparse Autoencoders for Hypothesis Generation
Abstract:
We describe HypotheSAEs, a general method to hypothesize interpretable relationships between text data (e.g., headlines) and a target variable (e.g., clicks). HypotheSAEs has three steps: (1) train a sparse autoencoder on text embeddings to produce interpretable features describing the data distribution, (2) select features that predict the target variable, and (3) generate a natural language interpretation of each feature (e.g., "mentions being surprised or shocked") using an LLM. Each interpretation serves as a hypothesis about what predicts the target variable. Compared to baselines, our method better identifies reference hypotheses on synthetic datasets (at least +0.06 in F1) and produces more predictive hypotheses on real datasets (~twice as many significant findings), despite requiring 1-2 orders of magnitude less compute than recent LLM-based methods. HypotheSAEs also produces novel discoveries on two well-studied tasks: explaining partisan differences in Congressional speeches and identifying drivers of engagement with online headlines.

Authors:Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, Seulki Lee
Title: On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
Abstract:
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).

Authors:Yongchao Chen, Yilun Hao, Yueying Liu, Yang Zhang, Chuchu Fan
Title: CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance
Abstract:
Existing methods fail to effectively steer Large Language Models (LLMs) between textual reasoning and code generation, leaving symbolic computing capabilities underutilized. We introduce CodeSteer, an effective method for guiding LLM code/text generation. We construct a comprehensive benchmark SymBench comprising 37 symbolic tasks with adjustable complexity and also synthesize datasets of 12k multi-turn guidance/generation trajectories and 5.5k guidance comparison pairs. We fine-tune the Llama-3-8B model with a newly designed multi-turn supervised fine-tuning (SFT) and direct preference optimization (DPO). The resulting model, CodeSteerLLM, augmented with the proposed symbolic and self-answer checkers, effectively guides the code/text generation of larger models. Augmenting GPT-4o with CodeSteer raises its average performance score from 53.3 to 86.4, even outperforming the existing best LLM OpenAI o1 (82.7), o1-preview (74.8), and DeepSeek R1 (76.8) across all 37 tasks (28 seen, 9 unseen). Trained for GPT-4o, CodeSteer demonstrates superior generalizability, providing an average 41.8 performance boost on Claude, Mistral, and GPT-3.5. CodeSteer-guided LLMs fully harness symbolic computing to maintain strong performance on highly complex tasks. Models, Datasets, and Codes are available at https://github.com/yongchao98/CodeSteer-v1.0 and https://huggingface.co/yongchao98.

Authors:Juyun Wee, Minjae Park, Jaeho Lee
Title: Prompt-based Depth Pruning of Large Language Models
Abstract:
Depth pruning aims to reduce the inference cost of a large language model without any hardware-specific complications, by simply removing several less important transformer blocks. However, our empirical findings suggest that the importance of a transformer block may be highly task-dependent -- a block that is crucial for a task can be removed without degrading the accuracy on another task. Based on this observation, we develop a dynamic depth pruning algorithm, coined PuDDing (Prompt-routed Dynamic Depth Pruning), which determines which blocks to omit from the model based on the input prompt. PuDDing operates by training a lightweight router to predict the best omission set among a set of options, where this option set has also been constructed in a data-driven manner. Empirical results on commonsense reasoning benchmarks demonstrate that PuDDing effectively accelerates the inference language models, and achieves better on-task performance than static depth pruning baselines.

Authors:Saydul Akbar Murad, Ashim Dahal, Nick Rahimi
Title: Multi-Lingual Cyber Threat Detection in Tweets/X Using ML, DL, and LLM: A Comparative Analysis
Abstract:
Cyber threat detection has become an important area of focus in today's digital age due to the growing spread of fake information and harmful content on social media platforms such as Twitter (now 'X'). These cyber threats, often disguised within tweets, pose significant risks to individuals, communities, and even nations, emphasizing the need for effective detection systems. While previous research has explored tweet-based threats, much of the work is limited to specific languages, domains, or locations, or relies on single-model approaches, reducing their applicability to diverse real-world scenarios. To address these gaps, our study focuses on multi-lingual tweet cyber threat detection using a variety of advanced models. The research was conducted in three stages: (1) We collected and labeled tweet datasets in four languages English, Chinese, Russian, and Arabic employing both manual and polarity-based labeling methods to ensure high-quality annotations. (2) Each dataset was analyzed individually using machine learning (ML) and deep learning (DL) models to assess their performance on distinct languages. (3) Finally, we combined all four datasets into a single multi-lingual dataset and applied DL and large language model (LLM) architectures to evaluate their efficacy in identifying cyber threats across various languages. Our results show that among machine learning models, Random Forest (RF) attained the highest performance; however, the Bi-LSTM architecture consistently surpassed other DL and LLM architectures across all datasets. These findings underline the effectiveness of Bi-LSTM in multilingual cyber threat detection. The code for this paper can be found at this link: https://github.com/Mmurrad/Tweet-Data-Classification.git.

Authors:Zuyan Liu, Yuhao Dong, Jiahui Wang, Ziwei Liu, Winston Hu, Jiwen Lu, Yongming Rao
Title: Ola: Pushing the Frontiers of Omni-Modal Language Model
Abstract:
Recent advances in large language models, particularly following GPT-4o, have sparked increasing interest in developing omni-modal models capable of understanding more modalities. While some open-source alternatives have emerged, there is still a notable lag behind specialized single-modality models in performance. In this paper, we present Ola, an Omni-modal Language model that achieves competitive performance across image, video, and audio understanding compared to specialized counterparts, pushing the frontiers of the omni-modal language model to a large extent. We conduct a comprehensive exploration of architectural design, data curation, and training strategies essential for building a robust omni-modal model. Ola incorporates advanced visual understanding and audio recognition capabilities through several critical and effective improvements over mainstream baselines. Moreover, we rethink inter-modal relationships during omni-modal training, emphasizing cross-modal alignment with video as a central bridge, and propose a progressive training pipeline that begins with the most distinct modalities and gradually moves towards closer modality alignment. Extensive experiments demonstrate that Ola surpasses existing open omni-modal LLMs across all modalities while achieving highly competitive performance compared to state-of-the-art specialized models of similar sizes. We aim to make Ola a fully open omni-modal understanding solution to advance future research in this emerging field. Model weights, code, and data are open-sourced at https://github.com/Ola-Omni/Ola.

Authors:Yiming Huang, Tolga Birdal
Title: HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
Abstract:
Graph generation is a critical yet challenging task as empirical analyses require a deep understanding of complex, non-Euclidean structures. Although diffusion models have recently made significant achievements in graph generation, these models typically adapt from the frameworks designed for image generation, making them ill-suited for capturing the topological properties of graphs. In this work, we propose a novel Higher-order Guided Diffusion (HOG-Diff) model that follows a coarse-to-fine generation curriculum and is guided by higher-order information, enabling the progressive generation of plausible graphs with inherent topological structures. We further prove that our model exhibits a stronger theoretical guarantee than classical diffusion frameworks. Extensive experiments on both molecular and generic graph generation tasks demonstrate that our method consistently outperforms or remains competitive with state-of-the-art baselines. Our code is available at https://github.com/Yiminghh/HOG-Diff.

Authors:Yiming Huang, Tolga Birdal
Title: HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
Abstract:
Graph generation is a critical yet challenging task as empirical analyses require a deep understanding of complex, non-Euclidean structures. Diffusion models have recently made significant achievements in graph generation, but these models are typically adapted from image generation frameworks and overlook inherent higher-order topology, leaving them ill-suited for capturing the topological properties of graphs. In this work, we propose Higher-order Guided Diffusion (HOG-Diff), a principled framework that progressively generates plausible graphs with inherent topological structures. HOG-Diff follows a coarse-to-fine generation curriculum guided by higher-order topology and implemented via diffusion bridges. We further prove that our model exhibits a stronger theoretical guarantee than classical diffusion frameworks. Extensive experiments on both molecular and generic graph generation tasks demonstrate that our method consistently outperforms or remains competitive with state-of-the-art baselines. Our code is available at https://github.com/Yiminghh/HOG-Diff.

Authors:Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, Bryon Aragam
Title: ScoreFlow: Mastering LLM Agent Workflows via Score-based Preference Optimization
Abstract:
Recent research has leveraged large language model multi-agent systems for complex problem-solving while trying to reduce the manual effort required to build them, driving the development of automated agent workflow optimization methods. However, existing methods remain inflexible due to representational limitations, a lack of adaptability, and poor scalability when relying on discrete optimization techniques. We address these challenges with ScoreFlow, a simple yet high-performance framework that leverages efficient gradient-based optimization in a continuous space. ScoreFlow incorporates Score-DPO, a novel variant of the direct preference optimization method that accounts for quantitative feedback. Across six benchmarks spanning question answering, coding, and mathematical reasoning, ScoreFlow achieves an 8.2% improvement over existing baselines. Moreover, it empowers smaller models to outperform larger ones with lower inference costs. Project: https://github.com/Gen-Verse/ScoreFlow

Authors:Yuanye Liu, Jiahang Xu, Li Lyna Zhang, Qi Chen, Xuan Feng, Yang Chen, Zhongxin Guo, Yuqing Yang, Peng Cheng
Title: Beyond Prompt Content: Enhancing LLM Performance via Content-Format Integrated Prompt Optimization
Abstract:
Large Language Models (LLMs) have shown significant capability across various tasks, with their real-world effectiveness often driven by prompt design. While recent research has focused on optimizing prompt content, the role of prompt formatting, a critical but often overlooked dimension, has received limited systematic investigation. In this paper, we introduce Content-Format Integrated Prompt Optimization (CFPO), an innovative methodology that jointly optimizes both prompt content and formatting through an iterative refinement process. CFPO leverages natural language mutations to explore content variations and employs a dynamic format exploration strategy that systematically evaluates diverse format options. Our extensive evaluations across multiple tasks and open-source LLMs demonstrate that CFPO demonstrates measurable performance improvements compared to content-only optimization methods. This highlights the importance of integrated content-format optimization and offers a practical, model-agnostic approach to enhancing LLM performance. Code is available at https://github.com/HenryLau7/CFPO.

Authors:Yi Yu, Botao Ren, Peiyuan Zhang, Mingxin Liu, Junwei Luo, Shaofeng Zhang, Feipeng Da, Junchi Yan, Xue Yang
Title: Point2RBox-v2: Rethinking Point-supervised Oriented Object Detection with Spatial Layout Among Instances
Abstract:
With the rapidly increasing demand for oriented object detection (OOD), recent research involving weakly-supervised detectors for learning OOD from point annotations has gained great attention. In this paper, we rethink this challenging task setting with the layout among instances and present Point2RBox-v2. At the core are three principles: 1) Gaussian overlap loss. It learns an upper bound for each instance by treating objects as 2D Gaussian distributions and minimizing their overlap. 2) Voronoi watershed loss. It learns a lower bound for each instance through watershed on Voronoi tessellation. 3) Consistency loss. It learns the size/rotation variation between two output sets with respect to an input image and its augmented view. Supplemented by a few devised techniques, e.g. edge loss and copy-paste, the detector is further enhanced. To our best knowledge, Point2RBox-v2 is the first approach to explore the spatial layout among instances for learning point-supervised OOD. Our solution is elegant and lightweight, yet it is expected to give a competitive performance especially in densely packed scenes: 62.61%/86.15%/34.71% on DOTA/HRSC/FAIR1M. Code is available at https://github.com/VisionXLab/point2rbox-v2.

Authors:Marco Mistretta, Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, Andrew D. Bagdanov
Title: Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion
Abstract:
Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-the-shelf for a variety of applications. In this paper, we show that the common practice of individually exploiting the text or image encoders of these powerful multi-modal models is highly suboptimal for intra-modal tasks like image-to-image retrieval. We argue that this is inherently due to the CLIP-style inter-modal contrastive loss that does not enforce any intra-modal constraints, leading to what we call intra-modal misalignment. To demonstrate this, we leverage two optimization-based modality inversion techniques that map representations from their input modality to the complementary one without any need for auxiliary data or additional trained adapters. We empirically show that, in the intra-modal tasks of image-to-image and text-to-text retrieval, approaching these tasks inter-modally significantly improves performance with respect to intra-modal baselines on more than fifteen datasets. Additionally, we demonstrate that approaching a native inter-modal task (e.g. zero-shot image classification) intra-modally decreases performance, further validating our findings. Finally, we show that incorporating an intra-modal term in the pre-training objective or narrowing the modality gap between the text and image feature embedding spaces helps reduce the intra-modal misalignment. The code is publicly available at: https://github.com/miccunifi/Cross-the-Gap.

Authors:Shaopeng Fu, Liang Ding, Jingfeng Zhang, Di Wang
Title: Short-length Adversarial Training Helps LLMs Defend Long-length Jailbreak Attacks: Theoretical and Empirical Evidence
Abstract:
Jailbreak attacks against large language models (LLMs) aim to induce harmful behaviors in LLMs through carefully crafted adversarial prompts. To mitigate attacks, one way is to perform adversarial training (AT)-based alignment, i.e., training LLMs on some of the most adversarial prompts to help them learn how to behave safely under attacks. During AT, the length of adversarial prompts plays a critical role in the robustness of aligned LLMs. While long-length adversarial prompts during AT might lead to strong LLM robustness, their synthesis however is very resource-consuming, which may limit the application of LLM AT. This paper focuses on adversarial suffix jailbreak attacks and unveils that to defend against a jailbreak attack with an adversarial suffix of length $Θ(M)$, it is enough to align LLMs on prompts with adversarial suffixes of length $Θ(\sqrt{M})$. Theoretically, we analyze the adversarial in-context learning of linear transformers on linear regression tasks and prove a robust generalization bound for trained transformers. The bound depends on the term $Θ(\sqrt{M_{\text{test}}}/M_{\text{train}})$, where $M_{\text{train}}$ and $M_{\text{test}}$ are the numbers of adversarially perturbed in-context samples during training and testing. Empirically, we conduct AT on popular open-source LLMs and evaluate their robustness against jailbreak attacks of different adversarial suffix lengths. Results confirm a positive correlation between the attack success rate and the ratio of the square root of the adversarial suffix length during jailbreaking to the length during AT. Our findings show that it is practical to defend against ``long-length'' jailbreak attacks via efficient ``short-length'' AT. The code is available at https://github.com/fshp971/adv-icl.

Authors:Qinhan Yu, Zhiyou Xiao, Binghui Li, Zhengren Wang, Chong Chen, Wentao Zhang
Title: MRAMG-Bench: A Comprehensive Benchmark for Advancing Multimodal Retrieval-Augmented Multimodal Generation
Abstract:
Recent advances in Retrieval-Augmented Generation (RAG) have significantly improved response accuracy and relevance by incorporating external knowledge into Large Language Models (LLMs). However, existing RAG methods primarily focus on generating text-only answers, even in Multimodal Retrieval-Augmented Generation (MRAG) scenarios, where multimodal elements are retrieved to assist in generating text answers. To address this, we introduce the Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) task, in which we aim to generate multimodal answers that combine both text and images, fully leveraging the multimodal data within a corpus. Despite growing attention to this challenging task, a notable lack of a comprehensive benchmark persists for effectively evaluating its performance. To bridge this gap, we provide MRAMG-Bench, a meticulously curated, human-annotated benchmark comprising 4,346 documents, 14,190 images, and 4,800 QA pairs, distributed across six distinct datasets and spanning three domains: Web, Academia, and Lifestyle. The datasets incorporate diverse difficulty levels and complex multi-image scenarios, providing a robust foundation for evaluating the MRAMG task. To facilitate rigorous evaluation, MRAMG-Bench incorporates a comprehensive suite of both statistical and LLM-based metrics, enabling a thorough analysis of the performance of generative models in the MRAMG task. Additionally, we propose an efficient and flexible multimodal answer generation framework that can leverage LLMs/MLLMs to generate multimodal responses. Our datasets and complete evaluation results for 11 popular generative models are available at https://github.com/MRAMG-Bench/MRAMG.

Authors:Kaikai An, Li Sheng, Ganqu Cui, Shuzheng Si, Ning Ding, Yu Cheng, Baobao Chang
Title: UltraIF: Advancing Instruction Following from the Wild
Abstract:
Instruction-following made modern large language models (LLMs) helpful assistants. However, the key to taming LLMs on complex instructions remains mysterious, for that there are huge gaps between models trained by open-source community and those trained by leading companies. To bridge the gap, we propose a simple and scalable approach UltraIF for building LLMs that can follow complex instructions with open-source data. UltraIF first decomposes real-world user prompts into simpler queries, constraints, and corresponding evaluation questions for the constraints. Then, we train an UltraComposer to compose constraint-associated prompts with evaluation questions. This prompt composer allows us to synthesize complicated instructions as well as filter responses with evaluation questions. In our experiment, for the first time, we successfully align LLaMA-3.1-8B-Base to catch up with its instruct version on 5 instruction-following benchmarks without any benchmark information, using only 8B model as response generator and evaluator. The aligned model also achieved competitive scores on other benchmarks. Moreover, we also show that UltraIF could further improve LLaMA-3.1-8B-Instruct through self-alignment, motivating broader use cases for the method. Our code will be available at https://github.com/kkk-an/UltraIF.

Authors:Kaikai An, Li Sheng, Ganqu Cui, Shuzheng Si, Ning Ding, Yu Cheng, Baobao Chang
Title: UltraIF: Advancing Instruction Following from the Wild
Abstract:
Instruction-following made modern large language models (LLMs) helpful assistants. However, the key to taming LLMs on complex instructions remains mysterious, for that there are huge gaps between models trained by open-source community and those trained by leading companies. To bridge the gap, we propose a simple and scalable approach UltraIF for building LLMs that can follow complex instructions with open-source data. UltraIF first decomposes real-world user prompts into simpler queries, constraints, and corresponding evaluation questions for the constraints. Then, we train an UltraComposer to compose constraint-associated prompts with evaluation questions. This prompt composer allows us to synthesize complicated instructions as well as filter responses with evaluation questions. In our experiment, for the first time, we successfully align LLaMA-3.1-8B-Base to catch up with its instruct version on 5 instruction-following benchmarks without any benchmark information, using only 8B model as response generator and evaluator. The aligned model also achieved competitive scores on other benchmarks. Moreover, we also show that UltraIF could further improve LLaMA-3.1-8B-Instruct through self-alignment, motivating broader use cases for the method. Our code is available at https://github.com/kkk-an/UltraIF.

Authors:Ahmed Adnan, Antu Saha, Oscar Chaparro
Title: SPRINT: An Assistant for Issue Report Management
Abstract:
Managing issue reports is essential for the evolution and maintenance of software systems. However, manual issue management tasks such as triaging, prioritizing, localizing, and resolving issues are highly resource-intensive for projects with large codebases and users. To address this challenge, we present SPRINT, a GitHub application that utilizes state-of-the-art deep learning techniques to streamline issue management tasks. SPRINT assists developers by: (i) identifying existing issues similar to newly reported ones, (ii) predicting issue severity, and (iii) suggesting code files that likely require modification to solve the issues. We evaluated SPRINT using existing datasets and methodologies, measuring its predictive performance, and conducted a user study with five professional developers to assess its usability and usefulness. The results show that SPRINT is accurate, usable, and useful, providing evidence of its effectiveness in assisting developers in managing issue reports. SPRINT is an open-source tool available at https://github.com/sea-lab-wm/sprint_issue_report_assistant_tool.

Authors:Jost Arndt, Utku Isil, Michael Detzel, Wojciech Samek, Jackie Ma
Title: Synthetic Datasets for Machine Learning on Spatio-Temporal Graphs using PDEs
Abstract:
Many physical processes can be expressed through partial differential equations (PDEs). Real-world measurements of such processes are often collected at irregularly distributed points in space, which can be effectively represented as graphs; however, there are currently only a few existing datasets. Our work aims to make advancements in the field of PDE-modeling accessible to the temporal graph machine learning community, while addressing the data scarcity problem, by creating and utilizing datasets based on PDEs. In this work, we create and use synthetic datasets based on PDEs to support spatio-temporal graph modeling in machine learning for different applications. More precisely, we showcase three equations to model different types of disasters and hazards in the fields of epidemiology, atmospheric particles, and tsunami waves. Further, we show how such created datasets can be used by benchmarking several machine learning models on the epidemiological dataset. Additionally, we show how pre-training on this dataset can improve model performance on real-world epidemiological data. The presented methods enable others to create datasets and benchmarks customized to individual requirements. The source code for our methodology and the three created datasets can be found on https://github.com/github-usr-ano/Temporal_Graph_Data_PDEs.

Authors:Shangkun Sun, Xiaoyu Liang, Bowen Qu, Wei Gao
Title: Content-Rich AIGC Video Quality Assessment via Intricate Text Alignment and Motion-Aware Consistency
Abstract:
The advent of next-generation video generation models like \textit{Sora} poses challenges for AI-generated content (AIGC) video quality assessment (VQA). These models substantially mitigate flickering artifacts prevalent in prior models, enable longer and complex text prompts and generate longer videos with intricate, diverse motion patterns. Conventional VQA methods designed for simple text and basic motion patterns struggle to evaluate these content-rich videos. To this end, we propose \textbf{CRAVE} (\underline{C}ontent-\underline{R}ich \underline{A}IGC \underline{V}ideo \underline{E}valuator), specifically for the evaluation of Sora-era AIGC videos. CRAVE proposes the multi-granularity text-temporal fusion that aligns long-form complex textual semantics with video dynamics. Additionally, CRAVE leverages the hybrid motion-fidelity modeling to assess temporal artifacts. Furthermore, given the straightforward prompts and content in current AIGC VQA datasets, we introduce \textbf{CRAVE-DB}, a benchmark featuring content-rich videos from next-generation models paired with elaborate prompts. Extensive experiments have shown that the proposed CRAVE achieves excellent results on multiple AIGC VQA benchmarks, demonstrating a high degree of alignment with human perception. All data and code will be publicly available at https://github.com/littlespray/CRAVE.

Authors:Nikunj Gupta, James Zachary Hare, Rajgopal Kannan, Viktor Prasanna
Title: Deep Meta Coordination Graphs for Multi-agent Reinforcement Learning
Abstract:
This paper presents deep meta coordination graphs (DMCG) for learning cooperative policies in multi-agent reinforcement learning (MARL). Coordination graph formulations encode local interactions and accordingly factorize the joint value function of all agents to improve efficiency in MARL. However, existing approaches rely solely on pairwise relations between agents, which potentially oversimplifies complex multi-agent interactions. DMCG goes beyond these simple direct interactions by also capturing useful higher-order and indirect relationships among agents. It generates novel graph structures accommodating multiple types of interactions and arbitrary lengths of multi-hop connections in coordination graphs to model such interactions. It then employs a graph convolutional network module to learn powerful representations in an end-to-end manner. We demonstrate its effectiveness in multiple coordination problems in MARL where other state-of-the-art methods can suffer from sample inefficiency or fail entirely. All codes can be found here: https://github.com/Nikunj-Gupta/dmcg-marl.

Authors:Keonvin Park, Jisu Kim, Jaemin Seo
Title: PINT: Physics-Informed Neural Time Series Models with Applications to Long-term Inference on WeatherBench 2m-Temperature Data
Abstract:
This paper introduces PINT (Physics-Informed Neural Time Series Models), a framework that integrates physical constraints into neural time series models to improve their ability to capture complex dynamics. We apply PINT to the ERA5 WeatherBench dataset, focusing on long-term forecasting of 2m-temperature data. PINT incorporates the Simple Harmonic Oscillator Equation as a physics-informed prior, embedding its periodic dynamics into RNN, LSTM, and GRU architectures. This equation's analytical solutions (sine and cosine functions) facilitate rigorous evaluation of the benefits of incorporating physics-informed constraints. By benchmarking against a linear regression baseline derived from its exact solutions, we quantify the impact of embedding physical principles in data-driven models. Unlike traditional time series models that rely on future observations, PINT is designed for practical forecasting. Using only the first 90 days of observed data, it iteratively predicts the next two years, addressing challenges posed by limited real-time updates. Experiments on the WeatherBench dataset demonstrate PINT's ability to generalize, capture periodic trends, and align with physical principles. This study highlights the potential of physics-informed neural models in bridging machine learning and interpretable climate applications. Our models and datasets are publicly available on GitHub: https://github.com/KV-Park.

Authors:Yu Yuan, Shizhao Sun, Qi Liu, Jiang Bian
Title: CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing
Abstract:
Computer Aided Design (CAD) is indispensable across various industries. \emph{Text-based CAD editing}, which automates the modification of CAD models based on textual instructions, holds great potential but remains underexplored. Existing methods primarily focus on design variation generation or text-based CAD generation, either lacking support for text-based control or neglecting existing CAD models as constraints. We introduce \emph{CAD-Editor}, the first framework for text-based CAD editing. To address the challenge of demanding triplet data with accurate correspondence for training, we propose an automated data synthesis pipeline. This pipeline utilizes design variation models to generate pairs of original and edited CAD models and employs Large Vision-Language Models (LVLMs) to summarize their differences into editing instructions. To tackle the composite nature of text-based CAD editing, we propose a locate-then-infill framework that decomposes the task into two focused sub-tasks: locating regions requiring modification and infilling these regions with appropriate edits. Large Language Models (LLMs) serve as the backbone for both sub-tasks, leveraging their capabilities in natural language understanding and CAD knowledge. Experiments show that CAD-Editor achieves superior performance both quantitatively and qualitatively. The code is available at \url {https://github.com/microsoft/CAD-Editor}.

Authors:Longquan Jiang, Junbo Huang, Cedric Möller, Ricardo Usbeck
Title: Ontology-Guided, Hybrid Prompt Learning for Generalization in Knowledge Graph Question Answering
Abstract:
Most existing Knowledge Graph Question Answering (KGQA) approaches are designed for a specific KG, such as Wikidata, DBpedia or Freebase. Due to the heterogeneity of the underlying graph schema, topology and assertions, most KGQA systems cannot be transferred to unseen Knowledge Graphs (KGs) without resource-intensive training data. We present OntoSCPrompt, a novel Large Language Model (LLM)-based KGQA approach with a two-stage architecture that separates semantic parsing from KG-dependent interactions. OntoSCPrompt first generates a SPARQL query structure (including SPARQL keywords such as SELECT, ASK, WHERE and placeholders for missing tokens) and then fills them with KG-specific information. To enhance the understanding of the underlying KG, we present an ontology-guided, hybrid prompt learning strategy that integrates KG ontology into the learning process of hybrid prompts (e.g., discrete and continuous vectors). We also present several task-specific decoding strategies to ensure the correctness and executability of generated SPARQL queries in both stages. Experimental results demonstrate that OntoSCPrompt performs as well as SOTA approaches without retraining on a number of KGQA datasets such as CWQ, WebQSP and LC-QuAD 1.0 in a resource-efficient manner and can generalize well to unseen domain-specific KGs like DBLP-QuAD and CoyPu KG Code: \href{https://github.com/LongquanJiang/OntoSCPrompt}{https://github.com/LongquanJiang/OntoSCPrompt}

Authors:Priyank Pathak, Shyam Marjit, Shruti Vyas, Yogesh S Rawat
Title: LR0.FM: Low-Res Benchmark and Improving Robustness for Zero-Shot Classification in Foundation Models
Abstract:
Visual-language foundation Models (FMs) exhibit remarkable zero-shot generalization across diverse tasks, largely attributed to extensive pre-training on largescale datasets. However, their robustness on low-resolution/pixelated (LR) images, a common challenge in real-world scenarios, remains underexplored. We introduce LR0.FM, a comprehensive benchmark evaluating the impact of low resolution on the zero-shot classification performance of 10 FM(s) across 66 backbones and 15 datasets. We propose a novel metric, Weighted Aggregated Robustness, to address the limitations of existing metrics and better evaluate model performance across resolutions and datasets. Our key findings show that: (i) model size positively correlates with robustness to resolution degradation, (ii) pre-training dataset quality is more important than its size, and (iii) fine-tuned and higher resolution models are less robust against LR. Our analysis further reveals that the model makes semantically reasonable predictions at LR, and the lack of fine-grained details in input adversely impacts the model's initial layers more than the deeper layers. We use these insights and introduce a simple strategy, LR-TK0, to enhance the robustness of models without compromising their pre-trained weights. We demonstrate the effectiveness of LR-TK0 for robustness against low-resolution across several datasets and its generalization capability across backbones and other approaches. Code is available at https://github.com/shyammarjit/LR0.FM

Authors:Yousef Koka, David Selby, Gerrit Großmann, Sebastian Vollmer
Title: CleanSurvival: Automated data preprocessing for time-to-event models using reinforcement learning
Abstract:
Data preprocessing is a critical yet frequently neglected aspect of machine learning, often paid little attention despite its potentially significant impact on model performance. While automated machine learning pipelines are starting to recognize and integrate data preprocessing into their solutions for classification and regression tasks, this integration is lacking for more specialized tasks like survival or time-to-event models. As a result, survival analysis not only faces the general challenges of data preprocessing but also suffers from the lack of tailored, automated solutions in this area. To address this gap, this paper presents 'CleanSurvival', a reinforcement-learning-based solution for optimizing preprocessing pipelines, extended specifically for survival analysis. The framework can handle continuous and categorical variables, using Q-learning to select which combination of data imputation, outlier detection and feature extraction techniques achieves optimal performance for a Cox, random forest, neural network or user-supplied time-to-event model. The package is available on GitHub: https://github.com/datasciapps/CleanSurvival Experimental benchmarks on real-world datasets show that the Q-learning-based data preprocessing results in superior predictive performance to standard approaches, finding such a model up to 10 times faster than undirected random grid search. Furthermore, a simulation study demonstrates the effectiveness in different types and levels of missingness and noise in the data.

Authors:Minsang Kim, Seungjun Baek
Title: Syntriever: How to Train Your Retriever with Synthetic Data from LLMs
Abstract:
LLMs have boosted progress in many AI applications. Recently, there were attempts to distill the vast knowledge of LLMs into information retrieval systems. Those distillation methods mostly use output probabilities of LLMs which are unavailable in the latest black-box LLMs. We propose Syntriever, a training framework for retrievers using synthetic data from black-box LLMs. Syntriever consists of two stages. Firstly in the distillation stage, we synthesize relevant and plausibly irrelevant passages and augmented queries using chain-of-thoughts for the given queries. LLM is asked to self-verify the synthetic data for possible hallucinations, after which retrievers are trained with a loss designed to cluster the embeddings of relevant passages. Secondly in the alignment stage, we align the retriever with the preferences of LLMs. We propose a preference modeling called partial Plackett-Luce ranking to learn LLM preferences with regularization which prevents the model from deviating excessively from that trained in the distillation stage. Experiments show that Syntriever achieves state-of-the-art performances on benchmark datasets from various domains in nDCG@$K$. The code is available at \href{https://github.com/kmswin1/Syntriever}{https://github.com/kmswin1/Syntriever}.

Authors:Heyi Zhang, Yule Liu, Xinlei He, Jun Wu, Tianshuo Cong, Xinyi Huang
Title: SoK: Benchmarking Poisoning Attacks and Defenses in Federated Learning
Abstract:
Federated learning (FL) enables collaborative model training while preserving data privacy, but its decentralized nature exposes it to client-side data poisoning attacks (DPAs) and model poisoning attacks (MPAs) that degrade global model performance. While numerous proposed defenses claim substantial effectiveness, their evaluation is typically done in isolation with limited attack strategies, raising concerns about their validity. Additionally, existing studies overlook the mutual effectiveness of defenses against both DPAs and MPAs, causing fragmentation in this field. This paper aims to provide a unified benchmark and analysis of defenses against DPAs and MPAs, clarifying the distinction between these two similar but slightly distinct domains. We present a systematic taxonomy of poisoning attacks and defense strategies, outlining their design, strengths, and limitations. Then, a unified comparative evaluation across FL algorithms and data heterogeneity is conducted to validate their individual and mutual effectiveness and derive key insights for design principles and future research. Along with the analysis, we frame our work to a unified benchmark, FLPoison, with high modularity and scalability to evaluate 15 representative poisoning attacks and 17 defense strategies, facilitating future research in this domain. Code is available at https://github.com/vio1etus/FLPoison.

Authors:Xiangyu Wu, Feng Yu, Qing-Guo Chen, Yang Yang, Jianfeng Lu
Title: Multi-Label Test-Time Adaptation with Bound Entropy Minimization
Abstract:
Mainstream test-time adaptation (TTA) techniques endeavor to mitigate distribution shifts via entropy minimization for multi-class classification, inherently increasing the probability of the most confident class. However, when encountering multi-label instances, the primary challenge stems from the varying number of labels per image, and prioritizing only the highest probability class inevitably undermines the adaptation of other positive labels. To address this issue, we investigate TTA within multi-label scenario (ML--TTA), developing Bound Entropy Minimization (BEM) objective to simultaneously increase the confidence of multiple top predicted labels. Specifically, to determine the number of labels for each augmented view, we retrieve a paired caption with yielded textual labels for that view. These labels are allocated to both the view and caption, called weak label set and strong label set with the same size k. Following this, the proposed BEM considers the highest top-k predicted labels from view and caption as a single entity, respectively, learning both view and caption prompts concurrently. By binding top-k predicted labels, BEM overcomes the limitation of vanilla entropy minimization, which exclusively optimizes the most confident class. Across the MSCOCO, VOC, and NUSWIDE multi-label datasets, our ML--TTA framework equipped with BEM exhibits superior performance compared to the latest SOTA methods, across various model architectures, prompt initialization, and varying label scenarios. The code is available at https://github.com/Jinx630/ML-TTA.

Authors:Chhavi Yadav, Evan Monroe Laufer, Dan Boneh, Kamalika Chaudhuri
Title: ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Abstract:
In principle, explanations are intended as a way to increase trust in machine learning models and are often obligated by regulations. However, many circumstances where these are demanded are adversarial in nature, meaning the involved parties have misaligned interests and are incentivized to manipulate explanations for their purpose. As a result, explainability methods fail to be operational in such settings despite the demand \cite{bordt2022post}. In this paper, we take a step towards operationalizing explanations in adversarial scenarios with Zero-Knowledge Proofs (ZKPs), a cryptographic primitive. Specifically we explore ZKP-amenable versions of the popular explainability algorithm LIME and evaluate their performance on Neural Networks and Random Forests. Our code is publicly available at https://github.com/emlaufer/ExpProof.

Authors:Chaoyin She, Ruifang Lu, Danni He, Jiayi Lv, Yadan Lin, Meiqing Cheng, Hui Huang, Fengyu Ye, Lida Chen, Wei Wang, Qinghua Huang
Title: A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma
Abstract:
Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality worldwide, demands urgent improvements in early detection to enhance patient survival. While ultrasound remains the preferred screening modality due to its cost-effectiveness and real-time capabilities, its sensitivity (59%-78%) heavily relies on radiologists' expertise, leading to inconsistent diagnostic outcomes and operational inefficiencies. Recent advancements in AI technology offer promising solutions to bridge this gap. This study introduces the Hierarchical Sparse Query Transformer (HSQformer), a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness through latent space representation and sparse learning. By dynamically activating task-specific experts via a Mixture-of-Experts (MoE) framework, HSQformer achieves hierarchical feature integration without structural redundancy. Evaluated across three clinical scenarios: single-center, multi-center, and high-risk patient cohorts, HSQformer outperforms state-of-the-art models (e.g., 95.38% AUC in multi-center testing) and matches senior radiologists' diagnostic accuracy while significantly surpassing junior counterparts. These results highlight the potential of AI-assisted tools to standardize HCC screening, reduce dependency on human expertise, and improve early diagnosis rates. The full code is available at https://github.com/Asunatan/HSQformer.

Authors:Pouya Samanipour, Hasan Poonawala
Title: Replacing K-infinity Function with Leaky ReLU in Barrier Function Design: A Union of Invariant Sets Approach for ReLU-Based Dynamical Systems
Abstract:
In this paper, a systematic framework is presented for determining piecewise affine PWA barrier functions and their corresponding invariant sets for dynamical systems identified via Rectified Linear Unit (ReLU) neural networks or their equivalent PWA representations. A common approach to determining the invariant set is to use Nagumo's condition, or to utilize the barrier function with a class K-infinity function. It may be challenging to find a suitable class K-infinity function in some cases. We propose leaky ReLU as an efficient substitute for the complex nonlinear K-infinity function in our formulation. Moreover, we propose the Union of Invariant Sets (UIS) method, which combines information from multiple invariant sets in order to compute the largest possible PWA invariant set. The proposed framework is validated through multiple examples, showcasing its potential to enhance the analysis of invariant sets in ReLU-based dynamical systems. Our code is available at: https://github.com/PouyaSamanipour/UIS.git.

Authors:Xiaopeng Li, Shanwen Wang, Shasha Li, Shezheng Song, Bin Ji, Jun Ma, Jie Yu
Title: Rethinking the Residual Distribution of Locate-then-Editing Methods in Model Editing
Abstract:
Model editing is a powerful technique for updating the knowledge of Large Language Models (LLMs). Locate-then-edit methods are a popular class of approaches that first identify the critical layers storing knowledge, then compute the residual of the last critical layer based on the edited knowledge, and finally perform multi-layer updates using a least-squares solution by evenly distributing the residual from the first critical layer to the last. Although these methods achieve promising results, they have been shown to degrade the original knowledge of LLMs. We argue that residual distribution leads to this issue. To explore this, we conduct a comprehensive analysis of residual distribution in locate-then-edit methods from both empirical and theoretical perspectives, revealing that residual distribution introduces editing errors, leading to inaccurate edits. To address this issue, we propose the Boundary Layer UpdatE (BLUE) strategy to enhance locate-then-edit methods. Sequential batch editing experiments on three LLMs and two datasets demonstrate that BLUE not only delivers an average performance improvement of 35.59\%, significantly advancing the state of the art in model editing, but also enhances the preservation of LLMs' general capabilities. Our code is available at https://github.com/xpq-tech/BLUE.

Authors:Feng Wang, Yaodong Yu, Guoyizhe Wei, Wei Shao, Yuyin Zhou, Alan Yuille, Cihang Xie
Title: Scaling Laws in Patchification: An Image Is Worth 50,176 Tokens And More
Abstract:
Since the introduction of Vision Transformer (ViT), patchification has long been regarded as a de facto image tokenization approach for plain visual architectures. By compressing the spatial size of images, this approach can effectively shorten the token sequence and reduce the computational cost of ViT-like plain architectures. In this work, we aim to thoroughly examine the information loss caused by this patchification-based compressive encoding paradigm and how it affects visual understanding. We conduct extensive patch size scaling experiments and excitedly observe an intriguing scaling law in patchification: the models can consistently benefit from decreased patch sizes and attain improved predictive performance, until it reaches the minimum patch size of 1x1, i.e., pixel tokenization. This conclusion is broadly applicable across different vision tasks, various input scales, and diverse architectures such as ViT and the recent Mamba models. Moreover, as a by-product, we discover that with smaller patches, task-specific decoder heads become less critical for dense prediction. In the experiments, we successfully scale up the visual sequence to an exceptional length of 50,176 tokens, achieving a competitive test accuracy of 84.6% with a base-sized model on the ImageNet-1k benchmark. We hope this study can provide insights and theoretical foundations for future works of building non-compressive vision models. Code is available at https://github.com/wangf3014/Patch_Scaling.

Authors:Sharana Dharshikgan Suresh Dass, Hrishav Bakul Barua, Ganesh Krishnasamy, Raveendran Paramesran, Raphael C. -W. Phan
Title: MD-BERT: Action Recognition in Dark Videos via Dynamic Multi-Stream Fusion and Temporal Modeling
Abstract:
Action recognition in dark, low-light (under-exposed) or noisy videos is a challenging task due to visibility degradation, which can hinder critical spatiotemporal details. This paper proposes MD-BERT, a novel multi-stream approach that integrates complementary pre-processing techniques such as gamma correction and histogram equalization alongside raw dark frames to address these challenges. We introduce the Dynamic Feature Fusion (DFF) module, extending existing attentional fusion methods to a three-stream setting, thereby capturing fine-grained and global contextual information across different brightness and contrast enhancements. The fused spatiotemporal features are then processed by a BERT-based temporal model, which leverages its bidirectional self-attention to effectively capture long-range dependencies and contextual relationships across frames. Extensive experiments on the ARID V1.0 and ARID V1.5 dark video datasets show that MD-BERT outperforms existing methods, establishing a new state-of-the-art performance. Ablation studies further highlight the individual contributions of each input stream and the effectiveness of the proposed DFF and BERT modules. The official website of this work is available at: https://github.com/HrishavBakulBarua/DarkBERT

Authors:Zhouheng Li, Lei Xie, Cheng Hu, Hongye Su
Title: Reduce Lap Time for Autonomous Racing with Curvature-Integrated MPCC Local Trajectory Planning Method
Abstract:
The widespread application of autonomous driving technology has significantly advanced the field of autonomous racing. Model Predictive Contouring Control (MPCC) is a highly effective local trajectory planning method for autonomous racing. However, the traditional MPCC method struggles with racetracks that have significant curvature changes, limiting the performance of the vehicle during autonomous racing. To address this issue, we propose a curvature-integrated MPCC (CiMPCC) local trajectory planning method for autonomous racing. This method optimizes the velocity of the local trajectory based on the curvature of the racetrack centerline. The specific implementation involves mapping the curvature of the racetrack centerline to a reference velocity profile, which is then incorporated into the cost function for optimizing the velocity of the local trajectory. This reference velocity profile is created by normalizing and mapping the curvature of the racetrack centerline, thereby ensuring efficient and performance-oriented local trajectory planning in racetracks with significant curvature. The proposed CiMPCC method has been experimented on a self-built 1:10 scale F1TENTH racing vehicle deployed with ROS platform. The experimental results demonstrate that the proposed method achieves outstanding results on a challenging racetrack with sharp curvature, improving the overall lap time by 11.4%-12.5% compared to other autonomous racing trajectory planning methods. Our code is available at https://github.com/zhouhengli/CiMPCC.

Authors:Kushagra Pandey, Farrin Marouf Sofian, Felix Draxler, Theofanis Karaletsos, Stephan Mandt
Title: Variational Control for Guidance in Diffusion Models
Abstract:
Diffusion models exhibit excellent sample quality, but existing guidance methods often require additional model training or are limited to specific tasks. We revisit guidance in diffusion models from the perspective of variational inference and control, introducing Diffusion Trajectory Matching (DTM) that enables guiding pretrained diffusion trajectories to satisfy a terminal cost. DTM unifies a broad class of guidance methods and enables novel instantiations. We introduce a new method within this framework that achieves state-of-the-art results on several linear, non-linear, and blind inverse problems without requiring additional model training or specificity to pixel or latent space diffusion models. Our code will be available at https://github.com/czi-ai/oc-guidance

Authors:Huimin Zeng, Jiacheng Li, Ziqiang Zheng, Zhiwei Xiong
Title: All-in-One Image Compression and Restoration
Abstract:
Visual images corrupted by various types and levels of degradations are commonly encountered in practical image compression. However, most existing image compression methods are tailored for clean images, therefore struggling to achieve satisfying results on these images. Joint compression and restoration methods typically focus on a single type of degradation and fail to address a variety of degradations in practice. To this end, we propose a unified framework for all-in-one image compression and restoration, which incorporates the image restoration capability against various degradations into the process of image compression. The key challenges involve distinguishing authentic image content from degradations, and flexibly eliminating various degradations without prior knowledge. Specifically, the proposed framework approaches these challenges from two perspectives: i.e., content information aggregation, and degradation representation aggregation. Extensive experiments demonstrate the following merits of our model: 1) superior rate-distortion (RD) performance on various degraded inputs while preserving the performance on clean data; 2) strong generalization ability to real-world and unseen scenarios; 3) higher computing efficiency over compared methods. Our code is available at https://github.com/ZeldaM1/All-in-one.

Authors:Zhuowei Li, Haizhou Shi, Yunhe Gao, Di Liu, Zhenting Wang, Yuxiao Chen, Ting Liu, Long Zhao, Hao Wang, Dimitris N. Metaxas
Title: The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Abstract:
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.

Authors:Mehrdad Asadi, Komi Sodoké, Ian J. Gerard, Marta Kersten-Oertel
Title: Clinically-Inspired Hierarchical Multi-Label Classification of Chest X-rays with a Penalty-Based Loss Function
Abstract:
In this work, we present a novel approach to multi-label chest X-ray (CXR) image classification that enhances clinical interpretability while maintaining a streamlined, single-model, single-run training pipeline. Leveraging the CheXpert dataset and VisualCheXbert-derived labels, we incorporate hierarchical label groupings to capture clinically meaningful relationships between diagnoses. To achieve this, we designed a custom hierarchical binary cross-entropy (HBCE) loss function that enforces label dependencies using either fixed or data-driven penalty types. Our model achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.903 on the test set. Additionally, we provide visual explanations and uncertainty estimations to further enhance model interpretability. All code, model configurations, and experiment details are made available.

Authors:Liran Nochumsohn, Hedi Zisling, Omri Azencot
Title: A Multi-Task Learning Approach to Linear Multivariate Forecasting
Abstract:
Accurate forecasting of multivariate time series data is important in many engineering and scientific applications. Recent state-of-the-art works ignore the inter-relations between variates, using their model on each variate independently. This raises several research questions related to proper modeling of multivariate data. In this work, we propose to view multivariate forecasting as a multi-task learning problem, facilitating the analysis of forecasting by considering the angle between task gradients and their balance. To do so, we analyze linear models to characterize the behavior of tasks. Our analysis suggests that tasks can be defined by grouping similar variates together, which we achieve via a simple clustering that depends on correlation-based similarities. Moreover, to balance tasks, we scale gradients with respect to their prediction error. Then, each task is solved with a linear model within our MTLinear framework. We evaluate our approach on challenging benchmarks in comparison to strong baselines, and we show it obtains on-par or better results on multivariate forecasting problems. The implementation is available at: https://github.com/azencot-group/MTLinear

Authors:Darina Koishigarina, Arnas Uselis, Seong Joon Oh
Title: CLIP Behaves like a Bag-of-Words Model Cross-modally but not Uni-modally
Abstract:
CLIP (Contrastive Language-Image Pretraining) has become a popular choice for various downstream tasks. However, recent studies have questioned its ability to represent compositional concepts effectively. These works suggest that CLIP often acts like a bag-of-words (BoW) model, interpreting images and text as sets of individual concepts without grasping the structural relationships. In particular, CLIP struggles to correctly bind attributes to their corresponding objects when multiple objects are present in an image or text. In this work, we investigate why CLIP exhibits this BoW-like behavior. We find that the correct attribute-object binding information is already present in individual text and image modalities. Instead, the issue lies in the cross-modal alignment, which relies on cosine similarity. To address this, we propose Linear Attribute Binding CLIP or LABCLIP. It applies a linear transformation to text embeddings before computing cosine similarity. This approach significantly improves CLIP's ability to bind attributes to correct objects, thereby enhancing its compositional understanding. The code is available at https://github.com/kdariina/CLIP-not-BoW-unimodally.

Authors:Yassine El Kheir, Youness Samih, Suraj Maharjan, Tim Polzehl, Sebastian Möller
Title: Comprehensive Layer-wise Analysis of SSL Models for Audio Deepfake Detection
Abstract:
This paper conducts a comprehensive layer-wise analysis of self-supervised learning (SSL) models for audio deepfake detection across diverse contexts, including multilingual datasets (English, Chinese, Spanish), partial, song, and scene-based deepfake scenarios. By systematically evaluating the contributions of different transformer layers, we uncover critical insights into model behavior and performance. Our findings reveal that lower layers consistently provide the most discriminative features, while higher layers capture less relevant information. Notably, all models achieve competitive equal error rate (EER) scores even when employing a reduced number of layers. This indicates that we can reduce computational costs and increase the inference speed of detecting deepfakes by utilizing only a few lower layers. This work enhances our understanding of SSL models in deepfake detection, offering valuable insights applicable across varied linguistic and contextual settings. Our trained models and code are publicly available: https://github.com/Yaselley/SSL_Layerwise_Deepfake.

Authors:SiYeoul Lee, SeonHo Kim, Minkyung Seo, SeongKyu Park, Salehin Imrus, Kambaluru Ashok, DongEon Lee, Chunsu Park, SeonYeong Lee, Jiye Kim, Jae-Heung Yoo, MinWoo Kim
Title: Enhancing Free-hand 3D Photoacoustic and Ultrasound Reconstruction using Deep Learning
Abstract:
This study introduces a motion-based learning network with a global-local self-attention module (MoGLo-Net) to enhance 3D reconstruction in handheld photoacoustic and ultrasound (PAUS) imaging. Standard PAUS imaging is often limited by a narrow field of view and the inability to effectively visualize complex 3D structures. The 3D freehand technique, which aligns sequential 2D images for 3D reconstruction, faces significant challenges in accurate motion estimation without relying on external positional sensors. MoGLo-Net addresses these limitations through an innovative adaptation of the self-attention mechanism, which effectively exploits the critical regions, such as fully-developed speckle area or high-echogenic tissue area within successive ultrasound images to accurately estimate motion parameters. This facilitates the extraction of intricate features from individual frames. Additionally, we designed a patch-wise correlation operation to generate a correlation volume that is highly correlated with the scanning motion. A custom loss function was also developed to ensure robust learning with minimized bias, leveraging the characteristics of the motion parameters. Experimental evaluations demonstrated that MoGLo-Net surpasses current state-of-the-art methods in both quantitative and qualitative performance metrics. Furthermore, we expanded the application of 3D reconstruction technology beyond simple B-mode ultrasound volumes to incorporate Doppler ultrasound and photoacoustic imaging, enabling 3D visualization of vasculature. The source code for this study is publicly available at: https://github.com/guhong3648/US3D

Authors:Qiuhong Shen, Xuanyu Yi, Mingbao Lin, Hanwang Zhang, Shuicheng Yan, Xinchao Wang
Title: Seeing World Dynamics in a Nutshell
Abstract:
We consider the problem of efficiently representing casually captured monocular videos in a spatially- and temporally-coherent manner. While existing approaches predominantly rely on 2D/2.5D techniques treating videos as collections of spatiotemporal pixels, they struggle with complex motions, occlusions, and geometric consistency due to absence of temporal coherence and explicit 3D structure. Drawing inspiration from monocular video as a projection of the dynamic 3D world, we explore representing videos in their intrinsic 3D form through continuous flows of Gaussian primitives in space-time. In this paper, we propose NutWorld, a novel framework that efficiently transforms monocular videos into dynamic 3D Gaussian representations in a single forward pass. At its core, NutWorld introduces a structured spatial-temporal aligned Gaussian (STAG) representation, enabling optimization-free scene modeling with effective depth and flow regularization. Through comprehensive experiments, we demonstrate that NutWorld achieves high-fidelity video reconstruction quality while enabling various downstream applications in real-time. Demos and code will be available at https://github.com/Nut-World/NutWorld.

Authors:Joshua Vendrow, Edward Vendrow, Sara Beery, Aleksander Madry
Title: Do Large Language Model Benchmarks Test Reliability?
Abstract:
When deploying large language models (LLMs), it is important to ensure that these models are not only capable, but also reliable. Many benchmarks have been created to track LLMs' growing capabilities, however there has been no similar focus on measuring their reliability. To understand the potential ramifications of this gap, we investigate how well current benchmarks quantify model reliability. We find that pervasive label errors can compromise these evaluations, obscuring lingering model failures and hiding unreliable behavior. Motivated by this gap in the evaluation of reliability, we then propose the concept of so-called platinum benchmarks, i.e., benchmarks carefully curated to minimize label errors and ambiguity. As a first attempt at constructing such benchmarks, we revise examples from fifteen existing popular benchmarks. We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks such as elementary-level math word problems. Analyzing these failures further reveals previously unidentified patterns of problems on which frontier models consistently struggle. We provide code at https://github.com/MadryLab/platinum-benchmarks

Authors:Rui Pan, Boyao Wang, Shizhe Diao, Xingyuan Pan, Jipeng Zhang, Renjie Pi, Tong Zhang
Title: Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training
Abstract:
Small language models (SLMs) have attracted considerable attention from both academia and industry due to their broad range of applications in edge devices. To obtain SLMs with strong performance, conventional approaches either pre-train the models from scratch, which incurs substantial computational costs, or compress/prune existing large language models (LLMs), which results in performance drops and falls short in comparison to pre-training. In this paper, we investigate the family of acceleration methods that involve both structured pruning and model training. We found 1) layer-wise adaptive pruning (Adapt-Pruner) is extremely effective in LLMs and yields significant improvements over existing pruning techniques, 2) adaptive pruning equipped with further training leads to models comparable to those pre-training from scratch, 3) incremental pruning brings non-trivial performance gain by interleaving pruning with training and only removing a small portion of neurons ($\sim$5%) at a time. Experimental results on LLaMA-3.1-8B demonstrate that Adapt-Pruner outperforms conventional pruning methods, such as LLM-Pruner, FLAP, and SliceGPT, by an average of 1%-7% in accuracy on commonsense benchmarks. Additionally, Adapt-Pruner restores the performance of MobileLLM-125M to 600M on the MMLU benchmark with 200$\times$ fewer tokens via pruning from its larger counterparts, and discovers a new 1B model that surpasses LLaMA-3.2-1B in multiple benchmarks. The official code is released at https://github.com/research4pan/AdaptPruner.

Authors:Rudolf Herdt, Daniel Otero Baguer
Title: Concept Based Explanations and Class Contrasting
Abstract:
Explaining deep neural networks is challenging, due to their large size and non-linearity. In this paper, we introduce a concept-based explanation method, in order to explain the prediction for an individual class, as well as contrasting any two classes, i.e. explain why the model predicts one class over the other. We test it on several openly available classification models trained on ImageNet1K. We perform both qualitative and quantitative tests. For example, for a ResNet50 model from pytorch model zoo, we can use the explanation for why the model predicts a class 'A' to automatically select four dataset crops where the model does not predict class 'A'. The model then predicts class 'A' again for the newly combined image in 91.1% of the cases (works for 911 out of the 1000 classes). The code including an .ipynb example is available on github: https://github.com/rherdt185/concept-based-explanations-and-class-contrasting

Authors:Xinyu Mao, Teerapong Leelanupab, Harrisen Scells, Guido Zuccon
Title: DenseReviewer: A Screening Prioritisation Tool for Systematic Review based on Dense Retrieval
Abstract:
Screening is a time-consuming and labour-intensive yet required task for medical systematic reviews, as tens of thousands of studies often need to be screened. Prioritising relevant studies to be screened allows downstream systematic review creation tasks to start earlier and save time. In previous work, we developed a dense retrieval method to prioritise relevant studies with reviewer feedback during the title and abstract screening stage. Our method outperforms previous active learning methods in both effectiveness and efficiency. In this demo, we extend this prior work by creating (1) a web-based screening tool that enables end-users to screen studies exploiting state-of-the-art methods and (2) a Python library that integrates models and feedback mechanisms and allows researchers to develop and demonstrate new active learning methods. We describe the tool's design and showcase how it can aid screening. The tool is available at https://densereviewer.ielab.io. The source code is also open sourced at https://github.com/ielab/densereviewer.

Authors:Hongli Zhan, Muneeza Azmat, Raya Horesh, Junyi Jessy Li, Mikhail Yurochkin
Title: SPRI: Aligning Large Language Models with Context-Situated Principles
Abstract:
Aligning Large Language Models to integrate and reflect human values, especially for tasks that demand intricate human oversight, is arduous since it is resource-intensive and time-consuming to depend on human expertise for context-specific guidance. Prior work has utilized predefined sets of rules or principles to steer the behavior of models (Bai et al., 2022; Sun et al., 2023). However, these principles tend to be generic, making it challenging to adapt them to each individual input query or context. In this work, we present Situated-PRInciples (SPRI), a framework requiring minimal or no human effort that is designed to automatically generate guiding principles in real-time for each input query and utilize them to align each response. We evaluate SPRI on three tasks, and show that 1) SPRI can derive principles in a complex domain-specific task that leads to on-par performance as expert-crafted ones; 2) SPRI-generated principles lead to instance-specific rubrics that outperform prior LLM-as-a-judge frameworks; 3) using SPRI to generate synthetic SFT data leads to substantial improvement on truthfulness. We release our code and model generations at https://github.com/honglizhan/SPRI-public.

Authors:Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, Xiang Yue
Title: Demystifying Long Chain-of-Thought Reasoning in LLMs
Abstract:
Scaling inference compute enhances reasoning in large language models (LLMs), with long chains-of-thought (CoTs) enabling strategies like backtracking and error correction. Reinforcement learning (RL) has emerged as a crucial method for developing these capabilities, yet the conditions under which long CoTs emerge remain unclear, and RL training requires careful design choices. In this study, we systematically investigate the mechanics of long CoT reasoning, identifying the key factors that enable models to generate long CoT trajectories. Through extensive supervised fine-tuning (SFT) and RL experiments, we present four main findings: (1) While SFT is not strictly necessary, it simplifies training and improves efficiency; (2) Reasoning capabilities tend to emerge with increased training compute, but their development is not guaranteed, making reward shaping crucial for stabilizing CoT length growth; (3) Scaling verifiable reward signals is critical for RL. We find that leveraging noisy, web-extracted solutions with filtering mechanisms shows strong potential, particularly for out-of-distribution (OOD) tasks such as STEM reasoning; and (4) Core abilities like error correction are inherently present in base models, but incentivizing these skills effectively for complex tasks via RL demands significant compute, and measuring their emergence requires a nuanced approach. These insights provide practical guidance for optimizing training strategies to enhance long CoT reasoning in LLMs. Our code is available at: https://github.com/eddycmu/demystify-long-cot.

Authors:Yu Wang, Lei Sang, Yi Zhang, Yiwen Zhang
Title: Intent Representation Learning with Large Language Model for Recommendation
Abstract:
Intent-based recommender systems have garnered significant attention for uncovering latent fine-grained preferences. Intents, as underlying factors of interactions, are crucial for improving recommendation interpretability. Most methods define intents as learnable parameters updated alongside interactions. However, existing frameworks often overlook textual information (e.g., user reviews, item descriptions), which is crucial for alleviating the sparsity of interaction intents. Exploring these multimodal intents, especially the inherent differences in representation spaces, poses two key challenges: i) How to align multimodal intents and effectively mitigate noise issues; ii) How to extract and match latent key intents across modalities. To tackle these challenges, we propose a model-agnostic framework, Intent Representation Learning with Large Language Model (IRLLRec), which leverages large language models (LLMs) to construct multimodal intents and enhance recommendations. Specifically, IRLLRec employs a dual-tower architecture to learn multimodal intent representations. Next, we propose pairwise and translation alignment to eliminate inter-modal differences and enhance robustness against noisy input features. Finally, to better match textual and interaction-based intents, we employ momentum distillation to perform teacher-student learning on fused intent representations. Empirical evaluations on three datasets show that our IRLLRec framework outperforms baselines.Code available at https://github.com/wangyu0627/IRLLRec.

Authors:Ying Zhang, Maoliang Yin, Wenfu Bi, Haibao Yan, Shaohan Bian, Cui-Hua Zhang, Changchun Hua
Title: ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models
Abstract:
Service robots operating in unstructured environments must effectively recognize and segment unknown objects to enhance their functionality. Traditional supervised learningbased segmentation techniques require extensive annotated datasets, which are impractical for the diversity of objects encountered in real-world scenarios. Unseen Object Instance Segmentation (UOIS) methods aim to address this by training models on synthetic data to generalize to novel objects, but they often suffer from the simulation-to-reality gap. This paper proposes a novel approach (ZISVFM) for solving UOIS by leveraging the powerful zero-shot capability of the segment anything model (SAM) and explicit visual representations from a selfsupervised vision transformer (ViT). The proposed framework operates in three stages: (1) generating object-agnostic mask proposals from colorized depth images using SAM, (2) refining these proposals using attention-based features from the selfsupervised ViT to filter non-object masks, and (3) applying K-Medoids clustering to generate point prompts that guide SAM towards precise object segmentation. Experimental validation on two benchmark datasets and a self-collected dataset demonstrates the superior performance of ZISVFM in complex environments, including hierarchical settings such as cabinets, drawers, and handheld objects. Our source code is available at https://github.com/Yinmlmaoliang/zisvfm.

Authors:Li Pan, Yupei Zhang, Qiushi Yang, Tan Li, Zhen Chen
Title: Long-tailed Medical Diagnosis with Relation-aware Representation Learning and Iterative Classifier Calibration
Abstract:
Recently computer-aided diagnosis has demonstrated promising performance, effectively alleviating the workload of clinicians. However, the inherent sample imbalance among different diseases leads algorithms biased to the majority categories, leading to poor performance for rare categories. Existing works formulated this challenge as a long-tailed problem and attempted to tackle it by decoupling the feature representation and classification. Yet, due to the imbalanced distribution and limited samples from tail classes, these works are prone to biased representation learning and insufficient classifier calibration. To tackle these problems, we propose a new Long-tailed Medical Diagnosis (LMD) framework for balanced medical image classification on long-tailed datasets. In the initial stage, we develop a Relation-aware Representation Learning (RRL) scheme to boost the representation ability by encouraging the encoder to capture intrinsic semantic features through different data augmentations. In the subsequent stage, we propose an Iterative Classifier Calibration (ICC) scheme to calibrate the classifier iteratively. This is achieved by generating a large number of balanced virtual features and fine-tuning the encoder using an Expectation-Maximization manner. The proposed ICC compensates for minority categories to facilitate unbiased classifier optimization while maintaining the diagnostic knowledge in majority classes. Comprehensive experiments on three public long-tailed medical datasets demonstrate that our LMD framework significantly surpasses state-of-the-art approaches. The source code can be accessed at https://github.com/peterlipan/LMD.

Authors:Ruizhe Li, Grazziela Figueredo, Dorothee Auer, Rob Dineen, Paul Morgan, Xin Chen
Title: A Unified Framework for Semi-Supervised Image Segmentation and Registration
Abstract:
Semi-supervised learning, which leverages both annotated and unannotated data, is an efficient approach for medical image segmentation, where obtaining annotations for the whole dataset is time-consuming and costly. Traditional semi-supervised methods primarily focus on extracting features and learning data distributions from unannotated data to enhance model training. In this paper, we introduce a novel approach incorporating an image registration model to generate pseudo-labels for the unannotated data, producing more geometrically correct pseudo-labels to improve the model training. Our method was evaluated on a 2D brain data set, showing excellent performance even using only 1\% of the annotated data. The results show that our approach outperforms conventional semi-supervised segmentation methods (e.g. teacher-student model), particularly in a low percentage of annotation scenario. GitHub: https://github.com/ruizhe-l/UniSegReg.

Authors:Xiangyu Dong, Xingyi Zhang, Lei Chen, Mingxuan Yuan, Sibo Wang
Title: SpaceGNN: Multi-Space Graph Neural Network for Node Anomaly Detection with Extremely Limited Labels
Abstract:
Node Anomaly Detection (NAD) has gained significant attention in the deep learning community due to its diverse applications in real-world scenarios. Existing NAD methods primarily embed graphs within a single Euclidean space, while overlooking the potential of non-Euclidean spaces. Besides, to address the prevalent issue of limited supervision in real NAD tasks, previous methods tend to leverage synthetic data to collect auxiliary information, which is not an effective solution as shown in our experiments. To overcome these challenges, we introduce a novel SpaceGNN model designed for NAD tasks with extremely limited labels. Specifically, we provide deeper insights into a task-relevant framework by empirically analyzing the benefits of different spaces for node representations, based on which, we design a Learnable Space Projection function that effectively encodes nodes into suitable spaces. Besides, we introduce the concept of weighted homogeneity, which we empirically and theoretically validate as an effective coefficient during information propagation. This concept inspires the design of the Distance Aware Propagation module. Furthermore, we propose the Multiple Space Ensemble module, which extracts comprehensive information for NAD under conditions of extremely limited supervision. Our findings indicate that this module is more beneficial than data augmentation techniques for NAD. Extensive experiments conducted on 9 real datasets confirm the superiority of SpaceGNN, which outperforms the best rival by an average of 8.55% in AUC and 4.31% in F1 scores. Our code is available at https://github.com/xydong127/SpaceGNN.

Authors:Yuchao Wu, Xiaofei Yu, Hao Chen, Yang Luo, Yeyu Tong, Yuzhe Ma
Title: PICBench: Benchmarking LLMs for Photonic Integrated Circuits Design
Abstract:
While large language models (LLMs) have shown remarkable potential in automating various tasks in digital chip design, the field of Photonic Integrated Circuits (PICs)-a promising solution to advanced chip designs-remains relatively unexplored in this context. The design of PICs is time-consuming and prone to errors due to the extensive and repetitive nature of code involved in photonic chip design. In this paper, we introduce PICBench, the first benchmarking and evaluation framework specifically designed to automate PIC design generation using LLMs, where the generated output takes the form of a netlist. Our benchmark consists of dozens of meticulously crafted PIC design problems, spanning from fundamental device designs to more complex circuit-level designs. It automatically evaluates both the syntax and functionality of generated PIC designs by comparing simulation outputs with expert-written solutions, leveraging an open-source simulator. We evaluate a range of existing LLMs, while also conducting comparative tests on various prompt engineering techniques to enhance LLM performance in automated PIC design. The results reveal the challenges and potential of LLMs in the PIC design domain, offering insights into the key areas that require further research and development to optimize automation in this field. Our benchmark and evaluation code is available at https://github.com/PICDA/PICBench.

Authors:Yifan Sun, Rui Chen, Kai S. Yun, Yikuan Fang, Sebin Jung, Feihan Li, Bowei Li, Weiye Zhao, Changliu Liu
Title: SPARK: A Modular Benchmark for Humanoid Robot Safety
Abstract:
This paper introduces the Safe Protective and Assistive Robot Kit (SPARK), a comprehensive benchmark designed to ensure safety in humanoid autonomy and teleoperation. Humanoid robots pose significant safety risks due to their physical capabilities of interacting with complex environments. The physical structures of humanoid robots further add complexity to the design of general safety solutions. To facilitate safe deployment of complex robot systems, SPARK can be used as a toolbox that comes with state-of-the-art safe control algorithms in a modular and composable robot control framework. Users can easily configure safety criteria and sensitivity levels to optimize the balance between safety and performance. To accelerate humanoid safety research and development, SPARK provides simulation benchmarks that compare safety approaches in a variety of environments, tasks, and robot models. Furthermore, SPARK allows quick deployment of synthesized safe controllers on real robots. For hardware deployment, SPARK supports Apple Vision Pro (AVP) or a Motion Capture System as external sensors, while offering interfaces for seamless integration with alternative hardware setups at the same time. This paper demonstrates SPARK's capability with both simulation experiments and case studies with a Unitree G1 humanoid robot. Leveraging these advantages of SPARK, users and researchers can significantly improve the safety of their humanoid systems as well as accelerate relevant research. The open source code is available at: https://github.com/intelligent-control-lab/spark.

Authors:Wen Yan, Qianye Yang, Shiqi Huang, Yipei Wang, Shonit Punwani, Mark Emberton, Vasilis Stavrinides, Yipeng Hu, Dean Barratt
Title: Tell2Reg: Establishing spatial correspondence between images by the same language prompts
Abstract:
Spatial correspondence can be represented by pairs of segmented regions, such that the image registration networks aim to segment corresponding regions rather than predicting displacement fields or transformation parameters. In this work, we show that such a corresponding region pair can be predicted by the same language prompt on two different images using the pre-trained large multimodal models based on GroundingDINO and SAM. This enables a fully automated and training-free registration algorithm, potentially generalisable to a wide range of image registration tasks. In this paper, we present experimental results using one of the challenging tasks, registering inter-subject prostate MR images, which involves both highly variable intensity and morphology between patients. Tell2Reg is training-free, eliminating the need for costly and time-consuming data curation and labelling that was previously required for this registration task. This approach outperforms unsupervised learning-based registration methods tested, and has a performance comparable to weakly-supervised methods. Additional qualitative results are also presented to suggest that, for the first time, there is a potential correlation between language semantics and spatial correspondence, including the spatial invariance in language-prompted regions and the difference in language prompts between the obtained local and global correspondences. Code is available at https://github.com/yanwenCi/Tell2Reg.git.

Authors:Dan MacKinlay
Title: The Ensemble Kalman Update is an Empirical Matheron Update
Abstract:
The Ensemble Kalman Filter (EnKF) is a widely used method for data assimilation in high-dimensional systems, with an ensemble update step equivalent to an empirical version of the Matheron update popular in Gaussian process regression -- a connection that links half a century of data-assimilation engineering to modern path-wise GP sampling. This paper provides a compact introduction to this simple but under-exploited connection, with necessary definitions accessible to all fields involved. Source code is available at https://github.com/danmackinlay/paper_matheron_equals_enkf .

Authors:Yufei Ye, Wei Guo, Jin Yao Chin, Hao Wang, Hong Zhu, Xi Lin, Yuyang Ye, Yong Liu, Ruiming Tang, Defu Lian, Enhong Chen
Title: FuXi-$α$: Scaling Recommendation Model with Feature Interaction Enhanced Transformer
Abstract:
Inspired by scaling laws and large language models, research on large-scale recommendation models has gained significant attention. Recent advancements have shown that expanding sequential recommendation models to large-scale recommendation models can be an effective strategy. Current state-of-the-art sequential recommendation models primarily use self-attention mechanisms for explicit feature interactions among items, while implicit interactions are managed through Feed-Forward Networks (FFNs). However, these models often inadequately integrate temporal and positional information, either by adding them to attention weights or by blending them with latent representations, which limits their expressive power. A recent model, HSTU, further reduces the focus on implicit feature interactions, constraining its performance. We propose a new model called FuXi-$α$ to address these issues. This model introduces an Adaptive Multi-channel Self-attention mechanism that distinctly models temporal, positional, and semantic features, along with a Multi-stage FFN to enhance implicit feature interactions. Our offline experiments demonstrate that our model outperforms existing models, with its performance continuously improving as the model size increases. Additionally, we conducted an online A/B test within the Huawei Music app, which showed a $4.76\%$ increase in the average number of songs played per user and a $5.10\%$ increase in the average listening duration per user. Our code has been released at https://github.com/USTC-StarTeam/FuXi-alpha.

Authors:Mohannad Takrouri, Nicolás M. Cuadrado, Martin Takáč
Title: Knowledge Distillation from Large Language Models for Household Energy Modeling
Abstract:
Machine learning (ML) is increasingly vital for smart-grid research, yet restricted access to realistic, diverse data - often due to privacy concerns - slows progress and fuels doubts within the energy sector about adopting ML-based strategies. We propose integrating Large Language Models (LLMs) in energy modeling to generate realistic, culturally sensitive, and behavior-specific data for household energy usage across diverse geographies. In this study, we employ and compare five different LLMs to systematically produce family structures, weather patterns, and daily consumption profiles for households in six distinct countries. A four-stage methodology synthesizes contextual daily data, including culturally nuanced activities, realistic weather ranges, HVAC operations, and distinct `energy signatures' that capture unique consumption footprints. Additionally, we explore an alternative strategy where external weather datasets can be directly integrated, bypassing intermediate weather modeling stages while ensuring physically consistent data inputs. The resulting dataset provides insights into how cultural, climatic, and behavioral factors converge to shape carbon emissions, offering a cost-effective avenue for scenario-based energy optimization. This approach underscores how prompt engineering, combined with knowledge distillation, can advance sustainable energy research and climate mitigation efforts. Source code is available at https://github.com/Singularity-AI-Lab/LLM-Energy-Knowledge-Distillation .

Authors:Hao Zeng, Kangdao Liu, Bingyi Jing, Hongxin Wei
Title: Parametric Scaling Law of Tuning Bias in Conformal Prediction
Abstract:
Conformal prediction is a popular framework of uncertainty quantification that constructs prediction sets with coverage guarantees. To uphold the exchangeability assumption, many conformal prediction methods necessitate an additional holdout set for parameter tuning. Yet, the impact of violating this principle on coverage remains underexplored, making it ambiguous in practical applications. In this work, we empirically find that the tuning bias - the coverage gap introduced by leveraging the same dataset for tuning and calibration, is negligible for simple parameter tuning in many conformal prediction methods. In particular, we observe the scaling law of the tuning bias: this bias increases with parameter space complexity and decreases with calibration set size. Formally, we establish a theoretical framework to quantify the tuning bias and provide rigorous proof for the scaling law of the tuning bias by deriving its upper bound. In the end, we discuss how to reduce the tuning bias, guided by the theories we developed.

Authors:Berné L. Nortier, Simon Dobson, Federico Battiston
Title: Higher-order shortest paths in hypergraphs
Abstract:
One of the defining features of complex networks is the connectivity properties that we observe emerging from local interactions. Recently, hypergraphs have emerged as a versatile tool to model networks with non-dyadic, higher-order interactions. Nevertheless, the connectivity properties of real-world hypergraphs remain largely understudied. In this work we introduce path size as a measure to characterise higher-order connectivity and quantify the relevance of non-dyadic ties for efficient shortest paths in a diverse set of empirical networks with and without temporal information. By comparing our results with simple randomised null models, our analysis presents a nuanced picture, suggesting that non-dyadic ties are often central and are vital for system connectivity, while dyadic edges remain essential to connect more peripheral nodes, an effect which is particularly pronounced for time-varying systems. Our work contributes to a better understanding of the structural organisation of systems with higher-order interactions.

Authors:Seng Pei Liew, Takuya Kato, Sho Takase
Title: Scaling Laws for Upcycling Mixture-of-Experts Language Models
Abstract:
Pretraining large language models (LLMs) is resource-intensive, often requiring months of training time even with high-end GPU clusters. There are two approaches of mitigating such computational demands: reusing smaller models to train larger ones (upcycling), and training computationally efficient models like mixture-of-experts (MoE). In this paper, we study the upcycling of LLMs to MoE models, of which the scaling behavior remains underexplored. Through extensive experiments, we identify empirical scaling laws that describe how performance depends on dataset size and model configuration. Particularly, we show that, while scaling these factors improves performance, there is a novel interaction term between the dense and upcycled training dataset that limits the efficiency of upcycling at large computational budgets. Based on these findings, we provide guidance to scale upcycling, and establish conditions under which upcycling outperforms from-scratch trainings within budget constraints.

Authors:Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, Junchi Yan
Title: Fast T2T: Optimization Consistency Speeds Up Diffusion-Based Training-to-Testing Solving for Combinatorial Optimization
Abstract:
Diffusion models have recently advanced Combinatorial Optimization (CO) as a powerful backbone for neural solvers. However, their iterative sampling process requiring denoising across multiple noise levels incurs substantial overhead. We propose to learn direct mappings from different noise levels to the optimal solution for a given instance, facilitating high-quality generation with minimal shots. This is achieved through an optimization consistency training protocol, which, for a given instance, minimizes the difference among samples originating from varying generative trajectories and time steps relative to the optimal solution. The proposed model enables fast single-step solution generation while retaining the option of multi-step sampling to trade for sampling quality, which offers a more effective and efficient alternative backbone for neural solvers. In addition, within the training-to-testing (T2T) framework, to bridge the gap between training on historical instances and solving new instances, we introduce a novel consistency-based gradient search scheme during the test stage, enabling more effective exploration of the solution space learned during training. It is achieved by updating the latent solution probabilities under objective gradient guidance during the alternation of noise injection and denoising steps. We refer to this model as Fast T2T. Extensive experiments on two popular tasks, the Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS), demonstrate the superiority of Fast T2T regarding both solution quality and efficiency, even outperforming LKH given limited time budgets. Notably, Fast T2T with merely one-step generation and one-step gradient search can mostly outperform the SOTA diffusion-based counterparts that require hundreds of steps, while achieving tens of times speedup.

Authors:T. Chay-intr, Y. Chen, K. Viriyayudhakorn, T. Theeramunkong
Title: LLaVAC: Fine-tuning LLaVA as a Multimodal Sentiment Classifier
Abstract:
We present LLaVAC, a method for constructing a classifier for multimodal sentiment analysis. This method leverages fine-tuning of the Large Language and Vision Assistant (LLaVA) to predict sentiment labels across both image and text modalities. Our approach involves designing a structured prompt that incorporates both unimodal and multimodal labels to fine-tune LLaVA, enabling it to perform sentiment classification effectively. Experiments on the MVSA-Single dataset demonstrate that LLaVAC outperforms existing methods in multimodal sentiment analysis across three data processing procedures. The implementation of LLaVAC is publicly available at https://github.com/tchayintr/llavac.

Authors:Yuan Tian, Wenqi Zhou, Michele Viscione, Hao Dong, David Kammer, Olga Fink
Title: Interactive Symbolic Regression through Offline Reinforcement Learning: A Co-Design Framework
Abstract:
Symbolic Regression (SR) holds great potential for uncovering underlying mathematical and physical relationships from observed data. However, the vast combinatorial space of possible expressions poses significant challenges for both online search methods and pre-trained transformer models. Additionally, current state-of-the-art approaches typically do not consider the integration of domain experts' prior knowledge and do not support iterative interactions with the model during the equation discovery process. To address these challenges, we propose the Symbolic Q-network (Sym-Q), an advanced interactive framework for large-scale symbolic regression. Unlike previous large-scale transformer-based SR approaches, Sym-Q leverages reinforcement learning without relying on a transformer-based decoder. This formulation allows the agent to learn through offline reinforcement learning using any type of tree encoder, enabling more efficient training and inference. Furthermore, we propose a co-design mechanism, where the reinforcement learning-based Sym-Q facilitates effective interaction with domain experts at any stage of the equation discovery process. Users can dynamically modify generated nodes of the expression, collaborating with the agent to tailor the mathematical expression to best fit the problem and align with the assumed physical laws, particularly when there is prior partial knowledge of the expected behavior. Our experiments demonstrate that the pre-trained Sym-Q surpasses existing SR algorithms on the challenging SSDNC benchmark. Moreover, we experimentally show on real-world cases that its performance can be further enhanced by the interactive co-design mechanism, with Sym-Q achieving greater performance gains than other state-of-the-art models. Our reproducible code is available at https://github.com/EPFL-IMOS/Sym-Q.

Authors:Bradley P. Allen, Paul T. Groth
Title: A Benchmark for the Detection of Metalinguistic Disagreements between LLMs and Knowledge Graphs
Abstract:
Evaluating large language models (LLMs) for tasks like fact extraction in support of knowledge graph construction frequently involves computing accuracy metrics using a ground truth benchmark based on a knowledge graph (KG). These evaluations assume that errors represent factual disagreements. However, human discourse frequently features metalinguistic disagreement, where agents differ not on facts but on the meaning of the language used to express them. Given the complexity of natural language processing and generation using LLMs, we ask: do metalinguistic disagreements occur between LLMs and KGs? Based on an investigation using the T-REx knowledge alignment dataset, we hypothesize that metalinguistic disagreement does in fact occur between LLMs and KGs, with potential relevance for the practice of knowledge graph engineering. We propose a benchmark for evaluating the detection of factual and metalinguistic disagreements between LLMs and KGs. An initial proof of concept of such a benchmark is available on Github.

Authors:Baoyao Yang, Junxiang Chen, Wanyun Li, Wenbin Yao, Yang Zhou
Title: Expertized Caption Auto-Enhancement for Video-Text Retrieval
Abstract:
Video-text retrieval has been stuck in the information mismatch caused by personalized and inadequate textual descriptions of videos. The substantial information gap between the two modalities hinders an effective cross-modal representation alignment, resulting in ambiguous retrieval results. Although text rewriting methods have been proposed to broaden text expressions, the modality gap remains significant, as the text representation space is hardly expanded with insufficient semantic enrichment.Instead, this paper turns to enhancing visual presentation, bridging video expression closer to textual representation via caption generation and thereby facilitating video-text matching.While multimodal large language models (mLLM) have shown a powerful capability to convert video content into text, carefully crafted prompts are essential to ensure the reasonableness and completeness of the generated captions. Therefore, this paper proposes an automatic caption enhancement method that improves expression quality and mitigates empiricism in augmented captions through self-learning.Additionally, an expertized caption selection mechanism is designed and introduced to customize augmented captions for each video, further exploring the utilization potential of caption augmentation.Our method is entirely data-driven, which not only dispenses with heavy data collection and computation workload but also improves self-adaptability by circumventing lexicon dependence and introducing personalized matching. The superiority of our method is validated by state-of-the-art results on various benchmarks, specifically achieving Top-1 recall accuracy of 68.5% on MSR-VTT, 68.1% on MSVD, and 62.0% on DiDeMo. Our code is publicly available at https://github.com/CaryXiang/ECA4VTR.

Authors:Xiaofan Yu, Lanxiang Hu, Benjamin Reichman, Dylan Chu, Rushil Chandrupatla, Xiyuan Zhang, Larry Heck, Tajana Rosing
Title: SensorChat: Answering Qualitative and Quantitative Questions during Long-Term Multimodal Sensor Interactions
Abstract:
Natural language interaction with sensing systems is crucial for addressing users' personal concerns and providing health-related insights into their daily lives. When a user asks a question, the system automatically analyzes the full history of sensor data, extracts relevant information, and generates an appropriate response. However, existing systems are limited to short-duration (e.g., one minute) or low-frequency (e.g., daily step count) sensor data. In addition, they struggle with quantitative questions that require precise numerical answers. In this work, we introduce SensorChat, the first end-to-end QA system designed for daily life monitoring using long-duration, high-frequency time series data. Given raw sensor signals spanning multiple days and a user-defined natural language question, SensorChat generates semantically meaningful responses that directly address user concerns. SensorChat effectively handles both quantitative questions that require numerical precision and qualitative questions that require high-level reasoning to infer subjective insights. To achieve this, SensorChat uses an innovative three-stage pipeline including question decomposition, sensor data query, and answer assembly. The first and third stages leverage Large Language Models (LLMs) to interpret human queries and generate responses. The intermediate querying stage extracts relevant information from the complete sensor data history. Real-world implementations demonstrate SensorChat's capability for real-time interactions on a cloud server while also being able to run entirely on edge platforms after quantization. Comprehensive QA evaluations show that SensorChat achieves 93% higher answer accuracy than the best performing state-of-the-art systems on quantitative questions. Furthermore, a user study with eight volunteers highlights SensorChat's effectiveness in answering qualitative questions.

Authors:Jiaqing Zhang, Mingjia Yin, Hao Wang, Yawen Li, Yuyang Ye, Xingyu Lou, Junping Du, Enhong Chen
Title: TD3: Tucker Decomposition Based Dataset Distillation Method for Sequential Recommendation
Abstract:
In the era of data-centric AI, the focus of recommender systems has shifted from model-centric innovations to data-centric approaches. The success of modern AI models is built on large-scale datasets, but this also results in significant training costs. Dataset distillation has emerged as a key solution, condensing large datasets to accelerate model training while preserving model performance. However, condensing discrete and sequentially correlated user-item interactions, particularly with extensive item sets, presents considerable challenges. This paper introduces \textbf{TD3}, a novel \textbf{T}ucker \textbf{D}ecomposition based \textbf{D}ataset \textbf{D}istillation method within a meta-learning framework, designed for sequential recommendation. TD3 distills a fully expressive \emph{synthetic sequence summary} from original data. To efficiently reduce computational complexity and extract refined latent patterns, Tucker decomposition decouples the summary into four factors: \emph{synthetic user latent factor}, \emph{temporal dynamics latent factor}, \emph{shared item latent factor}, and a \emph{relation core} that models their interconnections. Additionally, a surrogate objective in bi-level optimization is proposed to align feature spaces extracted from models trained on both original data and synthetic sequence summary beyond the naïve performance matching approach. In the \emph{inner-loop}, an augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the \emph{outer-loop}. To accelerate the optimization process and address long dependencies, RaT-BPTT is employed for bi-level optimization. Experiments and analyses on multiple public datasets have confirmed the superiority and cross-architecture generalizability of the proposed designs. Codes are released at https://github.com/USTC-StarTeam/TD3.

Authors:Sunwoo Lee, Jaebak Hwang, Yonghyeon Jo, Seungyul Han
Title: Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning
Abstract:
Traditional robust methods in multi-agent reinforcement learning (MARL) often struggle against coordinated adversarial attacks in cooperative scenarios. To address this limitation, we propose the Wolfpack Adversarial Attack framework, inspired by wolf hunting strategies, which targets an initial agent and its assisting agents to disrupt cooperation. Additionally, we introduce the Wolfpack-Adversarial Learning for MARL (WALL) framework, which trains robust MARL policies to defend against the proposed Wolfpack attack by fostering systemwide collaboration. Experimental results underscore the devastating impact of the Wolfpack attack and the significant robustness improvements achieved by WALL. Our code is available at https://github.com/sunwoolee0504/WALL.

Authors:Jeongmo Kim, Yisak Park, Minung Kim, Seungyul Han
Title: Task-Aware Virtual Training: Enhancing Generalization in Meta-Reinforcement Learning for Out-of-Distribution Tasks
Abstract:
Meta reinforcement learning aims to develop policies that generalize to unseen tasks sampled from a task distribution. While context-based meta-RL methods improve task representation using task latents, they often struggle with out-of-distribution (OOD) tasks. To address this, we propose Task-Aware Virtual Training (TAVT), a novel algorithm that accurately captures task characteristics for both training and OOD scenarios using metric-based representation learning. Our method successfully preserves task characteristics in virtual tasks and employs a state regularization technique to mitigate overestimation errors in state-varying environments. Numerical results demonstrate that TAVT significantly enhances generalization to OOD tasks across various MuJoCo and MetaWorld environments. Our code is available at https://github.com/JM-Kim-94/tavt.git.

Authors:Sunny Sanyal, Hayden Prairie, Rudrajit Das, Ali Kavis, Sujay Sanghavi
Title: Upweighting Easy Samples in Fine-Tuning Mitigates Forgetting
Abstract:
Fine-tuning a pre-trained model on a downstream task often degrades its original capabilities, a phenomenon known as "catastrophic forgetting". This is especially an issue when one does not have access to the data and recipe used to develop the pre-trained model. Under this constraint, most existing methods for mitigating forgetting are inapplicable. To address this challenge, we propose a sample weighting scheme for the fine-tuning data solely based on the pre-trained model's losses. Specifically, we upweight the easy samples on which the pre-trained model's loss is low and vice versa to limit the drift from the pre-trained model. Our approach is orthogonal and yet complementary to existing methods; while such methods mostly operate on parameter or gradient space, we concentrate on the sample space. We theoretically analyze the impact of fine-tuning with our method in a linear setting, showing that it stalls learning in a certain subspace which inhibits overfitting to the target task. We empirically demonstrate the efficacy of our method on both language and vision tasks. As an example, when fine-tuning Gemma 2 2B on MetaMathQA, our method results in only a $0.8\%$ drop in accuracy on GSM8K (another math dataset) compared to standard fine-tuning, while preserving $5.4\%$ more accuracy on the pre-training datasets. Our code is publicly available at https://github.com/sanyalsunny111/FLOW_finetuning .

Authors:Calvin Yeung, Kenjiro Ide, Taiga Someya, Keisuke Fujii
Title: OpenSTARLab: Open Approach for Spatio-Temporal Agent Data Analysis in Soccer
Abstract:
Sports analytics has become both more professional and sophisticated, driven by the growing availability of detailed performance data. This progress enables applications such as match outcome prediction, player scouting, and tactical analysis. In soccer, the effective utilization of event and tracking data is fundamental for capturing and analyzing the dynamics of the game. However, there are two primary challenges: the limited availability of event data, primarily restricted to top-tier teams and leagues, and the scarcity and high cost of tracking data, which complicates its integration with event data for comprehensive analysis. Here we propose OpenSTARLab, an open-source framework designed to democratize spatio-temporal agent data analysis in sports by addressing these key challenges. OpenSTARLab includes the Pre-processing Package that standardizes event and tracking data through Unified and Integrated Event Data and State-Action-Reward formats, the Event Modeling Package that implements deep learning-based event prediction, alongside the RLearn Package for reinforcement learning tasks. These technical components facilitate the handling of diverse data sources and support advanced analytical tasks, thereby enhancing the overall functionality and usability of the framework. To assess OpenSTARLab's effectiveness, we conducted several experimental evaluations. These demonstrate the superior performance of the specific event prediction model in terms of action and time prediction accuracies and maintained its robust event simulation performance. Furthermore, reinforcement learning experiments reveal a trade-off between action accuracy and temporal difference loss and show comprehensive visualization. Overall, OpenSTARLab serves as a robust platform for researchers and practitioners, enhancing innovation and collaboration in the field of soccer data analytics.

Authors:Obed Korshie Dzikunu, Shadab Ahamed, Amirhossein Toosi, Xiaoxiao Li, Arman Rahmim
Title: Adaptive Voxel-Weighted Loss Using L1 Norms in Deep Neural Networks for Detection and Segmentation of Prostate Cancer Lesions in PET/CT Images
Abstract:
This study proposes a new loss function for deep neural networks, L1-weighted Dice Focal Loss (L1DFL), that leverages L1 norms for adaptive weighting of voxels based on their classification difficulty, towards automated detection and segmentation of metastatic prostate cancer lesions in PET/CT scans. We obtained 380 PSMA [18-F] DCFPyL PET/CT scans of patients diagnosed with biochemical recurrence metastatic prostate cancer. We trained two 3D convolutional neural networks, Attention U-Net and SegResNet, and concatenated the PET and CT volumes channel-wise as input. The performance of our custom loss function was evaluated against the Dice and Dice Focal Loss functions. For clinical significance, we considered a detected region of interest (ROI) as a true positive if at least the voxel with the maximum standardized uptake value falls within the ROI. We assessed the models' performance based on the number of lesions in an image, tumour volume, activity, and extent of spread. The L1DFL outperformed the comparative loss functions by at least 13% on the test set. In addition, the F1 scores of the Dice Loss and the Dice Focal Loss were lower than that of L1DFL by at least 6% and 34%, respectively. The Dice Focal Loss yielded more false positives, whereas the Dice Loss was more sensitive to smaller volumes and struggled to segment larger lesions accurately. They also exhibited network-specific variations and yielded declines in segmentation accuracy with increased tumour spread. Our results demonstrate the potential of L1DFL to yield robust segmentation of metastatic prostate cancer lesions in PSMA PET/CT images. The results further highlight potential complexities arising from the variations in lesion characteristics that may influence automated prostate cancer tumour detection and segmentation. The code is publicly available at: https://github.com/ObedDzik/pca_segment.git.

Authors:Hongwei Li, Yuheng Tang, Shiqi Wang, Wenbo Guo
Title: PatchPilot: A Cost-Efficient Software Engineering Agent with Early Attempts on Formal Verification
Abstract:
Recent research builds various patching agents that combine large language models (LLMs) with non-ML tools and achieve promising results on the state-of-the-art (SOTA) software patching benchmark, SWE-bench. Based on how to determine the patching workflows, existing patching agents can be categorized as agent-based planning methods, which rely on LLMs for planning, and rule-based planning methods, which follow a pre-defined workflow. At a high level, agent-based planning methods achieve high patching performance but with a high cost and limited stability. Rule-based planning methods, on the other hand, are more stable and efficient but have key workflow limitations that compromise their patching performance. In this paper, we propose PatchPilot, an agentic patcher that strikes a balance between patching efficacy, stability, and cost-efficiency. PatchPilot proposes a novel rule-based planning workflow with five components: reproduction, localization, generation, validation, and refinement (where refinement is unique to PatchPilot). We introduce novel and customized designs to each component to optimize their effectiveness and efficiency. Through extensive experiments on the SWE-bench benchmarks, PatchPilot shows a superior performance than existing open-source methods while maintaining low cost (less than 1$ per instance) and ensuring higher stability. We also conduct a detailed ablation study to validate the key designs in each component. Our code is available at https://github.com/ucsb-mlsec/PatchPilot.

Authors:Adibvafa Fallahpour, Jun Ma, Alif Munim, Hongwei Lyu, Bo Wang
Title: MedRAX: Medical Reasoning Agent for Chest X-ray
Abstract:
Chest X-rays (CXRs) play an integral role in driving critical decisions in disease management and patient care. While recent innovations have led to specialized models for various CXR interpretation tasks, these solutions often operate in isolation, limiting their practical utility in clinical practice. We present MedRAX, the first versatile AI agent that seamlessly integrates state-of-the-art CXR analysis tools and multimodal large language models into a unified framework. MedRAX dynamically leverages these models to address complex medical queries without requiring additional training. To rigorously evaluate its capabilities, we introduce ChestAgentBench, a comprehensive benchmark containing 2,500 complex medical queries across 7 diverse categories. Our experiments demonstrate that MedRAX achieves state-of-the-art performance compared to both open-source and proprietary models, representing a significant step toward the practical deployment of automated CXR interpretation systems. Data and code have been publicly available at https://github.com/bowang-lab/MedRAX

Authors:Mayuka Jayawardhana, Renbo, Samuel Dooley, Valeriia Cherepanova, Andrew Gordon Wilson, Frank Hutter, Colin White, Tom Goldstein, Micah Goldblum
Title: Transformers Boost the Performance of Decision Trees on Tabular Data across Sample Sizes
Abstract:
Large language models (LLMs) perform remarkably well on tabular datasets in zero- and few-shot settings, since they can extract meaning from natural language column headers that describe features and labels. Similarly, TabPFN, a recent non-LLM transformer pretrained on numerous tables for in-context learning, has demonstrated excellent performance for dataset sizes up to a thousand samples. In contrast, gradient-boosted decision trees (GBDTs) are typically trained from scratch on each dataset without benefiting from pretraining data and must learn the relationships between columns from their entries alone since they lack natural language understanding. LLMs and TabPFN excel on small tabular datasets where a strong prior is essential, yet they are not competitive with GBDTs on medium or large datasets, since their context lengths are limited. In this paper, we propose a simple and lightweight approach for fusing large language models and TabPFN with gradient-boosted decision trees, which allows scalable GBDTs to benefit from the natural language capabilities and pretraining of transformers. We name our fusion methods LLM-Boost and PFN-Boost, respectively. While matching or surpassing the performance of the transformer at sufficiently small dataset sizes and GBDTs at sufficiently large sizes, LLM-Boost and PFN-Boost outperform both standalone components on a wide range of dataset sizes in between. We demonstrate state-of-the-art performance against numerous baselines and ensembling algorithms. We find that PFN-Boost achieves the best average performance among all methods we test for all but very small dataset sizes. We release our code at http://github.com/MayukaJ/LLM-Boost .

Authors:Yan Li, Tianyi Zhang, Zechuan Li, Soyeon Caren Han
Title: A Training-Free Length Extrapolation Approach for LLMs: Greedy Attention Logit Interpolation (GALI)
Abstract:
Transformer-based Large Language Models (LLMs) struggle with inputs exceeding their training context window due to positional out-of-distribution (O.O.D.) issues that disrupt attention. Existing solutions, including fine-tuning and training-free methods, face challenges like inefficiency, redundant interpolation, logit outliers, or loss of local positional information. We propose Greedy Attention Logit Interpolation (GALI), a training-free method that improves length extrapolation by greedily reusing pretrained positional intervals and interpolating attention logit to eliminate outliers. GALI achieves stable and superior performance across a wide range of long-context tasks without requiring input-length-specific tuning. Our analysis further reveals that LLMs interpret positional intervals unevenly and that restricting interpolation to narrower ranges improves performance, even on short-context tasks. GALI represents a step toward more robust and generalizable long-text processing in LLMs. Our implementation of GALI, along with the experiments from our paper, is open-sourced at https://github.com/adlnlp/Gali.

Authors:Yu-An Huang, Yao Hu, Yue-Chao Li, Xiyue Cao, Xinyuan Li, Kay Chen Tan, Zhu-Hong You, Zhi-An Huang
Title: scBIT: Integrating Single-cell Transcriptomic Data into fMRI-based Prediction for Alzheimer's Disease Diagnosis
Abstract:
Functional MRI (fMRI) and single-cell transcriptomics are pivotal in Alzheimer's disease (AD) research, each providing unique insights into neural function and molecular mechanisms. However, integrating these complementary modalities remains largely unexplored. Here, we introduce scBIT, a novel method for enhancing AD prediction by combining fMRI with single-nucleus RNA (snRNA). scBIT leverages snRNA as an auxiliary modality, significantly improving fMRI-based prediction models and providing comprehensive interpretability. It employs a sampling strategy to segment snRNA data into cell-type-specific gene networks and utilizes a self-explainable graph neural network to extract critical subgraphs. Additionally, we use demographic and genetic similarities to pair snRNA and fMRI data across individuals, enabling robust cross-modal learning. Extensive experiments validate scBIT's effectiveness in revealing intricate brain region-gene associations and enhancing diagnostic prediction accuracy. By advancing brain imaging transcriptomics to the single-cell level, scBIT sheds new light on biomarker discovery in AD research. Experimental results show that incorporating snRNA data into the scBIT model significantly boosts accuracy, improving binary classification by 3.39% and five-class classification by 26.59%. The codes were implemented in Python and have been released on GitHub (https://github.com/77YQ77/scBIT) and Zenodo (https://zenodo.org/records/11599030) with detailed instructions.

Authors:Yu-An Huang, Yue-Chao Li, Hai-Ru You, Jie Pan, Xiyue Cao, Xinyuan Li, Zhi-An Huang, Zhu-Hong You
Title: Graph Structure Learning for Tumor Microenvironment with Cell Type Annotation from non-spatial scRNA-seq data
Abstract:
The exploration of cellular heterogeneity within the tumor microenvironment (TME) via single-cell RNA sequencing (scRNA-seq) is essential for understanding cancer progression and response to therapy. Current scRNA-seq approaches, however, lack spatial context and rely on incomplete datasets of ligand-receptor interactions (LRIs), limiting accurate cell type annotation and cell-cell communication (CCC) inference. This study addresses these challenges using a novel graph neural network (GNN) model that enhances cell type prediction and cell interaction analysis. Our study utilized a dataset consisting of 49,020 cells from 19 patients across three cancer types: Leukemia, Breast Invasive Carcinoma, and Colorectal Cancer. The proposed scGSL model demonstrated robust performance, achieving an average accuracy of 84.83%, precision of 86.23%, recall of 81.51%, and an F1 score of 80.92% across all datasets. These metrics represent a significant enhancement over existing methods, which typically exhibit lower performance metrics. Additionally, by reviewing existing literature on gene interactions within the TME, the scGSL model proves to robustly identify biologically meaningful gene interactions in an unsupervised manner, validated by significant expression differences in key gene pairs across various cancers. The source code and data used in this paper can be found in https://github.com/LiYuechao1998/scGSL.

Authors:Philipp Hoellmer, Thomas Egg, Maya M. Martirossyan, Eric Fuemmeler, Zeren Shui, Amit Gupta, Pawan Prakash, Adrian Roitberg, Mingjie Liu, George Karypis, Mark Transtrum, Richard G. Hennig, Ellad B. Tadmor, Stefano Martiniani
Title: Open Materials Generation with Stochastic Interpolants
Abstract:
The discovery of new materials is essential for enabling technological advancements. Computational approaches for predicting novel materials must effectively learn the manifold of stable crystal structures within an infinite design space. We introduce Open Materials Generation (OMatG), a unifying framework for the generative design and discovery of inorganic crystalline materials. OMatG employs stochastic interpolants (SI) to bridge an arbitrary base distribution to the target distribution of inorganic crystals via a broad class of tunable stochastic processes, encompassing both diffusion models and flow matching as special cases. In this work, we adapt the SI framework by integrating an equivariant graph representation of crystal structures and extending it to account for periodic boundary conditions in unit cell representations. Additionally, we couple the SI flow over spatial coordinates and lattice vectors with discrete flow matching for atomic species. We benchmark OMatG's performance on two tasks: Crystal Structure Prediction (CSP) for specified compositions, and 'de novo' generation (DNG) aimed at discovering stable, novel, and unique structures. In our ground-up implementation of OMatG, we refine and extend both CSP and DNG metrics compared to previous works. OMatG establishes a new state of the art in generative modeling for materials discovery, outperforming purely flow-based and diffusion-based implementations. These results underscore the importance of designing flexible deep learning frameworks to accelerate progress in materials science. The OMatG code is available at https://github.com/FERMat-ML/OMatG.

Authors:Alex Flückiger, Chantal Amrhein, Tim Graf, Frédéric Odermatt, Martin Pömsl, Philippe Schläpfer, Florian Schottmann, Samuel Läubli
Title: A comparison of translation performance between DeepL and Supertext
Abstract:
As strong machine translation (MT) systems are increasingly based on large language models (LLMs), reliable quality benchmarking requires methods that capture their ability to leverage extended context. This study compares two commercial MT systems -- DeepL and Supertext -- by assessing their performance on unsegmented texts. We evaluate translation quality across four language directions with professional translators assessing segments with full document-level context. While segment-level assessments indicate no strong preference between the systems in most cases, document-level analysis reveals a preference for Supertext in three out of four language directions, suggesting superior consistency across longer texts. We advocate for more context-sensitive evaluation methodologies to ensure that MT quality assessments reflect real-world usability. We release all evaluation data and scripts for further analysis and reproduction at https://github.com/supertext/evaluation_deepl_supertext.

Authors:Divya Bharti, Sriprabha Ramanarayanan, Sadhana S, Kishore Kumar M, Keerthi Ram, Harsh Agarwal, Ramesh Venkatesan, Mohanasankar Sivaprakasam
Title: AAD-DCE: An Aggregated Multimodal Attention Mechanism for Early and Late Dynamic Contrast Enhanced Prostate MRI Synthesis
Abstract:
Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is a medical imaging technique that plays a crucial role in the detailed visualization and identification of tissue perfusion in abnormal lesions and radiological suggestions for biopsy. However, DCE-MRI involves the administration of a Gadolinium based (Gad) contrast agent, which is associated with a risk of toxicity in the body. Previous deep learning approaches that synthesize DCE-MR images employ unimodal non-contrast or low-dose contrast MRI images lacking focus on the local perfusion information within the anatomy of interest. We propose AAD-DCE, a generative adversarial network (GAN) with an aggregated attention discriminator module consisting of global and local discriminators. The discriminators provide a spatial embedded attention map to drive the generator to synthesize early and late response DCE-MRI images. Our method employs multimodal inputs - T2 weighted (T2W), Apparent Diffusion Coefficient (ADC), and T1 pre-contrast for image synthesis. Extensive comparative and ablation studies on the ProstateX dataset show that our model (i) is agnostic to various generator benchmarks and (ii) outperforms other DCE-MRI synthesis approaches with improvement margins of +0.64 dB PSNR, +0.0518 SSIM, -0.015 MAE for early response and +0.1 dB PSNR, +0.0424 SSIM, -0.021 MAE for late response, and (ii) emphasize the importance of attention ensembling. Our code is available at https://github.com/bhartidivya/AAD-DCE.

Authors:Jian Liu, Wei Sun, Hui Yang, Pengchao Deng, Chongpei Liu, Nicu Sebe, Hossein Rahmani, Ajmal Mian
Title: Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation
Abstract:
Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.

Authors:Antoni Kowalczuk, Jan Dubiński, Franziska Boenisch, Adam Dziedzic
Title: Privacy Attacks on Image AutoRegressive Models
Abstract:
Image AutoRegressive generation has emerged as a new powerful paradigm with image autoregressive models (IARs) matching state-of-the-art diffusion models (DMs) in image quality (FID: 1.48 vs. 1.58) while allowing for a higher generation speed. However, the privacy risks associated with IARs remain unexplored, raising concerns regarding their responsible deployment. To address this gap, we conduct a comprehensive privacy analysis of IARs, comparing their privacy risks to the ones of DMs as reference points. Concretely, we develop a novel membership inference attack (MIA) that achieves a remarkably high success rate in detecting training images (with a True Positive Rate at False Positive Rate = 1% of 86.38% vs. 6.38% for DMs with comparable attacks). We leverage our novel MIA to provide dataset inference (DI) for IARs, and show that it requires as few as 6 samples to detect dataset membership (compared to 200 for DI in DMs), confirming a higher information leakage in IARs. Finally, we are able to extract hundreds of training data points from an IAR (e.g., 698 from VAR-d30). Our results suggest a fundamental privacy-utility trade-off: while IARs excel in image generation quality and speed, they are empirically significantly more vulnerable to privacy attacks compared to DMs that achieve similar performance. We release the code at https://github.com/sprintml/privacy_attacks_against_iars for reproducibility.

Authors:Mengting Wei, Tuomas Varanka, Yante Li, Xingxun Jiang, Huai-Qian Khor, Guoying Zhao
Title: Towards Consistent and Controllable Image Synthesis for Face Editing
Abstract:
Face editing methods, essential for tasks like virtual avatars, digital human synthesis and identity preservation, have traditionally been built upon GAN-based techniques, while recent focus has shifted to diffusion-based models due to their success in image reconstruction. However, diffusion models still face challenges in controlling specific attributes and preserving the consistency of other unchanged attributes especially the identity characteristics. To address these issues and facilitate more convenient editing of face images, we propose a novel approach that leverages the power of Stable-Diffusion (SD) models and crude 3D face models to control the lighting, facial expression and head pose of a portrait photo. We observe that this task essentially involves the combinations of target background, identity and face attributes aimed to edit. We strive to sufficiently disentangle the control of these factors to enable consistency of face editing. Specifically, our method, coined as RigFace, contains: 1) A Spatial Attribute Encoder that provides presise and decoupled conditions of background, pose, expression and lighting; 2) A high-consistency FaceFusion method that transfers identity features from the Identity Encoder to the denoising UNet of a pre-trained SD model; 3) An Attribute Rigger that injects those conditions into the denoising UNet. Our model achieves comparable or even superior performance in both identity preservation and photorealism compared to existing face editing models. Code is publicly available at https://github.com/weimengting/RigFace.

Authors:Abdelrahman Abdallah, Bhawna Piryani, Jamshid Mozafari, Mohammed Ali, Adam Jatowt
Title: Rankify: A Comprehensive Python Toolkit for Retrieval, Re-Ranking, and Retrieval-Augmented Generation
Abstract:
Retrieval, re-ranking, and retrieval-augmented generation (RAG) are critical components of modern applications in information retrieval, question answering, or knowledge-based text generation. However, existing solutions are often fragmented, lacking a unified framework that easily integrates these essential processes. The absence of a standardized implementation, coupled with the complexity of retrieval and re-ranking workflows, makes it challenging for researchers to compare and evaluate different approaches in a consistent environment. While existing toolkits such as Rerankers and RankLLM provide general-purpose reranking pipelines, they often lack the flexibility required for fine-grained experimentation and benchmarking. In response to these challenges, we introduce Rankify, a powerful and modular open-source toolkit designed to unify retrieval, re-ranking, and RAG within a cohesive framework. Rankify supports a wide range of retrieval techniques, including dense and sparse retrievers, while incorporating state-of-the-art re-ranking models to enhance retrieval quality. Additionally, Rankify includes a collection of pre-retrieved datasets to facilitate benchmarking, available at Huggingface (https://huggingface.co/datasets/abdoelsayed/reranking-datasets-light). To encourage adoption and ease of integration, we provide comprehensive documentation (http://rankify.readthedocs.io/), an open-source implementation on GitHub (https://github.com/DataScienceUIBK/rankify), and a PyPI package for easy installation (https://pypi.org/project/rankify/). As a unified and lightweight framework, Rankify allows researchers and practitioners to advance retrieval and re-ranking methodologies while ensuring consistency, scalability, and ease of use.

Authors:Qianhao Yuan, Yanjiang Liu, Yaojie Lu, Hongyu Lin, Ben He, Xianpei Han, Le Sun
Title: SAISA: Towards Multimodal Large Language Models with Both Training and Inference Efficiency
Abstract:
Multimodal Large Language Models (MLLMs) mainly fall into two architectures, each involving a trade-off between training and inference efficiency: embedding space alignment (e.g., LLaVA-1.5) is inefficient during inference, while cross-attention space alignment (e.g., Flamingo) is inefficient in training. In this paper, we compare these two architectures and identify the key factors for building efficient MLLMs. A primary difference between them lies in how attention is applied to visual tokens, particularly in their interactions with each other. To investigate whether attention among visual tokens is necessary, we propose a new self-attention mechanism, NAAViT (\textbf{N}o \textbf{A}ttention \textbf{A}mong \textbf{Vi}sual \textbf{T}okens), which eliminates this type of attention. Our pilot experiment on LLaVA-1.5 shows that attention among visual tokens is highly redundant. Based on these insights, we introduce SAISA (\textbf{S}elf-\textbf{A}ttention \textbf{I}nput \textbf{S}pace \textbf{A}lignment), a novel architecture that enhance both training and inference efficiency. SAISA directly aligns visual features with the input spaces of NAAViT self-attention blocks, reducing computational overhead in both self-attention blocks and feed-forward networks (FFNs). Using the same configuration as LLaVA-1.5, SAISA reduces inference FLOPs by 66\% and training budget by 26\%, while achieving superior performance in terms of accuracy. Comprehensive ablation studies further validate the effectiveness of SAISA across various LLMs and visual encoders. The code and model will be publicly available at https://github.com/icip-cas/SAISA.

Authors:Depen Morwani, Nikhil Vyas, Hanlin Zhang, Sham Kakade
Title: Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD Variants
Abstract:
Recent advancements in deep learning optimization have introduced new algorithms, such as Schedule-Free optimizers, AdEMAMix, MARS and Lion which modify traditional momentum mechanisms. In a separate line of work, theoretical acceleration of stochastic gradient descent (SGD) in noise-dominated regime has been achieved by decoupling the momentum coefficient from the current gradient's weight. In this paper, we establish explicit connections between these two lines of work. We substantiate our theoretical findings with preliminary experiments on a 150m language modeling task. We find that AdEMAMix, which most closely resembles accelerated versions of stochastic gradient descent, exhibits superior performance. Building on these insights, we introduce a modification to AdEMAMix, termed Simplified-AdEMAMix, which maintains the same performance as AdEMAMix across both large and small batch-size settings while eliminating the need for two different momentum terms. The code for Simplified-AdEMAMix is available on the repository: https://github.com/DepenM/Simplified-AdEMAMix/.

Authors:Chenhui Zhao, Yan Jiang, Todd C. Hollon
Title: Extending SEEDS to a Supervoxel Algorithm for Medical Image Analysis
Abstract:
In this work, we extend the SEEDS superpixel algorithm from 2D images to 3D volumes, resulting in 3D SEEDS, a faster, better, and open-source supervoxel algorithm for medical image analysis. We compare 3D SEEDS with the widely used supervoxel algorithm SLIC on 13 segmentation tasks across 10 organs. 3D SEEDS accelerates supervoxel generation by a factor of 10, improves the achievable Dice score by +6.5%, and reduces the under-segmentation error by -0.16%. The code is available at https://github.com/Zch0414/3d_seeds

Authors:Ibrahim Bouabdallaoui, Fatima Guerouate, Samya Bouhaddour, Chaimae Saadi, Mohammed Sbihi
Title: FewTopNER: Integrating Few-Shot Learning with Topic Modeling and Named Entity Recognition in a Multilingual Framework
Abstract:
We introduce FewTopNER, a novel framework that integrates few-shot named entity recognition (NER) with topic-aware contextual modeling to address the challenges of cross-lingual and low-resource scenarios. FewTopNER leverages a shared multilingual encoder based on XLM-RoBERTa, augmented with language-specific calibration mechanisms, to generate robust contextual embeddings. The architecture comprises a prototype-based entity recognition branch, employing BiLSTM and Conditional Random Fields for sequence labeling, and a topic modeling branch that extracts document-level semantic features through hybrid probabilistic and neural methods. A cross-task bridge facilitates dynamic bidirectional attention and feature fusion between entity and topic representations, thereby enhancing entity disambiguation by incorporating global semantic context. Empirical evaluations on multilingual benchmarks across English, French, Spanish, German, and Italian demonstrate that FewTopNER significantly outperforms existing state-of-the-art few-shot NER models. In particular, the framework achieves improvements of 2.5-4.0 percentage points in F1 score and exhibits enhanced topic coherence, as measured by normalized pointwise mutual information. Ablation studies further confirm the critical contributions of the shared encoder and cross-task integration mechanisms to the overall performance. These results underscore the efficacy of incorporating topic-aware context into few-shot NER and highlight the potential of FewTopNER for robust cross-lingual applications in low-resource settings.

Authors:Yichi Zhang, Siyuan Zhang, Yao Huang, Zeyu Xia, Zhengwei Fang, Xiao Yang, Ranjie Duan, Dong Yan, Yinpeng Dong, Jun Zhu
Title: STAIR: Improving Safety Alignment with Introspective Reasoning
Abstract:
Ensuring the safety and harmlessness of Large Language Models (LLMs) has become equally critical as their performance in applications. However, existing safety alignment methods typically suffer from safety-performance trade-offs and the susceptibility to jailbreak attacks, primarily due to their reliance on direct refusals for malicious queries. In this paper, we propose STAIR, a novel framework that integrates SafeTy Alignment with Itrospective Reasoning. We enable LLMs to identify safety risks through step-by-step analysis by self-improving chain-of-thought (CoT) reasoning with safety awareness. STAIR first equips the model with a structured reasoning capability and then advances safety alignment via iterative preference optimization on step-level reasoning data generated using our newly proposed Safety-Informed Monte Carlo Tree Search (SI-MCTS). We further train a process reward model on this data to guide test-time searches for improved responses. Extensive experiments show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies. With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks. Relevant resources in this work are available at https://github.com/thu-ml/STAIR.

Authors:Alexander Kolesov, Manukhov Stepan, Vladimir V. Palyulin, Alexander Korotin
Title: Field Matching: an Electrostatic Paradigm to Generate and Transfer Data
Abstract:
We propose Electrostatic Field Matching (EFM), a novel method that is suitable for both generative modeling and distribution transfer tasks. Our approach is inspired by the physics of an electrical capacitor. We place source and target distributions on the capacitor plates and assign them positive and negative charges, respectively. Then we learn the electrostatic field of the capacitor using a neural network approximator. To map the distributions to each other, we start at one plate of the capacitor and move the samples along the learned electrostatic field lines until they reach the other plate. We theoretically justify that this approach provably yields the distribution transfer. In practice, we demonstrate the performance of our EFM in toy and image data experiments. Our code is available at https://github.com/justkolesov/FieldMatching

Authors:Josua Faller, Jörg Martin
Title: Optimal Subspace Inference for the Laplace Approximation of Bayesian Neural Networks
Abstract:
Subspace inference for neural networks assumes that a subspace of their parameter space suffices to produce a reliable uncertainty quantification. In this work, we mathematically derive the optimal subspace model to a Bayesian inference scenario based on the Laplace approximation. We demonstrate empirically that, in the optimal case, often a fraction of parameters less than 1% is sufficient to obtain a reliable estimate of the full Laplace approximation. Since the optimal solution is derived, we can evaluate all other subspace models against a baseline. In addition, we give an approximation of our method that is applicable to larger problem settings, in which the optimal solution is not computable, and compare it to existing subspace models from the literature. In general, our approximation scheme outperforms previous work. Furthermore, we present a metric to qualitatively compare different subspace models even if the exact Laplace approximation is unknown.

Authors:Shangwei Guo, Hao Shi, Song Wang, Xiaoting Yin, Kailun Yang, Kaiwei Wang
Title: Event-aided Semantic Scene Completion
Abstract:
Autonomous driving systems rely on robust 3D scene understanding. Recent advances in Semantic Scene Completion (SSC) for autonomous driving underscore the limitations of RGB-based approaches, which struggle under motion blur, poor lighting, and adverse weather. Event cameras, offering high dynamic range and low latency, address these challenges by providing asynchronous data that complements RGB inputs. We present DSEC-SSC, the first real-world benchmark specifically designed for event-aided SSC, which includes a novel 4D labeling pipeline for generating dense, visibility-aware labels that adapt dynamically to object motion. Our proposed RGB-Event fusion framework, EvSSC, introduces an Event-aided Lifting Module (ELM) that effectively bridges 2D RGB-Event features to 3D space, enhancing view transformation and the robustness of 3D volume construction across SSC models. Extensive experiments on DSEC-SSC and simulated SemanticKITTI-E demonstrate that EvSSC is adaptable to both transformer-based and LSS-based SSC architectures. Notably, evaluations on SemanticKITTI-C demonstrate that EvSSC achieves consistently improved prediction accuracy across five degradation modes and both In-domain and Out-of-domain settings, achieving up to a 52.5% relative improvement in mIoU when the image sensor partially fails. Additionally, we quantitatively and qualitatively validate the superiority of EvSSC under motion blur and extreme weather conditions, where autonomous driving is challenged. The established datasets and our codebase will be made publicly at https://github.com/Pandapan01/EvSSC.

Authors:Hsin-Cheng Lu, Chung-Yi Lin, Winston H. Hsu
Title: Improving Generalization Ability for 3D Object Detection by Learning Sparsity-invariant Features
Abstract:
In autonomous driving, 3D object detection is essential for accurately identifying and tracking objects. Despite the continuous development of various technologies for this task, a significant drawback is observed in most of them-they experience substantial performance degradation when detecting objects in unseen domains. In this paper, we propose a method to improve the generalization ability for 3D object detection on a single domain. We primarily focus on generalizing from a single source domain to target domains with distinct sensor configurations and scene distributions. To learn sparsity-invariant features from a single source domain, we selectively subsample the source data to a specific beam, using confidence scores determined by the current detector to identify the density that holds utmost importance for the detector. Subsequently, we employ the teacher-student framework to align the Bird's Eye View (BEV) features for different point clouds densities. We also utilize feature content alignment (FCA) and graph-based embedding relationship alignment (GERA) to instruct the detector to be domain-agnostic. Extensive experiments demonstrate that our method exhibits superior generalization capabilities compared to other baselines. Furthermore, our approach even outperforms certain domain adaptation methods that can access to the target domain data.

Authors:Jiawei Qin, Xucong Zhang, Yusuke Sugano
Title: UniGaze: Towards Universal Gaze Estimation via Large-scale Pre-Training
Abstract:
Despite decades of research on data collection and model architectures, current gaze estimation models encounter significant challenges in generalizing across diverse data domains. Recent advances in self-supervised pre-training have shown remarkable performances in generalization across various vision tasks. However, their effectiveness in gaze estimation remains unexplored. We propose UniGaze, for the first time, leveraging large-scale in-the-wild facial datasets for gaze estimation through self-supervised pre-training. Through systematic investigation, we clarify critical factors that are essential for effective pretraining in gaze estimation. Our experiments reveal that self-supervised approaches designed for semantic tasks fail when applied to gaze estimation, while our carefully designed pre-training pipeline consistently improves cross-domain performance. Through comprehensive experiments of challenging cross-dataset evaluation and novel protocols including leave-one-dataset-out and joint-dataset settings, we demonstrate that UniGaze significantly improves generalization across multiple data domains while minimizing reliance on costly labeled data. source code and model are available at https://github.com/ut-vision/UniGaze.

Authors:Tao Zhang, Jinyong Wen, Zhen Chen, Kun Ding, Shiming Xiang, Chunhong Pan
Title: UNIP: Rethinking Pre-trained Attention Patterns for Infrared Semantic Segmentation
Abstract:
Pre-training techniques significantly enhance the performance of semantic segmentation tasks with limited training data. However, the efficacy under a large domain gap between pre-training (e.g. RGB) and fine-tuning (e.g. infrared) remains underexplored. In this study, we first benchmark the infrared semantic segmentation performance of various pre-training methods and reveal several phenomena distinct from the RGB domain. Next, our layerwise analysis of pre-trained attention maps uncovers that: (1) There are three typical attention patterns (local, hybrid, and global); (2) Pre-training tasks notably influence the pattern distribution across layers; (3) The hybrid pattern is crucial for semantic segmentation as it attends to both nearby and foreground elements; (4) The texture bias impedes model generalization in infrared tasks. Building on these insights, we propose UNIP, a UNified Infrared Pre-training framework, to enhance the pre-trained model performance. This framework uses the hybrid-attention distillation NMI-HAD as the pre-training target, a large-scale mixed dataset InfMix for pre-training, and a last-layer feature pyramid network LL-FPN for fine-tuning. Experimental results show that UNIP outperforms various pre-training methods by up to 13.5\% in average mIoU on three infrared segmentation tasks, evaluated using fine-tuning and linear probing metrics. UNIP-S achieves performance on par with MAE-L while requiring only 1/10 of the computational cost. Furthermore, UNIP significantly surpasses state-of-the-art (SOTA) infrared or RGB segmentation methods and demonstrates broad potential for application in other modalities, such as RGB and depth. Our code is available at https://github.com/casiatao/UNIP.

Authors:Chenhao Zhai, Chang Meng, Yu Yang, Kexin Zhang, Xuhao Zhao, Xiu Li
Title: Combinatorial Optimization Perspective based Framework for Multi-behavior Recommendation
Abstract:
In real-world recommendation scenarios, users engage with items through various types of behaviors. Leveraging diversified user behavior information for learning can enhance the recommendation of target behaviors (e.g., buy), as demonstrated by recent multi-behavior methods. The mainstream multi-behavior recommendation framework consists of two steps: fusion and prediction. Recent approaches utilize graph neural networks for multi-behavior fusion and employ multi-task learning paradigms for joint optimization in the prediction step, achieving significant success. However, these methods have limited perspectives on multi-behavior fusion, which leads to inaccurate capture of user behavior patterns in the fusion step. Moreover, when using multi-task learning for prediction, the relationship between the target task and auxiliary tasks is not sufficiently coordinated, resulting in negative information transfer. To address these problems, we propose a novel multi-behavior recommendation framework based on the combinatorial optimization perspective, named COPF. Specifically, we treat multi-behavior fusion as a combinatorial optimization problem, imposing different constraints at various stages of each behavior to restrict the solution space, thus significantly enhancing fusion efficiency (COGCN). In the prediction step, we improve both forward and backward propagation during the generation and aggregation of multiple experts to mitigate negative transfer caused by differences in both feature and label distributions (DFME). Comprehensive experiments on three real-world datasets indicate the superiority of COPF. Further analyses also validate the effectiveness of the COGCN and DFME modules. Our code is available at https://github.com/1918190/COPF.

Authors:Giovanni Birolo, Ivan Rossi, Flavio Sartori, Cesare Rollo, Tiziana Sanavia, Piero Fariselli
Title: SurvHive: a package to consistently access multiple survival-analysis packages
Abstract:
Survival analysis, a foundational tool for modeling time-to-event data, has seen growing integration with machine learning (ML) approaches to handle the complexities of censored data and time-varying risks. Despite these advances, leveraging state-of-the-art survival models remains a challenge due to the fragmented nature of existing implementations, which lack standardized interfaces and require extensive preprocessing. We introduce SurvHive, a Python-based framework designed to unify survival analysis methods within a coherent and extensible interface modeled on scikit-learn. SurvHive integrates classical statistical models with cutting-edge deep learning approaches, including transformer-based architectures and parametric survival models. Using a consistent API, SurvHive simplifies model training, evaluation, and optimization, significantly reducing the barrier to entry for ML practitioners exploring survival analysis. The package includes enhanced support for hyper-parameter tuning, time-dependent risk evaluation metrics, and cross-validation strategies tailored to censored data. With its extensibility and focus on usability, SurvHive provides a bridge between survival analysis and the broader ML community, facilitating advancements in time-to-event modeling across domains. The SurvHive code and documentation are available freely at https://github.com/compbiomed-unito/survhive.

Authors:Dexiong Chen, Markus Krimmel, Karsten Borgwardt
Title: Flatten Graphs as Sequences: Transformers are Scalable Graph Generators
Abstract:
We introduce AutoGraph, a scalable autoregressive model for attributed graph generation using decoder-only transformers. By flattening graphs into random sequences of tokens through a reversible process, AutoGraph enables modeling graphs as sequences without relying on additional node features that are expensive to compute, in contrast to diffusion-based approaches. This results in sampling complexity and sequence lengths that scale optimally linearly with the number of edges, making it scalable and efficient for large, sparse graphs. A key success factor of AutoGraph is that its sequence prefixes represent induced subgraphs, creating a direct link to sub-sentences in language modeling. Empirically, AutoGraph achieves state-of-the-art performance on synthetic and molecular benchmarks, with up to 100x faster generation and 3x faster training than leading diffusion models. It also supports substructure-conditioned generation without fine-tuning and shows promising transferability, bridging language modeling and graph generation to lay the groundwork for graph foundation models. Our code is available at https://github.com/BorgwardtLab/AutoGraph.

Authors:Peiyan Hu, Xiaowei Qian, Wenhao Deng, Rui Wang, Haodong Feng, Ruiqi Feng, Tao Zhang, Long Wei, Yue Wang, Zhi-Ming Ma, Tailin Wu
Title: From Uncertain to Safe: Conformal Fine-Tuning of Diffusion Models for Safe PDE Control
Abstract:
The application of deep learning for partial differential equation (PDE)-constrained control is gaining increasing attention. However, existing methods rarely consider safety requirements crucial in real-world applications. To address this limitation, we propose Safe Diffusion Models for PDE Control (SafeDiffCon), which introduce the uncertainty quantile as model uncertainty quantification to achieve optimal control under safety constraints through both post-training and inference phases. Firstly, our approach post-trains a pre-trained diffusion model to generate control sequences that better satisfy safety constraints while achieving improved control objectives via a reweighted diffusion loss, which incorporates the uncertainty quantile estimated using conformal prediction. Secondly, during inference, the diffusion model dynamically adjusts both its generation process and parameters through iterative guidance and fine-tuning, conditioned on control targets while simultaneously integrating the estimated uncertainty quantile. We evaluate SafeDiffCon on three control tasks: 1D Burgers' equation, 2D incompressible fluid, and controlled nuclear fusion problem. Results demonstrate that SafeDiffCon is the only method that satisfies all safety constraints, whereas other classical and deep learning baselines fail. Furthermore, while adhering to safety constraints, SafeDiffCon achieves the best control performance. The code can be found at https://github.com/AI4Science-WestlakeU/safediffcon.

Authors:Fei Wang, Kun Li, Yiqi Nie, Zhangling Duan, Peng Zou, Zhiliang Wu, Yuwei Wang, Yanyan Wei
Title: Exploiting Ensemble Learning for Cross-View Isolated Sign Language Recognition
Abstract:
In this paper, we present our solution to the Cross-View Isolated Sign Language Recognition (CV-ISLR) challenge held at WWW 2025. CV-ISLR addresses a critical issue in traditional Isolated Sign Language Recognition (ISLR), where existing datasets predominantly capture sign language videos from a frontal perspective, while real-world camera angles often vary. To accurately recognize sign language from different viewpoints, models must be capable of understanding gestures from multiple angles, making cross-view recognition challenging. To address this, we explore the advantages of ensemble learning, which enhances model robustness and generalization across diverse views. Our approach, built on a multi-dimensional Video Swin Transformer model, leverages this ensemble strategy to achieve competitive performance. Finally, our solution ranked 3rd in both the RGB-based ISLR and RGB-D-based ISLR tracks, demonstrating the effectiveness in handling the challenges of cross-view recognition. The code is available at: https://github.com/Jiafei127/CV_ISLR_WWW2025.

Authors:Daniel Tamayo, Aitor Gonzalez-Agirre, Javier Hernando, Marta Villegas
Title: Mass-Editing Memory with Attention in Transformers: A cross-lingual exploration of knowledge
Abstract:
Recent research has explored methods for updating and modifying factual knowledge in large language models, often focusing on specific multi-layer perceptron blocks. This study expands on this work by examining the effectiveness of existing knowledge editing methods across languages and delving into the role of attention mechanisms in this process. Drawing from the insights gained, we propose Mass-Editing Memory with Attention in Transformers (MEMAT), a method that achieves significant improvements in all metrics while requiring minimal parameter modifications. MEMAT delivers a remarkable 10% increase in magnitude metrics, benefits languages not included in the training data and also demonstrates a high degree of portability. Our code and data are at https://github.com/dtamayo-nlp/MEMAT.

Authors:Ruiqi Feng, Chenglei Yu, Wenhao Deng, Peiyan Hu, Tailin Wu
Title: On the Guidance of Flow Matching
Abstract:
Flow matching has shown state-of-the-art performance in various generative tasks, ranging from image generation to decision-making, where generation under energy guidance (abbreviated as guidance in the following) is pivotal. However, the guidance of flow matching is more general than and thus substantially different from that of its predecessor, diffusion models. Therefore, the challenge in guidance for general flow matching remains largely underexplored. In this paper, we propose the first framework of general guidance for flow matching. From this framework, we derive a family of guidance techniques that can be applied to general flow matching. These include a new training-free asymptotically exact guidance, novel training losses for training-based guidance, and two classes of approximate guidance that cover classical gradient guidance methods as special cases. We theoretically investigate these different methods to give a practical guideline for choosing suitable methods in different scenarios. Experiments on synthetic datasets, image inverse problems, and offline reinforcement learning demonstrate the effectiveness of our proposed guidance methods and verify the correctness of our flow matching guidance framework. Code to reproduce the experiments can be found at https://github.com/AI4Science-WestlakeU/flow_guidance.

Authors:Yuan Gao, Mattia Piccinini, Korbinian Moller, Amr Alanwar, Johannes Betz
Title: From Words to Collisions: LLM-Guided Evaluation and Adversarial Generation of Safety-Critical Driving Scenarios
Abstract:
Ensuring the safety of autonomous vehicles requires virtual scenario-based testing, which depends on the robust evaluation and generation of safety-critical scenarios. So far, researchers have used scenario-based testing frameworks that rely heavily on handcrafted scenarios as safety metrics. To reduce the effort of human interpretation and overcome the limited scalability of these approaches, we combine Large Language Models (LLMs) with structured scenario parsing and prompt engineering to automatically evaluate and generate safety-critical driving scenarios. We introduce Cartesian and Ego-centric prompt strategies for scenario evaluation, and an adversarial generation module that modifies trajectories of risk-inducing vehicles (ego-attackers) to create critical scenarios. We validate our approach using a 2D simulation framework and multiple pre-trained LLMs. The results show that the evaluation module effectively detects collision scenarios and infers scenario safety. Meanwhile, the new generation module identifies high-risk agents and synthesizes realistic, safety-critical scenarios. We conclude that an LLM equipped with domain-informed prompting techniques can effectively evaluate and generate safety-critical driving scenarios, reducing dependence on handcrafted metrics. We release our open-source code and scenarios at: https://github.com/TUM-AVS/From-Words-to-Collisions.

Authors:Alan Oursland
Title: Neural Networks Learn Distance Metrics
Abstract:
Neural networks may naturally favor distance-based representations, where smaller activations indicate closer proximity to learned prototypes. This contrasts with intensity-based approaches, which rely on activation magnitudes. To test this hypothesis, we conducted experiments with six MNIST architectural variants constrained to learn either distance or intensity representations. Our results reveal that the underlying representation affects model performance. We develop a novel geometric framework that explains these findings and introduce OffsetL2, a new architecture based on Mahalanobis distance equations, to further validate this framework. This work highlights the importance of considering distance-based learning in neural network design.

Authors:Zaid Ilyas, Arooba Maqsood, Afsah Saleem, Erchuan Zhang, David Suter, Parminder Raina, Jonathan M. Hodgson, John T. Schousboe, William D. Leslie, Joshua R. Lewis, Syed Zulqarnain Gilani
Title: VerteNet -- A Multi-Context Hybrid CNN Transformer for Accurate Vertebral Landmark Localization in Lateral Spine DXA Images
Abstract:
Lateral Spine Image (LSI) analysis is important for medical diagnosis, treatment planning, and detailed spinal health assessments. Although modalities like Computed Tomography and Digital X-ray Imaging are commonly used, Dual Energy X-ray Absorptiometry (DXA) is often preferred due to lower radiation exposure, seamless capture, and cost-effectiveness. Accurate Vertebral Landmark Localization (VLL) on LSIs is important to detect spinal conditions like kyphosis and lordosis, as well as assessing Abdominal Aortic Calcification (AAC) using Inter-Vertebral Guides (IVGs). Nonetheless, few automated VLL methodologies have concentrated on DXA LSIs. We present VerteNet, a hybrid CNN-Transformer model featuring a novel dual-resolution attention mechanism in self and cross-attention domains, referred to as Dual Resolution Self-Attention (DRSA) and Dual Resolution Cross-Attention (DRCA). These mechanisms capture the diverse frequencies in DXA images by operating at two different feature map resolutions. Additionally, we design a Multi-Context Feature Fusion Block (MCFB) that efficiently integrates the features using DRSA and DRCA. We train VerteNet on 620 DXA LSIs from various machines and achieve superior results compared to existing methods. We also design an algorithm that utilizes VerteNet's predictions in estimating the Region of Interest (ROI) to detect potential abdominal aorta cropping, where inadequate soft tissue hinders calcification assessment. Additionally, we present a small proof-of-concept study to show that IVGs generated from VLL information can improve inter-reader correlation in AAC scoring, addressing two key areas of disagreement in expert AAC-24 scoring: IVG placement and quality control for full abdominal aorta assessment. The code for this work can be found at https://github.com/zaidilyas89/VerteNet.

Authors:Mokshagna Sai Teja Karanam, Krithika Iyer, Sarang Joshi, Shireen Elhabian
Title: MORPH-LER: Log-Euclidean Regularization for Population-Aware Image Registration
Abstract:
Spatial transformations that capture population-level morphological statistics are critical for medical image analysis. Commonly used smoothness regularizers for image registration fail to integrate population statistics, leading to anatomically inconsistent transformations. Inverse consistency regularizers promote geometric consistency but lack population morphometrics integration. Regularizers that constrain deformation to low-dimensional manifold methods address this. However, they prioritize reconstruction over interpretability and neglect diffeomorphic properties, such as group composition and inverse consistency. We introduce MORPH-LER, a Log-Euclidean regularization framework for population-aware unsupervised image registration. MORPH-LER learns population morphometrics from spatial transformations to guide and regularize registration networks, ensuring anatomically plausible deformations. It features a bottleneck autoencoder that computes the principal logarithm of deformation fields via iterative square-root predictions. It creates a linearized latent space that respects diffeomorphic properties and enforces inverse consistency. By integrating a registration network with a diffeomorphic autoencoder, MORPH-LER produces smooth, meaningful deformation fields. The framework offers two main contributions: (1) a data-driven regularization strategy that incorporates population-level anatomical statistics to enhance transformation validity and (2) a linearized latent space that enables compact and interpretable deformation fields for efficient population morphometrics analysis. We validate MORPH-LER across two families of deep learning-based registration networks, demonstrating its ability to produce anatomically accurate, computationally efficient, and statistically meaningful transformations on the OASIS-1 brain imaging dataset. https://github.com/iyerkrithika21/MORPH_LER

Authors:Hanlin Wu, Yuxuan Song, Jingjing Gong, Ziyao Cao, Yawen Ouyang, Jianbing Zhang, Hao Zhou, Wei-Ying Ma, Jingjing Liu
Title: A Periodic Bayesian Flow for Material Generation
Abstract:
Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.

Authors:Haohan Zou, Jie Feng, Hao Zhao, Yuanyuan Shi
Title: Analytical Lyapunov Function Discovery: An RL-based Generative Approach
Abstract:
Despite advances in learning-based methods, finding valid Lyapunov functions for nonlinear dynamical systems remains challenging. Current neural network approaches face two main issues: challenges in scalable verification and limited interpretability. To address these, we propose an end-to-end framework using transformers to construct analytical Lyapunov functions (local), which simplifies formal verification, enhances interpretability, and provides valuable insights for control engineers. Our framework consists of a transformer-based trainer that generates candidate Lyapunov functions and a falsifier that verifies candidate expressions and refines the model via risk-seeking policy gradient. Unlike Alfarano et al. (2024), which utilizes pre-training and seeks global Lyapunov functions for low-dimensional systems, our model is trained from scratch via reinforcement learning (RL) and succeeds in finding local Lyapunov functions for high-dimensional and non-polynomial systems. Given the analytical nature of the candidates, we employ efficient optimization methods for falsification during training and formal verification tools for the final verification. We demonstrate the efficiency of our approach on a range of nonlinear dynamical systems with up to ten dimensions and show that it can discover Lyapunov functions not previously identified in the control literature. Full implementation is available on \href{https://github.com/JieFeng-cse/Analytical-Lyapunov-Function-Discovery}{Github}

Authors:Jianze Li, Jiezhang Cao, Yong Guo, Wenbo Li, Yulun Zhang
Title: One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation
Abstract:
Diffusion models (DMs) have significantly advanced the development of real-world image super-resolution (Real-ISR), but the computational cost of multi-step diffusion models limits their application. One-step diffusion models generate high-quality images in a one sampling step, greatly reducing computational overhead and inference latency. However, most existing one-step diffusion methods are constrained by the performance of the teacher model, where poor teacher performance results in image artifacts. To address this limitation, we propose FluxSR, a novel one-step diffusion Real-ISR technique based on flow matching models. We use the state-of-the-art diffusion model FLUX.1-dev as both the teacher model and the base model. First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR. Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss and introduce Attention Diversification Loss (ADL) as a regularization term to reduce token similarity in transformer, thereby eliminating high-frequency artifacts. Comprehensive experiments demonstrate that our method outperforms existing one-step diffusion-based Real-ISR methods. The code and model will be released at https://github.com/JianzeLi-114/FluxSR.

Authors:Wenhao Zheng, Yixiao Chen, Weitong Zhang, Souvik Kundu, Yun Li, Zhengzhong Liu, Eric P. Xing, Hongyi Wang, Huaxiu Yao
Title: CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing
Abstract:
Large language models have achieved remarkable success in various tasks but suffer from high computational costs during inference, limiting their deployment in resource-constrained applications. To address this issue, we propose a novel Collaborative Inference with Token-lEvel Routing (CITER) framework that enables efficient collaboration between small and large language models (SLMs \& LLMs) through a token-level routing strategy. Specifically, CITER routes non-critical tokens to an SLM for efficiency and routes critical tokens to an LLM for generalization quality. We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation. This allows the router to learn to predict token-level routing scores and make routing decisions based on both the current token and the future impact of its decisions. To further accelerate the reward evaluation process, we introduce a shortcut which significantly reduces the costs of the reward estimation and improving the practicality of our approach. Extensive experiments on five benchmark datasets demonstrate that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications. Our data and code are available at https://github.com/aiming-lab/CITER.

Authors:Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao Cheng, Chen Qian, Yang Liu
Title: Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning
Abstract:
Recent studies show that in supervised fine-tuning (SFT) of large language models (LLMs), data quality matters more than quantity. While most data cleaning methods concentrate on filtering entire samples, the quality of individual tokens within a sample can vary significantly. After pre-training, even in high-quality samples, patterns or phrases that are not task-related can be redundant, uninformative, or even harmful. Continuing to fine-tune on these patterns may offer limited benefit and even degrade downstream task performance. In this paper, we investigate token quality from a noisy-label perspective and propose a generic token cleaning pipeline for SFT tasks. Our method filters out uninformative tokens while preserving those carrying key task-specific information. Specifically, we first evaluate token quality by examining the influence of model updates on each token, then apply a threshold-based separation. The token influence can be measured in a single pass with a fixed reference model or iteratively with self-evolving reference models. The benefits and limitations of both methods are analyzed theoretically by error upper bounds. Extensive experiments show that our framework consistently improves downstream performance. Code is available at https://github.com/UCSC-REAL/TokenCleaning.

Authors:Jingjing Liu, Li Zhang, Xiaoyang Zeng, Wanquan Liu, Jianhua Zhang
Title: MATCNN: Infrared and Visible Image Fusion Method Based on Multi-scale CNN with Attention Transformer
Abstract:
While attention-based approaches have shown considerable progress in enhancing image fusion and addressing the challenges posed by long-range feature dependencies, their efficacy in capturing local features is compromised by the lack of diverse receptive field extraction techniques. To overcome the shortcomings of existing fusion methods in extracting multi-scale local features and preserving global features, this paper proposes a novel cross-modal image fusion approach based on a multi-scale convolutional neural network with attention Transformer (MATCNN). MATCNN utilizes the multi-scale fusion module (MSFM) to extract local features at different scales and employs the global feature extraction module (GFEM) to extract global features. Combining the two reduces the loss of detail features and improves the ability of global feature representation. Simultaneously, an information mask is used to label pertinent details within the images, aiming to enhance the proportion of preserving significant information in infrared images and background textures in visible images in fused images. Subsequently, a novel optimization algorithm is developed, leveraging the mask to guide feature extraction through the integration of content, structural similarity index measurement, and global feature loss. Quantitative and qualitative evaluations are conducted across various datasets, revealing that MATCNN effectively highlights infrared salient targets, preserves additional details in visible images, and achieves better fusion results for cross-modal images. The code of MATCNN will be available at https://github.com/zhang3849/MATCNN.git.

Authors:Angelina Wang, Michelle Phan, Daniel E. Ho, Sanmi Koyejo
Title: Fairness through Difference Awareness: Measuring Desired Group Discrimination in LLMs
Abstract:
Algorithmic fairness has conventionally adopted the mathematically convenient perspective of racial color-blindness (i.e., difference unaware treatment). However, we contend that in a range of important settings, group difference awareness matters. For example, differentiating between groups may be necessary in legal contexts (e.g., the U.S. compulsory draft applies to men but not women) and harm assessments (e.g., referring to girls as ``terrorists'' may be less harmful than referring to Muslim people as such). Thus, in contrast to most fairness work, we study fairness through the perspective of treating people differently -- when it is contextually appropriate to. We first introduce an important distinction between descriptive (fact-based), normative (value-based), and correlation (association-based) benchmarks. This distinction is significant because each category requires separate interpretation and mitigation tailored to its specific characteristics. Then, we present a benchmark suite composed of eight different scenarios for a total of 16k questions that enables us to assess difference awareness. Finally, we show results across ten models that demonstrate difference awareness is a distinct dimension to fairness where existing bias mitigation strategies may backfire.

Authors:Avery Ma, Yangchen Pan, Amir-massoud Farahmand
Title: PANDAS: Improving Many-shot Jailbreaking via Positive Affirmation, Negative Demonstration, and Adaptive Sampling
Abstract:
Many-shot jailbreaking circumvents the safety alignment of LLMs by exploiting their ability to process long input sequences. To achieve this, the malicious target prompt is prefixed with hundreds of fabricated conversational exchanges between the user and the model. These exchanges are randomly sampled from a pool of unsafe question-answer pairs, making it appear as though the model has already complied with harmful instructions. In this paper, we present PANDAS: a hybrid technique that improves many-shot jailbreaking by modifying these fabricated dialogues with Positive Affirmations, Negative Demonstrations, and an optimized Adaptive Sampling method tailored to the target prompt's topic. We also introduce ManyHarm, a dataset of harmful question-answer pairs, and demonstrate through extensive experiments that PANDAS significantly outperforms baseline methods in long-context scenarios. Through attention analysis, we provide insights into how long-context vulnerabilities are exploited and show how PANDAS further improves upon many-shot jailbreaking.

Authors:Chia-Wen Kuo, Sijie Zhu, Fan Chen, Xiaohui Shen, Longyin Wen
Title: D-Attn: Decomposed Attention for Large Vision-and-Language Models
Abstract:
Large vision-and-language models (LVLMs) have traditionally integrated visual and textual tokens by concatenating them into a single homogeneous input for large language models (LLMs), thereby maximally preserving the pre-trained language capabilities. However, this constrained architecture for visual and textual tokens restricts the design space for processing visual tokens, potentially leading to suboptimal performance and efficiency. In this paper, we propose Decomposed Attention (D-Attn), a more flexible attention architecture for LVLMs, which enables modification of visual token operations without affecting textual-to-textual attention. D-Attn decomposes the 1-D causal self-attention of LVLMs into visual-to-visual, textual-to-visual, and textual-to-textual attentions, and the visual and textual output tokens from the decomposed attentions are merged with a carefully derived weighting strategy, namely $α$-weighting. Taking advantage of the flexibility, we are able to introduce two critical improvements in visual token processing while maintaining the capacity of pre-trained LLMs: 1) We rectify the biased positional encoding in textual-to-visual attention to boost visual understanding performance. 2) We diagonalize visual-to-visual attention to reduce computation complexity from $O(|V|^2)$ to $O(|V|)$ for $|V|$ visual tokens without compromising performance. Extensive experiments and analysis validate the effectiveness of D-Attn, demonstrating significant improvements on multiple image benchmarks while significantly reducing computational costs (\eg, $5\times$ faster). Code will be available at https://github.com/bytedance/DecomposedAttention.

Authors:Dazhou Yu, Genpei Zhang, Liang Zhao
Title: PolyhedronNet: Representation Learning for Polyhedra with Surface-attributed Graph
Abstract:
Ubiquitous geometric objects can be precisely and efficiently represented as polyhedra. The transformation of a polyhedron into a vector, known as polyhedra representation learning, is crucial for manipulating these shapes with mathematical and statistical tools for tasks like classification, clustering, and generation. Recent years have witnessed significant strides in this domain, yet most efforts focus on the vertex sequence of a polyhedron, neglecting the complex surface modeling crucial in real-world polyhedral objects. This study proposes \textbf{PolyhedronNet}, a general framework tailored for learning representations of 3D polyhedral objects. We propose the concept of the surface-attributed graph to seamlessly model the vertices, edges, faces, and their geometric interrelationships within a polyhedron. To effectively learn the representation of the entire surface-attributed graph, we first propose to break it down into local rigid representations to effectively learn each local region's relative positions against the remaining regions without geometric information loss. Subsequently, we propose PolyhedronGNN to hierarchically aggregate the local rigid representation via intra-face and inter-face geometric message passing modules, to obtain a global representation that minimizes information loss while maintaining rotation and translation invariance. Our experimental evaluations on four distinct datasets, encompassing both classification and retrieval tasks, substantiate PolyhedronNet's efficacy in capturing comprehensive and informative representations of 3D polyhedral objects. Code and data are available at {https://github.com/dyu62/3D_polyhedron}.

Authors:Haruka Kiyohara, Fan Yao, Sarah Dean
Title: Policy Design for Two-sided Platforms with Participation Dynamics
Abstract:
In two-sided platforms (e.g., video streaming or e-commerce), viewers and providers engage in interactive dynamics: viewers benefit from increases in provider populations, while providers benefit from increases in viewer population. Despite the importance of such "population effects" on long-term platform health, recommendation policies do not generally take the participation dynamics into account. This paper thus studies the dynamics and recommender policy design on two-sided platforms under the population effects for the first time. Our control- and game-theoretic findings warn against the use of the standard "myopic-greedy" policy and shed light on the importance of provider-side considerations (i.e., effectively distributing exposure among provider groups) to improve social welfare via population growth. We also present a simple algorithm to optimize long-term social welfare by taking the population effects into account, and demonstrate its effectiveness in synthetic and real-data experiments. Our experiment code is available at https://github.com/sdean-group/dynamics-two-sided-market.

Authors:Zhengtong Xu, Qiang Qiu, Yu She
Title: VILP: Imitation Learning with Latent Video Planning
Abstract:
In the era of generative AI, integrating video generation models into robotics opens new possibilities for the general-purpose robot agent. This paper introduces imitation learning with latent video planning (VILP). We propose a latent video diffusion model to generate predictive robot videos that adhere to temporal consistency to a good degree. Our method is able to generate highly time-aligned videos from multiple views, which is crucial for robot policy learning. Our video generation model is highly time-efficient. For example, it can generate videos from two distinct perspectives, each consisting of six frames with a resolution of 96x160 pixels, at a rate of 5 Hz. In the experiments, we demonstrate that VILP outperforms the existing video generation robot policy across several metrics: training costs, inference speed, temporal consistency of generated videos, and the performance of the policy. We also compared our method with other imitation learning methods. Our findings indicate that VILP can rely less on extensive high-quality task-specific robot action data while still maintaining robust performance. In addition, VILP possesses robust capabilities in representing multi-modal action distributions. Our paper provides a practical example of how to effectively integrate video generation models into robot policies, potentially offering insights for related fields and directions. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/VILP.

Authors:Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai, Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, Song Han
Title: Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity
Abstract:
Diffusion Transformers (DiTs) dominate video generation but their high computational cost severely limits real-world applicability, usually requiring tens of minutes to generate a few seconds of video even on high-performance GPUs. This inefficiency primarily arises from the quadratic computational complexity of 3D Full Attention with respect to the context length. In this paper, we propose a training-free framework termed Sparse VideoGen (SVG) that leverages the inherent sparsity in 3D Full Attention to boost inference efficiency. We reveal that the attention heads can be dynamically classified into two groups depending on distinct sparse patterns: (1) Spatial Head, where only spatially-related tokens within each frame dominate the attention output, and (2) Temporal Head, where only temporally-related tokens across different frames dominate. Based on this insight, SVG proposes an online profiling strategy to capture the dynamic sparse patterns and predicts the type of attention head. Combined with a novel hardware-efficient tensor layout transformation and customized kernel implementations, SVG achieves up to 2.28x and 2.33x end-to-end speedup on CogVideoX-v1.5 and HunyuanVideo, respectively, while preserving generation quality. Our code is open-sourced and is available at https://github.com/svg-project/Sparse-VideoGen

Authors:Dmitry Manning-Coe, Jacopo Gliozzi, Alexander G. Stapleton, Edward Hirst, Giuseppe De Tomasi, Barry Bradlyn, David S. Berman
Title: Grokking vs. Learning: Same Features, Different Encodings
Abstract:
Grokking typically achieves similar loss to ordinary, "steady", learning. We ask whether these different learning paths - grokking versus ordinary training - lead to fundamental differences in the learned models. To do so we compare the features, compressibility, and learning dynamics of models trained via each path in two tasks. We find that grokked and steadily trained models learn the same features, but there can be large differences in the efficiency with which these features are encoded. In particular, we find a novel "compressive regime" of steady training in which there emerges a linear trade-off between model loss and compressibility, and which is absent in grokking. In this regime, we can achieve compression factors 25x times the base model, and 5x times the compression achieved in grokking. We then track how model features and compressibility develop through training. We show that model development in grokking is task-dependent, and that peak compressibility is achieved immediately after the grokking plateau. Finally, novel information-geometric measures are introduced which demonstrate that models undergoing grokking follow a straight path in information space.

Authors:Shilong Hong, Yanzhou Zhou, Weichao Xu
Title: DAGNet: A Dual-View Attention-Guided Network for Efficient X-ray Security Inspection
Abstract:
With the rapid development of modern transportation systems and the exponential growth of logistics volumes, intelligent X-ray-based security inspection systems play a crucial role in public safety. Although single-view X-ray baggage scanner is widely deployed, they struggles to accurately identify contraband in complex stacking scenarios due to strong viewpoint dependency and inadequate feature representation. To address this, we propose a Dual-View Attention-Guided Network for Efficient X-ray Security Inspection (DAGNet). This study builds on a shared-weight backbone network as the foundation and constructs three key modules that work together: (1) Frequency Domain Interaction Module (FDIM) dynamically enhances features by adjusting frequency components based on inter-view relationships; (2) Dual-View Hierarchical Enhancement Module (DVHEM) employs cross-attention to align features between views and capture hierarchical associations; (3) Convolutional Guided Fusion Module (CGFM) fuses features to suppress redundancy while retaining critical discriminative information. Collectively, these modules substantially improve the performance of dual-view X-ray security inspection. Experimental results demonstrate that DAGNet outperforms existing state-of-the-art approaches across multiple backbone architectures. The code is available at:https://github.com/ShilongHong/DAGNet.

Authors:Yirui Zeng, Jun Fu, Hadi Amirpour, Huasheng Wang, Guanghui Yue, Hantao Liu, Ying Chen, Wei Zhou
Title: CLIP-DQA: Blindly Evaluating Dehazed Images from Global and Local Perspectives Using CLIP
Abstract:
Blind dehazed image quality assessment (BDQA), which aims to accurately predict the visual quality of dehazed images without any reference information, is essential for the evaluation, comparison, and optimization of image dehazing algorithms. Existing learning-based BDQA methods have achieved remarkable success, while the small scale of DQA datasets limits their performance. To address this issue, in this paper, we propose to adapt Contrastive Language-Image Pre-Training (CLIP), pre-trained on large-scale image-text pairs, to the BDQA task. Specifically, inspired by the fact that the human visual system understands images based on hierarchical features, we take global and local information of the dehazed image as the input of CLIP. To accurately map the input hierarchical information of dehazed images into the quality score, we tune both the vision branch and language branch of CLIP with prompt learning. Experimental results on two authentic DQA datasets demonstrate that our proposed approach, named CLIP-DQA, achieves more accurate quality predictions over existing BDQA methods. The code is available at https://github.com/JunFu1995/CLIP-DQA.

Authors:Xianglong Yan, Tianao Zhang, Zhiteng Li, Haotong Qin, Yulun Zhang
Title: Progressive Binarization with Semi-Structured Pruning for LLMs
Abstract:
Large language models (LLMs) have achieved remarkable progress in natural language processing, but their high computational and memory costs hinder deployment on resource-constrained devices. Binarization represents the most extreme form of quantization, yet binarized models still contain redundancy that can be further removed. Pruning provides a natural way to eliminate such redundancy, but naïve combination with binarization often results in severe performance degradation. In this paper, we propose Progressive Binarization with Semi-Structured Pruning (PBS$^2$P), a novel post-training framework that seamlessly integrates binarization and semi-structured pruning. We first propose Stepwise semi-structured Pruning with Binarization Optimization (SPBO), which progressively introduces sparsity while optimizing binarization parameters to jointly reduce pruning and quantization error, yielding more stable and accurate compression. Additionally, we propose a Coarse-to-Fine Search (CFS) that first allocates pruning ratios and then refines element selection, further enhancing overall performance. Extensive experiments across multiple LLM families show that PBS$^2$P consistently outperforms state-of-the-art (SOTA) binary post-training quantization methods in both perplexity and downstream accuracy. The code and models will be available at https://github.com/XIANGLONGYAN/PBS2P.

Authors:Xianglong Yan, Tianao Zhang, Zhiteng Li, Yulun Zhang
Title: Progressive Binarization with Semi-Structured Pruning for LLMs
Abstract:
Large language models (LLMs) have achieved remarkable progress in natural language processing, but their high computational and memory costs hinder deployment on resource-constrained devices. Binarization, which reduces model weights to 1 bit, is a promising solution for efficient inference. However, binarized LLMs still exhibit redundancy that can be further compressed. Semi-structured pruning offers a favorable trade-off between model performance and hardware efficiency, but naively combining it with binarization often leads to severe performance degradation. To address this, we propose Progressive Binarization with Semi-Structured Pruning (PBS$^2$P), a novel post-training compression framework. We propose Stepwise semi-structured Pruning with Binarization Optimization (SPBO) to jointly reduce pruning and binarization error. Additionally, we develop a Coarse-to-Fine Search (CFS) strategy to more effectively select pruning elements. Extensive experiments across multiple LLM families show that PBS$^2$P consistently outperforms state-of-the-art binary post-training quantization methods in both perplexity and downstream accuracy. The code and models will be available at: https://github.com/XIANGLONGYAN/PBS2P.

Authors:Kim Yong Tan, Yueming Lyu, Ivor Tsang, Yew-Soon Ong
Title: Fast Direct: Query-Efficient Online Black-box Guidance for Diffusion-model Target Generation
Abstract:
Guided diffusion-model generation is a promising direction for customizing the generation process of a pre-trained diffusion model to address specific downstream tasks. Existing guided diffusion models either rely on training the guidance model with pre-collected datasets or require the objective functions to be differentiable. However, for most real-world tasks, offline datasets are often unavailable, and their objective functions are often not differentiable, such as image generation with human preferences, molecular generation for drug discovery, and material design. Thus, we need an $\textbf{online}$ algorithm capable of collecting data during runtime and supporting a $\textbf{black-box}$ objective function. Moreover, the $\textbf{query efficiency}$ of the algorithm is also critical because the objective evaluation of the query is often expensive in real-world scenarios. In this work, we propose a novel and simple algorithm, $\textbf{Fast Direct}$, for query-efficient online black-box target generation. Our Fast Direct builds a pseudo-target on the data manifold to update the noise sequence of the diffusion model with a universal direction, which is promising to perform query-efficient guided generation. Extensive experiments on twelve high-resolution ($\small {1024 \times 1024}$) image target generation tasks and six 3D-molecule target generation tasks show $\textbf{6}\times$ up to $\textbf{10}\times$ query efficiency improvement and $\textbf{11}\times$ up to $\textbf{44}\times$ query efficiency improvement, respectively. Our implementation is publicly available at: https://github.com/kimyong95/guide-stable-diffusion/tree/fast-direct

Authors:Jiaxing Xu, Yongqiang Chen, Xia Dong, Mengcheng Lan, Tiancheng Huang, Qingtian Bian, James Cheng, Yiping Ke
Title: BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
Abstract:
In neuroscience, identifying distinct patterns linked to neurological disorders, such as Alzheimer's and Autism, is critical for early diagnosis and effective intervention. Graph Neural Networks (GNNs) have shown promising in analyzing brain networks, but there are two major challenges in using GNNs: (1) distribution shifts in multi-site brain network data, leading to poor Out-of-Distribution (OOD) generalization, and (2) limited interpretability in identifying key brain regions critical to neurological disorders. Existing graph OOD methods, while effective in other domains, struggle with the unique characteristics of brain networks. To bridge these gaps, we introduce BrainOOD, a novel framework tailored for brain networks that enhances GNNs' OOD generalization and interpretability. BrainOOD framework consists of a feature selector and a structure extractor, which incorporates various auxiliary losses including an improved Graph Information Bottleneck (GIB) objective to recover causal subgraphs. By aligning structure selection across brain networks and filtering noisy features, BrainOOD offers reliable interpretations of critical brain regions. Our approach outperforms 16 existing methods and improves generalization to OOD subjects by up to 8.5%. Case studies highlight the scientific validity of the patterns extracted, which aligns with the findings in known neuroscience literature. We also propose the first OOD brain network benchmark, which provides a foundation for future research in this field. Our code is available at https://github.com/AngusMonroe/BrainOOD.

Authors:Srinitish Srinivasan, Omkumar CU
Title: Predict, Cluster, Refine: A Joint Embedding Predictive Self-Supervised Framework for Graph Representation Learning
Abstract:
Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction, yet prevailing self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse. Existing approaches often depend on feature reconstruction, negative sampling, or complex decoders, which introduce training overhead and hinder generalization. Further, current techniques which address such limitations fail to account for the contribution of node embeddings to a certain prediction in the absence of labeled nodes. To address these limitations, we propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information. Additionally, we introduce a semantic-aware objective term that incorporates pseudo-labels derived from Gaussian Mixture Models (GMMs), enhancing node discriminability by evaluating latent feature contributions. Extensive experiments demonstrate that our framework outperforms state-of-the-art graph SSL methods across benchmarks, achieving superior performance without contrastive loss or complex decoders. Key innovations include (1) a non-contrastive, view-invariant joint embedding predictive architecture, (2) Leveraging single context and multiple targets relationship between subgraphs, and (3) GMM-based pseudo-label scoring to capture semantic contributions. This work advances graph SSL by offering a computationally efficient, collapse-resistant paradigm that bridges spatial and semantic graph features for downstream tasks. The code for our paper can be found at https://github.com/Deceptrax123/JPEB-GSSL

Authors:Ziyang Zheng, Shan Huang, Jianyuan Zhong, Zhengyuan Shi, Guohao Dai, Ningyi Xu, Qiang Xu
Title: DeepGate4: Efficient and Effective Representation Learning for Circuit Design at Scale
Abstract:
Circuit representation learning has become pivotal in electronic design automation, enabling critical tasks such as testability analysis, logic reasoning, power estimation, and SAT solving. However, existing models face significant challenges in scaling to large circuits due to limitations like over-squashing in graph neural networks and the quadratic complexity of transformer-based models. To address these issues, we introduce DeepGate4, a scalable and efficient graph transformer specifically designed for large-scale circuits. DeepGate4 incorporates several key innovations: (1) an update strategy tailored for circuit graphs, which reduce memory complexity to sub-linear and is adaptable to any graph transformer; (2) a GAT-based sparse transformer with global and local structural encodings for AIGs; and (3) an inference acceleration CUDA kernel that fully exploit the unique sparsity patterns of AIGs. Our extensive experiments on the ITC99 and EPFL benchmarks show that DeepGate4 significantly surpasses state-of-the-art methods, achieving 15.5% and 31.1% performance improvements over the next-best models. Furthermore, the Fused-DeepGate4 variant reduces runtime by 35.1% and memory usage by 46.8%, making it highly efficient for large-scale circuit analysis. These results demonstrate the potential of DeepGate4 to handle complex EDA tasks while offering superior scalability and efficiency. Code is available at https://github.com/zyzheng17/DeepGate4-ICLR-25.

Authors:Bo Pang, Tingrui Qiao, Caroline Walker, Chris Cunningham, Yun Sing Koh
Title: LIBRA: Measuring Bias of Large Language Model from a Local Context
Abstract:
Large Language Models (LLMs) have significantly advanced natural language processing applications, yet their widespread use raises concerns regarding inherent biases that may reduce utility or harm for particular social groups. Despite the advancement in addressing LLM bias, existing research has two major limitations. First, existing LLM bias evaluation focuses on the U.S. cultural context, making it challenging to reveal stereotypical biases of LLMs toward other cultures, leading to unfair development and use of LLMs. Second, current bias evaluation often assumes models are familiar with the target social groups. When LLMs encounter words beyond their knowledge boundaries that are unfamiliar in their training data, they produce irrelevant results in the local context due to hallucinations and overconfidence, which are not necessarily indicative of inherent bias. This research addresses these limitations with a Local Integrated Bias Recognition and Assessment Framework (LIBRA) for measuring bias using datasets sourced from local corpora without crowdsourcing. Implementing this framework, we develop a dataset comprising over 360,000 test cases in the New Zealand context. Furthermore, we propose the Enhanced Idealized CAT Score (EiCAT), integrating the iCAT score with a beyond knowledge boundary score (bbs) and a distribution divergence-based bias measurement to tackle the challenge of LLMs encountering words beyond knowledge boundaries. Our results show that the BERT family, GPT-2, and Llama-3 models seldom understand local words in different contexts. While Llama-3 exhibits larger bias, it responds better to different cultural contexts. The code and dataset are available at: https://github.com/ipangbo/LIBRA.

Authors:Yihe Wang, Nan Huang, Nadia Mammone, Marco Cecchi, Xiang Zhang
Title: LEAD: Large Foundation Model for EEG-Based Alzheimer's Disease Detection
Abstract:
Electroencephalogram (EEG) provides a non-invasive, highly accessible, and cost-effective solution for Alzheimer's Disease (AD) detection. However, existing methods, whether based on manual feature extraction or deep learning, face two major challenges: the lack of large-scale datasets for robust feature learning and evaluation, and poor detection performance due to inter-subject variations. To address these challenges, we curate an EEG-AD corpus containing 813 subjects, which forms the world's largest EEG-AD dataset to the best of our knowledge. Using this unique dataset, we propose LEAD, the first large foundation model for EEG-based AD detection. Our method encompasses an entire pipeline, from data selection and preprocessing to self-supervised contrastive pretraining, fine-tuning, and key setups such as subject-independent evaluation and majority voting for subject-level detection. We pre-train the model on 11 EEG datasets and unified fine-tune it on 5 AD datasets. Our self-supervised pre-training design includes sample-level and subject-level contrasting to extract useful general EEG features. Fine-tuning is performed on 5 channel-aligned datasets together. The backbone encoder incorporates temporal and channel embeddings to capture features across both temporal and spatial dimensions. Our method demonstrates outstanding AD detection performance, achieving up to a 9.86% increase in F1 score at the sample-level and up to a 9.31% at the subject-level compared to state-of-the-art methods. The results of our model strongly confirm the effectiveness of contrastive pre-training and channel-aligned unified fine-tuning for addressing inter-subject variation. The source code is at https://github.com/DL4mHealth/LEAD.

Authors:Yihe Wang, Nan Huang, Nadia Mammone, Marco Cecchi, Xiang Zhang
Title: LEAD: Large Foundation Model for EEG-Based Alzheimer's Disease Detection
Abstract:
Electroencephalography (EEG) provides a non-invasive, highly accessible, and cost-effective approach for detecting Alzheimer's disease (AD). However, existing methods, whether based on handcrafted feature engineering or standard deep learning, face two major challenges: 1) the lack of large-scale EEG-AD datasets for robust representation learning, and 2) the absence of a dedicated deep learning pipeline for subject-level detection, which is more clinically meaningful than the commonly used sample-level detection. To address these gaps, we have curated the world's largest EEG-AD corpus to date, comprising 2,255 subjects. Leveraging this unique data corpus, we propose LEAD, the first large-scale foundation model for EEG analysis in dementia. Our approach provides an innovative framework for subject-level AD detection, including: 1) a comprehensive preprocessing pipeline such as artifact removal, resampling, and filtering, and a newly proposed multi-scale segmentation strategy, 2) a subject-regularized spatio-temporal transformer trained with a novel subject-level cross-entropy loss and an indices group-shuffling algorithm, and 3) AD-guided contrastive pre-training. We pre-train on 12 datasets (3 AD-related and 9 non-AD) and fine-tune/test on 4 AD datasets. Compared with 10 baselines, LEAD consistently obtains superior subject-level detection performance under the challenging subject-independent cross-validation protocol. On the benchmark ADFTD dataset, our model achieves an impressive subject-level Sensitivity of 90.91% under the leave-one-subject-out (LOSO) setting. These results strongly validate the effectiveness of our method for real-world EEG-based AD detection. Source code: https://github.com/DL4mHealth/LEAD

Authors:Jiale Fu, Yuchu Jiang, Junkai Chen, Jiaming Fan, Xin Geng, Xu Yang
Title: Fast Large Language Model Collaborative Decoding via Speculation
Abstract:
Large Language Model (LLM) collaborative decoding techniques improve output quality by combining the outputs of multiple models at each generation step, but they incur high computational costs. In this paper, we introduce Collaborative decoding via Speculation (CoS), a novel framework that accelerates collaborative decoding without compromising performance. Inspired by Speculative Decoding--where a small proposal model generates tokens sequentially, and a larger target model verifies them in parallel, our approach builds on two key insights: (1) the verification distribution can be the combined distribution of both the proposal and target models, and (2) alternating each model as the proposer and verifier can further enhance efficiency. We generalize this method to collaboration among n models and theoretically prove that CoS is never slower than standard collaborative decoding, typically achieving faster speed. Extensive experiments demonstrate CoS is 1.11x-2.23x faster than standard collaborative decoding without compromising generation quality. Our code is available at https://github.com/Kamichanw/CoS/.

Authors:Varun Dhanraj, Chris Eliasmith
Title: Improving Rule-based Reasoning in LLMs using Neurosymbolic Representations
Abstract:
Large language models (LLMs) continue to face challenges in reliably solving reasoning tasks, particularly those that require precise rule following, as often found in mathematical reasoning. This paper introduces a novel neurosymbolic method that improves LLM reasoning by encoding hidden states into neurosymbolic vectors, enabling problem-solving within a neurosymbolic vector space. The results are decoded and merged with the original hidden state, significantly boosting the model's performance on numerical reasoning tasks. By offloading computation through neurosymbolic representations, this method enhances efficiency, reliability, and interpretability. Experimental results demonstrate an average of 88.6% lower cross-entropy loss and 15.4 times more problems correctly solved on a suite of mathematical reasoning tasks compared to chain-of-thought prompting and supervised fine-tuning (LoRA), without degrading performance on other tasks. We make our code available at: https://github.com/vdhanraj/Neurosymbolic-LLM.

Authors:Muhammad Zain Raza, Jiawei Xu, Terence Lim, Lily Boddy, Carlos M. Mery, Andrew Well, Ying Ding
Title: LLM-TA: An LLM-Enhanced Thematic Analysis Pipeline for Transcripts from Parents of Children with Congenital Heart Disease
Abstract:
Thematic Analysis (TA) is a fundamental method in healthcare research for analyzing transcript data, but it is resource-intensive and difficult to scale for large, complex datasets. This study investigates the potential of large language models (LLMs) to augment the inductive TA process in high-stakes healthcare settings. Focusing on interview transcripts from parents of children with Anomalous Aortic Origin of a Coronary Artery (AAOCA), a rare congenital heart disease, we propose an LLM-Enhanced Thematic Analysis (LLM-TA) pipeline. Our pipeline integrates an affordable state-of-the-art LLM (GPT-4o mini), LangChain, and prompt engineering with chunking techniques to analyze nine detailed transcripts following the inductive TA framework. We evaluate the LLM-generated themes against human-generated results using thematic similarity metrics, LLM-assisted assessments, and expert reviews. Results demonstrate that our pipeline outperforms existing LLM-assisted TA methods significantly. While the pipeline alone has not yet reached human-level quality in inductive TA, it shows great potential to improve scalability, efficiency, and accuracy while reducing analyst workload when working collaboratively with domain experts. We provide practical recommendations for incorporating LLMs into high-stakes TA workflows and emphasize the importance of close collaboration with domain experts to address challenges related to real-world applicability and dataset complexity. https://github.com/jiaweixu98/LLM-TA

Authors:Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao Chen, Zaid Khan, Mohit Bansal
Title: Learning to Generate Unit Tests for Automated Debugging
Abstract:
Unit tests (UTs) play an instrumental role in assessing code correctness as well as providing feedback to large language models (LLMs), motivating automated test generation. However, we uncover a trade-off between generating unit test inputs that reveal errors when given a faulty code and correctly predicting the unit test output without access to the gold solution. To address this trade-off, we propose UTGen, which teaches LLMs to generate unit test inputs that reveal errors along with their correct expected outputs based on task descriptions. Since model-generated tests can provide noisy signals (e.g., from incorrectly predicted outputs), we propose UTDebug that (i) scales UTGen via test-time compute to improve UT output prediction, and (ii) validates and backtracks edits based on multiple generated UTs to avoid overfitting, and helps LLMs debug effectively. We show that UTGen outperforms other LLM-based baselines by 7.59% based on a metric measuring the presence of both error-revealing UT inputs and correct UT outputs. When used with UTDebug, we find that feedback from UTGen's unit tests improves pass@1 accuracy of Qwen2.5 32B on HumanEvalFix and our own harder debugging split of MBPP+ by over 3.17% and 12.35% (respectively) over other LLM-based UT generation baselines. Moreover, we observe that feedback from Qwen2.5 32B-based UTGen model can enhance debugging with frontier LLMs like GPT-4o by 13.8%. Lastly, we demonstrate that UTGen is a better judge for code correctness, outperforming a state-of-the-art trained 8B reward model by 4.43% on HumanEval+ with best-of-10 sampling using Qwen2.5 7B.

Authors:Yanbo Wang, Zixiang Xu, Yue Huang, Chujie Gao, Siyuan Wu, Jiayi Ye, Pin-Yu Chen, Xiuying Chen, Xiangliang Zhang
Title: Adaptive Distraction: Probing LLM Contextual Robustness with Automated Tree Search
Abstract:
Large Language Models (LLMs) often struggle to maintain their original performance when faced with semantically coherent but task-irrelevant contextual information. Although prior studies have explored this issue using fixed-template or retrieval-based distractions, such static methods show limited effectiveness against contemporary models. To address this problem, we propose a dynamic distraction generation framework based on tree search, where the generation process is guided by model behavior. Without modifying the original question or answer, the method efficiently produces challenging adaptive distractions across multiple datasets, enabling systematic stress testing of LLMs' contextual robustness. Experiments on four benchmarks demonstrate that the generated distractions lead to an average performance drop of over 45\% for mainstream models. Further comparisons of mitigation strategies show that prompt-based optimization methods yield limited gains, whereas post-training approaches (e.g., DPO) significantly enhance the model's contextual robustness. The results indicate that these issues do not stem from knowledge deficits in LLMs, but from a fundamental inability to maintain consistent reasoning under contextual distraction, posing a major challenge to the reliability of LLMs in real-world applications. The code is publicly available at https://github.com/wyf23187/Adaptive_Distractions.

Authors:Hashmat Shadab Malik, Fahad Shamshad, Muzammal Naseer, Karthik Nandakumar, Fahad Khan, Salman Khan
Title: Robust-LLaVA: On the Effectiveness of Large-Scale Robust Image Encoders for Multi-modal Large Language Models
Abstract:
Multi-modal Large Language Models (MLLMs) excel in vision-language tasks but remain vulnerable to visual adversarial perturbations that can induce hallucinations, manipulate responses, or bypass safety mechanisms. Existing methods seek to mitigate these risks by applying constrained adversarial fine-tuning to CLIP vision encoders on ImageNet-scale data, ensuring their generalization ability is preserved. However, this limited adversarial training restricts robustness and broader generalization. In this work, we explore an alternative approach of leveraging existing vision classification models that have been adversarially pre-trained on large-scale data. Our analysis reveals two principal contributions: (1) the extensive scale and diversity of adversarial pre-training enables these models to demonstrate superior robustness against diverse adversarial threats, ranging from imperceptible perturbations to advanced jailbreaking attempts, without requiring additional adversarial training, and (2) end-to-end MLLM integration with these robust models facilitates enhanced adaptation of language components to robust visual features, outperforming existing plug-and-play methodologies on complex reasoning tasks. Through systematic evaluation across visual question-answering, image captioning, and jail-break attacks, we demonstrate that MLLMs trained with these robust models achieve superior adversarial robustness while maintaining favorable clean performance. Our framework achieves 2x and 1.5x average robustness gains in captioning and VQA tasks, respectively, and delivers over 10% improvement against jailbreak attacks. Code and pretrained models will be available at https://github.com/HashmatShadab/Robust-LLaVA.

Authors:Mingyu Jin, Kai Mei, Wujiang Xu, Mingjie Sun, Ruixiang Tang, Mengnan Du, Zirui Liu, Yongfeng Zhang
Title: Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding
Abstract:
Large language models (LLMs) have achieved remarkable success in contextual knowledge understanding. In this paper, we show that these concentrated massive values consistently emerge in specific regions of attention queries (Q) and keys (K) while not having such patterns in values (V) in various modern transformer-based LLMs (Q, K, and V mean the representations output by the query, key, and value layers respectively). Through extensive experiments, we further demonstrate that these massive values play a critical role in interpreting contextual knowledge (knowledge obtained from the current context window) rather than in retrieving parametric knowledge stored within the model's parameters. Our further investigation of quantization strategies reveals that ignoring these massive values leads to a pronounced drop in performance on tasks requiring rich contextual understanding, aligning with our analysis. Finally, we trace the emergence of concentrated massive values and find that such concentration is caused by Rotary Positional Encoding (RoPE), which has appeared since the first layers. These findings shed new light on how Q and K operate in LLMs and offer practical insights for model design and optimization. The Code is Available at https://github.com/MingyuJ666/Rope_with_LLM.

Authors:Xubin Ren, Lingrui Xu, Long Xia, Shuaiqiang Wang, Dawei Yin, Chao Huang
Title: VideoRAG: Retrieval-Augmented Generation with Extreme Long-Context Videos
Abstract:
Retrieval-Augmented Generation (RAG) has demonstrated remarkable success in enhancing Large Language Models (LLMs) through external knowledge integration, yet its application has primarily focused on textual content, leaving the rich domain of multi-modal video knowledge predominantly unexplored. This paper introduces VideoRAG, the first retrieval-augmented generation framework specifically designed for processing and understanding extremely long-context videos. Our core innovation lies in its dual-channel architecture that seamlessly integrates (i) graph-based textual knowledge grounding for capturing cross-video semantic relationships, and (ii) multi-modal context encoding for efficiently preserving visual features. This novel design empowers VideoRAG to process unlimited-length videos by constructing precise knowledge graphs that span multiple videos while maintaining semantic dependencies through specialized multi-modal retrieval paradigms. Through comprehensive empirical evaluation on our proposed LongerVideos benchmark-comprising over 160 videos totaling 134+ hours across lecture, documentary, and entertainment categories-VideoRAG demonstrates substantial performance compared to existing RAG alternatives and long video understanding methods. The source code of VideoRAG implementation and the benchmark dataset are openly available at: https://github.com/HKUDS/VideoRAG.

Authors:Andrew Rouditchenko, Samuel Thomas, Hilde Kuehne, Rogerio Feris, James Glass
Title: mWhisper-Flamingo for Multilingual Audio-Visual Noise-Robust Speech Recognition
Abstract:
Audio-Visual Speech Recognition (AVSR) combines lip-based video with audio and can improve performance in noise, but most methods are trained only on English data. One limitation is the lack of large-scale multilingual video data, which makes it hard to train models from scratch. In this work, we propose mWhisper-Flamingo for multilingual AVSR which combines the strengths of a pre-trained audio model (Whisper) and video model (AV-HuBERT). To enable better multi-modal integration and improve the noisy multilingual performance, we introduce decoder modality dropout where the model is trained both on paired audio-visual inputs and separate audio/visual inputs. mWhisper-Flamingo achieves state-of-the-art WER on MuAViC, an AVSR dataset of 9 languages. Audio-visual mWhisper-Flamingo consistently outperforms audio-only Whisper on all languages in noisy conditions.

Authors:Dawei Li, Renliang Sun, Yue Huang, Ming Zhong, Bohan Jiang, Jiawei Han, Xiangliang Zhang, Wei Wang, Huan Liu
Title: Preference Leakage: A Contamination Problem in LLM-as-a-judge
Abstract:
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods in model development. While their combination significantly enhances the efficiency of model training and evaluation, little attention has been given to the potential contamination brought by this new model development paradigm. In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators. To study this issue, we first define three common relatednesses between the data generator LLM and the judge LLM: being the same model, having an inheritance relationship, and belonging to the same model family. Through extensive experiments, we empirically confirm the bias of judges towards their related student models caused by preference leakage across multiple LLM baselines and benchmarks. Further analysis suggests that preference leakage is a pervasive and real-world problem that is harder to detect compared to previously identified biases in LLM-as-a-judge scenarios. All of these findings imply that preference leakage is a widespread and challenging problem in the area of LLM-as-a-judge. We release all codes and data at: https://github.com/David-Li0406/Preference-Leakage.

Authors:Jingzhe Shi, Qinwei Ma, Hongyi Liu, Hang Zhao, Jeng-Neng Hwang, Lei Li
Title: Explaining Context Length Scaling and Bounds for Language Models
Abstract:
Long Context Language Models have drawn great attention in the past few years. There has been work discussing the impact of long context on Language Model performance: some find that long irrelevant context could harm performance, while some experimentally summarize loss reduction by relevant long context as Scaling Laws. This calls for a more thorough understanding on how long context impacts Language Modeling. In this work, we (1) propose a clean and effective theoretical framework for explaining the impact of context length on Language Modeling, from an Intrinsic Space perspective; and (2) conduct experiments on natural language and synthetic data, validating our proposed theoretical assumptions and deductions. Our theoretical framework can provide practical insights such as establishing that training dataset size dictates an optimal context length and bounds context length scaling for certain cases. We hope our work may inspire new long context Language Models, as well as future work studying Physics for Language Models. Code for our experiments is available at: https://github.com/JingzheShi/NLPCtlScalingAndBounds.

Authors:Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, Ning Ding
Title: Process Reinforcement through Implicit Rewards
Abstract:
Dense process rewards have proven a more effective alternative to the sparse outcome-level rewards in the inference-time scaling of large language models (LLMs), particularly in tasks requiring complex multi-step reasoning. While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized. This can be primarily attributed to the challenges of training process reward models (PRMs) online, where collecting high-quality process labels is prohibitively expensive, making them particularly vulnerable to reward hacking. To address these challenges, we propose PRIME (Process Reinforcement through IMplicit rEwards), which enables online PRM updates using only policy rollouts and outcome labels through implict process rewards. PRIME combines well with various advantage functions and forgoes the dedicated reward model training phrase that existing approaches require, substantially reducing the development overhead. We demonstrate PRIME's effectiveness on competitional math and coding. Starting from Qwen2.5-Math-7B-Base, PRIME achieves a 15.1% average improvement across several key reasoning benchmarks over the SFT model. Notably, our resulting model, Eurus-2-7B-PRIME, surpasses Qwen2.5-Math-7B-Instruct on seven reasoning benchmarks with 10% of its training data.

Authors:Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Yuchen Zhang, Jiacheng Chen, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, Ning Ding
Title: Process Reinforcement through Implicit Rewards
Abstract:
Dense process rewards have proven a more effective alternative to the sparse outcome-level rewards in the inference-time scaling of large language models (LLMs), particularly in tasks requiring complex multi-step reasoning. While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized. This can be primarily attributed to the challenges of training process reward models (PRMs) online, where collecting high-quality process labels is prohibitively expensive, making them particularly vulnerable to reward hacking. To address these challenges, we propose PRIME (Process Reinforcement through IMplicit rEwards), which enables online PRM updates using only policy rollouts and outcome labels through implict process rewards. PRIME combines well with various advantage functions and forgoes the dedicated reward model training phrase that existing approaches require, substantially reducing the development overhead. We demonstrate PRIME's effectiveness on competitional math and coding. Starting from Qwen2.5-Math-7B-Base, PRIME achieves a 15.1% average improvement across several key reasoning benchmarks over the SFT model. Notably, our resulting model, Eurus-2-7B-PRIME, surpasses Qwen2.5-Math-7B-Instruct on seven reasoning benchmarks with 10% of its training data.

Authors:Quan Dao, Khanh Doan, Di Liu, Trung Le, Dimitris Metaxas
Title: Improved Training Technique for Latent Consistency Models
Abstract:
Consistency models are a new family of generative models capable of producing high-quality samples in either a single step or multiple steps. Recently, consistency models have demonstrated impressive performance, achieving results on par with diffusion models in the pixel space. However, the success of scaling consistency training to large-scale datasets, particularly for text-to-image and video generation tasks, is determined by performance in the latent space. In this work, we analyze the statistical differences between pixel and latent spaces, discovering that latent data often contains highly impulsive outliers, which significantly degrade the performance of iCT in the latent space. To address this, we replace Pseudo-Huber losses with Cauchy losses, effectively mitigating the impact of outliers. Additionally, we introduce a diffusion loss at early timesteps and employ optimal transport (OT) coupling to further enhance performance. Lastly, we introduce the adaptive scaling-$c$ scheduler to manage the robust training process and adopt Non-scaling LayerNorm in the architecture to better capture the statistics of the features and reduce outlier impact. With these strategies, we successfully train latent consistency models capable of high-quality sampling with one or two steps, significantly narrowing the performance gap between latent consistency and diffusion models. The implementation is released here: https://github.com/quandao10/sLCT/

Authors:Grigoriy Ksenofontov, Alexander Korotin
Title: Categorical Schrödinger Bridge Matching
Abstract:
The Schrödinger Bridge (SB) is a powerful framework for solving generative modeling tasks such as unpaired domain translation. Most SB-related research focuses on continuous data space $\mathbb{R}^{D}$ and leaves open theoretical and algorithmic questions about applying SB methods to discrete data, e.g, on finite spaces $\mathbb{S}^{D}$. Notable examples of such sets $\mathbb{S}$ are codebooks of vector-quantized (VQ) representations of modern autoencoders, tokens in texts, categories of atoms in molecules, etc. In this paper, we provide a theoretical and algorithmic foundation for solving SB in discrete spaces using the recently introduced Iterative Markovian Fitting (IMF) procedure. Specifically, we theoretically justify the convergence of discrete-time IMF (D-IMF) to SB in discrete spaces. This enables us to develop a practical computational algorithm for SB, which we call Categorical Schrödinger Bridge Matching (CSBM). We show the performance of CSBM via a series of experiments with synthetic data and VQ representations of images. The code of CSBM is available at https://github.com/gregkseno/csbm.

Authors:Jue Gong, Jingkai Wang, Zheng Chen, Xing Liu, Hong Gu, Yulun Zhang, Xiaokang Yang
Title: Human Body Restoration with One-Step Diffusion Model and A New Benchmark
Abstract:
Human body restoration, as a specific application of image restoration, is widely applied in practice and plays a vital role across diverse fields. However, thorough research remains difficult, particularly due to the lack of benchmark datasets. In this study, we propose a high-quality dataset automated cropping and filtering (HQ-ACF) pipeline. This pipeline leverages existing object detection datasets and other unlabeled images to automatically crop and filter high-quality human images. Using this pipeline, we constructed a person-based restoration with sophisticated objects and natural activities (\emph{PERSONA}) dataset, which includes training, validation, and test sets. The dataset significantly surpasses other human-related datasets in both quality and content richness. Finally, we propose \emph{OSDHuman}, a novel one-step diffusion model for human body restoration. Specifically, we propose a high-fidelity image embedder (HFIE) as the prompt generator to better guide the model with low-quality human image information, effectively avoiding misleading prompts. Experimental results show that OSDHuman outperforms existing methods in both visual quality and quantitative metrics. The dataset and code will at https://github.com/gobunu/OSDHuman.

Authors:Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Haotong Qin, Linghe Kong, Yulun Zhang, Xiaokang Yang
Title: AdaSVD: Adaptive Singular Value Decomposition for Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP) tasks, yet their substantial memory requirements present significant challenges for deployment on resource-constrained devices. Singular Value Decomposition (SVD) has emerged as a promising compression technique for LLMs, offering considerable reductions in memory overhead. However, existing SVD-based methods often struggle to effectively mitigate the errors introduced by SVD truncation, leading to a noticeable performance gap when compared to the original models. Furthermore, applying a uniform compression ratio across all transformer layers fails to account for the varying importance of different layers. To address these challenges, we propose AdaSVD, an adaptive SVD-based LLM compression approach. Specifically, AdaSVD introduces adaComp, which adaptively compensates for SVD truncation errors by alternately updating the singular matrices $\mathcal{U}$ and $\mathcal{V}^\top$. Additionally, AdaSVD introduces adaCR, which adaptively assigns layer-specific compression ratios based on the relative importance of each layer. Extensive experiments across multiple LLM/VLM families and evaluation metrics demonstrate that AdaSVD consistently outperforms state-of-the-art (SOTA) SVD-based methods, achieving superior performance with significantly reduced memory requirements. Code and models of AdaSVD will be available at https://github.com/ZHITENGLI/AdaSVD.

Authors:Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, James Bailey
Title: Detecting Backdoor Samples in Contrastive Language Image Pretraining
Abstract:
Contrastive language-image pretraining (CLIP) has been found to be vulnerable to poisoning backdoor attacks where the adversary can achieve an almost perfect attack success rate on CLIP models by poisoning only 0.01\% of the training dataset. This raises security concerns on the current practice of pretraining large-scale models on unscrutinized web data using CLIP. In this work, we analyze the representations of backdoor-poisoned samples learned by CLIP models and find that they exhibit unique characteristics in their local subspace, i.e., their local neighborhoods are far more sparse than that of clean samples. Based on this finding, we conduct a systematic study on detecting CLIP backdoor attacks and show that these attacks can be easily and efficiently detected by traditional density ratio-based local outlier detectors, whereas existing backdoor sample detection methods fail. Our experiments also reveal that an unintentional backdoor already exists in the original CC3M dataset and has been trained into a popular open-source model released by OpenCLIP. Based on our detector, one can clean up a million-scale web dataset (e.g., CC3M) efficiently within 15 minutes using 4 Nvidia A100 GPUs. The code is publicly available in our \href{https://github.com/HanxunH/Detect-CLIP-Backdoor-Samples}{GitHub repository}.

Authors:Oussama Zekri, Nicolas Boullé
Title: Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Abstract:
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.

Authors:Shaofeng Yin, Jialong Wu, Siqiao Huang, Xingjian Su, Xu He, Jianye Hao, Mingsheng Long
Title: Trajectory World Models for Heterogeneous Environments
Abstract:
Heterogeneity in sensors and actuators across environments poses a significant challenge to building large-scale pre-trained world models on top of this low-dimensional sensor information. In this work, we explore pre-training world models for heterogeneous environments by addressing key transfer barriers in both data diversity and model flexibility. We introduce UniTraj, a unified dataset comprising over one million trajectories from 80 environments, designed to scale data while preserving critical diversity. Additionally, we propose TrajWorld, a novel architecture capable of flexibly handling varying sensor and actuator information and capturing environment dynamics in-context. Pre-training TrajWorld on UniTraj yields substantial gains in transition prediction, achieves a new state-of-the-art for off-policy evaluation, and also delivers superior online performance of model predictive control. To the best of our knowledge, this work, for the first time, demonstrates the transfer benefits of world models across heterogeneous and complex control environments. Code and data are available at https://github.com/thuml/TrajWorld.

Authors:Nikita Gushchin, David Li, Daniil Selikhanovych, Evgeny Burnaev, Dmitry Baranchuk, Alexander Korotin
Title: Inverse Bridge Matching Distillation
Abstract:
Learning diffusion bridge models is easy; making them fast and practical is an art. Diffusion bridge models (DBMs) are a promising extension of diffusion models for applications in image-to-image translation. However, like many modern diffusion and flow models, DBMs suffer from the problem of slow inference. To address it, we propose a novel distillation technique based on the inverse bridge matching formulation and derive the tractable objective to solve it in practice. Unlike previously developed DBM distillation techniques, the proposed method can distill both conditional and unconditional types of DBMs, distill models in a one-step generator, and use only the corrupted images for training. We evaluate our approach for both conditional and unconditional types of bridge matching on a wide set of setups, including super-resolution, JPEG restoration, sketch-to-image, and other tasks, and show that our distillation technique allows us to accelerate the inference of DBMs from 4x to 100x and even provide better generation quality than used teacher model depending on particular setup. We provide the code at https://github.com/ngushchin/IBMD

Authors:Xiao Lin, Yun Peng, Liuyi Wang, Xianyou Zhong, Minghao Zhu, Jingwei Yang, Yi Feng, Chengju Liu, Qijun Chen
Title: CleanPose: Category-Level Object Pose Estimation via Causal Learning and Knowledge Distillation
Abstract:
Category-level object pose estimation aims to recover the rotation, translation and size of unseen instances within predefined categories. In this task, deep neural network-based methods have demonstrated remarkable performance. However, previous studies show they suffer from spurious correlations raised by "unclean" confounders in models, hindering their performance on novel instances with significant variations. To address this issue, we propose CleanPose, a novel approach integrating causal learning and knowledge distillation to enhance category-level pose estimation. To mitigate the negative effect of unobserved confounders, we develop a causal inference module based on front-door adjustment, which promotes unbiased estimation by reducing potential spurious correlations. Additionally, to further improve generalization ability, we devise a residual-based knowledge distillation method that has proven effective in providing comprehensive category information guidance. Extensive experiments across multiple benchmarks (REAL275, CAMERA25 and HouseCat6D) hightlight the superiority of proposed CleanPose over state-of-the-art methods. Code will be available at https://github.com/chrislin0621/CleanPose.

Authors:Nimisha Ghosh, Pratik Dutta, Daniele Santoni
Title: TFBS-Finder: Deep Learning-based Model with DNABERT and Convolutional Networks to Predict Transcription Factor Binding Sites
Abstract:
Transcription factors are proteins that regulate the expression of genes by binding to specific genomic regions known as Transcription Factor Binding Sites (TFBSs), typically located in the promoter regions of those genes. Accurate prediction of these binding sites is essential for understanding the complex gene regulatory networks underlying various cellular functions. In this regard, many deep learning models have been developed for such prediction, but there is still scope of improvement. In this work, we have developed a deep learning model which uses pre-trained DNABERT, a Convolutional Neural Network (CNN) module, a Modified Convolutional Block Attention Module (MCBAM), a Multi-Scale Convolutions with Attention (MSCA) module and an output module. The pre-trained DNABERT is used for sequence embedding, thereby capturing the long-term dependencies in the DNA sequences while the CNN, MCBAM and MSCA modules are useful in extracting higher-order local features. TFBS-Finder is trained and tested on 165 ENCODE ChIP-seq datasets. We have also performed ablation studies as well as cross-cell line validations and comparisons with other models. The experimental results show the superiority of the proposed method in predicting TFBSs compared to the existing methodologies. The codes and the relevant datasets are publicly available at https://github.com/NimishaGhosh/TFBS-Finder/.

Authors:Haiduo Huang, Tian Xia, Wenzhe zhao, Pengju Ren
Title: Partial Channel Network: Compute Fewer, Perform Better
Abstract:
Designing a module or mechanism that enables a network to maintain low parameters and FLOPs without sacrificing accuracy and throughput remains a challenge. To address this challenge and exploit the redundancy within feature map channels, we propose a new solution: partial channel mechanism (PCM). Specifically, through the split operation, the feature map channels are divided into different parts, with each part corresponding to different operations, such as convolution, attention, pooling, and identity mapping. Based on this assumption, we introduce a novel partial attention convolution (PATConv) that can efficiently combine convolution with visual attention. Our exploration indicates that the PATConv can completely replace both the regular convolution and the regular visual attention while reducing model parameters and FLOPs. Moreover, PATConv can derive three new types of blocks: Partial Channel-Attention block (PAT_ch), Partial Spatial-Attention block (PAT_sp), and Partial Self-Attention block (PAT_sf). In addition, we propose a novel dynamic partial convolution (DPConv) that can adaptively learn the proportion of split channels in different layers to achieve better trade-offs. Building on PATConv and DPConv, we propose a new hybrid network family, named PartialNet, which achieves superior top-1 accuracy and inference speed compared to some SOTA models on ImageNet-1K classification and excels in both detection and segmentation on the COCO dataset. Our code is available at https://github.com/haiduo/PartialNet.

Authors:Thanh-Tung Nguyen, Lucas Liebe, Nhat-Quang Tau, Yuheng Wu, Jinghan Cheng, Dongman Lee
Title: OCTOPINF: Workload-Aware Inference Serving for Edge Video Analytics
Abstract:
Edge Video Analytics (EVA) has gained significant attention as a major application of pervasive computing, enabling real-time visual processing. EVA pipelines, composed of deep neural networks (DNNs), typically demand efficient inference serving under stringent latency requirements, which is challenging due to the dynamic Edge environments (e.g., workload variability and network instability). Moreover, EVA pipelines also face significant resource contention caused by resource (e.g., GPU) constraints at the Edge. In this paper, we introduce OCTOPINF, a novel resource-efficient and workload-aware inference serving system designed for real-time EVA. OCTOPINF tackles the unique challenges of dynamic edge environments through fine-grained resource allocation, adaptive batching, and workload balancing between edge devices and servers. Furthermore, we propose a spatiotemporal scheduling algorithm that optimizes the co-location of inference tasks on GPUs, improving performance and ensuring service-level objectives (SLOs) compliance. Extensive evaluations on a real-world testbed demonstrate the effectiveness of our approach. It achieves an effective throughput increase of up to 10x compared to the baselines and shows better robustness in challenging scenarios. OCTOPINF can be used for any DNN-based EVA inference task with minimal adaptation and is available at https://github.com/tungngreen/PipelineScheduler.

Authors:Eun-Sol Park, MiSo Park, Seung Park, Yong-Goo Shin
Title: FSPGD: Rethinking Black-box Attacks on Semantic Segmentation
Abstract:
Transferability, the ability of adversarial examples crafted for one model to deceive other models, is crucial for black-box attacks. Despite advancements in attack methods for semantic segmentation, transferability remains limited, reducing their effectiveness in real-world applications. To address this, we introduce the Feature Similarity Projected Gradient Descent (FSPGD) attack, a novel black-box approach that enhances both attack performance and transferability. Unlike conventional segmentation attacks that rely on output predictions for gradient calculation, FSPGD computes gradients from intermediate layer features. Specifically, our method introduces a loss function that targets local information by comparing features between clean images and adversarial examples, while also disrupting contextual information by accounting for spatial relationships between objects. Experiments on Pascal VOC 2012 and Cityscapes datasets demonstrate that FSPGD achieves superior transferability and attack performance, establishing a new state-of-the-art benchmark. Code is available at https://github.com/KU-AIVS/FSPGD.

Authors:Yuheng Li, Panpan Wang, Haipeng Chen
Title: Can Reinforcement Learning Solve Asymmetric Combinatorial-Continuous Zero-Sum Games?
Abstract:
There have been extensive studies on learning in zero-sum games, focusing on the analysis of the existence and algorithmic convergence of Nash equilibrium (NE). Existing studies mainly focus on symmetric games where the strategy spaces of the players are of the same type and size. For the few studies that do consider asymmetric games, they are mostly restricted to matrix games. In this paper, we define and study a new practical class of asymmetric games called two-player Asymmetric Combinatorial-Continuous zEro-Sum (ACCES) games, featuring a combinatorial action space for one player and an infinite compact space for the other. Such ACCES games have broad implications in the real world, particularly in combinatorial optimization problems (COPs) where one player optimizes a solution in a combinatorial space, and the opponent plays against it in an infinite (continuous) compact space (e.g., a nature player deciding epistemic parameters of the environmental model). Our first key contribution is to prove the existence of NE for two-player ACCES games, using the idea of essentially finite game approximation. Building on the theoretical insights and double oracle (DO)-based solutions to complex zero-sum games, our second contribution is to design the novel algorithm, Combinatorial Continuous DO (CCDO), to solve ACCES games, and prove the convergence of the proposed algorithm. Considering the NP-hardness of most COPs and recent advancements in reinforcement learning (RL)-based solutions to COPs, our third contribution is to propose a practical algorithm to solve NE in the real world, CCDORL (based on CCDO), and provide the novel convergence analysis in the ACCES game. Experimental results across diverse instances of COPs demonstrate the empirical effectiveness of our algorithms. The code of this work is available at https://github.com/wmd3i/CCDO-RL.

Authors:Ismail Khalfaoui-Hassani, Stefan Kesselheim
Title: Polynomial, trigonometric, and tropical activations
Abstract:
Which functions can be used as activations in deep neural networks? This article explores families of functions based on orthonormal bases, including the Hermite polynomial basis and the Fourier trigonometric basis, as well as a basis resulting from the tropicalization of a polynomial basis. Our study shows that, through simple variance-preserving initialization and without additional clamping mechanisms, these activations can successfully be used to train deep models, such as GPT-2 for next-token prediction on OpenWebText and ConvNeXt for image classification on ImageNet. Our work addresses the issue of exploding and vanishing activations and gradients, particularly prevalent with polynomial activations, and opens the door for improving the efficiency of large-scale learning tasks. Furthermore, our approach provides insight into the structure of neural networks, revealing that networks with polynomial activations can be interpreted as multivariate polynomial mappings. Finally, using Hermite interpolation, we show that our activations can closely approximate classical ones in pre-trained models by matching both the function and its derivative, making them especially useful for fine-tuning tasks. These activations are available in the torchortho library, which can be accessed via: https://github.com/K-H-Ismail/torchortho.

Authors:Yuanhe Zhang, Fanghui Liu, Yudong Chen
Title: LoRA-One: One-Step Full Gradient Could Suffice for Fine-Tuning Large Language Models, Provably and Efficiently
Abstract:
This paper explores how theory can guide and enhance practical algorithms, using Low-Rank Adaptation (LoRA, Hu et al. 2022) in large language models as a case study. We rigorously prove that, under gradient descent, LoRA adapters align with specific singular subspaces of the one-step full fine-tuning gradient. This result suggests that, by properly initializing the adapters using the one-step full gradient, subspace alignment can be achieved immediately and applicable to both linear and nonlinear models. Building on our theory, we propose a theory-driven algorithm, LoRA-One, where the linear convergence (as well as generalization) is built and incorporating preconditioners theoretically helps mitigate the effects of ill-conditioning. Besides, our theory reveals connections between LoRA-One and other gradient-alignment-based methods, helping to clarify misconceptions in the design of such algorithms. LoRA-One achieves significant empirical improvements over LoRA and its variants across benchmarks in natural language understanding, mathematical reasoning, and code generation. Code is available at: https://github.com/YuanheZ/LoRA-One.

Authors:Tongkun Liu, Bing Li, Xiao Jin, Yupeng Shi, Qiuying Li, Xiang Wei
Title: Exploring Few-Shot Defect Segmentation in General Industrial Scenarios with Metric Learning and Vision Foundation Models
Abstract:
Industrial defect segmentation is critical for manufacturing quality control. Due to the scarcity of training defect samples, few-shot semantic segmentation (FSS) holds significant value in this field. However, existing studies mostly apply FSS to tackle defects on simple textures, without considering more diverse scenarios. This paper aims to address this gap by exploring FSS in broader industrial products with various defect types. To this end, we contribute a new real-world dataset and reorganize some existing datasets to build a more comprehensive few-shot defect segmentation (FDS) benchmark. On this benchmark, we thoroughly investigate metric learning-based FSS methods, including those based on meta-learning and those based on Vision Foundation Models (VFMs). We observe that existing meta-learning-based methods are generally not well-suited for this task, while VFMs hold great potential. We further systematically study the applicability of various VFMs in this task, involving two paradigms: feature matching and the use of Segment Anything (SAM) models. We propose a novel efficient FDS method based on feature matching. Meanwhile, we find that SAM2 is particularly effective for addressing FDS through its video track mode. The contributed dataset and code will be available at: https://github.com/liutongkun/GFDS.

Authors:Haiduo Huang, Zhenhua Liu, Tian Xia, Wenzhe zhao, Pengju Ren
Title: Nearly Lossless Adaptive Bit Switching
Abstract:
Model quantization is widely applied for compressing and accelerating deep neural networks (DNNs). However, conventional Quantization-Aware Training (QAT) focuses on training DNNs with uniform bit-width. The bit-width settings vary across different hardware and transmission demands, which induces considerable training and storage costs. Hence, the scheme of one-shot joint training multiple precisions is proposed to address this issue. Previous works either store a larger FP32 model to switch between different precision models for higher accuracy or store a smaller INT8 model but compromise accuracy due to using shared quantization parameters. In this paper, we introduce the Double Rounding quantization method, which fully utilizes the quantized representation range to accomplish nearly lossless bit-switching while reducing storage by using the highest integer precision instead of full precision. Furthermore, we observe a competitive interference among different precisions during one-shot joint training, primarily due to inconsistent gradients of quantization scales during backward propagation. To tackle this problem, we propose an Adaptive Learning Rate Scaling (ALRS) technique that dynamically adapts learning rates for various precisions to optimize the training process. Additionally, we extend our Double Rounding to one-shot mixed precision training and develop a Hessian-Aware Stochastic Bit-switching (HASB) strategy. Experimental results on the ImageNet-1K classification demonstrate that our methods have enough advantages to state-of-the-art one-shot joint QAT in both multi-precision and mixed-precision. We also validate the feasibility of our method on detection and segmentation tasks, as well as on LLMs task. Our codes are available at https://github.com/haiduo/Double-Rounding.

Authors:Anam Zahid, Abdur Rehman Ali, Shaina Raza, Rai Shahnawaz, Faisal Kamiran, Asim Karim
Title: FairUDT: Fairness-aware Uplift Decision Trees
Abstract:
Training data used for developing machine learning classifiers can exhibit biases against specific protected attributes. Such biases typically originate from historical discrimination or certain underlying patterns that disproportionately under-represent minority groups, such as those identified by their gender, religion, or race. In this paper, we propose a novel approach, FairUDT, a fairness-aware Uplift-based Decision Tree for discrimination identification. FairUDT demonstrates how the integration of uplift modeling with decision trees can be adapted to include fair splitting criteria. Additionally, we introduce a modified leaf relabeling approach for removing discrimination. We divide our dataset into favored and deprived groups based on a binary sensitive attribute, with the favored dataset serving as the treatment group and the deprived dataset as the control group. By applying FairUDT and our leaf relabeling approach to preprocess three benchmark datasets, we achieve an acceptable accuracy-discrimination tradeoff. We also show that FairUDT is inherently interpretable and can be utilized in discrimination detection tasks. The code for this project is available https://github.com/ara-25/FairUDT

Authors:Qianyu Guo, Jingrong Wu, Tianxing Wu, Haofen Wang, Weifeng Ge, Wenqiang Zhang
Title: Enhancing Environmental Robustness in Few-shot Learning via Conditional Representation Learning
Abstract:
Few-shot learning (FSL) has recently been extensively utilized to overcome the scarcity of training data in domain-specific visual recognition. In real-world scenarios, environmental factors such as complex backgrounds, varying lighting conditions, long-distance shooting, and moving targets often cause test images to exhibit numerous incomplete targets or noise disruptions. However, current research on evaluation datasets and methodologies has largely ignored the concept of "environmental robustness", which refers to maintaining consistent performance in complex and diverse physical environments. This neglect has led to a notable decline in the performance of FSL models during practical testing compared to their training performance. To bridge this gap, we introduce a new real-world multi-domain few-shot learning (RD-FSL) benchmark, which includes four domains and six evaluation datasets. The test images in this benchmark feature various challenging elements, such as camouflaged objects, small targets, and blurriness. Our evaluation experiments reveal that existing methods struggle to utilize training images effectively to generate accurate feature representations for challenging test images. To address this problem, we propose a novel conditional representation learning network (CRLNet) that integrates the interactions between training and testing images as conditional information in their respective representation processes. The main goal is to reduce intra-class variance or enhance inter-class variance at the feature representation level. Finally, comparative experiments reveal that CRLNet surpasses the current state-of-the-art methods, achieving performance improvements ranging from 6.83% to 16.98% across diverse settings and backbones. The source code and dataset are available at https://github.com/guoqianyu-alberta/Conditional-Representation-Learning.

Authors:Wen Lai, Alexander Fraser, Ivan Titov
Title: Joint Localization and Activation Editing for Low-Resource Fine-Tuning
Abstract:
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, are commonly used to adapt LLMs. However, the effectiveness of standard PEFT methods is limited in low-resource scenarios with only a few hundred examples. Recent advances in interpretability research have inspired the emergence of activation editing (or steering) techniques, which modify the activations of specific model components. Due to their extremely small parameter counts, these methods show promise for small datasets. However, their performance is highly dependent on identifying the correct modules to edit and often lacks stability across different datasets. In this paper, we propose Joint Localization and Activation Editing (JoLA), a method that jointly learns (1) which heads in the Transformer to edit (2) whether the intervention should be additive, multiplicative, or both and (3) the intervention parameters themselves - the vectors applied as additive offsets or multiplicative scalings to the head output. Through evaluations on three benchmarks spanning commonsense reasoning, natural language understanding, and natural language generation, we demonstrate that JoLA consistently outperforms existing methods. The code for the method is released at https://github.com/wenlai-lavine/jola.

Authors:Erpai Luo, Xinran Wei, Lin Huang, Yunyang Li, Han Yang, Zaishuo Xia, Zun Wang, Chang Liu, Bin Shao, Jia Zhang
Title: Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity
Abstract:
Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost--driven by high-order tensor product (TP) operations--restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network, that incorporates adaptive SParsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70%. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact. Our code can be found at https://github.com/microsoft/SPHNet.

Authors:Chenyue Li, Wen Deng, Mengqian Lu, Binhang Yuan
Title: AtmosSci-Bench: Evaluating the Recent Advance of Large Language Model for Atmospheric Science
Abstract:
The rapid advancements in large language models (LLMs), particularly in their reasoning capabilities, hold transformative potential for addressing complex challenges in atmospheric science. However, leveraging LLMs effectively in this domain requires a robust and comprehensive evaluation benchmark. Toward this end, we present AtmosSci-Bench, a novel benchmark designed to systematically assess LLM performance across five core categories of atmospheric science problems: hydrology, atmospheric dynamics, atmospheric physics, geophysics, and physical oceanography. AtmosSci-Bench features a dual-format design comprising both multiple-choice questions (MCQs) and open-ended questions (OEQs), enabling scalable automated evaluation alongside deeper analysis of conceptual understanding. We employ a template-based MCQ generation framework to create diverse, graduate-level problems with symbolic perturbation, while OEQs are used to probe open-ended reasoning. We conduct a comprehensive evaluation of representative LLMs, categorized into four groups: instruction-tuned models, advanced reasoning models, math-augmented models, and domain-specific climate models. Our analysis provides some interesting insights into the reasoning and problem-solving capabilities of LLMs in atmospheric science. We believe AtmosSci-Bench can serve as a critical step toward advancing LLM applications in climate service by offering a standard and rigorous evaluation framework. Our source codes are currently available at Our source codes are currently available at https://github.com/Relaxed-System-Lab/AtmosSci-Bench.

Authors:Chenyue Li, Wen Deng, Mengqian Lu, Binhang Yuan
Title: AtmosSci-Bench: Evaluating the Recent Advance of Large Language Model for Atmospheric Science
Abstract:
The rapid advancements in large language models (LLMs), particularly in their reasoning capabilities, hold transformative potential for addressing complex challenges and boosting scientific discovery in atmospheric science. However, leveraging LLMs effectively in this domain requires a robust and comprehensive evaluation benchmark. Toward this end, we present AtmosSci-Bench, a novel benchmark designed to systematically assess LLM performance across five core categories of atmospheric science problems: hydrology, atmospheric dynamics, atmospheric physics, geophysics, and physical oceanography. AtmosSci-Bench features a dual-format design comprising both multiple-choice questions (MCQs) and open-ended questions (OEQs), enabling scalable automated evaluation alongside deeper analysis of conceptual understanding. We employ a template-based MCQ generation framework to create diverse, graduate-level problems with symbolic perturbation, while OEQs are used to probe open-ended reasoning. We conduct a comprehensive evaluation of representative LLMs, categorized into four groups: instruction-tuned models, advanced reasoning models, math-augmented models, and domain-specific climate models. Our analysis provides some interesting insights into the reasoning and problem-solving capabilities of LLMs in atmospheric science. We believe AtmosSci-Bench can serve as a critical step toward advancing LLM applications in climate services by offering a standard and rigorous evaluation framework. Our source code is available at https://github.com/Relaxed-System-Lab/AtmosSci-Bench.

Authors:Charilaos I. Kanatsoulis, Evelyn Choi, Stephanie Jegelka, Jure Leskovec, Alejandro Ribeiro
Title: Learning Efficient Positional Encodings with Graph Neural Networks
Abstract:
Positional encodings (PEs) are essential for effective graph representation learning because they provide position awareness in inherently position-agnostic transformer architectures and increase the expressive capacity of Graph Neural Networks (GNNs). However, designing powerful and efficient PEs for graphs poses significant challenges due to the absence of canonical node ordering and the scale of the graph. {In this work, we identify four key properties that graph PEs should satisfy}: stability, expressive power, scalability, and genericness. We find that existing eigenvector-based PE methods often fall short of jointly satisfying these criteria. To address this gap, we introduce PEARL, a novel framework of learnable PEs for graphs. Our primary insight is that message-passing GNNs function as nonlinear mappings of eigenvectors, enabling the design of GNN architectures for generating powerful and efficient PEs. A crucial challenge lies in initializing node attributes in a manner that is both expressive and permutation equivariant. We tackle this by initializing GNNs with random node inputs or standard basis vectors, thereby unlocking the expressive power of message-passing operations, while employing statistical pooling functions to maintain permutation equivariance. Our analysis demonstrates that PEARL approximates equivariant functions of eigenvectors with linear complexity, while rigorously establishing its stability and high expressive power. Experimental evaluations show that PEARL outperforms lightweight versions of eigenvector-based PEs and achieves comparable performance to full eigenvector-based PEs, but with one or two orders of magnitude lower complexity. Our code is available at https://github.com/ehejin/Pearl-PE.

Authors:Guanlin Li, Kangjie Chen, Shangwei Guo, Jie Zhang, Han Qiu, Chao Zhang, Guoyin Wang, Tianwei Zhang, Jiwei Li
Title: Picky LLMs and Unreliable RMs: An Empirical Study on Safety Alignment after Instruction Tuning
Abstract:
Large language models (LLMs) have emerged as powerful tools for addressing a wide range of general inquiries and tasks. Despite this, fine-tuning aligned LLMs on smaller, domain-specific datasets, critical to adapting them to specialized tasks, can inadvertently degrade their safety alignment, even when the datasets are benign. This phenomenon makes models more susceptible to providing inappropriate responses. In this study, we systematically examine the factors contributing to safety alignment degradation in benign fine-tuning scenarios. Our analysis identifies three critical factors affecting aligned LLMs: answer structure, identity calibration, and role-play. Additionally, we evaluate the reliability of state-of-the-art reward models (RMs), which are often used to guide alignment processes. Our findings reveal that these RMs frequently fail to accurately reflect human preferences regarding safety, underscoring their limitations in practical applications. By uncovering these challenges, our work highlights the complexities of maintaining safety alignment during fine-tuning and offers guidance to help developers balance utility and safety in LLMs. Datasets and fine-tuning code used in our experiments can be found in https://github.com/GuanlinLee/llm_instruction_tuning.

Authors:Vernon Y. H. Toh, Yew Ken Chia, Deepanway Ghosal, Soujanya Poria
Title: The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles
Abstract:
The releases of OpenAI's o-[n] series, such as o1, o3, and o4-mini, mark a significant paradigm shift in Large Language Models towards advanced reasoning capabilities. Notably, models like o3 have demonstrated strong performance on benchmarks like the Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI). However, this benchmark is limited to symbolic patterns, whereas humans often perceive and reason about multimodal scenarios involving both vision and language data. Thus, there is an urgent need to investigate advanced reasoning capabilities in multimodal tasks. To this end, we track the evolution of the GPT-[n] and o-[n] series models (including o1, o3, and o4-mini) on challenging multimodal puzzles from PuzzleVQA and AlgoPuzzleVQA, which demand fine-grained visual perception. Our results reveal that o-[n] series, particularly later iterations like o3 and o4-mini, significantly outperform the GPT-[n] series and show strong scalability in multimodal reasoning. Nonetheless, despite these substantial advancements and the superior capabilities demonstrated by the o-[n] series, our findings highlight that even these leading models face persistent challenges. Difficulties are particularly evident in tasks requiring precise visual perception, robust compositional reasoning across multiple visual attributes, and solving complex algorithmic or highly combinatorial puzzles, indicating critical areas for future AGI development. We plan to continuously track new models in the series and update our results in this paper accordingly. All resources used in this evaluation are openly available at https://github.com/declare-lab/LLM-PuzzleTest.

Authors:Dongwon Jo, Jiwon Song, Yulhwa Kim, Jae-Joon Kim
Title: FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation
Abstract:
While large language models (LLMs) excel at handling long-context sequences, they require substantial key-value (KV) caches to store contextual information, which can heavily burden computational efficiency and memory usage. Previous efforts to compress these KV caches primarily focused on reducing memory demands but were limited in enhancing latency. To address this issue, we introduce FastKV, a KV cache compression method designed to reduce latency for long-context inference. FastKV improves processing speed while preserving accuracy by adopting Token-Selective Propagation (TSP). This approach preserves full-context information in early layers of LLMs and selectively propagates only a portion of this information in later layers. This design enables FastKV to minimize redundant computation without sacrificing contextual fidelity. Our experimental results show that FastKV achieves up to 1.97$\times$ and 4.82$\times$ improvements in time-to-first-token (TTFT) and throughput, respectively, compared to baseline without KV cache compression. Moreover, FastKV successfully maintains accuracy within 1\% of the baseline on long-context benchmarks. Our code is available at https://github.com/dongwonjo/FastKV.

Authors:Tao Zhang, Cheng Da, Kun Ding, Huan Yang, Kun Jin, Yan Li, Tingting Gao, Di Zhang, Shiming Xiang, Chunhong Pan
Title: Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization
Abstract:
Preference optimization for diffusion models aims to align them with human preferences for images. Previous methods typically use Vision-Language Models (VLMs) as pixel-level reward models to approximate human preferences. However, when used for step-level preference optimization, these models face challenges in handling noisy images of different timesteps and require complex transformations into pixel space. In this work, we show that pre-trained diffusion models are naturally suited for step-level reward modeling in the noisy latent space, as they are explicitly designed to process latent images at various noise levels. Accordingly, we propose the Latent Reward Model (LRM), which repurposes components of the diffusion model to predict preferences of latent images at arbitrary timesteps. Building on LRM, we introduce Latent Preference Optimization (LPO), a step-level preference optimization method conducted directly in the noisy latent space. Experimental results indicate that LPO significantly improves the model's alignment with general, aesthetic, and text-image alignment preferences, while achieving a 2.5-28x training speedup over existing preference optimization methods. Our code and models are available at https://github.com/Kwai-Kolors/LPO.

Authors:Tao Zhang, Cheng Da, Kun Ding, Huan Yang, Kun Jin, Yan Li, Tingting Gao, Di Zhang, Shiming Xiang, Chunhong Pan
Title: Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization
Abstract:
Preference optimization for diffusion models aims to align them with human preferences for images. Previous methods typically use Vision-Language Models (VLMs) as pixel-level reward models to approximate human preferences. However, when used for step-level preference optimization, these models face challenges in handling noisy images of different timesteps and require complex transformations into pixel space. In this work, we show that pre-trained diffusion models are naturally suited for step-level reward modeling in the noisy latent space, as they are explicitly designed to process latent images at various noise levels. Accordingly, we propose the Latent Reward Model (LRM), which repurposes components of the diffusion model to predict preferences of latent images at arbitrary timesteps. Building on LRM, we introduce Latent Preference Optimization (LPO), a step-level preference optimization method conducted directly in the noisy latent space. Experimental results indicate that LPO significantly improves the model's alignment with general, aesthetic, and text-image alignment preferences, while achieving a 2.5-28x training speedup over existing preference optimization methods. Our code and models are available at https://github.com/Kwai-Kolors/LPO.

Authors:Peixuan Han, Cheng Qian, Xiusi Chen, Yuji Zhang, Heng Ji, Denghui Zhang
Title: SafeSwitch: Steering Unsafe LLM Behavior via Internal Activation Signals
Abstract:
Large language models (LLMs) exhibit exceptional capabilities across various tasks but also pose risks by generating harmful content. Existing safety mechanisms, while improving model safety, often lead to overly cautious behavior and fail to fully leverage LLMs' internal cognitive processes. Inspired by humans' reflective thinking capability, we first show that LLMs can similarly perform internal assessments about safety in their internal states. Building on this insight, we propose SafeSwitch, a dynamic framework that regulates unsafe outputs by utilizing the prober-based internal state monitor that actively detects harmful intentions, and activates a safety head that leads to safer and more conservative responses only when necessary. SafeSwitch reduces harmful outputs by approximately 80% on harmful queries while maintaining strong utility, reaching a Pareto optimal among several methods. Our method is also advantageous over traditional methods in offering more informative, context-aware refusals, and achieves these benefits while only tuning less than 6% of the original parameters. SafeSwitch demonstrates large language models' capacity for self-awareness and reflection regarding safety, offering a promising approach to more nuanced and effective safety controls. Codes for this work are available at https://github.com/Hanpx20/SafeSwitch.

Authors:Siqi Zeng, Yifei He, Weiqiu You, Yifan Hao, Yao-Hung Hubert Tsai, Makoto Yamada, Han Zhao
Title: Efficient Model Editing with Task Vector Bases: A Theoretical Framework and Scalable Approach
Abstract:
Task vectors, which are derived from the difference between pre-trained and fine-tuned model weights, enable flexible task adaptation and model merging through arithmetic operations such as addition and negation. However, existing approaches often rely on heuristics with limited theoretical support, often leading to performance gaps comparing to direct task fine tuning. Meanwhile, although it is easy to manipulate saved task vectors with arithmetic for different purposes, such compositional flexibility demands high memory usage, especially when dealing with a huge number of tasks, limiting scalability. This work addresses these issues with a theoretically grounded framework that explains task vector arithmetic and introduces the task vector bases framework. Building upon existing task arithmetic literature, our method significantly reduces the memory cost for downstream arithmetic with little effort, while achieving competitive performance and maintaining compositional advantage, providing a practical solution for large-scale task arithmetic. The code is available at https://github.com/uiuctml/TaskVectorBasis.

Authors:Siqi Zeng, Yifei He, Meitong Liu, Weiqiu You, Yifan Hao, Yao-Hung Hubert Tsai, Makoto Yamada, Han Zhao
Title: Task Vector Bases: A Unified and Scalable Framework for Compressed Task Arithmetic
Abstract:
Task arithmetic, representing downstream tasks through linear operations on task vectors, has emerged as a simple yet powerful paradigm for transferring knowledge across diverse settings. However, maintaining a large collection of task vectors introduces scalability challenges in both storage and computation. We propose Task Vector Bases, a framework compressing $T$ task vectors into $M < T$ basis vectors while preserving the functionality of task arithmetic. By representing each task vector as a structured linear combination of basis atoms, our approach supports standard operations such as addition, negation, as well as more advanced arithmetic ones. The framework is orthogonal to other efficiency-oriented improvements in task arithmetic and can be used in combination with them. We provide theoretical analysis showing that basis compression retains addition generalization guarantees and enables principled unlearning, with error bounds depending on reconstruction quality. Empirically, our proposed basis construction methods consistently outperform heuristic basis construction baselines and, in some cases, even surpass the performance of full task vector collections across diverse downstream applications while reducing storage and computational requirements. The code is available at https://github.com/uiuctml/TaskVectorBasis.

Authors:Wenfei Zhang, Ruipeng Zhao, Yongxiang Yao, Yi Wan, Peihao Wu, Jiayuan Li, Yansheng Li, Yongjun Zhang
Title: Multi-Resolution SAR and Optical Remote Sensing Image Registration Methods: A Review, Datasets, and Future Perspectives
Abstract:
Synthetic Aperture Radar (SAR) and optical image registration is essential for remote sensing data fusion, with applications in military reconnaissance, environmental monitoring, and disaster management. However, challenges arise from differences in imaging mechanisms, geometric distortions, and radiometric properties between SAR and optical images. As image resolution increases, fine SAR textures become more significant, leading to alignment issues and 3D spatial discrepancies. Two major gaps exist: the lack of a publicly available multi-resolution, multi-scene registration dataset and the absence of systematic analysis of current methods. To address this, the MultiResSAR dataset was created, containing over 10k pairs of multi-source, multi-resolution, and multi-scene SAR and optical images. Sixteen state-of-the-art algorithms were tested. Results show no algorithm achieves 100% success, and performance decreases as resolution increases, with most failing on sub-meter data. XoFTR performs best among deep learning methods (40.58%), while RIFT performs best among traditional methods (66.51%). Future research should focus on noise suppression, 3D geometric fusion, cross-view transformation modeling, and deep learning optimization for robust registration of high-resolution SAR and optical images. The dataset is available at https://github.com/betterlll/Multi-Resolution-SAR-dataset-.

Authors:Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li
Title: Adapting Foundation Models for Few-Shot Medical Image Segmentation: Actively and Sequentially
Abstract:
Recent advances in foundation models have brought promising results in computer vision, including medical image segmentation. Fine-tuning foundation models on specific low-resource medical tasks has become a standard practice. However, ensuring reliable and robust model adaptation when the target task has a large domain gap and few annotated samples remains a challenge. Previous few-shot domain adaptation (FSDA) methods seek to bridge the distribution gap between source and target domains by utilizing auxiliary data. The selection and scheduling of auxiliaries are often based on heuristics, which can easily cause negative transfer. In this work, we propose an Active and Sequential domain AdaPtation (ASAP) framework for dynamic auxiliary dataset selection in FSDA. We formulate FSDA as a multi-armed bandit problem and derive an efficient reward function to prioritize training on auxiliary datasets that align closely with the target task, through a single-round fine-tuning. Empirical validation on diverse medical segmentation datasets demonstrates that our method achieves favorable segmentation performance, significantly outperforming the state-of-the-art FSDA methods, achieving an average gain of 27.75% on MRI and 7.52% on CT datasets in Dice score. Code is available at the git repository: https://github.com/techicoco/ASAP.

Authors:Minh Ngoc Nguyen, Khai Le-Duc, Tan-Hanh Pham, Trang Nguyen, Quang Minh Luu, Ba Kien Tran, Truong-Son Hy, Viktor Dremin, Sergei Sokolovsky, Edik Rafailov
Title: A Wearable Device Dataset for Mental Health Assessment Using Laser Doppler Flowmetry and Fluorescence Spectroscopy Sensors
Abstract:
In this study, we introduce a novel method to predict mental health by building machine learning models for a non-invasive wearable device equipped with Laser Doppler Flowmetry (LDF) and Fluorescence Spectroscopy (FS) sensors. Besides, we present the corresponding dataset to predict mental health, e.g. depression, anxiety, and stress levels via the DAS-21 questionnaire. To our best knowledge, this is the world's largest and the most generalized dataset ever collected for both LDF and FS studies. The device captures cutaneous blood microcirculation parameters, and wavelet analysis of the LDF signal extracts key rhythmic oscillations. The dataset, collected from 132 volunteers aged 18-94 from 19 countries, explores relationships between physiological features, demographics, lifestyle habits, and health conditions. We employed a variety of machine learning methods to classify stress detection, in which LightGBM is identified as the most effective model for stress detection, achieving a ROC AUC of 0.7168 and a PR AUC of 0.8852. In addition, we also incorporated Explainable Artificial Intelligence (XAI) techniques into our analysis to investigate deeper insights into the model's predictions. Our results suggest that females, younger individuals and those with a higher Body Mass Index (BMI) or heart rate have a greater likelihood of experiencing mental health conditions like stress and anxiety. All related code and data are published online: https://github.com/leduckhai/Wearable_LDF-FS.

Authors:Anuj Singh, Sayak Mukherjee, Ahmad Beirami, Hadi Jamali-Rad
Title: CoDe: Blockwise Control for Denoising Diffusion Models
Abstract:
Aligning diffusion models to downstream tasks often requires finetuning new models or gradient-based guidance at inference time to enable sampling from the reward-tilted posterior. In this work, we explore a simple inference-time gradient-free guidance approach, called controlled denoising (CoDe), that circumvents the need for differentiable guidance functions and model finetuning. CoDe is a blockwise sampling method applied during intermediate denoising steps, allowing for alignment with downstream rewards. Our experiments demonstrate that, despite its simplicity, CoDe offers a favorable trade-off between reward alignment, prompt instruction following, and inference cost, achieving a competitive performance against the state-of-the-art baselines. Our code is available at: https://github.com/anujinho/code.

Authors:Harshith Padigela, Chintan Shah, Dinkar Juyal
Title: ML-Dev-Bench: Comparative Analysis of AI Agents on ML development workflows
Abstract:
In this report, we present ML-Dev-Bench, a benchmark aimed at testing agentic capabilities on applied Machine Learning development tasks. While existing benchmarks focus on isolated coding tasks or Kaggle-style competitions, ML-Dev-Bench tests agents' ability to handle the full complexity of ML development workflows. The benchmark assesses performance across critical aspects including dataset handling, model training, improving existing models, debugging, and API integration with popular ML tools. We evaluate three agents - ReAct, Openhands, and AIDE - on a diverse set of 30 tasks, providing insights into their strengths and limitations in handling practical ML development challenges. We open source the benchmark for the benefit of the community at \href{https://github.com/ml-dev-bench/ml-dev-bench}{https://github.com/ml-dev-bench/ml-dev-bench}.

Authors:Moritz Wolter, Lokesh Veeramacheneni, Charles Tapley Hoyt
Title: More Rigorous Software Engineering Would Improve Reproducibility in Machine Learning Research
Abstract:
While experimental reproduction remains a pillar of the scientific method, we observe that the software best practices supporting the reproduction of machine learning ( ML ) research are often undervalued or overlooked, leading both to poor reproducibility and damage to trust in the ML community. We quantify these concerns by surveying the usage of software best practices in software repositories associated with publications at major ML conferences and journals such as NeurIPS, ICML, ICLR, TMLR, and MLOSS within the last decade. We report the results of this survey that identify areas where software best practices are lacking and areas with potential for growth in the ML community. Finally, we discuss the implications and present concrete recommendations on how we, as a community, can improve reproducibility in ML research.

Authors:Can Jin, Ying Li, Mingyu Zhao, Shiyu Zhao, Zhenting Wang, Xiaoxiao He, Ligong Han, Tong Che, Dimitris N. Metaxas
Title: LoR-VP: Low-Rank Visual Prompting for Efficient Vision Model Adaptation
Abstract:
Visual prompting has gained popularity as a method for adapting pre-trained models to specific tasks, particularly in the realm of parameter-efficient tuning. However, existing visual prompting techniques often pad the prompt parameters around the image, limiting the interaction between the visual prompts and the original image to a small set of patches while neglecting the inductive bias present in shared information across different patches. In this study, we conduct a thorough preliminary investigation to identify and address these limitations. We propose a novel visual prompt design, introducing Low-Rank matrix multiplication for Visual Prompting (LoR-VP), which enables shared and patch-specific information across rows and columns of image pixels. Extensive experiments across seven network architectures and four datasets demonstrate significant improvements in both performance and efficiency compared to state-of-the-art visual prompting methods, achieving up to 6 times faster training times, utilizing 18 times fewer visual prompt parameters, and delivering a 3.1% improvement in performance. The code is available as https://github.com/jincan333/LoR-VP.

Authors:Ehsaneddin Asgari, Yassine El Kheir, Mohammad Ali Sadraei Javaheri
Title: MorphBPE: A Morpho-Aware Tokenizer Bridging Linguistic Complexity for Efficient LLM Training Across Morphologies
Abstract:
Tokenization is fundamental to Natural Language Processing (NLP), directly impacting model efficiency and linguistic fidelity. While Byte Pair Encoding (BPE) is widely used in Large Language Models (LLMs), it often disregards morpheme boundaries, leading to suboptimal segmentation, particularly in morphologically rich languages. We introduce MorphBPE, a morphology-aware extension of BPE that integrates linguistic structure into subword tokenization while preserving statistical efficiency. Additionally, we propose two morphology-based evaluation metrics: (i) Morphological Consistency F1-Score, which quantifies the consistency between morpheme sharing and token sharing, contributing to LLM training convergence, and (ii) Morphological Edit Distance, which measures alignment between morphemes and tokens concerning interpretability. Experiments on English, Russian, Hungarian, and Arabic across 300M and 1B parameter LLMs demonstrate that MorphBPE consistently reduces cross-entropy loss, accelerates convergence, and improves morphological alignment scores. Fully compatible with existing LLM pipelines, MorphBPE requires minimal modifications for integration. The MorphBPE codebase and tokenizer playground will be available at: https://github.com/llm-lab-org/MorphBPE and https://tokenizer.llm-lab.org

Authors:Teng Xiao, Yige Yuan, Zhengyu Chen, Mingxiao Li, Shangsong Liang, Zhaochun Ren, Vasant G Honavar
Title: SimPER: A Minimalist Approach to Preference Alignment without Hyperparameters
Abstract:
Existing preference optimization objectives for language model alignment require additional hyperparameters that must be extensively tuned to achieve optimal performance, increasing both the complexity and time required for fine-tuning large language models. In this paper, we propose a simple yet effective hyperparameter-free preference optimization algorithm for alignment. We observe that promising performance can be achieved simply by optimizing inverse perplexity, which is calculated as the inverse of the exponentiated average log-likelihood of the chosen and rejected responses in the preference dataset. The resulting simple learning objective, SimPER, is easy to implement and eliminates the need for expensive hyperparameter tuning and a reference model, making it both computationally and memory efficient. Extensive experiments on widely used real-world benchmarks, including MT-Bench, AlpacaEval 2, and 10 key benchmarks of the Open LLM Leaderboard with 5 base models, demonstrate that SimPER consistently and significantly outperforms existing approaches-even without any hyperparameters or a reference model . For example, despite its simplicity, SimPER outperforms state-of-the-art methods by up to 5.7 points on AlpacaEval 2 and achieves the highest average ranking across 10 benchmarks on the Open LLM Leaderboard. The source code for SimPER is publicly available at: https://github.com/tengxiao1/SimPER.

Authors:Alireza Morsali, MohammadJavad Vaez, Mohammadhossein Soltani, Amirhossein Kazerouni, Babak Taati, Morteza Mohammad-Noori
Title: STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation
Abstract:
Implicit Neural Representations (INRs) have emerged as a powerful framework for modeling continuous signals. The spectral bias of ReLU-based networks is a well-established limitation, restricting their ability to capture fine-grained details in target signals. While previous works have attempted to mitigate this issue through frequency-based encodings or architectural modifications, these approaches often introduce additional complexity and do not fully address the underlying challenge of learning high-frequency components efficiently. We introduce Sinusoidal Trainable Activation Functions (STAF), designed to directly tackle this limitation by enabling networks to adaptively learn and represent complex signals with higher precision and efficiency. STAF inherently modulates its frequency components, allowing for self-adaptive spectral learning. This capability significantly improves convergence speed and expressivity, making STAF highly effective for both signal representations and inverse problems. Through extensive evaluations across a range of tasks, including signal representation (shape, image, audio) and inverse problems (super-resolution, denoising), as well as neural radiance fields (NeRF), we demonstrate that STAF consistently outperforms state-of-the-art methods in accuracy and reconstruction fidelity. These results establish STAF as a robust solution to spectral bias and the capacity--convergence tradeoff, with broad applicability in computer vision and graphics. Our codebase is publicly accessible at https://github.com/AlirezaMorsali/STAF.

Authors:Yongqiang Huang, Zerui Shao, Ziyuan Yang, Zexin Lu, Yi Zhang
Title: FedRIR: Rethinking Information Representation in Federated Learning
Abstract:
Mobile and Web-of-Things (WoT) devices at the network edge generate vast amounts of data for machine learning applications, yet privacy concerns hinder centralized model training. Federated Learning (FL) allows clients (devices) to collaboratively train a shared model coordinated by a central server without transfer private data, but inherent statistical heterogeneity among clients presents challenges, often leading to a dilemma between clients' needs for personalized local models and the server's goal of building a generalized global model. Existing FL methods typically prioritize either global generalization or local personalization, resulting in a trade-off between these two objectives and limiting the full potential of diverse client data. To address this challenge, we propose a novel framework that simultaneously enhances global generalization and local personalization by Rethinking Information Representation in the Federated learning process (FedRIR). Specifically, we introduce Masked Client-Specific Learning (MCSL), which isolates and extracts fine-grained client-specific features tailored to each client's unique data characteristics, thereby enhancing personalization. Concurrently, the Information Distillation Module (IDM) refines the global shared features by filtering out redundant client-specific information, resulting in a purer and more robust global representation that enhances generalization. By integrating the refined global features with the isolated client-specific features, we construct enriched representations that effectively capture both global patterns and local nuances, thereby improving the performance of downstream tasks on the client. The code is available at https://github.com/Deep-Imaging-Group/FedRIR.

Authors:Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, Mingsheng Long
Title: Sundial: A Family of Highly Capable Time Series Foundation Models
Abstract:
We introduce Sundial, a family of native, flexible, and scalable time series foundation models. To predict the next-patch's distribution, we propose a TimeFlow Loss based on flow-matching, which facilitates native pre-training of Transformers on continuous-valued time series without discrete tokenization. Conditioned on arbitrary-length time series, our models are pre-trained without specifying any prior distribution and can generate multiple probable predictions, achieving more flexibility in representation learning than using parametric densities. Towards time series foundation models, we leverage minimal but crucial adaptations of Transformers and curate TimeBench with one trillion time points, comprising mostly real-world datasets and synthetic data. By mitigating mode collapse via TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which achieve unprecedented model capacity and generalization performance. In addition to excellent scalability, Sundial achieves state-of-the-art results on both point and probabilistic forecasting benchmarks with a just-in-time inference speed, i.e., making zero-shot predictions within a few milliseconds. We believe that Sundial's pioneering generative forecasting capability can improve model reliability in real-world decision-making. Code is available at: https://github.com/thuml/Sundial.

Authors:Leng Cai, Junxuan He, Yikai Li, Junjie Liang, Yuanping Lin, Ziming Quan, Yawen Zeng, Jin Xu
Title: RTBAgent: A LLM-based Agent System for Real-Time Bidding
Abstract:
Real-Time Bidding (RTB) enables advertisers to place competitive bids on impression opportunities instantaneously, striving for cost-effectiveness in a highly competitive landscape. Although RTB has widely benefited from the utilization of technologies such as deep learning and reinforcement learning, the reliability of related methods often encounters challenges due to the discrepancies between online and offline environments and the rapid fluctuations of online bidding. To handle these challenges, RTBAgent is proposed as the first RTB agent system based on large language models (LLMs), which synchronizes real competitive advertising bidding environments and obtains bidding prices through an integrated decision-making process. Specifically, obtaining reasoning ability through LLMs, RTBAgent is further tailored to be more professional for RTB via involved auxiliary modules, i.e., click-through rate estimation model, expert strategy knowledge, and daily reflection. In addition, we propose a two-step decision-making process and multi-memory retrieval mechanism, which enables RTBAgent to review historical decisions and transaction records and subsequently make decisions more adaptive to market changes in real-time bidding. Empirical testing with real advertising datasets demonstrates that RTBAgent significantly enhances profitability. The RTBAgent code will be publicly accessible at: https://github.com/CaiLeng/RTBAgent.

Authors:J Rosser, Jakob Nicolaus Foerster
Title: AgentBreeder: Mitigating the AI Safety Impact of Multi-Agent Scaffolds via Self-Improvement
Abstract:
Scaffolding Large Language Models (LLMs) into multi-agent systems often improves performance on complex tasks, but the safety impact of such scaffolds has not been thoroughly explored. We introduce AgentBreeder, a framework for multi-objective self-improving evolutionary search over scaffolds. We evaluate discovered scaffolds on widely recognized reasoning, mathematics, and safety benchmarks and compare them with popular baselines. In 'blue' mode, we see a 79.4% average uplift in safety benchmark performance while maintaining or improving capability scores. In 'red' mode, we find adversarially weak scaffolds emerging concurrently with capability optimization. Our work demonstrates the risks of multi-agent scaffolding and provides a framework for mitigating them. Code is available at https://github.com/J-Rosser-UK/AgentBreeder.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: BEEM: Boosting Performance of Early Exit DNNs using Multi-Exit Classifiers as Experts
Abstract:
Early Exit (EE) techniques have emerged as a means to reduce inference latency in Deep Neural Networks (DNNs). The latency improvement and accuracy in these techniques crucially depend on the criteria used to make exit decisions. We propose a new decision criterion where exit classifiers are treated as experts BEEM and aggregate their confidence scores. The confidence scores are aggregated only if neighbouring experts are consistent in prediction as the samples pass through them, thus capturing their ensemble effect. A sample exits when the aggregated confidence value exceeds a threshold. The threshold is set using the error rates of the intermediate exits aiming to surpass the performance of conventional DNN inference. Experimental results on the COCO dataset for Image captioning and GLUE datasets for various language tasks demonstrate that our method enhances the performance of state-of-the-art EE methods, achieving improvements in speed-up by a factor 1.5x to 2.1x. When compared to the final layer, its accuracy is comparable in harder Image Captioning and improves in the easier language tasks. The source code for this work is publicly available at https://github.com/Div290/BEEM1/tree/main

Authors:Kosuke Sakurai, Ryotaro Shimizu, Masayuki Goto
Title: Vision and Language Reference Prompt into SAM for Few-shot Segmentation
Abstract:
Segment Anything Model (SAM) represents a large-scale segmentation model that enables powerful zero-shot capabilities with flexible prompts. While SAM can segment any object in zero-shot, it requires user-provided prompts for each target image and does not attach any label information to masks. Few-shot segmentation models addressed these issues by inputting annotated reference images as prompts to SAM and can segment specific objects in target images without user-provided prompts. Previous SAM-based few-shot segmentation models only use annotated reference images as prompts, resulting in limited accuracy due to a lack of reference information. In this paper, we propose a novel few-shot segmentation model, Vision and Language reference Prompt into SAM (VLP-SAM), that utilizes the visual information of the reference images and the semantic information of the text labels by inputting not only images but also language as reference information. In particular, VLP-SAM is a simple and scalable structure with minimal learnable parameters, which inputs prompt embeddings with vision-language information into SAM using a multimodal vision-language model. To demonstrate the effectiveness of VLP-SAM, we conducted experiments on the PASCAL-5i and COCO-20i datasets, and achieved high performance in the few-shot segmentation task, outperforming the previous state-of-the-art model by a large margin (6.3% and 9.5% in mIoU, respectively). Furthermore, VLP-SAM demonstrates its generality in unseen objects that are not included in the training data. Our code is available at https://github.com/kosukesakurai1/VLP-SAM.

Authors:Yunuo Chen, Qian Li, Bing He, Donghui Feng, Ronghua Wu, Qi Wang, Li Song, Guo Lu, Wenjun Zhang
Title: S2CFormer: Revisiting the RD-Latency Trade-off in Transformer-based Learned Image Compression
Abstract:
Transformer-based Learned Image Compression (LIC) suffers from a suboptimal trade-off between decoding latency and rate-distortion (R-D) performance. Moreover, the critical role of the FeedForward Network (FFN)-based channel aggregation module has been largely overlooked. Our research reveals that efficient channel aggregation-rather than complex and time-consuming spatial operations-is the key to achieving competitive LIC models. Based on this insight, we initiate the ``S2CFormer'' paradigm, a general architecture that simplifies spatial operations and enhances channel operations to overcome the previous trade-off. We present two instances of the S2CFormer: S2C-Conv, and S2C-Attention. Both models demonstrate state-of-the-art (SOTA) R-D performance and significantly faster decoding speed. Furthermore, we introduce S2C-Hybrid, an enhanced variant that maximizes the strengths of different S2CFormer instances to achieve a better performance-latency trade-off. This model outperforms all the existing methods on the Kodak, Tecnick, and CLIC Professional Validation datasets, setting a new benchmark for efficient and high-performance LIC. The code is at \href{https://github.com/YunuoChen/S2CFormer}{https://github.com/YunuoChen/S2CFormer}.

Authors:Linglong Wu, Xuhao Shan, Ruiquan Ge, Ruoyu Liang, Chi Zhang, Yonghong Li, Ahmed Elazab, Huoling Luo, Yunbi Liu, Changmiao Wang
Title: TMI-CLNet: Triple-Modal Interaction Network for Chronic Liver Disease Prognosis From Imaging, Clinical, and Radiomic Data Fusion
Abstract:
Chronic liver disease represents a significant health challenge worldwide and accurate prognostic evaluations are essential for personalized treatment plans. Recent evidence suggests that integrating multimodal data, such as computed tomography imaging, radiomic features, and clinical information, can provide more comprehensive prognostic information. However, modalities have an inherent heterogeneity, and incorporating additional modalities may exacerbate the challenges of heterogeneous data fusion. Moreover, existing multimodal fusion methods often struggle to adapt to richer medical modalities, making it difficult to capture inter-modal relationships. To overcome these limitations, We present the Triple-Modal Interaction Chronic Liver Network (TMI-CLNet). Specifically, we develop an Intra-Modality Aggregation module and a Triple-Modal Cross-Attention Fusion module, which are designed to eliminate intra-modality redundancy and extract cross-modal information, respectively. Furthermore, we design a Triple-Modal Feature Fusion loss function to align feature representations across modalities. Extensive experiments on the liver prognosis dataset demonstrate that our approach significantly outperforms existing state-of-the-art unimodal models and other multi-modal techniques. Our code is available at https://github.com/Mysterwll/liver.git.

Authors:Hyeong Kyu Choi, Maxim Khanov, Hongxin Wei, Yixuan Li
Title: How Contaminated Is Your Benchmark? Quantifying Dataset Leakage in Large Language Models with Kernel Divergence
Abstract:
Dataset contamination, where evaluation datasets overlap with pre-training corpora, inflates performance metrics and undermines the reliability of model evaluations. Measuring dataset contamination thus becomes essential to ensure that performance evaluations genuinely reflect a model's ability to generalize to unseen data, rather than relying on memorized examples. To address this problem, we propose Kernel Divergence Score (KDS), a novel method that evaluates dataset contamination by computing the divergence between the kernel similarity matrix of sample embeddings, before and after fine-tuning on the benchmark dataset. Leveraging the insight that fine-tuning affects unseen samples more significantly than seen ones, KDS provides a reliable measure of contamination. Through extensive experiments on controlled contamination scenarios, KDS demonstrates a near-perfect correlation with contamination levels and outperforms existing baselines. Additionally, we perform comprehensive ablation studies to analyze the impact of key design choices, providing deeper insights into the components and effectiveness of KDS. These ablations highlight the importance of leveraging fine-grained kernel-based information and confirm the reliability of the proposed framework across diverse datasets and settings. Code is released in https://github.com/deeplearning-wisc/kernel-divergence-score.

Authors:Mingyu Chen, Yiding Chen, Wen Sun, Xuezhou Zhang
Title: Avoiding $\mathbf{exp(R_{max})}$ scaling in RLHF through Preference-based Exploration
Abstract:
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for large language model (LLM) alignment. This paper studies the setting of online RLHF and focus on improving sample efficiency. All existing algorithms in online RLHF, whether doing passive exploration or active exploration, suffer from a sample complexity that scales exponentially with the scale of the reward function. This fundamental limitation hinders their effectiveness in scenarios with heavily skewed preferences, e.g. questions with a unique correct solution. To address this, we introduce Self-Exploring Preference-Incentive Online Preference Optimization (SE-POPO), an online RLHF algorithm that for the first time achieves a sample complexity that scales polynomially with the reward scale, answering an open problem raised by Xie et al. (2024).. Theoretically, we demonstrate that the sample complexity of SE-POPO dominates that of existing exploration algorithms. Empirically, our systematic evaluation confirms that SE-POPO is more sample-efficient than both exploratory and non-exploratory baselines, in two primary application scenarios of RLHF as well as on public benchmarks, marking a significant step forward in RLHF algorithm design. The code is available at https://github.com/MYC000801/SE-POPO.

Authors:Mingyu Chen, Yiding Chen, Wen Sun, Xuezhou Zhang
Title: Avoiding $\mathbf{exp(R_{max})}$ scaling in RLHF through Preference-based Exploration
Abstract:
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for large language model (LLM) alignment. This paper studies the setting of online RLHF and focus on improving sample efficiency. All existing algorithms in online RLHF, whether doing passive exploration or active exploration, suffer from a sample complexity that scales exponentially with the scale of the reward function. This fundamental limitation hinders their effectiveness in scenarios with heavily skewed preferences, e.g. questions with a unique correct solution. To address this, we introduce Self-Exploring Preference-Incentive Online Preference Optimization (SE-POPO), an online RLHF algorithm that for the first time achieves a sample complexity that scales polynomially with the reward scale, answering an open problem raised by Xie et al. (2024).. Theoretically, we demonstrate that the sample complexity of SE-POPO dominates that of existing exploration algorithms. Empirically, our systematic evaluation confirms that SE-POPO is more sample-efficient than both exploratory and non-exploratory baselines, in two primary application scenarios of RLHF as well as on public benchmarks, marking a significant step forward in RLHF algorithm design. The code is available at https://github.com/MYC000801/SE-POPO.

Authors:Changseung Kim, Geunsik Bae, Woojae Shin, Sen Wang, Hyondong Oh
Title: EKF-Based Radar-Inertial Odometry with Online Temporal Calibration
Abstract:
Accurate time synchronization between heterogeneous sensors is crucial for ensuring robust state estimation in multi-sensor fusion systems. Sensor delays often cause discrepancies between the actual time when the event was captured and the time of sensor measurement, leading to temporal misalignment (time offset) between sensor measurement streams. In this paper, we propose an extended Kalman filter (EKF)-based radar-inertial odometry (RIO) framework that estimates the time offset online. The radar ego-velocity measurement model, derived from a single radar scan, is formulated to incorporate the time offset into the update. By leveraging temporal calibration, the proposed RIO enables accurate propagation and measurement updates based on a common time stream. Experiments on both simulated and real-world datasets demonstrate the accurate time offset estimation of the proposed method and its impact on RIO performance, validating the importance of sensor time synchronization. Our implementation of the EKF-RIO with online temporal calibration is available at https://github.com/spearwin/EKF-RIO-TC.

Authors:Donglei Yu, Yang Zhao, Jie Zhu, Yangyifan Xu, Yu Zhou, Chengqing Zong
Title: SimulPL: Aligning Human Preferences in Simultaneous Machine Translation
Abstract:
Simultaneous Machine Translation (SiMT) generates translations while receiving streaming source inputs. This requires the SiMT model to learn a read/write policy, deciding when to translate and when to wait for more source input. Numerous linguistic studies indicate that audiences in SiMT scenarios have distinct preferences, such as accurate translations, simpler syntax, and no unnecessary latency. Aligning SiMT models with these human preferences is crucial to improve their performances. However, this issue still remains unexplored. Additionally, preference optimization for SiMT task is also challenging. Existing methods focus solely on optimizing the generated responses, ignoring human preferences related to latency and the optimization of read/write policy during the preference optimization phase. To address these challenges, we propose Simultaneous Preference Learning (SimulPL), a preference learning framework tailored for the SiMT task. In the SimulPL framework, we categorize SiMT human preferences into five aspects: \textbf{translation quality preference}, \textbf{monotonicity preference}, \textbf{key point preference}, \textbf{simplicity preference}, and \textbf{latency preference}. By leveraging the first four preferences, we construct human preference prompts to efficiently guide GPT-4/4o in generating preference data for the SiMT task. In the preference optimization phase, SimulPL integrates \textbf{latency preference} into the optimization objective and enables SiMT models to improve the read/write policy, thereby aligning with human preferences more effectively. Experimental results indicate that SimulPL exhibits better alignment with human preferences across all latency levels in Zh$\rightarrow$En, De$\rightarrow$En and En$\rightarrow$Zh SiMT tasks. Our data and code will be available at https://github.com/EurekaForNLP/SimulPL.

Authors:Yujin Oh, Pengfei Jin, Sangjoon Park, Sekeun Kim, Siyeop Yoon, Kyungsang Kim, Jin Sung Kim, Xiang Li, Quanzheng Li
Title: Distribution-aware Fairness Learning in Medical Image Segmentation From A Control-Theoretic Perspective
Abstract:
Ensuring fairness in medical image segmentation is critical due to biases in imbalanced clinical data acquisition caused by demographic attributes (e.g., age, sex, race) and clinical factors (e.g., disease severity). To address these challenges, we introduce Distribution-aware Mixture of Experts (dMoE), inspired by optimal control theory. We provide a comprehensive analysis of its underlying mechanisms and clarify dMoE's role in adapting to heterogeneous distributions in medical image segmentation. Furthermore, we integrate dMoE into multiple network architectures, demonstrating its broad applicability across diverse medical image analysis tasks. By incorporating demographic and clinical factors, dMoE achieves state-of-the-art performance on two 2D benchmark datasets and a 3D in-house dataset. Our results highlight the effectiveness of dMoE in mitigating biases from imbalanced distributions, offering a promising approach to bridging control theory and medical image segmentation within fairness learning paradigms. The source code will be made available. The source code is available at https://github.com/tvseg/dMoE.

Authors:Saarthak Kapse, Robin Betz, Srinivasan Sivanandan
Title: Fast Vision Mamba: Pooling Spatial Dimensions for Accelerated Processing
Abstract:
State Space Models (SSMs) with selective scan (Mamba) have been adapted into efficient vision models. Mamba, unlike Vision Transformers, achieves linear complexity for token interactions through a recurrent hidden state process. This sequential processing is enhanced by a parallel scan algorithm, which reduces the computational time of recurrent steps from $L$ sequential steps to $log(L)$ parallel steps with respect to the number of input tokens ($L$). In this work, we propose Fast Vision Mamba (FastVim), that further reduces the computational time of the SSM block by reducing the number of recurrent steps in Vision Mamba models while still retaining model performance. By alternately pooling tokens along image dimensions across Mamba blocks, we obtain a 2$\times$ reduction in the number of parallel steps in SSM block. Our model offers up to $72.5\%$ speedup in inference speed compared to baseline Vision Mamba models on high resolution (2048$\times$2048) images. Our experiments demonstrate state-of-the-art performance with dramatically improved throughput in a range of tasks such as image classification, cell perturbation prediction, segmentation, and object detection. Code is made available at https://github.com/insitro/FastVim

Authors:Yu Wang, Dmitry Krotov, Yuanzhe Hu, Yifan Gao, Wangchunshu Zhou, Julian McAuley, Dan Gutfreund, Rogerio Feris, Zexue He
Title: M+: Extending MemoryLLM with Scalable Long-Term Memory
Abstract:
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths up to 16k tokens, it struggles to retain knowledge beyond 20k tokens. In this work, we address this limitation by introducing M+, a memory-augmented model based on MemoryLLM that significantly enhances long-term information retention. M+ integrates a long-term memory mechanism with a co-trained retriever, dynamically retrieving relevant information during text generation. We evaluate M+ on diverse benchmarks, including long-context understanding and knowledge retention tasks. Experimental results show that M+ significantly outperforms MemoryLLM and recent strong baselines, extending knowledge retention from under 20k to over 160k tokens with similar GPU memory overhead. We open-source our code at https://github.com/wangyu-ustc/MemoryLLM

Authors:Samiran Dey, Christopher R. S. Banerji, Partha Basuchowdhuri, Sanjoy K. Saha, Deepak Parashar, Tapabrata Chakraborti
Title: Generating crossmodal gene expression from cancer histopathology improves multimodal AI predictions
Abstract:
Emerging research has highlighted that artificial intelligence based multimodal fusion of digital pathology and transcriptomic features can improve cancer diagnosis (grading/subtyping) and prognosis (survival risk) prediction. However, such direct fusion for joint decision is impractical in real clinical settings, where histopathology is still the gold standard for diagnosis and transcriptomic tests are rarely requested, at least in the public healthcare system. With our novel diffusion based crossmodal generative AI model PathGen, we show that genomic expressions synthesized from digital histopathology jointly predicts cancer grading and patient survival risk with high accuracy (state-of-the-art performance), certainty (through conformal coverage guarantee) and interpretability (through distributed attention maps). PathGen code is available for open use by the research community through GitHub at https://github.com/Samiran-Dey/PathGen.

Authors:Renhao Lu
Title: Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation
Abstract:
Recent advancements in deep neural networks have significantly enhanced the performance of semantic segmentation. However, class imbalance and instance imbalance remain persistent challenges, where smaller instances and thin boundaries are often overshadowed by larger structures. To address the multiscale nature of segmented objects, various models have incorporated mechanisms such as spatial attention and feature pyramid networks. Despite these advancements, most loss functions are still primarily pixel-wise, while regional and boundary-focused loss functions often incur high computational costs or are restricted to small-scale regions. To address this limitation, we propose the complex wavelet mutual information (CWMI) loss, a novel loss function that leverages mutual information from subband images decomposed by a complex steerable pyramid. The complex steerable pyramid captures features across multiple orientations and preserves structural similarity across scales. Meanwhile, mutual information is well-suited to capturing high-dimensional directional features and offers greater noise robustness. Extensive experiments on diverse segmentation datasets demonstrate that CWMI loss achieves significant improvements in both pixel-wise accuracy and topological metrics compared to state-of-the-art methods, while introducing minimal computational overhead. Our code is available at https://github.com/lurenhaothu/CWMI

Authors:Mukesh Ghimire, Lei Zhang, Zhe Xu, Yi Ren
Title: A Scalable Solver for 2p0s Differential Games with One-Sided Payoff Information and Continuous Actions, States, and Time
Abstract:
Existing solvers for imperfect-information extensive-form games (IIEFGs) often struggle with scalability in terms of action and state space sizes and the number of time steps. However, many real-world games involve continuous action and state spaces and occur in continuous time, making them differential in nature. This paper addresses the scalability challenges for a representative class of two-player zero-sum (2p0s) differential games where the informed player knows the game type (payoff) while the uninformed one only has a prior belief over the set of possible types. Such games encompass a wide range of attack-defense scenarios, where the defender adapts based on their belief about the attacker's target. We make the following contributions: (1) We show that under the Isaacs' condition, the complexity of computing the Nash equilibrium for these games is not related to the action space size; and (2) we propose a multigrid approach to effectively reduce the cost of these games when many time steps are involved. Code for this work is available at https://github.com/ghimiremukesh/cams/tree/conf_sub.

Authors:Mukesh Ghimire, Lei Zhang, Zhe Xu, Yi Ren
Title: Solving Football by Exploiting Equilibrium Structure of 2p0s Differential Games with One-Sided Information
Abstract:
For a two-player imperfect-information extensive-form game (IIEFG) with $K$ time steps and a player action space of size $U$, the game tree complexity is $U^{2K}$, causing existing IIEFG solvers to struggle with large or infinite $(U,K)$, e.g., differential games with continuous action spaces. To partially address this scalability challenge, we focus on an important class of 2p0s games where the informed player (P1) knows the payoff while the uninformed player (P2) only has a belief over the set of $I$ possible payoffs. Such games encompass a wide range of scenarios in sports, defense, cybersecurity, and finance. We prove that under mild conditions, P1's (resp. P2's) equilibrium strategy at any infostate concentrates on at most $I$ (resp. $I+1$) action prototypes. When $I\ll U$, this equilibrium structure causes the game tree complexity to collapse to $I^K$ for P1 when P2 plays pure best responses, and $(I+1)^K$ for P2 in a dual game where P1 plays pure best responses. We then show that exploiting this structure in standard learning modes, i.e., model-free multiagent reinforcement learning and model predictive control, is straightforward, leading to significant improvements in learning accuracy and efficiency from SOTA IIEFG solvers. Our demonstration solves a 22-player football game ($K=10$, $U=\infty$) where the attacking team has to strategically conceal their intention until a critical moment in order to exploit information advantage. Code is available at https://github.com/ghimiremukesh/cams/tree/iclr

Authors:Zaitian Wang, Jian He, Yu Liang, Xiyuan Hu, Tianhao Peng, Kaixin Wang, Jiakai Wang, Chenlong Zhang, Weili Zhang, Shuang Niu, Xiaoyang Xie
Title: Milmer: a Framework for Multiple Instance Learning based Multimodal Emotion Recognition
Abstract:
Emotions play a crucial role in human behavior and decision-making, making emotion recognition a key area of interest in human-computer interaction (HCI). This study addresses the challenges of emotion recognition by integrating facial expression analysis with electroencephalogram (EEG) signals, introducing a novel multimodal framework-Milmer. The proposed framework employs a transformer-based fusion approach to effectively integrate visual and physiological modalities. It consists of an EEG preprocessing module, a facial feature extraction and balancing module, and a cross-modal fusion module. To enhance visual feature extraction, we fine-tune a pre-trained Swin Transformer on emotion-related datasets. Additionally, a cross-attention mechanism is introduced to balance token representation across modalities, ensuring effective feature integration. A key innovation of this work is the adoption of a multiple instance learning (MIL) approach, which extracts meaningful information from multiple facial expression images over time, capturing critical temporal dynamics often overlooked in previous studies. Extensive experiments conducted on the DEAP dataset demonstrate the superiority of the proposed framework, achieving a classification accuracy of 96.72% in the four-class emotion recognition task. Ablation studies further validate the contributions of each module, highlighting the significance of advanced feature extraction and fusion strategies in enhancing emotion recognition performance. Our code are available at https://github.com/liangyubuaa/Milmer.

Authors:Mohammad Nazeri, Anuj Pokhrel, Alexandyr Card, Aniket Datar, Garrett Warnell, Xuesu Xiao
Title: VertiFormer: A Data-Efficient Multi-Task Transformer for Off-Road Robot Mobility
Abstract:
Sophisticated learning architectures, e.g., Transformers, present a unique opportunity for robots to understand complex vehicle-terrain kinodynamic interactions for off-road mobility. While internet-scale data are available for Natural Language Processing (NLP) and Computer Vision (CV) tasks to train Transformers, real-world mobility data are difficult to acquire with physical robots navigating off-road terrain. Furthermore, training techniques specifically designed to process text and image data in NLP and CV may not apply to robot mobility. In this paper, we propose VertiFormer, a novel data-efficient multi-task Transformer model trained with only one hour of data to address such challenges of applying Transformer architectures for robot mobility on extremely rugged, vertically challenging, off-road terrain. Specifically, VertiFormer employs a new learnable masked modeling and next token prediction paradigm to predict the next pose, action, and terrain patch to enable a variety of off-road mobility tasks simultaneously, e.g., forward and inverse kinodynamics modeling. The non-autoregressive design mitigates computational bottlenecks and error propagation associated with autoregressive models. VertiFormer's unified modality representation also enhances learning of diverse temporal mappings and state representations, which, combined with multiple objective functions, further improves model generalization. Our experiments offer insights into effectively utilizing Transformers for off-road robot mobility with limited data and demonstrate our efficiently trained Transformer can facilitate multiple off-road mobility tasks onboard a physical mobile robot.

Authors:David Oro, Carles Fernández, Xavier Martorell, Javier Hernando
Title: Work-Efficient Parallel Non-Maximum Suppression Kernels
Abstract:
In the context of object detection, sliding-window classifiers and single-shot Convolutional Neural Network (CNN) meta-architectures typically yield multiple overlapping candidate windows with similar high scores around the true location of a particular object. Non-Maximum Suppression (NMS) is the process of selecting a single representative candidate within this cluster of detections, so as to obtain a unique detection per object appearing on a given picture. In this paper, we present a highly scalable NMS algorithm for embedded GPU architectures that is designed from scratch to handle workloads featuring thousands of simultaneous detections on a given picture. Our kernels are directly applicable to other sequential NMS algorithms such as FeatureNMS, Soft-NMS or AdaptiveNMS that share the inner workings of the classic greedy NMS method. The obtained performance results show that our parallel NMS algorithm is capable of clustering 1024 simultaneous detected objects per frame in roughly 1 ms on both NVIDIA Tegra X1 and NVIDIA Tegra X2 on-die GPUs, while taking 2 ms on NVIDIA Tegra K1. Furthermore, our proposed parallel greedy NMS algorithm yields a 14x-40x speed up when compared to state-of-the-art NMS methods that require learning a CNN from annotated data.

Authors:Yuxuan Chen, Xu Zhu, Hua Zhou, Zhuyin Ren
Title: MetaOpenFOAM 2.0: Large Language Model Driven Chain of Thought for Automating CFD Simulation and Post-Processing
Abstract:
Computational Fluid Dynamics (CFD) is widely used in aerospace, energy, and biology to model fluid flow, heat transfer, and chemical reactions. While Large Language Models (LLMs) have transformed various domains, their application in CFD remains limited, particularly for complex tasks like post-processing. To bridge this gap, we introduce MetaOpenFOAM 2.0, which leverages Chain of Thought (COT) decomposition and iterative verification to enhance accessibility for non-expert users through natural language inputs. Tested on a new benchmark covering simulation (fluid flow, heat transfer, combustion) and post-processing (extraction, visualization), MetaOpenFOAM 2.0 achieved an Executability score of 6.3/7 and a pass rate of 86.9%, significantly outperforming MetaOpenFOAM 1.0 (2.1/7, 0%). Additionally, it proved cost-efficient, averaging $0.15 per case. An ablation study confirmed that COT-driven decomposition and iterative refinement substantially improved task performance. Furthermore, scaling laws showed that increasing COT steps enhanced accuracy while raising token usage, aligning with LLM post-training scaling trends. These results highlight the transformative potential of LLMs in automating CFD workflows for industrial and research applications. Code is available at https://github.com/Terry-cyx/MetaOpenFOAM

Authors:David Gimeno-Gómez, Carlos-D. Martínez-Hinarejos
Title: Evaluation of End-to-End Continuous Spanish Lipreading in Different Data Conditions
Abstract:
Visual speech recognition remains an open research problem where different challenges must be considered by dispensing with the auditory sense, such as visual ambiguities, the inter-personal variability among speakers, and the complex modeling of silence. Nonetheless, recent remarkable results have been achieved in the field thanks to the availability of large-scale databases and the use of powerful attention mechanisms. Besides, multiple languages apart from English are nowadays a focus of interest. This paper presents noticeable advances in automatic continuous lipreading for Spanish. First, an end-to-end system based on the hybrid CTC/Attention architecture is presented. Experiments are conducted on two corpora of disparate nature, reaching state-of-the-art results that significantly improve the best performance obtained to date for both databases. In addition, a thorough ablation study is carried out, where it is studied how the different components that form the architecture influence the quality of speech recognition. Then, a rigorous error analysis is carried out to investigate the different factors that could affect the learning of the automatic system. Finally, a new Spanish lipreading benchmark is consolidated. Code and trained models are available at https://github.com/david-gimeno/evaluating-end2end-spanish-lipreading.

Authors:Kihwan Ryoo, Hyungtae Lim, Hyun Myung
Title: MambaGlue: Fast and Robust Local Feature Matching With Mamba
Abstract:
In recent years, robust matching methods using deep learning-based approaches have been actively studied and improved in computer vision tasks. However, there remains a persistent demand for both robust and fast matching techniques. To address this, we propose a novel Mamba-based local feature matching approach, called MambaGlue, where Mamba is an emerging state-of-the-art architecture rapidly gaining recognition for its superior speed in both training and inference, and promising performance compared with Transformer architectures. In particular, we propose two modules: a) MambaAttention mixer to simultaneously and selectively understand the local and global context through the Mamba-based self-attention structure and b) deep confidence score regressor, which is a multi-layer perceptron (MLP)-based architecture that evaluates a score indicating how confidently matching predictions correspond to the ground-truth correspondences. Consequently, our MambaGlue achieves a balance between robustness and efficiency in real-world applications. As verified on various public datasets, we demonstrate that our MambaGlue yields a substantial performance improvement over baseline approaches while maintaining fast inference speed. Our code will be available on https://github.com/url-kaist/MambaGlue

Authors:Yizhe Xiong, Wei Huang, Xin Ye, Hui Chen, Zijia Lin, Haoran Lian, Zhenpeng Su, Jungong Han, Guiguang Ding
Title: UniAttn: Reducing Inference Costs via Softmax Unification for Post-Training LLMs
Abstract:
Post-training is essential for adapting Large Language Models (LLMs) to real-world applications. Deploying post-trained models faces significant challenges due to substantial memory overhead and noticeable inference latency. Existing work has identified significant redundancies in LLMs and proposed efficient architectures, namely intra-layer KV sharing and cross-layer KV sharing. However, intra-layer KV sharing still results in high inference costs, while cross-layer KV sharing leads to significant performance degradation. As a result, both methods remain suboptimal for post-training pre-trained LLMs. In this paper, we identify that the \texttt{Softmax} operation is a primary bottleneck for LLM inference and discover that it is actually highly redundant during post-training. We propose Softmax \textbf{Uni}fication in \textbf{Att}e\textbf{n}tion (\textbf{UniAttn}), a novel post-training method that unifies Softmax activations across transformer blocks to reduce LLM inference costs. Additionally, UniAttn adopts a linear projection to compensate for the errors induced by Softmax unification. Experiments show that UniAttn matches the performance of standard post-training while significantly reducing inference costs, outperforming existing efficient architectures during post-training. Our code will be available at \url{https://github.com/Bostoncake/UniAttn}.

Authors:Chuc Man Duc, Hiromichi Fukui
Title: SatMamba: Development of Foundation Models for Remote Sensing Imagery Using State Space Models
Abstract:
Foundation models refer to deep learning models pretrained on large unlabeled datasets through self-supervised algorithms. In the Earth science and remote sensing communities, there is growing interest in transforming the use of Earth observation data, including satellite and aerial imagery, through foundation models. Various foundation models have been developed for remote sensing, such as those for multispectral, high-resolution, and hyperspectral images, and have demonstrated superior performance on various downstream tasks compared to traditional supervised models. These models are evolving rapidly, with capabilities to handle multispectral, multitemporal, and multisensor data. Most studies use masked autoencoders in combination with Vision Transformers (ViTs) as the backbone for pretraining. While the models showed promising performance, ViTs face challenges, such as quadratic computational scaling with input length, which may limit performance on multiband and multitemporal data with long sequences. This research aims to address these challenges by proposing SatMamba, a new pretraining framework that combines masked autoencoders with State Space Model, offering linear computational scaling. Experiments on high-resolution imagery across various downstream tasks show promising results, paving the way for more efficient foundation models and unlocking the full potential of Earth observation data. The source code is available in https://github.com/mdchuc/HRSFM.

Authors:Xinle Cheng, Zhuoming Chen, Zhihao Jia
Title: CAT Pruning: Cluster-Aware Token Pruning For Text-to-Image Diffusion Models
Abstract:
Diffusion models have revolutionized generative tasks, especially in the domain of text-to-image synthesis; however, their iterative denoising process demands substantial computational resources. In this paper, we present a novel acceleration strategy that integrates token-level pruning with caching techniques to tackle this computational challenge. By employing noise relative magnitude, we identify significant token changes across denoising iterations. Additionally, we enhance token selection by incorporating spatial clustering and ensuring distributional balance. Our experiments demonstrate reveal a 50%-60% reduction in computational costs while preserving the performance of the model, thereby markedly increasing the efficiency of diffusion models. The code is available at https://github.com/ada-cheng/CAT-Pruning

Authors:JiangYong Yu, Sifan Zhou, Dawei Yang, Shuo Wang, Shuoyu Li, Xing Hu, Chen Xu, Zukang Xu, Changyong Shu, Zhihang Yuan
Title: MQuant: Unleashing the Inference Potential of Multimodal Large Language Models via Full Static Quantization
Abstract:
Multimodal large language models (MLLMs) have garnered widespread attention due to their ability to understand multimodal input. However, their large parameter sizes and substantial computational demands severely hinder their practical deployment and application.While quantization is an effective way to reduce model size and inference latency, its application to MLLMs remains underexplored. In this paper, we propose MQuant, a post-training quantization (PTQ) framework designed to tackle the unique challenges of multimodal large language models (MLLMs). Conventional quantization often struggles with MLLMs because of (a) high inference latency from large visual token counts, (b) distributional disparities between visual and textual tokens, and (c) extreme outliers introduced by Hadamard-based transformations. To address these issues, MQuant introduces: Modality-Specific Static Quantization (MSQ), assigning distinct static scales for visual vs. textual tokens; Attention-Invariant Flexible Switching (AIFS), reordering tokens to preserve casual attention while eliminating expensive token-wise scale computations; Rotation Magnitude Suppression (RMS), mitigating weight outliers arising from online Hadamard rotations. On five mainstream MLLMs (including Qwen-VL, MiniCPM-V, CogVLM2), MQuant under W4A8 achieves near-floating-point accuracy (<1% degradation) while reducing inference latency by up to 30%, significantly outperforming existing PTQ baselines. Our MQuant effectively bridges the gap for efficient and accurate MLLMs inference in resource-constrained devices. Code has been released in https://github.com/StiphyJay/MQuant.

Authors:Turi Abu, Ying Shi, Thomas Fang Zheng, Dong Wang
Title: Sagalee: an Open Source Automatic Speech Recognition Dataset for Oromo Language
Abstract:
We present a novel Automatic Speech Recognition (ASR) dataset for the Oromo language, a widely spoken language in Ethiopia and neighboring regions. The dataset was collected through a crowd-sourcing initiative, encompassing a diverse range of speakers and phonetic variations. It consists of 100 hours of real-world audio recordings paired with transcriptions, covering read speech in both clean and noisy environments. This dataset addresses the critical need for ASR resources for the Oromo language which is underrepresented. To show its applicability for the ASR task, we conducted experiments using the Conformer model, achieving a Word Error Rate (WER) of 15.32% with hybrid CTC and AED loss and WER of 18.74% with pure CTC loss. Additionally, fine-tuning the Whisper model resulted in a significantly improved WER of 10.82%. These results establish baselines for Oromo ASR, highlighting both the challenges and the potential for improving ASR performance in Oromo. The dataset is publicly available at https://github.com/turinaf/sagalee and we encourage its use for further research and development in Oromo speech processing.

Authors:Carolin Teuber, Anwai Archit, Constantin Pape
Title: Parameter Efficient Fine-Tuning of Segment Anything Model for Biomedical Imaging
Abstract:
Segmentation is an important analysis task for biomedical images, enabling the study of individual organelles, cells or organs. Deep learning has massively improved segmentation methods, but challenges remain in generalization to new conditions, requiring costly data annotation. Vision foundation models, such as Segment Anything Model (SAM), address this issue through improved generalization. However, these models still require finetuning on annotated data, although with less annotations, to achieve optimal results for new conditions. As a downside, they require more computational resources. This makes parameter-efficient finetuning (PEFT) relevant. We contribute the first comprehensive study of PEFT for SAM applied to biomedical images. We find that the placement of PEFT layers is more important for efficiency than the type of layer for vision transformers and we provide a recipe for resource-efficient finetuning. Our code is publicly available at https://github.com/computational-cell-analytics/peft-sam.

Authors:Titus Griebel, Anwai Archit, Constantin Pape
Title: Segment Anything for Histopathology
Abstract:
Nucleus segmentation is an important analysis task in digital pathology. However, methods for automatic segmentation often struggle with new data from a different distribution, requiring users to manually annotate nuclei and retrain data-specific models. Vision foundation models (VFMs), such as the Segment Anything Model (SAM), offer a more robust alternative for automatic and interactive segmentation. Despite their success in natural images, a foundation model for nucleus segmentation in histopathology is still missing. Initial efforts to adapt SAM have shown some success, but did not yet introduce a comprehensive model for diverse segmentation tasks. To close this gap, we introduce PathoSAM, a VFM for nucleus segmentation, based on training SAM on a diverse dataset. Our extensive experiments show that it is the new state-of-the-art model for automatic and interactive nucleus instance segmentation in histopathology. We also demonstrate how it can be adapted for other segmentation tasks, including semantic nucleus segmentation. For this task, we show that it yields results better than popular methods, while not yet beating the state-of-the-art, CellViT. Our models are open-source and compatible with popular tools for data annotation. We also provide scripts for whole-slide image segmentation. Our code and models are publicly available at https://github.com/computational-cell-analytics/patho-sam.

Authors:Karish Grover, Haiyang Yu, Xiang Song, Qi Zhu, Han Xie, Vassilis N. Ioannidis, Christos Faloutsos
Title: Spectro-Riemannian Graph Neural Networks
Abstract:
Can integrating spectral and curvature signals unlock new potential in graph representation learning? Non-Euclidean geometries, particularly Riemannian manifolds such as hyperbolic (negative curvature) and spherical (positive curvature), offer powerful inductive biases for embedding complex graph structures like scale-free, hierarchical, and cyclic patterns. Meanwhile, spectral filtering excels at processing signal variations across graphs, making it effective in homophilic and heterophilic settings. Leveraging both can significantly enhance the learned representations. To this end, we propose Spectro-Riemannian Graph Neural Networks (CUSP) - the first graph representation learning paradigm that unifies both CUrvature (geometric) and SPectral insights. CUSP is a mixed-curvature spectral GNN that learns spectral filters to optimize node embeddings in products of constant-curvature manifolds (hyperbolic, spherical, and Euclidean). Specifically, CUSP introduces three novel components: (a) Cusp Laplacian, an extension of the traditional graph Laplacian based on Ollivier-Ricci curvature, designed to capture the curvature signals better; (b) Cusp Filtering, which employs multiple Riemannian graph filters to obtain cues from various bands in the eigenspectrum; and (c) Cusp Pooling, a hierarchical attention mechanism combined with a curvature-based positional encoding to assess the relative importance of differently curved substructures in our graph. Empirical evaluation across eight homophilic and heterophilic datasets demonstrates the superiority of CUSP in node classification and link prediction tasks, with a gain of up to 5.3% over state-of-the-art models. The code is available at: https://github.com/amazon-science/cusp.

Authors:Maximilian Leitenstern, Marko Alten, Christian Bolea-Schaser, Dominik Kulmer, Marcel Weinmann, Markus Lienkamp
Title: FlexCloud: Direct, Modular Georeferencing and Drift-Correction of Point Cloud Maps
Abstract:
Current software stacks for real-world applications of autonomous driving leverage map information to ensure reliable localization, path planning, and motion prediction. An important field of research is the generation of point cloud maps, referring to the topic of simultaneous localization and mapping (SLAM). As most recent developments do not include global position data, the resulting point cloud maps suffer from internal distortion and missing georeferencing, preventing their use for map-based localization approaches. Therefore, we propose FlexCloud for an automatic georeferencing of point cloud maps created from SLAM. Our approach is designed to work modularly with different SLAM methods, utilizing only the generated local point cloud map and its odometry. Using the corresponding GNSS positions enables direct georeferencing without additional control points. By leveraging a 3D rubber-sheet transformation, we can correct distortions within the map caused by long-term drift while maintaining its structure. Our approach enables the creation of consistent, globally referenced point cloud maps from data collected by a mobile mapping system (MMS). The source code of our work is available at https://github.com/TUMFTM/FlexCloud.

Authors:Zhichao Sun, Yepeng Liu, Huachao Zhu, Yuliang Gu, Yuda Zou, Zelong Liu, Gui-Song Xia, Bo Du, Yongchao Xu
Title: RefDrone: A Challenging Benchmark for Referring Expression Comprehension in Drone Scenes
Abstract:
Drones have become prevalent robotic platforms with diverse applications, showing significant potential in Embodied Artificial Intelligence (Embodied AI). Referring Expression Comprehension (REC) enables drones to locate objects based on natural language expressions, a crucial capability for Embodied AI. Despite advances in REC for ground-level scenes, aerial views introduce unique challenges including varying viewpoints, occlusions and scale variations. To address this gap, we introduce RefDrone, a REC benchmark for drone scenes. RefDrone reveals three key challenges in REC: 1) multi-scale and small-scale target detection; 2) multi-target and no-target samples; 3) complex environment with rich contextual expressions. To efficiently construct this dataset, we develop RDAgent (referring drone annotation framework with multi-agent system), a semi-automated annotation tool for REC tasks. RDAgent ensures high-quality contextual expressions and reduces annotation cost. Furthermore, we propose Number GroundingDINO (NGDINO), a novel method designed to handle multi-target and no-target cases. NGDINO explicitly learns and utilizes the number of objects referred to in the expression. Comprehensive experiments with state-of-the-art REC methods demonstrate that NGDINO achieves superior performance on both the proposed RefDrone and the existing gRefCOCO datasets. The dataset and code are be publicly at https://github.com/sunzc-sunny/refdrone.

Authors:Alexander Nikulin, Ilya Zisman, Denis Tarasov, Nikita Lyubaykin, Andrei Polubarov, Igor Kiselev, Vladislav Kurenkov
Title: Latent Action Learning Requires Supervision in the Presence of Distractors
Abstract:
Recently, latent action learning, pioneered by Latent Action Policies (LAPO), have shown remarkable pre-training efficiency on observation-only data, offering potential for leveraging vast amounts of video available on the web for embodied AI. However, prior work has focused on distractor-free data, where changes between observations are primarily explained by ground-truth actions. Unfortunately, real-world videos contain action-correlated distractors that may hinder latent action learning. Using Distracting Control Suite (DCS) we empirically investigate the effect of distractors on latent action learning and demonstrate that LAPO struggle in such scenario. We propose LAOM, a simple LAPO modification that improves the quality of latent actions by 8x, as measured by linear probing. Importantly, we show that providing supervision with ground-truth actions, as few as 2.5% of the full dataset, during latent action learning improves downstream performance by 4.2x on average. Our findings suggest that integrating supervision during Latent Action Models (LAM) training is critical in the presence of distractors, challenging the conventional pipeline of first learning LAM and only then decoding from latent to ground-truth actions.

Authors:Anh-Kiet Duong, Petra Gomez-Krämer
Title: Scalable Framework for Classifying AI-Generated Content Across Modalities
Abstract:
The rapid growth of generative AI technologies has heightened the importance of effectively distinguishing between human and AI-generated content, as well as classifying outputs from diverse generative models. This paper presents a scalable framework that integrates perceptual hashing, similarity measurement, and pseudo-labeling to address these challenges. Our method enables the incorporation of new generative models without retraining, ensuring adaptability and robustness in dynamic scenarios. Comprehensive evaluations on the Defactify4 dataset demonstrate competitive performance in text and image classification tasks, achieving high accuracy across both distinguishing human and AI-generated content and classifying among generative methods. These results highlight the framework's potential for real-world applications as generative AI continues to evolve. Source codes are publicly available at https://github.com/ffyyytt/defactify4.

Authors:Zhixi Cai, Fucai Ke, Simindokht Jahangard, Maria Garcia de la Banda, Reza Haffari, Peter J. Stuckey, Hamid Rezatofighi
Title: NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding with Explicit Logic Reasoning
Abstract:
Visual Grounding (VG) tasks, such as referring expression detection and segmentation tasks are important for linking visual entities to context, especially in complex reasoning tasks that require detailed query interpretation. This paper explores VG beyond basic perception, highlighting challenges for methods that require reasoning like human cognition. Recent advances in large language methods (LLMs) and Vision-Language methods (VLMs) have improved abilities for visual comprehension, contextual understanding, and reasoning. These methods are mainly split into end-to-end and compositional methods, with the latter offering more flexibility. Compositional approaches that integrate LLMs and foundation models show promising performance but still struggle with complex reasoning with language-based logical representations. To address these limitations, we propose NAVER, a compositional visual grounding method that integrates explicit probabilistic logic reasoning within a finite-state automaton, equipped with a self-correcting mechanism. This design improves robustness and interpretability in inference through explicit logic reasoning. Our results show that NAVER achieves SoTA performance comparing to recent end-to-end and compositional baselines. The code is available at https://github.com/ControlNet/NAVER .

Authors:Yu Feng, Yangli-ao Geng, Yifan Zhu, Zongfu Han, Xie Yu, Kaiwen Xue, Haoran Luo, Mengyang Sun, Guangwei Zhang, Meina Song
Title: PM-MOE: Mixture of Experts on Private Model Parameters for Personalized Federated Learning
Abstract:
Federated learning (FL) has gained widespread attention for its privacy-preserving and collaborative learning capabilities. Due to significant statistical heterogeneity, traditional FL struggles to generalize a shared model across diverse data domains. Personalized federated learning addresses this issue by dividing the model into a globally shared part and a locally private part, with the local model correcting representation biases introduced by the global model. Nevertheless, locally converged parameters more accurately capture domain-specific knowledge, and current methods overlook the potential benefits of these parameters. To address these limitations, we propose PM-MoE architecture. This architecture integrates a mixture of personalized modules and an energy-based personalized modules denoising, enabling each client to select beneficial personalized parameters from other clients. We applied the PM-MoE architecture to nine recent model-split-based personalized federated learning algorithms, achieving performance improvements with minimal additional training. Extensive experiments on six widely adopted datasets and two heterogeneity settings validate the effectiveness of our approach. The source code is available at \url{https://github.com/dannis97500/PM-MOE}.

Authors:Yurui Li, Yuxuan Chen, Li Zhang, Shijian Li, Gang Pan
Title: The Composite Task Challenge for Cooperative Multi-Agent Reinforcement Learning
Abstract:
The significant role of division of labor (DOL) in promoting cooperation is widely recognized in real-world applications.Many cooperative multi-agent reinforcement learning (MARL) methods have incorporated the concept of DOL to improve cooperation among agents.However, the tasks used in existing testbeds typically correspond to tasks where DOL is often not a necessary feature for achieving optimal policies.Additionally, the full utilize of DOL concept in MARL methods remains unrealized due to the absence of appropriate tasks.To enhance the generality and applicability of MARL methods in real-world scenarios, there is a necessary to develop tasks that demand multi-agent DOL and cooperation.In this paper, we propose a series of tasks designed to meet these requirements, drawing on real-world rules as the guidance for their design.We guarantee that DOL and cooperation are necessary condition for completing tasks and introduce three factors to expand the diversity of proposed tasks to cover more realistic situations.We evaluate 10 cooperative MARL methods on the proposed tasks.The results indicate that all baselines perform poorly on these tasks.To further validate the solvability of these tasks, we also propose simplified variants of proposed tasks.Experimental results show that baselines are able to handle these simplified variants, providing evidence of the solvability of the proposed tasks.The source files is available at https://github.com/Yurui-Li/CTC.

Authors:Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Ray Chen, Yibo Yan, Qingsong Wen, Xuming Hu, Kun Wang, Jiahao Wu, Qing Li, Hui Xiong, Xiaomeng Huang
Title: OneForecast: A Universal Framework for Global and Regional Weather Forecasting
Abstract:
Accurate weather forecasts are important for disaster prevention, agricultural planning, etc. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning models have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework (OneForecast) based on graph neural networks. By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive messaging mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that OneForecast performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions. Codes link https://github.com/YuanGao-YG/OneForecast.

Authors:Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Ray Chen, Yibo Yan, Qingsong Wen, Xuming Hu, Kun Wang, Jiahao Wu, Qing Li, Hui Xiong, Xiaomeng Huang
Title: OneForecast: A Universal Framework for Global and Regional Weather Forecasting
Abstract:
Accurate weather forecasts are important for disaster prevention, agricultural planning, etc. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning models have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework (OneForecast) based on graph neural networks. By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive messaging mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that OneForecast performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions. Codes link https://github.com/YuanGao-YG/OneForecast.

Authors:Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can Yang, Yang Wang
Title: UGPhysics: A Comprehensive Benchmark for Undergraduate Physics Reasoning with Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in solving complex reasoning tasks, particularly in mathematics. However, the domain of physics reasoning presents unique challenges that have received significantly less attention. Existing benchmarks often fall short in evaluating LLMs' abilities on the breadth and depth of undergraduate-level physics, underscoring the need for a comprehensive evaluation. To fill this gap, we introduce UGPhysics, a large-scale and comprehensive benchmark specifically designed to evaluate UnderGraduate-level Physics (UGPhysics) reasoning with LLMs. UGPhysics includes 5,520 undergraduate-level physics problems in both English and Chinese, covering 13 subjects with seven different answer types and four distinct physics reasoning skills, all rigorously screened for data leakage. Additionally, we develop a Model-Assistant Rule-based Judgment (MARJ) pipeline specifically tailored for assessing answer correctness of physics problems, ensuring accurate evaluation. Our evaluation of 31 leading LLMs shows that the highest overall accuracy, 49.8% (achieved by OpenAI-o1-mini), emphasizes the necessity for models with stronger physics reasoning skills, beyond math abilities. We hope UGPhysics, along with MARJ, will drive future advancements in AI for physics reasoning. Codes and data are available at https://github.com/YangLabHKUST/UGPhysics .

Authors:Kai Liu, Kaicheng Yang, Zheng Chen, Zhiteng Li, Yong Guo, Wenbo Li, Linghe Kong, Yulun Zhang
Title: BiMaCoSR: Binary One-Step Diffusion Model Leveraging Flexible Matrix Compression for Real Super-Resolution
Abstract:
While super-resolution (SR) methods based on diffusion models (DM) have demonstrated inspiring performance, their deployment is impeded due to the heavy request of memory and computation. Recent researchers apply two kinds of methods to compress or fasten the DM. One is to compress the DM into 1-bit, aka binarization, alleviating the storage and computation pressure. The other distills the multi-step DM into only one step, significantly speeding up inference process. Nonetheless, it remains impossible to deploy DM to resource-limited edge devices. To address this problem, we propose BiMaCoSR, which combines binarization and one-step distillation to obtain extreme compression and acceleration. To prevent the catastrophic collapse of the model caused by binarization, we proposed sparse matrix branch (SMB) and low rank matrix branch (LRMB). Both auxiliary branches pass the full-precision (FP) information but in different ways. SMB absorbs the extreme values and its output is high rank, carrying abundant FP information. Whereas, the design of LRMB is inspired by LoRA and is initialized with the top r SVD components, outputting low rank representation. The computation and storage overhead of our proposed branches can be safely ignored. Comprehensive comparison experiments are conducted to exhibit BiMaCoSR outperforms current state-of-the-art binarization methods and gains competitive performance compared with FP one-step model. BiMaCoSR achieves a 23.8x compression ratio and a 27.4x speedup ratio compared to FP counterpart. Our code and model are available at https://github.com/Kai-Liu001/BiMaCoSR.

Authors:Chenhui Xu, Dancheng Liu, Yuting Hu, Jiajie Li, Ruiyang Qin, Qingxiao Zheng, Jinjun Xiong
Title: Sub-Sequential Physics-Informed Learning with State Space Model
Abstract:
Physics-Informed Neural Networks (PINNs) are a kind of deep-learning-based numerical solvers for partial differential equations (PDEs). Existing PINNs often suffer from failure modes of being unable to propagate patterns of initial conditions. We discover that these failure modes are caused by the simplicity bias of neural networks and the mismatch between PDE's continuity and PINN's discrete sampling. We reveal that the State Space Model (SSM) can be a continuous-discrete articulation allowing initial condition propagation, and that simplicity bias can be eliminated by aligning a sequence of moderate granularity. Accordingly, we propose PINNMamba, a novel framework that introduces sub-sequence modeling with SSM. Experimental results show that PINNMamba can reduce errors by up to 86.3\% compared with state-of-the-art architecture. Our code is available at https://github.com/miniHuiHui/PINNMamba.

Authors:Jihyeok Kim, Seongwoo Moon, Sungwon Nah, David Hyunchul Shim
Title: MonoDINO-DETR: Depth-Enhanced Monocular 3D Object Detection Using a Vision Foundation Model
Abstract:
This paper proposes novel methods to enhance the performance of monocular 3D object detection models by leveraging the generalized feature extraction capabilities of a vision foundation model. Unlike traditional CNN-based approaches, which often suffer from inaccurate depth estimation and rely on multi-stage object detection pipelines, this study employs a Vision Transformer (ViT)-based foundation model as the backbone, which excels at capturing global features for depth estimation. It integrates a detection transformer (DETR) architecture to improve both depth estimation and object detection performance in a one-stage manner. Specifically, a hierarchical feature fusion block is introduced to extract richer visual features from the foundation model, further enhancing feature extraction capabilities. Depth estimation accuracy is further improved by incorporating a relative depth estimation model trained on large-scale data and fine-tuning it through transfer learning. Additionally, the use of queries in the transformer's decoder, which consider reference points and the dimensions of 2D bounding boxes, enhances recognition performance. The proposed model outperforms recent state-of-the-art methods, as demonstrated through quantitative and qualitative evaluations on the KITTI 3D benchmark and a custom dataset collected from high-elevation racing environments. Code is available at https://github.com/JihyeokKim/MonoDINO-DETR.

Authors:Alaa Nfissi, Wassim Bouachir, Nizar Bouguila, Brian Mishara
Title: SigWavNet: Learning Multiresolution Signal Wavelet Network for Speech Emotion Recognition
Abstract:
In the field of human-computer interaction and psychological assessment, speech emotion recognition (SER) plays an important role in deciphering emotional states from speech signals. Despite advancements, challenges persist due to system complexity, feature distinctiveness issues, and noise interference. This paper introduces a new end-to-end (E2E) deep learning multi-resolution framework for SER, addressing these limitations by extracting meaningful representations directly from raw waveform speech signals. By leveraging the properties of the fast discrete wavelet transform (FDWT), including the cascade algorithm, conjugate quadrature filter, and coefficient denoising, our approach introduces a learnable model for both wavelet bases and denoising through deep learning techniques. The framework incorporates an activation function for learnable asymmetric hard thresholding of wavelet coefficients. Our approach exploits the capabilities of wavelets for effective localization in both time and frequency domains. We then combine one-dimensional dilated convolutional neural networks (1D dilated CNN) with a spatial attention layer and bidirectional gated recurrent units (Bi-GRU) with a temporal attention layer to efficiently capture the nuanced spatial and temporal characteristics of emotional features. By handling variable-length speech without segmentation and eliminating the need for pre or post-processing, the proposed model outperformed state-of-the-art methods on IEMOCAP and EMO-DB datasets. The source code of this paper is shared on the Github repository: https://github.com/alaaNfissi/SigWavNet-Learning-Multiresolution-Signal-Wavelet-Network-for-Speech-Emotion-Recognition.

Authors:Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Yue Liu, Bo Li, Xuming Hu, Xiaowen Chu
Title: ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
Abstract:
Large Language Models (LLMs) require significant GPU memory when processing long texts, with the key value (KV) cache consuming up to 70\% of total memory during inference. Although existing compression methods reduce memory by evaluating the importance of individual tokens, they overlook critical semantic relationships between tokens, resulting in fragmented context and degraded performance. We introduce ChunkKV, which fundamentally reimagines KV cache compression by treating semantic chunks - rather than isolated tokens - as basic compression units. This approach preserves complete linguistic structures and contextual integrity, ensuring that essential meaning is retained even under aggressive compression. Our innovation includes a novel layer-wise index reuse technique that exploits the higher cross-layer similarity of preserved indices in ChunkKV, reducing computational overhead and improving throughput by 26.5\%. Comprehensive evaluations on challenging benchmarks: LongBench, Needle-In-A-HayStack, GSM8K, and JailbreakV demonstrate that ChunkKV outperforms state-of-the-art methods by up to 8.7\% in precision while maintaining the same compression ratio. These results confirm that semantic-aware compression significantly enhances both efficiency and performance for long-context LLM inference, providing a simple yet effective solution to the memory bottleneck problem. The code is available at \href{https://github.com/NVIDIA/kvpress}{link}.

Authors:Shengyu Feng, Yiming Yang
Title: Regularized Langevin Dynamics for Combinatorial Optimization
Abstract:
This work proposes a simple yet effective sampling framework for combinatorial optimization (CO). Our method builds on discrete Langevin dynamics (LD), an efficient gradient-guided generative paradigm. However, we observe that directly applying LD often leads to limited exploration. To overcome this limitation, we propose the Regularized Langevin Dynamics (RLD), which enforces an expected distance between the sampled and current solutions, effectively avoiding local minima. We develop two CO solvers on top of RLD, one based on simulated annealing (SA), and the other one based on neural network (NN). Empirical results on three classic CO problems demonstrate that both of our methods can achieve comparable or better performance against the previous state-of-the-art (SOTA) SA- and NN-based solvers. In particular, our SA algorithm reduces the runtime of the previous SOTA SA method by up to 80\%, while achieving equal or superior performance. In summary, RLD offers a promising framework for enhancing both traditional heuristics and NN models to solve CO problems. Our code is available at https://github.com/Shengyu-Feng/RLD4CO.

Authors:Binchi Zhang, Zaiyi Zheng, Zhengzhang Chen, Jundong Li
Title: Beyond the Permutation Symmetry of Transformers: The Role of Rotation for Model Fusion
Abstract:
Symmetry in the parameter space of deep neural networks (DNNs) has proven beneficial for various deep learning applications. A well-known example is the permutation symmetry in Multi-Layer Perceptrons (MLPs), where permuting the rows of weight matrices in one layer and applying the inverse permutation to adjacent layers yields a functionally equivalent model. While permutation symmetry fully characterizes the equivalence set for MLPs, its discrete nature limits its utility for transformers. In this paper, we introduce rotation symmetry, a novel form of parameter space symmetry for transformers that generalizes permutation symmetry by rotating parameter matrices in self-attention layers. Unlike permutation symmetry, rotation symmetry operates in a continuous domain, thereby significantly expanding the equivalence set for transformers. Based on this property, we propose a theoretically optimal parameter matching algorithm as a plug-and-play module to enhance model fusion. We evaluate our approach using pre-trained transformers across diverse natural language and vision tasks. Experimental results demonstrate that our rotation symmetry-based matching algorithm substantially improves model fusion, highlighting the potential of parameter space symmetry to facilitate model fusion. Our code is available on https://github.com/zhengzaiyi/RotationSymmetry.

Authors:Takumu Fujioka, Gouhei Tanaka
Title: Transformer-Based Vector Font Classification Using Different Font Formats: TrueType versus PostScript
Abstract:
Modern fonts adopt vector-based formats, which ensure scalability without loss of quality. While many deep learning studies on fonts focus on bitmap formats, deep learning for vector fonts remains underexplored. In studies involving deep learning for vector fonts, the choice of font representation has often been made conventionally. However, the font representation format is one of the factors that can influence the computational performance of machine learning models in font-related tasks. Here we show that font representations based on PostScript outlines outperform those based on TrueType outlines in Transformer-based vector font classification. TrueType outlines represent character shapes as sequences of points and their associated flags, whereas PostScript outlines represent them as sequences of commands. In previous research, PostScript outlines have been predominantly used when fonts are treated as part of vector graphics, while TrueType outlines are mainly employed when focusing on fonts alone. Whether to use PostScript or TrueType outlines has been mainly determined by file format specifications and precedent settings in previous studies, rather than performance considerations. To date, few studies have compared which outline format provides better embedding representations. Our findings suggest that information aggregation is crucial in Transformer-based deep learning for vector graphics, as in tokenization in language models and patch division in bitmap-based image recognition models. This insight provides valuable guidance for selecting outline formats in future research on vector graphics.

Authors:Yasi Zhang, Oscar Leong
Title: Learning Difference-of-Convex Regularizers for Inverse Problems: A Flexible Framework with Theoretical Guarantees
Abstract:
Learning effective regularization is crucial for solving ill-posed inverse problems, which arise in a wide range of scientific and engineering applications. While data-driven methods that parameterize regularizers using deep neural networks have demonstrated strong empirical performance, they often result in highly nonconvex formulations that lack theoretical guarantees. Recent work has shown that incorporating structured nonconvexity into neural network-based regularizers, such as weak convexity, can strike a balance between empirical performance and theoretical tractability. In this paper, we demonstrate that a broader class of nonconvex functions, difference-of-convex (DC) functions, can yield improved empirical performance while retaining strong convergence guarantees. The DC structure enables the use of well-established optimization algorithms, such as the Difference-of-Convex Algorithm (DCA) and a Proximal Subgradient Method (PSM), which extend beyond standard gradient descent. Furthermore, we provide theoretical insights into the conditions under which optimal regularizers can be expressed as DC functions. Extensive experiments on computed tomography (CT) reconstruction tasks show that our approach achieves strong performance across sparse and limited-view settings, consistently outperforming other weakly supervised learned regularizers. Our code is available at \url{https://github.com/YasminZhang/ADCR}.

Authors:Akiyoshi Tomihari, Issei Sato
Title: Understanding Why Adam Outperforms SGD: Gradient Heterogeneity in Transformers
Abstract:
Transformers are challenging to optimize with SGD and typically require adaptive optimizers such as Adam. However, the reasons behind the superior performance of Adam over SGD remain unclear. In this study, we investigate the optimization of transformers by focusing on gradient heterogeneity, defined as the disparity in gradient norms among parameters. Our analysis shows that gradient heterogeneity hinders gradient-based optimization, including SGD, while sign-based optimization, a simplified variant of Adam, is less affected. We further examine gradient heterogeneity in transformers and show that it is influenced by the placement of layer normalization. Experimental results from fine-tuning transformers in both NLP and vision domains validate our theoretical analyses. This study provides insights into the optimization challenges of transformers and offers guidance for designing future optimization algorithms. Code is available at https://github.com/tom4649/gradient-heterogeneity.

Authors:Kefan Dong, Tengyu Ma
Title: STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving
Abstract:
A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 51.3 billion tokens generated during the training in Lean, STP proves 28.5% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (65.0%, pass@3200), Proofnet-test (23.9%, pass@3200) and PutnamBench (8/644, pass@3200). We release our code, model, and dataset in this URL: https://github.com/kfdong/STP.

Authors:Abdurrahim Yilmaz, Furkan Yuceyalcin, Ece Gokyayla, Donghee Choi, Ozan Erdem, Ali Anil Demircali, Rahmetullah Varol, Ufuk Gorkem Kirabali, Gulsum Gencoglan, Joram M. Posma, Burak Temelkuran
Title: DermaSynth: Rich Synthetic Image-Text Pairs Using Open Access Dermatology Datasets
Abstract:
A major barrier to developing vision large language models (LLMs) in dermatology is the lack of large image--text pairs dataset. We introduce DermaSynth, a dataset comprising of 92,020 synthetic image--text pairs curated from 45,205 images (13,568 clinical and 35,561 dermatoscopic) for dermatology-related clinical tasks. Leveraging state-of-the-art LLMs, using Gemini 2.0, we used clinically related prompts and self-instruct method to generate diverse and rich synthetic texts. Metadata of the datasets were incorporated into the input prompts by targeting to reduce potential hallucinations. The resulting dataset builds upon open access dermatological image repositories (DERM12345, BCN20000, PAD-UFES-20, SCIN, and HIBA) that have permissive CC-BY-4.0 licenses. We also fine-tuned a preliminary Llama-3.2-11B-Vision-Instruct model, DermatoLlama 1.0, on 5,000 samples. We anticipate this dataset to support and accelerate AI research in dermatology. Data and code underlying this work are accessible at https://github.com/abdurrahimyilmaz/DermaSynth.

Authors:Mateus de Souza Miranda, Ronny Hänsch, Valdivino Alexandre de Santiago Júnior, Thales Sehn Körting, Erison Carlos dos Santos Monteiro
Title: CerraData-4MM: A multimodal benchmark dataset on Cerrado for land use and land cover classification
Abstract:
The Cerrado faces increasing environmental pressures, necessitating accurate land use and land cover (LULC) mapping despite challenges such as class imbalance and visually similar categories. To address this, we present CerraData-4MM, a multimodal dataset combining Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 MultiSpectral Imagery (MSI) with 10m spatial resolution. The dataset includes two hierarchical classification levels with 7 and 14 classes, respectively, focusing on the diverse Bico do Papagaio ecoregion. We highlight CerraData-4MM's capacity to benchmark advanced semantic segmentation techniques by evaluating a standard U-Net and a more sophisticated Vision Transformer (ViT) model. The ViT achieves superior performance in multimodal scenarios, with the highest macro F1-score of 57.60% and a mean Intersection over Union (mIoU) of 49.05% at the first hierarchical level. Both models struggle with minority classes, particularly at the second hierarchical level, where U-Net's performance drops to an F1-score of 18.16%. Class balancing improves representation for underrepresented classes but reduces overall accuracy, underscoring the trade-off in weighted training. CerraData-4MM offers a challenging benchmark for advancing deep learning models to handle class imbalance and multimodal data fusion. Code, trained models, and data are publicly available at https://github.com/ai4luc/CerraData-4MM.

Authors:Bidossessi Emmanuel Agossou, Marius Pedersen, Kiran Raja, Anuja Vats, PÃ¥l Anders Floor
Title: Influence of color correction on pathology detection in Capsule Endoscopy
Abstract:
Pathology detection in Wireless Capsule Endoscopy (WCE) using deep learning has been explored in the recent past. However, deep learning models can be influenced by the color quality of the dataset used to train them, impacting detection, segmentation and classification tasks. In this work, we evaluate the impact of color correction on pathology detection using two prominent object detection models: Retinanet and YOLOv5. We first generate two color corrected versions of a popular WCE dataset (i.e., SEE-AI dataset) using two different color correction functions. We then evaluate the performance of the Retinanet and YOLOv5 on the original and color corrected versions of the dataset. The results reveal that color correction makes the models generate larger bounding boxes and larger intersection areas with the ground truth annotations. Furthermore, color correction leads to an increased number of false positives for certain pathologies. However, these effects do not translate into a consistent improvement in performance metrics such as F1-scores, IoU, and AP50. The code is available at https://github.com/agossouema2011/WCE2024. Keywords: Wireless Capsule Endoscopy, Color correction, Retinanet, YOLOv5, Detection

Authors:Dong-Hee Paek, Seung-Hyun Kong
Title: SpikingRTNH: Spiking Neural Network for 4D Radar Object Detection
Abstract:
Recently, 4D Radar has emerged as a crucial sensor for 3D object detection in autonomous vehicles, offering both stable perception in adverse weather and high-density point clouds for object shape recognition. However, processing such high-density data demands substantial computational resources and energy consumption. We propose SpikingRTNH, the first spiking neural network (SNN) for 3D object detection using 4D Radar data. By replacing conventional ReLU activation functions with leaky integrate-and-fire (LIF) spiking neurons, SpikingRTNH achieves significant energy efficiency gains. Furthermore, inspired by human cognitive processes, we introduce biological top-down inference (BTI), which processes point clouds sequentially from higher to lower densities. This approach effectively utilizes points with lower noise and higher importance for detection. Experiments on K-Radar dataset demonstrate that SpikingRTNH with BTI significantly reduces energy consumption by 78% while achieving comparable detection performance to its ANN counterpart (51.1% AP 3D, 57.0% AP BEV). These results establish the viability of SNNs for energy-efficient 4D Radar-based object detection in autonomous driving systems. All codes are available at https://github.com/kaist-avelab/k-radar.

Authors:Soon Jynn Chu, Nalaka Amarasiri, Sandesh Giri, Priyata Kafle
Title: Blood Glucose Level Prediction in Type 1 Diabetes Using Machine Learning
Abstract:
Type 1 Diabetes is a chronic autoimmune condition in which the immune system attacks and destroys insulin-producing beta cells in the pancreas, resulting in little to no insulin production. Insulin helps glucose in your blood enter your muscle, fat, and liver cells so they can use it for energy or store it for later use. If insulin is insufficient, it causes sugar to build up in the blood and leads to serious health problems. People with Type 1 Diabetes need synthetic insulin every day. In diabetes management, continuous glucose monitoring is an important feature that provides near real-time blood glucose data. It is useful in deciding the synthetic insulin dose. In this research work, we used machine learning tools, deep neural networks, deep reinforcement learning, and voting and stacking regressors to predict blood glucose levels at 30-min time intervals using the latest DiaTrend dataset. Predicting blood glucose levels is useful in better diabetes management systems. The trained models were compared using several evaluation metrics. Our evaluation results demonstrate the performance of various models across different glycemic conditions for blood glucose prediction. The source codes of this work can be found in: https://github.com/soon-jynn-chu/t1d_bg_prediction

Authors:Matthew Chen, Joshua Engels, Max Tegmark
Title: Low-Rank Adapting Models for Sparse Autoencoders
Abstract:
Sparse autoencoders (SAEs) decompose language model representations into a sparse set of linear latent vectors. Recent works have improved SAEs using language model gradients, but these techniques require many expensive backward passes during training and still cause a significant increase in cross entropy loss when SAE reconstructions are inserted into the model. In this work, we improve on these limitations by taking a fundamentally different approach: we use low-rank adaptation (LoRA) to finetune the \textit{language model itself} around a previously trained SAE. We analyze our method across SAE sparsity, SAE width, language model size, LoRA rank, and model layer on the Gemma Scope family of SAEs. In these settings, our method reduces the cross entropy loss gap by 30\% to 55\% when SAEs are inserted during the forward pass. We also find that compared to end-to-end (e2e) SAEs, our approach achieves the same downstream cross entropy loss 3$\times$ to 20$\times$ faster on \gemma and 2$\times$ to 10$\times$ faster on \llama. We further show that our technique improves downstream metrics and can adapt multiple SAEs at once without harming general language model capabilities. Our results demonstrate that improving model interpretability is not limited to post-hoc SAE training; Pareto improvements can also be achieved by directly optimizing the model itself.

Authors:Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexander Nikulin, Vladislav Kurenkov
Title: Vintix: Action Model via In-Context Reinforcement Learning
Abstract:
In-Context Reinforcement Learning (ICRL) represents a promising paradigm for developing generalist agents that learn at inference time through trial-and-error interactions, analogous to how large language models adapt contextually, but with a focus on reward maximization. However, the scalability of ICRL beyond toy tasks and single-domain settings remains an open challenge. In this work, we present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning. Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models. These findings highlight the potential of ICRL as a scalable approach for generalist decision-making systems. Code to be released at https://github.com/dunnolab/vintix

Authors:Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexander Nikulin, Vladislav Kurenkov
Title: Vintix: Action Model via In-Context Reinforcement Learning
Abstract:
In-Context Reinforcement Learning (ICRL) represents a promising paradigm for developing generalist agents that learn at inference time through trial-and-error interactions, analogous to how large language models adapt contextually, but with a focus on reward maximization. However, the scalability of ICRL beyond toy tasks and single-domain settings remains an open challenge. In this work, we present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning. Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models. These findings highlight the potential of ICRL as a scalable approach for generalist decision-making systems. Code released at https://github.com/dunnolab/vintix

Authors:Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, Tatsunori Hashimoto
Title: s1: Simple test-time scaling
Abstract:
Test-time scaling is a promising new approach to language modeling that uses extra test-time compute to improve performance. Recently, OpenAI's o1 model showed this capability but did not publicly share its methodology, leading to many replication efforts. We seek the simplest approach to achieve test-time scaling and strong reasoning performance. First, we curate a small dataset s1K of 1,000 questions paired with reasoning traces relying on three criteria we validate through ablations: difficulty, diversity, and quality. Second, we develop budget forcing to control test-time compute by forcefully terminating the model's thinking process or lengthening it by appending "Wait" multiple times to the model's generation when it tries to end. This can lead the model to double-check its answer, often fixing incorrect reasoning steps. After supervised finetuning the Qwen2.5-32B-Instruct language model on s1K and equipping it with budget forcing, our model s1-32B exceeds o1-preview on competition math questions by up to 27% (MATH and AIME24). Further, scaling s1-32B with budget forcing allows extrapolating beyond its performance without test-time intervention: from 50% to 57% on AIME24. Our model, data, and code are open-source at https://github.com/simplescaling/s1

Authors:Wenzhi Fang, Dong-Jun Han, Liangqi Yuan, Seyyedali Hosseinalipour, Christopher G. Brinton
Title: Federated Sketching LoRA: On-Device Collaborative Fine-Tuning of Large Language Models
Abstract:
Fine-tuning large language models (LLMs) on devices remains a challenging problem. Recent works have fused low-rank adaptation (LoRA) techniques with federated fine-tuning to mitigate challenges associated with device model sizes and data scarcity. Still, the heterogeneity of resources remains a critical bottleneck: while higher-rank modules generally enhance performance, varying device capabilities constrain LoRA's feasible rank range. Existing approaches attempting to resolve this issue either lack analytical justification or impose additional computational overhead, leaving a wide gap for efficient and theoretically-grounded solutions. To address these challenges, we propose federated sketching LoRA (FSLoRA), which leverages a sketching mechanism to enable devices to selectively update submatrices of global LoRA modules maintained by the server. By adjusting the sketching ratios, which determine the ranks of the submatrices on the devices, FSLoRA flexibly adapts to device-specific communication and computational constraints. We provide a rigorous convergence analysis of FSLoRA that characterizes how the sketching ratios affect the convergence rate. Through comprehensive experiments on multiple datasets and LLM models, we demonstrate FSLoRA's performance improvements compared to various baselines. The code is available at https://github.com/wenzhifang/Federated-Sketching-LoRA-Implementation.

Authors:Xingyou Song, Dara Bahri
Title: Decoding-based Regression
Abstract:
Language models have recently been shown capable of performing regression wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal sequence decoding models as numeric regression heads given any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoder-based heads are as performant as standard pointwise heads when benchmarked over standard regression tasks, while being flexible enough to capture smooth numeric distributions, such as in the task of density estimation.

Authors:Liudi Yang, Ruben Mascaro, Ignacio Alzugaray, Sai Manoj Prakhya, Marco Karrer, Ziyuan Liu, Margarita Chli
Title: LiDAR Loop Closure Detection using Semantic Graphs with Graph Attention Networks
Abstract:
In this paper, we propose a novel loop closure detection algorithm that uses graph attention neural networks to encode semantic graphs to perform place recognition and then use semantic registration to estimate the 6 DoF relative pose constraint. Our place recognition algorithm has two key modules, namely, a semantic graph encoder module and a graph comparison module. The semantic graph encoder employs graph attention networks to efficiently encode spatial, semantic and geometric information from the semantic graph of the input point cloud. We then use self-attention mechanism in both node-embedding and graph-embedding steps to create distinctive graph vectors. The graph vectors of the current scan and a keyframe scan are then compared in the graph comparison module to identify a possible loop closure. Specifically, employing the difference of the two graph vectors showed a significant improvement in performance, as shown in ablation studies. Lastly, we implemented a semantic registration algorithm that takes in loop closure candidate scans and estimates the relative 6 DoF pose constraint for the LiDAR SLAM system. Extensive evaluation on public datasets shows that our model is more accurate and robust, achieving 13% improvement in maximum F1 score on the SemanticKITTI dataset, when compared to the baseline semantic graph algorithm. For the benefit of the community, we open-source the complete implementation of our proposed algorithm and custom implementation of semantic registration at https://github.com/crepuscularlight/SemanticLoopClosure

Authors:Natalie Maus, Kyurae Kim, Yimeng Zeng, Haydn Thomas Jones, Fangping Wan, Marcelo Der Torossian Torres, Cesar de la Fuente-Nunez, Jacob R. Gardner
Title: Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
Abstract:
In multi-objective black-box optimization, the goal is typically to find solutions that optimize a set of $T$ black-box objective functions, $f_1$, ..., $f_T$, simultaneously. Traditional approaches often seek a single Pareto-optimal set that balances trade-offs among all objectives. In this work, we consider a problem setting that departs from this paradigm: finding a small set of K < T solutions, that collectively "covers" the T objectives. A set of solutions is defined as "covering" if, for each objective $f_1$, ..., $f_T$, there is at least one good solution. A motivating example for this problem setting occurs in drug design. For example, we may have T pathogens and aim to identify a set of K < T antibiotics such that at least one antibiotic can be used to treat each pathogen. To address this problem, we propose Multi-Objective Coverage Bayesian Optimization (MOCOBO), a principled algorithm designed to efficiently find a covering set. We validate our approach through experiments on challenging high-dimensional tasks, including applications in peptide and molecular design, where MOCOBO is shown to find high-performing covering sets of solutions. The results show that the coverage of the K < T solutions found by MOCOBO matches or nearly matches the coverage of T solutions obtained by optimizing each objective individually. Furthermore, in in vitro experiments, the peptides found by MOCOBO exhibited high potency against drug-resistant pathogens, further demonstrating the potential of MOCOBO for drug discovery. We make code available here: https://github.com/nataliemaus/mocobo.

Authors:Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, Caiming Xiong
Title: Reward-Guided Speculative Decoding for Efficient LLM Reasoning
Abstract:
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs). RSD synergistically combines a lightweight draft model with a more powerful target model, incorporating a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness. RSD employs a process reward model to evaluate intermediate decoding steps and dynamically decide whether to invoke the target model, optimizing the trade-off between computational cost and output quality. We theoretically demonstrate that a threshold-based mixture strategy achieves an optimal balance between resource utilization and performance. Extensive evaluations on challenging reasoning benchmarks, including Olympiad-level tasks, show that RSD delivers significant efficiency gains against decoding with the target model only (up to 4.4x fewer FLOPs), while achieving significant better accuracy than parallel decoding method on average (up to +3.5). These results highlight RSD as a robust and cost-effective approach for deploying LLMs in resource-intensive scenarios. The code is available at https://github.com/BaohaoLiao/RSD.

Authors:Nafis Irtiza Tripto, Saranya Venkatraman, Mahjabin Nahar, Dongwon Lee
Title: Beyond checkmate: exploring the creative chokepoints in AI text
Abstract:
The rapid advancement of Large Language Models (LLMs) has revolutionized text generation but also raised concerns about potential misuse, making detecting LLM-generated text (AI text) increasingly essential. While prior work has focused on identifying AI text and effectively checkmating it, our study investigates a less-explored territory: portraying the nuanced distinctions between human and AI texts across text segments (introduction, body, and conclusion). Whether LLMs excel or falter in incorporating linguistic ingenuity across text segments, the results will critically inform their viability and boundaries as effective creative assistants to humans. Through an analogy with the structure of chess games, comprising opening, middle, and end games, we analyze segment-specific patterns to reveal where the most striking differences lie. Although AI texts closely resemble human writing in the body segment due to its length, deeper analysis shows a higher divergence in features dependent on the continuous flow of language, making it the most informative segment for detection. Additionally, human texts exhibit greater stylistic variation across segments, offering a new lens for distinguishing them from AI. Overall, our findings provide fresh insights into human-AI text differences and pave the way for more effective and interpretable detection strategies. Codes available at https://github.com/tripto03/chess_inspired_human_ai_text_distinction.

Authors:Nafis Irtiza Tripto, Saranya Venkatraman, Mahjabin Nahar, Dongwon Lee
Title: Beyond checkmate: exploring the creative chokepoints in AI text
Abstract:
The rapid advancement of Large Language Models (LLMs) has revolutionized text generation but also raised concerns about potential misuse, making detecting LLM-generated text (AI text) increasingly essential. While prior work has focused on identifying AI text and effectively checkmating it, our study investigates a less-explored territory: portraying the nuanced distinctions between human and AI texts across text segments (introduction, body, and conclusion). Whether LLMs excel or falter in incorporating linguistic ingenuity across text segments, the results will critically inform their viability and boundaries as effective creative assistants to humans. Through an analogy with the structure of chess games, comprising opening, middle, and end games, we analyze segment-specific patterns to reveal where the most striking differences lie. Although AI texts closely resemble human writing in the body segment due to its length, deeper analysis shows a higher divergence in features dependent on the continuous flow of language, making it the most informative segment for detection. Additionally, human texts exhibit greater stylistic variation across segments, offering a new lens for distinguishing them from AI. Overall, our findings provide fresh insights into human-AI text differences and pave the way for more effective and interpretable detection strategies. Codes available at https://github.com/tripto03/chess_inspired_human_ai_text_distinction.

Authors:Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta
Title: Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search
Abstract:
The remarkable progress in text-to-video diffusion models enables photorealistic generations, although the contents of the generated video often include unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some quantity on the goodness of the content. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward, at inference time. We then point out that the improvement of perceptual video quality considering the alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline that we should prioritize the inference-time compute allocation into lookahead steps for reward estimation over search budget or denoising steps.

Authors:Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta
Title: Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search
Abstract:
The remarkable progress in text-to-video diffusion models enables the generation of photorealistic videos, although the content of these generated videos often includes unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some measure of the content's goodness. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward at inference time. We then point out that improving perceptual video quality with respect to alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with the evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline: we should prioritize the inference-time compute allocation into enabling the lookahead estimator and increasing the search budget, rather than expanding the denoising steps.

Authors:Junxiang Qiu, Shuo Wang, Jinda Lu, Lin Liu, Houcheng Jiang, Xingyu Zhu, Yanbin Hao
Title: Accelerating Diffusion Transformer via Error-Optimized Cache
Abstract:
Diffusion Transformer (DiT) is a crucial method for content generation. However, it needs a lot of time to sample. Many studies have attempted to use caching to reduce the time consumption of sampling. Existing caching methods accelerate generation by reusing DiT features from the previous time step and skipping calculations in the next, but they tend to locate and cache low-error modules without focusing on reducing caching-induced errors, resulting in a sharp decline in generated content quality when increasing caching intensity. To solve this problem, we propose the \textbf{E}rror-\textbf{O}ptimized \textbf{C}ache (\textbf{EOC}). This method introduces three key improvements: \textbf{(1)} Prior knowledge extraction: Extract and process the caching differences; \textbf{(2)} A judgment method for cache optimization: Determine whether certain caching steps need to be optimized; \textbf{(3)} Cache optimization: reduce caching errors. Experiments show that this algorithm significantly reduces the error accumulation caused by caching, especially excessive caching. On the ImageNet dataset, without substantially increasing the computational load, this method improves the FID of the generated images when the rule-based model FORA has a caching level of \textbf{75}\%, \textbf{50}\%, and \textbf{25}\%, and the training-based model Learning-to-cache has a caching level of \textbf{22}\%. Specifically, the FID values change from 30.454 to 21.690 (\textbf{28.8}\%), from 6.857 to 5.821 (\textbf{15.1}\%), from 3.870 to 3.692 (\textbf{4.6}\%), and from 3.539 to 3.451 (\textbf{2.5}\%) respectively. Code is available at https://github.com/qiujx0520/EOC_MM2025.git.

Authors:Arsenii Gavrikov, Julián García Pardiñas, Alberto Garfagnini
Title: DINAMO: Dynamic and INterpretable Anomaly MOnitoring for Large-Scale Particle Physics Experiments
Abstract:
Ensuring reliable data collection in large-scale particle physics experiments demands Data Quality Monitoring (DQM) procedures to detect possible detector malfunctions and preserve data integrity. Traditionally, this resource-intensive task has been handled by human shifters who struggle with frequent changes in operational conditions. We present DINAMO: a novel, interpretable, robust, and scalable DQM framework designed to automate anomaly detection in time-dependent settings. Our approach constructs evolving histogram templates with built-in uncertainties, featuring both a statistical variant - extending the classical Exponentially Weighted Moving Average (EWMA) - and a machine learning (ML)-enhanced version that leverages a transformer encoder for improved adaptability. Experimental validations on synthetic datasets demonstrate the high accuracy, adaptability, and interpretability of these methods. The statistical variant is being commissioned in the LHCb experiment at the Large Hadron Collider, underscoring its real-world impact. The code used in this study is available at https://github.com/ArseniiGav/DINAMO.

Authors:Valtteri Ala-Salmi, Zeeshan Rasheed, Abdul Malik Sami, Zheying Zhang, Kai-Kristian Kemell, Jussi Rasku, Shahbaz Siddeeq, Mika Saari, Pekka Abrahamsson
Title: Autonomous Legacy Web Application Upgrades Using a Multi-Agent System
Abstract:
The use of Large Language Models (LLMs) for autonomous code generation is gaining attention in emerging technologies. As LLM capabilities expand, they offer new possibilities such as code refactoring, security enhancements, and legacy application upgrades. Many outdated web applications pose security and reliability challenges, yet companies continue using them due to the complexity and cost of upgrades. To address this, we propose an LLM-based multi-agent system that autonomously upgrades legacy web applications to the latest versions. The system distributes tasks across multiple phases, updating all relevant files. To evaluate its effectiveness, we employed Zero-Shot Learning (ZSL) and One-Shot Learning (OSL) prompts, applying identical instructions in both cases. The evaluation involved updating view files and measuring the number and types of errors in the output. For complex tasks, we counted the successfully met requirements. The experiments compared the proposed system with standalone LLM execution, repeated multiple times to account for stochastic behavior. Results indicate that our system maintains context across tasks and agents, improving solution quality over the base model in some cases. This study provides a foundation for future model implementations in legacy code updates. Additionally, findings highlight LLMs' ability to update small outdated files with high precision, even with basic prompts. The source code is publicly available on GitHub: https://github.com/alasalm1/Multi-agent-pipeline.

Authors:Zixi Wang, Yushe Cao, Yubo Huang, Jinzhu Wei, Jingzehua Xu, Shuai Zhang, Xin Lai
Title: Self-Training with Dynamic Weighting for Robust Gradual Domain Adaptation
Abstract:
In this paper, we propose a new method called Self-Training with Dynamic Weighting (STDW), which aims to enhance robustness in Gradual Domain Adaptation (GDA) by addressing the challenge of smooth knowledge migration from the source to the target domain. Traditional GDA methods mitigate domain shift through intermediate domains and self-training but often suffer from inefficient knowledge migration or incomplete intermediate data. Our approach introduces a dynamic weighting mechanism that adaptively balances the loss contributions of the source and target domains during training. Specifically, we design an optimization framework governed by a time-varying hyperparameter $\varrho$ (progressing from 0 to 1), which controls the strength of domain-specific learning and ensures stable adaptation. The method leverages self-training to generate pseudo-labels and optimizes a weighted objective function for iterative model updates, maintaining robustness across intermediate domains. Experiments on rotated MNIST, color-shifted MNIST, portrait datasets, and the Cover Type dataset demonstrate that STDW outperforms existing baselines. Ablation studies further validate the critical role of $\varrho$'s dynamic scheduling in achieving progressive adaptation, confirming its effectiveness in reducing domain bias and improving generalization. This work provides both theoretical insights and a practical framework for robust gradual domain adaptation, with potential applications in dynamic real-world scenarios. The code is available at https://github.com/Dramwig/STDW.

Authors:Yunfan Lu, Yanlin Qian, Ziyang Rao, Junren Xiao, Liming Chen, Hui Xiong
Title: RGB-Event ISP: The Dataset and Benchmark
Abstract:
Event-guided imaging has received significant attention due to its potential to revolutionize instant imaging systems. However, the prior methods primarily focus on enhancing RGB images in a post-processing manner, neglecting the challenges of image signal processor (ISP) dealing with event sensor and the benefits events provide for reforming the ISP process. To achieve this, we conduct the first research on event-guided ISP. First, we present a new event-RAW paired dataset, collected with a novel but still confidential sensor that records pixel-level aligned events and RAW images. This dataset includes 3373 RAW images with 2248 x 3264 resolution and their corresponding events, spanning 24 scenes with 3 exposure modes and 3 lenses. Second, we propose a conventional ISP pipeline to generate good RGB frames as reference. This conventional ISP pipleline performs basic ISP operations, e.g.demosaicing, white balancing, denoising and color space transforming, with a ColorChecker as reference. Third, we classify the existing learnable ISP methods into 3 classes, and select multiple methods to train and evaluate on our new dataset. Lastly, since there is no prior work for reference, we propose a simple event-guided ISP method and test it on our dataset. We further put forward key technical challenges and future directions in RGB-Event ISP. In summary, to the best of our knowledge, this is the very first research focusing on event-guided ISP, and we hope it will inspire the community. The code and dataset are available at: https://github.com/yunfanLu/RGB-Event-ISP.

Authors:Hong Huang, Hai Yang, Yuan Chen, Jiaxun Ye, Dapeng Wu
Title: FedRTS: Federated Robust Pruning via Combinatorial Thompson Sampling
Abstract:
Federated Learning (FL) enables collaborative model training across distributed clients without data sharing, but its high computational and communication demands strain resource-constrained devices. While existing methods use dynamic pruning to improve efficiency by periodically adjusting sparse model topologies while maintaining sparsity, these approaches suffer from issues such as greedy adjustments, unstable topologies, and communication inefficiency, resulting in less robust models and suboptimal performance under data heterogeneity and partial client availability. To address these challenges, we propose Federated Robust pruning via combinatorial Thompson Sampling (FedRTS), a novel framework designed to develop robust sparse models. FedRTS enhances robustness and performance through its Thompson Sampling-based Adjustment (TSAdj) mechanism, which uses probabilistic decisions informed by stable, farsighted information instead of deterministic decisions reliant on unstable and myopic information in previous methods. Extensive experiments demonstrate that FedRTS achieves state-of-the-art performance in computer vision and natural language processing tasks while reducing communication costs, particularly excelling in scenarios with heterogeneous data distributions and partial client participation. Our codes are available at: https://github.com/Little0o0/FedRTS

Authors:Zhengqin Lai, Xiaopeng Hong, Yabin Wang, Xiaobai Li
Title: A Benchmark for Incremental Micro-expression Recognition
Abstract:
Micro-expression recognition plays a pivotal role in understanding hidden emotions and has applications across various fields. Traditional recognition methods assume access to all training data at once, but real-world scenarios involve continuously evolving data streams. To respond to the requirement of adapting to new data while retaining previously learned knowledge, we introduce the first benchmark specifically designed for incremental micro-expression recognition. Our contributions include: Firstly, we formulate the incremental learning setting tailored for micro-expression recognition. Secondly, we organize sequential datasets with carefully curated learning orders to reflect real-world scenarios. Thirdly, we define two cross-evaluation-based testing protocols, each targeting distinct evaluation objectives. Finally, we provide six baseline methods and their corresponding evaluation results. This benchmark lays the groundwork for advancing incremental micro-expression recognition research. All source code used in this study will be publicly available at https://github.com/ZhengQinLai/IMER-benchmark.

Authors:Jialin Zhao, Yingtao Zhang, Carlo Vittorio Cannistraci
Title: Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models
Abstract:
The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.

Authors:Xingyu Miao, Haoran Duan, Yang Bai, Tejal Shah, Jun Song, Yang Long, Rajiv Ranjan, Ling Shao
Title: Laser: Efficient Language-Guided Segmentation in Neural Radiance Fields
Abstract:
In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous methods that rely on multi-scale CLIP features and are limited by processing speed and storage requirements, our approach aims to streamline the workflow by directly and effectively distilling dense CLIP features, thereby achieving precise segmentation of 3D scenes using text. To achieve this, we introduce an adapter module and mitigate the noise issue in the dense CLIP feature distillation process through a self-cross-training strategy. Moreover, to enhance the accuracy of segmentation edges, this work presents a low-rank transient query attention mechanism. To ensure the consistency of segmentation for similar colors under different viewpoints, we convert the segmentation task into a classification task through label volume, which significantly improves the consistency of segmentation in color-similar areas. We also propose a simplified text augmentation strategy to alleviate the issue of ambiguity in the correspondence between CLIP features and text. Extensive experimental results show that our method surpasses current state-of-the-art technologies in both training speed and performance. Our code is available on: https://github.com/xingy038/Laser.git.

Authors:Dahye Kim, Deepti Ghadiyaram
Title: Concept Steerers: Leveraging K-Sparse Autoencoders for Test-Time Controllable Generations
Abstract:
Despite the remarkable progress in text-to-image generative models, they are prone to adversarial attacks and inadvertently generate unsafe, unethical content. Existing approaches often rely on fine-tuning models to remove specific concepts, which is computationally expensive, lacks scalability, and/or compromises generation quality. In this work, we propose a novel framework leveraging k-sparse autoencoders (k-SAEs) to enable efficient and interpretable concept manipulation in diffusion models. Specifically, we first identify interpretable monosemantic concepts in the latent space of text embeddings and leverage them to precisely steer the generation away or towards a given concept (e.g., nudity) or to introduce a new concept (e.g., photographic style) -- all during test time. Through extensive experiments, we demonstrate that our approach is very simple, requires no retraining of the base model nor LoRA adapters, does not compromise the generation quality, and is robust to adversarial prompt manipulations. Our method yields an improvement of $\mathbf{20.01\%}$ in unsafe concept removal, is effective in style manipulation, and is $\mathbf{\sim5}$x faster than the current state-of-the-art. Code is available at: https://github.com/kim-dahye/steerers

Authors:Basant Sharma, Arun Kumar Singh
Title: Trajectory Optimization Under Stochastic Dynamics Leveraging Maximum Mean Discrepancy
Abstract:
This paper addresses sampling-based trajectory optimization for risk-aware navigation under stochastic dynamics. Typically such approaches operate by computing $\tilde{N}$ perturbed rollouts around the nominal dynamics to estimate the collision risk associated with a sequence of control commands. We consider a setting where it is expensive to estimate risk using perturbed rollouts, for example, due to expensive collision-checks. We put forward two key contributions. First, we develop an algorithm that distills the statistical information from a larger set of rollouts to a reduced-set with sample size $N<<\tilde{N}$. Consequently, we estimate collision risk using just $N$ rollouts instead of $\tilde{N}$. Second, we formulate a novel surrogate for the collision risk that can leverage the distilled statistical information contained in the reduced-set. We formalize both algorithmic contributions using distribution embedding in Reproducing Kernel Hilbert Space (RKHS) and Maximum Mean Discrepancy (MMD). We perform extensive benchmarking to demonstrate that our MMD-based approach leads to safer trajectories at low sample regime than existing baselines using Conditional Value-at Risk (CVaR) based collision risk estimate.

Authors:Hongliang Li, Jiaxin Zhang, Wenhui Liao, Dezhi Peng, Kai Ding, Lianwen Jin
Title: RedundancyLens: Revealing and Exploiting Visual Token Processing Redundancy for Efficient Decoder-Only MLLMs
Abstract:
Current Multimodal Large Language Model (MLLM) architectures face a critical tradeoff between performance and efficiency: decoder-only architectures achieve higher performance but lower efficiency, while cross-attention-based architectures offer greater efficiency but lower performance. The key distinction lies in how visual tokens are processed. Decoder-only architectures apply self-attention and FFN operations on visual tokens, while cross-attention architectures skip these computations. To investigate whether redundancy exists in this computationally expensive process, we propose a training-free framework for analyzing trained MLLMs. It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens, as well as a Layer Ranking Algorithm that prioritizes layers for these reductions. Extensive experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs, offering valuable insights for future MLLM architecture design. Furthermore, by leveraging our reduction framework as a training-free inference acceleration approach, we achieve performance comparable to or better than state-of-the-art methods while remaining compatible with them. Code will be publicly available at https://github.com/L-Hugh/RedundancyLens.

Authors:Javier Montalvo, Pablo Carballeira, Álvaro García-Martín
Title: SynthmanticLiDAR: A Synthetic Dataset for Semantic Segmentation on LiDAR Imaging
Abstract:
Semantic segmentation on LiDAR imaging is increasingly gaining attention, as it can provide useful knowledge for perception systems and potential for autonomous driving. However, collecting and labeling real LiDAR data is an expensive and time-consuming task. While datasets such as SemanticKITTI have been manually collected and labeled, the introduction of simulation tools such as CARLA, has enabled the creation of synthetic datasets on demand. In this work, we present a modified CARLA simulator designed with LiDAR semantic segmentation in mind, with new classes, more consistent object labeling with their counterparts from real datasets such as SemanticKITTI, and the possibility to adjust the object class distribution. Using this tool, we have generated SynthmanticLiDAR, a synthetic dataset for semantic segmentation on LiDAR imaging, designed to be similar to SemanticKITTI, and we evaluate its contribution to the training process of different semantic segmentation algorithms by using a naive transfer learning approach. Our results show that incorporating SynthmanticLiDAR into the training process improves the overall performance of tested algorithms, proving the usefulness of our dataset, and therefore, our adapted CARLA simulator. The dataset and simulator are available in https://github.com/vpulab/SynthmanticLiDAR.

Authors:Bo Lan, Pei Li, Jiaxi Yin, Yunpeng Song, Ge Wang, Han Ding, Jinsong Han, Fei Wang
Title: XRF V2: A Dataset for Action Summarization with Wi-Fi Signals, and IMUs in Phones, Watches, Earbuds, and Glasses
Abstract:
Human Action Recognition (HAR) plays a crucial role in applications such as health monitoring, smart home automation, and human-computer interaction. While HAR has been extensively studied, action summarization using Wi-Fi and IMU signals in smart-home environments , which involves identifying and summarizing continuous actions, remains an emerging task. This paper introduces the novel XRF V2 dataset, designed for indoor daily activity Temporal Action Localization (TAL) and action summarization. XRF V2 integrates multimodal data from Wi-Fi signals, IMU sensors (smartphones, smartwatches, headphones, and smart glasses), and synchronized video recordings, offering a diverse collection of indoor activities from 16 volunteers across three distinct environments. To tackle TAL and action summarization, we propose the XRFMamba neural network, which excels at capturing long-term dependencies in untrimmed sensory sequences and achieves the best performance with an average mAP of 78.74, outperforming the recent WiFiTAD by 5.49 points in mAP@avg while using 35% fewer parameters. In action summarization, we introduce a new metric, Response Meaning Consistency (RMC), to evaluate action summarization performance. And it achieves an average Response Meaning Consistency (mRMC) of 0.802. We envision XRF V2 as a valuable resource for advancing research in human action localization, action forecasting, pose estimation, multimodal foundation models pre-training, synthetic data generation, and more. The data and code are available at https://github.com/aiotgroup/XRFV2.

Authors:Bangchao Wang, Yang Deng, Ruiqi Luo, Peng Liang, Tingting Bi
Title: MPLinker: Multi-template Prompt-tuning with Adversarial Training for Issue-commit Link Recovery
Abstract:
In recent years, the pre-training, prompting and prediction paradigm, known as prompt-tuning, has achieved significant success in Natural Language Processing (NLP). Issue-commit Link Recovery (ILR) in Software Traceability (ST) plays an important role in improving the reliability, quality, and security of software systems. The current ILR methods convert the ILR into a classification task using pre-trained language models (PLMs) and dedicated neural networks. these methods do not fully utilize the semantic information embedded in PLMs, resulting in not achieving acceptable performance. To address this limitation, we introduce a novel paradigm: Multi-template Prompt-tuning with adversarial training for issue-commit Link recovery (MPLinker). MPLinker redefines the ILR task as a cloze task via template-based prompt-tuning and incorporates adversarial training to enhance model generalization and reduce overfitting. We evaluated MPLinker on six open-source projects using a comprehensive set of performance metrics. The experiment results demonstrate that MPLinker achieves an average F1-score of 96.10%, Precision of 96.49%, Recall of 95.92%, MCC of 94.04%, AUC of 96.05%, and ACC of 98.15%, significantly outperforming existing state-of-the-art methods. Overall, MPLinker improves the performance and generalization of ILR models, and introduces innovative concepts and methods for ILR. The replication package for MPLinker is available at https://github.com/WTU-intelligent-software-development/MPLinker

Authors:Shiyu Fang, Donghao Zhou, Yiming Cui, ChengKai Xu, Peng Hang, Jian Sun
Title: Recognize then Resolve: A Hybrid Framework for Understanding Interaction and Cooperative Conflict Resolution in Mixed Traffic
Abstract:
A lack of understanding of interactions and the inability to effectively resolve conflicts continue to impede the progress of Connected Autonomous Vehicles (CAVs) in their interactions with Human-Driven Vehicles (HDVs). To address this challenge, we propose the Recognize then Resolve (RtR) framework. First, a Bilateral Intention Progression Graph (BIPG) is constructed based on CAV-HDV interaction data to model the evolution of interactions and identify potential HDV intentions. Three typical interaction breakdown scenarios are then categorized, and key moments are defined for triggering cooperative conflict resolution. On this basis, a constrained Monte Carlo Tree Search (MCTS) algorithm is introduced to determine the optimal passage order while accommodating HDV intentions. Experimental results demonstrate that the proposed RtR framework outperforms other cooperative approaches in terms of safety and efficiency across various penetration rates, achieving results close to consistent cooperation while significantly reducing computational resources. Our code and data are available at: https://github.com/FanGShiYuu/RtR-Recognize-then-Resolve/.

Authors:Yunpeng Qu, Kun Yuan, Jinhua Hao, Kai Zhao, Qizhi Xie, Ming Sun, Chao Zhou
Title: Visual Autoregressive Modeling for Image Super-Resolution
Abstract:
Image Super-Resolution (ISR) has seen significant progress with the introduction of remarkable generative models. However, challenges such as the trade-off issues between fidelity and realism, as well as computational complexity, have also posed limitations on their application. Building upon the tremendous success of autoregressive models in the language domain, we propose \textbf{VARSR}, a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction. To effectively integrate and preserve semantic information in low-resolution images, we propose using prefix tokens to incorporate the condition. Scale-aligned Rotary Positional Encodings are introduced to capture spatial structures and the diffusion refiner is utilized for modeling quantization residual loss to achieve pixel-level fidelity. Image-based Classifier-free Guidance is proposed to guide the generation of more realistic images. Furthermore, we collect large-scale data and design a training process to obtain robust generative priors. Quantitative and qualitative results show that VARSR is capable of generating high-fidelity and high-realism images with more efficiency than diffusion-based methods. Our codes will be released at https://github.com/qyp2000/VARSR.

Authors:Zhengrui Guo, Qichen Sun, Jiabo Ma, Lishuang Feng, Jinzhuo Wang, Hao Chen
Title: Context Matters: Query-aware Dynamic Long Sequence Modeling of Gigapixel Images
Abstract:
Whole slide image (WSI) analysis presents significant computational challenges due to the massive number of patches in gigapixel images. While transformer architectures excel at modeling long-range correlations through self-attention, their quadratic computational complexity makes them impractical for computational pathology applications. Existing solutions like local-global or linear self-attention reduce computational costs but compromise the strong modeling capabilities of full self-attention. In this work, we propose Querent, i.e., the query-aware long contextual dynamic modeling framework, which achieves a theoretically bounded approximation of full self-attention while delivering practical efficiency. Our method adaptively predicts which surrounding regions are most relevant for each patch, enabling focused yet unrestricted attention computation only with potentially important contexts. By using efficient region-wise metadata computation and importance estimation, our approach dramatically reduces computational overhead while preserving global perception to model fine-grained patch correlations. Through comprehensive experiments on biomarker prediction, gene mutation prediction, cancer subtyping, and survival analysis across over 10 WSI datasets, our method demonstrates superior performance compared to the state-of-the-art approaches. Codes are available at https://github.com/dddavid4real/Querent.

Authors:Seungheun Baek, Soyon Park, Yan Ting Chok, Mogan Gim, Jaewoo Kang
Title: GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
Abstract:
Motivation: Predicting cellular responses to genetic perturbations is essential for understanding biological systems and developing targeted therapeutic strategies. While variational autoencoders (VAEs) have shown promise in modeling perturbation responses, their limited explainability poses a significant challenge, as the learned features often lack clear biological meaning. Nevertheless, model explainability is one of the most important aspects in the realm of biological AI. One of the most effective ways to achieve explainability is incorporating the concept of gene regulatory networks (GRNs) in designing deep learning models such as VAEs. GRNs elicit the underlying causal relationships between genes and are capable of explaining the transcriptional responses caused by genetic perturbation treatments. Results: We propose GPO-VAE, an explainable VAE enhanced by GRN-aligned Parameter Optimization that explicitly models gene regulatory networks in the latent space. Our key approach is to optimize the learnable parameters related to latent perturbation effects towards GRN-aligned explainability. Experimental results on perturbation prediction show our model achieves state-of-the-art performance in predicting transcriptional responses across multiple benchmark datasets. Furthermore, additional results on evaluating the GRN inference task reveal our model's ability to generate meaningful GRNs compared to other methods. According to qualitative analysis, GPO-VAE posseses the ability to construct biologically explainable GRNs that align with experimentally validated regulatory pathways. GPO-VAE is available at https://github.com/dmis-lab/GPO-VAE

Authors:Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan Wei, Jingke Meng, Xiaohua Xie, Wei-Shi Zheng
Title: LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models
Abstract:
Recent open-vocabulary detectors achieve promising performance with abundant region-level annotated data. In this work, we show that an open-vocabulary detector co-training with a large language model by generating image-level detailed captions for each image can further improve performance. To achieve the goal, we first collect a dataset, GroundingCap-1M, wherein each image is accompanied by associated grounding labels and an image-level detailed caption. With this dataset, we finetune an open-vocabulary detector with training objectives including a standard grounding loss and a caption generation loss. We take advantage of a large language model to generate both region-level short captions for each region of interest and image-level long captions for the whole image. Under the supervision of the large language model, the resulting detector, LLMDet, outperforms the baseline by a clear margin, enjoying superior open-vocabulary ability. Further, we show that the improved LLMDet can in turn build a stronger large multi-modal model, achieving mutual benefits. The code, model, and dataset is available at https://github.com/iSEE-Laboratory/LLMDet.

Authors:Anh Bui, Trang Vu, Long Vuong, Trung Le, Paul Montague, Tamas Abraham, Junae Kim, Dinh Phung
Title: Fantastic Targets for Concept Erasure in Diffusion Models and Where To Find Them
Abstract:
Concept erasure has emerged as a promising technique for mitigating the risk of harmful content generation in diffusion models by selectively unlearning undesirable concepts. The common principle of previous works to remove a specific concept is to map it to a fixed generic concept, such as a neutral concept or just an empty text prompt. In this paper, we demonstrate that this fixed-target strategy is suboptimal, as it fails to account for the impact of erasing one concept on the others. To address this limitation, we model the concept space as a graph and empirically analyze the effects of erasing one concept on the remaining concepts. Our analysis uncovers intriguing geometric properties of the concept space, where the influence of erasing a concept is confined to a local region. Building on this insight, we propose the Adaptive Guided Erasure (AGE) method, which \emph{dynamically} selects optimal target concepts tailored to each undesirable concept, minimizing unintended side effects. Experimental results show that AGE significantly outperforms state-of-the-art erasure methods on preserving unrelated concepts while maintaining effective erasure performance. Our code is published at {https://github.com/tuananhbui89/Adaptive-Guided-Erasure}.

Authors:Minwoo Jung, Sangwoo Jung, Hyeonjae Gil, Ayoung Kim
Title: HeLiOS: Heterogeneous LiDAR Place Recognition via Overlap-based Learning and Local Spherical Transformer
Abstract:
LiDAR place recognition is a crucial module in localization that matches the current location with previously observed environments. Most existing approaches in LiDAR place recognition dominantly focus on the spinning type LiDAR to exploit its large FOV for matching. However, with the recent emergence of various LiDAR types, the importance of matching data across different LiDAR types has grown significantly-a challenge that has been largely overlooked for many years. To address these challenges, we introduce HeLiOS, a deep network tailored for heterogeneous LiDAR place recognition, which utilizes small local windows with spherical transformers and optimal transport-based cluster assignment for robust global descriptors. Our overlap-based data mining and guided-triplet loss overcome the limitations of traditional distance-based mining and discrete class constraints. HeLiOS is validated on public datasets, demonstrating performance in heterogeneous LiDAR place recognition while including an evaluation for long-term recognition, showcasing its ability to handle unseen LiDAR types. We release the HeLiOS code as an open source for the robotics community at https://github.com/minwoo0611/HeLiOS.

Authors:Zi-Jian Cheng, Zi-Yi Jia, Zhi Zhou, Yu-Feng Li, Lan-Zhe Guo
Title: TabFSBench: Tabular Benchmark for Feature Shifts in Open Environments
Abstract:
Tabular data is widely utilized in various machine learning tasks. Current tabular learning research predominantly focuses on closed environments, while in real-world applications, open environments are often encountered, where distribution and feature shifts occur, leading to significant degradation in model performance. Previous research has primarily concentrated on mitigating distribution shifts, whereas feature shifts, a distinctive and unexplored challenge of tabular data, have garnered limited attention. To this end, this paper conducts the first comprehensive study on feature shifts in tabular data and introduces the first tabular feature-shift benchmark (TabFSBench). TabFSBench evaluates impacts of four distinct feature-shift scenarios on four tabular model categories across various datasets and assesses the performance of large language models (LLMs) and tabular LLMs in the tabular benchmark for the first time. Our study demonstrates three main observations: (1) most tabular models have the limited applicability in feature-shift scenarios; (2) the shifted feature set importance has a linear relationship with model performance degradation; (3) model performance in closed environments correlates with feature-shift performance. Future research direction is also explored for each observation. Benchmark: https://github.com/LAMDASZ-ML/TabFSBench.

Authors:Wencheng Yang, Song Wang, Di Wu, Taotao Cai, Yanming Zhu, Shicheng Wei, Yiying Zhang, Xu Yang, Zhaohui Tang, Yan Li
Title: Deep Learning Model Inversion Attacks and Defenses: A Comprehensive Survey
Abstract:
The rapid adoption of deep learning in sensitive domains has brought tremendous benefits. However, this widespread adoption has also given rise to serious vulnerabilities, particularly model inversion (MI) attacks, posing a significant threat to the privacy and integrity of personal data. The increasing prevalence of these attacks in applications such as biometrics, healthcare, and finance has created an urgent need to understand their mechanisms, impacts, and defense methods. This survey aims to fill the gap in the literature by providing a structured and in-depth review of MI attacks and defense strategies. Our contributions include a systematic taxonomy of MI attacks, extensive research on attack techniques and defense mechanisms, and a discussion about the challenges and future research directions in this evolving field. By exploring the technical and ethical implications of MI attacks, this survey aims to offer insights into the impact of AI-powered systems on privacy, security, and trust. In conjunction with this survey, we have developed a comprehensive repository to support research on MI attacks and defenses. The repository includes state-of-the-art research papers, datasets, evaluation metrics, and other resources to meet the needs of both novice and experienced researchers interested in MI attacks and defenses, as well as the broader field of AI security and privacy. The repository will be continuously maintained to ensure its relevance and utility. It is accessible at https://github.com/overgter/Deep-Learning-Model-Inversion-Attacks-and-Defenses.

Authors:Sunyong Seo, Huisu Yoon, Semin Kim, Jongha Lee
Title: Full-scale Representation Guided Network for Retinal Vessel Segmentation
Abstract:
The U-Net architecture and its variants have remained state-of-the-art (SOTA) for retinal vessel segmentation over the past decade. In this study, we introduce a Full Scale Guided Network (FSG-Net), where the feature representation network with modernized convolution blocks extracts full-scale information and the guided convolution block refines that information. Attention-guided filter is introduced to the guided convolution block under the interpretation that the filter behaves like the unsharp mask filter. Passing full-scale information to the attention block allows for the generation of improved attention maps, which are then passed to the attention-guided filter, resulting in performance enhancement of the segmentation network. The structure preceding the guided convolution block can be replaced by any U-Net variant, which enhances the scalability of the proposed approach. For a fair comparison, we re-implemented recent studies available in public repositories to evaluate their scalability and reproducibility. Our experiments also show that the proposed network demonstrates competitive results compared to current SOTA models on various public datasets. Ablation studies demonstrate that the proposed model is competitive with much smaller parameter sizes. Lastly, by applying the proposed model to facial wrinkle segmentation, we confirmed the potential for scalability to similar tasks in other domains. Our code is available on https://github.com/ZombaSY/FSG-Net-pytorch.

Authors:Tongda Xu, Xiyan Cai, Xinjie Zhang, Xingtong Ge, Dailan He, Ming Sun, Jingjing Liu, Ya-Qin Zhang, Jian Li, Yan Wang
Title: Rethinking Diffusion Posterior Sampling: From Conditional Score Estimator to Maximizing a Posterior
Abstract:
Recent advancements in diffusion models have been leveraged to address inverse problems without additional training, and Diffusion Posterior Sampling (DPS) (Chung et al., 2022a) is among the most popular approaches. Previous analyses suggest that DPS accomplishes posterior sampling by approximating the conditional score. While in this paper, we demonstrate that the conditional score approximation employed by DPS is not as effective as previously assumed, but rather aligns more closely with the principle of maximizing a posterior (MAP). This assertion is substantiated through an examination of DPS on 512x512 ImageNet images, revealing that: 1) DPS's conditional score estimation significantly diverges from the score of a well-trained conditional diffusion model and is even inferior to the unconditional score; 2) The mean of DPS's conditional score estimation deviates significantly from zero, rendering it an invalid score estimation; 3) DPS generates high-quality samples with significantly lower diversity. In light of the above findings, we posit that DPS more closely resembles MAP than a conditional score estimator, and accordingly propose the following enhancements to DPS: 1) we explicitly maximize the posterior through multi-step gradient ascent and projection; 2) we utilize a light-weighted conditional score estimator trained with only 100 images and 8 GPU hours. Extensive experimental results indicate that these proposed improvements significantly enhance DPS's performance. The source code for these improvements is provided in https://github.com/tongdaxu/Rethinking-Diffusion-Posterior-Sampling-From-Conditional-Score-Estimator-to-Maximizing-a-Posterior.

Authors:Jaesin Ahn, Heechul Jung
Title: Distorting Embedding Space for Safety: A Defense Mechanism for Adversarially Robust Diffusion Models
Abstract:
Text-to-image diffusion models show remarkable generation performance following text prompts, but risk generating Not Safe For Work (NSFW) contents from unsafe prompts. Existing approaches, such as prompt filtering or concept unlearning, fail to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the nudity embedding, extracted using prompt ``nudity", by aligning it with neutral embedding to enhance robustness against adversarial attacks. These methods ensure both robust defense and high-quality image generation. Additionally, DES can be adopted in a plug-and-play manner and requires zero inference overhead, facilitating its deployment. Extensive experiments on diverse attack types, including black-box and white-box scenarios, demonstrate DES's state-of-the-art performance in both defense capability and benign image generation quality. Our model is available at https://github.com/aei13/DES.

Authors:Antoine Simoulin, Namyong Park, Xiaoyi Liu, Grey Yang
Title: Memory-Efficient Fine-Tuning of Transformers via Token Selection
Abstract:
Fine-tuning provides an effective means to specialize pre-trained models for various downstream tasks. However, fine-tuning often incurs high memory overhead, especially for large transformer-based models, such as LLMs. While existing methods may reduce certain parts of the memory required for fine-tuning, they still require caching all intermediate activations computed in the forward pass to update weights during the backward pass. In this work, we develop TokenTune, a method to reduce memory usage, specifically the memory to store intermediate activations, in the fine-tuning of transformer-based models. During the backward pass, TokenTune approximates the gradient computation by backpropagating through just a subset of input tokens. Thus, with TokenTune, only a subset of intermediate activations are cached during the forward pass. Also, TokenTune can be easily combined with existing methods like LoRA, further reducing the memory cost. We evaluate our approach on pre-trained transformer models with up to billions of parameters, considering the performance on multiple downstream tasks such as text classification and question answering in a few-shot learning setup. Overall, TokenTune achieves performance on par with full fine-tuning or representative memory-efficient fine-tuning methods, while greatly reducing the memory footprint, especially when combined with other methods with complementary memory reduction mechanisms. We hope that our approach will facilitate the fine-tuning of large transformers, in specializing them for specific domains or co-training them with other neural components from a larger system. Our code is available at https://github.com/facebookresearch/tokentune.

Authors:Ervin Dervishaj, Tuukka Ruotsalo, Maria Maistro, Christina Lioma
Title: Are Representation Disentanglement and Interpretability Linked in Recommendation Models? A Critical Review and Reproducibility Study
Abstract:
Unsupervised learning of disentangled representations has been closely tied to enhancing the representation intepretability of Recommender Systems (RSs). This has been achieved by making the representation of individual features more distinctly separated, so that it is easier to attribute the contribution of features to the model's predictions. However, such advantages in interpretability and feature attribution have mainly been explored qualitatively. Moreover, the effect of disentanglement on the model's recommendation performance has been largely overlooked. In this work, we reproduce the recommendation performance, representation disentanglement and representation interpretability of five well-known recommendation models on four RS datasets. We quantify disentanglement and investigate the link of disentanglement with recommendation effectiveness and representation interpretability. While several existing work in RSs have proposed disentangled representations as a gateway to improved effectiveness and interpretability, our findings show that disentanglement is not necessarily related to effectiveness but is closely related to representation interpretability. Our code and results are publicly available at https://github.com/edervishaj/disentanglement-interpretability-recsys.

Authors:Zehong Wang, Zheyuan Zhang, Tianyi Ma, Nitesh V Chawla, Chuxu Zhang, Yanfang Ye
Title: Beyond Message Passing: Neural Graph Pattern Machine
Abstract:
Graph learning tasks often hinge on identifying key substructure patterns -- such as triadic closures in social networks or benzene rings in molecular graphs -- that underpin downstream performance. However, most existing graph neural networks (GNNs) rely on message passing, which aggregates local neighborhood information iteratively and struggles to explicitly capture such fundamental motifs, like triangles, k-cliques, and rings. This limitation hinders both expressiveness and long-range dependency modeling. In this paper, we introduce the Neural Graph Pattern Machine (GPM), a novel framework that bypasses message passing by learning directly from graph substructures. GPM efficiently extracts, encodes, and prioritizes task-relevant graph patterns, offering greater expressivity and improved ability to capture long-range dependencies. Empirical evaluations across four standard tasks -- node classification, link prediction, graph classification, and graph regression -- demonstrate that GPM outperforms state-of-the-art baselines. Further analysis reveals that GPM exhibits strong out-of-distribution generalization, desirable scalability, and enhanced interpretability. Code and datasets are available at: https://github.com/Zehong-Wang/GPM.

Authors:Zhe Wang, Yuhua Ru, Fabian Bauer, Aladine Chetouani, Fang Chen, Liping Zhang, Didier Hans, Rachid Jennane, Mohamed Jarraya, Yung Hsin Chen
Title: Distillation-Driven Diffusion Model for Multi-Scale MRI Super-Resolution: Make 1.5T MRI Great Again
Abstract:
Magnetic Resonance Imaging (MRI) offers critical insights into microstructural details, however, the spatial resolution of standard 1.5T imaging systems is often limited. In contrast, 7T MRI provides significantly enhanced spatial resolution, enabling finer visualization of anatomical structures. Though this, the high cost and limited availability of 7T MRI hinder its widespread use in clinical settings. To address this challenge, a novel Super-Resolution (SR) model is proposed to generate 7T-like MRI from standard 1.5T MRI scans. Our approach leverages a diffusion-based architecture, incorporating gradient nonlinearity correction and bias field correction data from 7T imaging as guidance. Moreover, to improve deployability, a progressive distillation strategy is introduced. Specifically, the student model refines the 7T SR task with steps, leveraging feature maps from the inference phase of the teacher model as guidance, aiming to allow the student model to achieve progressively 7T SR performance with a smaller, deployable model size. Experimental results demonstrate that our baseline teacher model achieves state-of-the-art SR performance. The student model, while lightweight, sacrifices minimal performance. Furthermore, the student model is capable of accepting MRI inputs at varying resolutions without the need for retraining, significantly further enhancing deployment flexibility. The clinical relevance of our proposed method is validated using clinical data from Massachusetts General Hospital. Our code is available at https://github.com/ZWang78/SR.

Authors:Harshwardhan Praveen, Jacob Brown, Christopher Earls
Title: chebgreen: Learning and Interpolating Continuous Empirical Green's Functions from Data
Abstract:
In this work, we present a mesh-independent, data-driven library, chebgreen, to mathematically model one-dimensional systems, possessing an associated control parameter, and whose governing partial differential equation is unknown. The proposed method learns an Empirical Green's Function for the associated, but hidden, boundary value problem, in the form of a Rational Neural Network from which we subsequently construct a bivariate representation in a Chebyshev basis. We uncover the Green's function, at an unseen control parameter value, by interpolating the left and right singular functions within a suitable library, expressed as points on a manifold of Quasimatrices, while the associated singular values are interpolated with Lagrange polynomials.

Authors:Ranjan Sapkota, Shaina Raza, Maged Shoman, Achyut Paudel, Manoj Karkee
Title: Multimodal Large Language Models for Image, Text, and Speech Data Augmentation: A Survey
Abstract:
In the past five years, research has shifted from traditional Machine Learning (ML) and Deep Learning (DL) approaches to leveraging Large Language Models (LLMs) , including multimodality, for data augmentation to enhance generalization, and combat overfitting in training deep convolutional neural networks. However, while existing surveys predominantly focus on ML and DL techniques or limited modalities (text or images), a gap remains in addressing the latest advancements and multi-modal applications of LLM-based methods. This survey fills that gap by exploring recent literature utilizing multimodal LLMs to augment image, text, and audio data, offering a comprehensive understanding of these processes. We outlined various methods employed in the LLM-based image, text and speech augmentation, and discussed the limitations identified in current approaches. Additionally, we identified potential solutions to these limitations from the literature to enhance the efficacy of data augmentation practices using multimodal LLMs. This survey serves as a foundation for future research, aiming to refine and expand the use of multimodal LLMs in enhancing dataset quality and diversity for deep learning applications. (Surveyed Paper GitHub Repo: https://github.com/WSUAgRobotics/data-aug-multi-modal-llm. Keywords: LLM data augmentation, Grok text data augmentation, DeepSeek image data augmentation, Grok speech data augmentation, GPT audio augmentation, voice augmentation, DeepSeek for data augmentation, DeepSeek R1 text data augmentation, DeepSeek R1 image augmentation, Image Augmentation using LLM, Text Augmentation using LLM, LLM data augmentation for deep learning applications)

Authors:Daniel Schwartz, Dmitriy Bespalov, Zhe Wang, Ninad Kulkarni, Yanjun Qi
Title: Graph of Attacks with Pruning: Optimizing Stealthy Jailbreak Prompt Generation for Enhanced LLM Content Moderation
Abstract:
As large language models (LLMs) become increasingly prevalent, ensuring their robustness against adversarial misuse is crucial. This paper introduces the GAP (Graph of Attacks with Pruning) framework, an advanced approach for generating stealthy jailbreak prompts to evaluate and enhance LLM safeguards. GAP addresses limitations in existing tree-based LLM jailbreak methods by implementing an interconnected graph structure that enables knowledge sharing across attack paths. Our experimental evaluation demonstrates GAP's superiority over existing techniques, achieving a 20.8% increase in attack success rates while reducing query costs by 62.7%. GAP consistently outperforms state-of-the-art methods for attacking both open and closed LLMs, with attack success rates of >96%. Additionally, we present specialized variants like GAP-Auto for automated seed generation and GAP-VLM for multimodal attacks. GAP-generated prompts prove highly effective in improving content moderation systems, increasing true positive detection rates by 108.5% and accuracy by 183.6% when used for fine-tuning. Our implementation is available at https://github.com/dsbuddy/GAP-LLM-Safety.

Authors:Xun Liang, Simin Niu, Zhiyu Li, Sensen Zhang, Hanyu Wang, Feiyu Xiong, Jason Zhaoxin Fan, Bo Tang, Shichao Song, Mengwei Wang, Jiawei Yang
Title: SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model
Abstract:
The indexing-retrieval-generation paradigm of retrieval-augmented generation (RAG) has been highly successful in solving knowledge-intensive tasks by integrating external knowledge into large language models (LLMs). However, the incorporation of external and unverified knowledge increases the vulnerability of LLMs because attackers can perform attack tasks by manipulating knowledge. In this paper, we introduce a benchmark named SafeRAG designed to evaluate the RAG security. First, we classify attack tasks into silver noise, inter-context conflict, soft ad, and white Denial-of-Service. Next, we construct RAG security evaluation dataset (i.e., SafeRAG dataset) primarily manually for each task. We then utilize the SafeRAG dataset to simulate various attack scenarios that RAG may encounter. Experiments conducted on 14 representative RAG components demonstrate that RAG exhibits significant vulnerability to all attack tasks and even the most apparent attack task can easily bypass existing retrievers, filters, or advanced LLMs, resulting in the degradation of RAG service quality. Code is available at: https://github.com/IAAR-Shanghai/SafeRAG.

Authors:Xiangbo Gao, Runsheng Xu, Jiachen Li, Ziran Wang, Zhiwen Fan, Zhengzhong Tu
Title: STAMP: Scalable Task And Model-agnostic Collaborative Perception
Abstract:
Perception is crucial for autonomous driving, but single-agent perception is often constrained by sensors' physical limitations, leading to degraded performance under severe occlusion, adverse weather conditions, and when detecting distant objects. Multi-agent collaborative perception offers a solution, yet challenges arise when integrating heterogeneous agents with varying model architectures. To address these challenges, we propose STAMP, a scalable task- and model-agnostic, collaborative perception pipeline for heterogeneous agents. STAMP utilizes lightweight adapter-reverter pairs to transform Bird's Eye View (BEV) features between agent-specific and shared protocol domains, enabling efficient feature sharing and fusion. This approach minimizes computational overhead, enhances scalability, and preserves model security. Experiments on simulated and real-world datasets demonstrate STAMP's comparable or superior accuracy to state-of-the-art models with significantly reduced computational costs. As a first-of-its-kind task- and model-agnostic framework, STAMP aims to advance research in scalable and secure mobility systems towards Level 5 autonomy. Our project page is at https://xiangbogaobarry.github.io/STAMP and the code is available at https://github.com/taco-group/STAMP.

Authors:Vishal Thengane, Xiatian Zhu, Salim Bouzerdoum, Son Lam Phung, Yunpeng Li
Title: Foundational Models for 3D Point Clouds: A Survey and Outlook
Abstract:
The 3D point cloud representation plays a crucial role in preserving the geometric fidelity of the physical world, enabling more accurate complex 3D environments. While humans naturally comprehend the intricate relationships between objects and variations through a multisensory system, artificial intelligence (AI) systems have yet to fully replicate this capacity. To bridge this gap, it becomes essential to incorporate multiple modalities. Models that can seamlessly integrate and reason across these modalities are known as foundation models (FMs). The development of FMs for 2D modalities, such as images and text, has seen significant progress, driven by the abundant availability of large-scale datasets. However, the 3D domain has lagged due to the scarcity of labelled data and high computational overheads. In response, recent research has begun to explore the potential of applying FMs to 3D tasks, overcoming these challenges by leveraging existing 2D knowledge. Additionally, language, with its capacity for abstract reasoning and description of the environment, offers a promising avenue for enhancing 3D understanding through large pre-trained language models (LLMs). Despite the rapid development and adoption of FMs for 3D vision tasks in recent years, there remains a gap in comprehensive and in-depth literature reviews. This article aims to address this gap by presenting a comprehensive overview of the state-of-the-art methods that utilize FMs for 3D visual understanding. We start by reviewing various strategies employed in the building of various 3D FMs. Then we categorize and summarize use of different FMs for tasks such as perception tasks. Finally, the article offers insights into future directions for research and development in this field. To help reader, we have curated list of relevant papers on the topic: https://github.com/vgthengane/Awesome-FMs-in-3D.

Authors:Hao Dong, Moru Liu, Kaiyang Zhou, Eleni Chatzi, Juho Kannala, Cyrill Stachniss, Olga Fink
Title: Advances in Multimodal Adaptation and Generalization: From Traditional Approaches to Foundation Models
Abstract:
In real-world scenarios, achieving domain adaptation and generalization poses significant challenges, as models must adapt to or generalize across unknown target distributions. Extending these capabilities to unseen multimodal distributions, i.e., multimodal domain adaptation and generalization, is even more challenging due to the distinct characteristics of different modalities. Significant progress has been made over the years, with applications ranging from action recognition to semantic segmentation. Besides, the recent advent of large-scale pre-trained multimodal foundation models, such as CLIP, has inspired works leveraging these models to enhance adaptation and generalization performances or adapting them to downstream tasks. This survey provides the first comprehensive review of recent advances from traditional approaches to foundation models, covering: (1) Multimodal domain adaptation; (2) Multimodal test-time adaptation; (3) Multimodal domain generalization; (4) Domain adaptation and generalization with the help of multimodal foundation models; and (5) Adaptation of multimodal foundation models. For each topic, we formally define the problem and thoroughly review existing methods. Additionally, we analyze relevant datasets and applications, highlighting open challenges and potential future research directions. We maintain an active repository that contains up-to-date literature at https://github.com/donghao51/Awesome-Multimodal-Adaptation.

Authors:Matthieu Barreau, Haoming Shen
Title: Accuracy and Robustness of Weight-Balancing Methods for Training PINNs
Abstract:
Physics-Informed Neural Networks (PINNs) have emerged as powerful tools for integrating physics-based models with data by minimizing both data and physics losses. However, this multi-objective optimization problem is notoriously challenging, with some benchmark problems leading to unfeasible solutions. To address these issues, various strategies have been proposed, including adaptive weight adjustments in the loss function. In this work, we introduce clear definitions of accuracy and robustness in the context of PINNs and propose a novel training algorithm based on the Primal-Dual (PD) optimization framework. Our approach enhances the robustness of PINNs while maintaining comparable performance to existing weight-balancing methods. Numerical experiments demonstrate that the PD method consistently achieves reliable solutions across all investigated cases, even in the low-data regime, and can be easily implemented, facilitating its practical adoption. The code is available at https://github.com/haoming-SHEN/Accuracy-and-Robustness-of-Weight-Balancing-Methods-for-Training-PINNs.git.

Authors:Anmol Goel, Yaxi Hu, Iryna Gurevych, Amartya Sanyal
Title: Differentially Private Steering for Large Language Model Alignment
Abstract:
Aligning Large Language Models (LLMs) with human values and away from undesirable behaviors (such as hallucination) has become increasingly important. Recently, steering LLMs towards a desired behavior via activation editing has emerged as an effective method to mitigate harmful generations at inference-time. Activation editing modifies LLM representations by preserving information from positive demonstrations (e.g., truthful) and minimising information from negative demonstrations (e.g., hallucinations). When these demonstrations come from a private dataset, the aligned LLM may leak private information contained in those private samples. In this work, we present the first study of aligning LLM behavior with private datasets. Our work proposes the Private Steering for LLM Alignment (PSA) algorithm to edit LLM activations with differential privacy (DP) guarantees. We conduct extensive experiments on seven different benchmarks with open-source LLMs of different sizes (0.5B to 7B) and model families (LlaMa, Qwen, Mistral and Gemma). Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance, including alignment metrics, open-ended text generation quality, and general-purpose reasoning. We also develop the first Membership Inference Attack (MIA) for evaluating and auditing the empirical privacy for the problem of LLM steering via activation editing. Our experiments support the theoretical guarantees by showing improved guarantees for our PSA algorithm compared to several existing non-private techniques.

Authors:Benjamin Feuer, Chinmay Hegde
Title: WILDCHAT-50M: A Deep Dive Into the Role of Synthetic Data in Post-Training
Abstract:
Language model (LLM) post-training, from DPO to distillation, can refine behaviors and unlock new skills, but the open science supporting these post-training techniques is still in its infancy. One limiting factor has been the difficulty of conducting large-scale comparative analyses of synthetic data generating models and LLM judges. To close this gap, we introduce WILDCHAT-50M, the largest public chat dataset to date. We extend the existing WildChat dataset to include responses not only from GPT, but from over 50 different open-weight models, ranging in size from 0.5B to 104B parameters. We conduct an extensive comparative analysis and demonstrate the potential of this dataset by creating RE-WILD, our own public SFT mix, which outperforms the recent Tulu-3 SFT mixture from Allen AI with only 40% as many samples. Our dataset, samples and code are available at https://github.com/penfever/wildchat-50m.

Authors:Shi Chen, Lefei Zhang, Liangpei Zhang
Title: HSRMamba: Contextual Spatial-Spectral State Space Model for Single Image Hyperspectral Super-Resolution
Abstract:
Mamba has demonstrated exceptional performance in visual tasks due to its powerful global modeling capabilities and linear computational complexity, offering considerable potential in hyperspectral image super-resolution (HSISR). However, in HSISR, Mamba faces challenges as transforming images into 1D sequences neglects the spatial-spectral structural relationships between locally adjacent pixels, and its performance is highly sensitive to input order, which affects the restoration of both spatial and spectral details. In this paper, we propose HSRMamba, a contextual spatial-spectral modeling state space model for HSISR, to address these issues both locally and globally. Specifically, a local spatial-spectral partitioning mechanism is designed to establish patch-wise causal relationships among adjacent pixels in 3D features, mitigating the local forgetting issue. Furthermore, a global spectral reordering strategy based on spectral similarity is employed to enhance the causal representation of similar pixels across both spatial and spectral dimensions. Finally, experimental results demonstrate our HSRMamba outperforms the state-of-the-art methods in quantitative quality and visual results. Code is available at: https://github.com/Tomchenshi/HSRMamba.

Authors:Yue Liu, Hongcheng Gao, Shengfang Zhai, Jun Xia, Tianyi Wu, Zhiwei Xue, Yulin Chen, Kenji Kawaguchi, Jiaheng Zhang, Bryan Hooi
Title: GuardReasoner: Towards Reasoning-based LLM Safeguards
Abstract:
As LLMs increasingly impact safety-critical applications, ensuring their safety using guardrails remains a key challenge. This paper proposes GuardReasoner, a new safeguard for LLMs, by guiding the guard model to learn to reason. Concretely, we first create the GuardReasonerTrain dataset, which consists of 127K samples with 460K detailed reasoning steps. Then, we introduce reasoning SFT to unlock the reasoning capability of guard models. In addition, we present hard sample DPO to further strengthen their reasoning ability. In this manner, GuardReasoner achieves better performance, explainability, and generalizability. Extensive experiments and analyses on 13 benchmarks of 3 guardrail tasks demonstrate its superiority. Remarkably, GuardReasoner 8B surpasses GPT-4o+CoT by 5.74% and LLaMA Guard 3 8B by 20.84% F1 score on average. We release the training data, code, and models with different scales (1B, 3B, 8B) of GuardReasoner : https://github.com/yueliu1999/GuardReasoner/.

Authors:Shiho Noda, Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa
Title: A Benchmark and Evaluation for Real-World Out-of-Distribution Detection Using Vision-Language Models
Abstract:
Out-of-distribution (OOD) detection is a task that detects OOD samples during inference to ensure the safety of deployed models. However, conventional benchmarks have reached performance saturation, making it difficult to compare recent OOD detection methods. To address this challenge, we introduce three novel OOD detection benchmarks that enable a deeper understanding of method characteristics and reflect real-world conditions. First, we present ImageNet-X, designed to evaluate performance under challenging semantic shifts. Second, we propose ImageNet-FS-X for full-spectrum OOD detection, assessing robustness to covariate shifts (feature distribution shifts). Finally, we propose Wilds-FS-X, which extends these evaluations to real-world datasets, offering a more comprehensive testbed. Our experiments reveal that recent CLIP-based OOD detection methods struggle to varying degrees across the three proposed benchmarks, and none of them consistently outperforms the others. We hope the community goes beyond specific benchmarks and includes more challenging conditions reflecting real-world scenarios. The code is https://github.com/hoshi23/OOD-X-Benchmarks.

Authors:Amanturdieva Akmaral, Muhammad Hamza Zafar
Title: Efficient Transformer for High Resolution Image Motion Deblurring
Abstract:
This paper presents a comprehensive study and improvement of the Restormer architecture for high-resolution image motion deblurring. We introduce architectural modifications that reduce model complexity by 18.4% while maintaining or improving performance through optimized attention mechanisms. Our enhanced training pipeline incorporates additional transformations including color jitter, Gaussian blur, and perspective transforms to improve model robustness as well as a new frequency loss term. Extensive experiments on the RealBlur-R, RealBlur-J, and Ultra-High-Definition Motion blurred (UHDM) datasets demonstrate the effectiveness of our approach. The improved architecture shows better convergence behavior and reduced training time while maintaining competitive performance across challenging scenarios. We also provide detailed ablation studies analyzing the impact of our modifications on model behavior and performance. Our results suggest that thoughtful architectural simplification combined with enhanced training strategies can yield more efficient yet equally capable models for motion deblurring tasks. Code and Data Available at: https://github.com/hamzafer/image-deblurring

Authors:Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding, Bowen Zhou
Title: MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding
Abstract:
We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 18 leading models on \benchmark. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models. Code and data are available at: https://github.com/TsinghuaC3I/MedXpertQA

Authors:Jinlu Wang, Yanfeng Sun, Jiapu Wang, Junbin Gao, Shaofan Wang, Jipeng Guo
Title: Contrastive Learning Meets Pseudo-label-assisted Mixup Augmentation: A Comprehensive Graph Representation Framework from Local to Global
Abstract:
Graph Neural Networks (GNNs) have demonstrated remarkable effectiveness in various graph representation learning tasks. However, most existing GNNs focus primarily on capturing local information through explicit graph convolution, often neglecting global message-passing. This limitation hinders the establishment of a collaborative interaction between global and local information, which is crucial for comprehensively understanding graph data. To address these challenges, we propose a novel framework called Comprehensive Graph Representation Learning (ComGRL). ComGRL integrates local information into global information to derive powerful representations. It achieves this by implicitly smoothing local information through flexible graph contrastive learning, ensuring reliable representations for subsequent global exploration. Then ComGRL transfers the locally derived representations to a multi-head self-attention module, enhancing their discriminative ability by uncovering diverse and rich global correlations. To further optimize local information dynamically under the self-supervision of pseudo-labels, ComGRL employs a triple sampling strategy to construct mixed node pairs and applies reliable Mixup augmentation across attributes and structure for local contrastive learning. This approach broadens the receptive field and facilitates coordination between local and global representation learning, enabling them to reinforce each other. Experimental results across six widely used graph datasets demonstrate that ComGRL achieves excellent performance in node classification tasks. The code could be available at https://github.com/JinluWang1002/ComGRL.

Authors:Yuqin Cao, Xiongkuo Min, Yixuan Gao, Wei Sun, Guangtao Zhai
Title: AGAV-Rater: Adapting Large Multimodal Model for AI-Generated Audio-Visual Quality Assessment
Abstract:
Many video-to-audio (VTA) methods have been proposed for dubbing silent AI-generated videos. An efficient quality assessment method for AI-generated audio-visual content (AGAV) is crucial for ensuring audio-visual quality. Existing audio-visual quality assessment methods struggle with unique distortions in AGAVs, such as unrealistic and inconsistent elements. To address this, we introduce AGAVQA-3k, the first large-scale AGAV quality assessment dataset, comprising $3,382$ AGAVs from $16$ VTA methods. AGAVQA-3k includes two subsets: AGAVQA-MOS, which provides multi-dimensional scores for audio quality, content consistency, and overall quality, and AGAVQA-Pair, designed for optimal AGAV pair selection. We further propose AGAV-Rater, a LMM-based model that can score AGAVs, as well as audio and music generated from text, across multiple dimensions, and selects the best AGAV generated by VTA methods to present to the user. AGAV-Rater achieves state-of-the-art performance on AGAVQA-3k, Text-to-Audio, and Text-to-Music datasets. Subjective tests also confirm that AGAV-Rater enhances VTA performance and user experience. The dataset and code is available at https://github.com/charlotte9524/AGAV-Rater.

Authors:Haoxiong Liu, Jiacheng Sun, Zhenguo Li, Andrew C Yao
Title: ProofAug: Efficient Neural Theorem Proving via Fine-grained Proof Structure Analysis
Abstract:
The synergy between deep learning models and traditional automation tools, such as built-in tactics of the proof assistant and off-the-shelf automated theorem provers, plays a crucial role in developing robust and efficient neural theorem provers(NTPs). However, for proof synthesis with LLMs, previous work applies automation tools either only when explicitly invoked by the model or at a single granularity level, failing to fully exploit their power. To solve this issue, we propose ProofAug, a procedure that equips LLMs with automation methods at various granularities through fine-grained structure analysis of model-generated proof proposals. ProofAug also serves as a versatile plug-and-play module that seamlessly integrates with any tree-search algorithm, enabling our construction of an efficient recursive proving (ERP) module to further enhance performance. The superiority of our method is validated on the miniF2F benchmark using the open-source deepseek-math-7b-base model and the Isabelle proof assistant. Notably, by additionally employing a mixed prompting strategy, we achieve a cumulative pass rate of 66.0% after curation of the dataset (61.9% for the original version) with 2100 queries to the model per problem (In contrast, the previous SOTA in Isabelle, Subgoal-XL, only achieves 56.1% using 16384 queries per problem). We also implement a Lean 4 version of ProofAug that can improve the pass@1 performance of Kimina-Prover-Preview-Distill-1.5B from 44.3% to 50.4% on miniF2F-test. Our code is available at https://github.com/haoxiongliu/ProofAug.

Authors:Amitay Sicherman, Kira Radinsky
Title: ReactEmbed: A Cross-Domain Framework for Protein-Molecule Representation Learning via Biochemical Reaction Networks
Abstract:
The challenge in computational biology and drug discovery lies in creating comprehensive representations of proteins and molecules that capture their intrinsic properties and interactions. Traditional methods often focus on unimodal data, such as protein sequences or molecular structures, limiting their ability to capture complex biochemical relationships. This work enhances these representations by integrating biochemical reactions encompassing interactions between molecules and proteins. By leveraging reaction data alongside pre-trained embeddings from state-of-the-art protein and molecule models, we develop ReactEmbed, a novel method that creates a unified embedding space through contrastive learning. We evaluate ReactEmbed across diverse tasks, including drug-target interaction, protein-protein interaction, protein property prediction, and molecular property prediction, consistently surpassing all current state-of-the-art models. Notably, we showcase ReactEmbed's practical utility through successful implementation in lipid nanoparticle-based drug delivery, enabling zero-shot prediction of blood-brain barrier permeability for protein-nanoparticle complexes. The code and comprehensive database of reaction pairs are available for open use at \href{https://github.com/amitaysicherman/ReactEmbed}{GitHub}.

Authors:David Mallasén, Pasquale Davide Schiavone, Alberto A. Del Barrio, Manuel Prieto-Matias, David Atienza
Title: Increasing the Energy-Efficiency of Wearables Using Low-Precision Posit Arithmetic with PHEE
Abstract:
Wearable biomedical devices are increasingly being used for continuous patient health monitoring, enabling real-time insights and extended data collection without the need for prolonged hospital stays. These devices must be energy efficient to minimize battery size, improve comfort, and reduce recharging intervals. This paper investigates the use of specialized low-precision arithmetic formats to enhance the energy efficiency of biomedical wearables. Specifically, we explore posit arithmetic, a floating-point-like representation, in two key applications: cough detection for chronic cough monitoring and R peak detection in ECG analysis. Simulations reveal that 16-bit posits can replace 32-bit IEEE 754 floating point numbers with minimal accuracy loss in cough detection. For R peak detection, posit arithmetic achieves satisfactory accuracy with as few as 10 or 8 bits, compared to the 16-bit requirement for floating-point formats. To further this exploration, we introduce PHEE, a modular and extensible architecture that integrates the Coprosit posit coprocessor within a RISC-V-based system. Using the X-HEEP framework, PHEE seamlessly incorporates posit arithmetic, demonstrating reduced hardware area and power consumption compared to a floating-point counterpart system. Post-synthesis results targeting 16nm TSMC technology show that the posit hardware targeting these biomedical applications can be 38% smaller and consume up to 54% less energy at the functional unit level, with no performance compromise. These findings establish the potential of low-precision posit arithmetic to significantly improve the energy efficiency of wearable biomedical devices.

Authors:Qingxiang Liu, Chenghao Liu, Sheng Sun, Di Yao, Yuxuan Liang
Title: GDformer: Going Beyond Subsequence Isolation for Multivariate Time Series Anomaly Detection
Abstract:
Unsupervised anomaly detection of multivariate time series is a challenging task, given the requirements of deriving a compact detection criterion without accessing the anomaly points. The existing methods are mainly based on reconstruction error or association divergence, which are both confined to isolated subsequences with limited horizons, hardly promising unified series-level criterion. In this paper, we propose the Global Dictionary-enhanced Transformer (GDformer) with a renovated dictionary-based cross attention mechanism to cultivate the global representations shared by all normal points in the entire series. Accordingly, the cross-attention maps reflect the correlation weights between the point and global representations, which naturally leads to the representation-wise similarity-based detection criterion. To foster more compact detection boundary, prototypes are introduced to capture the distribution of normal point-global correlation weights. GDformer consistently achieves state-of-the-art unsupervised anomaly detection performance on five real-world benchmark datasets. Further experiments validate the global dictionary has great transferability among various datasets. The code is available at https://github.com/yuppielqx/GDformer.

Authors:Jinyao Guo, Chengpeng Wang, Xiangzhe Xu, Zian Su, Xiangyu Zhang
Title: RepoAudit: An Autonomous LLM-Agent for Repository-Level Code Auditing
Abstract:
Code auditing is the process of reviewing code with the aim of identifying bugs. Large Language Models (LLMs) have demonstrated promising capabilities for this task without requiring compilation, while also supporting user-friendly customization. However, auditing a code repository with LLMs poses significant challenges: limited context windows and hallucinations can degrade the quality of bug reports, and analyzing large-scale repositories incurs substantial time and token costs, hindering efficiency and scalability. This work introduces an LLM-based agent, RepoAudit, designed to perform autonomous repository-level code auditing. Equipped with agent memory, RepoAudit explores the codebase on demand by analyzing data-flow facts along feasible program paths within individual functions. It further incorporates a validator module to mitigate hallucinations by verifying data-flow facts and checking the satisfiability of path conditions associated with potential bugs, thereby reducing false positives. RepoAudit detects 40 true bugs across 15 real-world benchmark projects with a precision of 78.43%, requiring on average only 0.44 hours and $2.54 per project. Also, it detects 185 new bugs in high-profile projects, among which 174 have been confirmed or fixed. We have open-sourced RepoAudit at https://github.com/PurCL/RepoAudit.

Authors:HaeJin Lee, Shubhanshu Mishra, Apratim Mishra, Zhiwen You, Jinseok Kim, Jana Diesner
Title: Revisiting gender bias research in bibliometrics: Standardizing methodological variability using Scholarly Data Analysis (SoDA) Cards
Abstract:
Gender biases in scholarly metrics remain a persistent concern, despite numerous bibliometric studies exploring their presence and absence across productivity, impact, acknowledgment, and self-citations. However, methodological inconsistencies, particularly in author name disambiguation and gender identification, limit the reliability and comparability of these studies, potentially perpetuating misperceptions and hindering effective interventions. A review of 70 relevant publications over the past 12 years reveals a wide range of approaches, from name-based and manual searches to more algorithmic and gold-standard methods, with no clear consensus on best practices. This variability, compounded by challenges such as accurately disambiguating Asian names and managing unassigned gender labels, underscores the urgent need for standardized and robust methodologies. To address this critical gap, we propose the development and implementation of ``Scholarly Data Analysis (SoDA) Cards." These cards will provide a structured framework for documenting and reporting key methodological choices in scholarly data analysis, including author name disambiguation and gender identification procedures. By promoting transparency and reproducibility, SoDA Cards will facilitate more accurate comparisons and aggregations of research findings, ultimately supporting evidence-informed policymaking and enabling the longitudinal tracking of analytical approaches in the study of gender and other social biases in academia.

Authors:Siyuan Jiang, Yihan Hu, Wenjie Li, Pengcheng Zeng
Title: DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification
Abstract:
Functional data - observations in the form of curves or trajectories - arise in diverse domains such as biomedical sensing, motion capture, and handwriting recognition. A core challenge in functional data analysis (FDA) is accounting for phase variability, where misaligned temporal patterns hinder accurate inference. We introduce DeepFRC, an end-to-end deep learning framework for joint functional registration and classification. Unlike conventional approaches that decouple alignment and prediction, DeepFRC integrates class-aware elastic warping and a learnable basis representation into a unified architecture. This design enables temporal alignment and dimensionality reduction to be jointly optimized with classification, improving both interpretability and accuracy. We establish the first theoretical connection between alignment quality and generalization error, and validate our model on synthetic and real-world benchmarks. DeepFRC consistently outperforms state-of-the-art methods, especially in scenarios with complex temporal misalignment. Code is available at: https://github.com/Drivergo-93589/DeepFRC.

Authors:Siyuan Jiang, Yihan Hu, Wenjie Li, Pengcheng Zeng
Title: DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification
Abstract:
Functional data, representing curves or trajectories, are ubiquitous in fields like biomedicine and motion analysis. A fundamental challenge is phase variability -- temporal misalignments that obscure underlying patterns and degrade model performance. Current methods often address registration (alignment) and classification as separate, sequential tasks. This paper introduces DeepFRC, an end-to-end deep learning framework that jointly learns diffeomorphic warping functions and a classifier within a unified architecture. DeepFRC combines a neural deformation operator for elastic alignment, a spectral representation using Fourier basis for smooth functional embedding, and a class-aware contrastive loss that promotes both intra-class coherence and inter-class separation. We provide the first theoretical guarantees for such a joint model, proving its ability to approximate optimal warpings and establishing a data-dependent generalization bound that formally links registration fidelity to classification performance. Extensive experiments on synthetic and real-world datasets demonstrate that DeepFRC consistently outperforms state-of-the-art methods in both alignment quality and classification accuracy, while ablation studies validate the synergy of its components. DeepFRC also shows notable robustness to noise, missing data, and varying dataset scales. Code is available at https://github.com/Drivergo-93589/DeepFRC.

Authors:Yibo Wang, Tiansheng Huang, Li Shen, Huanjin Yao, Haotian Luo, Rui Liu, Naiqiang Tan, Jiaxing Huang, Dacheng Tao
Title: Panacea: Mitigating Harmful Fine-tuning for Large Language Models via Post-fine-tuning Perturbation
Abstract:
Harmful fine-tuning attack introduces significant security risks to the fine-tuning services. Mainstream defenses aim to vaccinate the model such that the later harmful fine-tuning attack is less effective. However, our evaluation results show that such defenses are fragile -- with a few fine-tuning steps, the model still can learn the harmful knowledge. To this end, we do further experiment and find that an embarrassingly simple solution -- adding purely random perturbations to the fine-tuned model, can recover the model from harmful behavior, though it leads to a degradation in the model's fine-tuning performance. To address the degradation of fine-tuning performance, we further propose Panacea, which optimizes an adaptive perturbation that will be applied to the model after fine-tuning. Panacea maintains model's safety alignment performance without compromising downstream fine-tuning performance. Comprehensive experiments are conducted on different harmful ratios, fine-tuning tasks and mainstream LLMs, where the average harmful scores are reduced by up-to 21.5%, while maintaining fine-tuning performance. As a by-product, we analyze the optimized perturbation and show that different layers in various LLMs have distinct safety coefficients. Source code available at https://github.com/w-yibo/Panacea

Authors:Kumar Ashutosh, Yossi Gandelsman, Xinlei Chen, Ishan Misra, Rohit Girdhar
Title: LLMs can see and hear without any training
Abstract:
We present MILS: Multimodal Iterative LLM Solver, a surprisingly simple, training-free approach, to imbue multimodal capabilities into your favorite LLM. Leveraging their innate ability to perform multi-step reasoning, MILS prompts the LLM to generate candidate outputs, each of which are scored and fed back iteratively, eventually generating a solution to the task. This enables various applications that typically require training specialized models on task-specific data. In particular, we establish a new state-of-the-art on emergent zero-shot image, video and audio captioning. MILS seamlessly applies to media generation as well, discovering prompt rewrites to improve text-to-image generation, and even edit prompts for style transfer! Finally, being a gradient-free optimization approach, MILS can invert multimodal embeddings into text, enabling applications like cross-modal arithmetic.

Authors:Da Chang, Yu Li, Ganzhao Yuan
Title: AlphaAdam:Asynchronous Masked Optimization with Dynamic Alpha for Selective Updates
Abstract:
In the training of large language models (LLMs), updating parameters more efficiently and stably has always been an important challenge. To achieve efficient parameter updates, existing methods usually achieve performance comparable to full parameter updates through methods such as low-dimensional decomposition or layer-wise selective updates. In this work, we propose AlphaAdam, an optimization framework for LLM from the perspective of intra-layer parameter updates. By decoupling parameter updates and dynamically adjusting their strength, AlphaAdam accelerates convergence and improves training stability. We construct parameter masks based on the consistency of historical momentum and gradient direction and combine them with an adaptive mask strength strategy to ensure efficient optimization and theoretical convergence guarantees, which is also applicable to most momentum-based optimizers. Extensive experiments show that AlphaAdam outperforms state-of-the-art methods such as AdamW in terms of convergence speed and computational efficiency across tasks, including GPT-2 pre-trained and fine-tuned RoBERTa and Llama-7B. Our AlphaAdam implements an optimizer enhancement framework for LLMs through intra-layer asynchronous masked adaptive updates. Our code is available in this https://github.com/MaeChd/AlphaAdam.

Authors:Akinori F. Ebihara, Taiki Miyagawa, Kazuyuki Sakurai, Hitoshi Imaoka
Title: Learning the Optimal Stopping for Early Classification within Finite Horizons via Sequential Probability Ratio Test
Abstract:
Time-sensitive machine learning benefits from Sequential Probability Ratio Test (SPRT), which provides an optimal stopping time for early classification of time series. However, in finite horizon scenarios, where input lengths are finite, determining the optimal stopping rule becomes computationally intensive due to the need for backward induction, limiting practical applicability. We thus introduce FIRMBOUND, an SPRT-based framework that efficiently estimates the solution to backward induction from training data, bridging the gap between optimal stopping theory and real-world deployment. It employs density ratio estimation and convex function learning to provide statistically consistent estimators for sufficient statistic and conditional expectation, both essential for solving backward induction; consequently, FIRMBOUND minimizes Bayes risk to reach optimality. Additionally, we present a faster alternative using Gaussian process regression, which significantly reduces training time while retaining low deployment overhead, albeit with potential compromise in statistical consistency. Experiments across independent and identically distributed (i.i.d.), non-i.i.d., binary, multiclass, synthetic, and real-world datasets show that FIRMBOUND achieves optimalities in the sense of Bayes risk and speed-accuracy tradeoff. Furthermore, it advances the tradeoff boundary toward optimality when possible and reduces decision-time variance, ensuring reliable decision-making. Code is publicly available at https://github.com/Akinori-F-Ebihara/FIRMBOUND

Authors:Bartosz Cywiński, Kamil Deja
Title: SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders
Abstract:
Diffusion models, while powerful, can inadvertently generate harmful or undesirable content, raising significant ethical and safety concerns. Recent machine unlearning approaches offer potential solutions but often lack transparency, making it difficult to understand the changes they introduce to the base model. In this work, we introduce SAeUron, a novel method leveraging features learned by sparse autoencoders (SAEs) to remove unwanted concepts in text-to-image diffusion models. First, we demonstrate that SAEs, trained in an unsupervised manner on activations from multiple denoising timesteps of the diffusion model, capture sparse and interpretable features corresponding to specific concepts. Building on this, we propose a feature selection method that enables precise interventions on model activations to block targeted content while preserving overall performance. Our evaluation shows that SAeUron outperforms existing approaches on the UnlearnCanvas benchmark for concepts and style unlearning, and effectively eliminates nudity when evaluated with I2P. Moreover, we show that with a single SAE, we can remove multiple concepts simultaneously and that in contrast to other methods, SAeUron mitigates the possibility of generating unwanted content under adversarial attack. Code and checkpoints are available at https://github.com/cywinski/SAeUron.

Authors:Lei Cheng, Siyang Cao
Title: TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection
Abstract:
Despite significant advancements in environment perception capabilities for autonomous driving and intelligent robotics, cameras and LiDARs remain notoriously unreliable in low-light conditions and adverse weather, which limits their effectiveness. Radar serves as a reliable and low-cost sensor that can effectively complement these limitations. However, radar-based object detection has been underexplored due to the inherent weaknesses of radar data, such as low resolution, high noise, and lack of visual information. In this paper, we present TransRAD, a novel 3D radar object detection model designed to address these challenges by leveraging the Retentive Vision Transformer (RMT) to more effectively learn features from information-dense radar Range-Azimuth-Doppler (RAD) data. Our approach leverages the Retentive Manhattan Self-Attention (MaSA) mechanism provided by RMT to incorporate explicit spatial priors, thereby enabling more accurate alignment with the spatial saliency characteristics of radar targets in RAD data and achieving precise 3D radar detection across Range-Azimuth-Doppler dimensions. Furthermore, we propose Location-Aware NMS to effectively mitigate the common issue of duplicate bounding boxes in deep radar object detection. The experimental results demonstrate that TransRAD outperforms state-of-the-art methods in both 2D and 3D radar detection tasks, achieving higher accuracy, faster inference speed, and reduced computational complexity. Code is available at https://github.com/radar-lab/TransRAD

Authors:Rui Min, Tianyu Pang, Chao Du, Qian Liu, Minhao Cheng, Min Lin
Title: Improving Your Model Ranking on Chatbot Arena by Vote Rigging
Abstract:
Chatbot Arena is a popular platform for evaluating LLMs by pairwise battles, where users vote for their preferred response from two randomly sampled anonymous models. While Chatbot Arena is widely regarded as a reliable LLM ranking leaderboard, we show that crowdsourced voting can be rigged to improve (or decrease) the ranking of a target model $m_{t}$. We first introduce a straightforward target-only rigging strategy that focuses on new battles involving $m_{t}$, identifying it via watermarking or a binary classifier, and exclusively voting for $m_{t}$ wins. However, this strategy is practically inefficient because there are over $190$ models on Chatbot Arena and on average only about $1\%$ of new battles will involve $m_{t}$. To overcome this, we propose omnipresent rigging strategies, exploiting the Elo rating mechanism of Chatbot Arena that any new vote on a battle can influence the ranking of the target model $m_{t}$, even if $m_{t}$ is not directly involved in the battle. We conduct experiments on around $1.7$ million historical votes from the Chatbot Arena Notebook, showing that omnipresent rigging strategies can improve model rankings by rigging only hundreds of new votes. While we have evaluated several defense mechanisms, our findings highlight the importance of continued efforts to prevent vote rigging. Our code is available at https://github.com/sail-sg/Rigging-ChatbotArena.

Authors:Aude Vuilliomenet, Santiago Martínez Balvanera, Oisin Mac Aodha, Kate E. Jones, Duncan Wilson
Title: acoupi: An Open-Source Python Framework for Deploying Bioacoustic AI Models on Edge Devices
Abstract:
1. Passive acoustic monitoring (PAM) coupled with artificial intelligence (AI) is becoming an essential tool for biodiversity monitoring. Traditional PAM systems require manual data offloading and impose substantial demands on storage and computing infrastructure. The combination of on-device AI-based processing and network connectivity enables local data analysis and transmission of only relevant information, greatly reducing storage needs. However, programming these devices for robust operation is challenging, requiring expertise in embedded systems and software engineering. Despite the increase in AI-based models for bioacoustics, their full potential remains unrealized without accessible tools to deploy them on custom hardware and tailor device behaviour to specific monitoring goals. 2. To address this challenge, we develop acoupi, an open-source Python framework that simplifies the creation and deployment of smart bioacoustic devices. acoupi integrates audio recording, AI-based data processing, data management, and real-time wireless messaging into a unified and configurable framework. By modularising key elements of the bioacoustic monitoring workflow, acoupi allows users to easily customise, extend, or select specific components to fit their unique monitoring needs. 3. We demonstrate the flexibility of acoupi by integrating two bioacoustic classifiers: BirdNET, for the classification of bird species, and BatDetect2, for the classification of UK bat species. We test the reliability of acoupi over a month-long deployment of two acoupi-powered devices in a UK urban park. 4. acoupi can be deployed on low-cost hardware such as the Raspberry Pi and can be customised for various applications. acoupi standardised framework and simplified tools facilitate the adoption of AI-powered PAM systems for researchers and conservationists. acoupi is on GitHub at https://github.com/acoupi/acoupi.

Authors:Ajinkya Khoche, Qingwen Zhang, Laura Pereira Sanchez, Aron Asefaw, Sina Sharif Mansouri, Patric Jensfelt
Title: SSF: Sparse Long-Range Scene Flow for Autonomous Driving
Abstract:
Scene flow enables an understanding of the motion characteristics of the environment in the 3D world. It gains particular significance in the long-range, where object-based perception methods might fail due to sparse observations far away. Although significant advancements have been made in scene flow pipelines to handle large-scale point clouds, a gap remains in scalability with respect to long-range. We attribute this limitation to the common design choice of using dense feature grids, which scale quadratically with range. In this paper, we propose Sparse Scene Flow (SSF), a general pipeline for long-range scene flow, adopting a sparse convolution based backbone for feature extraction. This approach introduces a new challenge: a mismatch in size and ordering of sparse feature maps between time-sequential point scans. To address this, we propose a sparse feature fusion scheme, that augments the feature maps with virtual voxels at missing locations. Additionally, we propose a range-wise metric that implicitly gives greater importance to faraway points. Our method, SSF, achieves state-of-the-art results on the Argoverse2 dataset, demonstrating strong performance in long-range scene flow estimation. Our code will be released at https://github.com/KTH-RPL/SSF.git.

Authors:Fabrizio Sandri, Elia Cunegatti, Giovanni Iacca
Title: 2SSP: A Two-Stage Framework for Structured Pruning of LLMs
Abstract:
We propose a novel Two-Stage framework for Structured Pruning (\textsc{2SSP}) for pruning Large Language Models (LLMs), which combines two different strategies of pruning, namely Width and Depth Pruning. The first stage (Width Pruning) removes entire neurons, hence their corresponding rows and columns, aiming to preserve the connectivity among the pruned structures in the intermediate state of the Feed-Forward Networks in each Transformer block. This is done based on an importance score measuring the impact of each neuron on the output magnitude. The second stage (Depth Pruning), instead, removes entire Attention submodules. This is done by applying an iterative process that removes the Attention with the minimum impact on a given metric of interest (in our case, perplexity). We also propose a novel mechanism to balance the sparsity rate of the two stages w.r.t. to the desired global sparsity. We test \textsc{2SSP} on four LLM families and three sparsity rates (25\%, 37.5\%, and 50\%), measuring the resulting perplexity over three language modeling datasets as well as the performance over six downstream tasks. Our method consistently outperforms five state-of-the-art competitors over three language modeling and six downstream tasks, with an up to two-order-of-magnitude gain in terms of pruning time. The code is available at https://github.com/FabrizioSandri/2SSP.

Authors:Keshav Bhandari, Geraint A. Wiggins, Simon Colton
Title: Yin-Yang: Developing Motifs With Long-Term Structure And Controllability
Abstract:
Transformer models have made great strides in generating symbolically represented music with local coherence. However, controlling the development of motifs in a structured way with global form remains an open research area. One of the reasons for this challenge is due to the note-by-note autoregressive generation of such models, which lack the ability to correct themselves after deviations from the motif. In addition, their structural performance on datasets with shorter durations has not been studied in the literature. In this study, we propose Yin-Yang, a framework consisting of a phrase generator, phrase refiner, and phrase selector models for the development of motifs into melodies with long-term structure and controllability. The phrase refiner is trained on a novel corruption-refinement strategy which allows it to produce melodic and rhythmic variations of an original motif at generation time, thereby rectifying deviations of the phrase generator. We also introduce a new objective evaluation metric for quantifying how smoothly the motif manifests itself within the piece. Evaluation results show that our model achieves better performance compared to state-of-the-art transformer models while having the advantage of being controllable and making the generated musical structure semi-interpretable, paving the way for musical analysis. Our code and demo page can be found at https://github.com/keshavbhandari/yinyang.

Authors:Ahmed Sharshar, Yasser Attia, Mohammad Yaqub, Mohsen Guizani
Title: PulmoFusion: Advancing Pulmonary Health with Efficient Multi-Modal Fusion
Abstract:
Traditional remote spirometry lacks the precision required for effective pulmonary monitoring. We present a novel, non-invasive approach using multimodal predictive models that integrate RGB or thermal video data with patient metadata. Our method leverages energy-efficient Spiking Neural Networks (SNNs) for the regression of Peak Expiratory Flow (PEF) and classification of Forced Expiratory Volume (FEV1) and Forced Vital Capacity (FVC), using lightweight CNNs to overcome SNN limitations in regression tasks. Multimodal data integration is improved with a Multi-Head Attention Layer, and we employ K-Fold validation and ensemble learning to boost robustness. Using thermal data, our SNN models achieve 92% accuracy on a breathing-cycle basis and 99.5% patient-wise. PEF regression models attain Relative RMSEs of 0.11 (thermal) and 0.26 (RGB), with an MAE of 4.52% for FEV1/FVC predictions, establishing state-of-the-art performance. Code and dataset can be found on https://github.com/ahmed-sharshar/RespiroDynamics.git

Authors:Derui Wang, Kristen Moore, Diksha Goel, Minjune Kim, Gang Li, Yang Li, Robin Doss, Minhui Xue, Bo Li, Seyit Camtepe, Liming Zhu
Title: CAMP in the Odyssey: Provably Robust Reinforcement Learning with Certified Radius Maximization
Abstract:
Deep reinforcement learning (DRL) has gained widespread adoption in control and decision-making tasks due to its strong performance in dynamic environments. However, DRL agents are vulnerable to noisy observations and adversarial attacks, and concerns about the adversarial robustness of DRL systems have emerged. Recent efforts have focused on addressing these robustness issues by establishing rigorous theoretical guarantees for the returns achieved by DRL agents in adversarial settings. Among these approaches, policy smoothing has proven to be an effective and scalable method for certifying the robustness of DRL agents. Nevertheless, existing certifiably robust DRL relies on policies trained with simple Gaussian augmentations, resulting in a suboptimal trade-off between certified robustness and certified return. To address this issue, we introduce a novel paradigm dubbed \texttt{C}ertified-r\texttt{A}dius-\texttt{M}aximizing \texttt{P}olicy (\texttt{CAMP}) training. \texttt{CAMP} is designed to enhance DRL policies, achieving better utility without compromising provable robustness. By leveraging the insight that the global certified radius can be derived from local certified radii based on training-time statistics, \texttt{CAMP} formulates a surrogate loss related to the local certified radius and optimizes the policy guided by this surrogate loss. We also introduce \textit{policy imitation} as a novel technique to stabilize \texttt{CAMP} training. Experimental results demonstrate that \texttt{CAMP} significantly improves the robustness-return trade-off across various tasks. Based on the results, \texttt{CAMP} can achieve up to twice the certified expected return compared to that of baselines. Our code is available at https://github.com/NeuralSec/camp-robust-rl.

Authors:Wonbin Kweon, Sanghwan Jang, SeongKu Kang, Hwanjo Yu
Title: Uncertainty Quantification and Decomposition for LLM-based Recommendation
Abstract:
Despite the widespread adoption of large language models (LLMs) for recommendation, we demonstrate that LLMs often exhibit uncertainty in their recommendations. To ensure the trustworthy use of LLMs in generating recommendations, we emphasize the importance of assessing the reliability of recommendations generated by LLMs. We start by introducing a novel framework for estimating the predictive uncertainty to quantitatively measure the reliability of LLM-based recommendations. We further propose to decompose the predictive uncertainty into recommendation uncertainty and prompt uncertainty, enabling in-depth analyses of the primary source of uncertainty. Through extensive experiments, we (1) demonstrate predictive uncertainty effectively indicates the reliability of LLM-based recommendations, (2) investigate the origins of uncertainty with decomposed uncertainty measures, and (3) propose uncertainty-aware prompting for a lower predictive uncertainty and enhanced recommendation. Our source code and model weights are available at https://github.com/WonbinKweon/UNC_LLM_REC_WWW2025

Authors:Xie Zhang, Chenxiao Li, Chenshu Wu
Title: TAPOR: 3D Hand Pose Reconstruction with Fully Passive Thermal Sensing for Around-Device Interactions
Abstract:
This paper presents the design and implementation of TAPOR, a privacy-preserving, non-contact, and fully passive sensing system for accurate and robust 3D hand pose reconstruction for around-device interaction using a single low-cost thermal array sensor. Thermal sensing using inexpensive and miniature thermal arrays emerges with an excellent utility-privacy balance, offering an imaging resolution significantly lower than cameras but far superior to RF signals like radar or WiFi. The design of TAPOR, however, is challenging, mainly because the captured temperature maps are low-resolution and textureless. To overcome the challenges, we investigate thermo-depth and thermo-pose properties, proposing a novel physics-inspired neural network that learns effective 3D spatial representations of potential hand poses. We then formulate the 3D pose reconstruction problem as a distinct retrieval task, enabling accurate hand pose determination from the input temperature map. To deploy TAPOR on IoT devices, we introduce an effective heterogeneous knowledge distillation method, reducing computation by 377x. TAPOR is fully implemented and tested in real-world scenarios, showing remarkable performance, supported by four gesture control and finger tracking case studies. We envision TAPOR to be a ubiquitous interface for around-device control and have open-sourced it at https://github.com/aiot-lab/TAPOR.

Authors:Daesoo Lee, Sara Malacarne, Erlend Aune
Title: Closing the Gap Between Synthetic and Ground Truth Time Series Distributions via Neural Mapping
Abstract:
In this paper, we introduce Neural Mapper for Vector Quantized Time Series Generator (NM-VQTSG), a novel method aimed at addressing fidelity challenges in vector quantized (VQ) time series generation. VQ-based methods, such as TimeVQVAE, have demonstrated success in generating time series but are hindered by two critical bottlenecks: information loss during compression into discrete latent spaces and deviations in the learned prior distribution from the ground truth distribution. These challenges result in synthetic time series with compromised fidelity and distributional accuracy. To overcome these limitations, NM-VQTSG leverages a U-Net-based neural mapping model to bridge the distributional gap between synthetic and ground truth time series. To be more specific, the model refines synthetic data by addressing artifacts introduced during generation, effectively aligning the distributions of synthetic and real data. Importantly, NM-VQTSG can be used for synthetic time series generated by any VQ-based generative method. We evaluate NM-VQTSG across diverse datasets from the UCR Time Series Classification archive, demonstrating its capability to consistently enhance fidelity in both unconditional and conditional generation tasks. The improvements are evidenced by significant improvements in FID, IS, and conditional FID, additionally backed up by visual inspection in a data space and a latent space. Our findings establish NM-VQTSG as a new method to improve the quality of synthetic time series. Our implementation is available on \url{https://github.com/ML4ITS/TimeVQVAE}.

Authors:Anh-Kiet Duong, Petra Gomez-Krämer
Title: Action Recognition Using Temporal Shift Module and Ensemble Learning
Abstract:
This paper presents the first-rank solution for the Multi-Modal Action Recognition Challenge, part of the Multi-Modal Visual Pattern Recognition Workshop at the \acl{ICPR} 2024. The competition aimed to recognize human actions using a diverse dataset of 20 action classes, collected from multi-modal sources. The proposed approach is built upon the \acl{TSM}, a technique aimed at efficiently capturing temporal dynamics in video data, incorporating multiple data input types. Our strategy included transfer learning to leverage pre-trained models, followed by meticulous fine-tuning on the challenge's specific dataset to optimize performance for the 20 action classes. We carefully selected a backbone network to balance computational efficiency and recognition accuracy and further refined the model using an ensemble technique that integrates outputs from different modalities. This ensemble approach proved crucial in boosting the overall performance. Our solution achieved a perfect top-1 accuracy on the test set, demonstrating the effectiveness of the proposed approach in recognizing human actions across 20 classes. Our code is available online https://github.com/ffyyytt/TSM-MMVPR.

Authors:Gaole He, Nilay Aishwarya, Ujwal Gadiraju
Title: Is Conversational XAI All You Need? Human-AI Decision Making With a Conversational XAI Assistant
Abstract:
Explainable artificial intelligence (XAI) methods are being proposed to help interpret and understand how AI systems reach specific predictions. Inspired by prior work on conversational user interfaces, we argue that augmenting existing XAI methods with conversational user interfaces can increase user engagement and boost user understanding of the AI system. In this paper, we explored the impact of a conversational XAI interface on users' understanding of the AI system, their trust, and reliance on the AI system. In comparison to an XAI dashboard, we found that the conversational XAI interface can bring about a better understanding of the AI system among users and higher user trust. However, users of both the XAI dashboard and conversational XAI interfaces showed clear overreliance on the AI system. Enhanced conversations powered by large language model (LLM) agents amplified over-reliance. Based on our findings, we reason that the potential cause of such overreliance is the illusion of explanatory depth that is concomitant with both XAI interfaces. Our findings have important implications for designing effective conversational XAI interfaces to facilitate appropriate reliance and improve human-AI collaboration. Code can be found at https://github.com/delftcrowd/IUI2025_ConvXAI

Authors:Matt C. Bendel, Saurav K. Shastri, Rizwan Ahmad, Philip Schniter
Title: Solving Inverse Problems using Diffusion with Iterative Colored Renoising
Abstract:
Imaging inverse problems can be solved in an unsupervised manner using pre-trained diffusion models, but doing so requires approximating the gradient of the measurement-conditional score function in the diffusion reverse process. We show that the approximations produced by existing methods are relatively poor, especially early in the reverse process, and so we propose a new approach that iteratively reestimates and "renoises" the estimate several times per diffusion step. This iterative approach, which we call Fast Iterative REnoising (FIRE), injects colored noise that is shaped to ensure that the pre-trained diffusion model always sees white noise, in accordance with how it was trained. We then embed FIRE into the DDIM reverse process and show that the resulting "DDfire" offers state-of-the-art accuracy and runtime on several linear inverse problems, as well as phase retrieval. Our implementation is at https://github.com/matt-bendel/DDfire

Authors:Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, Ling Liu
Title: Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
Abstract:
Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: \textbf{it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack}, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus

Authors:Sait Sovukluk, Christian Ott
Title: An Efficient Numerical Function Optimization Framework for Constrained Nonlinear Robotic Problems
Abstract:
This paper presents a numerical function optimization framework designed for constrained optimization problems in robotics. The tool is designed with real-time considerations and is suitable for online trajectory and control input optimization problems. The proposed framework does not require any analytical representation of the problem and works with constrained block-box optimization functions. The method combines first-order gradient-based line search algorithms with constraint prioritization through nullspace projections onto constraint Jacobian space. The tool is implemented in C++ and provided online for community use, along with some numerical and robotic example implementations presented in this paper.

Authors:Chongyu Qu, Ritchie Zhao, Ye Yu, Bin Liu, Tianyuan Yao, Junchao Zhu, Bennett A. Landman, Yucheng Tang, Yuankai Huo
Title: Post-Training Quantization for 3D Medical Image Segmentation: A Practical Study on Real Inference Engines
Abstract:
Quantizing deep neural networks ,reducing the precision (bit-width) of their computations, can remarkably decrease memory usage and accelerate processing, making these models more suitable for large-scale medical imaging applications with limited computational resources. However, many existing methods studied "fake quantization", which simulates lower precision operations during inference, but does not actually reduce model size or improve real-world inference speed. Moreover, the potential of deploying real 3D low-bit quantization on modern GPUs is still unexplored. In this study, we introduce a real post-training quantization (PTQ) framework that successfully implements true 8-bit quantization on state-of-the-art (SOTA) 3D medical segmentation models, i.e., U-Net, SegResNet, SwinUNETR, nnU-Net, UNesT, TransUNet, ST-UNet,and VISTA3D. Our approach involves two main steps. First, we use TensorRT to perform fake quantization for both weights and activations with unlabeled calibration dataset. Second, we convert this fake quantization into real quantization via TensorRT engine on real GPUs, resulting in real-world reductions in model size and inference latency. Extensive experiments demonstrate that our framework effectively performs 8-bit quantization on GPUs without sacrificing model performance. This advancement enables the deployment of efficient deep learning models in medical imaging applications where computational resources are constrained. The code and models have been released, including U-Net, TransUNet pretrained on the BTCV dataset for abdominal (13-label) segmentation, UNesT pretrained on the Whole Brain Dataset for whole brain (133-label) segmentation, and nnU-Net, SegResNet, SwinUNETR and VISTA3D pretrained on TotalSegmentator V2 for full body (104-label) segmentation. https://github.com/hrlblab/PTQ.

Authors:Hossein Mirzaei, Mojtaba Nafez, Moein Madadi, Arad Maleki, Mahdi Hajialilue, Zeinab Sadat Taghavi, Sepehr Rezaee, Ali Ansari, Bahar Dibaei Nia, Kian Shamsaie, Mohammadreza Salehi, Mackenzie W. Mathis, Mahdieh Soleymani Baghshah, Mohammad Sabokrou, Mohammad Hossein Rohban
Title: A Contrastive Teacher-Student Framework for Novelty Detection under Style Shifts
Abstract:
There have been several efforts to improve Novelty Detection (ND) performance. However, ND methods often suffer significant performance drops under minor distribution shifts caused by changes in the environment, known as style shifts. This challenge arises from the ND setup, where the absence of out-of-distribution (OOD) samples during training causes the detector to be biased toward the dominant style features in the in-distribution (ID) data. As a result, the model mistakenly learns to correlate style with core features, using this shortcut for detection. Robust ND is crucial for real-world applications like autonomous driving and medical imaging, where test samples may have different styles than the training data. Motivated by this, we propose a robust ND method that crafts an auxiliary OOD set with style features similar to the ID set but with different core features. Then, a task-based knowledge distillation strategy is utilized to distinguish core features from style features and help our model rely on core features for discriminating crafted OOD and ID sets. We verified the effectiveness of our method through extensive experimental evaluations on several datasets, including synthetic and real-world benchmarks, against nine different ND methods.

Authors:David Salinas, Omar Swelam, Frank Hutter
Title: Tuning LLM Judge Design Decisions for 1/1000 of the Cost
Abstract:
Evaluating Large Language Models (LLMs) often requires costly human annotations. To address this, LLM-based judges have been proposed, which compare the outputs of two LLMs enabling the ranking of models without human intervention. While several approaches have been proposed, many confounding factors are present between different papers. For instance the model, the prompt and other hyperparameters are typically changed at the same time making apple-to-apple comparisons challenging. In this paper, we propose to systematically analyze and tune the hyperparameters of LLM judges. To alleviate the high cost of evaluating a judge, we propose to leverage multi-objective multi-fidelity which allows to find judges that trade accuracy for cost and also significantly reduce the cost of the search. Our method identifies judges that not only outperform existing benchmarks in accuracy and cost-efficiency but also utilize open-weight models, ensuring greater accessibility and reproducibility. The code to reproduce our experiments is available at this repository https://github.com/geoalgo/judgetuning .

Authors:Zhihong Wu, Lishuang Wang, Kebin Sun, Zhuozhao Li, Ran Cheng
Title: Enabling Population-Level Parallelism in Tree-Based Genetic Programming for Comprehensive GPU Acceleration
Abstract:
Tree-based Genetic Programming (TGP) is a widely used evolutionary algorithm for tasks such as symbolic regression, classification, and robotic control. Due to the intensive computational demands of running TGP, GPU acceleration is crucial for achieving scalable performance. However, efficient GPU-based execution of TGP still remains challenging, primarily due to three core issues: (1) the structural heterogeneity of program individuals, (2) the complexity of integrating multiple levels of parallelism, and (3) the incompatibility between high-performance CUDA execution and flexible Python-based environments. To address these issues, we propose EvoGP, a high-performance framework tailored for comprehensive GPU acceleration of TGP via population-level parallel execution. First, EvoGP introduces a tensorized representation that encodes variable-sized trees into fixed-shape, memory-aligned arrays, enabling uniform memory access and parallel computation across diverse individuals. Second, EvoGP adopts an adaptive parallelism strategy that dynamically combines intra- and inter-individual parallelism based on dataset size, ensuring high GPU utilization across a broad spectrum of tasks. Third, EvoGP embeds custom CUDA kernels into the PyTorch runtime, achieving seamless integration with Python-based environments such as Gym, MuJoCo, Brax, and Genesis. Comprehensive experiments show that EvoGP achieves up to 140x speedup over state-of-the-art GPU-based TGP implementations, while maintaining competitive accuracy and significantly improving scalability under large population sizes. EvoGP is open source and accessible at: https://github.com/EMI-Group/evogp.

Authors:Hossein Mirzaei, Ali Ansari, Bahar Dibaei Nia, Mojtaba Nafez, Moein Madadi, Sepehr Rezaee, Zeinab Sadat Taghavi, Arad Maleki, Kian Shamsaie, Mahdi Hajialilue, Jafar Habibi, Mohammad Sabokrou, Mohammad Hossein Rohban
Title: Scanning Trojaned Models Using Out-of-Distribution Samples
Abstract:
Scanning for trojan (backdoor) in deep neural networks is crucial due to their significant real-world applications. There has been an increasing focus on developing effective general trojan scanning methods across various trojan attacks. Despite advancements, there remains a shortage of methods that perform effectively without preconceived assumptions about the backdoor attack method. Additionally, we have observed that current methods struggle to identify classifiers trojaned using adversarial training. Motivated by these challenges, our study introduces a novel scanning method named TRODO (TROjan scanning by Detection of adversarial shifts in Out-of-distribution samples). TRODO leverages the concept of "blind spots"--regions where trojaned classifiers erroneously identify out-of-distribution (OOD) samples as in-distribution (ID). We scan for these blind spots by adversarially shifting OOD samples towards in-distribution. The increased likelihood of perturbed OOD samples being classified as ID serves as a signature for trojan detection. TRODO is both trojan and label mapping agnostic, effective even against adversarially trained trojaned classifiers. It is applicable even in scenarios where training data is absent, demonstrating high accuracy and adaptability across various scenarios and datasets, highlighting its potential as a robust trojan scanning strategy.

Authors:J. Pablo Muñoz, Jinjie Yuan, Nilesh Jain
Title: Mamba-Shedder: Post-Transformer Compression for Efficient Selective Structured State Space Models
Abstract:
Large pre-trained models have achieved outstanding results in sequence modeling. The Transformer block and its attention mechanism have been the main drivers of the success of these models. Recently, alternative architectures, such as Selective Structured State Space Models (SSMs), have been proposed to address the inefficiencies of Transformers. This paper explores the compression of SSM-based models, particularly Mamba and its hybrids. We study the sensitivity of these models to the removal of selected components at different granularities to reduce the model size and computational overhead, thus improving their efficiency while maintaining accuracy. The proposed solutions, collectively referred to as Mamba-Shedder, achieve a speedup of up to 1.4x during inference, demonstrating that model efficiency can be improved by eliminating several redundancies with minimal impact on the overall model performance. The code is available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.

Authors:Hossein Mirzaei, Mohammad Jafari, Hamid Reza Dehbashi, Ali Ansari, Sepehr Ghobadi, Masoud Hadi, Arshia Soltani Moakhar, Mohammad Azizmalayeri, Mahdieh Soleymani Baghshah, Mohammad Hossein Rohban
Title: RODEO: Robust Outlier Detection via Exposing Adaptive Out-of-Distribution Samples
Abstract:
In recent years, there have been significant improvements in various forms of image outlier detection. However, outlier detection performance under adversarial settings lags far behind that in standard settings. This is due to the lack of effective exposure to adversarial scenarios during training, especially on unseen outliers, leading to detection models failing to learn robust features. To bridge this gap, we introduce RODEO, a data-centric approach that generates effective outliers for robust outlier detection. More specifically, we show that incorporating outlier exposure (OE) and adversarial training can be an effective strategy for this purpose, as long as the exposed training outliers meet certain characteristics, including diversity, and both conceptual differentiability and analogy to the inlier samples. We leverage a text-to-image model to achieve this goal. We demonstrate both quantitatively and qualitatively that our adaptive OE method effectively generates ``diverse'' and ``near-distribution'' outliers, leveraging information from both text and image domains. Moreover, our experimental results show that utilizing our synthesized outliers significantly enhances the performance of the outlier detector, particularly in adversarial settings.

Authors:Nikolaos Kaparinos, Vasileios Mezaris
Title: B-FPGM: Lightweight Face Detection via Bayesian-Optimized Soft FPGM Pruning
Abstract:
Face detection is a computer vision application that increasingly demands lightweight models to facilitate deployment on devices with limited computational resources. Neural network pruning is a promising technique that can effectively reduce network size without significantly affecting performance. In this work, we propose a novel face detection pruning pipeline that leverages Filter Pruning via Geometric Median (FPGM) pruning, Soft Filter Pruning (SFP) and Bayesian optimization in order to achieve a superior trade-off between size and performance compared to existing approaches. FPGM pruning is a structured pruning technique that allows pruning the least significant filters in each layer, while SFP iteratively prunes the filters and allows them to be updated in any subsequent training step. Bayesian optimization is employed in order to optimize the pruning rates of each layer, rather than relying on engineering expertise to determine the optimal pruning rates for each layer. In our experiments across all three subsets of the WIDER FACE dataset, our proposed approach B-FPGM consistently outperforms existing ones in balancing model size and performance. All our experiments were applied to EResFD, the currently smallest (in number of parameters) well-performing face detector of the literature; a small ablation study with a second small face detector, EXTD, is also reported. The source code and trained pruned face detection models can be found at: https://github.com/IDTITI/B-FPGM.

Authors:Shady Nasrat, Myungsu Kim, Seonil Lee, Jiho Lee, Yeoncheol Jang, Seung-joon Yi
Title: RDMM: Fine-Tuned LLM Models for On-Device Robotic Decision Making with Enhanced Contextual Awareness in Specific Domains
Abstract:
Large language models (LLMs) represent a significant advancement in integrating physical robots with AI-driven systems. We showcase the capabilities of our framework within the context of the real-world household competition. This research introduces a framework that utilizes RDMM (Robotics Decision-Making Models), which possess the capacity for decision-making within domain-specific contexts, as well as an awareness of their personal knowledge and capabilities. The framework leverages information to enhance the autonomous decision-making of the system. In contrast to other approaches, our focus is on real-time, on-device solutions, successfully operating on hardware with as little as 8GB of memory. Our framework incorporates visual perception models equipping robots with understanding of their environment. Additionally, the framework has integrated real-time speech recognition capabilities, thus enhancing the human-robot interaction experience. Experimental results demonstrate that the RDMM framework can plan with an 93\% accuracy. Furthermore, we introduce a new dataset consisting of 27k planning instances, as well as 1.3k text-image annotated samples derived from the competition. The framework, benchmarks, datasets, and models developed in this work are publicly available on our GitHub repository at https://github.com/shadynasrat/RDMM.

Authors:Arik Reuter, Tim G. J. Rudner, Vincent Fortuin, David Rügamer
Title: Can Transformers Learn Full Bayesian Inference in Context?
Abstract:
Transformers have emerged as the dominant architecture in the field of deep learning, with a broad range of applications and remarkable in-context learning (ICL) capabilities. While not yet fully understood, ICL has already proved to be an intriguing phenomenon, allowing transformers to learn in context -- without requiring further training. In this paper, we further advance the understanding of ICL by demonstrating that transformers can perform full Bayesian inference for commonly used statistical models in context. More specifically, we introduce a general framework that builds on ideas from prior fitted networks and continuous normalizing flows and enables us to infer complex posterior distributions for models such as generalized linear models and latent factor models. Extensive experiments on real-world datasets demonstrate that our ICL approach yields posterior samples that are similar in quality to state-of-the-art MCMC or variational inference methods that do not operate in context. The source code for this paper is available at https://github.com/ArikReuter/ICL_for_Full_Bayesian_Inference.

Authors:Lantao Li, Kang Yang, Wenqi Zhang, Xiaoxue Wang, Chen Sun
Title: RG-Attn: Radian Glue Attention for Multi-modality Multi-agent Cooperative Perception
Abstract:
Cooperative perception enhances autonomous driving by leveraging Vehicle-to-Everything (V2X) communication for multi-agent sensor fusion. However, most existing methods rely on single-modal data sharing, limiting fusion performance, particularly in heterogeneous sensor settings involving both LiDAR and cameras across vehicles and roadside units (RSUs). To address this, we propose Radian Glue Attention (RG-Attn), a lightweight and generalizable cross-modal fusion module that unifies intra-agent and inter-agent fusion via transformation-based coordinate alignment and a unified sampling/inversion strategy. RG-Attn efficiently aligns features through a radian-based attention constraint, operating column-wise on geometrically consistent regions to reduce overhead and preserve spatial coherence, thereby enabling accurate and robust fusion. Building upon RG-Attn, we propose three cooperative architectures. The first, Paint-To-Puzzle (PTP), prioritizes communication efficiency but assumes all agents have LiDAR, optionally paired with cameras. The second, Co-Sketching-Co-Coloring (CoS-CoCo), offers maximal flexibility, supporting any sensor setup (e.g., LiDAR-only, camera-only, or both) and enabling strong cross-modal generalization for real-world deployment. The third, Pyramid-RG-Attn Fusion (PRGAF), aims for peak detection accuracy with the highest computational overhead. Extensive evaluations on simulated and real-world datasets show our framework delivers state-of-the-art detection accuracy with high flexibility and efficiency. GitHub Link: https://github.com/LantaoLi/RG-Attn

Authors:Yinfeng Gao, Qichao Zhang, Da-wei Ding, Dongbin Zhao
Title: Dream to Drive with Predictive Individual World Model
Abstract:
It is still a challenging topic to make reactive driving behaviors in complex urban environments as road users' intentions are unknown. Model-based reinforcement learning (MBRL) offers great potential to learn a reactive policy by constructing a world model that can provide informative states and imagination training. However, a critical limitation in relevant research lies in the scene-level reconstruction representation learning, which may overlook key interactive vehicles and hardly model the interactive features among vehicles and their long-term intentions. Therefore, this paper presents a novel MBRL method with a predictive individual world model (PIWM) for autonomous driving. PIWM describes the driving environment from an individual-level perspective and captures vehicles' interactive relations and their intentions via trajectory prediction task. Meanwhile, a behavior policy is learned jointly with PIWM. It is trained in PIWM's imagination and effectively navigates in the urban driving scenes leveraging intention-aware latent states. The proposed method is trained and evaluated on simulation environments built upon real-world challenging interactive scenarios. Compared with popular model-free and state-of-the-art model-based reinforcement learning methods, experimental results show that the proposed method achieves the best performance in terms of safety and efficiency.

Authors:Sunbowen Lee, Shiwen Ni, Chi Wei, Shuaimin Li, Liyang Fan, Ahmadreza Argha, Hamid Alinejad-Rokny, Ruifeng Xu, Yicheng Gong, Min Yang
Title: xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking
Abstract:
Safety alignment mechanism are essential for preventing large language models (LLMs) from generating harmful information or unethical content. However, cleverly crafted prompts can bypass these safety measures without accessing the model's internal parameters, a phenomenon known as black-box jailbreak. Existing heuristic black-box attack methods, such as genetic algorithms, suffer from limited effectiveness due to their inherent randomness, while recent reinforcement learning (RL) based methods often lack robust and informative reward signals. To address these challenges, we propose a novel black-box jailbreak method leveraging RL, which optimizes prompt generation by analyzing the embedding proximity between benign and malicious prompts. This approach ensures that the rewritten prompts closely align with the intent of the original prompts while enhancing the attack's effectiveness. Furthermore, we introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success. Experimental results show the superiority of our approach, achieving state-of-the-art (SOTA) performance on several prominent open and closed-source LLMs, including Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-0806. Our method sets a new benchmark in jailbreak attack effectiveness, highlighting potential vulnerabilities in LLMs. The codebase for this work is available at https://github.com/Aegis1863/xJailbreak.

Authors:Jianing Li, Ming Lu, Hao Wang, Chenyang Gu, Wenzhao Zheng, Li Du, Shanghang Zhang
Title: SliceOcc: Indoor 3D Semantic Occupancy Prediction with Vertical Slice Representation
Abstract:
3D semantic occupancy prediction is a crucial task in visual perception, as it requires the simultaneous comprehension of both scene geometry and semantics. It plays a crucial role in understanding 3D scenes and has great potential for various applications, such as robotic vision perception and autonomous driving. Many existing works utilize planar-based representations such as Bird's Eye View (BEV) and Tri-Perspective View (TPV). These representations aim to simplify the complexity of 3D scenes while preserving essential object information, thereby facilitating efficient scene representation. However, in dense indoor environments with prevalent occlusions, directly applying these planar-based methods often leads to difficulties in capturing global semantic occupancy, ultimately degrading model performance. In this paper, we present a new vertical slice representation that divides the scene along the vertical axis and projects spatial point features onto the nearest pair of parallel planes. To utilize these slice features, we propose SliceOcc, an RGB camera-based model specifically tailored for indoor 3D semantic occupancy prediction. SliceOcc utilizes pairs of slice queries and cross-attention mechanisms to extract planar features from input images. These local planar features are then fused to form a global scene representation, which is employed for indoor occupancy prediction. Experimental results on the EmbodiedScan dataset demonstrate that SliceOcc achieves a mIoU of 15.45% across 81 indoor categories, setting a new state-of-the-art performance among RGB camera-based models for indoor 3D semantic occupancy prediction. Code is available at https://github.com/NorthSummer/SliceOcc.

Authors:Shengyuan Liu, Zhen Chen, Qiushi Yang, Weihao Yu, Di Dong, Jiancong Hu, Yixuan Yuan
Title: Polyp-Gen: Realistic and Diverse Polyp Image Generation for Endoscopic Dataset Expansion
Abstract:
Automated diagnostic systems (ADS) have shown significant potential in the early detection of polyps during endoscopic examinations, thereby reducing the incidence of colorectal cancer. However, due to high annotation costs and strict privacy concerns, acquiring high-quality endoscopic images poses a considerable challenge in the development of ADS. Despite recent advancements in generating synthetic images for dataset expansion, existing endoscopic image generation algorithms failed to accurately generate the details of polyp boundary regions and typically required medical priors to specify plausible locations and shapes of polyps, which limited the realism and diversity of the generated images. To address these limitations, we present Polyp-Gen, the first full-automatic diffusion-based endoscopic image generation framework. Specifically, we devise a spatial-aware diffusion training scheme with a lesion-guided loss to enhance the structural context of polyp boundary regions. Moreover, to capture medical priors for the localization of potential polyp areas, we introduce a hierarchical retrieval-based sampling strategy to match similar fine-grained spatial features. In this way, our Polyp-Gen can generate realistic and diverse endoscopic images for building reliable ADS. Extensive experiments demonstrate the state-of-the-art generation quality, and the synthetic images can improve the downstream polyp detection task. Additionally, our Polyp-Gen has shown remarkable zero-shot generalizability on other datasets. The source code is available at https://github.com/CUHK-AIM-Group/Polyp-Gen.

Authors:Shengyuan Liu, Zhen Chen, Qiushi Yang, Weihao Yu, Di Dong, Jiancong Hu, Yixuan Yuan
Title: Polyp-Gen: Realistic and Diverse Polyp Image Generation for Endoscopic Dataset Expansion
Abstract:
Automated diagnostic systems (ADS) have shown significant potential in the early detection of polyps during endoscopic examinations, thereby reducing the incidence of colorectal cancer. However, due to high annotation costs and strict privacy concerns, acquiring high-quality endoscopic images poses a considerable challenge in the development of ADS. Despite recent advancements in generating synthetic images for dataset expansion, existing endoscopic image generation algorithms failed to accurately generate the details of polyp boundary regions and typically required medical priors to specify plausible locations and shapes of polyps, which limited the realism and diversity of the generated images. To address these limitations, we present Polyp-Gen, the first full-automatic diffusion-based endoscopic image generation framework. Specifically, we devise a spatial-aware diffusion training scheme with a lesion-guided loss to enhance the structural context of polyp boundary regions. Moreover, to capture medical priors for the localization of potential polyp areas, we introduce a hierarchical retrieval-based sampling strategy to match similar fine-grained spatial features. In this way, our Polyp-Gen can generate realistic and diverse endoscopic images for building reliable ADS. Extensive experiments demonstrate the state-of-the-art generation quality, and the synthetic images can improve the downstream polyp detection task. Additionally, our Polyp-Gen has shown remarkable zero-shot generalizability on other datasets. The source code is available at https://github.com/CUHK-AIM-Group/Polyp-Gen.

Authors:Aashish Yadavally, Hoan Nguyen, Laurent Callot, Gauthier Guinet
Title: Large Language Model Critics for Execution-Free Evaluation of Code Changes
Abstract:
Large language models (LLMs) offer a promising way forward for automating software engineering tasks, such as bug fixes, feature additions, etc., via multi-step LLM-based agentic workflows. However, existing metrics for evaluating such workflows, mainly build status and occasionally log analysis, are too sparse and limited in providing the information needed to assess the quality of changes made. In this work, we designed LLM-based critics to derive well-structured and rigorous intermediate/step-level, execution-free evaluation proxies for repo-level code changes. Importantly, we assume access to the gold test patch for the problem (i.e., reference-aware) to assess both semantics and executability of generated patches. With the gold test patch as a reference, we predict executability of all editing locations with an F1 score of 91.6%, aggregating which, we can predict the build status in 84.8% of the instances in SWE-bench. In particular, such an execution-focused LLM critic outperforms other reference-free and reference-aware LLM critics by 38.9% to 72.5%. Moreover, we demonstrate the usefulness of such a reference-aware framework in comparing patches generated by different agentic workflows. Finally, we open-source the library developed for this project, which allows further usage for either other agentic workflows or other benchmarks. The source code is available at https://github.com/amazon-science/code-agent-eval.

Authors:Jinlan Fu, Shenzhen Huangfu, Hao Fei, Xiaoyu Shen, Bryan Hooi, Xipeng Qiu, See-Kiong Ng
Title: CHiP: Cross-modal Hierarchical Direct Preference Optimization for Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) still struggle with hallucinations despite their impressive capabilities. Recent studies have attempted to mitigate this by applying Direct Preference Optimization (DPO) to multimodal scenarios using preference pairs from text-based responses. However, our analysis of representation distributions reveals that multimodal DPO struggles to align image and text representations and to distinguish between hallucinated and non-hallucinated descriptions. To address these challenges, in this work, we propose a Cross-modal Hierarchical Direct Preference Optimization (CHiP) to address these limitations. We introduce a visual preference optimization module within the DPO framework, enabling MLLMs to learn from both textual and visual preferences simultaneously. Furthermore, we propose a hierarchical textual preference optimization module that allows the model to capture preferences at multiple granular levels, including response, segment, and token levels. We evaluate CHiP through both quantitative and qualitative analyses, with results across multiple benchmarks demonstrating its effectiveness in reducing hallucinations. On the Object HalBench dataset, CHiP outperforms DPO in hallucination reduction, achieving improvements of 52.7% and 55.5% relative points based on the base model Muffin and LLaVA models, respectively. We make all our datasets and code publicly available: https://github.com/LVUGAI/CHiP.

Authors:Ali Safarpoor Dehkordi, Ahad N. Zehmakan
Title: More Efficient Sybil Detection Mechanisms Leveraging Resistance of Users to Attack Requests
Abstract:
We investigate the problem of sybil (fake account) detection in social networks from a graph algorithms perspective, where graph structural information is used to classify users as sybil and benign. We introduce the novel notion of user resistance to attack requests (friendship requests from sybil accounts). Building on this notion, we propose a synthetic graph data generation framework that supports various attack strategies. We then study the optimization problem where we are allowed to reveal the resistance of a subset of users with the aim to maximize the number of users which are discovered to be benign and the number of potential attack edges (connections from a sybil to a benign user). Furthermore, we devise efficient algorithms for this problem and investigate their theoretical guarantees. Finally, through a large set of experiments, we demonstrate that our proposed algorithms improve detection performance notably when applied as a preprocessing step for different sybil detection algorithms. The code and data used in this work are publicly available on GitHub https://github.com/aSafarpoor/AAMAS2025-Paper/tree/main

Authors:Wenfeng Lin, Jiangchuan Wei, Boyuan Liu, Yichen Zhang, Shiyue Yan, Mingyu Guo
Title: CascadeV: An Implementation of Wurstchen Architecture for Video Generation
Abstract:
Recently, with the tremendous success of diffusion models in the field of text-to-image (T2I) generation, increasing attention has been directed toward their potential in text-to-video (T2V) applications. However, the computational demands of diffusion models pose significant challenges, particularly in generating high-resolution videos with high frame rates. In this paper, we propose CascadeV, a cascaded latent diffusion model (LDM), that is capable of producing state-of-the-art 2K resolution videos. Experiments demonstrate that our cascaded model achieves a higher compression ratio, substantially reducing the computational challenges associated with high-quality video generation. We also implement a spatiotemporal alternating grid 3D attention mechanism, which effectively integrates spatial and temporal information, ensuring superior consistency across the generated video frames. Furthermore, our model can be cascaded with existing T2V models, theoretically enabling a 4$\times$ increase in resolution or frames per second without any fine-tuning. Our code is available at https://github.com/bytedance/CascadeV.

Authors:Xiaolei Liu, Yan Sun, Zhiliang Wang, Mark Nixon
Title: Unsupervised Domain Adaptation with Dynamic Clustering and Contrastive Refinement for Gait Recognition
Abstract:
Gait recognition is an emerging identification technology that distinguishes individuals at long distances by analyzing individual walking patterns. Traditional techniques rely heavily on large-scale labeled datasets, which incurs high costs and significant labeling challenges. Recently, researchers have explored unsupervised gait recognition with clustering-based unsupervised domain adaptation methods and achieved notable success. However, these methods directly use pseudo-label generated by clustering and neglect pseudolabel noise caused by domain differences, which affects the effect of the model training process. To mitigate these issues, we proposed a novel model called GaitDCCR, which aims to reduce the influence of noisy pseudo labels on clustering and model training. Our approach can be divided into two main stages: clustering and training stage. In the clustering stage, we propose Dynamic Cluster Parameters (DCP) and Dynamic Weight Centroids (DWC) to improve the efficiency of clustering and obtain reliable cluster centroids. In the training stage, we employ the classical teacher-student structure and propose Confidence-based Pseudo-label Refinement (CPR) and Contrastive Teacher Module (CTM) to encourage noisy samples to converge towards clusters containing their true identities. Extensive experiments on public gait datasets have demonstrated that our simple and effective method significantly enhances the performance of unsupervised gait recognition, laying the foundation for its application in the real-world. We will release the code at https://github.com/YanSun-github/GaitDCCR upon acceptance.

Authors:Zheng Lian, Haoyu Chen, Lan Chen, Haiyang Sun, Licai Sun, Yong Ren, Zebang Cheng, Bin Liu, Rui Liu, Xiaojiang Peng, Jiangyan Yi, Jianhua Tao
Title: AffectGPT: A New Dataset, Model, and Benchmark for Emotion Understanding with Multimodal Large Language Models
Abstract:
The emergence of multimodal large language models (MLLMs) advances multimodal emotion recognition (MER) to the next level, from naive discriminative tasks to complex emotion understanding with advanced video understanding abilities and natural language description. However, the current community suffers from a lack of large-scale datasets with intensive, descriptive emotion annotations, as well as a multimodal-centric framework to maximize the potential of MLLMs for emotion understanding. To address this, we establish a new benchmark for MLLM-based emotion understanding with a novel dataset (MER-Caption) and a new model (AffectGPT). Utilizing our model-based crowd-sourcing data collection strategy, we construct the largest descriptive emotion dataset to date (by far), featuring over 2K fine-grained emotion categories across 115K samples. We also introduce the AffectGPT model, designed with pre-fusion operations to enhance multimodal integration. Finally, we present MER-UniBench, a unified benchmark with evaluation metrics tailored for typical MER tasks and the free-form, natural language output style of MLLMs. Extensive experimental results show AffectGPT's robust performance across various MER tasks. We have released both the code and the dataset to advance research and development in emotion understanding: https://github.com/zeroQiaoba/AffectGPT.

Authors:Robert O'Shea, Bipin Rajendran
Title: Closed-Form Feedback-Free Learning with Forward Projection
Abstract:
State-of-the-art methods for backpropagation-free learning employ local error feedback to direct iterative optimisation via gradient descent. In this study, we examine the more restrictive setting where retrograde communication from neuronal outputs is unavailable for pre-synaptic weight optimisation. To address this challenge, we propose Forward Projection (FP). This novel randomised closed-form training method requires only a single forward pass over the entire dataset for model fitting, without retrograde communication. Target values for pre-activation membrane potentials are generated layer-wise via nonlinear projections of pre-synaptic inputs and the labels. Local loss functions are optimised over pre-synaptic inputs using closed-form regression, without feedback from neuronal outputs or downstream layers. Interpretability is a key advantage of FP training; membrane potentials of hidden neurons in FP-trained networks encode information which is interpretable layer-wise as label predictions. We demonstrate the effectiveness of FP across four biomedical datasets. In few-shot learning tasks, FP yielded more generalisable models than those optimised via backpropagation. In large-sample tasks, FP-based models achieve generalisation comparable to gradient descent-based local learning methods while requiring only a single forward propagation step, achieving significant speed up for training. Interpretation functions defined on local neuronal activity in FP-based models successfully identified clinically salient features for diagnosis in two biomedical datasets. Forward Projection is a computationally efficient machine learning approach that yields interpretable neural network models without retrograde communication of neuronal activity during training.

Authors:Simon Dahan, Gabriel Bénédict, Logan Z. J. Williams, Yourong Guo, Daniel Rueckert, Robert Leech, Emma C. Robinson
Title: SIM: Surface-based fMRI Analysis for Inter-Subject Multimodal Decoding from Movie-Watching Experiments
Abstract:
Current AI frameworks for brain decoding and encoding, typically train and test models within the same datasets. This limits their utility for brain computer interfaces (BCI) or neurofeedback, for which it would be useful to pool experiences across individuals to better simulate stimuli not sampled during training. A key obstacle to model generalisation is the degree of variability of inter-subject cortical organisation, which makes it difficult to align or compare cortical signals across participants. In this paper we address this through the use of surface vision transformers, which build a generalisable model of cortical functional dynamics, through encoding the topography of cortical networks and their interactions as a moving image across a surface. This is then combined with tri-modal self-supervised contrastive (CLIP) alignment of audio, video, and fMRI modalities to enable the retrieval of visual and auditory stimuli from patterns of cortical activity (and vice-versa). We validate our approach on 7T task-fMRI data from 174 healthy participants engaged in the movie-watching experiment from the Human Connectome Project (HCP). Results show that it is possible to detect which movie clips an individual is watching purely from their brain activity, even for individuals and movies not seen during training. Further analysis of attention maps reveals that our model captures individual patterns of brain activity that reflect semantic and visual systems. This opens the door to future personalised simulations of brain function. Code & pre-trained models will be made available at https://github.com/metrics-lab/sim, processed data for training will be available upon request at https://gin.g-node.org/Sdahan30/sim.

Authors:George Wright, Slawomir Michniewski, Eleanor Jameson, Fayyaz ul Amir Afsar Minhas
Title: DepoRanker: A Web Tool to predict Klebsiella Depolymerases using Machine Learning
Abstract:
Background: Phage therapy shows promise for treating antibiotic-resistant Klebsiella infections. Identifying phage depolymerases that target Klebsiella capsular polysaccharides is crucial, as these capsules contribute to biofilm formation and virulence. However, homology-based searches have limitations in novel depolymerase discovery. Objective: To develop a machine learning model for identifying and ranking potential phage depolymerases targeting Klebsiella. Methods: We developed DepoRanker, a machine learning algorithm to rank proteins by their likelihood of being depolymerases. The model was experimentally validated on 5 newly characterized proteins and compared to BLAST. Results: DepoRanker demonstrated superior performance to BLAST in identifying potential depolymerases. Experimental validation confirmed its predictive ability on novel proteins. Conclusions: DepoRanker provides an accurate and functional tool to expedite depolymerase discovery for phage therapy against Klebsiella. It is available as a webserver and open-source software. Availability: Webserver: https://deporanker.dcs.warwick.ac.uk/ Source code: https://github.com/wgrgwrght/deporanker

Authors:Yash Yardi, Samuel Biruduganti, Lars Ankile
Title: Bridging the Sim2Real Gap: Vision Encoder Pre-Training for Visuomotor Policy Transfer
Abstract:
Simulation offers a scalable and efficient alternative to real-world data collection for learning visuomotor robotic policies. However, the simulation-to-reality, or Sim2Real distribution shift -- introduced by employing simulation-trained policies in real-world environments -- frequently prevents successful policy transfer. We present an offline framework to evaluate the performance of using large-scale pre-trained vision encoders to address the Sim2Real gap. We examine a diverse collection of encoders, assessing their ability to extract features necessary for robot control (Action Score) while remaining invariant to task-irrelevant environmental variations (Domain Invariance Score). Evaluating 23 encoders, we reveal patterns across architectures, pre-training datasets, and parameter scales. Our findings show that manipulation-pretrained encoders consistently achieve higher Action Scores, CNN-based encoders demonstrate stronger domain invariance than ViTs, and the best-performing models combine both properties, underscoring DIS and AS as complementary predictors of Sim2Real transferability.

Authors:J. Pablo Muñoz, Jinjie Yuan, Nilesh Jain
Title: Low-Rank Adapters Meet Neural Architecture Search for LLM Compression
Abstract:
The rapid expansion of Large Language Models (LLMs) has posed significant challenges regarding the computational resources required for fine-tuning and deployment. Recent advancements in low-rank adapters have demonstrated their efficacy in parameter-efficient fine-tuning (PEFT) of these models. This retrospective paper comprehensively discusses innovative approaches that synergize low-rank representations with Neural Architecture Search (NAS) techniques, particularly weight-sharing super-networks. Robust solutions for compressing and fine-tuning large pre-trained models are developed by integrating these methodologies. Our analysis highlights the potential of these combined strategies to democratize the use of LLMs, making them more accessible for deployment in resource-constrained environments. The resulting models exhibit reduced memory footprints and faster inference times, paving the way for more practical and scalable applications of LLMs. Models and code are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.

Authors:Heting Gao, Hang Shao, Xiong Wang, Chaofan Qiu, Yunhang Shen, Siqi Cai, Yuchen Shi, Zihan Xu, Zuwei Long, Yike Zhang, Shaoqi Dong, Chaoyou Fu, Ke Li, Long Ma, Xing Sun
Title: LUCY: Linguistic Understanding and Control Yielding Early Stage of Her
Abstract:
The film Her features Samantha, a sophisticated AI audio agent who is capable of understanding both linguistic and paralinguistic information in human speech and delivering real-time responses that are natural, informative and sensitive to emotional subtleties. Moving one step toward more sophisticated audio agent from recent advancement in end-to-end (E2E) speech systems, we propose LUCY, a E2E speech model that (1) senses and responds to user's emotion, (2) deliver responses in a succinct and natural style, and (3) use external tool to answer real-time inquiries. Experiment results show that LUCY is better at emotion control than peer models, generating emotional responses based on linguistic emotional instructions and responding to paralinguistic emotional cues. Lucy is also able to generate responses in a more natural style, as judged by external language models, without sacrificing much performance on general question answering. Finally, LUCY can leverage function calls to answer questions that are out of its knowledge scope.

Authors:Weixin Liang, Junhong Shen, Genghan Zhang, Ning Dong, Luke Zettlemoyer, Lili Yu
Title: Mixture-of-Mamba: Enhancing Multi-Modal State-Space Models with Modality-Aware Sparsity
Abstract:
State Space Models (SSMs) have emerged as efficient alternatives to Transformers for sequential modeling, but their inability to leverage modality-specific features limits their performance in multi-modal pretraining. Here, we propose Mixture-of-Mamba, a novel SSM architecture that introduces modality-aware sparsity through modality-specific parameterization of the Mamba block. Building on Mixture-of-Transformers (W. Liang et al. arXiv:2411.04996; 2024), we extend the benefits of modality-aware sparsity to SSMs while preserving their computational efficiency. We evaluate Mixture-of-Mamba across three multi-modal pretraining settings: Transfusion (interleaved text and continuous image tokens with diffusion loss), Chameleon (interleaved text and discrete image tokens), and an extended three-modality framework incorporating speech. Mixture-of-Mamba consistently reaches the same loss values at earlier training steps with significantly reduced computational costs. In the Transfusion setting, Mixture-of-Mamba achieves equivalent image loss using only 34.76% of the training FLOPs at the 1.4B scale. In the Chameleon setting, Mixture-of-Mamba reaches similar image loss with just 42.50% of the FLOPs at the 1.4B scale, and similar text loss with just 65.40% of the FLOPs. In the three-modality setting, MoM matches speech loss at 24.80% of the FLOPs at the 1.4B scale. Our ablation study highlights the synergistic effects of decoupling projection components, where joint decoupling yields greater gains than individual modifications. These results establish modality-aware sparsity as a versatile and effective design principle, extending its impact from Transformers to SSMs and setting new benchmarks in multi-modal pretraining. Our code can be accessed at https://github.com/Weixin-Liang/Mixture-of-Mamba

Authors:Younggun Kim, Mohamed Abdel-Aty, Beomsik Cho, Seonghoon Ryoo, Soomok Lee
Title: MSCN: Multi-view Structural Convolution Network for Domain-Invariant Point Cloud Recognition of Autonomous Vehicles
Abstract:
Although LiDAR sensors have become indispensable for autonomous vehicles (AVs) due to their ability to provide accurate 3D scene understanding and robust perception under adverse weather conditions, the properties of LiDAR point clouds vary widely across sensor configurations and data acquisition domains, leading to severe performance degradation when models are transferred between heterogeneous sensors or from simulation to the real world. To address this challenge, we propose the Multi-view Structural Convolution Network (MSCN), a novel architecture designed to achieve domain-invariant recognition across diverse LiDAR configurations and environments. MSCN comprises Structural Convolution Layers (SCL) that extract local context geometric features from point clouds and Structural Aggregation Layers (SAL) that extract and aggregate both local and overall context features from point clouds. Furthermore, we incorporate an unseen domain generation strategy to mitigate domain gaps during training. Extensive experiments demonstrate that MSCN consistently outperforms state-of-the-art point cloud classification methods across all domain change scenarios. These results highlight MSCN as a scalable solution for deploying LiDAR-based perception systems of AVs. Our code is available at https://github.com/MLMLab/MSCN.

Authors:Jacopo Di Ventura, Dylan R. Ashley, Vincent Herrmann, Francesco Faccio, Jürgen Schmidhuber
Title: Upside Down Reinforcement Learning with Policy Generators
Abstract:
Upside Down Reinforcement Learning (UDRL) is a promising framework for solving reinforcement learning problems which focuses on learning command-conditioned policies. In this work, we extend UDRL to the task of learning a command-conditioned generator of deep neural network policies. We accomplish this using Hypernetworks - a variant of Fast Weight Programmers, which learn to decode input commands representing a desired expected return into command-specific weight matrices. Our method, dubbed Upside Down Reinforcement Learning with Policy Generators (UDRLPG), streamlines comparable techniques by removing the need for an evaluator or critic to update the weights of the generator. To counteract the increased variance in last returns caused by not having an evaluator, we decouple the sampling probability of the buffer from the absolute number of policies in it, which, together with a simple weighting strategy, improves the empirical convergence of the algorithm. Compared with existing algorithms, UDRLPG achieves competitive performance and high returns, sometimes outperforming more complex architectures. Our experiments show that a trained generator can generalize to create policies that achieve unseen returns zero-shot. The proposed method appears to be effective in mitigating some of the challenges associated with learning highly multimodal functions. Altogether, we believe that UDRLPG represents a promising step forward in achieving greater empirical sample efficiency in RL. A full implementation of UDRLPG is publicly available at https://github.com/JacopoD/udrlpg_

Authors:Li Pang, Jing Yao, Kaiyu Li, Xiangyong Cao
Title: SPECIAL: Zero-shot Hyperspectral Image Classification With CLIP
Abstract:
Hyperspectral image (HSI) classification aims at categorizing each pixel in an HSI into a specific land cover class, which is crucial for applications like remote sensing, environmental monitoring, and agriculture. Although deep learning-based HSI classification methods have achieved significant advancements, existing methods still rely on manually labeled data for training, which is both time-consuming and labor-intensive. To address this limitation, we introduce a novel zero-shot hyperspectral image classification framework based on CLIP (SPECIAL), aiming to eliminate the need for manual annotations. The SPECIAL framework consists of two main stages: (1) CLIP-based pseudo-label generation, and (2) noisy label learning. In the first stage, HSI is spectrally interpolated to produce RGB bands. These bands are subsequently classified using CLIP, resulting in noisy pseudo-labels that are accompanied by confidence scores. To improve the quality of these labels, we propose a scaling strategy that fuses predictions from multiple spatial scales. In the second stage, spectral information and a label refinement technique are incorporated to mitigate label noise and further enhance classification accuracy. Experimental results on three benchmark datasets demonstrate that our SPECIAL outperforms existing methods in zero-shot HSI classification, showing its potential for more practical applications. The code is available at https://github.com/LiPang/SPECIAL.

Authors:Tatiana Taís Schein, Gustavo Pereira de Almeira, Stephanie Loi Brião, Rodrigo Andrade de Bem, Felipe Gomes de Oliveira, Paulo L. J. Drews-Jr
Title: UDBE: Unsupervised Diffusion-based Brightness Enhancement in Underwater Images
Abstract:
Activities in underwater environments are paramount in several scenarios, which drives the continuous development of underwater image enhancement techniques. A major challenge in this domain is the depth at which images are captured, with increasing depth resulting in a darker environment. Most existing methods for underwater image enhancement focus on noise removal and color adjustment, with few works dedicated to brightness enhancement. This work introduces a novel unsupervised learning approach to underwater image enhancement using a diffusion model. Our method, called UDBE, is based on conditional diffusion to maintain the brightness details of the unpaired input images. The input image is combined with a color map and a Signal-Noise Relation map (SNR) to ensure stable training and prevent color distortion in the output images. The results demonstrate that our approach achieves an impressive accuracy rate in the datasets UIEB, SUIM and RUIE, well-established underwater image benchmarks. Additionally, the experiments validate the robustness of our approach, regarding the image quality metrics PSNR, SSIM, UIQM, and UISM, indicating the good performance of the brightness enhancement process. The source code is available here: https://github.com/gusanagy/UDBE.

Authors:Wenxuan Xie, Fanpu Cao
Title: SWIFT: Mapping Sub-series with Wavelet Decomposition Improves Time Series Forecasting
Abstract:
In recent work on time-series prediction, Transformers and even large language models have garnered significant attention due to their strong capabilities in sequence modeling. However, in practical deployments, time-series prediction often requires operation in resource-constrained environments, such as edge devices, which are unable to handle the computational overhead of large models. To address such scenarios, some lightweight models have been proposed, but they exhibit poor performance on non-stationary sequences. In this paper, we propose $\textit{SWIFT}$, a lightweight model that is not only powerful, but also efficient in deployment and inference for Long-term Time Series Forecasting (LTSF). Our model is based on three key points: (i) Utilizing wavelet transform to perform lossless downsampling of time series. (ii) Achieving cross-band information fusion with a learnable filter. (iii) Using only one shared linear layer or one shallow MLP for sub-series' mapping. We conduct comprehensive experiments, and the results show that $\textit{SWIFT}$ achieves state-of-the-art (SOTA) performance on multiple datasets, offering a promising method for edge computing and deployment in this task. Moreover, it is noteworthy that the number of parameters in $\textit{SWIFT-Linear}$ is only 25\% of what it would be with a single-layer linear model for time-domain prediction. Our code is available at https://github.com/LancelotXWX/SWIFT.

Authors:Anh-Kiet Duong, Petra Gomez-Krämer
Title: Addressing Out-of-Label Hazard Detection in Dashcam Videos: Insights from the COOOL Challenge
Abstract:
This paper presents a novel approach for hazard analysis in dashcam footage, addressing the detection of driver reactions to hazards, the identification of hazardous objects, and the generation of descriptive captions. We first introduce a method for detecting driver reactions through speed and sound anomaly detection, leveraging unsupervised learning techniques. For hazard detection, we employ a set of heuristic rules as weak classifiers, which are combined using an ensemble method. This ensemble approach is further refined with differential privacy to mitigate overconfidence, ensuring robustness despite the lack of labeled data. Lastly, we use state-of-the-art vision-language models for hazard captioning, generating descriptive labels for the detected hazards. Our method achieved the highest scores in the Challenge on Out-of-Label in Autonomous Driving, demonstrating its effectiveness across all three tasks. Source codes are publicly available at https://github.com/ffyyytt/COOOL_2025.

Authors:Zhibo Ren, Pritthijit Nath, Pancham Shukla
Title: Improving Tropical Cyclone Forecasting With Video Diffusion Models
Abstract:
Tropical cyclone (TC) forecasting is crucial for disaster preparedness and mitigation. While recent deep learning approaches have shown promise, existing methods often treat TC evolution as a series of independent frame-to-frame predictions, limiting their ability to capture long-term dynamics. We present a novel application of video diffusion models for TC forecasting that explicitly models temporal dependencies through additional temporal layers. Our approach enables the model to generate multiple frames simultaneously, better capturing cyclone evolution patterns. We introduce a two-stage training strategy that significantly improves individual-frame quality and performance in low-data regimes. Experimental results show our method outperforms the previous approach of Nath et al. by 19.3% in MAE, 16.2% in PSNR, and 36.1% in SSIM. Most notably, we extend the reliable forecasting horizon from 36 to 50 hours. Through comprehensive evaluation using both traditional metrics and Fréchet Video Distance (FVD), we demonstrate that our approach produces more temporally coherent forecasts while maintaining competitive single-frame quality. Code accessible at https://github.com/Ren-creater/forecast-video-diffmodels.

Authors:Xiang Huang, Hao Peng, Shuo Sun, Zhifeng Hao, Hui Lin, Shuhai Wang
Title: Multi-View Attention Syntactic Enhanced Graph Convolutional Network for Aspect-based Sentiment Analysis
Abstract:
Aspect-based Sentiment Analysis (ABSA) is the task aimed at predicting the sentiment polarity of aspect words within sentences. Recently, incorporating graph neural networks (GNNs) to capture additional syntactic structure information in the dependency tree derived from syntactic dependency parsing has been proven to be an effective paradigm for boosting ABSA. Despite GNNs enhancing model capability by fusing more types of information, most works only utilize a single topology view of the dependency tree or simply conflate different perspectives of information without distinction, which limits the model performance. To address these challenges, in this paper, we propose a new multi-view attention syntactic enhanced graph convolutional network (MASGCN) that weighs different syntactic information of views using attention mechanisms. Specifically, we first construct distance mask matrices from the dependency tree to obtain multiple subgraph views for GNNs. To aggregate features from different views, we propose a multi-view attention mechanism to calculate the attention weights of views. Furthermore, to incorporate more syntactic information, we fuse the dependency type information matrix into the adjacency matrices and present a structural entropy loss to learn the dependency type adjacency matrix. Comprehensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art methods. The codes and datasets are available at https://github.com/SELGroup/MASGCN.

Authors:Jiahao Chen, Bin Qin, Jiangmeng Li, Hao Chen, Bing Su
Title: Rethinking the Bias of Foundation Model under Long-tailed Distribution
Abstract:
Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. However, most existing methods primarily focus on leveraging knowledge from these models, overlooking the inherent biases introduced by the imbalanced training data they rely on. In this paper, we examine how such imbalances from pre-training affect long-tailed downstream tasks. Specifically, we find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance. During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies. Moreover, we find that parameter imbalance cannot be effectively addressed by current re-balancing techniques, such as adjusting the logits, during training, unlike data imbalance. To tackle both imbalances simultaneously, we build our method on causal learning and view the incomplete semantic factor as the confounder, which brings spurious correlations between input samples and labels. To resolve the negative effects of this, we propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels, rather than merely fitting the correlations in the data. Notably, we achieve an average performance increase of about $1.67\%$ on each dataset. Code is available: https://github.com/JiahaoChen1/Pre-train-Imbalance

Authors:Chengting Yu, Xiaochen Zhao, Lei Liu, Shu Yang, Gaoang Wang, Erping Li, Aili Wang
Title: Efficient Logit-based Knowledge Distillation of Deep Spiking Neural Networks for Full-Range Timestep Deployment
Abstract:
Spiking Neural Networks (SNNs) are emerging as a brain-inspired alternative to traditional Artificial Neural Networks (ANNs), prized for their potential energy efficiency on neuromorphic hardware. Despite this, SNNs often suffer from accuracy degradation compared to ANNs and face deployment challenges due to fixed inference timesteps, which require retraining for adjustments, limiting operational flexibility. To address these issues, our work considers the spatio-temporal property inherent in SNNs, and proposes a novel distillation framework for deep SNNs that optimizes performance across full-range timesteps without specific retraining, enhancing both efficacy and deployment adaptability. We provide both theoretical analysis and empirical validations to illustrate that training guarantees the convergence of all implicit models across full-range timesteps. Experimental results on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet demonstrate state-of-the-art performance among distillation-based SNNs training methods. Our code is available at https://github.com/Intelli-Chip-Lab/snn\_temporal\_decoupling\_distillation.

Authors:Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia Zhou, Yiqun Liu
Title: Parametric Retrieval Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) techniques have emerged as a promising solution to enhance the reliability of large language models (LLMs) by addressing issues like hallucinations, outdated knowledge, and domain adaptation. In particular, existing RAG methods append relevant documents retrieved from external corpus or databases to the input of LLMs to guide their generation process, which we refer to as the in-context knowledge injection method. While this approach is simple and often effective, it has inherent limitations. Firstly, increasing the context length and number of relevant documents can lead to higher computational overhead and degraded performance, especially in complex reasoning tasks. More importantly, in-context knowledge injection operates primarily at the input level, but LLMs store their internal knowledge in their parameters. This gap fundamentally limits the capacity of in-context methods. To this end, we introduce Parametric retrieval-augmented generation (Parametric RAG), a new RAG paradigm that integrates external knowledge directly into the parameters of feed-forward networks (FFN) of an LLM through document parameterization. This approach not only saves online computational costs by eliminating the need to inject multiple documents into the LLMs' input context, but also deepens the integration of external knowledge into the parametric knowledge space of the LLM. Experimental results demonstrate that Parametric RAG substantially enhances both the effectiveness and efficiency of knowledge augmentation in LLMs. Also, it can be combined with in-context RAG methods to achieve even better performance. We have open-sourced all the code, data, and models in the following anonymized GitHub link: https://github.com/oneal2000/PRAG

Authors:Karahan Sarıtaş, Peter Dayan, Tingke Shen, Surabhi S Nath
Title: Complexity in Complexity: Understanding Visual Complexity Through Structure, Color, and Surprise
Abstract:
Understanding how humans perceive visual complexity is a key area of study in visual cognition. Previous approaches to modeling visual complexity assessments have often resulted in intricate, difficult-to-interpret algorithms that employ numerous features or sophisticated deep learning architectures. While these complex models achieve high performance on specific datasets, they often sacrifice interpretability, making it challenging to understand the factors driving human perception of complexity. Recently (Shen, et al. 2024) proposed an interpretable segmentation-based model that accurately predicted complexity across various datasets, supporting the idea that complexity can be explained simply. In this work, we investigate the failure of their model to capture structural, color and surprisal contributions to complexity. To this end, we propose Multi-Scale Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale Unique Color (MUC) which quantifies colorfulness across multiple scales, and surprise scores generated using a Large Language Model. We test our features on existing benchmarks and a novel dataset (Surprising Visual Genome) containing surprising images from Visual Genome. Our experiments demonstrate that modeling complexity accurately is not as simple as previously thought, requiring additional perceptual and semantic factors to address dataset biases. Our model improves predictive performance while maintaining interpretability, offering deeper insights into how visual complexity is perceived and assessed. Our code, analysis and data are available at https://github.com/Complexity-Project/Complexity-in-Complexity.

Authors:Kentaro Kurihara, Masato Mita, Peinan Zhang, Shota Sasaki, Ryosuke Ishigami, Naoaki Okazaki
Title: LCTG Bench: LLM Controlled Text Generation Benchmark
Abstract:
The rise of large language models (LLMs) has led to more diverse and higher-quality machine-generated text. However, their high expressive power makes it difficult to control outputs based on specific business instructions. In response, benchmarks focusing on the controllability of LLMs have been developed, but several issues remain: (1) They primarily cover major languages like English and Chinese, neglecting low-resource languages like Japanese; (2) Current benchmarks employ task-specific evaluation metrics, lacking a unified framework for selecting models based on controllability across different use cases. To address these challenges, this research introduces LCTG Bench, the first Japanese benchmark for evaluating the controllability of LLMs. LCTG Bench provides a unified framework for assessing control performance, enabling users to select the most suitable model for their use cases based on controllability. By evaluating nine diverse Japanese-specific and multilingual LLMs like GPT-4, we highlight the current state and challenges of controllability in Japanese LLMs and reveal the significant gap between multilingual models and Japanese-specific models.

Authors:Moritz Mock, Thomas Borsani, Giuseppe Di Fatta, Barbara Russo
Title: Optimizing Deep Learning Models to Address Class Imbalance in Code Comment Classification
Abstract:
Developers rely on code comments to document their work, track issues, and understand the source code. As such, comments provide valuable insights into developers' understanding of their code and describe their various intentions in writing the surrounding code. Recent research leverages natural language processing and deep learning to classify comments based on developers' intentions. However, such labelled data are often imbalanced, causing learning models to perform poorly. This work investigates the use of different weighting strategies of the loss function to mitigate the scarcity of certain classes in the dataset. In particular, various RoBERTa-based transformer models are fine-tuned by means of a hyperparameter search to identify their optimal parameter configurations. Additionally, we fine-tuned the transformers with different weighting strategies for the loss function to address class imbalances. Our approach outperforms the STACC baseline by 8.9 per cent on the NLBSE'25 Tool Competition dataset in terms of the average F1$_c$ score, and exceeding the baseline approach in 17 out of 19 cases with a gain ranging from -5.0 to 38.2. The source code is publicly available at https://github.com/moritzmock/NLBSE2025.

Authors:Ruiqi Wu, Na Su, Chenran Zhang, Tengfei Ma, Tao Zhou, Zhiting Cui, Nianfeng Tang, Tianyu Mao, Yi Zhou, Wen Fan, Tianxing Wu, Shenqi Jing, Huazhu Fu
Title: MM-Retinal V2: Transfer an Elite Knowledge Spark into Fundus Vision-Language Pretraining
Abstract:
Vision-language pretraining (VLP) has been investigated to generalize across diverse downstream tasks for fundus image analysis. Although recent methods showcase promising achievements, they significantly rely on large-scale private image-text data but pay less attention to the pretraining manner, which limits their further advancements. In this work, we introduce MM-Retinal V2, a high-quality image-text paired dataset comprising CFP, FFA, and OCT image modalities. Then, we propose a novel fundus vision-language pretraining model, namely KeepFIT V2, which is pretrained by integrating knowledge from the elite data spark into categorical public datasets. Specifically, a preliminary textual pretraining is adopted to equip the text encoder with primarily ophthalmic textual knowledge. Moreover, a hybrid image-text knowledge injection module is designed for knowledge transfer, which is essentially based on a combination of global semantic concepts from contrastive learning and local appearance details from generative learning. Extensive experiments across zero-shot, few-shot, and linear probing settings highlight the generalization and transferability of KeepFIT V2, delivering performance competitive to state-of-the-art fundus VLP models trained on large-scale private image-text datasets. Our dataset and model are publicly available via https://github.com/lxirich/MM-Retinal.

Authors:Yu Li, Yi Huang, Guilin Qi, Junlan Feng, Nan Hu, Songlin Zhai, Haohan Xue, Yongrui Chen, Ruoyan Shen, Tongtong Wu
Title: Harnessing Diverse Perspectives: A Multi-Agent Framework for Enhanced Error Detection in Knowledge Graphs
Abstract:
Knowledge graphs are widely used in industrial applications, making error detection crucial for ensuring the reliability of downstream applications. Existing error detection methods often fail to effectively utilize fine-grained subgraph information and rely solely on fixed graph structures, while also lacking transparency in their decision-making processes, which results in suboptimal detection performance. In this paper, we propose a novel Multi-Agent framework for Knowledge Graph Error Detection (MAKGED) that utilizes multiple large language models (LLMs) in a collaborative setting. By concatenating fine-grained, bidirectional subgraph embeddings with LLM-based query embeddings during training, our framework integrates these representations to produce four specialized agents. These agents utilize subgraph information from different dimensions to engage in multi-round discussions, thereby improving error detection accuracy and ensuring a transparent decision-making process. Extensive experiments on FB15K and WN18RR demonstrate that MAKGED outperforms state-of-the-art methods, enhancing the accuracy and robustness of KG evaluation. For specific industrial scenarios, our framework can facilitate the training of specialized agents using domain-specific knowledge graphs for error detection, which highlights the potential industrial application value of our framework. Our code and datasets are available at https://github.com/kse-ElEvEn/MAKGED.

Authors:Edoardo Cetin, Tianyu Zhao, Yujin Tang
Title: Large Language Models to Diffusion Finetuning
Abstract:
We propose a new finetuning method to provide pre-trained large language models (LMs) the ability to scale test-time compute through the diffusion framework. By increasing the number of diffusion steps, we show our finetuned models achieve monotonically increasing accuracy, directly translating to improved performance across downstream tasks. Furthermore, our finetuned models can expertly answer questions on specific topics by integrating powerful guidance techniques, and autonomously determine the compute required for a given problem by leveraging adaptive ODE solvers. Our method is universally applicable to any foundation model pre-trained with a cross-entropy loss and does not modify any of its original weights, fully preserving its strong single-step generation capabilities. We show our method is more effective and fully compatible with traditional finetuning approaches, introducing an orthogonal new direction to unify the strengths of the autoregressive and diffusion frameworks.

Authors:Karam Park, Jae Woong Soh, Nam Ik Cho
Title: Efficient Attention-Sharing Information Distillation Transformer for Lightweight Single Image Super-Resolution
Abstract:
Transformer-based Super-Resolution (SR) methods have demonstrated superior performance compared to convolutional neural network (CNN)-based SR approaches due to their capability to capture long-range dependencies. However, their high computational complexity necessitates the development of lightweight approaches for practical use. To address this challenge, we propose the Attention-Sharing Information Distillation (ASID) network, a lightweight SR network that integrates attention-sharing and an information distillation structure specifically designed for Transformer-based SR methods. We modify the information distillation scheme, originally designed for efficient CNN operations, to reduce the computational load of stacked self-attention layers, effectively addressing the efficiency bottleneck. Additionally, we introduce attention-sharing across blocks to further minimize the computational cost of self-attention operations. By combining these strategies, ASID achieves competitive performance with existing SR methods while requiring only around 300K parameters - significantly fewer than existing CNN-based and Transformer-based SR models. Furthermore, ASID outperforms state-of-the-art SR methods when the number of parameters is matched, demonstrating its efficiency and effectiveness. The code and supplementary material are available on the project page.

Authors:Muhammad Maaz, Timothy C. Y. Chan
Title: Formal Verification of Markov Processes with Learned Parameters
Abstract:
We introduce the problem of formally verifying properties of Markov processes where the parameters are given by the output of machine learning models. For a broad class of machine learning models, including linear models, tree-based models, and neural networks, verifying properties of Markov chains like reachability, hitting time, and total reward can be formulated as a bilinear program. We develop a decomposition and bound propagation scheme for solving the bilinear program and show through computational experiments that our method solves the problem to global optimality up to 100x faster than state-of-the-art solvers. To demonstrate the practical utility of our approach, we apply it to a real-world healthcare case study. Along with the paper, we release markovml, an open-source tool for building Markov processes, integrating pretrained machine learning models, and verifying their properties, available at https://github.com/mmaaz-git/markovml.

Authors:Jialun Cai, Mengyuan Liu, Hong Liu, Wenhao Li, Shuheng Zhou
Title: NanoHTNet: Nano Human Topology Network for Efficient 3D Human Pose Estimation
Abstract:
The widespread application of 3D human pose estimation (HPE) is limited by resource-constrained edge devices, requiring more efficient models. A key approach to enhancing efficiency involves designing networks based on the structural characteristics of input data. However, effectively utilizing the structural priors in human skeletal inputs remains challenging. To address this, we leverage both explicit and implicit spatio-temporal priors of the human body through innovative model design and a pre-training proxy task. First, we propose a Nano Human Topology Network (NanoHTNet), a tiny 3D HPE network with stacked Hierarchical Mixers to capture explicit features. Specifically, the spatial Hierarchical Mixer efficiently learns the human physical topology across multiple semantic levels, while the temporal Hierarchical Mixer with discrete cosine transform and low-pass filtering captures local instantaneous movements and global action coherence. Moreover, Efficient Temporal-Spatial Tokenization (ETST) is introduced to enhance spatio-temporal interaction and reduce computational complexity significantly. Second, PoseCLR is proposed as a general pre-training method based on contrastive learning for 3D HPE, aimed at extracting implicit representations of human topology. By aligning 2D poses from diverse viewpoints in the proxy task, PoseCLR aids 3D HPE encoders like NanoHTNet in more effectively capturing the high-dimensional features of the human body, leading to further performance improvements. Extensive experiments verify that NanoHTNet with PoseCLR outperforms other state-of-the-art methods in efficiency, making it ideal for deployment on edge devices like the Jetson Nano. Code and models are available at https://github.com/vefalun/NanoHTNet.

Authors:Ashim Dahal, Saydul Akbar Murad, Nick Rahimi
Title: Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Abstract:
Algorithmic level developments like Convolutional Neural Networks, transformers, attention mechanism, Retrieval Augmented Generation and so on have changed Artificial Intelligence. Recent such development was observed by Kolmogorov-Arnold Networks that suggested to challenge the fundamental concept of a Neural Network, thus change Multilayer Perceptron, and Convolutional Neural Networks. They received a good reception in terms of scientific modeling, yet had some drawbacks in terms of efficiency. In this paper, we train Convolutional Kolmogorov Arnold Networks (CKANs) with the ImageNet-1k dataset with 1.3 million images, MNIST dataset with 60k images and a tabular biological science related MoA dataset and test the promise of CKANs in terms of FLOPS, Inference Time, number of trainable parameters and training time against the accuracy, precision, recall and f-1 score they produce against the standard industry practice on CNN models. We show that the CKANs perform fair yet slower than CNNs in small size dataset like MoA and MNIST but are not nearly comparable as the dataset gets larger and more complex like the ImageNet. The code implementation of this paper can be found on the link: https://github.com/ashimdahal/Study-of-Convolutional-Kolmogorov-Arnold-networks

Authors:Tianfu Wang, Yi Zhan, Jianxun Lian, Zhengyu Hu, Nicholas Jing Yuan, Qi Zhang, Xing Xie, Hui Xiong
Title: LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System
Abstract:
Intelligent Tutoring Systems (ITSs) have revolutionized education by offering personalized learning experiences. However, as goal-oriented learning, which emphasizes efficiently achieving specific objectives, becomes increasingly important in professional contexts, existing ITSs often struggle to deliver this type of targeted learning experience. In this paper, we propose GenMentor, an LLM-powered multi-agent framework designed to deliver goal-oriented, personalized learning within ITS. GenMentor begins by accurately mapping learners' goals to required skills using a fine-tuned LLM trained on a custom goal-to-skill dataset. After identifying the skill gap, it schedules an efficient learning path using an evolving optimization approach, driven by a comprehensive and dynamic profile of learners' multifaceted status. Additionally, GenMentor tailors learning content with an exploration-drafting-integration mechanism to align with individual learner needs. Extensive automated and human evaluations demonstrate GenMentor's effectiveness in learning guidance and content quality. Furthermore, we have deployed it in practice and also implemented it as an application. Practical human study with professional learners further highlights its effectiveness in goal alignment and resource targeting, leading to enhanced personalization. Supplementary resources are available at https://github.com/GeminiLight/gen-mentor.

Authors:Yuxuan Gu, Wuyang Zhou, Giorgos Iacovides, Danilo Mandic
Title: TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs
Abstract:
The reasoning abilities of Large Language Models (LLMs) can be improved by structurally denoising their weights, yet existing techniques primarily focus on denoising the feed-forward network (FFN) of the transformer block, and can not efficiently utilise the Multi-head Attention (MHA) block, which is the core of transformer architectures. To address this issue, we propose a novel intuitive framework that, at its very core, performs MHA compression through a multi-head tensorisation process and the Tucker decomposition. This enables both higher-dimensional structured denoising and compression of the MHA weights, by enforcing a shared higher-dimensional subspace across the weights of the multiple attention heads. We demonstrate that this approach consistently enhances the reasoning capabilities of LLMs across multiple benchmark datasets, and for both encoder-only and decoder-only architectures, while achieving compression rates of up to $\sim 250$ times in the MHA weights, all without requiring any additional data, training, or fine-tuning. Furthermore, we show that the proposed method can be seamlessly combined with existing FFN-only-based denoising techniques to achieve further improvements in LLM reasoning performance.

Authors:Ayush Gupta, Rama Chellappa
Title: MimicGait: A Model Agnostic approach for Occluded Gait Recognition using Correlational Knowledge Distillation
Abstract:
Gait recognition is an important biometric technique over large distances. State-of-the-art gait recognition systems perform very well in controlled environments at close range. Recently, there has been an increased interest in gait recognition in the wild prompted by the collection of outdoor, more challenging datasets containing variations in terms of illumination, pitch angles, and distances. An important problem in these environments is that of occlusion, where the subject is partially blocked from camera view. While important, this problem has received little attention. Thus, we propose MimicGait, a model-agnostic approach for gait recognition in the presence of occlusions. We train the network using a multi-instance correlational distillation loss to capture both inter-sequence and intra-sequence correlations in the occluded gait patterns of a subject, utilizing an auxiliary Visibility Estimation Network to guide the training of the proposed mimic network. We demonstrate the effectiveness of our approach on challenging real-world datasets like GREW, Gait3D and BRIAR. We release the code in https://github.com/Ayush-00/mimicgait.

Authors:Vaclav Knapp, Matyas Bohacek
Title: Can Pose Transfer Models Generate Realistic Human Motion?
Abstract:
Recent pose-transfer methods aim to generate temporally consistent and fully controllable videos of human action where the motion from a reference video is reenacted by a new identity. We evaluate three state-of-the-art pose-transfer methods -- AnimateAnyone, MagicAnimate, and ExAvatar -- by generating videos with actions and identities outside the training distribution and conducting a participant study about the quality of these videos. In a controlled environment of 20 distinct human actions, we find that participants, presented with the pose-transferred videos, correctly identify the desired action only 42.92% of the time. Moreover, the participants find the actions in the generated videos consistent with the reference (source) videos only 36.46% of the time. These results vary by method: participants find the splatting-based ExAvatar more consistent and photorealistic than the diffusion-based AnimateAnyone and MagicAnimate.

Authors:Yang Ji, Ying Sun, Yuting Zhang, Zhigaoyuan Wang, Yuanxin Zhuang, Zheng Gong, Dazhong Shen, Chuan Qin, Hengshu Zhu, Hui Xiong
Title: A Comprehensive Survey on Self-Interpretable Neural Networks
Abstract:
Neural networks have achieved remarkable success across various fields. However, the lack of interpretability limits their practical use, particularly in critical decision-making scenarios. Post-hoc interpretability, which provides explanations for pre-trained models, is often at risk of robustness and fidelity. This has inspired a rising interest in self-interpretable neural networks, which inherently reveal the prediction rationale through the model structures. Although there exist surveys on post-hoc interpretability, a comprehensive and systematic survey of self-interpretable neural networks is still missing. To address this gap, we first collect and review existing works on self-interpretable neural networks and provide a structured summary of their methodologies from five key perspectives: attribution-based, function-based, concept-based, prototype-based, and rule-based self-interpretation. We also present concrete, visualized examples of model explanations and discuss their applicability across diverse scenarios, including image, text, graph data, and deep reinforcement learning. Additionally, we summarize existing evaluation metrics for self-interpretability and identify open challenges in this field, offering insights for future research. To support ongoing developments, we present a publicly accessible resource to track advancements in this domain: https://github.com/yangji721/Awesome-Self-Interpretable-Neural-Network.

Authors:Ali Khodabandeh Yalabadi, Mehdi Yazdani-Jahromi, Ozlem Ozmen Garibay
Title: BoKDiff: Best-of-K Diffusion Alignment for Target-Specific 3D Molecule Generation
Abstract:
Structure-based drug design (SBDD) leverages the 3D structure of biomolecular targets to guide the creation of new therapeutic agents. Recent advances in generative models, including diffusion models and geometric deep learning, have demonstrated promise in optimizing ligand generation. However, the scarcity of high-quality protein-ligand complex data and the inherent challenges in aligning generated ligands with target proteins limit the effectiveness of these methods. We propose BoKDiff, a novel framework that enhances ligand generation by combining multi-objective optimization and Best-of-K alignment methodologies. Built upon the DecompDiff model, BoKDiff generates diverse candidates and ranks them using a weighted evaluation of molecular properties such as QED, SA, and docking scores. To address alignment challenges, we introduce a method that relocates the center of mass of generated ligands to their docking poses, enabling accurate sub-component extraction. Additionally, we integrate a Best-of-N (BoN) sampling approach, which selects the optimal ligand from multiple generated candidates without requiring fine-tuning. BoN achieves exceptional results, with QED values exceeding 0.6, SA scores above 0.75, and a success rate surpassing 35%, demonstrating its efficiency and practicality. BoKDiff achieves state-of-the-art results on the CrossDocked2020 dataset, including a -8.58 average Vina docking score and a 26% success rate in molecule generation. This study is the first to apply Best-of-K alignment and Best-of-N sampling to SBDD, highlighting their potential to bridge generative modeling with practical drug discovery requirements. The code is provided at https://github.com/khodabandeh-ali/BoKDiff.git.

Authors:Jiajun Dong, Chengkun Wang, Wenzhao Zheng, Lei Chen, Jiwen Lu, Yansong Tang
Title: GaussianToken: An Effective Image Tokenizer with 2D Gaussian Splatting
Abstract:
Effective image tokenization is crucial for both multi-modal understanding and generation tasks due to the necessity of the alignment with discrete text data. To this end, existing approaches utilize vector quantization (VQ) to project pixels onto a discrete codebook and reconstruct images from the discrete representation. However, compared with the continuous latent space, the limited discrete codebook space significantly restrict the representational ability of these image tokenizers. In this paper, we propose GaussianToken: An Effective Image Tokenizer with 2D Gaussian Splatting as a solution. We first represent the encoded samples as multiple flexible featured 2D Gaussians characterized by positions, rotation angles, scaling factors, and feature coefficients. We adopt the standard quantization for the Gaussian features and then concatenate the quantization results with the other intrinsic Gaussian parameters before the corresponding splatting operation and the subsequent decoding module. In general, GaussianToken integrates the local influence of 2D Gaussian distribution into the discrete space and thus enhances the representation capability of the image tokenizer. Competitive reconstruction performances on CIFAR, Mini-ImageNet, and ImageNet-1K demonstrate the effectiveness of our framework. Our code is available at: https://github.com/ChrisDong-THU/GaussianToken.

Authors:Chenglong Ma, Zilong Li, Yuanlin Li, Jing Han, Junping Zhang, Yi Zhang, Jiannan Liu, Hongming Shan
Title: Radiologist-in-the-Loop Self-Training for Generalizable CT Metal Artifact Reduction
Abstract:
Metal artifacts in computed tomography (CT) images can significantly degrade image quality and impede accurate diagnosis. Supervised metal artifact reduction (MAR) methods, trained using simulated datasets, often struggle to perform well on real clinical CT images due to a substantial domain gap. Although state-of-the-art semi-supervised methods use pseudo ground-truths generated by a prior network to mitigate this issue, their reliance on a fixed prior limits both the quality and quantity of these pseudo ground-truths, introducing confirmation bias and reducing clinical applicability. To address these limitations, we propose a novel Radiologist-In-the-loop SElf-training framework for MAR, termed RISE-MAR, which can integrate radiologists' feedback into the semi-supervised learning process, progressively improving the quality and quantity of pseudo ground-truths for enhanced generalization on real clinical CT images. For quality assurance, we introduce a clinical quality assessor model that emulates radiologist evaluations, effectively selecting high-quality pseudo ground-truths for semi-supervised training. For quantity assurance, our self-training framework iteratively generates additional high-quality pseudo ground-truths, expanding the clinical dataset and further improving model generalization. Extensive experimental results on multiple clinical datasets demonstrate the superior generalization performance of our RISE-MAR over state-of-the-art methods, advancing the development of MAR models for practical application. Code is available at https://github.com/Masaaki-75/rise-mar.

Authors:Zeyu Gan, Yun Liao, Yong Liu
Title: Rethinking External Slow-Thinking: From Snowball Errors to Probability of Correct Reasoning
Abstract:
Test-time scaling, which is also often referred to as slow-thinking, has been demonstrated to enhance multi-step reasoning in large language models (LLMs). However, despite its widespread utilization, the mechanisms underlying slow-thinking methods remain poorly understood. This paper explores the mechanisms of external slow-thinking from a theoretical standpoint. We begin by examining the snowball error effect within the LLM reasoning process and connect it to the likelihood of correct reasoning using information theory. Building on this, we show that external slow-thinking methods can be interpreted as strategies to mitigate the error probability. We further provide a comparative analysis of popular external slow-thinking approaches, ranging from simple to complex, highlighting their differences and interrelationships. Our findings suggest that the efficacy of these methods is not primarily determined by the specific framework employed, and that expanding the search scope or the model's internal reasoning capacity may yield more sustained improvements in the long term. We open-source our code at https://github.com/ZyGan1999/Snowball-Errors-and-Probability.

Authors:Zhiyuan Fan, Weinong Wang, Xing Wu, Debing Zhang
Title: SedarEval: Automated Evaluation using Self-Adaptive Rubrics
Abstract:
The evaluation paradigm of LLM-as-judge gains popularity due to its significant reduction in human labor and time costs. This approach utilizes one or more large language models (LLMs) to assess the quality of outputs from other LLMs. However, existing methods rely on generic scoring rubrics that fail to consider the specificities of each question and its problem-solving process, compromising precision and stability in assessments. Inspired by human examination scoring processes, we propose a new evaluation paradigm based on self-adaptive rubrics. Specifically, we create detailed scoring rubrics for each question, capturing the primary and secondary criteria in a structured format of scoring and deduction points that mimic a human evaluator's analytical process. Building on this paradigm, we further develop a novel benchmark called SedarEval, which covers a range of domains including long-tail knowledge, mathematics, coding, and logical reasoning. SedarEval consists of 1,000 meticulously crafted questions, each with its own self-adaptive rubric. To further streamline the evaluation, we train a specialized evaluator language model (evaluator LM) to supplant human graders. Using the same training data, our evaluator LM achieves a higher concordance rate with human grading results than other paradigms, including GPT-4, highlighting the superiority and efficiency of our approach. We release our dataset at https://github.com/wwn1233/sedareval.

Authors:Soheil Gharatappeh, Salimeh Yasaei Sekeh
Title: Information Consistent Pruning: How to Efficiently Search for Sparse Networks?
Abstract:
Iterative magnitude pruning methods (IMPs), proven to be successful in reducing the number of insignificant nodes in over-parameterized deep neural networks (DNNs), have been getting an enormous amount of attention with the rapid deployment of DNNs into cutting-edge technologies with computation and memory constraints. Despite IMPs popularity in pruning networks, a fundamental limitation of existing IMP algorithms is the significant training time required for each pruning iteration. Our paper introduces a novel \textit{stopping criterion} for IMPs that monitors information and gradient flows between networks layers and minimizes the training time. Information Consistent Pruning (\ourmethod{}) eliminates the need to retrain the network to its original performance during intermediate steps while maintaining overall performance at the end of the pruning process. Through our experiments, we demonstrate that our algorithm is more efficient than current IMPs across multiple dataset-DNN combinations. We also provide theoretical insights into the core idea of our algorithm alongside mathematical explanations of flow-based IMP. Our code is available at \url{https://github.com/Sekeh-Lab/InfCoP}.

Authors:Dakuan Lu, Xiaoyu Tan, Rui Xu, Tianchu Yao, Chao Qu, Wei Chu, Yinghui Xu, Yuan Qi
Title: SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Abstract:
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.

Authors:Romeo Sommerfeld, Christian Helms, Ralf Herbrich
Title: Approximate Message Passing for Bayesian Neural Networks
Abstract:
Bayesian neural networks (BNNs) offer the potential for reliable uncertainty quantification and interpretability, which are critical for trustworthy AI in high-stakes domains. However, existing methods often struggle with issues such as overconfidence, hyperparameter sensitivity, and posterior collapse, leaving room for alternative approaches. In this work, we advance message passing (MP) for BNNs and present a novel framework that models the predictive posterior as a factor graph. To the best of our knowledge, our framework is the first MP method that handles convolutional neural networks and avoids double-counting training data, a limitation of previous MP methods that causes overconfidence. We evaluate our approach on CIFAR-10 with a convolutional neural network of roughly 890k parameters and find that it can compete with the SOTA baselines AdamW and IVON, even having an edge in terms of calibration. On synthetic data, we validate the uncertainty estimates and observe a strong correlation (0.9) between posterior credible intervals and its probability of covering the true data-generating function outside the training range. While our method scales to an MLP with 5.6 million parameters, further improvements are necessary to match the scale and performance of state-of-the-art variational inference methods.

Authors:Lin Yueyu, Li Zhiyuan, Peter Yue, Liu Xiao
Title: ARWKV: Pretrain is not what we need, an RNN-Attention-Based Language Model Born from Transformer
Abstract:
As is known, hybrid quadratic and subquadratic attention models in multi-head architectures have surpassed both Transformer and Linear RNN models , with these works primarily focusing on reducing KV complexity and improving efficiency. For further research on expressiveness, we introduce our series of models distilled from Qwen 2.5, based on pure native RWKV-7 attention, which aims to make RNN more expressive and demonstrates state tracking ability beyond transformers. We work with QRWK 32B based on RWKV-6 architecture, another approach that reduces the entire knowledge processing time to just 8 hours using 16 AMD MI300X GPUs while maintaining Qwen 2.5's performance. In fact, the distillation process can utilize any LLM, not just Qwen, and enables knowledge transfer from larger LLMs to smaller ones with more fewer tokens. We will explain the detailed process and share our insights on building more powerful foundation models. Please note that this is an ongoing work that will be updated continuously. The model checkpoints and source code are available at \href{https://github.com/yynil/RWKVInside}{https://github.com/yynil/RWKVInside}, \href{https://huggingface.co/RWKV-Red-Team/ARWKV-7B-Preview-0.1}{https://huggingface.co/RWKV-Red-Team/ARWKV-7B-Preview-0.1}.

Authors:Jiahang Tu, Qian Feng, Jiahua Dong, Hanbin Zhao, Chao Zhang, Nicu Sebe, Hui Qian
Title: CE-SDWV: Effective and Efficient Concept Erasure for Text-to-Image Diffusion Models via a Semantic-Driven Word Vocabulary
Abstract:
Large-scale text-to-image (T2I) diffusion models have achieved remarkable generative performance about various concepts. With the limitation of privacy and safety in practice, the generative capability concerning NSFW (Not Safe For Work) concepts is undesirable, e.g., producing sexually explicit photos, and licensed images. The concept erasure task for T2I diffusion models has attracted considerable attention and requires an effective and efficient method. To achieve this goal, we propose a CE-SDWV framework, which removes the target concepts (e.g., NSFW concepts) of T2I diffusion models in the text semantic space by only adjusting the text condition tokens and does not need to re-train the original T2I diffusion model's weights. Specifically, our framework first builds a target concept-related word vocabulary to enhance the representation of the target concepts within the text semantic space, and then utilizes an adaptive semantic component suppression strategy to ablate the target concept-related semantic information in the text condition tokens. To further adapt the above text condition tokens to the original image semantic space, we propose an end-to-end gradient-orthogonal token optimization strategy. Extensive experiments on I2P and UnlearnCanvas benchmarks demonstrate the effectiveness and efficiency of our method. Code is available at https://github.com/TtuHamg/CE-SDWV.

Authors:Jiadong Shi, Chunyu Duan, Hao Lei, Liangmin Wang
Title: Real-CATS: A Practical Training Ground for Emerging Research on Cryptocurrency Cybercrime Detection
Abstract:
Cybercriminals pose a significant threat to blockchain trading security, causing $40.9 billion in losses in 2024. However, the lack of an effective real-world address dataset hinders the advancement of cybercrime detection research. The anti-cybercrime efforts of researchers from broader fields, such as statistics and artificial intelligence, are blocked by data scarcity. In this paper, we present Real-CATS, a Real-world dataset of Cryptocurrency Addresses with Transaction profileS, serving as a practical training ground for developing and assessing detection methods. Real-CATS comprises 103,203 criminal addresses from real-world reports and 106,196 benign addresses from exchange customers. It satifies the C3R characteristics (Comprehensiveness, Classifiability, Customizability, and Real-world Transferability), which are fundemental for practical detection of cryptocurrency cybercrime. The dataset provides three main functions: 1) effective evaluation of detection methods, 2) support for feature extensions, and 3) a new evaluation scenario for real-world deployment. Real-CATS also offers opportunities to expand cybercrime measurement studies. It is particularly beneficial for researchers without cryptocurrency-related knowledge to engage in this emerging research field. We hope that studies on cryptocurrency cybercrime detection will be promoted by an increasing number of cross-disciplinary researchers drawn to this versatile data platform. All datasets are available at https://github.com/sjdseu/Real-CATS

Authors:Oubo Ma, Linkang Du, Yang Dai, Chunyi Zhou, Qingming Li, Yuwen Pu, Shouling Ji
Title: UNIDOOR: A Universal Framework for Action-Level Backdoor Attacks in Deep Reinforcement Learning
Abstract:
Deep reinforcement learning (DRL) is widely applied to safety-critical decision-making scenarios. However, DRL is vulnerable to backdoor attacks, especially action-level backdoors, which pose significant threats through precise manipulation and flexible activation, risking outcomes like vehicle collisions or drone crashes. The key distinction of action-level backdoors lies in the utilization of the backdoor reward function to associate triggers with target actions. Nevertheless, existing studies typically rely on backdoor reward functions with fixed values or conditional flipping, which lack universality across diverse DRL tasks and backdoor designs, resulting in fluctuations or even failure in practice. This paper proposes the first universal action-level backdoor attack framework, called UNIDOOR, which enables adaptive exploration of backdoor reward functions through performance monitoring, eliminating the reliance on expert knowledge and grid search. We highlight that action tampering serves as a crucial component of action-level backdoor attacks in continuous action scenarios, as it addresses attack failures caused by low-frequency target actions. Extensive evaluations demonstrate that UNIDOOR significantly enhances the attack performance of action-level backdoors, showcasing its universality across diverse attack scenarios, including single/multiple agents, single/multiple backdoors, discrete/continuous action spaces, and sparse/dense reward signals. Furthermore, visualization results encompassing state distribution, neuron activation, and animations demonstrate the stealthiness of UNIDOOR. The source code of UNIDOOR can be found at https://github.com/maoubo/UNIDOOR.

Authors:Xingjian Zhang, Xi Weng, Yihao Yue, Zhaoxin Fan, Wenjun Wu, Lei Huang
Title: TinyLLaVA-Video: Towards Smaller LMMs for Video Understanding with Group Resampler
Abstract:
Video behavior recognition and scene understanding are fundamental tasks in multimodal intelligence, serving as critical building blocks for numerous real-world applications. Through large multimodal models (LMMs) have achieved remarkable progress in video understanding, most existing open-source models rely on over 7B parameters and require large-scale datasets for training, making them resource-intensive and inaccessible to many researchers. Furthermore, lightweight models face persistent challenges in effectively processing long visual sequences and temporal understanding. In this work, we introduce TinyLLaVA-Video, a lightweight yet powerful video understanding model with approximately 3.6B parameters. The cornerstone of our design is the video-level group resampler, a novel mechanism that significantly reduces and controls the number of visual tokens at the video level. Unlike traditional image-level resampler, our approach effectively mitigates redundancy while enhancing temporal comprehension, leading to improved performance on video-based tasks. In addition, TinyLLaVA-Video demonstrates exceptional efficiency, requiring only one day of training on 8 A100-40G GPUs. It surpasses several existing 7B-parameter models on multiple benchmarks. We believe this work provides a valuable foundation for future research on lightweight video understanding models. The code and weights is available at https://github.com/ZhangXJ199/TinyLLaVA-Video.

Authors:JiaKui Hu, Lujia Jin, Zhengjian Yao, Yanye Lu
Title: Universal Image Restoration Pre-training via Degradation Classification
Abstract:
This paper proposes the Degradation Classification Pre-Training (DCPT), which enables models to learn how to classify the degradation type of input images for universal image restoration pre-training. Unlike the existing self-supervised pre-training methods, DCPT utilizes the degradation type of the input image as an extremely weak supervision, which can be effortlessly obtained, even intrinsic in all image restoration datasets. DCPT comprises two primary stages. Initially, image features are extracted from the encoder. Subsequently, a lightweight decoder, such as ResNet18, is leveraged to classify the degradation type of the input image solely based on the features extracted in the first stage, without utilizing the input image. The encoder is pre-trained with a straightforward yet potent DCPT, which is used to address universal image restoration and achieve outstanding performance. Following DCPT, both convolutional neural networks (CNNs) and transformers demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover, previous self-supervised pretraining methods, such as masked image modeling, discard the decoder after pre-training, while our DCPT utilizes the pre-trained parameters more effectively. This superiority arises from the degradation classifier acquired during DCPT, which facilitates transfer learning between models of identical architecture trained on diverse degradation types. Source code and models are available at https://github.com/MILab-PKU/dcpt.

Authors:Dan Song, Shumeng Huo, Wenhui Li, Lanjun Wang, Chao Xue, An-An Liu
Title: Domain Adaptation from Generated Multi-Weather Images for Unsupervised Maritime Object Classification
Abstract:
The classification and recognition of maritime objects are crucial for enhancing maritime safety, monitoring, and intelligent sea environment prediction. However, existing unsupervised methods for maritime object classification often struggle with the long-tail data distributions in both object categories and weather conditions. In this paper, we construct a dataset named AIMO produced by large-scale generative models with diverse weather conditions and balanced object categories, and collect a dataset named RMO with real-world images where long-tail issue exists. We propose a novel domain adaptation approach that leverages AIMO (source domain) to address the problem of limited labeled data, unbalanced distribution and domain shift in RMO (target domain), enhance the generalization of source features with the Vision-Language Models such as CLIP, and propose a difficulty score for curriculum learning to optimize training process. Experimental results shows that the proposed method significantly improves the classification accuracy, particularly for samples within rare object categories and weather conditions. Datasets and codes will be publicly available at https://github.com/honoria0204/AIMO.

Authors:Tong Lei, Kyle T. Rizzo, Brian N. Bailey
Title: PhoTorch: A robust and generalized biochemical photosynthesis model fitting package based on PyTorch
Abstract:
Advancements in artificial intelligence (AI) have greatly benefited plant phenotyping and predictive modeling. However, unrealized opportunities exist in leveraging AI advancements in model parameter optimization for parameter fitting in complex biophysical models. This work developed novel software, PhoTorch, for fitting parameters of the Farquhar, von Caemmerer, and Berry (FvCB) biochemical photosynthesis model based the parameter optimization components of the popular AI framework PyTorch. The primary novelty of the software lies in its computational efficiency, robustness of parameter estimation, and flexibility in handling different types of response curves and sub-model functional forms. PhoTorch can fit both steady-state and non-steady-state gas exchange data with high efficiency and accuracy. Its flexibility allows for optional fitting of temperature and light response parameters, and can simultaneously fit light response curves and standard A/Ci curves. These features are not available within presently available A/Ci curve fitting packages. Results illustrated the robustness and efficiency of PhoTorch in fitting A/Ci curves with high variability and some level of artifacts and noise. PhoTorch is more than four times faster than benchmark software, which may be relevant when processing many non-steady-state A/Ci curves with hundreds of data points per curve. PhoTorch provides researchers from various fields with a reliable and efficient tool for analyzing photosynthetic data. The Python package is openly accessible from the repository: https://github.com/GEMINI-Breeding/photorch.

Authors:Zhenkai Wu, Xiaowen Ma, Rongrong Lian, Kai Zheng, Mengting Ma, Wei Zhang, Siyang Song
Title: CD-Lamba: Boosting Remote Sensing Change Detection via a Cross-Temporal Locally Adaptive State Space Model
Abstract:
Mamba, with its advantages of global perception and linear complexity, has been widely applied to identify changes of the target regions within the remote sensing (RS) images captured under complex scenarios and varied conditions. However, existing remote sensing change detection (RSCD) approaches based on Mamba frequently struggle to effectively perceive the inherent locality of change regions as they direct flatten and scan RS images (i.e., the features of the same region of changes are not distributed continuously within the sequence but are mixed with features from other regions throughout the sequence). In this paper, we propose a novel locally adaptive SSM-based approach, termed CD-Lamba, which effectively enhances the locality of change detection while maintaining global perception. Specifically, our CD-Lamba includes a Locally Adaptive State-Space Scan (LASS) strategy for locality enhancement, a Cross-Temporal State-Space Scan (CTSS) strategy for bi-temporal feature fusion, and a Window Shifting and Perception (WSP) mechanism to enhance interactions across segmented windows. These strategies are integrated into a multi-scale Cross-Temporal Locally Adaptive State-Space Scan (CT-LASS) module to effectively highlight changes and refine changes' representations feature generation. CD-Lamba significantly enhances local-global spatio-temporal interactions in bi-temporal images, offering improved performance in RSCD tasks. Extensive experimental results show that CD-Lamba achieves state-of-the-art performance on four benchmark datasets with a satisfactory efficiency-accuracy trade-off. Our code is publicly available at https://github.com/xwmaxwma/rschange.

Authors:Zengran Wang, Yanan Zhang, Jiaxin Chen, Di Huang
Title: Breaking the SSL-AL Barrier: A Synergistic Semi-Supervised Active Learning Framework for 3D Object Detection
Abstract:
To address the annotation burden in LiDAR-based 3D object detection, active learning (AL) methods offer a promising solution. However, traditional active learning approaches solely rely on a small amount of labeled data to train an initial model for data selection, overlooking the potential of leveraging the abundance of unlabeled data. Recently, attempts to integrate semi-supervised learning (SSL) into AL with the goal of leveraging unlabeled data have faced challenges in effectively resolving the conflict between the two paradigms, resulting in less satisfactory performance. To tackle this conflict, we propose a Synergistic Semi-Supervised Active Learning framework, dubbed as S-SSAL. Specifically, from the perspective of SSL, we propose a Collaborative PseudoScene Pre-training (CPSP) method that effectively learns from unlabeled data without introducing adverse effects. From the perspective of AL, we design a Collaborative Active Learning (CAL) method, which complements the uncertainty and diversity methods by model cascading. This allows us to fully exploit the potential of the CPSP pre-trained model. Extensive experiments conducted on KITTI and Waymo demonstrate the effectiveness of our S-SSAL framework. Notably, on the KITTI dataset, utilizing only 2% labeled data, S-SSAL can achieve performance comparable to models trained on the full dataset. The code has been released at https://github.com/LandDreamer/S_SSAL.

Authors:Jiaqi Li, Xueyao Zhang, Yuancheng Wang, Haorui He, Chaoren Wang, Li Wang, Huan Liao, Junyi Ao, Zeyu Xie, Yiqiao Huang, Junan Zhang, Zhizheng Wu
Title: Overview of the Amphion Toolkit (v0.2)
Abstract:
Amphion is an open-source toolkit for Audio, Music, and Speech Generation, designed to lower the entry barrier for junior researchers and engineers in these fields. It provides a versatile framework that supports a variety of generation tasks and models. In this report, we introduce Amphion v0.2, the second major release developed in 2024. This release features a 100K-hour open-source multilingual dataset, a robust data preparation pipeline, and novel models for tasks such as text-to-speech, audio coding, and voice conversion. Furthermore, the report includes multiple tutorials that guide users through the functionalities and usage of the newly released models.

Authors:Han Wang, Rui Yang Tan, Roy Ka-Wei Lee
Title: Cross-Modal Transfer from Memes to Videos: Addressing Data Scarcity in Hateful Video Detection
Abstract:
Detecting hate speech in online content is essential to ensuring safer digital spaces. While significant progress has been made in text and meme modalities, video-based hate speech detection remains under-explored, hindered by a lack of annotated datasets and the high cost of video annotation. This gap is particularly problematic given the growing reliance on large models, which demand substantial amounts of training data. To address this challenge, we leverage meme datasets as both a substitution and an augmentation strategy for training hateful video detection models. Our approach introduces a human-assisted reannotation pipeline to align meme dataset labels with video datasets, ensuring consistency with minimal labeling effort. Using two state-of-the-art vision-language models, we demonstrate that meme data can substitute for video data in resource-scarce scenarios and augment video datasets to achieve further performance gains. Our results consistently outperform state-of-the-art benchmarks, showcasing the potential of cross-modal transfer learning for advancing hateful video detection. Dataset and code are available at https://github.com/Social-AI-Studio/CrossModalTransferLearning.

Authors:Hossein Mirzaei, Mojtaba Nafez, Jafar Habibi, Mohammad Sabokrou, Mohammad Hossein Rohban
Title: Mitigating Spurious Negative Pairs for Robust Industrial Anomaly Detection
Abstract:
Despite significant progress in Anomaly Detection (AD), the robustness of existing detection methods against adversarial attacks remains a challenge, compromising their reliability in critical real-world applications such as autonomous driving. This issue primarily arises from the AD setup, which assumes that training data is limited to a group of unlabeled normal samples, making the detectors vulnerable to adversarial anomaly samples during testing. Additionally, implementing adversarial training as a safeguard encounters difficulties, such as formulating an effective objective function without access to labels. An ideal objective function for adversarial training in AD should promote strong perturbations both within and between the normal and anomaly groups to maximize margin between normal and anomaly distribution. To address these issues, we first propose crafting a pseudo-anomaly group derived from normal group samples. Then, we demonstrate that adversarial training with contrastive loss could serve as an ideal objective function, as it creates both inter- and intra-group perturbations. However, we notice that spurious negative pairs compromise the conventional contrastive loss to achieve robust AD. Spurious negative pairs are those that should be closely mapped but are erroneously separated. These pairs introduce noise and misguide the direction of inter-group adversarial perturbations. To overcome the effect of spurious negative pairs, we define opposite pairs and adversarially pull them apart to strengthen inter-group perturbations. Experimental results demonstrate our superior performance in both clean and adversarial scenarios, with a 26.1% improvement in robust detection across various challenging benchmark datasets. The implementation of our work is available at: https://github.com/rohban-lab/COBRA.

Authors:Junrui Liu, Tong Li, Di Wu, Zifang Tang, Yuan Fang, Zhen Yang
Title: An Aspect Performance-aware Hypergraph Neural Network for Review-based Recommendation
Abstract:
Online reviews allow consumers to provide detailed feedback on various aspects of items. Existing methods utilize these aspects to model users' fine-grained preferences for specific item features through graph neural networks. We argue that the performance of items on different aspects is important for making precise recommendations, which has not been taken into account by existing approaches, due to lack of data. In this paper, we propose an aspect performance-aware hypergraph neural network (APH) for the review-based recommendation, which learns the performance of items from the conflicting sentiment polarity of user reviews. Specifically, APH comprehensively models the relationships among users, items, aspects, and sentiment polarity by systematically constructing an aspect hypergraph based on user reviews. In addition, APH aggregates aspects representing users and items by employing an aspect performance-aware hypergraph aggregation method. It aggregates the sentiment polarities from multiple users by jointly considering user preferences and the semantics of their sentiments, determining the weights of sentiment polarities to infer the performance of items on various aspects. Such performances are then used as weights to aggregate neighboring aspects. Experiments on six real-world datasets demonstrate that APH improves MSE, Precision@5, and Recall@5 by an average of 2.30%, 4.89%, and 1.60% over the best baseline. The source code and data are available at https://github.com/dianziliu/APH.

Authors:Liang Shang, William A. Sethares, Anusha Adluru, Andrew L. Alexander, Vivek Prabhakaran, Veena A. Nair, Nagesh Adluru
Title: Stroke Lesion Segmentation using Multi-Stage Cross-Scale Attention
Abstract:
Precise characterization of stroke lesions from MRI data has immense value in prognosticating clinical and cognitive outcomes following a stroke. Manual stroke lesion segmentation is time-consuming and requires the expertise of neurologists and neuroradiologists. Often, lesions are grossly characterized for their location and overall extent using bounding boxes without specific delineation of their boundaries. While such characterization provides some clinical value, to develop a precise mechanistic understanding of the impact of lesions on post-stroke vascular contributions to cognitive impairments and dementia (VCID), the stroke lesions need to be fully segmented with accurate boundaries. This work introduces the Multi-Stage Cross-Scale Attention (MSCSA) mechanism, applied to the U-Net family, to improve the mapping between brain structural features and lesions of varying sizes. Using the Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 dataset, MSCSA outperforms all baseline methods in both Dice and F1 scores on a subset focusing on small lesions, while maintaining competitive performance across the entire dataset. Notably, the ensemble strategy incorporating MSCSA achieves the highest scores for Dice and F1 on both the full dataset and the small lesion subset. These results demonstrate the effectiveness of MSCSA in segmenting small lesions and highlight its robustness across different training schemes for large stroke lesions. Our code is available at: https://github.com/nadluru/StrokeLesSeg.

Authors:Huayu Chen, Kai Jiang, Kaiwen Zheng, Jianfei Chen, Hang Su, Jun Zhu
Title: Visual Generation Without Guidance
Abstract:
Classifier-Free Guidance (CFG) has been a default technique in various visual generative models, yet it requires inference from both conditional and unconditional models during sampling. We propose to build visual models that are free from guided sampling. The resulting algorithm, Guidance-Free Training (GFT), matches the performance of CFG while reducing sampling to a single model, halving the computational cost. Unlike previous distillation-based approaches that rely on pretrained CFG networks, GFT enables training directly from scratch. GFT is simple to implement. It retains the same maximum likelihood objective as CFG and differs mainly in the parameterization of conditional models. Implementing GFT requires only minimal modifications to existing codebases, as most design choices and hyperparameters are directly inherited from CFG. Our extensive experiments across five distinct visual models demonstrate the effectiveness and versatility of GFT. Across domains of diffusion, autoregressive, and masked-prediction modeling, GFT consistently achieves comparable or even lower FID scores, with similar diversity-fidelity trade-offs compared with CFG baselines, all while being guidance-free. Code will be available at https://github.com/thu-ml/GFT.

Authors:Siqi Fan, Yuguang Xie, Bowen Cai, Ailin Xie, Gaochao Liu, Mu Qiao, Jie Xing, Zaiqing Nie
Title: OCSU: Optical Chemical Structure Understanding for Molecule-centric Scientific Discovery
Abstract:
Understanding the chemical structure from a graphical representation of a molecule is a challenging image caption task that would greatly benefit molecule-centric scientific discovery. Variations in molecular images and caption subtasks pose a significant challenge in both image representation learning and task modeling. Yet, existing methods only focus on a specific caption task that translates a molecular image into its graph structure, i.e., OCSR. In this paper, we propose the Optical Chemical Structure Understanding (OCSU) task, which extends low-level recognition to multilevel understanding and aims to translate chemical structure diagrams into readable strings for both machine and chemist. To facilitate the development of OCSU technology, we explore both OCSR-based and OCSR-free paradigms. We propose DoubleCheck to enhance OCSR performance via attentive feature enhancement for local ambiguous atoms. It can be cascaded with existing SMILES-based molecule understanding methods to achieve OCSU. Meanwhile, Mol-VL is a vision-language model end-to-end optimized for OCSU. We also construct Vis-CheBI20, the first large-scale OCSU dataset. Through comprehensive experiments, we demonstrate the proposed approaches excel at providing chemist-readable caption for chemical structure diagrams, which provide solid baselines for further research. Our code, model, and data are open-sourced at https://github.com/PharMolix/OCSU.

Authors:Zhiming Wang, Lin Gu, Feng Lu
Title: TdAttenMix: Top-Down Attention Guided Mixup
Abstract:
CutMix is a data augmentation strategy that cuts and pastes image patches to mixup training data. Existing methods pick either random or salient areas which are often inconsistent to labels, thus misguiding the training model. By our knowledge, we integrate human gaze to guide cutmix for the first time. Since human attention is driven by both high-level recognition and low-level clues, we propose a controllable Top-down Attention Guided Module to obtain a general artificial attention which balances top-down and bottom-up attention. The proposed TdATttenMix then picks the patches and adjust the label mixing ratio that focuses on regions relevant to the current label. Experimental results demonstrate that our TdAttenMix outperforms existing state-of-the-art mixup methods across eight different benchmarks. Additionally, we introduce a new metric based on the human gaze and use this metric to investigate the issue of image-label inconsistency. Project page: \url{https://github.com/morning12138/TdAttenMix}

Authors:Guanglin Niu, Xiaowei Zhang
Title: Diffusion-based Hierarchical Negative Sampling for Multimodal Knowledge Graph Completion
Abstract:
Multimodal Knowledge Graph Completion (MMKGC) aims to address the critical issue of missing knowledge in multimodal knowledge graphs (MMKGs) for their better applications. However, both the previous MMGKC and negative sampling (NS) approaches ignore the employment of multimodal information to generate diverse and high-quality negative triples from various semantic levels and hardness levels, thereby limiting the effectiveness of training MMKGC models. Thus, we propose a novel Diffusion-based Hierarchical Negative Sampling (DHNS) scheme tailored for MMKGC tasks, which tackles the challenge of generating high-quality negative triples by leveraging a Diffusion-based Hierarchical Embedding Generation (DiffHEG) that progressively conditions on entities and relations as well as multimodal semantics. Furthermore, we develop a Negative Triple-Adaptive Training (NTAT) strategy that dynamically adjusts training margins associated with the hardness level of the synthesized negative triples, facilitating a more robust and effective learning procedure to distinguish between positive and negative triples. Extensive experiments on three MMKGC benchmark datasets demonstrate that our framework outperforms several state-of-the-art MMKGC models and negative sampling techniques, illustrating the effectiveness of our DHNS for training MMKGC models. The source codes and datasets of this paper are available at https://github.com/ngl567/DHNS.

Authors:Hao Shu, Jicheng Li, Yu Jin, Hailin Wang
Title: Guaranteed Multidimensional Time Series Prediction via Deterministic Tensor Completion Theory
Abstract:
In recent years, the prediction of multidimensional time series data has become increasingly important due to its wide-ranging applications. Tensor-based prediction methods have gained attention for their ability to preserve the inherent structure of such data. However, existing approaches, such as tensor autoregression and tensor decomposition, often have consistently failed to provide clear assertions regarding the number of samples that can be exactly predicted. While matrix-based methods using nuclear norms address this limitation, their reliance on matrices limits accuracy and increases computational costs when handling multidimensional data. To overcome these challenges, we reformulate multidimensional time series prediction as a deterministic tensor completion problem and propose a novel theoretical framework. Specifically, we develop a deterministic tensor completion theory and introduce the Temporal Convolutional Tensor Nuclear Norm (TCTNN) model. By convolving the multidimensional time series along the temporal dimension and applying the tensor nuclear norm, our approach identifies the maximum forecast horizon for exact predictions. Additionally, TCTNN achieves superior performance in prediction accuracy and computational efficiency compared to existing methods across diverse real-world datasets, including climate temperature, network flow, and traffic ride data. Our implementation is publicly available at https://github.com/HaoShu2000/TCTNN.

Authors:Long Yang, Lianqing Zheng, Wenjin Ai, Minghao Liu, Sen Li, Qunshu Lin, Shengyu Yan, Jie Bai, Zhixiong Ma, Tao Huang, Xichan Zhu
Title: MetaOcc: Spatio-Temporal Fusion of Surround-View 4D Radar and Camera for 3D Occupancy Prediction with Dual Training Strategies
Abstract:
Robust 3D occupancy prediction is essential for autonomous driving, particularly under adverse weather conditions where traditional vision-only systems struggle. While the fusion of surround-view 4D radar and cameras offers a promising low-cost solution, effectively extracting and integrating features from these heterogeneous sensors remains challenging. This paper introduces MetaOcc, a novel multi-modal framework for omnidirectional 3D occupancy prediction that leverages both multi-view 4D radar and images. To address the limitations of directly applying LiDAR-oriented encoders to sparse radar data, we propose a Radar Height Self-Attention module that enhances vertical spatial reasoning and feature extraction. Additionally, a Hierarchical Multi-scale Multi-modal Fusion strategy is developed to perform adaptive local-global fusion across modalities and time, mitigating spatio-temporal misalignments and enriching fused feature representations. To reduce reliance on expensive point cloud annotations, we further propose a pseudo-label generation pipeline based on an open-set segmentor. This enables a semi-supervised strategy that achieves 90% of the fully supervised performance using only 50% of the ground truth labels, offering an effective trade-off between annotation cost and accuracy. Extensive experiments demonstrate that MetaOcc under full supervision achieves state-of-the-art performance, outperforming previous methods by +0.47 SC IoU and +4.02 mIoU on the OmniHD-Scenes dataset, and by +1.16 SC IoU and +1.24 mIoU on the SurroundOcc-nuScenes dataset. These results demonstrate the scalability and robustness of MetaOcc across sensor domains and training conditions, paving the way for practical deployment in real-world autonomous systems. Code and data are available at https://github.com/LucasYang567/MetaOcc.

Authors:Chuanyang Zheng
Title: iFormer: Integrating ConvNet and Transformer for Mobile Application
Abstract:
We present a new family of mobile hybrid vision networks, called iFormer, with a focus on optimizing latency and accuracy on mobile applications. iFormer effectively integrates the fast local representation capacity of convolution with the efficient global modeling ability of self-attention. The local interactions are derived from transforming a standard convolutional network, \textit{i.e.}, ConvNeXt, to design a more lightweight mobile network. Our newly introduced mobile modulation attention removes memory-intensive operations in MHA and employs an efficient modulation mechanism to boost dynamic global representational capacity. We conduct comprehensive experiments demonstrating that iFormer outperforms existing lightweight networks across various tasks. Notably, iFormer achieves an impressive Top-1 accuracy of 80.4\% on ImageNet-1k with a latency of only 1.10 ms on an iPhone 13, surpassing the recently proposed MobileNetV4 under similar latency constraints. Additionally, our method shows significant improvements in downstream tasks, including COCO object detection, instance segmentation, and ADE20k semantic segmentation, while still maintaining low latency on mobile devices for high-resolution inputs in these scenarios.

Authors:Shiyao Sun, Kapil Khandelwal
Title: Structural Symmetry, Multiplicity, and Differentiability of Eigenfrequencies
Abstract:
This work investigates the multiplicity and differentiability of eigenfrequencies in structures with various symmetries. In particular, the study explores how the geometric and design variable symmetries affect the distribution of eigenvalues, distinguishing between simple and multiple eigenvalues in 3-D trusses. Moreover, this article also examines the differentiability of multiple eigenvalues under various symmetry conditions, which is crucial for gradient-based optimization. The results presented in this study show that while full symmetry ensures the differentiability of all eigenvalues, increased symmetry in optimized design, such as accidental symmetry, may lead to non-differentiable eigenvalues. Additionally, the study presents solutions using symmetric functions, demonstrating their effectiveness in ensuring differentiability in scenarios where multiple eigenvalues are non-differentiable. The study also highlights a critical insight into the differentiability criterion of symmetric functions, i.e., the completeness of eigen-clusters, which is necessary to ensure the differentiability of such functions.

Authors:Zhikai Chen, Han Xie, Jian Zhang, Xiang song, Jiliang Tang, Huzefa Rangwala, George Karypis
Title: AutoG: Towards automatic graph construction from tabular data
Abstract:
Recent years have witnessed significant advancements in graph machine learning (GML), with its applications spanning numerous domains. However, the focus of GML has predominantly been on developing powerful models, often overlooking a crucial initial step: constructing suitable graphs from common data formats, such as tabular data. This construction process is fundamental to applying graph-based models, yet it remains largely understudied and lacks formalization. Our research aims to address this gap by formalizing the graph construction problem and proposing an effective solution. We identify two critical challenges to achieve this goal: 1. The absence of dedicated datasets to formalize and evaluate the effectiveness of graph construction methods, and 2. Existing automatic construction methods can only be applied to some specific cases, while tedious human engineering is required to generate high-quality graphs. To tackle these challenges, we present a two-fold contribution. First, we introduce a set of datasets to formalize and evaluate graph construction methods. Second, we propose an LLM-based solution, AutoG, automatically generating high-quality graph schemas without human intervention. The experimental results demonstrate that the quality of constructed graphs is critical to downstream task performance, and AutoG can generate high-quality graphs that rival those produced by human experts. Our code can be accessible from https://github.com/amazon-science/Automatic-Table-to-Graph-Generation.

Authors:Hossein Mirzaei, Mohammad Jafari, Hamid Reza Dehbashi, Zeinab Sadat Taghavi, Mohammad Sabokrou, Mohammad Hossein Rohban
Title: Killing it with Zero-Shot: Adversarially Robust Novelty Detection
Abstract:
Novelty Detection (ND) plays a crucial role in machine learning by identifying new or unseen data during model inference. This capability is especially important for the safe and reliable operation of automated systems. Despite advances in this field, existing techniques often fail to maintain their performance when subject to adversarial attacks. Our research addresses this gap by marrying the merits of nearest-neighbor algorithms with robust features obtained from models pretrained on ImageNet. We focus on enhancing the robustness and performance of ND algorithms. Experimental results demonstrate that our approach significantly outperforms current state-of-the-art methods across various benchmarks, particularly under adversarial conditions. By incorporating robust pretrained features into the k-NN algorithm, we establish a new standard for performance and robustness in the field of robust ND. This work opens up new avenues for research aimed at fortifying machine learning systems against adversarial vulnerabilities. Our implementation is publicly available at https://github.com/rohban-lab/ZARND.

Authors:Pauline Bourigault, Danilo P. Mandic
Title: Kernel-Based Anomaly Detection Using Generalized Hyperbolic Processes
Abstract:
We present a novel approach to anomaly detection by integrating Generalized Hyperbolic (GH) processes into kernel-based methods. The GH distribution, known for its flexibility in modeling skewness, heavy tails, and kurtosis, helps to capture complex patterns in data that deviate from Gaussian assumptions. We propose a GH-based kernel function and utilize it within Kernel Density Estimation (KDE) and One-Class Support Vector Machines (OCSVM) to develop anomaly detection frameworks. Theoretical results confirmed the positive semi-definiteness and consistency of the GH-based kernel, ensuring its suitability for machine learning applications. Empirical evaluation on synthetic and real-world datasets showed that our method improves detection performance in scenarios involving heavy-tailed and asymmetric or imbalanced distributions. https://github.com/paulinebourigault/GHKernelAnomalyDetect

Authors:Yiqun Chen, Lingyong Yan, Weiwei Sun, Xinyu Ma, Yi Zhang, Shuaiqiang Wang, Dawei Yin, Yiming Yang, Jiaxin Mao
Title: Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
Abstract:
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models, thereby minimizing hallucinations. A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual modules and the overarching aim of generating accurate answers in question-answering (QA) tasks. Although recent efforts have explored reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on overly simplistic pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent. Specifically, we present MMOA-RAG, a Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals towards a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA datasets demonstrate that MMOA-RAG improves the overall pipeline performance and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and the adaptability of MMOA-RAG across different RAG components and datasets. The code of MMOA-RAG is on https://github.com/chenyiqun/MMOA-RAG.

Authors:Hao Tang, Siyue Yu, Jian Pang, Bingfeng Zhang
Title: A Training-free Synthetic Data Selection Method for Semantic Segmentation
Abstract:
Training semantic segmenter with synthetic data has been attracting great attention due to its easy accessibility and huge quantities. Most previous methods focused on producing large-scale synthetic image-annotation samples and then training the segmenter with all of them. However, such a solution remains a main challenge in that the poor-quality samples are unavoidable, and using them to train the model will damage the training process. In this paper, we propose a training-free Synthetic Data Selection (SDS) strategy with CLIP to select high-quality samples for building a reliable synthetic dataset. Specifically, given massive synthetic image-annotation pairs, we first design a Perturbation-based CLIP Similarity (PCS) to measure the reliability of synthetic image, thus removing samples with low-quality images. Then we propose a class-balance Annotation Similarity Filter (ASF) by comparing the synthetic annotation with the response of CLIP to remove the samples related to low-quality annotations. The experimental results show that using our method significantly reduces the data size by half, while the trained segmenter achieves higher performance. The code is released at https://github.com/tanghao2000/SDS.

Authors:Aitor Sánchez-Ferrera, Borja Calvo, Jose A. Lozano
Title: A Review on Self-Supervised Learning for Time Series Anomaly Detection: Recent Advances and Open Challenges
Abstract:
Time series anomaly detection presents various challenges due to the sequential and dynamic nature of time-dependent data. Traditional unsupervised methods frequently encounter difficulties in generalization, often overfitting to known normal patterns observed during training and struggling to adapt to unseen normality. In response to this limitation, self-supervised techniques for time series have garnered attention as a potential solution to undertake this obstacle and enhance the performance of anomaly detectors. This paper presents a comprehensive review of the recent methods that make use of self-supervised learning for time series anomaly detection. A taxonomy is proposed to categorize these methods based on their primary characteristics, facilitating a clear understanding of their diversity within this field. The information contained in this survey, along with additional details that will be periodically updated, is available on the following GitHub repository: https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection.

Authors:Zhihao Yao, Jixuan Yin, Bo Li
Title: Reliable Pseudo-labeling via Optimal Transport with Attention for Short Text Clustering
Abstract:
Short text clustering has gained significant attention in the data mining community. However, the limited valuable information contained in short texts often leads to low-discriminative representations, increasing the difficulty of clustering. This paper proposes a novel short text clustering framework, called Reliable \textbf{P}seudo-labeling via \textbf{O}ptimal \textbf{T}ransport with \textbf{A}ttention for Short Text Clustering (\textbf{POTA}), that generate reliable pseudo-labels to aid discriminative representation learning for clustering. Specially, \textbf{POTA} first implements an instance-level attention mechanism to capture the semantic relationships among samples, which are then incorporated as a semantic consistency regularization term into an optimal transport problem. By solving this OT problem, we can yield reliable pseudo-labels that simultaneously account for sample-to-sample semantic consistency and sample-to-cluster global structure information. Additionally, the proposed OT can adaptively estimate cluster distributions, making \textbf{POTA} well-suited for varying degrees of imbalanced datasets. Then, we utilize the pseudo-labels to guide contrastive learning to generate discriminative representations and achieve efficient clustering. Extensive experiments demonstrate \textbf{POTA} outperforms state-of-the-art methods. The code is available at: \href{https://github.com/YZH0905/POTA-STC/tree/main}{https://github.com/YZH0905/POTA-STC/tree/main}.

Authors:Youssef Zaazou, Alex Bihlo, Terrence S. Tricco
Title: Mapping Galaxy Images Across Ultraviolet, Visible and Infrared Bands Using Generative Deep Learning
Abstract:
We demonstrate that generative deep learning can translate galaxy observations across ultraviolet, visible, and infrared photometric bands. Leveraging mock observations from the Illustris simulations, we develop and validate a supervised image-to-image model capable of performing both band interpolation and extrapolation. The resulting trained models exhibit high fidelity in generating outputs, as verified by both general image comparison metrics (MAE, SSIM, PSNR) and specialized astronomical metrics (GINI coefficient, M20). Moreover, we show that our model can be used to predict real-world observations, using data from the DECaLS survey as a case study. These findings highlight the potential of generative learning to augment astronomical datasets, enabling efficient exploration of multi-band information in regions where observations are incomplete. This work opens new pathways for optimizing mission planning, guiding high-resolution follow-ups, and enhancing our understanding of galaxy morphology and evolution.

Authors:Hulingxiao He, Geng Li, Zijun Geng, Jinglin Xu, Yuxin Peng
Title: Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models
Abstract:
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.

Authors:Bowen Zheng, Ran Cheng, Kay Chen Tan
Title: EvoRL: A GPU-accelerated Framework for Evolutionary Reinforcement Learning
Abstract:
Evolutionary Reinforcement Learning (EvoRL) has emerged as a promising approach to overcoming the limitations of traditional reinforcement learning (RL) by integrating the Evolutionary Computation (EC) paradigm with RL. However, the population-based nature of EC significantly increases computational costs, thereby restricting the exploration of algorithmic design choices and scalability in large-scale settings. To address this challenge, we introduce $\texttt{$\textbf{EvoRL}$}$, the first end-to-end EvoRL framework optimized for GPU acceleration. The framework executes the entire training pipeline on accelerators, including environment simulations and EC processes, leveraging hierarchical parallelism through vectorization and compilation techniques to achieve superior speed and scalability. This design enables the efficient training of large populations on a single machine. In addition to its performance-oriented design, $\texttt{$\textbf{EvoRL}$}$ offers a comprehensive platform for EvoRL research, encompassing implementations of traditional RL algorithms (e.g., A2C, PPO, DDPG, TD3, SAC), Evolutionary Algorithms (e.g., CMA-ES, OpenES, ARS), and hybrid EvoRL paradigms such as Evolutionary-guided RL (e.g., ERL, CEM-RL) and Population-Based AutoRL (e.g., PBT). The framework's modular architecture and user-friendly interface allow researchers to seamlessly integrate new components, customize algorithms, and conduct fair benchmarking and ablation studies. The project is open-source and available at: https://github.com/EMI-Group/evorl.

Authors:Ziqi Liu
Title: FreqMoE: Enhancing Time Series Forecasting through Frequency Decomposition Mixture of Experts
Abstract:
Long-term time series forecasting is essential in areas like finance and weather prediction. Besides traditional methods that operate in the time domain, many recent models transform time series data into the frequency domain to better capture complex patterns. However, these methods often use filtering techniques to remove certain frequency signals as noise, which may unintentionally discard important information and reduce prediction accuracy. To address this, we propose the Frequency Decomposition Mixture-of-Experts (FreqMoE) model, which dynamically decomposes time series data into frequency bands, each processed by a specialized expert. A gating mechanism adjusts the importance of each output of expert based on frequency characteristics, and the aggregated results are fed into a prediction module that iteratively refines the forecast using residual connections. Our experiments demonstrate that FreqMoE outperforms state-of-the-art models, achieving the best performance on 51 out of 70 metrics across all tested datasets, while significantly reducing the number of required parameters to under 50k, providing notable efficiency advantages. Code is available at: https://github.com/sunbus100/FreqMoE-main

Authors:Qingtian Bian, Marcus Vinícius de Carvalho, Tieying Li, Jiaxing Xu, Hui Fang, Yiping Ke
Title: ABXI: Invariant Interest Adaptation for Task-Guided Cross-Domain Sequential Recommendation
Abstract:
Cross-Domain Sequential Recommendation (CDSR) has recently gained attention for countering data sparsity by transferring knowledge across domains. A common approach merges domain-specific sequences into cross-domain sequences, serving as bridges to connect domains. One key challenge is to correctly extract the shared knowledge among these sequences and appropriately transfer it. Most existing works directly transfer unfiltered cross-domain knowledge rather than extracting domain-invariant components and adaptively integrating them into domain-specific modelings. Another challenge lies in aligning the domain-specific and cross-domain sequences. Existing methods align these sequences based on timestamps, but this approach can cause prediction mismatches when the current tokens and their targets belong to different domains. In such cases, the domain-specific knowledge carried by the current tokens may degrade performance. To address these challenges, we propose the A-B-Cross-to-Invariant Learning Recommender (ABXI). Specifically, leveraging LoRA's effectiveness for efficient adaptation, ABXI incorporates two types of LoRAs to facilitate knowledge adaptation. First, all sequences are processed through a shared encoder that employs a domain LoRA for each sequence, thereby preserving unique domain characteristics. Next, we introduce an invariant projector that extracts domain-invariant interests from cross-domain representations, utilizing an invariant LoRA to adapt these interests into modeling each specific domain. Besides, to avoid prediction mismatches, all domain-specific sequences are aligned to match the domains of the cross-domain ground truths. Experimental results on three datasets demonstrate that our approach outperforms other CDSR counterparts by a large margin. The codes are available in https://github.com/DiMarzioBian/ABXI.

Authors:Zihang Li, Yangdong Ruan, Wenjun Liu, Zhengyang Wang, Tong Yang
Title: CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter
Abstract:
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.

Authors:Jiayi Liao, Ruobing Xie, Sihang Li, Xiang Wang, Xingwu Sun, Zhanhui Kang, Xiangnan He
Title: Multi-Grained Patch Training for Efficient LLM-based Recommendation
Abstract:
Large Language Models (LLMs) have emerged as a new paradigm for recommendation by converting interacted item history into language modeling. However, constrained by the limited context length of LLMs, existing approaches have to truncate item history in the prompt, focusing only on recent interactions and sacrificing the ability to model long-term history. To enable LLMs to model long histories, we pursue a concise embedding representation for items and sessions. In the LLM embedding space, we construct an item's embedding by aggregating its textual token embeddings; similarly, we construct a session's embedding by aggregating its item embeddings. While efficient, this way poses two challenges since it ignores the temporal significance of user interactions and LLMs do not natively interpret our custom embeddings. To overcome these, we propose PatchRec, a multi-grained patch training method consisting of two stages: (1) Patch Pre-training, which familiarizes LLMs with aggregated embeddings -- patches, and (2) Patch Fine-tuning, which enables LLMs to capture time-aware significance in interaction history. Extensive experiments show that PatchRec effectively models longer behavior histories with improved efficiency. This work facilitates the practical use of LLMs for modeling long behavior histories. Codes are available at https://github.com/ljy0ustc/PatchRec.

Authors:Ryo Takizawa, Yoshiyuki Ohmura, Yasuo Kuniyoshi
Title: Gaze-Guided Task Decomposition for Imitation Learning in Robotic Manipulation
Abstract:
In imitation learning for robotic manipulation, decomposing object manipulation tasks into sub-tasks enables the reuse of learned skills and the combination of learned behaviors to perform novel tasks, rather than simply replicating demonstrated motions. Human gaze is closely linked to hand movements during object manipulation. We hypothesize that an imitating agent's gaze control, fixating on specific landmarks and transitioning between them, simultaneously segments demonstrated manipulations into sub-tasks. This study proposes a simple yet robust task decomposition method based on gaze transitions. Using teleoperation, a common modality in robotic manipulation for collecting demonstrations, in which a human operator's gaze is measured and used for task decomposition as a substitute for an imitating agent's gaze. Our approach ensures consistent task decomposition across all demonstrations for each task, which is desirable in contexts such as machine learning. We evaluated the method across demonstrations of various tasks, assessing the characteristics and consistency of the resulting sub-tasks. Furthermore, extensive testing across different hyperparameter settings confirmed its robustness, making it adaptable to diverse robotic systems. Our code is available at https://github.com/crumbyRobotics/GazeTaskDecomp.

Authors:Mengshi Qi, Xiaoyang Bi, Pengfei Zhu, Huadong Ma
Title: Towards Robust Unsupervised Attention Prediction in Autonomous Driving
Abstract:
Robustly predicting attention regions of interest for self-driving systems is crucial for driving safety but presents significant challenges due to the labor-intensive nature of obtaining large-scale attention labels and the domain gap between self-driving scenarios and natural scenes. These challenges are further exacerbated by complex traffic environments, including camera corruption under adverse weather, noise interferences, and central bias from long-tail distributions. To address these issues, we propose a robust unsupervised attention prediction method. An Uncertainty Mining Branch refines predictions by analyzing commonalities and differences across multiple pre-trained models on natural scenes, while a Knowledge Embedding Block bridges the domain gap by incorporating driving knowledge to adaptively enhance pseudo-labels. Additionally, we introduce RoboMixup, a novel data augmentation method that improves robustness against corruption through soft attention and dynamic augmentation, and mitigates central bias by integrating random cropping into Mixup as a regularizer. To systematically evaluate robustness in self-driving attention prediction, we introduce the DriverAttention-C benchmark, comprising over 100k frames across three subsets: BDD-A-C, DR(eye)VE-C, and DADA-2000-C. Our method achieves performance equivalent to or surpassing fully supervised state-of-the-art approaches on three public datasets and the proposed robustness benchmark, reducing relative corruption degradation by 58.8% and 52.8%, and improving central bias robustness by 12.4% and 11.4% in KLD and CC metrics, respectively. Code and data are available at https://github.com/zaplm/DriverAttention.

Authors:Zhongpu Chen, Yinfeng Liu, Long Shi, Xingyan Chen, Yu Zhao, Fuji Ren
Title: MDEval: Evaluating and Enhancing Markdown Awareness in Large Language Models
Abstract:
Large language models (LLMs) are expected to offer structured Markdown responses for the sake of readability in web chatbots (e.g., ChatGPT). Although there are a myriad of metrics to evaluate LLMs, they fail to evaluate the readability from the view of output content structure. To this end, we focus on an overlooked yet important metric -- Markdown Awareness, which directly impacts the readability and structure of the content generated by these language models. In this paper, we introduce MDEval, a comprehensive benchmark to assess Markdown Awareness for LLMs, by constructing a dataset with 20K instances covering 10 subjects in English and Chinese. Unlike traditional model-based evaluations, MDEval provides excellent interpretability by combining model-based generation tasks and statistical methods. Our results demonstrate that MDEval achieves a Spearman correlation of 0.791 and an accuracy of 84.1% with human, outperforming existing methods by a large margin. Extensive experimental results also show that through fine-tuning over our proposed dataset, less performant open-source models are able to achieve comparable performance to GPT-4o in terms of Markdown Awareness. To ensure reproducibility and transparency, MDEval is open sourced at https://github.com/SWUFE-DB-Group/MDEval-Benchmark.

Authors:Kaixun Jiang, Zhaoyu Chen, Jiyuan Fu, Lingyi Hong, Jinglun Li, Wenqiang Zhang
Title: VideoPure: Diffusion-based Adversarial Purification for Video Recognition
Abstract:
Recent work indicates that video recognition models are vulnerable to adversarial examples, posing a serious security risk to downstream applications. However, current research has primarily focused on adversarial attacks, with limited work exploring defense mechanisms. Furthermore, due to the spatial-temporal complexity of videos, existing video defense methods face issues of high cost, overfitting, and limited defense performance. Recently, diffusion-based adversarial purification methods have achieved robust defense performance in the image domain. However, due to the additional temporal dimension in videos, directly applying these diffusion-based adversarial purification methods to the video domain suffers performance and efficiency degradation. To achieve an efficient and effective video adversarial defense method, we propose the first diffusion-based video purification framework to improve video recognition models' adversarial robustness: VideoPure. Given an adversarial example, we first employ temporal DDIM inversion to transform the input distribution into a temporally consistent and trajectory-defined distribution, covering adversarial noise while preserving more video structure. Then, during DDIM denoising, we leverage intermediate results at each denoising step and conduct guided spatial-temporal optimization, removing adversarial noise while maintaining temporal consistency. Finally, we input the list of optimized intermediate results into the video recognition model for multi-step voting to obtain the predicted class. We investigate the defense performance of our method against black-box, gray-box, and adaptive attacks on benchmark datasets and models. Compared with other adversarial purification methods, our method overall demonstrates better defense performance against different attacks. Our code is available at https://github.com/deep-kaixun/VideoPure.

Authors:Bao Duong, Sunil Gupta, Thin Nguyen
Title: Causal Discovery via Bayesian Optimization
Abstract:
Existing score-based methods for directed acyclic graph (DAG) learning from observational data struggle to recover the causal graph accurately and sample-efficiently. To overcome this, in this study, we propose DrBO (DAG recovery via Bayesian Optimization)-a novel DAG learning framework leveraging Bayesian optimization (BO) to find high-scoring DAGs. We show that, by sophisticatedly choosing the promising DAGs to explore, we can find higher-scoring ones much more efficiently. To address the scalability issues of conventional BO in DAG learning, we replace Gaussian Processes commonly employed in BO with dropout neural networks, trained in a continual manner, which allows for (i) flexibly modeling the DAG scores without overfitting, (ii) incorporation of uncertainty into the estimated scores, and (iii) scaling with the number of evaluations. As a result, DrBO is computationally efficient and can find the accurate DAG in fewer trials and less time than existing state-of-the-art methods. This is demonstrated through an extensive set of empirical evaluations on many challenging settings with both synthetic and real data. Our implementation is available at https://github.com/baosws/DrBO.

Authors:Hongbo Zheng, Suyuan Wang, Neeraj Gangwar, Nickvash Kani
Title: E-Gen: Leveraging E-Graphs to Improve Continuous Representations of Symbolic Expressions
Abstract:
Vector representations have been pivotal in advancing natural language processing (NLP), with prior research focusing on embedding techniques for mathematical expressions using mathematically equivalent formulations. While effective, these approaches are constrained by the size and diversity of training data. In this work, we address these limitations by introducing E-Gen, a novel e-graph-based dataset generation scheme that synthesizes large and diverse mathematical expression datasets, surpassing prior methods in size and operator variety. Leveraging this dataset, we train embedding models using two strategies: (1) generating mathematically equivalent expressions, and (2) contrastive learning to explicitly group equivalent expressions. We evaluate these embeddings on both in-distribution and out-of-distribution mathematical language processing tasks, comparing them against prior methods. Finally, we demonstrate that our embedding-based approach outperforms state-of-the-art large language models (LLMs) on several tasks, underscoring the necessity of optimizing embedding methods for the mathematical data modality. The source code and datasets are available at https://github.com/MLPgroup/E-Gen.

Authors:Qing Wang, Wen-jie Chen, Bo Li, Jing Su, Guangyu Wang, Qianqian Song
Title: HECLIP: Histology-Enhanced Contrastive Learning for Imputation of Transcriptomics Profiles
Abstract:
Histopathology, particularly hematoxylin and eosin (H\&E) staining, plays a critical role in diagnosing and characterizing pathological conditions by highlighting tissue morphology. However, H\&E-stained images inherently lack molecular information, requiring costly and resource-intensive methods like spatial transcriptomics to map gene expression with spatial resolution. To address these challenges, we introduce HECLIP (Histology-Enhanced Contrastive Learning for Imputation of Profiles), an innovative deep learning framework that bridges the gap between histological imaging and molecular profiling. HECLIP is specifically designed to infer gene expression profiles directly from H\&E-stained images, eliminating the need for expensive spatial transcriptomics assays. HECLIP leverages an advanced image-centric contrastive loss function to optimize image representation learning, ensuring that critical morphological patterns in histology images are effectively captured and translated into accurate gene expression profiles. This design enhances the predictive power of the image modality while minimizing reliance on gene expression data. Through extensive benchmarking on publicly available datasets, HECLIP demonstrates superior performance compared to existing approaches, delivering robust and biologically meaningful predictions. Detailed ablation studies further underscore its effectiveness in extracting molecular insights from histology images. Additionally, HECLIP's scalable and cost-efficient approach positions it as a transformative tool for both research and clinical applications, driving advancements in precision medicine. The source code for HECLIP is openly available at https://github.com/QSong-github/HECLIP.

Authors:Md. Kamrul Hasan, Guang Yang, Choon Hwai Yap
Title: Motion-enhanced Cardiac Anatomy Segmentation via an Insertable Temporal Attention Module
Abstract:
Cardiac anatomy segmentation is useful for clinical assessment of cardiac morphology to inform diagnosis and intervention. Deep learning (DL), especially with motion information, has improved segmentation accuracy. However, existing techniques for motion enhancement are not yet optimal, and they have high computational costs due to increased dimensionality or reduced robustness due to suboptimal approaches that use non-DL motion registration, non-attention models, or single-headed attention. They further have limited adaptability and are inconvenient for incorporation into existing networks where motion awareness is desired. Here, we propose a novel, computationally efficient Temporal Attention Module (TAM) that offers robust motion enhancement, modeled as a small, multi-headed, cross-temporal attention module. TAM's uniqueness is that it is a lightweight, plug-and-play module that can be inserted into a broad range of segmentation networks (CNN-based, Transformer-based, or hybrid) for motion enhancement without requiring substantial changes in the network's backbone. This feature enables high adaptability and ease of integration for enhancing both existing and future networks. Extensive experiments on multiple 2D and 3D cardiac ultrasound and MRI datasets confirm that TAM consistently improves segmentation across a range of networks while maintaining computational efficiency and improving on currently reported performance. The evidence demonstrates that it is a robust, generalizable solution for motion-awareness enhancement that is scalable (such as from 2D to 3D).

Authors:Taewoong Lee, Sarah Frisken, Nazim Haouchine
Title: 3D/2D Registration of Angiograms using Silhouette-based Differentiable Rendering
Abstract:
We present a method for 3D/2D registration of Digital Subtraction Angiography (DSA) images to provide valuable insight into brain hemodynamics and angioarchitecture. Our approach formulates the registration as a pose estimation problem, leveraging both anteroposterior and lateral DSA views and employing differentiable rendering. Preliminary experiments on real and synthetic datasets demonstrate the effectiveness of our method, with both qualitative and quantitative evaluations highlighting its potential for clinical applications. The code is available at https://github.com/taewoonglee17/TwoViewsDSAReg.

Authors:Juan Ramirez, Ignacio Hounie, Juan Elenter, Jose Gallego-Posada, Meraj Hashemizadeh, Alejandro Ribeiro, Simon Lacoste-Julien
Title: Feasible Learning
Abstract:
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.

Authors:Michael K. Chen, Xikun Zhang, Dacheng Tao
Title: JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models
Abstract:
Logical reasoning is a critical component of Large Language Models (LLMs), and substantial research efforts in recent years have aimed to enhance their deductive reasoning capabilities. However, existing deductive reasoning benchmarks, which are crucial for evaluating and advancing LLMs, are inadequate due to their lack of task complexity, presence of prior knowledge as a confounder, and superficial error analysis. To address these deficiencies, we introduce JustLogic, a synthetically generated deductive reasoning benchmark designed for rigorous evaluation of LLMs. JustLogic is (i) highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures; (ii) prior knowledge independent, eliminating the advantage of models possessing prior knowledge and ensuring that only deductive reasoning is used to answer questions; and (iii) capable of in-depth error analysis on the heterogeneous effects of reasoning depth and argument form on model accuracy. Our experimental results on JustLogic reveal that (i) state-of-the-art (SOTA) reasoning LLMs perform on par or better than the human average but significantly worse than the human ceiling, and (ii) SOTA non-reasoning models still underperform the human average. All code and data are available at https://github.com/michaelchen-lab/JustLogic

Authors:Libo Wang
Title: Wormhole Memory: A Rubik's Cube for Cross-Dialogue Retrieval
Abstract:
In view of the gap in the current large language model in sharing memory across dialogues, this research proposes a wormhole memory module (WMM) to realize memory as a Rubik's cube that can be arbitrarily retrieved between different dialogues. Through simulation experiments, the researcher built an experimental framework based on the Python environment and used setting memory barriers to simulate the current situation where memories between LLMs dialogues are difficult to share. The CoQA development data set was imported into the experiment, and the feasibility of its cross-dialogue memory retrieval function was verified for WMM's nonlinear indexing and dynamic retrieval, and a comparative analysis was conducted with the capabilities of Titans and MemGPT memory modules. Experimental results show that WMM demonstrated the ability to retrieve memory across dialogues and the stability of quantitative indicators in eight experiments. It contributes new technical approaches to the optimization of memory management of LLMs and provides experience for the practical application in the future.

Authors:Xin Zhou, Dingkang Liang, Sifan Tu, Xiwu Chen, Yikang Ding, Dingyuan Zhang, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Title: HERMES: A Unified Self-Driving World Model for Simultaneous 3D Scene Understanding and Generation
Abstract:
Driving World Models (DWMs) have become essential for autonomous driving by enabling future scene prediction. However, existing DWMs are limited to scene generation and fail to incorporate scene understanding, which involves interpreting and reasoning about the driving environment. In this paper, we present a unified Driving World Model named HERMES. We seamlessly integrate 3D scene understanding and future scene evolution (generation) through a unified framework in driving scenarios. Specifically, HERMES leverages a Bird's-Eye View (BEV) representation to consolidate multi-view spatial information while preserving geometric relationships and interactions. We also introduce world queries, which incorporate world knowledge into BEV features via causal attention in the Large Language Model, enabling contextual enrichment for understanding and generation tasks. We conduct comprehensive studies on nuScenes and OmniDrive-nuScenes datasets to validate the effectiveness of our method. HERMES achieves state-of-the-art performance, reducing generation error by 32.4% and improving understanding metrics such as CIDEr by 8.0%. The model and code will be publicly released at https://github.com/LMD0311/HERMES.

Authors:Naihao Deng, Rada Mihalcea
Title: Rethinking Table Instruction Tuning
Abstract:
Recent advances in table understanding have focused on instruction-tuning large language models (LLMs) for table-related tasks. However, existing research has overlooked the impact of hyperparameter choices, and also lacks a comprehensive evaluation of the out-of-domain table understanding ability and the general capabilities of these table LLMs. In this paper, we evaluate these abilities in existing table LLMs, and find significant declines in both out-of-domain table understanding and general capabilities as compared to their base models. Through systematic analysis, we show that hyperparameters, such as learning rate, can significantly influence both table-specific and general capabilities. Contrary to the previous table instruction-tuning work, we demonstrate that smaller learning rates and fewer training instances can enhance table understanding while preserving general capabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with, or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-of-domain generalization and general capabilities. Our findings highlight the potential for reduced data annotation costs and more efficient model development through careful hyperparameter selection. We open-source the project and our models.

Authors:Rongzhao He, Weihao Zheng, Leilei Zhao, Ying Wang, Dalin Zhu, Dan Wu, Bin Hu
Title: Surface Vision Mamba: Leveraging Bidirectional State Space Model for Efficient Spherical Manifold Representation
Abstract:
Attention-based methods have demonstrated exceptional performance in modelling long-range dependencies on spherical cortical surfaces, surpassing traditional Geometric Deep Learning (GDL) models. However, their extensive inference time and high memory demands pose challenges for application to large datasets with limited computing resources. Inspired by the state space model in computer vision, we introduce the attention-free Vision Mamba (Vim) to spherical surfaces, presenting a domain-agnostic architecture for analyzing data on spherical manifolds. Our method achieves surface patching by representing spherical data as a sequence of triangular patches derived from a subdivided icosphere. The proposed Surface Vision Mamba (SiM) is evaluated on multiple neurodevelopmental phenotype regression tasks using cortical surface metrics from neonatal brains. Experimental results demonstrate that SiM outperforms both attention- and GDL-based methods, delivering 4.8 times faster inference and achieving 91.7% lower memory consumption compared to the Surface Vision Transformer (SiT) under the Ico-4 grid partitioning. Sensitivity analysis further underscores the potential of SiM to identify subtle cognitive developmental patterns. The code is available at https://github.com/Rongzhao-He/surface-vision-mamba.

Authors:Yixing Jiang, Kameron C. Black, Gloria Geng, Danny Park, James Zou, Andrew Y. Ng, Jonathan H. Chen
Title: MedAgentBench: A Realistic Virtual EHR Environment to Benchmark Medical LLM Agents
Abstract:
Recent large language models (LLMs) have demonstrated significant advancements, particularly in their ability to serve as agents thereby surpassing their traditional role as chatbots. These agents can leverage their planning and tool utilization capabilities to address tasks specified at a high level. However, a standardized dataset to benchmark the agent capabilities of LLMs in medical applications is currently lacking, making the evaluation of LLMs on complex tasks in interactive healthcare environments challenging. To address this gap, we introduce MedAgentBench, a broad evaluation suite designed to assess the agent capabilities of large language models within medical records contexts. MedAgentBench encompasses 300 patient-specific clinically-derived tasks from 10 categories written by human physicians, realistic profiles of 100 patients with over 700,000 data elements, a FHIR-compliant interactive environment, and an accompanying codebase. The environment uses the standard APIs and communication infrastructure used in modern EMR systems, so it can be easily migrated into live EMR systems. MedAgentBench presents an unsaturated agent-oriented benchmark that current state-of-the-art LLMs exhibit some ability to succeed at. The best model (Claude 3.5 Sonnet v2) achieves a success rate of 69.67%. However, there is still substantial space for improvement which gives the community a next direction to optimize. Furthermore, there is significant variation in performance across task categories. MedAgentBench establishes this and is publicly available at https://github.com/stanfordmlgroup/MedAgentBench , offering a valuable framework for model developers to track progress and drive continuous improvements in the agent capabilities of large language models within the medical domain.

Authors:Jiazhen Zhang, Yuexi Du, Nicha C. Dvornek, John A. Onofrey
Title: Improved Vessel Segmentation with Symmetric Rotation-Equivariant U-Net
Abstract:
Automated segmentation plays a pivotal role in medical image analysis and computer-assisted interventions. Despite the promising performance of existing methods based on convolutional neural networks (CNNs), they neglect useful equivariant properties for images, such as rotational and reflection equivariance. This limitation can decrease performance and lead to inconsistent predictions, especially in applications like vessel segmentation where explicit orientation is absent. While existing equivariant learning approaches attempt to mitigate these issues, they substantially increase learning cost, model size, or both. To overcome these challenges, we propose a novel application of an efficient symmetric rotation-equivariant (SRE) convolutional (SRE-Conv) kernel implementation to the U-Net architecture, to learn rotation and reflection-equivariant features, while also reducing the model size dramatically. We validate the effectiveness of our method through improved segmentation performance on retina vessel fundus imaging. Our proposed SRE U-Net not only significantly surpasses standard U-Net in handling rotated images, but also outperforms existing equivariant learning methods and does so with a reduced number of trainable parameters and smaller memory cost. The code is available at https://github.com/OnofreyLab/sre_conv_segm_isbi2025.

Authors:Panisara Meehinkong, Donlapark Ponnoprat
Title: coverforest: Conformal Predictions with Random Forest in Python
Abstract:
Conformal prediction provides a framework for uncertainty quantification, specifically in the forms of prediction intervals and sets with distribution-free guaranteed coverage. While recent cross-conformal techniques such as CV+ and Jackknife+-after-bootstrap achieve better data efficiency than traditional split conformal methods, they incur substantial computational costs due to required pairwise comparisons between training and test samples' out-of-bag scores. Observing that these methods naturally extend from ensemble models, particularly random forests, we leverage existing optimized random forest implementations to enable efficient cross-conformal predictions. We present coverforest, a Python package that implements efficient conformal prediction methods specifically optimized for random forests. coverforest supports both regression and classification tasks through various conformal prediction methods, including split conformal, CV+, Jackknife+-after-bootstrap, and adaptive prediction sets. Our package leverages parallel computing and Cython optimizations to speed up out-of-bag calculations. Our experiments demonstrate that coverforest's predictions achieve the desired level of coverage. In addition, its training and prediction times can be faster than an existing implementation by 2--9 times. The source code for the coverforest is hosted on GitHub at https://github.com/donlapark/coverforest.

Authors:Haifeng Wen, Hong Xing, Osvaldo Simeone
Title: Distributed Conformal Prediction via Message Passing
Abstract:
Post-hoc calibration of pre-trained models is critical for ensuring reliable inference, especially in safety-critical domains such as healthcare. Conformal Prediction (CP) offers a robust post-hoc calibration framework, providing distribution-free statistical coverage guarantees for prediction sets by leveraging held-out datasets. In this work, we address a decentralized setting where each device has limited calibration data and can communicate only with its neighbors over an arbitrary graph topology. We propose two message-passing-based approaches for achieving reliable inference via CP: quantile-based distributed conformal prediction (Q-DCP) and histogram-based distributed conformal prediction (H-DCP). Q-DCP employs distributed quantile regression enhanced with tailored smoothing and regularization terms to accelerate convergence, while H-DCP uses a consensus-based histogram estimation approach. Through extensive experiments, we investigate the trade-offs between hyperparameter tuning requirements, communication overhead, coverage guarantees, and prediction set sizes across different network topologies. The code of our work is released on: https://github.com/HaifengWen/Distributed-Conformal-Prediction.

Authors:Wenzhang Liu, Lianjun Jin, Lu Ren, Chaoxu Mu, Changyin Sun
Title: Reducing Action Space for Deep Reinforcement Learning via Causal Effect Estimation
Abstract:
Intelligent decision-making within large and redundant action spaces remains challenging in deep reinforcement learning. Considering similar but ineffective actions at each step can lead to repetitive and unproductive trials. Existing methods attempt to improve agent exploration by reducing or penalizing redundant actions, yet they fail to provide quantitative and reliable evidence to determine redundancy. In this paper, we propose a method to improve exploration efficiency by estimating the causal effects of actions. Unlike prior methods, our approach offers quantitative results regarding the causality of actions for one-step transitions. We first pre-train an inverse dynamics model to serve as prior knowledge of the environment. Subsequently, we classify actions across the entire action space at each time step and estimate the causal effect of each action to suppress redundant actions during exploration. We provide a theoretical analysis to demonstrate the effectiveness of our method and present empirical results from simulations in environments with redundant actions to evaluate its performance. Our implementation is available at https://github.com/agi-brain/cee.git.

Authors:Fanxing Li, Fangyu Sun, Tianbao Zhang, Danping Zou
Title: ABPT: Amended Backpropagation through Time with Partially Differentiable Rewards
Abstract:
Quadrotor control policies can be trained with high performance using the exact gradients of the rewards to directly optimize policy parameters via backpropagation-through-time (BPTT). However, designing a fully differentiable reward architecture is often challenging. Partially differentiable rewards will result in biased gradient propagation that degrades training performance. To overcome this limitation, we propose Amended Backpropagation-through-Time (ABPT), a novel approach that mitigates gradient bias while preserving the training efficiency of BPTT. ABPT combines 0-step and N-step returns, effectively reducing the bias by leveraging value gradients from the learned Q-value function. Additionally, it adopts entropy regularization and state initialization mechanisms to encourage exploration during training. We evaluate ABPT on four representative quadrotor flight tasks \li{in both real world and simulation}. Experimental results demonstrate that ABPT converges significantly faster and achieves higher ultimate rewards than existing learning algorithms, particularly in tasks involving partially differentiable rewards. The code will be released at http://github.com/Fanxing-LI/ABPT.

Authors:Jia Yu, Fei Yuan, Rui Min, Jing Yu, Pei Chu, Jiayang Li, Wei Li, Ruijie Zhang, Zhenxiang Li, Zhifei Ren, Dong Zheng, Wenjian Zhang, Yan Teng, Lingyu Meng, ZhenJiang Jin, Jiantao Qiu, ShaSha Wang, Zhongying Tu, Dahua Lin, Yu Wang, Yu Qiao, Yanfeng Wang, Conghui He
Title: WanJuanSiLu: A High-Quality Open-Source Webtext Dataset for Low-Resource Languages
Abstract:
This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0

Authors:Jie He, Yijun Yang, Wanqiu Long, Deyi Xiong, Victor Gutierrez-Basulto, Jeff Z. Pan
Title: Evaluating and Improving Graph to Text Generation with Large Language Models
Abstract:
Large language models (LLMs) have demonstrated immense potential across various tasks. However, research for exploring and improving the capabilities of LLMs in interpreting graph structures remains limited. To address this gap, we conduct a comprehensive evaluation of prompting current open-source LLMs on graph-to-text generation tasks. Although we explored the optimal prompting strategies and proposed a novel and effective diversity-difficulty-based few-shot sample selection method, we found that the improvements from tuning-free approaches were incremental, as LLMs struggle with planning on complex graphs, particularly those with a larger number of triplets. To further improve LLMs in planning with graph sequences and grounding in truth, we introduce a new graph-to-text dataset, PlanGTG, annotated with two sub-tasks: reordering and attribution. Through extensive automatic and human evaluations, we demonstrate significant improvements in the quality of generated text from both few-shot learning and fine-tuning perspectives using the PlanGTG dataset. Our study paves the way for new research directions in graph-to-text generation. PlanGTG datasets can be found in https://github.com/probe2/kg_text.

Authors:Zhengyang Tang, Ziniu Li, Zhenyang Xiao, Tian Ding, Ruoyu Sun, Benyou Wang, Dayiheng Liu, Fei Huang, Tianyu Liu, Bowen Yu, Junyang Lin
Title: RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques
Abstract:
Critiques are important for enhancing the performance of Large Language Models (LLMs), enabling both self-improvement and constructive feedback for others by identifying flaws and suggesting improvements. However, evaluating the critique capabilities of LLMs presents a significant challenge due to the open-ended nature of the task. In this work, we introduce a new benchmark designed to assess the critique capabilities of LLMs. Unlike existing benchmarks, which typically function in an open-loop fashion, our approach employs a closed-loop methodology that evaluates the quality of corrections generated from critiques. Moreover, the benchmark incorporates features such as self-critique, cross-critique, and iterative critique, which are crucial for distinguishing the abilities of advanced reasoning models from more classical ones. We implement this benchmark using eight challenging reasoning tasks. We have several interesting findings. First, despite demonstrating comparable performance in direct chain-of-thought generation, classical LLMs significantly lag behind the advanced reasoning-based model o1-mini across all critique scenarios. Second, in self-critique and iterative critique settings, classical LLMs may even underperform relative to their baseline capabilities. We hope that this benchmark will serve as a valuable resource to guide future advancements. The code and data are available at \url{https://github.com/tangzhy/RealCritic}.

Authors:Jake McLaughlin, Nicholas Charron, Sriram Narasimhan
Title: Visual-Lidar Map Alignment for Infrastructure Inspections
Abstract:
Routine and repetitive infrastructure inspections present safety, efficiency, and consistency challenges as they are performed manually, often in challenging or hazardous environments. They can also introduce subjectivity and errors into the process, resulting in undesirable outcomes. Simultaneous localization and mapping (SLAM) presents an opportunity to generate high-quality 3D maps that can be used to extract accurate and objective inspection data. Yet, many SLAM algorithms are limited in their ability to align 3D maps from repeated inspections in GPS-denied settings automatically. This limitation hinders practical long-term asset health assessments by requiring tedious manual alignment for data association across scans from previous inspections. This paper introduces a versatile map alignment algorithm leveraging both visual and lidar data for improved place recognition robustness and presents an infrastructure-focused dataset tailored for consecutive inspections. By detaching map alignment from SLAM, our approach enhances infrastructure inspection pipelines, supports monitoring asset degradation over time, and invigorates SLAM research by permitting exploration beyond existing multi-session SLAM algorithms.

Authors:Xu Chu, Zhijie Tan, Hanlin Xue, Guanyu Wang, Tong Mo, Weiping Li
Title: Domaino1s: Guiding LLM Reasoning for Explainable Answers in High-Stakes Domains
Abstract:
Large Language Models (LLMs) are widely applied to downstream domains. However, current LLMs for high-stakes domain tasks, such as financial investment and legal QA, typically generate brief answers without reasoning processes and explanations. This limits users' confidence in making decisions based on their responses. While original CoT shows promise, it lacks self-correction mechanisms during reasoning. This work introduces Domain$o1$s, which enhances LLMs' reasoning capabilities on domain tasks through supervised fine-tuning and tree search. We construct CoT-stock-2k and CoT-legal-2k datasets for fine-tuning models that activate domain-specific reasoning steps based on their judgment. Additionally, we propose Selective Tree Exploration to spontaneously explore solution spaces and sample optimal reasoning paths to improve performance. We also introduce PROOF-Score, a new metric for evaluating domain models' explainability, complementing traditional accuracy metrics with richer assessment dimensions. Extensive experiments on stock investment recommendation and legal reasoning QA tasks demonstrate Domaino1s's leading performance and explainability. Our code is available at https://github.com/Hyalinesky/Domaino1s.

Authors:Yoni Schirris, Rosie Voorthuis, Mark Opdam, Marte Liefaard, Gabe S Sonke, Gwen Dackus, Vincent de Jong, Yuwei Wang, Annelot Van Rossum, Tessa G Steenbruggen, Lars C Steggink, Liesbeth G. E. de Vries, Marc van de Vijver, Roberto Salgado, Efstratios Gavves, Paul J van Diest, Sabine C Linn, Jonas Teuwen, Renee Menezes, Marleen Kok, Hugo Horlings
Title: ECTIL: Label-efficient Computational Tumour Infiltrating Lymphocyte (TIL) assessment in breast cancer: Multicentre validation in 2,340 patients with breast cancer
Abstract:
The level of tumour-infiltrating lymphocytes (TILs) is a prognostic factor for patients with (triple-negative) breast cancer (BC). Computational TIL assessment (CTA) has the potential to assist pathologists in this labour-intensive task, but current CTA models rely heavily on many detailed annotations. We propose and validate a fundamentally simpler deep learning based CTA that can be trained in only ten minutes on hundredfold fewer pathologist annotations. We collected whole slide images (WSIs) with TILs scores and clinical data of 2,340 patients with BC from six cohorts including three randomised clinical trials. Morphological features were extracted from whole slide images (WSIs) using a pathology foundation model. Our label-efficient Computational stromal TIL assessment model (ECTIL) directly regresses the TILs score from these features. ECTIL trained on only a few hundred samples (ECTIL-TCGA) showed concordance with the pathologist over five heterogeneous external cohorts (r=0.54-0.74, AUROC=0.80-0.94). Training on all slides of five cohorts (ECTIL-combined) improved results on a held-out test set (r=0.69, AUROC=0.85). Multivariable Cox regression analyses indicated that every 10% increase of ECTIL scores was associated with improved overall survival independent of clinicopathological variables (HR 0.86, p<0.01), similar to the pathologist score (HR 0.87, p<0.001). We demonstrate that ECTIL is highly concordant with an expert pathologist and obtains a similar hazard ratio. ECTIL has a fundamentally simpler design than existing methods and can be trained on orders of magnitude fewer annotations. Such a CTA may be used to pre-screen patients for, e.g., immunotherapy clinical trial inclusion, or as a tool to assist clinicians in the diagnostic work-up of patients with BC. Our model is available under an open source licence (https://github.com/nki-ai/ectil).

Authors:Lingwei Zhu, Han Wang, Yukie Nagai
Title: Fat-to-Thin Policy Optimization: Offline RL with Sparse Policies
Abstract:
Sparse continuous policies are distributions that can choose some actions at random yet keep strictly zero probability for the other actions, which are radically different from the Gaussian. They have important real-world implications, e.g. in modeling safety-critical tasks like medicine. The combination of offline reinforcement learning and sparse policies provides a novel paradigm that enables learning completely from logged datasets a safety-aware sparse policy. However, sparse policies can cause difficulty with the existing offline algorithms which require evaluating actions that fall outside of the current support. In this paper, we propose the first offline policy optimization algorithm that tackles this challenge: Fat-to-Thin Policy Optimization (FtTPO). Specifically, we maintain a fat (heavy-tailed) proposal policy that effectively learns from the dataset and injects knowledge to a thin (sparse) policy, which is responsible for interacting with the environment. We instantiate FtTPO with the general $q$-Gaussian family that encompasses both heavy-tailed and sparse policies and verify that it performs favorably in a safety-critical treatment simulation and the standard MuJoCo suite. Our code is available at \url{https://github.com/lingweizhu/fat2thin}.

Authors:Xinyu Ma, Yifeng Xu, Yang Lin, Tianlong Wang, Xu Chu, Xin Gao, Junfeng Zhao, Yasha Wang
Title: DRESSing Up LLM: Efficient Stylized Question-Answering via Style Subspace Editing
Abstract:
We introduce DRESS, a novel approach for generating stylized large language model (LLM) responses through representation editing. Existing methods like prompting and fine-tuning are either insufficient for complex style adaptation or computationally expensive, particularly in tasks like NPC creation or character role-playing. Our approach leverages the over-parameterized nature of LLMs to disentangle a style-relevant subspace within the model's representation space to conduct representation editing, ensuring a minimal impact on the original semantics. By applying adaptive editing strengths, we dynamically adjust the steering vectors in the style subspace to maintain both stylistic fidelity and semantic integrity. We develop two stylized QA benchmark datasets to validate the effectiveness of DRESS, and the results demonstrate significant improvements compared to baseline methods such as prompting and ITI. In short, DRESS is a lightweight, train-free solution for enhancing LLMs with flexible and effective style control, making it particularly useful for developing stylized conversational agents. Codes and benchmark datasets are available at https://github.com/ArthurLeoM/DRESS-LLM.

Authors:Weicai Yan, Ye Wang, Wang Lin, Zirun Guo, Zhou Zhao, Tao Jin
Title: Low-rank Prompt Interaction for Continual Vision-Language Retrieval
Abstract:
Research on continual learning in multi-modal tasks has been receiving increasing attention. However, most existing work overlooks the explicit cross-modal and cross-task interactions. In this paper, we innovatively propose the Low-rank Prompt Interaction (LPI) to address this general problem of multi-modal understanding, which considers both cross-modal and cross-task interactions. Specifically, as for the former, we employ multi-modal correlation modules for corresponding Transformer layers. Considering that the training parameters scale to the number of layers and tasks, we propose low-rank interaction-augmented decomposition to avoid memory explosion while enhancing the cross-modal association through sharing and separating common-specific low-rank factors. In addition, due to the multi-modal semantic differences carried by the low-rank initialization, we adopt hierarchical low-rank contrastive learning to ensure training robustness. As for the latter, we initially employ a visual analysis and identify that different tasks have clear distinctions in proximity. Therefore, we introduce explicit task contrastive constraints in the prompt learning process based on task semantic distances. Experiments on two retrieval tasks show performance improvements with the introduction of a minimal number of parameters, demonstrating the effectiveness of our method. Code is available at https://github.com/Kelvin-ywc/LPI.

Authors:Kai-Tuo Xu, Feng-Long Xie, Xu Tang, Yao Hu
Title: FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration
Abstract:
We present FireRedASR, a family of large-scale automatic speech recognition (ASR) models for Mandarin, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. FireRedASR comprises two variants: FireRedASR-LLM: Designed to achieve state-of-the-art (SOTA) performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities. On public Mandarin benchmarks, FireRedASR-LLM (8.3B parameters) achieves an average Character Error Rate (CER) of 3.05%, surpassing the latest SOTA of 3.33% with an 8.4% relative CER reduction (CERR). It demonstrates superior generalization capability over industrial-grade baselines, achieving 24%-40% CERR in multi-source Mandarin ASR scenarios such as video, live, and intelligent assistant. FireRedASR-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture. On public Mandarin benchmarks, FireRedASR-AED (1.1B parameters) achieves an average CER of 3.18%, slightly worse than FireRedASR-LLM but still outperforming the latest SOTA model with over 12B parameters. It offers a more compact size, making it suitable for resource-constrained applications. Moreover, both models exhibit competitive results on Chinese dialects and English speech benchmarks and excel in singing lyrics recognition. To advance research in speech processing, we release our models and inference code at https://github.com/FireRedTeam/FireRedASR.

Authors:Taha Emre, Teresa Araújo, Marzieh Oghbaie, Dmitrii Lachinov, Guilherme Aresta, Hrvoje Bogunović
Title: Automatic detection and prediction of nAMD activity change in retinal OCT using Siamese networks and Wasserstein Distance for ordinality
Abstract:
Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss among older adults, where disease activity detection and progression prediction are critical for nAMD management in terms of timely drug administration and improving patient outcomes. Recent advancements in deep learning offer a promising solution for predicting changes in AMD from optical coherence tomography (OCT) retinal volumes. In this work, we proposed deep learning models for the two tasks of the public MARIO Challenge at MICCAI 2024, designed to detect and forecast changes in nAMD severity with longitudinal retinal OCT. For the first task, we employ a Vision Transformer (ViT) based Siamese Network to detect changes in AMD severity by comparing scan embeddings of a patient from different time points. To train a model to forecast the change after 3 months, we exploit, for the first time, an Earth Mover (Wasserstein) Distance-based loss to harness the ordinal relation within the severity change classes. Both models ranked high on the preliminary leaderboard, demonstrating that their predictive capabilities could facilitate nAMD treatment management.

Authors:Xiaohao Xu, Tianyi Zhang, Shibo Zhao, Xiang Li, Sibo Wang, Yongqi Chen, Ye Li, Bhiksha Raj, Matthew Johnson-Roberson, Sebastian Scherer, Xiaonan Huang
Title: Scalable Benchmarking and Robust Learning for Noise-Free Ego-Motion and 3D Reconstruction from Noisy Video
Abstract:
We aim to redefine robust ego-motion estimation and photorealistic 3D reconstruction by addressing a critical limitation: the reliance on noise-free data in existing models. While such sanitized conditions simplify evaluation, they fail to capture the unpredictable, noisy complexities of real-world environments. Dynamic motion, sensor imperfections, and synchronization perturbations lead to sharp performance declines when these models are deployed in practice, revealing an urgent need for frameworks that embrace and excel under real-world noise. To bridge this gap, we tackle three core challenges: scalable data generation, comprehensive benchmarking, and model robustness enhancement. First, we introduce a scalable noisy data synthesis pipeline that generates diverse datasets simulating complex motion, sensor imperfections, and synchronization errors. Second, we leverage this pipeline to create Robust-Ego3D, a benchmark rigorously designed to expose noise-induced performance degradation, highlighting the limitations of current learning-based methods in ego-motion accuracy and 3D reconstruction quality. Third, we propose Correspondence-guided Gaussian Splatting (CorrGS), a novel test-time adaptation method that progressively refines an internal clean 3D representation by aligning noisy observations with rendered RGB-D frames from clean 3D map, enhancing geometric alignment and appearance restoration through visual correspondence. Extensive experiments on synthetic and real-world data demonstrate that CorrGS consistently outperforms prior state-of-the-art methods, particularly in scenarios involving rapid motion and dynamic illumination.

Authors:Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Christos Thrampoulidis, Leonid Sigal, Renjie Liao
Title: Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation
Abstract:
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops

Authors:Mitch Kosieradzki, Seongjin Choi
Title: TrajFlow: A Generative Framework for Occupancy Density Estimation Using Normalizing Flows
Abstract:
For intelligent transportation systems and autonomous vehicles to operate safely and efficiently, they must reliably predict the future motion and trajectory of surrounding agents within complex traffic environments. At the same time, the motion of these agents is inherently uncertain, making accurate prediction difficult. In this paper, we propose \textbf{TrajFlow}, a generative framework for estimating the occupancy density of dynamic agents. Our framework utilizes a causal encoder to extract semantically meaningful embeddings of the observed trajectory, as well as a normalizing flow to decode these embeddings and determine the most likely future location of an agent at some time point in the future. Our formulation differs from existing approaches because we model the marginal distribution of spatial locations instead of the joint distribution of unobserved trajectories. The advantages of a marginal formulation are numerous. First, we demonstrate that the marginal formulation produces higher accuracy on challenging trajectory forecasting benchmarks. Second, the marginal formulation allows for fully continuous sampling of future locations. Finally, marginal densities are better suited for downstream tasks as they allow for the computation of per-agent motion trajectories and occupancy grids, the two most commonly used representations for motion forecasting. We present a novel architecture based entirely on neural differential equations as an implementation of this framework and provide ablations to demonstrate the advantages of a continuous implementation over a more traditional discrete neural network based approach. The code is available at https://github.com/UMN-Choi-Lab/TrajFlow.

Authors:Yiyun Zhou, Wenkang Han, Jingyuan Chen
Title: DKT2: Revisiting Applicable and Comprehensive Knowledge Tracing in Large-Scale Data
Abstract:
Knowledge Tracing (KT) is a fundamental component of Intelligent Tutoring Systems (ITS), enabling the modeling of students' knowledge states to predict future performance. The introduction of Deep Knowledge Tracing (DKT), the first deep learning-based KT (DLKT) model, has brought significant advantages in terms of applicability and comprehensiveness. However, recent DLKT models, such as Attentive Knowledge Tracing (AKT), have often prioritized predictive performance at the expense of these benefits. While deep sequential models like DKT have shown potential, they face challenges related to parallel computing, storage decision modification, and limited storage capacity. To address these limitations, we propose DKT2, a novel KT model that leverages the recently developed xLSTM architecture. DKT2 enhances applicable input representation using the Rasch model and incorporates Item Response Theory (IRT) for output interpretability, allowing for the decomposition of learned knowledge into familiar and unfamiliar knowledge. By integrating this knowledge with predicted questions, DKT2 generates comprehensive knowledge states. Extensive experiments conducted across three large-scale datasets demonstrate that DKT2 consistently outperforms 18 baseline models in various prediction tasks, underscoring its potential for real-world educational applications. This work bridges the gap between theoretical advancements and practical implementation in KT. Our code and datasets are fully available at https://github.com/zyy-2001/DKT2.

Authors:Yi Zhao, Youzhi Zhang
Title: Siren: A Learning-Based Multi-Turn Attack Framework for Simulating Real-World Human Jailbreak Behaviors
Abstract:
Large language models (LLMs) are widely used in real-world applications, raising concerns about their safety and trustworthiness. While red-teaming with jailbreak prompts exposes the vulnerabilities of LLMs, current efforts focus primarily on single-turn attacks, overlooking the multi-turn strategies used by real-world adversaries. Existing multi-turn methods rely on static patterns or predefined logical chains, failing to account for the dynamic strategies during attacks. We propose Siren, a learning-based multi-turn attack framework designed to simulate real-world human jailbreak behaviors. Siren consists of three stages: (1) training set construction utilizing Turn-Level LLM feedback (Turn-MF), (2) post-training attackers with supervised fine-tuning (SFT) and direct preference optimization (DPO), and (3) interactions between the attacking and target LLMs. Experiments demonstrate that Siren achieves an attack success rate (ASR) of 90% with LLaMA-3-8B as the attacker against Gemini-1.5-Pro as the target model, and 70% with Mistral-7B against GPT-4o, significantly outperforming single-turn baselines. Moreover, Siren with a 7B-scale model achieves performance comparable to a multi-turn baseline that leverages GPT-4o as the attacker, while requiring fewer turns and employing decomposition strategies that are better semantically aligned with attack goals. We hope Siren inspires the development of stronger defenses against advanced multi-turn jailbreak attacks under realistic scenarios. Code is available at https://github.com/YiyiyiZhao/siren. Warning: This paper contains potentially harmful text.

Authors:Hanrui Wang, Ching-Chun Chang, Chun-Shien Lu, Christopher Leckie, Isao Echizen
Title: GreedyPixel: Fine-Grained Black-Box Adversarial Attack Via Greedy Algorithm
Abstract:
Deep neural networks are highly vulnerable to adversarial examples that inputs with small, carefully crafted perturbations that cause misclassification, making adversarial attacks an essential tool for robustness evaluation. Existing black-box attacks fall into three categories: query-only, transfer-only, and query-and-transfer, and vary in perturbation pattern and optimization strategy. However, no prior method jointly achieves query-and-transfer guidance, pixel-wise sparsity, and training-free direct optimization, leaving a gap between black-box flexibility and white-box precision. We present GreedyPixel, a new attack framework that fills this gap by combining a surrogate-derived pixel priority map with greedy, per-pixel optimization refined by query feedback. This design reduces the exponential brute-force search space to a tractable linear procedure, guarantees monotonic loss decrease and convergence to a coordinate-wise optimum, and concentrates perturbations on robust, semantically meaningful pixels to improve perceptual quality. Extensive experiments on CIFAR-10 and ImageNet under both white-box and black-box settings demonstrate that GreedyPixel achieves state-of-the-art attack success rates and produces visually imperceptible perturbations. Our results show that GreedyPixel bridges the precision gap between white-box and black-box attacks and provides a practical framework for fine-grained robustness evaluation. The implementation is available at https://github.com/azrealwang/greedypixel.

Authors:Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang
Title: VideoShield: Regulating Diffusion-based Video Generation Models via Watermarking
Abstract:
Artificial Intelligence Generated Content (AIGC) has advanced significantly, particularly with the development of video generation models such as text-to-video (T2V) models and image-to-video (I2V) models. However, like other AIGC types, video generation requires robust content control. A common approach is to embed watermarks, but most research has focused on images, with limited attention given to videos. Traditional methods, which embed watermarks frame-by-frame in a post-processing manner, often degrade video quality. In this paper, we propose VideoShield, a novel watermarking framework specifically designed for popular diffusion-based video generation models. Unlike post-processing methods, VideoShield embeds watermarks directly during video generation, eliminating the need for additional training. To ensure video integrity, we introduce a tamper localization feature that can detect changes both temporally (across frames) and spatially (within individual frames). Our method maps watermark bits to template bits, which are then used to generate watermarked noise during the denoising process. Using DDIM Inversion, we can reverse the video to its original watermarked noise, enabling straightforward watermark extraction. Additionally, template bits allow precise detection for potential temporal and spatial modification. Extensive experiments across various video models (both T2V and I2V models) demonstrate that our method effectively extracts watermarks and detects tamper without compromising video quality. Furthermore, we show that this approach is applicable to image generation models, enabling tamper detection in generated images as well. Codes and models are available at https://github.com/hurunyi/VideoShield.

Authors:Mojtaba Safari, Zach Eidex, Chih-Wei Chang, Richard L. J. Qiu, Xiaofeng Yang
Title: Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration
Abstract:
Magnetic resonance imaging (MRI) is a non-invasive imaging modality and provides comprehensive anatomical and functional insights into the human body. However, its long acquisition times can lead to patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, strategies such as parallel imaging have been applied, which utilize multiple receiver coils to speed up the data acquisition process. Additionally, compressed sensing (CS) is a method that facilitates image reconstruction from sparse data, significantly reducing image acquisition time by minimizing the amount of data collection needed. Recently, deep learning (DL) has emerged as a powerful tool for improving MRI reconstruction. It has been integrated with parallel imaging and CS principles to achieve faster and more accurate MRI reconstructions. This review comprehensively examines DL-based techniques for MRI reconstruction. We categorize and discuss various DL-based methods, including end-to-end approaches, unrolled optimization, and federated learning, highlighting their potential benefits. Our systematic review highlights significant contributions and underscores the potential of DL in MRI reconstruction. Additionally, we summarize key results and trends in DL-based MRI reconstruction, including quantitative metrics, the dataset, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based MRI reconstruction in advancing medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based MRI reconstruction publications and public datasets-https://github.com/mosaf/Awesome-DL-based-CS-MRI.

Authors:Joshua Davis, Thomas Sounack, Kate Sciacca, Jessie M Brain, Brigitte N Durieux, Nicole D Agaronnik, Charlotta Lindvall
Title: MedSlice: Fine-Tuned Large Language Models for Secure Clinical Note Sectioning
Abstract:
Extracting sections from clinical notes is crucial for downstream analysis but is challenging due to variability in formatting and labor-intensive nature of manual sectioning. While proprietary large language models (LLMs) have shown promise, privacy concerns limit their accessibility. This study develops a pipeline for automated note sectioning using open-source LLMs, focusing on three sections: History of Present Illness, Interval History, and Assessment and Plan. We fine-tuned three open-source LLMs to extract sections using a curated dataset of 487 progress notes, comparing results relative to proprietary models (GPT-4o, GPT-4o mini). Internal and external validity were assessed via precision, recall and F1 score. Fine-tuned Llama 3.1 8B outperformed GPT-4o (F1=0.92). On the external validity test set, performance remained high (F1= 0.85). Fine-tuned open-source LLMs can surpass proprietary models in clinical note sectioning, offering advantages in cost, performance, and accessibility.

Authors:Po-Ting Lai, Chih-Hsuan Wei, Shubo Tian, Robert Leaman, Zhiyong Lu
Title: Enhancing Biomedical Relation Extraction with Directionality
Abstract:
Biological relation networks contain rich information for understanding the biological mechanisms behind the relationship of entities such as genes, proteins, diseases, and chemicals. The vast growth of biomedical literature poses significant challenges updating the network knowledge. The recent Biomedical Relation Extraction Dataset (BioRED) provides valuable manual annotations, facilitating the develop-ment of machine-learning and pre-trained language model approaches for automatically identifying novel document-level (inter-sentence context) relationships. Nonetheless, its annotations lack directionality (subject/object) for the entity roles, essential for studying complex biological networks. Herein we annotate the entity roles of the relationships in the BioRED corpus and subsequently propose a novel multi-task language model with soft-prompt learning to jointly identify the relationship, novel findings, and entity roles. Our results in-clude an enriched BioRED corpus with 10,864 directionality annotations. Moreover, our proposed method outperforms existing large language models such as the state-of-the-art GPT-4 and Llama-3 on two benchmarking tasks. Our source code and dataset are available at https://github.com/ncbi-nlp/BioREDirect.

Authors:Sneh Pandya, Purvik Patel, Brian D. Nord, Mike Walmsley, Aleksandra Ćiprijanović
Title: SIDDA: SInkhorn Dynamic Domain Adaptation for Image Classification with Equivariant Neural Networks
Abstract:
Modern neural networks (NNs) often do not generalize well in the presence of a "covariate shift"; that is, in situations where the training and test data distributions differ, but the conditional distribution of classification labels remains unchanged. In such cases, NN generalization can be reduced to a problem of learning more domain-invariant features. Domain adaptation (DA) methods include a range of techniques aimed at achieving this; however, these methods have struggled with the need for extensive hyperparameter tuning, which then incurs significant computational costs. In this work, we introduce SIDDA, an out-of-the-box DA training algorithm built upon the Sinkhorn divergence, that can achieve effective domain alignment with minimal hyperparameter tuning and computational overhead. We demonstrate the efficacy of our method on multiple simulated and real datasets of varying complexity, including simple shapes, handwritten digits, and real astronomical observations. SIDDA is compatible with a variety of NN architectures, and it works particularly well in improving classification accuracy and model calibration when paired with equivariant neural networks (ENNs). We find that SIDDA enhances the generalization capabilities of NNs, achieving up to a $\approx40\%$ improvement in classification accuracy on unlabeled target data. We also study the efficacy of DA on ENNs with respect to the varying group orders of the dihedral group $D_N$, and find that the model performance improves as the degree of equivariance increases. Finally, we find that SIDDA enhances model calibration on both source and target data--achieving over an order of magnitude improvement in the ECE and Brier score. SIDDA's versatility, combined with its automated approach to domain alignment, has the potential to advance multi-dataset studies by enabling the development of highly generalizable models.

Authors:Andrey Palaev, Adil Khan, Syed M. Ahsan Kazmi
Title: LLM-guided Instance-level Image Manipulation with Diffusion U-Net Cross-Attention Maps
Abstract:
The advancement of text-to-image synthesis has introduced powerful generative models capable of creating realistic images from textual prompts. However, precise control over image attributes remains challenging, especially at the instance level. While existing methods offer some control through fine-tuning or auxiliary information, they often face limitations in flexibility and accuracy. To address these challenges, we propose a pipeline leveraging Large Language Models (LLMs), open-vocabulary detectors, cross-attention maps and intermediate activations of diffusion U-Net for instance-level image manipulation. Our method detects objects mentioned in the prompt and present in the generated image, enabling precise manipulation without extensive training or input masks. By incorporating cross-attention maps, our approach ensures coherence in manipulated images while controlling object positions. Our method enables precise manipulations at the instance level without fine-tuning or auxiliary information such as masks or bounding boxes. Code is available at https://github.com/Palandr123/DiffusionU-NetLLM

Authors:Luqi Zhang, Haiping Wang, Chong Liu, Zhen Dong, Bisheng Yang
Title: ME-CPT: Multi-Task Enhanced Cross-Temporal Point Transformer for Urban 3D Change Detection
Abstract:
The point clouds collected by the Airborne Laser Scanning (ALS) system provide accurate 3D information of urban land covers. By utilizing multi-temporal ALS point clouds, semantic changes in urban area can be captured, demonstrating significant potential in urban planning, emergency management, and infrastructure maintenance. Existing 3D change detection methods struggle to efficiently extract multi-class semantic information and change features, still facing the following challenges: (1) the difficulty of accurately modeling cross-temporal point clouds spatial relationships for effective change feature extraction; (2) class imbalance of change samples which hinders distinguishability of semantic features; (3) the lack of real-world datasets for 3D semantic change detection. To resolve these challenges, we propose the Multi-task Enhanced Cross-temporal Point Transformer (ME-CPT) network. ME-CPT establishes spatiotemporal correspondences between point cloud across different epochs and employs attention mechanisms to jointly extract semantic change features, facilitating information exchange and change comparison. Additionally, we incorporate a semantic segmentation task and through the multi-task training strategy, further enhance the distinguishability of semantic features, reducing the impact of class imbalance in change types. Moreover, we release a 22.5 $km^2$ 3D semantic change detection dataset, offering diverse scenes for comprehensive evaluation. Experiments on multiple datasets show that the proposed MT-CPT achieves superior performance compared to existing state-of-the-art methods. The source code and dataset will be released upon acceptance at https://github.com/zhangluqi0209/ME-CPT.

Authors:Ioannis Nasios
Title: Enhancing kelp forest detection in remote sensing images using crowdsourced labels with Mixed Vision Transformers and ConvNeXt segmentation models
Abstract:
Kelp forests, as foundation species, are vital to marine ecosystems, providing essential food and habitat for numerous organisms. This study explores the integration of crowdsourced labels with advanced artificial intelligence models to develop a fast and accurate kelp canopy detection pipeline using Landsat images. Building on the success of a machine learning competition, where this approach ranked third and performed consistently well on both local validation and public and private leaderboards, the research highlights the effectiveness of combining Mixed Vision Transformers (MIT) with ConvNeXt models. Training these models on various image sizes significantly enhanced the accuracy of the ensemble results. U-Net emerged as the best segmentation architecture, with UpperNet also contributing to the final ensemble. Key Landsat bands, such as ShortWave InfraRed (SWIR1) and Near-InfraRed (NIR), were crucial while altitude data was used in postprocessing to eliminate false positives on land. The methodology achieved a high detection rate, accurately identifying about three out of four pixels containing kelp canopy while keeping false positives low. Despite the medium resolution of Landsat satellites, their extensive historical coverage makes them effective for studying kelp forests. This work also underscores the potential of combining machine learning models with crowdsourced data for effective and scalable environmental monitoring. All running code for training all models and inference can be found at https://github.com/IoannisNasios/Kelp_Forests.

Authors:Yi Yang, Zhang Zhang, Liang Wang
Title: MCRL4OR: Multimodal Contrastive Representation Learning for Off-Road Environmental Perception
Abstract:
Most studies on environmental perception for autonomous vehicles (AVs) focus on urban traffic environments, where the objects/stuff to be perceived are mainly from man-made scenes and scalable datasets with dense annotations can be used to train supervised learning models. By contrast, it is hard to densely annotate a large-scale off-road driving dataset manually due to the inherently unstructured nature of off-road environments. In this paper, we propose a Multimodal Contrastive Representation Learning approach for Off-Road environmental perception, namely MCRL4OR. This approach aims to jointly learn three encoders for processing visual images, locomotion states, and control actions by aligning the locomotion states with the fused features of visual images and control actions within a contrastive learning framework. The causation behind this alignment strategy is that the inertial locomotion state is the result of taking a certain control action under the current landform/terrain condition perceived by visual sensors. In experiments, we pre-train the MCRL4OR with a large-scale off-road driving dataset and adopt the learned multimodal representations for various downstream perception tasks in off-road driving scenarios. The superior performance in downstream tasks demonstrates the advantages of the pre-trained multimodal representations. The codes can be found in \url{https://github.com/1uciusy/MCRL4OR}.

Authors:Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang, Sifan Zhou
Title: OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting
Abstract:
Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. \href{https://github.com/BrotherHappy/OSTQuant}{https://github.com/BrotherHappy/OSTQuant}.

Authors:Chengyi Cai, Zesheng Ye, Lei Feng, Jianzhong Qi, Feng Liu
Title: Attribute-based Visual Reprogramming for Vision-Language Models
Abstract:
Visual reprogramming (VR) reuses pre-trained vision models for downstream image classification tasks by adding trainable noise patterns to inputs. When applied to vision-language models (e.g., CLIP), existing VR approaches follow the same pipeline used in vision models (e.g., ResNet, ViT), where ground-truth class labels are inserted into fixed text templates to guide the optimization of VR patterns. This label-based approach, however, overlooks the rich information and diverse attribute-guided textual representations that CLIP can exploit, which may lead to the misclassification of samples. In this paper, we propose Attribute-based Visual Reprogramming (AttrVR) for CLIP, utilizing descriptive attributes (DesAttrs) and distinctive attributes (DistAttrs), which respectively represent common and unique feature descriptions for different classes. Besides, as images of the same class may reflect different attributes after VR, AttrVR iteratively refines patterns using the $k$-nearest DesAttrs and DistAttrs for each image sample, enabling more dynamic and sample-specific optimization. Theoretically, AttrVR is shown to reduce intra-class variance and increase inter-class separation. Empirically, it achieves superior performance in 12 downstream tasks for both ViT-based and ResNet-based CLIP. The success of AttrVR facilitates more effective integration of VR from unimodal vision models into vision-language models. Our code is available at https://github.com/tmlr-group/AttrVR.

Authors:Yicheng Tao, Haotian Liu, Shanwen Wang, Hongteng Xu
Title: Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization
Abstract:
Formalized mathematics has recently garnered significant attention for its ability to assist mathematicians across various fields. Premise retrieval, as a common step in mathematical formalization, has been a challenge, particularly for inexperienced users. Existing retrieval methods that facilitate natural language queries require a certain level of mathematical expertise from users, while approaches based on formal languages (e.g., Lean) typically struggle with the scarcity of training data, hindering the training of effective and generalizable retrieval models. In this work, we introduce a novel method that leverages data extracted from Mathlib to train a lightweight and effective premise retrieval model. In particular, the proposed model embeds queries (i.e., proof state provided by Lean) and premises in a latent space, featuring a tokenizer specifically trained on formal corpora. The model is learned in a contrastive learning framework, in which a fine-grained similarity calculation method and a re-ranking module are applied to enhance the retrieval performance. Experimental results demonstrate that our model outperforms existing baselines, achieving higher accuracy while maintaining a lower computational load. We have released an open-source search engine based on our retrieval model at https://premise-search.com/. The source code and the trained model can be found at https://github.com/ruc-ai4math/Premise-Retrieval.

Authors:Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Hao Chen, Yilin Xiao, Chuang Zhou, Yi Chang, Xiao Huang
Title: A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks, yet their application to specialized domains remains challenging due to the need for deep expertise. Retrieval-Augmented generation (RAG) has emerged as a promising solution to customize LLMs for professional fields by seamlessly integrating external knowledge bases, enabling real-time access to domain-specific expertise during inference. Despite its potential, traditional RAG systems, based on flat text retrieval, face three critical challenges: (i) complex query understanding in professional contexts, (ii) difficulties in knowledge integration across distributed sources, and (iii) system efficiency bottlenecks at scale. This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG), a new paradigm that revolutionizes domain-specific LLM applications. GraphRAG addresses traditional RAG limitations through three key innovations: (i) graph-structured knowledge representation that explicitly captures entity relationships and domain hierarchies, (ii) efficient graph-based retrieval techniques that enable context-preserving knowledge retrieval with multihop reasoning ability, and (iii) structure-aware knowledge integration algorithms that leverage retrieved knowledge for accurate and logical coherent generation of LLMs. In this survey, we systematically analyze the technical foundations of GraphRAG and examine current implementations across various professional domains, identifying key technical challenges and promising research directions. All the related resources of GraphRAG, including research papers, open-source data, and projects, are collected for the community in https://github.com/DEEP-PolyU/Awesome-GraphRAG.

Authors:Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Hao Chen, Yilin Xiao, Chuang Zhou, Junnan Dong, Yi Chang, Xiao Huang
Title: A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks, yet their application to specialized domains remains challenging due to the need for deep expertise. Retrieval-Augmented generation (RAG) has emerged as a promising solution to customize LLMs for professional fields by seamlessly integrating external knowledge bases, enabling real-time access to domain-specific expertise during inference. Despite its potential, traditional RAG systems, based on flat text retrieval, face three critical challenges: (i) complex query understanding in professional contexts, (ii) difficulties in knowledge integration across distributed sources, and (iii) system efficiency bottlenecks at scale. This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG), a new paradigm that revolutionizes domain-specific LLM applications. GraphRAG addresses traditional RAG limitations through three key innovations: (i) graph-structured knowledge representation that explicitly captures entity relationships and domain hierarchies, (ii) efficient graph-based retrieval techniques that enable context-preserving knowledge retrieval with multihop reasoning ability, and (iii) structure-aware knowledge integration algorithms that leverage retrieved knowledge for accurate and logical coherent generation of LLMs. In this survey, we systematically analyze the technical foundations of GraphRAG and examine current implementations across various professional domains, identifying key technical challenges and promising research directions. All the related resources of GraphRAG, including research papers, open-source data, and projects, are collected for the community in https://github.com/DEEP-PolyU/Awesome-GraphRAG.

Authors:Zicheng Zhang, Xiangyu Zhao, Xinyu Fang, Chunyi Li, Xiaohong Liu, Xiongkuo Min, Haodong Duan, Kai Chen, Guangtao Zhai
Title: Redundancy Principles for MLLMs Benchmarks
Abstract:
With the rapid iteration of Multi-modality Large Language Models (MLLMs) and the evolving demands of the field, the number of benchmarks produced annually has surged into the hundreds. The rapid growth has inevitably led to significant redundancy among benchmarks. Therefore, it is crucial to take a step back and critically assess the current state of redundancy and propose targeted principles for constructing effective MLLM benchmarks. In this paper, we focus on redundancy from three key perspectives: 1) Redundancy of benchmark capability dimensions, 2) Redundancy in the number of test questions, and 3) Cross-benchmark redundancy within specific domains. Through the comprehensive analysis over hundreds of MLLMs' performance across more than 20 benchmarks, we aim to quantitatively measure the level of redundancy lies in existing MLLM evaluations, provide valuable insights to guide the future development of MLLM benchmarks, and offer strategies to refine and address redundancy issues effectively. The code is available at https://github.com/zzc-1998/Benchmark-Redundancy.

Authors:Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Rui Huang, Haoquan Zhang, Manyuan Zhang, Jiaming Liu, Shanghang Zhang, Peng Gao, Hongsheng Li, Pheng-Ann Heng
Title: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step
Abstract:
Chain-of-Thought (CoT) reasoning has been extensively explored in large models to tackle complex understanding tasks. However, it still remains an open question whether such strategies can be applied to verifying and reinforcing image generation scenarios. In this paper, we provide the first comprehensive investigation of the potential of CoT reasoning to enhance autoregressive image generation. We focus on three techniques: scaling test-time computation for verification, aligning model preferences with Direct Preference Optimization (DPO), and integrating these techniques for complementary effects. Our results demonstrate that these approaches can be effectively adapted and combined to significantly improve image generation performance. Furthermore, given the pivotal role of reward models in our findings, we propose the Potential Assessment Reward Model (PARM) and PARM++, specialized for autoregressive image generation. PARM adaptively assesses each generation step through a potential assessment approach, merging the strengths of existing reward models, and PARM++ further introduces a reflection mechanism to self-correct the generated unsatisfactory image, which is the first to incorporate reflection in autoregressive image generation. Using our investigated reasoning strategies, we enhance a baseline model, Show-o, to achieve superior results, with a significant +24% improvement on the GenEval benchmark, surpassing Stable Diffusion 3 by +15%. We hope our study provides unique insights and paves a new path for integrating CoT reasoning with autoregressive image generation. Code and models are released at https://github.com/ZiyuGuo99/Image-Generation-CoT

Authors:Hao Dong, Eleni Chatzi, Olga Fink
Title: Towards Robust Multimodal Open-set Test-time Adaptation via Adaptive Entropy-aware Optimization
Abstract:
Test-time adaptation (TTA) has demonstrated significant potential in addressing distribution shifts between training and testing data. Open-set test-time adaptation (OSTTA) aims to adapt a source pre-trained model online to an unlabeled target domain that contains unknown classes. This task becomes more challenging when multiple modalities are involved. Existing methods have primarily focused on unimodal OSTTA, often filtering out low-confidence samples without addressing the complexities of multimodal data. In this work, we present Adaptive Entropy-aware Optimization (AEO), a novel framework specifically designed to tackle Multimodal Open-set Test-time Adaptation (MM-OSTTA) for the first time. Our analysis shows that the entropy difference between known and unknown samples in the target domain strongly correlates with MM-OSTTA performance. To leverage this, we propose two key components: Unknown-aware Adaptive Entropy Optimization (UAE) and Adaptive Modality Prediction Discrepancy Optimization (AMP). These components enhance the ability of model to distinguish unknown class samples during online adaptation by amplifying the entropy difference between known and unknown samples. To thoroughly evaluate our proposed methods in the MM-OSTTA setting, we establish a new benchmark derived from existing datasets. This benchmark includes two downstream tasks and incorporates five modalities. Extensive experiments across various domain shift situations demonstrate the efficacy and versatility of the AEO framework. Additionally, we highlight the strong performance of AEO in long-term and continual MM-OSTTA settings, both of which are challenging and highly relevant to real-world applications. Our source code is available at https://github.com/donghao51/AEO.

Authors:Jiayi Lei, Renrui Zhang, Xiangfei Hu, Weifeng Lin, Zhen Li, Wenjian Sun, Ruoyi Du, Le Zhuo, Zhongyu Li, Xinyue Li, Shitian Zhao, Ziyu Guo, Yiting Lu, Peng Gao, Hongsheng Li
Title: IMAGINE-E: Image Generation Intelligence Evaluation of State-of-the-art Text-to-Image Models
Abstract:
With the rapid development of diffusion models, text-to-image(T2I) models have made significant progress, showcasing impressive abilities in prompt following and image generation. Recently launched models such as FLUX.1 and Ideogram2.0, along with others like Dall-E3 and Stable Diffusion 3, have demonstrated exceptional performance across various complex tasks, raising questions about whether T2I models are moving towards general-purpose applicability. Beyond traditional image generation, these models exhibit capabilities across a range of fields, including controllable generation, image editing, video, audio, 3D, and motion generation, as well as computer vision tasks like semantic segmentation and depth estimation. However, current evaluation frameworks are insufficient to comprehensively assess these models' performance across expanding domains. To thoroughly evaluate these models, we developed the IMAGINE-E and tested six prominent models: FLUX.1, Ideogram2.0, Midjourney, Dall-E3, Stable Diffusion 3, and Jimeng. Our evaluation is divided into five key domains: structured output generation, realism, and physical consistency, specific domain generation, challenging scenario generation, and multi-style creation tasks. This comprehensive assessment highlights each model's strengths and limitations, particularly the outstanding performance of FLUX.1 and Ideogram2.0 in structured and specific domain tasks, underscoring the expanding applications and potential of T2I models as foundational AI tools. This study provides valuable insights into the current state and future trajectory of T2I models as they evolve towards general-purpose usability. Evaluation scripts will be released at https://github.com/jylei16/Imagine-e.

Authors:Peiyuan Zhang, Junwei Luo, Xue Yang, Yi Yu, Qingyun Li, Yue Zhou, Xiaosong Jia, Xudong Lu, Jingdong Chen, Xiang Li, Junchi Yan, Yansheng Li
Title: PointOBB-v3: Expanding Performance Boundaries of Single Point-Supervised Oriented Object Detection
Abstract:
With the growing demand for oriented object detection (OOD), recent studies on point-supervised OOD have attracted significant interest. In this paper, we propose PointOBB-v3, a stronger single point-supervised OOD framework. Compared to existing methods, it generates pseudo rotated boxes without additional priors and incorporates support for the end-to-end paradigm. PointOBB-v3 functions by integrating three unique image views: the original view, a resized view, and a rotated/flipped (rot/flp) view. Based on the views, a scale augmentation module and an angle acquisition module are constructed. In the first module, a Scale-Sensitive Consistency (SSC) loss and a Scale-Sensitive Feature Fusion (SSFF) module are introduced to improve the model's ability to estimate object scale. To achieve precise angle predictions, the second module employs symmetry-based self-supervised learning. Additionally, we introduce an end-to-end version that eliminates the pseudo-label generation process by integrating a detector branch and introduces an Instance-Aware Weighting (IAW) strategy to focus on high-quality predictions. We conducted extensive experiments on the DIOR-R, DOTA-v1.0/v1.5/v2.0, FAIR1M, STAR, and RSAR datasets. Across all these datasets, our method achieves an average improvement in accuracy of 3.56% in comparison to previous state-of-the-art methods. The code will be available at https://github.com/ZpyWHU/PointOBB-v3.

Authors:Shiling Deng, Serge Belongie, Peter Ebert Christensen
Title: Large Vision-Language Models for Knowledge-Grounded Data Annotation of Memes
Abstract:
Memes have emerged as a powerful form of communication, integrating visual and textual elements to convey humor, satire, and cultural messages. Existing research has focused primarily on aspects such as emotion classification, meme generation, propagation, interpretation, figurative language, and sociolinguistics, but has often overlooked deeper meme comprehension and meme-text retrieval. To address these gaps, this study introduces ClassicMemes-50-templates (CM50), a large-scale dataset consisting of over 33,000 memes, centered around 50 popular meme templates. We also present an automated knowledge-grounded annotation pipeline leveraging large vision-language models to produce high-quality image captions, meme captions, and literary device labels overcoming the labor intensive demands of manual annotation. Additionally, we propose a meme-text retrieval CLIP model (mtrCLIP) that utilizes cross-modal embedding to enhance meme analysis, significantly improving retrieval performance. Our contributions include:(1) a novel dataset for large-scale meme study, (2) a scalable meme annotation framework, and (3) a fine-tuned CLIP for meme-text retrieval, all aimed at advancing the understanding and analysis of memes at scale.

Authors:Frederik Pahde, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek
Title: Ensuring Medical AI Safety: Interpretability-Driven Detection and Mitigation of Spurious Model Behavior and Associated Data
Abstract:
Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.

Authors:Yizhe Lv, Tingting Zhang, Zhijian Wang, Yunpeng Song, Han Ding, Jinsong Han, Fei Wang
Title: mmEgoHand: Egocentric Hand Pose Estimation and Gesture Recognition with Head-mounted Millimeter-wave Radar and IMU
Abstract:
Recent advancements in millimeter-wave (mmWave) radar have demonstrated its potential for human action recognition and pose estimation, offering privacy-preserving advantages over conventional cameras while maintaining occlusion robustness, with promising applications in human-computer interaction and wellness care. However, existing mmWave systems typically employ fixed-position configurations, restricting user mobility to predefined zones and limiting practical deployment scenarios. We introduce mmEgoHand, a head-mounted egocentric system for hand pose estimation to support applications such as gesture recognition, VR interaction, skill digitization and assessment, and robotic teleoperation. mmEgoHand synergistically integrates mmWave radar with inertial measurement units (IMUs) to enable dynamic perception. The IMUs actively compensate for radar interference induced by head movements, while our novel end-to-end Transformer architecture simultaneously estimates 3D hand keypoint coordinates through multi-modal sensor fusion. This dual-modality framework achieves spatial-temporal alignment of mmWave heatmaps with IMUs, overcoming viewpoint instability inherent in egocentric sensing scenarios. We further demonstrate that intermediate hand pose representations substantially improve performance in downstream task, e.g., VR gesture recognition. Extensive evaluations with 10 subjects performing 8 gestures across 3 distinct postures -- standing, sitting, lying -- achieve 90.8% recognition accuracy, outperforming state-of-the-art solutions by a large margin. Dataset and code are available at https://github.com/WhisperYi/mmVR.

Authors:Zhi Sheng, Daisy Yuan, Jingtao Ding, Yong Li
Title: Unveiling the Power of Noise Priors: Enhancing Diffusion Models for Mobile Traffic Prediction
Abstract:
Accurate prediction of mobile traffic, i.e., network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into prior and residual components, with the prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain. We provide code and data at https://github.com/tsinghua-fib-lab/NPDiff.

Authors:Dan Zhang, Tao Feng, Lilong Xue, Yuandong Wang, Yuxiao Dong, Jie Tang
Title: Parameter-Efficient Fine-Tuning for Foundation Models
Abstract:
This survey delves into the realm of Parameter-Efficient Fine-Tuning (PEFT) within the context of Foundation Models (FMs). PEFT, a cost-effective fine-tuning technique, minimizes parameters and computational complexity while striving for optimal downstream task performance. FMs, like ChatGPT, DALL-E, and LLaVA specialize in language understanding, generative tasks, and multimodal tasks, trained on diverse datasets spanning text, images, and videos. The diversity of FMs guides various adaptation strategies for PEFT. Therefore, this survey aims to provide a comprehensive overview of PEFT techniques applied to diverse FMs and address critical gaps in understanding the techniques, trends, and applications. We start by providing a detailed development of FMs and PEFT. Subsequently, we systematically review the key categories and core mechanisms of PEFT across diverse FMs to offer a comprehensive understanding of trends. We also explore the most recent applications across various FMs to demonstrate the versatility of PEFT, shedding light on the integration of systematic PEFT methods with a range of FMs. Furthermore, we identify potential research and development directions for improving PEFTs in the future. This survey provides a valuable resource for both newcomers and experts seeking to understand and use the power of PEFT across FMs. All reviewed papers are listed at \url{https://github.com/THUDM/Awesome-Parameter-Efficient-Fine-Tuning-for-Foundation-Models}.

Authors:Mingzhao Wang, You Zhou, Zhiguang Cao, Yubin Xiao, Xuan Wu, Wei Pang, Yuan Jiang, Hui Yang, Peng Zhao, Yuanshu Li
Title: An Efficient Diffusion-based Non-Autoregressive Solver for Traveling Salesman Problem
Abstract:
Recent advances in neural models have shown considerable promise in solving Traveling Salesman Problems (TSPs) without relying on much hand-crafted engineering. However, while non-autoregressive (NAR) approaches benefit from faster inference through parallelism, they typically deliver solutions of inferior quality compared to autoregressive ones. To enhance the solution quality while maintaining fast inference, we propose DEITSP, a diffusion model with efficient iterations tailored for TSP that operates in a NAR manner. Firstly, we introduce a one-step diffusion model that integrates the controlled discrete noise addition process with self-consistency enhancement, enabling optimal solution prediction through simultaneous denoising of multiple solutions. Secondly, we design a dual-modality graph transformer to bolster the extraction and fusion of features from node and edge modalities, while further accelerating the inference with fewer layers. Thirdly, we develop an efficient iterative strategy that alternates between adding and removing noise to improve exploration compared to previous diffusion methods. Additionally, we devise a scheduling framework to progressively refine the solution space by adjusting noise levels, facilitating a smooth search for optimal solutions. Extensive experiments on real-world and large-scale TSP instances demonstrate that DEITSP performs favorably against existing neural approaches in terms of solution quality, inference latency, and generalization ability. Our code is available at $\href{https://github.com/DEITSP/DEITSP}{https://github.com/DEITSP/DEITSP}$.

Authors:Xin Xu, Jiaxin Zhang, Tianhao Chen, Zitong Chao, Jishan Hu, Can Yang
Title: UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models
Abstract:
Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap ($Δ$), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large $Δ$ values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and $Δ= 0$. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems. Codes and data are available at https://github.com/YangLabHKUST/UGMathBench

Authors:Dario Serez, Marco Cristani, Alessio Del Bue, Vittorio Murino, Pietro Morerio
Title: A Mutual Information Perspective on Multiple Latent Variable Generative Models for Positive View Generation
Abstract:
In image generation, Multiple Latent Variable Generative Models (MLVGMs) employ multiple latent variables to gradually shape the final images, from global characteristics to finer and local details (e.g., StyleGAN, NVAE), emerging as powerful tools for diverse applications. Yet their generative dynamics remain only empirically observed, without a systematic understanding of each latent variable's impact. In this work, we propose a novel framework that quantifies the contribution of each latent variable using Mutual Information (MI) as a metric. Our analysis reveals that current MLVGMs often underutilize some latent variables, and provides actionable insights for their use in downstream applications. With this foundation, we introduce a method for generating synthetic data for Self-Supervised Contrastive Representation Learning (SSCRL). By leveraging the hierarchical and disentangled variables of MLVGMs, our approach produces diverse and semantically meaningful views without the need for real image data. Additionally, we introduce a Continuous Sampling (CS) strategy, where the generator dynamically creates new samples during SSCRL training, greatly increasing data variability. Our comprehensive experiments demonstrate the effectiveness of these contributions, showing that MLVGMs' generated views compete on par with or even surpass views generated from real data. This work establishes a principled approach to understanding and exploiting MLVGMs, advancing both generative modeling and self-supervised learning. Code and pre-trained models at: https://github.com/SerezD/mi_ml_gen.

Authors:Abdulrahman Oladipupo Ibraheem
Title: Regularizing cross entropy loss via minimum entropy and K-L divergence
Abstract:
I introduce two novel loss functions for classification in deep learning. The two loss functions extend standard cross entropy loss by regularizing it with minimum entropy and Kullback-Leibler (K-L) divergence terms. The first of the two novel loss functions is termed mixed entropy loss (MIX-ENT for short), while the second one is termed minimum entropy regularized cross-entropy loss (MIN-ENT for short). The MIX-ENT function introduces a regularizer that can be shown to be equivalent to the sum of a minimum entropy term and a K-L divergence term. However, it should be noted that the K-L divergence term here is different from that in the standard cross-entropy loss function, in the sense that it swaps the roles of the target probability and the hypothesis probability. The MIN-ENT function simply adds a minimum entropy regularizer to the standard cross entropy loss function. In both MIX-ENT and MIN-ENT, the minimum entropy regularizer minimizes the entropy of the hypothesis probability distribution which is output by the neural network. Experiments on the EMNIST-Letters dataset shows that my implementation of MIX-ENT and MIN-ENT lets the VGG model climb from its previous 3rd position on the paperswithcode leaderboard to reach the 2nd position on the leaderboard, outperforming the Spinal-VGG model in so doing. Specifically, using standard cross-entropy, VGG achieves 95.86% while Spinal-VGG achieves 95.88% classification accuracies, whereas using VGG (without Spinal-VGG) our MIN-ENT achieved 95.933%, while our MIX-ENT achieved 95.927% accuracies. The pre-trained models for both MIX-ENT and MIN-ENT are at https://github.com/rahmanoladi/minimum entropy project.

Authors:Fu Rong, Meng Lan, Qian Zhang, Lefei Zhang
Title: MPG-SAM 2: Adapting SAM 2 with Mask Priors and Global Context for Referring Video Object Segmentation
Abstract:
Referring video object segmentation (RVOS) aims to segment objects in a video according to textual descriptions, which requires the integration of multimodal information and temporal dynamics perception. The Segment Anything Model 2 (SAM 2) has shown great effectiveness across various video segmentation tasks. However, its application to offline RVOS is challenged by the translation of the text into effective prompts and a lack of global context awareness. In this paper, we propose a novel RVOS framework, termed MPG-SAM 2, to address these challenges. Specifically, MPG-SAM 2 employs a unified multimodal encoder to jointly encode video and textual features, generating semantically aligned video and text embeddings, along with multimodal class tokens. A mask prior generator utilizes the video embeddings and class tokens to create pseudo masks of target objects and global context. These masks are fed into the prompt encoder as dense prompts along with multimodal class tokens as sparse prompts to generate accurate prompts for SAM 2. To provide the online SAM 2 with a global view, we introduce a hierarchical global-historical aggregator, which allows SAM 2 to aggregate global and historical information of target objects at both pixel and object levels, enhancing the target representation and temporal consistency. Extensive experiments on several RVOS benchmarks demonstrate the superiority of MPG-SAM 2 and the effectiveness of our proposed modules. The code is available at https://github.com/rongfu-dsb/MPG-SAM2.

Authors:Olaya Pérez-Mon, Juan José del Coz, Pablo González
Title: Quantification via Gaussian Latent Space Representations
Abstract:
Quantification, or prevalence estimation, is the task of predicting the prevalence of each class within an unknown bag of examples. Most existing quantification methods in the literature rely on prior probability shift assumptions to create a quantification model that uses the predictions of an underlying classifier to make optimal prevalence estimates. In this work, we present an end-to-end neural network that uses Gaussian distributions in latent spaces to obtain invariant representations of bags of examples. This approach addresses the quantification problem using deep learning, enabling the optimization of specific loss functions relevant to the problem and avoiding the need for an intermediate classifier, tackling the quantification problem as a direct optimization problem. Our method achieves state-of-the-art results, both against traditional quantification methods and other deep learning approaches for quantification. The code needed to reproduce all our experiments is publicly available at https://github.com/AICGijon/gmnet.

Authors:Qiang Hu, Qihan He, Houqiang Zhong, Guo Lu, Xiaoyun Zhang, Guangtao Zhai, Yanfeng Wang
Title: VARFVV: View-Adaptive Real-Time Interactive Free-View Video Streaming with Edge Computing
Abstract:
Free-view video (FVV) allows users to explore immersive video content from multiple views. However, delivering FVV poses significant challenges due to the uncertainty in view switching, combined with the substantial bandwidth and computational resources required to transmit and decode multiple video streams, which may result in frequent playback interruptions. Existing approaches, either client-based or cloud-based, struggle to meet high Quality of Experience (QoE) requirements under limited bandwidth and computational resources. To address these issues, we propose VARFVV, a bandwidth- and computationally-efficient system that enables real-time interactive FVV streaming with high QoE and low switching delay. Specifically, VARFVV introduces a low-complexity FVV generation scheme that reassembles multiview video frames at the edge server based on user-selected view tracks, eliminating the need for transcoding and significantly reducing computational overhead. This design makes it well-suited for large-scale, mobile-based UHD FVV experiences. Furthermore, we present a popularity-adaptive bit allocation method, leveraging a graph neural network, that predicts view popularity and dynamically adjusts bit allocation to maximize QoE within bandwidth constraints. We also construct an FVV dataset comprising 330 videos from 10 scenes, including basketball, opera, etc. Extensive experiments show that VARFVV surpasses existing methods in video quality, switching latency, computational efficiency, and bandwidth usage, supporting over 500 users on a single edge server with a switching delay of 71.5ms. Our code and dataset are available at https://github.com/qianghu-huber/VARFVV.

Authors:Younes Yousef, Lukas Galke, Ansgar Scherp
Title: A Transformer-based Autoregressive Decoder Architecture for Hierarchical Text Classification
Abstract:
Recent approaches in hierarchical text classification (HTC) rely on the capabilities of a pre-trained transformer model and exploit the label semantics and a graph encoder for the label hierarchy. In this paper, we introduce an effective hierarchical text classifier RADAr (Transformer-based Autoregressive Decoder Architecture) that is based only on an off-the-shelf RoBERTa transformer to process the input and a custom autoregressive decoder with two decoder layers for generating the classification output. Thus, unlike existing approaches for HTC, the encoder of RADAr has no explicit encoding of the label hierarchy and the decoder solely relies on the label sequences of the samples observed during training. We demonstrate on three benchmark datasets that RADAr achieves results competitive to the state of the art with less training and inference time. Our model consistently performs better when organizing the label sequences from children to parents versus the inverse, as done in existing HTC approaches. Our experiments show that neither the label semantics nor an explicit graph encoder for the hierarchy is needed. This has strong practical implications for HTC as the architecture has fewer requirements and provides a speed-up by a factor of 2 at inference time. Moreover, training a separate decoder from scratch in conjunction with fine-tuning the encoder allows future researchers and practitioners to exchange the encoder part as new models arise. The source code is available at https://github.com/yousef-younes/RADAr.

Authors:Tao Liu, Kai Wang, Senmao Li, Joost van de Weijer, Fahad Shahbaz Khan, Shiqi Yang, Yaxing Wang, Jian Yang, Ming-Ming Cheng
Title: One-Prompt-One-Story: Free-Lunch Consistent Text-to-Image Generation Using a Single Prompt
Abstract:
Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.

Authors:Chenxu Wu, Qingpeng Kong, Zihang Jiang, S. Kevin Zhou
Title: Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement
Abstract:
Magnetic Resonance Imaging (MRI), including diffusion MRI (dMRI), serves as a ``microscope'' for anatomical structures and routinely mitigates the influence of low signal-to-noise ratio scans by compromising temporal or spatial resolution. However, these compromises fail to meet clinical demands for both efficiency and precision. Consequently, denoising is a vital preprocessing step, particularly for dMRI, where clean data is unavailable. In this paper, we introduce Di-Fusion, a fully self-supervised denoising method that leverages the latter diffusion steps and an adaptive sampling process. Unlike previous approaches, our single-stage framework achieves efficient and stable training without extra noise model training and offers adaptive and controllable results in the sampling process. Our thorough experiments on real and simulated data demonstrate that Di-Fusion achieves state-of-the-art performance in microstructure modeling, tractography tracking, and other downstream tasks. Code is available at https://github.com/FouierL/Di-Fusion.

Authors:Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu, Yimeng Shan, Yang Yang, Haizhou Li
Title: Quantized Spike-driven Transformer
Abstract:
Spiking neural networks are emerging as a promising energy-efficient alternative to traditional artificial neural networks due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage. For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0$\times$ and 8.1$\times$ in power consumption and model size, respectively. Code is available at https://github.com/bollossom/QSD-Transformer.

Authors:Yuliang Gu, Weilun Tsao, Bo Du, Thierry Géraud, Yongchao Xu
Title: Leveraging Textual Anatomical Knowledge for Class-Imbalanced Semi-Supervised Multi-Organ Segmentation
Abstract:
Annotating 3D medical images demands substantial time and expertise, driving the adoption of semi-supervised learning (SSL) for segmentation tasks. However, the complex anatomical structures of organs often lead to significant class imbalances, posing major challenges for deploying SSL in real-world scenarios. Despite the availability of valuable prior information, such as inter-organ relative positions and organ shape priors, existing SSL methods have yet to fully leverage these insights. To address this gap, we propose a novel approach that integrates textual anatomical knowledge (TAK) into the segmentation model. Specifically, we use GPT-4o to generate textual descriptions of anatomical priors, which are then encoded using a CLIP-based model. These encoded priors are injected into the segmentation model as parameters of the segmentation head. Additionally, contrastive learning is employed to enhance the alignment between textual priors and visual features. Extensive experiments demonstrate the superior performance of our method, significantly surpassing state-of-the-art approaches. The source code will be available at: https://github.com/Lunn88/TAK-Semi.

Authors:Haomiao Xiong, Zongxin Yang, Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Jiawen Zhu, Huchuan Lu
Title: Streaming Video Understanding and Multi-round Interaction with Memory-enhanced Knowledge
Abstract:
Recent advances in Large Language Models (LLMs) have enabled the development of Video-LLMs, advancing multimodal learning by bridging video data with language tasks. However, current video understanding models struggle with processing long video sequences, supporting multi-turn dialogues, and adapting to real-world dynamic scenarios. To address these issues, we propose StreamChat, a training-free framework for streaming video reasoning and conversational interaction. $\StreamChat$ leverages a novel hierarchical memory system to efficiently process and compress video features over extended sequences, enabling real-time, multi-turn dialogue. Our framework incorporates a parallel system scheduling strategy that enhances processing speed and reduces latency, ensuring robust performance in real-world applications. Furthermore, we introduce StreamBench, a versatile benchmark that evaluates streaming video understanding across diverse media types and interactive scenarios, including multi-turn interactions and complex reasoning tasks. Extensive evaluations on StreamBench and other public benchmarks demonstrate that StreamChat significantly outperforms existing state-of-the-art models in terms of accuracy and response times, confirming its effectiveness for streaming video understanding. Code is available at StreamChat: https://github.com/hmxiong/StreamChat.

Authors:Andong Li, Zhihang Sun, Fengyuan Hao, Xiaodong Li, Chengshi Zheng
Title: Neural Vocoders as Speech Enhancers
Abstract:
Speech enhancement (SE) and neural vocoding are traditionally viewed as separate tasks. In this work, we observe them under a common thread: the rank behavior of these processes. This observation prompts two key questions: \textit{Can a model designed for one task's rank degradation be adapted for the other?} and \textit{Is it possible to address both tasks using a unified model?} Our empirical findings demonstrate that existing speech enhancement models can be successfully trained to perform vocoding tasks, and a single model, when jointly trained, can effectively handle both tasks with performance comparable to separately trained models. These results suggest that speech enhancement and neural vocoding can be unified under a broader framework of speech restoration. Code: https://github.com/Andong-Li-speech/Neural-Vocoders-as-Speech-Enhancers.

Authors:Samer Attrah
Title: Emotion estimation from video footage with LSTM
Abstract:
Emotion estimation in general is a field that has been studied for a long time, and several approaches exist using machine learning. in this paper, we present an LSTM model, that processes the blend-shapes produced by the library MediaPipe, for a face detected in a live stream of a camera, to estimate the main emotion from the facial expressions, this model is trained on the FER2013 dataset and delivers a result of 71% accuracy and 62% f1-score which meets the accuracy benchmark of the FER2013 dataset, with significantly reduced computation costs. https://github.com/Samir-atra/Emotion_estimation_from_video_footage_with_LSTM_ML_algorithm

Authors:Jian Wang, Xiaokang Zhang, Xianping Ma, Weikang Yu, Pedram Ghamisi
Title: Auto-Prompting SAM for Weakly Supervised Landslide Extraction
Abstract:
Weakly supervised landslide extraction aims to identify landslide regions from remote sensing data using models trained with weak labels, particularly image-level labels. However, it is often challenged by the imprecise boundaries of the extracted objects due to the lack of pixel-wise supervision and the properties of landslide objects. To tackle these issues, we propose a simple yet effective method by auto-prompting the Segment Anything Model (SAM), i.e., APSAM. Instead of depending on high-quality class activation maps (CAMs) for pseudo-labeling or fine-tuning SAM, our method directly yields fine-grained segmentation masks from SAM inference through prompt engineering. Specifically, it adaptively generates hybrid prompts from the CAMs obtained by an object localization network. To provide sufficient information for SAM prompting, an adaptive prompt generation (APG) algorithm is designed to fully leverage the visual patterns of CAMs, enabling the efficient generation of pseudo-masks for landslide extraction. These informative prompts are able to identify the extent of landslide areas (box prompts) and denote the centers of landslide objects (point prompts), guiding SAM in landslide segmentation. Experimental results on high-resolution aerial and satellite datasets demonstrate the effectiveness of our method, achieving improvements of at least 3.0\% in F1 score and 3.69\% in IoU compared to other state-of-the-art methods. The source codes and datasets will be available at https://github.com/zxk688.

Authors:Jinghan You, Shanglin Li, Yuanrui Sun, Jiangchuan Wei, Mingyu Guo, Chao Feng, Jiao Ran
Title: LVFace: Progressive Cluster Optimization for Large Vision Models in Face Recognition
Abstract:
Vision Transformers (ViTs) have revolutionized large-scale visual modeling, yet remain underexplored in face recognition (FR) where CNNs still dominate. We identify a critical bottleneck: CNN-inspired training paradigms fail to unlock ViT's potential, leading to suboptimal performance and convergence instability.To address this challenge, we propose LVFace, a ViT-based FR model that integrates Progressive Cluster Optimization (PCO) to achieve superior results. Specifically, PCO sequentially applies negative class sub-sampling (NCS) for robust and fast feature alignment from random initialization, feature expectation penalties for centroid stabilization, performing cluster boundary refinement through full-batch training without NCS constraints. LVFace establishes a new state-of-the-art face recognition baseline, surpassing leading approaches such as UniFace and TopoFR across multiple benchmarks. Extensive experiments demonstrate that LVFace delivers consistent performance gains, while exhibiting scalability to large-scale datasets and compatibility with mainstream VLMs and LLMs. Notably, LVFace secured 1st place in the ICCV 2021 Masked Face Recognition (MFR)-Ongoing Challenge (March 2025), proving its efficacy in real-world scenarios. Project is available at https://github.com/bytedance/LVFace.

Authors:Yiming Tang, Abrar Anwar, Jesse Thomason
Title: M3PT: A Transformer for Multimodal, Multi-Party Social Signal Prediction with Person-aware Blockwise Attention
Abstract:
Understanding social signals in multi-party conversations is important for human-robot interaction and artificial social intelligence. Social signals include body pose, head pose, speech, and context-specific activities like acquiring and taking bites of food when dining. Past work in multi-party interaction tends to build task-specific models for predicting social signals. In this work, we address the challenge of predicting multimodal social signals in multi-party settings in a single model. We introduce M3PT, a causal transformer architecture with modality and temporal blockwise attention masking to simultaneously process multiple social cues across multiple participants and their temporal interactions. We train and evaluate M3PT on the Human-Human Commensality Dataset (HHCD), and demonstrate that using multiple modalities improves bite timing and speaking status prediction. Source code: https://github.com/AbrarAnwar/masked-social-signals/.

Authors:Zhaoxuan Tan, Zinan Zeng, Qingkai Zeng, Zhenyu Wu, Zheyuan Liu, Fengran Mo, Meng Jiang
Title: Can Large Language Models Understand Preferences in Personalized Recommendation?
Abstract:
Large Language Models (LLMs) excel in various tasks, including personalized recommendations. Existing evaluation methods often focus on rating prediction, relying on regression errors between actual and predicted ratings. However, user rating bias and item quality, two influential factors behind rating scores, can obscure personal preferences in user-item pair data. To address this, we introduce PerRecBench, disassociating the evaluation from these two factors and assessing recommendation techniques on capturing the personal preferences in a grouped ranking manner. We find that the LLM-based recommendation techniques that are generally good at rating prediction fail to identify users' favored and disfavored items when the user rating bias and item quality are eliminated by grouping users. With PerRecBench and 19 LLMs, we find that while larger models generally outperform smaller ones, they still struggle with personalized recommendation. Our findings reveal the superiority of pairwise and listwise ranking approaches over pointwise ranking, PerRecBench's low correlation with traditional regression metrics, the importance of user profiles, and the role of pretraining data distributions. We further explore three supervised fine-tuning strategies, finding that merging weights from single-format training is promising but improving LLMs' understanding of user preferences remains an open research problem. Code and data are available at https://github.com/TamSiuhin/PerRecBench

Authors:Zhiyuan Weng, Guikun Chen, Wenguan Wang
Title: Do as We Do, Not as You Think: the Conformity of Large Language Models
Abstract:
Recent advancements in large language models (LLMs) revolutionize the field of intelligent agents, enabling collaborative multi-agent systems capable of tackling complex problems across various domains. However, the potential of conformity within these systems, analogous to phenomena like conformity bias and groupthink in human group dynamics, remains largely unexplored, raising concerns about their collective problem-solving capabilities and possible ethical implications. This paper presents a comprehensive study on conformity in LLM-driven multi-agent systems, focusing on three aspects: the existence of conformity, the factors influencing conformity, and potential mitigation strategies. In particular, we introduce BenchForm, a new conformity-oriented benchmark, featuring reasoning-intensive tasks and five distinct interaction protocols designed to probe LLMs' behavior in collaborative scenarios. Several representative LLMs are evaluated on BenchForm, using metrics such as conformity rate and independence rate to quantify conformity's impact. Our analysis delves into factors influencing conformity, including interaction time and majority size, and examines how the subject agent rationalizes its conforming behavior. Furthermore, we explore two strategies to mitigate conformity effects, i.e., developing enhanced personas and implementing a reflection mechanism. Several interesting findings regarding LLMs' conformity are derived from empirical results and case studies. We hope that these insights can pave the way for more robust and ethically-aligned collaborative AI systems. Our benchmark and code are available at BenchForm.

Authors:Gabrielle Hoyer, Michelle W Tong, Rupsa Bhattacharjee, Valentina Pedoia, Sharmila Majumdar
Title: Clinical Utility of Foundation Segmentation Models in Musculoskeletal MRI: Biomarker Fidelity and Predictive Outcomes
Abstract:
Effective segmentation is fundamental for quantitative medical imaging; however, foundation segmentation models remain insufficiently evaluated for accuracy and biomarker fidelity across the diverse anatomical contexts and imaging protocols encountered in musculoskeletal (MSK) MRI. We evaluate three widely used segmentation models (SAM, SAM2, MedSAM) across eleven MSK MRI datasets spanning the knee, hip, spine, shoulder, and thigh. Our framework assesses both zero-shot and finetuned performance, with attention to segmentation accuracy, generalizability across imaging protocols, and reliability of derived quantitative biomarkers. Finetuned models showed consistent agreement with expert measurements for biomarkers including cartilage thickness, disc height, muscle volume, and compositional T1rho/T2 values. Automated prompting through the AutoLabel system enabled scalable segmentation, with moderate trade-offs in accuracy. As proof of concept, we applied the validated system to (i) a three-stage knee MRI triage cascade and (ii) a longitudinal landmark model that predicts total knee replacement and incident osteoarthritis. The framework offers a transparent method for benchmarking segmentation tools and connecting model performance to clinical imaging priorities.

Authors:Peirong Liu, Ana Lawry Aguila, Juan E. Iglesias
Title: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization
Abstract:
Data-driven machine learning has made significant strides in medical image analysis. However, most existing methods are tailored to specific modalities and assume a particular resolution (often isotropic). This limits their generalizability in clinical settings, where variations in scan appearance arise from differences in sequence parameters, resolution, and orientation. Furthermore, most general-purpose models are designed for healthy subjects and suffer from performance degradation when pathology is present. We introduce UNA (Unraveling Normal Anatomy), the first modality-agnostic learning approach for normal brain anatomy reconstruction that can handle both healthy scans and cases with pathology. We propose a fluid-driven anomaly randomization method that generates an unlimited number of realistic pathology profiles on-the-fly. UNA is trained on a combination of synthetic and real data, and can be applied directly to real images with potential pathology without the need for fine-tuning. We demonstrate UNA's effectiveness in reconstructing healthy brain anatomy and showcase its direct application to anomaly detection, using both simulated and real images from 3D healthy and stroke datasets, including CT and MRI scans. By bridging the gap between healthy and diseased images, UNA enables the use of general-purpose models on diseased images, opening up new opportunities for large-scale analysis of uncurated clinical images in the presence of pathology. Code is available at https://github.com/peirong26/UNA.

Authors:Yongxiang Liu, Weijie Li, Li Liu, Jie Zhou, Bowen Peng, Yafei Song, Xuying Xiong, Wei Yang, Tianpeng Liu, Zhen Liu, Xiang Li
Title: ATRNet-STAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
Abstract:
The absence of publicly available, large-scale, high-quality datasets for Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has significantly hindered the application of rapidly advancing deep learning techniques, which hold huge potential to unlock new capabilities in this field. This is primarily because collecting large volumes of diverse target samples from SAR images is prohibitively expensive, largely due to privacy concerns, the characteristics of microwave radar imagery perception, and the need for specialized expertise in data annotation. Throughout the history of SAR ATR research, there have been only a number of small datasets, mainly including targets like ships, airplanes, buildings, etc. There is only one vehicle dataset MSTAR collected in the 1990s, which has been a valuable source for SAR ATR. To fill this gap, this paper introduces a large-scale, new dataset named ATRNet-STAR with 40 different vehicle categories collected under various realistic imaging conditions and scenes. It marks a substantial advancement in dataset scale and diversity, comprising over 190,000 well-annotated samples, 10 times larger than its predecessor, the famous MSTAR. Building such a large dataset is a challenging task, and the data collection scheme will be detailed. Secondly, we illustrate the value of ATRNet-STAR via extensively evaluating the performance of 15 representative methods with 7 different experimental settings on challenging classification and detection benchmarks derived from the dataset. Finally, based on our extensive experiments, we identify valuable insights for SAR ATR and discuss potential future research directions in this field. We hope that the scale, diversity, and benchmark of ATRNet-STAR can significantly facilitate the advancement of SAR ATR.

Authors:Joshua Park, Yongfeng Zhang
Title: AgentRec: Agent Recommendation Using Sentence Embeddings Aligned to Human Feedback
Abstract:
Multi-agent systems must decide which agent is the most appropriate for a given task. We propose a novel architecture for recommending which LLM agent out of many should perform a task given a natural language prompt by extending the Sentence-BERT (SBERT) encoder model. On test data, we are able to achieve a top-1 accuracy of 92.2% with each classification taking less than 300 milliseconds. In contrast to traditional classification methods, our architecture is computationally cheap, adaptive to new classes, interpretable, and controllable with arbitrary metrics through reinforcement learning. By encoding natural language prompts into sentence embeddings, our model captures the semantic content relevant to recommending an agent. The distance between sentence embeddings that belong to the same agent is then minimized through fine-tuning and aligned to human values through reinforcement learning from human feedback. This allows the classification of natural language prompts based on their nearest neighbors by measuring the cosine similarity between embeddings. This work is made possible through the generation of a synthetic dataset for agent recommendation, which we have open-sourced to the public along with the code for AgentRec recommendation system at https://github.com/joshprk/agentrec.

Authors:Yang Bai, Christan Earl Grant, Daisy Zhe Wang
Title: RAMQA: A Unified Framework for Retrieval-Augmented Multi-Modal Question Answering
Abstract:
Multi-modal retrieval-augmented Question Answering (MRAQA), integrating text and images, has gained significant attention in information retrieval (IR) and natural language processing (NLP). Traditional ranking methods rely on small encoder-based language models, which are incompatible with modern decoder-based generative large language models (LLMs) that have advanced various NLP tasks. To bridge this gap, we propose RAMQA, a unified framework combining learning-to-rank methods with generative permutation-enhanced ranking techniques. We first train a pointwise multi-modal ranker using LLaVA as the backbone. Then, we apply instruction tuning to train a LLaMA model for re-ranking the top-k documents using an innovative autoregressive multi-task learning approach. Our generative ranking model generates re-ranked document IDs and specific answers from document candidates in various permutations. Experiments on two MRAQA benchmarks, WebQA and MultiModalQA, show significant improvements over strong baselines, highlighting the effectiveness of our approach. Code and data are available at: https://github.com/TonyBY/RAMQA

Authors:Daeun Jung, Jaehyeok Jang, Sooyoung Jang, Yu Rang Park
Title: MEDFORM: A Foundation Model for Contrastive Learning of CT Imaging and Clinical Numeric Data in Multi-Cancer Analysis
Abstract:
Computed tomography (CT) and clinical numeric data are essential modalities for cancer evaluation, but building large-scale multimodal training datasets for developing medical foundation models remains challenging due to the structural complexity of multi-slice CT data and high cost of expert annotation. In this study, we propose MEDFORM, a multimodal pre-training strategy that guides CT image representation learning using complementary information from clinical data for medical foundation model development. MEDFORM efficiently processes CT slice through multiple instance learning (MIL) and adopts a dual pre-training strategy: first pretraining the CT slice feature extractor using SimCLR-based self-supervised learning, then aligning CT and clinical modalities through cross-modal contrastive learning. Our model was pre-trained on three different cancer types: lung cancer (141,171 slices), breast cancer (8,100 slices), colorectal cancer (10,393 slices). The experimental results demonstrated that this dual pre-training strategy improves cancer classification performance and maintains robust performance in few-shot learning scenarios. Code available at https://github.com/DigitalHealthcareLab/25MultiModalFoundationModel.git

Authors:Alsu Sagirova, Yuri Kuratov, Mikhail Burtsev
Title: SRMT: Shared Memory for Multi-agent Lifelong Pathfinding
Abstract:
Multi-agent reinforcement learning (MARL) demonstrates significant progress in solving cooperative and competitive multi-agent problems in various environments. One of the principal challenges in MARL is the need for explicit prediction of the agents' behavior to achieve cooperation. To resolve this issue, we propose the Shared Recurrent Memory Transformer (SRMT) which extends memory transformers to multi-agent settings by pooling and globally broadcasting individual working memories, enabling agents to exchange information implicitly and coordinate their actions. We evaluate SRMT on the Partially Observable Multi-Agent Pathfinding problem in a toy Bottleneck navigation task that requires agents to pass through a narrow corridor and on a POGEMA benchmark set of tasks. In the Bottleneck task, SRMT consistently outperforms a variety of reinforcement learning baselines, especially under sparse rewards, and generalizes effectively to longer corridors than those seen during training. On POGEMA maps, including Mazes, Random, and MovingAI, SRMT is competitive with recent MARL, hybrid, and planning-based algorithms. These results suggest that incorporating shared recurrent memory into the transformer-based architectures can enhance coordination in decentralized multi-agent systems. The source code for training and evaluation is available on GitHub: https://github.com/Aloriosa/srmt.

Authors:Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu Meng, Kede Ma, Ying Wei
Title: SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning
Abstract:
Continual Learning (CL) with foundation models has recently emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks. However, existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks, which poses significant scalability challenges as the number of tasks grows. To address these limitations, we propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal. Our empirical and theoretical analysis reveals that SD-LoRA tends to follow a low-loss trajectory and converges to an overlapping low-loss region for all learned tasks, resulting in an excellent stability-plasticity trade-off. Building upon these insights, we introduce two variants of SD-LoRA with further improved parameter efficiency. All parameters of SD-LoRAs can be end-to-end optimized for CL objectives. Meanwhile, they support efficient inference by allowing direct evaluation with the finally trained model, obviating the need for component selection. Extensive experiments across multiple CL benchmarks and foundation models consistently validate the effectiveness of SD-LoRA. The code is available at https://github.com/WuYichen-97/SD-Lora-CL.

Authors:Adam Tupper, Christian Gagné
Title: Revisiting Data Augmentation for Ultrasound Images
Abstract:
Data augmentation is a widely used and effective technique to improve the generalization performance of deep neural networks. Yet, despite often facing limited data availability when working with medical images, it is frequently underutilized. This appears to come from a gap in our collective understanding of the efficacy of different augmentation techniques across different tasks and modalities. One modality where this is especially true is ultrasound imaging. This work addresses this gap by analyzing the effectiveness of different augmentation techniques at improving model performance across a wide range of ultrasound image analysis tasks. To achieve this, we introduce a new standardized benchmark of 14 ultrasound image classification and semantic segmentation tasks from 10 different sources and covering 11 body regions. Our results demonstrate that many of the augmentations commonly used for tasks on natural images are also effective on ultrasound images, even more so than augmentations developed specifically for ultrasound images in some cases. We also show that diverse augmentation using TrivialAugment, which is widely used for natural images, is also effective for ultrasound images. Moreover, our proposed methodology represents a structured approach for assessing various data augmentations that can be applied to other contexts and modalities.

Authors:Qiongyan Wang, Yutong Xia, Siru ZHong, Weichuang Li, Yuankai Wu, Shifen Cheng, Junbo Zhang, Yu Zheng, Yuxuan Liang
Title: AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks
Abstract:
Monitoring real-time air quality is essential for safeguarding public health and fostering social progress. However, the widespread deployment of air quality monitoring stations is constrained by their significant costs. To address this limitation, we introduce \emph{AirRadar}, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations by utilizing data from existing ones. By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions. Specifically, it operates in two stages: first capturing spatial correlations and then adjusting for distribution shifts. We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China, demonstrating its superiority over multiple baselines, even with varying degrees of unobserved data. The source code can be accessed at https://github.com/CityMind-Lab/AirRadar.

Authors:Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, Deli Zhao
Title: VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Understanding
Abstract:
In this paper, we propose VideoLLaMA3, a more advanced multimodal foundation model for image and video understanding. The core design philosophy of VideoLLaMA3 is vision-centric. The meaning of "vision-centric" is two-fold: the vision-centric training paradigm and vision-centric framework design. The key insight of our vision-centric training paradigm is that high-quality image-text data is crucial for both image and video understanding. Instead of preparing massive video-text datasets, we focus on constructing large-scale and high-quality image-text datasets. VideoLLaMA3 has four training stages: 1) Vision Encoder Adaptation, which enables vision encoder to accept images of variable resolutions as input; 2) Vision-Language Alignment, which jointly tunes the vision encoder, projector, and LLM with large-scale image-text data covering multiple types (including scene images, documents, charts) as well as text-only data. 3) Multi-task Fine-tuning, which incorporates image-text SFT data for downstream tasks and video-text data to establish a foundation for video understanding. 4) Video-centric Fine-tuning, which further improves the model's capability in video understanding. As for the framework design, to better capture fine-grained details in images, the pretrained vision encoder is adapted to encode images of varying sizes into vision tokens with corresponding numbers, rather than a fixed number of tokens. For video inputs, we reduce the number of vision tokens according to their similarity so that the representation of videos will be more precise and compact. Benefit from vision-centric designs, VideoLLaMA3 achieves compelling performances in both image and video understanding benchmarks.

Authors:Jiachen Lei, Julius Berner, Jiongxiao Wang, Zhongzhu Chen, Zhongjia Ba, Kui Ren, Jun Zhu, Anima Anandkumar
Title: Robust Representation Consistency Model via Contrastive Denoising
Abstract:
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.

Authors:Bohao Yang, Yingji Zhang, Dong Liu, André Freitas, Chenghua Lin
Title: Does Table Source Matter? Benchmarking and Improving Multimodal Scientific Table Understanding and Reasoning
Abstract:
Recent large language models (LLMs) have advanced table understanding capabilities but rely on converting tables into text sequences. While multimodal large language models (MLLMs) enable direct visual processing, they face limitations in handling scientific tables due to fixed input image resolutions and insufficient numerical reasoning capabilities. We present a comprehensive framework for multimodal scientific table understanding and reasoning with dynamic input image resolutions. Our framework consists of three key components: (1) MMSci-Pre, a domain-specific table structure learning dataset of 52K scientific table structure recognition samples, (2) MMSci-Ins, an instruction tuning dataset with 12K samples across three table-based tasks, and (3) MMSci-Eval, a benchmark with 3,114 testing samples specifically designed to evaluate numerical reasoning capabilities. Extensive experiments demonstrate that our domain-specific approach with 52K scientific table images achieves superior performance compared to 150K general-domain tables, highlighting the importance of data quality over quantity. Our proposed table-based MLLMs with dynamic input resolutions show significant improvements in both general table understanding and numerical reasoning capabilities, with strong generalisation to held-out datasets. Our code and data are publicly available at https://github.com/Bernard-Yang/MMSci_Table.

Authors:Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shu-Tao Xia, Shirui Pan
Title: TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
Abstract:
Time series forecasting methods generally fall into two main categories: Channel Independent (CI) and Channel Dependent (CD) strategies. While CI overlooks important covariate relationships, CD captures all dependencies without distinction, introducing noise and reducing generalization. Recent advances in Channel Clustering (CC) aim to refine dependency modeling by grouping channels with similar characteristics and applying tailored modeling techniques. However, coarse-grained clustering struggles to capture complex, time-varying interactions effectively. To address these challenges, we propose TimeFilter, a GNN-based framework for adaptive and fine-grained dependency modeling. After constructing the graph from the input sequence, TimeFilter refines the learned spatial-temporal dependencies by filtering out irrelevant correlations while preserving the most critical ones in a patch-specific manner. Extensive experiments on 13 real-world datasets from diverse application domains demonstrate the state-of-the-art performance of TimeFilter. The code is available at https://github.com/TROUBADOUR000/TimeFilter.

Authors:Hong Wang, Yinglong Zhang, Zhangqi Zhao, Zhicong Cai, Xuewen Xia, Xing Xu
Title: Less is More: Simple yet Effective Heuristic Community Detection with Graph Convolution Network
Abstract:
Community detection is crucial in data mining. Traditional methods primarily focus on graph structure, often neglecting the significance of attribute features. In contrast, deep learning-based approaches incorporate attribute features and local structural information through contrastive learning, improving detection performance. However, existing algorithms' complex design and joint optimization make them difficult to train and reduce detection efficiency. Additionally, these methods require the number of communities to be predefined, making the results susceptible to artificial interference. To address these challenges, we propose a simple yet effective community detection algorithm that can adaptively detect communities without relying on data augmentation and contrastive optimization. The proposed algorithm first performs community pre-detection to extract global structural information adaptively. It then utilizes GCN to integrate local structures and attribute features. Subsequently, it combines global, local structures and attribute features in the feature space to discover community affiliations. Finally, a modularity maximization method is employed to optimize the communities based on these three types of information, thereby uncovering the community affiliation of each node. We conduct experimental comparisons across various graph datasets, evaluating the proposed algorithm against traditional methods and state-of-the-art community detection algorithms. The experimental results demonstrate that our algorithm achieves greater efficiency and accuracy in terms of both detection speed and effectiveness. The code is available at https://github.com/wuanghoong/Less-is-More.git.

Authors:Yafu Li, Xuyang Hu, Xiaoye Qu, Linjie Li, Yu Cheng
Title: Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback
Abstract:
Large language models (LLMs) demonstrate impressive performance but lack the flexibility to adapt to human preferences quickly without retraining. In this work, we introduce Test-time Preference Optimization (TPO), a framework that aligns LLM outputs with human preferences during inference, removing the need to update model parameters. Rather than relying on purely numerical rewards, TPO translates reward signals into textual critiques and uses them as textual rewards to iteratively refine its response. Evaluations on benchmarks covering instruction following, preference alignment, safety, and mathematics reveal that TPO progressively improves alignment with human preferences. Notably, after only a few TPO steps, the initially unaligned Llama-3.1-70B-SFT model can surpass the aligned counterpart, Llama-3.1-70B-Instruct. Furthermore, TPO scales efficiently with both the search width and depth during inference. Through case studies, we illustrate how TPO exploits the innate capacity of LLM to interpret and act upon reward signals. Our findings establish TPO as a practical, lightweight alternative for test-time preference optimization, achieving alignment on the fly. Our code is publicly available at https://github.com/yafuly/TPO.

Authors:Ruicheng Zhang, Haowei Guo, Zeyu Zhang, Puxin Yan, Shen Zhao
Title: GAMED-Snake: Gradient-aware Adaptive Momentum Evolution Deep Snake Model for Multi-organ Segmentation
Abstract:
Multi-organ segmentation is a critical yet challenging task due to complex anatomical backgrounds, blurred boundaries, and diverse morphologies. This study introduces the Gradient-aware Adaptive Momentum Evolution Deep Snake (GAMED-Snake) model, which establishes a novel paradigm for contour-based segmentation by integrating gradient-based learning with adaptive momentum evolution mechanisms. The GAMED-Snake model incorporates three major innovations: First, the Distance Energy Map Prior (DEMP) generates a pixel-level force field that effectively attracts contour points towards the true boundaries, even in scenarios with complex backgrounds and blurred edges. Second, the Differential Convolution Inception Module (DCIM) precisely extracts comprehensive energy gradients, significantly enhancing segmentation accuracy. Third, the Adaptive Momentum Evolution Mechanism (AMEM) employs cross-attention to establish dynamic features across different iterations of evolution, enabling precise boundary alignment for diverse morphologies. Experimental results on four challenging multi-organ segmentation datasets demonstrate that GAMED-Snake improves the mDice metric by approximately 2% compared to state-of-the-art methods. Code will be available at https://github.com/SYSUzrc/GAMED-Snake.

Authors:Viktor Moskvoretskii, Maria Lysyuk, Mikhail Salnikov, Nikolay Ivanov, Sergey Pletenev, Daria Galimzianova, Nikita Krayko, Vasily Konovalov, Irina Nikishina, Alexander Panchenko
Title: Adaptive Retrieval Without Self-Knowledge? Bringing Uncertainty Back Home
Abstract:
Retrieval Augmented Generation (RAG) improves correctness of Question Answering (QA) and addresses hallucinations in Large Language Models (LLMs), yet greatly increase computational costs. Besides, RAG is not always needed as may introduce irrelevant information. Recent adaptive retrieval methods integrate LLMs' intrinsic knowledge with external information appealing to LLM self-knowledge, but they often neglect efficiency evaluations and comparisons with uncertainty estimation techniques. We bridge this gap by conducting a comprehensive analysis of 35 adaptive retrieval methods, including 8 recent approaches and 27 uncertainty estimation techniques, across 6 datasets using 10 metrics for QA performance, self-knowledge, and efficiency. Our findings show that uncertainty estimation techniques often outperform complex pipelines in terms of efficiency and self-knowledge, while maintaining comparable QA performance.

Authors:Ruicheng Zhang, Kanghui Tian, Zeyu Zhang, Qixiang Liu, Zhi Jin
Title: FDG-Diff: Frequency-Domain-Guided Diffusion Framework for Compressed Hazy Image Restoration
Abstract:
In this study, we reveal that the interaction between haze degradation and JPEG compression introduces complex joint loss effects, which significantly complicate image restoration. Existing dehazing models often neglect compression effects, which limits their effectiveness in practical applications. To address these challenges, we introduce three key contributions. First, we design FDG-Diff, a novel frequency-domain-guided dehazing framework that improves JPEG image restoration by leveraging frequency-domain information. Second, we introduce the High-Frequency Compensation Module (HFCM), which enhances spatial-domain detail restoration by incorporating frequency-domain augmentation techniques into a diffusion-based restoration framework. Lastly, the introduction of the Degradation-Aware Denoising Timestep Predictor (DADTP) module further enhances restoration quality by enabling adaptive region-specific restoration, effectively addressing regional degradation inconsistencies in compressed hazy images. Experimental results across multiple compressed dehazing datasets demonstrate that our method consistently outperforms the latest state-of-the-art approaches. Code be available at https://github.com/SYSUzrc/FDG-Diff.

Authors:Xiaolei Chen, Junchi Yan, Wenlong Liao, Tao He, Pai Peng
Title: Int2Planner: An Intention-based Multi-modal Motion Planner for Integrated Prediction and Planning
Abstract:
Motion planning is a critical module in autonomous driving, with the primary challenge of uncertainty caused by interactions with other participants. As most previous methods treat prediction and planning as separate tasks, it is difficult to model these interactions. Furthermore, since the route path navigates ego vehicles to a predefined destination, it provides relatively stable intentions for ego vehicles and helps constrain uncertainty. On this basis, we construct Int2Planner, an \textbf{Int}ention-based \textbf{Int}egrated motion \textbf{Planner} achieves multi-modal planning and prediction. Instead of static intention points, Int2Planner utilizes route intention points for ego vehicles and generates corresponding planning trajectories for each intention point to facilitate multi-modal planning. The experiments on the private dataset and the public nuPlan benchmark show the effectiveness of route intention points, and Int2Planner achieves state-of-the-art performance. We also deploy it in real-world vehicles and have conducted autonomous driving for hundreds of kilometers in urban areas. It further verifies that Int2Planner can continuously interact with the traffic environment. Code will be avaliable at https://github.com/cxlz/Int2Planner.

Authors:Maxime Maria, Simon Guionnière, Nicolas Dacquay, Cyprien Plateau-Holleville, Valentin Guillaume, Vincent Larroque, Jean Lardé, Yassine Naimi, Jean-Philip Piquemal, Guillaume Levieux, Nathalie Lagarde, Stéphane Mérillou, Matthieu Montes
Title: VTX: Real-time high-performance molecular structure and dynamics visualization software
Abstract:
Summary: VTX is a molecular visualization software capable to handle most molecular structures and dynamics trajectories file formats. It features a real-time high-performance molecular graphics engine, based on modern OpenGL, optimized for the visualization of massive molecular systems and molecular dynamics trajectories. VTX includes multiple interactive camera and user interaction features, notably free-fly navigation and a fully modular graphical user interface designed for increased usability. It allows the production of high-resolution images for presentations and posters with custom background. VTX design is focused on performance and usability for research, teaching and educative purposes. Availability and implementation: VTX is open source and free for non commercial use. Builds for Windows and Ubuntu Linux are available at http://vtx.drugdesign.fr. The source code is available at https://github.com/VTX-Molecular-Visualization . Supplementary Information: A video displaying free-fly navigation in a whole-cell model is available

Authors:Jesus Renero, Idoia Ochoa, Roberto Maestre
Title: REX: Causal Discovery based on Machine Learning and Explainability techniques
Abstract:
Explainability techniques hold significant potential for enhancing the causal discovery process, which is crucial for understanding complex systems in areas like healthcare, economics, and artificial intelligence. However, no causal discovery methods currently incorporate explainability into their models to derive causal graphs. Thus, in this paper we explore this innovative approach, as it offers substantial potential and represents a promising new direction worth investigating. Specifically, we introduce REX, a causal discovery method that leverages machine learning (ML) models coupled with explainability techniques, specifically Shapley values, to identify and interpret significant causal relationships among variables. Comparative evaluations on synthetic datasets comprising continuous tabular data reveal that REX outperforms state-of-the-art causal discovery methods across diverse data generation processes, including non-linear and additive noise models. Moreover, REX was tested on the Sachs single-cell protein-signaling dataset, achieving a precision of 0.952 and recovering key causal relationships with no incorrect edges. Taking together, these results showcase REX's effectiveness in accurately recovering true causal structures while minimizing false positive predictions, its robustness across diverse datasets, and its applicability to real-world problems. By combining ML and explainability techniques with causal discovery, REX bridges the gap between predictive modeling and causal inference, offering an effective tool for understanding complex causal structures. REX is publicly available at https://github.com/renero/causalgraph.

Authors:Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, Trung Le
Title: Explicit Eigenvalue Regularization Improves Sharpness-Aware Minimization
Abstract:
Sharpness-Aware Minimization (SAM) has attracted significant attention for its effectiveness in improving generalization across various tasks. However, its underlying principles remain poorly understood. In this work, we analyze SAM's training dynamics using the maximum eigenvalue of the Hessian as a measure of sharpness, and propose a third-order stochastic differential equation (SDE), which reveals that the dynamics are driven by a complex mixture of second- and third-order terms. We show that alignment between the perturbation vector and the top eigenvector is crucial for SAM's effectiveness in regularizing sharpness, but find that this alignment is often inadequate in practice, limiting SAM's efficiency. Building on these insights, we introduce Eigen-SAM, an algorithm that explicitly aims to regularize the top Hessian eigenvalue by aligning the perturbation vector with the leading eigenvector. We validate the effectiveness of our theory and the practical advantages of our proposed approach through comprehensive experiments. Code is available at https://github.com/RitianLuo/EigenSAM.

Authors:Qiong Wu, Maoxin Ji, Pingyi Fan, Kezhi Wang, Nan Cheng, Wen Chen, Khaled B. Letaief
Title: PPO-Based Vehicle Control for Ramp Merging Scheme Assisted by Enhanced C-V2X
Abstract:
On-ramp merging presents a critical challenge in autonomous driving, as vehicles from merging lanes need to dynamically adjust their positions and speeds while monitoring traffic on the main road to prevent collisions. To address this challenge, we propose a novel merging control scheme based on reinforcement learning, which integrates lateral control mechanisms. This approach ensures the smooth integration of vehicles from the merging lane onto the main road, optimizing both fuel efficiency and passenger comfort. Furthermore, we recognize the impact of vehicle-to-vehicle (V2V) communication on control strategies and introduce an enhanced protocol leveraging Cellular Vehicle-to-Everything (C-V2X) Mode 4. This protocol aims to reduce the Age of Information (AoI) and improve communication reliability. In our simulations, we employ two AoI-based metrics to rigorously assess the protocol's effectiveness in autonomous driving scenarios. By combining the NS3 network simulator with Python, we simulate V2V communication and vehicle control simultaneously. The results demonstrate that the enhanced C-V2X Mode 4 outperforms the standard version, while the proposed control scheme ensures safe and reliable vehicle operation during on-ramp merging.

Authors:Dunwei Tu, Huiyu Yi, Yuchi Wang, Baile Xu, Jian Zhao, Furao Shen
Title: Multiple Queries with Multiple Keys: A Precise Prompt Matching Paradigm for Prompt-based Continual Learning
Abstract:
Continual learning requires machine learning models to continuously acquire new knowledge in dynamic environments while avoiding the forgetting of previous knowledge. Prompt-based continual learning methods effectively address the issue of catastrophic forgetting through prompt expansion and selection. However, existing approaches often suffer from low accuracy in prompt selection, which can result in the model receiving biased knowledge and making biased predictions. To address this issue, we propose the Multiple Queries with Multiple Keys (MQMK) prompt matching paradigm for precise prompt selection. The goal of MQMK is to select the prompts whose training data distribution most closely matches that of the test sample. Specifically, Multiple Queries enable precise breadth search by introducing task-specific knowledge, while Multiple Keys perform deep search by representing the feature distribution of training samples at a fine-grained level. Each query is designed to perform local matching with a designated task to reduce interference across queries. Experiments show that MQMK enhances the prompt matching rate by over 30\% in challenging scenarios and achieves state-of-the-art performance on three widely adopted continual learning benchmarks. The code is available at https://github.com/DunweiTu/MQMK.

Authors:Mingqi Yuan, Bo Li, Xin Jin, Wenjun Zeng
Title: Adaptive Data Exploitation in Deep Reinforcement Learning
Abstract:
We introduce ADEPT: Adaptive Data ExPloiTation, a simple yet powerful framework to enhance the **data efficiency** and **generalization** in deep reinforcement learning (RL). Specifically, ADEPT adaptively manages the use of sampled data across different learning stages via multi-armed bandit (MAB) algorithms, optimizing data utilization while mitigating overfitting. Moreover, ADEPT can significantly reduce the computational overhead and accelerate a wide range of RL algorithms. We test ADEPT on benchmarks including Procgen, MiniGrid, and PyBullet. Extensive simulation demonstrates that ADEPT can achieve superior performance with remarkable computational efficiency, offering a practical solution to data-efficient RL. Our code is available at https://github.com/yuanmingqi/ADEPT.

Authors:Sunbowen Lee, Junting Zhou, Chang Ao, Kaige Li, Xinrun Du, Sirui He, Haihong Wu, Tianci Liu, Jiaheng Liu, Hamid Alinejad-Rokny, Min Yang, Yitao Liang, Zhoufutu Wen, Shiwen Ni
Title: Quantification of Large Language Model Distillation
Abstract:
Model distillation is a fundamental technique in building large language models (LLMs), transferring knowledge from a teacher model to a student model. However, distillation can lead to model homogenization, reducing diversity among models and impairing their ability to robustly handle complex or novel tasks. These limitations underscore the need to systematically quantify the distillation process and its impact. In this work, we propose a framework to evaluate and quantify model distillation. Our method addresses two key aspects: (1) Identifying identity cognition contradictions to assess discrepancies in how models perceive and represent identity-related information, and (2) Analyzing multi-granularity response similarities across models to measure the extent of homogenization. Experimental results demonstrate two key insights: (1) Well-known closed-source and open-source LLMs usually exhibit high distillation degrees, except for Claude, Doubao, and Gemini. (2) Base LLMs show higher distillation degrees compared to aligned LLMs. By offering a systematic approach to improve the transparency of LLM data distillation, we call for LLMs with more independent development and more transparent technical reports to improve LLMs' robustness and safety. The code and data are available under https://github.com/Aegis1863/LLMs-Distillation-Quantification.

Authors:Lijun Li, Zhelun Shi, Xuhao Hu, Bowen Dong, Yiran Qin, Xihui Liu, Lu Sheng, Jing Shao
Title: T2ISafety: Benchmark for Assessing Fairness, Toxicity, and Privacy in Image Generation
Abstract:
Text-to-image (T2I) models have rapidly advanced, enabling the generation of high-quality images from text prompts across various domains. However, these models present notable safety concerns, including the risk of generating harmful, biased, or private content. Current research on assessing T2I safety remains in its early stages. While some efforts have been made to evaluate models on specific safety dimensions, many critical risks remain unexplored. To address this gap, we introduce T2ISafety, a safety benchmark that evaluates T2I models across three key domains: toxicity, fairness, and bias. We build a detailed hierarchy of 12 tasks and 44 categories based on these three domains, and meticulously collect 70K corresponding prompts. Based on this taxonomy and prompt set, we build a large-scale T2I dataset with 68K manually annotated images and train an evaluator capable of detecting critical risks that previous work has failed to identify, including risks that even ultra-large proprietary models like GPTs cannot correctly detect. We evaluate 12 prominent diffusion models on T2ISafety and reveal several concerns including persistent issues with racial fairness, a tendency to generate toxic content, and significant variation in privacy protection across the models, even with defense methods like concept erasing. Data and evaluator are released under https://github.com/adwardlee/t2i_safety.

Authors:Wei Tang, Yin-Fang Yang, Zhaofei Wang, Weijia Zhang, Min-Ling Zhang
Title: Multi-Instance Partial-Label Learning with Margin Adjustment
Abstract:
Multi-instance partial-label learning (MIPL) is an emerging learning framework where each training sample is represented as a multi-instance bag associated with a candidate label set. Existing MIPL algorithms often overlook the margins for attention scores and predicted probabilities, leading to suboptimal generalization performance. A critical issue with these algorithms is that the highest prediction probability of the classifier may appear on a non-candidate label. In this paper, we propose an algorithm named MIPLMA, i.e., Multi-Instance Partial-Label learning with Margin Adjustment, which adjusts the margins for attention scores and predicted probabilities. We introduce a margin-aware attention mechanism to dynamically adjust the margins for attention scores and propose a margin distribution loss to constrain the margins between the predicted probabilities on candidate and non-candidate label sets. Experimental results demonstrate the superior performance of MIPLMA over existing MIPL algorithms, as well as other well-established multi-instance learning algorithms and partial-label learning algorithms.

Authors:Yongduo Sui, Jie Sun, Shuyao Wang, Zemin Liu, Qing Cui, Longfei Li, Xiang Wang
Title: A Unified Invariant Learning Framework for Graph Classification
Abstract:
Invariant learning demonstrates substantial potential for enhancing the generalization of graph neural networks (GNNs) with out-of-distribution (OOD) data. It aims to recognize stable features in graph data for classification, based on the premise that these features causally determine the target label, and their influence is invariant to changes in distribution. Along this line, most studies have attempted to pinpoint these stable features by emphasizing explicit substructures in the graph, such as masked or attentive subgraphs, and primarily enforcing the invariance principle in the semantic space, i.e., graph representations. However, we argue that focusing only on the semantic space may not accurately identify these stable features. To address this, we introduce the Unified Invariant Learning (UIL) framework for graph classification. It provides a unified perspective on invariant graph learning, emphasizing both structural and semantic invariance principles to identify more robust stable features. In the graph space, UIL adheres to the structural invariance principle by reducing the distance between graphons over a set of stable features across different environments. Simultaneously, to confirm semantic invariance, UIL underscores that the acquired graph representations should demonstrate exemplary performance across diverse environments. We present both theoretical and empirical evidence to confirm our method's ability to recognize superior stable features. Moreover, through a series of comprehensive experiments complemented by in-depth analyses, we demonstrate that UIL considerably enhances OOD generalization, surpassing the performance of leading baseline methods. Our codes are available at https://github.com/yongduosui/UIL.

Authors:Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, Dacheng Tao
Title: O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning
Abstract:
Recently, long-thought reasoning LLMs, such as OpenAI's O1, adopt extended reasoning processes similar to how humans ponder over complex problems. This reasoning paradigm significantly enhances the model's problem-solving abilities and has achieved promising results. However, long-thought reasoning process leads to a substantial increase in inference time. A pressing challenge is reducing the inference overhead of long-thought LLMs while ensuring accuracy. In this paper, we experimentally demonstrate that long-thought reasoning models struggle to effectively allocate token budgets based on problem difficulty and reasoning redundancies. To address this, we propose Length-Harmonizing Fine-Tuning (O1-Pruner), aiming at minimizing reasoning overhead while maintaining accuracy. This effective fine-tuning method first estimates the LLM's baseline performance through pre-sampling and then uses RL-style fine-tuning to encourage the model to generate shorter reasoning processes under accuracy constraints. This allows the model to achieve efficient reasoning with lower redundancy while maintaining accuracy. Experiments on various mathematical reasoning benchmarks show that O1-Pruner not only significantly reduces inference overhead but also achieves higher accuracy, providing a novel and promising solution to this challenge. Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner

Authors:Kevin Ta, Patrick Foley, Mattson Thieme, Abhishek Pandey, Prashant Shah
Title: Federated Discrete Denoising Diffusion Model for Molecular Generation with OpenFL
Abstract:
Generating unique molecules with biochemically desired properties to serve as viable drug candidates is a difficult task that requires specialized domain expertise. In recent years, diffusion models have shown promising results in accelerating the drug design process through AI-driven molecular generation. However, training these models requires massive amounts of data, which are often isolated in proprietary silos. OpenFL is a federated learning framework that enables privacy-preserving collaborative training across these decentralized data sites. In this work, we present a federated discrete denoising diffusion model that was trained using OpenFL. The federated model achieves comparable performance with a model trained on centralized data when evaluating the uniqueness and validity of the generated molecules. This demonstrates the utility of federated learning in the drug design process. OpenFL is available at: https://github.com/securefederatedai/openfl

Authors:Xiaoyu Chu, Sacheendra Talluri, Qingxian Lu, Alexandru Iosup
Title: An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models
Abstract:
People and businesses increasingly rely on public LLM services, such as ChatGPT, DALLE, and Claude. Understanding their outages, and particularly measuring their failure-recovery processes, is becoming a stringent problem. However, only limited studies exist in this emerging area. Addressing this problem, in this work we conduct an empirical characterization of outages and failure-recovery in public LLM services. We collect and prepare datasets for 8 commonly used LLM services across 3 major LLM providers, including market-leads OpenAI and Anthropic. We conduct a detailed analysis of failure recovery statistical properties, temporal patterns, co-occurrence, and the impact range of outage-causing incidents. We make over 10 observations, among which: (1) Failures in OpenAI's ChatGPT take longer to resolve but occur less frequently than those in Anthropic's Claude;(2) OpenAI and Anthropic service failures exhibit strong weekly and monthly periodicity; and (3) OpenAI services offer better failure-isolation than Anthropic services. Our research explains LLM failure characteristics and thus enables optimization in building and using LLM systems. FAIR data and code are publicly available on https://zenodo.org/records/14018219 and https://github.com/atlarge-research/llm-service-analysis.

Authors:Shanmin Wang, Chengguang Liu, Qingshan Liu
Title: Multi-Modality Collaborative Learning for Sentiment Analysis
Abstract:
Multimodal sentiment analysis (MSA) identifies individuals' sentiment states in videos by integrating visual, audio, and text modalities. Despite progress in existing methods, the inherent modality heterogeneity limits the effective capture of interactive sentiment features across modalities. In this paper, by introducing a Multi-Modality Collaborative Learning (MMCL) framework, we facilitate cross-modal interactions and capture enhanced and complementary features from modality-common and modality-specific representations, respectively. Specifically, we design a parameter-free decoupling module and separate uni-modality into modality-common and modality-specific components through semantics assessment of cross-modal elements. For modality-specific representations, inspired by the act-reward mechanism in reinforcement learning, we design policy models to adaptively mine complementary sentiment features under the guidance of a joint reward. For modality-common representations, intra-modal attention is employed to highlight crucial components, playing enhanced roles among modalities. Experimental results, including superiority evaluations on four databases, effectiveness verification of each module, and assessment of complementary features, demonstrate that MMCL successfully learns collaborative features across modalities and significantly improves performance. The code can be available at https://github.com/smwanghhh/MMCL.

Authors:Yonghao Zhao, Changtao Li, Chi Shu, Qingbin Wu, Hong Li, Chuan Xu, Tianrui Li, Ziqiang Wang, Zhipeng Luo, Yazhou He
Title: Tackling Small Sample Survival Analysis via Transfer Learning: A Study of Colorectal Cancer Prognosis
Abstract:
Survival prognosis is crucial for medical informatics. Practitioners often confront small-sized clinical data, especially cancer patient cases, which can be insufficient to induce useful patterns for survival predictions. This study deals with small sample survival analysis by leveraging transfer learning, a useful machine learning technique that can enhance the target analysis with related knowledge pre-learned from other data. We propose and develop various transfer learning methods designed for common survival models. For parametric models such as DeepSurv, Cox-CC (Cox-based neural networks), and DeepHit (end-to-end deep learning model), we apply standard transfer learning techniques like pretraining and fine-tuning. For non-parametric models such as Random Survival Forest, we propose a new transfer survival forest (TSF) model that transfers tree structures from source tasks and fine-tunes them with target data. We evaluated the transfer learning methods on colorectal cancer (CRC) prognosis. The source data are 27,379 SEER CRC stage I patients, and the target data are 728 CRC stage I patients from the West China Hospital. When enhanced by transfer learning, Cox-CC's $C^{td}$ value was boosted from 0.7868 to 0.8111, DeepHit's from 0.8085 to 0.8135, DeepSurv's from 0.7722 to 0.8043, and RSF's from 0.7940 to 0.8297 (the highest performance). All models trained with data as small as 50 demonstrated even more significant improvement. Conclusions: Therefore, the current survival models used for cancer prognosis can be enhanced and improved by properly designed transfer learning techniques. The source code used in this study is available at https://github.com/YonghaoZhao722/TSF.

Authors:Jingwei Yi, Junhao Yin, Ju Xu, Peng Bao, Yongliang Wang, Wei Fan, Hao Wang
Title: ImageRef-VL: Enabling Contextual Image Referencing in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in understanding multimodal inputs and have been widely integrated into Retrieval-Augmented Generation (RAG) based conversational systems. While current VLM-powered chatbots can provide textual source references in their responses, they exhibit significant limitations in referencing contextually relevant images during conversations. In this paper, we introduce Contextual Image Reference -- the ability to appropriately reference relevant images from retrieval documents based on conversation context -- and systematically investigate VLMs' capability in this aspect. We conduct the first evaluation for contextual image referencing, comprising a dedicated testing dataset and evaluation metrics. Furthermore, we propose ImageRef-VL, a method that significantly enhances open-source VLMs' image referencing capabilities through instruction fine-tuning on a large-scale, manually curated multimodal conversation dataset. Experimental results demonstrate that ImageRef-VL not only outperforms proprietary models but also achieves an 88% performance improvement over state-of-the-art open-source VLMs in contextual image referencing tasks. Our code is available at https://github.com/bytedance/ImageRef-VL.

Authors:Ziming Liu, Yizhou Liu, Eric J. Michaud, Jeff Gore, Max Tegmark
Title: Physics of Skill Learning
Abstract:
We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we take physicists' approach of abstraction and simplification. We propose three models with varying complexities -- the Geometry model, the Resource model, and the Domino model, trading between reality and simplicity. The Domino effect can be reproduced in the Geometry model, whose resource interpretation inspires the Resource model, which can be further simplified to the Domino model. These models present different levels of abstraction and simplification; each is useful to study some aspects of skill learning. The Geometry model provides interesting insights into neural scaling laws and optimizers; the Resource model sheds light on the learning dynamics of compositional tasks; the Domino model reveals the benefits of modularity. These models are not only conceptually interesting -- e.g., we show how Chinchilla scaling laws can emerge from the Geometry model, but also are useful in practice by inspiring algorithmic development -- e.g., we show how simple algorithmic changes, motivated by these toy models, can speed up the training of deep learning models.

Authors:Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian Ma, Haian Huang, Jianfei Gao, Min Dou, Kai Chen, Wenhai Wang, Yu Qiao, Yali Wang, Limin Wang
Title: InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling
Abstract:
This paper aims to improve the performance of video multimodal large language models (MLLM) via long and rich context (LRC) modeling. As a result, we develop a new version of InternVideo2.5 with a focus on enhancing the original MLLMs' ability to perceive fine-grained details and capture long-form temporal structure in videos. Specifically, our approach incorporates dense vision task annotations into MLLMs using direct preference optimization and develops compact spatiotemporal representations through adaptive hierarchical token compression. Experimental results demonstrate this unique design of LRC greatly improves the results of video MLLM in mainstream video understanding benchmarks (short & long), enabling the MLLM to memorize significantly longer video inputs (at least 6x longer than the original), and master specialized vision capabilities like object tracking and segmentation. Our work highlights the importance of multimodal context richness (length and fineness) in empowering MLLM's innate abilites (focus and memory), providing new insights for future research on video MLLM. Code and models are available at https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5

Authors:Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Ziyu Liu, Shengyuan Ding, Shenxi Wu, Yubo Ma, Haodong Duan, Wenwei Zhang, Kai Chen, Dahua Lin, Jiaqi Wang
Title: InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model
Abstract:
Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.5-Reward

Authors:Jiacheng Zuo, Haibo Hu, Zikang Zhou, Yufei Cui, Ziquan Liu, Jianping Wang, Nan Guan, Jin Wang, Chun Jason Xue
Title: RALAD: Bridging the Real-to-Sim Domain Gap in Autonomous Driving with Retrieval-Augmented Learning
Abstract:
In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.

Authors:Wenxin Ma, Qingsong Yao, Xiang Zhang, Zhelong Huang, Zihang Jiang, S. Kevin Zhou
Title: Towards Accurate Unified Anomaly Segmentation
Abstract:
Unsupervised anomaly detection (UAD) from images strives to model normal data distributions, creating discriminative representations to distinguish and precisely localize anomalies. Despite recent advancements in the efficient and unified one-for-all scheme, challenges persist in accurately segmenting anomalies for further monitoring. Moreover, this problem is obscured by the widely-used AUROC metric under imbalanced UAD settings. This motivates us to emphasize the significance of precise segmentation of anomaly pixels using pAP and DSC as metrics. To address the unsolved segmentation task, we introduce the Unified Anomaly Segmentation (UniAS). UniAS presents a multi-level hybrid pipeline that progressively enhances normal information from coarse to fine, incorporating a novel multi-granularity gated CNN (MGG-CNN) into Transformer layers to explicitly aggregate local details from different granularities. UniAS achieves state-of-the-art anomaly segmentation performance, attaining 65.12/59.33 and 40.06/32.50 in pAP/DSC on the MVTec-AD and VisA datasets, respectively, surpassing previous methods significantly. The codes are shared at https://github.com/Mwxinnn/UniAS.

Authors:Maosong Cao, Taolin Zhang, Mo Li, Chuyu Zhang, Yunxin Liu, Haodong Duan, Songyang Zhang, Kai Chen
Title: Condor: Enhance LLM Alignment with Knowledge-Driven Data Synthesis and Refinement
Abstract:
The quality of Supervised Fine-Tuning (SFT) data plays a critical role in enhancing the conversational capabilities of Large Language Models (LLMs). However, as LLMs become more advanced, the availability of high-quality human-annotated SFT data has become a significant bottleneck, necessitating a greater reliance on synthetic training data. In this work, we introduce Condor, a novel two-stage synthetic data generation framework that incorporates World Knowledge Tree and Self-Reflection Refinement to produce high-quality SFT data at scale. Our experimental results demonstrate that a base model fine-tuned on only 20K Condor-generated samples achieves superior performance compared to counterparts. The additional refinement stage in Condor further enables iterative self-improvement for LLMs at various scales (up to 72B), validating the effectiveness of our approach. Furthermore, our investigation into the scaling for synthetic data in post-training reveals substantial unexplored potential for performance improvements, opening promising avenues for future research.

Authors:Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, Jianfei Cai
Title: HAC++: Towards 100X Compression of 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To achieve a compact size, we propose HAC++, which leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over 100X compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than 20X size reduction compared to Scaffold-GS. Our code is available at https://github.com/YihangChen-ee/HAC-plus.

Authors:Junyu Xia, Jiesong Bai, Yihang Dong
Title: DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Abstract:
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN

Authors:Kazi Hasan Ibn Arif, Sajib Acharjee Dip, Khizar Hussain, Lang Zhang, Chris Thomas
Title: PAINT: Paying Attention to INformed Tokens to Mitigate Hallucination in Large Vision-Language Model
Abstract:
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models often generate descriptions containing objects or details that are absent in the input image, a phenomenon commonly known as hallucination. Our work investigates the key reasons behind this issue by analyzing the pattern of self-attention in transformer layers. We find that hallucinations often arise from the progressive weakening of attention weight to visual tokens in the deeper layers of the LLM. Some previous works naively boost the attention of all visual tokens to mitigate this issue, resulting in suboptimal hallucination reduction. To address this, we identify two critical sets of visual tokens that facilitate the transfer of visual information from the vision encoder to the LLM. Local tokens encode grounded information about objects present in an image, while summary tokens capture the overall aggregated representation of the image. Importantly, these two sets of tokens require different levels of weight enhancement. To this end, we propose \textbf{PAINT} (\textbf{P}aying \textbf{A}ttention to \textbf{IN}formed \textbf{T}okens), a plug-and-play framework that intervenes in the self-attention mechanism of the LLM, selectively boosting the attention weights of local and summary tokens with experimentally learned margins. Evaluation on the MSCOCO image captioning dataset demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining accuracy. Code is available at \href{https://github.com/hasanar1f/PAINT}{https://github.com/hasanar1f/PAINT}

Authors:Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng, Mingxin Yang, Sheng Zhang, Xianghui Yang, Huiwen Shi, Sicong Liu, Junta Wu, Yihang Lian, Fan Yang, Ruining Tang, Zebin He, Xinzhou Wang, Jian Liu, Xuhui Zuo, Zhuo Chen, Biwen Lei, Haohan Weng, Jing Xu, Yiling Zhu, Xinhai Liu, Lixin Xu, Changrong Hu, Shaoxiong Yang, Song Zhang, Yang Liu, Tianyu Huang, Lifu Wang, Jihong Zhang, Meng Chen, Liang Dong, Yiwen Jia, Yulin Cai, Jiaao Yu, Yixuan Tang, Hao Zhang, Zheng Ye, Peng He, Runzhou Wu, Chao Zhang, Yonghao Tan, Jie Xiao, Yangyu Tao, Jianchen Zhu, Jinbao Xue, Kai Liu, Chongqing Zhao, Xinming Wu, Zhichao Hu, Lei Qin, Jianbing Peng, Zhan Li, Minghui Chen, Xipeng Zhang, Lin Niu, Paige Wang, Yingkai Wang, Haozhao Kuang, Zhongyi Fan, Xu Zheng, Weihao Zhuang, YingPing He, Tian Liu, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, Jingwei Huang, Chunchao Guo
Title: Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation
Abstract:
We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2

Authors:Geonwoo Seo
Title: An End-to-End Approach for Korean Wakeword Systems with Speaker Authentication
Abstract:
Wakeword detection plays a critical role in enabling AI assistants to listen to user voices and interact effectively. However, for languages other than English, there is a significant lack of pre-trained wakeword models. Additionally, systems that merely determine the presence of a wakeword can pose serious privacy concerns. In this paper, we propose an end-to-end approach that trains wakewords for Non-English languages, particulary Korean, and uses this to develop a Voice Authentication model to protect user privacy. Our implementation employs an open-source platform OpenWakeWord, which performs wakeword detection using an FCN (Fully-Connected Network) architecture. Once a wakeword is detected, our custom-developed code calculates cosine similarity for robust user authentication. Experimental results demonstrate the effectiveness of our approach, achieving a 16.79% and a 6.6% Equal Error Rate (EER) each in the Wakeword Detection and the Voice Authentication. These findings highlight the model's potential in providing secure and accurate wakeword detection and authentication for Korean users.

Authors:Stefan Lenz, Arsenij Ustjanzew, Marco Jeray, Meike Ressing, Torsten Panholzer
Title: Can open source large language models be used for tumor documentation in Germany? -- An evaluation on urological doctors' notes
Abstract:
Tumor documentation in Germany is largely done manually, requiring reading patient records and entering data into structured databases. Large language models (LLMs) could potentially enhance this process by improving efficiency and reliability. This evaluation tests eleven different open source LLMs with sizes ranging from 1-70 billion model parameters on three basic tasks of the tumor documentation process: identifying tumor diagnoses, assigning ICD-10 codes, and extracting the date of first diagnosis. For evaluating the LLMs on these tasks, a dataset of annotated text snippets based on anonymized doctors' notes from urology was prepared. Different prompting strategies were used to investigate the effect of the number of examples in few-shot prompting and to explore the capabilities of the LLMs in general. The models Llama 3.1 8B, Mistral 7B, and Mistral NeMo 12 B performed comparably well in the tasks. Models with less extensive training data or having fewer than 7 billion parameters showed notably lower performance, while larger models did not display performance gains. Examples from a different medical domain than urology could also improve the outcome in few-shot prompting, which demonstrates the ability of LLMs to handle tasks needed for tumor documentation. Open source LLMs show a strong potential for automating tumor documentation. Models from 7-12 billion parameters could offer an optimal balance between performance and resource efficiency. With tailored fine-tuning and well-designed prompting, these models might become important tools for clinical documentation in the future. The code for the evaluation is available from https://github.com/stefan-m-lenz/UroLlmEval. We also release the dataset as a new valuable resource that addresses the shortage of authentic and easily accessible benchmarks in German-language medical NLP.

Authors:Hamid Nasiri, Peter Garraghan
Title: EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition
Abstract:
Parameter-efficient fine-tuning methods, such as LoRA, reduces the number of trainable parameters. However, they often suffer from scalability issues and differences between their learning pattern and full fine-tuning. To overcome these limitations, we propose Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA): a novel PEFT method that decomposes pre-trained weights into magnitude and directional components. By freezing low-rank matrices, initializing them by singular value decomposition, and introducing a small trainable matrix between them, EDoRA achieves substantial reduction in trainable parameters while maintaining learning capacity. Experimental results on the GLUE benchmark demonstrate that EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA, with up to 30x fewer trainable parameters. This makes EDoRA a highly efficient solution for adapting LLMs to diverse tasks under memory-constrained settings. Code is available at https://github.com/Hamid-Nasiri/EDoRA .

Authors:Liam Chalcroft, Jenny Crinion, Cathy J. Price, John Ashburner
Title: Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning
Abstract:
Self-supervised deep learning has accelerated 2D natural image analysis but remains difficult to translate into 3D MRI, where data are scarce and pre-trained 2D backbones cannot capture volumetric context. We present a \emph{sequence-invariant} self-supervised framework leveraging quantitative MRI (qMRI). By simulating multiple MRI contrasts from a single 3D qMRI scan and enforcing consistent representations across these contrasts, we learn anatomy-centric rather than sequence-specific features. The result is a single 3D encoder that excels across tasks and protocols. Experiments on healthy brain segmentation (IXI), stroke lesion segmentation (ARC), and MRI denoising show significant gains over baseline SSL approaches, especially in low-data settings (up to +8.3\% Dice, +4.2 dB PSNR). It also generalises to unseen sites, supporting scalable clinical use. Code and trained models are publicly available at https://github.com/liamchalcroft/contrast-squared

Authors:Jin Li, Shoujin Wang, Qi Zhang, Shui Yu, Fang Chen
Title: Generating with Fairness: A Modality-Diffused Counterfactual Framework for Incomplete Multimodal Recommendations
Abstract:
Incomplete scenario is a prevalent, practical, yet challenging setting in Multimodal Recommendations (MMRec), where some item modalities are missing due to various factors. Recently, a few efforts have sought to improve the recommendation accuracy by exploring generic structures from incomplete data. However, two significant gaps persist: 1) the difficulty in accurately generating missing data due to the limited ability to capture modality distributions; and 2) the critical but overlooked visibility bias, where items with missing modalities are more likely to be disregarded due to the prioritization of items' multimodal data over user preference alignment. This bias raises serious concerns about the fair treatment of items. To bridge these two gaps, we propose a novel Modality-Diffused Counterfactual (MoDiCF) framework for incomplete multimodal recommendations. MoDiCF features two key modules: a novel modality-diffused data completion module and a new counterfactual multimodal recommendation module. The former, equipped with a particularly designed multimodal generative framework, accurately generates and iteratively refines missing data from learned modality-specific distribution spaces. The latter, grounded in the causal perspective, effectively mitigates the negative causal effects of visibility bias and thus assures fairness in recommendations. Both modules work collaboratively to address the two aforementioned significant gaps for generating more accurate and fair results. Extensive experiments on three real-world datasets demonstrate the superior performance of MoDiCF in terms of both recommendation accuracy and fairness. The code and processed datasets are released at https://github.com/JinLi-i/MoDiCF.

Authors:Le Thien Phuc Nguyen, Zhuoran Yu, Yong Jae Lee
Title: LASER: Lip Landmark Assisted Speaker Detection for Robustness
Abstract:
Active Speaker Detection (ASD) aims to identify speaking individuals in complex visual scenes. While humans can easily detect speech by matching lip movements to audio, current ASD models struggle to establish this correspondence, often misclassifying non-speaking instances when audio and lip movements are unsynchronized. To address this limitation, we propose Lip landmark Assisted Speaker dEtection for Robustness (LASER). Unlike models that rely solely on facial frames, LASER explicitly focuses on lip movements by integrating lip landmarks in training. Specifically, given a face track, LASER extracts frame-level visual features and the 2D coordinates of lip landmarks using a lightweight detector. These coordinates are encoded into dense feature maps, providing spatial and structural information on lip positions. Recognizing that landmark detectors may sometimes fail under challenging conditions (e.g., low resolution, occlusions, extreme angles), we incorporate an auxiliary consistency loss to align predictions from both lip-aware and face-only features, ensuring reliable performance even when lip data is absent. Extensive experiments across multiple datasets show that LASER outperforms state-of-the-art models, especially in scenarios with desynchronized audio and visuals, demonstrating robust performance in real-world video contexts. Code is available at \url{https://github.com/plnguyen2908/LASER_ASD}.

Authors:Jesse Morris, Yiduo Wang, Mikolaj Kliniewski, Viorela Ila
Title: DynoSAM: Open-Source Smoothing and Mapping Framework for Dynamic SLAM
Abstract:
Traditional Visual Simultaneous Localization and Mapping (vSLAM) systems focus solely on static scene structures, overlooking dynamic elements in the environment. Although effective for accurate visual odometry in complex scenarios, these methods discard crucial information about moving objects. By incorporating this information into a Dynamic SLAM framework, the motion of dynamic entities can be estimated, enhancing navigation whilst ensuring accurate localization. However, the fundamental formulation of Dynamic SLAM remains an open challenge, with no consensus on the optimal approach for accurate motion estimation within a SLAM pipeline. Therefore, we developed DynoSAM, an open-source framework for Dynamic SLAM that enables the efficient implementation, testing, and comparison of various Dynamic SLAM optimization formulations. DynoSAM integrates static and dynamic measurements into a unified optimization problem solved using factor graphs, simultaneously estimating camera poses, static scene, object motion or poses, and object structures. We evaluate DynoSAM across diverse simulated and real-world datasets, achieving state-of-the-art motion estimation in indoor and outdoor environments, with substantial improvements over existing systems. Additionally, we demonstrate DynoSAM utility in downstream applications, including 3D reconstruction of dynamic scenes and trajectory prediction, thereby showcasing potential for advancing dynamic object-aware SLAM systems. DynoSAM is open-sourced at https://github.com/ACFR-RPG/DynOSAM.

Authors:Yang Wang, Haipeng Liu, Zeqian Yi, Biao Qian, Meng Wang
Title: Coarse-to-Fine Lightweight Meta-Embedding for ID-Based Recommendation
Abstract:
The state-of-the-art recommendation systems have shifted the attention to efficient recommendation, e.g., on-device recommendation, under memory constraints. To this end, the existing methods either focused on the lightweight embeddings for both users and items, or involved on-device systems enjoying the compact embeddings to enhance reusability and reduces space complexity. However, they focus solely on the coarse granularity of embedding, while overlook the fine-grained semantic nuances, to adversarially downgrade the efficacy of meta-embeddings in capturing the intricate relationship over both user and item, consequently resulting into the suboptimal recommendations. In this paper, we aim to study how the meta-embedding can efficiently learn varied grained semantics, together with how the fine-grained meta-embedding can strengthen the representation of coarse-grained meta-embedding. To answer these questions, we develop a novel graph neural networks (GNNs) based recommender where each user and item serves as the node, linked directly to coarse-grained virtual nodes and indirectly to fine-grained virtual nodes, ensuring different grained semantic learning, while disclosing: 1) In contrast to coarse-grained semantics, fine-grained semantics are well captured through sparse meta-embeddings, which adaptively 2) balance the embedding uniqueness and memory constraint. Additionally, the initialization method come up upon SparsePCA, along with a soft thresholding activation function to render the sparseness of the meta-embeddings. We propose a weight bridging update strategy that focuses on matching each coarse-grained meta-embedding with several fine-grained meta-embeddings based on the users/items' semantics. Extensive experiments substantiate our method's superiority over existing baselines. Our code is available at https://github.com/htyjers/C2F-MetaEmbed.

Authors:Moslem Heidarpur, Mitra Mirhassani, Norman Chang
Title: A Fully Pipelined FIFO Based Polynomial Multiplication Hardware Architecture Based On Number Theoretic Transform
Abstract:
This paper presents digital hardware for computing polynomial multiplication using Number Theoretic Transform (NTT), specifically designed for implementation on Field Programmable Gate Arrays (FPGAs). Multiplying two large polynomials applies to many modern encryption schemes, including those based on Ring Learning with Error (RLWE). The proposed design uses First In, First Out (FIFO) buffers to make the design fully pipelined and capable of computing two n degree polynomials in n/2 clock cycles. This hardware proposes a two-fold reduction in the processing time of polynomial multiplication compared to state-of-the-art enabling twice as much encryption in the same amount of time. Despite that, the proposed hardware utilizes fewer resources than the fastest-reported work.

Authors:Zhili Cheng, Yuge Tu, Ran Li, Shiqi Dai, Jinyi Hu, Shengding Hu, Jiahao Li, Yang Shi, Tianyu Yu, Weize Chen, Lei Shi, Maosong Sun
Title: EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents
Abstract:
Multimodal Large Language Models (MLLMs) have shown significant advancements, providing a promising future for embodied agents. Existing benchmarks for evaluating MLLMs primarily utilize static images or videos, limiting assessments to non-interactive scenarios. Meanwhile, existing embodied AI benchmarks are task-specific and not diverse enough, which do not adequately evaluate the embodied capabilities of MLLMs. To address this, we propose EmbodiedEval, a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks. EmbodiedEval features 328 distinct tasks within 125 varied 3D scenes, each of which is rigorously selected and annotated. It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity, all within a unified simulation and evaluation framework tailored for MLLMs. The tasks are organized into five categories: navigation, object interaction, social interaction, attribute question answering, and spatial question answering to assess different capabilities of the agents. We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks. Our analysis demonstrates the limitations of existing MLLMs in embodied capabilities, providing insights for their future development. We open-source all evaluation data and simulation framework at https://github.com/thunlp/EmbodiedEval.

Authors:Riqiang Gao, Mamadou Diallo, Han Liu, Anthony Magliari, Jonathan Sackett, Wilko Verbakel, Sandra Meyers, Rafe Mcbeth, Masoud Zarepisheh, Simon Arberet, Martin Kraus, Florin C. Ghesu, Ali Kamen
Title: Automating High Quality RT Planning at Scale
Abstract:
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances with artificial intelligence (AI) promise to improve its precision and efficiency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Varian Eclipse. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations is proposed. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. To our best knowledge, this dataset features more than 10 times number of plans compared to the largest existing well-curated public dataset. Repo: https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge.

Authors:Riqiang Gao, Mamadou Diallo, Han Liu, Anthony Magliari, Jonathan Sackett, Wilko Verbakel, Sandra Meyers, Rafe Mcbeth, Masoud Zarepisheh, Simon Arberet, Martin Kraus, Florin C. Ghesu, Ali Kamen
Title: Automating RT Planning at Scale: High Quality Data For AI Training
Abstract:
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances with artificial intelligence (AI) promise to improve its precision and efficiency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Varian Eclipse. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations is proposed. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. To our best knowledge, this dataset features more than 10 times number of plans compared to the largest existing well-curated public dataset. Repo: https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge.

Authors:Pouya Hamadanian, Sadjad Fouladi
Title: Glinthawk: A Two-Tiered Architecture for Offline LLM Inference
Abstract:
We introduce Glinthawk, an architecture for offline Large Language Model (LLM) inference. By leveraging a two-tiered structure, Glinthawk optimizes the utilization of the high-end accelerators ("Tier 1") by offloading the attention mechanism to lower-end compute tier ("Tier 2"). This separation allows the memory demand of the attention, known as the key-value cache, to scale independently from the model weights, enabling larger batch sizes and more efficient accelerator usage. Prototyped with NVIDIA T4 GPUs and standard CPU VMs, Glinthawk improves throughput by $5.9\times$ and reduces cost of generation by $2.8\times$, compared to paged attention baselines. For long sequence lengths, it achieves $16.3\times$ throughput improvement at $2.4\times$ less cost. Our evaluation shows that this architecture can tolerate moderate network latency with minimal performance degradation, making it highly effective for latency-tolerant, throughput-focused applications such as batch processing. The prototype is publicly available at https://github.com/microsoft/glinthawk.

Authors:Fatemeh Nazary, Yashar Deldjoo, Tommaso di Noia
Title: Poison-RAG: Adversarial Data Poisoning Attacks on Retrieval-Augmented Generation in Recommender Systems
Abstract:
This study presents Poison-RAG, a framework for adversarial data poisoning attacks targeting retrieval-augmented generation (RAG)-based recommender systems. Poison-RAG manipulates item metadata, such as tags and descriptions, to influence recommendation outcomes. Using item metadata generated through a large language model (LLM) and embeddings derived via the OpenAI API, we explore the impact of adversarial poisoning attacks on provider-side, where attacks are designed to promote long-tail items and demote popular ones. Two attack strategies are proposed: local modifications, which personalize tags for each item using BERT embeddings, and global modifications, applying uniform tags across the dataset. Experiments conducted on the MovieLens dataset in a black-box setting reveal that local strategies improve manipulation effectiveness by up to 50\%, while global strategies risk boosting already popular items. Results indicate that popular items are more susceptible to attacks, whereas long-tail items are harder to manipulate. Approximately 70\% of items lack tags, presenting a cold-start challenge; data augmentation and synthesis are proposed as potential defense mechanisms to enhance RAG-based systems' resilience. The findings emphasize the need for robust metadata management to safeguard recommendation frameworks. Code and data are available at https://github.com/atenanaz/Poison-RAG.

Authors:Anwai Archit, Luca Freckmann, Constantin Pape
Title: MedicoSAM: Towards foundation models for medical image segmentation
Abstract:
Medical image segmentation is an important analysis task in clinical practice and research. Deep learning has massively advanced the field, but current approaches are mostly based on models trained for a specific task. Training such models or adapting them to a new condition is costly due to the need for (manually) labeled data. The emergence of vision foundation models, especially Segment Anything, offers a path to universal segmentation for medical images, overcoming these issues. Here, we study how to improve Segment Anything for medical images by comparing different finetuning strategies on a large and diverse dataset. We evaluate the finetuned models on a wide range of interactive and (automatic) semantic segmentation tasks. We find that the performance can be clearly improved for interactive segmentation. However, semantic segmentation does not benefit from pretraining on medical images. Our best model, MedicoSAM, is publicly available at https://github.com/computational-cell-analytics/medico-sam. We show that it is compatible with existing tools for data annotation and believe that it will be of great practical value.

Authors:Saeid Asgari Taghanaki, Joao Monteiro
Title: Explain-Query-Test: Self-Evaluating LLMs Via Explanation and Comprehension Discrepancy
Abstract:
Large language models (LLMs) have demonstrated remarkable proficiency in generating detailed and coherent explanations of complex concepts. However, the extent to which these models truly comprehend the concepts they articulate remains unclear. To assess the level of comprehension of a model relative to the content it generates, we implemented a self-evaluation pipeline where models: (i) given a topic generate an excerpt with information about the topic, (ii) given an excerpt generate question-answer pairs, and finally (iii) given a question generate an answer. We refer to this self-evaluation approach as Explain-Query-Test (EQT). Interestingly, the accuracy on generated questions resulting from running the EQT pipeline correlates strongly with the model performance as verified by typical benchmarks such as MMLU-Pro. In other words, EQT's performance is predictive of MMLU-Pro's, and EQT can be used to rank models without the need for any external source of evaluation data other than lists of topics of interest. Moreover, our results reveal a disparity between the models' ability to produce detailed explanations and their performance on questions related to those explanations. This gap highlights fundamental limitations in the internal knowledge representation and reasoning abilities of current LLMs. We release the code at https://github.com/asgsaeid/EQT.

Authors:Jiebin Yan, Jiale Rao, Junjie Chen, Ziwen Tan, Weide Liu, Yuming Fang
Title: Multitask Auxiliary Network for Perceptual Quality Assessment of Non-Uniformly Distorted Omnidirectional Images
Abstract:
Omnidirectional image quality assessment (OIQA) has been widely investigated in the past few years and achieved much success. However, most of existing studies are dedicated to solve the uniform distortion problem in OIQA, which has a natural gap with the non-uniform distortion problem, and their ability in capturing non-uniform distortion is far from satisfactory. To narrow this gap, in this paper, we propose a multitask auxiliary network for non-uniformly distorted omnidirectional images, where the parameters are optimized by jointly training the main task and other auxiliary tasks. The proposed network mainly consists of three parts: a backbone for extracting multiscale features from the viewport sequence, a multitask feature selection module for dynamically allocating specific features to different tasks, and auxiliary sub-networks for guiding the proposed model to capture local distortion and global quality change. Extensive experiments conducted on two large-scale OIQA databases demonstrate that the proposed model outperforms other state-of-the-art OIQA metrics, and these auxiliary sub-networks contribute to improve the performance of the proposed model. The source code is available at https://github.com/RJL2000/MTAOIQA.

Authors:Jiebin Yan, Jiale Rao, Xuelin Liu, Yuming Fang, Yifan Zuo, Weide Liu
Title: Subjective and Objective Quality Assessment of Non-Uniformly Distorted Omnidirectional Images
Abstract:
Omnidirectional image quality assessment (OIQA) has been one of the hot topics in IQA with the continuous development of VR techniques, and achieved much success in the past few years. However, most studies devote themselves to the uniform distortion issue, i.e., all regions of an omnidirectional image are perturbed by the ``same amount'' of noise, while ignoring the non-uniform distortion issue, i.e., partial regions undergo ``different amount'' of perturbation with the other regions in the same omnidirectional image. Additionally, nearly all OIQA models are verified on the platforms containing a limited number of samples, which largely increases the over-fitting risk and therefore impedes the development of OIQA. To alleviate these issues, we elaborately explore this topic from both subjective and objective perspectives. Specifically, we construct a large OIQA database containing 10,320 non-uniformly distorted omnidirectional images, each of which is generated by considering quality impairments on one or two camera len(s). Then we meticulously conduct psychophysical experiments and delve into the influence of both holistic and individual factors (i.e., distortion range and viewing condition) on omnidirectional image quality. Furthermore, we propose a perception-guided OIQA model for non-uniform distortion by adaptively simulating users' viewing behavior. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods. The source code is available at https://github.com/RJL2000/OIQAND.

Authors:Shu Zou, Xinyu Tian, Qinyu Zhao, Zhaoyuan Yang, Jing Zhang
Title: SimLabel: Consistency-Guided OOD Detection with Pretrained Vision-Language Models
Abstract:
Detecting out-of-distribution (OOD) data is crucial in real-world machine learning applications, particularly in safety-critical domains. Existing methods often leverage language information from vision-language models (VLMs) to enhance OOD detection by improving confidence estimation through rich class-wise text information. However, when building OOD detection score upon on in-distribution (ID) text-image affinity, existing works either focus on each ID class or whole ID label sets, overlooking inherent ID classes' connection. We find that the semantic information across different ID classes is beneficial for effective OOD detection. We thus investigate the ability of image-text comprehension among different semantic-related ID labels in VLMs and propose a novel post-hoc strategy called SimLabel. SimLabel enhances the separability between ID and OOD samples by establishing a more robust image-class similarity metric that considers consistency over a set of similar class labels. Extensive experiments demonstrate the superior performance of SimLabel on various zero-shot OOD detection benchmarks. The proposed model is also extended to various VLM-backbones, demonstrating its good generalization ability. Our demonstration and implementation codes are available at: https://github.com/ShuZou-1/SimLabel.

Authors:Haoran Sun, Yekun Chai, Shuohuan Wang, Yu Sun, Hua Wu, Haifeng Wang
Title: Curiosity-Driven Reinforcement Learning from Human Feedback
Abstract:
Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but often at the cost of reduced output diversity. This trade-off between diversity and alignment quality remains a significant challenge. Drawing inspiration from curiosity-driven exploration in reinforcement learning, we introduce curiosity-driven RLHF (CD-RLHF), a framework that incorporates intrinsic rewards for novel states, alongside traditional sparse extrinsic rewards, to optimize both output diversity and alignment quality. We demonstrate the effectiveness of CD-RLHF through extensive experiments on a range of tasks, including text summarization and instruction following. Our approach achieves significant gains in diversity on multiple diversity-oriented metrics while maintaining alignment with human preferences comparable to standard RLHF. We make our code publicly available at https://github.com/ernie-research/CD-RLHF.

Authors:Akash Kundu
Title: Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware
Abstract:
The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems ($N>12$, where $N$ is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems $N\geq12$ compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal correlators computation in quantum many-body systems on near-term quantum hardware. The code is available at https://github.com/Aqasch/solving_SYK_model_with_RL.

Authors:Jing Liu, Zhenchao Ma, Zepu Wang, Chenxuanyin Zou, Jiayang Ren, Zehua Wang, Liang Song, Bo Hu, Yang Liu, Victor C. M. Leung
Title: A Survey on Diffusion Models for Anomaly Detection
Abstract:
Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we review recent advances in DMAD research. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.

Authors:Sahar Tahmasebi, David Ernst, Eric Müller-Budack, Ralph Ewerth
Title: Verifying Cross-modal Entity Consistency in News using Vision-language Models
Abstract:
The web has become a crucial source of information, but it is also used to spread disinformation, often conveyed through multiple modalities like images and text. The identification of inconsistent cross-modal information, in particular entities such as persons, locations, and events, is critical to detect disinformation. Previous works either identify out-of-context disinformation by assessing the consistency of images to the whole document, neglecting relations of individual entities, or focus on generic entities that are not relevant to news. So far, only few approaches have addressed the task of validating entity consistency between images and text in news. However, the potential of large vision-language models (LVLMs) has not been explored yet. In this paper, we propose an LVLM-based framework for verifying Cross-modal Entity Consistency~(LVLM4CEC), to assess whether persons, locations and events in news articles are consistent across both modalities. We suggest effective prompting strategies for LVLMs for entity verification that leverage reference images crawled from web. Moreover, we extend three existing datasets for the task of entity verification in news providing manual ground-truth data. Our results show the potential of LVLMs for automating cross-modal entity verification, showing improved accuracy in identifying persons and events when using evidence images. Moreover, our method outperforms a baseline for location and event verification in documents. The datasets and source code are available on GitHub at https://github.com/TIBHannover/LVLM4CEC.

Authors:Chung-ju Huang, Yuanpeng He, Xiao Han, Wenpin Jiao, Zhi Jin, Leye Wang
Title: UniTrans: A Unified Vertical Federated Knowledge Transfer Framework for Enhancing Cross-Hospital Collaboration
Abstract:
Cross-hospital collaboration has the potential to address disparities in medical resources across different regions. However, strict privacy regulations prohibit the direct sharing of sensitive patient information between hospitals. Vertical federated learning (VFL) offers a novel privacy-preserving machine learning paradigm that maximizes data utility across multiple hospitals. Traditional VFL methods, however, primarily benefit patients with overlapping data, leaving vulnerable non-overlapping patients without guaranteed improvements in medical prediction services. While some knowledge transfer techniques can enhance the prediction performance for non-overlapping patients, they fall short in addressing scenarios where overlapping and non-overlapping patients belong to different domains, resulting in challenges such as feature heterogeneity and label heterogeneity. To address these issues, we propose a novel unified vertical federated knowledge transfer framework (Unitrans). Our framework consists of three key steps. First, we extract the federated representation of overlapping patients by employing an effective vertical federated representation learning method to model multi-party joint features online. Next, each hospital learns a local knowledge transfer module offline, enabling the transfer of knowledge from the federated representation of overlapping patients to the enriched representation of local non-overlapping patients in a domain-adaptive manner. Finally, hospitals utilize these enriched local representations to enhance performance across various downstream medical prediction tasks. Experiments on real-world medical datasets validate the framework's dual effectiveness in both intra-domain and cross-domain knowledge transfer. The code of \method is available at \url{https://github.com/Chung-ju/Unitrans}.

Authors:Zibin Wang, Zhiyuan Ouyang, Xiangyun Zhang
Title: Block Flow: Learning Straight Flow on Data Blocks
Abstract:
Flow-matching models provide a powerful framework for various applications, offering efficient sampling and flexible probability path modeling. These models are characterized by flows with low curvature in learned generative trajectories, which results in reduced truncation error at each sampling step. To further reduce curvature, we propose block matching. This novel approach leverages label information to partition the data distribution into blocks and match them with a prior distribution parameterized using the same label information, thereby learning straighter flows. We demonstrate that the variance of the prior distribution can control the curvature upper bound of forward trajectories in flow-matching models. By designing flexible regularization strategies to adjust this variance, we achieve optimal generation performance, effectively balancing the trade-off between maintaining diversity in generated samples and minimizing numerical solver errors. Our results demonstrate competitive performance with models of the same parameter scale.Code is available at \url{https://github.com/wpp13749/block_flow}.

Authors:Ruojun Xu, Weijie Xi, Xiaodi Wang, Yongbo Mao, Zach Cheng
Title: StyleSSP: Sampling StartPoint Enhancement for Training-free Diffusion-based Method for Style Transfer
Abstract:
Training-free diffusion-based methods have achieved remarkable success in style transfer, eliminating the need for extensive training or fine-tuning. However, due to the lack of targeted training for style information extraction and constraints on the content image layout, training-free methods often suffer from layout changes of original content and content leakage from style images. Through a series of experiments, we discovered that an effective startpoint in the sampling stage significantly enhances the style transfer process. Based on this discovery, we propose StyleSSP, which focuses on obtaining a better startpoint to address layout changes of original content and content leakage from style image. StyleSSP comprises two key components: (1) Frequency Manipulation: To improve content preservation, we reduce the low-frequency components of the DDIM latent, allowing the sampling stage to pay more attention to the layout of content images; and (2) Negative Guidance via Inversion: To mitigate the content leakage from style image, we employ negative guidance in the inversion stage to ensure that the startpoint of the sampling stage is distanced from the content of style image. Experiments show that StyleSSP surpasses previous training-free style transfer baselines, particularly in preserving original content and minimizing the content leakage from style image. Project page: https://github.com/bytedance/StyleSSP.

Authors:Ziheng Zhang, Jianyang Gu, Arpita Chowdhury, Zheda Mai, David Carlyn, Tanya Berger-Wolf, Yu Su, Wei-Lun Chao
Title: Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation
Abstract:
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.

Authors:Yepeng Liu, Zhichao Sun, Baosheng Yu, Yitian Zhao, Bo Du, Yongchao Xu, Jun Cheng
Title: MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching
Abstract:
Many keypoint detection and description methods have been proposed for image matching or registration. While these methods demonstrate promising performance for single-modality image matching, they often struggle with multimodal data because the descriptors trained on single-modality data tend to lack robustness against the non-linear variations present in multimodal data. Extending such methods to multimodal image matching often requires well-aligned multimodal data to learn modality-invariant descriptors. However, acquiring such data is often costly and impractical in many real-world scenarios. To address this challenge, we propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching using only single-modality training data. Specifically, we propose a novel latent feature aggregation module and a cumulative hybrid aggregation module to enhance the base keypoint descriptors trained on single-modality data by leveraging pre-trained features from Stable Diffusion models. %, our approach generates robust and invariant features across diverse and unknown modalities. We validate our method with recent keypoint detection and description methods in three multimodal retinal image datasets (CF-FA, CF-OCT, EMA-OCTA) and two remote sensing datasets (Optical-SAR and Optical-NIR). Extensive experiments demonstrate that the proposed MIFNet is able to learn modality-invariant feature for multimodal image matching without accessing the targeted modality and has good zero-shot generalization ability. The code will be released at https://github.com/lyp-deeplearning/MIFNet.

Authors:Yanchao Wang, Dawei Zhang, Run Li, Zhonglong Zheng, Minglu Li
Title: PD-SORT: Occlusion-Robust Multi-Object Tracking Using Pseudo-Depth Cues
Abstract:
Multi-object tracking (MOT) is a rising topic in video processing technologies and has important application value in consumer electronics. Currently, tracking-by-detection (TBD) is the dominant paradigm for MOT, which performs target detection and association frame by frame. However, the association performance of TBD methods degrades in complex scenes with heavy occlusions, which hinders the application of such methods in real-world scenarios.To this end, we incorporate pseudo-depth cues to enhance the association performance and propose Pseudo-Depth SORT (PD-SORT). First, we extend the Kalman filter state vector with pseudo-depth states. Second, we introduce a novel depth volume IoU (DVIoU) by combining the conventional 2D IoU with pseudo-depth. Furthermore, we develop a quantized pseudo-depth measurement (QPDM) strategy for more robust data association. Besides, we also integrate camera motion compensation (CMC) to handle dynamic camera situations. With the above designs, PD-SORT significantly alleviates the occlusion-induced ambiguous associations and achieves leading performances on DanceTrack, MOT17, and MOT20. Note that the improvement is especially obvious on DanceTrack, where objects show complex motions, similar appearances, and frequent occlusions. The code is available at https://github.com/Wangyc2000/PD_SORT.

Authors:Xiangyang Hu, Xiangyu Shen, Yifei Sun, Xuhao Shan, Wenwen Min, Liyilei Su, Xiaomao Fan, Ahmed Elazab, Ruiquan Ge, Changmiao Wang, Xiaopeng Fan
Title: ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction
Abstract:
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly. Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD. Combining information from various modalities can significantly improve predictive accuracy. However, challenges such as missing data and heterogeneity across modalities complicate multimodal learning methods as adding more modalities can worsen these issues. Current multimodal fusion techniques often fail to adapt to the complexity of medical data, hindering the ability to identify relationships between modalities. To address these challenges, we propose an innovative multimodal approach for predicting MCI conversion, focusing specifically on the issues of missing positron emission tomography (PET) data and integrating diverse medical information. The proposed incomplete triple-modal MCI conversion prediction network is tailored for this purpose. Through the missing modal generation module, we synthesize the missing PET data from the magnetic resonance imaging and extract features using specifically designed encoders. We also develop a channel aggregation module and a triple-modal co-attention fusion module to reduce feature redundancy and achieve effective multimodal data fusion. Furthermore, we design a loss function to handle missing modality issues and align cross-modal features. These components collectively harness multimodal data to boost network performance. Experimental results on the ADNI1 and ADNI2 datasets show that our method significantly surpasses existing unimodal and other multimodal models. Our code is available at https://github.com/justinhxy/ITFC.

Authors:Ahmad Mousavi, Ramin Zandvakili
Title: $\ell_0$-Regularized Quadratic Surface Support Vector Machines
Abstract:
Kernel-free quadratic surface support vector machines have recently gained traction due to their flexibility in modeling nonlinear decision boundaries without relying on kernel functions. However, the introduction of a full quadratic classifier significantly increases the number of model parameters, scaling quadratically with data dimensionality, which often leads to overfitting and makes interpretation difficult. To address these challenges, we propose a sparse variant of the QSVM by enforcing a cardinality constraint on the model parameters. While enhancing generalization and promoting sparsity, leveraging the $\ell_0$-norm inevitably incurs additional computational complexity. To tackle this, we develop a penalty decomposition algorithm capable of producing solutions that provably satisfy the first-order Lu-Zhang optimality conditions. Our approach accommodates both hinge and quadratic loss functions. In both cases, we demonstrate that the subproblems arising within the algorithm either admit closed-form solutions or can be solved efficiently through dual formulations, which contributes to the method's overall effectiveness. We also analyze the convergence behavior of the algorithm under both loss settings. Finally, we validate our approach on several real-world datasets, demonstrating its ability to reduce overfitting while maintaining strong classification performance. The complete implementation and experimental code are publicly available at https://github.com/raminzandvakili/L0-QSVM.

Authors:Hongwei Sha, Muchen Dong, Quanyou Luo, Ming Lu, Hao Chen, Zhan Ma
Title: Towards Loss-Resilient Image Coding for Unstable Satellite Networks
Abstract:
Geostationary Earth Orbit (GEO) satellite communication demonstrates significant advantages in emergency short burst data services. However, unstable satellite networks, particularly those with frequent packet loss, present a severe challenge to accurate image transmission. To address it, we propose a loss-resilient image coding approach that leverages end-to-end optimization in learned image compression (LIC). Our method builds on the channel-wise progressive coding framework, incorporating Spatial-Channel Rearrangement (SCR) on the encoder side and Mask Conditional Aggregation (MCA) on the decoder side to improve reconstruction quality with unpredictable errors. By integrating the Gilbert-Elliot model into the training process, we enhance the model's ability to generalize in real-world network conditions. Extensive evaluations show that our approach outperforms traditional and deep learning-based methods in terms of compression performance and stability under diverse packet loss, offering robust and efficient progressive transmission even in challenging environments. Code is available at https://github.com/NJUVISION/LossResilientLIC.

Authors:Tuo Feng, Wenguan Wang, Yi Yang
Title: A Survey of World Models for Autonomous Driving
Abstract:
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, multimodal fusion, and advanced simulation to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.

Authors:Tal Zeevi, Lawrence H. Staib, John A. Onofrey
Title: Enhancing Uncertainty Estimation in Semantic Segmentation via Monte-Carlo Frequency Dropout
Abstract:
Monte-Carlo (MC) Dropout provides a practical solution for estimating predictive distributions in deterministic neural networks. Traditional dropout, applied within the signal space, may fail to account for frequency-related noise common in medical imaging, leading to biased predictive estimates. A novel approach extends Dropout to the frequency domain, allowing stochastic attenuation of signal frequencies during inference. This creates diverse global textural variations in feature maps while preserving structural integrity -- a factor we hypothesize and empirically show is contributing to accurately estimating uncertainties in semantic segmentation. We evaluated traditional MC-Dropout and the MC-frequency Dropout in three segmentation tasks involving different imaging modalities: (i) prostate zones in biparametric MRI, (ii) liver tumors in contrast-enhanced CT, and (iii) lungs in chest X-ray scans. Our results show that MC-Frequency Dropout improves calibration, convergence, and semantic uncertainty, thereby improving prediction scrutiny, boundary delineation, and has the potential to enhance medical decision-making.

Authors:Konrad Lis, Tomasz Kryjak, Marek Gorgon
Title: LiFT: Lightweight, FPGA-tailored 3D object detection based on LiDAR data
Abstract:
This paper presents LiFT, a lightweight, fully quantized 3D object detection algorithm for LiDAR data, optimized for real-time inference on FPGA platforms. Through an in-depth analysis of FPGA-specific limitations, we identify a set of FPGA-induced constraints that shape the algorithm's design. These include a computational complexity limit of 30 GMACs (billion multiply-accumulate operations), INT8 quantization for weights and activations, 2D cell-based processing instead of 3D voxels, and minimal use of skip connections. To meet these constraints while maximizing performance, LiFT combines novel mechanisms with state-of-the-art techniques such as reparameterizable convolutions and fully sparse architecture. Key innovations include the Dual-bound Pillar Feature Net, which boosts performance without increasing complexity, and an efficient scheme for INT8 quantization of input features. With a computational cost of just 20.73 GMACs, LiFT stands out as one of the few algorithms targeting minimal-complexity 3D object detection. Among comparable methods, LiFT ranks first, achieving an mAP of 51.84% and an NDS of 61.01% on the challenging NuScenes validation dataset. The code will be available at https://github.com/vision-agh/lift.

Authors:William Doherty, Anton Lee, Heitor Murilo Gomes
Title: CLOFAI: A Dataset of Real And Fake Image Classification Tasks for Continual Learning
Abstract:
The rapid advancement of generative AI models capable of creating realistic media has led to a need for classifiers that can accurately distinguish between genuine and artificially-generated images. A significant challenge for these classifiers emerges when they encounter images from generative models that are not represented in their training data, usually resulting in diminished performance. A typical approach is to periodically update the classifier's training data with images from the new generative models then retrain the classifier on the updated dataset. However, in some real-life scenarios, storage, computational, or privacy constraints render this approach impractical. Additionally, models used in security applications may be required to rapidly adapt. In these circumstances, continual learning provides a promising alternative, as the classifier can be updated without retraining on the entire dataset. In this paper, we introduce a new dataset called CLOFAI (Continual Learning On Fake and Authentic Images), which takes the form of a domain-incremental image classification problem. Moreover, we showcase the applicability of this dataset as a benchmark for evaluating continual learning methodologies. In doing this, we set a baseline on our novel dataset using three foundational continual learning methods -- EWC, GEM, and Experience Replay -- and find that EWC performs poorly, while GEM and Experience Replay show promise, performing significantly better than a Naive baseline. The dataset and code to run the experiments can be accessed from the following GitHub repository: https://github.com/Will-Doherty/CLOFAI.

Authors:Dominik Kulmer, Ilir Tahiraj, Andrii Chumak, Markus Lienkamp
Title: Multi-LiCa: A Motion and Targetless Multi LiDAR-to-LiDAR Calibration Framework
Abstract:
Today's autonomous vehicles rely on a multitude of sensors to perceive their environment. To improve the perception or create redundancy, the sensor's alignment relative to each other must be known. With Multi-LiCa, we present a novel approach for the alignment, e.g. calibration. We present an automatic motion- and targetless approach for the extrinsic multi LiDAR-to-LiDAR calibration without the need for additional sensor modalities or an initial transformation input. We propose a two-step process with feature-based matching for the coarse alignment and a GICP-based fine registration in combination with a cost-based matching strategy. Our approach can be applied to any number of sensors and positions if there is a partial overlap between the field of view of single sensors. We show that our pipeline is better generalized to different sensor setups and scenarios and is on par or better in calibration accuracy than existing approaches. The presented framework is integrated in ROS 2 but can also be used as a standalone application. To build upon our work, our source code is available at: https://github.com/TUMFTM/Multi_LiCa.

Authors:Elad Levi, Ilan Kadar
Title: IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems
Abstract:
Large Language Models (LLMs) are transforming artificial intelligence, evolving into task-oriented systems capable of autonomous planning and execution. One of the primary applications of LLMs is conversational AI systems, which must navigate multi-turn dialogues, integrate domain-specific APIs, and adhere to strict policy constraints. However, evaluating these agents remains a significant challenge, as traditional methods fail to capture the complexity and variability of real-world interactions. We introduce IntellAgent, a scalable, open-source multi-agent framework designed to evaluate conversational AI systems comprehensively. IntellAgent automates the creation of diverse, synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations. This innovative approach provides fine-grained diagnostics, addressing the limitations of static and manually curated benchmarks with coarse-grained metrics. IntellAgent represents a paradigm shift in evaluating conversational AI. By simulating realistic, multi-policy scenarios across varying levels of complexity, IntellAgent captures the nuanced interplay of agent capabilities and policy constraints. Unlike traditional methods, it employs a graph-based policy model to represent relationships, likelihoods, and complexities of policy interactions, enabling highly detailed diagnostics. IntellAgent also identifies critical performance gaps, offering actionable insights for targeted optimization. Its modular, open-source design supports seamless integration of new domains, policies, and APIs, fostering reproducibility and community collaboration. Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment. The framework is available at https://github.com/plurai-ai/intellagent

Authors:Zhipeng Yu, Qianqian Xu, Yangbangyan Jiang, Yingfei Sun, Qingming Huang
Title: Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection
Abstract:
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving the robustness towards noisy labels in classification tasks, the problem of noisy labels in deep metric learning (DML) remains under-explored. Existing noisy label learning methods designed for DML mainly discard suspicious noisy samples, resulting in a waste of the training data. To address this issue, we propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS), which constructs reliable positive pairs for noisy samples to enhance the sample utilization. Specifically, SGPS first effectively identifies clean and noisy samples by a probability-based clean sample selectionstrategy. To further utilize the remaining noisy samples, we discover their potential similar samples based on the subgroup information given by a subgroup generation module and then aggregate them into informative positive prototypes for each noisy sample via a positive prototype generation module. Afterward, a new contrastive loss is tailored for the noisy samples with their selected positive pairs. SGPS can be easily integrated into the training process of existing pair-wise DML tasks, like image retrieval and face recognition. Extensive experiments on multiple synthetic and real-world large-scale label noise datasets demonstrate the effectiveness of our proposed method. Without any bells and whistles, our SGPS framework outperforms the state-of-the-art noisy label DML methods. Code is available at \url{https://github.com/smuelpeng/SGPS-NoiseFreeDML}.

Authors:Eunjin Kim, Hyeonjin Kim, Kyong Hwan Jin, Jaejun Yoo
Title: BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
Abstract:
While prior methods in Continuous Spatial-Temporal Video Super-Resolution (C-STVSR) employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow networks for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve--and even degrades--performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art in various metrics, including PSNR and SSIM, showing enhanced spatial details and natural temporal consistency. Our code is available https://github.com/Eunjnnn/bfstvsr.

Authors:Qi Cheems Wang, Zehao Xiao, Yixiu Mao, Yun Qu, Jiayi Shen, Yiqin Lv, Xiangyang Ji
Title: Model Predictive Task Sampling for Efficient and Robust Adaptation
Abstract:
Foundation models have revolutionized general-purpose problem-solving, offering rapid task adaptation through pretraining, meta-training, and finetuning. Recent crucial advances in these paradigms reveal the importance of challenging task prioritized sampling to enhance adaptation robustness under distribution shifts. However, ranking task difficulties over iteration as a preliminary step typically requires exhaustive task evaluation, which is practically unaffordable in computation and data-annotation. This study provides a novel perspective to illuminate the possibility of leveraging the dual importance of adaptation robustness and learning efficiency, particularly in scenarios where task evaluation is risky or costly, such as iterative agent-environment interactions for robotic policy evaluation or computationally intensive inference steps for finetuning foundation models. Firstly, we introduce Model Predictive Task Sampling (MPTS), a framework that bridges the task space and adaptation risk landscape, providing a theoretical foundation for robust active task sampling. MPTS employs a generative model to characterize the episodic optimization process and predicts task-specific adaptation risk via posterior inference. The resulting risk learner amortizes the costly evaluation of task adaptation performance and provably approximates task difficulty rankings. MPTS seamlessly integrates into zero-shot, few-shot, and supervised finetuning settings. Empirically, we conduct extensive experiments in pattern recognition using foundation models and sequential decision-making. Our results demonstrate that MPTS significantly enhances adaptation robustness for tail or out-of-distribution (OOD) tasks and improves learning efficiency compared to state-of-the-art (SOTA) methods. The code is available at the project site https://github.com/thu-rllab/MPTS.

Authors:Sani Abdullahi Sani, Shamsuddeen Hassan Muhammad, Devon Jarvis
Title: Investigating the Impact of Language-Adaptive Fine-Tuning on Sentiment Analysis in Hausa Language Using AfriBERTa
Abstract:
Sentiment analysis (SA) plays a vital role in Natural Language Processing (NLP) by ~identifying sentiments expressed in text. Although significant advances have been made in SA for widely spoken languages, low-resource languages such as Hausa face unique challenges, primarily due to a lack of digital resources. This study investigates the effectiveness of Language-Adaptive Fine-Tuning (LAFT) to improve SA performance in Hausa. We first curate a diverse, unlabeled corpus to expand the model's linguistic capabilities, followed by applying LAFT to adapt AfriBERTa specifically to the nuances of the Hausa language. The adapted model is then fine-tuned on the labeled NaijaSenti sentiment dataset to evaluate its performance. Our findings demonstrate that LAFT gives modest improvements, which may be attributed to the use of formal Hausa text rather than informal social media data. Nevertheless, the pre-trained AfriBERTa model significantly outperformed models not specifically trained on Hausa, highlighting the importance of using pre-trained models in low-resource contexts. This research emphasizes the necessity for diverse data sources to advance NLP applications for low-resource African languages. We published the code and the dataset to encourage further research and facilitate reproducibility in low-resource NLP here: https://github.com/Sani-Abdullahi-Sani/Natural-Language-Processing/blob/main/Sentiment%20Analysis%20for%20Low%20Resource%20African%20Languages

Authors:Yuxia Wang, Artem Shelmanov, Jonibek Mansurov, Akim Tsvigun, Vladislav Mikhailov, Rui Xing, Zhuohan Xie, Jiahui Geng, Giovanni Puccetti, Ekaterina Artemova, Jinyan Su, Minh Ngoc Ta, Mervat Abassy, Kareem Ashraf Elozeiri, Saad El Dine Ahmed El Etter, Maiya Goloburda, Tarek Mahmoud, Raj Vardhan Tomar, Nurkhan Laiyk, Osama Mohammed Afzal, Ryuto Koike, Masahiro Kaneko, Alham Fikri Aji, Nizar Habash, Iryna Gurevych, Preslav Nakov
Title: GenAI Content Detection Task 1: English and Multilingual Machine-Generated Text Detection: AI vs. Human
Abstract:
We present the GenAI Content Detection Task~1 -- a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 26 teams -- to the Multilingual. We provide a comprehensive overview of the data, a summary of the results -- including system rankings and performance scores -- detailed descriptions of the participating systems, and an in-depth analysis of submissions. https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1

Authors:Haichao Wei, Yunxiang Ren, Zhoutong Fu, Aman Lunia, Yi-Lin Chen, Alice Leung, Ya Xu
Title: Control LLM: Controlled Evolution for Intelligence Retention in LLM
Abstract:
Large Language Models (LLMs) demand significant computational resources, making it essential to enhance their capabilities without retraining from scratch. A key challenge in this domain is \textit{catastrophic forgetting} (CF), which hampers performance during Continuous Pre-training (CPT) and Continuous Supervised Fine-Tuning (CSFT). We propose \textbf{Control LLM}, a novel approach that leverages parallel pre-trained and expanded transformer blocks, aligning their hidden-states through interpolation strategies This method effectively preserves performance on existing tasks while seamlessly integrating new knowledge. Extensive experiments demonstrate the effectiveness of Control LLM in both CPT and CSFT. On Llama3.1-8B-Instruct, it achieves significant improvements in mathematical reasoning ($+14.4\%$ on Math-Hard) and coding performance ($+10\%$ on MBPP-PLUS). On Llama3.1-8B, it enhances multilingual capabilities ($+10.6\%$ on C-Eval, $+6.8\%$ on CMMLU, and $+30.2\%$ on CMMLU-0shot-CoT). It surpasses existing methods and achieves SOTA among open-source models tuned from the same base model, using substantially less data and compute. Crucially, these gains are realized while preserving strong original capabilities, with minimal degradation ($<4.3\% \text{on MMLU}$) compared to $>35\%$ in open-source Math and Coding models. This approach has been successfully deployed in LinkedIn's GenAI-powered job seeker and Ads unit products. To support further research, we release the training and evaluation code (https://github.com/linkedin/ControlLLM) along with models trained on public datasets (https://huggingface.co/ControlLLM) to the community.

Authors:Zhanpeng Chen, Mingxiao Li, Ziyang Chen, Nan Du, Xiaolong Li, Yuexian Zou
Title: Advancing General Multimodal Capability of Vision-language Models with Pyramid-descent Visual Position Encoding
Abstract:
Vision-language Models (VLMs) have shown remarkable capabilities in advancing general artificial intelligence, yet the irrational encoding of visual positions persists in inhibiting the models' comprehensive perception performance across different levels of granularity. In this work, we propose Pyramid-descent Visual Position Encoding (PyPE), a novel approach designed to enhance the perception of visual tokens within VLMs. By assigning visual position indexes from the periphery to the center and expanding the central receptive field incrementally, PyPE addresses the limitations of traditional raster-scan methods and mitigates the long-term decay effects induced by Rotary Position Embedding (RoPE). Our method reduces the relative distance between interrelated visual elements and instruction tokens, promoting a more rational allocation of attention weights and allowing for a multi-granularity perception of visual elements and countering the over-reliance on anchor tokens. Extensive experimental evaluations demonstrate that PyPE consistently improves the general capabilities of VLMs across various sizes. Code is available at https://github.com/SakuraTroyChen/PyPE.

Authors:Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, James T. Kwok
Title: Gradient-Based Multi-Objective Deep Learning: Algorithms, Theories, Applications, and Beyond
Abstract:
Many modern deep learning applications require balancing multiple objectives that are often conflicting. Examples include multi-task learning, fairness-aware learning, and the alignment of Large Language Models (LLMs). This leads to multi-objective deep learning, which tries to find optimal trade-offs or Pareto-optimal solutions by adapting mathematical principles from the field of Multi-Objective Optimization (MOO). However, directly applying gradient-based MOO techniques to deep neural networks presents unique challenges, including high computational costs, optimization instability, and the difficulty of effectively incorporating user preferences. This paper provides a comprehensive survey of gradient-based techniques for multi-objective deep learning. We systematically categorize existing algorithms based on their outputs: (i) methods that find a single, well-balanced solution, (ii) methods that generate a finite set of diverse Pareto-optimal solutions, and (iii) methods that learn a continuous Pareto set of solutions. In addition to this taxonomy, the survey covers theoretical analyses, key applications, practical resources, and highlights open challenges and promising directions for future research. A comprehensive list of multi-objective deep learning algorithms is available at https://github.com/Baijiong-Lin/Awesome-Multi-Objective-Deep-Learning.

Authors:Jing Ding, Kai Feng, Binbin Lin, Jiarui Cai, Qiushi Wang, Yu Xie, Xiaojin Zhang, Zhongyu Wei, Wei Chen
Title: InsQABench: Benchmarking Chinese Insurance Domain Question Answering with Large Language Models
Abstract:
The application of large language models (LLMs) has achieved remarkable success in various fields, but their effectiveness in specialized domains like the Chinese insurance industry remains underexplored. The complexity of insurance knowledge, encompassing specialized terminology and diverse data types, poses significant challenges for both models and users. To address this, we introduce InsQABench, a benchmark dataset for the Chinese insurance sector, structured into three categories: Insurance Commonsense Knowledge, Insurance Structured Database, and Insurance Unstructured Documents, reflecting real-world insurance question-answering tasks.We also propose two methods, SQL-ReAct and RAG-ReAct, to tackle challenges in structured and unstructured data tasks. Evaluations show that while LLMs struggle with domain-specific terminology and nuanced clause texts, fine-tuning on InsQABench significantly improves performance. Our benchmark establishes a solid foundation for advancing LLM applications in the insurance domain, with data and code available at https://github.com/HaileyFamo/InsQABench.git.

Authors:Sijun Dong, Fangcheng Zuo, Geng Chen, Siming Fu, Xiaoliang Meng
Title: A Remote Sensing Image Change Detection Method Integrating Layer Exchange and Channel-Spatial Differences
Abstract:
Change detection in remote sensing imagery is a critical technique for Earth observation, primarily focusing on pixel-level segmentation of change regions between bi-temporal images. The essence of pixel-level change detection lies in determining whether corresponding pixels in bi-temporal images have changed. In deep learning, the spatial and channel dimensions of feature maps represent different information from the original images. In this study, we found that in change detection tasks, difference information can be computed not only from the spatial dimension of bi-temporal features but also from the channel dimension. Therefore, we designed the Channel-Spatial Difference Weighting (CSDW) module as an aggregation-distribution mechanism for bi-temporal features in change detection. This module enhances the sensitivity of the change detection model to difference features. Additionally, bi-temporal images share the same geographic location and exhibit strong inter-image correlations. To construct the correlation between bi-temporal images, we designed a decoding structure based on the Layer-Exchange (LE) method to enhance the interaction of bi-temporal features. Comprehensive experiments on the CLCD, PX-CLCD, LEVIR-CD, and S2Looking datasets demonstrate that the proposed LENet model significantly improves change detection performance. The code and pre-trained models will be available at: https://github.com/dyzy41/lenet.

Authors:Saibo Geng, Hudson Cooper, Michał Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin, Robert West, Eric Horvitz, Harsha Nori
Title: JSONSchemaBench: A Rigorous Benchmark of Structured Outputs for Language Models
Abstract:
Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench

Authors:Young Seok Jeon, Hongfei Yang, Huazhu Fu, Mengling Feng
Title: No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
Abstract:
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.

Authors:Pengcheng Zhao, Zhixian He, Fuwei Zhang, Shujin Lin, Fan Zhou
Title: LD-DETR: Loop Decoder DEtection TRansformer for Video Moment Retrieval and Highlight Detection
Abstract:
Video Moment Retrieval and Highlight Detection aim to find corresponding content in the video based on a text query. Existing models usually first use contrastive learning methods to align video and text features, then fuse and extract multimodal information, and finally use a Transformer Decoder to decode multimodal information. However, existing methods face several issues: (1) Overlapping semantic information between different samples in the dataset hinders the model's multimodal aligning performance; (2) Existing models are not able to efficiently extract local features of the video; (3) The Transformer Decoder used by the existing model cannot adequately decode multimodal features. To address the above issues, we proposed the LD-DETR model for Video Moment Retrieval and Highlight Detection tasks. Specifically, we first distilled the similarity matrix into the identity matrix to mitigate the impact of overlapping semantic information. Then, we designed a method that enables convolutional layers to extract multimodal local features more efficiently. Finally, we fed the output of the Transformer Decoder back into itself to adequately decode multimodal information. We evaluated LD-DETR on four public benchmarks and conducted extensive experiments to demonstrate the superiority and effectiveness of our approach. Our model outperforms the State-Of-The-Art models on QVHighlight, Charades-STA and TACoS datasets. Our code is available at https://github.com/qingchen239/ld-detr.

Authors:Xinjie Liang, Xiangyu Li, Fanding Li, Jie Jiang, Qing Dong, Wei Wang, Kuanquan Wang, Suyu Dong, Gongning Luo, Shuo Li
Title: MedFILIP: Medical Fine-grained Language-Image Pre-training
Abstract:
Medical vision-language pretraining (VLP) that leverages naturally-paired medical image-report data is crucial for medical image analysis. However, existing methods struggle to accurately characterize associations between images and diseases, leading to inaccurate or incomplete diagnostic results. In this work, we propose MedFILIP, a fine-grained VLP model, introduces medical image-specific knowledge through contrastive learning, specifically: 1) An information extractor based on a large language model is proposed to decouple comprehensive disease details from reports, which excels in extracting disease deals through flexible prompt engineering, thereby effectively reducing text complexity while retaining rich information at a tiny cost. 2) A knowledge injector is proposed to construct relationships between categories and visual attributes, which help the model to make judgments based on image features, and fosters knowledge extrapolation to unfamiliar disease categories. 3) A semantic similarity matrix based on fine-grained annotations is proposed, providing smoother, information-richer labels, thus allowing fine-grained image-text alignment. 4) We validate MedFILIP on numerous datasets, e.g., RSNA-Pneumonia, NIH ChestX-ray14, VinBigData, and COVID-19. For single-label, multi-label, and fine-grained classification, our model achieves state-of-the-art performance, the classification accuracy has increased by a maximum of 6.69\%. The code is available in https://github.com/PerceptionComputingLab/MedFILIP.

Authors:Jinyuan Liu, Guanyao Wu, Zhu Liu, Di Wang, Zhiying Jiang, Long Ma, Wei Zhong, Xin Fan, Risheng Liu
Title: Infrared and Visible Image Fusion: From Data Compatibility to Task Adaption
Abstract:
Infrared-visible image fusion (IVIF) is a critical task in computer vision, aimed at integrating the unique features of both infrared and visible spectra into a unified representation. Since 2018, the field has entered the deep learning era, with an increasing variety of approaches introducing a range of networks and loss functions to enhance visual performance. However, challenges such as data compatibility, perception accuracy, and efficiency remain. Unfortunately, there is a lack of recent comprehensive surveys that address this rapidly expanding domain. This paper fills that gap by providing a thorough survey covering a broad range of topics. We introduce a multi-dimensional framework to elucidate common learning-based IVIF methods, from visual enhancement strategies to data compatibility and task adaptability. We also present a detailed analysis of these approaches, accompanied by a lookup table clarifying their core ideas. Furthermore, we summarize performance comparisons, both quantitatively and qualitatively, focusing on registration, fusion, and subsequent high-level tasks. Beyond technical analysis, we discuss potential future directions and open issues in this area. For further details, visit our GitHub repository: https://github.com/RollingPlain/IVIF_ZOO.

Authors:Yaniv Shulman
Title: Robust Local Polynomial Regression with Similarity Kernels
Abstract:
Local Polynomial Regression (LPR) is a widely used nonparametric method for modeling complex relationships due to its flexibility and simplicity. It estimates a regression function by fitting low-degree polynomials to localized subsets of the data, weighted by proximity. However, traditional LPR is sensitive to outliers and high-leverage points, which can significantly affect estimation accuracy. This paper revisits the kernel function used to compute regression weights and proposes a novel framework that incorporates both predictor and response variables in the weighting mechanism. The focus of this work is a conditional density kernel that robustly estimates weights by mitigating the influence of outliers through localized density estimation. A related joint density kernel is also discussed in an appendix. The proposed method is implemented in Python and is publicly available at https://github.com/yaniv-shulman/rsklpr, demonstrating competitive performance in synthetic benchmark experiments. Compared to standard LPR, the proposed approach consistently improves robustness and accuracy, especially in heteroscedastic and noisy environments, without requiring multiple iterations. This advancement provides a promising extension to traditional LPR, opening new possibilities for robust regression applications.

Authors:Weihang Zhang, Jihao Li, Shuoke Li, Ziqing Niu, Jialiang Chen, Wenkai Zhang
Title: A Resource-Efficient Training Framework for Remote Sensing Text--Image Retrieval
Abstract:
Remote sensing text--image retrieval (RSTIR) aims to retrieve the matched remote sensing (RS) images from the database according to the descriptive text. Recently, the rapid development of large visual-language pre-training models provides new insights for RSTIR. Nevertheless, as the complexity of models grows in RSTIR, the previous studies suffer from suboptimal resource efficiency during transfer learning. To address this issue, we propose a computation and memory-efficient retrieval (CMER) framework for RSTIR. To reduce the training memory consumption, we propose the Focus-Adapter module, which adopts a side branch structure. Its focus layer suppresses the interference of background pixels for small targets. Simultaneously, to enhance data efficacy, we regard the RS scene category as the metadata and design a concise augmentation technique. The scene label augmentation leverages the prior knowledge from land cover categories and shrinks the search space. We propose the negative sample recycling strategy to make the negative sample pool decoupled from the mini-batch size. It improves the generalization performance without introducing additional encoders. We have conducted quantitative and qualitative experiments on public datasets and expanded the benchmark with some advanced approaches, which demonstrates the competitiveness of the proposed CMER. Compared with the recent advanced methods, the overall retrieval performance of CMER is 2%--5% higher on RSITMD. Moreover, our proposed method reduces memory consumption by 49% and has a 1.4x data throughput during training. The code of the CMER and the dataset will be released at https://github.com/ZhangWeihang99/CMER.

Authors:Mehrad Mortazavi, David J. Cappelleri, Reza Ehsani
Title: RoMu4o: A Robotic Manipulation Unit For Orchard Operations Automating Proximal Hyperspectral Leaf Sensing
Abstract:
Driven by the need to address labor shortages and meet the demands of a rapidly growing population, robotic automation has become a critical component in precision agriculture. Leaf-level hyperspectral spectroscopy is shown to be a powerful tool for phenotyping, monitoring crop health, identifying essential nutrients within plants as well as detecting diseases and water stress. This work introduces RoMu4o, a robotic manipulation unit for orchard operations offering an automated solution for proximal hyperspectral leaf sensing. This ground robot is equipped with a 6DOF robotic arm and vision system for real-time deep learning-based image processing and motion planning. We developed robust perception and manipulation pipelines that enable the robot to successfully grasp target leaves and perform spectroscopy. These frameworks operate synergistically to identify and extract the 3D structure of leaves from an observed batch of foliage, propose 6D poses, and generate collision-free constraint-aware paths for precise leaf manipulation. The end-effector of the arm features a compact design that integrates an independent lighting source with a hyperspectral sensor, enabling high-fidelity data acquisition while streamlining the calibration process for accurate measurements. Our ground robot is engineered to operate in unstructured orchard environments. However, the performance of the system is evaluated in both indoor and outdoor plant models. The system demonstrated reliable performance for 1-LPB hyperspectral sampling, achieving 95% success rate in lab trials and 79% in field trials. Field experiments revealed an overall success rate of 70% for autonomous leaf grasping and hyperspectral measurement in a pistachio orchard. The open-source repository is available at: https://github.com/mehradmrt/UCM-AgBot-ROS2

Authors:Delin An, Pan Du, Pengfei Gu, Jian-Xun Wang, Chaoli Wang
Title: Hierarchical LoG Bayesian Neural Network for Enhanced Aorta Segmentation
Abstract:
Accurate segmentation of the aorta and its associated arch branches is crucial for diagnosing aortic diseases. While deep learning techniques have significantly improved aorta segmentation, they remain challenging due to the intricate multiscale structure and the complexity of the surrounding tissues. This paper presents a novel approach for enhancing aorta segmentation using a Bayesian neural network-based hierarchical Laplacian of Gaussian (LoG) model. Our model consists of a 3D U-Net stream and a hierarchical LoG stream: the former provides an initial aorta segmentation, and the latter enhances blood vessel detection across varying scales by learning suitable LoG kernels, enabling self-adaptive handling of different parts of the aorta vessels with significant scale differences. We employ a Bayesian method to parameterize the LoG stream and provide confidence intervals for the segmentation results, ensuring robustness and reliability of the prediction for vascular medical image analysts. Experimental results show that our model can accurately segment main and supra-aortic vessels, yielding at least a 3% gain in the Dice coefficient over state-of-the-art methods across multiple volumes drawn from two aorta datasets, and can provide reliable confidence intervals for different parts of the aorta. The code is available at https://github.com/adlsn/LoGBNet.

Authors:Ruixuan Zhang, Beichen Wang, Juexiao Zhang, Zilin Bian, Chen Feng, Kaan Ozbay
Title: When language and vision meet road safety: leveraging multimodal large language models for video-based traffic accident analysis
Abstract:
The increasing availability of traffic videos functioning on a 24/7/365 time scale has the great potential of increasing the spatio-temporal coverage of traffic accidents, which will help improve traffic safety. However, analyzing footage from hundreds, if not thousands, of traffic cameras in a 24/7/365 working protocol remains an extremely challenging task, as current vision-based approaches primarily focus on extracting raw information, such as vehicle trajectories or individual object detection, but require laborious post-processing to derive actionable insights. We propose SeeUnsafe, a new framework that integrates Multimodal Large Language Model (MLLM) agents to transform video-based traffic accident analysis from a traditional extraction-then-explanation workflow to a more interactive, conversational approach. This shift significantly enhances processing throughput by automating complex tasks like video classification and visual grounding, while improving adaptability by enabling seamless adjustments to diverse traffic scenarios and user-defined queries. Our framework employs a severity-based aggregation strategy to handle videos of various lengths and a novel multimodal prompt to generate structured responses for review and evaluation and enable fine-grained visual grounding. We introduce IMS (Information Matching Score), a new MLLM-based metric for aligning structured responses with ground truth. We conduct extensive experiments on the Toyota Woven Traffic Safety dataset, demonstrating that SeeUnsafe effectively performs accident-aware video classification and visual grounding by leveraging off-the-shelf MLLMs. Source code will be available at \url{https://github.com/ai4ce/SeeUnsafe}.

Authors:Andrey Risukhin, Kavel Rao, Ben Caffee, Alan Fan
Title: ColorGrid: A Multi-Agent Non-Stationary Environment for Goal Inference and Assistance
Abstract:
Autonomous agents' interactions with humans are increasingly focused on adapting to their changing preferences in order to improve assistance in real-world tasks. Effective agents must learn to accurately infer human goals, which are often hidden, to collaborate well. However, existing Multi-Agent Reinforcement Learning (MARL) environments lack the necessary attributes required to rigorously evaluate these agents' learning capabilities. To this end, we introduce ColorGrid, a novel MARL environment with customizable non-stationarity, asymmetry, and reward structure. We investigate the performance of Independent Proximal Policy Optimization (IPPO), a state-of-the-art (SOTA) MARL algorithm, in ColorGrid and find through extensive ablations that, particularly with simultaneous non-stationary and asymmetric goals between a ``leader'' agent representing a human and a ``follower'' assistant agent, ColorGrid is unsolved by IPPO. To support benchmarking future MARL algorithms, we release our environment code, model checkpoints, and trajectory visualizations at https://github.com/andreyrisukhin/ColorGrid.

Authors:Taehee Jeong
Title: 4bit-Quantization in Vector-Embedding for RAG
Abstract:
Retrieval-augmented generation (RAG) is a promising technique that has shown great potential in addressing some of the limitations of large language models (LLMs). LLMs have two major limitations: they can contain outdated information due to their training data, and they can generate factually inaccurate responses, a phenomenon known as hallucinations. RAG aims to mitigate these issues by leveraging a database of relevant documents, which are stored as embedding vectors in a high-dimensional space. However, one of the challenges of using high-dimensional embeddings is that they require a significant amount of memory to store. This can be a major issue, especially when dealing with large databases of documents. To alleviate this problem, we propose the use of 4-bit quantization to store the embedding vectors. This involves reducing the precision of the vectors from 32-bit floating-point numbers to 4-bit integers, which can significantly reduce the memory requirements. Our approach has several benefits. Firstly, it significantly reduces the memory storage requirements of the high-dimensional vector database, making it more feasible to deploy RAG systems in resource-constrained environments. Secondly, it speeds up the searching process, as the reduced precision of the vectors allows for faster computation. Our code is available at https://github.com/taeheej/4bit-Quantization-in-Vector-Embedding-for-RAG

Authors:Daniel Severo, Giuseppe Ottaviano, Matthew Muckley, Karen Ullrich, Matthijs Douze
Title: Lossless Compression of Vector IDs for Approximate Nearest Neighbor Search
Abstract:
Approximate nearest neighbor search for vectors relies on indexes that are most often accessed from RAM. Therefore, storage is the factor limiting the size of the database that can be served from a machine. Lossy vector compression, i.e., embedding quantization, has been applied extensively to reduce the size of indexes. However, for inverted file and graph-based indices, auxiliary data such as vector ids and links (edges) can represent most of the storage cost. We introduce and evaluate lossless compression schemes for these cases. These approaches are based on asymmetric numeral systems or wavelet trees that exploit the fact that the ordering of ids is irrelevant within the data structures. In some settings, we are able to compress the vector ids by a factor 7, with no impact on accuracy or search runtime. On billion-scale datasets, this results in a reduction of 30% of the index size. Furthermore, we show that for some datasets, these methods can also compress the quantized vector codes losslessly, by exploiting sub-optimalities in the original quantization algorithm. The source code for our approach available at https://github.com/facebookresearch/vector_db_id_compression.

Authors:Aitor Belenguer, Jose A. Pascual, Javier Navaridas
Title: GLow -- A Novel, Flower-Based Simulated Gossip Learning Strategy
Abstract:
Fully decentralized learning algorithms are still in an early stage of development. Creating modular Gossip Learning strategies is not trivial due to convergence challenges and Byzantine faults intrinsic in systems of decentralized nature. Our contribution provides a novel means to simulate custom Gossip Learning systems by leveraging the state-of-the-art Flower Framework. Specifically, we introduce GLow, which will allow researchers to train and assess scalability and convergence of devices, across custom network topologies, before making a physical deployment. The Flower Framework is selected for being a simulation featured library with a very active community on Federated Learning research. However, Flower exclusively includes vanilla Federated Learning strategies and, thus, is not originally designed to perform simulations without a centralized authority. GLow is presented to fill this gap and make simulation of Gossip Learning systems possible. Results achieved by GLow in the MNIST and CIFAR10 datasets, show accuracies over 0.98 and 0.75 respectively. More importantly, GLow performs similarly in terms of accuracy and convergence to its analogous Centralized and Federated approaches in all designed experiments.

Authors:Xiaolu Hou, Mingcheng Li, Dingkang Yang, Jiawei Chen, Ziyun Qian, Xiao Zhao, Yue Jiang, Jinjie Wei, Qingyao Xu, Lihua Zhang
Title: BloomScene: Lightweight Structured 3D Gaussian Splatting for Crossmodal Scene Generation
Abstract:
With the widespread use of virtual reality applications, 3D scene generation has become a new challenging research frontier. 3D scenes have highly complex structures and need to ensure that the output is dense, coherent, and contains all necessary structures. Many current 3D scene generation methods rely on pre-trained text-to-image diffusion models and monocular depth estimators. However, the generated scenes occupy large amounts of storage space and often lack effective regularisation methods, leading to geometric distortions. To this end, we propose BloomScene, a lightweight structured 3D Gaussian splatting for crossmodal scene generation, which creates diverse and high-quality 3D scenes from text or image inputs. Specifically, a crossmodal progressive scene generation framework is proposed to generate coherent scenes utilizing incremental point cloud reconstruction and 3D Gaussian splatting. Additionally, we propose a hierarchical depth prior-based regularization mechanism that utilizes multi-level constraints on depth accuracy and smoothness to enhance the realism and continuity of the generated scenes. Ultimately, we propose a structured context-guided compression mechanism that exploits structured hash grids to model the context of unorganized anchor attributes, which significantly eliminates structural redundancy and reduces storage overhead. Comprehensive experiments across multiple scenes demonstrate the significant potential and advantages of our framework compared with several baselines.

Authors:Emre Tasar
Title: Quantum-Enhanced Conformal Methods for Multi-Output Uncertainty: A Holistic Exploration and Experimental Analysis
Abstract:
In this paper, we propose a unified approach to harness quantum conformal methods for multi-output distributions, with a particular emphasis on two experimental paradigms: (i) a standard 2-qubit circuit scenario producing a four-dimensional outcome distribution, and (ii) a multi-basis measurement setting that concatenates measurement probabilities in different bases (Z, X, Y) into a twelve-dimensional output space. By combining a multioutput regression model (e.g., random forests) with distributional conformal prediction, we validate coverage and interval-set sizes on both simulated quantum data and multi-basis measurement data. Our results confirm that classical conformal prediction can effectively provide coverage guarantees even when the target probabilities derive from inherently quantum processes. Such synergy opens the door to next-generation quantum-classical hybrid frameworks, providing both improved interpretability and rigorous coverage for quantum machine learning tasks. All codes and full reproducible Colab notebooks are made available at https://github.com/detasar/QECMMOU.

Authors:Kartik Narayan, Vibashan VS, Vishal M. Patel
Title: FaceXBench: Evaluating Multimodal LLMs on Face Understanding
Abstract:
Multimodal Large Language Models (MLLMs) demonstrate impressive problem-solving abilities across a wide range of tasks and domains. However, their capacity for face understanding has not been systematically studied. To address this gap, we introduce FaceXBench, a comprehensive benchmark designed to evaluate MLLMs on complex face understanding tasks. FaceXBench includes 5,000 multimodal multiple-choice questions derived from 25 public datasets and a newly created dataset, FaceXAPI. These questions cover 14 tasks across 6 broad categories, assessing MLLMs' face understanding abilities in bias and fairness, face authentication, recognition, analysis, localization and tool retrieval. Using FaceXBench, we conduct an extensive evaluation of 26 open-source MLLMs alongside 2 proprietary models, revealing the unique challenges in complex face understanding tasks. We analyze the models across three evaluation settings: zero-shot, in-context task description, and chain-of-thought prompting. Our detailed analysis reveals that current MLLMs, including advanced models like GPT-4o, and GeminiPro 1.5, show significant room for improvement. We believe FaceXBench will be a crucial resource for developing MLLMs equipped to perform sophisticated face understanding. Code: https://github.com/Kartik-3004/facexbench

Authors:Weibo Gao, Qi Liu, Linan Yue, Fangzhou Yao, Rui Lv, Zheng Zhang, Hao Wang, Zhenya Huang
Title: Agent4Edu: Generating Learner Response Data by Generative Agents for Intelligent Education Systems
Abstract:
Personalized learning represents a promising educational strategy within intelligent educational systems, aiming to enhance learners' practice efficiency. However, the discrepancy between offline metrics and online performance significantly impedes their progress. To address this challenge, we introduce Agent4Edu, a novel personalized learning simulator leveraging recent advancements in human intelligence through large language models (LLMs). Agent4Edu features LLM-powered generative agents equipped with learner profile, memory, and action modules tailored to personalized learning algorithms. The learner profiles are initialized using real-world response data, capturing practice styles and cognitive factors. Inspired by human psychology theory, the memory module records practice facts and high-level summaries, integrating reflection mechanisms. The action module supports various behaviors, including exercise understanding, analysis, and response generation. Each agent can interact with personalized learning algorithms, such as computerized adaptive testing, enabling a multifaceted evaluation and enhancement of customized services. Through a comprehensive assessment, we explore the strengths and weaknesses of Agent4Edu, emphasizing the consistency and discrepancies in responses between agents and human learners. The code, data, and appendix are publicly available at https://github.com/bigdata-ustc/Agent4Edu.

Authors:Xi Yang, Haoyuan Shi, Zihan Wang, Nannan Wang, Xinbo Gao
Title: CSHNet: A Novel Information Asymmetric Image Translation Method
Abstract:
Despite advancements in cross-domain image translation, challenges persist in asymmetric tasks such as SAR-to-Optical and Sketch-to-Instance conversions, which involve transforming data from a less detailed domain into one with richer content. Traditional CNN-based methods are effective at capturing fine details but struggle with global structure, leading to unwanted merging of image regions. To address this, we propose the CNN-Swin Hybrid Network (CSHNet), which combines two key modules: Swin Embedded CNN (SEC) and CNN Embedded Swin (CES), forming the SEC-CES-Bottleneck (SCB). SEC leverages CNN's detailed feature extraction while integrating the Swin Transformer's structural bias. CES, in turn, preserves the Swin Transformer's global integrity, compensating for CNN's lack of focus on structure. Additionally, CSHNet includes two components designed to enhance cross-domain information retention: the Interactive Guided Connection (IGC), which enables dynamic information exchange between SEC and CES, and Adaptive Edge Perception Loss (AEPL), which maintains structural boundaries during translation. Experimental results show that CSHNet outperforms existing methods in both visual quality and performance metrics across scene-level and instance-level datasets. Our code is available at: https://github.com/XduShi/CSHNet.

Authors:Kazuma Onishi, Katsuhiko Hayashi
Title: A Simple but Effective Closed-form Solution for Extreme Multi-label Learning
Abstract:
Extreme multi-label learning (XML) is a task of assigning multiple labels from an extremely large set of labels to each data instance. Many current high-performance XML models are composed of a lot of hyperparameters, which complicates the tuning process. Additionally, the models themselves are adapted specifically to XML, which complicates their reimplementation. To remedy this problem, we propose a simple method based on ridge regression for XML. The proposed method not only has a closed-form solution but also is composed of a single hyperparameter. Since there are no precedents on applying ridge regression to XML, this paper verified the performance of the method by using various XML benchmark datasets. Furthermore, we enhanced the prediction of low-frequency labels in XML, which hold informative content. This prediction is essential yet challenging because of the limited amount of data. Here, we employed a simple frequency-based weighting. This approach greatly simplifies the process compared with existing techniques. Experimental results revealed that it can achieve levels of performance comparable to, or even exceeding, those of models with numerous hyperparameters. Additionally, we found that the frequency-based weighting significantly improved the predictive performance for low-frequency labels, while requiring almost no changes in implementation. The source code for the proposed method is available on github at https://github.com/cars1015/XML-ridge.

Authors:Mengran Li, Junzhou Chen, Chenyun Yu, Guanying Jiang, Ronghui Zhang, Yanming Shen, Houbing Herbert Song
Title: Topology-Driven Attribute Recovery for Attribute Missing Graph Learning in Social Internet of Things
Abstract:
With the advancement of information technology, the Social Internet of Things (SIoT) has fostered the integration of physical devices and social networks, deepening the study of complex interaction patterns. Text Attribute Graphs (TAGs) capture both topological structures and semantic attributes, enhancing the analysis of complex interactions within the SIoT. However, existing graph learning methods are typically designed for complete attributed graphs, and the common issue of missing attributes in Attribute Missing Graphs (AMGs) increases the difficulty of analysis tasks. To address this, we propose the Topology-Driven Attribute Recovery (TDAR) framework, which leverages topological data for AMG learning. TDAR introduces an improved pre-filling method for initial attribute recovery using native graph topology. Additionally, it dynamically adjusts propagation weights and incorporates homogeneity strategies within the embedding space to suit AMGs' unique topological structures, effectively reducing noise during information propagation. Extensive experiments on public datasets demonstrate that TDAR significantly outperforms state-of-the-art methods in attribute reconstruction and downstream tasks, offering a robust solution to the challenges posed by AMGs. The code is available at https://github.com/limengran98/TDAR.

Authors:Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, Jie Tang
Title: ComplexFuncBench: Exploring Multi-Step and Constrained Function Calling under Long-Context Scenario
Abstract:
Enhancing large language models (LLMs) with real-time APIs can help generate more accurate and up-to-date responses. However, evaluating the function calling abilities of LLMs in real-world scenarios remains under-explored due to the complexity of data collection and evaluation. In this work, we introduce ComplexFuncBench, a benchmark for complex function calling across five real-world scenarios. Compared to existing benchmarks, ComplexFuncBench encompasses multi-step and constrained function calling, which requires long-parameter filing, parameter value reasoning, and 128k long context. Additionally, we propose an automatic framework, ComplexEval, for quantitatively evaluating complex function calling tasks. Through comprehensive experiments, we demonstrate the deficiencies of state-of-the-art LLMs in function calling and suggest future directions for optimizing these capabilities. The data and code are available at \url{https://github.com/THUDM/ComplexFuncBench}.

Authors:Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, Weinan E
Title: PaSa: An LLM Agent for Comprehensive Academic Paper Search
Abstract:
We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholar queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4o for paraphrased queries, ChatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50, and exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision. Model, datasets, and code are available at https://github.com/bytedance/pasa.

Authors:Jinliang Zheng, Jianxiong Li, Dongxiu Liu, Yinan Zheng, Zhihao Wang, Zhonghong Ou, Yu Liu, Jingjing Liu, Ya-Qin Zhang, Xianyuan Zhan
Title: Universal Actions for Enhanced Embodied Foundation Models
Abstract:
Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct

Authors:Michael Schwingshackl, Fabio Francisco Oberweger, Markus Murschitz
Title: Few-shot Structure-Informed Machinery Part Segmentation with Foundation Models and Graph Neural Networks
Abstract:
This paper proposes a novel approach to few-shot semantic segmentation for machinery with multiple parts that exhibit spatial and hierarchical relationships. Our method integrates the foundation models CLIPSeg and Segment Anything Model (SAM) with the interest point detector SuperPoint and a graph convolutional network (GCN) to accurately segment machinery parts. By providing 1 to 25 annotated samples, our model, evaluated on a purely synthetic dataset depicting a truck-mounted loading crane, achieves effective segmentation across various levels of detail. Training times are kept under five minutes on consumer GPUs. The model demonstrates robust generalization to real data, achieving a qualitative synthetic-to-real generalization with a $J\&F$ score of 92.2 on real data using 10 synthetic support samples. When benchmarked on the DAVIS 2017 dataset, it achieves a $J\&F$ score of 71.5 in semi-supervised video segmentation with three support samples. This method's fast training times and effective generalization to real data make it a valuable tool for autonomous systems interacting with machinery and infrastructure, and illustrate the potential of combined and orchestrated foundation models for few-shot segmentation tasks.

Authors:Ali Can Karaca, M. Enes Ozelbas, Saadettin Berber, Orkhan Karimli, Turabi Yildirim, M. Fatih Amasyali
Title: Robust Change Captioning in Remote Sensing: SECOND-CC Dataset and MModalCC Framework
Abstract:
Remote sensing change captioning (RSICC) aims to describe changes between bitemporal images in natural language. Existing methods often fail under challenges like illumination differences, viewpoint changes, blur effects, leading to inaccuracies, especially in no-change regions. Moreover, the images acquired at different spatial resolutions and have registration errors tend to affect the captions. To address these issues, we introduce SECOND-CC, a novel RSICC dataset featuring high-resolution RGB image pairs, semantic segmentation maps, and diverse real-world scenarios. SECOND-CC which contains 6,041 pairs of bitemporal RS images and 30,205 sentences describing the differences between images. Additionally, we propose MModalCC, a multimodal framework that integrates semantic and visual data using advanced attention mechanisms, including Cross-Modal Cross Attention (CMCA) and Multimodal Gated Cross Attention (MGCA). Detailed ablation studies and attention visualizations further demonstrate its effectiveness and ability to address RSICC challenges. Comprehensive experiments show that MModalCC outperforms state-of-the-art RSICC methods, including RSICCformer, Chg2Cap, and PSNet with +4.6% improvement on BLEU4 score and +9.6% improvement on CIDEr score. We will make our dataset and codebase publicly available to facilitate future research at https://github.com/ChangeCapsInRS/SecondCC

Authors:Xinzhe Li
Title: A Survey on LLM Test-Time Compute via Search: Tasks, LLM Profiling, Search Algorithms, and Relevant Frameworks
Abstract:
LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects: task definition, LLM profiling, and search procedures, making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. This survey aims to provide a comprehensive but integrated technical review on existing LIS frameworks. Specifically, we unify task definitions under Markov Decision Process (MDP) and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. For ongoing paper updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Search.

Authors:Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Title: FiLo++: Zero-/Few-Shot Anomaly Detection by Fused Fine-Grained Descriptions and Deformable Localization
Abstract:
Anomaly detection methods typically require extensive normal samples from the target class for training, limiting their applicability in scenarios that require rapid adaptation, such as cold start. Zero-shot and few-shot anomaly detection do not require labeled samples from the target class in advance, making them a promising research direction. Existing zero-shot and few-shot approaches often leverage powerful multimodal models to detect and localize anomalies by comparing image-text similarity. However, their handcrafted generic descriptions fail to capture the diverse range of anomalies that may emerge in different objects, and simple patch-level image-text matching often struggles to localize anomalous regions of varying shapes and sizes. To address these issues, this paper proposes the FiLo++ method, which consists of two key components. The first component, Fused Fine-Grained Descriptions (FusDes), utilizes large language models to generate anomaly descriptions for each object category, combines both fixed and learnable prompt templates and applies a runtime prompt filtering method, producing more accurate and task-specific textual descriptions. The second component, Deformable Localization (DefLoc), integrates the vision foundation model Grounding DINO with position-enhanced text descriptions and a Multi-scale Deformable Cross-modal Interaction (MDCI) module, enabling accurate localization of anomalies with various shapes and sizes. In addition, we design a position-enhanced patch matching approach to improve few-shot anomaly detection performance. Experiments on multiple datasets demonstrate that FiLo++ achieves significant performance improvements compared with existing methods. Code will be available at https://github.com/CASIA-IVA-Lab/FiLo.

Authors:Shengkui Zhao, Zexu Pan, Kun Zhou, Yukun Ma, Chong Zhang, Bin Ma
Title: Conditional Latent Diffusion-Based Speech Enhancement Via Dual Context Learning
Abstract:
Recently, the application of diffusion probabilistic models has advanced speech enhancement through generative approaches. However, existing diffusion-based methods have focused on the generation process in high-dimensional waveform or spectral domains, leading to increased generation complexity and slower inference speeds. Additionally, these methods have primarily modelled clean speech distributions, with limited exploration of noise distributions, thereby constraining the discriminative capability of diffusion models for speech enhancement. To address these issues, we propose a novel approach that integrates a conditional latent diffusion model (cLDM) with dual-context learning (DCL). Our method utilizes a variational autoencoder (VAE) to compress mel-spectrograms into a low-dimensional latent space. We then apply cLDM to transform the latent representations of both clean speech and background noise into Gaussian noise by the DCL process, and a parameterized model is trained to reverse this process, conditioned on noisy latent representations and text embeddings. By operating in a lower-dimensional space, the latent representations reduce the complexity of the generation process, while the DCL process enhances the model's ability to handle diverse and unseen noise environments. Our experiments demonstrate the strong performance of the proposed approach compared to existing diffusion-based methods, even with fewer iterative steps, and highlight the superior generalization capability of our models to out-of-domain noise datasets (https://github.com/modelscope/ClearerVoice-Studio).

Authors:Shengkui Zhao, Kun Zhou, Zexu Pan, Yukun Ma, Chong Zhang, Bin Ma
Title: HiFi-SR: A Unified Generative Transformer-Convolutional Adversarial Network for High-Fidelity Speech Super-Resolution
Abstract:
The application of generative adversarial networks (GANs) has recently advanced speech super-resolution (SR) based on intermediate representations like mel-spectrograms. However, existing SR methods that typically rely on independently trained and concatenated networks may lead to inconsistent representations and poor speech quality, especially in out-of-domain scenarios. In this work, we propose HiFi-SR, a unified network that leverages end-to-end adversarial training to achieve high-fidelity speech super-resolution. Our model features a unified transformer-convolutional generator designed to seamlessly handle both the prediction of latent representations and their conversion into time-domain waveforms. The transformer network serves as a powerful encoder, converting low-resolution mel-spectrograms into latent space representations, while the convolutional network upscales these representations into high-resolution waveforms. To enhance high-frequency fidelity, we incorporate a multi-band, multi-scale time-frequency discriminator, along with a multi-scale mel-reconstruction loss in the adversarial training process. HiFi-SR is versatile, capable of upscaling any input speech signal between 4 kHz and 32 kHz to a 48 kHz sampling rate. Experimental results demonstrate that HiFi-SR significantly outperforms existing speech SR methods across both objective metrics and ABX preference tests, for both in-domain and out-of-domain scenarios (https://github.com/modelscope/ClearerVoice-Studio).

Authors:Victor Barbier, Eric Jeangirard
Title: Mapping scientific communities at scale
Abstract:
This study introduces a novel methodology for mapping scientific communities at scale, addressing challenges associated with network analysis in large bibliometric datasets. By leveraging enriched publication metadata from the French research portal scanR and applying advanced filtering techniques to prioritize the strongest interactions between entities, we construct detailed, scalable network maps. These maps are enhanced through systematic disambiguation of authors, affiliations, and topics using persistent identifiers and specialized algorithms. The proposed framework integrates Elasticsearch for efficient data aggregation, Graphology for network spatialization (Force Atltas2) and community detection (Louvain algorithm) and VOSviewer for network vizualization. A Large Language Model (Mistral Nemo) is used to label the communities detected and OpenAlex data helps to enrich the results with citation counts estimation to detect hot topics. This scalable approach enables insightful exploration of research collaborations and thematic structures, with potential applications for strategic decision-making in science policy and funding. These web tools are effective at the global (national) scale but are also available (and can be integrated via iframes) on the perimeter of any French research institution (from large research organisms to any laboratory). The scanR community analysis tool is available online [https://scanr.enseignementsup-recherche.gouv.fr/networks/get-started](https://scanr.enseignementsup-recherche.gouv.fr/networks/get-started). All tools and methodologies are open-source on the repo [https://github.com/dataesr/scanr-ui](https://github.com/dataesr/scanr-ui)

Authors:Di Chang, Hongyi Xu, You Xie, Yipeng Gao, Zhengfei Kuang, Shengqu Cai, Chenxu Zhang, Guoxian Song, Chao Wang, Yichun Shi, Zeyuan Chen, Shijie Zhou, Linjie Luo, Gordon Wetzstein, Mohammad Soleymani
Title: X-Dyna: Expressive Dynamic Human Image Animation
Abstract:
We introduce X-Dyna, a novel zero-shot, diffusion-based pipeline for animating a single human image using facial expressions and body movements derived from a driving video, that generates realistic, context-aware dynamics for both the subject and the surrounding environment. Building on prior approaches centered on human pose control, X-Dyna addresses key shortcomings causing the loss of dynamic details, enhancing the lifelike qualities of human video animations. At the core of our approach is the Dynamics-Adapter, a lightweight module that effectively integrates reference appearance context into the spatial attentions of the diffusion backbone while preserving the capacity of motion modules in synthesizing fluid and intricate dynamic details. Beyond body pose control, we connect a local control module with our model to capture identity-disentangled facial expressions, facilitating accurate expression transfer for enhanced realism in animated scenes. Together, these components form a unified framework capable of learning physical human motion and natural scene dynamics from a diverse blend of human and scene videos. Comprehensive qualitative and quantitative evaluations demonstrate that X-Dyna outperforms state-of-the-art methods, creating highly lifelike and expressive animations. The code is available at https://github.com/bytedance/X-Dyna.

Authors:Xigui Li, Yuanye Zhou, Feiyang Xiao, Xin Guo, Yichi Zhang, Chen Jiang, Jianchao Ge, Xiansheng Wang, Qimeng Wang, Taiwei Zhang, Chensen Lin, Yuan Cheng, Yuan Qi
Title: Aneumo: A Large-Scale Comprehensive Synthetic Dataset of Aneurysm Hemodynamics
Abstract:
Intracranial aneurysm (IA) is a common cerebrovascular disease that is usually asymptomatic but may cause severe subarachnoid hemorrhage (SAH) if ruptured. Although clinical practice is usually based on individual factors and morphological features of the aneurysm, its pathophysiology and hemodynamic mechanisms remain controversial. To address the limitations of current research, this study constructed a comprehensive hemodynamic dataset of intracranial aneurysms. The dataset is based on 466 real aneurysm models, and 10,000 synthetic models were generated by resection and deformation operations, including 466 aneurysm-free models and 9,534 deformed aneurysm models. The dataset also provides medical image-like segmentation mask files to support insightful analysis. In addition, the dataset contains hemodynamic data measured at eight steady-state flow rates (0.001 to 0.004 kg/s), including critical parameters such as flow velocity, pressure, and wall shear stress, providing a valuable resource for investigating aneurysm pathogenesis and clinical prediction. This dataset will help advance the understanding of the pathologic features and hemodynamic mechanisms of intracranial aneurysms and support in-depth research in related fields. Dataset hosted at https://github.com/Xigui-Li/Aneumo.

Authors:Changze Lv, Jingwen Xu, Yiyang Lu, Xiaohua Wang, Zhenghua Wang, Zhibo Xu, Di Yu, Xin Du, Xiaoqing Zheng, Xuanjing Huang
Title: Dendritic Localized Learning: Toward Biologically Plausible Algorithm
Abstract:
Backpropagation is the foundational algorithm for training neural networks and a key driver of deep learning's success. However, its biological plausibility has been challenged due to three primary limitations: weight symmetry, reliance on global error signals, and the dual-phase nature of training, as highlighted by the existing literature. Although various alternative learning approaches have been proposed to address these issues, most either fail to satisfy all three criteria simultaneously or yield suboptimal results. Inspired by the dynamics and plasticity of pyramidal neurons, we propose Dendritic Localized Learning (DLL), a novel learning algorithm designed to overcome these challenges. Extensive empirical experiments demonstrate that DLL satisfies all three criteria of biological plausibility while achieving state-of-the-art performance among algorithms that meet these requirements. Furthermore, DLL exhibits strong generalization across a range of architectures, including MLPs, CNNs, and RNNs. These results, benchmarked against existing biologically plausible learning algorithms, offer valuable empirical insights for future research. We hope this study can inspire the development of new biologically plausible algorithms for training multilayer networks and advancing progress in both neuroscience and machine learning. Our code is available at https://github.com/Lvchangze/Dendritic-Localized-Learning.

Authors:J. Pablo Muñoz, Jinjie Yuan, Nilesh Jain
Title: MultiPruner: Balanced Structure Removal in Foundation Models
Abstract:
Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.

Authors:Xiaoyun Zheng, Liwei Liao, Jianbo Jiao, Feng Gao, Ronggang Wang
Title: Surface-SOS: Self-Supervised Object Segmentation via Neural Surface Representation
Abstract:
Self-supervised Object Segmentation (SOS) aims to segment objects without any annotations. Under conditions of multi-camera inputs, the structural, textural and geometrical consistency among each view can be leveraged to achieve fine-grained object segmentation. To make better use of the above information, we propose Surface representation based Self-supervised Object Segmentation (Surface-SOS), a new framework to segment objects for each view by 3D surface representation from multi-view images of a scene. To model high-quality geometry surfaces for complex scenes, we design a novel scene representation scheme, which decomposes the scene into two complementary neural representation modules respectively with a Signed Distance Function (SDF). Moreover, Surface-SOS is able to refine single-view segmentation with multi-view unlabeled images, by introducing coarse segmentation masks as additional input. To the best of our knowledge, Surface-SOS is the first self-supervised approach that leverages neural surface representation to break the dependence on large amounts of annotated data and strong constraints. These constraints typically involve observing target objects against a static background or relying on temporal supervision in videos. Extensive experiments on standard benchmarks including LLFF, CO3D, BlendedMVS, TUM and several real-world scenes show that Surface-SOS always yields finer object masks than its NeRF-based counterparts and surpasses supervised single-view baselines remarkably. Code is available at: https://github.com/zhengxyun/Surface-SOS.

Authors:Fausto German, Brian Keith, Mauricio Matus, Diego Urrutia, Claudio Meneses
Title: Semi-Supervised Image-Based Narrative Extraction: A Case Study with Historical Photographic Records
Abstract:
This paper presents a semi-supervised approach to extracting narratives from historical photographic records using an adaptation of the narrative maps algorithm. We extend the original unsupervised text-based method to work with image data, leveraging deep learning techniques for visual feature extraction and similarity computation. Our method is applied to the ROGER dataset, a collection of photographs from the 1928 Sacambaya Expedition in Bolivia captured by Robert Gerstmann. We compare our algorithmically extracted visual narratives with expert-curated timelines of varying lengths (5 to 30 images) to evaluate the effectiveness of our approach. In particular, we use the Dynamic Time Warping (DTW) algorithm to match the extracted narratives with the expert-curated baseline. In addition, we asked an expert on the topic to qualitatively evaluate a representative example of the resulting narratives. Our findings show that the narrative maps approach generally outperforms random sampling for longer timelines (10+ images, p < 0.05), with expert evaluation confirming the historical accuracy and coherence of the extracted narratives. This research contributes to the field of computational analysis of visual cultural heritage, offering new tools for historians, archivists, and digital humanities scholars to explore and understand large-scale image collections. The method's ability to generate meaningful narratives from visual data opens up new possibilities for the study and interpretation of historical events through photographic evidence.

Authors:Jingchen Sun, Shaobo Han, Wataru Kohno, Changyou Chen
Title: CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition
Abstract:
Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber-optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiber-optic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory-recorded fiber-optic ESC-50 datasets and a real-world fiber-optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks. The code and gunshot-firework dataset are available at https://github.com/Jingchensun/clap-s.

Authors:Wanqi Yin, Zhongang Cai, Ruisi Wang, Ailing Zeng, Chen Wei, Qingping Sun, Haiyi Mei, Yanjun Wang, Hui En Pang, Mingyuan Zhang, Lei Zhang, Chen Change Loy, Atsushi Yamashita, Lei Yang, Ziwei Liu
Title: SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation
Abstract:
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods focus on training innovative architectural designs on confined datasets. In this work, we investigate the impact of scaling up EHPS towards a family of generalist foundation models. 1) For data scaling, we perform a systematic investigation on 40 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. Ultimately, we achieve diminishing returns at 10M training instances from diverse data sources. 2) For model scaling, we take advantage of vision transformers (up to ViT-Huge as the backbone) to study the scaling law of model sizes in EHPS. To exclude the influence of algorithmic design, we base our experiments on two minimalist architectures: SMPLer-X, which consists of an intermediate step for hand and face localization, and SMPLest-X, an even simpler version that reduces the network to its bare essentials and highlights significant advances in the capture of articulated hands. With big data and the large model, the foundation models exhibit strong performance across diverse test benchmarks and excellent transferability to even unseen environments. Moreover, our finetuning strategy turns the generalist into specialist models, allowing them to achieve further performance boosts. Notably, our foundation models consistently deliver state-of-the-art results on seven benchmarks such as AGORA, UBody, EgoBody, and our proposed SynHand dataset for comprehensive hand evaluation. (Code is available at: https://github.com/wqyin/SMPLest-X).

Authors:Zilyu Ji, Yuntian Shen, Jionghao Lin, Kenneth R. Koedinger
Title: Enhancing the De-identification of Personally Identifiable Information in Educational Data
Abstract:
Protecting Personally Identifiable Information (PII), such as names, is a critical requirement in learning technologies to safeguard student and teacher privacy and maintain trust. Accurate PII detection is an essential step toward anonymizing sensitive information while preserving the utility of educational data. Motivated by recent advancements in artificial intelligence, our study investigates the GPT-4o-mini model as a cost-effective and efficient solution for PII detection tasks. We explore both prompting and fine-tuning approaches and compare GPT-4o-mini's performance against established frameworks, including Microsoft Presidio and Azure AI Language. Our evaluation on two public datasets, CRAPII and TSCC, demonstrates that the fine-tuned GPT-4o-mini model achieves superior performance, with a recall of 0.9589 on CRAPII. Additionally, fine-tuned GPT-4o-mini significantly improves precision scores (a threefold increase) while reducing computational costs to nearly one-tenth of those associated with Azure AI Language. Furthermore, our bias analysis reveals that the fine-tuned GPT-4o-mini model consistently delivers accurate results across diverse cultural backgrounds and genders. The generalizability analysis using the TSCC dataset further highlights its robustness, achieving a recall of 0.9895 with minimal additional training data from TSCC. These results emphasize the potential of fine-tuned GPT-4o-mini as an accurate and cost-effective tool for PII detection in educational data. It offers robust privacy protection while preserving the data's utility for research and pedagogical analysis. Our code is available on GitHub: https://github.com/AnonJD/PrivacyAI

Authors:Yuexi Du, Jiazhen Zhang, Tal Zeevi, Nicha C. Dvornek, John A. Onofrey
Title: SRE-Conv: Symmetric Rotation Equivariant Convolution for Biomedical Image Classification
Abstract:
Convolutional neural networks (CNNs) are essential tools for computer vision tasks, but they lack traditionally desired properties of extracted features that could further improve model performance, e.g., rotational equivariance. Such properties are ubiquitous in biomedical images, which often lack explicit orientation. While current work largely relies on data augmentation or explicit modules to capture orientation information, this comes at the expense of increased training costs or ineffective approximations of the desired equivariance. To overcome these challenges, we propose a novel and efficient implementation of the Symmetric Rotation-Equivariant (SRE) Convolution (SRE-Conv) kernel, designed to learn rotation-invariant features while simultaneously compressing the model size. The SRE-Conv kernel can easily be incorporated into any CNN backbone. We validate the ability of a deep SRE-CNN to capture equivariance to rotation using the public MedMNISTv2 dataset (16 total tasks). SRE-Conv-CNN demonstrated improved rotated image classification performance accuracy on all 16 test datasets in both 2D and 3D images, all while increasing efficiency with fewer parameters and reduced memory footprint. The code is available at https://github.com/XYPB/SRE-Conv.

Authors:Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Runnan Fang, Jiang Yong, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang
Title: OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking
Abstract:
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.

Authors:Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Runnan Fang, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang
Title: OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking
Abstract:
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.

Authors:Qingyun Li, Yushi Chen, Xinya Shu, Dong Chen, Xin He, Yi Yu, Xue Yang
Title: A Simple Aerial Detection Baseline of Multimodal Language Models
Abstract:
The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.

Authors:Juan C. Benito, Daniel Feijoo, Alvaro Garcia, Marcos V. Conde
Title: FLOL: Fast Baselines for Real-World Low-Light Enhancement
Abstract:
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the image signal processing literature. However, current deep learning-based solutions struggle with efficiency and robustness in real-world scenarios (e.g. scenes with noise, saturated pixels, bad illumination). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our method, FLOL+, is one of the fastest models for this task, achieving state-of-the-art results on popular real scenes datasets such as LOL and LSRW. Moreover, we are able to process 1080p images under 12ms. Code and models at https://github.com/cidautai/FLOL

Authors:Hongbo Zhao, Fei Zhu, Bolin Ni, Feng Zhu, Gaofeng Meng, Zhaoxiang Zhang
Title: Practical Continual Forgetting for Pre-trained Vision Models
Abstract:
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.

Authors:Zhihe Yang, Xufang Luo, Dongqi Han, Yunjian Xu, Dongsheng Li
Title: Mitigating Hallucinations in Large Vision-Language Models via DPO: On-Policy Data Hold the Key
Abstract:
Hallucination remains a major challenge for Large Vision-Language Models (LVLMs). Direct Preference Optimization (DPO) has gained increasing attention as a simple solution to hallucination issues. It directly learns from constructed preference pairs that reflect the severity of hallucinations in responses to the same prompt and image. Nonetheless, different data construction methods in existing works bring notable performance variations. We identify a crucial factor here: outcomes are largely contingent on whether the constructed data aligns on-policy w.r.t the initial (reference) policy of DPO. Theoretical analysis suggests that learning from off-policy data is impeded by the presence of KL-divergence between the updated policy and the reference policy. From the perspective of dataset distribution, we systematically summarize the inherent flaws in existing algorithms that employ DPO to address hallucination issues. To alleviate the problems, we propose On-Policy Alignment (OPA)-DPO framework, which uniquely leverages expert feedback to correct hallucinated responses and aligns both the original and expert-revised responses in an on-policy manner. Notably, with only 4.8k data, OPA-DPO achieves an additional reduction in the hallucination rate of LLaVA-1.5-7B: 13.26% on the AMBER benchmark and 5.39% on the Object-Hal benchmark, compared to the previous SOTA algorithm trained with 16k samples. Our implementation is available at https://github.com/zhyang2226/OPA-DPO.

Authors:Masatoshi Uehara, Yulai Zhao, Chenyu Wang, Xiner Li, Aviv Regev, Sergey Levine, Tommaso Biancalani
Title: Inference-Time Alignment in Diffusion Models with Reward-Guided Generation: Tutorial and Review
Abstract:
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models. While diffusion models are renowned for their generative modeling capabilities, practical applications in fields such as biology often require sample generation that maximizes specific metrics (e.g., stability, affinity in proteins, closeness to target structures). In these scenarios, diffusion models can be adapted not only to generate realistic samples but also to explicitly maximize desired measures at inference time without fine-tuning. This tutorial explores the foundational aspects of such inference-time algorithms. We review these methods from a unified perspective, demonstrating that current techniques -- such as Sequential Monte Carlo (SMC)-based guidance, value-based sampling, and classifier guidance -- aim to approximate soft optimal denoising processes (a.k.a. policies in RL) that combine pre-trained denoising processes with value functions serving as look-ahead functions that predict from intermediate states to terminal rewards. Within this framework, we present several novel algorithms not yet covered in the literature. Furthermore, we discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, which have received limited attention in current research, and (3) connections between inference-time algorithms in language models and diffusion models. The code of this tutorial on protein design is available at https://github.com/masa-ue/AlignInversePro

Authors:Tingxuan Chen, Kun Yuan, Vinkle Srivastav, Nassir Navab, Nicolas Padoy
Title: Text-driven Adaptation of Foundation Models for Few-shot Surgical Workflow Analysis
Abstract:
Purpose: Surgical workflow analysis is crucial for improving surgical efficiency and safety. However, previous studies rely heavily on large-scale annotated datasets, posing challenges in cost, scalability, and reliance on expert annotations. To address this, we propose Surg-FTDA (Few-shot Text-driven Adaptation), designed to handle various surgical workflow analysis tasks with minimal paired image-label data. Methods: Our approach has two key components. First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task, bridging the modality gap. Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data. This decoder is then applied to aligned image embeddings, enabling image-related tasks without explicit image-text pairs. Results: We evaluate our approach to generative tasks (image captioning) and discriminative tasks (triplet recognition and phase recognition). Results show that Surg-FTDA outperforms baselines and generalizes well across downstream tasks. Conclusion: We propose a text-driven adaptation approach that mitigates the modality gap and handles multiple downstream tasks in surgical workflow analysis, with minimal reliance on large annotated datasets. The code and dataset will be released in https://github.com/CAMMA-public/Surg-FTDA

Authors:Hanrong Zhang, Yifei Yao, Zixuan Wang, Jiayuan Su, Mengxuan Li, Peng Peng, Hongwei Wang
Title: Class Incremental Fault Diagnosis under Limited Fault Data via Supervised Contrastive Knowledge Distillation
Abstract:
Class-incremental fault diagnosis requires a model to adapt to new fault classes while retaining previous knowledge. However, limited research exists for imbalanced and long-tailed data. Extracting discriminative features from few-shot fault data is challenging, and adding new fault classes often demands costly model retraining. Moreover, incremental training of existing methods risks catastrophic forgetting, and severe class imbalance can bias the model's decisions toward normal classes. To tackle these issues, we introduce a Supervised Contrastive knowledge distiLlation for class Incremental Fault Diagnosis (SCLIFD) framework proposing supervised contrastive knowledge distillation for improved representation learning capability and less forgetting, a novel prioritized exemplar selection method for sample replay to alleviate catastrophic forgetting, and the Random Forest Classifier to address the class imbalance. Extensive experimentation on simulated and real-world industrial datasets across various imbalance ratios demonstrates the superiority of SCLIFD over existing approaches. Our code can be found at https://github.com/Zhang-Henry/SCLIFD_TII.

Authors:Zhaocheng Liu, Quan Tu, Wen Ye, Yu Xiao, Zhishou Zhang, Hengfu Cui, Yalun Zhu, Qiang Ju, Shizheng Li, Jian Xie
Title: Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators
Abstract:
Recently, large language models have shown great potential to transform online medical consultation. Despite this, most research targets improving diagnostic accuracy with ample information, often overlooking the inquiry phase. Some studies try to evaluate or refine doctor models by using prompt-engineered patient agents. However, prompt engineering alone falls short in accurately simulating real patients. We need to explore new paradigms for patient simulation. Furthermore, the relationship between inquiry and diagnosis remains unexplored. This paper extracts dialogue strategies from real doctor-patient conversations to guide the training of a patient simulator. Our simulator shows higher anthropomorphism and lower hallucination rates, using dynamic dialogue strategies. This innovation offers a more accurate evaluation of diagnostic models and generates realistic synthetic data. We conduct extensive experiments on the relationship between inquiry and diagnosis, showing they adhere to Liebig's law: poor inquiry limits diagnosis effectiveness, regardless of diagnostic skill, and vice versa. The experiments also reveal substantial differences in inquiry performance among models. To delve into this phenomenon, the inquiry process is categorized into four distinct types. Analyzing the distribution of inquiries across these types helps explain the performance differences. The weights of our patient simulator are available https://github.com/PatientSimulator/PatientSimulator.

Authors:Jan Skvrna, Lukas Neumann
Title: MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Abstract:
Inferring object 3D position and orientation from a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring LiDAR and vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations, making orders of magnitude more data available for training. The method uses newly proposed Local Object Motion Model to disentangle object movement source between subsequent frames, is approximately 700 times faster than previous work and compensates camera focal length differences to aggregate multiple datasets. The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin. It also shows its versatility as a pre-training tool for fully-supervised training and shows that combining pseudo-labels from multiple datasets can achieve comparable accuracy to using human labels from a single dataset. The source code and model are available at https://github.com/jskvrna/MonoSOWA.

Authors:Ji Shi, Xianghua Ying, Ruohao Guo, Bowei Xing, Wenzhen Yue
Title: Normal-NeRF: Ambiguity-Robust Normal Estimation for Highly Reflective Scenes
Abstract:
Neural Radiance Fields (NeRF) often struggle with reconstructing and rendering highly reflective scenes. Recent advancements have developed various reflection-aware appearance models to enhance NeRF's capability to render specular reflections. However, the robust reconstruction of highly reflective scenes is still hindered by the inherent shape ambiguity on specular surfaces. Existing methods typically rely on additional geometry priors to regularize the shape prediction, but this can lead to oversmoothed geometry in complex scenes. Observing the critical role of surface normals in parameterizing reflections, we introduce a transmittance-gradient-based normal estimation technique that remains robust even under ambiguous shape conditions. Furthermore, we propose a dual activated densities module that effectively bridges the gap between smooth surface normals and sharp object boundaries. Combined with a reflection-aware appearance model, our proposed method achieves robust reconstruction and high-fidelity rendering of scenes featuring both highly specular reflections and intricate geometric structures. Extensive experiments demonstrate that our method outperforms existing state-of-the-art methods on various datasets.

Authors:Tobias Fiedler, Leon Hermann, Florian Müller, Sarel Cohen, Peter Chin, Tobias Friedrich, Eilon Vaadia
Title: Teaching Wav2Vec2 the Language of the Brain
Abstract:
The decoding of continuously spoken speech from neuronal activity has the potential to become an important clinical solution for paralyzed patients. Deep Learning Brain Computer Interfaces (BCIs) have recently successfully mapped neuronal activity to text contents in subjects who attempted to formulate speech. However, only small BCI datasets are available. In contrast, labeled data and pre-trained models for the closely related task of speech recognition from audio are widely available. One such model is Wav2Vec2 which has been trained in a self-supervised fashion to create meaningful representations of speech audio data. In this study, we show that patterns learned by Wav2Vec2 are transferable to brain data. Specifically, we replace its audio feature extractor with an untrained Brain Feature Extractor (BFE) model. We then execute full fine-tuning with pre-trained weights for Wav2Vec2, training ''from scratch'' without pre-trained weights as well as freezing a pre-trained Wav2Vec2 and training only the BFE each for 45 different BFE architectures. Across these experiments, the best run is from full fine-tuning with pre-trained weights, achieving a Character Error Rate (CER) of 18.54\%, outperforming the best training from scratch run by 20.46\% and that of frozen Wav2Vec2 training by 15.92\% percentage points. These results indicate that knowledge transfer from audio speech recognition to brain decoding is possible and significantly improves brain decoding performance for the same architectures. Related source code is available at https://github.com/tfiedlerdev/Wav2Vec2ForBrain.

Authors:Tim J. M. Jaspers, Ronald L. P. D. de Jong, Yiping Li, Carolus H. J. Kusters, Franciscus H. A. Bakker, Romy C. van Jaarsveld, Gino M. Kuiper, Richard van Hillegersberg, Jelle P. Ruurda, Willem M. Brinkman, Josien P. W. Pluim, Peter H. N. de With, Marcel Breeuwer, Yasmina Al Khalil, Fons van der Sommen
Title: Scaling up self-supervised learning for improved surgical foundation models
Abstract:
Foundation models have revolutionized computer vision by achieving vastly superior performance across diverse tasks through large-scale pretraining on extensive datasets. However, their application in surgical computer vision has been limited. This study addresses this gap by introducing SurgeNetXL, a novel surgical foundation model that sets a new benchmark in surgical computer vision. Trained on the largest reported surgical dataset to date, comprising over 4.7 million video frames, SurgeNetXL achieves consistent top-tier performance across six datasets spanning four surgical procedures and three tasks, including semantic segmentation, phase recognition, and critical view of safety (CVS) classification. Compared with the best-performing surgical foundation models, SurgeNetXL shows mean improvements of 2.4, 9.0, and 12.6 percent for semantic segmentation, phase recognition, and CVS classification, respectively. Additionally, SurgeNetXL outperforms the best-performing ImageNet-based variants by 14.4, 4.0, and 1.6 percent in the respective tasks. In addition to advancing model performance, this study provides key insights into scaling pretraining datasets, extending training durations, and optimizing model architectures specifically for surgical computer vision. These findings pave the way for improved generalizability and robustness in data-scarce scenarios, offering a comprehensive framework for future research in this domain. All models and a subset of the SurgeNetXL dataset, including over 2 million video frames, are publicly available at: https://github.com/TimJaspers0801/SurgeNet.

Authors:Veronika Spieker, Hannah Eichhorn, Wenqi Huang, Jonathan K. Stelter, Tabita Catalan, Rickmer F. Braren, Daniel Rueckert, Francisco Sahli Costabal, Kerstin Hammernik, Dimitrios C. Karampinos, Claudia Prieto, Julia A. Schnabel
Title: PISCO: Self-Supervised k-Space Regularization for Improved Neural Implicit k-Space Representations of Dynamic MRI
Abstract:
Neural implicit k-space representations (NIK) have shown promising results for dynamic magnetic resonance imaging (MRI) at high temporal resolutions. Yet, reducing acquisition time, and thereby available training data, results in severe performance drops due to overfitting. To address this, we introduce a novel self-supervised k-space loss function $\mathcal{L}_\mathrm{PISCO}$, applicable for regularization of NIK-based reconstructions. The proposed loss function is based on the concept of parallel imaging-inspired self-consistency (PISCO), enforcing a consistent global k-space neighborhood relationship without requiring additional data. Quantitative and qualitative evaluations on static and dynamic MR reconstructions show that integrating PISCO significantly improves NIK representations. Particularly for high acceleration factors (R$\geq$54), NIK with PISCO achieves superior spatio-temporal reconstruction quality compared to state-of-the-art methods. Furthermore, an extensive analysis of the loss assumptions and stability shows PISCO's potential as versatile self-supervised k-space loss function for further applications and architectures. Code is available at: https://github.com/compai-lab/2025-pisco-spieker

Authors:Fen Wang, Bomiao Wang, Xueli Shu, Zhen Liu, Zekai Shao, Chao Liu, Siming Chen
Title: ChartInsighter: An Approach for Mitigating Hallucination in Time-series Chart Summary Generation with A Benchmark Dataset
Abstract:
Effective chart summary can significantly reduce the time and effort decision makers spend interpreting charts, enabling precise and efficient communication of data insights. Previous studies have faced challenges in generating accurate and semantically rich summaries of time-series data charts. In this paper, we identify summary elements and common hallucination types in the generation of time-series chart summaries, which serve as our guidelines for automatic generation. We introduce ChartInsighter, which automatically generates chart summaries of time-series data, effectively reducing hallucinations in chart summary generation. Specifically, we assign multiple agents to generate the initial chart summary and collaborate iteratively, during which they invoke external data analysis modules to extract insights and compile them into a coherent summary. Additionally, we implement a self-consistency test method to validate and correct our summary. We create a high-quality benchmark of charts and summaries, with hallucination types annotated on a sentence-by-sentence basis, facilitating the evaluation of the effectiveness of reducing hallucinations. Our evaluations using our benchmark show that our method surpasses state-of-the-art models, and that our summary hallucination rate is the lowest, which effectively reduces various hallucinations and improves summary quality. The benchmark is available at https://github.com/wangfen01/ChartInsighter.

Authors:Arpita Chowdhury, Dipanjyoti Paul, Zheda Mai, Jianyang Gu, Ziheng Zhang, Kazi Sajeed Mehrab, Elizabeth G. Campolongo, Daniel Rubenstein, Charles V. Stewart, Anuj Karpatne, Tanya Berger-Wolf, Yu Su, Wei-Lun Chao
Title: Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis
Abstract:
We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a ``free lunch,'' requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM.

Authors:Yixiao Xu, Binxing Fang, Rui Wang, Yinghai Zhou, Yuan Liu, Mohan Li, Zhihong Tian
Title: Neural Honeytrace: A Robust Plug-and-Play Watermarking Framework against Model Extraction Attacks
Abstract:
Developing high-performance deep learning models is resource-intensive, leading model owners to utilize Machine Learning as a Service (MLaaS) platforms instead of publicly releasing their models. However, malicious users may exploit query interfaces to execute model extraction attacks, reconstructing the target model's functionality locally. While prior research has investigated triggerable watermarking techniques for asserting ownership, existing methods face significant challenges: (1) most approaches require additional training, resulting in high overhead and limited flexibility, and (2) they often fail to account for advanced attackers, leaving them vulnerable to adaptive attacks. In this paper, we propose Neural Honeytrace, a robust plug-and-play watermarking framework against model extraction attacks. We first formulate a watermark transmission model from an information-theoretic perspective, providing an interpretable account of the principles and limitations of existing triggerable watermarking. Guided by the model, we further introduce: (1) a similarity-based training-free watermarking method for plug-and-play and flexible watermarking, and (2) a distribution-based multi-step watermark information transmission strategy for robust watermarking. Comprehensive experiments on four datasets demonstrate that Neural Honeytrace outperforms previous methods in efficiency and resisting adaptive attacks. Neural Honeytrace reduces the average number of samples required for a worst-case t-Test-based copyright claim from 193,252 to 1,857 with zero training cost. The code is available at https://github.com/NeurHT/NeurHT.

Authors:Zichang Ge, Changyu Chen, Arunesh Sinha, Pradeep Varakantham
Title: On Learning Informative Trajectory Embeddings for Imitation, Classification and Regression
Abstract:
In real-world sequential decision making tasks like autonomous driving, robotics, and healthcare, learning from observed state-action trajectories is critical for tasks like imitation, classification, and clustering. For example, self-driving cars must replicate human driving behaviors, while robots and healthcare systems benefit from modeling decision sequences, whether or not they come from expert data. Existing trajectory encoding methods often focus on specific tasks or rely on reward signals, limiting their ability to generalize across domains and tasks. Inspired by the success of embedding models like CLIP and BERT in static domains, we propose a novel method for embedding state-action trajectories into a latent space that captures the skills and competencies in the dynamic underlying decision-making processes. This method operates without the need for reward labels, enabling better generalization across diverse domains and tasks. Our contributions are threefold: (1) We introduce a trajectory embedding approach that captures multiple abilities from state-action data. (2) The learned embeddings exhibit strong representational power across downstream tasks, including imitation, classification, clustering, and regression. (3) The embeddings demonstrate unique properties, such as controlling agent behaviors in IQ-Learn and an additive structure in the latent space. Experimental results confirm that our method outperforms traditional approaches, offering more flexible and powerful trajectory representations for various applications. Our code is available at https://github.com/Erasmo1015/vte.

Authors:Kyeongha Rho, Hyeongkeun Lee, Valentio Iverson, Joon Son Chung
Title: LAVCap: LLM-based Audio-Visual Captioning using Optimal Transport
Abstract:
Automated audio captioning is a task that generates textual descriptions for audio content, and recent studies have explored using visual information to enhance captioning quality. However, current methods often fail to effectively fuse audio and visual data, missing important semantic cues from each modality. To address this, we introduce LAVCap, a large language model (LLM)-based audio-visual captioning framework that effectively integrates visual information with audio to improve audio captioning performance. LAVCap employs an optimal transport-based alignment loss to bridge the modality gap between audio and visual features, enabling more effective semantic extraction. Additionally, we propose an optimal transport attention module that enhances audio-visual fusion using an optimal transport assignment map. Combined with the optimal training strategy, experimental results demonstrate that each component of our framework is effective. LAVCap outperforms existing state-of-the-art methods on the AudioCaps dataset, without relying on large datasets or post-processing. Code is available at https://github.com/NAVER-INTEL-Co-Lab/gaudi-lavcap.

Authors:Haobin Qin, Calvin Yeung, Rikuhei Umemoto, Keisuke Fujii
Title: SoccerSynth-Detection: A Synthetic Dataset for Soccer Player Detection
Abstract:
In soccer video analysis, player detection is essential for identifying key events and reconstructing tactical positions. The presence of numerous players and frequent occlusions, combined with copyright restrictions, severely restricts the availability of datasets, leaving limited options such as SoccerNet-Tracking and SportsMOT. These datasets suffer from a lack of diversity, which hinders algorithms from adapting effectively to varied soccer video contexts. To address these challenges, we developed SoccerSynth-Detection, the first synthetic dataset designed for the detection of synthetic soccer players. It includes a broad range of random lighting and textures, as well as simulated camera motion blur. We validated its efficacy using the object detection model (Yolov8n) against real-world datasets (SoccerNet-Tracking and SportsMoT). In transfer tests, it matched the performance of real datasets and significantly outperformed them in images with motion blur; in pre-training tests, it demonstrated its efficacy as a pre-training dataset, significantly enhancing the algorithm's overall performance. Our work demonstrates the potential of synthetic datasets to replace real datasets for algorithm training in the field of soccer video analysis.

Authors:Shuo Chen, Yijin Li, Guofeng Zhang
Title: OpticFusion: Multi-Modal Neural Implicit 3D Reconstruction of Microstructures by Fusing White Light Interferometry and Optical Microscopy
Abstract:
White Light Interferometry (WLI) is a precise optical tool for measuring the 3D topography of microstructures. However, conventional WLI cannot capture the natural color of a sample's surface, which is essential for many microscale research applications that require both 3D geometry and color information. Previous methods have attempted to overcome this limitation by modifying WLI hardware and analysis software, but these solutions are often costly. In this work, we address this challenge from a computer vision multi-modal reconstruction perspective for the first time. We introduce OpticFusion, a novel approach that uses an additional digital optical microscope (OM) to achieve 3D reconstruction with natural color textures using multi-view WLI and OM images. Our method employs a two-step data association process to obtain the poses of WLI and OM data. By leveraging the neural implicit representation, we fuse multi-modal data and apply color decomposition technology to extract the sample's natural color. Tested on our multi-modal dataset of various microscale samples, OpticFusion achieves detailed 3D reconstructions with color textures. Our method provides an effective tool for practical applications across numerous microscale research fields. The source code and our real-world dataset are available at https://github.com/zju3dv/OpticFusion.

Authors:Edward R Criscuolo, Yao Hao, Zhendong Zhang, Trevor McKeown, Deshan Yang
Title: A Vessel Bifurcation Landmark Pair Dataset for Abdominal CT Deformable Image Registration (DIR) Validation
Abstract:
Deformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Abdominal CT image pairs of 30 patients were acquired from several public repositories as well as the authors' institution with IRB approval. The two CTs of each pair were originally acquired for the same patient on different days. An image processing workflow was developed and applied to each image pair: 1) Abdominal organs were segmented with a deep learning model, and image intensity within organ masks was overwritten. 2) Matching image patches were manually identified between two CTs of each image pair 3) Vessel bifurcation landmarks were labeled on one image of each image patch pair. 4) Image patches were deformably registered, and landmarks were projected onto the second image. 5) Landmark pair locations were refined manually or with an automated process. This workflow resulted in 1895 total landmark pairs, or 63 per case on average. Estimates of the landmark pair accuracy using digital phantoms were 0.7+/-1.2mm. The data is published in Zenodo at https://doi.org/10.5281/zenodo.14362785. Instructions for use can be found at https://github.com/deshanyang/Abdominal-DIR-QA. This dataset is a first-of-its-kind for abdominal DIR validation. The number, accuracy, and distribution of landmark pairs will allow for robust validation of DIR algorithms with precision beyond what is currently available.

Authors:Eshaan Tanwar, Gayatri Oke, Tanmoy Chakraborty
Title: Multilingual LLMs Struggle to Link Orthography and Semantics in Bilingual Word Processing
Abstract:
Bilingual lexical processing is shaped by the complex interplay of phonological, orthographic, and semantic features of two languages within an integrated mental lexicon. In humans, this is evident in the ease with which cognate words - words similar in both orthographic form and meaning (e.g., blind, meaning "sightless" in both English and German) - are processed, compared to the challenges posed by interlingual homographs, which share orthographic form but differ in meaning (e.g., gift, meaning "present" in English but "poison" in German). We investigate how multilingual Large Language Models (LLMs) handle such phenomena, focusing on English-Spanish, English-French, and English-German cognates, non-cognate, and interlingual homographs. Specifically, we evaluate their ability to disambiguate meanings and make semantic judgments, both when these word types are presented in isolation or within sentence contexts. Our findings reveal that while certain LLMs demonstrate strong performance in recognizing cognates and non-cognates in isolation, they exhibit significant difficulty in disambiguating interlingual homographs, often performing below random baselines. This suggests LLMs tend to rely heavily on orthographic similarities rather than semantic understanding when interpreting interlingual homographs. Further, we find LLMs exhibit difficulty in retrieving word meanings, with performance in isolative disambiguation tasks having no correlation with semantic understanding. Finally, we study how the LLM processes interlingual homographs in incongruent sentences. We find models to opt for different strategies in understanding English and non-English homographs, highlighting a lack of a unified approach to handling cross-lingual ambiguities.

Authors:Suhail Basalama, Jason Cong
Title: Stream-HLS: Towards Automatic Dataflow Acceleration
Abstract:
High-level synthesis (HLS) has enabled the rapid development of custom hardware circuits for many software applications. However, developing high-performance hardware circuits using HLS is still a non-trivial task requiring expertise in hardware design. Further, the hardware design space, especially for multi-kernel applications, grows exponentially. Therefore, several HLS automation and abstraction frameworks have been proposed recently, but many issues remain unresolved. These issues include: 1) relying mainly on hardware directives (pragmas) to apply hardware optimizations without exploring loop scheduling opportunities. 2) targeting single-kernel applications only. 3) lacking automatic and/or global design space exploration. 4) missing critical hardware optimizations, such as graph-level pipelining for multi-kernel applications. To address these challenges, we propose a novel methodology and framework on top of the popular multi-level intermediate representation (MLIR) infrastructure called Stream-HLS. Our framework takes a C/C++ or PyTorch software code and automatically generates an optimized dataflow architecture along with host code for field-programmable gate arrays (FPGAs). To achieve this, we developed an accurate analytical performance model for global scheduling and optimization of dataflow architectures. Stream-HLS is evaluated using various standard HLS benchmarks and real-world benchmarks from transformer models, convolution neural networks, and multilayer perceptrons. Stream-HLS designs outperform the designs of prior state-of-the-art automation frameworks and manually-optimized designs of abstraction frameworks by up to $79.43\times$ and $10.62\times$ geometric means respectively. Finally, the Stream-HLS framework is modularized, extensible, and open-sourced at \url{https://github.com/UCLA-VAST/Stream-HLS} (\url{https://doi.org/10.5281/zenodo.14585909}).

Authors:Huiyu Li, Nicholas Ayache, Hervé Delingette
Title: Generative Medical Image Anonymization Based on Latent Code Projection and Optimization
Abstract:
Medical image anonymization aims to protect patient privacy by removing identifying information, while preserving the data utility to solve downstream tasks. In this paper, we address the medical image anonymization problem with a two-stage solution: latent code projection and optimization. In the projection stage, we design a streamlined encoder to project input images into a latent space and propose a co-training scheme to enhance the projection process. In the optimization stage, we refine the latent code using two deep loss functions designed to address the trade-off between identity protection and data utility dedicated to medical images. Through a comprehensive set of qualitative and quantitative experiments, we showcase the effectiveness of our approach on the MIMIC-CXR chest X-ray dataset by generating anonymized synthetic images that can serve as training set for detecting lung pathologies. Source codes are available at https://github.com/Huiyu-Li/GMIA.

Authors:Kanta Masuki, Yuto Ashida
Title: Generative diffusion model with inverse renormalization group flows
Abstract:
Diffusion models represent a class of generative models that produce data by denoising a sample corrupted by white noise. Despite the success of diffusion models in computer vision, audio synthesis, and point cloud generation, so far they overlook inherent multiscale structures in data and have a slow generation process due to many iteration steps. In physics, the renormalization group offers a fundamental framework for linking different scales and giving an accurate coarse-grained model. Here we introduce a renormalization group-based diffusion model that leverages multiscale nature of data distributions for realizing a high-quality data generation. In the spirit of renormalization group procedures, we define a flow equation that progressively erases data information from fine-scale details to coarse-grained structures. Through reversing the renormalization group flows, our model is able to generate high-quality samples in a coarse-to-fine manner. We validate the versatility of the model through applications to protein structure prediction and image generation. Our model consistently outperforms conventional diffusion models across standard evaluation metrics, enhancing sample quality and/or accelerating sampling speed by an order of magnitude. The proposed method alleviates the need for data-dependent tuning of hyperparameters in the generative diffusion models, showing promise for systematically increasing sample efficiency based on the concept of the renormalization group.

Authors:Zihao Xu, Yuzhi Tang, Bowen Xu, Qingquan Li
Title: NeurOp-Diff:Continuous Remote Sensing Image Super-Resolution via Neural Operator Diffusion
Abstract:
Most publicly accessible remote sensing data suffer from low resolution, limiting their practical applications. To address this, we propose a diffusion model guided by neural operators for continuous remote sensing image super-resolution (NeurOp-Diff). Neural operators are used to learn resolution representations at arbitrary scales, encoding low-resolution (LR) images into high-dimensional features, which are then used as prior conditions to guide the diffusion model for denoising. This effectively addresses the artifacts and excessive smoothing issues present in existing super-resolution (SR) methods, enabling the generation of high-quality, continuous super-resolution images. Specifically, we adjust the super-resolution scale by a scaling factor s, allowing the model to adapt to different super-resolution magnifications. Furthermore, experiments on multiple datasets demonstrate the effectiveness of NeurOp-Diff. Our code is available at https://github.com/zerono000/NeurOp-Diff.

Authors:Zheng-An Zhu, Hsin-Che Chien, Chen-Kuo Chiang
Title: TCMM: Token Constraint and Multi-Scale Memory Bank of Contrastive Learning for Unsupervised Person Re-identification
Abstract:
This paper proposes the ViT Token Constraint and Multi-scale Memory bank (TCMM) method to address the patch noises and feature inconsistency in unsupervised person re-identification works. Many excellent methods use ViT features to obtain pseudo labels and clustering prototypes, then train the model with contrastive learning. However, ViT processes images by performing patch embedding, which inevitably introduces noise in patches and may compromise the performance of the re-identification model. On the other hand, previous memory bank based contrastive methods may lead data inconsistency due to the limitation of batch size. Furthermore, existing pseudo label methods often discard outlier samples that are difficult to cluster. It sacrifices the potential value of outlier samples, leading to limited model diversity and robustness. This paper introduces the ViT Token Constraint to mitigate the damage caused by patch noises to the ViT architecture. The proposed Multi-scale Memory enhances the exploration of outlier samples and maintains feature consistency. Experimental results demonstrate that our system achieves state-of-the-art performance on common benchmarks. The project is available at \href{https://github.com/andy412510/TCMM}{https://github.com/andy412510/TCMM}.

Authors:Jianzi Xiang, Cailu Wan, Zhu Cao
Title: Pseudolabel guided pixels contrast for domain adaptive semantic segmentation
Abstract:
Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels. Some recent works use contrastive learning, which is a powerful method for self-supervised learning, to help with this technique. However, these works do not take into account the diversity of features within each class when using contrastive learning, which leads to errors in class prediction. We analyze the limitations of these works and propose a novel framework called Pseudo-label Guided Pixel Contrast (PGPC), which overcomes the disadvantages of previous methods. We also investigate how to use more information from target images without adding noise from pseudo-labels. We test our method on two standard UDA benchmarks and show that it outperforms existing methods. Specifically, we achieve relative improvements of 5.1% mIoU and 4.6% mIoU on the Grand Theft Auto V (GTA5) to Cityscapes and SYNTHIA to Cityscapes tasks based on DAFormer, respectively. Furthermore, our approach can enhance the performance of other UDA approaches without increasing model complexity. Code is available at https://github.com/embar111/pgpc

Authors:Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, Robert Geirhos
Title: Do generative video models understand physical principles?
Abstract:
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn "world models" that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.

Authors:Bowen Yi
Title: Unveiling Behavioral Differences in Bilingual Information Operations: A Network-Based Approach
Abstract:
Twitter has become a pivotal platform for conducting information operations (IOs), particularly during high-stakes political events. In this study, we analyze over a million tweets about the 2024 U.S. presidential election to explore an under-studied area: the behavioral differences of IO drivers from English- and Spanish-speaking communities. Using similarity graphs constructed from behavioral patterns, we identify IO drivers in both languages and evaluate the clustering quality of these graphs in an unsupervised setting. Our analysis demonstrates how different network dismantling strategies, such as node pruning and edge filtering, can impact clustering quality and the identification of coordinated IO drivers. We also reveal significant differences in the topics and political indicators between English and Spanish IO drivers. Additionally, we investigate bilingual users who post in both languages, systematically uncovering their distinct roles and behaviors compared to monolingual users. These findings underscore the importance of robust, culturally and linguistically adaptable IO detection methods to mitigate the risks of influence campaigns on social media. Our code and data are available on GitHub: https://github.com/bowenyi-pierre/humans-lab-hackathon-24.

Authors:Ruixiang Jiang, Changwen Chen
Title: Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
Abstract:
The rapid technical progress of generative art (GenArt) has democratized the creation of visually appealing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - remains formidable as it requires a sophisticated aesthetic sensibility. This sensibility involves a multifaceted cognitive process extending beyond mere visual appeal, which is often overlooked by current computational methods. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited to perform aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these hallucinations can be suppressed by employing an evidence-based and objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multifaceted, in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for image generation. Ultimately, we hope this work paves the way for AI systems that can truly understand, appreciate, and contribute to art that aligns with human aesthetic values. Project homepage: https://github.com/songrise/MLLM4Art.

Authors:Ishan Amin, Sanjeev Raja, Aditi Krishnapriyan
Title: Towards Fast, Specialized Machine Learning Force Fields: Distilling Foundation Models via Energy Hessians
Abstract:
The foundation model (FM) paradigm is transforming Machine Learning Force Fields (MLFFs), leveraging general-purpose representations and scalable training to perform a variety of computational chemistry tasks. Although MLFF FMs have begun to close the accuracy gap relative to first-principles methods, there is still a strong need for faster inference speed. Additionally, while research is increasingly focused on general-purpose models which transfer across chemical space, practitioners typically only study a small subset of systems at a given time. This underscores the need for fast, specialized MLFFs relevant to specific downstream applications, which preserve test-time physical soundness while maintaining train-time scalability. In this work, we introduce a method for transferring general-purpose representations from MLFF foundation models to smaller, faster MLFFs specialized to specific regions of chemical space. We formulate our approach as a knowledge distillation procedure, where the smaller "student" MLFF is trained to match the Hessians of the energy predictions of the "teacher" foundation model. Our specialized MLFFs can be up to 20 $\times$ faster than the original foundation model, while retaining, and in some cases exceeding, its performance and that of undistilled models. We also show that distilling from a teacher model with a direct force parameterization into a student model trained with conservative forces (i.e., computed as derivatives of the potential energy) successfully leverages the representations from the large-scale teacher for improved accuracy, while maintaining energy conservation during test-time molecular dynamics simulations. More broadly, our work suggests a new paradigm for MLFF development, in which foundation models are released along with smaller, specialized simulation "engines" for common chemical subsets.

Authors:Qinyu Ma, Yuhao Zhou, Jianfeng Li
Title: Automated Retrosynthesis Planning of Macromolecules Using Large Language Models and Knowledge Graphs
Abstract:
Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs. By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. By considering the complex interdependencies among chemical reactants, a novel Multi-branched Reaction Pathway Search Algorithm (MBRPS) is proposed to help identify all valid multi-branched reaction pathways, which arise when a single product decomposes into multiple reaction intermediates. In contrast, previous studies were limited to cases where a product decomposes into at most one reaction intermediate. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways. This demonstrates utilizing LLMs for literature consultation to accomplish specific tasks is possible and crucial for future materials research, given the vast amount of materials-related literature.

Authors:Trevor E. Pogue, Nicola Nicolici
Title: Karatsuba Matrix Multiplication and its Efficient Custom Hardware Implementations
Abstract:
While the Karatsuba algorithm reduces the complexity of large integer multiplication, the extra additions required minimize its benefits for smaller integers of more commonly-used bitwidths. In this work, we propose the extension of the scalar Karatsuba multiplication algorithm to matrix multiplication, showing how this maintains the reduction in multiplication complexity of the original Karatsuba algorithm while reducing the complexity of the extra additions. Furthermore, we propose new matrix multiplication hardware architectures for efficiently exploiting this extension of the Karatsuba algorithm in custom hardware. We show that the proposed algorithm and hardware architectures can provide real area or execution time improvements for integer matrix multiplication compared to scalar Karatsuba or conventional matrix multiplication algorithms, while also supporting implementation through proven systolic array and conventional multiplier architectures at the core. We provide a complexity analysis of the algorithm and architectures and evaluate the proposed designs both in isolation and in an end-to-end deep learning accelerator system compared to baseline designs and prior state-of-the-art works implemented on the same type of compute platform, demonstrating their ability to increase the performance-per-area of matrix multiplication hardware.

Authors:Keisuke Kamo, Hideaki Iiduka
Title: Increasing Batch Size Improves Convergence of Stochastic Gradient Descent with Momentum
Abstract:
Stochastic gradient descent with momentum (SGDM), in which a momentum term is added to SGD, has been well studied in both theory and practice. The theoretical studies show that the settings of the learning rate and momentum weight affect the convergence of SGDM. Meanwhile, the practical studies have shown that the batch-size setting strongly affects the performance of SGDM. In this paper, we focus on mini-batch SGDM with a constant learning rate and constant momentum weight, which is frequently used to train deep neural networks. We show theoretically that using a constant batch size does not always minimize the expectation of the full gradient norm of the empirical loss in training a deep neural network, whereas using an increasing batch size definitely minimizes it; that is, an increasing batch size improves the convergence of mini-batch SGDM. We also provide numerical results supporting our analyses, indicating specifically that mini-batch SGDM with an increasing batch size converges to stationary points faster than with a constant batch size, while also reducing computational cost. Python implementations of the optimizers used in the numerical experiments are available at https://github.com/iiduka-researches/NSHB_increasing_batchsize_acml25/.

Authors:Tengpeng Li, Hanli Wang, Xianfei Li, Wenlong Liao, Tao He, Pai Peng
Title: Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving
Abstract:
Autonomous driving is a challenging task that requires perceiving and understanding the surrounding environment for safe trajectory planning. While existing vision-based end-to-end models have achieved promising results, these methods are still facing the challenges of vision understanding, decision reasoning and scene generalization. To solve these issues, a generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving. The proposed paradigm has two significant aspects. On one hand, a 3D-vision language pre-training module is designed to bridge the gap between visual perception and linguistic understanding in the bird's eye view. On the other hand, a cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories with perception and navigation information in an auto-regressive manner. Experiments on the challenging nuScenes dataset demonstrate that the proposed scheme achieves excellent performances compared with state-of-the-art methods. Besides, the proposed GPVL presents strong generalization ability and real-time potential when handling high-level commands in various scenarios. It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems. Code is available at https://github.com/ltp1995/GPVL

Authors:Olga Zatsarynna, Emad Bahrami, Yazan Abu Farha, Gianpiero Francesca, Juergen Gall
Title: MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense Anticipation
Abstract:
Long-term dense action anticipation is very challenging since it requires predicting actions and their durations several minutes into the future based on provided video observations. To model the uncertainty of future outcomes, stochastic models predict several potential future action sequences for the same observation. Recent work has further proposed to incorporate uncertainty modelling for observed frames by simultaneously predicting per-frame past and future actions in a unified manner. While such joint modelling of actions is beneficial, it requires long-range temporal capabilities to connect events across distant past and future time points. However, the previous work struggles to achieve such a long-range understanding due to its limited and/or sparse receptive field. To alleviate this issue, we propose a novel MANTA (MAmba for ANTicipation) network. Our model enables effective long-term temporal modelling even for very long sequences while maintaining linear complexity in sequence length. We demonstrate that our approach achieves state-of-the-art results on three datasets - Breakfast, 50Salads, and Assembly101 - while also significantly improving computational and memory efficiency. Our code is available at https://github.com/olga-zats/DIFF_MANTA .

Authors:Shao-Hao Lu, Ren Wang, Ching-Chun Huang, Wei-Chen Chiu
Title: Boosting Diffusion Guidance via Learning Degradation-Aware Models for Blind Super Resolution
Abstract:
Recently, diffusion-based blind super-resolution (SR) methods have shown great ability to generate high-resolution images with abundant high-frequency detail, but the detail is often achieved at the expense of fidelity. Meanwhile, another line of research focusing on rectifying the reverse process of diffusion models (i.e., diffusion guidance), has demonstrated the power to generate high-fidelity results for non-blind SR. However, these methods rely on known degradation kernels, making them difficult to apply to blind SR. To address these issues, we present DADiff in this paper. DADiff incorporates degradation-aware models into the diffusion guidance framework, eliminating the need to know degradation kernels. Additionally, we propose two novel techniques: input perturbation and guidance scalar, to further improve our performance. Extensive experimental results show that our proposed method has superior performance over state-of-the-art methods on blind SR benchmarks.

Authors:Zhipeng Ye, Feng Jiang, Qiufeng Wang, Kaizhu Huang, Jiaqi Huang
Title: IDEA: Image Description Enhanced CLIP-Adapter
Abstract:
CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.

Authors:Shiyu Wu, Jing Liu, Jing Li, Yequan Wang
Title: Few-Shot Learner Generalizes Across AI-Generated Image Detection
Abstract:
Current fake image detectors trained on large synthetic image datasets perform satisfactorily on limited studied generative models. However, these detectors suffer a notable performance decline over unseen models. Besides, collecting adequate training data from online generative models is often expensive or infeasible. To overcome these issues, we propose Few-Shot Detector (FSD), a novel AI-generated image detector which learns a specialized metric space for effectively distinguishing unseen fake images using very few samples. Experiments show that FSD achieves state-of-the-art performance by $+11.6\%$ average accuracy on the GenImage dataset with only $10$ additional samples. More importantly, our method is better capable of capturing the intra-category commonality in unseen images without further training. Our code is available at https://github.com/teheperinko541/Few-Shot-AIGI-Detector.

Authors:Irina Bigoulaeva, Harish Tayyar Madabushi, Iryna Gurevych
Title: The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities
Abstract:
Large Language Models (LLMs), trained on extensive web-scale corpora, have demonstrated remarkable abilities across diverse tasks, especially as they are scaled up. Nevertheless, even state-of-the-art models struggle in certain cases, sometimes failing at problems solvable by young children, indicating that traditional notions of task complexity are insufficient for explaining LLM capabilities. However, exploring LLM capabilities is complicated by the fact that most widely-used models are also "instruction-tuned" to respond appropriately to prompts. With the goal of disentangling the factors influencing LLM performance, we investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples. Through extensive experiments across various model families, scales and task types, which included instruction tuning 90 different LLMs, we demonstrate that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts. By clarifying what instruction-tuning contributes, we extend prior research into in-context learning, which suggests that base models use priors from pretraining data to solve tasks. Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve, with the added influence of the instruction-tuning dataset.

Authors:Jaemyung Yu, Jaehyun Choi, Dong-Jae Lee, HyeongGwon Hong, Junmo Kim
Title: Self-supervised Transformation Learning for Equivariant Representations
Abstract:
Unsupervised representation learning has significantly advanced various machine learning tasks. In the computer vision domain, state-of-the-art approaches utilize transformations like random crop and color jitter to achieve invariant representations, embedding semantically the same inputs despite transformations. However, this can degrade performance in tasks requiring precise features, such as localization or flower classification. To address this, recent research incorporates equivariant representation learning, which captures transformation-sensitive information. However, current methods depend on transformation labels and thus struggle with interdependency and complex transformations. We propose Self-supervised Transformation Learning (STL), replacing transformation labels with transformation representations derived from image pairs. The proposed method ensures transformation representation is image-invariant and learns corresponding equivariant transformations, enhancing performance without increased batch complexity. We demonstrate the approach's effectiveness across diverse classification and detection tasks, outperforming existing methods in 7 out of 11 benchmarks and excelling in detection. By integrating complex transformations like AugMix, unusable by prior equivariant methods, this approach enhances performance across tasks, underscoring its adaptability and resilience. Additionally, its compatibility with various base models highlights its flexibility and broad applicability. The code is available at https://github.com/jaemyung-u/stl.

Authors:Han Wang, Jianqiang Li, Qing Zhao, Zhonglong Chen, Changwei Song, Jing Tang, Yuning Huang, Wei Zhai, Yongsheng Tong, Guanghui Fu
Title: Deep Learning-Based Feature Fusion for Emotion Analysis and Suicide Risk Differentiation in Chinese Psychological Support Hotlines
Abstract:
Mental health is a critical global public health issue, and psychological support hotlines play a pivotal role in providing mental health assistance and identifying suicide risks at an early stage. However, the emotional expressions conveyed during these calls remain underexplored in current research. This study introduces a method that combines pitch acoustic features with deep learning-based features to analyze and understand emotions expressed during hotline interactions. Using data from China's largest psychological support hotline, our method achieved an F1-score of 79.13% for negative binary emotion classification.Additionally, the proposed approach was validated on an open dataset for multi-class emotion classification,where it demonstrated better performance compared to the state-of-the-art methods. To explore its clinical relevance, we applied the model to analysis the frequency of negative emotions and the rate of emotional change in the conversation, comparing 46 subjects with suicidal behavior to those without. While the suicidal group exhibited more frequent emotional changes than the non-suicidal group, the difference was not statistically significant.Importantly, our findings suggest that emotional fluctuation intensity and frequency could serve as novel features for psychological assessment scales and suicide risk prediction.The proposed method provides valuable insights into emotional dynamics and has the potential to advance early intervention and improve suicide prevention strategies through integration with clinical tools and assessments The source code is publicly available at https://github.com/Sco-field/Speechemotionrecognition/tree/main.

Authors:Dongzhihan Wang, Yang Yang, Liang Xu
Title: BRIGHT-VO: Brightness-Guided Hybrid Transformer for Visual Odometry with Multi-modality Refinement Module
Abstract:
Visual odometry (VO) plays a crucial role in autonomous driving, robotic navigation, and other related tasks by estimating the position and orientation of a camera based on visual input. Significant progress has been made in data-driven VO methods, particularly those leveraging deep learning techniques to extract image features and estimate camera poses. However, these methods often struggle in low-light conditions because of the reduced visibility of features and the increased difficulty of matching keypoints. To address this limitation, we introduce BrightVO, a novel VO model based on Transformer architecture, which not only performs front-end visual feature extraction, but also incorporates a multi-modality refinement module in the back-end that integrates Inertial Measurement Unit (IMU) data. Using pose graph optimization, this module iteratively refines pose estimates to reduce errors and improve both accuracy and robustness. Furthermore, we create a synthetic low-light dataset, KiC4R, which includes a variety of lighting conditions to facilitate the training and evaluation of VO frameworks in challenging environments. Experimental results demonstrate that BrightVO achieves state-of-the-art performance on both the KiC4R dataset and the KITTI benchmarks. Specifically, it provides an average improvement of 20% in pose estimation accuracy in normal outdoor environments and 259% in low-light conditions, outperforming existing methods. For widespread use and further development, the research work is fully open-source at https://github.com/Anastasiawd/BrightVO.

Authors:Xianqi Wang, Hao Yang, Gangwei Xu, Junda Cheng, Min Lin, Yong Deng, Jinliang Zang, Yurui Chen, Xin Yang
Title: ZeroStereo: Zero-shot Stereo Matching from Single Images
Abstract:
State-of-the-art supervised stereo matching methods have achieved remarkable performance on various benchmarks. However, their generalization to real-world scenarios remains challenging due to the scarcity of annotated real-world stereo data. In this paper, we propose ZeroStereo, a novel stereo image generation pipeline for zero-shot stereo matching. Our approach synthesizes high-quality right images from arbitrary single images by leveraging pseudo disparities generated by a monocular depth estimation model. Unlike previous methods that address occluded regions by filling missing areas with neighboring pixels or random backgrounds, we fine-tune a diffusion inpainting model to recover missing details while preserving semantic structure. Additionally, we propose Training-Free Confidence Generation, which mitigates the impact of unreliable pseudo labels without additional training, and Adaptive Disparity Selection, which ensures a diverse and realistic disparity distribution while preventing excessive occlusion and foreground distortion. Experiments demonstrate that models trained with our pipeline achieve state-of-the-art zero-shot generalization across multiple datasets with only a dataset volume comparable to Scene Flow. Code: https://github.com/Windsrain/ZeroStereo.

Authors:Jiaqi Huang, Zunnan Xu, Ting Liu, Yong Liu, Haonan Han, Kehong Yuan, Xiu Li
Title: Densely Connected Parameter-Efficient Tuning for Referring Image Segmentation
Abstract:
In the domain of computer vision, Parameter-Efficient Tuning (PET) is increasingly replacing the traditional paradigm of pre-training followed by full fine-tuning. PET is particularly favored for its effectiveness in large foundation models, as it streamlines transfer learning costs and optimizes hardware utilization. However, the current PET methods are mainly designed for single-modal optimization. While some pioneering studies have undertaken preliminary explorations, they still remain at the level of aligned encoders (e.g., CLIP) and lack exploration of misaligned encoders. These methods show sub-optimal performance with misaligned encoders, as they fail to effectively align the multimodal features during fine-tuning. In this paper, we introduce DETRIS, a parameter-efficient tuning framework designed to enhance low-rank visual feature propagation by establishing dense interconnections between each layer and all preceding layers, which enables effective cross-modal feature interaction and adaptation to misaligned encoders. We also suggest using text adapters to improve textual features. Our simple yet efficient approach greatly surpasses state-of-the-art methods with 0.9% to 1.8% backbone parameter updates, evaluated on challenging benchmarks. Our project is available at \url{https://github.com/jiaqihuang01/DETRIS}.

Authors:Qian Wang, Jiaying Wu, Zhenheng Tang, Bingqiao Luo, Nuo Chen, Wei Chen, Bingsheng He
Title: What Limits LLM-based Human Simulation: LLMs or Our Design?
Abstract:
We argue that advancing LLM-based human simulation requires addressing both LLM's inherent limitations and simulation framework design challenges. Recent studies have revealed significant gaps between LLM-based human simulations and real-world observations, highlighting these dual challenges. To address these gaps, we present a comprehensive analysis of LLM limitations and our design issues, proposing targeted solutions for both aspects. Furthermore, we explore future directions that address both challenges simultaneously, particularly in data collection, LLM generation, and evaluation. To support further research in this field, we provide a curated collection of LLM-based human simulation resources.\footnote{https://github.com/Persdre/llm-human-simulation}

Authors:Kewei Li, Yanwen Kong, Yiping Xu, Jianlin Su, Lan Huang, Ruochi Zhang, Fengfeng Zhou
Title: Information Entropy Invariance: Enhancing Length Extrapolation in Attention Mechanisms
Abstract:
Since the emergence of research on improving the length extrapolation capabilities of large language models in 2021, some studies have made modifications to the scaling factor in the scaled dot-product attention mechanism as part of their proposed methods without rigorous theoretical justifications. To fill this gap, we propose two new scaled temperatures based on information entropy invariance to enhance length extrapolation. First, a training-free method InfoScale is designed for dotproduct attention, and preserves focus on original tokens during length extrapolation by ensuring consistent entropy. Second, we theoretically analyze the impact of scaling (CosScale) on cosine attention. Experimental data demonstrates that combining InfoScale and CosScale achieves state-ofthe-art performance on the GAU-α model with a context window extended to 64 times the training length, and outperforms seven existing methods. Our analysis reveals that significantly increasing CosScale approximates the Windowed Attention, and highlights the significance of attention score dilution as a key challenge in long-range context handling. The code and data are available at https://github.com/HT-NEKO/ Information-Entropy-Invariance.

Authors:Oscar Ramos-Soto, Jorge Ramos-Frutos, Ezequiel Perez-Zarate, Diego Oliva, Sandra E. Balderas-Mata
Title: MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
Abstract:
Feature extraction techniques are crucial in medical image classification; however, classical feature extractors in addition to traditional machine learning classifiers often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output features quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating its superiority in accuracy and robustness across multiple complex classification medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx

Authors:Oscar Ramos-Soto, Jorge Ramos-Frutos, Ezequiel Perez-Zarate, Diego Oliva, Sandra E. Balderas-Mata
Title: MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
Abstract:
Feature extraction techniques are crucial in medical image classification; however, classical feature extractors, in addition to traditional machine learning classifiers, often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output feature quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating their superiority in accuracy and robustness across multiple complex medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx

Authors:Matthieu Kirchmeyer, Pedro O. Pinheiro, Saeed Saremi
Title: Score-based 3D molecule generation with neural fields
Abstract:
We introduce a new representation for 3D molecules based on their continuous atomic density fields. Using this representation, we propose a new model based on walk-jump sampling for unconditional 3D molecule generation in the continuous space using neural fields. Our model, FuncMol, encodes molecular fields into latent codes using a conditional neural field, samples noisy codes from a Gaussian-smoothed distribution with Langevin MCMC (walk), denoises these samples in a single step (jump), and finally decodes them into molecular fields. FuncMol performs all-atom generation of 3D molecules without assumptions on the molecular structure and scales well with the size of molecules, unlike most approaches. Our method achieves competitive results on drug-like molecules and easily scales to macro-cyclic peptides, with at least one order of magnitude faster sampling. The code is available at https://github.com/prescient-design/funcmol.

Authors:Ryan Burgert, Yuancheng Xu, Wenqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma, Yitong Deng, Lingxiao Li, Mohsen Mousavi, Michael Ryoo, Paul Debevec, Ning Yu
Title: Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise
Abstract:
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://eyeline-labs.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/Eyeline-Labs/Go-with-the-Flow.

Authors:Anastasios N. Angelopoulos, Michael I. Jordan, Ryan J. Tibshirani
Title: Gradient Equilibrium in Online Learning: Theory and Applications
Abstract:
We present a new perspective on online learning that we refer to as gradient equilibrium: a sequence of iterates achieves gradient equilibrium if the average of gradients of losses along the sequence converges to zero. In general, this condition is not implied by, nor implies, sublinear regret. It turns out that gradient equilibrium is achievable by standard online learning methods such as gradient descent and mirror descent with constant step sizes (rather than decaying step sizes, as is usually required for no regret). Further, as we show through examples, gradient equilibrium translates into an interpretable and meaningful property in online prediction problems spanning regression, classification, quantile estimation, and others. Notably, we show that the gradient equilibrium framework can be used to develop a debiasing scheme for black-box predictions under arbitrary distribution shift, based on simple post hoc online descent updates. We also show that post hoc gradient updates can be used to calibrate predicted quantiles under distribution shift, and that the framework leads to unbiased Elo scores for pairwise preference prediction.

Authors:MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu
Title: MiniMax-01: Scaling Foundation Models with Lightning Attention
Abstract:
We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.

Authors:Wennuo Yang, Shiling Wu, Yuzhi Zhou, Cheng Luo, Xilin He, Weicheng Xie, Linlin Shen, Siyang Song
Title: Benchmarking Graph Representations and Graph Neural Networks for Multivariate Time Series Classification
Abstract:
Multivariate Time Series Classification (MTSC) enables the analysis if complex temporal data, and thus serves as a cornerstone in various real-world applications, ranging from healthcare to finance. Since the relationship among variables in MTS usually contain crucial cues, a large number of graph-based MTSC approaches have been proposed, as the graph topology and edges can explicitly represent relationships among variables (channels), where not only various MTS graph representation learning strategies but also different Graph Neural Networks (GNNs) have been explored. Despite such progresses, there is no comprehensive study that fairly benchmarks and investigates the performances of existing widely-used graph representation learning strategies/GNN classifiers in the application of different MTSC tasks. In this paper, we present the first benchmark which systematically investigates the effectiveness of the widely-used three node feature definition strategies, four edge feature learning strategies and five GNN architecture, resulting in 60 different variants for graph-based MTSC. These variants are developed and evaluated with a standardized data pipeline and training/validation/testing strategy on 26 widely-used suspensor MTSC datasets. Our experiments highlight that node features significantly influence MTSC performance, while the visualization of edge features illustrates why adaptive edge learning outperforms other edge feature learning methods. The code of the proposed benchmark is publicly available at \url{https://github.com/CVI-yangwn/Benchmark-GNN-for-Multivariate-Time-Series-Classification}.

Authors:Efstathios Karypidis, Ioannis Kakogeorgiou, Spyros Gidaris, Nikos Komodakis
Title: Advancing Semantic Future Prediction through Multimodal Visual Sequence Transformers
Abstract:
Semantic future prediction is important for autonomous systems navigating dynamic environments. This paper introduces FUTURIST, a method for multimodal future semantic prediction that uses a unified and efficient visual sequence transformer architecture. Our approach incorporates a multimodal masked visual modeling objective and a novel masking mechanism designed for multimodal training. This allows the model to effectively integrate visible information from various modalities, improving prediction accuracy. Additionally, we propose a VAE-free hierarchical tokenization process, which reduces computational complexity, streamlines the training pipeline, and enables end-to-end training with high-resolution, multimodal inputs. We validate FUTURIST on the Cityscapes dataset, demonstrating state-of-the-art performance in future semantic segmentation for both short- and mid-term forecasting. We provide the implementation code at https://github.com/Sta8is/FUTURIST .

Authors:Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Abinew Ali Ayele, David Ifeoluwa Adelani, Ibrahim Said Ahmad, Saminu Mohammad Aliyu, Nelson Odhiambo Onyango, Lilian D. A. Wanzare, Samuel Rutunda, Lukman Jibril Aliyu, Esubalew Alemneh, Oumaima Hourrane, Hagos Tesfahun Gebremichael, Elyas Abdi Ismail, Meriem Beloucif, Ebrahim Chekol Jibril, Andiswa Bukula, Rooweither Mabuya, Salomey Osei, Abigail Oppong, Tadesse Destaw Belay, Tadesse Kebede Guge, Tesfa Tegegne Asfaw, Chiamaka Ijeoma Chukwuneke, Paul Röttger, Seid Muhie Yimam, Nedjma Ousidhoum
Title: AfriHate: A Multilingual Collection of Hate Speech and Abusive Language Datasets for African Languages
Abstract:
Hate speech and abusive language are global phenomena that need socio-cultural background knowledge to be understood, identified, and moderated. However, in many regions of the Global South, there have been several documented occurrences of (1) absence of moderation and (2) censorship due to the reliance on keyword spotting out of context. Further, high-profile individuals have frequently been at the center of the moderation process, while large and targeted hate speech campaigns against minorities have been overlooked. These limitations are mainly due to the lack of high-quality data in the local languages and the failure to include local communities in the collection, annotation, and moderation processes. To address this issue, we present AfriHate: a multilingual collection of hate speech and abusive language datasets in 15 African languages. Each instance in AfriHate is annotated by native speakers familiar with the local culture. We report the challenges related to the construction of the datasets and present various classification baseline results with and without using LLMs. The datasets, individual annotations, and hate speech and offensive language lexicons are available on https://github.com/AfriHate/AfriHate

Authors:Hongyu Li, Jinyu Chen, Ziyu Wei, Shaofei Huang, Tianrui Hui, Jialin Gao, Xiaoming Wei, Si Liu
Title: LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding
Abstract:
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .

Authors:Rui Daniel, M. Rita Verdelho, Catarina Barata, Carlos Santiago
Title: Continual Deep Active Learning for Medical Imaging: Replay-Base Architecture for Context Adaptation
Abstract:
Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts. Additionally, it often lacks sufficient labeled data for specific tasks requiring significant annotation effort. Continual Learning (CL) tackles adaptability and generalizability by enabling lifelong learning from a data stream while mitigating forgetting of previously learned knowledge. Active Learning (AL) reduces the number of required annotations for effective training. This work explores both approaches (CAL) to develop a novel framework for robust medical image analysis. Based on the automatic recognition of shifts in image characteristics, Replay-Base Architecture for Context Adaptation (RBACA) employs a CL rehearsal method to continually learn from diverse contexts, and an AL component to select the most informative instances for annotation. A novel approach to evaluate CAL methods is established using a defined metric denominated IL-Score, which allows for the simultaneous assessment of transfer learning, forgetting, and final model performance. We show that RBACA works in domain and class-incremental learning scenarios, by assessing its IL-Score on the segmentation and diagnosis of cardiac images. The results show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets. Our code is available in https://github.com/RuiDaniel/RBACA .

Authors:Yabo Zhang, Xinpeng Zhou, Yihan Zeng, Hang Xu, Hui Li, Wangmeng Zuo
Title: FramePainter: Endowing Interactive Image Editing with Video Diffusion Priors
Abstract:
Interactive image editing allows users to modify images through visual interaction operations such as drawing, clicking, and dragging. Existing methods construct such supervision signals from videos, as they capture how objects change with various physical interactions. However, these models are usually built upon text-to-image diffusion models, so necessitate (i) massive training samples and (ii) an additional reference encoder to learn real-world dynamics and visual consistency. In this paper, we reformulate this task as an image-to-video generation problem, so that inherit powerful video diffusion priors to reduce training costs and ensure temporal consistency. Specifically, we introduce FramePainter as an efficient instantiation of this formulation. Initialized with Stable Video Diffusion, it only uses a lightweight sparse control encoder to inject editing signals. Considering the limitations of temporal attention in handling large motion between two frames, we further propose matching attention to enlarge the receptive field while encouraging dense correspondence between edited and source image tokens. We highlight the effectiveness and efficiency of FramePainter across various of editing signals: it domainantly outperforms previous state-of-the-art methods with far less training data, achieving highly seamless and coherent editing of images, \eg, automatically adjust the reflection of the cup. Moreover, FramePainter also exhibits exceptional generalization in scenarios not present in real-world videos, \eg, transform the clownfish into shark-like shape. Our code will be available at https://github.com/YBYBZhang/FramePainter.

Authors:Jinjun Peng, Leyi Cui, Kele Huang, Junfeng Yang, Baishakhi Ray
Title: CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation
Abstract:
Large Language Models (LLMs) have significantly aided developers by generating or assisting in code writing, enhancing productivity across various tasks. While identifying incorrect code is often straightforward, detecting vulnerabilities in functionally correct code is more challenging, especially for developers with limited security knowledge, which poses considerable security risks of using LLM-generated code and underscores the need for robust evaluation benchmarks that assess both functional correctness and security. Current benchmarks like CyberSecEval and SecurityEval attempt to solve it but are hindered by unclear and impractical specifications, failing to assess both functionality and security accurately. To tackle these deficiencies, we introduce CWEval, a novel outcome-driven evaluation framework designed to enhance the evaluation of secure code generation by LLMs. This framework not only assesses code functionality but also its security simultaneously with high-quality task specifications and outcome-driven test oracles which provides high accuracy. Coupled with CWEval-bench, a multilingual, security-critical coding benchmark, CWEval provides a rigorous empirical security evaluation on LLM-generated code, overcoming previous benchmarks' shortcomings. Through our evaluations, CWEval reveals a notable portion of functional but insecure code produced by LLMs, and shows a serious inaccuracy of previous evaluations, ultimately contributing significantly to the field of secure code generation. We open-source our artifact at: https://github.com/Co1lin/CWEval .

Authors:Yijiong Yu, Ziyun Dai, Zekun Wang, Wei Wang, Ran Chen, Ji Pei
Title: OpenCSG Chinese Corpus: A Series of High-quality Chinese Datasets for LLM Training
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs.

Authors:Yin Fang, Xinle Deng, Kangwei Liu, Ningyu Zhang, Jingyang Qian, Penghui Yang, Xiaohui Fan, Huajun Chen
Title: A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
Abstract:
Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.

Authors:Qian Zeng, Jie Song, Han Zheng, Hao Jiang, Mingli Song
Title: D$^2$-DPM: Dual Denoising for Quantized Diffusion Probabilistic Models
Abstract:
Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.

Authors:Marcel Rogge, Didier Stricker
Title: Object-Centric 2D Gaussian Splatting: Background Removal and Occlusion-Aware Pruning for Compact Object Models
Abstract:
Current Gaussian Splatting approaches are effective for reconstructing entire scenes but lack the option to target specific objects, making them computationally expensive and unsuitable for object-specific applications. We propose a novel approach that leverages object masks to enable targeted reconstruction, resulting in object-centric models. Additionally, we introduce an occlusion-aware pruning strategy to minimize the number of Gaussians without compromising quality. Our method reconstructs compact object models, yielding object-centric Gaussian and mesh representations that are up to 96% smaller and up to 71% faster to train compared to the baseline while retaining competitive quality. These representations are immediately usable for downstream applications such as appearance editing and physics simulation without additional processing.

Authors:Hanene F. Z. Brachemi Meftah, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Déforges, Kassem Kallas
Title: Energy Backdoor Attack to Deep Neural Networks
Abstract:
The rise of deep learning (DL) has increased computing complexity and energy use, prompting the adoption of application specific integrated circuits (ASICs) for energy-efficient edge and mobile deployment. However, recent studies have demonstrated the vulnerability of these accelerators to energy attacks. Despite the development of various inference time energy attacks in prior research, backdoor energy attacks remain unexplored. In this paper, we design an innovative energy backdoor attack against deep neural networks (DNNs) operating on sparsity-based accelerators. Our attack is carried out in two distinct phases: backdoor injection and backdoor stealthiness. Experimental results using ResNet-18 and MobileNet-V2 models trained on CIFAR-10 and Tiny ImageNet datasets show the effectiveness of our proposed attack in increasing energy consumption on trigger samples while preserving the model's performance for clean/regular inputs. This demonstrates the vulnerability of DNNs to energy backdoor attacks. The source code of our attack is available at: https://github.com/hbrachemi/energy_backdoor.

Authors:Xudong Wang, Qingbo Hao, Xu Cheng, Yingyuan Xiao
Title: UFGraphFR: Graph Federation Recommendation System based on User Text description features
Abstract:
Federated learning has emerged as a key paradigm in privacy-preserving computing due to its "data usable but not visible" property, enabling users to collaboratively train models without sharing raw data. Motivated by this, federated recommendation systems offer a promising architecture that balances user privacy with recommendation accuracy through distributed collaborative learning. However, existing federated recommendation methods often neglect the underlying semantic or behavioral relationships between users during parameter aggregation, which limits their recommendation effectiveness. To overcome this limitation, graph-based federated recommendation systems have been proposed to leverage neighborhood information. Yet, conventional graph construction methods usually require access to raw user data or explicit social links, which contradicts the strict privacy requirements of federated learning. In this work, we propose UFGraphFR (User Text-feature-based Graph Federated Recommendation), a novel personalized federated recommendation framework that constructs a user graph based on clients' locally embedded text features. Our core assumption is that users with similar textual feature descriptions exhibit similar preferences. Accordingly, UFGraphFR introduces two key components: (1) a privacy-preserving user relationship graph constructed from the joint embedding layer's weight matrix without leaking raw user attributes; (2) a Transformer-based architecture to model temporal dependencies in user-item interaction sequences. Experimental results on benchmark datasets such as MovieLens and HetRec2011 demonstrate that UFGraphFR achieves recommendation accuracy comparable to both centralized and state-of-the-art federated baselines while preserving user privacy. The code is available at: https://github.com/trueWangSyutung/UFGraphFR.

Authors:Xiao Xu, Qiong Wu, Pingyi Fan, Kezhi Wang
Title: Enhanced SPS Velocity-adaptive Scheme: Access Fairness in 5G NR V2I Networks
Abstract:
Vehicle-to-Infrastructure (V2I) technology enables information exchange between vehicles and road infrastructure. Specifically, when a vehicle approaches a roadside unit (RSU), it can exchange information with the RSU to obtain accurate data that assists in driving. With the release of the 3rd Generation Partnership Project (3GPP) Release 16, which includes the 5G New Radio (NR) Vehicle-to-Everything (V2X) standards, vehicles typically adopt mode-2 communication using sensing-based semi-persistent scheduling (SPS) for resource allocation. In this approach, vehicles identify candidate resources within a selection window and exclude ineligible resources based on information from a sensing window. However, vehicles often drive at different speeds, resulting in varying amounts of data transmission with RSUs as they pass by, which leads to unfair access. Therefore, it is essential to design an access scheme that accounts for different vehicle speeds to achieve fair access across the network. This paper formulates an optimization problem for vehicular networks and proposes a multi-objective optimization scheme to address it by adjusting the selection window in the SPS mechanism of 5G NR V2I mode-2. Simulation results demonstrate the effectiveness of the proposed scheme

Authors:Attila Répai, Sándor Földi, Péter Sótonyi, György Cserey
Title: An Open Source Validation System for Continuous Arterial Blood Pressure Measuring Sensors
Abstract:
Measuring the blood pressure waveform is becoming a more frequently studied area. The development of sensor technologies opens many new ways to be able to measure high-quality signals. The development of such an aim-specific sensor can be time-consuming, expensive, and difficult to test or validate with known and consistent waveforms. In this paper, we present an open source blood pressure waveform simulator with an open source Python validation package to reduce development costs for early-stage sensor development and research. The simulator mainly consists of 3D printed parts which technology has become a widely available and cheap solution. The core part of the simulator is a 3D printed cam that can be generated based on real blood pressure waveforms. The validation framework can create a detailed comparison between the signal waveform used to design the cam and the measured time series from the sensor being validated. The presented simulator proved to be robust and accurate in short- and long-term use, as it produced the signal waveform consistently and accurately. To validate this solution, a 3D force sensor was used, which was proven earlier to be able to measure high-quality blood pressure waveforms on the radial artery at the wrist. The results showed high similarity between the measured and the nominal waveforms, meaning that comparing the normalized signals, the RMSE value ranged from $0.0276 \pm 0.0047$ to $0.0212 \pm 0.0023$, and the Pearson correlation ranged from $0.9933 \pm 0.0027$ to $0.9978 \pm 0.0005$. Our validation framework is available at https://github.com/repat8/cam-bpw-sim. Our hardware framework, which allows reproduction of the presented solution, is available at https://github.com/repat8/cam-bpw-sim-hardware. The entire design is an open source project and was developed using free software.

Authors:Jiaqi Hua, Wanxu Wei
Title: Self-Instruct Few-Shot Jailbreaking: Decompose the Attack into Pattern and Behavior Learning
Abstract:
Recently, several works have been conducted on jailbreaking Large Language Models (LLMs) with few-shot malicious demos. In particular, Zheng et al. focus on improving the efficiency of Few-Shot Jailbreaking (FSJ) by injecting special tokens into the demos and employing demo-level random search, known as Improved Few-Shot Jailbreaking (I-FSJ). Nevertheless, we notice that this method may still require a long context to jailbreak advanced models e.g. 32 shots of demos for Meta-Llama-3-8B-Instruct (Llama-3) \cite{llama3modelcard}. In this paper, we discuss the limitations of I-FSJ and propose Self-Instruct Few-Shot Jailbreaking (Self-Instruct-FSJ) facilitated with the demo-level greedy search. This framework decomposes the FSJ attack into pattern and behavior learning to exploit the model's vulnerabilities in a more generalized and efficient way. We conduct elaborate experiments to evaluate our method on common open-source models and compare it with baseline algorithms. Our code is available at https://github.com/iphosi/Self-Instruct-FSJ.

Authors:Thibaut Boissin, Franck Mamalet, Thomas Fel, Agustin Martin Picard, Thomas Massena, Mathieu Serrurier
Title: An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures
Abstract:
Orthogonal convolutional layers are valuable components in multiple areas of machine learning, such as adversarial robustness, normalizing flows, GANs, and Lipschitz-constrained models. Their ability to preserve norms and ensure stable gradient propagation makes them valuable for a large range of problems. Despite their promise, the deployment of orthogonal convolution in large-scale applications is a significant challenge due to computational overhead and limited support for modern features like strides, dilations, group convolutions, and transposed convolutions. In this paper, we introduce AOC (Adaptative Orthogonal Convolution), a scalable method that extends a previous method (BCOP), effectively overcoming existing limitations in the construction of orthogonal convolutions. This advancement unlocks the construction of architectures that were previously considered impractical. We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale. To foster further advancement, we provide an open-source python package implementing this method, called Orthogonium ( https://github.com/deel-ai/orthogonium ) .

Authors:Mohamed A. Taha
Title: Logarithmic Memory Networks (LMNs): Efficient Long-Range Sequence Modeling for Resource-Constrained Environments
Abstract:
Long-range sequence modeling is a crucial aspect of natural language processing and time series analysis. However, traditional models like Recurrent Neural Networks (RNNs) and Transformers suffer from computational and memory inefficiencies, especially when dealing with long sequences. This paper introduces Logarithmic Memory Networks (LMNs), a novel architecture that leverages a hierarchical logarithmic tree structure to efficiently store and retrieve past information. LMNs dynamically summarize historical context, significantly reducing the memory footprint and computational complexity of attention mechanisms from O(n2) to O(log(n)). The model employs a single-vector, targeted attention mechanism to access stored information, and the memory block construction worker (summarizer) layer operates in two modes: a parallel execution mode during training for efficient processing of hierarchical tree structures and a sequential execution mode during inference, which acts as a memory management system. It also implicitly encodes positional information, eliminating the need for explicit positional encodings. These features make LMNs a robust and scalable solution for processing long-range sequences in resource-constrained environments, offering practical improvements in efficiency and scalability. The code is publicly available under the MIT License on GitHub: https://github.com/AhmedBoin/LogarithmicMemory.

Authors:Yaowen Ye, Cassidy Laidlaw, Jacob Steinhardt
Title: Iterative Label Refinement Matters More than Preference Optimization under Weak Supervision
Abstract:
Language model (LM) post-training relies on two stages of human supervision: task demonstrations for supervised finetuning (SFT), followed by preference comparisons for reinforcement learning from human feedback (RLHF). As LMs become more capable, the tasks they are given become harder to supervise. Will post-training remain effective under unreliable supervision? To test this, we simulate unreliable demonstrations and comparison feedback using small LMs and time-constrained humans. We find that in the presence of unreliable supervision, SFT still retains some effectiveness, but DPO (a common RLHF algorithm) fails to improve the model beyond SFT. To address this, we propose iterative label refinement (ILR) as an alternative to RLHF. ILR improves the SFT data by using comparison feedback to decide whether human demonstrations should be replaced by model-generated alternatives, then retrains the model via SFT on the updated data. SFT+ILR outperforms SFT+DPO on several tasks with unreliable supervision (math, coding, and safe instruction-following). Our findings suggest that as LMs are used for complex tasks where human supervision is unreliable, RLHF may no longer be the best use of human comparison feedback; instead, it is better to direct feedback towards improving the training data rather than continually training the model. Our code and data are available at https://github.com/helloelwin/iterative-label-refinement.

Authors:Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, Tongliang Liu
Title: Flow: Modularized Agentic Workflow Automation
Abstract:
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution. However, the effective adjustment of agentic workflows during execution has not been well studied. An effective workflow adjustment is crucial in real-world scenarios, as the initial plan must adjust to unforeseen challenges and changing conditions in real time to ensure the efficient execution of complex tasks. In this paper, we define workflows as an activity-on-vertex (AOV) graph, which allows continuous workflow refinement by LLM agents through dynamic subtask allocation adjustment based on historical performance and previous AOVs. To further enhance framework performance, we emphasize modularity in workflow design based on evaluating parallelism and dependency complexity. With this design, our proposed multi-agent framework achieves efficient concurrent execution of subtasks, effective goal achievement, and enhanced error tolerance. Empirical results across various practical tasks demonstrate significant improvements in the efficiency of multi-agent frameworks through dynamic workflow refinement and modularization. The code is available at: https://github.com/tmllab/2025_ICLR_FLOW.

Authors:Yunzhi Zhuge, Hongyu Gu, Lu Zhang, Jinqing Qi, Huchuan Lu
Title: Learning Motion and Temporal Cues for Unsupervised Video Object Segmentation
Abstract:
In this paper, we address the challenges in unsupervised video object segmentation (UVOS) by proposing an efficient algorithm, termed MTNet, which concurrently exploits motion and temporal cues. Unlike previous methods that focus solely on integrating appearance with motion or on modeling temporal relations, our method combines both aspects by integrating them within a unified framework. MTNet is devised by effectively merging appearance and motion features during the feature extraction process within encoders, promoting a more complementary representation. To capture the intricate long-range contextual dynamics and information embedded within videos, a temporal transformer module is introduced, facilitating efficacious inter-frame interactions throughout a video clip. Furthermore, we employ a cascade of decoders all feature levels across all feature levels to optimally exploit the derived features, aiming to generate increasingly precise segmentation masks. As a result, MTNet provides a strong and compact framework that explores both temporal and cross-modality knowledge to robustly localize and track the primary object accurately in various challenging scenarios efficiently. Extensive experiments across diverse benchmarks conclusively show that our method not only attains state-of-the-art performance in unsupervised video object segmentation but also delivers competitive results in video salient object detection. These findings highlight the method's robust versatility and its adeptness in adapting to a range of segmentation tasks. Source code is available on https://github.com/hy0523/MTNet.

Authors:Zhaokai Wang, Xizhou Zhu, Xue Yang, Gen Luo, Hao Li, Changyao Tian, Wenhan Dou, Junqi Ge, Lewei Lu, Yu Qiao, Jifeng Dai
Title: Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding
Abstract:
Image pyramids are widely adopted in top-performing methods to obtain multi-scale features for precise visual perception and understanding. However, current image pyramids use the same large-scale model to process multiple resolutions of images, leading to significant computational cost. To address this challenge, we propose a novel network architecture, called Parameter-Inverted Image Pyramid Networks (PIIP). Specifically, PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance. To integrate information from different spatial scales, we further propose a novel cross-branch feature interaction mechanism. To validate PIIP, we apply it to various perception models and a representative multimodal large language model called LLaVA, and conduct extensive experiments on various tasks such as object detection, segmentation, image classification and multimodal understanding. PIIP achieves superior performance compared to single-branch and existing multi-resolution approaches with lower computational cost. When applied to InternViT-6B, a large-scale vision foundation model, PIIP can improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation, finally achieving 60.0 box AP on MS COCO and 59.7 mIoU on ADE20K. For multimodal understanding, our PIIP-LLaVA achieves 73.0% accuracy on TextVQA and 74.5% on MMBench with only 2.8M training data. Our code is released at https://github.com/OpenGVLab/PIIP.

Authors:Jiacheng Cui, Zhaoyi Li, Xiaochen Ma, Xinyue Bi, Yaxin Luo, Zhiqiang Shen
Title: Dataset Distillation via Committee Voting
Abstract:
Dataset distillation aims to synthesize a smaller, representative dataset that preserves the essential properties of the original data, enabling efficient model training with reduced computational resources. Prior work has primarily focused on improving the alignment or matching process between original and synthetic data, or on enhancing the efficiency of distilling large datasets. In this work, we introduce ${\bf C}$ommittee ${\bf V}$oting for ${\bf D}$ataset ${\bf D}$istillation (CV-DD), a novel and orthogonal approach that leverages the collective wisdom of multiple models or experts to create high-quality distilled datasets. We start by showing how to establish a strong baseline that already achieves state-of-the-art accuracy through leveraging recent advancements and thoughtful adjustments in model design and optimization processes. By integrating distributions and predictions from a committee of models while generating high-quality soft labels, our method captures a wider spectrum of data features, reduces model-specific biases and the adverse effects of distribution shifts, leading to significant improvements in generalization. This voting-based strategy not only promotes diversity and robustness within the distilled dataset but also significantly reduces overfitting, resulting in improved performance on post-eval tasks. Extensive experiments across various datasets and IPCs (images per class) demonstrate that Committee Voting leads to more reliable and adaptable distilled data compared to single/multi-model distillation methods, demonstrating its potential for efficient and accurate dataset distillation. Code is available at: https://github.com/Jiacheng8/CV-DD.

Authors:Varun Biyyala, Bharat Chanderprakash Kathuria, Jialu Li, Youshan Zhang
Title: SST-EM: Advanced Metrics for Evaluating Semantic, Spatial and Temporal Aspects in Video Editing
Abstract:
Video editing models have advanced significantly, but evaluating their performance remains challenging. Traditional metrics, such as CLIP text and image scores, often fall short: text scores are limited by inadequate training data and hierarchical dependencies, while image scores fail to assess temporal consistency. We present SST-EM (Semantic, Spatial, and Temporal Evaluation Metric), a novel evaluation framework that leverages modern Vision-Language Models (VLMs), Object Detection, and Temporal Consistency checks. SST-EM comprises four components: (1) semantic extraction from frames using a VLM, (2) primary object tracking with Object Detection, (3) focused object refinement via an LLM agent, and (4) temporal consistency assessment using a Vision Transformer (ViT). These components are integrated into a unified metric with weights derived from human evaluations and regression analysis. The name SST-EM reflects its focus on Semantic, Spatial, and Temporal aspects of video evaluation. SST-EM provides a comprehensive evaluation of semantic fidelity and temporal smoothness in video editing. The source code is available in the \textbf{\href{https://github.com/custommetrics-sst/SST_CustomEvaluationMetrics.git}{GitHub Repository}}.

Authors:Shiman Zhang, Lakshmikar Reddy Polamreddy, Youshan Zhang
Title: Confident Pseudo-labeled Diffusion Augmentation for Canine Cardiomegaly Detection
Abstract:
Canine cardiomegaly, marked by an enlarged heart, poses serious health risks if undetected, requiring accurate diagnostic methods. Current detection models often rely on small, poorly annotated datasets and struggle to generalize across diverse imaging conditions, limiting their real-world applicability. To address these issues, we propose a Confident Pseudo-labeled Diffusion Augmentation (CDA) model for identifying canine cardiomegaly. Our approach addresses the challenge of limited high-quality training data by employing diffusion models to generate synthetic X-ray images and annotate Vertebral Heart Score key points, thereby expanding the dataset. We also employ a pseudo-labeling strategy with Monte Carlo Dropout to select high-confidence labels, refine the synthetic dataset, and improve accuracy. Iteratively incorporating these labels enhances the model's performance, overcoming the limitations of existing approaches. Experimental results show that the CDA model outperforms traditional methods, achieving state-of-the-art accuracy in canine cardiomegaly detection. The code implementation is available at https://github.com/Shira7z/CDA.

Authors:Difei Gu, Yunhe Gao, Yang Zhou, Mu Zhou, Dimitris Metaxas
Title: RadAlign: Advancing Radiology Report Generation with Vision-Language Concept Alignment
Abstract:
Automated chest radiographs interpretation requires both accurate disease classification and detailed radiology report generation, presenting a significant challenge in the clinical workflow. Current approaches either focus on classification accuracy at the expense of interpretability or generate detailed but potentially unreliable reports through image captioning techniques. In this study, we present RadAlign, a novel framework that combines the predictive accuracy of vision-language models (VLMs) with the reasoning capabilities of large language models (LLMs). Inspired by the radiologist's workflow, RadAlign first employs a specialized VLM to align visual features with key medical concepts, achieving superior disease classification with an average AUC of 0.885 across multiple diseases. These recognized medical conditions, represented as text-based concepts in the aligned visual-language space, are then used to prompt LLM-based report generation. Enhanced by a retrieval-augmented generation mechanism that grounds outputs in similar historical cases, RadAlign delivers superior report quality with a GREEN score of 0.678, outperforming state-of-the-art methods' 0.634. Our framework maintains strong clinical interpretability while reducing hallucinations, advancing automated medical imaging and report analysis through integrated predictive and generative AI. Code is available at https://github.com/difeigu/RadAlign.

Authors:Yaqing Ding, Viktor Kocur, Zuzana Berger Haladová, Qianliang Wu, Shen Cai, Jian Yang, Zuzana Kukelova
Title: Three-view Focal Length Recovery From Homographies
Abstract:
In this paper, we propose a novel approach for recovering focal lengths from three-view homographies. By examining the consistency of normal vectors between two homographies, we derive new explicit constraints between the focal lengths and homographies using an elimination technique. We demonstrate that three-view homographies provide two additional constraints, enabling the recovery of one or two focal lengths. We discuss four possible cases, including three cameras having an unknown equal focal length, three cameras having two different unknown focal lengths, three cameras where one focal length is known, and the other two cameras have equal or different unknown focal lengths. All the problems can be converted into solving polynomials in one or two unknowns, which can be efficiently solved using Sturm sequence or hidden variable technique. Evaluation using both synthetic and real data shows that the proposed solvers are both faster and more accurate than methods relying on existing two-view solvers. The code and data are available on https://github.com/kocurvik/hf

Authors:Wenping Jin, Li Zhu, Jing Sun
Title: Aligning First, Then Fusing: A Novel Weakly Supervised Multimodal Violence Detection Method
Abstract:
Weakly supervised violence detection refers to the technique of training models to identify violent segments in videos using only video-level labels. Among these approaches, multimodal violence detection, which integrates modalities such as audio and optical flow, holds great potential. Existing methods in this domain primarily focus on designing multimodal fusion models to address modality discrepancies. In contrast, we take a different approach; leveraging the inherent discrepancies across modalities in violence event representation to propose a novel multimodal semantic feature alignment method. This method sparsely maps the semantic features of local, transient, and less informative modalities ( such as audio and optical flow ) into the more informative RGB semantic feature space. Through an iterative process, the method identifies the suitable no-zero feature matching subspace and aligns the modality-specific event representations based on this subspace, enabling the full exploitation of information from all modalities during the subsequent modality fusion stage. Building on this, we design a new weakly supervised violence detection framework that consists of unimodal multiple-instance learning for extracting unimodal semantic features, multimodal alignment, multimodal fusion, and final detection. Experimental results on benchmark datasets demonstrate the effectiveness of our method, achieving an average precision (AP) of 86.07% on the XD-Violence dataset. Our code is available at https://github.com/xjpp2016/MAVD.

Authors:Denis Lochmelis, Evgenii Moiseenko, Yaroslav Golubev, Anton Podkopaev
Title: LitmusKt: Concurrency Stress Testing for Kotlin
Abstract:
We present LitmusKt - the first tool for litmus testing concurrent programs in Kotlin. The tool's novelty also lies in the fact that Kotlin is a multiplatform language, i.e., it compiles into multiple platforms, which means that the concurrency has to be tested on several of them. Our tool allows writing litmus tests in a single custom DSL, and these tests are then run in Kotlin/Native and Kotlin/JVM, two main platforms for concurrent programming in Kotlin. Using LitmusKt, we discovered novel bugs in the Kotlin compiler, which we then fixed and they are no longer present. Moreover, LitmusKt was integrated into the CI pipeline for Kotlin. LitmusKt is available on GitHub: https://github.com/JetBrains-Research/litmuskt. The demo is available on YouTube: https://youtu.be/oWCZp_Huwss.

Authors:Fabio Montello, Ronja Güldenring, Simone Scardapane, Lazaros Nalpantidis
Title: A Survey on Dynamic Neural Networks: from Computer Vision to Multi-modal Sensor Fusion
Abstract:
Model compression is essential in the deployment of large Computer Vision models on embedded devices. However, static optimization techniques (e.g. pruning, quantization, etc.) neglect the fact that different inputs have different complexities, thus requiring different amount of computations. Dynamic Neural Networks allow to condition the number of computations to the specific input. The current literature on the topic is very extensive and fragmented. We present a comprehensive survey that synthesizes and unifies existing Dynamic Neural Networks research in the context of Computer Vision. Additionally, we provide a logical taxonomy based on which component of the network is adaptive: the output, the computation graph or the input. Furthermore, we argue that Dynamic Neural Networks are particularly beneficial in the context of Sensor Fusion for better adaptivity, noise reduction and information prioritization. We present preliminary works in this direction. We complement this survey with a curated repository listing all the surveyed papers, each with a brief summary of the solution and the code base when available: https://github.com/DTU-PAS/awesome-dynn-for-cv .

Authors:Brendan Mallery, James M. Murphy, Shuchin Aeron
Title: Synthesis and Analysis of Data as Probability Measures with Entropy-Regularized Optimal Transport
Abstract:
We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of reference measures given a set of coefficients belonging to the simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of barycenters with respect to the entropy-regularized Wasserstein-2 cost as solutions that correspond to a fixed point of an average of the entropy-regularized displacement maps. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when the measure being analyzed is a barycenter with respect to the entropy-regularized Wasserstein-2 cost. We show that these coefficients, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, and that barycentric coefficients are stable with respect to perturbations in the Wasserstein-2 metric. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes.

Authors:Daniel Steininger, Julia Simon, Andreas Trondl, Markus Murschitz
Title: TimberVision: A Multi-Task Dataset and Framework for Log-Component Segmentation and Tracking in Autonomous Forestry Operations
Abstract:
Timber represents an increasingly valuable and versatile resource. However, forestry operations such as harvesting, handling and measuring logs still require substantial human labor in remote environments posing significant safety risks. Progressively automating these tasks has the potential of increasing their efficiency as well as safety, but requires an accurate detection of individual logs as well as live trees and their context. Although initial approaches have been proposed for this challenging application domain, specialized data and algorithms are still too scarce to develop robust solutions. To mitigate this gap, we introduce the TimberVision dataset, consisting of more than 2k annotated RGB images containing a total of 51k trunk components including cut and lateral surfaces, thereby surpassing any existing dataset in this domain in terms of both quantity and detail by a large margin. Based on this data, we conduct a series of ablation experiments for oriented object detection and instance segmentation and evaluate the influence of multiple scene parameters on model performance. We introduce a generic framework to fuse the components detected by our models for both tasks into unified trunk representations. Furthermore, we automatically derive geometric properties and apply multi-object tracking to further enhance robustness. Our detection and tracking approach provides highly descriptive and accurate trunk representations solely from RGB image data, even under challenging environmental conditions. Our solution is suitable for a wide range of application scenarios and can be readily combined with other sensor modalities.

Authors:Haochuan Zhang, Chunhua Yang, Jie Han, Liyang Qin, Xiaoli Wang
Title: TempoGPT: Enhancing Time Series Reasoning via Quantizing Embedding
Abstract:
Multi-modal language model has made advanced progress in vision and audio, but still faces significant challenges in dealing with complex reasoning tasks in the time series domain. The reasons are twofold. First, labels for multi-modal time series data are coarse and devoid of analysis or reasoning processes. Training with these data cannot improve the model's reasoning capabilities. Second, due to the lack of precise tokenization in processing time series, the representation patterns for temporal and textual information are inconsistent, which hampers the effectiveness of multi-modal alignment. To address these challenges, we propose a multi-modal time series data construction approach and a multi-modal time series language model (TLM), TempoGPT. Specially, we construct multi-modal data for complex reasoning tasks by analyzing the variable-system relationships within a white-box system. Additionally, proposed TempoGPT achieves consistent representation between temporal and textual information by quantizing temporal embeddings, where temporal embeddings are quantized into a series of discrete tokens using a predefined codebook; subsequently, a shared embedding layer processes both temporal and textual tokens. Extensive experiments demonstrate that TempoGPT accurately perceives temporal information, logically infers conclusions, and achieves state-of-the-art in the constructed complex time series reasoning tasks. Moreover, we quantitatively demonstrate the effectiveness of quantizing temporal embeddings in enhancing multi-modal alignment and the reasoning capabilities of TLMs. Code and data are available at https://github.com/zhanghaochuan20/TempoGPT.

Authors:A. Erkhov, A. Bazhenov, S. Satsevich, D. Belov, F. Khabibullin, S. Egorov, M. Gromakov, M. Altamirano Cabrera, D. Tsetserukou
Title: ViewVR: Visual Feedback Modes to Achieve Quality of VR-based Telemanipulation
Abstract:
The paper focuses on an immersive teleoperation system that enhances operator's ability to actively perceive the robot's surroundings. A consumer-grade HTC Vive VR system was used to synchronize the operator's hand and head movements with a UR3 robot and a custom-built robotic head with two degrees of freedom (2-DoF). The system's usability, manipulation efficiency, and intuitiveness of control were evaluated in comparison with static head camera positioning across three distinct tasks. Code and other supplementary materials can be accessed by link: https://github.com/ErkhovArtem/ViewVR

Authors:Zhimeng Xin, Tianxu Wu, Shiming Chen, Shuo Ye, Zijing Xie, Yixiong Zou, Xinge You, Yufei Guo
Title: Toward Realistic Camouflaged Object Detection: Benchmarks and Method
Abstract:
Camouflaged object detection (COD) primarily relies on semantic or instance segmentation methods. While these methods have made significant advancements in identifying the contours of camouflaged objects, they may be inefficient or cost-effective for tasks that only require the specific location of the object. Object detection algorithms offer an optimized solution for Realistic Camouflaged Object Detection (RCOD) in such cases. However, detecting camouflaged objects remains a formidable challenge due to the high degree of similarity between the features of the objects and their backgrounds. Unlike segmentation methods that perform pixel-wise comparisons to differentiate between foreground and background, object detectors omit this analysis, further aggravating the challenge. To solve this problem, we propose a camouflage-aware feature refinement (CAFR) strategy. Since camouflaged objects are not rare categories, CAFR fully utilizes a clear perception of the current object within the prior knowledge of large models to assist detectors in deeply understanding the distinctions between background and foreground. Specifically, in CAFR, we introduce the Adaptive Gradient Propagation (AGP) module that fine-tunes all feature extractor layers in large detection models to fully refine class-specific features from camouflaged contexts. We then design the Sparse Feature Refinement (SFR) module that optimizes the transformer-based feature extractor to focus primarily on capturing class-specific features in camouflaged scenarios. To facilitate the assessment of RCOD tasks, we manually annotate the labels required for detection on three existing segmentation COD datasets, creating a new benchmark for RCOD tasks. Code and datasets are available at: https://github.com/zhimengXin/RCOD.

Authors:Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, Qianli Ma
Title: Lifelong Learning of Large Language Model based Agents: A Roadmap
Abstract:
Lifelong learning, also known as continual or incremental learning, is a crucial component for advancing Artificial General Intelligence (AGI) by enabling systems to continuously adapt in dynamic environments. While large language models (LLMs) have demonstrated impressive capabilities in natural language processing, existing LLM agents are typically designed for static systems and lack the ability to adapt over time in response to new challenges. This survey is the first to systematically summarize the potential techniques for incorporating lifelong learning into LLM-based agents. We categorize the core components of these agents into three modules: the perception module for multimodal input integration, the memory module for storing and retrieving evolving knowledge, and the action module for grounded interactions with the dynamic environment. We highlight how these pillars collectively enable continuous adaptation, mitigate catastrophic forgetting, and improve long-term performance. This survey provides a roadmap for researchers and practitioners working to develop lifelong learning capabilities in LLM agents, offering insights into emerging trends, evaluation metrics, and application scenarios. Relevant literature and resources are available at \href{this url}{https://github.com/qianlima-lab/awesome-lifelong-llm-agent}.

Authors:Wenyan Xu, Jiayu Chen, Dawei Xiang, Chen Li, Yonghong Hu, Zhonghua Lu
Title: Mining Intraday Risk Factor Collections via Hierarchical Reinforcement Learning based on Transferred Options
Abstract:
Traditional risk factors like beta, size/value, and momentum often lag behind market dynamics in measuring and predicting stock return volatility. Statistical models like PCA and factor analysis fail to capture hidden nonlinear relationships. Genetic programming (GP) can identify nonlinear factors but often lacks mechanisms for evaluating factor quality, and the resulting formulas are complex. To address these challenges, we propose a Hierarchical Proximal Policy Optimization (HPPO) framework for automated factor generation and evaluation. HPPO uses two PPO models: a high-level policy assigns weights to stock features, and a low-level policy identifies latent nonlinear relationships. The Pearson correlation between generated factors and return volatility serves as the reward signal. Transfer learning pre-trains the high-level policy on large-scale historical data, fine-tuning it with the latest data to adapt to new features and shifts. Experiments show the HPPO-TO algorithm achieves a 25\% excess return in HFT markets across China (CSI 300/800), India (Nifty 100), and the US (S\&P 500). Code and data are available at https://github.com/wencyxu/HRL-HF_risk_factor_set.

Authors:Li Liang, Naveed Akhtar, Jordan Vice, Xiangrui Kong, Ajmal Saeed Mian
Title: Skip Mamba Diffusion for Monocular 3D Semantic Scene Completion
Abstract:
3D semantic scene completion is critical for multiple downstream tasks in autonomous systems. It estimates missing geometric and semantic information in the acquired scene data. Due to the challenging real-world conditions, this task usually demands complex models that process multi-modal data to achieve acceptable performance. We propose a unique neural model, leveraging advances from the state space and diffusion generative modeling to achieve remarkable 3D semantic scene completion performance with monocular image input. Our technique processes the data in the conditioned latent space of a variational autoencoder where diffusion modeling is carried out with an innovative state space technique. A key component of our neural network is the proposed Skimba (Skip Mamba) denoiser, which is adept at efficiently processing long-sequence data. The Skimba diffusion model is integral to our 3D scene completion network, incorporating a triple Mamba structure, dimensional decomposition residuals and varying dilations along three directions. We also adopt a variant of this network for the subsequent semantic segmentation stage of our method. Extensive evaluation on the standard SemanticKITTI and SSCBench-KITTI360 datasets show that our approach not only outperforms other monocular techniques by a large margin, it also achieves competitive performance against stereo methods. The code is available at https://github.com/xrkong/skimba

Authors:Chong Zhou, Chenchen Zhu, Yunyang Xiong, Saksham Suri, Fanyi Xiao, Lemeng Wu, Raghuraman Krishnamoorthi, Bo Dai, Chen Change Loy, Vikas Chandra, Bilge Soran
Title: EdgeTAM: On-Device Track Anything Model
Abstract:
On top of Segment Anything Model (SAM), SAM 2 further extends its capability from image to video inputs through a memory bank mechanism and obtains a remarkable performance compared with previous methods, making it a foundation model for video segmentation task. In this paper, we aim at making SAM 2 much more efficient so that it even runs on mobile devices while maintaining a comparable performance. Despite several works optimizing SAM for better efficiency, we find they are not sufficient for SAM 2 because they all focus on compressing the image encoder, while our benchmark shows that the newly introduced memory attention blocks are also the latency bottleneck. Given this observation, we propose EdgeTAM, which leverages a novel 2D Spatial Perceiver to reduce the computational cost. In particular, the proposed 2D Spatial Perceiver encodes the densely stored frame-level memories with a lightweight Transformer that contains a fixed set of learnable queries. Given that video segmentation is a dense prediction task, we find preserving the spatial structure of the memories is essential so that the queries are split into global-level and patch-level groups. We also propose a distillation pipeline that further improves the performance without inference overhead. As a result, EdgeTAM achieves 87.7, 70.0, 72.3, and 71.7 J&F on DAVIS 2017, MOSE, SA-V val, and SA-V test, while running at 16 FPS on iPhone 15 Pro Max.

Authors:Jie Tan, Yu Rong, Kangfei Zhao, Tian Bian, Tingyang Xu, Junzhou Huang, Hong Cheng, Helen Meng
Title: Natural Language-Assisted Multi-modal Medication Recommendation
Abstract:
Combinatorial medication recommendation(CMR) is a fundamental task of healthcare, which offers opportunities for clinical physicians to provide more precise prescriptions for patients with intricate health conditions, particularly in the scenarios of long-term medical care. Previous research efforts have sought to extract meaningful information from electronic health records (EHRs) to facilitate combinatorial medication recommendations. Existing learning-based approaches further consider the chemical structures of medications, but ignore the textual medication descriptions in which the functionalities are clearly described. Furthermore, the textual knowledge derived from the EHRs of patients remains largely underutilized. To address these issues, we introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR), a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly. Specifically, NLA-MMR formulates CMR as an alignment problem from patient and medication modalities. In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications, serving as the foundational representation for both modalities. In the medication modality, we exploit both chemical structures and textual descriptions to create medication representations. In the patient modality, we generate the patient representations based on textual descriptions of diagnosis, procedure, and symptom. Extensive experiments conducted on three publicly accessible datasets demonstrate that NLA-MMR achieves new state-of-the-art performance, with a notable average improvement of 4.72% in Jaccard score. Our source code is publicly available on https://github.com/jtan1102/NLA-MMR_CIKM_2024.

Authors:Jinlin Li, Xiao Zhou
Title: CureGraph: Contrastive Multi-Modal Graph Representation Learning for Urban Living Circle Health Profiling and Prediction
Abstract:
The early detection and prediction of health status decline among the elderly at the neighborhood level are of great significance for urban planning and public health policymaking. While existing studies affirm the connection between living environments and health outcomes, most rely on single data modalities or simplistic feature concatenation of multi-modal information, limiting their ability to comprehensively profile the health-oriented urban environments. To fill this gap, we propose CureGraph, a contrastive multi-modal representation learning framework for urban health prediction that employs graph-based techniques to infer the prevalence of common chronic diseases among the elderly within the urban living circles of each neighborhood. CureGraph leverages rich multi-modal information, including photos and textual reviews of residential areas and their surrounding points of interest, to generate urban neighborhood embeddings. By integrating pre-trained visual and textual encoders with graph modeling techniques, CureGraph captures cross-modal spatial dependencies, offering a comprehensive understanding of urban environments tailored to elderly health considerations. Extensive experiments on real-world datasets demonstrate that CureGraph improves the best baseline by $28\%$ on average in terms of $R^2$ across elderly disease risk prediction tasks. Moreover, the model enables the identification of stage-wise chronic disease progression and supports comparative public health analysis across neighborhoods, offering actionable insights for sustainable urban development and enhanced quality of life. The code is publicly available at https://github.com/jinlin2021/CureGraph.

Authors:Csaba Tóth, Danilo Jr Dela Cruz, Harald Oberhauser
Title: A User's Guide to $\texttt{KSig}$: GPU-Accelerated Computation of the Signature Kernel
Abstract:
The signature kernel is a positive definite kernel for sequential and temporal data that has become increasingly popular in machine learning applications due to powerful theoretical guarantees, strong empirical performance, and recently introduced various scalable variations. In this chapter, we give a short introduction to $\texttt{KSig}$, a $\texttt{Scikit-Learn}$ compatible Python package that implements various GPU-accelerated algorithms for computing signature kernels, and performing downstream learning tasks. We also introduce a new algorithm based on tensor sketches which gives strong performance compared to existing algorithms. The package is available at https://github.com/tgcsaba/ksig.

Authors:Han Liu, Yinwei Wei, Fan Liu, Wenjie Wang, Liqiang Nie, Tat-Seng Chua
Title: Dynamic Multimodal Fusion via Meta-Learning Towards Micro-Video Recommendation
Abstract:
Multimodal information (e.g., visual, acoustic, and textual) has been widely used to enhance representation learning for micro-video recommendation. For integrating multimodal information into a joint representation of micro-video, multimodal fusion plays a vital role in the existing micro-video recommendation approaches. However, the static multimodal fusion used in previous studies is insufficient to model the various relationships among multimodal information of different micro-videos. In this paper, we develop a novel meta-learning-based multimodal fusion framework called Meta Multimodal Fusion (MetaMMF), which dynamically assigns parameters to the multimodal fusion function for each micro-video during its representation learning. Specifically, MetaMMF regards the multimodal fusion of each micro-video as an independent task. Based on the meta information extracted from the multimodal features of the input task, MetaMMF parameterizes a neural network as the item-specific fusion function via a meta learner. We perform extensive experiments on three benchmark datasets, demonstrating the significant improvements over several state-of-the-art multimodal recommendation models, like MMGCN, LATTICE, and InvRL. Furthermore, we lighten our model by adopting canonical polyadic decomposition to improve the training efficiency, and validate its effectiveness through experimental results. Codes are available at https://github.com/hanliu95/MetaMMF.

Authors:Jason Du, Kelly Hong, Alishba Imran, Erfan Jahanparast, Mehdi Khfifi, Kaichun Qiao
Title: How GPT learns layer by layer
Abstract:
Large Language Models (LLMs) excel at tasks like language processing, strategy games, and reasoning but struggle to build generalizable internal representations essential for adaptive decision-making in agents. For agents to effectively navigate complex environments, they must construct reliable world models. While LLMs perform well on specific benchmarks, they often fail to generalize, leading to brittle representations that limit their real-world effectiveness. Understanding how LLMs build internal world models is key to developing agents capable of consistent, adaptive behavior across tasks. We analyze OthelloGPT, a GPT-based model trained on Othello gameplay, as a controlled testbed for studying representation learning. Despite being trained solely on next-token prediction with random valid moves, OthelloGPT shows meaningful layer-wise progression in understanding board state and gameplay. Early layers capture static attributes like board edges, while deeper layers reflect dynamic tile changes. To interpret these representations, we compare Sparse Autoencoders (SAEs) with linear probes, finding that SAEs offer more robust, disentangled insights into compositional features, whereas linear probes mainly detect features useful for classification. We use SAEs to decode features related to tile color and tile stability, a previously unexamined feature that reflects complex gameplay concepts like board control and long-term planning. We study the progression of linear probe accuracy and tile color using both SAE's and linear probes to compare their effectiveness at capturing what the model is learning. Although we begin with a smaller language model, OthelloGPT, this study establishes a framework for understanding the internal representations learned by GPT models, transformers, and LLMs more broadly. Our code is publicly available: https://github.com/ALT-JS/OthelloSAE.

Authors:Sieun Hyeon, Kyudan Jung, Nam-Joon Kim, Hyun Gon Ryu, Jaeyoung Do
Title: MathReader : Text-to-Speech for Mathematical Documents
Abstract:
TTS (Text-to-Speech) document reader from Microsoft, Adobe, Apple, and OpenAI have been serviced worldwide. They provide relatively good TTS results for general plain text, but sometimes skip contents or provide unsatisfactory results for mathematical expressions. This is because most modern academic papers are written in LaTeX, and when LaTeX formulas are compiled, they are rendered as distinctive text forms within the document. However, traditional TTS document readers output only the text as it is recognized, without considering the mathematical meaning of the formulas. To address this issue, we propose MathReader, which effectively integrates OCR, a fine-tuned T5 model, and TTS. MathReader demonstrated a lower Word Error Rate (WER) than existing TTS document readers, such as Microsoft Edge and Adobe Acrobat, when processing documents containing mathematical formulas. MathReader reduced the WER from 0.510 to 0.281 compared to Microsoft Edge, and from 0.617 to 0.281 compared to Adobe Acrobat. This will significantly contribute to alleviating the inconvenience faced by users who want to listen to documents, especially those who are visually impaired. The code is available at https://github.com/hyeonsieun/MathReader.

Authors:Yongyu Mu, Hengyu Li, Junxin Wang, Xiaoxuan Zhou, Chenglong Wang, Yingfeng Luo, Qiaozhi He, Tong Xiao, Guocheng Chen, Jingbo Zhu
Title: Boosting Text-To-Image Generation via Multilingual Prompting in Large Multimodal Models
Abstract:
Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I.

Authors:Jiayang Wu, Wensheng Gan, Jiahao Zhang, Philip S. Yu
Title: ADKGD: Anomaly Detection in Knowledge Graphs with Dual-Channel Training
Abstract:
In the current development of large language models (LLMs), it is important to ensure the accuracy and reliability of the underlying data sources. LLMs are critical for various applications, but they often suffer from hallucinations and inaccuracies due to knowledge gaps in the training data. Knowledge graphs (KGs), as a powerful structural tool, could serve as a vital external information source to mitigate the aforementioned issues. By providing a structured and comprehensive understanding of real-world data, KGs enhance the performance and reliability of LLMs. However, it is common that errors exist in KGs while extracting triplets from unstructured data to construct KGs. This could lead to degraded performance in downstream tasks such as question-answering and recommender systems. Therefore, anomaly detection in KGs is essential to identify and correct these errors. This paper presents an anomaly detection algorithm in knowledge graphs with dual-channel learning (ADKGD). ADKGD leverages a dual-channel learning approach to enhance representation learning from both the entity-view and triplet-view perspectives. Furthermore, using a cross-layer approach, our framework integrates internal information aggregation and context information aggregation. We introduce a kullback-leibler (KL)-loss component to improve the accuracy of the scoring function between the dual channels. To evaluate ADKGD's performance, we conduct empirical studies on three real-world KGs: WN18RR, FB15K, and NELL-995. Experimental results demonstrate that ADKGD outperforms the state-of-the-art anomaly detection algorithms. The source code and datasets are publicly available at https://github.com/csjywu1/ADKGD.

Authors:Zhen Xiong, Yuqi Li, Chuanguang Yang, Tiao Tan, Zhihong Zhu, Siyuan Li, Yue Ma
Title: Enhancing Image Generation Fidelity via Progressive Prompts
Abstract:
The diffusion transformer (DiT) architecture has attracted significant attention in image generation, achieving better fidelity, performance, and diversity. However, most existing DiT - based image generation methods focus on global - aware synthesis, and regional prompt control has been less explored. In this paper, we propose a coarse - to - fine generation pipeline for regional prompt - following generation. Specifically, we first utilize the powerful large language model (LLM) to generate both high - level descriptions of the image (such as content, topic, and objects) and low - level descriptions (such as details and style). Then, we explore the influence of cross - attention layers at different depths. We find that deeper layers are always responsible for high - level content control, while shallow layers handle low - level content control. Various prompts are injected into the proposed regional cross - attention control for coarse - to - fine generation. By using the proposed pipeline, we enhance the controllability of DiT - based image generation. Extensive quantitative and qualitative results show that our pipeline can improve the performance of the generated images.

Authors:Minhui Xie, Hao Peng, Pu Li, Guangjie Zeng, Shuhai Wang, Jia Wu, Peng Li, Philip S. Yu
Title: Hierarchical Superpixel Segmentation via Structural Information Theory
Abstract:
Superpixel segmentation is a foundation for many higher-level computer vision tasks, such as image segmentation, object recognition, and scene understanding. Existing graph-based superpixel segmentation methods typically concentrate on the relationships between a given pixel and its directly adjacent pixels while overlooking the influence of non-adjacent pixels. These approaches do not fully leverage the global information in the graph, leading to suboptimal segmentation quality. To address this limitation, we present SIT-HSS, a hierarchical superpixel segmentation method based on structural information theory. Specifically, we first design a novel graph construction strategy that incrementally explores the pixel neighborhood to add edges based on 1-dimensional structural entropy (1D SE). This strategy maximizes the retention of graph information while avoiding an overly complex graph structure. Then, we design a new 2D SE-guided hierarchical graph partitioning method, which iteratively merges pixel clusters layer by layer to reduce the graph's 2D SE until a predefined segmentation scale is achieved. Experimental results on three benchmark datasets demonstrate that the SIT-HSS performs better than state-of-the-art unsupervised superpixel segmentation algorithms. The source code is available at \url{https://github.com/SELGroup/SIT-HSS}.

Authors:Yan Zhang, Haoqi Li, Ramtin Tabatabaei, Wafa Johal
Title: ROSAnnotator: A Web Application for ROSBag Data Analysis in Human-Robot Interaction
Abstract:
Human-robot interaction (HRI) is an interdisciplinary field that utilises both quantitative and qualitative methods. While ROSBags, a file format within the Robot Operating System (ROS), offer an efficient means of collecting temporally synched multimodal data in empirical studies with real robots, there is a lack of tools specifically designed to integrate qualitative coding and analysis functions with ROSBags. To address this gap, we developed ROSAnnotator, a web-based application that incorporates a multimodal Large Language Model (LLM) to support both manual and automated annotation of ROSBag data. ROSAnnotator currently facilitates video, audio, and transcription annotations and provides an open interface for custom ROS messages and tools. By using ROSAnnotator, researchers can streamline the qualitative analysis process, create a more cohesive analysis pipeline, and quickly access statistical summaries of annotations, thereby enhancing the overall efficiency of HRI data analysis. https://github.com/CHRI-Lab/ROSAnnotator

Authors:Jianming Tong, Tianhao Huang, Leo de Castro, Anirudh Itagi, Jingtian Dang, Anupam Golder, Asra Ali, Jevin Jiang, Arvind, G. Edward Suh, Tushar Krishna
Title: Leveraging ASIC AI Chips for Homomorphic Encryption
Abstract:
Cloud-based services are making the outsourcing of sensitive client data increasingly common. Although homomorphic encryption (HE) offers strong privacy guarantee, it requires substantially more resources than computing on plaintext, often leading to unacceptably large latencies in getting the results. HE accelerators have emerged to mitigate this latency issue, but with the high cost of ASICs. In this paper we show that HE primitives can be converted to AI operators and accelerated on existing ASIC AI accelerators, like TPUs, which are already widely deployed in the cloud. Adapting such accelerators for HE requires (1) supporting modular multiplication, (2) high-precision arithmetic in software, and (3) efficient mapping on matrix engines. We introduce the CROSS compiler (1) to adopt Barrett reduction to provide modular reduction support using multiplier and adder, (2) Basis Aligned Transformation (BAT) to convert high-precision multiplication as low-precision matrix-vector multiplication, (3) Matrix Aligned Transformation (MAT) to covert vectorized modular operation with reduction into matrix multiplication that can be efficiently processed on 2D spatial matrix engine. Our evaluation of CROSS on a Google TPUv4 demonstrates significant performance improvements, with up to 161x and 5x speedup compared to the previous work on many-core CPUs and V100. The kernel-level codes are open-sourced at https://github.com/google/jaxite/tree/main/jaxite_word.

Authors:Hoang-Thang Ta, Duy-Quy Thai, Anh Tran, Grigori Sidorov, Alexander Gelbukh
Title: PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks
Abstract:
Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures, offering a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers. By advancing network design, KANs drive groundbreaking research and enable transformative applications across various scientific domains involving neural networks. However, existing KANs often require significantly more parameters in their network layers than MLPs. To address this limitation, this paper introduces PRKANs (Parameter-Reduced Kolmogorov-Arnold Networks), which employ several methods to reduce the parameter count in KAN layers, making them comparable to MLP layers. Experimental results on the MNIST and Fashion-MNIST datasets demonstrate that PRKANs outperform several existing KANs, and their variant with attention mechanisms rivals the performance of MLPs, albeit with slightly longer training times. Furthermore, the study highlights the advantages of Gaussian Radial Basis Functions (GRBFs) and layer normalization in KAN designs. The repository for this work is available at: https://github.com/hoangthangta/All-KAN.

Authors:Xuhui Guo, Tanmoy Dam, Rohan Dhamdhere, Gourav Modanwal, Anant Madabhushi
Title: UNetVL: Enhancing 3D Medical Image Segmentation with Chebyshev KAN Powered Vision-LSTM
Abstract:
3D medical image segmentation has progressed considerably due to Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), yet these methods struggle to balance long-range dependency acquisition with computational efficiency. To address this challenge, we propose UNETVL (U-Net Vision-LSTM), a novel architecture that leverages recent advancements in temporal information processing. UNETVL incorporates Vision-LSTM (ViL) for improved scalability and memory functions, alongside an efficient Chebyshev Kolmogorov-Arnold Networks (KAN) to handle complex and long-range dependency patterns more effectively. We validated our method on the ACDC and AMOS2022 (post challenge Task 2) benchmark datasets, showing a significant improvement in mean Dice score compared to recent state-of-the-art approaches, especially over its predecessor, UNETR, with increases of 7.3% on ACDC and 15.6% on AMOS, respectively. Extensive ablation studies were conducted to demonstrate the impact of each component in UNETVL, providing a comprehensive understanding of its architecture. Our code is available at https://github.com/tgrex6/UNETVL, facilitating further research and applications in this domain.

Authors:Binyu Zhang, Shichao Li, Junpeng Jian, Zhu Meng, Limei Guo, Zhicheng Zhao
Title: A Multi-Modal Deep Learning Framework for Pan-Cancer Prognosis
Abstract:
Prognostic task is of great importance as it closely related to the survival analysis of patients, the optimization of treatment plans and the allocation of resources. The existing prognostic models have shown promising results on specific datasets, but there are limitations in two aspects. On the one hand, they merely explore certain types of modal data, such as patient histopathology WSI and gene expression analysis. On the other hand, they adopt the per-cancer-per-model paradigm, which means the trained models can only predict the prognostic effect of a single type of cancer, resulting in weak generalization ability. In this paper, a deep-learning based model, named UMPSNet, is proposed. Specifically, to comprehensively understand the condition of patients, in addition to constructing encoders for histopathology images and genomic expression profiles respectively, UMPSNet further integrates four types of important meta data (demographic information, cancer type information, treatment protocols, and diagnosis results) into text templates, and then introduces a text encoder to extract textual features. In addition, the optimal transport OT-based attention mechanism is utilized to align and fuse features of different modalities. Furthermore, a guided soft mixture of experts (GMoE) mechanism is introduced to effectively address the issue of distribution differences among multiple cancer datasets. By incorporating the multi-modality of patient data and joint training, UMPSNet outperforms all SOTA approaches, and moreover, it demonstrates the effectiveness and generalization ability of the proposed learning paradigm of a single model for multiple cancer types. The code of UMPSNet is available at https://github.com/binging512/UMPSNet.

Authors:Henry Li, Ronen Basri, Yuval Kluger
Title: Likelihood Training of Cascaded Diffusion Models via Hierarchical Volume-preserving Maps
Abstract:
Cascaded models are multi-scale generative models with a marked capacity for producing perceptually impressive samples at high resolutions. In this work, we show that they can also be excellent likelihood models, so long as we overcome a fundamental difficulty with probabilistic multi-scale models: the intractability of the likelihood function. Chiefly, in cascaded models each intermediary scale introduces extraneous variables that cannot be tractably marginalized out for likelihood evaluation. This issue vanishes by modeling the diffusion process on latent spaces induced by a class of transformations we call hierarchical volume-preserving maps, which decompose spatially structured data in a hierarchical fashion without introducing local distortions in the latent space. We demonstrate that two such maps are well-known in the literature for multiscale modeling: Laplacian pyramids and wavelet transforms. Not only do such reparameterizations allow the likelihood function to be directly expressed as a joint likelihood over the scales, we show that the Laplacian pyramid and wavelet transform also produces significant improvements to the state-of-the-art on a selection of benchmarks in likelihood modeling, including density estimation, lossless compression, and out-of-distribution detection. Investigating the theoretical basis of our empirical gains we uncover deep connections to score matching under the Earth Mover's Distance (EMD), which is a well-known surrogate for perceptual similarity. Code can be found at \href{https://github.com/lihenryhfl/pcdm}{this https url}.

Authors:Jimeng Shi, Azam Shirali, Bowen Jin, Sizhe Zhou, Wei Hu, Rahuul Rangaraj, Shaowen Wang, Jiawei Han, Zhaonan Wang, Upmanu Lall, Yanzhao Wu, Leonardo Bobadilla, Giri Narasimhan
Title: Deep Learning and Foundation Models for Weather Prediction: A Survey
Abstract:
Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.

Authors:Liyan Chen, Huangying Zhan, Kevin Chen, Xiangyu Xu, Qingan Yan, Changjiang Cai, Yi Xu
Title: ActiveGAMER: Active GAussian Mapping through Efficient Rendering
Abstract:
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.

Authors:Krishna Upadhyay, Vinaik Chhetri, A. B. Siddique, Umar Farooq
Title: Analyzing the Evolution and Maintenance of Quantum Software Repositories
Abstract:
Quantum computing is rapidly advancing, but quantum software development faces significant challenges, including a steep learning curve, high hardware error rates, and a lack of mature engineering practices. This study conducts a large-scale mining analysis of over 21,000 GitHub repositories, containing 1.2 million commits from more than 10,000 developers, to examine the evolution and maintenance of quantum software. We analyze repository growth, programming language and framework adoption, and contributor trends, revealing a 200% increase in repositories and a 150% rise in contributors since 2017. Additionally, we investigate software development and maintenance practices, showing that perfective commits dominate (51.76%), while the low occurrence of corrective commits (18.54%) indicates potential gaps in bug resolution. Furthermore, 34% of reported issues are quantum-specific, highlighting the need for specialized debugging tools beyond conventional software engineering approaches. This study provides empirical insights into the software engineering challenges of quantum computing, offering recommendations to improve development workflows, tooling, and documentation. We are also open-sourcing our dataset to support further analysis by the community and to guide future research and tool development for quantum computing. The dataset is available at: https://github.com/kriss-u/QRepoAnalysis-Paper

Authors:Krishna Upadhyay, Vinaik Chhetri, A. B. Siddique, Umar Farooq
Title: Analyzing the Evolution and Maintenance of Quantum Software Repositories
Abstract:
Quantum computing is rapidly advancing, but quantum software development faces significant challenges, including a steep learning curve, high hardware error rates, and a lack of mature engineering practices. This study conducts a large-scale mining analysis of over 21,000 GitHub repositories, containing 1.2 million commits from more than 10,000 developers, to examine the evolution and maintenance of quantum software. We analyze repository growth, programming language and framework adoption, and contributor trends, revealing a 200% increase in repositories and a 150% rise in contributors since 2017. Additionally, we investigate software development and maintenance practices, showing that perfective commits dominate (51.76%), while the low occurrence of corrective commits (18.54%) indicates potential gaps in bug resolution. Furthermore, 34% of reported issues are quantum-specific, highlighting the need for specialized debugging tools beyond conventional software engineering approaches. This study provides empirical insights into the software engineering challenges of quantum computing, offering recommendations to improve development workflows, tooling, and documentation. We are also open-sourcing our dataset to support further analysis by the community and to guide future research and tool development for quantum computing. The dataset is available at: https://github.com/kriss-u/QRepoAnalysis-Paper

Authors:Haojun Yu, Di Dai, Ziwei Zhao, Di He, Han Hu, Liwei Wang
Title: LarvSeg: Exploring Image Classification Data For Large Vocabulary Semantic Segmentation via Category-wise Attentive Classifier
Abstract:
Scaling up the vocabulary of semantic segmentation models is extremely challenging because annotating large-scale mask labels is labour-intensive and time-consuming. Recently, language-guided segmentation models have been proposed to address this challenge. However, their performance drops significantly when applied to out-of-distribution categories. In this paper, we propose a new large vocabulary semantic segmentation framework, called LarvSeg. Different from previous works, LarvSeg leverages image classification data to scale the vocabulary of semantic segmentation models as large-vocabulary classification datasets usually contain balanced categories and are much easier to obtain. However, for classification tasks, the category is image-level, while for segmentation we need to predict the label at pixel level. To address this issue, we first propose a general baseline framework to incorporate image-level supervision into the training process of a pixel-level segmentation model, making the trained network perform semantic segmentation on newly introduced categories in the classification data. We then observe that a model trained on segmentation data can group pixel features of categories beyond the training vocabulary. Inspired by this finding, we design a category-wise attentive classifier to apply supervision to the precise regions of corresponding categories to improve the model performance. Extensive experiments demonstrate that LarvSeg significantly improves the large vocabulary semantic segmentation performance, especially in the categories without mask labels. For the first time, we provide a 21K-category semantic segmentation model with the help of ImageNet21K. The code is available at https://github.com/HaojunYu1998/large_voc_seg.

Authors:Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, Rajesh Ranganath
Title: A General Framework for Inference-time Scaling and Steering of Diffusion Models
Abstract:
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we present Feynman-Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models - even with off-the-shelf rewards - can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .

Authors:Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, Shiwei Liu
Title: SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training
Abstract:
Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks, yet their training remains highly resource-intensive and susceptible to critical challenges such as training instability. A predominant source of this instability stems from gradient and loss spikes, which disrupt the learning process, often leading to costly interventions like checkpoint recovery and experiment restarts, further amplifying inefficiencies. This paper presents a comprehensive investigation into gradient spikes observed during LLM training, revealing their prevalence across multiple architectures and datasets. Our analysis shows that these spikes can be up to $1000\times$ larger than typical gradients, substantially deteriorating model performance. To address this issue, we propose Spike-Aware Adam with Momentum Reset SPAM, a novel optimizer designed to counteract gradient spikes through momentum reset and spike-aware gradient clipping. Extensive experiments, including both pre-training and fine-tuning, demonstrate that SPAM consistently surpasses Adam and its variants across various tasks, including (1) LLM pre-training from 60M to 1B, (2) 4-bit LLM pre-training,(3) reinforcement learning, and (4) Time Series Forecasting. Additionally, SPAM facilitates memory-efficient training by enabling sparse momentum, where only a subset of momentum terms are maintained and updated. When operating under memory constraints, SPAM outperforms state-of-the-art memory-efficient optimizers such as GaLore and Adam-Mini. Our work underscores the importance of mitigating gradient spikes in LLM training and introduces an effective optimization strategy that enhances both training stability and resource efficiency at scale. Code is available at https://github.com/TianjinYellow/SPAM-Optimizer.git

Authors:Du Chen, Liyi Chen, Zhengqiang Zhang, Lei Zhang
Title: Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution
Abstract:
Implicit Neural Representations (INR) have been successfully employed for Arbitrary-scale Super-Resolution (ASR). However, INR-based models need to query the multi-layer perceptron module numerous times and render a pixel in each query, resulting in insufficient representation capability and low computational efficiency. Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks, which motivates us to explore whether GS can be employed for the ASR task. However, directly applying GS to ASR is exceptionally challenging because the original GS is an optimization-based method through overfitting each single scene, while in ASR we aim to learn a single model that can generalize to different images and scaling factors. We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Each Gaussian can fit the shape and direction of an area of complex textures, showing powerful representation capability. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted continuous Gaussians. Via end-to-end training, our optimized network, namely GSASR, can perform ASR for any image and unseen scaling factors. Extensive experiments validate the effectiveness of our proposed method. The code and models are available at https://github.com/ChrisDud0257/GSASR.

Authors:Minglong Xue, Shuaibin Fan, Shivakumara Palaiahnakote, Mingliang Zhou
Title: UR2P-Dehaze: Learning a Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior
Abstract:
Image dehazing techniques aim to enhance contrast and restore details, which are essential for preserving visual information and improving image processing accuracy. Existing methods rely on a single manual prior, which cannot effectively reveal image details. To overcome this limitation, we propose an unpaired image dehazing network, called the Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior (UR2P-Dehaze). First, to accurately estimate the illumination, reflectance, and color information of the hazy image, we design a shared prior estimator (SPE) that is iteratively trained to ensure the consistency of illumination and reflectance, generating clear, high-quality images. Additionally, a self-monitoring mechanism is introduced to eliminate undesirable features, providing reliable priors for image reconstruction. Next, we propose Dynamic Wavelet Separable Convolution (DWSC), which effectively integrates key features across both low and high frequencies, significantly enhancing the preservation of image details and ensuring global consistency. Finally, to effectively restore the color information of the image, we propose an Adaptive Color Corrector that addresses the problem of unclear colors. The PSNR, SSIM, LPIPS, FID and CIEDE2000 metrics on the benchmark dataset show that our method achieves state-of-the-art performance. It also contributes to the performance improvement of downstream tasks. The project code will be available at https://github.com/Fan-pixel/UR2P-Dehaze. \end{abstract}

Authors:Keyan Chen, Jiafan Zhang, Chenyang Liu, Zhengxia Zou, Zhenwei Shi
Title: RSRefSeg: Referring Remote Sensing Image Segmentation with Foundation Models
Abstract:
Referring remote sensing image segmentation is crucial for achieving fine-grained visual understanding through free-format textual input, enabling enhanced scene and object extraction in remote sensing applications. Current research primarily utilizes pre-trained language models to encode textual descriptions and align them with visual modalities, thereby facilitating the expression of relevant visual features. However, these approaches often struggle to establish robust alignments between fine-grained semantic concepts, leading to inconsistent representations across textual and visual information. To address these limitations, we introduce a referring remote sensing image segmentation foundational model, RSRefSeg. RSRefSeg leverages CLIP for visual and textual encoding, employing both global and local textual semantics as filters to generate referring-related visual activation features in the latent space. These activated features then serve as input prompts for SAM, which refines the segmentation masks through its robust visual generalization capabilities. Experimental results on the RRSIS-D dataset demonstrate that RSRefSeg outperforms existing methods, underscoring the effectiveness of foundational models in enhancing multimodal task comprehension. The code is available at \url{https://github.com/KyanChen/RSRefSeg}.

Authors:Mahmoud Ahmed, Xiang Li, Arpit Prajapati, Mohamed Elhoseiny
Title: 3DCoMPaT200: Language-Grounded Compositional Understanding of Parts and Materials of 3D Shapes
Abstract:
Understanding objects in 3D at the part level is essential for humans and robots to navigate and interact with the environment. Current datasets for part-level 3D object understanding encompass a limited range of categories. For instance, the ShapeNet-Part and PartNet datasets only include 16, and 24 object categories respectively. The 3DCoMPaT dataset, specifically designed for compositional understanding of parts and materials, contains only 42 object categories. To foster richer and fine-grained part-level 3D understanding, we introduce 3DCoMPaT200, a large-scale dataset tailored for compositional understanding of object parts and materials, with 200 object categories with $\approx$5 times larger object vocabulary compared to 3DCoMPaT and $\approx$ 4 times larger part categories. Concretely, 3DCoMPaT200 significantly expands upon 3DCoMPaT, featuring 1,031 fine-grained part categories and 293 distinct material classes for compositional application to 3D object parts. Additionally, to address the complexities of compositional 3D modeling, we propose a novel task of Compositional Part Shape Retrieval using ULIP to provide a strong 3D foundational model for 3D Compositional Understanding. This method evaluates the model shape retrieval performance given one, three, or six parts described in text format. These results show that the model's performance improves with an increasing number of style compositions, highlighting the critical role of the compositional dataset. Such results underscore the dataset's effectiveness in enhancing models' capability to understand complex 3D shapes from a compositional perspective. Code and Data can be found at http://github.com/3DCoMPaT200/3DCoMPaT200

Authors:Shaw Walters, Sam Gao, Shakker Nerd, Feng Da, Warren Williams, Ting-Chien Meng, Amie Chow, Hunter Han, Frank He, Allen Zhang, Ming Wu, Timothy Shen, Maxwell Hu, Jerry Yan
Title: Eliza: A Web3 friendly AI Agent Operating System
Abstract:
AI Agent, powered by large language models (LLMs) as its cognitive core, is an intelligent agentic system capable of autonomously controlling and determining the execution paths under user's instructions. With the burst of capabilities of LLMs and various plugins, such as RAG, text-to-image/video/3D, etc., the potential of AI Agents has been vastly expanded, with their capabilities growing stronger by the day. However, at the intersection between AI and web3, there is currently no ideal agentic framework that can seamlessly integrate web3 applications into AI agent functionalities. In this paper, we propose Eliza, the first open-source web3-friendly Agentic framework that makes the deployment of web3 applications effortless. We emphasize that every aspect of Eliza is a regular Typescript program under the full control of its user, and it seamlessly integrates with web3 (i.e., reading and writing blockchain data, interacting with smart contracts, etc.). Furthermore, we show how stable performance is achieved through the pragmatic implementation of the key components of Eliza's runtime. Our code is publicly available at https://github.com/ai16z/eliza.

Authors:Ji Soo Lee, Jongha Kim, Jeehye Na, Jinyoung Park, Hyunwoo J. Kim
Title: VidChain: Chain-of-Tasks with Metric-based Direct Preference Optimization for Dense Video Captioning
Abstract:
Despite the advancements of Video Large Language Models (VideoLLMs) in various tasks, they struggle with fine-grained temporal understanding, such as Dense Video Captioning (DVC). DVC is a complicated task of describing all events within a video while also temporally localizing them, which integrates multiple fine-grained tasks, including video segmentation, video captioning, and temporal video grounding. Previous VideoLLMs attempt to solve DVC in a single step, failing to utilize their reasoning capability. Moreover, previous training objectives for VideoLLMs do not fully reflect the evaluation metrics, therefore not providing supervision directly aligned to target tasks. To address such a problem, we propose a novel framework named VidChain comprised of Chain-of-Tasks (CoTasks) and Metric-based Direct Preference Optimization (M-DPO). CoTasks decompose a complex task into a sequence of sub-tasks, allowing VideoLLMs to leverage their reasoning capabilities more effectively. M-DPO aligns a VideoLLM with evaluation metrics, providing fine-grained supervision to each task that is well-aligned with metrics. Applied to two different VideoLLMs, VidChain consistently improves their fine-grained video understanding, thereby outperforming previous VideoLLMs on two different DVC benchmarks and also on the temporal video grounding task. Code is available at \url{https://github.com/mlvlab/VidChain}.

Authors:Tianyu Fan, Jingyuan Wang, Xubin Ren, Chao Huang
Title: MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
Abstract:
The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.

Authors:Ming Dai, Jian Li, Jiedong Zhuang, Xian Zhang, Wankou Yang
Title: Multi-task Visual Grounding with Coarse-to-Fine Consistency Constraints
Abstract:
Multi-task visual grounding involves the simultaneous execution of localization and segmentation in images based on textual expressions. The majority of advanced methods predominantly focus on transformer-based multimodal fusion, aiming to extract robust multimodal representations. However, ambiguity between referring expression comprehension (REC) and referring image segmentation (RIS) is error-prone, leading to inconsistencies between multi-task predictions. Besides, insufficient multimodal understanding directly contributes to biased target perception. To overcome these challenges, we propose a Coarse-to-fine Consistency Constraints Visual Grounding architecture ($\text{C}^3\text{VG}$), which integrates implicit and explicit modeling approaches within a two-stage framework. Initially, query and pixel decoders are employed to generate preliminary detection and segmentation outputs, a process referred to as the Rough Semantic Perception (RSP) stage. These coarse predictions are subsequently refined through the proposed Mask-guided Interaction Module (MIM) and a novel explicit bidirectional consistency constraint loss to ensure consistent representations across tasks, which we term the Refined Consistency Interaction (RCI) stage. Furthermore, to address the challenge of insufficient multimodal understanding, we leverage pre-trained models based on visual-linguistic fusion representations. Empirical evaluations on the RefCOCO, RefCOCO+, and RefCOCOg datasets demonstrate the efficacy and soundness of $\text{C}^3\text{VG}$, which significantly outperforms state-of-the-art REC and RIS methods by a substantial margin. Code and model will be available at \url{https://github.com/Dmmm1997/C3VG}.

Authors:Veronika Smilga
Title: Scaling Down Semantic Leakage: Investigating Associative Bias in Smaller Language Models
Abstract:
Semantic leakage is a phenomenon recently introduced by Gonen et al. (2024). It refers to a situation in which associations learnt from the training data emerge in language model generations in an unexpected and sometimes undesired way. Prior work has focused on leakage in large language models (7B+ parameters). In this study, I use Qwen2.5 model family to explore whether smaller models, ranging from 500M to 7B parameters, demonstrate less semantic leakage due to their limited capacity for capturing complex associations. Building on the previous dataset from Gonen et al. (2024), I introduce a new dataset of color-focused prompts, categorized into specific types of semantic associations, to systematically evaluate the models' performance. Results indicate that smaller models exhibit less semantic leakage overall, although this trend is not strictly linear, with medium-sized models sometimes surpassing larger ones in leaking behavior. The dataset, the model generations, and the evaluation code are publicly available at https://github.com/smilni/semantic_leakage_project.

Authors:Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, Maosong Sun
Title: ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding tasks. However, interpreting charts with textual descriptions often leads to information loss, as it fails to fully capture the dense information embedded in charts. In contrast, parsing charts into code provides lossless representations that can effectively contain all critical details. Although existing open-source MLLMs have achieved success in chart understanding tasks, they still face two major challenges when applied to chart-to-code tasks: (1) Low executability and poor restoration of chart details in the generated code and (2) Lack of large-scale and diverse training data. To address these challenges, we propose \textbf{ChartCoder}, the first dedicated chart-to-code MLLM, which leverages Code LLMs as the language backbone to enhance the executability of the generated code. Furthermore, we introduce \textbf{Chart2Code-160k}, the first large-scale and diverse dataset for chart-to-code generation, and propose the \textbf{Snippet-of-Thought (SoT)} method, which transforms direct chart-to-code generation data into step-by-step generation. Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks, achieving superior chart restoration and code excitability. Our code is available at https://github.com/thunlp/ChartCoder.

Authors:Narges Rashvand, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Shanle Yao, Hamed Tabkhi
Title: Exploring Pose-Based Anomaly Detection for Retail Security: A Real-World Shoplifting Dataset and Benchmark
Abstract:
Shoplifting poses a significant challenge for retailers, resulting in billions of dollars in annual losses. Traditional security measures often fall short, highlighting the need for intelligent solutions capable of detecting shoplifting behaviors in real time. This paper frames shoplifting detection as an anomaly detection problem, focusing on the identification of deviations from typical shopping patterns. We introduce PoseLift, a privacy-preserving dataset specifically designed for shoplifting detection, addressing challenges such as data scarcity, privacy concerns, and model biases. PoseLift is built in collaboration with a retail store and contains anonymized human pose data from real-world scenarios. By preserving essential behavioral information while anonymizing identities, PoseLift balances privacy and utility. We benchmark state-of-the-art pose-based anomaly detection models on this dataset, evaluating performance using a comprehensive set of metrics. Our results demonstrate that pose-based approaches achieve high detection accuracy while effectively addressing privacy and bias concerns inherent in traditional methods. As one of the first datasets capturing real-world shoplifting behaviors, PoseLift offers researchers a valuable tool to advance computer vision ethically and will be publicly available to foster innovation and collaboration. The dataset is available at https://github.com/TeCSAR-UNCC/PoseLift.

Authors:Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, Arman Cohan, Mark Gerstein
Title: ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning
Abstract:
Chemical reasoning usually involves complex, multi-step processes that demand precise calculations, where even minor errors can lead to cascading failures. Furthermore, large language models (LLMs) encounter difficulties handling domain-specific formulas, executing reasoning steps accurately, and integrating code effectively when tackling chemical reasoning tasks. To address these challenges, we present ChemAgent, a novel framework designed to improve the performance of LLMs through a dynamic, self-updating library. This library is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries. Then, when presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory, facilitating effective task decomposition and the generation of solutions. Our method designs three types of memory and a library-enhanced reasoning component, enabling LLMs to improve over time through experience. Experimental results on four chemical reasoning datasets from SciBench demonstrate that ChemAgent achieves performance gains of up to 46% (GPT-4), significantly outperforming existing methods. Our findings suggest substantial potential for future applications, including tasks such as drug discovery and materials science. Our code can be found at https://github.com/gersteinlab/chemagent

Authors:Tomohiko Nakamura, Kwanghee Choi, Keigo Hojo, Yoshiaki Bando, Satoru Fukayama, Shinji Watanabe
Title: Discrete Speech Unit Extraction via Independent Component Analysis
Abstract:
Self-supervised speech models (S3Ms) have become a common tool for the speech processing community, leveraging representations for downstream tasks. Clustering S3M representations yields discrete speech units (DSUs), which serve as compact representations for speech signals. DSUs are typically obtained by k-means clustering. Using DSUs often leads to strong performance in various tasks, including automatic speech recognition (ASR). However, even with the high dimensionality and redundancy of S3M representations, preprocessing S3M representations for better clustering remains unexplored, even though it can affect the quality of DSUs. In this paper, we investigate the potential of linear preprocessing methods for extracting DSUs. We evaluate standardization, principal component analysis, whitening, and independent component analysis (ICA) on DSU-based ASR benchmarks and demonstrate their effectiveness as preprocessing for k-means. We also conduct extensive analyses of their behavior, such as orthogonality or interpretability of individual components of ICA.

Authors:Xianwei Zhuang, Zhihong Zhu, Yuxin Xie, Liming Liang, Yuexian Zou
Title: VASparse: Towards Efficient Visual Hallucination Mitigation via Visual-Aware Token Sparsification
Abstract:
Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which significantly impedes their real-world usage. To alleviate VH, various decoding strategies have been proposed to enhance visual information. However, many of these methods may require secondary decoding and rollback, which significantly reduces inference speed. In this work, we propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse) from the perspective of token sparsity for mitigating VH. VASparse is inspired by empirical observations: (1) the sparse activation of attention in LVLMs, and (2) visual-agnostic tokens sparsification exacerbates VH. Based on these insights, we propose a novel token sparsification strategy that balances efficiency and trustworthiness. Specifically, VASparse implements a visual-aware token selection strategy during decoding to reduce redundant tokens while preserving visual context effectively. Additionally, we innovatively introduce a sparse-based visual contrastive decoding method to recalibrate the distribution of hallucinated outputs without the time overhead associated with secondary decoding. Subsequently, VASparse recalibrates attention scores to penalize attention sinking of LVLMs towards text tokens. Extensive experiments across four popular benchmarks confirm the effectiveness of VASparse in mitigating VH across different LVLM families without requiring additional training or post-processing. Impressively, VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed. Code is available at https://github.com/mengchuang123/VASparse-github.

Authors:Yiheng Li, Yang Yang, Zhen Lei
Title: CoreNet: Conflict Resolution Network for Point-Pixel Misalignment and Sub-Task Suppression of 3D LiDAR-Camera Object Detection
Abstract:
Fusing multi-modality inputs from different sensors is an effective way to improve the performance of 3D object detection. However, current methods overlook two important conflicts: point-pixel misalignment and sub-task suppression. The former means a pixel feature from the opaque object is projected to multiple point features of the same ray in the world space, and the latter means the classification prediction and bounding box regression may cause mutual suppression. In this paper, we propose a novel method named Conflict Resolution Network (CoreNet) to address the aforementioned issues. Specifically, we first propose a dual-stream transformation module to tackle point-pixel misalignment. It consists of ray-based and point-based 2D-to-BEV transformations. Both of them achieve approximately unique mapping from the image space to the world space. Moreover, we introduce a task-specific predictor to tackle sub-task suppression. It uses the dual-branch structure which adopts class-specific query and Bbox-specific query to corresponding sub-tasks. Each task-specific query is constructed of task-specific feature and general feature, which allows the heads to adaptively select information of interest based on different sub-tasks. Experiments on the large-scale nuScenes dataset demonstrate the superiority of our proposed CoreNet, by achieving 75.6\% NDS and 73.3\% mAP on the nuScenes test set without test-time augmentation and model ensemble techniques. The ample ablation study also demonstrates the effectiveness of each component. The code is released on https://github.com/liyih/CoreNet.

Authors:Tushar Aggarwal, Aarohi Bhand
Title: PASS: Presentation Automation for Slide Generation and Speech
Abstract:
In today's fast-paced world, effective presentations have become an essential tool for communication in both online and offline meetings. The crafting of a compelling presentation requires significant time and effort, from gathering key insights to designing slides that convey information clearly and concisely. However, despite the wealth of resources available, people often find themselves manually extracting crucial points, analyzing data, and organizing content in a way that ensures clarity and impact. Furthermore, a successful presentation goes beyond just the slides; it demands rehearsal and the ability to weave a captivating narrative to fully engage the audience. Although there has been some exploration of automating document-to-slide generation, existing research is largely centered on converting research papers. In addition, automation of the delivery of these presentations has yet to be addressed. We introduce PASS, a pipeline used to generate slides from general Word documents, going beyond just research papers, which also automates the oral delivery of the generated slides. PASS analyzes user documents to create a dynamic, engaging presentation with an AI-generated voice. Additionally, we developed an LLM-based evaluation metric to assess our pipeline across three critical dimensions of presentations: relevance, coherence, and redundancy. The data and codes are available at https://github.com/AggarwalTushar/PASS.

Authors:Rui Liu, Zhenqi Jia, Feilong Bao, Haizhou Li
Title: Retrieval-Augmented Dialogue Knowledge Aggregation for Expressive Conversational Speech Synthesis
Abstract:
Conversational speech synthesis (CSS) aims to take the current dialogue (CD) history as a reference to synthesize expressive speech that aligns with the conversational style. Unlike CD, stored dialogue (SD) contains preserved dialogue fragments from earlier stages of user-agent interaction, which include style expression knowledge relevant to scenarios similar to those in CD. Note that this knowledge plays a significant role in enabling the agent to synthesize expressive conversational speech that generates empathetic feedback. However, prior research has overlooked this aspect. To address this issue, we propose a novel Retrieval-Augmented Dialogue Knowledge Aggregation scheme for expressive CSS, termed RADKA-CSS, which includes three main components: 1) To effectively retrieve dialogues from SD that are similar to CD in terms of both semantic and style. First, we build a stored dialogue semantic-style database (SDSSD) which includes the text and audio samples. Then, we design a multi-attribute retrieval scheme to match the dialogue semantic and style vectors of the CD with the stored dialogue semantic and style vectors in the SDSSD, retrieving the most similar dialogues. 2) To effectively utilize the style knowledge from CD and SD, we propose adopting the multi-granularity graph structure to encode the dialogue and introducing a multi-source style knowledge aggregation mechanism. 3) Finally, the aggregated style knowledge are fed into the speech synthesizer to help the agent synthesize expressive speech that aligns with the conversational style. We conducted a comprehensive and in-depth experiment based on the DailyTalk dataset, which is a benchmarking dataset for the CSS task. Both objective and subjective evaluations demonstrate that RADKA-CSS outperforms baseline models in expressiveness rendering. Code and audio samples can be found at: https://github.com/Coder-jzq/RADKA-CSS.

Authors:Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, Andrew C Yao
Title: Tensor Product Attention Is All You Need
Abstract:
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor Product Attention Transformer,(T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines, including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at the decoding stage enable processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.

Authors:Jerry Chee, Arturs Backurs, Rainie Heck, Li Zhang, Janardhan Kulkarni, Thomas Rothvoss, Sivakanth Gopi
Title: DiscQuant: A Quantization Method for Neural Networks Inspired by Discrepancy Theory
Abstract:
Quantizing the weights of a neural network has two steps: (1) Finding a good low bit-complexity representation for weights (which we call the quantization grid) and (2) Rounding the original weights to values in the quantization grid. In this paper, we study the problem of rounding optimally given any quantization grid. The simplest and most commonly used way to round is Round-to-Nearest (RTN). By rounding in a data-dependent way instead, one can improve the quality of the quantized model significantly. We study the rounding problem from the lens of \emph{discrepancy theory}, which studies how well we can round a continuous solution to a discrete solution without affecting solution quality too much. We prove that given $m=\mathrm{poly}(1/ε)$ samples from the data distribution, we can round all but $O(m)$ model weights such that the expected approximation error of the quantized model on the true data distribution is $\le ε$ as long as the space of gradients of the original model is approximately low rank (which we empirically validate). Our proof, which is algorithmic, inspired a simple and practical rounding algorithm called \emph{DiscQuant}. In our experiments, we demonstrate that DiscQuant significantly improves over the prior state-of-the-art rounding method called GPTQ and the baseline RTN over a range of benchmarks on Phi3mini-3.8B and Llama3.1-8B. For example, rounding Phi3mini-3.8B to a fixed quantization grid with 3.25 bits per parameter using DiscQuant gets 64\% accuracy on the GSM8k dataset, whereas GPTQ achieves 54\% and RTN achieves 31\% (the original model achieves 84\%). We make our code available at https://github.com/jerry-chee/DiscQuant.

Authors:José Ramón Pareja Monturiol, Alejandro Pozas-Kerstjens, David Pérez-García
Title: Tensorization of neural networks for improved privacy and interpretability
Abstract:
We present a tensorization algorithm for constructing tensor train representations of functions, drawing on sketching and cross interpolation ideas. The method only requires black-box access to the target function and a small set of sample points defining the domain of interest. Thus, it is particularly well-suited for machine learning models, where the domain of interest is naturally defined by the training dataset. We show that this approach can be used to enhance the privacy and interpretability of neural network models. Specifically, we apply our decomposition to (i) obfuscate neural networks whose parameters encode patterns tied to the training data distribution, and (ii) estimate topological phases of matter that are easily accessible from the tensor train representation. Additionally, we show that this tensorization can serve as an efficient initialization method for optimizing tensor trains in general settings, and that, for model compression, our algorithm achieves a superior trade-off between memory and time complexity compared to conventional tensorization methods of neural networks.

Authors:Jing Guo, Nan Li, Ming Xu
Title: Environmental large language model Evaluation (ELLE) dataset: A Benchmark for Evaluating Generative AI applications in Eco-environment Domain
Abstract:
Generative AI holds significant potential for ecological and environmental applications such as monitoring, data analysis, education, and policy support. However, its effectiveness is limited by the lack of a unified evaluation framework. To address this, we present the Environmental Large Language model Evaluation (ELLE) question answer (QA) dataset, the first benchmark designed to assess large language models and their applications in ecological and environmental sciences. The ELLE dataset includes 1,130 question answer pairs across 16 environmental topics, categorized by domain, difficulty, and type. This comprehensive dataset standardizes performance assessments in these fields, enabling consistent and objective comparisons of generative AI performance. By providing a dedicated evaluation tool, ELLE dataset promotes the development and application of generative AI technologies for sustainable environmental outcomes. The dataset and code are available at https://elle.ceeai.net/ and https://github.com/CEEAI/elle.

Authors:Huaiguang Cai
Title: CAMs as Shapley Value-based Explainers
Abstract:
Class Activation Mapping (CAM) methods are widely used to visualize neural network decisions, yet their underlying mechanisms remain incompletely understood. To enhance the understanding of CAM methods and improve their explainability, we introduce the Content Reserved Game-theoretic (CRG) Explainer. This theoretical framework clarifies the theoretical foundations of GradCAM and HiResCAM by modeling the neural network prediction process as a cooperative game. Within this framework, we develop ShapleyCAM, a new method that leverages gradients and the Hessian matrix to provide more precise and theoretically grounded visual explanations. Due to the computational infeasibility of exact Shapley value calculation, ShapleyCAM employs a second-order Taylor expansion of the cooperative game's utility function to derive a closed-form expression. Additionally, we propose the Residual Softmax Target-Class (ReST) utility function to address the limitations of pre-softmax and post-softmax scores. Extensive experiments across 12 popular networks on the ImageNet validation set demonstrate the effectiveness of ShapleyCAM and its variants. Our findings not only advance CAM explainability but also bridge the gap between heuristic-driven CAM methods and compute-intensive Shapley value-based methods. The code is available at \url{https://github.com/caihuaiguang/pytorch-shapley-cam}.

Authors:Daojun Liang, Haixia Zhang, Dongfeng Yuan
Title: Progressive Supervision via Label Decomposition: An Long-Term and Large-Scale Wireless Traffic Forecasting Method
Abstract:
Long-term and Large-scale Wireless Traffic Forecasting (LL-WTF) is pivotal for strategic network management and comprehensive planning on a macro scale. However, LL-WTF poses greater challenges than short-term ones due to the pronounced non-stationarity of extended wireless traffic and the vast number of nodes distributed at the city scale. To cope with this, we propose a Progressive Supervision method based on Label Decomposition (PSLD). Specifically, we first introduce a Random Subgraph Sampling (RSS) algorithm designed to sample a tractable subset from large-scale traffic data, thereby enabling efficient network training. Then, PSLD employs label decomposition to obtain multiple easy-to-learn components, which are learned progressively at shallow layers and combined at deep layers to effectively cope with the non-stationary problem raised by LL-WTF tasks. Finally, we compare the proposed method with various state-of-the-art (SOTA) methods on three large-scale WT datasets. Extensive experimental results demonstrate that the proposed PSLD significantly outperforms existing methods, with an average 2%, 4%, and 11% performance improvement on three WT datasets, respectively. In addition, we built an open source library for WT forecasting (WTFlib) to facilitate related research, which contains numerous SOTA methods and provides a strong benchmark.Experiments can be reproduced through https://github.com/Anoise/WTFlib.

Authors:Yunlong Tang, Junjia Guo, Pinxin Liu, Zhiyuan Wang, Hang Hua, Jia-Xing Zhong, Yunzhong Xiao, Chao Huang, Luchuan Song, Susan Liang, Yizhi Song, Liu He, Jing Bi, Mingqian Feng, Xinyang Li, Zeliang Zhang, Chenliang Xu
Title: Generative AI for Cel-Animation: A Survey
Abstract:
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, challenges like visual consistency, stylistic coherence, and ethical considerations persist. Additionally, this paper explores future directions and advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation

Authors:Yolo Yunlong Tang, Junjia Guo, Pinxin Liu, Zhiyuan Wang, Hang Hua, Jia-Xing Zhong, Yunzhong Xiao, Chao Huang, Luchuan Song, Susan Liang, Yizhi Song, Liu He, Jing Bi, Mingqian Feng, Xinyang Li, Zeliang Zhang, Chenliang Xu
Title: Generative AI for Cel-Animation: A Survey
Abstract:
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, challenges like visual consistency, stylistic coherence, and ethical considerations persist. Additionally, this paper explores future directions and advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation

Authors:Mills Staylor, Amirreza Dolatpour Fathkouhi, Md Khairul Islam, Kaleigh O'Hara, Ryan Ghiles Goudjil, Geoffrey Fox, Judy Fox
Title: Scalable Cosmic AI Inference using Cloud Serverless Computing with FMI
Abstract:
Large-scale astronomical image data processing and prediction is essential for astronomers, providing crucial insights into celestial objects, the universe's history, and its evolution. While modern deep learning models offer high predictive accuracy, they often demand substantial computational resources, making them resource-intensive and limiting accessibility. We introduce the Cloud-based Astronomy Inference (CAI) framework to address these challenges. This scalable solution integrates pre-trained foundation models with serverless cloud infrastructure through a Function-as-a-Service (FaaS) Message Interface (FMI). CAI enables efficient and scalable inference on astronomical images without extensive hardware. Using a foundation model for redshift prediction as a case study, our extensive experiments cover user devices, HPC (High-Performance Computing) servers, and Cloud. CAI's significant scalability improvement on large data sizes provides an accessible and effective tool for the astronomy community. The code is accessible at https://github.com/UVA-MLSys/AI-for-Astronomy.

Authors:Mills Staylor, Amirreza Dolatpour Fathkouhi, Md Khairul Islam, Kaleigh O'Hara, Ryan Ghiles Goudjil, Geoffrey Fox, Judy Fox
Title: Scalable Cosmic AI Inference using Cloud Serverless Computing
Abstract:
Large-scale astronomical image data processing and prediction are essential for astronomers, providing crucial insights into celestial objects, the universe's history, and its evolution. While modern deep learning models offer high predictive accuracy, they often demand substantial computational resources, making them resource-intensive and limiting accessibility. We introduce the Cloud-based Astronomy Inference (CAI) framework to address these challenges. This scalable solution integrates pre-trained foundation models with serverless cloud infrastructure through a Function-as-a-Service (FaaS). CAI enables efficient and scalable inference on astronomical images without extensive hardware. Using a foundation model for redshift prediction as a case study, our extensive experiments cover user devices, HPC (High-Performance Computing) servers, and Cloud. Using redshift prediction with the AstroMAE model demonstrated CAI's scalability and efficiency, achieving inference on a 12.6 GB dataset in only 28 seconds compared to 140.8 seconds on HPC GPUs and 1793 seconds on HPC CPUs. CAI also achieved significantly higher throughput, reaching 18.04 billion bits per second (bps), and maintained near-constant inference times as data sizes increased, all at minimal computational cost (under $5 per experiment). We also process large-scale data up to 1 TB to show CAI's effectiveness at scale. CAI thus provides a highly scalable, accessible, and cost-effective inference solution for the astronomy community. The code is accessible at https://github.com/UVA-MLSys/AI-for-Astronomy.

Authors:Nirit Alkalay, Roy Orfaig, Ben-Zion Bobrovsky
Title: NextStop: An Improved Tracker For Panoptic LIDAR Segmentation Data
Abstract:
4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics, combining semantic and instance segmentation with temporal consistency. Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStop

Authors:Gent Wu
Title: Powerful Design of Small Vision Transformer on CIFAR10
Abstract:
Vision Transformers (ViTs) have demonstrated remarkable success on large-scale datasets, but their performance on smaller datasets often falls short of convolutional neural networks (CNNs). This paper explores the design and optimization of Tiny ViTs for small datasets, using CIFAR-10 as a benchmark. We systematically evaluate the impact of data augmentation, patch token initialization, low-rank compression, and multi-class token strategies on model performance. Our experiments reveal that low-rank compression of queries in Multi-Head Latent Attention (MLA) incurs minimal performance loss, indicating redundancy in ViTs. Additionally, introducing multiple CLS tokens improves global representation capacity, boosting accuracy. These findings provide a comprehensive framework for optimizing Tiny ViTs, offering practical insights for efficient and effective designs. Code is available at https://github.com/erow/PoorViTs.

Authors:Jiayu Guo, Yu Guo, Martha Li, Songtao Tan
Title: FLAME: Financial Large-Language Model Assessment and Metrics Evaluation
Abstract:
LLMs have revolutionized NLP and demonstrated potential across diverse domains. More and more financial LLMs have been introduced for finance-specific tasks, yet comprehensively assessing their value is still challenging. In this paper, we introduce FLAME, a comprehensive financial LLMs evaluation system in Chinese, which includes two core evaluation benchmarks: FLAME-Cer and FLAME-Sce. FLAME-Cer covers 14 types of authoritative financial certifications, including CPA, CFA, and FRM, with a total of approximately 16,000 carefully selected questions. All questions have been manually reviewed to ensure accuracy and representativeness. FLAME-Sce consists of 10 primary core financial business scenarios, 21 secondary financial business scenarios, and a comprehensive evaluation set of nearly 100 tertiary financial application tasks. We evaluate 6 representative LLMs, including GPT-4o, GLM-4, ERNIE-4.0, Qwen2.5, XuanYuan3, and the latest Baichuan4-Finance, revealing Baichuan4-Finance excels other LLMs in most tasks. By establishing a comprehensive and professional evaluation system, FLAME facilitates the advancement of financial LLMs in Chinese contexts. Instructions for participating in the evaluation are available on GitHub: https://github.com/FLAME-ruc/FLAME.

Authors:Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng, Saee Paliwal, Weili Nie, Arash Vahdat
Title: GenMol: A Drug Discovery Generalist with Discrete Diffusion
Abstract:
Drug discovery is a complex process that involves multiple stages and tasks. However, existing molecular generative models can only tackle some of these tasks. We present Generalist Molecular generative model (GenMol), a versatile framework that uses only a single discrete diffusion model to handle diverse drug discovery scenarios. GenMol generates Sequential Attachment-based Fragment Embedding (SAFE) sequences through non-autoregressive bidirectional parallel decoding, thereby allowing the utilization of a molecular context that does not rely on the specific token ordering while having better sampling efficiency. GenMol uses fragments as basic building blocks for molecules and introduces fragment remasking, a strategy that optimizes molecules by regenerating masked fragments, enabling effective exploration of chemical space. We further propose molecular context guidance (MCG), a guidance method tailored for masked discrete diffusion of GenMol. GenMol significantly outperforms the previous GPT-based model in de novo generation and fragment-constrained generation, and achieves state-of-the-art performance in goal-directed hit generation and lead optimization. These results demonstrate that GenMol can tackle a wide range of drug discovery tasks, providing a unified and versatile approach for molecular design. Our code is available at https://github.com/NVIDIA-Digital-Bio/genmol.

Authors:Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, Nikolay Malkin
Title: From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Abstract:
We study the problem of training neural stochastic differential equations, or diffusion models, to sample from a Boltzmann distribution without access to target samples. Existing methods for training such models enforce time-reversal of the generative and noising processes, using either differentiable simulation or off-policy reinforcement learning (RL). We prove equivalences between families of objectives in the limit of infinitesimal discretization steps, linking entropic RL methods (GFlowNets) with continuous-time objects (partial differential equations and path space measures). We further show that an appropriate choice of coarse time discretization during training allows greatly improved sample efficiency and the use of time-local objectives, achieving competitive performance on standard sampling benchmarks with reduced computational cost.

Authors:Haichao Liu, Ruoyu Yao, Wenru Liu, Zhenmin Huang, Shaojie Shen, Jun Ma
Title: CoDriveVLM: VLM-Enhanced Urban Cooperative Dispatching and Motion Planning for Future Autonomous Mobility on Demand Systems
Abstract:
The increasing demand for flexible and efficient urban transportation solutions has spotlighted the limitations of traditional Demand Responsive Transport (DRT) systems, particularly in accommodating diverse passenger needs and dynamic urban environments. Autonomous Mobility-on-Demand (AMoD) systems have emerged as a promising alternative, leveraging connected and autonomous vehicles (CAVs) to provide responsive and adaptable services. However, existing methods primarily focus on either vehicle scheduling or path planning, which often simplify complex urban layouts and neglect the necessity for simultaneous coordination and mutual avoidance among CAVs. This oversimplification poses significant challenges to the deployment of AMoD systems in real-world scenarios. To address these gaps, we propose CoDriveVLM, a novel framework that integrates high-fidelity simultaneous dispatching and cooperative motion planning for future AMoD systems. Our method harnesses Vision-Language Models (VLMs) to enhance multi-modality information processing, and this enables comprehensive dispatching and collision risk evaluation. The VLM-enhanced CAV dispatching coordinator is introduced to effectively manage complex and unforeseen AMoD conditions, thus supporting efficient scheduling decision-making. Furthermore, we propose a scalable decentralized cooperative motion planning method via consensus alternating direction method of multipliers (ADMM) focusing on collision risk evaluation and decentralized trajectory optimization. Simulation results demonstrate the feasibility and robustness of CoDriveVLM in various traffic conditions, showcasing its potential to significantly improve the fidelity and effectiveness of AMoD systems in future urban transportation networks. The code is available at https://github.com/henryhcliu/CoDriveVLM.git.

Authors:Leonardo Delfino, Domenico Erriquez, Silvio Martinico, Franco Maria Nardini, Cosimo Rulli, Rossano Venturini
Title: kANNolo: Sweet and Smooth Approximate k-Nearest Neighbors Search
Abstract:
Approximate Nearest Neighbors (ANN) search is a crucial task in several applications like recommender systems and information retrieval. Current state-of-the-art ANN libraries, although being performance-oriented, often lack modularity and ease of use. This translates into them not being fully suitable for easy prototyping and testing of research ideas, an important feature to enable. We address these limitations by introducing kANNolo, a novel research-oriented ANN library written in Rust and explicitly designed to combine usability with performance effectively. kANNolo is the first ANN library that supports dense and sparse vector representations made available on top of different similarity measures, e.g., euclidean distance and inner product. Moreover, it also supports vector quantization techniques, e.g., Product Quantization, on top of the indexing strategies implemented. These functionalities are managed through Rust traits, allowing shared behaviors to be handled abstractly. This abstraction ensures flexibility and facilitates an easy integration of new components. In this work, we detail the architecture of kANNolo and demonstrate that its flexibility does not compromise performance. The experimental analysis shows that kANNolo achieves state-of-the-art performance in terms of speed-accuracy trade-off while allowing fast and easy prototyping, thus making kANNolo a valuable tool for advancing ANN research. Source code available on GitHub: https://github.com/TusKANNy/kannolo.

Authors:Steffen Dereich, Arnulf Jentzen, Adrian Riekert
Title: Averaged Adam accelerates stochastic optimization in the training of deep neural network approximations for partial differential equation and optimal control problems
Abstract:
Deep learning methods - usually consisting of a class of deep neural networks (DNNs) trained by a stochastic gradient descent (SGD) optimization method - are nowadays omnipresent in data-driven learning problems as well as in scientific computing tasks such as optimal control (OC) and partial differential equation (PDE) problems. In practically relevant learning tasks, often not the plain-vanilla standard SGD optimization method is employed to train the considered class of DNNs but instead more sophisticated adaptive and accelerated variants of the standard SGD method such as the popular Adam optimizer are used. Inspired by the classical Polyak-Ruppert averaging approach, in this work we apply averaged variants of the Adam optimizer to train DNNs to approximately solve exemplary scientific computing problems in the form of PDEs and OC problems. We test the averaged variants of Adam in a series of learning problems including physics-informed neural network (PINN), deep backward stochastic differential equation (deep BSDE), and deep Kolmogorov approximations for PDEs (such as heat, Black-Scholes, Burgers, and Allen-Cahn PDEs), including DNN approximations for OC problems, and including DNN approximations for image classification problems (ResNet for CIFAR-10). In each of the numerical examples the employed averaged variants of Adam outperform the standard Adam and the standard SGD optimizers, particularly, in the situation of the scientific machine learning problems. The Python source codes for the numerical experiments associated to this work can be found on GitHub at https://github.com/deeplearningmethods/averaged-adam.

Authors:Oindrila Saha, Logan Lawrence, Grant Van Horn, Subhransu Maji
Title: Generate, Transduct, Adapt: Iterative Transduction with VLMs
Abstract:
Transductive zero-shot learning with vision-language models leverages image-image similarities within the dataset to achieve better classification accuracy compared to the inductive setting. However, there is little work that explores the structure of the language space in this context. We propose GTA-CLIP, a novel technique that incorporates supervision from language models for joint transduction in language and vision spaces. Our approach is iterative and consists of three steps: (i) incrementally exploring the attribute space by querying language models, (ii) an attribute-augmented transductive inference procedure, and (iii) fine-tuning the language and vision encoders based on inferred labels within the dataset. Through experiments with CLIP encoders, we demonstrate that GTA-CLIP, yields an average performance improvement of 8.6% and 3.7% across 12 datasets and 3 encoders, over CLIP and transductive CLIP respectively in the zero-shot setting. We also observe similar improvements in a few-shot setting. We present ablation studies that demonstrate the value of each step and visualize how the vision and language spaces evolve over iterations driven by the transductive learning.

Authors:Hongruixuan Chen, Jian Song, Olivier Dietrich, Clifford Broni-Bediako, Weihao Xuan, Junjue Wang, Xinlei Shao, Yimin Wei, Junshi Xia, Cuiling Lan, Konrad Schindler, Naoto Yokoya
Title: BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Abstract:
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.

Authors:Hongruixuan Chen, Jian Song, Olivier Dietrich, Clifford Broni-Bediako, Weihao Xuan, Junjue Wang, Xinlei Shao, Yimin Wei, Junshi Xia, Cuiling Lan, Konrad Schindler, Naoto Yokoya
Title: BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Abstract:
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.

Authors:David Bojanić, Stefanie Wuhrer, Tomislav Petković, Tomislav Pribanić
Title: Pose-independent 3D Anthropometry from Sparse Data
Abstract:
3D digital anthropometry is the study of estimating human body measurements from 3D scans. Precise body measurements are important health indicators in the medical industry, and guiding factors in the fashion, ergonomic and entertainment industries. The measuring protocol consists of scanning the whole subject in the static A-pose, which is maintained without breathing or movement during the scanning process. However, the A-pose is not easy to maintain during the whole scanning process, which can last even up to a couple of minutes. This constraint affects the final quality of the scan, which in turn affects the accuracy of the estimated body measurements obtained from methods that rely on dense geometric data. Additionally, this constraint makes it impossible to develop a digital anthropometry method for subjects unable to assume the A-pose, such as those with injuries or disabilities. We propose a method that can obtain body measurements from sparse landmarks acquired in any pose. We make use of the sparse landmarks of the posed subject to create pose-independent features, and train a network to predict the body measurements as taken from the standard A-pose. We show that our method achieves comparable results to competing methods that use dense geometry in the standard A-pose, but has the capability of estimating the body measurements from any pose using sparse landmarks only. Finally, we address the lack of open-source 3D anthropometry methods by making our method available to the research community at https://github.com/DavidBoja/pose-independent-anthropometry.

Authors:Kevin Mancini, Islem Rekik
Title: DeltaGNN: Graph Neural Network with Information Flow Control
Abstract:
Graph Neural Networks (GNNs) are popular deep learning models designed to process graph-structured data through recursive neighborhood aggregations in the message passing process. When applied to semi-supervised node classification, the message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing. These challenges hinder model expressiveness and prevent the use of deeper models to capture long-range node interactions (LRIs) within the graph. Popular solutions for LRIs detection are either too expensive to process large graphs due to high time complexity or fail to generalize across diverse graph structures. To address these limitations, we propose a mechanism called \emph{information flow control}, which leverages a novel connectivity measure, called \emph{information flow score}, to address over-smoothing and over-squashing with linear computational overhead, supported by theoretical evidence. Finally, to prove the efficacy of our methodology we design DeltaGNN, the first scalable and generalizable approach for detecting long-range and short-range interactions. We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance with limited computational complexity. The implementation of the proposed methods are publicly available at https://github.com/basiralab/DeltaGNN.

Authors:Sauda Adiv Hanum, Ashim Dey, Muhammad Ashad Kabir
Title: An Attention-Guided Deep Learning Approach for Classifying 39 Skin Lesion Types
Abstract:
The skin, as the largest organ of the human body, is vulnerable to a diverse array of conditions collectively known as skin lesions, which encompass various dermatoses. Diagnosing these lesions presents significant challenges for medical practitioners due to the subtle visual differences that are often imperceptible to the naked eye. While not all skin lesions are life-threatening, certain types can act as early indicators of severe diseases, including skin cancers, underscoring the critical need for timely and accurate diagnostic methods. Deep learning algorithms have demonstrated remarkable potential in facilitating the early detection and prognosis of skin lesions. This study advances the field by curating a comprehensive and diverse dataset comprising 39 categories of skin lesions, synthesized from five publicly available datasets. Using this dataset, the performance of five state-of-the-art deep learning models -- MobileNetV2, Xception, InceptionV3, EfficientNetB1, and Vision Transformer - is rigorously evaluated. To enhance the accuracy and robustness of these models, attention mechanisms such as the Efficient Channel Attention (ECA) and the Convolutional Block Attention Module (CBAM) are incorporated into their architectures. Comprehensive evaluation across multiple performance metrics reveals that the Vision Transformer model integrated with CBAM outperforms others, achieving an accuracy of 93.46%, precision of 94%, recall of 93%, F1-score of 93%, and specificity of 93.67%. These results underscore the significant potential of the proposed system in supporting medical professionals with accurate and efficient prognostic tools for diagnosing a broad spectrum of skin lesions. The dataset and code used in this study can be found at https://github.com/akabircs/Skin-Lesions-Classification.

Authors:Kuan Liu, Zongyuan Ying, Jie Jin, Dongyan Li, Ping Huang, Wenjian Wu, Zhe Chen, Jin Qi, Yong Lu, Lianfu Deng, Bo Chen
Title: Swin-X2S: Reconstructing 3D Shape from 2D Biplanar X-ray with Swin Transformers
Abstract:
The conversion from 2D X-ray to 3D shape holds significant potential for improving diagnostic efficiency and safety. However, existing reconstruction methods often rely on hand-crafted features, manual intervention, and prior knowledge, resulting in unstable shape errors and additional processing costs. In this paper, we introduce Swin-X2S, an end-to-end deep learning method for directly reconstructing 3D segmentation and labeling from 2D biplanar orthogonal X-ray images. Swin-X2S employs an encoder-decoder architecture: the encoder leverages 2D Swin Transformer for X-ray information extraction, while the decoder employs 3D convolution with cross-attention to integrate structural features from orthogonal views. A dimension-expanding module is introduced to bridge the encoder and decoder, ensuring a smooth conversion from 2D pixels to 3D voxels. We evaluate proposed method through extensive qualitative and quantitative experiments across nine publicly available datasets covering four anatomies (femur, hip, spine, and rib), with a total of 54 categories. Significant improvements over previous methods have been observed not only in the segmentation and labeling metrics but also in the clinically relevant parameters that are of primary concern in practical applications, which demonstrates the promise of Swin-X2S to provide an effective option for anatomical shape reconstruction in clinical scenarios. Code implementation is available at: \url{https://github.com/liukuan5625/Swin-X2S}.

Authors:Naval Kishore Mehta, Arvind, Himanshu Kumar, Abeer Banerjee, Sumeet Saurav, Sanjay Singh
Title: A Multimodal Dataset for Enhancing Industrial Task Monitoring and Engagement Prediction
Abstract:
Detecting and interpreting operator actions, engagement, and object interactions in dynamic industrial workflows remains a significant challenge in human-robot collaboration research, especially within complex, real-world environments. Traditional unimodal methods often fall short of capturing the intricacies of these unstructured industrial settings. To address this gap, we present a novel Multimodal Industrial Activity Monitoring (MIAM) dataset that captures realistic assembly and disassembly tasks, facilitating the evaluation of key meta-tasks such as action localization, object interaction, and engagement prediction. The dataset comprises multi-view RGB, depth, and Inertial Measurement Unit (IMU) data collected from 22 sessions, amounting to 290 minutes of untrimmed video, annotated in detail for task performance and operator behavior. Its distinctiveness lies in the integration of multiple data modalities and its emphasis on real-world, untrimmed industrial workflows-key for advancing research in human-robot collaboration and operator monitoring. Additionally, we propose a multimodal network that fuses RGB frames, IMU data, and skeleton sequences to predict engagement levels during industrial tasks. Our approach improves the accuracy of recognizing engagement states, providing a robust solution for monitoring operator performance in dynamic industrial environments. The dataset and code can be accessed from https://github.com/navalkishoremehta95/MIAM/.

Authors:Ziheng Wu, Zhenghao Chen, Ruipu Luo, Can Zhang, Yuan Gao, Zhentao He, Xian Wang, Haoran Lin, Minghui Qiu
Title: Valley2: Exploring Multimodal Models with Scalable Vision-Language Design
Abstract:
Recently, vision-language models have made remarkable progress, demonstrating outstanding capabilities in various tasks such as image captioning and video understanding. We introduce Valley2, a novel multimodal large language model designed to enhance performance across all domains and extend the boundaries of practical applications in e-commerce and short video scenarios. Notably, Valley2 achieves state-of-the-art (SOTA) performance on e-commerce benchmarks, surpassing open-source models of similar size by a large margin (79.66 vs. 72.76). Additionally, Valley2 ranks second on the OpenCompass leaderboard among models with fewer than 10B parameters, with an impressive average score of 67.4. The code and model weights are open-sourced at https://github.com/bytedance/Valley.

Authors:Zhifan Song, Yuan Zhang, Abd Al Rahman M. Abu Ebayyeh
Title: EDNet: Edge-Optimized Small Target Detection in UAV Imagery -- Faster Context Attention, Better Feature Fusion, and Hardware Acceleration
Abstract:
Detecting small targets in drone imagery is challenging due to low resolution, complex backgrounds, and dynamic scenes. We propose EDNet, a novel edge-target detection framework built on an enhanced YOLOv10 architecture, optimized for real-time applications without post-processing. EDNet incorporates an XSmall detection head and a Cross Concat strategy to improve feature fusion and multi-scale context awareness for detecting tiny targets in diverse environments. Our unique C2f-FCA block employs Faster Context Attention to enhance feature extraction while reducing computational complexity. The WIoU loss function is employed for improved bounding box regression. With seven model sizes ranging from Tiny to XL, EDNet accommodates various deployment environments, enabling local real-time inference and ensuring data privacy. Notably, EDNet achieves up to a 5.6% gain in mAP@50 with significantly fewer parameters. On an iPhone 12, EDNet variants operate at speeds ranging from 16 to 55 FPS, providing a scalable and efficient solution for edge-based object detection in challenging drone imagery. The source code and pre-trained models are available at: https://github.com/zsniko/EDNet.

Authors:Soyeong Jeong, Kangsan Kim, Jinheon Baek, Sung Ju Hwang
Title: VideoRAG: Retrieval-Augmented Generation over Video Corpus
Abstract:
Retrieval-Augmented Generation (RAG) is a powerful strategy for improving the factual accuracy of models by retrieving external knowledge relevant to queries and incorporating it into the generation process. However, existing approaches primarily focus on text, with some recent advancements considering images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing contextual details more effectively than any other modality. While very recent studies explore the use of videos in response generation, they either predefine query-associated videos without retrieval or convert videos into textual descriptions losing multimodal richness. To tackle these, we introduce VideoRAG, a framework that not only dynamically retrieves videos based on their relevance with queries but also utilizes both visual and textual information. The operation of VideoRAG is powered by recent Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and the seamless integration of retrieved videos jointly with queries for response generation. Also, inspired by that the context size of LVLMs may not be sufficient to process all frames in extremely long videos and not all frames are equally important, we introduce a video frame selection mechanism to extract the most informative subset of frames, along with a strategy to extract textual information from videos (as it can aid the understanding of video content) when their subtitles are not available. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines. Code is available at https://github.com/starsuzi/VideoRAG.

Authors:Antonin Poché, Alon Jacovi, Agustin Martin Picard, Victor Boutin, Fanny Jourdan
Title: ConSim: Measuring Concept-Based Explanations' Effectiveness with Automated Simulatability
Abstract:
Concept-based explanations work by mapping complex model computations to human-understandable concepts. Evaluating such explanations is very difficult, as it includes not only the quality of the induced space of possible concepts but also how effectively the chosen concepts are communicated to users. Existing evaluation metrics often focus solely on the former, neglecting the latter. We introduce an evaluation framework for measuring concept explanations via automated simulatability: a simulator's ability to predict the explained model's outputs based on the provided explanations. This approach accounts for both the concept space and its interpretation in an end-to-end evaluation. Human studies for simulatability are notoriously difficult to enact, particularly at the scale of a wide, comprehensive empirical evaluation (which is the subject of this work). We propose using large language models (LLMs) as simulators to approximate the evaluation and report various analyses to make such approximations reliable. Our method allows for scalable and consistent evaluation across various models and datasets. We report a comprehensive empirical evaluation using this framework and show that LLMs provide consistent rankings of explanation methods. Code available at https://github.com/AnonymousConSim/ConSim.

Authors:Xinting Hu, Haoran Wang, Jan Eric Lenssen, Bernt Schiele
Title: PersonaHOI: Effortlessly Improving Personalized Face with Human-Object Interaction Generation
Abstract:
We introduce PersonaHOI, a training- and tuning-free framework that fuses a general StableDiffusion model with a personalized face diffusion (PFD) model to generate identity-consistent human-object interaction (HOI) images. While existing PFD models have advanced significantly, they often overemphasize facial features at the expense of full-body coherence, PersonaHOI introduces an additional StableDiffusion (SD) branch guided by HOI-oriented text inputs. By incorporating cross-attention constraints in the PFD branch and spatial merging at both latent and residual levels, PersonaHOI preserves personalized facial details while ensuring interactive non-facial regions. Experiments, validated by a novel interaction alignment metric, demonstrate the superior realism and scalability of PersonaHOI, establishing a new standard for practical personalized face with HOI generation. Our code will be available at https://github.com/JoyHuYY1412/PersonaHOI

Authors:Sunwoo Kim, Minkyu Kim, Dongmin Park
Title: Test-time Alignment of Diffusion Models without Reward Over-optimization
Abstract:
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free, test-time method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS.

Authors:Taywon Min, Haeone Lee, Yongchan Kwon, Kimin Lee
Title: Understanding Impact of Human Feedback via Influence Functions
Abstract:
In Reinforcement Learning from Human Feedback (RLHF), it is crucial to learn suitable reward models from human feedback to align large language models (LLMs) with human intentions. However, human feedback can often be noisy, inconsistent, or biased, especially when evaluating complex responses. Such feedback can lead to misaligned reward signals, potentially causing unintended side effects during the RLHF process. To address these challenges, we explore the use of influence functions to measure the impact of human feedback on the performance of reward models. We propose a compute-efficient approximation method that enables the application of influence functions to LLM-based reward models and large-scale preference datasets. Our experiments showcase two key applications of influence functions: (1) detecting common labeler biases in human feedback datasets and (2) guiding labelers in refining their strategies to better align with expert feedback. By quantifying the impact of human feedback, we believe that influence functions can enhance feedback interpretability and contribute to scalable oversight in RLHF, helping labelers provide more accurate and consistent feedback. Source code is available at https://github.com/mintaywon/IF_RLHF

Authors:Sungjae Lee, Hyejin Park, Jaechang Kim, Jungseul Ok
Title: Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models
Abstract:
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral. Our code is available at https://github.com/ml-postech/SEAG-semantic-exploration-with-adaptive-gating .

Authors:Yi Ma, Shuai Wang, Tianchi Liu, Haizhou Li
Title: ExPO: Explainable Phonetic Trait-Oriented Network for Speaker Verification
Abstract:
In speaker verification, we use computational method to verify if an utterance matches the identity of an enrolled speaker. This task is similar to the manual task of forensic voice comparison, where linguistic analysis is combined with auditory measurements to compare and evaluate voice samples. Despite much success, we have yet to develop a speaker verification system that offers explainable results comparable to those from manual forensic voice comparison. A novel approach, Explainable Phonetic Trait-Oriented (ExPO) network, is proposed in this paper to introduce the speaker's phonetic trait which describes the speaker's characteristics at the phonetic level, resembling what forensic comparison does. ExPO not only generates utterance-level speaker embeddings but also allows for fine-grained analysis and visualization of phonetic traits, offering an explainable speaker verification process. Furthermore, we investigate phonetic traits from within-speaker and between-speaker variation perspectives to determine which trait is most effective for speaker verification, marking an important step towards explainable speaker verification. Our code is available at https://github.com/mmmmayi/ExPO.

Authors:Sehyung Kim, Chanhyeong Yang, Jihwan Park, Taehoon Song, Hyunwoo J. Kim
Title: Super-class guided Transformer for Zero-Shot Attribute Classification
Abstract:
Attribute classification is crucial for identifying specific characteristics within image regions. Vision-Language Models (VLMs) have been effective in zero-shot tasks by leveraging their general knowledge from large-scale datasets. Recent studies demonstrate that transformer-based models with class-wise queries can effectively address zero-shot multi-label classification. However, poor utilization of the relationship between seen and unseen attributes makes the model lack generalizability. Additionally, attribute classification generally involves many attributes, making maintaining the model's scalability difficult. To address these issues, we propose Super-class guided transFormer (SugaFormer), a novel framework that leverages super-classes to enhance scalability and generalizability for zero-shot attribute classification. SugaFormer employs Super-class Query Initialization (SQI) to reduce the number of queries, utilizing common semantic information from super-classes, and incorporates Multi-context Decoding (MD) to handle diverse visual cues. To strengthen generalizability, we introduce two knowledge transfer strategies that utilize VLMs. During training, Super-class guided Consistency Regularization (SCR) aligns model's features with VLMs using super-class guided prompts, and during inference, Zero-shot Retrieval-based Score Enhancement (ZRSE) refines predictions for unseen attributes. Extensive experiments demonstrate that SugaFormer achieves state-of-the-art performance across three widely-used attribute classification benchmarks under zero-shot, and cross-dataset transfer settings. Our code is available at https://github.com/mlvlab/SugaFormer.

Authors:Dominick Reilly, Manish Kumar Govind, Le Xue, Srijan Das
Title: From My View to Yours: Ego-Augmented Learning in Large Vision Language Models for Understanding Exocentric Daily Living Activities
Abstract:
Large Vision Language Models (LVLMs) have demonstrated impressive capabilities in video understanding, yet their adoption for Activities of Daily Living (ADL) remains limited by their inability to capture fine-grained interactions and spatial relationships. To address this, we aim to leverage the complementary nature of egocentric views to enhance LVLM's understanding of exocentric ADL videos. Consequently, we propose ego2exo knowledge distillation to learn ego-augmented exp representations. While effective, this approach requires paired ego-exo videos, which are impractical to collect at scale. To address this, we propose Skeleton-guided Synthetic Ego Generation (SK-EGO), which leverages human skeleton motion to generate synthetic ego views from exocentric videos. To enhance the ego representation of LVLMs trained on synthetic data, we develop a domain-agnostic bootstrapped ego2exo strategy that effectively transfers knowledge from real ego-exo pairs to synthetic ego-exo pairs, while mitigating domain misalignment. We find that the exo representations of our ego-augmented LVLMs successfully learn to extract ego-perspective cues, demonstrated through comprehensive evaluation on six ADL benchmarks and our proposed Ego-in-Exo PerceptionMCQ benchmark designed specifically to assess egocentric understanding from exocentric videos. Code, models, and data will be open-sourced at https://github.com/dominickrei/EgoExo4ADL.

Authors:Shuolong Chen, Xingxing Li, Liu Yuan, Ziao Liu
Title: eKalibr: Dynamic Intrinsic Calibration for Event Cameras From First Principles of Events
Abstract:
The bio-inspired event camera has garnered extensive research attention in recent years, owing to its significant potential derived from its high dynamic range and low latency characteristics. Similar to the standard camera, the event camera requires precise intrinsic calibration to facilitate further high-level visual applications, such as pose estimation and mapping. While several calibration methods for event cameras have been proposed, most of them are either (i) engineering-driven, heavily relying on conventional image-based calibration pipelines, or (ii) inconvenient, requiring complex instrumentation. To this end, we propose an accurate and convenient intrinsic calibration method for event cameras, named eKalibr, which builds upon a carefully designed event-based circle grid pattern recognition algorithm. To extract target patterns from events, we perform event-based normal flow estimation to identify potential events generated by circle edges, and cluster them spatially. Subsequently, event clusters associated with the same grid circles are matched and grouped using normal flows, for subsequent time-varying ellipse estimation. Fitted ellipse centers are time-synchronized, for final grid pattern recognition. We conducted extensive experiments to evaluate the performance of eKalibr in terms of pattern extraction and intrinsic calibration. The implementation of eKalibr is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.

Authors:Yinghao Zhu, Xiaochen Zheng, Ahmed Allam, Michael Krauthammer
Title: TAMER: A Test-Time Adaptive MoE-Driven Framework for EHR Representation Learning
Abstract:
We propose TAMER, a Test-time Adaptive MoE-driven framework for Electronic Health Record (EHR) Representation learning. TAMER introduces a framework where a Mixture-of-Experts (MoE) architecture is co-designed with Test-Time Adaptation (TTA) to jointly mitigate the intertwined challenges of patient heterogeneity and distribution shifts in EHR modeling. The MoE focuses on latent patient subgroups through domain-aware expert specialization, while TTA enables real-time adaptation to evolving health status distributions when new patient samples are introduced. Extensive experiments across four real-world EHR datasets demonstrate that TAMER consistently improves predictive performance for both mortality and readmission risk tasks when combined with diverse EHR modeling backbones. TAMER offers a promising approach for dynamic and personalized EHR-based predictions in practical clinical settings.

Authors:Ayush Khot, Xiwei Wang, Avik Roy, Volodymyr Kindratenko, Mark S. Neubauer
Title: Evidential Deep Learning for Uncertainty Quantification and Out-of-Distribution Detection in Jet Identification using Deep Neural Networks
Abstract:
Current methods commonly used for uncertainty quantification (UQ) in deep learning (DL) models utilize Bayesian methods which are computationally expensive and time-consuming. In this paper, we provide a detailed study of UQ based on evidential deep learning (EDL) for deep neural network models designed to identify jets in high energy proton-proton collisions at the Large Hadron Collider and explore its utility in anomaly detection. EDL is a DL approach that treats learning as an evidence acquisition process designed to provide confidence (or epistemic uncertainty) about test data. Using publicly available datasets for jet classification benchmarking, we explore hyperparameter optimizations for EDL applied to the challenge of UQ for jet identification. We also investigate how the uncertainty is distributed for each jet class, how this method can be implemented for the detection of anomalies, how the uncertainty compares with Bayesian ensemble methods, and how the uncertainty maps onto latent spaces for the models. Our studies uncover some pitfalls of EDL applied to anomaly detection and a more effective way to quantify uncertainty from EDL as compared with the foundational EDL setup. These studies illustrate a methodological approach to interpreting EDL in jet classification models, providing new insights on how EDL quantifies uncertainty and detects out-of-distribution data which may lead to improved EDL methods for DL models applied to classification tasks.

Authors:Zhao Yang, Bing Su, Jiahao Chen, Ji-Rong Wen
Title: Interpretable Enzyme Function Prediction via Residue-Level Detection
Abstract:
Predicting multiple functions labeled with Enzyme Commission (EC) numbers from the enzyme sequence is of great significance but remains a challenge due to its sparse multi-label classification nature, i.e., each enzyme is typically associated with only a few labels out of more than 6000 possible EC numbers. However, existing machine learning algorithms generally learn a fixed global representation for each enzyme to classify all functions, thereby they lack interpretability and the fine-grained information of some function-specific local residue fragments may be overwhelmed. Here we present an attention-based framework, namely ProtDETR (Protein Detection Transformer), by casting enzyme function prediction as a detection problem. It uses a set of learnable functional queries to adaptatively extract different local representations from the sequence of residue-level features for predicting different EC numbers. ProtDETR not only significantly outperforms existing deep learning-based enzyme function prediction methods, but also provides a new interpretable perspective on automatically detecting different local regions for identifying different functions through cross-attentions between queries and residue-level features. Code is available at https://github.com/yangzhao1230/ProtDETR.

Authors:Joe Eappen, Zikang Xiong, Dipam Patel, Aniket Bera, Suresh Jagannathan
Title: Scaling Safe Multi-Agent Control for Signal Temporal Logic Specifications
Abstract:
Existing methods for safe multi-agent control using logic specifications like Signal Temporal Logic (STL) often face scalability issues. This is because they rely either on single-agent perspectives or on Mixed Integer Linear Programming (MILP)-based planners, which are complex to optimize. These methods have proven to be computationally expensive and inefficient when dealing with a large number of agents. To address these limitations, we present a new scalable approach to multi-agent control in this setting. Our method treats the relationships between agents using a graph structure rather than in terms of a single-agent perspective. Moreover, it combines a multi-agent collision avoidance controller with a Graph Neural Network (GNN) based planner, models the system in a decentralized fashion, and trains on STL-based objectives to generate safe and efficient plans for multiple agents, thereby optimizing the satisfaction of complex temporal specifications while also facilitating multi-agent collision avoidance. Our experiments show that our approach significantly outperforms existing methods that use a state-of-the-art MILP-based planner in terms of scalability and performance. The project website is https://jeappen.com/mastl-gcbf-website/ and the code is at https://github.com/jeappen/mastl-gcbf .

Authors:Anant Mehta, Bryant McArthur, Nagarjuna Kolloju, Zhengzhong Tu
Title: HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection
Abstract:
The rapid progress in deep generative models has led to the creation of incredibly realistic synthetic images that are becoming increasingly difficult to distinguish from real-world data. The widespread use of Variational Models, Diffusion Models, and Generative Adversarial Networks has made it easier to generate convincing fake images and videos, which poses significant challenges for detecting and mitigating the spread of misinformation. As a result, developing effective methods for detecting AI-generated fakes has become a pressing concern. In our research, we propose HFMF, a comprehensive two-stage deepfake detection framework that leverages both hierarchical cross-modal feature fusion and multi-stream feature extraction to enhance detection performance against imagery produced by state-of-the-art generative AI models. The first component of our approach integrates vision Transformers and convolutional nets through a hierarchical feature fusion mechanism. The second component of our framework combines object-level information and a fine-tuned convolutional net model. We then fuse the outputs from both components via an ensemble deep neural net, enabling robust classification performances. We demonstrate that our architecture achieves superior performance across diverse dataset benchmarks while maintaining calibration and interoperability.

Authors:Yifei Li, Junbo Niu, Ziyang Miao, Chunjiang Ge, Yuanhang Zhou, Qihao He, Xiaoyi Dong, Haodong Duan, Shuangrui Ding, Rui Qian, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui He, Jiaqi Wang
Title: OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
Abstract:
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.

Authors:Mengshi Qi, Zhe Zhao, Huadong Ma
Title: Human Grasp Generation for Rigid and Deformable Objects with Decomposed VQ-VAE
Abstract:
Generating realistic human grasps is crucial yet challenging for object manipulation in computer graphics and robotics. Current methods often struggle to generate detailed and realistic grasps with full finger-object interaction, as they typically rely on encoding the entire hand and estimating both posture and position in a single step. Additionally, simulating object deformation during grasp generation is still difficult, as modeling such deformation requires capturing the comprehensive relationship among points of the object's surface. To address these limitations, we propose a novel improved Decomposed Vector-Quantized Variational Autoencoder (DVQ-VAE-2), which decomposes the hand into distinct parts and encodes them separately. This part-aware architecture allows for more precise management of hand-object interactions. Furthermore, we introduce a dual-stage decoding strategy that first predicts the grasp type under skeletal constraints and then identifies the optimal grasp position, enhancing both the realism and adaptability of the model to unseen interactions. Furthermore, we introduce a new Mesh UFormer as the backbone network to extract the hierarchical structural representations from the mesh and propose a new normal vector-guided position encoding to simulate the hand-object deformation. In experiments, our model achieves a relative improvement of approximately 14.1% in grasp quality compared to state-of-the-art methods across four widely used benchmarks. Our comparisons with other backbone networks show relative improvements of 2.23% in Hand-object Contact Distance and 5.86% in Quality Index on deformable and rigid object based datasets, respectively. Our source code and model are available at https://github.com/florasion/D-VQVAE.

Authors:Jingyuan Tang, Yuhuan Zhao, Songlin Sun, Yangang Cai
Title: Implicit Guidance and Explicit Representation of Semantic Information in Points Cloud: A Survey
Abstract:
Point clouds, a prominent method of 3D representation, are extensively utilized across industries such as autonomous driving, surveying, electricity, architecture, and gaming, and have been rigorously investigated for their accuracy and resilience. The extraction of semantic information from scenes enhances both human understanding and machine perception. By integrating semantic information from two-dimensional scenes with three-dimensional point clouds, researchers aim to improve the precision and efficiency of various tasks. This paper provides a comprehensive review of the diverse applications and recent advancements in the integration of semantic information within point clouds. We explore the dual roles of semantic information in point clouds, encompassing both implicit guidance and explicit representation, across traditional and emerging tasks. Additionally, we offer a comparative analysis of publicly available datasets tailored to specific tasks and present notable observations. In conclusion, we discuss several challenges and potential issues that may arise in the future when fully utilizing semantic information in point clouds, providing our perspectives on these obstacles. The classified and organized articles related to semantic based point cloud tasks, and continuously followed up on relevant achievements in different fields, which can be accessed through https://github.com/Jasmine-tjy/Semantic-based-Point-Cloud-Tasks.

Authors:Gursimran Singh, Xinglu Wang, Yifan Hu, Timothy Yu, Linzi Xing, Wei Jiang, Zhefeng Wang, Xiaolong Bai, Yi Li, Ying Xiong, Yong Zhang, Zhenan Fan
Title: Efficiently Serving Large Multimodal Models Using EPD Disaggregation
Abstract:
Large Multimodal Models (LMMs) extend Large Language Models (LLMs) by handling diverse inputs such as images, audio, and video, but at the cost of adding a multimodal encoding stage that increases both computational and memory overhead. This step negatively affects key Service Level Objectives (SLOs), such as time to first token (TTFT) and time per output token (TPOT). We introduce Encode-Prefill-Decode (EPD) Disaggregation, a novel framework that separates the encoding, prefill, and decode stages onto dedicated resources. Unlike current systems, which bundle encoding and prefill together, our approach decouples these steps, unlocking new opportunities and optimizations. These include a mechanism to cache multimedia tokens for efficient transfer, a novel way to parallelize the encoding load within a request, a module for optimal resource allocation for disaggregated serving, and a novel role-switching method to handle changing workload characteristics. Experimental evaluations with popular LMMs show substantial gains in memory efficiency (up to 15x lower peak memory utilization), batch sizes (up to 22x larger), 10x more images per request, and 2.2x larger KV caches. Furthermore, it leads to significant improvements in SLO attainment (up to 90-100% improvement) and TTFT (up to 71% reduction), compared to systems that do not disaggregate. The code is available at https://github.com/vbdi/epdserve.

Authors:Yifan Yu, Shaohui Liu, Rémi Pautrat, Marc Pollefeys, Viktor Larsson
Title: Relative Pose Estimation through Affine Corrections of Monocular Depth Priors
Abstract:
Monocular depth estimation (MDE) models have undergone significant advancements over recent years. Many MDE models aim to predict affine-invariant relative depth from monocular images, while recent developments in large-scale training and vision foundation models enable reasonable estimation of metric (absolute) depth. However, effectively leveraging these predictions for geometric vision tasks, in particular relative pose estimation, remains relatively under explored. While depths provide rich constraints for cross-view image alignment, the intrinsic noise and ambiguity from the monocular depth priors present practical challenges to improving upon classic keypoint-based solutions. In this paper, we develop three solvers for relative pose estimation that explicitly account for independent affine (scale and shift) ambiguities, covering both calibrated and uncalibrated conditions. We further propose a hybrid estimation pipeline that combines our proposed solvers with classic point-based solvers and epipolar constraints. We find that the affine correction modeling is beneficial to not only the relative depth priors but also, surprisingly, the "metric" ones. Results across multiple datasets demonstrate large improvements of our approach over classic keypoint-based baselines and PnP-based solutions, under both calibrated and uncalibrated setups. We also show that our method improves consistently with different feature matchers and MDE models, and can further benefit from very recent advances on both modules. Code is available at https://github.com/MarkYu98/madpose.

Authors:Yiwen Huang, Aaron Gokaslan, Volodymyr Kuleshov, James Tompkin
Title: The GAN is dead; long live the GAN! A Modern GAN Baseline
Abstract:
There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.

Authors:Maximilian Dreyer, Jim Berend, Tobias Labarta, Johanna Vielhaben, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek
Title: Mechanistic understanding and validation of large AI models with SemanticLens
Abstract:
Unlike human-engineered systems such as aeroplanes, where each component's role and dependencies are well understood, the inner workings of AI models remain largely opaque, hindering verifiability and undermining trust. This paper introduces SemanticLens, a universal explanation method for neural networks that maps hidden knowledge encoded by components (e.g., individual neurons) into the semantically structured, multimodal space of a foundation model such as CLIP. In this space, unique operations become possible, including (i) textual search to identify neurons encoding specific concepts, (ii) systematic analysis and comparison of model representations, (iii) automated labelling of neurons and explanation of their functional roles, and (iv) audits to validate decision-making against requirements. Fully scalable and operating without human input, SemanticLens is shown to be effective for debugging and validation, summarizing model knowledge, aligning reasoning with expectations (e.g., adherence to the ABCDE-rule in melanoma classification), and detecting components tied to spurious correlations and their associated training data. By enabling component-level understanding and validation, the proposed approach helps bridge the "trust gap" between AI models and traditional engineered systems. We provide code for SemanticLens on https://github.com/jim-berend/semanticlens and a demo on https://semanticlens.hhi-research-insights.eu.

Authors:Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, Zhicheng Dou
Title: Search-o1: Agentic Search-Enhanced Large Reasoning Models
Abstract:
Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems. The code is available at \url{https://github.com/sunnynexus/Search-o1}.

Authors:Wolfgang Gritz, Anett Hoppe, Ralph Ewerth
Title: Unraveling the Impact of Visual Complexity on Search as Learning
Abstract:
Information search has become essential for learning and knowledge acquisition, offering broad access to information and learning resources. The visual complexity of web pages is known to influence search behavior, with previous work suggesting that searchers make evaluative judgments within the first second on a page. However, there is a significant gap in our understanding of how visual complexity impacts searches specifically conducted with a learning intent. This gap is particularly relevant for the development of optimized information retrieval (IR) systems that effectively support educational objectives. To address this research need, we model visual complexity and aesthetics via a diverse set of features, investigating their relationship with search behavior during learning-oriented web sessions. Our study utilizes a publicly available dataset from a lab study where participants learned about thunderstorm formation. Our findings reveal that while content relevance is the most significant predictor for knowledge gain, sessions with less visually complex pages are associated with higher learning success. This observation applies to features associated with the layout of web pages rather than to simpler features (e.g., number of images). The reported results shed light on the impact of visual complexity on learning-oriented searches, informing the design of more effective IR systems for educational contexts. To foster reproducibility, we release our source code (https://github.com/TIBHannover/sal_visual_complexity).

Authors:Xinzi Cao, Xiawu Zheng, Guanhong Wang, Weijiang Yu, Yunhang Shen, Ke Li, Yutong Lu, Yonghong Tian
Title: Solving the Catastrophic Forgetting Problem in Generalized Category Discovery
Abstract:
Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.

Authors:Fabian Hörst, Moritz Rempe, Helmut Becker, Lukas Heine, Julius Keyl, Jens Kleesiek
Title: CellViT++: Energy-Efficient and Adaptive Cell Segmentation and Classification Using Foundation Models
Abstract:
Digital Pathology is a cornerstone in the diagnosis and treatment of diseases. A key task in this field is the identification and segmentation of cells in hematoxylin and eosin-stained images. Existing methods for cell segmentation often require extensive annotated datasets for training and are limited to a predefined cell classification scheme. To overcome these limitations, we propose $\text{CellViT}^{\scriptscriptstyle ++}$, a framework for generalized cell segmentation in digital pathology. $\text{CellViT}^{\scriptscriptstyle ++}$ utilizes Vision Transformers with foundation models as encoders to compute deep cell features and segmentation masks simultaneously. To adapt to unseen cell types, we rely on a computationally efficient approach. It requires minimal data for training and leads to a drastically reduced carbon footprint. We demonstrate excellent performance on seven different datasets, covering a broad spectrum of cell types, organs, and clinical settings. The framework achieves remarkable zero-shot segmentation and data-efficient cell-type classification. Furthermore, we show that $\text{CellViT}^{\scriptscriptstyle ++}$ can leverage immunofluorescence stainings to generate training datasets without the need for pathologist annotations. The automated dataset generation approach surpasses the performance of networks trained on manually labeled data, demonstrating its effectiveness in creating high-quality training datasets without expert annotations. To advance digital pathology, $\text{CellViT}^{\scriptscriptstyle ++}$ is available as an open-source framework featuring a user-friendly, web-based interface for visualization and annotation. The code is available under https://github.com/TIO-IKIM/CellViT-plus-plus.

Authors:Xuyang Liu, Ziming Wang, Junjie Chen, Yuhang Han, Yingyao Wang, Jiale Yuan, Jun Song, Linfeng Zhang, Siteng Huang, Honggang Chen
Title: Global Compression Commander: Plug-and-Play Inference Acceleration for High-Resolution Large Vision-Language Models
Abstract:
Large vision-language models (LVLMs) excel at visual understanding, but face efficiency challenges due to quadratic complexity in processing long multi-modal contexts. While token compression can reduce computational costs, existing approaches are designed for single-view LVLMs and fail to consider the unique multi-view characteristics of high-resolution LVLMs with dynamic cropping. Existing methods treat all tokens uniformly, but our analysis reveals that global thumbnails can naturally guide the compression of local crops by providing holistic context for informativeness evaluation. In this paper, we first analyze dynamic cropping strategy, revealing both the complementary nature between thumbnails and crops, and the distinctive characteristics across different crops. Based on our observations, we propose "Global Compression Commander" (GlobalCom$^2$), a novel plug-and-play token compression framework for HR-LVLMs. GlobalCom$^2$ leverages thumbnail as the "commander" to guide the compression of local crops, adaptively preserving informative details while eliminating redundancy. Extensive experiments show that GlobalCom$^2$ maintains over 90% performance while compressing 90% visual tokens, reducing FLOPs and peak memory to 9.1% and 60%. Our code is available at https://github.com/xuyang-liu16/GlobalCom2.

Authors:Bhaskar Lalwani, Aniruddha Mukherjee
Title: KabaddiPy: A package to enable access to Professional Kabaddi Data
Abstract:
Kabaddi, a contact team sport of Indian origin, has seen a dramatic rise in global popularity, highlighted by the upcoming Kabaddi World Cup in 2025 with over sixteen international teams participating, alongside flourishing national leagues such as the Indian Pro Kabaddi League (230 million viewers) and the British Kabaddi League. We present the first open-source Python module to make Kabaddi statistical data easily accessible from multiple scattered sources across the internet. The module was developed by systematically web-scraping and collecting team-wise, player-wise and match-by-match data. The data has been cleaned, organized, and categorized into team overviews and player metrics, each filterable by season. The players are classified as raiders and defenders, with their best strategies for attacking, counter-attacking, and defending against different teams highlighted. Our module enables continuous monitoring of exponentially growing data streams, aiding researchers to quickly start building upon the data to answer critical questions, such as the impact of player inclusion/exclusion on team performance, scoring patterns against specific teams, and break down opponent gameplay. The data generated from Kabaddi tournaments has been sparsely used, and coaches and players rely heavily on intuition to make decisions and craft strategies. Our module can be utilized to build predictive models, craft uniquely strategic gameplays to target opponents and identify hidden correlations in the data. This open source module has the potential to increase time-efficiency, encourage analytical studies of Kabaddi gameplay and player dynamics and foster reproducible research. The data and code are publicly available: https://github.com/kabaddiPy/kabaddiPy

Authors:Daniel Nezamabadi, Magnus Myreen
Title: Baking for Dafny: A CakeML Backend for Dafny
Abstract:
Dafny is a verification-aware programming language that allows developers to formally specify their programs and prove them correct. Currently, a Dafny program is compiled in two steps: First, a backend translates the input program to a high-level target language like C# or Rust. Second, the translated program is compiled using the target language's toolchain. Recently, an intermediate representation (IR) has been added to Dafny that serves as input to new backends. At the time of writing, none of these steps are verified, resulting in both the backend and the target language's toolchain being part of Dafny's trusted computing base (TCB). To reduce Dafny's TCB, we started developing a new backend that translates Dafny to CakeML, a verified, bootstrapped subset of Standard ML, in the interactive theorem prover HOL4. We also started to define functional big-step semantics for the Dafny IR to prove correctness of the backend.

Authors:Haoyi Xiu, Xin Liu, Taehoon Kim, Kyoung-Sook Kim
Title: Advancing ALS Applications with Large-Scale Pre-training: Dataset Development and Downstream Assessment
Abstract:
The pre-training and fine-tuning paradigm has revolutionized satellite remote sensing applications. However, this approach remains largely underexplored for airborne laser scanning (ALS), an important technology for applications such as forest management and urban planning. In this study, we address this gap by constructing a large-scale ALS point cloud dataset and evaluating its impact on downstream applications. Our dataset comprises ALS point clouds collected across the contiguous United States, provided by the United States Geological Survey's 3D Elevation Program. To ensure efficient data collection while capturing diverse land cover and terrain types, we introduce a geospatial sampling method that selects point cloud tiles based on land cover maps and digital elevation models. As a baseline self-supervised learning model, we adopt BEV-MAE, a state-of-the-art masked autoencoder for 3D outdoor point clouds, and pre-train it on the constructed dataset. The pre-trained models are subsequently fine-tuned for downstream tasks, including tree species classification, terrain scene recognition, and point cloud semantic segmentation. Our results show that the pre-trained models significantly outperform their scratch counterparts across all downstream tasks, demonstrating the transferability of the representations learned from the proposed dataset. Furthermore, we observe that scaling the dataset using our geospatial sampling method consistently enhances performance, whereas pre-training on datasets constructed with random sampling fails to achieve similar improvements. These findings highlight the utility of the constructed dataset and the effectiveness of our sampling strategy in the pre-training and fine-tuning paradigm. The source code and pre-trained models will be made publicly available at \url{https://github.com/martianxiu/ALS_pretraining}.

Authors:Hounsu Kim, Taegyun Kwon, Juhan Nam
Title: D3RM: A Discrete Denoising Diffusion Refinement Model for Piano Transcription
Abstract:
Diffusion models have been widely used in the generative domain due to their convincing performance in modeling complex data distributions. Moreover, they have shown competitive results on discriminative tasks, such as image segmentation. While diffusion models have also been explored for automatic music transcription, their performance has yet to reach a competitive level. In this paper, we focus on discrete diffusion model's refinement capabilities and present a novel architecture for piano transcription. Our model utilizes Neighborhood Attention layers as the denoising module, gradually predicting the target high-resolution piano roll, conditioned on the finetuned features of a pretrained acoustic model. To further enhance refinement, we devise a novel strategy which applies distinct transition states during training and inference stage of discrete diffusion models. Experiments on the MAESTRO dataset show that our approach outperforms previous diffusion-based piano transcription models and the baseline model in terms of F1 score. Our code is available in https://github.com/hanshounsu/d3rm.

Authors:Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, Kai Chen
Title: SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution
Abstract:
Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source framework designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other model to generate patches for the identified files. To mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches and train the two models of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving competitive performance among open-source models with scores of 22.0% and 30.2%. Furthermore, SWE-Fixer reaches state-of-the-art performance (24.7% on Lite and 32.8% on Verified) with PASS_TO_PASS (P2P) filtering. Additionally, our approach requires only two model calls per instance, making it significantly more efficient than existing methods. These results highlight the effectiveness of SWE-Fixer in real-world code-fixing scenarios. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.

Authors:Ronghao Dang, Yuqian Yuan, Wenqi Zhang, Yifei Xin, Boqiang Zhang, Long Li, Liuyi Wang, Qinyang Zeng, Xin Li, Lidong Bing
Title: ECBench: Can Multi-modal Foundation Models Understand the Egocentric World? A Holistic Embodied Cognition Benchmark
Abstract:
The enhancement of generalization in robots by large vision-language models (LVLMs) is increasingly evident. Therefore, the embodied cognitive abilities of LVLMs based on egocentric videos are of great interest. However, current datasets for embodied video question answering lack comprehensive and systematic evaluation frameworks. Critical embodied cognitive issues, such as robotic self-cognition, dynamic scene perception, and hallucination, are rarely addressed. To tackle these challenges, we propose ECBench, a high-quality benchmark designed to systematically evaluate the embodied cognitive abilities of LVLMs. ECBench features a diverse range of scene video sources, open and varied question formats, and 30 dimensions of embodied cognition. To ensure quality, balance, and high visual dependence, ECBench uses class-independent meticulous human annotation and multi-round question screening strategies. Additionally, we introduce ECEval, a comprehensive evaluation system that ensures the fairness and rationality of the indicators. Utilizing ECBench, we conduct extensive evaluations of proprietary, open-source, and task-specific LVLMs. ECBench is pivotal in advancing the embodied cognitive capabilities of LVLMs, laying a solid foundation for developing reliable core models for embodied agents. All data and code are available at https://github.com/Rh-Dang/ECBench.

Authors:Xiaojie Li, Jianlong Wu, Yue Yu, Liqiang Nie, Min Zhang
Title: Continuous Knowledge-Preserving Decomposition with Adaptive Layer Selection for Few-Shot Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) faces a critical challenge: balancing the retention of prior knowledge with the acquisition of new classes. Existing methods either freeze the backbone to prevent catastrophic forgetting, sacrificing plasticity, or add new modules, incurring high costs. These approaches treat pretrained models as black boxes, overlooking two key opportunities to exploit their internal capacity: reusing redundant representational space within layers and selectively adapting layers based on their sensitivity to forgetting. We propose CKPD-FSCIL, a unified framework that unlocks the underutilized capacity of pretrained weights, achieving a superior stability-plasticity balance with zero inference overhead. Our design integrates two continuously adapting mechanisms: At the weight level, a Continuous Knowledge-Preserving Decomposition mechanism uses feature covariance to split each weight matrix into a frozen subspace that safeguards prior knowledge and a learnable, redundant subspace for new tasks. At the layer level, a Continuous Adaptive Layer Selection mechanism leverages an Adapter Sensitivity Ratio to automatically select layers with the highest redundant capacity and lowest forgetting risk for adaptation. By targeting only safe, high-potential subspaces and layers, CKPD-FSCIL enables efficient adaptation. After each session, the learned adapters are merged back into the original weights, ensuring zero additional parameters or FLOPs during inference. Extensive experiments on multiple FSCIL benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches in both adaptability and knowledge retention. The code is available at https://github.com/xiaojieli0903/CKPD-FSCIL.

Authors:Benjamin Reichman, Xiaofan Yu, Lanxiang Hu, Jack Truxal, Atishay Jain, Rushil Chandrupatla, Tajana Šimunić Rosing, Larry Heck
Title: SensorQA: A Question Answering Benchmark for Daily-Life Monitoring
Abstract:
With the rapid growth in sensor data, effectively interpreting and interfacing with these data in a human-understandable way has become crucial. While existing research primarily focuses on learning classification models, fewer studies have explored how end users can actively extract useful insights from sensor data, often hindered by the lack of a proper dataset. To address this gap, we introduce SensorQA, the first human-created question-answering (QA) dataset for long-term time-series sensor data for daily life monitoring. SensorQA is created by human workers and includes 5.6K diverse and practical queries that reflect genuine human interests, paired with accurate answers derived from sensor data. We further establish benchmarks for state-of-the-art AI models on this dataset and evaluate their performance on typical edge devices. Our results reveal a gap between current models and optimal QA performance and efficiency, highlighting the need for new contributions. The dataset and code are available at: https://github.com/benjamin-reichman/SensorQA.

Authors:HyunGi Kim, Siwon Kim, Jisoo Mok, Sungroh Yoon
Title: Battling the Non-stationarity in Time Series Forecasting via Test-time Adaptation
Abstract:
Deep Neural Networks have spearheaded remarkable advancements in time series forecasting (TSF), one of the major tasks in time series modeling. Nonetheless, the non-stationarity of time series undermines the reliability of pre-trained source time series forecasters in mission-critical deployment settings. In this study, we introduce a pioneering test-time adaptation framework tailored for TSF (TSF-TTA). TAFAS, the proposed approach to TSF-TTA, flexibly adapts source forecasters to continuously shifting test distributions while preserving the core semantic information learned during pre-training. The novel utilization of partially-observed ground truth and gated calibration module enables proactive, robust, and model-agnostic adaptation of source forecasters. Experiments on diverse benchmark datasets and cutting-edge architectures demonstrate the efficacy and generality of TAFAS, especially in long-term forecasting scenarios that suffer from significant distribution shifts. The code is available at https://github.com/kimanki/TAFAS.

Authors:Haoran Zhu, Zhenyuan Dong, Kristi Topollai, Anna Choromanska
Title: AD-L-JEPA: Self-Supervised Spatial World Models with Joint Embedding Predictive Architecture for Autonomous Driving with LiDAR Data
Abstract:
As opposed to human drivers, current autonomous driving systems still require vast amounts of labeled data to train. Recently, world models have been proposed to simultaneously enhance autonomous driving capabilities by improving the way these systems understand complex real-world environments and reduce their data demands via self-supervised pre-training. In this paper, we present AD-L-JEPA (aka Autonomous Driving with LiDAR data via a Joint Embedding Predictive Architecture), a novel self-supervised pre-training framework for autonomous driving with LiDAR data that, as opposed to existing methods, is neither generative nor contrastive. Our method learns spatial world models with a joint embedding predictive architecture. Instead of explicitly generating masked unknown regions, our self-supervised world models predict Bird's Eye View (BEV) embeddings to represent the diverse nature of autonomous driving scenes. Our approach furthermore eliminates the need to manually create positive and negative pairs, as is the case in contrastive learning. AD-L-JEPA leads to simpler implementation and enhanced learned representations. We qualitatively and quantitatively demonstrate high-quality of embeddings learned with AD-L-JEPA. We furthermore evaluate the accuracy and label efficiency of AD-L-JEPA on popular downstream tasks such as LiDAR 3D object detection and associated transfer learning. Our experimental evaluation demonstrates that AD-L-JEPA is a plausible approach for self-supervised pre-training in autonomous driving applications and is the best available approach outperforming SOTA, including most recently proposed Occupancy-MAE [1] and ALSO [2]. The source code of AD-L-JEPA is available at https://github.com/HaoranZhuExplorer/AD-L-JEPA-Release.

Authors:Wenqian Cui, Xiaoqi Jiao, Ziqiao Meng, Irwin King
Title: VoxEval: Benchmarking the Knowledge Understanding Capabilities of End-to-End Spoken Language Models
Abstract:
With the rising need for speech-based interaction models, end-to-end Spoken Language Models (SLMs) have emerged as a promising solution. While these models require comprehensive world knowledge for meaningful and reliable human interactions, existing question-answering (QA) benchmarks fall short in evaluating SLMs' knowledge understanding due to their inability to support end-to-end speech evaluation and account for varied input audio conditions. To address these limitations, we present VoxEval, a novel SpeechQA benchmark that assesses SLMs' knowledge understanding through pure speech interactions. Our benchmark 1) uniquely maintains speech format for both inputs and outputs, 2) evaluates model robustness across diverse input audio conditions, and 3) pioneers the assessment of complex tasks like mathematical reasoning in spoken format. Systematic evaluation demonstrates that VoxEval presents significant challenges to current SLMs, revealing their sensitivity to varying audio conditions and highlighting the need to enhance reasoning capabilities in future development. We hope this benchmark could guide the advancement of more sophisticated and reliable SLMs. VoxEval dataset is available at: https://github.com/dreamtheater123/VoxEval

Authors:Lei Li, Xinglin Zhang, Jun Liang, Tao Chen
Title: Addressing Domain Shift via Imbalance-Aware Domain Adaptation in Embryo Development Assessment
Abstract:
Deep learning models in medical imaging face dual challenges: domain shift, where models perform poorly when deployed in settings different from their training environment, and class imbalance, where certain disease conditions are naturally underrepresented. We present Imbalance-Aware Domain Adaptation (IADA), a novel framework that simultaneously tackles both challenges through three key components: (1) adaptive feature learning with class-specific attention mechanisms, (2) balanced domain alignment with dynamic weighting, and (3) adaptive threshold optimization. Our theoretical analysis establishes convergence guarantees and complexity bounds. Through extensive experiments on embryo development assessment across four imaging modalities, IADA demonstrates significant improvements over existing methods, achieving up to 25.19\% higher accuracy while maintaining balanced performance across classes. In challenging scenarios with low-quality imaging systems, IADA shows robust generalization with AUC improvements of up to 12.56\%. These results demonstrate IADA's potential for developing reliable and equitable medical imaging systems for diverse clinical settings. The code is made public available at \url{https://github.com/yinghemedical/imbalance-aware_domain_adaptation}

Authors:Qingyu Ren, Jie Zeng, Qianyu He, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Title: Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
Abstract:
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, it is an unexplored area to enhance LLMs' ability to follow soft constraints. To bridge the gap, we initially design a pipeline to construct datasets with high-quality outputs automatically. Additionally, to fully utilize the positive and negative samples generated during the data construction process, we choose Direct Preference Optimization (DPO) as the training method. Furthermore, taking into account the difficulty of soft constraints indicated by the number of constraints, we design a curriculum learning training paradigm based on the constraint quantity. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements.The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraint.

Authors:Yapeng Li, Yong Luo, Lefei Zhang, Zengmao Wang, Bo Du
Title: MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
Abstract:
Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .

Authors:Guannan Lai, Yihui Feng, Xin Yang, Xiaoyu Deng, Hao Yu, Shuyin Xia, Guoyin Wang, Tianrui Li
Title: A New Perspective on Privacy Protection in Federated Learning with Granular-Ball Computing
Abstract:
Federated Learning (FL) facilitates collaborative model training while prioritizing privacy by avoiding direct data sharing. However, most existing articles attempt to address challenges within the model's internal parameters and corresponding outputs, while neglecting to solve them at the input level. To address this gap, we propose a novel framework called Granular-Ball Federated Learning (GrBFL) for image classification. GrBFL diverges from traditional methods that rely on the finest-grained input data. Instead, it segments images into multiple regions with optimal coarse granularity, which are then reconstructed into a graph structure. We designed a two-dimensional binary search segmentation algorithm based on variance constraints for GrBFL, which effectively removes redundant information while preserving key representative features. Extensive theoretical analysis and experiments demonstrate that GrBFL not only safeguards privacy and enhances efficiency but also maintains robust utility, consistently outperforming other state-of-the-art FL methods. The code is available at https://github.com/AIGNLAI/GrBFL.

Authors:Sun-Hyuk Choi, Hayoung Jo, Seong-Whan Lee
Title: Multi-Context Temporal Consistent Modeling for Referring Video Object Segmentation
Abstract:
Referring video object segmentation aims to segment objects within a video corresponding to a given text description. Existing transformer-based temporal modeling approaches face challenges related to query inconsistency and the limited consideration of context. Query inconsistency produces unstable masks of different objects in the middle of the video. The limited consideration of context leads to the segmentation of incorrect objects by failing to adequately account for the relationship between the given text and instances. To address these issues, we propose the Multi-context Temporal Consistency Module (MTCM), which consists of an Aligner and a Multi-Context Enhancer (MCE). The Aligner removes noise from queries and aligns them to achieve query consistency. The MCE predicts text-relevant queries by considering multi-context. We applied MTCM to four different models, increasing performance across all of them, particularly achieving 47.6 J&F on the MeViS. Code is available at https://github.com/Choi58/MTCM.

Authors:Zhenghui Zhao, Chen Wu, Lixiang Ru, Di Wang, Hongruixuan Chen, Cuiqun Chen
Title: Plug-and-Play DISep: Separating Dense Instances for Scene-to-Pixel Weakly-Supervised Change Detection in High-Resolution Remote Sensing Images
Abstract:
Existing Weakly-Supervised Change Detection (WSCD) methods often encounter the problem of "instance lumping" under scene-level supervision, particularly in scenarios with a dense distribution of changed instances (i.e., changed objects). In these scenarios, unchanged pixels between changed instances are also mistakenly identified as changed, causing multiple changes to be mistakenly viewed as one. In practical applications, this issue prevents the accurate quantification of the number of changes. To address this issue, we propose a Dense Instance Separation (DISep) method as a plug-and-play solution, refining pixel features from a unified instance perspective under scene-level supervision. Specifically, our DISep comprises a three-step iterative training process: 1) Instance Localization: We locate instance candidate regions for changed pixels using high-pass class activation maps. 2) Instance Retrieval: We identify and group these changed pixels into different instance IDs through connectivity searching. Then, based on the assigned instance IDs, we extract corresponding pixel-level features on a per-instance basis. 3) Instance Separation: We introduce a separation loss to enforce intra-instance pixel consistency in the embedding space, thereby ensuring separable instance feature representations. The proposed DISep adds only minimal training cost and no inference cost. It can be seamlessly integrated to enhance existing WSCD methods. We achieve state-of-the-art performance by enhancing {three Transformer-based and four ConvNet-based methods} on the LEVIR-CD, WHU-CD, DSIFN-CD, SYSU-CD, and CDD datasets. Additionally, our DISep can be used to improve fully-supervised change detection methods. Code is available at https://github.com/zhenghuizhao/Plug-and-Play-DISep-for-Change-Detection.

Authors:Jake H. Lee, Michael Kiper, David R. Thompson, Philip G. Brodrick
Title: SpecTf: Transformers Enable Data-Driven Imaging Spectroscopy Cloud Detection
Abstract:
Current and upcoming generations of visible-shortwave infrared (VSWIR) imaging spectrometers promise unprecedented capacity to quantify Earth System processes across the globe. However, reliable cloud screening remains a fundamental challenge for these instruments, where traditional spatial and temporal approaches are limited by cloud variability and limited temporal coverage. The Spectroscopic Transformer (SpecTf) addresses these challenges with a spectroscopy-specific deep learning architecture that performs cloud detection using only spectral information (no spatial or temporal data are required). By treating spectral measurements as sequences rather than image channels, SpecTf learns fundamental physical relationships without relying on spatial context. Our experiments demonstrate that SpecTf significantly outperforms the current baseline approach implemented for the EMIT instrument, and performs comparably with other machine learning methods with orders of magnitude fewer learned parameters. Critically, we demonstrate SpecTf's inherent interpretability through its attention mechanism, revealing physically meaningful spectral features the model has learned. Finally, we present SpecTf's potential for cross-instrument generalization by applying it to a different instrument on a different platform without modifications, opening the door to instrument agnostic data driven algorithms for future imaging spectroscopy tasks.

Authors:Golriz Hosseinimanesh, Farnoosh Ghadiri, Francois Guibault, Farida Cheriet, Julia Keren
Title: From Mesh Completion to AI Designed Crown
Abstract:
Designing a dental crown is a time-consuming and labor intensive process. Our goal is to simplify crown design and minimize the tediousness of making manual adjustments while still ensuring the highest level of accuracy and consistency. To this end, we present a new end- to-end deep learning approach, coined Dental Mesh Completion (DMC), to generate a crown mesh conditioned on a point cloud context. The dental context includes the tooth prepared to receive a crown and its surroundings, namely the two adjacent teeth and the three closest teeth in the opposing jaw. We formulate crown generation in terms of completing this point cloud context. A feature extractor first converts the input point cloud into a set of feature vectors that represent local regions in the point cloud. The set of feature vectors is then fed into a transformer to predict a new set of feature vectors for the missing region (crown). Subsequently, a point reconstruction head, followed by a multi-layer perceptron, is used to predict a dense set of points with normals. Finally, a differentiable point-to-mesh layer serves to reconstruct the crown surface mesh. We compare our DMC method to a graph-based convolutional neural network which learns to deform a crown mesh from a generic crown shape to the target geometry. Extensive experiments on our dataset demonstrate the effectiveness of our method, which attains an average of 0.062 Chamfer Distance.The code is available at:https://github.com/Golriz-code/DMC.gi

Authors:Yiyao Yang, Fu Teng, Pengju Liu, Mengnan Qi, Chenyang Lv, Ji Li, Xuhong Zhang, Zhezhi He
Title: HaVen: Hallucination-Mitigated LLM for Verilog Code Generation Aligned with HDL Engineers
Abstract:
Recently, the use of large language models (LLMs) for Verilog code generation has attracted great research interest to enable hardware design automation. However, previous works have shown a gap between the ability of LLMs and the practical demands of hardware description language (HDL) engineering. This gap includes differences in how engineers phrase questions and hallucinations in the code generated. To address these challenges, we introduce HaVen, a novel LLM framework designed to mitigate hallucinations and align Verilog code generation with the practices of HDL engineers. HaVen tackles hallucination issues by proposing a comprehensive taxonomy and employing a chain-of-thought (CoT) mechanism to translate symbolic modalities (e.g. truth tables, state diagrams, etc.) into accurate natural language descriptions. Furthermore, HaVen bridges this gap by using a data augmentation strategy. It synthesizes high-quality instruction-code pairs that match real HDL engineering practices. Our experiments demonstrate that HaVen significantly improves the correctness of Verilog code generation, outperforming state-of-the-art LLM-based Verilog generation methods on VerilogEval and RTLLM benchmark. HaVen is publicly available at https://github.com/Intelligent-Computing-Research-Group/HaVen.

Authors:Seyed Amir Bidaki, Amir Mohammadkhah, Kiyan Rezaee, Faeze Hassani, Sadegh Eskandari, Maziar Salahi, Mohammad M. Ghassemi
Title: Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks
Abstract:
Online Continual Learning (OCL) is a critical area in machine learning, focusing on enabling models to adapt to evolving data streams in real-time while addressing challenges such as catastrophic forgetting and the stability-plasticity trade-off. This study conducts the first comprehensive Systematic Literature Review (SLR) on OCL, analyzing 81 approaches, extracting over 1,000 features (specific tasks addressed by these approaches), and identifying more than 500 components (sub-models within approaches, including algorithms and tools). We also review 83 datasets spanning applications like image classification, object detection, and multimodal vision-language tasks. Our findings highlight key challenges, including reducing computational overhead, developing domain-agnostic solutions, and improving scalability in resource-constrained environments. Furthermore, we identify promising directions for future research, such as leveraging self-supervised learning for multimodal and sequential data, designing adaptive memory mechanisms that integrate sparse retrieval and generative replay, and creating efficient frameworks for real-world applications with noisy or evolving task boundaries. By providing a rigorous and structured synthesis of the current state of OCL, this review offers a valuable resource for advancing this field and addressing its critical challenges and opportunities. The complete SLR methodology steps and extracted data are publicly available through the provided link: https://github.com/kiyan-rezaee/ Systematic-Literature-Review-on-Online-Continual-Learning

Authors:Long Mai, Julie Carson-Berndsen
Title: Real-Time Textless Dialogue Generation
Abstract:
Recent advancements in large language models (LLMs) have led to significant progress in text-based dialogue systems. These systems can now generate high-quality responses that are accurate and coherent across a wide range of topics and tasks. However, spoken dialogue systems still lag behind in terms of naturalness. They tend to produce robotic interactions, with issues such as slow response times, overly generic or cautious replies, and a lack of natural rhythm and fluid turn-taking. This shortcoming is largely due to the over-reliance on the traditional cascaded design, which involve separate, sequential components, as well as the use of text as an intermediate representation. This paper propose a real-time, textless spoken dialogue generation model (RTTL-DG) that aims to overcome these challenges. Our system enables fluid turn-taking and generates responses with minimal delay by processing streaming spoken conversation directly. Additionally, our model incorporates backchannels, filters, laughter, and other paralinguistic signals, which are often absent in cascaded dialogue systems, to create more natural and human-like interactions. The implementations and generated samples are available in our repository: https://github.com/mailong25/rts2s-dg

Authors:Hafiz Mughees Ahmad, Dario Morle, Afshin Rahimi
Title: LayerMix: Enhanced Data Augmentation through Fractal Integration for Robust Deep Learning
Abstract:
Deep learning models have demonstrated remarkable performance across various computer vision tasks, yet their vulnerability to distribution shifts remains a critical challenge. Despite sophisticated neural network architectures, existing models often struggle to maintain consistent performance when confronted with Out-of-Distribution (OOD) samples, including natural corruptions, adversarial perturbations, and anomalous patterns. We introduce LayerMix, an innovative data augmentation approach that systematically enhances model robustness through structured fractal-based image synthesis. By meticulously integrating structural complexity into training datasets, our method generates semantically consistent synthetic samples that significantly improve neural network generalization capabilities. Unlike traditional augmentation techniques that rely on random transformations, LayerMix employs a structured mixing pipeline that preserves original image semantics while introducing controlled variability. Extensive experiments across multiple benchmark datasets, including CIFAR-10, CIFAR-100, ImageNet-200, and ImageNet-1K demonstrate LayerMixs superior performance in classification accuracy and substantially enhances critical Machine Learning (ML) safety metrics, including resilience to natural image corruptions, robustness against adversarial attacks, improved model calibration and enhanced prediction consistency. LayerMix represents a significant advancement toward developing more reliable and adaptable artificial intelligence systems by addressing the fundamental challenges of deep learning generalization. The code is available at https://github.com/ahmadmughees/layermix.

Authors:Yachuan Li, Xavier Soria Poma, Yun Bai, Qian Xiao, Chaozhi Yang, Guanlin Li, Zongmin Li
Title: EDMB: Edge Detector with Mamba
Abstract:
Transformer-based models have made significant progress in edge detection, but their high computational cost is prohibitive. Recently, vision Mamba have shown excellent ability in efficiently capturing long-range dependencies. Drawing inspiration from this, we propose a novel edge detector with Mamba, termed EDMB, to efficiently generate high-quality multi-granularity edges. In EDMB, Mamba is combined with a global-local architecture, therefore it can focus on both global information and fine-grained cues. The fine-grained cues play a crucial role in edge detection, but are usually ignored by ordinary Mamba. We design a novel decoder to construct learnable Gaussian distributions by fusing global features and fine-grained features. And the multi-grained edges are generated by sampling from the distributions. In order to make multi-granularity edges applicable to single-label data, we introduce Evidence Lower Bound loss to supervise the learning of the distributions. On the multi-label dataset BSDS500, our proposed EDMB achieves competitive single-granularity ODS 0.837 and multi-granularity ODS 0.851 without multi-scale test or extra PASCAL-VOC data. Remarkably, EDMB can be extended to single-label datasets such as NYUDv2 and BIPED. The source code is available at https://github.com/Li-yachuan/EDMB.

Authors:Lucas Prieto, Melih Barsbey, Pedro A. M. Mediano, Tolga Birdal
Title: Grokking at the Edge of Numerical Stability
Abstract:
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the naïve loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and $\perp$Grad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.

Authors:Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, Scarlett Li
Title: EpiCoder: Encompassing Diversity and Complexity in Code Generation
Abstract:
Existing methods for code generation use code snippets as seed data, restricting the complexity and diversity of the synthesized data. In this paper, we introduce a novel feature tree-based synthesis framework, which revolves around hierarchical code features derived from high-level abstractions of code. The feature tree is constructed from raw data and refined iteratively to increase the quantity and diversity of the extracted features, which captures and recognizes more complex patterns and relationships within the code. By adjusting the depth and breadth of the sampled subtrees, our framework provides precise control over the complexity of the generated code, enabling functionalities that range from function-level operations to multi-file scenarios. We fine-tuned widely-used base models to obtain EpiCoder series, achieving state-of-the-art performance on multiple benchmarks at both the function and file levels. In particular, empirical evidence indicates that our approach shows significant potential in the synthesizing of repository-level code data. Our code and data are publicly available at https://github.com/microsoft/EpiCoder.

Authors:Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, Scarlett Li
Title: EpiCoder: Encompassing Diversity and Complexity in Code Generation
Abstract:
Existing methods for code generation use code snippets as seed data, restricting the complexity and diversity of the synthesized data. In this paper, we introduce a novel feature tree-based synthesis framework, which revolves around hierarchical code features derived from high-level abstractions of code. The feature tree is constructed from raw data and refined iteratively to increase the quantity and diversity of the extracted features, which captures and recognizes more complex patterns and relationships within the code. By adjusting the depth and breadth of the sampled subtrees, our framework provides precise control over the complexity of the generated code, enabling functionalities that range from function-level operations to multi-file scenarios. We fine-tuned widely-used base models to obtain EpiCoder series, achieving state-of-the-art performance on multiple benchmarks at both the function and file levels. In particular, empirical evidence indicates that our approach shows significant potential in the synthesizing of repository-level code data. Our code and data are publicly available at https://github.com/microsoft/EpiCoder.

Authors:Ruilin Luo, Zhuofan Zheng, Yifan Wang, Xinzhe Ni, Zicheng Lin, Songtao Jiang, Yiyao Yu, Chufan Shi, Ruihang Chu, Jin Zeng, Yujiu Yang
Title: URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics
Abstract:
Process Reward Models (PRMs) have shown promise in enhancing the mathematical reasoning capabilities of Large Language Models (LLMs) through Test-Time Scaling (TTS). However, their integration into multimodal reasoning remains largely unexplored. In this work, we take the first step toward unlocking the potential of PRMs in multimodal mathematical reasoning. We identify three key challenges: (1) the scarcity of high-quality reasoning data constrains the capabilities of foundation Multimodal Large Language Models (MLLMs), which imposes further limitations on the upper bounds of TTS and reinforcement learning (RL); (2) a lack of automated methods for process labeling within multimodal contexts persists; (3) the employment of process rewards in unimodal RL faces issues like reward hacking, which may extend to multimodal scenarios. To address these issues, we introduce URSA, a three-stage Unfolding multimodal Process-Supervision Aided training framework. We first construct MMathCoT-1M, a high-quality large-scale multimodal Chain-of-Thought (CoT) reasoning dataset, to build a stronger math reasoning foundation MLLM, URSA-8B. Subsequently, we go through an automatic process to synthesize process supervision data, which emphasizes both logical correctness and perceptual consistency. We introduce DualMath-1.1M to facilitate the training of URSA-8B-RM. Finally, we propose Process-Supervised Group-Relative-Policy-Optimization (PS-GRPO), pioneering a multimodal PRM-aided online RL method that outperforms vanilla GRPO. With PS-GRPO application, URSA-8B-PS-GRPO outperforms Gemma3-12B and GPT-4o by 8.4% and 2.7% on average across 6 benchmarks. Code, data and checkpoint can be found at https://github.com/URSA-MATH.

Authors:Ruilin Luo, Zhuofan Zheng, Yifan Wang, Xinzhe Ni, Zicheng Lin, Songtao Jiang, Yiyao Yu, Chufan Shi, Lei Wang, Ruihang Chu, Jin Zeng, Yujiu Yang
Title: Unlocking Multimodal Mathematical Reasoning via Process Reward Model
Abstract:
Process Reward Models (PRMs) have shown promise in enhancing the mathematical reasoning capabilities of Large Language Models (LLMs) through Test-Time Scaling (TTS). However, their integration into multimodal reasoning remains largely unexplored. In this work, we take the first step toward unlocking the potential of PRMs in multimodal mathematical reasoning. We identify three key challenges: (1) the scarcity of high-quality reasoning data constrains the capabilities of foundation Multimodal Large Language Models (MLLMs), which imposes further limitations on the upper bounds of TTS and reinforcement learning (RL); (2) a lack of automated methods for process labeling within multimodal contexts persists; (3) the employment of process rewards in unimodal RL faces issues like reward hacking, which may extend to multimodal scenarios. To address these issues, we introduce URSA, a three-stage Unfolding multimodal Process-Supervision Aided training framework. We first construct MMathCoT-1M, a high-quality large-scale multimodal Chain-of-Thought (CoT) reasoning dataset, to build a stronger math reasoning foundation MLLM, URSA-8B. Subsequently, we go through an automatic process to synthesize process supervision data, which emphasizes both logical correctness and perceptual consistency. We introduce DualMath-1.1M to facilitate the training of URSA-8B-RM. Finally, we propose Process-Supervised Group-Relative-Policy-Optimization (PS-GRPO), pioneering a multimodal PRM-aided online RL method that outperforms vanilla GRPO. With PS-GRPO application, URSA-8B-PS-GRPO outperforms Gemma3-12B and GPT-4o by 8.4% and 2.7% on average across 6 benchmarks. Code, data and checkpoint can be found at https://github.com/URSA-MATH.

Authors:Tarek Naous, Wei Xu
Title: On The Origin of Cultural Biases in Language Models: From Pre-training Data to Linguistic Phenomena
Abstract:
Language Models (LMs) have been shown to exhibit a strong preference towards entities associated with Western culture when operating in non-Western languages. In this paper, we aim to uncover the origins of entity-related cultural biases in LMs by analyzing several contributing factors, including the representation of entities in pre-training data and the impact of variations in linguistic phenomena across languages. We introduce CAMeL-2, a parallel Arabic-English benchmark of 58,086 entities associated with Arab and Western cultures and 367 masked natural contexts for entities. Our evaluations using CAMeL-2 reveal reduced performance gaps between cultures by LMs when tested in English compared to Arabic. We find that LMs struggle in Arabic with entities that appear at high frequencies in pre-training, where entities can hold multiple word senses. This also extends to entities that exhibit high lexical overlap with languages that are not Arabic but use the Arabic script. Further, we show how frequency-based tokenization leads to this issue in LMs, which gets worse with larger Arabic vocabularies. We will make CAMeL-2 available at: https://github.com/tareknaous/camel2

Authors:Eric Chen, Xi Chen, Arian Maleki, Shirin Jalali
Title: Comprehensive Examination of Unrolled Networks for Solving Linear Inverse Problems
Abstract:
Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.

Authors:Boyang Sun, Hanzhi Chen, Stefan Leutenegger, Cesar Cadena, Marc Pollefeys, Hermann Blum
Title: FrontierNet: Learning Visual Cues to Explore
Abstract:
Exploration of unknown environments is crucial for autonomous robots; it allows them to actively reason and decide on what new data to acquire for different tasks, such as mapping, object discovery, and environmental assessment. Existing solutions, such as frontier-based exploration approaches, rely heavily on 3D map operations, which are limited by map quality and, more critically, often overlook valuable context from visual cues. This work aims at leveraging 2D visual cues for efficient autonomous exploration, addressing the limitations of extracting goal poses from a 3D map. We propose a visual-only frontier-based exploration system, with FrontierNet as its core component. FrontierNet is a learning-based model that (i) proposes frontiers, and (ii) predicts their information gain, from posed RGB images enhanced by monocular depth priors. Our approach provides an alternative to existing 3D-dependent goal-extraction approaches, achieving a 15\% improvement in early-stage exploration efficiency, as validated through extensive simulations and real-world experiments. The project is available at https://github.com/cvg/FrontierNet.

Authors:Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang, Xiaotian Han, Hongxia Yang, Fei Wu
Title: InfiGUIAgent: A Multimodal Generalist GUI Agent with Native Reasoning and Reflection
Abstract:
Graphical User Interface (GUI) Agents, powered by multimodal large language models (MLLMs), have shown great potential for task automation on computing devices such as computers and mobile phones. However, existing agents face challenges in multi-step reasoning and reliance on textual annotations, limiting their effectiveness. We introduce \textit{InfiGUIAgent}, an MLLM-based GUI Agent trained with a two-stage supervised fine-tuning pipeline. Stage 1 enhances fundamental skills such as GUI understanding and grounding, while Stage 2 integrates hierarchical reasoning and expectation-reflection reasoning skills using synthesized data to enable native reasoning abilities of the agents. \textit{InfiGUIAgent} achieves competitive performance on several GUI benchmarks, highlighting the impact of native reasoning skills in enhancing GUI interaction for automation tasks. Resources are available at \url{https://github.com/Reallm-Labs/InfiGUIAgent}.

Authors:Qingmei Wang, Yuxin Wu, Yujie Long, Jing Huang, Fengyuan Ran, Bing Su, Hongteng Xu
Title: A Plug-and-Play Bregman ADMM Module for Inferring Event Branches in Temporal Point Processes
Abstract:
An event sequence generated by a temporal point process is often associated with a hidden and structured event branching process that captures the triggering relations between its historical and current events. In this study, we design a new plug-and-play module based on the Bregman ADMM (BADMM) algorithm, which infers event branches associated with event sequences in the maximum likelihood estimation framework of temporal point processes (TPPs). Specifically, we formulate the inference of event branches as an optimization problem for the event transition matrix under sparse and low-rank constraints, which is embedded in existing TPP models or their learning paradigms. We can implement this optimization problem based on subspace clustering and sparse group-lasso, respectively, and solve it using the Bregman ADMM algorithm, whose unrolling leads to the proposed BADMM module. When learning a classic TPP (e.g., Hawkes process) by the expectation-maximization algorithm, the BADMM module helps derive structured responsibility matrices in the E-step. Similarly, the BADMM module helps derive low-rank and sparse attention maps for the neural TPPs with self-attention layers. The structured responsibility matrices and attention maps, which work as learned event transition matrices, indicate event branches, e.g., inferring isolated events and those key events triggering many subsequent events. Experiments on both synthetic and real-world data show that plugging our BADMM module into existing TPP models and learning paradigms can improve model performance and provide us with interpretable structured event branches. The code is available at \url{https://github.com/qingmeiwangdaily/BADMM_TPP}.

Authors:Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, Mao Yang
Title: rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking
Abstract:
We present rStar-Math to demonstrate that small language models (SLMs) can rival or even surpass the math reasoning capability of OpenAI o1, without distillation from superior models. rStar-Math achieves this by exercising "deep thinking" through Monte Carlo Tree Search (MCTS), where a math policy SLM performs test-time search guided by an SLM-based process reward model. rStar-Math introduces three innovations to tackle the challenges in training the two SLMs: (1) a novel code-augmented CoT data sythesis method, which performs extensive MCTS rollouts to generate step-by-step verified reasoning trajectories used to train the policy SLM; (2) a novel process reward model training method that avoids naïve step-level score annotation, yielding a more effective process preference model (PPM); (3) a self-evolution recipe in which the policy SLM and PPM are built from scratch and iteratively evolved to improve reasoning capabilities. Through 4 rounds of self-evolution with millions of synthesized solutions for 747k math problems, rStar-Math boosts SLMs' math reasoning to state-of-the-art levels. On the MATH benchmark, it improves Qwen2.5-Math-7B from 58.8% to 90.0% and Phi3-mini-3.8B from 41.4% to 86.4%, surpassing o1-preview by +4.5% and +0.9%. On the USA Math Olympiad (AIME), rStar-Math solves an average of 53.3% (8/15) of problems, ranking among the top 20% the brightest high school math students. Code and data will be available at https://github.com/microsoft/rStar.

Authors:Zhi Jin, Yuwei Qiu, Kaihao Zhang, Hongdong Li, Wenhan Luo
Title: MB-TaylorFormer V2: Improved Multi-branch Linear Transformer Expanded by Taylor Formula for Image Restoration
Abstract:
Recently, Transformer networks have demonstrated outstanding performance in the field of image restoration due to the global receptive field and adaptability to input. However, the quadratic computational complexity of Softmax-attention poses a significant limitation on its extensive application in image restoration tasks, particularly for high-resolution images. To tackle this challenge, we propose a novel variant of the Transformer. This variant leverages the Taylor expansion to approximate the Softmax-attention and utilizes the concept of norm-preserving mapping to approximate the remainder of the first-order Taylor expansion, resulting in a linear computational complexity. Moreover, we introduce a multi-branch architecture featuring multi-scale patch embedding into the proposed Transformer, which has four distinct advantages: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field; 4) accelerated training and inference speed. Hence, the proposed model, named the second version of Taylor formula expansion-based Transformer (for short MB-TaylorFormer V2) has the capability to concurrently process coarse-to-fine features, capture long-distance pixel interactions with limited computational cost, and improve the approximation of the Taylor expansion remainder. Experimental results across diverse image restoration benchmarks demonstrate that MB-TaylorFormer V2 achieves state-of-the-art performance in multiple image restoration tasks, such as image dehazing, deraining, desnowing, motion deblurring, and denoising, with very little computational overhead. The source code is available at https://github.com/FVL2020/MB-TaylorFormerV2.

Authors:Xin Zhang, Xue Yang, Yuxuan Li, Jian Yang, Ming-Ming Cheng, Xiang Li
Title: RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark
Abstract:
Rotated object detection has made significant progress in the optical remote sensing. However, advancements in the Synthetic Aperture Radar (SAR) field are laggard behind, primarily due to the absence of a large-scale dataset. Annotating such a dataset is inefficient and costly. A promising solution is to employ a weakly supervised model (e.g., trained with available horizontal boxes only) to generate pseudo-rotated boxes for reference before manual calibration. Unfortunately, the existing weakly supervised models exhibit limited accuracy in predicting the object's angle. Previous works attempt to enhance angle prediction by using angle resolvers that decouple angles into cosine and sine encodings. In this work, we first reevaluate these resolvers from a unified perspective of dimension mapping and expose that they share the same shortcomings: these methods overlook the unit cycle constraint inherent in these encodings, easily leading to prediction biases. To address this issue, we propose the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy. Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods and even surpasses fully supervised models on existing optical benchmarks (i.e., DOTA-v1.0 dataset). With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date. Extensive experiments on both RSAR and optical datasets demonstrate that our UCR enhances angle prediction accuracy. Our dataset and code can be found at: https://github.com/zhasion/RSAR.

Authors:Paweł Batorski, Jannik Brinkmann, Paul Swoboda
Title: NSA: Neuro-symbolic ARC Challenge
Abstract:
The Abstraction and Reasoning Corpus (ARC) evaluates general reasoning capabilities that are difficult for both machine learning models and combinatorial search methods. We propose a neuro-symbolic approach that combines a transformer for proposal generation with combinatorial search using a domain-specific language. The transformer narrows the search space by proposing promising search directions, which allows the combinatorial search to find the actual solution in short time. We pre-train the trainsformer with synthetically generated data. During test-time we generate additional task-specific training tasks and fine-tune our model. Our results surpass comparable state of the art on the ARC evaluation set by 27% and compare favourably on the ARC train set. We make our code and dataset publicly available at https://github.com/Batorskq/NSA.

Authors:Falguni Roy, Yiduo Shen, Na Zhao, Xiaofeng Ding, Md. Omar Faruk
Title: A Closer Look on Gender Stereotypes in Movie Recommender Systems and Their Implications with Privacy
Abstract:
The movie recommender system typically leverages user feedback to provide personalized recommendations that align with user preferences and increase business revenue. This study investigates the impact of gender stereotypes on such systems through a specific attack scenario. In this scenario, an attacker determines users' gender, a private attribute, by exploiting gender stereotypes about movie preferences and analyzing users' feedback data, which is either publicly available or observed within the system. The study consists of two phases. In the first phase, a user study involving 630 participants identified gender stereotypes associated with movie genres, which often influence viewing choices. In the second phase, four inference algorithms were applied to detect gender stereotypes by combining the findings from the first phase with users' feedback data. Results showed that these algorithms performed more effectively than relying solely on feedback data for gender inference. Additionally, we quantified the extent of gender stereotypes to evaluate their broader impact on digital computational science. The latter part of the study utilized two major movie recommender datasets: MovieLens 1M and Yahoo!Movie. Detailed experimental information is available on our GitHub repository: https://github.com/fr-iit/GSMRS

Authors:Sofie Verhees, Chandrasekhar Venkataraman, Mariya Ptashnyk
Title: Mathematical Modelling of Mechanotransduction via RhoA Signalling Pathways
Abstract:
We derive and simulate a mathematical model for mechanotransduction related to the Rho GTPase signalling pathway. The model addresses the bidirectional coupling between signalling processes and cell mechanics. A numerical method based on bulk-surface finite elements is proposed for the approximation of the coupled system of nonlinear reaction-diffusion equations, defined inside the cell and on the cell membrane, and the equations of elasticity. Our simulation results illustrate novel emergent features such as the strong dependence of the dynamics on cell shape, a threshold-like response to changes in substrate stiffness, and the fact that coupling mechanics and signalling can lead to the robustness of cell deformation to larger changes in substrate stiffness, ensuring mechanical homeostasis in agreement with experiments.

Authors:Yucheng Ruan, Daniel J. Tan, See Kiong Ng, Ling Huang, Mengling Feng
Title: Towards accurate and reliable ICU outcome prediction: a multimodal learning framework based on belief function theory using structured EHRs and free-text notes
Abstract:
Accurate Intensive Care Unit (ICU) outcome prediction is critical for improving patient treatment quality and ICU resource allocation. Existing research mainly focuses on structured data, e.g. demographics and vital signs, and lacks effective frameworks to integrate clinical notes from heterogeneous electronic health records (EHRs). This study aims to explore a multimodal framework based on belief function theory that can effectively fuse heterogeneous structured EHRs and free-text notes for accurate and reliable ICU outcome prediction. The fusion strategy accounts for prediction uncertainty within each modality and conflicts between multimodal data. The experiments on MIMIC-III dataset show that our framework provides more accurate and reliable predictions than existing approaches. Specifically, it outperformed the best baseline by 1.05%/1.02% in BACC, 9.74%/6.04% in F1 score, 1.28%/0.9% in AUROC, and 6.21%/2.68% in AUPRC for predicting mortality and PLOS, respectively. Additionally, it improved the reliability of the predictions with a 26.8%/15.1% reduction in the Brier score and a 25.0%/13.3% reduction in negative log-likelihood. By effectively reducing false positives, the model can aid in better allocation of medical resources in the ICU. Furthermore, the proposed method is very versatile and can be extended to analyzing multimodal EHRs for other clinical tasks. The code implementation is available on https://github.com/yuchengruan/evid_multimodal_ehr.

Authors:Feng Liu, Bao Deng, Rui Su, Lei Bai, Wanli Ouyang
Title: DispFormer: A Pretrained Transformer Incorporating Physical Constraints for Dispersion Curve Inversion
Abstract:
Surface wave dispersion curve inversion is crucial for estimating subsurface shear-wave velocity (vs), yet traditional methods often face challenges related to computational cost, non-uniqueness, and sensitivity to initial models. While deep learning approaches show promise, many require large labeled datasets and struggle with real-world datasets, which often exhibit varying period ranges, missing values, and low signal-to-noise ratios. To address these limitations, this study introduces DispFormer, a transformer-based neural network for $v_s$ profile inversion from Rayleigh-wave phase and group dispersion curves. DispFormer processes dispersion data independently at each period, allowing it to handle varying lengths without requiring network modifications or strict alignment between training and testing datasets. A depth-aware training strategy is also introduced, incorporating physical constraints derived from the depth sensitivity of dispersion data. DispFormer is pre-trained on a global synthetic dataset and evaluated on two regional synthetic datasets using zero-shot and few-shot strategies. Results show that even without labeled data, the zero-shot DispFormer generates inversion profiles that outperform the interpolated reference model used as the pretraining target, providing a deployable initial model generator to assist traditional workflows. When partial labeled data available, the few-shot trained DispFormer surpasses traditional global search methods. Real-world tests further confirm that DispFormer generalizes well to dispersion data with varying lengths and achieves lower data residuals than reference models. These findings underscore the potential of DispFormer as a foundation model for dispersion curve inversion and demonstrate the advantages of integrating physics-informed deep learning into geophysical applications.

Authors:Michal Nohel, Constantin Ulrich, Jonathan Suprijadi, Tassilo Wald, Klaus Maier-Hein
Title: A Unified Framework for Foreground and Anonymization Area Segmentation in CT and MRI Data
Abstract:
This study presents an open-source toolkit to address critical challenges in preprocessing data for self-supervised learning (SSL) for 3D medical imaging, focusing on data privacy and computational efficiency. The toolkit comprises two main components: a segmentation network that delineates foreground regions to optimize data sampling and thus reduce training time, and a segmentation network that identifies anonymized regions, preventing erroneous supervision in reconstruction-based SSL methods. Experimental results demonstrate high robustness, with mean Dice scores exceeding 98.5 across all anonymization methods and surpassing 99.5 for foreground segmentation tasks, highlighting the efficacy of the toolkit in supporting SSL applications in 3D medical imaging for both CT and MRI images. The weights and code is available at https://github.com/MIC-DKFZ/Foreground-and-Anonymization-Area-Segmentation.

Authors:Xueqiang Ouyang, Jia Wei, Wenjie Huo, Xiaocong Wang, Rui Li, Jianlong Zhou
Title: DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Abstract:
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code is available at https://github.com/Ou-Young-1999/DFNet.

Authors:Clément Fuchs, Maxime Zanella, Christophe De Vleeschouwer
Title: Online Gaussian Test-Time Adaptation of Vision-Language Models
Abstract:
Online test-time adaptation (OTTA) of vision-language models (VLMs) has recently garnered increased attention to take advantage of data observed along a stream to improve future predictions. Unfortunately, existing methods rely on dataset-specific hyperparameters, significantly limiting their adaptability to unseen tasks. In response, we propose Online Gaussian Adaptation (OGA), a novel method that models the likelihoods of visual features using Gaussian distributions and incorporates zero-shot priors into an interpretable Maximum A Posteriori (MAP) estimation framework with fixed hyper-parameters across all datasets. We demonstrate that OGA outperforms state-of-the-art methods on most datasets and runs. Additionally, we show that combining OTTA with popular few-shot techniques (a practical yet overlooked setting in prior research) is highly beneficial. Furthermore, our experimental study reveals that common OTTA evaluation protocols, which average performance over at most three runs per dataset, are inadequate due to the substantial variability observed across runs for all OTTA methods. Therefore, we advocate for more rigorous evaluation practices, including increasing the number of runs and considering additional quantitative metrics, such as our proposed Expected Tail Accuracy (ETA), calculated as the average accuracy in the worst 10% of runs. We hope these contributions will encourage more rigorous and diverse evaluation practices in the OTTA community. Code is available at https://github.com/cfuchs2023/OGA .

Authors:Qiang Sun, Sirui Li, Du Huynh, Mark Reynolds, Wei Liu
Title: TimelineKGQA: A Comprehensive Question-Answer Pair Generator for Temporal Knowledge Graphs
Abstract:
Question answering over temporal knowledge graphs (TKGs) is crucial for understanding evolving facts and relationships, yet its development is hindered by limited datasets and difficulties in generating custom QA pairs. We propose a novel categorization framework based on timeline-context relationships, along with \textbf{TimelineKGQA}, a universal temporal QA generator applicable to any TKGs. The code is available at: \url{https://github.com/PascalSun/TimelineKGQA} as an open source Python package.

Authors:Dong-Hai Zhu, Yu-Jie Xiong, Jia-Chen Zhang, Xi-Jiong Xie, Chun-Ming Xia
Title: Understanding Before Reasoning: Enhancing Chain-of-Thought with Iterative Summarization Pre-Prompting
Abstract:
Chain-of-Thought (CoT) Prompting is a dominant paradigm in Large Language Models (LLMs) to enhance complex reasoning. It guides LLMs to present multi-step reasoning, rather than generating the final answer directly. However, CoT encounters difficulties when key information required for reasoning is implicit or missing. This occurs because CoT emphasizes the sequence of reasoning steps while overlooking the early extraction of essential information. We propose a pre-prompting method called Iterative Summarization Pre-Prompting (ISP^2) to refine LLM reasoning when key information is not explicitly provided. First, entities and their corresponding descriptions are extracted to form potential key information pairs. Next, we use a reliability rating to assess these pairs, then merge the two lowest-ranked pairs into a new entity description. This process is repeated until a unique key information pair is obtained. Finally, that pair, along with the original question, is fed into LLMs to produce the answer. Extensive experiments demonstrate a 7.1% improvement compared to existing methods. Unlike traditional prompting, ISP^2 adopts an inductive approach with pre-prompting, offering flexible integration into diverse reasoning frameworks. The code is available at https://github.com/zdhgreat/ISP-2.

Authors:Miao Rang, Zhenni Bi, Chuanjian Liu, Yehui Tang, Kai Han, Yunhe Wang
Title: Eve: Efficient Multimodal Vision Language Models with Elastic Visual Experts
Abstract:
Multimodal vision language models (VLMs) have made significant progress with the support of continuously increasing model sizes and data volumes. Running VLMs on edge devices has become a challenge for their widespread application. There are several efficient VLM efforts, but they often sacrifice linguistic capabilities to enhance multimodal abilities, or require extensive training. To address this quandary,we introduce the innovative framework of Efficient Vision Language Models with Elastic Visual Experts (Eve). By strategically incorporating adaptable visual expertise at multiple stages of training, Eve strikes a balance between preserving linguistic abilities and augmenting multimodal capabilities. This balanced approach results in a versatile model with only 1.8B parameters that delivers significant improvements in both multimodal and linguistic tasks. Notably, in configurations below 3B parameters, Eve distinctly outperforms in language benchmarks and achieves state-of-the-art results 68.87% in VLM Benchmarks. Additionally, its multimodal accuracy outstrips that of the larger 7B LLaVA-1.5 model. Our code is available at https://github.com/rangmiao/Eve.

Authors:Ziming Luo, Zonglin Yang, Zexin Xu, Wei Yang, Xinya Du
Title: LLM4SR: A Survey on Large Language Models for Scientific Research
Abstract:
In recent years, the rapid advancement of Large Language Models (LLMs) has transformed the landscape of scientific research, offering unprecedented support across various stages of the research cycle. This paper presents the first systematic survey dedicated to exploring how LLMs are revolutionizing the scientific research process. We analyze the unique roles LLMs play across four critical stages of research: hypothesis discovery, experiment planning and implementation, scientific writing, and peer reviewing. Our review comprehensively showcases the task-specific methodologies and evaluation benchmarks. By identifying current challenges and proposing future research directions, this survey not only highlights the transformative potential of LLMs, but also aims to inspire and guide researchers and practitioners in leveraging LLMs to advance scientific inquiry. Resources are available at the following repository: https://github.com/du-nlp-lab/LLM4SR

Authors:Hyogon Ryu, NaHyeon Park, Hyunjung Shim
Title: DGQ: Distribution-Aware Group Quantization for Text-to-Image Diffusion Models
Abstract:
Despite the widespread use of text-to-image diffusion models across various tasks, their computational and memory demands limit practical applications. To mitigate this issue, quantization of diffusion models has been explored. It reduces memory usage and computational costs by compressing weights and activations into lower-bit formats. However, existing methods often struggle to preserve both image quality and text-image alignment, particularly in lower-bit($<$ 8bits) quantization. In this paper, we analyze the challenges associated with quantizing text-to-image diffusion models from a distributional perspective. Our analysis reveals that activation outliers play a crucial role in determining image quality. Additionally, we identify distinctive patterns in cross-attention scores, which significantly affects text-image alignment. To address these challenges, we propose Distribution-aware Group Quantization (DGQ), a method that identifies and adaptively handles pixel-wise and channel-wise outliers to preserve image quality. Furthermore, DGQ applies prompt-specific logarithmic quantization scales to maintain text-image alignment. Our method demonstrates remarkable performance on datasets such as MS-COCO and PartiPrompts. We are the first to successfully achieve low-bit quantization of text-to-image diffusion models without requiring additional fine-tuning of weight quantization parameters. Code is available at https://github.com/ugonfor/DGQ.

Authors:Youran Zhou, Mohamed Reda Bouadjenek, Jonathan Wells, Sunil Aryal
Title: HI-PMK: A Data-Dependent Kernel for Incomplete Heterogeneous Data Representation
Abstract:
Handling incomplete and heterogeneous data remains a central challenge in real-world machine learning, where missing values may follow complex mechanisms (MCAR, MAR, MNAR) and features can be of mixed types (numerical and categorical). Existing methods often rely on imputation, which may introduce bias or privacy risks, or fail to jointly address data heterogeneity and structured missingness. We propose the \textbf{H}eterogeneous \textbf{I}ncomplete \textbf{P}robability \textbf{M}ass \textbf{K}ernel (\textbf{HI-PMK}), a novel data-dependent representation learning approach that eliminates the need for imputation. HI-PMK introduces two key innovations: (1) a probability mass-based dissimilarity measure that adapts to local data distributions across heterogeneous features (numerical, ordinal, nominal), and (2) a missingness-aware uncertainty strategy (MaxU) that conservatively handles all three missingness mechanisms by assigning maximal plausible dissimilarity to unobserved entries. Our approach is privacy-preserving, scalable, and readily applicable to downstream tasks such as classification and clustering. Extensive experiments on over 15 benchmark datasets demonstrate that HI-PMK consistently outperforms traditional imputation-based pipelines and kernel methods across a wide range of missing data settings. Code is available at: https://github.com/echoid/Incomplete-Heter-Kernel

Authors:Hyungjin Chung, Dohun Lee, Zihui Wu, Byung-Hoon Kim, Katherine L. Bouman, Jong Chul Ye
Title: ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning
Abstract:
Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.

Authors:Yuze Wang, Rong Xiao, Haifeng Li, Mariana Belgiu, Chao Tao
Title: Enhancing Scene Classification in Cloudy Image Scenarios: A Collaborative Transfer Method with Information Regulation Mechanism using Optical Cloud-Covered and SAR Remote Sensing Images
Abstract:
In remote sensing scene classification, leveraging the transfer methods with well-trained optical models is an efficient way to overcome label scarcity. However, cloud contamination leads to optical information loss and significant impacts on feature distribution, challenging the reliability and stability of transferred target models. Common solutions include cloud removal for optical data or directly using Synthetic aperture radar (SAR) data in the target domain. However, cloud removal requires substantial auxiliary data for support and pre-training, while directly using SAR disregards the unobstructed portions of optical data. This study presents a scene classification transfer method that synergistically combines multi-modality data, which aims to transfer the source domain model trained on cloudfree optical data to the target domain that includes both cloudy optical and SAR data at low cost. Specifically, the framework incorporates two parts: (1) the collaborative transfer strategy, based on knowledge distillation, enables the efficient prior knowledge transfer across heterogeneous data; (2) the information regulation mechanism (IRM) is proposed to address the modality imbalance issue during transfer. It employs auxiliary models to measure the contribution discrepancy of each modality, and automatically balances the information utilization of modalities during the target model learning process at the sample-level. The transfer experiments were conducted on simulated and real cloud datasets, demonstrating the superior performance of the proposed method compared to other solutions in cloud-covered scenarios. We also verified the importance and limitations of IRM, and further discussed and visualized the modality imbalance problem during the model transfer. Codes are available at https://github.com/wangyuze-csu/ESCCS

Authors:Siddharth Joshi, Besmira Nushi, Vidhisha Balachandran, Varun Chandrasekaran, Vibhav Vineet, Neel Joshi, Baharan Mirzasoleiman
Title: MM-GEN: Enhancing Task Performance Through Targeted Multimodal Data Curation
Abstract:
Vision-language models (VLMs) are highly effective but often underperform on specialized tasks; for example, Llava-1.5 struggles with chart and diagram understanding due to scarce task-specific training data. Existing training data, sourced from general-purpose datasets, fails to capture the nuanced details needed for these tasks. We introduce MM-Gen, a scalable method that generates task-specific, high-quality synthetic text for candidate images by leveraging stronger models. MM-Gen employs a three-stage targeted process: partitioning data into subgroups, generating targeted text based on task descriptions, and filtering out redundant and outlier data. Fine-tuning VLMs with data generated by MM-Gen leads to significant performance gains, including 29% on spatial reasoning and 15% on diagram understanding for Llava-1.5 (7B). Compared to human-curated caption data, MM-Gen achieves up to 1.6x better improvements for the original models, proving its effectiveness in enhancing task-specific VLM performance and bridging the gap between general-purpose datasets and specialized requirements. Code available at https://github.com/sjoshi804/MM-Gen.

Authors:Kam Woh Ng, Jing Yang, Jia Wei Sii, Jiankang Deng, Chee Seng Chan, Yi-Zhe Song, Tao Xiang, Xiatian Zhu
Title: Chirpy3D: Creative Fine-grained 3D Object Fabrication via Part Sampling
Abstract:
We present Chirpy3D, a novel approach for fine-grained 3D object generation, tackling the challenging task of synthesizing creative 3D objects in a zero-shot setting, with access only to unposed 2D images of seen categories. Without structured supervision -- such as camera poses, 3D part annotations, or object-specific labels -- the model must infer plausible 3D structures, capture fine-grained details, and generalize to novel objects using only category-level labels from seen categories. To address this, Chirpy3D introduces a multi-view diffusion model that decomposes training objects into anchor parts in an unsupervised manner, representing the latent space of both seen and unseen parts as continuous distributions. This allows smooth interpolation and flexible recombination of parts to generate entirely new objects with species-specific details. A self-supervised feature consistency loss further ensures structural and semantic coherence. The result is the first system capable of generating entirely novel 3D objects with species-specific fine-grained details through flexible part sampling and composition. Our experiments demonstrate that Chirpy3D surpasses existing methods in generating creative 3D objects with higher quality and fine-grained details. Code will be released at https://github.com/kamwoh/chirpy3d.

Authors:Xiaoqing Zhang, Ang Lv, Yuhan Liu, Flood Sung, Wei Liu, Jian Luan, Shuo Shang, Xiuying Chen, Rui Yan
Title: More is not always better? Enhancing Many-Shot In-Context Learning with Differentiated and Reweighting Objectives
Abstract:
Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as ICL demonstrations increase from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce \textit{DrICL}, a novel optimization method that enhances model performance through \textit{Differentiated} and \textit{Reweighting} objectives. Globally, DrICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the \textit{Many-Shot ICL Benchmark} (ICL-50)-a large-scale benchmark of 50 tasks that cover shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for both fine-tuning and evaluation purposes. Experimental results demonstrate that LLMs enhanced with DrICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and dataset hoping to facilitate further research in many-shot ICL\footnote{https://github.com/xiaoqzhwhu/DrICL}.

Authors:Yuqi Li, Xingyou Lin, Kai Zhang, Chuanguang Yang, Zhongliang Guo, Jianping Gou, Yanli Li
Title: FedKD-hybrid: Federated Hybrid Knowledge Distillation for Lithography Hotspot Detection
Abstract:
Federated Learning (FL) provides novel solutions for machine learning (ML)-based lithography hotspot detection (LHD) under distributed privacy-preserving settings. Currently, two research pipelines have been investigated to aggregate local models and achieve global consensus, including parameter/nonparameter based (also known as knowledge distillation, namely KD). While these two kinds of methods show effectiveness in specific scenarios, we note they have not fully utilized and transferred the information learned, leaving the potential of FL-based LDH remains unexplored. Thus, we propose FedKDhybrid in this study to mitigate the research gap. Specifically, FedKD-hybrid clients agree on several identical layers across all participants and a public dataset for achieving global consensus. During training, the trained local model will be evaluated on the public dataset, and the generated logits will be uploaded along with the identical layer parameters. The aggregated information is consequently used to update local models via the public dataset as a medium. We compare our proposed FedKD-hybrid with several state-of-the-art (SOTA) FL methods under ICCAD-2012 and FAB (real-world collected) datasets with different settings; the experimental results demonstrate the superior performance of the FedKD-hybrid algorithm. Our code is available at https://github.com/itsnotacie/NN-FedKD-hybrid

Authors:Rui Liu, Hongyu Yuan, Haizhou Li
Title: Listening and Seeing Again: Generative Error Correction for Audio-Visual Speech Recognition
Abstract:
Unlike traditional Automatic Speech Recognition (ASR), Audio-Visual Speech Recognition (AVSR) takes audio and visual signals simultaneously to infer the transcription. Recent studies have shown that Large Language Models (LLMs) can be effectively used for Generative Error Correction (GER) in ASR by predicting the best transcription from ASR-generated N-best hypotheses. However, these LLMs lack the ability to simultaneously understand audio and visual, making the GER approach challenging to apply in AVSR. In this work, we propose a novel GER paradigm for AVSR, termed AVGER, that follows the concept of ``listening and seeing again''. Specifically, we first use the powerful AVSR system to read the audio and visual signals to get the N-Best hypotheses, and then use the Q-former-based Multimodal Synchronous Encoder to read the audio and visual information again and convert them into an audio and video compression representation respectively that can be understood by LLM. Afterward, the audio-visual compression representation and the N-Best hypothesis together constitute a Cross-modal Prompt to guide the LLM in producing the best transcription. In addition, we also proposed a Multi-Level Consistency Constraint training criterion, including logits-level, utterance-level and representations-level, to improve the correction accuracy while enhancing the interpretability of audio and visual compression representations. The experimental results on the LRS3 dataset show that our method outperforms current mainstream AVSR systems. The proposed AVGER can reduce the Word Error Rate (WER) by 24% compared to them. Code and models can be found at: https://github.com/CircleRedRain/AVGER.

Authors:Satchel French, Faith Zhu, Amish Jain, Naimul Khan
Title: Temporal Feature Weaving for Neonatal Echocardiographic Viewpoint Video Classification
Abstract:
Automated viewpoint classification in echocardiograms can help under-resourced clinics and hospitals in providing faster diagnosis and screening when expert technicians may not be available. We propose a novel approach towards echocardiographic viewpoint classification. We show that treating viewpoint classification as video classification rather than image classification yields advantage. We propose a CNN-GRU architecture with a novel temporal feature weaving method, which leverages both spatial and temporal information to yield a 4.33\% increase in accuracy over baseline image classification while using only four consecutive frames. The proposed approach incurs minimal computational overhead. Additionally, we publish the Neonatal Echocardiogram Dataset (NED), a professionally-annotated dataset providing sixteen viewpoints and associated echocardipgraphy videos to encourage future work and development in this field. Code available at: https://github.com/satchelfrench/NED

Authors:Xiangrui Meng, Ying Tan
Title: A GPU Implementation of Multi-Guiding Spark Fireworks Algorithm for Efficient Black-Box Neural Network Optimization
Abstract:
Swarm intelligence optimization algorithms have gained significant attention due to their ability to solve complex optimization problems. However, the efficiency of optimization in large-scale problems limits the use of related methods. This paper presents a GPU-accelerated version of the Multi-Guiding Spark Fireworks Algorithm (MGFWA), which significantly improves the computational efficiency compared to its traditional CPU-based counterpart. We benchmark the GPU-MGFWA on several neural network black-box optimization problems and demonstrate its superior performance in terms of both speed and solution quality. By leveraging the parallel processing power of modern GPUs, the proposed GPU-MGFWA results in faster convergence and reduced computation time for large-scale optimization tasks. The proposed implementation offers a promising approach to accelerate swarm intelligence algorithms, making them more suitable for real-time applications and large-scale industrial problems. Source code is released at https://github.com/mxxxr/MGFWA.

Authors:Hao Zheng, Xinyan Guan, Hao Kong, Jia Zheng, Weixiang Zhou, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, Le Sun
Title: PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides
Abstract:
Automatically generating presentations from documents is a challenging task that requires accommodating content quality, visual appeal, and structural coherence. Existing methods primarily focus on improving and evaluating the content quality in isolation, overlooking visual appeal and structural coherence, which limits their practical applicability. To address these limitations, we propose PPTAgent, which comprehensively improves presentation generation through a two-stage, edit-based approach inspired by human workflows. PPTAgent first analyzes reference presentations to extract slide-level functional types and content schemas, then drafts an outline and iteratively generates editing actions based on selected reference slides to create new slides. To comprehensively evaluate the quality of generated presentations, we further introduce PPTEval, an evaluation framework that assesses presentations across three dimensions: Content, Design, and Coherence. Results demonstrate that PPTAgent significantly outperforms existing automatic presentation generation methods across all three dimensions.

Authors:Yuechen Zhang, Yaoyang Liu, Bin Xia, Bohao Peng, Zexin Yan, Eric Lo, Jiaya Jia
Title: Magic Mirror: ID-Preserved Video Generation in Video Diffusion Transformers
Abstract:
We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/

Authors:Shaolei Zhang, Qingkai Fang, Zhe Yang, Yang Feng
Title: LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
Abstract:
The advent of real-time large multimodal models (LMMs) like GPT-4o has sparked considerable interest in efficient LMMs. LMM frameworks typically encode visual inputs into vision tokens (continuous representations) and integrate them and textual instructions into the context of large language models (LLMs), where large-scale parameters and numerous context tokens (predominantly vision tokens) result in substantial computational overhead. Previous efforts towards efficient LMMs always focus on replacing the LLM backbone with smaller models, while neglecting the crucial issue of token quantity. In this paper, we introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high compression ratio of vision tokens while preserving visual information, we first analyze how LMMs understand vision tokens and find that most vision tokens only play a crucial role in the early layers of LLM backbone, where they mainly fuse visual information into text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion to fuse visual information into text tokens in advance, thereby facilitating the extreme compression of vision tokens fed to LLM backbone into one token. LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Experiments across 11 image-based and 7 video-based benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1 vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.

Authors:Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng Lin, Ziwei Liu, Wenping Wang, Yuan Liu
Title: Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control
Abstract:
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.

Authors:Yindu Su, Huike Zou, Lin Sun, Ting Zhang, Haiyang Yang, Liyu Chen, David Lo, Qingheng Zhang, Shuguang Han, Jufeng Chen
Title: TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification
Abstract:
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendation, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial deployment. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Further, it has been successfully deployed on the real-world e-commerce platform Xianyu, processing millions of product listings daily with frequently updated, large-scale attribute taxonomies. We release the code to facilitate reproducibility and future research at https://github.com/SuYindu/TACLR.

Authors:Zhe Li, Man-wai Mak, Mert Pilanci, Hung-yi Lee, Helen Meng
Title: Spectral-Aware Low-Rank Adaptation for Speaker Verification
Abstract:
Previous research has shown that the principal singular vectors of a pre-trained model's weight matrices capture critical knowledge. In contrast, those associated with small singular values may contain noise or less reliable information. As a result, the LoRA-based parameter-efficient fine-tuning (PEFT) approach, which does not constrain the use of the spectral space, may not be effective for tasks that demand high representation capacity. In this study, we enhance existing PEFT techniques by incorporating the spectral information of pre-trained weight matrices into the fine-tuning process. We investigate spectral adaptation strategies with a particular focus on the additive adjustment of top singular vectors. This is accomplished by applying singular value decomposition (SVD) to the pre-trained weight matrices and restricting the fine-tuning within the top spectral space. Extensive speaker verification experiments on VoxCeleb1 and CN-Celeb1 demonstrate enhanced tuning performance with the proposed approach. Code is released at https://github.com/lizhepolyu/SpectralFT.

Authors:Jiayao Gu, Liting Chen, Yihong Li
Title: Investigating the Impact of Data Selection Strategies on Language Model Performance
Abstract:
Data selection is critical for enhancing the performance of language models, particularly when aligning training datasets with a desired target distribution. This study explores the effects of different data selection methods and feature types on model performance. We evaluate whether selecting data subsets can influence downstream tasks, whether n-gram features improve alignment with target distributions, and whether embedding-based neural features provide complementary benefits. Through comparative experiments using baseline random selection methods and distribution aligned approaches, we provide insights into the interplay between data selection strategies and model training efficacy. All code for this study can be found on \href{https://github.com/jgu13/HIR-Hybrid-Importance-Resampling-for-Language-Models}{github repository}.

Authors:Eduarda Caldeira, Guray Ozgur, Tahar Chettaoui, Marija Ivanovska, Peter Peer, Fadi Boutros, Vitomir Struc, Naser Damer
Title: MADation: Face Morphing Attack Detection with Foundation Models
Abstract:
Despite the considerable performance improvements of face recognition algorithms in recent years, the same scientific advances responsible for this progress can also be used to create efficient ways to attack them, posing a threat to their secure deployment. Morphing attack detection (MAD) systems aim to detect a specific type of threat, morphing attacks, at an early stage, preventing them from being considered for verification in critical processes. Foundation models (FM) learn from extensive amounts of unlabelled data, achieving remarkable zero-shot generalization to unseen domains. Although this generalization capacity might be weak when dealing with domain-specific downstream tasks such as MAD, FMs can easily adapt to these settings while retaining the built-in knowledge acquired during pre-training. In this work, we recognize the potential of FMs to perform well in the MAD task when properly adapted to its specificities. To this end, we adapt FM CLIP architectures with LoRA weights while simultaneously training a classification header. The proposed framework, MADation surpasses our alternative FM and transformer-based frameworks and constitutes the first adaption of FMs to the MAD task. MADation presents competitive results with current MAD solutions in the literature and even surpasses them in several evaluation scenarios. To encourage reproducibility and facilitate further research in MAD, we publicly release the implementation of MADation at https://github.com/gurayozgur/MADation

Authors:Xinbin Yuan, Zhaohui Zheng, Yuxuan Li, Xialei Liu, Li Liu, Xiang Li, Qibin Hou, Ming-Ming Cheng
Title: Strip R-CNN: Large Strip Convolution for Remote Sensing Object Detection
Abstract:
While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions in our backbone network StripNet to capture spatial information. In addition, we improve the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization branch with strip convolutions in our strip head. Extensive experiments on several benchmarks, for example DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can greatly improve previous work. In particular, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record. Our code will be made publicly available.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.

Authors:Maxime Zanella, Clément Fuchs, Christophe De Vleeschouwer, Ismail Ben Ayed
Title: Realistic Test-Time Adaptation of Vision-Language Models
Abstract:
The zero-shot capabilities of Vision-Language Models (VLMs) have been widely leveraged to improve predictive performance. However, previous works on transductive or test-time adaptation (TTA) often make strong assumptions about the data distribution, such as the presence of all classes. Our work challenges these favorable deployment scenarios, and introduces a more realistic evaluation framework, including: (i) a variable number of effective classes for adaptation within a single batch, and (ii) non-i.i.d. batches of test samples in online adaptation settings. We provide comprehensive evaluations, comparisons, and ablation studies that demonstrate how current transductive or TTA methods for VLMs systematically compromise the models' initial zero-shot robustness across various realistic scenarios, favoring performance gains under advantageous assumptions about the test samples' distributions. Furthermore, we introduce StatA, a versatile method that could handle a wide range of deployment scenarios, including those with a variable number of effective classes at test time. Our approach incorporates a novel regularization term designed specifically for VLMs, which acts as a statistical anchor preserving the initial text-encoder knowledge, particularly in low-data regimes. Code available at https://github.com/MaxZanella/StatA.

Authors:Avishai Elmakies, Omri Abend, Yossi Adi
Title: Unsupervised Speech Segmentation: A General Approach Using Speech Language Models
Abstract:
In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm.

Authors:Mengshi Qi, Hao Ye, Jiaxuan Peng, Huadong Ma
Title: Action Quality Assessment via Hierarchical Pose-guided Multi-stage Contrastive Regression
Abstract:
Action Quality Assessment (AQA), which aims at automatic and fair evaluation of athletic performance, has gained increasing attention in recent years. However, athletes are often in rapid movement and the corresponding visual appearance variances are subtle, making it challenging to capture fine-grained pose differences and leading to poor estimation performance. Furthermore, most common AQA tasks, such as diving in sports, are usually divided into multiple sub-actions, each of which contains different durations. However, existing methods focus on segmenting the video into fixed frames, which disrupts the temporal continuity of sub-actions resulting in unavoidable prediction errors. To address these challenges, we propose a novel action quality assessment method through hierarchically pose-guided multi-stage contrastive regression. Firstly, we introduce a multi-scale dynamic visual-skeleton encoder to capture fine-grained spatio-temporal visual and skeletal features. Then, a procedure segmentation network is introduced to separate different sub-actions and obtain segmented features. Afterwards, the segmented visual and skeletal features are both fed into a multi-modal fusion module as physics structural priors, to guide the model in learning refined activity similarities and variances. Finally, a multi-stage contrastive learning regression approach is employed to learn discriminative representations and output prediction results. In addition, we introduce a newly-annotated FineDiving-Pose Dataset to improve the current low-quality human pose labels. In experiments, the results on FineDiving and MTL-AQA datasets demonstrate the effectiveness and superiority of our proposed approach. Our source code and dataset are available at https://github.com/Lumos0507/HP-MCoRe.

Authors:Jiaxuan Li, Qing Xu, Xiangjian He, Ziyu Liu, Daokun Zhang, Ruili Wang, Rong Qu, Guoping Qiu
Title: CFFormer: Cross CNN-Transformer Channel Attention and Spatial Feature Fusion for Improved Segmentation of Heterogeneous Medical Images
Abstract:
Medical image segmentation plays an important role in computer-aided diagnosis. Existing methods mainly utilize spatial attention to highlight the region of interest. However, due to limitations of medical imaging devices, medical images exhibit significant heterogeneity, posing challenges for segmentation. Ultrasound images, for instance, often suffer from speckle noise, low resolution, and poor contrast between target tissues and background, which may lead to inaccurate boundary delineation. To address these challenges caused by heterogeneous image quality, we propose a hybrid CNN-Transformer model,called CFFormer, which leverages effective channel feature extraction to enhance the model' s ability to accurately identify tissue regions by capturing rich contextual information. The proposed architecture contains two key components: the Cross Feature Channel Attention (CFCA) module and the X-Spatial Feature Fusion (XFF) module. The model incorporates dual encoders, with the CNN encoder focusing on capturing local features and the Transformer encoder modeling global features. The CFCA module filters and facilitates interactions between the channel features from the two encoders, while the XFF module effectively reduces the significant semantic information differences in spatial features, enabling a smooth and cohesive spatial feature fusion. We evaluate our model across eight datasets covering five modalities to test its generalization capability. Experimental results demonstrate that our model outperforms current state-of-the-art methods and maintains accurate tissue region segmentation across heterogeneous medical image datasets. The code is available at https://github.com/JiaxuanFelix/CFFormer.

Authors:Liyue Chen, Jiangyi Fang, Tengfei Liu, Fangyuan Gao, Leye Wang
Title: STContext: A Multifaceted Dataset for Developing Context-aware Spatio-temporal Crowd Mobility Prediction Models
Abstract:
In smart cities, context-aware spatio-temporal crowd flow prediction (STCFP) models leverage contextual features (e.g., weather) to identify unusual crowd mobility patterns and enhance prediction accuracy. However, the best practice for incorporating contextual features remains unclear due to inconsistent usage of contextual features in different papers. Developing a multifaceted dataset with rich types of contextual features and STCFP scenarios is crucial for establishing a principled context modeling paradigm. Existing open crowd flow datasets lack an adequate range of contextual features, which poses an urgent requirement to build a multifaceted dataset to fill these research gaps. To this end, we create STContext, a multifaceted dataset for developing context-aware STCFP models. Specifically, STContext provides nine spatio-temporal datasets across five STCFP scenarios and includes ten contextual features, including weather, air quality index, holidays, points of interest, road networks, etc. Besides, we propose a unified workflow for incorporating contextual features into deep STCFP methods, with steps including feature transformation, dependency modeling, representation fusion, and training strategies. Through extensive experiments, we have obtained several useful guidelines for effective context modeling and insights for future research. The STContext is open-sourced at https://github.com/Liyue-Chen/STContext.

Authors:NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, Daniel Dworakowski, Jiaojiao Fan, Michele Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox, Songwei Ge, Yunhao Ge, Jinwei Gu, Siddharth Gururani, Ethan He, Jiahui Huang, Jacob Huffman, Pooya Jannaty, Jingyi Jin, Seung Wook Kim, Gergely Klár, Grace Lam, Shiyi Lan, Laura Leal-Taixe, Anqi Li, Zhaoshuo Li, Chen-Hsuan Lin, Tsung-Yi Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun Mo, Arsalan Mousavian, Seungjun Nah, Sriharsha Niverty, David Page, Despoina Paschalidou, Zeeshan Patel, Lindsey Pavao, Morteza Ramezanali, Fitsum Reda, Xiaowei Ren, Vasanth Rao Naik Sabavat, Ed Schmerling, Stella Shi, Bartosz Stefaniak, Shitao Tang, Lyne Tchapmi, Przemek Tredak, Wei-Cheng Tseng, Jibin Varghese, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun Wang, Fangyin Wei, Xinyue Wei, Jay Zhangjie Wu, Jiashu Xu, Wei Yang, Lin Yen-Chen, Xiaohui Zeng, Yu Zeng, Jing Zhang, Qinsheng Zhang, Yuxuan Zhang, Qingqing Zhao, Artur Zolkowski
Title: Cosmos World Foundation Model Platform for Physical AI
Abstract:
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make Cosmos open-source and our models open-weight with permissive licenses available via https://github.com/nvidia-cosmos/cosmos-predict1.

Authors:Zetian Feng, Dong Ni, Yi Wang
Title: Salient Region Matching for Fully Automated MR-TRUS Registration
Abstract:
Prostate cancer is a leading cause of cancer-related mortality in men. The registration of magnetic resonance (MR) and transrectal ultrasound (TRUS) can provide guidance for the targeted biopsy of prostate cancer. In this study, we propose a salient region matching framework for fully automated MR-TRUS registration. The framework consists of prostate segmentation, rigid alignment and deformable registration. Prostate segmentation is performed using two segmentation networks on MR and TRUS respectively, and the predicted salient regions are used for the rigid alignment. The rigidly-aligned MR and TRUS images serve as initialization for the deformable registration. The deformable registration network has a dual-stream encoder with cross-modal spatial attention modules to facilitate multi-modality feature learning, and a salient region matching loss to consider both structure and intensity similarity within the prostate region. Experiments on a public MR-TRUS dataset demonstrate that our method achieves satisfactory registration results, outperforming several cutting-edge methods. The code is publicly available at https://github.com/mock1ngbrd/salient-region-matching.

Authors:Fatemeh Ghofrani, Pooyan Jamshidi
Title: An Empirical Study of Accuracy-Robustness Tradeoff and Training Efficiency in Self-Supervised Learning
Abstract:
Self-supervised learning (SSL) has significantly advanced image representation learning, yet efficiency challenges persist, particularly with adversarial training. Many SSL methods require extensive epochs to achieve convergence, a demand further amplified in adversarial settings. To address this inefficiency, we revisit the robust EMP-SSL framework, emphasizing the importance of increasing the number of crops per image to accelerate learning. Unlike traditional contrastive learning, robust EMP-SSL leverages multi-crop sampling, integrates an invariance term and regularization, and reduces training epochs, enhancing time efficiency. Evaluated with both standard linear classifiers and multi-patch embedding aggregation, robust EMP-SSL provides new insights into SSL evaluation strategies. Our results show that robust crop-based EMP-SSL not only accelerates convergence but also achieves a superior balance between clean accuracy and adversarial robustness, outperforming multi-crop embedding aggregation. Additionally, we extend this approach with free adversarial training in Multi-Crop SSL, introducing the Cost-Free Adversarial Multi-Crop Self-Supervised Learning (CF-AMC-SSL) method. CF-AMC-SSL demonstrates the effectiveness of free adversarial training in reducing training time while simultaneously improving clean accuracy and adversarial robustness. These findings underscore the potential of CF-AMC-SSL for practical SSL applications. Our code is publicly available at https://github.com/softsys4ai/CF-AMC-SSL.

Authors:Nandan Kumar Jha, Brandon Reagen
Title: Entropy-Guided Attention for Private LLMs
Abstract:
The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm

Authors:Chuang Niu, Wenjun Xia, Hongming Shan, Ge Wang
Title: Information-Maximized Soft Variable Discretization for Self-Supervised Image Representation Learning
Abstract:
Self-supervised learning (SSL) has emerged as a crucial technique in image processing, encoding, and understanding, especially for developing today's vision foundation models that utilize large-scale datasets without annotations to enhance various downstream tasks. This study introduces a novel SSL approach, Information-Maximized Soft Variable Discretization (IMSVD), for image representation learning. Specifically, IMSVD softly discretizes each variable in the latent space, enabling the estimation of their probability distributions over training batches and allowing the learning process to be directly guided by information measures. Motivated by the MultiView assumption, we propose an information-theoretic objective function to learn transform-invariant, non-travail, and redundancy-minimized representation features. We then derive a joint-cross entropy loss function for self-supervised image representation learning, which theoretically enjoys superiority over the existing methods in reducing feature redundancy. Notably, our non-contrastive IMSVD method statistically performs contrastive learning. Extensive experimental results demonstrate the effectiveness of IMSVD on various downstream tasks in terms of both accuracy and efficiency. Thanks to our variable discretization, the embedding features optimized by IMSVD offer unique explainability at the variable level. IMSVD has the potential to be adapted to other learning paradigms. Our code is publicly available at https://github.com/niuchuangnn/IMSVD.

Authors:Yannis Katsis, Sara Rosenthal, Kshitij Fadnis, Chulaka Gunasekara, Young-Suk Lee, Lucian Popa, Vraj Shah, Huaiyu Zhu, Danish Contractor, Marina Danilevsky
Title: MTRAG: A Multi-Turn Conversational Benchmark for Evaluating Retrieval-Augmented Generation Systems
Abstract:
Retrieval-augmented generation (RAG) has recently become a very popular task for Large Language Models (LLMs). Evaluating them on multi-turn RAG conversations, where the system is asked to generate a response to a question in the context of a preceding conversation is an important and often overlooked task with several additional challenges. We present MTRAG: an end-to-end human-generated multi-turn RAG benchmark that reflects several real-world properties across diverse dimensions for evaluating the full RAG pipeline. MTRAG contains 110 conversations averaging 7.7 turns each across four domains for a total of 842 tasks. We also explore automation paths via synthetic data and LLM-as-a-Judge evaluation. Our human and automatic evaluations show that even state-of-the-art LLM RAG systems struggle on MTRAG. We demonstrate the need for strong retrieval and generation systems that can handle later turns, unanswerable questions, non-standalone questions, and multiple domains. MTRAG is available at https://github.com/ibm/mt-rag-benchmark.

Authors:Xiao Wang, Fuling Wang, Haowen Wang, Bo Jiang, Chuanfu Li, Yaowei Wang, Yonghong Tian, Jin Tang
Title: Activating Associative Disease-Aware Vision Token Memory for LLM-Based X-ray Report Generation
Abstract:
X-ray image based medical report generation achieves significant progress in recent years with the help of the large language model, however, these models have not fully exploited the effective information in visual image regions, resulting in reports that are linguistically sound but insufficient in describing key diseases. In this paper, we propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports. It considers both the mining of global and local visual information and associates historical report information to better complete the writing of the current report. Specifically, given an X-ray image, we first utilize a classification model along with its activation maps to accomplish the mining of visual regions highly associated with diseases and the learning of disease query tokens. Then, we employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information. This process facilitates the generation of high-quality reports based on a large language model and achieves state-of-the-art performance on multiple benchmark datasets, including the IU X-ray, MIMIC-CXR, and Chexpert Plus. The source code of this work is released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.

Authors:Xuyang Wang, Ziang Cheng, Zhenyu Li, Jiayu Yang, Haorui Ji, Pan Ji, Mehrtash Harandi, Richard Hartley, Hongdong Li
Title: DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Texture Generation on 3D Meshes
Abstract:
This paper addresses the problem of generating textures for 3D mesh assets. Existing approaches often rely on image diffusion models to generate multi-view image observations, which are then transformed onto the mesh surface to produce a single texture. However, due to the gap between multi-view images and 3D space, such process is susceptible to arange of issues such as geometric inconsistencies, visibility occlusion, and baking artifacts. To overcome this problem, we propose a novel approach that directly generates texture on 3D meshes. Our approach leverages heat dissipation diffusion, which serves as an efficient operator that propagates features on the geometric surface of a mesh, while remaining insensitive to the specific layout of the wireframe. By integrating this technique into a generative diffusion pipeline, we significantly improve the efficiency of texture generation compared to existing texture generation methods. We term our approach DoubleDiffusion, as it combines heat dissipation diffusion with denoising diffusion to enable native generative learning on 3D mesh surfaces.

Authors:Pengwei Tang, Xiaolin Hu, Yong Liu
Title: ADePT: Adaptive Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning
Abstract:
Prompt Tuning (PT) enables the adaptation of Pre-trained Large Language Models (PLMs) to downstream tasks by optimizing a small amount of soft virtual tokens, which are prepended to the input token embeddings. Recently, Decomposed Prompt Tuning (DePT) has demonstrated superior adaptation capabilities by decomposing the soft prompt into a shorter soft prompt and a pair of low-rank matrices. The product of the pair of low-rank matrices is added to the input token embeddings to offset them. Additionally, DePT achieves faster inference compared to PT due to the shorter soft prompt. However, in this paper, we find that the position-based token embedding offsets of DePT restrict its ability to generalize across diverse model inputs, and that the shared embedding offsets across many token embeddings result in sub-optimization. To tackle these issues, we introduce Adaptive Decomposed Prompt Tuning (ADePT), which is composed of a short soft prompt and a shallow token-shared feed-forward neural network. ADePT utilizes the token-shared feed-forward neural network to learn the embedding offsets for each token, enabling adaptive embedding offsets that vary according to the model input and better optimization of token embedding offsets. This enables ADePT to achieve superior adaptation performance without requiring more inference time or additional trainable parameters compared to vanilla PT and its variants. In comprehensive experiments across 23 natural language processing tasks and 4 typical PLMs of different scales, ADePT consistently surpasses the other leading parameter-efficient fine-tuning methods, and even outperforms the full fine-tuning in certain scenarios. We also provide a theoretical analysis towards ADePT. Code is available at https://github.com/HungerPWAY/ADePT.

Authors:Liyang Qin, Xiaoli Wang, Chunhua Yang, Huaiwen Zou, Haochuan Zhang
Title: Sensorformer: Cross-patch attention with global-patch compression is effective for high-dimensional multivariate time series forecasting
Abstract:
Among the existing Transformer-based multivariate time series forecasting methods, iTransformer, which treats each variable sequence as a token and only explicitly extracts cross-variable dependencies, and PatchTST, which adopts a channel-independent strategy and only explicitly extracts cross-time dependencies, both significantly outperform most Channel-Dependent Transformer that simultaneously extract cross-time and cross-variable dependencies. This indicates that existing Transformer-based multivariate time series forecasting methods still struggle to effectively fuse these two types of information. We attribute this issue to the dynamic time lags in the causal relationships between different variables. Therefore, we propose a new multivariate time series forecasting Transformer, Sensorformer, which first compresses the global patch information and then simultaneously extracts cross-variable and cross-time dependencies from the compressed representations. Sensorformer can effectively capture the correct inter-variable correlations and causal relationships, even in the presence of dynamic causal lags between variables, while also reducing the computational complexity of pure cross-patch self-attention from $O(D^2 \cdot Patch\_num^2 \cdot d\_model)$ to $O(D^2 \cdot Patch\_num \cdot d\_model)$. Extensive comparative and ablation experiments on 9 mainstream real-world multivariate time series forecasting datasets demonstrate the superiority of Sensorformer. The implementation of Sensorformer, following the style of the Time-series-library and scripts for reproducing the main results, is publicly available at https://github.com/BigYellowTiger/Sensorformer

Authors:Haozhen Zhang, Haodong Yue, Xi Xiao, Le Yu, Qing Li, Zhen Ling, Ye Zhang
Title: Revolutionizing Encrypted Traffic Classification with MH-Net: A Multi-View Heterogeneous Graph Model
Abstract:
With the growing significance of network security, the classification of encrypted traffic has emerged as an urgent challenge. Traditional byte-based traffic analysis methods are constrained by the rigid granularity of information and fail to fully exploit the diverse correlations between bytes. To address these limitations, this paper introduces MH-Net, a novel approach for classifying network traffic that leverages multi-view heterogeneous traffic graphs to model the intricate relationships between traffic bytes. The essence of MH-Net lies in aggregating varying numbers of traffic bits into multiple types of traffic units, thereby constructing multi-view traffic graphs with diverse information granularities. By accounting for different types of byte correlations, such as header-payload relationships, MH-Net further endows the traffic graph with heterogeneity, significantly enhancing model performance. Notably, we employ contrastive learning in a multi-task manner to strengthen the robustness of the learned traffic unit representations. Experiments conducted on the ISCX and CIC-IoT datasets for both the packet-level and flow-level traffic classification tasks demonstrate that MH-Net achieves the best overall performance compared to dozens of SOTA methods.

Authors:Peihai Jiang, Xixiang Lyu, Yige Li, Jing Ma
Title: Backdoor Token Unlearning: Exposing and Defending Backdoors in Pretrained Language Models
Abstract:
Supervised fine-tuning has become the predominant method for adapting large pretrained models to downstream tasks. However, recent studies have revealed that these models are vulnerable to backdoor attacks, where even a small number of malicious samples can successfully embed backdoor triggers into the model. While most existing defense methods focus on post-training backdoor defense, efficiently defending against backdoor attacks during training phase remains largely unexplored. To address this gap, we propose a novel defense method called Backdoor Token Unlearning (BTU), which proactively detects and neutralizes trigger tokens during the training stage. Our work is based on two key findings: 1) backdoor learning causes distinctive differences between backdoor token parameters and clean token parameters in word embedding layers, and 2) the success of backdoor attacks heavily depends on backdoor token parameters. The BTU defense leverages these properties to identify aberrant embedding parameters and subsequently removes backdoor behaviors using a fine-grained unlearning technique. Extensive evaluations across three datasets and four types of backdoor attacks demonstrate that BTU effectively defends against these threats while preserving the model's performance on primary tasks. Our code is available at https://github.com/XDJPH/BTU.

Authors:Qi Wang, Marco Federici, Herke van Hoof
Title: Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Abstract:
The neural process (NP) is a family of computationally efficient models for learning distributions over functions. However, it suffers from under-fitting and shows suboptimal performance in practice. Researchers have primarily focused on incorporating diverse structural inductive biases, \textit{e.g.} attention or convolution, in modeling. The topic of inference suboptimality and an analysis of the NP from the optimization objective perspective has hardly been studied in earlier work. To fix this issue, we propose a surrogate objective of the target log-likelihood of the meta dataset within the expectation maximization framework. The resulting model, referred to as the Self-normalized Importance weighted Neural Process (SI-NP), can learn a more accurate functional prior and has an improvement guarantee concerning the target log-likelihood. Experimental results show the competitive performance of SI-NP over other NPs objectives and illustrate that structural inductive biases, such as attention modules, can also augment our method to achieve SOTA performance. Our code is available at \url{https://github.com/hhq123gogogo/SI_NPs}.

Authors:Jian Hu, Jason Klein Liu, Haotian Xu, Wei Shen
Title: REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Abstract:
Reinforcement Learning from Human Feedback (RLHF) plays a crucial role in aligning large language models (LLMs) with human values and preferences. While state-of-the-art applications like ChatGPT or GPT-4 commonly employ Proximal Policy Optimization (PPO), the inclusion of a critic network introduces significant computational overhead. REINFORCE-based methods, such as REINFORCE Leave One-Out (RLOO), ReMax, and Group Relative Policy Optimization (GRPO), address this limitation by eliminating the critic network. However, these approaches face challenges in accurate advantage estimation. Specifically, they estimate advantages independently for responses to each prompt, which can lead to overfitting on simpler prompts and vulnerability to reward hacking and may be biased. To address these challenges, we introduce REINFORCE++, a novel approach that removes the critic model while using the global advantage normalization which is unbiased to improve the training stability. Our empirical evaluation demonstrates that REINFORCE++ exhibits robust performance across various reward models without requiring prompt set truncation. Furthermore, it achieves superior generalization in both RLHF and long chain-of-thought (CoT) settings compared to existing REINFORCE-based methods. The implementation is available at https://github.com/OpenRLHF/OpenRLHF.

Authors:Thi Thuy Ngan Duong, Duy-Nam Bui, Manh Duong Phung
Title: Navigation Variable-based Multi-objective Particle Swarm Optimization for UAV Path Planning with Kinematic Constraints
Abstract:
Path planning is essential for unmanned aerial vehicles (UAVs) as it determines the path that the UAV needs to follow to complete a task. This work addresses this problem by introducing a new algorithm called navigation variable-based multi-objective particle swarm optimization (NMOPSO). It first models path planning as an optimization problem via the definition of a set of objective functions that include optimality and safety requirements for UAV operation. The NMOPSO is then used to minimize those functions through Pareto optimal solutions. The algorithm features a new path representation based on navigation variables to include kinematic constraints and exploit the maneuverable characteristics of the UAV. It also includes an adaptive mutation mechanism to enhance the diversity of the swarm for better solutions. Comparisons with various algorithms have been carried out to benchmark the proposed approach. The results indicate that the NMOPSO performs better than not only other particle swarm optimization variants but also other state-of-the-art multi-objective and metaheuristic optimization algorithms. Experiments have also been conducted with real UAVs to confirm the validity of the approach for practical flights. The source code of the algorithm is available at https://github.com/ngandng/NMOPSO.

Authors:Guoxuan Chen, Lianghao Xia, Chao Huang
Title: LightGNN: Simple Graph Neural Network for Recommendation
Abstract:
Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation through their ability to conduct high-order representation smoothing, effectively capturing structural information within users' interaction patterns. However, existing GNN paradigms face significant challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets. To address these challenges, we present LightGNN, a lightweight and distillation-based GNN pruning framework designed to substantially reduce model complexity while preserving essential collaboration modeling capabilities. Our LightGNN framework introduces a computationally efficient pruning module that adaptively identifies and removes redundant edges and embedding entries for model compression. The framework is guided by a resource-friendly hierarchical knowledge distillation objective, whose intermediate layer augments the observed graph to maintain performance, particularly in high-rate compression scenarios. Extensive experiments on public datasets demonstrate LightGNN's effectiveness, significantly improving both computational efficiency and recommendation accuracy. Notably, LightGNN achieves an 80% reduction in edge count and 90% reduction in embedding entries while maintaining performance comparable to more complex state-of-the-art baselines. The implementation of our LightGNN framework is available at the github repository: https://github.com/HKUDS/LightGNN.

Authors:Beichen Zhang, Yuhong Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Haodong Duan, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning
Abstract:
Large language models (LLMs) have demonstrated impressive ability in solving complex mathematical problems with multi-step reasoning and can be further enhanced with well-designed in-context learning (ICL) examples. However, this potential is often constrained by two major challenges in ICL: granularity mismatch and irrelevant information. We observe that while LLMs excel at decomposing mathematical problems, they often struggle with reasoning errors in fine-grained steps. Moreover, ICL examples retrieved at the question level may omit critical steps or even mislead the model with irrelevant details. To address this issue, we propose BoostStep, a method that enhances reasoning accuracy through step-aligned ICL, a novel mechanism that carefully aligns retrieved reference steps with the corresponding reasoning steps. Additionally, BoostStep incorporates an effective "first-try" strategy to deliver exemplars highly relevant to the current state of reasoning. BoostStep is a flexible and powerful method that integrates seamlessly with chain-of-thought (CoT) and tree search algorithms, refining both candidate selection and decision-making. Empirical results show that BoostStep improves GPT-4o's CoT performance by 4.6% across mathematical benchmarks, significantly surpassing traditional few-shot learning's 1.2%. Moreover, it can achieve an additional 7.5\% gain combined with tree search. Surprisingly, it enhances state-of-the-art LLMs to solve challenging math problems using simpler examples. It improves DeepSeek-R1-671B's performance on AIME by 2.2%, leveraging simple examples only from the MATH dataset.

Authors:Rui Qian, Shuangrui Ding, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: Dispider: Enabling Video LLMs with Active Real-Time Interaction via Disentangled Perception, Decision, and Reaction
Abstract:
Active Real-time interaction with video LLMs introduces a new paradigm for human-computer interaction, where the model not only understands user intent but also responds while continuously processing streaming video on the fly. Unlike offline video LLMs, which analyze the entire video before answering questions, active real-time interaction requires three capabilities: 1) Perception: real-time video monitoring and interaction capturing. 2) Decision: raising proactive interaction in proper situations, 3) Reaction: continuous interaction with users. However, inherent conflicts exist among the desired capabilities. The Decision and Reaction require a contrary Perception scale and grain, and the autoregressive decoding blocks the real-time Perception and Decision during the Reaction. To unify the conflicted capabilities within a harmonious system, we present Dispider, a system that disentangles Perception, Decision, and Reaction. Dispider features a lightweight proactive streaming video processing module that tracks the video stream and identifies optimal moments for interaction. Once the interaction is triggered, an asynchronous interaction module provides detailed responses, while the processing module continues to monitor the video in the meantime. Our disentangled and asynchronous design ensures timely, contextually accurate, and computationally efficient responses, making Dispider ideal for active real-time interaction for long-duration video streams. Experiments show that Dispider not only maintains strong performance in conventional video QA tasks, but also significantly surpasses previous online models in streaming scenario responses, thereby validating the effectiveness of our architecture. The code and model are released at \url{https://github.com/Mark12Ding/Dispider}.

Authors:Libing Yuan, Shuaibo Hu, Kui Yu, Le Wu
Title: Boosting Explainability through Selective Rationalization in Pre-trained Language Models
Abstract:
The widespread application of pre-trained language models (PLMs) in natural language processing (NLP) has led to increasing concerns about their explainability. Selective rationalization is a self-explanatory framework that selects human-intelligible input subsets as rationales for predictions. Recent studies have shown that applying existing rationalization frameworks to PLMs will result in severe degeneration and failure problems, producing sub-optimal or meaningless rationales. Such failures severely damage trust in rationalization methods and constrain the application of rationalization techniques on PLMs. In this paper, we find that the homogeneity of tokens in the sentences produced by PLMs is the primary contributor to these problems. To address these challenges, we propose a method named Pre-trained Language Model's Rationalization (PLMR), which splits PLMs into a generator and a predictor to deal with NLP tasks while providing interpretable rationales. The generator in PLMR also alleviates homogeneity by pruning irrelevant tokens, while the predictor uses full-text information to standardize predictions. Experiments conducted on two widely used datasets across multiple PLMs demonstrate the effectiveness of the proposed method PLMR in addressing the challenge of applying selective rationalization to PLMs. Codes: https://github.com/ylb777/PLMR.

Authors:Ali Al-Lawati, Jason Lucas, Prasenjit Mitra
Title: Semantic Captioning: Benchmark Dataset and Graph-Aware Few-Shot In-Context Learning for SQL2Text
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance in various NLP tasks, including semantic parsing, which translates natural language into formal code representations. However, the reverse process, translating code into natural language, termed semantic captioning, has received less attention. This task is becoming increasingly important as LLMs are integrated into platforms for code generation, security analysis, and educational purposes. In this paper, we focus on the captioning of SQL query (SQL2Text) to address the critical need for understanding and explaining SQL queries in an era where LLM-generated code poses potential security risks. We repurpose Text2SQL datasets for SQL2Text by introducing an iterative ICL prompt using GPT-4o to generate multiple additional utterances, which enhances the robustness of the datasets for the reverse task. We conduct our experiments using in-context learning (ICL) based on different sample selection methods, emphasizing smaller, more computationally efficient LLMs. Our findings demonstrate that leveraging the inherent graph properties of SQL for ICL sample selection significantly outperforms random selection by up to 39% on BLEU score and provides better results than alternative methods. Dataset and codes are published: https://github.com/aliwister/ast-icl.

Authors:Valery Istomin, Oleg Pereziabov, Ilya Afanasyev
Title: Geometry Restoration and Dewarping of Camera-Captured Document Images
Abstract:
This research focuses on developing a method for restoring the topology of digital images of paper documents captured by a camera, using algorithms for detection, segmentation, geometry restoration, and dewarping. Our methodology employs deep learning (DL) for document outline detection, followed by computer vision (CV) to create a topological 2D grid using cubic polynomial interpolation and correct nonlinear distortions by remapping the image. Using classical CV methods makes the document topology restoration process more efficient and faster, as it requires significantly fewer computational resources and memory. We developed a new pipeline for automatic document dewarping and reconstruction, along with a framework and annotated dataset to demonstrate its efficiency. Our experiments confirm the promise of our methodology and its superiority over existing benchmarks (including mobile apps and popular DL solutions, such as RectiNet, DocGeoNet, and DocTr++) both visually and in terms of document readability via Optical Character Recognition (OCR) and geometry restoration metrics. This paves the way for creating high-quality digital copies of paper documents and enhancing the efficiency of OCR systems. Project page: https://github.com/HorizonParadox/DRCCBI

Authors:Yuxiang Bao, Guoliang Kang, Linlin Yang, Xiaoyue Duan, Bo Zhao, Baochang Zhang
Title: Normalizing Batch Normalization for Long-Tailed Recognition
Abstract:
In real-world scenarios, the number of training samples across classes usually subjects to a long-tailed distribution. The conventionally trained network may achieve unexpected inferior performance on the rare class compared to the frequent class. Most previous works attempt to rectify the network bias from the data-level or from the classifier-level. Differently, in this paper, we identify that the bias towards the frequent class may be encoded into features, i.e., the rare-specific features which play a key role in discriminating the rare class are much weaker than the frequent-specific features. Based on such an observation, we introduce a simple yet effective approach, normalizing the parameters of Batch Normalization (BN) layer to explicitly rectify the feature bias. To achieve this end, we represent the Weight/Bias parameters of a BN layer as a vector, normalize it into a unit one and multiply the unit vector by a scalar learnable parameter. Through decoupling the direction and magnitude of parameters in BN layer to learn, the Weight/Bias exhibits a more balanced distribution and thus the strength of features becomes more even. Extensive experiments on various long-tailed recognition benchmarks (i.e., CIFAR-10/100-LT, ImageNet-LT and iNaturalist 2018) show that our method outperforms previous state-of-the-arts remarkably. The code and checkpoints are available at https://github.com/yuxiangbao/NBN.

Authors:Dylan Bouchard, Mohit Singh Chauhan, David Skarbrevik, Viren Bajaj, Zeya Ahmad
Title: LangFair: A Python Package for Assessing Bias and Fairness in Large Language Model Use Cases
Abstract:
Large Language Models (LLMs) have been observed to exhibit bias in numerous ways, potentially creating or worsening outcomes for specific groups identified by protected attributes such as sex, race, sexual orientation, or age. To help address this gap, we introduce LangFair, an open-source Python package that aims to equip LLM practitioners with the tools to evaluate bias and fairness risks relevant to their specific use cases. The package offers functionality to easily generate evaluation datasets, comprised of LLM responses to use-case-specific prompts, and subsequently calculate applicable metrics for the practitioner's use case. To guide in metric selection, LangFair offers an actionable decision framework.

Authors:Yibin Wu, Jian Kuang, Xiaoji Niu, Cyrill Stachniss, Lasse Klingbeil, Heiner Kuhlmann
Title: Wheel-GINS: A GNSS/INS Integrated Navigation System with a Wheel-mounted IMU
Abstract:
A long-term accurate and robust localization system is essential for mobile robots to operate efficiently outdoors. Recent studies have shown the significant advantages of the wheel-mounted inertial measurement unit (Wheel-IMU)-based dead reckoning system. However, it still drifts over extended periods because of the absence of external correction signals. To achieve the goal of long-term accurate localization, we propose Wheel-GINS, a Global Navigation Satellite System (GNSS)/inertial navigation system (INS) integrated navigation system using a Wheel-IMU. Wheel-GINS fuses the GNSS position measurement with the Wheel-IMU via an extended Kalman filter to limit the long-term error drift and provide continuous state estimation when the GNSS signal is blocked. Considering the specificities of the GNSS/Wheel-IMU integration, we conduct detailed modeling and online estimation of the Wheel-IMU installation parameters, including the Wheel-IMU leverarm and mounting angle and the wheel radius error. Experimental results have shown that Wheel-GINS outperforms the traditional GNSS/Odometer/INS integrated navigation system during GNSS outages. At the same time, Wheel-GINS can effectively estimate the Wheel-IMU installation parameters online and, consequently, improve the localization accuracy and practicality of the system. The source code of our implementation is publicly available (https://github.com/i2Nav-WHU/Wheel-GINS).

Authors:Haojin Li, Heng Li, Jianyu Chen, Rihan Zhong, Ke Niu, Huazhu Fu, Jiang Liu
Title: AIF-SFDA: Autonomous Information Filter-driven Source-Free Domain Adaptation for Medical Image Segmentation
Abstract:
Decoupling domain-variant information (DVI) from domain-invariant information (DII) serves as a prominent strategy for mitigating domain shifts in the practical implementation of deep learning algorithms. However, in medical settings, concerns surrounding data collection and privacy often restrict access to both training and test data, hindering the empirical decoupling of information by existing methods. To tackle this issue, we propose an Autonomous Information Filter-driven Source-free Domain Adaptation (AIF-SFDA) algorithm, which leverages a frequency-based learnable information filter to autonomously decouple DVI and DII. Information Bottleneck (IB) and Self-supervision (SS) are incorporated to optimize the learnable frequency filter. The IB governs the information flow within the filter to diminish redundant DVI, while SS preserves DII in alignment with the specific task and image modality. Thus, the autonomous information filter can overcome domain shifts relying solely on target data. A series of experiments covering various medical image modalities and segmentation tasks were conducted to demonstrate the benefits of AIF-SFDA through comparisons with leading algorithms and ablation studies. The code is available at https://github.com/JingHuaMan/AIF-SFDA.

Authors:Duygu Sezen Islakoglu, Jan-Christoph Kalo
Title: ChronoSense: Exploring Temporal Understanding in Large Language Models with Time Intervals of Events
Abstract:
Large Language Models (LLMs) have achieved remarkable success in various NLP tasks, yet they still face significant challenges in reasoning and arithmetic. Temporal reasoning, a critical component of natural language understanding, has raised increasing research attention. However, comprehensive testing of Allen's interval relations (e.g., before, after, during) -- a fundamental framework for temporal relationships -- remains underexplored. To fill this gap, we present ChronoSense, a new benchmark for evaluating LLMs' temporal understanding. It includes 16 tasks, focusing on identifying the Allen relation between two temporal events and temporal arithmetic, using both abstract events and real-world data from Wikidata. We assess the performance of seven recent LLMs using this benchmark and the results indicate that models handle Allen relations, even symmetrical ones, quite differently. Moreover, the findings suggest that the models may rely on memorization to answer time-related questions. Overall, the models' low performance highlights the need for improved temporal understanding in LLMs and ChronoSense offers a robust framework for future research in this area. Our dataset and the source code are available at https://github.com/duyguislakoglu/chronosense.

Authors:Xiang Zheng, Longxiang Wang, Yi Liu, Xingjun Ma, Chao Shen, Cong Wang
Title: CALM: Curiosity-Driven Auditing for Large Language Models
Abstract:
Auditing Large Language Models (LLMs) is a crucial and challenging task. In this study, we focus on auditing black-box LLMs without access to their parameters, only to the provided service. We treat this type of auditing as a black-box optimization problem where the goal is to automatically uncover input-output pairs of the target LLMs that exhibit illegal, immoral, or unsafe behaviors. For instance, we may seek a non-toxic input that the target LLM responds to with a toxic output or an input that induces the hallucinative response from the target LLM containing politically sensitive individuals. This black-box optimization is challenging due to the scarcity of feasible points, the discrete nature of the prompt space, and the large search space. To address these challenges, we propose Curiosity-Driven Auditing for Large Language Models (CALM), which uses intrinsically motivated reinforcement learning to finetune an LLM as the auditor agent to uncover potential harmful and biased input-output pairs of the target LLM. CALM successfully identifies derogatory completions involving celebrities and uncovers inputs that elicit specific names under the black-box setting. This work offers a promising direction for auditing black-box LLMs. Our code is available at https://github.com/x-zheng16/CALM.git.

Authors:Xianhao Zhou, Jianghao Wu, Huangxuan Zhao, Lei Chen, Shaoting Zhang, Guotai Wang
Title: GLFC: Unified Global-Local Feature and Contrast Learning with Mamba-Enhanced UNet for Synthetic CT Generation from CBCT
Abstract:
Generating synthetic Computed Tomography (CT) images from Cone Beam Computed Tomography (CBCT) is desirable for improving the image quality of CBCT. Existing synthetic CT (sCT) generation methods using Convolutional Neural Networks (CNN) and Transformers often face difficulties in effectively capturing both global and local features and contrasts for high-quality sCT generation. In this work, we propose a Global-Local Feature and Contrast learning (GLFC) framework for sCT generation. First, a Mamba-Enhanced UNet (MEUNet) is introduced by integrating Mamba blocks into the skip connections of a high-resolution UNet for effective global and local feature learning. Second, we propose a Multiple Contrast Loss (MCL) that calculates synthetic loss at different intensity windows to improve quality for both soft tissues and bone regions. Experiments on the SynthRAD2023 dataset demonstrate that GLFC improved the SSIM of sCT from 77.91% to 91.50% compared with the original CBCT, and significantly outperformed several existing methods for sCT generation. The code is available at https://github.com/HiLab-git/GLFC

Authors:Zhi Qu, Yiran Wang, Jiannan Mao, Chenchen Ding, Hideki Tanaka, Masao Utiyama, Taro Watanabe
Title: Registering Source Tokens to Target Language Spaces in Multilingual Neural Machine Translation
Abstract:
The multilingual neural machine translation (MNMT) aims for arbitrary translations across multiple languages. Although MNMT-specific models trained on parallel data offer low costs in training and deployment, their performance consistently lags behind that of large language models (LLMs). In this work, we introduce registering, a novel method that enables a small MNMT-specific model to compete with LLMs. Specifically, we insert a set of artificial tokens specifying the target language, called registers, into the input sequence between the source and target tokens. By modifying the attention mask, the target token generation only pays attention to the activation of registers, representing the source tokens in the target language space. Experiments on EC-40, a large-scale benchmark, show that our method advances the state-of-the-art of MNMT. We further pre-train two models, namely MITRE (multilingual translation with registers), by 9.3 billion sentence pairs across 24 languages collected from public corpora. One of them, MITRE-913M, outperforms NLLB-3.3B, achieves comparable performance with commercial LLMs, and shows strong adaptability in fine-tuning. Finally, we open-source our models to facilitate further research and development in MNMT: https://github.com/zhiqu22/mitre.

Authors:Chuanbo Hua, Federico Berto, Jiwoo Son, Seunghyun Kang, Changhyun Kwon, Jinkyoo Park
Title: CAMP: Collaborative Attention Model with Profiles for Vehicle Routing Problems
Abstract:
The profiled vehicle routing problem (PVRP) is a generalization of the heterogeneous capacitated vehicle routing problem (HCVRP) in which the objective is to optimize the routes of vehicles to serve client demands subject to different vehicle profiles, with each having a preference or constraint on a per-client basis. While existing learning methods have shown promise for solving the HCVRP in real-time, no learning method exists to solve the more practical and challenging PVRP. In this paper, we propose a Collaborative Attention Model with Profiles (CAMP), a novel approach that learns efficient solvers for PVRP using multi-agent reinforcement learning. CAMP employs a specialized attention-based encoder architecture to embed profiled client embeddings in parallel for each vehicle profile. We design a communication layer between agents for collaborative decision-making across profiled embeddings at each decoding step and a batched pointer mechanism to attend to the profiled embeddings to evaluate the likelihood of the next actions. We evaluate CAMP on two variants of PVRPs: PVRP with preferences, which explicitly influence the reward function, and PVRP with zone constraints with different numbers of agents and clients, demonstrating that our learned solvers achieve competitive results compared to both classical state-of-the-art neural multi-agent models in terms of solution quality and computational efficiency. We make our code openly available at https://github.com/ai4co/camp.

Authors:Can Gao, Xiaofeng Tan, Jie Zhou, Weiping Ding, Witold Pedrycz
Title: Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls
Abstract:
Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data and has been extensively studied and used in a variety of practical tasks. However, most unsupervised outlier detection methods are carefully designed to detect specified outliers, while real-world data may be entangled with different types of outliers. In this study, we propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers. Specifically, a novel fuzzy rough sets-based method that integrates relative fuzzy granule density is first introduced to improve the capability of detecting local outliers. Then, a multi-scale view generation method based on granular-ball computing is proposed to collaboratively identify group outliers at different levels of granularity. Moreover, reliable outliers and inliers determined by the three-way decision are used to train a weighted support vector machine to further improve the performance of outlier detection. The proposed method innovatively transforms unsupervised outlier detection into a semi-supervised classification problem and for the first time explores the fuzzy rough sets-based outlier detection from the perspective of multi-scale granular balls, allowing for high adaptability to different types of outliers. Extensive experiments carried out on both artificial and UCI datasets demonstrate that the proposed outlier detection method significantly outperforms the state-of-the-art methods, improving the results by at least 8.48% in terms of the Area Under the ROC Curve (AUROC) index. { The source codes are released at \url{https://github.com/Xiaofeng-Tan/MGBOD}. }

Authors:Stephan Goerttler, Yucheng Wang, Emadeldeen Eldele, Min Wu, Fei He
Title: MSA-CNN: A Lightweight Multi-Scale CNN with Attention for Sleep Stage Classification
Abstract:
Recent advancements in machine learning-based signal analysis, coupled with open data initiatives, have fuelled efforts in automatic sleep stage classification. Despite the proliferation of classification models, few have prioritised reducing model complexity, which is a crucial factor for practical applications. In this work, we introduce Multi-Scale and Attention Convolutional Neural Network (MSA-CNN), a lightweight architecture featuring as few as ~10,000 parameters. MSA-CNN leverages a novel multi-scale module employing complementary pooling to eliminate redundant filter parameters and dense convolutions. Model complexity is further reduced by separating temporal and spatial feature extraction and using cost-effective global spatial convolutions. This separation of tasks not only reduces model complexity but also mirrors the approach used by human experts in sleep stage scoring. We evaluated both small and large configurations of MSA-CNN against nine state-of-the-art baseline models across three public datasets, treating univariate and multivariate models separately. Our evaluation, based on repeated cross-validation and re-evaluation of all baseline models, demonstrated that the large MSA-CNN outperformed all baseline models on all three datasets in terms of accuracy and Cohen's kappa, despite its significantly reduced parameter count. Lastly, we explored various model variants and conducted an in-depth analysis of the key modules and techniques, providing deeper insights into the underlying mechanisms. The code for our models, baselines, and evaluation procedures is available at https://github.com/sgoerttler/MSA-CNN.

Authors:Shi Bin Hoo, Samuel Müller, David Salinas, Frank Hutter
Title: From Tables to Time: How TabPFN-v2 Outperforms Specialized Time Series Forecasting Models
Abstract:
Foundation models have become increasingly popular for forecasting due to their ability to provide predictions without requiring a lot of training data. In this work, we demonstrate how TabPFN-v2, a general tabular foundation model, can be effectively applied to time series forecasting. We introduce TabPFN-TS, a simple method that combines TabPFN-v2 with lightweight feature engineering to enable both point and probabilistic forecasting. Despite its simplicity and compact size (11M parameters), TabPFN-TS achieves top rank on the public GIFT-Eval leaderboard in both forecasting tasks. Through ablation studies, we investigate factors contributing to this surprising effectiveness, especially considering TabPFN-v2 was pretrained solely on synthetic tabular data with no exposure to time series. Our results highlights the potential of tabular foundation models like TabPFN-v2 as a valuable new approach for time series forecasting. Our implementation is available at https://github.com/PriorLabs/tabpfn-time-series.

Authors:Jiexi Zhong, Zhiheng Li, Yubo Cui, Zheng Fang
Title: 4D-CS: Exploiting Cluster Prior for 4D Spatio-Temporal LiDAR Semantic Segmentation
Abstract:
Semantic segmentation of LiDAR points has significant value for autonomous driving and mobile robot systems. Most approaches explore spatio-temporal information of multi-scan to identify the semantic classes and motion states for each point. However, these methods often overlook the segmentation consistency in space and time, which may result in point clouds within the same object being predicted as different categories. To handle this issue, our core idea is to generate cluster labels across multiple frames that can reflect the complete spatial structure and temporal information of objects. These labels serve as explicit guidance for our dual-branch network, 4D-CS, which integrates point-based and cluster-based branches to enable more consistent segmentation. Specifically, in the point-based branch, we leverage historical knowledge to enrich the current feature through temporal fusion on multiple views. In the cluster-based branch, we propose a new strategy to produce cluster labels of foreground objects and apply them to gather point-wise information to derive cluster features. We then merge neighboring clusters across multiple scans to restore missing features due to occlusion. Finally, in the point-cluster fusion stage, we adaptively fuse the information from the two branches to optimize segmentation results. Extensive experiments confirm the effectiveness of the proposed method, and we achieve state-of-the-art results on the multi-scan semantic and moving object segmentation on SemanticKITTI and nuScenes datasets. The code will be available at https://github.com/NEU-REAL/4D-CS.git.

Authors:Sahar Salimpour, Jorge Peña-Queralta, Diego Paez-Granados, Jukka Heikkonen, Tomi Westerlund
Title: Sim-to-Real Transfer for Mobile Robots with Reinforcement Learning: from NVIDIA Isaac Sim to Gazebo and Real ROS 2 Robots
Abstract:
Unprecedented agility and dexterous manipulation have been demonstrated with controllers based on deep reinforcement learning (RL), with a significant impact on legged and humanoid robots. Modern tooling and simulation platforms, such as NVIDIA Isaac Sim, have been enabling such advances. This article focuses on demonstrating the applications of Isaac in local planning and obstacle avoidance as one of the most fundamental ways in which a mobile robot interacts with its environments. Although there is extensive research on proprioception-based RL policies, the article highlights less standardized and reproducible approaches to exteroception. At the same time, the article aims to provide a base framework for end-to-end local navigation policies and how a custom robot can be trained in such simulation environment. We benchmark end-to-end policies with the state-of-the-art Nav2, navigation stack in Robot Operating System (ROS). We also cover the sim-to-real transfer process by demonstrating zero-shot transferability of policies trained in the Isaac simulator to real-world robots. This is further evidenced by the tests with different simulated robots, which show the generalization of the learned policy. Finally, the benchmarks demonstrate comparable performance to Nav2, opening the door to quick deployment of state-of-the-art end-to-end local planners for custom robot platforms, but importantly furthering the possibilities by expanding the state and action spaces or task definitions for more complex missions. Overall, with this article we introduce the most important steps, and aspects to consider, in deploying RL policies for local path planning and obstacle avoidance with Isaac Sim training, Gazebo testing, and ROS 2 for real-time inference in real robots. The code is available at https://github.com/sahars93/RL-Navigation.

Authors:Guray Ozgur, Eduarda Caldeira, Tahar Chettaoui, Fadi Boutros, Raghavendra Ramachandra, Naser Damer
Title: FoundPAD: Foundation Models Reloaded for Face Presentation Attack Detection
Abstract:
Although face recognition systems have seen a massive performance enhancement in recent years, they are still targeted by threats such as presentation attacks, leading to the need for generalizable presentation attack detection (PAD) algorithms. Current PAD solutions suffer from two main problems: low generalization to unknown cenarios and large training data requirements. Foundation models (FM) are pre-trained on extensive datasets, achieving remarkable results when generalizing to unseen domains and allowing for efficient task-specific adaption even when little training data are available. In this work, we recognize the potential of FMs to address common PAD problems and tackle the PAD task with an adapted FM for the first time. The FM under consideration is adapted with LoRA weights while simultaneously training a classification header. The resultant architecture, FoundPAD, is highly generalizable to unseen domains, achieving competitive results in several settings under different data availability scenarios and even when using synthetic training data. To encourage reproducibility and facilitate further research in PAD, we publicly release the implementation of FoundPAD at https://github.com/gurayozgur/FoundPAD .

Authors:Asma Alkalbani, Muhammad Saqib, Ahmed Salim Alrawahi, Abbas Anwar, Chandarnath Adak, Saeed Anwar
Title: RDD4D: 4D Attention-Guided Road Damage Detection And Classification
Abstract:
Road damage detection and assessment are crucial components of infrastructure maintenance. However, current methods often struggle with detecting multiple types of road damage in a single image, particularly at varying scales. This is due to the lack of road datasets with various damage types having varying scales. To overcome this deficiency, first, we present a novel dataset called Diverse Road Damage Dataset (DRDD) for road damage detection that captures the diverse road damage types in individual images, addressing a crucial gap in existing datasets. Then, we provide our model, RDD4D, that exploits Attention4D blocks, enabling better feature refinement across multiple scales. The Attention4D module processes feature maps through an attention mechanism combining positional encoding and "Talking Head" components to capture local and global contextual information. In our comprehensive experimental analysis comparing various state-of-the-art models on our proposed, our enhanced model demonstrated superior performance in detecting large-sized road cracks with an Average Precision (AP) of 0.458 and maintained competitive performance with an overall AP of 0.445. Moreover, we also provide results on the CrackTinyNet dataset; our model achieved around a 0.21 increase in performance. The code, model weights, dataset, and our results are available on \href{https://github.com/msaqib17/Road_Damage_Detection}{https://github.com/msaqib17/Road\_Damage\_Detection}.

Authors:Chunxin Zheng, Yulin Li, Zhiyuan Song, Zhihai Bi, Jinni Zhou, Boyu Zhou, Jun Ma
Title: Local Reactive Control for Mobile Manipulators with Whole-Body Safety in Complex Environments
Abstract:
Mobile manipulators typically encounter significant challenges in navigating narrow, cluttered environments due to their high-dimensional state spaces and complex kinematics. While reactive methods excel in dynamic settings, they struggle to efficiently incorporate complex, coupled constraints across the entire state space. In this work, we present a novel local reactive controller that reformulates the time-domain single-step problem into a multi-step optimization problem in the spatial domain, leveraging the propagation of a serial kinematic chain. This transformation facilitates the formulation of customized, decoupled link-specific constraints, which is further solved efficiently with augmented Lagrangian differential dynamic programming (AL-DDP). Our approach naturally absorbs spatial kinematic propagation in the forward pass and processes all link-specific constraints simultaneously during the backward pass, enhancing both constraint management and computational efficiency. Notably, in this framework, we formulate collision avoidance constraints for each link using accurate geometric models with extracted free regions, and this improves the maneuverability of the mobile manipulator in narrow, cluttered spaces. Experimental results showcase significant improvements in safety, efficiency, and task completion rates. These findings underscore the robustness of the proposed method, particularly in narrow, cluttered environments where conventional approaches could falter. The open-source project can be found at https://github.com/Chunx1nZHENG/MM-with-Whole-Body-Safety-Release.git.

Authors:Niloufar Eghbali, Hassan Bagher-Ebadian, Tuka Alhanai, Mohammad M. Ghassemi
Title: GLoG-CSUnet: Enhancing Vision Transformers with Adaptable Radiomic Features for Medical Image Segmentation
Abstract:
Vision Transformers (ViTs) have shown promise in medical image semantic segmentation (MISS) by capturing long-range correlations. However, ViTs often struggle to model local spatial information effectively, which is essential for accurately segmenting fine anatomical details, particularly when applied to small datasets without extensive pre-training. We introduce Gabor and Laplacian of Gaussian Convolutional Swin Network (GLoG-CSUnet), a novel architecture enhancing Transformer-based models by incorporating learnable radiomic features. This approach integrates dynamically adaptive Gabor and Laplacian of Gaussian (LoG) filters to capture texture, edge, and boundary information, enhancing the feature representation processed by the Transformer model. Our method uniquely combines the long-range dependency modeling of Transformers with the texture analysis capabilities of Gabor and LoG features. Evaluated on the Synapse multi-organ and ACDC cardiac segmentation datasets, GLoG-CSUnet demonstrates significant improvements over state-of-the-art models, achieving a 1.14% increase in Dice score for Synapse and 0.99% for ACDC, with minimal computational overhead (only 15 and 30 additional parameters, respectively). GLoG-CSUnet's flexible design allows integration with various base models, offering a promising approach for incorporating radiomics-inspired feature extraction in Transformer architectures for medical image analysis. The code implementation is available on GitHub at: https://github.com/HAAIL/GLoG-CSUnet.

Authors:Binyu Zhang, Zhu Meng, Junhao Dong, Fei Su, Zhicheng Zhao
Title: ICFNet: Integrated Cross-modal Fusion Network for Survival Prediction
Abstract:
Survival prediction is a crucial task in the medical field and is essential for optimizing treatment options and resource allocation. However, current methods often rely on limited data modalities, resulting in suboptimal performance. In this paper, we propose an Integrated Cross-modal Fusion Network (ICFNet) that integrates histopathology whole slide images, genomic expression profiles, patient demographics, and treatment protocols. Specifically, three types of encoders, a residual orthogonal decomposition module and a unification fusion module are employed to merge multi-modal features to enhance prediction accuracy. Additionally, a balanced negative log-likelihood loss function is designed to ensure fair training across different patients. Extensive experiments demonstrate that our ICFNet outperforms state-of-the-art algorithms on five public TCGA datasets, including BLCA, BRCA, GBMLGG, LUAD, and UCEC, and shows its potential to support clinical decision-making and advance precision medicine. The codes are available at: https://github.com/binging512/ICFNet.

Authors:Haoyu Liu, Shaohan Huang, Jianfeng Liu, Yuefeng Zhan, Hao Sun, Weiwei Deng, Feng Sun, Furu Wei, Qi Zhang
Title: GeAR: Generation Augmented Retrieval
Abstract:
Document retrieval techniques are essential for developing large-scale information systems. The common approach involves using a bi-encoder to compute the semantic similarity between a query and documents. However, the scalar similarity often fail to reflect enough information, hindering the interpretation of retrieval results. In addition, this process primarily focuses on global semantics, overlooking the finer-grained semantic relationships between the query and the document's content. In this paper, we introduce a novel method, $\textbf{Ge}$neration $\textbf{A}$ugmented $\textbf{R}$etrieval ($\textbf{GeAR}$), which not only improves the global document-query similarity through contrastive learning, but also integrates well-designed fusion and decoding modules. This enables GeAR to generate relevant context within the documents based on a given query, facilitating learning to retrieve local fine-grained information. Furthermore, when used as a retriever, GeAR does not incur any additional computational cost over bi-encoders. GeAR exhibits competitive retrieval performance across diverse scenarios and tasks. Moreover, qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released at \href{https://github.com/microsoft/LMOps}{https://github.com/microsoft/LMOps}.

Authors:Yifan Li, Zhixin Lai, Wentao Bao, Zhen Tan, Anh Dao, Kewei Sui, Jiayi Shen, Dong Liu, Huan Liu, Yu Kong
Title: Visual Large Language Models for Generalized and Specialized Applications
Abstract:
Visual-language models (VLM) have emerged as a powerful tool for learning a unified embedding space for vision and language. Inspired by large language models, which have demonstrated strong reasoning and multi-task capabilities, visual large language models (VLLMs) are gaining increasing attention for building general-purpose VLMs. Despite the significant progress made in VLLMs, the related literature remains limited, particularly from a comprehensive application perspective, encompassing generalized and specialized applications across vision (image, video, depth), action, and language modalities. In this survey, we focus on the diverse applications of VLLMs, examining their using scenarios, identifying ethics consideration and challenges, and discussing future directions for their development. By synthesizing these contents, we aim to provide a comprehensive guide that will pave the way for future innovations and broader applications of VLLMs. The paper list repository is available: https://github.com/JackYFL/awesome-VLLMs.

Authors:Xiaojiao Guo, Xuhang Chen, Shuqiang Wang, Chi-Man Pun
Title: Underwater Image Restoration Through a Prior Guided Hybrid Sense Approach and Extensive Benchmark Analysis
Abstract:
Underwater imaging grapples with challenges from light-water interactions, leading to color distortions and reduced clarity. In response to these challenges, we propose a novel Color Balance Prior \textbf{Guided} \textbf{Hyb}rid \textbf{Sens}e \textbf{U}nderwater \textbf{I}mage \textbf{R}estoration framework (\textbf{GuidedHybSensUIR}). This framework operates on multiple scales, employing the proposed \textbf{Detail Restorer} module to restore low-level detailed features at finer scales and utilizing the proposed \textbf{Feature Contextualizer} module to capture long-range contextual relations of high-level general features at a broader scale. The hybridization of these different scales of sensing results effectively addresses color casts and restores blurry details. In order to effectively point out the evolutionary direction for the model, we propose a novel \textbf{Color Balance Prior} as a strong guide in the feature contextualization step and as a weak guide in the final decoding phase. We construct a comprehensive benchmark using paired training data from three real-world underwater datasets and evaluate on six test sets, including three paired and three unpaired, sourced from four real-world underwater datasets. Subsequently, we tested 14 traditional and retrained 23 deep learning existing underwater image restoration methods on this benchmark, obtaining metric results for each approach. This effort aims to furnish a valuable benchmarking dataset for standard basis for comparison. The extensive experiment results demonstrate that our method outperforms 37 other state-of-the-art methods overall on various benchmark datasets and metrics, despite not achieving the best results in certain individual cases. The code and dataset are available at \href{https://github.com/CXH-Research/GuidedHybSensUIR}{https://github.com/CXH-Research/GuidedHybSensUIR}.

Authors:Yang Ouyang, Hengrui Gu, Shuhang Lin, Wenyue Hua, Jie Peng, Bhavya Kailkhura, Meijun Gao, Tianlong Chen, Kaixiong Zhou
Title: Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense
Abstract:
As large language models (LLMs) are increasingly deployed in diverse applications, including chatbot assistants and code generation, aligning their behavior with safety and ethical standards has become paramount. However, jailbreak attacks, which exploit vulnerabilities to elicit unintended or harmful outputs, threaten LLMs' safety significantly. In this paper, we introduce Layer-AdvPatcher, a novel methodology designed to defend against jailbreak attacks by utilizing an unlearning strategy to patch specific layers within LLMs through self-augmented datasets. Our insight is that certain layer(s), tend to produce affirmative tokens when faced with harmful prompts. By identifying these layers and adversarially exposing them to generate more harmful data, one can understand their inherent and diverse vulnerabilities to attacks. With these exposures, we then "unlearn" these issues, reducing the impact of affirmative tokens and hence minimizing jailbreak risks while keeping the model's responses to safe queries intact. We conduct extensive experiments on two models, four benchmark datasets, and multiple state-of-the-art jailbreak attacks to demonstrate the efficacy of our approach. Results indicate that our framework reduces the harmfulness and attack success rate of jailbreak attacks without compromising utility for benign queries compared to recent defense methods. Our code is publicly available at: https://github.com/oyy2000/LayerAdvPatcher

Authors:Saleh Ashkboos, Mahdi Nikdan, Soroush Tabesh, Roberto L. Castro, Torsten Hoefler, Dan Alistarh
Title: HALO: Hadamard-Assisted Lower-Precision Optimization for LLMs
Abstract:
Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which can have large weight and activation outlier values that make lower-precision optimization difficult. To address this, we present HALO, a novel quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, which mitigate outliers, 2) high-performance kernel support, and 3) FSDP integration for low-precision communication. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.41x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. HALO efficiently supports both standard and parameterefficient fine-tuning (PEFT). Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in 8-bit precision, while delivering performance benefits. Code is available at \url{https://github.com/IST-DASLab/HALO}.

Authors:Jiaping Wang, Simiao Zhang, Qiao-Chu He, Yifan Chen
Title: LeetDecoding: A PyTorch Library for Exponentially Decaying Causal Linear Attention with CUDA Implementations
Abstract:
The machine learning and data science community has made significant while dispersive progress in accelerating transformer-based large language models (LLMs), and one promising approach is to replace the original causal attention in a generative pre-trained transformer (GPT) with \emph{exponentially decaying causal linear attention}. In this paper, we present LeetDecoding, which is the first Python package that provides a large set of computation routines for this fundamental operator. The launch of LeetDecoding was motivated by the current lack of (1) clear understanding of the complexity regarding this operator, (2) a comprehensive collection of existing computation methods (usually spread in seemingly unrelated fields), and (3) CUDA implementations for fast inference on GPU. LeetDecoding's design is easy to integrate with existing linear-attention LLMs, and allows for researchers to benchmark and evaluate new computation methods for exponentially decaying causal linear attention. The usage of LeetDecoding does not require any knowledge of GPU programming and the underlying complexity analysis, intentionally making LeetDecoding accessible to LLM practitioners. The source code of LeetDecoding is provided at \href{https://github.com/Computational-Machine-Intelligence/LeetDecoding}{this GitHub repository}, and users can simply install LeetDecoding by the command \texttt{pip install leet-decoding}.

Authors:Lin Wang, Qing Li
Title: Efficient Graph Condensation via Gaussian Process
Abstract:
Graph condensation reduces the size of large graphs while preserving performance, addressing the scalability challenges of Graph Neural Networks caused by computational inefficiencies on large datasets. Existing methods often rely on bi-level optimization, requiring extensive GNN training and limiting their scalability. To address these issues, this paper proposes Graph Condensation via Gaussian Process (GCGP), a novel and computationally efficient approach to graph condensation. GCGP utilizes a Gaussian Process (GP), with the condensed graph serving as observations, to estimate the posterior distribution of predictions. This approach eliminates the need for the iterative and resource-intensive training typically required by GNNs. To enhance the capability of the GCGP in capturing dependencies between function values, we derive a specialized covariance function that incorporates structural information. This covariance function broadens the receptive field of input nodes by local neighborhood aggregation, thereby facilitating the representation of intricate dependencies within the nodes. To address the challenge of optimizing binary structural information in condensed graphs, Concrete random variables are utilized to approximate the binary adjacency matrix in a continuous counterpart. This relaxation process allows the adjacency matrix to be represented in a differentiable form, enabling the application of gradient-based optimization techniques to discrete graph structures. Experimental results show that the proposed GCGP method efficiently condenses large-scale graph data while preserving predictive performance, addressing the scalability and efficiency challenges. The implementation of our method is publicly available at https://github.com/WANGLin0126/GCGP.

Authors:Lin Wang, Qing Li
Title: Efficient Graph Condensation via Gaussian Process
Abstract:
Graph condensation reduces the size of large graphs while preserving performance, addressing the scalability challenges of Graph Neural Networks caused by computational inefficiencies on large datasets. Existing methods often rely on bi-level optimization, requiring extensive GNN training and limiting their scalability. To address these issues, this paper proposes Graph Condensation via Gaussian Process (GCGP), a novel and computationally efficient approach to graph condensation. GCGP utilizes a Gaussian Process (GP), with the condensed graph serving as observations, to estimate the posterior distribution of predictions. This approach eliminates the need for the iterative and resource-intensive training typically required by GNNs. To enhance the capability of the GCGP in capturing dependencies between function values, we derive a specialized covariance function that incorporates structural information. This covariance function broadens the receptive field of input nodes by local neighborhood aggregation, thereby facilitating the representation of intricate dependencies within the nodes. To address the challenge of optimizing binary structural information in condensed graphs, Concrete random variables are utilized to approximate the binary adjacency matrix in a continuous counterpart. This relaxation process allows the adjacency matrix to be represented in a differentiable form, enabling the application of gradient-based optimization techniques to discrete graph structures. Experimental results show that the proposed GCGP method efficiently condenses large-scale graph data while preserving predictive performance, addressing the scalability and efficiency challenges. The implementation of our method is publicly available at https://github.com/WANGLin0126/GCGP.

Authors:Yibo Zhang
Title: KM-UNet KAN Mamba UNet for medical image segmentation
Abstract:
Medical image segmentation is a critical task in medical imaging analysis. Traditional CNN-based methods struggle with modeling long-range dependencies, while Transformer-based models, despite their success, suffer from quadratic computational complexity. To address these limitations, we propose KM-UNet, a novel U-shaped network architecture that combines the strengths of Kolmogorov-Arnold Networks (KANs) and state-space models (SSMs). KM-UNet leverages the Kolmogorov-Arnold representation theorem for efficient feature representation and SSMs for scalable long-range modeling, achieving a balance between accuracy and computational efficiency. We evaluate KM-UNet on five benchmark datasets: ISIC17, ISIC18, CVC, BUSI, and GLAS. Experimental results demonstrate that KM-UNet achieves competitive performance compared to state-of-the-art methods in medical image segmentation tasks. To the best of our knowledge, KM-UNet is the first medical image segmentation framework integrating KANs and SSMs. This work provides a valuable baseline and new insights for the development of more efficient and interpretable medical image segmentation systems. The code is open source at https://github.com/2760613195/KM_UNet Keywords:KAN,Manba, state-space models,UNet, Medical image segmentation, Deep learning

Authors:Jaeyoung Kim, Jongho Lee, Hong-Jun Choi, Ting-Yao Hsu, Chieh-Yang Huang, Sungchul Kim, Ryan Rossi, Tong Yu, Clyde Lee Giles, Ting-Hao 'Kenneth' Huang, Sungchul Choi
Title: Multi-LLM Collaborative Caption Generation in Scientific Documents
Abstract:
Scientific figure captioning is a complex task that requires generating contextually appropriate descriptions of visual content. However, existing methods often fall short by utilizing incomplete information, treating the task solely as either an image-to-text or text summarization problem. This limitation hinders the generation of high-quality captions that fully capture the necessary details. Moreover, existing data sourced from arXiv papers contain low-quality captions, posing significant challenges for training large language models (LLMs). In this paper, we introduce a framework called Multi-LLM Collaborative Figure Caption Generation (MLBCAP) to address these challenges by leveraging specialized LLMs for distinct sub-tasks. Our approach unfolds in three key modules: (Quality Assessment) We utilize multimodal LLMs to assess the quality of training data, enabling the filtration of low-quality captions. (Diverse Caption Generation) We then employ a strategy of fine-tuning/prompting multiple LLMs on the captioning task to generate candidate captions. (Judgment) Lastly, we prompt a prominent LLM to select the highest quality caption from the candidates, followed by refining any remaining inaccuracies. Human evaluations demonstrate that informative captions produced by our approach rank better than human-written captions, highlighting its effectiveness. Our code is available at https://github.com/teamreboott/MLBCAP

Authors:Haichao Liu, Kai Chen, Yulin Li, Zhenmin Huang, Ming Liu, Jun Ma
Title: UDMC: Unified Decision-Making and Control Framework for Urban Autonomous Driving with Motion Prediction of Traffic Participants
Abstract:
Current autonomous driving systems often struggle to balance decision-making and motion control while ensuring safety and traffic rule compliance, especially in complex urban environments. Existing methods may fall short due to separate handling of these functionalities, leading to inefficiencies and safety compromises. To address these challenges, we introduce UDMC, an interpretable and unified Level 4 autonomous driving framework. UDMC integrates decision-making and motion control into a single optimal control problem (OCP), considering the dynamic interactions with surrounding vehicles, pedestrians, road lanes, and traffic signals. By employing innovative potential functions to model traffic participants and regulations, and incorporating a specialized motion prediction module, our framework enhances on-road safety and rule adherence. The integrated design allows for real-time execution of flexible maneuvers suited to diverse driving scenarios. High-fidelity simulations conducted in CARLA exemplify the framework's computational efficiency, robustness, and safety, resulting in superior driving performance when compared against various baseline models. Our open-source project is available at https://github.com/henryhcliu/udmc_carla.git.

Authors:Yaohui Wang, Zicong Wang, Fanfeng Meng, Yanjing Wang, Yang Ou, Lizhou Wu, Wentao Hong, Xuran Ge, Jijun Cao
Title: A Full-System Simulation Framework for CXL-Based SSD Memory System
Abstract:
Compute eXpress Link (CXL) is a promising technology for memory disaggregation and expansion. Especially, CXL makes it more effectively for large-capacity storage devices such as Solid State Drive (SSD) to be deployed in the memory pool. However, CXL-based SSDs are still in early stages, necessitating the development of reliable simulation tools. In this paper, we propose CXL-SSD-Sim, the first open-source full-system simulator designed to simulate CXL-based SSD memory system. Constructed on the foundation of gem5 and SimpleSSD, CXL-SSD-Sim extends an high fidelity SSD memory expander model along with the corresponding device driver. In addition, CXL-SSD-Sim models a DRAM layer as a caching mechanism for the SSD, meticulously engineered to counteract latency issues inherent to CXL-based SSD memory access. Experiments are performed among five different memory devices with CXL-SSD-Sim in aspect of latency, bandwidth and real-world benchmark performance. These experiments serve to underscore the efficacy of our simulation tool in providing a comprehensive analysis of CXL-based SSD memory systems. The CXL-SSD-Sim simulator is available at https://github.com/WangYaohuii/CXL-SSD-Sim.

Authors:Dawei Dai, Mingming Jia, Yinxiu Zhou, Hang Xing, Chenghang Li
Title: Face-MakeUp: Multimodal Facial Prompts for Text-to-Image Generation
Abstract:
Facial images have extensive practical applications. Although the current large-scale text-image diffusion models exhibit strong generation capabilities, it is challenging to generate the desired facial images using only text prompt. Image prompts are a logical choice. However, current methods of this type generally focus on general domain. In this paper, we aim to optimize image makeup techniques to generate the desired facial images. Specifically, (1) we built a dataset of 4 million high-quality face image-text pairs (FaceCaptionHQ-4M) based on LAION-Face to train our Face-MakeUp model; (2) to maintain consistency with the reference facial image, we extract/learn multi-scale content features and pose features for the facial image, integrating these into the diffusion model to enhance the preservation of facial identity features for diffusion models. Validation on two face-related test datasets demonstrates that our Face-MakeUp can achieve the best comprehensive performance.All codes are available at:https://github.com/ddw2AIGROUP2CQUPT/Face-MakeUp

Authors:Sung Jin Um, Dongjin Kim, Sangmin Lee, Jung Uk Kim
Title: Watch Video, Catch Keyword: Context-aware Keyword Attention for Moment Retrieval and Highlight Detection
Abstract:
The goal of video moment retrieval and highlight detection is to identify specific segments and highlights based on a given text query. With the rapid growth of video content and the overlap between these tasks, recent works have addressed both simultaneously. However, they still struggle to fully capture the overall video context, making it challenging to determine which words are most relevant. In this paper, we present a novel Video Context-aware Keyword Attention module that overcomes this limitation by capturing keyword variation within the context of the entire video. To achieve this, we introduce a video context clustering module that provides concise representations of the overall video context, thereby enhancing the understanding of keyword dynamics. Furthermore, we propose a keyword weight detection module with keyword-aware contrastive learning that incorporates keyword information to enhance fine-grained alignment between visual and textual features. Extensive experiments on the QVHighlights, TVSum, and Charades-STA benchmarks demonstrate that our proposed method significantly improves performance in moment retrieval and highlight detection tasks compared to existing approaches. Our code is available at: https://github.com/VisualAIKHU/Keyword-DETR

Authors:Zhe Chen, Yusheng Liao, Shuyang Jiang, Pingjie Wang, Yiqiu Guo, Yanfeng Wang, Yu Wang
Title: Towards Omni-RAG: Comprehensive Retrieval-Augmented Generation for Large Language Models in Medical Applications
Abstract:
Large language models hold promise for addressing medical challenges, such as medical diagnosis reasoning, research knowledge acquisition, clinical decision-making, and consumer health inquiry support. However, they often generate hallucinations due to limited medical knowledge. Incorporating external knowledge is therefore critical, which necessitates multi-source knowledge acquisition. We address this challenge by framing it as a source planning problem, which is to formulate context-appropriate queries tailored to the attributes of diverse sources. Existing approaches either overlook source planning or fail to achieve it effectively due to misalignment between the model's expectation of the sources and their actual content. To bridge this gap, we present MedOmniKB, a repository comprising multigenre and multi-structured medical knowledge sources. Leveraging these sources, we propose the Source Planning Optimisation method, which enhances multi-source utilisation. Our approach involves enabling an expert model to explore and evaluate potential plans while training a smaller model to learn source alignment. Experimental results demonstrate that our method substantially improves multi-source planning performance, enabling the optimised small model to achieve state-of-the-art results in leveraging diverse medical knowledge sources.

Authors:Yihang Tao, Senkang Hu, Yue Hu, Haonan An, Hangcheng Cao, Yuguang Fang
Title: GCP: Guarded Collaborative Perception with Spatial-Temporal Aware Malicious Agent Detection
Abstract:
Collaborative perception significantly enhances autonomous driving safety by extending each vehicle's perception range through message sharing among connected and autonomous vehicles. Unfortunately, it is also vulnerable to adversarial message attacks from malicious agents, resulting in severe performance degradation. While existing defenses employ hypothesis-and-verification frameworks to detect malicious agents based on single-shot outliers, they overlook temporal message correlations, which can be circumvented by subtle yet harmful perturbations in model input and output spaces. This paper reveals a novel blind area confusion (BAC) attack that compromises existing single-shot outlier-based detection methods. As a countermeasure, we propose GCP, a Guarded Collaborative Perception framework based on spatial-temporal aware malicious agent detection, which maintains single-shot spatial consistency through a confidence-scaled spatial concordance loss, while simultaneously examining temporal anomalies by reconstructing historical bird's eye view motion flows in low-confidence regions. We also employ a joint spatial-temporal Benjamini-Hochberg test to synthesize dual-domain anomaly results for reliable malicious agent detection. Extensive experiments demonstrate GCP's superior performance under diverse attack scenarios, achieving up to 34.69% improvements in AP@0.5 compared to the state-of-the-art CP defense strategies under BAC attacks, while maintaining consistent 5-8% improvements under other typical attacks. Code will be released at https://github.com/CP-Security/GCP.git.

Authors:Binh-Nguyen Nguyen, Yang He
Title: Swift Cross-Dataset Pruning: Enhancing Fine-Tuning Efficiency in Natural Language Understanding
Abstract:
Dataset pruning aims to select a subset of a dataset for efficient model training. While data efficiency in natural language processing has primarily focused on within-corpus scenarios during model pre-training, efficient dataset pruning for task-specific fine-tuning across diverse datasets remains challenging due to variability in dataset sizes, data distributions, class imbalance and label spaces. Current cross-dataset pruning techniques for fine-tuning often rely on computationally expensive sample ranking processes, typically requiring full dataset training or reference models. We address this gap by proposing Swift Cross-Dataset Pruning (SCDP). Specifically, our approach uses TF-IDF embeddings with geometric median to rapidly evaluate sample importance. We then apply dataset size-adaptive pruning to ensure diversity: for smaller datasets, we retain samples far from the geometric median, while for larger ones, we employ distance-based stratified pruning. Experimental results on six diverse datasets demonstrate the effectiveness of our method, spanning various tasks and scales while significantly reducing computational resources. Source code is available at: https://github.com/he-y/NLP-Dataset-Pruning

Authors:Tara Radvand, Mojtaba Abdolmaleki, Mohamed Mostagir, Ambuj Tewari
Title: Zero-Shot Statistical Tests for LLM-Generated Text Detection using Finite Sample Concentration Inequalities
Abstract:
Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly challenging as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by a particular LLM or not? We model LLM-generated text as a sequential stochastic process with complete dependence on history. We then design zero-shot statistical tests to (i) distinguish between text generated by two different known sets of LLMs $A$ (non-sanctioned) and $B$ (in-house), and (ii) identify whether text was generated by a known LLM or generated by any unknown model, e.g., a human or some other language generation process. We prove that the type I and type II errors of our test decrease exponentially with the length of the text. For that, we show that if $B$ generates the text, then except with an exponentially small probability in string length, the log-perplexity of the string under $A$ converges to the average cross-entropy of $B$ and $A$. We then present experiments using LLMs with white-box access to support our theoretical results and empirically examine the robustness of our results to black-box settings and adversarial attacks. In the black-box setting, our method achieves an average TPR of 82.5\% at a fixed FPR of 5\%. Under adversarial perturbations, our minimum TPR is 48.6\% at the same FPR threshold. Both results outperform all non-commercial baselines. See https://github.com/TaraRadvand74/llm-text-detection for code, data, and an online demo of the project.

Authors:Sichao Wang, Ming Yuan, Chuang Zhang, Qing Xu, Lei He, Jianqiang Wang
Title: V2X-DGPE: Addressing Domain Gaps and Pose Errors for Robust Collaborative 3D Object Detection
Abstract:
In V2X collaborative perception, the domain gaps between heterogeneous nodes pose a significant challenge for effective information fusion. Pose errors arising from latency and GPS localization noise further exacerbate the issue by leading to feature misalignment. To overcome these challenges, we propose V2X-DGPE, a high-accuracy and robust V2X feature-level collaborative perception framework. V2X-DGPE employs a Knowledge Distillation Framework and a Feature Compensation Module to learn domain-invariant representations from multi-source data, effectively reducing the feature distribution gap between vehicles and roadside infrastructure. Historical information is utilized to provide the model with a more comprehensive understanding of the current scene. Furthermore, a Collaborative Fusion Module leverages a heterogeneous self-attention mechanism to extract and integrate heterogeneous representations from vehicles and infrastructure. To address pose errors, V2X-DGPE introduces a deformable attention mechanism, enabling the model to adaptively focus on critical parts of the input features by dynamically offsetting sampling points. Extensive experiments on the real-world DAIR-V2X dataset demonstrate that the proposed method outperforms existing approaches, achieving state-of-the-art detection performance. The code is available at https://github.com/wangsch10/V2X-DGPE.

Authors:Ambroise Odonnat, Wassim Bouaziz, Vivien Cabannes
Title: Easing Optimization Paths: a Circuit Perspective
Abstract:
Gradient descent is the method of choice for training large artificial intelligence systems. As these systems become larger, a better understanding of the mechanisms behind gradient training would allow us to alleviate compute costs and help steer these systems away from harmful behaviors. To that end, we suggest utilizing the circuit perspective brought forward by mechanistic interpretability. After laying out our intuition, we illustrate how it enables us to design a curriculum for efficient learning in a controlled setting. The code is available at \url{https://github.com/facebookresearch/pal}.

Authors:Yonglin Tian, Fei Lin, Yiduo Li, Tengchao Zhang, Qiyao Zhang, Xuan Fu, Jun Huang, Xingyuan Dai, Yutong Wang, Chunwei Tian, Bai Li, Yisheng Lv, Levente Kovács, Fei-Yue Wang
Title: UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility
Abstract:
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.

Authors:Liye Jia, Runwei Guan, Haocheng Zhao, Qiuchi Zhao, Ka Lok Man, Jeremy Smith, Limin Yu, Yutao Yue
Title: RadarNeXt: Real-Time and Reliable 3D Object Detector Based On 4D mmWave Imaging Radar
Abstract:
3D object detection is crucial for Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS). However, most 3D detectors prioritize detection accuracy, often overlooking network inference speed in practical applications. In this paper, we propose RadarNeXt, a real-time and reliable 3D object detector based on the 4D mmWave radar point clouds. It leverages the re-parameterizable neural networks to catch multi-scale features, reduce memory cost and accelerate the inference. Moreover, to highlight the irregular foreground features of radar point clouds and suppress background clutter, we propose a Multi-path Deformable Foreground Enhancement Network (MDFEN), ensuring detection accuracy while minimizing the sacrifice of speed and excessive number of parameters. Experimental results on View-of-Delft and TJ4DRadSet datasets validate the exceptional performance and efficiency of RadarNeXt, achieving 50.48 and 32.30 mAPs with the variant using our proposed MDFEN. Notably, our RadarNeXt variants achieve inference speeds of over 67.10 FPS on the RTX A4000 GPU and 28.40 FPS on the Jetson AGX Orin. This research demonstrates that RadarNeXt brings a novel and effective paradigm for 3D perception based on 4D mmWave radar.

Authors:Zongwei Li, Lianghao Xia, Hua Hua, Shijie Zhang, Shuangyang Wang, Chao Huang
Title: DiffGraph: Heterogeneous Graph Diffusion Model
Abstract:
Recent advances in Graph Neural Networks (GNNs) have revolutionized graph-structured data modeling, yet traditional GNNs struggle with complex heterogeneous structures prevalent in real-world scenarios. Despite progress in handling heterogeneous interactions, two fundamental challenges persist: noisy data significantly compromising embedding quality and learning performance, and existing methods' inability to capture intricate semantic transitions among heterogeneous relations, which impacts downstream predictions. To address these fundamental issues, we present the Heterogeneous Graph Diffusion Model (DiffGraph), a pioneering framework that introduces an innovative cross-view denoising strategy. This advanced approach transforms auxiliary heterogeneous data into target semantic spaces, enabling precise distillation of task-relevant information. At its core, DiffGraph features a sophisticated latent heterogeneous graph diffusion mechanism, implementing a novel forward and backward diffusion process for superior noise management. This methodology achieves simultaneous heterogeneous graph denoising and cross-type transition, while significantly simplifying graph generation through its latent-space diffusion capabilities. Through rigorous experimental validation on both public and industrial datasets, we demonstrate that DiffGraph consistently surpasses existing methods in link prediction and node classification tasks, establishing new benchmarks for robustness and efficiency in heterogeneous graph processing. The model implementation is publicly available at: https://github.com/HKUDS/DiffGraph.

Authors:Mengting Wei, Tuomas Varanka, Xingxun Jiang, Huai-Qian Khor, Guoying Zhao
Title: MagicFace: High-Fidelity Facial Expression Editing with Action-Unit Control
Abstract:
We address the problem of facial expression editing by controling the relative variation of facial action-unit (AU) from the same person. This enables us to edit this specific person's expression in a fine-grained, continuous and interpretable manner, while preserving their identity, pose, background and detailed facial attributes. Key to our model, which we dub MagicFace, is a diffusion model conditioned on AU variations and an ID encoder to preserve facial details of high consistency. Specifically, to preserve the facial details with the input identity, we leverage the power of pretrained Stable-Diffusion models and design an ID encoder to merge appearance features through self-attention. To keep background and pose consistency, we introduce an efficient Attribute Controller by explicitly informing the model of current background and pose of the target. By injecting AU variations into a denoising UNet, our model can animate arbitrary identities with various AU combinations, yielding superior results in high-fidelity expression editing compared to other facial expression editing works. Code is publicly available at https://github.com/weimengting/MagicFace.

Authors:Mian Zou, Baosheng Yu, Yibing Zhan, Kede Ma
Title: Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies
Abstract:
The detection of AI-generated faces is commonly approached as a binary classification task. Nevertheless, the resulting detectors frequently struggle to adapt to novel AI face generators, which evolve rapidly. In this paper, we describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images. The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images. Subsequently, we model the learned feature distribution of photographic face images using a Gaussian mixture model. Faces with low likelihoods are flagged as AI-generated. Both quantitative and qualitative experiments validate the effectiveness of our method. Our code is available at \url{https://github.com/MZMMSEC/AIGFD_EXIF.git}.

Authors:Zongxia Li, Xiyang Wu, Hongyang Du, Fuxiao Liu, Huy Nghiem, Guangyao Shi
Title: A Survey of State of the Art Large Vision Language Models: Alignment, Benchmark, Evaluations and Challenges
Abstract:
Multimodal Vision Language Models (VLMs) have emerged as a transformative topic at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification [93]. With their rapid advancements in research and growing popularity in various applications, we provide a comprehensive survey of VLMs. Specifically, we provide a systematic overview of VLMs in the following aspects: [1] model information of the major VLMs developed up to 2025; [2] the transition of VLM architectures and the newest VLM alignment methods; [3] summary and categorization of the popular benchmarks and evaluation metrics of VLMs; [4] the challenges and issues faced by current VLMs such as hallucination, alignment, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Vision-Language-Models-Overview.

Authors:Juntao Zhang, Shaogeng Liu, Kun Bian, You Zhou, Pei Zhang, Jianning Liu, Jun Zhou, Bingyan Liu
Title: A Separable Self-attention Inspired by the State Space Model for Computer Vision
Abstract:
Mamba is an efficient State Space Model (SSM) with linear computational complexity. Although SSMs are not suitable for handling non-causal data, Vision Mamba (ViM) methods still demonstrate good performance in tasks such as image classification and object detection. Recent studies have shown that there is a rich theoretical connection between state space models and attention variants. We propose a novel separable self attention method, for the first time introducing some excellent design concepts of Mamba into separable self-attention. To ensure a fair comparison with ViMs, we introduce VMINet, a simple yet powerful prototype architecture, constructed solely by stacking our novel attention modules with the most basic down-sampling layers. Notably, VMINet differs significantly from the conventional Transformer architecture. Our experiments demonstrate that VMINet has achieved competitive results on image classification and high-resolution dense prediction tasks.Code is available at: https://github.com/yws-wxs/VMINet.

Authors:Benjamin Shiue-Hal Chou, Purvish Jajal, Nicholas John Eliopoulos, Tim Nadolsky, Cheng-Yun Yang, Nikita Ravi, James C. Davis, Kristen Yeon-Ji Yun, Yung-Hsiang Lu
Title: Detecting Music Performance Errors with Transformers
Abstract:
Beginner musicians often struggle to identify specific errors in their performances, such as playing incorrect notes or rhythms. There are two limitations in existing tools for music error detection: (1) Existing approaches rely on automatic alignment; therefore, they are prone to errors caused by small deviations between alignment targets.; (2) There is a lack of sufficient data to train music error detection models, resulting in over-reliance on heuristics. To address (1), we propose a novel transformer model, Polytune, that takes audio inputs and outputs annotated music scores. This model can be trained end-to-end to implicitly align and compare performance audio with music scores through latent space representations. To address (2), we present a novel data generation technique capable of creating large-scale synthetic music error datasets. Our approach achieves a 64.1% average Error Detection F1 score, improving upon prior work by 40 percentage points across 14 instruments. Additionally, compared with existing transcription methods repurposed for music error detection, our model can handle multiple instruments. Our source code and datasets are available at https://github.com/ben2002chou/Polytune.

Authors:Ziwei Zheng, Junyao Zhao, Le Yang, Lijun He, Fan Li
Title: Spot Risks Before Speaking! Unraveling Safety Attention Heads in Large Vision-Language Models
Abstract:
With the integration of an additional modality, large vision-language models (LVLMs) exhibit greater vulnerability to safety risks (e.g., jailbreaking) compared to their language-only predecessors. Although recent studies have devoted considerable effort to the post-hoc alignment of LVLMs, the inner safety mechanisms remain largely unexplored. In this paper, we discover that internal activations of LVLMs during the first token generation can effectively identify malicious prompts across different attacks. This inherent safety perception is governed by sparse attention heads, which we term ``safety heads." Further analysis reveals that these heads act as specialized shields against malicious prompts; ablating them leads to higher attack success rates, while the model's utility remains unaffected. By locating these safety heads and concatenating their activations, we construct a straightforward but powerful malicious prompt detector that integrates seamlessly into the generation process with minimal extra inference overhead. Despite its simple structure of a logistic regression model, the detector surprisingly exhibits strong zero-shot generalization capabilities. Experiments across various prompt-based attacks confirm the effectiveness of leveraging safety heads to protect LVLMs. Code is available at \url{https://github.com/Ziwei-Zheng/SAHs}.

Authors:Hwa Hui Tew, Fan Ding, Gaoxuan Li, Junn Yong Loo, Chee-Ming Ting, Ze Yang Ding, Chee Pin Tan
Title: ST-HCSS: Deep Spatio-Temporal Hypergraph Convolutional Neural Network for Soft Sensing
Abstract:
Higher-order sensor networks are more accurate in characterizing the nonlinear dynamics of sensory time-series data in modern industrial settings by allowing multi-node connections beyond simple pairwise graph edges. In light of this, we propose a deep spatio-temporal hypergraph convolutional neural network for soft sensing (ST-HCSS). In particular, our proposed framework is able to construct and leverage a higher-order graph (hypergraph) to model the complex multi-interactions between sensor nodes in the absence of prior structural knowledge. To capture rich spatio-temporal relationships underlying sensor data, our proposed ST-HCSS incorporates stacked gated temporal and hypergraph convolution layers to effectively aggregate and update hypergraph information across time and nodes. Our results validate the superiority of ST-HCSS compared to existing state-of-the-art soft sensors, and demonstrates that the learned hypergraph feature representations aligns well with the sensor data correlations. The code is available at https://github.com/htew0001/ST-HCSS.git

Authors:Keng Hou Leong, Yuxuan Xiu, Wai Kin, Chan
Title: Information Subtraction: Learning Representations for Conditional Entropy
Abstract:
The representations of conditional entropy and conditional mutual information are significant in explaining the unique effects among variables. While previous studies based on conditional contrastive sampling have effectively removed information regarding discrete sensitive variables, they have not yet extended their scope to continuous cases. This paper introduces Information Subtraction, a framework designed to generate representations that preserve desired information while eliminating the undesired. We implement a generative-based architecture that outputs these representations by simultaneously maximizing an information term and minimizing another. With its flexibility in disentangling information, we can iteratively apply Information Subtraction to represent arbitrary information components between continuous variables, thereby explaining the various relationships that exist between them. Our results highlight the representations' ability to provide semantic features of conditional entropy. By subtracting sensitive and domain-specific information, our framework demonstrates effective performance in fair learning and domain generalization. The code for this paper is available at https://github.com/jh-liang/Information-Subtraction

Authors:Delin An, Chaoli Wang
Title: SurfPatch: Enabling Patch Matching for Exploratory Stream Surface Visualization
Abstract:
Unlike their line-based counterparts, surface-based techniques have yet to be thoroughly investigated in flow visualization due to their significant placement, speed, perception, and evaluation challenges. This paper presents SurfPatch, a novel framework supporting exploratory stream surface visualization. To begin with, we translate the issue of surface placement to surface selection and trace a large number of stream surfaces from a given flow field dataset. Then, we introduce a three-stage process: vertex-level classification, patch-level matching, and surface-level clustering that hierarchically builds the connection between vertices and patches and between patches and surfaces. This bottom-up approach enables fine-grained, multiscale patch-level matching, sharply contrasts surface-level matching offered by existing works, and provides previously unavailable flexibility during querying. We design an intuitive visual interface for users to conveniently visualize and analyze the underlying collection of stream surfaces in an exploratory manner. SurfPatch is not limited to stream surfaces traced from steady flow datasets. We demonstrate its effectiveness through experiments on stream surfaces produced from steady and unsteady flows as well as isosurfaces extracted from scalar fields. The code is available at https://github.com/adlsn/SurfPatch.

Authors:Tianyu Fu, Tengxuan Liu, Qinghao Han, Guohao Dai, Shengen Yan, Huazhong Yang, Xuefei Ning, Yu Wang
Title: FrameFusion: Combining Similarity and Importance for Video Token Reduction on Large Vision Language Models
Abstract:
The increasing demand to process long and high-resolution videos significantly burdens Large Vision-Language Models (LVLMs) due to the enormous number of visual tokens. Existing token reduction methods primarily prune tokens based on importance metrics, such as cumulative attention scores. However, even important tokens may exhibit high redundancy caused by similarity among adjacent video frames and repetitive visual elements. To address this limitation, we propose FrameFusion, a novel token reduction approach integrating similarity-based merging with importance-based pruning. We conduct a thorough study on token similarity characteristics, revealing three key insights: (1) spatially corresponding visual tokens between adjacent frames have higher cosine similarities compared to other token pairs; (2) high token similarities prominently decrease in deeper model layers; and (3) token similarity rankings are highly consistent across different layers. Guided by these observations, FrameFusion computes token similarities exclusively between corresponding visual tokens from adjacent frames, applies token merging at initial successive layers followed by pruning in deeper layers, and adopts a cascaded merging strategy to further enhance efficiency. We evaluate FrameFusion comprehensively across six diverse LVLMs, ranging from 2B to 72B parameters, using five video benchmarks encompassing video retrieval, question-answering, and spatial-temporal understanding tasks. Experiments show that FrameFusion reduces visual tokens by 70%, achieving 1.6-3.6x end-to-end speedups, with an average performance impact of less than 3%. Our code is available at: https://github.com/thu-nics/FrameFusion.

Authors:Atharva Divekar, Atharva Sonawane
Title: Leveraging AI for Automatic Classification of PCOS Using Ultrasound Imaging
Abstract:
The AUTO-PCOS Classification Challenge seeks to advance the diagnostic capabilities of artificial intelligence (AI) in identifying Polycystic Ovary Syndrome (PCOS) through automated classification of healthy and unhealthy ultrasound frames. This report outlines our methodology for building a robust AI pipeline utilizing transfer learning with the InceptionV3 architecture to achieve high accuracy in binary classification. Preprocessing steps ensured the dataset was optimized for training, validation, and testing, while interpretability methods like LIME and saliency maps provided valuable insights into the model's decision-making. Our approach achieved an accuracy of 90.52%, with precision, recall, and F1-score metrics exceeding 90% on validation data, demonstrating its efficacy. The project underscores the transformative potential of AI in healthcare, particularly in addressing diagnostic challenges like PCOS. Key findings, challenges, and recommendations for future enhancements are discussed, highlighting the pathway for creating reliable, interpretable, and scalable AI-driven medical diagnostic tools.

Authors:Jiahao Qin, Feng Liu
Title: GAF-FusionNet: Multimodal ECG Analysis via Gramian Angular Fields and Split Attention
Abstract:
Electrocardiogram (ECG) analysis plays a crucial role in diagnosing cardiovascular diseases, but accurate interpretation of these complex signals remains challenging. This paper introduces a novel multimodal framework(GAF-FusionNet) for ECG classification that integrates time-series analysis with image-based representation using Gramian Angular Fields (GAF). Our approach employs a dual-layer cross-channel split attention module to adaptively fuse temporal and spatial features, enabling nuanced integration of complementary information. We evaluate GAF-FusionNet on three diverse ECG datasets: ECG200, ECG5000, and the MIT-BIH Arrhythmia Database. Results demonstrate significant improvements over state-of-the-art methods, with our model achieving 94.5\%, 96.9\%, and 99.6\% accuracy on the respective datasets. Our code will soon be available at https://github.com/Cross-Innovation-Lab/GAF-FusionNet.git.

Authors:Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao, Zuwei Long, Heting Gao, Ke Li, Long Ma, Xiawu Zheng, Rongrong Ji, Xing Sun, Caifeng Shan, Ran He
Title: VITA-1.5: Towards GPT-4o Level Real-Time Vision and Speech Interaction
Abstract:
Recent Multimodal Large Language Models (MLLMs) have typically focused on integrating visual and textual modalities, with less emphasis placed on the role of speech in enhancing interaction. However, speech plays a crucial role in multimodal dialogue systems, and implementing high-performance in both vision and speech tasks remains a significant challenge due to the fundamental modality differences. In this paper, we propose a carefully designed multi-stage training methodology that progressively trains LLM to understand both visual and speech information, ultimately enabling fluent vision and speech interaction. Our approach not only preserves strong vision-language capacity, but also enables efficient speech-to-speech dialogue capabilities without separate ASR and TTS modules, significantly accelerating multimodal end-to-end response speed. By comparing our method against state-of-the-art counterparts across benchmarks for image, video, and speech tasks, we demonstrate that our model is equipped with both strong visual and speech capabilities, making near real-time vision and speech interaction.

Authors:Tianyu Gao, Alexander Wettig, Luxi He, Yihe Dong, Sadhika Malladi, Danqi Chen
Title: Metadata Conditioning Accelerates Language Model Pre-training
Abstract:
The vast diversity of styles, domains, and quality levels present in language model pre-training corpora is essential in developing general model capabilities, but efficiently learning and deploying the correct behaviors exemplified in each of these heterogeneous data sources is challenging. To address this, we propose a new method, termed Metadata Conditioning then Cooldown (MeCo), to incorporate additional learning cues during pre-training. MeCo first provides metadata (e.g., URLs like www$.$wikipedia$.$org) alongside the text during training and later uses a cooldown phase with only the standard text, thereby enabling the model to function normally even without metadata. MeCo significantly accelerates pre-training across different model scales (600M to 8B parameters) and training sources (C4, RefinedWeb, and DCLM). For instance, a 1.6B language model trained with MeCo matches the downstream task performance of standard pre-training while using 33% less data. Additionally, MeCo enables us to steer language models by conditioning the inference prompt on either real or fabricated metadata that encodes the desired properties of the output: for example, prepending wikipedia$.$org to reduce harmful generations or factquizmaster$.$com (fabricated) to improve common knowledge task performance. We also demonstrate that MeCo is compatible with different types of metadata, such as model-generated topics. MeCo is remarkably simple, adds no computational overhead, and demonstrates promise in producing more capable and steerable language models.

Authors:Weizhi Zhang, Yuanchen Bei, Liangwei Yang, Henry Peng Zou, Peilin Zhou, Aiwei Liu, Yinghui Li, Hao Chen, Jianling Wang, Yu Wang, Feiran Huang, Sheng Zhou, Jiajun Bu, Allen Lin, James Caverlee, Fakhri Karray, Irwin King, Philip S. Yu
Title: Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap
Abstract:
Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.

Authors:Jiaming Li, Jiacheng Zhang, Zequn Jie, Lin Ma, Guanbin Li
Title: Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding
Abstract:
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks. Despite their success, LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content. To address this issue, some approaches have introduced inference-time interventions, such as contrastive decoding and attention rectification, to reduce overreliance on language priors. However, these approaches overlook hallucinations stemming from spurious inter-modality correlations. In this paper, we propose an Inter-Modality Correlation Calibration Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner. In this method, we design a Cross-Modal Value-Enhanced Decoding(CMVED) module to alleviate hallucination by a novel contrastive decoding mechanism. During the estimation of distorted distribution, CMVED masks the value vectors associated with significant cross-modal attention weights, which address both uni-modality overreliance and misleading inter-modality correlations. Additionally, a Content-Driven Attention Refinement(CDAR) module refines cross-modal attention weights, guiding LVLMs to focus on important visual content. Experimental results on diverse hallucination benchmarks validate the superiority of our method over existing state-of-the-art techniques in reducing hallucinations in LVLM text generation. Our code will be available at https://github.com/lijm48/IMCCD.

Authors:Yifan Du, Zikang Liu, Yifan Li, Wayne Xin Zhao, Yuqi Huo, Bingning Wang, Weipeng Chen, Zheng Liu, Zhongyuan Wang, Ji-Rong Wen
Title: Virgo: A Preliminary Exploration on Reproducing o1-like MLLM
Abstract:
Recently, slow-thinking reasoning systems, built upon large language models (LLMs), have garnered widespread attention by scaling the thinking time during inference. There is also growing interest in adapting this capability to multimodal large language models (MLLMs). Given that MLLMs handle more complex data semantics across different modalities, it is intuitively more challenging to implement multimodal slow-thinking systems. To address this issue, in this paper, we explore a straightforward approach by fine-tuning a capable MLLM with a small amount of textual long-form thought data, resulting in a multimodal slow-thinking system, Virgo (Visual reasoning with long thought). We find that these long-form reasoning processes, expressed in natural language, can be effectively transferred to MLLMs. Moreover, it seems that such textual reasoning data can be even more effective than visual reasoning data in eliciting the slow-thinking capacities of MLLMs. While this work is preliminary, it demonstrates that slow-thinking capacities are fundamentally associated with the language model component, which can be transferred across modalities or domains. This finding can be leveraged to guide the development of more powerful slow-thinking reasoning systems. We release our resources at https://github.com/RUCAIBox/Virgo.

Authors:Huaxiang Zhang, Kai Liu, Zhongxue Gan, Guo-Niu Zhu
Title: UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery
Abstract:
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR

Authors:Aobo Kong, Wentao Ma, Shiwan Zhao, Yongbin Li, Yuchuan Wu, Ke Wang, Xiaoqian Liu, Qicheng Li, Yong Qin, Fei Huang
Title: SDPO: Segment-Level Direct Preference Optimization for Social Agents
Abstract:
Social agents powered by large language models (LLMs) can simulate human social behaviors but fall short in handling complex social dialogues. Direct Preference Optimization (DPO) has proven effective in aligning LLM behavior with human preferences across various agent tasks. However, standard DPO focuses solely on individual turns, which limits its effectiveness in multi-turn social interactions. Several DPO-based multi-turn alignment methods with session-level data have shown potential in addressing this problem.While these methods consider multiple turns across entire sessions, they are often overly coarse-grained, introducing training noise, and lack robust theoretical support. To resolve these limitations, we propose Segment-Level Direct Preference Optimization (SDPO), which dynamically select key segments within interactions to optimize multi-turn agent behavior. SDPO minimizes training noise and is grounded in a rigorous theoretical framework. Evaluations on the SOTOPIA benchmark demonstrate that SDPO-tuned agents consistently outperform both existing DPO-based methods and proprietary LLMs like GPT-4o, underscoring SDPO's potential to advance the social intelligence of LLM-based agents. We release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/SDPO.

Authors:Hu Ding, Yan Yan, Yang Lu, Jing-Hao Xue, Hanzi Wang
Title: Uncertainty-Aware Label Refinement on Hypergraphs for Personalized Federated Facial Expression Recognition
Abstract:
Most facial expression recognition (FER) models are trained on large-scale expression data with centralized learning. Unfortunately, collecting a large amount of centralized expression data is difficult in practice due to privacy concerns of facial images. In this paper, we investigate FER under the framework of personalized federated learning, which is a valuable and practical decentralized setting for real-world applications. To this end, we develop a novel uncertainty-Aware label refineMent on hYpergraphs (AMY) method. For local training, each local model consists of a backbone, an uncertainty estimation (UE) block, and an expression classification (EC) block. In the UE block, we leverage a hypergraph to model complex high-order relationships between expression samples and incorporate these relationships into uncertainty features. A personalized uncertainty estimator is then introduced to estimate reliable uncertainty weights of samples in the local client. In the EC block, we perform label propagation on the hypergraph, obtaining high-quality refined labels for retraining an expression classifier. Based on the above, we effectively alleviate heterogeneous sample uncertainty across clients and learn a robust personalized FER model in each client. Experimental results on two challenging real-world facial expression databases show that our proposed method consistently outperforms several state-of-the-art methods. This indicates the superiority of hypergraph modeling for uncertainty estimation and label refinement on the personalized federated FER task. The source code will be released at https://github.com/mobei1006/AMY.

Authors:Nouran Khallaf, Carlo Eugeni, Serge Sharoff
Title: Reading Between the Lines: A dataset and a study on why some texts are tougher than others
Abstract:
Our research aims at better understanding what makes a text difficult to read for specific audiences with intellectual disabilities, more specifically, people who have limitations in cognitive functioning, such as reading and understanding skills, an IQ below 70, and challenges in conceptual domains. We introduce a scheme for the annotation of difficulties which is based on empirical research in psychology as well as on research in translation studies. The paper describes the annotated dataset, primarily derived from the parallel texts (standard English and Easy to Read English translations) made available online. we fine-tuned four different pre-trained transformer models to perform the task of multiclass classification to predict the strategies required for simplification. We also investigate the possibility to interpret the decisions of this language model when it is aimed at predicting the difficulty of sentences. The resources are available from https://github.com/Nouran-Khallaf/why-tough

Authors:Zhengcong Fei, Debang Li, Di Qiu, Changqian Yu, Mingyuan Fan
Title: Ingredients: Blending Custom Photos with Video Diffusion Transformers
Abstract:
This paper presents a powerful framework to customize video creations by incorporating multiple specific identity (ID) photos, with video diffusion Transformers, referred to as Ingredients. Generally, our method consists of three primary modules: (i) a facial extractor that captures versatile and precise facial features for each human ID from both global and local perspectives; (ii) a multi-scale projector that maps face embeddings into the contextual space of image query in video diffusion transformers; (iii) an ID router that dynamically combines and allocates multiple ID embedding to the corresponding space-time regions. Leveraging a meticulously curated text-video dataset and a multi-stage training protocol, Ingredients demonstrates superior performance in turning custom photos into dynamic and personalized video content. Qualitative evaluations highlight the advantages of proposed method, positioning it as a significant advancement toward more effective generative video control tools in Transformer-based architecture, compared to existing methods. The data, code, and model weights are publicly available at: https://github.com/feizc/Ingredients.

Authors:Ruikang Chen, Yan Yan, Jing-Hao Xue, Yang Lu, Hanzi Wang
Title: Augmentation Matters: A Mix-Paste Method for X-Ray Prohibited Item Detection under Noisy Annotations
Abstract:
Automatic X-ray prohibited item detection is vital for public safety. Existing deep learning-based methods all assume that the annotations of training X-ray images are correct. However, obtaining correct annotations is extremely hard if not impossible for large-scale X-ray images, where item overlapping is ubiquitous.As a result, X-ray images are easily contaminated with noisy annotations, leading to performance deterioration of existing methods.In this paper, we address the challenging problem of training a robust prohibited item detector under noisy annotations (including both category noise and bounding box noise) from a novel perspective of data augmentation, and propose an effective label-aware mixed patch paste augmentation method (Mix-Paste). Specifically, for each item patch, we mix several item patches with the same category label from different images and replace the original patch in the image with the mixed patch. In this way, the probability of containing the correct prohibited item within the generated image is increased. Meanwhile, the mixing process mimics item overlapping, enabling the model to learn the characteristics of X-ray images. Moreover, we design an item-based large-loss suppression (LLS) strategy to suppress the large losses corresponding to potentially positive predictions of additional items due to the mixing operation. We show the superiority of our method on X-ray datasets under noisy annotations. In addition, we evaluate our method on the noisy MS-COCO dataset to showcase its generalization ability. These results clearly indicate the great potential of data augmentation to handle noise annotations. The source code is released at https://github.com/wscds/Mix-Paste.

Authors:Jiajun Cao, Yuan Zhang, Tao Huang, Ming Lu, Qizhe Zhang, Ruichuan An, Ningning MA, Shanghang Zhang
Title: MoVE-KD: Knowledge Distillation for VLMs with Mixture of Visual Encoders
Abstract:
Visual encoders are fundamental components in vision-language models (VLMs), each showcasing unique strengths derived from various pre-trained visual foundation models. To leverage the various capabilities of these encoders, recent studies incorporate multiple encoders within a single VLM, leading to a considerable increase in computational cost. In this paper, we present Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD), a novel framework that distills the unique proficiencies of multiple vision encoders into a single, efficient encoder model. Specifically, to mitigate conflicts and retain the unique characteristics of each teacher encoder, we employ low-rank adaptation (LoRA) and mixture-of-experts (MoEs) to selectively activate specialized knowledge based on input features, enhancing both adaptability and efficiency. To regularize the KD process and enhance performance, we propose an attention-based distillation strategy that adaptively weighs the different encoders and emphasizes valuable visual tokens, reducing the burden of replicating comprehensive but distinct features from multiple teachers. Comprehensive experiments on popular VLMs, such as LLaVA and LLaVA-NeXT, validate the effectiveness of our method. Our code is available at: https://github.com/hey-cjj/MoVE-KD.

Authors:Fengrui Zhang, Yujia Yin, Hongzong Li, Yifan Chen, Tianyi Qu
Title: Catch Causal Signals from Edges for Label Imbalance in Graph Classification
Abstract:
Despite significant advancements in causal research on graphs and its application to cracking label imbalance, the role of edge features in detecting the causal effects within graphs has been largely overlooked, leaving existing methods with untapped potential for further performance gains. In this paper, we enhance the causal attention mechanism through effectively leveraging edge information to disentangle the causal subgraph from the original graph, as well as further utilizing edge features to reshape graph representations. Capturing more comprehensive causal signals, our design leads to improved performance on graph classification tasks with label imbalance issues. We evaluate our approach on real-word datasets PTC, Tox21, and ogbg-molhiv, observing improvements over baselines. Overall, we highlight the importance of edge features in graph causal detection and provide a promising direction for addressing label imbalance challenges in graph-level tasks. The model implementation details and the codes are available on https://github.com/fengrui-z/ECAL

Authors:Jina Kim, Jihoo Lee, Je-Won Kang
Title: SNeRV: Spectra-preserving Neural Representation for Video
Abstract:
Neural representation for video (NeRV), which employs a neural network to parameterize video signals, introduces a novel methodology in video representations. However, existing NeRV-based methods have difficulty in capturing fine spatial details and motion patterns due to spectral bias, in which a neural network learns high-frequency (HF) components at a slower rate than low-frequency (LF) components. In this paper, we propose spectra-preserving NeRV (SNeRV) as a novel approach to enhance implicit video representations by efficiently handling various frequency components. SNeRV uses 2D discrete wavelet transform (DWT) to decompose video into LF and HF features, preserving spatial structures and directly addressing the spectral bias issue. To balance the compactness, we encode only the LF components, while HF components that include fine textures are generated by a decoder. Specialized modules, including a multi-resolution fusion unit (MFU) and a high-frequency restorer (HFR), are integrated into a backbone to facilitate the representation. Furthermore, we extend SNeRV to effectively capture temporal correlations between adjacent video frames, by casting the extension as additional frequency decomposition to a temporal domain. This approach allows us to embed spatio-temporal LF features into the network, using temporally extended up-sampling blocks (TUBs). Experimental results demonstrate that SNeRV outperforms existing NeRV models in capturing fine details and achieves enhanced reconstruction, making it a promising approach in the field of implicit video representations. The codes are available at https://github.com/qwertja/SNeRV.

Authors:Tengfei Wang, Xin Wang, Yongmao Hou, Yiwei Xu, Wendi Zhang, Zongqian Zhan
Title: PG-SAG: Parallel Gaussian Splatting for Fine-Grained Large-Scale Urban Buildings Reconstruction via Semantic-Aware Grouping
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a transformative method in the field of real-time novel synthesis. Based on 3DGS, recent advancements cope with large-scale scenes via spatial-based partition strategy to reduce video memory and optimization time costs. In this work, we introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and Gaussian kernel optimization, enabling fine-grained building surface reconstruction of large-scale urban areas without downsampling the original image resolution. First, the Cross-modal model - Language Segment Anything is leveraged to segment building masks. Then, the segmented building regions is grouped into sub-regions according to the visibility check across registered images. The Gaussian kernels for these sub-regions are optimized in parallel with masked pixels. In addition, the normal loss is re-formulated for the detected edges of masks to alleviate the ambiguities in normal vectors on edges. Finally, to improve the optimization of 3D Gaussians, we introduce a gradient-constrained balance-load loss that accounts for the complexity of the corresponding scenes, effectively minimizing the thread waiting time in the pixel-parallel rendering stage as well as the reconstruction lost. Extensive experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction, compared to several state-of-the-art 3DGS-based methods. Project Web:https://github.com/TFWang-9527/PG-SAG.

Authors:Bohan Zhang, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, Jie Tang
Title: CoT-based Synthesizer: Enhancing LLM Performance through Answer Synthesis
Abstract:
Current inference scaling methods, such as Self-consistency and Best-of-N, have proven effective in improving the accuracy of LLMs on complex reasoning tasks. However, these methods rely heavily on the quality of candidate responses and are unable to produce correct answers when all candidates are incorrect. In this paper, we propose a novel inference scaling strategy, CoT-based Synthesizer, which leverages CoT reasoning to synthesize superior answers by analyzing complementary information from multiple candidate responses, even when all candidate responses are flawed. To enable a lightweight and cost-effective implementation, we introduce an automated data generation pipeline that creates diverse training data. This allows smaller LLMs trained on this data to improve the inference accuracy of larger models, including API-based LLMs. Experimental results across four benchmark datasets with seven policy models demonstrate that our method significantly enhances performance, with gains of 11.8% for Llama3-8B and 10.3% for GPT-4o on the MATH dataset. The corresponding training data and code are publicly available on https://github.com/RUCKBReasoning/CoT-based-Synthesizer.

Authors:Yin Cai, Zhouhong Gu, Zhaohan Du, Zheyu Ye, Shaosheng Cao, Yiqian Xu, Hongwei Feng, Ping Chen
Title: MIRAGE: Exploring How Large Language Models Perform in Complex Social Interactive Environments
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities in environmental perception, reasoning-based decision-making, and simulating complex human behaviors, particularly in interactive role-playing contexts. This paper introduces the Multiverse Interactive Role-play Ability General Evaluation (MIRAGE), a comprehensive framework designed to assess LLMs' proficiency in portraying advanced human behaviors through murder mystery games. MIRAGE features eight intricately crafted scripts encompassing diverse themes and styles, providing a rich simulation. To evaluate LLMs' performance, MIRAGE employs four distinct methods: the Trust Inclination Index (TII) to measure dynamics of trust and suspicion, the Clue Investigation Capability (CIC) to measure LLMs' capability of conducting information, the Interactivity Capability Index (ICI) to assess role-playing capabilities and the Script Compliance Index (SCI) to assess LLMs' capability of understanding and following instructions. Our experiments indicate that even popular models like GPT-4 face significant challenges in navigating the complexities presented by the MIRAGE. The datasets and simulation codes are available in \href{https://github.com/lime728/MIRAGE}{github}.

Authors:Kang Yi, Haoran Tang, Yumeng Li, Jing Xu, Jun Zhang
Title: Dual Mutual Learning Network with Global-local Awareness for RGB-D Salient Object Detection
Abstract:
RGB-D salient object detection (SOD), aiming to highlight prominent regions of a given scene by jointly modeling RGB and depth information, is one of the challenging pixel-level prediction tasks. Recently, the dual-attention mechanism has been devoted to this area due to its ability to strengthen the detection process. However, most existing methods directly fuse attentional cross-modality features under a manual-mandatory fusion paradigm without considering the inherent discrepancy between the RGB and depth, which may lead to a reduction in performance. Moreover, the long-range dependencies derived from global and local information make it difficult to leverage a unified efficient fusion strategy. Hence, in this paper, we propose the GL-DMNet, a novel dual mutual learning network with global-local awareness. Specifically, we present a position mutual fusion module and a channel mutual fusion module to exploit the interdependencies among different modalities in spatial and channel dimensions. Besides, we adopt an efficient decoder based on cascade transformer-infused reconstruction to integrate multi-level fusion features jointly. Extensive experiments on six benchmark datasets demonstrate that our proposed GL-DMNet performs better than 24 RGB-D SOD methods, achieving an average improvement of ~3% across four evaluation metrics compared to the second-best model (S3Net). Codes and results are available at https://github.com/kingkung2016/GL-DMNet.

Authors:Tien Dang, Viet Thanh Duy Nguyen, Minh Tuan Le, Truong-Son Hy
Title: Multimodal Contrastive Representation Learning in Augmented Biomedical Knowledge Graphs
Abstract:
Biomedical Knowledge Graphs (BKGs) integrate diverse datasets to elucidate complex relationships within the biomedical field. Effective link prediction on these graphs can uncover valuable connections, such as potential novel drug-disease relations. We introduce a novel multimodal approach that unifies embeddings from specialized Language Models (LMs) with Graph Contrastive Learning (GCL) to enhance intra-entity relationships while employing a Knowledge Graph Embedding (KGE) model to capture inter-entity relationships for effective link prediction. To address limitations in existing BKGs, we present PrimeKG++, an enriched knowledge graph incorporating multimodal data, including biological sequences and textual descriptions for each entity type. By combining semantic and relational information in a unified representation, our approach demonstrates strong generalizability, enabling accurate link predictions even for unseen nodes. Experimental results on PrimeKG++ and the DrugBank drug-target interaction dataset demonstrate the effectiveness and robustness of our method across diverse biomedical datasets. Our source code, pre-trained models, and data are publicly available at https://github.com/HySonLab/BioMedKG

Authors:Zihao Wang, Yuxiang Wei, Fan Li, Renjing Pei, Hang Xu, Wangmeng Zuo
Title: ACE: Anti-Editing Concept Erasure in Text-to-Image Models
Abstract:
Recent advance in text-to-image diffusion models have significantly facilitated the generation of high-quality images, but also raising concerns about the illegal creation of harmful content, such as copyrighted images. Existing concept erasure methods achieve superior results in preventing the production of erased concept from prompts, but typically perform poorly in preventing undesired editing. To address this issue, we propose an Anti-Editing Concept Erasure (ACE) method, which not only erases the target concept during generation but also filters out it during editing. Specifically, we propose to inject the erasure guidance into both conditional and the unconditional noise prediction, enabling the model to effectively prevent the creation of erasure concepts during both editing and generation. Furthermore, a stochastic correction guidance is introduced during training to address the erosion of unrelated concepts. We conducted erasure editing experiments with representative editing methods (i.e., LEDITS++ and MasaCtrl) to erase IP characters, and the results indicate that our ACE effectively filters out target concepts in both types of edits. Additional experiments on erasing explicit concepts and artistic styles further demonstrate that our ACE performs favorably against state-of-the-art methods. Our code will be publicly available at https://github.com/120L020904/ACE.

Authors:Yun Zhu, Dong Zhang, Yi Lin, Yifei Feng, Jinhui Tang
Title: Merging Context Clustering with Visual State Space Models for Medical Image Segmentation
Abstract:
Medical image segmentation demands the aggregation of global and local feature representations, posing a challenge for current methodologies in handling both long-range and short-range feature interactions. Recently, vision mamba (ViM) models have emerged as promising solutions for addressing model complexities by excelling in long-range feature iterations with linear complexity. However, existing ViM approaches overlook the importance of preserving short-range local dependencies by directly flattening spatial tokens and are constrained by fixed scanning patterns that limit the capture of dynamic spatial context information. To address these challenges, we introduce a simple yet effective method named context clustering ViM (CCViM), which incorporates a context clustering module within the existing ViM models to segment image tokens into distinct windows for adaptable local clustering. Our method effectively combines long-range and short-range feature interactions, thereby enhancing spatial contextual representations for medical image segmentation tasks. Extensive experimental evaluations on diverse public datasets, i.e., Kumar, CPM17, ISIC17, ISIC18, and Synapse demonstrate the superior performance of our method compared to current state-of-the-art methods. Our code can be found at https://github.com/zymissy/CCViM.

Authors:Yao Ding, Weijie Kang, Aitao Yang, Zhili Zhang, Junyang Zhao, Jie Feng, Danfeng Hong, Qinhe Zheng
Title: Adaptive Homophily Clustering: Structure Homophily Graph Learning with Adaptive Filter for Hyperspectral Image
Abstract:
Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels. Currently, some deep graph clustering methods have been successfully explored for HSI due to their outstanding performance in effective spatial structural information encoding. Nevertheless, insufficient structural information utilization, poor feature presentation ability, and weak graph update capability limit their performance. Thus, in this paper, a homophily structure graph learning with an adaptive filter clustering method (AHSGC) for HSI is proposed. Specifically, homogeneous region generation is first developed for HSI processing and constructing the original graph. Afterward, an adaptive filter graph encoder is designed to adaptively capture the high and low frequency features on the graph for subsequence processing. Then, a graph embedding clustering self-training decoder is developed with KL Divergence, with which the pseudo-label is generated for network training. Meanwhile, homophily-enhanced structure learning is introduced to update the graph according to the clustering task, in which the orient correlation estimation is adopted to estimate the node connection, and graph edge sparsification is designed to adjust the edges in the graph dynamically. Finally, a joint network optimization is introduced to achieve network self-training and update the graph. The K-means is adopted to express the latent features. Extensive experiments and repeated comparative analysis have verified that our AHSGC contains high clustering accuracy, low computational complexity, and strong robustness. The code source will be available at https://github.com/DY-HYX.

Authors:Juliette Fenogli, Laurence Grimaud, Rodolphe Vuilleumier
Title: Constructing and explaining machine learning models for chemistry: example of the exploration and design of boron-based Lewis acids
Abstract:
The integration of machine learning (ML) into chemistry offers transformative potential in the design of molecules with targeted properties. However, the focus has often been on creating highly efficient predictive models, sometimes at the expense of interpretability. In this study, we leverage explainable AI techniques to explore the rational design of boron-based Lewis acids, which play a pivotal role in organic reactions due to their electron-ccepting properties. Using Fluoride Ion Affinity as a proxy for Lewis acidity, we developed interpretable ML models based on chemically meaningful descriptors, including ab initio computed features and substituent-based parameters derived from the Hammett linear free-energy relationship. By constraining the chemical space to well-defined molecular scaffolds, we achieved highly accurate predictions (mean absolute error < 6 kJ/mol), surpassing conventional black-box deep learning models in low-data regimes. Interpretability analyses of the models shed light on the origin of Lewis acidity in these compounds and identified actionable levers to modulate it through the nature and positioning of substituents on the molecular scaffold. This work bridges ML and chemist's way of thinking, demonstrating how explainable models can inspire molecular design and enhance scientific understanding of chemical reactivity.

Authors:Lihao Wang
Title: Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems
Abstract:
Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations. However, conventional offline extrinsic calibration methods are cumbersome and time-consuming as they rely heavily on physical patterns. Additionally, these methods primarily focus on short-range areas surrounding the vehicle, resulting in lower calibration quality in more distant zones. To address these limitations, we propose Click-Calib, a pattern-free approach for offline SVS extrinsic calibration. Without requiring any special setup, the user only needs to click a few keypoints on the ground in natural scenes. Unlike other offline calibration approaches, Click-Calib optimizes camera poses over a wide range by minimizing reprojection distance errors of keypoints, thereby achieving accurate calibrations at both short and long distances. Furthermore, Click-Calib supports both single-frame and multiple-frame modes, with the latter offering even better results. Evaluations on our in-house dataset and the public WoodScape dataset demonstrate its superior accuracy and robustness compared to baseline methods. Code is available at https://github.com/lwangvaleo/click_calib.

Authors:Ved G. Shah, Alex Gagliano, Konstantin Malanchev, Gautham Narayan, The LSST Dark Energy Science Collaboration
Title: ORACLE: A Real-Time, Hierarchical, Deep-Learning Photometric Classifier for the LSST
Abstract:
We present ORACLE, the first hierarchical deep-learning model for real-time, context-aware classification of transient and variable astrophysical phenomena. ORACLE is a recurrent neural network with Gated Recurrent Units (GRUs), and has been trained using a custom hierarchical cross-entropy loss function to provide high-confidence classifications along an observationally-driven taxonomy with as little as a single photometric observation. Contextual information for each object, including host galaxy photometric redshift, offset, ellipticity and brightness, is concatenated to the light curve embedding and used to make a final prediction. Training on $\sim$0.5M events from the Extended LSST Astronomical Time-Series Classification Challenge, we achieve a top-level (Transient vs Variable) macro-averaged precision of 0.96 using only 1 day of photometric observations after the first detection in addition to contextual information, for each event; this increases to $>$0.99 once 64 days of the light curve has been obtained, and 0.83 at 1024 days after first detection for 19-way classification (including supernova sub-types, active galactic nuclei, variable stars, microlensing events, and kilonovae). We also compare ORACLE with other state-of-the-art classifiers and report comparable performance for the 19-way classification task, in addition to delivering accurate top-level classifications much earlier. The code and model weights used in this work are publicly available at our associated GitHub repository (https://github.com/uiucsn/ELAsTiCC-Classification).

Authors:George Yuanji Wang, Srisharan Murugesan, Aditya Prince Rohatgi
Title: GAN-TAT: A Novel Framework Using Protein Interaction Networks in Druggable Gene Identification
Abstract:
Identifying druggable genes is essential for developing effective pharmaceuticals. With the availability of extensive, high-quality data, computational methods have become a significant asset. Protein Interaction Network (PIN) is valuable but challenging to implement due to its high dimensionality and sparsity. Previous methods relied on indirect integration, leading to resolution loss. This study proposes GAN-TAT, a framework utilizing an advanced graph embedding technology, ImGAGN, to directly integrate PIN for druggable gene inference work. Tested on three Pharos datasets, GAN-TAT achieved the highest AUC-ROC score of 0.951 on Tclin. Further evaluation shows that GAN-TAT's predictions are supported by clinical evidence, highlighting its potential practical applications in pharmacogenomics. This research represents a methodological attempt with the direct utilization of PIN, expanding potential new solutions for developing drug targets. The source code of GAN-TAT is available at (https://github.com/george-yuanji-wang/GAN-TAT).

Authors:Jingfeng Yao, Bin Yang, Xinggang Wang
Title: Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models
Abstract:
Latent diffusion models with Transformer architectures excel at generating high-fidelity images. However, recent studies reveal an optimization dilemma in this two-stage design: while increasing the per-token feature dimension in visual tokenizers improves reconstruction quality, it requires substantially larger diffusion models and more training iterations to achieve comparable generation performance. Consequently, existing systems often settle for sub-optimal solutions, either producing visual artifacts due to information loss within tokenizers or failing to converge fully due to expensive computation costs. We argue that this dilemma stems from the inherent difficulty in learning unconstrained high-dimensional latent spaces. To address this, we propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers. Our proposed VA-VAE (Vision foundation model Aligned Variational AutoEncoder) significantly expands the reconstruction-generation frontier of latent diffusion models, enabling faster convergence of Diffusion Transformers (DiT) in high-dimensional latent spaces. To exploit the full potential of VA-VAE, we build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT. The integrated system achieves state-of-the-art (SOTA) performance on ImageNet 256x256 generation with an FID score of 1.35 while demonstrating remarkable training efficiency by reaching an FID score of 2.11 in just 64 epochs--representing an over 21 times convergence speedup compared to the original DiT. Models and codes are available at: https://github.com/hustvl/LightningDiT.

Authors:Xudong Jiang, Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys
Title: R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale Visual Localization
Abstract:
Learning-based visual localization methods that use scene coordinate regression (SCR) offer the advantage of smaller map sizes. However, on datasets with complex illumination changes or image-level ambiguities, it remains a less robust alternative to feature matching methods. This work aims to close the gap. We introduce a covisibility graph-based global encoding learning and data augmentation strategy, along with a depth-adjusted reprojection loss to facilitate implicit triangulation. Additionally, we revisit the network architecture and local feature extraction module. Our method achieves state-of-the-art on challenging large-scale datasets without relying on network ensembles or 3D supervision. On Aachen Day-Night, we are 10$\times$ more accurate than previous SCR methods with similar map sizes and require at least 5$\times$ smaller map sizes than any other SCR method while still delivering superior accuracy. Code is available at: https://github.com/cvg/scrstudio .

Authors:Yoshitomo Matsubara, Matteo Mendula, Marco Levorato
Title: A Multi-task Supervised Compression Model for Split Computing
Abstract:
Split computing ($\neq$ split learning) is a promising approach to deep learning models for resource-constrained edge computing systems, where weak sensor (mobile) devices are wirelessly connected to stronger edge servers through channels with limited communication capacity. State-of-theart work on split computing presents methods for single tasks such as image classification, object detection, or semantic segmentation. The application of existing methods to multitask problems degrades model accuracy and/or significantly increase runtime latency. In this study, we propose Ladon, the first multi-task-head supervised compression model for multi-task split computing. Experimental results show that the multi-task supervised compression model either outperformed or rivaled strong lightweight baseline models in terms of predictive performance for ILSVRC 2012, COCO 2017, and PASCAL VOC 2012 datasets while learning compressed representations at its early layers. Furthermore, our models reduced end-to-end latency (by up to 95.4%) and energy consumption of mobile devices (by up to 88.2%) in multi-task split computing scenarios.

Authors:Yidi Shao, Chen Change Loy, Bo Dai
Title: Learning 3D Garment Animation from Trajectories of A Piece of Cloth
Abstract:
Garment animation is ubiquitous in various applications, such as virtual reality, gaming, and film producing. Recently, learning-based approaches obtain compelling performance in animating diverse garments under versatile scenarios. Nevertheless, to mimic the deformations of the observed garments, data-driven methods require large scale of garment data, which are both resource-wise expensive and time-consuming. In addition, forcing models to match the dynamics of observed garment animation may hinder the potentials to generalize to unseen cases. In this paper, instead of using garment-wise supervised-learning we adopt a disentangled scheme to learn how to animate observed garments: 1). learning constitutive behaviors from the observed cloth; 2). dynamically animate various garments constrained by the learned constitutive laws. Specifically, we propose Energy Unit network (EUNet) to model the constitutive relations in the format of energy. Without the priors from analytical physics models and differentiable simulation engines, EUNet is able to directly capture the constitutive behaviors from the observed piece of cloth and uniformly describes the change of energy caused by deformations, such as stretching and bending. We further apply the pre-trained EUNet to animate various garments based on energy optimizations. The disentangled scheme alleviates the need of garment data and enables us to utilize the dynamics of a piece of cloth for animating garments. Experiments show that while EUNet effectively delivers the energy gradients due to the deformations, models constrained by EUNet achieve more stable and physically plausible performance comparing with those trained in garment-wise supervised manner. Code is available at https://github.com/ftbabi/EUNet_NeurIPS2024.git .

Authors:Xuyin Qi, Zeyu Zhang, Aaron Berliano Handoko, Huazhan Zheng, Mingxi Chen, Ta Duc Huy, Vu Minh Hieu Phan, Lei Zhang, Linqi Cheng, Shiyu Jiang, Zhiwei Zhang, Zhibin Liao, Yang Zhao, Minh-Son To
Title: ProjectedEx: Enhancing Generation in Explainable AI for Prostate Cancer
Abstract:
Prostate cancer, a growing global health concern, necessitates precise diagnostic tools, with Magnetic Resonance Imaging (MRI) offering high-resolution soft tissue imaging that significantly enhances diagnostic accuracy. Recent advancements in explainable AI and representation learning have significantly improved prostate cancer diagnosis by enabling automated and precise lesion classification. However, existing explainable AI methods, particularly those based on frameworks like generative adversarial networks (GANs), are predominantly developed for natural image generation, and their application to medical imaging often leads to suboptimal performance due to the unique characteristics and complexity of medical image. To address these challenges, our paper introduces three key contributions. First, we propose ProjectedEx, a generative framework that provides interpretable, multi-attribute explanations, effectively linking medical image features to classifier decisions. Second, we enhance the encoder module by incorporating feature pyramids, which enables multiscale feedback to refine the latent space and improves the quality of generated explanations. Additionally, we conduct comprehensive experiments on both the generator and classifier, demonstrating the clinical relevance and effectiveness of ProjectedEx in enhancing interpretability and supporting the adoption of AI in medical settings. Code will be released at https://github.com/Richardqiyi/ProjectedEx

Authors:Yong Zhao, Yang Deng, See-Kiong Ng, Tat-Seng Chua
Title: Aligning Large Language Models for Faithful Integrity Against Opposing Argument
Abstract:
Large Language Models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks. However, they can be easily misled by unfaithful arguments during conversations, even when their original statements are correct. To this end, we investigate the problem of maintaining faithful integrity in LLMs. This involves ensuring that LLMs adhere to their faithful statements in the face of opposing arguments and are able to correct their incorrect statements when presented with faithful arguments. In this work, we propose a novel framework, named Alignment for Faithful Integrity with Confidence Estimation (AFICE), which aims to align the LLM responses with faithful integrity. Specifically, AFICE first designs a Bilateral Confidence Estimation (BCE) approach for estimating the uncertainty of each response generated by the LLM given a specific context, which simultaneously estimate the model's confidence to the question based on the internal states during decoding as well as to the answer based on cumulative probability ratios. With the BCE, we construct a conversational preference dataset composed of context, original statement, and argument, which is adopted for aligning the LLM for faithful integrity using Direct Preference Optimization (DPO). Extensive experimental results on a wide range of benchmarks demonstrate significant improvements in the LLM's ability to maintain faithful responses when encountering opposing arguments, ensuring both the practical utility and trustworthiness of LLMs in complex interactive settings. Code and data will be released via https://github.com/zhaoy777/AFICE.git

Authors:Leandro Di Bella, Yangxintong Lyu, Bruno Cornelis, Adrian Munteanu
Title: HybridTrack: A Hybrid Approach for Robust Multi-Object Tracking
Abstract:
The evolution of Advanced Driver Assistance Systems (ADAS) has increased the need for robust and generalizable algorithms for multi-object tracking. Traditional statistical model-based tracking methods rely on predefined motion models and assumptions about system noise distributions. Although computationally efficient, they often lack adaptability to varying traffic scenarios and require extensive manual design and parameter tuning. To address these issues, we propose a novel 3D multi-object tracking approach for vehicles, HybridTrack, which integrates a data-driven Kalman Filter (KF) within a tracking-by-detection paradigm. In particular, it learns the transition residual and Kalman gain directly from data, which eliminates the need for manual motion and stochastic parameter modeling. Validated on the real-world KITTI dataset, HybridTrack achieves 82.72% HOTA accuracy, significantly outperforming state-of-the-art methods. We also evaluate our method under different configurations, achieving the fastest processing speed of 112 FPS. Consequently, HybridTrack eliminates the dependency on scene-specific designs while improving performance and maintaining real-time efficiency. The code is publicly available at: https://github.com/leandro-svg/HybridTrack.

Authors:Xiaoshuai Song, Yanan Wu, Weixun Wang, Jiaheng Liu, Wenbo Su, Bo Zheng
Title: ProgCo: Program Helps Self-Correction of Large Language Models
Abstract:
Self-Correction aims to enable large language models (LLMs) to self-verify and self-refine their initial responses without external feedback. However, LLMs often fail to effectively self-verify and generate correct feedback, further misleading refinement and leading to the failure of self-correction, especially in complex reasoning tasks. In this paper, we propose Program-driven Self-Correction (ProgCo). First, program-driven verification (ProgVe) achieves complex verification logic and extensive validation through self-generated, self-executing verification pseudo-programs. Then, program-driven refinement (ProgRe) receives feedback from ProgVe, conducts dual reflection and refinement on both responses and verification programs to mitigate misleading of incorrect feedback in complex reasoning tasks. Experiments on three instruction-following and mathematical benchmarks indicate that ProgCo achieves effective self-correction, and can be further enhance performance when combined with real program tools. We release our code at https://github.com/songxiaoshuai/progco.

Authors:Yongle Huang, Haodong Chen, Zhenbang Xu, Zihan Jia, Haozhou Sun, Dian Shao
Title: SeFAR: Semi-supervised Fine-grained Action Recognition with Temporal Perturbation and Learning Stabilization
Abstract:
Human action understanding is crucial for the advancement of multimodal systems. While recent developments, driven by powerful large language models (LLMs), aim to be general enough to cover a wide range of categories, they often overlook the need for more specific capabilities. In this work, we address the more challenging task of Fine-grained Action Recognition (FAR), which focuses on detailed semantic labels within shorter temporal duration (e.g., "salto backward tucked with 1 turn"). Given the high costs of annotating fine-grained labels and the substantial data needed for fine-tuning LLMs, we propose to adopt semi-supervised learning (SSL). Our framework, SeFAR, incorporates several innovative designs to tackle these challenges. Specifically, to capture sufficient visual details, we construct Dual-level temporal elements as more effective representations, based on which we design a new strong augmentation strategy for the Teacher-Student learning paradigm through involving moderate temporal perturbation. Furthermore, to handle the high uncertainty within the teacher model's predictions for FAR, we propose the Adaptive Regulation to stabilize the learning process. Experiments show that SeFAR achieves state-of-the-art performance on two FAR datasets, FineGym and FineDiving, across various data scopes. It also outperforms other semi-supervised methods on two classical coarse-grained datasets, UCF101 and HMDB51. Further analysis and ablation studies validate the effectiveness of our designs. Additionally, we show that the features extracted by our SeFAR could largely promote the ability of multimodal foundation models to understand fine-grained and domain-specific semantics.

Authors:Zhiyao Wang, Xu Chen, Chengming Xu, Junwei Zhu, Xiaobin Hu, Jiangning Zhang, Chengjie Wang, Yuqi Liu, Yiyi Zhou, Rongrong Ji
Title: SVFR: A Unified Framework for Generalized Video Face Restoration
Abstract:
Face Restoration (FR) is a crucial area within image and video processing, focusing on reconstructing high-quality portraits from degraded inputs. Despite advancements in image FR, video FR remains relatively under-explored, primarily due to challenges related to temporal consistency, motion artifacts, and the limited availability of high-quality video data. Moreover, traditional face restoration typically prioritizes enhancing resolution and may not give as much consideration to related tasks such as facial colorization and inpainting. In this paper, we propose a novel approach for the Generalized Video Face Restoration (GVFR) task, which integrates video BFR, inpainting, and colorization tasks that we empirically show to benefit each other. We present a unified framework, termed as stable video face restoration (SVFR), which leverages the generative and motion priors of Stable Video Diffusion (SVD) and incorporates task-specific information through a unified face restoration framework. A learnable task embedding is introduced to enhance task identification. Meanwhile, a novel Unified Latent Regularization (ULR) is employed to encourage the shared feature representation learning among different subtasks. To further enhance the restoration quality and temporal stability, we introduce the facial prior learning and the self-referred refinement as auxiliary strategies used for both training and inference. The proposed framework effectively combines the complementary strengths of these tasks, enhancing temporal coherence and achieving superior restoration quality. This work advances the state-of-the-art in video FR and establishes a new paradigm for generalized video face restoration. Code and video demo are available at https://github.com/wangzhiyaoo/SVFR.git.

Authors:Amil Bhagat, Milind Jain, A. V. Subramanyam
Title: Conditional Consistency Guided Image Translation and Enhancement
Abstract:
Consistency models have emerged as a promising alternative to diffusion models, offering high-quality generative capabilities through single-step sample generation. However, their application to multi-domain image translation tasks, such as cross-modal translation and low-light image enhancement remains largely unexplored. In this paper, we introduce Conditional Consistency Models (CCMs) for multi-domain image translation by incorporating additional conditional inputs. We implement these modifications by introducing task-specific conditional inputs that guide the denoising process, ensuring that the generated outputs retain structural and contextual information from the corresponding input domain. We evaluate CCMs on 10 different datasets demonstrating their effectiveness in producing high-quality translated images across multiple domains. Code is available at https://github.com/amilbhagat/Conditional-Consistency-Models.

Authors:Yitong Zhu, Zhuowen Liang, Yiming Wu, Tangyao Li, Yuyang Wang
Title: Towards Consumer-Grade Cybersickness Prediction: Multi-Model Alignment for Real-Time Vision-Only Inference
Abstract:
Cybersickness remains a major obstacle to the widespread adoption of immersive virtual reality (VR), particularly in consumer-grade environments. While prior methods rely on invasive signals such as electroencephalography (EEG) for high predictive accuracy, these approaches require specialized hardware and are impractical for real-world applications. In this work, we propose a scalable, deployable framework for personalized cybersickness prediction leveraging only non-invasive signals readily available from commercial VR headsets, including head motion, eye tracking, and physiological responses. Our model employs a modality-specific graph neural network enhanced with a Difference Attention Module to extract temporal-spatial embeddings capturing dynamic changes across modalities. A cross-modal alignment module jointly trains the video encoder to learn personalized traits by aligning video features with sensor-derived representations. Consequently, the model accurately predicts individual cybersickness using only video input during inference. Experimental results show our model achieves 88.4\% accuracy, closely matching EEG-based approaches (89.16\%), while reducing deployment complexity. With an average inference latency of 90ms, our framework supports real-time applications, ideal for integration into consumer-grade VR platforms without compromising personalization or performance. The code will be relesed at https://github.com/U235-Aurora/PTGNN.

Authors:Dat Nguyen, Marcella Astrid, Anis Kacem, Enjie Ghorbel, Djamila Aouada
Title: Vulnerability-Aware Spatio-Temporal Learning for Generalizable Deepfake Video Detection
Abstract:
Detecting deepfake videos is highly challenging given the complexity of characterizing spatio-temporal artifacts. Most existing methods rely on binary classifiers trained using real and fake image sequences, therefore hindering their generalization capabilities to unseen generation methods. Moreover, with the constant progress in generative Artificial Intelligence (AI), deepfake artifacts are becoming imperceptible at both the spatial and the temporal levels, making them extremely difficult to capture. To address these issues, we propose a fine-grained deepfake video detection approach called FakeSTormer that enforces the modeling of subtle spatio-temporal inconsistencies while avoiding overfitting. Specifically, we introduce a multi-task learning framework that incorporates two auxiliary branches for explicitly attending artifact-prone spatial and temporal regions. Additionally, we propose a video-level data synthesis strategy that generates pseudo-fake videos with subtle spatio-temporal artifacts, providing high-quality samples and hand-free annotations for our additional branches. Extensive experiments on several challenging benchmarks demonstrate the superiority of our approach compared to recent state-of-the-art methods. The code is available at https://github.com/10Ring/FakeSTormer.

Authors:Lixiong Qin, Ning Jiang, Yang Zhang, Yuhan Qiu, Dingheng Zeng, Jiani Hu, Weihong Deng
Title: Towards Interactive Deepfake Analysis
Abstract:
Existing deepfake analysis methods are primarily based on discriminative models, which significantly limit their application scenarios. This paper aims to explore interactive deepfake analysis by performing instruction tuning on multi-modal large language models (MLLMs). This will face challenges such as the lack of datasets and benchmarks, and low training efficiency. To address these issues, we introduce (1) a GPT-assisted data construction process resulting in an instruction-following dataset called DFA-Instruct, (2) a benchmark named DFA-Bench, designed to comprehensively evaluate the capabilities of MLLMs in deepfake detection, deepfake classification, and artifact description, and (3) construct an interactive deepfake analysis system called DFA-GPT, as a strong baseline for the community, with the Low-Rank Adaptation (LoRA) module. The dataset and code will be made available at https://github.com/lxq1000/DFA-Instruct to facilitate further research.

Authors:Anugunj Naman, Aaron Ault, Yaguang Zhang, James Krogmeier
Title: Automating Work Orders and Tracking Winter Snow Plows and Patrol Vehicles with Telematics Data
Abstract:
Winter road maintenance is a critical priority for the Indiana Department of Transportation, which manages an extensive fleet across thousands of lane miles. The current manual tracking of snowplow workloads is inefficient and prone to errors. To address these challenges, we developed an in-browser web application that automates the creation and verification of work orders using a large-scale GPS dataset from telematics systems. The application processes millions of GPS data points from hundreds of vehicles over winter, significantly reducing manual labor and minimizing errors. Key features include geohashing for efficient road segment identification, detailed segment-level work records, and robust visualization of vehicle movements, even on repeated routes. Our proposed solution has the potential to enhance the accuracy and granularity of work records, support more effective resource allocation, ensure timely compensation for drivers, alleviate administrative burdens, and allow managers to focus on strategic planning and real-time challenges. The web application can be accessed at https://github.com/oats-center/arrtrack/

Authors:Feng Han, Kai Chen, Chao Gong, Zhipeng Wei, Jingjing Chen, Yu-Gang Jiang
Title: DuMo: Dual Encoder Modulation Network for Precise Concept Erasure
Abstract:
The exceptional generative capability of text-to-image models has raised substantial safety concerns regarding the generation of Not-Safe-For-Work (NSFW) content and potential copyright infringement. To address these concerns, previous methods safeguard the models by eliminating inappropriate concepts. Nonetheless, these models alter the parameters of the backbone network and exert considerable influences on the structural (low-frequency) components of the image, which undermines the model's ability to retain non-target concepts. In this work, we propose our Dual encoder Modulation network (DuMo), which achieves precise erasure of inappropriate target concepts with minimum impairment to non-target concepts. In contrast to previous methods, DuMo employs the Eraser with PRior Knowledge (EPR) module which modifies the skip connection features of the U-NET and primarily achieves concept erasure on details (high-frequency) components of the image. To minimize the damage to non-target concepts during erasure, the parameters of the backbone U-NET are frozen and the prior knowledge from the original skip connection features is introduced to the erasure process. Meanwhile, the phenomenon is observed that distinct erasing preferences for the image structure and details are demonstrated by the EPR at different timesteps and layers. Therefore, we adopt a novel Time-Layer MOdulation process (TLMO) that adjusts the erasure scale of EPR module's outputs across different layers and timesteps, automatically balancing the erasure effects and model's generative ability. Our method achieves state-of-the-art performance on Explicit Content Erasure, Cartoon Concept Removal and Artistic Style Erasure, clearly outperforming alternative methods. Code is available at https://github.com/Maplebb/DuMo

Authors:Jian Lang, Zhangtao Cheng, Ting Zhong, Fan Zhou
Title: Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning
Abstract:
Multimodal learning with incomplete modality is practical and challenging. Recently, researchers have focused on enhancing the robustness of pre-trained MultiModal Transformers (MMTs) under missing modality conditions by applying learnable prompts. However, these prompt-based methods face several limitations: (1) incomplete modalities provide restricted modal cues for task-specific inference, (2) dummy imputation for missing content causes information loss and introduces noise, and (3) static prompts are instance-agnostic, offering limited knowledge for instances with various missing conditions. To address these issues, we propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework. RAGPT comprises three modules: (I) the multi-channel retriever, which identifies similar instances through a within-modality retrieval strategy, (II) the missing modality generator, which recovers missing information using retrieved contexts, and (III) the context-aware prompter, which captures contextual knowledge from relevant instances and generates dynamic prompts to largely enhance the MMT's robustness. Extensive experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems. The code of our work and prompt-based baselines is available at https://github.com/Jian-Lang/RAGPT.

Authors:Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, Se Eun Oh
Title: MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
Abstract:
Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at \url {https://github.com/MalwareReplayGAN/MalCL}\footnote{The code will be made public upon the presentation of the paper}.

Authors:Haina Zhu, Yizhi Zhou, Hangting Chen, Jianwei Yu, Ziyang Ma, Rongzhi Gu, Yi Luo, Wei Tan, Xie Chen
Title: MuQ: Self-Supervised Music Representation Learning with Mel Residual Vector Quantization
Abstract:
Recent years have witnessed the success of foundation models pre-trained with self-supervised learning (SSL) in various music informatics understanding tasks, including music tagging, instrument classification, key detection, and more. In this paper, we propose a self-supervised music representation learning model for music understanding. Distinguished from previous studies adopting random projection or existing neural codec, the proposed model, named MuQ, is trained to predict tokens generated by Mel Residual Vector Quantization (Mel-RVQ). Our Mel-RVQ utilizes residual linear projection structure for Mel spectrum quantization to enhance the stability and efficiency of target extraction and lead to better performance. Experiments in a large variety of downstream tasks demonstrate that MuQ outperforms previous self-supervised music representation models with only 0.9K hours of open-source pre-training data. Scaling up the data to over 160K hours and adopting iterative training consistently improve the model performance. To further validate the strength of our model, we present MuQ-MuLan, a joint music-text embedding model based on contrastive learning, which achieves state-of-the-art performance in the zero-shot music tagging task on the MagnaTagATune dataset. Code and checkpoints are open source in https://github.com/tencent-ailab/MuQ.

Authors:Shuo Yu, Shan Jin, Ming Li, Tabinda Sarwar, Feng Xia
Title: Long-range Brain Graph Transformer
Abstract:
Understanding communication and information processing among brain regions of interest (ROIs) is highly dependent on long-range connectivity, which plays a crucial role in facilitating diverse functional neural integration across the entire brain. However, previous studies generally focused on the short-range dependencies within brain networks while neglecting the long-range dependencies, limiting an integrated understanding of brain-wide communication. To address this limitation, we propose Adaptive Long-range aware TransformER (ALTER), a brain graph transformer to capture long-range dependencies between brain ROIs utilizing biased random walk. Specifically, we present a novel long-range aware strategy to explicitly capture long-range dependencies between brain ROIs. By guiding the walker towards the next hop with higher correlation value, our strategy simulates the real-world brain-wide communication. Furthermore, by employing the transformer framework, ALERT adaptively integrates both short- and long-range dependencies between brain ROIs, enabling an integrated understanding of multi-level communication across the entire brain. Extensive experiments on ABIDE and ADNI datasets demonstrate that ALTER consistently outperforms generalized state-of-the-art graph learning methods (including SAN, Graphormer, GraphTrans, and LRGNN) and other graph learning based brain network analysis methods (including FBNETGEN, BrainNetGNN, BrainGNN, and BrainNETTF) in neurological disease diagnosis. Cases of long-range dependencies are also presented to further illustrate the effectiveness of ALTER. The implementation is available at https://github.com/yushuowiki/ALTER.

Authors:Hong Zhang, Zhongjie Duan, Xingjun Wang, Yingda Chen, Yu Zhang
Title: EliGen: Entity-Level Controlled Image Generation with Regional Attention
Abstract:
Recent advancements in diffusion models have significantly advanced text-to-image generation, yet global text prompts alone remain insufficient for achieving fine-grained control over individual entities within an image. To address this limitation, we present EliGen, a novel framework for Entity-level controlled image Generation. Firstly, we put forward regional attention, a mechanism for diffusion transformers that requires no additional parameters, seamlessly integrating entity prompts and arbitrary-shaped spatial masks. By contributing a high-quality dataset with fine-grained spatial and semantic entity-level annotations, we train EliGen to achieve robust and accurate entity-level manipulation, surpassing existing methods in both spatial precision and image quality. Additionally, we propose an inpainting fusion pipeline, extending its capabilities to multi-entity image inpainting tasks. We further demonstrate its flexibility by integrating it with other open-source models such as IP-Adapter, In-Context LoRA and MLLM, unlocking new creative possibilities. The source code, model, and dataset are published at https://github.com/modelscope/DiffSynth-Studio.git.

Authors:Xiaohui Chen, Yinkai Wang, Jiaxing He, Yuanqi Du, Soha Hassoun, Xiaolin Xu, Li-Ping Liu
Title: Graph Generative Pre-trained Transformer
Abstract:
Graph generation is a critical task in numerous domains, including molecular design and social network analysis, due to its ability to model complex relationships and structured data. While most modern graph generative models utilize adjacency matrix representations, this work revisits an alternative approach that represents graphs as sequences of node set and edge set. We advocate for this approach due to its efficient encoding of graphs and propose a novel representation. Based on this representation, we introduce the Graph Generative Pre-trained Transformer (G2PT), an auto-regressive model that learns graph structures via next-token prediction. To further exploit G2PT's capabilities as a general-purpose foundation model, we explore fine-tuning strategies for two downstream applications: goal-oriented generation and graph property prediction. We conduct extensive experiments across multiple datasets. Results indicate that G2PT achieves superior generative performance on both generic graph and molecule datasets. Furthermore, G2PT exhibits strong adaptability and versatility in downstream tasks from molecular design to property prediction. Code available at https://github.com/tufts-ml/G2PT,

Authors:Md Osama, Ashim Dey, Kawsar Ahmed, Muhammad Ashad Kabir
Title: BeliN: A Novel Corpus for Bengali Religious News Headline Generation using Contextual Feature Fusion
Abstract:
Automatic text summarization, particularly headline generation, remains a critical yet underexplored area for Bengali religious news. Existing approaches to headline generation typically rely solely on the article content, overlooking crucial contextual features such as sentiment, category, and aspect. This limitation significantly hinders their effectiveness and overall performance. This study addresses this limitation by introducing a novel corpus, BeliN (Bengali Religious News) - comprising religious news articles from prominent Bangladeshi online newspapers, and MultiGen - a contextual multi-input feature fusion headline generation approach. Leveraging transformer-based pre-trained language models such as BanglaT5, mBART, mT5, and mT0, MultiGen integrates additional contextual features - including category, aspect, and sentiment - with the news content. This fusion enables the model to capture critical contextual information often overlooked by traditional methods. Experimental results demonstrate the superiority of MultiGen over the baseline approach that uses only news content, achieving a BLEU score of 18.61 and ROUGE-L score of 24.19, compared to baseline approach scores of 16.08 and 23.08, respectively. These findings underscore the importance of incorporating contextual features in headline generation for low-resource languages. By bridging linguistic and cultural gaps, this research advances natural language processing for Bengali and other underrepresented languages. To promote reproducibility and further exploration, the dataset and implementation code are publicly accessible at https://github.com/akabircs/BeliN.

Authors:Youngjun Son, Chaewon Kim, Jaejin Lee
Title: FED: Fast and Efficient Dataset Deduplication Framework with GPU Acceleration
Abstract:
Dataset deduplication plays a crucial role in enhancing data quality, ultimately improving the training performance and efficiency of large language models. A commonly used method for data deduplication is the MinHash LSH algorithm. Recently, NVIDIA introduced a GPU-based MinHash LSH deduplication method, but it remains suboptimal, leaving room for further improvement in processing efficiency. This paper proposes a GPU-accelerated deduplication framework, FED, that optimizes MinHash LSH for GPU clusters and leverages computationally efficient, partially reusable non-cryptographic hash functions. FED significantly outperforms the CPU-based deduplication tool in SlimPajama (using 64 logical CPU cores) by up to 107.2 times and the GPU-based tool in NVIDIA NeMo Curator by up to 6.3 times when processing 30 million documents on a node with four GPUs. Notably, our method dramatically accelerates the previously time-consuming MinHash signature generation phase, achieving speed-ups of up to 260 compared to the CPU baseline. Despite these gains in efficiency, FED maintains high deduplication quality, with the duplicate document sets reaching a Jaccard similarity of over 0.96 compared to those identified by the standard MinHash algorithm. In large-scale experiments, the deduplication of 1.2 trillion tokens is completed in just 6 hours in a four-node, 16-GPU environment. The related code is publicly available on GitHub (\href{https://github.com/mcrl/FED}{https://github.com/mcrl/FED}).

Authors:Bin Wang, Xunlong Zou, Shuo Sun, Wenyu Zhang, Yingxu He, Zhuohan Liu, Chengwei Wei, Nancy F. Chen, AiTi Aw
Title: Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models
Abstract:
Singlish, a Creole language rooted in English, is a key focus in linguistic research within multilingual and multicultural contexts. However, its spoken form remains underexplored, limiting insights into its linguistic structure and applications. To address this gap, we standardize and annotate the largest spoken Singlish corpus, introducing the Multitask National Speech Corpus (MNSC). These datasets support diverse tasks, including Automatic Speech Recognition (ASR), Spoken Question Answering (SQA), Spoken Dialogue Summarization (SDS), and Paralinguistic Question Answering (PQA). We release standardized splits and a human-verified test set to facilitate further research. Additionally, we propose SingAudioLLM, a multi-task multimodal model leveraging multimodal large language models to handle these tasks concurrently. Experiments reveal our models adaptability to Singlish context, achieving state-of-the-art performance and outperforming prior models by 10-30% in comparison with other AudioLLMs and cascaded solutions.

Authors:Ziyang Chen, Wenting Li, Yongjun Zhang, Yabo Wu, Bingshu Wang, Yong Zhao, C. L. Philip Chen
Title: Hadamard Attention Recurrent Transformer: A Strong Baseline for Stereo Matching Transformer
Abstract:
Constrained by the low-rank bottleneck inherent in attention mechanisms, current stereo matching transformers suffer from limited nonlinear expressivity, which renders their feature representations sensitive to challenging conditions such as reflections. To overcome this difficulty, we present the Hadamard Attention Recurrent Stereo Transformer (HART). HART includes a novel attention mechanism that incorporates the following components: 1) The Dense Attention Kernel (DAK) maps the attention weight distribution into a high-dimensional space over (0, +$\infty$). By removing the upper bound constraint on attention weights, DAK enables more flexible modeling of complex feature interactions. This reduces feature collinearity. 2) The Multi Kernel & Order Interaction (MKOI) module extends the attention mechanism by unifying semantic and spatial knowledge learning. This integration improves the ability of HART to learn features in binocular images. Experimental results demonstrate the effectiveness of our HART. In reflective area, HART ranked 1st on the KITTI 2012 benchmark among all published methods at the time of submission. Code is available at https://github.com/ZYangChen/HART.

Authors:Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, Luis Ceze
Title: FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving
Abstract:
Transformers, driven by attention mechanisms, form the foundation of large language models (LLMs). As these models scale up, efficient GPU attention kernels become essential for high-throughput and low-latency inference. Diverse LLM applications demand flexible and high-performance attention solutions. We present FlashInfer: a customizable and efficient attention engine for LLM serving. FlashInfer tackles KV-cache storage heterogeneity using block-sparse format and composable formats to optimize memory access and reduce redundancy. It also offers a customizable attention template, enabling adaptation to various settings through Just-In-Time (JIT) compilation. Additionally, FlashInfer's load-balanced scheduling algorithm adjusts to dynamism of user requests while maintaining compatibility with CUDAGraph which requires static configuration. FlashInfer have been integrated into leading LLM serving frameworks like SGLang, vLLM and MLC-Engine. Comprehensive kernel-level and end-to-end evaluations demonstrate FlashInfer's ability to significantly boost kernel performance across diverse inference scenarios: compared to state-of-the-art LLM serving solutions, FlashInfer achieve 29-69% inter-token-latency reduction compared to compiler backends for LLM serving benchmark, 28-30% latency reduction for long-context inference, and 13-17% speedup for LLM serving with parallel generation.

Authors:Wenqi Zhang, Hang Zhang, Xin Li, Jiashuo Sun, Yongliang Shen, Weiming Lu, Deli Zhao, Yueting Zhuang, Lidong Bing
Title: 2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining
Abstract:
Compared to image-text pair data, interleaved corpora enable Vision-Language Models (VLMs) to understand the world more naturally like humans. However, such existing datasets are crawled from webpage, facing challenges like low knowledge density, loose image-text relations, and poor logical coherence between images. On the other hand, the internet hosts vast instructional videos (e.g., online geometry courses) that are widely used by humans to learn foundational subjects, yet these valuable resources remain underexplored in VLM training. In this paper, we introduce a high-quality \textbf{multimodal textbook} corpus with richer foundational knowledge for VLM pretraining. It collects over 2.5 years of instructional videos, totaling 22,000 class hours. We first use an LLM-proposed taxonomy to systematically gather instructional videos. Then we progressively extract and refine visual (keyframes), audio (ASR), and textual knowledge (OCR) from the videos, and organize as an image-text interleaved corpus based on temporal order. Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment. Experiments demonstrate its superb pretraining performance, particularly in knowledge- and reasoning-intensive tasks like ScienceQA and MathVista. Moreover, VLMs pre-trained on our textbook exhibit outstanding interleaved context awareness, leveraging visual and textual cues in their few-shot context for task solving. Our code are available at https://github.com/DAMO-NLP-SG/multimodal_textbook.

Authors:David Wu, Sanjiban Choudhury
Title: Aligning LLMs with Domain Invariant Reward Models
Abstract:
Aligning large language models (LLMs) to human preferences is challenging in domains where preference data is unavailable. We address the problem of learning reward models for such target domains by leveraging feedback collected from simpler source domains, where human preferences are easier to obtain. Our key insight is that, while domains may differ significantly, human preferences convey \emph{domain-agnostic} concepts that can be effectively captured by a reward model. We propose \method, a framework that trains domain-invariant reward models by optimizing a dual loss: a domain loss that minimizes the divergence between source and target distribution, and a source loss that optimizes preferences on the source domain. We show \method is a general approach that we evaluate and analyze across 4 distinct settings: (1) Cross-lingual transfer (accuracy: $0.621 \rightarrow 0.661$), (2) Clean-to-noisy (accuracy: $0.671 \rightarrow 0.703$), (3) Few-shot-to-full transfer (accuracy: $0.845 \rightarrow 0.920$), and (4) Simple-to-complex tasks transfer (correlation: $0.508 \rightarrow 0.556$). Our code, models and data are available at \url{https://github.com/portal-cornell/dial}.

Authors:Libin Lan, Lu Jiang, Tianshu Yu, Xiaojuan Liu, Zhongshi He
Title: FullTransNet: Full Transformer with Local-Global Attention for Video Summarization
Abstract:
Video summarization aims to generate a compact, informative, and representative synopsis of raw videos, which is crucial for browsing, analyzing, and understanding video content. Dominant approaches in video summarization primarily rely on recurrent or convolutional neural networks, and more recently on encoder-only transformer architectures. However, these methods typically suffer from several limitations in parallelism, modeling long-range dependencies, and providing explicit generative capabilities. To address these issues, we propose a transformer-like architecture named FullTransNet with two-fold ideas. First, it uses a full transformer with an encoder-decoder structure as an alternative architecture for video summarization. As the full transformer is specifically designed for sequence transduction tasks, its direct application to video summarization is both intuitive and effective. Second, it replaces the standard full attention mechanism with a combination of local and global sparse attention, enabling the model to capture long-range dependencies while significantly reducing computational costs. This local-global sparse attention is applied exclusively at the encoder side, where the majority of computations occur, further enhancing efficiency. Extensive experiments on two widely used benchmark datasets, SumMe and TVSum, demonstrate that our model achieves F-scores of 54.4% and 63.9%, respectively, while maintaining relatively low computational and memory requirements. These results surpass the second-best performing methods by 0.1% and 0.3%, respectively, verifying the effectiveness and efficiency of FullTransNet.

Authors:Teng Hu, Jiangning Zhang, Ran Yi, Jieyu Weng, Yabiao Wang, Xianfang Zeng, Zhucun Xue, Lizhuang Ma
Title: Improving Autoregressive Visual Generation with Cluster-Oriented Token Prediction
Abstract:
Employing LLMs for visual generation has recently become a research focus. However, the existing methods primarily transfer the LLM architecture to visual generation but rarely investigate the fundamental differences between language and vision. This oversight may lead to suboptimal utilization of visual generation capabilities within the LLM framework. In this paper, we explore the characteristics of visual embedding space under the LLM framework and discover that the correlation between visual embeddings can help achieve more stable and robust generation results. We present IAR, an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models. Firstly, we propose a Codebook Rearrangement strategy that uses balanced k-means clustering algorithm to rearrange the visual codebook into clusters, ensuring high similarity among visual features within each cluster. Leveraging the rearranged codebook, we propose a Cluster-oriented Cross-entropy Loss that guides the model to correctly predict the cluster where the token is located. This approach ensures that even if the model predicts the wrong token index, there is a high probability the predicted token is located in the correct cluster, which significantly enhances the generation quality and robustness. Extensive experiments demonstrate that our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID. Additionally, our approach can be applied to various LLM-based visual generation models and adheres to the scaling law, providing a promising direction for future research in LLM-based visual generation. The code is available at: https://github.com/sjtuplayer/IAR.

Authors:Mingjia Li, Shuang Li, Tongrui Su, Longhui Yuan, Jian Liang, Wei Li
Title: Exploring Structured Semantic Priors Underlying Diffusion Score for Test-time Adaptation
Abstract:
Capitalizing on the complementary advantages of generative and discriminative models has always been a compelling vision in machine learning, backed by a growing body of research. This work discloses the hidden semantic structure within score-based generative models, unveiling their potential as effective discriminative priors. Inspired by our theoretical findings, we propose DUSA to exploit the structured semantic priors underlying diffusion score to facilitate the test-time adaptation of image classifiers or dense predictors. Notably, DUSA extracts knowledge from a single timestep of denoising diffusion, lifting the curse of Monte Carlo-based likelihood estimation over timesteps. We demonstrate the efficacy of our DUSA in adapting a wide variety of competitive pre-trained discriminative models on diverse test-time scenarios. Additionally, a thorough ablation study is conducted to dissect the pivotal elements in DUSA. Code is publicly available at https://github.com/BIT-DA/DUSA.

Authors:Nicholas Magal, Minh Tran, Riku Arakawa, Suzanne Nie
Title: Negative to Positive Co-learning with Aggressive Modality Dropout
Abstract:
This paper aims to document an effective way to improve multimodal co-learning by using aggressive modality dropout. We find that by using aggressive modality dropout we are able to reverse negative co-learning (NCL) to positive co-learning (PCL). Aggressive modality dropout can be used to "prep" a multimodal model for unimodal deployment, and dramatically increases model performance during negative co-learning, where during some experiments we saw a 20% gain in accuracy. We also benchmark our modality dropout technique against PCL to show that our modality drop out technique improves co-learning during PCL, although it does not have as much as an substantial effect as it does during NCL. Github: https://github.com/nmagal/modality_drop_for_colearning

Authors:Van Quang Nguyen, Quoc Chuong Nguyen, Thu Huong Dang, Truong-Son Hy
Title: Hybridising Reinforcement Learning and Heuristics for Hierarchical Directed Arc Routing Problems
Abstract:
The Hierarchical Directed Capacitated Arc Routing Problem (HDCARP) is an extension of the Capacitated Arc Routing Problem (CARP), where the arcs of a graph are divided into classes based on their priority. The traversal of these classes is determined by either precedence constraints or a hierarchical objective, resulting in two distinct HDCARP variants. To the best of our knowledge, only one matheuristic has been proposed for these variants, but it performs relatively slowly, particularly for large-scale instances (Ha et al., 2024). In this paper, we propose a fast heuristic to efficiently address the computational challenges of HDCARP. Furthermore, we incorporate Reinforcement Learning (RL) into our heuristic to effectively guide the selection of local search operators, resulting in a hybrid algorithm. We name this hybrid algorithm as the Hybrid Reinforcement Learning and Heuristic Algorithm for Directed Arc Routing (HRDA). The hybrid algorithm adapts to changes in the problem dynamically, using real-time feedback to improve routing strategies and solution's quality by integrating heuristic methods. Extensive computational experiments on artificial instances demonstrate that this hybrid approach significantly improves the speed of the heuristic without deteriorating the solution quality. Our source code is publicly available at: https://github.com/HySonLab/ArcRoute

Authors:Yulong Ye, Tao Chen, Miqing Li
Title: Distilled Lifelong Self-Adaptation for Configurable Systems
Abstract:
Modern configurable systems provide tremendous opportunities for engineering future intelligent software systems. A key difficulty thereof is how to effectively self-adapt the configuration of a running system such that its performance (e.g., runtime and throughput) can be optimized under time-varying workloads. This unfortunately remains unaddressed in existing approaches as they either overlook the available past knowledge or rely on static exploitation of past knowledge without reasoning the usefulness of information when planning for self-adaptation. In this paper, we tackle this challenging problem by proposing DLiSA, a framework that self-adapts configurable systems. DLiSA comes with two properties: firstly, it supports lifelong planning, and thereby the planning process runs continuously throughout the lifetime of the system, allowing dynamic exploitation of the accumulated knowledge for rapid adaptation. Secondly, the planning for a newly emerged workload is boosted via distilled knowledge seeding, in which the knowledge is dynamically purified such that only useful past configurations are seeded when necessary, mitigating misleading information. Extensive experiments suggest that the proposed DLiSA significantly outperforms state-of-the-art approaches, demonstrating a performance improvement of up to 229% and a resource acceleration of up to 2.22x on generating promising adaptation configurations. All data and sources can be found at our repository: https://github.com/ideas-labo/dlisa.

Authors:Binglu Wang, Yao Tian, Shunzhou Wang, Le Yang
Title: Multimodal Large Models Are Effective Action Anticipators
Abstract:
The task of long-term action anticipation demands solutions that can effectively model temporal dynamics over extended periods while deeply understanding the inherent semantics of actions. Traditional approaches, which primarily rely on recurrent units or Transformer layers to capture long-term dependencies, often fall short in addressing these challenges. Large Language Models (LLMs), with their robust sequential modeling capabilities and extensive commonsense knowledge, present new opportunities for long-term action anticipation. In this work, we introduce the ActionLLM framework, a novel approach that treats video sequences as successive tokens, leveraging LLMs to anticipate future actions. Our baseline model simplifies the LLM architecture by setting future tokens, incorporating an action tuning module, and reducing the textual decoder layer to a linear layer, enabling straightforward action prediction without the need for complex instructions or redundant descriptions. To further harness the commonsense reasoning of LLMs, we predict action categories for observed frames and use sequential textual clues to guide semantic understanding. In addition, we introduce a Cross-Modality Interaction Block, designed to explore the specificity within each modality and capture interactions between vision and textual modalities, thereby enhancing multimodal tuning. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed ActionLLM framework, encouraging a promising direction to explore LLMs in the context of action anticipation. Code is available at https://github.com/2tianyao1/ActionLLM.git.

Authors:Suho Park, SuBeen Lee, Hyun Seok Seong, Jaejoon Yoo, Jae-Pil Heo
Title: Foreground-Covering Prototype Generation and Matching for SAM-Aided Few-Shot Segmentation
Abstract:
We propose Foreground-Covering Prototype Generation and Matching to resolve Few-Shot Segmentation (FSS), which aims to segment target regions in unlabeled query images based on labeled support images. Unlike previous research, which typically estimates target regions in the query using support prototypes and query pixels, we utilize the relationship between support and query prototypes. To achieve this, we utilize two complementary features: SAM Image Encoder features for pixel aggregation and ResNet features for class consistency. Specifically, we construct support and query prototypes with SAM features and distinguish query prototypes of target regions based on ResNet features. For the query prototype construction, we begin by roughly guiding foreground regions within SAM features using the conventional pseudo-mask, then employ iterative cross-attention to aggregate foreground features into learnable tokens. Here, we discover that the cross-attention weights can effectively alternate the conventional pseudo-mask. Therefore, we use the attention-based pseudo-mask to guide ResNet features to focus on the foreground, then infuse the guided ResNet feature into the learnable tokens to generate class-consistent query prototypes. The generation of the support prototype is conducted symmetrically to that of the query one, with the pseudo-mask replaced by the ground-truth mask. Finally, we compare these query prototypes with support ones to generate prompts, which subsequently produce object masks through the SAM Mask Decoder. Our state-of-the-art performances on various datasets validate the effectiveness of the proposed method for FSS. Our official code is available at https://github.com/SuhoPark0706/FCP

Authors:Haoxuan Li, Wei song, Peiwu Qin, Xi Yuan, Zhenglin Chen
Title: HCMA-UNet: A Hybrid CNN-Mamba UNet with Axial Self-Attention for Efficient Breast Cancer Segmentation
Abstract:
Breast cancer lesion segmentation in DCE-MRI remains challenging due to heterogeneous tumor morphology and indistinct boundaries. To address these challenges, this study proposes a novel hybrid segmentation network, HCMA-UNet, for lesion segmentation of breast cancer. Our network consists of a lightweight CNN backbone and a Multi-view Axial Self-Attention Mamba (MISM) module. The MISM module integrates Visual State Space Block (VSSB) and Axial Self-Attention (ASA) mechanism, effectively reducing parameters through Asymmetric Split Channel (ASC) strategy to achieve efficient tri-directional feature extraction. Our lightweight model achieves superior performance with 2.87M parameters and 126.44 GFLOPs. A Feature-guided Region-aware loss function (FRLoss) is proposed to enhance segmentation accuracy. Extensive experiments on one private and two public DCE-MRI breast cancer datasets demonstrate that our approach achieves state-of-the-art performance while maintaining computational efficiency. FRLoss also exhibits good cross-architecture generalization capabilities. The source code is available at https://github.com/Haoxuanli-Thu/HCMA-UNet.

Authors:Yiwei Qin, Yixiu Liu, Pengfei Liu
Title: DIVE: Diversified Iterative Self-Improvement
Abstract:
Recent advances in large language models (LLMs) have demonstrated the effectiveness of Iterative Self-Improvement (ISI) techniques. However, continuous training on self-generated data leads to reduced output diversity, a limitation particularly critical in reasoning tasks where diverse solution paths are essential. We present DIVE (Diversified Iterative Self-Improvement), a novel framework that addresses this challenge through two key components: Sample Pool Expansion for broader solution exploration, and Data Selection for balancing diversity and quality in preference pairs. Experiments on MATH and GSM8k datasets show that DIVE achieves a 10% to 45% relative increase in output diversity metrics while maintaining performance quality compared to vanilla ISI. Our ablation studies confirm both components' significance in achieving these improvements. Code is available at https://github.com/qinyiwei/DIVE.

Authors:Mengran Li, Chaojun Ding, Junzhou Chen, Wenbin Xing, Cong Ye, Ronghui Zhang, Songlin Zhuang, Jia Hu, Tony Z. Qiu, Huijun Gao
Title: AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing Graphs
Abstract:
Missing attribute issues are prevalent in the graph learning, leading to biased outcomes in Graph Neural Networks (GNNs). Existing methods that rely on feature propagation are prone to cold start problem, particularly when dealing with attribute resetting and low-degree nodes, which hinder effective propagation and convergence. To address these challenges, we propose AttriReBoost (ARB), a novel method that incorporates propagation-based method to mitigate cold start problems in attribute-missing graphs. ARB enhances global feature propagation by redefining initial boundary conditions and strategically integrating virtual edges, thereby improving node connectivity and ensuring more stable and efficient convergence. This method facilitates gradient-free attribute reconstruction with lower computational overhead. The proposed method is theoretically grounded, with its convergence rigorously established. Extensive experiments on several real-world benchmark datasets demonstrate the effectiveness of ARB, achieving an average accuracy improvement of 5.11% over state-of-the-art methods. Additionally, ARB exhibits remarkable computational efficiency, processing a large-scale graph with 2.49 million nodes in just 16 seconds on a single GPU. Our code is available at https://github.com/limengran98/ARB.

Authors:Ruibin Li, Tao Yang, Song Guo, Lei Zhang
Title: RORem: Training a Robust Object Remover with Human-in-the-Loop
Abstract:
Despite the significant advancements, existing object removal methods struggle with incomplete removal, incorrect content synthesis and blurry synthesized regions, resulting in low success rates. Such issues are mainly caused by the lack of high-quality paired training data, as well as the self-supervised training paradigm adopted in these methods, which forces the model to in-paint the masked regions, leading to ambiguity between synthesizing the masked objects and restoring the background. To address these issues, we propose a semi-supervised learning strategy with human-in-the-loop to create high-quality paired training data, aiming to train a Robust Object Remover (RORem). We first collect 60K training pairs from open-source datasets to train an initial object removal model for generating removal samples, and then utilize human feedback to select a set of high-quality object removal pairs, with which we train a discriminator to automate the following training data generation process. By iterating this process for several rounds, we finally obtain a substantial object removal dataset with over 200K pairs. Fine-tuning the pre-trained stable diffusion model with this dataset, we obtain our RORem, which demonstrates state-of-the-art object removal performance in terms of both reliability and image quality. Particularly, RORem improves the object removal success rate over previous methods by more than 18\%. The dataset, source code and trained model are available at https://github.com/leeruibin/RORem.

Authors:Chuanting Zhang, Haixia Zhang, Shuping Dang, Basem Shihada, Mohamed-Slim Alouini
Title: Gradient Compression and Correlation Driven Federated Learning for Wireless Traffic Prediction
Abstract:
Wireless traffic prediction plays an indispensable role in cellular networks to achieve proactive adaptation for communication systems. Along this line, Federated Learning (FL)-based wireless traffic prediction at the edge attracts enormous attention because of the exemption from raw data transmission and enhanced privacy protection. However FL-based wireless traffic prediction methods still rely on heavy data transmissions between local clients and the server for local model updates. Besides, how to model the spatial dependencies of local clients under the framework of FL remains uncertain. To tackle this, we propose an innovative FL algorithm that employs gradient compression and correlation-driven techniques, effectively minimizing data transmission load while preserving prediction accuracy. Our approach begins with the introduction of gradient sparsification in wireless traffic prediction, allowing for significant data compression during model training. We then implement error feedback and gradient tracking methods to mitigate any performance degradation resulting from this compression. Moreover, we develop three tailored model aggregation strategies anchored in gradient correlation, enabling the capture of spatial dependencies across diverse clients. Experiments have been done with two real-world datasets and the results demonstrate that by capturing the spatio-temporal characteristics and correlation among local clients, the proposed algorithm outperforms the state-of-the-art algorithms and can increase the communication efficiency by up to two orders of magnitude without losing prediction accuracy. Code is available at https://github.com/chuanting/FedGCC.

Authors:Jiajun Zhu, Peihao Wang, Ruisi Cai, Jason D. Lee, Pan Li, Zhangyang Wang
Title: Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding
Abstract:
Transformers rely on both content-based and position-based addressing mechanisms to make predictions, but existing positional encoding techniques often diminish the effectiveness of position-based addressing. Many current methods enforce rigid patterns in attention maps, limiting the ability to model long-range dependencies and adapt to diverse tasks. Additionally, most positional encodings are learned as general biases, lacking the specialization required for different instances within a dataset. To address this, we propose con\textbf{T}extualized equivari\textbf{A}nt \textbf{P}osition \textbf{E}ncoding (\textbf{TAPE}), a novel framework that enhances positional embeddings by incorporating sequence content across layers. TAPE introduces dynamic, context-aware positional encodings, overcoming the constraints of traditional fixed patterns. We show that TAPE can provably facilitate LLM reasoning ability by emulating a broader class of algorithms. By enforcing permutation and orthogonal equivariance, TAPE ensures the stability of positional encodings during updates, improving long-context ability. Our method can be easily integrated into pre-trained transformers, offering parameter-efficient fine-tuning with minimal overhead. Extensive experiments show that TAPE achieves superior performance in language modeling, arithmetic reasoning, and long-context retrieval tasks compared to existing positional embedding techniques. Code is available at https://github.com/VITA-Group/TAPE.

Authors:Chethan Bhateja, Joseph O'Brien, Afnaan Hashmi, Eva Prakash
Title: Cost and Reward Infused Metric Elicitation
Abstract:
In machine learning, metric elicitation refers to the selection of performance metrics that best reflect an individual's implicit preferences for a given application. Currently, metric elicitation methods only consider metrics that depend on the accuracy values encoded within a given model's confusion matrix. However, focusing solely on confusion matrices does not account for other model feasibility considerations such as varied monetary costs or latencies. In our work, we build upon the multiclass metric elicitation framework of Hiranandani et al., extrapolating their proposed Diagonal Linear Performance Metric Elicitation (DLPME) algorithm to account for additional bounded costs and rewards. Our experimental results with synthetic data demonstrate our approach's ability to quickly converge to the true metric.

Authors:Md Rakibul Hasan, Yue Yao, Md Zakir Hossain, Aneesh Krishna, Imre Rudas, Shafin Rahman, Tom Gedeon
Title: Labels Generated by Large Language Models Help Measure People's Empathy in Vitro
Abstract:
Large language models (LLMs) have revolutionised many fields, with LLM-as-a-service (LLMSaaS) offering accessible, general-purpose solutions without costly task-specific training. In contrast to the widely studied prompt engineering for directly solving tasks (in vivo), this paper explores LLMs' potential for in-vitro applications: using LLM-generated labels to improve supervised training of mainstream models. We examine two strategies - (1) noisy label correction and (2) training data augmentation - in empathy computing, an emerging task to predict psychology-based questionnaire outcomes from inputs like textual narratives. Crowdsourced datasets in this domain often suffer from noisy labels that misrepresent underlying empathy. We show that replacing or supplementing these crowdsourced labels with LLM-generated labels, developed using psychology-based scale-aware prompts, achieves statistically significant accuracy improvements. Notably, the RoBERTa pre-trained language model (PLM) trained with noise-reduced labels yields a state-of-the-art Pearson correlation coefficient of 0.648 on the public NewsEmp benchmarks. This paper further analyses evaluation metric selection and demographic biases to help guide the future development of more equitable empathy computing models. Code and LLM-generated labels are available at https://github.com/hasan-rakibul/LLMPathy.

Authors:Peihao Wang, Ruisi Cai, Yuehao Wang, Jiajun Zhu, Pragya Srivastava, Zhangyang Wang, Pan Li
Title: Understanding and Mitigating Bottlenecks of State Space Models through the Lens of Recency and Over-smoothing
Abstract:
Structured State Space Models (SSMs) have emerged as alternatives to transformers. While SSMs are often regarded as effective in capturing long-sequence dependencies, we rigorously demonstrate that they are inherently limited by strong recency bias. Our empirical studies also reveal that this bias impairs the models' ability to recall distant information and introduces robustness issues. Our scaling experiments then discovered that deeper structures in SSMs can facilitate the learning of long contexts. However, subsequent theoretical analysis reveals that as SSMs increase in depth, they exhibit another inevitable tendency toward over-smoothing, e.g., token representations becoming increasingly indistinguishable. This fundamental dilemma between recency and over-smoothing hinders the scalability of existing SSMs. Inspired by our theoretical findings, we propose to polarize two channels of the state transition matrices in SSMs, setting them to zero and one, respectively, simultaneously addressing recency bias and over-smoothing. Experiments demonstrate that our polarization technique consistently enhances the associative recall accuracy of long-range tokens and unlocks SSMs to benefit further from deeper architectures. All source codes are released at https://github.com/VITA-Group/SSM-Bottleneck.

Authors:Abdesselam Ferdi
Title: Lightweight G-YOLOv11: Advancing Efficient Fracture Detection in Pediatric Wrist X-rays
Abstract:
Computer-aided diagnosis (CAD) systems have greatly improved the interpretation of medical images by radiologists and surgeons. However, current CAD systems for fracture detection in X-ray images primarily rely on large, resource-intensive detectors, which limits their practicality in clinical settings. To address this limitation, we propose a novel lightweight CAD system based on the YOLO detector for fracture detection. This system, named ghost convolution-based YOLOv11 (G-YOLOv11), builds on the latest version of the YOLO detector family and incorporates the ghost convolution operation for feature extraction. The ghost convolution operation generates the same number of feature maps as traditional convolution but requires fewer linear operations, thereby reducing the detector's computational resource requirements. We evaluated the performance of the proposed G-YOLOv11 detector on the GRAZPEDWRI-DX dataset, achieving an mAP@0.5 of 0.535 with an inference time of 2.4 ms on an NVIDIA A10 GPU. Compared to the standard YOLOv11l, G-YOLOv11l achieved reductions of 13.6% in mAP@0.5 and 68.7% in size. These results establish a new state-of-the-art benchmark in terms of efficiency, outperforming existing detectors. Code and models are available at https://github.com/AbdesselamFerdi/G-YOLOv11.

Authors:Yuchuan Tian, Jing Han, Chengcheng Wang, Yuchen Liang, Chao Xu, Hanting Chen
Title: DiC: Rethinking Conv3x3 Designs in Diffusion Models
Abstract:
Diffusion models have shown exceptional performance in visual generation tasks. Recently, these models have shifted from traditional U-Shaped CNN-Attention hybrid structures to fully transformer-based isotropic architectures. While these transformers exhibit strong scalability and performance, their reliance on complicated self-attention operation results in slow inference speeds. Contrary to these works, we rethink one of the simplest yet fastest module in deep learning, 3x3 Convolution, to construct a scaled-up purely convolutional diffusion model. We first discover that an Encoder-Decoder Hourglass design outperforms scalable isotropic architectures for Conv3x3, but still under-performing our expectation. Further improving the architecture, we introduce sparse skip connections to reduce redundancy and improve scalability. Based on the architecture, we introduce conditioning improvements including stage-specific embeddings, mid-block condition injection, and conditional gating. These improvements lead to our proposed Diffusion CNN (DiC), which serves as a swift yet competitive diffusion architecture baseline. Experiments on various scales and settings show that DiC surpasses existing diffusion transformers by considerable margins in terms of performance while keeping a good speed advantage. Project page: https://github.com/YuchuanTian/DiC

Authors:Daniel Sanchez, David Alfaya, Jaime Pizarroso
Title: Motives meet SymPy: studying $λ$-ring expressions in Python
Abstract:
We present a new Python package called "motives", a symbolic manipulation package based on SymPy capable of handling and simplifying motivic expressions in the Grothendieck ring of Chow motives and other types of $λ$-rings. The package is able to manipulate and compare arbitrary expressions in $λ$-rings and, in particular, it contains explicit tools for manipulating motives of several types of commonly used moduli schemes and moduli stacks of decorated bundles on curves. We have applied this new tool to advance in the verification of Mozgovoy's conjectural formula for the motive of the moduli space of twisted Higgs bundles, proving that it holds in rank 2 and 3 for any curve of genus up to 18 and any twisting bundle of small degree.

Authors:Yomal De Mel, Kasun Wickramasinghe, Nisansa de Silva, Surangika Ranathunga
Title: Sinhala Transliteration: A Comparative Analysis Between Rule-based and Seq2Seq Approaches
Abstract:
Due to reasons of convenience and lack of tech literacy, transliteration (i.e., Romanizing native scripts instead of using localization tools) is eminently prevalent in the context of low-resource languages such as Sinhala, which have their own writing script. In this study, our focus is on Romanized Sinhala transliteration. We propose two methods to address this problem: Our baseline is a rule-based method, which is then compared against our second method where we approach the transliteration problem as a sequence-to-sequence task akin to the established Neural Machine Translation (NMT) task. For the latter, we propose a Transformer-based Encode-Decoder solution. We witnessed that the Transformer-based method could grab many ad-hoc patterns within the Romanized scripts compared to the rule-based method. The code base associated with this paper is available on GitHub - https://github.com/kasunw22/Sinhala-Transliterator/

Authors:Madeleine Darbyshire, Elizabeth Sklar, Simon Parsons
Title: Exploiting Boundary Loss for the Hierarchical Panoptic Segmentation of Plants and Leaves
Abstract:
Precision agriculture leverages data and machine learning so that farmers can monitor their crops and target interventions precisely. This enables the precision application of herbicide only to weeds, or the precision application of fertilizer only to undernourished crops, rather than to the entire field. The approach promises to maximize yields while minimizing resource use and harm to the surrounding environment. To this end, we propose a hierarchical panoptic segmentation method that simultaneously determines leaf count (as an identifier of plant growth)and locates weeds within an image. In particular, our approach aims to improve the segmentation of smaller instances like the leaves and weeds by incorporating focal loss and boundary loss. Not only does this result in competitive performance, achieving a PQ+ of 81.89 on the standard training set, but we also demonstrate we can improve leaf-counting accuracy with our method. The code is available at https://github.com/madeleinedarbyshire/HierarchicalMask2Former.

Authors:Ke Yang, Volodymyr Kindratenko, ChengXiang Zhai
Title: TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment
Abstract:
Training language models (LMs) and their application agents is increasingly costly due to large datasets and models, making test failures difficult to bear. Simplified language environments serve as primordial training and testing grounds, retaining essential commonsense and communication skills but in a more digestible form, potentially enhancing the learning efficiency of LMs, and thus reducing the required model size and data volume for effective training and evaluation. In these simplified language environments, workable strategies for small models, datasets, and agents may be adaptable to larger models, datasets, and agents in complex language environments. To create such environments, we focus on two aspects: i) minimizing language dataset noise and complexity, and ii) preserving the essential text distribution characteristics. Unlike previous methods, we propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns (e.g., for books, conversation, code, etc.). Implementing this pipeline with large LMs, we have created a leaner suite of LM training and evaluation datasets: 71M Leaner-Pretrain, 7M Leaner-Instruct, Leaner-Glue for assessing linguistic proficiency, and Leaner-Eval for testing instruction-following ability. Our experiments show that leaner pre-training boosts LM learning efficiency. Tiny LMs trained on these datasets outperform those trained on original datasets in instruction-following across different language granularity levels. Moreover, the Leaner-Pretrain dataset's alignment with conventional large LM training sets enables resource-optimized analysis of how learning objectives, model architectures, and training techniques impact performance on language modeling and downstream tasks. Our code and datasets are available at https://github.com/EmpathYang/TinyHelen.git.

Authors:Fangchen Yu, Ruilizhen Hu, Yidong Lin, Yuqi Ma, Zhenghao Huang, Wenye Li
Title: KAE: Kolmogorov-Arnold Auto-Encoder for Representation Learning
Abstract:
The Kolmogorov-Arnold Network (KAN) has recently gained attention as an alternative to traditional multi-layer perceptrons (MLPs), offering improved accuracy and interpretability by employing learnable activation functions on edges. In this paper, we introduce the Kolmogorov-Arnold Auto-Encoder (KAE), which integrates KAN with autoencoders (AEs) to enhance representation learning for retrieval, classification, and denoising tasks. Leveraging the flexible polynomial functions in KAN layers, KAE captures complex data patterns and non-linear relationships. Experiments on benchmark datasets demonstrate that KAE improves latent representation quality, reduces reconstruction errors, and achieves superior performance in downstream tasks such as retrieval, classification, and denoising, compared to standard autoencoders and other KAN variants. These results suggest KAE's potential as a useful tool for representation learning. Our code is available at \url{https://github.com/SciYu/KAE/}.

Authors:Wenhao Dong, Yueyang Li, Weiming Zeng, Lei Chen, Hongjie Yan, Wai Ting Siok, Nizhuan Wang
Title: STARFormer: A Novel Spatio-Temporal Aggregation Reorganization Transformer of FMRI for Brain Disorder Diagnosis
Abstract:
Many existing methods that use functional magnetic resonance imaging (fMRI) classify brain disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), often overlook the integration of spatial and temporal dependencies of the blood oxygen level-dependent (BOLD) signals, which may lead to inaccurate or imprecise classification results. To solve this problem, we propose a Spatio-Temporal Aggregation eorganization ransformer (STARFormer) that effectively captures both spatial and temporal features of BOLD signals by incorporating three key modules. The region of interest (ROI) spatial structure analysis module uses eigenvector centrality (EC) to reorganize brain regions based on effective connectivity, highlighting critical spatial relationships relevant to the brain disorder. The temporal feature reorganization module systematically segments the time series into equal-dimensional window tokens and captures multiscale features through variable window and cross-window attention. The spatio-temporal feature fusion module employs a parallel transformer architecture with dedicated temporal and spatial branches to extract integrated features. The proposed STARFormer has been rigorously evaluated on two publicly available datasets for the classification of ASD and ADHD. The experimental results confirm that the STARFormer achieves state-of-the-art performance across multiple evaluation metrics, providing a more accurate and reliable tool for the diagnosis of brain disorders and biomedical research. The codes are available at: https://github.com/NZWANG/STARFormer.

Authors:Wanlong Liu, Junying Chen, Ke Ji, Li Zhou, Wenyu Chen, Benyou Wang
Title: RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a key paradigm for enhancing large language models (LLMs) by incorporating external knowledge. However, current RAG methods face two limitations: (1) they only cover limited RAG scenarios. (2) They suffer from limited task diversity due to the lack of a general RAG dataset. To address these limitations, we propose RAG-Instruct, a general method for synthesizing diverse and high-quality RAG instruction data based on any source corpus. Our approach leverages (1) five RAG paradigms, which encompass diverse query-document relationships, and (2) instruction simulation, which enhances instruction diversity and quality by utilizing the strengths of existing instruction datasets. Using this method, we construct a 40K instruction dataset from Wikipedia, comprehensively covering diverse RAG scenarios and tasks. Experiments demonstrate that RAG-Instruct effectively enhances LLMs' RAG capabilities, achieving strong zero-shot performance and significantly outperforming various RAG baselines across a diverse set of tasks. RAG-Instruct is publicly available at https://github.com/FreedomIntelligence/RAG-Instruct.

Authors:Runnan Chen, Zhaoqing Wang, Jiepeng Wang, Yuexin Ma, Mingming Gong, Wenping Wang, Tongliang Liu
Title: PanoSLAM: Panoptic 3D Scene Reconstruction via Gaussian SLAM
Abstract:
Understanding geometric, semantic, and instance information in 3D scenes from sequential video data is essential for applications in robotics and augmented reality. However, existing Simultaneous Localization and Mapping (SLAM) methods generally focus on either geometric or semantic reconstruction. In this paper, we introduce PanoSLAM, the first SLAM system to integrate geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation within a unified framework. Our approach builds upon 3D Gaussian Splatting, modified with several critical components to enable efficient rendering of depth, color, semantic, and instance information from arbitrary viewpoints. To achieve panoptic 3D scene reconstruction from sequential RGB-D videos, we propose an online Spatial-Temporal Lifting (STL) module that transfers 2D panoptic predictions from vision models into 3D Gaussian representations. This STL module addresses the challenges of label noise and inconsistencies in 2D predictions by refining the pseudo labels across multi-view inputs, creating a coherent 3D representation that enhances segmentation accuracy. Our experiments show that PanoSLAM outperforms recent semantic SLAM methods in both mapping and tracking accuracy. For the first time, it achieves panoptic 3D reconstruction of open-world environments directly from the RGB-D video. (https://github.com/runnanchen/PanoSLAM)

Authors:Runnan Chen, Xiangyu Sun, Zhaoqing Wang, Youquan Liu, Jiepeng Wang, Lingdong Kong, Jiankang Deng, Mingming Gong, Liang Pan, Wenping Wang, Tongliang Liu
Title: OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies
Abstract:
Open-vocabulary scene understanding using 3D Gaussian (3DGS) representations has garnered considerable attention. However, existing methods mostly lift knowledge from large 2D vision models into 3DGS on a scene-by-scene basis, restricting the capabilities of open-vocabulary querying within their training scenes so that lacking the generalizability to novel scenes. In this work, we propose \textbf{OVGaussian}, a generalizable \textbf{O}pen-\textbf{V}ocabulary 3D semantic segmentation framework based on the 3D \textbf{Gaussian} representation. We first construct a large-scale 3D scene dataset based on 3DGS, dubbed \textbf{SegGaussian}, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images. To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a 3D neural network to learn and predict the semantic property for each 3D Gaussian point, where the semantic property can be rendered as multi-view consistent 2D semantic maps. In the next, we propose a Cross-modal Consistency Learning (CCL) framework that utilizes open-vocabulary annotations of 2D images and 3D Gaussians within SegGaussian to train the 3D neural network capable of open-vocabulary semantic segmentation across Gaussian-based 3D scenes. Experimental results demonstrate that OVGaussian significantly outperforms baseline methods, exhibiting robust cross-scene, cross-domain, and novel-view generalization capabilities. Code and the SegGaussian dataset will be released. (https://github.com/runnanchen/OVGaussian).

Authors:Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halappanavar, Ryan A. Rossi, Subhabrata Mukherjee, Xianfeng Tang, Qi He, Zhigang Hua, Bo Long, Tong Zhao, Neil Shah, Amin Javari, Yinglong Xia, Jiliang Tang
Title: Retrieval-Augmented Generation with Graphs (GraphRAG)
Abstract:
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.

Authors:Shi-Feng Peng, Guolei Sun, Yong Li, Hongsong Wang, Guo-Sen Xie
Title: SAM-Aware Graph Prompt Reasoning Network for Cross-Domain Few-Shot Segmentation
Abstract:
The primary challenge of cross-domain few-shot segmentation (CD-FSS) is the domain disparity between the training and inference phases, which can exist in either the input data or the target classes. Previous models struggle to learn feature representations that generalize to various unknown domains from limited training domain samples. In contrast, the large-scale visual model SAM, pre-trained on tens of millions of images from various domains and classes, possesses excellent generalizability. In this work, we propose a SAM-aware graph prompt reasoning network (GPRN) that fully leverages SAM to guide CD-FSS feature representation learning and improve prediction accuracy. Specifically, we propose a SAM-aware prompt initialization module (SPI) to transform the masks generated by SAM into visual prompts enriched with high-level semantic information. Since SAM tends to divide an object into many sub-regions, this may lead to visual prompts representing the same semantic object having inconsistent or fragmented features. We further propose a graph prompt reasoning (GPR) module that constructs a graph among visual prompts to reason about their interrelationships and enable each visual prompt to aggregate information from similar prompts, thus achieving global semantic consistency. Subsequently, each visual prompt embeds its semantic information into the corresponding mask region to assist in feature representation learning. To refine the segmentation mask during testing, we also design a non-parameter adaptive point selection module (APS) to select representative point prompts from query predictions and feed them back to SAM to refine inaccurate segmentation results. Experiments on four standard CD-FSS datasets demonstrate that our method establishes new state-of-the-art results. Code: https://github.com/CVL-hub/GPRN.

Authors:Rajat Talak, Charis Georgiou, Jingnan Shi, Luca Carlone
Title: Outlier-Robust Training of Machine Learning Models
Abstract:
Robust training of machine learning models in the presence of outliers has garnered attention across various domains. The use of robust losses is a popular approach and is known to mitigate the impact of outliers. We bring to light two literatures that have diverged in their ways of designing robust losses: one using M-estimation, which is popular in robotics and computer vision, and another using a risk-minimization framework, which is popular in deep learning. We first show that a simple modification of the Black-Rangarajan duality provides a unifying view. The modified duality brings out a definition of a robust loss kernel $σ$ that is satisfied by robust losses in both the literatures. Secondly, using the modified duality, we propose an Adaptive Alternation Algorithm (AAA) for training machine learning models with outliers. The algorithm iteratively trains the model by using a weighted version of the non-robust loss, while updating the weights at each iteration. The algorithm is augmented with a novel parameter update rule by interpreting the weights as inlier probabilities, and obviates the need for complex parameter tuning. Thirdly, we investigate convergence of the adaptive alternation algorithm to outlier-free optima. Considering arbitrary outliers (i.e., with no distributional assumption on the outliers), we show that the use of robust loss kernels σ increases the region of convergence. We experimentally show the efficacy of our algorithm on regression, classification, and neural scene reconstruction problems. We release our implementation code: https://github.com/MIT-SPARK/ORT.

Authors:Edwin Arkel Rios, Jansen Christopher Yuanda, Vincent Leon Ghanz, Cheng-Wei Yu, Bo-Cheng Lai, Min-Chun Hu
Title: Cross-Layer Cache Aggregation for Token Reduction in Ultra-Fine-Grained Image Recognition
Abstract:
Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: \url{https://github.com/arkel23/CLCA}

Authors:Duo Zhou, Christopher Brix, Grani A Hanasusanto, Huan Zhang
Title: Scalable Neural Network Verification with Branch-and-bound Inferred Cutting Planes
Abstract:
Recently, cutting-plane methods such as GCP-CROWN have been explored to enhance neural network verifiers and made significant advances. However, GCP-CROWN currently relies on generic cutting planes (cuts) generated from external mixed integer programming (MIP) solvers. Due to the poor scalability of MIP solvers, large neural networks cannot benefit from these cutting planes. In this paper, we exploit the structure of the neural network verification problem to generate efficient and scalable cutting planes specific for this problem setting. We propose a novel approach, Branch-and-bound Inferred Cuts with COnstraint Strengthening (BICCOS), which leverages the logical relationships of neurons within verified subproblems in the branch-and-bound search tree, and we introduce cuts that preclude these relationships in other subproblems. We develop a mechanism that assigns influence scores to neurons in each path to allow the strengthening of these cuts. Furthermore, we design a multi-tree search technique to identify more cuts, effectively narrowing the search space and accelerating the BaB algorithm. Our results demonstrate that BICCOS can generate hundreds of useful cuts during the branch-and-bound process and consistently increase the number of verifiable instances compared to other state-of-the-art neural network verifiers on a wide range of benchmarks, including large networks that previous cutting plane methods could not scale to. BICCOS is part of the $α,β$-CROWN verifier, the VNN-COMP 2024 winner. The code is available at http://github.com/Lemutisme/BICCOS .

Authors:James P. Beno
Title: ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis
Abstract:
Bidirectional transformers excel at sentiment analysis, and Large Language Models (LLM) are effective zero-shot learners. Might they perform better as a team? This paper explores collaborative approaches between ELECTRA and GPT-4o for three-way sentiment classification. We fine-tuned (FT) four models (ELECTRA Base/Large, GPT-4o/4o-mini) using a mix of reviews from Stanford Sentiment Treebank (SST) and DynaSent. We provided input from ELECTRA to GPT as: predicted label, probabilities, and retrieved examples. Sharing ELECTRA Base FT predictions with GPT-4o-mini significantly improved performance over either model alone (82.50 macro F1 vs. 79.14 ELECTRA Base FT, 79.41 GPT-4o-mini) and yielded the lowest cost/performance ratio (\$0.12/F1 point). However, when GPT models were fine-tuned, including predictions decreased performance. GPT-4o FT-M was the top performer (86.99), with GPT-4o-mini FT close behind (86.70) at much less cost (\$0.38 vs. \$1.59/F1 point). Our results show that augmenting prompts with predictions from fine-tuned encoders is an efficient way to boost performance, and a fine-tuned GPT-4o-mini is nearly as good as GPT-4o FT at 76% less cost. Both are affordable options for projects with limited resources.

Authors:Zhengqi Xu, Han Zheng, Jie Song, Li Sun, Mingli Song
Title: Training-free Heterogeneous Model Merging
Abstract:
Model merging has attracted significant attention as a powerful paradigm for model reuse, facilitating the integration of task-specific models into a singular, versatile framework endowed with multifarious capabilities. Previous studies, predominantly utilizing methods such as Weight Average (WA), have shown that model merging can effectively leverage pretrained models without the need for laborious retraining. However, the inherent heterogeneity among models poses a substantial constraint on its applicability, particularly when confronted with discrepancies in model architectures. To overcome this challenge, we propose an innovative model merging framework designed for heterogeneous models, encompassing both depth and width heterogeneity. To address depth heterogeneity, we introduce a layer alignment strategy that harmonizes model layers by segmenting deeper models, treating consecutive layers with similar representations as a cohesive segment, thus enabling the seamless merging of models with differing layer depths. For width heterogeneity, we propose a novel elastic neuron zipping algorithm that projects the weights from models of varying widths onto a common dimensional space, eliminating the need for identical widths. Extensive experiments validate the efficacy of these proposed methods, demonstrating that the merging of structurally heterogeneous models can achieve performance levels comparable to those of homogeneous merging, across both vision and NLP tasks. Our code is publicly available at https://github.com/zju-vipa/training_free_heterogeneous_model_merging.

Authors:Witold Wydmański, Ulvi Movsum-zada, Jacek Tabor, Marek Śmieja
Title: VisTabNet: Adapting Vision Transformers for Tabular Data
Abstract:
Although deep learning models have had great success in natural language processing and computer vision, we do not observe comparable improvements in the case of tabular data, which is still the most common data type used in biological, industrial and financial applications. In particular, it is challenging to transfer large-scale pre-trained models to downstream tasks defined on small tabular datasets. To address this, we propose VisTabNet -- a cross-modal transfer learning method, which allows for adapting Vision Transformer (ViT) with pre-trained weights to process tabular data. By projecting tabular inputs to patch embeddings acceptable by ViT, we can directly apply a pre-trained Transformer Encoder to tabular inputs. This approach eliminates the conceptual cost of designing a suitable architecture for processing tabular data, while reducing the computational cost of training the model from scratch. Experimental results on multiple small tabular datasets (less than 1k samples) demonstrate VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models. The proposed method goes beyond conventional transfer learning practice and shows that pre-trained image models can be transferred to solve tabular problems, extending the boundaries of transfer learning. We share our example implementation as a GitHub repository available at https://github.com/wwydmanski/VisTabNet.

Authors:Dibakar Gope, David Mansell, Danny Loh, Ian Bratt
Title: Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs
Abstract:
Large language models (LLMs) have transformed the way we think about language understanding and generation, enthralling both researchers and developers. However, deploying LLMs for inference has been a significant challenge due to their unprecedented size and resource requirements. While quantizing model weights to sub-byte precision has emerged as a promising solution to ease memory pressure, the group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process. As a result, a higher proportion of compute instructions do not perform multiplies, i.e., real work, rendering them unsuitable for meeting the required latency requirements for LLMs deployed on commodity CPUs. In this work, we propose a set of highly optimized kernels to accelerate LLM inference and unleash the full potential of CPUs, particularly Arm CPUs. These kernels amortize the cost of loading the operands and the cost of weight unpacking across multiple output rows. This, along with the introduction of an optimized interleaved group data layout for weights and decompression path optimizations to reduce unnecessary operations and dequantization overhead while maximizing the use of vector and matrix multiply operations, significantly improves the efficiency of MAC operations. Furthermore, we present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions, demonstrating better throughput during token generation while ensuring better quality than the state-of-the-art. Applying these improvements to 4-bit LLMs results in a 3-3.2x improvement in prompt processing and a 2x improvement in autoregressive decoding on Arm CPUs, compared to LLaMA.cpp-based solution. The optimized kernels are available at https://github.com/ggerganov/llama.cpp.